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SECTION 1
INTRODUCTION

The MC68020 is the first full 32-bit implementation of the M68000 Family of micro-
processors from Motorola. Using VLSI technology, the MC68020 is implemented with
32-bit registers and data paths, 32-bit addresses, a rich instruction set, and versatile ad-
dressing modes.

The MC68020 is object code compatible with the earlier members of the M68000 Family
and has the added features of new addressing modes in support of high level languages,
an on-chip instruction cache, and a flexible coprocessor interface with full IEEE floating-
point support (the MC68881). Also, the internal operations of this microprocessor are
designed to operate in parallel, allowing multiple instructions to be executed concur-
rently. The execution time of an instruction can be completely absorbed by the execution
time of surrounding instructions for a net execution time of zero clock periods.

The asynchronous bus structure of the MC68020 utilizes a non-multiplexed bus with 32
bits of address and 32 bits of data. The processor supports a dynamic bus sizing
mechanism that allows the processor to transfer operands to or from external devices
while automatically determining device port size on a cycle-by-cycle basis. The dynamic
bus interface allows for simple, highly efficient access to devices of differing data bus
widths, in addition to eliminating all data alignment restrictions.

The resources available to the MC68020 user consist of the following:
® Virtual Memory/Machine Support
® Sixteen 32-Bit General-Purpose Data and Address Registers
® Two 32-Bit Supervisor Stack Pointers
® 32-Bit Program Counter
® Five Special Purpose Control Registers
® 4 Gigabyte Direct Addressing Range
® 18 Addressing Modes
® Memory Mapped 1/0
® Coprocessor Interface
® High Performance On-Chip Instruction Cache
® Operations on Seven Data Types
® Complete Floating-Point Support via the MC68881 Coprocessor

A block diagram of the MC68020 is shown in Figure 1-1. The major blocks depicted

operate in a highly independent fashion that maximizes concurrency of operation while
managing the essential synchronization of instruction execution and bus operation.
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Figure 1-1. MC68020 Block Diagram

The bus controller loads instructions from the data bus into the decode unit and the on-
chip cache. The sequencer and control unit provide overall chip control, managing the in-
ternal buses, registers, and functions of the execution unit.

As shown in the programming models (Figures 1-2 and 1-3), the MC68020 has 16 32-bit
general-purpose registers, a 32-bit program counter, a 16-bit status register, a 32-bit vec-
tor base register, two 3-bit alternate function code registers, and two 32-bit cache handli-
ing (address and control) registers. Registers D0-D7 are used as data registers for bit and
bit field (1 to 32 bits), byte (8-bit), word (16-bit), long word (32-bit), and quad word (64-bit)
operations. Registers A0-A6 and the user, interrupt, and master stack pointers are ad-
dress registers that may be used as software stack pointers or base address registers. In
addition, the address registers may be used for word and long word operations. All of the
16 (DO-D7, AO-A7) registers may be used as index registers.

The vector base register is used to determine the location of the exception vector table in
memory to support multiple vector tables. The alternate function code registers allow the
supervisor to access any address space.

The cache registers (control — CACR; address — CAAR) allow software manipulation of
the on-chip instruction cache. Control and status accesses to the instruction cache are
provided by the cache control register (CACR), while the cache address register (CAAR)
holds the address for cache control functions when required.

The status register (Figure 1-4) contains the interrupt priority mask (three bits) as well as
the condition codes: extend (X), negative (N), zero (Z), overflow (V), and carry (C). Addi-
tional control bits indicate that the processor is in the trace mode (T1 and T0), super-
visor/user state (S), and master/interrupt state (M).
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1.1 DATA TYPES AND ADDRESSING MODES

Seven basic data types are supported. These data types are:
® Bits
® Bit Fields (Strings of consecutive bits, 1-32 bits long)
® BCD Digits (Packed: 2 digits/byte, Unpacked: 1 digit/byte)
® Byte Integers (8 bits)
® Word Integers (16 bits)
® Long Word Integers (32 bits)
® Quad Word Integers (64 bits)

In addition, operations on other data types such as memory addresses, status word data,
etc., are supported in the instruction set. The coprocessor mechanism allows direct sup-
port of floating-point operations with the MC68881 floating-point coprocessor, as well as
specialized user-defined data types and functions.

The 18 addressing modes, shown in Table 1-1, include nine basic types:
® Register Direct

Register Indirect

Register Indirect with Index

Memory Indirect

Program Counter Indirect with Displacement

Program Counter Indirect with Index

Program Counter Memory Indirect

Absolute

Immediate

Included in the register indirect addressing modes are the capabilities to postincrement,
predecrement, offset, and index. The program counter relative mode also has index and
offset capabilities. Both modes are extended in the MC68020 to provide indirect
reference through memory. In addition to these addressing modes, many instructions im-
plicitly specify the use of the condition code register, stack pointer, and/or program
counter.
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Table 1-1. Addressing Modes

Addressing Modes Syntax
Register Direct
Data Register Direct Dn
Address Register Direct An
Register Indirect
Address Register Indirect (An)
Address Register Indirect with Postincrement (An) +
Address Register Indirect with Predecrement —(An)
Address Register Indirect with Displacement (d16,An)
Register Indirect with Index
Address Register Indirect with Index (8-Bit Displacement) (dg,An,Xn)
Address Register Indirect with Index (Base Displacement) (bd,An,Xn)
Memory Indirect
Memory Indirect Post-Indexed ({bd,An],Xn,od)
Memory Indirect Pre-Indexed ([bd,An,Xn|,od)
Program Counter Indirect with Displacement (d16,PC)
Program Counter Indirect with Index
PC Indirect with Index (8-Bit Displacement) (dg,PC,Xn)
PC Indirect with Index (Base Displacement) (bd,PC,Xn)
Program Counter Memory Indirect
PC Memory Indirect Post-Indexed ([bd,PCJ,Xn,od)
PC Memory Indirect Pre-Indexed ([bd,PC,Xn|,od)
Absolute
Absolute Short xxx.W
Absolute Long xxx.L
Immediate #<data>
NOTES:

Dn = Data Register, DO-D7
An = Address Register, AO-A7
dg, d1g = A twos-complement, or sign-extended displacement; added as part of the effective address calculation; size is 8 or 16 bits

(d1p and dg are 16- and 8-bit displacements); when omitted, assemblers use a value of zero.

Xn = Address or data register used as an index register; form is Xn.SIZE* SCALE, where SIZE is .\W or .L (indicates index
register size) and SCALE is 1, 2, 4, or 8 (index register is multiplied by SCALE); use of SIZE and/or SCALE is optional.

bd = A twos-complement base displacement; when present, size can be 16 or 32 bits.;

od = Outer displacement, added as part of effective address calculation after any memory indirection; use is optional with a size
of 16 or 32 bits. -

PC = Program Counter

<data> = Immediate value of 8, 16, or 32 bits
() = Effective address
[ ] = Use as indirect address to long word address.

1.2 INSTRUCTION SET OVERVIEW

The MC68020 instruction set is shown in Table 1-2. Special emphasis has been placed on
the instruction support of structured high-level languages and sophisticated operating
systems. Each instruction, with few exceptions, operates on bytes, words, and long
words and most instructions can use any of the 18 addressing modes.
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Table 1-2. Instruction Set Summary

Mnemonic Description Mnemonic Description
ABCD Add Decimal with Extend MULS Signed Multiply
ADD Add MULU Unsigned Multiply
ADDA Add Address NBCD Negate Decimal with Extend
ADDI Add Immediate NEG Negate
ADDQ Add Quick NEGX Negate with Extend
ADDX Add with Extend NOP No Operation
AND Logical AND NOT Logical Complement
ANDI Logical AND Immediate OR Logical Inclusive OR
ASL, ASR Arithmetic Shift Left and Right ORI Logical OR Immediate
Bee Branch Conditionally PACK Pack BCD
BCHG Test Bit and Change PEA Push Effective Address
BCLR Test Bit and Clear RESET Reset External Devices
BFCHG Test Bit Field and Change ROL, ROR Rotate Left and Right
BFCLR Test Bit Field and Clear ROXL, ROXR| Rotate with Extend Left and Right
BFEXTS Signed Bit Field Extract RTD Return and Deallocate
BFEXTU Unsigned Bit Field Extract RTE Return from Exception
BFFFO Bit Field Find First One RTM Return from Module
BFINS Bit Field Insert RTR Return and Restore Conditon Codes
BFSET Test Bit Field and Set RTS Return from Subroutine
BETST Test Bit Field SBCD Subtract Decimal with Extend
BRA Branch Scc Set Conditionally
BSET Test Bit and Set
) STOP Stop
BSR Branch to Subroutine SUB Subtract
BTST Test Bit SUBA Subtract Address
CALLM Call Module SuBI Subtract Immediate
CAS Compare and Swap Operands SUBQ Subtract Quick
CAS2 Compare and Swap Dual Operands SUBX Subtract with Extend
CHK Check Register Against Bound SWAP Swap Register Words
CHK2 Crteo(i;e?eg(ﬁgé?gamﬁ Upper and TAS Test Operand and Set
CLR Clear TRAP Tap
CMP Compare TRAPcc Trap Conditionally
CMPA Compare Address TRAPV Trap on Overflow
CMP! Compare Immediate 18T Test Operand
CMPM Compare Memory to Memory UNLK Unlink
CMP2 Compare Register Against Upper and  JUNPK Unpack BCD
Lower Bounds COPROCESSOR INSTRUCTIONS
DBcc Test Condition, Decrement and Branch
DIVS,DIVSL| Signed Divide cpBec Branch Conditionally
DIVU, DIVUL| Unsigned Divide cpDBcc Test Coprocessor Condition,
EOR Logical Exclusive OR Decrement, and Branch
EORI Logical Exclusive OR Immediate cpGEN Coprocessor General Instruction
EXG Exchange Registers cpRESTORE | Restore Internal State of Coprocessor
EXT Sign Extend cpSAVE Save Internal State of Coprocessor
IMP Jump cpSce Set Condlt}qnally
JSR Jump to Subroutine cpTRAPcc Trap Conditionally
LEA Load Effective Address
LINK Link and Allocate
LSL, LSR Logical Shift Left and Right
MOVE Move
MOVEA Move Address
MOVE CCR | Move Condition Code Register
MOVE SR Move Status Register
MOVE USP | Move User Stack Pointer
MOVEC Move Control Register
MOVEM Move Multiple Registers
MOVEP Move Peripheral
MOVEQ Move Quick
MOVES Move Alternate Address Space
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1.3 VIRTUAL MEMORY/MACHINE CONCEPTS

The full addressing range of the MC68020 is 4 gigabytes (4,294,967,296). However, most
MC68020 systems implement a smaller physical memory. Nonetheless, by using virtual
memory techniques, the system can be made to appear to have a full 4 gigabytes of
physical memory available to each user program. These techniques have been used for
many years in large mainframe computers and more recently in minicomputers. With the
MC68020 (as with the MC68010 and MC68012), virtual memory can be fully supported in
microprocessor-based systems.

In a virtual memory system, a user program can be written as though it has a large
amount of memory available to it when actually, only a smaller amount of memory is
physically present in the system. In a similar fashion, a system can be designed in such a
manner as to allow user programs to access other types of devices that are not physi-
cally present in the system such as tape drives, disk drives, printers, or terminals. With
proper software emulation, a physical system can be made to appear to a user program
as any other M68000 computer system and the program may be given full access to all of
the resources of that emulated system. Such an emulated system is called a virtual
machine.

1.3.1 Virtual Memory

The basic mechanism for supporting virtual memory is to provide a limited amount of
high-speed physical memory that can be accessed directly by the processor while main-
taining an image of a much larger “virtual”” memory on secondary storage devices such
as large capacity disk drives. When the processor attempts to access a location in the
virtual memory map that is not resident in physical memory (referred to as a page fault),
the access to that location is temporarily suspended while the necessary data is fetched
from secondary storage and placed in physical memory; the suspended access is then
either restarted or continued.

The MC68020 uses instruction continuation to support virtual memory. In order for the
MC68020 to use instruction continuation, it stores its internal state on the supervisor
stack when a bus cycle is terminated with a bus error signal. It then loads the program
counter with the address of the virtual memory bus error handler from the exception vec-
tor table (entry number two) and resumes program execution at that new address. When
the bus error exception handler routine has completed execution, an RTE instruction is
executed which reloads the MC68020 with the internal state stored on the stack, re-runs
the faulted bus cycle (when required), and continues the suspended instruction.

Instruction continuation is crucial to the support of virtual 1/O devices in memory-
mapped input/output systems. Since virtual registers may be simulated in the memory
map, an access to such a register will cause a fault and the function of the register can
be emulated by software.

1.3.2 Virtual Machine

A typical use for a virtual machine system is the development of software, such as an
operating system, for a new machine also under development and not yet available for
programming use. In such a system, a governing operating system emulates the hard-
ware of the prototyped system and allows the new operating system to be executed and
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debugged as though it were running on the new hardware. Since the new operating
system is controlled by the governing operating system, it is executed at a lower privilege
level than the governing operating system. Thus, any attempts by the new operating
system to use virtual resources that are not physically present (and should be emulated)
are trapped to the governing operating system and handled by its software. In the
MC68020, a virtual machine is fully supported by running the new operating system in the
user mode. The governing operating system executes in the supervisor mode and any at-
tempt by the new operating system to access supervisor resources or execute privileged
instructions will cause a trap to the governing operating system.

In order to fully support a virtual machine, the MC68020 must protect the supervisor
resources from access by user programs. The only supervisor resource that is not fully
protected on the MC68000 and MC68008 is the system byte of the status register. On the
MC68000 and MC68008, the MOVE from SR instruction allows user programs to test the S
bit in the status register (in addition to the T bits and interrupt mask) and thus determine
that they are running in the user mode. For full virtual machine support, an operating
system must not be aware of the fact that it is running in the less privileged user mode
and thus should not be allowed direct access to the S bit. For this reason, the MOVE from
SR instruction on the MC68010, MC68012, and MC68020 is a privileged instruction and
the MOVE from CCR (condition code register) instruction is available to allow user pro-
grams direct access to the condition codes. By making the MOVE from SR instruction
privileged, when the new operating system attempts to access the system byte of the
status register, a trap to the governing operating system will occur, where the operation
can be emulated.

1.4 PIPELINED ARCHITECTURE

The MC68020 uses a three stage instruction pipe, as shown in Figure 1-5, to implement a
pipelined internal architecture. The pipeline is completely internal to the microprocessor.
The benefit of the pipeline is to allow concurrent operations to occur for up to three
words of a single instruction or for up to three consecutive instructions.

Instructions are loaded from the on-chip cache or from external memory during instruc-
tion prefetch into stage B. The instructions are sequenced from stage B through stage C
to D. Stage D presents a fully decoded and validated instruction to the control unit for
execution. Instructions with immediate data and extension words find these words
already loaded in stage C and ready for use by the control and execution units.
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SECTION 2
DATA ORGANIZATION AND ADDRESSING CAPABILITIES

This section contains a description of the registers and the data organization of the
MC68020.

2.1 OPERAND SIZE

Operand sizes are defined as follows: a byte equals 8 bits, a word equals 16 bits, a long
word equals 32 bits, and a quad word equals 64 bits. The operand size for each instruc-
tion is either explicitly encoded in the instruction or implicitly defined by the instruction
operation. The coprocessor interface allows the support of any operand size from a bit to
256 bytes.

2.2 DATA ORGANIZATION IN REGISTERS

The eight data registers support data operands of 1, 8, 16, 32, and 64 bits, addresses of 16
or 32 bits, and bit fields of 1 to 32 bits. The seven address registers and the stack pointers
support address operands of 16 or 32 bits. The six control registers (SR, VBR, SFC, DFC,
CACR, and CAAR) support various data sizes depending on the register specified.
Coprocessors may define unique operand sizes, and support them with on-chip registers
accordingly.

2.2.1 Data Registers

Each data register is 32 bits wide. Byte operands occupy the low order 8 bits, word
operands the low order 16 bits, and the long word operands the entire 32 bits. The least
significant bit of an integer is addressed as bit zero and the most significant bit is ad-
dressed as bit 31. For bit fields, the most significant bit is addressed as bit zero and the
least significant bit is addressed as the width of the field minus one.

The quad word data type is two long words and is used only for 32-bit multiply and divide
(signed and unsigned) instructions. Quad words may be organized in any two data
registers without restrictions on order or pairing. There are no explicit instructions for the
management of this data type, although the MOVEM instruction can be used to move a
quad word into or out of the registers.

When a data register is used as either a source or destination operand, only the ap-

propriate low order byte or word (in byte or word operations, respectively) is used or
changed; the remaining high order portion is neither used nor changed.
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2.2.2 Address Registers

Each address register and stack pointer is 32 bits wide and holds a full 32-bit address.
Address registers can not be used for byte-sized operands. Therefore, when an address
register is used as a source operand, either the low order word or the entire long word
operand is used, depending upon the operation size. When an address register is used as
the destination operand, the entire register is affected regardless of the operation size. If
the operation size is word, operands are sign extended to 32 bits before the operation is
performed. Address registers may also be used to support some simple data operations.

2.2.3 Control Registers

The status register (SR) is 16 bits wide with the lower byte accessed as the condition
code register (CCR). Not all 16 bits of the status register are defined, and undefined bits
are read as zeros and ignored when written. Operations to the condition code register are
word operations; however, the upper byte is read as all zeroes and ignored when written.

The cache control register (CACR) provides control and status access to the on-chip in-
struction cache. The cache address register (CAAR) holds the necessary address for
those cache control functions that require one. The vector base register (VBR) provides
the starting address of the exception vector table. All operations involving the CACR,
CAAR, and VBR are long word operations regardless of whether these registers are used
as the source or destination operand.

The alternate function code registers (SFC and DFC) are three bits wide and contain the
address space values placed on FC0-FC2 during the operand read or write of a MOVES in-
struction. All transfers to or from the alternate function code registers are long word,
although the upper 29 bits are read as zeroes and ignored when written.

Accesses to the control registers are privileged operations and are available only in the
supervisor mode.

2.3 DATA ORGANIZATION IN MEMORY

Memory is organized on a byte-addressable basis where lower addresses correspond to
higher-order bytes. The address, N, of a long word datum corresponds to the address of
the most significant byte of the higher-order word. The lower-order word is located at ad-
dress N +2, leaving the least significant byte at address N + 3 (see Figure 2-1). Notice
that the MC68020 does not require data to be aligned on even byte boundaries (see
Figure 2-22) but the most efficient data transfers occur when data is aligned on the same
byte boundary as its operand size. However, instruction words must be aligned on even
byte boundaries.

The data types supported in memory by the MC68020 are: bit and bit field data; integer
data of 8, 16, or 32 bits; 32-bit addresses; and binary coded decimal data (packed and un-
packed). These data types are organized in memory as shown in Figure 2-2. (The quad
word is supported exclusively in the data registers.) Note that all of these data types can
be accessed at any byte address.
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Coprocessors may implement any data types and lengths. For example, the MC68881
Floating-Point Coprocessor supports memory accesses for quad-word sized items
(double-precision floating-point values).

A bit datum is specified by a base address that selects one byte in memory and a bit
number that selects the one bit in this byte. The most significant bit of the byte is bit
number seven.

A bit field datum is specified by a base address that selects one byte in memory, a bit
field offset that indicates the leftmost (base) bit of the bit field in relation to the most
significant bit of the base byte and a bit field width that determines how many bits to the
right of the base bit are in the bit field. The most significant bit of the base byte is bit off-
set 0, the least significant bit of the base byte is bit offset 7, and the least significant bit
of the previous byte in memory is bit offset — 1. Bit field offsets may have values in the
range of —231 to 231 -1 and bit field widths may range between 1 and 32.

2.4 INSTRUCTION FORMAT

All instructions are at least one word and up to 11 words in length as shown in Figure 2-3.
The length of the instruction and the operation to be performed is determined by the first
word of the instruction, the operation word. The remaining words, called extension
words, further specify the instruction and operands. These words may be immediate
operands, extensions to the effective address mode specified in the operation word,
branch displacements, bit number or bit field specifications, special register specifica-
tions, trap operands, pack/unpack constants, argument counts, or coprocessor condition
codes.



Operation Word
(One Word, Specifies Operation and Modes)

Special Operand Specifiers
(If Any, One or Two Words)

Immediate Operand or Source Effective Address Extension
(If Any, One to Five Words)

Destination Effective Address Extension
(If Any, One to Five Words)

Figure 2-3. Instruction Word General Format

2.5 PROGRAM/DATA REFERENCES

The MC68020 separates memory references into two classes: program references and
data references. Program references, as the name implies, are references to that section
of memory that contains the program instructions. Data references refer to that section
of memory that contains the program data. Generally, operand reads are from the data
space. All operand writes are to the data space, except when caused by the MOVES
instruction.

2.6 ADDRESSING

Instructions for the MC68020 contain two kinds of information: the function to be per-
formed and the location of the operand(s) on which that function is performed. The
methods used to locate (or address) the operand(s) are explained in the following
paragraphs.

Instructions specify an operand location in one of three ways:
Register Specification — The number of the register is given in the register field of
the instruction.
Effective Address — Use of the various effective addressing modes.
Implicit Reference — The definition of certain instructions implies the use of
specific registers.

2.7 REGISTERS: NOTATION CONVENTIONS

Registers are identified by the following mnemonic description:
An — Address register n (e.g., A3 is address register 3)
Dn — Data register n (e.g., D5 is data register 5)
Rn — Address or Data Register n
Xn — Denotes index register n (data or address)
PC — The program counter
SR — The status register
CCR — The condition code reqister; part of the status register
SP — The active stack pointer; SP and A7 are equivalent names.
USP — The user stack pointer (A7)
ISP — The interrupt stack pointer (A7’)
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MSP — The master stack pointer (A7")
SSP — The supervisor stack pointer, either the master (MSP) or interrupt (ISP)
stack pointer
SFC — The source function code register
DFC — The destination function code register
VBR — The vector base register
CACR — The cache control register
CAAR — The cache address register

The register field within an instruction specifies the register to be used. Other fields
within the instruction specify whether the register selected is an address or data register
and how the register is to be used.

2.8 EFFECTIVE ADDRESS

Most instructions specify the location of an operand by using the effective address field
(EA) in the operation word. For example, Figure 2-4 shows the general format of the single
effective address instruction operation word. The effective address is composed of two
3-bit fields; the mode field and the register field. The value in the mode field selects one
of the addressing modes. The register field contains the number of a register. The in-
struction operand word for each instruction is located in APPENDIX C.

15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0

Effective Address
Mode I Register

X X X X X X X X X X

Figure 2-4. Single-Effective-Address Instruction Operation Word

The effective address field may require additional information to fully specify the
operand address. This additional information, called the effective address extension, is
contained in following word or words and is considered part of the instruction, as shown
in Figure 2-3. Details describing the format of the extension words can be found in 2.9 EF-
FECTIVE ADDRESS ENCODING SUMMARY.

2.8.1 Register Direct Modes

These effective addressing (EA) modes specify that the operand is in one of sixteen
general purpose registers or one of six control registers (SR, VBR, SFC, DFC, CACR, and
CAAR).

2.8.1.1 DATA REGISTER DIRECT. The operand is in the data register specified by the ef-
fective address register field.

Generation: EA=Dn

Assembler Syntax: Dn

Mode: 000

Register: n 31 0
Data Register: Dn ={ Operand J
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2.8.1.2 ADDRESS REGISTER DIRECT. The operand is in the address register specified by
the effective address register field.

Generation: EA=An

Assembler Syntax:  An

Mode: 001

Register: n 31 0
Address Register: An th Operand

2.8.2 Register Indirect Modes

These effective addressing modes specify that the operand is in memory and the con-
tents of a register is used to calculate the address of the operand.

2.8.2.1 ADDRESS REGISTER INDIRECT. The address of the operand is in the address
register specified by the register field.

Generation: EA =(An)

Assembler Syntax:  (An)

Mode: 010

Register: n 31 0

Address Register: An >I Memory Address ]
31 l 0

Memory Address: L Operand |

2.8.2.2 ADDRESS REGISTER INDIRECT WITH POSTINCREMENT. The address of the
operand is in the address register specified by the register field. After the operand ad-
dress is used, it is incremented by one, two, or four depending upon whether the size of
the operand is byte, word, or long word. Coprocessors may support incrementing for any
size, up to 256 bytes, of operand. If the address register is the stack pointer and the
operand size is byte, the address is incremented by two rather than one to keep the stack
pointer on a word boundary.

Generation: EA = (An)
An=An + SIZE

Assembler Syntax:  (An)+
Mode: 011
Register: n 31 0
Address Register: An >|L Memory Address j
Operand Length (1, 2, or 4): >é+——7

31 . 0
Memory Address: ] Operand |
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2.8.2.3 ADDRESS REGISTER INDIRECT WITH PREDECREMENT. The address of the
operand is in the address register specified by the register field. Before the operand ad-
dress is used, it is decremented by one, two, or four depending upon whether the operand
size is byte, word, or long word. Coprocessors may support decrementing for any size, up
to 256 bytes, of operand. If the address register is the stack pointer and the operand size
is byte, the address is decremented by two rather than one to keep the stack pointer on a
word boundary.

Generation: An=An-SIZE
EA= (An)
Assembler Syntax: —(An)
Mode: 100
Register: n 31 0
Address Register: An ﬁ' Memory Address ]
A

Operand Length (1, 2, or 4): > —

31 0
Memory Address: Operand

2.8.2.4 ADDRESS REGISTER INDIRECT WITH DISPLACEMENT. This addressing mode
requires one word of extension. The address of the operand is the sum of the address in
the address register and the sign-extended 16-bit displacement integer in the extension
word. Displacements are always sign extended to 32 bits prior to being used in effective
address calculations.

Generation: EA=(An)+d16
Assembler Syntax:  (d1g,An)
Mode: 101
Register: n 31 0
Address Register: An >i Memory Address J
a1 15 0
Displacement: E §ign|_£xie_r1d3d__ | Integer
31 0
Memory Address: | Operand

2.8.3 Register Indirect with Index Modes

These effective addressing modes specify that the contents of an address register are
used in calculating the final effective address of the operand. In addition, an index
register and a displacement are also used in calculating the final address (the values are
both sign extended to 32 bits before the calculation). The variations available for ad-
justing the index register cause the index to be considered an “index operand”.
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The format of the index operand is “Xn.SIZE*SCALE”. “Xn” selects any data or address
register as the index register. “SIZE” specifies the index size and may be “W” for word
size or “L” for long word size. “SCALE” allows the index register value to be multiplied by
a value of one (no scaling), two, four, or eight.

Displacements and index operands are always sign extended to 32 bits prior to being
used in effective address calculations.

2.8.3.1 ADDRESS REGISTER INDIRECT WITH INDEX (8-BIT DISPLACEMENT). This ad-
dressing mode requires one word of extension that contains the index register indicator
(with its size selector and scaling mode), and an 8-bit displacement. In this mode, the ad-
dress of the operand is the sum of the address register, the sign extended displacement
value in the low order eight bits of the extension word, and the sign extended contents of
the index register (possibly scaled). The user must specify the displacement, the address
register, and the index register in this mode.

Generation: EA = (An) + (Xn) + dg
Assembler Syntax:  (dg,An,Xn.SIZE*SCALE)
Mode: 110
Register: n J31 0
Address Register: An > Memory Address J
. 7 0
Displacement: [ Sign Extended | Integer } +
ind 31 0
ndex -
Register: Sign Extended Value
Scale: Scale Value
31 0
Memory Address: r Operand J

2.8.3.2 ADDRESS REGISTER INDIRECT WITH INDEX (BASE DISPLACEMENT). This form
of address register indirect with index requires additional extension words that contain
index register indication and an optional 16- or 32-bit base displacement (which is sign
extended before it is used in the effective address calculation). The address of the
operand is the sum of the contents of the address register, the scaled contents of the
index register and the base displacement.

In this mode, specification of all three addends is optional. If none are specified, the
assembler creates an effective address of zero.
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Note that if an index register is specified, but not the address register, and a data
register (Dn) is used as the index register, then a “data register indirect” access can be
generated.

Generation: EA = (An)+ (Xn) + bd
Assembler Syntax:  (bd,An,Xn.SIZE*SCALE)
Mode: 110
Register: n 31 0
Address Register: An =|| Memory Address
5 31 0

ase : ]
Displacement: l Sign Extended Value ] >+
ind 31 0

ndex -
Register: | Sign Extended Value
Scale: [ Scale Value

31 0

Memory Address: [ Operand ]

2.8.4 Memory Indirect

This addressing mode requires one to five words of extension, as detailed in 2.9 EFFEC-
TIVE ADDRESS ENCODING SUMMARY. Memory indirect is distinguished from address
register indirect by use of square brackets ([ ]) in the assembler notation. The assembler

generates the appropriate indicators in the extension words when this addressing
mode is selected.

In this case, four user-specified values are used in the generation of the final address of
the operand. An address register is used as a base register and its value can be adjusted
by adding an optional base displacement. An index register specifies an index operand
and finally, an outer displacement can be added to the address operand, yielding the
effective address.

The location of the square brackets determines the user-specified values to be used in
calculating an intermediate memory address. An address operand is then fetched from
that intermediate memory address and it is used in calculating the effective address. The
index operand may be added in after the intermediate memory access (post-indexed) or
before the intermediate memory access (pre-indexed).

All four user-specified values are optional. Both the base and outer displacements may

be null, word, or long word. When a displacement is null, or an element is suppressed, its
value is taken as zero in the effective address calculation.
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2.8.4.1 MEMORY INDIRECT POST-INDEXED. In this case, an intermediate indirect
memory address is calculated using the base register (An) and base displacement (bd).
This address is used for an indirect memory access of a long word, followed by adding
the index operand (Xn.SIZE*SCALE) to the fetched address. Finally, the optional outer
displacement (od) is added to yield the effective address.

Generation: EA = (bd + An) + Xn.SIZE*SCALE + od
Assembler Syntax:  ([bd,An],Xn.SIZE*SCALE,od)
Mode: 110 31 0
Address Register: An ;ll Memory Address ]
31 0
Base Displacement: [ Sign Extended Value
31 0
[ Indirect Memory Address ]
Poinlts To
31 v o
Value at
Indirect Memory Address
31 0
Index Register: Sign Extended Value
Scale: Scale Value
31 0
Output Displacement: [ Sign Extended Value
31 0
Effective Address: [ Operand
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2.8.4.2 MEMORY INDIRECT PRE-INDEXED. In this case, the index operand
(Xn.SIZE*SCALE) is added to the base register (An) and base displacement (bd). This in-
termediate sum is then used as an indirect address into the data space. Following the
long word fetch of the operand address, the optional outer displacement (od) may be
added to yield the effective address.

Generation: EA =(bd + An + Xn.SIZE*SCALE) + od
Assembler Syntax:  ([bd,An,Xn.SIZE*SCALE],od)
Mode: 110 31 0
Address Register:  An ,{ Memory Address ]
31 0
Base Displacement: [ Sign Extended Value
31 0
Index Register: I Sign Extended Value
Scale: l Scale Value
31 0
[ Indirect Memory Address |
I
Points To
31 ! o
Value at
Indirect Memory Address
31 0
Output Displacement: Sign Extended Value
31 0
Effective Address: Operand ]
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2.8.5 Program Counter Indirect With Displacement Mode

This addressing mode requires one word of extension. The address of the operand is the
sum of the address in the program counter and the sign extended 16-bit displacement
integer in the extension word. The value in the program counter is the address of the ex-
tension word. The reference is classified as a program reference.

Generation: EA=(PC)+d16
Assembler Syntax: (d16,PC)
Mode: 111
Register: 010 31 0
Program Counter: :I Address of Extension Word
r 15 0

Displacement: ESign Extended | Integer

31 0
Memory Address: L Operand

2.8.6 Program Counter Indirect with Index Modes

These addressing modes are analogous to the register indirect with index modes
described in 2.8.3, but the PC is used as the base register. As before, the index operand
(sized and scaled) and a displacement are used in the calculation of the effective address
also. Displacements and index operands are always sign extended to 32 bits prior to be-
ing used in effective address calculations.

PC relative accesses are always classified as program space references.
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2.8.6.1 PC INDIRECT WITH INDEX (8-BIT DISPLACEMENT). The address of the operand
is the sum of the address in the program counter, the sign extended displacement
integer in the lower eight bits of the extension word, and the sized and scaled index
operand. The value in the PC is the address of the extension word. This reference is
classified as a program space reference. The user must include the displacement, the
PC, and the index register when specifying this address mode.

Generation: EA =(PC)+ (Xn) +dg
Assembler Syntax:  (dg,PC,Xn.SIZE*SCALE)
Mode: 111
Register: 010 31 0
Program Counter: >|] Address of Extension Word |
K
Displacement: E Sign Extended
31
Index Register: Sign Extended Value
Scale: L Scale Value
31 0
Memory Address: | Operand |

2.8.6.2 PC INDIRECT WITH INDEX (BASE DISPLACEMENT). This address mode requires
additional extension words that contain the index register indication and an optional
16-or 32-bit base displacement (which is sign extended to 32 bits before being used). The
address of the operand is the sum of the contents of the PC, the scaled contents of the
index register, and the base displacement.

In this mode, specification of all three addends is optional. However, in order to
distinguish this mode from address register indirect with index (base displacement),
when the user wishes to specify no PC, the assembler notation “ZPC” (zero value is taken
for the PC) must be used. This allows the user to access the program space, without
necessarily using the PC in calculating the effective address. Note that if ZPC and an in-
dex register are specified, and a data register (Dn) is used, then a “‘data register indirect”
access can be made to the program space, without using the PC.
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Generation: EA = (PC) + (Xn) + bd
Assembler Syntax: (bd,PC,Xn.SIZE*SCALE)

Mode: 111
Register: 011 31 0
Program Counter: >]| Address of Extension Word J
31 0
Base Displacement: | Sign Extended Value
31 0
Index Register: I Sign Extended Value
Scale: I Scale Value
31 0
Memory Address: [ Operand J

2.8.7 Program Counter Memory Indirect Modes

As in the memory indirect modes (refer to 2.8.4 Memory Indirect) the square brackets ([ ])
indicate that an intermediate access to memory is made as part of the final effective ad-
dress calculation.

In this case, the PC is used as a base register and its value can be adjusted by adding an
optional base displacement. An index register specifies an index operand and finally, an
outer displacement can be added to the address operand, yielding the effective address.

The location of the square brackets determines the user-specified values to be used in
calculating an intermediate memory address. An address operand is then fetched from
that intermediate address and it is used in the final calculation. The index operand may
be added in after the intermediate memory access (post-indexed) or before that access
(pre-indexed).

All four user-specified values are optional. Both the base and outer displacements may
be null, word, or long word. When using null displacements, the value of zero is used in
the effective address calculation. In order to specify no PC but still make program space
references, the notation “ZPC” should be used in its place.
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2.8.7.1 PROGRAM COUNTER MEMORY INDIRECT POST-INDEXED. An intermediate in-
direct memory address is calculated by adding the PC, used as a base register, and a
base displacement (bd). This address is used for an indirect memory access into program
space of a long word, followed by adding the index operand (Xn.SIZE*SCALE) with the
fetched address. Finally, the optional outer displacement (od) is added to yield the effec-
tive address. ‘

Generation: EA = (bd + PC) + Xn.SIZE*SCALE + od
Assembler Syntax:  ([bd,PC],Xn.SIZE*SCALE,od)
Mode: 111 1
Register Field: 011 3 0
Program Counter: >|r Address of Extension Word J
31 0
Base Displacement: L Sign Extended Value
31 0
Indirect Memory Address |
T
Points To
31 | o

Value at Indirect Memory
Address in Program Space

31 0
Index Register: Sign Extended Value
Scale Value
31 0
Outer Displacement: Sign Extended Value
31 0
Effective Address: Operand
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2.8.7.2 PROGRAM COUNTER MEMORY INDIRECT PRE-INDEXED. In this case, the index
operand (Xn.SIZE*SCALE) is added to the program counter and base displacement (bd).
This intermediate sum is then used as an indirect address into the program space.

Following the long word fetch of the new effective address, the optional outer displace-
ment may be added to yield the effective address.

~ Generation: EA =(bd + PC + Xn.SIZE*SCALE) + od
Assembler Syntax:  ([bd,PC,Xn.SIZE*SCALE],o0d)
Mode: 1M
Register Field: 011 31 0
Program Counter: ~J] Address of Extension Word J
31 0
Base Displacement: | Sign Extended Value
31 0
Index Register: | Sign Extended Value
| Scale Value
31 0
I Indirect Memory Address I
I
Points To
31 ! o
Value at Indirect Memory
Address in Program Space
31 0
Outer Displacement: Sign Extended Value
31 0
Effective Address: [ Operand ]
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2.8.8 Absolute Address Modes
Absolute address modes have the address of the operand in the extension word(s).

2.8.8.1 ABSOLUTE SHORT ADDRESS. This addressing mode requires one word of exten-
sion. The address of the operand is in the extension word. The 16-bit address is sign ex-
tended to 32 bits before it is used.

Generation: EA given

Assembler Syntax: xxx.W

Mode: 111

Register: 000 ,§1 ______ 0

Extension Word: > Sign Exten_d_ed Memory Address I
31 \ 0

Memory Address: [ Operand J

2.8.8.2 ABSOLUTE LONG ADDRESS. This addressing mode requires two words of exten-
sion. The address of the operand is developed by the concatenation of the extension
words. The high order part of the address is the first extension word; the low order part of
the address is the second extension word.

Generation: EA given

Assembler Syntax:  xxx.L

Mode: 111

Register: 001 15 0

First Extension Word: #{ Address High ]

15 0

Second Extension Word: 7‘{ Address Low |
31 v | 0
[ Concatenation 1
31 \ 0

Memory Address: l Operand ]
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2.8.9 Immediate Data

This addressing mode requires one or two words of extension, depending on the size of

the operation.

Byte Operation
Word Operation

Long Word Operation — Operand is in two extension words; high order 16 bits are
in the first extension word; low order 16 bits are in the se-
cond extension word. Coprocessors may provide support
forimmediate data of any size with the instruction portion

Generation:

Assembler Syntax:
Mode:
Register:

— Operand is in the low order byte of the extension word
— Operand is in the extension word

taking at least one word.

Operand given
#XXX

111

100

2.9 EFFECTIVE ADDRESS ENCODING SUMMARY

Table 2-1 details effective address extension word formats. The instruction operand ex-
tension words fall into three categories: single-effective-address instruction, indexed!/in-
direct (brief format), and indexed/indirect (full format). The longest instruction for the
MC68020 contains ten extension words. They consist of both source and destination ef-
fective addresses using the full format extension word, with both base displacements

and outer displacements being 32 bits.

Field

Register
D/A

W/L

Scale

Table 2-1. Effective Address Specification Formats

Single Effective Address Instruction Format

15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0
Effective Address
X X X X X X X X X X Mode r Register
MC68020, Brief Format
15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0
rD/A I Register |W/L | Scale l 0 | Displacement ]
MC68020, Full Format
15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0
D/A]  Registr  [w/L] Scale | 1 [Bs | is [ sosize [ o | /1S

Base Displacement (0, 1, or 2 Words)

Quter Displacement (0, 1, or 2 Words)

Definition
Index Register Number

Index Register Type:
0=Dn
1=An

Field

BS

IS

Word/Long Word Index Size:
0= Sign Extended Word

1=Long Word
Scale Factor:

00=1

01=2

10=4

11=8

BD SIZE

I/1S

219

Definition

Base Suppress:

0= Base Register Added

1= Base Register Suppressed
Index Suppress:

0= Evaluate and Add Index Operand

1= Suppress Index Operand
Base Displacement Size:

00= Reserved

071=Null Displacement

10=Word Displacement

11=Long Displacement
Index/Indirect Selection:

Indirect and Indexing Operand Determined in

Conjunction with Bit 6, Index Suppress



The index suppress (IS) and index/indirect selection (I/IS) fields are combined to deter-
mine the type of indirection to be performed using the index/indirect full format address-
ing mode. The encodings and subsequent operations are described in Table 2-2.

Table 2-2. IS-1/IS Memory Indirection Encodings

Index/
IS Indirect Operation
0 000 No Memory Indirection
0 001 Indirect Pre-Indexed with Null Displacement
0 010 Indirect Pre-Indexed with Word Displacement
0 on Indirect Pre-Indexed with Long Displacement
0 100 Reserved
0 101 Indirect Post-Indexed with Null Displacement
0 110 Indirect Post-Indexed with Word Displacement
0 m Indirect Post-Indexed with Long Displacement
1 000 No Memory Indirection
1 001 Memory Indirect with Null Displacement
1 010 Memory Indirect with Word Displacement
1 on Memory Indirect with Long Displacement
1 100-111 Reserved

Table 2-3 is the encoding of the effective addressing modes discussed in the previous
paragraphs.

Table 2-3. Effective Address Encoding Summary

Mode Register
Data Register Direct 000 Reg #
Address Register Direct 001 Reg #
Address Register Indirect 010 Reg #
Address Register Indirect with Postincrement on Reg #
Address Register Indirect with Predecrement 100 Reg #
Address Register Indirect with Displacement 101 Reg #
Address Register and Memory Indirect with Index 110 Reg #
Absolute Short m 000
Absolute Long m 001
Program Counter Indirect with Displacement 1 010
Program Counter and Memory Indirect with Index 111 011
Immediate Data m 100
Reserved for Future Motorola Use 1m 101
Reserved for Future Motorola Use 1M 110
Reserved for Future Motorola Use m 1M

2.10 SYSTEM STACK

Address register seven (A7) is used as the system stack pointer where any one of three
system stack registers is active at any one time. The M and S bits of the status register
determine which stack pointer is used. If S =0, the user stack pointer (USP) is the active
system stack pointer and the master and interrupt stack pointers cannot be referenced.
If S=1 and M =1, the master stack pointer (MSP) is the active system stack pointer and
the user and interrupt stack pointers cannot be referenced as address registers. If S=1
and M =0, the interrupt stack pointer (ISP) is the active system stack pointer and the user
and master stack pointers cannot be referenced as address registers. (This corresponds
to the MC68000, MC68008, MC68010, and MC68012 supervisor mode.) The term super-
visor stack pointer (SSP) refers to the master or interrupt stack pointers, depending on
the state of the M bit. Each system stack fills from high to low memory.
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The active system stack pointer is implicitly referenced by all instructions that use the
system stack for linkage or storage allocation.

The program counter is saved on the active system stack on subroutine calls and
restored from the active system stack on returns. During the processing of traps and in-
terrupts, both the program counter and the status register are saved on the supervisor
stack (either master or interrupt). Thus, the execution of supervisor state code is not
dependent on the behavior of user code or condition of the user stack, and user programs
may use the user stack pointer independent of supervisor stack requirements.

In order to keep data on the system stack aligned for maximum efficiency, data entry on
the stack is restricted so that data is always put on the stack on a word boundary. Thus,
byte data is pushed on to or pulled from the system stack as the high order byte of a
word; the low order byte is unused.

The MC68020 system stacking operations (e.g., stacking of exception frames, subroutine
calls, etc.) always stack and unstack long word operands. The efficiency of these opera-
tions is significantly increased in long word organized memory when the stack pointer is
long word aligned.

2.11 USER PROGRAM STACKS

Additional user program stacks can be implemented by employing the address register
indirect with postincrement and predecrement addressing modes. Using an address
register (A0 through A6), the user may implement stacks which are filled either from high
memory to low memory, or vice versa. The important considerations are:

® using predecrement, the register is decremented before its contents are used as the
pointer to the stack;

® using postincrement, the register is incremented after its contents are used as the
pointer to the stack.

Care must be exercised when mixing byte, word, and long word items in these stacks.

Stack growth from high to low memory is implemented with
— (An) to push data on the stack,
(An)+ to pull data from the stack.

After either a push or a pull operation, register An points to the top item on the stack.
This is illustrated as:

Low Memory
(Free)
An—> Top of Stack

. /

Bottom of Stack
High Memory

~
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Stack growth from low to high memory is implemented with
(An)+ to push data on the stack,
—(An) to pull data from the stack.

After either a push or pull operation, register An points to the next available space on the
stack. This is illustrated as:

Low Memory
Bottom of Stack

/ : /

[ ]
Top of Stack
An—> (Free)
High Memory

2.12 QUEUES

User queues can also be implemented with the address register indirect with postincre-
ment or predecrement addressing modes. Using a pair of address registers (two of AO
through A6), the user may implement queues which are filled either from high memory to
low memory, or vice versa. Because queues are pushed from one end and pulled from the
other, two registers are used: the ‘put’ and ‘get’ pointers.

Queue growth from low to high memory is implemented with
(An)+ to put data into the queue,
(Am) + to get data from the queue.

