
MOTOROLA
Semiconductor Products Inc.

AN906A/D
Application Note

SELF-PROGRAMMING THE MC68701
AND THE MC68701U4

Prepared By:
Patrick Svatek

Microprocessor Applications Engineering Department
Motorola Inc.
Austin, Texas

INTRODUCTION
The MC68701 and MC68701U4 are EPROM versions of

the M6801 microcomputer (MCU) Family. The MC68701
on-chip resources include a 2K-byte EPROM, a three~
function timer, a serial communication interface (SCI), up to
29 parallel lines, 128 bytes of RAM, and an oscillator. These
resources give it extensive power and flexibility for ease of
design. The MC68701 U4 enhances the capabilities of the
MC68701. Improved resources include a 4K-byte EPROM,
two input-capture functions, three output-compare func­
tions, a counter alternate address, and 192 bytes of RAM.

The MC68701/U4 MCUs can also program themselves.
The MC68701/U4 CPU controls all movement of data into
the on-chip EPROM during programming and requires only
a few external devices to do the task. This application note
explains how the MC68701/U4 MCUs program themselves
and describes a fully-tested self programmer (including soft­
ware and 1:1 artwork). The self-programmer includes a
check to determine which of the two devices is being
programmed.

ON-CHIP EPROM

A dual-purpose pin, RESET /Vpp, is used to reset the
MCU and to power th~ on-chip EPROM. This pin is normal­
ly at 5.0 volts during non-programming operations and must
be raised to Vpp (21 V) during programming of the
EPROM.

7 6 5 4

STBY
PWR RAME x x

3

x

The MCU EPROM is controlled by two bits (PLC and
PPC) in the RAM/EPROM control register (see Figure 1).

Bit 0 of the register is called the programming latch control
(PLC) and is used to control ari address latch used during
programming of the EPROM. When PLC is set, the latch is
transparent. When PLC is clear, the address latch is enabled
and latches each EPROM address asserted by the CPU. The
PLC should be set during normal nonprogramming MCU
operation and should be cleared only to program the
EPROM. This bit is set during reset and can be cleared only
in mode 0.

Bit 1 of the RAM/EPROM control register is callerl pro­
gramming power control (PPC) and is used to gate program­
ming power (Vpp) to t.he EPROM during programming.
When PPC is set, Vpp is not applied to the EPROM. During
normal nonprogramming operation, PPC should be set. The
PPC bit should be cleared only to program the EPROM.
This bit is set during reset and whenever the PLC bit is set.
Bit 1 can be cleared only in mode 0 with the PLC bit clear.

The MC68701/U4 MCUs are programmed in mode 0. In
this mode, all the interrupt ~d reset vectors are located at
$BFFO - $BFFF. The on-chip EPROM for the MC68701
and MC68701 U4 are located at $F800 - $FFFF and $FOOO
- $FFFF, respectively. The reset vectors direct the CPU to a
bootstrap program that will fetch data sequentially from ex­
ternal memory or a peripheral controller and program each
byte into the MCU EPROM. Once Vpp is applied to-the
RESET/Vpp pin, each data byte is programmed as follows:

2 0

x l PPC PLC I $14

FIGURE 1 - RAM/EPROM Control Register

©MOTOROLA INC .. 1987

1. Apply programming power (Vpp = 21 V) to the
RESET /Vpp pin.

2. Clear the PLC control bit and set the PCC blt by writing
$FE to the RAM/EPROM control register.

3. Write data to the next EPROM location to be pro­
grammed. When triggered by a MPU write to the
EPROM, internal latches capture both the EPROM ad­
dress and the data byte.

4. Clear the PPC bit for programming time (tpp) by
writing $FC to the RAM/EPROM control register. This
step gates Vpp from the RESET /Vpp pin to the
EPROM.

5. Repeat Steps 1-4 for each byte to be programmed.
6. Set the PLC and PPC bits by writing $FF to the

RAM/EPROM control register.
7. Remove the programming power (Vpp) from the

RESET/Vpp pin. The EPROM can now be read and
verified.

A MC68701/U4 SELF-PROGRAMMER
The MC6S701/U4 self-programmer (see Figure 2) is

designed for simplicity, low cost, and ease of use. The hard­
ware and associated software provide for: (1) determination
of which device type is being programmed, (2) verification
that the inserted MCU is initially fully erased, (3) the pro­
gramming of the MCU, and (4) verification of the pro-

. grammed code.
After applying power, the user just toggles one switch and

then monitors three LEDs which indicate MCU EPROM
status. The self-programmer will enter either 2K or 4K bytes
of the external SK U4 EPROM into the MCU EPROM
depending on which device is being programmed.

