
Advance Information

; MC68010/MC68012

16-/32-8IT
VIRTUAL MEMORY

MICROPROCESSORS

MAY, '1985

This document contains information on a new product. Specifications and information herein
are subject to change without notice.

©MOTOROLA INC., 1985 ADI942R2

Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Motorola does
not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its
patent rights nor the rights of others. Motorola and @are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Employment Opportunity/
Affirmative Action Employer.

Paragraph
Number

1. 1
1.2
1.3
1.3.1
1.3.2

2.1
2.2
2.2.1
2.2.2
2.2.3
2.3
2.4
2.5
2.6
2.7
2.8
2.8.1
2.8.1.1
2.8.1.2
2.8.2
2.8.2.1
2.8.2.2
2.8.2.3
2.8.2.4
2.8.2.5
2.8.3
2.8.3.1
2.8.3.2
2.8.3.3
2.8.3.4
2.8.3.5
2.8.3.6
2.9
2.10

TABLE OF CONTENTS

Title

Section 1
Introduction

Page
Number

Data Types and Addressing Modes '. 1-3
I nstruction Set Overview . 1-3
Virtual Memory/Machine Concepts. 1-5

Virtual Memory. 1-5
Virtual Machine. 1-6

Section 2
Data Organization and Addressing Capabilities

Operand Size. 2-1
Data Organization in Registers 2-1

Data Registers. 2-1
Address Registers. 2-1
Control Registers. 2-1

Data Organization in Memory . 2-3
Addressing. 2-3
I nstruction Format. 2-4
Program/ Data References. 2-4
Register Specification : . 2-4
Effective Address .. 2-4

Register Direct Modes 2-5
Data Register Direct . 2-5
Address Register Direct. 2-5

Memory Address Modes ... 2-5
Address Register Indirect. 2-5
Address Register Indirect with Postincrement 2-5
Address Register Indirect with Predecrement 2-5
Address Register Indirect with Displacement 2-5
Address Register Indirect with Index . 2-5

Special Address Modes . 2-6
Absolute Short Address. 2-6
Absol ute Long Add ress . 2-6
Program Counter with Displacement. 2-6
Program Counter with Index. 2-6
Immediate Data. 2-6
Implicit Reference. 2-6

Effective Addressing Encoding Summary. 2-7
System Stack. 2-7

iii

Paragraph
Number

TABLE OF CONTENTS
(Continued)

Title

Section 3
Instruction Set Summary

Page
Number

3.1 Data Movement Operations. .. 3-1
3.2 Integer Arithmetic Operations. .. 3-2
3.3 logical Operations ... 3-3
3.4 Shift and Rotate Operations ... 3-3
3.5 Bit Manipulation Operations 3-4
3.6 Binary Coded Decimal Operations 3-4
3.7 Program Control Operations .. 3-4
3.8 System Control Operations. .. 3-5

4.1
4.1.1
4.1.1.1
4.1.1.2
4.1.2
4.1.3
4.1.3.1
4.1.3.2
4.1.3.3
4.1.3.4
4.1.3.5
4.1.4
4.1.4.1
4.1.4.2
4.1.4.3
4.1.5
4.1.6
4.1.6.1
4.1.6.2
4.1.6.3
4.1.7
4.1.7.1
4.1.7.2
4.1.7.3
4.1.8
4.1.9
4.1.10
4.2
4:2.1
4.2.1.1
4.2.1.2
4.2.1.3
4.2.1.4

Section 4
Signal and Bus Operation Description

Signal Description. .. 4-1
Address Bus. .. 4-1

MC68010 Address Bus (A 1 through A23) 4-1
MC68012 Address Bus (A 1 through A29 and A31) 4-2

Data Bus (DO through 015) .. 4-2
Asynchronous Bus Control. .. 4-2

Read-Modify Cycle (RMC- MC68012 Only) 4-2
Address Strobe (AS) 4-2
Read/Write (R/W) .. 4-2
Upper and lower Data Strobe (015S, lOS). 4-2
Data Transfer Acknowledge (DTACK) .. 4-2

B us Arbitration Control ... 4-3
Bus Request (BR) -. .. 4-3
Bus Grant (BG) .. 4-3
Bus Grant Acknowledge (BGACK) '. 4-3

Interrupt Control (IPLO, IPL 1, IPL2) 4-3
System Control .. 4-3

BusError(BERR) ... 4-3
Reset (RESET) ... , 4-4
Halt (HALT) .. 4-4

M6800 Peripheral Control. .. 4-4
Enable (E) .. 4-4
Valid Peripheral Address (VPA) .. 4-4
Valid Memory Address (VMA) 4-4

Processor Status (FCO, FC1, FC2) 4-4
Clock (ClK) .. 4-4
Signal Summary. .. 4-5

Bus Operation. .. 4-5
Data Transfer Operations. .. 4-5

Read Cycle .. " 4-6
Write Cycle ... 4-8
Read-Modify-Write Cycle " 4-11
CPU Space Cycle .. 4-11

iv

Paragraph
Number

4.2.2
4.2.2.1
4.2.2.2
4.2.2.3
4.2.3
4.2.4
4.2.4.1
4.2.4.2
4.2.4.3
4.2.4.4
4.2.5
4.3
4.4
4.4.1
4.4.2

5.1
5.1.1
5.1.2
5.1.3
5.1.4
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6
5.3.7
5.3.8
5.3.9
5.3.10
5.4

TABLE OF CONTENTS
(Continued)

Title
Page

Number

Bus Arbitration .. 4-12
Requesting the Bus ... 4-14
Receiving the Bus Grant 4-14
Acknowledgement of Mastership 4-14

Bus Arbitration Control ... 4-14
Bus Error and Halt Operation 4-16

Bus Error Operation .. 4-18
Re-Run Operation .. 4-19
Halt Operation ... 4-20
Double Bus Faults .. 4-21

Reset Operation .. 4-22
The Relationship of DTACK, BERR, and HALT 4-22
Asynchronous versus Synchronous Operation 4-24

Asynchronous Operation .. 4-24
Synchronous Operation ... 4-25

Section 5
Processing States

Privilege States , 5-1"
Supervisor State ... " 5-2
User State .. 5-2
Privilege State Changes .. 5-2
Reference Classification. .. 5-2

Address Space Processing .. " 5-3
Exception Vectors .. " 5-3
Exception Stack Frame .. " 5-5
Kinds of Exceptions .. 5-5
Exception Processing Sequence " 5-5
Multiple Exceptions ... " 5-6

Exception Processing In Detail 5-7
Reset ... 5-7
Interrupts ... 5-7
Uninitialized Interrupt ... 5-10
Spurious Interrupt .. 5-10
I nstruction Traps ... 5-10
Illegal and Unimplemented Instructions 5-10
Privilege Violations ... 5-11
Tracing ... 5-11
Bus Error .. 5-12
Address Error .. 5-14

Return from Exception .. 5-14

v

Paragraph
Number

TABLE OF CONTENTS
(Continued)

Title

Section 6
I nterface with M6800 Peripherals

Page
Number

6.1 Data Transfer Operation. .. 6-2
6.2 AC Electrical Specifications- MC68010 to M6800 Peripheral 6-3
6.3 Interrupt Interface Operation ... 6-4

7.1
7.1.1
7.1.2
7.1.3
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.2.6
7.2.7
7.2.8
7.2.9
7.2.10
7.2.11
7.2.12

Section 7
Instruction Set and Execution Times

Instruction Set ... 7-1
Addressing Categories .. 7-1
Instruction Prefetch .. 7-4
Loop Mode Operation ... 7-4

Instruction Execution Times ... 7-6
Operand Effective Address Calculation Times. .. 7-6
Move Instruction Execution Times 7-6
Standard Instruction Execution Times 7-8
Immediate Instruction Execution Times 7-9
Single Operand Instruction Execution Times 7-10
Shift/ Rotate Instruction Execution Times 7-11
Bit Manipulation Instruction Execution Times 7-11
Conditional Instruction Execution Times 7-12
JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times 7-12
Multi-Precision Instruction Execution Times 7-13
Miscellaneous Instruction Execution Times 7-14
Exception Processing Execution Times 7-15

Section 8
Electrical Specifications

8.1 Maximum Ratings .. 8-1
8.2 Thermal Characteristics ... 8-1
8.3 Power Considerations. .. 8-1
8.4 DC Electrical Characteristics .. 8-2
8.5 AC Electrical Specifications- Clock Input 8-3
8.6 AC Electrical Specifications- Read and Write Cycles 8-4
8.7 AC Electrical Specifications- MC68010 to M6800 Peripheral 8-6
8.8 AC Electrical Specifications- Bus Arbitration 8-8

Section 9
Ordering Information

9.1 Package Types. .. 9-1
9.2 Standard Ordering Information 9-1
9.3 1/ Better" Processing - Standard Product Plus. .. 9-2

VI

Paragraph
Number

TABLE OF CONTENTS
(Concluded)

Title

Section 10
Mechanical Data

Page
Number

10.1 Pin Assignments ... " 10-1
10.2 Package Dimensions .. 10-3

vii

Figure
Number

1-1
1-2
1-3

2-1
2-2
2-3
2-4

4-1
4-2
4-3
4-4
4~5

4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-21
4-22
4-23
4-24

5-1
5-2
5-3
5-4
5-5

LIST OF ILLUSTRATIONS

Title

User Programming Model .. .
Supervisor Programming Model Supplement
Status Register

Memory Data Organization
Word Organization in Memory
Instruction Operation Word General Format
Single-Effective-Address Instruction Operation Word

Input and Output Signals
Word Read Cycle Flowchart .. .
Byte Read Cycle Flowchart ',' .
Read and Write Cycle Timing Diagram
Word and Byte Read Cycle Timing Diagram
Word Write Cycle Flowchart .. .
Byte Write Cycle Flowchart
Word and Byte Write Cycle Timing Diagram
Read-Modify-Write Cycle Flowchart
Read-Modify-Write Cycle Timing Diagram
MC68010 CPU-Space Address Encoding
Bus Arbitration Cycle Flowchart
Bus Arbitration Cycle Timing Diagram
MC68010 Bus Arbitration Unit State Diagram '-~
Timing Relationship of External Asynchronous Inputs to Internal Signals '"
Bus Arbitration Timing Diagram - Processor Active
Bus Arbitration Timing Diagram - Bus Inactive
Bus Arbitration Timing Diagram - Special Case
Bus Error Timing Diagram .. .
Delayed Bus Error Timing Diagram
Re-Run Bus Cycle Timing Diagram
Delayed Re-Run Bus Cycle Timing Diagram
Halt Processor Timing Diagram
Reset Operation Timing Diagram

Format of Vector Table Entries
Vector Number Format
Exception Vector Address Calculation :
MC68010 Stack Format .. .
Vector Acquisition Flowchart

VIII

Page
Number

, 1-2
1-2
1-2

2-2
2-3
2-4
2-4

4-1
4-6
4-7
4-7
4-8
4-8
4-9
4-9
4-10
4-11
4-12
4-13
4-15
4-15
4-16
4-17
4-17
4-18
4-18
4-19
4-20
4-21
4-22
4-22

5-3
5-4
5-4
5-5
5-8

Figure
Number

5-6
5-7
5-8
5-9
5-10
5-11

6-1
6-2
6-3
6-4

7-1

LIST OF ILLUSTRATIONS
(Continued)

Page
Title Number

Interrupt Acknowledge Cycle Timing Diagram. 5-9
Interrupt Processing Sequence. 5-9
Breakpoint Cycle Timing Diagram. 5-11
Exception Stack Order (Bus and Address Error) . 5-12
Special Status Word Format. 5-13
Address Error Timing Diagram 5-14

M6800 Interfacing Flowchart. 6-1
MC68010 to M6800 Peripheral Timing Diagram - Best Case. 6-2
MC68010 to M6800 Peripheral Timing Diagram - Worst Case. 6-3
Autovector Operation Timing Diagram 6-4

DBcc Loop Program Example. 7-4

8-1 MC68010 Power Dissipation (PO) vs Ambient Temperature (T A). 8-2
8-2 RESET Test Load .. 8-3
8-3 HALT Test Load ... 8-3
8-4 T est Loads . 8-3
8-5 Clock Input Timing Diagram ... 8-3
8-6 Read Cycle Timing Diagram. .. Foldout

1
8-7 Write Cycle Timing Diagram. .. Foldout

2
8-8 MC68010 to M6800 Peripheral Timing Diagram - Best Case. Foldout

3
8-9 MC68010 to M6800 Peripheral Timing Diagram - Worst Case Foldout

4
8-10 Bus Arbitration Timing-Idle Bus Case Foldout

5
8-11 Bus Arbitration Timing - Active Bus Case. .. Foldout

6
8-12 Bus Arbitration Timing- Multiple Bus Requests:. .. Foldout

7

IX

Table
Number

1-1
1-2
1-3

2-1

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8

4-1
4-2
4-3
4-4
4-5

5-1
5-2
5-3
5-4

7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-11

LIST OF TABLES

Title

Addressing Modes .. .
Instruction Set Summary
Variations of Instruction Types

Effective Address Encoding Summary

Data Movement Operations
Integer Arithmetic Operations
Logical Operations .. .
Shift and Rotate Operations .. .
Bit Manipulation Operations .. .
Binary Coded Decimal Operations
Program Control Operations .. .
System Control Operations

Data Strobe Control of Data Bus
Function Code Assignments .. .
Signal Summary .. .
DTACK, BERR, and HALT Assertion Results
BERR and HALT Negation Results

B us Cycle Classification .. .
Exception Vector Table
MC68010 Format Codes .. .
Exception Grouping and Priority

Effective Addressing Mode Categories
I nstruction Set .. .
M C6801 0 Loopable Instructions
Effective Address Calculation Times
Move Byte and Word Instruction Execution Times
Move Byte and Word Instruction Loop Mode Execution Times
Move Long Instruction Execution Times
Move Long Instruction Loop Mode Execution Times
Standard Instruction Execution Times
Standard Instruction Loop Mode Execution Times
Immediate Instruction Execution Times

x

Page
Number

1-4
1-4
1-5

2-7

3-1
3-2
3-3
3-3
3-4
3-4
3-5
3-5

4-2
4-5
4-5
4-23
4-24

5-3
5-4
5-5
5-7

7-1
7-2
7-5
7-6
7-7
7-7
7-7
7-7
7-8
7-8
7-9

Table
Number

7-12
7-13
7-14
7-15
7-16
7-17
7-18
7-19
7-20
7-21
7-22

LIST OF TABLES
(Continued)

Title

Single Operand Instruction Execution Times ;
Clear Instruction Execution Times
Single Operand Instruction Loop Mode Execution Times
Shift/ Rotate Instruction Execution Times
Shift/Rotate Instruction Loop Mode Execution Times
Bit Manipulation Instruction Execution Times
Conditional I nstruction Execution Times
JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times
Multi-Precision Instruction Execution Times
Miscellaneous Instruction Execution Times
Exception Processing Execution Times

xi/xii

Page
Number

7-10
7-10
7-10
7-11
7-11
7-11
7-12
7-12
7-13
7-14
7-15

SECTION 1
INTRODUCTION

The MC68010 is the third member of a family of advanced microprocessors from Motorola. Utilizing
VLSI technology, the MC68010 is a fully-implemented 16-bit microprocessor with 32-bit registers, a
rich basic instruction set, and versatile addressing modes. The MC68012 is an expanded address
range version of the M C6801 0 with the additional address pins A24-A29 and A31. A30 is not in­
cluded due to packaging restrictions. An additional control pin, RMC, is provided and can be used
as a bus lock to insure system integrity during a read-modify-write operation. Memory management
schemes can also use the R M C pin as an advance indication of read-modify-write cycles, as this pin
has the same timing as the function code pins. Also, two more GNO pins are provided for a better
ground plane. With the exception of the additions noted above, all signal functions and timings on
the MC68012 are identical to those of the M C6801 0; therefore, "MC68010" or "A 1-A23" in this
book can be replaced with "M C68012" or "A 1-A29, A31" , respectively, in reference to the
MC68012.

The MC68010 is fully object code compatible with the earlier members of the M68000 Family and
has the added features of virtual memory support and enhanced instruction execution timing.

The MC68010 possesses an asynchronous bus structure with a 24-bit address bus and a 16-bit data
bus.

The resources available to the MC68010 user consist of the following:

• 17 32-8it Data and Address Registers
• 16 Megabyte Direct Addressing Range
• Virtual Memory/Machine Support

• 57 Powerful Instruction Types
• High Performance Looping. Instructions
• Operations on Five Main Data Types

• Memory Mapped I/O

The resources available to the MC68010 user are also available to the MC68012 user with the addi­
tion of the following:

• 14 Addressing Modes
• Total Direct Address Range of 2 Gigabytes
• RMC Output Pin to Identify a Read-Modify-Write Cycle

As shown in the programming model (Figures 1-1 and 1-2), the M C6801 0 offers 17 32-bit general
purpose registers, a 32-bit program counter, a 16-bit status register, a 32-bit vector base register,
and two 3-bit alternate function code registers. The first eight registers (00-07) are used as data
registers for byte (8-bit), word (16-bit), and long word (32-bit) operations. The second set of seven

1-1

registers (AO-A6) and the stack pointers (SSP, USP) may be used as software stack pointers and
base address registers, In addition, the address registers may be used for word and long word
operations, All of the 17 registers may be used as index registers,

31 16 15 8 7 0

DO

D1

D2

D3 Data

D4 Registers

D5

D6

D7

31 16 15 0

AO

A1

A2

A3
Address

A4
Registers

A5

A6

I A7 User Stack
(USP) POinter

31 0

IPC
Program
Counter

7 0

I ICCR
Condition Code
Register

Figure 1-1. User Programming Model
1-286

31 16 15 0

: A7' Supervisor Stack
LsSP) Pointer

15 87 0

I : CCR ISR Status Register

31 0

IVBR Vector Base Register

2 0

BSFC Alternate Function

DFC Code Registers

Figure 1-2. Supervisor Programming Model Supplement
1-287

The status register (Figure 1-3) contains the interrupt mask (eight levels available) as well as the
condition codes; extend (X), negative (N) I zero (Z), overflow (V) I and carry (C). A'dditional status
bits indicate that the processor is in the trace (T) mode and in the supervisor (S) or user state.

The vector base register is used to determine the location of the exception vector table in memory
to support multiple vector tables. The alternate function code registers allow the supervisor to ac­
cess user data space or emulate CPU space cycles.

1-2

System Byte
,.--_---.JA ___ ---....

15

Supervisor

State Interrupt
Mask

User Byte
(Condition Code Register)
,.--_---.JA '-__ __

4

Negative

Zero

Overflow

Carry

Figure 1-3. Status Register

1.1 DATA TYPES AND ADDRESSING MODES

Five basic data types are supported. These data types are:

• Bits
• BCD Digits (4 bits)

• Bytes (8 bits)
• Words (16 bits)
• Long Words (32 bits)

1-288

In addition, operations on other data types such as memory addresses, status word data, etc., are
provided in the instruction set.

The 14 address modes, shown in Table 1-1, include six basic types:

• Reg ister 0 i rect

• Register Indirect

• Absolute
• Program Counter Relative

• Immediate

• Implied
Included in the register indirect addressing modes is the capability to do postincrementing,
predecrementing, offsetting, and indexing. The program counter relative mode can a/so be
modified via indexing and offsetting.

1.2 INSTRUCTION SET OVERVIEW

The MC68010 instruction set is shown in Table 1-2. Some additional instructions are variations, or
subsets, of these and they appear in Table 1-3. Special emphasis has been given to the instruction
set's support of structured high-level languages to facilitate ease of programming. Each instruction,
with few exceptions, operates on bytes, words, and long words and most instructions can use any
of the 14 addressing modes. By combining instruction types, data types, and addressing modes,
over 1000 useful instructions are provided. These instructions include signed and unsigned multiply
and divide, "quick" arithmetic operations, BCD arithmetic, and expanded operations (through
traps). Also, 33 instructions may be used in the loop mode with certain addressing modes and the
DBcc instruction to provide 230 high performance string, block manipulation, and extended
arithmetic operations.

1-3

Table 1-1. Addressing Modes

Mode

Register Direct Addressing
Data Register Direct
Address Register Direct

Absolute Data Addressing
Absolute Short
Absolute Long

Program Counter Relative Addressing
Relative with Offset
Relative with Index and Offset

Register Indirect Addressing
Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Offset
Indexed Register Indirect with Offset

Immediate Data Addressing
Immediate
Quick Immediate

Implied Addressing
Implied Register

Generation

EA=Dn
EA=An

EA= (Next Word)
EA= (Next Two Words)

EA= (PC) + d16
EA= (PC) + (Xn) + d8

EA= (An)
EA= (An) An-An+ N

An-An- N, EA= (An)
EA = (An) + d16
EA = (An) + (Xn) + d8

DATA= Next Word(s)
I nherent Data

EA= SR, USP, SSP, PC,
VBR, SFC, DFC

NOTES:
EA = Effective Address
An = Address Register
Dn = Data Register
Xn = Address or Data Register used as Index Register
SR = Status Register
PC = Program Counter
() = Contents of
d8 = 8- Bit Offset (Displacement)
d16= 16-Bit Offset (Displacement)
N = 1 for byte, 2 for word, and 4 for long word. If An is

the stack pointer and the operand size is byte, N = 2
to keep the stack pointer on a word boundary.

- = Replaces

1-289

Table 1-2. Instruction Set Summary

Mnemonic Description Mnemonic Description
ABCD* Add Decimal with Extend MOVE* Move Source to Destination
ADD* Add MULS Signed Multiply
AND* Logical And MULU UnSigned Multiply
ASL* Arithmetic Shift Left
ASR* Arithmetic Shift Right

NBCD* Negate Decimal with Extend
NEG* Negate

BCC Branch Conditionally NOP No Operation
BCHG Bit Test and Change NOT* One's Complement
BCLR Bit Test and Clear OR* Logical Or
BRA Branch Always
BSET Bit Test and Set
BSR Branch to Subroutine
BTST Bit Test

CHK Check Register Against Bounds
CLR* Clear Operand
CMP* Compare

PEA Push Effective Address

RESET Reset External Devices
ROL * Rotate Left without Extend
ROR* Rotate Right without Extend
ROXL * Rotate Left with Extend
ROXR* Rotate Right with Extend
RTD Return and Deallocate

DBCC Decrement and Branch Conditionally RTE Return from Exception
DIVS Signed Divide RTR Return and Restore
DIVU Unsigned Divide RTS Return from Subroutine

EOR* Exclusive Or SBCD* Subtract Decimal with Extend
EXG Exchange Registers' SCC Set Conditional
EXT Sign Extend STOP Stop

JMP Jump SUB* Subtract

JSR Jump to Subroutine SWAP Swap Data Register Halves

LEA Load Effective Address TAS T est and Set Operand

LINK Link Stack TRAP Trap

LSL* Logical Shift Left TRAPV T rap on Overflow

LSR* Logical Shift Right TST* Test

* Loopable Instructions UNLK Unlink

1-290

1-4

Table 1-3. Variations of Instruction Types

Instruction
Variation Description

Type
Instruction

Variation Description
Type

ADD ADD* Add MOVE MOVE* Move Source to Destination
ADDA* Add Address MOVEA* Move Address
ADDQ Add Quick MOVEC Move Control Register
ADDI Add Immediate MOVEM Move Multiple Registers
ADDX* Add with Extend MOVEP Move Peripheral Data

AND AND* Logical And
ANDI And Immediate

MOVEQ Move Quick
MOVES Move Alternate Address Space

ANDI to CCR And I mmediate to MOVE from SR Move from Status Register

Condition Codes MOVE to SR Move to Status Register

ANDI to SR And I mmediate to MOVE from

Status Register

CMP CMP* Compare
CMPA* Compare Address
CMPM* Compare Memory
CMPI Compare Immediate

CCR Move from Condition Codes
MOVE to CCR Move to Condition Codes
MOVE USP Move User Stack Pointer

NEG NEG* Negate
NEGX* Negate with Extend

EOR EOR* Exclusive Or OR OR* Logical Or

EORI Exclusive Or Immediate ORI Or Immediate

EORI to CCR Exclusive Or Immediate to ORI to CCR Or Immediate to

Condition Codes
EORI to SR Exclusive Or Immediate to

Condition Codes
ORI to SR' Or Immediate to

Status Register Status Register

* Loopable Instructions SUB SUB* Subtract
SUBA* Subtract Address
SUBI Subtract Immediate
SUBQ Subtract Quick
SUBX* Subtract with Extend

1-291

1.3 VIRTUAL MEMORY/MACHINE CONCEPTS

In most systems using the MC68010 or MC68012 as the central processor, only a fraction of the 16
megabyte or 2 gigabyte address space will actually contain physical memory. However, by using
virtual memory techniques the system can be made to appear to the user to have 16 megabytes or 2
gigabytes of physical memory available to him/her. These techniques have been used for several
years in large mainframe computers and more recently in minicomputers and now, with the
MC68010, can be fully supported in microprocessor-based systems.

In a virtual memory system, a user program can be written as though it has a large amount of
memory available to it when only a small amount of memory is physically present in the system. In a
similar fashion, a system can be designed in such a manner as to allow user programs to access
other types of devices that are not physically present in the system such as tape drives, disk drives, '
printers, or CRTs. With proper software emulation, a physical system can be made to appear to a
user program as any other computer system and the program may be given full access to all of the
resources of that emulated system. Such an emulated system is called a virtual machine.

1.3. 1 Virtual Memory

The basic mechanism for supporting virtual memory in computers is to provide only a limited
amount of high-speed physical memory that can be accessed directly by the processor while main­
taining an image of a much larger "virtual" memory on secondary storage devices such as large
capacity disk drives. When the processor attempts to acc~ss a location in the virtual memory map
that is not currently residing in physical memory (referred to as a page fault), the access to that loca­
tion is temporarily suspended while the necessary data is fetched from the. secondary storage and

1-5

placed in physical memory; the suspended access is then completed. The MC68010 provides hard­
ware support for virtual memory with the capability of suspending an instruction's execution when
a bus error is signaled and then completing the instruction after the physical memory has been up­
dated as necessary.

The MC68010 uses instruction continuation rather than instruction restart to support virtual
memory. With instruction restart, the processor must remember the exact state of the system
before each instruction is started in order to restore that state if a page fault occurs during its execu­
tion. Then, after the page fault has been repaired, the entire instruction that caused the fault is re­
executed. With instruction continuation, when a page fault occurs the processor stores its internal
state and then, after the page fault is repaired, restores that internal state and continues execution
of the instruction. In order for the MC68010 to utilize instruction continuation, it stores its internal
state on the supervisor stack when a bus cycle is terminated with a bus error signal. It then loads the
program counter from vector table entry number two (offset $008) and resumes program execution
at that new address. When the bus error exception handler routine has completed execution, an
RTE instruction is executed which reloads the M C6801 0 with the internal state stored on the stack,
re-runs the faulted bus cycle, and continues the suspended instruction. Instruction continuation
has the additional advantage of allowing hardware support for virtual 1/0 devices. Since virtual
registers may be simulated in the memory map, an access to such a register will cause a fault and
the function of the register can be emulated by software.

1 .3.2 Virtual Machine

One typical use for a virtual machine system is in the development of software such as an operating
system for another machine with hardware also under development and not available for program­
ming use. In such a system, the governing operating system (aS) emulates the hardware of the
new system and allows the new as to be executed and debugged as though it were running on the
new hardware. Since the new as is controlled by the governing as, the new one must execute at a
lower privilege level than the governing as so that any attempts by the new as to use virtual
resources that are not physically present, and should be emulated, will be trapped by the governing
as and handled in software. In the MC68010, a virtual machine may be fully supported by running
the new as in the user mode and the governing as in the supervisor mode so that any attempts to
access supervisor resources or execute privileged instructions by the new as will cause a trap to the
governing as.

In order to fully support a virtual machine, the MC68010 must protect the supervisor resources from
access by user programs. The one supervisor resource that is not fully protected in the MC68000 is
thesystem byte of the status register. In the MC68000, the MOVE from SR instruction allows user
programs to test the S bit (in addition to the T bit and interrupt mask) and thus determine that they
are running in the user mode. For full virtual machine support, a new as must not be aware of the
fact that it is running in the user mode and thus should not be allowed to access the S bit. For this
reason, the MOVE from SR instruction on the MC68010 is a privileged instruction and the MOVE
from CCR instruction has been added to allow user programs unhindered access to the condition
codes. By making the,MOVE from SR instruction privileged, when the new as attempts to access
the S bit, a trap to the governing as will occur and the SR image passed to the new as by the
governing as will have the S bit set.