After a put operation, the ‘put’ address register points to the next available space in the
queue and the unchanged ‘get’ address register points to the next item to be removed
from the queue. After a ‘get’ operation, the ‘get’ address register points to the next item
to be removed from the queue and the unchanged ‘put’ address register points to the
next available space in the queue. This is illustrated as:

Low Memory
Last Get (Free)
Get (Am) + —> Next Get

[
Z .
L ]
Last Put

Put (An) +—> (Free)
High Memory
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If the queue is to be implemented as a circular buffer, the relevant address register
should be checked and, if necessary, adjusted before the ‘put’ or ‘get’ operation is per-
formed. The address register is adjusted by subtracting the buffer length (in bytes), pro-
ducing a ‘“wrap-around.”

Queue growth from high to low memory is implemented with
—(An) — to put data into the queue,
—(Am)—to get data from the queue.

After a ‘put’ operation, the ‘put’ address register points to the last item put in the queue
' and the unchanged get address register points to the last item removed from the queue.
After a ‘get’ operation, the ‘get’ address register points to the last item removed from the
queue and the unchanged ‘put’ address register points to the last item put in the queue.
This is illustrated as:

Low Memory
(Free)
Put —(An) —> Last Put

[ ]
; /
Next Get

Get — (Am)—> Last Get (Free)
High Memory

If the queue is to be implemented as a circular buffer, the ‘get’ or ‘put’ operation should
be performed first, and then the relevant address register should be checked and, if
necessary, adjusted. The address register is adjusted by adding the buffer length (in
bytes).
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SECTION 3
INSTRUCTION SET SUMMARY

This section contains an overview of the MC68020 instruction set. The instructions form
a set of tools to perform the following operations:

Data Movement Bit Field Manipulation

Integer Arithmetic Binary Coded Decimal Arithmetic
Logical Program Control

Shift and Rotate System Control

Bit Manipulation Multiprocessor Communications

The complete range of instruction capabilities combined with the flexible addressing
modes described previously provide a very flexible base for program development.

The following notations will be used throughout this section.
An = any address register, AO-A7

Dn = any data register, DO-D7
Rn = any address or data register

CCR = condition code register (lower byte of status register)
cc = condition codes from SR or CCR

SP = active stack pointer
USP = user stack pointer
SSP = supervisor stack pointer
DFC = destination function code register
SFC = source function code register

Rc = control register (VBR, SFC, DFC, CACR, CAAR, USP, MSP, ISP)
d = displacement; d1¢ is a 16-bit displacement
<ea> = effective address
list = list of registers, e.g., D0-D3
#<data> = immediate data; a literal integer
{offset:width} = bit field selection
label = assembly program label
[7]1 = bit 7 of respective operand
[31:24] = bits 31 through 24 of operand; i.e., high order byte of a register
X = extend (X) bit in SR
N = negative (N) bit in SR
Z = zero (2) bit in SR
~ = invert; operand is logically complemented
A = iogicai AND
V = logical OR
® = logical exclusive OR
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Dc = data register, DO-D7 used during compare
Du = data register, DO-D7 used during update
Dr, Dq = data register, remainder or quotient of divide
Dh,DI = data register, high or low order 32 bits of multiply result

3.1 DATA MOVEMENT

The basic means of address and data manipulation (transfer and storage) is accomplish-
ed by the move (MOVE) instruction and its associated effective addressing modes. Data
movement instructions allow byte, word, and long word operands to be transferred from
memory to memory, memory to register, register to memory, and register to register. Ad-
dress movement instructions (MOVE or MOVEA) allow word and long word operand
transfers to ensure that only legal address manipulations are executed. In addition to the
general MOVE instruction there are several special data movement instructions: move
multiple registers (MOVEM), move peripheral data (MOVEP), move quick (MOVEQ), ex-
change registers (EXG), load effective address (LEA), push effective address (PEA), link
stack (LINK), unlink stack (UNLK). Table 3-1 is a summary of the data movement
operations.

Table 3-1. Data Movement Operations

Operand Operand
Instruction Syntax Size Operation
EXG Rn, Rn 32 Rn < Rn
LEA <ea>,An 32 <ea> — An
LINK An #<d> 16, 32 SP—-4 — SP;, An — (SP); SP — An; SP + d — SP
MOVE <ea>, <ea> 8, 16, 32 source — destination
MOVEA <ea>, An 16, 32—32
MOVEM list, <ea> 16, 32 listed registers — destination
<ea>, list 16, 32—32 source = listed register
MOVEP Dn, (d1g,An) 16, 32 Dn[31:24] — (An+d); Dn[23:16] — (An+d+2);
Dn[156:8] — (An+d+4); Dn[7:0] — (An+d+6)
(d16,An),Dn (An+d) — Dn[31:24]; (An+d+2) — Dn[23:16];
(An+d+4) — Dn[15:8]; (An+d+6) — Dn[7:0]
MOVEQ #<data>,Dn 8—32 immediate data — destination
PEA <ea> 32 SP—-4 — SP;, <ea> — (SP)
UNLK An 32 An — SP; (SP) — An; SP+4 — SP

3.2 INTEGER ARITHMETIC OPERATIONS

The arithmetic operations include the four basic operations of add (ADD), subtract (SUB),
multiply (MUL), and divide (DIV) as well as arithmetic compare (CMP, CMPM), clear (CLR),
and negate (NEG). The ADD, CMP, and SUB instructions are available for both address
and data operations, with data operations accepting all operand sizes. Address opera-
tions are limited to legal address size operands (16 or 32 bits). The clear and negate in-
structions may be used on all sizes of data operands.



The MUL and DIV operations are available for signed and unsigned operands using word
multiply to produce a long word product, long word multiply to produce a long word or
quad word product; a long word dividend with word divisor to produce a word quotient
with a word remainder; and a long word or quad word dividend with long word divisor to
produce long word quotient and long word remainder.

Multiprecision and mixed size arithmetic can be accomplished using a set of extended
instructions. These instructions are: add extended (ADDX), subtract extended (SUBX),
sign extend (EXT), and negate binary with extend (NEGX).

Refer to Table 3-2 for a summary of the integer arithmetic operations.

Table 3-2. Integer Arithmetic Operations

Operand Operand
Instruction Syntax Size Operation
ADD Dn, <ea> 8, 16, 32 source + destination — destination
<ea>, Dn 8, 16, 32
ADDA <ea>, An 16, 32
ADDI #<data>,<ea> 8, 16, 32 immediate data + destination — destination
ADDQ #<data>,<ea> 8, 16, 32
ADDX Dn, Dn 8,16, 32 source + destination + X — destination
—(An), —(An) 8, 16, 32
CLR <ea> 8, 16, 32 0 — destination
CMP <ea>, Dn 8, 16, 32 destination — source
CMPA <ea>, An 16, 32
CMPI #<data>,<ea> 8, 16, 32 destination — immediate data
CMPM (An) +, (An) + 8, 16, 32 destination — source
CMP2 <ea>, Rn 8, 16, 32 lower bound< = Rn< = upper bound
DIVS/DIVU <ea>, Dn 32/16—16:16 | destination/source — destination (signed or unsigned)
<ea>, Dr:Dg 64/32~—32:32
<ea>, Dqg 32/32—32
DIVSL/DIVUL <ea>, Dr:Dg 32/32—32:32
EXT Dn 8—16 sign extended destination — destination
Dn 16—32
EXTB Dn 8—32
MULS/MULU <ea>, Dn 16x 16 — 32 source* destination — destination (signed or unsigned)
<ea>, DI 32x32—32
<ea>, Dh:DI 32x32—64
NEG <ea> 8, 16, 32 0 — destination — destination
NEGX <ea> 8, 16, 32 0 — destination — X — destination
SUB <ea>, Dn 8, 16, 32 destination — source — destination
Dn, <ea> 8, 16, 32
SUBA <ea>, An 16, 32
SUBI #<data>,<ea> 8, 16, 32 destination — immediate data — destination
SUBQ #<data>,<ea> 8,16, 32
SUBX Dn, Dn 8,16, 32 destination — source — X — destination
—(An), —(An) 8, 16, 32
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3.3 LOGICAL OPERATIONS

Logical operation instructions AND, OR, EOR, and NOT are available for all sizes of in-
teger data operands. A similar set of immediate instructions (ANDI, ORI, and EORI) pro-
vide these logical operations with all sizes of immediate data. TST is an arithmetic com-
parison of the operand with zero which is then reflected in the condition codes. Table 3-3
is a summary of the logical operations.

Table 3-3. Logical Operations

Operand Operand
Instruction Syntax Size ) Operation

AND <ea>, Dn 8, 16, 32 source A destination — destination

Dn, <ea> 8, 16, 32
ANDI #<data>,<ea> 8, 16, 32 immediate data A destination — destination
EOR Dn, <ea> 8, 16, 32 source @ destination — destination
EORI #<data>,<ea> 8, 16, 32 immediate data @ destination — destination
OR <ea>, Dn 8, 16, 32 source V destination — destination

Dn, <ea> 8, 16, 32
ORI #<data>,<ea> 8, 16, 32 immediate data V destination — destination
NOT <ea> 8, 16, 32 ~ destination — destination
TST <ea> 8, 16, 32 source — O to set condition codes

3.4 SHIFT AND ROTATE OPERATIONS

Shift operations in both directions are provided by the arithmetic shift instructions ASR
and ASL, and logical shift instructions LSR and LSL. The rotate instructions (with and
without extend) available are ROR, ROL, ROXR, and ROXL.

All shift and rotate operations can be performed on either registers or memory.
Register shifts and rotates support all operand sizes and allow a shift count (from one to
eight) to be specified in the instruction operation word or a shift count (modulo 64) to be
specified in a register.

Memory shifts and rotates are for word operands only and allow only single-bit shifts or
rotates. The SWAP instruction exchanges the 16-bit halves of a register. Performance of
shift/rotate instructions is enhanced so that use of the ROR or ROL instructions with a
shift count of eight allows fast byte swapping.

Table 3-4 is a summary of the shift and rotate operations.
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Table 3-4. Shift and Rotate Operations

Operand Operand
Instruction Syntax Size Operation
ASL Dn, Dn 8, 16, 32
#<data>, Dn 8, 16, 32 X/C 0
<ea> 16
ASR Dn, Dn 8, 16, 32
#<data>, Dn 8, 16, 32 Ii_l—————_*}———" x/c |
<ea> 16
LSL Dn, Dn 8, 16, 32
#<data>, Dn 8, 16, 32 X/C - < 0
<ea> 16
LSR Dn, Dn 8, 16, 32 .
#<data>, Dn 8, 16, 32 0 —»——— > }—»{x]
<ea> 16
ROL Dn, Dn 8,16, 32
#<data>, Dn 8, 16, 32 l C I‘ I r‘ jf l
<ea> 16
ROR Dn, Dn 8, 16, 32
#<data>, Dn 8, 16, 32
o @ [———>
ROXL Dn, Dn 8,16, 32
#<data>, Dn 8, 16, 32 -— %
<ea> 16
ROXR Dn, Dn 8, 16, 32
#<data>, Dn 8, 16, 32 |_>[ —> _____,J_J._>-
<ea> 16 X ‘
SWAP Dn 32

3.5 BIT MANIPULATION OPERATIONS

Bit manipulation operations are accomplished using the following instructions: bit test
(BTST), bit test and set (BSET), bit test and clear (BCLR), and bit test and change (BCHG).
All bit manipulation operations can be performed on either registers or memory, with the
bit number specified as immediate data or by the contents of a data register. Register
operands are always 32 bits, while memory operands are always 8 bits. Table 3-5 is a
summary of the bit manipulation operations. (Z is bit 2, the “zero” bit, of the status

register.)
Table 3-5. Bit Manipulation Operations
Operand Operand
Instruction Syntax Size Operation

BCHG Dn, <ea> 8, 32 ~ (< bit number> of destination) — Z — bit of
#<data>,<ea> 8, 32 destination

BCLR Dn, <ea> 8,32 ~ (< bit number> of destination) — Z;
#<data>,<ea> 8,32 0 — bit of destination

BSET Dn, <ea> 8,32 ~ (< bit number> of destination) — Z;
#<dawa>,<ea> B, 32 i — Dbit oT destination

BTST Dn, <ea> 8, 32 ~ (< bit number> of destination) — Z
#<data>,<ea> 8, 32
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3.6 BIT FIELD OPERATIONS

The MC68020 supports variable length bit field operations on fields of up to 32 bits. The
bit field insert (BFINS) inserts a value into a bit field. Bit field extract unsigned (BFEXTU)
and bit field extract signed (BFEXTS) extracts a value from the field. Bit field find first one
(BFFFO) finds the first bit that is set in a bit field. Also included are instructions that are
analagous to the bit manipulation operations; bit field test (BFTST), bit field test and set
(BFSET), bit field test and clear (BFCLR), and bit field test and change (BFCHG).

Table 3-6 is a summary of the bit field operations.

Table 3-6. Bit Field Operations

Operand Operand

Instruction Syntax Size Operation
BFCHG <ea> {offset:width} 1-32 ~ Field — Field
BFCLR <ea> {offset:width} 1-32 0's — Field
BFEXTS <ea> {offset:width},Dn 1-32 Field — Dn; Sign Extended
BFEXTU <ea> [offset:width},Dn 1-32 Field — Dn; Zero Extended
BFFFO <ea> {offset:width},Dn 1-32 Scan for first bit set in Field; offset = Dn
BFINS Dn, < ea> [offset:width} 1-32 Dn — Field
BFSET <ea> {offset:width} 1-32 1's — Field
BFTST < ea> {offset:width} 1-32 Field MSB — N; ~ (OR of all bits in field) — Z

NOTE: All bit field instructions set the N and Z bits as shown for BFTST before performing the specified operation.

3.7 BINARY CODED DECIMAL OPERATIONS

Multiprecision arithmetic operations on binary coded decimal numbers are accomplish-
ed using the following instructions: add decimal with extend (ABCD), subtract decimal
with extend (SBCD), and negate decimal with extend (NBCD). PACK and UNPACK allow
conversion of byte encoded numeric data, such as ASCIl or EBCDIC strings, to BCD
data and vice versa. Table 3-7 is a summary of the binary coded decimal operations.

Table 3-7. Binary Coded Decimal Operations

Operand Operand
Instruction Syntax Size Operation
ABCD Dn, Dn 8 source1g + destination1g + X — destination
—(An), —(An) 8
NBCD <ea> 8 0 — destination1p — X — destination
PACK —(An), —(An), 16—8 unpacked source + immediate data — packed destination
#<data>
Dn, Dn, #<data> 16—8
SBCD Dn, Dn 8 destination{p — sourcejg — X — destination
—(An), —(An) 8
UNPK = (An), —(An), 8—16 packed source — unpacked source
#<data> unpacked source + immediate data —
Dn, Dn,#<data> 8—16 unpacked destination
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3.8 PROGRAM CONTROL OPERATIONS

Program control operations are accomplished using a set of conditional and uncondi-
tional branch instructions and return instructions. These instructions are summarized in

Table 3-8.
Table 3-8. Program Control Operations
Operand Operand
Instruction Syntax Size Operation
Conditional
Bcc <label > 8, 16, 32 if condition true, then PC + d — PC
DBcc Dn, <label> 16 if condition false, then Dn — 1 — Dn
ifDn # — 1, then PC + d — PC
Scc <ea> 8 if condition true, then 1’s = destination; else 0's — destination
Unconditional
BRA < label> 8, 16, 32 PC + d — PC
BSR <label> 8, 16, 32 SP — 4 — Sp; PC — (SP); PC + d — PC
CALLM #<data>,<ea> none Save module state in stack frame; load new module state from
destination
JMP <ea> none destination — PC
JSR <ea> none SP — 4 — SP; PC — (SP); destination — PC
Returns
RTD #<d> 16 (SP) — PC; SP + 4 + d — SP
RTM Rn none Reload saved module state from stack frame: place module data
area pointer in Rn
RTR none none (SP) — CCR; SP + 2 — SP; (SP) — PC; SP + 4 — SP
RTS none none (SP) — PC; SP + 4 — SP

The conditional instructions provide testing and branching for the following conditions:

CC — carry clear
CS — carry set

EQ — equal

F  — never true*

GE — greater or equal
GT — greater than

HI  — high

LE — less or equal

LS
LT
Mi
NE
PL
T
VC
VS

— low or same
— less than

— minus

— not equal

— plus

— always true*
— overflow clear
— overflow set

*Not available for the Bcc or cpBcc instructions.
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3.9 SYSTEM CONTROL OPERATIONS

System control operations are accomplished by using privileged instructions, trap
generating instructions, and instructions that use or modify the condition code register.
These instructions are summarized in Table 3-9.

Table 3-9. System Control Operations

Operand Operand
Instruction Syntax Size Operation
Privileged
ANDI #<data>, SR 16 immediate data A SR — SR
EORI #<data>, SR 16 immediate data ® SR — SR
MOVE <ea>, SR 16 source — SR
SR, <ea> 16 SR — destination
MOVE USP, An 32 USP — An
An, USP 32 An — USP
MOVEC Rc, Rn 32 Rc — Rn
Rn, Rc 32 Rn — Rc
MOVES Rn, <ea> 8, 16, 32 Rn — destination using DFC
<ea>, Rn source using SFC — Rn
ORI #<data>, SR 16 immediate data V SR — SR
RESET none none assert RESET line
RTE none none (SP) — SR; SP + 2 — SP; (SP) — PC; SP + 4 — SP;
Restore stack according to format
STOP #<data> 16 immediate data — SR; STOP
Trap Generating
BKPT #<data> none if breakpoint cycle acknowledged, then execute returned
operation word, else trap as illegal instruction
CHK <ea>, Dn 16, 32 if Dn<0 or Dn> (ea), then CHK exception
CHK2 <ea>, Rn 8, 16, 32 if Rn<lower bound or Rn>upper bound, then CHK exception
TRAP #<data> none SSP — 2 — SSP; Format and Vector Offset — (SSP);
SSP — 4 — SSP; PC — (SSP); SSP — 2 — SSP;
SR — (SSP); Vector Address — PC
TRAPcc none none if cc true, then TRAP exception
#<data> 16, 32
TRAPV none none if V then take overflow TRAP exception
Condition Code Register
ANDI #<data>, CCR 16 immediate data A CCR — CCR
EORI #<data>, CCR 16 immediate data ® CCR — CCR
MOVE <ea>, CCR 16 immediate data — CCR
CCR, <ea> 16 CCR — destination
ORI #<data>, CCR 16 immediate data V CCR — CCR




3.10 MULTIPROCESSOR OPERATIONS

Communication between the MC68020 and other processors in the system is ac-
complished by using the TAS, CAS, CAS2 instructions (which execute indivisible read-
modify-write bus cycles), and coprocessor instructions. These instructions are sum-
marized in Table 3-10.

Table 3-10. Multiprocessor Operations

Operand Operand
Instruction Syntax Size Operation
Read-Modify-Write
CAS Dc, Du, <ea> 8,16, 32 destination — Dc — CC; if Z then Du — destination
else destination — Dc
CAS2 Dc1:Dc2, Dul:Du2, 8, 16, 32 dual operand CAS
(Rn):(Rn)
TAS <ea> 8 destination — 0; set condition codes; 1 — destination (7]
Coprocessor
cpBcc <label> 16, 32 if cpcc true then PC + d — PC
cpDBce <label>, Dn 16 if cpcc false then Dn — 1 — Dn
if Dn # — 1, then PC + d — PC
cpGEN User Defined User Defined operand — coprocessor
cpRESTORE <ea> none restore coprocessor state from <ea>
cpSAVE <ea> none save coprocessor state at <ea>
cpSce <ea> 8 if cpce true, then 1's — destination; else 0's — destination
cpTRAPcc none none if cpcc true then TRAPcc exception
#<data> 16, 32
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SECTION 4
SIGNAL DESCRIPTION

This section contains a brief desciption of the input and output signals by their func-
tional groups, as shown in Figure 4-1. Each signal is explained in a brief paragraph with
reference (if applicable) to other sections that contain more detail about the function be-
ing performed.

NOTE
The terms assertion and negation are used extensively. This is done to avoid
confusion when dealing with a mixture of “active-low” and ‘“active-high”
signals. The term assert or assertion is used to indicate that a signal is active or
true, independent of whether that level is represented by a high or low voltage.
The term negate or negation is used to indicate that a signal is inactive or false.

CDIS
FCO-FC2  Function Codes |€&——————— Cache Control
A0-A31 < Address Bus K Interrupt Priority [PLO-iPL2
Interrupt
IPEND Control
DO-D31 Data Bus .
MC68020 AVEC
e
Microprocessor
Sizo BR N
] I S
Transfer Size { si1Z1 8G * ArblBt:J;tlon
- —
BGACK Control
e
ECS
f € ————————
0oCs RESET 3
- e
RMC AALT Bus
4_—__ [————————> } Exception
AS BERR Control
Asynchronous € — /
Bus 4 (___#S
Control R/W CLK
DBEN
USACKU Vee o
L DSACK1 GND (8)

Figure 4-1. Functional Signal Groups
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4.1 FUNCTION CODE SIGNALS (FCO through FC2)

These three-state outputs identify the processor state (supervisor or user) and the ad-
dress space of the bus cycle currently being executed as defined in Table 4.1.

Table 4-1. Function Code Assignments

4
N
m
pi

Fi

(=]

Cycle Type
(Undefined, Reserved)*
User Data Space
User Program Space
(Undefined, Reserved)*
(Undefined, Reserved)*
Supervisor Data Space

- =2 2o 00 oo
- 00 = = o oo
o = 0o =0 = ol

Supervisor Program Space
1 1 1 CPU Space
* Address space 3 is reserved for user definition, while 0 and 4 are
reserved for future use by Motorola.

By decoding the function codes, a memory system can utilize the full 4 gigabyte address
range for several address spaces.

4.2 ADDRESS BUS (A0 through A31)

These three-state outputs provide the address for a bus transfer during all cycles except
CPU-space references. During CPU-space references the address bus provides CPU
related information. The address bus is capable of addressing 4 gigabytes (232) of data.

4.3 DATA BUS (DO through D31)

These three-state, bidirectional signals provide the general purpose data path between
the MC68020 and all other devices. The data bus can transmit and accept data using the
dynamic bus sizing capabilities of the MC68020. Refer to 4.4 SIZE (S1Z0, SIZ1) for addi-
tional information.

4.4 TRANSFER SIZE (SIZ0, SIZ1)

These three-state outputs are used in conjunction with the dynamic bus sizing
capabilities of the MC68020. The SIZ0 and SIZ1 outputs indicate the number of bytes of
an operand remaining to be transferred during a given bus cycle.

4.5 ASYNCHRONOUS BUS CONTROL SIGNALS

The asynchronous bus control signals for the MC68020 are described in the following
paragraphs.

4.5.1 External Cycle Start (ECS)

This output is asserted during the first one-half clock of every bus cycle to provide the
earliest indication that the MC68020 is starting a bus cycle. The use of this signal must



be validated later with address strobe, since the MC68020 may start an instruction fetch
cycle and then abort it if the instruction word is found in the cache. The MC68020 drives
only the address, size, and function code outputs (not address strobe) when it aborts a
bus cycle due to cache hit.

4.5.2 Operand Cycle Start (OCS)

This three-state output signal has the same timing as ECS, except that it is asserted only
during the first bus cycle of an operand transfer.

4.5.3 Read-Modify-Write Cycle (RMC)

This three-state output signal provides an indication that the current bus operation is an
indivisible read-modify-write cycle. This signal is asserted for the duration of the read-
modify-write sequence. RMC should be used as a bus lock to insure integrity of instruc-
tions which use the read-modify-write operation.

4.5.4 Address Strobe (AS)

This three-state output signal indicates that valid function code, address, size, and R/W
state information is on the bus.

4.5.5 Data Strobe (DS)

In a read cycle, this three-state output indicates that the slave device should drive the
data bus. In a write cycle, it indicates that the MC68020 has placed valid data on the data
bus.

4.5.6 Read/Write (R/W)

This three-state output signal defines the direction of a data transfer. A high level in-
dicates a read from an external device, a low level indicates a write to an external device.

4.5.7 Data Buffer Enable (DBEN)

This three-state output provides an enable to external data buffers. This signal allows the
R/W signal to change without possible external buffer contention.

This pin is not necessary in all systems.

4.5.8 Data Transfer and Size Acknowledge (DSACKO0, DSACK1)

These inputs indicate that a data transfer is complete and the amount of data the exter-
nal device accepted or provided. During a read cycle, when the processor recognizes
DSACKYX, it latches the data and then terminates the bus cycle; during a write cycle,
when the processor recognizes DSACKX, the bus cycle is terminated. See 5.1.1 Dynamic
Bus Sizing for furiner informaiion on DSACKX encodings.

The processor will synchronize the DSACKx inputs and allow skew between the two in-
puts of up to one half of a clock.
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4.6 CACHE DISABLE (CDIS)

This input signal dynamically disables the on-chip cache. The cache is disabled internal-
ly after the cache disable input is asserted and synchronized internally. The cache will be
reenabled internally after the input negation has been synchronized internally. See SEC-
TION 7 ON-CHIP CACHE MEMORY for further information.

4.7 INTERRUPT CONTROL SIGNALS

The following paragraphs describe the interrupt control signals for the MC68020. Refer to
5.25 INTERRUPT OPERATION for additional information.

4.7.1 Interrupt Priority Level (IPLO, IPL1, IPL2)

These inputs indicate the encoded priority level of the device requesting an interrupt.
Level seven is the highest priority and cannot be masked; level zero indicates that no in-
terrupts are requested. The least significant bit is IPLO and the most significant bit is
IPL2.

4.7.2 Interrupt Pending (IPEND)

This output indicates that the encoded interrupt priority level active on the IPLO-IPL2
inputs is higher than the current level of the interrupt mask in the status register or that a
non-maskable interrupt has been recognized.

4.7.3 Autovector (AVEC)

The AVEC input is used to request internal generation of the vector number during an in-
terrupt acknowledge cycle.

4.8 BUS ARBITRATION SIGNALS

The following paragraphs describe the three-wire bus arbitration pins used to determine
which device in a system will be the bus master. Refer to 5.3 BUS ARBITRATION for addi-
tional information.

4.8.1 Bus Request (BR)

This input is wire-ORed with all request signals from all potential bus masters and in-
dicates that some device other than the MC68020 requires bus mastership.

4.8.2 Bus Grant (BG)

This output signal indicates to potential bus masters that the MC68020 will release
ownership of the bus when the current bus cycle is completed.
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4.8.3 Bus Grant Acknowledge (BGACK)
This input indicates that some other device has become the bus master. This signal
should not be asserted until the following conditions are met:
1) BG (bus grant) has been received through the bus arbitration process,
2) AS is negated, indicating that the MC68020 is not using the bus,
3) DSACKO and DSACKT1 are negated indicating that the previous external device is
not using the bus, and
4) BGACK is negated, which indicates that no other device is still claiming bus
mastership.

BGACK must remain asserted as long as any other device is bus master.

4.9 BUS EXCEPTION CONTROL SIGNALS
The following paragraphs describe the bus exception control signals for the MC68020.

4.9.1 Reset (RESET)

This bidirectional open-drain signal is used as the systems reset signal. If RESET is
asserted as an input, the processor will enter reset exception processing. As an output,
the processor asserts RESET to reset external devices, but is not affected internally.
Refer to 6.3.1 Reset for more information.

4.9.2 Halt (HALT)

The assertion of this bidirectional, open-drain signal stops all processor bus activity at
the completion of the current bus cycle. When the processor has been halted using this
input, all control signals will be placed in their inactive state, and the function code and
address buses will remain driven.

When the processor has stopped executing instructions, due to a double bus fault condi-
tion, the HALT line is driven by the processor to indicate to external devices that the pro-
cessor has stopped.

4.9.3 Bus Error (BERR)
This input signal informs the processor that there has been a probiem with the bus cycle
currently being executed. These problems may be the result of:

1) Non-responding devices,

2) Interrupt vector number acquisition failure,

3) lllegal accesses as determined by a memory management unit, or

4) Various other application dependent errors.

The bus error signal interacts with the halt signal to determine if the current bus cycle

T P P N | Py PR R P ™ _ £ 1. AMrmeAaTEI ARl ~ R AAEEES A TSI AR
SINOUUIU DE Te-TUll Ul abulled willl a4 DUS e11ul. neiel 1V OEVIIVN 9 DUOD VFECNRAITIVIN 10Ul
additional information.
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4.10 CLOCK (CLK)

The MC68020 clock input is a TTL-compatible signal that is internally buffered to develop
internal clocks needed by the processor. The clock should not be gated off at any time
and must conform to minimum and maximum period and pulse width times.

4.11 SIGNAL SUMMARY

Table 4-2 provides a summary of the electrical characteristics of the signals discussed in
the previous paragraphs.

Table 4-2. Signal Summary

Signal Function Signal Name Input/Output Active State Three-State
Function Codes FCO-FC2 Output High Yes
Address Bus AO-A31 Output High Yes
Data Bus DO0-D31 Input/Output High Yes
Size S1Z0-S1Z1 Qutput High Yes
External Cycle Start ECS Output Low No
Operand Cycle Start 0CsS Output Low No
Read-Modify-Write Cycle RMC Output Low Yes
Address Strobe AS Output Low Yes
Data Strobe DS Output Low Yes
Read/Write R/W Output High/ Low Yes
Data Buffer Enable DBEN Output Low Yes
Data Transfer and Size Acknowledge | DSACKO-DSACK1 Input Low —
Cache Disable CDIS Input Low -
Interrupt Priority Level PLO-TPL2 Input Low —
Interrupt Pending IPEND Output Low No
Autovector AVEC Input Low -
Bus Request BR Input Low —
Bus Grant BG Output Low No
Bus Grant Acknowledge BGACK Input Low —
Reset RESET Input/Output Low No*
Halt HALT Input/Output Low No*
Bus Error BERR Input Low -
Clock CLK Input — —
Power Supply Vee Input — —
Ground GND Input — —

*QOpen Drain



SECTION 5
BUS OPERATION

This section describes the control signal and bus operation during data transfer opera-
tions, bus arbitration, bus error and halt conditions, and reset operation.

NOTE

In the paragraphs dealing with bus transfers, a “port” refers to the external data
bus width at the slave device (memory, peripheral, etc.).

During a write cycle, the MC68020 always drives all sections of the data bus.

The term ‘“synchronization” is used repeatedly when discussing bus operation. This
delay is the time period required for the MC68020 to sample an external asynchronous in-
put signal, determine whether it is high or low, and synchronize the input to the internal
clocks of the processor. Figure 5-1 shows the relationship between the clock signal, an
external input, and its associated internal signal that is typical for all of the asyn-
chronous inputs.

Furthermore, for all inputs, there is a sample window during which the processor latches
the level of the input. This window is illustrated in Figure 5-2. In order to guarantee the
recognition of a certain level on a specific falling edge of the clock, that level must be
held stable on the input through the sample window. If an input makes a transition during
the sample window, the level recognized by the processor is not predictable; however,
the processor will always resolve the latched level to a logic high or low before taking ac-
tion on it. One exception to this rule is for the late assertion of BERR (see 5.2.5.1 BUS
ERROR OPERATION), where the signal must be stable through the window or the pro-
cessor may exhibit erratic behavior.

w \_/ W/ S
| [
\ | r
INT \ :

[
|<——— Sync Delay ————|

EXT

—={—=

Figure 5-1. Relationship Between External
and Internal Signals
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Figure 5-2. Sample Window

5.1 OPERAND TRANSFER MECHANISM

The MC68020 architecture supports byte, word, and long word operands allowing access
to 8-, 16-, and 32-bit data ports through the use of the data transfer and size acknowledge
inputs (DSACKO and DSACK1). The DSACKXx inputs are controlled by the slave device cur-
rently being accessed and are discussed further in 5.1.1 Dynamic Bus Sizing.

The MC68020 places no restrictions on the alignment of operands in memory, that is,
word and long word operands may be located at any byte boundary. However, instruction
alignment on word (even byte) boundaries is enforced for maximum efficiency and in
order to maintain compatibility with earlier members of the M68000 Family. The user
should be aware that misalignment of word or long word operands may cause the
MC68020 to perform multiple bus cycles for the operand transfer and therefore, pro-
cessor performance is optimized if word and long word memory operands are aligned on
word or long word boundaries, respectively. Refer to 5.1.3 Effects of Dynamic Bus Sizing
and Operand Misalignment for a discussion of the impact of dynamic bus sizing and
operand alignment.

5.1.1 Dynamic Bus Sizing

The MC68020 allows operand transfers to or from 8-, 16-, and 32-bit ports by dynamically
determining the port size during each bus cycle. During an operand transfer cycle, the
slave device signals its port size (byte, word, or long-word) and transfer status (complete
or not complete) to the processor through the use of the DSACKXx inputs. The DSACKX in-
puts perform the same transfer acknowledge function as does the DTACK input of other
processors in the M68000 Family as well as informing the MC68020 of the current port
width. See Table 5-4 for DSACKx encodings and assertion results.

For example, if the processor is executing an instruction that requires a read of a long
word operand it will attempt to read 32 bits during the first bus cycle (refer to 5.1.2 Mis-
alignment of Bus Transfers). If the port responds that it is 32 bits wide, the MC68020
latches all 32 bits of data and continues with the next operation. If the port responds that
it is 16 bits wide, the MC68020 latches the 16 bits of valid data and runs another cycle to
obtain the other 16 bits. An 8-bit port is handled similarly, but with four read cycles.
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Each port is fixed in assignment to particular sections of the data bus. A 32-bit port is
located on data bus bits 31 through 0, a 16-bit port is located on data bus bits 31 through
16, and an 8-bit port is located on data bus bits 31 through 24. The MC68020 makes these
assumptions in order to locate valid data. This particular scheme minimizes the number
of bus cycles needed to transfer data to the 8- and 16-bit ports. The MC68020 will always
attempt to transfer the maximum amount of data on all bus cycles; i.e. for a long word
operation, it always assumes that the port is 32 bits wide when beginning the bus cycle.

Figure 5-3 shows the required organization of data ports on the MC68020 bus for 8-, 16-,
and 32-bit devices. The “OPn” labels in Figure 5-3 define the various operand bytes, with
OPO being the most significant. Figure 5-4 shows the internal organization of byte, word,
and long word operands. The four bytes shown in Figure 5-3 are routed to the external
data bus via the data muitiplex and duplication hardware which is also shown. This hard-
ware provides the basic mechanism through which the MC68020 supports dynamic bus
sizing and operand misalignment.

The multiplexor operation, as detailed in Figure 5-3, shows the multiplexor connections
for different combinations of address and data sizes. The multiplexor takes the four
bytes of the 32-bit bus and routes them to their required positions. For example, OPO can
be routed to D31-D24, as would be the normal case, or it can be routed to any other byte
position in order to support a misaligned transfer. The same is true for any of the operand
bytes. The positioning of bytes is determined by the size (S1Z1 and S1Z0) and address (AO
and A1) outputs.

MC68020

OPO OP1 OP2 OP3
Internal Source/Destination | 0 1 l 2 I 3
Multiplexor I Routing and Duplication l
External / . / \ X
Data Bus [ D31-D24 D23-D16 D168 D7-DO |
Address \ A Y
XXXXXXXO Byte O ] Byte 1 Byte 2 Byte 3 32-Bit Port
Increasing
Memory
Addresses
XXXXXXXO Byte O Byte 1 .
16-Bit Port
2 Byte 2 Byte 3
a b
XXXXXXX0 Byte O
1 Byte 1 oBi
2 Byte 2 -Bit Port
3 Byte 3

Figure 5-3. MC68020 Interface to Various Port Sizes
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Long Word Operand [ oro T opt T op2 [ op3 |
31 0

Word Operand [ or2 | orz 1}

Byte Operand OP3
7

Figure 5-4. Internal Operand Representation

The multiplexor routes and/or duplicates the bytes of the bus to allow for any combina-
tion of aligned or misaligned transfers to take place. The S1Z0 and SIZ1 outputs indicate
the remaining number of bytes to be transferred during the next bus cycle.

The number of bytes transferred during a bus cycle will be equal to or less than the
operand size indicated by the SIZ0 and SiIZ1 outputs, depending on port width and
operand alignment. For example, during the first bus cycle of a long word transfer to a
word port, the size outputs will indicate four bytes are to be transferred although only two
bytes will be moved on that cycle. Table 5-1 shows the encodings of SIZ1 and SIZ0.

Table 5-1. SIZE Output Encodings

Siz1 - Siz0 Size
0 1 Byte
1 0 Word
1 1 3 Byte
0 0 Long Word

The address lines A0 and A1 also effect operation of the data multiplexor. During an
operand transfer (instruction or data), A2-A31 indicate the long word base address of that
portion of the operand to be accessed, while A0 and A1 give the byte offset from the
base. For example, consider a word write to a long word address with an offset of one
byte (A1/A0 =01). The MC68020 will initiate the transfer (S121/S120 =10, A1/A0 =01) and
the data multiplexor will place OP2 and OP3 (see Figure 5-3 and 5-4) on D16-D23 and
D8-D15 respectively. Table 5-2 shows the encodings of A1 and AQ and the corresponding
byte offsets from the long word base.

Table 5-2. Address Offset Encodings

A1l A0 Offset
0 0 +0 Bytes
0 1 +1 Byte
1 0 +2 Bytes
1 1 +3 Bytes




Table 5-3 describes the use of SIZ1, S1Z0, A1, and AQ in defining the transfer pattern from
the MC68020’s internal multiplexor to the external data bus.

Table 5-3. MC68020 Internal to External Data Bus Multiplexor

Source/ Destination
Transfer Size Address External Data Bus Connection
Size SiZ1 SiZ0 Al A0 D31:D24  D23:D16  D15:D8 D7:D0
Byte 0 1 X X [ ops [ opa T or3 T or3 ]
1 0 X 0 [ o2 [ ops ] op2 | or3 |
Word
1 0 X 1 [ or2 T op2 T o3 | or2 ]
1 1 0 0 [ opt ] ore T o3 T opi*]
1 1 0 1 [ ort ] o ] or2 T ops |
3 Byte
1 1 1 0 [ ot | o2 | op1 | op |
1 1 1 1 [or T om [ omx [ ort |
0 0 0 0 [ oo ] ot ] op2 [ or3 |
0 0 0 1 [ oro [ oo | o [ or |
Long Word
0 0 1 0 [ oo [ ot | opo [ ort ]
0 0 1 1 [ oro ] opo ] opi*x ] opo |

*On write cycles this byte is output, on read cycles this byte is ignored.

x=don't care.

NOTE: The OP lables on the external data bus refer to a particular byte of the operand that will be read or written on that
section of the data bus (see Figure 5-4).

Table 5-4 describes the encodings of the DSACKXx pins to signal current port size.

Table 5-4. DSACK Codes and Results

DSACK1 DSACKO Result
H H Insert Wait States in Current Bus Cycle
H L Complete Cycle — Data Bus Port Size is 8 Bits
L H Complete Cycle — Data Bus Port Size is 16 Bits
L L Complete Cycle — Data Bus Port Size is 32 Bits

55



Figure 5-5 shows the basic control flow associated with an aligned long word transfer to
a 16-bit port. Refer to Figure 5-6 for timing relationships. The high order word of the long
word (OP0O and OP1) will be transferred to the port located on D16-D31 during the first bus
operation. The size outputs will indicate a long word operand and the lower address bits
will show a zero offset from the long word base (SIZ1/S1Z0/A1/A0 =0000). The port
responds to the processor by asserting the DSACK inputs to indicate completion of a
16-bit transfer (DSACK1/DSACKO = LH). The MC68020 terminates this cycle and begins a
second cycle to complete the transfer. For the second cycle, the size and address out-
puts will indicate that a word transfer is to occur on the upper data bus D16-D31
(S1Z1/S1Z0/A1/A0 = 1010). The base offset has been incremented by two in order to access
the next highest word location. The processor also multiplexes the lower word of the
operand to D31-D16 and the port again responds by asserting the DSACKx inputs
(DSACK1/DSACKO = LH).

Long Word Operand
[ opo ot | op2 | op3
31 Y 0
Data Bus
D31 Y D16
Word Memory MC68020 Memory Control
MSB LSB SIZ1 SI1Z20 AL A0 DSACK1 DSACKO
QPO OP1 0 0 0 0 L H
OP2 OP3 1 Q 1 0 L H

Figure 5-5. Example of Long Word Transfer to Word Bus
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Figure 5-6. Long Word Operand Write Timing (16-Bit Data Port)
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The control flow for an aligned long word transfer to an 8-bit port is shown in Figure 5-7.
Four bus cycles will be required to transfer this operand, moving one byte per cycle.
Similar to the previous example, the size outputs indicate a long word transfer during the
first cycle, three byte during the second, word during the third, and byte during the final
cycle. See Table 5-3 for processor multiplexor operation during this transfer. Figure 5-8
shows timing relationships for these transfers.

Long Word Operand
[[oro T op1 | oP2 oP3 ]
31 * 0

Data Bus

D31 D24
Byte Memory MC68020 Memory Control
siz1 SIZ0 Al A0 DSACKi DSACKO
OPO 0 0 0 0o H L
OP1 1 1 0 1 H L
OP2 1 0 1 0 H L
OP3 0 1 1 1 H L

Figure 5-7. Example of Long Word Transfer to Byte Bus
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Figure 5-8. Long Word Operand Write Timing (8-Bit Data Port)
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5.1.2 Misalignment of Bus Transfers

In the 32-bit architecture of the MC68020, it is possible to execute an operand transfer on
a memory address boundary that may not fall on an equivalent operand size boundary.
Examples are words transferred to odd addresses and long words transferred to ad-
dresses other than long word boundaries. The MC68000, MC68008, and MC68010 im-
plementations allow long word transfers on odd word boundaries but force an excep-
tion if word or long word operand transfers are attempted at odd byte addresses.

The MC68020 does not enforce any data alignment restrictions. Some performance
degradation can occur due to the multipie bus accesses that the MC68020 must make
when long word (word) operand accesses do not fall on long word (word) boundaries.

Note that instructions, and their associated (if any) extension words, are required to fall
on word address boundaries, but this is not required for program space operand
references. The MC68020 forces an address error exception if an instruction prefetch is
attempted at an odd address. This occurs when an instruction (e.g., a branch with an odd
offset) leaves the program counter set to an odd address.

Dynamic bus sizing also affects the transfer position of misalignment operands.

NOTE
In the following examples for misaligned transfers, xxx in a byte denotes that
the value is left unchanged.

Figure 5-9 shows the control associated with transferring a long word operand to an
odd address in word organized memory. Figure 5-10 shows the timing relationship for
this operation. This transfer requires that the MC68020 place a long word in memory
starting at the least significant byte of long word 0. This transfer crosses two word boun-
daries and requires three bus cycles to complete. The first cycle executes with
A2/A1/A0 =001) and the size outputs indicating a long word transfer (S121/S1Z0 = 00). The
word addressed during this transfer contains only one byte of the destination and will
respond with DSACK1/DSACKO = LH (port width = 16 bits). The system designer must en-
sure that the unused byte of the word accessed during this cycle does not receive an
enable (refer to 5.1.4 Address, Size, and Data Bus Relationships). The processor executes

Long Word Operand

[ oro oP1 [ OP2 0P3 ]
31 W 0
Data Bus

D31 ¢ D16
Word Memory MC68020 Memory Control
MSB  LSB siz1 S1z0 A2 Al A0 _DSACKi DSACKO
XXX OPO 0 0 0 0 1 L H
OP1 OP2 1 1 0 1 0 L H
OP3 XXX 0 1 1 0 0 L H

Figure 5-9. Misaligned Long Word Transfer to Word Bus Example

5-10



w
o

S2 S4 SO S2 S4 SO S2 S4
CLK

%

A2-A31

my
%2

<<¢i/g\/g
N

O
nl

;

C
(
S

DSACKO

DSACK1

&l
2

i

D24-D31 (__oro_) 0P 0P3
D16-D23 —— (_oro ) oP2 —(__or3
08015 ———rl__OPI W OP1 0P3

l€——Byte Write ——+—Word Write ——)'*—the Write =———3»

Long Word Operand Write
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the next transfer with A2/A1/A0=010 and SIZ1/SI1Z0=11 (three bytes remaining). The
memory accepts two bytes on this transfer and again asserts DSACK1/DSACKO = LH.
The final cycle is executed with the transfer of a single byte (S1Z21/S1Z0 =01) to address
A2/A1/A0 = 100.

Figure 5-11 shows an example of a word transfer to an odd address in word organized
memory. This example is similar to the one shown in Figure 5-9 except that the operand
is of word size and requires only two bus cycles. Figure 5-12 shows the signal timing
associated with this example.

Word Operand

[ om ors |

15 7 0

Data Bus

D31 & D16
Word Memory MC68020 Memory Control
MSB LSB Siz1 SIZ0 A2 Al A0 DSACK1T DSACKO
XXX OoP2 1 0 0 0 1 L H
OP3 XXX 0 1 0 1 0 L H

Figure 5-11. Example of Misaligned Word Transfer to Word Bus
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DSACK1 \ / \ /
DBEN ; \

D24-D31 oP2 OP3
D16-D23 0oP2 0P3
D8-D16 OoP3 OP3
DO-D7 OoP2 oP3

l€————— Word Operand Write to A1/ A0 = 01—
l————— Word Write :l]‘ Byte Write ———3»{

Figure 5-12. Misaligned Word Transfer to Word Bus
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Figure 5-13 shows an example of a long word transfer to an odd address in long-word-
organized memory. In this example, a long word access is attempted beginning at the
least significant byte of a long-word-organized memory. Thus, only one byte is transfer-
red in the first bus cycle. The second bus cycle then consists of a three byte access to a
long word boundary. Since the memory is long word organized, no further bus cycles are
necessary. Figure 5-14 shows the signal timing associated with this example.