A copy of the 1: 1 artwork necessary to fabricate a printed
circuit board (PCB) for the self-programmer can be found at
the end of this application note. In addition, a list of parts
necessary to complete the PCB is furnished.

USING THE SELF-PROGRAMMER
To use the self-programmer, one does not need knowledge

of the MC6S701/U4 operation. However, a little knowledge
of electronics is needed to program a device. Five steps are
required as follows:

1. Insert the U4 EPROM containing the code to be pro­
grammed.

2. Insert the desired MCU (MC6S701) or MC6S701U4)
into its socket.

3. Apply power using switch S 1.
4. Set switch S2 to the program position.
5. Monitor the LEDs.
Shortly after switch S2 is set to the program position, LED

#1 (ERASE) should light indicating that the MCU EPROM is
fully erased. At this point, the self-programmer has deter­
mined which of the two devices will be programmed. Within
a few seconds, LED #1 will turn off and MCU EPROM pro­
gramming will begin.

Approximately 105 (MC6S701) or 210 (MC6S701U4) sec­
onds later, either (1) LED #2 (PASS) should light indicating
that the MC6S701/U4 is programmed and its contents have
been verified or (2) LED #3 (FAIL) will light indicating that
the MCU EPROM has failed verification after program­
ming. At this time, switch S2 should be toggled to the
RESET position and the power removed (Sl). Another MCU
may now be programmed.

2

If LED #1 (ERASE) and LED #3 (FAIL) both light, then
the MCU is not fully erased. The self-programmer will make
no further attempt to check for full erasure of the MCU.

The LEDs are color-coded to provide readily recognized
pass and fail indications. LED #1 (ERASE) is amber, LED
#2 (PASS) is green, and LED #3 (FAIL) is red. Zero insertion
force sockets should be used for the MCU and the program
U4 EPROM to simplify the use of the self-programmer.

CIRCUIT DESCRIPTION
The self-programmer consists of two MCM6S766

EPROMs, a SN74LS373 transparent latch, a SN74LS13S
1-of-S decoder, a MCU socket, and associated parts as
shown in Figure 2.

A 4-MHz crystal is used to obtain a 1-MHz clock opera­
tion. If another clock frequency is used, a change in the
bootstrap software (MINPRGU4) will be required to ensure
at least 50 milliseconds of programming time for each byte
entered into the MCU EPROM. Byte programming time is
governed by WAIT in MINPRGU4 and is indirectly related
to the MCU clock frequency. An increase in the MCU clock
frequency requires a proportional increase in the value of
WAIT. A decrease in clock frequency should, likewise, be
reflected in the value of WAIT.

The MCU can be optionally driven by an external TTL
clock at pin 3 (with pin 2 grounded). If this option is used,
the capacitors shown connected to pins 2 and 3 are not
required.

Pins S, 9, and 10 are connected to ground to place the
MCU in mode 0 (programming mode) on the rising edge of
RESET. The IRQ and NMI pins are connected as logic high
to eliminate external interrupts.

The RESET /Vpp pin is driven by a circuit that provides
three voltage levels to this pin. Before applying power with
switch Sl, the user should place switch S2 in the RESETposi­
tion. This action forces the RESET/Vpp pin low. The sec­
ond voltage level, established to toggling switch S2 to the
PROO position, brings the MCU out of a RESET condition.
The mode of operation (mode 0) is established during the
rising edge of RESET. The MCU fetches the REST ART vec­
tor now located at $BFFE - $BFFF and executes the boot­
strap program.

During programming, 21 volts is applied to the
RESET/Vpp pin by the transistor pair, Ql and Q2. Initially,
transistor. Ql is on and transistor Q2 is off. Port pin P14
(pin 17) is set low forcing Ql to turn off. With Ql off, a
Zener voltage of 22 volts is established at the base of Q2
forcing Q2 to conduct and reference the Q2 emitter and the
RESET/Vpp pin to C:pproximately 21.3 volts.

A SN74LS373 latch is used to demultiplex port 3 which is
used both as a lower address port (AO-A 7) and as a data port.
An address strobe from the MCU is connected to LE of the
SN74LS373 to latch the lower addresses at the proper time
during each bus cycle. Once the addresses are latched, the
port is used to data transfer.