1-6

SECTION 2
DATA ORGANIZATION AND ADDRESSING CAPABILITIES

This section contains a description of the registers and the data organization of the MC68010.

2.1 OPERAND SIZE

Operand sizes are defined as follows: a byte equals 8 bits, a word equals 16 bits, and a long word
equals 32 bits. The operand size for each instruction is either explicitly encoded in the instruction or
implicitly defined by the instruction operation. Implicit instructions support some subset of all three
sizes.

2.2 DATA ORGANIZATION IN REGISTERS

The eight data registers support data operands of 1, 8, 16, or 32 bits. The seven address registers
and the stack pointers support address operands of 32 bits. The four control registers support data
of 1, 3, 8, 16, or 32 bits depending on the register specified.

2.2.1 Data Registers

Each data register is 32 bits wide. Byte operands occupy the low order 8 bits, word operands the
low order 16 bits, and long word operands the entire 32 bits. The least significant bit is addressed as
bit zero; the most significant bit is addressed as bit 31.

When a data register is used as either a source or destination operand, only the appropriate low
order portion is changed; the remaining high order portion is neither used nor changed.

2.2.2 Address Registers

Each address register and stack pointer is 32 bits wide and holds a full 32-bit address. Address
registers do not support the sized operands. Therefore, when an address register is used as a source
operand, either the low order word or the entire long word operand is used depending upon the
operation size. When an address register is used as the destination operand, the entire register is af­
fected regardless of the operation size. If the operation size isword, any other operands are sign ex­
tended to 32 bits before the operation is performed.

2.2.3 Control Registers

The status register (SR) is 16 bits wide with the lower byte being accessed as the condition code
register (CCR). Not all 16 bits of the S R are defined and will be read as zeroes and ignored when
written. Operations to the CCR are word operations; however, the upper byte will be read as all
zeroes and ignored when written.

2-1

Bit Data - 1 Byte= 8 Bits

7 6 5 4 3 2 o

I nteger Data - 1 Byte = 8 Bits

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I MSB
Byte 0

LSBI
Byte 1

Byte 2 Byte 3

1 Word = 16 Bits

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

MSB Word 0
LSB

Word 1

Word 2

1 Long Word = 32 Bits

15 14 13 12 11 10 9 a 7 6 5 4 3 2 o
MSB

High Order
- - Long Word 0- -

Low Order
LSB

- -Long Word 1- -

- - Long Word 2 -

Addresses -- 1 Address = 32 Bits

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
MSB

High Order
- - Address 0 -

Low Order
LSB

- - Address 1 - - - - - - - - - - - - - - - - --- - - -

- - Address 2 -

MSB = Most Significant Bit LSB = Least Significant Bit

Decimal Data
2 Binary Coded Decimal Digits = 1 Byte

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
MSD

BCD 0 BCD 1 LSD BCD 2 BCD 3

BCD 4 BCD 5 BCD 6 BCD 7

MSD = Most Significant Digit LSD = Least Significant Digit
1-292

Figure 2-1. Memory Data Organization

2-2

The vector base register (VBR) is 32 bits wide and holds a full 32-bit address. All operations involv­
ing the VBR are long word operations regardless of whether it is the source or destination operand.

The alternate function code registers (S FC and DFC) are three bits wide and contain the function
code values placed on FCO-FC2 during the operand read or write of a MOVES instruction. All
transfers to or from the alternate function code registers are 32 bits although the upper 29 bits will
be read as zeroes and ignored when written.

2.3 DATA ORGANIZATION IN MEMORY

The data types supported by the MC68010 are: bit data, integer data of 8, 16, or 32 bits, 32-bit ad­
dresses and binary coded decimal data. Each of these data types is put in memory, as shown in
Figure 2-1. The numbers indicate the order in which the data would be accessed from the pro­
cessor.

Bytes are individually addressable with the high order byte having an even address the same as the
word, as shown in Figure 2-2. The low order byte has an odd address that is one count higher than
the word address. Instructions and word or long word data are accessed only on word (even byte)
boundaries. If a long word datum is located at address n (n even), then the low-order word of that
datum is located at address n + 2.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
Word()()()()()()

B yt e ()()()()()() I Byte 000001

Word 000002
Byte 000002 I Byte 000003

• • • • •
Word FFFFFE

Byte FFFFFE I Byte FFFFFF

1-293

Figure 2-2. Word Organization in Memory

2.4 ADDRESSING

Instructions for the MC68010 contain two kinds of information: the type of function to be per­
formed and the location of the operand(s) on which to perform that function. The methods used to
locate (address) the operand(s) are explained in the following paragraphs.

Instructions specify an operand location in one of three ways:

Register Specification - the number of the register is given in the register field of
their instruction.

Effective Address - use of the different effective addressing modes.

Implicit Reference - the definition of certain instructions implies the use of specific registers.

2-3

2.5 INSTRUCTION FORMAT

Instructions are from one to five words in length as shown in Figure 2-3. The length of the instruc­
tion and the operation to be performed is specified by the first word of the instruction which is
called the operation word. The remaining words further specify the operands. These words are
either immediate operands or extensions to the effective address mode specified in the operation
word.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
Operation Word

(One Word Specifies Operation and Modes)

Immediate Operand
(If Any, One or Two Words)

Source Effective Address Extension
(If Any, One or Two Words)

Destination Effective Address Extension
(If Any, One or Two Words)

7-294

Figure 2-3. Instruction Operation Word General Format

2.6 PROGRAM/DATA REFERENCES

The M C6801 0 separates memory references into two classes: program references and data
references. Program references, as the name implies, are references to that section of memory that
contains the program being executed. Data references refer to that section of memory that contains
data. Generally, operand reads are from the data space. All operand writes are to the data space.

2.7 REGISTER SPECIFICATION

The register field within an instruction specifies the register to be used. Other fields within the in­
struction specify whether the register selected is an address or data register and how the register is
to be used.

2.8 EFFECTIVE ADDRESS

Most instructions specify the location of an operand by using the effective address field in the
operation word. For example, Figure 2-4 shows the general format of the single-effective-address
instruction operation word. The effective address is composed of two 3-bit fields: the mode field
and the register field. The value in the mode field selects the different address modes. The register
field contains the number of a register.

5 4 3 2 o
Effective Address

Mode Register

7-295

Figure 2-4. Single-Effective-Address Instruction Operation Word

2-4

The effective address field may require additional information to fully specify the operand. This ad­
ditional information, called the effective address extension, is contained in the following word or
words and is considered part of the instruction, as shown in Figure 2-3. The effective address
modes are grouped into three categories: register direct, memory addressing, and special.

2.8. 1 Register Direct Modes

These effective addressing modes specify that the operand is in one of sixteen general purpose
registers or one of four control registers.

2.8.1.1 DATA REGISTER DIRECT. The operand is in the data register specified by the effective ad­
dress register field.

2.8.1.2 ADDRESS REGISTER DIRECT. The operand is in the address register specified by the ef­
fective address register field.

2.8.2 Memory Address Modes

These effective addressing modes specify that the operand is in memory and provide the specific
address of the operand.

2.8.2.1 ADDRESS REGISTER INDIRECT. The address of the operand is in the address register
specified by the register field. The reference is classified as a data reference with the exception of
the jump and jump-to-subroutine instructions.

2.8.2.2 ADDRESS REGISTER INDIRECT WITH POSTINCREMENT. The address of the operand is
in the address register specified by the register field. After the operand address is used, it is in­
cremented by one, two, or four depending upon whether the size of the operand is byte, word, or
long word. If the address register is the stack pointer and the operand size is byte, the address is in­
cremented by two rather than one to keep the stack pointer on a word boundary. The reference is
classified as a data reference.

2.8.2.3 ADDRESS REGISTER INDIRECT WITH PREDECREMENT. The address of the operand is in
the address register specified by the register field. Before the operand address is used, it is
decremented by one, two, or four depending upon whether the operand size is byte, word, or long
word. If the address register is the stack pointer and the operand size is byte, the address is
decremented by two rather than one to keep the stack pointer on a word boundary. The reference is
classified as a data reference.

2.8.2.4 ADDRESS REGISTER INDIRECT WITH DISPLACEMENT. This addreSSing mode requires
one word of extension. The address of the operand is the sum of the address in the address register
and the sign-extended 16-bit displacement integer in the extension word. The reference is classified
as a data reference with the exception of the jump and jump-to-subroutine instructions.

2.8.2.5 ADDRESS REGISTER INDIRECT WITH INDEX. This addressing mode requires one word of
extension. The address of the operand is the sum of the address in the address register, the sign­
extended displacement integer in the low order eight bits of the extension word, and the contents

2-5

of the index register. The index may be specified as the sign extended low-order word or the long
word in the index register. The reference is classified as a data reference with the exception of the
jump and jump-to-subroutine instructions.

2.8.3 Special Address Modes

The special address modes use the effective address register field to specify the special addressing
mode instead of a register number.

2.8.3.1 ABSOLUTE SHORT ADDRESS. This addressing mode requires one word of extension. The
address of the operand is in the extension word. The 16-bit address is sign extended before it is us­
ed. The reference is classified as a data reference with the exception of the jump and jump-to­
subroutine instructions.

2.8.3.2 ABSOLUTE LONG ADDRESS. This addressing mode requires two words of extension. The
address of the operand is developed by the concatenation of the extension words. The high order
part of the address is the first extension word; the low order part of the address is the second exten­
sion word. The reference is classified as a data reference with the exception of the jump and jump­
to-subroutine instructions.

2.8.3.3 PROGRAM COUNTER WITH DISPLACEMENT. This addressing mode requires one word
of extension. The address of the operand is the sum of the address in the program counter and the
sign-extended 16-bit displacement integer in the extension word. The value in the program counter
is the address of the extension word. The reference is classified as a program reference.

2.8.3.4 PROGRAM COUNTER WITH INDEX. This addressing mode requires one word of exten­
sion. The address is the sum of the address in the program counter, the sign-extended displacement
integer in the lower eight bits of the extension word, and the contents of the index register. The in­
dex may be specified as the sign extended low-order word or the long word in the index register.
The value in the program counter is the address of the extension word. The reference is classified as
a program reference.

2.8.3.5 IMMEDIATE DATA. This addressing mode requires either one or two words of extension
depending on the size of the operation.

Byte Operation - operand is in the low order byte of extension word
Word Operation - operand is in the extension word
Long Word Operation - operand is in the two extension words, high order 16 bits are in the

first extension word, low order 16 bits are in the second extension
word.

2.8.3.6 IMPLICIT REFERENCE. Some instructions make implicit reference to the program counter
(PC), the system stack pointer (S P), the supervisor stack pointer (S S P), the user stack pointer
(USP), the status register (SR), the condition code register (CCR), the vector base register (VBR),
or the alternate function code registers (SFC or DFC).

2-6

A selected set of instructions may reference the status register by means of the effective address
field. These are:

ANDI to CCR
ANDI to SR
EORI to CCR

EORI to SR
ORI to CCR
ORI to SR

2.9 EFFECTIVE ADDRESS ENCODING SUMMARY

MOVE to CCR
MOVE to SR
MOVE from SR

Table 2-1 is a summary of the effective addressing modes discussed in the previous paragraphs.

Table 2-1. Effective Address Encoding Summary

Addressing Mode Mode Register

Data Register Direct 000 Register Number

Address Register Direct 001 Register Number

Address Register Indirect 010 Register Number

Address Register Indirect with
Postincrement 011 Register Number

Address Register Indirect with
Predecrement 100 Register Number

Address Register Indirect with
D isplacemen t 101 Register Number

Address Register Indirect with
Index 110 Register Number

Absolute Short 111 ()()()

Absolute Long 111 001

Program Counter with
Displacement 111 010

Program Counter with Index 111 011

Immediate 111 100
1-296

2.10 SYSTEM STACK

The system stack is used implicitly by many instructions; user stacks and queues may be created
and maintained through the addressing modes. Address register seven (A7) is the system stack
pointer (SP)' The system stack pointer is either the supervisor stack pointer (SSP) or the user stack
pointer (U S P), depending on the state of the S bit in the status register. If the S bit indicates super­
visor state, the SSP is the active system stack pointer and the USP cannot be referenced as an ad­
dress register. If the S bit indicates user state, the USP is the active system stack pointer, and the
SSP cannot be referenced. Each system stack fills from high memory to low memory.

2-7/2-8

SECTION 3
INSTRUCTION SET SUMMARY

This section contains an overview of the form and structure of the MC68010 instruction set. The
instructions form a set of tools that include all the machine functions to perform the following
operations:

Data Movement
I nteger Arithmetic
Logical

Shift and Rotate
Bit Manipulation
Binary Coded Decimal

Program Control
System Control

The complete range of instruction capabilities combined with the flexible addressing modes
described previously provide a very flexible base for program development.

3.1 DATA MOVEMENT OPERATIONS

The basic method of data acquisition (transfer and storage) is provided by the move (MOVE) in­
struction. The move instruction and the effective addressing modes allow both address and data
manipulation. Data movement instructions allow byte, word, and long word operands to be
transferred from memory to memory, memory to register, register to memory, and register to
register. Address movement instructions allow word and long word operand transfers and ensure
that only legal address manipulations are executed. In addition to the general move instruction there
are several special data movement instructions: move multiple registers (MOVEM), move peripheral
data (MOVEP), exchange registers (EXG), load effective address (LEA), push effective address
(PEA), link stack (LINK), unlink stack (UNLK), move quick (MOVEQ), move control register
(MOVEC), and move alternate address space (MOVES). Table 3-1 is a summary of the data move­
ment operations.

Instruction Operand Size

EXG 32
LEA 32

LINK -

MOVE 8, 16,32

MOVEC 32

MOVEM 16,32

MOVES 8, 16,32

Table 3-1. Data Movement Operations

Operation
Rx-Ry

EA-An
(An)- - (SP)

(SP)-An
(SP) + displacement- SP

(EA)s-EAd

(Rn) -Cr
(Cr) - Rn

(EA)-An, Dn
(An, Dn)-EA

(EA)-Rn
(Rn)-EA

3-1

Instruction Operand Size Operation

MOVEP 16,32

MOVEQ 8

PEA 32

SWAP 32

UNLK -

NOTES:
s= source
d = destination
[] = bit numbers

d(An)-Dn
Dn-d(An)

#xxx-Dn

EA- - (SP)

Dn[31: 16] - Dn[15:0]

(An)-Sp
(SP)+ -An

- () = indirect with predecrement
() + = indirect with postdecrement
= immediate data

1-297

3.2 INTEGER ARITHMETIC OPERATIONS

The arithmetic operations include the four basic operations of add (ADD), subtract (SU B), multiply
(MUL), and divide (DIV) as well as arithmetic compare (CMP), clear (CLR), and negate (NEG), The
add and subtract instructions are available for both address and data operations, with data opera­
tions accepting all operand sizes. Address operations are limited to legal address size operands (16
or 32 bits). Data, address, and memory compare operations are also available. The clear and negate
instructions may be used on all sizes of data operands.

The multiply and divide operations are available for signed and unsigned operands using word
multiply to produce a long word product, and a long word dividend with word divisor to produce a
word quotient with a word remainder.

Multiprecision and mixed size arithmetic can be accomplished using a set of extended instructions.
These instructions are: add extended (ADDX), subtract extended (SUBX), sign extend (EXT), and
negate binary with extend (N EGX).

A test operand (TST) instruction that will set the condition codes as a result of a compare of the
operand with zero is also available. Test and set (TAS) is a synchronization instruction useful in
multiprocessor systems. Table 3-2 is a summary of the integer arithmetic operations.

Table 3-2. Integer Arithmetic Operations

Instruction Operand Size

8, 16,32

AOO

16,32

AODX
8, 16,32

16,32

CLR 8, 16, 32

8, 16,32

CMP

16,32

OIVS 32+ 16

OIVU 32+16

EXT
8-16
16-32

MULS 16 X 16-32
MULU 16 X 16-32

NEG 8, 16, 32

NEGX 8, 16,32
8, 16,32

SUB

16,32

SUBX 8, 16, 32

TAS 8

TST 8, 16,32

NOTES:
[] = bit number
= immediate data
- = indirect with predecrement
+ = indirect with postdecrement

3-2

Operation

(On) + (EA) - On
(EA) + (On) - EA
(EA) + #xxx - EA
(An)+(EA)-An

(Ox) + (Oy) + X - Ox
-(Ax)+ -(Ay)+X-(Ax)

O-EA
(On) - (EA)
(EA) - #xxx

(Ax) + - (Ay) +
(An)-(EA)

(On)/(EA) - On

(On)/(EA) - On

(On)8- 0n16
(On)16- 0n32

(On) X (EA)-On

(On) X (EA)-On

O-(EA)-EA

O-(EA)-X-EA
(On)- (EA) -On
(EA) - (On) - EA
{EA)-#xxx-EA
(An)-(EA)-An

(Ox) - (Oy) - X - Ox
-(Ax)- -(Ay)-X-(Ax)

[EA] - 0, 1 - EA[7]
(EA)-O

1-298

3.3 LOGICAL OPERATIONS

Logical operation instructions AND, OR, EOR, and NOT are available for all sizes of integer data
operands. A similar set of immediate instructions (ANDI, ORI, and EORI) provide these logical
operations with all sizes of immediate data. Table 3-3 is a summary of the logical operations.

Table 3~3. Logical Operations

Instruction Operand Size Operation

(On) A (EA)-On
ANO 8, 16,32 (EA) A (On)-EA

(EA) A #xxx-EA

(On) v (EA) -On
OR 8, 16,32 (EA) v (On) - EA

(EA) v #xxx - EA

EOR 8, 16,32 (EA) ED (Oy) - EA
(EA) ED #xxx - EA

NOT 8, 16, 32 -(EA)-EA

3.4 SHIFT AND ROTATE OPERATIONS

NOTES:
- = invert
= immediate data
A = logical AND
V = logical OR
ED = logical exclusive OR

1-299

Shift operations in both directions are provided by the arithmetic shift instructions ASR and ASL
and logical shift instructions LS Rand LS L. The rotate instructions (with and without extend)
available are ROXR, ROXL, ROR, and ROL. All shift and rotate operations can be performed in
either registers or memory. Register shifts and rotates support all operand sizes and allow a shift
count specified in a data register.

Memory shifts and rotates are for word operands only and allow only single-bit shifts or rotates.

Table 3-4 is a summary of the shift and rotate operations.

Table 3-4. Shift and Rotate Operations

Instruc- Operand Operation
tion Size

ASL 8, 16, 32 ~. J+O
ASR 8, 16, 32 LS .~

LSL 8, 16, 32 ~ ... J+o
LSR 8, 16, 32 o~ .~

ROL 8, 16, 32 rn· ~
ROR 8, 16, 32 ~ .~

ROXL 8, 16, 32 ~. J. I X rJ
ROXR 8, 16, 32 ~ X I .1 .~

1-300

3-3

3.5 BIT MANIPULATION OPERATIONS

Bit manipulation operations are accomplished using the following instructions: bit test (BTST), bit
test and set (BSET), bit test and clear (BClR), and bit test and change (BCHG)' Table 3-5 is a sum­
mary of the bit manipulation operations. (Z is bit 2 of the status register.)

3.6 BINARY CODED DECIMAL OPERATIONS

Multiprecision arithmetic operations on binary coded decimal numbers are accomplished using the
following instructions: add decimal with extend (ABCD), subtract decimal with extend (SBCD),
and negate decimal with extend (NBCD). Table 3-6 is a summary of the binary coded decimal­
operations.

Table 3-5. Bit Manipulation Operations
Instruction Operand Size Operation

BTST 8,32 - bit of (EA) - Z

BSET 8,32
- bit of (EA)-Z
1-bit of EA

BCLR 8,32 - bit of (EA) - Z
O-bit of EA

BCHG 8,32
- bit of (EA)-Z

- bit of ('EA) - bit of EA

NOTE: - = invert

Table 3-6. Binary Coded Decimal Operations

Instruction
Operand

Operation
Size

ABCD 8
(Dx)10+ (DY)10+ X-Dx

- (Ax)10+ - (AY)10+ x - (Ax)

SBCD 8 (Dx)10- (DY)10- X - Dx
-(Ax)10- -(AY)10- X -(Ax)

NBCD 8 0- (EA)10- X - (EA)

NOTES:
- = indirect with predecrement
+ = indirect with postdecrement

1-301

1-302

3.7 PROGRAM CONTROL OPERATIONS

Program control operations are accomplished using a series of conditional and unconditional
branch instructions and return instructions. These instructions are summarized in Table 3-7.

The conditional instructions provide setting and branching for the following conditions:

CC - carry clear lS low or same

CS carry set

EQ equal

F never true

GE greater or equal

GT - greater than

HI high

LE - less or equal

3-4

l T less than

MI minus

NE not equal

Pl plus

T always true
VC - no overflow

VS - overflow

Table 3-7. Program Control Operations

Instruction Operation
Conditional

BCC Branch Conditionally (14 Conditions)
8- and 16-Bit Displacement

DBCC Test Condition, Decrement, and Branch
16-Bit Displacement

SCC Set Byte Conditionally (16 Conditions)

Unconditional

BRA Branch Always
8- and 16-Bit Displacement

BSR Branch to Subroutine
8- and 16-Bit Displacement

JMP Jump

JSR Jump to Subroutine

Returns

RTD Return from Subroutine and
and Deallocate Stack

RTR Return and Restore Condition Codes

RTS Return from Subroutine

1-303

3.8 SYSTEM CONTROL OPERATIONS

System control operations are accomplished by using privileged instructions, trap generating in­
structions, and instructions that use or modify the condition code register. These instructions are
summarized in Table 3-8.

Table 3-8. System Control Operations

Instruction Operation

Privileged
ANDI to SR Logical AND to Status Register
EORI to SR Logical EOR to Status Register
MOVE EA to SR Load New Status Register
MOVE SR to EA Store Status Register
MOVE USP Move User Stack Pointer
MOVEC Move Control Register
MOVES Move Alternate Address Space
ORI to SR Logical OR to Status Register
RESET Reset External Devices
RTE Return from Exception
STOP Stop Program Execution

Trap Generating
CHK Check Data Register Against Upper Bounds
TRAP Trap
TRAPV Trap on Overflow

Condition Code Register
ANDI to CCR Logical AND to Condition Codes
EORI to CCR Logical EOR to Condition Codes
MOVE EA to CCR Load New Condition Codes
MOVE CCR to EA Store Condition Codes
ORI to CCR Logical OR to Condition Codes

1-304

3-5/3-6

SECTION 4
SIGNAL AND BUS OPERATION DESCRIPTION

This section contains a brief description of the input and output signals. A discussion of bus opera­
tion during the various machine cycles and operations is also given.

NOTE
The terms assertion and negation will be used extensively. This is done to avoid confu­
sion when dealing with a mixture of lIactive-lowli and lIactive-highli signals. The term
assert or assertion is used to indicate that a signal is active or true, independent of
whether that level is represented by a high or low voltage. The term negate or negation is
used to indicate that a signal is inactive or false.

4.1 SIGNAL DESCRIPTION

The input and output signals can be functionally organized into the groups shown in Figure 4-1. The
following paragraphs provide a brief description of the signals and a reference (if applicable) to
other paragraphs that contain more detail about the function being performed.

processor{
Status

M6800 {
Peripheral

Control

system{
Control

(2)
(a) MC68010

v Add CC ress
GNO(2)
ClK -

FCO 0
C/)

FC1 o C/)
.-- Q)

FC2
o ()
~ e uo.

E
~ e

.s:!

VMA ~

VPA

BERR
RESET
HALT --.

Bus A1-A23

~ 00-015

AS
R/W ..
UOS ..
lOS
OTACK

__ BR

BG
__ BGACK

IPlO

}

ASynchronous
Bus

Control p.rocessor{
Status

}

BUS Arbitration M6800 {
Control Peripheral

Control

~-L-
IPl2 }

Interrupt
Control

System {
Control

1-305/2

V (2) (b) MC68012
A

d
CC dress

GNO(4)
ClK

FCO 0
C/)

FC1 N C/)
.-- Q)

FC2
o ()
~ e uo.
~ e

E .s:!

VMA ~

VPA

BERR
RESET--.
HALT

Bus A1-A29, A31

~ 00-015

RMC
AS
R/W
UOS
CDS ..

.. OTACK

BR ..
BG ..
BGACK

IPlO
IPl1
IPl2

Asynchronous
Bus

Control

}

BUS Arbitration
Control

}

Interrupt
Control

1-305/1

Figure 4-1. Input and Output Signals

4.1.1 Address Bus

The following paragraphs describe the address bus for the MC68010 and MC68012 respectively.

4.1.1.1. MC6801 0 ADDRESS BUS (A 1 THROUGH A23). This 23-bit, unidirectional, three-state bus
is capable of addressing 8 megawords of data. It provides the address for bus operation during all
cycles except CPU space cycles.

4-1

4.1.1.2 MC68012 ADDRESS BUS (A 1 THROUGH A29 and A31). This 30-bit, undirectional, three­
state bus is capable of linearly addressing 500 megawords of data with A31 differentiating between
the two non-contiguous sections; therefore, the total direct addressing range is one gigaword. This
bus provides the address for bus operations during all cycles except CPU space cycles.

4.1.2 Data Bus (DO through D15)

This 16-bit, bidirectional, three-state bus is the general purpose data path. It can transmit and ac­
cept data in either word or byte length.

4. 1.3 Asynchronous Bus Control

Asynchronous data transfers are handled using the following control signals: read-modify cycle
(M C68012 only), address strobe, read/write, upper and lower data strobes, and data transfer
acknowledge. These signals are explained in the following paragraphs.

4.1.3.1 READ-MODIFY CYCLE (RMC-MC68012 ONLY). This three-state output signal provides
an indication that the current bus operation is an indivisible read-modify-write cycle. This signal is
asserted for the duration of the read-modify-write sequence. Typically, RMC is used as a bus lock to
insure integrity of instructions which use the read-modify-write operation.

4.1.3.2 ADDRESS STROBE (AS). This signal indicates that there is a valid address on the address
bus.

4.1.3.3 READ/WRITE (R/W). This signal defines the data bus transfer as a read or write cycle. The
R/W signal also works in conjunction with the data strobes as explained in the following paragraph.

4.1.3~4 UPPER AND LOWER DATA STROBE (UDS, LDS). These signals control the flow of data
on the data bus, as shown in Table 4-1. When the R/W line is high, the processor will read from the
data bus as indicated. When the R/W line is low, the processor will write to the data bus as shown.

Table 4-1. Data Strobe Control of Data Bus
UOS LOS R/W 08-015 00-07

High High - No Valid Data No Valid Data

Low Low High
Valid Data Bits Valid Data Bits

8-15 0-7

High· Low High No Valid Data
Valid Data Bits

0-7

Low High High
Valid Data Bits

No Valid Data 8-15

Low Low Low
Valid Data Bits Valid Data Bits

8-15 0-7

High Low Low
Valid Data Bits Valid Data Bits

0-7* 0-7

Low High Low
Valid Data Bits Valid Data Bits

8-15 8-15*

* These conditions are a result of current implementation and may
not appear on future devices. 1-306

4.1.3.5 DATA TRANSFER ACKNOWLEDGE (DTACK). This input indicates that the data transfer is
completed. When the processor recognizes DTACK during a read cycle, data is latched one clock
cycle later and the bus cycle terminated. When DTACK is recognized during a write cycle, the bus
cycle is terminated. Refer to 4.4 ASYNCHRONOUS~ VERSUS SYNCHRONOUS OPERATION.

4-2

4.1.4 Bus Arbitration Control

The three signals, bus request, bus grant, and bus grant acknowledge, form a bus arbitration circuit
to determine which device will be the bus master device.

4.1.4.1 BUS REQUEST (BR). This input is wire ORed with all other devices that could be bus
masters. This input indicates to the processor that some other device desires to become the bus
master.

4.1.4.2 BUS GRANT (BG). This output indicates to all other potential bus master devices that the
processor will release bus control at the end of the current bus cycle.

4.1.4.3 BUS GRANT ACKNOWLEDGE (BGACK). This input indicates that some other device has
become the bus master. This signal should not be asserted until the following four conditions are
met:

1. a bus grant has been received,

2. address strobe is inactive which indicates that the microprocessor is not using the bus,

3. data transfer acknowledge is inactive which indicates that neither memory nor peripherals are
using the bus, and

4. bus grant acknowledge is inactive which indicates that no other device is still claiming bus
mastership.