Long Word Operand

[ oo | or o2 [ ops |
31 v 0
Data Bus
D31 \ DO
Long Word Memory MC68020 Memory Control

MSB UMB  LMB LSB sizi Siz0 A2 Al A0 DSACKi DSACKO
XXX XXX XXX 0PO 0 0 0 1 1 L L
OP1 OP2 0P3 XXX 1 1 1 0 0 L L

Figure 5-13. Misaligned Long Word Transfer to Long Word Bus

5.1.3 Effects of Dynamic Bus Sizing and Operand Misalignment

The combination of operand size, operand alignment, and port size affect the operation
of the MC68020 operand transfer mechanism by dictating the number of bus cycles re-
quired to perform a particular memory access. Table 5-5 shows the number of bus cycles
that are required for different operand sizes through different port sizes based on the
alignment of that operand.

Table 5-5. Memory Alignment and Port Size Influence on Bus Cycles

Number of Bus Cycles
[ Ara0 00 01 10 11
Instruction* 1.2:4 N/A N/A N/A
Byte Operand 1:1:1 1:1:1 1:1:1 1:1:1
Word Operand 1:1:2 1.2:2 1:1:2 2:2:2
Long-Word Operand 1:2:4 2:3:4 2:2:4 2:3:4

Data Port Size 32-Bits: 16-Bits: 8-Bits
*Instruction prefetches are always two words from a long word boundary.

As can be seen in this table, the MC68020 bus throughput can be significantly affected
by port size and alignment. The MC68020 system designer should be aware of and ac-
count for these effects, particularly in time critical applications.

Table 5-5 shows that the processor always prefetches instructions by reading two words
from a long word boundary. When the MC68020 prefetches from the instruction stream, it
always reads a long word from an even word address (A1/A0 = 00), regardless of port size
or alignment.
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Figure 5-14. Misaligned Write Cycles to 32-Bit Data Port
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5.1.4 Address, Size, and Data Bus Relationships

The dynamic bus capabilities of the MC68020, coupled with the allowance for misaligned
operands, create an extremely powerful and flexible bus structure. Correct external inter-
pretation of bus control signals is critical to ensure valid data transfer operation.

The MC68020 system designer should ensure that data ports are aligned as discussed in
5.1.1 Dynamic Bus Sizing such that the MC68020 is able to route data to the correct loca-
tions. It is also required that the correct byte data strobes (four, for a long word memory)
be generated which enable only those section of the data port(s) which are active during
the current bus cycle. The MC68020 always drives all sections of the data bus during a
write cycle, so this necessitates careful control of the enable signals for independent
bytes of a data port.

For example, consider the bus transfer operation illustrated in Figure 5-9. The transfer
described is a long word write to an odd address in word-organized memory, requiring
three bus cycles to complete. Both the first and the last transfers require writing a single
byte to a word address. In order not to overwrite those bytes which are not involved in
these transfers, no byte data strobe should be asserted for those bytes.

The required active bytes of the data bus for any given bus transfer are a function of the
size (SIZ1/S1Z0) and lower address (A1/A0) outputs of the MC68020 and are shown in
Table 5-6. Individual data strobes for each byte of the bus can be generated by qualifying

the above enables with data strobe (DS). Devices residing on 8-bit ports can utilize DS
alone since there is only one valid byte for any transfer.

Figure 5-15 shows a logic diagram of one method of generating byte data selects for 16
and 32-bit ports from the size and address encodings.

Table 5-6. Data Bus Activity for Byte, Word, and Long Word Ports

Data Bus Active Sections
Transfer Byte (B) — Word (W) — Long Word (L) Ports
Size Siz1 S120 A1l A0 D31-D24 D23-D16 D15-D8 D7-D0O
0 1 0 0 B WL — — —
Byte 0 1 0 1 B W L - —
0 1 1 0 B W - L —
0 1 1 1 B W — L
1 0 0 0 BWL W L — —
1 0 0 1 B W L L -
Word 1 0 1 0 B W w L L
1 0 1 1 B W — L
1 1 0 0 B WL W L L -
Three- 1 1 0 1 B W L L L
Byte 1 1 1 0 B W W L L
1 1 1 1 B W — L
0 0 0 0 B WL W L L L
Long 0 0 0 1 B W L L L
Word 0 0 1 0 B W W L L
0 0 1 1 B W — L
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ubD = Upper Data (16-Bit Port)
LD = Lower Data (16-Bit Port)

Figure 5-15. Byte Data Select Generation for 16- and 32-Bit Ports
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5.2 BUS OPERATION

Transfer of data between the processor and other devices involves the following signals:
1. Address Bus AO through A31,
2. Data Bus DO through D31, and
3. Control Signals.
The address and data buses are parallel, non-multiplexed buses used to transfer data
with an asynchronous bus protocol. In all bus cycles, the bus master is responsible for
deskewing all signals issued at both the start and the end of the cycle. In addition, the

bus master is responsible for deskewing the acknowledge and data signals from the
slave devices.

The following sections explain the data transfer operations, bus arbitration functions,
and exception processing.

5.2.1 Read Cycles

During a read cycle, the processor receives data from a memory or peripheral device. The
processor reads bytes in all cases. The MC68020 will read a byte, or bytes, as determined
by the operand size and alignment. See 5.1 OPERAND TRANSFER MECHANISM. If the
DSACKX inputs or BERR are not asserted during the sample window of the falling edge of
S2, wait cycles will be inserted in the bus cycle until either DSACK1/DSACKO or BERR is
recognized as being asserted.

A flowchart of a long word read cycle is shown in Figure 5-16 with positional signal infor-
mation shown in Figure 5-17. A flowchart of a byte read cycle is shown in Figure 5-18 with
byte and word read cycle timing shown in Figure 5-19. Actual read cycle timing diagrams
specified in terms of clock periods are shown in SECTION 10 ELECTRICAL
SPECIFICATIONS.

BUS MASTER
Address Device SLAVE

1) Set R/W to Read

2) Drive Function Code on FCO-FC2

3) Drive Address on A0-A31

4) Drive SIZ0-S|Z1 (Four Bytes)

5) Assert ECS/OCS for One-Half Clock
6) Assert Address Strobe (AS)

7) Assert Data Strobe (DS)

8) Assert Data Buffer Enable (DBEN)

Y

Present Data
1) Decode Address
2) Place Data on DO-D31
3) Assert Data Transfer and Size Acknowledge (DSACKx)

A

Acquire Data

1) Latch Data

2) Negate DS
3) Negate AS
4) Negate DBEN > Terminate Cycle
1) Remove Data from D0-D31
L Start Next Cycle | 2) Negate DSACK

Figure 5-16. Long Word Read Cycle Flowchart
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Figure 5-17. Long-Word Read Cycle Timing (32-Bit Data Port)
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BUS MASTER

Address Device

1) Set R/W to Read

2) Drive Function Code on FCO-FC2

3) Drive Address on A0-A31

4) Drive SiZ0-SIZ1 (One Byte)

5) Assert ECS/OCS for One-Half Clock
6) Assert Address Strobe (AS)

7) Assert Data Strobe (DS)

8) Assert Data Buffer Enable (DBEN)

SLAVE

Present Data

Acquire Data

1) Decode Address
2) Place Data on D0-D31,
D16-D23,
D8-D15, or
D0-D7
(Based on A0, A1, and Bus Width)
3) Assert Data Transfer and Size Acknowledge (DSACKX)

1) Latch Data
2) Negate DS
3) Negate AS

4) Negate DBEN

Terminate Cycle

Start Next Cycle

1) Remove Data from DO-D31
2) Negate DSACK

Figure 5-18. Byte Read Cycle Flowchart
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D8-D15 { 0P3
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Figure 5-19. Byte and Word Read Cycle Timing (32-Bit Data Port)
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5.2.2 Write Cycle

During a write cycle, the processor sends data to memory or a peripheral device. The
function of the operand transfer mechanism during a write cycle is identical to that dur-
ing a read cycle. See 5.1 OPERAND TRANSFER MECHANISM.

A flowchart of write cycle operation for words is shown in Figure 5-20. Byte and word
write cycle timing is shown in Figure 5-21. The actual write cycle timing diagrams
specified in terms of clock periods and details of both word and byte write cycle opera-
tions are given in SECTION 10 ELECTRICAL SPECIFICATIONS.

BUS MASTER SLAVE

Address Device

1) Set R/W to Write

2) Drive Function Code on FCO-FC2

3) Drive Address on A0-A31

4) Drive Size on SI1Z0-S1Z1 (Four Bytes)
5) Assert ECS/OCS for One-Half Clock
6) Assert Address Strobe (AS)

7) Assert Data Buffer Enable (DBEN)

8) Place Data on Data Bus

9) Assert Data Strobes (DS) > Present Data

1) Decode Address
2) Latch Data

Terminate Output Transfer << 3) Assert Data and Size Acknowledge (DSACK)
1) Negate _D_E
2) Negate AS
3) Remove Data from DO-D31
4) Negate DBEN > Terminate Cycle

1) Negate DSACK

[ Start Next Cycle ]

Figure 5-20. Write Cycle Flowchart

5.2.3 Read-Modify-Write Cycle

The read-modify-write cycle performs a read(s), modifies the data in the arithmetic-logic
unit and writes the data back to the same address(es). In the M68000 architecture this
process is indivisible. During the entire read-modify-write sequence the MC68020 asserts
the RMC signal to indicate that an indivisible operation is occurring. The MC68020 will
not issue a bus grant (BG) in response to a bus request (BR) during this operation.

The read-modify-write sequence is implemented to provide a means for secure inter-
task and/or inter-processor communication.

The test and set (TAS) and compare and swap (CAS and CAS2) instructions are the only
MC68020 instructions which utilize this feature.
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A flowchart of the read-modify-write cycle operation is shown in Figure 5-22. For the CAS
and CAS2 instructions, the operand read(s) and optional operand write(s) will use the
dynamic bus sizing and operand misalignment capabilities of the processor to transfer
up to two or four long word operands respectively. Thus, within both the read and write
phases of the indivisible cycle, there may be up to eight bus cycles to different ad-
dresses. Note that this can severely impact bus arbitration latency if CAS or CAS2
operands are not long word aligned in a 32-bit port. Figure 5-23 depicts positional clock
information for the read-modify-write operation. Actual timing diagrams specified in

terms of clock periods are given in SECTION 10 ELECTRICAL SPECIFICATIONS.

BUS MASTER

Lock Bus

1) Assert RMC

Start Input Transfer

1) Drive R/W to Read

2) Drive Function Code on FCO-FC2

3) Drive Address on A0-A31

4) Drive SIZ0-SIZ1_

5) Assert ECS/OCS for One-Half Clock
6) Assert Address Strobe (AS)

7) Assert Data Strobe (DS)

8) Assert DBEN

SLAVE

A

Y

Present Data

Terminate Input Transfer

A

1) Latch Data

2) Negate AS

3) Negate DS

4) Negate DBEN

5) Start Data Modification

1) Decode Address

2) Place Data on D0O-D31

3) Assert Data and Size Acknowledge
(DSACKx)

Terminate Cycle

Start Output Transfer

1) Set R/W to Write

2) Assert ECS/OCS for One-Half Clock
3) Assert AS

4) Assert DBEN

b) Place Data on DO-D31

6) Assert Data Strobe (DS)

®

If CAS2 Instruction and
Only One Operand Read,
Then Go to @®); If
Operands Do Not Match

Terminate Output Transfer

1) Negate DS

2) Negate AS

3) Remove Data from DO-D31
4) Negate DBEN

Y

Unlock Bus

1

il

1) Negate DSACKx

1) Negate RMC
[ Start Next Cycle

|

t

1) Remove Data from D0-D31 Then go to ; Else
< | 2) Negate DSACK Go to
< ©
> Accept Data
1) Store Data on DO-D31
< 2) Assert Data and Size Acknowlege
(DSACKXx)
Terminate Cycle ®

If CAS2 Instruction and
Only One Operand Written
The Go to () Else

Go to (B)

®

Figure 5-22. Read-Modify-Write Cycle Flowchart
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5.2.4 CPU Space Cycles

Normal processor bus operations fall into two distinct classes: those which reference
program areas and those which access data areas, as defined by the function code out-
puts. See 4.3 FUNCTION CODE SIGNALS (FCO0-FC2). A third class of operation incor-
porates those processor functions which do not properly fall into one of the above
categories. These cycles are classified as CPU space cycles (FC0O-FC2 = 111) and include
interrupt acknowledge, breakpoint, module operations, and coprocessor communica-
tions. The CPU space type is encoded on A16-A19 during a CPU space operation and indi-
cates the function that the processor is performing. On the MC68020, four of the en-
codings are implemented as shown in Figure 5-24.

All unused encodings are reserved by Motorola for future extension of CPU space
functions.

5.2.4.1 INTERRUPT OPERATION. The following paragraphs describe the recognition and
acknowledgement of interrupts for the MC68020. See 6.3.2 Interrupts for interrupt pro-
cessing details.

5.2.4.1.1 Interrupt Levels. The M68000 architecture supports seven levels of prioritized
interrupts (level seven being the highest priority). Devices may be chained externally
within interrupt priority levels, allowing an unlimited number of devices to interrupt the
processor. Interrupt recognition and subsequent processing is based on the encoded
state of the IPLO-IPL2 control inputs and the current processor priority set in the interrupt
priority mask (12, 11, 10) of MC68020 status register. Interrupt request level zero
(IPLO/IPL/IPL2 = HHH) indicates that no interrupt service is requested. When an inter-
rupt level one through six is requested via IPLO-IPL2, the processor compares the inter-
rupt request level to the interrupt mask in order to determine whether the interrupt should
be processed. Interrupt requests are ignored for all interrupt request levels that are less
than or equal to the current processor priority determined by the interrupt mask. Level
seven interrupts are non-maskable and are discussed further in 6.3.2 Interrupts.

Function
Code Address Bus
| ' |
2 0 31 123 119 16! 4 2 0
Breakpoint
Acknowledgel 1 1 1][0 0000000000 010 00 O|0 000000000 0]BKPTZ]O 0]
31 : : 6 0
Access Level
Comrol]111|Looooooooooo!ooo1|000000000[ MMU REG ]
31 ! 115 13 4 0
Coprocessor
Comm.'111”000000000000[001OICPIDJEOOOOOOOI CPREG§I
31 : : 3 10
Interrupt T ] 1 ] P
Acknow!edgel1 ! 1H1 11 L ! l 1' LI 11 1ILEVELI1—I
CPU Space
Type Field

Figure 5-24. MC68020 CPU-Space Address Encoding
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Table 5-7 shows the relationship between the actual requested interrupt level, the inter-
rupt control lines (IPLO-IPL2), and the interrupt mask levels required for recognition of the
requested interrupt.

Table 5-7. Interrupt Control Line Status for Each Requested
Interrupt Level and Corresponding Interrupt Mask Levels

Requested Control Line Statue Interrupt Mask Level
Interrupt Level P2 PLT IPLO Required for Recognition
0* High High High N/A*
1 High High Low 0
2 High Low High 0-1
3 High Low Low 0-2
4 Low High High 0-3
5 Low High Low 0-4
6 Low Low High 0-5
7 Low Low Low 0-7

*Indicates that no interrupt is requested.

5.2.4.1.2 Recognition of Interrupts. To ensure that an interrupt will be recognized, the
following rules should be followed:

1) The incoming interrupt request level must be at a higher priority level than the
mask level set in the status register (except for level seven, the non-maskable
interrupt).

2) The TPLO-IPL2 interrupt control lines must be held at the interrupt request level
until the MC68020 acknowledges the interrupt. See 5.2.4.1.3 Interrupt
Acknowledge.

The above rules guarantee that the interrupt will be processed; however, the interrupt
could also be processed if the request is taken away before the IACK bus cycle.

The MC68020 input synchronization circuitry for the TPLO-IPL2 control lines samples
these inputs on consecutive falling edges of the processor clock in order to synchronize
and debounce these signals. An interrupt request that is held constant for two con-
secutive clock periods is considered a valid input, and therefore it is possible that an in-
terrupt request that is held for as short a period as two clock cycles could be recognized.

Interrupts recognized through the process described above do not force immediate ex-
ception processing but are made pending. Only those interrupt requests which exceed
the current processor priority are made pending, after the synchronization and debounce
delay, as described previously, and will cause the assertion of IPEND, signalling to exter-
nal devices that the MC68020 has an interrupt pending. Exception processing for a pend-
ing interrupt commences at the next instruction boundary, providing that a higher priority
exception is not also valid. See 4.7.2 Interrupt Pending (IPEND).

5.2.4.1.3 Interrupt Acknowledge Sequence (IACK). When there is a pending interrupt at
an instruction houndary tha MCBRN20 initiates interrunt nrocessing. provided that no
higher priority exceptions are pending. See 6.2 EXCEPTION PROCESSING. In order to
correctly service an interrupt request, the processor must first determine the starting
location of the interrupt service routine corresponding to the requested service. The
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M68000 Family supports acquisition of this information with the interrupt acknowledge
cycle, during which the processor acquires externally, or generates internally, the inter-
rupt vector number. See 6.2.1 Exception Vectors.

The MC68020 supports acquisition of the interrupt vector number by two methods. For
those devices that have a vector register, the device may pass the vector to the processor
over the data bus during the IACK cycle. For those devices that cannot supply an inter-
rupt vector, the MC68020 uses internally generated autovectors. The MC68020 IACK
sequence is the same for both cases, but the response of the interrupting device differs.

At the beginning of the IACK cycle, the processor sets the function code and A16-A19 to
indicate CPU space seven, echoes the interrupt level being acknowledged on A1-A3 and
drives the remainder of the address bus high to indicate that the CPU space access is an
interrupt acknowledge cycle. The interrupting device then either places an interrupt vec-
tor number on the least significant byte of its data port and asserts DSACKO/DSACK1 to
indicate its port size, or it asserts AVEC to request that the processor internally
generates the vector number corresponding to the requested interrupt level. Further
detail of the IACK cycle is provided in Figures 5-25, 5-26, and 5-27.

PROCESSOR INTERRUPTING DEVICE

Acknowledge Interrupt <———-L Request Interrupt ]

1) Compare Interrupt Request Level with
Interrupt Mask

2) Set R/W to Read

3) Set Function Code to CPU Space

4) Place Interrupt Level on A1, A2, and
and A3. Type Field=IACK

5) Set Size to Byte _

6) Assert Address Strobe (AS) and
Data Strobe (DS)

Y

Provide Vector Information

1) Place Vector Number of Least Significant
Byte of Data Port (Depends on Port Size)
2) Assert DSACKx
— or —
1) Assert AVEC for Automatic Generation of

Acquire Vector Number - Vector Number
1) Latch Vector Number
2) Negate DS and AS > Release
Y 1) Negate DSACKx
| Start Interrupt Processing ]

Figure 5-25. Interrupt Acknowledge Sequence Flowchart
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Figure 5-26. Interrupt Acknowledge Cycle Timing
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5.2.4.1.4 Spurious Interrupt. If, during the interrupt acknowledge cycle, no device
responds by asserting DSACKO/DSACK1 or AVEC, BERR should be asserted to terminate
the vector acquisition. The processor separates the processing of this error from a bus
error by fetching the spurious interrupt vector instead of the bus error vector. The pro-
cessor then proceeds with the usual interrupt exception processing.

5.4.2.1.5 IACK Generation. In order to inform external devices that the processor is per-
forming an interrupt acknowledge cycle, it is normal to generate IACK signals for each of
the seven interrupt levels. The IACK signal for a particular level can be derived by
decoding the interrupt level from A1-A3 and qualifying this with the function codes high
(CPU space), the CPU space type (A16-A19) high (type $F), and address strobe (AS)
asserted.

5.2.4.2 BREAKPOINT ACKNOWLEDGE CYCLE. When a breakpoint instruction is exe-
cuted, the MC68020 performs a word read from the CPU space, type 0, at an address cor-
responding to the breakpoint number (bits [2:0] of the opcode). If this bus cycle is termi-
nated by BERR, the processor then proceeds to perform illegal instruction exception pro-
cessing. If the bus cycle is terminated by DSACKYX, the processor uses the data returned
on D16-D31 (for 16-bit port) or two reads from D24-D31 (for 8-bit port) to replace the break-
point instruction in the internal instruction pipeline, and begins execution of that instruc-
tion. The breakpoint operation flow is shown in Figure 5-28. Figures 5-29 and 5-30 show
the timing diagrams for the breakpoint acknowledge cycle with the instruction opcodes
supplied on the cycle and with an exception signaled, respectively.

PROCESSOR EXTERNAL DEVICE
Breakpoint Acknowledge

1) Set R/W to Read

2) Set Function Code to CPU Space

3) Place CPU Space Type 0 on A16-A19
4) Place Breakpoint Number on A2-A4

5) Set SIZE to Word
6) Assert AS and DS »| 1) Place Replacement Opcode on D16-D31

2) Assert DSACKx
~or —
1) Assert BERR to Initiate Exception Processing

A

If DSACK Asserted:
1) Latch Data
2) Negate AS and DS
3) Goto B

If BERR Asserted:
1) Negate AS and DS

2) Go to (B)

®

v Y
1) Place Latched Data in Instruction Pipeline Slave Negates
2) Continue Processing DSACKXx or BERR

[ 1) initiate tenal Instriiction Pracessing |

L

Figure 5-28. MC68020 Breakpoint Operation Flow
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5.2.4.3 COPROCESSOR OPERATIONS. The MC68020 coprocessor interface allows for
instruction-oriented communication between the processor and up to eight
coprocessors. The bus communication required to support coprocessor operations is
carried out in the MC68020 CPU space.

Coprocessor accesses utilize standard bus protocol except that the address bus sup-
plies access information rather than an address. The CPU space type field (A16-A19) for a
coprocessor operation is 0010. The coprocessor identification number is encoded in
A13-A15 and AOQ-A5 indicate the coprocessor interface register to be accessed. The
memory management unit of an MC68020 system is always identified by coprocessor ID
zero and has an extended register select field (A0-A7) in CPU space 0001 for use by the
CALLM and RTM access level checking mechanism.

5.2.5 Bus Error and Halt Operation

In a bus architecture that requires a handshake from an external device to signal that a
bus cycle is complete, the possibility exists that the handshake might not occur. Since
different systems require different maximum response times, a bus error input is pro-
vided; see 4.9.3 Bus Error (BERR). External circuitry must be used to determine the maxi-
mum duration between the assertion of address strobe (AS) and data transfer and size
acknowledge (DSACKXx) before issuing a bus error signal. When a BERR and/or HALT
signal is received, the processor initiates a bus error exception sequence or retries the
bus cycle.

In addition to a bus timeout indicator, the BERR input is used to indicate an access fault
in a protected memory scheme or a page/segment fault in a virtual memory system.
When an external memory management unit detects an invalid memory access, a bus
error is generated to suspend execution of the current instruction.

5.2.5.1 BUS ERROR OPERATION. When the bus error signal is issued to terminate a bus
cycle, the MC68020 may enter exception processing immediately following the bus cycle,
or may defer processing the exception until it needs the data that it was attempting to
access. Due to the highly pipelined architecture of the MC68020, the processor attempts
to prefetch instructions ahead of the current program counter. If the MC68020 en-
counters a bus error during an instruction prefetch, the processor defers bus error excep-
tion processing until the faulted data is actually needed for execution. It is possible that
bus errcr processing will not take place for a faulted access if changes in program flow
(e.g., branches) make usage of the faulted data unnecessary.

The bus error signal will be recognized during a bus cycle in either of the following cases:
1) DSACKx and HALT are negated and BERR is asserted.
2) HALT and BERR are negated and DSACKXx is asserted. BERR is then asserted
within one clock cycle.
3) BERR and HALT asserted.
When the bus error condition is recognized, the current bus cycle is terminated in the nor-
mal fashion. Figures 5-31 and 5-32 show the timing diagrams for both the normal and the
delayed bus error signals, assuming that the exception is taken. See 6.3.8 Bus Error for
exception processing details.
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5.2.5.2 RETRY OPERATION. When, during a bus cycle, the BERR and HALT inputs are
both asserted by an external device, the processor enters the retry sequence. A delayed
retry may be used, similar to the delayed bus error signal described above. Figures 5-33
and 5-34 show timing diagrams for both methods of retrying the bus cycle.

SO S2 Sw Sw Sw S4 SO S2 S4

=\ ST
e T/
e T/
/T ST

o009 ——— Ty

BERR \ /
. Internal )
<€———Read Bus Error Detection Processing [<€——Stack Write

Figure 5-31. Bus Error Timing (Exception Taken)
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Figure 5-32. Delayed Bus Error (Exception Taken)
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The processor terminates the bus cycle, places the controi signals in their inactive state
and does not run another bus cycle until the BERR and HALT signals are negated by
external logic. The processor then retries the previous cycle using the same access infor-
mation (address, function code, size, etc.). The BERR signal should be negated before or
in conjunction with the HALT signal.

The MC68020 imposes no restrictions on retrying any type of bus cycle. Specifically, any
read or write cycle of a read-modify-write operation may be separately retried, since the
RMC signal will remain asserted during the entire retry sequence.

5.2.5.3 HALT OPERATION. The HALT input signal to the MC68020 performs a
halt/run/single-step function. The halt and run modes are somewhat self explanatory in
that when the halt signal is constantly asserted the processor ‘“halts’ (does nothing) and
when the HALT signal is constantly negated the processor ‘“runs” (does something).
Note that the HALT signal only halts the operation of the external bus, not the internal
bus and execution unit. Thus, a program that resides in the cache and does not require
use of the external bus will not be affected by the HALT signal.

The single-step mode is derived from correctly timed transitions on the HALT input. If
HALT is asserted when the processor begins a bus cycle and remains asserted, that bus
cycle will complete, but another cycle will not be allowed to start. When it is desired to
continue, HALT is then negated and re-asserted when the next bus cycle is started. Thus,
the single-cycle mode allows the user to proceed through (and debug) processor opera-
tions, one bus cycle at a time.

The timing required for correct single-step operation is detailed in Figure 5-35. Some care
must be exercised to avoid harmful interactions between the BERR and the HALT signals
(see 5.2.5.2 RETRY OPERATION) when using the single-cycle mode as a debugging tool.

When the processor completes a bus cycle after recognizing that the HALT signal is ac-
tive, the bus control signals are placed in the inactive state; but the address, function
code, size, and read/write lines remain driven.

While the processor is honoring the halt request, bus arbitration performs as usual. See
5.2.6 Bus Arbitration. That is, halting has no effect on bus arbitration.

The single-step operation described above and the software trace capability allow the
system debugger to trace single bus cycles, single instructions, or changes in program
flow. These processor capabilities, along with a software debugging package, give com-
plete debugging flexibility.

5.2.5.4 DOUBLE BUS FAULTS. When a bus error exception occurs, the processor at-
tempts to stack several words containing information about the state of the machine. If a
bus error exception occurs during the stacking operation, there have been two bus errors
in arow. This is referred to as a double bus fault. When a double bus fault occurs, the pro-
cessor halts and drives the HALT line low. Once a bus error exception has occurred, any
additional bus error exception occurring before the execution of the first instruction of
the bus error handler routine constitutes a double bus fault.
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Note that a bus cycle that is re-tried does not constitute a bus error exception and does
not contribute to a double bus fault. Note also that this means that as long as the exter-
nal hardware requests it, the processor will continue to retry the same bus cycle.

The occurrance of an address error, similar to that of a bus error, is classified as an ex-
ception that may contribute to a double bus fault condition. See 6.3.4 Address Error.

The bus error input also has an effect on processor operation after the processor
receives an external reset input. After reset, the processor reads the vector table to deter-
mine the address to start program execution and the initial value of the interrupt stack
pointer. If a bus error or address error occurs while reading the vector table (or at any
time before the first instruction is executed), the processor reacts as if a double bus fault
has occurred and halts. Only an external reset can re-start a halted processor.

From the above conditions a double bus fault is defined as the occurrance of an address
error or bus error during the exception processing for an address error, bus error, or reset
exception.

5.2.6 Reset Operation

The RESET signal is a bidirectional signal that allows either the processor or an external
device to reset the system. Figure 5-36 is a timing diagram for the power-up reset
operation.

When the RESET signal is driven by an external device (for a minimum of 516 clock
periods), it is recognized as an entire system reset, including the processor. The pro-
cessor responds by completing any active bus cycle in an orderly fashion, and then

Plus 5 Volts 45—

Vee l«———t> =512 Clocks—— |
_ «—— t<4 Ctocks—>|
RESET | ( |

| l |<— 4 Clock —>|
. . OCKS
s cyter XXXHXAK RXXCKXCKX XK 5 -

ISP
NOTES: Read

Start:
Bus State Unknown: I‘X’I‘X’I e

All Control Signals Inactive
Data Bus In Read Mode >_—<

Figure 5-36. External Reset Operation Timing
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reading the reset vector table entry (vector number zero, address $00000000) and loads it
into the interrupt stack pointer (ISP). Vector table entry number one at address $00000004
is then read and loaded into the program counter. The processor initializes the status
register to a mask level of seven with the T1/TO and M bits cleared and the S bit set. The
vector base register is initialized to $0000000 and the cache enable bit in the cache con-
trol register is cleared. No other registers are affected by the reset sequence.

When a reset instruction is executed, the processor drives the RESET pin for 512 clock
cycles. In this case, the processor is resetting the rest of the system. Therefore, there is
no effect on the internal state of the processor. All the internal registers of the processor
and the status registers are unaffected by the execution of a reset instruction. All exter-
nal devices connected to the RESET line are reset at the completion of the reset instruc-
tion. Figure 5-37 shows the timing information for the instruction.

Note that in order to cause an external reset in all cases, including when the processor is
executing a reset instruction, the RESET signal must be driven as an input for 516 clock
cycles. If the reset instruction will not be executed, or external logic can detect the asser-
tion of RESET by the processor and compensate for that condition, the shorter assertion
of RESET of ten clock cycles is all that is required to reset the processor.

5.2.7 Bus Arbitration

Bus arbitration is a technique used by bus master type devices to request, be granted,
and acknowledge bus mastership. In its simplest form, the bus arbitration protocol con-
sists of the following:

1. an external device asserts a bus request to the MC68020,

2. the processor asserts bus grant to indicate that the bus will be available at the
end of the current bus cycle, and

3. the external device acknowledges that it has assumed bus mastership by assert-
ing bus grant acknowledge.
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Figure 5-38 is a flowchart showing the detail involved in bus arbitration for a single
device. Figure 5-39 is a timing diagram for the same operation. This technique allows pro-
cessing of bus requests during data transfer cycles.

PROCESSOR REQUESTING DEVICE
Request the Bus
Grant Bus Arbitration -« 1) Assert Bus Request (BR)

1) Assert Bus Grant (BG)

Acknowledge Bus Mastership

1) External Arbitration Determines Next
Bus Master

2) Next Bus Master Waits for Current
Cycle to Complete

3) Next Bus Master Asserts Bus Grant
Acknowledge (BGACK) to Become
New Master

Terminate Arbitration < 4) Bus Master Negates BR

1) Negate BG and Wait for BGACK

to be Negated

Operate as Bus Master

1) Perform Data Transfers (Read and
Write Cycles)

Y

Release Bus Mastership

Re-Arbitrate or Resume <« 1) Negate BGACK
Processor Operation

Figure 5-38. Bus Arbitration Flowchart for Single Request |

The timing diagram shows that the bus request (BR) is negated at the time that bus grant
acknowledge (BGACK) is asserted. This type of operation is true for a system consisting
of the processor and one device capable of bus mastership. In systems having a number
of devices capable of bus mastership, the bus request line from each device is wire ORed
to the processor. In such a system, it is possible that there could be more than one bus
request asserted simultaneously.

The timing diagram is Figure 5-39 shows that the bus grant (BG) signal is negated a few
clock cycles after the transition of the bus grant acknowledge signal. However, if bus re-
quests are still pending after the negation of bus grant acknowledge, the processor will
assert another bus grant within a few clock cycles after it was negated. This additional
assertion of bus grant allows external arbitration circuitry to select the next bus master
before the current bus master has completed using the bus. The following paragraphs
provide additional information about the three steps in the arbitration process.
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5.2.7.1 REQUESTING THE BUS. External devices capable of becoming bus masters re-
quest the bus by asserting the bus request (BR) signal. This is a wire-ORed signal
(although it need not be constructed from open-collector devices) that indicates to the
processor that some external device requires control of the bus. The processor is effec-
tively at a lower bus priority level than the external device and relinquishes the bus after
it has completed the current bus cycle if one has started.

If no acknowledge is received before the bus request signal is negated, the processor
continues execution once it detects that the bus request is negated. This allows ordinary
processing to continue if the arbitration circuitry inadvertently responded to noise or an
external device determines that it no longer requires use of the bus before it has been
granted mastership.

5.2.7.2 RECEIVING THE BUS GRANT. The processor asserts bus grant (BG) as soon as
possible after receipt of the bus request. Normally this is immediately following internal
synchronization but there are two exceptions to this rule. If the processor has made an
internal decision to execute the next bus cycle but has not progressed far enough into
the cycle to have asserted the address strobe (AS) signal, then bus grant will be delayed
until AS is asserted to indicate to external devices that a bus cycle is in progress. The
second exception occurs when a read-modify-write (RMW) cycle is in progress. The pro-
cessor wiil not assert bus grant until the entire RMW cycle is complete. During the RMW
operation, the RMC signal will be asserted to indicate that the bus is locked.

The bus grant signal may be routed through a daisy-chained network or through a
specific priority-encoded network. The processor is not affected by the external method
of arbitration as long as the protocol is obeyed.

5.2.7.3 ACKNOWLEDGEMENT OF MASTERSHIP. Upon receiving a bus grant, the re-
questing device waits until address strobe, data transfer and size acknowledge, and bus
grant acknowledge are negated before asserting its own BGACK. The negation of the AS
indicates that the previous master has completed its cycle; the negation of BGACK
indicates that the previous master has released the bus. The negation of DSACKXx indi-
cates the previous slave has terminated its connection to the previous master. Note that
in some applications DSACKx might not enter into this function. General purpose
devices are then connected such that they are only dependent on address strobe. When
bus grant acknowledge is asserted, the device is the bus master until it negates BGACK.
Bus grant acknowledge should not be negated until after all bus cycles required by the
alternate bus master are completed. Bus mastership is terminated at the negation of bus
grant acknowledge.

The bus request from the granted device should be negated after bus grant acknowledge
is asserted. if a bus request is still pending after the assertion of BGACK, another bus
grant will be asserted within a few clocks of the negation of the bus grant. Refer to 5.2.7.4
BUS ARBITRATION CONTROL. Note that the processor does not perform any external
bus cycles before it reasserts bus grant.
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5.2.7.4 BUS ARBITRATION CONTROL. The bus arbitration control unit in the MC68020 is
implemented with a finite state machine. As discussed previously, all asynchronous in-
puts to the MC68020 are internally synchronized in a maximum of two cycles of the
system clock.

As shown in Figure 5-40, input signals labeled R and A are internally synchronized ver-
sions of the bus request and bus grant acknowledge pins respectively. The bus grant out-
put is labeled G and the internal three-state control signal T. If T is true, the address,
data, and control buses are placed in the high-impedance state when AS and RMC are
negated. All signals are shown in positive logic (active high) regardiess of their true ac-
tive voltage level.

State changes (valid outputs) occur on the next rising edge of the clock after the internal
signal is valid.

A timing diagram of the bus arbitration sequence during a processor bus cycle is shown
in Figure 5-39. The bus arbitration sequence while the bus is inactive (i.e., executing inter-
nal operations such as a multiply instruction) is shown in Figure 5-41.

R -- Bus Request

A — Bus Grant Acknowledge

G — Gus Grant

T - Three-State Control to Bus Control Logic
v

Nan/+t Carn

NOTE: The BG output will not be asserted while RMC is asserted

5-40. Bus Arbitration State Diagram
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5.2.8 The Relationship of DSACK, BERR, and HALT

In order to properly control termination of a bus cycle for a retry or a bus error condition,
DSACKXx, BERR, and HALT should be asserted and negated on the rising edge of the
MC68020 clock. This will assure that when two signals are asserted simultaneously, the
required setup time (#47) and hold time (#53) for both of them will be met during the same
bus state. This, or some equivalent precaution, should be designed external to the
MC68020.

The preferred bus cycle terminations may be summarized as follows (case numbers refer

to Table 5-8).
Normal Termination: DSACKXx is asserted, BERR and HALT remain negated
(case 1).
Halt Termination: HALT is asserted at same time, or before DSACKx and

BERR remains negated (case 2).

Bus Error Termination: BERR is asserted in lieu of, at the same time, or before
DSACKXx (case 3) or after DSACKx (case 4) and HALT re-
mains negated; BERR is negated at the same time or after
DSACKX.

Retry Termination: HALT and BERR are asserted in lieu of, at the same time, or
before DSACKXx (case 5) or after DSACKXx (case 6); BERR is
negated at the same time or after DSACKx, HALT may be

negated at the same time, or after BERR.

Table 5-8. DSACK, BERR, and HALT Assertion Resulits

Asserted on Rising
Case Control Edge of State
No. Signal N N+2 Result
DSACKx A S Normal cycle terminate and continue.
1 BERR NA NA
HALT NA X
DSACKX A S Normal cycle terminate and halt.
2 BERR NA NA Continue when HALT removed.
HALT A/S S
DSACKx NA/A X Terminate and take bus error trap, possibly
3 BERR A S deferred.
HALT NA NA
DSACKXx A X Terminate and take bus error trap, possibly
4 BERR NA A deferred.
HALT NA NA
DSACKx NA/A X Terminate and retry when HALT removed.
5 BERR A S
HALT A/S S
DSACKx A X Terminate and retry when HALT removed.
6 BERR NA A
HALT NA A
I FGEND-
N — the number of current even bus state (e.g., S2, S4, etc.)
A — signal is asserted in this bus state
NA  — signal is not asserted in this state
X — don't care
S — signal was asserted in previous state and remains asserted in this state
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Table 5-8 details the resulting bus cycle termination under various combinations of con-
trol signal sequences. The correct timing for negation of BERR and HALT should also be
utilized to ensure predictable operation. For the bus cycle retry operation BERR must be
negated prior to, or at the same time as HALT. DSACKx, BERR, and HALT may be
negated when AS is negated. If DSACKx or BERR remain asserted into S2 of the next bus
cycle, this may cause incorrect bus operation.

EXAMPLE A: ‘
A system uses a watch-dog timer to terminate accesses to an unpopulated address
space. The timer asserts BERR after time out (case 3).

EXAMPLE B:
A system uses error detection and correction on RAM contents. Designer may:

a) Delay DSACKXx until data verified, and assert BERR and HALT. simultaneously
to retry error cycle (case 5), or if valid assert DSACKx (case 1).

b) Delay DSACKXx until data verified, and assert BERR at same time as DSACKXx if
data in error (case 3).

c) Return DSACKXx prior to data verification, as described in the next section. If
data is invalid, BERR is asserted on next clock cycle (case 4).

d) Return DSACKXx prior to data verification, if data is invalid assert BERR and
HALT on next clock cycle (case 6). The memory controller may then correct the
RAM prior to or during the retry.

5.2.9 Asynchronous Versus Synchronous Operation

5.2.9.1 ASYNCHRONOUS OPERATION. To achieve clock frequency independence at a
system level, the MC68020 can be used in an asynchronous manner. This requires using
only the bus handshake lines (AS, DS, DSACK1, DSACKO, BERR, and HALT) to control the
data transfer. Using this method, AS signals the start of a bus cycle and DS is used as a
condition for valid data on a write cycle. Decode of the size outputs and lower address
lines A1 and AO provide strobes which indicate which portion of the data bus is active.
The slave device (memory or peripheral) then responds by placing the requested data on
the correct portion of the data bus for a read cycle or latching the data on a write cycle
and asserting data transfer and size acknowledge (DSACK1/DSACKQO) corresponding to
the port size to terminate the cycle. If no slave responds, or the access is invalid, external
control logic asserts the BERR, or BERR and HALT signal(s) to abort or retry the bus
cycle.

The DSACKXx signals are allowed to be asserted before the data from a siave device is
valid on a read cycle. The length of time that DSACKx may precede data is given as
parameter #31, and it must be met in any asynchronous system to insure that valid data
is latched into the processor. Notice that there is no maximum time specified from the
assertion of AS to the assertion of DSACKx. This is because the MPU will insert wait
cycles in one clock period increments until DSACKXx is recognized as asserted.
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The BERR and/or HALT signals are allowed to be asserted after the DSACKXx signal is
asserted. BERR and/or HALT must be asserted within the time given as parameter #48
after DSACKXx is asserted in any asynchronous system to insure proper operation. If this
maximum delay time is violated, the processor may exhibit erratic behavior.

5.2.9.2 SYNCHRONOUS OPERATION. To support those systems which use the system
clock as a signal to generate DSACKx and other asynchronous inputs, the asynchronous
input setup time is given (parameter #47), and the asynchronous input hold time is given
(parameter #53). If this setup and hold time is met for the assertion or negation of an in-
put, such as DSACKX, the processor is guaranteed to recognize that signal level on that
specific falling edge of the system clock. However, the converse is not true — if the input
signal does not meet the setup and/or hold time, that level is not guaranteed not to be
recognized. In addition, if the assertion of DSACKXx is recognized on a falling edge of the
clock, valid data will be latched into the processor (on a read cycle) on the next falling
edge provided that the data meets the setup time (parameter #27). Given this situation,
parameter #31 may be ignored. Note that if DSACKXx is asserted for the required window
around the falling edge of S2, no wait states will be incurred and the bus cycle will run at
its maximum speed of three clock periods.

In order to assure proper operation in a synchronous system when BERR and/or HALT is
asserted after DSACKx, BERR and/or HALT must meet the setup time (parameter #27A)
prior to the falling edge of the clock one clock cycle are DSACKXx is recognized as
asserted. This setup time is critical for proper operation, and the MC68020 may exhibit er-
ratic behavior if it is violated.

The ECS (early cycle start) signal is provided on the MC68020 to provide the earliest
possible indication that the processor is beginning a bus cycle. In a synchronous system,
the ECS output can be utilized to initiate address decode in order to provide improved
memory access time. However, the ECS output indicates only that the processor may be
initiating a bus cycle. The MC68020 may initiate a bus cycle by driving the address, size,
and function code outputs and asserting ECS, but if the processor finds the data in the
on-chip instruction cache, the cycle will be aborted before asserting AS.
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SECTION 6
PROCESSING STATES

This section describes the behavior of the processor during instruction execution as
governed by the processing state of the machine. The functions of the bits in the super-
visor portion of the status register are explained, as well as the actions taken by the pro-
cessor in response to exception conditions.

The processor is always in one of three processing states: normal, exception, or halted.
The normal processing state occurs during instruction execution, including the bus
cycles to fetch instructions and operands, and to store the results and communicate
with a coprocessor, if necessary. The stopped condition, which the processor enters
when a STOP instruction is executed, is a special case of the normal state in which no
further bus cycles are generated.

The exception processing state is associated with interrupts, trap instructions, tracing,
and other exceptional conditions. The exception may be internally generated by an in-
struction or by an unusual condition arising during the execution of an instruction.
Exception processing can also be initiated by conditions external to the processor such
as an interrupt, a bus error, a reset, or a coprocessor primitive command. Exception pro-
cessing is designed to provide an efficient context switch so that the processor may
quickly and gracefully handle unusual conditions.

The halted processing state is caused by a catastrophic system failure. For example, if
during the exception processing of a bus error another bus error occurs, the processor
assumes that the system is unusable and halts. Only an external reset can restart a
halted processor. Note, a processor in the stopped state is not in the halted state.

6.1 PRIVILEGE STATES

The processor operates at one of two levels of privilege: the user level or the supervisor
level. These levels are ordered, with the supervisor level being of higher privilege than the
user level. Not all processor instructions are permitted to execute in the lower-privileged
user state, but all are available in the supervisor state. The privilege level can be used by
external memory management devices to control and translate accesses, and internally
by the processor in order to choose between the user stack pointer and the supervisor
stack pointer during operand references.

The MC68020 provides a mechanism to allow external hardware to enforce up ta 256

privilege levels within the user level of privilege. This mechanism is an optional part of
the module call/return operations described in APPENDIX D ADVANCED TOPICS.
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6.1.1 Use of Privilege States

The privilege level is a mechanism for providing security in a computer system. User pro-
grams may access only their own code and data areas, and can be restricted from ac-
cessing other information. User program behavior is more easily guaranteed when errors
by other programs in the system cannot affect it.

The privilege mechanism provides security by allowing most programs to execute in user
state. Here accesses are controlied, and their effects on other parts of the system are
limited. The operating system typically executes in the supervisor state, has access to all
resources, performs the overhead tasks for the user state programs, and coordinates
their activities.

