
• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •
• • • • • • •

MC68040UM /AD

..

32-BIT
MICROPROCESSOR
USER'S MANUAL

@ MOTOROLA

Introduction ..

Programming Model •

Data Organization and Addressing Capabilities ..

Instruction Set Summary"

Signal Description •

Memory Management Unit ..

Instruction and Data Caches ..

Bus Operation ..

Exception Processing ..

Instruction Execution Timing ..

Electrical Characteristics III
Ordering Information and Mechanical Data IfI

AppendixA ..

Appendix B ..

GlosSary"

Index

Introduction

• Programming Model

• Data Organization and Addressing Capabilities

Bus Operation

Ell Exception Processing

III Instruction Execution Timing

III Electrical Characteristics

IfI Ordering Information and Mechanical Data

• AppendixA

• AppendixB

• Glossary

Index

MC68040
32-BIT THIRO-GENERATON
MICROPROCESSOR

Motorola reserves the right to make changes without further notice to any products herein
to improve reliability, function or design. Motorola does not assume any liability arising out
of the application or use of any product or circuit described herein; neither does it convey
any license under its patent rights nor the rights of others. Motorola products are not author­
ized for use as components in life support devices or systems intended for surgical implant
into the body or intended to support or sustain life. Buyer agrees to notify Motorola of any
such intended end use whereupon Motorola shall determine availability and suitability of its
product or products for the use intended. Motorola and @ are registered trademarks of
Motorola, Inc. Motorola, Inc. is an Equal Employment Opportunity/Affirmative Action
Employer.

@MOTOROLA INC., 1989

PREFACE

The complete documentation package for the MC68040 consists of the
MC68040UM/AD, MC68040 User's Manaul, the MC68000PM/AD, M68000 Pro­
grammer's Reference Manual, and the MC68040DH/AD, MC68040 Designer's
Handbook.

The MC68040 User' Manual describes the capabilities, operation, and pro­
gramming of the MC68040 32-bit third-generation microprocessor. The
M68000 Programmer's Reference Manaul contains the complete instruction
set of all the M68000 Family. The MC68040 Designer's Handbook contains
detailed timing and electrical specifications and system design guidelines
and information.

This user's manual is organized as follows:

Section 1
Section 2
Section 3
Section 4
Section 5
Section 6
Section 7
Section 8
Section 9
Section 10
Section 11
Section 12
Appendix A
Appendix B
Glossary
Index

Introduction
Programming Model
Data Organization and Addressing Capabilities
Instruction Set
Signal Desciption
Memory Management
Instruction and Data Caches
Bus Operation
Exception Processing
Instruction Execution Timing
Electrical Characteristics
Ordering Information and Mechanical Data
M68000 Family Summary
MC68040 Floating-Point Emulation

TABLE OF CONTENTS

Paragraph
Number Title

Page
Number

Section 1
Introduction

1.1 Featu res... 1-2
1.2 MC68040 Extensions to the M68000 Family............................... 1-3
1.3 Programming Model ... 1-4
1.4 Data Types and Addressing Modes.................................. 1-7
1.5 Instruction Set Overview... 1-10
1.6 Memory Management Units.. 1-10
1.7 Instruction and Data Caches... 1-12

2.1
2.1.1
2.1.1.1
2.1.1.2
2.1.1.3
2.1.2
2.1.2.1
2.1.2.2
2.2
2.2.1
2.2.1.1
2.2.1.2
2.2.1.3
2.2.1.4
2.2.1.5
2.2.1.6
2.2.1.6.1
2.2.1.6.2

Section 2
Programming Model

Processing States .. .
Privilege Levels

Supervisor Mode
User Mode .. .
Changing Privilege Level .. .

Exception Processing
Exception Vectors .. .
Exception Stack Frame

Register Description
User Programming Model .. .

Data Registers (07-00)
Address Registers (A7-AO)
Program Counter (PC) .. .
Condition Code Register (CCR)
Floating-Point Data Registers (FP7-FPO)
Floating-Point Control Register (FPCR)

Exception Enable Byte .. .
Mode Control Byte

MOTOROLA MC68040 USER'S MANUAL

2-1
2-2
2-2
2-3
2-4
2-4
2-5
2-5
2-6
2-6
2-7
2-7
2-7
2-7
2-7
2-9
2-9
2-10

iii

TABLE OF CONTENTS (Continued)

Paragraph
Number Title

Page
Number

2.2.1.7
2.2.1.7.1
2.2.1.7.2
2.2.1.7.3
2.2.1.7.4
2.2.1.8
2.2.2
2.2.2.1
2.2.2.2
2.2.2.3
2.2.2.4

3.1
3.2
3.2.1
3.2.2
3.2.2.1
3.2.2.2
3.2.2.3
3.2.2.4
3.2.2.5
3.2.3
3.3
3.3.1
3.3.2
3.3.2.1
3.3.2.2
3.3.3
3.3.4
3.4
3.4.1
3.4.2

iv

Floating-Point Status Register (FPSR)............................ 2-11
Floating-Point Condition Code Byte 2-11
Quotient Byte... 2-13
Exception Status Byte... 2-13
Accured Exception Byte... 2-14

Floating-Point Instruction Address Register (FPIAR).... 2-15
Supervisor Programming Model... 2-16

Interrupt and Master Stack Pointers (AT and A7") 2-17
Status Register (SR) .. 2-17
Vector Base Register (VBR) .. 2-18
Alternate Function Code Registers (SFC and DFC).......... 2-18

Section 3
Data Organization and Addressing Capabilities

Integer Unit Operand Data Formats .. 3-1
Floating-Point Unit Operand Data Formats 3-2

Integer Data Formats. 3-3
Binary Real-Data Formats.. 3-3

Normalized Numbers.................................. 3-6
Denormalized Numbers... 3-6
Zeros .. '" 3-7
Infinities... 3-8
Not-a-Numbers... 3-8

Floating-Point Data Format Details...................................... 3-9
Organization of Data in Registers ... 3-9

Integer Data Registers... 3-9
Floating-Point Data Registers ... 3-14

Internal Data Format ... 3-14
Format Conversions.. 3-15

Address Registers... 3-16
Control Registers.. 3-17

Organization of Data in Memory... 3-18
Integer Data Formats... 3-18
Floating-Point Data Formats... 3-21

MC68040 USER'S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)

Paragraph
Number Title

Page
Number

3.5 Addressing Modes 3-21
3.5.1 Data Register Direct Mode... 3-23
3.5.2 Address Register Direct Mode.. 3-23
3.5.3 Address Register Indirect Mode.. 3-23
3.5.4 Address Register Indirect with Postincrement Mode............. 3-24
3.5.5 Address Register Indirect with Predecrement Mode.............. 3-24
3.5.6 Address Register Indirect with Displacement Mode.............. 3-25
3.5.7 Address Register Indirect with Index (8-Bit Displacement)

Mode.. 3-25
3.5.8 Address Register Indirect with Index (Base Displacement)

3.5.9
3.5.10
3.5.11
3.5.12

3.5.13

3.5.14
3.5.15
3.5.16
3.5.17
3.5.18
3.6
3.7
3.7.1
3.7.2
3.8
3.9
3.9.1
3.9.2
3.9.3

Mode.. 3-26
Memory Indirect Postindexed Mode 3-26
Memory Indirect Preindexed Mode..................................... 3-27
Program Counter Indirect with Displacement Mode.............. 3-28
Program Counter Indirect with Index (8-Bit Displacement) 3-29

Mode
Program Counter Indirect with Index (Base Displacement) 3-29

Mode
Program Counter Memory Indirect Postindexed Mode.......... 3-30
Program Counter Memory Indirect Preindexed Mode 3-31
Absolute Short Address Mode... 3-32
Absolute Long Address Mode 3-32
Immediate Data 3-33

Effective Address Encoding Summary....................................... 3-34
Programmer's Viewpoint of Addressing Modes 3-36

Addressing Capabilities... 3-37
General Addressing Mode Summary.................................. 3-43

M68000 Family Addressing Compatibility.................................. 3-46
Other Data Structures....... 3-47

System Stack 3-47
User Program Stacks... 3-48
Queues.. 3-49

MOTOROLA MC68040 USER'S MANUAL v

TABLE OF CONTENTS (Continued)

Paragraph
Number Title

Page
Number

Section 4
Instruction Set

4.1 Instruction Format.. 4-1
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8
4.2.9
4.2.10
4.2.11
4.2.12
4.2.13
4.3
4.3.1
4.3.2
4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.4.5
4.4.5.1
4.4.5.2
4.5
4.6
4.6.1
4.6.2
4.6.3
4.6.4

vi

Instruction Summary .. .
Data Movement Instructions
Integer Arithmetic Instructions .. .
Floating-Point Arithmetic Instructions
Logical Instructions .. .
Shift and Rotate Instructions
Bit Manipulation Instructions .. .
Bit Field Instructions .. .
Binary Coded Decimal Instructions
Program Control Instructions .. .
System Control Instructions .. .
Memory Management Unit Instructions
Cache Instructions
Multiprocessor Instructions

Integer Condition Codes
Condition Code Computation .. .
Conditional Tests

Floating-Point Details
Computational Accuracy
Conditional Test Definitions .. .
Operation Tables
NANs
Operation Post Processing .. .

Setting Floating-Point Condition Codes
Underflow, Round, Overflow

Instruction Set Summary .. .
Instruction Examples .. .

Using the CAS and CAS2 Instructions
Nested Subroutine Calls
Bit Field Instructions .. .
Pipeline Synchronization with the NOP Instruction

4-2
4-4
4-6
4-8
4-10
4-10
4-12
4-12
4-13
4-14
4-16
4-18
4-18
4-18
4-19
4-20
4-22
4-23
4-23
4-25
4-28
4-29
4-29
4-29
4-30
4-31
4-39
4-39
4-44
4-44
4-46

MC68040 USER'S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)

Paragraph
Number Title

Page
Number

Section 5
Signal Description

5.1 Address Bus (A31-AO)... 5-4
5.2 Data Bus (D31-DO).. 5-4
5.3 Transfer Attribute Signals.. 5-4
5.3.1 Transfer Type (TT1,TTO) , 5-5
5.3.2 Transfer Modifier (TM2-TMO) .. 5-5
5.3.3 Transfer Line Number (TLN1,TLNO) 5-6
5.3.4 User Programmable Attributes (UPA 1,UPAO)........ 5-6
5.3.5 Read/Write (R/W) 5-7
5.3.6 Transfer Size (SIZ1,SIZO).. 5-7
5.3.7 Bus Lock Status (LOCK) 5-7
5.3.8 Bus Lock End Status (LOCKE)... .. 5-7
5.3.9 Cache Inhibit Out (ClOUT)........ 5-8
5.4 Bus Transfer Control Signals.... 5-8
5.4.1 Transfer Start (TS) .. 5-8
5.4.2 Transfer in Progress (TIP) 5-8
5.4.3 Transfer Acknowledge (TA)...... 5-8
5.4.4 Transfer Error Acknowledge (TEA)...................................... 5-9
5.4.5 Transfer Cache Inhibit (TCI)...... 5-9
5.4.6 Transfer Burst Inhibit (TBI)....... 5-9
5.4.7 Data Latch Enable (DLE) 5-9
5.5 Snoop Control Signals.. 5-10
5.5.1 Snoop Control (SC1,SCO)... 5-10
5.5.2 Memory Inhibit (MI) .. 5-10
5.6 Arbitration Signals.. 5-11
5.6.1 Bus Request (BR) .. 5-11
5.6.2 Bus Grant (BG) ... 5-11
5.6.3 Bus Busy (BB) ... 5-11
5.7 Processor Control Signals.. 5-11
5.7.1 Cache Disable (CDIS)... 5-12
5.7.2 MMU Disable (MDIS) .. 5-12
5.7.3 Reset In (RSTI).. 5-12
5.7.4 Reset Out (RSTO).. 5-12
5.8 Interrupt Control Signals ... 5-13
5.8.1 Interrupt Priority Level (IPL2-IPLO).. 5-13
5.8.2 Interrupt Pending Status (lPEND).. 5-13
5.8.3 Autovector (AVEC) .. 5-13

MOTOROLA MC68040 USER'S MANUAL vii

TABLE OF CONTENTS (Continued)

Paragraph
Number Title

Page
Number

5.9 Status and Clock Signals ... 5-14
5.9.1 Processor Status (PST3-PSTO) ... 5-14
5.9.2 Bus Clock (BCLK) .. 5-14
5.9.3 Processor Clock (PCLK).. 5-15
5.10 Test Signals ... 5-15
5.10.1 Test Clock (TCK) ... 5-15
5.10.2 Test Mode Select (TMS) .. 5-15
5.10.3 Test Data In (TDI).. 5-15
5.10.4 Test Data Out (TDO).. 5-15
5.10.5 Test Reset (TRST) ... 5-15
5.11 Power Supply Connections.. 5-16
5.12 Signal Summary... 5-16

6.1
6.2
6.2.1
6.2.2
6.2.3
6.3
6.4
6.5
6.5.1
6.5.1.1
6.5.1.2
6.5.1.3
6.5.2
6.5.3
6.5.3.1
6.5.3.2
6.5.3.3
6.5.3.4
6.5.4
6.5.5
6.5.5.1
6.5.5.2
6.5.5.3

viii

Section 6
Memory Management

Translation Table Structure............................... 6-4
Address Translation.. 6-9

General Flow for Address Translation...... 6-9
Affect of RESETI on MMU.. 6-11
Affect of MDIS on Address Translation 6-11

Transparent Translation... 6-11
Address Translation Caches (ATCs) .. 6-13
Translation Table Details ... 6-17

Descriptors Details.. 6-17
Table Descriptor :... 6-18
Page Descriptor.. 6-18
Descriptor Field Definitions.. 6-19

General Table Search............ 6-22
Variations in Translation Table Structure............................. 6-26

Indirection.. 6-26
Table Sharing Between Tasks...................................... 6-28
Paging of Tables... 6-28
Dynamic Allocation of Tables........... 6-29

Table Search Operation Details .. 6-30
Protection... 6-33

User and Supervisor Translation Tree........................... 6-34
Supervisor Only.. 6-35
Write Protect.. 6-35

MC68040 USER'S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)

Paragraph
Number Title

Page
Number

6.6 Registers... 6-36
6.6.1 Root Pointer Registers... 6-37
6.6.2 Translation Control Register....... 6-37
6.6.3 Transparent Translation Registers...................................... 6-38
6.6.4 MMU Status Register 6-40
6.6.5 Register Programming Considerations 6-41
6.7 MMU Instructions ... 6-41

7.1
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.3
7.4
7.4.1
7.4.2
7.4.2.1
7.4.2.2
7.4.2.3
7.4.2.4
7.4.2.5
7.4.3
7.4.4
7.4.4.1
7.4.4.2
7.5

Section 7
Instruction and Data Caches

Cache Organization ... 7-2
Caching Modes. 7-4

Cachable, Writethrough Mode........ 7-4
Cachable,Copyback Mode.. 7-5
Noncachable Mode... 7-5
Special Accesses '" 7-5

Cache Coherency.. 7-6
Cache Operation... 7-8

Instruction Cache.. 7-8
Data Cache... 7-10

Read Miss.. 7-11
Write Miss ... 7-11
Read Hit... 7-11
Write Hit.. 7-12
Protocol State Diagram ... 7-13

Line Replacement Algorithm 7-15
Memory Accesses for Cache Maintenace............................. 7-15

Cache Filling .. 7-15
Cache Pushes... 7-17

Cache Control and Maintenance.................................. 7-18

Section 8
Bus Operation

8.1 Bus Characteristics.. 8-2
8.2 Data Transfer Mechanism.. 8-4
8.2.1 Misaligned Operands .. 8-7
8.2.2 Address, Size, and Data Bus Relationships.......................... 8-11

MOTOROLA MC68040 USER'S MANUAL ix

TABLE OF CONTENTS (Continued)

Paragraph
Number Title

Page
Number

8.3
8.3.1
8.3.2
8.3.3
8.3.4
8.3.5
8.4
8.4.1
8.4.1.1
8.4.1.2
8.4.1.3
8.4.2
8.5
8.5.1
8.5.2
8.5.3
8.6
8.7
8.8
8.8.1
8.8.2
8.8.3
8.8.4
8.9
8.9.1
8.9.2
8.9.3
8.10

Processor Data Transfer Cycles .. 8-13
Byte, Word, and Long-Word Read Transfers........................ 8-13
Line Read Transfer.. 8-16
Byte, Word, and Long-Word Write Cycles........ 8-23
Line Write Transfer... 8-25
Read-Modify-Write Transfer... 8-29

Acknowledge Cycles... 8-32
Interrupt Acknowledge Bus Cycles.... 8-32

Interrupt Acknowledge Cycle- Terminated Normally...... 8-33
Autovector Interrupt Acknowledge Cycle....................... 8-34
Spurious Interrupt Cycle.. 8-37

Breakpoint Acknowledge Cycle... 8-37
Bus Exception Control Cycles... 8-39

Bus Errors.. 8-39
Retry Operation.. 8-43
Double Bus Fault. 8-45

Bus Synchronization and Access Serialization............................ 8-45
Bus Arbitration... 8-47
Bus Snooping Operation... 8-50

Snoop Inhibited Cycle 8-53
Snoop Miss Cycle 8-53
Snoop Hit - Read Cycle.. 8-55
Snoop Hit - Write Cycle.................................. 8-57

Special Modes of Operation... 8-58
Output Buffer Impedance Selection.................................... 8-58
Multiplexed Bus Mode.. 8-58
Data Latch Enable Mode.. 8-59

Reset Operation.. 8-62

Section 9
Exception Processing

9.1 Exception Processing Sequence... 9-1
9.2 Stack Frames.. 9-2
9.3 Integer Unit Exceptions 9-5
9.3.1 Reset Exception.. 9-6
9.3.2 Bus Error Exception.. 9-8
9.3.3 Address Error Exception.. 9-10

x MC68040 USER'S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)

Paragraph
Number Title

Page
Number

9.3.4
9.3.5

9.3.6
9.3.7
9.3.8
9.3.9
9.3.10
9.3.11
9.4
9.5
9.6
9.6.1
9.6.1.1
9.6.1.2
9.6.1.3
9.6.1.4
9.6.1.5
9.6.2
9.6.3
9.6.4
9.6.5
9.7
9.8
9.8.1
9.8.2
9.8.3
9.8.4
9.8.5
9.8.6
9.8.7
9.8.8
9.8.9
9.8.10

Instruction Trap Exception ... 9-10
Illegal Instruction and Unimplemented Instruction

Exceptions.. 9-11
Unimplemented Floating-Point Instruction Exception............ 9-12
Privilege Violation Exception.. 9-12
Trace Exception.. 9-13
Format Error Exception... 9-14
Interrupt Exceptions.. 9-15
Breakpoint Instruction Exception 9-19

Exception Priorities... 9-20
Return From Exceptions.. 9-21
Access Fault Recovery... 9-23

Access Error Stack Frame.. 9-24
Effective Add ress..................... 9-24
Special Status Word.. 9-24
Writeback Status... 9-27
Fault Address... 9-27
Writeback Data... 9-27

Instruction ATC Faults and Bus Errors................................. 9-28
Address Errors... 9-28
Data ATC Faults and Bus Errors ... 9-29
Returning From Access Errors.. 9-30

Floating-Point State Frames ... 9-30
Floating-Point Exceptions.. 9-34

Unimplemented Floating-Point Instructions 9-35
Unimplemented Floating-Point Data Types.......................... 9-38
Branch/Set on Unordered (BSUN)....................................... 9-41
Signaling Not-a-Number (SNAN) .. 9-42
Operand Error.. 9-44
Overflow.. 9-46
Underflow..... 9-49
Divide by Zero. 9-53
Inexact Result................. 9-54
Inexact Result on Decimal Input 9-58

MOTOROLA MC68040 USER'S MANUAL xi

Paragraph
Number

TABLE OF CONTENTS (Concluded)

Title

Section 10
Instruction Execution Timing

Page
Number

10.1 Introduction ... 10-1

Section 11
Electrical Characteristic

11.1 Maximum Ratings ... 11-1
11.2 Thermal Characteristics - PGA Package 11-1

Section 12
Mechancial Data and Ordering Information

12.1 Ordering Information .. 12-1
12.2 Pin Assignments ... 12-2
12.3 Mechanical Data ... 12-3

xii

Appendix A
MC68000 Family Summary

Appendix B
MC68040 Floating-Point Emulation

Glossary

Index

MC68040 USER'S MANUAL MOTOROLA

Figure
Number

1-1
1-2

2-1
2-2
2-3
2-4
2-5
2-6
2-6
2-7
2-9
2-10

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20

LIST OF ILLUSTRATIONS

Page
Title Number

MC68040 Block Diagram... 1-2
Programming Model.. 1-5

General Form of Exception Stack Frame................................. 2-6
User Programming Model. 2-2
FPCR Exception Enable Byte... 2-9
FPCR Mode Control Byte.. 2-11
FPSR Condition Code Byte.. 2-11
FPSR Quotient Byte.. 2-13
FPSR Exception Status Byte.. 2-14
FPSR Accu red Exception Byte... 2-15
Supervisor Programming ModeL... 2-16

"Status Register .. 2-18

Signed Integer Data Formats... 3-3
Binary Real-Data Formats... 3-4
Format of Normalized Numbers.. 3-6
Format of Denormalized Numbers... 3-7
Format of Zero 3-7
Format of Infinity.......... 3-8
Format of NANs .. 3-8
Data Organization in Integer Data Registers............................ 3-13
Intermediate-Result Format... 3-15
Address Organization in Address Registers 3-16
Memory Operand Addressing ... 3-19
Memory Organization for Integer Operands.. 3-20
Memory Organization for Floating-Point Operands............ 3-21
Single-Effective Address-Instruction Operand Word................. 3-22
Using SIZE in the Index Selection.. 3-37
Using Absolute Address with Indexes.................................... 3-38
Addressing Array Items.. 3-39
Using Indirect Absolute Memory Addressing 3-40
Accessing an Item in a Structure Using Pointer....................... 3-40
Indirect Addressing Suppressed Index Register....................... 3-41

MOTOROLA MC68040 USER'S MANUAL xiii

Figure
Number

xiv

3-21
3-22
3-23
3-24
3-25

4-1
4-2
4-3
4-4
4-5
4-6

5-1

6-1
6-2
6-3
6-4
6-5
6-6
6,7
6-8
6-9
6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21

LIST OF ILLUSTRATIONS (Continued)

Page
Title Number

Preindexed Indirect Addressing... 3-41
Postindexed Indirect Addressing ... 3-42
Postindexed Indirect with Outer Displacement 3-42
Postindexed Indirect Addressing with Outer Displacement.. 3-42
M68000 Family Address Extension Words 3-47

Instruction Word General Format .. 4-1
Operation Table Example (FADD Instruction)... 4-28
Linked List Insertion ... 4-41
Linked List Deletion.. 4-42
Doubly-Linked List Insertion.. 4-43
Doubly-Linked List Deletion.. 4-45

Functional Signal Groups ... 5-3

Memory Management Unit... 6-3
MMU Programming Model... 6-4
Translation Table Structure... 6-5
Table Index Fields.. 6-6
Translation Table Tree Example 6-7
Translation Tree Layout in Memory Example. 6-8
Address Translation General Flowchart.................................. 6-10
ATC Organization... 6-13
ATC Tag and Data.. 6-14
Table Descriptors... 6-18
Page Descriptors.. 6-18
Indirect Descriptor ... 6-19
Simplified Table Search Flowchart... 6-23
Physical Address Generation (8K Page Size) 6-25
Translation Tree Using Indirect Descriptors Example............... 6-27
Translation Tree Using Shared Tables Example...................... 6-28
Translation Tree with Non-Resident Tables Example............... 6-30
Detailed Flowchart of Table Search Operation 6-31
Detailed Flowchart of Descriptor Fetch Operation.................... 6-32
Translation Tree Structure for Two Tasks Example....... 6-34
Logical Address Map with Shared Supervisor and

User Address Spaces Example... 6-35

MC68040 USER'S MANUAL MOTOROLA

Figure
Number

6-22

6-23
6-24
6-25
6-26
6-27

7-1
7-2
7-3
7-5
7-6
7-7

8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8
8-9
8-10
8-11
8-12
8-13
8-14
8-15
8-16
8-17
8-18
8-19
8-20
8-21
8-22

LIST OF ILLUSTRATIONS (Continued)

Page
Title Number

Translation Tree Using Sand W Bits to Set Protection 6-36
Example

Root Pointer Register (URP, SRP) Format 6-37
Translation Control Register.. 6-37
Transparent Translation Register Format................................ 6-38
MMU Status Register 6-40
MMU Status Interpretation 6-42

Internal Caches Overview... 7-1
Internal Caches.. 7-2
Instruction Cache Line Organization....................................... 7-9
Data Cache Line Organization ... 7-10
Data Cache Line State Diagram ... 7-13
Cache Control Register... 7-19

Signal Relationships to Clocks... 8-4
Internal Operand Representation ... 8-4
Data Multiplexing 8-5
Example of a Misaligned Long-Word Read Transfer................ 8-8
Long-Word Operand Read Timing... 8-9
Example of a Misaligned Word Write Transfer........................ 8-10
Byte Data Select Generation... 8-12
Byte, Word, and Long-Word Read Cycle Flowchart.................. 8-14
Non-Cachable Byte, Word, and Long-Word Read Transfer........ 8-15
Line Read Cycle Flowchart.. 8-18
Line Read for Operand Access to Address $07........................ 8-19
Burst-Inhibited Line Read Flowchart....................................... 8-21
Burst-Inhibited Line Read.. 8-22
Byte, Word, and Long-Word Write Cycle Flowchart................. 8-24
Long-Word Write Transfer.. 8-25
Line Write Cycle Flowchart... 8-26
Line Write for Operand Access to Address $07 8-27
Locked Transfer for TAS Instruction ;............... 8-30
Interrupt Acknowledge Cycle Flowchart...... 8-34
Interrupt Acknowledge Cycle Timing.. 8-35
Autovector Operation Timing 8-36
Breakpoint Operation Flow... 8-37

MOTOROLA MC68040 USER'S MANUAL xv

Figure
Number

8-23
8-24
8-25
8-26
8-27
8-28
8-29
8-30
8-31
8-32
8-33
8-34
8-35
8-36
8-37
8-38
8-39

9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
9-9

9-10

9-11
9-12

LIST OF ILLUSTRATIONS (Continued)

Page
Title Number

Breakpoint Acknowledge Cycle Timing..... 8-38
Word Write Access Terminated with TEA............................... 8-41
Line Read Access Terminated with TEA................................. 8-42
Read Cycle Retry... 8-43
Retry Operation on Line Write... 8-44
Processor Bus Request Example.. 8-49
Arbitration During Relinquish and Retry.................. 8-51
Implicit Bus Ownership.. 8-52
Snoop Inhibited Bus Cycle.. 8-54
Snoop Access with Memory Response................................... 8-55
Snooped Line Read, Memory Inhibited.................................. 8-56
Snooped Longword Write, Memory Inhibited......................... 8-57
Multiplexed Address and Data Bus - Line Write 8-60
DLE Mode Block Diagram 8-61
DLE versus Normal Data Read Timing 8-61
Initial Power-On Reset Timing 8-62
Normal Reset Timing... 8-64

Reset Operation Flowchart.. 9-7
Interrupt Pending Procedure ... 9-16
Interrupt Recognition Examples... 9-17
Assertion of IPEND .. 9-18
RTE Instruction for Throwaway Four-Word Frame ,........ 9-22
Access Error Stack Frame... 9-25
Floating-Point State Frames.. 9-31
Mapping of Command Bits for CMDREG3B Field 9-33
Format of Denormalized Single Precision Source

Operand in State Frame.. 9-39
Format of Denormalized Double Precision Source

Operand in State Frame 9-39
Intermediate Results Format... 9-55
Rounding Algorithm... 9-57

11-1 Clock Input Timing Diagram.. 11-3
11-2 Read/Write Timing ... 11-6
11-3 Address and Data Bus Timing Multiplexed Bus Mode 11-7

xvi MC68040 USER'S MANUAL MOTOROLA

LIST OF ILLUSTRATIONS (Concluded)

Figure Page
Number Title Number

11-4 DLE Timing Burst Access.. 11-7
11-5 Bus Arbitration Timing ... 11-8
11-6 Snoop Hit Timing .. 11-9
11-7 Snoop Miss Timing.. 11-10
11-8 Other Signal Timing... 11-11

MOTOROLA MC68040 USER'S MANUAL xvii

xviii MC68040 USER'S MANUAL MOTOROLA

Table
Number

LIST OF TABLES

Title
Page

Number

1-1 Data Types"""""" .. "" """""""""""""""""""""", .. """" 1-8
1-2 Addressing Modes""""""""" .. """"""""""""""""""""""" 1-9
1-3 Instruction Set Summary .. , 1-11

2-1 Condition Code versus Results Data Type , 2-12

3-1 Data Types""" .. """ .. """" .. ", .. ", .. """, .. """"""""""" .. """" 3-2
3-2 Single-Precision Binary Real-Data Format.................................. 3-10
3-3 Double-Precision Binary Real-Data Format.. , 3-11
3-4 Extended-Precision Binary Real-Data Format , , ,.... 3-12
3-5 FPU Data Formats a nd Data Types .. , 3-14
3-6 Effective Address Specification Formats.................................... 3-34
3-7 IS-IllS Memory Indirection Encoding .. , 3-35
3-8 Effective Addressing Mode Categories 3-36

4-1 Data Movement Operations .. , , , , , 4-5
4-2 Integer Arithmetic Operations .. 4-7
4-3 Dyadic Floating-Point Operation Format.................................... 4-8
4-4 Dyad ic Floati ng-Poi nt Operations.. 4-8
4-5 Monadic Floating-Point Operation Format , 4-9
4-6 Monadic Floating-Point Operations .. , 4-9
4-7 Logical Operations .. , , , , , ,.... 4-10
4-8 Shift and Rotate Operations .. , 4-11
4-9 Bit Manipulation Operations .. 4-12
4-10 Bit Field Operations.. 4-13
4-11 Binary Coded Decimal Operations .. 4-13
4-12 Program Control Operations , ,...................... 4-14
4-13 FPU Conditional Test Mnemonics .. , 4-15
4-14 System Control Operations.. 4-17
4-15 MMU Instructions , , , , .. , .. , "" ,.. 4-18
4-16 Cache Instructions.. 4-18
4-17 Multiprocessor Operations (Read-Modify-Writel " , 4-19
4-18 Cond ition Code Com putations............ 4-20

MOTOROLA MC68040 USER'S MANUAL xix

LIST OF TABLES (Continued)

Table
Number Title

Page
Number

xx

4-19 Conditional Tests.. 4-22
4-20 IEEE Non-Aware Tests............. .. 4-26
4-21 IEEE Aware Tests.. 4-27
4-22 Miscellaneous Tests.. 4-27
4-23 Instruction Set Summary... 4-33

5-1 Signal Index... 5-1
5-2 Transfer-Type Encoding... 5-5
5-3 Normal and MOVE16 Access TM Encoding................................ 5-5
5-4 Alternate Access TM Encoding. 5-6
5-5 TLN Encoding... 5-6
5-6 Transfer Size Encoding.. 5-7
5-7 Snoop Control Encoding.. 5-10
5-8 Output Driver Control Groups.. 5-13
5-9 Processor Status Encoding.. 5-14
5-10 Signal Summary... 5-16

6-1 Updating U and M Bits for Page Descriptors.............................. 6-33

7-1 Snoop Control Encoding.. 7-7
7-2 Instruction Cache Line State Transitions.................................... 7-10
7-3 Data Cache Line State Transitions .. 7-14

8-1 Size Signal Encoding... 8-5
8-2 Address Offset Encodings.. 8-6
8-3 Data Bus Requirements for Read and Write Cycles. 8-6
8-4 Summary of Access Types versus Bus Signal Encodings 8-7
8-5 Memory Alignment Influence on Non-Cachable and

Writethrough Bus Cycles .. 8-10
8-6 Data Bus Byte Enable Signals.. 8-11
8-7 Interrupt Acknowledge Termination Summary.............. 8-33
8-8 TA and TEA Assertion Results.. 8-39
8-9 Snoop Control Encoding.. 8-51
8-10 Output Buffer Impedance Control Groups 8-59

9-1 Exception Vector Assignments... 9-3
9-2 Exception Stack Frames... 9-4

MC68040 USER'S MANUAL MOTOROLA

LIST OF TABLES (Concluded)

Table
Number Title

Page
Number

9-3 Privileged Instructions... 9-13
9-4 Tracing ControL.. 9-13
9-5 Interrupt Levels and Mask Values...... 9-16
9-6 Exception Priority Groups.. 9-20
9-7 Writeback Data Alignment.... 9-28
9-8 Possible Operand Errors.. 9-44

10-1 M68040 Preliminary Floating-Point Unit
Instruction Timings .. 10-1

8-1 Directly Supported Floating-Point Instructions........................... 8-2
8-2 Indirectly Supported Floating-Point Instructions 8-3

MOTOROLA. MC68040 USER'S MANUAL xxi

xxii MC68040 USER'S MANUAL MOTOROLA

SECTION 1
INTRODUCTION

The MC68040 is Motorola's third generation of M68000-compatible, high­
performance, 32-bit microprocessors. The MC68040 is a virtual memory
microprocessor employing multiple, concurrent execution units and a highly
integrated architecture to provide very high performance in a monolithic
HCMOS device. The MC68040 integrates an MC68030-compatible integer unit
an MC68881/MC68882-compatible floating-point unit (FPU), dual independ­
ent demand-paged memory management units (MMUs) for instruction and
data stream accesses, and independent 4K-byte instruction and data caches.
A high degree of instruction execution parallelism is achieved through the
use of multiple independent execution pipelines, multiple internal buses, and
a full internal Harvard architecture, including the separate physiCfal caches
for both instruction and data accesses. Cache functionality is enhanced by
the inclusion of on-chip bus snooping logic to directly support cache coh­
erency in multimaster applications.

The MC68040 is user object-code compatible with previous members of the
M68000 Family and is specifically optimized to reduce the execution time of
compiler-generated code. The MC68040 is implemented in Motorola's latest
HCMOS technology, providing an ideal balance between speed, power, and
physical device size.

Figure 1-1 provides a simplified block diagram of the MC68040. Instruction
execution is pipelined in both the integer unit and FPU, which interface to
fully independent data and instruction memory units. Each memory unit
consists of an MMU, an address translation cache (ATC), a main cache, and
a snoop controller. The ATCs decrease logical-to-physical address translation
overhead by storing recently-used translations, while the bus snooper circuit
ensures cache coherency in multimaster applications. External memory re­
quests from each cache are prioritized by the bus controller, which executes
bus transfers on the external bus.

MOTOROLA MC6~040 USER'S MANUAL 1-1

r--
INSTRUCTION DATA BUS

{}-
I INSTRUCTION

ATC
INSTRUCTION I

CACHE

~RuSl fi" fi" INSTRUCTION

.1 INSTRUCTION k ADDRESS

FETCH)I MMUICACHEISNOOP

CONVERT 1 CONTROLLER 1 A. "
,/I- INSTRUCTION MEMORY UNIT B >

DECODE U 'v-- S
ADDRESS

BUS

EA C
CALCULATE 0

EXECUTE N > T
EA '-- R DATA Y

FETCH :-- 0 BUS
L

~ L

I'r-V
EXECUTE E

WRITE DATA MEMORY UNIT DATA R
BACK .1 k ADDRESS ,)

WRITE DATA
BUS

BACK)I MMUICACHEISNOOP
1 CONTROLLER 1 CONTROL

SIGNALS
FLOATING-

INTEGER ,.!J ,.!J
POINT
UNIT UNIT I DATA DATA

ATC CACHE I

{t-
OPERAND DATA BUS

'--

Figure 1-1. MC68040 Block Diagram

1.1 FEATURES

1-2

The main features of the MC68040 include:

• MC68030-Compatible Integer Execution Unit

• MC68881/MC68882-Compatible Floating-Point Execution Unit

• Independent Instruction and Data Memory Management Units (MMUs)

• 4K-Byte Physical Instruction Cache and 4K-Byte Physical Data Cache
Accessible Simultaneously

• Low Latency Bus Accesses for Reduced Cache-Miss Penalty

• Multimaster/Multiprocessor Support via Bus Snooping

• Concurrent integer unit, FPU, MMU, and Bus Controller Operation Max­
imizes Throughput

MC68040 USER'S MANUAL MOTOROLA

• 32-Bit, Nonmultiplexed External Address and Data Buses with Synchron-
ous Interface

• User Object-Code Compatibility with All Earlier M68000 Microprocessors

• 4-Gigabyte Direct Addressing Range

• Software Support Including Optimizing C Compiler and UNIX@) System
V Port

The on-chip FPU and large physical instruction and data caches result in
improved system performance and increased functionality. The independent
instruction and data MMUs and increased internal parallelism also improve
performance.

1.2 MC68040 EXTENSIONS TO THE M68000 FAMILY

The MC68040 contains an on-chip FPU which is user object-code compatible
with the MC68882 floating-point coprocessor and is compatible with the
ANSI/IEEE Standard 754 for binary floating-point arithmetic. The FPU has
been optimized to execute the most commonly used subset of the MC68882
instruction set, and includes additional instruction formats for single- and
double-precision rounding of results. Any floating-point instructions not di­
rectly supported in hardware are emulated in software. Floating-point in­
structions in the FPU execute concurrently with integer instructions in the
integer unit.

The MC68040 integer unit pipeline has been expanded to include effective
address calculation and operand fetch, with commonly used effective ad­
dressing modes further optimized. Conditional branches are optimized for
the more common case of the branch taken, and both execution paths of the
branch are fetched and decoded to minimize refilling of the instruction pipe­
line. The user instruction MOVE16 has been added to the instruction set to
support efficient 16-byte memory-to-memory data transfers.

Memory management in the MC68040 has been improved by including sep­
arate, independent paged MMUs for instruction and data accesses. Each
MMU stores recently used address mappings in separate 64-entry ATCs.
Table searches are performed with hardwired logic instead of microcode in
order to minimize search time. Each MMU also has two transparent trans­
lation registers available that define a one-to-one mapping for address space
segments ranging in size from 16 Mbytes to 4 Gbytes each.

UNIX is a registered trademark of AT&T Bell Laboratories.

MOTOROLA MC68040 USER'S MANUAL 1-3

Separate 4K-byte on-chip instruction and data caches operate independently,
and are accessed in parallel with address translation. Each cache and cor­
responding MMU resides on a separate internal address bus and data bus,
allowing simultaneous access to both. The data cache provides writethrough
or copyback write modes that can be configured on a page-by-page basis.
The caches are physically mapped, reducing software support for multitask­
ing operating systems, and support external bus snooping to maintain cache
coherency in multimaster systems.

The MC68040 bus controller supports a high-speed, nonmultiplexed syn­
chronous external bus interface. Burst accesses are supported for both reads
and writes to provide high data transfer rates to and from the caches. Ad­
ditional bus signals support bus snooping and external cache tag mainte­
nance.

1.3 PROGRAMMING MODEL

1-4

The MC68040 integrates the functions of the integer unit, MMU, and FPU.
The registers depicted in the programming model (see Figure 1-2) provide
operand storage and control for the three units. The registers are partitioned
into two levels of privilege: user and supervisor. User programs, executing
in the lower-privilege mode, can only use the resources of the user model.
System software executing in the supervisor mode has unrestricted access
to all processor resources.

The user programming model consists of 16 general-purpose, 32-bit registers
and two control registers, and is the same as the user programming model
of the MC68030. The MC68040 user programming model also incorporates
the MC68882 programming model consisting of eight, 80-bit floating-point
data registers, a floating-point control register, a floating-point status register,
and a floating-point instruction address register.

The supervisor programming model is used exclusively by MC68040 system
programmers to implement operating system functions, I/O control, and
memory management subsystems. This supervisor/user distinction in the
M68000 architecture allows all application software to be written to execute
in the nonprivileged user mode and migrate to the MC68040 from any M68000
platform without modification. Since system software is usually modified by
system designers when porting to a new design, the control features are
properly placed in the supervisor programming model. For example, the

MC68040 USER'S MANUAL MOTOROLA

/;;- - ... : :~
I D2
1---... DATA -----::::: D3
t-----' REGISTERS ~ D4

~D5
D6

i{ D7
AO t:= .. :::::;::;;::;;::s:;:;:~ A 1 31 a
A2

I-----,,~ ADDRESS ~ A3
1--- REGISTERS ----------- A4

I -A5

I ~~USP

FP CONTROL REGISTER I I FPCR
FP STATUS REGISTER 1-. ________ _1 FPSR

FP INSTRUCTION ADDRESS REGISTER FPIAR

L •••••• L- CCR

31
t-_______ --I A7'/ISP

ArlMSP
~---'I--~,~(C~CR~I-ISR
t-_______ --l VBR
t-_______ --I SFC

DFC
1-----------lCACR
t-_______ --I URP

~ ___ _r-----lSRP
1 TC

r----~-----lDTIa

USER STACK POINTER
PROGRAM COUNTER
CONDITION CODE REGISTER

USER PROGRAMMING MODEL

INTERRUPT STACK POINTER
MASTER STACK POINTER
STATUS REGISTER (CCR IS ALSO SHOWN IN THE USER PROGRAMMING MODELl
VECTOR BASE REGISTER
SOURCE FUNCTION CODE
DESTINATION FUNCTION CODE
CACHE CONTROL REGISTER
USER ROOT POINTER REGISTER
SUPERVISOR ROOT POINTER REGISTER
TRANSLATION CONTROL REGISTER
DATA TRANSPARENT TRANSLATION REGISTER a
DATA TRANSPARENTTRANSLATION REGISTER 1 t-_______ --I DTI1

Ina INSTRUCTION TRANSPARENT TRANSLATION REGISTER a
t----------l 1n1 INSTRUCTION TRANSPARENT TRANSLATION REGISTER 1

1'--___ -' MMUSR MMU STATUS REGISTER

SUPERVISOR PROGRAMMING MODEL

Figure 1-2. Programming Model

transparent translation registers of the MC68040 can only be read or written
by the supervisor software. Programming resources of user application pro­
grams are unaffected by the existence of the transparent translation registers.

Data registers (07-00) contain operands for bit and bit field, byte, word,
long-word, and quad-word operations. Address registers (A6-'"AO) and the
stack pointer register (A7) are address registers may be used as software
stack pointers or base address registers. Register A7, is also used as an user
stack pointer in user mode, and is either the interrupt (AT) or master stack
pointer (Ar) in supervisor mode. In supervisor mode, the active stack pointer
(interrupt or master) is selected based on the setting of the master (M) bit

MOTOROLA MC68040 USER'S MANUAL '-5

•

1-6

in the status register (SR). In addition, A7-AO may be used for word and
long-word operations. Registers 07-00 and A7-AO may be used as index
registers.

The eight, 80-bit, floating-point data registers (FP7-FPO) are analogous to the
integer data registers of all M68000 Family processors. Floating-point data
registers always contain extended-precision numbers. All external operands,
regardless of the data format, are converted to extended-precision values
before being used in any floating-point calculation or stored in a floating­
point data register.

The program counter (PC) usually contains the address of the instruction
being executed by the MC68040. During instruction execution and exception
processing, the processor automatically increments the contents of the PC
or places a new value in the PC, as appropriate. The status register (SR)
contains the condition codes that reflect the results of a previous operation
and can be used for conditional instruction execution in a program. The lower
byte of the SR is accessible in user mode as the condition code register (CCR).
Access to the upper byte of the SR, which contains operation control infor­
mation, is restricted to the supervisor mode.

As part of exception processing, the vector number of the exception provides
an index into the exception vector table. The base address of the exception
vector table is stored in the vector base register (VBR).

Alternate source function code (SFC) and destination function code (OFC)
registers contain 3-bit function codes, which can be considered extensions
of the 32-bit logical address. Function codes are automatically generated by
the processor to select address spaces for data and program accesses in the
user and supervisor modes. The alternate function code registers are used
by certain instructions to explicitly specify the function codes for various
operations.

The cache control register (CACR) controls enabling ofthe on-chip instruction
and data caches of the MC68040.

The supervisor root pointer (SRP) and user root pointer (URP) registers point
to the root of the address translation table tree to be used for supervisor
mode and user mode accesses. The URP is used if function code bit 2 (FC2)
of the logical address is zero, and the SRP is used if FC2 is one.

MC68040 USER'S MANUAL MOTOROLA

The translation control register (TC) enables logical-to-physical address trans­
lation and selects either 4K or 8K page sizes. There are four transparent
translation registers: two for instruction accesses (ITT1-ITTO), and two for
data accesses (DTT1-DTTO). These registers allow portions of the logical
address space to be transparently mapped and accessed without the use of
resident descriptors in an ATC. The MMU status register (MMUSR) contains
status information derived from the execution of a PTEST instruction. The
PTEST instruction searches the translation tables for the logical address as
specified by this instruction's effective address field and the DFC, and returns
status information corresponding to the translation.

The 32-bit floating-point control register (FPCR) contains an exception enable
byte that enables/disables traps for each class of floating-point exceptions
and a mode byte that sets the user-selectable modes. The FPCR can be read
or written to by the user and is cleared by a hardware reset or a restore
operation of the null state. When cleared, the FPCR provides the IEEE 754
standard defaults for floating-point exceptions. The floating-point status reg­
ister (FPSR) contains a condition code byte, quotient bits, an exception status
byte, and an accrued exception byte. All bits in the FPSR can be read or
written by the user. Execution of most floating-point instructions modifies
this register.

For the subset of the FPU instructions that generate exception traps, the 32-
bit floating-point instruction address register (FPIAR) is loaded with the log­
ical address of an instruction before the instruction is executed. This address
can then be used by a floating-point exception handler to locate a floating­
point instruction that has caused an exception. The floating-point instructions
FMOVE (to/from the FPCR, FPSR, or FPIAR) and FMOVEM cannot generate
floating-point exceptions; therefore, these instructions do not modify the
FPIAR. Thus, the FMOVE and FMOVEM instructions can be used to read the
FPIAR in the trap handler without changing the previous value.

1.4 DATA TYPES AND ADDRESSING MODES

The MC68040 supports the basic data types shown in Table 1-1. Some data
types apply only to the integer unit, some only to the FPU, and some to both.
In addition, the instruction set supports operations on other data types such
as memory addresses.

MOTOROLA MC68040 USER'S MANUAL 1-7

--

1-8

Table 1-1. Data Types

Operand Data Type Size Supported By: Notes ' "

Bit 1 Bit IU -

Bit Field 1-32 Bits IU Field of Consecutive Bit

BCD 8 Bits IU Packed: 2 Dig its/Byte
Unpacked: 1 Digit/Byte

Byte Integer 8 Bits IU, FPU -

Word Integer 16 Bits IU, FPU -

Long-Word Integer 32 Bits IU, FPU -

Quad-Word Integer 64 Bits IU Any Two Data Registers

16-Byte 128 Bits IU Memory-Only, Aligned to 16-Byte Boundary

Single-Precision Real 32 Bits FPU 1-Bit Sign, 8-Bit Exponent, 23-Bit Mantissa

Double'-Precision Real 64 Bits FPU 1-Bit Sign, 11-Bit Exponent, 52-Bit Mantissa

Extended-Precision Real 80 Bits FPU l-Bit Sign, 15-Bit Exponent, 64-Bit Mantissa

IU = Integer Unit

The three integer data formats that are common to both the integer unit and
the FPU (byte, word, and long word) are the standard twos-complement data
formats defined in the M68000 Family architecture. Whenever an integer is
used in a floating-point operation, the integer is automatically converted by
the FPU to an extended-precision floating-point number before being used.

Single- and double-precision floating-point data formats are implemented in
the FPU as defined by the IEEE standard. These data formats are used for
most calculations with real numbers.

The extended-precision data format is also in conformance with the IEEE
standard, but the standard does not specify this format to the bit level as it
does for single- and double-precision. The memory format for the FPU con­
sists of 96 bits (three long words). Only 80 bits are actually used; the other
16 bits are for future expansibility and for long-word alignment ofthe floating­
point data structures in memory. The extended-precision format has a 15-
bit exponent, a 64-bit mantissa, and a 1-bit mantissa sign. Extended-precision
numbers are intended for use as temporary variables, intermediate values,
or where extra precision is needed.

The MC68040 addressing modesare shown in Table 1-2. The register indirect
addressing modes support postincrement, predecrement, offset, and index­
ing, which are particularly useful for handling data structures common to
sophisticated applications and high-level languages. The program counter
indirect mode also has indexing and offset capabilities; this addressing mode

MC68040 USER'S MANUAL MOTOROLA

is typically required to support position-independent software. In addition to
these addressing modes, the MC68040 provides index sizing and scaling
features that enhance software performance. Data formats are supported
orthogonally by all arithmetic operations and by all appropriate addressing
modes.

Table 1-2. Addressing Modes

Addressing Modes Syntax

Register Direct
Data Register Direct Dn
Address Register Direct An

Register Indirect
Address Register Indirect (An)
Address Register Indirect with Postincrement (An)+
Address Register Indirect with Predecrement -(An)
Address Register Indirect with Displacement (d16An)

Register Indirect with Index
Address Register Indirect with Index (S-Bit Displacement) (dsAn,Xn)
Address Register Indirect with Index (Base Displacement) (bd,An,Xn)

Memory Indirect
Memory Indirect Postindexed ([bdAnJ,Xn,od)
Memory Indirect.Preindexed ([bdAn,XnJ,od)

Program Counter Indirect with Displacement (d16,PC)

Porgram Counter Indirect with Index
PC Indirect with Index (S-Bit Displacement) (ds,PC,Xn)
PC Indirect with Index (Base Displacement) (bd,PC,Xn)

Program Counter Memory Indirect
PC Memory Indirect Postindexed ([bd,PCJ,Xn,od)
PC Memory Indirect Preindexed ([bd,PC,XnJ,od)

Absolute
Absolute Short xxx.W
Absolute Long xxx.L

Immediate #<data>

NOTES:
Dn ~ Data Register, 07-DO
An ~ Address Register, A7-AO

dS, d16 ~ A twos-complement or sign-extended displacement; added as port of the effective address
calculation; size is S (dS) or 16 (d16) bits; when omitted, assemblers use a value of zero.

MOTOROLA

Xn ~ Address or data register used as an index register; form is Xn.SIZE/SCALE, where SIZE is .W
or .L (indicates index register size) and SCALE is 1,2,4, or S (index register is multiplied by
SCALE); use of SIZE and/or SCALE is optional.

bd ~ A twos-complement base displacement; when present, size can be 16 or 32 bits.
od ~ Outer displacement, added as part of effectie address calculation after any memory indirection;

use is optional with size of 16 or 32 bits.
PC ~ Program Counter

<data> ~ Immediate value of S, 16, or 32 bits.
() ~ Effective Address
[1 ~ Used as indirect access to long-word address.

MC68040 USER'S MANUAL 1-9

..

1.5 INSTRUCTION SET OVERVIEW

The instructions provided by the MC68040 are listed in Table 1-3. The in­
struction set has been tailored to support high-level languages and is optim­
ized for those instructions most commonly executed (however, all instructions
listed are fully ·supported). Many instructions operate on bytes, words, and
long words, and most instructions can use any of the addressing modes of
Table 1-2.

The floating-point instructions for the MC68040 are a commonly used subset
of the MC68881/MC68882 instruction set with new arithmetic instructions to
explicitly select single- or double-precision rounding. The remaining unim­
plemented instructions are less frequently used and are efficiently emulated
in software, maintaining compatibility with the MC688811MC68882 floating­
point coprocessors.

The MC68040 instruction set includes MOVE16, a new user instruction which
allows high-speed transfers of 16-byte blocks between external devices such
as memory-to-memory, or coprocessor-to-memory.

1.6 MEMORY MANAGEMENT UNITS

1-10

The data and instruction MMUs support virtual memory systems by trans­
lating logical addresses to physical addresses using translation tables stored
in memory. Each MMU stores recently used address mappings in an ATC,
reducing average translation time. Features of the MMUs include:

• Instruction and Data MMUs are Fully Independent

• 64-Entry, Four-Way Set-Associative ATCs

• Table Searches Automatically Performed by Hardware

• Address Translation and Cache Indexing Performed in Parallel

• 4K or 8K Page Sizes

• Two Optional Transparent Blocks for each MMU

• Fixed Three-Level Translation Table Structure with Optional Indirection

• User and Supervisor Root Pointer Registers

• Global Attribute for Selective ATC Flushing

• Write Protection and Supervisor Protection Attributes

MC68040 USER'S MANUAL MOTOROLA

Mnemonic

ABCD
ADD
ADDA
ADDI
ADDQ
ADDX
AND
ANDI
ASL, ASR

Bcc
BCHG
BCLR
BFCHG
BFCLR
BFEXTS
BFEXTU
BFFFO
BFINS
BFSET
BFTST
BRA
BSET
BSR
BTST

CAS
CAS2
CHK
CHK2

*CINV
CLR
CMP
CMPA
CMPI
CMPM
CMP2

*CPUSH

DBcc

DIVS,DIVSL
DIVU, DIVUL

EOR
EORI
EXG
EXT, EXTB

*FABS
*FADD

FBcc
FCMP
FDBcc

*FDIV
*FMOVE

FMOVEM

*FMUL
*FNEG

FRESTORE
FSAVE
FScc

*FSQRT

MOTOROLA

Table 1-3. Instruction Set Summary

Description

Add Decimal with Extend
Add
Add Address
Add Immediate
Add Quick
Add with Extend
Logical AND
Logical AND Immediate
Arithmetic Shift Left and Right

Branch Conditionally
Test Bit and Change
Test Bit and Clear
Test Bit Field and Change
Test Bit Field and Clear
Signed Bit Field Extract
Unsigned Bit Field Extract
Bit Field Find First One
Bit Field Insert
Test Bit Field and Set
Test Bit Field
Branch
Test Bit and Set
Branch to Subroutine
Test Bit

Compare and Swap Operands
Compare and Swap Dual Operands
Check Register Against Bounds
Check Register Against Upper and

Lower Bounds
Invalidate Cache Entries
Clear
Compare
Compare Address
Compare Immediate
Compare Memory to Memory
Compare Register Against Upper

and Lower Bounds
Push then Invalidate Cache Entries

Test Condition, Decrement and
Branch

Signed Divide
Unsigned Divide

Logical Exclusive OR
Logical Exclusive OR Immediate
Exchange Registers
Sign Extend

Floating-Point Absolute Value
Floating-Point Add
Floating-Point Branch
Floating-Point Compare
Floating-Point Decrement and Branch
Floating-Point Divide
Move Floating-Point Register
Move Multiple Floating-Point

Registers
Floating-Point Multiply
Floating-Point Negate
Restore Floating-Point Internal State
Save Floating-Point Internal State
Floating-Point Set According to

Condition
Floating-Point Square Root

Mnemonic Description

*FSUB Floating-Point Subtract
FTRAPcc Floating-Point Trap-On Condition
FTST Floating-Point Test

ILLEGAL Take Illegal Instruction Trap

JMP Jump
JSR Jump to Subroutine

LEA Load Effective Address
LINK Link and Allocate
LSL, LSR Logical Shift Left and Right

MOVE Move
*MOVE16 16-Byte Block Move

MOVEA Move Address
MOVE CCR Move Condition Code Register
MOVE SR Move Status Register
MOVE USP Move User Stack Pointer

*MOVEC Move Control Register
MOVEM Move Multiple Registers
MOVEP Move Peripheral
MOVEQ Move Quick

*MOVES Move Alternate Address Space
MULS Signed Multiply
MULU Unsigned Multiply

NBCD Negate Decimal with Extend
NEG Negate
NEGX Negate with Extend
NOP No Operation
NOT Logical Complement

DR Logical Inclusive OR
ORI Logical Inclusive OR Immediate

PACK Pack BCD
PEA Push Effective Address

*PFLUSH Flush Entry(ies) in the ATCs
*PTEST Test a Logical Address

RESET Reset External Devices
ROL, ROR Rotate Left and Right
ROXL, RORX Rotate with Extend Left and Right
RTD Return and Deallocate
RTE Return from Exception
RTR Return and Restore Codes
RTS Return from Subroutine

SBCD Subtract Decimal with Extend
Scc Set Conditionally
STOP Stop
SUB Subtract
SUBA Su btract Add ress
SUBI Subtract Immediate
SUBQ SubtraLt Quick
SUBX Subtract with Extend
SWAP Swap Register Words

TAS Test Operand and Set
TRAP Trap
TRAPcc Trap Conditionally
TRAPV Tap on Overflow
TST Test Operand

UNLK Unlink
UNPK Unpack BCD

*MC68040 additions or alterations to the MC68030 and
MC68881/M68882 instruction set.

MC68040 USER'S MANUAL 1-11

..

• Pages may be Specified as Writethrough, Copyback, Noncachable, or
Noncachable 110

• Translations Enabled/Disabled by Software

• Used and Modified Status Automatically Maintained in Tables and ATCs

• Translations can be Disabled by External MMUDIS Signal

• Cache Inhibit Out (ClOUT) Signals can be Asserted on a Page-by-Page
Basis

• 32-Bit Physical Address with Two User-Defined Attribute Signals

The memory management function performed by the MMU is called demand
paged memory management. Since a task specifies the areas of memory it
requires as it executes, memory allocation is supported on a demand basis.
If a requested access to memory is not currently mapped by the system, then
the access causes a demand for the operating system to load or allocate the
required memory image. The technique used by the MC68040 is paged mem­
ory management because physical memory is managed in blocks of a speci­
fied number of bytes, called page frames. The logical address space is divided
into fixed-size pages that contain the same number of bytes as the page
frames. The memory management software assigns a physical base address
to a logical page. The system software then transfers data between secondary
storage and memory, one or more pages at a time.

1.7 INSTRUCTION AND DATA CACHES

1-12

Because of the phenomenon of locality of reference, instructions and data
that are used in a program have a high probability of being reused within a
short time. Additionally, instructions and data operands residing near the
instructions and data currently in use also have a high probability of being
utilized within a short period. The MC68040 takes advantage of these locality
characteristics with its two on-chip physical caches, one for instructions and
one for data. Both caches are organized as four-way set-associated with 64
sets of four lines. Each line contains four long words, for a storage capability
of 4K bytes for each cache, or 8K bytes total. The processor fills the cache
lines using burst mode accesses which transfer the entire line as four long
words. This mode of operation not only fills the cache efficiently, but also
captures adjacent instruction or data items that are likely to be required in
the near future due to locality characteristics of the executing task.

MC68040 USER'S MANUAL MOTOROLA

The caches improve the overall performance of the system by reducing the •
number of bus transfers required by the processor to fetch information from
memory and by increasing the bus bandwidth available for other bus masters
in the system. To further improve system performance, the data cache in the
MC68040 supports both copyback and writethrough caching modes for stor-
ing write accesses. For writes that hit in copyback pages, the data is used to
update the cache line without writing the data to memory immediately. This
"dirty" data is copied to memory only when required, either to allow re-
placement of the cache line by new data, or as a result of explicit flushing
of the cache line, resulting in a lower bus bandwidth requirement for the
processor. Cache coherency for both caches is maintained by bus snooping
logic which allows the MC68040 to monitor accesses by an alternate bus
master. When an alternate master performs bus transfers, the MC68040 can
update cache lines which hit during an external write, or source data from
dirty data cache lines while inhibiting data from memory during external
reads.

MOTOROLA MC68040 USER'S MANUAL 1-13

1-14 MC68040 USER'S MANUAL MOTOROLA

SECTION 2
PROGRAMMING MODEL

This section describes the MC68040 programming model, which is separated
into the user and supervisor programming models. User programs, executing
at the user privilege level, can only use the registers of the user model. System
software executing in the supervisor mode has access to all registers and
uses the control registers of the supervisor mode to perform supervisor
functions. A brief description of the registers accessible at each level is pre­
sented in the following paragraphs.

2.1 PROCESSING STATES

Unless the processor has halted, it is always in either the normal or the
exception processing state. Whenever the processor is executing instructions
or fetching instructions or operands, it is in the normal processing state. The
processor is also in the normal processing state while it is storing instruction
results.

Exception processing refers specifically to the transition from normal proc­
essing of a program to normal processing of system routines, interrupt rou­
tines, and other exception handlers. Exception processing includes all stacking
operations, the fetch of the exception vector, and the filling of the instruction
pipe caused by an exception. This processing is completed when execution
of the first instruction of the exception handler routine begins.

The processor enters the exception processing state when an interrupt is
acknowledged, when an instruction is traced or results in a trap, or when
any other exceptional condition arises. Execution of certain instructions or
unusual internal conditions that occur during the execution of any instruc­
tions can cause exceptions. External conditions, such as interrupts and bus
errors, also cause exceptions. Exception processing provides an efficient
transfer of control to handlers and routines that process the exceptions.

A catastrophic system failure occurs whenever the processor receives a bus
error or generates an address error while in the exception processing state.
This type of failure halts the processor. For example, if during exception
processing of one bus error another bus error occurs, the MC68040 has not

MOTOROLA MC68040 USER'S MANUAL 2-1

..

completed the transition to normal processing and has not completed saving
the internal state of the machine; thus, the processor assumes that the system
is not operational and halts. Only an external reset can restart a halted pro­
cessor. (When the processor executes a STOP instruction, it is in a special
type of normal processing state, one without bus cycles. The processor is
stopped, not halted.)

2.1.1 Privilege Levels

The processor operates in one of two privilege modes: user or supervisor.
The supervisor mode has higher privileges than the user mode. Not all in­
structions are permitted to execute in the user mode, but all are available in
the supervisor mode. This difference allows the supervisor to protect system
resources from uncontrolled access. The processor uses the privilege mode
indicated by the S bit in the status register (SR) to select either the user or
supervisor mode and either the user stack pointer (USP) or a supervisor stack
pointer (SP) for stack operations. The integer unit identifies a logical address
as accessing either the supervisor or user address space so that differentia­
tion between supervisor and user can be maintained. The memory manage­
ment units (MMUs) use the indicated privilege mode to control and translate
memory accesses to protect supervisor code, data, and resources from access
by user programs.

In many systems, most programs execute in the user privilege mode. User
programs access only their own code and data areas and are restricted from
accessing other information. Executing in the supervisor privilege mode, the
operating system has access to all resources, performs management and
service tasks for the user-level programs, and coordinates their activities.

2.1.1.1 SUPERVISOR MODE. The supervisor mode is the higher privilege level.

2-2

The privilege level is determined by the S bit of the SR; if set, the processor
executes instructions in the supervisor mode. The bus cycles for instructions
executed in the supervisor mode are normally classified as supervisor ref­
erences, and the values on the transfer modifier pins (TM2-TMO) indicate
supervisor accesses.

All exception processing is performed in the supervisor mode. All bus cycles
generated during exception processing are supervisor references, and all
stack accesses use the active supervisor stack pointer.

MC68040 USER'S MANUAL MOTOROLA

In a multitasking operating system, it is more efficient to have a supervisor
stack space associated with each user task and a separate stack space for
interrupt-associated tasks. The MC68040 provides two supervisor stack point- ..
ers, master (MSP) and interrupt (ISP); the M bit of the SR selects which of
the two is active. When the M bit is set / supervisor stack pointer references
(either implicit or by specifying address register A7) access the MSP. The
operating system sets the MSP for each task to point to a task-related area
of supervisor data space. This procedure separates task-related supervisor
activity from asynchronous, liD-related supervisor tasks that may be only
coincidental to the currently executing task. The MSP can separately maintain
task control information for each currently executing user task, and the soft-
ware updates the MSP when a task switch is performed, providing an efficient
means for transferring task-related stack items. The ISP, can be used for
interrupt control information and for workspace area as interrupt handling
routines require.

When the M bit is clear, the MC68040 is in the interrupt mode ofthe supervisor
privilege level, and operation is the same as in any other M68000 Family
processor when in supervisor mode. This mode is the default condition after
reset, and all supervisor stack pointer references access the ISP.

The value of the M bit in the SR does not affect execution of privileged
instructions. Instructions that affect the M bit are MOVE to SR, ANDI to SR,
EORI to SR, ORI to SR, and RTE. The processor automatically saves the M­
bit value and clears it in the SR as part of the exception processing for
interrupts.

2.1.1.2 USER MODE. The user mode is the lower privilege level. If the S bit of the
SR is clear, the processor executes instructions in the user mode. Most in­
structions execute at either privilege level, but some instructions that have
important system effects are privileged and can only execute in the supervisor
mode. For instance, user programs cannot execute the STOP or RESET in­
structions. To prevent a user program from entering the supervisor mode,
except in a controlled manner, instructions that can alter the S bit in the
status register are privileged. The TRAP #n instruction provides controlled
access to operating system services for user programs.

The bus cycles for an instruction executed in the user mode are classified as
user references, and the values on the signals TM2-TMO indicate user ac­
cesses. When enabled, the MMUs use the indicated privilege level to distin­
guish between user and supervisor activity and to control access to protected

MOTOROLA MC68040 USER'S MANUAL 2-3

..
portions of the address space. While the processor is operating in the user
mode, explicit references to the system stack pointer or to address register
seven (A7) refer to the user stack pointer .

2.1.1.3 CHANGING PRIVILEGE LEVEL. During exception processing the processor
changes from user to supervisor mode. Exception processing saves the cur­
rent value of the SR on the active supervisor stack and then sets the S bit,
forcing the processor into the supervisor mode. When the exception being
processed is an interrupt and the M bit is set, the M bit is cleared, putting
the processor into the interrupt mode. Execution of instructions continues in
the privileged exception handler to process the exception condition.

To return to the user mode, a system routine must execute one of the fol­
lowing instructions: MOVE to SR, ANDI to SR, EORI to SR, ORI to SR, or RTE.
These instructions, which execute in the supervisor mode, can modify the S
bit of the SR. After these instructions execute, the instruction pipeline is
flushed and is refilled from the appropriate address space.

The RTE instruction returns to the program that was executing when the
exception occurred and restores the exception stack frame saved on the
supervisor stack. If the frame on top of the stack was generated by an inter­
rupt, trap, or instruction exception, the RTE instruction restores the SR and
program counter (PC) to the values saved on the supervisor stack. The pro­
cessor then continues execution at the restored PC address and at the priv­
ilege level determined by the S bit of the restored SR. If the frame on top of
the stack was generated by an access fault (bus error, MMU fault, or address
error), the RTE instruction restores the entire saved processor state from the
stack.

2.1.2 Exception Processing

2-4

An exception is defined as a special condition that pre-empts normal proc­
essing. Both internal and external conditions cause exceptions. External con­
ditions that cause exceptions are interrupts from external devices, bus errors,
and reset. Instructions, address errors, and tracing are internal conditions
that cause exceptions. For example, the TRAP, TRAPcc, FTRAPcc, CHK, RTE,
DIV, and FDIV instructions can generate exceptions as part of their normal
execution. In addition, illegal instructions, unimplemented floating-point in­
structions and data types, and privilege violations cause exceptions.

MC68040 USER'S MANUAL MOTOROLA

Exception processing, which is the transition from the normal processing of
a program to the processing required for the exception condition, uses the
exception vector table and an exception stack frame. The following para­
graphs describes the vector table and a generalized exception stack frame.

Exception processing is discussed in detail in SECTION 9 EXCEPTION
PROCESSING.

2.1.2.1 EXCEPTION VECTORS. The vector base register (VBR) contains the base
address of the 1024-byte exception vector table, which consists of 256 ex­
ception vectors. Exception vectors contain the memory addresses of routines
that begin execution at the completion of exception processing. These rou­
tines perform a series of operations appropriate for the corresponding ex­
ceptions. Because the exception vectors contain memory addresses, each
vector consists of one long word, except for the reset vector. The reset vector
consists of two long words: the address used to initialize the ISP and the
address used to initialize the PC.

The address of an exception vector is derived from an 8-bit vector number
and the VBR. The vector numbers for some exceptions are obtained from an
external device; others are supplied automatically by the processor. The
processor multiplies the vector number by four to calculate the vector offset,
which it adds to the VBR. The sum is the memory address of the vector. All
exception vectors are accessed as supervisor data references, except the reset
vector, which is accessed as a supervisor program reference. Only the initial
reset vector is fixed in the processor's memory map; once initialization is
complete, there are no fixed assignments. Since the VBR provides the base
address of the vector table, the vector table can be located anywhere in
memory; it can even be dynamically relocated for each task that is executed.
Details of exception processing are provided in SECTION 9 EXCEPTION
PROCESSING.

2.1.2.2 EXCEPTION STACK FRAME. Exception processing saves the most volatile
portion of the current processor context on the top of the supervisor stack.
This context is organized in a format called the exception stack frame. This
information always includes a copy of the SR, the PC, the vector offset of
the vector, and the frame format field. The frame format field identifies the
type of stack frame. The RTE instruction uses the value in the frame format
field to properly restore the information stored in the stack frame and to
deallocate the stack space appropriately. The general form of the exception
stack frame is illustrated in Figure 2-1. Refer to SECTION 9 EXCEPTION PROC·
ESSING for a complete description of the various exception stack frames.

MOTOROLA MC68040 USER'S MANUAL 2-5

..
15 12 o

SP STATUS REGISTER

PROGRAM COUNTER

FORMAT I VECTOR OFFSET

ADDITIONAL PROCESSOR STATE INFORMATION - -(2 OR 26 WORDS, IF NEEDED)

Figure 2-', General Form of Exception Stack Frame

2.2 REGISTER DESCRIPTION

The programming model of the MC68040 consists oftwo groups of registers:
the user model and the supervisor mo~el, which correspond to the user and
supervisor modes. User programs, executing in the user mode, can only use
the registers of the user model. System software executing in the supervisor
mode has access to all registers and uses the control registers of the super­
visor model to perform supervisor functions. The following paragraphs pro­
vide a brief description of the registers in the user and supervisor models.

2.2.1 User Programming Model

2-6

The user programming model is shown in detail in Figure 2-2. The integer
portion of the user programming model, which is the same as previous
M68000 Family microprocessors, consists of the following registers:

• 16 General-Purpose 32-Bit Registers (D7-DO, A7-AO)
• 32-Bit Program Counter (PC)
• 8-Bit Condition Code Register (CCR)

The floating-point portion of the user programming model, which is identical
to the programming model for the MC688811MC68882 floating-point copro­
cessors, consists of the following registers:

• 8 Floating-Point Data Registers (FP7-FPO)
• 16-Bit Floating-Point Control Register (FPCR)
• 32-Bit Floating-Point Status Register (FPSR)
• 32-Bit Floating-Point Instruction Address Register (FPIAR)

The following paragraphs described each group of registers.

MC68040 USER'S MANUAL MOTOROLA

2.2.1.1 DATA REGISTERS (07-00). These registers are used as data registers for
bit and bit-field (1 to 32 bits), byte (8 bit), word (16 bit), long-word (32 bit), a.
and quad-word (64 bit) operations. These registers may also be used as index
registers.

2.2.1.2 ADDRESS REGISTERS (A7-AO). These registers may be used as software
stack pointers, index registers, or base address registers. The address reg­
isters may be used for word and long-word operations.

Register A7 is used as a hardware stack pointer during stacking for subroutine
calls and exception handling. The register designation A7 refers to three
different registers: the USP (A7) in the user programming model and either
the ISP or MSP (A7' and A7") in the supervisor programming model. In the
supervisor programming model, the active stack pointer (ISP or MSP) is called
the supervisor stack pointer.

2.2.1.3 PROGRAM COUNTER (PC). The PC contains the address of the currently
executing instruction. During instruction execution and exception processing,
the processor automatically increments the contents of the program counter
or places a new value in the program counter, as appropriate. For some
addressing modes the PC may used as a pointer for PC-relative addressing.

2.2.1.4 CONDITION CODE REGISTER (CCR). The CCR is the lower byte of the SR
and is the only portion of the SR available in the user mode. See 2.2.2.2
STATUS REGISTER (SR) for further information.

2.2.1.5 FLOATING-POINT DATA REGISTERS (FP7-FPO). These floating-point data
registers are analogous to the integer data registers of all M68000 Family
processors. The floating-point data registers always contain extended-pre­
cision numbers. All external operands, regardless of the data format, are
converted to extended-precision values before being used in any calculation
or stored in a floating-point data register. A reset or a null-restore operation
sets FP7-FPO to positive, nonsignaling not-a-numbers (NANs). For a complete
description of NANs and floating-point data formats, see SECTION 3 DATA
ORGANIZATION AND ADDRESSING CAPABILITIES.

MOTOROLA MC68040 USER'S MANUAL 2-7

31 15 7 0

DO

01

02

03
DATA

04 REGISTERS

05

06

07

31 15 0

AO

A1

A2

A3 ADDRESS
REGISTERS

A4

AS

AS

31 15 0 USER

I I I A7 =t STACK
(USP) POINTER

31 0

I I PC =t PROGRAM
COUNTER

15 7 0 =t CONDITION r----- I I L __ ':. __ CCR CODE
REGISTER

79 63 0

FPO

FPl

FP2

FP3 FLOATING-POINT
FP4 DATA REGISTERS

FP5

FPS

FP7

31 15 7 0 r------------ I EXCEPTION MODE } FLOATING-POINT
I 0 ENABLE CONTROL FPCR CONTROL
------------- REGISTER

} FLOATING-POINT
FPSR STATUS

REGISTER

FLOATING-POINT
FPIAR } INSTRUCTION

ADDRESS
REGISTER

Figure 2-2. User Programming Model

2-8 MC68040 USER'S MANUAL MOTOROLA

2.2.1.6 FLOATING-POINT CONTROL REGISTER (FPCR). The FPCR (see Figure 2-
2) contains an exception enable byte that enables/disables traps for each
class of floating-point exceptions and a mode byte that sets the user select­
able modes. The FPCR can be read or written to by the user. Bits 16 through
31 are reserved for future definition by Motorola. These bits are always read
as zero and are ignored during write operations. The FPCR is cleared by the
reset function or a restore operation of the null state. When cleared, this
register provides the IEEE standard defaults.

2.2.1.6.1 Exception Enable Byte. One of the bits of the exception enable byte
(ENABLE) (see Figure 2-3) corresponds to each floating-point exception class.
The user can separately enable traps for each class of floating point-point
exceptions.

When the processor set a bit in the FPSR EXC byte and the corresponding
bit in the FPCR ENABLE byte is also set, an exception is signaled. The address
of the exception handler is derived from the vector address corresponding
to the exception. When a user writes to the ENABLE byte that enables a class
of floating-point exceptions. a previously generated floating-point exception
does not cause a trap to be taken regardless of the value in the FPSR EXC
byte.

The bits in the FPSR EXC byte and FPCR enable byte occupy the same po­
sitions within each byte. Dual and triple exceptions can be generated by a
single instruction execution. When multiple exceptions occur with traps en­
able for more than one exception class, the highest priority exception is
reported; the lower priority exceptions are never reported or taken. The
exception handler must check for multiple exceptions. The bits ofthe ENABLE
byte are organized in decreasing priority with bit 15 being the highest and
bit 8 the lowest.

BRANCH/SET ON
UNORDERED

SIGNALLING NOT A
NUMBER

OPERAND ERROR

OVERFLOW

MOTOROLA

15 14 13 12 11 10 8

INEXACT DECIMAL
INPUT

INEXACT OPERATION

l..-______ DIVIDE BY ZERO

UNDERFLOW

Figure 2-3. FPCR Exception Enable Byte

MC68040 USER'S MANUAL 2-9

..

•
2.2.1.6.2 MODE CONTROL BYTE. The mode control byte (MODE) (see Figure

2-4) controls the user-selectable rounding modes and rounding precisions.
A zero in this byte selects the IEEE defaults.

2-10

The rounding mode (RND) specifies how inexact results are rounded. Refer
to SECTION 9 EXCEPTIONS for a detailed description of the rounding al­
gorithm used.

The rounding precision (PREC) selects where rounding of the mantissa oc­
curs. For extended precision, the results is rounded to a 64-bit boundary;
single precision results is rounded to a 24-bit boundary, and double precision
is rounded to a 53-bit boundary.

The single and double rounding precisions are provided for emulation of
machines that only support those precisions. When the MC68040 performs
any operation, the calculation is carried out using extended precision inputs
and the intermediate result is calculated as if to produce infinite precision.
After the calculation is complete, this intermediate result is rounded to the
selected precision and stored in the destination.

If the destin.ation is a floating-P9int data register (FPO-FP7), the stored value
is in the extended precision format rounded to the precision specified by the
PREC bits. Thus, all mantissa bits beyond the selected precision are zero after
the rounding operation. If the single or double precision mode is selected,
the exponent value is in the correct range for the single or double precision
format (although it is stored in extended precision format).

If the destination is memory location, the PREC bits are ignored. In this case,
a number in the extended precision format is taken from the source floating­
point data register, rounded to the destination format precision and then
written to memory.

The execution speed of all instructions is degraded significantly when single
or double precision rounding modes are used. When operating in these
modes, the MC68040produces the same results as any other machine that
conforms to the IEEE standard without supporting extended precision cal­
culations. The results may not be the same as performing the same operation
in extended precision and storing the results in the single or double precision
format.

MC68040 USER'S MANUAL MOTOROLA

4

PREC RND

ROUNDING MODE
00 = TO NEAREST
01 = TOWARD ZERO

o

10 = TOWARD MINUS INFINITY
11 = TOWARD PLUS INFINITY

ROUNDING PRECISION
00 = EXTENDED

'-------- 01 = SINGLE
10 = DOUBLE
11 = (UNDEFINED, RESERVED)

Figure 2-4. FPCR Mode Control Byte

o

2.2.1.7 FLOATING-POINT STATUS REGISTER (FPSR). The FPSR (see Figure 2-2)
contains a floating-point condition code byte (FPCC), a floating-point excep­
tion status byte (EXC), quotient bits, and a floating-point accrued exception
byte (AEXC). All bits in the FPSR can be read or written by the user. Execution
of most floating-point instructions modifies this register. The reset function
or a restore operation of the null state clears the FPSR.

2.2.1.7.1 Foating-Point Condition Code Byte. The floating-point condition code
(FPCC) byte (see Figure 2-5) contains four condition code bits that are set at
the end of all arithmetic instructions involving the floating-point data reg­
isters. The FMOVE FPm, (ea), move multiple floating-point data register, and
move system control register instructions do not affect the FPCC.

31 30 29

MOTOROLA

28 27 26 25 24

N I Z I I I NAN I
L NOT A NUMBER OR UNORDERED

'---- INFINITY

'------ ZERO

'---------NEGATIVE

Figure 2-5. FPSR Condition Code Byte

MC68040 USER'S MANUAL 2-11

..

2-12

The operation result data type determines how the four condition code bits
are set. Table 2-1 lists the condition code bit setting for each result data
type.The MC68040 generates only eight of the 16 possible combinations .
Loading the FPCC with one of the other combinations and executing a con­
ditional instruction may produce an unexpected branch condition.