4.1.5 Interrupt Control (lPLO, IPL 1, IPL2)

These input pins indicate the encoded priority level of the device requesting an interrupt. Level
seven is the highest priority while level zero indicates that no interrupts are requested. Level seven
cannot be masked. The least significant bit is IPLO and the most significant bit is IPL2. These lines
must remain stable until the processor signals interrupt acknowledge (FCO-FC2 are all high,
A 16-A 19 are all high) to insure that the interrupt is recognized.

4. 1.6 System Control

The system control inputs are used to either reset or halt the processor and to indicate to the pro­
cessor that bus errors have occurred. The three system control inputs are explained in the following
paragraphs.

4.1.6.1 BUS ERROR (BERR). This input informs the processor that there is a problem with the cycle
currently being executed. Problems may be a result of:

1. nonresponding devices,

2. interrupt vector number acquisition failure,

3. illegal access request as determined by a memory management unit, or

4. other application dependent errors.

The bus error Signal interacts with the halt signal to determine if the current bus cycle should be re­
executed or if exception processing should be performed.

Refer to 4.2.4 Bus Error and Halt Operation for additional information about the interaction of the
BERR and HALT signals.

4-3

4.1.6.2 RESET (RESET). This bidirectional signal line acts to reset (start a system initialization se­
quence) the processor in response to an external reset signal. An internally generated reset (result
of a reset instruction) causes all external devices to be reset and the internal state of the processor is
not affected. A total system reset (processor and external devices) is the result of external HALT
and RESET signals applied at the same time. Refer to 4.2.5 Reset Operation for further information.

4.1.6.3 HALT (HALT). When this bidirectional line is driven by an external device, it wi" cause the
processor to stop at the completion of the current bus cycle. When the processor has been halted
using this input, all control signals are inactive and all three-state lines are put in their high­
impedance state (refer toTable 4-3). Refer to 4.2.4 Bus Error and Halt Operation for additional infor­
mation about the interaction between the HALT and BER R signals.

When the processor has stopped executing instructions, due to a double bus fault condition (refer
to 4.2.4.4 DOUBLE BUS FAULTS), the HALT line is driven by the processor to indicate to external
devices that the processor has stopped.

4.1.7 M6800 Peripheral Control

These control signals are used to allow the interfacing of synchronous M6800 peripheral devices
with the asynchronous MC68010. These signals are explained in the following paragraphs.

4.1.7.1 ENABLE (E). This signal is the standard enable signal common to all M6800 type peripheral
devices. The period for this output is ten MC68010 clock periods (six clocks low, four clocks high).
Enable is generated by an internal ring counter which may come up in any state (i.e., at power on, it
is impossible to guarantee phase relationship of E to ClK). E is a free-running clock and runs
regardless of the state of the bus on the M PU.

4.1.7.2 VALID PERIPHERAL ADDRESS (VPA). This input indicates that the device addressed is an
M6800 Family device and that data transfer should be synchronized with the enable (E) signal. This
input also indicates that the processor should use automatic vectoring for an interrupt. Refer to
SECTION 6 INTERFACE WITH M6800 PERIPHERALS.

4.1.7.3 VALID MEMORY ADDRESS (VMA). This output is used to indicate to M6800 peripheral
devices that there is a valid address on the address bus and the processor is synchronized to enable
(E). This signal only responds to a valid peripheral address (VPA) input which indicates that the
peripheral is an M6800 Family device.

4.1.8 Processor Status (FCO, FC1, FC2)

These function code outputs indicate the state (user or supervisor) and the address space currently
being accessed, as shown in Table 4-2. The information indicated by the function code outputs is
valid whenever address strobe (AS) is active.

4.1.9 Clock (ClK)

The clock input is a TTL-compatible signal that is internally buffered for development of the internal
clocks needed by the processor. The clock input should not be gated off at any time and the clock
signal must conform to minimum and maximum pulse width times.

4-4

Table 4-2. Function Code Assignments
Function Code Output

Address Space
FC2 FC1 FCO

0 0 0 Undefined, Reserved *

0 0 1 User Data Space

0 1 0 User Program Space

0 1 1 Undefined, Reserved *

1 0 0 Undefined, Reserved *

1 0 1 Supervisor Data Space

1 1 0 Supervisor Program Space

1 1 1 CPU Space

* Address space 3 is reserved for user definition, while 0 and
4 are reserved for future use by Motorola. 1-307

4.1.10 Signal Summary

Table 4-3 is a summary of all the signals discussed in the previous paragraphs.

Table 4-3. Signal Summary
Hi-Z

Signal Name Mnemonic Input/ Output Active State
On HALT On BGACK

Address Bus A1-A23 Output High Yes Yes
(A24-A29, A31) * *

Data Bus DO-D15 Input/ Output High Yes Yes

Read-Modify Cycle * * RMC Output Low No Yes

Address Strobe AS Output Low No Yes

Read/Write R/W Output
Read-High

No Yes
Write-Low

Upper and Lower Data Stobes UDS, LDS Output Low No Yes

Data Transfer Acknowledge DTACK Input Low - -

Bus Request BR Input Low - -

Bus Grant BG Output Low No No

Bus Grant Acknowledge BGACK Input Low - -

Interrupt Priority Level IPLO, IPL1, IPL2 Input Low - -

Bus Error BERR Input Low - -

Reset RESET I nput/ Output Low No* No*

Halt HALT I nput/ Output Low No* No*

Enable E Output High No No

Valid Memory Address VMA Output Low No Yes

Valid Peripheral Address VPA Input Low - -

Function Code Output FCO, FC1, FC2 Output High No Yes

Clock CLK Input High - -

Power Input VCC Input - - -

Ground GND Input - - -

*Open Drain
* * MC68012 Only 1-308

4.2 BUS OPERATION

The following paragraphs explain control signal and bus operation during data transfer operations,
bus arbitration, bus error and halt conditions, and reset operation.

4.2.1 Data Transfer Operations

Transfer of data between devices involves the following signals:
1. address bus A 1 through A23,
2. data bus DO through 015, and
3. control signals.

4-5

The address and data buses are separate parallel buses used to transfer data using an asynchronous
bus structure. In all cycles, the bus master assumes responsibility for deskewing all signals it issues
at both the start and end of a cycle. In addition, the bus master is responsible for deskewing the
acknowledge and data signals from the slave device.

The following paragraphs explain the read, write, and read-modify-write cycles. The indivisible
read-modify-write cycle is the method used by the MC68010 for interlocked multiprocessor com­
munications. On the MC68012, the RMC pin is asserted to provide a bus lock capability to insure in­
tegrity of the read-modify-write cycle.

4.2.1.1 READ CYCLE. During a read cycle, the processor receives data from the memory or a
peripheral device. The processor reads bytes of data in all cases. If the instruction specifies a word
(or long word) operation, the processor reads both upper and lower bytes simultaneously by asser­
ting both upper and lower data strobes. When the instruction specifies byte operation, the pro­
cessor uses an internal AO bit to determine which byte to read and then issues the data strobe re­
quired for that byte. For byte operations, when the AO bit equals zero, the upper data strobe is
issued. When the AO bit equals one, the lower data strobe is issued. When the data is received, the
processor correctly positions it internally. If DTACK, BERR, or VPA is not asserted for the required
setup time before the falling edge of S4, a wait cycle will be inserted in the bus cycle and DT ACK
will be sampled again on thefalling edge of each wait cycle. The MC68010 will continue to insert
wait cycles until DTACK, BERR, or VPA is recognized.

A word read cycle flowchart is given in Figure 4-2. A byte read cycle flowchart is given in Figure 4-3.
Read cycle timing is given in Figure 4-4. Figure 4-5 details word and byte read cycle operations.

BUS MASTER SLAVE

Address the Device

1) Set R/W to Read
2) Place Function Code on FCO-FC2
3) Place Address on A 1-A23
4) Assert Address Strobe (AS)
5) Assert Upper Data Strobe (UDS) and

Lower Data Strobe (LOS)
~ I nput the Data -

1) Decode Address
2) Place Data on 00-015
3) Assert Data Transfer Acknowledge

(DTACK)

Acquire the Data .I

1) Latch Data
2) Negate UOS and LOS
3) Negate AS

."" Terminate the Cycle ,

1) Remove Data from 00-015
2) Negate DT ACK

Start Next Cycle "
~

Figure 4-2. Word Read Cycle Flowchart
1-309

4-6

BUS MASTER SLAVE

Address the Device

1) Set R/W to Read
2) Place Function Code on FCO-FC2
3) Place Address on A 1-A23
4) Assert Address Strobe (AS).
5) Assert Upper Data Strobe (UDS) or

Lower Data Strobe (LOS) (based on Am
.... Input the Data -

1) Decode Address
2) Place Data on 00-07 or 08-015 (based

on UDS or LDS)
3) Assert Data Transfer Acknowledge

(OTACK)

Acquire the Data ~

1) Latch Data
2) Negate UOS or LOS
3) Negate AS

""" Terminate the Cycle

1) Remove Data from 00-07 or 08-015
2) Negate OT ACK

Start Next Cycle 1,,-
I~

Figure 4-3. Byte Read Cycle Flowchart
1-310

SO S 1 S2 S3 S4 S5 S6 S7 SO S 1 S2 S3 S4 S5 S6 S7 SO S 1 S2 S3 S4 w w w w S5 S6 S7

CLK

FCO-FC2 ::x X X ~ ________________________ ~ __________________________ -J>-
A l-A23 :::>-< H

AS \ I \
H

I \ ~--------~-=~------------~=~
~------------~~

UOS \ I \"'--_---.1 I \ --------------~;--
LOS \ I I ~--------~\~ ____ -J \ I
Riw \ /

OTACK \ I / \1Il0l ___ ",-, \ ____ ...,f

08-015 <) (

00-07 () (
) (
) (~=============r ~ ________________ ~r

~ Read .. I. ..I ----------.... ------Write --........ -------Slow Read --------.J
Figure 4-4. Read and Write Cycle Timing Diagram 1-311

4-7

so S 1 S2 S3 S4 S5 S6 S7 SO S 1 S2 S3 S4 S5 S6 S7 SO S 1 52 S3 S4 S5 S6 S7

CLK

'--___,1

* Internal Signal Only

.... 1 .. f----Word Read----i If--- --...... I._-Even Byte Read----..t

Figure 4-5. Word and Byte Read Cycle Timing Diagram
1-312

4.2.1.2 WRITE CYCLE. During a write cycle, the processor sends data to either the memory or a
peripheral device. The processor writes bytes of data in all cases. If the instruction specifies a word
operation, the processor writes both bytes. When the instruction specifies a byte operation, the
processor uses an internal AD bit to determine which byte to write and then issues the data strobe
requited for that byte. For byte operations, when the AD bit equals zero, the upper data strobe is
issued. When the AD bit equalsone,the lower.data strobe is issued. A word write flowchart is given
in Figure 4-6. A byte write cycle flowchart is given in Figure 4-7. Write cycle timing is given in Figure
4-4. Figure 4-8 details word and byte write cycle operation.

BUS MASTER SLAVE

Address the Device

1) Place Function Code on FCO-FC2
2) Place Address on A1-A23
3) Assert Address Strobe (AS)
4) SetR/Wto Write
5) Place Data on DO-D15
6) Assert Upper Data Strobe (UDS) and

Lcwer Data Strobe (LDS) I nput the Data ,

1) Decode Address
2) Store Data on DO-D15
3) Assert Data Transfer Acknowledge

(DTACK)

Terminate Output Transfer .., - ,

1) Negate UDS and LOS
2) Negate AS
3) Remove Data from DO-D15
4) Set R/W to Read

"'" Terminate the Cycle ~

1) Negate DT ACK

Start Next Cycle 1 ~
1--

Figure 4-6. Word Write Cycle Flowchart 1-313

4-8

BUS MASTER SLAVE

Address the Device

1) Place Function Code on FCO-FC2
2) Place Address on A 1-A23
3) Assert Address Strobe (P.S)
4) Set R IW to Write
5) Place Data on 00-07 or 08-015

(according to Am
6) Assert Upper Data Strobe (UOS) or Input the Data ,

Lower Data Strobe (LOS; (based on Am 1) Decode Address
2) Store Data on 00-07 if LOS is Asserted

Store Data on 08-015 if"ITi5"S is
Asserted

3) Assert Data Transfer Acknowledge
(OTACK)

Terminate Output Transfer ---
1) Negate UOS and [5S
2) Negate AS
3) Remove Data from 00-07 or 08-015
4) Set RIW to Read

- Terminate the Cycle -
1) Negate OT ACK

Start Next Cycle I "
J

Figure 4-7. Byte Write Cycle Flowchart

~

so S 1 S2 S3 S4 S5 S6 S7 so S 1 S2 S3 S4 S5 S6 S7 SO S 1 S2 53 S4 S5 S6 57

CLK

FCO-FC2)(X X)
Al-A23)-(H H .)

AO* I
AS \ I \ I , r

UOS \ I \ r
LOS \ / \ /
RIW.;-\ f\ r\ f

OTACK \ / \ / \ r
08-015 H) <) <)
00-07-=r-<) < } ()

* Internal Signal Only

I --- Word Write ---~~ 1 ... ----- Odd Byte Write .1 Even Byte Write

Figure 4-8. Word and Byte Write Cycle Timing Diagram
1-315

4-9

BUS MASTER

Lock Bus*

1) Assert RMC

Address the Device

1) Set R/W to Read
2) Place Function Code on FCO-FC2
3) Place Address on A l-A23
4) Assert Address Strobe (AS)
5) Assert Upper Data Strobe (UDS) or

Lower Data Strobe (LOS)

Acquire the Data

1) Latch Data
2) Negate UDS or LOS
3) Start Data Modification

Start Output Transfer

1) Set R/W to Write
2) Place Data on 00-07 or 08-015
3) Assert Upper Data Strobe (UDS) or

Lower Data Strobe (LOS)

.-

Terminate Output Transfer ~
~----------------------------~

1) Negate UOS or LOS
2) Negate AS
3) Remove Data from 00-07 or 08-015
4) Set R/W to Read

Unlock Bus* ~
~----------------------------~

1) Negate RMC

Start Next Cycle

* MC68012 Only

SLAVE

I nput the Data

1) Decode Address
2) Place Data on 00-07 or 08-015
3) Assert Data Transfer Acknowledge

(OTACK)

Terminate the Cycle

1) Remove Data from 00-07 or 08-015
2) Negate OT ACK

I nput the Data

1) Store Data on 00-07 or 08-015
2) Assert Data Transfer Acknowledge

(OTACK)

Terminate the Cycle

1) Negate DTACK

1-316

Figure 4-9. Read-Modify-Write Cycle Flowchart

4-10

4.2.1.3 READ-MODIFY-WRITE CYCLE. The read-modify-write cycle performs a read, modifies the
data in the arithmetic-logic unit, and writes the data back to the same address. In the MC68010, this
cycle is indivisible in that the address strobe is asserted throughout the entire cycle. The test and set
(T AS) instruction uses this cycle to provide meaningful communication between processors in a
multiple processor environment. This instruction is the only instruction that uses the read-modify­
write cycle; and, since the test and set instruction only operates on bytes, all read-modify-write
cycles are byte operations. On the M C68012 the R M C pin is asserted, throughout the entire read­
modify-write cycle RMC can be used by memory management schemes that require advanced indi­
cation of read-modify-write cycles. A read-modify-write flowchart is given in Figure 4-9 and a timing
diagram is given in Figure 4-10.

Wait cycles will be inserted between S4 and S5 on the read portion of the bus cycle and between
S16 and S17 on the write portion of the cycle if DTACK, BERR, or VPA is not asserted for the re­
quired setup time prior to the falling edge of S4 and S 16 respectively.

4.2.1.4 CPU Space Cycle

During a CPU space cycle, the MC68010 reads a peripheral device vector number or indicates a
breakpoint instruction. If the cycle is to read a vector number it is referred to as an interrupt
acknowledge cycle. A CPU space cycle is indicated when the function codes are all high. The ad­
dress bus then defines what type of CPU space cycle is being executed. The MC68010 defines two
types of CPU space cycles, the interrupt acknowledge cycle, and the breakpoint cycle.

The interrupt acknowledge cycle on an M68000 Family compatible processor is defined as a CPU
space cycle with the most significant address lines high; on the MC68010 this ,means that A4-A23
will be high and on the MC68012 A4-A29 and A31 will be high. The level of the interrupt being
acknowledged is encoded on address lines A 1-A3. An interrupt acknowledge cycle is terminated in
the same manner as a normal read cycle. The processor expects a peripheral device to respond to an
interrupt acknowledge cycle with a vector number that will be used to transfer control to an inter­
rupt handler routine. See 5.3.2 Interrupts for further discussion of the interrupt acknowledge cycle.

ClK

FCO-FC2

RMC*

A 1-A23

AS

UOS or lDS

R/W

DTACK

08-015

* MC68012 Only

SO S1 S2 S3 S4 S5 S6 S7 S8 S9 S10S11 S12S13S14S15S16S17S18S19

:x _________________________________ x:
\ ~ ____________________________ ------~r-
::>--< -->-<-----­

\~------------------------------~/
\ I ''-_...-.J'---

~--------,=~~--~/ \ I \ /,..---

---------~{:::::::::=)~------------~(~------~}~-
...... ---------Indivisible Cycle ----------l.~1 I·

1-317

Figure 4-10. Read-Modify-Write Cycle Timing Diagram

4-11

The breakpoint read cycle is executed by the MC68010 in response to a breakpoint illegal instruc­
tion. A breakpoint cycle on the MC68010 is defined as a CPU space cycle with all of the address
lines low. The processor does not accept or send any data during this cycle. The breakpoint cycle
may be terminated by DTACK, BERR·, or VPA. See 5.3.6 Illegal and Unimplemented Instructions
for further discussion of breakpoints.

Since all members of the M68000 Family do not implement A20-A31, these lines do not need to be
decoded for CPU space functions. Only A 16-A 19 are used to distinguish between different CPU
space cycle types. The MC68010 only uses the $0 and $F CPU space types as shown in Figure 4-11;
however, all unused encodings of bits A 16-A 19 are reserved by Motorola for future extensions of
the CPU space functions.

Function
Code

Address Bus

Breakpoint
Acknowledge

I I I
2 0 31 ,23 119 161 0

11 1 11 10 0 0 0 0·· 0 0 0 0 0 0 0 I 0 0 0 0 I 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 I

Interrupt
Acknowledge

31

~ 11 1 1 1 1 1 1 1 1 1 1 1 1 1111111111111

• I

CPU Space
Type Field

Figure 4-11. MC68010 CPU-Space Address Encoding

4.2.2 Bus Arbitration

3 1 0

1-585

Bus arbitration is a technique used by master-type devices to request, be granted, and acknowledge
bus mastership. In its simplest form, it consists of the following:

1. asserting a bus mastership request,

2. receiving a grant that the bus is available at the end of the current cycle, and
3. acknowledging that mastership has been assumed.

Figure 4-12 is a flowchart showing the detail involved in a request from a single device. Figure 4-13
is a timing diagram for the same operation. This technique allows processing of bus requests during
data transfer cycles.

The timing diagram shows that the bus request is negated at the time that an acknowledge is
asserted. This type of operation would be true for a system consisting of the processor and one
device capable of bus mastership. I n systems having a number of devices capable of bus master­
ship, the bus request line from each device is wire ORed to the processor. In this system, it is easy
to see that there could be more than one bus request being made. The timing diagram shows that
the bus grant signal is negated a few clock cycles after the transition of the acknowledge (BGACK)
signal.

4-12

PROCESSOR REQUESTING DEVICE

Request the Bus

1) Assert Bus Request (BR)

Grant Bus Arbitration --.....
1) Assert Bus Grant (BG)

"" Acknowledge Bus Mastership ~

1) External Arbitration Determines Next
Bus Master

2) Next Bus Master Waits for Current
Cycle to Complete

3) Next Bus Master Asserts Bus Grant
Acknowledge (BGACK) to Become
New Master

Terminate Arbitration .- 4) Bus Master Negates BR

1) Negate BG (and Wait for BGACK to
be Negated)

...... Operate as Bus Master -
1) Perform Data Transfers (Read and

Write Cycles) According to the Same
Rules the Processor Uses

+
Release Bus Mastership

1) Negate BGACK

.-......

Re-Arbitrate or Resume
Processor Operation

7-318

Figure 4-12. Bus Arbitration Cycle Flowchart

ClK

AS

lOS/UOS

R/W

OTACK

00- 0 15 --.0(

BR

BG

BGACK

Processor

\
/ \~ _____ "I

1 \ ____ 1
\ / \~----------------

~I .. DMA Device ---tl~f----- Processor ----...... ~.---DMA Device ---., ..
7-319

Figure 4-13. Bus Arbitration Cycle Timing Diagram

4-13

,

However, if bus requests are still pending, the processor will assert another bus grant within a few
clock cycles after it was negated. This additional assertion of bus grant allows external arbitration
circuitry to select the next bus master before the current bus master has completed its re­
quirements. The following paragraphs provide additional information about the three steps in the
arbitration process.

4.2.2.1 REQUESTING THE BUS. External devices capable of becoming bus masters request the
bus by asserting the bus request (B R) signal. This is a wire-ORed signal (although it need not be
constructed from open-collector devices) that indicates to the processor that some external device
requires control of the external bus. The processor is effectively at a lower bus priority level than the
external device and will relinquish the bus after it has completed the last bus cycle it has started.

When no acknowledge is received before the bus request signal goes inactive, the processor will
continue processing when it detects that the bus request is inactive. This allows ordinary process-
ing to continue if the arbitration circuitry responded to noise inadvertently. .

4.2.2.2 RECEIVING THE BUS GRANT. The processor asserts bus grant (BG) as soon as possible.
Normally this is immediately after internal synchronization. The only exception to this occurs when
the processor has made an internal decision to execute the next bus cycle but has not progressed
far enough into the cycle to have asserted the address strobe (AS) signal. In this case, bus grant will
be delayed until AS is asserted to indicate to external devices that a bus cycle is being executed.

The bus grant signal may be routed through a daisy-chained network or through a specific priority­
encoded network. The processor is not affected by the external method of arbitration as long as the
protocol is obeyed.

4.2.2.3 ACKNOWLEDGEMENT OF MASTERSHIP. Upon receiving a bus grant, the requesting
device waits until address strobe, data transfer acknowledge, and bus grant acknowledge are
negated before issuing its own BGACK. The negation of the AS indicates that the previous master
has completed its cycle; the negation of BGACK indicates that the previous master has released the
bus. (While address strobe is asserted, no device is allowed to "break into" a cycle.) The negation
of DTACK indicates the previous slave has terminated its connection to the previous master. Note
that in some applications data transfer acknowledge might not enter into this function. General pur­
pose devices would then be connected such that they were only dependent on address strobe.
When bus grant acknowledge is issued, the device is a bus master until it negates bus grant
acknowledge. Bus grant acknowledge should not be negated until after the bus cycle(s) is (are)
completed. Bus mastership is terminated at the negation of bus grant acknowledge.

The bus request from the granted device should be negated after bus grant acknowledge is
asserted. If a bus request is still pending, another bus grant will be asserted within a few clocks of
the negation of the bus grant. Refer to 4.2.3 Bus Arbitration Control. Note that the processor does
not perform any external bus cycles before it re-asserts bus grant.

4.2.3 Bus Arbitration Control

The bus arbitration control unit in the M C6801 0 is implemented with a finite state machine. A state
diagram of this machine is shown in Figure 4-14. All asynchronous signals to the MC68010 are syn­
chronized before they are used internally. This synchronization is accomplished in a maximum of

4-14

R = Bus Request Internal
A= Bus Grant Acknowledge Internal
G= Bus Grant
T = Three-State Control to Bus Control logic2

X= Don't Care

NOTES:

RA

1. State machine will not change if bus is in SO or S 1. Refer to 4.2.3 Bus Arbitration Control.
2. The address bus will be placed in the high-impedance state if T is asserted and AS is negated.

Figure 4-14. MC68010 Bus Arbitration Unit State Diagram

7-320

one cycle of the system clock, assuming that the asynchronous input setup time (#47) has been met
(see Figure 4-15). The input signal is sampled on the falling edge of the clock and is valid internally
after the next rising edge.

As shown in Figure -4-14, input signals labeled R and A are internally synchronized on the bus re­
quest and bus grant acknowledge pins respectively. The bus grant output is labeled G and the inter­
nal three-state control signal is labeled T. If T is true, the address, data, and control buses are
placed in a high-impedance state when AS is negated. All signals are shown in positive logic (active
high) regardless of their true active voltage level.

State changes (valid outputs) occur on the next rising edge after the internal signal is valid.

Internal Signal Valid ------.......

External Signal Sampled ~

ClK

BR (External) ----.........

BR (Internal)

\~ 7-327

Figure 4-15. Timing Relationship of External Asynchronous Inputs to Internal Signals

4-15

A timing diagram of the bus arbitration sequence during a processor bus cycle is shown in Figure
4-16. The bus arbitration sequence while the bus is inactive (j.e., executing internal operations such
as a multiply instruction) is shown in Figure 4-17.

If a bus request is made at a time when the M PU has already begun a bus cycle but AS has not been
asserted (bus state SO), BG will not be asserted on the next rising edge. Instead, BG will be delayed
until the second rising edge following its internal assertion. This sequence is shown in Figure 4-18.

4.2.4 Bus Error and Halt Operation

In a bus architecture that requires a handshake from an external device, the possibility exists that
the handshake might not occur. Since different systems will require a different maximum response
time, a bus error input is provided. External circuitry must be used to determine the duration be­
tween address strobe and data transfer acknowledge before issuing a bus error signal. When a bus
error or/ and halt signal is received, the processor will initiate a bus error exception sequence or try
to re-run the bus cycle.

In addition to a bus timeout indicator, the bus error input is used to indicate a page fault in a virtual
memory system. When an external memory management unit detects an invalid access, a bus error
is signaled to suspend execution of the current instruction.

ClK

BR

BG

BGACK

FCO-FC2

A 1-A23

AS

UOS

lOS

R/W

OTACK

00-015

Bus Three Stated --------
BG Asserted _____ ~

BR Valid Internal~
BR Sampled

B R Asserted + 1
SO S2 S4

\

X
(

\
\
\

\
(

S6

\

)
)

/'
/'
/'

\

/

\

Bus Released from Three State and

Processor Starts Nex.t Bus CYciel
BGACK Negated Internal 1
BGACK sampled~
BGACK Negatedt t

SO

/
/

/
(

I

I

I

I

)

{

S2 S4 S6 SO

~
>--C

\ /
\ /
\ I

\ I
{

• Processor .1. ----~*'-I~--Alternate Bus Master-----t I---- Processor--....:t .. ~

Figure 4-16. Bus Arbitration Timing Diagram - Processor Active
1-322

4-16

BG Asserted and Bus Three Stated ______ ~ Bus Released from Three State and
BR Valid Internal _________ ---,
BR Sampled _________ ~
BR Asserted ________ __.

ClK

SO S2 S4 S6

BR \ /
BG \ /

BGACK \ /
FCO-FC2 J)
Al-A23 --()

AS \ / \

l)OS \ / \

\
lOS \ /
R/W \

OTACK \ /
00-015 ()

IIIIIIf Processor ·1- Bus Inactive .,- Alternate Bus Master

Figure 4-17. Bus Arbitration Timing Diagram - Bus Inactive

Bus Three Stated
BG Asserted
BR Valid Internal
BR Sampled
BR Asserted

CLK

SO S2 S4 S6

Bus Released from Three State and
Processor Starts Next BUS, CYcie

l BGACK Negated Internaln BGACK Sampled

BGACK Negated t ~

BR' ------------------------~I
BG \ ~------------~/

BGACK
------------------------~ \ /

FCO-FC2 X) (
A1-A23 ---=r--<)

SO S2

(

SO

S4 S6

I' AS --.l \ _____ ___ I _____ -oJ/ \

S2 S4

SO

I' U os---1 _' ______ ___ I \ ------------1------
f' LOS ~ \ ______ ___

R/W ---1

OTACK--.l _--/
\

'/ \ -----_/
I

\ -----_/
) 00-015--------------------------~(_________________ ~~---------------------------~(_____________ _

....... ~-- Processor .1 .. Alternate Bus Master .1------IM4~----- Processor ------i ...

Figure 4-18. Bus Arbitration Timing Diagram - Special Case
1-324

4-17

4.2.4.1 BUS ERROR OPERATION. When the bus error signal is used to terminate a bus cycle, the
MC68010 will enter exception processing immediately following the bus cycle. The bus error signal
is recognized in either of the following cases:

1. DTACK and HALT are negated and BERR is asserted.
'="'="=-=-2. HALT and BERR are negated and DTACK is asserted. BERR is then asserted within one clock

cycle.