6.1.2 Supervisor States

The supervisor state is the higher privilege state. For instruction execution, the super-
visor state is determined by the S bit of the status register; if the S bit is set, the pro-
cessor is in the supervisor state, and all instructions are executable. The bus cycles
generated by instructions that are executed in the supervisor state are normally
classified as supervisor references, which is reflected in the values placed on the func-
tion code pins FCO-FC2.

The MC68020 allows a minor distinction of supervisor activities, based on the M bit of the
status register. The purpose of the M bit is to allow separation of task related and asyn-
chronous, I/O related supervisor tasks, since in a multi-tasking operating system it is
more efficient to have a supervisor stack space associated with each user task and a
separate stack space for interrupt associated tasks. Thus, the master stack may be used
to contain task control information for the currently executing user task while the inter-
rupt stack is used for interrupt task control information and temporary storage. When a
user task switch is required, the master stack pointer is loaded with a new value that
points to the new task context, while still maintaining a valid, independent stack space
for interrupts.

When the M bit is clear, the MC68020 is in the interrupt state and operation is the same
as the MC68000, MC68008, MC68010, and MC68012 supervisor state (this is the default
condition after reset). The processor uses the interrupt stack pointer (ISP) when it
references the system stack pointer (SSP). When the M bit is set, the processor is in the
master state and the processor uses the master stack pointer (MSP) when it references
the system stack pointer (SSP). Whether the M bit is set or clear does not affect execu-
tion of privileged instructions. The M bit may be set or cleared by an instruction that
modifies the status register (MOVE to SR, ANDI to SR, EORI to SR, ORI to SR and RTE).
Also, the processor saves the M bit configuration and clears it in the SR as part of the ex-
ception processing for interrupts.

All exception processing is done in the supervisor state. The bus cycles generated during

exception processing are classified as supervisor references. All stacking operations
during exception processing use the active supervisor stack pointer.
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6.1.3 User State

The user state is the lower privilege state. For instruction execution, the user state is
determined by the S bit of the status register; if the S bit is clear, the processor is ex-
ecuting instructions in the user state.

Most instructions execute both in the user state and in the supervisor state. However,
some instructions which have important system effects are made privileged and are
restricted to use in the supervisor state. For instance, user programs are not permitted to
execute the STOP instruction or the RESET instruction. To insure that a user program
cannot enter the privileged supervisor state, except in a controlled manner, the instruc-
tions which can modify the S bit in the status register are privileged. The TRAP #n in-
struction can be used to allow user program access to privileged services performed by
the operating system in the supervisor state.

The bus cycles generated by an instruction executed in the user state are classified as
user state references, as reflected by the address space values placed on the function
code pins (FCO-FC2). This allows an external memory management device to distinguish
between user and supervisor activity, and to control access to protected portions of the
address map. While the processor is in the user state, those references made to either
the system stack pointer implicitly, or address register seven (A7) explicitly, are always
made relative to the user stack pointer (USP).

6.1.4 Change of Privilege State

The only way for the processor to change from the user to the supervisor privilege level is
through exception processing, which causes a change from the user state to one of the
supervisor states and can cause a change from the master state to the interrupt state.
Exception processing saves the current state of the S and M bits of the status register on
the active supervisor stack, and the S bit is set, forcing the processor into the supervisor
state. Also, if the exception being processed is an interrupt and the M bit is set, it will be
cleared to put the processor into the interrupt state. Instruction execution proceeds in
the supervisor state to handle the exception condition.

A transition from supervisor to user state can be caused by the following instructions:
RTE, MOVE to SR, ANDI to SR, and EORI to SR. The MOVE, ANDI, and EORI to SR instruc-
tions execute at the supervisor privilege level, and then fetch the next instruction at the
next sequential program counter address at the new privilege level determined by the
new value of the S bit.

The RTE instruction examines the supervisor stack contents to determine which state
restorations are required. If the frame on top of the stack was created by an interrupt,
trap, or instruction exception, the RTE instruction fetches the saved status register and
program counter from the supervisor stack, and restores each into its respective register.
The processor then continues execution at the restored program counter address and at
the privilege level determined by the S bit of the restored status register.

If the frame on top of the stack was created by a faulted bus cycle, the RTE instruction
restores the entire saved machine state from the stack.



6.1.5 Address Space Types

Address space classification is generated by the processor according to the type of ac-
cess required during each bus cycle. This allows external translation of addresses, con-
trol of access, and differentiation of special processor states, such as interrupt
acknowledge. Table 6-1 lists the types of accesses and their respective address space
encodings.

Table 6-1. Address Space Encodings
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Address Space
(Undefined, Reserved) *
User Data Space
User Program Space
(Undefined, Reserved)*
(Undefined, Reserved) *
Supervisor Data Space
Supervisor Program Space
1 CPU Space

* Address space 3 is reserved for user definition,
while 0 and 4 are reserved for future use by Motorola.
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User program and data accesses have no predefined memory locations. The supervisor
data space also has no predefined locations. During reset, the first two long words at
memory location zero in the supervisor program space are used for processor initializa-
tion. No other memory locations are explicitly defined by the processor.

6.1.6 CPU Space

The CPU space is not intended for general instruction execution, but is reserved for pro-
cessor functions; that is, those bus cycles in which the processor must communicate
with external devices for reasons beyond normal data movement associated with in-
structions. For example, all M68000 processors use the CPU space for interrupt
acknowledge cycles. The MC68020 also makes CPU space accesses for breakpoints,
coprocessor operations, and to support the module call/return mechanism.

Although the MOVES instruction can be used to generate CPU space bus cycles, this
may interfere with proper system operation. Thus, the use of MOVES to access the CPU
space should be done with caution.

6.2 EXCEPTION PROCESSING

A general description of exception processing is first presented to introduce the con-
cepts of interrupts, traps, and tracing. Exception processing for coprocessor detected er-
rors is not discussed in this section; refer to SECTION 8 COPROCESSOR INTERFACE
DESCRIPTION for more details on coprocessor exception handling.

The processing of an exception occurs in four steps, with variations for different excep-
tion causes. During the first step, a temporary internal copy of the status register is
made, and the status register is set for exception processing. In the second step, the ex-
ception vector is determined, and in the third step, the current processor context is
saved. In the fourth step a new context is obtained, and the processor then proceeds with
instruction processing.



6.2.1 Exception Vectors

The vector base register points to the base of the 1K byte exception vector table contain-
ing the 256 exception vectors. Exception vectors are memory pointers used by the pro-
cessor to fetch the address of routines which will handle various exceptions. All excep-
tion vectors are one long word in length, except for the reset vector, which is two long
words in length.

Exception vectors are selected by 8-bit vector numbers generated during exception pro-
cessing. This vector number is multiplied by four to form the vector offset, which is add-
ed to the vector base register to obtain the address of the vector. All exception vectors
are located in supervisor data space, except the reset vector which is located in super-
visor program space. Vector numbers are generated internally or externally, depending
on the cause of the exception. Table 6-2 provides the assignments of the exception
vectors.

Table 6-2. Exception Vector Assignments

Vector Vector Offset
Number(s) Hex Space Assignment
0 000 SP Reset: Initial Interrupt Stack Pointer
1 004 SP Reset: Initial Program Counter
2 008 SD Bus Error
3 00C sD Address Error
4 010 SD lllegal Instruction
5 014 SD Zero Divide
6 018 SD CHK, CHK2 Instruction
7 01C SD cpTRAPcc, TRAPcc, TRAPV Instructions
8 020 SD Privilege Violation
9 024 SD Trace
10 028 SD Line 1010 Emulator
1 02C sD Line 1111 Emulator
12 030 sD (Unassigned, Reserved)
13 034 SD Coprocessor Protocol Violation
14 038 SD Format Error
15 03C SD Uninitialized Interrupt
16 040 sSD
Through } (Unassigned, Reserved)
23 05C SD
24 060 SD Spurious Interrupt
25 064 SD Level 1 Interrupt Auto Vector
26 068 SD Level 2 Interrupt Auto Vector
27 06C SD Level 3 Interrupt Auto Vector
28 070 SD Level 4 Interrupt Auto Vector
29 074 SD Level 5 Interrupt Auto Vector
30 078 SD Level 6 Interrupt Auto Vector
31 Q07C SD Level 7 Interrupt Auto Vector
32 080 SD
Through } TRAP #0-15 Instruction Vectors
47 0BC SD
48 0COo sSD
Through } (Unassigned, Reserved)
63 OFC SD
64 100 SD b
Through } User Defined Vectors (192)
255 3FC SD

SP = Supervisor Program Space
SD = Supervisor Data Space
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As shown in Table 6-2, 192 vectors are reserved for user definition as interrupt vectors
and 64 are defined by the processor. However, there is no protection on the first 64 vec-
tors, so that external devices may use vectors reserved for internal purposes at the
discretion of the system designer.

6.2.2. Exception Stack Frame

Exception processing saves the most volatile portion of the current processor context on
the top of the supervisor stack. This context is organized in a format called the exception
stack frame. This information always includes the status register, the program counter,
and the vector offset used to fetch the vector. The processor also marks the frame with a
frame format. The format field allows the RTE instruction to identify what information is
on the stack so that it may be properly restored and the stack space deallocated. The
general form of the exception stack frame is illustrated in Figure 6-1. Refer to 6.7
MC68020 STACK FRAMES for a complete list of exception stack frames.

15 12 0
SPp —3 Status Register

Program Counter

Format I Vector Offset

Additional Processor State Information
(2,6, 12, or 40 Words, if Needed)

Figure 6-1. Exception Stack Frame

6.2.3 Exception Types

Exceptions can be generated by either internal or external causes. The externally
generated exceptions are interrupts, bus errors, reset, and coprocessor detected errors.
Interrupts are requests from peripheral devices for processor action, while the bus error
and reset pins are used for access control and processor restart. The internally
generated exceptions are caused by instructions, address errors, tracing, or breakpoints.
The TRAP, TRAPcc, TRAPV, cpTRAPcc, CHK, CHK2, CALLM, RTM, RTE, and DIV instruc-
tions all can generate exceptions as part of their instruction execution. In addition, il-
legal instructions, address error, privilege violations, and coprocessor protocol viola-
tions cause exceptions.
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6.2.4 Exception Processing Sequence

Exception processing occurs in four identifiable steps. During the first step, an internal
copy is made of the status register. After the copy is made, the processor state bits in the
status register are changed. The S bit is set, putting the processor into the supervisor
privilege state. The T1 and TO bits are cleared, which allows the exception handler to ex-
ecute unhindered by tracing. For the reset and interrupt exceptions, the interrupt priority
mask is also updated.

In the second step, the vector number of the exception is determined. For interrupts, the
vector number is obtained by a processor read from CPU space $F, which is defined as
an interrupt acknowledge cycle. For coprocessor detected exceptions, the vector
number is included in the coprocessor exception primitive response. (Refer to SECTION 8
COPROCESSOR INTERFACE DESCRIPTION for a complete discussion of coprocessor
exceptions.) For all other exceptions, internal logic provides the vector number. This vec-
tor number is then used to generate the address of the exception vector.

For all exceptions other than reset, the third step is to save the current processor con-
text. An exception stack frame is created and filled on the active supervisor stack. Other
information may also be stacked, depending on which exception is being processed and
the context of the processor prior to the exception. If the exception is an interrupt and
the M bit is set, the M bit is cleared, and a second stack frame is created on the interrupt
stack.

The last step is the same for all exceptions. The exception vector offset is determined by
multiplying the vector number by four. This offset is then added to the contents of the
vector base register to determine the memory address of the exception vector. The pro-
gram counter value (and ISP for the reset exception) is loaded with the value in the excep-
tion vector. The instruction at the address given in the exception vector is fetched, and
normal instruction decoding and execution is resumed.

6.2.5 Multiple Exceptions

The following paragraphs describe the processing that occurs when multiple exceptions
arise simultaneously. Exceptions can be grouped according to their characteristics and
priority, as shown in Table 6-3.

The priority relationship between two exceptions determines which is processed first if
both exceptions occur simultaneously. The term ‘process’ in this context means the ex-
ecution of the four steps previously defined:

1) change processing states if needed,

2) determine exception vector,

3) save old context, and

4) load new context, including the first three instruction words at the new program

counter location.

...... Ve
‘Process’ in this context does not include the execution of the routine nointed to by the

fetched vector. As soon as the MC68020 has completed processing for an exceptlon itis
then ready to begin execution of the exception handler routine, or begin exception pro-
cessing for other pending exceptions. Also, a higher priority exception can be processed
before the completion of exception processing for lower priority exceptions (for example,
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Table 6-3. Exception Groups

Group/ Exception and
Priority Relative Priority Characteristics
0 0.0— Reset Aborts all processing (instruction or exception) and does not save old context.
1 1.0— Address Error Suspends processing (instruction or exception) and saves internal context.
1.1—Bus Error
2 2.0—BKPT #n, CALLM, CHK, Exception processing is part of instruction execution.

CHK2, cp Mid-Instruction,
Cp Protocol Violation,
cpTRAPcc, Divide-by-
Zero, RTE, RTM, TRAP
#n, TRAPV

3 3.0—lllegal Instruction, Line A, | Exception processing begins before instruction is executed.
Unimplemented Line F,
Privilege Violation,

cp Pre-Instruction

4 4.0—cp Post-Instruction Exception processing begins when current instruction or previous exception
4.1—Trace processing is completed.
4.2— Interrupt

0.0 is the highest priority, 4.2 is the lowest.

if a bus error occurs during the processing for a trace exception, the bus error will be pro-
cessed and handled before the trace exception processing is completed). However, most
exceptions cannot occur during exception processing. Furthermore, very few combina-
tions of the exceptions shown in Table 6-3 can be pending simultaneously.

This priority scheme is very important in determining the order in which exception
handlers are executed in multiple exception situations. As a general rule, the lower the
priority of an exception, the more quickly the handler routine for that exception will be ex-
ecuted. For example, if simultaneous trap, trace, and interrupt exceptions are pending,
the trap exception is processed first, followed immediately by exception processing for
the trace and then the interrupt. Thus, when the processor finally resumes normal in-
struction execution, it is in the interrupt handler, which returns to the trace handler,
which returns to the trap exception handler. An exception to this rule is the reset excep-
tion, which is the highest priority and also the first exception handled, since all other ex-
ceptions are cleared by the reset condition.

6.3 EXCEPTION PROCESSING: DETAIL

Exceptions have a number of sources, and each exception has characteristics which are
unigue to it. The following paragraphs detail the sources of exceptions, how each arises,
and how each is processed.

6.3.1 Reset

The RESET input provides the highest level of exception. The RESET signal provides for
system initialization and recovery from catastrophic failure. Any processing in progress
at the time of the reset is aborted, and cannot be recovered. The status register is
initialized: tracing is disabled (both trace bits are cleared), supervisor interrupt state is
entered (the supervisor bit is set and the master bit is cleared), and the processor inter-
rupt priority mask is set to the highest priority level (level seven). The vector base register
and cache control register are initialized to zero ($00000000). A vector number is inter-
nally generated to reference the reset exception vector at offset zero in the supervisor
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program address space (which is two long words instead of the normal one long word).
Because no assumptions can be made about the validity of any register contents (in par-
ticular the supervisor stack pointer) neither the program counter nor the status register is
saved. The address contained in the first long word of the reset exception vector is
fetched for use as the initial interrupt stack pointer, and the address in the second long
word of the reset exception vector is fetched for use as the initial program counter. Pro-
gram execution then starts at the address loaded into the program counter.

The reset instruction does not affect any internal registers, but it does assert the RESET
line, thus resetting all external devices. This allows software to reset the system to a
known state and then continue processing at the next instruction.

6.3.2 Address Error

Address error exceptions occur when the processor attempts to prefetch an instruction
from an odd address. The affect is much like an internally generated bus error, so that the
bus cycle is not executed and the processor begins exception processing. After excep-
tion processing commences, the sequence is the same as that for bus error exceptions
as described in 6.3.3 Bus Error, except that the vector offset in the stack frame refers to
the address error vector. Also, if an address error occurs during the exception processing
for a bus error, address error, or reset, the processor is halted.

6.3.3 Bus Error

Bus error exceptions occur during a bus cycle when external logic aborts the cycle by
asserting the BERR input. If the aborted bus cycle is a data space access, the processor
immediately begins exception processing. If the aborted bus cycle is an instruction
prefetch, the processor delays taking the exception (the processor will wait until the
results of the aborted bus cycle are required for further instruction execution, and then
takes the exception).

Exception processing for a bus error follows the usual sequence of steps. The status
register is copied, the supervisor state is entered, and tracing is disabled. A vector
number is generated to refer to the bus error vector. The vector offset, program counter,
and the copy of the status register are then saved on the stack, in addition to information
describing the non-user visible internal registers of the processor. This additional infor-
mation is required to recover from the bus fault, since the processor may be in the middle
of executing an instruction when the fault is detected. The saved program counter vaiue
is the address of the instruction that was executing at the time the fault was detected.
This is not necessarily the instruction that generated the bus cycle, due to the overlap-
ped execution allowed by the processor. The internal state information inciuded in the
stack frame contains sufficient information to determine the cause of the bus fault and
recover from the error.

For improved efficiency, the MC68020 supports two different bus error stack frame for-
mate as chown in Fiqures B-7 and A-8_ If the bus error occurs in mid-instruction, the pro-
cessor saves its entire state in order to properly continue execution of the instruction
after the bus error is corrected. If the bus error is taken as the processor is beginning ex-
ecution of an instruction, the processor can save a much smaller amount of information
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about the failed cycle in order to continue execution of that instruction when the excep-
tion handler returns. The two bus error stack frames are distinguished by the stack frame
format code (refer to 6.5 MC68020 STACK FRAMES for additional information).

If a bus error occurs during the exception processing for a bus error, address error, or
reset, or while the processor is loading internal state information from the stack during
the execution of an RTE instruction, the processor enters the halted state. This simplifies
the detection of catastrophic system failures, since the processor removes itself from
the system rather than modifying the current state of the stacks and memory. Only an ex-
ternal RESET can restart a processor halted due to a double bus fault.

6.3.4 Instruction Traps

Traps are exceptions caused by instruction execution. They arise either from processor
recognition of abnormal conditions during instruction execution, or from use of the
specific instructions whose normal behavior is to cause an exception.

Exception processing for traps follows the same steps outlined previously. The status
register is copied internally, the supervisor state is entered, and the trace bits are
cleared. Thus, if tracing was enabled when the trap causing instruction began execution,
a trace exception will be generated by the instruction, but the trap handler routine will
not be traced (the trap exception will be processed first, then the trace exception). A vec-
tor number is internally generated; for the TRAP #n instruction, part of the vector number
comes from the instruction itself. The trap vector offset, the program counter, and the
copy of the status register are saved on the supervisor stack. The saved value of the pro-
gram counter is the address of the instruction after the instruction which generated the
trap. For all instruction traps other than TRAP #n, a pointer to the instruction which caus-
ed the trap is also saved. Finally, instruction execution commences at the address con-
tained in the exception vector.

Certain instructions are used specifically to generate traps. The TRAP #n instruction
always forces an exception, and is useful for implementing system calls for user pro-
grams. The TRAPcc, TRAPV, cpTRAPcc, CHK, and CHK2 instructions force an exception
if the user program detects a runtime error, which may be an arithmetic overflow or a
subscript value out of bounds. The DIVS and DIVU instructions will force an exception if
a division operation is attempted with a divisor of zero. The CALLM and RTM instructions
will cause a format error if an illegal privilege change is requested or invalid parameters
are present in the type or option fields.

6.3.5 Breakpoints

In order to use the MC68020 in a hardware emulator, it must provide a means of inserting
breakpoints into the target code, and then give a clear announcement of when it has
reached a breakpoint. For the MC68000 and MC68008, this can be done by inserting an
illegal instruction at the breakpoint and detecting when the processor fetches from the il-
legal instruction exception vector location. Since the vector base register on the
MC68010, MC68012, and MC68020 allows arbitrary relocation of the exception vectors,
the exception vector address cannot serve as a reliable indicator that the processor is
taking the breakpoint. On the MC68010, MC68012, and MC68020, this function is provided
by extending the functionality of a set of the illegal instructions, $4848-$484F, to serve as

6-10



breakpoint instructions. The breakpoint facility also allows external hardware to monitor
the execution of a program residing in the on-chip cache, without severe performance
degradation.

When a breakpoint instruction is executed, the MC68020 performs a read from CPU
space $0 at an address corresponding to the breakpoint number. Refer to Figure 5-24 for
the CPU space $0 encoding. If this bus cycle is terminated by BERR, the processor then
proceeds to perform illegal instruction exception processing. If the bus cycle is ter-
minated by DSACKX, the processor uses the data returned to replace the breakpoint in-
struction in the internal instruction pipe, and begins execution of that instruction.

6.3.6 Format Error

Just as the processor checks that prefetched instructions are valid, the processor (with
the aid of a coprocessor, if needed) also performs some checks of data values for control
operations, including the type and option fields of the descriptor for CALLM, the
coprocessor save area format for coRESTORE, and the stack format for RTE and RTM.

The RTE instruction checks the validity of the stack format code, and in the cases of the
bus cycle fault formats, the validity of the data to be loaded into the various internal
registers. The only data item checked for validity is the version number of the processor
that generated the frame. This check ensures that the processor is not making erroneous
assumptions about internal state information in the stack frame.

The CALLM and RTM both check the values in the option and type fields in the module
descriptor and module stack frame, respectively. If these fields do not contain proper
values, or if an illegal access rights change request is detected by an external memory
management unit, then an illegal call or return is being requested and is not executed.
Refer to APPENDIX D.1 MODULE SUPPORT for more information on the module
calllfreturn mechanism.

The cpRESTORE instruction passes the format field of the coprocessor save area to the
coprocessor for validation. If the coprocessor does not recognize the format value, it in-
dicates this to the main processor, and the MC68020 will take a format error exception.
Refer to 8.15 EXCEPTION PROCESSING for details of coprocessor related exceptions.

If any of these checks determine that the format of the control data is improper, the pro-
cessor generates a format error exception. This exception saves a short format excep-
tion frame, and then continues execution at the address contained in the format excep-
tion vector. The stacked program counter is the address of the instruction that detected
the format error.

6.3.7 lllegal or Unimplemented Instructions

An illegal instruction is any of the word bit patterns which do not correspond to the bit
nattern of the first word of a legal MC68020 instruction, or a MOVEC instruction with an
undefined register specification field in the first extension word. The word patterns with
bits [15:12] equal to 1010 are distinguished as unimplemented instructions, referenced to
as A-line opcodes. During instruction execution, when an attempt is made to execute an
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illegal instruction, an illegal instruction exception occurs. Unimplemented instructions
utilize separate exception vectors, permitting more efficient emulation of unimple-
mented instructions.

The word patterns with bits [15:12] equal to 1111 (referred to as F-line opcodes) are used
for coprocessor instructions, but may generate an unimplemented instruction exception.
When the processor encounters an F-line instruction, it first runs a bus cycle referencing
CPU space 2 and addressing one of eight coprocessors. If no coprocessor responds to
the bus cycle and the access is terminated with a bus error, the processor will proceed
with unimplemented instruction exception processing and fetch the F-line emulator vec-
tor. Thus, the function of the coprocessor may be emulated. Refer to SECTION 8
COPROCESSOR INTERFACE DESCRIPTION for more details.

Exception processing for illegal and unimplemented instructions is similar to that for
traps. After the instruction is fetched and decoded, the processor determines that execu-
tion of an illegal or unimplemented instruction is being attempted and starts exception
processing before executing the instruction. The status register is copied, the supervisor
state is entered, and tracing is disabled. A vector number is generated to refer to the il-
legal instruction vector, or in the case of unimplemented instructions, to the correspon-
ding emulation vector. The illegal or unimplemented instruction vector offset, current
program counter, and copy of the status register are saved on the supervisor stack, with
the saved value of the program counter being the address of the illegal or unimplemented
instruction. Finally, instruction execution resumes at the address contained in the ex-
ception vector. ‘

6.3.8 Privilege Violations

In order to provide system security, certain instructions are privileged (see Table 6-4). An
attempt to execute one of the privileged instructions while in the user privilege state will
cause an exception. Also, a privilege violation may occur if a coprocessor requests a
privilege check and the processor is in the user state.

Table 6-4. Privileged Instructions

ANDI to SR MOVEC
EORI to SR MOVES
cpRESTORE ORI to SR
cpSAVE RESET
MOVE from SR RTE
MOVE to SR STOP
MOVE USP

Exception processing for privilege violations is similar to that for illegal instructions.
After the instruction is fetched and decoded, the processor determines that a privilege
violation is being attempted, and the processor starts exception processing before ex-
ecuting the instruction. The status register is copied, the supervisor state is entered, and
tracing is disabled. A vector number is generated to reference the privilege violation vec-
tor; the privilege violation vector offset, current program counter, and the status register
are saved on the supervisor stack. The saved value of the program counter is the address



of the first word of the instruction which caused the privilege violation. Finally, instruc-
tion execution resumes at the address contained in the privilege violation exception
vector.

6.3.9 Tracing

To aid in program development, the M68000 processors include a facility to aliow
instruction-by-instruction tracing. The MC68020 also allows tracing of instructions that
change program flow. In the trace mode, a trace exception is generated after an instruc-
tion is executed, allowing a debugger program to monitor the execution of a program
under test.

The trace facility uses the T1 and TO bits in the supervisor portion of the status register. If
both T bits are clear, tracing is disabled, and instruction execution proceeds normally. If
the T1 bit is clear and the TO bit is set at the beginning of the execution of an instruction,
and that instruction causes the program counter to be updated in a non-sequential man-
ner, a trace exception will be generated after its execution is completed. Instructions
that will be traced in this mode include all branches, jumps, instruction traps, returns,
status register manipulations (since the processor must refetch any words that may have
been prefetched from the supervisor program space rather than user program space),
and coprocessor general instructions that modify the program counter flow. If the T1 bit
is set and the TO bit is clear at the beginning of the execution of any instruction, a trace
exception will be generated after the execution of that instruction is completed. See
Table 6-5.

Table 6-5. Tracing Control

1L TO Tracing Function

0 0 | No Tracing

0 1 Trace on Change of Flow (BRA, JMP, etc.)

1 0 | Trace on Instruction Execution (Any Instruction)
1 1 Undefined, Reserved

In general terms, a trace exception can be viewed as an extension to the function of any
instruction. Thus, if a trace exception is generated by an instruction, the execution of
that instruction is not complete until the trace exception processing associated with it is
completed. If the instruction does not complete execution due to a bus error or address
error exception, trace exception processing is deferred until after the execution of the
suspended instruction is resumed (by the associated RTE), and the instruction execution
is completed normally. If the instruction is executed and an interrupt is pending on com-
pletion, the trace exception processing is completed before the interrupt exception pro-
cessing starts. If, during the execution of the instruction, an exception is forced by that
instruction, the forced exception is processed before the trace exception is processed.

If the processor is in the trace mode when an attempt is made to execute an illegal or

U SR B IR Y Pl FYIpN il +
Unimpisimeniea instruction,; that instruction will not causc a trace since it is not ex-

ecuted. This is of particular importance to an instruction emulation routine that performs
the instruction function, adjusts the stacked program counter to beyond the
unimplemented instruction and then returns. Before the return is executed, the status
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register on the stack should be checked to determine if tracing is on; and if so, then the
trace exception processing should also be emulated in order for the trace exception
handler to account for the emulated instruction.

The exception processing for a trace starts at the end of normal processing for the
traced instruction, and before the start of the next instruction. An internal copy is made
of the status register. The transition to supervisor state is made, and the T bits of the
status register are cleared, disabling further tracing. A vector number is generated to
reference the trace exception vector. The address of the instruction that caused the
trace exception, the trace exception vector offset, program counter, and the copy of the
status register are saved on the supervisor stack. The saved value of the program counter
is the address of the next instruction to be executed. Instruction execution resumes at
the address contained in the trace exception vector.

Note that there is one case where tracing affects the normal operation of one instruction.
If the STOP instruction begins execution with T1=1, an exception will be taken. Upon
return from the trace handler routine, execution will continue with the instruction follow-
ing the STOP, and the processor will never enter the stopped condition.

6.3.10 Interrupts

Exception processing can be caused by external devices requesting service through the
interrupt mechanism described in 5.2.4.1 INTERRUPT OPERATION. Interrupt requests ar-
riving at the processor through the IPLO-IPL2 pins do not force immediate exception pro-
cessing, but may be made pending. Pending interrupts are serviced between instruction
execution, at the end of exception processing, or when permitted during coprocessor in-
structions. If the priority of the requested interrupt is less than or equal to the current in-
terrupt mask level, execution continues with the next instruction and the interrupt re-
quest is ignored. (The recognition of level seven is slightly different, as explained below.)
If the priority of the requested interrupt is greater than the current interrupt mask level it
is made pending and exception processing will begin at the next instruction boundary.

Exception processing for interrupts follows the same steps as previously outlined. First,
an internal copy of the status register is made, the privilege state is set to supervisor,
tracing is suppressed, and the processor interrupt mask level is set to the level of the in-
terrupt being serviced. The processor fetches a vector number from the interrupting
device, classifying the bus cycle as an interrupt acknowledge and displaying the level
number of the interrupt being acknowledged on pins A1-A3 of the address bus. If the vec-
tor number is not generated by the interrupting device, external logic requests automatic
vectoring and the processor internally generates a vector number which is determined by
the interrupt level number. However, if external logic indicates a bus error, the interrupt is
taken to be spurious, and the generated vector number refers to the spurious interrupt
vector.

Once the vector number is obtained, the processor proceeds with the usual exception
processing, saving the exception vector offset, program counter, and status register on
the supervisor stack. The saved value of the program counter is the address of the in-
struction which would have been executed had the interrupt not been present. If the inter-
rupt was recognized during the execution of a coprocessor instruction, further internal



information is saved on the stack so that the MC68020 can continue executing the
coprocessor instruction when the interrupt handier completes execution. If the M bit of
the status register is set, the M bit is cleared and a throwaway exception stack frame is
created on top of the interrupt stack. This second frame contains the same status
register, program counter, and vector offset as the frame created on top of the master
stack, but has a format number of $1 instead of $0 or $9. The content of the exception
vector corresponding to the vector number previously obtained is fetched and loaded in-
to the program counter, and normal instruction execution resumes in the interrupt
handler routine.

Priority level seven is a special case. Level seven interrupts cannot be inhibited by the in-
terrupt priority mask, thus, providing a non-maskable interrupt capability. An interrupt re-
quest is generated each time the interrupt request level changes from some lower level
to level seven. Note that a level seven interrupt may also be caused by level comparison if
the request level and mask level are at seven and the priority mask is then set to a lower
level (e.g., with the MOVE to SR or RTE instructions).

Most M68000 Family peripherals provide for programmable interrupt vector numbers to
be used in the interrupt request/acknowledge mechanism of the system. If this vector
number is not initialized after reset and the peripheral must acknowledge an interrupt re-
quest, the peripheral returns the vector number for the uninitialized interrupt vector, $0F.

6.3.11 Return From Exception

After exception stacking operations have been completed for all pending exceptions, the
processor resumes normal instruction execution at the address contained in the vector
referenced by the last exception to be processed. Once the exception handler has com-
pleted execution, the processor must return to the system context prior to the exception
(if possible). The mechanism used to accomplish this return for any exception is the RTE
instruction.

When the RTE instruction is executed, the processor examines the stack frame on top of
the active supervisor stack to determine if it is a valid frame and what type of context
restoration should be performed. The actions taken by the processor for each of the
stack frame types is described below. Refer to 6.5 MC68020 STACK FRAMES for the for-
mat of each frame type.

For a normal four word frame, the processor updates the status register and program
counter with the data pulled from the stack, increments the stack pointer by eight, and
resumes normal instruction execution.

For the throwaway four word stack, the processor reads the status register from the
frame, increments the active stack pointer by eight, loads the SR with the previously read
value, and then begins RTE processing again. This means that the processor reads a new
format word from the stack frame on top of the active stack (which may or may not be the
same stack used for the previous operation) and performs the proper operations cor-
responding to that format. In most cases, the throwaway frame will be on the interrupt
stack and when loaded, the S and M bits will be set. Then, there will be a normal four-
word frame or a ten-word coprocessor mid-instruction frame on the master stack.
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However, the second frame may be any format (including another throwaway frame) and
may reside on any of the three system stacks.

For the six word stack frame, the status register and program counter are updated from
the stack, the active supervisor stack pointer is incremented by twelve, and normal in-
struction execution resumes.

For the ::oprocessor mid-instruction stack frame the status register, program counter, in-
struction address, internal registers, and evaluated effective addresses are pulled from
the stack and are restored to the corresponding internal registers, after the stack pointer
is incremented by twenty. Then the processor reads from the response register of the
coprocessor that generated the exception to determine the next operation to be perform-
ed. Refer to 8.15 EXCEPTION PROCESSING for details of coprocessor related excep-
tions.

For both the short and long bus cycle fault stack frames, the stack is first checked for
validity. In addition to the format value, one word in the frame is checked for a value that
indicates whether or not this frame can be used by this processor. If the frame is found to
be invalid or inaccessible, a format error or a bus error exception is taken, respectively.
Otherwise, the processor reads the entire frame into the proper internal registers,
deallocates the proper stack, and resumes normal processing. Once the frame is found
to be ac:uassible and the processor begins to read it, a bus error must not occur or the
processor will enter the halted state. Refer to 6.4 BUS FAULT RECOVERY for more infor-
mation on the behavior of the processor after the frame is read into the internal registers.

If a format error or bus error occurs during the execution of the RTE instruction, either
due to any of the errors described above or due to an illegal format code, the processor
will create a normal four word or a bus cycle fault stack frame above the frame that it was
attempting to use. In this way, the faulty stack frame remains intact and may be examin-
ed by the format error or bus error exception handler and repaired, or used by another
processor of a different type (e.g., an MC68010, MC68012, or a future M68000 processor)
in a multiprocessor system.

6.4 BUS FAULT RECOVERY

There are two facets to recovery from a bus cycle fault: recognition of the fault and sav-
ing the processor state, and restoring the state at a later time.

A memory fault is indicated to the MC68020 by an address error (generated internally), or
by a bus error (generated by external logic, generally by a memory management device or
sub-system). The processor state is saved on the supervisor stack as described in 6.3.3
Bus Error, and the state may be later restored by the RTE instruction as described in
6.3.11 Return From Exception. The action taken by the processor after the return can be
controlled, to some degree, by manipulating the data in the bus fault stack frame as
described below.

The MC68020 can have faults occur on either instruction stream or data accesses. Faults
on data accesses are taken when the bus cycle is terminatea. Faults on instruction
stream accesses are delayed until the processor attempts to use the information, if ever,
which was not obtained due to the aborted bus cycle. Address error faults occur only on
instruction stream accesses, and are taken before the bus cycle is attempted.
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6.4.1 Special Status Word

There are several special registers saved as part of the bus fault exception stack frame
information, including the internal special status word (see Figure 6-2). This word is plac-
ed in the stack frame, at offset $A, for both the short bus cycle fault format and the long
bus cycle fault format. Refer to 6.5.5 Short Bus Cycle Fault Stack Frame and 6.5.6 Long
Bus Cycle Fault Stack Frame.

B 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[Felmrc[RrRB [ 0o oJorF[ru[rw] siz [ o | FcoFc2 |

Fault on Stage C of the Instruction Pipe
Fault on Stage B of the Instruction Pipe

RC — Rerun Flag for Stage C of the Instruction Pipe*
RB — Rerun Flag for Stage B of the Instruction Pipe*
DF — Fault/Rerun Flag for Data Cycle*

RM — Read-Modify-Write on Data Cycle

RW — Read/Write for Data Cycle— 1= Read, 0= Write
Siz — Size Code for Data Cycle

FCO-FC2 — Address Space for Data Cycle

*1=Rerun Faulted Bus Cycle
0=Do Not Rerun Bus Cycle

Figure 6-2. Special Status Word (SSW)

The special status word (SSW) information defines whether the fault was on the instruc-
tion stream, data stream, or both. Instruction stream faults can occur for two stages of
the pipe, the B and C stages. Each stage has a separate fault bit, which indicates that the
processor attempted a prefetch for that stage and was unsuccessful. Each stage also
has a rerun bit, which controls the processor in its repair of the stage; if the bit is set
when the RTE instruction reads the frame, the processor will rerun the previously aborted
bus cycle; if the bit is clear, the processor assumes that software repaired the image of
that stage. When the SSW is written to the stack frame during exception processing, the
RB and/or RC bits will be set if the corresponding fault bit is set, or if a prefetch for the
stage is pending, so that the default is to have the processor rerun the bus cycle(s). The
address space for instruction stream faults is not presented explicitly, but is the program
space for the privilege level indicated in the status register of the stack frame.

If the DF bit of the SSW is set, a data fault has occurred. If the DF bit is set when the pro-
cessor reads the stack frame, it will rerun the faulted data access; otherwise, it assumes
that no data fault occurred, or software has corrected the fault. Other information about
the data access, such as read/write, read-modify-write, the size of the operand access,
and the address space for the access are present in the SSW. Data and instruction
stream faults may be pending simultaneously; thus, the fault handler should be able to
handle any combination of the FC, FB, and DF bits.

6.4.2 Completing the Bus Cycle(s)

There are two methods of completing faulted bus cycles. The first is to use a software
handler to emulate the cycle and the second is to allow the processor to rerun the bus cy-
cle(s) after the cause tor the Tauit has been repaired.
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6.4.2.1 COMPLETING THE BUS CYCLE(S) VIA SOFTWARE. Based on the information
saved on the stack, the fault handler routine may emulate the faulted bus cycle in a man-
ner that is transparent to the instruction that caused the fault. For instruction stream
faults, there are separate images for the B and C stages of the instruction pipe that may
need repair. If the fault indicator for a particular stage is set, the processor has faulted
because the fetch of the instruction word was aborted by an address error or a bus error.
For the short format frame, the address of the stage B word is the value in the program
counter plus four, and the address of the stage C word is the value in the program
counter plus two. For the long format, the address of the stage B word is given explicitly,
and the address of the stage C word is the address of the stage B word minus 2. For each
faulted stage, the software handler should fetch the instruction word from the proper ad-
dress space as indicated by the S bit of the status register in the frame, and write it to the
image of the stage in the stack frame. In addition, the handler must clear the rerun bit
associated with the stage that it has completed. The fault bits for each stage should not
be changed.

For data write operations, the handler must transfer the properly sized data in the image
of the data output buffer (DOB) to the location indicated by the fault address in the ad-
dress space defined by the SSW. For data read operations, the handler must transfer pro-
perly sized data from the location indicated by the fault address and address space to
the image of the data input buffer (DIB). Byte, word, and 3-byte operands appear right-
justified within the 4-byte image of the data buffers. In addition, the software handler
must clear the DF bit of the SSW to inform the processor that the faulted data bus cycle
has been completed.

In order to emulate a read-modify-write cycle, the exception handler must first determine
what instruction, CAS, CAS2, or TAS, caused the fault. This may be accomplished by ex-
amining the operation word at the address contained in the stack frame program
counter. Then the handier must modify not only the SSW of the stack frame, but also the
status register image and the image of any data register(s) required for the CAS and
CAS2 instructions (presumably, the user visible registers were saved upon entry to the
handler with a MOVEM instruction and are restored later). In other words, the fault
handler must emulate the entire instruction, rather than just the faulted bus cycle. This
more detailed action is required due to the fact that the processor assumes that the en-
tire read-modify-write operation (which may consist of up to four long word transfers), in-
cluding condition code computations and register transfers, is completed by the handler
if the DF bit is clear and the RM bit is set when the frame is read by an RTE instruction.
This is true regardiess of whether the fault occurred on the first read cycle, or subse-
quent read or write cycles of the operation.

After the handler has completed the software emulation, the stack frame and the
memory state represent the state of the system after the bus cycle(s) has been suc-
cessfully completed. Note that the software method must be used for address error
faults.

To ensure proper operation of the processor, no modifications to a bus cycle fault stack
frame other than those described above should be made.
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6.4.2.2 COMPLETING THE BUS CYCLE(S) VIA RTE. If it is not necessary to complete the
faulted bus cycle via software emulation, the RTE instruction, as the last instruction to
be executed in the exception handler routine, is able to complete the faulted bus cycle(s).
This is the default case and it is assumed that whatever caused the fault, such as a non-
resident page in a virtual memory system, has been repaired or the fault will occur again.
If a fault occurs when the RTE instruction attempts to rerun the bus cycle(s), a new stack
frame will be created on the supervisor stack after the previous frame is deallocated; and
address error or bus error exception processing will start in the normal manner.

6.5 MC68020 EXCEPTION STACK FRAMES

The MC68020 generates six different stack frames. These frames consist of the normal
four and six word stack frames, the four word throwaway stack frame, the coprocessor
mid-instruction exception stack frame, and the short and long bus fault stack frames.

Whenever the MC68020 writes or reads a stack frame, it will use long word operand
transfers whenever possible. Thus, if the stack area resides in a 32-bit ported memory
and the stack pointer is long word aligned, exception processing performance will be
greatly enhanced. Also, the order of the bus cycles used by the processor to write or read
a stack frame may not follow the order of the data in the frame.

6.5.1 Normal Four Word Stack Frame

This frame (see Figure 6-3) is created by interrupts, format errors, TRAP #n instructions,
illegal instructions, A-line and F-line emulator traps, privilege violations, and
coprocessor pre-instruction exceptions. The program counter value is the address of the
next instruction to be executed, or the instruction that caused the exception, depending
on the exception type.

15 0
SP—31 Status Register

+$02

Program Counter

+$06 0 0 0 0 T Vector Offset

Figure 6-3. Format $0 — Four Word Stack Frame

6.5.2 Throwaway Four Word Stack Frame

This stack frame (see Figure 6-4) is the throwaway frame that is created on the interrupt
stack during exception processing for an interrupt when a transition from the master
state to the interrupt state occurs. The program counter value is equal to the value on the
normal four word or coprocessor mid-instruction exception stack frame that was created
on the master stack.
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SP —»] Status Register

+$02

Program Register

+ $06 0 0 0 1 [ Vector Offset

Figure 6-4. Format $1 — Throwaway Four Word Stack Frame

6.5.3 Normal Six Word Stack Frame

This stack frame (see Figure 6-5) is created by instruction related exceptions which in-
clude coprocessor post-instruction exceptions, CHK, CHK2, cpTRAPcc, TRAPV trace,
and zero divide. The instruction address value is the address of the instruction that caus-
ed the exception. The program counter value is the address of the next instruction to be
executed, and the address to which the RTE instruction will return.

15 0
Sp Status Register
- +502
Program Counter
+$06 0 0 1 0 Vector Offset
+$08

Instruction Address

Figure 6-5. Format $2 — Six Word Stack Frame

6.5.4 Coprocessor Mid-Instruction Exception Stack Frame

This stack frame (see Figure 6-6) is created for three different exceptions, all related to
coprocessor operations. The first occurs when the “take mid-instruction exception”
primitive is read while processing a coprocessor instruction. The second occurs when
the main processor detects a protocol violation during processing of a coprocessor in-
struction. The third occurs when a “null, come again with interrupts allowed” primitive is
received, and the processor detects a pending interrupt. Refer to SECTION 8
COPROCESSOR INTERFACE DESCRIPTION for further details. The program counter
value is the address of the next word to be fetched from the instruction stream. The in-
struction address value is the address of the first word of the instruction that was ex-
ecuting when the exception occurred.
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SP 3] Status Register

+$02

Program Counter

+ $06 1 0 0 1 Vector Offset

+308
Instruction Address

+3$0C

Internal Registers,
4 Words

Figure 6-6. Format $9 — Coprocessor Mid-Instruction
Exception Stack Frame (10 Words)

6.5.5 Short Bus Cycle Fault Stack Frame

This stack frame (see Figure 6-7) is created whenever a bus cycle fault is detected, and
the processor recognizes that it is at an instruction boundary and can use this reduced
version of the bus fault stack frame. The program counter value is the address of the next
instruction to be executed.

15 0

SP—> Status Register
+$02

Program Counter
+$06 1 0 1 -0 - Vector Offset
+$08 Internal Register
+$0A Special Status Word
+$0C Instruction Pipe Stage C
+ $0E Instruction Pipe Stage B
+$10

Data Cycle Fault Address

+3$14 Internal Register
+$16 Internal Register
+$18

Data Output Buffer
+81C Internal Register
+3$1E Internal Register

Figure 6-7. Format $A — Short Bus Cycle Fault Stack Frame (16 Words)
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6.5.6 Long Bus Cycle Fault Stack Frame

This stack frame (see Figure 6-8) is created whenever the processor detects a bus cycle
fault and recognizes that it is not on an instruction boundary. The program counter value
is the address of the instruction that was executing when the fault occurred (which may
not be the instruction that generated the faulted bus cycle).