Table 2-1. Condition Code versus Results Data Type

N Z I NAN Results Data Type

0 0 0 0 + Normalized or Denormalized

1 0 0 0 - Normalized or Denormalized

0 1 0 0 + 0

1 1 0 0 - 0

0 0 1 0 + Infinity

1 0 1 0 - Infinity

0 0 0 1 + NAN

1 0 0 1 - NAN

The IEEE standard defines the following four conditions and only requires
the generation of the condition codes as a result of a floating-point compare
operation. In addition to this requirement, the FPCP can test these conditions
at the end of any operation affecting the condition codes.

EO Equal To
GT Greater Than
LT Less Than
UN Unordered

An unordered condition occurs when one or both of the operands in a float­
ing-point compare operation is a NAN. For purposes of the floating-point
conditional branch, set byte on condition, decrement and branch on condi­
tion, and trap on condition instructions, the MC68040 logically combines the
four condition codes to form the IEEE conditions according to the following
equations:

EO=Z
GT = """'N;-v"'"""'N'"""'"A-;-N~v-=Z
LT=NANANvZ
UN=NAN

where:
"A" = Logical AND
"v" = Logical OR

MC68040 USER'S MANUAL MOTOROLA

Note that the setting of the floating-point condition codes is independent of
the operation executed; the condition codes only indicate that data type of
the result generated. Unlike other M68000 condition codes, the IEEE defined
conditions can always be derived from the data type ofthe result. The setting
of the M68000 integer condition codes is dependent upon the operation
executed as well as the result.

To aid programmers of floating-point subroutine libraries, the MC68040 im­
plements the four previously described floating-point condition code bits in
hardware instead of the four IEEE defined conditions. The IEEE conditions
are derived by an instruction when needed. For example, the programmers
of a complex arithmetic multiply subroutine usually prefers to handle "spe­
cial" data types such as zeros, infinities, or NANs, separately from "normal"
data types. The floating-point condition codes allow users to efficiently detect
and handle these "special" values.

2.2.1.7.2 Quotient Byte. The quotient byte (see Figure 2-6) is provided for com­
patibility with MC68881/MC68882 Floating-Point Unit. This byte contains the
seven least-significant bits of the quotient (unsigned) and the sign of the
entire quotient.

The quotient bits can be used in argument reduction for transcendentals and
other functions. For example, seven bits are more than enough to determine
the quadrant of a circle in which an operand resides. The quotient bits remain
set until they are cleared by the user.

2.2.1.7.3 Exception Status Byte. The exception status byte (EXC) (see Figure 2-7)
contains a bit for each floating-point exceptions that may have occurred
during the most recent arithmetic instruction or move operation. This byte

23 22 21

MOTOROLA

20 19 18

QUOTIENT

17 16

SEVEN LEAST SIGNIFICANT
BITS OF QUOTIENT

SIGN OF QUOTIENT

Figure 2-6. FPSR Quotient Byte

MC68040 USER'S MANUAL 2-13

is cleared at the start of most operations; operations that cannot generate
any floating point exceptions do not clear this byte. This byte can be used
by an exception handler to determine which floating- point exception(s) caused
a trap.

BRANCH/SET ON
UNORDERED

SIGNAWNG NOT A
NUMBER

OPERAND ERROR

OVERFLOW

15 14 13 12 11 10 9 8

L BSUN L SNAN I OPERR I OVFL I UNFL I DZ I INEX2 I INEX1 I
~ L

Figure 2-7. FPSR Exception Status Byte

INEXACT DECIMAL
INPUT

INEXACT OPERATION

DIVIDE BY ZERO

UNDERFLOW

If a bit is set in the EXC byte and the corresponding bit in the ENABLE byte
in the floating-point control register is also set, an exception is signaled.
When a floating- point exceptions is detected by the MC68040, the corre­
sponding bit in the EXC byte is set, even if the trap for that exception class
is disabled. (A user write operation to the FPSR, which sets a bit in the EXC
byte, does not cause a trap to be taken regardless of the value in the ENABLE
byte).

2.2.1.7.4 Accured Exception Byte. The accured exception byte (AEXC) contains
five exception bits (see Figure 2-8) required by the IEEE standard for trap
disabled operation. These exceptions are logical combinations of the bits in
the EXC byte. The AEXC byte contains the history of all floating-point ex­
ceptions that have occurred since the user last cleared the AEXC byte. In
normal operations, only the user clears this byte by writing to the FPSR. The
AEXC is cleared by a reset or a restore operation of the null state.

2-14

Many users electto disable traps for all or part of the floating-point exception
classes. The AEXC byte is provided to make it unnecessary to poll the EXC
byte after each floating-point instruction. At the end of most operations
(FMOVEM and FMOVE excluded), the bits in the EXC byte are logically com­
bined to form an AEXC value that is logically ORed into the existing AEXC
byte. This operation creates "sticky" floating-point exception bits in the AEXC
byte that the user need poll only once (for example, at the end of a series of
floating-point operations).

MC68040 USER'S MANUAL MOTOROLA

lOP I OVFL I UNFL I DZ I INEX I I I I
I IL-______ INEXACT

L-________ DIVIDE BY ZERO

L-__________ UNDERFLOW

L-____________ OVERFLOW

'----------------- INVAUDOPERATION

Figure 2-8. FPSR Accured Exception Byte

The setting or clearing of bits in the AEXC byte does not cause an exception
nor does it prevent taking an exception. The relationship between the bits
in the EXC byte and the bits in the AEXC is shown by the following equations.
These equations apply to setting the AEXC bits at the end of each operation
that affects the AEXC byte:

AEXC(IOP) = AEXC(IOP)vEXC(SNANvOPERR)
AEXC(OVFL) = AEXC(OVFL)vEXC(OVFL)
AEXC(UNFL) =AEXC(UNFL)vEXC(UNFLLlNEX2
AEXC(DZ) = AEXC(DZ)vEXC(DZ
AEXC(INEX) =AEXC(INEX)vEXC(lNEX1vINEX2vOVFL)

Where: 'V' = Logical OR
"L" = Logical AND

2.2.1.8 FLOATING-POINT INSTRUCTION ADDRESS REGISTER (FPIAR). The float­
ing-point instructions operate concurrently with the integer unit. That is, the
integer unit can be executing instructions while the floating-point unit (FPU)
is simultaneously executing a floating-point instruction. Additionally, the FPU
can concurrently execute two floating-point instructions. As a result of this
nonsequential instruction execution, the PC value stacked by the MC68040,
in response to a floating-point exception trap, may not point to the offending
instruction.

For the subset of the FPU instructions that generate exception traps, the 32-
bit FPIAR is loaded with the logical address of the instruction before the
instruction is executed. This address can then be used by a floating-point
exception handler to locate a floating-point instruction that has caused an
exception. Since the FPU FMOVE to/from the FPCR, FPSR, or FPIAR and

MOTOROLA MC68040 USER'S MANUAL 2-15

..

FMOVEM instructions cannot generate floating-point exceptions, these in­
structions do not modify the FPIAR. These instructions can be used to read
the FPIAR in the trap handler without changing the previous value. The FPIAR
is cleared by a reset or a null-restore operation.

2.2.2 Supervisor Programming Model

31

31

The supervisor programming model (see Figure 2-9) is used exclusively by
system programmers to implement sensitive operating system functions,
1/0 control, and MMU subsystems. All the accesses that affect the control
features of the MC68040 are in the supervisor programming model. Thus,
all application software is written to run in the user mode and migrates to
the MC68040 from any M68000 platform without modification.

15 o
I
15

I I L...-_______ ..L-_______ 1A7'(MSP) :J- MASTER STACK POINTER

15 7 o
I (CCR) ISR

31 o
I L....-_______________ ---IIVBR

31 2 0

~-------------------------
r -BSFC L_________________________ D~

31 0

I ICACR

31 0

I IURP

31 0

I ISRP

15 0

I ITC

31 0

I IDno

31 0

I IDm

31 0

'I IInO

31 0

I I'm

15 0

I IMMUSR

STATUS :J- REGISTER

:J- VECTOR BASE REGISTER

}
ALTERNATE SOURCE AND DESTINATION
FUNCTION CODE REGISTERS

:J- CACHE CONTROL REGISTER

:J- USER ROOT POINTER REGISTER

:J- SUPERVISOR ROOT POINTER REGISTER

:J- TRANSLATION CONTROL REGISTER

:J- DATA TRANSPARENT TRANSLATION REGISTER 0

J- DATA TRANSPARENT TRANSLATION REGISTER 1

""L INSTRUCTION TRANSPARENT TRANSLATION
.....r- REGISTERO

""L INSTRUCTION TRANSPARENT TRANSLATION
...r REGISTER 1

:J- MMU STATUS REGISTER

Figure 2-9. Supervisor Programming Model

2-16 MC68040 USER'S MANUAL MOTOROLA

The supervisor programming model consists of the registers available to the
user as well as the following control registers:

• Two, 32-Bit Supervisor Stack Pointers Interrupt Stack Pointer (ISP) and
Master Stack Pointer (MSP)

• 16-Bit Status Register (SR)
• 32-Bit Vector Base Register (VBR)
• Two, 32-Bit Alternate Function Code Registers Source Function Code

(SFC) and Destination Function Code (DFC)
• 32-Bit Cache Control Register (CACR)
• 32-Bit User Root Pointer (URP)
• 32-Bit Supervisor Root Pointer (SRP)
• 16-Bit Translation Control Register (TC)
• Two, 32-Bit Data Transparent Translation Registers (DTTO and DTT1)
• Two, 32-Bit Instruction Transparent Translation Registers (lTTO and ITT1)
• 16-Bit MMU Status Register (MMUSR)

The following paragraphs describe the supervisor programming model reg­
isters. Additional information on the ISP, MSP, SR and VBR registers can be
found in SECTION 9 EXCEPTION PROCESSING. Refer to SECTION 7 IN·
STRUCTION AND DATA CACHES for information on the CACR and to SEC·
TION 6 MEMORY MANAGEMENT for information on the URP, SRP, TC, DTTn,
ITTn, and MMUSR registers.

2.2.2.1 INTERRUPT AND MASTER STACK POINTERS (AT and AT'). The interrupt
and master stack pointers are general-purpose address registers for the su­
pervisor mode that may be used as software stack pointers, index registers,
or base address registers. The interrupt and master stack pointers may be
used for word and long-word operations.

Register A7 refers to three different registers; the USP (A7) in the user pro­
gramming model and the ISP and MSP (AT and AT) in the supervisor
programming model. In the supervisor programming model, the active stack
pointer (ISP or MSP) is called the supervisor stack pointer.

2.2.2.2 STATUS REGISTER (SR). The SR (see Figure 2-10), which stores the pro­
cessor status, contains the condition codes that reflect the results of a pre­
vious operation and codes can be used for conditional instruction execution
in a program. The condition codes are extend (X), negative (N), zero (Z),
overflow (V), and carry (C). The user byte containing the condition codes is
the only portion of the SR information available in the user mode; it is
referenced as the CCR in user programs. In the supervisor mode, software

MOTOROLA MC68040 USER'S MANUAL 2-17

..

USER BYTE
SYSTEM BYTE (CONDITION CODE REGISTER)

/r ________ ~A~ ________ ~, /r ________ ~A~ ______ ~,

SUPERVISORIUSER
STATE

INTERRUPT
PRIORITY MASK

MASTERANTERRUPT ___ --'
STATE

Figure 2-10. Status Register

4

CARRY

OVERFLOW

'------ZERO

'------ NEGATIVE

'--------EXTEND

can access the full SR, including the interrupt priority mask as well as ad­
ditional control bits. These bits indicate the following states forthe processor:
one of two trace modes (T1, TO)' supervisor or user mode (S), and master
or interrupt mode (M).

2.2.2.3 VECTOR BASE REGISTER (VBR). The VBR contains the base address of
the exception vector table in memory. The displacement of an exception
vector is added to the value in this register to access the vector table.

2.2.2.4 ALTERNATE FUNCTION CODE REGISTERS (SFC and DFC). The alternate
function code registers contain 3-bit function codes. Function codes can be
considered extensions of the 32-bit logical address that optionally provides
as many as eight, 4 Gbyte address spaces. Function codes are automatically
generated by the processor to select address spaces for data and programs
at the user and supervisor modes. SFC and DFC registers are used by certain
instructions to explicitly specify the function codes for operations.

2-18 MC68040 USER'S MANUAL MOTOROLA

SECTION 3
DATA ORGANIZATION AND ADDRESSING
CAPABILITIES

Most external references to memory by a microprocessor are either program
references or data references; they either access instruction words or op­
erands (data items) for an instruction. Program references are references to
program space, the section of memory that contains the program instructions
and any immediate data operands residing in the instruction stream. Data
references refer to the data space, the section of memory that contains the
program data. Data items in the instruction stream can be accessed with the
program counter relative addressing modes; however, these accesses are
classified as program references. The MC68040 automatically accesses the
program space or data space as required.

This section describes the data organization and addressing capabilities of
the MC68040. It lists the type of operands used by instructions, and describes
the registers and their use as operands. Next the section describes the or­
ganization of data in memory and the addressing modes available to access
data in memory. Finally, the section describes the system stack and user
stacks and queues.

3.1 INTEGER UNIT OPERAND DATA FORMATS

The MC68040, with its integer unit and floating-point unit (FPU), supports
the operand data types shown in Table 3-1. The operand types supported by
the integer unit include the data types supported by the MC68030 plus a new
data type (16-byte block) for the MOVE16 instruction. Integer unit operands
can reside in registers, in memory, or within the instructions themselves,
and may be a single bit, a bit field, a byte, a word, a long word, a quad word,
or a 16-byte block. The operand size for each instruction is either explicitly
encoded in the instruction or implicitly defined by the instruction operation.

MOTOROLA MC68040 USER'S MANUAL 3-1

..

•
Table 3-1. Data Types

Operand Data Type Size Supported by: Notes

Bit 1 Bit Integer Unit -

Bit Field 1-32 Bits Integer Unit Field of Consecutive Bits

BCD 8 Bits Integer Unit Packed: 2 Digits/Byte
Unpacked: 1 Digit/Byte

Byte Integer 8 Bits Integer Unit, FPU -

Word Integer 16 Bits Integer Unit, FPU -

Long-Word Integer 32 Bits Integer Unit, FPU -

Quad-Word Integer 64 Bits Integer Unit Any Two Data Registers

16 Byte 128 Bits Integer Unit Memory-Only, Aligned to 16-Byte Boundary

Single-Precision Real 32 Bits FPU 1-Bit Sign, 8-Bit Exponent, 23-Bit Mantissa

Double-Precision Real 64 Bits FPU 1-Bit Sign, 11-Bit Exponent, 52-Bit Mantissa

Extended-Precision Real 80 Bits FPU 1-Bit Sign, 15-Bit Exponent, 64-Bit Mantissa

3.2 FLOATING-POINT UNIT OPERAND DATA FORMATS

3-2

The following paragraphs describe the FPU unit operand data formats. Six
data formats are supported: three signed binary integer formats and three
binary floating-point formats. All data formats are supported uniformly by
all arithmetic instructions. These formats are as follows:

Byte Integer (B)
Single Precision Real (S)
Word Integer (W)
Double Precision Real (D)
Long-Word Integer (L)
Extended Precision Real (X)

The capital letter in parenthesis is the suffix added to a floating-point instruc­
tion in the assembly language syntax to specify the data format of operands
external to the MC68040,

A seventh data format, packed decimal real (P), is not directly supported in
hardware, but is implicitly supported by trapping as an unimplemented data
type (instead of as an illegal instruction) to allow efficient emulation in soft­
ware, Referto SECTION 9 EXCEPTION PROCESSING for detailed information.

Within the floating-point data formats, there are five types of numbers that
can be represented: normalized numbers, denormalized numbers, zeros, in­
finities, and not-a-numbers (NANs). These data types are represented with
special encodings corresponding to each data format.

MC68040 USER'S MANUAL MOTOROLA

3.2.1 Integer Data Formats

31

The three signed (twos complement) integer data formats supported by the
FPU (byte, word, and long word) are identical to those supported by the
integer unit (see Figure 3-1).

Since all FPU operations are performed in full extended-precision format,
signed integer operands are converted to extended precision before the spec­
ified operation is performed. Thus, mixed-mode arithmetic is implicitly sup­
ported.

8 BITS 1 BYTE INTEGER

15

'--_____ 1_6 _BIT_S _____ ----'I WORD INTEGER

32 BITS LONG INTEGER

Figure 3-1. Signed Integer Data Formats

3.2.2 Binary Real-Data Formats

Floating-point numbers can be encoded in any of three data formats: single
precision (32 bits), double precision (64 bits), and double-extended precision
(96 bits, 80 of which are used). All three formats fully comply with the IEEE
Standard for Binary Floating-Point Arithmetic.

NOTE

The single-extended-precision format defined in the IEEE standard
is redundant in a device that supports the double-extended-precision
format. Thus, all references in this manual to extended precision
imply double-extended precision as defined by the IEEE standard.

Since all floating-point internal operations are performed in extended pre­
cision, single- and double-precision operands are converted to extended­
precision values before the specified operation is performed. Thus, mixed­
mode arithmetic is implicitly supported. Memory formats for the real-data
formats are shown in Figure 3-2.

MOTOROLA MC68040 USER'S MANUAL 3-3

..

.. 94

3-4

80

62 51

L SIGN OF FRACTION

63

IMPLICIT BINARY POINT

52-BIT
FRACTION

64-81T
MANTISSA

Figure 3-2. Binary Real-Data Formats

SINGLE REAL

o
DOUBLE REAL

o
EXTENDED REAL

The exponent in all three binary formats is an unsigned binary integer with
an implied bias added to it. The bias values for single, double, and extended
precision are 127, 1023, and 16383, respectively. When the bias is subtracted
from the value of the exponent, the result represents a signed twos-comple­
ment power of two that yields the magnitude of a normalized floating-point
number when multiplied by the mantissa. Since biased exponents are used,
a program can execute an integer-compare instruction (CMP) to compare
floating-point numbers in memory (regardless of the absolute magnitude of
the exponents).

Data formats for single- and double-precision numbers differ slightly from
the data formats for extended-precision numbers in the representation of the
mantissa. For all three precisions, normalized mantissa is always in the range
[1.0 ... 2.0]. The extended-precision data format explicitly represents the en­
tire mantissa, including the explicit integer part bit. However, for single- and
double-precision data formats, only the fractional portion of the mantissa is
explicitly represented; the integer part, always one, is implied.

The IEEE standard has created the term "significand" to bridge this difference
and to avoid the historical implications of the term mantissa. The IEEE stand­
ard defines a significand as the component of a binary floating-point number

MC68040 USER'S MANUAL MOTOROLA

that consists of an explicit or implicit leading bit to the left of the implied
binary point. This manual interchangeably uses the terms mantissa and sig­
nificand, defined as follows:

Single-Precision Mantissa

Double-Precision Mantissa

Extended-Precision Mantissa

= Single-Precision Significand
= 1. <23-Bit Fraction Field>
= Double-Precision Significand
= 1.<52-Bit Fraction Field>
= Extended-Precision Significand
= 1.Fraction
= <64-Bit Mantissa Field>

NOTE

Throughout this manual, ranges are specified using traditional set
notation with the format "bound ... bound" specifying the bound­
aries of the range. The type brackets enclosing the range defines
whether the endpoint is inclusive or exclusive. A square bracket
indicates inclusive, and a parenthesis indicates exclusive. For ex­
ample, the range specification "[1.0 ... 2.0]" defines the range of
numbers greater than or equal to 1.0 and less than or equal to 2.0.
The range specification "[0.0 + inf]" defines the range of numbers
greater than 0.0 and less than or equal to positive infinity.

Each of the three floating-point data formats can represent five, unique,
floating-point data types:

Normalized Numbers
Denormalized Numbers
Zeros
Infinities
Not-a-numbers (NANs)

The normalized data type never uses the maximum or minimum exponent
value for a given format (except for the extended-precision format see fol­
lowing note). These exponent values in each precision are reserved for rep­
resenting the special data types: zeros, infinities, denormalized numbers, and
NANs. Details of each type number for each format are shown in 3.2.3 Float­
ing-Point Data Format Details.

MOTOROLA MC68040 USER'S MANUAL 3-5

•

..
NOTE

There is a subtle difference between the definition of an extended­
precision number with an exponent equal to zero and a single- or
double-precision number with an exponent equal to zero. If the ex­
ponent of a single- or double-precision number is zero, the number
is defined to be denormalized, and the implied integer bit is also
zero. However, an extended-precision number with an exponent of
zero may have an explicit integer bit equal to one, which results in
a normalized number (even though the exponent is equal to the
minimum value).

For simplicity, the following discussion treats all three real formats
in the same manner, where an exponent value of zero identifies a
denormalized number. It should be noted that the extended precision
format may deviate from this rule.

3.2.2.1 ~ORMALIZED NUMBERS. Normalized numbers encompass all repre­
sentable real values between the overflow and underflow thresholds: i.e.,
those numbers whose exponents lie between the maximum and minimum
values. Normalized numbers may be positive or negative. For normalized
numbers, the implied integer part bit in single and double precision is one.
In extended precision, the integer bit is explicitly a one (see Figure 3-3).

MIN < EXPONENT < MAX MANTISSA = ANY BIT PATIERN

L SIGN OF MANTISSA. 0 OR 1

Figure 3-3. Format of Normalized Numbers

3.2.2.2 DENORMALIZED NUMBERS. Denormalized numbers represent real val­
ues near the underflow threshold (underflow is detected for a given data
format and operation when the result exponent is less than or equal to the
minimum exponent value). Denormalized numbers may be positive or neg­
ative. Fordenormalized numbers, the implied integer part bit in single and
double precision is a zero (0). In extended precision, the integer bit is explicitly
a zero (0), (see Figure 3-4).

3-6 MC68040 USER'S MANUAL MOTOROLA

EXPONENT =0 MANTISSA = ANY NON-ZERO BIT PATTERN

SIGN OF MANTISSA, 0 OR 1

Figure 3-4. Format of Denormalized Numbers

Traditionally, floating-point number systems perform a "flush-to-zero" when
underflow is detected. This leaves a large gap in the number line between
the smallest magnitude normalized number and zero. The IEEE standard
implements gradual underflows: the result mantissa is shifted right (denor­
malized) while the result exponent is incremented until the result exponent
reaches the minimum value. If all the mantissa bits of the result are shifted
off to the right during this denormalization, the result becomes zero. In many
cases, gradual underflow limits the potential underflow damage to no more
than a round-off error. (This underflow and denormalization description ig­
nores the effects of rounding and the user-selectable rounding modes). Thus,
the large gap in the number line created by "flush-to-zero" number systems
is filled with representable (denormalized) numbers in the IEEE "gradual
underflow" floating-point number system.

Since the extended-precision data format has an explicit integer part bit, a
number can be formatted with a nonzero exponent (less than the maximum
value) and a zero integer bit, which is not defined by the IEEE standard. Such
a number is called an unnormalized number.

Denormalized and unnormalized numbers are not directly supported in hard­
ware, but are implicitly supported by trapping as an unimplemented data
type to allow efficient conversion in software. Refer to SECTION 9 EXCEPTION
PROCESSING for more details.

3.2.2.3 ZEROS. Zeros are signed (positive or negative) and represent the real
values + 0.0 and -0.0 (see Figure 3-5).

I t EXPONENT = 0 I MANTISSA=O

Figure 3-5. Format of Zero

MOTOROLA MC68040 USER'S MANUAL 3-7

•

..
3.2.2.4 INFINITIES. Infinities are signed (positive or negative) and represent real

values that exceed the overflow threshold. Overflow is detected for a given
data format and operation when the result exponent is greater than or equal
to the maximum exponent value. (This overflow description ignores the ef­
fects of rounding and the user-selectable rounding models.) For extended­
precision infinities, the MSB of the mantissa (the integer bit) can be either
one or zero (see Figure 3-6).

I t EXPONENT = MAXIMUM I MANTISSA = 0 *

SIGN OF MANTISSA, 0 OR 1

* For the extended-precision format, the most significant bit of the mantissa (the integer bit) is a don't care.

Figure 3-6. Format of Infinity

3.2.2.5 NOT-A-NUMBERS. When created by the FPU, NANs represent the results
of operations having no mathematical interpretation, such as infinity divided
by infinity. All operations involving a NAN operand as an input return a NAN
result. When created by the user, NANs can protect against unitialized var­
iables and arrays or represent user-defined special number types. For ex­
tended-precision NANs, the MSB of the mantissa (the integer bit) can be
either one or zero (see Figure 3-7).

3-8

EXPONENT = MAXIMUM MANTISSA = ANY NON-ZERO BIT PATIERN

L SIGN OF MANTISSA, 0 OR 1

Figure 3-7. Format of NANs

Two different types of NANs are implemented by the FPU. The value of the
MSB of the fraction identifies the type. The identifying bit is the MSB of the
mantissa for single and double precision, and the MSB of the mantissa minus
one for extended precision. NANs with a leading fraction bit equal to one
are nonsignaling NANs; NANs with a leading fraction bit equal to zero are
signaling NANs (SNANs). A SNAN can be used as an escape mechanism for
a user-defined, non-IEEE data type. The FPU never creates a SNAN as a result
of an operation.

MC68040 USER'S MANUAL MOTOROLA

The IEEE specification defines the manner in which a NAN is processed when
used as an input to an operation. Particularly, if a SNAN is used as an input
and the SNAN trap is not enabled, a nonsignaling NAN must be returned as
a result. The FPU accomplishes this by using the source SNAN, setting the
MSB of the fraction, and storing the resultant nonsignaling NAN in the des-
tination. Because of the IEEE formats for NANs, the result of setting the most ..
significant fraction bit of a SNAN is always a nonsignaling NAN.

When NANs are created by the FPU, they always contain the same bit pattern
in the mantissa; for any precision, all bits of the mantissa are ones. When a
NAN is created by the user, any nonzero bit pattern can be stored in the
mantissa.

3.2.3 Floating-Point Data Format Details

Tables 3-2 through 3-4 provide the format specification details for the single
(S), double (0), and extended (X) precision binary real data formats.

3.3 ORGANIZATION OF DATA IN REGISTERS

The following paragraphs provide a description of data organization within
the data, address, and control registers.

3.3.1 Integer Data Registers

Each integer data register is 32 bits wide. Byte operands occupy the lower
order 8 bits, word operands the lower order 16 bits, and long-word operands
the entire 32 bits. When a data register is used as either a source or destination
operand, only the appropriate low-order byte or word (in byte or word op­
erations, respectively) is used or changed; the remaining high-order portion
is neither used nor changed. The LSB of a long-word integer is addressed
as bit zero and the MSB is addressed as bit 31. For bit fields, MSB is addressed
as bit zero, and the LSB is addressed as the width of the field minus one. If
the width of the field plus the offset is greater than 32, the bit field wraps
around within the register. Figure 3-8 shows the organization of various types
of data in the data registers.

Quad-word data consists of two long words: for example, the product of 32-
bit mUltiply or the quotient of 32-bit divide operations (signed and unsigned).
Quad words may be organized in any two integer data registers without

MOTOROLA MC68040 USER'S MANUAL 3-9

..

3-10

Table 3-2. Single-Precision Binary Real-Data Format

Memory Format:

Field Size (in Bits):
s Sign
e = Biased Exponent
1 = Fraction

Total

Interpretation 01 Sign:
Positive Mantissa, s =
Negative Mantissa, s =

Normalized Numbers:
Bias 01 e
Range 01 e
Range 011
Mantissa = Signilicand =
Relation to Representation 01 Real Numbers

Denormalized Numbers:
e = Format Minimum =
Bias 01 e .
Range 011
Mantissa = Signilicand =
Relation to Representation 01 Real Numbers

Signed Zeros:
e = Format Minimum =
1 = Mantissa = Signilicand =

Signed Inlinities:
e = Format Maximum =
f = Mantissa = Signilicand =

NANs (Not-A-Number):
s =
e = Format Maximum =
1 =
Representation 01 f

xxxx ... xxxx
1 When Created by the FPCP

Ranges (Approximate):
Maximum Positive Normalized
Minimum Positive Normalized
Minimum Positive Denormalized

31 30 23 22

BIASED
EXPONENT

1
8
23
32

+ 127 ($7F)
o < e < 255 ($FF)
Zero or Nonzero
1.1
(-1)s x 2e -127 x 1.1

0($00)
+ 126 ($7E)
Nonzero
0.1
(-1)s x 2 - 126 x 0.1

0($00)
0.1 = 0.0

255 ($FF)
0.1 = 0.0

Don't Care
255 ($FF)
Non-Zero
0.1xxxx ... xxxx, Nonsignaling
O.Oxxxx ... XXXX, Signaling
Nonzero Bit Pattern
.11111 ... 1111

3.4 x 1038
1.2 x 10s- 38
1.4 x 10- 45

MC68040 USER'S MANUAL

FRACTION

MOTOROLA

MOTOROLA

Table 3-3. Double-Precision Binary Real-Data Format

Memory Format:

Field Size (in Bits):
s = Sign
e = Biased Exponent
f = Fraction

Total

Interpretation of Sign:
Positive Mantissa, s =

Negative Mantissa, s =

Normalized Numbers:
Bias of e
Range of e
Range of f
Mantissa = Significand =
Relation to Representation of Real Numbers

Denormalized Numbers:
e = Format Minimum =

Bias of e
Range of f
Mantissa = Significand =
Relation to Representation of Real Numbers

Signed Zeros:
e = Format Minimum =
f = Mantissa = Significand =

Signed Infinities:
e = Format Maximum =
f = Mantissa = Signiticand =

NANs (Not-A-Number):
s =
e = Format Maximum =
t =
Representation ot t

xxxx. . xxxx
t When Created by the FPCP

Ranges (Approximate):
Maximum Positive Normalized
Minimum Positive Normalized
Minimum Positive Denormalized

63 62 52 51

I I
BIASED

EXPONENT

11
52
64

+ 1023
o < e < 2047 ($7FF)
Zero or Nonzero
1.f
(-liS x 2e-l023 x 1.t

o ($000)

+ 1022 ($3FE)
Nonzero
O.t
(-liS x 2 - 1022 x O.t

o ($00)
OJ = 0.0

2047 ($7FF)
O.t = 0.0

Don't Care
2047 ($7FF)
Nonzero
O.lxxxx ... xxxx, Nonsignaling
O.OXXXX ... xxxx, Signaling
Nonzero Bit Pattern
.11111 ... 1111

18 x 10307
2.2 x 10- 308
4.9 x 10- 324

MC68040 USER'S MANUAL

FRACTION

-

3-11

•

3-12

Table 3-4. Extended-Precision Binary Real-Data Format

Memory Format:

Field Size lin Bits):
s = Sign
e = Biased Exponent
u = Zero, Reserved
j = Integer Part
f = Fraction

Total

Interpretation of Unused Bits:
Input
Output

Interpretation of Sign:
Positive Mantissa, s =
Negative Mantissa, s =

Normalized Numbers:
Bias 01 e
Range 01 e
j=
Range 01 I
j.l = Mantissa = Signilicand =
Relation to Representation 01 Real Numbers

Denormalized Numbers:
e = Format Minimum
Bias of e
j=
Range 01 I
j.l = Mantissa = Signilicand =
Relation to Representation 01 Real Numbers

Signed Zeros:
e = Format Minimum '=
j.l = Mantissa = Signilicand =

Signed Inlinities:
e = Format Maximum =
j=
j.l = Mantissa = Signilicand

NANs (Not-A-Numbers):
s =
j=c
e = Format Maximum =
1=

Representation 01 I

xxx ... xxxx
I When Created by the FPCP

Ranges (Approximate):
Maximum Positive Normalized
Minimum Positive Normalized
Minimum Positive Denormalized

15
16
1
63
96

Don't Care
All Zeros

+ 16383 ($3FFF)
o < = e < 32767 ($7FFF)
1
Zero or Nonzero
1.1
(-1)s x 2e-16383 x j.l

0($0000)
+ 16383 ($3FFF)
o
Nonzero
0.1
(-1)s x 2-16383 x 0.1

0($0000)
0.0

32767 ($7FFF)
Don't Care
j.ODO ... OOOO

Don't Care
Don't Care
32767 ($7FFF)
Nonzero

j.1xxx ... XXXX, Nonsignaling
j.Oxxx ... xxxx, Signaling
Nonzero Bit Pattern
1.11111 ... 1111

6 x 104931
8 x 10- 4933
9 x 104952

MC68040 USER'S MANUAL

INTEGER PART
FRACTION

MOTOROLA

Bit (O,,;Modulo (Offset)<31, Offset 01 O=MSB)
31 30

I MSB I ••• LSB

Byte
31 23 15

HIGH-ORDER BYTE MIDDLE-HIGH BYTE MIDDLE-LOW BYTE LOW-ORDER BYTE

16-Bit Word
31

Long Word
31

Quad Word
63

I MSB I
31

HIGH-ORDER WORD

Bit Field (O,,;Offset<32, O<Width,,;32)
31

OFFSET

15

LONG WORD

ANY Ox

ANY Dy

WIDTH

Note: II width + 0Ifset>32, bit field wraps around within the register.

Unpacked BCD (a = MSB)
31

Packed BCD (a=MSB First Digit, e=MSB Second Digit)
31

LOW-ORDER WORD

32

I LSB I

7 6 5 4 3 2 1 ~

76543210

Figure 3-8. Data Organization in Integer Data Registers

restrictions on order or pairing_ There are no explicit instructions for the
management of this data type, although the MOVEM instruction can be used
to move a quad word into or out of the registers_

Binary-coded-decimal (BCD) data represents decimal numbers in binary form_
Although many BCD codes have been devised, the BCD instructions of the
M68000 Family support formats in which the LSBs consist of a binary number
having the numeric value of the corresponding decimal number. Two BCD

MOTOROLA MC68040 USER'S MANUAL 3-13

..

..
formats are used. In the unpacked BCD format, a byte contains one digit;
four LSBs contain the binary value and the four MSBs are undefined. Each
byte of the packed BCD format contains two digits; the least significant four
bits contain the least significant digit.

3.3.2 Floating-Point Data Registers

The eight, 80-bit floating-point data registers (FP7-FPO) are analogous to the
integer data registers (07-00) and are completely general purpose (i.e., any
instruction may use any register). The allowable data formats for the floating­
point data registers are explained in detail in the following paragraphs.

The FPU supports several data formats and data types with on-chip hardware.
Other data formats, such as packed-decimal real-data format, are supported
by software emulation (see Table 3-5).

Table 3-5. FPU Data Formats and Data Types

Dilta Formats

Single- Double- Extended- Packed-
Data Types Precision Precision Precision Decimal

Real Real Real Real

Normal * * * (a

Zero * * * (a

Infinity * * * (a

NAN * * * (a

Denormalized «I «I (a (a

Unnormalized (a (a

NOTES:
* = Data Format/Type Supported by On-Chip FPU Hardware

(a = Data Format/Type Supported by Software

Byte Word
Integer Integer

* *
* *

Long-Word
Integer

*
*

3.3.2.1 INTERNAL DATA FORMAT. All floating-point internal operations are per­
formed in extended precision. Regardless of data format, all external oper­
ands are converted to extended-precision values before the specified operation
is performed.

3-14

The format of an intermediate result is shown in Figure 3-9. The intermediate­
result exponent for some dyadic operations (multiply and divide) can easily
overflow or underfl·ow the 15-bit exponent of the designation FP register. In
order to simplify the overflow and underflow detection, intermediate results
in the FPU maintain a 17-bit, twos-complement integer exponent. When an

MC68040 USER'S MANUAL MOTOROLA

overflow or underflow intermediate result is detected, the intermediate 17-
bit exponent is always converted into a 15-bit biased exponent before it is
stored in a floating-point data register. Additionally, the mantissa is main­
tained internally as 67 bits for rounding purposes, but is always rounded to
64 bits (or less, depending on the selected rounding precision) before it is
stored in a floating-point data register.

r----E-X-~~--~-[-N-T----lnl~I-----------------F-R-~-C~-~-N---------------,j~i~ III!III

I L ImEGER BIT

OVERFLOW BIT

LSB OF FRACTION JJ~
GUARD BIT
ROUND BIT
STICKY BIT

Figure 3-9. Intermediate-Result Format

3.3.2.2 FORMAT CONVERSIONS. Two cases of conversion between two data for­
mats are as follows:

1) Converting an operand in any memory data format to the extended­
precision data format and storing it in a floating-point data register or
using it as the source operand for an arithmetic operation.

2) Converting the extended-precision value in a floating-point data register
to any data format and storing it in a memory destination or integer
register.

Since the internal data format used by the FPU is always extended precision,
all external operands, regardless of data format, are converted to extended­
precision values before the specified operation is performed. If the external
operand, regardless of data format, is a denormalized number, the number
is normalized before the operation is performed. Conversion and normali­
zation apply not only to loading a floating-point data register but also to
external operands involved in arithmetic operations.

Because floating-point data registers always contain extended-precision data
format values, an external extended-precision denormalized number moved
into a floating-point data register is stored as an extended-precision denor­
malized number. The number is first normalized and then denormalized be­
fore it is stored in the designated floating-point data register. This method
simplifies the handling of all other data formats and types.

MOTOROLA MC68040 USER'S MANUAL 3-15

•
If an external operand is an extended-precision unnormalized number, the
number is normalized before it is used in an arithmetic operation. If the
external operand is an extended-precision unnormalized zero (i.e., with a
mantissa of all zeros), the number is converted to an extended-precision
normalized zero before the specified operation is performed. This normali­
zation and conversion applies to loading a floating-point data register. The
regular use of unnormalized inputs not only defeats the purpose of the IEEE
standard, but also may produce gross inaccuracy in the results.

Conversion from the extended-precision data format to any of the other five
floating-point data formats occurs when the contents of a floating-point data
register are stored to memory or to an integer data register. Since no op­
eration performed by the FPU can create an unnormalized result, the result
of moving the contents of a floating-point data register to an extended­
precision external destination can never be an unnormalized number.

3.3.3 Address Registers

3-16

Each address register and stack pointer is 32 bits wide and holds a 32-bit
address. Address registers cannot be used for byte-sized operands. There­
fore, when an address register is used as a source operand, either the low­
order word or the entire long-word operand is used, depending upon the
operation size. When an address register is used as the destination operand,
the entire register is affected, regardless of the operation size. If the source
operand is a word size, it is first sign-extended to 32 bits, and then used in
the operation to an address register destination. Address registers are used
primarily for addresses and address-computation support. The instruction
set includes instructions that add to, compare, and move the contents of
address registers. Figure 3-10 shows the organization of addresses in address
registers.

31 15

SIGN EXTENDED 16-81T ADDRESS OPERAND

31

FULL 32-81T ADDRESS OPERAND

Figure 3-10. Address Organization in Address Registers

MC68040 USER'S MANUAL MOTOROLA

3.3.4 Control Registers

The control registers (refer to Figure 2-3) vary in size according to function.
The lower byte of the status register (SR), floating-point control register
(FPCR), floating-point status register (FPSR), and floating-point instruction
address register (FPIAR) are accessible at the user privilege level. All other
control registers may be accessed only at the supervisor privilege level.

NOTE

Some control registers have undefined bits reserved for future def­
inition by Motorola. Those particular bits are rei\d as zeros and must
be written as zeros for future compatibility.

Although the SR is 16 bits wide, only 12 bits are defined. The undefined bits
are reserved by Motorola for future definition. The lower byte of the SR is
the condition code register (CCR). Operations to the CCR can be performed
in the supervisor or user mode. All operations to the SR and CCR are word­
sized operations, but for all CCR operations, the upper byte is read as all
zeros and is ignored when written, regardless of privilege level.

The 32-bit FPCR contains an exception enable byte that enables/disables traps
for each class of floating-point exceptions and a mode byte that sets the
user-selectable modes. The FPCR can be read or written to by the user. Bits
31-16 are reserved for future definition by Motorola.

The 32-bit FPSR contains a condition code byte, an exception status byte,
quotient bits, and an accrued exception byte. Execution of most floating­
point instructions modifies this register.

For the subset of the FPU instructions that generate exception traps, the 32-
bit FPIAR register is loaded with the logical address of an instruction before
the instruction is executed (unless all arithmetic exceptions are disabled).
This address can then be used by a floating-point exception handler to locate
a floating-point instruction that has caused an exception.

The vector base register (VBR) provides the base address of the exception
vector table. The cache control register (CACR) provides control and status
information for the on-chip instruction and data caches.

The alternate function code registers (SFC and DFC) are 32-bit registers with
only bits 0-2 implemented. These bits contain the address space values for
the read or write operands of MOVES, PFLUSH, and PTEST instructions. The

MOTOROLA MC68040 USER'S MANUAL 3-17

..

..
MOVEC instruction is used to transfer values to and from the SFC and DFC.
These are long-word transfers; the upper 29 bits are read as zeros and are
ignored when written.

The remaining control registers are used by the MMU. The user root pointer
(URP) and supervisor root pointer (SRP) contain pointers to the user and
supervisor address translation trees. Transfers of data to and from these 32-
bit registers are long-word transfers. The translation control (TC) register
contains information for the MMU. The MC68040 always uses word transfers
to access this 16-bit register. The 32-bit transparent translation registers (DTTO,
DTT1, ITTO, ITT1) identify memory areas for direct addressing without ad­
dress translation. Data transfers to and from these registers are long-word
transfers. The MMU status register (MMUSR) stores the status of the MMU
after execution of a PTEST instruction. Transfers to and from the MMUSR
are word transfers. Refer to SECTION 6 MEMORY MANAGEMENT UNIT for
more details.

3.4 ORGANIZATION OF DATA IN MEMORY

Memory is organized on a byte-addressable basis where lower addresses
correspond to higher order bytes. The address, N, of a long-word data item
corresponds to the address of the MSB of the highest-order word. The lower­
order word is located at address N + 2, leaving the LSB at address N + 3 (see
Figure 3-11). The MC68040 does not require data to be aligned on word
boundaries, but the most efficient data transfers occur when data is aligned
on the same byte boundary as its operand size. However, instruction words
must be aligned on word boundaries.

All data formats are organized in memory consistent with the M68000 Family
data organization, i.e., the MSB is located at the lowest address (nearest
$00000000), with each successive LSB located at the next address (N + 1,
N + 2, etc.). The LSB is located at the highest address (nearest $FFFFFFFF).

3.4.1 Integer Data Formats

3-18

The following integer data types are supported in memory by the MC68040:
bit and bit-field data; signed and unsigned integer data of 8, 16, or 32 bits;
16-byte block; 32-bit addresses; and BCD (packed and unpacked). These data
types are organized in memory as shown in Figure 3-12.

MC68040 USER'S MANUAL MOTOROLA

31 23 15 7 o

LONG WORD $00000000

WORD $00000000 WORD $00000002

BYTE $00000000 I BYTE $00000001 BYTE $00000002 I BYTE $00000003

LONG WORD $00000004

WORD $00000004 WORD $00000006

BYTE $00000004 I BYTE $00000005 BYTE $00000006 I BYTE $00000007

• •
• •
• •

LONG WORD $FFFFFFFC

WORD $FFFFFFFC

I
WORD $FFFFFFFE

BYTE $FFFFFFFC I BYTE $FFFFFFFD BYTE $FFFFFFFE 1 BYTE $FFFFFFFF

Figure 3-11. Memory Operand Addressing

A bit operand is specified by a base address that selects one byte in memory
(the base byte) and a bit number that selects one bit in the base byte. The
MSB of the byte is seven.

A bit-field operand is specified by:

1. A base address that selects one byte in memory,

2. A bit-field offset that indicates the leftmost (base) bit of the bit field in
relation to the MSB of the base byte, and

3. A bit-field width that determines how many bits to the right of the base
bit are in the bit field.

The MSB of the base byte is bit-field offset 0, the LSB of the base byte is bit­
field offset 7, and the LSB of the previous byte in memory is bit-field offset
- 1. Bit-field offsets may have values in the range of 2 - 31 to 231 -1, and
bit-field widths may range from 1 to 32 bits. .

A 16-byte block operand (supported by the MOVE16 instruction) consists of
a block of 16 bytes, aligned to a 16-byte boundary. This operand is specified
by an address that can point to any byte in the block.

MOTOROLA MC68040 USER'S MANUAL 3-19

..

•
BYTE n-1

7

I BYTE n-1

7

I BYTE n-1

3-20

BYTE n-1

o 7

ADDRESS

0 7

o 7

BYTE n-1

ADDRESS BIT
NUMBER

7 o 7

BYTE n-1 BYTE n

BASE BIT

BIT DATA

BITFIELD
DATA

!+-OFFSET_3_2 -1 0 1 2 OFFSET-----l~-

o 7

ADDRESS

o 7

017

01 7

BASE ADDRESS
070

BYTE n-1 MSB BYTE n LSB

ADDRESS

o 7

LONG-WORD INTEGER

OJ? 017

QUAD-WORD INTEGER

01 7 01 7

16-BYTE BLOCK
(ALIGNED TO

16-BYTE
BOUNDARY)

o 7
BYTE n-1 MSD

o 7

o
BYTE n+2 BYTE DATA

o
BYTE n+3

o

WORD DATA

LONG WORD
DATA

-----t-------, QUAD WORD
BYTE n+8 I DATA

0 7

BYTE n+16

BYTE n+2

0

I

o

16-BYTE BLOCK

PACKED
BINARY-CODED L-____ -t-___ ~ ____ L_ _____ ~ ____ ~ DATA

ADDRESS

o 7

BYTE n-1 XX
UNPACKED

BINARY-CODED L------t-____ ~ __ ~ ____ ~ ____ ~ ____ _J DATA

ADDRESS

Figure 3-12. Memory Organization for Integer Operands

MC68040 USER'S MANUAL MOTOROLA

3.4.2 Floating-Point Data Formats

Figure 3-13 shows the floating-point data format for the single- (5), double­
(D), and extended-precision (X) binary real-data floating-point organization
in memory. Tables 3-2 through 3-4 provide the format specification details
for these formats.

a 7

BYTE n-1 SINGLE- PRECISION REAL

ADDRESS

7 a 7 a I 7 a I 7 all o 7

I BYTE n-1

BYTE n+8 I DOUBLE- PRECISION REAL

ADDRESS

7 a 7 all a 17 all a 7 a

I BYTE n-1
EXTENDED -
PRECISION

REAL
BYTE n+12 I

Figure 3-13. Memory Organization for Floating-Point Operands

3.5 ADDRESSING MODES

The addressing mode of an instruction can specify the value of an operand
(with an immediate operand), a register that contains the operand (with the
register direct addressing mode), or how the effective address of an operand
in memory is derived. An assembler syntax has been defined for each ad­
dressing mode.

Figure 3-14 shows the general format of the single-effective-address instruc­
tion operation word. The effective address field specifies the addressing
mode for an operand that can use one of the numerous defined modes. The
(ea) designation is composed of two 3-bit fields: the mode field and the
register field. The value in the mode field selects one or a set of addressing
modes. The register field specifies a register for the mode or a sub-mode for
modes not using registers.

MOTOROLA MC68040 USER'S MANUAL 3-21

..

•

3-22

15 14 13 12 11 10

EFFECTIVE ADDRESS

MODE REGISTER

Figure 3-14. Single-Effective-Address Instruction Operation Word

Many instructions imply the addressing mode for one of the operands. The
formats of these instructions include appropriate fields for operands that use
only one addressing mode.

The effective address field may require additional information to fully specify
the operand address. This additional information, called the effective address
extension, is contained in an additional word or words and is considered part
of the instruction. Refer to 3.6 EFFECTIVE ADDRESS ENCODING SUMMARY
for a description of the extension word formats.

The notational conventions used in the addressing mode descriptions in this
section are:

EA-Effective address
An-Address register n

Example: A3 is address register 3
Dn-Data register n

Example: D5 is data register 5
Xn.SIZE*SCALE-Denotes index register n (data or address), the index size

(W for word, L for long word), and a scale factor (1, 2,4,
or 8, for no-word, word, long-word, or 8 for quad-word
scaling, respectively).

PC-The program counter
dn-Displacement value, n bits wide
bd-Base displacement
od-Outer displacement

L-Long word size
W-Word size
()-Identify an indirect address in a register
[]-Identify an indirect address in memory

When the addressing mode uses a register, the register field of the operation
word specifies the register to be used. Other fields within the instruction
specify whether the register selected is an address or data register and how
the register is to be used.

MC68040 USER'S MANUAL MOTOROLA

3.5.1 Data Register Direct Mode

In the data register direct mode, the operand is in the data register specified
by the effective address register field.

GENERATION: EA = Dn
ASSEMBLER SYNTAX: Dn
MODE: 000 31
REGISTER: n

-I DATA REGISTER: On OPERAND
NUMBER OF EXTENSION WORDS: 0

3.5.2 Address Register Direct Mode

In the address register direct mode, the operand is in the address register
specified by the effective address register field.

GENERAnON: EA = An
ASSEMBLER SYNTAX: An
MODE: 001 31
REGISTER: n

-I ADDRESS REGISTER: An OPERAND
NUMBER OF EXTENSION WORDS: 0

3.5.3 Address Register Indirect Mode

In the address register indirect mode, the operand IS In memory and the
address of the operand is in the address register specified by the register
field.

GENERATION: EA = (Ani
ASSEMBLER SYNTAX: (Ani
MODE: 010 31
REGISTER: n

-:"
ADDRESS REGISTER: An MEMORY ADDRESS

.: t
MEMORY ADDRESS: OPERAND
NUMBER OF EXTENSION WORDS:

MOTOROLA MC68040 USER'S MANUAL 3-23

B

..
3.5.4 Address Register Indirect with Postincrement Mode

In the address register indirect with postincrement mode, the operand is in
memory, and the address of the operand is in the address register specified
by the register field. After the operand address is used, it is incremented by
one, two, or four depending on the size of the operand: byte, word, or long
word. Coprocessors may support incrementing for any size of operand, up
to 255 bytes. If the address register is the stack pointer and the operand size
is byte, the address is incremented by two rather than one to keep the stack
pointer aligned to a word boundary.

GENERATION: EA = (An)

ASSEMBLER SYNTAX:
MOOE:
REGISTER:
ADORESS REGISTER:

OPERAND LENGTH (1, 2, OR 4):

MEMORY AOORESS:
NUMBER OF EXTENSION WOROS:

An = An + SIZE
(An) +
011

An

31

MEMORY ADDRESS

31

OPERANO

3.5.5 Address Register Indirect with Predecrement Mode

In the address register indirect with predecrement mode, the operand is in
memory and the address of the operand is in the address register specified
by the register field. Before the operand address is used, it is decremented
by one, two, or four depending on the operand size: byte, word, or long
word. Coprocessors may support decrementing for any operand size up to
255 bytes. If the address register is the stack pointer and the operand size is
byte, the address is decremented by two rather than one to keep the stack
pointer aligned to a word boundary.

GENERATION:

ASSEMBLER SYNTAX:
MODE:
REGISTER:
ADDRESS REGISTER:

OPERAND LENGTH (1, 2, OR 4):

MEMORY ADDRESS:
NUMBER DF EXTENSION WORDS:

3-24

An = An - SIZE
EA = (An)
_. (An)

100

An

31

31

MC68040 USER'S MANUAL

MEMORY ADDRESS

DPERAND

MOTOROLA

3.5.6 Address Register Indirect with Displacement Mode

In the address register indirect with displacement mode, the operand is in
memory. The address of the operand is the sum of the address in the address
register plus the sign-extended 16-bit displacement integer in the extension
word. Displacements are always sign extended to 32 bits prior to being used
in effective address calculations.

GENERATION:
ASSEMBLER SYNTAX:
MOOE:
REGISTER:
AODRESS REGISTER:

DISPLACEMENT:

MEMORY AODRESS:

EA = (An) + dl6
(d16.An)
101
n
An

31 15

31

MEMORY ADDRESS

,-------- ,..--------,
L __ S~~~N~~ _ INTEGER t----+(

31

OPERAND
NUMBER OF EXTENSION WOROS:

o

3.5.7 Address Register Indirect with Index (a-Bit Displacement) Mode

This addressing mode requires one extension word that contains the index
register indicator and an 8-bit displacement. The index register indicator
includes size and scale information. In this mode, the operand is in memory.
The address of the operand is the sum of the contents of the address register,
the sign extended displacement value in the low order eight bits of the
extension word, and the sign extended contents of the index register (pos­
sibly scaled). The user must specify the displacement, the address register,
and the index register in this mode.

GENERATION:
ASSEMBLER SYNTAX:
MOOE:
REGISTER:
PROGRAM COUNTER:

DISPLACEMENT:

INOEX REGISTER:

SCALE:

MEMORY ADORESS:

31

EA = (PC) + (Xn) + dS
(dS. PC.Xn.SIZE ·SCALE)
110
011

31

ADDRESS OF EXTENSION WORO

,------------.------,
L ___ ~I~ E~E~E~ ____ L~IN~TE~GE~R .J------~
31

SIGN EXTENOEO VALUE

SCALE VALUE

31

OPERAND
NUMBER OF EXTENSION WOROS:

MOTOROLA MC68040 USER'S MANUAL 3-25

..

3.5.8 Address Register Indirect with Index (Base Displacement) Mode

This addressing mode requires an index register indicator and an optional
16- or 32-bit sign-extended base displacement. The index register indicator
includes size and scaling information. The operand is in memory. The address
of the operand is the sum of the contents of the address register, the scaled
contents of the sign-extended index register, and the base displacement.

In this mode, the address register, the index register, and the displacement
are all optional. If none is specified, the effective address is zero. This mode
provides a data register indirect address when no address register is specified
and the index register is a data register (Dn).

GENERATION: EA ~ (Ani + (Xnl + bd
(bd.An. Xn.SIZE 'SCALEI
110

ASSEMBLER SYNTAX: .
MODE: 31
REGISTER: n

An ADDRESS REGISTER:

31

BASE DISPLACEMENT: SIGN EXTENDED VALUE

31

INDEX REGISTER: SIGN EXTENDED VALUE

SCALE: SCALE VALUE

31

MEMORY ADDRESS:
NUMBER OF EXTENSION WORDS: 1. 2. OR 3

3.5.9 Memory Indirect Postindexed Mode

3-26

In this mode, the operand and its address are in memory. The processor
calculates an intermediate indirect memory address using· the base register
(An) and base displacement (bd). The processor accesses a long word at this
address and adds the index operand (Xn.SIZE*SCALE) and the outer dis­
placement to yield the effective address. Both displacements and the index
register contents are sign extended to 32 bits.

In the syntax for this mode, brackets enclose the values used to calculate the
intermediate memory address. All four user-specified values are optional.
Both the base and outer displacements may be null, word, or long word.
When a displacement is omitted or an element is suppressed, its value is
taken as zero in the effective address calculation.

MC68040 USER'S MANUAL MOTOROLA

3.5.10 Memory Indirect Preindexed Mode

In this mode, the operand and its address are in memory. The processor
calculates an intermediate indirect memory address using the base register
(An), a base displacement (bd), and the index operand (Xn.SIZE * SCALE).
The processor accesses a long word at this address and adds the outer
displacement to yield the effective address. Both displacements and the index _
register contents are sign extended to 32 bits.

In the syntax for this mode, brackets enclose the values used to calculate the
intermediate memory address. All four user-specified values are optional.
Both the base and outer displacements may be null, word, or long word.
When a displacement is omitted or an element is suppressed, its value is
taken as zero in the effective address calculation.

GENERATION:
ASSEMBLER SYNTAX
MOOE:
AODRESS REGISTER:

31

BASE DISPLACEMENT:

31

INDEX REGISTER:

SCALE:

31

OUTER DISPLACEMENT:

EFFECTIVE ADDRESS:

EA = Ibd + Ani + Xn.SIZE*SCALE + ad
l[bd,Anj,Xn.SIZE*SCALE,odl
110
An

SIGN EXTENDED VALUE

SIGN EXTENDED VALUE

31

31

31

SCALE VALUE

SIGN EXTENDED VALUE

31

NUMBER OF EXTENSION WORDS: 1, 2, 3, 4, OR 5

MOTOROLA MC68040 USER'S MANUAL

MEMORY ADDRESS

INDIRECT MEMORY ADDRESS

PDlNTS TO

3-27

..
3.5.11 Program Counter Indirect with Displacement Mode

In this mode, the operand is in memory. The address of the operand is the
sum of the address in the program counter and the sign-extended 16-bit
displacement integer in the extension word. The value in the program counter
is the address of the extension word. The reference is a program space
reference and is only allowed for reads .

GENERATION: EA = (PC! + dl6
ASSEMBLER SYNTAX: (dI6,PC)
MOOE: 111
REGISTER: DID

31

PROGRAM COUNTER: AOORESS OF EXTENSION WORO

31 15

DISPLACEMENT:
r--------
L SIGN EXTENOEO

INTEGER

31

MEMORY AOORESS: OPERANO
NUMBER OF EXTENSION WOROS:

3-28 MC68040 USER'S MANUAL MOTOROLA

3.5.12 Program Counter Indirect with Index (8-Bit Displacement) Mode

This mode is similar to the address register indirect with index (8-bit dis­
placement) mode described in 3.5.7 Address Register Indirect with Index (B­
Bit Displacement) Mode, except the PC is used as the base register. The
operand is in memory. The address of the operand is the sum of the address
in the program counter, the sign-extended displacement integer in the lower
eight bits of the extension word, and the sized, scaled, and sign-extended
index operand. The value in the PC is the address of the extension word.
This reference is a program space reference and is only allowed for reads.
The user must include the displacement, the PC, and the index register when
specifying this addressing mode.

GENERATION'
ASSEMBLER SYNTAX:
MODE:
REGISTER:

EA = IAn) + IXn) + dS
Ids.An.Xn.SIZE 'SCALE)
111 31

ADDRESS REGISTER: An

31

DISPLACEMENT:
r-------- ---- --r-----,
L ____ ~~ E~~:.':. _ _ _ _ _ INTEGER t--------..c
31

INDEX REGISTER: SIGN EXTENDED VALUE

SCALE: SCALE VALUE

31

MEMORY ADDRESS:
NUMBER Of EXTENSION WORDS:

3.4.13 Program Counter Indirect with Index (Base Displacement) Mode

This mode is similar to the address register indirect with index (base dis­
placement) mode described in 3.5.B Address Register Indirect with Index
(Base Displacement) Mode, except the PC is used as the base register. It
requires an index register indicator and an optional 16- or 32-bit sign-ex­
tended base displacement. The operand is in memory. The address of the
operand is the sum of the contents of the PC, the scaled contents of the sign­
extended index register, and the base displacement. The value of the PC is
the address of the first extension word. The reference is a program space
reference and is only allowed for reads.

MOTOROLA MC68040 USER'S MANUAL 3-29

-

..
In this mode, the PC, the index register, and the displacement are all optional.
However, the user must supply the assembler notation "ZPC" (zero value is
taken for the PC) to indicate that the PC is not used. This allows the user to
access the program space, without using the PC in calculating the effective
address. The user can access the program space with a data register indirect
access by placing ZPC in the instruction and specifying a data register (Dn)
as the index register.

GENERATION: EA = (PC) + (Xnl + bd
(bd,PC,Xn.SIZE ·SCALEI
111

ASSEMBLER SYNTAX:
MODE: 31
REGISTER: 011
PRDGRAM COUNTER: ADDRESS Of EXTENSIDN WORD

31

BASE DISPLACEMENT: SIGN EXTENDED VALUE

31

INDEX REGISTER: SIGN EXTENDED VALUE

SCALE: SCALE VALUE

31

MEMORY ADDRESS: OPERAND
NUMBER Df EXTENSION WDRDS 1. 2, OR 3

3.5.14 Program Counter Memory Indirect Postindexed Mode

3-30

This mode is similar to the memory indirect postindexed mode described in
3.5.9 Memory Indirect Postindexed Mode, but the PC is used as the base
register. Both the operand and operand address are in memory. The pro­
cessor calculates an intermediate indirect memory address by adding a base
displacement (bd) to the PC contents. The processor accesses a long word
at that address and adds the scaled contents of the index register and the
optional outer displacement (od) to yield the effective address, The value of
the PC used in the calculation is the address of the first extension word. The
reference is a program space reference and is only allowed for reads.

In the syntax for this mode, brackets enclose the values used to calculate the
intermediate memory address. All four user-specified values are optional.
However, the user must supply the assembler notation ZPC to indicate that
the PC is not used. This allows the user to access the program space, without
using the PC in calculating the effective address. Both the base and outer
displacements may be null, word, or long word. When a displacement is
omitted or an element is suppressed, its value is taken as zero in the effective
address calculation.

MC68040 USER'S MANUAL MOTOROLA

EFFECTIVE ADDRESS:
NUMBER OF EXTENSION WORDS: 1, 2, 3, 4, OR 5

3.5.15 Program Counter Memory Indirect Preindexed Mode

This mode is similar to the memory indirect preindexed mode described in
3.5.10 Memory Indirect Preindexed Mode, but the PC is used as the base
register. Both the operand and operand address are in memory. The pro­
cessor calculates an intermediate indirect memory address by adding the PC
contents, a base displacement, and the scaled contents of an index register.
The processor accesses a long word at that address and adds the optional
outer displacement to yield the effective address. The value of the PC is the
address of the first extension word. The reference is a program space ref­
erence and is only allowed for reads.

In the syntax for this mode, brackets enclose the values used to calculate the
intermediate memory address. All four user-specified values are optional.
However, the user must supply the assembler notation ZPC to indicate that
the PC is not used. This allows the user to access the program space, without
using the PC in calculating the effective address. Both the base and outer
displacements may be null, word, or long word. When a displacement is
omitted or an element is suppressed, its value is taken as zero in the effective
address calculation.

MOTOROLA MC68040 USER'S MANUAL 3-31

•

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER FiElD:
PROGRAM COUNTER:

31

BASE DISPLACEMENT:

INDEX REGISTER:

31

OUTER DISPLACEMENT:

EFFECTIVE ADDRESS:

EA = (bd + PC + Xn,SIZE*SCALE) + od
([bd,PC,XnSIZE *SCALEl.od)
111
011

SIGN EXTENDED VALUE

SIGN EXTENDED VALUE

31

SCALE VALUE

31

31

SIGN EXTENDED VALUE

31

ADDRESS OF EXTENSION WORD

INDIRECT MEMORY ADDRESS

PDlNTS TO

NUMBER OF EXTENSION WOROS: 1, 2, 3, 4, OR 5

3.5.16 Absolute Short Address Mode

In this addressing mode, the operand is in memory and the address of the
operand is in the extension word. The 16"bit address is sign extended to 32
bits before it is used.

GENERATION: EA GIVEN
(xxx)W
111

ASSEMBLER SYNTAX:
MODE:
REGISTER:
EXTENSION WORD:

000
~ 15 r - - - - - - - - r---_____________ -...,

---------..;~L __ S~N~X~N~~ _ MEMORY ADDRESS

31

MEMORY ADDRESS: OPERAND
NUMBER OF EXTENSION WORDS:

3.5.17 Absolute Long Address Mode

3-32

In this mode, the operand is in memory and the address of. the operand
occupies the two extension words following the instruction word in memory.
The first extension word contains the high-order part of the address; the low­
order part of the address is the second extension word.

MC68040 USER'S MANUAL MOTOROLA

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER
FIRST EXTENSION WORD

SECONO EXTENSION WORO:

MEMORY AOORESS
NUMBER OF EXTENSION WOROS

EA GIVEN
Ixxxl.L
III
001

3.5.18 Immediate Data

15

ADDRESS HIGH

15

31

CONCATENATION

OPERANO

In this addressing mode, the operand is in one or two extension words:

Byte Operation
Operand is in the low-order byte of the extension word

Word Operation
Operand is in the extension word

Long-Word Operation
The high-order 16 bits of the operand are in the first extension word; the
low-order 16 bits are in the second extension word.

Floating-Point Single-Precision Operation
The single-precision operand is in two extension words.

Floating-Point Double-Precision Operation
The double-precision operand is in four extension words.

Floating-Point Extended-Precision Operation
The extended-precision operand is in six extension words.

Floating-Point Packed-Decimal Real Operation
Packed-decimal real operands are supported by software emulation, and
therefore have a length dependent on the implementation.

The immediate data format is as follows:

Generation:
Assembler Syntax:
Mode Field:
Register Field:
Number of Extension Words:

MOTOROLA

Operand given
#xxx
111
100
t 2, 4 or 6, except for packed decimal real operands

MC68040 USER'S MANUAL 3-33

..

..
3.6 EFFECTIVE ADDRESS ENCODING SUMMARY

3-34

Most of the addressing modes use one of the three formats shown in Table
3-6. The single effective address instruction is in the format of the instruction
word. The encoding of the mode field of this word selects the addressing
mode. The register field contains the general register number or a value that
selects the addressing mode when the mode field contains "111 ". Some
indexed or indirect modes use the instruction word followed by the brief
format extension word. Other indexed or indirect modes consist of the in­
struction word and the full format of extension words. The longest instruction
for the MC68040 contains ten extension words. It isa MOVE instruction with
full format extension words for both the source and destination effective
addresses, and with 32-bit base displacements and 32-bit outer displace­
ments for both addresses.

Table 3-6. Effective Address Specification Formats

Single Effective Address Instruction Format

15 14 13 12 11 10

EFFECTIVE ADDRESS

MODE REGISTER

Brief Format Extension Word

15 14 13 12 11 10

D/A REGISTER W/L SCALE I 0 I DISPLACEMENT

Full Format Extension Word(s)

15 14 13 12 11 10

D/A I REGISTER I W/L I SCALE I 1 I BS I IS I BD SIZE I 0 I I/IS

BASE DISPLACEMENT (0, 1, DR 2 WORDS)

OUTER DISPLACEMENT (0, 1, OR 2 WORDS)

Field Definition Field Definition

Instruction: BS Base Register Suppress:
Register General Register Number o ~ Base Register Added

Extensions: 1 ~ Base Register Suppressed
Register Index Register Number IS Index Suppress:
D/A Index Register Type o ~ Evaluate and Add Index Operand

O~Dn 1 = Suppress Index Operand
1 =An BD SIZE Base Displacement Size:

W/L Word/Long Word Index Size 00 = Reserved
0= Sign Extended Word 01 = Null Displacement
1 =Long Word 1 0 ~ Word Displacement

Scale Scale Factor 11 = Long Displacement
OO~1 IllS Index/Indirect Selection:
01 =2 Indirect and Indexing Operand Deter-
10~4 mined in Conjunction with Bit 6, Index
11 =8 Suppress

MC68040 USER'S MANUAL MOTOROLA

For effective addresses that use the full format, the index suppress (IS) bit
and the indexlindirect selection (illS) field determine the type of indexing and
indirection. Table 3-7 lists the indexing and indirection operations corre­
sponding to all combinations of IS and IllS values.

Table 3-7. IS-IllS Memory Indirection Encodings

IS Index/Indirect Operation

0 000 No Memory Indirection

0 001 Indirect Preindexed with Null Outer Displacement

0 010 Indirect Preindexed with Word Outer Displacement

0 011 Indirect Preindexed with Long Outer Displacement

0 100 Reserved

0 101 Indirect Postindexed with Null Outer Displacement

0 110 Indirect Postindexed with Word Outer Displacement

0 111 Indirect Postindexed with Long Outer Displacement

1 000 No Memory Indirection

1 001 Memory Indirect with Null Outer Displacement

1 010 Memory Indirect with Word Outer Displacement

1 011 Memory Indirect with Long Outer Displacement

1 100-111 Reserved

Effective address modes are grouped according to the use of the mode. They
can be classified as follows:

Data A data addressing effective address mode is one that refers to data
operands.

Memory A memory addressing effective address mode is one that refers
to memory operands.

Alterable An alterable addressing effective address mode is one that refers
to alterable (writable) operands.

Control A control addressing effective address mode is one that refers to
memory operands without an associated size.

Table 3-8 shows the categories to which each of the effective addressing
modes belong. '

MOTOROLA MC68040 USER'S MANUAL 3-35

•

•
Table 3-8. Effective Addressing Mode Categories

Address Modes
Mode

Register Data Memory Control Alterable Assembler Syntax
Field

Data Register Direct 000 reg. no. X - - X Dn

Address Register Direct 001 reg. no. - - - X An

Address Register Indirect 010 reg. no. X X X X (An)
Address Register Indirect

with Postincrement 011 reg. no. X X - X (An)+
Address Register Indirect

with Predecrement 100 reg. no. X X - X -(An)
Address Register Indirect

with Displacement 101 reg. no. X X X X (d16.An)

Address Register Indirect with
Index (8-Bit Displacement) 110 reg. no. X X X X (d8.An,Xn)

Address Register Indirect with
Index (Base Displacement) 110 reg. no. X X X X (bd,An,Xn)

Memory Indirect Postindexed 110 reg. no. X X X X ([bd.An].Xn,od)
Memory Indirect Preindexed 110 reg. no. X X X X ([bd,An,Xn].od)

Absolute Short 111 000 X X X X (xxx).W
Absolute Long 111 001 X X X X (xxx).L

Program Counter Indirect
with Displacement 111 010 X X X - (d16,PC)

Program Counter Indirect with
Index (8-Bit) Displacement 111 011 X X X - (d8,PC,Xn)

Program Counter Indirect with
Index (Base Displacement) 111 011 X X X - (bd,PC,Xn)

PC Memory Indirect
Postindexed 111 011 X X X - ([bd,PC],Xn,od

PC Memory Indirect
Preindexed 111 011 X X X - ([bd,PC,Xnj,od)

Immediate 111 100 X X
,

#(data) - -

These categories are sometimes combined, forming new categories that are
more restrictive. Two combined classifications are alterable memory or data
alterable. The former refers to those addressing modes that are both alterable
and memory addresses, and the latter refers to addressing modes that are
both data and alterable.

3.7 PROGRAMMER'S VIEW OF ADDRESSING MOOES

3-36

Extensions to the indexed addressing modes, indirection, and full 32-bit dis­
placements provide additional programming capabilities for the MC68020,
the MC68030, and the MC68040. The following paragraphs describe address­
ing techniques that exploit these capabilities and summarize the addressing
modes from a programming point of view.

MC68040 USER'S MANUAL MOTOROLA

Several of the addressing techniques described use data registers and ad­
dress registers interchangeably. While the MC68040 provides this capability,
its performance has been optimized for addressing with address registers.
The performance of a program that uses address registers in address cal­
culations is superior to that of a program that similarly uses data registers.
The specification of addresses with data registers should be used sparingly ..
(if at all), particularly in programs that require maximum performance.

3.7.1 Addressing Capabilities

In the MC68020, MC68030, and the MC68040, setting the base register sup­
press (8S) bit in the full format extension word (Table 3-6) suppresses use
of the base address register in calculating the effective address. This allows
any index register to be used in place of the base register. Since any of the
data registers can be index registers, this provides a data register indirect
form (Dn). The mode could be called register indirect (Rn), since either a data
register or an address register can be used. This addressing mode is an
extension to the M68000 Family because the MC68040, MC68030, and
MC68020 can use both the data registers and the address registers to address
memory. The capability of specifying the size and scale of an index register
(Xn.SIZE*SCALE) in these modes provides additional addressing flexibility.
Using the SIZE parameter, either the entire contents of the index register can
be used, or the least significant word can be sign extended to provide a 32-
bit index value (see Figure 3-15).

~ 0

D1.L 01

31 1615 0

Dl.w I =01

~ USED IN ADDRESS CALCULATION

Figure 3-15. Using SIZE in the Index Selection

For the MC68020, MC68030, and the MC68040, the register indirect modes
can be extended further. Since displacements can be 32 bits wide, they can
represent absolute addresses or the results of expressions that contain ab­
solute addresses. This allows the general register indirect form to be (bd,Rn),
or (bd,An,Rn) when the base register is not suppressed. Thus, an absolute
address can be directly indexed by one or two registers (see Figure 3-16).

MOTOROLA MC68040 USER'S MANUAL 3-37

•

3-38

SYNTAX (bd,An,Rn)

bd--~--------Ir------~

An

Rn

Figure 3-16. Using Absolute Address with Indexes

Scaling provides an optional shifting of the value in an index register to the
left by zero, one, two, or three bits before using it in the effective address
calculation (the actual value in the index register remains unchanged). This
is equivalent to multiplying the register by one, two, four, or eight for direct
subscripting into an array of elements of corresponding size using an arith­
metic value residing in any of the 16 general registers. Scaling does not add
to the effective address calculation time. However, when combined with the
appropriate derived modes, it produces additional capabilities. Arrayed struc­
tures can be addressed absolutely and then subscripted, (bd,Rn*SCALE), for
example. Optionally, an address register that contains a dynamic displace­
ment can be included in the address calculation (bd,An,Rn*SCALE). Another
variation that can be derived is (An,Rn*SCALE). In the first case, the array
address is the sum of the contents of a register and a displacement, as shown
in Figure 3-17. In the second example, An contains the address of an array
and Rn contains a subscript.

The memory indirect addressing modes use a long-word pointer in memory
to access an operand. Any of the modes previously described can be used
to address the memory pointer. Because the base and index registers can
both be suppressed, the displacement acts as an absolute address, providing
indirect absolute memory addressing (see to Figure 3-18).

MC68040 USER'S MANUAL MOTOROLA

SYNTAX: MOVE.W (AS, A6.L'SCALE),(A7)
WHERE

SIMPLE ARRAY
(SCALE = 1)

AS = ADDRESS OF ARRAY STRUCTURE
A6 = INDEX NUMBER OF ARRAY ITEM
A7 = STACK POINTER

RECORD OF 2 WORDS
(SCALE = 2)

A6=;===:~~~~~~~~~~ A6 = 1---
3
4

A6 = 1 -~1/

2

RECORD OF 4 WORDS
(SCALE = 4)

2

A6 = 1 --"""l/

2 ----'~

NOTE: Regardless of array structure, software increments index by the
appropriate amount to point to next reoord.

RECORD OF 8 WORDS
(SCALE = 8)

Figure 3-17, Addressing Array Items

MOTOROLA MC68040 USER'S MANUAL

o

3-39

..

3-40

bd POINTER DATA ITEM

7

Figure 3-18. Using Indirect Absolute Memory Addressing

The outer displacement (od) available in the memory indirect modes is added
to the pointer in memory. The syntax for these modes is ([bd,Anl,Xn,od) and
([bd,An,Xnl,od). When the pointer is the address of a structure in memory
and the outer displacement is the offset of an item in the structure, the
memory indirect modes can access the item efficiently (see to Figure 3-19).

SYNTAX: ([An],ad)

MEMORY STRUCTURE

An--~~ ____ ~P~O~IN~TE~R ______ ~--~----~

ad

DATA ITEM

Figure 3-19. Accessing an Item in a Structure Using Pointer
/

Memory indirect addressing modes are used with a base displacement in
five basic forms:

1. [bd,AnJ - Indirect, suppressed index register
2. ([bd,An,Xn]) - Preindexed indirect
3. ([bd,Anl,Xn) - Postindexed indirect
4. ([bd,An,Xnl,od) - Preindexed indirect with outer displacement
5. ([bd,Anl,Xn,od - Postindexed indirect with outer displacement

MC68040 USER'S MANUAL MOTOROLA

The indirect, suppressed index register mode (see Figure 3-20) uses the con­
tents of register An as an index to the pointer located at the address specified
by the displacement. The actual data item is at the address in the selected
pointer.

SYNTAX: ([bd,AnJ)

POINTER LIST

bd

I
An

POINTER DATA ITEM

7

Figure 3-20. Indirect Addressing,· Suppressed Index Register

The preindexedindirect mode (see Figure 3-21) uses the contents of An as
an index to the pointer list structure at the displacement. Register Xn is the
index to the pointer, which contains the address of the data item.

SYNTAX: ([bd,An,XnJ)

POINTER LIST

bd--~
An

DATA ITEM
Xn

POINTER

Figure 3-21. Preindexed Indirect Addressing

MOTOROLA MC68040 USER'S MANUAL 3-41

..

3-42

The postindexed indirect mode (sse Figure 3-22) uses the contents of An as
an index to the pointer list at the displacement. Register Xn is used as an
index to the structure of data items located at the address specified by the
pointer. Figure 3-23 shows .the preindexed indirect addressing with outer
displacement mode .

SYNTAX: ([bd,Anj,Xn)

POINTER LIST

bd-~~

An

POINTER

Figure 3-22. Postindexed Indirect Addressing

SYNTAX: ([bd.An,Xnj,od)

POINTER LIST STRUCTURE

bd--~
An

od

Xn

J
POINTER DATA ITEM

Figure 3-23. Preindexed Indirect with Outer Displacement

The postindexed indirect mode with outer displacement, Figure 3-24, uses
the contents of An as an index to the pointer list at the displacement. Register
Xn is used as an index to the structure of data structures at the address in
the pointer. The outer displacement (ad) is the displacement of the data item
within the selected data structure.

MC68040 USER'S MANUAL MOTOROLA

POINTER LIST

bd--~

An

POINTER

SYNTAX: ([bd,AnJ,Xn,od)

POST-INDEXED STRUCTURE
WITH OUTER DISPLACEMENT

Xn

DATA ITEM

Figure 3-24_ Postindexed Indirect Addressing with Outer Displacement

3.7.2 General Addressing Mode Summary

The addressing modes described in 3.7.1 Addressing Capabilities are derived
from specific combinations of options in the indexing mode, or a selection
of two alternate addressing modes. For example, the addressing mode called
register indirect (Rn) assembles as the address register indirect if the register
is an address register. If Rn is a data register, the assembler uses the address
register indirect with index mode using the data register as the indirect reg­
ister and suppresses the address register by setting the base suppress bit in
the effective address specification. Assigning an address register as Rn pro­
vides higher performance than using a data register as Rn. Another case is
(bd,An) which selects an addressing mode depending on the size of the
displacement. If the displacement is 16 bits or less, the address register
indirect with displacement mode (d16,An) is used. When a 32-bit displace­
ment is required, the address register indirect with index (bd,An,Xn) is used
with the index register suppressed.

It is useful to examine the derived addressing modes available to a pro­
grammer (without regard to the MC68040 effective addressing mode actually
encoded) because the programmer need not be concerned about these de­
cisions. The assembler can choose the more efficient addressing mode to
encode,

MOTOROLA MC68040 USER'S MANUAL 3-43

..

..

3-44

In thelistof derived addressing modesthatfollows, common programming
terms are used. These definitions apply:

pointer

base

index

disp

subscript

relative

addr

psaddr

- Long-word value in a register or in memory which represents
an address.

- A pointer combined with a displacement to represent an ad­
dress.

- A constant or variable value added into an effective address
calculation. A constant index is a displacement. A variable
index is always represented by a register containing the value.

- Displacement, a constant index.

- The use of any of the data or address registers as a variable
index subscript into arrays of items one, two, four, or eight
bytes in size.