When the bus error condition is recognized, the current bus cycle will be terminated in S9 for a read
cycle, a write cycle, or the read portion of a read-modify-write cycle and in S21 of the write portion
of a read-modify-write cycle. As long as BERR remains asserted, the data and address buses will be
in the high-impedance state. Figures 4-19 and 4-20 show the timing diagrams for both types of bus
error signals.

ClK

FCO-FC2 J
A 1-A23 .:J--<--;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~)::'-=--= ~--~(-----------

AS \ _________________________________ ~

lDSI U OS --~\ /,.-----
\

Rlw \
--~ DTACK

DO-D15 --------"""""()J------'~~---------«
BERR--------~==============~\~-_-_-_--_-_-_-_-_-_-_-_--____ ~~ -------

HAlT--~·~

ClK

FCO-FC2

A1-A23

AS

UDS/lDS

R/W
DTACK

I Initiate I I I Initiate Bus
................. R-e.a-d....,.~ ... r---Response Failure--... ,..... ... II------ Bus Error Detection -----:j.~ ~------­

Error Stacking

Figure 4-19. Bus Error Timing Diagram 1-325

So S2 S4 S6

) {

\~~ --------~/---------------------_\=== ---\ I
\

\ I
00-015 -------c(

BERR

> {

HALT -r .. t----R d C ___ ---l .. ~I r-BUS Er~or---.. t .. I----------- I nitiate Bus
ea ycle Detection Error Stacking

1-326

Figure 4-20. Delayed Bus Error Timing Diagram

4-18

After the aborted bus cycle is terminated and BERR is negated, the MC68010 enters exception pro­
cessing for the bus error exception. During the exception processing sequence, the following infor­
mation is placed on the supervisor stack:

1. Status register
2. Program counter (two w9rds, may be up to five words past the instruction being executed)

3. Frame format and vector offset
4. Internal register information, 22 words

Note that the first four words of information are identical to the information stacked by any other
exception such as an interrupt or TRAP instruction. The additional information is used by the
M C6801 0 to continue the execution of the suspended instruction when it is reloaded by an RTE in­
struction. See 5.3.9 Bus Error for further details.

After the MC68010 has placed the above information on the stack, the bus error exception vector is
read from vector table entry number two (offset $08) and placed in the program counter. The pro­
cessor then resumes instruction execution.

NOTE

If a read-modify-write instruction is terminated with a bus error and later continued with
an RTE instruction, the processor will re-run the entire cycle whether the bus error occur­
red on the read or the write portion of the cycle.

4.2.4.2 RE-RUN OPERATION. When, during a bus cycle, the processor receives a bus error signal
and the halt pin is being driven by an external device, the processor enters the re-run sequence. A
delayed re-run signal may be used similarly to the delayed bus error signal described above. Figures
4-21 and 4-22 are timing diagrams for both methods of re-running the bus cycle.

so S2 S4 S6
elK

X FCO-FC2 .::x ________ _
A 1-A23 J--<o..-______ _)

AS

Ws/UOS

R/W

\
\

I
I

SO S2 S4

<
\
\

--\ OTACK

< 00-015 -------4) (
BERR

~ ;f4: ~ 1 Clock Period i
I Read .. , Halt ·1-- Re-Run

Figure 4-21. Re-Run Bus Cycle Timing Diagram

4-19

S6

I
/

r-
)--

·1
1-327

SO S2 S4 S6 SO S2 S4 S6
ClK

FCO-FC2 ::x x >
A1-A23 =>-< > < >

AS \ / \ r
UOS \ / \ r
lOS \ / \ I
R/W

OTACK \ / \ /
00-015 () (>

BERR V
HALT \ /

I· Read ·1· Halt ·1 Re-Run ·1
1-328

Figure 4-22. Delayed Re-Run Bus Cycle Timing Diagram

The processor terminates the bus cycle, then puts the address and data lines in the high-impedence
state. The processor remains "halted", and will not run another bus cycle until the halt signal is
removed by external logic. Then the processor will re-run the previous cycle using the same func­
tion codes, the same data (for a write operation), and the same address. The bus error signal should
be removed at least one clock cycle before the halt signal is removed.

NOTE

The processor will not re-run a read-modify-write cycle. This restriction is made to
guarantee that the entire cycle runs correctly and that the write operation of a test-and­
set operation is performed without ever releasing AS. If BERR and HALT are asserted
during a read-modify-write bus cycle, a bus error operation results.

4.2.4.3 HALT OPERATION. The halt input signal to the MC68010 performs a halt/run/single-step
function in a similar fashion to the M6800 halt function. The halt and run modes are somewhat self
explanatory in that when the halt signal is constantly active the processor "halts" (does nothing)
and when the halt signal is constantly inactive the processor "runs" (does something).

This single-step mode is derived from correctly timed transitions on the halt signal input. It forces
the processor to execute a single bus cycle by entering the run mode until the processor starts a bus
cycle then changing to the halt mode. Thus, the single-step mode allows the user to proceed
through (and therefore debug) processor operations one bus cycle at a time.

Figure 4-23 details the timing required for correct single-step operations. Some care must be exer­
cised to avoid harmful interactions between the bus error signal and the halt pin when using the
single-cycle mode as a debugging tool. This is also true of interactions between the halt and reset
lines since these can reset the machine.

4-20

SO S2 S4 S6 SO S2 S4 S6 SO

ClK

FCO-FC2 =x x x=:
A1-A23J-() (>-C

AS \ / \ /
lOS/UOS \ / \ /

R/W

OTACK \ / \ /
00-015 () < >--

HALT \ I
I..: Read ·1· Halt ., Read --I

Figure 4-23. Halt Processor Timing Diagram
1-329

When the processor completes a bus cycle after recognizing that the halt signal is active, most
three-state signals are put in the high-impedence state, these include:

1. address lines, and

2. data lines.

This is required for correct performance of the re-run bus cycle operation.

While the processor is honoring the halt request, bus arbitration performs as usual. That is, halting
has no effect on bus arbitration. It is the bus arbitration function that removes the control signals
from the bus.

The halt function and the hardware trace capability allow the hardware debugger to trace single bus
cycles or single instructions at a tirne. These processor capabilities, along with a software debugg­
ing package, give total debugging flexibility.

4.2.4.4 DOUBLE BUS FAULTS. When a bus error exception occurs, the processor will attempt to
stack several words containing information about the state of the machine. If a bus error exception
occurs during the stacking operation, there have been two bus errors in a row. This is commonly
referred to as a double bus fault. When a double bus fault occurs, the processor will halt and drive
the HALT line low. Once a bus error exception has occurred, any bus error exception occurring
before the execution of the next instruction constitutes a double bus fault.

Note that a bus cycle which is re-run does not constitute a bus error exception and does not con­
tribute to a double bus fault. Note also that this means that as long as the external hardware re­
quests it, the processor will continue to re-run the same bus cycle.

The bus error pin also has an effect on processor operation after the processor receives an external
reset input. The processor reads the vector table after a reset to determine the address to start pro­
gram execution. If a bus error occurs while reading the vector table (or at any time before the first
instruction is executed), the processor reacts as if a double bus fault has occurred and it halts. Only
an external reset will start a halted processor.

4-21

4.2.5 Reset Operation

The reset signal is a bidirectional signal that allows either the processor or an external device to reset
the system. Figure 4-24 is a timing diagram for the reset operation. Both the halt and reset lines
must be asserted to ensure total reset of the processor in all cases.

ClK

PIUS5~::~
~' t- >100 Milliseconds ~ ____________ _

RESET 1~ ________________________ ~1
HALT , __________________________ __

Bus Cycles

2 3 4 5 6
NOTES:

1) Internal start-up time 4) PC High read in here Bus State Unknown: ';I::;(:;I:X
2) SSP High read in here
3) SSP low read in here

5) PC Low read in here "
'" All Control Signals Inactive.

6) First Instruction fetched here. Data Bus In Read Mode: >----<
Figure 4-24. Reset Operation Timing Diagram

1-330

When the reset and halt lines are driven by an external device, it is recognized as an entire system
reset, including the processor. The processor responds by reading the reset vector table entry (vec­
tor number zero, address $000000) and loads it into the supervisor stack pointer (SSP). Vector table
entry number one at address $000004 is read next and loaded into the program counter. The pro­
cessor initializes the status register to an interrupt level of seven and the vector base register to
$00000000. No other registers are affected by the reset sequence.

When a reset instruction is executed, the processor drives the reset pin for 124 clock periods. In this
case, the processor is trying to reset the rest of the system. Therefore, there is no effect on the in­
ternal state of the processor. All of the processor's internal registers and the status register are unaf­
fected by the execution of a reset instruction. All external devices connected to the reset line should
be reset at the completion of the reset instruction.

Asserting the RESET and HALT lines for ten clock oycles will cause a processor reset, except when
V CC is initially applied to the processor. In this case, an external reset must be applied for at least
100 milliseconds.

4.3 THE RELATIONSHIP OF DTACK, BERR, AND HALT

In order to properly control termination ofa bus cycle for a re-run or a bus error condition, DT ACK,
BERA, and HALT should be asserted and negated on the rising edge of the MC68010 clock. This
will assure that when two signals are asserted simultaneously, the required setup time (#47) for both
of them will be met during the same bus state. This, or some equivalent precaution, should be
designed external to the M C6801 O.

4-22

The preferred bus cycle terminations may be summarized as follows (case numbers refer to Table
4-4):

Normal Termination:

Halt Termination:

Bus Error Termination:

Re-Run Termination:

DTACK is asserted, BERR and HALT remain negated (case 1),

HALT is asserted at same time, or before DTACK and BERR remains
negated (case 2).

BERR is asserted in lieu of, at the same time, or before DTACK (case 3)
or after DTACK (case 4) and HALT remains negated; BERR is negated
at the same time or after DTACK.

HALT and BERR are asserted in lieu of, at the same time, or before
DTACK (case 5) or after DTACK (case 6); BERR is negated at the same
time or after DT ACK , HALT must be held at least one cycle after B ER R.

Table 4-4. DTACK, BERR, and HALT Assertion Results

Asserted on Rising

Case Control Edge of State

No. Signal N N+2 Result

DTACK A S Normal cycle terminate and continue.
1 BERR NA NA

HALT NA X

DTACK A S Normal cycle terminate and halt. Continue when HALT removed.
2 BERR NA NA

HALT A/S S

DTACK X X Terminate and take bus error trap.
3 BERR A S

HALT NA NA

DTACK A X Terminate and take bus error trap.
4 BERR NA A

HALT NA NA

DTACK X X Terminate and re-run when HALT removed.
5 BERR A S

,',

HALT A/S S

DTACK A X Terminate and re-runwhen HALT removed.
6 BERR NA A

HALT NA A

LEGEND:
N - the number of the current even bus state (e.g., S4, S6, etc.)
A - signal is asserted in this bus state
NA - signal is not asserted in this state
X - don't care
S - signal was asserted in previous state and remains asserted in this state

1-331

Table 4-4 details the resulting bus cycle termination under various combinations of control signal se­
quences. The negation of these same control signals under several conditions is shown in Table 4-5
(DTACK is assumed to be negated normally in all cases; for best results, both DTACK and BERR
should be negated when address strobe is negated).

EXAMPLE A:
A system uses a watch-dog timer to terminate ac~esses to unpopulated address space. The
timer asserts BERR after time out (case 3),

4-23

EXAMPLE B:
A system uses error detection on RAM contents. Designer may:

.......,....-,-...,.......,."

a) Delay DTACK until data verified, and return BERR and HALT simultaneously to re-run
error cycle (case 5), or if valid, return DTACK (case 1).

b) Delay DT ACK until data verified, and return B ER R at same time as DT ACK if data in error
(case 3),

=-=,.".--.,,--
c) Return DTACK prior to data verification, as described in the next section. If data is in-

valid, BERR is asserted on next clock cycle (case 4).

d) Return DTACK prior to data verification, if data is invalid assert BERR and HALT on next
clock cycle (case 6). The memory controller may then correct the RAM prior to or during
the re-run.

Table 4-5. BERR and HALT Negation Results

Conditions of Negated on Rising

Termination in Control Edge of State

Table 4-4 Signal N N+2 Results - Next Cycle

Bus Error
BERR • or • . Takes bus error trap.
HALT • or •

Re-run
BERR • or • Illegal sequence; usually
HALT • traps to vector number O.

Re-run
BERR • Re-runs the bus cycle.
HALT •

Normal
BERR • May lengthen next cycle.
HALT • or •

• = Signal is negated in this bus state. 1-332

4.4 ASYNCHRONOUS VERSUS SYNCHRONOUS OPERATION

4.4.1 Asynchronous Operation

To achieve clock frequency independence at a system level, the MC68010 can be used in an asyn­
chronous manner. This entails using only the bus handshake lines (AS, UDS, LOS, DTACK, BERR,
HALT and VPA) to control the data transfer. Using this method, AS signals the start of a bus cycl~
and the data strobes are used as a condition for valid data on a write cycle. The slave device
(memory or peripheral) then responds by placing the requested data on the data bus for a read cycle
or latching data on a write cycle and asserting the data transfer acknowledge signal (DT ACK) to ter­
minate the bus cycle. If no slave responds or the access is invalid, external control logic asserts the'
BERR, or BERR and HALT, signal to abort or rerun the bus cycle.

The DT ACK signal is allowed to be asserted before the data from a slave device is valid on a read
cycle. The length of time that DT ACK may precede data is given as parameter #31 and it must be
met in any asynchronous system to insure that valid data· is latched into the processor. Notice that
there is no maximum time specified from the assertion of AS to the assertion of DTACK. This is
because the M PU will insert wait cycles of one clock period each until DT ACK is recognized.

The BERR signal is allowed to be asserted after the DTACK signal is asserted. BERR must be
asserted within the time given as parameter #48 after DT ACK is asserted in any asynchronous
system to insure proper operation. If this maximum delay time is violated, the processor may exhibit
erratic behavior.

4-24

4.4.2 Synchronous Operation

To allow for those systems which use the system clock as a signal to generate DT ACK and other
asynchronous inputs, the as.ynchronous input setup time is given as parameter #47. If this setup is
met on an input, such as DT ACK, the processor is guaranteed to recognize that signal on the next
falling edge of the system 'clock. However, the converse is not true- if the input signal,does not
meet the setup time it is not guaranteed not to be recognized. In addition, if DTACK is recognized
on a falling edge, valid data will be latched into the processor (on a read cycle) on the next falling
edge provided that the data meets the setup time given as parameter #27. Given this, parameter #31
may be ignored. Note that if DT ACK is asserted, with the required setup time, before the falling
edge of S4, no wait states will be incurred and the bus cycle will run at its maximum speed of four
clock periods.

In order to assure proper operation in a synchronous system when BERR is asserted after DTACK,
BERR must meet the setup time parameter #27 A prior to the falling edge of the clock one clock
cycle after DTACK was recognized. This setup time is critical to proper operation,and the MC68010
may exhibit erratic behavior if it is violated.

NOTE
During an active bus cycle, VPA and B ER R are sampled on every falling edge of the clock
starting with SO. DT ACK is sampled on every falling edge of the clock starting with S4
and data is latched on the falling edge of S6 during a read. The bus cycle will then be ter­
minated in S7 except when BERR is asserted in the absence of DTACK, in which case it
will terminate one clock cycle later in S9.

4-25/4-26

SECTION 5
PROCESSING STATES

This section describes the actions of the M C68010 which are outside the normal processing
associated with the execution of instructions. The functions of the bits in the supervisor portion of
the status register are covered: the supervisor/user bit, the trace enable bit, and the processor inter­
rupt priority mask. Finally, the sequence of memory references and actions taken by the processor
on exception conditions are detailed.

The MC68010 is always in one of three processing states: normal, exception, or halted. The normal
processing state is that associated with instruction execution; the memory references are to fetch
instructions and operands, and to store results. Two special cases of the normal state are the stop­
ped state, which the processor enters when a STOP instruction is executed, and the loop mode,
which the processor may enter when a OScc instruction is executed. In the stopped state, no fur­
ther memory references are made and in the loop mode only operand references are made.

The exception processing state is associated with interrupts, trap instructions, tracing and other ex­
ceptional conditions. The exception may be internally generated by an instruction or by an unusual
condition arising during the execution of an instruction. Externally, exception processing can be
forced by an interrupt, by a bus error, or by a reset. Exception processing is designed to provide an
efficient context switch so that the processor may handle unusual conditions.

The halted processing state is an indication of catastrophic hardware failure. For example, if during
the exception processing of a bus error another bus error occurs, the processor assumes that the
system is unusable and halts. Only an external reset can restart a halted processor. Note that a pro­
cessor in the stopped state is not in the halted state, nor vice versa.

5.1 PRIVILEGE STATES

The processor operates in one of two states of privilege: the IIsupervisor" state or the "user" state.
The privilege state determines which operations are legal, are used to choose between the super­
visor stack pointer and the user stack pointer in instruction references, and may by used by an ex­
ternal memory management device to control and translate accesses.

The privilege state is a mechanism for providing security in a computer system. Programs should
access only their own code and data areas, and ought to be restricted from accessing information
which they do not need and must not modify.

The privilege mechanism provides security by allowing most programs to execute in user state. In
this state, the accesses are controlled, and the effects on other parts of the system are limited. The
operating system executes in the supervisor state, has access to all resources, and performs the
overhead tasks for the user programs.

5-1

5.1.1 Supervisor State

The supervisor state is the higher state of privilege. For instruction execution, the supervisor state is
determined by the S bit of the status register; if the S bit is asserted (high), the processor is in the
supervisor state. All instructions can be executed in the supervisor state. The bus cycles generated
by instructions executed in the supervisor state are classified as supervisor references. While the
processor is in the supervisor privilege state, those instructions which use either the system stack
pointer implicitly or address register seven explicitly access the supervisor stack pointer.

All exception processing is done in the supervisor state, regardless of the previous setting of the S
bit. The bus cycles generated during exception processing are classified as supervisor references.
All stacking operations during exception processing use the supervisor stack pointer.

5. 1.2 User State

The user state is the lower state of privilege. For instruction execution, the user state is determined
by the S bit of the status register; if the S bit is negated (low), the processor j's executing instruc­
tions in the user state.

Most instructions execute the same in user state as in the supervisor state. However, some instruc­
tions which have important system effects are made privileged. User programs are not permitted to
execute the STOP instruction, or the RESET instruction. To ensure that a user program cannot
enter the supervisor state except in a controlled manner, the instructions which modify the whole
status register are privileged. To aid in debugging programs which are to be used as operating
systems, the move from status register (MOVE from SR), move to/from user stack pointer (MOVE
USP), move to/from control register (MOVEC), and move alternate address space (MOVES) In­
structions are also privileged.

The bus cycles generated by an instruction executed in the user state are classified as user state
references. This allows an external memory management device to translate the address and to
control access to protected portions of the address space. While the processor is in the user
privilege state, those instructions which use either the system stack pointer implicitly or address
register seven explicitly, access the user stack pointer.

5. 1.3 Privilege State Changes

Once the processor is in the user state and executing instructions, only exception processing can
change the privilege state. During exception processing, the previous setting of the S bit of the
status register is saved and the S bit is asserted, putting the processor in the supervisor state.
Therefore, when instruction executi·on resumes at the address specified to process the exception,
the processor is in the supervisor privilege state.

5.1.4 Address Space Classification

When the processor makes a reference, it classifies the kind of reference being made, using the en­
coding on the three function code output lines. This allows external translation of addresses, con- .
trol of access, and differentiation of special processor state, such as interrupt acknowledge. Table
5-1 lists the classification of address spaces.

5-2

Table 5-1. Bus Cycle Classification

Function Code Output
Address Space

FC2 FC1 FCO

0 0 0 Unassigned, Reserved *

0 0 1 User Data

0 1 0 User Program

0 1 1 Unassigned, Reserved*

1 0 0 Unassigned, Reserved *

1 0 1 Supervisor Data

1 1 0 Supervisor Program

1 1 1 CPU Space

* Address space 3 is reserved for user definition, while 0 and 4 are
reserved for future use by Motorola.

5.2 EXCEPTION PROCESSING

7-333

Before discussing the details of interrupts, traps, and tracing, a general description of exception
processing is in order. The processing of an exception occurs in four steps, with variations for dif­
ferent exception causes. During the first step, a temporary copy of the status register is made and
the status register is set for exception processing. In the second step the exception vector is deter­
mined and the third step is the saving of the current processor context. In the fourth step a new
context is obtained and the processor resumes instruction processing.

5.2.1 Exception Vectors

Exception vectors are memory locations from which the processor fetches the address of a routine
which will handle that exception. All exception vectors are two words in length (Figure 5-1), except
for the reset vector, which is four words. All exception vectors lie in the supervisor data space, ex­
cept for the reset vector which is in the supervisor program space. A vector number is an 8-bit
number which, when multiplied by four, gives the offset of an exception vector. Vector numbers
are generated internally or externally, depending on the cause of the exception. In the case of inter-
. rupts, during the interrupt acknowledge bus cycle, a peripheral provides an 8-bit vector number
(Figure 5-2) to the processor on data bus lines DO through D7. The processor translates the vector
number into a full 32-bit offset which is added to the contents of the vector base register to generate
the address used to fetch the vector, as shown in Figure 5-3. The memory layout for exception vec­
tors is given in Table 5-2.

As shown in Table 5-2, the memory layout is 512 words long (1024 bytes). It starts at offset 0 and
proceeds through offset 1 023~ This provides 255 unique vectors; some of these are reserved for
TRAPS and other system functions. Of the 255, there are 192 reserved for user interrupt vectors.
However, there is no protection on the first 63 entries, so externally generated interrupt vector
numbers may reference any of the exception vectors at the discretion of the system designer.

Word 0 New Program Counter (High) AO=O, A1 =0

Word 1 New Program Counter (Low) AO=O, A 1 = 1

1-334

Figure 5-1. Format of Vector Table Entries

5-3

31

3 1

Vector Offset

Number(s) Dec Hex

0 0 000

- 4 004

2 8 008

3 12 OOC

4 16 010

5 20 014

6 24 018

7 28 01C

8 32 020

9 36 024

10 40 028

11 44 02C

12* 48 030

13* 52 034

14 56 038

15 60 03C

015 ~07 00

Ignored I v 7! V6! V5! V4! V3! V2! v 1 ! vO I
Where:

v7 is the MSB of the Vector Number
vO is the LSB of the Vector Number

Figure 5-2. Vector Number Format

Contents of Vector Base Register

10

All Zeroes v7 v6 v5 v4 v3 v2 vl vO

Figure 5-3. Exception Vector Address Calculation

Table 5-2. Vector Table

Space
Assignment

Vector Offset

Number(s) Dec Hex Space.

SP Reset: Initial SSP 16-23* 64 040 SO

SP Reset: Initial PC 92 05C

SO Bus Error 24 96 060 SO

SO Address Error 25 100 064 SO

SO Illegal Instruction 26 104 068 SO

SO Zero Divide 27 108 06C SO

SO CHK Instruction 28 112 070 SO

SO TRAPV Instruction 29 116 074 SO

SO Privilege Violation 30 120 078 SO

SO Trace 31 124 07C SO

SO Line 1010 Emulator 32-47 128 080 SO

SO Line 1111 Emulator 188 OBC

SO (Unassigned, reserved) 48-63* 192 OCO SO

SO (Unassigned, reserved) 252 OFC

SO Format Error 64-255 256 100 SO

SO Uninitialized Interrupt Vector 1020 3FC SO

0

1-335

o

0 ,if
0

.,. + -
Exception Vector

Address

1-336

Assignment

(Unassigned, reserved)

-

Spurious Interrupt

Levell Interrupt Autovector

Level 2 Interrupt Autovector

Level 3 Interrupt Autovector

Level 4 Interrupt Autovector

Level 5 Interrupt Autovector

Level 6 Interrupt Autovector

Level 7 Interrupt Autovector

TRAP Instruction Vectors

(#0-15)

(Unassigned, reserved)

-

User Interrupt Vectors

-

*Vector numbers 12, 13, 16 through 23, and 48 through 63 are reserved for future enhancements by Motorola. No user peripheral
devices should be assigned these numbers.

1-337

5-4

5.2.2 Exception Stack Frame

Exception processing saves the most volatile portion of the current processor context on the top of
the supervisor stack. This context is organized in a format called the exception stack frame. This in­
formation always includes the status register and program counter of the processor when the ex­
ception occurred. In order to support generic handlers, the processor also places the vector offset in
the exception stack frame. The format code field allows the RTE (return from exception) instruction
to identify what information is on the stack so that it may be properly restored. The general form of
the exception stack frame is illustrated in Figure 5-4; Table 5-3 lists the MC68010 stack frame codes.
Although some formats are peculiar to a particular M68000 Family processor, the format 0000 is
always legal, and indicates that just the first four words of the frame are present.

15 o Higher Addresses

SP ... Status Register ,

Program Counter High

Program Counter Low

Format I Vector Offset

Other Information
Depending on Exception

1-338

Figure 5-4. MC68010 Stack Format

Table 5-3. MC68010 Format Codes

Format Code Stacked Information

0000 MC68010 Short Format (4 Words)

1000 MC68010 Long Format (29 Words)

All Others Unassigned, Reserved
1-339

5.2.3 Kinds of Exceptions

Exceptions can be generated by either internal or external causes. The externally generated excep­
tions are the interrupts, bus error, and reset requests. The interrupts are requests from peripherai
devices for processor action while the bus error and reset inputs are used for access control and
processor restart. The internally generated exceptions come from instructions, or from address er­
rors or tracing. The trap (TRAP), trap on overflow (TRAPV), check data register against upper
bounds (CH K), and divide (DIV) instructions all can generate exceptions as part of their instruction
execution. In addition, illegal instructions, word or long word fetches from odd addresses, and
privilege violations cause exceptions. Tracing behaves like a very high-priority internally-generated
interrupt after each instruction execution.

5.2.4 Exception Processing Sequence

Exception processing occurs in four identifiable steps. In the first step, an internal copy is made of
the status register. After the copy is made, the S bit is asserted, putting the processor into the

5-5

supervisor privilege state. Also, the T bit is negated which will allow the exception handler to ex­
ecute unhindered by tracing. For the reset and interrupt exceptions, the interrupt priority mask is
also updated.

In the second step, the vector number of the exception is determined. For interrupts, the vector
number is obtained by a processor fetch classified as an interrupt acknowledge. For all other excep­
tions, internal logic provides the vector number. This vector number is then used to generate the
offset of the exception vector and is added to the vector base register.

The third step is to save the current processor status, except for the reset exception. The exception
stack frame is created at the top of the supervisor stack. The current program counter value, the
saved copy of the status register, and the format/ offset word are written into the stack frame. The
program counter value stacked usually points to the next unexecuted instruction; however, for bus
error and address error, the value stacked for the program counter is unpredictable, and may be in­
cremented by up to five words from the address of the instruction which caused the error. Group 1
and 2 exceptions (see 5.2.5 Multiple Exceptions) use a short format exception stack frame (for­
mat = 0000). Additional information defining the current context is stacked for the bus error and ad­
dress error exceptions.

The last step is the same for all exceptions. The new program counter value is fetched from the ex­
ception vector table. The processor then resumes instruction execution. The instruction at the ad­
dress given in the exception vector is fetched, and normal instruction decoding and execution is
started.

5.2.5 Multiple Exceptions

These paragraphs describe the processing which occurs when multiple exceptions arise
simultaneously. Exceptions can be grouped according to their occurrence and priority. The group a
exceptions are reset, bus error, and address error. These exceptions cause the instruction currently
being executed to be aborted and the exception processing to commence within two clock cycles.
The group 1 exceptions are trace and interrupt, as well as the privilege violations and illegal instruc­
tions. These exceptions allow the current instruction to execute to completion, but pre-empt the ex­
ecution of the next instruction by forcing exception processing to occur (privilege violations and il­
legal instructions are detected when they are the next instruction to be executed). The group 2 ex­
ceptions occur as part of the normal processing of instructions. The TRAP, TRAPV, CHK, and zero
divide exceptions are in this group. For these exceptions, the normal execution of an instruction
may lead to exception processing.

Group a exceptions have highest priority, while group 2 exceptions have lowest priority. Within
group 0, reset has highest priority, followed by address error and then bus error. Within group 1,
trace has priority over external interrupts, which in turn takes priority over illegal instruction and
privilege violation. Since only one instruction can be executed at a time, there is no priority relation
within group 2.