A SN74LS373 1-of-S decoder is used to address decoding
of two external SK EPROMs. The external EPROM contain­
ing the user program is decoded at $6000 - $7FFF while the
bootstrap program is decoded at $AOOO - $BFFF. The
SN74LS13S decoder is gated with the MCU E clock to ensure
that the EPROM drivers are in a high impedance during
E clock low cycle time thus eliminating contention on the
lower multiplexed address/data bus.

r

...

/" \
·~,

~

... ..1... I U5 l e1 T . Me6B701/U4

- 10 pF 6 - I XT AL1

...J

U2 15 AO _ An __ QI ll"l
DQO

Y1 D
4.0MHH

1~· t] 3
EXTAL2

µF e2 = 10pFJ

71 :A1 SN74LS373 t-1_9_A_1 _______ "'-"--'-1 DQ1

+5 V ~ . + 5 V~nput
Veei -_ +5V~

470 eR1 (ftt Vee
~ ~ ·13

4% eR21"LED #11 P10
Erase

z
3

4
B

17

13

6 A2

2A3
5A4

9 A5
16A6

12 A7

OE 1

11 -

6 A2 DQ2
5 A3. · DQ3
4 A4 DQ4
3 A5 DQ5
2 A6 DQ6
1 A7 DQ7

G/Vpp

MeM68766
($AOOO)

Pass
(QK)

Fail

~ ~ . __ 14

47~ eR3~LED #21 P11

..J\/11\io IJiil . 15
R1 LED #3 IP12

?31 AB

~A9
19 A10 ·r P40 29 AB

::; ~ :io , 11111 · tI 111 ~
24 A13

P45 23 A14

P46 40 E
E 2::::2..:A;...1:::5-- ~

P47

R9 2N4401 .,,,,,..,..,
100 tD2

26 A11

P14 P
43

25 A12 +5 V IL--1-R IRESET/Vpp P44 ~

D3 RB S2A

I~ 27 r-+-r -r10 kj Ie31 T :

~
10k ~R5 I

2N4401

...L.

R6 02
l\/'lf\,·
1 k - R7 0.1µF I RESET~ Prog - - _ .J

S2BQ~- - -

~

D1

1N4748A or
1N5251 FIGURE 2 - Self-Programmer Schematic Diagram

A11 A12

~1
--MCM68766

,--)

.9 DO
10 D1
11 D2
13 ·D3

14 D4
15 D5

16 D6

17 D7
20

MEMORY MAP
The self-programmer memory map consists of five address

spaces and is shown in Figure 3. Four of the address spaces
are fixed by the MCU during programming and cannot be
relocated. These spaces consist of a MCU internal register
area ($0000 - $001F) and MCU external interrupt vectors
($BFFO - $BFFF). The other two areas are device de­
pendent and are listed below:

External
EPROM
(MCM68766)
With Code to be
Programmed

External
EPROM

$BFFO (MCM68766)

MC68701U4
· MC68701 On-Chip
On-Chip EPROM

EPROM

FIGURE 3 - Self-Programmer Meniorr Map .

4

Function. MC6S701 MC6S701 U4
MCU Internal RAM · $00SO - $00FF $0040 - $00FF
MCU Internal EPROM $FSOO - $FFFF $FOOO - $FFFF

The fifth address space is used for an MCM6S766 SK
EPROM which contains the code to be entered into the MCU
on-chip EPROM. This MCM6S766 EPROM has been arbi­
trarily located at $6000 - $7FFF and canbe relocated for a
custom programmer design. Since the MCM6S766 is a SK
EPROM, the user will have to locate this program in the
upper 2K bytes ($7SOO ___, $7FFF) or upper 4K ($7000 -
$7FFF) for programming a MC6S701 or a MC6S701U4,
respectively.

The user should map MINPRGU4 at address $1SOO -
$1FFF within U3 EPROM. The MCU program should reside
at $1SOO - $1FFF (MC6S701) and $1000 - $1FFF
(MC6S701 U4) within U4 EPROM for correct corre­
spondence with the memory maps.

PROGRAM DESCRIPTION
The self-programmer uses a bootstrap program,

MINPRGU4, to control programming of the MCU
EPROM. The program performs the following functions:

) . Initializes the MCU.
2. Determines whether a MC6S701 or MC6S701U4 MCU

is being programmed.