- An address calculated from the program counter contents.
The address is position independent and is in program space.
All other addresses but psaddr are in data space.

- An absolute address.

- An absolute address in program space. All other addresses
but PC relative are in data space.

preindexed - All modes from absolute address through program counter
relative.

postindexed - Any of the following modes:
addr - Absolute address in data space.
psaddr,ZPC - Absolute address in program space.
An - Register pointer.
disp,An- Register pointer with constant displacement.
addr,An - Absolute address with single variable name.
disp,PC - Simple PC relative.

MC68040 USER'S MANUAL MOTOROLA

The addressing modes defined in programming terms which are derivations
of the addressing modes provided by the MC68040 architecture are:

Immediate Data - #data:
The data is a constant located in the instruction stream .

Register Direct - Rn:
The contents of a register is the operand.

Scanning Modes:
(An) + - Address register pointer automatically incremented after use.

- (An) - Address register pointer automatically decremented before use.

Absolute Address:
(addr) - Absolute address in data space.

(psaddr,ZPC) - Absolute address in program space. Symbol ZPC sup­
presses the PC, but retains PC-relative mode to directly access the
program space.

Register Pointer:
(Rn) - Register as a pointer.

(disp,Rn) - Register as a pointer with constant index (or base address).

Indexing:
(An,Rn) - Register pointer An with variable index Rn.

(disp,An,Rn) - Register pointer with constant and variable index (or a base
address with a variable index).

(addr,Rn) - Absolute address with variable index.

(addr,An,Rn) - Absolute address with two variable indexes.

Subscripting:
(An,Rn*SCALE) - Address register pointer subscript.

(disp,An,Rn*SCALE) - Address register pointer subscript with constant
displacement (or base address with subscript).

(addr, Rn*SCALE) - Absolute address with subscript.

(addr,An,Rn*SCALE) - Absolute address subscript with variable index.

MOTOROLA MC68040 USER'S MANUAL 3-45

..

..
Program Relative:

(disp,PC) -'- Simple PC relative.

(disp,PC,Rn) - PC relative with variable index.

(disp,PC,Rn*SCALE) - PC relative with subscript.

Memory Pointer:
([preindexed]) - Memory pointer directly to data operand.

([preindexed],disp) - Memory pointer as base with displacement to data
operand.

([postindexed],Rn) - Memory pointer with variable index.

([postindexed],disp,Rn) - Memory pointer with constant and variable index.

([postindexed],Rn*SCALE) - Memory pointer subscripted.

([postindexed], disp, Rn*SCALE) - Memory pointer subscripted with con-
stant index.

3.8 M68000 FAMILY ADDRESSING COMPATIBILITY

3-46

Programs can be easily transported from one member of the M68000 pro­
cessor family to another in an upward compatible fashion. The user object
code of each early member of the family is upward compatible with newer
members, and can be executed on the newer microprocessor without change.
The address extension word(s) are encoded with the information that allows
the MC68020/MC68030/MC68040 to distinguish the new address extensions
to the basic M68000 Family architecture. The address extension words for
the early MC68000/MC68008/MC68010 microprocessors and for the newer 32-
bit MC68020/MC68030/MC68040 microprocessors are shown in Figure 3-25.
Notice the encoding for SCALE used by the MC68020/MC68030/MC68040 is
a compatible extension ofthe M68000 architecture. A value of zerCl for SCALE
is the same encoding for both extension words; therefore, software that uses
this encoding is both upward and downward compatible across all processors
in the product line. However, the other values of SCALE are not found in
both extension formats; so, while software can be easily migrated in an
upward compatible direction, only nonscaled addressing is supported in a
downward fashion. If the MC68000 were to execute an instruction that en­
coded a scaling factor, the scaling factor would be ignored and not access
the desired memory address. The earlier microprocessors have no knowledge
of the extension word formats implemented by newer processors, and while
they do detect illegal instructions, they do not decode invalid encodings of
the extension words as exceptions.

MC68040 USER'S MANUAL MOTOROLA

MC68000/MC68008/MC68010 Address
Extension Word

15 14 13 12 11 10

I D/A REGISTER W/L I 0

D/A: 0 = Data Register Select
1 = Address Register Select

W/L: 0 = Word-Sized Operation
1 = Long-Ward-Sized Operation

MC68020/MC68030/MC68040 Address
Extension Word

15 14 13 12 11 10

I D/A REGISTER W/L SCALE

D/A: 0 = Data Register Select
1 = Address Register Select

W/L: 0 = Word-Sized Operation
1 = Long-Ward-Sized Operation

o I 0

o I

SCALE: 00 = Scale Factor 1 (Compatible with MC68000)
01 = Scale Factor 2 (Extension to MC68000)
10 = Scale Factor 4 (Extension to MC68000)
11 = Scale Factor 8 (Extension to MC68000)

DISPLACEMENT INTEGER

DISPLACEMENT INTEGER

Figure 3-25. M68000 Family Address Extension Words

3.9 OTHER DATA STRUCTURES

Stacks and queues are widely used data structures. The MC68040 implements
a system stack and also provides instructions that support the use of user
stacks and queues.

3.9.1 System Stack

Address register seven (A7) is used as the system stack pointer (SP). One of
the three system stack registers (MSP, ISP, USP) is active at anyone time.
The M and S bits of the SR determine which SP is used. When S = 0 indicating
user mode the user stack pointer (USP) is the active system stack pointer
and the master and interrupt stack pointers cannot be referenced. When S = 1
indicating supervisor mode and M = 1, the master stack pointer (MSP) is the
active system stack pointer. When S = 1 and M = 0, the interrupt stack pointer
(ISP) is the active system stack pointer. This mode is the MC68040defauit
mode after reset and corresponds to the MC68000, MC68008, and MC68010
supervisor mode. The term supervisor stack pointer (SSP) refers to the master

MOTOROLA MC68040 USER'S MANUAL 3-47

-

or interrupt stack pointers, depending on the state of the M bit. When M = 1,
the term SSP (or A7) refers to the MSP address register. When M = 0, the
term SSP (or A7) refers to the ISP address register. The active system stack
pointer is implicitly referenced by all instructions that use the system stack.
Each system stack fills from high to low memory.

A subroutine call saves the PC on the active system stack, and the return
restores it from the active system stack. During the processing of traps and
interrupts, both the PC and the SR are saved on the supervisor stack (either
master or interrupt). Thus, the execution of supervisor level code is inde­
pendent of user code and the condition of the user stack; conversely, user
programs use the USP independently of supervisor stack requirements;

To keep data on the system stack aligned for maximum efficiency, the active
stack pointer is automatically decremented or incremented by two for all
byte-size operands moved to or from the stack. In long-word-organized mem­
ory, aligning the stack pointer on a long-word address significantly increases
the efficiency of stacking exception frames, subroutine calls and returns, and
other stacking operations.

3.9.2 User Program Stacks

3-48

The user can implement stacks with the address register indirect with pos­
tincrement and predecrement addressing modes. With address register An
(n = a through 6), the user can implement a stack that is filled either from

. high memory to low memory orfrom low memory to high memory. Important
considerations are:

• Use the predecrement mode to. decrement the register before its contents
are used as the pointer to the stack.

• Use the postincrement mode to increment the register after its contents
are used as the pointer to the stack.

• Maintain the stack pointer correctly when byte, word, and long-word
items are mixed in these stacks.

To implement stack growth from high-to-Iow memory, use:

- (An) to push data on the stack,

(An) + to pull data from the stack.

MC68040 USER'S MANUAL MOTOROLA

For this type of stack, after either a push or a pull operation, register An
points to the top item on the stack. This is illustrated as:

LOW MEMORY
(FREE)

An - TOP OF STACK

7 • 7 • I. l •
BOnOM OF STACK

HIGH MEMORY

To implement stack growth from low-to-high memory, use:
(An) + to push data on the stack,
- (An) to pull data from the stack.

In this case, after either a push or pull operation, register An points to the
next available space on the stack. This is illustrated as:

I LOW MEMORY I
BonOM OF STACK I

~ • • l • l

TOP OF STACK
An - (FREE)

HIGH MEMORY

3.9.3 Queues

The user can implement queues with the address register indirect with pos­
tincrement, or predecrement addressing modes. Using a pair of address reg­
isters (two of AO through A6), the user can implement a queue which is filled
either from high memory to low memory, or from low memory to high
memory. Two registers are used because queues are pushed from one end
and pulled from the other. One register, An, contains the "put" pointer; the
other, Am, the "get" pointer.

To implement growth of the queue from low-to-high memory, use:

(An) + to put data into the queue,

(Am) + to get data from the queue.

After a "put" operation, the "put" address register points to the next available
space in the queue, and the unchanged "get" address register points to the
next item to be removed from the queue. After a "get" operation, the "get"

MOTOROLA MC68040 USER'S MANUAL 3-49

..

..

3-50

address register points to the next item to be removed from the queue, and
the unchanged "put" address register points to the next available space in
the queue. This is illustrated as:

LOW MEMORY
lAST GET (FREE)

GET (Am)+ - NEXT GET

7 • 7 • t. L •
lAST PUT

PUT (An)+ - (FREE)
HIGH MEMORY

To implement the queue as a circular buffer, the relevant address register
should be checked and adjusted, if necessary, before performing the "put"
or "get" operation. The address register is adjusted by subtracting the buffer
length (in bytes) from the register.

To implement growth of the queue from high-to-Iow memory, use:

- (An) to put data into the queue,

- (Am) to get data from the queue.

After a "put" operation, the "put" address register points to the last item
placed in the queue, and the unchanged "get" address register points to the
last item removed from the queue. After a "get" operation, the "get" address
register points to the last item removed from the queue, and the unchanged
"put" address register points to the last item placed in the queue. This is
illustrated as:

LOW MEMORY
(FREE)

PUT -(An) - LAST PUT

'7 • 7 • l • l

NEXT GET
GET -(Am) - lAST GET (FREE)

HIGH MEMORY

To implement the queue as a circular buffer, the "get" or "put" operation
should be performed first, and then the relevant address register should be
checked and adjusted, if necessary. The address register is adjusted by adding
the buffer length (in bytes) to the register contents.

MC68040 USER'S MANUAL MOTOROLA

SECTION 4
INSTRUCTION SET SUMMARY

This section briefly describes the MC68040 instruction set. Refer to the
MC68000PM/AD, MC68000 Programming Reference Manual for complete de­
tails on the MC68040 instruction set.

The following include descriptions ofthe instruction format and the operands
used by instructions, followed by a summary of the instruction set. The
integer condition codes and floating-point details are discussed. Program­
ming examples for selected instructions are also presented.

4.1 INSTRUCTION FORMAT

All MC68040 instructions consist of at least one word; some have as many
as 11 words (see Figure 4-1). The first word of the instruction, called the
operation word, specifies the length of the instruction and the operation to
be performed. The remaining words, called extension words, further specify
the instruction and operands. These words may be floating-point command
words, conditional predicates, immediate operands, extensions to the effec­
tive address mode specified in the operation word, branch displacements,
bit number or bit field specifications, special register specifications, trap op­
erands, pack/unpack constants, or argument counts.

15

OPERATION WORD
(ONE WORD. SPECIFIES OPERATION AND MODES!

SPECIAL OPERAND SPECIFIERS
(IF ANY. ONE OR TWO WORDS!

IMMEDIATE OPERAND OR SOURCE EFFECTIVE ADDRESS EXTENSION
(IF ANY, ONE TO SIX WORDS!

DESTINATION EFFECTIVE ADDRESS EXTENSION
(IF ANY, ONE TO SIX WOROS!

Figure 4-1. Instruction Word General Format

MOTOROLA MC68040 USER'S MANUAL 4-1

..

..

Besides the operation code, which specifies the function to be performed,
an instruction defines the location of every operand for the function. Instruc­
tions specify an operand location in one of three ways:

• Register Specification - A register field of the instruction contains the
number of the register.

• Effective Address - An effective address field of the instruction contains
address mode information .

• Implicit Reference - The definition of an instruction implies the use of
specific reg isters.

The register field within an instruction specifies the register to be used. Other
fields within the instruction specify whether the register selected is an address
or data register and how the register is to be used. SECTION 2 PROGRAM­
MING MODEL contains detailed register information.

Effective address information includes the registers, displacements, and ab­
solute addresses for the effective address mode. SECTION 3 DATA ORGA­
NIZATION AND ADDRESSING CAPABILITIES describes the effective address
modes in detail.

Certain instructions operate on specific registers. These instructions imply
the required registers.

4.2 INSTRUCTION SUMMARY

4-2

The instructions form a set of tools to perform the following operations:

Data Movement
Integer Arithmetic
Floating-Point Arithmetic
Logical
Shift and Rotate
Bit Manipulation
Bit Field Manipulation

Binary Coded Decimal Arithmetic
Program Control
System Control
Memory Management
Cache Maintenance
Multiprocessor Communications

Each instruction type is described in detail in the following paragraphs.

MC68040 USER'S MANUAL MOTOROLA

The following notations are used in this section. In the operand syntax state­
ments ofthe instruction definitions, the operand on the right is the destination
operand.

An = any address register, A7-AO
Dn = any data register, D7-DO
Rn = any address or data register

CCR = condition code register (lower byte of status register)
cc = condition codes from CCR

SR = status register
SP = active stack pointer

USP = user stack pointer
ISP = supervisor/interrupt stack pointer

MSP = supervisor/master stack pointer
SSP = supervisor (master or interrupt) stack pointer
DFC = destination function code register
SFC = source function code register

Rc = control reg ister (VBR, SFC, DFC, CACR)
MRc=MMU control register (SRP, URP, TC, DTTO, DTT1, ITTO,

ITT1, MMUSR)
MMUSR = MMU status register

B, W, L = specifies a signed integer data type (twos complement)
of byte, word, or long word

S = single precision real data format (32 bits)
D = double precision real data format (64 bits)
X = extended precision real data format (96 bits, 16 bits

unused)
P = packed BCD real data format (96 bits, 12 bytes)

FPm, FPn = any floating-point data register FP7-FPO
FPcr=floating-point system control register (FPCR, FPSR, or

FPIAR)
k = a twos complement signed integer (- 64 to + 17) that

specifies the format of a number to be stored in the packed
decimal format

d=displacement; d16 is a 16-bit displacement
<ea> = effective address

list= list of registers, for example D3-DO
#<data> = immediate data; a literal integer

{offset:width}= bit field selection

MOTOROLA

label = assemble program label
[ml = bit m of an operand

[m:nl = bits m through n of operand

MC68040 USER'S MANUAL 4-3

X=extend (X) bit in CCR
N = negative (N) bit in CCR
Z=Zero (Z) bit in CCR
V = overflow (V) bit in CCR
C = carry (C) bit in CCR
+ = arithmetic addition or postincrement indicator
- = arithmetic subtraction or predecrement indicator
x = arithmetic multiplication
-:- = arithmetic division or conjunction symbol
~ = invert; operand is logically complemented
A=logical AND
V = logical OR
Ef)= logical exclusive OR

Dc= data register, D7-DO used during compare
Du = data register, D7-DO used during update

Dr, Dq = data registers, remainder or quotient of divide
Dh, DI = data registers, high or low order 32 bits of product
MSW = most significant word
LSW = least significant word
MSB = most significant bit

FC=function code
{R/W} = read or write indicator

[An] = address extensions

4.2.1 Data Movement Instructions

4-4

The MOVE and FMOVE instructions with their associated addressing modes
are the basic means of transferring and storing addresses and data. MOVE
instructions transfer byte, word, and long word operands from memory to
memory, memory to register, register to memory, and register to register.
Address movement instructions (MOVE or MOVEA) transfer word and long
word operands and ensure that only valid address manipulations are exe­
cuted. In addition to the general MOVE instructions, there are several special
data movement instructions: move 16-byte block (MOVE16), move multiple
registers (MOVEM), move peripheral data (MOVEP), move quick (MOVEQ),
exchange registers (EXG), load effective address (LEA), push effective ad­
dress (PEA), link stack (LINK), and unlink stack (UNLK). The MOVE16 instruc­
tion is an MC68040 extension to the M68000 instruction set.

MC68040 USER'S MANUAL MOTOROLA

The FMOVE instructions move operands into, between, and from the floating­
point data registers. Data format conversion functions for the FPU instruc­
tions are implicitly supported since all external data formats movement of
operands to and from the floating-point control and status registers (FPCR,
FPSR, and FPIAR). For operands moved into a floating-point data register,
FSMOVE and FDMOVE explicitly select single and double precision rounding
of the result, respectively. FMOVEM moves any combination of either float­
ing-point data registers or floating-point control registers. Table 4-1 is a sum­
mary of the integer and floating-point data movement operations.

Table 4-1. Data Movement Operations

Instruction Operand Syntax Operand Size Operation

EXG Rn, Rn 32 Rn •• Rn

FMOVE FPm,FPn X source. destination
<ea>,FPn B,W,L,S,D,X,P
FPm,<ea> B,W,L,S,D,X,P
<ea>,FPcr 32
FPcr,<ea> 32

FSMOVE, FPm,FPn X source. destination, round destination to single or
FDMOVE <ea>,FPn B,W,L,S,D,X double precision

FMOVEM <ea>,<list> 1 32,X listed registers. destination
<ea>,Dn X
<list> l,<ea> 32,X source. listed registers
Dn,<ea> X

LEA <ea>.An 32 <ea> • An

LINK An,#<d> 16,32 Sp - 4. SP; An • (SPI; SP • An, SP + D • SP

MOVE <ea>,<ea> 8,16,32 source. destination
MOVE16 <ea>,<ea> 16 bytes aligned 16-byte block. destination
MOVEA <ea>.An 16,32.32

MOVEM list,<ea> 16,32 listed registers. destination
<ea>,list 16,32.32 source. listed registers

MOVEP Dn, (d16.Anl 16,32 Dn[31 :24J. (Ane-dl; Dn[23:16J. An+d+21;
Dn[15:8J. (An+d+41; Dn[7:0J. (An+d+61

(d16.Anl,Dn (An+dl. Dn[31:24]; (An+d+21. Dn[23:16];
(An+d+41. Dn[15:8]; (An+d+61. Dn[7:0J

MOVEQ #<data>,Dn 8 t32 immediate data. destination

PEA <ea> 32 SP-4. SP; <ea>. (SPI

UNLK An 32 An. SP; (SPI. An; SP+4. SP

NOTE 1: The register list may include any combination of the eight floating-point data registers, or it may contain
any combination of the three control registers (FPCR, FPSR, and FPIAR). If the register list mask resides
in a data register, only floating-point data registers may be specified.

MOTOROLA MC68040 USER'S MANUAL 4-5

4.2.2 Integer Arithmetic Instructions

4-6

The integer arithmetic operations include the four basic operations of add
(ADD), subtract (SUB)' multiply (MUL), and divide (DIV) as well as arithmetic
compare (CMP, CMPM, CMP2)' clear (CLR)' and negate (NEG). The instruction
set includes ADD, CMP, and SUB instructions for both address and data
operations with all operand sizes valid for data operations. Address operands
consist of 16 or 32 bits. The clear and negate instructions apply to all sizes
of data operands.

Signed and unsigned MUL and DIV instructions include:
• Word multiply to produce a long word product
• Long word multiply to produce and long word or quad word product
• Division of a long word divided by a word divisor (word quotient and

word remainder)
• Division of a long word or quad word dividend by a long word divisor

(long word quotient and long word remainder)

A set of extended instructions provides multiprecision and mixed size arith­
metic. These instructions are: add extended (ADDX), subtract extended
(SUBX), sign extend (EXT), and negate binary with extend (NEGX). Refer to
Table 4-2 for a summary of the integer arithmetic operations.

MC68040 USER'S MANUAL MOTOROLA

Table 4-2. Integer Arithmetic Operations

Instruction Operand Syntax Operand Size Operation

ADD Dn.(ea) 8,16,32 source + destination. destination
(ea),Dn 8,16,32

ADDA (ea),An 16, 32

ADDI #(data),(ea) 8,16,32 immediate data + destination. destination
ADDO #(data),(ea) 8,16,32

ADDX Dn,Dn 8,16,32 source + destination + X • destination
-(An),-(An) 8,16,32

CLR (ea) 8,16,32 O. destination

CMP (ea),Dn 8,16,32 destination - source
CMPA (ea),An 16,32 ..
CMPI #(data),(ea) 8,16,32 destination - immediate data

CMPM . (An) + ,(An) + 8,16,32 destination - source

CMP2 (ea),Rn 8,16,32 lower bound (~ Rn (~ upper bound

DIVS/DIVU (ea),Dn 32/16.16:16 destination/source. destination (signed or unsigned)
(ea),Dr:Dq 64/32.32:32

(ea),Dq 32/32.32
DIVSLlDIVUL (ea),Dr:Dq 32/32 • 32: 32

EXT On 8.16 sign extended destination. destination
On 16.32

EXTB On 8.32

MULS/MULU (ea),Dn 16x16.32 source x destination. destination (signed or unsigned)
(ea),DI 32 x 32.32

(ea),Dh:DI 32 x32. 64

NEG (ea) 8,16,32 o - destination. destination

NEGX (ea) 8,16,32 o - destination - X. destination

SUB (ea),Dn 8,16,32 destination ~ source. destination
Dn,(ea) 8,16,32

SUBA (ea),An 16, 32

SUBI #(data),(ea) 8,16,32 destination - immediate data. destination
SUBO #(data),(ea) 8,16,32

SUBX Dn,Dn 8,16,32 destination - source - X. destination
-(An),-(An) 8,16,32

MOTOROLA MC68040 USER'S MANUAL 4-7

4.2.3 Floating-Point Arithmetic Instructions

4-8

The floating-point arithmetic instructions supported by the MC68040 are an
enhanced subset of the MC688811MC68882 floating-point coprocessor in­
structions. Several instructions in the MC68040 include explicit single and
double precision rounding of the result as part of their operation. For ex­
ample, the FADD instruction uses the default rounding precision selected in
the FPU, while FSADD and FDADD force rounding of the result to single and
double precision, respectively. The following paragraphs describe the float­
ing-point instructions, which are organized into two categories of operation:
dyadic (requiring two operands), and monadic (requiring one operand).

The dyadic floating-point instructions provide several arithmetic functions
that require two input operands, such as add and subtract. For these oper­
ations, the first operand may be located in memory, in an integer data reg­
ister, or in a floating-point data register, and the second operand is always
contained in a floating-point data register. The results of the operation are
stored in the register specified as the second operand. All operations support
any data format, and return results rounded to either extended precision, or
single or double precision for the instructions which explicitly specify the
rounding precision (such as FSADD and FDADD). The general format of the
dyadic instructions is given in Table 4-3; the available operations are listed
in Table 4-4.

Table 4-3. Dyadic Floating-Point Operation Format

Instruction Operand Syntax Operand Format Operation

F(dop) (ea),FPn B,W,L,S,D,X,P FPn (function) source. FPn
FPm,FPn X

where:
<dop> is anyone of the dyadic operation specifiers.

Table 4-4. Dyadic Floating-Point
Operations

Instruction Function

FADD,FSADD,FDADD Add

FCMP Compare

FDIV, FSDIV, FDDIV Divide

FMUL, FSMUL, FDMUL Multiply

FSUB, FSSUB, FDSUB Subtract

MC68040 USER'S MANUAL MOTOROLA

The monadic floating-point instructions provide several arithmetic functions
that require only one input operand. Unlike the integer counterparts to these
functions (e.g., NEG <ea>), a source and a destination may be specified.
The operation is performed on the source operand and the result is stored
in the destination, which is always a floating-point data register. When the
source is not a floating-point data register, all data formats are supported;
the data format is always extended precision for register-to-register opera­
tions. The general format of these instuctions is shown in Table 4-5, and the
available operations are listed in Table 4-6.

MOTOROLA

Table 4-5. Monadic Floating-Point Operation Format

Instruction Operand Syntax Operand Format Operation

F(mop) (ea).FPn B,W,L,S,D,X,P source. function. FPn
FPm,FPn X
FPn X FPn • function. FPn

where:
. mop> is anyone of the monadic operation specifiers.

Table 4-6. Monadic Floating-Point
Operations

Instruction Function

FABS, FSABS. FDABS Absolute Value

FNEG,FSNEG,FDNEG Negate

FSORT, FSSORT, FDSORT Square Root

MC68040 USER'S MANUAL 4-9

4.2.4 Logical Instructions

The logical operation instructions (AND, OR, EOR, and NOT) perform logical
operations with all sizes of integer data operands. A similar set of immediate
instructions (ANDI, OR I, and EORI) provide these logical operations with all
sizes of immediate data. Table 4-7 summarizes the logical operations.

Table 4-7. Logical Operations

Instruction Operand Syntax Operand Size Operation

AND (ea),Dn 8,16,32 source A destination. destination
Dn,(ea) 8,16,32

ANDI #<data>,<ea> 8,16,32 immediate data ,\ destination. destination

EaR Dn,<data>,<ea> 8,16,32 source EB destination. destination

EaRl #(data),(ea) 8,16,32 immediate data EB destination. destination

NOT (ea) 8,16,32 ~ destination. destination

OR (ea),Dn 8,16,32 source V destination. destination
Dn,(ea) 8,16,32

ORI #(data),(ea) 8,16,32 immediate data V destination. destination

4.2.5 Shift and Rotate Instructions

4-10

The arithmetic shift instructions (ASR and ASL) and logical shift instructions
(LSR and LSL) provide shift operations in both directions. The ROR, ROL,
ROXR, and ROXL instructions perform rotate (circular shift) operations, with
and without the extend bit. All shift and rotate operations can be performed
on either registers or memory.

Register shift and rotate operations shift all operand sizes. The shift count
may be specified in the instruction operation word (to shift from 1-8 places)
or in a register (modulo 64 shift count).

Memory shift and rotate operations shift word-length operands one bit po­
sition only. The SWAP instruction exchanges the 16-bit halves of a register.
Performance of shift/rotate instructions is enhanced so that use of the ROR
and ROL instructions with a shift count of eight allows fast byte swapping.
Table 4-8 is a summary of the shift and rotate operations,

MC68040 USER'S MANUAL MOTOROLA

Table 4-8. Shift and Rotate Operations

Instruction Operand Syntax Operand Size Operation

ASL On,On 8,16,32
#(data),On 8,16,32 ~ iii: \--0

(ea) 16

ASR On,On 8,16,32

0 ~~ #(data),On 8,16,32
(ea) 16

LSL On,On 8,16,32
#(data),On 8,16,32 ~ lIE \--0 (ea) 16 ..

LSR On,On 8,16,32
#(data),On 8,16,32 0--1 ~ (ea) 16 JI

ROL On,On 8,16,32
#(data),On 8,16,32 ~ ~ (ea) 16 c;

ROR On,On 8,16,32
#(data),On 8,16,32 ~ ~ (ea) 16)II

ROXL On,On 8,16,32
#(data),On 8,16,32 ~ Ie I X ~ (ea) 16 IE

ROXR On,On 8,16,32
#(data),On 8,16,32 ~ Xl ~I ~ (ea) 16 ~

SWAP On 32

MIW L!W I I I

MOTOROLA MC68040 USER'S MANUAL 4-11

•

4.2.6 Bit Manipulation Instructions

Bit manipulation operations are accomplished using the following instruc­
tions: bit test (BTST), bit test and set (BSET), bit test and clear (BCLR), and
bit test and change (BCHG). All bit manipulation operations can be performed
on either registers or memory. The bit number is specified as immediate
data or in a data register. Register operands are 32 bits long, and memory
operands are 8 bits long. In Table 4-9, the summary of the bit manipulation
operations, Z refers to the zero bit of the status register.

Table 4-9. Bit Manipulation Operations

Instruction Operand Syntax Operand Size Operation

BCHG Dn,(ea) 8, 32 ~ «bit number) of destination) • Z • bit of destination
#(data),(ea) 8, 32

BCLR Dn,(ea) 8, 32 ~ «bit number) of destination) • Z;
#(data),(ea) 8, 32 O. bit of destination

BSET Dn,(ea) 8, 32 ~ «bit number) of destination) • Z;
#(data),(ea) 8, 32 1 • bit of destination

BTST Dn,(ea) 8, 32 ~ «bit number) of destination) • Z
#(data),(ea) 8,32

4.2.7 Bit Field Instructions

4-12

The MC68040 supports variable length bit field operations on fields of up to
32 bits. The bit field insert (BFINS) instruction inserts a value into a bit field.
Bit field extract unsigned (BFEXTU) and bit field extract signed (BFEXTS)
extract a value from the field. Bit field find first one (BFFFO) finds the first
bit that is set in a bit field. Also included are instructions that are analogous
to the bit manipulation operations; bit field test (BFTST)' bit field test and
set (BFSET), bit field test and clear (BFCLR), and bit field test and change
(BFCHG). Table 4-10 is a summary of the bit field operations.

MC68040 USER'S MANUAL MOTOROLA

Table 4-10. Bit Field Operations

Instruction Operand Syntax Operand Size Operation

BFCHG (ea) {offset:width} 1-32 ~ Field. Field

BFCLR (ea) {offset:width} 1-32 a's. Field

BFEXTS (ea) (offset:width},Dn 1-32 Field. On; Sign Extended

BFEXTU (ea) {offset:widthj,Dn 1-32 Field. On; Zero Extended

BFFFO (ea) (offset:width},Dn 1-32 Scan for first bit set in field; offset. On

BFINS Dn,(ea) {offset:widthj 1-32 On. Field

BFSET (ea) {offset:width} 1-32 1's. Field

BFTST (ea) {offset:widthj 1-32 Field MSB. N; ~ (OR of all bits in field) • Z

NOTE: All bit field instructions set the Nand Z bits as shown for BFTST before performing the specified operation.

4.2.8 Binary Coded Decimal Instructions

Five instructions support operations on binary coded decimal (BCD) numbers.
The arithmetic operations on packed binary coded decimal numbers are: add
decimal with extend (ABCD), subtract decimal with extend (SBCD), and ne­
gate decimal with extend (NBCD). PACK and UNPACK instructions aid in the
conversion of byte encoded numeric data, such as ASCII or EBCDIC strings,
to BCD data and vice versa. Table 4-11 is a summary of the binary coded
decimal operations.

Table 4-11. Binary Coded Decimal Operations

Instruction Operand Syntax Operand Size Operation

ABCD Dn,Dn 8 sourcelO + destinationlO + X • destination
-(An),~(An) 8

NBCD (ea) 8 a - destinationlO ~ X • destination

PACK -(An),-(An) 16.8 unpackaged source + immediate data. packed
#(data) destination

Dn,Dn,#(data) 16H

SBCO Dn,Dn 8 destinationlO - sourcelO - X. destination
-(An),~(An) 8

UNPK -(An),-(An) 8.16 packed source. unpacked source
#(data) unpacked source + immediate data.

Dn,Dn,#(data) 8.16 unpacked destination

MOTOROLA MC68040 USER'S MANUAL 4-13

..

4.2.9 Program Control Instructions

4-14

A set of subroutine calland return instructions and conditional and uncon­
ditional bra.nch instructions perform program control operations. Also in­
cluded are test operand instructions (TST and FTST) that set the integer or
floating-point condition codes for use by the other program and system
control instructions, and a no operation instruction (NOP) that may be used
to force synchronization of the internal pipelines. Table 4-12 summarizes
these instructions.

Table 4-12. Program Control Operations

Instruction Operand Syntax Operand Size Operation

Integer and Floating-Point Conditional

Bcc, FBcc <label> 8,16,32 if condition true, then PC + d , PC

DBcc, FDBcc Dn,<label> 16 if condition false, then Dn - 1 , Dn
if Dn cF - 1, then PC + d , PC

Scc, FScc <ea> 8 if condition true, then l's, destination;
else D's' destination

Unconditional

BRA <label> 8,16,32 PC+d, PC

BSR <label> 8,16,32 SP-4, SP; PC, (SP);PC+d, PC

JMP <ea> none destination, PC

JSR <ea> none SP-4' SP; PC, (SP); destination, PC

NOP none none PC+2, PC

FNOP none none PC+4, PC

Returns

RTD #<d> 16 (SP), PC; SP+4+d, SP

RTR none none (SP), CCR; SP+ 2, SP; (SP) • PC; SP+4, SP

RTS none none (SP)' PC; SP+4, SP

Test Operand

TST <ea> 8,16,32 set integer condition codes

FTST <ea> B,W,L,S,D,X,P set floating-point condition codes
FPn X

Letters cc in the integer instruction mnemonics Bcc, DBcc, and Scc specify testing one of the following conditions:
CC - Carry clear GE - Greater or equal
LS - Lower or same PL - Plus
CS - Carry set GT - Greater than
LT - Less than T - Always true*
EQ - Equal HI - Higher
MI - Minus VC - Overflow clear
F - Never true* LE - Less .or equal
NE - Not equal VS - Overflow set

*Not applicable to the Bcc instructions.

MC68040 USER'S MANUAL MOTOROLA

The conditional mnemonics for the floating-point conditional instructions are
shown in Table 4-13, along with the conditional test function. The FPU sup­
ports 32 conditional tests that are separated into two groups; 16 that cause
an exception if an unordered condition is present when the conditional test
is attempted, and 16 that do not cause an exception if an unordered condition
is present. (An unordered condition occurs when an input to an arithmetic
operation is a NAN.) Refer to 4.4.2 Conditional Test Definitions for a detailed
description of the conditional equation used by each test .

Table 4-13. FPU Conditional Test Mnemonics

Exception on Unordered No Exception on Unordered

GE Greater Than or Equal OGE Ordered Greater Than or Equal

GL Greater Than or Less Than OGL Ordered Greater Than or Less Than

GLE Greater Than or Less OR Ordered

GT Greater Than OGT Ordered Greater Than

LE Less Than or Equal OLE Ordered Less Than or Equal

LT Less Than OLT Ordered Less Than

NGE Not (greater than or equal) UGE Unordered or Greater Than Equal

NGL Not (greater than or less than) UEO Unordered or Equal

NGLE Not (greater than or less than or equal) UN Unordered

NGT Not Greater Than UGT Unordered or Greater Than

NLE Not (less than or equal) ULE Unordered or Less Than or Equal

NLT Not Less Than ULT Unordered or Less Than

SEQ Signaling Equal EO Equal

SNE Signaling Not Equal NE Not Equal

SF Signaling Always False F Always False

ST Signaling Always True T Always True

MOTOROLA MC68040 USER'S MANUAL

..

4.2.10 System Control Instructions

4-16

Privileged instructions, trapping instructions, and instructions that use or
modify the condition code register (CCR) provide system control operations.
Table 4-14 summarizes these instructions. FSAVE and FRESTORE save and
restore the nonuser visible portion of the FPU during context switches in a
virtual memory or multitasking system. The conditional trap instructions use
the same conditional tests as their corresponding program control instruc­
tions and allow an optional 16- or 32-bit immediate operand to be included
as part of the instruction for passing parameters to the operating system. All
of these instructions cause the processor to flush the instruction pipe. See
4.4.5 Operation Post Processing for more details on condition codes.

MC68040 USER'S MANUAL MOTOROLA

Table 4-14. System Control Operations

Instruction Operand Syntax Operand Size Operation

Privileged

ANDI #<data>,SR 16 immediate data .\ SR • SR

EORI #<data>,SR 16 immediate data EB SR • SR

FRESTORE <ea> none slate frame. internal floating-point registers

FSAVE <ea> none internal floating-point registers. state frame

MOVE <ea>,SR 16 source. SR
SR,<ea> 16 SR • destination

MOVE USP,An 32 USP. An
An,USP 32 An. USP

MOVEC RC,Rn 32 Rc. Rn
..

Rn,Rc 32 Rn. Rc

MOVES Rn,<ea> 8,16,32 Rn • destination using DFC
<ea>,Rn source using SFC • Rn

ORI #<data>,SR 16 immediate data V SR • SR

RESET none none assert RSTO line

RTE none none (SP). SR; SP+2. SP; (SP). PC; SP+4. SP;
Restore stack according to format

STOP #<data> 16 immediate data. SR; STOP

Trap Generating

BKPT #<data> none run breakpoint cycle, then trap as illegal instruction

CHK <ea>,Dn 16,32 if Dn<O or Dn>(ea), then CHK exception

CHK2 <ea>,Rn 8,16,32 if Rn<lower bound or Rn>upper bound, the CHK
exception

ILLEGAL none none SSP - 2 • SSP; Vector Offset. (SSP);
SSP -4. SSP; PC. (SSP);
SSP -2. SSP; SR. (SSP);
Illegal Instruction Vector Address. PC

TRAP #<data> none SSP - 2 • SSP; Format and Vector Offset. (SSP)
SSP -4. SSP; PC. (SSP); SSP -2. SSP;
SR. (SSP); Vector Address. PC

TRAPcc none none if cc true, then TRAP exception
#<data> 16,32

FTRAPcc none none if floating-point cc true, then TRAP exception
#<data> 16,32

TRAPV none none if V then take overflow TRAP exception

Condition Code Register

ANDI #<data>,CCR 8 immediate data 1\ CCR • CCR

EORI #<data>,CCR 8 immediate data EB CCR • CCR

MOVE <ea>,CCR 16 source. CCR
CCR,<ea> 16 CCR. destination

ORI #<data>,CCR 8 immediate data V CCR • CCR

MOTOROLA MC68040 USER'S MANUAL 4-17

•

4.2.11 Memory Management Unit Instructions

The PFLUSH instructions flush the address translation caches (ATCs), and
can optionally select only nonglobal entries for flushing. PTEST performs a
search of the address translation tables, storing results in the MMU status
register and loading the entry into the ATC. Table 4-15 summarizes these
instructions.

Table 4-15. MMU Instructions

Instruction Operand Syntax Operand Size Operation

PFLUSHA none none Invalidate all ATC entries

PFLUSHA.N none none Invalidate all nonglobal ATC entries

PFLUSH (An) none Invalidate ATC entries at effective address

PFLUSH.N (An) none Invalidate nonglobal ATC entries at effective address

PTEST (An) none Information about logical address. MMU status register

4.2.12 Cache Instructions

The cache instructions provide maintenance functions for managing the in­
struction and data caches. CINV invalidates cache entries in both caches,and
CPUSH pushes dirty data from the data cache to update memory. Both in­
structions can operate on either or both caches, and can select a single cache
line, all lines in a page, or the entire cache. Table 4-16 summarizes these
instructions.

Table 4-16. Cache Instructions

Instruction Operand Syntax Operand Size Operation

CINVL caches,(An) none Invalidate cache line
CINVP caches, (An) none Invalidate cache page
CINVA caches none Invalidate entire cache

CPUSHL caches,(An) none Push selected dirty data cache lines, then invalidate
CPUSHP caches, (An) none selected cache lines
CPUSHA caches none

4.2.13 Multiprocessor Instructions

4-18

The TAS, CAS, and CAS2 instructions coordinate the operations of processors
in multiprocessing systems. These instructions use read-modify-write bus
cycles to ensure uninterrupted updating of memory. Table 4-17 lists these
instructions.

MC68040 USER'S MANUAL MOTOROLA

Table 4-17. Multiprocessor Operations (Read-Modify-Write)

Instruction Operand Syntax Operand Size Operation

CAS DC,Du,<ea> 8,16,32 destination - Dc • CC; if Z then Du • destination
else destination. Dc

CAS2 Dc1 :Dc2, Du1 :Du2, 8,16,32 dual operand CAS
(Rn):(Rn) "

TAS <ea> 8 destination - 0; set condition codes; 1 • destination [7J

4.3 INTEGER CONDITION CODES

The CCR portion of the SR contains five bits which are affected by many
integer instructions to indicate the results of the instructions. Program and
system control instructions use certain combinations of these bits to control
program and system flow.

The first four bits represent a condition of the result of a processor operation.
The X bit is an operand for multiprecision computations; when it is used, it
is set to the value of the carry bit. The carry bit and the multiprecision extend
bit are separate in the M68000 Family to simplify programming techniques
that use them.

The condition codes were developed to meet two criteria:
• Consistency - across instructions, uses, and instances
• Meaningful Results - no change unless it provides useful information

Consistency across instructions means that all instructions that are special
cases of more general instructions affect the condition codes in the same
way. Consistency across instances means that all instances of an instruction
affect the condition codes in the same way. Consistency across uses means
that conditional instructions test the condition codes similarly and provide
the same results whether the condition codes are set by a compare, test, or
move instruction.

In the instruction set definitions, the CCR is shown as follows:

x N v

where:
X (extend)

Set to the value of the C bit for arithmetic operations. Otherwise not
affected or set to a specified result.

MOTOROLA MC68040 USER'S MANUAL 4-19

--

N (negative)
Set if the most significant bit of the result is set. Cleared otherwise.

Z (zero)
Set if the result equals zero. Cleared otherwise.

V (overflow)
Set if arithmetic overflow occurs. This implies that the result cannot be
represented in the operand size. Cleared otherwise.

C (carry)
Set if a carry out of the most significant bit of the operand occurs for an
addition. Also set if a borrow occurs in a subtraction. Cleared otherwise.

4.3.1 Condition Code Computation

4-20

Most operations take a source operand and a destination operand, compute,
and store the result in the destination location. Single-operand operations
take a destination operand, compute, and store the result in the destination
location. Table 4-18 lists each instruction and how it affects the condition
code bits.

Table 4-18. Condition Code Computations (Sheet 1 of 2)

Operations X N Z V C Special Definition

ABCD * U ? U ? C ~ Decimal Carry
Z ~ Z A Rm ,\ \ RO

ADD, ADD I, ADDQ * * * ? ? V ~ Sm\ Dm A Rm V Sm\ Dm (\ Rm
C ~ Sm /\ Dm V Rm A Dm V Sm A Rm

ADDX * * ? ? ? V ~ Sm A Dm A Rm V Sm .\ Dm A Rm
C ~ Sm ,\ Dm V Rm ,\ Dm V Sm ;\ Rm
Z ~ Z .\ Rm ,\ ... ;\ RO

AND, ANDI, EaR, EaRl, - * * 0 0
MOVEQ, MOVE, OR, OR I,
CLR, EXT, NOT, TAS, TST

CHK - * U U U

CHK2, CMP2 - U ? U ? Z ~ (R ~ LB) V (R ~ UB)
C = (LB < ~ UB) A (lR < LB) V (R > UB))

V (UB < LB) A (R > UB) .\ (R < LB)

SUB, SUBI, SUBQ * * * ? ? V ~ Sm :\ Dm A Rm V Sm ,\ Dm ,\ Rm
C ~ Sm .\ Dm V Rm A Dm V Sm .\ Rm

SUBX * * ? ? ? V ~ Sm A Dm A Rm V Sm .\ Dm ;\ Rm
C ~ Sm ,\ Dm V Rm A Dm V Sm .\ Rm
Z ~ Z '\ Rm ,\ ... :\ RO

CAS, CAS2, CMP, CMPI, - * * 7 ? V ~ Sm '\ Dm :\ Rm V Sm (\ Dm .\ Rm
CMPM C ~ Sm .\ Dm V Rm A Dm V Sm .\ Rm

DIVS, DUVI - * * ? 0 V = Division Overflow

MULS, MULU - * * ? 0 V ~ Multiplication Overflow

MC68040 USER'S MANUAL MOTOROLA

Table 4-18. Condition Code Computations (Sheet 2 of 2)

Operations X N

SBCD, NBCD * U

NEG * *

NEGX * *

BTST,BCHG,BSET,BCLR - -

BFTST, BFCHG, BFSET, - ?
BFCLR

BFEXTS, BFEXTU, BFFFO - ?

BFINS - ?

ASL * *

ASL(R~OI - *

LSL, ROXL * *
LSR (r~OI - *

ROXL (r~OI - *

ROL - *

ROL (r~OI - *
ASR, LSR, ROXR * *
ASR, LSR (r~OI - *
ROXR (r~OI - *
ROR - *
ROR (r~OI - *

- ~ Not Affected
U ~ Undefined, Result Meaningless
? ~ Other - See Special Definition
* ~ General Case

X ~ C
N ~ Rm
Z ~ Rm i\ . .. A RO

Z V

? U

* ?

? ?

? -

? 0

? 0

? 0

* ?

* 0

* 0

* 0

* 0

* 0

* 0

* 0

* 0

* 0

* 0

* 0

Sm ~ Source Operand - Most Significant Bit
Dm ~ Destination Operand - Most Significant Bit

C

?

?

?

-

0

0

0

?

0

?

0

?

?

0

?

0

?

?

0

Special Definition

C ~ Decimal Borrow
Z ~ Z i\ Rm A ... i\ Ro

V ~ Dm.\ Rm
C ~ Dm V Rm

V ~ Dm i\ Rm
C ~ Dm V Rm
Z ~ Z A Rm A ... ;\ RO

Z ~ Dn

N ~ Dm
Z ~ Dm i\ DM - 1 i\ ... i\ DO

N ~ Sm
Z ~ Sm A Sm - 1 i\ ... A SO
N ~ Dm
Z ~ Dm A DM -1 i\ ... A DO

V ~ Dm A (Dm - 1 V ... V Dm - rl V Dr,l A
(DM-1 V ... +Dm- rl

C ~ Dm-r+1

C ~ Dm-r+1

C~X

C~Dm-r+1

C ~ Dr-1

C~X

C ~ Dr-1

Rm ~ Result Operand - Most Significant Bit
R ~ Register Tested
n ~ Bit Number
r' ~ Shift Count

LB ~ Lower Bound
UB ~ Upper Bound

i\ ~ Boolean AND
V ~ Boolean OR

Rm ~ NOT Rm

MOTOROLA MC68040 USER'S MANUAL 4-21

..

4.3.2 Conditional Tests

4-22

Table 4-19 lists the condition names, encodings, and tests for the conditional
branch and set instructions. The test associated with each condition is a
logical formula using the current states of the condition codes. If this formula
evaluates to one, the condition is true. If the formula evaluates to zero, the
condition is false. For example, the T condition is always true, and the EQ
condition is true only if the Z bit condition code is currently true.

Mnemonic

T*

F*

HI

LS

CC(HS)

CSILO)

NE

EQ

VC

VS

PL

MI

GE

LT

GT

LE

• = Boolean AND
+ = Boolean OR

Table 4-19. Conditional Tests

Condition Encoding

True 0000

False 0001

High 0010

Low or Same 0011

Carry Clear 0100

Carry Set 0101

Not Equal 0110

Equal 0111

Overflow Clear 1000

Overflow Set 1001

Plus 1010

Minus 1011

Greater or Equal 1100

Less Than 1101

Greater Than 1110

Less or Equal 1111

N = Boolean NOT N

*Not available for the Bcc instruction.

MC68040 USER'S MANUAL

Test

1

0

C·Z

C+Z

C

C

Z

Z

V

V

N

N

N·V+N·V

N·V+N·V

N·V·Z + N'V·Z

Z+N·V+N·V

MOTOROLA

4.4 FLOATING-POINT DETAILS

The following paragraphs describe accuracy considerations and conditional
tests which can be used to change program flow based on the floating-point
conditions. The operation tables in the instruction descriptions are also dis­
cussed, followed by details on NANs and floating-point condition codes.

4.4.1 Computational Accuracy

Whenever an attempt is made to represent a real number in a binary format ..
offinite precision, there is a possibility thatthe number cannot be represented
exactly; this is commonly referred to as round-off error. Furthermore, when
two inexact numbers are used in a calculation, the error present in each
number is reflected and possibly aggravated in the result.

One of the major reasons that the IEEE Standard for Binary Floating-Point
Arithmetic (ANSI/IEEE Std. 754-1985) was developed was to define the error
bounds for calculation of binary floating-point values so that all machines
conforming to the standard produce the same results for an operation. The
operation must meet the following conditions.

1. same input values,
2. same rounding mode, and
3. same precision.

The IEEE standard specifies not only the format of data items, but also de­
fines:

• the maximum allowable error that may be introduced during a calcu­
lation, and

• the manner in which rounding of the result is performed.

The IEEE Specification for Binary Floating-Point Arithmetic specifies that the
following operations must be supported for each data format: add, subtract,
mUltiply, divide, remainder, square root, integer part, and compare. Con­
versions between the various data formats are also required. In addition to
these arithmetic functions (remainder and integer part are supported in soft­
ware), the FPU also supports the nontranscendental operations of: absolute
value, negate, and test. Since the IEEE specification defines the error bounds
to which all calculations are performed, the result obtained by any conform­
ing machine can be predicted exactly for a particular precision and rounding
mode. The error bound defined by the IEEE specification is one-half unit in
the last place of the destination data format in the round-to-nearest mode,
and one unit in the last place in the other rounding modes.

MOTOROLA MC68040 USER'S MANUAL 4-23

4-24

The FPU performs all calculations using a 67-bit mantissa forthe intermediate
results. The three bits beyond the precision of the extended format allow the
FPU to perform all calculations as if to infinite performing calculations in this
manner, the final result is always correct for the specified destination data
format before rounding is performed (unless an overflow or underflow error
occurs). The specified rounding operation then produces a number that is
as close as possible to the infinitely-precise-intermediate value and is still
representable in the selected precision. An example of how the 67-bit man­
tissa allows the FPU to meet the error bound of the IEEE specification is as
follows:

Mantissa 9 r s

Intermediate Result: x.x xOO o 0 (Tie Case)
Round-to-Nearest Result: x.x xOO

In this case, the least-significant bit (I) of the rounded result is not incre­
mented, even though the guard bit (g) is set in the intermediate result. The
IEEE standard specifies that tie cases should be handled in this manner.
Assuming that the destination data format is extended, if the difference be­
tween the infinitely precise intermediate result and the round-to-nearest re­
sult is calculated, the relative difference is 2- 64 (the value of the guard bit).
This error is equal to one-half of the value of the least significant bit, and is
the worst-case error that can be introduced when using the round-to-nearest
mode. Thus, the term one-half unit in the last place correctly identifies the
error bound for this operation. This error specification is the relative error
present in the result; the absolute error bound is equal to 2exponent x 2 -64.

An example of the error bound for the other rounding modes is as follows:

Mantissa 9 r s

Intermediate Result: x.x xOO
Round-to-Zero Result: x.x xOO

In this case, the difference between the infinitely precise result and the rounded
result is 2-64+2-65+2-66, which is slightly less than 2- 63 (the value of the
least significant bit). Thus, the error bound for this operation is not more
than one unit in the last place. For all of the arithmetic operations, these error
bounds are met by the FPU, thus providing accurate and repeatable results.

MC68040 USER'S MANUAL MOTOROLA

4.4.2 Conditional Test Definitions

The FPU provides a very simple mechanism for performing conditional tests
of the result of any arithmetic floating-point operation. First, the condition
code bits in the FPSR are set or cleared at the end of any arithmetic operation
or move operation to a single floating-point data register. The condition code
bits are always set consistently based on the result of the operation. Second,
32 conditional tests are provided that allow floating-point conditional instruc­
tions to test floating-point conditions in exactly the same way as the integer
conditional instructions test the interger condition codes. The combination ..
of the consistent setting of the condition code bits and the simple program-
ming of conditional instructions gives the MC68040 a very flexible, high­
performance method of altering program flow based on floating-point results.

One important programming consideration is that the inclusion of the NAN
data type in the IEEE floating-point number system requires each conditional
test to include the NAN condition code bit in its Boolean equation. Because
a comparison of a NAN with any other data type is unordered (i.e., it is
impossible to determine if a NAN is bigger or smaller than an in-range num­
ber), the compare instruction sets the NAN condition code bit when an unor­
dered compare is attempted. All arithmetic instructions also set the NAN bit
if the result of an operation is a NAN. The conditional instructions interpret
the NAN condition code bit equal to one as the unordered condition.

The inclusion of the unordered condition in floating-point branches destroys
the familiar trichotomy relationship (greater than, equal, less than) that exists
for integers. For example, the opposite of floating-point branch greater than
(FBGT) is not floating-point branch less than or equal (FBLE). Rather, the
opposite condition is floating-point branch not greater than (FBNGT). If the
result of the previous instruction was unordered, FBNGT is true; whereas,
both FBGT and FBLE would be false since unordered fails both of these tests
(and sets BSUN). Compiler programmers should be particularly careful of
the lack of trichotomy in the floating-point branches since it is common for
compilers to invert the sense of conditions.

In the following paragraphs, the conditional tests are described in three main
categories:

1. IEEE nonaware tests,
2. IEEE aware tests, and
3. Miscellaneous.

MOTOROLA MC68040 USER'S MANUAL 4-25

4-26

The set of IEEE nonaware tests is best used:
1. when porting a program from a system that does not support the IEEE

standard to a conforming system, or
2. when generating high-level language code that does not support IEEE

floating-point concepts (Le., the unordered condition).

When using the set of IEEE nonaware tests, the user receives a BSUN ex­
ception whenever a branch is attempted and the NAN condition code bit is
set, unless the branch is an FBEO or and FBNE. If the BSUN trap is enabled
in the FPCR register, the exception causes a trap. Therefore, the IEEE non­
aware program is interrupted if an unexpected condition occurs.

The IEEE aware branch set should be used in programs that contain ordered
and unordered conditions by compilers and programmers who are knowl­
edgeable of the IEEE standard. Since the ordered or unordered attribute is
explicitly included in the conditional test, the BSUN bit is not set in the status
register EXC byte when the unordered condition occurs.

Table 4-20 lists the IEEE nonaware tests. All the conditional tests in Table 4-
20, except EO and NE, set the BSUN bit in the status register exception byte
ifthe NAN condition code bit is setwhen a conditional instruction is executed.

Table 4-20. IEEE Nonaware Tests

Mnemonic Definition

EQ Equal

NE Not Equal

GT Greater Than

NGT Not Greater Than

GE Greater Than or Equal

NGE Not (greater than or equal)

LT Less Than

NLT Not Less Than

LE Less Than or Equal

NLE Not (less than or equal)

GL Greater or Less Than

NGL Not (greater or less than)

GLE Greater, Less or Equal

NGLE Not (greater, less or equal)

where:
"v" = Logical OR
"A"=Logical AND

Equation

Z

Z

NANvZvN

NANvZvN

Zv(NANvN)

NANv(NAZ)

NA(NANvZ)

NANv(ZvN)

Zv(NANAN)

NANv(NvZ)

NANvZ

NANvZ

NAN

NAN

MC68040 USER'S MANUAL

Predicate

000001

001110

010010

011101

010011

011100

010100

011011

010101

011010

010110

011001

010111

011000

MOTOROLA

Table 4-21 lists the IEEE aware tests. None of the conditional tests in Table
4-21 set the BSUN bit in the status register exception byte under any circum­
stances.

Table 4-21. IEEE Aware Tests

Mnemonic Definition

EQ Equal

NE Not Equal

OGT Ordered Greater Than

ULE Unordered or Less or Equal

OGE Ordered Greater Than or Equal

ULT Unordered or Less Than

OLT Ordered Less Than

UGE Unordered or Greater or Equal

OLE Ordered Less Than or Equal

UGT Unordered or Greater Than

OGL Ordered Greater or Less Than

UEQ Unordered or Equal .

OR Ordered

UN Unordered

where:
"v" = Logical OR
"A"=Logical AND

Equation

Z

Z
NANvZvN

NANvZvN

Zv(NANvN)

NANv(NAZ)

NA(NANvZ)

NANvZvN

Zv(NANAN)

NANv(NvZ)

NANvZ

NANvZ

NAN

NAN

Predicate

000001

001110

000010

001101

000011

001100

000100

001011

000101

001010

000110

001001

000111

001000

The miscellaneous tests shown in Table 4-22 are not generally used but are
implemented for completeness of the set. If the NAN condition code bit is
set, T and F do not set the BSUN bit, but SF, ST, SEQ, and SNE do set the
BSUN bit.

Table 4-22. Miscellaneous Tests

Mnemonic Definition Equation Predicate

F False False 000000

T True True 001111 -SF Signaling False False 010000

ST Signaling True True 011111

SEQ Signaling Equal Z 010001

SNE Signaling Not Equal Z 011110

MOTOROLA MC68040 USER'S MANUAL 4-27

..

4.4.3 Operation Tables

4-28

An operation table is included for most floating-point instructions. This table
lists the result data types for the instruction based on types of input oper­
and(s). For example, Figure 4-2 illustrates the table for the FADD instruction.

~. In Range Zero Infinity
Destination + - + - + -

In Range + Add Add + inf -inf -

Zero + Add +0.0 0.0 1
+inf -inf

- 0.01 -0.0

Infinity + +inf +inf + inf NAN2
- -inf -inf NAN2 -inf

NOTES:
1. Returns +0.0 in rounding modes RN, RZ, and RP; returns -0.0 in RM.
2. Sets the OPERR bit in the FPSR exception byte.
3. If either operand is a NAN,refer to 4.4.4 NANs for more information.

Figure 4-2. Operation Table Example (FADD Instruction)

In the example shown in Figure 4-2, the type of the source operand is shown
along the top, and the type of the destination operand is shown along the
side. In-range numbers are normalized, denormalized, unnormalized real
numbers, or integers that are converted to normalized or denormalized ex­
tended precision numbers upon entering the FPU.

From Figure 4-2, it can be seen that if both the source and destination operand
are positive zero, the result is also a positive zero. For another example, if
the source operand is a positive zero and the destination operand is an in­
range number, then the ADD algorithm is executed to obtain the result. If a
labal such as ADD appears in the table, it indicates that the FPU performs
the indicated operation and returns the correct result.

A third example of using the tables is when a source operand is plus infinity,
and the destination operand is minus infinity. Since the result of such an
operation is undefined, a not-a-number (NAN) is returned as the result, and
the OPERR bit is set in the floating-point status register (FPSR) exception
byte.

MC68040 USER'S MANUAL MOTOROLA

4.4.4 NANs

In addition to the data types covered in the operation tables for each floating­
point instruction, NANs can also be used as inputs to an arithmetic operation.
The operation tables do not contain a row and column for NANs because
NANs are handled the same way in all operations.

If either operand (but not both operands) of an operation is a nonsignaling
NAN, then that NAN is returned as the result. If both operands are nonsig­
naling NANs, then the destination operand nonsignaling NAN is returned as
the result.

If either operand to an operation is a signaling NAN (SNAN), then the SNAN
bit is set in the FPSR EXC byte. If the SNAN trap enable bit is set in the
floating-point control register (FPCR) ENABLE byte, then the trap is taken and
the destination is not modified. If the SNAN trap enable bit is not set, then
the SNAN is converted to a nonsignaling NAN (by setting the SNAN bit in
the operand to a one), and the operation continues as described in the pre­
ceding paragraph for nonsignaling NANs.

4.4.5 Operation Post Processing

Most operations end with a post processing step. While reading the summary
for each instruction, it should be assumed that an instruction performs post
processing unless the summary speCifically states that the instruction does
not do so. The following paragraphs describe post processing in detail.

4.4.5.1 SETTING FLOATING-POINT CONDITION CODES. Unlike the integer arith­
metic condition codes, the floating-point condition codes are either not
changed by an instruction or are always set in the same way by any instruc­
tion. Therefore, it is not necessary to include details of condition code settings
for each floating-point instruction in the detailed instruction descriptions. The
following paragraphs describe how floating-point condition codes are set for
all instructions that modify any condition codes.

Referto SECTION 2 PROGRAMMING MODEL for a description of the floating­
point condition code byte. The four conditions code bits are:

N-Sign of Mantissa
Z-Zero
I-Infinity

NAN-Not-A-Number

MOTOROLA MC68040 USER'S MANUAL 4-29

..

The condition code bits differ slightly from the integer condition codes. The.
floating-point condition codes are not dependent on the type of operation
being performed, but rather, can be set at the end of the operation by ex­
amining the result. (The M68000 integer condition codes bits Nand Z have
this characteristic, but the V and C bits are set differently for different in­
structions.) At the end of any floating-point operation, the result is inspected,
and the condition code bits are set or cleared accordingly. For example, if
the result of an operation is a positive normalized number, then all of the
condition code bits are set to zero. If the result is a minus infinity, then the
N and I bits are set, and the Z and NAN bits are cleared.

4.4.5.2 UNDERFLOW, ROUND, OVERFLOW. During calculation of an arithmetic
result, the arithmetic logic unit (ALU) of the FPU has more precision and
range than the 80-bit extended precision format. However, the final result of
these operations is an extended precision floating-point value. In some cases,
an internal result becomes either smaller or larger than can be represented
in extended precision. Also, the operation may have generated a larger ex­
ponent or more bits of precision than can be represented in the chosen
rounding precision. For these reasons, every arithmetic instruction ends by
rounding the result and checking for overflow and underflow.

4-30

At the completion of an arithmetic operation, the internal result is checked
to see if it is too small to be represented as a normalized number in the
selected precision. If so, the underflow (UNFL) bit is set in the FPSR EXC
byte. It is also denormalized unless denormalization provides a zero value.
Denormalizing a number causes a loss of accuracy, but a zero is not returned
unless absolutely necessary. If a number is grossly underflowed, the FPU
returns a correctly signed zero or the correctly signed smallest denormalized
number, depending on the rounding mode in effect.

If no underflow occurs, the internal result is rounded according to the user­
selected rounding precision and rounding mode. After rounding, the inexact
bit (iNEX2) isset appropriately. Lastly, the magnitude ofthe result is checked
to see if it is too large to be represented in the current rounding precision.
If so, the overflow (OVFL) bit is set and a correctly signed infinity or correctly
signed largest normalized number is returned, depending on the rounding
mode in effect.

For details on underflow, rounding, and overflow refer to SECTION 9 EX­
CEPTION PROCESSING.

MC68040 USER'S MANUAL MOTOROLA

4.5 INSTRUCTION SET SUMMARY

Table 4-23 provides a alphabetized listing of the MC68040 instruction set
listed by opcode, operation and syntax.

Table 4-23 use notational conventions for the operands, the subfields and
qualifiers, and the operations performed by the instructions. In the syntax
descriptions, the left operand is the source operand, and the right operand
is the destination operand. The following lists contain the notations used in
Table 4-23.

Notation for operands:
PC-Program counter
SR-Status register

V-Overflow condition code
Immediate Data-Immediate data from the instruction

Source-Source contents
Destination-Destination contents

Vector-location of exception vector
+ inf-Positive infinity
- inf-Negative infinity

<fmt>-Operand data format: byte (8), word (W), long
(l), single (S)' double (0), extended (X)' or packed
(P).

FPm-One of eight floating-point data registers (always
specifies the source register)

FPn-One of eight floating-point data registers (always
specifies the detination register)

Notation for subfields and qualifiers:
<bit> of <operand>-Selects a single bit of the operand

<ea>{offset:width}-Selects a bit field
«operand»-The contents of the referenced location

<operand>1Q-The operand is binary coded decimal, operations
are performed in decimal

«address register»-The register indirect operator
- «address register»-Indicates that the operand register points to the

memory
«address register» +-location of the instruction operand - the op­

tional mode qualifiers are -, +, (d), and (d,ix)
#xxx or #<data>-Immediate data that follows the instruction

word(s)

MOTOROLA MC68040 USER'S MANUAL 4-31

..

4-32

Notations for operations that have two operands, written <operand> <op>
<operand>, where <op> is one of the following:

.-The source operand is moved to the destination
operand

•• - The two operands are exchanged
+-The operands are added
--The destination operand is subtracted from the

source operand
x-The operands are multiplied
+-The source operand is divided by the destination

operand
<-Relational test, true if source operand is less than

destination operand
>-Relational test, true if source operand is greater

than destination operand
V-Logical OR
EEl-Logical exclusive OR
A-Logical AND

shifted by, rotated by-The source operand is shifted or rotated by the
number of positions specified by the second
operand

Notation for single-operand operations:
~<operand>-The operand is logically complemented

<operand>sign-extended-The operand is sign extended, all bits ofthe upper
portion are made equal to the high order bit of
the lower portion

<operand>tested-The operand is compared to zero and the con­
dition codes are set appropriately

Notation for other operations:
TRAP-Equivalent to Format/Offset Word. (SSP); SSP - 2

• SSP; PC • (SSP); SSP-4 • SSP; SR • (SSP);
SSP - 2. SSP; (vector) • PC

STOP-Enter the stopped state, waiting for interrupts
If <condition> then-The condition is tested. If true, the operations
<operations> else after "then" are performed. If the condition is

<operations> false and the optional "else" clause is present,
the operations after "else" are performed. If the
condition is false and else is omitted, the instruc­
tion performs no operation. Refer to the Bcc in­
struction description as an example.

MC68040 USER'S MANUAL MOTOROLA

Table 4-23. Instruction Set Summary (Sheet 1 of 7)

Opcode Operation Syntax

ABCD Source1O + Destination1O + X • Destination ABCD Dy,Dx
ABCD - (Ay), - (Ax)

ADD. Source + Destination. Destination ADD (ea),Dn
ADD Dn,(ea)

. ADDA Source+ Destination. Destination ADDA (ea),An

ADDI Immediate Data + Destination. Destination ADDI #(data),(ea)

AD DO Immediate Data 4- Destination. Destination ADDO #(data),(ea)·

. ADDX Source + Destination +X .·Destination ADD X Dy,Dx ..
ADDX - (Ay), - (Ax)

AND SourceADestinaticin • Destination AND (ea),Dn
AND Dn,(ea)

ANDI Immediate DataADestination • Destination ANDI #(data),(ea)

ANDI . SourceACCR .CCR ANDI #(data),CCR
toCCR

ANDI If supervisor state ANDI #(data),SR
to SR .the SourceASR • SR

else TRAP

ASL,ASR Destination.Shifted by (count). Destination ASd DX,Dy
ASd #(data),Dy
ASd (ea)

Bcc If (condition true) then PC T d • PC Bcc (label) . .

BCHG -(number) of Destination) • Z; BCHG Dn,(ea)
-(number) of Destination) • (bit number) of Destination BCHG #(data);(ea)

BCLR -(bit number) of Destination). Z; .BCLR Dn,(ea)
Q.. (bit number) of Destination .BCLR #(data),(ea)

BFCHG -(bit field) of Destination) • (bit field) of Destination BfCHG (ea){offset:width}

BFCLR o • (bit field)' of Destination BFCLR (ea){offset:width}

BFEXTS (bit field) of Source. Dn BFEXTS (ea){offset:width},Dn

BFEXTU (bit offset) of Source. Dn BFEXTU (ea){offset:width},Dn

BFFFO (bit offset) of Source Bit Scan. Dn BFFFO (ea){offset:width},Dn

BFINS Dn • (bit field) of Destination BFINS Dn,(ea){offset:width}

BFSET 1s • (bit field) of Destination BFSET (ea){offset:width}

BFTST (bit field) of Destination BFTST (ea){offset:width}

BKPT Run breakpoint acknowledge cycle; BKPT #(data)
TRAP as illegal instruction

BRA PC+d. PC BRA (label)

BSET -(bit number) of Destination) • Z; BSET Dn,(ea)
1 • (bit number) of Destination BSET #(data),(ea)

BSR SP-4. SP; PC. (SP); PC+d. PC BSR (label)

BTST - (bit number) of Destination) • Z; BTST Dn,(ea)
BTST #(data),(ea)

MOTOROLA MC68040 USER'S MANUAL 4-33

Table 4-23. Instruction Set Summary (Sheet 2 of 7)

Opc~de Operation Syntax

CAS CAS Destination - Compare Operand. cc; CAS Dc,Du,(ea)
CAS2 if Z, Update Operand. Destination CAS2 Dcl :Dc2,Dul :Du2,(Rnl):(Rn2)

else Destination. Compare Operand
CAS2 Destination 1 - Compare 1 • cc;

if Z, Destination 2 - Compare. cc;
if Z, Update 1 • Destination 1; Update 2 • Destination 2
else Destination 1 • Compare 1; Destination 2 • Compare 2

CHK If Dn < 0 or Dn > Source then TRAP CHK (ea),Dn

CHK2 If Rn < lower bound or CHK2 (ea),Rn
Rn > upper bound

then TRAP

CINV If supervisor state CINVL <caches> l,(An)
then invalidate selected cache lines CINVP <caches> ',(An)

else TRAP CINVA ·<caches> 1

CLR o • Desti nation CLR (ea)

CMP Destination - Source. cc CMP (ea),Dn

CMPA Destination - Source CMPA (ea),An

CMPI Destination - Immediate Data CMPI #(data),(ea)

CMPM Destination - Source. cc CMPM (Ay) + ,(Ax) +

CMP2 Compare Rn < lower-bound or CMP2 (ea),Rn
Rn > upper-bound
and Set Condition Codes

CPUSH If supervisor state CPUSHL <caches> 1,(An)
then CPUSHP <caches> 1 ,(An)
if data cache then push selected dirty data cache lines CPUSHA <caches> 1
invalidate selected cache lines

else TRAP

DBcc If condition false then (Dn -1 • Dn; DBec Dn,(label)
If D.n'" -1 then PC+d. PC)

DIVS Destination/Source. Destination DIVS.w (ea),Dn 32/16. 16r:16q
DIVSL DIVS.L (ea),Dq 32/32.32q

DIVS.L (ea),Dr:Dq 64/32.32r:32q
DIVSL.L (ea),Dr:Dq 32/32. 32r:32q

DIVU Destination/Source. Destination DIVU.w (ea),Dn 32/16. 16r:16q
DIVUL DIVU.L (ea),Dq 32/32.32q

DIVU.L (ea),Dr:Dq 64/32. 32r:32q
DIVUL.L (ea),Dr:Dq 32/32. 32r:32q

EOR Source Ell Destination. Destination EOR Dn,(ea)

EORI Immediate Data Ell Destination. Destination EORI #(data),(ea)

EORI Source Ell CCR • CCR EORI #(data),CCR
to CCR

EORI If supervisor state EORI #(data)~SR
to SR the Source Ell SR • SR

else TRAP

EXG Rx" Ry EXG DX,Dy
EXG AxAy
EXG DxAy
EXG Ay,Dx

4-34 MC68040 USER'S MANUAL MOTOROLA

Table 4-23. Instruction Set Summary (Sheet 3 of 7)

Opcode Operation Syntax

EXT Destination Sign-Extended. Destination EXT.w Dn extend byte to word
EXTB EXT.L L Dn extend word to long word

EXTB.L Dn extend byte to long word

FABS Absolute Value of Source. FPn FABS.(fmt) (ea),FPn
FABS.X FPm,FPn
FABS.x FPn
FrABS.(fmt);2 (ea),FPn
FrABS.X2 FPm,FPn
FrABS.X2 FPn

FADD Sou rce + FPn • FPn FADD.(fmt) (ea),FPn
FADD.X FPm,FPn

..
FrADD.(fmt)2 (ea),FPn
FrADD.X2 FPm,FPn

FBcc If conditio true, then PC + d • PC FBcc.(size) (label)

FCMP FPn - Source FCMP.(fmt) (ea),FPn
FCMP.X FPm,FPn

FDBcc If condition true then no operation FDBcc Dn,(label)
else Dn - 1 • Dn

if Dn""-1
then PC+d. PC

else execute next instruction

FDIV FPn ("") Source. FPn FDIV.(fmt) (ea).FPn
FDIV.X FPm,FPn
FrDIV.(fmt)2 (ea).FPn
FrDIV.X2 FPm,FPn

FMOVE Source. Destination FMOVE.(fmt) (ea).FPn
FMOVE.(fmt) FPM,(ea)
FMOVE.P FPm,(ea){Dn}
FMOVE.P FPm,(eal{#k}
FrMOVE.(fmt)2 (ea),FPn

FMOVE Source. Destination FMOVE.L (ea),FPcr
FMOVE.L FPcr,(ea)

FMOVEM Register List. Destination FMOVEM.X (list)3,(ea)
Source. Register List FMOVEM.X Dn,(ea)

FMOVEM.X (ea).<list)3
FMOVEM.X (ea),Dn

FMOVEM Register List. Destination FMOVEM.L (list)4,(ea)
Source. Register List FMOVEM.L (ea),(list)4

FMUL Source x FPn • FPn FMUL.(fmt) (ea),FPn
FMUL.X FPm,FPn
FrM U L(fmt)2 (ea),FPn
FrMUL.X2 FPm,FPn

FNEG - (Source) • FPn FNEG.(fmt) (ea),FPn
FNEG.X FPm,FPn
FNEG.X FPn
FrNEG.(fmt)2 (ea),FPn
FrNEG.X2 FPm,FPn
FrNEG.X2 FPn

FNOP None FNOP

MOTOROLA MC68040 USER'S MANUAL 4-35

Table 4-23. Instruction Set Summary (Sheet 4 of 7)

Opcode Operation Syntax

FRESTORE If in supervisor state FRESTORE (ea)
then FPU State Frame. Internal State
else TRAP

FSAVE If in supervisor state FSAVE (ea)
then FPU Internal State. State Frame
else TRAP

FScc If (condition true) FScc.(size} (ea)
then 1s • Destination
else Os • Destination

FSORT Square Root of Source. FPn FSORT.(fmt} (ea},FPn
FSORT.X FPm,FPn
FSORT.X FPn
FrSORT.(fmt}2 (ea},FPn
FrSORT2 FPm,FPn
FrSORT2 FPn

FSUB FPn - Source. FPn FSUB.(fmt) (ea},FPn
FSUB.X FPm,FPn
FrSUB.(fmt) (ea},FPn
FrSUB.X2 FPm,FPn

FTRAPcc If cohdition true, then TRAp FTRAPcc
FTRAPcc.w #(data)
FTRAPcc.L #(data)

FTST Condition Codes for Operand. FPCC FTST.(fmt) (ea)
FTST.X FPm

ILLEGAL SSP - 2. SSP; Vector Offset. (SSP); ILLEGAL
SSP-4. SSP; PC. (SSP);
SSp-2. SSP; SR. (SSP);
Illegal Instr.uction Vector Address. PC

JMP Destination Address. PC JMP (ea)

JSR SP-4. SP; PC. (SP) JSR (ea)
Destination Address. PC

LEA (ea). An LEA (ea},An

LINK SP-4. SP; An. (SP) LINK An,#(displacement)
SP. An, SP+d. SP

LSL,LSR Destination Shifted by (count) • Destination LSd5 DX,Dy
LSd5 #(data},Dy
LSd5 (ea)

MOVE Source. Destination MOVE (ea},(ea)

MOVEA Source. Destination MOVEA (ea},An

MOVE CCR • Destination MOVE CCR,(ea)
toGCR

MOVE Source. CCR MOVE (ea},CCR
to CGR

MOVE If supervisor state MOVE SR,(ea)
from SR then SR. Destination

else TRAP

4-36 MC68040 USER'S MANUAL MOTOROLA

Table 4-23. Instruction Set Summary (Sheet 5 of 7)

Ope ode Operation Syntax

MOVE If supervisor state MOVE (ea),SR
to SR then Source. SR

else TRAP

MOVE If supervisor state MOVE USP,An
USP then USP • An or An • USP MOVE An,USP

else TRAP

MOVE16 Source block> Destination block MOVE16 (Ax)+,(Ay)+
MOVE16 xxx.L,(An)
MOVE16 xxx.L,(An) +
MOVE16 (An),xxx.L
MOVE16 (An)+,xxx.L

MOVEC If supervisor state MOVEC RC,Rn
then Rc • Rn or Rn • Rc MOVEC Rn,Rc
else TRAP

MOVEM Registers. Destination MOVEM register list,(ea)
Source. Registers MOVEM (ea),register list

MOVEP Source. Destination MOVEP DX,(d,Ay)
MOVEP (d,Ay),Dx

MOVEQ Immediate Data. Destination MOVEQ #(data),Dn

MOVES If supervisor state MOVES Rn,(ea)
then Rn • Destination [DFC] or Source [SFC] • Rn MOVES (ea),Rn
else TRAP

MULS Source x Destination. Destination MULS.W (ea),Dn 16x16.32
MULS.L (ea),DI 32 x 32.32
MULS.L (ea),Dh:DI 32 x 32.64

MULU Source x Destination. Destination MULU.W (ea),Dn 16x 16.32
MULU.L (ea),DI 32 x 32.32
MULU.L (ea),Dh:DI 32 x 32.64

NBCD 0- (DestinationlO)- X • Destination NBCD (ea)

NEG 0- (Destination) • Destination NEG (ea)

NEGX 0- (Destination)- X • Destination NEGX (ea)

NOP None NOP

NOT ~Destination • Destination NOT (ea)

OR Source V Destination. Destination OR (ea),Dn
OR Dn,(ea)

ORI Immediate Data V Destination. Destination ORI #(data),(ea)

ORI Source V CCR • CCR ORI #(data),CCR
to CCR

ORI If supervisor state ORI #(data),SR
to SR then Source V SR • SR

else TRAP

PACK Source (Unpacked BCD) + adjustment. Destintion (Packed BCD) PACK - (Ax), - (Ay),#(adjustment)
PACK DX,Dy,#(adjustment)

PEA Sp - 4 • SP; (ea) • (SP) PEA (ea)

MOTOROLA MC68040 USER'S MANUAL 4-37

Table 4-23. Instruction Set Summary (Sheet 6 of 7)

Opcode Operation Syntax

PFLUSH If supervisor state PFLUSH (An)
then invalidate instruction and data ATC entries for destination PFLUSHN (An)

address PFLUSHA
else TRAP PFLUSHAN

PTEST If supervisor state PTESTR (An)
then logical address status. MMUSR; entry. ATC PTES1W (An)

else TRAP

RESET If supervisor state RESET
then Assert RSTO Line
else TRAP

ROL,ROR Destination Rotated by (count) • Destination ROd 5 RX,Dy
ROd5 #(data),Dy
ROd 5 (ea)

ROXL,ROXR Destination Rotated with X by (count) • Destination ROXd5 DX,Dy
ROXd5 #(data),Dy
ROXd5 (ea)

RTD (SP). PC; SP+4+d. SP RTD #(displacement)

RTE If supervisor state RTE
the (SP). SR; SP+2. SP; (SP). PC;
SP+4. SP;
restore state and deallocate stack according to (SP)

else TRAP

RTR (SP). CCR; SP+2. SP; RTR
(SP). PC; SP+4. SP

RTS (SP). PC; SP+4. SP RTS

SBCD Destination1O - Source1O - X • Destination SBCD DX,Dy
SBCD - (Ax), - (Ay)

Scc If Condition True Scc (ea)
then 1s • Destination
else Os • Destination

STOP If supervisor state STOP #(data)
then Immediate Data .SR; STOP
else TRAP

SUB Destination - Source. Destination SUB (ea),Dn
SUB Dn,(ea)

SUBA Destination - Source. Destination SUBA (ea),An

SUBI Destination -Immediate Data. Destination SUBI #(data),(ea)

SUBO Destination -Immediate Data. Destination SUBO #(data),(ea)

SUBX Destination - Source - X • Destination SUBX DX,Dy
SUBX - (Ax), - (Ay)

SWAP Register [31 :16J" Register [15:0J SWAP Dn

TAS Destination Tested. Condition Codes; 1 • bit 7 of Destination TAS (ea)

TRAP SSP - 2 • SSP; Format/Offset. (SSP); TRAP #(vector)
SSP-4. SSP; PC. (SSP); SSP-2. SSP;
SR. (SSP); Vector Address. PC

4-38 MC68040 USER'S MANUAL MOTOROLA

Table 4-23. Instruction Set Summary (Sheet 7 of 7)

Opcode Operation Syntax

TRAPcc If cc then TRAP TRAPcc
TRAPcc.w #(data)
TRAPcc,L #(data)

TRAPV If V then TRAP TRAPV

TST Destination Tested. Condition Codes TST (ea)

UNLK An. SP; (SP). An; SP+4. SP UNLK An

UNPK Source (Packed BCD) + adjustment. Destination (Unpacked BCD) UNPACK - (Ax), - (Ay),#(adjustment)
UNPACK DX,Dy,#(adjustment)

NOTES:
1, Specifies either the instruction (lC)' data (DC), or IC/DC caches,
2, Where r is rounding precision, S or 0,
3, A list of any combination of the eight floating-point data registers, with individual register names separated by a slash

(I); and/or contiguous blocks of registers specified by the first and last register names separated by a dash (-),
4, A list of any combination of the three floating-point system control registers (FPCR, FPSR, and FPIAR) with individual

register names separated by a slash (I),
5, where d is direction, Lor R,

4.6 INSTRUCTION EXAMPLES

The following paragraphs provide examples of how to use selected instruc­
tions.