The priority relation between two exceptions determines which is taken, or taken first, if the condi­
tions for both arise simultaneously. Therefore, if a bus error occurs during a TRAP instruction, the
bus error takes precedence, and the TRAP instruction processing is suspended. In another exam­
ple, if an interrupt request occurs during the execution of an instruction while the T bit is asserted,

5-6

the trace exception has priority, and is processed first. Before instruction processing resumes,
however, the interrupt exception is also processed, and instruction processing commences finally in
the interrupt handler routine. A summary of exception grouping and priority is given in Table 5-4.

Table 5-4. Exception Grouping and Priority

Group Exception Processing

Reset Exception processing begins
a Address Error within two clock cycles

Bus Error

Trace Exception processing begins before
1 Interrupt the next instruction

Illegal
Privilege

TRAP, TRAPV, Exception processing is started by
2 CHK, normal instruction execution

Zero Divide
Format Error

1-586

5.3 EXCEPTION PROCESSING IN DETAIL

Exceptions have a number of sources and each exception has processing which is peculiar to it. The
following paragraphs detail the sources of exceptions, how each arises, and how each is processed.

5.3.1 Reset

The reset input provides the highest exception level. The processing of the reset signal is designed
for system initiation, and recovery from catastrophic failure. Any processing in progress at the time
of the reset is aborted and cannot be recovered. The processor is forced into the supervisor state,
the trace state is forced off, and the processor interrupt priority mask is set to level seven. The vec­
tor base register is set to $00000000 and the vector number is internally generated to reference the
reset exception vector at location 0 in the supervisor program space. Because no assumptions can
be made about the validity of register contents, in particular the supervisor stack pointer, neither the
program counter nor the status register is saved. The address contained in the first two words of
the reset exception vector is fetched as the initial supervisor stack pointer, and the address in the
last two words of the reset exception vector is fetched as the initial program counter. Finally, in­
struction execution is started at the address in the program counter. The power-up/ restart code
should be pointed to by the initial program counter.

The reset instruction does not cause loading of the reset vector, but does assert the reset line to
reset external devices. This allows the software to reset the system to a known state and then con­
tinue processing with the next instruction.

5.3.2 Interrupts

Seven levels of interrupt priorities are provided. Devices may be chained externally within interrupt
priority levels, allowing an unlimited number of peripheral devices to interrupt the processor. Inter­
rupt priority levels are numbered from one to seven, level seven being the highest priority. The
status register contains a 3-bit mask which indicates the current processor priority, and interrupts
are inhibited for all priority levels less than or equal to the current processor priority.

5-7

An interrupt request is made to the processor by encoding the interrupt request level on the inter­
rupt request lines; a zero indicates no interrupt request. Interrupt requests arriving at the processor
do not force immediate exception processing, but are made pending. Pending interrupts may cause
exception processing to start at the end of an instruction depending on the current processor priori­
ty level. If the priority of the pending interrupt is lower than or equal to the current processor priori­
ty, execution continues with the next instruction and the interrupt exception processing is post­
poned. (The recognition of level seven is slightly different, as explained in the following paragraph.)

If the priority of the pending interrupt is greater than the current processor priority, the exception
processing sequence is started. A copy of the status register is saved, the privilege state is set to
supervisor state, tracing is suppressed, and the processor priority level is set to the level of the inter­
rupt being acknowledged. The processor fetches the vector number from the interrupting device,
classifying the reference as an interrupt acknowledge and displaying the level number of the inter­
rupt being acknowledged on the address bus. If external logic requests automatic vectoring, the
processor internally generates a vector number which is determined by the interrupt level number. If
external logic indicates a bus error, the interrupt is taken to be spurious, and the generated vector
number references the spurious interrupt vector. The processor then proceeds with the usual ex­
ception processing, saving the format/ offset word, program counter, and status register on the
supervisor stack. The offset value in the format/ offset word is the externally supplied or internally
generated vector number multiplied by four. The format will be all zeroes. The saved value of the
program counter is the address of the instruction which would have been executed had the inter­
rupt not been present. The content of the interrupt vector whose vector number was previously ob­
tained is fetched and loaded into the program counter, and normal instruction execution com­
mences in the interrupt handling routine. A flowchart for the interrupt acknowledge sequence is
given in Figure 5-5, a timing diagram is given in Figure 5-6, and the interrupt processing sequence is
shown in Figure 5-7.

PROCESSOR INTERRUPTING DEVICE

Grant the Interrupt -- Request the Interrupt "

1) Compare interrupt level in status register
and wait for current instruction complete

2) Place interrupt level on A 1, A2, A3 with
A4-A23 all high

3) Set function code to CPU space
4) Assert address strobe (AS)
5) Asset data strobes (UOS* and LOS)

,..,
Provide the Vector Number -

1) Place Vector Number on 00-07
.2) Assert Oata Transfer Acknowledge

(OTACK)

Acquire the Vector Number -.......
1) Latch vector nwmber
2) Negate UOS and LOS
3) Negate AS

"'" Release

1) Negate OT ACK
Start Interrupt Processing .-......

* Although a vector number is one byte, both data strobes are asserted due to the microcode used for exception processing. The pro­
cessor does not recognize anything on data lines 08 through 015 at this time.

1-340

Figure 5-5. Vector Acquisition Flowchart

5-8

so S2 S4 S6 so

ClK

FCO-FC2 =:x: ________ _
>-A4-A23 =>-< _______ --'
>-A l-A3 =>-< _______ _

AS

UOS*

lOS

R/W

OTACK

\
\
\
\

08- 0 15 -----((

00-07-----< <
IPlO-IPl2 \

!
\ !
\ !

7
\ r

>---
>--

S2 S4 SO S2 S4 S6

I '-<
(>-<
\ / \ r
\ / \ ;-
\ / \ ;-

\
\ / \

<
C) <

X
~last Bus Cycle of Instruction~ ~ lACK Cycle -+ Stack and ~
1-- !Read or Write) --I 1-- (Vector Number AcquisItion) Vector Fetch,

* Although a vector number is one byte, both data strobes are asserted due to the microcode used for exception processing. The pro­
cessor does not recognize anything on data lines 08 through 015 at this time.

1-341

Figure 5-6. Interrupt Acknowledge Cycle Timing Diagram

Last Bus Cycle
lACK

of InstructIon
Cycle Stack Stack Stack

(Ourtng Which -... (Vector Number r---+ PCl ~ Status ~ PCH r-+-
I nterrupt Was

AcquIsition) (at SSP-4) (at SSP-8) (at SSP-6)
RecognIzed)

" ..,
......

Stack Read Read Fetch First Two

~
Format/ Offset - Vector - Vector --. Instruction Words

Word - High - Low
~

of Interrupt
(at SSP-2) (A16-A23) (AO-A 15) Routine

NOTE: SSP refers to the value of the supervisor stack pointer before the interrupt occurs.
1-342

Figure 5-7. Interrupt Processing Sequence

Priority level seven is a special case. Level seven interrupts cannot be inhibited by the interrupt
priority mask, thus providing a "non-maskable interrupt" capability. An interrupt is generated each
time the interrupt request level changes from some lower level to level seven. Note that a level seven
interrupt may still be caused by the level comparison if the request level is a seven and the processor
priority is set to a lower level by an instruction.

5-9

5.3.3 Uninitialized Interrupt

An interrupting device asserts VPA, BERR, or provides an interrupt vector number and asserts
DT ACK during an interrupt acknowledge cycle by the M C6801 O. If the vector register has not been
initialized, the responding M68000 Family peripheral will provide vector number 15, the uninitialized
interrupt vector. This provides a uniform way to recover from a programming error.

5.3.4 Spurious Interrupt

If during the interrupt acknowledge cycle no device responds by asserting DTACK or VPA, BERR
should be asserted to terminate the vector acquisition. The processor separates the processing of
this error from bus error by forming a short format exception stack and fetching the spurious inter­
rupt vector instead of the bus error vector. The processor then proceeds with the usual exception
processing.

5.3.5 Instruction Traps

Traps are exceptions caused by instructions. They arise either from processor recognition of abnor­
mal conditions during instruction execution, or from use of instructions whose normal behavior is
trapping.

Some instructions are used specifically to generate traps. The TRAP instruction always forces an
exception and is useful for implementing supervisor calls for user programs. The TRAPV and CH K
instructions force an exception if the user program detects a runtime error, which may be an
arithemetic overflow or a subscript out of bounds.

The signed divide (DIVS) and unsigned divide (DIVU) instructions will force an exception if a divi­
sion operation is attempted with a divisor of zero.

5.3.6 Illegal and Unimplemented Instructions

Illegal instruction is the term used to refer to any of the word bit patterns which are not the bit pat­
terns of the first word of a legal MC68010 instruction. During instruction execution, if such an in­
struction is fetched, an illegal instruction exception occurs. Motorola reserves the right to define in­
structions whose opcodes may be any of the illegal instructions. Three bit patterns will always force
an illegal instruction trap on all M68000 Family compatible microprocessors. They are: $4AFA,
$4AFB, and $4AFC. Two of the patterns, $4AFA and $4AFB, are reserved for Motorola system pro­
ducts. The third pattern, $4AFC, is reserved for customer use.

In addition to the previously defined illegal instruction opcodes, the MC68010 defines eight break­
point illegal instructions with the bit patterns $4848-$484F. These instructions cause the processor
to enter illegal instruction exception processing as usual, but a breakpoint bus cycle is executed
before the stacking operations are performed as shown in Figure 5-8. The processor does not ac­
cept or send any data during this cycle. Whether the breakpoint cycle is terminated with a DTACK,
BERR, or VPA signal, the processor will continue with the illegal instruction processing. The pur­
pose of this cycle is to provide a software breakpoint that will signaf external hardware when it is ex­
ecuted.

5-10

SO S2 S4 S6 SO S2 S4 S6 SO S2 S4 S6

ClK

FCO- FC2 ::J(Y '< >-
A1-A23 :J-< h ,--< "}-

AS \ I \ I \ r-
uos \ I \ I \ I
lOS \ I \ I \ I

R/W \ r
OTACK \ I \ / \ I
08-015 () ()
00-07 (> (>--

I· Word Read ·1·
Breakpoint

·1·
Stack PC .,

Cycle low
1-343

Figure 5-8. Breakpoint Cycle Timing Diagram

Word patterns with bits 12-15 equaling 1010 or 1111 are distinguished as unimplemented instruc­
tions and separate exception vectors are given to these patterns to permit efficient emulation. This
facility allows the operating system to detect program errors, or to emulate unimplemented instruc­
tions, such as the M C68881 Floating-Point Coprocessor instructions, in software.

5.3.7 Privilege Violations

In order to provide system security, various instructions are privileged. An attempt to execute one
of the privileged instructions while in the user state will cause an exception. The privileged instruc­
tions are:

5.3.8 Tracing

AND Immediate to SR
EOR Immediate to SR

MOVE to SR

MOVE from SR

MOVEC
MOVES

MOVE USP

OR Immediate to SR

RESET

RTE

STOP

To aid in program development, the MC68010 includes a facility to allow instruction-by-instruction
tracing. In the trace state, after each instruction is executed an exception is forced, allowing a
debugging program to monitor the execution of the program under test

The trace facility uses the T bit in the supervisor portion of the status register. If the T bit is negated
(off), tracing is disabled, and instruction execution proceeds from instruction to instruction as nor­
mal. If the T bit is asserted (on) at the beginning of the execution of an instruction, a trace exception
will be generated as the execution of that instruction is completed. If the instruction is not ex­
ecuted, either because an interrupt is taken, or the instruction is illegal or privileged, the trace ex­
ception does not occur. The trace exception also does not occur if the instruction is aborted by a
reset, bus error, or address error exception. If the instruction is indeed executed and an interrupt is
pending on completion, the trace exception is processed before the interrupt exception. If, dvuring

5-11

the execution of the instruction an exception is forced by that instruction, the forced exception is
processed before the trace exception.

As an extreme illustration of the above rules, consider the arrival of an interrupt during the execu­
tion of a TRAP instruction while tracing is enabled. First the trap exception is processed, then the
trace exception, and finally the interrupt exception. Instruction execution resumes in the interrupt
handler routine.

5.3.9 Bus Error

Bus error exceptions occur when external logic terminates a bus cycle with a bus error signal.
Whether the processor was doing instruction or exception processing, that processing is ter­
minated, and the processor immediately begins exception processing. However, if a bus error oc­
curs during exception processing for a bus error, address error, or reset, the processor detects a
double bus fault and halts. When exception processing is completed, instruction execution con­
tinues at the address contained in exception vector table entry two, at offset $008.

Exception processing for a bus error follows a slightly different sequence than the sequence for
group 1 and 2 exceptions. In addition to the four steps executed during exception processing for all
other exceptions, 22 words of additional information are placed on the stack. This additional infor­
mation describes the internal state of the processor at the time of the bus error and is reloaded by
the RTE instruction to continue the instruction that caused the error. Figure 5-9 shows the order of
the stacked information.

15 o
SP ----. Status Register

Program Counter (High)

Program Counter (Low)

1 000 I Vector Offset

Special Status Word

Fault Address (High)

Fault Address (Low)

UNUSED, RESERVED

Data Output Buffer

UNUSED, RESERVED

Data Input Buffer

UNUSED, RESERVED

Instruction Input Buffer

Internal Information, 16 Words

NOTE: The stack pointer is decremented by 29 words, although only
26 words of information are actually written to memory. The three
additional words are reserved for future use by Motorola.

1-344

Figure 5-9. Exception Stack Order (Bus and Address Error)

5-12

The value of the saved program counter does not necessarily point to the instruction that was ex­
ecuting when the bus error occurred, but may be advanced by up to five words. This is due to the
prefetch mechanism on the M C6801 0 that always fetches a new instruction word as each previously
fetched instruction word is used (see 7.1.2 Instruction Prefetch). However, enough information is
placed on the stack for the bus error exception handler routine to determine why the bus fault oc­
curred. This additional information includes the address that was being accessed, the function
codes for the access, whether it was a read or a write, and what internal register was included in the
transfer. The fault address can be used by an operating system to determine what virtual memory
location is needed so that the requested data can be brought into physical memory. The RTE in­
struction is then used to reload the processor's internal state at the time of the fault, the faulted bus
cycle will then be re-run and the suspended instruction completed. If the faulted bus cycle was a
read-modify-write, the entire cycle will be re-run whether the fault occurred during the read or the
write operation.

An alternate method of handling a bus error is to complete the faulted access in software. In order
to use this method, use of the special status word, the instruction input buffer, the data input buf­
fer, and the data output buffer image is required. The format of the special status word is shown in
Figure 5-10. If the bus cycle was a write, the data output buffer image should be written to the fault
address location using the function code contained in the special status word. If the cycle was a
read, the data at the fault address location should be written to the images of the data input buffer,
instruction input buffer, or both according to the OF and I F bits. * In addition, for read-modify-write
cycles, the status register image must be properly set to reflect the read data if the fault occurred
during the read portion of the cycle and the write operation (i.e., setting the most significant bit of
the memory location) must also be performed. This is because the entire read-modify-write cycle is
assumed to have been completed by software. Once the cycle has been completed by software, the
RR bit in the special status word is set to indicate to the processor that it should not re-run the cycle
when the RTE instruction is executed. If the re-run flag is set when an RTE instruction executes, the
MC68010 still reads all of the information from the stack.

RR
IF
DF
RM
HB
BY
RW
FC

*

15 14 13 12 11 10 9 8 7 - 3 2 0

I RR I * I IF I DF I RM I HB I BY I RW I * I FC2-FCO I
- Re-run flag; 0= processor re-run (default), 1 = software re-run.
- Instruction fetch to the Instruction Input Buffer.
- Data fetch to the Data Input Buffer.
- Read-Modify-Write cycle.
- High byte transfer from the Data Output Buffer or to the Data Input Buffer.
- Byte transfer flag; H B selects the high or low byte of the transfer register. If BY is clear, the transfer is word.
- Read/Write flag; 0 = write, 1 = read.
- The function code used during the faulted access.
- These bits are reserved for future use by Motorola and will be zero when written by the MC68010.

1-345

Figure 5-10. Special Status Word Format

* If the faulted access was a byte operation, the data should be moved from or to the least-significant byte of the data output or input
buffer images unless the HB bit is set. This condition will only occur if a MOVEP instruction caused the fault during the transfer of bits
8-15 of a word or long word or bits 24-31 of a long word.

5-13

5.3.10 Address Error

Address error exceptions occur when the processor attempts to access a word or long word
operand or an instruction at an odd address. The effect is much like an internally generated bus er­
ror, so that the bus cycle is aborted, and the processor begins exception processing. After excep­
tion processing commences, the sequence is the same as that for bus error including the informa­
tion that is stacked, except that the vector offset refers to the address error exception vector. If an
address error occurs during exception processing for a bus error, address error, or reset, the pro­
cessor detects a double bus fault and halts.

As shown in Figure 5-11, an address error will execute a short bus cycle followed by exception pro­
cessing. This short bus cycle is similar to a hormal read or write cycle, except that the data strobes
are not asserted and no external signals are used to terminate the cycle. Duringan address error bus
cycle, AS is asserted to indicate that the MC68010 will drive the address bus (thus allowing for pro­
per operation in a multiple bus master system). Note that data strobes are not asserted allowing for
address error detection and memory protection.

SO S2 S4 S6 so S2 S4 S6 so S2 S4

ClK

A 1-A23 ~ ..
\ \ \ AS. \

\
UOS \ \

~
lOS \ \

~ R/Wj \ \
....

\ / \ OTACK

00-015 H) ".

I· Read ·1· Address Error I Approx. 8 Clocks I
Write StaCk---.j

Write - l1li(Idle - •
1-346

Figure 5-11. Address Error Timing Diagram

Since the address error exception stacks the same information that is stacked by a bus error excep­
tion, it is possible to use the RTE instruction to continue execution of the suspended instruction.
However, if the software re-run flag is not set, the fault address will be used when the cycle is re-run
and another address error exception will occur. Therefore, the user must be certain that the proper
corrections have been made to the stack image and user registers before attempting to continue the
instruction. With proper software handling, the address error exception handler could emulate
word or long word accesses to odd addresses if desired.

5.4 RETURN FROM EXCEPTION

In addition to returning from any exception handler routine, the RTE instruction is used to resume
the execution of a suspended instruction by restoring all of the temporary register and control infor­
mation stored during a bus error and returning to the normal processing state. For the RTE instruc­
tion to execute properly! the stack must contain valid and accessible data. The RTE instruction

5-14

checks for data validity in two ways; first, by checking the format/ offset word for a valid stack for­
mat code, and second, if the format code indicates the long stack format, the long stack data is
checked for validityas it is loaded into the processor. In addition, the data is checked for accessibili­
ty when the processor starts reading the long data. Because of these checks, the RTE instruction
executes as follows:

1. Determine the stack format. This step is the same for any stack format and consists of reading
the status register, program counter, and format/ offset word. If the format code indicates a
short stack format, execution continues at the new program counter address. If the format
code is not one of the MC68010 defined stack format codes, exception processing starts for a
format error.

2. Determine data validity. For a long stack format, the MC68010 will begin to read the remaining
stack data, checking for validity of the data. The only word checked for validity is the first of
the 16 internal information words (SP + 26) shown in Figure 5-9. This word contains a pro­
cessor version number in bits 10 through 13, that must match the version number of the
MC68010 that is attempting to read the data. This validity check is used to insure that in dual
processor systems, the data will be properly interpreted by the RTE instruction if the two pro­
cessors are of different versions. If the version number is incorrect for this processor, the RTE
instruction will be aborted and exception processing will begin for a format error exception.
Since the stack pointer is not updated until the RTE instruction has successfully read all of the
stack data, a format error occurring at this point will not stack new data over the previous bus
error stack information.

3. Determine data accessibility. If the long stack data is valid, the MC68010 performs a read from
the last word (SP + 56) of the long stack to determine data accessibility. If this read is ter­
minated normally, the processor assumes that the remaining words on the stack frame are also
accessible. If a bus error is signaled before or during this read, a bus error exception is taken as
usual. After this read, the processor must be able to load the remaining data without receiving
a bus error; therefore, if a bus error occurs on any of the remaining stack reads, the MC68010
treats this as a double bus fault and enters the halted state.

5-15/5-16

SECTION 6
INTERFACE WITH M6800 PERIPHERALS

Motorola's extensive line of M6800 peripherals are directly compatible with the MC68010. Some of
these devices that are particularly useful are:

M C6821 Peripheral I nterface Adapter

MC6840 Programmable Timer Module

MC6843 Floppy Disk Controller

MC6845 CRT Controller

MC6850 Asynchronous Communications Interface Adapter

MC6852 Synchronous Serial Data Adapter

MC6854 Advanced Data Link Controller

MC68488 General Purpose Interface Adapter

To interface the synchronous M6800 peripherals with the asynchronous MC68010, the processor
modifies its bus cycle to meet the M'6800 cycle requirements whenever an M6800 device address is
detected. This is possible since both processors use memory mapped 1/0. Figure 6-1 is a flowchart
of the interface operation between the processor and M6800 devices.

PROCESSOR SLAVE

Initiate the Cycle

1) The Processor Starts a Normal Read or
Write Cycle "" Define the M6800 Cycle ,

1) External Hardware Asserts Valid

Synchronize with Enable - Peripheral Address (VPA)
-..

1) The Processor Monitors Enable (E) Until
it is Low (Phase 1)

2) The Processor Asserts Valid Memory
Address (VMA) "'" Transfer the Data -

1) The Peripheral Waits Until E is Active

Terminate the Cycle - and then Transfers the Data -
1) The Processor Waits Until E Goes Low.

(On a Read Cycle the Data is Latched
as E Goes Low Internally)

2) The Processor Negates VMA
3) The Processor Negates AS, UDS, and

LDS

i
Start Next Cycle

1-347

Figure 6-1. M6800 Interfacing Flowchart

6-1

6.1 DATA TRANSFER OPERATION

Three signals on the processor provide the M6800 interface. They are: enable (E), valid memory ad­
dress (VMA), and valid peripheral address (VPA). Enable corresponds to the E or phase 2 signal in
existing M6800 systems. The bus frequency is one tenth of the incoming MC68010 clock frequency.
The timing of E allows 1 megahertz peripherals to be used with an 8 megahertz MC68010. Enable
has a 60/40 duty cycle; that is, it is low for six input clocks and high for four input clocks. This duty
cycle allows the processor to do successive VPA accesses on successive E pulses.

M6800 cycle timing is given in· Figure 6-2. At state zero (SO) in the cycle, the address bus is in the
high-impedence state. A function code is asserted on the function code output lines. One-half clock
later, in state 1, the address bus is released from the high-impedence state.

During state 2, the address strobe (AS) is asserted to indicate that there is a valid address on the ad­
dress bus. If the bus cycle is a read cycle, the upper and/ or lower data strobes are also asserted in
state 2. If the bus cycle is a write cycle, the read/write (R/W) signal is switched to low (write) dur­
ing state 2. One-half clock later, in state 3, the write data is placed on the data bus, and in state 4
the data strobes are issued to indicate valid data on the data bus. The processor now inserts wait
states until it recognizes the assertion of VPA.

The VPA input signals the processor that the address on the bus is the address of an M6800 device
(or an area reserved for M6800 devices) and that the bus should conform to the phase 2 transfer
characteristics of the M6800 bus. Valid peripheral address is derived by decoding the address bus,
conditioned by the address strobe. Chip select for the M6800 peripherals should be derived by
decoding the address bus conditioned by VMA.

After recognition of VPA, the processor assures that the enable (E) is low, by waiting if necessary,
and subsequently asserts VMA two clock cycles before E goes high. VMA is then used as part of
the chip select equation of the peripheral. This ensures that the M6800 peripherals are selected and
deselected at the correct time. The peripheral now runs its cycle during the high portion of the E
signal. Figures 6-2 and 6-3 depict the best and worst case M6800 cycle timing; this cycle length is
dependent strictly upon when VPA is asserted in relationship to the E clock.

so S2 S4 w w w w w w S6 so S2
elK

FCO-FC2 J 'C.
A1-A23 :J-(>-e:

AS J \ I '-
DTACK

Data Out ()
Data In ()

E\ I \
VPA \ I '-
VMA \ /

1-348

Figure 6-2. MC68010 to M6800 Peripheral Timing Diagram - Best Case

6-2

SO S2 S4 w w w w w w w w w w w· w w w w S6 SO

ClK

~----------------------(
~----------------____ ~K
~----------------------__ ~r-

DTACK

Data Out (~
Data In ()-

E I \ I L
VPA \ ,--

VMA \ r
7-349

Figure 6-3. MC68010 to M6800 Peripheral Timing Diagram - Worst Case

If we assume that external circuitry asserts VPA as soon as possible after the assertion of AS, then
VPA will be recognized as being asserted on the falling edge of S4. In this case, no "extra" wait
cycles will be inserted prior to the recognition of VPA asserted and only the wait cycles inserted to
synchronize with the E clock will determine the total length of the cycle. In any case, the syn­
chronization delay will be some integral number of clock cycles within the following two extremes:

1. Best Case - VPA is recognized as being asserted on the falling edge three clock cycles before
E rises (or three clock cycles after E falls).

2. Worst Case - VPA is recognized as being asserted on the falling edge two clock cycles before
E rises (or fou r clock cycles after E falls),

During a read cycle, the processor latches the peripheral data in state 6. For all cycles, the processor
negates the address and data strobes one-half clock cycle later in state 7 and the enable signal goes
low at this time. Another half clock later, the address bus is put in the high-impedence state. During
a write cycle, the data bus is put in the high-impedence state and the read/write signal is switched
high. The peripheral logic must remove VPA within one clock after the address strobe is negated.

DTACK should not be asserted while VPA is asserted. Notice that the MC68010 VMA is active low,
contrasted with the active high M6800 VMA. This allows the processor to put its buses in the high­
impedence state on DMA requests without inadvertently selecting the peripherals.

6.2 AC ELECTRICAL SPECIFICATIONS

The electrical specifications for interfacing the MC68010 to M6800 Family peripherals are located in
Section 8.

6-3

6.3 INTERRUPT INTERFACE OPERATION

During an interrupt acknowledge cycle while the processor is fetching the vector, if VPA is asserted
the MC68010 will assert VMA and complete a normal M6800 read cycle as shown in Figure 6-4. The
processor will then use an internally generated vector that is a function of the interrupt being servic­
ed. This process is known as autovectoring. The seven autovectors are vector numbers 25 through
31 (decimal).

Autovectoring operates in the same fashion (but is not restricted to) the M6800 interrupt sequence.
The basic difference is that there are six normal interrupt vectors and one NMI type vector. As with
both the M6800 and the MC68010's normal vectored interrupt, the interrupt service routine can be
located anywhere in the address space. This is due to the fact that while the vector numbers are fix­
ed, the contents of the vector table entries are assigned by the user.

Since VMA is asserted during autovectoring, the M6800 peripheral address decoding should pre­
vent unintended accesses.

S2 S4 w w w w w w w w w w S6

ClK

FCO-FC2 X c
A1-A3 >< }{ ~===============x= A4-A23

AS

UDS*

lOS

R/W

OTACK

08-015

00-07

IPlO-IPl2

E

VPA

VMA

><
\
\
\

~
--<
--<

\

}J '-C
1\ ~----------------~~

~------------------~ 1\
~-------------------~ 1\

I
)
)

/ \'--____ --JJ _-
\ --------------~ \ _____ r

I Normal. I f II---C-I--....... · 11(11------ Autovector Operation -----....
yce

* Although a vector number is one byte, both data strobes are asserted due to the microcode
used for exception processing. The processor does not recognize anything on data lines DO
through 015 during autovector cycles.

Figure 6-4. Autovector Operation Timing Diagram

6-4

1-350

SECTION 7
INSTRUCTION SET AND EXECUTION TIMES

7.1 INSTRUCTION SET

The following paragraphs provide information about the addressing categories and instruction set
of the MC68010/MC68012.

7.1.1 Addressing Categories

Effective address modes may be categorized by the ways in which they may be used. The following
classifications will be used in the instruction definitions.

Data If an effective address mode may be used to refer to data operands, it is
considered a data addressing effective address mode.

Memory If an effective address mode may be used to refer to memory operands, it
is considered a memory addressing effective address mode.

Alterable

Control

If an effective address mode may be used to refer to alterable (writeable)
operands, it is considered an alterable addressing effective address mode.

If an effective address mode may be used to refer to memory operands
without an associated size, it is considered a control addressing effective
address mode.

