
® MOTOROLA MC6801RM(AD2)

MC680'1
8-Bit Single-Chip Microcomputer

REFERENCE MANUAL

(including MC6803 and MC68701) Innovative systems
through silicon.

MC6801
8-Bit Single-Chip Microcomputer

REFERENCE MANUAL

Prepared By

MICROPROCESSOR OPERATIONS
AUSTIN, TEXAS

Motorola reserves the right to make changes to any
product herein to improve reliability, function, or
design. Motorola does not assume any liability aris­
ing out of the application or use of any product or
circuit described herein; neither does it convey any
license under its patent rights nor the rights of others.

Second Edition
© Motorola Inc., 1983
All Rights Reserved

TABLE OF CONTENTS
Paragraph No. Title Page No.

Chapter 1
The MC6801 Microcomputer: An Overview

1.0 Introduction .. 1-1
1.1 The MC6801 Instruction Set ... 1-3
1.2 MC6801 System Configurations .. 1-4
1.3 Mode Independent MCV Resources ... 1-6
1.3.1 Serial Communications Interface (SCI) .. 1-6
1.3.2 Programmable Timer .. 1-8
1.4 Summary of Features .. 1-9/1-10

Chapter 2
Operating Modes and Memory Maps

2.0 Introduction .. 2-1
2.1 MC6801 Fundamental Modes ... 2-3
2.1.1 Single Chip Mode (Mode 7) ... 2-4
2.1.2 Expanded Non-Multiplexed Mode (Mode 5) .. 2-4
2.1.3 Expanded Multiplexed Mode (Modes 1,2, 3,6) .. 2-6
2.1.4 Test Modes (Modes 0 and 4) .. 2-8
2.2 Mode Associated Memory Maps ... 2-8
2.2.1 Internal Register Area Exclusions ... '. .. 2-19
2.2.2 Relocatable ROM Options: Modes 1R and 6R .. 2-20
2.3 Programming The Mode .. 2-20
2.4 MC6801 Comparisons ... 2-20
2.4.1 MC6800 Bus Comparison ... 2-21
2.4.2 Comparison with MC6803 ... 2-21
2.4.3 Comparison with MC68701 ... 2-21
2.4.4 Comparison with MC68120 ... 2-22

Chapter 3
Functional Pin Description

3.0 Introduction .. 3-1
3.1 Mode Independent Pins .. 3-4
3.1.1 XTALI and EXTAL2: MCV Clock Inputs ... 3-4
3.1.2 E: MCV Clock Output ... 3-6
3.1.3 RESET .. 3-7

iii

Paragraph No.

3.1.4
3.1.5
3.1.5.1
3.1.5.1.1
3.1.5.1.2
3.1.5.1.3
3.1.6
3.1.7
3.1.8
3.1.9
3.1.9.1
3.1.9.2
3.1.9.3
3.1.9.4
3.2
3.2.1
3.2.2
3.2.3
3.2.3.1
3.2.4
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.4
3.4.1
3.4.2
3.4.3
3.4.3.1
3.4.3.2
3.4.4
3.4.5
3.4.6

TABLE OF CONTENTS (Continued)
Title Page No.

Vccand VSS: MCUPower .. 3-11
V CC Standby: RAM Standby Power ... 3-11

Standby Power Operations ... 3-11
RAM Enable (RAME) Bit ... 3-11
Standby Power (STBY PWR) Bit .. 3-12
RAM Control Register ... 3-13

NMI: Non-Maskable Interrupt Request .. 3-13
IRQl: Maskable Interrupt Request .. 3-14
PI0-PI7: Port 1 .. 3-14
P20-P24: Port 2 .. 3-18

Port 2 Data Register Input/Output ... 3-18
Mode Selection Pins: P20, P21, P22 ... 3-19
Timer Interface: P20, P21 .. 3-19
Serial Communications Interface: P22, P23, P24 3-21

Single Chip Mode Pin Description .. 3-23
SCI: Input Strobe 3 (IS3) .. 3-23
SC2: Output Strobe 3 (OS3) ... 3-24
P30-P37: Port 3 .. 3-25

Port 3 Control and Status Register ... 3-27
P40-P47: Port 4 .. 3-27

Expanded Non-MUltiplexed Mode Pin Description ... 3-29
SCI: Input/Output Select (lOS) ... 3-29
SC2: R/W (Read/Write) ... 3-30
P30-P37: Port 3 Data Bus (DO-D7) , 3-30
P40-P47: Port 4 Address Bus/Inputs ... 3-32
Expanded Non-Multiplexed Bus Timing ... 3-33
Monitoring the Expanded Non-Multiplexed Bus ... 3-34

Expanded Multiplexed Modes Pin Descriptions ... 3-37
SCI: Address Strobe (AS) ... 3-37
SC2: R/W (Read/Write) ... 3-37
P30-P37: Port 3 Multiplexed Address/Data Bus ... 3-37

Port 3 In Expanded Multiplexed Modes 1, 2, 3 and 6 3-38
Port 3 In Expanded Multiplexed Test Mode 0 .. 3-39

P40-P47: Port 4 Address Bus/Data Inputs .. 3-40
Expanded Multiplexed Bus Timing .. 3-42
Monitoring the Expanded Multiplexed Bus .. 3-45

Chapter 4
The MC6801 Microprocessor Unit (MPU)

4.0 Introduction .. 4-1
4.1 Assembler Source Statements ... 4-2
4.1.1 Labels ... 4-3
4.2 Addressing Modes ... 4-3
4.2.1 Inherent Addressing Mode .. 4-4
4.2.2 Immediate Addressing Mode ... 4-4

iv

Paragraph No.

4.2.3
4.2.4
4.2.5
4.3
4.3.1
4.3.2
4.3.2.1
4.3.2.2
4.3.2.3
4.3.2.4
4.3.3
4.3.3.1
4.3.3.2
4.3.3.3
4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.4.4.1
4.4.5
4.4.6
4.4.6.1
4.4.6.2
4.4.7

5.0
5.1
5.2
5.2.1
5.2.1.1
5.2.1.2
5.2.2
5.3
5.3.1
5.3.2
5.4
5.4.1
5.4.1.1
5.4.1.2
5.4.1.3
5.4.1.4
5.4.2
5.5

TABLE OF CONTENTS (Continued)
Title Page No.

Direct and Extended Addressing Modes .. .4-5
Relative Addressing Mode .. 4-6
Indexed Addressing Mode .. 4-7

MC6801 Instruction Set .. 4-7
Condition Code Register Instructions .. 4-10
Accumulator and Memory Instructions .. 4-10

Arithmetic Instructions ... 4-11
Logic Instructions .. 4-11
Data Test Instructions ... 4-13
Data Handling Instructions .. 4-14

Program Control Instructions .. 4-16
Index Register Instructions ... 4-16
Stack Pointer Instructions .. 4-17
Jump and Branch Instructions .. 4-19

Programming Examples .. 4-25
Use of the Index Register .. 4-25
Number Systems ... 4-29
Two's Complement Overflow .. 4-32
Arithmetic Instructions Revisited4-34

Use of Arithmetic Instructions .. 4-35
Multi-Byte Addition and Subtraction .. .4-36
Multiplication .. 4-38

Multiplication Using the MUL Instruction .. .4-45
Multiplication Using Booth's Algorithm4-50

Division .. 4-53

Chapter 5
The MC6801 Interrupt Structure

Introduction .. 5-1
Interrupt Considerations ... 5-1
MC6801 Interrupt Generation .. 5-3

Non-Maskable Interrupt (NMI) ... 5-3
System Considerations in Using NMI ... 5-3
Using NMI as a Maskable Interrupt ... 5-4

MC6801 Maskable Interrupts (IRQl and IRQ2) ... 5-6
MC6801 Interrupt Response ... 5-7

Selection of Interrupt Vectors .. 5-15
MC6801 Operating Mode and Interrupt Vector .. 5-17

MC6801 Interrupt Instructions .. 5-18
MC6801 Instructions Affecting the I-Bit ... 5-18

The CLI and SEI Instructions ... 5-18
The TAP Instruction .. 5-18
The RTI Instruction ... 5-19
The SWI Instruction ... 5-19

The Wait for Interrupt (WAI) Instruction .. 5-19
Providing Interrupt Service .. 5-21

v

TABLE OF CONTENTS (Continued)
Paragraph No. Title Page No.

5.6 Program Restartability .. 5-23
5.6.1 Re-Entrant Routines .. 5-23
5.6.2 Resource Sharing .. 5-24

Chapter 6
Serial Communications Interface (SCI)

6.0 Introduction .. 6-1
6.1 Serial Communications Interface Registers .. 6-1
6.1.1 Rate and Mode Control Register .. 6-2
6.1.2 Transmit/Receive Control and Status Register ... 6-5
6.1.3 Transmit and Receive Data Registers ... 6-6
6.2 SCI Clocking Options ... 6-6
6.2.1 Using the Internal SCI Clock ... 6-6
6.2.2 Using an External SCI Clock ... 6-7
6.2.3 Providing a Serial Output Clock ... 6-7
6.2.4 Clocking Multiple SCls .. 6-7
6.3 Serial Data Formats ... 6-8
6.4 Serial Communication Operations __ ... 6-9
6.4.1 Transmitter Operation ... 6-9
6.4.2 Receiver Operation ... 6-9
6.5 The Wake-Up Feature ... 6-10
6.5.1 Transmitter Duties During Wake-Up Operation ... 6-11
6.5.2 Receiver Duties During Wake-Up Operation .. 6-12
6.6 Providing SCI Interrupt Service ... 6-12
6.7 Two SCI Software Examples ... 6-13
6.7.1 Exercising the Serial Communications Interface ... 6-13
6.7.2 Demonstrating the Wake-Up Feature ... 6-13

Chapter 7
The MC6801 Programmable Timer

7.0 Introduction .. 7-1
7.1 Programmable Timer Registers ... 7-1
7.1.1 Counter Register ($09-0A) .. 7-2
7.1.2 Output Compare Register ($OB:OC) ... 7-3
7.1.3 Input Capture Register ($OD:OE) .. 7-4
7.1.4 Timer Control and Status Register ($08) ... 7-5
7.2 Selected Programmable Timer Examples ... 7-6
7.2.1 Reading the Counter Register .. 7-6
7.2.2 Generating an Output Waveform ... 7-7
7.2.3 Generating a Synchronized Output Compare ... 7-10
7.2.4 Echoing an Input Signal ... 7-12
7.2.5 Generating an Input Capture Using LILbug (TM) * 7-13

vi

Paragraph No.

8.0
8.1
8.1.1
8.1.2
8.1.3
8.2
8.2.1
8.2.2
8.3
8.3.1
8.3.2
8.3.2.1
8.3.2.2
8.3.3
8.4
8.4.1
8.5
8.5.1
8.5.2
8.5.3
8.6
8.6.1
8.6.2
8.7
8.7.1
8.7.2
8.7.3
8.7.3.1
8.7.3.2

TABLE OF CONTENTS (Concluded)
Title

Chapter 8
Selected Applications

Page No.

Introduction .. 8-1
Interface to Static RAM (Modes 1,2, 3,6) ... 8-1

Expanded Multiplexed Bus Timing ... 8-1
An MC6801 Interface with MCM2114 Static RAM 8-2
Final Remarks ... 8-3

Port 3 Parallel Interfaces (Mode 7) ... 8-8
Line Printer Interface to Port 3 .. 8-8
Keyboard Interface to Port 3 ... 8-10

Prioritized Interrupt Vectors (Modes 1, 2, 3) ... 8-14
General Considerations .. 8-14
8-Level Prioritizing Scheme ... 8-15

Generating the Address 0 f the Vector .. 8-15
Providing the Interrupt Vector .. 8-15

Final Remarks .. 8-17
Memory and ACIA Interface (Mode 5) .. 8-19

Obtaining 256 Additional Bytes of Read-Only Memory 8-20
Period Measurement ... 8-22

Measuring Periods Less than 65,536 Cycles ... 8-23
Measuring Periods Exceeding 65,535 Cycles .. 8-24
Period Measurement Sample Programs .. 8-26

SCI Parallel Interfaces (All Modes) .. 8-33
SCI Parallel-to-Serial Input Interface ... 8-33
SCI Serial-to-Parallel Output Interface .. 8-36

Dual Processor Parallel Interfaces (Mode 7) ... 8-39
Interface Control Schemes•.................................. 8-39
8-Bit Half Duplex Interface ... 8-40
4-Bit Full Duplex Interface .. 8-45

Full Duplex with Input Capture Function ... 8-46
Full Duplex with Exclusive-OR Function ... 8-49

Appendices
A Definition of the Executable Instructions F Cycle-by-Cycle Bus Activity
B MC6801 Operation Code Map G Glossary
C ASCII Conversion Table H Summary of Instruction E-Cycle Counts
D Selected Powers of 2 and 16 I Expanded Multiplexed Bus Clocking
E The MC68701 Microcomputer Unit J Reset Vector Chip Select Circuit for Mode 0

K MC6801 System Development Tools

Index

vii

LIST OF ILLUSTRATIONS
Figure No. Title Page No.

Chapter 1
1-1 MC6801 Single Chip Microcomputer .. 1-2
1-2 MC6801 Programming Model .. 1-3
1-3 Single Chip Mode .. 1-4
1-4 Expanded Non-Multiplexed Mode ... 1-5
1-5 Expanded Multiplexed Mode .. 1-5
1-6 SCI Register Organization ... 1-7
1-7 Transmit/Receive Control and Status Register .. 1-7
1-8 Programmable Timer ... 1-8
1-9 Timer Control and Status Register .. 1-9/1-10

Chapter 2

2-1 Summary of Operating Mode Characteristics ... 2-2
2-2 Single Chip Mode .. 2-4
2-3 Expanded Non-Multiplexed Mode ... 2-5
2-4 System Configuration - Expanded Non-Multiplexed Mode 2-6
2-5 Expanded Multiplexed Mode .. 2-7
2-6 System Configuration for Expanded Multiplexed Modes 2-7
2-7 Memory Map for Mode 0 .. 2-9
2-8 Memory Map for Mode 1 ... 2-10
2-9 Memory Map for Mode 1R ... 2-11
2-10 Memory Map for Mode 2 ... 2-12
2-11 Memory Map for Mode 3 ... 2-13
2-12 Memory Map for Mode 4 ... 2-14
2-13 Memory Map for Mode 5 ... 2-15
2-14 Memory Map for Mode 6 ... 2-16
2-15 Memory Map for Mode 6R ... 2-17
2-16 Memory Map for Mode 7 ... 2-18
2-17 MCV Internal Register Area ... 2-19

Chapter 3
3-1 MC6801 Pin Diagram ... 3-1
3-2 MC6801 Block Diagram .. 3-2
3-3 MC6801 Recommended Crystal Parameters ... 3-5
3-4 RESET Timing ... 3-9
3-5 Mode Programming Levels and Timing ... 3-9
3-6 Programming the Mode with Diodes ... 3-10

viii

LIST OF ILLUSTRATIONS (Continued)
Figure No. Title Page No.

3-7 Programming the Mode with Analog Switches and Diodes 3-10
3-8 Data Port Timing for MPU Read ... 3-15
3-9 Data Port Timing for MPU Write .. 3-15
3-10 Logic Diagram for Port 1 ... 3-16
3-11 Port 2 Data Register ... 3-19
3-12 Logic Diagram for Port 2 Bit 0 .. 3-20
3-13 Logic Diagram for Port 2 Bit 1•.. 3-20
3-14 Logic Diagram for Port 2 Bit 2 .. 3-21
3-15 Logic Diagram for Port 2 Bit 3 .. 3-22
3-16 Logic Diagram for Port 2 Bit 4 .. 3-23
3-17 Port 3 Latch Setup and Hold Times .. 3-24
3-18 Output Strobe 3 (OS3) Timing ... 3-25
3-19 Logic Diagram for Port 3 ... 3-26
3-20 Logic Diagram for Port 4 ... 3-29
3-21 Logic Diagram for Port 3 (Repeated) .. 3-31
3-22 Logic Diagram for Port 4 (Repeated) .. 3-33
3-23 Expanded Non-Multiplexed Bus Timing .. 3-34
3-24 Typical Expanded Non-Multiplexed System .. 3-35
3-25 External Bus - Expanded Non-Multiplexed Mode ... 3-36
3-26 Logic Diagram for Port 3 (Repeated) .. 3-38
3-27 Logic Diagram for Port 4 (Repeated) .. 3-41
3-28 Expanded Multiplexed Bus Timing ... 3-42
3-29 Typical Bus De-Multiplexing Latch Arrangement. .. 3-43
3-30 Typical Expanded Multiplexed System .. 3-44
3-31 External Bus - Expanded Multiplexed Mode ... 3-46

Chapter 4

4-1 MC6801 MPU Programming ModeL4-1
4-2 MC6801 Instruction Set Summary .. .4-8
4-3 Condition Code Register Bit Definitions .. 4-11
4-4 Condition Code Register Instructions .. 4-11
4-5 Arithmetic Instructions•....................................... 4-12
4-6 Logic Instructions .. 4-12
4-7 Data Test Instructions ... 4-13
4-8 Data Handling Instructions .. 4-14
4-9 Index Register Instructions ... 4-17
4-10 Stack Pointer Instructions .. 4-18
4-11 Operation of Push Instruction .. .4-20
4-12 Operation of Pull Instruction .. 4-21
4-13 Jump and Branch Instructions .. 4-22
4-14 Operation of JSR (Extended) Instruction .. .4-22
4-15 Operation of JSR (Indexed) Instruction .. .4-23
4-16 Operation of BSR Instruction ... 4-23
4-17 Operation of RTS Instruction ... 4-24
4-18 BCD Addition: BCD1 ... 4-28

ix

LIST OF ILLUSTRATIONS (Continued)
Figure No. Title Page No.

4-19 Block Move Routine: BLOCKC .. 4-30
4-20 Block Move Routine: BLOCKM .. 4-31
4-21 Arithmetic Instructions (Repeated) .. .4-34
4-22 Operation of DAA Instruction ...•.................... 4-35
4-23 BCD Addition Routine: BCDADI .. .4-39
4-24 BCD Addition Routine: BCDAD2 .. .4-40
4-25 BCD Subtraction Routine: BCDSB 1 .. .4-42
4-26 BCD Subtraction Routine: BCDSB2 .. .4-43
4-27 Unsigned Multiplication: MUL16A .. 4-46
4-28 Signed Multiplication Routine: MUL16B .. .4-48
4-29 Multiplication Using Booth's Algorithm4-50
4-30 Flowchart for Booth's Algorithm .. .4-51
4-31 Signed Multiplication Routine: MULTI6 .. .4-52
4-32 Flowchart for Unsigned Division .. .4-54
4-33 Unsigned Division Routine: DIVI6B .. .4-55

Chapter 5
5-1 Polling Loop Seq~ence ... 5-2
5-2 Hierarchical Polling Loop Sequence ... 5-2
5-3 An NMI Mask Circuit .. 5-5
5-4 Software for an NMI Mask .. 5-5
5-5 Generalized Interrupt Control and Generation .. 5-6
5-6 Logic Diagrams for Iriterrupt Sampling ... 5-7
5-7 Interrupt Recognition Windows .. 5-9
5-8 MC6801 Processor Flowchart ... 5-10
5-9 MC6801 Non-Interrupt Flowchart .. 5-11
5-10 MC6801 Interrupt Flowchart .. 5-12
5-11 Stacking the Machine State ... 5-13
5-12 MC6801 Interrupt Sequence ... 5-14
5-13 Pulsing the IRQ2 Interrupt Line .. 5-17
5-14 MC6801 Interrupt Vectors .. 5-17
5-15 WAI Instruction Sequence ... 5-20
5-16 A Routine to Skip the WAI Instruction ... 5-22
5-17 A "Who-Done-It', Routine .. 5-23
5-18 Example of Re-Entrant Programming ... 5-26

Chapter 6

6-1 Serial Communications Interface Registers .. 6-2
6-2 Block Diagram of SCI .. 6-3
6-3 Rate and Mode Control Register ... 6-4
6-4 Selected Internal Bit Times and Rates ... 6-4
6-5 Format and Clock Source Control ... 6-4
6-6 Transmit/Receive Control and Status Register .. 6-5

x

LIST OF ILLUSTRATIONS (Continued)
Figure No. Title Page No.

6-7 SCI Serial Data Formats .. 6-8
6-8 Exercising the SCI: SERIAL ... 6-15
6-9 Example of SERIAL Program Output. .. 6-19
6-10 Demonstrating the Wake-Up Feature: OKBAD ... 6-20
6-11 Example of OKBAD Program Output. .. 6-24

Chapter 7

7-1 MC6801 Programming Timer Registers ... 7-1
7-2 Block Diagram of Programmable Timer .. ~ 7-2
7-3 Output Compare Timing ... 7-4
7-4 Input Capture Timing ... 7-4
7-5 Timer Control and Status Register (TCSR) .. 7-5
7-6 Counter Register Write and Read Diagram .. 7-7
7-7 WAVGEN Default Output Signal. ... 7-7
7-8 Generating a Waveform: WAVGEN .. 7-8
7-9 Synchronized Loop Timing .. 7-10
7-10 Synchronized Output Compare: SYNLUP ... 7-11
7-11 Immediate Output Compare Timing ... 7-12
7-12 Equipment Arrangement for Program ECHO ... 7-13
7-13 Echoing an Input: ECHO .. 7-14

Chapter 8

8-1 Expanded Multiplexed Bus Timing (Repeated) .. 8-2
8-2 Typical Data for MCM2114 Static RAM•..................... 8-4
8-3 Expanded Multiplexed Bus Interface with MCM2114 8-7
8-4 Line Printer Interface Connection Diagram ... 8-9
8-5 Line Printer Interface Signals .. 8-10
8-6 Line Printer Interface Driver: PINZ t POUTCH .. 8-11
8-7 Keyboard Interface Signals ... 8-12
8-8 Keyboard Interface Connection Diagram ... 8-12
8-9 Keyboard Interface Drive: KEYINZ t KEYIN .. 8-13
8-10 8-Level Priority Encoder .. 8-16
8-11 Priority Encoder Interrupt Vectors ... 8-17
8-12 Priority Encoder Timing .. 8-18
8-13 Expanded Non-Multiplexed Bus Timing (Repeated) .. 8-19
8-14 Memory and ACIA Interface in Expanded Non-Multiplexed Mode 8-21
8-15 PROM Interface in Mode 5 .. 8-22
8-16 Minimum Period Measurement Using MC6801 Timer 8-24
8-17 Special Cases During Period Measurement ... 8-26
8-18 Period Measurement Sample Program: TIM24 .. 8-27
8-19 Example ofTIM24 and TIM16 Output .. 8-33
8-20 Period Measurement Sample Program: TIMI6 .. 8-34

xi

LIST OF ILLUSTRATIONS (Concluded)
Figure No. Title Page No.

8-21 SCI Parallel-to-Serial Interface .. 8-37
8-22 SCI Serial-to-Parallel Interface .. 8-38
8-23 Half-Duplex Interface ... 8-41
8-24 Request/Grant Control Signals ... 8-41
8-25 Half Duplex Routines ... 8-42
8-26 Half Duplex Data Transfer Rate .. 8-46
8-27 Interface Using Input Capture Function .. 8-47
8-28 Flowchart for Interface with Input Capture Function 8-48
8-29 Interface Using Exclusive-OR Function ... 8-49
8-30 Full Duplex Routine Using Exclusive-OR ... 8-51
8-31 Flowchart for Interface ... 8-53
8-32 Full Duplex Data Transfer Rates (Exclusive-OR) ... 8-54

LIST OF TABLES
Table No. Title Page No.

Chapter 4

4-1 MC6801 Additional Instructions ... 4-10
4-2 Branch Instructions .. 4-24
4-3 Overflow Rules for Addition ... 4-32
4-4 Overflow Rules for Subtraction ... 4-33
4-5 Truth Table for" Add with Carry" ... 4-36
4-6 Truth Table for "Subtract with Borrow" ... 4-36

xii

CHAPTER 1
THE MC6801 MICROCOMPUTER: AN OVERVIEW

1.0 INTRODUCTION

The Motorola MC6801 Microcomputer Unit (MCU)· is the most versatile and powerful single-chip
microcomputer currently available to the system designer. The variety of MC6801 operating modes
offers the designer an unexcelled measure of freedom in configuring a microcomputer to specific
system requirements. In addition to operational flexibility, the MeU also provides an extremely
powerful set of internal resources. These resources can provide a significant cost savings by a reduc­
tion in the system total part count. They include the following:

• 2048 bytes of ROM,
• 128 bytes of RAM,
• a maximum of 29 parallel I/O and 2 control lines,
• a three function 16-bit timer, and
• a full duplex Serial Communications Interface.

The extraordinary flexibility of the MC6801 is provided by its ability to be operated in a variety of
modes depending upon application requirements. Selection of the hardware-programmed mode is
based upon the available internal resources for a particular mode and those required by the applica­
tion. The details involved in mode selection are contained in Chapter 2, but this discussion provides

/

an overview of the available modes.

The MC6801 provides three fundamental operating modes:

• Single Chip,
• Expanded Non-Multiplexed,
• Expanded Multiplexed.

The Single Chip mode utilizes only on-chip resources while maximizing the n\lmber of available in­
put/output lines. The Expanded Non-Multiplexed mode offers a modest increase in the external ad­
dress space (256 external read/write locations) with separate address and data buses. The Expanded
Multiplexed mode time-multiplexes the address and data buses which provides a 64K-byte address
space while requiring only a simple latch to de-multiplex the bus.

The MC6801 is a complete monolithic microcomputer housed in a single 4O-pin package and is the
product of state-of-the-art advances in scaled NMOS process technology. A block diagram, shown
in Figure 1-1, illustrates the integration of the on-chip resources into a complete powerful
microcomputer. The MCU contains an enhanced 8-bit MC6800 MPU, 2048 bytes of ROM, 128
bytes of RAM, four Parallel I/O Ports, a Serial Communications Interface (SCI), a Programmable
Timer with three functions, and an internal clock generator. As shown in Figure 1-1, several pin
configurations depend upon the MCU operating mode. All of the pins associated with Port 3, Port
4, SC 1, and SC2 are mode dependent.

*The MC6801 Microcomputer is also referred to as the MCV, MC6801, and/or MC6801 MCV throughout this manual.

1-1

P30
P31
P32
P33
P34
P35
P36 - P37

I SC2
tv SCl

P40
P41
P42
P43
P44
P45
P46
P47

Expanded Multiplexed

Expanded Non-Multiplexed

Single Chip II,
AO/OO
Al/01
A2/02
A3/03
A4/04
A5/05
A6/06
A7/07
R/W
AS

DO
01
02
03
04
05
06
07
R/W
lOS

I/O
1/0
1/0
1/0
1/0
1/0
I/O

~
IS3

.....-. Vt ~ ~ "!'"
~ -- N Port
~ ?'
...:: "!" 3

::: ~

H Vt
~ -- \J --

..

~

K
MUX 1.

K
""

N
-.I ..--

(/)U«-;£
(!) u f- f­
> > ~ x

~ , 1.
w I~ I~ I~
~~

1 , ,
MPU

1~ j~ 4~

,
IROl U

......
.::- ~

~
Address Bus A8 AU 1/0

A9 Al 1/0
~ Port

:=: 4

Vt ~
Data Bus

~ J le-
Al0 A2 I/O
All A3 1/0
A12 A4 1/0
A13 A5 I/O
A14 A6 1/0
A15 A7 1/0

VCC Standby I 128X81 1 RAM
l2048 x8

ROM

-.....

1\
~

:::: Port .::
11 2 .-

~ -
IR02

~Timert=-

iRTI2 1
.-

1) SCI ~

-

t.-
~

1\ Port --=
V 1::.

-== t..-

-
.......

'---

Figure 1-1. MC6801 Single Chip Microcomputer

Mode
Select
Logic
.J ~ ~ A~

--:"
~
~
"!"

4~ --

... --"!'" --""r'

"!'" --"!'" --

I/O TIN P20
I TOUT P21
1/0 SCLK P22
1/0 RX P23
1/0 TX P24

1/0 Pl0
110 Pll
I/O P12
I/O P13
1/0 P14
110 P15
1/0 P16
1/0 P17

The concept of an integrated family of devices is predicated on continuity in both design and
development. In the design of a third generation product - such as the MC6801 - one of the most
desirable objectives is to achieve compatibility with existing software and hardware. The Motorola
MC6801 satisfies this goal and is compatible with the entire M6800 Family of components. In addi­
tion, it requires only a single + 5 volt power supply and will directly interface with both TTL and
MOS peripheral devices.

As a central member of the M6800 Family, the MCU shares many attributes of the MC6800 MPU.
For example, the MCU implements the entire MC6800 instruction set. Additional instructions have
been incorporated, however, which provide both greater system capability and ease in programm­
ing. These enhancements can result in increased throughput, simplified software conversion effort,
and reduced development time.

1.1 THE MC6801 INSTRUCTION SET

The MC6801 instruction set will be very familiar to those readers having experience with the
MC6800. Those who have not had this experience, however, will appreciate the easy-to-Iearn in­
struction set. The MC6800 is upward compatible with the MC6801 with respect to both source and
object code. Significant improvements have been incorporated in the MC6801 to improve instruc­
tion throughput. In addition, several new instructions provide more capability in implementing
16-bit arithmetic operations.

A programming model of the MC6801 is shown in Figure 1-2. Readers familiar with the MC6800
should note that the significant difference between programming models of the two MPUs is that
the A and B accumulators can be concatenated into a single double byte accumulator called the D
accumulator. The two accumulators can be accessed separately or be referenced jointly by several

~ A aU7 B ~ 8-Bit Accumulators A and B
15 - - - - - --- - D -- -- -- - - - ~ Or 16-Blt Double Accumulator D

... 11_5 ________ X _______ ~Ollndex Register (X)

... 11_5 _______ S_P _______ ol Stack Pointer (SP)

... 11_5 _______ P_C _______ --'0l Program Counter (PC)

7 °
Condition Code Register (CCR)

Carry/ Borrow from MSB
Overflow

1......--- Zero

'----- Negative
'------ Interrupt

'------- Half Carry (From Bit 3)

Figure 1-2. MC6801 Programming Model

1-3

new instructions. Double accumulator instructions include: Load, Store, Add, Subtract, Logical
Shift Left, and Logical Shift Right. Each of these instructions utilizes the same addressing modes
that are available for its analogous single accumulator instruction.

Indexing is greatly enhanced by the addition of three new instructions which interface with the Index
Register. These new instructions provide the capability of adding a single unsigned byte to the Index
Register (ABX), pushing the contents of the Index Register onto the stack (PSHX), and pulling the
top two bytes of the stack into the Index Register (PULX).

Integer multiplication is greatly improved by the addition of a new 8-bit by 8-bit unsigned multiply
instruction. The MUL instruction multiplies the two accumulators together, overwrites them with a
double byte result, and executes in 10 MPU E-cycles.

Throughput improvements are achieved by reducing execution times for certain key instructions.
These improvements affect all stores, the indexed addressing mode, and branches.

1.2 MC6801 SYSTEM CONFIGURATIONS

The versatility of the MC6801 is attained by offering the designer a variety of configurations which
can be obtained with hardware-programming using a minimal amount of external circuitry. The
three functional operating modes are:

• Single Chip,
• Expanded Non-Multiplexed, and
• Expanded Multiplexed.

The operating mode affects the configuration of two of the four MCU 1/0 Ports. While Ports 1 and
2 are functionally independent of the mode, Ports 3 and 4 are configured by the operating mode.

The Single Chip Mode is illustrated in Figure 1-3. In this mode, the device is totally self-reliant, uses
only on-chip resources, and provides no external address or data bus. The Single Chip mode pro­
vides a maximum of 29 inputloutput lines including an interrupt-capable parallel 1/0 port with two
handshake control lines. Ports 3 and 4 also function as data InputlOuput ports in this mode.

Vee

"XlTT~A~L 111----- E -Vee Standby----i~

Port 1 1-1t1
8 I/O Lines ~

Lt-~ Port 3
1IIIIIIII 8 I/O Lines
...---IS3

Port 2 t---__ OS3

5 I/O Lines 1.~
Serial I/O "1IIIIIIII

11.1111~ Port 4
~ 8 I/O Lines

16-Bit Timer

Vss

Figure 1·3. Single Chip Mode

1-4

In the Expanded Non-Multiplexed mode, Port 3 functions as an 8-bit bidirectional data bus while
Port 4 provides up to eight data input or address bus output lines. If address outputs are selected (by
writing ones to the port Data Direction Register), the MCV will provide up to eight of the least
significant lines of the address bus. The eight most significant address lines are decoded internally
and the resultant signal, Input/Output Select (lOS), provides a means for controlling an external
memory space access. The expanded non-multiplexed bus will interface with M6800 family
peripheral parts to directly access a maximum of 256 external locations. The MC6801 pin configura­
tion in the Expanded Non-Multiplexed mode is shown in Figure 1-4.

Port 1
8 I/O Lines

Port 2
5 I/O
Lines

Serial I/O
16-Bit Timer

Vee

WJI.II~8 Port 3
1I11III Data Bus Lines

Port 4

Vss

Figure 1-4. Expanded Non-Multiplexed Mode

When configured in the Expanded Multiplexed mode, Port 3 provides the eight least significant lines
of the address bus multiplexed with a bidirectional 8-bit data bus. Port 4 provides the remaining
eight bits of the address bus. A simple latch is required to de-multiplex the Port 3 address/data bus
which is controlled by the MCV signal, AS (Address Strobe). After de-multiplexing, the bus inter­
faces with all MC6800 Family peripheral parts. Figure 1-5 illustrates the MC6801 in the Expanded
Multiplexed modes. In this configuration, the MCV can access a 64K byte memory space.

-
Port 1

8 I 0 Lines 41.~

Port 2

5 1:0 Lines 1.~
Seriall.O "'lIlIIII

1 6-81t Timer

V~c

XTALl

Vss

E

Port 3
8 Lines

Multiplexed Data Address
R.'W

Port 4
!tI.~ 8 Lines

Address Bus

Figure 1-5. Expanded Multiplexed Mode

1-5

1.3 MODE INDEPENDENT MCU.RESOURCES

Several MC6801 on-chip resources are functionally independent of the operating mode. These
resources include:

• Port 1,
• Port 2,
• the Serial Communications Interface (SCI), and
• the Programmable Timer.

Port 1 is configured as an 8-bit parallel input/output port where each bit can be individually defined
as an input or an output. Definition of each data port bit is accomplished by writing to the port Data
Direction Register where a "1" defines an output and a "0" defines an input.

Port 2 consists of five lines which can be utilized as data input/output lines except that Port 2 bit 1
cannot be used as a data output line. If certain functions are enabled, however, up to all five Port
lines are dedicated to the Programmable Timer and Serial Communications Interface. A brief over­
view of the SCI and Timer follows with a more detailed discussion provided in Chapters 6 and 7.

1.3.1 Serial Communications Interface (SCI)

The Serial Communications Interface (SCI) provides a full duplex capability with two formats and a
variety of bit rates. External access to the SCI is provided by three of the Port 2 pins which interface
with the serial transmit, receive, and bit rate clock lines.

The SCI provides two programmable formats: industry standard NRZ and Bi-Phase. Several bit
rate clocking options are also provided:

• an internal clock can be utilized which divides the MPU clock frequency to obtain a set of four
program selectable bit rates (convenient values depend upon judicious selection of the MPU
crystal or external clock frequency),

• the SCI can be driven by an external clock, or
• the SCI can be programmed to provide a bit rate clock as an output.

The SCI register organization is shown in Figure 1-6 where the addressable registers are included in
the MCU internal register area. The bit rate, clocking source, and format are controlled by the SCI
Rate and Mode Control Register ("Mode", in this case, refers to the SCI and not the MCU).

Data written to the Transmit Data Register is transferred to the transmit shift register and presented
serially to the transmit pin. Serial data at the receive pin is clo.cked to the receive shift register and
transferred to the Receive Data Register where it can be read by the MCU. Separate flags in the
Transmit/Receive Control and Status Register indicate when the Transmit Data Register is empty
(TDRE) and the Receive Data Register is full (RDRF).' Serial data overrun and framing error protec­
tion is also provided and is indicated by the ORFE bit in the SCI Control and Status Register. A
summary of the bits in the Transmit/Receive Control and Status Register is shown in Figure 1-7 and
a more detailed account is provided in Chapter 6.

1-6

Port 2

11

10

12

Bit 7

Bit 7 Rate and Mode Control Register Bit 0

I I CCl I CCO 155115501$10

Transmit/Receive Control and Status Register

I RORF I ORFE ITOREI RIE I RE I TIE TE I WU lOll

(Not Addressable)

Receive Shift Register

Bit Rate
Generator ...-----E

(Not Addressable)

Transmit Shift Register

Transmit Data Register

Figure 1-6. SCI Register Organization

Bit 0

$12

$13

$111 RDRF IORFE I TDRE I RIE RE TIE TE WU

RDRF - Receive Data Register Full
ORFE - Overrun or Framing Error
TDRE - Transmit Data Register Empty

RIE - Receive Interrupt Enable
RE - Receive Enable
TIE - Transmit Interrupt Enable
TE - Transmit Enable

WU - Wake Up

Figure 1·7. Transmit/Receive Control and Status Register

1-7

A "wake-up" feature allows the SCI receiver to remain passive until its line goes idle which can be
interpreted as the end of 'the current "message" . This optional feature allows an MCU to ignore the
remainder of any "message" for which it is not an addressee by enabling the "wake-up" feature. It
is provided as a tool which can be used, in some cases, to enhance MPU utilization in multi­
processor configurations.

1.3.2 Programmable Timer

The MC6S01 includes a Programmable Timer which is functionally independent of the operating
mode of the MeU. Possible timer applications include the following:

• measurement of elapsed time,
• providing an elapsed time interrupt,
• generation of an output waveform, and
• measurement of time between input signal level transitions.

The central element in the Programmable Timer is a 16-bit free running counter which is in­
cremented by the MPU E-clock. The counter can be read by the MPU and an overflow flag (TOF) is
set each time it contains all ones. One application of the free-running counter is to measure elapsed
time. Other applications involve using the overflow flag (TOF) to generate a periodic interrupt every
65,536 MPU E-cycles. In addition to the counter, there are two other 16-bit registers associated with
the timer as illustrated in Figure I-S.

15 7 0

I
IlcF I OCFI TOF I EICllEoClIETolllEDGloLVLI $08

Counter High Byte Counter Low Byte $09:0A

Output Compare High Byte Output Compare Low Byte $OB:OC

Input Capture High Byte Input Capture Low Byte $OD:OE

Figure 1-8. Programmable Timer

The Output Compare Register and the Output Level Bit (OLVL) in the Timer Control and Status
Register can be utilized to control an output waveform. An interrupt, signifying an arbitrary
timeout, can also be generated using the output compare function. The free-running counter is
transferred to the read-only Input Capture Register whenever a proper level transition is sensed. The
"proper" transition is defined by the IEDG bit in the Timer Control and Status Register. This
feature can be used to measure periods or pulse widths. If both an output waveform is generated
and the input capture function is used, the timer requires one external input and provides one output
using two pins of Port 2.

I-S

A summary of the Timer Control and Status Register is shown in Figure 1-9. The Input Capture
Flag (ICF) indicates if a transfer of the free-running counter to the Input Capture Register has oc­
curred. The Timer Overflow Flag (TOF) is set when the free-running counter contains all ones. The
Output Compare Flag (OCF) indicates if equality exists between the value in the Output Compare
Register and the free-running counter. In addition, the OL VL (Output Level) bit will be clocked to
an output latch whenever this occurs. The remaining bits in the Timer Control/Status register enable
or disable individual interrupts associated with each status flag. Each timer interrupt uses an in­
dividual prioritized interrupt vector. If all timer interrupts are pending, they will be serviced in the
following order: input capture (ICF), output compare (OCF), and timer overflow (TOF).

Bit 7 Bit 0

$OSIICF OCF I TOF I EICI I EOCI I ETOI IIEDG I OLVL I

ICF - Input Capture Flag
OCF - Output Compare Flag
TOF - Timer Overflow Flag
EICI - Enable Input Capture Interrupt

EOCI - Enable Output Compare Interrupt
ETOI - Enable Timer Overflow Interrupt
IEDG - Input Edge
OLVL - Output Level

Figure 1-9. Timer Control and Status Register

1.4 SUMMARY OF FEATURES

When used as a single chip microcomputer or coupled with the complete spectrum of Motorola off­
the-shelf peripheral parts, the MC6801 is an extremely cost-effective and powerful tool. The
MC6801 MCU is an integral component in the Motorola M6800 Family of components. The
Motorola tradition of excellence assures the highest standards of reliability, performance, and ease
of interfacing with other parts. A summary of features of the MC6801 Single Chip Microcomputer
Unit includes the following:

• Enhanced M6800 instruction set
• 8 x 8 multiply instruction
• Serial Communications Interface (SCI)
• Upward compatible with MC6800 object and source code
• 16-bit three function Programmable Timer
• Single chip or expandable to 64K byte address space
• Bus compatible with M6800 Family
• 2048 bytes of ROM
• 128 bytes of RAM (64 bytes retainable on powerdown)
• 29 parallel 110 and two handshake control lines
• Internal clock generator with divide-by-four output
• TTL compatible inputs and outputs
• Single + 5 volt power supply
• External and internal interrupts

1-9/1-10

CHAPTER 2
OPERATING MODES AND MEMORY MAPS

2.0 INTRODUCTION

There are several possible starting points from which to begin a detailed discussion of the MC6801.
Three such possibilities include:

• a description of the operating modes,
• the memory map associated with each mode, and
• a functional pin description.

This chapter discusses the MCU with respect to its operating modes and associated memory maps.
The functional pin description is contained in Chapter 3. To a large degree, all three starting points
treat the same general topics: only the viewpoint is different.

The MC6801 can be operated in a variety of configurations with varying types and amounts of on­
chip resources. The facility which provides this extraordinary flexibility is the ability of the MCU to
be hardware programmed into one of eight different operating modes.

The configuration of any particular operating mode can then be further defined using software to
initialize an 1/0 port with respect to which of its bits are to be utilized as inputs and outputs. This is
accomplished by writing a byte to the write-only Data Direction Register of a port in which 1 's in­
dicate outputs and O's specify inputs.

As a preface to this discussion, consider a list of MCU characteristics which are affected by the
operating mode. This list admittedly contains some interdependent items, but this is unimportant to
our overall objective. MCU parameters which are affected by the operating mode include the
following:

• number of 1/0 lines available,
• amount and location of addressable external memory,
• availability of on-chip RAM,
• availability of on-chip ROM,
• physical location of interrupt vectors,
• configuration of Port 3,
• configuration of Port 4,
• addressability of three associated Port 3 registers,
• addressability of two associated Port 4 registers,
• availability and type of external bus, and
• number and type of bus control signals.

2-1

It is also advantageous to know which features of the MC6801 are not affected by the operating
mode and, therefore, function identically in every mode. Mode-independent features include:

• MPU (instruction execution unit),
• most of reserved register area,
• Port 1 configuration,
• Port 2 configuration,
• Serial Communications Interface (SCI), and
• Programmable Timer.

Mode characteristics are summarized in Figure 2-1 for convenient reference.