4.6.1 Using the CAS and CAS2 Instructions

The CAS instruction compares the value in a memory location with the value
in a data register, and copies a second data register into the memory location
if the compared values are equal. This provides a means of updating system
counters, history information, and globally shared pointers. The instruction
uses an indivisible read-modify-write cycle; after CAS reads the memory
location; no other instruction can change that location before CAS has written
the new value. This provides security in single-processor systems, in mul­
titasking environments, and in multiprocessor environments. In a single­
processor system, the operation is protected from instructions of an interrupt
routine. In a multitaskingenvironment, no other task can interfere with writing
the new value of a system variable. In a multiprocessor environment, the
other processors must wait until the CAS instruction completes before ac­
cessing a global pointer.

MOTOROLA MC68040 USER'S MANUAL 4-39

4-40

The following code fragment shows a routine to maintain a count, in location
SYS-CNTR, of the executions of an operation that may be performed by any
process or processor in a system. The routine obtains the current value of
the count in register DO and stores the new count value in register D1. The
CAS instruction copies the new count into SYS-CNTR if it is valid. But if
another user has incremented the counter between the time the count was
stored and the read-modify-write cycle of the CAS instruction, the write por­
tion of the cycle copies the new count in SYS-CNTR into DO, and the routine
branches to repeat the test. The following code sequence guarantees that
SYS-CNTR is correctly incremented.

MOVE.w
INC-LOOP MOVE.w

ADDQ.W
CAS.W
BNE

SYS-CNTR,DO
DO,Dl
#l,Dl
DO,Dl,SYS_CNTR
INC-LOOP

get the old value of the counter
make a copy of it
and increment it
if counter value is still the same, update it
if not, try again

The CAS and CAS2 instructions together allow safe operations in the ma­
nipulation of system linked lists. Controlling a single location, HEAD in the
example, manages a last-in-first-out linked list (see Figure 4-4). If the list is
empty, HEAD contains the NULL pointer (0); otherwise, HEAD contains the
address of the element most recently added to the list. The code fragment,
shown in Figure 4-4, illustrates the code for inserting an element. The MOVE
instructions load the address in location HEAD into DO and into the NEXT
pointer in the element being inserted, and the address of the new element
into D1. The CAS instruction stores the address of the inserted element into
location HEAD if the address in HEAD remains unaltered. If HEAD contains
a new address, the instruction loads the new address into DO and branches
to the second MOVE instruction to try again.

The CAS2 instruction is similar to the CAS instruction except thatit performs
two comparisons and updates two variables when the results of the com­
parisons are equal. If the results of both comparisons are equal, CAS2 copies
new values into the destination addresses. If the result of either comparison
is not equal, the instruction copies the values in the destination addresses
into the compare operands.

The next code (see Figure 4-5) fragment shows the use of a CAS2 instruction
to delete an element from a linked list. The first LEA instruction loads the
effective address of HEAD intoAO. The MOVE instruction loads the address
in pointer HEAD into DO. The TST instruction checks for an empty list, and
the BEQ instruction branches to a routine at lable SDEMPTY if the list is
empty. Otherwise, a second LEA instruction loads the address of the NEXT

MC68040 USER'S MANUAL MOTOROLA

NEW

SINSERT
SILOOP

MOVE.L
MOVE.L
MOVE.L
CAS.L
BNE

HEAD.DO
DO, (NEXT, A1)
A1,D1
DO, D1, HEAD
SILOOP

BEFORE INSERTING AN ELEMENT:

ENTRY

+ NEXT

AFTER INSERTING AN ELEMENT:

HEAD
NEW

ENTRY

+ NEXT

HEAD

ALLOCATE NEW ENTRY, ADDRESS IN A1
MOVE HEAD POINTER VALUE TO DO
ESTABLISH FORWARD LINK IN NEW ENTRY
MOVE NEW ENTRY POINTER VALUE TO D1
IF WE STILL POINTTO TOP OF STACK, UPDATE THE HEAD POINTER
IF NOT, TRY AGAIN

ENTRY (ENTRY

+ NEXT ••• + NEXT

ENTRY ENTRY

+ NEXT + NEXT

Figure 4-3. Linked List Insertion

pointer in the newest element on the list into A 1, and the following MOVE
instruction loads the pointer contents into D1. The CAS2 instruction compares
the address of the newest structure to the value in HEAD and the address in
D1 to the pointer in the address in A 1. If no element has been inserted or
deleted by another routine while this routine has been executing, the results
of these comparisons are equal, and the CAS2 instruction stores the new
value into location HEAD. If an element has been inserted or deleted, the
CAS2 instruction loads the new address in location HEAD into DO, and the
BNE instruction branches to the TST instruction to try again.

The CAS2 instruction can also be used to correctly maintain a first-in first­
out doubly-linked list. A doubly-linked list needs two controlled locations,
LIST-PUT and LIST-GET, which contain pointers to the last element inserted
in the list and the next to be removed, respectively. If the list is empty, both
pointers are NULL (0).

MOTOROLA MC68040 USER'S MANUAL 4-41

..

--

SDELETE
HEAD, AO
(AO), DO

SDLOOP

LEA
MOVE.L
TST.L
BEQ
LEA
MOVE.L
CAS.2

DO
SDEMPTY
(NEXT, DO), A1

LOAD ADDRESS OF HEAD POINTER INTO AO
MOVE VALUE OF HEAD POINTER INTO DO
CHECK FOR NULL HEAD POINTER
IF EMPTY, NOTHING TO DELETE

(A1),D1
00:01,01 :01, (AO):(A1)

BNE SDLOOP

LOAD ADDRESS OF FORWARD LINK INTO A1
PUT FORWARD LINK VALUE IN D1
IF STILL POINT TO ENTRY TO BE DELETED, THEN UPDATE HEAD AND
FORWARD POINTERS
IF NOT, TRY AGAIN

SDEMPTY SUCCESSFUL DELETION, ADDRESS OF DELETED ENTRY IN DO (MAY
BE NULL)

BEFORE DELETING AN ELEMENT:

ENTRY ENTRY

+ NEXT + NEXT

HEAD

AFTER DELETING AN ELEMENT:

ENTRY ENTRY ENTRY

•••
+ NEXT +NEXT +NEXT

I
HEAD -------------

4-42

Figure 4-4. Linked List Deletion

The code fragment in Figure 4-6 illustrates the insertion of an element in a
doubly-linked list. The first two instructions load the effective addresses of
LIST-PUT and LIST-GET into registers AO and A 1, respectively. The next
instruction moves the address of the new element into register 02. Another
MOVE instruction moves the address in LIST-PUT into register DO. At label
DILOOP, a TST instruction tests the value in DO, and the SEQ instruction
branches to the MOVE instruction when DO is equal to zero. Assuming the
list is empty, this MOVE instruction is executed next; it moves the zero in
DO into the NEXT and LAST pointers of the new element. Then the CAS2
instruction moves the address of the new element into both LIST-PUT and
LIST-GET, assuming that both of these pointers still contain zero. If not, the
SNE instruction branches to the TST instruction at label DILOOP to try again.

MC68040 USER'S MANUAL MOTOROLA

DINSERT

DILOOP

DIEMPTY

DIDONE

This time, the BEQ instruction does not branch, and the following MOVE
instruction moves the address in DO to the NEXT pointer of the new element.
The CLR instruction clears register D1 to zero, and the MOVE instruction
moves the zero into the LAST pointer ofthe new element. The LEA instruction
loads the address of the LAST pointer of the most recently inserted element
into register A 1. Assuming the LIST-PUT pointer and the pointer in A 1 have
not been changed, the CAS2 instruction stores the address of the new element
into these pointers.

LEA
LEA
MOVE.L
MOVE.L
TST.L
BEQ
MOVE.L
CLR.L
MOVE.L
LEA
CAS2.L
BNE
BRA
MOVE.L
MOVE.L
CAS2.L
BNE

LIST PUT, AO
LIST-GET, A1
A2,D2
(AO), DO
DO
DIEMPTY

DO, (NEXT, A2)
01
01, (LAST, A2)
(LAST, DO), A 1
DO:D1 ,D2:D2,(AO):(A1)
DILOOP
DIDONE
DO, (NEXT, A2)
DO, (LAST, A2)
00:00, D2:D2,(AO) :(A 1)
DILOOP

(ALLOCATE NEW LIST ENTRY, LOAD ADDRESS INTO A2)
LOAD ADDRESS OF HEAD POINTER INTO AD
LOAD ADDRESS OF TAIL POINTER INTO A 1
LOAD NEW ENTRY POINTER INTO 02
LOAD POINTER TO HEAD ENTRY INTO DO
IS HEAD POINTER NULL, (0 ENTRIES IN LIST)
IF SO. WE ONLY TO ESTABLIST POINTERS
PUT HEAD POINTER INTO FORWARD POINTER OF NEW ENTRY
PUT NULL POINTER VALUE INTO 01
PUT NULL POINTER IN BACKWARD POINTER OF NEW ENTRY
LOAD BACKWARD POINTER OF OLD HEAD ENTRY INTO A1
IF WE STILL POINT TO OLD HEAD ENTRY, UPDATE POINTERS
IF NOT, TRY AGAIN

PUT NULL POINTER IN FORWARD POINTER OF NEW ENTRY
PUT NULL POINTER IN BACKWARD POINTER OF NEW ENTRY
IF WE STILL HAVE NO ENTRIES, SET BOTH POINTERS TO THIS ENTRY
IF NOT, TRY AGAIN
SUCCESSFUL LIST ENTRY INSERTION

BEFORE INSERTING NEW ENTRY:

ENTRY

+ LAST + NEXT

NEW ENTRY

AFTER INSERTING NEW ENTRY:

Figure 4-5. Doubly-Linked List Insertion

MOTOROLA MC68040 USER'S MANUAL 4-43

..

The code fragment to delete an element from a doubly-linked list is similar
(see Figure 4-7). The first two instructions load the effective addresses of
pointers LIST-PUT and LIST-GET into registers AO and A1, respectively. The
MOVE instruction at label DDLOOP moves the LIST-GET pointer into register
D1. The BEQ instruction that follows branches out of the routine when the
pointer is zero. The MOVE instruction moves the LAST pointer of the element
to be deleted into register D2. Assuming this is not the last element in the
list, the Z condition code is not set, and the branch to label DDEMPTY does
not occur. The LEA instruction loads the address of the NEXT pointer of the
element at the address in D2 into register A2. The next instruction, a CLR
instruction, clears register DO to zero. The CAS2 instruction compares the
address in D1 to the LIST-GET pointer and to the address in register A2. If
the pointers have not been updated, the CAS2 instruction loads the address
in D2 into the LIST-GET pointer and zero into the address in register A2.

When the list contains only one element, the routine branches to the CAS2
instruction at label DDEMPTY after moving a zero pointer value into D2. This
instruction checks the addresses in LIST-PUT and LIST-GET to verify that
no other routine has inserted another element or deleted the last element.
Then the instruction moves zero into both pointers, and the list is empty.

4.6.2 Nested Subroutine Calls

The LINK instruction pushes an address onto the stack, saves the stack ad­
dress at which the address is stored, and reserves an area of the stack. Using
this instruction in a series of subroutine calls results in a linked list of stack
frames.

The UNLK instruction removes a stack frame from the end of the list by
loading an address into the stack pointer and pulling the value at that address
from the stack. When the operand of the instruction is the address of the link
address at the bottom of a stack frame, the effect is to remove the stack
frame from the stack and from the linked list.

4.6.3 Bit Field Instructions

4-44

One of the data types provided by the MC68030 is the bit field, consisting of
as many as 32 consecutive bits. A bit field is defined by an offset from an
effective address and a width value. The offset is a value in the range of
- 231 through 231 -1 from the most significant bit (bit 7) at the effective
address. The width is a positive number, 1 through 32. The most significant
bit of a bit field is bit 0; the bits number in a direction opposite to the bits
of an integer.

MC68040 USER'S MANUAL MOTOROLA

DDELETE

DDLOOP

LEA
LEA
MOVE.L
BEQ
MOVE.L
BEQ
LEA
CRL.L
CAS2.L
BNE
BRA
CAS2.L
BNE

LIST PUT, AO
LlST=GET, A1
(A1),D1
DOONE
(LAST,D1),D2
DDEMPTY
(NEXT,D2),A2
DO

GET ADDRESS OF HEAD POINTER IN AO
GET ADDRESS OF TAIL POINTER IN A 1
MOVE TAIL POINTER INTO 01
IF NO LIST, QUIT
PUT BACKWARD POINTER IN D2

DDEMPTY D1 :D1,D2:DO,(A1):(A2)
DDLOOP

IF ONLY ONE ELEMENT, UPDATE POINTERS
PUT ADDRESS OF FORWARD POINTER IN A2
PUT NULL POINTER VALUE IN DO
IF BOTH POINTERS STILL POINT TO THIS ENTRY, UPDATE THEM
IF NOT, TRY AGAIN

DDONE

DDONE
D1 :D1,D2:D2,(A1):(AO)
DDLOOP

IF STILL FIRST ENTRY, SET HEAD AND TAIL POINTERS TO NULL
IF NOT, TRY AGAIN
SUCCESSFUL ENTRY DELETION, ADDRESS OF DELETED
ENTRYIN D1 (MAY BE NULL)

BEFORE DELETING NEW ENTRY:

ENTRY

AFTER DELETING NEW ENTRY:

ENTRY

+ LAST + NEXT

Figure 4-6. Doubly-Linked List Deletion

The instruction set includes eight instructions that have bit-field operands.
The insert bit field (BFINS) instruction inserts a bit field stored in a register
into a bit field. The extract bit field signed (BFEXTS) instruction loads a bit
field into the least significant bits of a register and extends the sign to the
left, filling the register. The extract bit field unsigned (BFEXTU) also loads a
bit field, but zero fills the unused portion of the destination register.

MOTOROLA MC68040 USER'S MANUAL 4-45

The set bit field (BFSET) instruction sets all the bits of a field to ones. The
clear bit field (BFCLR) instruction clears a field. The change bit field (BFCHG)
instruction complements all the bits in a bit field. These three instructions
all test the previous value of the bit field, setting the condition codes ac­
cordingly. The test bit field (BFTST) instruction tests the value in the field,
setting the condition codes appropriately without altering the bit field. The
find first one in bit field (BFFFO) instruction scans a bit field from bit 0 to the
right until it finds a bit set to one and loads the bit offset of the first set bit
into the specified data register. If no bits in the field are set, the field offset
and the field width is loaded into the register.

An important application of bit-field instructions is the manipulation of the
exponent field in a floating-point number. In the IEEE standard format, the
most significant bit is the sign bit of the mantissa. The exponent value begins
at the next most significant bit position; the exponent field does not begin
on a byte boundary. The extract bit field (BFEXTU) instruction and the BFTST
instruction are the most useful for this application, but other bit-field instruc­
tions can also be used.

Programming of input and output operations to peripherals requires testing,
setting, and inserting of bit fields in the control registers of the peripherals.
This is another application for bit-field instructions. However, control register
locations are not memory locations; therefore, it is not always possible to
insert or extract bit fields of a register without affecting other fields within
the register.

Another widely used application for bit-field instructions is bit-mapped graph­
ics. Because byte boundaries are ignored in these areas of memory, the field
definitions used with bit-field instructions are very helpful.

4.6.4 Pipeline Synchronization with the NOP Instruction

4-46

Although the no operation (NOP) instruction performs no visible operation,
it serves an important purpose. It forces synchronization of the integer unit
pipeline by waiting for all pending bus cycles to complete. All previous integer
instructions and floating-point external operand accesses complete execution
before the NOP begins. The NOP instruction does not synchronize the FPU
pipeline - floating-point instructions with floating-point register operand
destinations can be executing when the NOP begins.

MC68040 USER'S MANUAL MOTOROLA

SECTION 5
SIGNAL DESCRIPTION

This section contains brief descriptions of the input and output signals in
their functional groups (see Figure 5-1). Each signal is explained in a brief
paragraph with reference to other sections that contain more detailed infor­
mation about the signal and the related operations. The names, mnemonics,
and signal descriptions of the input and output signals for the MC68040 are
listed in Table 5-1. Guaranteed timing specifications for these signals can be
found in SECTION 11 ELECTRICAL CHARACTERISTICS.

NOTE

Assertion and negation are used to specify forcing a signal to a
particular state. Assertion and assert refer to a signal that is active
or true. Negation and negate refer to a signal that is inactive or false.
These terms are used independently of the voltage level (high or
low) that they represent.

Table 5-1. Signal Index (Sheet 1 of 2)

Signal Name Mnemonic Function

Address Bus A31-AO 32-bit address bus used to address any of 4 Gbytes.

Data Bus 031-00 32-bit data bus used to transfer up to 32 bits of data
per bus transfer.

Transfer Type TT1,TTO Indicates the general transfer type: normal, MOVE16,
alternate logical function code, and acknowledge.

Transfer Modifier TM2,TMO Indicates supplemental information about the access.

Transfer Line Number TLN1,TLNO Indicates which cache line in a set is being pushed or
loaded by the current line transfer.

User Programmable UPA1,UPAO User-defined signals, controlled by the corresponding
Attributes user attribute bits from the address translation entry.

ReadlWrite RIW Identifies the transfer as a read or write.

Transfer Size SIZ1,SIZO Indicates the data transfer size. These signals, together
with AO and A 1, define the active sections of the data
bus.

Bus Lock LOCK Indicates a bus transfer is part of a read-modify-write
operation, and that the sequence of transfers should
not be interrupted.

Bus Lock End LOCKE Indicates the current transfer is the last in a locked
sequence of transfers.

MOTOROLA MC68040 USER'S MANUAL 5-1

•

Table 5·1. Signal Index (Sheet 2 of 2)

Signal Name Mnemonic Function

Cache Inhibit Out ClOUT Indicates the processor will not cache the current bus
transfer.

Transfer Start TS Indicates the beginning of a bus transfer.

Transfer in Progress TIP Asserted for the duration of a bus transfer.

Transfer Acknowledge TA Asserted to acknowledge a bus transfer.

Transfer Error Acknowledge TEA Indicates an error condition exists for a bus transfer.

Transfer Cache Inhibit TCI Indicates the current bus transfer should not be cached.

Transfer Burst Inhibit TBI Indicates the slave cannot handle a line burst access.

Data Latch Enable DLE Alternate clock input used to latch input data when
the processor is operating in DLE mode.

Snoop Control SC1,SCO Indicates the snooping operation required during an
alternate master access.

Memory Inhibit MI Inhibits memory devices from responding to an alter-
nate master access during snooping operations.

Bus Request BR Asserted by the processor to request bus mastership.

Bus Grant BG Asserted by an arbiter to grant bus mastership to the
processor.

Bus Busy BB Asserted by the current bus master to indicate it has
assumed ownership of the bus.

Cache Disable CDIS Dynamically disables the internal caches to assist em-
ulator support.

MMU Disable MDIS Disables the translation mechanism of the MMUs.

Reset In RSTI Processor reset.

Reset Out RSTO Asserted during execution of a RESET instruction to
reset external devices.

Interrupt Priority Level IPL2-IPLO Provides an encoded interrupt level to the processor.

Interrupt Pending IPEND Indicates an interrupt is pending.

Autovector AVEC Used during an interrupt acknowledge transfer to re-
quest internal generation of the vector number.

Processor Status PST3-PSTO Indicates internal processor status.

Bus Clock BCLK Clock input used to derive all bus signal timing.

Processor Clock PCLK Clock input used for internal logic timing. The PCLK
frequency is exactly 2X the BCLK frequency.

Test Clock TCK Clock signal for the IEEE Pl149.l Test Access Port (TAP).

Test Mode Select TMS Selects the principle operations of the test-support cir-
cuitry.

Test Data Input TDI Serial data input for the TAP.

Test Data Output TDO Serial data output for the TAP.

Test Reset TRST Provides an asynchronous reset of the TAP controller.

Power Supply VCC Power supply.

Ground GND Ground connection.

5-2 MC68040 USER'S MANUAL MOTOROLA

ADDRESS { A31-AO
BUS <=> SC1-SCO

) BUS SNOOP CONTROL

MT AND RESPONSE

<=>
BR

}""""'"""'" BG

Bli

TT1-TTO - '"

CDIS

MDIS }~~
RSTI CONTROL .. RSTO

TM2-TMO
TLN1-TLNO

UPA1-UPAO

TRANSFER RIW ATTRIBUTES

, ,
.... --, MC68040

IPL2-IPLO

IPEND }~"" CONTROL

AVEC

SIZ1-SIZO
,

'" ""-
LOCK

LOCKE

ClOUT

..... , PST3-PSTO

BCLK)''',",''0 CLOCKS

PCLK

MASTER (TS
TRANSFER
CONTROL TIP

TA

TEA ~,,(TRANSFER TCI
CONTROL

TSI

DLE

0(

TCK

lEST
TMS

TOI

TOO

TRST

VCC
) POWER SUPPLY

GND

Figure 5-1. Functional Signal Groups

MOTOROLA MC68040 USER'S MANUAL 5-3

..

5.1 ADDRESS BUS (A31-AO)

These three-state bidirectional signals provide the address of the first item
of a bus transfer (except for acknowledge transfers) when the MC68040 is
the bus master. When an alternate master is controlling the bus, these signals
are examined by the processor (snooped) to determinewhetherthe processor
should intervene in the access to maintain cache coherency.

A multiplexed bus mode is selectable during processor reset (by the level
on CDIS) which allows the address bus and data bus to be physically tied
together for multiplexed bus applications. Refer to SECTION 8 BUS OPER­
ATION for detailed information about the relationship of the address bus to
bus operation, and the multiplexed bus mode.

5.2 DATA BUS (031-00)

These three-state bidirectional signals provide the general-purpose data path
between the MC68040 and all other devices. The data bus can transfer 8, 16,
or 32 bits of data per bus transfer. During a burst transfer, the data lines are
time-mUltiplexed to carryall 128 bits of the burst request using four 32-bit
transfers.

A multiplexed bus mode is selectable during processor reset (by the level
on CDIS) which allows the data bus and address bus to be physically tied
together for multiplexed bus applications. A data latch mode is also selectable
during processor reset (by the level on MDIS) which allows the memory
interface to specify when the processor should latch input data via the OLE
signal. Refer to SECTION 8 BUS OPERATION for detailed information about
the relationship of the data bus to bus operation, the multiplexed bus mode,
and the data latch mode.

5.3 TRANSFER ATTRIBUTE SIGNALS

5-4

The following paragraphs describe the transfer attribute signals, which pro­
vide additional information about the bus transfer. Refer to SECTION 8 BUS
OPERATION for detailed information about the relationship of the transfer
attribute signals to bus operation.

MC68040 USER'S MANUAL MOTOROLA

5.3.1 Transfer Type (TT1,TTO)

These three-state bidirectional signals are driven by the processor to indicate
the type of access for the current bus transfer. During bus transfers by an
alternate master, these signals are sampled to determine if the processor
should snoop the transfer; only normal and MOVE16 accesses can be snooped.
The acknowledge access is used for both interrupt and breakpoint acknowl­
edge transfers. Table 5-2 shows the definition of the transfer-type encodings.

Table 5-2. Transfer-Type Encoding

TT1 TTD Transfer Type

0 0 Normal Access

0 1 MOVE16 Access

1 0 Alternate Logical Function Code Access

1 1 Acknowledge Access

5.3.2 Transfer Modifier (TM2-TMO)

These three-state output signals provide supplemental information for each
transfer type. Table 5-3 shows the encodings for normal and MOVE16 trans­
fers, and Table 5-4 shows the the encodings for alternate access transfers.
For interrupt acknowledge transfers the TMx signals carry the interrupt level
being acknowledged, and for breakpoint acknowledge transfers the TMx sig­
nals are low. When the MC68040 is not the bus master, the TMx signals are
set to high impedance.

Table 5-3. Normal and MOVE16 Access TM Encoding

TM2 TM1 TMD Transfer Modifier

0 0 0 Data Cache Push Access

0 0 1 User Data Access*

0 1 0 User Code Access

0 1 1 MMU Table Search Data Access

1 0 0 MMU Table Search Code Access

1 0 1 Supervisor Data Access*

1 1 0 Supervisor Code Access

1 1 1 Reserved

*MOVE16 accesses only use these encodings

MOTOROLA MC68040 USER'S MANUAL 5-5

•

Table 5-4. Alternate Access TM Encoding

TM2 TM1 TMO Transfer Modifier

0 0 0 Logical Function Code 0

0 0 1 Reserved

0 1 0 Reserved

0 1 1 Logical Function Code 3

1 0 0 Logical Function Code 4

1 0 1 Reserved

1 1 0 Reserved

1 1 1 Logical Function Code 7

5.3.3 Transfer line Number (TLN1,TLNO)

For normal push accesses and normal line read accesses, these three-state
outputs indicate which line in the set of four instruction or data cache lines
is being accessed. These signals are undefined for all other accesses, and
are placed in a high-impedance state when the processor relinquishes the
bus. Table 5-5 shows the definition of the encodings.

Table 5-5. TLN Encoding

TLN1 TLNO Line

0 0 Zero

0 1 One

1 0 Two

1 1 Three

The TLN signals can be used in high-performance systems to build an external
snoop filter with a duplicate set of cache tags. The TLN signals and address
bus provide a direct indication of the state of the caches and can be used to
help maintain the duplicate tag store.

5.3.4 User Programmable Attributes (UPA1,UPAO)

5-6

The UPA signals are three-state outputs whose levels are determined by the
user programmable attribute bits in the address translation entry or trans­
parent translation register that matches the logical address. These signals
are defined only for normal code and data accesses, and for MOVE16 ac­
cesses. For all other accesses, including table search and cache line push
accesses which may result from a normal access, the UPA signals are zero.

MC68040 USER'S MANUAL MOTOROLA

When the MC68040 is not the bus master, these signals are set to a high
impedance state.

5.3.5 Read/Write (R/W)

This bidirectional three-state signal defines the data transfer direction for the
current bus cycle. A high level indicates a read cycle and a low level indicates
a write cycle. This signal is examined by the bus snoop controller when the
processor is not the bus master.

5.3.6 Transfer Size (SIZ1,SIZO)

These bidirectional three-state signals indicate the data size for the bus trans­
fer. Table 5-6 shows the definition of the bus request size encodings. These
signals are examined by the bus snoop controller when the processor is not
the bus master.

Table 5-6. Transfer Size Encoding

SIZl SIZO Requested Size

0 0 Long Word (4 Bytes)

0 1 Byte

1 0 Word (2 Bytes)

1 1 Line (16 Bytes)

5.3.7 Lock (LOCK)

This three-state output indicates that the current transfer is part of a locked
sequence of transfers for a read-modify-write operation. The external arbiter
can use the LOCK signal to prevent an alternate master from gaining control
of the bus and accessing the same operand between processor accesses for
the locked sequence of transfers. Although the LOCK bus signal indicates
the processor requests that the bus be locked, the processor will give up the
bus if the bus grant (BG) signal is negated by the external arbiter .. When the
MC68040 is not the bus master, the LOCK signal is set to a high impedance
state.

5.3.8 Lock End (LOCKE)

This three-state output indicates the current transfer is the last -in a locked
sequence of transfers for a read-modify-write operation. The external arbiter

MOTOROLA MC68040 USER'S MANUAL 5-7

..

can use LOCKE to support arbitration between unrelated locked transfer se­
quences while still maintaining the indivisible nature of each read-modify­
write operation. When the MC68040 is not the bus master, the LOCKE signal
is set to a high impedance state.

5.3.9 Cache Inhibit Out (ClOUT)

This three-state output signal reflects the state of the CM field in the address
translation cache entry logical address and is asserted for accesses to non­
cachable pages to indicate that an external cache should ignore the bus
transfer. When the referenced logical address is within an area specified for
transparent translation, the cache modify (CM) field of the appropriate trans­
parent translation register controls the state of ClOUT. Refer to SECTION 6
MEMORY MANAGEMENT for more information about the address translation
caches and transparent translation. When the MC68040 is not the bus master,
the ClOUT signal is set to a high impedance state.

5.4 BUS TRANSFER CONTROL SIGNALS

The following signals provide control functions for bus transfers. Refer to
SECTION 8 BUS OPERATION for detailed information about the relationship
of the bus transfer control signals to bus operation.

5.4.1 Transfer Start (TS)

This three-state bidirectional signal is asserted by the MC68040 for one clock
period to indicate the start of each transfer. During alternate master accesses,
this signal is monitored by the MC68040 to detect the start of each transfer
to be snooped.

5.4.2 Transfer in Progress (TIP)

This three-state output is asserted to indicate a bus transfer is in progress,
and is negated during idle bus cycles ifthe bus is still granted to the processor.
When the processor loses bus mastership, TIP negates after completion of
the current transfer and then transitions to a high-impedance state.

5.4.3 Transfer Acknowledge (TA)

5-8

This three-state bidirectional signal indicates the completion of a requested
data transfer operation. During transfers by the MC68040, TA is an input

MC68040 USER'S MANUAL MOTOROLA

signal from the referenced slave device indicating the completion of the
transfer. During alternate master accesses, TA is normally three-stated to
allow the referenced slave device to respond, and is sampled by the MC68040
to detect the completion of each bus transfer. For alternate master accesses
which reference modified (dirty) data in the MC68040's caches, the MC68040
can inhibit memory and intervene in the access to source or sink data in its
internal caches, at which time TA is asserted to acknowledge the data transfer.

5.4.4 Transfer Error Acknowledge (TEA)

This input signal is asserted by the current slave to indicate an error condition
for the bus transaction. When asserted with TA, this signal indicates that the •
processor should retry the access. During alternate master accesses, TEA is
sampled by the MC68040 to detect the completion of each bus transfer.

5.4.5 Transfer Cache Inhibit (TCI)

This input signal inhibits read data from being loaded into the MC68040
instruction or data caches. TCI is ignored during all writes and after the first
data transfer for both burst line reads and burst-inhibited line reads. TCI is
also ignored during all alternate bus master transfers.

5.4.6 Transfer Burst Inhibit (TBI)

This input signal indicates to the processor that the accessed device can not
support burst mode accesses, and that the requested line transfer should be
broken up into individual long word transfers. If the first data transfer of a
line access is terminated by asserting TBI with TA, the processor terminates
the burst and accesses the remaining data for the line as three successive
long word transfers. During alternate master accesses, TBI is sampled by the
MC68040 to detect the completion of each bus transfer.

5.4.7 Data Latch Enable (OLE)

This input signal is used in DlE mode to latch the input data bus on read
transfers. DlE mode can be used to support asynchronous memory interfaces
by allowing the interface to specify when data should be latched, instead of
requiring data to be valid on the rising edge of BClK.

MOTOROLA MC68040 USER'S MANUAL 5-9

•

5.5 SNOOP CONTROL SIGNALS

The following group of signals control the operation of the MC68040 on-chip
snooping logic. Refer to SECTION 7 INSTRUCTION AND DATA CACHES for
information about the relationship of the snoop control signals to the caches,
and to SECTION 8 BUS OPERATION for detailed information about the re­
lationship of the snoop control signals to bus operation.

5.5.1 Snoop Control (SC1,SCO)

These inputs signals specify the snoop operation to be performed by the
MC68040 for an alternate master bus transfer. If the MC68040 is allowed to
snoop an alternate master read transfer, it can intervene in the access to
supply data from its data cache when the memory copy is stale, ensuring
the alternate master receives valid data. Writes by an alternate master can
also be snooped to either update the MC68040's internal data cache with the
new data or invalidate the matching cache lines, ensuring subsequent reads
by the MC68040 access valid data. Table 5-7 shows the general operation
requested for each snoop control encoding. These signals are ignored when
the processor is the bus master.

Table 5-7. Snoop Control Encoding

SC1 SCO
Requested Snoop Operation

Read Access Write Access

0 0 Inhibit Snooping Inhibit Snooping

0 1 Supply Dirty Data and Leave Dirty Sink Byte/Word/Long-Word Data

1 0 Supply Dirty Data and Mark Line I nval idate Li ne
Invalid

1 1 Reserved (Snoop Inhibited) Reserved (Snoop Inhibited)

5.5.2 Memory Inhibit (MI)

5-10

This output signal inhibits memory from responding to an alternate master
access when the MC68040 is snooping the access. When the snoop control
signals indicate an access should be snooped, the MC68040 keeps MI asserted
until it determines whether intervention in the access is required. If no in­
tervention is required, MI is negated and memory is allowed to respond and
complete the access; otherwise, MI remains asserted and the MC68040 com­
pletes the transfer as a slave, thereby updating its caches on a write or
supplying data to the alternate master on a read. When the MC68040 is the
bus master, MI is negated.

MC68040 USER'S MANUAL MOTOROLA

5.6 ARBITRATION SIGNALS

The following control signals support requests to an external arbiter for bus
mastership. Refer to SECTION 8 BUS OPERATION for detailed information
about the relationship of the arbitration signals to bus operation.

5.6.1 Bus Request (BR)

This output signal indicates to the external arbiter that the processor needs
to become bus master for one or more bus transfers. BR is negated once the
MC68040 begins an access to the external bus with no other accesses pend­
ing, and remains negated until another access is required.

5.6.2 Bus Grant (BG)

This input signal from an external arbiter indicates the bus is available to the
MC68040 as soon as the current bus access completes. The MC68040 must
sample BG asserted and BB negated (indicating the bus is free) before it
assumes ownership of the bus.

5.6.3 Bus Busy (BB)

This three-state bidirectional signal indicates the bus is currently owned. BB
is monitored as a processor input to determine when a prior bus master has
released control of the bus. The MC68040 must sample BG asserted and BB
negated (indicating the bus is free) before it asserts BB as an output to assume
ownership of the bus. BB remains asserted by the processor until the external
arbiter negates BG and the processor completes the bus transfer in progress.
When releasing the bus the processor negates BB, then sets it to a high
impedance state for use again as an input.

5.7 PROCESSOR CONTROL SIGNALS

The following signals control disabling of the caches and memory manage­
ment units (MMUs), and support processor and external device initialization.

MOTOROLA MC68040 USER'S MANUAL 5-11

-

5.7.1 Cache Disable (CD IS)

The cache disable signal dynamically disables the on-chip caches on the next
internal cache access boundary. CDIS does not flush the data and instruction
caches; entries remain unaltered and become available again after CDIS is
negated. Snooping is also unaffected by the assertion of CDIS. During a
processor reset the level on CDIS is latched and used to select the normal
bus mode (CDIS high) or multiplexed bus mode (CDIS low). Refer to SECTION
7 INSTRUCTION AND DATA CACHES for information about the caches and
to SECTION 8 BUS OPERATION for information about the multiplexed bus
mode. Refer to MC68040DH/D, MC68040 Design Handbook for descriptions
of the use of this signal by an emulator.

5.7.2 MMU Disable (MDIS)

The MMU disable signal dynamically disables the translation of addresses
by the MMUs. The assertion of MDIS does not flush the address translation
(ATC) caches; ATC entries become available again when MDIS is negated.
During a processor reset the level on MDIS is latched and used to select the
normal data latch mode (MDIS high) or data latch enable (DLE) mode (MDIS
low). Refer to SECTION 6 MEMORY MANAGEMENT for a description of ad­
dress translation, SECTION 8 BUS OPERATION for information about DLE
mode. Refer to MC68040DH/D, MC68040 Design Handbook for a description
of the use of this signal by an emulator.

5.7.3 Reset In (RSTI)

This input signal causes the MC68040 to enter reset exception processing.
The RSTI signal is an asynchronous input that is internally synchronized to
the next rising edge of the BCLK signal. All three-state signals are set to the
high-impedance state, and all other outputs are negated when RSTI is rec­
ognized. The test pins are not affected by the assertion of RSTI. Refer to
SECTION 8 BUS OPERATION for a description of reset bus operation and to
SECTION 9 EXCEPTION PROCESSING for information about the reset ex­
ception.

5.7.4 Reset Out (RSTO)

5-12

This output is asserted by the MC68040 during execution of the RESET in­
struction to initialize external devices. Refer to SECTION 8 BUS OPERATION
for a description of reset out bus operation.

MC68040 USER'S MANUAL MOTOROLA

5.8 INTERRUPT CONTROL SIGNALS

The following signals control the interrupt functions of the MC68040.

5.8.1 Interrupt Priority Level (lPL2-IPLO)

These input signals provide an indication of an interrupt condition and the
encoding of the interrupt level from a peripheral or external prioritizing cir­
cuitry. IPL2 is the most significant bit of the level number. For example, since
the IPLn signals are active low, IPL2-IPLO equal to $5 corresponds to an
interrupt request at interrupt level 2.

During a processor reset the levels on the IPLn lines are latched and used to •
select the output driver characteristics for three signal groups, shown in Table
5-8. Refer to SECTION 9 EXCEPTION PROCESSING for information on
MC68040 interrupts and to MC68040DH/D, MC68040 Design Handbook for
information on the driver characteristics.

Table 5-8. Output Driver Control Groups

Signal Output Buffers Controlled

IPL2 Oata Bus:
031-00

IPL1 Address Bus and Transfer Attributes:
A31-AO, ClOUT, LOCK, LOCKE, RiW,
SIZ1-SIZO, TLN 1-TLNO, TM2-TMO,
TT1-TTO,UPA1-UPAO

IPLO Miscellaneous Contro~~
BS, SR, IPENO, MI, PST3-PSTO,
RSTO, TA, TIP, TS

NOTE:
High input level = small buffers enabled, low = large buffers
enabled.

5.8.2 Interrupt Pending Status (lPEND)

This output signal indicates an interrupt request has been recognized inter­
nally and exceeds the current interrupt priority mask in the status register
(SR). This output is for use by external devices (other bus masters, for ex­
ample) to predict processor operation on the following instruction bounda­
ries. Refer to SECTION 9 EXCEPTION PROCESSING for interrupt information,
and to SECTION 8 BUS OPERATION for bus information related to interrupts.

MOTOROLA MC68040 USER'S MANUAL 5-13

5.8.3 Autovector (AVEC)

This input signal is asserted with TA during an interrupt acknowledge transfer
to request internal generation of the vector number. Refer to SECTION 8 BUS
OPERATION for more information about automatic vectors.

5.9 STATUS AND CLOCK SIGNALS

The following paragraphs explain the signals that provide timing, test control,
and the internal status of the processor.

__ 5.9.1 Processor Status (PST3-PSTO)

5-14

These outputs indicate the internal execution unit status of the MC68040.
The timing is synchronous with BCLK, and the status may have nothing to
do with the current bus transfer. Table 5-9 shows the definition of the en­
codings. Refer to MC68040DH/D, MC68040 Design Handbookfor a description
of the use of these signals by an emulator.

Table 5-9. Processor Status Encoding

PST3 PST2 PSTl PSTO Internal Status

0 0 0 0 User Start/Continue Current Instruction

0 0 0 1 User End Current Instruction

0 0 1 0 User Branch Not Taken and End Current Instruction

0 0 1 1 User Branch Taken and End Current Instruction

0 1 0 0 User Table Search

0 1 0 1 Halted State (Double-Bus Fault)

0 1 1 0 Reserved

0 1 1 1 Reserved

1 0 0 0 Supervisor Start/Continue Current Instruction

1 0 0 1 Supervisor End Current Instruction

1 0 1 0 Supervisor Branch Not Taken and End Current Instruction

1 0 1 1 Supervisor Branch Taken and End Current Instruction

1 1 0 0 Supervisor Table Search

1 1 0 1 Stopped State (Supervisor Instruction)

1 1 1 0 RTE Executed

1 1 1 1 Exception Stacking

MC68040 USER'S MANUAL MOTOROLA

5.9.2 Bus Clock (BCLK)

The bus clock input is used as a reference for all bus timing. It is a TTL
compatible signal and cannot be gated off. Refer to MC68040DH/D, MC68040
Design Handbook for suggestions on clock generation and to SECTION 11
ELECTRICAL SPECIFICATIONS for electrical specifications.

5.9.3 Processor Clock (PCLK)

The processor clock input is used to derive all internal timing. This clock is
also TTL compatible, and cannot be gated off. Refer to MC68040DH/D, ..
MC68040 Design Handbook for suggestions on clock generation and to SEC-
TION 11 ELECTRICAL SPECIFICATIONS for electrical specifications.

5.10 TEST SIGNALS

The five test signals provide an interface that supports the IEEE Pl149.1 Test
Access Port (TAP) for Boundary Scan Testing of Board Interconnects. Refer
to MC68040DH/D, MC68040 Design Handbook for a description of the use of
these signals for board level testing.

5.10.1 Test Clock (TCK)

This input signal is used as a dedicated clock for the test logic. Since clocking
of the test logic is independent of the normal operation of the MC68040,
several other components on a board can share a common test clock with
the processor even though each component may operate from a different
system clock. The design of the test logic allows the test clock to run at low
frequencies, or to be gated off entirely as required for test purposes.

5.10.2 Test Mode Select (TMS)

This input signal is decoded by the TAP controller and distinguishes the
principle operations of the test-support circuitry.

5.10.3 Test Data In (TO!)

This input signal provides a serial data input to the TAP.

MOTOROLA MC68040 USER'S MANUAL 5-15

•

5.10.4 Test Data Out (TOO)

This three-state output signal provides a serial data output from the TAP.
The TDO output can be placed in a high-impedance mode to allow parallel
connection of board-level test data paths.

5.10.5 Test Reset (TRST)

This input signal provides an asynchronous reset of the TAP controller.

5.11 POWER SUPPLY CONNECTIONS

The MC68040 requires connection to a VCC power supply, positive with
respect to ground. The VCC and ground connections are grouped to supply
adequate current to the various sections of the processor. SECTION 12 OR­
DERING INFORMATION AND MECHANCIAL DATA describes the groupings
of VCC and ground connections, and MC68040DH/D, MC68040 Design Hand­
book describes a typical power supply interface.

5.12 SIGNAL SUMMARY

5-16

Table 5-'0 provides a summary ofthe electrical characteristics ofthe signals
discussed in this section.

Table 5-10. Signal Summary (Sheet 1 of 2)

Signal Function Signal Name Type Active Th ree-State

Address Bus A31-AO Input/Output High Yes

Autovector AVEC Input Low -

Bus Busy BB Input/Output Low Yes

Bus Clock BCLK Input - -

Bus Grant BG Input Low -

Bus Request BR Output Low No

Cache Disable CDIS Input Low -

Cache Inhibit ClOUT Output Low Yes

Data Bus 031-00 Input/Output High Yes

Data Latch Enable OLE Input High -

Ground GND Input - -

Interrupt Pending IPEND Output Low No

Interrupt Priority Level IPL2-IPLO Input Low -

Lock LOCK Output Low Yes

MC68040 USER'S MANUAL MOTOROLA

Table 5-10. Signal Summary (Sheet 2 of 2)

Signal Function Signal Name Type Active Three-State

Lock End LOCKE Output Low Yes

Memory Inhibit MI Output Low No

MMU Disable MDIS Input Low -

Processor Clock PCLK Input - -

Processor Status PST3-PSTO Output High No

Read/Write R/W Input/Output High/Low Yes

Reset In RSTI Input Low -

Reset Out RSTO Output Low No

Snoop Control SC1,SCO Input High -

Transfer Acknowledge TA Input/Output Low Yes

Transfer Burst Inhibit TBI Input Low - ..
Transfer Cache Inhibit TCI Input Low -

Transfer Error Acknowledge TEA Input Low -

Transfer In Progress TIP Output Low Yes

Transfer Line Number TLN1,TLNO Output High Yes

Transfer Modifier TM2-TMO Output High Yes

Transfer Size SIZ1,SIZO Input/Output High Yes

Transfer Start TS Input/Output Low Yes

Transfer Type TI1,TIO Input/Output High Yes

Test Clock TCK Input - -

Test Data In TDI Input High -

Test Data Out TDO Output High Yes

Test Mode Select TMS Input High -

Test Reset TRST Input Low -

User Programmable Attributes UPA1,UPAO Output High Yes

Power Supply VCC Input - -

MOTOROLA MC68040 USER'S MANUAL 5-17

•

5-18 MC68040 USER'S MANUAL MOTOROLA

SECTION 6
MEMORY MANAGEMENT

The MC68040 includes independent instruction and data memory manage­
ment units (MMUs) that support a demand-paged virtual memory environ­
ment. The memory management is "demand" in that programs do not specify
required memory areas in advance but request them by accessing logical
addresses. The physical memory is paged, meaning that it is divided into
blocks of equal size, called page frames. The logical address space is div,ided
into pages of the same size. The operating system assigns pages to page
frames as they are required to meet the needs of programs.

The principle function of the MMUs is the translation of logical addresses to
physical addresses using translation tables stored in memory. Each MMU
contains an address translation cache (ATC) in which recently used logical­
to-physical address translations are stored. As each MMU receives a logical
address from the integer unit, it searches its ATC for the corresponding
physical address. When the translation is not in the ATC, the processor
searches the translation tables in memory for the translation information.
The address calculations and bus cycles required for this search are per­
formed by microcode and dedicated logic in the MC68040. In addition, each
MMU contains two transparent translation registers that identify blocks of
memory that can be accessed without translation. The MMUs include the
following features:

• Independent Instruction and Data MMUs

• 32-Bit Logical Address Translated to 32-Bit Physical Address

• User-Defined 2-Bit Physical Address Extension

• Addresses Translated in Parallel with Indexing into Data or Instruction
Cache

• 64-Entry Four-Way Set-Associative ATC for Each MMU (128 Total Entries)

• Global Bit Allows Flushing of All Nonglobal Entries from ATCs

• Selectable 4K or 8K Page Size

• Separate Supervisor and User Translation Trees Supported

MOTOROLA MC68040 USER'S MANUAL 6-1

..

6-2

• Two Independent Blocks for Each MMU Can Be Defined as Transparent
(Untranslated)

• Three-Level Translation Tables with Optional Indirection

• Supervisor and Write Protections

• History Bits Automatically Maintained in Descriptors

• External Translation Disable Input Signal (MDIS) for Emulator Support

• Caching Mode Selected on Page Basis

The MMUs completely overlap address translation time with other processing
activity when the translation is resident in one of the ATCs. ATC accesses
operate in parallel with indexing into the on-chip instruction and data caches .

The instruction memory unit (which supports instruction prefetches) and the
data memory unit (which supports all other accesses) each contain an MMU
to allow translation of the logical address used to access the memory unit
(see Figure 6-1). Each MMU consists of control logic and an ATC that stores
current translations. For an instruction or operand access, the corresponding
MMU uses the upper logical address bits to check for a physical address in
the ATC; the lower address bits are used by the cache controller to index
into the cache. If the translation is available, the MMU provides the physical
address to the cache controller, which determines if the data being accessed
is cached. An external bus cycle is performed only when explicitly requested
by the cache controller.

The MMU MDIS signal dynamically disables address translation for emula­
tion and diagnostic support.

The programming model of the MMUs (see Figure 6-2) consists of two root
pointer registers, four transparent translation registers, a status register, and
a control register. These registers can only be accessed by supervisor pro­
grams. The user and supervisor root pointer registers point to address trans­
lation tree structures in memory that describe the logical-to-physical mapping
for user and supervisor accesses, respectively. These pointers can also point
to a common tree structure to support a merged supervisor and user address
space. Each transparent translation register can define a block of logical
addresses that are used as physical addresses without translation. The MMU
status register (MMUSR) contains accumulated status information from a
translation performed as a part of a PTEST instruction. The translation control
(TC) register contains two bits: one bit enables/disables page address trans­
lation (independent of transparent translation); the other bit selects page
size.

MC68040 USER'S MANUAL MOTOROLA

CONVERT

I"--
"'r-

EXECUTE

~

WRITE
'\r-y'

BACK

FLOATING·
POINT
UNIT

-
INSTRUCTION

FETCH

DECODE

EA
CALCULATE

EA '--
FETCH r-

EXECUTE

WRITE
BACK

INTEGER
UNIT

INSTRUCTION DATA BUS

r---------:!~}-
~ INSTRUCTION I
' I CACHE

INSTRUCTION
ADDRESS"

.... y

I MEMORY UNIT

DATA MEMORY UNIT DATA
>}J ADDRESS

I
DATA I

CACHE

L..-----'l~}_

OPERAND DATA BUS

Figure 6-1. Memory Management Unit

-

A

B)

U ADDRESS
S BUS

C
0
N)
T
R DATA
0 BUS
L
L
E
R >

BUS Y

CONTROL
SIGNALS

ATCs in the MMUs are four-way set-associative caches that each store 64
logical-to-physical address translations and associated page information. For
each access to a memory unit, the MMU uses the lower logical address bits
to index into the ATC and compares the upper address bits and privilege
mode (supervisor or user) with the tag for each of the four lines in the set.
When the access address and privilege mode matches a tag in the set (a hit
occurs) and no access violation is detected, the ATC outputs the correspond­
ing physical address to the cache controller, which accesses the data within
the cache and/or requests an external bus cycle. Each ATC entry contains a
logical address, a physical address, and status bits. Among the status bits
are the write-protect and cache-inhibit bits.

MOTOROLA MC68040 USER'S MANUAL 6-3

•

31

~ ____________________ US_ER_R_O_OT_P_O_IN_TE_R __________________ ~luRP

~ __________________ SU_P_ER_V_ISO_R_R_O_OT_P_OI_NT_E_R ________________ ~ISRP

~ _____________ O_AT_A_T_RA_N_SP_A_RE_NT_T_R_AN_S_LA_T_ION __ RE_G_IST_E_R _0 ____________ --'1 OTTO

'--_____________ O_AT_A_T_RA_N_SP_A_RE_NT_T_R_AN_S_LA_T_IO_N _RE_G_IST_E_R _1 ____________ --'1 OTTl

~ __________ ...;,;IN~S~TR~U.:..;eT~IO~N..,;.T..,;.RA.::.;N.:..;SP~A~RE:;.:.NT.::.;T.::.;R.::.;AN~S.::.LA..,;.TI.::.ON~RE.::.G.::.IST.:..:E.::.;R .:..;0 __________ ~IITTO

~ ___________ IN_S_TR..,;.U_eT...;,;IO_N_T_RA_N.:..;SP_A_RE_NT_T_R_AN...;,;S_LA_TI..,;.ON __ RE..,;.G_IST_E_R _1 __________ ~IITTl

~ ___________________ M_M_U _ST_AT_U_S_RE_G_'S_TE_R __________________ --'I MMUSR

15 0

1-1 ____ T.::.;R..,;.AN~S.::.LA.::.;TI.::.ON.::.;.:..;eO...;,;N~TR..,;.O.::.;L R.:.,:E.::.G'.::.ST...:.ER.::..-__ -II Te

Figure 6-2. MMU Programming Model

When the ATC does not contain the translation for a logical address (a miss
occurs), the MMU aborts the current access and searches the translation
tables in memory for the correct translation. If the table search completes
without any errors, the MMU stores the translation in the ATC and provides
the physical address for the access, allowing the memory unit to retry the
original access.

6.1 TRANSLATION TABLE STRUCTURE

6-4

The MC68040 uses the ATCs in the instruction and data memory units with
translation tables stored in memory to perform the translations from logical
to physical addresses. Translation tables for a program are loaded into mem­
ory by the operating system. Since the instruction and data MMUs access
the same translation table for a specific privilege mode (user or supervisor),
no distinction is made in the translation of instruction accesses versus data
accesses. This lack of distinction results in a merged instruction and data
address space.

MC68040 USER'S MANUAL MOTOROLA

The general translation table structure supported by the MC68040 is a three­
level tree structure (see Figure 6-3). The pointer tables contain the base
addresses of the tables at the next level. The page tables contain either the
physical address for the translation or a pointer to the memory location
containing the address. Only a portion of the translation table for the entire
logical address space is required to be resident in memory at any time:
specifically, only the portion of the table that translates the logical addresses
of the currently executing process must be resident. Portions of translation
tables can be dynamically allocated as the process requires additional mem­
ory.

TABLE LEVEL:

ROOT POINTER)0

FIRST

SECOND

THIRD

Figure 6-3. Translation Table Structure

POINTER
TABLES

PAGE
TABlES

The current privilege mode (either supervisor or user) selects the supervisor
or user root pointer for translation of the access. Each root pointer contains
the base address of the first-level table for a translation table tree. The base
address for each table is indexed by a field (see Figure 6-4) extracted from
the logical address. The table index A (TIA) field, which is seven bits wide,
is used to index into the first-level pointer table and select one of 128 pointer
descriptors. At this level, each descriptor corresponds to a 32 Mbyte block

MOTOROLA MC68040 USER'S MANUAL 6-5

6-6

LOGICAL ADDRESS ~ ________________________ --JA~ ________________________ ~~

/
31

"-

2524

781TS

v A
1st LEVEL TABLE
(POINTER TABLE)

INDEX FIELD
(TIA)

7 BITS

v
2nd LEVEL TABLE
(POINTER TABLE)

INDEX FIELD
(TIB)

1817 13 12 11
5 BITS - 8K PAGE
6 BITS - 4K PAGE

3rd LEVEL TABLE
(PAGE TABLE)
INDEX FIELD

(TIC)

Figure 6-4. Table Index Fields

13 BITS - 8K PAGE
12 BITS - 4K PAGE

PAGE OFFSET

o

of memory and points to the base of a second-level table. Table index B (TIB)
selects one of 128 pointer descriptors in the selected second-level table; each
of these descriptors points to a page table in the third-level table and cor­
responds to a 256 Kbyte block of memory. Table index C (TIC) selects one
of either 32 (for 8K pages) or 64 (for 4K pages) descriptors in the third-level
page table. Descriptors in the page tables contain either a page descriptor
for the translation or an indirect descriptor that points to a memory location
containing the page descriptor. The page size, either 4K or 8K, is selected by
a bit in the TC register.

Figure 6-5 shows an example of an access to address $76543210 in supervisor
mode with a memory page size of 8K. The supervisor root pointer points to
the base address of the level A table. The TIA field of the logical address,
$3B, is mapped into bits 8-2 of the root pointer value to select a 32-bit
descriptor at level A of the translation tree. The selected descriptor points to
the base of a level B pointer table, and the TIB field of the logical address,
$15, is mapped into bits 8-2 of this base address to select a descriptor within
the table. This descriptor points to the base of a page table, and the TIC field
of the logical address, $01, is mapped into bits 6-2 of this base address to
select a descriptor within the table. A descriptor in a page table contains the
physical base address of the page, user page attribute bits, caching mode
selection bits, protection information, and history information for the page.
Figure 6-6 shows a possible layout ofthis example translation tree in memory.

The address translation trees consist of tables of descriptors. The first- and
second-level pointer table descriptors can be either resident or invalid. The
third-level page table descriptors can be resident, indirect, or invalid. A page
descriptor defines the physical address of a page frame in memory that
corresponds to the logical address of a page. An indirect descriptor, which
contains a pointer to the actual page descriptor, can be used when a single
page descriptor is accessed by two or more logical addresses.

MC68040 USER'S MANUAL MOTOROLA

LOGICAl ADDRESS

EXAMPlE ADDRESS TIA TIB TIC PAGE OFFSET

$76543210. 10 1 1 1 0 1 1 10 0 1 0 1 0 1 10 0 0 0 11 X X X X X X X X X X X X xl
TABLE ENTRY' =

NOTE:
TI(A,B,C) - TABLE INDEX

_ SUPERVISORIUSER
MODE

ROOT POINTER

~ SRP ...
URP fo-

ENTRY
$3B

~

$3B $15 $01

SUPERVISOR
TABLE

· · ·
· · ·

USER TABLE

· · ·
· · ·

A LEVEL TABLE
(128 ENTRIES)

TABLE $00

· · ·
· · ·
· · · TABLE$3B

· J · ENTRY · $15 · · ·
· · · TABLE$7F

· · ·
· · ·

B LEVEL TABLES
(128 TABLES MAXIMUM,

128 ENTRlESlTABLE)

TABLE $00

· · ·
· · ·
· · TABLE $15

....
PAGE · · FRAME

ENTRY · ADDRESS ...
$01 · · ·

· · · TABLE$lF

· · ·
· · ·

C LEVEL TABLES
(16384 TABLES MAXIMUM,

32 ENTRIESIT ABLE)

Figure 6-5. Translation Table Tree - Example

Invalid descriptors can be used at any level of the tree except the root. When
a table search for a norma'i translation encounters an invalid descriptor, the
processor takes a bus error exception. The invalid descriptor can be used to
identify either a page or branch of the tree that has been stored on an external
device and is not resident in memory or a portion of the translation table
that has not yet been defined. In these two cases, the exception routine can
either restore the page from disk or add to the translation table.

MOTOROLA MC68040 USER'S MANUAL 6-7

..

•

6-8

EXAMPLE ADDRESS
$76543210 = I 0

TABLE ENTRY # =
ADDRESS OFFSET =

TIA

1 1 1 o 1

$3B
$EC

SUPERVISOR
ROOT POINTER

$1000

110 0

ENTRY$3B

1

LOGICAL ADDRESS

TIB TIC

o 1 o 1 10 000

$15 $01
$54 $04

$1000

• • •
$10EC $00001800

• • •
$11FF

$1800

• • •
ENTRY $15 $1854 $00003000

• • •
$19FF

$3000

• • •

11 X

ENTRY $01 $3004 FRAME ADDRESS

• • •
$307F

PAGE OFFSET

X X X X X X X X

A LEVEL
POINTER TABLE

B LEVEL
POINTER TABLES

CLEVEL
PAGE TABLE

X X X Xl

Figure 6·6. Translation Tree Layout in Memory - Example

MC68040 USER'S MANUAL MOTOROLA

6.2 ADDRESS TRANSLATION

The function of the MMUs is to translate logical addresses to physical ad­
dresses according to control information stored by the operating system in
the MMU registers and in translation table trees resident in memory.

6.2.1 General Flow for Address Translation

For normal accesses, the translation process proceeds as follows for the
accessed instruction or data memory unit:

1. Compare the logical address and privilege mode to the parameters in
the transparent translation registers and use the logical address as a
physical address for the access if one of the transparent translation
registers match.

2. Compare the logical address and privilege mode to the tag portions of
the entries in the ATC and use the corresponding physical address for
the access when a match occurs.

3. When no transparent translation register nor valid ATC entry matches,
initiate a table search operation to obtain the corresponding physical
address from the translation tree, create a valid ATC entry for the logical
address, and repeat step 2.

An alternate address space access is a special case that is immediately used
as a physical address without translation.

Figure 6-7 provides a general flowchart for address translation. The top branch
of the flowchart applies to transparenttranslation. The bottom three branches
apply to ATC translation. If the requested access misses in the ATC, a table
search operation proceeds. An ATC entry is created after the table search,
and the access is retried. If an access hits in the ATC but a bus error or invalid
descriptor was detected during the table search that created the ATC entry,
the access is aborted, and a bus error exception is taken.

If a write or read-modify-write access results in an ATC hit but the page is
write protected, the access is aborted, and a bus error exception is taken. If
the page is not write protected and if the modified bit of the ATC entry is
clear, a table search proceeds to set the modified bit in both the page de­
scriptor in memory and in the ATC; the access is retried. If the modified bit
of the ATC entry is set for a write or read-modify-write access to an unpro­
tected page, if the resident bit is set (indicating the table search for the entry
completed successfully), and if none of the mTTx registers (ITTx or DTTx, as
appropriate) match, the ATC provides the address translation for the access.

MOTOROLA MC68040 USER'S MANUAL 6-9

..

OTHERWISE LA TCHES WITH
mTTx

~"'ESWlTHmTTO
~mTT1lWl=l) AND (mTTOlW]..l) AN=J

(WRIT!: OR RMW (WRIT!: OR RMW
ACCESS) ACCESS)

OTHE WISE
OTHERWISE

•

PA i ATC ENTRY fcA] UPA ATCENTRY 1,UO]
CM ATC ENTRY CM]

Figure 6-7. Address Translation General Flowchart

6-10 MC68040 USER'S MANUAL MOTOROLA

6.2.2 Affect of RSTI on the MMUs

When the MC68040 is reset by the assertion of the reset input (RSTI) signal,
the E bits of the TC, ITTx, and DTTx registers are cleared, disabling address
translation. This reset causes logical addresses to be passed through as
physical addresses, allowing an operating system to set up the translation
tables and MMU registers, as required. After the translation tables and reg­
isters are initialized, the E bit of the TC register can be set, enabling paged
address translation. While address translation is disabled, the attribute bits
for an access that are normally supplied by an ATC entry or transparent
translation register are zero, selecting writethrough cachable mode, no write
protection, and user page attribute bits cleared.

A reset of the processor does not invalidate any entries in the ATCs. A PFLUSH
instruction must be executed to flush all existing valid entries from the ATCs
after a reset operation and before translation is enabled.

6.2.3 Affect of MOIS on Address Translation

The assertion of MDIS prevents the MMUs from performing searches of the
ATCs and the execution unit from performing table searches. With address
translation disabled, logical addresses are used as physical addresses. MDIS
disables the MMUs on the next internal access boundary when asserted and
enables the MMUs on the next boundary after the signal is negated. The
assertion of this signal does not affect the operation of the transparent trans­
lation registers or execution of the PFLUSH or PTEST instructions.

6.3 TRANSPARENT TRANSLATION

Four independent transparent translation registers (DTTO and DTT1 in the
data MMU, ITTO and ITT1 in the instruction MMU) optionally define four
blocks of the logical address space that are directly translated to the physical
address spaces. The blocks of addresses defined by the mTTx registers in­
clude at least 16 Mbytes of logical address space; the four blocks can overlap,
or they can be separate.

The following description of the address comparison assumes that the mTTx
registers are enabled; however, each mTTx register can be independently
disabled. A disabled mTTx register is completely ignored.

When an MMU receives an address to be translated, the privilege mode and
the eight high-order bits of the address are compared to the block of ad­
dresses defined by the two mTTx registers for the MMU. The address space

MOTOROLA MC68040 USER'S MANUAL 6-11

..

6-12

block for each mTTx register is defined by an S field, logical base address
field, and logical address mask field. The S field allows matching either user
or supervisor accesses or both accesses. When a bit in the logical address
mask field is set, the corresponding bit of the logical base address is ignored
in the address comparison and privilege mode. Setting successively higher
order bits in the address mask increases the size of the transparently trans­
lated block.

The address for the current bus cycle and an mTTx register address match
when the privilege mode and address bits (not including masked bits) are
equal. Each mTTx register can specify write protection for the block. When
write protection is enabled for a block, write or read-modify-write accesses
to the block are aborted as if a nonresident table descriptor were encountered .

By appropriately configuring a transparent translation register, flexible trans­
parent mappings can be specified (refer to 6.6.3 Transparent Translation
Registers for field identification). For instance, to transparently translate the
user address space, the S field is set to $0, and the LOGICAL ADDRESS MASK
is set to $FF in both an ITTx and DTTx register. To transparently translate
supervisor accesses of addresses $OOOOOOOO-$OFFFFFFF with write protec­
tion, the LOGICAL BASE ADDRESS field is set to SOx, the LOGICAL ADDRESS
MASK is set to $OF, the W bit is set to one, and the S field is set to $1. The
inclusion of independent TT registers in both the instruction and data MMUs
provides an exception to the merged instruction and data address space,
allowing different translations for instruction and operand accesses. Also,
since the instruction memory unit is only used for instruction prefetches,
different instruction and data TT registers can cause PC relative operand
fetches to be translated differently from instruction prefetches.

Each mTTx register can specify the caching mode for logical addresses in
its block. The four caching modes are cachablelwritethrough, cachable/cop­
yback, noncachable, and non-cachable/serialized. The writethrough and cop­
yback caching modes force write accesses to either update the cache and
write through to memory or to only update the cache, respectively. The
noncachable mode forces matching entries in the cache to be pushed and
invalidated and performs an external access with the cache inhibit out signal
(ClOUT) asserted to signal to external caches that the access should not be
cached. The noncachablelserialized mode forces reads and writes within the
block to occur in sequence to support 1/0 devices. Refer to SECTION 7 IN·
STRUCTION AND DATA CACHES for detailed information on caching modes.

Two user page attribute bits (U1 and UO) in each mTTx register are driven
on the user page attribute (UPA1 and UPAO) signals if an external bus cycle

MC68040 USER'S MANUAL MOTOROLA

results from an access translated by the mTTx register. These bits can be
programmed by the user to support extended addressing, bus snooping, or
other applications.

If either of the mTTx registers match during an access to a memory unit
(either instruction or datal, the access is transparently translated. If both
registers match, the mTTO status bits are used for the access. Transparent
translation can also be implemented by the translation tables of the trans­
lation trees if the physical addresses of pages are set equal to their logical
addresses.

6.4 ADDRESS TRANSLATION CACHES (ATCs)
Each ATe is a 64-entry, four-way, set-associative cache that contains address
translations similar in form to the corresponding page descriptors in memory. ..
The purpose ofthe ATe is to provide a fast mechanism for address translation •
by avoiding the overhead associated with a table lookup of the logical-to­
physical mapping of recently used logical addresses. Figure 6-8 shows the
organization of the ATe.

17
LINE SELECT

HIT
OR

Figure 6-8. ATC Organization

MOTOROLA MC68040 USER'S MANUAL 6-13

6-14

The four bits of the logical address located just above the page offset
(LA16-LA13 for 8K pages, LA15-LA12 for 4K pages) index into the ATC's 16
sets of entries. The tags are compared against the remaining upper bits of
the logical address and FC2. If one of the tags matches and is valid, then the
corresponding entry is chosen by the multiplexer to produce the physical
address and status information. If no tag matches, then no mapping for the
logical address exists in the ATC, and a table search is required.

There are some variations in the logical-to-physical mapping because of the
two page sizes. If the page size is 4K, then logical address bit 12 is used to
access the ATC's memory, bit 16 is used by the tag comparators, and physical
address bit 12 is an ATC output. If the page size is 8K, then logical address
bit 16 is used to access the ATC's memory and is ignored by the tag com­
parators, and physical address bit 12 is driven by logical address bit 12.

The MC68040 is organized such thatthe translation time ofthe ATCs is always
completely overlapped by other operations; thus, no performance penalty is
associated with ATC searches. The address translation occurs in parallel with
indexing into the on-chip instruction and data caches.

When the ATC stores a new address translation, it replaces an invalid entry.
When all entries in an ATC set are valid, the ATC selects a valid entry to be
replaced, using a pseudo-random replacement algorithm. A two-bit counter,
which is incremented for each ATC access, points to the entry to replace
when an access misses in the ATC. ATC hit rates are application and page­
size dependent, but hit rates ranging from 98% to greater than 99% can be
expected. These high rates are achieved because the ATCs are relatively large
(64 entries) and utilization efficiency is high with 8K and 4K page sizes.

Each ATC entry consists of a physical address, attribute inforrnation from a
corresponding page descriptor, and a tag that contains a logical address and
status information. Figure 6-9 shows the tag and entry fields.

31 16

I v G I Fczl LOGICAL ADDRESS

TAG

31 1Z

I U1 I uo I S CM I M I w I R I PHYSICAL ADDRESS

ENTRY

Figure 6-9. ATC Tag and Data

MC68040 USER'S MANUAL MOTOROLA

The following paragraphs define the bit fields shown in Figure 6-9.

v - VALID
When set, this bit indicates the validity of the entry. This bit is set when
the MC68040 loads an entry. A flush operation by a PFLUSH or PFLUSHA
instruction that selects this entry clears the bit.

G - GLOBAL
When set, G indicates the entry is global. Global entries are not invalidated
by the PFLUSH instruction variants that specify nonglobal entries, even
when all other selection criteria are satisfied. If these PFLUSH variants are
not used, then this bit may be used by system software.

FC2 FUNCTION CODE BIT 2 (Supervisor/User)
This bit contains the function code corresponding to the logical address in
this entry. FC2 is set for supervisor mode accesses and cleared for user
mode accesses.

LOGICAL ADDRESS
This 16-bit field contains the most significant logical address bits for this
entry. All 16 bits of this field are used in the comparison of this entry to
an incoming logical address when the page size is 4K bytes. For 8K pages,
the least significant bit of this field is ignored.

UO,U1 USER PAGE ATTRIBUTES
These user-defined bits are not interpreted by the MC68040. UO and U1
are echoed to the UPAO and UPA1 signals, respectively, if an external bus
transfer results from the access.

S SUPERVISOR PROTECTED
This bit identifies a pointer table or a page as a supervisor-only table or
page. When the S bit is set, only programs operating in the supervisor
privilege mode are allowed to access the portion of the logical address
space mapped by this descriptor. If the bit is clear, both supervisor and
user accesses are allowed.

CM CACHE MODE
This field selects the cache mode and access serialization for a page as
follows:

MOTOROLA

00 CACHABLE, WRITETHROUGH
If the CM field indicates writethrough, then the access is considered
cachable. A read access to a writethrough page is read from the

MC68040 USER'S MANUAL 6-15

-

6-16

cache if matching data is found; otherwise, the data is read from
memory and used to update the cache. Write accesses always write
through to memory and update matching cache lines.

01 CACHABLE, COPYBACK
If the CM field indicates copyback, then the access is considered
cachable. A read access to a copyback page reads from the cache
if matching data is found; otherwise, the data is read from memory
and used to update the cache. Write accesses that hit in the cache
update the cache line and set the corresponding dirty status bits
without an external bus access. If a write misses in the cache, the
needed cache line is read from memory and updated in the cache.

10 CACHE INHIBITED, SERIALIZED

11 CACHE INHIBITED, NON SERIALIZED
If the CM field of a matching address indicates cache inhibited, the
cache is bypassed, and an external bus transfer is performed. The
data associated with the access is not cached internally, and the
ClOUT signal is asserted during the bus transfer to indicate to ex­
ternal caches that the access should not be cached. If the data is
already resident in an internal cache, then this data is pushed from
the cache if dirty or invalidated if clean.

If the CM field indicates serialized, then the the sequence of read
and write accesses to the page is guaranteed to match the sequence
expected due to instruction ordering. Without serialization, the in­
teger unit pipeline architecture can allow read accesses to occur

. before completion of a writeback for a prior instruction. Serialization
also forces the operand read accesses for an instruction to occur
only once by preventing the instruction from being interrupted after
the operand fetch. Otherwise, the instruction is aborted, and the
operand is accessed again when the instruction is later restarted.
These guarantees apply only when the CM field is set to serialized
and accesses are aligned.

Detailed information on caching modes is available in 7.2 CACHING MODES,
and information on serialization, in SECTION 8 BUS OPERATION.

M - MODIFIED
The modified bit is set when a valid write access to the logical address
corresponding to the entry occurs. If the M bit is clear and a write access
to this logical address is attempted, the MC68040 suspends the access,
initiates a table search to set the M bit in the page descriptor, and writes
over the old ATC entry with the current page descriptor information. The

MC68040 USER'S MANUAL MOTOROLA

MMU then allows the original write access to be performed. This procedure
assures that the first write operation to a page sets the M bit in both the
ATC and the page descriptor in the translation tables, even when a previous
read operation to the page had created an entry for that page in the ATC
with the M bit clear.

W - WRITE PROTECTED
This write-protect bit is set when a W bit is set in any of the descriptors
encountered during the table search for this entry. Setting a W bit in a
table descriptor write protects all pages accessed with that descriptor.
When the W bit is set, a write access or a read-modify-write access to the
logical address corresponding to this entry causes a bus error exception
to be taken immediately.

R - RESIDENT
This bit is set if the table search successfully completes without encoun­
tering either a nonresident page or a transfer error acknowledge during
the search.

PHYSICAL ADDRESS
The upper bits ofthe translated physical address are contained in this field.

6.5 TRANSLATION TABLE DETAILS

The details of translation tables and their use include descriptions of the
descriptors, table searching, translation table structure variations, and the
protection techniques available with the MC68040 MMU.

6.5.1 Descriptor Details

The following paragraphs provide details on the table, page, and indirect
descriptors, followed by a definition of the fields in the descriptors.

MOTOROLA MC68040 USER'S MANUAL 6-17

..

6.5.1.1 TABLE DESCRIPTORS. The formats of the first- and second-level table
descriptors are shown in Figure 6-10. Two descriptor formats are possible at
the second-level table to support 4K and 8K page sizes.

31 9 8

POINTER TABLE ADDRESS X I x
ROOT TABLE DESCRIPTOR (FIRST LEVELl

31 8 7

PAGE TABLE ADDRESS I X

4K POINTER TABLE DESCRIPTOR (SECOND LEVELl

31

PAGE TABLE ADDRESS

8K POINTER TABLE DESCRIPTOR (SECOND LEVEll

U-Used
UDT-Upper Level Descriptor Type

W-Write Protected
X-Motorola Reserved

4 2 1

x I x x I U I W I UDT

3 2 1

I x I x I x U I W I UDT

7 6 2 1

x I x I x I U I W I UDT

Figure 6-10. Table Descriptors

6.5.1.2 PAGE DESCRIPTORS. The page descriptors for both 4K and 8K page sizes
are shown in Figure 6-11.

I

6-18

31

31

12 11 10 9 8

PHYSICAL ADDRESS I UR I G I Ul I uo I
4K PAGE DESRIPTOR

13 12 11 10 9 8

PHYSICAL ADDRESS I UR I UR I G I Ul I UO I
8K PAGE DESRIPTOR

CM-Cache Mode
G-Global
M-Modified

U-Used

7 6 4

S I CM M

7 4

S CM M

PDT-Page Descriptor Type
S-Supervisor Protected

U1-User Page Attribute. 1
UO-User Page Attribute 0
UR-User Reserved
W-Write Protected

Figure 6-11. Page Descriptors

MC68040 USER'S MANUAL

3 2 1 0

U I W I PDT I

2 1

I U I wi PDT

MOTOROLA

6.5.1.3 INDIRECT DESCRIPTORS. The indirect descriptor format is shown in Fig­
ure 6-12.

31 2 1

DESCRIPTOR ADDRESS PDT

INDIRECT DESCRIPTOR

PDT - Page Descriptor Type

Figure 6·12. Indirect Descriptor

6.5.1.4 DESCRIPTOR FIELD DEFINITIONS. The field definitions for the table, page,
and indirect descriptors are listed in alphabetical order:

CM - CACHE MODE
This field selects the cache mode and access serialization for a page as
follows:

MOTOROLA

00 CACHABLE, WRITETHROUGH
If the CM field indicates writethrough, then the access is considered
cachable. A read access to a writethrough page is read from the
cache if matching data is found; otherwise, the data is read from
memory and used to update the cache. Write accesses always write
through to memory and update matching cache lines.

01 CACHABLE, COPYBACK
If the CM field indicates copyback, then the access is considered
cachable. A read access to a copyback page reads from the cache
if matching data is found; otherwise, the data is read from memory
and used to update the cache. Write accesses that hit in the cache
update the cache line and set the corresponding dirty status bits
without an external bus access. If a write misses in the cache, the
needed cache line is read from memory and updated in the cache.

10 CACHE INHIBITED, SERIALIZED

11 CACHE INHIBITED, NONSERIALIZED
If the CM field of a matching address indicates cache inhibited, the
cache is bypassed, and an external bus transfer is performed. The
data associated with the access is not cached internally, and the
ClOUT signal is asserted during the bus transfer to indicate to ex­
ternal caches that the access should not be cached. If the data is
already resident in an internal cache, then this data is pushed from
the cache if dirty or is invalidated if clean.

MC68040 USER'S MANUAL 6-19

..

6-20

If the CM field indicates serialized, then the the sequence of read
and write accesses to the page is guaranteed to match the sequence
expected due to instruction ordering. Without serialization, the in­
teger unit pipeline architecture can allow read accesses to occur
before completion of a writeback for a prior instruction. Serialization
also forces the operand read accesses for an instruction to occur
only once by preventing the instruction from being interrupted after
the operand fetch. Otherwise, the instruction is aborted, and the
operand is accessed again when the instruction is later restarted.
These guarantees apply only when the CM field is set to serialized
and accesses are aligned.

Detailed information on caching modes is available in 7.2 CACHING MODES,
and information on serialization, in SECTION 8 BUS OPERATION .

DESCRIPTOR ADDRESS
This 30-bit field, which contains the physical address of a page descriptor,
is only used in indirect descriptors.

G - GLOBAL
When set, this bit indicates the entry is global. Global ATC entries are not
invalidated by the PFLUSH instruction variants that specify nonglobal en­
tries, even when all other selection criteria are satisfied. If these PFLUSH
variants are not used, then this bit may be used by system software.

M - MODIFIED
This bit identifies a modified page. The MC68040 sets the M bit in the
corresponding page descriptor before a write operation to a page for which
the M bit is clear, except for write-protect supervisor violations. The read
portion of a read-modify-write access is considered a write for updating
purposes. The MC68040 never clears this bit.

PDT - PAGE DESCRIPTOR TYPE
This field identifies the descriptor as an invalid descriptor, a page descriptor
for a resident page, or an indirect pointer to another page descriptor.

00,11 INVALID
These codes indicate that the descriptor is invalid. An invalid
descriptor can represent a nonresident page or a logical address
range that is out of bounds. All other bits in the descriptor are
ignored. When an invalid descriptor is encountered, an ATC entry
is created for the logical address with the resident (R) bit clear.

01 RESIDENT
This code indicates that the page is resident.

MC68040 USER'S MANUAL MOTOROLA

10 INDIRECT
This code indicates that the descriptor is an indirect descriptor.
Bits 31-2 contain the physical address of the page descriptor.
This encoding is invalid for a page descriptor pointed to by an
indirect descriptor.

PHYSICAL ADDRESS
This 20-bit field contains the physical base address of a page in memory.
The low-order bits of the address required to index into the page are
supplied by the logical address. When the page size is 8K, the least sig­
nificant bit of this field is not used.