These categories may be combined, so that additional, more restrictive, classifications may be
defined. For example, the instruction descriptions use such classifications as alterable memory or
data alterable. The former refers to those addressing modes which are both alterable and memory
addresses, and the latter refers to addressing modes which are both data and alterable. Table 7-1
shows the various categories to which each of the effective address modes belong. Table 7-2 is the
instruction set summary.

Table 7-1. Effective Addressing Mode Categories

Effective
Addressing Categories Address

Modes Mode Register Data Memory Control Alterable

On 000 Register Number X - - X
An 001 Register Number - - - X
(An) 010 Register Number X X X X
(An)+ 011 Register Number X X - X
-(An) 100 Register Number X X - X
d(An) 101 Register Number X X X X
d(An, ix) 110 Register Number X X X X
xxx.W 111 000 X X X X
xxx.L 111 001 X X X X
d(PC) 111 010 X X X -

d(PC, ix) 111 011 X X X -

#xxx 111 100 X X - -

1-351

7-1

Mnemonic

ABCD

ADD

ADDA

ADDI

ADDQ

ADDX

AND

ANDI

ANDI to CCR

ANDI to SR

ASL, ASR

BCC

BCHG

BCLR

BRA

BSET

BSR

BTST

CHK

CLR

CMP

CMPA

CMPI

CMPM

DBCC
DIVS

DIVU

EOR

EORI

EaRl to CCR

EaRl to SR

EXG

EXT

JMP

JSR

LEA

LINK

LSL, LSR

MOVE

MOVE to CCR

MOVE from
CCR

MOVE to SR

Table 7-2. Instruction Set (Sheet 1 of 2)

Condition
Description Operation Codes

X N Z V C
Add Decimal with Extend (Destination)10+ (Source)10+ X - Destination * U * U *
Add Binary (Destination) + (Source) - Destination * * * * *
Add Address (Destination) + (Source) - Destination - - - - -
Add Immediate (Destination) + Immediate Data - Destination * * * * *
Add Quick (Destination) + Immediate Data - Destination * * * * *
Add Extended (Destination) + (Source) + X - Destination * * * * *
AND Logical (Destination) A (Source) - Destination - * * 0 0
AND Immediate (Destination) A Immediate Data - Destination - * * 0 0

AND Immediate to Condition Codes (Source) A CCR - CCR * * * * *
AND Immediate to Status Register (Source) A SR - SR * * * * *
Arithmetic Shift (Destination) Shifted by <count>-Destination * * * * *
Branch Conditionally If CC then PC + d - PC - - - - -

-«bit number» OF Destination-Z
Test a Bit and Change - « bit number» OF Destination- - - * - -

< bit number> OF Destination

Test a Bit and Clear
-«bit number» OF Destination-Z .

* 0- < bit number> - OF Destination
- - - -

Branch Always (PC)+d-PC - - - - -

Test a Bit and Set
-«bit number» OF Destination-Z

* 1 - < bit number> OF Destination
- - - -

Branch to Subroutine (PC) - - (SP); (PC) + d - PC - - - - -
Test a Bit -«bit number» OF Destination-Z - - * - -

Check Register Against Bounds If On <0 or On> «ea» then TRAP - * U U U

Clear and Operand 0- Destination - 0 1 0 0

Compare (Destination) - (Source) - * * * *
Compare Address (Destination) - (Source) - * * * *
Compare Immediate (Destination) -Immediate Data - * * * *
Compare Memory (Destination) - (Source) - * * * *
Test Condition, Decrement and Branch If -CC then Dn-1-Dn; if Dn*-1 then PC+d-PC - - - - -
Signed Divide

Unsigned Divide

Exclusive OR Logical

Exclusive OR Immediate

Exclusive OR Immediate
to Condition Codes

Exclusive OR Immediate
to Status Register

Exchange Register

Sign Extend

Jump

Jump to Subroutine

Load Effective Address

Link and Allocate

Logical Shift

Move Data from Source to Destination

Move to Condition Codes

Move from Condition Codes

Move to the Status Register

(Destination) / (Source) - Destination

(Destination) / (Source) - Destination

(Destination) $ (Source) - Destination

(Destination) $ Immediate Data - Destination

(Source) $ CCR - CCR

(Source $ SR - SR

(Rx) -(Ry)

(Destination) Sign-Extended - Destination

(Destination) - PC

(PC) - - (S P); Destination - PC

<ea> -An

(An)--(SP); (SP)-An; (SP)+d-SP

(Destination) Shifted by < count> - Destination

(Source) - Destination

(Source) - CCR

(CCR) - Destination

(Source) - SR

A logical AN 0
V logical OR
$ logical exclusive OR
- logical complement

7-2

* * * -

* * * -

- * * 0
- * * 0

* * * *

* * * *

- - - -

- * * 0
- - - -

- - - -

- - - -
- - - -

* * * 0

- * * 0

* * * *
- - - -

* * * *

* affected
- unaffected
o cleared
1 set
U undefined

0

0

0

0

*

*
-

0
-

-

-

-

*
0

*
-

*

1-35211

Mnemonic

MOVE from SR

MOVE USP

MOVEA

MOVEC

MOVEM

MOVEP

MOVEQ

MOVES

MULS

MULU

NBCD

NEG

NEGX

NOP

NOT

OR

ORI

ORI to CCR

ORI to SR

PEA

RESET

ROL, ROR

ROXL, ROXR

RTD

RTE

RTR

RTS

SBCD

SCC
STOP

SUB

SUBA

SUBI

SUBQ

SUBX

SWAP

TAS

TRAP

TRAPV

TST

UNLK

Table 7-2. Instruction Set (Sheet 2 of 2)

Description

Move from the Status Register

Move User Stack Pointer

Move Address

Move Control Register

Move Multiple Registers

Move Peripheral Data

Move Quick

Move Alternate Address Space

Signed Multiply

Unsigned Multiply

Negate Decimal with Extend

Negate

Negate with Extend

No Operation

Logical Complement

Inclusive OR Logical

Inclusive OR Immediate

Inclusive OR Immediate
to Condition Codes

Inclusive OR Immediate
to Status Register

Push Effective Address

Reset External Device

Rotate (Without Extend)

Rotate with Extend

Return and Deallocate Stack

Return from Exception

Return and Restore Condition Codes

Return from Subroutine

Subtract Decimal with Extend

Set According to Condition

Load Status Register and Stop

Subtract Binary

Subtract Address

Subtract Immediate

Subtract Quick

Subtract with Extend

Swap Register Halves

T est and Set an Operand

Trap

T rap on Overflow

Test and Operand

Unlink

Operation

(SR) - Destination

(USP)-An; (An)-USP

(Source) - Destination

(Cr) - Rn; (Rn) - Cr

(Registers) - Destination
(Source) - Registers

(Source) - Destination

Immediate Data - Destination

(Dn) - Destination; (Source) - Dn

(Destination) X (Source) - Destination

(Destination) X (Source) - Destination

0- (Destination)10- X - Destination

0- (Destination) - Destination

0- (Destination) - X - Destination

-

- (Destination) - Destination

(Destination) v (Source) - Destination

(Destination) v Immediate Data - Destination

(Source) v CCR - CCR

(Source) v SR - SR

<ea> - - (SP)

-

(Destination) Rotated by < count> - Destination

(Destination) Rotated by < count> - Destination

(SP)+ -PC; (SP)+d-SP

(SP) + - SR; (SP) + - PC

(SP)+ -CC; (SP)+ -PC

(SP)+ -PC

(Destination)10- (Source)10- X - Destination

If CC then 1's - Destination else O's -' Destination

Immediate Data - SR; STOP

(Destination) - (Source) - Destination

(Destination) - (Source) - Destination

(Destination) -Immediate Data - Destination

(Destination) - I mmediate Data - Destination

(Destination) - (Source) - X - Destination

Register [31: 16] - Register [15:0]

(Destination) Tested - CC; 1 - [7] OF Destination

(PC)--(SSP); (SR)--(SSP); (Vector)-PC

If V set then TRAP

(Destination) Tested - CC

(An)-SP; (SP)+ -An

[] = bit number
A logical AN D
V logical OR
ED logical exclusive OR
- logical complement

7-3

Condition
Codes

X N Z V

- - - -

- - - -

- - - -

- - - -

- - - -

- - - -

- * * 0

- - - -

* * 0 -

- * * 0

* U * U

* * * *
* * * *
- - - -

- * * 0

- * * 0

* * 0 -

* * * *

* * * *

- - - -

- - - -

* * 0 -

* * * 0

- - - -

* * * *
* * * *
- - - -

* U * U

- - - -

* * * *
* * * *
- - - -

* * * *
* * * *
* * * *
- * * 0

* * 0 -

- - - -

- - - -

* * 0 -

- - - -

* affected
- unaffected
o cleared
1 set
U undefined

C
-

-

-

-

-

-

0

-

0

0

*
*
*
-

0

0

0

*

*

-

-

*
*
-

*
*
-

*
-

*
*
-

*
*
*
0

0
-

-

0
-

1-35212

7.1.2 I nstruetion Prefetch

The MC68010 uses a two-word tightly-coupled instruction prefetch mechanism to enhance perfor­
mance. This mechanism is described in terms of the microcode operations involved. If the execu­
tion of an instruction is defined to begin when the microroutine for that instruction is entered, some
features of the prefetch mechanism can be described.

1. When execution of an instruction begins, the operation word and the word following have
already been fetched. The operation word is in the instruction decoder.

2. In the case of multi-word instructions, as each additional word of the instruction is used
internally, a fetch is made to the instruction stream to replace it.

3. The last fetch for an instruction from the instruction stream is made when the operation word
is discarded and decoding is started on the next instruction.

4. If the instruction is a single-word instruction causing a branch, the second word is not used.
But because this word is fetched by the preceding instruction, it is impossible to avoid this
superfluous fetch.

5. In the case of an interrupt or trace exception, both prefetched words are not used.

6. The program counter usually points to the last word fetched from the instruction stream.

7.1.3 Loop Mode Operation

The M C6801 0 has several featu res that provide efficient execution of program loops. One of these
features is the DBcc looping primitive instruction. The DBcc instruction operates on three
operands, a loop counter, a branch condition, and a branch displacement. When the DBcc is
executed in loop mode, the contents of the low order word of the register specified as the loop
counter is decremented by one and compared to minus one. If equal to minus one, the result of the
decrement is placed back into the count register and the next sequential instruction is executed,
otherwise the condition code register is checked against the specified branch condition. If the con­
dition is true, the result of the decrement is discarded and the next sequential instruction is
executed. Finally, if the count register is not equal to minus one and the branch condition is false,
the branch displacement is added to the program counter and instruction execution continues at
that new address. Note that this is slightly different than non-looped execution; however, the
results are the same.

An example of using the DBcc instruction in a simple loop for moving a block of data is shown in
Figure 7-1. In this program, the block of data 'LENGTH' words long at address 'SOURCE' is to be
moved to address 'DEST' provided that none of the words moved are equal to zero. When the ef­
fect of instruction prefetch on this loop is examined it can be seen that the bus activity during the
loop execution would be:

1. Fetch the MOVE. W instruction,

2. Fetch the DBEO instruction,

3. Read the operand where AO points,

4. Write the operand where A 1 points,

5. Fetch the DB EO branch displacement, and

6. If loop conditions are met; return to step 1.

LOOP

LEA
LEA
MOVE.W
MOVE.W
DBEQ

SOURCE, AO
DEST, Al
#LENGTH, DO
(AO)+, (Al)+
DO, LOOP

Load A Pointer To Source Data
Load A Pointer To Destination
Load The Counter Register
Loop To Move The Block Of Data
Stop If Data Word Is Zero

Figure 7-1. OBee Loop Program Example

7-4

1-353

During this loop, five bus cycles are executed; however, only two bus cycles perform the data
movement. Since the MC68010 has a two word prefetch queue in addition to a one word instruction
decode register, it is evident that the three instruction fetches in this loop could be eliminated by
placing the MOVE. W word in the instruction decode register and holding the DBEQ instruction and
its branch displac~ment in the prefetch queue. The ,MC68010 has the ability to do this by entering
the loop mode of operation. During loop mode operation, all opcode fetches are suppressed and
only operand reads and writes are performed until an exit loop condition is met.

Loop mode operation is transparent to the programmer, with only two conditions required for the
MC68010 to enter the loop mode. First, a DBcc instruction must be executed with both branch con­
ditions met and a branch displacement of minus four; which indicates that the branch is to a one
word instruction preceding the DBcc instruction. Second, when the processor fetches the instruc­
tion at the branch address, it is checked to determine whether it is one of the allowed looping in­
structions. If it is, the loop mode is entered. Thus, the single word looped instruction and the first
word of the DBcc instruction will each be fetched twice when the loop is entered; but no instruction
fetches will occur again until the DBcc loop conditions fail.

In addition to the normal termination conditions for a loop, there are several conditions that will
cause the MC68010 to exit loop mode operation. These conditions are interrupts, trace exceptions,
reset errors, and bus errors. Interrupts are honored after each execution of the DBcc instruction,
but not after the execution of the looped instruction. If an interrupt exception occurs, loop mode
operation is terminated and can be restarted on return from the interrupt handler. If the T bit is set,
trace exceptions will occur at the end of both the loop instruction and the DBcc instruction and thus
loop mode operation is not available. Reset will abort all processing, including the loop mode. Bus
errors during the loop mode will be treated the same as in normal processing; however, when the
RTE instruction is used to continue the execution of the looped instruction, the three word loop will
not be re-fetched.

The loopable instructions available on the MC68010 are listed in Table 7-3. These instructions may
use the three address register indirect addressing modes to form one word looping instructions;
(An), (An) + , and - (An).

Table 7-3. MC68010 Loopable Instructions

Applicable Applicable
Opcodes Addressing Modes Opcodes Addressing Modes

MOVE [BWL] (Ay) to (Ax) - (Ay) to (Ax) ABCD [B) - (Ay) to - (Ax)
(Ay) to (Ax) + - (Ay) to (Ax) + ADDX [BWL]
(Ay) to - (Ax) - (Ay) to - (Ax) SBCD [B)
(Ay) + to (Ax) Ry to (Ax) SUBX [BWL]
(Ay) + to (Ax) + Ry to (Ax) +
(Ay) + to - (Ax)

CMP [BWL] (Ay) + to (Ax) +

CLR [BWL] (Ay)
ADD [BWL] (Ay) to Dx NEG [BWL] (Ay)+
AND [BWL] (Ay) + to Dx NEGX [BWL] -(Ay)
CMP [BWL] - (Ay) to Dx NOT [BWL]
OR [BWL] TST [BWL]
SUB [BWL] NBCD [B)
ADDA [WL] (Ay) to Ax ASL [W] (Ay) by #1
CMPA [WL] - (Ay) to Ax ASR [W] (Ay) + by #1
SUBA [WL] (Ay) + to Ax LSL [W] - (Ay) by #1
ADD [BWL] Dx to (Ay) LSR [W] .
AND [BWL] Dx to (Ay) + ROL [W]
EOR [BWL] Dx to - (Ay) ROR [W]
OR [BWL] ROXL [W]
SUB [BWL] ROXR [W]

NOTE
[B, W, or L] indicate an operand size of byte, word, or long word.

1-354

7-5

7.2 INSTRUCTION EXECUTION TIMES

The following paragraphs contain listings of the instruction execution times in terms of external
clock (elK) periods. In this timing data, it is assumed that both memory read and write cycle times
are four clock periods. Any wait states caused by a longer memory cycle must be added to the total
instruction time. The number of bus read and write cycles for each instruction is also included with
the timing data. This data is enclosed in parenthesis following the execution periods and is shown
as (r/w) where r is the number of read cycles and w is the number of write cycles.

NOTE

The number of clock periods includes instruction fetches and all applicable operand
fetches and stores.

7.2.1 Operand Effective Address Calculation Times

Table 7-4 lists the number of clock periods required to compute an instruction's effective address. It
includes fetching of any extension words, the address computation, and fetching of the memory
operand if necessary. Several instructions do not need the operand at an effective address to be fet­
ched and thus require fewer clock periods to calculate a given effective address than the instruc­
tions that do fetch the effective address operand. The number of bus read and write cycles is shown
in parentheses as (r/w). Note there are no write cycles involved in processing the effective address.

Table 7-4. Effective Address Calculation Times

Byte, Word Long

Addressing Mode Fetch No Fetch Fetch No Fetch

Register
Dn Data Register Direct 0(0/0) - 0(0/0) -

An Address Register Direct 0(010) - 0(0/0) -

Memory
(An) Address Register Indirect 4(1/0) 2(0/0) 8(2/0) 2(0/0)
(An)+ Address Register Indirect with Postincrement 4(1/0) 4(0/0) 8(2/0) 4(010)

-(An) Address Register Indirect with Predecrement 6(1/0) 4(0/0) 10(2/0) 4(010)
d(An) Address Register Indirect with Displacement 8(2/0) 4(0/0) 12(3/0) 4(1/0)

d(An, ix)* Address Register Indirect with Index 10(2/0) 8(1/0) 14(3/0) 8(1/0)
xxx.W Absolute Short 8(2/0) 4(1/0) 12(3/0) 4(1/0)

xxx.L Absolute Long 12(3/0) 8(210) 16(4/0) 8(210)
d(PC) Program Counter with Displacement 8(2/0) - 12(3/0) -

d(PC, ix) Program Counter with Index 10(2/0) - 14(3/0) -

#xxx Immediate 4(1/0) - 8(210) -

* The size of the index register (ix) does not affect execution time.
1-355

7.2.2 Move Instruction Execution Times

Tables 7-5,7-6,7-7, and 7-8 indicate the number of clock periods for the move instruction. This data
includes instruction fetch, operand reads, and operand writes. The number of bus read and write
cycles is shown in parenthesis as (r/w).

7-6

Table 7-5. Move Byte and Word Instruction Execution Times

Source Destination
On An (An) (An)+ -(An) d(An) d(An, ix)* xxx.W xxx.L

On 4(1/0) 4(1/0) 8(1 I 1) 8(111) 8(1 11) 12(2/1) 14(2/1) 12(211) 16(3/1)
An 4(1/0) 4(1/0) 8(111) 8(1 I 1) 8(111) 12(2/1) 14(2/1) 12(211) 16(3/1)
(An) 8(210) 8(2/0) 12(2/1) 12(2/1) 12(2/1) 16(3/1) 18(3/1) 16(3/1) 20(411)

(An)+ 8(2/0) 8(2/0) 12(2/1) 12(2/1) 12(2/1) 16(311) 18(3/1) 16(3/1) 20(4/1)
-(An) 10(2/0) 10(2/0) 14(211) 14(2/1) 14(211) 18(3/1) 20(3/1) 18(3/1) 22(411)
d(An) 12(3/0) 12(3/0) 16(3/1) 16(3/1) 16(3/1) 20(411) 22(4/1) 20(4/1) 24(511)

d(An, ix)* 14(3/0) 14(3/0) 18(3/1) 18(3/1) 18(3/1) 22(411) 24(4/1) 22(411) 26(5/1)
xxx.W 12(3/0) 12(3/0) 16(3/1) 16(311) 16(311) 20(4/1) 22(4/1) 20(4/1) 24(5/1)
xxx.L 16(4/0) 16(4/0) 2O(4l1) 20(4/1) 20(4/1) 24(5/1) 26(511) 24(511) 28(6/1)

d(PC) 12(3/0) 12(3/0) 16(3/1) 16(311) 16(3/1) 20(411) 22(411) 20(4/1) 24(5/1)
d(PC, ix)* 14(3/0) 14(3/0) 18(3/1) 18(3/1) 18(3/1) 22(4/1) 24(4/1) 22(411) 26(5/1)
I xxx 8(2/0) 8(2/0) 12(2/1) 12(211) 12(2/1) 16(3/1) 18(3/1) 16(3/1) 20(411)

* fhe size of the index register (ix) does not affect execution time.
1-356

Table 7-6. Move Byte and Word Instruction Loop Mode Execution Times

Loop Continued Loop Terminated

Valid Count, cc False Valid Count, cc True Expired Count

Destination

Source (An) (An)+ -(An) (An) (An) + -(An) (An) (An)+ -(An)

On 10(011) 10(0/1) - 18(2/1) 18(2/1) - 16(2/1) 16(2/1) -

An* 10(0/1) 10(0/1) - 18(211) 18(2/1) - 16(211) 16(2/1) -

(An) 14(111 } 14(1/1} 16(1/1} 20(3/1 } 20(311} 22(3/1 } 18(3/1 } 18(311 } 20(3/1}

(An)+ 14(111 } 14(1/1} 16(1/1} 20(3/1 } 20(3/1 } 22(311 } 18(3/1 } 18(311 } 20(3/1}
-(An) 16(1/1} 16(1/1} 18(1/1} 22(311) 22(3/1) 24(311) 20(3/1) 20(3/1) 22(311)

*Word only.
1-357

Table 7-7. Move Long Instruction Execution Times

Source
Destination

On An (An) (An)+ - (An) d(An) d(An, ix)* xxx.W xxx.L

On 4(1/0) 4(1/0) 12(1/2) 12(1 12) 14(1/2) 16(2/2) 18(2/2) 16(2/2) 20(312)
An 4(1/0} 4(1/0) 12(1/2) 12(1 12) 14(1/2) 16(2/2) 18(2/2) 16(2/2) 20(312)
(An) 12(3/0) 12(3/0) 20(312) 20(3/2) 20(3/2) 24(4/2) 26(4/2) 24(4/2) 28(512)

(An)+ 12(3/0) 12(3/0) 20(312) 20(3/2) 20(312) 24(4/2) 26(4/2) 24(4/2) 28(512)
- (An) 14(3/0) 14(3/0) 22(312) 22(3/2) 22(3/2} 26(4/2) 28(412) 26(4/2) 30(512)
d(An) 16(4/0) 16(4/0) 24(4/2) 24(4/2) 24(4/2) 28(512) 30(5/2) 28(5/2) 32(6/2)

d(An, ix)* 18(4/0) 18(4/0) 26(4/2) 26(4/2) 26(4/2) 30(512) 32(5/2) 30(512) 34(6/2)
xxx.W 16(4/0) 16(4/0) 24(4/2) 24(4/2) 24(4/2) 28(512) 30(5/2) 28(5/2) 32(6/2)
xxx.L 20(5/0) 20(5/0) 28(5/2) 28(5/2) 28(5/2) 32(6/2) 34(6/2) 32(6/2) 36(7/2)

d(PC) 16(4/0) 16(4/0) 24(4/2) 24(4/2) 24(4/2) 28(512) 30(5/2) 28(5/2) 32(5/2)
d(PC, ix)* I 18(4/0) 18(4/0) 26(412) 26(4/2) 26(4/2) 30(512) 32(5/2) 30(512) 34(6/2) I

I

I xxx 12(3/0) 12(3/0) 20(3/2) 20(312) 20(3/2) 24(4/2) 26(4/2) 24(4/2) 28(512)

* The size of the index register (ix) does not affect execution time.
1-358

Table 7-8. Move Long Instruction Loop Mode Execution Times

Loop Continued Loop Terminated

Valid Count, cc False Valid Count, cc True Expired Count

Destination

Source (An) (An)+ -(An) (An) (An) + -(An) (An) (An)+ -(An)

On 14(012) 14(0/2) - 20(2/2} 20(2/2} - 18(212) 18(2/2) -
An 14(0/2) 14(0/2) - 20(212) 20(2/2) - 18(212} 18(2/2} -

(An) 22(2/2} 22(2/2} 24(212} 28(4/2) 28(4/2} 30(4/2) 24(4/2} 24(4/2} 26(4/2)

(An)+ 22(212} 22(2/2} 24(2/2} 28(4/2} 28(4/2) 30(4/2} 24(4/2) 24(4/2} 26(4/2)
-(An) 24(212) 24(212) 26(2/2} 30(4/2} 30(4/2} 32(4/2} 26(4/2) 26(4/2) 28(4/2)

1-359

7-7

7.2.3 Standard I nstruction Execution Times

The number of clock periods shown in Tables 7-9 and 7-10 indicate the time required to perform the.
operations, store the results, and read the next instruction. The number of bus read and write cycles
is shown in parenthesis as (r/w). The number of clock periods and the number of read and write
cycles must be added respectively to those of the effective address calculation where indicated.

In Tables 7-9 and 7-10 the headings have the following meanings: An = address register operand,
On = data register operand, ea = an operand specified by an effective address, and M = memory ef­
fective address operand.

Table 7-9. Standard Instruction Execution Times

Instruction Size op<ea>, An*** op<ea>, On op On, <M>

ADD
Byte, Word 8(1/0) + 4(1/0) + 8(1/1) +

Long 6(1/0) + 6(1/0) + 12(1/2)+

AND Byte, Word - 4(110) + 8(1/1) +
Long - 6(110) + 12(1/2)+

CMP Byte, Word 6(110) + 4(1/0) + -
Long 6(110) + 6(1/0) + -

DIVS - - 122(1/0) + -

DIVU - - 108(1/0)+ -

EOR
Byte, Word - 4(110) * * 8(1/1) +

Long - 6(110) * * 12(112)+

MULS - - 42(1/0) + * -

MULU - - 40(1/0) + -

OR
Byte, Word - 4(110) + 8(1/1) +

Long - 6(110) + 12(1/2)+

SUB
Byte, Word 8(110) + 4(1/0)+ 8(1 11) +

Long 6(1/0) + 6(110) + 12(1/2)+

NOTES:
+ add effective address calculation time
* indicates maximum value

* * only available addressing mode is data register direct
word or long only ***

1-360

Table 7-10. Standard Instruction Loop Mode Execution Times

Loop Continued Loop Terminated

Valid Count cc False Valid Count cc True Expired Count

op <ea>, op <ea>, op On, op <ea>, op <ea>, op On, op <ea>, op <ea>, op On,
Instruction Size An* On <ea> An* On <ea> An* On <ea>

ADD
Byte, Word 18(110) 16(110) 16(1/1) 24(3/0) 22(310) 22(3/1) 22(3/0) 20(3/0) 20(3/1)

Long 22(210) 22(2/0) 24(2/2) 28(4/0) 28(4/0) 30(4/2) 26(4/0) 26(4/0) 28(4/2)

Byte, Word - 16(1/0) 16(1/1) - 22(310) 22(3/1) - 20(3/0) 20(3/1)
AND

Long - 22(210) 24(2/2) - 28(4/0) 30(4/2) - 26(4/0) 28(4/2)

Byte, Word 12(1/0) 12(1/0) - 18(3/0) 18(3/0) - 16(3/0) 16(4/0) -
CMP

Long 18(2/0) 18(2/0) - 24(4/0) 24(4/0) - 20(4/0) 20(4/0) -

Byte, Word - - 16(1/0) - - 22(311) - - 20(3/1)
EOR

Long - - 24(2/2) - - 30(4/2) - - 28(4/2)

Byte, Word - 16(1/0) 16(1/0) - 22(310) 22(3/1) - 20(3/0) 20(3/1)
OR

Long - 22(210) 24(2/2) - 28(4/0) 30(4/2) - 26(4/0) 28(4/2)

SUB
Byte, Word 18(1 10) 16(1/0) 16(1/1) 24(3/0) 22(310) 22(3/1) 22(3/0) 20(3/0) 20(3/1)

Long 22(210) 20(2/0) 24(2/2) 28(4/0) 26(4/0) 30(4/2) 26(4/0) 24(4/0) 28(4/2)

* Word or long only.
<ea> may be (An), + (An), or - (An) only. Add two clock periods to the table value if <ea> is - (An).

1-367

7-8

7.2.4 Immediate Instruction Execution Times

The number of clock periods shown in Table 7-11 includes the time to fetch immediate operands,
perform the operations, store the results, and read the next operation. The number of bus read and
write cycles is shown in parenthesis as (r/w). The number of clock periods and the number of read
and write cycles must be added respectively to those of the effective address calculation where in­
dicated.

In Table 7-11, the headings have the following meanings: # = immediate operand, On = data
register operand, AN = address register operand, and M = memory operand.