15 0
SP—3>»1 Status Register
+$02
Program Counter
+$06 1 0 1 1 l Vector Offset
+$08 Internal Register
+ $0A Special Status Word
+$0C Instruction Pipe Stage C
+ $OE Instruction Pipe Stage B
+$10
Data Cycle Fault Address
+$14
Internal Registers,
6 Words
+$1E
+$20
Stage B Address
924 Internal Registers,
4426 2 Words
+$28
Data Output Buffer
+$2C
Data Input Buffer
+$30
Internal Registers,
20 Words
+ $56

Figure 6-8. Format $B — Long Bus Cycle Fault Stack Frame (44 Words)
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6.5.7 Stack Frame Summary
Figure 6-9 shows a summary of the M68000 Family defined stack frames.

Format Frame Type
0000 Short Format (4 Words)
0001 Throwaway (4 Words)
0010 Instruction Exception (6 Words)
0011-0111 (Undefined, Reserved)
1000 MC68010 Bus Fault (29 Words)
1001 Coprocessor Mid-Instruction (10 Words)
1010 MC68020 Short Bus Fault (16 Words)
1011 MC68020 Long Bus Fault (44 Words)
1100-1111 (Undefined, Reserved)

Figure 6-9. Stack Frame Format Definitions
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SECTION 7
ON-CHIP CACHE MEMORY

The MC68020 incorporates an on-chip cache memory as a means of improving the perfor-
mance of the processor. The cache is implemented as a CPU instruction cache and is
used to store the instruction stream prefetch accesses from the main memory.

Studies have shown that typical programs spend most of their execution time in a few
main routines or tight loops. Therefore, once captured in the high-speed cache, these ac-
tive code segments can execute directly from the cache. Thus, the processor does not
suffer any external memory delays, and the total execution time of the program is
significantly improved. The performance is also improved by allowing the MC68020 to
make simultaneous accesses to instructions in the internal cache and to data in the
external memory.

Another of the major benefits of using the cache is that the processor’'s external bus
activity is greatly reduced. Thus, in a system with more than one bus master (such as a
processor and DMA device) or a tightly-coupled multi-processor system, more of the bus
bandwidth is available to the alternate bus masters without a major degradation in the
performance of the MC68020.

7.1 CACHE DESIGN AND OPERATION
The following paragraphs describe the cache design and operation within the MC68020.

7.1.1 On-Chip Cache Organization

The MC68020 on-chip instruction cache is a direct-mapped cache of 64 long word entries.
Each cache entry consists of a tag field made up of the upper 24 address bits and the
FC2 value, one valid bit and 32 bits (two words) of instruction data. With a tag field of 24
bits, the 4-gigabyte linear address space is partitioned into blocks, each 256 bytes in size.

Figure 7-1 shows a block diagram of the on-chip cache. Whenever an instruction fetch oc-
curs, the cache (if enabled) is first checked to determine if the word required is in the
cache. This is achieved by first using the index field (A2-A7) of the access address as an
index into the on-chip cache. This selects one of the 64 entries in the cache. Next, the ac-
cess address bits A8-A31, and FC2 are compared to the tag of the selected entry. If there
is a match and the valid bit is set, a cache hit occurs. Address bit A1 is used to select the
proper word from the cache entry and the cycle ends. If there is no match, or the valid bit
is clear, a cache miss occurs and the instruction is fetched irom exiernai memory. This
new instruction is automatically written into the cache entry, and the valid bit is set,
unless the freeze cache bit has been set (see 7.1.2.3 F—FREEZE CACHE) in the cache
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Figure 7-1. MC68020 On-Chip Cache Organization

control register. Since the processor always prefetches instructions externally with long
word, aligned bus cycles, both words of the entry will be updated, regardless of which
word caused the miss.

NOTE
Data accesses are not cached, regardless of their associated address space.

7.1.2 Cache Control

The cache itself is accessable only by the internal MC68020 control unit. The user has no
direct method of accessing (read/write) individual entries (tag, data, etc.). To manipulate
the cache entries, however, the user does have a set of control functions available in the
form of a cache control register which is described below.

7.1.21 CACHE CONTROL REGISTER. Access to the cache control register (CACR) is pro-
vided by means of the Move Control Register (MOVEC) instruction. The MOVEC instruc-
tion is a privileged instruction. The CACR is a 32-bit register which is organized as shown

in Figure 7-2. The unused bits (including bits [31:8] which are not shown) are always read
as zeros.
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31 8 7 0
K o To[e o [o[c [ 7]
C = Clear Cache
CE = Clear Entry

= Freeze Cache
E = Enable Cache

Figure 7-2. Cache Control Register

7.1.2.2 E—ENABLE CACHE. The cache enable function is necessary for system debug
and emulation. This bit allows the designer to operate the processor with the cache
disabled. Clearing this bit will disable the cache (force continuous misses, and suppress
fills) and force the processor to always access external memory. The cache will remain
disabled as long as this bit is cleared. The user must set this bit, which is automatically
cleared whenever the processor is reset, to enable the cache.

7.1.2.3 F—FREEZE CACHE. The freeze bit keeps the cache enabled, but cache misses
are not allowed to replace valid cache data. This bit can be used by emulators to freeze
the cache during emulation function execution.

7.1.2.4 CE—CLEAR ENTRY. When the clear entry bit is set, the processor takes the ad-
dress (index field, bits 2-7) in the cache address register (CAAR) and invalidates the
associated entry (clears the valid bit) in the cache, regardless of whether or not it pro-
vides a hit; i.e., whether the tag field in the cache address register matches the cache tag
or not. This function will occur only when a write to the cache control register is perform-
ed with the CE bit set. This bit always reads as a zero and the operation is independent of
the state of the E or F bits, or the external Cache Disable (CDIS) pin.

7.1.2.5 C—CLEAR CACHE. The cache clear bit is used to invalidate all entries in the
cache. This function is necessary for operating systems and other software which must
clear old data from the cache whenever a context switch is required. The setting of the
clear cache bit in the cache control register causes all valid bits in the cache to be
cleared, thus invalidating all entries. This function occurs only when a write to the cache
control register is performed with the C bit set. This bit always reads as a zero.

7.2 CACHE ADDRESS REGISTER

The cache address register (CAAR) is a 32-bit register which provides an address for
cache control functions (see Figure 7-3). The MC68020 only uses this register for the clear
entry (CE) function. Access to the CAAR is provided by the Move Control Register
(MOVEQC) instruction.

31 8 7 210
[ Cache Function Address I Index

Figure 7-3. Cache Address Register
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7.3 CACHE DISABLE INPUT

The cache disable input is used to dynamically disable the cache. The input signal on
this pin is synchronized before being used to control the internal cache. The cache is
disabled on the first cache access after the synchronized CDIS signal is recognized as
being asserted. The cache will be re-enabled on the first cache access after the syn-
chronized CDIS signal is recognized as being negated. This pin disables the cache in-
dependent of the enable bit in the Cache Control Register and, therefore, can be used by
external emulator hardware to force the MC68020 to make all accesses via the external
bus.

7.4 CACHE INITIALIZATION

During processor reset, the cache is cleared by resetting all of the valid bits. The Cache
Control Register (CACR) enable (E) and freeze (F) bits are also cleared.
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SECTION 8
COPROCESSOR INTERFACE DESCRIPTION

This section describes the interface between the MC68020 and a coprocessor, the format
of coprocessor instructions, and the communication protocol between the main pro-
cessor and coprocessor(s). This description is most suited for designers who might im-
plement a coprocessor and interface it to the MC68020; it is not essential for understan-
ding the operation of the MC68020. Motorola coprocessors will automatically perform
the necessary dialogue with the MC68020 and present a uniform user interface. The
coprocessor will execute Motorola-defined instructions that are described in the respec-
tive coprocessor user manuals.

8.1 THE COPROCESSOR CONCEPT

The coprocessor interface defined here is a mechanism for extending the instruction set
of an M68000 processor. Examples of such extensions are the definition of new data
types and special purpose data operations.

This interface is designed to support synchronous (non-concurrent) operation between
the main processor and its associated coprocessor. Only those features that are re-
quired for this model are included in the coprocessor interface definition. Although
features are contained that can support asynchronous (concurrent) extensions of the
processor, this coprocessor interface is not designed to provide full support for such
extensions.

A coprocessor may be coupled with a main processor which does not have a coprocessor
interface such as an MC68000, MC68008, MC68010, or MC68012. This is accomplished by
providing instruction sequences that emulate the protocol of the coprocessor interface
described in this document.

8.2 COPROCESSOR STATES

In the discussions contained in this section, coprocessors are assumed to have distinc-
tive execution states. The following list contains a brief description of the coprocessor
states.

Initialized Initialized, reset, or empty; this may include initializing the content of
registers to some pre-determined value; ready to begin instruction
execution.

Idle-Done Idle, not busy, and awaiting new direction from the main processor;

results of any previous commands are available to the main processor.
Registers may contain operands and/or results of previous operations.
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Idle-Exception Idle, not busy, but an exception is pending because of a previous
operation. Refer to 8.15 EXCEPTION PROCESSING for additional
information.

Busy-Free Busy, occupied with the current or a previous instruction, and no fur-
ther service is needed from the main processor.

Busy-Wait Busy, executing an instruction, and in need of further service from the
main processor to complete this instruction.

Busy-Service Busy, occupied, and waiting for some service to be performed by the
main processor, will not proceed until requested service is performed.
Refer to 8.8 PRIMITIVE SET for descriptions of service requests or
primitives.

8.3 COPROCESSOR OPERATIONS

The coprocessor operations are based on F-line operation codes (i.e., those instruction
words with bits [15:12] = 1111). The F-line code is the first word of a coprocessor instruc-
tion, referred to as the operation word. It indicates to the main processor that it must call
upon a coprocessor for execution of the instruction. The format of this word is shown in
the following illustration.

15 14 13 12 Al 10 9 8 7 6 5 4 3 2 1 0
I 1 I 1 Tl I 1 | Cp-Id I Type l Type Dependent l

Since a system can utilize several coprocessors, the coprocessor identifier (Cp-ld) field
indicates which coprocessor is to be selected. Cp-ld’s of 000-101 are reserved by
Motorola, with Cp-Id’s of 110 and 111 reserved for user definition. The TYPE field in-
dicates which type of coprocessor operation is selected; i.e., general, branch, condi-
tional, save, or restore.

For all coprocessor instruction types, the main processor communicates with the
coprocessor using this general protocol:
a) The main processor initiates the communication by writing some information to

a location in the coprocessor interface register address space.

b) The main processor reads the coprocessor response to that information.

1) The response may indicate that the coprocessor is busy, and the main pro-
cessor should again query the coprocessor. This allows the main processor
and coprocessor to synchronize concurrent operations.

2) The response may indicate some exception condition; the main processor
acknowledges the exception and begins exception processing.

3) Theresponse may indicate that the coprocessor needs the main processor
to perform some service such as transferring data to or from the copro-
cessor. The coprocessor may also request that the main processor query
the coprocessor again after the service is complete.

4) The response may indicate that the main processor is not needed for fur-
ther processing of the instruction. The communication is terminated, and
the main processor is free to begin execution of the next instruction.
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Each instruction has specific requirements based on this simplified protocol. The
protocols for the various types of coprocessor instruction are detailed in 8.9
COPROCESSOR INTERFACE PROTOCOL: DETAIL.

8.4 COPROCESSOR BUS DEFINITION

The connection between the main processor and the coprocessor is a simple extension
of the M68000 bus interface. The coprocessor is connected as a peripheral to the main
processor. The selection of the coprocessor is based on combinations of the function
codes and the address bus of the main processor. Figure 8-1 depicts the coprocessor
system configuration.

Each coprocessor has a set of registers by which the main processor and coprocessor
may communicate. Refer to 8.5 COPROCESSOR INTERFACE REGISTERS for additional
information.

l ¥ Y

Address
Decode

VANV AND AN ANV AN AN

> Coprocessor 1/0 Memory

FCO-FC2

MC68020 Bus
A0-A31 Extension
< DO-D31 )

Figure 8-1. Coprocessor System Configuration

8.4.1 Use of Signals

The main processor does not require any new dedicated bus signals for connection to a
coprocessor. When running a coprocessor bus cycle, the function codes select the CPU
space and the CPU space type on A16-A19 specifies a coprocessor access. Address bits
A12-A15 contain the coprocessor identifier and A1-A4 contains the location of the
coprocessor interface register selected.

8.4.2 Timing

The coprocessor bus interface controller must be designed so that it operates asyn-
ferent clock. For example, a device operating with a fast clock may be addressing a
device with a slow clock or no clock. When using synchronous logic, such clock mis-
matches can not be allowed since an asynchronous signal from a fast device could be
negated and then reasserted before a slow peripheral recognizes the negation.
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8.4.3 Interprocessor Transfers

The interprocessor transfers are initiated by the main processor. During the execution of
a coprocessor instruction, the main processor may transfer instruction information and
data to the associated coprocessor, and may receive data, requests, and status informa-
tion from the coprocessor. These transfers are based on M68000 bus cycles.

8.4.3.1 PROCESSOR-TO-COPROCESSOR TRANSFER (WRITE). The main processor-to-
coprocessor transfer (Figure 8-2) is based on the M68000 write bus cycle. The main pro-
cessor executes a write cycle, indicating CPU space 2 on the function codes, and pre-
senting the coprocessor identity on the address bus. After the selected coprocessor has
obtained the data from the data bus, it terminates the bus cycle using the proper data
sizeldata transfer acknowledge (DSACKx) encoding.

PROCESSOR COPROCESSOR

Start Transfer
1) Function Codes= CPU Space
2) Address= Coprocessor ldentity and Interface
Register
3) Assert R/W as Write
4) Assert ECS and OCS for One-Half Clock
5) Assert Address Strobe (AS)

6) Place Data on Data Bus > Receive Data
7) Assert Data Strobe (DS)
1) LatchData
Terminate Bus Cycle - 2) Assert DTACK/DSACKx
1) Negate Address and Data Strobes (AS and DS) Doe
2) Three State Address and Data > eselect
1) Negate DTACK/DSACKx
2) Resume Processing
l Start Next Cycle 1

Figure 8-2. Processor-to-Coprocessor Transfer

8.4.3.2 COPROCESSOR-TO-PROCESSOR TRANSFER (READ). The coprocessor to main
processor transfer (Figure 8-3) is based on the M68000 read bus cycle. The main pro-
cessor executes a read cycle, indicating CPU space 2 on the function codes, and present-
ing the coprocessor identity on the address bus. The selected coprocessor presents the
requested data on the data bus and asserts data size/data transfer acknowledge
(DSACKXx). After the main processor has obtained the data from the data bus, it ter-
minates the bus cycle.



PROCESSOR COPROCESSOR

Start Transfer

1) Function Codes= CPU Space

2) Address= Coprocessor Identity and
Interface Register

3) Assert R/W as Read

4) Assert ECS and OCS

5) Assert Address Strobe (AS)

6) Place Data on Data Bus

7) Assert Data Strobe (DS)

Y

Send Data

1) Drive Data Bus
2) Assert DTACK/DSACKx

A

Terminate Bus Cycle
1) Latch Data _ _
2) Negate Address and Data Strobes (AS and DS) ]
3) Three-State Address

Deselect

1) Negate DTACK/ DSACKx
+ 2) Three-State Data
3) Resume Processing

I Start Next Cycle I

Figure 8-3. Coprocessor-to-Processor Transfer

8.5 COPROCESSOR INTERFACE REGISTERS

The main processor and coprocessor communicate via bus cycles in the CPU space. The
following paragraphs identify those locations in the CPU space that are used for these in-
teractions. Aiso, the memory format of coprocessor-related data will be defined. The ad-
dress structure of these bus cycles is given in Table 8-1.

Table 8-1. Main Processor Address Encoding

Address Bits Value Definition/ Function
A31:A20 XXX Don't Care
A19:A16 0010 Coprocessor Operation
A15:A13 Cp-Id Coprocessor Identity
A12:A5 00. . .00 Operation as a Coprocessor
A4:A0 Cp-Optype Coprocessor Register

During execution of coprocessor instructions, the processor accesses coprocessor inter-
face registers using the coprocessor operation type (optype) selection field (A0-A4), with
the coprocessor operation field (A5-A12) equal to zeros. The coprocessor operation field
is used to distinguish operations that treat the coprocessor as a peripheral, either for
testing or for use in other systems. These address lines (A5-A12) allow a coprocessor to
have registers other than those which the main processor uses to execute coprocessor
instructions. The coprocessor designer is free to decide which, if any, of these additional
address lines to use for register selection.

It is expected that a coprocessor may be used as a peripheral on a main processor that
does not have a coprocessor interface. This can be accomplished by using instruction
sequences that emulate the protocol of the coprocessor interface.

The coprocessor identity field is taken from the Cp-ld field of the F-line operation word. It
should uniquely identify a coprocessor in a system. This field is not necessarily decoded
by the coprocessor, but may be externally decoded to provide a chip select function to
the coprocessor. This allows multiple coprocessors of the same type in a system, and
avoids future conflicts when assigning coprocessor identities.



Since the MC68008 does not support address lines A20-A31 and the MC68000 and
MC68010 do not support address lines A24-A31, these address lines may not be used as
part of the CPU space coprocessor address decode. When the MC68020 performs a
coprocessor access, A20-A31 will always be zero.

Although a coprocessor that allows external decoding of the Cp-Id field can be assigned
to any Cp-ld, Motorola products may assume default Cp-Id assignments by either hard-
ware or software conventions. Those Cp-ld defaults that are currently defined are:

000 MC68851 Paged Memory Management Unit

001 MC68881 Floating Point Coprocessor

Note that the MC68851 PMMU decodes CPU space $2, Cp-Id 0 on chip and thus must be
coprocessor 0.

Figure 8-4 shows the address assignment for the coprocessor interface registers. This
structure identifies what kind of operation the main processor expects from the
coprocessor, and permits additional addresses for use of the coprocessor as a
peripheral.

31 15 0
00 Response* Control*
04 Save* Restore*
08 Operation* Command*
ocC (Reserved) Condition*
10 Operand*
4 Register Select [ (Reserved)
18 Instruction Address
1C Operand Address

Figure 8-4. Coprocessor Interface Register Map

The address values shown are those that will be used if the coprocessor is selected as a
coprocessor. If it is desired to also be used as a peripheral, other interface registers or
locations may be defined and used. A coprocessor must implement the locations in-
dicated with an asterisk (*) in order to permit each of the instruction types to be im-
plemented. If the coprocessor interface is less than 32 bits in width, the MC68020 will use
dynamic bus sizing to make successive accesses to transfer information that is longer
than the port size.

The following paragraphs describe the coprocessor interface registers. The register
name is followed by the displacement of the register address within the address range of
a particular coprocessor. Any address associated with a coprocessor interface register
is in the CPU space.

8.5.1 Response Register ($00)

This 16-bit read-only register is the means by which the coprocessor requests action of
the main processor. Refer to 8.7.1 Response Register: Detail for further information.
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8.5.2 Control Register ($02)

This 16-bit write-only register is accessed by the main processor to acknowledge a
coprocessor exception request, or to abort a coprocessor instruction containing an il-
legal effective address field.

The main processor writes a mask into the control register. A mask with XA set
acknowledges and clears pending exceptions (see 8.8.13 Take Exception and 8.15 EX-
CEPTION PROCESSING). A mask with AB set directs the coprocessor to abort process-
ing of the current instruction, and to return to the idle state (see Figure 8-5).

5 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
| (Undefined, Reserved) [ xa T a8 ]

Figure 8-5. Coprocessor Control Register

8.5.3 Save Register ($04)

The main processor reads this 16-bit read-only register to cause the coprocessor to in-
itiate a save operation (see 8.12 COPROCESSOR INTERNAL STATE FRAME). The data
supplied by the coprocessor is the format word of its internal state. The main processor
will read the save register repeatedly until the coprocessor indicates that it is ready to in-
itiate the save sequence.

8.5.4 Restore Register ($06)

The main processor writes to this 16-bit read-write register to cause the coprocessor to
immediately suspend any current operation, and prepare to execute a restore operation
(see 8.12 COPROCESSOR INTERNAL STATE FRAME). The data supplied by the main pro
cessor is the format word of the coprocessor internal state frame.

The coprocessor validates the format word, and the main processor reads the restore
register after the write. The format read from the restore register may indicate that the
coprocessor does not recognize the written format, that the coprocessor is busy prepar-
ing for the restoration, or that the coprocessor is ready for the transfer of the remainder
of the state.

8.5.5 Operation Word Register ($08)

When the coprocessor operation word is requested by the coprocessor, it is written tc
this write-only register.

8.5.6 Command Word Register ($0A)

This 16-bit write-only register is used only for general type instructions. The main pro-
cessor initiates the general instruction by writing the command word to the coprocessor
command word register.
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8.5.7 Condition Register ($0E)

This 16-bit write-only register is used for the branch and conditional instructions. The
main processor writes a word containing the 6-bit condition selection code (see Figure
8-6) that specifies the condition to be evaluated by the coprocessor. All other bits of the
transfer are undefined.

15 14 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
[ (Undefined, Reserved) I Condition Selector

Figure 8-6. Condition Register

8.5.8 Operand Register ($10)

The 32-bit read-write operand register is the register through which the data operands re-
quested by the coprocessor are transferred. If the operand length is less than four bytes,
it is transferred and aligned with the most significant bit of the operand register. If the
operand length is four bytes or longer, the main processor makes successive accesses
to this register, transferring parts of the operand (four bytes per access), until less than
four bytes remain. Any remaining part is then transferred, aligned with the most signifi-
cant bits of the operand register. Figure 8-7 gives examples of some operand alignments.

31 24 23 16 15 87 0
I Byte I No Transfer I
l Word No Transfer 4]
[ Long J

Ten —
Byte
Operand ] No Transfer

Figure 8-7. Coprocessor Operand Register Alignments

8.5.9 Register Selector ($14)

This 16-bit read-only register is read by the main processor only upon request of the
coprocessor. This register provides control register selection for the “transfer main pro-
cessor control register” primitive, is used to count and select the registers for the
“transfer multiple main processor registers” primitive, and is used to count the number
of coprocessor registers involved in the “transfer multiple coprocessor register”
primitive.

8.5.10 Instruction Address Register ($18)

This 32-bit read-write register is used as the source or destination of the instruction ad-
dress, when a coprocessor primitive requests such a transfer. The storage of the instruc-
tion address is provided to facilitate operation of trace and/or exception-handling soft-
ware in systems with coprocessors that implement asynchronous (concurrent) instruc-
tions. Thus, not all coprocessors implement this register. The coprocessor may never
need this information of its own accord. If provided, the coprocessor should keep this
register updated as required.
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8.5.11 Operand Address Register ($1C)

This 32-bit read-write register is used as the source or destination of address operands
that are to be transferred. The effective address modes must not be program counter
relative; that is, the effective addresses should be in the data space. The operand ad-
dress register is accessed when requested by a coprocessor primitive.

8.6 COPROCESSOR INSTRUCTIONS
The following paragraphs describe the coprocessor instruction formats.

8.6.1 General Instruction

Figure 8-8 illustrates the coprocessor general instruction format. Any extension words
defined by the effective address field of the operation word or the coprocessor command
word follow the coprocessor command word.

15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0
HERERER Cp-Id [ oo o] Effective Address
Coprocessor Command

Optional Effective Address or Coprocessor Defined Extension Words

Figure 8-8. Coprocessor General Instruction Format

The general instruction form is used to describe most coprocessor instructions and is
defined, for the most part, by the coprocessor. The general instruction includes at least
one extension word that contains the coprocessor command. This word, referred to as
the command word, is written to the coprocessor to initiate the coprocessor instruction.

If the instruction requires an effective address for an operand to be fetched or stored, the
effective address field contains the information required to access the operand. The ef-
fective address encoding is the same as that used by all M68000 instructions. If no
operand is to be fetched or stored, then the information contained in the effective ad-
dress field is ignored. Additional effective addresses may be encoded in the command
word or extension words at the discretion of the coprocessor designer; however, the
coprocessor must perform the address calculations for those additional effective ad-
dresses.

8.6.2 Conditional Instructions

The following instructions are directly supported by the coprocessor interface to
guarantee uniform treatment of condition codes by all processors and coprocessors. The
conditional test instructions uniformly present a 6-bit condition selector to the
coprocessor for evaluation. The main processor makes no direct interpretation of the
condition selector, because the coprocessor will evaluate the selected condition and
return a true/false indication to the main processor.

O thé Conditional indtiuclions, a COPIOCESSOi may deiing Turther instiuction informa-
tion, in the form of extension words, which is required for it to fully evaluate a condition.
In such cases, when the main processor first reads the coprocessor response register, a
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primitive may be used to request further action by the main processor, rather than in-
dicating the true/false result of the condition evaluation. The only restriction that must
be observed is: when the coprocessor does finally issue the primitive to indicate the con-
dition evaluation, the main processor scanPC (refer to 8.7.2 Instruction Scanning) must
be pointing to the first word after the coprocessor defined extension words. This allows
the main processor to properly locate the required displacement, operand, or effective
address extension words and either use them for calculations or skip them to locate the
next instruction.

8.6.2.1 BRANCH INSTRUCTIONS. Figures 89 and 8-10 illustrate the word branch and
long branch instruction formats, respectively. If other extension words are required, such
as further coprocessor parameters, they follow the operation word and precede the
displacement word(s).

15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0
IHEEERER Cp-ld [o[1 o] Condition Selector
Optional, Coprocessor Defined Extension Words

Displacement

Figure 8-9. Coprocessor Word Branch Instruction Format

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
1 I 1 | 1 [ 1 | Cp-id l 0 I 1 I 1 l Condition Selector
Optional, Coprocessor Defined Extension Words

Displacement — High

Displacement — Low

Figure 8-10. Coprocessor Long Branch Instruction Format

In each of these instructions, the main processor writes the condition selector to the
coprocessor for evaluation. The main processor then interrogates the coprocessor
response register for the value of the condition. If the coprocessor response indicates
that the condition is true, then the displacement is added to the current program counter
and program execution continues at the new program counter location. The value of the
program counter is the address of the displacement words(s). If the condition is false,
program execution continues at the first word past the displacement extension word(s).
The displacement is a two’s complement integer in the extension word(s) and may be
either a 16-bit word that will be sign extended, or a 32-bit long word.

8.6.2.2 CONDITIONAL TYPE INSTRUCTIONS. Three other conditional instructions are
available: set conditionally (cpScc), decrement-and-branch conditionally (cpDBcc), and
trap conditionally (cpTRAPcc). Figures 8-11, 8-12, and 8-13 illustrate these formats. If ex-
tension words are required, such as further coprocessor parameters, they follow the con-
dition word. For the set conditionally form, the effective address extension words are the
last words of the instruction. For the decrement-and-branch conditionally and trap condi-
tionally forms, the displacement or operand word(s) are the last words of the instruction.
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% 14 13 12 1 1 9 8 7 6 5 4 3 2 1 0
EREREE Cp-Id [oJo ] Effective Address
(Reserved) Condition Selector

Optional Effective Address or Coprocessor Defined Extension Words

Figure 8-11. Coprocessor Set Conditionally Instruction Format

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
IEEERER Cp-Id [o Jo T1 ToTJoT 1] Regstr
(Reserved) Condition Selector

Optional Coprocessor Defined Extension Words

Displacement

Figure 8-12. Coprocessor Decrement-and-Branch Conditionally Instruction Format

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
IHEREEE Cp-ld ToJo Jr v T+ ]1 ] opmode
(Reserved) Condition Selector
Optional Coprocessor Defined Extension Words
Optional Word
or Long Word Operand

Figure 8-13. Coprocessor Trap Conditionally Instruction Format

The type field is the same for all conditionals, and the first extension word of the condi-
tional instruction contains the condition to be evaluated. The main processor writes the
condition to the coprocessor for evaluation, and interrogates the coprocessor response
register to determine if the condition is true or false.

For the coprocessor set conditionally instruction (cpScc), the effective address is
evaluated by the main processor to determine the location of the byte to be modified. If
the coprocessor indicates that the condition is satisfied, then the location byte is set
true (all ones); otherwise, that byte is set false (all zeros). Only alterable data addressing
modes are allowed for the ¢cpSETcc instruction.

If the condition is true for the decrement and branch conditionally instruction (cpPBcc),
no operation is performed and execution continues with the next instruction. If the condi-
tion is false, the low-order 16 bits of the selected data register are decremented by one. If
the result is minus one, the counter is exhausted and execution continues with the next
instruction. If the counter is not exhausted, execution continues at the location whose
address is the sum of the program counter and the sign-extended 16-bit displacement.
The value of the program counter is the address of the displacement words.

For the trap conditionally instruction (cpTRAPcc), a trap is taken if the condition is
satisfied. Otherwise, execution continues with the next instruction. The opmode field
selects the number of displacement words. If opmode =010, the instruction has a word
displacement; if opmode =011, the instruction has a long word displacement; and if op-
mode = 100, the instruction has no displacement. The trap on condition operand has no
meaning to the main processor and is defined by the user.
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8.6.3 System Control Instructions

The following paragraphs describe the two instruction types which allow system control
and management of coprocessors. They are used for operating system task context
switching procedures, and permit switching of a coprocessor context between instruc-
tions, between primitives, or between operand transfer cycles. These instructions may be
used whether the coprocessor is idle, or is executing a previous coprocessor instruction.
These instructions are appropriate even when the main processor has had a virtual
memory fault while processing a coprocessor service request. Both instructions are
privileged.

8.6.3.1 COPROCESSOR SAVE INSTRUCTION. Figure 8-14 illustrates the format for the
coprocessor save instruction. Any effective address extension words follow the opera-
tion word. No other extension words for the save type instruction are allowed.

6 5 4 3 2 1 0
| Cp-Id [+ Jo Jo ] Effective Address
Effective Address Extension Words (If Any, 1-5 Words)

5 14 13 12 11 10 9 8 7
[ [ 1

1 BE

Figure 8-14. Coprocessor Save Instruction Format

This instruction is used by an operating system to save the context of a coprocessor,
possibly both the user-visible and the user-invisible state. If data movement instructions
that allow saving of the visible state are implemented in the general type instructions,
the save type instruction may save only the invisible state. This would require the
operating system to save the invisible state via the save instruction and then to save the
visible state via the data movement instructions; however, this may reduce interrupt
latency since the save instruction may not be interrupted, while the general instruction
may be interrupted. Also, by separating the context transfer operation into two instruc-
tions, the time from one instruction boundary to the next is reduced.

Save is a privileged instruction with only the alterable control or pre-decrement address-
ing modes allowed. To the coprocessor, the save instruction may be initiated on any bus
cycle. The main processor initiates a save instruction by reading an internal state format
word from the coprocessor. This action indicates to the coprocessor that it must im-
mediately suspend its current operation and save its internal state. The format word,
together with other internal state information read from the coprocessor, is saved at the
effective address location. When the save operation is complete, the coprocessor is in
the idle-done state.

8.6.3.2 COPROCESSOR RESTORE INSTRUCTION. Figure 8-15 illustrates the format for
the coprocessor restore instruction. Any effective address extension words follow the
operation word. No other extension words for the restore type instruction are allowed.

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
HEREREN Cp-ld [ 7 Jo [1 ] Effective Address
Effective Address Extension Words (If Any, 1-5 Words)

Figure 8-15. Coprocessor Restore Instruction Format

8-12



This instruction is used by an operating system to restore the context of a coprocessor,
possibly both the user-visible and the user-invisible state. If data movement instructions
that allow restoring of the visible state are implemented in the general type instructions,
the restore type instruction may restore only the invisible state. This would require the
operating system to restore the visible state via the data movement instructions and then
to restore the invisible state via the restore instruction; however, this may reduce inter-
rupt latency for the reasons cited above in the save instruction description. Additional in-
formation is found in 8.12 COPROCESSOR INTERNAL STATE FRAME.

Restore is a privileged instruction, with only the control or post-increment addressing
modes allowed. To the coprocessor, the restore operation may be initiated on any in-
struction by reading an internal state format word from the effective address location
and writing it to the coprocessor. This action indicates to the coprocessor that
regardless of its current state of operation, the coprocessor must immediately load a dif-
ferent context. The main processor asks the coprocessor to validate the format, and if
the coprocessor does not recognize the format, the main processor takes a format error
exception and the coprocessor goes to the idle-done state. If the format is validated, the
main processor transfers the remainder of the internal state information from the effec-
tive address location to the coprocessor, and the coprocessor then assumes the state in-
dicated by the previous context. The main processor does not read the response register
at the end of the restore operation, since any suspended dialog will be resumed later by
an RTE instruction.

8.7 PRIMITIVES/RESPONSE

The general and conditional instructions are initiated by the main processor by writing to
the command or condition registers. This is followed by a read of the response register.
The response register is the means by which the coprocessor sends requests and control
information to the main processor. The content of the coprocessor response register is,
in effect, a primitive instruction to the main processor. The coprocessor places its
primitive on the data bus and asserts DSACKx or DTACK. The main processor
“executes” this primitive to provide the services required by the coprocessor for perform-
ing the coprocessor command. Refer to Table 8-2 for a listing of the M68000 coprocessor
primitive command set.
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Table 8-2. M68000 Coprocessor Primitive
Command Set

Processor Synchronization
Busy from Previous Instruction
Busy with Current Instruction
Proceed with Next Instruction, If No Trace
Proceed with Next Instruction, If Trace Enabled
Proceed with Execution, Condition True/False
Instruction Manipulation
Tranfer Operation Word
Transfer Words from Instruction Stream
Exception Handling
Take Privilege Violation if S-Bit Not Set
Take Pre-Instruction Exception
Take Mid-Instruction Exception
Take Post-Instruction Exception
General Operand Transfer
Evaulate and Pass <ea>
Evaluate <ea> and Transfer Data
Write to Previously Evaluated <ea>
Take Address and Transfer Data
Transfer to/from Top of Stack
Register Transfer
Transfer CPU Register
Transfer CPU Control Register
Transfer Multiple CPU Registers
Transfer Multiple Coprocessor Registers
Transfer CPU SR and/or PC

8.7.1 Response Register: Detail
The structure of the response register is shown in Figure 8-16.

5 14 13 12 N 10 9 8 7 6 5 4 3 2 1 0
ICA [PC l Function l Parameter

Figure 8-16. Coprocessor Response Register

The come-again (CA) bit may be set in addition to other requests as detailed in the in-
dividual description of each primitive. When the CA bit is set, the main processor ex-
ecutes the function requested, and then reads the coprocessor response register again
to receive another primitive. If the CA bit is not set, the coprocessor is no longer tightly
coupled to the main processor and no further services are needed from the main pro-
cessor. The coprocessor completes any remaining work on the current instruction, and
the main processor may begin the execution of the next instruction.

The pass program counter (PC) bit may be set in addition to other requests as detailed in
the individual description of each primitive. When the PC bit is set, the main processor
program counter is written to the coprocessor instruction address register before the
function requested is executed. The program counter is passed even if a protocol viola-
tion or illegal instruction is detected. The value of the program counter is the address of
the F-line instruction operation word. This is typically included in the first primitive
response, in any series of responses to a command, to allow updating of the instruction
address register for exception handling purposes.
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Any bits or fields which are not currently defined are reserved and must be returned as
zero in the primitive response.

8.7.2 Instruction Scanning

The main processor contains a program counter register which indicates the location of
the operand word of the current instruction. There is also a register that sequentially ad-
dresses the extension words that comprise the instruction stream as the instruction is
scanned. Thus, this register is referred to as the scanPC. The scanPC always points to
the next word to be used from the instruction stream. The scanPC, at the end of an in-
struction, is transferred to the program counter for use by the next instruction.

The value of the scanPC, at the time the first primitive is read, is dependent on the
coprocessor instruction type. For the general instruction, the initial scanPC points to the
word after the coprocessor command word. For the branch instructions, the initial
scanPC points to the word after the operation word. For the conditional instructions, the
scanPC points to the word after the condition selector word.

If in processing a general instruction, a primitive requests the transfer of the effective ad-
dress operand, and the effective addressing mode is immediate, the length must be one
or even and the transfer can only be main processor to coprocessor. If the operand length
is one, the immediate extension word that the scanPC references has the format il-
lustrated in Figure 8-17, and the scanPC is incremented by two after the transfer. If the
operand length is greater than one, the extension word(s) referenced by the scanPC have
the format illustrated in Figure 8-18, and the scanPC is advanced by the number of bytes
in the length field of the primitive.

514 13 12 1 10 9 8 7 6 5 4 3 2 1 0
| (Must be Zero) ] Byte Data |

Figure 8-17. Format of Single Byte Immediate Operand

15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0
First Byte Second Byte
Next to Last Byte Last Byte

Figure 8-18. Format of Multi-Byte Immediate Operand

If in processing a general type instruction, a primitive requests the transfer of the effec-
tive address operand, and if a previous primitive caused the scanPC to be advanced, then
the effective address extension words follow the previously requested data in the in-
struction stream as shown in Figure 8-19. The coprocessor may require additional infor-
mation after the effective address is calculated, in which case additional extension
words follow the effective address extension.

8-15



15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0
Operation Word
Command Word
Coprocessor Parameters (If Any)
Effective Address Extension Words (If Any)
Further Coprocessor Parameters (If Any)

Figure 8-19. Extension Word Order in General Instruction

If the main processor status register or scanPC is changed by the transfer status register
and scanPC primitive (see 8.8.13 Transfer Status Register and Program Counter), the
main processor refetches any instruction words prefetched (but not used) from the in-
struction stream beyond the address contained in the scanPC before the transfer. Also, a
trace exception will be made pending if tracing on program flow change is enabled
(T1/TO=01).

8.8 PRIMITIVE SET

The legal responses for a coprocessor are listed in the following paragraphs. Any
response that the main processor does not recognize causes a protocol violation excep-
tion (see 8.15 EXCEPTION PROCESSING) to allow emulation of unimplemented
primitives.

8.8.1 Busy

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

[ofPpocJ1JoJoJtJoJoJoJofJoJoJoJofJo]eol]

This primitive informs the main processor that the coprocessor is working on a previous
coprocessor instruction. It is allowed for any general, branch, or conditional type instruc-
tion. The CA bit is ignored for this primitive. If the PC bit is set, the program counter is
passed to the coprocessor.

When this primitive is received, the main processor checks for interrupts and then
reinitiates the instruction communication. This response is required for coprocessors
that can not buffer or capture a new command while completing execution of a current
command.

This primitive should only be returned when no destructive primitive has been returned
during the dialog for the current instruction. In other words, this response is only used
when the dialog for one instruction has ended and the main processor is attempting to in-
itiate a new instruction before the coprocessor has completed processing for the last in-
struction. A destructive primitive is any that may have altered any visible main processor
or coprocessor register or status; the scanPC is not considered a visible register.

In the special case where the F-line instruction is initiated through a breakpoint instruc-

tion, the busy primitive is returned, and an interrupt is pending, then the breakpoint cycle
is rerun after exception processing and handling for the interrupt has been completed.
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8.8.2 Null (No Operands)

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ecalpc]o o]l 1 JoJoJmJoloJoJoJoTJoTlr]TF]

This primitive is allowed with general, branch, or conditional commands. PC and CA are
allowed, and are processed as described in 8.7.1 Response Register: Detail. If both the
CA and interrupts allowed (lA) bits are set, the main processor may process any inter-
rupts which are pending and then return to reread the response register. The IA bit is ig-
nored if CA=0. Any null primitive with CA=0 is referred to as a null-done response.

The PC, CA, and |A related operations are performed for either general, branch, or condi-
tional type instructions. For the general type instruction, no other operations are per-
formed. For the branch or conditional type instruction, the null-done response terminates
a branch or conditional type instruction. The instruction is executed depending on the
true/false (TF) bit, with TF =0 meaning the condition is false and TF = 1 meaning the con-
dition is true.

The processing finished (PF) bit is a status bit which indicates whether the coprocessor
has finished its processing for the current or previous instruction. Any null primitive with
PF =1 is referred to as null-release response. In order to provide for sequential opera-
tions during tracing, it is necessary for the coprocessor to signal both the end of com-
munications and the end of coprocessor execution. Any primitive with CA =0 indicates
the end of communication. |f the main processor is not in trace mode, it is free to execute
the next instruction. If the main processor is in trace mode, it must reread the response
register until the coprocessor indicates that it has finished processing the instruction by
setting PF =1. See 8.16.3 Trace for details on instruction tracing.

If the coprocessor is in either the idle-done or idle-exception state, reading the response
register before writing the command or condition register should result in a null-release
response. There is an implied release in the null-done response for branch and condi-
tional type instructions.

If the CA bit is set, this primitive informs the main processor that the coprocessor is
working on the current or a previous coprocessor command. This response may thus be
used as an “occupied” response by coprocessors which contain a buffer for holding new
commands while completing execution of a previous instruction. Those which do not buf-
fer commands must return the busy primitive to cause the reinitiation of the instruction.

8.8.3 Transfer Operation Word

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[CALPC|0|0|0|1I1|1|O|0|0|0|0]0|0|0]

The coprocessor F-line operation word is transferred to the coprocessor operation word
reqister. This primitive is allowed in general, branch, and conditional instructions. The PC
and CA bits are allowed and are processed as described in 8.7.1 Response Register:
Detail. This transfer has no effect on the scanPC.
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8.8.4 Transfer Instruction Stream

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[caJprcJoJo T [T [1]1] Length |

Data from the instruction stream is transferred to the coprocessor. This primitive is
allowed in general, branch, or conditional instructions. The PC and CA bits are allowed
and are processed as described in 8.7.1 Response Register: Detail.

The indicated number of bytes from the instruction stream beginning at the scanPC are
transferred to the coprocessor operand register. The MC68020 allows only even byte
counts; odd byte counts cause a protocol violation. The scanPC is advanced by the
number of bytes transferred.

8.8.5 Supervisor Check

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[caJrcJoJoJoJ1JoJoJoJoJoJoJoJoJo]o]

This primitive allows the coprocessor to check the supervisor state of the main pro-
cessor. The primitive is allowed with general, branch, or conditional instructions. The PC
and CA are allowed and are processed as described in 8.7.1 Response Register: Detail.

If the main processor is not in the supervisor state, an abort is written to the coprocessor
control register, and the main processor takes a privilege violation exception. If a
privilege violation occurs, the CA bit has no effect.

8.8.6 Take Exception

The following primitives allow a coprocessor to force the main processor to take an ex-
ception. The PC bit is valid, and the CA bit is ignored for each of these primitives. The
main processor acknowledges and clears all exceptions by writing a one to the XA bit of
the coprocessor control register (see 8.5.2 Control Register). After the main processor
acknowledges the exception request, it begins exception processing using the vector
number specified in the primitive. The difference between the three requests involves
how the main processor returns from the exception. The different requests also require
various amounts of state information to be stacked.

Motorola coprocessors always return the F-line emulation vector number, not an illegal
instruction vector, when an invalid command is received. Likewise, the main processor
always causes an F-line emulator exception when it discovers an illegal coprocessor in-
struction.

8.8.6.1 TAKE PRE-INSTRUCTION EXCEPTION. This primitive is used to signal an excep-
tion that should be recognized before an instruction begins processing. This primitive
should not be given after a destructive primitive has been given (see 8.8.1 Busy). The sav-
ed state allows the exception handler to return and have the main processor reinitiate
the coprocessor instruction that generated the exception.
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15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[oJrcJo T T 1 JT1ToTo] Vector Number ]

A pre-instruction exception indicates that the coprocessor instruction, which is to be
started, has been terminated for exception processing. The causes for this exception can
include an illegal command word, a previous coprocessor instruction terminated with an
exception, or an exception detected in the current instruction before starting execution.

A four-word state is saved by the MC68020. It consists of the main processor status
register, the program counter (pointing to the current instruction), and the vector offset
provided by the coprocessor. Refer to Figure 8-20.

15 0
Sp — Status Register
902 Program Counter
+s06 |0 [ o o ]o] Vector Offset

Figure 8-20. Coprocessor Pre-Instruction Exception Stack Format

8.8.6.2 TAKE MID-INSTRUCTION EXCEPTION. This primitive indicates that communica-
tion between the coprocessor and main processor is to be broken off and resumed later.
The saved state allows the exception handler to return and have the main processor con-
tinue the coprocessor instruction where the exception was requested, by reading the
coprocessor response register.

15 14 12 11 10 9 7 6 5 4 3 2 1 0

13 8
[ofJrc] o Tt To] 1] Vector Number ]

This primitive can be used by a coprocessor to signal the main processor that the
coprocessor has encountered invalid or erroneous data, and that it requires software
handling before the coprocessor can proceed with the current instruction.

A ten-word state is saved by the MC68020. The saved state includes the status register,
the scanPC, the vector offset, the program counter (pointing to the current instruction),
and several internal registers. See Figure 8-21.