Common to All Modes:
• MPU (Instruction Execution Unit)
• Reserved Register Area
• Port 1
• Port 2
• Programmable Timer
• Serial Communications Interface

Single Chip - Mode 7
• 128 Bytes of RAM; 2048 Bytes of ROM
• SC1 is Input Strobe 3 (lS3)
• SC2 is Output Strobe 3 (OS3)
• Port 3 is a Parallel I/O Port with Two Control Lines
• Port 4 is a Parallel I/O Port

Expanded Memory Space/Non-Multiplexed Bus - Mode 5
• 128 Bytes of RAM; 2048 Bytes of ROM
• 256 Bytes of Directly Addressable External Memory Space
• SC1 is Input/Output Select (lOS)
• SC2 is Read/Write (R/W)
• Port 3 is an 8-Bit Data Bus
• Port 4 is an Input Port/ Address Bus

Expanded Memory Space/ Multiplexed Bus - Modes 1, 2, 3, 6
• Four Memory Space Options (64K Byte Address Space):

(1) No Internal RAM or ROM (Mode 3)
(2) Internal RAM, No ROM (Mode 2)
(3) Internal RAM and ROM (Mode 1)
(4) Internal RAM, ROM with Optional Partial Address Bus (Mode 6)

• SC1 is Address Strobe (AS)
• SC2 is Read/Write (R/W)
• Port 3 is a Multiplexed Address/Data Bus
• Port 4 is an Address Bus (lnputs/ Address in Mode 6)

Test - Modes 0 and 4
• Expanded Test - Mode 0

May be Used to Test Internal ROM and RAM
• Single Chip and Non-Multiplexed Test - Mode 4

(1) May be Changed from Mode 4 to Mode 5
(2) May be Used to Test Port 3 and 4 Operation

Figure 2-1. Summary of Operating Mode Characteristics

2-2

A common task in the design of an MC6801-based system is to determine the number of available
1/0 lines for·a particular operating mode. A minimum of eight I/O lines are available using Port I
regardless of the mode. The five lines of Port 2, however, are somewhat special. While P20 is used I

by the Timer input capture function, this does not prevent it from also being used for other pur­
poses. The remaining four lines, however, are dedicated to SCI or Timer functions if these functions
are enabled. If a particular line is not utilized for an SCI or Timer function, it can be used for either
data input or output with one exception: Bit I cannot be used as a data output line. The Port 2 bits
and functions include:

• Port 2 Bit I - Used as Timer Output (OLVL) if Port 2 DDR bit I is set,
• Port 2 Bit 2 - Used as Serial-Clock-Out or External-Clock-In if CCI of Rate and Mode Con­

trol Register is set,
• Port 2 Bit 3 - Used as serial data input if RE of Transmit/Receive Data Register is set, and
• Port 2 Bit 4 - Used as serial data output if TE of Transmit/Receive Data Register is set.

While Port 2 Bit 0 can also be used for the Timer input capture function, its use is not a dedicated
one. Port 2 Bit 0 can be configured as either an input or an output depending upon the state of its bit
in the Port 2 Data Direction Register. The Programmable Timer input capture edge detector is a
passive "listener" of this line and functions identically regardless of whether the bit is defined as an
input or an output. If configured as an input, an MPU read of the Port 2 Data Register will result in
reading the level at P20 regardless of whether or not the input capture function is being used.

Bit I of Port 2 can be used as a data input line but it cannot be used as a data output line. If its DDR
bit is set, the output pin is dedicated to the output compare function output level register.

2.1 MC6801 FUNDAMENTAL MODES

The MCU can be hardware-programmed into one of eight operating q1odes, which are referred to
numerically as modes 0 through 7. While there are eight different operating modes, there are but
three fundamental ones. The remaining five· may be considered variations of the fundamental
modes. The three fundamental operating modes have been given the following names which corres­
pond to the type of bus associated with each of them:

• single chip,
• expanded non-multiplexed, and
• expanded multiplexed.

2-3

2.1.1 Single Chip Mode (Mode 7)

In Single Chip Mode, illustrated in Figure 2-2, all four ports are configured as parallel input/ output
ports. The MCU functions as a self-contained microcomputer in this mode and has no external ad­
dress or data bus. Mode dependent MCU resources for Single Chip mode include the following:

• 128 bytes of RAM,
• 2048 bytes of ROM,
• a maximum of 29 and a minimuInof 24 parallel I/O lines, and
• two handshake control lines.

Vee

rYT~-~-"E

Port 1 1.11~
8110 Lines 'IIIIIIII

111.~ Port 3
,. 8 1/0 Lines
Ie--- IS3

Port 2
1---___ 0S3.

5 1/0 Lines 1-1t1
Seriall/O

tt.lIII~ Port 4
" 8 I/O Lines

16-Bit Timer

Vss

Figure 2-2. Single Chip Mode

Of the available 29 I/O lines, five of these lines are "shared" with the SCI and Timer. If SCI or
Timer functions are enableq, however, the associated dedicated line~ must be deducted from the
total available I/O port Jines.

In addition to a .maximum of 29 data port lines, there are also two handshake control lines called IS3
and OS3. These two lines are intended for ,use with Port 3 but can also be used for a variety of other
purposes. In addition"IS3'and OS3 allow Port 3 to be used as an 8-bit data port with handshaking
capability.

2.1.2 Expanded NOD-Multiplexed Mode (Mode 5)

The expanded non-multiplexed mode, illustrated in Figure 2-3, provides a modest amount of direct­
ly addressable external memory space (up to 256 bytes) while retaining significant on-chip
capabilities. Mode dependent resources in the expanded non-multiplexed mode include the follow­
ing:

• 128 bytes of RAM
• 2048 bytes of ROM,
• a minimum of eight I/O port lines (Port 1) and a maximum of 13 input and 12 output lines

(Port 1 and Port 2) in addition to any Port 4 input lines which are not required as address out­
puts.

Port 1 1I-1tt
8 I/O Lines~

Port 2
5110
Lines

Serial 110
16-Bit Timer

Vee
XTAL1

Vss

E

Port 3
8 Data Bus Lines

Port 4

Figure 2-3. Expanded Non-Multiplexed Mode

The RESET input configures Port 3 as an 8-bit bidirectional data bus and Port 4 as an 8-bit data in­
put port. Any combination of the eight least significant lines of the address bus can be obtained by
setting the appropriate bits in the Port 4 Data Direction Register, where Data Direction bits 0
through 7 correspond to address lines AO through A 7, respectively. Internal pullup resistors provide
a logic high for Port 4 pins until software configures any desired lines as address outputs.

NOTE
No external address bus is provided until the Port 4 Data Direction Register has been con­
figured.

A maximum of 256 external read/write memory locations are available in this mode. These locations
reside in the MCU memory map at addresses $100 and$lFF, inclusively. Up to eight external ad­
dress lines (AO-A7) are available from Port 4 while the remaining eight lines (A8-A15) are decoded
internally. The output of this internal decoder is provided as Input/Output Select (lOS). The signal
is active (low) whenever an address between $0100 and $OlFF is sensed on the internal address bus.
The lOS signal can be used in a chip select circuit for devices on the expanded non-multiplexed bus.

The expanded non-multiplexed bus is compatible with M6800 family parts. It consists of the follow­
ing MCU signals which are defined in detail in Chapter 3:

• E (Enable),
• 00-07 (Data Bus),
• AO-A 7 (Address .Bus),
• R/W (Read/Write),
• lOS (Input/Output Select),

Figure 2-4 illustrates a typical system configuration using the expanded non-multiplexed mode.

2-5

~ ---c:_
ndby----.
ESET-

Vee Sta
-R-

Port 1
8110

Port 2
5110

SCI
Timer

NMI-

IRQ1-

.L ...

..... ..
.L ..
"" ..

Vee
I

XTALl

EXTAL2

MC6801

~
VSS

Port 3 /8
Port4 I /8 ' -
iDS , --R/W -E -

RAM PIA ACIA

Figure 2-4. System Configuration - Expanded Non-Multiplexed Mode

2.1.3 Expanded Multiplexed Mode (Modes 1, 2, 3, 6)

(00-07)
(AO-A7)
lOS
R/W
E

In the expanded multiplexed modes, a 16-bit address bus is provided and the MeU can address the
entire 64K byte address space. These modes offer a large memory space while providing several
significant on-chip resources. The following mode dependent Meu resources are available in the ex­
panded multiplexed modes:

• 128 bytes of RAM (Modes 1, 2 and 6)
• 2048 bytes of ROM in Mode 6 and 2032 bytes in Mode 1 (External vectors replace the most sig­

nificant 16 bytes of ROM in Mode 1)
• any unused address outputs (A8-AI5) may be used as data input lines (Port 4 - Mode 6 only)

The Meu configuration for the expanded multiplexed modes is illustrated jn Figure 2-5. Port 3 is
configured as a multiplexed 8-bit address and data bus in all expanded multiplexed modes. The least
significant eight bits of address (AO-A7) are multiplexed with the entire data bus (DO-D7). A simple
external latch is required to de-multiplex the two buses. In addition, an MeU bus timing signal call­
ed Address Strobe (AS) is provided to control the latch.

Port 4 provides the eight most significant lines of the address. bus for all expanded multiplexed
modes except Mode 6. For this exception, Port 4 is configured from Reset as an· 8-bit parallel data
input port. By using software, however, the configuration can be changed to provide any combina­
tion of the eight most significant lines of the address bus (A8-AI5). This is accomplished by setting
the appropriate bits in the Port 4 Data Direction Register. Bits 0 through 7 of the Data Direction
Register correspond to address lines A8 through A15, respectively.

NOTE
The eight most significant address lines are not provided in Mode 6 until the Port 4 Data
Direction Register has been configured.

2-6

Vee
XTAL1 -

Port 1
8 liD Lines 4I.~

Port 2

5 liD Lines 11.~
Serial 110 "'lIlIIII

16-Bit Timer

Vss

E

R/W

Port 3
8 Lines

Multiplexed Datal Address

Port 4
~.~ 8 Lines

Address Bus

Figure 2·5. Expanded Multiplexed Mode

This configuration allows unused Port 4 address lines to be used for additional data input lines. In­
ternal pull-up resistors provide a logic high for the eight most significant address lines until software
configures the port.

The expanded multiplexed bus is compatible with the M6S00 family and consists of the following
signals which are defined in detail in Chapter 3:

.E (Enable)
• AO/DO-A 7 /D7 (Multiplexed Address and Data)
• AS-AlS (Address Bus)
• AS (Address Strobe)
• R/W (Read/Write)

A typical system configuration using the expanded multiplexed mode is illustrated in Figure 2-6.
This configuration requires an S-bit latch to de-multiplex the address and data bus to interface with
standard M6S00 family parts. The MCU signal, Address Strobe (AS), is used to control the
demultiplexing latch.

--r:::::=---~
andby--+ Vee St
R-

Port 1
81/0

Port 2
51/0
SCI

Timer

ESET
NMI

IRQ1

~

""
~

...

...

110..

r

..
,.

Vec

I
XTAL1

EXTAL2

MC6801

~
VSS

Port 3 8 8

!:$ Port 4

R/W
16'

E

I ROM J l RAM J l PIA J

Data Bus
(00-07)

Address Bus
(AO-A15)

R/W

E

Figure 2-6. System Configuration for Expanded Multiplexed Modes

2-7

2.1.4 Test Modes (Modes 0 and 4)

While not fundamentally different than the other six modes, the two MC6801 Test Modes provide a
means for testing ,selected features of the MCV. It should be noted that many features of the MCV
can be tested in one of the expanded modes for which a large external memory space is available for
the test program. Mode 4, however, provides the only configuration for testing Ports 3 and 4 in the
single chip and expanded non-multiplexed modes without a ROM-resident "self-check" program.

The Mode 4 test sequence is facilitated by first loading a small program into the MCV internal RAM
using Modes 0, 1, or 2. The MCV is then Reset and re-programmed into Mode 4. In this mode, the
ROM is excluded from the MCV internal memory map and the eight most significant bits of the
RAM address decoder are treated as "don't cares". This results in the Reset vector being fetched
from the two most significant bytes of the RAM. Presumably, this is a vector to the start of the
RAM-resident test program. The RAM is addressable from $XX80 to $XXFF in Mode 4 and all of
the single chip resources are accessable except the ROM.

Mode 5 can be entered from Mode 4 without having to Reset the MCV. If the peo bit in the Port 2
Data Register (bit 5) is set while in Mode 4, the mode will irreversibly change to Mode 5. This
mechanism is intended to be used for testing purposes.

The remaining test mode, Mode 0, is a variation of the expanded multiplexed mode. Two significant
features of this mode make it particularly suitable for testing purposes: (1) the Reset vector is decod­
ed as external memory space for only the first two E-cycles after RESET goes high, and (2) data read
during internal MPV reads will appear on the Port 3 external Data Bus while E (Enable) is high.

The significance of the first feature is that an external program can be used to obtain control of the
MCV from Reset and all other references to the interrupt vector area (such as MPV reads) will ac­
cess internal ROM. This characteristic provides a method for reading the entire ROM including all
of the interrupt vectors from a program which resides in external memory. The latter feature allows
the internal data bus to be monitored with automated test equipment.

A memory map restriction must be observed when operating in Mode O. No peripheral device can be
enabled to the data bus as a response to any address in the MCV internal memory map. If this
restriction is not observed, electrical damage can occur due to data bus contention.

2.2 MODE ASSOCIATED MEMORY MAPS

Another viewpoint from which to examine the operating modes of the MC6801 is the memory map
associated with each mode. A memory map for each mode is depicted in Figures 2-7 through 2-16.
Significant details associated with each operating mode are included with each of the maps for con­
venient reference.

Hatched areas on the maps depict internal addresses while open areas refer to available external
memory space. Unusable addresses are designated as such on the applicable memory maps.

Most of the information presented in the memory maps has been previously mentioned. Two
aspects, however, have not been discussed and are worthy of special mention: (1) several notes refer
to addresses in the internal register area which are excluded in several modes, and (2) there is a
variant mode for Mode 1 and Mode 6 called Mode lR and Mode 6R, respectively. These two aspects
are discussed in the next two sections.

2-8

MC6801
MODE

Notes:

o MULTIPLEXED TEST MODE
MC6801
MODE

Internal Registers(1)

External Memory Space
$~O~ ____________ ~

Internal RAM(5)

External Memory Space

Internal ROM

Internal Interrupt Vectors(2)

o

(1) Excludes the following addresses which may be used externally: $04, $05, $06, $07 and $OF.
(2) Addresses $FFFE and $FFFF are considered external if accessed within 2 cycles after a positive edge of

RESET and internal at all other times.
(3) After 2 M PU cycles, there must be no overlapping of internal and external memory spaces to avoid

driving the data bus with more than one device.
(4) This mode is the only mode which may be used to examine the interrupt vectors in internal ROM using

an external RESET vector.
(5) Assumes RAME (RAM Enable bit) is set.

Figure 2-7. Memory Map for Mode 0

2-9

MC6801
MODE

Notes:

1· MULTIPLEXEO/RAM·ANO ROM

Internal Registers(1)

External Memory Space

Internal RAM(3)

External Memory Space

$FSOO,.----....... --~('

Internal ROM

$ FFEF t-'-'-'-'-'-~'-'-'-'-"'-'-~ {

$FFFO
External Interrupt Vectors

$FFFF -. ______ ~/

MC6801·
MODE 1

(1) Excludes the following addresses which may be used externally: $04, $05, $06, $07, and $OF.
(2) Internal ROM addresses $FFFO to $FFFF are not usable.
(3) Assumes RAME (RAM Enable bit) is set.

Figure 2-8. Memory Map for Mode 1

2-10

MC6801
MODE

Notes:

MULTIPLEXED/RAM AND ROM

Internal Registers(1)

External Memory Space

Internal RAM(3)

External Memory Space

Internal ROM(2)

External Memory Space

$FFFO 1--------....
External Interrupt Vectors

$FFFF '--______ -'

MC6801
MODE

(1) Excludes the following addresses which may be used externally: $04,$05, $06, $07, and $OF.
(2) Starting addresses for the internal ROM may be $CBOO,$OBOO or $EBOO as a mask option.
(3) Assumes RAME (RAM Enable bit) is set.

Filure~·9. Memory Map for Mode lR

2-11

MC6801
MODE

Notes:

2 MULTIPLEXED/RAM, NO ROM

I nterna I Reg isters (1)

External Memory Space

Internal RAM(2)

External Memory Space

$FFFO 1-----------1

External Interrupt Vectors
$FFFF _________ __

MC6801
MODE 2

(1) Excludes the following addresses which may be used externally: $04, $05, $06, $07, and $OF.
(2) Assumes RAME (RAM Enable bit) is set.

Figure 2-10. Memory Map for Mode 2

2-12

MC6801
MODE

Notes:

3 MULTIPLEXED/NO RAM OR ROM

Internal Registers(1)

External Memory Space

$FFFO~------------~

External Interrupt Vectors
$FFFF~ ____________ ~

MC6801
MODE 3

(1) Excludes the following addresses which may be used externally: $04, $05, $06, $07, and $OF.

Figure 2-11. Memory Map for Mode 3

2-13

MCes01
MODE 4 SINGLE CHIP TEST

$0000 r"7"""r-r-~.,....,....,..,.-r-r...,..,. }

Internal Registers(5)

$OO1F--~~~--------

Unusable(1)(4)

Internal RAM

Internal Interrupt Vectors

Notes:
(1) The internal ROM is disabled.

MC6801
MODE 4

(2) Mode 4 may be changed to Mode 5 without having to assert RESET by writing a "1" to bit 5 (peQ) of
Port 2 Data Register.

(3) Addresses A8 to A15 are treated as "don't cares" to decode internal RAM.
(4) Internal RAM will appear as $XX80 to $XXFF.
(5) MPU reads of Port 3 Data Direction Register will access Port 3 Data Register instead.

Figure 2-12. Memory Map for Mode 4

2-14

MC6801
MODE

Notes:

5 NON-MULTIPLEXED/PARTIAL DECODE

$OO1F ...
~""",-,....c.....~.1...1..,,",,-,,-'-~> Internal Registers(1)

$OO80~~~~~~--~

}
Internal RAM(5)

$OOFF
$0100 1o'-'o..J-..I...J-..I.-'-I.-'-I..J.....I,...L,.,.,j'-l}

External Memory Space

$01 FF ____ __._----J

Unusable(4)

Internal ROM

Internal Interrupt Vectors

MC6801
MODE

(1) Excludes the following addresses which are decoded as external: $04, $06, $OF.

5

(2) This mode may be entered without going through Reset by using Mode 4 and subsequently writing a
"1" into. the peo bit of Port 2 Data Register.

(3) Address lines AO-A7 will not contain addresses until the Data Direction Register for Port 4 has been
written with 1's in the appropriate bits. These address lines will provide 1's until software configures
Port 4 Data Direction Register.

(4) This area cannot be directly addressed or written.
(5) Assumes RAME (RAM Enable bit) is set.

Figure 1-13. Memory Map for Mode 5

2-15

MC6801
MODE

Notes:

6 MULTIPLEXED/PARTIAL DECODE

Internal Registers(1)

External Memory Space

Internal RAM(3)

External Memory Space

Internal ROM

Internal Interrupt Vectors

MC6801
MODE

(1) Excludes the following addresses which may be used externally: $04, $06, $OF.

6

(2) Address lines AS-A 15 will not contain addresses until the Data Direction Register for Port 4 has been
written with "1"s in the appropriate bits. These address lines will assert "1"s until made outputs by
writing the Data Direction Register.

(3) Assumes RAME (RAM Enable bit) is set.

Figure 2·14. Memory Map for Mode 6

2-16

M'C6801
MODE

Notes:

MULTIPLEXED/PARTIAL DECODE

Internal Registers(1)

External Memory Space

Internal RAM (4)

External Memory Space

Internal ROM(3)

External Memory Space

$FFFO~-------------«

External Interrupt Vectors
$FFFF--------______ -¥

(1) Excludes the following addresses which may be used externally: $04, $06, $OF.

MC6801
MODE

(2) Address lines AS-A 15 will not contain addresses until the Data Direction Register for Port 4 has been
written with "1"s in the appropriate bits. These address lines will assert "1"s until made outputs by
writing the Data Direction Register.

(3) Starting addresses for the internal ROM may be $CSOO, $DSOO or $ESOO.
(4) Assumes RAME (RAM Enable bit) is set.

Figure 2.;15. Memory Map for Mode 6R

2-17

MC6801
MODE

Notes:

7 SINGLE CHIP

$0000 > ~. Internal Registers(1)
$OO1F~ ________________ ~~~~~~~~

Unusable

$0080 --,~,...,..,....,....~.,....,...,....,...,....,.. }

Internal RAM(2)

$OOFF~~~~~~~~

Unusable

Internal ROM

Internal Interrupt Vectors

MC6801
MODE

(1) MPU reads of Port 3 Data Direction Register will access Port 3 Data Register instead.
(2) Assumes RAM E (RAM Enable bit) is set.

Figure 2-16. Memory Map for Mode 7

2-18

7

2.2.1 Internal Register Area Exclusions

The internal register area is present in every MCU memory map and consists of the registers shown
in Figure 2-17. From this map, it should be noted that all four ports have an assigned Data Direction
Register and a Data Register. Port 3 has one additional register which is used to define its configura­
tion in the Single Chip Mode: the Port 3 Control and Status Register.

Address Register
00 Port 1 Data Direction Register
01 Port 2 Data Direction Register
02 Port 1 Data Register
03 Port 2 Data Register

04* Port 3 Data Direction Register
05** Port 4 Data Direction Register
06* Port 3 Data Register
07** Port 4 Data Register

08 Timer Control and Status Register (TCSR)
09 Counter Register (MSB)
OA Counter Register (LSB)
OB Output Compare Register (MSB)

OC Output Compare Register (LSB)
OD Input Capture Register (MSB)
OE Input Capture Register (LSB)
OF* Port 3 Control and Status Register

10 SCI Rate and Mode Control Register (RMCR)
11 Transmit/ Receive Control and Status Register
12 SCI Receiver Data Register
13 SCI Transmit Data Register

14 RAM Control Register
15-1 F Reserved

* External addresses in all modes except Modes 4 and 7
"External address in Modes 0, 1, 2, and 3

Figure 2·17. MCU Internal Register Area

When a port functions as an I/O port, the associated Data Direction Register is used to define which
bits are configured as inputs or outputs. All of the MCU Data Direction Registers are cleared during
Reset, which configures all data port lines as inputs. Any particular bit can be changed to an output,
however, by setting its corresponding bit in the Data Direction Register. When configured as a data
port, the Data Register allows the programmer to directly access its associated pins.

In those operating modes that utilize Ports 3 and 4 as dedicated address or data buses and not as
data ports, the addresses of the registers associated with them are decoded by the MCU as external
addresses. For example, in modes 0 through 3, Ports 3 and 4 provide the address and data bus. In
these modes, the locations reserved for the Port 3 Data Register ($06), Data Direction Register
($04), and Control and Status Register ($OF), are decoded as external addresses. Similarly, the Port
4 Data Register ($07) and Data Direction Register ($05) are also decoded as external memory loca­
tions. This feature allows external hardware to emulate Ports 3 and 4 as data ports. An expanded
multiplexed mode is used and the emulated ports respond correctly to their associated register ad­
dresses.

2-19

2.2.2 Relocatable ROM Options: Modes lR and 6R

The internal ROM can be relocated by a mask option from $FSOO-$FFFF to one of the following ad­
dress ranges:·

• $CSOO-$CFFF,
• $DSOO-$DFFF, or
• $ESOO-$EFFF.

As shown in Figures 2-9 and 2-15, the physical location of the interrupt vector area associated with
each mode, ho~ever, is not changed. The net result is that the relocated ROM option only has ap­
plications value in two Modes: 1 and 6. The modes are labeled as 1R and 6R in the memory maps. In
Mode 1R, one effect of this change is to reclaim the 16 bytes of internal ROM that could not be ac­
cessed in Mode 1 due to the external interrupt vector area. In Mode 6R, the value of the option is to
obtain both the use of external interrupt vectors and the ability to configure the Port 4 unused ad­
dress lines as data input lines. If planning to use the MC6S701 EPROM as a tool in the prototype
phase, the reader should check the current Data Sheet to determine if it supports the "R" option.

2.3 PROGRAMMING THE MODE

Having discussed the characteristics associated with each of the MCV operating modes, it is now ap­
propriate to briefly describe how the MCV is programmed into a given mode. The following
remarks are intended to provide a general overview of how this is accomplished. Circuit details are
contained in the discussion for the RESET pin in Chapter 3.

The MC6S01 operating mode is controlled by the levels present at pins S, 9, and 10 during the rising
edge of RESET. These same three pins, however, also function as the least three significant bits of
Port 2. The operating mode is latched into the MCV Program Control Register on the rising edge of
RESET after which time the levels can be removed and the· pins used for other purposes. The
operating mode can be read from the Port 2 Data Rgister where the values PCO (Pin S), PC1 (Pin 9),
and PC2 (Pin 10) appear as data bits D5 through D7, respectively.

The Program Control register may be considered a read-only register with a single exception: Mode
4 will be irreversibly changed to Mode 5 if a "1" is written to the PCO bit in the Port 2 Data
Register. This feature is included for testing purposes and provides a mechanism to enable changing
from Mode 4 to Mode 5 without having to Reset the MCV.

2.4 MC6801 COMPARISONS

Having concluded the discussion of the MCV operating modes, it is considered appropriate to con­
trast the MC6S01 with several other M6S00 family parts. This will enable the reader to see how the
MCV has been integrated with other parts in the family. For a more detailed and current description
of any particular part, the reader is referred to the appropriate Data Sheet.

*An additional mask option allows for partially decoding the address bus by making address lines, A13-A12, "don't cares."

2-20

2.4.1 MC6800 Bus Comparison

While the two types of MC6801 external buses are compatible with M6800 family parts, it is not a
signal-for-signal replacement for the MC6800 MPU.

The E (Enable) output of the MC6801 is similar and functionally equivalent to the MC6800 cJ>2 clock
signal. The cJ>1 clock signal, however, is derived internally and is not provided as an output.

The MC6800 VMA (Valid Memory Address) signal is not provided by the MCU and is not required
in MC6801 systems. VMA is used in MC6800 systems to indicate bus cycles during which an invalid
address could exist on the address bus. In MC6801 systems, these unused bus cycles are replaced
with those which produce an MPU read of address $FFFF. Because this corresponds to the Reset
vector and the R/W (Read/Write) line is forced high (read), the VMA signal is not required.

The MC6800 Three State Control (TSC), Data Bus Enable (DBE), HALT, and Bus Available (BA)
signals have no counterpart in the MC6801.

The MC6801 expanded multiplexed data bus differs somewhat from its MC6800 predecessor. The
MCU multiplexed data bus exists only when E (Enable) is high. When E is low, the lines are part of
the address bus. Peripheral parts interfacing with this data bus must be controlled such that they are
enabled onto the bus when E (Enable) is high and are removed at all other times. If this timing is not
observed, peripheral parts could be enabled to the data bus while the MCU is supplying address.

2.4.2 Comparison with MC6803

The MC6803 is functionally identical to an MC6801 which is limited to selected modes. The MC6803
can be considered an MC6801 operating in Modes 2 or 3. Operation in modes other than these (ex­
cepting Mode 0) is undefined. In Mode 0, the contents of the ROM is undefined.

2.4.3 Comparison with MC68701

One application for the MC68701 is as a tool in the prototype phase for MC6801-based systems
which utilize the internal ROM. It is nearly a pin-for-pin surrogate for the MC6801 with its most
distinctive feature being the substitution of the internal ROM with a 2048-byte EPROM. The
EPROM offers the designer a convenient tool with which to develop and test a ROM-resident pro­
gram before committing it to production. Minor differences between the MC6801 and the MC68701
include the following:

• the· ROM has been replaced with a 2048-byte EPROM,
• the interrupt vector space has been modified in Mode 0,
• the RESET pin is electrically different, and
• two bits have been added to the RAM Control Register to support programming of the

EPROM.
A description of the MC68701 is presented in Appendix E.

2-21

2.4.4 Comparison with MC68120

The MC68120 Intelligent Peripheral Controller (IPC) is a general purpose mask programmable,
48-pin, single-chip or expandable peripheral controller. The IPC provides the interface between an
MC68000, MC6800, MC6801, or MC6809 microprocessor and a peripheral device through a system
bus, shared dual-ported RAM, and associated control lines. The MC68120 is architecturally similar
to the MC6801 with many additional features which enhance its operation as a peripheral controller.
Software for the MC68120 is both source and object code compatible with the MC6801. Features of
the MC68120 include the following:

• Local Bus Compatible with the M6800 and M68000 Family
• 128 Bytes of Dual-Ported RAM
• Six Semaphore Registers
• System Bus Interface Compatible with M6800 and M68000 Families
• Single Chip or Expandable to 64K Byte Address Space
• 21 Parallel 1/0 and Two Handshake Control Lines
• Serial Communications Interface (SCI)
• 16-Bit Three Function Programmable Timer

2-22

3.0 INTRODUCTION

CHAPTER 3
FUNCTIONAL PIN DESCRIPTION

While the first two chapters were written for the system designer, this discussion is intended primari­
ly for the system implementor. When supplemented with a current MC6801 Data Sheet, it is suffi­
ciently detailed to support circuit design of MC6801-based systems.

A diagram of the MC6801 40-pin package is shown in Figure 3-1 and a functional block diagram is
illustrated in Figure 3-2. Twenty-nine pins are organized as three 8-bit ports and one 5-bit port. Each
port consists of at least a Data Register, a write-only Data Direction Register, and an output driver.
The Data Direction Register is used to define whether corresponding bits in the Data Register are
configured as an input (clear) or output (set). Port pins are labeled as Pij where i identifies the port
and j indicates the particular bit.

The terms "1/0 port" or "data port" have a very specific meaning when applied to the MC6801.
When the port is used as a "data port" or, equivalently, "1/0 port," it is controlled by its Data
Direction Register and the programmer has direct access to its pins using the port associated with the
Data Register. Address and data buses and associated control lines are never referred to simply as
, '1/0" or "data" in this discussion.

Vss 40 E

XTAL1 2 39 SC1

EXTAL2 3 38 SC2

NMi 4 37 P30

IRQ1 5 36 P31

'RES'ET 6 35 P32

Vee 7 34 P33

P20 8 33 P34

P21 9 32 P35

P22 10 31 P36

P23 11 30 P37

P24 12 29 P40

P10 13 28 P41

P11 14 27 P42

P12 15 26 P43

P13 16 25 P44

P14 17 24 P45

P15 18 23 P46

P16 19 22 P47

P17 20 21 Vee
Standby

Figure 3-1. MC6801 Pin Diagram

3-1

P30
P31
P32
P33
P34
P35
P36

w P37
I SC2

N SC1

P40
P41
P42
P43
P44
P45
P46
P47

N
-l

en u « <i.
en u ~ ~
> > ~ x

~ ~ 1 r
w I~ Fz ~
4~

~ .~ ~

Expanded Multiplexed
MPU

Expanded Non-Multiplexed

Single Chip
~4 ~ 4 II,

AO/DO
A1/D1
A2/D2
A3/D3
A4/D4
A5/D5
A6/D6
A7/D7
R/W
AS

A8
A9
A10
A11
A12
A13
A14
A15

DO
D1
D2
D3
D4
D5
D6
D7
R/W
lOS

AO
A1
A2
A3
A4
A5
A6
A7

I/O
I/O
I/O
I/O
I/O
I/O
110

M&
IS3

I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O

---= --=. -= -.:...
-= ..,;.
~ =.
-: -=..
:::: ~
~ ..,;.
--- .:.
-: -=..
~ ..

.. ---= ~

~ --
~ :=:

...
V1 :!) I('

MUX "Y J
Port N V I(

U ~
iRQi 3

)
N"

~
Address Bus

Port
4

Vi Data Bus

N J
VCC Standby ~ 128x8 J

RAM L 2048xj ROM

Figure 3·2. MC6801 Block Diagram

-.

..
1\ -::.. Port r:=j
V 2 -=--= -

IRQ2

Timer~ 1\
V I ~

SCI
;;

~ -
V

~

-') r-:. Port :::::
1 --V

-::.
....
.: --

Mode
Select
Logic

.~ ~ ~.

.:..
--:::

J :. -• -

-.....
.-

----... --...
.-

I/O TIN P20
I TOUT P21
I/O SCLK P22
I/O RX P23
I/O TX P24

I/O P10
I/O P11
I/O P12
I/O P13
I/O P14
I/O P15
I/O P16
I/O P17

An "MPU read" or "MPU write" is defined as any access of a particular location with the R/W
(Read/Write) line high or low, respectively. Examples of instructions which perform an MPU read
include LDAA, TST, and ORAB. Examples of MPU write instructions include ST AA and STX.
Both an MPU read and write are performed in such "read-modify-write" instructions as NEG,
INC, and COM.

Of the 40 MCU pins, 22 function identically in all eight operating modes. These pins include all but
those 18 illustrated on the far left of Figure 3-2. The configuration of the 18 pins (Ports 3 and 4,
SC 1, SC2) depends upon the operating mode. The organizational scheme of this chapter is to first
present descriptions for each of the 22 mode independent pins. The remaining 18 pins are then
discussed according to their relationship to each of the three MCU fundamental operating modes.
Some repetition is necessarily introduced with this scheme. It is intended, however, that the reader
be required to reference only the material pertaining to the intended mode of operation.

Not all of the remaining details of the MC6801 are discussed in this chapter. The excluded topics
constitute the basis for the remainder of this manual and include:

• the instruction set,
• the interrupt structure,
• the Serial Communications Interface (SCI), and
• the Programmable Timer

One aspect of the following discussion is unique to Motorola microprocessor documentation. Logic
diagrams for each of the four MCU ports are included as part of the presentation. It is recognized
that these diagrams might not be understood by all readers and those could be left with the impres­
sion that a critical part of the discussion has been missed. No critical information is presented solely
by the use of logic diagrams and, therefore, they can be totally ignored without serious conse­
quences.

The logic diagrams have been included (1) to provide insight as to why the MCU functions as it does,
(2) to provide a method to obtain non-critical information about topics not considered to be of suf­
ficient interest to include in the discussion, and (3) to reinforce the explanations. Because Port 1 is
discussed prior to other ports and is common to all modes, its logic diagram is described in greater
detail. Some aspects of the Port 1 logic diagram and description are not repeated in the discussion
for the remaining ports.

Finally, one last aspect of this chapter must be mentioned. A current MC6801 Data Sheet is intend­
ed to summarize and supplement this discussion. The symbols used in this chapter are defined quan­
titatively in this document. This chapter provides amplification and explanation for most material
presented in the MC6801 Data Sheet.

3-3

3.1 MODE INDEPENDENT PINS

Twenty-two of the 40 MeV pins are not affected by the operating mode and thus function identical­
ly in all modes. These mode independent pins include:

• XTALI and EXTAL2
• VCC, VSS, VCC Standby

• NMI
• PIO-PI7 (Port I)
.E

• RESET
• IRQI
• P20-P24 (Port 2)

The function of these 22 pins is discussed in the following sections. It should be remembered that
they are applicable to every MC6801-based system regardless of its operating mode.

3.1.1 XTALI and EXTAL2: MCU Clock Inputs

The XTALI and EXTAL2 pins are used to drive the MCV internal clock generator and produces
two clock signals. The two clock input pins can be driven by either of two different types of devices:

• a quartz crystal resonator, or
• a TTL-compatible external clock source.

The MCV internal clock generator consists of an oscillator synchronized with an external crystal or
other reference and has a divide-by-four circuit in the output. The output is provided as the E
(Enable) signal. Two non-overlapping clocks are derived from it and used as the primary MeV
clocks. The internal clock, cJ>2, is in phase with E (Enable). The division-by-four circuit facilitates
driving the MCV with higher frequency components which are usually less expensive.

Considerations involved in the selection of apatticular external clock frequency include:
• it cannot exceed the recommended operating frequency (either 4fo or fXTAL), and
• if a particular SCI baud is desired when using the internal bit rate generator, the external fre­

quency must be chosen to produce the desired rate.

If a crystal is used to drive the MeV, it should be manufactured with an AT cut, operated in the
parallel resonance mode, and have a fundamental frequency within the range specified for fXTAL.
Note that the internal divide-by-four circuitry allows use of the inexpensive standard 3.S8 MHz or
4.4336 MHz color burst TV crystals. A capacitor must be connected between each crystal pin and
ground to ensure reliable startup and operation.

The crystal and capacitors should be mounted as close to the XT AL I and EXT AL2 pins as possible
and drive only the MeV. This will minimize output distortion and startup stabilization time.
Nominal recommended crystal specifications are shown in Figure 3-3; however, a MC6801 data
sheet should be consulted for· more details. The MCV is compatible with many commercially
available quartz crystal resonators.

3-4

MC6S01

2

I
C cr

CL = 24 pF (typical)

(a) Nominal Recommended Crystal Parameters

2

MC6801:Nominal Crystal Parameters

3.58 MHz 4.00 MH 5.0 MHz

RS 600 500 30-500

Co 3.5 pF 6.5 pF 4.6 pF

C1 0.015 pF 0.025 pF 0.01-0.02 pF
Q >40 k >30 k >20 k

*Note: These are representative AT-cut crystal parameters
only. Crystals of other types of cuts may also be used.

1111

L1
See Data Sheet for capacitor value. C1 RS

Vee

E

2

Co

Equivalent Circuit

(b) Oscillator Stabilization Time hRC)

1~4~.7~5~V~----------~~~'---------------------------------

----------------------~I~---------------4J 14.----tRe---~

Oscillator
Stabilization
Time, tRe

Figure 3-3. MC6801 Recommended Crystal Parameters

3-5

3

3

The MCV can also be driven by an external TTL-compatible clock source. In this configuration, the
clock source is connected to the EXT AL2 input and the XT AL 1 input must be tied to ground. The
external clock source frequency must be in the range specified for 4fo with a duty cycle of 50070
(± 10070)*.

Consideration must be given to the time required for the MCV clock generator to stabilize during
powerup when designing the Reset circuit. RESET must be kept below 0.8 volt until the clock
generator has stabilized. For the recommended crystal, the time is tRC after VCC reaches 4.75 volts
as shown in Figure 3-3.

If an external clock source is used, it is possible to "stretch" the MCV clock input (Le., temporarily
extend the period) but certain operating limitations must be observed. Typically, this is only
desirable when operating in the expanded multiplexed modes and interfacing with slow memories,
refreshing dynamic memories, or performing multiplexed DMA transfers. Design considerations in­
clude:

1. the "stretched" half-cycle must be synchronized with E,
2. duty cycle limitations must be observed,
3. no half-cycle can be stretched beyond one-half of tcyc (maximum),
4. the Programmable Timer is clocked by E and will be affected by altering the MCV input fre­

quency, and
5. the SCI internal bit rate generator is clocked by the Programmable Timer and serial operations

can be adversely affected by altering the MCV input frequency.

3.1.2 E: MCV Clock Output

The E (Enable) clock is provided as a timing signal to synchronize Data Bus transfers. An "MPV
E-cycle" (or bus ~ycle) consists of a negative half-cycle of E followed by a positive half-cycle. For
any given bus cycle, address will become valid during the negative half-cycle of E and the selected
device must be enabled to the Data Bus during the next positive half-cycle. The data bus is active on­
ly while E is high or, equivalently, "during E." Specific details of bus timing are discussed in sec­
tions 3.3.5 and 3.4.5.

Enable (E) is the primary MCV ·system timing signal and all timing data specified as cycles with
respect to this clock unless otherwise noted. The frequency of E is equivalent to the MCV input fre­
quency divided by four. Due to propagation delays in the clock generator, however, some skew will
exist between the external clock source or crystal and E. Enable (E) is derived from alternating
negative edges of the MCV input clock and is unaffected by the clock duty cycle. The Enable output
will drive one Schottky TTL load and 90 pF and is functionally equivalent to an M6800 system ~2
clock.

• A more detailed discussion of how the duty cycle affects the expanded multiplexed bus timing is included in Appendix I.

3-6

3.1.3 RESET

The Reset function is used for three primary purposes in an MC6801 system:
I. to provide an orderly and defined startup of MPV activity from a powerdown condition,
2. to return a system to startup conditions without an intervening powerdown condition, and
3. as a control signal to latch the operating mode.

In this discussion, a distinction is made beteen the MCV input signal, RESET, and the internal
Reset state by using the two preceding forms of capitalization. The bar (or overscore) indicates that
the signal is active when pulled low.

When RESET is pulled low, execution of the current instruction is aborted and the MPV enters a
"Reset state." No registers are pushed onto the stack and their contents are not defined while in this
state.

While RESET is held low, instruction execution is suspended and other MCV activity includes the
following:

• the MPU I-bit is set which masks (disables) both IRQI and IRQ2 interrupts;
• the NMI interrupt latch is cleared which effectively disregards NMI interrupts occurring while

the MPU is held in Reset;

• the E (Enable) clock is active;
• all Data Direction Registers are cleared;
• the SCI Rate and Mode Control Register is cleared;
• the SCI Transmit/Receive Control and Status Register is preset to $20;
• the Receive Data Register is cleared;
• the Timer Control and Status Register is cleared;
• the free-running Counter is cleared;
• the buffer for the LSB of the Counter and output level register are cleared;
• the Output Compare Register is preset to $FFFF;
• the Port 3 Control and Status Register is cleared;
• Ports I, 2 and 3 are forced to the high impedance state;
• Port 4 is also held in a high impedance state but internal pull-up resistors are provided to pull

the lines high;
• SCI is held high in a high impedance state with an internal pull-up resistor if the inputs to P20,

P21, and P22 indicate the Single Chip modes; otherwise it is actively held high;
• SC2 is actively held high.

Note that only SCI is affected by levels on the mode programming pins while RESET is held low
and will be configured by the levels present on pins 8, 9, and 10. Finally, it should be noted that the
MCV Data Registers are NOT cleared by Reset.

When a positive edge of RESET is detected, the MCV will latch the operating mode and complete its
Reset sequence. This consists of configuring Port 3, Port 4, SCI, and SC2; and fetching a vector
(address) from locations $FFFE and $FFFF. The physical location of this vector is defined by the
operating mode of the MCV and can reside in either internal or external memory space. After the
Reset vector has been fetched, it is transferred to the Program Counter and instruction execution
begins at this loction.

3-7

Reset timing is illustrated in Figure 3-4 where the buses shown refer to the MCU internal buses. Ex­
ternal bus activity, however, is mode dependent. RESET is internally synchronized with E and re­
quires a setup time of tpcs prior to the negative edge of E to be recognized on the following
negative edge.

From a powerdown condition, RESET must be hel4 below 0.8 volt for a period sufficient to allow
the MCU clock generator to stabilize. The time required is dependent on the characteristics of the
external clocking device. For typical crystals, the time is not more than tRC and begins when V CC
reaches 4.75 volts as shown in Figure 3-4. In addition to the oscillator stabilization time, RESET
must be held below 0.8 volt until VCC Standby has reached 4.75 volts.

If the MCU is already in a powerup condition, the oscillator stabilization time is no longer a fac­
tor and RESET must be held below 0.8 volt for at least three E-cycles to complete its entire internal
Reset sequence. An external RC-network can be used to obtain the required timing.

The MCU operating mode is latched from three pins of Port 2 on the positive edge of RESET. The
levels should be provided on pins 8, 9 and 10 while RESET is low to configure SCI. They must be
valid, however, for setup time, tMPS, before RESET goes high and - if the rise time is less than
that specified in the data sheet - must remain so for hold time tMPH. If a diode is used to program
the mode, a voltage differential of VMPDD is provided between a logic ldw (VMPL) and the
RESET voltage at the point when the mode logic level is latched. The diode forward voltage drop
(V f) must not exceed VMPDD minimum. While RESET is high, the three pins are not used for
mode selection. Mode programming timing and voltage level requirements are shown in Figure 3-5
and it should be noted that the programming voltage levels are not the same as VIL and VIH. The
operating mode can be read with software from bits 5-7 in the Port 2 Data Register where bit 7 cor­
responds to the level latched from pin 10.

Circuitry for programming the mode typically requires only RESET as a control signal while compo­
nent selection depends primarily on the normal system usage of Port 2 bits 0, 1, and 2. If the pin(s)
are unused, they can be tied high or low; however, care must be taken in software to ensure that they
are not unintentionally defined as outputs. If the pin(s) normally provide outputs, they can be pro­
grammed using a diode arrangement as shown in Figure 3-6. The diodes provide a path to ground
while RESET is low to program a low level and prevents those pins from pulling RESET low during
normal operation.