Table 7-11. Immediate Instruction Execution Times

Instruction Size op #, On

ADDI
Byte, Word 8(2/0)

long 14(3/0)

AOOO
Byte, Word 4(1/0)

long 8(1 10)

ANDI Byte, Word 8(210)
long 14(3/0)

Byte, Word 8(2/0)
CMPI

long 12(3/0)

EORI
Byte, Word 8(210)

long 14(3/0)

MOVEO Long 4(1/0)

ORI
Byte, Word 8(2/0)

long 14(3/0)

SUBI
Byte, Word 8(210)

long 14(3/0)

SUBO
Byte, Word 4(1 10)

long 8(1/0)

+ add effective address calculation time.
*word only

7-9

op #, An op #, M

- 12(2/1)+
- 20(3/2) +

4(1 10) * 8(1 I 1) +
8(1/0) 12(1/2)+

- 12(211) +
- 20(311) +
- 8(2/0) +
- 12(3/0) +
- 12(2/1)+
- 20(3/2) +
- -

- 12(2/1)+
- 20(3/2) +

- 12(2/1)+
- 20(3/2) +

4(110) * 8(1 I 1) +
8(1 /0) 12(1/2)+

1-362

7.2.5 Single Operand Instruction Execution Times

Tables 7-12, 7-13, and 7-14 indicate the number of clock periods for the single operand instruction$.
The number of bus read and write cycles is shown in parenthesis as (r/w). The number of clock
periods and the number of read and write cycles must be added respectively to those of the effec­
tive address calculation where indicated.

Table 7-12. Single Operand Instruction Execution Times

Instruction Size Register Memory

NBCO Byte 6(1/0) 8(1/1) +

Byte, Word 4(1/0) 8(1 /1) +
NEG

Long 6(1/0) 12(1/2)+

Byte, Word 4(1/0) 8(1 /1) +
NEGX

Long 6(1/0) 12(1/2)+

Byte, Word 4(1/0) 8(1/1) +
NOT

Long 6(1/0) 12(1/2)+

Byte, False 4(1/0) 8(1/1) + *
SCC Byte, True 4(1/0) 8(1/1) + *

TAS Byte 4(1/0) 14(211) + *

Byte, Word 4(1/0) 4(1/0) +
TST

Long 4(1/0) 4(1/0) +

+ add effective address calculation time
* Use non-fetching effective address calculation time.

1-363

Table 7-13. Clear Instruction Execution Times

Size On An (An) (An)+ -(An) d(An) d(An, ix)* xxx.W xxx.L

Byte, Word 4(1/0) - 8(1 I 1) 8(1 11) 10(1/1) 12(2/1) 16(2/1) 12(2/1) 16(3/1)
CLR

6(1/0) 12(1/2) 12(1/2) 14(1/2) 16(2/2) 20(2/2) 16(2/2) 20(3/2) Long -

* The size of the index register (ix) does not affect execution time.
1-364

Table 7-14. Single Operand Instruction Loop Mode Execution Times

Loop Continued Loop Terminated

Valid Count, cc False Valid Count, cc True Expired Count

Instruction Size (An) (An)+ -(An) (An) (An)+ -(An) (An) (An)+ -(An)

CLR
Byte, Word 10(011) 10(0/1) 12(0/1) 18(211) 18(2/1) 20(2/0) 16(211) 16(2/1) 18(2/1)

Long 14(0/2) 14(0/2) 16(0/2) 22(212) 22(2/2) 24(2/2) 20(2/2) 20(2/2) 22(212)

NBCD Byte 18(1/1) 18(1/1) 20(1 /1) 24(3/1) 24(311) 26(3/1) 22(3/1) 22(3/1) 24(3/1)

NEG
Byte, Word 16(1/1) 16(1/1) 18(2/2) 22(311) 22(3/1) 24(3/1) 20(3/1) 20(3/1) 22(311)

Long 24(2/2) 24(2/2) 26(2/2) 30(4/2) 30(4/2) 32(4/2) 28(4/2) 28(4/2) 30(4/2)

NEGX
Byte, Word 16(1 11) 16(1/1) 18(2/2) 22(311) 22(3/1) 24(3/1) 20(3/1) 20(3/1) 22(311)

Long 24(2/2) 24(2/2) 26(2/2) 30(4/2) 30(4/2) 32(4/2) 28(4/2) 28(4/2) 30(4/2)

NOT
Byte, Word 16(111) 16(1 11) 18(2/2) 22(311) 22(3/1) 24(3/1) 20(3/1) 20(3/1) 22(311)

Long 24(2/2) 24(2/2) 26(2/2) 30(4/2) 30(4/2) 32(4/2) 28(4/2) 28(4/2) 30(4/2)

Byte, Word 12(1/0) 12(1 10) 14(1 10) 18(3/0) 18(3/0) 20(3/0) 16(3/0) 16(3/0) 18(3/0)
TST

20(4/0) 20(4/0) 22(410) Long 18(2/0) 18(2/0) 20(2/0) 24(4/0) 24(4/0) 26(4/0)

1-365

7-10

7.2.6 Shift/Rotate Instruction Execution Times

Tables 7-15 and 7-16 indicate the number of clock periods for the shift and rotate instructions. The
number of bus read and write cycles is shown in parenthesis as (r/w). The number of clock periods
and the number of read and write cycles must be added respectively to those of the effective ad­
dress calculation where indicated.

Table 7-15. Shift/Rotate Instruction Execution Times

InStruction Size

Byte, Word
ASR,ASL

Long

Byte, Word
LSR, LSL

Long

Byte, Word
ROR,ROL

Long

Byte, Word
ROXR,ROXL

Long

+ add effective address calculation time
n is the shift or rotate count
* word only

Register Memory*

6 + 2n(1/0) 8(1/1) +

8 + 2n(1/0) -

6 + 2n(1/0) 8(1/1) +

8 + 2n(1/0) -
6 + 2n(1/0) 8(1 11) +

8 + 2n(1/0) -

6 + 2n(1/0) 8(1 I 1) +
8 + 2n(1/0) -

1-366

Table 7-16. Shift/Rotate Instruction Loop Mode Execution Times

Loop Continued Loop Terminated

Valid Count, cc False Valid Count, cc True Expi red Cou nt

Instruction Size (An) (An)+ -(An) (An) (An)+ -(An) (An) (An)+

ASR,ASl Word 18(111) 18(1/1) 20(111) 24(3/1) 24(3/1) 26(3/1) 22(311) 22(3/1)

lSR, lSl Word 18(1/1) 18(1/1) 20(1 11) 24(311) 24(3/1) 26(3/1) 22(311) 22(3/1)

ROR, ROl Word 18(111) 18(1/1) 20(1 11) 24(3/1) 24(3/1) 26(3/1) 22(311) 22(3/1)

ROXR, ROXl Word 18(1/1) 18(1/1) 20(111) 24(3/1) 24(3/1) 26(3/1) 22(311) 22(3/1)

7.2.7 Bit Manipulation Instruction Execution Times

-(An)

24(3/1)

24(3/1)

24(3/1)

24(3/1)

1-587

Table 7-17 indicates the number of clock periods required for the bit manipulation instructions. The
number of bus read and write cycles is shown in parenthesis as (r/w). The number of clock periods
and the number of read and write cycles must be added respectively to those of the effective ad­
dress calculation where indicated.

Table 7-17. Bit Manipulation Instruction Execution Times

Size
Dynamic

Instruction
Register

BCHG
Byte -

long 8(110)*

BClR
Byte -

Long 10(1/0)*

BSET
Byte -

long 8(110)*

BTST
Byte -

long 6(1/0)

+ add effective address calculation time
* indicates maximum value

7-11

Memory

8(1 11) +

-

10(1 11) +
-

8(1 I 1) +
-

4(1/0) +
-

Static

Register Memory

- 12(2/1) +

12(2/0) * -

- 14(2/1)+

14(2/0) * -

- 12(2/1)+

12(2/0) * -

- 8(210) +

10(2/0) -

1-367

7.2.8 Conditional Instruction Execution Times

Table 7-18 indicates the number of clock periods required for the conditional instructions. The
number of bus read and write cycles is indicated in parenthesis as (r/w). The number of clock
periods and the number of read and write cycles must be added respectively to those of the effec­
tive address calculation where indicated.

Table 7-18. Conditional Instruction Execution Times

Instruction Displacement Branch Taken Branch Not Taken

BCC Byte 10(2/0) 6(1/0)

Word 10(2/0) 10(2/0)

Byte 10(2/0) -
BRA

Word 10(2/0) -

Byte 18(2/2) -
BSR

Word 18(2/2) -

CC true - 10(2/0)
DBCC

CC false 10(2/0) 16(3/0)

1-368

7.2.9 JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times

Table 7-19 indicates the number of clock periods required for the jump, jump-to-subroutine, load ef­
fective address, push effective address, and move multiple registers instructions. The number of
bus read and write cycles is shown in parenthesis as (r/w).

Table 7-19. JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times

Instr Size (An) (An)+ -(An) d(An) d(An, ix)+ xxx.W xxx.L d(PC) d(PC, ix)*

JMP - 8(2/0) - - 10(2/0) 14(3/0) 10(2/0) 12(3/0) 10(2/0) 14(3/0)

JSR - 16(2/2) - - 18(2/2) 22(212) 18(2/2) 20(3/2) 18(2/2) 22(212)

LEA - 4(1/0) - - 8(2/0) 12(2/0) 8(210) 12(3/0) 8(210) 12(2/0)

PEA - 12(1 12) - - 16(2/2) 20(2/2) 16(2/2) 20(3/2) 16(2/2) 20(2/2)

Word 12+4n 12+4n - 16+4n 18+4n 16+4n 20+4n 16+4n 18+4n
MOVEM (3+ n/O) (3 + n/o) (4+ n/o) (4+ n/o) (4+ n/o) (5+ n/O) (4+ n/o) (4+ n/o)

M-R Long 12+8n 12+8n - 16+8n 18+8n 16+8n 20+8n 16+8n 18+8n
(3+2n/o) (3+2n/o) (4+2n/o) (4+ 2n/0) (4+ 2n/0) (5+ 2n/o) (4+ 2n/0) (4+ 2n/0)

Word 8+4n - 8+4n 12+4n 14+4n 12+4n 16+4n - -

MOVEM (2/n) (2/n) (3/n) (3/n) (3/n) (4/n) - -

R-M Long 8+8n - 8+8n 12+8n 14+8n 12+8n 16+8n - -

(2/2n) - (2/2n) (3/2n) (3/2n) (3/2n) (4/2n) - -

n is the number of registers to move
* the size of the index register (ix) does not affect the instruction's execution time

1-369

7-12

7.2.10 Multi-Precision Instruction Execution Times

Table 7-20 indicates the number of clock periods for the multi-precision instructions. The number of
clock periods includes the time to fetch both operands, perform the operations, store the results,
and read the next instructions. The number of read and write cycles is shown in parenthesis as
(r /w).

In Table 7-20, the headings have the following meanings: Dn = data register operand and
M = memory operand.

Table 7-20. Multi-Precision Instruction Execution Times

Loop Mode

Continued Terminated

Valid Count, Valid Count, Expired
Non-Looped cc False cc True Count

Instruction Size op On, On op M, M*

Byte, Word 4(1/0) 18(3/10) 22(211) 28(4/1) 26(4/1)
ADDX

6(110) 30(5/2) 32(4/2) 38(612) 36(6/2) Long

Byte, Word - 12(3/0) 14(2/0) 20(4/0) 18(4/0)
CMPM

Long - 20(5/0) 24(4/0) 30(6/0) 26(6/0)

Byte, Word 4(1/0) 18(311) 22(2/1) 28(4/1) 26(4/1)
SUBX

Long 6(1/0) 30(5/2) 32(4/2) 38(612) 36(6/2)

ABCD Byte 6(1/0) 18(3/1) 24(2/1) 30(4/1) 28(4/1)

SBCD Byte 6(1/0) 18(311) 24(2/1) 30(4/1) 28(4/1)

* Source and destination ea is (An) + for CMPM and - (An) for all others.

1-370

7-13

7.2.11 Miscellaneous Instruction Execution Times

Table 7-21 indicates the number of clock periods for the following miscellaneous instructions. The
number of bus read and write cycle is shown in parenthesis as (r/w). The number of clock periods
plus the number of read and write cycles must be added to those of the effective address calculation
where indicated. '

Table 7-21. Miscellaneous Instruction Execution Times

Register- Source**-
Instruction Size Register Memory Destination * * Register

ANDI to CCR - 16(2/0) - - -

ANDI to SR - 16(2/0) - - -

CHK - 8(110) + - - -

EaRl to CCR - 16(2/0) - - -

EaRl to SR - 16(2/0) - - -

EXG - 6(110) - - -

Word 4(1/0) - - -
EXT

Long 4(1 10) - - -

LINK - 16(2/2) - - -

MOVE from CCR - 4(1/0) 8(1 11) + * - -

MOVE to CCR - 12(2/0) 12(2/0) + - -

MOVE from SR - 4(1/0) 8(1 11) + * - -

MOVE to SR - 12(2/0) 12(2/0) + - -

MOVE from USP - 6(1 10) - - -

MOVE to USP - 6(110) - - -

MOVEC - - - 10(2/0) 12(2/0)

Word - - 16(2/2) 16(4/0)
MOVEP

L-ong - - 24(2/4) 24(6/0)

MOVES Byte, Word - - 16(2/1)+* 16(3/0) + *
Long - - 20(2/2) + * 20(4/0) + *

Nap - 4(1/0) - - -

ORI to CCR - 16(2/0) - - -

ORI to SR - 16(2/0) - - -

RESET - 130(1/0) - - -

RTD - 16(4/0) - - -

Short 24(6/0) - - -

Long, Retry Read 112(27/0) - - -
RTE

Long, Retry Write 112(26/1) - - -

Long, No Retry 110(26/0) - - -

RTR - 20(5/0) - - -

RTS - 16(4/0) - - -

STOP - 4(010) - - -

SWAP - 4(1/0) - - -

TRAPV - 4(1/0) - - -

UNLK - 12(3/0) - - -

+ add effective address calculation time.
* use non-fetching effective address calculation time.

* * Source or destination is a memory location for the MOVEP and MOVES instructions and a control register for the MOVEC
instruction.

1-371

7-14

7.2. 12 Exception Processing Execution Times

Table 7-22 indicates the number of clock periods for exception processing. The number of clock
periods includes the time for all stacking, the vector fetch, and the fetch of the first two instruction
words of the handler routine. The number of bus read and write cycles is shown in parenthesis as
(r/w).

Table 7-22. Exception Processing Execution Times

Exception

Address Error 126(4/26)

Breakpoint Instruction* 42(5/4)

Bus Error 126(4/26)

CHK Instruction* * 44(5/4) +
Divide By Zero 42(5/4)

Illegal Instruction 38(414)

Interrupt* 46(5/4)

MOVEC, Illegal Cr* * 46(5/4)

Privilege Violation 38(4/4)

Reset* * * 40(6/0)

RTE, Illegal Format 50(7/4)

RTE, Illegal Revision 70(12/4)

Trace 38(4/4)

TRAP Instruction 38(4/4)

TRAPV Instruction 40(5/4)

+ add effective address calculation time.
* The interrupt acknowledge and b.reakpoint cycles are as­

sumed to take four clock periods.
* * Indicates maximum value.

* * * Indicates the time from when RESET and HALT are first
sampled as negated to when instruction execution starts.

7-15/7-16

1-372

SECTION 8
ELECTRICAL SPECIFICATIONS

This section contains electrical specifications and associated timing information for the MC68010
and MC68012.

8.1 MAXIMUM RATINGS

Rating Symbol

Supply Voltage VCC
Input Voltage Vin
Operating Temperature Range TA

M C6801 01 M C68012
M C6801 OCI M C68012C

Storage Temperature Tstg

8.2 THERMAL CHARACTERISTICS

Characteristic Symbol Value

Thermal Resistance (Still Air) f)JA
Ceramic, Type L/LC 30
Ceramic, Type R/RC 33
Plastic, Type P 30
Plastic, Type FN 45*

* Estimated

8.3 POWER CONSIDERATIONS

Value

-0.3 to + 7.0

-0.3 to + 7.0

TL to TH
o to 70

-40 to 85

- 55 to 150

Symbol Value

f)JC
15*
15
15*
25*

Unit

V

V

°c

°c

Rating

°C/W

This device contains circuitry to protect the
inputs against damage due to high static
voltages or electric fields; however, it is ad­
vised that normal precautions be taken to
avoid application of any voltage higher than
maximum-rated voltages to this high­
impedance circuit. Reliability of operation is
enhanced if unused inputs are tied to an ap­
propriate logic voltage level (e.g., either GND
or VCC).

The average chip-junction temperature, T J, in °c can be obtained from:
T J = TA + (PoeOJA)

Where:
T A = Ambient Temperature, °c
OJA = Package Thermal Resistance, Junction-to-Ambient, °C/W
PO= PINT+ PliO
PINT= ICC x VCC, Watts - Chip Internal Power
PliO = Power Dissipation on Input and Output Pins - User Determined

For most applications PI/O< PINT and can be neglected.

An approximate relationship between Po and T J (if PliO is neglected) is:

(1)

PO=K+(TJ+273°C) (2)
Solving equations 1 and 2 for K gives:

K=Toe(TA+273°C)+OJAePo2 (3)
Where K is a constant pertaining to the particular part. K can be determined from equation 3 by
measuring Po (at equilibrium) for a known T A. Using this value of K the values of Po and T J can be
obtained by solving equations (1) and (2) iteratively for any value of T A.

8-1

The curve shown in Figure 8-1 gives the graphic solution to these equations for the specification
power dissipation of 1.50 and 1.75 watts over the ambient temperature range of - 55°C to 125°C
using a OJA of 45°C/W for the ceramic (L suffix) package.

2.0 ~--+-----+--_+_---__+-__+--+__i

= 1.8 ...---+-----.;;:I~-+--_+_---__+-__+--+__i
ca
3:
I

C 1.61----+-~~-+-----+-~
!: ...

Q)

3:
cf 1.4 I----+----+-----.;~

1.2 ...---+-----+--_+_---__+---;;p __ ~+__i

1.0-""""'--------'------.r.-------
-55 -40 o 25 70 85 110 125

Ambient Temperature IT A) - 0 c

Figure 8-1. MC68010 Power Dissipation (PO) vs Ambient Temperature (TA)
1-373

The total thermal resistance of a package (OJA) can be separated into two components, OJC and
OCA, representing the barrier to heat flow from the semiconductor junction to the package (case)
surface (OJ C) and from the case to the outside ambient (OCA). These terms are related by the equa-
tion:

OJA=OJC+OCA (4)

OJC is device related and cannot be influenced by the user. However, OCA is user dependent and
can be minimized by such thermal management techniques as heat sinks, ambient air cooling and
thermal convention. Thus, good thermal management on the part of the user can significantly
reduce OCA so that OJA approximately equals OJC. Substitution of OJC for OJA in equation (1) will
result in a lower semiconductor junction temperature.

Values for thermal resistance presented in this data sheet, unless estimated, were derived using the
procedure described in Motorola Reliability Report 7843, "Thermal Resistance Measurement
Method for MC68XX Microcomponent Devices," and are provided for design purposes only. Ther­
mal measurements are complex and dependent on procedure and setup. User derived values for
thermal resistance may differ.

8-2

Table 8-1. Maximum Power Dissipation by Package Type Modes

Maximum Power Dissipation (Watts)
Package Temperature per Frequency (MHz)

Type (OC) 8 MHz 10 MHz 12.5 MHz

L o to 70 1.50 1.50 1.75
-40 to 85 1.65 1.65 -

LC o to 70 1.50 1.50 1.75
-40 to 85 1.65 1.65 -

P o to 70 1.50 1.50 -

-40 to 85 1.65 1.65 -

R o to 70 1.50 1.50 1.75
-40 to 85 1.65 1.65 -

RC o to 70 1.50 1.50 1.75
-40 to 85 1.65 1.65 -

FN o to 70 1.50 1.50 -

ILC o to 70 1.50 1.50 -

-40 to 85 1.65 1.65 -

IRC o to 70 1.50 1.50 -

-40 to 85 1.65 1.65 -

8.4 DC ELECTRICAL CHARACTERISTICS
(Vee = 5.0 Vdc ± 5%; GND = 0 Vdc; T A = TL to TH; see Figures 8-2, 8-3, and 8-4)

Characteristic Symbol

Input High Voltage

Input Low Voltage

Input Leakage Current @ 5.25 V BERR,BGACK,BR,OTACK,
CLK, IPLO-IPL2, VPA

HALT, RESET

Three-State (Off State) Input Current @ 2.4 V 10.4 V AS, A1-A23, 00-015,
FCO-FC2, LOS, R/W, UOS, VMA

Output High Voltage (lOH = - 400 p,A) E*
E* *, AS, A 1-A23, BG, 00-015,

FCO-FC2, LOS, R/W, UOS, VMA

Output Low Voltage
(lOL = 1.6 rnA) HALT
(lOL = 3.2 rnA) A 1-A23, BG, FCO-FC2
(lOL = 5.0 rnA) RESET
(IOL = 5.3 rnA) E, AS, 00-015, LOS, R/W

UOS, VMA

Power Oissipation (See Section 8.3) * * *

Capacitance (Vin = 0 V T A = 25°C; Frequency= 1 MHz) * * * *

* With external pullup resistor of 1.1 kO.
* * Without external pullup resistor.

* * * Ouring normal operation instantaneous V CC current requirements may be as high as 1.5 A.
* * * * Capacitance is periodically sampled rather than 100% tested.

8-3

VIH

VIL

lin

ITSI

VOH

VOL

Po

Cin

Min Max

2.0 VCC
GNO-0.3 0.8

- 2.5
- 20

- 20

VCC-0.75 -

2.4 -

- 0.5
- 0.5
- 0.5
- 0.5

- -

- 20.0

Unit

V

V

p,A

p,A

V

V

W

pF

+5V +5V

9100 2.9 kO

I 130pF r 70PF

Figure 8-2. RESET Test Load 1-374 Figure 8-3. HALT Test Load

Cl = 130 pF
(I ncludes all Parasitics)

Rl = 6.0 kO for
AS, A 1-A23, BG, 00-015, E
FCO-FC2, lOS, R/W, UOS, VMA

* R = 1.22 kO for A 1-A23, BG,
FCO-FC2

Test MM06150

Figure 8-4. Test Loads

+5V

R* =740 0

MM07000
or Equivalent

8.5 AC ELECTRICAL SPECIFICATIONS - CLOCK TIMING (See Figure 8-5)

8 MHz 10 MHz
Characteristic Symbol

Min Max Min Max

Frequency of Operation f 4.0 8.0 4.0 10.0

Cycle Time tcyc 125 250 100 250

Clock Pulse Width tCl 55 125 45 125
tCH 55 125 45 125

Rise and Fall Times tCr - 10 - 10
tCf - 10 - 10

~-------------tcyc----------~~

......... -- tCl ----I~ ~--tCH ----II

tCr---.. t4--tCf

Figure 8-5. Clock Input Timing Diagram

8-4 '

12.5 MHz

Min Max

4.0 12.5

80 250

35 125
35 125

- 5
- 5

1-375

1-376

Unit

MHz

ns

ns

ns

1-377

8.6 AC ELECTRICAL SPECIFICATIONS - READ AND WRITE CYCLES
(Vee = 5.0 Vdc + 5%; GND = 0 Vdc; T A = TL to TH; see Figures 8-6 and 8-7)

8 MHz 10 MHz 12.5 MHz
Num. Characteristic Symbol

Min Max Min Max Min Max
Unit

1 Clock Period tcyc 125 250 100 250 80 250 ns

2 Clock Width Low tCL 55 125 45 125 35 125 ns

3 Clock Width High tCH 55 125 45 125 35 125 ns

4 Clock Fall Time tCf - 10 - 10 - 5 ns

5 Clock Rise Time tCr - 10 - 10 - 5 ns

6 Clock Low to Address Valid tCLAV - 70 - 55 - 55 ns

6A Clock High to FC Valid tCHFCV - 70 - 55 - 55 ns

7
Clock High to Address, Data Bus

tCHADZ - 80 - 70 - 60 ns
High Impedance (Maximum)

8 Clock High to Address, FC Invalid (Minimum) tCHAFI 0 - 0 - 0 - ns

91 Clock High to AS, OS Low tCHSL 0 60 0 55 0 55 ns

112 Address Valid to AS, OS Low (Read) /
tAVSL 30 - 20 - 0 - ns

AS Low (Write)

llA2 FC Valid to AS, OS Low (Read)/
tFCVSL 60 - 50 - 40 - ns

AS Low (Write)

121 Clock Low to AS, DS High tCLSH - 70 - 55 - 50 ns

132 AS, OS High to Address/FC Invalid tSHAFI 30 - 20 - 10 - ns

142 AS, OS Width Low (Read)/ AS Low (Write) tSL 240 - 195 - 160 - ns

14A2 OS Width Low (Write) tDSL 115 - 95 - 80 - ns

152 AS, OS Width High tSH 150 - 105 - 65 - ns

16 Clock High to Control Bus High Impedance tCHCZ - 80 - 70 - 60 ns

172 AS, 'D'S High to R/W High (Read) tSHRH 40 - 20 - 10 - ns

181 Clock High to R/W High tCHRH 0 70 0 60 0 60 ns

201 Clock High to R/W Low tCHRL - 70 - 60 - 60 ns

20A2 AS Low to R/W Valid (Write) tASRV - 20 - 20 - 20 ns

212 Address Valid to R/W Low (Write) tAVRL 20 - 0 - 0 - ns

21A2 FC Valid to R/W Low (Write) tFCVRL 60 - 50 - 30 - ns

222 R/W Low to OS Low (Write) tRLSL 80 - 50 - 30 - ns

23 Clock Low to Data Out Valid (Write) tCLDO - 70 - 55 - 55 ns

252 AS, OS High to Data Out Invalid (Write) tSHDOI 30 - 20 - 15 - ns

262 Data Out Valid to OS Low (Write) tDOSL 30 - 20 - 15 - ns

275 Data in to Clock Low (Setup Time on Read) tDICL 15 - 10 - 10 - ns

27A Late BERR Low to Clock Low (Setup Time) tBELCL 45 - 45 - 45 - ns

282 AS, OS High to DT ACK High tSHDAH 0 245 0 190 0 150 ns

29 AS, OS High to Data In Invalid tSHDl1 0 - 0 - 0 - ns
(Hold Time on Read)

30 AS, OS High to BERR High tSHBEH 0 - 0 - 0 - ns

31 2,5 DTACK Low to Data In (Setup Time) tDALDI - 90 - 65 - 50 ns

32 HAL T and RESET Input Transition Time tRHr,f 0 200 0 200 0 200 ns

33 Clock High to BG Low tCHGL - 70 - 60 - 50 ns

34 Clock High to BG High tCHGH - 70 - 60 - 50 ns

35 BR Low to BG Low tBRLGL 1.5 90 ns 1.5 80 ns 1.5 70 ns Clk. Per
+3.5 +3.5 +3.5

366 BR High to BG High tBRHGH 1.5 90 ns 1.5 80 ns 1.5 70 ns Clk. Per
+3.5 +3.5 +3.5

37 BGACK Low to BG High tGALGH 1.5 90 ns 1.5 80 ns 1.5 70 ns Clk. Per
+3.5 +3.5 +3.5

- Continued

8-5

8.6 AC ELECTRICAL SPECIFICATIONS - READ AND WRITE CYCLES (Continued)
(VCC=5.0 Vdc +5%; GND=O Vdc; TA=TL to TH; see Figures 8-6 and 8-7)

Characteristic Symbol
8 MHz 10 MHz 12.5 MHz

Num.
Min Max Min Max Min Max

37A7 BGACK Low to BR High tGALBRH 20 1.5 20 1.5 20 1.5
Clocks Clocks Clocks

38 BG Low to Control, Address, Data Bus High tGLZ - 80 - 70 - 60
Impedance (AS High)

39 BG Width High tGH 1.5 - 1.5 - 1.5 -

40 Clock Low to VMA Low tCLVML - 70 - 70 - 70

41 Clock Low to E Transition tCLET - 70 - 55 - 45

42 E Output Rise and Fall Time tEr f - 25 - 25 - 25

43 VMA Low to E High tVMLEH 200 - 150 - 90 -

44 AS, OS High to VPA High tSHVPH 0 120 0 90 0 70

45 E Low to Control Address Bus Invalid tELCAI 30 - 10 - 10 -

(Address Hold Time)

46 BGACK Width tGAL 1.5 - 1.5 - 1.5 -

47b Asynchronous Input Setup Time tASI 20 - 20 - 20 -

482,3 DT ACK Low to BERR Low tDALBEL - 80 - 55 - 35

498 AS, OS High to E Low tSHEL -70 70 -55 55 -45 45

50 E Width High tEH 450 - 350 - 280 -

51 E Width Low tEL 700 - 550 - 440 -

53 Clock High to Data Out Invalid tCHDOI 0 - 0 - 0 -

54 E Low to Data Out Invalid tEL DOl 30 - 20 - 15 -

55 R/W to Data Bus Driven tRLDBD 30 - 20 - 10 -

564 HAL T / R ES ET Pulse Width tHRPW 10 - 10 - 10 -

57 BGACK High to Control Bus Driven tGABD 1.5 - 1.5 - 1.5 -

586, BG High to Control Bus Driven tGHBD 1.5 - 1.5 - 1.5 -

599 Clock High to RMC Low tCHRL - 70 - 60 - 55
- - - ---

609 RMC Low to AS, DS Low (Read)/ AS Low (Write) tRLSL 60 - 50 - 40 -

61 9 Clock High to RMC High tCHRH 0 - 0 - 0 -

629 AS, OS High to RMC High tSHRH 30 - 20 - 10 -

NOTES:

Unit

ns

ns

Clk. Per.

ns

ns

ns

ns

ns

ns

Clk. Per.

ns

ns

ns

ns

ns

ns

ns

ns

Clk. Per.