S - SUPERVISOR PROTECTED
This bit identifies a page as supervisor only. When the S bit is set, only
programs operating in the supervisor privilege mode are allowed to access
the portion of the logical address space mapped by this descriptor. If the
bit is clear, both supervisor and user accesses are allowed.

PAGE TABLE ADDRESS
This field contains the physical base address of a table of page descriptors.
The low-order bits of the address required to index into the page table are
supplied by the logical address.

U - USED
This bit is automatically set by the processor when a descriptor is accessed
in which the U bit is clear. In a page descriptor table, this bit is set to
indicate that the page corresponding to the descriptor has been accessed.
In a pointer table, this bit is set to indicate thatthe pointer has been accessed
by the MC68040 as part of a table search. Updates of the U bit are performed
before the MC68040 allows a page to be accessed. The processor never
clears this bit.

UO,U1 - USER PAGE ATTRIBUTES
These bits are user defined and are not interpreted by the MC68040. UO
and U1 are echoed to the UPAO and UPA1 signals, respectively, if an ex­
ternal bus transfer results from the access. Applications for these bits in­
clude extended addressing and snoop protocol selection.

MOTOROLA MC68040 USER'S MANUAL 6-21

UDT - UPPER LEVEL DESCRIPTOR TYPE
These bits indicate whether or not the next level table is resident.

00,01 INVALID
These codes indicate that the table at the next level is not resident
or that the logical address is out of bounds. All other bits in the
descriptor are ignored. When an invalid descriptor is encoun­
tered, an ATC entry is created for the logical address with the
resident (R) bit clear.

10,11 RESIDENT
These codes indicate that the page is resident.

UR - USER RESERVED
These bit fields are reserved for use by the user.

W - WRITE PROTECTED
Setting the write-protect (W) bit in a table descriptor write protects all pages
accessed with that descriptor. When the W bit is set, a write access or a
read-modify-write access to the logical address corresponding to this entry
causes a bus error exception to be taken.

x - MOTOROLA RESERVED
These bit fields are reserved for future use by Motorola.

6.5.2 General Table Search

6-22

When an ATC does not contain a descriptor for the logical address of an
access and when a translation is required, the MC68040 searches the trans­
lation tables in memory and obtains the physical address and status infor­
mation forthe page corresponding to the logical address. When a table search
is required, the CPU suspends instruction execution activity and, at the end
of a successful table search, stores the address mapping in the appropriate
ATCand retries the access. The access then results in a match (it hits), and
the translated address is transferred to the cache controller provided no
exceptions were encountered.

The table search begins by selecting the translation tree, using internal func­
tion code bit FC2 for the access. FC2 is set for supervisor mode accesses and
cleared for user mode accesses. The supervisor root point (SRP) is selected
if FC2 is set; the user root pointer (URP) is selected if FC2 is cleared. A
simplified flowchart of the table search procedure is shown in Figure 6-13.

MC68040 USER'S MANuAL MOTOROLA

MOTOROLA

UDT - RESIDENT

UDT = RESIDENT

PDT=INVAUD

PDT = INDIRECT

ABBREVIATIONS:
PDT- PAGE DESCRIPTOR TYPE
UDT- UPPER LEVEL DESCRIPTOR TYPE
R BIT - RESIDENT BIT

Figure 6-13. Simplified Table Search Flowchart

MC68040 USER'S MANUAL 6-23

•

6-24

The table search uses physical addresses to access the translation tables.
Table search accesses that are not read-modify-write accesses are treated
by the cache as cachable/writethrough but do not allocate in the cache for
misses. Read-modify-write table search accesses (which are required to up­
date some descriptor U and M bit combinations) are treated as noncachable
and force a matching cache line to be pushed and invalidated. Table search
bus accesses are locked only for the specific portions of the table search that
require a read-modify-write access.

The first access of the search uses the appropriate root pointer as the base
address of the first table. The table is indexed by the TIA field of the logical
address to access the first descriptor. If the descriptor is a resident descriptor,
the table address field of the descriptor is used as a base address indexed
by the TIB field of the logical address to access a descriptor in the second­
level tables. The table address field of this descriptor is indexed by the TIC
field of the logical address to fetch a descriptor from the page tables. If the
descriptor from the page table is an indirect descriptor, the page descriptor
pointed to by this descriptor is fetched. For a table search that successfully
completes by accessing a valid page descriptor, the MC68040 creates an ATC
entry, using the physical address and other information from the page de­
scriptor, and retries the ATC lookup.

During a table search, the U bit in each descriptor that is encountered is
checked and set if not already set. Similarly, when the table search is for a
write access and the M bit of the page descriptor is clear, the processor sets
the bit if the table search does not encounter a set W bit or a supervisor
violation. Specific combinations ofthe U and M bits are updated by repeating
the descriptor access as part of a read-modify-write access, allowing the
external arbiter to prevent the update operation from being interrupted.

A table search terminates successfully when a page descriptor is encoun­
tered. The occurrence of an invalid descriptor or a transfer error acknowledge
also terminates a table search, and the MC68040 takes an exception on the
retry of the cycle because of these conditions. The exception routine should
distinguish between anticipated conditions and true error conditions. The
routine can correct an invalid descriptor that indicates a nonresident page
or one that identifies a portion of the translation table yet to be allocated. A
bus error due to a system malfunction may result in an error message and
termination of the task.

Figure 6-14 shows how the various descriptors are fetched in a table search
beginning with a root pointer and ending with an ATC entry and physical
address. The example shown is for an 8K page size. The status bits of the
ATC entry are derived by merging the status bits from the descriptors.

MC68040 USER'S MANUAL MOTOROLA

SUPERVISOR/USER MODE -----, LOGICAL ADDRESS

31 25 24 18 17 13 12 a
SUPERVISOR ROOT POINTER I I I TIA I TIB I TIC I PAGE OFFSET I

USER ROOT POINTER I
./ 7

23f
"-..'---

PHYSICAL ADDRESS
FOR LEVEL A

POINTER DESCRIPTOR
I A LEVEL TABLE BASE ENTRY# 1001
""-

FOR LEVELB
ICAL ADDRESS I
R DESCRIPTOR ""-

PHYS

POINTE

./ v

32 A LEVEL POINTER TABLE
DESCRIPTOR a
DESCRIPTOR 1 - DESCRIPTOR 127

23~ 7

B LEVEL TABLE BASE I ENTRY# 1001
./ v

32 B LEVEL POINTER TABLE

DESCRIPTOR a
DESCRIPTOR 1 - DESCRIPTOR 127

25f I 5

PHYSIC:6t~r~f~6 I C LEVEL TABLE BASE I ENTRY# 100 1
PAGE DESCRIPTOR ""-

./ v

32
C LEVEL PAGE TABLE

DESCRIPTOR a
DESCRIPTOR 1

~

DESCRIPTOR 31

1t

ATC ENTRY

~
I 32-BIT PHYSICAL ADDRESS

32t

Figure 6-14. Physical Address Generation (8K Page Size)

MOTOROLA MC68040 USER'S MANUAL

13

I

6-25

The table search begins when an ATC miss is detected. The table address
field of the appropriate root pointer is used as the base address of the first
table. The table is indexed by the set of logical address bits defined by the
table index fields TIA, TIB, and TIC (table index fields A, B, and C), as shown
in Figure 6-14.

The upper 23 bits of the appropriate root pointer are concatenated with the
seven bits ofthe TIA field ofthe logical address and multiplied by four (shifted
to the left by two bits) to yield the physical address of the first-level table
descriptor. The first-level table descriptor is fetched, and its upper 23 bits are
concatenated with the seven bits of the TIB field of the logical address and
multiplied by four to produce the physical address of the second-level table
descriptor. The second-level table descriptor is fetched, and its upper 25 bits
are concatenated with the TIC field (five bits for an 8K page, six bits for a 4K
page) of the logical address to produce the physical address of the page
descriptor. The upper 19 bits of the page descriptor become the page frame
physical address. Write-protect status is accumulated from each descriptor
level and combined with the status from the page descriptor to form the ATC
entry status. The MC68040 creates the ATC entry from the page frame address
and the associated status bits and retries the original bus access.

An indirect table search is identical to the preceding discussion except that
the page table contains a pointer to a page descriptor rather than the de­
scriptor itself.

6.5.3 Variations in Translation Table Structure

Several aspects of the MMU translation tree structure are software confi­
gurable, allowing the system designer flexibility to optimize the performance
of the MMUs for a particular system. The following paragraphs discuss the
variations of the tree structure from the general structure discussed previ­
ously.

6.5.3.1 INDIRECTION. The MC68040 provides the ability to replace an entry in a
page table with a pointer to an alternate entry. The indirection capability
allows multiple tasks to share a physical page while maintaining only a single
set of history information for the page (i.e., the "modified" indication is
maintained only in the single descriptor). The indirection capability also al­
lows the page frame to appear at arbitrarily different addresses in the logical
address spaces of each task.

6-26 MC68040 USER'S MANUAL MOTOROLA

I

Using the indirection capability, single entries or entire tables can be shared
between multiple tasks. Figure 6-15 shows two tasks sharing a page using
indirect descriptors.

When the MC68040 has completed a normal table search, it examines the
descriptor type field of the last entry fetched from the page tables. If the PDT
field contains an indirect ($2) encoding, this indicates that the address con­
tained in the highest order 30 bits of the descriptor is a pointer to the page
descriptor that is to be used to map the logical address. The processor then
fetches the page descriptor from this address and uses the physical address
field of the page descriptor as the physical mapping for the logical address.

The page descriptor located at the address given by the indirect descriptor
must not have a PDT field with an indirect encoding (it must be either be a
resident descriptor or invalid). Otherwise, the descriptor is treated as invalid,
and the MC68040 creates an ATC entry with an error condition signaled (R
bit clear).

ROOT POINTER

TIA TIB TIC OFFSET (PAGE SIZE)

$76543210 = IL--"C$1..:.:0E:.:,C_'---""$1.:c:854-'-----'-..:...$3_004_'--X_X_xx_x_x_x_x_x_x_xx_x--'

I

ENTRY$10EC :r000018XX J ENTRY$1854 s000030XX J ENTRY $3004 $60 ()(-
$10FF $19F $307F

TASK'A' ABSOLUTE PHYSICAL ADDRESS
RooTTABLES

.. TASK B
RooTTABLES

U
POINTER
TABLES

U
OF PAGE DESCRIPTOR

PAGE

TABLES

PAGE FRAME
ADDRESS

Figure 6-15. Translation Tree Using Indirect Descriptors - Example

MOTOROLA MC68040 USER'S MANUAL 6-27

..

6.5.3.2 TABLE SHARING BETWEEN TASKS. A page or pointer table can be shared
between tasks by placing a pointer to the shared table in the address trans­
lation tables of more than one task. The upper (nonshared) tables can contain
different write protection settings, allowing different tasks to use the memory
areas with different write permissions. In Figure 6-16, two tasks share the
memory translated by the table at the pointer table level. Task "A" cannot
write to the shared area; task "8", however, has the W bit clear in its pointer
to the shared table so it can read and write the shared area. Also, the shared
area appears at different logical addresses for each task.

TIA TIB TIC OFFSET (PAGE SIZE)

$76543210= L.,I;$:.;.;10;.:;.EC;:;..,....i..-:::.:$1.;:654..:-.-...... ::;$3;;.;;OO4;.,;,....;:..;.;X.:.;.X X:.;.:X..;.;X;.;;X..;.;X..;.;X;.:;X X:';':X";';X:..:.:.JX I

I ROOT POINTER
$1000

ENTRY
$1OEC

$1OFF

· f-· ·
w~lr~~r)f-

· ·
TASK 'A'

RooTTABLES

· · ·
W BIT CLEAR

· ·
TASK'B'

RooTTABLES

r-

,--.

~
ENTRY

$1854

$19FF

· · ·
· ·
· · •

· ·
· • ·

·$Q(IQQ~oXX

• ·
POINTER
TABLES

U

U
$3000

~ $3004

$307F

· · ·
· ·
· · ·
· ·
· • ·

$8OOOOXXX

• ·
PAGE

TABLES

PAGE FRAME
ADDRESS

(SHARED BY'A'
AND'B')

~WRITE-PROTECT-
DFROMTASK'A')

Figure 6-16. Translation Tree Using Shared Tables - Example

6.5.3.3 PAGING OF TABLES. The entire address translation tree for an active task
need not be resident in main memory at once. In the same way that only the
working set of pages must reside in main memory, only the tables that
describe the resident set of pages need be available in main memory. This
paging of tables is implemented by placing the "invalid" code ($0 or $1) in
the UOT field of the table descriptor that points to the absent table(s). When
a task attempts to use an address that would be translated by an absent

6-28 MC68040 USER'S MANUAL MOTOROLA

table, the MC68040 is unable to locate a translation and takes a bus error
exception when the execution unit retries the bus access that caused the
table search to be initiated.

System software determines that the "invalid" code in the descriptor cor­
responds to nonresident tables. This determination can be facilitated by using
the unused bits in the descriptor to store status information concerning the
invalid encoding. When the MC68040 encounters an "invalid" descriptor, it
makes no interpretation (or modification) of any fields of this descriptor other
than the UDT field, allowing the operating system to store system-defined
information in the remaining bits. Typical stored information includes the
reason for the "invalid" encoding (tables paged out, region not allocated,
etc.) and possibly the disk address for nonresident tables.

Figure 6-17 shows an address translation table in which only a single page
table (table $15) is resident and all other page tables are not resident.

6.5.3.4 DYNAMIC ALLOCATION OF TABLES. Similar to paged tables, a complete
translation tree need not exist for an active task. The translation tree can be
dynamically allocated by the operating system based on requests for access
to particular areas.

As in demand paging, it is difficult, if not impossible, to predict the areas of
memory that are used by a task over any extended period of time. Instead
of attempting to predict the requirements of the task, the operating system
performs no action for a task until a "demand" is made requesting access
to a previously unused area or an area that is no longer resident in memory.
This same technique can be used to efficiently create a translation tree for
a task.

For example, consider an operating system that is preparing the system to
execute a previously unexecuted task that has no translation tree. Rather
than guessing what the memory-usage requirements of the task are, the
operating system creates a translation tree for the task that maps one page
corresponding to the initial value of the program counter for that task and
one page corresponding to the initial stack pointer of the task. All other
branches of the translation tree for this task remain unallocated until the task
requests access to the areas mapped by these branches. This technique
allows the operating system to construct a minimal translation tree for each
task, conserving physical memory utilization and minimizing operating sys­
tem overhead.

MOTOROLA MC68040 USER'S MANUAL 6-29

LOGICAL ADDRESS

EXAMPLE ADDRESS TlA TIB TIC PAGE OFFSET

$76543210 = I 0 1 1 1 0 1 1 I 0 0 1 0 1 0 1 I 0 0 0 0 1 I X X X X X X X X X X X X X I
TABLE ENTRY # = $3B $15 $01

TABLE $00 TABLE $00
r-- SUPERVISOR/USER

MODE
NON-RESIDENT NON-RESIDENT

(PAGED OR (PAGED OR
NOT NOT

AllOCATED) ALLOCATED)
SUPERVISOR ROOT POINTER TABLE

~
I

SRP ." ,
URP I-

ENTRY$3B

UDT • INVALID

UDT • INVALID
UDT. RESIDENT
UDToINVAlID

UDT • INVALID

USER TABLE

A LEVEL
TABLE

ENTRY $15

TABLE$3B
UDT • INVALID

UDT • INVALID
UDT • RESIDENT

UDT • INVALID

UDT-INVALID

TABLE $7F

NON-RESIDENT
(PAGED OR

NOT
AllOCATED)

BLEVEL
TABLES

I-- ."

U ENTRY $01

TABLE $15

TABLE $1F

NON-RESIDENT
(PAGED OR

NOT
AllOCATED)

CLEVEL
TABLES

PAGE FRAME
ADDRESS

Figure 6·17. Translation Tree with Nonresident Tables - Example

6.5.4 Table Search Operation Details

6-30

The table search operations are described in detail in Figure 6-18, which
shows a detailed flowchart of the table search operation, and in Figure 6-19,
which shows the details of a descriptor fetch operation.

MC68040 USER'S MANUAL MOTOROLA

UDT = 'INVAUD' UDT • 'RESIDENr

(INITIAUZE ACCRUED
STATUS)

(FETCH 1ST LEVEL TABLE DESCRIPTOR)

(FETCH 2ND LEVEL TABLE DESCRIPTOR)

UDT. 'INVAUD'..--__ -'-__ -,

(FETCH 3RD LEVEL PAGE DESCRIPTOR)

PDT = 'INVALID' PDT = 'INDIRECr PDT = 'RESIDENr

OTHERWISE

ABBREVIATIONS:

PFA - PAGE FRAME ADDRESS
DFI]- DESCRIPTOR AELD
Wfl - ACCUMULATED WRITE

PROTECTION STATUS
• ~GNMENTOPERATOR

(FETCH INDIRECT PAGE DESCRIPTOR)

PDT • 'RESlDENr

PFA" PHYSICAL ADDRESS
FIELD OF DESCRIPTOR

I
CREATE ATC ENTRY WITH R BIT SET

ATC TAG • FC2,LA. DF[G]
ATC ENTRY. PFA, DF[U1,UO,S,CM,M],WP

(EXlTTABLE SEARCH)

Figure 6-18. Detailed Flowchart of Table Search Operation

MOTOROLA MC68040 USER'S MANUAL 6-31

TYPE = 'PAGE' OR 'POINTER'

SCHEDULE
WRITE ACCESS

U .1
(SEE NOTE)

NOTE: DUE TO ACCESS PIPELINING, A POINTER
DESCRIPTOR WRITE ACCESS TO UPDATE THE
U arT OCCURS AFTER THE READ OF THE NEXT
LEVEL DESCRIPTOR.

ABBREVIATIONS:
WP • ACCUMULATED WRrTE

PROTECTION STATUS
V LOGICAL "OR' OPERATOR
• ASSIGNMENT OPERATOR

NORMAL TERMINATION
OF ALL BUS TRANSFERS

(RELN)

Figure 6-19, Detailed Flowchart of Descriptor Fetch Operation

6-32 MC68040 USER'S MANUAL MOTOROLA

As shown in Figure 6-19, the MC68040 asserts the LOCK signal during certain
portions of the table search to assure proper maintenance of the U and M
bits. The U and M bits are updated before the MC68040 allows a page to be
accessed or written. As descriptors are fetched, the U and M bits are mon­
itored. Write cycles modify these bits when required. For a table descriptor,
a write cycle to set the U bit occurs only if the U bit was clear. Table 6-1 lists
the page descriptor update operations for each combination of U bit, M bit,
write protection, and read or write access type.

Table 6-1. Updating U and M Bits for Page Descriptors

Previous New
Status WP

Access Page Descriptor Status

U M
Type Update Operation

U M

0 0 Locked RMW Access to Set U 1 0

0 1 Locked RMW Access to Set U 1 1

1 0
X Read

None 1 0

1 1 None 1 1

0 0 Write to Set U and M 1 1

0 1 Locked RMW Access to Set U 1 1

1 0
0 Write to Set M 1 1

1 1
Write None 1 1

0 0 Locked RMW Access to Set U 1 0

0 1 Locked RMW Access to Set U 1 1

1 0
1 None 1 0

1 1 None 1 1

NOTE: WP = Accumulated write-protect status

6.5.5 Protection

The MC68040 MMUs provide separate translation trees for supervisor and
user address spaces. The translation table trees contain both mapping and
protection information. Each table and page descriptor includes a write-pro­
tect (W) bit that can be set to provide write protection at any level. Page
descriptors also contain a supervisor-only (5) bit that can limit access to
programs operating at the supervisor privilege level.

The protection mechanisms can be used individually or in any combination
to protect:

• Supervisor address space from access by user programs .

• User address space from access by other user programs.

MOTOROLA MC68040 USER'S MANUAL 6-33

-

• Supervisor and user program spaces from write accesses (implicitly sup­
ported by designating all memory pages used for program storage as
write protected).

• One or more pages of memory from write accesses.

6.5.5.1 USER AND SUPERVISOR TRANSLATION TREES. One way of protecting
supervisor and user address spaces from unauthorized accesses is to use
separate supervisor and user translation trees. Separate trees protect su­
pervisor programs and data from access by user programs and user pro­
grams and data from access by supervisor programs. Access is granted to
the supervisor programs that can access any area of memory with the move
address space (MOVES) instruction. The translation tree pointed to by the
SRP is selected for all other supervisor mode accesses. This translation tree
can be common to all tasks. Figure 6-20 shows separate translation trees for
supervisor accesses and for two user tasks that share the common supervisor
space. Each user task has an address translation tree with unique mappings
for the logical addresses in its user address space.

6-34

USER ROOT POINTER
FOR TASK 'A'

URP

USER ROOT POINTER
FOR TASK 'B'

URP

COMMON SUPERVISOR ROOT
POINTER

SRP

USER A LEVEL TABLE

·1 b} TRANSLATION TABLE FOR
1----------1. TASK 'A'

r--------~
~-----------~

USER A LEVEL TABLE

SUPERVISOR A LEVEL TABLE ·1 b} i:~~~ON ALL SUPERVISOR t:=======:1: ACCESSES

Figure 6-20. Translation Tree Structure for Two Tasks - Example

MC68040 USER'S MANUAL MOTOROLA

6.5.5.2 SUPERVISOR ONLY. A second mechanism protects supervisor programs
and data without requiring segmenting of the logical address space into
supervisor and user address spaces. Page descriptors contain S bits to protect
areas of memory from access by user programs. When a table search for a
user access encounters an S bit set in a page descriptor, the table search is
completed, and an ATC descriptor corresponding to the logical address is
created with the R bit clear. The subsequent retry of the user access results
in a bus error exception being taken. The S bit can be used to protect one
or more pages from user program access. Descriptors can be shared by
supervisor and user mode accesses by using indirect descriptors or by shar­
ing tables. The entire user and supervisor address spaces can be mapped
together by loading the same root pointer address into both the SRP and
URP registers.

6.5.5.3 WRITE PROTECT. The MC68040 provides write protection independent of
the segmented address spaces for programs and data. All table and page
descriptors contain W bits to protect areas of memory from write accesses
of any kind, including supervisor writes. When a table search encounters a
W bit set in any table or page descriptor, an ATC descriptor corresponding
to the logical address is created with the W bit set after the table search is
completed. The subsequent retry of the write access results in a bus error
exception being taken. The W bit can be used to protect the entire area of
memory defined by a branch of the translation tree or protect only one or
more pages from write accesses. Figure 6-21 shows a memory map of the
logical address space organized to use supervisor-only and write-protect bits
for protection. Figure 6-22 shows an example translation tree for this tech­
nique.

MOTOROLA

SUPERVISOR
AND

USER SPACE

THIS AREA SUPERVISOR-ONLY,
READ-ONLY

THIS AREA SUPERVISOR-ONLY
READIWRITE

THIS AREA SUPERVISOR OR USER,
READ-ONLY

THIS AREA SUPERVISOR OR USER,
READIWRITE

Figure 6-21. Logical Address Map with Shared
Supervisor and User Address Spaces - Example

MC68040 USER'S MANUAL 6-35

r---+

,..
_ ~UPERVISORIUSER

MODE

~ SRP -P- W=1
I URP r-

WJ) I--
URP & SRP POINT
TO SAME A LEVEL

TABLE

W-1
WJ) I--

A LEVEL TABLE

~

Note: X = DON'T CARE

wx

WJ)

WX

WJ)

B LEVEL TABLES

THIS PAGE
SUPERVISOR ONLY,

READ ONLY

S=1,W=X

THIS PAGE
SUPERVISOR ONLY,

READIWRITE
S=1,WJ)

THIS PAGE
SUPERVISORIUSER

READ ONLY

S=O,W=X

THIS PAGE
SUPERVISORIUSER

READIWRITE
SJ),W=O

C LEVEL TABLES

Figure 6-22. Translation Tree Using Sand W Bits To Set Protection - Example

6.6 REGISTERS

6-36

The registers of the MMUs described here are part of the supervisor pro­
gramming model for the MC68040.

The eight registers that control and provide status information for address
translation in the MC68040 are the user root pointer register (URP). the su­
pervisor root pointer register (SRP), the translation control register (TC). four
independent transparent translation control registers (lTTO, ITT1, DTTO, and

MC68040 USER'S MANUAL MOTOROLA

DTT1), and the MMU status register (MMUSR). These registers can be directly
accessed only by programs that execute in supervisor mode.

6.6.1 Root Pointer Registers

The SRP and URP registers each contain the physical address of the root of
the translation tree used for supervisor and user accesses, respectively. The
URP points to the translation tree for the current user task. When a new task
begins execution, the operating system typically writes a new root pointer
to the URP. A new translation table address implies that the contents of the
ATCs may no longer be valid. A PFLUSH instruction should be executed to
flush the ATCs before loading a new root pointer value, if necessary. Figure
6-23 shows the format of the 32-bit URP and SRP registers. Bits 8-0 of an
address loaded into the URP or the SRP must be zero.

31

USER ROOT POINTER 010100101010010

SUPERVISOR ROOT POINTER 010101001001010

Figure 6-23. Root Pointer Register (URP, SRP) Format

6.6.2 Translation Control Register

The 16-bit TC register contains two control bits to enable paged address
translation and to select page size. The operating system must flush the ATCs
before enabling address translation since the ATCs are not flushed by TC
register accesses or by reset. All unimplemented bits of this register are read
as zeros and must always be written as zeros. The TC register is shown in
Figure 6-24.

MOTOROLA

15 0

IElplxlxlxlxlxlxlxlxlxlxlxlxlxlxl

E - Enable Translations
P - Page Size (8-4K)
X - Undefined (Reserved)

Figure 6-24. Translation Control Register

MC68040 USER'S MANUAL 6-37

The fields are as folows:
E - Enable

This bit enables and disables paged address translation.
O=Oisable
1 = Enable

A reset operation clears this bit. When translation is disabled, logical
addresses are used as physical addresses. The MMU instructions (PTEST
and PFLUSH) can be executed successfully regardless of the state of the
E bit. If translation is disabled and an access does not match a transparent
translation register, the access has the following default attributes: the
caching mode is cachable/writethrough, write protection is disabled, and
the user attribute signals (UPA1 and UPAO) are zero.

P - Page Size
This bit selects the memory page size.

O=4K bytes
1 =8K bytes

A reset operation sets this bit, selecting 8K pages.

6.6.3 Transparent Translation Registers

6-38

The data transparent translation registers (OTTO and OTT1) and instruction
transparent translation registers (lTTO and ITT1) are 32-bit registers that de­
fine blocks of logical address space that are transparently translated. Logical
addresses in a transparently translated block are used as physical addresses
with two user-defined page attributes and optional write protection. The
minimum size block that can be defined by a transparent translation (TT)
register is 16 Mbytes of logical address space. The TT registers can specify
blocks that overlap. The TT registers operate independently of the E bit in
the TC register and the state of the MOIS signal. If both a TT register and an
ATC entry match a logical address, then the TT register is used for the trans­
lation, and the ATC entry is ignored. TTO is used if both TT registers in a
memory unit match. The format of the TT registers is shown in Figure 6-25.

15 14 13 12 11 10

Figure 6-25. Transparent Translation Register Format

MC68040 USER'S MANUAL MOTOROLA

The fields of the transparent translation registers are as follows:

LOGICAL ADDRESS BASE
This 8-bit field is compared with address bits A31-A24. Addresses that
match in this comparison (and are otherwise eligible) are transparently
translated.

LOGICAL ADDRESS MASK
Since this 8-bit field contains a mask for the LOGICAL ADDRESS BASE
field, setting a bit in this field causes the corresponding bit in the LOGICAL
ADDRESS BASE field to be ignored. Blocks of memory larger than 16
Mbytes may be transparently translated by setting some of the logical
address mask bits to ones. The low-order bits of this field are normally set
to define contiguous blocks larger than 16 Mbytes, although this is not
required.

E - ENABLE
This bit enables and disables transparent translation of the block defined
by this register:

0= Transparent translation disabled
1 = Transparent translation enabled

S - SUPERVISOR/USER MODE
This field specifies the way FC2 is used in matching an address:

00 = Match only if FC2 is 0 (user mode access)
01 = Match only if FC2 is 1 (supervisor mode access)
1x=lgnore FC2 when matching

U1, U2 - USER PAGE ATTRIBUTES
These bits are user defined and are not interpreted by the MC68040. UO
and U1 are echoed to the UPAO and UPA1 signals, respectively, if an ex­
ternal bus transfer results from the access.

This field selects the cache mode and access serialization for the block as
follows:

00 = Cachable, Writethrough
01 = Cachable, Copyback
10 = Cache Inhibited, Serialized
11 = Cache Inhibited, Not Serialized

Each mode is detailed in 6.5.1.5 DESCRIPTOR FIELD DEFINITIONS.

W - WRITE PROTECT
This bit indicates if the transparent block is write protected. If set, write
and read-modify-write accesses are aborted as if the resident (R) bit in a
table descriptor were clear.

MOTOROLA

0= Read and write accesses permitted
1 = Write accesses not permitted

MC68040 USER'S MANUAL 6-39

..

6.6.4 MMU Status Register

The MMUSR is a 32-bit register that contains the status information returned
by execution of the PTEST instruction. The PTEST instruction searches the
translation tables to determine status information about the translation of a
specified logical address. The MMUSR is shown in Figure 6-26.

31 12 11 10 9 8 7 6 5 4 2 1

PHYSICAL ADDRESS I BIG I Ul I uo I S I CM I M I 0 I WiT I R

Figure 6-26. MMU Status Register

The fields of the MMUSR are as follows:

PHYSICAL ADDRESS
This 20-bit field contains the upper bits of the translated physical address.
The actual physical address is formed by merging these bits with the lower
bits of the logical address.

B - BUS ERROR
B is set if a transfer error is encountered during the table search for the
PTEST instruction. If B is set, all other bits are zero.

G - GLOBAL
This bit is set if the G bit is set in the page descriptor.

U1, UO - USER PAGE ATTRIBUTES
These bits are set if corresponding bits in the page descriptor are set.

S - SUPERVISOR PROTECTION
This bit is set if the S bit in the page descriptor is set. Setting this bit does
not indicate that a violation has occurred.

CM - CACHE MODE
This 2-bit field is copied from the CM bits in the page descriptor.

M - MODIFIED
This bit is set if the M bit is set in the page descriptor associated with the
.address.

W - WRITE PROTECT
This bit is set if the W bit is set in any ofthe descriptors encountered during
the table search. Setting this bit does not indicate that a violation occurred.

MC68040 USER'S MANUAL MOTOROLA

T - TRANSPARENT TRANSLATION REGISTER HIT
If T is set, then the PTEST address matched an instruction or data TTR, the
R bit is set, and all other bits are zero.

R - RESIDENT
R is set if the PTEST address matches a TTR or if the table search completes
by obtaining a valid page descriptor.

6.6.5 Register Programming Considerations

If the entries in the ATCs are no longer valid when a reset operation occurs
(as is normally expected), an explicit flush operation must be specified by
the system software. The assertion of RSTI disables translation by clearing
the E bits of the TC, DTTx, and ITTx registers, but it does not flush the ATCs.
Reading or writing any of the MMU registers (URP, SRP, TC, MMUSR, DTTO, ..
DTT1, ITTO, ITT1) does not flush the ATCs. Since a write to these registers
can cause some or all of the address translations to change, the write should
be followed by a PFLUSH operation to flush the ATCs if necessary.

The status bits in the MMUSR indicate conditions to which the operating
system should respond. In a typical bus error handler routine, the flow shown
in Figure 6-27 can be used to determine the cause of an MMU fault. The
PTEST instruction sets the bits in the MMUSR appropriately, and the program
can branch to the appropriate code segment for the condition.

6.7 MMU INSTRUCTIONS

The MC68040 instruction set includes three privileged instructions that per­
form MMU operations. A brief description of each of these instructions fol­
lows. For detailed descriptions of these instructions, refer to M68000PM/AD,
M68000 Family Programmer's Reference Manual.

The MOVEC instruction transfers data between an integer register or memory
location and any of the MC68040 control and status registers. The operating
system uses the MOVEC instruction to control and monitor MMU operation
by manipulating and reading the eight MMU registers.

The PFLUSH instruction flushes (invalidates) address translation descriptors
in the ATCs. PFLUSHA, a version ofthe PFLUSH instruction, flushes all entries.
The PFLUSH instruction flushes a user or supervisor entry with a specified
logical address. The PFLUSHAN and PFLUSHN instruction variants qualify
entry selection further by flushing only entries that are nonglobal; indicated
by a cleared G bit in the entry.

MOTOROLA MC68040 USER'S MANUAL 6-41

6-42

PTEST(An)

t-R_'~
R=1 B=1 B.O

~ BRANCH TO "BUS ERROR
DURING TABLE SEARCtr CODE

BRANCH TO "PAGE FAUlT" OR
"INVAUD DESCRIPTOR" CODE

T=O T.1

A 5=1 AND (USER ACCESS I INDICATED IN STACK FRAME)

OTHERWISE

W=1

OM~
WRITE OR RMW ACCESS

INDICATED IN STACK
FRAME

OTHERWISE MATCHxTTO

fo- -~
MATCH xTT1 '" I t xTTolWl-1 AND (WRITE OR

RtM{ACCESS INDICATED IN
STACK FRAME)

OTHERWISE

xTT1(Wl.1 AND (WRITE OR
RMW ACCEss INDICATED IN

STACK FRAME)

Figure 6-27. MMU Status Interpretation

MC68040 USER'S MANUAL MOTOROLA

The PTEST instruction performs a table search operation for a specified func­
tion code and logical address and sets the appropriate bit fields in the MMUSR
to indicate conditions encountered during the search. PTEST automatically
flushes the corresponding entry from the cache before searching the tables
and loads the latest information from the translation tables into the ATC. The
exception routines of the operating system can use this instruction to identify
MMU faults.

This instruction is primarily used in bus error handler routines. For example,
if a bus error has occurred, the handler can execute an instruction sequence
such as follows:

MOVE.B (A7,offset1),DO
MOVEC DO,DFC
MOVEA.L (A7,offset2),AO
PTESTW (AO)

Copy transfer modifier field from stack frame
into DFC register

Copy fault address from stack frame into address register
Test address in AO with function code in DFC registers

The transfer modifier field copied into the DFC register indicates whether the
faulted access was a supervisor or user mode access and whether it was an
instruction prefetch or data access. The PTEST instruction uses the DFC value
to determine which translation tree (supervisor or user) to search and which
ATC (data or instruction) to create the entry in. After executing this code
sequence, the handler can examine the MMUSR for the source of the fault.

The MC68040 MMU instructions use opcodes that are different from those
for the corresponding instructions in the MC68030 and MC68851. All MMU
opcodes for the MC68030 and MC68851 cause F-line unimplemented instruc­
tion exceptions if executed in either supervisor or user mode by the MC68040.

MOTOROLA MC68040 USER'S MANUAL 6-43

..

6-44 MC68040 USER'S MANUAL MOTOROLA

SECTION 7
INSTRUCTION AND DATA CACHES

The MC68040 contains a 4K-byte on-chip instruction cache and a 4K-byte on­
chip data cache, located in the physical address space. The caches improve
system performance by providing cached data to the on-chip execution units
with very low latency and by increasing the availability of the bus for use by
external devices in systems with more than one bus master, such as a pro­
cessor and a direct memory access (DMA) controller. An increase in instruc­
tion throughput results when instruction words and data required by a
program are available in the on-chip caches and the time required to access
them on the external bus is eliminated. Additionally, instruction throughput
increases when instruction words and data can be accessed simultaneously .

The instruction and data caches (see Figure 7-1) are contained in the instruc­
tion and data memory units, respectively. Instruction prefetch requests and
data requests from the integer unit are independently serviced by the ap­
propriate memory unit, which translates the logical address in parallel with
indexing into the memory unit's cache. If the translated address matches one
of the cache entries, the access hits in the cache, and the memory unit
supplies the data to the integer unit (for a read) or updates the cache (for a
write). If the access misses ifl the cache or a write access must be written
through to memory, the memory unit sends an external access request to
the bus controller, which reads or writes the required data.

Cache coherency support in the MC68040 is optimized for use in multi-master
applications that utilize the MC68040 as a caching master sharing memory
with one or more noncaching masters (such as DMA controllers). The MC68040
implements a bus snooper that maintains coherency of the caches by mon­
itoring the accesses by an alternate bus master and performing cache main­
tenance operations as requested by the alternate master. Matching cache
lines can be invalidated during the alternate master access to memory, or
memory can be inhibited to allow the MC68040 to respond to the access as
a slave. By intervening in the access, the processor can update its internal
caches for an external write (sink data) or supply cache data to the alternate
bus master for an external read (source data). In this manner, the caches in
the MC68040 are prevented from accumulating old or invalid copies of data
(stale data), and external masters are allowed access to locally modified data

MOTOROLA MC68040 USER'S MANUAL 7-1

..

INSTRUCTION DATA BUS

CONVERT
B
U ADDRESS
S BUS

EA C
CALCULATE 0

EXECUTE N

EA T
R DATA

FETCH 0 BUS
l
l

WRITE
EXECUTE DATA MEMORY UNIT E

BACK
DATA R

ADDRESS

WRITEBACK' BUS
CONTROL
SIGNALS

FlOATING-
POINT UNIT

Figure 7-1. Overview of Internal Caches

within the caches that is no longer consistent with external memory (dirty
data). Cache coherency is also supported by allowing memory pages to be
specified as writethrough instead of copyback; processor writes to writeth­
rough pages always update external memory via an external bus access after
updating the cache, keeping memory and cache data consistent.

7.1 CACHE ORGANIZATION

7-2

Both four-way set-associative caches have 64 sets offour, 16-byte lines. Each
cache line contains an address tag (TAG), status information, and four long
words of data (DO-D3) (see Figure 7-2). The address tag contains the upper
22 bits of the physical address .. The status information for the instruction
cache consists of a single valid bit for the entire line. The status information
for the data cache contains a valid bit, as well as four additional bits to indicate
dirty status for each long word in the line. Since entry validity is provided

MC68040 USER'S MANUAL MOTOROLA

LOGICAL ADDRESS
/~ ____________ ~A~ ____________ ~,

31 12 0

I S I PAGE FRAME •• PAGE OFFSET I
'''------".------/'-..,,/ '-..r--/

SUPERVISOR
BIT

LA3l-LA12

PAll-PAlO

I
PHYSICAL

SE TSELECT
PA9-PA4

~
SET 0

SET 1

.
"

SET 63
'--

I
I

TAG

.
" "

TAG

U~3

U~2

U~l

UNEO

I

STATUS DO 01 02 03

. " . " ." " . " .
STATUS DO 01 02 03

~
,: ~ ADDRESS

TRANSLATION r- PA31-PA12
CACHE

TED TRANSLA
PHYSIC
ADORE
PA31-PA

AL
SS
10

I

1 :: 1 I
I 3

I HIT3
2 -

HIT2

~
P

~

MUX

DATA OR
CTiON INSTRU

1 UNESELECT

~ 1 - LOGICAL OR
HIT 1

COMPARATOR 0 r-
HIT 0

Figure 7-2. Internal Caches

only on a line basis, an entire line must be loaded from system memory in
order for the cache to store an entry. Only burst mode accesses that suc­
cessfully read four long words can be cached. Memory devices unable to
support bursting can respond to line read or write accesses by asserting TBI
(transfer burst inhibit), forcing the processor to complete the access as a
sequence of long-word accesses.

Each memory unit access by the integer unit is translated from a logical
address to a physical address to access the data in the cache. To minimize
latency of the requested data, the lower untranslated bits of the logical ad­
dress (which map directly to physical address bits) are used to access a set

MOTOROLA MC68040 USER'S MANUAL 7-3

•

of cache lines in parallel with the translation of the upper logical address
.. bits. ~its PA9-PA4 ar~ used to index into the cache and. select one of the 64

sets of four lines. The four tags from the selected cache set are compared
against the translated physical address bits PA31-PA12 from the MMU and
bits PA11 and PA10 of the untranslated page offset. If anyone of the four
tags match and the tag status is either valid or dirty, then the cache has a

. hit. During read accesses, half of a line is accessed at a time, requiring two
cache accesses for reads which cross a half-line boundary. Write accesses
within a cache line require a single cache access.

7.2 CACHING MODES

Every cache access by the integer unit has an associated caching mode that
determines how the access will be handled by the cache. The caching mode
is normally specified ona page basis by the cache mode (CM) bits in the
ATC entry or transparent translation register (TTR) corresponding to the log­
ical address ofthe access. The CM bits select one ofthe following four modes:
1) cachable, writethrough, 2) cachable, copyback, 3) noncachable, or 4) spe­
cial access. (If memory management is disabled, the default caching mode
is writethrough.) In addition, some instructions and integer unit operations
perform d.ata acc.esses that have an implicit caching mode associated with
them. The following paragraphs discuss the different cachitlg modes in more
deta'iL

7.2.1 Cachable, Writethrough Mode

7-4

Data accesses to pages specified as writethrough are always written to the
external target address (although the cycle may be buffered), keeping mem­
ory and cache data consistent. Cache coherency for shared memory areas
in a multiprocessing environment can be maintained by specifying writeth­
rough mode for the shared pages. Writes iii writethrough mode are handled
with a no-writeallocate policy (i.e., writes that miss in the data cache are
written to memory but do not cause the corresponding line in memory to
be loaded into the cache).

Instruction or data read accesses which hit in the appropriate cache are
supplied data by the cache; misses cause a new cache line to be loaded into
the cache, replac,ing a cache line if necessary. Since instruction cache ac­
cesses are always reads, they are not affected by the selection of write through
or copypack caching mode ..

Mcsa040 USER'S MANUAL MOTOROtA

7.2.2 Cachable, Copyback Mode

Copyback pages used to minimize the bus bandwidth used by the processor
are typically used for local data structures or stacks. A write hit updates the
cache line, setting the dirty bits of any affected long words without an external
write access. A write miss causes the needed cache line to be read from
memory into the cache where the line is updated, setting the appropriate
dirty bits. Read accesses are handled the same as those for writethrough
mode - a read hit is supplied data by the cache, while a read miss causes
a new cache line to be read in from memory.

For pages designated as copyback, writes will cause lines in the data cache
to contain dirty data which has been locally modified and is no longer con­
sistent with memory. When a miss causes one of these dirty cache lines to
be selected for replacement, the line will be placed in an internal copyback
buffer. The replacement line will be read into the cache, and memory will be
updated by writing the dirty cache line back to memory.

7.2.3 Noncachable Mode

Regions of the address space containing noncachable targets, such as 1/0
devices and shared data structures in multiprocessing systems, can be des­
ignated noncachable. Accesses to a specific memory page may be explicitly
identified as noncachable by setting the CM bits of the associated ATC entry
or TTR to select either the noncachable or serialized noncachable caching
modes. Cache operation is identical for both noncachable modes. Noncach­
able accesses that miss in the cache bypass the cache and do not allocate
reads or writes in the cache. Accesses which hit in the cache invalidate a
matching valid entry and force a matching dirty entry to be pushed to memory
before the external access occurs.

Regardless of the selected cache mode, locked accesses are implicitly con­
sidered noncachable. Locked accesses are used by the TAS, CAS, and CAS2
instructions to access operands in memory, and to update translation table
entries during table search operations.

7.2.4 Special Accesses

In addition to operations that have an implied noncachable access mode
(locked instructions and table search operations), several other processor
operations result in accesses with special caching characteristics.

MOTOROLA MC68040 USER'S MANUAL 7-5

..

Exception stack accesses, exception vector fetches, and table searches do
not allocate entries in the data cache. These accesses (read or write) that
miss in the cache do not allocate entries to prevent replacement of a cache
line. Cache hits by these accesses are handled in the normal manner ac­
cording to the caching mode specified for the access address.

Accesses by the MOVE16 instruction do not allocate entries in the data cache
for either read or write misses. Read hits on either valid or dirty cache lines
are read from the cache, and write hits invalidate a matching entry and
perform an external access. By interacting with the cache in this manner, a
large block move or block initialization implemented with MOVE16 is pre­
vented from being cached since the data may not be needed immediately.

7.3 CACHE COHERENCY

7-6

Several different mechanisms are provided by the MC68040 to assist in main­
taining cache coherency in multimaster systems. Both writethrough and cop­
yback memory update techniques are supported to maintain coherency
between the data cache and memory. For writethrough accesses, the cache
controller always writes to both the data cache (for accesses which hit) and
main memory, ensuring that cache data is always consistent with memory.
In copyback accesses, the cache controller writes the data into the cache and
sets the dirty bits for the affected entries, without performing an external
access. The dirty cache data is only written to memory if 1) the line is replaced
due to a miss, 2) a noncachable access matches the line, or 3) the line is
explicitly pushed by the CPUSH instruction. Use of copyback pages minimizes
external bus usage and reduces the latency of write accesses by the proces­
sor.

Accesses by an alternate bus master can reference data that is cached by
the MC68040, causing coherency problems if the accesses are not handled
appropriately. The MC68040 can watch the external processor bus during
bus transfers by other masters (bus snooping), and can update its internal
caches if a write access hits or can intervene in the access to supply dirty
data if a read access hits. Snooping is controlled by the external bus master,
indicating via the snoop control signals which accesses are to be snooped
and the required operation for snoop hits. Table 7-1 shows the requested
snoop operation for each encoding of the snoop control signals. Since the
processor and the bus snooper must both access the caches, the snoop
controller has priority over the processor for snoopable accesses to maintain
cache coherency.

MC68040 USER'S MANUAL MOTOROLA

Table 7-1. Snoop Control Encoding

SCl SCQ
Requested Snoop Operation

Read Access Write Access

0 0 Inhibit Snooping Inhibit Snooping

0 1 Supply Dirty Data and Leave Dirty Data Sink ByteIWord/Long-Word

1 0 Supply Dirty Data and Mark Line Invalid Invalidate Line

1 1 Reserved (Snoop Inhibited) Reserved (Snoop Inhibited)

The snooping protocol and caching mechanism supported by the MC68040
are optimized to support multimaster systems with the MC68040 as the single
caching master. In systems implementing multiple MC68040s as bus masters,
global data should be stored in writethrough pages. This procedure allows
each processor to cache global data for read access while forcing a write to
global data by any processor to appear as an external write to memory,
which can be snooped by the other processors.

If shared data is stored in copyback pages, only one processor at a time can •
cache the data (since writes to copyback pages do not access the external
bus). If a processor accesses shared data cached by another processor, the
slave can source the data to the master without invalidating its own copy
only if the transfer to the master is cache inhibited. In order for the master
processor to cache the data it must force invalidation of the slave processor's
copy of the data (by specifying mark invalid for the snoop operation), and
the memory controller must monitor the data transfer between the proces-
sors and update memory with the transferred data. The memory update is
required since the master processor is unaware of the source of the data
(valid data from memory or dirty data from a snooping processor) and initially
creates a valid cache line, losing dirty status if the data was supplied by a
snooping processor.

Coherency between the instruction cache and the data cache must be main­
tained in software since the instruction cache does not monitor data accesses.
Processor writes that modify code segments (i.e., resulting from self-modi­
fying code or from code executed to load a new page from disk) access
memory through the data memory unit. Because these data accesses are not
monitored by the instruction cache stale data occurs in the instruction cache
if the corresponding data in memory is modified. This coherency problem
can be prevented by invalidating any lines in the instruction cache before
writing to the corresponding lines in memory.

MOTOROLA MC68040 USER'S MANUAL 7-7

Another potential coherency problem exists due to the relationship between
the cache state information and the translation table descriptors. Because
each cache line reflects page state information, a page should be flushed
from the caches before any of the page attributes are changed. The presence
of a valid or dirty cache line implicitly indicates that accesses to the page
containing the line are cachable. Presence of a dirty cache line also implies
that the page is not write protected and that writes to the page are in copyback
mode. Changing page attributes without flushing the corresponding page
from the caches is considered a system programming error, which results
in cache line states inconsistent with their page definitions. Even with these
inconsistencies, the cache is defined and predictable.

7.4 CACHE OPERATION

The instruction and data caches function independently in servicing access
requests from the integer unit. The following paragraphs discuss the oper­
ational details for the caches and present state diagrams depicting the state
transitions for the cache lines. In general, a 'cache line is always in one of
three states: INVALID, VALID, or DIRTY (capitalization indicates these are
specifically line states). For invalid lines, the valid bit is clear, and the cache
line is ignored during cache lookups. Valid lines have their valid bit set, dirty
bits cleared, and all four long words in the line contain valid data consistent
with memory. Dirty cache lines have the valid bit and one or more dirty bits
set, indicating that the line is valid and contains long-word entries that have
not been written to memory (long words whose dirty bit is set). Dirty cache
lines are supported only by the data cache.

7.4.1 Instruction Cache

7-8

When enabled, the instruction cache is used to store instruction prefetches
(instruction words and extension words) as they are requested by the integer
unit. Instruction prefetches are normally requested from sequential memory
locations except when a change of program flow occurs (e.g., a branch taken)
or when an instruction is executed which can modify the status register (SR),
in which case the instruction pipe is automatically flushed and refilled. Each
instruction cache line consists of a tag, a single valid bit, and four long words
(128 bits) of data (see Figure 7-3). The instruction cache supports a line-based
protocol that allows individual cache lines to be in either the INVALID or
VALID states.

MC68040 USER'S MANUAL MOTOROLA

TAG v I LW3 LW2

TAG-22-Bit Physical Address Tag Information
V-Line VALID Bit

LWn-32-Bit Data Entry

LWl

Figure 7-3. Organization of Instruction Cache Line

LWO

For prefetch requests that hit in the cache, the cache half-line (two long words)
selected by address bit PA3 is multiplexed onto the internal instruction data
bus. When an access misses in the cache, the cache controller requests the
memory line containing the required data from memory and places the line
in the cache. If available, an invalid line in the selected set is updated with
the tag address and data from memory, and the line transitions from the
INVALID state to the VALID state by setting the valid bit. If all lines in the set
are already valid, a pseudo-random replacement technique is used to select
one of the four lines and replace the tag and data contents of the line with 7
the new line information. Refer to 7.4.3 Line Replacement Algorithm for
further information.

A cache line transitions from VALID to INVALID if the cache line is explicitly
invalidated by execution of the CINV or CPUSH instructions, if a snooped
write access hits the cache line, or if the snoop control signals for a snooped
read access indicate to invalidate the line. Both caches should be explicitly
cleared after a hardware reset of the processor since the cache lines are not
invalidated by the reset.

The state diagram in Figure 7-4 shows the instruction-cache-line state tran­
sitions resulting from CPU or snoop controller accesses. Table 7-2 lists the
possible cache access cases and the resulting cache operation.

MOTOROLA

13 - CINV/CPUSH

11 - CPU READ MISS

V3-CINVICPUSH
Vf>-SNOOP READ HIT
V6-SNOOP WRITE HIT

V1-CPU READ MISS
V2-CPU READ HIT

Figure 7-4. Instruction-Cache-Line State Diagram

MC68040 USER'S MANUAL 7-9

Table 7-2. Instruction-Cache-Line State Transitions

Cache Operation
Current State

Invalid Valid

CPU Read Miss Read Line from Memory [DJ Read Line from Memory ~
Supply Data to CPU and Update Supply Data to CPU and Update

Cache Cache (Replace old line)
Go to VALID Remain in Current State

CPU Read Hit Not Possible @] Supply Data to CPU §
Remain in Current State

Cache Invalidate or Push No Action @] No Action ~
Remain in Current State Go to INVALID

Alternate Master Read Hit Not Possible @l Not Possible §]
(Snoop Control = 01 - Leave Dirty) (Not Snooped) (Not Snooped)

Alternate Master Read Hit Not Possible @] No Action ~
(Snoop Control = 10 - Invalidate)

Go to INVALID

Alternate Master Write Hit Not Possible ~ No Action ~
(Snoop Control = 01 - Leave Dirty or

Snoop Control = 10- Invalidate) Go to INVALID

7.4.2 Data Cache

The data cache is used to cache operand accesses generated by the integer
unit, and supports a line-based protocol allowing individual cache lines to
be in one of three states: INVALID, VALID, or DIRTY. Figure 7-5 shows the
tag, status, and data information contained in each data cache line as well
as the equations defining the line state for the status bit combinations. The
data cache supports both writethrough and copyback modes (specified by
the caching mode bits for the page) to maintain coherency with memory.

7-10

TAG I v I LW3 I 03 I
TAG-22-Bit Physical Address Tag

V-Line VALID Bit
LWn-32-Bit Data Entry

On-DIRTY Bit for Long-Word n

INVALlD=V
VALlD=V and (03+02+01 +00)
DIRTY = V and (03 + 02 + 01 + DO)

LW2 02 LWl 01

Figure 7-5. Data Cache line Organization

MC68040 USER'S MANUAL

LWO 00

MOTOROLA

Read misses and write misses to copyback pages cause the cache controller
to read a new cache line from memory into the cache. If available, an invalid
line in the selected set is updated with the tag address and data from memory,
and the line transitions from the INVALID state to the VALID state by setting
the valid bit for the line. If all lines in the set are already valid or dirty, a
pseudo-random replacement technique is used to select one of the four lines
and replace the tag and data contents of the line with the new line information.
Before replacement, dirty lines are temporarily buffered and later copied back
to memory after the new line has been read from memory. If a snoop access
occurs before the buffered line is written to memory, the snoop controller
will snoop the buffer in addition to the caches.

The cache protocol for each processor and snooped access type is described
in the following paragraphs. In all cases an external bus transfer will cause
a line state transition only if the bus transfer is marked as "snoopable" on
the bus. The protocols described in the following paragraphs assume that
the data is cachable.

7.4.2.1 READ MISS. A processor read which misses in the cache causes the cache
to request a bus transaction to read the needed line from main memory and
supply the required data to the integer unit. The line is placed in the cache
in the VALID state. .

Snooped external reads which miss in the cache have no effect on the cache.

7.4.2.2 WRITE MISS. Processor writes which miss in the cache are handled based
on the selected caching mode. Writes to a copyback page cause the processor
to perform a bus transaction to get the needed cache line into its cache (in
the same manner as for a read miss). The new cache line is then updated
with the write data, and the dirty bits are set for each long word that has
been modified, leaving the cache line in the DIRTY state. Write misses to
writethrough pages do not allocate in the cache; the data is written to memory
without loading the corresponding cache line.

Snooped external writes that miss in the cache have no effect on the cache.

7.4.2.3 READ HIT. Regardless of whether the page write mode is writethrough or
copyback, data for a processor read that hits in the cache is supplied by the
cache. No bus transaction is performed, and the state of the cache line does

MOTOROLA MC68040 USER'S MANUAL 7-11

•

not change. Physical address bit PA3 selects the upper or lower 64 bits (half­
line) of the line containing the required operand; this half-line is driven onto
the internal bus. If the required data resides entirely within the half-line, only
one access into the cache is required. Because the organization of the cache
does not allow selection of more than one half-line at a time, misalignment
across a half-line boundary requires two accesses into the cache.

A snooped external read that hits in the cache is ignored if the cache line is
valid. If the snooped access hits a dirty line, memory is inhibited from re­
sponding, and the data is sourced from the cache directly to the alternate
bus master. A snooped read hit does not change the state of the cache line
unless the snooped access also indicates mark INVALID, which causes the
line to be invalidated after the access (even if dirty). Alternate bus masters
should indicate mark INVALID only for line reads to ensure the entire line is
transferred before invalidating.

7.4.2.4 WRITE HIT. Processor writes that hit in the cache are handled differently
for writethrough and copyback pages. For writeth roug h accesses, a processor
write hit causes the cache controller to update the affected long-word entries
in the cache line and to request an external memory write transfer to update
memory. The cache line state is not changed. Although dirty bits for the line
are also unchanged, a writethrough access to a line containing dirty data
constitutes a system programming error. This situation can be avoided by
pushing cache entries when a page descriptor is changed and by ensuring
that other bus masters indicate the appropriate snoop operation for writes
to corresponding pages (i.e., mark invalid for writethrough pages and sink
data for copyback pages).

7-12

If the access is marked as copyback, the cache controller updates the cache
line and sets the dirty bit of the appropriate long words in the cache line. An
external write is not performed, and the cache line transitions to (or remains
in) the DIRTY state.

An alternate bus master can drive the snoop control signals for a write with
an encoding that indicates to the MC68040 that it should sink the data (inhibit
memory and respond as a slave) ifthe access hits in the data cache. Operation
of the cache depends on the access size and current line state. A snooped
line write or a snooped write that hits a valid line always causes the corre­
sponding cache line to be invalidated. For snooped writes of byte, word, or
long-word size that hit a DIRTY line, the processor inhibits memory and

MC68040 USER'S MANUAL MOTOROLA

responds to the alternate bus master as a slave, sinking the write data. Data
received from the alternate bus master is written to the appropriate long
word in the cache line, and the dirty bit is set for that entry.

For a snooped write in which the snoop control pins indicate that a matching
cache line should be marked invalid, the line will be invalidated.

7.4.2.5 PROTOCOL STATE DIAGRAM. The state diagram in Figure 7-6 shows the
three possible states for a data cache line, with the possible transitions caused
by either processor accesses or snooped accesses. Transitions are labeled
with a capital letter indicating the previous state followed by a number in­
dicating the specific case. Table 7-3 shows the three states and all transitions
between those states from both the processor and the bus.

D7-CINV
DS-CPUSH
D1()'SNOOP READ
HITANVAUDATE
D11·SNOOP WRITE HITISINK
DATA & SIZE .. UNE

ABBREVIATIONS:
WT • WRITETHROUGH MODE
CB - COPYBACK MODE

SNOOP OPERATION INDICATES:
READ OR WRITE / SNOOP CONTROL
ENCODING

V7-CINV
V8-CPUSH
V1()'SNooP READANVAUDATE
V11·SNOOPWRITEANVAUDATE
V12-SNOOP WRITEISINK DATA

11-CPU READ MISS

D2-CPU READ HIT
D3-CPU WRITE MISS/CB
D4-CPU WRITE MISSiWT
D5-CPU WRITE HIT ICB
D6-CPU WRITE HIT iWT
D9-SNOOP READA.EAVE DIRTY
D12-SNOOP WRITE/SINK DATA

& SIZE .. UNE

V1-CPU READ MISS
V2-CPU READ HIT
V4-CPU WRITE MISSiWT
V6-CPU WRITE HITiWT
V9-SNooP READA.EAVE DIRTY

Figure 7-6. Data-Cache-Line State Diagram

MOTOROLA MC68040 USER'S MANUAL 7-13

•

Table 7-3. Data-Cache-Line State Transitions

Cache Operation
Current State

Invalid Valid Dirty

CPU Read Miss Read Line from G Read Line from G Buffer Dirty Cache Line ~
Memory Memory Read New Line from D1

Supply Data to CPU Supply Data to CPU Memory
and Update Cache and Update Cache Supply Data to CPU

(line replaced in cache) and Update Cache
Write Buffered Dirty Data

Remain in current state to Memory
Go to VALID Go to VALID

CPU Read Hit Not Possible

~
Supply Data to CPU G Supply Data to CPU

~ Remain in Current Remain in Current
State State

CPU Write Miss Read Line from

~ Read Line from ~ Buffer Dirty Cache Line ~
Cache Mode = Copy back Memory into Cache Memory into Cache V3 Read New Line from D3

Write Data to Cache (line replaced in cache Memory
Set Dirty Bits of Modified Write Data to Cache and Write Data to Cache and

Long Words Set Dirty Bits Set Dirty Bits
Write Buffered Dirty Data

to Memory
Go to DIRTY Go to DIRTY Remain in Current State

CPU Write Miss Write Data to Memory G Write Data to Memory G Write Data to Memory

~ Cache Mode = Writethrough 14 V4 Remain in Current
Remain in Current State Remain in Current State State (See Note)

CPU Write Hit Not Possible

~
Write Data into Cache ~ Write Data into Cache ~

Cache Mode = Copy back Set Dirty Bits of V5 Set Dirty Bits of D5
Modified Long Words Modified Long Words

Go.to DIRTY Remain in Current State

CPU Write Hit Not Possible G Write Data to Cache

~
Write Data into Cache

~ Cache Mode = Writethrough Write Data to Memory (No Change to
Dirty Bits)

Write Data to Memory
Remain in Current State

Remain in Current State (See Note)

Cache Invalidate No Action G No Action G No Action

~ 17 Dirty Data Lost)
Remain in Current State Go to INVALID Go to INVALID

Cache Push No Action G No Action G Write Dirty Data

~ 18 to Memory
Remain in Current State Go to INVALID Go to INVALID

Alternate Master Read Hit Not Possible

~ No Action ~ Inhibit Memory and ~
(Snoop Control =01 - Leave V9 Source Data D9

Dirty) Remain in Current State Remain in Current State

Alternate Master Read Hit Not Possible G No Action 8 Inhibit Memory and

~ (Snoop Control = 10- Source Data
Invalidate) Go to INVALID Go to INVALID

Alternate Master Write Hit Not Possible G No Action 8 No Action El (Snoop Control = 10 -
Invalidate or Size = Line) Go to INVALID Go to INVALID

Alternate Master Write Hit Not Possible G No Action 8 Inhibit Memory and §] (Snoop Control =01 - Sink Sink Data
Data and Size'" Line) Set Dirty Bits of

Modified Long Words
Go to INVALID Remain in Current State

NOTE: While technically valid, DIRTY state transitions D4 and D6 are the result of a system programming error and should
be avoided.

7-14 MC68040 USER'S MANUAL MOTOROLA

7.4.3 Line Replacement Algorithm

Both caches contain circuitry to automatically determine which cache line in
a set to use for a new line. The algorithm operates as follows: locate the first
invalid entry and use it; if no invalid entries are found, use a pseudo-random
algorithm to select a valid entry and replace that entry.

To implement this replacement algorithm, each cache contains a 2-bit counter
which is incremented for each access to the cache. The counter in the in­
struction cache is incremented once for each half-line accessed in the in­
struction cache. The counter in the data cache is incremented for each half­
line accessed during reads, for each line accessed for writes in copyback
mode, and for each bus transfer resulting from a write in writethrough mode.
When a miss occurs and all four lines in the set are valid, the line pointed
to by the current counter value is replaced, after which the counter is incre­
mented.

7.4.4 Memory Accesses for Cache Maintenance

The cache controller in each memory unit performs all maintenance activity
associated with supplying data from the cache to the execution units. This
activity includes requesting accesses by the bus interface unit to read new
lines and to write dirty cache data to memory when replacing lines. The
following paragraphs describe the memory accesses resulting from cache
fill operations (by both caches) and push operations (by the data cache).
Refer to SECTION 8 BUS OPERATION for detailed information about the bus
cycles required.

7.4.4.1 CACHE FILLING. When a new cache line is required due to a cachable read
miss or write miss (in copyback model, the cache controller requests a line
read from the bus controller. The bus controller requests a burst read transfer
by indicating a line access with the size signals (SIZ1,SIZO) and indicates
which line in the set is being loaded with the transfer line number signals
(TLN1,TLNO). The responding device sequentially supplies four long words
of data and may assert the transfer cache inhibit signal (Tel) if the line is not
cachable. If the responding device does not support the burst mode, it should
assert the transfer burst inhibit signal (TBI) for the first long word of the line
access. The bus controller responds by terminating the line access and com­
pletes the remainder of the line read as three, sequential, long-word reads.

MOTOROLA MC68040 USER'S MANUAL 7-15

•

7-16

Line accesses by the bus controller implicitly request burst mode operation
from the referenced external device. To operate in the burst mode, the device
or external hardware must be able to increment the low-order address bits
as described in SECTION 8 BUS OPERATION. The device indicates its ability
to support the burst access by acknowledging the initial long-word transfer
with transfer acknowledge (TA) asserted and TBI negated. This procedure
causes the processor to continue to drive the address and bus control signals
and to latch a new data value for the cache line at the completion of each
subsequent cycle (as defined by TA) for a total of four cycles. The bursting
mechanism requires addresses to wrap around so that the entire four long
words in the cache line are filled in a single operation.

When a cache line read is initiated, the first cycle attempts to load the cache
entry corresponding to the instruction word or data item explicitly requested
by the integer unit. The subsequent transfers are for the remaining entries
in the cache line. In the case of a misaligned access in which the operand
spans two cache entries within a cache line, the first cycle corresponds to
the cache entry containing the portion of the operand at the lower address.

The data from each cycle is temporarily stored by the cache controller in a
128-bit buffer, where it is immediately available to the integer unit. If a mis­
aligned access spans two entries in the line, the second portion ofthe operand
is available to the integer unit as soon as the second memory cycle completes.
A new access by the integer unit that hits the cache line being filled is also
supplied data as soon as the required long word has been received from the
bus controller. During the period required to fill the buffer, other integer unit
accesses that hit in the cache are supplied data.

The assertion of TCI during the first cycle of a burst read operation inhibits
loading of the buffered line into the cache, but it does not cause the burst
transfer (or pseudo-burst transfer if TBI is asserted with Tel) to be terminated
early. The data placed in the buffer is accessible by the integer unit until the
last long word of the burst is transferred from the bus controller, after which
the contents ofthe buffer are invalidated without being copied into the cache.
The assertion of TCI is ignored during the second, third, or fourth cycle of a
burst operation.

A bus error occurring during a burst operation causes the burst operation to
abort. If the bus error occurs during the first cycle of a burst, the data from
the bus is ignored. Ifthe access is a data cycle, exception processing proceeds
immediately. If the cycle is for an instruction prefetch, a bus error exception

MC68040 USER'S MANUAL MOTOROLA

is pending. The bus error is processed only if the integer unit attempts to
use either instruction word. Refer to SECTION 8 BUS OPERATION for more
information about pipeline operation.

For either cache, when a bus error occurs on the second cycle or later, the
burst operation is aborted and the line buffer is invalidated. The processor
mayor may not take an exception, depending on the status of the pending
data request. If the bus error cycle contains a portion of a data operand that
the processor is specifically waiting for (e.g., the second half of a misaligned
operand), the processor immediately takes an exception. Otherwise, no ex­
ception occurs, and the cache line fill is repeated the next time data within
the line is required. In the case of an instruction cache line fill, the data from
the aborted cycle is completely ignored.

On the initial access of a line read, a 'retry' (indicated by the assertion of TA
and TEA) causes the bus controller to retry the bus cycle. However, a retry
signaled during the remaining cycles of the line access (either burst or pseudo- ..
burst) is recognized as a bus error and is handled by the processor as de-
scribed in the previous paragraphs.

A cache inhibit or bus error on a line read can change the state of the line
being replaced, even though the new line is not copied into the cache. Before
loading a new line, the cache line being replaced is copied to the push buffer
if it is dirty, then the cache line is invalidated. If a cache inhibit or bus error
occurs on a replacement line read a dirty line is restored to the cache from
the push buffer. However, the line being replaced is not restored in the cache
if it was originally valid and the cache line remains invalid. If the line read
resulting from a write miss in copyback mode is cache inhibited, the write
access misses in the cache and writes through to memory.

7.4.4.2 CACHE PUSHES. Dirty data cache lines are copied back to memory when
selected by the cache controller for replacement by a new line, when explicitly
selected by execution of a CPUSH instruction, and when hit by a noncachable
access. When a dirty data cache line is selected for replacement, memory
must be updated with the dirty data before the line is replaced. To reduce
latency of the requested data in the new line, the dirty line being replaced
is temporarily placed in a push buffer while the new line is fetched from
memory. While a line resides in the push buffer, it can be snooped by an
external bus master but can not be accessed by the execution units. After
the bus transfer for the new line is successfully completed, the dirty cache
line is copied back to memory, and the push buffer is invalidated. If the

MOTOROLA MC68040 USER'S MANUAL 7-17

operation to access the replacement line is abnormally terminated or signaled
as noncachable, the line in the push buffer is copied back into its original
position in the cache, and the processor continues operation as described in
the previous paragraphs.

The size of the push transfer on the bus is determined by the number of dirty
entries in the line to be pushed, minimizing bus bandwidth required for the
push. If a single entry is dirty, that entry is written to memory using a long­
word push transfer. A push transfer is distinguished from a normal write
transfer by an encoding of '000' on the transfer modifier signals (TM2-TMO)
for the push. The transfer can be retried by asserting TA and TEA or termi­
nated by a bus error asserted TEA. If a push transfer is terminated by bus
error, an exception is immediately taken by the processor.

A line containing two or more dirty entries is copied back to memory using
a line push transfer. For a line push, the bus controller requests a burst write
transfer by indicating a line access with the size signals (SIZ1-SIZO). The
responding device sequentially accepts four long words of data. If the re­
sponding device does not support the burst mode, it should assert TBI for
the first long word of the line access. The bus controller responds by ter­
minating the line access and completes the remainder of the line push as
three, sequential, long-word writes. The first cycle of the burst can be retried,
but a retry for any of the three remaining cycles is interpreted by the bus
controller as a bus error. If a bus error occurs in any cycle in the line push
transfer, an exception is immediately taken by the processor.

A dirty cache line that is hit by a noncachable access is pushed before the
external bus access occurs. If the access is part of a locked transfer sequence
for TAS, CAS, or CAS2 operand accesses or translation table updates, the
LOCK signal is also asserted for the push access

7.5 CACHE CONTROL AND MAINTENANCE

7-18

The caches are individually enabled using the MOVEC instruction to access
the 32-bit cache control register (CACR) shown in Figure 7-7. The CACR
contains two enable bits that allow the instruction and data caches to be
independently enabled or disabled. Setting an enable bit enables the asso­
ciated cache without affecting the state of any lines within the cache. A
hardware reset clears the CACR, disabling both caches; however, the tags,
state information, and data within the caches are not affected by reset and
must be cleared by using the CINV instruction before enabling the caches.

MC68040 USER'S MANUAL MOTOROLA

31 30 16 15 14

I DE I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I IE I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I
DE ~ Enable Data Cache
IE ~ Enable Instruction Cache

Figure 7-7. Cache Control Register

System hardware can assert the cache disable (CDIS) signal to dynamically
disable both caches, regardless of the state of the enable bits in the CACR.
The caches are disabled immediately after the current access completes. If
CDIS is asserted during the access for the first half of a misaligned operand
spanning two cache lines, the data cache is disabled for the second half of
the operand. Accesses by the execution units bypass the caches while they
are disabled and do not affect their contents (with the exception of CINV and
CPUSH instructions). Disabling the caches with CDIS does not affect snoop
operations. CDIS is intended primarily for use by in-circuit emulators to allow
swapping between the tags and emulator memories.

Cache management in the supervisor mode is supported by the CINV and
CPUSH instructions. CINV allows selective invalidation of cache entries.
CPUSH performs two operations: first, any selected data cache lines con­
taining dirty data are pushed to memory; then, all selected cache lines are
invalidated. This operation can be used to update a page in memory before
swapping it out with snooping disabled or to push dirty data when changing
a page caching mode to writethrough. Because of the size of the caches,
pushing pages or an entire cache will incur a significant time penalty. Op­
eration of CINV and CPUSH is not affected by the state of the CDIS signal or
the cache enable bits in the CACR. Both instructions allow operation on a
single cache line, all cache lines in a specific page, or an entire cache, and
can select one or both caches for the operation. For line and page operations,
the memory address is specified by a physical address in an address register.

MOTOROLA MC68040 USER'S MANUAL 7-19

..

7-20 MC68040 USER'S MANUAL MOTOROLA

SECTION 8
BUS OPERATION

The MC68040 bus interface supports synchronous data transfers between
the processor and other devices in the system. This section provides a func­
tional description of the bus, the signals that control the bus, and the bus
cycles provided for data transfer operations. Operation of the bus is defined
for transfers initiated by the processor as a bus master, and for transfers
initiated by an alternate master that are snooped by the processor as a slave
device. Descriptions of the error and halt conditions, bus arbitration, and the
reset operation are also included. For exact timing specifications, refer to
SECTION 11 ELECTRICAL CHARACTERISTICS.

Access requests by the processor and other potential bus masters in the
system are arbitrated by an external arbiter that prioritizes the requests and
determines which device is granted access to the bus. When the MC68040
is the bus master, it uses the bus to access instructions and data from memory
which are not contained in its internal caches, and to write data to memory.
Additional bus transfers are used to acknowledge interrupts and breakpoints.

Bus accesses by another bus master which has been granted control of the
bus are monitored (snooped) by the processor when it is not the bus master
to allow the processor to intervene in the access if required. Control inputs
to the processor allow external logic to specify the required snoop operation
to perform for each bus transfer by an alternate master. The processor allows
memory to respond if no external action is required; otherwise, memory is
inhibited and the processor responds to the access as a slave, supplying
modified data from its data cache or writing data to an already modified
cache line (for alternate master reads and writes, respectively). The snooping
mechanism is optimized to support cache coherency in multi-master appli­
cations in which the MC68040 is the only caching master.

The 32-bit data bus supports byte, word, long-word, and line (16-byte) bus
cycles using a handshaked transfer sequence. Line transfers are normally
performed using an efficient burst transfer which provides an initial address
and time-multiplexes the data bus to transfer four long words of information
to or from the slave device. Slave devices which do not support bursting can
burst-inhibit a line transfer, forcing the bus master to complete the access

MOTOROLA MC68040 USER'S MA"IUAL 8-1

..

..

using three additional long word bus cycles. All bus input and output signals
are synchronous to the rising edge of the bus clock (BCLK) signal.

The MC68040 architecture supports byte, word, and long-word integer op­
erands, as well as single, double, and extended precision floating point op­
erands; these operands can be located in memory on any byte boundary.
Misaligned accesses to the caches are supported with multiplex and align­
ment logic; misaligned memory accesses are completed by breaking up the
access into a sequence of aligned byte or word bus transfers. The user should
be aware that operand misalignment causes the MC68040to perform multiple
bus cycles for the operand transfer, and therefore, processor performance is
optimized if operands are aligned to their natural boundaries (for example,
long-word operands should be on long-word boundaries). Instruction words
and their associated extension words must be aligned on word boundaries.

8.1 BUS CHARACTERISTICS

8-2

The MC68040 bus is a fully synchronous bus that uses the BCLK signal to
clock transfers between the processor and memory devices or another bus
master. Byte, word, long-word, and line burst transfers through a 32-bit data
port are supported.

Unlike the MC68020 and MC68030 processors, the MC68040 does not support
dynamic bus sizing and expects the referenced device to be able to accept
the requested access width. Blocks of memory which must be contiguous,
such as for code storage or program stacks, must be 32 bits wide. Byte and
word sized I/O ports that return an interrupt vector during interrupt acknowl­
edge cycles must be mapped into the low order 8 or 16 bits, respectively, of
the data bus in order to pass the vector on data bus bits DO-D7.

The bus transfers information between the MC68040 and an external memory
or peripheral device using a fixed 32-bit data port width. External devices
can accept or provide 8 bits, 16 bits, or 32 bits in parallel, and must follow
the handshake protocol described in this section. The MC68040 contains an
address bus that specifies the address for the transfer and a data bus that
transfers the data. Control signals indicate the beginning of the cycle, the
address space and the size of the transfer, and the type of cycle. The selected
device then controls the length ofthe cycle with the signals used to terminate
the cycle.

The MC68040 uses two clocks to generate timing - a bus clock (BCLK) and
a processor clock (PCLK). The PCLK signal is exactly twice the frequency of

MC68040 USER'S MANUAL MOTOROLA

the BCLK signal and is internally phase-locked to BLCK and distributed
throughout the device to generate timing for all logic blocks. The BCLK signal
is only used as the reference signal for the phase-lock-loop (PLL) which
synchronizes the PCLK. The use of dual clock inputs allows the bus interface
to operate at half the speed of the internal logic of the processor, requiring
less stringent memory interface requirements. Since the rising edge of BCLK
is used as the reference point for the PLL, all timing specs are referenced to
this edge.

The general relationship between the clock signals and most input and output
signals is shown in Figure 8-1. The rising edge of the internal phase-locked
PCLK signal is aligned with the rising edge of BCLK, and the two PCLK cycles
corresponding to each BCLK cycle are divided into four states, T1 through
T4. Most outputs change during state T4, whether transitioning between a
driven and high-impedance state, or switching between high and low logic
levels. (The exceptions to this rule are the TIP, TA, and BB signals, which
transition between logic levels during T4, but transition from a driven state
to a high impedance state during the T1 state.)

MOTOROLA

BCLK

INTERNAllY
PHASE-LOCKED

PClK

OUTPUTS

h-1

Figure 8-1. Signal Relationships to Clocks

MC68040 USER'S MANUAL 8~3

..

Inputs to the MC68040 (other than the IPL2-IPL2 and RSTI signals) are syn­
chronously sampled, and must be stable during the sample window defined
by the input setup and hold times shown in Figure 8-1 to guarantee proper
operation. The asynchronous IPLn and RSTI signals are also sampled on the
rising edge of BCLK, but are internally synchronized to resolve the input to
a high or low level before using it.

Since the timing specifications for the MC68040 are referenced to the rising
edge of BCLK, they are valid only for the specified operating frequency, and
must be scaled for lower operating frequencies. Refer to the MC68040DHI
AD, MC68040 Designer's Handbook for further information.

8.2 DATA TRANSFER MECHANISM

8-4

The MC68040 architecture supports byte, word, long-word, and 16-byte in­
teger operands, and single, double, and extended precision floating-point
operands. The processor also supports the emulation of packed decimal real
operands by fetching the operand from memory before trapping to the un­
implemented data type handler. All operands other than 16-byte can be lo­
cated on any byte boundary, but misaligned transfers may require additional
bus cycles.

The bytes of operands are designated as shown in Figure 8-2. The most­
significant byte of a long-word operand is OPO and OP3 is the least significant
byte. The two bytes of a word-length operand are OP2 (most- significant)
and OP3. The single byte of a byte-length operand is OP3. Floating-point
operands are handled by the integer unit as a sequence of related long-word
operands. These designations are used in the figures and descriptions that
follow.

31 0

I OPO OPI OP2 OP3 I LONG WORD OPERAND

OP2 OP3 I WORD OPERAND

OP3 I BYTE OPERAND

Figure 8-2. Internal Operand Representation

MC68040 USER'S MANUAL MOTOROLA

Figure 8-3 shows the general form of the multiplexing between the external
bus and an internal register. The four bytes shown in Figure 8-3 are connected
through the internal data bus and data multiplexer to the external data bus.
This path is the means through which the MC68040 supports operand mis­
alignment. Refer to 8.2.1 Misaligned Operands forthe definition of misaligned
operand. The data multiplexer establishes the necessary connections for
different combinations of address and data sizes.