If the pin(s) are normally used as inputs, it is typically necessary to employ devices which electrically
isolate them until after the mode has been programmed. The circuit shown in Figure 3-7 uses
MCI4066B bidirectional analog switches to isolate the pin(s) while diodes and pullup resistors are
used to provide the programming levels. External circuitry must ensure that the mode input levels do
not change prior to hold time, tMPH. In the circuit shown in Figure 3-7, the hold time is met by the
relatively long enable time of the MCl4066B analog switches.

Finally, one must consider pin(s) used bidirectionally in normal operation. In this case, three-state
buffers are most likely already included to handle the bidirectionality of the pin. To program the
mode, the buffers should be controlled by RESET to force isolation of the pins while the program­
ming levels are presented and provide for the required setup and hold times.

3-8

W
I
\0

E 1\\\\\\\\\\\\\\\'\~\%'%~~~ LIlI1 ~
_5.25V 11 II ~ II ~

Vee

RESET

Internal
Address Bus

7't4
.
75

v tRC -Li:=tPcs f i:"=tpcs

---~ll II f4.0V O.8·\~~._ ---

S\\\\\\\\\\\\\\\\~ ~\\\\S\\\\\\\\\\\\\\\\\\\\\~ ~'--''-----''--'' '~~'----J----" __
FFFE FFFE---- --

Internal R/W \\\\\\\\\\\\\\\\\S'{ t\\\\\\\\\\\\\\\\\\\\\\\\\\V ~~
Internal

Data Bus ~SS\\\\R\\$ i\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\'Xj t=x::=x==x=
~ \\\\\1 Not Valid

RESET

Mode Inputs
(P20, P21, P22)

Instruction

Figure 3-4. RESET Timing

...... tMPH

Data Valid
VMPH Min

VMPL Max

See Figures 3-6 and 3-7
for Diode Arrangement

"'---- ~VMPDD
/."e

IP20, P21, .::~ __ $ VMPL Latch Level

RESET

Figure 3-5. Mode Programming Levels and Timing

Notes:
1. Mode 7 as shown

RESET

P20

P21

P22

2. R2-C = Reset time constant
3. R1 = 10 k (typical)
4. D= See Data Sheet for diode type.

R2 :
~ ...
> R1 c

'II > ...

D'

- -..

VCC
1 -

> C > ... >
> R1C > R1 c>
:. <II > ",>

) ())

~ D~ ~ D'~

I

6
RESET

8
P20 (PCo)

9
P21 (PC1)

10
P22 (PC2)

Mode
Control

Switches MC6801

Figure 3-6. Programming the Mode with Diodes

R=4.7k ohm
(typical)

RESET

P20

P21

P22·

MC14066B
(Analog Switch)

Notes:
1. Mode 7 is shown (switches open)
2. D = See Data Sheet for diode type

I

VCC

R1

C= 50 I'F
(typical)

R1
R1 = 10k
(typical)

6
RESET

8
P20 (PCo)

9
P21 (PC1)

10
P22 (PC2)

Mode
Control

Switches

MC6801

Figure 3-7. Programming the Mode with Analog Switches and Diodes

3-10

3.1.4 vee and VSS: MeU Power

Power is provided to a large portion of the MCU using the V CC and V SS pins where V SS is tied to
ground. The remaining power is provided by V CC Standby. The power supply must provide
+ 5 volts (± 5Olo) for V CC. Total MCU power dissipation (including V CC Standby) will not exceed
PD milliwatts.

In some applications, it is desirable to design a large RC time constant into the V CC power supply.
This provides time to implement an orderly power down sequence which detects the drop in level,
generates NMI, and executes a short powerdown subroutine. Circuitry must be designed to keep
RESET below 0.8 volt until V CC reaches 4.75 volts plus an additional period, tRC, to allow the
clock generator to stabilize.

3.1.5 Vee Standby: RAM Standby Power

The V CC Standby pin provides power to the standby portion of the RAM, and the STBY PWR and.
RAME bits of the RAM Control Register. The standby portion of the RAM consists of 64 bytes
located from $80 through $BF. The power source should provide V SB volt during powerup opera­
tion while during powerdown it must in the range specified for V SBB. The maximum current in
powerdown (standby) operation will not exceed ISBB for 64 bytes of RAM.

NOTE
Power must be supplied to V CC Standby if the internal RAM is to be used regardless of
whether standby power operation is anticipated. In Mode 3, VCC Standby should be tied
to ground.

If the standby power source has a larger RC time constant than V CC during powerup, then the
Reset circuit must be designed to keep RESET below 0.8 volt until the standby power source has
reached VSB volts.

3.1.5.1 STANDBY POWER OPERATIONS. When standby power operation is anticipated, there
are two vital issues of concern to the system designer:

• how can the standby RAM be protected from spurious writes as control of the MPU is lost
during the power down sequence, and

• how can it be determined whether the RAM was adequately powered after a period of standby
operation?

The RAM Enable (RAME) and Standby Power (STBY PWR) bits of the RAM Control Register
provide assistance with these problems.

3.1.5.1.1 RAM Enable (RAME) Bit. Two of the bits contained in the RAM Control Register ($14)
are functionally independent bits which control accesses and provide the status of the standby

(

RAM. The RAM Enable (RAME) bit is used to remove the entire internal RAM from the MCU in-
ternal memory map. This "removal" is effectively accomplished by deleting it from the MeU inter­
nal memory address decoder. When "removed," references to the RAM addresses ($80 to $FF) are
decoded as external. Data in the RAM, however, will remain intact while the RAM is "disabled,"
provided adequate power is maintained to V ccand V CC Standby.

3-11

The RAME bit is both readable and writeable. It is set (enabled) during the Reset sequence if Vee
Standby is above 4.75 volts when the positive edge of RESET reaches 4.0 volts. If RAME is cleared,
the entire internal RAM is disabled (i.e., deselected) and all subsequent accesses to the internal
RAM reference external memory. If the RAM Enable bit is set (and not in Mode 3), the RAM is in­
cluded in the Meu internal memory space.

It is intended that RAME be cleared during execution of a powerdown service routine. While power­
ing down, however, an uncontrollable MPU could set the RAME bit and subsequently alter the
RAM. The probability of this occurrence, however, is usually within acceptable limits.

It should be noted that the RAME bit is powered by the standby power source. It will not function
correctly if Vee Standby has not reached 4.75 volts before the positive edge of RESET reaches 4.0
volts.

3.1.5.1.2 Standby Power (STBY PWR) Bit. The STBY PWR bit can be used to monitor Vee Stand-
. by during powerdown operation and determine, by inference, the validity of data in the standby
RAM. The STBY PWR bit is readable and writeable and is not affected by Reset. The bit is cleared
by an MPU write or whenever Vee Standby decreases to some value which is less than VSBB.
minimum. However, it can be set only be an MPU write. A typical sequence in utilizing the STBY
PWR bit is as follows:

1. Software should set the STBY PWR bit during a power down sequence.
2. If the STBY PWR bit is found to be set during a subsequent power-up recovery procedure,

then it can be assumed that the standby power source has remained above VSBB minimum
during standby operation and, by inference, data in the standby portion of the RAM is valid.
However, if the STBY PWR bit is clear, the contents of the RAM must be suspect. This con­
dition indicates that Vee Standby has fallen below the standby level threshold at some time
during'standbyoperation.

The standby power sense circuit will not clear the STBY PWR bit if Vee Standby remains above
V SBB (minimum). The threshold voltage for clearing the STBY PWR bit is process related but will
always exceed the level at which the RAM fails to retain data.

A cleared STBY PWR bit does not necessarily mean that data in the RAM has been altered. The
RAM will retain data even if the Vee Standby is decreased to a level somewhat below the standby
sense threshold. This feature provides an engineering margin of reliability to ensure that the STBY
PWR bit will clear before any RAM cell fails to retain data. For this reason, the only valid inter­
pretation of the STBY PWR bit is: if the bit remains set, standby RAM data can be assumed to be
valid. If the bit is clear, one cannot be certain of the data validity. In the absence of any other infor­
mation, data would normally be assumed to be invalid.

The STBY PWR bit can also be used to determine if Vee Standby is below V SBB minimum at any
particular moment. If the STBY PWR bit is set and then read, a "0" for the result indicates that the
voltage is below V SBB minimum.

3-12

3.1.5.1.3 RAM Control Register. The RAM Control Register ($14) contains two bits: STBY PWR
and RAME. These bits can be used to determine the status and control accesses to the internal
RAM. The register is defined as follows:

Bit 0-5

Bit 6

Bit 7

b7 b6 b5 b4 b3 b2 bl bO

x x x x x

Unused

RAME. The RAM Enable bit allows removal of,the RAM from the MCU internal
memory space. This read/write bit is set (RAM enabled) during Reset, provided
that standby power is available on the rising edge of RESET. The RAME bit is
defined as follows:

RAME=O

RAME=1

Internal RAM addresses disabled; data read/written from
external memory,
Internal RAM addresses enabled.

STBY PWR. The purpose of the Standby Power bit is to indicate whether the
standby power supply has adequately preserved the data in the standby RAM after
a period of standby power operation has terminated. The Standby Power bit is
designed to clear whenever VCC Standby decreases to some value less than VSBB.
This voltage is above the minimum required to assure the integrity of data in
standby RAM. The STBY PWR bit can be set or cleared by software. Reset does
not affect this bit. The STBY PWR bit is defined as follows:

STBY PWR = 0 The standby power voltage has decreased to a value less
than V SBB (minimum)

STBY PWR = 1 The standby power voltage has remained above the V SBB
minimum value

3.1.6 NMI: Non-Maskable Interrupt Request

A negative edge on the NMI pin signifies an interrupt request but the MCU will complete the current
instruction before responding. After completing the instruction, the MCU will begin an NMI inter­
rupt sequence regardless of whether the I-bit in the Condition Code Register is set or clear.

The NMI interrupt sequence pushes the Program Counter, Index Register, Accumulator A, Accumulator
B, and Condition Code Register on the stack. These registers constitute the MPU "machine state" and
stacking them allows restoration of the former state after the interrupt service routine is completed. After
the registers have been stacked, the I-bit in the Condition Code Register is set which inhibits any additional
interrupts except another NMI. Finally, a vector is fetched from $FFFC and $FFFD, transferred to the
Program Counter, and instruction execution is resumed at this location.

3-13

An external pull-up resistor to V CC must typically be used on the NMlline b~cause the MCU has no
internalNMI pull-up resistor. The value of this resistor is limited by the current capability of the
device causing the interrupt and values between 3 kO and 10 kO are typical.NMlmust be held low
for at least one E-cycle to be recognized under all conditions. Because it is edge~triggered, NMI is
very intolerant of electrical noise.

NOTE
NMI must not remain unconnected in any MC6801 system. The MCU has no internal
NMI pull-up resistor.

Further information regarding the Non-Maskable interrupt is provided in Chapter 5.

3.1.7 IRQl: Maskable Interrupt Request

IRQl is an active-low level-sensitive input which is used to initiate a request for an interrupt se­
quence. The MPU will complete execution of the current instruction before responding to the re­
quest. If the interrupt mask bit (I-bit) in the Condition Code Register is clear, the MPU will begin an
interrupt sequence after completing the current instruction. The Program Counter, Index Register,
Accumulator A, Accumulator B, and Condition Code Register are pushed on the stack. The top
seven locations of the stack contain the MPU "machine state" which can be restored later to resume
execution of the interrupted routine. The I-bit in the Condition Code Register is then set, preventing
additional responses to the same or other maskable interrupts. Finally, a vector is fetched from
$FFF8 and $FFF9, transferred to the Program Counter, and instruction execution is resumed at this
location.

There is no internal IRQ 1 pull-up resistor and an external one to V CC must be provided if there is
any possibility of the I-bit being cleared. The value of this resistor is limited by the current capability
of the device causing the interrupt; values between 3 kO and 10 kO are typical. A more detailed
discussion of the maskable interrupt sequence is contained in Chapter 5.

3.1.8 PI0-PI7: Port 1

Port 1 provides a versatile 8-bit parallel 1/0 port with Schottky TTL drive capability. Internal cur­
rent limiting resistors for each output driver enable the port to also interface with Darlington tran­
sistors. The current limiting resistors are unique to Port 1; none of the other three ports have Darl­
ington drive capability. Port 1 can be interfaced with CMOS devices if external pull-up resistors are
provided.

Each bit of the port can be individually -configured as an input or output as defined by Port 1 Data
Direction Register. During Reset, the Port 1 Data Direction Register is cleared,configuring the eight
lines as inputs. Software can then be used to change any or all of the eight lines to outputs by setting
the corresponding bits in the Port 1 Data Direction Register. Port 1 can drive one Schottky TTL
load and 30 pF or it can source one milliampere (minimum) of current for Darlington drive at 1.5
volts.

3-14

Timing diagrams for MPU reads and writes to Port 1 are shown in Figures 3-8 and 3-9, respectively.
During an MPU read of Port 1, valid data must be presented by setup time, tPDSU before the
positive edge of E of the MPU read cycle. Data is latched into Port 1 on the rising edge of E of the
read cycle and data is required to remain valid for at least hold time, tPDH, after the same positive
edge. Data is latched to prevent it from changing while being read and is latched only during the
MPU read.

E

P10-P17
P20-P24
P40-P47

Inputs

P30-P37
Inputs*

.MPU Read

*Port 3 Non-Latched Operation (LATCH ENABLE = 0)

2.0 V
0.8 V

Figure 3·8. Data Port Timing for MPU Read

r MPU Write

!
E 08V~ /

rteMos-j
I- tPWD I I ,.f - -- 0.7 Vee

All Data

Port Outputs

NOTES

------~

2.0 V
0.8 V

Data Valid

1 10 k Pullup resistor required for Port 2 to reach 0.7 Vee
2. Not applicable to P21
3. Port 4 cannot be pulled above Vee

Figure 3·9. Data Port Timing for MPU Write

During an MPU write cycle to Port 1, data becomes valid at the output pin by tPWD, after the
negative edge of E of the write cycle. However, when interfacing with CMOS devices, data is valid
by tCMOS which allows levels to reach 0.7 VCC.

All MCU input and output Data Registers are accessed using only a single address ($02 for Port 1).
The particular Data Register (input or output) is implied by the nature of the access: a "read" ad­
dresses the input Data Register whereas a "write" will reference the output Data Register. Typical­
ly, programmers can consider them both a single "Data Register" without incurring any problems.

3-15

All MeU Data Direction Registers are write-only registers. If an attempt is made to read them, the
value, $FF, will always be obtained for all except Port 3. If the Port 3 Data Direction Register is
read (modes 4 and 7), the Port 3 Data Register will be read instead.

A logic diagram for Port 1 is shown in Figure 3-10. The PDBi signal refers to the internal Peripheral
Data Bus which is shown in Figure 3-2. The PDB interfaces with the MPU data bus through a bus
multiplexer in the MPU. Signals in the logic diagrams are defined as follows:

• POR is an active high internal reset signal which is synchronized with E;
• WPI goes high during E of an MPU write to either the Port 1 Data or Data Direction Register;
• WIOI goes high during E after WPI for an MPU write to the Port 1 Data Register;
• DDRI goes high during E after WPI for an MPU write to the Port 1 Data Direction Register;
• PDBi is the ith line of the internal Peripheral Data Bus (PO B);
• RIO 1 enables a read of Port 1 input Data Register.

The logic diagram utilizes symbols representing discrete components and logic gates. Logic gates are
implemented with depletion-load static-logic circuits in standard n-channel silicon-gate technology.
Discrete MOS transistor symbols are used to indicate three functions: protective devices, push-pull
drivers, and couplers.

A protective device is a grounded-gate enhancement-mode transistor connected in series with a
resistor between the pin pad and ground. One such device is shown as Ql in Figure 3-10.

VDD

RI01

I

Cp ..L -.­
I

....L-

paR

......---~ .. -- - -...,
I

DDR1 I

~ ~CP
...L

WI01

RI01

Figure 3-10. Logic Diagram for Port 1

3-16

~"""'-PDBi

A push-pull driver comprises two enhancement-mode transistors connected in series between VDD
and ground. A series current-limiting resistor is sometimes connected to VDD. The driver is depicted
as Q2 and Q3 in Figure 3-10 with current-limiting resistor, R.

The MOS coupler is an enhancement-mode transistor used as a switch. It is either "on" - when
operating in saturation with its gate voltage high - or "off" - in cutoff with its gate voltage low.
Implicit in coupler operation is a parasitic capacitance (Cp in Figure 3-10) which charges to the level
of the driving source when the coupler is on and holds the charge when the coupler is off. When a
coupler with VDD on its gate is connected between the output and input of a two-stage latch
(depicted as Q4 in Figure 3-10), it serves merely to compensate for leakage from the input node and
performs no logic function.

During the E time (Le., the positive half-cycle of E) of a read of the input Data·Registers·, RI01 is
driven high while RI01 goes low. RI01 prevents data from changing while it is being read by lat­
ching it into the parasitic capacitance of the FET. When the RI01 coupler is "on," data from in­
verter 12 is transferred to the Peripheral Data Bus. The resistor, R, is unique to Port 1 and functions
as a current limiter which enables the port to drive Darlington transistors. It should be noted that if
Port 1 is driving Darlington transistors and the output data is a "1" (Le., acting as a current source),
the voltage at the pin could be too low to indicate a "1" if the input Data Register is read by the
MPU.

The FET, Q 1, acts as a reverse voltage protector and is a common element for all pins of the MCU
except the three power pins (VCC, VCC Standby, and VSS). The FET conducts when the reverse
(negative) voltage exceeds its threshold and attempts to prevent damage to the part.

During E of a write operation, the WP1 coupler is "on" and data on the Peripheral Data Bus is
transferred to th~ PDB inverter where it is stored on the parasitic capacitance, Cpo On the following
half-cycle of E (E), either the WI01 or DDR1 coupler is "on" depending upon whether the Port 1
output Data Register (DR) or Data Direction Register (DDR) is being addressed.

If WIO 1 is high, data is transferred from the Peripheral Data Bus and latched in the output Data
Register. The output of this register is connected to the input of the push-pull output driver which is
controlled by the Data Direction Register.

If DDR1 is high, data is transferred from the PDB to the Data Direction Register. If the value is a
"0" (on the PDB), both output devices (Q2 and Q3) are off, and the output driver assumes the high
impedance state. This allows data to be read from the input buffer, 12. However, if the PDB data is
a "1", when DDR1 is high, the output driver is enabled and data read from the input buffer reflects
the level at the pin.

Data from the PDB is delayed from reaching its assigned register by one-half E-cycle. The rationale
for this delay can be explained by considering the following. Assume that a Data Register bit con­
tains a "0" and a "0" is being rewritten to it from the PDB. The Peripheral Data Bus (PDB) is a
dynamic bus for which its parasitic capacitance is precharged high when E is low. Thus at the begin­
ning of a transfer, the bus is always high until data becomes valid. The level will then either remain
high or be reduced to zero by discharging the capacitance. If the bus were directly coupled to the
output Data Register or Data Direction Register, the output of the driver would go high and then
low which would appear at the output as a transient "spike."
*Technically, the actual input Data Register is implemented as a buffer using the parasitic capacitance of an inverter (12) as opposed to an
MOS latch. Nevertheless, it is referred to as a register.

3-17

Note that the port Data Register has a single address (see Figure 2-17) but consists of separate input
and output Data Registers. When the Data Register is accessed, the Read/Write line is used to select
the appropriate register. When a port line is configured as an output, a read of its input Data
Register will reflect the voltage level at the output pin. Alternatively, when a port line is configured
as an input, writing to its output Data Register has no effect on the port operation because the out­
put driver is held in the high impedance (off) state. If the Data Direction Register is read, the
Peripheral Data Bus precharge will always provide $FF as the result.

3.1.9 P20-P24: Port 2

Port 2 provides five muitifunctionallines where each can be dedicated to a different function. When
configured as an output, each line is capable of driving one Schottky TTL load and 30 pF. Port 2
can also drive CMOS devices if external pull-up resistors are provided.

Timing diagrams for MPU reads and writes to Port 2 are shown in Figures 3-8 and 3-9, respectively.
During an MPU read, data must be valid by setup time, tPDSU, before the positive edge of E of the
MPU read cycle. Data is latched into Port 2 and must remain valid for at least hold time, tPDH,
after the same positive edge. Data remains latched only during the read cycle.

During an MPU write to Port 2, data becomes valid at the output pin no later than tPWD after the
negative edge of E of the write cycle. If interfacing to CMOS devices, however, data is not valid un­
til a somewhat longer period shown as tCMOS. This is necessary to allow the output to reach 0.7 of
VDD (CMOS supply voltage) with the assistance of external pull-up resistors.

The Logic diagrams for Port 2 are shown in Figures 3-12 through 3-15. Many of the signals shown
are common to all five bits while others are peculiar to a particular bit. Signals of the latter type are
explained within the discussion for each bit whereas the common signals are defined as follows:

• POR is an active high internal reset signal which is sychronized with E;
• WP2 goes high during E of an MPU write to either the Port 2 Data or Data Direction Register;
• WI02 goes high during E after WP2 for an MPU write to the Port 2 Data Register;
• DDR2 goes high during E after WP2 for an MPU write to the Port 2 Data Direction Register;
• PDBi is the ith line of the internal Peripheral Data Bus (PDB);
• RI02 enables a read of the Port 2 input Data Register.

3.1.9.1 PORT 2 DATA REGISTER INPUT/OUTPUT. During Reset, all five bits of the Port 2
Data Register are configured as inputs and all bits, except bit 1, can be re-configured as Data
Register outputs. Bit 1 cannot be used as an output from the Port 2 Data Register and, if configured
as an output, is dedicated to the Timer Output Level Register. This is the reason for excepting P21 in
the MCU write timing diagram for Port 2 shown in Figure 3-9. The bit can be used, however, for an
input to the Data Register.

During E of an MPU read of the Data Register, RI02 is driven high while RI02 goes low. The RI02
coupler latches the data while being read. When the RI02 coupler is "on," data from inverter 12 is
transferred to the Peripheral Data Bus.

3-18

During E of a write operation, the WP2 coupler is "on" and data on the PDBi is transferred to an
inverter where it is dynamically stored. On the following half-cycle of E (E) either the WI02 or the
DDR2 coupler is "on" depending on whether the output Data Register or Data Direction Register is
being addressed. Data is then transferred from the inverter to the selected register.

Data is delayed from reaching its final destination by one half-cycle. The explanation for this delay
is similar to that described for Port 1: to prevent transient "spikes" in the output of the Data or
Data Direction register when rewriting a "0" to either of them.

3.1.9.2 MODE SELECT PINS: P20, P21, P22 On the positive edge of RESET, the levels on pins 8,
9, and 10 are latched in a 3-bit Program Control Register and used to define the MCU operating
mode. The Program Control Register can be read by accessing the Port 2 Data Register. The mode
appears as the three most signficant data bits as shown in Figure 3-11 where PC2 is the level that was
latched from pin 10. Details concerning mode programming were presented in Section 3.1.3.

b7 b6 b5 b4 b3 b2 b1 bO

$031 PC21 PC1 I PCO I P241 P231 P221 P21 I P20

Figure 3-11. Port 2 Data Register

3.1.9.3 TIMER INTERFACE: P20, P21. Bits 0 and 1 of Port 2 also provide an interface for two
Programmable Timer functions. Bit 0 interfaces with the input capture edge detector and bit 1 can
be driven by the Output Level Register. To enable typical use of these functions, the Port 2 Data
Direction Register should be configured such that bit 0 is a "0" (input) and bit 1 is a "1" (output).

The input capture edge detector is always sensing the P20 line regardless of its configuration. Note
that an input capture will also be generated by configuring bit 0 as an output and toggling P20 by
writing to bit 0 of the Port 2 Data Register.

A logic diagram for bit 0 is shown in Figure 3-12. TIC provides a buffered input to the Program­
mable Timer input capture edge detector. It should be noted that this input is always provided
regardless of bit configuration.

A logic diagram for bit 1 is shown in Figure 3-13. Note that the output Data Register is not con­
nected to the Peripheral Data Bus. When P21 is configured as an output, any MPU writes to this bit
have no effect on MCU operation. The TOL (Timer Output Level) signal is driven from a I-bit Out­
put Level Register which originates from the OLVL bit in the Timer Control and Status Register and
is clocked by successful output compare.

3-19

VOO

POBO

L---~TIC

~ ____ __.,;:. To Mode Control
Logic (PCO)

Figure 3-12. Logic Diagram for Port 2 Bit 0

VOO

r----POR

WP2

OOR2 L..-e--POBl

~~----------------------------------~--TOL

12

L--___ ----:. To Mode Control
Logic (PC1)

Figure 3-13. Logic Diagram for Port 2 Bit 1

3-20

3.1.9.4 SERIAL COMMUNICATIONS INTERFACE: Pll, P13, P14. Bits 2,3 and 4 of Port 2
provide an interface for the SCI bit rate clock, receiver input, and transmitter output, respectively.
The SCI has exclusive use of bits 2, 3 and 4 of Port 2 if certain SCI functons are enabled.

If the Transmitter Enable (TE) bit is set, bit 4 will be forced to an output and P24 will provide serial
output data. If the Receiver Enable (RE) bit is set, bit 3 will be forced to an input and P23 will pro­
vide serial input data to the SCI receiver.

The SCI clocking options are controlled by bits CCO and CC 1 in the Rate and Mode Control
Register. These bits are defined in Chapter 6 and control P22 if certain clocking options are enabled.
If CC1 is set, P22 is dedicated to the SCI and implements either the external-clock-in or internal­
clock-out option as defined by CCO.

When the internal-clock-out option is selected, it is provided regardless of whether the SCI transmit­
ter and/or receiver have been enabled. If CC1 is clear, the configuration of P22 is controlled by the
Port 2 Data Direction Register.

A logic diagram for bit 2 is shown in Figure 3-14 where P22 can interface with:
• an input or output from the Data Register,
• an external bit rate (X8) clock input, or
• an internal bit rate clock output.

VDD

12

T
RI02

CP2

DDR2

L---t-CCO

........,f---- PDB2

1----...... -CC1

~f----WI02

\-----CCO

L---------TEX
CP4

L.------------------------·TIN8
L--__ ---.,-~ To Mode Control

Logic (PC2)

Figure 3·14. Logic Diagram for Port 1 Bit 1

3-21

CC I and CCO are static control signals which originate from corresponding bits in the Rate and
Mode Control Register. Dynamic signals includeDDR2, WP2, WI02, and RI02 which control ac­
cesses to the input and output Data and Data Direction Registers.

TEX is derived from the SCI bit rate clock and is used for the internal-clock-out option. TINS pro­
vide:s an eight times bit rate clock to drive the SCI for the external-clock-in option.

If CCI is "0", CCO and TEX are de-coupled from the circuit and P22 functions as a data port con­
trolled by DDR2, WP2, WI02, and RI02. In this configuration, P22 provides input or output from
its Data Direction Register as defined by bit 2 of its Data Direction Register.

If CCI is a "1" , the CPI and CP2 couplers are disabled and isolate the Data and Data Direction
Registers from the Peripheral Data Bus. In addition, coupler CP3 is enabled and CCO is connected
to the Data Direction Register to appropriately configure the bit. If CCO is a "0", coupler· CP4 is
enabled and TEX is connected to the output Data Register and provides the SCI output bit rate
clock. If CCO is a "I" , the output driver is forced to the high impedance state and an external eight
times bit rate clock (TINS) input is coupled to the SCI.

A logic diagram for bit 3 is shown in Figure 3-15 where RE is the corresponding bit in the
Transmit/Receive Control and Status Register. If RE is not set, P23 functions as a data port bit and
is controlled by DDR2, WP2, WI02 and RI02. If RE is set,P23 is forced to an input and provides
serial data, RX, to the SCI receiver. While RE is set, the DDR bit for P23 is not affected by any
MPU writes. It should be noted that RX can be read from the input Data Register and will reflect
the value of the serial data line at the time of the read.

VOD

1---11--- PO R

WP2

DDR2 1.
'----- PDB3

T
12 WI02

T
RI02

~--~------------------------~--------~~~RX

Figure 3-15. Logic Diagram for Port 2 Bit 3

3-22

A logic diagram for bit 4 is shown in Figure 3-16 where TE is the corresponding bit in the TRCS
Register. When TE is not set, the bit functions as a data port bit controlled by DDR2, WP2, WI02
and RI02. If TE is set, however, Data Direction Register bit 4 is set which configures P24 as an out­
put. While TE is set, the DDR bit for P24 is not affected by any MPU writes. Coupler CPl is turned
"off" which isolates the Data Register bit from the Peripheral Data Bus (PDB) and makes it inac­
cessible to MPU writes. Coupler CP2 is turned on which connects the output of the serial shift
register, TDST, to the output Data Register and driver.

Figure 3·16. Logic Diagram for Port 2 Bit 4

3.2 SINGLE CHIP MODE PIN DESCRIPTION

'--""---PDB4

1---+--WI02

\-41~---+--- TE

'--------TDST
CP2

In Single Chip Mode, the MCU functions as a monolithic microcomputer without external address
or data buses. As shown in Figure 1-3, all four ports are configured as parallel data ports. The four
MCU data ports provide a maximum of 29 input/output lines and SCI and SC2 are configured as
control lines which can be used with Port 3. The operational characteristics of Port 3 are controlled
by its Control and Status Register which is located at $OF (see Figure 2-17).

3.2.1 SC1: Input Strobe 3 (IS3)

SCI is configured as an input only in Single Chip Mode and is configured as an output in all other
modes. In Single Chip Mode, SCl interfaces a negative edge detector with an active low asyn­
chronous input signal called IS3. IS3 is pulled to V CC by an internal active device and can be used as
an input data strobe or a data acknowledgement from another device depending upon the con­
figuration of Port 3.

3-23

An IS3 negative edge will set the IS3 FLAG in the Port 3 Control and Status Register. This register
also controls two options which are associated with IS3. First, an IRQ 1 interrupt can be enabled
whenever IS3 FLAG is set. Note that this is the only MCU internally generated interrupt which
results in an IRQI interrupt and is effectively "wire-ORed" with the external IRQlline. Software
can be used to distinguish between internal and external IRQ 1 interrupts by inspection of IS3 FLAG
in the Port 3 Control and Status Register. Note that this interrupt can occur only in Single Chip
Mode.

Finally, an IS3 negative edge can be used to latch data into Port 3 by setting the LATCH ENABLE
bit in the Port 3 Control and Status Register. Latch setup and hold times with respect to IS3 are
shown in Figure 3-17 where IS3 is an asynchronous input. External data must be valid at Port 3 by
the data setup time (tiS) prior to the negative edge of IS3-and remain valid for at least hold time,
tlH. The width of the active low strobe cannot be less than tPWIS.

/--tiS

Data Valid
2.0 V

0.8 V

Figure 3-17. Port 3 Latch Setup and Hold Times

Port 3 can also be used in a configuration which utilizes some bits as outputs and the remainder as
latched inputs. There is no conflict in this configuration. An MPU write to the Port 3 Data Register
will not "re-open" the latch while an MPU read will obtain the latched input levels and the current
output levels.

3.2.2 SC2: Output Strobe 3 (OS3)

SC2 is configured as an output signal in all modes and, in Single Chip Mode, it provides an active
low output strobe called OS3. This signal can be used to strobe outputs to an external device or pro­
vide a data acknowledgement depending on the configuration of Port 3. The active low strobe
(pulse) is approximately one E-cycle wide and cannot be varied.

OS3 can be generated by either an MPU read or write to the Port 3 Data Register and is controlled
by the Output Strobe Select (OSS) bit in the Port 3 Control and Status Register. If the bit is clear, a
pulse is generated by an MPU read of the Port 3 Data Register; if set, it is generated by an MPU
write.

A timing diagram for OS3 is shown in Figure 3-18. Data is valid at the port not more than tPWD
after the negative edge of E of the write cycle as shown in Figure 3-9. The active low output strobe
occurs tOSDI after the next positive edge of E. It should be noted that if Port 3 is being used as an
output port, data can be considered valid on either edge of the OS3 pulse. OS3 is capable of driving
one Schottky TTL load and 90 pF.

3-24

3.2.3 'P30-P37: Port 3

E

Address
Bus

r- MPU access of Port 3"

*Access matches Output Strobe Select (aSS = 0, a read;
ass = 1, a write)

Figure 3-18. Output Strobe 3 (OS3) Timing

Depending on the mode, Port 3 can be configured as (1) a parallel I/O port with two handshake
control lines, (2) a bidirectional data bus, or (3) as a multiplexed address and data bus. In Single
Chip Mode, it is configured as an I/O port controlled by its Data Direction and Control and Status
Register. The output drivers of Port 3 are designed for one Schottky TTL load and 90 pF.

Timing diagrams for an MPU read and write to Port 3 are shown in Figures 3-8 and 3-9, respective­
ly, where the read shown is for unlatched (LATCH ENABLE = 0) operation. Timing for MPU reads
using the input latch is shown in Figure 3-17. During an unlatched MPU read, valid data must be
presented by setup time, tPDSU, before the negative edge of E and must remain valid for at least
hold time, tPDH, after the negative edge. It should be noted that the read timing for Ports 1,2 and 4
is with respect to the positive edge of E whereas the timing for an unlatched read of Port 3 is with
respect to the negative edge.'

During an MPU write cycle, data becomes valid at the output of the port not more than tpWD after
the negative edge of E of the write cycle. If interfacing to a CMOS device, however, data is not valid
until a somewhat longer period, tCMOS, which allows the output to reach 0.7 V CC using external
pull-up resistors.

Port 3 consists of two major functional elements: an Input/Output buffer and associated control
logic. The buffer can be further divided into a' three-state output driver, input and output Data
Registers, a Data Direction Register, and a bus arbitrator for the MCU data bus. The Data and Data
Direction Registers are directly accessible by MPU instructions from the Peripheral Data Bus only in
the Single Chip Modes.

A logic diagram of the Port 3 Input/Output buffer is shown in Figure 3-19. Control signals which
are active in Single Chip Mode are defined as follows:

• M47 is high only in Modes 4 and 7 (Single Chip Modes);
• POR is an active high internal reset signal which is synchronized with E;
• WP3 goes high during E of an MPU write to either the Port 3 Data or Data Direction Register;
• WI03 goes high during E after WP3 for an MPU write to the Port 3 output Data Register;
• DDR3 goes high during E after WP3 for an MPU write to the Port 3 Data Direction Register;
• DIBP couples the internal Peripheral Data Bus to the MPU Data Bus during an internal MPU

read of an internal address excluding the Port 3 Data and Data Direction Registers;

3-25

Voo

P3R

#----M47

\---+--POR

VOO

.l

~WR

0lB3

POBi

t-----------ALi

~--+---~~ 6~t~~~s
'--__ To Instruction

Register

Figure 3-19. Logic Diagram for Port 3

• DIB3 couples data from the Port 3 input Data Register to the MPU internal Data Bus during
an MPU read whenever DIBP is not active;

• P3R enables the input latch and is controlled by the Latch Enable bit of the Port 3 Control and
Status Register. If this bit is set, P3R will go low on a negative transition of IS3 and latch the
input data. It will remain low until the Port 3 Register is read by the MPU. If the LATCH
ENABLE bit is clear, P3R will remain high;

• DBRW3, DWRand LADD are not active in the Single Chip Mode and are held low.

During an MPU write operation, WP3 goes high on the rising edge of E during an access of either
the Port 3 Data or Data Direction Register. One-half E-cycle later (E), either WI03 or DDR3 will go
high depending on whether the output Data or Data Direction Register is being accessed. The half­
cycle delay in the data path ensures that no transient "spikes" will appear in the output when a "0"
is written to either the output Data or Data Direction Register.

During an MPU read, DIB3 is high and the input Data Register is coupled to the MPU Data Bus. * If
the LATCH ENABLE bit of the Port 3 Control and Status Register is set, an IS3 negative edge will
cause P3R to go low and latch data in the input Data Register. Following an MPU read of the Port 3
Data Register, P3R will return high on the rising edge of E and make the latch transparent. P3R is
not affected by an MPU write to the Port 3 Data Register.
*Note that an MPU read of the Port 3 Data Direction Register will result in reading the Port 3 Data Register instead. However, this
operation does not affect any Port 3 control functions such as 183, 183 Flag, 083 or latch operation.

3-26

The input Data Register in Port 3 (Figure 3-19) is similar to the Port I input Data Register shown in
Figure 3-10. Note that the P3R coupler in the Port 3 diagram appears where the RIal coupler is
located in the Port I diagram. In an unlatched MPU read of the Port 3 Data Register, however, P3R
remains high which buffers unlatched data between Port 3 and the internal data bus. This accounts
for the difference in read timing between Port 3 and the other three ports as shown in Figure 3-8.

3.2.3.1 PORT 3 CONTROL AND STATUS REGISTER. The Port 3 Control and.Status Register
($OP) is accessible only in Single Chip Mode and consists of four bits which control Port 3 operating
characteristics. Three of the four bits are both readable and writeable while IS3 FLAG bit is a read­
only status bit. The bits in the register are defined as follows:

b7

$OF IS3
FLAG

Bit 0 Not used.
Bit I Not used.
Bit 2 Not used.

b6 bS
IS3 X

IRQI
ENABLE

b4 b3 b2 bl bO
ass LATCH X X X

ENABLE

Bit 3 LATCH ENABLE. This bit controls the input latch for Port 3. If set, input data to Port 3
is latched on the negative edge of Input Strobe (IS3). The latch is transparent on the rising
edge of E following an MPU read of the Port 3 Data Register (a read of the Port 3 Con­
trol and Status Register is not required to make the latch transparent). If clear, the latch is
transparent. LATCH ENABLE is cleared by Reset.

Bit 4 ass (Output Strobe Select). This bit controls whether OS3 will be generated by an MPU
read or write to Port 3. When clear, the strobe is generated by a read; when set, the strobe
is generated by a write. ass is cleared by Reset.

Bit 5 Not used.
Bit 6 IS3 IRQI ENABLE. This bit can be used to enable an IRQI interrupt in response to a

negative edge of Input Strobe 3 (lS3). When clear, IS3 FLAG will be set but an interrupt
will not be enabled. If IS3 IRQ I ENABLE is set, an IRQ I interrupt will be enabled
whenever IS3 FLAG is set. IS3 IRQI ENABLE is cleared by Reset.

Bit 7 IS3 FLAG. This bit is a read-only status bit which is set by the· MCU in response to a
negative edge of Input Strobe 3 (lS3). It is cleared by a read of the Port 3 Control and
Status Register (with IS3 FLAG set) followed by either a read or write of the Port 3 Data
Register. This bit is cleared by Reset.

3.2.4 P40-P47: Port 4

Depending on the mode, Port 4 can be configured as (1) a parallel data port, (2) an address/input
port, or (3) as a dedicated address output port. In Single Chip Mode, Port 4 is an 8-bit data port
where each bit can be configured as an input or output. During Reset, the Port 4 Data Direction
Register is cleared which configures all of the lines as inputs. Lines can be changed to outputs by set­
ting the desired bits in the Data Direction Register.

3-27

When configured as outputs, Port 4 can drive one Schottky TTL load and 90 pF. The Port 4 output
driver also includes a depletion load transistor for each line. This can be considered equivalent to a
pull-up resistor to V CC and allows it to directly interface with CMOS devices at V CC levels. Port 4
should not be pulled higher than V CC, however, due to the depletion load transistor which is coupl­
ed directly to V CC.

Timing diagrams for an MPU read and write to Port 4 are shown in Figures 3-8 and 3-9, respective­
ly. During an MPU read, valid data must be presented for at least the setup time (tPDSU) before the
positive edge of E corresponding to the MPU read cycle. Data is latched into Port 4 on the rising
edge of E of the read cycle, and must remain valid for at least the hold time (tPDH). Data is latched
only during the MPU read cycle.

During an MPU write, data becomes valid at the output of the port by tPWD after the negative edge
of E of the write cycle. When interfacing to CMOS (at V CC levels), however, it is valid by tCMOS
after the negative edge in order to allow levels to reach 0.7 V CC.

Port 4 consists of two major functional elements: an Input/Output buffer and associated control
logic. The Port 4 control logic generates a read signal, RI04, and three write signals, WP4, DDR4
and WI04. These signals control accesses to the Port 4 input and output Data Registers and Data
Direction Register. A logic diagram of the Input/Output buffer is shown in Figure 3-20 and consists
of an input and output Data Register, Data Direction Register, and an output driver. The output
Data Register is accessible from the internal Peripheral Data Bus only in Single Chip Mode and the
input Data and Data Direction Registers are accessible only in Modes 4 to 7. In other modes, half of
the address bus (either A(}A7 or A8-A1S) is connected directly to the output driver. Definitions of
signals in the logic diagram include:

• POR is an active high internal reset signal which is synchronized with E;
• WP4 goes high during E of an MPU write to either the Port 4 Data or Data Direction Register;
• WI04 goes high during E after WP4 for an MPU write to the Port 4 Data Register;
• DDR4 goes high during E after WP4 for an MPU write to the Port 4 Data Direction Register;
• PDBi is the ith line of the internal Peripheral Data Bus (PDB)
• RI04 enables a read of the Port 4 input Data Register;
• PC2 is the most significant bit of the operating mode (set in Modes 4 to 7);
• MODS and MXM are inactive in Single Chip Mode and are held low.

In Modes 4 through 7, PC2 is held high which allows the port to be configured by its Data Direction
Register. During an MPU read of the Port 4 input Data Register, RI04 will go high during E while
RI04 is driven low to prevent the data from changing while it is being read. When the RI04 coupler
is "on," data from the inverter is transferred to the Peripheral Data Bus.

During an MPU write to either the output Data or Data Direction Registers, WP4 will go high dur­
ing E. One-half E-cycle later (E), either the WI04 or the DDR4 coupler will turn on depending on
whether the Data or Data Direction Register is being accessed. This will couple data (one half-cycle
delayed) to the selected register. The data path is delayed one-half E-cycle to prevent transient pulses
at the output Data or Data Direction Register when writing a "0" to either register. The pulse is
caused by precharging the Peripheral Data Bus as explained in the description for Port 1.

3-28

VDD

WP4

PDBj

T
WI04

T t-----ALj

RI04

t-----AHj

LMXM

Figure 3-20. Logic Diagram for Port 4

3.3 EXPANDED NON-MULTIPLEXED MODE PIN DESCRIPTION

In the expanded non-multiplexed mode, the MCU can directly address an external memory space of
256 bytes located from $100 through $1 FF. SC 1 is configured as an output and provides an external
address select signal called Input/Output Select (lOS). SC2 is always configured as an output and
provides a Read/Write data bus control signal. Port 3 is configured as an 8-bit bidirectional Data
Bus while Port 4 is configured from Reset as an 8-bit input data port. Using software, however, any
combination of the Port 4 eight least significant address lines can be provided as outputs by setting
the corresponding bits in its Data Direction Register. Stated alternatively, any of the Port 4 unre­
quired address lines can be used as additional data input lines. Internal pull-up resistors are provided
to pull the Port 4 lines high until software configures the Data Direction Register.

3.3.1 SCI: Input/Output Select (lOS)

In the Expanded Non-Multiplexed Mode, SCI provides an active low output called lOS (Input/Out­
put Select) which indicates when a certain range of addresses in the external memory space is sensed
on the internal address bus. The signal is the output of an internal address decoder which uses lines
A8 through A15 as inputs and is active low whenever an address from $0100 through $OlFF appears
on the internal address bus. In other words, lOS is active low when $01 is detected on lines A8 to
A15, of the internal address bus. lOS is capable of driving one Schottky TTL load and 90 pF and
can be used similar to an address pin. lOS timing is shown in Figure 3-23.

3-29

Because lOS must be used to determine when an external address is being referenced, software must
address external read/write memory only from $100 to $IFF. While the Port 3 register addresses are
not internal in the Expanded Non-Multiplexed Mode, lOS is not active if they are referenced
because their addresses are not in the range from $100. to $IFF.