15 0
Sp — Status Register
* 02 ScanPC
+$06 1 I 0 | 0 J 1 l Vector Offset
908 Program Counter
+3$0C
Internal Registers,
4 Words
+$12 N

Figure 8-21. Coprocessor Mid-Instruction Exception Stack Frame

8-19



8.8.6.3 TAKE POST-INSTRUCTION EXCEPTION. A post-instruction exception occurs at
the end of a coprocessor instruction, terminating coprocessor activity, before a null-done
response. The main processor assumes that the instruction is complete or aborted. The
saved state allows the exception handler to return and have the main processor begin
execution of the next instruction after the coprocessor instruction which generated the
exception.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
P o rPC] 0 r1 [ 1] 1—| 1 I 0 [ Vector Number I

A six-word state is saved. It consists of the address of the current instruction, the vector
offset provided by the coprocessor, the address of the next instruction (the program
counter), and the main processor status register. See Figure 8-22.

15 0
QP > Status Register
+$02

Program Counter

s [0 J o] 1 Jol] Vector Offset
+ 58

Instruction Address

8-22. Coprocessor Post-Instruction Exception Stack Frame

8.8.7 Evali;ate and Transfer Effective Address

1% 14 13 12 M 10 9 8 7 6 5 4 3 2 1 0

|CA|Po|o|o|1|o|1]0|0|o|o|oT0]o|o|o]

This primitive is only allowed with the general instruction. The PC and CA bits are allow-
ed and are processed as described in 8.7.1 Response Register: Detail. The effective ad-
dress specified by the operation word is evaluated, and its value transferred to the
coprocessor operand address register. Any extension words required for the address
calculation are at the current scanPC address. Only alterable control addressing modes
are allowed. Any other addressing modes cause an F-line exception to be taken.

8.8.8 Evaluate Effective Address and Transfer Data

%5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[cafpc]ar ] 1] o[ Vvalidea 1 Length ]

This primitive is allowed only with the general instruction. The PC and CA bits are allow-
ed, and are processed as detailed in 8.7.1 Response Register: Detail.

The effective address that is to be evaluated is specified in the operation word, and any
required extension words are at the current scanPC address. !f the pre-decrement or
post-increment addressing mode is used, the address register will be decremented or in-
cremented by the size of each operand part transfer, before or after the transfer, until
length has been exhausted.
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The direction (dr) bit indicates the direction of data transfer between the effective ad-
dress location and the operand register of the coprocessor. If dr=0, the operand is
transferred from the effective address location to the coprocessor. If dr=1, the operand
is transferred from the coprocessor to the effective address location.

The number of bytes transferred to or from an effective address location is indicated in
the length field. A length of zero for a register direct effective address causes a protocol
violation. If the effective address is a main processor register (register direct), then only
lengths of one, two, or four bytes are legal, and other lengths cause a protocol violation.
If the effective addressing mode is immediate, the length must be one or even and the
transfer can only be effective address to coprocessor. If the effective addressing mode is
immediate and the length is odd and greater than one or if the direction is coprocessor to
effective address, a protocol violation occurs. If the effective address is a memory loca-
tion, any length is legal including odd. If the effective address mode is pre-decrement or
post-increment with A7 as the specified register and the length is odd, the first or last
transfers, respectively, will cause the stack pointer to be decremented or incremented by
one more than the required operand size in order to keep the stack word aligned. Refer to
8.6.8 Operand Register ($10) for detailed information on operand register transfers.

The valid EA field may specify various classes of addressing modes with the encodings
shown in Table 8-3. If the effective address in the operation word is not of the specified
class, then an abort is written to the coprocessor control register and an F-line emulator
trap is taken. The addressing categories below are as defined for all M68000 Family pro-
cessors.

Table 8-3. Coprocessor Valid Effective Address Codes

000 Control Alterable
001 Data Alterable
010 Memory Alterable

011 Alterable
100 Control
101 Data

110 Memory

1m Any Effective Address (No Restriction)

Note that each time this primitive is issued within an instruction dialog, the effective ad-
dress calculation is repeated with the current address and data register contents and
any register modifications (i.e., pre-decrement or post-increment) are carried out as part
of the primitive service operation.

8.8.9 Write to Previously Evaluated Effective Address

15 14 13 12 11 10 9 7 6 5 4 3 2 1 0
|CA|PC|1|0r0|0|0|0J Length ]

This primitive writes data from the operand register to the previously evaluated effective
address. This primitive is allowed with only the general instruction. The PC and CA are

Ad AnA A A ih i
allowed and are crocesscd as describ adinQ71 Dnepnnen nnglelar Datail

Only alterable addressing modes should be written, although the MC68020 provides no
checking of the addressing mode. If the previously evaluated effective addressing mode
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utilized any of the MC68020 internal address or data registers, the effective address
value used will be the last value generated by the “evaluate and transfer effective ad-
dress” or “‘evaluate effective address and transfer data” primitives. Of particular concern
are the pre-decrement and post-increment addressing modes; in which cases this
primitive uses the final value of the address register after the last operation, but does not
decrement or increment the value or the address register. If multiple stack operations are
to be performed, the “evaluate effective address and transfer data” primitive must be
used repeatedly.

It is possible to implement read-modify-write instructions (but not indivisible bus cycles)
using this primitive and the read from effective address primitive. Refer to 8.8.8 Evaluate
Effective Address and Transfer Data for additional information. Note that the Take Ad-
dress and Transfer Data primitive, described in 8.8.10, does not replace the effective ad-
dress value that is calculated from the operation word effective address specification.

8.8.10 Take Address and Transfer Data

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
fcalpcJdarJo JoJ1To] 1] Length ]

This primitive is permitted with general, branch, and conditional type instructions. The
main processor reads from the coprocessor operand address register the address of a
memory operand. Then an operand is transferred between that location and the
coprocessor operand register. The PC and CA bits are allowed and are processed as
described in 8.7.1 Response Register: Detail. The number of bytes in the block is
specified by the length field.

The direction of data transfer is specified by the dr bit. If dr=0, data is transferred from
the address location to the coprocessor. If dr=1, the transfer is from the coprocessor to
the address location. Refer to 8.6.8 Operand Register ($10) for detailed information on
operand register transfers.

8.8.11 Transfer To/From Top of Stack

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[calpc]arJo ] 1+ JT1 ] 1 ]o] Length ]

This primitive allows operands to be pushed onto or popped from the active system
stack, with an operand length of one, two, or four bytes. Other lengths cause a protocol
violation to occur. This primitive is allowed for general, branch, and conditional instruc-
tions. The PC and CA bits are allowed and are processed as described in 8.7.1 Response
Register: Detail. The stack pointer is modified appropriately for the push or pull; however,
if the length is one, the stack pointer will be decremented or incremented by two in order
to keep the stack word aligned. The stack data is transferred through the operand
register. if dr=0, the stack data is transferred to the coprocessor, and if dr=1, the
coprocessor data is transferred to the stack.
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8.8.12 Transfer Registers

These primitives request the transfer of one or more main processor or coprocessor
registers. The PC and CA bits are allowed and are processed as described in 8.7.1
Response Register: Detail. The dr bit determines the direction of the transfer. If dr=0, the
register operand is transferred from the main processor or effective address to the
coprocessor. If dr=1, the register operand is transferred from the coprocessor to the
main processor or effective address.

8.8.12.1 TRANSFER SINGLE MAIN PROCESSOR REGISTER. This primitive indicates the
desired main processor data or address register in its four least-significant bits. This
primitive is allowed in general, branch, and conditional instruction. If D/A =0, the register
transferred is a data register, and if D/A=1, the register transferred is an address
register. A long word is transferred to or from the coprocessor operand register.

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[caJrc]JarJol 1T 1 JoJoJoJoJoTJ]o][oA] Register |

8.8.12.2 TRANSFER MAIN PROCESSOR CONTROL REGISTER. This primitive requests
the transfer of a main processor control register. This primitive is allowed in general,
branch, and conditional instructions. The main processor first reads a control register
selector from the coprocessor register selector register. The register selector is
evaluated and the long word main processor control register is transferred to or from the
coprocessor operand register. The register selector encoding is the same as for the
MOVEC instruction as shown below. If the control register selector is not recognized, the
main processor aborts the instruction and takes a protocol violation exception.

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
calrcJar JoJ1 J1JoJ1JoJoJoJoJoJoJoTJo
AID Register Control Register

Hex Control Register

000 Source Function Code (SFC) register.

001 Destination Function Code (DFC) register.
002 Cache Control Register (CACR).

800 User Stack Pointer (USP).

801 Vector Base Register (VBR).

802 Cache Address Register (CAAR).

803 Master Stack Pointer (MSP).

804 Interrupt Stack Pointer (ISP).

All other codes cause an illegal instruction exception.

8.8.12.3 TRANSFER MULTIPLE MAIN PROCESSOR REGISTERS. This primitive requests
the transfer of multiple main processor data or address registers. This primitive is allow-
ed in general, branch, and conditional instructions. The main processor first reads the
coprocessor register selector register. The main processor uses the register selector
value as a bit mask in the same manner as the M68000 MOVEM instruction, with bit zero
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referring to DO, and bit 15 to A7. If a bit in the mask is set, the corresponding register is
transferred, with all 32 bits of each selected register transferred to or from the
coprocessor operand register.

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ealpc]arJoJoJ1 1 ]oJoJoJoJoJoJoJo o]

8.8.12.4 TRANSFER MULTIPLE COPROCESSOR REGISTERS. This primitive allows
multiple coprocessor registers to be transferred to or from the effective address location.
This primitive is permitted only with the general instruction. The indicated length is the
length of each operand or register. Lengths are restricted to even values, odd valued
lengths cause a protocol violation.

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|CAIPC1dr|0|0|O]0I1L Length ]

The main processor first reads the coprocessor register selector register. Each bit in the
selector mask requires one coprocessor register to be transferred to or from the
coprocessor operand register as a single operand (as described in 8.6.8 Operand
Register ($10)).

The coprocessor uses the bit mask to indicate which register(s) are to be transferred, but
the main processor simply counts the bits to determine when the required number of
registers have been transferred. This limits the number of registers transferred by a
single instruction to 16. The main processor evaluates the effective address to determine
the memory locations to or from which the multiple registers are to be transferred. If the
transfer is to the coprocessor, only post-increment or control addressing modes are
allowed. If the transfer is from the coprocessor, only pre-decrement or alterable control
address modes are allowed.

For the post-increment, control or alterable control addressing modes, successive
registers are transferred from or to memory locations with increasing addresses. For the
pre-decrement addressing mode, successive registers are transferred to memory loca-
tions with decreasing addresses, with bytes within a register stored with increasing ad-
dresses. Figure 8-23 shows the resulting order of the registers in memory when transferr-
ing two six-word coprocessor registers using the pre-decrement address mode. The
number of registers and bytes appear in the drder transferred.

Lower
Addresses 31 0

(An — 2x Length) —>|

(An — Length) —{ Byte Length — 1 (Written First)

Higher @ e e e e e e e e e e — = = — -
Adtli?essres Byte O (Written Last)

(An) —> . )
Address Register Location Before Operation

Figure 8-23. Transfer Multiple Coprocessor Registers Example
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8.8.13 Transfer Status Register and Program Counter

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|CA|PCIdr|0|0|OI1|SPl0IOIOIO]O[O‘OIO—I

Either the main processor status register or both the status register and the scanPC are
transferred between the main processor and coprocessor. This primitive is permitted
only with the general instruction. The PC and CA bits are allowed and are processed as
described in 8.7.1 Response Register: Detail.

The dr bit indicates the direction of transfer. If dr=0, the transfer is from main processor
to coprocessor, and if dr=1, the transfer is from coprocessor to main processor. The
main processor status register is always transferred. When SP = 1 (scanPC transfer), the
scanPC is also transferred between the main processor and the coprocessor. If both the
status register and the scanPC are transferred, the order depends on the direction of
transfer. If dr=0, first the scanPC is transferred to the coprocessor instruction address
register, and then the status register is transferred to the operand register. If dr=1, first
the operand register is transferred to the status register, and then the instruction ad-
dress register is transferred to the scanPC.

This primitive allows a coprocessor to change the main processor program flow with
other than a branch type instruction. Transfers to the status register allow a coprocessor
to affect the trace mode, supervisor/user state, and the interrupt mask, as well as the
main processor condition codes. Execution of this primitive will cause a trace exception
if T1/TO was equal to 01 (trace on change of flow) when the instruction started execution.
Also, any instruction words prefetched beyond the scanPC location when this primitive is
issued will be discarded. The processor will then refill the instruction pipe from the
scanPC address (either the old, or a new address) in the address space indicated by the
new status register S bit.

8.9 COPROCESSOR INTERFACE PROTOCOL: DETAIL
The following paragraphs provide a detailed description of the interprocessor protocol.

8.9.1 Coprocessor Operands

Coprocessors need access to various pieces of data in the system to perform their func-
tions. This data may be in memory locations, the address of memory locations, or in main
processor registers. In addition, the coprocessor may need to store data into main pro-
cessor registers or memory locations. Memory transfers may take different forms,
depending on whether the coprocessor is a DMA or a non-DMA coprocessor.

8.9.1.1 COPROCESSOR TYPES. Coprocessors are divided into two types by their bus
utilization characteristics. A coprocessor is a DMA coprocessor if it can control the bus
independent of the main processor. A coprocessor is a non-DMA coprocessor if it does
not have the capability of controlling the bus. Both coprocessor types utilize the same
protocoi and main processor resources.
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A coprocessor that has a relatively low data throughput requirement may be im-
plemented as a non-DMA coprocessor. All operand transfers are conducted by the main
processor, at the request of the coprocessor, and the coprocessor is not required to be
able to place addresses on the bus and provide bus control.

A coprocessor that requires a large data throughput should be implemented as a DMA
coprocessor for maximum performance. A DMA coprocessor is capable of controlling
the bus when necessary, including fetching and storing operands. A DMA coprocessor
must be able to provide a full address and respond to all bus cycle termination condi-
tions.

8.9.1.2 OPERANDS TO/FROM MEMORY. The following paragraphs describe the
operands transferred to/from memory for non-DMA and DMA coprocessors.

8.9.1.2.1 Non-DMA Coprocessor. Operands that must be transferred from memory to the
coprocessor are first read by the main processor into a temporary register. They are then
written to the coprocessor operand register. Operands flowing from the coprocessor to
memory are transferred in a similar fashion: first a read by the main processor from the
coprocessor operand register into a temporary register, then a write to memory. These
transfers are shown in Figures 8-24 and 8-25.

Operands of multiple bytes are transferred in order of ascending memory addresses (ex-
cept when the pre-decrement addressing mode is used). Alignment of data transfers to or
from the operand register is detailed in 8.6.8 Operand Register ($10). The main processor
is responsible for proper alignment of word or long word operand parts that are accessed
at memory locations with odd byte or word addresses.

8.9.1.2.2 DMA Coprocessor. Operands may be transferred by the coprocessor itself act-
ing as a bus master. A DMA coprocessor may also use the method that non-DMA
coprocessors must use if the designer desires.

8.9.2 Operand to/from Processor Registers.

Operands to be transferred from main processor registers to a DMA or non-DMA
coprocessor are moved with a series of main processor write cycles. Similarly, operands
that are to be transferred to main processor registers are done with a series of main pro-
cessor read cycles. The flow for these operations is similar to that for memory operands,
but the bus cycles to access memory are not needed.
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PROCESSOR

COPROCESSOR

Request Operand Read

1) Response Register Function= Transfer Data to
Coprocessor

A

Read Operand Part from Memory
1) Address= Operand-Part Address

/
Write Data to Coprocessor
1) Address= Coprocessor Operand Register

2) Response Register Parameter = Operand Length

Receive Data

2) Data= Operand-Part

Y

1) Accept Operand-Part

Continue Until Finished <

1) If Operand Finished, Exit
2) Else, Go Back to Read from Memory

Figure 8-24. Protocol for Memory Operand to Non-DMA Coprocessor

PROCESSOR

COPROCESSOR

Request Operand Write

1) Response Register Function= Transfer Data to
Coprocessor
2) Response Register Parameter = Operand Length

Read Operand Part From Coprocessor -

1) Address = Coprocessor Operand Register

Supply Data

1) Data — Operand-Part

Write Data to Memory

1) Address= Operand-Part Address
2) Data= Operand-Part

A
Continue Until Finished

1) If Operand Finished, Exit
2) Else, Go Back to Read from Coprocessor

Figure 8-25. Protocol for Non-DMA Coprocessor Operand to Memory

8.10 GENERAL TYPE INSTRUCTION PROTOCOL

Figure 8-26 shows the protocol between the main processor and the coprocessor for a
coprocessor general instruction. This is a functional description. For bus cycle timing,
refer to SECTION 10 ELECTRICAL SPECIFICATIONS. The main processor writes the
coprocessor command word to the coprocessor command register. The coprocessor up-
dates the response register to indicate any services required of the main processor. The
main processor reads the coprocessor response register and takes the appropriate

action.

All primitives are legal with branch of conditional instructions except those that require
the evaluation of an effective address, use of previous effective address, take address
from coprocessor and transfer data, or transfer of main processor status register or

scanPC. See Figure 8-27.
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A null-done or an exception primitive concludes communication during a branch or con-
ditional type instruction. Refer to 8.11 GENERAL AND CONDITIONAL INSTRUCTION
TERMINATION for details on the termination process.

COPROCESSOR
PROCESSOR

Transfer Instruction

1) Write Coprocessor Command Word to
Coprocessor Command Register

Receive Instruction

Y

1) Evaluate Command
2) Update Response Register

A

Read Response

1) Read Coprocessor Response Register

2) If Busy, Go Back to Reinitiate Instruction

3) If Exception, Acknowledge and Process

4) Else, Perform Requested Services

5) If Come Again, Go Back to Read
Response

6) Resume Processing

Figure 8-26. Protocol for Processing General Instruction

PROCESSOR COPROCESSOR
Transfer Condition

1) Write Condition to Evaluate to Coprocessor
Condition Register

Receive Condition

1) If Busy, Return Busy or Null/CA

2) If Not Busy, Evaluate Specified Condition

3) Reflect Results in Coprocessor Response
Register

Y

A

Read Response
1) Read Coprocessor Response
2) If Busy, Go Back to Reinitiate Instruction
3) If Exception, Acknowledge and Process
4) Else, Perform Requested Services
5) If Primitive is Not Null-Done Go Back to
Read Response
6) If Condition is True, Terminate Instruction True
7) If Condition is False, Terminate Instruction
False

Figure 8-27. Protocol for Processing Branch or Conditional

8.11 GENERAL AND CONDITIONAL INSTRUCTION TERMINATION

The communication between the main processor and coprocessor continues until both
processors determine that synchronization is no longer necessary. The simplest case is
a coprocessor requested exception. After the main processor acknowledges the excep-
tion, no further communication occurs between the processors until the next
coprocessor instruction begins execution, or the main processor resumes execution of
the suspended instruction via RTE.

The branch and conditional type instructions can terminate only on a null-done primitive.
The general type instruction can terminate on any primitive with come-again not set. In
the general case, after the main processor has processed a non-null primitive with come-
again not set (CA=0), it processes the termination as if it had received a null-done
without processing finished set (PF =0). Table 8-4 lists the conditions and the main pro-
cessor actions during instruction termination. The processor performs the actions
associated with the first table entry for which the conditions are satisfied.
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Table 8-4. Termination Processing Conditions and Actions

Conditions
CA PF TPEND 1A IPEND Main Processor Action
0 X 0 X X Begin Execution of Next Instruction
0 0 1 X X Read Response Register Again
0 1 1 X X Take Trace Exception
X X X 1 1 Take Interrupt Exception
1 X X X X Read Response Register Again
NOTE:
TPEND — the main processor signal indicating that a trace exception is to be taken at the
completion of this instruction.
IPEND — the main processor signal indicating that a valid interrupt request is pending.
X — don't care

8.12 COPROCESSOR INTERNAL STATE FRAME

The coprocessor save and restore instructions transfer the internal state of the
coprocessor to and from memory. Figure 8-28 shows the memory organization of this in-
formation. The first word of the frame, referred to as the format word, contains a format
identifier which is coprocessor-defined and verified, and a length operand used by both
processors. The length operand is the number of bytes of the internal state information,
and does not include the format word itself nor the next word. The next word in memory
is not used, and allows the frame to be long word aligned. The internal state information
must be an integral multiple of four bytes in length with the information transferred to
and from the coprocessor four bytes at a time. The internal state coming from the
coprocessor is stored in the frame starting at the lower addresses, and is restored to the
coprocessor from memory starting from the higher addresses of the frame.

Save Restore

Order Order 31 23 15 7 0

0 0 Format Length | (Unused, Reserved)
n 1

n-1 2 Coprocessor-Dependent Information

n-2 3
L] L] L]
. L] L]
L] L] L]
1 n

Figure 8-28. Coprocessor Internal State Frame

The contents of the format length word read from the coprocessor some or restore
register has some additional meaning. The format code and length value are contained in

bits 8-15 and 0-7, respectively, of the word read from the save register and written to the
restore register. The format codes are shown in Table 8-5.

Table 8-5. Coprocessor Internal State Format Codes

Format (Hex) Length Meaning i
00 XX Empty, Reset
01 XX Not Ready, Come Again
02-0F XX Reserved, Format Error
10-FF Length Coprocessor Defined
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In a multiprogramming environment, not all processes will make use of all coprocessors.
In order to distinguish when a process is making use of instructions for a particular
coprocessor, a special format code is used. This format code ($00) indicates that the
coprocessor has no user-loaded information. If the operating system detects this format
word, it need not save or restore the user-visible state information. This format is also ap-
propriate for initializing the coprocessor state of a process before it is first dispatched.

The save operation may involve suspending execution of an instruction, with the
capability of resuming execution when the state is restored. For efficiency reasons, and
if no further services are required of the main processor to complete the execution of the
instruction, the coprocessor designer may elect to complete the execution of the instruc-
tion in order to reduce the size of the saved state. Should this be desired, the $01 format
indicates that the save function is temporarily delayed and the main processor may pro-
cess interrupts, if necessary, and then read the format register again. This same format
allows the coprocessor to free the system bus when the coprocessor needs time to
prepare for either a save or restore operation.

During a restore operation, the coprocessor is required to validate the format word. If the
format code is not recognized by the coprocessor, or the length field is inappropriate for
the given code, the coprocessor may notify the main processor of this fact. It does this by
returning any of $02-$0F format codes when the restore register is read, and the main pro-
cessor will take a format exception.

The internal state frame must include all user invisible registers, pending exceptions,
status bits, etc. that are required by the coprocessor to resume the execution of a
suspended instruction at the point of suspension. If there is user visible information
which may be saved and restored by general type data movement instructions, the inclu-
sion of this information in the internal state frame is optional.

8.13 SAVE INSTRUCTION PROTOCOL

The protocol between the main processor and coprocessor while processing a
coprocessor save type instruction is shown in Figure 8-29. This is a functional descrip-
tion; for bus cycle timing, refer to SECTION 10 ELECTRICAL SPECIFICATIONS. The main
processor initiates the save operation within the coprocessor by reading the coprocessor
interface save register. The coprocessor responds by suspending operation and
transmitting the internal machine state to the main processor.

The data read from the save register is the format word for the internal state frame (see
8.12 COPROCESSOR INTERNAL STATE FRAME). If the coprocessor must delay before
suspending operation, it indicates this by returning the come-again format ($01), which
allows the main processor to check for pending interrupts before again reading the save
register. Otherwise, using the format/length word, the main processor evaluates the ef-
fective address of the internal state frame, and writes the format/length word in the
frame. The main processor reads the coprocessor state data from the operand register
one long word at a time and stores it in memory starting at the highest address of the
frame. After the save operation, the coprocessor should be in the idle state with no pend-
ing exceptions.
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PROCESSOR COPROCESSOR
Initiate Save

1) Read Coprocessor Save Register Return Format

1) Determine Readiness

2) Data= Come-Again or Format Type and
Validate Format < Length

1) If Come-Again, Repeat Read of Save Register

2) Evaluate Effective Address

3) Store Format Word at Effective Address

Y
Save Internal State

1) Read Four Bytes of Internal State from
Coprocessor Operand Register

2) Write Four Bytes of Internal State to Memory

3) Repeat until Entire State is Saved

Figure 8-29. Protocol for Processing Save Operation

8.14 RESTORE INSTRUCTION PROTOCOL

Figure 8-30 shows the protocol between the main processor and a coprocessor that is
processing a coprocessor restore instruction. This is a functional description; for bus cy-
cle timing, refer to SECTION 10 ELECTRICAL SPECIFICATIONS. The main processor in-
itiates the restore operation by reading the state format word from the internal state
frame at the effective address location and then writing the format word to the restore
register. The length field in the format word defines the size of the state. The coprocessor
validates the format word, and the main processor reads the restore register. If the for-
mat is invalid, the coprocessor returns the invalid format code ($02-$0F); the main pro-
cessor acknowledges the exception to the control register and takes a format error ex-
ception. If the coprocessor must delay before beginning the restore of the data, it returns
the come-again format code ($01). It should be noted that the main processor will not ser-
vice pending interrupts while waiting to start a restore operation, as it will for a save
operation. If the format is valid, the coprocessor returns the format word. The main pro-
cessor reads the coprocessor’s state from memory starting at the beginning of the frame
and writes it to the operand register one long word at a time.

8.15 EXCEPTION PROCESSING

It is the responsibility of the main processor to coordinate exception handling for all
coprocessors. Exception handling for a main processor with a coprocessor follows the
same conventions defined for a main processor alone. Coprocessor exceptions are
generally group two exceptions (refer to Table 6-3 Exception Groups), but the
coprocessor interface includes provisions for group four exceptions, namely, trace and
interrupts.

Exception processing includes storing some of the main processor state into memory,
fetching the address of the exception handler routine from a memory location derived
from the exception vector number, and then beginning execution of the exception
handler routine. For coprocessor detected exceptions, the coprocessor provides the ex-
ception vector number.
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When the exception handler has completed execution, the handler will then exit and ex-
ecution of the main program will resume:

a) at the beginning of the instruction at which the exception was reported (pre-
instruction exception),

b) at the point where the exception occurred (mid-instruction exception), or

c) at the beginning of the next instruction (post-instruction exception).

PROCESSOR COPROCESSOR
Initiate Restore Operation
1) Evaluate Effective Address
2) Read Format Word at Effective Address
3) Write Format Word to Coprocessor Restore
Register > Receive Restore Command
1) Evaluate Format

2) Data=Invalid Format, Not Ready, or Same
Format Word

Validate Format

A

1) Read Coprocessor Restore Register
2) If Invalid Format, Take Format Error Exception
3) If Come-Again, Repeat Read of Restore Register

X
Restore Internal State

1) Read Four Bytes of Internal State from Memory

2) Write Four Bytes of Internal State to-
Coprocessor Operand Register

3) Repeat until Entire State is Restored

Figure 8-30. Protocol for Processing Restore Operation

8.15.1 Coprocessor Detected Exceptions

A coprocessor-detected exception is indicated in the response register. The main pro-
cessor acknowledges the coprocessor exception by writing to the coprocessor control
register to clear the exception. The main processor then takes the exception.

Coprocessor detected exceptions describe all exceptions that are perceptible to the
coprocessor whether they are also perceptible to the main processor or not. An illegal
command or an invalid data operand command are just two examples.

When the coprocessor is ready to report an exception, the coprocessor reflects this infor-
mation in the coprocessor response register, so that the main processor will take the ex-
ception when it next reads the response register. The information in the response
register includes the code for the take-exception primitive and the vector number to be
taken. Figure 8-31 shows the protocol for a coprocessor-detected exception.

8.15.2 Coprocessor Internal Exceptions

Many coprocessor exceptions originate from within the coprocessor. As such, exception
handling for this type of exception can be simplified since there are no exceptions involv-
ing the bus. Exceptions that can occur include illegal instructions, computation error
conditions, traps, and various other internally raised conditions.
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PROCESSOR COPROCESSOR
Read Coprocessor Response

1) Address= Coprocessor Response Register
2) R/W = Read > Respond to Processor

1) Response Register Function= Take Exception
2) Response Register Parameter = Vector Number

Main Processor Exception Handling

1) Evaluate Exception

2) Write Exception Acknowledge to Coprocessor
Control Register

3) Evaluate Vector

4) Begin Execution of Exception Handler

A

Figure 8-31. Protocol for Coprocessor Detected Exceptions

8.15.2.1 PROTOCOL VIOLATION. A protocol violation occurs if the main processor and
coprocessor communication has a failure. A coprocessor protocol violation is a
coprocessor-detected failure. If the coprocessor interface is expecting an access to the
operand register, operand address register, instruction address register, or register
selector register, and instead, the command register or condition register is accessed,
the coprocessor should terminate the access by returning DSACKx and signaling a pro-
tocol violation in the response register the next time it is read. Similarily, if the operand
register, operand address register, instruction address, or register selector register are
accessed when not expected, a protocol violation is signaled. When the main processor
next reads the response register, the coprocessor reports the appropriate exception type
and vector number. This should be (but is not required to be) the mid-instruction excep-
tion form in order to use the same exception stack frame as the main processor detected
protocol violation. Acknowledging the protocol violation exception clears the failure
signal.

A read of the save register is always valid, as is a write to the restore register. Protocol
violations never occur during save and restore instructions; however, format errors and
F-line exceptions may occur. All innocuous bus accesses, not covered above, do not
cause exceptions.

8.15.2.2 ILLEGAL COMMANDS AND CONDITIONS. Detection of an illegal coprocessor
command word or condition selection must be performed by the coprocessor. This ex-
ception is reflected in the coprocessor response register as a pre-instruction exception
primitive. Following the write of the illegal coprocessor command or condition, the main
processor immediately reads the response register. The response register indicates to
the main processor that an illegal instruction has occurred and provides the F-line
emulator vector number. The coprocessor designer should ensure that no coprocessor
context is unrecoverably altered if this exception is reported.

8.15.2.3 DATA PROCESSING RELATED EXCEPTIONS. If there is an exception pending
from a previous concurrent coprocessor instruction, such as a trap or computation error,
the coprocessor reports that exception when the main processor next initiates a general,

hranch or conditional instruction When the main nrocessor reads the resnonse register,
the response indicates to the main processor that a trap or computation error has occur-
red by requesting a pre-instruction exception and providing the vector to the proper ex-

ception handling routine. The main processor acknowledges and clears the exception by
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writing to the control register. The exception-handler routine then processes the excep-
tion, and when the program resumes execution, the processor reinitiates the instruction.
The coprocessor can report an illegal instruction at this time.

8.15.3 Coprocessor External Exceptions

The exceptions detected by a DMA coprocessor that are generated externally include
those associated with bus activity, and any system related exceptions. When a bus cycle
associated exception occurs, it is only applicable to the processor controlling the bus.
System exceptions are non-bus cycle associated events (like interrupts) detected by
either coprocessors or the main processor, even when that processor is not the bus
master. The actions to be taken by the coprocessor and the main processor are not
general since it is highly dependent upon the exception encountered.

When an address error or bus error occurs, which is detected by a DMA coprocessor, any
information necessary to handle the exception should be stored into system accessible
registers, and the exception is reflected in the coprocessor response register. The
coprocessor then relinquishes control of the bus and awaits the next access by the main
processor during which the response is read. The response indicates to the main pro-
cessor that a bus cycle fault has occurred and provides a take mid-instruction exception
with a vector to the proper exception handler routine.

8.16. MAIN PROCESSOR DETECTED EXCEPTIONS
The following paragraphs describe the main processor detected exceptions.

8.16.1 Protocol Violation

A response register function value of all zeros or all ones is not allowed as a legal
primitive. These, or any other such invalid primitives detected by the main processor are
not signaled to the coprocessor. Instead, in order to provide for emulation of future ex-
tensions of the coprocessor interface, the main processor takes an exception, using the
protocol violation vector and the mid-instruction exception stack frame. This allows the
operating system to emulate any extensions to the interface, and then return.

8.16.2 lllegal Instruction

The main processor may deem properly formed requests invalid if they specify opera-
tions that are illegal, such as writing to a non-alterable effective address. Such invalid
primitives detected by the main processor are signaled to the coprocessor by writing the
abort code to the coprocessor control register. Then the main processor takes an excep-
tion using the F-line emulator vector and the pre-instruction exception stack frame. This
allows the operating system to emulate any extensions to the coprocessor, and then
return. This assumes that no destructive primitives have been processed in this instruc-
tion prior to the receipt of the primitive that caused the exception (refer to 8.8.2 Busy).

8.16.3 Trace

When the main processor is executing in the trace mode, it is desirable that any
coprocessor instructions, either concurrent or non-current, have finished processing
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before the main processor takes the trace exception. For the general type instruction, the
communication between main processor and coprocessor is closed when the
coprocessor returns a response without come-again. If the main processor is in trace
mode, the main processor continues to read the response register. While the
coprocessor is processing the instruction, it responds null-done with the processing
finished bit clear. When the coprocessor is finished processing, it responds null-release
(refer to 8.8.1 Null (No Operands)) to the processor. Then, the main processor can take the
trace exception, using the post-instruction stack frame. For the branch and conditional
type instruction, the null-done response is an implicit release, and the main processor is
free to finish its processing on the instruction and then take the trace exception.

8.16.4 Interrupts

When the coprocessor is busy processing an instruction, but requires further help from
the main processor in order to finish the instruction, it should allow the main processor
to service interrupts by responding with the null primitive, with come-again and inter-
rupts allowed. If there are no interrupts pending, the main processor simply returns to
query the response register again. If there is a pending interrupt, the main processor
takes the interrupt exception, using the mid-instruction stack frame. After the interrupt
handler has processed the interrupt, it can return and the main processor again queries
the response register. Thus, to the coprocessor, the receipt of an interrupt by the main
processor appears like an extraordinarily slow main processor. If the processor must be
redispatched after the interrupt is processed, the state of the coprocessor may be saved
by the save instruction and restored later.

8.16.5 Address Error, Bus Error

While processing coprocessor instructions, bus cycle faults may occur during the CPU
space cycles used to communicate with the coprocessor, or during memory cycles while
the main processor is accessing data or instructions. If the main processor receives a
fault while running the bus cycle which initiates a coprocessor instruction, it assumes
that there is no coprocessor in the system, and takes an F-line emulator exception. If any
other coprocessor access is faulted, it assumes that the coprocessor has failed, takes a
bus error exception, and indicates a data cycle fault in the bus error stack frame.

If the main processor has a memory fault, while executing a coprocessor instruction, it
takes an address error or bus error exception. After the fault handler has corrected the
fault condition, it may return, and the communication with the coprocessor continues as
if the fault had not occurred. If the processor must be redispatched while the fault condi-
tion is being corrected, the state of the coprocessor may be saved by the save instruction
and restored later by a restore instruction.

8.17 RESET

When reset occurs at the coprocessor, regardless of the operation currently being ex-
ecuted, the coprocessor should be reset, and if appropriate, initialized. At the discretion
of the system designer, there may be a distinction made between an entire system reset
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and the execution of a RESET instruction. In keeping with the function of the RESET in-
struction, it may be desired that the internal state of a coprocessor is only affected by an
external reset, since the coprocessor state is viewed as an extension of the internal state
of the MC68020. The coprocessor has no need to initiate a reset.

Figure 8-32 shows the coprocessor instruction formats.

8.18 COPROCESSOR INSTRUCTION AND PRIMITIVE FORMATS

A summary of the coprocessor instruction formats and coprocessor primitive formats
are given in the following paragraphs.

8.18.1 Coprocessor Instructions
Figure 8-32 shows the coprocessor instruction formats.
cpGEN

% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
HEEERER Cp-ld o Jo o] Effective Address
Coprocessor Command

Optional Effective Address or Coprocessor Defined Extension Words

cpBcc.W
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
HEEERER Cp-ld [o 1 Jo] Condition Selector
Optional Coprocessor Defined Extension Words

Displacement

cpBcec.L
15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0
RN RN RN Cpld [o 1 J1] Condition Selector
Optional Coprocessor Defined Extension Words

Displacement — High

Displacement — Low

cpSce
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
HEEERE Cp-ld [0 To T Effective Address
(Reserved) Condition Selector

Optional Coprocessor Defined Extension Words

cpDBcc
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
HENERER Cp-Id [o o 7 Jo o1 ] Register
(Reserved) Condition Selector

Optional Coprocessor Defined Extension Words

Displacement

Figure 8-32. Coprocessor Instruction Formats (Sheet 1 of 2)
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cpTRAPcc

% 14 13 12 11 1 9 8 7 6 &5 4 3 2 1 0
N [o Jo Jr T+ T 1] 1] opmode
(Reserved) Condition Selector

Optional Coprocessor Defined Extension Words
Optional Word
or Long Word Operand

SAVE
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
IERERER Cp-ld [1 Jo Jo | Effective Address
Effective Address Extension Words (If Any, 1-6 Words)

RESTORE

B 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

IHERER R Cp-Id [1 Jo [1 ] Effective Address
Effective Address Extension Words (If Any, 1-5 Words)

Figure 8-32. Coprocessor Instruction Formats (Sheet 2 of 2)

8.18.2 Coprocessor Primitives

The coprocessor primitive formats are given, in numerical order, in Figure 8-33. In addi-
tion to the primitives shown, a primitive response with a function field (bits 8-13) of $00 or
$3F will always cause a protocol violation. The primitive function values of $0B, $18-$1B,
$28-$2B, and $39-$3E also cause a protocol violation, but are undefined and reserved for
future use by Motorola.

Busy
8 7 6 5 4 3 2 1 0

L o]

B 14 13 12 11 109
T el 1 JoJoJ1rJoJoJoJoJoTJo o]

o
o

Transfer Multiple Coprocessor Registers
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 JTo [1] Length ]

o
>
o
o
Q
=

=)
o

Transfer Status Register and ScanPC
15 14 13 12 " 10 9 8 7 6 5 4 3 2
[oJoJoJr JsPJoJoJoJofolfo]

(=}

o
>
o
o
—
=3
S
IS}
L |

Supervisor Check
15 14 13 12 N 10 9 8 7 6 5 4 3 2 1 0
N N I N O T B

O
>
B
o
—
o
o
=}
[}
(=}

Take Address and Transfer Data
15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0
CAJPCJdr Jo Jo 1 JTo J1 ] Length |

Transfer Multiple Main Processor Registers
15 14 13 12 N 10 9 8 7 6 5 4 3 2 1 0
caJpcTar Jo JoJ1 1 JoTJoTJoTJoTJoTJoJoTJoTo

Figure 8-33. Coprocessor Primitive Formats (Sheet 1 of 2)
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Transfer Operation Word

% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[caJpcJo Jo JoT1 1 JT1JoJoTJoTJoTJoTJoTJoT o]
Null
15 14 13 12 11 0 9 8 7 6 5 4 3 2 1 0
[caAJpcJoJoJ1 JToTJoTiawJoTTi1 JToTTo T To Jo JrFJTF ]|
Evaluate Effective Address and Transfer Address
% 14 13 12 M 10 9 8 7 6 5 4 3 2 1 0
[caJpcJo Jo 1 JToT1 Jo] Length |
Transfer Single Main Processor Register
% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[caJpcJar Jo 1 1 JoJoTJoTo oo [o/a] Regster |
Transfer Main Processor Control Register
%5 14 13 12 N 10 9 8 7 6 5 4 3 2 1 0
[capcJar Jo J1 Jr Jo 1 JoJoJoJoTJoJoJoT ol
Transfer To/From Top of Stack
% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ecaJPpcJar Jo Jo JaoJ1iJoJoTJoJoJoJo]rJoTJol]
Transfer Instruction Stream
% 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
]CAIPC[0|0|1|1 |1 |1| Length ]
Evaluate Effective Address and Transfer Data
% 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
[ca Jpc Jar [ 1 Jo [ vaidea ] Length j
Take Pre-Instruction Exception
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o JrcJo JT1 J1 T Jo Jol] Vector Number |
Take Mid-Instruction Exception
1% 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
[o JrcJo J1v [ T Jo J1] Vector Number |
Take Post-Instruction Exception
5 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
[o JrcJo T T 71Tt Jol Vector Number |
Write to Previously Evaluated Effective Address
% 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
[caJpc T 1 To JoJoTo Jo] Length |

Figure 8-33. Coprocessor Primitive Formats (Sheet 2 of 2)
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SECTION 9
INSTRUCTION EXECUTION TIMING

This section describes the instruction execution times of the MC68020 in terms of exter-
nal clock cycles.

9.1 TIMING ESTIMATION FACTORS

The advanced architecture of the MC68020 makes exact instruction timing calculations
difficult due to the effects of:

1) An On-Chip Instruction Cache and Instruction Prefetch,
2) Operand Misalignment, and
3) Instruction Execution Overlap.
These factors make MC68020 instruction set timing difficult to calculate on a single in-

struction basis since instructions vary in execution time from one context to another. A
detailed explanation of each of these factors follows.

9.1.1 Instruction Cache and Prefetch

The on-chip cache of the MC68020 is an instruction-only cache. its purpose is to increase
execution efficiency by providing a quick-store for instructions.

Instruction prefetches that hit in the cache will occur with no delay in instruction execu-
tion. Instruction prefetches that miss in the cache will cause an external memory cycle
to be performed, which may overlap with internal instruction execution. Thus, while the
execution unit of the microprocessor is busy, the bus controller prefetches the next in-
struction from external memory. Both cases are illustrated in later examples.

When prefetching instructions from external memory, the microprocessor will utilize
long word read cycles. When the read is aligned on a long word address boundary, the
processor reads two words, which may load two instructions at once, or two words of a
multi-word instruction. The subsequent instruction prefetch will find the second word is
already available and there is no need to run an external bus cycle (read).

The MC68020 always prefetches long words. When an instruction prefetch falls on an
odd word boundary (e.g., due to a branch to an odd word location), the MC68020 will read
the even word associated with the long word base address at the same time as (32-bit
memory) or before (8- or 16-bit memory) the odd word is read. When an instruction
prefetch falls on an even word boundary (as would be the normal case), the MC68020
reads both words at the long word address, thus effectively prefetching the next two
words.
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9.1.2 Operand Misalignment

Another significant factor affecting instruction timing is operand misalignment. Operand
misalignment has impact on performance when the microprocessor is reading or writing
external memory. In this case the address of a word operand falls across a long word
boundary or a long word operand falls on a byte or word address which is not a long word
boundary. While the MC68020 will automatically handle all occurrences of operand
misalignment, it must use multiple bus cycles to complete such transfers.

9.1.3 Concurrency

The MC68020 allows concurrency to take place when executing instructions. The main
elements participating in this concurrency are the bus controller and the sequencer. The
bus controller is responsible for all bus activity. The sequencer controls the bus con-
troller, instruction execution, and internal processor operation, such as calculation of ef-
fective addresses and setting of condition codes. The sequencer is responsible for in-
itiating instruction prefetches, decoding and validating incoming instructions in the pipe.

The bus controller and sequencer can operate on an instruction concurrently. The bus
controller can perform a read or write while the sequencer controls an effective address
calculation or sets the condition codes. The sequencer may also request a bus cycle that
the bus controller cannot immediately perform. In this case the bus cycle is queued and
the bus controller runs the cycle when the current cycle is complete.

Concurrency of operation between the sequencer and bus controller introduces
ambiguity into the calculation of instruction timing due to potential overlap of instruction
execution.

9.1.4 Overlap

Overlap is the time, measured in clocks, when two instructions execute simultaneously.
Overlap is measured as the time that an instruction is executing concurrent to the
previous instruction. In Figure 9-1, instructions A and B execute simultaneousiy and the
overlapped portion of instruction B is absorbed in the instruction execution time of A (the
previous instruction). The overlap time is deducted from the execution time of instruction
B. Similarly, there is an overlap period between instruction B and instruction C, which
reduces the attributed execution time for C.

i— —_——— -InstructionA——-i
|_ — — — —Instruction B———_"
I.. _— = —InstructionC_———|

[ —— N eey—
Overlap Overlap

Figure 9-1. Simultaneous Instruction Execution



The execution time attributed to instructions A, B, and C (after considering the overlap) is
depicted in Figure 9-2.

|—Instruction A ————.I
i— Instruction B ——|
I——— Instruction C ————-I

\—— [ —’
Overlap Overlap
Period Period

(Absorbed by (Absorbed by
Instruction A) Instruction B)

Figure 9-2. Instruction Execution for Instruction Timing Purposes

It is possible that the execution time of an instruction will be absorbed by the overlap
with a previous instruction for a net execution time of zero clocks.

9.1.5 Instruction Stream Timing Examples

A programming example allows a more detailed examination of these effects. The effect
of instruction execution overlap on instruction timing is illustrated by the following ex-
ample instruction stream:

Instruction
#1) MOVE.L D4,A1)+
#2) ADD.L D4,D5
#3) MOVE.L (A1), —(A2)
#4) ADD.L D5,D6

For the first example, the assumptions are:
1) The data bus is 32 bits,
2) The first instruction is prefetched from an ODD word address,
3) Memory access with no wait states, and
4) The instruction cache is disabled.

For this example, the instruction stream is positioned in 32-bit memory as:

Address n o o e MOVE #1

n+4 | ADD#2 | MOVE#3

n+8 ADD #4 o v




Figure 9-3 shows processor activity on the first example instruction stream. It shows the
activity of the external bus, and bus controller, th sequencer, and the attributed instruc-
tion execution time.