REGISTER

Mu.nPLEXER

EXTERNAL
DATA BUS

ADDRESS
XlOClOOOCO

OPO OP1 OP2 0P3

Figure 8-3. Data Multiplexing

t
INTERNAL TO
llEMC68040

EXTERNAL BUS

The multiplexer takes the four bytes of the 32-bit bus and routes them to
their required positions. For example, OPO can be routed to D24-D31, as would
be the normal case, or it can be routed to any other byte position in order
to support a misaligned transfer. The same is true for any of the operand
bytes. The positioning of bytes is determined by the size (SIZO and SIZ1) and
address (AO and A 1) outputs.

The SIZO and SIZl outputs always indicate the number of bytes to be trans­
ferred during the current bus cycle, as shown in Table 8-1.

Table 8-1. Size Signal Encoding

SIZ1 SIZO Size

0 1 Byte

1 0 Word

0 0 long Word

1 1 line

MOTOROLA MC68040 USER'S MANUAL 8-5

8-6

The a.ddress linesAO and A1 also affect operation of the data multiplexer.
During an operand transfer, A2-A31 indicate the long-word base address of
that portion of the operand to be accessed; AO andA 1 indicate the byte offset
from the base. Table 8-2 shows the encodings of AO and A1 and the corre­
sponding byte offsets from the long-word base.

Table 8-2. Address Offset Encodings

A1 AO Size

0 0 +0
Bytes

0 1 +1
Bytes

1 0 +2
Bytes

1 1 +3
Bytes

Table 8-3 lists the valid bytes on the data bus for read and write cycles. The
entries shown as OPn are portions of the requested operand that are read
or written during that bus cycle and are defined by SIZO, SIZ1, AO and A1
for the bus cycle. For line transfers, all bytes are valid as shown, and may
correspond to either portions of the requested operand or to data required
to fill the remainder ofthe cache line. The bytes labeled "--..:." are not required,
and are ignored on read bus cycles and driven with undefined data on write
bus cycles.

Table 8-3. Data Bus Requirements for Read and Write Cycles

Transfer Oata Bus Active Sections
Size SIZ1 SIZO A1 AO

031:024 023:016 015:08 07:00

Byte 0 1 0 0 OPri - - -
0 1 0 1 - OPn - -
0 1 1 0 - - OPn -
0 1 1 1 - - - OPn

Word 1 0 0 0 OPn OPn - -
1 0 1 0 - - OPn OPn

Long Word 0 0 X X OPn OPn OPn OPn

Line 1 1 X X OPn OPn OPn OPn

MC68040 USER'S MANUAL MOTOROLA

Additional information on the encodings for the MC68040 signals can be
found in SECTION 5 SIGNAL DESCRIPTION. A brief summary of the bus
signal encodings for each access type is shown in Table 8-4 below.

Table 8-4. Summary of Access Types versus Bus Signal Encodings

DATA NORMAL
INTERRUPT BREAKPOINT

BUS CACHE DATAl TABLEWALK MOVE16 ALTERNATE
SIGNAL PUSH CODE ACCESS ACCESS ACCESS

ACKNOW· ACKNOW-

ACCESS ACCESS
LEDGE LEDGE

A31-AO Access Access Entry Access Access $FFFFFFFF $00000000
Address Address Address Address Address

UPA1:0 $0 MMU $0 MMU $0 $0 $0
Source 1 Source'

SIZ1:0 Line B/W/LiLine Long Word Line B/W/L Byte Byte

TIl:0 $0 $0 $0 $1 $2 $3 $3

TM2:04 $0 $1,2,5, $3 or 4 $1 or 5 Function Int. Level $0
or 6 Code $1-7

TLN1:0 Cache Set Cache Set Undefined Undefined Undefined Undefined Undefined
Entry Entry 2

R/W Write Read/Write Read/Write Read/Write Read/Write Read Read

LOCK Negated Asserted! Asserted! Negated Negated Negated Negated
LOCKE Negated 3 Negated3

ClOUT Negated MMU Negated MMU Asserted Negated Negate
Source' Source'

NOTES:
1) The UPA1, UPAO and XTOICIOUT) signals are determined by the Ul, UO, and CM bit fields, respectively, in the ATC entry

or TT register corresponding to the access address.
2) The TLNx 'signals are defined only for normal push accesses and normal line read accesses.
3) The LOCK signal is asserted during TAS, CAS, and CAS2 operand accesses and for some tablewalk update sequences.

LOCKE is asserted for the last transfer of each locked sequence of transfers.
4) Refer to SECTION 5 SIGNAL DESCRIPTION for definitions of the TMn signal encodings for normal, MOVE16, and alternate

accesses.

8.2.1 Misaligned Operands

Since operands may reside at any byte boundaries, they may be misaligned.
A byte operand is properly aligned at any address; a word operand is mis­
aligned at an odd address; a long word is misaligned at an address that is
not evenly divisible by four. The MC68000, MC68008, and MC68010 imple­
mentations allow long-word transfers on odd-word boundaries but force
exceptions if word or long-word operand transfers are attempted at odd byte
addresses. Although the MC68040 does not enforce any alignment restric­
tions for data operands (including PC-relative data addresses), some per­
formance degradation occurs when additional bus cycles are required for
long-word or word operands that are misaligned. For maximum performance,
data items should be aligned on their natural boundaries. All instruction
words and extension words must reside on word boundaries. Attempting to
prefetch an instruction word at an odd address causes an address error
exception.

MOTOROLA MC68040 USER'S MANUAL

8-8

Misaligned operand accesses that either miss in the data cache or are non­
cachable are converted by the data memory unit in the MC68040 to a se­
quence of aligned accesses. These aligned access requests are sent to the
bus controller for completion, resulting in bus transfers which are always
aligned. The size indicated on the SIZn signals corresponds to the specific
bus cycle, and does not indicate how many bytes may be remaining for the
operand transfer.

Figure 8-4 shows the transfer of a long-word operand from an odd address,
which requires three bus cycles. For the first cycle, the size signals specify
a byte transfer, and the address offset (A2 :AO) is 001. The slave device sup­
plies the byte and acknowledges the data transfer. When the processor starts
the second cycle, the size signals specify a word transfer with an address
offset (A2:AO) of 010. The next two bytes are transferred during this cycle.
The processor then initiates the third cycle, with the size signals indicating
a byte transfer. The address offset (A2:AO) is now 100; the port supplies the
final byte and the operation is complete. Figure 8-5 shows the associated
bus transfer signal timing. For a long-word transfer from an odd-word ad­
dress, only two word transfers are required.

LONG WORD OPERAND
31 o

OPO OP1

f
OP2 0P3

31 DATA BUS 0 TRANSFER ADDRESS SIZE

x OPO X X $X1 BYTE

x X OP1 OP2 2 $X2 WORD

0P3 X X X 3 $X4 BYTE

31 RESULTING MEMORY 0

xxx OPO OP1 OP2

0P3 xxx xxx xxx

Figure 8-4. Example of a Misaligned Long-Word Read Transfer

Figures 8-6 shows a word transfer to an odd address. This example is similar
to the one shown in Figures 8-4 and 8-5 except that the operand is word
sized and the transfer requires only two bus cycles.

MC68040 USER'S MANUAL MOTOROLA

BCLK

A31-A2 ~~ X X
A1 ~\ / \
AO ~J \

UPA1, UPAO ~~ X X
SIZ1 ~\ / \

BYTE : WORD BYTE

SIZO ~J \ /
m,TTO ~\
TM2-TMO ~~ X X

Rifi ~J
ClOUT ~\ ..

'fS

TIP ~\
TA

031-024 ~J ~
023-016 ~J E)
015-08 ~=> S
07-00 ~=> @

tM'-+--+:j READ READ READ

MISAUGNEO LONG-WORD OPERAND READ

Figure 8-5. Long-Word Operand Read Timing

MOTOROLA MC68040 USER'S MANUAL 8-9

..

8-10

WORD OPERAND
15 0

OP2 I OP3

31 DATA BUS
0 TRANSFER ADDRESS SIZE

X X X OP2 $X3 BYTE

0P3 X X X 2 $X4 BYTE

31 RESULTING MEMORY
0

XXX XXX XXX OP2

0P3 XXX XXX XXX

Figure 8-6. Example of a Misaligned Word Write Transfer

The combination of operand size and operand alignment determine the num­
ber of bus cycles required to perform a particular memory access. Table 8-
5 shows the number of bus cycles required for different operand sizes with
all possible alignment conditions for read and write cycles.

Table 8-5. Memory Alignment Influence on
Noncachable and Writethrough Bus Cycles

Number of Bus Transfers
A1:AO=

00 01 10

Instruction* 1 N/A N/A

Byte Operand 1 1 1

Word Operand 1 2 1

Long·Word Operand 1 3 2

* Instruction prefetches are always two words
from a long word boundary.

11

N/A

1

2

3

This table shows that bus cycle throughput for non-cachable accesses is
significantly affected by alignment. The MC68040 system designer and pro­
grammer should be aware of and account forthis effects, particularly in time­
critical applications.

Table 8-5 shows that the processor always prefetches instructions by reading
a long word from a long-word address (A 1 :AO = 00)' regardless of alignment.
When the required instruction begins at an odd word boundary, the processor
attempts to fetch the entire 32 bits, although the second one is the required
word.

MC68040 USER'S MANUAL MOTOROLA

8.2.3 Address, Size, and Data Bus Relationships

The data transfer examples show how the MC68040 drives data onto or
receives data from the correct byte sections of the data bus. Table 8-6 shows
the combinations of the size signals and address signals AO and A1 that are
used to generate byte enable signals for each of the four sections of the data
bus for if the addressed device requires them. The four columns on the right
correspond to the four byte enable signals. The letter A indicates the data
bus section is active, and implies that the corresponding byte enable signal
should be true. A hyphen (-) implies that the byte enable signal does not
apply.

Table 8-6. Data Bus Byte Enable Signals

Transfer Data Bus Active Sections
Size SIZl SIZO Al AO

031 :024 023:016 015:08 07:00

Byte 0 1 0 0 A - - -

0 1 0 1 - A - -
0 1 1 0 - - A -

0 1 1 1 - - - A

Word 1 0 0 0 A A - -

1 0 1 0 - - A A

Long Word 0 0 X X A A A A

Line 1 1 X X A A A A

These enable or strobe signals select only the bytes required for write cycles
or for non-cacheable read cycles. The other bytes are not selected, which
prevents incorrect accesses in sensitive areas such as liD.

Figure 8-7 shows a logic diagram for one method for generating byte data
enable signals from the size and address encodings and the readlwrite signal.

NOTE

These select lines can be combined with the address decode logic.

MOTOROLA MC68040 USER'S MANUAL 8-11

..

•

8-12

AO -----'

Al----.....

SlZO _____ ---l

SIZl --------'

Figure 8-7. Byte Data Select Generation

MC68040 USER'S MANUAL

UPPER UPPER DATA
031:024

UPPER MIDDLE DATA
023:016

LOWER MIDDLE DATA
015:08

LOWER LOWER DATA
07:00

MOTOROLA

8.3 PROCESSOR DATA TRANSFER CYCLES

The transfer of data between the processor and other devices involves the
following signals:

• Address Bus AO-A31
• Data bus 00-031
• Control Signals

The address and data buses are normally both parallel, nonmultiplexed buses.
The MC68040 moves data on the bus by issuing control signals and uses a
handshake protocol to insure correct movement of data. The following par­
agraphs describe the bus cycles for byte, word, long-word, and line read and
write cycles, and also the read-modify-write transfers.

3.3.1 Byte, Word, and Long-Word Read Cycles

During a read transfer, the processor receives data from a memory or pe­
ripheral device. Byte, word, and longword read transfers are performed by
the bus controller for the following cases:

• Accesses to a disabled cache

• Accesses to a memory page that is specified non-cachable by the MMU

• Accesses that are implicitly non-cachable (locked read-modify-write ac­
cesses and accesses to an alternate logical address space via the MOVES
instruction)

• Accesses that do not allocate in the data cache on a read miss (table
searches, exception vector fetches, and exception unstacking for an RTE
instruction)

• The first transfer of a line read is terminated with TBI, forcing completion
of the line access using three additional longword read transfers

All byte, word, and longword bus transfers are aligned to the corresponding
memory boundary. Word transfers are performed on even address bound­
aries; long word transfers are performed on long word boundaries. Misa­
ligned operand accesses are handled internally by the processor, and appear
on the bus as a sequence of aligned accesses to perform the operand transfer.
Refer to 8.2.1 Misaligned Operands for more information on misaligned op­
erands.

The processor properly positions each byte internally. The section ofthe data
bus from which each byte is read depends on the operand size and address
signals AO and A 1. AO and A 1 point to. the specific byte required for byte

MOTOROLA MC68040 USER'S MANUAL 8-13

8-14

transfers. For word transfers, AO is always low, and the address points to
the first byte of the word. For long word transfers that are not the result of
a burst-inhibited line transfer, both AO and A 1 are low and the address is
that of the first byte of the long word. For a burst-inhibited line transfer, AO
and A1 for each of the four accesses (the burst-inhibited line transfer and
three long word transfers) are copied from the lowest two bits of the access
address that was used to initiate the line transfer.

Since the data read for a byte, word, or long word access is not placed in
either of the internal caches, the level on the transfer cache inhibit signal
(TCI) is ignored by the processor when latching the data.

Figure 8-8 is a flowchart for byte, word, and long word read cycles. Bus
operations is similar for each case and varies only in the size indicated and
the portion of the data bus used for the transfer. Figure 8-9 is a functional
timing diagram for a byte, word, and long word read cycle.

Clock 1
The read cycle starts in clock 1 (C1). During the first half of C1 the processor
places valid values on the address bus and transfer attributes. For user
and supervisor mode accesses that are translated by the corresponding

PROCESSOR EXTERNAL. DEVICE

ADDRESS DEVICE

1) SETR.WTOREAD
2) DRIVE ADDRESS ON A31·NJ
3) DRIVE USER PAGE ATIRIBUTES ON UPA1·UPNJ
4) DRIVE SIZE ON SlZl-8IZO (BYTE, WORD,

OR LONG WORD)
5) DRIVE TRANSFER TYPE ON m·TIO
6) DRIVE TRANSFER MODIFIER ON TM2·TMO
7) CACHE INHIBIT OUT (ClOUT) BECOMES VAUD
8) ASSERT TRANSFER START ('fSj FOR ONE CLOCK r---+ PRESENT DATA
9) ASSERT TRANSFER IN PROGRESS (fiPj

1) DECODE ADDRESS
2) PLACE DATA ON APPROPRIATE BYTES OF

D31-OO BASED ON SIZE, AD, AND A1

ACQlIIREDATA ~ 3) ASSERT mANSFER ACKNOWLEGE (TA)

1) LATCH DATA ~

+
TERMINATE CYCLE

1) REMOVEDATAFROMD31·DO
START NEXT CYCLE 2) NEGATETA

Figure 8-8. Byte, Word, and Long-Word Read Cycle Flowchart

MC68040 USER'S MANUAL MOTOROLA

Cl C2 I Cl C2 cw Cl C2

Al

NJ ~ J \ AI
UPA1,UPNJ ~ -y.. x x ;(I

SlZl

WOAD :

SlZO

TT1, TTO

TM2-Tt.«! ~ -y.. X X ;(I
Riii .. ClOUT

TS

TIP ~\ r-
IA

031-024 ~ J 0-
023-016 ~ J 0 0-
015-08 ~ J 0 D-

07-DO ~ J 0 0-
r-BYTEREAD ~Io(WORD READ ~ I 0(LONG-WOR0-1

WITH WAIT READ

Figure 8-9. Non-Cachable Byte, Word, and Long-Word Read Transfers

MOTOROLA MC68040 USER'S MANUAL 8-15

MMU, the user programmable attribute signals (UPAn) are driven with the
values from the matching ATC entry or transparent translation register
user bits (U1 and UO). The transfer type (TTn) and transfer modifier (TMn)
signals identify the specific access type. The read/write (RIW) signal is
driven high for a read cycle. Cache inhibit out (ClOUT) is asserted if the
access is identified as non-cachable in the corresponding ATC entry or
transparent translation register, of if the access references an alternate
address space.

The processor asserts transfer start (TS) during C1 to indicate the beginning
of a bus cycle. The transfer in progress (TIP) signal is also asserted at this
time, if not already asserted from a previous bus cycle, to indicate that a
bus cycle is active.

Clock 2
Ouring the first half of clock 2 (C2), the processor negates TS. The selected
device uses R/W, SIZO-SIZ1, and AO-A 1 to place its information on the
data bus. Any or all ofthe bytes (024-031,016-023,08-015, and 00-07)
are selected by the size signals and AO-A 1. Concurrently, the selected
device asserts the transfer acknowledge (TA) signal. At the end of C2, the
processor samples the level of TA and latches the current value on the
data bus. If TA is asserted, the bus cycle terminates and the latched data
is passed to the appropriate memory unit. If TA is not recognized at the
end of clock 2, the processor ignores the latched data and appends a wait
state (Cw) instead of terminating the transfer. The processor continues to
sample the TA signal on successive rising edges of BCLK until it is rec­
ognized. The latched data is then passed to the appropriate memory unit.

When the processor recognizes TA at the end of a clock and terminates
the bus cycle, TIP remains asserted if the processor is ready to begin
another bus cycle. Otherwise, the processor negates TIP during the first
half of the next clock.

8.3.2 Line Read Transfer

8-16

Line read bus cycles are used by the processor to access a 16-byte operand
for a MOVE16 instruction, and to support cache line filling. A line read ac­
cesses a block of four long words, aligned to a 16-byte memory boundary.
This is accomplished by supplying a starting address that points to one of
the long words, and requiring the memory device to sequentially drive each
long word on the data bus. The memory device internally increments address
bits A2 and A3 of the supplied address for each transfer, causing the address
to wrap around at the end of the block. The address and transfer attributes

MC68040 USER'S MANUAL MOTOROLA

supplied by the processor remain stable during the transfers, and the memory
device terminates each transfer by driving the long word on the data bus
and asserting TA. A line transfer performed in this manner with a single
address is referred to as a line burst transfer.

The MC68040 also supports "burst-inhibited" line transfers for memory de­
vices that are unable to support bursting. For this type of bus cycle, the
selected device supplies the first long word (pointed to by the processor
address) and asserts transfer burst inhibit (TBI) with TA for the first transfer
of the line access. The processor responds by terminating the line burst
transfer and accessing the remainder of the line using three long-word read
bus cycles. Although the memory device can then treat the line transfer as
four independent long-word bus cycles, the bus controller still handles the
four transfers as a single line transfer, and does not allow other unreleated
processor accesses or bus arbitration to intervene between the transfers. TBI
is ignored after the first long-word transfer.

Line reads to .support cache line filling can be cache inhibited by asserting
transfer cache inhibit (TCI) with TA for the first long-word transfer of the line.
The assertion of TCI does not affect completion of the line transfer, but is
latched by the bus controller and passed to the memory controller for use.
TCI is ignored after the first long-word transfer of a line burst transfer, and
during the three long-word bus cycles for a burst-inhibited line transfer.

The address placed on the address bus by the processor for line transfers
does not necessarily point to the most significant byte of each long word,
since address bits A1 and AO for a line read are copied from the original
operand address supplied to the memory unit by the integer unit. These two
bits are also unchanged forthe three long word bus cycles for a burst inhibited
line transfer. Memory devices should ignore A1 and AO for long-word and
line bus cycles.

Figure 8-10 is a flowchart for line read bus cycles. Figures 8-11 is a functional
diagram for a line burst read.

Clock 1
The line read cycle starts in clock 1 (C1). During the first half of C1 the
processor places valid values on the address bus and transfer attributes.
For user and supervisor mode accesses that are translated by the corre­
sponding MMU;the user programmable attribute signals (UPAn) are driven
with the values from the matching ATC entry or transparent translation
register user bits (U1 and UO). The transfer type (TTn) and transfer modifier
(TMn) signals identify the specific access type. The read/write (R/W) signal

MOTOROLA MC68040 USER'S MANUAL 8-17

8-18

PROCESSOR EXTERNAl. DEVICE

ADDRESS DEVICE

1) SETRiNTOREAD
2) DRIVE ADDRESS ON A31-AD
3) DRIVE USER PAGE ATTRIBUTES ON lJPA 1-UPAD
4) DRIVE SIZE ON SIZ1-SIZO (UNE)
5) DRIVE TRANSFER TYPE ON m-TTO
6) DRIVE TRANSFER MODIFIER ON TM2-TMO
7) CACHE INHIBIT OUT (ClOUT) BECOMES VAUD
8) ASSERT TRANSFER START (TS) FOR ONE CLOCK
9) ASSERT TRANSFER IN PROGRESS (TiP) -+ PRESENT DATA f4-

1) DECODE ADDRESS
2) PLACEDATAOND31-DO
3) ASSERT TRANSFER ACKNOWLEDGE (TA)

ACQUIRE DATA ~

1) LATCH DATA ! 2) SAMPLE TBI AND TCI (FOR FIRST TRANSFER)

TERMINATE CYCLE

1) REMOVE DATA FROM D31-DO
2) NEGATE fA (IF NECESSARY)
3) INCREMENT ADDRESS BITS A3:A2 (IF INECESSARy)

II END OF BURST
WHEN 4 LONG WORDS UNTIL 4 LONG WORDS

1) NEGATE TIP (IF REQUIRED)
TRANSFERED TRANSFERED

~.
START NEXT CYCLE

Figure 8-10. Line Read Cycle Flowchart

is driven high for a read cycle, and the size signals (SIZn) indicate size line.
Cache inhibit out (ClOUT) is asserted for a MOVE16 operand read if the
access is identified as non-cachable in the corresponding ATC entry or
transparent translation register.

The processor asserts transfer start (TS) during Cl to indicate the beginning
of a bus cycle. The transfer in progress (TIP) signal is a~so asserted at this
time, if not already asserted from a previous bus cycle, to indicate that a
bus cycle is active.

Clock 2
During the firsthalf of clock 2 (C2),the processor negates TS. The selected
device uses R!W; and SIZO-SIZl to place the data on the data bus. (The
first transfer must supply the long word at the corresponding long-word

MC68040 USER'S MANUAL MOTOROLA

C1 C2 C3 C4 CS

Bell<

A31-A4 ~~
A3 ~\

A2.-NJ ~J C
UPA1,UPNJ ~~ C

SlZ1,SIZO ~J C
TT1,no ~~ C
TM2-TMO ~~ C

Riii ~J L
ClOUT ~J L

TS ~Li.J C
TIP ~\ C
TA ~J \ /
TCI

031-00

01 I 10 I 11 I 00 I
Note: Value of A3:A2. il1Clllmented by the system hardware.

Figure 8-11, Line Read for Operand Access to Address $07

boundary.) Concurrently, the selected device asserts the transfer acknowl­
edge (TA) signal, and either negates or asserts transfer burst inhibit (TBI)
to indicate it can or can not support a b.urst transfer. At the end of C2, the
proQ.essor samples the level of (TA, TBI, and TCI., and latches the current
value on the data bus. If TA is asserted, the transfer terminates and the

MOTOROLA MC68040 USER'S MANUAL 8-19

8-20

latched data is passed to the appropriate memory unit. If TA is not rec­
ognized at the end of clock 2, the processor ignores the latched data and
inserts wait states instead of terminating the transfer. The processor con­
tinues to sample TA, TBI, and TCI on successive rising edges of BCLK until
TA is recognized. The latched data and level on TCI arethen passed to the
appropriate memory unit.

If TBI was negated with TA, the processor continues the cycle with clock
3. Otherwise, if TBI was asserted, the line transfer is burst-inhibited, and
the processor reads the remaining three long words using long-word read
bus cycles. Address bits A3:A2 are incremented for each read by the pro­
cessor, and the new address placed on the address bus for each bus cycle.
Refer to 8.3.1 Byte, Word, and Long-Word Read Cycles for information on
long-word reads. If no waits states are generated, a burst-inhibited line
read completes in eight clocks instead of the five required for a burst read.

Clock 3
The processor holds the address and transfer attribute signals constant
during clock 3. The selected device increments address bits A3:A2 to ref­
erence the next long word to transfer, places this data on the data bus,
and asserts TA. At the end of C3, the processor samples the level of TA
and latches the current value on the data bus. If TA is asserted, the transfer
terminates and the second lond word of data is passed to the appropriate
memory unit. If TA is not recognized at the end of clock 3, the processor
ignores the latched data and inserts wait states instead of terminating the
transfer. The processor continues to sample the TA signal on successive
rising edges of BCLK until it is recognized. The latched data is then passed
to the appropriate memory unit.

Clock 4
This clock is identical to clock 3 except that once TA is recognized, the
latched value corresponds to the third long word of data for the burst.

Clock 5
This clock is identical to clock 3 except that once TA is recognized, the
latched value corresponds to the third long word of data for the burst.
After the processor recognizes the last TA assertion and terminates the
line read bus cycle, TIP remains asserted if the processor is ready to begin
another bus cycle. Otherwise, the processor negates TIP during the first
half of the next clock.

Figure 8-12 is a flowchart for a burst-inhibited line read. Figures 8-13 is a
functional diagram for a burst-inhibited line read.

MC68040 USER'S MANUAL MOTOROLA

PROCESSOR EXTERNAL DEVICE

ADDRESS DEVICE

1) SET R.W TO READ
2) DRIVE ADDRESS ON A31-NJ
3) DRIVE USER PAGE ATTRIBUTES ON UPA1-UPNJ
4) DRIVE SIZE ON SlZ1-81ZO (UIiE)
5) DRIVE TRANSFER TYPE ON TTHTO
6) DRIVE TRANSFER MODIFIER ON TM2-TMO
7) CACHE INHIBIT OUT (ClOUT) BECOMES VAUD
8) ASSERT TRANSFER START (TS) FOR ONE CLOCK r---9) ASSERT TRANSFER IN PROGRESS ('I'II'T PRESENT DATA

1) DECODE ADDRESS
2) PLACEDATAOND31-oo
3) ASSERT TRANSFER ACKNOWLEGE (TA) AND

ACQIJRE DATA .-- TRANSFER BURST INHIBIT (TBI)

1) LATCH DATA

*
2) SAMPLE TBI AND TCI
3) RECOGNIZE TBI ASSERTED

TERMINATE CYCLE

I 1) REMOVE DATA FROM 031-00
2) NEGATETA

-'---+ ADDRESS DEVICE

1) INCREMENT ADDRESS BITS A3:A2 AND DRIVE
NEW ADDRESS ON A31-NJ

2) DRIVE SIZE ON SlZ1-81ZO (LONG WORD) ----+- PRESENT DATA
3) ASSERT TRANSFER START (lS) FOR ONE CLOCK

1) DECODE ADDRESS
2) PLACEDATAOND31-oo
3) ASSERT TRANSFER ACKNOWLEGE (TA)

ACQIJRE DATA .--
1) LATCH DATA

*
UNTIL 3 LONG WORDS I ~I

TRANSFERED TERMINATE CYCLE

WII:N 3 LONG WORDS
TRANSFERED 1) REMOVE DATA FROM 031-00

+ 2) NEGATETA

END OF UNE TRANSFER

1) NEGATE llP (IF REQUIRED)

START NEXT CYCLE

Figure 8-12. Burst-Inhibited Line Read Flowchart

MOTOROLA MC68040 USER'S MA!'IUAL 8-21

I Cl C2 C3 C4 C5 C6 C7 C8

BCLK

A31-A4 ~~ X X X C
A3 ~\ / \ C
A2 ~~ \ / \ /

Al,AO ~J C
UPA1, UPAO ~~ C

SIZ1,SlZO ~J : UNE \ LONG LONG LONG C
TIl,TIO ~~ X X X C
TM2-TMO ~~ X X X x=

TLN1,TLNO ~~ X X X x=
RfN ~~ L

ClOUT ~J L
TS

TIP ~\ C
TA

TBI

TCI

031-00

INHIBITED +LONGWORD +LONGWORD +LONG WORD
UNE READ READ READ READ

BURST-INHIBITED UNE
READ

Figure 8-13. Burst-Inhibited Line Read

8-22 MC68040 USER'S MANUAL MOTOROLA

8.3.3 Byte, Word, and Long-Word Write Cycles

During a write transfer, the processor transfers data to a memory or periph­
eral device. Byte, word, and longword write transfers are performed by the
bus controller for the following cases:

• Accesses to a disabled cache

• Accesses to a memory page that is specified non-cachable by the MMU

• Accesses that are implicitly non-cachable (locked read-modify-write ac­
cesses and accesses to an alternate logical address space via the MOVES
instruction)

• Writes to writethrough pages

• Accesses that do not allocate in the data cache on a write miss (table
updates and exception stacking)

• The first transfer of a line write is terminated with TBI, forcing completion
of the line access using three additional longword write transfers

• Cache line pushes for lines containing a single dirty long word

The level on the transfer cache inhibit signal (TCI) is ignored by the processor II­
during all write cycles.

Figure 8-14 is a flowchart for byte, word, and long word write cycles. Figure
8-15 is a functional timing diagram for a long word write cycle.

Clock 1
The write cycle starts in clock 1 (C1). During the first half of C1 the processor
places valid values on the address bus and transfer attributes. For user
and supervisor mode accesses that are translated by the corresponding
MMU, the user programmable attribute signals (UPAn) are driven with the
values from the matching ATC entry or transparent translation register
user bits (U1 and UO). The transfer type (TTn) and transfer modifier (TMn)
signals identify the specific access type. The read/write (RIW) signal is
driven low for a write cycle. Cache inhibit out ClOUT) is asserted if the
access is identified as non-cachable in the corresponding ATC entry or
transparent translation register, of if the access references an alternate
address space.

The processor asserts transfer start (TS) during C1 to indicate the beginning
of a bus cycle. The transfer in progress (TIP) signal is also asserted at this
time, if not already asserted from a previous bus cycle, to indicate that a
bus cycle is active.

MOTOROLA MC68040 USER'S MANUAL

8-24

PROCESSOR EXTERNAL DEVICE

ADDRESS DEVICE

1) SET RtWTOWRlTE
2) DRIVE ADDRESS ON A31·AD
3) DRIVE USER PAGE ATTRIBUTES ON lPA1·UP1.O
4) DRIVE SIZE ON SIZ1-S1211 (BYTE, WORD, OR

LONG WORD)
5) DRIVE TRANSFER TYPE ON m·TTO
6) DRIVE TRANSFER MODIFIER ON TM2-TMO
7) CACHE ItfilBlT OUT ~ BECOMES VALJD
8) ASSERT TRANSFER ST~ (TSJ FOR ON.E. QLOCK
9) ASSERT TRANSFER IN PROGRESS (11PJ

10) DRIVE DATA ON APPROPRIATE BYTES OF D31-DO ---. ACCEPT DATA
BASED ON SIZE, 1.0, AND Al

1) DECODE ADDRESS
2) LATCH DATA ON APPROPRIATE BYTES OF

D31-DO BASED ON SIZE, 1.0, AND Al

TERMINATE TRANSFER r.--- 3) ASSERT TRANSFER ACKNOWLEDGE ITAi

1) REMOVEDATAFROMD31·DO ~ 2) NEGATE TIP (IF REQUIRED)

~
TERMINATE CYCLE

1) NEGATETA
START NEXT CYCLE

Figure 8-14. Byte, Word, and Long-Word Write Cycle Flowchart

Clock 2
During the first half of clock 2 (C2), the processor negates TS and drives
the appropriate bytes of the data bus with the data to be written (based
on size, AO, and A1. All other bytes are driven with undefined values. The
selected device uses R/W, SIZO-SIZ1, AO-A1, and ClOUT to latch the in­
formation on the data bus. Any or all of the bytes (D24-D31, D16-D23,
D8-D15, and DO-D7) are selected by the size signals and AO-A1. Concur­
rently, the selected device asserts the transfer acknowledge (TA) signal. At
the end of C2, the processor samples the level of TA; if TA is asserted, the
bus cycle terminates. If TA is not recognized at the end of clock 2, the
processor appends a wait state instead of terminating the transfer. The
processor continues to sample the TA signal on successive rising edges
of BCLK until it is recognized.

When the processor recognizes TA at the end of a clock and terminates
the bus cycle, TIP remains asserted if the processor is ready to begin
another bus cycle. Otherwise, the processor negates TIP during the first
half of the next clock, The processor also three-states the data bus during
the first half of th~ nextclocJdoll'owing termination of the write cycle.

MC68040 USER'S MANUAL MOTOROLA

I C1 I C2 I
BCLK~~

A31-AO ~ -y. •
UPA1,UPAO ~ -y. _

SlZ1, SlZO ~ ~ LONG •

TI1,TIO

TM2-TMO ~ ~ ____ •

TS -, : r-:-
- ~:

TIP~~ :/

TA~~
D31-DO~~

L LONG-WORD --..l
I WRITE I

Figure 8-15. Long-Word Write Transfer

8.3.4 Line Write Transfer

Line write bus cycles are used by the processor to access a 16-byte operand
for a MOVE16 instruction, and to support cache line pushes. Both burst and
burst-inhibited transfers are supported.

Figure 8-16 is a flowchart for line write bus cycles. Figures 8-17 is a functional
diagram for a line burst write.

Clock 1
The line write cycle starts in clock 1 (C1). During the first half of C1 the
processor places valid values on the address bus and transfer attributes.
For user and supervisor mode accesses that are translated by the corre­
sponding MMU, the user programmable attribute signals (UPAn) are driven

MOTOROLA MC68040 USER'S MANUAL 8-25

•

8-26

PROCESSOR EXTERNAL DEVICE

ADDRESS DEVICE

1) SETRNiTOWRITE
2) DRIVE ADDRESS ON A31-AO
3) DRIVE USER PAGE ATIRIBUTES ON UPA1-UPAO
4) DRIVE SIZE ON SIZ1-S1ZO (UNE)
5) DRIVE TRANSFER TYPE ON m-TIO
6) DRIVE TRANSFER MODIFIER ON TM2-TMO
7) CACHE INHIBIT OUT (CiOUI')BECOMES VAUD
8) ASSERT TRANSFER START (TS) FOR ONE CLOCK
9) ASSERT TRANSFER IN PROGRESS (TIP)

r+" SUPPLY DATA - ACCEPT DATA ~

1) DRIVE D~AON 031-00
~

1) DECODE ADDRESS (RRST TRANSFER ONLy)
2) SAMPLE TA 2) LATCH DATA ON 031-00
3) SAMPLE TBI AND TCI (FOR RRST TRANSFER) 3) ASSERT TRANSFER ACKNOWLEDGE (TA)

I
UNTil 4 LONG WHEN 4 LONG

WORDS TRANSFERED WORDS TRANSFERED

TERMINATE CYCLE
END OF BURST

1) NEGATE TA (IF NECESSARy)
1) REMOVE DATA FROM 031-00 2) INCREMENT ADDRESS BITS A3:A2 (IF
2) NEGATE TIP (IF REQUIRED) NECESSARy)

UNTIL 4 LONG
START NEXT CYCLE WORDS TRANSFERED

Figure 8-16. Line Write Cycle Flowchart

with the values from the matching ATC entry or transparent translation
register user bits (U1 and UO). The transfer type (TTn) and transfer modifier
(TMn) signals identify the specific access type. The read/write (R/W) signal
is driven low for a write cycle, and the size signals (SIZn) indicate size line.
Cache inhibit out (ClOUT) is asserted for a MOVE16 operand read if the
access is identified as non-cachable in the corresponding ATC entry or .
transparent translation register.

The processor asserts transfer start (TS) during C1 to indicate the beginning
of a bus cycle. The transfer in progress (TIP) signal is also asserted at this
time, if not already asserted from a previous bus cycle, to indicate that a
bus cycle is active~

MC68040 USER'S MANUAL MOTOROLA

Cl C2 C3 C4 C5

BCLK

A'l1-M ~ --y..---.-_--.--_-.------.-_--,--L
A'l ~ ~ C

A2-M~J co
UPA1,UPM ~ --y.. L

SlZl,SlZO ~ J co
TIl, TTO ~ --y.. L
TM2-TMO ~ --y.. L

Rfil ~~ C
OOUT~J co
TS~~ co
TIP ~~ C
TA ~J \ I

031-00

01 I 10 I 11 I 00

Note: Value of A'l:A2 inaemented by the system hardware.

Figure 8-17, Line Write for Operand Access to Address $07

Clock 2
During the first half of clock 2 (C2), the processor negates TS and drives
the data bus with the data to be written. The selected device uses R/W,
and SIZO-SIZ1 to latch the data on the data bus. Concurrently, the selected
device asserts the transfer acknowledge (TA) signal, and either negates or
asserts transfer burst inhibit (TBI) to indicate it can or can not support a
burst transfer. At the end of C2, the processor samples the level of TA and

MOTOROLA MC68040 USER'S MANUAL 8-27

•

8-28

of TA and TBI. If TA is asserted, the transfer terminates. If TA is not rec­
ognized at the end of clock 2, the processor inserts wait states instead of
terminating the transfer. The processor continues to sample TA and TBI
on successive rising edges of BCLK until TA is recognized.

If TBI was negated with TA, the processor continues the cycle with clock
3. Otherwise, if TBI was asserted, the line transfer is burst-inhibited, and
the processor writes the remaining three long words using long-word write
bus cycles. Address bits A3:A2 are incremented for each write by the
processor, and the new address placed on the address bus for each bus
cycle. Refer to 8.3.3 Byte, Word, and Long-Word Write Cycles for infor­
mation on long-word writes. If no waits states are generated, a burst­
inhibited line write completes in eight clocks instead of the five required
for a burst write.

Clock 3
The processor drive the second long word of data on the data bus, and
holds the address and transfer attribute signals constant during clock 3.
The selected device increments address bits A3:A2 to reference the next
long word, latches this data from the data bus, and asserts T A. At the end
of C3, the processor samples the level of TA; if TA is asserted, the transfer
terminates. If TA is not recognized at the end of clock 3, the processor
inserts wait states instead of terminating the transfer. The processor con­
tinues to sample the TA signal on successive rising edges of BCLK until it
is recognized.

Clock 4
This clock is identical to clock 3 except that the value driven on the data
bus corresponds to the third long word of data for the burst.

Clock 5
This clock is identical to clock 3 except that the value driven on the data
bus corresponds to the third long word of data for the burst. After the
processor recognizes the last TA assertion and terminates the line write
bus cycle, TIP remains asserted if the processor is ready to begin another
bus cycle. Otherwise, the processor negates TIP during the first half of the
next clock. The processor also three-states the data bus during the first
half of the next clock following termination of the write cycle.

MC68040 USER'S MANUAL MOTOROLA

8.3.5 Locked Transfer

The locked (or read-modify-write) cycle performs a read, conditionally mod­
ifies the data in the processor, and writes the data out to memory. In the
MC68040 processor, this operation can be indivisible, providing semaphore
capabilities for mUlti-processor systems. During the entire read-modify-write
sequence the MC68040 asserts the LOCK signal to indicate that an indivisible
operation is occurring, and asserts the LOCKE signal for the last transfer to
indicate the completion of the locked sequence. The LOCK and LOCKE signals
can be used by the external arbiter to prevent arbitration of the bus during
locked processor sequences, by using the LOCKE signal to perform arbitration
between two locked sequences. A read-modify-write operation is treated as
noncachable. If the access hits in the data cache, it invalidates a matching
valid entry and pushes a matching dirty entry. The locked transfer begins
only after the line push (if required) has completed.

The test and set (TAS) and compare and swap (CAS and CAS2) instructions
are the only MC68040 instructions that utilize locked transfers. Some page
descriptor updates during translation table searches for the memory man­
agement units (MMUs) also use locked transfers. Refer to SECTION 6 MEM­
ORY MANAGEMENT for information about the MMUs.

The locked transfer for the CAS and CAS2 instructions in the MC68040 differs
from the read-modify-write bus cycles used by previous members of the
M68000 Family, in order to support the LOCKE signal. If an operand does
not match for one of these instructions, the MC68040 still executes a single
write transfer to terminate the locked sequence with LOCKE asserted. For
the CAS instruction the value read from memory is written back, while for
the CAS2 instruction the second operand read is written back.

Figure 8-18 illustrates an example of a functional timing diagram for a TAS
instruction.

Clock 1
The read cycle starts in clock 1 (C1). During the first half of C1 the processor
places valid values on the address bus and transfer attributes. The lock
signal (LOCK) is asserted to identify a locked read-modify-write bus cycle.
For user and supervisor mode accesses that are translated by the corre­
sponding MMU, the user programmable attribute signals (UPAn) are driven
with the values from the matching ATC entry or transparent translation
register user bits (U 1 and UO). The transfer type (TTn) and transfer modifier
(TMn) signals identify the specific access type. The read/write (RIW) signal
is driven high for a read cycle. Cache inhibit out (ClOUT) is asserted if the

MOTOROLA MC68040 USER'S MANUAL 8-29

..

•

8-30

IC11C21Ci I C3 1 C4 1

BCLK ~ 1LlLfL __ SLflSL
A31-AO ~ ---y,---,~---,~_ -----,-----.------.-L

UPA1.UPAO ~ -y.,----,:------, __ ---:------:-_...,-L
SIl1 ~ ~----''--'-==-:--_

BYTE

SilO ~ J
m. no ~ ~----''--___ _

C
c
c

TM2-TMO ~ -y.,---,~---,~_ ---,----,-_...,-L
- -~'----;"---"";c---t-C-

ClOUT ~ J C
~<~ C
LOCKE~J --~

I I I,.

fS - \ : r-:----~ : ~
- '-----:,..J: : '-----:,..J : '---

, , ,

TIP~~ ~ /--~ : C
TA-~ :r---~:r-

_ -' : L:.J :: L:.J
I. ".

031-024 ~ J~--;,------,,--- -- ~ ~ t~MI

023-016 ~ J~-'----'---
• I ..,

015-08 -~--~' , " -, ..
07-DO ~ J~--~--

"""I oE'----- LOCKEO TRANSFER -----i)oolloll

Figure 8-18. Locked Transfer for TAS Instruction

MC68040 USER'S MANUAL MOTOROLA

access is identified as non-cachable in the corresponding ATC entry or
transparent translation register. The processor asserts transfer start (TS)
during C1 to indicate the beginning of a bus cycle. The transfer in progress
(TIP) signal is also asserted at this time, if not already asserted from a
previous bus cycle, to indicate that a bus cycle is active.

Clock 2
Ouring the first half of clock 2 (C2)' the processor negates TS. The selected
device uses R/W, SIZO-SIZ1, and A1-AO to place its information on the
data bus. Any or all of the bytes (031-024, 023-016, 015-08, and 07-00)
are selected by the size signals and A 1-AO. Concurrently, the selected
device asserts the transfer acknowledge (TA) signal. At the end of C2, the
processor samples the level of TA and latches the current value on the
data bus. If TA is asserted, the read transfer terminates and the latched
data is passed to the appropriate memory unit. If TA is not recognized at
the end of C2, the processor ignores the latched data and appends a wait
state instead ofterminating the transfer. The processor continues to sample
the TA signal on successive rising edges of BCLK until it is recognized
asserted. The latched data is then passed to the appropriate memory unit.
If more than one read cycle is required to read in the operand(s), clock ..
states C1 and C2 are repeated accordingly. ;

When the processor recognizes TA at the end of the last read transfer for
the locked bus cycle, it negates TIP during the first half of the next clock.

Idle Clocks
The processor does not assert any new control signals during the idle clock
states, but it may begin the modify portion of the cycle at this time. The
RIW signal remains in the read mode until clock 3 to prevent bus conflicts
with the preceding read portion of the cycle; the data bus is not driven
until clock 4.

Clock 3
Ouring the first half of C3 the processor places valid values on the address
bus and transfer attributes, and drives the read/write (R/W) signal low for
a write cycle. The processor asserts transfer start (TS) to indicate the be­
ginning of a bus cycle. The transfer in progress (TIP) signal is also asserted
at this time to indicate that a bus cycle is active.

The lock end signal (LOCKE) is asserted during C3 for the last write transfer
of the locked sequence. If multiple writes transfers are required for misa­
ligned operands or multiple operands, LOCKE is asserted only for the final
write transfer. The external arbiter can use this indication to distinguish

MOTOROLA MC68040 USER'S MANUAL 8-31

between two back-to-back locked bus cycles and allow arbitration between
them.

Clock 4
Ouring the first half of clock 4 (C4), the processor negates TS and drives
the appropriate bytes of the data bus with the data to be written (based
on size, AO, and A 1). All other bytes are driven with undefined values. The
selected device uses R/W, SIZO-SIZ1, and AO-A 1 to latch the information
on the data bus. Any or all of the bytes (031-024, 023-016, 015-08, and
07-00) are selected by the size signals and AO-A1. Concurrently, the se­
lected device asserts the transfer acknowledge (TA) signal. At the end of
C4, the processor samples the level of TA; if TA is asserted, the bus cycle
terminates. If TA is not recognized asserted at the end of C4, the processor
appends a wait state instead of terminating the transfer. The processor
continues to sample the TA signal on successive rising edges of BCLK until
it is recognized.

When the processor recognizes TA at the end of a clock, the bus cycle is
terminated, but TIP remains asserted if the processor is ready to begin
another bus cycle. Otherwise, the processor negates TIP during the first
half of the next clock. The processor also three-states the data bus during
the first half of the next clock following termination of the write cycle.

When the last write transfer is terminated, LOCKE is negated. The processor
also negates LOCK if the next bus cycle is not a locked transfer.

8.4 Acknowledge Cycles

Bus transfers with transfer type signals TT1/TTO = 11 are classified as ac­
knowledge bus transfers. Interrupt acknowledge and breakpoint acknowl­
edge bus cycles use this encoding, and are described in the following
paragraphs.

8.4.1 Interrupt Acknowledge Bus Cycles

8-32

When a peripheral device signals the processor (with the IPL2-IPLO signals)
that service is required, and the internally synchronized value on these signals
indicates a higher priority than the interrupt mask in the status register (or
that a transition has occurred in the case of a level 7 interrupt), the processor
makes the interrupt a pending interrupt. Refer to SECTION 9 EXCEPTIONS
for details on the recognition of interrupts.

MC68040 USER'S MANUAL MOTOROLA

The MC68040 takes an interrupt exception for a pending interrupt within one
instruction boundary (after processing any other pending exception with a
higher priority). The following paragraphs describe the various kinds of in­
terrupt acknowledge bus cycles that can be executed as part of interrupt
exception processing. Table 8-7 provides a summary of the possible interrupt
acknowledge terminations and resulting exception processing.

Table 8-7. Interrupt Acknowledge Termination Summary

TA TEA AVEC Termination Condition

N N X Insert Waits

N A X Take Spurious Interrupt Exception

A N N Latch Vector Number on D7-DO and Take
Interrupt Exception

A N A Take Autovectored Interrupt Exception

A A N Retry Interrupt Acknowledge Cycle

A A A Take Spurious Interrupt Exception

Legend: N=signal negated, A=signal asserted, X=don't care

8.4.1.1 INTERRUPT ACKNOWLEDGE CYCLE-TERMINATED NORMALLY. When
the MC68040 processes an interrupt exception, it performs an interrupt ac­
knowledge cycle to obtain the number of the vector that contains the starting
location of the interrupt service routine. Some interrupting devices have
programmable vector registers that contain the interrupt vectors for the rou­
tines they use. Other interrupting conditions or devices cannot supply a vector
number and use the autovector cycle described in 8.4.1.2 AUTOVECTOR
INTERRUPT ACKNOWLEDGE CYCLE.

The interrupt acknowledge cycle is a read cycle. It differs from a normal read
cycle in the following respects:

1. The transfer type signals are set to three (TT1/TIO = 11) to indicate an
acknowledge bus cycle.

2. Address signals A31-AO are set to all one's ($FFFFFFFF).

3. The transfer modifier signals TM2, TM1, and TMO are set to the interrupt
request level (the inverted values of IPL2, IPL 1, and IPLO, respectively).

The responding device places the vector number on the data bus during the
interrupt acknowledge cycle, and the cycle is terminated normally with TA.
Figure 8-19 is the flowchart of the interruptacknowledge cycle.

MOTOROLA MC68040 USER'S MANUAL 8-33

..

..

PROCESSOR EXTERNAL DEVICE

ACKNOWLEDGE INTERRUPT H REQUEST INTERRUPT

1) INTERRUPT PENDING (IPEND) RECOGNIZED -
WAIT FOR INSTRUCTION BOUNDARY

2) SET RNiTO READ
3) DRIVE A31-AO TO $FFFFFFFF
4) DRIVE UPA1-UPAO TO $0
5) SET SIZE TO BYTE
6) SETTRANSFER TYPE ON moTTO TO $3
7) PLACE INTERRUPT LEVEL ON TM2-TMO
8) NEGATE CACHE INHIBIT OUT (ClOUT)
9) ASSERT TRANSFER START (TSj FOR ONE CLOCK

~ 10) ASSERT TRANSFER IN PROGRESS (TlI'j PROVIDE VECTOR INFORMATION

1) PLACE VECTOR NUMBER ON BYTE 07-00

f--
2) ASSERT TRANSFER ACKNOWLEGE (TA)

ACQUIRE DATA

1) LATCH VECTOR NUMBER ~
~

TERMINATE CYCLE

1) REMOVE DATA FROM 07-00
START NEXT CYCLE 2) NEGATE iJi

Figure 8-19. Interrupt Acknowledge Cycle Flowchart

Figure 8-20 shows the timing for an interrupt acknowledge cycle terminated
with TA.

8.4.1.2 AUTOVECTOR INTERRUPT ACKNOWLEDGE CYCLE. When the interrupt­
ing device cannot supply a vector number, it requests an automatically gen­
erated vector, or "autovector". Instead of placing a vector number on the
data bus and asserting the transfer acknowledge signal (TA), the device as­
serts the autovector (AVEC) signal with TA to terminate the cycle.

8-34

The vector number supplied in an autovector operation is derived from the
interrupt level of the current interrupt. When the AVEC signal is asserted with
TA during an interrupt acknowledge cycle, the MC68040 ignores the state of
the data bus and internally generates the vector number, which is the sum
of the interrupt level plus 24 ($18). There are seven distinct autovectors that
can be used, corresponding to the seven levels of interrupt available with
signals IPLO-IPL2. Figure 8-21 shows the timing for an autovector operation.

MC68040 USER'S MANUAL MOTOROLA

MOTOROLA

I C1 I C2 I I C1 I C2 I
BCLK ~ 1l1LfL--_JLfL

A31-AO ~J
UPA1, UPAO ~~

SIZ1 ~ _~----'_-"===----' __ _
'BYTE

SIZO

TT1, no

TM2-TMO

~J
~J
_- V INTERRUPT
~ LEVEL

Rm ~ J

\'--~-
/
/
\-------
\'----­

~~---.-­
--~

~J
Ts~~--~

, "

TIP ~ _~--,,--~-----,: j--~
, ,

TA-~ : r--­
~ : ~

031-08 ~ ~}--~-~--­
VECTOR #

07-DO~~

---l INTERRUPT ~ I ACKNOWLEDGE I

L

r- WRITE STACK

Figure 8-20. Interrupt Acknowledge Cycle Timing

MC68040 USER'S MANUAL

II

8-35

•

8-36

I C1 i C2 1 I C1 i c2 i
BCLl(~.nsUL--JlJL

A31-AO

UPA1, UPAO

~J
~~

SIZ1 ~ _~---'-_'--=-""-!-__
, BYTE

SIZO ~ J
m, no ~J
TM2-TMO -_ V INTERRUPT -.1\ LEVEL

\'---,---
/
/
\-----
\'---­

~~~ 
-~ 

TS~LJ:---~ 
, " 

TIP ~ _~-,--~---,: !--~ 

TA-~-- L 
AVEC-~--

D31-DO ~ ~~~-----

-l INTERRUPT r­
ACKNOWLEDGE -

. AUTO VECTORED 
r- WRITE STACK 

Figure 8-21. Autovector Operation Timing 

MC68040 USER'S MANUAL MOTOROLA 



8.4.1.3 SPURIOUS INTERRUPT CYCLE. When a device does not respond to an 
interrupt acknowledge cycle with TA, or TA and AVEC, the external logic 
typically returns the transfer error acknowledge signal (TEA). The MC68040 
automatically generates the spurious interrupt vector number 24, instead of 
the interrupt vector number in this case. If TA and TEA are both asserted, 
the processor retries the cycle. 

8.4.2 Breakpoint Acknowledge Cycle 

The breakpoint acknowledge cycle is generated by the execution of a break­
point instruction (BKPT). An acknowledge access is indicated with transfer 
type signals TT1/TTO=$3, address A31-AO = $00000000, and transfer modi­
fier signals TM2-TMO = $0. When the external hardware terminates the cycle 
with either TA or TEA, the processor takes an illegal instruction exception. 
Figure 8-22 is a flowchart of the breakpoint acknowledge cycle. Figure 8-23 
shows the timing for a breakpoint acknowledge cycle. 

PROCESSOR EXTERNAl DEVICE 

BREAKPOINT ACKNOWLEDGE 

1) SETRiWTOREAD 
2) DRIVE A31-AO TO $00000000 
3) DRIVEUPA1-UPAOTO$O 
4) SET SIZE TO BYTE 
5) SET TRANSFER TYPE ON TT1-TTO TO $3 
6) SET TRANSFER MODIFIER TM2-TMO TO $0 
8) NEGATE CACHE INHIBIT OUT (ClOUT) 
9) ASSERT TRANSFER START (TS) FOR ONE CLOCK 
10) ASSERT TRANSFER IN PROGRESS (fil5j 

~ 1) ASSERT TRANSFER ACKNOWLEDGE @OR 
TRANSFER ERROR ACKNOWLEDGE (TEA) 

1) INITIATE ILLEGAL INSTRUCTION EXCEPTION r-PROCESSING 

+ 
TERMINATE CYCLE 

1) NEGATETAORTEA 

Figure 8·22. Breakpoint Operation Flow 

MOTOROLA MC68040 USER'S MANUAL 8-37 

• 



8-38 

I C1 I C2 I IC1 I C2 I 
bCLJ( ~ ~ __ JlSL 

A31-AO ~ ~---''--.--_.--_ 

UPA1,UPAO ~ ~---''--:--_:--_ 

SIZ1 ~3 
---''--·'"=BYT:=:e;--:---

SIlO ~ J 
m,TTO ~ J 
TM2-TMC ~ _3.....l..---,-_-T-__ 

/ 
/ 
/ 
\'----
\'----
/ 

--~ 

: \'---­
TS~~--:LJ 

.. I. 

TIP ~ _~->--_--,: /--~ 
. . 

fA -~ : r-n ,. \. 
-: --1 : L:,...J L 

D31-1lO ~ ]>------ ~--{C 

....l BREAKPOINT ~ I ACKNOWLEDGE I r- WRiTESTACK 

Figure 8-23. Breakpoint Acknowledge Cycle Timing 

MC68040 USER'S MANUAL MOTORa,LA 



8.5 BUS EXCEPTION CONTROL CYCLES 

The MC68040 bus architecture requires assertion of TA from an external 
device to signal that a bus cycle is complete. TA is not asserted in these 
cases: 

• The external device does not respond. 
• No interrupt vector is provided. 
• Various other application dependent errors occur. 

External circuitry can provide the transfer error acknowledge signal (TEA) 
when no device responds by asserting TA within an appropriate period of 
time after the processor begins the bus cycle. This allows the cycle to ter­
minate and the processor to enter exception processing for the error con­
dition. TEA can also be asserted in combination with TA to cause a retry of 
a bus cycle in error. 

In order to properly control termination of a bus cycle for a retry or a bus 
error condition, TA and TEA must be asserted and negated for the same 
rising edge of the MC68040 bus clock (BCLK). Table 8-8 shows the control 
signal combinations and the resulting bus cycle terminations . 

Table 8-8. TA and TEA Assertion Results 

Case Control Asserted! 
Result No. Signal Negated 

1 TA A Normal Cycle Terminate and Continue 
TEA NA 

2 TA NA Terminate and Take Bus Eerror Exception, 
TEA A Possibly Deferred 

3 TA A Terminate and Retry 
TEA A 

LEGEND: 
A-Signal is asserted for this BLCK rising edge 

NA-Signal is not asserted for this BLCK rising edge 

Bus error and retry terminations during burst cycles operate as described in 
8.8.3.2 LINE READ TRANSFER and 8.3.4 Line Write Transfer. 

8.5.1 Bus Errors 

The transfer error acknowledge (TEA) signal can be used by the system 
hardware to abort the current bus cycle when a faultis detected. A bus error 
is recognized during a bus cycle when TA is negated and TEA is asserted. 

MOTOROLA MC68040 USER'S·MANUAL 8-39 

.. 



8-40 

When the processor recognizes a bus error condition for an access, the access 
is terminated immediately. A line access that has TEA asserted for one of 
the four longword transfers aborts without completing the remaining trans­
fers, regardless of whether the line transfer uses a burst access or burst­
inhibited access. 

When TEA is asserted to terminate a bus cycle, the MC68040 may enter access 
error exception processing immediately following the bus cycle, or it may 
defer processing the exception. The instruction prefetch mechanism requests 
instruction words from the data memory unit before it is ready to execute 
them. If a bus error occurs on an instruction fetch, the processor does not 
take the exception until it attempts to use that instruction word. Should an 
intervening instruction cause a branch, or a task switch occurs, an access 
error exception does not occur. Similarly, if a bus error is detected on the 
second, third, or fourth longword transfer for a line read access, an access 
error exception is taken only if the execution unit is specifically requesting 
that long word. Otherwise, the bus errored line is not placed in the cache, 
and the processor repeats the line access when another access references 
the line. If a misaligned operand spans two long words in a line, a bus error 
on either the first or second transfers for the line causes exception processing 
to begin immediately. A bus error termination for any write accesses or for 
read accesses that reference data specifically requested by the execution unit 
causes the processor to begin exception processing immediately. Refer to 
SECTION 9 EXCEPTION PROCESSING for details of access error exception 
processing. 

When an access is terminated by a bus error, the contents of the correspond­
ing cache can be affected in different ways, depending on the type of access. 
For a cache line read to replace a valid instruction or data cache line, the 
cache line being filled is invalidated before the bus cycle begins and remains 
invalid if the replacement line access is terminated with a bus error. If a dirty 
data cache line is being replaced and the replacement line read is bus errored, 
the dirty line is restored from an internal push buffer into the cache to elim­
inate an unnecessary push access. For a data cache push which is bus errored, 
the corresponding cache line remains valid (with the new line data) if the 
line push follows a replacement line read, or is invalidated if the push is 
explicitly forced by a CPUSH instruction. Write accesses to memory pages 
specified as writethrough by the data MMU update the corresponding cache 
line before accessing memory. Ifthe memory access is bus errored, the cache 
line remains valid with the new data. 

Figure 8-24 shows the timing of a bus error on a word access which causes 
an access error exception. Figure 8-25 shows the timing of a bus error on a 
line readaccess which does not cause an access error exception. 

MC68040 USER'S MANUAL MOTOROLA 



I C1 I C2 I I C1 I C2 I 
BCLK~~ __ ~ 

A31-AO -_ -V ~ 
~~--~----~~---

UPA1,UPAO ~ -:I __ =:::x---: __ 
SIZ1 ~ J \1----:--__ 

:WORO 

SIZO ~ ~ _o.-L-I ___ _ 
TT1, no ~ _~__'_ ____ _ 

TM2-TMO ~ -:1_,--_-,--__ __ =:J<'----,--
Riii ~ _~___'_____:__-___:__--

ClOUT ~ J \,---:-__ 
-~--~ TS :: :: - , , 

TIP~~ I--~ 
.. 

TA~J 'L 
TEA-~-- 'L 

031-00 ~ ~-- C 
r- WRITE CYCLE -1 r- WRITE STACK 

Figure 8-24. Word Write Access Terminated with TEA 

MOTOROLA MC68040 USER'S MANUAL 8-41 



Cl C2 C3 C4 

BCLK 

A31-A4 C 
A3 C 

A2-AO ~J C 
UPA1, UPAO ~~ C 

SIZ1,SIZO ~J C 
TT1, TTO ~-:J. C 
TM2-TMO ~~ C 

Rfii ~J C 
ClOUT ~J C • '., TS ~~ C 

TIP ~\ C 
'fA ~J \ / 

TEA ~J \iF 
TBI 7 \ 

031-00 

01 I 10 I 11 I-- TEA ENDS BURST -
NO EXCEPTION 
TAKEN 

Note: Value of A3:A2 incremented lrf the system hardware. 

Figure 8-25. Line Read Access Terminated with TEA 

8-42 MC68040 USER'S MANUAL MOTOROLA 



8.5.2 Retry Operation 

When the TA and TEA signals are both asserted by an external device during 
a bus cycle, the processor enters the retry sequence. The processor termi­
nates the bus cycle and immediately retries the cycle using the same access 
information (address and transfer attributes). Figure 8-26 shows a retry of a 
read bus cycle. 

MOTOROLA 

BCLK 

A31-AO 

UPA1. UPAO 

SIZ1.SIZO 

TT1. TTO 

TM2-TMO 

RiN 

C1 C2 Cw C1 C2 

~~ 
~~ 

'--,-_,..-----,----,-_--,----<L 
'-------:-_-,------;-----:-_--:--'L 

~=" LONG C 
~=" c 
~~ '-------:-_______ L 
~J C 

ClOUT ~ ="--'----:---7---7-----:-----:--LC-

TEA ~ J v 
031-00 ~ ~r--------o-
~ READ CYCLE ~ -.l I RETRY SIGNALED I RETRY CYCLE I 

Figure 8-26. Read Cycle Retry 

MC68040 USER'S MANUAL 8-43 

.. 



8-44 

The processor retries any read or write cycle of a locked read-modify-write 
operation separately; the lock signal (LOCK) remains asserted during the 
entire retry sequence. If the last bus cycle of a locked access is retried, the 
lock end signal (LOCKE) remains asserted through the retry ofthe write cycle. 

On the initial access of a line access, a retry causes the processor to retry 
the bus cycle as shown in Figure 8-27. However, a retry signaled during the 
second, third, or fourth cycle of a line transfer is recognized by the processor 

C1 C2 I C1 C2 C3 C4 C5 

BCLK 

A31-AO ~~ C 
UPA1. UPAO ~ --y.. C 

SIZ1. SIZO ~ J LINE C 
TT1.TTO ~ ~ C 
TM2-TMO ~ --y.. L 

Am ~ ~ I: 
ClOUT ~ J L; 

TS 

TIP ~ ~ C 
fA ~ J U \ :/: 

TEA ~ J U 
TBI ~J 

031-00 

r- RETRY 
SIGNALED ·IE RETRY CYCLE ·1 

Figure 8-27. Retry Operation on Line Write 

MC68040 USER'S MANUAL MOTOROLA 



as a bus error, and causes the processor to abort the line transfer. A burst­
inhibited line transfer can only be retried on the initial transfer, and aborts 
if a retry is signalled for any of the three longword transfers used to complete 
the line transfer. 

Negating the bus grant signal (BG) to the MC68040 while asserting both TA 
and TEA provides a relinquish and retry operation for any bus cycle that can 
be retried. 

8.5.3 Double Bus Fault 

When an access error or an address error occurs during the exception proc­
essing sequence for a previous access error, a previous address error, or a 
reset exception, the access or address error causes a double bus fault. For 
example, the processor attempts to stack several words containing infor­
mation about the state of the machine while processing an access error 
exception. If a bus error occurs during the stacking operation, the second 
error is considered a double bus fault. 

The MC68040 indicates that a double bus fault condition has occurred by 
continuously driving the processor status signals (PST3-PSTO) with an en­
coded value of $5 until the processor is reset. Only an external reset operation 
can restart a halted processor. While the processor is halted, the external 
bus is released by negating BR and forcing all outputs to a high-impedance 
state. 

A second access error or address error that occurs after exception processing 
has completed (during the execution of the exception handler routine, or 
later) does not cause a double bus fault. A bus cycle that is retried does not 
constitute a bus error or contribute to a double bus fault either. The processor 
continues to retry the same bus cycle as long as the external hardware 
requests it. 

8.6 ACCESS SERIALIZATION AND BUS SYNCHRONIZATION 

The integer unit of the MC68040 generates access requests to the instruction 
and data memory units to support integer and floating-point operations. In 
the integer unit pipeline, accesses to the data memory unit are performed 
by both the ea (effective address) fetch and write back pipeline stages, with 
ea fetches assigned a higher priority. This allows data read and write accesses 
to occur out of order, with a memory write access potentially delayed for 
many clocks while allowing reads generated by later instructions to complete. 

MOTOROLA MC68040 USER'S MANUAL 8-45 

.. 



8-46 

The processor detects address collisions (a read access that references earlier 
data waiting to be written) and allows the corresponding write access to 
complete. A given sequence of read accesses or write accesses is completed 
in order, and reordering only occurs with writes relative to reads. The integer 
pipeline stages are shown in Figure 1-1 in SECTION 1 INTRODUCTION. 

Another potential problem is a result of the instruction restart model used 
for exception processing in the MC68040. After the operand fetch for an 
instruction, an exception can occur that causes the instruction to be aborted, 
resulting in another access of the operand after the instruction is restarted. 
For example, an interrupt could occur after the read of the status register in 
an 1/0 device, which aborts the instruction and causes the register to be read 
again. If the status bits are cleared by the first read, the status information 
is lost and the instruction obtains incorrect data. 

Both out-of-order and multiple accesses to devices that are sensitive to such 
accesses can be prevented by designating the memory page containing the 
device as noncachable 1/0 in the corresponding page descriptor. When the 
data memory unit detects an attempt to read an operand from a page des­
ignated as non-cachable 1/0, it allows all pending writes to complete before 
beginning the external operand read. Only reads are affected by the definition 
of a page as noncachable versus noncachable 1/0. When a write operation 
reaches the write back pipeline stage (the last stage in the pipeline), all pre­
vious instructions are already complete. Once a read access to a noncachable 
1/0 page begins, only a bus error exception on the operand read itself can 
cause the instruction to be aborted, preventing multiple reads. 

Since write cycles can be deferred indefinitely, many subsequent instructions 
can be executed, resulting in seemingly non-sequential instruction execution. 
When this is not desired and the system depends on sequential execution 
following bus activity, the NOP instruction can be used. The NOP instruction 
forces instruction and bus synchronization because it freezes instruction ex­
ecution until all pending bus cycles have completed. 

An example of the NOP instruction, for this purpose, is a write operation of 
control information to an external register, where the external hardware 
attempts to control program execution based on the data that is written with 
the conditional assertion of TEA. If the data cache is enabled and the write 
cycle results in a hit in the data cache, the cache is updated. That data in 
turn may be used in a subsequent instruction before the external write cycle 
completes. Since the MC68040 cannot process the bus error until the end of 
the bus cycle, the external hardware can not successfully interrupted program 
execution. In order to prevent a subsequent instruction from executing until 

MC68040 USER'S MANUAL MOTOROLA 



the external cycle completes, a Nap instruction can be inserted after the 
instruction causing the write. In this case, access error exception processing 
proceeds immediately after the write before subsequent instructions are ex­
ecuted. This is an irregular situation, and the use of the Nap instruction for 
this purpose is not required by most systems. 

Note that the Nap instruction can also be used to force access serialization 
by placing a Nap before the instruction that reads an 1/0 device. This elim­
inates the need to specify the entire page as noncachable 110, but does not 
prevent the possibility of the instruction from being aborted by an exception 
condition as noted earlier. 

8.7 BUS ARBITRATION 
The bus design of the MC68040 provides for a single bus master at anyone 
time: either the processor or an external device. One or more of the devices 
on the bus can have the capability of becoming bus master. Bus arbitration 
is the protocol by which the processor or an external device becomes bus 
master. Unlike earlier members of the M68000 processor family, the MC68040 
implements an arbitration method in which an external arbiter controls bus 
arbitration, and the processor acts as a slave device in requesting ownership 
of the bus from the arbiter. Since the functionality of the arbiter is defined 
by the user, it can be configured to support any desired priority scheme. For 
systems in which the processor is the only possible bus master, the bus can 
be continuously granted to the processor, and no arbiter is needed. Systems 
that include several devices that can become bus master require an arbiter 
to assign priorities to the devices, so that when two or more devices attempt 
to become bus master at the same time, the one having the highest priority 
becomes bus master first. 

When the bus is owned by another bus master, the MC68040 is able to 
monitor the alternate master transfers and intervene when necessary to man­
tain cache coherency. This capability is discussed in more detail in SECTION 
8.8 BUS SNOOPING OPERATION. 

The bus controller in the MC68040 generates bus requests in reponse to 
internal requests from the instruction and data memory units, and asserts 
the bus arbitration signals using the protocol described in the following 
paragraphs. The arbitration protocol allows arbitration to be overlapped with 
bus activity, and requires a single dead clock when transfering bus ownership 
between bus masters to prevent bus contention. The three main signals used 
by the MC68040 for bus arbitration are bus request (BR), bus grant (BG), and 
bus busy (BB). The bus arbitration unit in the MC68040 operates synchron­
ously, and transitions between states on the rising edge of BLCK. 

MOTOROLA MC68040 USER'S MANUAL 8-47 



8-48 

The MC68040 requests the bus from the arbiter by asserting the BR signal 
whenever an internal bus cycle request is pending, and continues to assert 
BR until the arbiter grants the bus to the processor, allowing the bus cycle 
to begin. After the bus cycle starts, the processor continues to assert BR if 
another bus cycle is pending, or negates it if no further accesses are required. 
If the bus is already granted to the processor when an internal bus cycle 
request is generated, BR is asserted at the same time the transfer start signal 
(TS) asserts to indicate the start of the bus cycle, allowing the access to begin 
immediately. BR is always driven by the processor, and cannot be wire-ORed 
with other devices. 

The bus grant signal (BG) is asserted by the external arbiter to indicate to 
the processor that it has been granted the bus. If BG is negated while a bus 
cycle is in progress, the processor relinquishes the bus at the completion of 
the current bus cycle. Note that the bus controller considers the four bus 
cycles for a burst-inhibited line transfer to be a single bus cycle, and does 
not relinquish the bus until completion of the fourth transfer. The read and 
write portions of a locked read-modify-write sequence are divisible in the 
MC68040, allowing the bus to be arbitrated away during the locked sequence. 
For systems applications which must not allow locked sequences to be bro­
ken, the arbiter can use the bus lock signal (LOCK) to detect locked accesses 
and prevent negation of BG to the processor during these sequences. The 
lock end signal (LOCKE) is also provided by the processor to indicate the last 
write cycle of a locked sequence, allowing arbitration between back-to-back 
locked sequences. See 8.3.5 Locked Transfer for a detailed description of 
locked bus transfers. 

When the bus has been granted to the processor in response to the assertion 
of BR, the processor monitors the bus busy signal (BB) to determine when 
the bus cycle of the previous master has completed. After BB is negated by 
the alternate master, the processor asserts BB to indicate ownership of the 
bus and begins the bus cycle. The processor continues to assert BB until the 
arbiter negates BG, after which BB is first negated at the completion of the 
current bus cycle, then forced to a high impedance state. As long as BG is 
asserted, BB remains asserted to indicate the bus is owned, and the processor 
continuously drives the bus signals. BR is negated when there are no pending 
accesses to allow the arbiter to grant the bus to another bus master if nec­
essary. 

Figure 8-28 is a timing diagram showing an example of the arbitration activity 
performed by the processor in requesting the bus from an alternate master 
for a single misaligned access. In clock 1, the MC68040 asserts BR to request 
the bus from the arbiter, which negates the alternate master's bus grant 

MC68040 USER'S MANUAL MOTOROLA 



2 5 6 7 8 9 

BCLK 

X A31-AO ~ ~,---.,.--_-,--J)f--~(,--~_--,----J ) C 
x Transfer V ) ( 

Atributes _ --.l\'---:--_-----,-....) '----:--_---;--' ) c 

TIP ~ _~-'--_~---'~L-~_~~_----'--'~ 

U U U 
031-00 ~ J)--'---<O>-~-~O>---'-~O>---'----

BR ~ ~'----:-----;----i-----;-----';--I/ 

--,---J/ \'----,----,-----
ALTERNATE --l 

MASTER I r-- PROCESSOR ---1 
Figure 8-28. Processor Bus Request Example 

LALTERNATE I MASTER 

signal (AM BG) in the figure) and grants the bus to the processor in clock 2 
by asserting BG. During clock 3 the alternate master completes its current 
access and relinquishes the bus by three-stating a" bus signals. Typica"y, 
the BB and TIP signals require a pu"up resistor to maintain a logic "1" level 
between bus masters tenures, and should be actively negated by the alternate 
master before three-stating to minimize rise time of the signals and ensure 
the correct level is seen by the processor on the next BCLK rising edge. At 
the end of clock 3, the processor recognizes the bus grant and bus idle 
conditions (BG asserted and BB negated) and assumes ownership of the bus 
in clock 4 by asserting BB and immediately beginning a bus cycle. In clock 

MOTOROLA MC68040 USER'S MANUAL 8-49 

.. 



6 the processor begins the second bus cycle for the misaligned operand, and 
negates BR at this time, since no other accesses are pending. The arbiter 
grants the bus back to the alternate master in clock 7, which waits for the 
processor to relinquish the bus. The processor actively negates BB and TIP 
before three-stating these and all other bus signals during clock 8. Finally, 
the alternate master recognizes the bus grant and idle conditions at the end 
of clock 8 and is able to resume its bus activity in clock 9. 

Figure 8-29 shows the arbitration timing for a relinquish and retry operation. 
The processor read access which begins in clock 1 is terminated at the end 
of clock 2 with a retry request and BG negated, forcing the processor to 
relinquish the bus and allow the alternate master to update the operand. 
Note that the processor reasserts BR in clock 3 since the original access is 
now pending again. After the operand update, the bus is granted back to the 
processor to allow it to retry the access beginning in clock 7. 

A special case exists if BG is asserted and the processor neither owns the 
bus nor needs the bus for a pending access (i.e., BB is being sampled as an 
input, and BR is negated). If BB is negated, the processor assumes ownership 
of the bus and drives the address bus and transfer attribute signals with 
undefined values. Ownership is implicit since the processor does not drive 
either BB or the transfer in progress signal (TIP), although TS remains ne­
gated. If BB is asserted by another bus master or BG is negated, the processor 
releases the bus. If an internal access request is generated, the processor 
assumes explicit ownership of the bus and immediately begins an access, 
asserting BB, BR, TIP, and TS at the same time. Figure 8-30 shows an example 
of bus arbitration for a system in which the processor is the default bus 
master, and is granted an idle bus by the arbiter. 

8.8 BUS SNOOPING OPERATION 

8-50 

The MC68040 has the capability of monitoring bus transfers by other bus 
masters and intervening in the access when required to maintain cache 
coherency. The process of bus monitoring and intervention is called snoop­
ing, and is controlled by the encoding ofthe snoop control signals (SC1-SCO) 
generated by the alternate master for each bus cycle, as shown in Table 8-
9. 

Snooping begins when the bus is granted to another bus master, and the 
MC68040 sees a TS assertion by the alternate master. The processor latches 
the level on theA31-AO, SIZ1-SIZO, TT1-TTO, R/W, and SC1-SCO signals on 
the BCLK rising edge for which TS is first asserted, and evaluates the snoop 

MC68040 USER'S MANUAL MOTOROLA 



2 4 6 8 

BCLK 

A31-AO ~J, ) ( ) ( 
Transfer --y, ) ( ) ( Atributes 

Riii S ~ 
TS 

TIP ~ ~ 
TA ~J V V L 

TEA U 
031-00 ~J 0 C 

BR ~~ \ / 
BG / \ 
BB ~ ~ 

AM_BR U 
AM_BG \ / 

PROCESSOR ~ r-ALTERNATE ~ 
MASTER r- PROCESSOR 

Figure 8·29. Arbitration During Relinquish and Retry 

Table 8·9. Snoop Control Encoding 

SC1 SCD 
Requested Snoop Operation 

Read Access Write Access 

0 0 Inhibit Snooping Inhibit Snooping 

0 1 Supply Dirty Data and Leave Dirty Sink Byte/Word/Long-Word Data 

1 0 Supply Dirty Data and Mark Line Invalid Invalidate Line 

1 1 Reserved (Snoop Inhibited) Reserved (Snoop Inhibited) 

MOTOROLA MC68040 USER'S MANUAL 8-51 



--

8-52 

BCLI( 

A31-AO 

Transfer 
Atributes 

4 6 7 8 

TIP ~~ _.....l.-~~'-'r'-i-:---:------:---,\ / 

U U 
031-00 ~ ~)-~-<O 0)----'---

LJ 

. , , . . 

ALTERNATE~ 
MASTER I 

IMP~~~TLY + BUS OWNED + BUS OWNED ~ 
OWNED AND ACTIVE AND IDLE 

1-+------ PROCESSOR • 

Figure 8-30. Implicit Bus Ownership 

control and transfer type to determine if the access should be snooped. Only 
normal and MOVE16 bus transfers can be snooped. If snooping is enabled 
for the access, the processor inhibits memory from responding by continuing 
to assert the memory inhibit signal (MI) while checking the internal caches 
for matching lines. The processor intervenes in the access only if the data 
cache contains a dirty line corresponding to the access, and the requested 
snoop operation indicates to sink data for a write or source datafor a read. 
If this occurs, the processor continues to inhibit memory and responds to 
the alternate master access as a slave device. Otherwise, MI is negated and 

MC68040 USER'S MANUAL MOTOROLA 



memory is allowed to respond and complete the access. The processor mon­
itors the levels of TA, TEA, and TBI to detect normal, bus error, retry, and 
burst inhibit terminations. Note that for alternate master line transfers that 
are burst-inhibited, the MC68040 snoops each of the four resulting longword 
transfers individually. 

In a system with mUltiple bus masters, memory must wait for each snooping 
bus master to negate its MI signal before responding to an access. Also, if 
the system contains multiple caching masters, then each processor must 
access shared data using writethrough pages to allow writes to the data to 
be snooped by other masters. Only one of the processors can access a given 
page of data using copyback cache mode, typically for data local to that 
processor. This also prevents multiple snooping processors from intervening 
in a specific access. 

As a bus master, the MC68040 can be configured to request snooping op­
erations on a page basis. The user programmable attribute signals 
(UPA 1-UPAO) are connected to the SC1-SCO inputs ofthe snooping proces­
sors. The required snooping operation is then selected for a page by appro­
priately programming the user attribute bits in the corresponding page 
descriptor. 

Refer to SECTION 6 MEMORY MANAGEMENT for details on configuring the 
caching mode and user attribute bits for each memory page, and to SECTION 
7 INSTRUCTION AND DATA CACHES for more information on the effects of 
snooping on the caches. 

8.8.1 Snoop Inhibited Cycle 

For alternate master accesses in which the SC1-SCO signal encoding indi­
cates that snooping is inhibited (SC1-SCO=$O), the MC68040 immediately 
negates MI and allows memory to respond to the access. Snoop inhibited 
alternate master accesses do not affect performance of the processor, since 
no cache lookups are required. Figure 8-31 shows an example of snoop­
inhibited operation in which an alternate master is granted the bus for an 
access. 

8.8.2 Snoop Enabled Cycle - No Intervention Required 

For alternate master accesses in which the SC1-SCO signal encoding indi­
cates that snooping is enabled (SC1-SCO = $1 or $2), the MC68040 continues 
to assert MI while checking for a matching cache line. If intervention in the 

MOTOROLA MC68040 USER'S MANUAL 8-53 



8-54 

BCLK 

SC1-SCO 

A31-AO 

SIZ1-SIZO 

TT1-TTO 

RIW 

u U 
031-00 ~ ~)--;---10}---.---;-----t_}---:----

_-,.-If 

PROCESSOR -1 L ALTERNATE ~ 
I MASTER I 

Figure 8-31. Snoop Inhibited Bus Cycle 

r- PROCESSOR 

alternate master access is not required, MI.is then negated and memory is 
allowed to respond and complete the access. Figure 8-32 shows an example 
of snooping in which memory is allowed to respond. Best case timing is 
shown, which results in a memory access having the equivalent of two wait 
states. Variationsinthe timing required by the snooping logic to access the 
caches can delay the negation of MI by up to two additional clocks. 

MC68040 USER'S MANUAL MOTOROLA 



BCLI< 

SC1-SCO --~~(~~--~--~~~)~~--
A31-AO ~ J>----« ) C 

SIZ1-SIZO ~ J ( ~ 

Tn-TTO ~ J ( ~ 

Rm ~ J>--'---1/ \ C 

U 
031-00 ~ )>----;...------;-----;.--~___ill~-..,.---

_-,--,I 
__ ~ __ --J/ 

1,...""<--__ ALTERNATE --~.~I 
MASTER r- PROCESSOR 

Figure 8-32. Snoop Access with Memory Response 

8.8.3 Snoop Read Cycle Intervention 

If snooping is enabled for a read access, and the corresponding data cache 
line contains dirty data, the MC68040 inhibits memory and responds to the 
access as a slave device to supply the requested read data. Intervention in 
a byte, word, or long word access is independent of which longword entry 

MOTOROLA MC68040 USER'S MANUAL 8-55 

.. 



8-56 

in the cache line is dirty. Figure 8-33 shows an alternate master line read that 
hits a dirty line in the MC68040's data cache. TA is asserted by the processor 
to acknowledge the transfer ofodata to the alternate master, and the data bus 
is driven with the four longwords of data for the line. The timing shown is 
for best-case response time, and can include up to two additional clocks 
before the assertion of TA by the processor due to variations in the timing 
required by the snooping logic to access the caches. 

BCLI< 

SC1-SCO 

c 
) SIZ1-SIZO ~ ~ (~--'-______________ ..--J C 
) moTTO ~ ~ ( 

~---------------~ 
C 

) R,w ~ ~ (L-__________ ----' C 

Mi ~ \ MEMORY INHIBITED FROM RESPONDING: ;--

fA ~ J'---:--~-~-----'----', TA~D DATA ~RIVEN BY ~ROCESSO~ ('_: __ _ 

031-00 

-~/ 
-~-"---'/ 

rtl(f----"---------· ALTERNATE MASTER -------l)O~1 ,--. UNE READ ~ PROCESSOR 

Figu~e 8-33. Snooped Line Read, Memory Inhibited 

MC68040 USER'S MANUAL MOTOROLA 



8.8.4 Snoop Write Cycle Intervention 

If snooping with sink data is enabled for a .byte, wprd, or longword write 
access, and the corresponding data cache line contains dirty data, the MC68040 
inhibits memory and responds to the access as a slave device to read the 
data from the bus and update the data cache line. The dirty bit is set for the 
long word changed in the cache line. Figure 8-34 shows a longword write 
by an alternate master that hits a dirty line in the MC68040's data cache. TA 

MOTOROLA 

BCLK 

SCl·SCO 

.) 
A31·AO ~ J ('--:--_-:--_~--:--J 

I 

I 

SIZI-5IZO ~ ~'-.,....--' __ -'--_--'-_----;--' 

m·TTO ~ ~'--~ __ ~_~_~....I 

I 

C 
C 
C 
C 

Mi ~ \ MEMoRy INHIBiTED FROM ReSPONDING I 
fA ~ J' : "fA~RIVENBY~ROC~ ..... : __ 

031·00 ~ )~--:------i----i---i--~ -<CJf---i---. . . 
DATA WRITTEN BY ALTERNATE MASTER 

_~_-....J/ 
. . . . 

~ALTERNATEMASTER~ ~ 
~ LONGWORDWRITE·~ r- PROCESSOR 

Figure 8-34. Snooped longword Write, Memory Inhibited 

MC66040 USER'S MANUAL 8-57 



is asserted by the processor to acknowledge the transfer of data from the 
alternate master, and the value on the data bus is read by the processor. The 
timing shown isfor'best"case response time, and can include up to two 
additional clocks before the assertion of TA by the processor due to variations 
in the timing required by the snooping logic to access the caches. 

8.9 SPECIAL MODES OF OPERATION 

The MC68040 supports the following three operation modes, which are se­
lectivelyenabled during processor reset and remain in effect until the next 
processor reset. Forfurther information refer to 8.10 RESET OPERATION. 

8.9.1 Output Buffer Impedance Selection 

All output drivers in the MC68040 (with the exception of the test signal TOO) 
can be configured to operate in either a large buffer mode (low impedance 
driver) or small buffer mode (high impedance driver). Large buffers have a 
nominal outputimpedance of 4 ohms for both high and low drive, and provide 
for minimum output delays. Signal traces driven by large buffers usually 
require transmission line effects to be considered in their design, including 
the use of signal termination. Small buffers have a nominal impedance of 
30 ohms for high and low drive, resulting in longer output delays and less 
critical board design requirements. Refer to MC680400H/O, MC68040 Design 
Handbook for further information on electrical specifications, buffer char­
acteristics, and transmission line design examples. 

The output drivers are cOlJfigured in three groups as shown in Table 8-10. 
Each group of signals is configured as either large buffers or small buffers 
by a logic "0" or logic "l"level, respectively, on the corresponding interrupt 
priority level signal during processor reset. 

8.9.2 Multiplexed Bus Mode 

The multiplexed bus mode changes the timing of the three-state control logic 
for the address and data buses to support generation of a multiplexed ad­
dress/data bus. When the MC68040 is operating in this mode, the address 
and data bus signals can be hardwired together to form a single 32-bit bus, 
with address and data information time-multiplexed on the bus. This mini­
mizes the number of pins required to interface to peripheral devices without 
requiring additional discrete multiplexing logic. This mode is enabled during 
a processor reset by a logic "0" level on the cache disable signal (COIS). 

MC68040 USE.R'S MANUAL MOTOROLA 



Table 8-10. Output Buffer Impedance Control Groups 

Signal Output Buffers Controlled 

IPL2 Data Bus: 
031-00 

IPL1 Address Bus and Transfer Attributes: 
A31-AO, ClOUT, LOCK, LOCKE, R/W, 
Sill-SilO, TLN 1-TLNO, TM2-TMO, 
TTl-TTO,UPA1-UPAO 

IPLO Miscellaneous Contro~~ 
BB, BR, IPEND, MI, PST3-PSTO, 
RSTO, TAo TIP, TS 

NOTE: 
High input level=small buffers enabled,low=large buffers 
enabled. 

Figure 8-35 shows a line write with multiplexed bus mode enabled. The 
address bus drivers are enabled during clock 1 and disabled during clock 2. 
Later in clock 2 the data bus drivers are enabled to drive the data bus with 
the data to be written. The address bus is only driven for the BCLK rising g' '.: . 
edge at the start of each bus cycle. 

8.9.3 Data Latch Enable Mode 

The data latch enable (OLE) mode allows read data to be latched by the OLE 
signal, instead of by the BCLK rising edge at the end of each transfer. In 
some applications, this can reduce the number of clocks required to perform 
line burst reads. This mode is enabled during a processor reset by a logic 
"0" level on the MMU disable signal (MOIS). 

Figure 8-36 shows a conceptual block diagram of the logic used to latch the 
read data bus in OLE mode. Transparent latch A is controlled by the OLE 
signal and allows data to be latched before the rising edge of BCLK. Latch 
A operates transparently when OLE is at a high logic level, and latches the 
level on the data bus when OLE transitions to a low level. Note that the DLE 
signal only controls latching of the read data, and does not affect termination 
of the bus transfer. Edge-triggered latch B is clocked by the rising edge of 
BCLK, and latches the data from latch A for use by internal logic. 

MOTOROLA MC68040USER'S MANUAL 8-59 



8-60 

I Cl C2 C3 C4 C5 

BCLI( 

UPA1, UPAO ~~ C 
SIZ1,SIZO ~J C 
m,TTO ~~ C 
TM2-TMO ~~ C 

TLN1,TI)lO ~~ C 
Riii ~\ / 

ClOUT ~J L 
Ts ~~ C 
TIP ~\ C 
'fA ~J \ ;-

A31-AO ~-o C 
031-1)0 

01 I 10 I 11 00 I 
Note: Value 01 A3:A2 incremented by lhe system hardWare. 

Figure·8-35. Multiplexed Address and Data Bus - Line Write 

Figure 8-37 shows the data read timing for both normal operation and OLE 
mode. During normal operation (i.e. OLE mode disabled), latch A is always 
transparent, and read data is latched by the rising edge of BClK. Data must 
meet setup and hold time specifications #15 and #16 in this case. When OLE 
mode is enabled, the data can be latched by the rising edge of BClK or the 
falling edge of DLE;depending on the timing for OLE: 

MC68040 US~R'S MANUAL MOTOROLA 



EXTERNAL 
DATA BUS 

t--------------- WRITE DATA 

TRANSPARENT 
LATCH-A 

EDGE-TRIGGERED 
LATCH-B 

LATCHED 
.---, 0 a 1----\ 0 a I----l~ READ DATA 

G 

DLE------....J BeLK 

TA. TEA, T8I -------------,----'---.. ~ TERMINATION 
CONTROL 

Figure 8-36. DLE Mode Block Diagram 

DLE MODE DATA BUS TIMING 

BeLK 

OLE 

00-031 IN 
(READ) 

MOTOROLA 

BeLK 

00-031 IN 
(READ) 

NORMAL DATA BUS TIMING 

Figure 8-37. DLE versus Normal Data Read Timing 

MC68040 USER'S MANUAL 

• 

8-61 



Case 1. 
If OLE is negated high, and meets setup time #35 to the rising edge of 
BClK when the bus read is terminated, latch A is transparent and the read 
data must meet setup and hold time specifications #36 and #37 to the 
rising edge of BClK. Read timing is similar to normal timing for this case. 

Case 2. 
If OLE is asserted low, the data bus levels are latched and held internally. 
D31-00 must meet setup and hold time specifications #32 and #33 to the 
falling edge of OLE, and can transition to a new level once OLE is asserted 
low. 031-00 must still meet setup time #36 to BClK, but not hold time 
#37, since the data is held valid as long as OLE remains asserted low. 

8.10 RESET OPERATION 

The reset input signal (RSTI) is asserted by an external device to reset the 
. processor. When power is applied to the system, external circuitry should 
assert RSTI for a minimum Of ten BClK cycles after VCC is within tolerance. 
Figure 8-38 is a timing diagram of the power-on reset operation, showing 

BCLK 

BUS 
SIGNALS 

8-62 

Figure 8-38. Initial Power-On Reset Timing 

MC68040 USER'S MANUAL MOTOROLA 



the relationships between VCC, RSTI, mode selects, and bus signals. The 
BCLK and PCLK clock signals are required to be stable by the time VCC 
reaches the minimum operating specification. RSTI is internally synchronized 
for two BCLKS before being used, and must therefore meet the specified 
setup and hold times to BCLK (specifications #51 and #52) only if recognition 
by a specific BCLK rising edge is required. 

Once RSTI negates, the processor is internally held in reset for another 128 
clock cycles. During the reset period, all three-statable signals three-state, 
and non-three-statable signals are driven to their inactive state. Once the 
internal reset signal negates, all bus signals continue to remain in a high­
impedance state until the processor is granted the bus. After this, the first 
bus cycle for reset exception processing begins. In Figure 8-38 the processor 
assumes implicit ownership of the bus before the first bus cycle begins. 

The levels on the CDIS, MDIS, and IPL2-IPLO signals when RSTI negates are 
used to selectively enable the multiplexed bus mode, DLE mode, and large 
versus small buffer drivers. These signals should be driven to their normal 
levels before the end of the 128 clock internal reset period. 

For processor resets after the initial power-on reset, RSTI should be asserted 
for at least ten clock periods. Figure 8-39 shows timing associated with a 
reset when the processor is executing bus cycles. Note that BB and TIP (and 
TA if driven during a snooped access) are asserted before transitioning to a 
three-state level. 

Resetting the processor causes any bus cycle in progress to terminate as if 
TAor TEA had been asserted. In addition, the processor initializes registers 
appropriately for a reset exception. Exception processing for a reset operation 
is described in SECTION 9 EXCEPTION PROCESSING. 

When a RESET instruction is executed, the processor drives the reset out 
(RSTO) signal for 512 BCLK cycles. In this case, the processor resets the 
external devices of the system, and the internal registers of the processor 
are unaffected. The external devices connected to the RSTO signal are reset 
at the completion of the reset instruction. An RSTI signal that is asserted to 
the processor during execution of a reset instruction immediately resets the 
processor and causes the RSTO signal to negate. RSTO can be logically 
and'ed with the external signal driving RSTI to derive a system reset signal 
that is asserted for both an external processor reset and execution of a RESET 
instruction. 

MOTOROLA MC68040 USER'S MANUAL 8-63 



BCLK 

'*1 .. "'-: -'--'I ~ \0 c~OCKs4 t CL~KS +-128 CLOC:KS-j 
RSll - ---:l : ::~::: ",,-r-r-: ----.:,....--.....----.------.-....---

CDIS, MeIS, = ~l--: ___ ' __ ' ----J .... -"', I:, ' , .... ~, ,-~' --:...--'----=--~-
IP1.2-IPlO _ ---.I ' -~ '~ 

BUS 
SIGNALS 

, , 

8-64 

~ ""-

~ ""-

~ ""-

I 
, ""- ""-

r ""-

~ ""-

Figure 8-39. Normal Reset Timing 

MC68040 USER'S MANUAL MOTOROLA 



SECTION 9 
EXCEPTION PROCESSING 

Exception processing is defined as the activities performed by the processor 
in preparing to execute a handler routine for any condition that causes an 
exception. In particular, exception processing does not include execution of 
the handler routine itself. This section describes the processing for each type 
of exception, exception priorities, the return from an exception, and bus fault 
recovery. This section also describes the formats ofthe exception stack frames. 
For details of memory management unit (MMU) related exceptions, refer to 
SECTION 6 MEMORY MANAGEMENT. 

9.1 EXCEPTION PROCESSING SEQUENCE 

The MC68040 uses a restart exception processing model to minimize interrupt 
and instruction latency, and to reduce the size of the stack frame (compared 
to the frame required for a continuation model). Exceptions are recognized 
at each instruction boundary in the execute stage of the integer pipeline, and __ • 
force later instructions which have not yet reached the execute stage to be .. 
aborted. Instructions which can not be interrupted, such as those that gen-
erate locked bus transfers or access serialized pages, are allowed to complete 
before exception processing begins. 

Exception processing occurs in four functional steps. However, all individual 
bus cycles associated with exception processing (vector acquisition, stacking, 
etc.) are not guaranteed to occur in the order in which they are described in 
this section. 

In the first step of exception processing, the processor makes an internal 
copy of the status register (SR). Then the processor sets the S bit in the SR, 
changing to the supervisor mode. Next, the processor inhibits tracing of the 
exception handler by clearing the trace enable (T1 and TO) bits. For the reset 
and interrupt exceptions, the processor also updates the interrupt priority 
mask. 

In the second step, the processor determines the vector number of the ex­
ception. For interrupts, the processor performs an interrupt acknowledge 
cycle to obtain the vector number. For all other exceptions, internal logic 

MOTOROLA MC68040 USER'S MANUAL 9-1 



provides the vector number. This vector number is used in the last step to 
calculate the address of the exception vector. Throughout this section, vector 
numbers are given in decimal notation. 

For all exceptions other than reset, the third step is to save the current 
processor context. The processor creates an exception stack frame on the 
active supervisor stack and fills it with context information appropriate for 
the type of exception. Other information may also be stacked, depending on 
which exception is being processed and the state of the processor prior to 
the exception. If the exception is an interrupt and the master/interrupt (M) 
bit of the SR is set, the processor clears the M bit in the SR, and builds a 
second stack frame on the interrupt stack. 

The last step initiates execution of the exception handler. The processor 
multiplies the vector number by fourto determine the exception vector offset. 
It adds the offset to the value stored in the vector base register (VBR) to 
obtain the memory address of the exception vector. Next, the processor loads 
the program counter (and the interrupt stack pointer (ISP) for the reset ex­
ception) from the exception vector table entry. After prefetching the first four 
longwords to fill the instruction pipe, the processor resumes normal proc­
essing at the address in the program counter. 

All exception vectors are located in supervisor address space, and are ac­
cessed using data references. Only the initial reset vector is fixed in the 
processor's memory map; once initialization is complete, there are no fixed 
assignments. Since the VBR provides the base address of the vector table, 
the vector table can be located anywhere in memory; it can even be dynam­
ically relocated for each task that is executed by an operating system. 

The MC68040 supports a 1024-byte vector table containing 256 exception 
vectors (See Table 9-1). The first 64 vectors are defined by Motorola and 192 
vectors are reserved for interrupt vectors defined by the user. However, 
external devices may use vectors reserved for internal purposes at the dis-
cretion of the system designer. . 

9.2 STACK FRAMES 

9-2 

When the processor executes an RTE instruction, it examines the stack frame 
on top of the active supervisor stack to determine if it is a valid frame and 
what type of context restoration it requires. The MC68040 provides five dif­
ferent stack frames for exception processing. The set of frames include the 
four and six word stack frames, four word throwaway stack frame, floating­
point post-instruction stack frame, and the access error stack frame. Table 
9-2 summarizes the stack frames. 

MC68040 USER'S MANUAL MOTOROLA 



Table 9-1. Exception Vector Assignments 

Vector Vector Offset 
Assignment 

Number(s) (Hex) 

0 000 Reset Initial Interrupt Stack Pointer 
1 004 Reset Initial Program Counter 
2 008 Access Fault 
3 OOC Address Error 

4 010 Illegal Instruction 
5 014 Integer Divide by Zero 
6 018 CHK, CHK2 Instruction 
7 01C FTRAPcc, TRAPcc, TRAPV Instructions 

8 020 Privilege Violation 
9 024 Trace 

10 028 Line 1010 Emulator (Unimplemented A-Line Opcode) 
11 02C Line 1111 Emulator (Unimplemented F-Line Opcode) 

12 030 (Unassigned, Reserved) 
13 034 Defined for MC68020 and MC68030, not used by MC68040 
14 038 Format Error 
15 03C Uninitialized Interrupt 

16-23 040-05C (Unassigned, Reserved) 

24 060 Spurious Interrpt 
25 064 Levell Interrupt Autovector 
26 068 Level 2 Interrupt Autovector 
27 06C Level 3 Interrupt Autovector 

28 070 Level 4 Interrupt Autovector 
29 074 Level 5 Interrupt Autovector 
30 078 Level 6 Interrupt Autovector 
31 07C Level 7 Interrupt Autovector 

32-47 080-0BC TRAP #0-15 Instruction Vectors 

48 OCO FP Branch or Set on Unordered Condition 
49 OC4 FP Inexact Result 
50 OC8 FP Divide by Zero 
51 OCC FP Underflow 

52 000 FP Operand Error 
53 004 FP Overflow 
54 008 FP Signaling NAN 
55 ODC FP Unimplemented Data Type 

56 OEO Defined for MC68030 and MC68851, not used by MC68040 
57 OE4 Defined for MC68851, not used by MC68040 
58 OE8 Defined for MC68851, not used by MC68040 

59-63 OEC-OFC (Unassigned, Reserved) 

64-255 100-3FC User Defined Vectors (192) 

When the MC68040 writes or reads a stack frame, it uses long word operand 
transfers wherever possible. Using a long-word-aligned stack pointer greatly 
enhances exception processing performance. The processor does not nec­
essarily read or write the stack frame data in sequential order. The system 
software should not depend on a particular exception generating a particular 

MOTOROLA MC68040 USER'S MANUAL 9-3 

• 



Table 9-2. Exception Stack Frames (Sheet 1 of 2) 

Stack Frames Exception Types (Stacked PC Points to) 

• Interrupt 
• Formal Error 

~ext Instruction) 
TE or FRESTORE instruction 

15 0 • TRAP jN rext instruction) 
SP~ STATUS REGISTER • lI'4!Ilailnstruction Illegal instruction 

+$02 PROGRAM COUNTER 
• A-Una Instruction A-line Instructionl 
• F-Une Instruction F-line Instruction) 

+$06 0000 VECTOR OFFSET • Privilege Violalion (First word of instruction causing 
Privilege VlOIalion) 

FOUR WORD STACK FRAME - FORMAT $0 
• Floating Point 

Pre-Instruction 
(Float~-POint instruction thai 
return pre-instruction exception) 

15 0 • Created on Interrupt Stack (Next instruction - same as 
SP~ STATUS REGISTER during interrupt exception on master stack) 

+$02 PROGRAM COUNTER 
processing when transnlon 
110m master state to 

+$06 0001 VECTOR OFFSET 
interrupt state occurs 

THROWAWAY FOUR WORD STACK FRAME - FORMAT $1 

·CHK (Next instruction) 
·CHK2 
·TRAPcc ADDRESS 

15 0 'FTRAPcc is the address of the 
SP ...... STATUS REGISTER ·TRAPV instruction that caused the 

+$02 • Trace exception 
PROGRAM COUNTER • Zero Divide 

• +$06 0010 VECTOR OFFSET 
+$08 ADDRESS 

• Unimplemented FP (Next instruction) 
Instruction ADDRESS 

is the calculated effective 
SIX WORD STACK FRAME - FORMAT $2 address for the FP 

instruction 

• Address Error (tnstruction thai caused the 
address error) 

ADDRESS is the reference 
address 

15 0 • F1oatin~-POint (Next instruction) 
SP ...... STATUS REGISTER Post- nstruction 

+$02 PROGRAM COUNTER EFFECTIVE ADDRESS 
is the caiaJlaled effective 

+$06 0011 VECTOR OFFSET address for the FP 
+$08 EFFECTIVE ADDRESS 

instruction 

FLOATING-POINT POST-INSTRUCTION 
STACK FRAME - FORMAT $3 

9-4 MC68040 USER'S MANUAL MOTOROLA 



Table 9-2. Exception Stack Frames (Sheet 2 of 2) 

Stadl Frames 