3.3.2 SC2: R/W (Read/Write)

The R/W (Read/Write) output signal is used to control the direction of transfers on the external
Data Bus. A low level (Write) on the Read/Write line enables the Port 3 output drivers to the exter­
nal Data Bus. A high level (Read) on the Read/Write line forces the drivers to a high impedance
state and enables data to be read from an external device. The R/W output is capable of driving one
Schottky TTL load and 90 pF. Timing is shown in Figure 3-23.

3.3.3 P30-P37: Port 3 Data Bus (DO-D7)

Depending on the mode, Port 3 can be configured as (1) a parallel I/O port with two handshake
control lines, (2) a bidirectional data bus, or (3) as a mUltiplexed address and data bus. In the Ex­
panded Non-Multiplexed Mode, Port 3 functions as a bidirectional data bus. The output driver is a
three-state device which remains in the high impedance (off) state except when the MCU performs a
write operation. It is activated when R/W is low and E is high. Each output is designed to drive one
Schottky TTL load and 90 pF. Data bus timing is shown in Figure 3-23.

Three registers associated with Port 3 are decoded as external memory in the Expanded Non­
Multiplexed Mode. However, these three locations cannot be used for external read/write memory
because lOS is not active when the addresses appear on the bus. Furthermore, even if lOS were ac­
tive for these addresses, it would not be possible to distinguish between an access of $06 (Port 3 Data
Register) and $106 (external memory reference).

The Port 3 data bus drivers are enabled only during a write to either an internal or external address.
Because Port 3 will remain in a high impedance state, it is not possible to monitor the internal data
bus during an MPU read of an internal location.

NOTE
The internal Data Bus cannot be monitored during an MPU read of an internal location
except in Mode O.

The reader should also note that whenever the MPU detects a read from an address not in its inter­
nal address map, it reads from the Port 3 external Data Bus. This characteristic makes it possible to
indirectly address an additional 256 external read-onlY locations in the expanded non-multiplexed
mode as discussed in Chapter 8 (Section 8.4).

Port 3 consists of two major functional elements: an Input/Output buffer and associated control
logic. The buffer can be further divided into a three-state output driver, input and output Data
Registers, a Data Direction Register, and a bus arbitrator for the Peripheral Data Bus. The Data and
Data Direction Registers are not accessible from the internal Peripheral Data Bus in the expanded

3-30

non-multiplexed mode and Port 3 is configured as a dedicated 8-bit bidirectional data bus. A logic
diagram for Port 3 is provided in Figure 3-21. The active signals for the expanded non-multiplexed
mode are as follows:

• POR is an active high internal reset signal which is synchronized with E;
• DWR couples the internal Peripheral Data Bus (PDB) to the Port 3 output driver and is active

only during E;
• DIBP couples the internal Peripheral Data Bus to the MPU Data Bus during an internal MPU

read;
• DIB3 couples data from the Port 3 input Data Register to the MPU Data Bus during an MPU

read, whenever DIBP is not active;
• DBRW3 controls the state of the Port 3 output driver;
• P3R is inactive in the expanded non-multiplexed mode and is pulled high;
• M47, WP3, WI03, DDR3 and LADD are not active in the expanded non-multiplexed modes

and are held low.
In expanded non-multiplexed mode, M47 is low which isolates the output Data and Data Direction
Registers from the output drivers. DWR is active during E while LADD is inactive and pulled low.
These couplers connect the Peripheral Data Bus to the output drivers which, in turn, are controlled
by DBRW3. DBRW3 is a function of Read/Write and E: when E is high DBRW3 follows
Read/Write and is high at all other times.

VDD

P3R DIB3

1----M47

r--_._- POR

~WR

WP3

~
PDBi

t-----------ALj

To MPU
X>---.------l~ Data Bus

L.-..-__ ---. To Instruction
Register

Figure 3-21. Logic Diagram for Port 3 (Repeated)

3-31

During an MPU read, DBRW3 keeps the output driver in a high impedance state. The P3R coupler
is held high ("on") and the bus arbitrator enables either the DIBP or DIB3 couplers depending on
the address associated with the read. If the address is internal, DIBP is activated; otherwise, DIB3 is
activated which links the external and internal Data Buses.

During an MPU write, the Peripheral Data Bus is connected to the output driver through the DWR
coupler. DBRW3 is low during E of a write cycle which enables the output driver.

3.3.4 P40-P47: Port 4 Address Bus/Inputs

Depending on the mode, Port 4 can be configured as (1) a parallel Input/Output port, (2) an ad­
dress/input port, or (3) as dedicated address outputs. In the expanded non-multiplexed mode, Port
4 is configured from Reset as an 8-bit data input port. Using software, however, the port can be re­
configured to provide any combination of address lines, AO to A 7, of the address bus. Note that any
bit configured as an output is an address line; otherwise, it is a data input line. Each output buffer
has an internal pull-up resistor which pulls the output high if no external device is driving the port.
Port 4 is capable of driving one Schottky TTL load and 90 pF.

A timing diagram for an MPU read of the Port 4 Data Register is shown in Figure 3-8. During an
MPU read of Port 4, valid data must be present for at least setup time, tPDSU, before the positive
edge of E of the read cycle. Data is latched into Port 4 by this same edge and must remain valid for
at least hold time, tPDH. Data is latched only during the read cycle.

Port 4 consists of two major functional elements: an Input/Output buffer and associated control
logic. The Port 4 control logic generates a read signal (RI04) and two write signals (WP4 and
DDR4) which control accesses to the input Data Register and Data Direction Register. A logic
diagram of the Input/Output buffer is provided in Figure 3-22. The diagram shows the input and
output Data Registers, Data Direction Register, and an output driver. The output Data Register is
not accessible from the internal Peripheral Data Bus in Expanded Non-Multiplexed Mode (5). The
input Data and Data Direction Registers are accessible, however, in Modes 4 to 7. Definitions in the
logic diagram which are active in the Expanded Non-Multiplexed Mode include:

• POR is an active high internal reset signal which is synchronized with E;
• WP4 goes high during E of an MPU write to the Port 4 Data Register;
• DDR4 goes high during E after WP4 for an MPU write to the Port 4 Data Direction Register;

• PDBi is the ith line of the internal Peripheral Data Bus (PDB);
• RI04 causes a read of the Port 4 input Data Register;

• MOD5 is high only in Mode 5;
• ALi is the ith line of the address bus where i varies from 0 to 7 (AO-A7);
• AHi is the ith line of the address bus where i varies from 8 to 15 (A8-AI5);
• PC2 is the most significant bit of the operating mode;
• MXM and WI04 are inactive in the expanded non-multiplexed mode and are held low.

In the expanded non-multiplexed mode, the WI04 coupler isolates the internal Peripheral Data Bus
from the port output Data Register. The WP4 and DDR4 couplers are active during MPU writes to
the Data Direction Register from the Peripheral Data Bus. The MOD5 coupler is on and connects
the eight least significant addresses (ALi) to the output Data Register and driver. If the Data Direc­
tion Register bit is clear, however, the output driver will remain in a high impedance (oft) state and
input data can be read from the PDB. If the DDR bit is set, the ALi address line will appear as an
output.

3-32

Voo

WP4

POBi

T
WI04

T----ALj

RI04

""-"---AHj

LMXM

Figure 3-22. Logic Diagram for Port 4 (Repeated)

During an MPU read of the Port 4 input Data Register, RI04 is driven high while RI04 goes low.
The RI04 coupler prevents data from chaning while it is being read by latching it into the FET
parasitic capacitance. If configured as an output, the read will refelect the level associated with the
address line. An MPU write to the Port 4 Data Register has no effect on MeU operation in the ex­
panded non-multiplexed mode.

NOTE
Addresses AO to A7 are not provided in the Expanded Non-Multiplexed Mode (5) until
the Port 4 Data Direction Register has been configured by software.

3.3.5 Expanded Non-Multiplexed Bus Timing

The Expanded Non-Multiplexed bus is compatible with the M6800 family of parts. It is a syn­
chronous bus clocked by E (Enable) where every bus cycle is either a read or write cycle. Occas­
sionally, the MPU does not require a memory reference during execution of an instruction and the
idle bus cycle appears as an MPU read of an internal location (SFFFF). While RESET is held low,
lOS, R/W, and Port 4 are pulled high and the Data Bus (Port 3) is held in a high impedance state.

Figure 3-23 illustrates timing for the Expanded Non-Multiplexed Bus. Address, R/W, and lOS are
valid by tAD after the negative edge of E. During an MPU write, data on the Data Bus (00-07) is
valid by tDDW after the next positive edge of E and must be captured by an external device no later
than hold time, tHW, after the next negative edge of E. Note that AO-A7, R/W, and lOS remain
valid for at least hold time, tAH, after the negative edge of E.

3-33

Enable
(E)

AO-A7
R/W, lOS

MPU Write
DO-D7

MPU Read
DO-D7

~-------tcyc------'"

~----------~ ~---PWEH----~ ~------------
tEF

Address Valid

Data
Valid

t D S R -14~--.-.t
14---tACCN---'" _---_

2.0 V

0.8 V

Figure 3-23. Expanded Non-Multiplexed Bus Timing

tHR

During an MPU read cycle, Address, R/W, and lOS are valid by tAD time after the negative edge of
E. The external device has a maximum access time of tACCN before valid data must be presented to
the data bus. Data must be valid by at least setup time, tDSR, before the next negative edge ofE and
remain valid by hold time, tHR, after the next negative edge. Address, R/W, and lOS remain valid
for at least tAH after the negative edge of E. The access time, tACCN, is a derived quantity and is
computed from when the address bus becomes valid. Although provided in the Data Sheet, it can be
computed from the following equation:

tACCN = PWEH + tAS - tDSR
A typical system implementation is shown in Figure 3-24 and additional examples are included in
Chapter 8.

3.3.6 Monitoring the Expanded Non-Multiplexed Bus

The MC6801 Data Sheet and Appendix F contains a cycle-by-cycle description of the bus activity for
each instruction with respect to the MCU internal buses. This table, however, requires some inter­
pretation to obtain the exact description for either of the two types of MCU buses.

When using this table, the reader must remember that the internal data bus cannot be monitored
during an MPU read unless in Mode O. During these read cycles, Port 3 -which provides the data
bus - is held in the high impedance state.

In the expanded non-multiplexed mode, the external data bus is driven by the Port 3 output drivers
during an MPU write to any location. The external data bus is not active, however, during MPU
reads from internal locations. In a typical application using this mode, the program resides in the in­
ternal ROM. A significant portion of the total bus cycles, therefore, are internal MPU reads in this
case which tends to limit the usefulness of a logic analyzer. A logic analyzer can be used to monitor
all accesses to the external memory space in the range from $100 to $1 FF.

3-34

CS3

VCC MCM6810
($100-$17F)

IN 0 I~ ~
AO A1 A2 A3 A4 A5 A6 ~ ~ ;;: ~ 06 07 05 D4 03 02 01 DO

123122121 120 119 118117 J,2 110 h6 111 19 18 I 716 15 14 13 12

36135
o ~
(/) (/)
a: a: I 20 I VCC , I

C31' 1
6" .~. --..---,GNO

Ii. ~"ESET
~ JJ"ESET IROA

37 _
IROB

R1=4.7 kO
C1 = See Data Sheet
C2="5O IlF
C3=0.1IlF
CR1 = See Data Sheet

24 123121 125126 t27 128 129 130 131 132 133
(ii EB ~ 07 06 05 D4 03 02 01 DO
u ;;: u

MC6821
($180-$1 FFI

Figure 3-24. Typical Expanded Non-Multiplexed System

From the cycle-by-cycle description, the reader should note that the address bus provides' 'Op Code
Address" and "Op Code Address + 1" during the first two cycles of every MC6801 instruction.
Note that this is also true for single byte inherent instructions such as Nap or MUL. While this may
appear to be an anomaly, the explanation is quite simple: when "Op Code Address + 1" appears,
the operation code has not yet been decoded to determine the addressing mode of the instruction.
The reader should also be able to recognize idle bus cycles such as the last eight cycles of the MUL
instruction.

Figure 3-25 presents a sample instruction sequence for a ROM-resident program and indicates its
bus activity on a cycle-by-cycle basis when operating in the expanded non-multiplexd mode. If the
reader is not familiar with the instruction set, perhaps it would be prudent to skip this section on
first reading and return to it after reading Chapter 4.

1. Instruction Sequence

Address Machine Code ----- Label Operation Operand

ORG $FSOO
F800 86 AA LOOP LDAA #$AA
Foo2 97 SO STAA $SO
F804 96 SO LDAA $SO
F806 B7 01 00 STAA $100
F809 B6 01 00 LDAA $100
FSOe 20 F2 BRA LOOP

2. Bus Activity when Executing the Instruction Sequence

Internal Internal External External
Address Data Address Data R/W lOS

Bus Bus Bus Bus
FSOO S6 00 ** 1 1
Foo1 AA 01 ** 1 1

Foo2 97 02 ** 1 1
Foo3 SO 03 ** 1 1
0080 AA SO AA 0 1

FS04 96 04 ** 1 1
Foo5 SO 05 ** 1 1
0080 AA SO ** 1 1

F806 B7 06 ** 1 1
Foo7 01 07 ** 1 1
F808 00 08 ** 1 1
0100 AA 00 AA 0 0
FS09 B6 09 ** 1 1
FooA 01 OA ** 1 1
FSOB 00 OB ** 1 1
0100 AA 00 AA 1 0
FaOe, 20 oe ** 1 1
FSOD F2 OD ** 1 1
FFFF (FFFF) FF ** 1 1

"**,, indicates that the Port 3 Data Bus drivers are held in the high impedance state.

"(FFFF)" indicates the contents of location $FFFF.

Figure 3-25. Extemal Bus - Expanded Non-Multiplexed Mode

3-36

3.4 EXPANDED MULTIPLEXED MODES PIN DESCRIPTIONS

In the expanded multiplexed modes, the MCU has the capability to access a 64K byte address space.
SCI is configured as an output and provides a timing signal called Address Strobe which is used to
control de-multiplexing of the address and data buses. SC2 is also configured as an output and pro­
vides a Data Bus control signal called Read/Write. In Modes 0 through 3, Port 3 is configured as a
time multiplexed address/data bus and Port 4 provides the remaining address lines (A8-A15). In
Mode 6, however, Port 4 is configured from Reset as' an 8-bit data input port. It can then be re­
configured by setting bits in the Port 4 Data Direction Register to provide any combination of ad­
dress lines, A8 to AIS.

3.4.1. SCI: Address Strobe (AS)

In all expanded multiplexed modes, the eight least significant bits of the address bus (AO~A 7) are
time multiplexed with the data bus. SCI is configured as AS (Address Strobe) which can be used as a
control signal to demultiplex the two buses using a transparent latch such as a 74LS373 or MC6882.
AS is derived from alternating transitions of the MCU input clock except that it is held low while E
is high.

AS is also used internally to enable the eight least significant address lines to the port. Between logic
highs of AS and E, Port 3 is forced to a high impedance state to prevent possible bus contention. AS
is designed to drive one Schottky TTL load and 90 pF, and timing is shown in Figure 3-28*.

3.4.2 SC2: R/W (Read/Write)

SC2 is configured as Read/Write in the expanded multiplexed modes and can be used to control the
direction of Data Bus transfers. A low level (write) on the R/W line enables the Port 3 Data Bus
driver and allows data to be transferred from the MCU to an external device. A high level (read) on
the R/W line forces Port 3 to a high impedance state (except in Mode 0) and enables reading the
Data Bus. The R/W line is capable of driving one Schottky TTL load and 90 pF, and timing is
shown in Figure 3-28.

3.4.3 P30-P37: Port 3 Multiplexed Address/Data Bus

Depending upon the mode, Port 3 can be configured as (1) a parallel I/O port with two handshake
control lines, (2) an 8-bit bidirectional data bus, or (3) as a multiplexed address and data bus. In the
expanded multiplexed modes, Port 3 is configured to drive a time multiplexed address and data bus.
While AS is high, Port 3 provides addresses AO to A 7. While E is high, Port 3 functions as an 8-bit
bidirectional Data Bus controlled by R/W. Between AS and E, the port is held in a high impedance
state to prevent possible bus conflicts.

With respect to the external data bus, the Port 3 output drivers are three-state devices which remain
in the high-impedance (oft) state except:

1. during a write operation when R/W is low and E is high (modes 1, 2, 3 and 6), or
2. during a write operation when R/W is low and E is high and during a read operation of an

internal MCU location when R/W and E are high (Mode 0).
Each output buffer is capable of driving one Schottky TTL load and 90 pF. Port 3 functions iden­
tically in all expanded multiplexed modes except Mode 0 and this exception is discussed in Section
3.4.3.2
* A more detailed discussion of the relationship between the MeV input clock, E, and AS is included in Appendix I.

3-37

Port 3 consists of two major functional elements: an Input/Output buffer and associated control
logic. The buffer can be further divided into a three-state output driver, input and output Data
Registers, a Data Direction Register, and a bus arbitrator for the MeU data bus. The Data and Data
Direction Registers are accessible from the internal Peripheral Data Bus only in the single chip
modes. In all other modes, the output signals (either data or addresses) are connected directly to the
output drivers.

3.4.3.1 PORT 3 IN EXPANDED MULTIPLEXED MODES 1, 2,3 AND 6. A logic diagram for
Port 3 is provided in Figure 3-26 where signal definitions are as follows:

• POR is an active high internal reset signal which is synchronized with E;
• DBRW3 controls the state of the Port 3 output drivers. It is identical to AS until E; it then

follows R/W. Between AS and E, it is low;
• LADD couples the eight least significant address lines to the Port 3 output drivers;
• DWR couples the internal Peripheral Data Bus (PDB) to the Port 3 output driver and is active

only during E;

• DIBP couples the Peripheral Data Bus (PDB) to the MPU data bus during an internal MPU
read;

VDD

-

DBRW3 M47

POR

VDD

l

P3R DIB3

WP3

1..
PDBi

t-----------ALi

"X)--........ ------l~ ToM PU
Data Bus

L--__ To Instruction
Register

Figure 3-26. Logic Diagram for Port 3 (Repeated)

3-38·

• DIB3 couples data, from the Port' 3 input Data Register to the MPU data bus during an MPU
read whenever DIBP is not active;

• ALi is the ith line of the address bus where i varies from 0 to 7 (AO to A 7);
• M47, WI03, DDR3 and WP3 are inactive in the expanded multiplexed modes and are held

low;
• P3R is inactive in the expanded multiplexed mode and is held high.

In the expanded multiplexed modes, M47 is low which isolates the output Data Register from the
output driver and inhibits the Data Direction Register from controlling the state of the output
driver. The eight least significant address lines are coupled to the Port 3 output drivers through the
LADD couplers. AS, through DBRW3, enables the output drivers to provide the eight least signifi­
cant address outputs, ALi.

After hold time, tAHL, following the negative edge of AS, the output drivers assume a high im­
pedance state. If the MPU is writing, however, DBRW3 will go low during E and couple data from
the internal Peripheral Data Bus to the output drivers through the DWR coupler. Therefore when
the MPU writes, it drives both the peripheral and external data buses.

During E of an MPU read, DBRW3 keeps the output drivers in a high impedance (oft) state. If the
address is an internal location, the DIBP signal couples the Peripheral Data Bus to the MPU data
bus during E and the output drivers will remain in a high impedance state. If the location is not an
internal location, DIB3 will couple the external data bus from the Port 3 input Data Register to the
MPU Data Bus.

It should be noted that there is no bus conflict associated with enabling devices to the MCU Data
Bus in response to internal MCU addresses in Modes 1,2, 3, and 6; if this occurs, those devices will
be accessed during MPU writes. During MPU reads, however, the Port 3 bus arbitrator will force
DIBP high while DIB3 is pulled low and the MPU will read only from the Peripheral Data Bus.
Although the address of referenced internal locations will appear on the Address Bus, the Port 3
output drivers will remain in a high-impedance state during E. As a consequence, the external data
bus' will then be driven only if an external device responds to the address. This characteristic must be
kept in mind if attempting to monitor the Data Bus with a logic analyzer. Only in Mode 0 can the
Peripheral Data Bus be monitored during an MPU read of an internal address.

NOTE
A logic analyzer can be used to monitor the Peripheral Data Bus during MPU reads of in­
ternal locations only in Mode o.

3.4.3.2 PORT 3 IN EXPANDED MULTIPLEXED TEST MODE O. In Mode 0, Port 3 and its
associated control signals function identical to the other expanded multiplexed modes with two
notable exceptions:

First, a two-cycle delay is added to the reset (POR) signal in the DBRW3 and the DIB3 circuit. Dur­
ing the initial two cycles after the positive edge of RESET, DBRW3 forces Port 3 to be an input dur­
ing E and the DIB3 coupler connects the external and MPU Data Buses. An external address
decoder must trap $FFFE and $FFFF on the address bus, only during two cycles after Reset, and
provide a Reset vector during these two cycles. Because the Reset vector is fetched from external

3-39

memory only during these two cycles, control can be passed to a program residing .in external
memory which is able to access the entire ROM. Subsequent accesses to the interrupt vector area
($FFFO-$FFFF), such as MPU reads, will address the internal ROM. This feature facilitates testing
of the entire ROM pattern.

Finally, in order to monitor the Peripheral Data Bus during MPU reads of internal locations, ap­
propriate logic is incorporated for DBRW3 which enables the Port 3 output drivers during MPU
reads of internal locations. In order to avoid bus contention, however, no external device can be
enabled to the Data Bus during an MPU read of an internal address in Mode O. *

3.4.4 P40-P47: Port 4 Address Bus/Data Inputs

Depending upon the mode, Port 4 can be configured as (1) a parallel Input/Output port, (2) an ad­
dress/input port, or (3) as dedicated address outputs. In the expanded multiplexed modes, it can
function either as part of the address bus or as an address/input data port. Port 4 functions
significantly different in Modes 0 through 3 than it does in Mode 6. In Modes 0 through 3, the port
always provides address lines A8 through AIS as outputs. The port Data and Data Direction
Register are not accessible from the Peripheral Data Bus and their addresses are decoded as external
memory locations.

In Mode 6, Port 4 is configured from Reset as data port input lines which can be re-configured by
software to provide any combination of the eight most significant address lines (A8-AIS). In this
mode, the output Data Register is isolated from the internal Peripheral Data Bus but both the input
Data and Data Direction Register are accessible. The Port 4 Data Direction Register controls the
configuration of the port and is cleared during Reset. This configures the port as eight parallel input
data lines with internal pullup resistors to VCC. Any combination of address lines A8 through AIS
can be obtained by setting the corresponding bits in the Port 4 Data Direction Register where bit 0
controls address line A8.

A timing diagram for MPU reads of the Port 4 input Data Registers is shown in Figure 3-8. During
an MPU read of Port 4, valid data must be presented for at least setup time, tPDSU, before the
positive edge of E of the read cycle. Data is latched into Port 4 by this same edge and must remain
valid for at least hold time, tPDH, after this edge. Data is latched by Port 4 only during the read cy­
cle.

Port 4 consists of two major functional elements: an Input/Output buffer and associated control
logic. The Port 4 control logic generates a read signal, RI04, and two write signals, WP4 and
DDR4, which control accesses to the input Data Register and Data Direction Register. A logic
diagram of the Input/Output buffer is repeated in Figure 3-27 and consists of input and output Data
Registers, Data Direction Register, and output driver. The output Data Register is accessible from
the internal Peripheral Data Bus only in Single Chip Mode. The input Data and Data Direction
Registers are accessible only in Modes 4 to 7. In other modes, the most significant half of the address
bus is connected directly to the output drivers. Definitions in the logic diagram which are active in
Expanded Multiplexed Mode include:

• POR is an active high internal reset signal which is synchronized with E;
• WP4 goes high during E of an MPU write to the Port 4 Data Direction Register (Active only

in Mode 6);
·:---:A-m-o""""7de-OO:-chip select circuit is discussed in Appendix J.

3-40

VDD

T
WI04

T
RI04

LMXM

Figure 3-27. Logic Diagram for Port 4 (Repeated)

WP4

PDBi

~---ALi

~---AHi

• DDR4 goes high during E after WP4 for an MPU write to the Port 4 Data Direction Register
(Active only in Mode 6);

• PDBi is the ith line of the internal Peripheral Data Bus (PDB);
• RI04 enables a read of the Port 4 input Data Register (Active only in Mode 6);
• MXM is pulled high in all Expanded Multiplexed Modes;
• PC2 is the most significant bit of the operating mode;
• AHi are the eight most significant lines of the address bus where i varies from 8 to 15 (A8 to

AI5);

• MOD5 and WI04 are inactive in the expanded multiplexed mode and are held low.
In modes 0 through 3, all of the register control signals (RI04, WP4, DDR4, WI04) are inactive and
their associated couplers isolate the Data and Data Direction Register from the internal Peripheral
Data Bus. PC2 is held low in these modes and configures the port as address outputs (A8-AI5). The
MOD5 coupler is inactive and the MXM coupler connects the most significant eight address lines,
AHi, to the Data Register and output drivers.

In Mode 6, WI04 remains inactive and isolates the output Data Register from the Peripheral Data
Bus. The remaining Port 4 register control signals (WP4, DDR4, and RI04) are active and allow the
input Data Register and Data Direction Register to be accessed from the internal Peripheral Data
Bus. PC2 is high in Mode 6, which allows the Port 4 Data Direction Register to control the con­
figuration of each bit. Reset clears the Data Direction Register which configures the port as eight
parallel input lines.

3-41

NOTE
In Mode 6, address lines, AS through A15, are not provided until the Port 4 Data Direc­
tion Register is configured using software. Internal pull-up resistors are intended to pull
the lines high until this step is performed.

3.4.5 Expanded Multiplexed Bus Timing

The Expanded Multiplexed bus is compatible with the M6S00 family of parts. It is a synchronous
bus clocked by E (Enable) where every bus cycle is either a read or write cycle. Occasionally, the
MPU does not require a memory reference during an E-cycle of a particular instruction. The last cy­
cle of a branch instruction, for example, is an idle bus cycle. All of the address lines and R/W are
forced high during idle bus cycles which appears as a read of $FFFF. While RESET is held low,
R/W, AS, and address lines AS to A15 are pulled high while the Port 3 output driver is forced to a
high-impedance state.

An expanded multiplexed bus timing diagram is shown in Figure 3-2S. During an MPU write cycle,
address lines AS to A15 and R/W become valid tAD after the negative edge of E. The least signifi­
cant eight lines of the address bus do not become valid, however, until tASM before the rising edge

Address Strobe
(AS)

Enable
(E)

R/W, A8-A15
(Port 4)

MPU Write
00-07, AO-A7

(Port 3)

MPU Read
00-07, AO-A7

(Port 3)

~-----tcyc------.I

2.0 V

.. tACCM--~

Figure 3-28. Expanded Multiplexed Bus Timing

3-42

of E. An external transparent latch must be provided to capture address lines, AO to A7, by tAHL
after the negative edge of AS. AS can be used to control the latch as shown in Figure 3-29. After the
negative edge of AS plus the hold time tAHL, Port 3 is held in a high-impedance state until tDDW
after the next positive edge of E at which time the Data Bus becomes valid. Data will remain valid
for at least tHW after the next negative edge of E. Note that both the entire address bus (AO-A 7 are
latched) and R/W are valid tASM before the positive edge of E and remain valid for tHW after the
negative edge of E.

During a read bus cycle, addresses AS to A15 and R/W are valid tAD after the negative edge ofE. A
transparent latch must be employed to capture AO through A 7 and these addresses become valid
tASM before the next positive edge of E. The selected device can be enabled to the Data bus no
earlier than tAHL after the negative edge of Address Strobe to avoid contention with the address
bus. The address bus and RlW are valid for access time, tACCM, before data is required to be
valid. Data must remain valid for at least hold time, tHR, after the next negative edge of E. Note
that the address bus remains valid until tAH after the negative edge of E. The maximum access time,
tACCM, is a derived amount which is computed from when the latter of the two halves of the ad- .
dress bus becomes valid. Although it is given in the Data Sheet, it can be computed from the follow­
ing equation:

tACCM = PWEH + tASM - tDSR

A typical system implementation is shown in Figure 3-30. Additional examples are included in
Chapter S.

GND

AS

Port 3
Address/Data

I
G oc

01 01

74LS373
(Typical)

De 08

>-----

~
Address: AO-A7

.
Data: 00-07

--
Figure 3-29. Typical Bus De-Multiplexing Latch Arrangement

3-43

W
I

t

I

-I -

RESET 16
H)

+5V

GNO

+5V

¢C1X ~
_~C1 '-~ Address •

HI~· Oecode •
•

4.00 MHz
3 2 1 20 _ N ::::i 22 P17 ;i. <{ A15

19_ - P16 ~ ~ A14 23 - 18: P15 w A13
24

.- 17 _
P14 A12

25 -...... 16 _
P13 A11

26 - 15 : 27 P12 MC6801 A10 14 _ 28 .-
P11 A9 - 13 : 29 - P10 - .. A8

40
E

38 12 _ R/W -- -P24
11 :.

_ 30
...... P23 A7/07

: 31 10: A6/06 - P22 : 32 - 9: A5/05 .- P21 .: 33 ..
8 : A4/04 -- P20 -..

A3/03
_34

CR1" ..: 35 .. a ..
A2/02 _36 - NMI A1/01 ...