Clock

Bus Activity ( Prefetch X Write X Read X Prefetch X Write )—l

Bus Controller

Perform

Sequencer ADD #2

Instruction
Execution Time

Clock Count l (6) | (9) | (1
| I ]

Legend

#1) MOVE.L D4,{A1)+

#2) ADD.L  D4,D5 [

#3) MOVE.L (A1), —(A2)

#4) ADD.l.  D5,D6

Figure 9-3. Processor Activity Example

For the first three clocks of this example, the bus controller and sequencer are both per-
forming tasks associated with the MOVE #1 instruction. The next three clocks (clocks
four, five, and six) demonstrate instruction overlap. The bus controller is performing a
write to memory as part of the MOVE #1 instruction. The sequencer, on the other hand, is
performing the ADD #2 instruction for two clocks (clocks four and five) and beginning
source effective address (EA) calculations for the MOVE #3 instruction. The bus con-
troller activity completely overlaps the execution of the ADD #2 instruction, causing the
ADD #2 attributed execution time to be zero clocks. This overlap also shortens the effec-
tive execution time of the MOVE #3 instruction by the one clock because the bus con-
troller completes the MOVE #1 write operation while the sequencer begins the MOVE #3
effective address calculation.

The sequencer continues the source EA calculation for two more clock periods (clocks
seven and eight) while the bus controller begins a read for MOVE #3. When counting

9-4



instruction execution time in bus clocks, the MOVE #1 completes at the end of clock 6
and the execution of MOVE #3 begins on clock 7.

Both the sequencer and bus controller continue with MOVE #3 until the end of clock 14,
when the sequencer begins to perform ADD #4. Timing for MOVE #3 continues, because
the bus controller is still performing the write to the destination of MOVE #3. The bus ac-
tivity for MOVE #3 completes at the end of clock 15. The effective execution time for
MOVE #3 is 9 clocks.

The one clock cycle (clock 15) when the sequencer is performing ADD #4 and the bus con-
troller is writing to the destination of MOVE #3 is absorbed by the execution time of
MOVE #3. This shortens the effective execution time of ADD #4 by one clock, giving it an
attributed execution time of one clock.

Using the same instruction stream, the second example demonstrates the different af-
fects of instruction execution overlap on instruction timing when the same instructions
are positioned slightly differently, in 32-bit memory:

Address n | MOVE#1 | ADD#2

n+4 |MOVE#3| ADD#4

n+8

The assumptions for the second example in Figure 9-4 are:
1) The data bus is 32 bits,
2) The first instruction is prefetched from an EVEN word address,
3) Memory access occur with no wait states, and
4) The cache is disabled.

While the total execution time of the instruction segment does not change in this exam-
ple, the individual instruction times are significantly different. This demonstrates that
the effects of overlap are not only instruction sequence dependent, but is also dependent
upon the alignment of the instruction stream in memory.

Both Figures 9-3 and 9-4 show instruction execution without benefit of the MC68020 in-
struction cache. Figure 9-5 shows a third example for the same instruction stream ex-
ecuting in the cache. The assumptions for Example 3 are:

1) The data bus is 32 bits,
2) The Gaciie is enabied and instiuGlions are in tie cacne, and
3) Memory access occur with no wait states.
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Clock

Bus Activity l—-——( Write K Prefetch )K Read X Write X Prefetch J

Prefetch
Bytes n+8

Bus Controller

s Perform
equencer ADD #2
Instruction
Execution Time ADD.L D4,D5
Clock Counter | — @ ] 3) | ®) | 3 |
Legend

#1) MOVE.L D4,(A1)+ #4) ADD.L  Db,D6

#2) ADD.L  D4,D5 D #3) MOVE.L (A1), —(A2)

Figure 9-4. Processor Activity for Example 2

Clock

Bus Activity  ——K Wirite pa— Read X Write S

Bus Controller

Sequencer Perform
ADD #2

Instruction
Execution Time

Clock Counter

Legend

#1) MOVE.L D4,(A1) + #4) ADD.L D5,D6

#2) ADD.L D4,D5 [:l #3) MOVE.L (A1), — (A2)

Figure 9-5. Processor Activity for Example 3




Note that once the instructions are in the cache, the original location in external memory

is no longer a factor in timing.

Figure 9-5 illustrates the benefits of the instruction cache. The total number of clock
cycles is reduced from 16 to 12 clocks. Since the instructions are resident in the cache,
the instruction prefetch activity does not require the bus controller to perform external
bus cycles. Prefetch occurs with no delay, and subsequently, the bus controller is idle

more often.

Such idle clock cycles are useful in MC68020 systems that require wait states when ac-
cessing external memory. This is illustrated by the fourth example in Figure 9-6 with the

following assumptions:
1) The data bus is 32 bits,

2) The cache is enabled and instructions are in the cache, and

3) Memory access occur with one wait state.

Clock

Bus Activity +

ﬁ'\ Write

Read

Bus Controller

Perform

Sequencer ADD #2

Instruction
Execution Time

Clock Count i 5)

{ (8)
Legend
#1) MOVE.L D4,(A1) +
#2) ADD.L D4,D5
#3) MOVE.L (A1), —(A2)

#4) ADD.L D5b,D6
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Figure 9-6 shows the same instruction stream executing with four clocks for every read
and write. The idle bus cycles coincide with the wait states of the memory access, so the
total execution time is only 13 clocks.

These examples demonstrate the complexity of instruction timing calculation for the
MC68020. It is impossible to anticipate individual instruction timing as an absolute
number of clock cycles due to the dependency of overlap on the instruction sequence
and alignment, as well as the number of wait states in memory. This can be seen by com-
paring individual and composite time for Figure 9-3 through 9-6. These instruction tim-
ings are compared in Table 9-1, where timing varies for each instruction as the context
varies.

Table 9-1. Example Instruction Stream Execution Comparison

Example 4
Example 1 Example 2 Example 3 (Cache With
Instruction (Odd Alignment) (Even Alignment) (Cache) Wait States)

#1) MOVE.L  D4,(A1)+
#2) ADD.L D4,D5

#3) MOVE.L (A1), - (A2)
#4) ADD.L Db,D6

4
3
6
3

4
0
7
1

5
0
8
0

Total Clock Cycles

16

12

13

9.2 INSTRUCTION TIMING TABLES
The instruction times below include the following assumptions about the MC68020
system:

1) All operands are long word aligned as is the stack,

2) 32-bit data bus, and

3) No wait state memory (3 cycle read/write).

There are three values given for each instruction and addressing mode:

1) The best case (BC) which reflects the time (in clocks) when the instructionis in the
cache and benefits from maximum overlap due to other instructions.

2) Cache-only-case (CC) when the instruction is in the cache but has no overlap, and

3) Worst case (WC) when the instruction is not in cache or the cache is disabled and
there is no instruction overlap.

The only instances for which the size of the operand has any effect are the instructions

with immediate operands. Unless specified otherwise, immediate byte and word
operands have identical execution times.
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Within each set or column of instruction timings are four sets of numbers, three of which
are enclosed in parentheses. The outer number is the total number of clocks for the in-
struction. The first number inside the parentheses is the number of operand read cycles
performed by the instruction. The second value inside parentheses is the number of in-
struction accesses performed by the instruction, including all prefetches to keep the in-
struction pipe filled. The third value within parentheses is the number of write cycles per-
formed by the instruction. One example from the instruction timing table is:

24 (213/0)

Total Number of Clocks——I I
Number of Read Cycles

Number of Instruction Access Cycles
Number of Write Cycles

The total number of bus activity clocks for the above example is derived in the following
way: ‘
(2 Reads * 3 Clocks/Read) + (3 Instruction Accesses * 3 Clocks/Access)
+ (0 Writes * 3 Clocks/Write) = 15 Clocks of Bus Activity
24 Total Clocks — 15 Clocks (Bus Activity) = 9 Internal Clocks

The example used here was taken from a worst-case ‘““fetch effective address” time. The
addressing mode was ([d32,B],1,d32). The same addressing mode under the best case en-
try in 17 (2/0/0). For the best case, there are no instruction accesses because the cache is
enabled, and the sequencer does not have to go to external memory for the instruction
words.

The first tables deal exclusively with fetching and calculating effective addresses and
immediate operands. The tables are arranged in this manner because some instructions
do not require effective address calculation or fetching. For example, the instruction
CLR<ea> (found in the table under 9.2.11 Single Operand Instruction) only needs to
have a calculated EA time added to its table entry because no fetch of an operand is re-
quired. This instruction only writes to memory or a register. Some instructions use
specific addressing modes which exclude timing for calculation or fetching of an
operand. When these instances arise, they are footnoted to indicate which other tables
are needed in the timing calculation.

The MOVE instruction timing tables include all necessary timing for extension word
fetch, address calculation, and operand fetch.

The instruction timing tables are used to calculate a best case and worst case bounds
for some target instruction stream. Calculating exact timing from the timing tables is im-
possible because the tables cannot anticipate how thne combination of faciors wiii in-
fluence every particular sequence of instructions. This is illustrated by comparing the
observed instruction timing from the prior four examples with instruction timing derived
from the instruction timing tables.
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Table 9-2 shows the original instruction stream and the corresponding clock timing from
the appropriate timing tables for the best case (BC), cache only case (CC), and worst
case (WC).

Table 9-2. Instruction Timings from Timing Tables

Instruction Best Case Cache Case Worst Case
#1) MOVE.L  D4,(A1)+ 4 4 6
#2) ADD.L D4,D5 0 2 3
#3) MOVE.L (A1), -(A2) 6 7 9
#4) ADD.L D5,D6 0 2 3
Total 10 15 21

Table 9-3 summarizes the observed instruction timings for the same instruction stream
as executed according to the assumptions of the four examples. For each example,
Table 9-3 shows which entry (BC/CC/WC) from the timing tables corresponds to the
observed timing for each of the four instructions. Some of the observed instruction tim-
ings cannot be found in the timing tables and appear in Table 9-3 within parenthesis in
the most appropriate column. These occur when instruction execution overlap
dynamically alters what would otherwise be a BC, CC, or WC timing.

Table 9-3. Observed Instruction Timings

Example 1 Example 2 Example 3 Example 4
Instruction BC CC WC|BC CC wC|BC CC WC|BC CC WC
#1) MOVE.L  D4,(A1)+ 6 4 4 (5)
#2) ADD.L D4,D5 0 3 0 0
#3) MOVE.L  (A1),—(A2) 9 6 7 (8)
#4) ADD.L D5,D6 4] 3 (1 0

Total

(16)

(16)

(12)

(13)

Comparing Tables 9-2 and 9-3 demonstrates that calculation of instruction timing cannot
be a simple lookup of only BC or only WC timings. Even when the assumptions are known
and fixed, as in the four examples summarized in Table 9-3, the microprocessor can
sometimes achieve best case timings under worst case assumptions.

Looking across the four examples in Table 9-3 for an individual instruction, it is difficult
to predict which timing table entry is used, since the influence of instruction overlap may
or may not improve the BC, WC, or CC timings. When looking at the observed instruction
timings for one example, it is also difficult to determine which combination of BC/CC/WC
timing is required. Just how the instruction stream will fit and run with cache enabled,
how instructions are positioned in memory, and the degree of instruction overlap are fac-
tors that are impossible to be accounted for in all combinations of the timing tables.

Although the timing tables cannot accurately predict the instruction timing that would be
observed when executing an instruction stream on the MC68020, the tables can be used
to calculate best case and worst case bounds for instruction timing. Absolute instruction
timing must be measured by using the microprocessor itself, to execute the target in-
struction stream.
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9.2.1 Fetch Effective Address

The fetch effective address table indicates the number of clock periods needed for the
processor to calculate and fetch the specified effective address. The total number of
clock cycles is outside the parentheses, the number of read, prefetch, and write cycles
are given inside the parentheses as (r/p/w). They are included in the total clock cycle
number.

Address Mode Best Case Cache Case Worst Case
Dn 0 (0/0/0) 0 (0/0/0) 0 (0/0/0)
An 0 (0/0/0) 0 (0/0/0) 0 (0/0/0)
(An) 3 (1/0/0) 4 (1/0/0) 4 (1/0/0)
(An) + 4 (1/0/0) 4 (1/0/0) 4 (1/0/0)
~(An) 3 (1/0/0) 5 (1/0/0) 5 (1/0/0)
(d16.An) of (d1g,PC) 3 (1/0/0) 5 (1/0/0) 6 (1/1/0)
(xxx).W 3 (1/0/0) 4 (1/0/0) 6 (1/1/0)
(xxx). L 3 (1/0/0) 4 (1/0/0) 7 (1/1/0)
#<data>.B 0 (0/0/0) 2 (0/0/0) 3 (0/1/0)
#<data> W 0 (0/0/0) 2 (0/0/0) 3 (0/1/0)
#<data>.L 0 (0/0/0) 4 (0/0/0) 5 (0/1/0)
(dg,An,Xn) or (dg, PC, Xn) 4 (1/0/0) 7 (1/0/0) 8 (1/1/0)
(d1g.An,Xn) or (d1g,PC,Xn) 4 (1/0/0) 7 (1/0/0) 9 (1/1/0)
(B) 4 (1/0/0) 7 (1/0/0) 9 (1/1/0)
(d16.B) 6 (1/0/0) 9 (1/0/0) 12 (1/1/0)
(d32,B) 10 (1/0/0) 13 (1/0/0) 16 (1/2/0)
({B1.1) 9 (2/0/0) 12 (2/0/0) 13 (2/1/0)
([B1,1,d1g) 11 (2/0/0) 14 (2/0/0) 16 (2/1/0)
([B],1,d3p) 11 (2/0/0) 14 (2/0/0) 17 (2/2/0)
(Id1e,B1,1) 11 (2/0/0) 14 (2/0/0) 16 (2/1/0)
([d16,B1,1,d1g) 13 (2/0/0) 16 (2/0/0) 19 (2/2/0)
([d16.B1.1,d32) 13 (2/0/0) 16 (2/0/0) 20 (2/2/0)
([d32,Bl, 1) 15 (2/0/0) 18 (2/0/0) 20 (2/2/0)
([d32,Bl,1,d1g) 17 (2/0/0) 20 (2/0/0) 22 (2/2/0)
([d32,B1,1,d32) 17 (2/0/0) 20 (2/0/0) 24 (2/3/0)

B =Base address; 0, An, PC, Xn, An+ Xn, PC+ Xn. Form does not affect timing.
I=Index; 0, Xn

NOTE: Xn cannot be in B and | at the same time. Scaling and size of Xn does not affect timing.

9.2.2 Fetch Immediate Effective Address

The fetch immediate effective address table indicates the number of clock periods need-
ed for the processor to fetch the immediate source operand, and calculate and fetch the
specified destination operand. The total number of clock cycles is outside the paren-
theses, the number of read, prefetch, and write cycles are given inside the parentheses
as (r/p/w). They are included in the total clock cycle number.
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Address Mode Best Case Cache Case Worst Case
#<data>.W,Dn 0 (0/0/0) 2 (0/0/0) 3 (0/1/0)
#<data>.L,Dn 1 (0/0/0) 4 (0/0/0) 5 (0/1/0)
#<data>.W,(An) 3 (1/0/0) 4 (1/0/0) 4 (1/1/0)
#<data>.L,(An) 3 (1/0/0) 4 (1/0/0) 7 (1/1/0)
#<data>.W,(An) + 4 (1/0/0) 6 (1/0/0) 7 (1/1/0)
#<data>.L,(An)+ 5 (1/0/0) 8 (1/0/0) 9 (1/1/0)
#<data>.W, - (An) 3 (1/0/0) 5 (1/0/0) 6 (1/1/0)
#<data>.L,—(An) 4 (1/0/0) 7 (1/0/0) 8 (1/1/0)
#<data>.W,(bd,An) 3 (1/0/0) 5 (1/0/0) 7 (1/1/0)
#<data>.L,(bd,An) 4 (1/0/0) 7 (1/0/0) 10 (1/2/0)
#< data>.W,xxx.W 3 {1/0/0) 5 (1/0/0) 7 (1/1/0)
#<data>.L,xxx.W 4 (1/0/0) 7 (1/0/0) 10 (1/2/0)
#<data> . W,xxx.L 3 (1/0/0) 6 (1/0/0) 10 (1/2/0)
#<data>.L,xxx.L 4 (1/0/0) 8 (1/0/0) 12 (1/2/0)
#<data>.W,#<data>.B,W 0 (0/0/0) 4 (0/0/0) 6 (0/2/0)
#<data>.W, #<data>.B,W 1 (0/0/0) 6 (0/0/0) 8 (0/2/0)
#<data>.W, #<data>.L 0 (0/0/0) 6 (0/0/0) 8 (0/2/0)
#<data>.L,#<data>.L 1 (0/0/0) 8 (0/0/0) 10 (0/2/0)
#<data>.W,(dg,An,Xn) or (dg,PC,Xn) 4 (1/0/0) 9 (1/0/0) 1 (1/2/0)
#<data>.L,(dg,An,Xn) or (dg,PC,Xn) 5 (1/0/0) 11 (1/0/0) 13 (1/2/0)
#<data>.W,(d1g,An,Xn) or (d1g,PC,Xn) 4 (1/0/0) 9 (1/0/0) 12 (1/2/0)
#<data>.L,(d1g,An,Xn) or {d1g,PC,Xn) 5 (1/0/0) 11 (1/0/0) 156 (1/2/0)
#<data>.W,(B) 4 (1/0/0) 9 (1/0/0) 12 (1/2/0)
#<data>.L,(B) 5 (1/0/0) 11 (1/0/0) 14 (1/2/0)
#<data>.W,(bd,PC) 10 (1/0/0) 15 (1/0/0) 19 (1/3/0)
#<data>.L,(bd,PC) 11 (1/0/0) 17 (1/0/0) 21 (1/3/0)
#<data>.W,(d1g,B) 6 (1/0/0) 11 (1/0/0) 156 (1/2/0)
#<data>.L,(d1g,B) 7 (1/0/0) 13 (1/0/0) 17 (1/2/0)
#<data>.W,(dgp,B) 10 (1/0/0) 15 (1/0/0) 19 (1/3/0)
#<data>.L,(d32,B) 11 (1/0/0) 17 (1/0/0) 21 (1/3/0)
#<data>.W,([B],I) 9 (2/0/0) 14 (2/0/0) 16 (2/2/0)
#<data>.L,([B],I) 10 (2/0/0) 16 (2/0/0) 18 (2/2/0)
#<data>.W,([B],|,d1g) 11 (2/0/0) 16 (2/0/0) 19 (2/2/0)
#<data>.L,([B],1,d1p) 12 (2/0/0) 18 (2/0/0) 21 (2/2/0)
#<data>.W,([B],,d32) 11 (2/0/0) 16 (2/0/0) 20 (2/3/0)
#<data>.L,([d1g,B],1,d30) 12 (2/0/0) 18 (2/0/0) 22 (2/3/0)
#<data>.W,([d1g,B],1) 11 (2/0/0) 16 (2/0/0) 19 (2/2/0)
#<data>.L,(ld1g,Bl,1) 12 (2/0/0) 18 (2/0/0) 21 (2/2/0)
#<data>.W,{[d1g,B1,1,d1g) 13 (2/0/0) 18 (2/0/0) 22 (2/3/0)
#<data>.L,([d1g,B],1,d1g) 14 (2/0/0) 20 (2/0/0) 24 (2/3/0)
#<data>.W,([dgp,Bl,1) 15 (2/0/0) 20 (2/0/0) 23 (2/3/0)
#<data>.L,([d3p,Bl1.I) 16 (2/0/0) 22 (2/0/0) 25 (2/3/0)
#<data>.W,([d3p,Bl,l,d16) 17 (2/0/0) 22 (2/0/0) 25 (2/3/0)
#<data>.L,([d3p,Bl,I,d1g) 18 (2/0/0) 24 (2/0/0) 27 (2/3/0)
#<data>.W,([dgp,BlI,I,d3p) 17 (2/0/0) 22 (2/0/0) 27 (2/4/0)
#<data>.L,([d3gp,B],l,d3gp) 18 (2/0/0) 24 (2/0/0) 29 (2/4/0)

B = Base address; 0, An, PC, Xn, An+ Xn, PC+Xn. Form does not affect timing.

I=Index 0, Xn

NOTE: Xn cannot be in B and | at the same time. Scaling and size of Xn does not affect timing.
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9.2.3 Calculate Effective Address

The calculate effective address table indicates the number of clock periods needed for
the processor to calculate the specified effective address. Fetch time is only included for
the first level of indirection on memory indirect addressing modes. The total number of
clock cycles is outside the parentheses, the number of read, prefetch, and write cycles
are given inside the parentheses as (r/p/w). They are included in the total clock cycle
number.

Address Mode Best Case Cache Case Worst Case
Dn 0 (0/0/0) 0 (0/0/0) 0 (0/0/0)
An 0 (0/0/0) 0 (0/0/0) 0 (0/0/0)
(An) 2 (0/0/0) 2 (0/0/0) 2 (0/0/0)
(An) + 2 (0/0/0) 2 (0/0/0) 2 (0/0/0)
- (An) 2 (0/0/0) 2 (0/0/0) 2 (0/0/0)
(d1g,An) or (dyg,PC) 2 (0/0/0) 2 (0/0/0) 3 (0/1/0)
<data>.W 2 (0/0/0) 2 (0/0/0) 3 (0/1/0)
<data>.L 1 (0/0/0) 4 (0/0/0) 5 (0/1/0)
(dg,An,Xn) or (dg,PC,Xn) 1 (0/0/0) 4 (0/0/0) 5 (0/1/0)
(d16,An,Xn) or (d1g,PC,Xn) 3 (0/0/0) 6 (0/0/0) 7 (0/1/0)
(B) 3 (0/0/0) 6 (0/0/0) 7 (0/1/0)
(d16,B) 5 (0/0/0) 8 (0/0/0) 10 (0/1/0)
(dzp,B) 9 (0/0/0) 12 (0/0/0) 156 (0/2/0)
([B1,1) 8 (1/0/0) 11 (1/0/0) 12 (1/1/0)
(B1.1,d1p) 10 (1/0/0) 13 (1/0/0) 15 (1/1/0)
([B],1,d3p) 10 (1/0/0) 13 (1/0/0) 16 (1/2/0)
([d16.B1.D 10 (1/0/0) 13 (1/0/0) 15 (1/1/0)
([d1,B1.1,d16) 12 (1/0/0) 15 (1/0/0) 18 (1/2/0)
([d16,Bl,1,d32) 12 (1/0/0) 15 (1/0/0) 19 (1/2/0)
({d3p,BI1.D 14 (1/0/0) 17 (1/0/0) 19 (1/2/0)
([d3p,B1,1,d1g) 16 (1/0/0) 19 (1/0/0) 21 (1/2/0)
({d3p,Bl,1,d32) 16 (1/0/0) 19 (1/0/0) 24 (1/3/0)

B = Base address; 0, An, PC, Xn, An+ Xn, PC+ Xn. Form does not affect timing.
I=1Index; 0, Xn

NOTE: Xn cannot be in B and | at the same time. Scaling and size of Xn does not affect timing.

9.2.4 Calculate Immediate Effective Address

The calculate immediate effective address table indicates the number of clock periods
needed for the processor to fetch the immediate source operand and calculate the
specified destination effective address. Fetch time is only included for the first level of
indirection on memory indirect addressing modes. The total number of clock cycles is
outside the parentheses, the number of read, prefetch, and write cycles are given inside
the parentheses as (r/p/w). They are included in the total clock cycle number.
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Address Mode Best Case Cache Case Worst Case
#<data>.W,Dn 0 (0/0/0) 2 (0/0/0) 3 (0/1/0)
#<data>.L,Dn 1 (0/0/0) 4 (0/0/0) 5 (0/1/0)
#<data>.W,(An) 0 (0/0/0) 2 (0/0/0) 3 (0/1/0)
#<data>.L,(An) 1 (0/0/0) 4 (0/0/0) 5 (0/1/0)
#<data>.W,(An) + 2 (0/0/0) 4 (0/0/0) 5 (0/1/0)
#<data>.L,(An)+ 3 (0/0/0) 6 (0/0/0) 7 (0/1/0)
#<data>.W,(bd,An) 1 (0/0/0) 4 (0/0/0) 5 (0/1/0)
#<data>.L,(bd,An) 3 (0/0/0) 6 (0/0/0) 8 (0/2/0)
#<data>.W,(xxx). W 1 (0/0/0) 4 (0/0/0) 5 (0/1/0)
#<data>.L,{xxx).W 3 (0/0/0) 6 (0/0/0) 8 (0/2/0)
#<data>.W.(xxx).L 2 (0/0/0) 4 (0/0/0) 6 (0/2/0)
#<data>.L,(xxx).L 3 (0/0/0) 8 (0/0/0) 10 (0/2/0)
#< data>.W,(dg,An,Xn) or (dg,PC,Xn) 0 (0/0/0) 6 (0/0/0) 8 (0/2/0)
#<data>.L,{dg,An,Xn) or (dg,PC,Xn) 2 (0/0/0) 8 (0/0/0) 10 (0/2/0)
#<data>.W,(d1g,An,Xn) or (d16,PC,Xn) 3 (0/0/0) 8 (0/0/0) 10 (0/2/0)
#<data>.L.{d1g,An,Xn) or (d1g,PC,Xn) 4 (0/0/0) 10 (0/0/0) 12 (0/2/0)
#<data>.W,(B) 3 (0/0/0) 8 (0/0/0) 10 (0/2/0)
#<data>..,(B) 4 (0/0/0) 10 (0/0/0) 12 (0/2/0)
#<data>.W,(bd,PC) 9 (0/0/0) 14 (0/0/0) 18 (0/3/0)
#<data> L,(bd,PC) 10 (0/0/0) 16 (0/0/0) 20 (0/3/0)
#<data>.W,(d1g,B) 5 (0/0/0) 10 (0/0/0) 13 (0/2/0)
#<data>.1,(dyg,B) 6 (0/0/0) 12 (0/0/0) 15 (0/2/0)
#<data>.\,(d3p,B) 9 (0/0/0) 14 (0/0/0) 18 (0/3/0)
#<data>.L,ld3p,B) 10 (0/0/0) 16 (0/0/0) 20 (0/3/0)
#<data>.W,{B],1) 8 (1/0/0) 13 (1/0/0) 15 (1/2/0)
#<data>.L,([B}I) 9 (1/0/0) 15 (1/0/0) 17 (1/2/0)
#<data>.W,([B],l,d1g) 10 (1/0/0) 15 (1/0/0) 18 (1/2/0)
#<data>.L,([B],l.d1g) 11 (1/0/0) 17 (1/0/0) 20 (1/2/0)
#<data>.W,([B],!,d3p) 10 (1/0/0) 15 (1/0/0) 19 (1/3/0)
#<data>.L,([B],1,dgp) 11 (1/0/0) 17 (1/0/0) 21 (1/3/0)
#<data>.W,([d1g,Bl.1) 10 (1/0/0) 15 (1/0/0) 18 (1/2/0)
#<data>.L,([d16,B1,1) 11 (1/0/0) 17 (1/0/0) 20 (1/2/0)
#<data>.W,(d16.B],1,d16)" 12 (1/0/0) 17 (1/0/0) 21 (1/3/0)
#<data>.L,([d16,B],1,d1g) 13 (1/0/0) 19 (1/0/0) 23 (1/3/0)
#<data>.([d1g.B],|,d32) 12 (1/0/0) 17 (1/0/0) 22 (1/3/0)
#<data>.([d1g,Bl,1,d30) 13 (1/0/0) 19 (1/0/0) 24 (1/3/0)
#<data>.W,(ld3p,Bl,) 14 (1/0/0) 19 (1/0/0) 22 (1/3/0)
#<data>.L,([d39,B],) 15 (1/0/0) 21 (1/0/0) 24 (1/3/0)
#<data>.W,{d3p,B],1,d1g) 16 (1/0/0) 21 (1/0/0) 24 (1/3/0)
#<data>.L,{[d3p,B],1,d1p) 17 (1/0/0) 23 (1/0/0) 26 (1/3/0)
#<data>.W,([dzp,Bl,1,d32) 16 (1/0/0) 21 (1/0/0) 24 (1/3/0)
#<data>.L,([d3p,B],l,d32) 17 (1/0/0) 23 (1/0/0) 29 (1/3/0)

B=Base address; 0, An, PC, Xn, An+Xn, PC+ Xn. Form does not affect timing.

|=Index; 0, Xn

NOTE: Xn cannot be in B and | at the same time. Scaling and size of Xn does not affect timing.
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9.2.5 Jump Effective Address

The jump effective address table indicates the number of clock periods needed for the
processor to calculate and jump to the specified effective address. Fetch time is only in-
cluded for the first level of indirection on memory indirect addressing modes. The total
number of clock cycles is outside the parentheses, the number of read, prefetch, and
write cycles are given inside the parentheses as (r/p/w). They are included in the total
clock cycle number.

Address Mode Best Case Cache Case Worst Case
(An) 0 (0/0/0) 2 (0/0/0) 2 (0/0/0)
(d1g.An) 1 (0/0/0) 4 (0/0/0) 4 (0/0/0)
(xxx). W 0 (0/0/0) 2 (0/0/0) 2 (0/0/0)
(xxx).L 0 (0/0/0) 2 (0/0/0) 2 (0/0/0)
(dg,An,Xn) or (dg,PC,Xn) 3 (0/0/0) 6 (0/0/0) 6 (0/0/0)
(d1g,An,Xn) or (d1,PC,Xn) 3 (0/0/0) 6 (0/0/0) 6 (0/0/0)
(B) 3 (0/0/0) 6 (0/0/0) 6 (0/0/0)
(B,d1p) 5 (0/0/0) 8 (0/0/0) 8 (0/1/0)
(B,d32) 9 (0/0/0) 12 (0/0/0) 12 (0/1/0)
([B1,H 8 (1/0/0) 11 (1/0/0) 11 (1/1/0)
([B],1,d1g) 10 (1/0/0) 13 (1/0/0) 14 (1/1/0)
([B],1,d32) 10 (1/0/0) 13 (1/0/0) 14 (1/1/0)
(Id16,B1.1 10 (1/0/0) 13 (1/0/0) 14 (1/1/0)
([d1g,B1,1,d16) 12 (1/0/0) 15 (1/0/0) 17 (1/1/0)
([d16,B1.1,d3D) 12 (1/0/0) 15 (1/0/0) 17 (1/1/0)
([d32,Bl,1) 14 (1/0/0) 17-(1/0/0) 19 (1/2/0)
([d32,Bl,1,d16) 16 (1/0/0) - 19 (1/0/0) 21 (1/2/0)
(Id3p,Bl,1,d32) 16 (1/0/0) 19 (1/0/0) 23 (1/3/0)

B =Base address; 0, An, PC, Xn, An+ Xn, PC+ Xn. Form does not affect timing.
I=Index; 0, Xn

NOTE: Xn cannot be in B and | at the same time. Scaling and size of Xn does not affect timing.

9.2.6 MOVE Instruction

The MOVE instruction timing table indicates the number of clock periods needed for the
processor to fetch, calculate, and perform the MOVE with the specified source and
destination effective addresses, including both levels of indirection on memory indirect
addressing modes. No additional tables are needed to calculate the total effective ex-
ecution time for the MOVE instruction. The total number of clock cycles is outside the
parentheses, the number of read, prefetch, and write cycles are given inside the paren-
theses as (r/p/w). They are included in the total clock cycle number.

9-15



BEST CASE

Source
Address Destination
Mode An Dn (An) (An) + —(An) (d16.An) (xxx).W (xxx).L
Rn 0 (0/0/0) 0 (0/0/0) 3 (0/0/1) 4 (0/0/1) 3 (0/0/1) 3 (0/0/1) 3 (0/0/1) 5 (0/0/1)
#<data>.B,W 0 (0/0/0) 0 (0/0/0) 3 (0/0/1) 4 (0/0/1) 3 (0/0/1) 3 (0/0/1) 3 (0/0/1) 5 (0/0/1)
#<data>.L 0 (0/0/0) 0 (0/0/0) 3 (0/0/1) 4 (0/0/1) 3 (0/0/1) 3 (0/0/1) 3 (0/0/1) 5 (0/0/1)
(An) 3 (1/0/0) 3 (1/0/0) 6 (1/0/1) 6 (1/0/1) 6 (1/0/1) 6 (1/0/1) 6 (1/0/1) 8 (1/0/1)
(An) + 4 (1/0/0) 4 (1/0/0) 7 (1/0/1) 7 (1/0/1) 7 (1/0/1) 7 (1/0/1) 7 (1/0/1) 9 (1/0/1)
—(An) 3 (1/0/0) 3 (1/0/0) 6 (1/0/1) 6 (1/0/1) 6 (1/0/1) 6 (1/0/1) 6 (1/0/1) 8 (1/0/1)
(d16,An) or (d1g,PC) 3 (1/0/0) 3 (1/0/0) 6 (1/0/1) 6 (1/0/1) 6 (1/0/1) 6 (1/0/1) 6 (1/0/1) 8 (1/0/1)
(xxx). W 3 (1/0/0) 3 (1/0/0) 6 (1/0/1) 6 (1/0/1) 6 (1/0/1) 6 (1/0/1) 6 (1/0/1) 8 (1/0/1)
(xxx).L 3 (1/0/0) 3 (1/0/0) 6 (1/0/1) 6 (1/0/1) 6 (1/0/1) 6 (1/0/1) 6 (1/0/1) 8 (1/0/1)
(dg,An,Xn) or (dg,PC,Xn) 4 (1/0/0) 4 (1/0/0) 7 (1/0/1) 7 (1/0/1) 7 (1/0/1) 7 (1/0/1) 7 (1/0/1) 9 (1/0/1)
(d16.An,Xn) or (d1g,PC,Xn) 4 (1/0/0) 4 (1/0/0) 7 (1/0/1) 7 (1/0/1) 7 (1/0/1) 7 (1/0/1) 7 (1/0/1) 9 (1/0/1)
(B) 4 (1/0/0) 4 (1/0/0) 7 (1/0/1) 7 (1/0/1) 7 (1/0/1) 7 (1/0/1) 7 (1/0/1) 9 (1/0/1)
(d16,B) 6 (1/0/0) 6 (1/0/0) 9 (1/0/1) 9 (1/0/1) 9 (1/0/1) 9 (1/0/1) 9 (1/0/1) | 11 (1/0/1)
(d32,B) 10 (1/0/0) | 10 (1/0/0) | 13 (1/0/1) | 13 (1/0/1) | 13 (1/0/1) | 13 (1/0/1) | 13 (1/0/1) | 15 (1/0/1)
((BJ.1) 9 (2/0/0) 9 (2/0/0) | 12 (2/0/1) | 12 (2/0/1) | 12 (2/0/1) | 12 (2/0/1) | 12 (2/0/1) | 14 (2/0/1)
([B],1,d16) 11 (2/0/0) | 11 (2/0/0) | 14 (2/0/1) | 14 (2/0/1) | 14 (2/0/1) | 14 (2/0/1) | 14 (2/0/1) | 16 (2/0/1)
([BI,1,d3p) 11 (2/0/0) | 11 (2/0/0) | 14 (2/0/1) | 14 (2/0/1) | 14 (2/0/1) | 14 (2/0/1) | 14 (2/0/1) | 16 (2/0/1)
([d16.B1,1) 11 (2/0/0) | 11 (2/0/0) | 14 (2/0/1) | 14 (2/0/1) | 14 (2/0/1) | 14 (2/0/1) | 14 (2/0/1) | 16 (2/0/1)
([d1¢,B],1,d1g) 13 (2/0/0) | 13 (2/0/0) | 16 (2/0/1) | 16 (2/0/1) | 16 (2/0/1) | 16 (2/0/1) | 16 (2/0/1) | 18 (2/0/1)
(ld16,B1,1,d30) 13 (2/0/0) | 13 (2/0/0) | 16 (2/0/1) | 16 (2/0/1) | 16 (2/0/1) | 16 (2/0/1) | 16 (2/0/1) | 18 (2/0/1)
([d3p,B1,1) 15 (2/0/0) | 15 (2/0/0) | 18 (2/0/1) | 18 (2/0/1) | 18 (2/0/1) | 18 (2/0/1) | 18 (2/0/1) | 20 (2/0/1)
([d3p,Bl,1,d1p) 17 (2/0/0) | 17 (2/0/0) | 20 (2/0/1) | 20 (2/0/1) | 20 (2/0/1) | 20 (2/0/1) | 20 (2/0/1) | 22 (2/0/1)
([d3p,Bl,1,d30) 17 (2/0/0) | 17 (2/0/0) | 20 (2/0/1) | 20 (2/0/1) | 20 (2/0/1) | 20 (2/0/1) | 20 (2/0/1) | 22 (2/0/1)
BEST CASE (Continued)
Source Destination
Address
Mode (dg,An,Xn) | (d1g,An,Xn) (B) (d16,B) (d32,B) ([B1.1) ([B],1,d1g) | ([B],I,d32)
Rn 4 (0/0/1) 6 (0/0/1) 5 (0/0/1) 7 (0/0/1) | 11 (0/0/1) 9 (1/0/1) | 11 (1/0/1) | 12 (1/0/1)
#<data>.B,W 4 (0/0/1) 6 (0/0/1) 5 (0/0/1) 7 (0/0/1) | 11 (0/0/1) 9 (1/0/1) | 11 (1/0/1) | 12 (1/0/1)
#<data>.L 4 (0/0/1) 6 (0/0/1) 5 (0/0/1) 7 (0/0/1) | 11 (0/0/1) 9 (1/0/1) | 11 (1/0/1) | 12 (1/0/1)
(An) 8 (1/0/1) | 10 (1/0/1) 9 (1/0/1) | 11 (1/0/1) | 16 (1/0/1) | 13 (2/0/1) | 15 (2/0/1) | 16 (2/0/1)
(An) + 9 (1/0/1) | 11 (1/0/1) | 10 (1/0/1) | 12 (1/0/1) | 16 (1/0/1) | 14 (2/0/1) | 16 (2/0/1) | 17 (2/0/1)
~(An) 8 (1/0/1) | 10 (1/0/1) 9 (1/0/1) | 11 (1/0/1) | 16 (1/0/1) | 13 (2/0/1) | 16 (2/0/1) | 16 (2/0/1)
(d1.An) or (d1g,PC) 8 (1/0/1) | 10 (1/0/1) 9 (1/0/1) | 11 (1/0/1) | 15 (1/0/1) | 13 (2/0/1) | 15 (2/0/1) | 16 (2/0/1)
(xxx).W 8 (1/0/1) | 10 (1/0/1) 9 (1/0/1) | 11 (1/0/1) | 16 (1/0/1) | 13 (2/0/1) | 15 (2/0/1) | 16 (2/0/1)
(xxx).L 8 (1/0/1) | 10 (1/0/1) 9 (1/0/1) | 11 (1/0/1) | 16 (1/0/1) | 13 (2/0/1) | 15 (2/0/1) | 16 (2/0/1)
(dg,An,Xn) or (dg,PC,Xn) 9 (1/0/1) | 10 (1/0/1) | 10 (1/0/1) | 12 (1/0/1) | 16 (1/0/1) | 14 (2/0/1) | 16 (2/0/1) | 17 (2/0/1)
(d16.An,Xn) or (dyg,PC,Xn) 9 (1/0/1) } 11 (1/0/1) | 10 (1/0/1) | 12 (1/0/1) | 16 (1/0/1) | 14 (2/0/1) | 16 (2/0/1) | 17 (2/0/1)
(B) 9 (1/0/1) | 11 (1/0/1) | 10 (1/0/1) | 12 (1/0/1) | 16 (1/0/1) | 14 (2/0/1) | 16 (2/0/1) | 17 (2/0/1)
(d16,B) 11 (1/0/1) | 13 (1/0/1) | 12 (1/0/1) | 14 (1/0/1) | 18 (1/0/1) | 16 (2/0/1) | 18 (2/0/1) | 19 (2/0/1)
(d32,B) 16 (1/0/1) | 17 (1/0/1) | 18 (1/0/1) | 18 (1/0/1) | 22 (1/0/1) | 20 (2/0/1) | 22 (2/0/1) | 23 (2/0/1)
([B],1) 14 (2/0/1) | 16 (2/0/1) | 17 (2/0/1) | 17 (2/0/1) | 21 (2/0/1) | 19 (3/0/1) | 21 (3/0/1) | 22 (3/0/1)
([B1,1,d1p) 16 (2/0/1) | 18 (2/0/1) | 19 (2/0/1) | 19 (2/0/1) | 23 (2/0/1) | 21 (3/0/1) | 23 (3/0/1) | 24 (3/0/1)
((B1,1,d32) 16 (2/0/1) | 18 (2/0/1) | 19 (2/0/1) | 19 (2/0/1) | 23 (2/0/1) | 21 (3/0/1) | 23 (3/0/1) | 24 (3/0/1)
([d16,B1,1) 16 (2/0/1) | 18 (2/0/1) | 19 (2/0/1) | 19 (2/0/1) | 23 (2/0/1) | 21 (3/0/1) | 23 (3/0/1) | 24 (3/0/1)
([d16,B1,1,d16) 18 (2/0/1) | 20 (2/0/1) | 21 (2/0/1) | 21 (2/0/1) | 256 (2/0/1) | 23 (3/0/1) | 25 (3/0/1) | 26 (3/0/1)
({d16,B1,1,d32) 18 (2/0/1) | 20 (2/0/1) | 21 (2/0/1) | 21 (2/0/1) | 25 (2/0/1) | 23 (3/0/1) | 256 (3/0/1) | 26 (3/0/1)
([d3p,B1,1 20 (2/0/1) | 22 (2/0/1) | 23 (2/0/1) | 23 (2/0/1) | 27 (2/0/1) | 25 (3/0/1) | 27 (3/0/1) | 28 (3/0/1)
([d32,Bl,1,d1g) 22 (2/0/1) | 24 (2/0/1) | 25 (2/0/1) | 256 (2/0/1) | 29 (2/0/1) | 27 (3/0/1) | 29 (3/0/1) | 30 (3/0/1)
([d32,B1,1,d32) 22 (2/0/1) | 24 (2/0/1) | 25 (2/0/1) | 25 (2/0/1) | 29 (2/0/1) | 27 (3/0/1) | 29 (3/0/1) | 30 (3/0/1)
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BEST CASE (Concluded)