~~~ ______ ~~~~SL ______ ~ 

+$02 1------ PI~OGIWlCOUN1

+$06 := ~~~~Eii~=~~==j
+$OC t---~--"......"""'imi<iim~m"..,,....,

~ t::=1==311~111~ +$12\=
+$14 ~---IFAlJL

+$18 t----\NRllEBAICK

+$1C ~-----WFUTEI!ACK

+$20 t----\NRllEBAICK

+$24 !-------WFUTEIIACK

+$28 ~---\NRllEBAICK

+$2C L...-,.,""'C"At'l(u,,,,,,.'''''''
+$30 I----PUSH

+$34 ~---PUSH

+$38t-----PUSH

ACCESS ERROR STACK FRAME (30 WORDS) - FORMAT $7

9.3 INTEGER UNIT EXCEPTIONS

Exception Types (Stacked PC Points to)

·Access Faull (Next instruction)
ATC IauK or bus error

The following paragraphs describe the external interrupt exception and the
different types of exceptions generated by the MC68040 integer unit. The
following exceptions are discussed:

e Reset

• Access Fault

• Address Error

elnstruction Trap

• Illegal and Unimplemented Instructions

• Unimplemented Floating Point Instructions

• Privilege Violation

• Trace

• Format Error

MOTOROLA MC68040 USER'S MANUAL 9-5

..

•

9.3.1 Reset Exception

9-6

Assertion of the reset in (RSTI) input signal causes a reset exception. The
reset exception has the highest priority of any exception; it provides for
system initialization and recovery from catastrophic failure. It aborts any
processing in progress when it is recognized, and that processing cannot be
recovered. Figure 9-1 is a flowchart of the reset exception, which performs
the following operations:

1. Clears both trace bits (T1 and TO) in the SR to disable tracing.

2. Places the processor in the interrupt mode of the supervisor privilege
mode by setting the supervisor (S) bit and clearing the master (M) bit
in the SR.

3.

4.

5.

6.

7.

B.

9.

10.

Sets the processor interrupt priority mask to the highest priority level
(level seven).

Initializes the VBR to zero ($00000000).

Clears the enable bits for the on-chip caches in the cache control reg­
ister.

Clears the enable bit and sets the page size bit (selecting BK pages) in
the translation control register (TCR). Clears the enable bit in each of
the four transparent translation registers .

Generates a vector number to reference the reset exception vector (two
long words) at offset zero in the supervisor address space.

Loads the first long word of the reset exception vector into the ISP.

Loads the second long word of the reset exception vector into the
program counter (PC).

Prefetches the first four longwords beginning at the memory location
pointed to by the PC.

After the initial instruction prefetches, program execution begins at the ad­
dress in the PC. The reset exception does not flush the address translation
caches (ATCs), invalidate entries in the instruction or data caches, nor does
it save the value of either the PC or the SR.

If a access fault or address error occurs during the exception processing
sequence for a reset, a double bus fault is generated. The processor halts,
and the processor status (PST3-PSTO) signals indicate 0111.

MC68040 USER'S MANUAL MOTOROLA

MOTOROLA

S. 1
M. 0

n. TO. 0
12: 10. $7
VBR. $0

CACR. $0
DTIn[E]. 0
ITIn[E]. 0

OTHERWISE
BEGIN INSTRUCTION

EXECUTION

(DOUBlE BUS FAUlT)

(DOUBLE BUS FAUlT)

BUS ERROR OR
ADDRESS ERROR

Figure 9-1. Reset Operation Flowchart

MC68040 USER'S MANUAL

•

9-7

•

Execution of the reset instruction does not cause a reset exception, nor does
it affect any internal registers, but it does cause the MC68040 to assert the
reset out (RSTO)'slgriaC're'Settingall external devices. ' •

9.3.2 Access Fault Exception

9-8

An access fault exception occurs when a data access or instruction prefetch
access faults due to either an external bus error or an internal address trans­
lation fault. Both faults are treated identically, and can be distinguished by
the access fault exception handler by a status bit in the access fault stack
frame.

External logic can abort a bus cycle and signal a bus error by asserting the
TEA input signal. An access fault exception mayor may not be taken im­
mediately, depending on whether the faulted access referenced data specif­
ically required by the execution units, and whether any other exceptions
occur in allowing the. execution pipeline to idle. A bus error on a data write
access always results in an access fault exception, and the processor begins
exception processing immediately. A bus error on a data read also causes
exception processing to begin immediately if the access is a byte, word, or
long word access, or if the bus error occurs on the first transfer of a line
read. Bus errors on the second, third, or fourth transfers for a data line read
cause the transfer to be aborted, but result in a bus error only if the execution
unit is specifically requesting the long word being transfered. For example,
if a misaligned operand spans the first two long words in the line being read,
a bus error on the second transfer causes an exception, but a bus error on
the third or last transfer does not (unless the execution unit has generated
another operand access which references data in these transfers).

Bus errors Which occur during instruction prefetches are deferred until the
processor attempts to use. the prefetched information. For instance, if a bus
error occurs while prefetching other instructions after a change of flow in­
struction (BRA, JMP, JSR, TRAP#n, etc.), the exception condition is cleared
by execution of the new instruction flow. This also applies to the not-taken
branch for a conditional branch instruction, even though both sides of the
branch are decoded.

An access fault exception also occurs when the data MMU or instruction
MMU detects that.a successful address translation is not possible because
the pageiswriteprotected, supervisor-ohly, or non-resident. Furthermore,
when an ATC miss occurs, the processor searches the translation tables in
memory for the mapping, and then retries the access. If a valid translation

MC68040.USER'S MANUAL MOTOROLA

for the logical address is, not available due to a problem encountered during
the table search, a bus error exception occurs when the aborted access is
retried. The problem encountered could be eitheum invalid descriptor, or
the assertion of the TEA signal during a bus cycle used to access the trans­
lation tables. A miss in the ATC causes the processor to automatically initiate
a table search but does not cause a bus error exception unless one of the
specific conditions mentioned above is encountered.

When an exception is detected, all parts ofthe execution unit are eitherforced
or allowed to idle, at which time the highest priority exception is taken. Lower
priority exceptions can be regenerated on the, re.tl!rn from exception either
by restarting the instruction or by the supervisor cleanup routine. Instruction
ATC faults and bus errors are reported after all other pending integer instruc­
tions complete execution. If an exception is generated during completion of
the earlier instructions, the pending jnstruction,.fau1tis cleared and the new
exception is serviced first. The processor restarts the pending prefetch after
completing exception handling for the earlier instructions, and takes a bus
error exception ifthe access faults again. For data access faults the processor
aborts current instruction execution, waits for the current instruction prefetch
bus cycle to complete (if a data ATC f,ault wasdetectedtthen begins 'exception
processing immediately.

The processor begins exception processing for a bus error by making an 9 .
internal copy of the current SR. The processor then enters the supervisor
mode , and clears T1 and TO. The processor generates exception vector
number 2, for the bus error vector. It saves the vector offset, PC, and the
internal copy ofthe SR on the stack. The saved PC value is the logical address
of the instruction that was executing at the time the fault was detected. This
is not necessarily the instruction that initiated the bus cycle, since the pro-
cessor overlaps execution of instructions. the processor also saves infor-
mation to allow continuation after a fault for" MOVEM instruction and to
support other pending exceptions. The fault address and pending writeback
information is saved. The information saved on' the stack is sufficient to
identify the cause of the bus fault, complete pending write backs, and recover
from ,the error. Exception handler must complete the pending writebacks.
Up to three write backs can be pending for push errors and data access errors.

If a bus error occurs during the exception processing for a bus error, address
error, or reset, or while the processor is loading internal state information
from the stack during the execution of an RTE instruction, a double bus fault
occurs and the processor enters the halted state a's"iridicated by the PST3-PSTO
signals equaling 0111. In this case, the proceSSb!-' (foes not attempt to alter
the current state of memory. Only an external reset can restart a processor
halted by a double bus fault.

MOTOROLA
". '

MC68040 USER'S MANUAL 9-9

•

The supervisor stack has special requirements to ensure that exceptions can
be stacked. The stack must be resident with correct protection in the direction
of growth, to ensure that exception stacking never has a bus error or ATC
fault. Memory pages allocated to the stack that are higher in memory(than
the C\Jrrent stack pointer) may be nonresident since an RTE orFRESTORE
instruction can check for residency and trap before restoring the state.

A special case exists for systems that allow arbitration of the processor bus
during locked transfer sequences. If a locked translation table update could
be bus errored by the arbiter due to an improperly broken lock, any pages
touched by exception, ~tack op,erations must have the U bit set in the cor­
responding page descriptor to prevent the occurrence of the locked access
during translation table searches.

9.3.3 Address Error Exception

An address error exception occurs when the processor attempts to prefetch
an instruction from an odd address. (This includes the case of a conditional
branch instruction with an odd branch offset, that is not taken.) A prefetch
bus cycle is not executed and the processor begins exception processing
after the currently executing instructions complete. If another exception is
generated by the completion of these instructions, the address error excep­
tion is deferred and the new exception is serviced. After exception processing
for the address error commences, the sequence is the same as that for bus
error exceptions, except that the vector number is 3 and the vector offset
in the stack ftame refers to the address error vector. A type $2 stack frame
is generated that contains the address of the instruction that caused the
address error and the ac;ldress itself (with bit zero of.the address cleared). If
an address error occurs during the exception processing for a bus error,
address error, or reset, a'double bus fault occurs.

9.3.4 Instruction Trap Exception

9-10

Certain instructions are used to explicitly cause trap exceptions. The TRAP#n
instruction always forces an exception, and is useful for implementing system
calls in user programs. The TRAPcc, FTRAPcc, TRAPV, CHK, and CHK2 in­
structions force exceptions if the user program detects an error, which may
be an arithmetic overflow or a subscript value that is out of bounds. The
DIVS and DIVU instructions force exceptions if a division operation is at­
tempted with a divisor of zero. '

MC68«)40 USER'S MANU~L MOTOROLA

When a trap exception occurs, the processor copies the internally SR, enters
the supervisor mode, and clears T1 and TO. The processor generates a vector
number according to the instruction being executed. Vector 5 is for DIVx,
vector 6 is for CHK and CHK2, and vector 7 is for FTRAPcc, TRAPcc, and
TRAPV instructions. For the TRAP#n instruction, the vector number is 32
plus n. The stack frame saves the trap vector offset, the PC, and the internal
copy of the SR on the supervisor stack. The saved value of the PC is the
logical address of the instruction following the instruction that caused the
trap. For all instruction traps other than TRAP#n, a pointer to the instruction
that caused the trap is also saved. Instruction execution resumes at the ad­
dress in the exception vector after the required instruction prefetches.

9.3.5 Illegal Instruction and Unimplemented Instruction Exceptions

An illegal instruction is an instruction that contains any bit pattern that does
not correspond to the bit pattern of a valid MC68040 instruction, or a MOVEC
instruction with an undefined register specification field in the first extension
word. An illegal instruction exception corresponds to vector number 4, and
occurs when the processor attempts to execute an illegal instruction.

An illegal instruction exception is also taken after a breakpoint acknowledge
bus cycle is terminated, whether by the assertion of the transfer acknowlege II
(TA) or the transfer error acknowlege (TEA) signal.

Instruction word patterns with bits [15:12] equal to $A are referred to as
unimplemented instructions with A-line opcodes. When the processor at­
tempts to execute an unimplemented instruction with an A-line opcode, an
exception is generated with vector number 10, permitting efficient emulation
of unimplemented instructions.

Instructions that have bits [15:12] of the first word equal to $F and do not
correspond to legal instructions for the MC68040 or the MC688811MC68882
are treated as unimplemented instructions with F-line opcodes when exe­
cution is attempted. The exception vector number for an unimplemented
instruction with an F-line opcode is number 11.

Exception processing for illegal and unimplemented instructions is similar
to that for instruction traps. When the processor has identified an illegal or
unimplemented instruction, it initiates exception processing instead of at­
tempting to execute the instruction. The processor copies the SR, enters the
supervisor mode, and clears the trace bits, disabling further tracing. The
processor generates the vector number, either 4, 10, or 11, according to the

MOTOROLA MC68040 USER'S MANUAL 9-11

exception type. The illegal or unimplemented instruction vector offset, cur­
rent PC, and copy of the SR are saved on the supervisor stack, with the saved
value of the PC being the address of the illegal or unimplemented instruction.
Instruction execution resumes at the address contained in the exception
vector. It is the responsibility of the handling routine to adjust the stacked
program counter ifthe instruction is emulated in software or is to be skipped
on return from the handler.

9.3.6 Unimplemented Floating-Point Instruction Exception

Instructions that correspond to legal MC68881/MC68882 instructions but are
not implemented in the MC68040 are defined as unimplemented floating
point instructions. Like other unimplemented instructions, an F-line exception
is generated when an unimplemented floating-point instruction is encoun­
tered. To aid in emulation of these instructions, the processor partially de­
codes the instruction to determine the effective address of the memory
operand if required, and fetches the operand before taking the F-line excep­
tion. By performing an FSAVE to access the internal floating-point unit (FPU)
state, the exception handler has access to all the information required to
emulate the instruction without accessing user memory.

Exception processing for unimplemented floating-point instructions is slightly
different from that for other unimplemented instructions. A longer stack frame
is created that also contains the calculated effective address of the memory
operand. The stacked PC points to the next instruction to be executed after
the unimplemented floating point instruction, and the actual address of the
unimplemented floating-point instruction is available to the exception han­
dier in the FSAVE instruction state frame. More detailed information on un­
implemented floating-point instructions is contained in 9.8.1 Unimplemented
Floating-Point Instructions.

9.3.7 Privilege Violation Exception

9-12

In order to provide system security, the instructions listed in Table 9-3 are
privileged. An attempt to execute one of the privileged instructions while at
the user mode causes a privilege violation exception.

Exception processing for privilege violations is similar to that for illegal in­
structions. When the processor identifies a privilege violation, it begins ex­
ception processing before executing the instruction. The processor copies
the SR, enters the supervisor mode, and clears T1 and TO. The processor
generates vector number 8, saves the privilege violation vector offset and

MC68040 USER'S MANUAL MOTOROLA

Table 9-3. Privileged Instructions

ANDI to SR
CINV
CPUSH
EORI to SR
FRESTORE
FSAVE
MOVE from SR
MOVE to SR
MOVE USP

MOVEC
MOVES
ORI TO SR
PFLUSH
PTEST
RESET
RTE
STOP

the current PC value, and the internal copy of the SR on the supervisor stack.
The saved value of the PC is the logical address of the first word of the
instruction that caused the privilege violation. Instruction execution resumes
after the required prefetches from the address in the privilege violation ex­
ception vector.

9.3.8 Trace Exception
To aid in program development, the M68000 processors include an instruc­
tion- by-instruction tracing capability. The MC68040 can be programmed to
trace all instructions or only instructions that change program flow. In the
trace mode, an instruction generates a trace exception after it completes
execution, allowing a debugger program to monitor execution of a program .

The T1 and TO bits in the supervisor portion of the SR control tracing. The
state of these bits when an instruction begins execution determines whether
the instruction generates a trace exception after the instruction completes.
Clearing the T1 bit and setting the TO bit causes an instruction that forces a
change of flow to take a trace exception. Instructions that increment the PC
normally do not take the trace exception. Instructions that are traced in this
mode include all branches, jumps, instruction traps, and returns. This mode
also includes SR manipulations, because the processor must re-prefetch in­
struction words to fill the pipe again any time an instruction that can modify
the SR is executed. Table 9-4 shows the different trace modes.

Table 9-4. Tracing Control

T1 TO Tracing Function

0 0 No Tracing

0 1 Trace on Change of Flow (BRA. JMP, etc.)

1 0 Trace on Instruction Execution (Any Instruction)

1 1 Undefined, Reserved

MOTOROLA MC68040 USER'S MANUAL 9-13

..

In general terms, a trace exception is an extension to the function of any
traced instruction. The execution of a traced instruction is not complete until
the trace exception processing is completed. If an instruction does not com­
plete due to a bus error or address error exception, trace exception processing
is deferred until after the execution of the suspended instruction is resumed
and the instruction execution completes. If an interrupt is pending at the
completion of an instruction, the trace exception processing occurs before
the interrupt exception processing starts. If an instruction forces an exception
as part of its normal execution, the forced exception processing occurs before
the trace exception is processed.

When the processor is in the trace mode and attempts to execute an illegal
or unimplemented instruction, that instruction does not cause a trace ex­
ception since it is not executed. This is of particular importance to an instruc­
tion emulation routine that performs the instruction function, adjusts the
stacked program counter to skip the unimplemented instruction, and returns.
Before returning, the trace bits of the SR on the stack should be checked. If
tracing is enabled, the trace exception processing should be emulated also,
in order for the trace exception handler to account for the emulated instruc­
tion.

The exception processing for a trace starts at the end of normal processing
for the traced instruction, and before the start of the next instruction. The
processor makes an internal copy of the SR, and enters the supervisor mode.
It also clears the TO and T1 bits of the SR, disabling further tracing. The
processor supplies vector number 9 for the trace exception, and saves the
trace exception vector offset, PC value, and the copy of the SR on the su­
pervisor stack. The saved value of the PC is the logical address of the next
instruction to be executed. Instruction execution resumes after the required
prefetches from the address in the trace exception vector.

The STOP instruction does not perform its function when it is traced. A STOP
instruction that begins execution with T1 = 1 and TO = 0 forces a trace excep­
tion after it loads the SR. Upon return from the trace handler routine, exe­
cution continues with the instruction following the STOP, and the processor
never enters the stopped condition.

9.3.9 Format Error Exception

Just as the processor checks that prefetched instructions are valid, the pro­
cessor also performs some checks of data values for control operations. The
RTE instruction checks the validity of the stack format code. For FPU state
frames, the FRESTORE instruction compares the internal version number of

MC68040 USER'S MANUAL MOTOROLA

the processor to that contained in the state frame. This check ensures that
the processor can correctly interpret internal FPU state information from the
state frame.

If any of the checks previously described determine that the format of the
data is improper, the instruction generates a format error exception. This
exception saves a format $0 stack frame, generates exception vector number
14, and continues execution at the address in the format exception vector.
The stacked PC value is the logical address of the instruction that detected
the format error.

9.3.10 Interrupt Exceptions

When a peripheral device requires the services of the MC68040, or is ready
to send information that the processor requires, it may signal the processor
to take an interrupt exception. The interrupt exception transfers control to a
routine that responds appropriately.

The peripheral device uses the active low interrupt Priority level signals
(IPLO-IPL2) to signal an interrupt condition to the processor and to specify
the priority ofthat condition. The three signals encode a value of zero through
seven (IPLO is the least-significant bit). High levels on all three signals cor-
respond to no interrupt requested (level 0) and low levels on IPLO-IPL2 cor- _
respond to interrupt request level 7. Values one through seven specify one
of seven levels of interrupts; level seven has the highest priority. External
circuitry can chain or otherwise merge signals from devices at each level,
allowing an unlimited number of devices to interrupt the processor.

The IPLO-IPL2 interrupt signals must maintain the interrupt request level until
the MC68040 acknowledges the interrupt in order to guarantee that the in­
terrupt is recognized. The MC68040 continuously samples the IPLO-IPL2 sig­
nals on consecutive rising edges of BCLK in order to synchronize and debounce
these signals. An interrupt request that is held constant for two consecutive
clock periods is considered a valid input. Although the protocol requires that
the request remain until the processor runs an interrupt acknowledge cycle
for that interrupt value, an interrupt request that is held for as short a period
as two clock cycles could be recognized.

The SR of the MC68040 contains an interrupt priority mask (12, 11, 10, bits
10-8). The value in the interrupt mask is the highest priority level that the
processor ignores. When an interrupt request has a priority higher than the
value in the mask, the processor makes the request an interrupt pending.
Figure 9-2 is a flowchart of the procedure for making an interrupt pending.

MOTOROLA MC68040 USER'S MANUAL 9-15

..

9-16

INTERRlJIT LEVEL> 12:10.
OR TRANSITION ON LEVEL 7

Figure 9-2. Interrupt Pending Procedure

When several devices are connected to the same interrupt level, each device
should hold its interrupt priority level constant until its corresponding inter­
rupt acknowledge cycle to ensure that all requests are processed .

Table 9-5 lists the interrupt levels, the states of IPL2-IPLO that define each
level, and the mask value that allows an interrupt at each level.

Table 9-5. Interrupt Levels and Mask Values

Requested Contml Line Status Interrupt Mask Level
Interrupt Level

IPL2 IPL1 IPLO
Required for Recognition

0* High High High N/A*

1 High High Low 0

2 High Low High 0-1

3 High Low Low 0-2

4 Low High High 0-3

5 Low High Low 0-4

6 Low Low High 0-5

7 Low Low Low 0-7

*Indicates that no interrupt is requested.

Priority level seven, the non-maskable interrupt (NMI), is a special case. Level
seven interrupts cannot be masked by the interrupt priority mask and they
are transition sensitive. The processor recognizes an interrupt request each

MC68040 USER'S MANUAL MOTOROLA

time the external interrupt request level changes from some lower level to
level seven, regardless of the value in the mask. Figure 9-3 shows two ex­
amples of interrupt recognitions, one for level six and one for level seven.
When the MC68040 processes a level 6 interrupt, the SR mask is automatically
updated with a value of 6 before entering the handler routine so that sub­
sequent level six interrupts are masked. Provided that no instruction lowers
the mask value is executed, the external request can be lowered to level three
and then raised back to level six and a second level six interrupt is not
processed. However, ifthe MC68040 is handling a level seven interrupt (status
register mask set to 7) and the external request is lowered to level three and
than raised back to level seven, a second level seven interrupt is processed.
The second level seven interrupt is processed because the level seven in­
terrupt is transition sensitive. A level seven interrupt is also generated by a
level comparison if the request level and mask level are at seven and the
priority mask is then set to a lower level (with the MOVE to SR or RTE
instruction, for example). As shown in Figure 9- 3 for level six interrupt
request level and mask level, this is the case for all interrupt levels.

EXTERNAL SR MASK ACTION
I PL2-1PLO (12:10)

LEVEL 6 EXAMPLE

100 ($3) 101 ($5) INITIAL CONDITIONS _

I (LEVEL COMPARISON) • IF 001 ($6) THEN 110 ($6) AND LEVEL 6 I NTERRU PT

IF 100 ($3) AND STILL 110 ($6) THEN NO ACTION

IF 001 ($6) AND STILL 110 ($6) THEN NO ACTION

IF 001 ($6) AND RTE SO THAT 101 ($5) THEN LEVEL 6 INTERRUPT I (LEVEL COMPARISON)

LEVEL 7 EXAMPLE

100 ($3) 101 ($5) INITIAL CONDITIONS

IF 001 ($7) THEN 111 ($7) AND LEVEL 7 INTERRUPT I (TRANSITION)

IF 100 ($3) AND STILL 111 ($7) THEN NO ACTION

IF 000 ($7) AND STILL 111 ($7) THEN LEVEL 7 INTERRUPT I (TRANSITION)

IF 000 ($7) AND RTE SO THAT 101 ($5) THEN LEVEL 7 INTERRUPT I (LEVEL COMPARISON)

Figure 9-3. Interrupt Recognition Examples

MOTOROLA MC68040 USER'S MANUAL 9-17

..

9-18

Note that a mask value of six and a mask value of seven both inhibit request
levels of one through six from being recognized. In addition, neither masks
a transition to an interrupt request level of seven. The only difference between
mask values of six and seven occurs when the interrupt request level is seven
and\ the mask value is seven. If the mask value is lowered to six, a second
level'seven interrupt is recognized.

The MC68040 asserts IPEND when it makes an interrupt request pending.
Figure 9-4 shows the assertion of IPEND relative to the assertion of an in­
terrupt level on the IPL lines. IPEND signals to external devices that an in­
terrupt exception will be taken at an upcoming instruction boundary (following
any higher-priority exception).

BCLI(

IPLs RECOGNIZED

IPLs SYNCHRONIZED

COMPARE REQUEST WITH MASK IN SA

Figure 9-4. Assertion of IPEND

When processing an interrupt exception, the processor first makes an internal
copy of the SR, sets the mode to supervisor, suppresses tracing, and sets
the processor interrupt mask level to the level of the interrupt being serviced.
The processor attempts to obtain a vector number from the interrupting
device using an interrupt acknowledge bus cycle with the interrupt level
number output on the transfer modifier signals. For a device that cannot
supply an interrupt vector, the autovector signal (AVEC) can be asserted. The
MC68040 uses an internally generated autovector, which is one of vector
numbers 25-31, that corresponds to the interrupt level number. If external
logic indicates a bus error during the interrupt acknowledge cycle, the in­
terrupt is considered spurious, and the processor generates the spurious
interrupt vector number, 24.

Once the vector number is obtained, the processor saves the exception vector
offset, PC value, and the internal copy of the SR on the active supervisor
stack. The saved value of the PC is the logical address of the instruction that
would have been executed had the interrupt not occurred.

MC68040 USER'S MANUAL MOTOROLA

If the M bit of the SR is set, the processor clears the M bit and creates a
throwaway exception stack frame on top of the interrupt stack as part of
interrupt exception processing. This second frame contains the same PC
value and vector offset as the frame created on top of the master stack, but
has a format number of 1. The copy of the SR saved on the throwaway frame
is exactly the same as that placed on the master stack except that the S bit
is set in the version placed on the interrupt stack. (It mayor may not be set
in the copy saved on the master stack.) The resulting SR (after exception
processing) has the S bit set and the M bit cleared.

The processor loads the address in the exception vector into the PC, and
normal instruction execution resumes after the required prefetches for the
interrupt handler routine.

Most M68000 Family peripherals use programmable interrupt vector num­
bers as part of the interrupt request/acknowledge mechanism of the system.
If this vector number is not initialized after reset and the peripheral must
acknowledge an interrupt request, the peripheral usually returns the vector
number for the uninitialized interrupt vector, 15.

9.3.11 Breakpoint Instruction Exception

In order to use the MC68040 in a hardware emulator, it must provide a means
of inserting breakpoints in the emulator code, and of performing appropriate
operations at each breakpoint. For the MC68000 and MC68008, this can be
done by inserting an illegal instruction at the breakpoint and detecting the
illegal instruction exception from its vector location. However, since the VBR
on the MC68010, MC68020, MC68030, and MC68040 allows arbitrary relo­
cation of exception vectors, the exception address cannot reliably identify a
breakpoint. The MC68020, MC68030, and MC68040 processors provide a
breakpoint capability with a set of breakpoint instructions, $4848-$484F, for
eight unique breakpoints.

When the MC68040 executes a breakpoint instruction, it performs a break­
point acknowledge cycle (read cycle) with an acknowledge transfer type and
transfer modifier value of $0. Refer to SECTION 8 BUS OPERATION for a
description of the breakpoint acknowledge cycle. After external hardware
terminates the bus cycle with either TA or TEA, the processor performs illegal
instruction exception processing.

MOTOROLA MC68040 USER'S MANUAL 9-19

9.4 EXCEPTION PRIORITIES

9-20

When several exceptions occur simultaneously, they are processed according
to a fixed priority. Table 9-6 lists the exceptions, grouped by characteristics.
Each group has a priority, from 0 through 7, with 0 as the highest priority.

Table 9-6. Exception Priority Groups

Group/
Exception and Relative Priority Characteristics Priority

0 Reset Aborts all processing (instruction or exception) and does
not save old context.

1 Data Access Error Aborts current instructions - can have pendingtrace, FP
(ATC Fault or Bus Error) post instruction, or unimplemented FP instruction excep-

tions.

2 Floating-Point Pre-Instruction Exception processing begins before current floating-point
instruction is executed. Instruction is restarted on return
from exception.

3 BKPT #n, CHK, CHK2, Divide by Zero, Exception processing is part of instruction execution.
FTRAPcc, RTE, TRAP #n, TRAPV

Illegal Instruction, Exception processing begins before instruction is exe-
Unimplemented Line A and Line F, cuted.
Privilege Violation

Unimplemented Floating-Point Exception processing begins after memory operands are
Instruction fetched and before instruction is executed.

4 Floating-Point Post-Instruction Only reported for FMOVE to memory. Exception process-
ing begins when FMOVE instruction and previous excep-
tion processing is completed.

5 Address Error Reported after all previous instructions and associated
exceptions complete.

6 Trace Exception processing begins when current instruction or
previous exception processing is completed.

7 Instruction Access Error Reported after all previous instructions and associated
(ATC Fault or Bus Error) exceptions complete.

8 Interrupt Exception processing begins when current instruction or
previous exception processing is completed.

The method used to process exceptions in the MC68040 is significantly dif­
ferent from that used in earlier members of the M68000 processor family,
due to the restart exception model used. In general, when multiple exceptions
are pending, the exception with the highest priority is processed first, and
the remaining exceptions are regenerated when the current instruction is
restarted. Note that the reset operation clears all other exceptions. Other
exceptions to this are noted in the following paragraphs.

MC68040 USER'S MANUAL MOTOROLA

original exception condition. For example, if simultaneous interrupt and trap
exceptions are pending, the exception processing for the trap exception oc­
curs first, followed immediately by exception processing for the interrupt.
When the processor resumes normal instruction execution, it is in the inter­
rupt handler, which returns to the trap exception handler.

Exception processing for access error exceptions creates a type $7 stack
frame that contains status information that can indicate a pending trace,
floating-point post-instruction, or unimplemented floating-point instruction
exception. The RTE instruction used to return from the access error exception
handler checks the status bits for one of these pending exceptions. If one is
indicated, the RTE changes the access error stack frame to match the pending
exception and fetches the vector for the exception. Instruction execution then
resumes in the new exception handler. If an access error, trace, and one of
the two (mutually exclusive) floating-point exceptions occur simultaneously,
the pending floating-point exception is indicated in the access error stack
and the trace exception flag is undefined. The exception handler for the
floating-point exception must check the trace bits on the stack and call the
trace handler directly (after adjusting the stack frame to match the format
for the trace exception).

Similarly, if a trace exception is pending atthe same time a group3 orfloating-
point post-instruction exception is pending, the trace exception is not re- _
ported and the exception handler for the other exception condition must
check for the trace condition.

9.5 RETURN FROM EXCEPTIONS

After the processor has completed exception processing for all pending ex­
ceptions, the processor resumes normal instruction execution at the address
in the vector for the last exception processed. Once the exception handler
has completed execution, the processor must return to the system with the
system context as it was prior to the exception (if possible). The RTE instruc­
tion returns from the handler to the previous system context for any excep­
tion.

When the processor executes an RTE instruction, it examines the stack frame
on top of the active supervisor stack to determine if it is a valid frame and
what type of context restoration it requires. This section describes the proc­
essing for each of the stack frame types; refer to 9.2 STACK FRAMES for a
description of the stack frame types.

MOTOROLA MC68040 USER'S MANUAL 9-21

9-22

For a normal four word frame (format $0), the processor updates the SR and
PC with the data read from the stack, increments the stack pointer by eight,
and resumes normal instruction execution.

For the throwaway four word stack (format $1), the processor reads the SR
value from the frame, increments the active stack pointer by eight, updates
the SR with the value read from the stack, and then begins RTE processing
again, as shown in Figure 9-5. The processor reads a new format word from
the stack frame on top of the active stack (which mayor may not be the same
stack used for the previous operation) and performs the proper operations
corresponding to that format. In most cases, the throwaway frame is on the
interrupt stack and when the SR value is read from the stack, the Sand M
bits are set. In that case, there is a normal four word frame on the master
stack. However, the second frame may be any format (even another throw­
away frame) and may reside on any of the three system stacks.

INVAUD FORMAT
WORD

OTHERWISE t- FORMAT CODE = $1
(THROWAWAY

FRAME)

OTHERWISE

hOAMATCOOE'~ OTHERWISE (4-WORD FRAME)

SP. TEMP
SP. SP+6

Figure 9-5. RTE Instruction for Throwaway Four-Word Frame

MC68040 USER'S MANUAL MOTOROLA

For the normal six word stack frame (format $2), the processor restores the
SR and PC values from the stack, increments the active supervisor stack
pointer by twelve, and resumes normal instruction execution.

For the floating-point post-instruction stack frame (format $3), the processor
restores the SR and PC values from the stack, and increments the active
supervisor stack pointer by twelve. If another pending floating-point post­
instruction exception is pending, exception processing begins immediately
for the new exception; otherwise, the processor resumes normal instruction
execution.

For the access error stack frame (format $7), the processor restores the SR
and PC values from the stack, and checks the four continuation status bits
in the special status word (SSW) on the stack. If none of the bits are set, the
processor increments the active supervisor stack pointer by 30, and resumes
normal instruction execution. If the MOVEM continuation bit is set, the pro­
cessor restores the calculated effective address (EA) from the stack frame,
increments the active supervisor stack pointer by 30, and restarts the MOVEM
instruction at a point after the EA calculation. All operand accesses for the
MOVEM that occurred before the faulted access are repeated. If a continuation
bit is set for a pending trace, unimplemented floating-point instruction, or
floating-point post-instruction exception, the processor restores the calcu­
lated EA from the stack frame, increments the active supervisor stack pointer
by 30, and immediately begins exception processing for the pending excep­
tion. The processor sets only one of the continuation bits when the access
error stack frame is created. If mUltiple bits are set by the access error ex­
ception handler, operation of the RTE instruction is undefined.

If the frame format field in the stack frame contains an illegal format code,
a format exception occurs. If a format error or access fault exception occurs
during the frame validation sequence of the RTE instruction, the processor
creates a normal four word or an access fault stack frame below the frame
that it was attempting to use. In this way, the faulty stack frame remains
intact. The exception handler can examine or repair the faulty frame. In a
multiprocessor system, the faulty frame can be left to be used by another
processor of a different type when appropriate.

9.6 ACCESS FAULT RECOVERY

Processor accesses of either data items or the instruction stream can result
in bus errors. Bus error exceptions must be corrected to complete execution
of the current context.

MOTOROLA MC68040 USER'S MANUAL 9-23

-

..

Push transfer bus errors are acted on when the execution unit is idle. The
integer unit pipeline is frozen, the instruction cache and data cache requests
are cancelled (however, writes are not lost), and pending writes are stacked.

Data ATC faults and bus errors are acted on when the bus controller and the
execution unit are idle. A data access error freezes the pipeline and cancels
any pending instruction cache accesses. Pending writes are stacked because
the data cache will be deadlocked (because ofthe fault) until stacking transfers
are initiated.

Instruction ATC faults and bus errors are acted on when the program counter
section is deadlocked (the faulted data or another prefetch is required), the
copy-back stage is empty, and the data cache and the bus controller are idle.
Data ATC faults or bus error faults supersede the instruction ATC fault. In­
struction access error faults are reset so that prefetch access faults can be
ignored.

9.6.1 Access Error Stack Frame

A 30-word access error stack frame is created for data and instruction access
faults other than instruction address errors. In addition to information about
the current processor status and the faulted access, the stack frame also
contains pending writebacks that must be completed by the bus error ex­
ception handler. The bus error stack frame is shown in Figure 9-6, followed
by a description of the fields in the frame.

9.6.1.1 EFFECTIVE ADDRESS. The EA contains address information when one of
the continuation flags CM, CT, CU or CP in the SSW is set.

9.6.1.2 SPECIAL STATUS WORD. The SSW is one of several registers saved as
part of the access error stack frame. The SSW information indicates whether
the fault was caused by an access to the instruction stream, data stream, or
both and contains status information for the faulted access.

9-24

15 14 13 12 11 10 9 8 4 3 2

CP cu CT CM I MA I A TC I LK I RW I x I SIZE TT TM

The first five fields listed below correspond to the TMn, TTn, SIZn, R/W, and
LOCK signals for the faulted access.

MC68040 USER'S MANUAL MOTOROLA

STATUS REGISTER (SRI

PROGRAM COUNTER (PCI

0111 VECTOR OFFSET

EFFECTIVE AODRESS (EA!

SPECIAL STATUS WORD (SSWI

$00 WRITE BACK 3 STATUS (WB3SI

$00 WRITE BACK 2 STATUS (WB2SI

$00 WRITE BACK 1 STATUS (WB1SI

FAULT ADDRESS (FAI

WRITEBACK 3 ADDRESS (WB3AI

WRITEBACK 3 DATA (WB3DI

WRITEBACK 2 ADDRESS (WB2AI

WRITEBACK 2 DATA (WB2DI

WRITEBACK 1 ADDRESS (WB1AI

WRITE BACK 1 DATA/PUSH DATA LWO (WBlD/PDOI

PUSH DATA LWl (POll

PUSH DATA LW2 (PD21

PUSH DATA LW3 (PC31

Figure 9-6. Access Error Stack Frame

TM - Transfer Modifier

TT - Transfer Type

SIZE - Transfer Size

OFFSET
$0

$2

$6

$8

$C

$E

$10

$12

$14

$18

$lC

$20

$24

$28

$2C

$30

$34

$38

The SIZE field corresponds to the original access size. If a data cache line
read results from a read miss, and the line read is bus-errored, the SIZE
field in the resulting stack frame indicates the size of the original read
generated by the execution unit.

RW - Read/Write

LK - Locked Transfer

ATC - ATC Fault
This biit is set for an ATC fault due to a non-resident entry (bus error during
tablewalk or invalid descriptor encountered) or privilege violation (write
protected or supervisor-only). Cleared for a bus-errored instruction, data,
or cache line push access.

MOTOROLA MC68040 USER'S MANUAL 9-25

l1li

9-26

MA - Misaligned Access
Set if an ATC fault occurs for the second page for an access which spans
two pages in memory.

CM - Continuation - MOVEM Instruction Execution Pending
Set if a data access is bus errored for a MOVEM. Since the memory location
or registers used to calculate the EA may get written over by the MOVEM
operation, the MC68040 internally saves the EA after calculation. When
MOVEM is bus errored, a stack frame is created with CM set, and the EA
field contains the calculated EA for the instruction. When the RTE is exe­
cuted, the MOVEM will restart using the EA on the stack (instead of re­
peating the EA calculate operation), if the address mode is PC relative
(mode = 111, register = 010,011) or indirect with index (mode = 110).

CT - Continuation - Trace Exception Pending
CT is set for an access error with a pending trace exception. All pending
accesses are allowed to complete after a trace condition is recognized -
if any of these accesses fault, the resulting stack frame has the CT bit set
and the EA field contains the address of the instruction being traced. When
an RTE is executed with CT set, the MC68040 will move the words on the
stack at offset $OO-$Ob from the current SP to offset $30-$3b, adjust the
stack pointer by + $30, and change the stack frame format type to $2 before
fetching the trace exception vector and jumping directly to trace exception
handling. This stack adjustment creates the stack frame which normally
would have been created for the trace exception if the pending access had
not been bus errored.

CU - Continuation - Unimplemented Floating-Point -Instruction Exception
Pending

CU is set for an access error with a pending exception for an unimple-
mented floating point instruction. Operation is the same as for the CT flag
except the RTE fetches the Fline exception vector. The EA field contains
the calculated EA determined by the EA field of the unimplemented in­
struction.

For the case where an unimplemented floating point instruction is traced,
the unimplemented exception takes precedence, CU is set, and CT is un­
defined. The kernal must check for a trace condition using the stacked
status register. If true, create required stack frame then jump directly to
trace handler.

CP - Continuation - Floating-Point Post Exception Pending
CP is set for an access error with a floating point post exception pending.
Operation is the same as for the CT flag except the RTE fetches the ap­
propriate floating point post exception vector. For the case where a post

MC68040 USER'S MANUAL MOTOROLA

exception occurs during tracing, the post exception takes precedence, CP
is set, and CT is undefined. The kernal must check for a trace condition
using the stacked status register. The EA field contains the calculated EA
determined by the EA field of the floating point instruction that caused the
post-instruction exception.

x - Undefined

9.6.1.3 WRITE BACK STATUS. These 8-bit fields contain status information for the
three possible writebacks which could be pending after the faulted access.
For a data cache line push fault or a MOVE16 write fault, WB1S is zero
(invalid).

6 5 4 3 2

v I SIZE I TT I TM

TM - Transfer Modifier

TT - Transfer Type

SIZE - Transfer Size

v - Valid Write (write back pending if set)

9.6.1.4 FAULT ADDRESS. The fault address (FA) is the initial address for the ac­
cess which faulted. The fault address is a physical address only for cache
pushes; FA is a logical address for all other cases. For a misaligned access
which faults, the FA field contains the address of the first byte of the transfer,
regardless of which of the two or three bus transfers for the misaligned access
was faulted. For a push fault, the WB1A and FA addresses are the same.

9.6.1.5 WRITE BACK DATA. The write back data in WB3D and WB2D are register­
aligned with byte and word data contained in the least significant byte and
word, respectively, of the field. Writeback data in WB1 Dis memory- aligned,
and resides in the byte positions corresponding to the data bus lanes used
in writing each byte to memory.

Table 9-7 show this explicitly for each combination of size and A1/AO.

MOTOROLA MC68040 USER'S MANUAL 9-27

..

•

Table 9·7. Writeback Data Alignment

Address Data Alignment
Data Size

WB2D,WB3D A1 AO WB1D

Byte 0 " 0 31:24 7:0
0 1 23:16 7:0
1 0 15:8 7:0
1 1 7:0 7:0

Word 0 0 31:16 15:0
0 1 23:8 15:0
1 0 15:0 15:0 . 1 1 7:0,31 :24 15:0

Long 0 0 31:0 31:0
0 1 23:0,31 :24 31:0
1 0 15:0,31:16 31:0
1 1 7:0,31:8 31:0

NOTE:
For a line transfer fault, the four long words of data i PD3-PDO are already
aligned with memory, Bits 31 :0 of each field correspond to bits 31:0 of the
memory location to be written to, regardless of the value of the address
bits A 1 and AO for the write back address,

9.6.2 Instruction ATC Faults and Bus Errors

The bus error exception handler can identify bus error exceptions due to
instruction faults by examining the TM field in the SSW of the access error
stack frame. For user and supervisor instruction faults the TM field contains
2 and 6, respectively. Since the processor allows all pending accesses to
complete before reporting an instruction fault, the stack frame for an instruc­
tion fault will not contain any pending writebacks. The ATC bit of the SSW
is used to distinguish between ATC faults and physical bus errors, and the
FA field contains the logical address of the instruction prefetch. For ATC
faults the handler can execute a PTEST instruction (using the FA and TM field
from the SSW) to determine the specific cause of the address translation
failure. After the handler corrects the cause of the fault, it executes an RTE
instruction to restart execution of the instruction that contained the faulted
prefetch.

9.6.3 Address Errors

9-28

For an address error fault, the processor saves a type 2 exception stack frame
on the stack. This stack frame contains the PC pointing to the instruction that
caused the address error, and the actual address referenced by the instruc­
tion. Note that bit zero of the referenced address is cleared on the stack
frame. Address error faults must be repaired in software.

MC68040 USER'S MANUAL MOTOROLA

9.6.4 Data ATC Faults and Bus Errors

For a fault due to a data ATC fault or bus error, pending write-backs are also
saved on the access error stack frame, and must be completed by the ex­
ception handler. For the faulted access, the fault address in the FA field
combined with the transfer attribute information from the SSW can be used
to identify the cause of the fault,. In identifying the fault, the system pro­
grammer should be aware that the read portion of locked transfers (for TAS,
CAS, CAS2 and some translation table updates) is considered a write by the
data MMU. This prevents both read and write accesses from occuring unless
all pages touched by the instruction or table update are write enabled.

All accesses other than instruction prefetches go through the data memory
unit, and the MC68040 treats the instruction and data address spaces as a
single merged address space (the exception is the presence of separate trans­
parent translation registers). The "function codes" for accesses such as PC­
relative operand addressing and MOVES transfers to function codes 2 and
6 (user and supervisor instruction spaces in the MC68000) are converted to
data references to go through the data memory unit, and appear in the TM
field of the access error stack frame as data references.

After the fault is corrected, any pending write backs on the stack frame must
be completed. The write back status fields should be checked for possible
writebacks, which should be completed by the handler in the following order ..
writeback 1, writeback 2, and then writeback 3. For a push fault, the push
must be completed first, followed by two potential write-backs. Pending write-
backs can occur in any combination ofthe three writeback registers (i.e. WB1S
and WB2S may be invalid and WB3S valid). Completion of writeback 1 should
not generate another access error, since this write back corresponds to the
faulted access that has been corrected by the handler. However, writebacks
2 and 3 can cause another bus error exception when the handler attempts
to write to memory, and should be checked before attempting the write to
prevent nesting of exceptions if required by the operating system. Some
general bus fault examples follow which indicate the resulting contents of
the access error stack frame fields:

1) Normal data access error (SSW - TT = $0, TM = $1 or $5). FA contains
the logical address of the fault. For a write fault the addresses in FA
and WB1A are the same, and WB1S and WB2S indicate up to two
additional writebacks. For a read fault WB1S is zero, and WB2S and
WB3S indicate up to two additional pending writebacks.

2) Data cache push fault (SSW-TT=$O, TM=$O, and RW=O). WB1S is
zero and the physical push address is contained in the Fault Address
field. All four long-words of data for a line push are contained in push

MOTOROLA MC68040 USER'S MANUAL 9-29

data LWO-LW3, or a single long word is contained in LWO for a long
word push. Two write-backs may also be pending as indicated by the
writeback 2 and 3 registers. Note that memory is now incoherent since
the push buffer is invalidated after the fault - the only valid copy of
the cache line now resides on the stack and cannot be snooped.

3) MOVE16 access error(SSW - TT = $1). WB1 S is zero and the logical
destination address is contained in the Fault Address field. For a faulted
write, all four long-words of data for the line are contained in push data
LWO-LW3. Two write-backs may also be pending for either a read or
write fault.

9.6.5 Returning from Access Errors

After the bus error exception handler completes all pending operations and
executes an RTE to return, the RTE reads only the stack information from
offset $O-$d in the access error stack frame. For a pending trace exception,
unimplemented floating-point instruction exception, or floating-point post
exception, the RTE adjusts the stack to match the pending exception and
immediately begins exception processing, without requiring the exception
to re-occur.

• 9.7 FLOATING-POINT STATE FRAMES

9-30

An FSAVE instruction is executed to save the current floating-point internal
state for context switches and floating-point exception handling. When an
FSAVE is executed, the processor waits until the FPU either completes ex­
ecution of all current instructions, or is unable to perform any further proc­
essing due to a pending exception that must be serviced. Any exceptions
generated during this time are not reported, and are saved in the resulting
busy state frame. Four state frames can be generated as a result of an FSAVE
instruction: null, idle, busy, and unimplemented floating-point instruction.

A null state frame is saved if no floating-point instructions have been executed
since the last hardware reset or FRESTORE of a null state frame. When an
FRESTORE of a null state framed is performaed, all FPU operations are aborted,
and the FPU enters the reset state. See Figure 9-7.

An idle state frame is saved if no exceptions are pending, and at least one
instruction has been executed since the last hardware reset or FRESTORE of
a null state frame. See Figure 9-7.

MC68040 USER'S MANUAL MOTOROLA

s:
o
--l o
::0
o
s;:

:s::
o

I
c:
f/)
m
:%I en
~ z
c:
l> r-

to
W
~

31

SOO

S04
$08

SOC

S10

$14

$18

SIC

$20

$24

$28

$2C

$30

$34

$38

$3C

$40

$44

$48

$4C

$50

$64

$68

$6C

$60

W/ g //1 Reserved

24 23

ETM[31:OO]

BUSY FPU STATE FRAME

Figure 9-7. Floating-Point State Frames (Sheet 1 of 2)

I

I
t.O
W
N

31 24 23 16 15 0

$00 I $00 (UNDEFINED) V//"h0/.$///'ff///'////"///"//.$///"ij///1

NULL FPU STATE FRAME

31 24 23 16 15 0

$00 I VERSION NUMBER $00 ~h'l//m~h'l'/m//mffm~M
s:
("')
0'1
00 IDLE FPU STATE FRAME
0
0

c
en
m
:c 31 2423 16 15

en $00

s: $04 l>
:2 $08
C
l> $DC
r-

$10

$14

$18

$1C

$20

$24

$28

$: UNIMPLEMENTED INSTRUCTION FPU STATE FRAME

0

V/4'ZJ ~ Reserved
0
:JJ

Figure 9-7. Floating-Point State Frames (Sheet 2 of 2)
0
r
l>

A 50-word busy state frame is generated if any floating-point exceptions
other than an unimplemented floating-point instruction exception are pend­
ing. See Figure 9-7.

A 22-word unimplemented floating-point instruction state frame is saved if
the last instruction was an unimplemented floating-point instruction. See
Figure 9-7.

For the busy and unimplemented instruction state frames, the following fields
are defined for use by the exception handler:

CMDREG1 B - This field contains the command word of the exceptional
floating-point instruction for an E1 exception. For FSQRT, bits 6:0 are
mapped from $04 for the instruction to $05 in CMDREG1 B. All other in­
structions map directly.

CMDREG3B - Contains the encoded instruction command word for an E3
exception. The bit mapping between CMDREG1 Band CMDREG3B is de­
tailed below in Figure 9-8. For FSQRT, bits 6:0 are changed from $4 for the
instruction to $5 for CMDREG1 B, and therefore map to $21 for CMDREG3B.

15 1312 109 76 0

CMOREG1B I OPCLASS I SRC DST I : : ~M~ : : I (Rx) (Ay)

l~ll
109 76 0

CMOREG3B I 0 I DST I : : ~MD: : : I (Ay)

Figure 9-8. Mapping of Command Bits for CMDREG3B Field

CU_SAVEPC - This field contains the micro-PC for the conversion unit (CU).

E1 - If set, indicates an exception detected by the conversion unit (CU)
pipeline stage. All exception types are possible. Check E3 (NU) first; if set,
do E3 processing then RTE. If E1 is set it is handled later. For the unim­
plemented instruction state frame, if E1 is set then one or both of the
operands are an unsupported data type.

MOTOROLA MC68040 USER~S MANUAL 9-33

•

E3 - If set, indicates an exception detected by the normalization unit (NU)
pipeline stage. Only OVFL, UNFL, and INEX2 exceptions on opclass OxO
(register-to-register and memory-to-register) for FADD, FSUB, FMUL, FDIV,
FSQRT can take place. The exception handler must check for and handle
an E3 exception first.

ETS, ETE, ETM - Collectively, these fields are refered to as the ETEMP
register, and normally contain the source operand converted to extended
precision (Sign, Exponent, Mantissa). For a packed decimal real source,
bits [63:0] ofthe operand reside in ETM [63:00], and the ETS and ETE fields
are undefined.

FPIARCU - Instruction a.ddress register for the conversion unit (CU).

FPTS, FPTE, FPTM - Collectively, these fields are refered to as the FPTEMP
register, and normally contain the destination operand for diadic opera­
tions, converted to extended precision (Sign, Exponent, Mantissa). If the
instruction specifies a packed decimal real source, bits [95:64] of the op­
erand reside in FPTM [31 :00], and the FPTS, FPTE, and FPTM [63:32] fields
are undefined.

STAG, DTAG - These 3-bit fields specify the data type of the source and
destination operands, respectively. STAG is undefined for a packed decimal
real source operand. The encodings for STAG and DTAG are:

000 Normalized
001 Zero
010 Infinity
011 NAN
100 Extended precision denormalized or unnormalized input
101 Single or double precision denormalized input

T - If set, indicates a post-instruction exception occured.

WBTS, WBTE[15,14:00]' WBTM[66,65:02,01,00], SBIT - Contain the excep­
tional operand in internal data format for E3 exceptions.

9.8 FLOATING-POINT EXCEPTIONS

9-34

There are eight "user" floating-point exceptions, of which seven can be gen­
erated by the MC68040. In order of priority, these exceptions are:

• Branch/Set on Unordered (BSUN)

• Signaling Not-a-Number (SNAN)

MC68040 USER'S MANUAL MOTOROLA

• Operand Error (OPERR)

• Overflow (OVFL)

• Underflow (UNFL)

• Divide by Zero (DZ)

• Inexact 2 (INEX2)

Each exception can be user disabled by clearing the corresponding bit in the
enable byte of the FPCR. However, SNAN, OPERR, OVFL, and UNFL are non­
maskable in some situations, and can cause a trap even if disabled by the
user. This allows the supervisor exception handler to correct a default result
generated by the MC68040 which is different from the result generated by
an MC68881/MC68882 executing the same code. After correcting the result,
the handler calls the user defined exception handler if the exception has been
enabled in the floating-point control register (FPCR), or returns to the main
program flow if the exception is disabled.

INEX1 (inexact result 1) is the condition that exists when a packed decimal
operand cannot be converted exactly to extended precision in the current
rounding mode. Since packed decimal real operands are not directly sup­
ported by the MC68040, INEX1 is never set by the processor, but is provided
as a latch so that emulation software can report this exception .

All exception handlers (except format error) must have FSAVE as the first
floating point instruction. All other floating-point instructions cause another
exception to be reported. The trap handler should use only the FMOVEM
instruction to read or write the floating-point data registers since FMOVEM
cannot generate further exceptions or change the condition codes.

9.S.1 Unimplemented Floating-Point Instructions

Floating-point instructions that are supported by the Me68881 and MC68882
floating-point coprocessors, but are not directly supported by the MC68040
in hardware, are defined as unimplemented floating-point instructions. These
instructions trap as an F-line exception and must be emulated in software
by the F-line exception handler to maintain user object code compatibility.

The following MC68881/68882 instructions cause an unimplemented instruc­
tion exception when execution is attempted by the MC68040:

MOTOROLA MC68040 USER'S MANUAL 9-35

•

•

9-36

Monadic operations:

FACOS
FASIN
FATAN
FATANH
FCOS
FCOSH

Dyadic operations:

FMOD
FREM
FSCALE

FETOX
FETOXMl
FGETEXP
FGETMAN
FINT
FINTRZ

FSGLDIV
FSGLMUL

Miscellaneous operations:

FMOVECR

FLOG10
FLOG2
FLOGN
FLOGNPl
FSIN
FSINCOS

FSINH
FTAN
FTANH
FTENTOX
FTWOTOX

The MC68040 assists the emulation process by distinguishing unimple­
mented floating-point instructions from other unimplemented line-F instruc­
tions, and fetching any required source operands before taking the F-line
exception. The memory operand (if required), floating-point instruction, and
instruction address are passed to the FPU before taking the F-line exception,
and the calculated EA is saved in the type $2 stack frame generated during
exception processing for the unimplemented floating-point instruction. This
simplifies and speeds up the emulation process by eliminating the need for
the emulation routine to determine the EA, and providing all information
required to emulate the instruction in either the exception stack frame or
FSAVE state frame in the supervisor address space. The supervisor exception
handler does not need to access the user address space, since none of the
unimplemented floating-point instructions specify a memory or data register
destination. (Implementations that choose to place the emulation software
in the user address space may find it more efficient to pass the evaluated
EA to user space than to pass the entire FSAVE state frame.)

In more detail, the followings processing steps occur for an unimplemented
floating-point instruction:

1) When an unimplemented floating-point instruction is encountered, the
processor waits for all previous floating-point instructions to complete
execution. Any pre- or post-instruction exceptions which result are taken
immediately, and the processor restarts the unimplemented floating­
point instruction after returning from the exception handler.

MC68040 USER'S MANUAL MOTOROLA

2) Next, the instruction is partially decoded to allow fetching ofthe memory
source operand, if required. When the operand fetch begins, all other
read accesses for previous instructions are complete, and only the ex­
ecution and writeback of results for previous integer instructions re­
mains to be completed. If an access error occurs in fetching the operand
(or in completing any other access before beginning the operand fetch),
the unimplemented instruction is restarted after the processor returns
from exception handling for the error.

3) The fetched source operand is passed to the FPU, which converts the
operand to extended precision and saves the intermediate result. If the
operand is an unsupported data type (denormalized, unnormalized, or
packed decimal real), the unimplemented floating-point exception takes
precedence, and the unsupported data type must be detected by the
floating-point instruction emulation routine.

4) After the operand is fetched, the processor waits for all previous integer
instructions, writebacks, and associated exception processing to com­
plete before beginning exception processing for the unimplemented
floating-point instruction. Any access error which occurs in completing
the writebacks causes an access error exception, and the resulting stack
frame indicates a pending unimplemented floating-point instruction ex­
ception. The writebacks are then completed in software by the access
error exception handler, and exception processing for the unimple­
mented floating-point instruction exception begins immediately after
return from the access error handler.