3. Checks that the EPROM is fully erased.
· 4. Programs the EPROM.
5. Verifies the program.

The MINPRGU4 bootstrap program also controls the
state of the three LEDs that indicate the programming status
of the MCU. A detailed flowchart .of MINPRGU4 is shown

. in Figure 4. A complete listing is presented at the back of this
application note.
PROGRAM MODIFICATIONS
AND CONSIDERATIONS

Additions or modifications to MINPRGU4 can be made
by inserting routines between the basic blocks shown on the
flowchart in Figure 4. For-convenience, the start and stop ad­
dresses of each block are located directly to the left of each
block (see Figure 4).

Parameters IMBEG, IMEND, PNTR, and WAIT (stored
in RAM locations $SO - $S7) determine the size of the data
block to be programmed into the MCU, the first MCU
EPROM location to be programmed, and the time period
that Vpp will be applied to the EPROM. These parameters
can be changed to allow programming of selected EPROM
locations and to allow changes in the MCU operating fre­
quency. These parameters, once selected, should remain con­
stant during programming.

One modification to MINPRGU4 can be verification of
the MCU EPROM if the EPROM is not fully erased: Tiifs is
an alternative to lighting LEDs #1 and #3 and waiting. This
modification allows verification of MCUs that have been
previously programmed and used.

r
!

/

$8FFE Reset

$8850

I
$8857

$8859

$8870

$887F

I
$888E

$8890

I
$8892

$8894

I
$88AF

$8887

I
$888F

$88C1

I
$88FA

Initialize
Stack and Ports
(All LEDs Off)

Initialize
Memory
Size to

4K

Light "Erased"
LED
#1

Wait for
Vpp Loop

Initialize Registers
for Programming

Program the
EPROM

No

$8881

I
$8885

Initialize
Memory
Size to

2K

· Light ;; Failed"
LED

#3 and
"Erased" LED #1

$88FC

I
$8910

$8912

I
$8914

$8916

Yes

Light "Verified"
LED #2

Wait

FIGURE 4 - Flow Chart for MINPRGU4

5

No

$89i8

I
$891C

Light "Failed"
LED
#3

APPENDIX A

This appendix provides a copy of the 1: 1 artwork necessary to fabricate a printed circuit board (PCB) for the self-programmer.
In addition, a parts list if furnished to allow the user to complete the PCB.

NOTE

Permission is hereby granted by Motorola, Inc., Microprocessor Products Division, in Austin, Texas for use of this art­
work.

Reference
Qty. Design V aloe/Description

Resistors (1/ 4 Watt)
3 Rl-R3 470 ohms
1 R4 3.9 kilohms
2 RS,R7 10 kilohms
1 R6 1.0 kilohms
1 RS 27 ohms (112 watt)
1 R9 100 ohms

Diodes/Transistors
2 Q-Q2 2N4401 transistor (NPN)
1 D1 1N474SA or 1NS2Sl Zener (22 V ± SOJo)
2 D2,D3 Silicon (1N3064, 1N414S, etc.)
3 CR1-CR3 LED

Switches
1 Sl SPDT American STl-1 or C & K 7101
1 S2 DPDT C & K 7201

Capacitors
2 Cl, C2 lOpF
1 C3 0.1 µF
2 C4, cs 100 µF, 3S V

Motorola ICs
1 U1 SN74LS13S Decoder
1 U2 SN74LS373 Latch
2 U3, U4 MC6S766 SK x S EPROM
1 us MC6S701 or MC6S701 U4 MCU

Miscellaneous
1 Yl 4.0 MHz Crystal (NYMPH)
1 ASTEC ADIP 26ADS (26 V)

6

i ,

C1 l 00
0 . 1

Y1 -

0 --00 --C2 ___ _

f(':: 0
0R2 0

0
ERASE 0 CR1

OK

FAIL

VR1

us

+26
0

01

0

ON OFF 0
S1 •••

------·­----
----- -

+s
0 0

U4 ------------ "'•-----oa

I I
= = ®

0 R 8 0 MOOULE

·~PROG0 03 0
(

M~mn~4 ~ROGRAMMING

•!\MOTOROLA -......;::_, ______ • -~3 • ps
6/84 0

S2
RESET

7

8

PAGE 001 MINPRGU4.SA:l

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011

*
*
*
*
*
*
*
*
*
*

OPT Z01,LLE=96

THIS PROGRAM WILL CHECK, PROGRAM AND VERIFY
THE MC68701 OR THE MC68701U4 EPROM. IT ALSO
DETERMINES WHETHER A MC68701 OR A MC68701U4 IS
BEING PROGRAMMED.