: 37 - IR01 AO/OO ...
- 39 :- R'EsEf 0 AS

~~~ <> ? ~~ C2<> <). Z -.;t " ex) ('t) '<:t " ex) 

~ ~ ~/-r:~ ~ 
VCC (!J VSB ~ , , 

• 1 

. ..-• 1 ~, ., . 
17 j~ 1 J~ 21 ENOr02030405060708 

... - --- ;}C3 1 
R1 R1 R1 R1 R1 f'" OC Latch (74LS373) 

0102030405060708 

*C3 NID coO> NLDCOO> ..- ..- ..- ..-

-

Figure 3·30. Typical Expanded Multiplexed System 

-.. 
--.. 
.. .. .. .. .. 
--... .. ... -.. -.. --.. .. ... .. ... -.. 
-... -----... -... 

--... --... ---.. ---.. ---... -.. .. 

CSN 

CSO 

A15 

A14 

A13 
A12 
A11 
A10 
A9 
AS 

E 
R/W 
A7/07 
A6/06 
A5/05 
A4/04 
A3/03 

A2/02 

A1/01 

AO/01 

A7 

A6 
A5 
A4 

A3 
A2 
A1 

AO 

R1=4.7 kO 
C1 ::::See Oata Sheet 
C2=50 I'F 
C3=O.1 I'F 
CR1 = See Oata Sheet 



A somewhat unusual situation can exist while RESET is held low. Expanded Multiplexed Bus activi­
ty during Reset will appear as MPU reads of $FFXX where XX is determined by external devices. 
Further complexity is introduced because AS is held high which means that the least significant lines 
are never latched. Any"data" that appears during E, therefore, is passed through the latch as "AO 
to A 7." It is unlikely that any bus contention will result in this situation, however, provided not 
more than one device responds to addresses $FFOO to $FFFF. This situation will not occur if exter­
nal pull-up resistors are used for Port 3 or if chip selects are qualified with a low level AS signal. 

3.4.6 Monitoring the Expanded Multiplexed Bus 

The MC6801 Data Sheet and Appendix F contain a cycle-by-cycle description of the bus activity for 
each instruction where the data shown is with respect to the MCU internal buses. Some interpreta­
tion of this table is required, however, to obtain an exact description for a particular MC6801 bus. 
While the external address bus will always appear as indicated, the external data bus may not always 
agree with what is shown in the table. Except in Mode 0, Port 3 - which provides the data bus - is 
held in the high impedance state during MPU read cycles of internal locations. If executing a pro­
gram from the internal ROM, these cycles will constitute a significant portion of bus activity. 

When using a logic analyzer with the expanded multiplexed bus, the reader should remember that: 
1. it should be triggered with the negative edge of E (Enable) and be connected to the de-multi­

plexed bus, 
2. the external and internal address buses will always have the same value, 
3. the external and internal data buses will always have the same value for MPU writes and MPU 

reads of external locations, 
4. unless in Mode 0, the external data bus is not valid during MPU read cycles of internalloca­

tions. 

When examining the cycle-by-cycle description, the reader should note·that the address bus always 
provides "Op Code Address" and "Op Code Address + 1" during the first two cycles of every 
MC6801 instruction. While this may appear unusual, the explanation is quite simple: when the "Op 
Code Address + 1" appears on the Address Bus, the MPU has not yet decoded the operation code to 
determine the addressing mode of the instruction. The reader should also be able to recognize idle 
bus cycles such as the last eight cycles of the MUL instruction. 

The sample instruction sequence presented in Figure 3-31 is included to illustrate the bus traffic on a 
cycle-by-cycle basis for Mode 1 where the program resides in external memory at $1000. If it was 
resident in the ROM at, for example, $F800, the bus activity would be identical to that shown in 
Figure 3-25 except: (1) the column for lOS is not applicable, and (2) the external address bus would 
be identical to the internal address bus. If the reader is not famliar with the instruction set, perhaps 
it would be wise to skip this section and return to it after reading Chapter 4. 

3-45 



1. Instruction Sequence 

Address Machine Code Label Operation Operand -----
ORG $1000 

1000 86 AA LOOP LDAA #$AA 
1002 97 80 STAA $80 
1004 9680 LDAA $80 
1006 B701 00 STAA $100 
1009 B601 00 LDAA $100 
100C 20 F2 BRA LOOP 

2. Bus Activity when Executing the Instruction Sequence (For Mode 1) 

Internal Internal External External 
Address Data Address Data R/W 

Bus Bus Bus Bus 

1000 86 1000 86 1 
1001 AA 1001 AA 1 

1002 97 1002 97 1 
1003 80 1003 80 1 
0080 AA 0080 AA 0 

1004 96 1004 96 1 
1005 80 1005 80 1 
0080 AA 0080 .. 1 

1006 B7 1006 B7 1 
1007 01 1007 01 1 
1008 00 1008 00 1 
0100 AA 0100 AA 0 

1009 B6 1009 B6 1 
100A 01 100A 01 1 
100B 00 100B 00 1 
0100 AA 0100 AA 1 

100C 20 100C 20 1 
1000 F2 100B F2 1 
FFFF (FFFF) FFFF (FFFF) 1 

" •• " indicates that the Port 3 Data Bus drivers are held in the high impedance state. 

"(FFFF)" indicates the contents of location $FFFF. 

Figure 3·31. External Bus - Expanded Multiplexed Mode 



CHAPTER 4 
THE MC6801 MICROPROCESSOR UNIT (MPU) 

4.0 INTRODUCTION 

The Microprocessor Unit (MPU) is that portion of the MC6801 which executes the instruction set 
and can be considered an enhanced version of the MC6800. Several new instructions have been add­
ed and its internal organization has been improved to yield greater throughput for many instruc­
tions. Both the source and object code of the MC6800 are upward compatible with the MC6801. In­
struction cycle counts, however, have been reduced for many instructions. 

A programming model of the MC6801 is shown in Figure 4-1. The MPU includes two 8-bit ac­
cumulators, A and B, which can be concatenated to form a double byte accumulator referred to as 
accumulator D or A:B where accumulator A contains the most significant byte. The MPU also in­
cludes a 16-bit Index Register, a 16-bit Stack Pointer, a 6-bit Condition Code Register, and a 16-bit 
Program Counter. The MC6801 programming model is identical to the model for the MC6800 ex­
cept that the two accumulators can be concatenated for double byte instructions. 

~ A aU7 B ~ 6-Bit Accumulators A and B 
: - -- -- --- - D' ------ - - - ; Or l6-Bit Double Accumulator D 

... 1'_5 _______ X ________ Ollndex Register (X) 

... 1'_5 _______ S_P ______ ...-...ol Stack Pointer (SP) 

... 115 ________ P_C ______ ...-...01 Program Counter (PC) 

7 ° 
Condition Code Register (CCR) 

Carry / Borrow from M S B 
Overflow 

'---- Zero 

'----- Negative 
1------- Interrupt 

'-------- Half Carry (From Bit 3) 

Figure 4·1. MC6801 MPU Programming Model 

4-1 



This chapter is concerned with the definition and application of the MC6801 instruction set and 
assumes that the reader has no experience with the MC6800. However, many comparisons between 
the two MPUs are offered for the benefit of those readers who are familiar with the MC6800. Before 
beginning a detailed discussion of the instruction set, however, it is first necessary to introduce a 
concept which will be used extensively in this discussion: symbolic addressing. 

While entire programs can be written in the MC6801 natural machine code language, it is usually a 
tedious and error-prone operation.· It is much more convenient to prepare a program using 
mnemonics and symbols with which to reference both machine operations and memory locations. 
The resultant program can then be processed by yet another program - called an Assembler -
which will interpret the symbols and produce equivalent MC6801 machine code. The use of symbols 
to act as surrogates for actual memory locations is known as symbolic addressing. This discussion 
will utilize the symbolic addressing capability of the MC6801 Assembly Language as the vehicle on 
which to base this MPU discussion. 

The reader should be advised, however, that while the MC6801 machine code is fixed, assembly 
language can vary according to the whims of the programmer writing the assembler program. This 
discussion uses the assembly language which is compatible with Motorola's M6800 family 
assemblers and is intended to be supplemented with the MDOS Macroassembler Reference Manual 
[Publication No. M68MASR(D)]. 

4.1 ASSEMBLER SOURCE STATEMENTS 

While programs can be written in the MC6801 machine code language, there is no convenient 
method available to associate the operations with their corresponding machine code value. For this 
reason, machine instructions are assigned a three or four letter mnemonic which is intended to be 
suggestive of its operation. The fundamental entity in an assembly language program is the "state­
ment" which can be translated into no more than one machine instruction. A program is written as 
a series of statements using symbolic language. The symbols can be manually translated into 
machine code using a table of mnemonics and symbols and their corresponding machine code. 
Typically, however, the translation is performed by an Assembler. 

During the process of assembly, each statement invoking a machine instruction is converted to one, 
two or three bytes of machine code depending upon the addressing mode of the instruction. A 
special type of statement, an assembly directive, is useful in controlling and documenting the pro­
gram but generates no machine code. Typical assembler directives include PAGE (go to top of ne?'t 
page), ORG (set assembler location counter), and SPC (space). These and additional assembler 
directives are defined in the Macroassember Reference Manual. 

An assembly language statement consists of one to four fields: label,operatiQn, operand, and com­
ment. An optional fifth field, a sequence number, can also be included but is omitted in this discus­
sion. The four fields are separated by one or more spaces as illustrated in the following statement: 

Machine Code Label Operation Comments 

7D 10 00 BEGIN! TST DATA TEST BYTE AT DATA 

4-2 



This instruction causes the MPU to test the contents of the memory location associated with the 
symbol, DATA, and set the Condition Code Register bits accordingly. The corresponding three 
bytes of machine code are also shown (in hexadecimal) where DATA is located at 1000 (hex). The 
machine code is the result of translation and is not part of the statement. 

Every statement must include at least a mnemonic in the operation field. A symbol in the label field 
is required if the location is to be symbolically addressed in the operand field of another instruction. 
An operand field could be required depending upon the type of instruction. The comment field is 
always optional - at the convenience of the programmer - for describing and documenting the 
program. 

4.1.1 Labels 

Labels can correspond with either a specific numerical value (Equate directive) or the address of a 
memory location. The memory location can represent the destination of a branch instruction or the 
start of a data area. This use of symbolic references to memory allows statements to be written 
without specifying actual memory locations. For instance, the symbol, DATA, in the above example 
can reside anywhere in memory. An entry in the label field is required for all statements which are 
the destination of jump and branch instructions and in statements using the EQU (Equate) directive. 
In the above example, BEGINI serves to identify the location if it is used as the destination of a 
branch or jump instruction located elsewhere in the program. That instruction will, in turn, have 
BEGINI in its operand field. 

Labels consist of one to six characters using any alphanumeric combination of the letters A-Z, digits 
0-9, or the two special characters, "." (period) and "$" (dollar). The first character in any label, 
however, must be either a letter or the character, ".". Exceptions include three single character 
labels, A, B, and X which are reserved by the assembler for referencing accumulator A, accumulator 
B, and the Index Register, respectively. Note that "D" is not a reserved symbol. The programmer 
cannot put a space before the D in the three double accumulator shift instructions (LSLD, ASLD, 
LSRD) in order to avoid ambiguities with the single byte shift instruction and a symbol called "D." 

If the label field is included, it must begin in the first character position of the statement. Two other 
characters which can also occupy this position have special meaning to the Assembler as indicated 
below. 

First Character 

(blank) 
• 
A-Z, "." 

Assembler Interpretation 

No label field 
Comment statement; print only 
First character of label field 

The Macroassembler Reference Manual should be consulted for more detailed information. 

4.2 ADDRESSING MODES 

Memory references always appear in the operand field of a statement where the particular method 
used is called an "addressing mode." The number of different addressing modes is often an in­
dicator of the flexibility and power of the processor instruction set. The MC6801 has a total of six 
addressing modes: (1) inherent, (2) immediate, (3) extended, (4) direct, (5) relative and (6) indexed. 

4-3 



Each of the addressing modes (except inherent) results in an internally generated double byte value 
referred to in this discussion as the instruction "effective address." This is the resultant value of a 
statement operand field and is the value which appears on the address bus during the memory 
reference cycle. The addressing mode is an implicit part of every MC6801 opcode. 

4.2.1 Inherent Addressing Mode 

Many MC6801 instructions do not require an operand because the effective address is inherent in the 
instruction itself. For instance, the instruction ABA causes the MPU to add the contents of ac­
cumulators A and B and place the result in accumulator A. The instruction INCB causes the con­
tents of accumulator B to be increased by one. Similarly, INX, causes the Index Register to be in­
creased (incremented) by one. These three examples of inherent instructions do not require an 
operand. The statements and machine code generated for them are shown below. 

Machine Code 
IB 
SC 
08 

Label Operation 
ABA 
INCB 
INX 

Operand Comments 
A+B-A 
B+I-8 
X+I-X 

The reader should note that all inherent instructions require only a single byte of machine code and 
have no operand field in the statement. 

4.2.2 Immediate Addressing Mode 

In the immediate addressing mode, the machine code byte(s) which follow the operation code is the 
value of the statement operand field rather than the address of a value. The effective address of the 
instruction in this case is specified by the "#" sign and implicitly points to the byte following the op­
code. The immediate value is limited to either one or two bytes depending only on the size of the 
register also included in the statement. Examples of several statements which use the immediate ad­
dressing mode are shown below. Symbols used in these statements are defined immediately after the 
examples. 

Machine Code Label 
86 16 
C8 34 
81 24 

86 07 
CC 12 34 
CC 00 07 
86 12 
86 41 
CE 10 00 

CAT 

Operation 
LDAA 
EORB 
CMPA 
EQU 
LDAA 
LDD 
LDD 
LDAA 
LDAA 
LDX 

Operand Comments 
#22 22-ACCA 
#$34 XOR ($34,ACCB) 
#070100100 CMPA #$24 
7 CAT SAME AS7 
#CAT 7-ACCA 
#$1234 

#7 7 - ACCA:ACCB 
#@22 OCTAL 
#'A ASCII 
#TABLE ADDR (TABLE)-X 

The reader should examine the above machine code and note that the value of each statement 
operand field appears in the byte(s) immediately following the opcode. Note also that the operand 
field for immediate addressing begins with the character., "#." The "#" is used by the assembler to 
detect the immediate mode of addressing. 

4-4 



A variety of symbols and expressions can be used following the "#" sign. The Macroassembler 
Reference Manual should be consulted for a complete list of possibilities. The prefixes used in the 
above example have the following meanings. 

Prefix Meaning 
None Decimal 

$ Hexadecimal 
@ Octal 
0,10 Binary 

Single ASCII character 

In the last statement of the above example, the immediate bytes consist of the "value" of the sym­
bol, TABLE. The value of any symbol is equalto its address except when it is used in the label field 
of an EQU (Equate) statement. The value of a symbol appearing in label field of an EQU directive is 
defined by the value in the operand field of the statement. 

4.2.3 Direct and Extended Addressing Modes 

In the extended addressing mode, the effective address of the instruction appears explicitly in the 
two bytes following the opcode. Therefore, the length of all instructions using the extended address­
ing mode is three bytes: one for the opcode and two for the effective address. 

In the direct addressing mode, the most significant byte of the effective address is assumed to be 
zero ($00) and the least significant byte is specified in the byte following the operation code. The 
length of all instructions using the direct addressing mode is two bytes: one for the opcode and one 
for the least significant byte of the effective address. Thus, the extended and direct addressing 
modes differ in two respects: (1) the range of memory that can be accessed and (2) the length of the 
instruction. Using direct addressing, an instruction can reference memory only within the range 
$OOOO-$OOFF whereas in the extended mode of addressing the entire memory space can be accessed. 

The addressing mode (with respect to direct or extended) is selected by the assembler although the 
programmer can indirectly affect its decision by judicious placement of statements. If the symbol 
being referenced in the operand field appears in the label field after the current statement (forward 
reference), the extended mode of addressing will be selected regardless of the symbol value. If, 
however, the label has already appeared in the label field (backward reference) then the choice 
depends only on the value of the symbol. If it is less than $100 then the direct mode of addressing 
will be used; otherwise, the assembler will select the extended mode of addressing. 

There are some instructions which provide an extended addressing mode but not a direct mode. 
These instructions are members of a group called "read-modify-write" instructions· which operate 
directly on memory, M, and have the form 

< operation> M - M 

The instructions INC, DEC, CLR, and COM are members of this group: each has an extended ad­
dressing mode but no direct mode. The following sequence illustrates the direct and extended mode 
of addressing. 

·Opcodes $40 to $7F (except JMP) in Appendix B. 

4-5 



Machine Code 
B3 00 12 

93 12 
7F 00 12 

Label Operation 
SUBD 

CAT EQU 
SUBD 
CLR 

Operand 
CAT 
$12 
CAT 
CAT 

Comments 
FWD REF TO CAT 
DEFINE CAT=$12 
BKWD REF TO CAT 
EXTENDED ONLY 

In the above sequence, the first reference to the symbol, CAT, was a forward reference and the 
assembler selected the extended addressing mode. The second reference was a backward reference 
which enabled the assembler to know its value when· processing the statement and it selected the 
direct addressing mode. Note that while the last reference to CAT is also a backward reference to a 
symbol in the direct area, the extended addressing mode was selected because the particular instruc­
tion does not have a direct addressing mode. 

4.2.4 Relative Addressing Mode 

In both the direct and extended modes, the address contained in the operand byte(s) is an absolute 
numerical address. The relative addressing mode is used only for branch instructions and specifies a 
location relative to the current value of the Program Counter. The Program Counter will always 
point to the next statement in line while the addition is being performed. A zero offset byte, 
therefore, will result in no branch regardless of the test involved. 

Branch instructions always generate two bytes of machine code: one for the opcode and one for the 
relative offset. Because it is desirable to branch in either direction, the offset byte is a signed two's 
complement offset with a range of - 128 to + 127 bytes. The effective branch range, however, must 
be computed with respect to the address of the next instruction in line. A branch instruction consists 
of two bytes which always places the next location at PC + 2. If R is defined as the address of the 
branch destination, the range is then given by: 

(PC+2)-128~R~(PC+2)+ 127 
or 
PC-126~R~PC+ 129 

This result indicates that the destination of the branch instruction must be within -126 to + 129 
memory locations of the first byte of the branch instruction itself. If it is desired to transfer control 
beyond this range, then the JMP or JSR instruction must be used. Examples of relative addressing 
are shown in the following sequence. 

Machine Code Label Operation Operand Comments 
24 08 BCC LBCC L-O-N-G BCC 
20 00 THERE BRA WHERE FORWARD BRANCH 
22 FC WHERE BHI THERE BACKWARD BRANCH 
27 FE HANG BEQ HANG BRANCH TO SELF 
27 FE BEQ * *MEANS "HERE" 
7E 10 00 LBCC JMP $1000 
8D F7 BSR HANG 

4-6 



4.1.5 Indexed Addressing Mode 

With indexed addressing, the effective address is variable and depends upon two factors: (1) the cur­
rent contents of the Index Register and (2) the offset contained in the second byte of the instruction. 
In microprocessor-based systems, instructions usually reside in Read-Only-Memory (ROM). 
Therefore, the offset in the instruction should be considered a static value determined at assembly 
time rather than during program execution. The use of a dynamic single byte offset is facilitated 
with the use of the ABX (Add ACCB to Index Register) instruction. 

Every indexed'instruction requires two bytes regardless of the value of the offset. If no offset is 
specified or desired, the instruction will contain $00 in the offset byte. The offset is an unsigned 
single byte value which when added to the current value in the Index Register yields the effective ad­
dress of the instruction leaving the Index Register unchanged. Note that because the offset byte is 
unsigned, a negative offset cannot be specified. 

Examples of the indexed addressing mode are shown in the following statements where "EA" in­
dicates "effective address." 

Machine Code Label Opention Opennd Comments 
E3 00 ADDD X EA = (X) 
E3 00 ADDD ,X EA=(X) 
E3 00 ADDD 0, X EA=(X) 
E3 04 ADDD 4, X EA=(X)+4 

CAT EQU 7 DEFINE CAT = 7 
E307 ADDD CAT,X EA=(X)+7 
E322 ADDD $22, X EA=(X)+$22 
E322 ADDD CAT*SI2 + 6, X EA = (X) + (CAT*SI2 + 6) 

4.3 MC6801 INSTRUCTION SET 

The MC6801 instruction set is described in detail in Appendix A. This section will provide a brief in­
troduction and discuss its use in developing MC6801 programs. 

The instruction set is shown in summary form in Figure 4-2. Instruction sets are often divided into 
three general classifications: (I) memory reference, so called because they access memory; (2) in­
herent instructions which function without a memory reference, and (3) 1/0 instructions for 
transferring data between the MPU and peripheral devices. A summary of MC6801 instructions 
which are different from the MC6800 is shown in Table 4-1 for the convenience of those readers who 
desire a comparison of the two instruction sets. 

For many instructions, the MC6801 performs the same operation using either its internal ac­
cumulators or external memory locations. In addition, M6800 Family parts allow the MPU to treat 
peripheral devices nearly like other memory locations and no specific 1/0 instructions are required. 
Because of these features, another classification is considered more suitable for introducing the 
MC6801 instruction set: (1) Condition Code Register instructions, (2) Accumulator and Memory in­
structions, and (3) Program Control instructions. 

4-7 



Accumulator & Immed Direct Index Extend Inher Boolean Condition Codes 

Memory ,Operations 
MNE 

OP , OP , OP , OP , OP , Expression H I N Z V C - - - - -
Add Acmltrs ABA 1B 2 1 A+B-A I e I I I I 
Add B to X ABX 3A 3 1 oo:B+X-X e e e e e e 

Add with Carry ADCA 89 2 2 99 3 2 A9 4 2 B9 4 3 A+M+C-A I e I I I I 
ADCB C9 2 2 09 3 2 E9 4 2 F9 4 3 B+M+C-B I e I I I I 

Add ADDA 8B 2 2 9B 3 2 AB 4 2 BB 4 3 A+M-A I e I I I I 
ADDB CB 2 2 DB 3 2 EB 4 2 FB 4 3 B+M-A I e I I I I 

Add Double ADDD C3 4 3 D3 5 2 E3 6 2 F3 6 3 D+M:M+1-D e e I I I I 
And ANDA 84 2 2 94 3 2 A4 4 2 B4 4 3 AeM-A e e I I R e 

ANDB C4 2 2 D4 3 2 E4 4 2 F4 4 3 BeM-B e e I I R e 

Shift Left, ASL 68 6 2 78 6 3 

~ :} 
e e I I I I 

Arithmetic ASLA 48 2 0-1 I! I!! I! 1--0 e e I I I I 
ASLB 58 2 

C b7 bO e e I I I I 
O~IT"""TI-o 

Shift Left Dbl ASLD 05 3 1 C b15 bO e e I I I I 
Shift Right, ASR 67 6 2 77 6 3 

~I~~o-~ 
e e I I I I 

Arithmetic ASRA 47 2 e e I I I I 
ASRB 57 2 e e I I I I 

Bit Test BITA 85 2 2 95 3 2 A5 4 2 B5 4 3 AeM e e I I R e 

BITB C5 2 2 D5 3 2 E5 4 2 F5 4 3 BeM e · I I R · Compare Acmltrs CBA 11 2 1 A-B · · I I I I 
Clear CLR 6F 6 2 7F 6 3 oo-M e · R S R R 

CLRA 4F 2 1 oo-A · · R S R R 
CLRB 5F 2 1 oo-B · · R S R R 

Compare CMPA 81 2 2 91 3 2 A1 4 2 B1 4 3 A-M · · I I I I 
CMPB C1 2 2 D1 3 2 E1 4 2 F1 4 3 B-M e e I I I I 

1's Complement COM 63 6 2 73 6 3 M-M · · I I R S 
COMA 43 2 1 A-A · · I I R S 
COMB 53 2 1 a-B · e I I R S 

Decimal Adj, A DAA 19 2 1 Adj binary sum to BCD · · I I I I 

Decrement DEC 6A 6 2 7A 6 3 M-1-M · · I I I e 

DECA 4A 2 1 A-1-A · · I I I · DECB 5A 2 1 B-1-B e · I I I · Exclusive OR EORA 88 2 2 98 3 2 A8 4 2 B8 4 3 A$M-A · · I I R.· 
EORB CB 2 2 D8 3 2 E8 4 2 F8 4 3 B$M-B · · I I R e 

Increment INC 6C 6 2 7C 6 3 M+1-M e · I I I · INCA 4C 2 1 A+1-A · · I I I · INCB 5C 2 1 B+1-B · · I I I · Load Acmltrs LDAA 86 2 2 96 3 2 A6 4 2 B6 4 3 M-A · · I I R e 

LDAB C6 2 2 D6 3 2 E6 4 2 F6 4 3 M-B · e I I R e 

Load Double LDD CC 3· :3 DC 4 2 EC 5 2 FC 5 3 M:M+l-D · · I I R · Logical Shift, LSL 65 6 2 78 6 3 

~ I} · · I I I I 
Left LSLA 48 2 0 i I ! I II i ! I 0 · · I I I I C b7 bO 

LSLB 58 2 e · I I I I 
LSLD 05 3 1 \?-IT •••... TI-o 

b15 bO · · I I I I 
Shift Right, LSR 64 6 2 74 6 3 

~ } · · R I I I 
Logical LSRA 44 2 

0-' iii I! II r_O · · R I I I b7 bO C 

LSRB 54 2 
0-0::"-;-:-" IJ-O · · R I I I 

LSRD 04 3 1 b15 bC C · · R I I I 
Multiply MUL 3D 10 1 A"B-D e · e · e I 
2's Complement NEG 60 6 2 70 6 3 oo-M-M · · I I I I 
(Negate) NEGA 40 2 1 oo-A-A · · I I I I 

NEGB 50 2 1 00- B-B · · I I I I 
No Operation NOP 01 2 1 PC+ 1-PC · · · · e e 

Inclusive OR ORAA 8A 2 2 9A 3 2 AA 4 2 BA 4 3 A+M-A · · I I R · ORAB CA 2 2 DA 3 2 EA 4 2 FA 4 3 B+M-B · · I I R · Push Data PSHA 36 3 1 A-Stack · · · e e e 

PSHB 37 3 1 B-Stack · · · e e e 

Pull Data PULA 32 4 1 Stack-A · · · · e e 

PULB 33 4 1 Stack-B e · · · e e 

Rotate Left ROL 69 6 2 79 6 3 

~ } 
e · I I I I 

ROLA 49 2 D-LIlLLLLD 0 e · I I I I C b7 - bO c 
ROLB 59 2 · e I I I I 

Rotate Right ROR 66 6 2 76 6 3 

~ } 
e · I I I I 

RORA 46 2 O-o:IIIIID-O e · I I I I C b7 - bO c 
RORB 56 2 · · I I I I 

Subtract Acmltr SBA 10 2 1 A-B-A · · I I I I 
Subtract with SBCA 82 2 2 92 3 2 A2 4 2 B2 4 3 A-M-C-A · · I I I I 

Carry SBCB C2 2 2 D2 3 2 E2 4 2 F2 4 3 B-M-C-B · · I I I I 
Store Acmltrs STAA 97 3 2 A7 4 2 B7 4 3 A-M · · I I R · STAB D7 3 2 E7 4 2 F7 4 3 B-M · · I I R · STD DD 4 2 ED 5 2 FD 5 3 D-M:M+1 · · I I R · Subtract SUBA 80 2 2 90 3 2 AO 4 2 BO 4 3 A-M-A · · I I I I 

SUBB CO 2 2 DO 3 2 EO 4 2 FO 4 3 B-M-B e · I I I I 
Subtract Double SUBD 83 4 3 93 5 2 A3 6 2 B3 6 3 D-M:M+1-D · · I I I I 
Transfer Acmltr TAB 16 2 1 A-B · · I I R e 

TBA 17 2 1 B-A e · I I R · Test, Zero or TST 6D 6 2 7D 6 3 M-oo e · I I R R 
Minus TSTA 4D 2 1 A-oo · · I I R R 

TSTB 5D 2 1 B-oo · · I I R R 

Figure 4·2. MC6801 Instruction Set Summary 

4-8 



Jump and Branch MNE 
Relative Direct Index Extend Inherent Condition Codes 

Operations Op # Op # Op 
Branch Test - - # Op - - # Op - # H I N Z V C 

Branch Always BRA 20 3 2 None • • • • • • 
Branch If Carry Clear BCC 24 3 2 C=O • • • • • • 
Branch If Carry Set BCS 25 3 2 C=1 • • • • • • 
Branch If = Zero BEG 27 3 2 Z=1 • • • • • • 
Branch If~Zero BGE 2C 3 2 NaV=O • • • • • • 
Branch If>Zero BGT 2E 3 2 Z+(NaV)=O • • • • • • 
Branch If Higher BHI 22 3 2 C+Z=O • • • • • • 
Branch If :s Zero BlE 2F 3 2 Z+(NaV)=1 • • • • • • 
Branch If lower or Same BlS 23 3 2 C+Z=1 • • • • • • 
Branch If < Zero BlT 2D 3 2 NaV=1 • • • • • • 
Branch If Minus BMI 2B 3 2 N=1 • • • • • • 
Branch If Not Equal Zero BNE 26 3 2 Z=O • • • • • • 
Branch If Overflow Clear BVC 28 3 2 V=O • • • • • • 
Branch If Overflow Set BVS 29 3 2 V=1 • • • • • • 
Branch If Plus BPl 2A 3 2 N=O • • • • • • 
Branch Never BRN 21 3 2 None • • • • • • 
Branch If Higher or Same BHS 24 3 2 C=O • • • • • • 
Branch If lower BlO 25 3 2 C=1 • • • • • • 
Branch to Subroutine BSR 8D 6 2 • • • • • • 
Jump JMP 6E 3 2 7E 3 3 • • • • • • 
Jump to Subroutine JSR 90 5 2 AD 6 2 BD 6 3 • • • • • • 
No Operation NOP 01 2 1 • • • • • • 
Return from Interrupt RTI 3B 10 1 I I I I I I 
Return from Subroutine RTS 39 5 1 • • • • • • 
Software Interrupt SWI 3F 12 1 • S • • • • 
Wait for Interrupt WAI 3E 9 1 • • • • • • 

Index Register MNE 
Immed Direct Index Extend Inherent Boolean Condition Codes 

Operations Op - # Op - # Op - # Op - # Op - # Expression H I N Z V C 

Compare Index Register CPX 8C 4 3 9C 5 2 AC 6 2 BC 6 3 X-M:M+1 • · I I I I 
Decrement Index Register DEX 09 3 1 X-1-X • • · I • • 
Increment Index Register INX 08 3 1 X+1-X · • • t • • 
load Index Register lDX CE 3 3 DE 4 2 EE 5 2 FE 5 3 M:M+l-X • • t t R • 
Store Index Register STX DF 4 2 EF 5 2 FF 5 3 X-M:M+1 • • t t R • 
Add B to Index Register ABX 3A 3 1 OO:B+X-X • • • • • • 
Push Index Register PSHX 3C 4 1 X-Stack • • • • • • 
Pull Index Register PUlX 38 5 1 Stack-X • • • • • • 
Transfer X to S P TXS 35 3 1 X-l-SP • • • • • • 
Transfer SP to X TSX 30 3 1 SP+1-X • • • • • • 

Stack Pointer 
MNE 

Immed Direct Index Extend Inherent Boolean Condition Codes 

Operations Op - # Op - # Op - # Op - # Op - # Expression H I N Z V C 
Decrement Stack Pointer DES 34 3 1 SP-1-SP • • • • • • 
Increment Stack Pointer INS 31 3 1 SP+ 1- SP • • • • • • 
load Stack Pointer lDS 8E 3 3 9E 4 2 AE 5 2 BE 5 3 M:M+1-SP • • I t R • 
Store Stack Pointer STS 9F 4 2 AF 5 2 BF 5 3 SP-M:M+1 • • t I R • 
Transfer X to SP TXS 35 3 1 X-1-SP • • • • • • 
Transfer SP to X TSX 30 3 1 SP+1-X · • • • • • 

Condition Code Inherent Boolean Condition Codes 
Register Operations 

MNE 
Op - # Operation H I N Z V C 

Clear Carry ClC OC 2 1 O-C • • • • • R 
Clear Interrupt Mask CLI OE 2 1 0-1 • R • • • • 
Clear Overflow ClV OA 2 1 O-V • • • • R • 
Set Carry SEC OD 2 1 1-C • • • • • S 
Set Interrupt Mask SEI OF 2 1 1-1 • S • • • • 
Set Overflow SEV OB 2 1 1-V • • • • S • 
Accumulator A - CCR TAP 06 2 1 A-CCR I I t t t t 
CCR - Accumulator A TPA 07 2 1 CCR-A • • • • • • 

lEGEND: 

OP Operation Code (Hexadecimal) + Boolean Inclusive OR H Half Carry From Bit 3 S Set Always 

Number of MPU Cycles a Boolean Exclusive OR I Interrupt Mask Affects the Particular CCR Bit 

# Number of Program Bytes M Memory Contents Z Zero (Byte) Not Affected 

+ Arithmetic Plus A Accumulator A V Overflow (2's Complement) CCR Condition Code Register 

Arithmetic Minus B Accumulator B C Carry From Bit 7 Concatenate 

• Boolean AND Transfer Into R Reset (Clear) Always D A:B 

Figure 4-1. MC6801 Instruction Set Summary (Continued) 

4-9 



Table 4-1. MC6801 Additional Instructions 

Instruction Description 

ABX Unsigned addition of Accumulator B to Index Register 

AOOD Adds (without carry) the double accumulator to memory and leaves the sum in the double accumulator 

ASLD or Shifts the double accumulator left (towards MSB) one bit; the LSB is cleared and the MSB is shifted into the C-bit. 
LSLD 

BHS Branch if Higher or Same; Unsigned conditional branch (same as BCC) 

BLO Branch if Lower; Unsigned conditional branch (same as BCS) 

BRN Branch Never 

JSR Additional addressing mode: direct 

LOD Loads double accumulator from memory 

LSL Shifts memory or accumulator left (towards MSB) one bit: the LSB is cleared and the MSB is shifted into the C-bit (same 
as ASU 

LSRD Shifts the double accumulator right (towards LSB) one bit; the MSB is cleared and the LSB is shifted into the C-bit. 

MUL Unsigned mUltiply: multiplies the two accumulators and leaves the product in the double accumulator. 

PSHX Pushes the Index Register on the stack 

PULX Pulls the Index Register from the stack 

STO Stores the double accumulator in memory. 

SUBD Subtracts memory from the double accumulator and leaves the difference in the double accumulator. 

CPX Internal processing modified to permit its use with any conditional branch instruction. 

4.3.1 Condidon Code Register Instrucdons 

The Condition Code Register (CCR) is discussed first because it is affected during the execution of 
many other instructions in addition to the specific operations shown in Figure 4-2. The five flag bits 
and one control bit 'of the CCR are defined in Figure 4-3. 

The instructions shown in Figure 4-4 can be used to directly manipulate the CCR. In addition, the 
MPU automatically sets or clears the appropriate status bits as other instructions are executed. The 
effect on the condition code register of these instructions will be indicated as they are introduced 
and is also shown in the Instruction Set Summary of Figure 4-2. 

Instructions directly affecting the I-bit (such as CLI and SEI) affect the interrupt structure and are 
discussed in more detail in Chapter 5. Bits 6 and 7 of the CCR are effectively read-only bits fIXed at 
" 1" and have no effect on processor operation. 

4.3.2 Accumulator and Memory Instrucdons 

For familiarization purposes, Accumulator and Memory instructions can be further subdivided into 
four categories: (1) Arithmetic Operations; (2) Logic Operations; (3) Data Testing; and (4) Data 
Handling. 

4-10 



b5 b4 b3 b2 b1 bO 

H N Z v C 

H = Half-Carry; set whenever a carry from b3 to b4 of the result 
is generated by ADD, ABA, ADC; cleared if no b3 to b4 
carry; not affected by other instructions. 

I = Interrupt Mask; set by hardware or software interrupt or 
SEI instruction; cleared by CLI instruction. (Normally not 
used in arithmetic instructions.) Restored to a zero as a 
result of an RTI instruction if 1m stored on the stack is low. 

N = Negative, set if high order bit (b7) of result is set; cleared 
otherwise. 

Z= Zero; set if result = 0; cleared otherwise. 

V = Overflow; set if there was arithmetic overflow as a result of 
the operation, cleared otherwise. 

C = Carry; set if there was a carry from the most significant bit 
(b7) of the result; cleared otherwise. For subtraction, the 
C-bit represents the binary borrow. 

Figure 4·3. Condition Code Register Bit Definitions 

Boolean 
CCR 

Instructions Mnemonic 5 4 3 2 1 0 
Operation 

H I N Z V C 
Clear Carry ClC O-C - - - - - R 
Clear Interrupt Mask CLI 0-1 - R - - - -Clear Overflow ClV O-V - - - - R -Set Carry SEC 1-C - - - - - S 
Set Interrupt Mask SEI 1-1 - S - - - -Set Overflow SEV 1-V - - - - S -ACCA-CCR TAP ACCA-CCR -(D-
CCR-ACCA TPA CCR-ACCA -1-1-,-1-1-
See Figure 4-2 for legend. 

<D (ALL) Set according to the contents of Accumulator A. 

Figure 4·4. Condition Code Register Instructions 

4.3.2.1 ARITHMETIC INSTRUCTIONS. The arithmetic instructions and their effect on the CCR 
are shown in Figure 4-5. The MC6801 supports arithmetic operations with single byte values using a 
single accumulator or double byte values using the D accumulator. Multibyte arithmetic is sup­
ported through memory reference instructions. 

Number systems directly supported include two's complement binary, unsigned binary, and packed 
BCD. Further applications of the arithmetic instructions are included in Section 4.4.4. 

4.3.2.2 LOGIC INSTRUCTIONS. The logic instructions and their effect on the CCR are shown in 
Figure 4-6. The COM instruction differs from the other logic instructions in two respects: (1) it can 
be used to operate directly on memory in addition to the accumulators, and (2) it always sets the 
carry bit. 

4-11 



Boolean 1 Arithmetic 
Instructions Mnemonic 

Operation 

Add ADDA A+M-A 
ADDB B+M-B 

Add Accumulators ABA A+B-A 
Add Double ADDD D+M:M+1-D 
Add with Carry ADCA A+M+C-A 
ADCB ADCB B+M+C-B 
Complement,2's NEG OO-M-M 

(Negate) NEGA OO-A-A 
NEGB OO-B-B 

Decimal Adjust, A DAA Converts Binary Add. of BCD 
Characters into. BCD Format 
(See Figure 4-22) 

Subtract SUBA A-M-A 
SUBB B-M-B 

Subtract Accumulators SBA A-B-A 
Subtract Double SUBD D-M:M+1-D 
Subtract with Carry SBCA A-M-C-A 

SBCB B-M-C-B 
Multiply MUL A*B-D 

See Figure 4-2 for legend. 

(Bit set if test is true and cleared otherwise) 
<D (Bit V) Test: Result= 10000000? 

Q) (Bit C) Test: Result*OOOOOOOO? 

CCR 
5 4 3 2 
H I N Z 

t • t t 
t • t t 
t • t t 
• • t t 
t • t t 
t • t t 
• • t t 
• • t t 
• • t t 
• • t t 

• • t t 
• • t t 
• • t t 
• • t t 
• • t t 
• • t t 
• • • • 

@ (Bit C) Test: Decimal value of most significant BCD Character greater than nine? 
(Not cleared if previously set.) 

Figure 4-5. Arithmetic Instructions 

Boolean 1 Arithmetic 
CCR 

Instructions Mnemonic 5 4 3 2 1 0 
Operation H I N Z V C 

And ANDA A·M-A • • t t R • 
ANDB B·M-B • • t t R • 

Complement, 1's COM M-M • • t t R S 
COMA A-A • • t t R S 
COMB B-B • • t t R S 

Exclusive OR EORA AeM-A • • t t R • 
EORB BeM-B • • t t R • 

Or, Inclusive ORAA A+M-A • • t t R • 
aRAB B+M-B • • t t R • 

See Figure 4-2 for Legend 

Figure 4-6. Logic Instructions 

4-12 

1 0 
V C 
t t 
t t 
t t 
t t 
t t 
t t 

l<t (2) 

la (2) 
(2) 

t @ 

t t 
t t 
t t 
t t 
t t 
t t 
• t 



A value can be complemented without affecting the carry bit by using the EOR instruction. This is 
shown in the following example which illustrates complementing the value in the A accumulator two 
different ways. 

Machine Code 
43 

Label Operation 

COMA 

Operand Comments 
C-BIT SET 

88 FF EORA #SFF C-BIT NOT AFFECTED 

4.3.2.3 DATA TEST INSTRUCTIONS. The data test instructions are shown in Figure 4-7. These 
instructions differ from logic instructions because they do not overwrite either memory or an ac­
cumulator with the result. Instead, their effect is to act only on the Condition Code Register. 

Boolean I Arithmetic 
CCR 

Instructions Mnemonic 5 4 3 2 1 0 
Operation 

H I N Z V C 

Bit Test BITA A-M - - I I R -BITB B-M - • I I R -Compare CMPA A-M - • I I I I 
CMPB B-M - - I I I I 

Compare Accumulators CBA A-B - - I I I I 
Test, Zero or Minus TST M-OO - - I I R R 

TSTA A-OO - - I I R R 
TSTB B-OO - - I I R R 

See Figure 4-2 for legend. 

Figure 4·7. Data Test Instructions 

Most of the data test instructions have an analogous logic instruction sequence which affects the 
CCR in a similar manner. The data test and corresponding logic instructions are shown below: 

Macbine Code Label Operation 
85 OF BITA 
84 OF ANDA 

81 OF CMPA 
80 OF SUBA 

11 CBA 
10 SBA 

4D TSTA 
8000 SUBA 

Operand 
#0701111 
#%1111 

#SF 
#SF 

Comments 
A·M 
A·M-A 

A-M 
A-M-A 

A-B 
A-B-A 

A-OO 
#0 A-OO-A 

It should be noted that the TST instruction clears the C-bit which may be undesirable within loops 
involving multi-byte arithmetic. The LOAA or LOAB instruction, however, can also be used to test 
memory locations without clearing the C-bit. Within the data test group, note that the TST instruc­
tion is the only one which can be used to directly reference memory. 

4-13 



4.3.2.4 DATA HANDLING INSTRUCTIONS. The Data Handling instructions are summarized in 
Figure 4-8. The reader should note several effects on the CCR from this set of instructions. First, 
note that the CLRA instruction also clears the carry bit which could cause some concern within 
multi-byte arithmetic loops. Accumulator A can also be cleared, however, using LDAA #Q without 
affecting the C-bit. 

Instructions Mnemonic Booleanl Arithmetic Operations 

Clear CLR OO-M 
CLRA OO-A 
CLRB OO-B 

Decrement DEC M-1-M 
DECA A-1-A 
DECB B-1-B 

Increment INC M+1-M 
INCA A+1-A 
INCB B+1-B 

Load Accumulator LDAA M-A 
LDAB M-B 
LDD M:M+1-D 

Push Data PSHA A-MSp, SP-1-SP 
PSHB B- MSp, SP-1- SP 

Pull Data PULA SP+1-SP, MSp-A 
PULB SP+1-SP, MSp-B 

Rotate Left ROL 

~l ROLA D--I 1 1 I 1 I I 1 I-D 
C b7 --- bO C 

ROLB 
Rotate Right ROR M 

1 RORA A D~I I I I I 1 I I I--D 
C b7 -- bO C 

RORB B 
Shift Left ASL, LSL M 

I In ASLA, LSLA A 0--1 1 I I I 1-- 0 
C b7 bO 

ASLB, LSLB B 
ASLD, LSLD D 1 2-bift······ Ifiio- 0 Shift Right, Arithmetic ASR M 

1:[1 I -ASRA A 1 1 I 1 II-D 

ASRB B 
b7 bO C 

Shift Right, Logical LSR 

~} Till LSRA o --I I 1 1 I--D 

LSRB b7 bO C --LSRD D o -- 0:. • • • • • • ::r::J - 0 
Store Accumulator STAA A-M b15 bO C 

STAB B-M 
STD D-M:M+1 

Transfer Accumulators TAB A-B 
TBA B-A 

@ (Bit V) Test: Operand = 10000000 prior to execution? 

(§) (Bit V) Test: Operand = 01111111 prior to execution? 

® (Bit V) Test: Set equal to result of N $ C after shift has occurred. 

See Figure 4-2 for legend. 

Figure 4-8. Data Handling Instructions 

4-14 

CCR 
5 4 3 2 1 0 
H I N Z V C 

• • R S R R 
• • R S R R 

• • R S R R 

• • l l ® • 
• • l l® • 
• • l l @ • 
• • l l ~ • • • l l • 
• • l l @ • 
• • l l R • 
• • l l R • 
• • l l R • 
• • • • • • 
• • • • • • 
• • • • • • 
• • • • • • 
• • l l ® l 
• • l l ® l 
• • l l ® l 
• • l l ® l 
• • l l ® l 
• • l l ® l 
• • l I ® l 
• • t l ® l 
• • l l ® l 
• • l l ® t 
• • t l ® l 
• • l l ® t 
• • t l ® t 
• • R l ® t 
• • R t ® t 
• • R t ® t 
• • R l <ID l 
• • l l R • 
• • l l R • 
• • l l R • 
• • l l R • 
• • t t R • 



It should also be noted that neither INC nor DEC affect the C-bit. It is intended that INC and DEC 
be used to control the loop counter variables within multi-byte arithmetic loops. It would, therefore, 
be inconsistent with this intention if these two instructions affected the carry bit. For this reason, 
INC and DEC have been included in the Data Handling instructions as opposed to the Arithmetic 
instructions. 

Although they do not affect the carry bit, the INC and DEC instructions can be used to perform 
multi-byte arithmetic when used with a suitable branch instruction. This is shown in the following 
examples where the first four sequences illustrate incrementing the double accumulator D and the 
second four sequences illustrate decrementing it. 

Machine Code Label Operation Operand Comments 
93 00 SUBD $0 D-( -1)-D 

* 
C3 00 01 ADDD #1 D+ I-D 

* 
CB 01 ADDB #1 B+ I-B 
89 00 ADCA #0 A-OO+C-A 

* 
SC INCB B+ I-B 
26 01 BNE NXT NO CARRY 
4C INCA A+ I-A 

* 
D3 00 NXT ADDD $0 D+( -1)-D 

* 
83 00 01 SUBD #1 D-I-D 

* 
CO 01 SUBB #1 B-I-B 
82 00 SBCA #0 A-OO-C-A 

* 
SD TSTB B - 00 
26 01 BNE NXT2 NO BORROW 
4A DECA A-I-A 
SA NXT2 DECB B-I-B 

In the preceding examples, the first and fifth instruction sequences (SUBD and ADDD) require only 
two bytes but it is probably not clear as to how they perform their respective operations. Addresses, 
$00 and $01, reference the two write-only Data Direction Registers for Port 1 and Port 2. When 
read, however, they always provide the result, $FF, which is actually the precharge of the internal 
Peripheral Data Bus (see Chapter 3)*. With respect to two's complement numbers, the MC6801 
double byte location $00:01 contains - 1. 

Finally, it should be mentioned that the Rotate instructions implement a 9-bit rather than an 8-bit 
rotate. The 9-bit operation facilitates rotation of multi-byte values. As an example, suppose the A 
accumulator and C-bit contained the values $AA and 1, respectively. After the RORA instruction is 
executed, the following situation would exist. 

C~k M b6 b5 b4 ~ b2 hl bO 
1 0101010 
o 1010101 

Before RORA 
After RORA 

*The Port 3 DDR does not always provide $FF as a result; therefore, it should not be used for this purpose. 

4-15 



Eight bit rotation (instead of 9-bit) for a single accumulator can be achieved by using the ap­
propriate three instruction sequence as shown in the following example. The first three instructions 
perform a left 8-bit rotation whereas the second sequence results in a right 8-bit rotation. 

Machine Code 
48 
24 01 
4C 

44 
24 02 
8A 80 

Label Operation 
ASLA 
BCC 
INCA 

LSRA 
BCC 
ORAA 

Operand Comment 
BO=O 

·+3 BOOK 

·+4 
#$80 

SET BO 

B7=0 
B70K 
SET B7 

A 9-bit rotation is required when working with multi-byte values. The following sequence illustrates 
a left rotation of four bytes stored at locations BYT to BYT + 3 ($100-$103): 

Machine Code Label Operation Operand Comments 
78 01 03 ASL BYT+3 INSURE BO=O 
79 01 02 ROL BYT+2 
79 01 01 ROL BYT+l 
79 01 00 ROL BYT 
24 03 BCC ·+5 IF C=O. DONE 
7C 01 03 INC BYT+3 ELSE SET BO 

4.3.3 Program Control Instructions 

Program control instructions can be subdivided into three categories: (1) Index Register, (2) Stack 
Pointer, and (3) Jump and Branch instructions. 

4.3.3.1 INDEX REGISTER INSTRUCTIONS. Seven MPU instructions change the contents of the 
Index Register: LDX, INX, DEX, TSX, PULX, ABX, and RTI. Three other instructions involve 
the Index Register but do not change its value. The. CPX instruction compares .the Index Register 
with a double byte value and affects only the Condition Code Register. The PSHX instruction 
pushes the contents of the Index Register onto the stack (low byte first) but does not affect any bits 
in the CCR. Finally, the Index Register can be transferred to the Stack Pointer using the TXS in­
struction. 

References to the Index Register in a statement can refer to its contents or to where it is "pointing." 
When the Index Register appears in the operation field of a statement, it refers to the contents of the 
register itself. When the Index Register appears in the operand field, however, it refers to the loca­
tion to which the Index Register is "pointing." The Index Register instructions are summarized in 
Figure 4-9. 

The effective address of an indexed instruction is determined by adding the unsigned offset byte to 
the current value of the Index Register. The result of the addition is transferred to an internal 
register which is not accessible to the programmer and the Index Register is not changed. 

4-16 



Booleanl Arithmetic 
eCR 

Instructions Mnemonic 5 4 3 2 1 0 
Operation 

H I N Z V C 
Compare Index Reg CPX X-M:M+1 • • t t t t 
Decrement Index Reg DEX X-1-X • • • t • • 
Increment Index Reg INX X+1-X • • • t • • 
Load Index Reg LDX M:M+1-X • • t t R • 
Store Index Reg STX X-M:M+1 • • t t R • 
Add B to X ABX OO:B+X-X • • • • • • 
Push Index Reg PSHX X- Stack • • • • • • 
Pull Index Reg PULX Stack-X • • • • • • 
Index Reg - Stack Pntr TXS X-1-SP • • • • • • 
Stack Pntr-Index Reg TSX SP+1-X • • • • • • 

See Figure 4-2 for legend. 

Figure 4-9. Index Register Instructions 

The ABX (Add B to X) instruction provides the capability to obtain a dynamic offset with indexing. 
After the offset is calculated using the B accumulator, the ABX instruction can be utilized to add the 
offset to the Index Register to form the effective address. The use of this offset is analogous to the 
offset byte in the indexed addressing mode: the ABX instruction performs an unsigned addition of 
the B accumulator with the Index Register. Note, however, that the ABX instruction overwrites the 
Index Register with the result of the addition whereas the Index Register remains unchanged in the 
indexed addressing mode. 

4.3.3.2 STACK POINTER INSTRUCTIONS. The stack pointer (SP) manages a last-in-first-out 
(LIFO) queue or, equivalently, a "stack." Putting a byte onto the stack is known as a "push" while 
taking a byte from the stack is called a "pull." The last byte "pushed" will always be the first byte 
"pulled" regardless of its source or destination. In the MC6801, as in the MC6800, the stack builds 
in the direction of decreasing address and the Stack Pointer always points to the next "empty" loca­
tion. Note that the Stack Pointer is decremented each time a byte is "pushed" onto the stack and in­
cremented each time a byte is "pulled" from the stack. 

The Stack Pointer can be transferred to the Index Register (TSX), and the Index Register can be 
transferred to the Stack Pointer (TXS). During the transfer of the Stack Pointer to the Index 
Register, the value is incremented by one which results in the Index Register pointing to the top of 
the stack or the last byte pushed. In a TXS instruction, the Index Register is assumed to be pointing 
to the top of stack. The value is decremented during transfer to the stack pointer and points to the 
next available location in the stack. 

The functions of TSX and TXS are illustrated in the two sequences which are approximately func­
tionally equivalent. The essential difference between them is their effect on the Condition Code 
Register: the PSH instructions do not affect the CCR whereas STAB and ST AA do affect it. 

4-17 



Machine Code 
37 
36 

30 
09 
35 
E7 00 
09 
35 
A700 

Label Operation 
PSHB 
PSHA 

TSX 
DEX 
TXS 
STAB 
DEX 
TXS 
STAA 

Operand Comments 

x 

x 

LOW BYTE 
HIGH BYTE 

SP+I-X 
X-I-X 
X-I-SP 

X-I-X 
X-I-SP 

fhe TXS instructions must be placed as shown in the above sequence to prevent stacked data from 
being overwritten by an interrupt. It is avoided in this procedure by "reserving" room on the stack 
before writing either accumulator to it. 

The accumulators, Index Register, and Program Counter can be individually pushed or pulled. The 