5) The processor begins exception processing for the unimplemented
floating-point instruction by making an internal copy of the current SR.
The processor then enters the supervisor mode, and clears the trace
bits (T1, TO). The processor creates a type $2 stack frame, and saves
the vector offset, PC, internal copy of the SR, and the calculated EA in
the stack frame. The saved PC value is the logical address of the in­
struction that follows the unimplemented floating-point instruction. The
processor generates exception vector number 11, for the unimple­
mented line-F instruction exception vector, fetches the address of the
F-line exception handler from the exception vector table, and begins
execution ofthe handler after prefetching instructions to fill the piepline.

The F-line exception handler can check for the format $2 stack frame type to
distinguish an unimplemented floating point instruction from other F-line
unimplemented instructions, which generate type $0 stack frames. When the
exception handler for unimplemented floating point instructions executes an
FSAVE, a 22-word unimnplemented instruction state frame is created (see
Figure 9-7).

MOTOROLA MC68040 USER'S MANUAL 9-37

..

Note that unless the instruction specifies a packed decimal real sorce, the
state frame contains both operands (if required). For packed decimal real,
the handler can find the second operand in the designated destination reg­
ister.

Additional information on floating-point instruction emulation can be found
in the MC68040DH/AD, MC68040 Designer's Handbook.

9.8.2 Unimplemented Floating-Point Data Types

9-38

An unimplemented data type exception occurs when either operand to an
implemented floating-point instruction is denormalized (for S, D, or X op­
erands) or unnormalized (for X operands), or the source or destination data
format is packed decimal real (P). These data types are unimplemented in
the MC68040, and must be supported in software.

Unimplemented data types that are detected as operands for opclass OxO
(register-to-register or memory-to-register) instructions cause a pre- instruc­
tion exception which is posted when the next floating point instruction is
attempted. When an unimplemented data type is detected for opclass 011
(register-to-memory) instructions, a post-instruction exception is generated
immediately. A type $0 (for the pre-instruction exception) or type $3 (for the
post-instruction exception) stack frame is saved, and vector 55 is fetched.

A denormalized value generated as the result of a floating-point operation
generates a non-maskable underflow exception instead of an unimplemented
data type exception. Refer to 9.8.7 Underflow for further information.

State Frame Information: For unimplemented data type exceptions resulting
from the execution of opclass OxO (register-to-register or memory-to-reg­
ister) instructions, the following FSAVE state frame fields are defined for
use by the supervisor exception handler.

A denormalized or un normalized extended precision source or destination
operand is copied directly without modification to ETEMP or FPTEMP, re­
spectively. If a packed decimal real source operand is specified, the upper
32 bits of the operand are copied to FPTEMP, and the lower 64 bits are copied
to ETEMP. The destination operand in this case remains in the destination
floating-point register, and may itself be either denormalized or unnormal­
ized.

Denormalized single and double precision operands are stored in ETEMP as
shown in Figure 9-9 and 9-10, respectively.

MC68040 USER'S MANUAL MOTOROLA

FSAVE State
Contents

Frame Field

CMDREG1B Exceptional instruction command word

ETEMP Source operand converted to extended precision. If format is P, ETM [63:0]
contains bits 63:0 of the packed decimal operand.

STAG Source operand tag (undefined if format is P)

FPTEMP Destination operand (if any) converted to extended precision. If format is P,
FPTM [31 :0] contains bits 95:64 of the packed decimal operand.

DTAG Destination operand tag (if any)

E1 Set = CU exception

T-Flag o (pre-instruction exception)

3130 2322 o

DENORMAUZED SINGLE PRECISION lsi MANTISSA

~ 94 '-1.1.-.
80
-

7
-
9
-soLdtTL-64-63-0-6-2 ----40-3-9---'

so

S EXP
I I

Figure 9-9. Format of Denormalized Single Precision
Source Operand in State Frame

63 62 5251

DENORMAUZED DOUBLE PRECISION lsi so I MANTISSA

~" ~~~ I
FORMAT IN STATE FRAME II so so

S EXP MANTISSA
I I

1110

Figure 9.10. Format of Denormalized Double Precision
Source Operand in State Frame

MOTOROLA MC68040 USER'S MANUAL

o

0

0

so

------l

9-39

..

9-40

Single and double precision denormalized operands, and packed decimal
real operands can be converted to normalized extended precision by the
exception handler and restored into the state frame. (Unnormalized extended
precision operands which can be normalized can also be restored.) If the
operands for the instruction can be converted to normalized extended pre­
cision operands, the exception state frame can be restored into the processor
for completion of the instruction, without the need for the handler to emulate
the arithmetic operation itself. The exception handler must perform the fol­
lowing steps:

1) For a P format operand, emulate the conversion to extended precision
and write the result into ETEMP. The destination operand (if required)
is copied from the specified floating-point data register into FPTEMP.

2) Normalize the operands in ETEMP and FTEMP - if an operand can not
be normalized, continuation of the instruction is not possible. For nor­
malized operands, the corresponding STAG or DTAG field should be
cleared, indicating a normalized operand.

3) Clear the E1 flag to clear the CU exception.

4) Write the CU_SAVEPC with $xxx to force the completion of the operand
conversion in the CU execution unit. (Actual value To Be Defined.)

5) Execute an FRESTORE instruction to reload the state frame, and return
to the main program flow. The CU pipeline stage of the FPU completes
the conversion operation using the corrected operand values. If another
E1 pre-instruction exception is generated at this time (such as overflow
due to single or double precision rounding mode), that exception is
taken immediately as a pre-instruction exception when the processor
attempts to restart the last floating-point instruction.

For unimplemented data type exceptions resulting from execution of opclass
011 (register-to-memory) instructions, the following FSAVE state frame fields
are defined for use by the supervisor exception handler.

FSAVE State
Contents

Frame Field

CMDREG1 B Exceptional instruction command word

ETEMP Source operand from floating-point data register, unrounded

STAG Source operand tag

E1 Set = CU exception

T-Flag 1 (post-instruction exception)

MC68040 USER'S MANUAL MOTOROLA

If the source operand is unnormalized and can be converted to a normalized
extended precision value, the floating-point instruction can be continued as
noted above. Otherwise, the exception handler must perform the conversion
and write the result to memory.

9.8.3 Branch/Set on Unordered (BSUN)
The BSUN exception is the result of performing a conditional test associated
with the FBcc, FDBcc, FTRAPcc, and FScc instructions when an unordered
condition is present. (An unordered condition occurs when an input to an
arithmetic operation is a NAN.) The BSUN exception can only occur during
floating-point conditional instructions with the following IEEE non-aware
branch condition predicates:

GT Greater Than GL Greater Than or Less Than
NGT Not Greater Than NGL Not Greater Than or Less Than
GE Greater Than or Equal GLE Greater Than or Less Than or Equal

NGE Not Greater Than or Equal NGLE Not Greater Than or Equal Less Than
or Equal

LT Less Than SF Signaling False
NLT Not Less Than ST Signaling True
LE Less Than or Equal SEQ Signaling Equal

NLE Not Less Than or Equal SNE Signaling Not Equal

If a floating-point exception is pending, a pre-instruction exception is taken. .-
After the appropriate exception handler is executed, the conditional instruc- ..
tion is restarted. When the FPU pipeline is idle (all previous floating point
instructions have been completed) and no exceptions are pending, the pro-
cessor evaluates the conditional predicate and checks for a BSUN exception
before executing the conditional instruction. A BSUN exception occurs if the
conditional predicate is one of the IEEE non-aware branches, and the NAN
condition code bit is set. When the processor detects this exception, it sets
the BSUN bit in the floating-point status register (FPSR) exception status
byte.

Trap Disabled Results:
The floating point condition is evaluated as if it were the equivalent aware
conditional predicate.

Trap Enabled Results:
The processor takes a floating-point pre-instruction exception. A four-word
type $0 stack frame is saved, and vector number 48 is generated to access
the BSUN exception vector. For MC68881/MC68882 compatibility, the su­
pervisor handler must update the floating-point instruction address register
(FPIAR) register by copying the PC value in the pre-instruction stack frame
to the FPIAR.

MOTOROLA MC68040 USER'S MANUAL 9-41

The BSUN exception is unique in that the trap is taken before the condi­
tional predicate is evaluated. If the exception handler does not set the PC
to the instruction following the one that caused BSUN exception when
returning, the exception is re-executed. Therefore, it is the responsibility
of the trap handler to prevent the conditional instruction from taking the
BSUN trap again. Four ways are available to prevent taking the trap again.

The first way involves incrementing the stored PC in the stack to bypass
the conditional instruction. This technique applies to situations where a
fall-through is desired. Be aware that accurate calculation of the PC incre­
ment requires detailed knowledge of the size of the conditional instruction
being bypassed.

The second method is to clear the NAN bit of the FPSR condition code
byte. However, this alone cannot deterministically control the result indi­
cation (true or false) which would be returned when the conditional in­
struction re-executes.

The third method is to disable the BSUN trap. Like the second method,
this method cannot control the result indication (true or false) which would
be returned when the conditional instruction re-executes.

The fourth method involves examining the condition predicate and setting
the condition code in the FPSR accordingly. This technique gives the most
control since it is possible to pre-determine the direction of program flow.
Bit 7 of the F-line operation word indicates where the conditional predicate
is located. If bit 7 is set, the conditional predicate is the lower six bits of
the F-line operation word. Otherwise, the conditional predicate is the lower
six bits of the instruction word, which immediately follows the F-line op­
eration word. Using the conditional predicate and the table for non-aware
test in 4.4.2 Conditional Test Definitions, the condition codes can be set
to return a known result indication when the conditional instruction is re­
executed.

9.8.4 Signaling Not-a-Number (SNAN)

9-42

An SNAN is used as an escape mechanism for a user defined, non-IEEE data
type. The processor never creates an SNAN as a result of an operation; a
NAN created by an operand error exception is always a non-signaling NAN.

When an SNAN is an operand involved in an arithmetic instruction, the SNAN
bit is set in the FPSR exception byte. Since the FMOVEM, FMOVE FPcr, and
FSAVE instructions do not modify the status bits, they cannot generate ex­
ceptions. Therefore, these instructions are useful for manipulating SNANs.

MC68040 USER'S MANUAL MOTOROLA

Trap Disabled Results:
If the destination data format is single (S)' double (D), or extended (X) then
the SNAN bit in the NAN is set to one and the resulting non-signaling NAN
is transferred to the destination. No bits other than the SNAN bit of the
NAN are modified, although the input NAN is truncated if necessary.

If the destination data format is byte (8), word (W), or long-word (L), then
the data written to the destination is undefined, and an SNAN post-instruc­
tion exception is taken immediately. For MC68881/MC68882 compatibility,
if the destination format is 8,W, or L, the supervisor exception handler
should store the most significant 8, 16, or 32 bits, respectively, of the SNAN
mantissa, with the SNAN bit set, to the destination.

Trap Enabled Results:
For memory or integer data register destinations, the result is written in
the same manner as if the trap were disabled, and then a post-instruction
exception is taken immediately. For MC688811MC68882 compatibility, ifthe
destination format is 8,W, or L, the supervisor exception handler should
store the most significant 8,16, or 32 bits, respectively, of the SNAN man­
tissa, with the SNAN bit set, to the destination. If desired, the user trap
handler can overwrite the result.

For floating-point data register destinations, the floating-point data regis­
ters are not modified, and an SNAN pre-instruction exception is signaled.
In this case, the SNAN trap handler should supply the result.

NOTE

The trap handler should use only the FMOVEM instruction to read
or write the floating-point data registers, since FMOVEM cannot gen­
erate further exceptions. Also, only an FMOVEM instruction can write
a SNAN into a floating-point data register.

State Frame Information:
For SNAN pre-instruction exceptions resulting from execution of opclass
OxO (register-to-register or memory-to-register) instructions, the following
FSAVE state frame fields are defined for use by the supervisor exception
handler. A source or destination SNAN is stored in ETEMP or FPTEMP,
respectively, with its SNAN bit set.

MOTOROLA MC68040 USER'S MANUAL 9-43

..

..

FSAVE State
Contents Frame Field

CMDREG1B Exceptional instruction command word

ETEMP Source operand converted to extended precision

STAG Source operand tag

FPTEMP Destination operand (if any) converted to extended precision

DTAG Destination operand tag (if any)

T-Flag o (pre-instruction exception)

For SNAN post-instruction exceptions resulting from execution of an opclass
011 (register-to-memory) instruction, the following FSAVE state frame fields
are defined for use by the supervisor exception handler:

FSAVE State
Contents Frame Field

CMDREG1B FMOVE instruction command word

ETEMP Source operand from FPn register, unrounded, with SNAN bit set

STAG Source operand tag (indicates NAN)

T-Flag 1 (post-instruction exception)

9.S.5 Operand Error

9-44

The operand error category encompasses problems arising in a variety of
operations, and includes those errors not frequent or important enough to
merit a specific exception condition. Basically, an operand error occurs when
an operatRm-has no mathematical interpretation for the given operands. The
possible operand errors are listed in Table 9-8. When an operand error occurs,
the OPERR bit is set in the FPSR exception status byte.

Table 9-8. Possible Operand Errors

Instruction Condition Causing Operand Error

FADD (+ infinity) + (- infinity) or (- infinity) + (+ infinity)

FDIV 0/0 or infinity/infinity

FMOVE to B,W,or L Integer Overflow, Source is Non-Signaling NAN, or Source is ± infinity

FMUL One operand is 0, other operand is ± infinity

FSQRT Source is <0, Source = - infinity

FSUB (+ infinity) - (+ infinity) or (- infinity) - (- infinity)

MC68040 USER'S MANUAL MOTOROLA

Trap Disabled Results:
If the destination is a floating-point data register, an extended precision
non-signaling NAN (with all ones mantissa) is stored in the destination
floating-point data register.

For an operand error on an FMOVE to a 8, W, or L memory or integer data
register destination, the result stored is undefined, and a post-instruction
exception is taken immediately. For MC68881/MC68882 compatibility, ifthe
operand error is caused by an integer overflow or if the floating-point data
register to be stored contains infinity, the supervisor exception handler
should store the largest positive or negative integer that can fit in the
specified destination format size. If the destination is integer (j.e. 8, W, or
L) and the floating-point number to be stored is a NAN, then the 8, 16, or
32 most significant bits of the NAN significand should be stored as the
result.

The processor incorrectly reports an operand error for an FMOVE to mem­
ory or integer data register if the operand is equal to the largest negative
integer representable in its format (- 27 for 8, - 215 for W, and - 231 for
U. These are reported as operand errors even though no exception should
be generated. The supervisor handler must detect these cases, store the
proper result, clear the exception, and return to the main program flow.

Trap Enabled Results: ..
If the destination is a floating-point data register, the register is not mod­
ified, and a pre-instruction exception is reported. In this case, the trap
handler should generate the appropriate result.

If an operand error occurs for an FMOVE FPn, (EA) instruction, then the results
are the same as for trap disabled, and the result stored is undefined. The
trap handler should store the appropriate result if required for MC688811
MC68882 compatibility.

State Frame Information:
For OPERR pre-instruction exceptions resulting from execution of opclass
OxO (register-to-register or memory-to-register) instructions, the following
FSAVE state frame fields are defined for use by the supervisor exception
handler.

MOTOROLA MC68040 USER'S MANUAL 9-45

FSAVE State
Contents

Frame Field

CMDREG1B Exceptional instruction command word

ETEMP Source operand converted to extended precision

STAG Source operand tag

FPTEMP Destination operand (if any) converted to extended precision

DTAG Destination operand tag (if any)

T-Flag a (pre-instruction exception)

For an OPERR post-instruction exceptions resulting from execution of an
FMOVE FPn, <ea) instruction, the following FSAVE state frame fields are
defined for use by the supervisor exception handler. In addition, the FPIAR
contains the address of the FMOVE instruction that caused the exception,
and the EA field in the exception stack frame contains the destination address.

FSAVE State
Contents

Frame Field

CMDREG1B FMOVE instruction command word

ETEMP Source operand from FPn register, unrounded

STAG Sou rce operand tag

WBTEMP Contains the rounded integer, used to check for erroneous integer overflow

T-Flag 1 (post-instruction exception)

9.S.6 Overflow

9-46

An overflow occurs when the intermediate result of an arithmetic operation
is too large to be represented in a floating-point data register using the
selected rounding precision. A store to memory operation overflows when
the value in the source floating-point data register is too large to be repre­
sented in the destination format.

Overflow is detected for arithmetic operations where the destination is a
floating-point data register when the intermediate result exponent is greater
than or equal to the maximum exponent value of the selected rounding
precision. Overflow is detected for store to memory operations when the
intermediate result exponent is greater than or equal to the maximum ex­
ponent value of the destination data format. Overflow can only occur when
the destination is in the 5, D, or X format. Overflows when converting to the
S, W, or L integer and packed decimal formats are included as operand errors.

MC68040 USER'S MANUAL MOTOROLA

Refer to 3.6 DATA FORMAT DETAILS for the maximum exponent value for
each format. At the end of any operation that could potentially overflow, the
intermediate result is checked for underflow, rounded, and checked for ov­
erflow before it is stored to the destination. If overflow occurs, the OVFL bit
is set in the FPSR exception byte.

NOTE

An overflow can occur when the destination is a floating-point data
register and the selected rounding precision is single or double even
if the intermediate result is small enough to be represented as an
extended precision number. The intermediate result is rounded to
the selected precision (both the mantissa and the exponent), and
then the rounded result is stored in extended precision format. If the
magnitude of the intermediate result exceeds the range of the se­
lected rounding precision format, an overflow occurs.

Trap Disabled Results:
If the destination is a floating-point data register, then the register is not
affected, and either a pre-instruction or a post-instruction exception is re­
ported, as described in later paragraphs. If the destination is a memory or
integer data register destination, then an undefined result is stored, and a
post-instruction exception is taken immediately. For MC68881/MC68882
compatibility, the supervisor exception handler should store a value de- ..
termined by the rounding mode at the destination, as follows:

Roum;ting
Mode Result

RN Infinity, with the sign of the intermediate result
RZ Largest magnitude number, with the sign of the inter­

mediate result
RM For positive overflow, largest positive number

For negative overflow, infinity
RP For positive overflow, infinity

For negative overflow, largest negative number

Trap Enabled Results:
Results are identical to the trap disabled case.

Stack Frame Information:
The following paragraphs outline specific cases and the information avail­
able to the supervisor exception handler to allow it to write the desired

MOTOROLA MC68040USER'S MANUAL 9-47

..

9-48

value to the destination and determine the exceptional operand to pass to
the user exception handler. For each case, the address of the instruction
that causes the overflow is available to the trap handler in the FPIAR.

An overflow pre-instruction exception can occur for FMOVE to a floating­
point register, FABS, and FNEG when the rounding mode is single precision
and the source operand format is double or extended precision, or the
rounding mode is double precision and the source operand format is ex­
tended. For MC68881/MC68882 compatibility, a bias of $6000 must be sub­
tracted from the exponent of the intermediate result to create the exceptional
operand that the user handler expects. The following information is avail­
able in the FSAVE state frame:

FSAVE State
Contents

Frame Field

CMDREG1 B Exceptional instruction command word

ETEMP Intermediate result with mantissa rounded to correct precision

STAG Source operand tag = Normalized

E1 CU exception = Set

T·Flag o (pre-instruction exception)

An overflow exception can occur for FADD, FSUB, FMUL, and FDIV with any
rounding precision, and for FSQRT with a single or double precision destia­
tion. The exception is normally reported as a pre-instruction exception for
the next floating-point instruction decoded by the integer unit; however, if
a following FMOVE instruction is already in progress and generates a post­
instruction exception, the overflow exception takes precedence and is re­
ported as a post-instruction exception. This prevents out of order exception
reporting. Note that the EA field for the post-instruction stack frame is un­
defined in this case. For MC68881/MC68882 compatibility, a bias of $6000
must be subtracted from the exponent of the intermediate result to create
the exceptional operand that the user handler expects. The following infor­
mation is available in the FSAVE state frame:

FSAVE State
Contents

Frame Field

CMDREG3B Exceptional instruction command word, encoded

WBTEMP = WBTS, WBTE, and WBTM = Intermediate result with mantissa rounded to
correct precision

WBTE15 Bit 15 of the intermediate result's 16·bit exponent = 0 for overflow

E3 NU exception = Set

T·Flag o (pre-instruction exception) or 1 (post·instruction exce·ption)

MC68040 USER'S MANUAL MOTOROLA

An overflow pre-instruction exception can occur for FMOVE to memory when
the destination format is S or D. The exception is reported as a post-instruc­
tion exception, with the evaluated destination EA in the stack frame. The
following information is available in the FSAVE state frame:

FSAVE State
Contents

Frame Field

CMDREG1B FMOVE instruction command word

ETEMP Intermediate result with mantissa rounded to correct precision

STAG Source operand tag = Normalized

E1 CU exception = Set

T-Flag 1 (post-instruction exception)

By examining the instruction, the trap handler can determine the arithmetic
operation type and destination location. The trap handler can execute an
FSAVE instruction to obtain additional information. When an FSAVE is ex­
ecuted, the exceptional operand is stored in the state frame. Refer to 9.7
STATE FRAMES for details of the FSAVE instruction state frames.

9.S.7 Underflow

An underflow occurs when the intermediate result of an arithmetic operation
is too small to be represented as a normalized number in a floating-point
data register using the selected rounding precision. A store to memory op­
eration underflows when the value in the source floating-point data register
is too small to be represented in the destination format as a normalized
number. Underflow is detected for arithmetic operations where the desti­
nation is a floating-point data register when the intermediate result exponent
is less than or equal to the minimum exponent value of the selected rounding
precision.

Underflow is detected for store to memory operations when the intermediate
result exponent is less than or equal to the minimum exponent value of the
destination data format. Underflow is NOT detected for intermediate result
exponents that are equal to the extended precision minimum exponent, since
the explicit integer part bit of extended precision permits representation of
normalized numbers with a minimum extended precision exponent.

Underflow can only occur when the destination format is S, D, or X. When
the destination format is B, W, or L,the conversion underflows to zero without
causing either an underflow or an operand error. See 3.2.3 Floating-Point
Data Format Details for the minimum exponent value for each format.

MOTOROLA MC68040 USER'S MANUAL 9-49

..

9-50

At the end of any operation that could potentially underflow, the intermediate
result is checked for underflow, rounded, and checked for overflow before it
is stored at the destination. If an underflow occurs, the UNFL bit is set in the
FPSR exception status byte.

NOTE
An underflow can occur when the destination is a floating-point data
register and the selected rounding precision is single or double even
if the intermediate result is large enough to be represented as an
extended precision number. The intermediate result is rounded to
the selected precision (both the mantissa and the exponent), and
then the rounded result is stored in extended precision format. If the
magnitude of the intermediate result is too small to be represented
in the selected rounding precision format, an underflow occurs.

Trap Disabled Results:
If the destination is a floating-point data register, then the register is not
affected, and either a pre-instruction or a post-instruction exception is re­
ported, as described in later paragraphs. Ifthe destination is a memory or
integer data register destination, then an undefined result is stored, and a
post-instruction exception is taken immediately.

For MC68881/MC68882 compatibility, the supervisor exception handler
should store the result in the destination as either a denormalized number
or zero. Denormalization is accomplished by shifting the mantissa of the
intermediate result to the right while incrementing the exponent until iUs
equal to the denormalized exponent value for the destination format. The
denormalized intermediate result is rounded to the selected rounding pre­
cision or destination format.

If, in the process of denormalizing the intermediate result, all of the sig­
nificant bits are shifted off to the right, the selected rounding mode de­
termines the value to be stored at the destination, as follows:

Rounding
Mode Result

RN Zero, with the sign of the intermediate result
RZ Z~ro, with the sign of the intermediate result
RM For positive underflow, +zero

For negative underflow, smallest denormalized negative
number

RP For positive underflow, smallest denormalized positive
number
For negative underflow, -zero

MC68040 USER'S MANUAL MOTOROLA

Trap Enabled Results:
Results are identical to the trap disabled case.

State Frame Information:
The following paragraphs outline specific cases and the information avail­
able to the supervisor exception handler to allow it to write the desired
value to the destination and determine the exceptional operand to pass to
the user exception handler. For each case, the address of the instruction
that causes the overflow is available to the trap handler in the FPIAR.

An underflow pre-instruction exception can occur for FMOVE to a floating­
point register, FABS, and FNEG when the rounding mode is single precision
and the source operand format is double or extended precision, or the
rounding mode is double precision and the source operand format is ex­
tended. For MC68881/MC68882 compatibility, a bias of $6000 must be sub­
tracted from the exponent of the intermediate result to create the exceptional
operand that the user handler expects. The following information is avail­
able in the FSAVE state frame:

FSAVE State
Contents Frame Field

CMDREG1B Exceptional instruction command word

FPTEMP Intermediate result, extended precision, unrounded

STAG Source operand tag = Normalized

E1 CU exception = Set

T-Flag o (pre-instruction exception)

An underflow exception can occur for FADD, FSUB, FMUL, FDIV, and FSQRT
with any rounding precision. The exception is normally reported as a pre­
instruction exception for the next floating-point instruction decoded by the
integer unit; however, if following FMOVE instruction is already in progress
and generates a post-instruction exception, the overflow exception takes
precedence and is reported as a post-instruction exception. This prevents
out of order exception reporting. Note that the EA field for the post-instruction
stack frame is undefined in this case. For MC68881/MC68882 compatibility,
a bias of $6000 must be subtracted from the exponent cif the intermediate
result to create the exceptional operand that the user handler expects. The
following information is available in the FSAVE state frame:

MOTOROLA MC68040 USER'S MANUAL 9-51

..

..

9-52

FSAVE State
Contents

Frame Field

CMDREG3B Exceptional instruction command word, encoded

WBTEMP = WBTS, WBTE, and WBTM = Intermediate result sign, biased 15-bit exponent,
and 64-bit mantissa prior to rounding

WBTE15 Bit 15 of the intermediate result's 16-bit exponent = 1 for underflow

WBTM1, WBTMO, Guard, round, and sticky of intermediate result's 67-bit mantissa
SBIT

E3 NU exception = Set

T-Flag o (pre-instruction exception) or 1 (post-instruction exception)

An underflow pre-instruction exception can occur for FMOVE to memory
when the destination format is S or D. The exception is reported as a post­
instruction exception, with the evaluated destination EA in the stack frame.
The following information is available in the FSAVE state frame:

FSAVE State
Contents

Frame Field

CMDREG1B FMOVE instruction command word

FPTEMP Intermediate result with mantissa prior to rounding

STAG Source operand tag = Normalized

, E1 CU exception = Set

T-Flag 1 (post-instruction exception)

By examining the instruction, the trap handler can determine the arithmetic
operation type and destination location. The trap handler can execute an
FSAVE instruction to obtain additional information. When an FSAVE is ex­
ecuted, the exceptional operand is stored in the state frame. Refer to 9.7
STATE FRAMES for details of the FSAVE instruction state frames. When an
underflow occurs, the exceptional operand is defined differently for various
destination types:

NOTE

The IEEE standard defines two causes of an underflow:

1. When a result is very small, the absolute value of the number is
less than the minimum number that can be represented by a
normalized number in a specific format

2. When loss of accuracy occurs while attempting to calculate a very
small number (a loss of accuracy also causes an inexact excep­
tion)

MC68040 USER'S MANUAL MOTOROLA

The IEEE standard specifies that if the underflow trap is disabled, an under­
flow should only be signaled when both of these cases are satisfied (i.e., the
result is too small to represent with a given format, and there is a loss of
accuracy during the calculation of the final result). If the trap is enabled, the
underflow should be signaled any time a tiny result is produced, regardless
of whether accuracy is lost in calculating it.

The processor UNFL bit in the AEXC byte of the FPSR implements the IEEE
trap disabled definition, since it is only set when a very small number is
generated and accuracy has been lost when calculating that number. The
UNFL bit in the EXC byte implements the IEEE trap enabled definition, since
it is set anytime a tiny number is generated.

9.S.S Divide by Zero

This exception occurs when a zero divisor occurs for an FDIV instruction.
When a divide-by-zero is detected, the DZ bit is set in the FPSR exception
status byte.

Trap Disabled Results:
An infinity with the sign set to the exclusive OR of the signs of the input
operands is stored in the destination floating-point data register .

Trap Enabled Results:
The destination floating-point data register is not Illodified, and the ex­
ception is reported as a pre-instruction exception when the next floating­
point instruction is attempted. The trap handler must generate a result to
store in the destination.

To assist the trap handler in this function, the processor supplies the fol­
lowing iformation in the FSAVE state frame:

FSAVE State
Contents Frame Field

CMDREG1B FDIV command word

ETEMP Source operand converted to extended precision

STAG Source operand tag

FPTEMP Destination operand converted to extended precision

T-Flag o (Pre-Instruction exception)

MOTOROLA MC68040 USER'S MANUAL 9-53

..

•

9.8.9 Inexact Result

9-54

The, processor provides two inexact bits (lNEX1 and INEX2) to help distin­
guish between inexact results generated by emulated decimal input (lNEX1)
and other inexact results (lNEX2). Two inexact bits are useful in instructions
in which both types of inexacts can occur, such as:

FDIV.P #7E-1,FP3

In this case, the packed decimal to extended precision conversion of the
immediate source operand causes an inexact error to occur which is signaled
as INEX1. Furthermore, the subsequent divide might also produce an inexact
result and cause INEX2 to be set. Therefore, the processor provides two
inexact bits in the FPSR exception status byte to distinguish these two cases.

Note that only one inexact exception vector number is generated by the
processor. If either of the two inexact exceptions is enabled, the MPU fetches
the inexact exception vector, and the exception handler routine is initiated.
Refer to 9.8.10 Inexact Result on Decimal Input for a discussion of INEX1.

In a general sense, INEX2 is the condition that exists when any operation,
except the input of a packed decimal number, creates a floating-point inter­
mediate result whose infinitely precise mantissa has too many significant
bits to be represented exactly in the selected rounding precision or in the
destination data format. If this condition occurs, the INEX2 bit is set in the
FPSR exception status byte, and the infinitely precise result is rouned as
described in the next paragraph. '

The processor supports the four rounding modes specified by the IEEE stand­
ard. These modes are round to nearest (RN), round toward zero (RZ), round
toward plus infinity (RP), and round toward minus infinity (RM). The rounding
definitions are:

Rounding
Mode Result

RN The representable value nearest to the infinitely precise
intermediate value is the result. If the two nearest rep­
resentable values are equally near (a tie), then the one
with the least significant bit equal to zero (even) is the
result. This is sometimes referred to as "round nearest,
even."

MC68040 USER'S MANUAL MOTOROLA

Rounding
Mode

RZ

RM

RP

Result
The result is the value closest to, and no greater in mag­
nitude than, the infinitely precise intermediate result. This
is sometimes referred to as the "chop mode," since the
effect is to clear the bits to the right of the rounding point.

The result is the value closest to and no greater than the
infinitely precise intermediate result (possibly minus in­
finity).

The result is the value closest to and no less than the
infinitely precise intermediate result (possibly plus infin­
ity).

The RM and RP rounding modes are often referred to as "directed rounding
modes" and are useful in interval arithmetic. Rounding is accomplished usig
the intermediate result format shown in Figure 9-12.

Depending on the selected rounding precision or destination data format in
effect, the location of the least significant bit of the fraction and the locations
of the guard, round, and sticky bits in the 67-bit intermediate result mantissa
varies.

The guard and round bits are always calculated exactly. The sticky bit is used
to create the illusion of an infinitely wide intermediate result mantissa. As
shown by the arrow in Figure 9-11, the sticky bit is the logical OR of all the
bits in the infinitely precise result to the right of the round bit. During the
calculation stage of an arithmetic operation, any non-zero bits generated that
are to the right of the round bit set the sticky bit (which is used in rounding)
to one. Because of the sticky bit, the rounded intermediate result for all
required IEEE arithmetic operations in the round-to-nearest mode is in error
by no more than one half unit in the last place.

MOTOROLA

63-BIT
FRACTION

LEAST SIGNFICANT BIT OF FRACTION

GUARD BIT

ROUND BIT

STICKY BIT ---'

Figure 9-11. Intermediate Results Format

MC68040 USER'S MANUAL 9-55

..

9-56

NOTE

When the FPU is programmed to operate in the single or double
precision rounding mode, a method referred to as "range control"
is used to assure correct emulation of a machine that only supports
single or double precision arithmetic. When the processor performs
any calculation, the intermediate result is in the format shown in
Figure 6-2, and a rounded rest stored into a floating-point data reg­
ister is always in the extended precision format. However, if the
single or double precision rounding mode is in effect, the final result
generated by the processor is within the range of the format.

Range control is accomplished by not only rounding the intermediate result
mantissa to the specified precision, but also checking the 17-bit intermediate
exponent to ensure that it is within the representable range of the selected
rounding precision format. If the intermediate exponent exceeds the range
of the selected precision, the exponent value appropriate for an underflow
or overflow is stored as the result in the 16-bit extended precision format
exponent. For example, if the rounding precision and mode is single/RM and
the result of an arithmetic operation overflows the magnitude of the single
precision format, the largest normalized single precision value is stored as
an extended precision number in the destination floating-point data register
(i.e., an unbiased 15-bit exponent of $OOFF and a mantissa of
$FFFFFFOOOOOOOOOO). If an infinity is the appropriate result for an underflow
or overflow, the infinity value for the destination data type is stored as the
result (i.e., an exponent with the maximum value and a mantissa of zero).

Figure 9-12 shows the algorithm that is used to round an intermediate result
to the selected rounding precision or destination data format. If the desti­
nation is a floating-point register, the rounding boundary is determined by
either the selected rounding precision in the FPCR or the precision specified
by the instruction (for example, FSADD and FDADD specify single and double
precision rounding regardless of the precision specified in the FPCR). If the
destination is external memory or an MPU data register, the rounding bound­
ary is determined by the destination data format. If the rounded result of an
operation is not exact, then the INEX2 bit is set i teh FPSR exception status
byte.

MC68040 USER'S MANUAL MOTOROLA

BEGIN

END

Trap Disabled Results:

IF GUARD, ROUND AND STICKY = 0
THE (RESULT IS EXACT)

DON'T SET INEX2
DON'T CHANGE THE INTEMEDIATE RESULT

ELSE (RESULTS IS INEXACT)
SET INEX2 IN THE FPSR EXEC BYTE

SELECT THE ROUNDING MODE
RM: IF INTERMEDIATE RESULTS IS NEGATIVE

THEN ADD 1 TO LSB
RN: IF GUARD = 1 THEN

IF ROUND AND STICKY = 0 ANO LSB = 1 THEN
INCREMENT LSB

ELSE IF ROUND OR STICKY = 1 THEN
INCREMENT LSB

ENDIF
ENDIF

RP: IF INTERMEDIATE RESULT IS POSITIVE
THEN ADD 1 TO LSB

RZ: (FALL THROUGH, GUARD, ROUND, AND STICKY ARE
CHOPPED)

END SELECT
IF OVERFLOW=l

THEN

ENDIF

SHIFT MANTISSA RIGHT BY ONE BIT
ADD 1 TD EXPONENT

SET GUARD, ROUND, AND STICKY TO 0
ENDIF

Figure 9-12. Rounding Algorithm

The rounded result is stored to the destination

Trap Enabled Results:
The rounded result is stored in the destination, and an exception is re­
ported. If the destination for an FMOVE instruction is memory or an MPU
data register, a post-instruction exception is taken immediately, and the
FSAVE state frame indicates an E1 (CU) exception. If the instruction is an
FMOVE to a floating-point data register, FABS, or FNEG, a pre-instruction
exception is reported, and the FSAVE state frame also indicates an E1 (CU)
exception. For FADD, FSUB, FMUL, FDIV, and FSQRT instructions, a pre­
instruction exception is normally reported as a pre-instruction exception
for the next floating-point exception decoded by the integer unit. However,
if an FMOVE instruction already in progress earlier in the floating-point
pipeline generates a post-instruction exception, the inexact exception takes
precedence and is reported as a post-instruction exception. This prevents
out of order exception reporting. For both the pre- and the post-instruction
exception, the FSAVE state frame indicates an E3 (CU) exception.

MOTOROLA MC68040 USER'S MANUAL 9-57

The address of the instruction that generated the inexact result is available
to the trap handler in the FPIAR. The trap handler can determine the location
of the operand(s) by examining the instruction. In the case of a memory
destination, the evaluated EA of the operand is available i the EA field of
the post-instruction stack frame. When an FSAVE is executed by an inexact
trap handler, the value ofthe exceptional operand is not defined. An inexact
exception differs from the other exception in this respect. If an inexact
condition is the only exception that occurred during the execution of an
instruction, the value of the exceptional operand is invalid. If multiple ex­
ceptions occur during an instruction, the exceptional operand value is re­
lated to a higher priority exception.

NOTE

The IEEE standard specifies that inexactness should be signaled on
overflow as well as for rounding. The processor implements this via
the INEX bit in the FPSR AEXC byte. However, the standard also
indicates that the inexact trap should be taken if an overflow occurs
with the overflow trap disabled and the inexact trap enabled. There­
fore, the processor takes the inexact trap if this combination of con­
ditions occurs, even though the INEX1 or INEX2 bits may not be set
in the FPSR EXC byte. In this case, INEX is set in the AEXC byte and
OVFL is set in both the EXC and AEXC bytes.

9.8.10 Inexact Result on Decimal Input

9-58

In a general sense, inexact result 1 (INEX1) is the condition that exists when
a packed decimal operand cannot be converted exactly to extended precision
in the current rounding mode. The processor provides two inexact bits (INEX1
and INEX2) to help distinguish between inexact results generated by decimal
input conversios (INEX1) and other inexact results (lNEX2). Since packed
decimal real operands are not directly supported by the MC68040, INEX1 is
never set by the processor, but is provided as a latch so that emulation
software can report this exceptio if required for MC68881/MC68882 compat­
ibility.

MC68040 USER'S MANUAL MOTOROLA

SECTION "10
INSTRUCTION TIMING

This section will contain brief information on the instruction timing for the
MC68040 after the timing has been finalized. Detailed information on instruc­
tion timing will be furnished in the MC68040DH/AD, MC68040 Designer's
Handbook.

Table 10-1 list the floating-point instruction timing that are directly supported
by the MC68040.

Table 10-1. MC68040 Preliminary Floating-PointUnit Instruction
Timings (Sheet 1 of 5)

Instruction Opclass Size
Round

Operands
Time

Precision (in IU Cycles)

FADD,FSUB 0 - any norm,norm 2(3)/3/2(3)

0 - any norm,zero 2(3)/3/2(3)

0 - any zero,zero 4/0/0

0 - any -,inf 4/0/0

0 - any -,NAN 4/0/0

2 S,D any norm,norm 2(3)/3/2(3)

2 S,D any norm,zero 2(3)/3/2(3)

2 S,D any zero,zero 4/0/0

2 S,D any -,inf 4/0/0

2 S,D any -,NAN 4/0/0

2 X any norm, norm 3(4)/3/2(3)

2 X any norm,zero 3(4)/3/2(3)

2 X any zero,zero 5/0/0

2 X any -,inf 5/0/0

2 X any -,NAN 5/0/0

FMUL 0 - any norm, norm 2(3)/5/2(3)

0 - any - ,zero 4/010

0 - any -,inf 4/0/0

0 - any -,NAN 4/0/0

MOTOROLA MC68040 USER'S MANUAL 10-1

10-2

Table 10~1. MC68040 Preliminary Floating-Point Unit Instruction
Timings (Sheet 2 of 5)

Instruction Opclass Size Round Operands Time
Precision (in IU Cycles)

FMUL 2 S,D any norm,norm 2(3)/5/2(3)

2 S,D any - ,zero 4/0/0

2 S,D any -,inf 4/0/0

2 S,D any -,NAN 4/0/0

2 X any norm,norm 3(4)/5/2(3)

2 X any - ,zero 5/0/0

2 X any -,inf 5/0/0

2 X any -,NAN 5/0/0

FDIV 0 - any norm,norm 2(3)/37.5/2(3)

0 - any - ,zero 4/0/0

0 - any -,inf 4/0/0

0 - any -,NAN 4/0/0

2 S,D any norm,norm 2(3)/37.5/2(3)

2 S,D any -,zero 4/0/0

2 S,D any -,inf 4/0/0

2 S,D any -,NAN 4/0/0

2 X any norm,norm 3(4)/37.5/2(3)

2 X any - ,zero 5/0/0

2 X any -,inf 5/0/0

2 X any -,NAN 5/0/0

FSQRT 0 - any norm 2(3)/103/2(3)

0 - any (zerolinfINAN) 4/0/0

2 S,D any norm 2(3)/103/2(3)

2 S,D any (zerolinfINAN) 4/0/0

2 X any norm 3(4)/103/2(3)

2 X any (zerolinfINAN) 5/0/0

FMOVE,FABS,FNEG 0 - X (normlzerolinf) 2/0/0

0 - X NAN 3/0/0

0 - S,D norm 5/0/0

0 - S,D (zerolinf) 3/0/0

0 - S,D NAN 4/0/0

MC68040 USER'S MANUAL MOTOROLA

Table 10-1. MC68040 Preliminary Floating-Point Unit Instruction
Timings (Sheet 3 of 5)

Instruction Opclass Size
Round

Operands
Time

Precision (in IU Cycles)

FMOVE,FABS,FNEG 2 S any (normizeroiinf) 3/010

2 S any NAN 4/010

2 D D,X (normizeroiinf) 3/010

2 D D,X NAN 4/010

2 D S norm 5/010

2 D S (zeroiinf) 4/010

2 D S NAN 5/010

2 X X (normizeroiinf) 4/010

2 X X NAN 5/010

2 X S,D norm 6/010

2 X S,D (zeroiinf) 5/010

2 X S,D NAN 6/010

2 B,W any (+ normizero) 1.5(11)/4.5/2'

2 L D,X (+ normizero) 1.5(11)/4.5/2'

2 L S (+ normizero) 1.5(12.5)/4.5/2'

2 B,W any -norm 1.5(11.5)/5/2'

2 L D,X -norm 1.5(11.5)/5/2'

2 L S -norm 1.5(13)/5/2'

FMOVE 3 S,D any any 3/010

3 X any any 4/010

3 B,W,L any + (normizero) 3(9)/1.5/3.52

3 B,W,L any - (normizero) 3(10)/1.5/4.52

FMOVEM 4 - - - 2 + (2 per reg)/0103

5 - - - 2 + (2 per reg)/0103

6 - - - 2 + (3 per reg)/0103

7 - - - 2 + (3 per reg)/0103

FCMP 0 - any norm,norm 2(3)/3/1

0 - any norm,zero 2(3)/3/1

0 - any zero,zero 4/010

0 - any -,inf 4/010

0 - any -,NAN 4/010

MOTOROLA MC68040 USER'S MANUAL 10-3

10-4

Table 10-1. MC68040 Preliminary Floating-Point Unit Instruction
Timings (Sheet 4 of 5)

Instruction Opclass Size
Round

Operands
Time

Precision (in IU Cycles)

FCMP 2 S,D any norm,norm 2(3)/3/1

2 S,D any norm,zero 2(3)/311

2 S,D any zero,zero 4/010

2 S,D any -,inf 4/010

2 S,D any -,NAN 4/010

2 X any norm,norm 3(4)/3/1

2 X any norm,zero 3(4)/3/1

2 X any zero,zero 5/010

2 X any -,inf 5/010

2 X any -,NAN 5/010

FSAVE null frame - - -2

idle frame - - -2 + (time for pipe
to idle)

unimp frame - - -18 + (time for pipe
to idle)

busy frame - - -35+ (time for pipe
to idle)

FRESTORE null frame - - -20

idle frame - - -2 + (time for pipe
to idle)

unimp frame - - -16+ (time for pipe
to idle)

busy frame - - -30 + (time for pipe
to idle)

error frame - - -2

MC68040 USER'S MANUAL MOTOROLA

Table 10-1. MC68040 Preliminary Floating-Point Unit Instruction
Timings (Sheet 5 of 5)

NOTES:
1. Memory-to-Register of integer data types require a pass through the FPU pipe to convert the

data to floating point format. The result of this conversion is presented to the CU (the first pipe
stage) where the desired operation begins (possibly starting a second pass through the pipe).
The integer unit (IU) is released and can execute other instructions once the data has been
transferred to the FPU (during the first CU cycle).

The data conversion (the first pass) executes with the following times:
Positive norm or zero: 1.5(9)/4.5/2
Negative norm: 1.5(9.5)/5/2

To arbitrarily calculate the execution time of a mem-to-reg instructionwith
integer data type (other than FMOVE, FNEG, or FAB5)' use the abovetimes for
the first pass, then look up the opclass 0 version of the operation, subtract
one (1) from the CU time, and you will have thesecond pass timings.

2. Register-to-Memory of integer data types require a pass through the FPU pipe to convert the
data from floating point format to integer. Register-to-Memory instructions are normally handled
entirely by the CU, so the result of the conversion is presented to the CU where the data move
then completes. The IU is not released until it has received the converted data (during the last
CU cycle).

3. All FMOVEM instructions wait for the pipe to idle before starting.

GENERAL NOTES:
Times in parentheses are the total time that that stage uses to execute an instruction even though
the stage may pass data to the next stage earlier. 50 "2(3)/5/2(3)" means that the instruction takes
2 + 5 + 2 cycles to execute, but stages 1 and 3 were actually busy for 3 cycles each.

Different rounding modes (i.e. round to zero, etc) never incur a time penalty.

The order of operands is generally not significant (for timing purposes).

Preceding instructions with an 5 or D (i.e. FADD. F5ADD) has the same effect as setting the rounding
precision to that precision.

MOTOROLA MC68040 USER'S MANUAL 10-5

10-6 MC68040 USER'S MANUAL MOTOROLA

SECTION 11
ELECTRICAL CHARACTERISTIC

The following paragraphs provide information on the maximum rating and
thermal characteristics for the MC68040. Detail information on timing spec­
ifications for power considerations, DC electrical characteristics and AC tim­
ing specifications can be found in the MC68040EC/D, MC68040 Electrical
Specifications and MC68040DH/D, MC68040 Designer's Handbook.

11.1 MAXIMUM RATINGS
Rating Symbol Value Unit

Supply Voltage VCC -0.3 to +7.0 V

Input Voltage Vin -0.5to +7.0 V

Maximum Operating Junction TJ 110 °c
Temperature

Storage Temperature Range Tstg -55 to 150 °c

11.2 THERMAL CHARACTERISTICS - PGA PACKAGE
Characteristic Symbol Value Rating

Thermal Resistance - RJC °CIW
Junction to Case

MOTOROLA MC68040 USER'S MANUAL 11-1

..

III

11-2 MC68040 USER'S MANUAL MOTOROLA

SECTION 12
ORDERING INFORMATION AND
MECHANICAL DATA

This section contains the pin assignments and package dimensions of the
MC68040. In addition, detailed information is provided to be used as a guide
when ordering.

12.1 ORDERING INFORMATION

The following table provides ordering information pertaining to the package
type frequency, temperature and Motorola order number for the MC68040.

Package Type
Frequency

Temperature Order Number
(MHz)

Pin Grid Array 25.0 TBD MC68040R25
R Suffix

MOTOROLA MC68040 USER'S MANUAL 12-1

III

12.2 PIN ASSIGNMENTS

The MC68040 is available in an 179-pin package. The following figure shows
the pin assignment of the MC68040.

0 -2... 0 .Q.. ..Q.. .Q.. ..Q.. 0 .Q.. ~ 0 .Q. Q 0 0 Q Q
TOO TRST GND COts 1Pl2 IPLI IPlO OLE TCI AVEC sco 8G TA PSTO PST3 BB BR

---.lL 0 0 0 0 ~ ..Q.. 0 0 0 .Q.. 0 ..Q.. 0 0 0 0 -2...
IPENO GND TOt TCK TIIS MDIS RSTI vee GND GND TBI SCl TEA PSTl GND vee GND LOCK

R -2..... 0 ~TO 0 0 0 0 0 0 0 0 0 0 0 Q Q 0 ~
ClOUT vee GND vee GNO BCLK vee PCLK GND GND vee GND PST2 TIP TS vee LOCKE

a 0 0 0 Q 0 0
UPAl GND UPAD III GND TLNO

0 0 0 0 0 0
Al0 TTl TTO SIZl SIZO TLNl

0 0 0 ~ 0 0
A12 GND All aND TMO

M 0 0 0
PRIEUMINARY

0 0 0
A13 vee vee GND vee TMl

0 0 0 0 0 0
A14 GND GND vee GND AD

0 0 0
MC68040 PRELIMINARY

0 0 0
A15 A16 GND GND T112 Al

PINOUT
0 0 0 0 0 0

A17 A19 vee
(BOTTOM VIEW)

vee A2 A3

0 0 0 0 0 0
A18 GND vee 18 X 18 CAVITY DOWN PGA vee GND A4

G 0 0 0 0 0 0
A20 vee A23 AS vee AS

0 0 0 0 0 0
A21 GND A25 A9 GND A7

0 0 0 0 0 0
A22 A26 A28 D29 030 AS

0 0 0 0 0 0
.\24 GND A30 027 aND 031

C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
.\27 vee DO 02 vee GND GND vee GND vee GND vee GND vee 023 D25 vee 028 ---,
0 G~DI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A29
1

01 GND vee GND 08 GND vee GND 016 018 GND vee GND D22 GND 026

A 0 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A31 D3 D4 05 D6 07 09 010 011 012 013 014 015 017 019 D2D 021 024

10 11 12 13 14 15 16 17 18

• GND vee

PLL 89, R6, Rl0 R8, sa

Internal Logic
ca, C7, Cg, Cll, C13, K3, C5, ca, Cl0, C12,
K16, L3, M16, R4, Rll, C14, H3, H16, J3, J16,
R13, S10, T4 L16, M3, R5, R12

82,84,86,88,810,813, BS, 89, 814, C2, C17,

Output Drivers
815,817,02,017, F2, F17, G2,G17, M2, M17, R2,
H2, H17, L2, L17, N2, N17, R17,S16
02,017, S2, S15, S17

12-2 MC68040 USER'S MANUAL MOTOROLA

12.3 MECHANICAL DATA

The following figure provides the package dimensions for the MC68040.

R
o

N
M

H
G
F
E
D

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

I~ [±] 'I -1 []J r-

MILUMETERS
DIM

MIN MAX
A 46.863 47.625
B 46.863 47.625
C 2.3876 2.9464
D 4.318 4.826
E 18.796
F 1.778
G 3.302
H 1.524
I 1.016
J 0.508

INCHES

MIN
1.845
1.845
.094
.170

.740

.070

.130
0.060
0.040
0.020

MOTOROLA MC68040 USER'S MANUAL

MAX
1.875
1.875
.116
.190

m

12-3

12-4 MC68040 USER'S MANUAL MOTOROLA

APPENDIX A
M68000 FAMILY SUMMARY

This Appendix summarizes the characteristics of the microprocessors in the
M68000 Family. The M68000PM/AD, M68000 Programmer's Reference Man­
ual includes more detailed information on the M68000 Family differences.

Attribute MC68000 MC68008 MC68010 MC68020 MC68030 MC68040

Data Bus Size (Bits) 16 8 16 8, 16,32 8,16,32 32

Address Bus Size (Bits) 24 20 24 32 32 32

Instruction Cache (In Bytes) - - 31 (Words) 256 256 4096

Data Cache (I n Bytes) - - - - 256 4096

NOTE 1: The MC68010 supports a 3-word cache for the loop mode.

Virtual Interfaces

MC68010, MC68020, MC68030 Virtual Memory/Machine

M68040 Virtual Memory

MC68010, MC68020, MC68030, MC68040 Provide Bus Error Detection, Fault Recovery

MC68030, MC68040 On-Chip MMU

Coprocessor Interface

MC68000, MC68008, MC68010 Emulated in Software

MC68020, MC68030 In Microcode

MC68040 Emulated in Software (On-Chip Floating-Point Unit)

Word/Long Word Data Alignment

MC68000, MC68008, MC68010 Word/Long Data, Instructions, and Stack Must be
Word Aligned

MC68020, MC68030, MC68040 Only Instructions Must be Word Aligned (Data
Alignment Improves Performance)

MOTOROLA MC68040 USER'S MANUAL A-l

..

Control Registers

MC68000, MC68008 None

MC68010 SFC,OFC,VBR

MC68020 SFC, DFC, VBR, CACR, CAAR

MC68030 SFC, OFC, VBR, CACR, CAAR, CRP, SRP, TC, TTO, TT1,
MMUSR

MC68040 SFC, OFC, VBR, CACR, URP, SRP, TC, OTTO, OTT1,
ITTO, ITT1, MMUSR

Stack Pointer

MC68000, MC68008, MC68010 USP, sSP

MC68020, MC68030, MC68040 USP, SSP (MSP, ISP)

Status Register Bits

MC68000, MC68008, MC68010 T, S, 10/11112, X/N/ZIV/C

MC68020, MC68030, MC68040 TO, T1, S, M, 10111112, X/N/z/v/C

Function Code/Address Space

MC68000, MC68008 FC2-FCO=7 is Interrupt Acknowledge Only

MC68010, MC68020, MC68030, MC68040 FC2-FCO = 7 is CPU Space

MC68040 User, Supervisor, and Acknowledge

Indivisible Bus Cycles

MC68000, MC68008, MC68010 Use AS Signal

MC68020, MC68030 Use RMC Signal

MC68040 Use LOCK and LOCKE Signal

Stack Frames

MC68000, MC68008 Supports Original set

MC68010 Supports Formats $0, $8

MC68020/MC68030 Supports Formats $0, $1, $2, $9, $A, $B

MC68040 Supports Formats $0, $1, $2, $3, $7

A-2 MC68040 USER'S MANUAL MOTOROLA

Addressing Modes

MC68020, MC68030, and MC68040
Extensions

Memory indirect addressing modes, scaled index, and
larger displacements. Refer to specific data, sheets
for details.

MC68020, MC68030, and MC68040 Applies To
Instruction Set Extensions

Instruction Notes MC68020 MC68030 MC68040

Bcc Supports 32-Bit Displacements II" II" II"

BFxxxx Bit Field Instructions II" II" II"
(BCHG, BFCLR, BFEXTS, BFEXTU, BFFFO,
BFINS, BFSET, BFTST)

BKPT New Instruction Functionally II" II"

BRA Supports 32-Bit Displacements II" '" II"

BSR Supports 32-Bit Displacement II" '" II"

CALLM New Instruction II"

CAS, CAS2 New Instructions II" '" II"

CHK Supports 32-Bit Operands II" '" II"

CHK2 New Instruction II" '" II"

CINV Cache Maintenance Instruction II"

CMPI Supports Program Counter Relative Addressing II" '" II"
Modes

CMP2 New Instruction II" '" II"

CPUSH Cache Maintenance Instruction II"

cp Coprocessor Instructions II" '"
DIVS/DIVU Supports 32-Bit and 64-Bit Operands II" '" II"

EXTB Supports 8-Bit Extend to 32-Bits II" '" II"

FABS New Instruction II"

FADD New Instruction II"

FBcc New Instruction II"

FCMP New Instruction II"

FDBcc New Instruction II"

FDIV New Instruction II"

FMOVE New Instruction II"

FMOVEM New Instruction II"

FMUL New Instruction II"

- Continued -

MOTOROLA MC68040 USER'S MANUAL A-3

..

MC68020, MC68030, and MC68040 Applies To
Instruction Set Extensions

Instruction Notes MC68020 MC68030 MC68040

FNEG New Instruction ""
FRESTORE New Instruction ""

FSAVE New Instruction ""
FScc New Instruction ""

FSQRT New Instruction ""
FSUB New Instruction ""

FTRAPcc New Instruction ""
FTST New Instruction ""
LINK Supports 32-Bit Displacement "" "" ""

MOVE16 New Instruction ""
MOVEC Supports New Control Registers "" "" ""

MULS/MULU Supports 32-Bit Operands "" "" ""
PACK New Instruction "" "" ""

PFLUSH MMU Instruction "" ""
PLOAD MMU Instruction ""
PMOVE MMU Instruction ""
PTEST MMU Instruction "" ""
RTM New Instruction ""
TST Supports Program Counter Relative Addressing "" "" "" Modes

TRAPcc New Instruction "" "" ""
UNPK New Instruction "" "" ""

•

A-4 MC68040 USER'S MANUAL MOTOROLA

APPENDIX B
MC68040 FLOATING-POINT EMULATION

The MC68040 is user object code compatible with the MC68030 and MC688811
MC68882. The MC68040 floating-point unit is optimized to directly execute
the most commonly used subset of the extensive MC68881/MC68882 instruc­
tion set.

The MC68040 provides specialized trap functions to facilitate high speed
emulation of all indirectly supported floating-point instructions. These func­
tions couple with Motorola's floating-point software package ~nsure com­
plete object code compatibility.

The MC68040directly supports portions of the MC68881/MC68882 instruction
set through hardware, and the remainder by providing special traps and/or
stack frames for the unimplemented instructions and data types. The intent
of the MC68040 design is to provide full user code compatibility with the
MC68881/MC68882 instruction set. .

For all MC68040 floating point instructions the "coprocessor ID" field must
be 001.

Table 8-1 lists the floating-point instructions directly supported by the
MC68040 and table 8-2 lists the floating-point instructions indirectly sup­
ported.

MOTOROLA MC68040 USER'S MANUAL 8-1

•

Table B·1. Directly Supported Floating-Point Instructions

Mnemonic Description

FABS Floating-Point Absolute Value

FADD Floating-Point Add

FBcc Floating-Point Branch Conditionally

FCMP Floating-Point Compare

FDBcc Floating-Point Test Condition, Decrement, and Branch

FDIV Floating-Point Divide

FMOVE Move Floating-Point Data Register

FMOVE.L Move Floating-Point System Control Register

FMOVEM Move Multiple Floating-Point System Data Register

FMOVEM.L Move Multiple Floating-Point Control Data Register

FMUL Floating-Point Multiply

FNEG Floating-Point Negate

FNOP No Operation

FRESTORE Restore Internal Floating-Point State

FSAVE Save Internal Floating-Point State

FScc Set According to Floating-Point Condition

FSQRT Floating-Point Square Root

FSUB Floating-Point Subtract

FTRAPcc Trap on Floating-Point Condition

FTST Test Floating-Point Operand

•
B-2 MC68040 USER'S MANUAL MOTOROLA

Table B-2. Indirectly Supported Floating-Point Instructions

Mnemonic Description

FACOS Floating-Point Arc Cosine

FASIN Floating-Point Arc Sine

FATAN Floating-Point Arc Tangent

FATANH Floating-Point Hyperbolic Arc Tangent

FCOS Floating-Point Cosine

FCOSH Floating-Point Hyperbolic Cosine

FETOX Floating-Point eX

FETOXL Floating-Point eX-l

FGETEXP Floating-Point Get Exponent

FGETMAN Floating-Point Get Mantissa

FINT Floating-Point Integer Part

FINTRZ Floating-Point Integer Part, Round-to-Zero

FLOG10 Floating-Point Lo9l0

FLOG10 Floating-Point Lo92

FLOGN Floating-Point Loge

FLOGNPl Floating-Point Loge (x + 1)

FSQRT Floating-Point Square Root

FMOD Floating-Point Modulo Remainder

FMOVECR Floating-Point Move Constant ROM

FREM Floating-Point IEEE Remainder

FSCALE Floating-Point Scale Exponent

FSGLDIV Floating-Point Single Precision Divide

FSFLMUL Floating-Point Single Precision Multiply

FSIN Floating-Point Sine

FSINCOS Floating-Point Simultaneous Sine and Cosine

FSINH Floating-Point Hyperbolic Sine

FTAN Floating-Point Tangent

FTANH Floating-Point Hyperbolic Tangent

FTENTOX Floating-Point lOx

FTWOTOX Floating-Point 2x

Contact your local Motorola sales office or representative for information on
the floating-point software package for the MC68040 and how to order it.

MOTOROLA MC68040 USER'S MANUAL 8-3

II

•
8-4 MC68040 USER'S MANUAL MOTOROLA

GLOSSARY

Aliasing
Mapping identical information to the same address-registers or memory
locations which tells you what the op code acts on.

Big-Endian
A byte-ordering method in memory where the address n of a word cor­
responds to the most significant byte. In an addressed memory word, the
bytes are ordered (left to right) 0, 1, 2, and 3, with 3 being the most sig­
nificant byte.

Breakpoint
A point in a program that allows a conditional interruption to permit visual
checking, printouts, or other analysis.

Bus Snoop
CMMU operation in which M bus addresses marked global are compared
to the data cache tags. If a tag matches the M bus address, the cache line
is copied back to memory (if modified) and invalidated. Bus snooping is
necessary to maintain cache coherency in a multimaster system.

Cache Coherency
Caches are coherent if a processor performing a read from its cache is
supplied with data corresponding to the most recent value written to mem­
ory or to another processor's cache.

Cache
Small, high-speed memory containing recently accessed data and/or in­
structions.

Copyback
A CMMU operation is which a cache line is copied back to memory to
enforce cache coherency. A copyback is done either on a snoop that hits
on modified cache data or as a result of a copyback command initiated by _ ..
the processor. _

MOTOROLA MC68040 USER'S MANUAL GLOSSARY-1

Denormalized Numbers
A floating-point number having all zeros in the exponent and a non-zero
value in the fraction/mantissa.

Dirty Data
The data on line (in the chip cache) is valid but not consistent with memory
(see stale data). Dirty data is the most recent data.

Dyadic
A mathematical operator indicated by writing the symbols of two vectors
without a dot or cross between (as AS).

Dyadic Operations
An operation on two operands.

Little Endian
A byte-ordering method in memory where the address n of a word cor­
responds to the most significant byte. In an addressed memory word, the
bytes are ordered (left to right) 3, 2, 1, and 0, with 3 being the most sig­
nificant byte.

Monadic Operation
An operation on one operand, for example, negation.

Orthogonally
Intersecting or lying at right angles.

Overflow
An error condition that occurs during arithmetic operations when the result
cannot be stored accurately in the destination register(s). For example, if
two 32-bit numbers are added, this sum may require 33 bits due to carry.
Since the 32-bit register cannot represent this sum, an overflow condition
occurs.

Pipelining
A technique that breaks instruction execution into distinct steps so that
multiple steps can be performed at the same time.

Sink Data
To replace data in a cache line.

GLOSSARY-2 MC68040 USER'S MANUAL MOTOROLA

Stale Data
The data in external device (such as main memory or a DMA controller
cache) is outdated and requires replacement from MPU write operation
(see dirty data).

Three-Statable
Means the high impedance state of a three-state device.

Underflow
An error condition that occurs during arithmetic operations when the result
cannot be stored accurately in the destination register(s). For example, an
underflow can happen if two floating-point fractions are multiplied and the
result is a single-precision number. The result may require a larger ex­
ponent and/or mantissa than the single-precision format makes available.

Writethrough
A memory update policy in which all processor write cycles are written to
both the cache and memory.

MOTOROLA MC68040 USER'S MANUAL GLOSSARY-3

lEI

GLOSSARY-4 MC68040 USER'S MANUAL. MOTOROLA

INDEX

-A-
Access Fault Exception, 9-8-9-10, 9-23
Access Error Stack Frame, 9-24-9-27
Address Error Exception, 9-10, 9-24, 9-28
Address Generation, 6-25
Address Registers, 3-16
Addressing Mode

Absolute, 3-32, 3-33, 3-37
Immediate, 3-33
Memory Indirect, 3-26, 3-40, 3-41
Program Counter Indirect with Displacement. 3-28
Program Counter Indirect with Index, 3-29, 3-31
Program Counter Memory Indirect. 3-31
Register Direct, 3-23
Register Indirect. 3-23, 3-37, 3-40
Register Indirect with Index, 3-25-3-27, 3-40

Addressing Modes, 1-7, 1-9,3-21,3-36,3-37,3-43,
3-46,

Address Offset, 8-6
Address Translation, 6-1-6-4, 6-9, 6-25
Address Translation Caches, 1-1,6-2,6-14

Hits, 6-9
Misses, 6-4, 9-9
Table Structure, 6-4-6-8

Accrued Exception Byte (AEXC), 2-14
Arbitration, 8-47-8-50
Auto Vectoring, 8-33-8-34, 9-18

-8-

Binary Coded Decimal Operations, 4-13
Bit Field Operations, 4-13
Bit Manipulation Operations, 4-12
Branch/Set on Unordered, 9-41
Breakpoint Operation, 8-37, 8-38, 9-19
Bursts Inhibit. 5-9, 8-22
Bus Fault Recovery, 9-23
Bus Arbitration, 5-11, 8-47-8-50
Bus Lock Signal, 8-29
Bus Operations

Arbitration, 5-11. 8-47-8-50
Breakpoi nt, 8-37, 8-38
Bursts Inhibit, 5-9, 8-22
Byte Transfers, 8-11
Bus Signals Encoding, 8-7
Clock Timing, 8-3
Control Signals, 5-8, 5-9, 8-39, 8-47-8-50
Error, 7-16, 7-17, 8-39, 8-40, 9-28-9-30

Bus Operations
Interrupts, 8-33, 8-37
Interrupt Timing, 8-35
Line Read, 8-18-8-20
Line Write, 8-25, 8-27, 8-44
Misaligned Transfers, 8-8, 8-13
Multiplexing, 8-5, 8-58, 8-50
Operating States, 8-58
Read-Modify-Write, 8-29
Read Transaction, 8-6, 8-14, 8-55
Read Timing, 8-9, 8-10, 8-43
Reset, 8-62
Return from Exceptions, 9-21-9-23, 9-28, 9-30
Snooping, 5-5, 5-10, 7-7, 8-1, 8-50-8-55
Transfers, 8-4, 8-32
Synchronization, 8-45, 8-46
Setup and Hold Times, 8-3
Write Transaction, 8-6, 8-23, 8-57
Write Timing, 8-10, 8-25

Bus Snooping, 5-5, 5-10, 7-7, 8-1, 8-50

-c-
Cache Control Register, 7-19
Cache Inhibit, 5-9, 6-16, 6-19
Cache Instructions, 4-18, 7-8
Cache Read, 7-11
Cache Write, 7-12, 8-16,8-17
Caches

Data, 1-12,7-10
Instruction, 1-12,7-8
Operations, 7-8, 7-11, 7-18, 7-19
Pushes, 7-16, 7-17
States

Dirty, 7-8-7-10, 7-12-7-14, 7-16
Invalid, 7-8-7-10, 7-12-7-14
Valid, 7-8-7-10, 7-13, 7-14

Carry bit, 4-20
Clock Timing, 8-3
Condition Code Computation, 4-20-4-21
Condition Code Register, 3-17
Condition Code Register Bits

Carry bit, 4-20
Extend bit, 4-19
Negative bit, 4c20
Overflow bit, 4-20
Zero bit, 4-20

Conditional Tests, 4-22, 4-25 4-27
Copyback, 1-13,6-16,6-19

MOTOROLA MC68040 USER'S MANUAL INDEX-1

-D-
Data Cache

Access, 1-12
Read Transaction, 1-2, 7-8
Write Transaction, 1-12,7-8

Copyback, 7-5, 7-12
Flushes, 6-41
Hits, 7-11, 7-12
Misses

Read, 7-11
Write, 7-11

Organization, 7-2
Writethrough, 7-4

Data Formats
Byte Integer, 3-2, 3-3, 3-18
Extended-Precision Real, 1-8, 3-2, 3-4, 3-12
Floating-Point Unit, 3-14, 3-21
Long-Word Integer, 3-2, 3-3
Single Precision Real, 1-8, 2-10, 3-2, 3-4, 3-10
Double Precision Real, 1-8, 2-10,3-2,3-4,3-11
Word Integer, 3-2, 3-3

Data Reg isters, 3-13
Data Transparent Translation Registers, 3-18,

6-11-6-13, 6-38
Data Types, 1-7,3-2,3-14
Data Movement Operations, 4-4, 4-5
Denormalized Number Format, 3-7
Descriptor Fetch Operation, 6-32
Descriptors

Indirect, 6-19, 6-21, 6-27
Page, 6-6, 6-18, 6-20
Table, 6-6, 6-18

Destination Function Code Register, 2-18, 3-17
Divide by Zero, 9-53
Double Bus Fault, 8-45
Dyadic Floating-Point Operations, 4-8, 9-36

-E-
Effective Address Formats, 3-34
Effective Address Modes, 3-36
Error, Bus, 7-16, 7-17, 8-39, 8-40,9-28-9-30
Exception

Access Fault, 9-8-9-10, 9-23
Address Error, 9-10, 9-28
Breakpoint, 9-19
Floating-Point, 2-14, 2-15, 9-12, 9-34-9-58
Format Error, 9-14
Illegal Instruction, 9-11
Interrupt, 9-15
Processing, 2-1, 2-4, 9-1, 9-2
Priorities, 9-20
Privilege Violation, 9-12
Reset, 9-7
Stack Frames, 2-5, 9-2, 9-4, 9-24-9-27
Trace, 9-13

Exception
Trap, 9-10
Unimplemented Instruction, 9-11, 9-12
Vectors, 2-5, 8-33, 8-34, 9-3

Exception Enable Byte (ENABLE), 2-9
Exception Status Byte (EXCl. 2-13
Exception Processing, 2-1, 2-4, 9-1, 9-2
Extend bit, 4-19

-F-
Floating-Point Arithmetic Instructions, 4-8
Floating-Point Data Registers, 3-14
Floating-Point Condition Code Byte (FPCC), 2-11
Floating-Point Control Registers, 1-7, 2-9, 2-10, 3-17
Floating-Point Control Register

Exception Enable Byte (ENABLE), 2-9
Mode Control Byte (MODEl. 2-10

Floating-Point Exceptions, 2-14, 2-15, 9-11, 9-12,
9-34-9-58

Floating-Point Format Conversion, 3-15
Floating-Point Instruction Address Registers, 1-7,

2-15
Floating-Point State Frames, 9-30-9-34
Floating-Point Status Register, 1-7,2-11,3-17
Floating-Point Status Register

Accrued Exception Byte (AEXCl. 2-14
Exception Status Byte (EXCl. 2-13
Floating-Point Condition Code Byte (FPCC). 2-11
Quotient Byte, 2-13

Floating-Point Unit Exceptions
Branch/Set on Unordered, 9-41
Divide by Zero, 9-53
Inexact Results, 9-54
Inexact Results on Decimal Input, 9-58
Opera nd, 9-44
Overflow, 9-46
Signaling Not-a-Number, 9-42
Underflow, 9-49
Unimplemented FP Instructions, 9-35
Unimplemented FP Data Types, 9-38

Floating-Point Unit Pipeline, 4-46

-1-

Illegal Instruction Exception, 9-11
Indirect Descriptor, 6-19, 6-21, 6-27
Inexact Results, 9-54
Inexact Results on Decimal Input, 9-58
Instruction Cache, 1-12,7-8
Instruction Examples, 4-314-44
Instruction Format, 4-1
Instruction Set Summary, 1-11, 4-31-4-39

INDEX-2 MC68040 USER'S MANUAL MOTOROLA

Instructions
Binary Coded Decimal, 4-13
Bit Field, 4-12
Bit Manipulation, 4-12
Cache, 4-18, 7-8
Data Movement, 4-4
Floating-Point Arithmetic, 4-8
Integer Arithmetic, 4-7
Memory Management, 4-18, 6-41
Multiprocessor, 4-18
Program Control, 4-14
Shift and Rotate, 4-10
System Control, 4-16

Instruction Transparent Translation Registers, 3-18,
6-11-6-13,6-38

Integer Arithmetic Operations, 4-7
Interrupt Priorities, 9-16
Interrupts, 8-33, 8-35, 8-37, 9-15
Interrupt Stack Pointer, 2-17
Invalid State, 7-9

-L-
Line Read Operation, 8-18-8-20
Line Write Operation, 8-25, 8-27, 8-44
Logical Instruction Operations, 4-10

-M-
Master Stack Pointer Register, 2-17, 3-47
Memory Indirect Addressing, 3-26, 3-40, 3-41
Memory Management Instructions, 4-18, 6-41
Memory Management Unit, 1-10, 6-2-6-4
Memory Organization, Integer, 3-20
Memory Organization, Floating-Point, 3-21
Misaligned Transfers, 8-8, 8-13
MMU Status Register, 3-17, 6-2, 6-40
Mode Control Byte (MODE), 2-10
Monadic Floating-Point Operations, 4-9, 9-36
MOVE16 Instruction, 1-3,3-1,4-37,5-5,5-6,7-6,9-27
Multiplexing, 8-5, 8-50,8-58
Multiprocessor Instructions, 4-18

-N-
Negative bit, 4-20
No Operation Instruction, 8-46
Normalized Number Format, 3-6
Not-A-Number Format. 3-8

Operand, 9-44
Overflow, 9-46
Overflow bit, 4-20

-0-

-p...!....

Page Descriptor, 6-6, 6-18, 6-20
Processi ng States, 2-1
Program Control Operations, 4-14
Program Counter, 1-6,2-7
Program Counter Indirect Addressing, 3-28, 3-29,

3-31
Programming Model, 1-4, 1-5,2-17
Privilege Levels

Supervisor, 2-2, 6-35
User, 2-2, 6-34

Privilege Instructions, 9-13
Privilege Violation Exception, 9-12

-0-

Quotient Byte, 2-13

-R-
Read-Modify-Write, 8-29
Read Transaction, 8-6, 8-14, 8-55
Read Timing, 8-9, 8-10, 8-43
Register Indirect Addressing, 3-23, 3-25, 3-27, 3-40
Register Organization, 3-9
Registers

Address Registers, 3-16
Cache Control Register, 3-17, 7-19
Condition Code Register, 3-17
Data Reg isters, 3-13
Data Transparent Translation Registers, 3-18,

6-11-6-13,6-38
Destination Function Code, 2-18, 3-17
Floating-Point Data Registers, 3-14
Floating-Point Control Registers, 1-7,2-9,2-10,

3-17
Floating-Point Instruction Address Register, 1-7,

2-15
Floating-Point Status Register, 1-7, 2-11, 3-17
Instruction Transparent Translation Registers,

3-18,6-11-6-13,6-38
Interrupt Stack Pointer, 2-17
Master Stack Pointer Register, 2-17, 3-47
MMU Status Register, 3-17, 6-2, 6-40
Program Counter, 1-6,2-7
Source Function Code Register, 2-18, 3-17
Status Register, 2-2, 2-17, 3-17
Supervisor Root Pointer Register, 2-2, 3-18, 6-37
Translation Control Register, 6-37
User Root Pointer Register, 2-2, 6-37
Vector Base Register, 2-5, 2-18, 3-17

Reset, 2-9, 5-12, 8-62, 9-6, 9-7
Reset Exception, 9-7
Return from Exception, 9-21-9-23, 9-28, 9-30
Root Pointer Register Format, 6-37

MOTOROLA MC68040 USER'S MANUAL INDEX-3

-5-

Setup and Hold Times, 8-3
Scaling, 3-38, 3-46
Shift and Rotate Operations, 4-11
Signaling Not-a-Number, 9-42
Signal Index, 5-1, 5-2,5-16
Signals

A31-AO,5-4
AVEC, 5-13,9-18
BB,5-11
BCLK, 5-9, 5-12, 5-13, 8-2, 8-3
BG, 5-7, 5-11
BR,5-11
CDIS, 5-4, 5-12, 7-19
ClOUT, 5-8, 6-12
D31-DO,5-4
DLE, 5-9
GND,5-16
IPEND, 5-13, 9-18
IPL2-IPLO, 5-13,9-15,9-16
LOCK, 5-7, 6-33, 7-18, 8-29
LOCKE, 5-7,8-29
MI,5-10
MDIS, 5-4, 5-12, 6-11, 6-40
PCLK, 5-14, 8-2, 8-3
PST3-PSTO,5-14
R/W, 5-7
RSTI, 5-12, 6-11, 6-41, 9-6
RSTO, 5"12
SC1, SCO, 5-10
TA, 5-8,7-16,9-19
TBI, 5-9, 7-15, 7-18
TCI, 5-9, 7-15
TEA, 5-9, 9-19
TIP, 5-8
TLN1, TLNO, 5-6, 7-15
TM2-TMO, 2-2, 5-5
SIZ1, SIZO, 5-6, 7-15, 7-18, 8-5
TS,5-8
TT1, TTO, 5-5
TCK,5-15
TDI,5-15
TDO,5-15
TMS, 5-15
TRST,5-15
UPA1, UPAO, 5-6, 6-15, 6-21, 6-41
VCC, 5-16

Snooping, 5-5, 5-10, 7-7, 8-1
Source Function Code, Register, 2-18, 3-17
Stack Frames, 2-5, 9-2, 9-4, 9-22, 9-23, 9-24-9-27

Stacks
System, 3-47
Registers, 3-47
User, 3-48

State Frames, 9-30
States, Cache, 7-8, 7-10, 7-12-7-14, 7-16
Status Register, 2-2, 2-17, 3-17
Supervisor Root Pointer Register, 2-3, 3-18, 6-37
Supervisor Mode, 2-2, 6-39
Supervisor Mode (S) bit, 2-2
Supervisor Protection, 6-15, 6-21, 6-33, 6-35, 6-40
System Control Operations, 4-17
System Stack Pointer, 3-47

-T-
Table Descriptor, 6-6, 6-18
Table Searches, 6-23, 6-31
Table Structure, 6-5, 6-8
Test, Conditional, 4-22, 4-25-4-27
Transfer Modifier Pins (TM2-TMO), 2-2
Tracing, 9-13, 9-14
Translation, Address, 6-1-6-4, 6-9, 6-25
Translation Control Register, 6-37
Translation Table, 6-7
Transparent Translation Register Format, 6-38
Trap Exception, 9-1 °

-u-
Unimplemented FP Instructions, 9-35
Unimplemented FP Data Types, 9-38
User Root Pointer Register, 2-3, 6-37
User Mode, 2-3

-v-
Vector Base Register, 2-5, 2-18, 3-17
Vectors, 2-5, 8-33, 8-34, 9-3

-w-
Writethrough Mode, 1-13,6-15,6-19,

-z-
Zero bit, 4-20

INDEX-4 MC68040 USER'S MANUAL MOTOROLA

® MOTOROLA

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix. Arizona 85036.
EUROPE : Motorola Ltd. ; European Literature Center; 88 Tanners Drive. Blakelands. Milton Keynes. MK14 5BP. England.
ASIA PACIFIC : Motorola Semiconductors H.K. Ltd .; P.O. Box 80300; Cheung Sha Wan Post Office; Kowloon Hong Kong .
JAPAN : Nippon Motorola Ltd .; 3-20-1 Minamiazabu. Minato-ku. Tokyo 106 Japan .