00012 * E Q U A T E S
00013 0000

0002
0008
0009
OOOB
0014
0018

A PlDDR EQU $00 PORT 1 DATA DIR. REGISTER
00014 A PlDR EQU $02 PORT 1 DATA REGISTER
00015 A TCSR EQU $08 TIMER CONTROL/STAT REGISTER
00016 A TIMER EQU $09 COUNTER REGISTER
00017 A OUTCMP EQU $OB OUTPUT COMPARE REGISTER .
00018 A EPMCNT EQU $14 RAM/EROM CONTROL REGISTER
00019 A TCR2 EQU $18 TIMER/CONTROL REG. 2
00020 *
00021 *

* 00022
00023A 0080
00024A 0080
00025A 0082
00026A 0084
00027A 0086

0002
0002
0002
0002

A IMBEG
A IMEND
A PNTR
A WAIT

00028
00029A B850

*
00030A B850 SE DOFF
00031A B853 86 17
00032A B855 97 00
00033A B857 97 02

A START
A

00034
00035
00036
00037
00038

A
A

00039A B859 96 18 A
00040A B85B 81 03 A
00041A B85D 27 16 B875
00042A B85F 86FE A
00043A ~861 97 18 A
00044A B863 96 18 A
00045A B865 84 01 A
00046A B867 27 OC B875

*
*
*
*
*

00047 *
00048
00049
00050A B869 CC 7800 A
00051A B86C DD 80 A
00052A B86E CC F800 A
00053A B871 DD 84 A
00054A B873 20 OA B87F

*
*

00055 *
00056 *
00057 *
00058A B875 CC 7000 A P4K

ORG
RMB
RMB
RMB
RMB

ORG
LOS
LDAA
STAA
STAA

LDAA
CMPA
BEQ
LDAA
STAA
LDAA
ANDA
BEQ

L 0 C A L

$80
2
2
2
2

$B850
#$FF
#$17
PlDDR
PlDR

V A R I A B L E S

START OF MEMORY BLOCK
LAST BYTE OF MEMORY BLOCK
FIRST BYTE OF EPROM TO BE PGM'D
COUNTER VALUE

INITIALIZE STACK
INIT. PORT 1
DOR
DATA REGISTER (ALL LED'S OFF)

(NO Vpp APPLIED)

DETERMINE WHETHER A MC68701 OR A MC68701U4
IS BEING PROGRAMMED.

TCR2 TCR2 = $03 ON RESET
#%00000011 IF 701U4, THIS VALUE ·
P4K GO TO '701U4 MEMORY SETUP
#$FE SECOND CHECK
TCR2 WRITE A ZERO TO TCR2-0 (CLOCK)
TCR2 NOW READ IT BACK
#$01 MASK CLOCK BIT
P4K MC68701U4 IF "Z" = 1

INITIALIZE EPROM MEMORY SIZE TO MC68701(2K)

LDD
STD
LDD
STD
BRA

LOO

#$7800
IMBEG
#$F800
PNTR
BL KROM

START OF EPROM

START OF '701 EPROM

INITIALIZE EPROM MEMORY SIZE TO MC68701U4(4K)