entire machine state (except for the stack pointer itself) can be pushed onto the stack with the SWI 
and W AI instructions and interrupts. The entire machine state (again, except for the stack pointer 
itself) is pulled from the stack during the RTI instruction. The following instructions affect the stack 
pointer: 

1. LDS, TXS, DES, INS 
2. PSHA, PULA, PSHB, PULB, PSHX, PULX 
3. JSR, BSR, RTS 
4. SWI, WAI, RTI. 

The first group of instructions directly manipulate the value of the stack pointer without affecting 
the contents of the stack and are summarized in Figure 4-10. The second group transfers the A and 
B accumulators and the Index Register to the stack. The third group pushes and pulls the Program 
Counter and, finally, the last group pushes and pulls the entire machine state (except for the stack 
pointer). 

Booleanl Arithmetic 
CCR 

Instructions Mnemonic 
Operation 

5 4 3 2 1 0 
H I N Z V C 

Decrement Stack Pntr DES SP-1-SP • • • • • • 
Increment Stack Pntr INS SP+1-SP • • • • • • 
Load Stack Pntr LDS M:M+1-SP • • , , R • 
Store Stack Pntr STS SP-M:M+1 • • , t R • 
Index Reg- Stack Pntr TXS X-1-SP • • • • • • 
Stack Pntr-Index Reg TSX SP+1-X • • • • • • 
See Figure 4-2 for legend. 

Figure 4·10. Stack Pointer Instructions 

A few words of caution are appropriate concerning stack operations. None of the instructions in 
groups 2-4 of the example can be used (including hardware interrupts) until one of the instructions 
in group 1 has been used to initialize the stack pointer to a block of RAM memory of sufficient 
length to be overwritten without degradation to the program. It is the programmer's responsibility 
to ensure that the stack pointer is always pointing to a valid stack area whenever one of the instruc­
tions in groups 2-4 are used or whenever the possibility of interrupt exists. 

4-18 



Operation of the Stack Pointer with the PSH and PUL instructions is illustrated in Figures 4-11 and 
4-12. The PSHA instruction causes the contents of Accumulator A to be stored in memory at the 
location indicated by the stack pointer. The stack pointer is automatically decremented following 
the store operation and is then "pointing" to the next empty location. The PULA instruction 
reverses the operation and causes the last byte stacked to be loaded into Accumulator A. The stack 
pointer is automatically incremented during the data transfer so that it points to the next available 
location. Note that the PULA instruction does not actually "remove" data from the stack; the 
value still remains in memory. The next value placed on the stack, however, will overwrite it. 

4.3.3.3 JUMP AND BRANCH INSTRUCTIONS. The Jump and Branch instructions are shown in 
Figure 4-13. These instructions can be used to transfer program control to another point in the pro­
gram. Execution of the Branch to Subroutine (BSR) and Jump to Subroutine (JSR) instructions 
cause the current Program Counter (Le., the return address) to be pushed on the stack as shown in 
Figures 4-14 through 4-16. The Program Counter is then loaded with the effective address of the in­
struction which transfers control to the subroutine. The Return from Subroutine (RTS) instruction 
causes the return address to be pulled from the stack into the Program Counter as shown in Figure 
4-17. 

The BSR instruction uses only relative addressing and can be used to transfer control to -126 to 
+ 129 locations with respect to the first byte of the instruction. The JSR instruction, however, can 
use indexed, extended, or direct addressing and can be used to reach any location. 

The No Operation instruction, NOP, while included here is a jump operation in a very limited sense. 
Its only effect is to increment the Program Counter by one. It is useful during the debug phase as a 
machine code replacement for a removed instruction and in equalizing the execution time through 
alternate paths in a program to establish synchronization. 

The conditional branch instructions consist of eight pairs of complementary instructions. They are 
used to test the results of preceding operations and, on the basis of these results, either continue with 
the next instruction or transfer control to another point in the program as defined by the offset byte 
in the branch instruction. The eight pairs of instructions and the associated test conditions are 
shown in Figure 4-13. 

The BRN (Branch Never) instruction can be used in a similar manner to the NOP instruction. It is 
also useful during debugging operations to nullify the machine code of another branch instruction 
while preserving the value of the offset byte. Finally, it completes the symmetry of the set of branch 
instructions by providing a complement to the BRA instruction. This feature is useful when im­
plementing compilers for the MC6801. 

In using conditional branch statements with arithmetic data, there could be some confusion as to 
which branch instructions should be used with a particular number representation. If signed two's 
complement values are being used, then the branch instructions involving the V -bit (BOT, BL T, 
BOE, BLEl should be used. If unsigned values are being used, then the branches which disregard the 
V-bit (BLS, BHS, BHI, BLO) should be used. 

4-19 



MPU MPU 

SP I m SP I m-1 

ACCA 1m ACCA [TI] 

m-2 m-2 

m-1 SP ---+ m-1 

SP~ m 
rn New Data m ::J 

en 

Previously I m+1 7F S 
Previously I m+1 

ttl 

Stacked m+2 63 
0 Stacked m+2 

Data Data 
m+3 

PC---. PSHA 

PC~ Next Instr. 

(a) Before PSHA (b) After PSHA 

MPU MPU 

SP m SP m-2 

X 1234 X 1234 

m-2 SP~ m-2 
~------4 

m-1 New Data m-1 12 
~------4 

SP ~ m ~------4 
rn m 34 ::J 
en 

Previously 
Stacked 

Data 

m+l 7F 
~------I 

m+2 63 
~------I 

m+3 FD 

3C 

S 
ttl 
0 

m+1 7F 
Previously 
Stacked m+2 63 

Data m+3 

PC~ PSHX 

PC ~ Next Instr. 

(e) Before PSHX (d) After PSHX 

Figure 4-11. Operation of Push Instruction 

4-20 

rn 
::J 
en 
S 
co 
0 



MPU 

SP I tn 

ACCA [Q[] 

m-2 ...-------4 
m-l ...-------4 

SP~ m 
~------t 

Previously I m + 1 lA 

Stacked m+2 3C 
Data ...----........ 

m+3 
~-~----t 

I/) 
:::I 
al 
ro 
co o 

MPU 

SP I m+l 

ACCA ~ 

m-2~ ___ ........ 

m-l~ ___ --t 

m 
~------4 

SP --. m + 1 ...-------1 
Previously 
Stacked 

Data 

m + 2 ~------1 
m+3 ...----........ 

PC~ PULA 

PC ---. Next Instr. 

(a) Before PULA (b) After PULA 

MPU MPU 

SP m SP m+2 

X 5678 X 1234 

m-2 m-2 

m-l m-1 

SP--+ m 
m 

m+l 12 
(/) m+1 :::I 
co 

m+2 34 ~ SP~ m+2. 
ro 

Previously I m+3 3C 

Stacked m+4 05 
Data m+5 EC 

0 
m+3. 

Previously I 
Stacked m+4 

Data m+5 

PC~ PULX 

PC~ Next Instr. 

(c) Before PU LX (d) After PULX 

Figure 4-12. Operation of Pull Instruction 

4-21 

(/) 
:::I 

co 
~ 
ro 

0 



CCR 

Instructions Mnemonic Branch Test 5 4 3 2 1 0 

H I N Z V C 
Branch Always IBRA None • • • • • • 
Branch If Carry Clear BCC C=O • • • • • • 
Branch If Carry Set BCS C=1 • • • • • • 
Branch If = Zero BEQ Z=1 • • • • • • 
Branch If:i!:Zero BGE NeV=O • • • • • • 
Branch If > Zero BGT Z+(N.V)=O • • • • • • 
Branch If Higher BHI C+Z=O • • • • • • 
Branch If s Zero BLE Z+(NeV)=1 • • • • • • 
Branch If Lower or Same BLS C+Z=1 • • • • • • 
Branch If<Zero BLT NeV=1 • • • • • • 
Branch If Minus BMI N=1 • • • • • • 
Branch If Not Equal Zero BNE Z=O • • • • • • 
Branch If Overflow Clear BVC V=O • • • • • • 
Branch If Overflow Set BVS V=1 • • • • • • 
Branch If Plus BPL N=O • • • • • • 
Branch Never BRN None • • • • • • 
Branch If Higher or Same BHS C=O • • • • • • 
Branch If Lower BLO C=1 • • • • • • 
Branch to Subroutine BSR • • • • • • 
Jump JMP • • • • • • 
Jump to Subroutine JSR • • • • • • 
No Operation NOP Advances Program Counter Only • • • • • • 
Return From Interrupt RTI --(j)--
Return from Subroutine 'RTS 

T T • • 
Software Interrupt SWI • S • • • • 
Wait for Interrupt ,WAI .~ • • • • 

See Figure 4-2 for legend. 

a> (All) Load Condition Code Register from Stack. (See Special Operations) 

<2> (Bit I) Set when interrupt occurs. If previously set, a Non-Maskable Interrupt is required to exit the wait state. 

Figure 4·13. Jump and Branch Instructions 

MPU 

PC n 

SP m 

m-2 

m-1 

SP---.m 

m+1 

m+2 

PC~n 

n+1 

n+2 

r-- ------

7E 

7A. 
70 

...,...---~ 

~';""'-~---t 

n + 3 i":-N":"""e-x-t -:-M:-a-in~l-ns-4tr. 

(a) Before Execution 

PC 

SP 

m-3 

SP--..m-2 

m-1 
m 

m+1 

m+2 

n 

MPU 

S 

m-2 

-----
(n+3)H 

(n+3)L 

7E 

7A 
70 _____ 

JSR 
~-~---:--I 

n + 1 SH = Subr. Addr. 

n + 2 SL = Subr. Addr. 

n + 3 Next Main Instr. 

(S formed from SH and SL) ___ ~ 

(b) After Execution 

Figure 4·14. Operation of JSR (Extended) Instruction 

4-22 

fI) 
::J 
co 
~ 
ctI o 



MPU MPU 

PC I n PC I (xl+R I 
xl 0004 X I 0004 I 

SP I m SP I m-2 I 

--m-2 
CJ) 

SP-..m-2 :::I 
co 

m-l co m-l 
co 

SP~m 0 m 

(n+2)H 

(n+2)L 

m+l m+l 7E 
7A __ 

PC~n n 

n+l n+l 

*K=8-Bit UnsiQned Value 

(a) Before Execution 
·Contents of Index Register 

(b) After Execution 

Figure 4·15. Operation of JSR (Indexed) Instruction 

PC 

SP 

m-2 

m-l 

SP~m 

m+l 

MPU 

n 

m 

----
7E 
7A 

PC----. n ~~.::..:...:...--I 

n + 1 t-=-----4 

n + 2 I--'-~~~~ 

·K = Signed 7-Bit Value 

(a) Before Execution 

CJ) 
:::I 
co 
~ co 
o 

MPU 

PC /(n+2)±Kf 

SP m-2 

SP--.m-2 
I-------f 

m-l 

m 
t-----~ 

m+l 
1--'-----4 

nl--_~_~ 
n+l 

1-------1 

(b) After Execution 

Figure 4·16. Operation of BSR Instruction 

4-23 



MPU 

pcl s 

SP I m-2 

SP-----m-2 

m-1 (n+3)H 

m (n+3)l 

m+1 7E 

7A 

n JSR= BD 

n+1 SH=SubrAddr 

n+2 Sl=6ubrAddr 

(a) Before Execution 

MPU 

PC I n+3 

SP/ m 

m-2 

m-1 (n+3) H 

SP-m (n+3) l 

C/) m+1 7E 
:::J 

a::l 

!S 
co 
0 

n+2 

(b) After Execution 

Figure 4-17. Operation of RTS Instruction 

C/) 

:::J 
a::l 

Table 4-2 divides the branch instructions into three categories: simple, signed, and unsigned branch­
es. The simple branches involve those based only on the value of a single bit in the CCR. The signed 
and unsigned branches refer to the appropriate branch with rep sect to the number system being us­
ed. 

Table 4-2. Branch Instructions 

Simple Conditional Branches: 

Condition 

BEQ 
BMI 
BCS 
BVS 

Complement 

BNE 
BPl 
BCC 
BVC 

Signed Conditional Branches: 
Condition Complement 

BGT BlE 
BGE BlT 
BEQ BNE 
BlE BGT 
BlT BGE 

Unsigned Conditional Branches: 

Condition Complement 

BHI BlS 
BHS BlO 
BEQ BNE 
BlS BHI 
BlO BHS 

4-24 



Note that a branch instruction does not have to immediately follow a particular operation provided 
subsequent instructions do not affect the bits to be used in the branch test. In the following example, 
the branch will be taken or not taken based solely on the effect of the LDAA instruction on the 
Z-bit. None of the instructions between LDAA and B~Q affect any bit in the CCR. 

Macbine Code 
96 20 
33 
30 
3A 
27 04 

Label Operation 
LDAA 
PULB 
TSX 
ABX 
SEQ 

Operand Comments 
BYTE GET BYTE 

The Compare Index Register (CPX) instruction can also be used effectively with the conditional 
branch instructions. Readers familiar with the M6800 will recall that this instruction can be used 
with only a few of the branches. In the MC6801, however, internal processing has been modified 
such that it can be used for branching similar to the single byte comparisons. A typical use of the 
CPX instruction is shown in the following example. 

Macbine Code Label Operation Operand Comments 
CE 80 00 LDX #$8000 
8C 7F FF CPX #$7FFF 
22 01 BHI HANG WILL TAKE BRANCH 
01 NOP 
20 FE HANG BRA • FOR NOW 

4.4 PROGRAMMING EXAMPLES 

In this section, several programming examples are presented which focus on use of the Index 
Register and multi-byte arithmetic. 

4.4.1 Use of the Index Register 

The indexed addressing mode provides the capability to construct powerful routines which require a 
minimum amount of memory. This is most evident when writing routines which involve an interac­
tive algorithm. 

The effective address of an indexed instruction is formed by adding the 8-bit unsigned offset of the 
instruction to the Index Register. The result of this addition is placed in an internal unaddressable 
temporary register; the value in the Index Register is not changed. 

Because the offset is part of the instruction, it should be considered a static value determined at 
assembly time. While a self-modifying instruction sequence could be used to provide a dynamic off­
set, it should be remembered that such a capability cannot be realized if the instruction resides in 
Read-Only-Memory (ROM). In addition, self-modifying code is generally considered poor pro­
gramming practice. 

The operand field in a statement which uses indexed addressing can take any of five possible forms: 
X , X 0, X SYMBOL, X EXPRESSION, X 

The first three forms are equivalent and will produce a zero offset byte. Note that the "#" sign is 
never used in the operand field of a statement which uses the indexed addressing mode. The "#" 

4-25 



sign can be used, however, to load the Index Register with the address of a label. The addressing 
mode for this type of instruction, however, is immediate rather than indexed. For example, the in­
struction 

LDX #TABLE 
will result in the Index Register being loaded with the address of the label, TABLE. Another impor­
tant instruction is one like the following: 

LDX X 
This instruction causes a double byte value, located at where the Index Register is pointing, to over­
write the current value of the Index Register. This type of instruction enables a programmer to use 
"indirection." To illustrate this technique, suppose that it is desired to load a byte into Ac­
cumulator A from an address pointed to by a double byte value stored at the location ADDR. The 
location of ADDR, however, is also a variable which can be located by a double byte address stored 
at the label, POINTR. The byte pointed to by ADDR can be loaded into Accumulator A using the 
following sequence. 

Machine Code 
FE 1000 
EE 00 
A600 

Label Operation 

LDX 
LDX 
LDAA 

Operand 
POINTR 
X 
X 

Comments 
GET ADDR POINTR 
XHASADDR 
ACCA HAS BYTE 

A typical application of indirection is subroutine linkage where the calling routine provides the 
subroutine an address in the Index Register which points to a table of addresses. The addresses in the 
table point to the values of calling parameters for the subroutine. Several routines in this chapter use 
this method of subroutine linkage. 

When used for manipulating a table of values, the indexed addressing mode can be used directly in 
one of two modes: 

1. the Index Register can be loaded with the starting address of the table and the offset byte can 
be contained in the instruction, or 

2. the offset byte in the instruction can be used to indicate the starting address of the table and the 
Index Register used to contain the offset. 

It is important to realize that both of the above methods have restrictions involving their use. In the 
first method, the offset byte must generally be considered a static value determined at assembly 
time. In addition, the offset byte can only reach 256 locations in the table. 

In the second method, the starting address of the table must reside in the direct area ($OO-FF). If this 
restriction can be met, however, all values in the table can be accessed. These two methods are il­
lustrated in the following examples where TABLE starts at $OOFO. 

Machine Code Label Operation Operand Comments 
CE 00 FO LDX #TABLE ADDR (T ABLE)- X 
A6 04 LDAA 4,X GET 5TH BYTE 

CE 00 04 LDX #4 OFF-X 
A6 FO LDAA TABLE, X GET 5TH BYTE 

4-26 



Two other methods can also be used to manipulate a table of values which are not as direct but do 
alleviate some of the restrictions associated with the aforementioned methods. First, a dynamic off­
set can be obtained by using Accumulator B to compute the offset and then using the ABX (Add 
ACCB to X) instruction to obtain the address of the element. The considerations in using this 
method include: 

1. the ABX instruction involves an unsigned single byte addition which limits indexing to forward 
references not greater than 255 bytes, and 

2. the ABX instruction overwrites the Index Register with the result of the addition and requires 
the Index Register to be reinitialized if used within a loop. 

Finally, the most general method for accessing a table is to compute the absolute address of the loca­
tion using a signed double byte offset. This approach requires storage of the Index Register, a dou­
ble byte signed addition, and replacement of the former Index Register value with the new one. It re­
quires more memory and execution time but overcomes most of the limitations associated with the 
aforementioned methods. The following example illustrates the use of both methods. 

Machine Code Label OReration ORerand Comments 

CE 00 FO LDX #TABLE ADDR (TABLE) .... X 
C6 04 LDAB #4 OFF .... ACCB 
3A ABX GETADDR 
A6 00 LDAA X GET 5TH BYTE 

CE 00 FO LDX #TABLE 
CC 00 04 LDD #4 OFF .... A:B 
3C PSHX X .... STACK 
30 TSX SP+ I .... X 
E3 00 ADDD X GET ADDR 
ED 00 STD X REPLACE 
38 PULX ADDR .... X 
A600 LDAA X GET 5TH BYTE 

Both the JSR and JMP instructions provide an indexed addressing mode. Computation of the effec­
tive address for these instructions is identical to that performed for other instructions. The final 
destination of the results for these two instructions is different than for the other instructions: it is 
transferred to the Program Counter. This operation can be described by the following expression: 

00: OFFSET + (X)-PC 
These instructions are useful to jump to an address specified in a certain memory location as il­
lustrated in the following example. In this example, if the value in the A accumulator is equal to an 
ASCII "A," a jump is made to location, $1040. If the two values are not equal, the program re­
mains in a loop on itself. 

Machine Code 

CE 10 00 
A6 00 
81 41 
26 FE 
EE 01 
6E 00 

41 
10 40 

OReration 
LDX 
LDAA 
CMPA 
BNE 
LDX 
JMP 

TABLE FCC 
FDB 

Operand Comments 

#TABLE ADDR (TABLE) .... X 
,X GET CHAR 
#'A CHECK FOR AN "A" 
• IF .NE., HANG 
1, X ELSE GET ADDR 
X GO TO IT! 

/A/ CHAR "A" 
ADDR ADDR AT $1040 

Three routines will now be presented to further illustrate possible uses of the Index Register. The 
first one is shown in Figure 4-18 and illustrates a BCD addition utilizing the indexed addressing 
mode in a somewhat unique fashion. However, the limitations of the routine are quite severe. For 

4-27 



PAGE 001 BCD1 

00001 
00002 

00004 
00005 
00006 
00007 
00008 
00009 
00010 
00011 
00012 
00013 
00014 
00015 
00016 
00017 
00018 
00019 
00020 
00021 
00022 
00023 
00024 
00025 
00026 
00027 
00028 
00029 
00030 
00031 
00032 
00033 
00034 
00035 
00036 
00037 
00038 
00039 
00040 

00042 

00044A 1000 

00046A 1000 C6 
00047A 1002 OC 
00048A 1003 A6 
00049A 100S A9 
00050A 1007 19 
OOOSlA 1008 A7 
000S2A 100A 09 
00053A 100B 5A 
000S4A 100C 26 
00055A 100E 39 
00056 

~SA: 1 BCD 1 

BCD1 NAM 
OPT ZO 1 , LLEN=80 

********************************************************* 
* 
* BCD 1 -- ADD TWO MULTI-BYTE BCD VALUES 

* 
* CALLING CONVENTION: 

* 
* LDX lip 
* JSR BCD 1 

* 
* WHERE P IS THE FIRST BYTE OF AN AREA 
* DEFINED AS 

* 
* 
* 
* 
* 

P RMB 
Q RMB 
RES RMB 

NB 
NB 
NB 

FIRST ADDEND 
SECOND ADDEND 
RESULT· 

* AND VARIABLE NB IS THE LENGTH IN BYTES OF 
* BOTH ADDENDS AND THE RESULT. 

* 
* RESTRICTIONS AND NOTES: 

* 
* 1. THE ROUTINE IS RE-ENTRANT PROVIDING EACH 
* CALLER PROVIDES A UNIQUE DATA AREA 
* 2. THE ROUTINE MUST BE ASSEMBLED FOR A FIXED 
* VALUE OF NB 
* 3. THE STORAGE LOCATIONS OF P, Q, AND RES 
* MUST BE CONTIGUOUS 
* 4. THE VARIABLES P, Q, AND RES MAY RESIDE 
* ANYWHERE IN THE MEMORY MAP. 
* S. THE CARRY BIT MAY BE TESTED UPON 
* EXIT. IF C=O, THERE WAS NO CARRY 
* FROM THE LAST ADDITION; ELSE THE 
* SUM OVERFLOWED NB BYTES. 
~ 6. THE VALUE (3*NB-1) MUST BE LESS THAN 
* 2S6. THEREFORE, NB MUST NOT EXCEED 85. 

* 
********************************************************* 

0004 A NB EQU 4 SPECIFIES 4-BYTE VALUES 

04 A BCD1 

03 A NEXT 
07 A 

OB A 

FS 1003 

ORG $1000 

LDAB IINB B HAS NUMBER OF BYTES 
CLC START WITH IT CLEARED 
LDAA NB-1,X GET NEXT ADDEND 
ADCA 2*NB-1,X ADD TO NEXT ONE 
DAA ADJUST FOR BCD 
STAA 3*NB-1,X STORE NEXT BYTE OF RESULT 
DEX NEXT BYTE 
DECB MAYBE DONE 
BNE 
RTS 
END 

NEXT NO, NOT YET 

TOTAL ERRORS 00000--00000 

Figure 4-18. BCD Addition: BCDI 

4-28 



instance, it must be assembled for only one length of BCD value wherein the symbol NB (Number of 
Bytes) is defined. Another limitation is that it assumes a specific data storage arrangement of the ad­
dends and the result: they must be contiguous and in the order assumed by the routine. The execu­
tion time of the routine is approximately 110 cycles for 4-byte (NB = 4) values. 

The next two examples involve the use of the ABX instruction in two table handling routines. The 
first routine, shown in Figure 4-19, illustrates a simple block move. The routine has the limitation, 
however, that it always moves the last byte first. The implication of this limitation is that the routine 
can not be used to move the table to an area of lesser address ("up" in memory) unless the following 
restriction is observed: 

TO address + length < FROM address 
If this restriction is not met, part of the table will be overwritten during the move. The routine is 
made more general in Figure 4-22 where an inspection is made as to whether the table should be 
moved from the "top" or "bottom" thus alleviating the restriction of the first example. 

Relative execution time of the two routines is consistent with their flexibility. To copy 16 bytes, the 
BLOCKC routine (Figure 4-19) executes in approximately 800 cycles whereas the BLOCKM routine" 
(Figure 4-20) requires approximately 1100 cycles. 

4.4.2 Number Systems 

The ALU (Arithmetic and Logic Unit) always performs standard binary addition of either one or 
two bytes using two's complement arithmetic. The MPU instruction set and hardware flags support 
direct arithmetic operations using any of the following three different representations for numbers: 

(1) Each byte can be interpreted as a signed 2's complement number in the range - 128 to + 127: 

b7 b6 bS b4 b3 bl bI bO 
1 0 0 0 0 0 0 0 ( - 128 in 2's complement) 
1 1 1 1 1 1 1 1 (-1 in 2's complement) 
0 0 0 0 0 0 0 0 (0 in 2's complement) 
0 0 0 0 0 0 0 1 ( + 1 in 2's complement) 
0 1 1 1 1 1 1 1 ( + 127 in 2's complement) 

(2) Each byte can be interpreted as an unsigned binary number in the range 0 to 255: 

b7 b6 bS b4 b3 bl bI bO 
0 0 0 0 0 0 0 o (0 in unsigned binary) 
1 1 1 1 1 1 1 (255 in unsigned binary) 

(3) Each byte can contain two 4-bit binary coded decimal (BCD) numbers. With this interpreta­
tion, each byte represents numbers in the range 0-99: 

b7 b6 bS b4 b3 bl bI bO 
o 0 0 0 0 0 0 0 (BCD 00) 
o 0 1 0 0 1 1 1 (BCD 27) 
1 0 0 1 1 0 0 1 (BCD 99) 

4-29 



PAGE 001 BLOCKC .SA:1 BLOCKC *** RE-ENTRANT BLOCK COpy *** 

00001 
00002 
00003 

00005 
00006 
00007 
00008 
00009 
00010 
00011 
00012 
00013 
00014 
00015 
00016 
00017 
00018 
00019 
00020 
00021 
00022 
00023 
00024 
00025 
00026 
00027 
00028 
00029 
00030 

00032A 1000 
00033A 1000 E6 00 
00034A 1002 5A 
00035A 1003 3C 

00037A 1004 38 
00038A 1005 3C 
00039A 1006 EE 01 
00040A 1008 3A 
00041A 1009 A6 00 

00043A 100B 38 
00044A 100C 3C 
00045A 100D EE 03 
00046A 100F 3A 
00047A 1010 A7 00 
00048A 1012 5A 
00049A 1013 C1 FF 
00050A 1015 26 ED 

00052 

00054A 1017 38 
00055A 1018 39 
00056 

BLOCKC NAM 
OPT 
TTL 

ZO 1 ,LLEN=80 
*** RE-ENTRANT BLOCK COPY *** 

********************************************************* 
* * B L 0 C K C -- ARE-ENTRANT 256-BYTE BLOCK COpy 
* 
* 
* 
* 

THIS ROUTINE WILL COPY A BLOCK OF 
MEMORY UP TO 256 BYTES IN LENGTH 
FROM ONE LOCATION TO ANOTHER. 

* * CALLING CONVENTION: 
* * LDX #PACKET 
* JSR BLOCKC 
* * WHERE PACKET IS DEFINED AS: 

* * PACKET FCB L LENGTH 
* FDB FROM -FROM- ADDRESS 
* FDB TO -TO- ADDRESS 
* NOTES: 

* * A ZERO LENGTH ~~LL RESULT IN COPYING 256 BYTES. 
* IF TO < FROM THEN TO + L MUST BE < FROM BECAUSE 
* THE ROUTINE MOVES THE LAST LOCATION FIRST. 
* THE ROUTINE IS RE-ENTRANT. 

* 
********************************************************* 

ORG $1000 
A BLOCKC LDAB X 

DECB 
PSHX 

BLKOOO PULX 
PSHX 

A LDX 
ABX 

A LDAA 

PULX 
PSHX 

A LDX 
ABX 

A STU 
DECB 

A Ct-fPB 
1004 BNE 

1,X 

X 

3,X 

X 

II$FF 
BLKOOO 

GET THE LENGTH 
ONE LESS FOR AN OFFSET 
SAVE PACKET POINTER 

RESTORE PACKET POINTER 
PUT IT BACK 
GET -FROM- ADDR 
ADD THE OFFSET 
GOT THE -FROM- BYTE 

RESTORE PACKET POINTER 

GET·-TO- ADDR 
ADD THE OFFSET 
STASH -FROM- AT -TO­
DEC THE OFFSET 
ZERO IS THE LAST OFFSET 
DONE YET? 

* ALL DONE, CLEAN UP AND LEAVE 

PULX 
RTS 
END 

GET POINTER OFF STACK 

TOTAL ERRORS 00000--00000 

Figure 4-19. Block Move Routine: BLOCKC 

4-30 



PAGE 001 BLOCKM .SA:1 BLOCKM *** RE-ENTRANT BLOCK MOVE *** 

00001 
00002 
00003 

00005 
00006 
00007 
00008 
00009 
00010 
00011 
00012 
00013 
00014 
00015 
00016 
00017 
00018 
00019 
00020 
00021 
00022 
00023 
00024 
00025 
00026 
00027 
00028 
00029 
00030 
00031 
00032 

00034A 1000 
00035A 1000 EC 03 
00036A 1002 A3 01 
00037A 1004 E6 00 
00038A 1006 37 
00039A 1007 3C 
00040A 1008 SA 
0004lA 1009 24 02 
00042A 100B C6 00 

00044 

00046A 100D 38 
00047A 100E 3C 
00048A 100F EE 01 
00049A 1011 3A 
00050A 1012 A6 00 

00052A 1014 38 
00053A 1015 3C 
00054A 1016 EE 03 
00055A 1018 3A 
00056A 1019 A7 00 
00057A 101B 5C 
00058A 101C 25 02 

BLOCKM 
ZO 1 , LLEN=80 

NAM 
OPT 
TTL *** RE-ENTRANT BLOCK MOVE *** 

********************************************************* 
* * B L 0 C K M -- ARE-ENTRANT 256-BYTE BLOCK MOVE 
* 
* 
* 
* 
* 

THIS ROUTINE WILL MOVE A BLOCK OF 
MEMORY UP TO 256 BYTES IN LENGTH 
FROM ONE LOCATION TO ANOTHER. 

* CALLING CONVENTION: 

* * LDX #PACKET 
* JSR BLOCKM 
* * WHERE PACKET IS DEFINED AS: 

* 
* 
* 
* 
* 

PACKET FCB L 
FDB FDB FROM 

FDB TO 

* NOTES: 
* 

LENGTH 
-FROM- ADDR 
-TO- ADDRESS 

* A ZERO LENGTH WILL RESULT IN COPYING 256 BYTES. 
* THIS ROUTINE t1AY BE USED TO MOVE A BLOCK OF 
* MEMORY IN EITHER DIRECTION WITHOUT DESTROYING 
* ANY OF THE BLOCK DURING THE MOVE. 
* THE ROUTINE IS RE-ENTRANT. 

* ********************************************************* 

ORG 
A BLOCKM LDD 

$1000 
3,X 
l,X 

WHICH WAY TO MOVE, SET C-BIT 
A SUBD 
A LDAB 

PSHB 
PSHX 
DECB 

100D BCC 
A LDAB 

X 

BLKOOI 
110 

GET LENGTH 
PUT LENGTH INTO STACK 
SAVE PACKET POINTER 
MAKE A GUESS 
110VE UP IN MEMORY 
DON'T CLEAR THE C-BIT 

* THIS IS TRE MAIN LOOP 

BLKOOI PULX RESTORE PACKET POINTER 
PSHX PUT IT BACK 

A LDX l,X GET -FROM- ADDR 
ABX ADD THE OFFSET 

A LDAA X GET THE -FROM- BYTE 

PULX RESTORE PACKET POINTER 
PSHX 

A LDX 3,X GET -TO- ADDR 
ABX 

A STAA X STASH -FROM- AT -TO-
INCB GUESS 

1020 BCS BLK002 IF FROM > TO ADDR 

Figure 4·20. Block Move Routine: BLOCKM 

4-31 



PAGE 002 BLOCKM .SA:l BLOCKM *** RE-ENTRANT BLOCK MOVE *** 
00060A 101E 5A 
0006lA 101F 5A 

DECB 
DECB 

00063A 1020 30 BLK002 TSX 
00064A 1021 6A 02 A DEC 
00065A 1023 26 E8 100D BNE 

NEXT OFFSET 

GET NEXT ONE 
2,X MAYBE DONE 
BLKOOI NOT YET 

00067 * ALL DONE, FIX UP STACK AND EXIT 

00069A 1025 38 
00070A 1026 31 
0007lA 1027 39 

00073 
TOTAL ERRORS 00000--00000 

PULX 
INS 
RTS 

END 

Figure 4·20. Block Move Routine: BLOCKM (Continued) 

4.4.3 Two's Complement Overflow 

The MPU sets or clears selected flags in the Condition Code Register during instruction execution as 
shown in Figure 4-2. The interpretation of most of these bits is rather straightforward. The 
Overflow flag (V-bit), however, is an exception and requires clarification. Two's complement 
overflow occurs when an operation yields a result beyond the - 128 to + 127 range of a single signed 
two's complement byte. By examining the sign bits of the operands and the result, it is possible to 
determine whether an arithmetic overflow has occurred. In Table 4-3, for example, the operands 
and result are shown for the ABA (Add B to A) instruction. Note that the value for the V -bit at the 
conclusion of the addition is determined by the sign bits (bit 7) of the two operands and the result. 

Table 4·3. Overflow Rules for Addition 

A7 67 R7 V-Bit 

0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 0 
1 0 0 0 (A+ B)= R 
1 0 1 0 
1 1 0 1 
1 1 1 0 

4-32 



If the signs of the addends, A 7 and B7, are different, no overflow can occur and the V -bit is clear 
after the operation. If the addend sign bits are alike and the result exceeds the byte capacity, the sign 
bit of the result (R7) will change and the overflow bit will be set. 

The following three sequences illustrate the results of the ALU and V -bit from several additions us­
ing the ABA instruction. The first two additions result in valid two's complement sums and, 
therefore, the V -bit remains clear. The third addition, however, attempts to add two negative values 
which should have produced the result, -132. This value exceeds eight bits and the V-bit is set to in­
dicate this condition. 

V-Bit b7 b6 bS b4 b3 b2 bl bO 
0 0 0 1 1 0 1 o A= +54 

1 0 0 0 0 1 1 B= -121 
0 0 0 1 R=A+B= -67 

V-Bit b7 b6 bS b4 b3 b2 bl bO 
0 0 1 0 1 A= -67 

1 0 1 1 B= -33 
0 0 0 0 o R=A+B= -100 

V-Bit b7 b6 bS b b3 b2 bl bO 

0 1 0 0 1 1 1 0 o A=-lOO 
1 1 1 0 0 0 0 o B= -32 
0 0 o R=A+B= + 124 

In subtraction instructions, the possibility of overflow exists whenever the operands differ in sign. 
Overflow conditions for A - B are illustrated in Table 4-4. 

Note that Table 4-4 is identical to the addition case (Table 4-3) except that B7 has been replaced by 
the complement of B7, B7. The MC6801 ALU performs subtraction by adding the two's comple­
ment of the subtrahend B to the minuend A. The subtraction table with B7 complemented then 
reflects the sign bits of two numbers that are to be added. If A 7 and B7 are alike, overflow has oc­
curred if the sign of the result does not match the sign of both A 7 and B7. 

The MC6801 also has the capability of adding and subtracting double byte (l6-bit) two's comple­
ment values. The range of the double accumulator A:B (or D) is - 32,768 to 32,767. The discussion 
for the V-bit is equally valid for the double byte case if all references to bit 7 are replaced with bit 15. 

Table 4·4. Overflow Rules for Subtraction 

A7 B7 R7 V-Bit 

0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 0 
1 0 0 0 (A- B)= R 
1 0 1 0 
1 1 0 1 
1 1 1 0 

4-33 



The V-bit is set or cleared during all shift and rotate instructions according to the result of an ex­
clusive OR of the N-bit (new sign) and the C-bit after the operation has been completed. Within the 
context of signed arithmetic, the shift instructions can be used to multiply or divide an integer by a 
power of two. The V-bit can be used to detect two's complement overflow after a left shift which is 
equivalent to a multiply by two. In this case, the C-bit contains the former sign and the V -bit for­
mula functions correctly. 

Right logical shifts, however, do not set the V -bit properly with the exclusive OR because the C-bit 
contains the former value of bit 0 instead of bit 7. This represents no real difficulty, however, 
because the programmer is always expected to utilize the right arithmetic shift (ASR) for signed 
values which guarantee no two's complement overflow. 

4.4.4 Arithmetic Instructions Revisited 

Figure 4-21 summarizes the instructions used primarily for arithmetic operations. The effect of each 
operation on memory and the MPU accumulators is shown along with how the result of each opera­
tion affects the Condition Code Register. 

The carry bit (C-bit) is used as both a carry for addition and a borrow for subtraction. It is added to 
the accumulators in the Add with Carry Instructions (ADCA, ADCB) and subtracted from the ac­
cumulators in the Subtract with Carry instructions (SBCA, SBCB). 

B.ooleanl Arithmetic 
CCR 

Instructions Mnemonic 5 4 3 2 1 
Operation 

H I N Z V 

Add ADDA A+M-A 
ADDB B+M-B 

Add Accumulators ABA A+B-A 
Add Double ADDD D+M:M+1-D 
Add with Carry ADCA A+M+C-A 
ADCB ADCB B+M+C-B 
Complement,2's NEG OO-M-M 

(Negate) NEGA OO-A-A 
NEGB OO-B-B 

Decimal Adjust, A DAA Converts Binary Add. of BCD 
Characters into BCD Format 
(See Figure 4-22) 

Subtract SUBA A-M-A 
SUBB B-M-B 

Subtract Accumulators SBA A-B-A 
Subtract Double . SUBD D-M:M+1-D 
Subtract with Carry SBCA A-M-C-A 

SBCB B-M-C-B 
Multiply MUL A*B-D 

See Figure 4-2 for legend. 

(Bit set if test is true and cleared otherwise) 
<D (Bit V) Test: Result=10000000? 

~ (Bit C) Test: Result*OOOOOOOO? 

t • t t 
t • t t 
t • t t 
• • t t 
t • t 1 
t • t t 
• • t t 
• • t 1 
• • t t 
• • t t 

• • t t 
• • t t 
• • t t 
• • t 1 
• • t t 
• • t t 
• • • • 

~ (Bit C) Test: Decimal value of most significant BCD Character greater than nine? 
(Not cleared if previously set.) 

Figure 4·21. Arithmetic Instructions (Repeated) 

4-34 

t 
t 
t 
t 
t 
t 

~ :w 
t 

t 
t 
t 
1 
t 
t 
• 

0 
C 

t 
t 
t 
t 
t 
t 

a> 
a> 
a> 
~ 

t 
t 
t 
t 
t 
t 
1 



The Decimal Adjust instruction, DAA, can be used to adjust the binary result of a BCD addition in 
the A accumulator. Following the three operations, ABA, ADD, and ADC, the DAA instruction 
adjusts the contents of the accumulator and the C-bit to represent the correct BCD result. Because 
the DAA instruction properly affects the C-bit, it can be used for multi-byte BCD addition. Figure 
4-22 shows the details of the DAA instruction and its relationship to other Condition Code Register 
bits. 

Operation: Adds hexadecimal numbers 00,06,60, or 66 to ACCA, and may also set the carry bit, as indicated in the following table: 

State of Upper Initial Lower Number Added State of 
C-Bit Half-Byte Half-Carry Half-Byte to ACCA C-Bit 

Before DAA (Bits 4-7) H-Bit (Bits 0-3) ByDAA After DAA 
(Col. 1) (Col. 2) (Col. 3) (Col. 4) (Col. 6) (Col. 6) 

0 0-9 0 0-9 00 0 
0 0-8 0 A-F 06 0 
0 0-9 1 0-3 06 0 

0 A-F 0 0-9 60 
0 9-F 0 A-F 66 
0 A-F 1 0-3 66 

0-2 0 0-9 60 
0-2 0 A-F 66 
0-3 1 0-3 66 

Note: Columns (1) to (4) of the above table represent all possible cases which can result from any of the operations ABA, 
ADD, or ADC, with initial carry either set or clear, applied to two binary-coded-decimal operands. The table shows 
hexadecimal values. 

Effect on Condition Code Register: 
H Not affected. 
I Not affected. 

N Set if most significant bit of the result is set; cleared otherwise. 
Z Set if all bits of the result are cleared; cleared otherwise. 
V Not defined. 
C Set or reset according to the same rule as if the DAA and an immediately preceding ABA, ADD, or ADC were 

replaced by a hypothetical binary-coded-decimal addition. 

Figure 4-22. Operation of DAA Instruction 

4.4.4.1 USE OF ARITHMETIC INSTRUCTIONS. Typical use of the arithmetic instructions is 
shown in the following examples: 

Macbine Code 
86 AA 
C6 CC 
IB 
89 04 

Label Operation 
LDAA 
LDAB 
ABA 
ADCA 

Operand 
#SAA 
#SCC 

#4 

Comments 
1010 1010 
1100 1100 
0111 0110 C SET 
0111 1011 C CLR 

The V-bit and C-bit for the ADCA instruction are set according to Table 4-5. 

The SUBA instruction subtracts a single byte value defined by the operand from Accumulator A: 

Machine Code 
86 65 
80 67 
8204 

Label Operation 

LDAA 
SUBA 
SBCA 

Operand 

#S65 
#S67 
#4 

4-35 

Comments 
0110 0101 
1111 1110 C SET 
1111 1001 C CLR 



Table 4-5. Troth Table for" Add with Carry" 

B7 B7 B7 
V-Bit C-Bit 

ACC ACC Operand (or ACCB) 
After After 

After Before Before 

0 0 0 0 0 
0 0 1 0 1 
0 1 0 0 1 
0 1 1 1 1 
1 0 0 1 0 
1 0 1 0 0 
1 1 0 0 0 
1 1 1 0 1 

The two's complement overflow and carry bits are set as shown in Table 4-6 as a result of a subtract 
with borrow. 

Table 4-6. Troth Table for "Subtract with Borrow" 
B7 B7 B7 

V-Bit C-Bit 
ACC ACC Operand (or ACCB) 

After After 
After Before Before 

0 0 0 0 0 
0 0 1 0 1 
0 1 0 1 0 
0 1 1 0 0 
1 0 0 0 1 
1 0 1 1 1 
1 1 0 0 0 
1 1 1 0 1 

The NEG instruction can be used to obtain the two's complement of a single byte. For example, if 
the A accumulator contains S03, after the NEGA instruction it would contain SFD. Upon comple­
tion of the NEG instruction, the carry bit is cleared only if the result is zero. This characteristic can 
be used to negate the double byte accumulator A:B as shown in the following examples. 

Machine Code Label O~ration O~rand Comments 
40 NEGA 
50 NEGB 
82 00 SBCA #0 0000 - A:B-A:B 

Machine Code Label O~ration O~rand Comments 
43 COMA 
50 NEGB 
82 FF SBCA #$FF 

4.4.5 Multi-Byte Addition and Subtraction 

Typically microcomputer-based systems require arithmetic instructions to be combined into routines 
which operate on values larger than one byte. Double byte arithmetic is facilitated by use of the 
ADDD and SUBD instructions which perform addition and subtraction using the A:B double ac­
cumulator. Double byte and multi-byte arithmetic can also be performed using single byte 
arithmetic instructions. Several algorithms will now be presented showing their implementation us­
ing the MC6801 instruction set. 

4-36 



The basic arithmetic operations are binary addition and subtraction as shown in the following exam­
ple. The two sequences illustrate performing the following two single byte operations: 

ALPHA + BET A-OMEGA 
OMEGA-BETA-ALPHA 

Machine Code Label 
B6 01 00 
BB 02 00 
B7 03 00 

B6 0300 
BO 02 00 
B7 01 00 

Operation 
LDAA 
ADDA 
STAA 

LDAA 
SUBA 
STAA 

0l!!rand 
ALPHA 
BETA 
OMEGA 

OMEGA 
BETA 
ALPHA 

Comments 
ALPHA + BETA 

OMEGA-BETA 

These sequences are so short that they are usually performed in line. Addition of packed BCD single 
bytes requires only one more instruction. The DAA instruction is used immediately after ADD, 
ADC or ABA instructions to adjust the binary value generated in Accumulator A to the correct 
BCD value: 

Macbine Code Label °eeration Operand Comments 

86 09 LDAA #$09 09+06= 15 
8B 06 ADDA #$06 ACCA=OF 
19 DAA ACCA= 15 
8B 06 ADDA #$06 ACCA=IB 
19 DAA 15+06=21 

Subtraction of packed BCD values requires the use of a conversion technique. Because there is no 
"Decimal Adjust" for subtraction of BCD values, it is necessary to convert them to 9's complement 
form and then add them. The following sequence illustrates subtraction of two packed BCD single 
byte numbers: 

Machine Code Label Operation Operand Comments 
86 99 LDAA #$99 FIND: 21-16 
80 16 SUBA #$16 99-16= 83 
OD SEC 
89 21 ADCA #$21 82+21 + 1 =A5 
19 DAA ANS: 05 = ACCA 

The computational technique implemented with these instructions is illustrated by the following se­
quence: 

ANS=21-16 
=(99-16)+21-99 
=(99-16+ 1)+21-100 
=5 

One is added to the 9' s complement of the subtrahend by setting the carry bit which is subsequently 
added to the minuend during execution of the ADCA instruction. The DAA instruction adjusts the 
result to the proper BCD value by effectively subtracting 100 because the resulting carry is discard­
ed. 

Multi-byte arithmetic involves operations where both of the operands. and results occupy more than 
a single byte of memorY. The simplest multi-byte routines are addition and subtraction of 16-bit 
two's complement numbers. These operations can be performed using either a single accumulator or 

~37 



the double accumulator, D, and the following example illustrates both methods. The first two se­
quences perform addition with single and double byte instruction whereas the second two sequences 
illustrate subtraction using both single and double byte instructions. 

Machine Code Label °2eration °2erand Comments 
% 51 LDAA ALPHA + 1 GET LO BYTE 
9B 61 ADDA BETA + 1 ADD LO BYTES 
97 71 STAA GAMMA + 1 STASH LO BYTE 
96 50 LDAA ALPHA GET HI BYTE 
99 60 ADCA BETA ADD HI BYTES 
97 70 STAA GAMMA STASH HI BYTE 

DC 50 LDD ALPHA GET ALPHA 
D3 60 ADDD BETA ADD TO BETA 
DD 70 STD GAMMA STASH IN GAMMA 

96 51 LDAA ALPHA + 1 GET LO BYTE 
90 61 SUBA BETA + 1 SUB LO BYTES 
97 71 STAA GAMMA + 1 STASH LO BYTE 
% 50 LDAA ALPHA GET HI BYTE 
92 60 SBCA BETA SUB HI BYTE 
97 70 STAA GAMMA STASH HI BYTE 

DC 50 LDD ALPHA GET ALPHA 
93 60 SUBD BETA ALPHA-BETA 
DD 70 STD GAMMA RESULT TO GAMMA 

Subroutines can be developed for multi-byte BCD addition with a variety of calling conventions and 
restrictions. Two such routines are shown in Figures 4-23 and 4-24. The first routine, BCDAD 1, is 
very short and serves to illustrate the basic algorithm. Its restrictions, however, are somewhat 
severe. The second routine is much more general, but the generality results in both increased length 
and execution time. The BCDAD1 routine (Figure 4-23) executes in approximately 100 cycles 
whereas the BCDAD2 routine (Figure 4-24) requires approximately 650 cycles for 4-byte addends. 

Expanding BCD subtraction to multi-byte arithmetic can be accomplished in a similar manner to 
BCD addition. The routine in Figure 4-25, BCDSB1, illustrates a simple but restrictive BCD sub­
traction.routine. It involves one loop but care must be taken to preserve the value of the C-bit. Ac­
cumulator Bin BCDSB1 is used for this purpose. The statements at lines 38 and 39 effectively imple­
ment an Add with carry. Accumulator B is cleared if the former addition generated no carry and set 
to one if a carry was generated. 

A more general routine is illustrated in Figure 4-26 where the routine BCDSB2 also uses Ac­
cumulator B as a pseudo carry bit. Execution times are approximately 140 cycles for BCDSB1 
(Figure 4-25) and approximately 700 cycles for BCDSB2 (Figure 4-26) for 4-byte arguments. 

4.4.6 Multiplication 

A variety of multiplication routines can be written for the MC6801 with the principle considerations 
being: 

1. the calling convention and associated restrictions, 

2. compatibility with signed or unsigned arguments, 

3. size of arguments and product, and 

4. whether minimum length or minimum execution speed is sought. 

4-38 



PAGE 001 BCDAD1 .SA:1 BCDAD1 *** BCD ADD ROUTINE *** 

00001 
00002 
00003 

NAM 
OPT 
TTL 

BCDADl 
ZO 1 ,LLEN=80 
*** BCD ADD ROUTINE *** 

00005 
00006 
00007 
00008 
00009 
00010 
00011 
00012 
00013 
00014 
00015 
00016 
00017 
00018 
00019 
00020 
00021 
00022 
00023 
00024 
00025 
00026 
00027 
00028 
00029 
00030 
00031 
00032 

********************************************************* 
* * BCD A D 1 -- A MORE RESTRICTIVE BCD ADD ROUTINE 
* * CALLING CONVENTION: 

* * LDX UK K IS THE LENGTH (BYTES) (K <= L) 
* JSR BCDAD1 

* * WHERE THE ARGUMENT AREA IS DEFINED AS: 

* * ARGl 
* ARG2 
* RESULT 

* 

RMBL 
RMB L 
RMBL 

ARGUMENT 1 (MSB) 
ARGUMENT 2 (MSB) 
RESULT (MSB) 

* RESTRICTIONS: 
* 1. ARG1, ARG2, AND RESULT MUST BE THE 
* 2. ARG1, ARG2, AND RESULT MUST RESIDE 
* OF THE SAME RESPECTIVE NAME. 
* 3. ARG1, ARG2, AND RESULT MUST RESIDE 
* DIRECT ($OO-$FF) ADDRESSING AREA. 
* 4. THE ROUTINE IS NON-RE-ENTRANT. 
* 
* NOTES: 
* 1. OVERFLOW MAY BE DETECTED BY TESTING 
* ON RETURN. (C-BIT=O, NO OVERFLOW) 
* 

SAME LENGTH 
IN LOCATIONS 

IN THE 

THE C-BIT 

********************************************************* 

00034A 1000 ORG 

BCDAD1 CLC 
A BCD002 LDAA 
A ADCA 

DAA 
A STAA 

DEX 

00036A 1000 OC 
00037A 1001 A6 7F 
00038A 1003 A9 83 
00039A 1005 19 
00040A 1006 A7 87 
00041A 1008 09 
00042A 1009 26 
00043A 100B 39 

F6 1001 BNE 
RTS 

00045 

00047A 0080 
00048 
00049A 0080 
00050A 0084 
00051A 0088 

* D A T A 

ORG 
0004 A L EQU 
0004 A ARG1 RMB 
0004 A ARG2 RMB 
0004 A RESULT RMB 

00053 END 
TOTAL ERRORS 00000--00000 

$1000 

ARG1-1,X 
ARG2-1,X 

INITIALIZE THE C-BIT 

ADJUST FOR BCD 
RESULT-1 ,X 

SEE IF DONE YET 
BCD002 NOT YET 

ARE A 

$80 
4 
L 
L 
L 

Figure 4-23. BCD Addition Routine: BCDADl 

4-39 



PAGE 001 BCDAD2 .SA:1 BCDAD2 *** RE-ENTRANT GENERAL BCDADD ROUTINE *** 

00001 
00002 
00003 

00005 
00006 
00007 
00008 
00009 
00010 
00011 
00012 
00013 
00014 
00015 
00016 
00017 
00018 
00019 
00020 
00021 
00022 
00023 
00024 
00025 
00026 
00027 
00028 
00029 
00030 
00031 
00032 

00034A 1000 

00036A 1000 C6 07 
00037A 1002 A6 06 
00038A 1004 36 
00039A 1005 09 
00040A 1006 5A 
00041A 1007 26 F9 
00042A 1009 30 

00044 
00045 
00046 
00047 
00048 
00049 
00050 
00051 
00052 

00054A 100A OC 
00055A 100B EE 01 
00056A 100D A6 00 

NAM 
OPT 
TTL 

BCDAD2 
ZOl,LLEN=80 
*** RE-ENTRANT GENERAL BCDADD ROUTINE *** 

********************************************************* 
* * BCD A D 2 -- A RE-ENTRANT BCD ADDITION ROUTINE 
* * CALLING CONVENTION: 

* * LDX #PACKET 
* JSR BCDAD2 
* 
* WHERE PACKET IS DEFINED AS: 
* 
* FCB LENGTH (BYTES) 
* FDB ADDRESS OF LSB OF ARG1 
* FDB ADDRESS OF LSB OF ARG2 
* FDB ADDRESS OF LSB OF RESULT 

* * RESTRICTIONS: 
* 
* ARG1, ARG2, AND RESULT MUST BE THE SAME LENGTH 
* ROUTINE DESTROYS X, ACCA, AND ACCB 

* * NOTE: 

* * OVERFLOW MAY BE DETECTED BY TESTING THE C-BIT 
* ON RETURN. IF C=O, NO OVERFLOW OCCURRED; 
* IF C=l, THE SUM OVERFLOWED. 
* 
********************************************************* 

ORG $1000 

A BCDAD2 LDAB #7 MOVE IT ALL TO STACK 
A BCDOOO LDAA 6,X NEXT ONE 

1002 

PSHA 
DEX BACK OFF ONE 
DECB MAYBE DONE 
BNE BCDOOO 
TSX NOW USE X TO POINT AT 

* ~TACK NOW LOOKS LIKE THIS 
* * +0 LENGTH (BYTES) 
* +1 MS BYTE - ADDR OF ARG1 
* +2 LS BYTE 
* +3 MS BYTE - ADDR OF ARG 2 
* +4 LS BYTE 
* +5 MS BYTE - ADDR OF RESULT 
* +6 LS BYTE 

CLC INITIALIZE CARRY BIT 
A BCD001 LDX 1,X GET ARG 1 
A LDAA X 

Figure 4-24. BCD Addition Routine: BCDAD2 

STACK 



PAGE 002 BCDAD2 .SA:1 BCDAD2 *** RE-ENTRANT GENERAL BCDADD,ROUTINE *** 
00057A 100F 30 
00058A 1010EE 03 
00059A 1012 A9 00 
00060A 1014 19 
00061A 1015 30 
00062A 1016 EE 05 
00063A 1018 A7 00 

A 
A 

A 
A 

TSX 
LDX 3,X 
ADCA X 
DAA 
TSX 
LDX 5,X 
STAA X 

ADD TO ARG 2 

ADJUS T FOR BCD 

PUT IN RESULT 

00065 * BUMP ALL ADDRESSES BACK ONE 

00067A lOlA C6 03 
00068A 101C 30 
00069A 101D A6 02 
00070A 101F 26 02 
00071A 1021 6A 01 
00072A 1023 6A 02 
00073A 1025 08 
00074A 1026 08 
00075A 1027 SA 
00076A 1028 26 F3 

00078A lO2A 30 

A LDAB 
TSX 

A BCDOO 2 LDAA 
1023 BNE 

A DEC 
A BCD003 DEC 

INX 
INX 
DECB 

101D BNE 

00079A 102B 6A 00 A 
00080A l02D 26 DC 100B 

TSX 
DEC 
BNE 

113 

2,X 
BCD003 
l,X 
2,X 

BCD002 

DO IT THREE TIMES 
POINT AT STACK AGAIN 
TRAP ROLLOVER 
NOT YET 
DEC HIGH BYTE TOO 
DEC LOW BYTE 
NEXT ADDR 

ONE LESS NOW 
MORE TO GO 

X SEE IF DONE 
BCDOO 1 NOT YET 

00082 * ALL DONE, CLEAN UP & LEAVE 

00084A 102F C6 07 
00085A 1031 3A 
00086A 1032 35 
00087A 1033 39 

A LDAB 117 
ABX 
TXS 
RTS 

00089 END 
TOTAL ERRORS 00000--00000 

BUMP SP 

NOW TRANSFER TO SP 

Figure 4·14. BCD Addition Routine: BCDAD2 (Continued) 

4-41 



PAGE 001 SCDSS1 .SA:1 BCDSB1 *** BCD SUB ROUTINE *** 

00001 
00002 
00003 

00005 
00006 
00007 
OOOO~ 
OOOO~ 
00010 
00011 
00012 
00013 
00014 
00015 
00016 
00017 
00018 
00019 
00020 
00021 
00022 
00023 
00024 
00025 
00026 
00027 
00028 
00029 
00030 
00031 
00032 

00034A 1000 
00035A 1000 C6 01 A 
00036A 1002 86 99 A 
00037A 1004 AO 87 A 
00038A 1006 1B 
00039A 1007 AB 7F A 
00040A 1009 19 
00041A 100A A7 8F A 
00042A 100C 09 
00043A 1000 27 05 1014 
00044A 100F 25 EF 1000 
00045A 1011 SF 
00046A 1012 20 EE 1002 
00047A 1014 39 

00049 

00051A 0080 
00052 0008 A 
00053A 0080 0008 A 
00054A 0088 OOOij A 
00055A 0090 0008 A 

NAM BCDSB1 
OPT ZOl,LLEN=80 
TTL *** BCD SUB ROU'rINE *** 

********************************************************* 
* * BCD S B 1 -- A REST RICTIVE BCD SUB ROUTINE 

* * CALLING CONVENTION: 
* 
* LOX #K K IS LENGTH WHERE K <= L 
* JSR BCDSB1 
* * WHERE THE ARGUMENT AREA IS DEFINED AS: 
* * SUBTRH 
* MINUEN 
* RESULT 
* 

RMB L 
RMB L 
RMB L 

SUBT RAHEND (MSB) 
MINUEND (MSB) 
RESULT (MSB) 

* REST RICTIONS: 
* 1. SUBTRH, MINUEN, AND RESULT MUST BE SAME LENGTH 
* 2. SUBTRH, MINUEN, AND RESULT MUST RESIDE IN 
* LOCATIONS OF THE SAME RESPECTIVE NAME. 
* 3. SUBT RH, MINUEN, AND RE SULT MU ST RE SI DE IN THE 
* DIRECT ($OO-$FF) AREA. 
* 4. THE IVUTINE IS NON-RE-ENTRANT. 
* * NOTES: 
* 1. UNDERFLOW MAY BE DETECTED BY TESTING THE C-BIT 
* ON RE'l'URN. (C=l, NO UNDERFLOW) 
* 
********************************************************* 

OK; $1000 
BCDSB1 LDAB #1 PSEUDO-CARRY BIT 
BCDOOO LDAA #$99 FOR 9 'S COMP 

SUBA MINUEN-1,X CONVERT TO 9 'S CaMP 
ABA CARRY? 
ADDA SUBTRH-1,X NOW ADD 
DAA ADJUST FOR BCD 
STAA RESULT-1,X ALL STASH RESULT 
DEX MAYBE DONE 
BEQ BCDOOI ALL DONE 
BCS BCDSB1 DO AGAIN, CARRY SET 
CLRB 
BRA BCDOOO DO AGAIN, CARRY CLEAR 

BCD001 R!'S ALL DONE 

* o A T A ARE A 

OK; $80 
L EQU 8 
SUBTRH RMB L 
MINUEN RMB L 
RESULT RMB L 

00057 END 
TOTAL ERRORS 00000--00000 

Figure 4·25. BCD Subtraction Routine: BCDSBI 

4-42 



PAGE 001 BCDSB2 .SA:l BCDSB2 *** RE-ENTRANT GENERAL BCDSUB ROUTINE *** 

00001 
00002 
'00003 

00005 
00006 
00007 
00008 
00009 
00010 
00011 
00012 
00013 
OOOU. 
00015 
00016 
00017 
00018 
00019 
00020 
00021 
00022 
00023 
00024 
00025 
00026 
00027 
00028 
00029 
00030 
00031 
00032 
00033 

0003SA 1000 

00037A 1000 C6 07 
00038A 1002 A6 06 
00039A 1004 36 
00040A 1005 09 
00041A 1006 SA 
00042A 1007 26 F9 
00043A 1009 30 

00045 
00046 
00047 
00048· 
00049 
00050 
00051 
00052 
00053 

OOOSSA 100A C6 01 