Source Destination
Address
Mode ([d16,B1.1) ([d16,B1,1,d1g) | ([d16,B1.1,d32) ([d32,B1,1) ([d32,Bl,1,d1g) | ([d32,Bl,1,d32)
Rn 11 (1/0/1) 13 (1/0/1) 14 (1/0/1) 15 (1/0/1) 17 (1/0/1) 18 (1/0/1)
# <data>.B,W 11 (1/0/1) 13 (1/0/1) 14 (1/0/1) 16 (1/0/1) 17 (1/0/1) 18 (1/0/1)
#<data>.L 11 (1/0/1) 13 (1/0/1) 14 (1/0/1) 15 (1/0/1) 17 (1/0/1) 18 (1/0/1)
(An) 15 (2/0/1) 17 (2/0/1) 18 (2/0/1) 19 (2/0/1) 21 (2/0/1) 22 (2/0/1)
(An) + 16 (2/0/1) 18 (2/0/1) 19 (2/0/1) 20 (2/0/1) 22 (2/0/1) 23 (2/0/1)
~(An) 15 (2/0/1) 17 (2/0/1) 18 (2/0/1) 19 (2/0/1) 21 (2/0/1) 22 (2/0/1)
(d16,An) or (d16,PC) 15 (2/0/1) 17 (2/0/1) 18 (2/0/1) 19 (2/0/1) 21 (2/0/1) 22 (2/0/1)
(xxx).W 15 (2/0/1) 17 (2/0/1) 18 (2/0/1) 19 (2/0/1) 21 (2/0/1) 22 (2/0/1)
(xxx).L 15 (2/0/1) 17 (2/0/7) 18 (2/0/1) 19 (2/0/1) 21 (2/0/1) 22 (2/0/1)
(dg,An,Xn) or (dg,PC,Xn) 16 (2/0/1) 18 (2/0/1) 19 (2/0/1) 20 (2/0/1) 22 (2/0/1) 23 (2/0/1)
(d16.An,Xn) or (d1g,PC,Xn) 16 (2/0/1) 18 (2/0/1) 19 (2/0/1) 20 (2/0/1) 22 (2/0/1) 23 (2/0/1)
(B) 16 (2/0/1) 18 (2/0/1) 19 (2/0/1) 20 (2/0/1) 22 (2/0/1) 23 (2/0/1)
(d16,B) 18 (2/0/1) 20 (2/0/1) 21 (2/0/1) 22 (2/0/1) 24 (2/0/1) 25 (2/0/1)
(d32,B) 22 (2/0/1) 24 (2/0/1) 25 (2/0/1) 26 (2/0/1) 28 (2/0/1) 29 (2/0/1)
(IB1,1) 21 (3/0/1) 23 (3/0/1) 24 (3/0/1) 25 (3/0/1) 27 (3/0/1) 28 (3/0/1)
([B],1,d1p) 23 (3/0/1) 25 (3/0/1) 26 (3/0/1) 27 (3/0/1) 29 (3/0/1) 30 (3/0/1)
({B},1,d3p) 23 (3/0/1) 25 (3/0/1) 26 (3/0/1) 27 (3/0/1) 29 (3/0/1) 30 (3/0/1)
([d16.8B1.1) 23 (3/0/1) 25 (3/0/1) 26 (3/0/1) 27 (3/0/7) 29 (3/0/1) 30 (3/0/1)
([d16,Bl.1,d16) 25 (3/0/1) 27 (3/0/1) 28 (3/0/1) 29 (3/0/1) 31 (3/0/1) 32 (3/0/1)
([d16.B1.1,d3p) 25 (3/0/1) 27 (3/0/1) 28 (3/0/1) 29 (3/0/1) 31 (3/0/1) 32 (3/0/1)
(Id32.B1.) 27 (3/0/1) 29 (3/0/1) 30 (3/0/1) 31 (3/0/1) 33 (3/0/1) 34 (3/0/1)
([d3p,B1.1,d16) 29 (3/0/1) 31 (3/0/1) 32 (3/0/1) 33 (3/0/1) 35 (3/0/1) 36 (3/0/1)
({d32,B],1,d32) 29 (3/0/1) 31 (3/0/1) 32 (3/0/1) 33 (3/0/1) 36 (3/0/1) 36 (3/0/1)
CACHE CASE
Source
Address Destination
Mode An Dn (An) (An) + —(An) (d16,An) (xxx).W (xxx).L
Rn 2 (0/0/0) | 2 (0/0/0) | 4 (0/0/1) | 41(0/0/1) | 5 (0/0/1) | 5 (0/0/1) | 4 (0/0/1)} 6 (0/0/1)
#<data>.B,W 4 (0/0/0) | 4 (0/0/0) | 6 (0/0/1) | 6 (0/0/1) | 7 (0/0/1) | 7 (0/0/1) | 6 (0/0/1) ] 8 (0/0/1)
#<data>.L 6 (0/0/0) | 6 (0/0/0) | 8 (0/0/1) | 8 (0/0/1) | 9 (0/0/1) | 9 (0/0/1) | 8 (0/0/1) ] 10 (0/0/1)
(An) 6 (1/0/0) | 6 (1/0/0) | 7 (1/0/1) | 7 (1/0/1) | 7 (1/0/1) | 7 (1/0/1) | 7 (1/0/1) | 9 (1/0/1)
(An) + 6 (1/0/0) | 6 (1/0/0) | 7 (1/0/1) 7 (1/0/0 | 7 (1/0/0) | 7 (1/0/%) | 7 (3/0/0) ] 9 (1/0/1)
—(An) 7 (1/0/0) | 7 (1/0/0) | 8 (1/0/1) | 8 (1/0/1) | 8 (1/0/1) | 8 (1/0/1) | 8 (1/0/1) ] 10 (1/0/1)
(d1g,An) or (d16,PC) 7 (1/0/0) | 7 (1/0/0) | 8 (1/0/1) | 8 (1/0/1) [ 8 (1/0/1) | 8 (1/0/1) | 8 (1/0/1) | 10 (1/0/1)
(xxx). W 6 (1/0/0) | 6 (1/0/0) | 7 (1/0/1) | 7 (1/0/0) | 7 (4/0/1) | 7 (1/0/1) | 7 (1/0/1) | 9 (1/0/1)
(xxx).L 6 (1/0/0) | 6 (1/0/0) | 7 (1/0/1) | 7 (1/0/1) | 7 (1/0/1) | 7 (1/0/1) | 7 (1/0/1) | 9 (1/0/1)
(dg,An,Xn) or (dg,PC,Xn) 9 (1/0/0) | 9 (1/0/0) | 10 (1/0/1) | 10 (1/0/1) | 10 (1/0/1) |10 (1/0/1) | 10 (1/0/1) | 12 (1/0/1)
(d16,An,Xn) or (d1g,PC,Xn) | 9 (1/0/0) | 9 (1/0/0) | 10 (1/0/1) | 10 (1/0/1) | 10 (1/0/1) {10 (1/0/1 | 10 (1/0/1) | 12 (1/0/1)
(B) 9 (1/0/0) | 9 (1/0/0) [ 10 (1/0/%) | 10 (1/0/1) | 10 (1/0/1) |10 (1/0/1) | 10 (1/0/1) | 12 (1/0/1)
(d16.B) 11 (1/0/0) | 11 (1/0/0) | 12 (1/0/1) | 12 (1/0/1) | 12 (1/0/1) |12 (1/0/1) |12 (1/0/1) | 14 (1/0/1)
(d3p,B) 16 (1/0/0) | 15 (1/0/0) | 16 (1/0/1) | 16 (1/0/1) | 16 (1/0/1) | 16 (1/0/1) | 16 (1/0/1) | 18 (1/0/1)
([B1,h 14 (2/0/0) | 14 (2/0/0) | 15 (2/0/1) | 16 (2/0/1) | 15 (2/0/1) |15 (2/0/1) | 156 (2/0/1) | 17 (2/0/1)
([B].1,d1g) 16 (2/0/0) | 16 (2/0/0) | 17 (2/0/1) | 17 (2/0/1) | 17 (2/0/1) |17 (2/0/1) |17 (2/0/1) | 19 (2/0/1)
([B],1,d32) 16 (2/0/0) | 16 (2/0/0) | 17 (2/0/1) | 17 (2/0/1) | 17 (2/0/1) |17 (2/0/1) | 17 (2/0/1) | 19 (2/0/1)
(Ld16,B1,1) 16 (2/070) ) 16 (2/0/0) | 1/ (/0/0) | 1/ (2/0/0) | V7 (2707 1) |1 (2/070) | 17 (2/0/1) ] 19 (2/0/ 1)
([d16.B1.1.d16) 18 (2/0/0) | 18 (2/0/0) | 19 (2/0/1) | 19 (2/0/1) | 19 (2/0/1) |19 (2/0/1) |19 (2/0/1) | 21 (2/0/1)
({d16.B1.1,d32) 18 (2/0/0) |18 (2/0/0) | 19 (2/0/1) | 19 (2/0/1) | 19 (2/0/1) |19 (2/0/1) |19 (2/0/1) | 21 (2/0/1)
([d3p,B1.1) 20 (2/0/0) |20 (2/0/0) |21 (2/0/1) | 21 (2/0/1) | 21 (2/0/1) |21 (2/0/1) |21 (2/0/1) | 23 (2/0/1)
(Id3p,B1,1,d1g) 22 (2/0/0) |22 (2/0/0) |23 (2/0/1) | 23 (2/0/1) | 23 (2/0/1) |23 (2/0/1) |23 (2/0/1) | 25 (2/0/1)
([d3p,Bl.1,d32) 22 (2/0/0) |22 (2/0/0) |23 (2/0/1) | 23 (2/0/1) | 23 (2/0/1) |23 (2/0/1) |23 (2/0/1) | 25 (2/0/1)
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CACHE CASE (Continued)

Source Destination
Address
Mode (dg,An,Xn) [(d1g,An,Xn) (B) (d16,B) (d32,B) ([B1,) ([Bl,1,d1g) | ([Bl,1,d32)
Rn 7 (0/0/1) | 9 (0/0/1) | 8 (0/0/1) | 10 (0/0/1) | 14 (0/0/1) |12 (1/0/1) |14 (1/0/1) | 15 (1/0/1)
#<data>.B,W 7 (0/0/1) 9 (0/0/1) 8 (0/0/1) |10 (0/0/1) |14 (0/0/1) 112 (1/0/1) |14 (1/0/1) | 15 (1/0/1)
#<data>.L 9 (0/0/1) | 11 (0/0/1) |10 (0/0/1) | 12 (0/0/1) | 16 (0/0/1) |14 (1/0/1) |16 (1/0/1) | 17 (1/0/1)
(An) 9 (1/0/1) |11 (1/0/1) |10 (1/0/1) |12 (1/0/1) |16 (1/0/1) |14 (2/0/1) |16 (2/0/1) | 17 (2/0/1)
(An)+ 9 (1/0/1) |11 (1/0/7) |10 (1/0/1) |12 (1/0/1) |16 (1/0/1) |14 (2/0/1) |16 (2/0/1) | 17 (2/0/1)
—(An) 10 (1/0/1) [12 (1/0/1) 11 (1/0/1) | 13 (1/0/1) |17 (1/0/1) |15 (2/0/1) |17 (2/0/1) | 18 (2/0/1)
(d16,An) or (d16,PC) 10 (1/0/1) |12 (2/0/1) |11 (1/0/1) |13 (1/0/1) 17 (1/0/1) {156 (2/0/1) |17 (2/0/1) | 18 (2/0/1)
(xxx).W 9 (1/0/1) 11 (1/0/1) |10 (1/0/1) |12 (1/0/1) |16 (1/0/1) |14 (2/0/1) |16 (2/0/1) | 17 (2/0/1)
(xxx).L 9 (1/0/1) | 11 (1/0/1) |10 (1/0/1) |12 (1/0/1) |16 (1/0/1) |14 (2/0/1) |16 (2/0/1) | 17 (2/0/1)
(dg,An,Xn) or (dg,PC,Xn) 12 (1/0/1) |14 (1/0/1) |13 (1/0/1) |16 (1/0/1) |19 (1/0/1) |17 (2/0/1) |19 (2/0/1) | 20 (2/0/1)
(d1g,An,Xn) or (d1g,PC,Xn) |12 (1/0/1) |14 (1/0/1) [13 (1/0/1) |16 (1/0/1) |19 (1/0/1) [17 (2/0/1) |19 (2/0/1) | 20 (2/0/1}
(B) 12 (1/0/1) |14 (1/0/1) |13 (1/0/1) |15 (1/0/1) |19 (1/0/1) |17 (2/0/1) |19 (2/0/1) | 20 (2/0/1)
(d16.B) 14 (1/0/1) |16 (1/0/1) |15 (1/0/1) |17 (1/0/1) |21 (1/0/1) |19 (2/0/1) |21 (2/0/1) | 22 (2/0/1)
(d3p,B) 18 (1/0/1) |20 (1/0/1) {19 (1/0/1) |21 (1/0/1) {256 (1/0/1) {23 (2/0/1) |25 (2/0/1) | 26 (2/0/1)
([B1,H 17 (2/0/1) |19 (2/0/1) |18 (2/0/1) |20 (2/0/1) |24 (2/0/1) |22 (3/0/1) (24 (3/0/1) | 25 (3/0/1)
([B],1,d1p) 19 (2/0/1) 121 (2/0/1) |20 (2/0/1) {22 (2/0/1) |26 (2/0/1) {24 (3/0/1) |26 (3/0/1) | 27 (3/0/1)
([B],1,d3p) 19 (2/0/1) |21 (2/0/1) {20 (2/0/1) |22 (2/0/1) |26 (2/0/1) |24 (3/0/1) |26 (3/0/1) | 27 (3/0/1)
([d16,B1.D 19 (2/0/1) 121 (2/0/1) |20 (2/0/1) |22 (2/0/1) |26 (2/0/1) (24 (3/0/1) {26 (3/0/1) | 27 (3/0/1)
({d16.B1,1,d16) 21 (2/0/1) |23 (2/0/1) |22 (2/0/1) |24 (2/0/1) |28 (2/0/1) |26 (3/0/1) |28 (3/0/1) |29 (3/0/1)
([d16.B1,1,d3p) 21 (2/0/1) |23 (2/0/1) |22 (2/0/1) |24 (2/0/1) |28 (2/0/1) |26 (3/0/1) |28 (3/0/1) |29 (3/0/1)
([d32,B1.1) 23 (2/0/1) [25 (2/0/1) |24 (2/0/1) {26 (2/0/1) {30 (2/0/1) |28 (3/0/1) |30 (3/0/1) | 31 (3/0/1)
([dg2,B1,1,d16) 25 (2/0/1) |27 (2/0/1) |26 (2/0/1) |28 (2/0/1) |32 (2/0/1) |30 (3/0/1) |32 (3/0/1) | 33 (3/0/1)
([d3p,B1,1,d3p) 25 (2/0/1) |27 (2/0/1) |26 (2/0/1) |28 (2/0/1) |32 (2/0/1) |30 (3/0/1) |32 (3/0/1) | 33 (3/0/0)
CACHE CASE (Concluded)
Source Destination
Address
Mode ([d16,B1,1) ([d16,B],1,d1g) | ([d16,B],I,d32) ([d32,B1,1) ([d32,B],1,d1g) | ([d32,B],1,d32)
Rn 14 (1/0/1) 16 (1/0/1) 17 (1/0/1) 18 (1/0/1) 20 (1/0/1) 21 (1/0/1)
#<data>.B,W 14 (1/0/M) 16 (1/0/1) 17 (1/0/M) 18 (1/0/1) 20 (1/0/1) 21 (1/0/1)
#<data>.L 16 (1/0/1) 18 (1/0/1) 19 (1/0/1) 20 (1/0/1) 22 (1/0/1) 23 (1/0/1)
(An) 16 (2/0/1) 18 (2/0/1) 19 (2/0/1) 20 (2/0/1) 22 (2/0/1) 23 (2/0/1)
(An) + 16 (2/0/1) 18 (2/0/1) 19 (2/0/1) 20 (2/0/1) 22 (2/0/1) 23 (2/0/1)
—(An) 17 (2/0/1) 19 (2/0/1) 20 (2/0/1) 21 (2/0/1) 23 (2/0/1) 24 (2/0/1)
(d16.An) or (d1g,PC) 17 (2/0/1) 19 (2/0/1) 20 (2/0/1) 21 (2/0/1) 23 (2/0/1) 24 (2/0/1)
(xxx). W 16 (2/0/1) 18 (2/0/1) 19 (2/0/1) 20 (2/0/1) 22 (2/0/1) 23 (2/0/1)
(xxx).L 16 (2/0/1) 18 {2/0/1) 19 (2/0/M) 20 (2/0/1) 22 (2/0/1) 23 (2/0/1)
(dg,An,Xn) or (dg,PC,Xn) 19 (2/0/1) 21 (2/0/1) 22 (2/0/1) 23 (2/0/1) 25 (2/0/1) 26 (2/0/1)
(d1g.An,Xn) or (d1,PC,Xn) 19 (2/0/1) 21 (2/0/1) 22 (2/0/1) 23 (2/0/1) 25 (2/0/1) 26 (2/0/1)
(B) 19 (2/0/1) 21 (2/0/1) 22 (2/0/1) 23 (2/0/1) 25 (2/0/1) 26 (2/0/1)
(d16.B) 21 (2/0/1) 23 (2/0/1) 24 (2/0/1) 25 (2/0/1) 27 (2/0/1) 28 (2/0/1)
(d3p,B) 25 (2/0/1) 27 (2/0/1) 28 (2/0/1) 29 (2/0/1) 31 (2/0/1) 32 (2/0/1)
([B1,) 24 (3/0/1) 26 (3/0/1) 27 (3/0/1) 28 (3/0/1) 30 (3/0/1) 31 (3/0/1)
(B1,1,d1e) 26 (3/0/1) 28 (3/0/1) 29 (3/0/1) 30 (3/0/1) 32 (3/0/1) 33 (3/0/1)
([B],1,d32) 26 (3/0/1) 28 (3/0/1) 29 (3/0/1) 30 (3/0/1) 32 (3/0/1) 33 (3/0/1)
([d16,B1.1) 26 (3/0/1) 28 (3/0/1) 29 (3/0/1) 30 (3/0/1) 32 (3/0/1) 33 (3/0/1)
([d16,B],1,d16) 28 (3/0/1) 30 (3/0/1) 31 (3/0/1) 32 (3/0/1) 34 (3/0/1) 35 (3/0/1)
([d16,B1,1,d30) 28 (3/0/1) 30 (3/0/1) 31 (3/0/1) 32 (3/0/1) 34 (3/0/1) 35 (3/0/1)
([d3,B1,1) | 30 (3/0/1) 32 (3/0/1) 33 (3/0/1) 34 (3/0/1) 36 (3/0/1) 37 (3/0/1)
([d3p,B1,1,d16) 32 (3/0/1) 34 (3/0/1) 35 (3/0/1) 36 (3/0/1) 38 (3/0/1) 39 (3/0/1)
(Idzp,B],1,d3) 32 (3/0/M) 34 (3/0/1) 35 (3/0/1) 36 (3/0/1) 38 (3/0/1) 39 (3/0/1)
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WORST CASE

Source Destination

Address

Mode An Dn (An) (An) + —(An) (d16,An) (xxx).W (xxx).L
Rn 3 (0/1/0) 3 (0/1/0) 5 (0/1/0) 5 (0/1/1) 6 (0/1/1) 7 (0/1/1) 7 (0/1/1) 9 (0/2/1)
#<data>.B,W 3 (0/1/0) 3 (0/1/0) 5 (0/1/0) 5 (0/1/1) 6 (0/1/1) 7 (0/1/1) 7 (0/1/1) 9 (0/2/1)
#<data>.L 5 (0/1/0) 5 (0/1/0) 7 (0/0/1) 7 (0/1/1) 8 (0/1/1) 9 (0/1/1) 9 (0/1/1) [ 11 (0/2/1)
(An) 7 (1/1/0) 7 (1/1/0) 9 (1/1/1) 9 (1/1/1) 9 (/10 1/t (/171 113 (1/2/1)
(An) + 7 (1/1/0) 7 (1/1/0) 9 (1/1/1) 9 (1/1/1) 9 (/1/n |1/ 1/ |13 0/2/1)
—(An) 8 (1/1/0) 8 (1/1/0) 110 (1/1/1) |10 (1/1/1) } 10 (1/1/1) |12 (1/1/1) |12 (1/1/1) |14 (1/2/1)
(d16.An) or (d1g,PC) 9 (1/2/0) 9 (1/2/0) |11 (1/2/1) |11 (1/2/1) |11 (1/2/1) |13 (1/2/1) |13 (1/2/1) | 156 (1/3/1)
(xxx).W 8 (1/2/0) 8 (1/2/0) (10 (1/2/1) {10 (1/2/1) {10 (1/2/1) [12 (1/2/1) |12 (1/2/1) |14 (1/3/1)

(xxx).L 10 (1/2/0) | 10 (1/2/0) [ 12 (1/2/1) |12 (1/2/1) | 12 (1/2/1) {14 (1/2/7) |14 (1/2/1) |16 (1/3/1)

(dg,An,Xn) or (dg,PC,Xn) 11 (1/2/0) (1/2/0) [ 13 (1/2/1) |13 (1/2/1) |13 (1/2/1) |16 (1/2/1) | 16 (1/2/1) |17 (1/3/1)

(d16,An,Xn) or (d1g,PC.Xn) | 12 (1/2/0) | 12 (1/2/0) | 14 (1/2/1) |14 (1/2/1) | 14 (1/2/1) |16 (1/2/1) [16 (1/2/1) [18 (1/3/1)

(B) 12 (1/2/0) |12 (1/2/0) {14 (1/2/1) {14 (1/2/1) |14 (1/2/1) |16 (1/2/1) |16 (1/2/1) | 18 (1/3/1)
(d16.B) 16 (1/2/0) | 15 (1/2/0) |17 (1/2/1) |17 (1/2/1) | 17 (1/3/1) |19 (1/2/1) |19 (1/2/1) |21 (1/3/1)
(d32,B) 19 (1/3/0) [ 19 (1/3/0) |21 (1/3/1) {21 (1/3/1) |21 (1/3/1) | 23 (1/3/1) |23 (1/3/1) [25d(1/4/1)
((B1,1) 16 (2/2/0) | 16 (2/2/0) |18 (2/2/1) | 18 (2/2/1) |18 (2/2/1) | 20 (2/2/1) |20 (2/2/1) | 22d(2/3/1)
((B],1,d1g) 19 (2/2/0) {19 (2/2/0) [ 121(2/2/1) {21 (2/2/1) | 21 (2/2/1) | 23 (2/2/1) |23 (2/2/1) |25 (2/3/1)
({B1,1,d3p) 20 (2/3/0) | 20 (2/3/0) |22 (2/3/1) |22 (2/3/1) |22 (2/3/1) |24 (2/3/1) |24 (2/3/1) |26 (2/4/1)
([d16,B1.1) 19 (2/2/0) [ 19 (2/2/0) |21 (2/2/1) |21 (2/2/1) | 21 (2/2/1) | 23 (2/2/1) |23 (2/2/1) |25 (2/3/1)
(Id16,B1,1,d1p) 22 (2/3/0) |22 (2/3/0) |24 (2/3/1) |24 (2/3/1) | 24 (2/3/1) | 26 (2/3/1) |26 (2/3/1) |28 (2/4/1)
([d16,B1.1,d32) 23 (2/3/0) | 23 (2/3/0) |25 (2/3/1) |25 (2/3/1) | 26 (2/3/1) |27 (2/3/1) |27 (2/3/1) }29 (2/4/1)
(Id32,Bl.N 23 (2/3/0) |23 (2/3/0) |25 (2/3/1) |25 (2/3/1) |25 (2/3/1) |27 (2/3/1) |27 (2/3/1) |29 (2/4/1)
([d32,B1,1,d1g) 25 (2/3/0) {25 (2/3/0) |27 (2/3/1) |27 (2/3/1) |27 (2/3/1) |29 (2/3/1) |29 (2/3/1) |31 (2/4/1)
(Id32,B1.1,d32) 27 (2/4/0) | 27 (2/4/0) |29 (2/4/1) |29 (2/4/1) |29 (2/4/1) |31 (2/4/1) |31 (2/4/1) |33 (2/5/1)
WORST CASE (Continued)

Source Destination

Address

Mode (dg,An,Xn) |(d1g,An,Xn) (B) (d16,B) (d32,B) ((B1,1) ([B1,I,d1g) | ([BI,I,d32)
Rn 9 (0/1/1) | 12 (0/2/1) [ 10 (0/1/1) |14 (0/2/1) |19 (0/2/1) | 14 (1/1/1) [ 17 (1/2/1) |20 (1/2/1)
#<data>.BW 9 (0/1/1) |12 (0/2/1) | 10 (0/1/1) | 14 (0/2/1) | 19 (0/2/1) | 14 (1/1/1) | 17 (1/2/1) | 20 (1/2/1)
#<data>.L 11 (0/1/1) {14 (0/2/1) |12 (0/1/1) |16 (0/2/1) | 21 (0/2/1) |16 (1/1/1) [ 19 (1/2/1) | 22 (1/2/1)
(An) 11 0/171 (14 a/2/0 [ 12 (/171 (16 (1/72/1) | 21 (1/2/1) |12 (2/1/1) [ 19 (2/2/1) |22 (2/2/1)
(An) + (/10 (14 72/ [ 12 (/171 (16 (1/72/1) 1 21 (1/2/1) |12 (2/1/1) |19 (2/2/1) | 22 (2/2/1)
—(An) 12 (1/1/1) |15 (1/2/1) [ 13 (1/1/1) [ 17 (1/2/1) | 22 (1/2/1) |13 (2/1/1) [ 20 (2/2/1) | 23 (2/2/1)
(d16,An) or (d1g,PC) 13 (1/2/1) |16 (2/3/1) {14 (1/2/1) [18 (1/3/1) [ 23 (1/3/1) | 14 (2/2/1) | 21 (2/3/1) | 24 (2/3/1)
(xxx). W 12 (1/2/1) 115 (1/3/1) [ 13 (1/2/1) |17 (1/3/1) | 22 (1/3/1) |13 (2/2/1) | 20 (2/3/1) |23 (2/3/1)
(xxx).L 14 (1/2/1) |17 (1/3/1) [ 15 (1/2/1) |19 (1/3/1) |24 (1/3/1) | 15 (2/2/1) | 22 (2/3/1) | 25 (2/3/1)

(dg,An,Xn) or (dg,PC,Xn) 15 (1/2/1) |18 (1/3/1) |16 (1/2/1) | 20 (1/3/1) | 256 (1/3/1) | 16 (2/2/1) | 23 (2/3/1) |26 (2/3/1)

=

(d16,An,Xn) or (d1g,PC.Xn) | 16 (1/2/1) | 19 (1/3/1) |17 (1/2/1) |21 (1/3/1) [ 26 (1/3/1) | 17 (2/2/1) | 24 (2/3/1) |27 (2/3/1)

(B) 16 (1/2/1) | 19 (173/1) | 17 (1/2/1) | 21 (173/1) | 26 (173/1) | 17 (2/2/1) | 24 (2/3/0) | 27 (2/3/1)
(d16.B) 19 (1/2/1) | 22 (1/3/1) | 20 (1/2/1) | 24 (1/3/1) |29 (1/3/0) | 20 (2/2/1) | 27 (2/3/1) |30 (2/3/7)
(d32.B) 23 (1/3/1) | 26 (1/4/1) | 24 (1/3/1) | 28 (1/4/1) | 33 (174/1) | 24 (2/3/1) | 31 (2/4/1) | 34 (2/4/1)
(B, 20 (2/2/71) | 23 (2/3/1) | 21 (2/2/0) | 25 (2/3/1) | 30 (2/3/T) | 21 (3/2/1) | 28 (3/3/1) |31 (3/3/1)
([B],1,d1g) 23 (2/2/1) | 26 (2/3/1) | 24 (2/2/0) | 28 (2/3/1) | 33 (2/3/1) | 24 (3/2/1) | 31 (3/3/1) | 34 (3/3/1)
([B],1,d32) 24 (2/3/1) | 27 (2/4/0) | 26 (2/3/1) | 29 (2/4/1) | 34 (2/4/1) | 26 (3/3/1) | 32 (3/4/1) | 35 (3/4/1)
([d16.B1.1) 23 (2/2/1) | 26 (2/3/1) | 24 (2/2/0) |28 (2/3/1) |33 (2/3/1) | 24 (3/2/1) |31 (3/3/1) |34 (3/3/1)
(fd1g Bl 1.d1g) 26 (2/3/1) | 29 (2/4/1) | 27 (2/3/1) | 31 (2/471) | 36 (2/4/1) | 27 (3/3/T) | 34 (3/4/0) |37 (3/4/1)
(ld1g,B1,1,d30) 27 (2/3/1) | 30 (2/4/1) | 28 (2/3/1) | 32 (2/4/1) | 37 (2/4/1) | 28 (3/3/1) | 36 (3/4/1) |38 (3/4/1)
([d3.BI. 27 (2/3/1) | 30 (2/4/1) | 28 (2/3/1) | 32 (2/471) | 37 (2/4/1) | 28 (3/3/1) | 36 (3/4/1) | 38 (3/4/1)
([d3,B1,1,d16) 29 (2/3/1) | 32 (2/4/1) | 30 (2/3/1) | 34 (2/4/1) | 39 (2/471) | 30 (3/3/1) | 37 (3/4/1) |40 (3/4/1)

=

(2/6/1) |32 (3/4/1) | 39 (3/6/1) |42 (3/5/1)

(2/4/1) |34 (2/5/1) | 32 (2/4/1) |36 (2/6/1) |4

([d3p,Bl,1,d32) 3

9-19



WORST CASE (Concluded)

Source Destination

Address

Mode ([d16,B1,1) ([d16,Bl.1,d1g) | ([d16,B1,1,d32) ([d32,B1,1) ([d32,B1,1,d1g) | ([d32,B],1,d32)
Rn 17 (1/2/1) 20 (1/2/1) 23 (1/3/1) 22 (1/2/1) 25 (1/3/1) 27 (1/3/1)
#<data>.B,W 17 (1/2/1) 20 (1/2/1) 23 (1/3/1) 22 (1/2/1) 25 (1/3/1) 27 (1/3/1)
#<data>.L 19 (1/2/1) 22 (1/2/1) 25 (1/3/1) 24 (1/2/1) 27 (1/3/1) 29 (1/3/1)
(An) 19 (2/2/1) 22 (2/2/1) 25 (2/3/1) 24 (2/2/1) 27 (2/3/1) 29 (2/3/1)
(An) + 19 (2/2/1) 22 (2/2/1) 25 (2/3/1) 24 (2/2/1) 27 (2/3/1) 29 (2/3/1)
—(An) 20 (2/2/1) 23 (2/2/1) 26 (2/3/1) 25 (2/2/1) 28 (2/3/1) 30 (2/3/1)
(d16,An) or (d1g,PC) 21 (2/3/1) 24 (2/3/1) 27 (2/4/1) 26 (2/3/1) 29 (2/4/1) 31 (2/4/1)
(xxx).W , 20 (2/3/1) 23 (2/3/1) 26 (2/4/1) 27 (2/3/1) 28 (2/4/1) 30 (2/4/1)
(xxx).L 22 (2/3/1) 25 (2/3/1) 28 (2/4/1) 29 (2/3/1) 30 (2/4/1) 32 (2/4/1)
(dg,An,Xn) or (dg,PC,Xn) 23 (2/3/1) 26 (2/3/1) 29 (2/4/1) 30 (2/3/1) 31 (2/4/1) 33 (2/4/1)
(d16,An,Xn) or (d1g,PC,Xn) 24 (2/3/1) 27 (2/3/1) 30 (2/4/1) 31 (2/3/1) 32 (2/4/1) 34 (2/4/1)
(B) 24 (2/3/1) 27 (2/3/1) 30 (2/4/1) 31 (2/3/1) 32 (2/4/1) 34 (2/4/1)
(d16,B) 27 (2/3/1) 30 (2/3/1) 33 (2/4/1) 34 (2/3/1) 35 (2/4/1) 37 (2/4/1)
(d32,B) 31 (2/4/1) 34 (2/4/1) 37 (2/5/1) 38 (2/4/1) 39 (2/5/1) 41 (2/5/1)
(IBI,1) 28 (3/3/1) 31 (3/3/1) 34 (3/4/1) 35 (3/3/1) 36 (3/471) 38 (3/4/1)
([B1.1,d1¢) 31 (3/3/1) 34 (3/3/1) 37 (3/4/1) 38 (3/3/1) 39 (3/4/1) 41 (3/4/1)
((B],1,dgp) 32 (3/4/1) 35 (3/4/1) 38 (3/5/1) 39 (3/4/1) 40 (3/5/1) 42 (3/5/1)
([d16.B1.1) 31 (3/3/1) 34 (3/3/1) 37 (3/4/1) 38 (3/3/1) 39 (3/4/1) 41 (3/4/1)
([d16.,B1.1,d1p) 34 (3/4/1) 37 (3/4/1) 40 (3/5/1) 41 (3/4/7) 42 (3/5/1) 44 (3/5/1)
([d16,B1.1,d32) 35 (3/4/1) 38 (3/4/M) 41°(3/5/1) 42 (3/4/1) 43°(3/5/1) 45 (3/5/1)
([d32,B1,1) 35 (3/4/1) 38 (3/4/1) 41 (3/5/1) 42 (3/4/1) 43 (3/5/1) 45 (3/5/1)
(Id3p,Bl,1,d1p) 37 (3/4/1) 40 (3/4/1) 43 (3/5/1) 44 (3/4/1) 45 (3/5/1) 47 (3/5/1)
([d3p,B1.1,d3p) 39 (3/5/1) 42 (3/5/1) 45 (3/6/1) 46 (3/5/1) 47 (3/6/1) 49 (3/6/1)
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9.2.7 Special Purpose MOVE Instruction

The special purpose MOVE timing table indicates the number of clock periods needed for
the processor to fetch, calculate, and perform the special purpose MOVE operation on
the control registers or specified effective address. The total number of clock cycles is
outside the parentheses, the number of read, prefetch, and write cycles are given inside

the parentheses as (r/p/w). They are included in the total clock cycle number.

Instruction Best Case Cache Case Worst Case
EXG Ry, Rx 0 (0/0/0) 2 (0/0/0) 3 (0/1/0)
MOVEC Cr,Rn 3 (0/0/0) 6 (0/0/0) 7 (0/1/0)
MOVEC Rn,Cr 9 (0/0/0) 12 (0/0/0) 13 (0/1/0)
MOVE PSW,Rn 1 (0/0/0) 4 (0/0/0) 5 (0/1/0)
# MOVE PSW,Mem 5 (0/0/1) 5 (0/0/1) 7 (0/1/1)
* MOVE EA,CCR 4 (0/0/0) 4 (0/0/0) 5 (0/1/0
+ MOVE EA,SR 8 (0/0/0) 8 (0/0/0) 11.(0/2/0)
#+ MOVEM EA,RL 8-+4n (n/0/0) 8+4n (n/0/0) 9+4n (n/1/0)
#x MOVEM RL,EA 4+3n (0/0/n) 4+3n (0/0/n) 5+3n (0/1/n)
MOVEP.W Dn,(d16,An) 8 (0/0/2) 11 (0/0/2) 11 (0/1/2)
MOVEP.L Dn,(d1g,An) 14 (0/0/4) 17 (0/0/4) 17 (0/1/4)
MOVEP.W (d1g.An),Dn 10 (2/0/0) 12 (2/0/0) 12 (2/1/0)
MOVEP.L (d1g,An),Dn 16 (4/0/0) 18 (4/0/0) 18 (4/1/0)
#%x MOVES EA,Rn 7 (1/0/0) 7 (1/0/0) 8 (1/1/0)
#+ MOVES Rn,EA 5 (0/0/1) 5 (0/0/1) 7 (0/1/1)
MOVE USP 0 (0/0/0) 2 (0/0/0) 3 (0/1/0)
SWAP Rx, Ry 1 (0/0/0) 4 (0/0/0) 4 (0/1/0)
n  =number of registers to transfer
RL = Register List

Add Fetch Effective Address time
Add Calculate Effective Address time
Add Calculate Immediate Address time
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9.2.8 Arithmetic/Logical Operations

The arithmetic/logical operations timing table indicates the number of clock periods
needed for the processor to perform the specified arithmetic/logical operation using the
specified addressing mode. It also includes, in worst case, the amount of time needed to
prefetch the instruction. Footnotes specify when to add either fetch address or fetch im-
mediate effective address time. This sum gives the total effective execution time for the
operation using the specified addressing mode. The total number of clock cycles is out-
side the parentheses, the number of read, prefetch, and write cycles are given inside the
parentheses as (r/p/w). They are included in the total clock cycle number.

Instruction Best Case Cache Case Worst Case
+ ADD EA,Dn 0 (0/0/0) 2 (0/0/0) 3 (0/1/0)
* ADD EA,An 0 (0/0/0) 2 (0/0/0) 3 (0/1/0)
* ADD Dn,EA 3 (0/0/1) 4 (0/0/1) 6 (0/1/1)
* AND EA,Dn 0 (0/0/0) 2 (0/0/0) 3 (0/1/0)
* AND Dn,EA 3 (0/0/1) 4 (0/0/1) 6 (0/1/1)
* EOR Dn,Dn 0 (0/0/0) 2 (0/0/0) 3 (0/1/0)
« EOR Dn,Mem 3 (0/0/1) 4 (0/0/1) 6 (0/1/1)
* OR EA,Dn 0 (0/0/0) 2 (0/0/0) 3 (0/1/0)
* OR Dn,EA 3 (0/0/1) 4 (0/0/1) 6 (0/1/1)
* SUB EA,Dn 0 (0/0/0) 2 (0/0/0) 3 (0/1/0)
* SUB EA,An 0 (0/0/0) 2 (0/0/0) 3 (0/1/0)
+ SUB Dn,EA 3 (0/0/1) 4 (0/0/1) 6 (0/1/1)
* CMP EA,Dn 0 (0/0/0) 2 (0/0/0) 3 (0/1/0)
* CMP EA,An 1 (0/0/0) 4 (0/0/0) 4 (0/1/0)
*% CMP2 EA,Rn 16 (1/0/0) 18 (1/0/0) 18 (1/1/0)
*  MULW EA,Dn 25 (0/0/0) 27 (0/0/0) 28 (0/1/0)
*% MUL.L EA,Dn 41 (0/0/0) 43 (0/0/0) 44 (0/1/0)
* DIVU.W EA,Dn 42 (0/0/0) 44 (0/0/0) 44 (0/1/0)
** DIVU.L EA,Dn 76 (0/0/0) 78 (0/0/0) 78 (0/1/0)
* DIVS.W EA,Dn 54 (0/0/0) 56 (0/0/0) 56 (0/1/0)
** DIVS.L EA,Dn 88 (0/0/0) 90 (0/0/0) 90 (0/1/0)

* Add Fetch Effective Address time
** Add Fetch Immediate Address time

9.2.9 Immediate Arithmetic/Logical Operations

The immediate arithmetic/logical operations timing table indicates the number of clock
periods needed for the processor to fetch the source immediate data value, and perform
the specified arithmetic/logical operation using the specified destination addressing
mode. Footnotes indicate when to add appropriate fetch effective or fetch immediate ef-
fective address times. This computation will give the total execution time needed to per-
form the appropriate immediate arithmetic/logical operation. The total number of clock
cycles is outside the parentheses, the number of read, prefetch, and write cycles are
given inside the parentheses as (r/p/w). They are included in the total clock cycle number.
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Instruction Best Case Cache Case Worst Case

MOVEQ #<data>,Dn 0 (0/0/0) 2 (0/0/0) 3 (0/1/0)
ADDQ #<data>,Rn 0 (0/0/0) 2 {0/0/0) 3 (0/1/0)

* ADDQ #<data>,Mem 3 (0/0/1) 4 (0/0/1) 6 (0/1/1)
sSuBQ #<data>,Rn 0 (0/0/0) 2 (0/0/0) 3 (0/1/0)

* SUBQ #<data>,Mem 3 (0/0/1) 4 (0/0/1) 6 (0/1/1)
* % ADDI #<data>,Dn 0 (0/0/0) 2 (0/0/0) 3 (0/1/0)
* % ADDI #<data>,Mem 3 (0/0/1) 4 (0/0/1) 6 (0/1/1)
%% ANDI #<data>,Dn 0 (0/0/0) 2 (0/0/0) 3 (0/1/0)
** ANDI # <data>,Mem 3 (0/0/1) 4 (0/0/1) 6 (0/1/1)
* % EORI #<data>,Dn 0 (0/0/0) 2 (0/0/0) 3 (0/1/0)
* % EORI #<data>,Mem 3 (0/0/1) 4 (0/0/1) 6 (0/1/1)
*% ORI #<data>,Dn 0 (0/0/0) 2 (0/0/0) 3 (0/1/0)
*% ORI #<data>,Mem 3 (0/0/1) 4 (0/0/1) 6 (0/1/1)
** SUBI #<data>,Dn 0 (0/0/0) 2 (0/0/0) 3 (0/1/0)
* % SUBI #<data>,Mem 3 (0/0/1) 4 (0/0/1) 6 (0/1/1)
*% CMPI #<data> ,EA 0 (0/0/0) 2 (0/0/0) 3 (0/1/0)

*  Add Fetch Effective Address time
* % Add Fetch Immediate Address time

9.2.10 Binary Coded Decimal Operations

The binary coded decimal operations table indicates the number of clock periods needed
for the processor to perform the specified operation using the given addressing modes,
with complete execution times given. No additional tables are needed to calculate total
effective execution time for these instructions. The total number of clock cycles is out-
side the parentheses, the number of read, prefetch, and write cycles are given inside the
parentheses as (r/p/w). They are included in the total clock cycle number.

Instruction Best Case Cache Case Worst Case
ABCD Dn,Dn 4 (0/0/0) 4 {0/0/0) 5 (0/1/0)
ABCD —(An), — (An) 14 (2/0/1) 16 (2/0/1) 17 (2/1/1)
SBCD Dn,Dn 4 (0/0/0) 4 (0/0/0) 5 (0/1/0)
SBCD —(An), - (An) 14 (2/0/1) 16 (2/0/1) 17 (2/1/1)
ADDX Dn,Dn 2 (0/0/0) 2 (0/0/0) 3 (0/1/0)
ADDX - (An), - (An) 10 (2/0/1) 12 (2/0/1) 13 (2/1/1)
SUBX Dn,Dn 2 (0/0/0) 2 (0/0/0) 3 (0/1/0)
SUBX —(An), = (An) 10 (2/0/1) 12 (2/0/1) 13 (2/1/1)
CMPM (An) + ,(An) + 8 (2/0/0) 9 (2/0/0) 10 (2/1/0)
PACK Dn,Dn, # < data> 3 (0/0/0) 6 (0/0/0) 7 (0/1/0)
PACK —(An), — (An) # <data> 11 (1/0/1) 13 (1/0/1) 13 (1/1/1)
UNPK Dn,Dn,# < data> 5 (0/0/0) 8 (0/0/0) 9 (0/1/0)
UNPK —(An), — (An) # <data> 11 (1/0/1) 13 (1/0/1) 13 (1/1/1)

9-23




9.2.11 Single Operand Instructions

The single operand instructions table indicates the number of clock periods needed for
the processor to perform the specified operation on the given addressing mode. Foot-
notes indicate when it is necessary to add another table entry to calculate the total effec-
tive execution time for the instruction. The total number of clock cycles is outside the
parentheses, the number of read, prefetch, and write cycles are given inside the paren-
theses as (r/p/w). They are included in the total clock cycle number.

Instruction Best Case Cache Case Worst Case

CLR Dn 0 (0/0/0) 2 (0/0/0) 3 (0/1/0)

# CLR Mem 3 (0/0/1) 4 (0/0/1) 6 (0/1/1)
NEG Dn 0 (0/0/0) 2 (0/0/0) 3 (0/1/0)

* NEG Mem 3 (0/0/1) 4 (0/0/1) 6 (0/1/1)
NEGX Dn 0 (0/0/0) 2 (0/0/0) 3 (0/1/0)

% NEGX Mem 3 (0/0/1) 4 (0/0/1) 6 (0/1/1)
NOT Dn 0 (0/0/0) 2 (0/0/0) 3 (0/1/0)

* NOT Mem 3 (0/0/1) 4 (0/0/1) 6 (0/1/1)
EXT Dn 1 (0/0/0) 4 (0/0/0) 4 (0/1/0)
NBCD Dn 6 (0/0/0) 6 (0/0/0) 6 (0/1/0)
SCC Dn 1 (0/0/0) 4 (0/0/0) 4 (0/1/0)

# SCC Mem 6 (0/0/1) 6 (0/0/1) 6 (0/1/1)
TAS Dn 1 (0/0/0) 4 (0/0/0) 4 (0/1/0)

# TAS Mem 12 (1/0/1) 12 (1/0/1) 13 (1/1/1)
* TST EA 0 (0/0/0) 2 (0/0/0) 3 (0/1/0)

* Add Fetch Effective Address time
#  Add Calculate Effective Address time

9.2.12 Shift/Rotate Instructions

The shift/rotate instructions table indicates the number of clock periods needed for the
processor to perform the specified operation on the given addressing mode. Footnotes
indicate when it is necessary to add another table entry to calculate the total effective
execution time for the instruction. The number of bits shifted does not affect execution
time. The total number of clock cycles is outside the parentheses, the number of read,
prefetch, and write cycles are given inside the parentheses as (r/p/w). They are included
in the total clock cycle number.
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Instruction Best Case Cache Case Worst Case

LSL Dn (Static) 1 (0/0/0) 4 (0/0/0) 4 (0/1/0)
LSR Dn (Static) 1 (0/0/0) 4 (0/0/0) 4 (0/1/0)
LSL Dn (Dynamic) 3 (0/0/0) 6 (0/0/0) 6 (0/1/N)
LSR Dn (Dynamic) 3 (0/0/0) 6 (0/0/0) 6 (0/1/0)

* LSL Mem by 1 5 (0/0/1) 5 (0/0/1) 6 (0/1/1)
* LSR Mem by 1 5 (0/0/1) 5 (0/0/1) 6 (0/1/1)
ASL Dn 5 (0/0/0) 8 (0/0/0) 8 (0/1/0
ASR Dn 3 (0/0/0) 6 (0/0/0) 6 (0/1/0)

* ASL Mem by 1 6 (0/0/1) 6 (0/70/1) 7 (0/1/1)
« ASR Mem by 1 5 (0/0/1) 5 (0/0/1) 6 (0/1/1)
ROL Dn 5 (0/0/0) 8 (0/0/0) 8 (0/1/0)
ROR Dn 5 (0/0/0) 8 (0/0/0) 8 (0/1/0)

* ROL Mem by 1 7 (0/0/1) 7 (0/0/1) 7 (0/1/1)
* ROR Mem by 1 7 (0/0/1) 7 (0/0/1) 7 (0/1/1)
ROXL Dn 9 (0/0/0) 12 (0/0/0) 12 (0/1/0)
ROXR Dn 9 (0/0/0) 12 (0/0/0) 12 (0/1/0)

* ROXd Mem by 1 5 (0/0/1) 5 (0/0/1) 6 (0/1/1)

* Add Fetch Effective Address time
d s direction of shift/rotate; L or R

9.2.13 Bit Manipulation Instructions

The bit manipulation instructions table indicates the number of clock periods needed for
the processor to perform the specified bit operation on the given addressing mode. Foot-
notes indicate when it is necessary to add another table entry to calculate the total effec-
tive execution time for the instruction. The total number of clock cycles is outside the
parentheses, the number of read, prefetch, and write cycles are given inside the paren-
theses as (r/p/w). They are included in the total clock cycle number.

Instruction Best Case Cache Case Worst Case

BTST #<data>,Dn 1 