#$7000 START OF EPROM

9

PAGE 002 MINPRGU4.SA:l

00059A B878 DD 80 A
00060A B87A CC FOOO A
00061A B87D DD 84 A
00062 *

STD
LOO
STD

IMBEG
#$FOOO
PNTR

00063
00064

* B L A N K
*

00065A B87F DE 84
00066A B881 C6 00
00067A B883 A6 00
00068A B885 11

A BLKROM LOX
A LDAB
A ERASE LDAA

00069A B886 26 29 B8Bl
00070A B888 8C FFFF A
00071A B88B 27 03 B890
00072A B88D 08
00073A B88E 20 F3 B883
00074 * *

CSA
BNE
CPX
BEQ
INX
BRA

00075A B890 86 16 A NEXT LDAA
00076A B892 97 02 A STAA
00077 * *

PNTR
#$00
O,X

ERRORl
#$FFFF
NEXT

ERASE

#$16
PlDR

00078 * D E L A Y
00079 *
00080A B894 OF 86 A STX
00081A B896 CE 0046 A LOX
00082A B899 09 STALLl DEX
00083A B89A CC C350 A LOO
00084A B89D 03 09 A ADDO
00085A B89F 7F 0008 A CLR
00086A B8A2 DD OB A STD
00087 A B8A4 86 40 A LDAA
00088A B8A6 95 08 A STALL2 SITA
00089A B8A8 27 FC B8A6 SEQ
00090A B8AA 8C 0000 A CPX
00091A B8AD 26 EA B899 BNE
00092A B8AF 20 06 B8B7 BRA
00093 * *
00094A B8Bl 86 02 A ERRORl LDAA
00095A B8B3 97 02 A STAA
00096A B8B5 20 SF B916 BRA
00097 * *
00098A B8B7 CE 7FFF A PGINT LOX
00099A B8BA OF 82 A STX
OOlOOA B8BC CE C350 A LOX
00101A B8BF OF 86 A STX
00102 *

WAIT
#$0046

#$C350
TIMER
TCSR
OUTCMP
#$40
TCSR
STALL2
#$0000
STALLl
PG INT

#$02
Pl DR
SELF

#$7FFF
I MEND
#$C350
WAIT

START OF '701U4 EPROM

C H E C K

CHECK IF EPROM ERASED
GET READY FOR CMPR.
LOAD EPROM CONTENTS
COMPARE TO ZERO
BRANCH IF NOT ZERO
CHECK IF DONE
IF SO BRANCH
GO AGAIN

TURN ON ERASED LED

L 0 0 P (3.5 SEC)

GET READY FOR 70 TIMES THRU LOOP

INIT. 50MS LOOP
BUMP CURRENT VALUE
CLEAR OCF
SET OUTPUT COMPARE
NOW WAIT FOR OCF

NOT YET
70 TIMES YET?
NOPE

LIGHT ERROR AND ERASE LED

INIT. !MEND

INIT. WAIT (4.0 MHZ)

00103 * P R 0 G A M M I N G L 0 0 P
00104 *
OOlOSA B8Cl 86 07 A EPROM LDAA

STAA
LOX
PSHX

00106A B8C3 97 02 A
00107A B8CS DE 84 A
00108A B8C7 3C
00109A B8C8 DE 80
OOllOA B8CA 3C
OOlllA B8CB 86 FE
00112A B8CD 97 14
00113A B8CF A6 00
00114A 8801 DE 84
00115A 8803 A7 00
00116A B805 08

A LOX
EPR002 PSHX

A LDAA
A STAA
A LDAA
A LOX
A STAA

INX

#$07
Pl DR
PNTR

IMBEG

#$FE
EPMCNT
O,X
PNTR
O,X

10

TURN OFF ~EDS AND APPLY Vpp

SAVE CALLING ARGUMENT
RESTORE WHEN DONE
USE STACK
SAVE POINTER ON STACK
REMOVE VPP, SET LATCH
PPC=l,PLC=O
MOVE DATA MEMORY-TO-LATCH
GET WHERE TO PUT IT
STASH AND LATCH
NEXT ADDR. ___./