000S6A 100C 86 99 

NAM 
OPT 
TTL 

BCDSB2 
ZO 1 , LLEN=80 
*** RE-ENTRANT GENERAL BCD SUB ROUTINE *** 

********************************************************* 
* 
* BCD S B 2 -- A RE-ENTRANT BCD SUBTRACTION ROUTINE 

* * CALLING CONVENTION: 
* 
* LDX #PACKET 
* JSR BCDSB2 

* * WHERE PACKET IS DEFINED AS: 
* 
* FCB LENGTH (BYTES) 
* FDB ADDRESS OF LSB OF SUBTRAHEND 
* FDB ADDRESS OF LSB OF MINUEND 
* FDB ADDRESS OF LSB OF RESULT 
* * RESTRICTIONS: 
* * SUBTRAHEND, MINUEND, AND RESULT MUST BE THE 
* SAME LENGTH 
* ROUTINE DESTROYS X, ACCA, AND ACCB 
* 
* NOTE: 
* * UNDERFLOW MAY BE DETECTED BY TESTING THE C-BIT 
* ON RETURN. IF c= 1, NO UNDERFLOW OCCURRED; 
* IF C=O, MINUEND > SUBTRAHEND. 
* 
********************************************************* 

ORG $1000 

A BCDSB2 LDAB 117 MOVE IT ALL TO STACK 
A BCDOOO LDAA 6,X NEXT ONE 

1002 

PSHA 
DEX BACK OFF ONE 
DECB MAYBE DONE 
BNE BCDOPO NOT YET 
TSX NOW USE X TO POINT AT 

* STACK NOW LOOKS LIKE THIS 

* * +0 LENGTH (BYTES) 
* +1 MS BYTE - ADDR OF SUBTRAHEND 
* +2 LS BYTE 
* +3 MS BYTE - ADDR OF MINUEND 
* +4 LS BYTE 
* +5 MS BYTE - ADDR OF RESULT 
* +6 LS BYTE 

A BCD001 LDAB 
A BCDOO 2 LDAA 

111 
#$99 

Figure 4-16. BCD Subtraction Routine: BCDSBl 

4-43 

STACK 



PAGE 002 BCDSB2 • SA:1 BCDSB2 *** RE-ENTRANT GENERAL BCDSUB roUTINE *** 

00057A 100E EE 03 A LDK 3,X GET MINUEND 
00058A 1010 AO 00 A SUBA X 9 1 S COMP 
00059A 1012 30 TSX GET SUBTRAHEND 
00060A 1013 EE 01 A LDX 1,X 
00061A 1015 1B ABA ADD A CARRY IF REQI D 
00062A 1016 AB 00 A ADDA X ADD 1 EM 
00063A 1018 19 DAA ADJUST FOR BCD 
00064A 1019 30 'l'SX STASH IT AWAY 
00065A lOlA EE 05 A LDX 5,X GET ADDR 
00066A 101C A7 00 A STAA X RESULT NOW STASHED 

00068 * BUMP ALL ADDRESSES BACK ONE 

00070A 101E C6 03 A LDAB #3 DO IT THREE TIMES 
00071A 1020 30 TSX POINT AT STACK AGAIN 
00072A 1021 A6 02 A BCD003 LDAA 2,X TRAP roLLOVE R 
00073A 1023 26 02 1027 BNE BCD004 NOT YET 
00074A 1025 6A 01 A DEC 1,X HIGH BYTE 
00075A 1027 6A 02 A BCD004 DEC 2,X LOW BYTE 
00076A 1029 08 INX NEXT ADDR 
00077A 102A 08 INX 
00078A 1028 5A DECB ONE LESS NOW 
00079A 102C 26 F3 1021 BNE BCD003 MORE TO GO 

00081A 102E 30 TSX SEE IF DONE 
00082A 102F 6A 00 A DEC X 
00083A 1031 27 05 1038 BEQ BCD005 ALL DONE 

00085A 1033 25 D5 100A BCS BeD001 DO IT AGAIN 
00086A 1035 5F CLRB NO CARRY 
00087A 1036 20 D4 100C BRA BCD002 

00089 * ALL DONE, CLEAN UP & LEAVE 
00090A 1038 C6 07 A BCD005 LDAB #7 BUMP SP 
00091A 103A 3A ABX 
00092A 103B 35 TXS NOW TRANSFER TO SP 
00093A 103C 39 RI'S 

00095 END 
TOTAL ERroRS 00000--00000 

Figure 4·26. BCD Subtraction Routine: BCDSB2 (Continued) 

4-44 



One of the decisions which must be made is whetherto use the MC6801 unsigned multiply instruc­
tion. Multi-byte routines which utilize this instruction will typically be somewhat longer than the 
alternate method but will execute faster. 

4.4.6.1 MULTIPLICATION USING THE MUL INSTRUCTION. The MUL instruction multiplies 
the A accumulator by the B accumulator and puts the result in the double accumulator, D. Both in­
tegers in the multiplication are treated as unsigned binary values. Multiplication of two unsigned 
bytes by two other unsigned bytes is illustrated below. 

01 02 
x 03 04 

00 08 (02*04) 
00 04 (01*04) 
00 06 (02*03) 

00 03 (01*03) 

00 03 OA 08 

Another example which involves a carry out during the addition is as follows: 

FF FF 
x FF FF 

FE 01 
FE 01 
FE 01 -partial sum: FD 00 01 

FE 01 with carry out 
FF FE 00 01 

A routine which implements this procedure is shown in Figure 4-27. The routine contains no loops 
and executes in approximately 140 cycles. The execution time is nearly independent of the data in­
volved in the multiplication. 

A signed binary multiply routine can utilize either the MUL instruction or a technique known as 
Booth's algorithm. An example using the MUL instruction will be discussed first. The MUL instruc­
tion can be used to multiply two signed integers together by adding a suitable entry and exit to the 
unsigned routine previously discussed. The entry converts negative integers to positive integers and 
determines the sign of the product by performing an exclusive OR of the sign bits of the two values. 

With this procedure, the two integers are converted to their absolute value and then multiplied using 
the unsigned method shown in Figure 4-27. After the multiplication has been completed, if the 
resulting sign is positive then the multiplication is finished; otherwise, the two's complement of the 
result must be taken. While this routine is somewhat lengthy, it should be noted that it contains no 
loops and is therefore considerably faster than alternative methods such as Booth's algorithm. The 
resultant algorithm is shown in Figure 4-28. Execution time for the routine is approximately 225 
cycles. 

4-45 



PAGE 001 MUL16A .SA:1 MUL16A *** 16 X 16 UNSIGNED MULTIPLY *** 

00001 
00002 
00003 

00005 
00006 
00007 

.00008 
00009 
00010 
00011 
00012 
00013 
00014 
00015 
00016 
00017 
00018 
00019 
00020 
00021 
00022 
00023 
00024 
00025 
00026 
00027 
00028 
00029 
00030 
00031 

00033A 1000 

NAM 
OPT 
TTL 

MUL16A 
ZO 1 , LLEN=80 
*** 16 X 16 UNSIGNED MULTIPLY *** 

********************************************************* 
* * M U L 1 6 A -- A 16 X 16 MULTIPLY (32 BIT PRODUCT) 

* 
* 
* 
* 
* 
* 

THIS ROUTINE MULTIPLIES THE TWO 
UNSIGNED 16-BIT INTEGERS P & Q AND 
STORES THE PRODUCT IN THE 32-BIT 
UNSIGNED RESULT, R 

* CALLING CONVENTION: 

* 
* 
* 
* 

LDX (IDATA 
JSR MUL16A 

* WHERE DATA IS DEFINED AS 
* 
* 
* 
* 
* 

DATA RMB 2 P 
RMB 2 Q 
RMB 4 R 

* RESTRICTIONS: 
* 

P * Q GOES HERE 

* 1 • THE ROUTINE IS RE-ENTRANT PROVIDING EACH 
* CALLER SUPPLIES ITS OWN DATA AREA. 
* 2. THE DATA AREA MUST BE DEFINED AS ABOVE. 
* 
********************************************************* 

ORG $1000 

00035 
00036 
00037 

0000 A P 
0002 A Q 
0004 A R 

EQU 
EQU 
EQU 

o 
2 
4 

OFFSET FOR P 
OFFSET FOR Q 
OFFSET FOR R 

00039A 1000 4F MUL16A CLRA CLR TWO HIGH BYTES OF RESULT 
00040A 1001 SF CLRB 
00041A 1002 ED 04 A STD R,X 

00043A 1004 A6 01 A LDAA P+1,X P+l * Q+l 
00044A 1006 E6 03 A LDAB Q+1,X 
0004sA 1008 3D MOL 
00046A 1009 ED 06 A STD R+2,X 

00048A 100B A6 00 A LDAA P,X P * Q+l 
00049A 100D E6 03 A LDAB Q+1,X 
00050A 100F 3D MUL 
OOOslA 1010 E3 05 A ADDD R+1,X 
OOOs2A 1012 ED OS A STD R+1,X 
000s3A 1014 24 02 1018 BCC MUL002 CHK FOR CARRY 
000s4A 1016 6C 04 A INC R,X 

000s6A 1018 A6 01 A MULOO 2 LDAA P+1,X P+l * Q 
000s7A lOlA E6 02 A LDAB Q,X 
000s8A 101C 3D MOL 

Figure 4-27. Unsigned Multiplication: MUL16A 

4-46 



PAGE 002 MUL16A .SA:l MUL16A *** 16 X 16 UNSIGNED MULTIPLY *** 

00059A 101D E3 05 A ADDD R+l,X 
00060A 101F ED 05 A STD R+l,X 
0006lA 1021 24 02 1025 BCC MUL004 CHK FOR CARRY 
00062A 1023 6C 04 A INC R,X 

00064A 1025 A6 00 A MUL004 LDAA P,X P * Q 
00065A 1027 E6 02 A LDAB Q,X 
00066A 1029 3D MUL 
00067A 102A E3 04 A ADDD R,X 
00068A 102C ED 04 A STD R,X 
00069A 102E 39 RTS 

00071 END 
TOTAL ERRORS 00000--00000 

Figure 4-17. Unsigned MultipHcation: MUL16A (Continued) 

4-47 



PAGE 001 MUL16B .SA:1 MUL16B *** 16 X 16 SIGNED MULTIPLY *** 

00001 
00002 
00003 

00005 
00006 
00007 
00008 
00009 
00010 L 
00011 
00012 
00013 
00014 
00015 
00016 
00017 
00018 
00019 
00020 
00021 
00022 
00023 
00024 
00025 
00026 
00027 
00028 
00029 
00030 
00031 
00032 

00034A 1000 

00036 0000 
00037 0002 
00038 0004 
00039 0008 
00040 0009 
00041 OOOB 

00043 
00044 
00045 

NAM MUL16B 
OPT ZOl tLLEN=80 
TTL *** 16 X 16 SIGNED MULTIPLY *** 

********************************************************* 
* * M U L 1 6 B -- A 16 X 16 MULTIPLY (32 BIT PRODUCT) 
* 
* 
* 
* 
* 
* 

THIS ROUTINE MULTIPLIES THE TWO 
SIGNED 16-BIT INTEGERS P & Q AND 
STORES THE PRODUCT IN THE 32-BIT 
SIGNED RESULT t R 

* CALLING CONVENTION: 

* 
* 
* 
* 

LDX IIDATA 
JSR MUL16B 

* WHERE DATA IS DEFINED AS 

* 
* DATA RMB 2 P 
* RMB 2 Q 
* RMB 4 R P * Q GOES HERE 
* RMB 5 TEMP 
* 
* RESTRICTIONS: 
* 
* 1. THE ROUTINE IS RE-ENTRANT PROVIDING EACH 
* CALLER SUPPLIES ITS OWN DATA AREA. 
* 2. THE DATA AREA MUST BE DEFINED AS ABOVE. 

* ********************************************************* 

ORG $1000 

A PI EQU 0 OFFSET FOR P 
A Q1 EQU 2 OFFSET FOR Q 
AR EQU 4 OFFSET FOR R 
A S EQU 8 OFFSET FOR SIGN 
A P EQU 9 OFFSET FOR NEW P 
A Q EQU 11 OFFSET FOR NEW Q 

* THIS EMBEDDED SUBROUTINE TAKES THE TWO'S 
* COMPLEMENT OF THE A:B ACCUMULATOR AND 
* SETS THE SIGN FLAG FOR THE RESULT. 

00047A 1000 2A 06 
00048A 1002 63 08 
00049A 1004 40 
00050A 1005 50 
00051A 1006 82 00 
00052A 1008 39 

1008 MULABS BPL MULOOO 
StX 

IT'S ALREADY POSITIVE 
COMPLEMENT SIGN A COM 

NEGA 
NEGB 

A SBCA 
MULOOO RTS 

TAKE TWO'S COMP 

110 

00054 * THE MUL16B ENTRY POINT IS HERE 

00056A 1009 6F 08 A MUL16B CLR StX INZ SIGN FLAG 
00057A 100B EC 00 A LDD PI tX 
00058A 100D 8D F1 1000 BSR MULABS MAKE POSITIVE 

Figure 4·28. Signed Multiplication Routine: MUL16B 

4-48 



PAGE 002 MUL16B .SA:1 MUL16B *** 16 X 16 SIGNED MULTIPLY *** 
00059A 100F ED 09 A 
00060A 1011 EC 02 A . 
00061A 1013 8D EB 1000 
00062A 1015 ED OB A 

00064A 1017 4F 
00065A 1018 SF 

STD 
LDD 
BSR 
STD 

CLRA 
CLRB 

P,X 
Q1,X 
MULABS MAKE POSITIVE 
Q,X 

CLR TWO HIGH BYTES OF RESULT 

00066A 1019 ED 04 A STD R,X 

00068A 101B A6· OA 
00069A 101D E6 OC 
00070A 101F 3D 
00071A 1020 ED 06 

00073A 1022 A6 09 
00074A 1024 E6 OC 
00075A 1026 3D 
00076A 1027 E3 05 
00077A 1029 ED 05 
00078A 102B 24 02 
00079A 102D 6C 04 

00081A 102F A6 OA 
00082A 1031 E6 OB 
00083A 1033 3D 
00084A 1034 E3 05 
00085A 1036 ED 05 
00086A 1038 24 02 
00087A 103A 6C 04 

00089A 103C A6 09 
00090A 103E E6 OB 
00091A 1040 3D 
00092A 1041 E3 04 
00093A 1043 ED 04 

A 
A 

A 

A 
A 

A 
A 

102F 
A 

LDAA 
LDAB 
MUL 
STD 

LDAA 
LDAB 
MUL 
ADDD 
STD 
BCC 
INC 

A MULOO 2 LDAA 
A LDAB 

MUL 
A ADDD 
A STD 

103C BCC 
A INC 

A MUL004 LDAA 
A LDAB 

MUL 
A ADDD 
A STD 

P+1,X 
Q+l,X 

R+2,X 

P,X 
Q+1,X 

R+1,X 
R+1,X 
MUL002 
R,X 

P+l,X 
Q,x 

R+1,X 
R+1,X 
MUL004 
R,X 

P,X 
Q,x 

R,X 
R,X 

P+1 * Q+1 

P * Q+1 

CHK FOR CARRY 

P+1 * Q 

CHK FOR CARRY 

P * Q 

00095 * ALL DONE, CHECK SIGN OF RESULT 

00097A 1045 6D 08 A 
00098A 1047 2A OF 1058 

TST 
BPL 

S,X 
MUL008 POSITIVE RESULT 

00100 * TAKE TWO'S COMPLEMENT OF RESULT 

00102A 1049 C6 04 
00103A 104B OD 
00104A 104C A6 07 
00105A 104E 88 FF 
00106A 1050 89 00 
00107A 1052 A7 07 
00108A 1054 09 
00109A 1055 SA 
OOllOA 1056 26 F4 
OOlllA 1058 39 

A LDAB 
SEC 

A MUL006 LDU 
A EORA 
A ADCA 
A STAA 

DEX 
DECB 

104C BNE 
MUL008 RTS 

00113 END 
TOTAL ERRORS 00000--00000 

114 

R+3,X 
II$FF 
110 
R+3,X 

MUL006 

ADD 1 
NEXT BYTE 
COMPLEMENT, DON'T AFFECT C-BIT 

STASH IT 
NEXT ONE 
MAYBE DONE 
MORE TO GO 

Figure 4-28. Signed Multiplication Routine: MUL16B (Continued) 

4-49 



4.4.6.2 MULTIPLICATION USING BOOTH'S ALGORITHM. When memory space is critical 
and execution time is of little consequence, then Booth's algorithm can be effectively used to 
sacrifice speed for memory space. The procedure can be simply stated as: 

1. Clear the product (result area) and initialize the shift count; 
2. Test the next bit of the multiplier (from LSB to MSB) assuming an imaginary 0 bit to the im-

mediate right of the LSB of the multiplier; 
3. If the bits are equal, then go to step 6; 
4. If there is a 0 to 1 transition, subtract the multiplicand from the product and go to step 6; 
5. If there is a 1 to 0 transition, add the multiplicand to the product; 
6. Clear the previous LSB of the multiplier; 
7. Shift the multiplier right (toward the LSB) one bit with the LSB going to LSB of multiplier; 
8. Shift the product right (toward the LSB) one bit with the most significant bit remaining the 

same; 
9. If any bits remain to be tested in the multiplier, go to step 2; else finished. 

Figure 4-29 illustrates the typical steps involved in an actual calculation. A flowchart and assembly 
listing for a routine using Booth's algorithm with the MC6801 instruction set is shown in Figures 
4-30 and 4-31. The worst case execution time results when alternate additions and subtractions are 
required in 16 operations. Execution time is on the order of 1300 cycles and is data dependent. This 
time compares with 225 cycles when using the MUL16B routine shown in Figure 4-28. 

5 Bits 

~1'1 I 
1 1 0 1 = -3 

1 1 1 0 1 1 = -5 

o 0
1

0 0 0 0 0 0 1 1 1 1 I = +15 

10 Bits 

1 1 1 1 0 1 Multiplicand 
1 1 1 0 1 1 (0) 

:::!II:::::::: 
Multiplier 

0 0 0 0 0 0 o to 1; subtract by adding the 2's 
+ 0 0 0 0 1 1 complement of the multiplicand 

0 0 0 0 1 1 PRODUCT 
0 0 0 0 0 1 1 Shift PRODUCT 
0 0 0 0 0 0 1 1 1 to 1 shift PRODUCT 

+ 1 1 1 1 0 1 1 to 0 add 

1 1 1 1 0 1 1 PRODUCT 
1 1 1 1 1 0 1 1 Shift PRODUCT 

+ 0 0 0 0 1 1 o to 1 subtract 

0 0 0 0 0 1 1 1 PRODUCT 
0 0 0 0 0 0 1 1 Shift PRODUCT 
0 0 0 0 0 0 0 1 1 to 1 shift 
~IO 0 0 0 0 0 1 I 1 to 1 shift 

Sign 15 

Figure 4-29. Multiplication Using Booth's Algorithm 

4-50 



Yes (1toO) 

Add the Multiplicand 
to the Product with 

the MS Bytes Lined Up 

Return 
from 

Subroutine 

Yes 

Clear the Working Registers 
This Includes the Previous LS Bit 

of the Multiplier Test Byte 
Initialize the Shift Count to 16 

Subtract the Multiplicand 
from the Product with 

the MS Bytes Lined Up 

Clear the Previous LS Bit 
of the Multiplier Test Byte 

Shift the Multiplier Right One 
Bit with the LS Bit Going into 

the LS Bit of the 
Multiplier Test Byte 

Shift the Product Right One Bit, 
the MS Bit Remaining the Same 

Decrement the 
Shift Counter 

Note: "Product" in this flowchart is synonomous with "Result" 

Yes 

No 

Figure 4·30. Flowchart for Booth's Algorithm 

4-51 



PAGE 001 MULT16 .SA: 1 MULT16 

00001 
00002 

00004 
00005 
00006 
00007 
00008 
00009 
00010 
00011 
00012 
00013 
00014 
00015 
00016 
00017 
00018 
00019 
00020 
00021 
00022 
00023 
00024 
00025 
00026 
00027 
00028 
00029 
00030 
00031 

00033 
00034 
00035 
00036 
00037 
00038 

00040A 1000 

00042A 1000 4F 
00043A 1001 5F 
00044A 1002 ED 
00045A 1004 ED 
00046A 1006 A7 
00047A 1008 86 
00048A 100A A7 
00049A 100C EC 
00050A 100E ED 

00052 
00053 
00054 

0000 
0002 
0004 
0009 
OOOA 
OOOB 

04 
06 
09 
10 
OA 
00 
OB 

00056A 1010 A6 OC 
00057A 1012 84 01 
00058A 1014 16 

NAM 
OPT 

MULT16 
ZO 1 ,LLEN=80 

********************************************************* 
* * M U L T 1 6 -- 16 X 16 2'S COMPLEMENT MULTIPLY 
* (32-BIT 2'S COMP PRODUCT) 

* 
* 
* 
* 
* 
* 

THIS ROUTINE USES BOOTH'S ALGORITHM 
TO MULTIPLY TWO 16-BIT 2'S COMPLEMENT 
INTEGERS YIELDING A 32-BIT SIGNED 
PRODUCT. 

* CALLING CONVENTION: 
* 
* LDX #DATA 
* JSR MULT16 
* 
* WHERE DATA IS DEFINED AS: 

* 
* 
* 
* 
* 
* 

DATA RMB 2 

RMB 2 
RMB 4 

RMB 4 

P MULTIPLIER 
Q MULTIPLICAND 
R RESULT 
TEMP 

* RESTRICTIONS AND NOTES: 
* * THE ROUTINE IS RE-ENTRANT IF EACH CALLER 
* PROVIDES ITS OWN DATA AREA 

* 
********************************************************* 

A PI EQU 0 MULTIPLIER 
A Q EQU 2 MULTIPLICAND 
AR EQU 4 RESULT 
A S EQU 9 PREVIOUS LS BIT 
A T EQU 10 SHIFT COUNT 
A P EQU 11 WORKING COpy OF MULTIPLIER 

ORG $1000 

MULT16 CLRA CLEAR THE WORKING REGS 
CLRB 

A STD R,X CLEAR OUT RESULT AREA 
A STD R+2,X 
A STAA S,X CLEAR PREVIOUS LS BIT TOO 
A LDAA 1116 INZ SHIFT COUNT 
A STAA T,X 
A LDD P1,X MAKE WORK COpy OF MULTIPLIER 
A STD P,X 

* * BOOTH'S MAIN LINE BEGINS HERE 
* 

A MULTO! LDAA P+1,X 
A ANDA #1 

TAB 

GET LSB OF MULTIPLIER 
ISOLATE LSB 
SAVE 

Figure 4-31. Signed Multiplication Routine: MULT16 

4-52 



PAGE 002 MULT16 .SA: 1 MULT16 

000s9A 1015 A8 09 A EORA S,X ARE LS BITS EQUAL? 
00060A 1017 27 11 102A BEQ MULTO 2 YES, GO TO SHIFTER 
0006lA 1019 sD TSTB DOES LS BIT OF MULT = O? 
00062A lOlA 27 08 1024 BEQ ADD YES, GO TO ADD ROUTINE 

00064A 101C EC 04 A LDD R,X NO, SUBTRACT MULTIPLICAND FROM 
0006sA 101E A3 02 A SUBD Q,X PRODUCT WITH MS BYTES 
00066A 1020 ED 04 A STD R,X LINED UP 
00067A 1022 20 06 102A BRA MULTO 2 

00069A 1024 EC 04 A ADD LDD R,X ADD THE MULTIPLICAND TO 
00070A 1026 E3 02 A ADDD Q,X PRODUCT WITH MS BYTES 
0007lA 1028 ED 04 A STD R,X LINED UP 

00073A 102A 6F 09 A MULT02 CLR S,X CLEAR PREVIOUS LS BIT 
00074A 102C 66 OB A ROR P,X SHIFT THE MULTIPLIER RIGHT ONE 
0007sA 102E 66 OC A ROR P+l,X BIT WITH THE LS BIT GOING 
00076A 1030 69 09 A ROL S,X INTO THE LSB OF TEST BYTE 

00078A 1032 67 04 A ASR R,X SHIFT THE PRODUCT RIGHT ONE 
00079A 1034 66 05 A ROR R+l,X WITH THE MS BIT REMAINING 
00080A 1036 66 06 A ROR R+2,X THE SAME 
0008lA 1038 66 07 A ROR R+3,X 
00082A 103A 6A OA A DEC T,X DECREMENT SHIFT COUNTER 
00083A 103C 26 D2 1010 BNE MULTO 1 DOES SHIFT COUNTER = 0 
00084A 103E 39 RTS ALL DONE 

00086 END 
TOTAL ERRORS 00000--00000 

Figure 4·31. Signed Multiplication Routine: MULT16 (Continued) 

4.4.7 Division 

Unsigned binary division can be performed using the self-restoring method; there is no hardware 
divide instruction available on the MC6801. The algorithm used for this method is: 

1. Left justify the divisor while keeping track of how many times the divisor was shifted. 
2. Subtract the divisor from the dividend; the carry bit indicates whether the dividend is larger or 

smaller than the divisor. 
3. If the C-bit is clear (dividend larger than divisor) then go to step 4; else shift the quotient one 

left with the least significant bit cleared and add the divisor back to (restore) the dividend. Go 
to step 5. 

4. Shift the quotient one bit left with the least significant bit set. 
5. Shift the divisor one right. 
6. Decrement the shift counter; if not zero, go to step 2. 

A flowchart outlining this algorithm is shown in Figure 4-32. A routine which implements this 
algorithm using the MC6801 instruction set is shown in Figure 4-33. This routine, DIV16B, per­
forms an unsigned division and provides both the quotient and remainder. If a division by zero is at­
tempted, however, the routine returns with the carry bit (C-bit) set; otherwise the C-bit is clear. In­
struction timing for the routine is data dependent but is on the order of 280 cycles (approximately). 

4-53 



No 

Shift Quotient One 
Left with Carry Bit 

to LSB; Shift Divisor 
One Right; Decrement 

Shift Count 

No 

No 

No 

Figure. 4-31. Flowchart for Unsigned Division 

4-54 



PAGE 001 DIV16B .SA:1 DIV16B *** 16 BY 16 UNSIGNED DIVIDE*** 

00001 
00002 
00003 

00005 
00006 
00007 
00008 
00009 
00010 
00011 
00012 
00013 
00014 
00015 
00016 
00017 
00018 
00019 
00020 
00021 
00022 
00023 
00024 
00025 
00026 
00027 
00028 
00029 
00030 
00031 
00032 
00033 
00034 
00035 
00036 
00037 
00038 

00040 
00041 
00042 
00043 

00045A 1000 

00047A 1000 3C 

0000 
0003 
0001 
0005 

00048A 1001 C6 04 
00049A 1003 A6 03 
00050A 1005 36 
00051A 1006 09 
00052A 1007 5A 

NAM 
OPT 
TTL 

DIV16B 
ZO 1 , LLEN=80 
*** 16 BY 16 UNSIGNED DIVIDE *** 

********************************************************* 
* 
* D I V 1 6 B-- 16-BIT BY 16-BIT UNSIGNED DIVIDE 
* 
* 
* 
* 
* 

THIS ROUTINE DIVIDES TWO UNSIGNED 16-
BIT INTEGERS PROVIDING A 16-BIT QUO­
TIENT AND REMAINDER. 

* CALLING CONVENTION: 

* 
* LDX IIDATA 
* JSR DIV16B 
* 
* WHERE DATA IS DEFINED AS: 

* 
* 
* 
* 
* 

DATA RMB 2 
RMB 2 
RMB 2 

* RETURNS: 

* 

DIVIDEND 
DIVISOR 
QUOTIENT 

* 1. QUOTIENT IN LOCATION SPECIFIED, AND 
* 2. REMAINDER IN THE A:B ACCUMULATOR. 
* 3. THE CARRY BIT IS CLEARED IF THE DIVISOR IS NON-
* ZERO; IF DIVISOR IS ZERO, THE CARRY BIT IS SET 
* AND THE QUOTIENT AND REMAINDER ARE UNDEFINED. 

* 
* 
* NOTES: 

* * 1. THE ROUTINE IS RE-ENTRANT PROVIDING EACH CALLER 
* FURNISHES ITS OWN UNIQUE DATA AREA. 

* 
********************************************************* 

A KT EQU 0 OFFSET FOR COUNTER 
A DIV EQU 3 OFFSET FOR DIVISOR 
A QUO EQU 1 OFFSET FOR QUOTIENT 
A PTR EQU 5 OFFSET FOR QUOTIENT POINTER 

ORG $1000 

DIV16B PSHX MOVE IT ALL TO STACK 
A LDAB 114 
A DIVOOO LDAA 3,X NEXT ONE 

PSHA 
DEX BACK OFF ONE 
DECB 

00053A 1008 26 F9 1003 BNE DIVOOO 
00054A 100A 5C INCB INZ KT TO 1 
00055A 100B 37 PSHB 
00056A 100C 30 TSX NOW POINT AT STACK WITH X 

Figure 4·33. Unsigned Division Routine: DIV16B 

4-SS 



PAGE 002 DIV16B 

00058 
00059 
00060 
00061 
00062 
00063 
00064 
00065 
00066 

00068A 100D EC 03 
00069A 100F 27 32 
00070A 1011 2B 07 
00071A 1013 6C '00 
00'072A 1015 OS 
00073A 1016 2A FB 
00074A 1018 ED 03 
00075A lOlA EC '01 
00076A 101C 6F '01 
00077A 101E 6F 02 

00079A 1020 A3 '03 
00080A 1022 24 05 
00081A 1024 E3 '03 
00082A 1026 OC 
00083A 1027 20 '01 

00085A 1029 OD 
00086A 102A 69 '02 
00087A 102C 69 '01 
00088A 102E 64 '03 
00089A 1030 66 '04 
00090A 1032 6A '00 
00091A 1034 26 EA 

00093 

00095A 1036 37 
00096A 1037 36 
00097A 1038 EC '01 
00098A 103A EE 05 
00099A 103C ED '04 
00100A 103E 32 
00101A 103F 33 
00102A 1040 OC 
00103A 1041 20 '01 
00104A 1043 OD 
00105A 1044 38 
00106A 1045 38 
00107A 1046 38 
00108A 1047 31 
00109A 1048 39 

00111 

.SA: 1 DIV16B *** 16 BY 16 UNSIGNED DIVIDE *** 

* STACK NOW LOOKS LIKE THIS 

* 
* +0 COUNTER 

* +1 MS BYTE - DIVIDEND & QUOTIENT 

* +2 LS BYTE 

* +3 MS BYTE - DIVISOR 

* +4 LS BYTE 

* +5 MS BYTE - POINTER TO DATA 

* +6 LS BYTE 

A LDD DIV,X LEFT JUSTIFY THE DIVISOR 
1043 BEQ 
lOlA BMI 

A DIV001 INC 
ASLD 

1013 BPL 
A STD 
A DIV002 LDD 
A CLR 
A CLR 

A DIV003 SUBD 
1029 BCC 

A ADDD 
CLC 

102A BRA 

DIV004 SEC 
A DIV005 ROL 
A ROL 
A LSR 
A ROR 
A DEC 

1020 BNE 

* CLEAN UP 

PSHB 
PSHA 

A LDD 
A LDX 
A STD 

PULA 
PULB 
CLC 

1044 BRA 
DIV006 SEC 
DIV007 PULX 

PULX 
PULX 
INS 
RTS 

END 

DIV'006 UH, OH ••• DIVISOR 
DIV'002 ALREADY DONE 
X BUMP COUNT 

DIV'001 DO IT AGAIN 
DIV,X 
QUO,X 
QUO,X 
QUO+1,X 

DIV,X 
DIV'O'04 DIVISOR STILL OK 
DIV,X TOO LARGE - RESTORE 

DIV'005 

QUO+1,X 
QUO ,X 
DIV,X ADJUST DIVISOR 
DIV+1,X 
KT,X 
DIV'003 

THE STACK AND EXIT 

QUO ,X 
PTR,X 
4,X 

DIV'007 

SAVE THE REMAINDER 

GET QUOTIENT 
GET WHERE TO PUT IT 
PUT IT BACK 
RESTORE REMAINDER 

FLAG OK 

FLAG PROBLEM 

ALL DONE 

IS ZERO 

TOTAL ERRORS 00'000--00000 

Figure 4-33. Unsigned Division Routine: DIV16B (Continued) 

4-56 

! ! 



CHAPTERS 
THE MC6801 INTERRUPT STRUCTURE 

5.0 INTRODUCTION 

MC6801 interrupt requests can be generated by any of three different methods: (1) by presenting an 
appropriate external signal, (2) by enabling interrupts from the Programmable Timer, Serial Com­
munications Interface or Port 3 input strobe, or (3) by executing a Software Interrupt (SWI) instruc­
tion. A special type of interrupt, Reset, is excluded from the following discussion. 

Seven hardware interrupts and one software interrupt can be generated from all of the possible 
sources. The interrupts and any associated flag bits are as follows: 

1. Non-Maskable Interrupt (NMI) 
2. Interrupt Request 1 (IRQl) 
3. Port 3 Input Strobe (IS3 FLAG) 
4. Timer Input Capture (ICF) 
5. Timer Output Compare (OCF) 
6. Timer Overflow (TOF) 
7. Serial Communications Interface (RDRF, ORFE, TORE) 
8. Software Interrupt (SWI) Instruction 

5.1 INTERRUPT CONSIDERATIONS 

Interrupts, in general, can be considered a mechanism with which to provide "service" to a 
peripheral device. The "service," for instance, could merely consist of reading the Receiver Data 
Register in an MC6850 Asychronous Communications Interface Adapter (ACIA) in response to the 
keystroke on a keyboard. This same service, however, could also be provided by continuously 
testing the RDRF (Receiver Data Register Full) flag bit for a "full" condition. When the flag bit in­
dicates "full," the Receiver Data Register would be read just as in the interrupt example. 

Software utilizing the former method of service is usually referred to as "interrupt-driven" while the 
latter is called "polling." Either method could be appropriate depending on the application. The 
program sequence shown in Figure 5-1 illustrates a polling sequence. Note there is an implied 
assumption that the MPU can remain in the polling loop for an indefinite period of time without 
system degradation. Examined from a different viewpoint, the MPU is minimally utilized, but the 
idle time cannot be diverted to performing other tasks because it is totally dedicated. Interrupt­
driven service provides a means to utilize the excess MPU capacity. 

5-1 



GETCH LDAA 
LOOP BITA 

BEQ 

#.RDRF 
ACIAS 
LOOP 

MASK FOR RECEIVER FLAG 
CHECK RECEIVER FULL FLAG 
NOT READY YET 

-FLAG'S SET, GET DATA AND EXIT 
LDAA ACIAD GET THE DATA 
RTS THAT'S ALL 

Figure 5-1. Polling Loop Sequence 

MPU utilization is not, however, always enhanced by using interrupts. MPU interrupt service 
always incurs a fIXed "overhead" of execution time. In the MC6801, this "overhead" consumes 22 
MPU E-cycles of which 12 cycles are needed to execute the interrupt sequence while the remaining 
10 cycles are required to restore the former machine state at the end of the service routine. This in­
terrupt response time latency could be intolerable in servicing a very high speed peripheral. If the 
time between requests for service is reduced sufficiently, it can be shown that using interrupt-driven 
service, in preference to polling, can result in reduced MPU performance. Interrupt servicing is most 
effective when the response time latency is insignificant relative to the average time between inter­
rupt requests. Fortunately, this condition is met by a great many practical applications. 

Interrupts can also be used to provide a hierarchical response in systems characterized by a large 
variation in the time between service requests. In these applications, service is usually provided such 
that devices requesting service more often are given a higher priority. 

Polling loops, however, can also be structured to provide some hierarchical capability. Consider, 
for example, the program sequence shown in Figure 5-2. In this example, service requests are 
honored with a hierarchy of Device .1, Device 2, and Device 3. Note that if Device 1 requests service 
at a sufficiently high rate, however, service requests for Device 2 and Device 3 will never be honored. 

Another significant feature of polling is that once service has begun for either Device 2 or Device 3, 
requests for service by Device 1 will not be honored again until service has been completed. This 
could produce an intolerable situation which can possibly be remedied by the use of interrupts. If in­
terrupts were used instead of polling, the service for either Device 2 or Device 3 could be suspended 
whenever Device 1 needed service. This prioritization of service cannot be efficiently achieved with 
polling. A combination of polling and interrupt service can also be used to advantage in some ap­
plications. 

·CHECK DEVICE 1 
DEV1 LDAA STAT1 CHECK DEVICE 1 

BPL DEV2 NO SERVICE REQUIRED 
JSR SVDEV1 SERVICE DEVICE 1 
BRA DEV1 CHECK IT AGAIN 

·CHECK DEVICE 2 
DEV2 LDAA STAT2 CHECK DEVICE 2 

BPL DEV3 NO SERVICE REQUIRED 
JSR SVDEV2 SERVICE DEVICE 2 
BRA DEV1 CHECK DEVICE 1 AGAIN 

·CHECK DEVICE 3 
DEV3 LDAA STAT3 CHECK DEVICE 3 

BPL DEV1 LAST ONE 
JSR SVDEV3 SERVICE DEVICE 3 
BRA DEV1 START OVER 

Figure 5-1. Hierarchical Polling Loop Sequence 

5-2 



S.2 MC6801 INTERRUPT GENERATION 

MC6801 interrupts have three attributes: (1) priority of service. (2) edge or level sensitivity. and (3) 
whether the interrupt can or cannot be masked. The interrupt with the highest priority, excluding 
Reset. is the Non-Maskable Interrupt (NMI) which can be generated by a high-to-low voltage transi­
tion on the MCU NMI pin. This can be considered an edge-sensitive interrupt and is one of three 
such interrupts in the MC6801. The Port 3 Input Strobe (lS3) and the Timer Input Capture inter­
rupts are also edge-triggered. All other interrupts are level-sensitive for which the request line must 
be held low long enough for the MCU to both recognize and respond to them. 

The MC6801 design philosophy which is inherent in level-sensitive interrupt response is that a 
peripheral device requesting service will "pull down" the appropriate interrupt line and the service 
routine, as part of its duties, will clear or reset the interrupt request. Pulse inputs as level-sensitive 
interrupts are strongly discouraged and require precise timing and a detailed knowledge of the 
MC6801 internal interrupt circuitry in order to achieve predictable results. 

S.2.1 Non-Maskable Interrupt (NMI) 

The MC6801 Non-Maskable Interrupt, NMI. is the highest prioritized interrupt (excluding Reset) 
and, as its name implies, can be masked only with external circuitry. The NMI interrupt can be used 
to signal loss of power to the processor thereby facilitating an orderly power-down sequence. 

An NMI request is generated by a high-to-low voltage transition (negative edge). The generation 
mechanism need not be designed such that the service routine resets the device producing the NMI 
interrupt. although it may. If the NMI request is asynchronous -with respect to E, it should remain 
low for at least one MPU E-cycle to be recognized under all conditions. 

The NMI input must not remain unconnected in any MC6801-based system because there is no in­
ternal pullup resistor. Therefore, an unconnected NMI input could result in spurious NMI requests. 
Pullup resistors between 3 k and 10 k ohms are typically used and depend upon the current capabili­
ty of the circuit element generating the interrupt. 

S.2.1.1 SYSTEM CONSIDERATIONS IN USING NMI. When using the NMI interrupt, there are 
several considerations which must be kept in mind in order to design error-free systems. The first 
consideration is that an MC6801 cannot internally control when it is ready to recognize its initial 
NMI interrupts. Prior to responding to any interrupt. it is first necessary to initialize the MPU stack 
pointer. A system will usually fail if it allows an NMI to occur between an MPU Reset (during which 
the c~ .. tents of the stack pointer are undefined) and the stack pointer initialization instruction. 

NOTE 
NMI negative edges which occur while RESET is low are ignored. If an NMI negative 
edge occurs within two E-cycles following the positive edge of RESET, however, the 
MPU will execute an NMI interrupt sequence prior to executing the instruction at the 
Reset vector. 

5-3 



Another important consideration is that an NMI service routine can be interrupted at any time by 
yet another edge of the NMI pin after the 10th cycle of an NMI interrupt sequence. If an MC6801 
system attempts to service NMI requests for which the average time between requests is less than the 
service routine execution, the program will eventually fail for lack of sufficient stack memory. 

While more than one M6800 family device can be wire-ORed to the NMI line, difficulties can arise if 
mutual exclusion of interrupt requests is not guaranteed. Suppose more than one NMI request exists 
when the request for the device currently being serviced is cleared. The NMI line will remain low but 
no new negative edge will be generated. Without this edge, any remaining pending requests on the 
NMI line will be ignored. The NMI line can be configured as a level-sensitive maskable interrupt line 
with minimal additional external hardware and would alleviate the difficulties associated with this 
problem. This technique is discussed in detail in the next section. 

System development tools sometime utilize the NMI interrupt for various debugging functions. The 
designer should investigate whether the development system will permit "user" NMI interrupts in 
order to avoid unpleasant surprises during checkout. 

5.2.1.2 USING NMI AS A MASKABLE INTERRUPT. The NMI interrupt can be used as a level­
sensitive highest priority maskable interrupt with minimal external hardware. Suppose the following 
design objectives are proposed for an external NMI mask circuit: 

1. NMI must be masked when the MPU comes out of Reset, 
2. NMI must be maskable by using software t~ set and clear the mask, 
3. Inputs to the circuits can be considered level-sensitive, and 
4. Nested (multiple) NMI interrupts can not occur. 

Further suppose that the following is a requirement on hardware devices which utilize the NMI line: 
external devices must "pull down" the NMI line and hold it down until reset by software. 

The design can be implemented.by using an input/output line as a mask control line, an externally 
connected OR-gate as the masking device, and proper software control. Consider the circuit shown 
in Figure 5-3. Any available data line serves as the mask control line. The pullup resistor on the 
mask control line ensuresl that the line will be high coming out of Reset which inhibits any NMI in­
terrupt until software enables the circuit by clearing the mask control line. 

Software initialization of the mask control line must be performed carefully to avoid enabling a 
premature interrupt. The Data Direction Register for all of the MC6801 I/O ports is cleared by 
Reset which configures them as input data ports. Prior to configuring the mask control bit as an out­
put, it must be set by writing to the Data Register. If this order is reversed, the line could go low 
(enabling NMI) until a "1" is written to the Data Register. The NMI line can be unmasked by clear­
ing the mask control bit. If an NMI is pending, the output state of the OR-gate will change from a 
high to a low and generate the interrupt. 

. One of the device restrictions stated that it should keep the line low until reset by software. This 
restriction serves to prevent further NMI interrupts while the service routine is executing. No new 
edge can be generated on the NMI pin while the level is held low. 

Software must be used correctly in servicing the interrupting devices in order to achieve· the desired 
results. A software example which utilizes the NMI mask circuit is shown in Figure 5-4. 

5-4 



+5V .....----NMI1 

3.3 k 

~---6-~~----NMI2 

\--_ _. NMr' 

MC6801 +5V 

Port 1 
Bit 7 

3.3 k 

Figure 5-3. An NMI Mask Circuit 

*INITIALIZE DATA PORT 

LDAA 
STAA 
STAA 

#%10000000 
P1DATA 
P1DDR 

: (Other Instructions) 
• 

*READY FOR NMI NOW, CLEAR MASK 

LDAA P1DATA 
ANDA #%01111111 
STAA P1DATA 

• : (Other Instructions) 

*SERVICE NMI HERE 

NMISVC LDAA 
STAA 
LDAA 
LDAA 

• • • 
LDAA 
ANDA 
STAA 
RTI 

#%10000000 
P1DATA 
DEVST 
DEVDAT 

(Other Instructions) 

P1DATA 
#%01111111 
P1DATA 

KEEP MASK BIT HIGH 
WRITE PORT DATA REG FIRST 
WRITE DATA DIRECTION REG 

GET P17 
CLEAR B7 ONLY 
ARM NMI 

SET NMI MASK FIRST 
MASK HAS BEEN SET 
CLEAR DEVICE FLAG 
READ STATUS, READ DATA 

REARM NMI 
ONLY B7 
NEXT NMI 
ALL DONE 

Figure 5-4. Software for an NMI Mask 

The NMI service routine must not reset or "re-arm" the external device until after the mask control 
bit has been set. The following steps should be performed during interrupt service: 

1. the mask bit must be set, 
2. the device must be reset (NMI cleared), 
3. other services may be performed as required, 
4. the mask bit must be cleared and then be followed immediately by a "Return from Interrupt" 

(RTI) instruction. 
The last step will generate a new edge if another NMI is pending but it will occur too late to be im­
mediately acted upon. One instruction will be executed before taking the interrupt; that instruction 
must be the RTI instruction to prevent nesting of NMI interrupts. 

5-5 



5.2.2 MC680l Maskable Interrupts (lRQl and IRQ2) 

Maskable interrupts can be generated by (I) pulling the processor IRQlline low, (2) by pulling down 
Port 3 input strobe (lS3) or, (3) by the Programmable Timer or Serial Communications Interface 
(SCI). The timer and SCI generate interrupts by using an internal interrupt line, IRQ2, which is not 
accessible to external hardware. This line is shown in Figure I-I. IRQ I has priority over any IRQ2 
interrupt if both occur at the same time. All maskable interrupts are level-sensitive except the Port 3 
Input Strobe (lS3), and Timer Input Capture (ICF) interrupts which are both edge sensitive. 

Maskable interrupts are controllable at two different levels in the MC6801. At the processor level, a 
bit in the Condition Code Register, the I-bit, either inhibits (I-bit set) or enables (I-bit clear) all 
maskable interrupts. This bit is always set by the MPU during the Reset and interrupt sequences, 
and during the execution of certain instructions. The I-bit can be cleared only by executing, specific 
MC680 I instructions. 

Interrupts can also be controlled individually in MC6800 family parts by utilizing the mask or inter­
rupt enable bit of the device. The device interrupt control and flag bit are both used to generate an 
interrupt request as depicted in Figure 5-5. Operation of the flag bit, however, is functionally in­
dependent of whether or not interrupts are being used. 

MC6801 

rDevice Flag Bit I rDeViCe Interrupt Enable Bit 

IIRO I I I EN B I I D~;:u;~~~~:~d 
(lRO and ENB cleared on RESET) 

(a) Generalized Interrupt Control 

+5V 
External Device 

R TFf(ff = IRO-ENB 

IRQ 

ENB 

·Open Drain (MOS) or Open Collector (TTL) 

} 

Other 
Interrupt 
Requests 

e____-- (Wire-ORed) 

(b) Generalized Interrupt Generation 

Figure 5-5. GeneraHzed Interrupt Control and Generation 

5-6. 



Several MC6800-family devices (or devices with open collector outputs) can be wire-ORed to a com­
mon IRQl line. If more than one device is connected to the IRQl input, it should be pulled high 
with a pullup resistor to VCC for good performance. There is no internal IRQl pullup resistor in the 
MC6801. If the IRQl input is not used, it can be pulled high to V CC using a pullup resistor for good 
noise immunity. Values between 3.3 k and 10 k ohm are typically used for pullup resistors and de­
pend on the current capacity of the circuit element generating the interrupt. 

5.3 MC6801 INTERRUPT RESPONSE 

The MC6801 samples the level on each of its three interrupt request lines (NMI, IRQ 1, IRQ2) on 
each negative edge of E (Enable). The level is then clocked through circuits which establish syn­
chronization and refine its electrical characteristics. For the Non-Maskable Interrupt Request, the 
level is coupled to an edge detector. Finally, each sampling is presented to the "Set" input of an S-R 
flip-flop. It is the output of these three S-R flip-flops which is used to indicate to the MPU whether 
an interrupt is, or is not, pending. 

Note that because interrupts are sampled on each negative edge of E (Enable), an asynchronous 
signal (with respect to E) must have a pulse width of at least one E-cycle to be sure the level is active 
when sampled. Logic diagrams for the sampling circuits for NMI and IRQl are shown in Figure 5-6. 

Figure 5-6. Logic Diagrams for Interrupt Sampling 

5-7 



A description of the elements used in the logic diagram was presented in Section 3.1.S. The active 
signals in the diagram are: 

• cp2 is an internal primary clock which is derived from and is in phase with E. 
• cp 1 is a second primary internal clock which is derived from cp2 and is a non-overlapping clock 

with respect to cp2. 
• IS33 is active low whenever (1) the MCU is operating in Modes 4 or 7, (2) IS3 FLAG is set and 

(3) IS3 IRQ1 ENABLE is set. If all three conditions are not true, IS33 is held high. 
One should note from Figure 5-6 that the logic diagrams for capturing the IRQ 1 and NMI levels are 
nearly identical. When cp2 is high, the cp2 coupler is "on" while the two cp1 couplers are "off" and 
the input level is coupled to the transparent latch. When the negative edge of cp2 (or E) occurs, the 
two couplers assume the opposite state which latches the level and transmits it to subsequent logic 
stages. 

A separate S-R flip-flop is provided for each of the NMI, IRQ1, andIRQ2 interrupts. Each S-R flip­
flop is "Set" only by an interrupt request. The NMI flip-flop is "Reset" during Reset and the tenth 
cycle of an interrupt sequence excluding one generated by an SWI instruction. The two maskable in­
terrupt flip-flops are "Reset" during Reset and whenever the I-bit is set. Because all interrupt se­
quences set the I-bit in the tenth cycle, they also "Reset" the IRQ1 and IRQ2 flip-flops. While it is 
set, the I-bit holds both IRQ1 and IRQ2 interrupt flip-flops in "Reset." By design, if both "Set" 
and "Reset" conditions exist, the flip-flop is reset. 

Note that all three interrupt flip-flops are cleared by any interrupt sequence with the exception that 
the NMI flip-flop is not cleared by an SWI sequence. An NMI request is never lost with this scheme 
because of its service priority. If one is attempting to pulse level-sensitive interrupts, however, this 
characteristic can lead to problems. To illustrate the difficulty, suppose that the IRQ1line is pulsed 
such that the IRQ1 interrupt flip-flop is set. Prior to the interrupt being serviced, however, an NMI 
request occurs. During the interrupt sequence, all interrupt flip-flops are reset and the pulsed IRQ1 
interrupt request is "lost"! 

Each MC6S01 instruction is executed to completion before acting upon any interrupt. Interrupts are 
clocked into their respective S-R flip-flops during the intervals, WI andW2, shown in Figure 5-7 
where the LDAA and ST AA instructions were arbitrarily chosen for this example. The two win­
dows, WI and W2, are the intervals of time during which an interrupt request must be presented in 
order for the interrupt sequence to begin upon completion of the ST AA instruction. If the request is 
presented slightly before this window, the interrupt will occur during the ST AA instruction. If 
presented slightly after this window, the MPU will execute one more instruction before responding 
to the interrupt. Time interval, WI, is for IRQ 1 while NMI and IRQ2 use the window, W2. 

Note that if an unmasked IRQ1 request occurs between the last cycle of the LDAA instruction and 
the third cycle of ST AA, the next instruction will not be executed. If, however, IRQ1 is not active 
until the last cycle of the ST AA, the next instruction will be executed before responding to the inter­
rupt. During the first cycle of every instruction, the operation code (opcode) is fetched from 
memory. However, this instruction will not be executed at this time if the output state of the inter­
rupt flip-flops indicate that an interrupt is pending; instead, the MPU will fetch the same opcode 
again and then stack the machine state. The interrupt service routine will be executed before again 
accessing the instruction. 

5-S 



r--LOAA $F800-----I· ... lfII////E:III(~- ST AA $100----1 

E 

1-1~W2 
~ tpcs tPCS-+! 
~---W1~ 

tpcs = Processor Control Setup Time 

W = Window within which an interrupt must be asserted for 
interrupt processing to begin on the next instruction. 

Figure 5·7. Interrupt Recognition Windows 

Interrupt 
Sequence 

Begun 

The MC6801 interrupt response is depicted in the processor flowchart shown in Figure 5-8. For 
discussion purposes, it is convenient to divide the flowchart into two autonomous sections. The left 
portion of the flowchart represents the non-interrupt operation of the processor whereas the right 
portion represents the interrupt response sequence. 

The non-interrupt section of the flowchart is shown in Figure 5-9. If no interrupts occur during pro­
gram execution, this flowchart adequately describes MPU activity. Note that the I-bit is set during 
the Reset sequence. Instruction processing begins with the main loop in the flowchart. 

The interrupt sequence is initiated by any of the following actions: 
1. pulling the level down on the NMI line, or 
2. clearing the I-bit and pulling the level down for either IRQl or IRQ2, or 
3. executing either an SWI or W AI instruction. 

The reader should note that while NMI, IRQl, and IRQ2 can occur asynchronously with respect to 
MPU activity, interrupt response occurs only at discrete times. 

The interrupt section of the flowchart is shown in Figure 5-10. Assuming that one of the above inter­
rupt actions has occured, the processor updates the I-bit from ITMP (see Figure 5-8 and supplemen­
tal notes). It then stacks the machine state as shown in Figure 5-11. 

After the registers have been stacked, the processor will set the I-bit, examine the external interrupts 
again, and select the vector (address pointer to a service routine) corresponding to the current 
highest priority interrupt. If the interrupt sequence began in response to an IRQ 1 and an NMI edge 
occurred before the vector was fetched, the NMI vector would be selected even though the sequence 
was initiated in response to IRQl. 

5-9 



Vecto' 
__ PC 

NMI FFFC:FFFO 

SWI FFFA:FFFB 

IRQl FFF8:FFF9 

ICF FFF6:FFF7 

OCF FFF4:FFF5 

TOF FFF2:FFF3 

SCI FFFO:FFFl 

A 

Supplemental Notes to MC6801 Interrupt Flowchart 

SCI-TlE-TORE + 
RIE-(RDRF + DRFEI 

Non·Maskable Interrupt 

Software Interrupt 

Maskable Interrupt Request 1 

Input Capture Interrupt 

Output Compare Interrupt 
Timer Overflow Interrupt 

SCI Interrupt 

1. IRQ2 is accessible only to the MC6801 internal bus and is used by the Programmable Timer and Serial Communications Interface 
(SCIL 

2. ITMP is a 1-bit buffer register for the MPU I-bit in the Condition Code Register. Instructions which affect the I-bit put their result in 
ITMP. ITMP is transferred to the I-bit as shown in the flowchart. The overall effect of this buffering operation can be stated as 
follows: the effect of any operation which clears the I-bit is delayed one E-cycle. The effect of any operation which sets the I-bit, 
however, is not delayed. " 

3. The I-bit masks (inhibits) or enables both IRQ1 and IRQ2 interrupts. 
4. The Reset sequence will be entered from any point in the flowchart if a low level is sensed on the RESET line. 

Figore" 5-8_ MC6801 Processor Flowchart 

5-10 



Fetch 
Opcode 

Figure 5·9. MC6801 Non.Interrupt Flowchart 

5-11 



Condition Code Register 

Vector 

NMI 

SWI 

IRQ1 

ICF 

OCF 

TOF 

SCI 

... PC 

FFFC:FFFO 

FFFA:FFFB 

FFF8:FFF9 

FFF6:FFF7 

FFF4:FFF5 

FFF2:FFF3 

SCI-TlE-TORE + 
RIE-(RDRF + ORFEI 

Non-Maskable Interrupt 

Software Interrupt 

Maskable Interrupt Request 1 

Input Capture Interrupt 

Output Compare Interrupt 
Timer Overflow Interrupt 

SCI Interrupt 

Figure 5-10. MC6801 Interrupt Flowchart 

5-12 



SP-7 
SP After 

Stack Machine State ~ Interrupt 

PC, X,A, B, CC SP-6 CCR 

SP-5 ACCB 

SPA ACCA 

SP-3 XH 

SP-2 Xl 

SP-1 PCH 

SP PCl 
SP Before 

~ Interrupt 

• • • 

Figure 5-11. Stacking the Machine State 

The interrupt sequence requires 12 MPU E-cycles to complete once it has begun, as shown in Figure 
5-12. Note that the response time for the NMI and IRQ2 interrupts is one cycle less than that for 
IRQ1. The IRQl recognition circuit includes an additional cycle for synchronization. In the absence 
of other interrupts (and SWI), the response time to an IRQl asynchronous interrupt, therefore, 
varies from 14 to 23 E-cyc1es (13 to 22 for NMI or IRQ2) from activation of the signal to service 
routine opcode fetch. The actual number of E-cycles depends upon which instruction is being ex­
ecuted and how far it has progressed. The shorter response time results from the interrupt occurring 
during the next to the last cycle of the current instruction. The "worst case" response time results 
from the IRQl request occurring during the last cycle of an instruction which precedes an SWI in­
struction (the most time consuming MC6801 instruction). 

The minimum interrupt response time can, however, be shorter than 14 MPU E-cycles for IRQl or 
13 for NMI and IRQ2 when operating with at least one other lower priority interrupt enabled. This 
would occur if the MPU was stacking the machine state in response to a lower priority interrupt 
when a higher priority interrupt is requested. In the MC6801, the interrupt which triggers the inter­
rupt sequence is not necessarily the interrupt serviced by the MPU. If a higher priority interrupt is 
recognized by the tenth cycle of the interrupt sequence, it will be serviced instead. Furthermore, a 
higher priority IRQ2 interrupt will be serviced even if it occurs during the eleventh cycle of the inter­
rupt sequence. 

The shortest possible interrupt response times, therefore, are three E-cycles for IRQ2 (Input Cap­
ture or Output Compare), four E-cycles for NMI, and five E-cycles for IRQ1. These cycle counts 
are from signal activation to the service routine opcode fetch cycle and assume a lower priority inter­
rupt had already triggered the interrupt sequence. These response times also include a two cP 1 cycle 
delay from the interrupt flip-flop to the priority encoder. The reader should note that if an NMI re­
quest occurs no later than the end of the ninth cycle of the interrupt sequence (with setup time, 
tpCS), it will be serviced immediately. If the NMI request occurs in the tenth cycle, however, it will 
not be serviced until after completion of the current interrupt sequence. 

5-13 



Ul 
I -~ 

E 

Internal 
Address Bus 

IRQ1 

NMI or IRQ2 

_ I Cycle 
Last Instruction ~ #1 

~ ~tPcs 

#2 #3 #4 I #5 I #6 #7 #8 #9 I #10 I #11 I #12 

\ 
~n~~~t~pc;s~-------------------------------------------------------------------