Clk. Per

Clk. Per

ns l'

ns

ns

ns

1. For a loading capacitance of less than or equal to 50 picofarads, subtract 5 nanoseconds from the values given in these columns.
2. Actual value depends on clock period.
3. In the absence of DTACK, BERR is an asynchronous input using the asynchronous input setup time (#47)
4. For power up, the MPU must be held in RESET state for 100 ms to allow stabilization of on-chip circuitry. After the system is

powered up, #56 refers to the minimum pulse width required to reset the system.
5. If the asynchronous setup time (#47) requirements are satisfied, the DT ACK-Iow to data setup time (#31) and DT ACK-Iow to

'i3E'RR-low setup time (#48) requirements can be ignored. The data must only satisfy the data-in to clock-low setup time (#27) for
the following clock cycle, BERR must only satisfy the late-BERR-Iow to clock-low setup time (#27 A) for the following clock cycle.

6. The processor will negate BG and begin driving the bus again if external arbitration logic negates BR before asserting BGACK.
7. The minimum value must be met to guarantee proper operation. If the maximum value is exceeded, BG may be reasserted.
8. The falling edge of S6 triggers both the negation of the strobes (AS and xDS) and the falling edge of E. Either of these events can

occur first, depending upon the loading on each Signal. Specification #49 indicates the absolute maximum skew that will occur
between the rising edge of the strobes and the falling edge of the E clock.

9. MC68012 only.

Timing diagrams (Figures 8-6. and 8-7) are located on
foldout pages 1 and 2 at the end of this document.

8-6

8.7 AC ELECTRICAL SPECIFICATIONS - MC68010 TO M6800 PERIPHERAL CYCLES
(VCC=5.0 Vdc ±5%; GND=O Vdc; TA=TL to TH; refer to Figures 8-8 and 8-9)

Num. Characteristic Symbol
8 MHz 10 MHz 12.5 MHz

Min Max Min Max Min Max
121 Clock Low to AS, DS High tCLSH - 70 - 55 - 50
172 AS, DS High to R/W High (Read) tSHRH 40 - 20 - 10 -

201 Clock High to R/W Low tCHRL - 70 - 60 - 60

23 Clock Low to Data Out Valid (Write) tCLDO - 70 - 55 - 55

27 Data In to Clock Low (Setup Time on Read) tDICL 15 - 10 - 10 -

40 Clock Low to VMA Low tCLVML - 70 - 70 - 70

41 Clock Low to E Transition tCLET - 70 - 55 - 45

42 E Output Rise and Fall Time tEr, f - 25 - 25 - 25

43 \If\iiA Low to E High tVMLEH 200 - 150 - 90 -

-14 AS, DS High to VPA High tSHVPH 0 120 0 90 0 70

-15 E Low to Control Address Bus tELCAI 30 - 10 - 10 -
(Address Hold Time)

47 Asynchronous Input Setup Time tASI 20 - 20 - 20 -

493 AS, DS High to E Low tSHEL -70 70 -55 55 -45 45

bO E Width High tEH 450 - 350 - 280 -

bl E Width Low tEL 700 - 550 - 440 -

54 E Low to Data Out Invalid tELDOI 30 - 20 - 15 -

NO rES:

Unit

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

1, For a loading capacitance of less than or equal to 50 picofarads, subtract 5 nanoseconds from the values given in these columns.
,), Actual value depends on clock period.
J, The falling edge of S6 triggers both the negation of the strobes (AS and xDS) and the falling edge of E. Either of these events can

occur first, depending upon the loading on each signal. Specification #49 indicates the absolute maximum skew that will occur
between the rising edge of the strobes and the falling edge of the E clock.

Timing diagrams (Figures 8-8 and 8-9) are located on
foldout pages 3 and 4 at the end of this document.

8-7

8.8 AC ELECTRICAL SPECIFICATIONS - BUS ARBITRATION
(VCC=5.0 Vdc ±5%; GND=O Vdc; TA=TL to TH; see Figures 8-10,8-11, and 8-12)

8 MHz 10 MHz 12.5 MHz

Num. Characteristic Symbol Min Max Min Max Min Max Unit

7 Clock High to Address, Data Bus tCHADZ - 80 - 70 - 60 ns
High Impedance (Maximum)

16 Clock High to Control Bus tCHCZ - 80 - 70 - 60 ns
High Impedance

33 Clock High to BG Low tCHGL - 70 - 60 - 50 ns

34 Clock High to BG High tCHGH - 70 - 60 - 50 ns

35 BR Low to BG Low tBRLGL 1.5 90 ns 1.5 80 ns 1.5 70 ns Clk. Per.
+3.5 +3.5 +3.5

362 BR High to BG High tBRHGH 1.5 90 ns 1.5 80 ns 1.5 70 ns Clk. Per.
+3.5 +3.5 +3.5

37 BGACK Low to BG High tGALGH 1.5 90 ns 1.5 80 ns 1.5 70 ns Clk. Per.
+3.5 +3.5 +3.5

37A3 BGACK Low to BR High tGALBRH 20 1.5 20 1.5 20 1.5 ns
Clocks Clocks Clocks

38 BG Low to Control, Address, Data Bus tGLZ - 80 - 70 - 60 ns
High Impedance (AS High)

39 BG Width High tGH 1.5 - 1.5 - 1.5 - Clk. Per.

46 BGACK Width tGAL 1.5 - 1.5 - 1.5 - Clk. Per.

47 Asynchronous Input Setup Time tASI 20 - 20 - 20 - ns

572 BGACK High to Control Bus Driven tGABD 1.5 - 1.5 - 1.5 - Clk. Per.

581,2 BG High to Control Bus Driven tGHBD 1.5 - 1.5 - 1.5 - Clk. Per.

NOTES:
1. The nanosecond value shown in the specification is the asynchronous input setup time (spec. #47).
2. The processor will negate BG and begin driving the bus again if external arbitration logic negates B R before asserting BGACK.
3. The minimum value must be met to guarantee proper operation. If the maximum value is exceeded, BG may be reasserted.

Timing diagrams (Figures 8-10, 8-11, and 8-12) are
located on foldout pages 5, 6, and 7 at the .end of this
document.

8-8

SECTION 9
ORDERING INFORMATION

This section contains detailed information to be used as a guide when ordering the M C6801 0 and
MC68012.

9.1 PACKAGE TYPES

Suffix

L

LC

P

R

RC

FN

Package Type

Dual-in-Line Ceramic

Dual-in-Line Ceramic

Dual-in-Line Plastic

Pin Grid Array (PGA) Ceramic

Pin Grid Array (PGA) Ceramic

Plastic Leaded Chip Carrier
(Quad Pack)

9.2 STANDARD ORDERING INFORMATION

Frequency
Package Type (MHz) Temperature

Ceramic 8.0 O°C to 70°C
L Suffix 8.0 -40°C to 85°C

10.0 O°C to 70°C
10.0 -40°C to 85°C
12.5 O°C to 70°C

9-1

Comments

Slide Braze Package
Gold or Select Plate Lead Finish

Side Braze Package
Gold Lead Finish

Copper Lead Frame
Solder Dip Lead Finish

Depopulated Center Pins
Solder Dip Lead Finish
Standoffs for Soldering

Depopulated Center Pins
Gold Lead Finish
No Standoffs

Solder Dip Finish
Suitable for Socketing or
Surface Mounting

Order Number

MC68010L8
MC68010CL8
MC68010L 10
MC68010CL 10
MC68010L12

Frequency
Package Type (MHz) Temperature

Ceramic with 8.0 O°C to 70°C
Gold Lead Finish 8.0 O°C to 85°C
LC Suffix 8.0 -40°C to 85°C

10.0 O°C to 70°C
10.0 O°C to 85°C
10.0 -40°C to 85°C
12.5 O°C to 70°C

Plastic 8.0 O°C to 70°C
P Suffix 10.0 O°C to 70°C

Pin Grid Array 8.0 O°C to 70°C
with Standoffs 8.0 -40°C to 85°C
R Suffix 10.0 O°C to 70°C

10.0 -40°C to 85°C
12.5 O°C to 70°C

Pin Grid Array 8.0 O°C to 70°C
with Gold Lead 8.0 O°C to 85°C
Finish without 8.0 -40°C to 85°C
Standoffs 10.0 O°C to 70°C
RC Suffix 10.0 -ooe to 85°C

10.0 -40°C to 85°C
12.5 O°C to 70°C

Quad Pack* 8.0 O°C to 70°C
FN Suffix 10.0 O°C to 70°C

9.3 "BETTER" PROCESSING - STANDARD PRODUCT PLUS

Level IV (Suffix T)
• Available Package Types: L, LC, P, R, RC, and FN
• 100% High Temperature Functional Test at T A Maximum

Order Number

MC68010LC8
MC68010lLC8
MC68010CLC8
MC68010LC10
MC68010lLC10
MC68010CLC10
MC68010LC12

MC68010P8
MC68010P10

M C6801 OR81 M C68012R8
MC68010CR81 MC68012CR8
M C68010R 101 M C68012R 10
MC68010CR 101 M C68012CR 10
M C6801 OR 121 M C68012R 12

M C6801 OR C81 M C68012R C8
M C6801 01 R C81 M C680121 R C8
M C6801 OCR C81 M C68012CR C8
MC68010RC101 MC68012RC10
M C680101 RC10/ M C680121 RC10
MC68010CRC10/MC68012CRC10
MC68010RC121 MC68012RC12

MC68010FN8
MC68010FN10

• Dynamic Burn-In at 125°C for 96 Hours at 5 Volts, or Equivalent

* Contact factory for factory availability.

9-2

SECTION 10
MECHANICAL DATA

This section contains the pin assignments and package dimensions for the 64-pin dual-in-line, the
68-pin grid array, and the quad pack versions of the MC68010, and the 84-pin grid array MC68012.

10.1 PIN ASSIGNMENTS

MC68010
64-Pin Dual-In-Line Package

1. 05

06

07

01 08

00 09
AS 6 010

uos 011
LOS 012

R/W 9 013

OTACK 10 014

BG 11 015

BGACK 12 53 GNO

BR A23

VCC A22

eLK 15 A21
GNO 16 49 VCC

HALT 48 A20

RESET 47 A19

VMA 46 A18
E 45 A17

VPA 44 A16

BERR A15
IPL2 42 A14

IPL 1 A13
IPLO A12
FC2 39 A 11
FC1 38 Al0

FCO 37 A9
A1 36 A8

A2 A7
A3 34

A4 33

Top View

10-1

OTACK­
BG­

BGACK­
BR­

VCC­
CLK­

GND­
GNO­
N.C.-

HALT­
RESET­

VMA­
E-

VPA­
BERR­
IPL2-
IPL1-

MC68010
68-Pin Quad Pack

I~I~I~ O~N _OOI~O-NM~~~~oom-~-
~~~~ooooooooooooo 
I , , I I I I I I I I I I I I I I 

-013 
-014 
--015 
-GNO 
-GND 
-A23 
-A22 
-A21 

TOP VIEW 52 -Vee 
-A20 
-A19 
-A18 
-A17 
-A16 
-A15 
-A14 
-A13 



K 

J 

H 

G 

F 

E 

D 

C 

B 

A 

MC68010 
68-Pin Grid Array 

0 0 0 0 0 0 0 
N.C. FC2 FCO Al A3 A4 A6 

0 0 0 0 0 0 0 
BERR IPlO FCl N.C. A2 A5 A8 

0 0 0 
E IPl2 IPL1 

0 0 
VMA VPA 

0 0 
HALT RESET BOTTOM 

VIEW 

0 0 
ClK GND 

0 0 / 
/ 

BR VCC 
/ 

/ 

0 0 /0 
BGACK BG / R/W 

0 0 / 

DTACK lDS 

0 0 
N.C. AS 

2 

0 0 0 0 0 
UDS DO D3 D6 D9 

0 
Dl 

3 

0 0 0 0 
D2 D4 D5 D7 

4 5 6 7 

MC68012 
84-Pin Grid Array 

0 0 0 
A7 A9 N.C. 

0 0 0 
Al0 All A14 

0 0 0 
A13 A12 A16 

0 0 
A15 A17 

0 0 
A18 A19 

0 0 
VCC A20 

0 0 
GND A21 

0 0 0 
D13 A23 A22 

0 0 0 
Dll D14 D15 

0 0 0 
D8 D10 D12 

8 9 10 

K 0000000000 
A26 FC2 FCD Al A3 A4 A6 A7 A9 N.C. 

J 0000000000 
BERR IPLO FC1 A3l A2 A5 A8 A10 All A14 

H 0000000000 
E I P l2 I P l 1 N. C. A29 A28 N. C. A 13 A 12 A 16 

G 000 000 
VMA VPA A27 N.C. A15 A17 

F 000 000 
E 

D 

C 

B 

A 

HALT RESET N.C. 

000 
ClK GND GND 

o 0 0 // 
BR VCC N.C. / / 

BOTTOM 
VIEW 

A25 A18 A19 

o o 0 
A24 VCC A20 

o o 0 
GND GND A21 

0000000000 -- - /-
BGACK BG / R/W RMC N.C. N.C. N.C. D13 A23 A22 

o /0 0 0 0 0 0 0 0 0 
DTACK lDS UDS DO D3 D6 D9 D11 D14 D15 

o o 0 o 000000 
N.C. AS Dl D2 D4 D5 D7 D8 Dl0 D12 

2 3 4 5 6 7 8 9 10 

10-2 



10. PACKAGE DIMENSIONS 

L SUFFIX 
CERAMIC PACKAGE 

CASE 746-01 

-----... 

-----

I 

B 

I ,0 ~~~~~~ ___ ~~32~ 
1---IE-----i1 

NOTES: 
1. DIMENSIONI·A·!lS DATUM. 
2. POSITIONAL TO LERANCE FO R LEADS: 

1-$-1 0.25 (0.01 O)®IT 1 A ® I 
3.I·T·IISSEATING PLANE. 
4. DIMENSION IIL"TO CENTER OF LEADS 

WHEN FORMED PARALLEL. 
5. DIMENSIONING AND TOLERANCING PER 

ANSI Y14.5, 1973. 

MILLIMETERS INCHES 
DIM MIN MAX MIN MAX w~----- h_ h_h --rr1dF1 

JLo ITJ~GL K ~f-J ~~M 
1- L---1 

A 80.52 82.04 . 3.170 3.230 
B 22.25 22.96 0.876 0.904 
C 3.05 4.32 0.120 0.170 
0 0.38 0.53 0.015 0.021 

P SUFFIX 
PLASTIC PACKAGE 

CASE 754-01 

10-3 

F 0.76 1.40 0.030 0.055 
G 2.54 BSC 0.100 BSC 
J 0.20 0.33 0.008 0.013 
K 2.54 4.19 0.100 0.165 
L 22.61 23.11 0.890 0.910 
M - 100 - 100 
N 1.02 1.52 0.040 0.060 

NOTES: 
1. DIMENSIONS A AND B ARE DATUMS. 

2. I·T·I IS SEATI NG PLAN E. 

3. POSITIONAL TOLERANCE FOR LEADS 
(DIMENSION D): 

1-$-1.0 0.25 (0.010) @I TIA @I B @L 

4. DIMENSION L TO CENTER OF LEADS 
WH EN FO RMED PARALLEL. 

5. DIMENSION B DOES NOT INCLUDE 
MOLD FLASH. 

6. DIMENSIONING AND TO LERANCING 
PE R ANSI Y14.5, 1973. 

MILLIMETERS INCHES 
DIM MIN MAX MIN MAX 
A 81.16 81.91 3.195 3.225 
B 20.17 20.57 0.790 0.810 
C 4.83 5.84 0.190 0.230 
D 0.33 0.53 0.013 0.021 
f 1.27 1.77 0.050 0.070 
G 2.54 BSC 0.100 BSC 
J 0.20 0.38 0.008 0.015 
K 3.05 3.55 0.120 0.140 
L 22.86 BSC 0.900 BSC 
M 00 150 00 150 
N 0.51 1.01 0.020 0.040 



RC SUFFIX (68 PIN) 
PIN GRID ARRAY 

CASE 765A-03 

I~ B 

RC SUFFIX (84 PIN) 
PIN GRID ARRAY 

CASE 793-02 

R SUFFIX 
PIN GRID ARRAY 
WITH STANDOFF 

~ 

( DIMENSIONS ESSENTIALLY 
THOSE OF CASES 765A-03 
AND 793-02. SEE 
FOLLOWING ILLUSTRATION 
FOR STANDOFF DETAIL.) 

n 
A 

~ 
PIN Al 

K ® ® ® ® ® ® ® O>-f+'l~-t----L 
J ®®®®®®®® O~ __ ~ 

H®®® ®®o 
G ®® ®® 
F ®® ®® 
E ®® ®® 
D ®® ®® 
c ®®® ®®® 
B ®®®®®®®®®® 
A ®®®®®®®®®® 

1 2 J 4 5 6 7 8 9 10 

J®®®®®®®®®O 
H®®®®®®®®®® 
G®®® ®®® 
F®®® ®®® 
E®®® ®®® 
o®®® ®®® 
c®®®®®®®®®® 
B®®®®®®®®®® 
A®®®®®®®®®® 

1 2 3 4 5 6 7 8 9 10 

1.57mm . -, r 0.06 in. ~m_rn ________ ~ 
K GfGGGGG. 0 
J 0 00000 0 • 
H 0 0 0 0 0 0 
G 00 00 
F 0G 00 
E GG GG 
o 00 GG 
C00G~ 0 0 G 
B 0 0G0GGo 0 
A 0 o GGGGGGoG 

2 3 4 5 6 7 8 9 10 

10-4 

NOTES: 
1. DIMENSIONS A AND B ARE DATUMS AND T IS 

DATUM SURFACE. 
2. POSITIONAL TOLERANCE FOR LEADS (68 PLACES) 

1-1cf>0.13 (.005)91 T IA®IB®I 
3. DIMENSIONING AND TOLERANCING PER ANSI 

Y14.5M, 1982. 
4. CONTROLLING DIMENSION: INCH. 

MILLIMETERS INCHES 
DIM MIN MAX MIN MAX 
A 26.67 27.17 1.050 1.070 
B 26.67 27.17 1.050 1.070 
C 1.91 2.66 0.075 0.105 
D 0.43 0.60 0.017 0.024 
G 2.54 BSC 0.100 BSC 
K 4.32 4.82 0.170 0.190 

NOTES: 
1. DIMENSIONS A AND B ARE DATUMS AND T IS 

A DATUM SURFACE. 
2. POSITIONAL TOLERANCE FOR LEADS: (84 PL) 

It 1 cf} 0.13 (0.005) (91 T 1 A ® I I®J 
3. DIMENSIONING AND TOLERANCING PER 

Y14.5M, 1982. 
4. CONTROLLING DIMENSION: INCH. 

MILLIMETERS INCHES 
DIM MIN MAX MIN MAX 
A - 27.43 - 1.080 
B - 27.43 - 1.080 
C 2.03 2.67 0.080 0.105 
D 0.43 0.61 0.017 0.024 
G 2.54 BSC 0.100 BSC 
K 3.56 4.95 0.140 0.195 



FN SUFFIX (68 PIN) 
QUAD PACK 
CASE 779-01 

H 

NOTES: 
1. DIMENSIONS RAND U DO NOT INCLUDE MOLD 

FLASH. 
2. DIMENSIONING AND TOLERANCING PER ANSI 

Y14.5M,1982. 
3. CONTROLLING DIMENSION: INCH 

DIM 
A 
B 
C 
D 
E 
F 
G 
H 
J 
K 
R 
U 
V 
W 
X 
Y 

10-5/10-6 

YR 

MILLIMETERS INCHES 
MIN MAX MIN MAX 
25.02 25.27 0.985 0.995 
25.02 25.27 0.985 0.995 
4.19 4.57 0.165 0.180 
0.64 1.01 0.025 0.040 

. 2.16 2.79 0.085 0.110 
0.33 0.53 0.013 0.021 

1.27 BSC 0.050 BSC 
0.66 0.81 0.026 0.032 
0.38 0.63 0.015 0.025 

22.61 23.62 0.890 0.930 
24.13 24.28 0.950 0.956 
24.13 24.28 0.950 0.956 

1.07 1.21 0.042 0.048 
1.07 1.21 0.042 0.048 
1.07 1.42 0.042 0.056 
0.00 0.50 0.000 0.020 



These waveforms should only be referenced in regard to the edge-to-edge measurement of the tim­
ing specifications. They are not intended as a functional description of the input and output signals. 
Refer to other functional descriptions and their related diagrams for device operation. 

SO Sl S2 S3 S4 S5 S6 S7 
0-+ 

--- -+ f.-® 
ClK --.Jr- )r }~ )r- )r- )r }~ 

..... 
.., 

@ . kD+~ 
.. Jl \ 

lo....:./ 

CO-FC2 "" ~ 

r F 

-+ 0 f-

-.®f+-
A1-A23 

.,.j .,~ 

.., .,.jr-

(j) @ 
-+ -®- .: 

RMC ~ ~ r-

® ~ . .....--@ . -+ ~ ~ 
14 .. ... ~ 

~ - r '"l 

- . ASd 
15 ff' 13 -8-~~ ~ 11A 

S/UDS .J~ 

... ~ k0 
R/W 

DTACK 

Data In 

BERR 
(Note 4) 

BR 
(Note 2) 

IRESET 

Asynchronous 
Inputs 
(Note 1) 

NOTES: 

-+f®~ 
}~ 

./ 
.,.j 

I-

--. 
@-+ 

.J 

l-

..., 

~ f+- ... ~ 
) .. .,r 

J 
~ ~ ~ -31 -... 

.,~ "'r 

..ll- ,~ 

®--+ ~ 27A .. 30 
-.~~ .-

~ 

) ...lI .,~. 

r' r- j 

-.® ..... 
~ 

... ~~ ~ ~ 
" 

~ 56 -p 

r.. .. . .. .... .. 
.-@ jr------

~ 

1. Setup time for the asynchronous inputs IPlO/2, IPl1, and VPA guarantees their recognition at the next falling edge of the clock. 
2. BR need fall at this time only in order to insure being recognized at the end of this bus cycle. 
3. Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltaqe of 2.0 volts, unless otherwise noted. 
4. The timing for the first falling edge (47) of BERR are for BERR without DTACK, the timings for the second falling edge (27A and 48) 

are for BERR with DrACK. 
7-701 

Figure 8-6. Read Cycle Timing Diagram 

These waveforms should only be referenced in regard to the edge-to-edge measurement of the tim­
ing specifications. They are not intended as a functional description of the input and output signals. 
Refer to other functional descriptions and their related diagrams for device operation. 

SO S1 S2 S3 S4 S5 S6 S7 
~ ~ -. r---® 

ClK --.Jr- ) ... }~ ) j ~r- )r- ) ~ 
.,.j ~ 

~ .... 

@ kD+~ 
I '\ 

"' .~. .. 
CO-FC2 

01 ~ 

... ... F 

-. -® r-r®~ 
A1-A23 

.I .,~ .. ... ... 

0 - .. 
@) -. @- .-

RMC } ~ .. 
® ~ -@) 

-+ @ 04-
~ 

... 14 

ASd ~ .. r;:.' 

., 
.:- 15 

~ 
-

13 -
.-8 -.f® ~ ... 14A 

s/uDSd' 
, ~ ., 

17 .... @@-~ r-t ~ -... 

-. I® It- 2], ~ . 
R/W } ~ 

22 
[-

-- 21A -+ .-@ -@--. ... 

DTACK )r-
.,c-
} 

-. ~ 
@-+ 
~ 

-.f@ .-
@-+ .@. 

D ata Out 

ERR 
Note 4) 

-B­

( 

R 
Note 2) 

B 
( 

HAlTI RESET 

Asynchronous 
Inputs 
(Note 1) 

NOTES: 

J 

.J r 

.,r-

~ ~ 27 ~ ~ --.'47' If-'-/ 
) 

r-
}~ 

--. '47' ~ ... 
) 

~~@:i .... ~ 32 "'t-
- 56 -.. .. -I 

r 

4-@ 11.------
1. Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted. 
2. Because of loading variations, R/W may be valid after AS even though both are initiated by the rising edge of S2 (Specification 

20A). 
3. The timing for the first falling edge (47) cif BERR are for BERR without DTACK; the timings for the second falling edge (27A and 

48) are for BERR with DTACK. 
1-702 

Figure 8-7. Write Cycle Timing Diagram 

Foldout 2 



These waveforms should only be referenced in regard to the edge-to-edge measurement of the tim­
ing specifications. They are not intended as a functional description of the input and output signals. 
Refer to other functional descriptions and their related diagrams for device operation. 

UK 

Al An 

AS 

R/W 

VPA 

VMA 

Ddtd 
OLJt 

Diltilln 

so S 1 S2 S3 S4 w w w w w w w w w w w w S5 S6 S7 SO 

NOTE. This timing diagram IS Included for those who Wish to design their own Circuit to generate VMA It shows the best case possibly 
attainable. 

/-80 

Figure 8-8. MC68010 to M6800 Peripheral Timing Diagram - Best Case 

Foldout 3 

SO Sl S2 S3 S4 w w w w w w w w w w w w w w w w w w w w w w w w w w w w S5 S6 S7 so 
elK 

A l-A23 

AS 

R/W 

E 

VPA 

VMA 

Data Out 

Data In 

NOTE: This timing diagram is included for those who wish to design their own circuit to gener;;lte VMA. It shows the worst case possibly attainable. 
781 

Figure 8-9. MC68010 to M6800 Peripheral Timing Diagram - Worst Case 

Foldout 4 



These waveforms should only be referenced in regard to the edge-to-edge measurement of the tim­
ing specifications. They are not intended as a functional description of the input and output signals. 
Refer to other functional descriptions and their related diagrams for device operation. 

ClK 

BG 

SGACK 

57 

AS 

--
lDS/UOS 

VMA 

R/W 

FCO-FC2 

A 1-A23 

DO-015 

1-82 

Figure 8-10. Bus Arbitration Timing - Idle Bus Case 

Foldout 5 

These waveforms should only be referenced in regard to the edge-to-edge measurement of the tim­
ing specifications. They are not intended as a functional description of the input and output signals. 
Refer to other functional descriptions and their related diagrams for device operation. 

ClK 

SR 

SG 

SGACK 

57 

AS 

- --
lDS/UOS 

VMA 

R/W 

FCO-FC2 

A 1-A23 

00-015 

Figure 8-11. Bus Arbitration Timing - Active Bus Case 

FnlrlntJt f) 

1-87 



These waveforms should only be referenced in regard to the edge-to-edge measurement of the tim­
ing specifications. They are not intended as a functional description of the input and output signals. 
Refer to other functional descriptions and their related diagrams for device operation. 

ClK 

BR 

BG 

BGACK 

58..-...... 

AS 

lOS/UOS 

VMA 

R/W 

FCO-FC2 

A 1-A23 

00-015 

Figure 8-12. Bus Arbitration Timing - Multiple Bus Requests 

Foldout 7 

1-88 



® MOTOROLA Semiconductor Products Inc. 
3501 ED BLUESTEIN BLVD., AUSTIN, TEXAS 78721 • A SUBSIDIARY OF MOTOROLA INC. 

A15344-~ PRINTED IN USA 6-S5 IMPERIAL LITHO C313S5 lS,OOO ADI942R2 


	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	03-01
	03-02
	03-03
	03-04
	03-05
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	06-01
	06-02
	06-03
	06-04
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	09-01
	09-02
	10-01
	10-02
	10-03
	10-04
	10-05
	A-01
	A-02
	A-03
	A-04
	xBack