PAGE 003 MINPRGU4.SA:l
(

00117A B8D6 DF 84 A STX PNTR ALL SET FOR NEXT
00118A B8D8 86 FC A LDAA #$FC ENABLE EPROM POWER (VPP)
00119A B8DA 97 14 A STAA EPMCNT PPC=O,PLC=O
00120 *
00121 * NOW WAIT 50 MSEC TIMEOUT USING COMPARE
00122 * 00123A B8DC DC 86 A LDD WAIT GET CYCLE COUNTER
00124A B8DE 03 09 A ADDO TIMER BUMP CURRENT VALUE
00125A B8EO 7F 0008 A CLR TCSR CLEAR OCF
00126A B8E3 DD OB A STD OUTCMP SET OUTPUT COMPARE
00127A B8E5 86 40 A LDAA #$40 NOW WAIT FOR OCF
00128A B8E7 95 08 A EPR004 BITA TCSR
00129A B8E9 27 FC B8E7 BEQ EPR004 NOT YET
00130A B8EB 38 PULX SET UP FOR NEXT ONE
00131A B8EC 08 INX NEXT
00132A B8ED 9C 82 A CPX I MEND MAYBE DONE
00133A B8EF 23 09 B8CA BLS EPR002 NOT YET
00134A B8Fl 86 17 A LDAA #$17 REMOVE Vpp AT PIN
00135A B8F3 97 02 A STAA Pl DR
00136A B8F5 86 FF A LDAA #$FF REMOVE VPP, INHIBIT LATCH
00137A B8F7 97 14 A STAA EPMCNT EPROM CAN NOW BE READ
00138A B8F9 38 PULX RESTORE PNTR
00139A B8FA DF 84 A STX PNTR
00140 *
00141 * V E R I F Y N E W C 0 D E
00142 *
00143A B8FC DE 80 A. LOX IMBEG SET UP POINTER
00144A B8FE 3C VERF2 PSHX SAVE POINTER ON STACK
00145A B8FF A6 00 A LDAA O,X GET DESIRED DATA
00146A B901 DE 84 A LOX PNTR GET EPROM ADDR.
00147A B903 E6 00 A LDAB o,x GET DATA TO BE CHECKED
00148A B905 11 CBA CHECK IF SAME
00149A B906 26 10 B918 BNE ERROR2 BRANCH IF ERROR(LIGHT LED)
00150A B908 08 INX NEXT ADDR
00151A B909 DF 84 A STX PNTR ALL SET FOR NEXT
00152A B90B 38 PULX SETUP FOR NEXT ONE
00153A B90C 08 INX NEXT
00154A B90D BC 8000 A CPX #$8000 MAYBE DONE
00155A B910 26 EC B8FE BNE VERF2 NOT YET
00156 * *
00157A B912 86 15 A LDAA #$15
00158A B914 97 02 A STAA PlDR LIGHT VERIFY LED
00159 * *
00160A B916 20 FE B916 SELF BRA SELF WAIT FOREVER
00161 * *
00162A B918 86 13 A ERROR2 LDAA #$13 LIGHT ERROR LED
00163A B91A 97 02 A STAA Pl DR
00164A B91C 20 F8 B916 BRA SELF
00165 * * 00166 * RESTART A N D I N T R • V E C •
00167 *
00168A BFFO ORG $BFFO
00169A BFFO B916 A FOB SELF
00170A BFF2 B916 A FOB SELF
00171A BFF4 B916 A FOB SELF
00172A BFF6 B916 A FOB SELF
00173A BFF8 B916 A FOB SELF

'......____/ 00174A BFFA B916 A FOB SELF

11

PAGE 004 MINPRGU4.SA:l

00175A BFFC B916 A
00176A BFFE B850 A
00177
TOTAL ERRORS 00000--00000

B87.F BLKROM 00054 00065*

FOB
FOB
END

SELF
START

0014 EPMCNT 00018*00112 00119 00137
B8Cl EPROM 00105*
B8CA EPR002 00110*00133
B8E7 EPR004 00128*00129
B883 ERASE 00067*00073
B8Bl ERRORl 00069 00094*
B918 ERROR2 00149 00162*
0080 IMBEG 00024*00051 00059 00109 00143
0082 !MEND 00025*00099 00132 ··
B890 NEXT 00071 00075*
OOOB OUTCMP 00017*00086 00126
0000 PlDDR 00013*00032
0002 PlDR 00014*00033 00076 00095 00106 00135 00158 00163
B875 P4K 00041 00046 00058*
B8B7 PGINT 00092 00098*
0084 PNTR 00026*00053 00061 00065 00107 00114 00117 00139 00146 00151
B916 SELF 00096 00160*00160 00164 00169 00170 00171 00172 00173 00174 00175
B899 STALLl 00082*00091
B8A6 STALL2 00088*00089
B850 START 00030*00176
0018 TCR2 00019*00039 00043 00044
0008 TCSR 00015*00085 00088 00125 00128
0009 TIMER 00016*00084 00124
B8FE VERF2 00144*00155 .
0086 WAIT 00027*00080 00101 00123

Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Motorola does
not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its
patent rights nor the rights of others. Motorola and @are registered trademarks of Motorola, Inc. Motorola, Inc.' is an Equal Employment Opportunity/
Affirmative Action Employer. · · .

@ MOTOROLA Semiconductor Products Inc. V
3501 ED BLUESTEIN BLVD., AUSTIN, TEXAS 78721 • A SUBSIDIARY OF MOTOROLA INC.

Al7777-3 PRINTED Dl USA 8-87 IMPERIAL LITHO C50672 18,000 AN-906A/D