~~~:r~~IS :x X X X X X X X X X X X X X X x:::: 
Op Code Op C()de PC 0-7 PC8-15 X 0-7 X8-15 ACCA ACCB CCR Irrelevant Vector Vector First Inst. of .

____________ -_-_----,. Data MSB LSB Interrupt Routine

Internal R/W \ /

Figure 5·t2. MeAOt Interrupt Sequence

The reader should note that these two extremes of interrupt response time were labeled as "worst"
and "shortest." The ability to service higher priority interrupts after the interrupt sequence has been
initiated is a decided advantage in certain applications. It should be recognized, however, that
"shortest" is not necessarily the "best" in all possible applications. For example, if the NMI inter­
rupt is being used to perform an "approximate" input capture function, (see Chapter 7), it is most
certainly not "best" if other interrupts are also enabled. For this function, the response time
variability to NMI should be as short as possible in order to make the time measurement more ac­
curate. The characteristic of selecting the highest priority interrupt vector, however, increases the
response time uncertainty. When an NMI interrupt can occur with other interrupts, the minimum
possible response time is four E-cycles instead of 13 when it is the only interrupt being used.

5.3.1 Selection of Interrupt Vectors

In the tenth cycle of an int~rrupt sequence, the MPU selects an interrupt vector according to the
priority of the interrupt. Except during Reset and execution of the SWI instruction, a priority en­
coder circuit maps pending interrupts into address lines AI-A3, during the tenth cycle of an inter­
rupt sequence. This mapping, effectively, selects the appropriate interrupt vector. The inputs to the
priority encoder circuit are:

1. the output of the NMI interrupt flip-flop,
2. the output of the IRQl interrupt flip-flop,
3. ICF - EICI,
4. OCF - EOCI, and
5. TOF - ETO!.

Note that the SCI interrupts [(RORF + ORFE)-RIE + (TORE-TIE)] are treated as a "default" case
to the priority encoder: if an IRQ2 interrupt exists and it is not one of the previous cases, then it is
assumed to be an SCI interrupt.

All IRQ2 interrupts are generated by combining certain status and control bits from the Program­
mable Timer and the Serial Communications Interface which are defined in Chapters 6 and 7. The
status and control bits are combined to form an IRQ2 interrupt signal analogous to the method
shown in Figure 5-5. A proper combination of control and flag signals can cause the IRQ2 flip-flop
to be set. Removal of the active level, however, does not clear the flip-flop. The flip-flop is cleared
only by the I-bit being set or by Reset.

The IRQ2 inputs to the priority encoder are not latched and have no synchronization delays in the
path from the register to the encoder. It is possible, therefore, to generate an IRQ2 interrupt and
subsequently remove the identity of the interrupt to the priority encoder. This will occur if either of
the following two actions are taken after generating an IRQ2 interrupt but before servicing it
(without an intervening higher priority interrupt): (1) the flag bit is cleared or (2) the interrupt enable
bit is cleared.

As an illustration of these details, suppose an MC6801 is executing with the I-bit clear and all inter­
rupts enabled when all of the interrupts, except NMI, simultaneously become pending. Now further
suppose that during execution of the IRQ 1 service routine, the program arbitrarily decides to clear
the interrupt enable bits for all of the remaining interrupts. Now consider MPU activity after the
Return-from-Interrupt (RTI) instruction is executed.

5-15

During the interrupt sequence for IRQ1, the interrupt flip-flops for IRQl and IRQ2 are reset by the
I-bit being set which holds the IRQl and IRQ2 flip-flops in "Reset." After the IRQl is serviced and
all of the remaining interrupt enable bits are cleared, the former processor state is resumed (with
I-bit clear) by the RTI instruction. With the IRQ2 flip-flop cleared and no active IRQ2 signal to set
it again, all of the previous Timer and SCI interrupts are disregarded. From this discussion, it
should be apparent that while the I-bit is set, any pending interrupt (other than NMI) can be remov­
ed.

As a second example of interrupt operation, suppose that an MC6801 system is executing with the
I-bit clear and an IRQ2 interrupt enabled. Further suppose that the program wishes to inhibit this
interrupt by clearing its interrupt enable bit. Now suppose the interrupt to be inhibited occurs dur­
ing execution of the instruction which clears its interrupt enable bit.

Because the IRQ2 flip-flop is set, an IRQ2 interrupt will occur after execution of this instruction,
providing a higher priority interrupt does not preempt the interrupt and thereby clear the IRQ2 flip­
flop. Assuming this doesn't happen, a problem now exists because the inputs to the priority encoder
do not match the interrupt being serviced. In fact, the inputs to the priority enc()der could indicate
no interrupt at all. In the absence of any interrupt, the priority encoder will always select
$FFFO:FFFI (SCI interrupt).

NOTE
An SEI instruction should precede any instruction which clears an enabled IRQ2 interrupt
in order to avoid a spurious SCI interrupt·.

An example of this technique is shown in the following sequence.

Machine Code Label Operation Operand Comments

96 08 LOAA $8 GET TCSR
84 FB ANOA #$FB CLRETOI
OF SEI NO IRQ1 OR IRQ2
97 08 STAA $8 ETOI INHIBITED
DE CLI IRQ1 OR IRQ2 ON

As a final example, suppose an MC6801 system is executing with the I-bit clear and any or all
maskable interrupts enabled. Now suppose that a control and status register and the data register are
in adjacent locations as is the case for the Timer Control and Status Register and the Counter
Register ($08 and $09:0A). Let us assume that the programmer is using the LDD (Load Double Ac­
cumulator) instruction to access the Control and Status Register in the A accumulator and the most
significant byte of the counter in the B accumulator. Finally, let us assume that a timer overflow in­
terrupt occurs during execution of the LDD instruction.

The result of this operation is to indirectly "pulse" the IRQ2line as shown in Figure 5-13. This will
cause the IRQ2 interrupt flip-flop to be set but provide no input to the priority encoder. Thus, when
responding to the timer overflow interrupt, $FFFO:FFFI will be selected as the interrupt v~ctor. Ad­
mittedly, this illustration is pathological inasmuch as it is difficult to imagine a real application
which combines both interrupts and polling. It does illustrate, however, that it is possible to in­
directly pulse the IRQ2 interrupt using somewhat dubious software.

*A1ternatively, one could provide an RTI for a "spurious interrupt" in the service routine. A "spurious interrupt" is defined as a serial
interrupt with [RIE-(RDRF + ORFE) + (TIE-TORE)] false.

5-16

I~·r---------LDD$OO----------~~~I

E

Counter FFFD FFFE FFFF 0000 0001

TOF

Note: I-Bit Clear; ETOI Set

Figure 5·13. Pulsing the IRQ2 Interrupt Line

5.3.2 MC6801 Operating Mode and Interrupt Vectors

The eight interrupt vectors (including Reset) used by the MC6801 are shown in Figure 5-14. The
physical location of these vectors, however, depends upon the operating mode of the processor and
can exist as:

1. external memory space,
2. internal ROM,
3. or internal RAM.

Vector (MSB:LSB) Description

Highest Priority FFFE:FFFF Reset
FFFC:FFFD Non-Maskable Interruot (NMI)
FFFA:FFFB Software Interruot (SWI)
FFF8:FFF9 IRQ1 Interrupt URQ1, IS3)
FFF6:FFF7 IRQ2ITimer Input Capture (lCF)
FFF4:FFF5 IRQ2ITimer Output Compare (OCF)
FFF2:FFF3 IRQ2ITimer Overflow (TOF)

Lowest Priority FFFO:FFF1 IRQ2/SCI (RDRF, ORFE, TORE)

Figure 5·14. MC6801 Interrupt Vectors

The MC6801 memory maps (Figures 2-7 through 2-16) indicate the location of the interrupt vectors
with respect to the operating mode. It should be noted that Mode 0 is the only MC6801 operating
mode for which the interrupt vector location varies as a function of time. In Mode 0, the interrupt
vectors are fetched from external memory for the first two cycles following Reset and from the inter­
nal memory space thereafter. The result is that the Reset vector will always be fetched from external
memory but all accesses to any interrupt vector, except during an MPU Reset, will be to internal
memory.

5-17

5.4 MC6801 INTERRUPT INSTRUCTIONS

This section discusses specific MC6S01 instructions which directly affect the interrupt structure. It
includes all MC6S01 instructions which set or clear the I-bit or cause the interrupt sequence tobe ex­
ecuted.

5.4.1 MC6801 Instructions Affecting the I-Bit

The MC6S01 I-bit (bit 4 in the Condition Code Register) serves as the processor interrupt mask and
either enables (I-bit clear) or inhibits (I-bit set) both IRQI and IRQ2 interrupts. MC6S01 instruc­
tions which affect the I-bit include:

I. Clear Interrupt Mask (CLI),
2. Set Interrupt Mask (SEI), >

3. Transfer·Accumulator A to Condition Code Register (TAP),
4. Software Interrupt (SWI), and
5 .. Return from Interrupt (RTI).

The SEI and SWI instructions always set the I -bit. The CLI instruction always clears the I-bit while
the TAP and RTI instructions can either clear or set the I-bit. All instructions which affect the I-bit
put their result into a I-bit buffer register, ITMP. If the contents of ITMP is a "I", ITMP is im­
mediately transferred to the I-bit; otherwise, the transfer to the I-bit is delayed for one MPU
E-cycle. The reason for the delay is to facilitate use of the Wait for Interupt instruction and is fur­
ther discussed in Section 5.4.2.

5.4~1.1 THE CLI AND SEI INSTRUCTIONS. The Clear Interupt Mask (CLI) instruction is used to
enable all maskable interrupts. The clearing of the I-bit is buffered through the ITMP register and
is, therefore, delayed one MPU E-cycle. Assuming the I-bit is not already clear and no NMI occurs
during instruction execution, the instruction following CLI will always be executed prior to servicing
any maskable interrupt.

The Set Interrupt Mask (SEI) instruction results in the I-bit being set and is not delayed. When the
I-bit is set, it holds the interrupt flip-flops for IRQ I and IRQ2 in reset which, effectively, inhibits
any maskable interrupt from being recognized. To further illustrate operations affecting the I-bit,
the reader should note that a pending maskable interrupt will never be serviced during the following
three-instruction sequence (assuming no NMI):

LOOP eLI
SEI
BRA LOOP

CLEAR INTERRUPT MASK
SET IT AGAIN
DO IT AGAIN

5.4.1.2 THE TAP INSTRUCTION. The Transfer Accumulator A to Condition Code Register
(TAP) instruction can either clear or set the I-bit depending upon the value of bit 4 in theA ac­
cumulator. When the TAP instruction is executed, the I-bit in the CCR isset and bit 4 of the A ac­
cumulator is put into the I-bit buffer, ITMP. The value of ITMP overwrites the I-bit during the first
cycle of the next instruction, but it occurs too late to trigger an interrupt sequence until after this in­
struction has been completed.

5-IS

The next instruction in line following single or multiple TAP instructions will always be executed
(unless an NMI occurs) regardless of whether bit 4 is a "0" or a "1". Note that a maskable interrupt
will never occur in the following sequence:

LOOP eLRA O-A
TAP O-ITMP
TAP DITTO
TAP DITTO
SEI 1-1

- the interrupt would
occur here but the
SEI instruction
set the I-bit

BRA LOOP DO IT AGAIN

5.4.1.3 THE RTI INSTRUCTION. The Return from Interrupt (RTI) instruction can clear or set the
I-bit depending upon the value of the I-bit position (bit 4) of the stacked Condition Code Register.
This is normally the value of the I-bit prior to the interrupt sequence. If the stacked I-bit is clear and
a maskable interrupt is pending, the processor will immediately begin another interrupt sequence
after the RTI instruction has been completed. If the I-bit is cleared when the Condition Code
Register is restored, the one E-cycle delay is absorbed by the remaining cycles of the instruction.

5.4.1.4 THE SWI INSTRUCTION. The Software Instruction (SWI) instruction is used primarily as
a mechanism for writing the machine state to memory on demand from software. It is also the
MC6801 instruction requiring the longest execution time: 12 MPU E-cycles.

A Software Interrupt instruction will always be executed to completion before any other interrupt is
recognized. The instruction is "complete" when the SWI vector has been placed into the Program
Counter. If an NMI is pending after completing the SWI instruction, the processor will immediately
begin a second interrupt sequence. If a masked interrupt becomes. pending during the execution of
an SWI instruction, however, it will remain pending due to the I-bit being set as part of the instruc­
tion.

While it may appear from Figure 5-8 that the SWI instruction has the highest priority, this ap­
pearance is deceiving. The SWI instruction is mutually exclusive from all of the other interrupts.
Priority does apply, however, if considering the order in which service routines are executed if all
possible interrupts (except Reset) became pending. while executing an SWlinstruction. Under such
conditions, (1) after fetching the SWI vector, the machine state is stacked again for the NMI, (2) the
NMI service routine is executed, (3) the SWI service routine is executed, and (4) finally, the service
routines for the maskable interrupts are executed in the prioritized order. The setting of the I-bit
during execution of the SWI instruction results in masking all other interrupts except NMI.

5.4.2 The Wait for Interrupt (W AI) Instruction

In response to the Wait for Interrupt (WAI) instruction, the MC6801 stacks the machine state and
then enters a "Wait" state, as shown in Figure 5-15. Normal processing resumes only after receipt
of an unmasked interrupt request or by Reset. By stacking the machine state before the interrupt,
the interrupt response time latency is reduced by the stacking time. Assuming that the machine state

5-19

Cycle
#2 #1

E

Internal
Address Bus

Instruction Op Code
Addr+ 1

IRQ1
v.
I

~ NMI or IRQ2

Internal
Data Bus

Wait
Inst

Internal R/W

#3 #4 #5 #6 #7 #8 #9 #10 n I n+ 1 I n+2 I n+3 I n+4 I n+5 I

SP(n-1) SP(N-2) SP(n-3) SP(n-4) SP(n-5) SP(n-6)

f> 11--------

(l \ r .~

Figure 5·15. WAI Instruction Sequence

First Instruction of
Interrupt Routine

has been stacked, the MC6801 requires only five or six E-cycles to fetch the first opcode in the ser­
vice routine after receipt of an unmasked interrupt. This depends upon whether the interrupt is NMI
or IRQ2 (five cycles) or IRQ1 (six cycles). This time should be compared with at least 13 E-cycles
when the W AI instruction is not used.

While the MPU is in the "Wait" state, its bus state will appear as a series of MPU reads of an ad­
dress which is seven locations less than the original contents of the Stack Pointer. Contrary to the
MC6800, none of the ports are driven to the high impedance state by a WAI instruction.

A possible problem involving the W AI instruction must be considered by the system designer.
Remember, the CLI instruction results in the I-bit being cleared during the MPU E-cycle following
completion of the instruction. A specific instruction sequence which requires this delay is:

eLI
WAI
= INTERRUPT =

WAIT NOW FOR INTERRUPT
STAY HERE AND WAIT

If the MPU did not delay clearing the I-bit for one E-cycle, it would be possible for the interrupt to
become pending prior to execution of the CLI instruction, and then be serviced between the CLI and
WAI instructions. The program would then wait for an interrupt it had already serviced.

It is still possible, however, for this situation to occur even with the delay. This would happen if and
only if

1. an NMI is serviced between the CLI and W AI instructions, and
2. the maskable interrupt intended to terminate the WAI instruction becomes pending (or is ser­

viced) during execution of the NMI service routine.

If this situation is unavoidable, then the following solution is offered for consideration. Recall that
the critical element in this problem is that a maskable interrupt (not NMI) can return to a W AI in­
struction after restoring the machine state. If a sequence is incorporated in the maskable interrupt
service routine (again, not NMI) to prevent returning to a W AI instruction, then the problem can be
circumvented. The routine shown in Figure 5-16 performs this function.

5.S PROVIDING INTERRUPT SERVICE

Consider an MC6801 system that has three interrupt capable devices, all of which are connected to
the IRQ1line. While there are three devices on the IRQ1line, remember there is but one IRQ1 vec­
tor. The function of determining which of the three devices is requesting service and then vectoring
to the corresponding service routine can be performed by a "who-done-it" software routine. This
routine is normally a polling sequence which inspects the interrupt request flag of each of the can­
didate devices, as shown in Figure 5-17. The polling order reflects the desired priority of service.

While the' 'who-done-it" routine is simple to implement, the time required to execute it adds direct­
ly to the interrupt response time latency. If several devices are connected to the interrupt line and the
polling sequence becomes too lengthy, device vectored interrupts can be obtained in certain MC6801
operating modes with the use of additional external hardware. The Programmable Timer utilizes
prioritized hardware vectored interrupts which require no "who-done-it" routine.

5-21

PAGE 001 SKPWAI .SA: 1 SKPWAI *** SKIP OVER WAI ***

00001
00002
00003

00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027

00029A 0400
00030A 0400 30

00032
00033
00034
00035
00036
00037
00038
00039
00040

00042A 0401 EE 05 A
00043A 0403 A6 00 A
00044A 0405 81 3E A
00045A 0407 26 07 0410

00047

00049A 0409 08
00050A 040A 3C
00051A 040B 32
00052A 040C 33
00053A 040D 30
00054A 040E ED 05 A

00056A 0410 3B
00057

NAM
OPT
TTL

SKPWAI
ZO 1 ,LLEN=80
*** SKIP OVER WAI ***

*
* S K P W A I -- THIS ROUTINE INSURES THAT AN RTI IS
* NEVER MADE TO A "WAI" INSTRUCTION
* FROM A MASKABLE INTERRUPT SERVICE
* ROUTINE.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

BEFORE DOING AN RTI, THE ROUTINE
GETS THE RETURN ADDRESS AND THEN
THE OPCODE AT THIS ADDRESS. IF
THE OPCODE IS "3E", THE RETURN
ADDRESS IS BUMPED ONCE WHICH SKIPS
OVER THE WAI INSTRUCTION.

THE ROUTINE MUST BE ENTERED WITH
EITHER A JUMP OR BRANCH INSTRUCTION
(NOT JSR OR BSR) AND EXITS WITH
RTI. IN ADDITION, THE STACK
POINTER MUST BE SUCH THAT ONLY
THE FORMER MACHINE STATE EXISTS
ON THE STACK. (READY FOR RTI)

ORG
SKPWAI TSX

$400
USE X TO POINT AT STACK

* THE STACK NOW LOOKS LIKE THIS:

*
* -K)

* +1
* +2
* +3
* +4
* +5
* +6

CONDITION CODE REGISTER
ACCB
ACCA
MS BYTE - INDEX REGISTER
LS BYTE
MS BYTE - RETURN ADDR
LS BYTE

LDX
LDAA
CMPA
BNE

5,X
X
1I$3E
EXIT

RTRN ADDR --> X-REG
NEXT OPCODE --> ACCA
IS IT "WAI"'?
NO

* RETURNS TO "WAI", BUMP REnJRN ADDRESS

INX BUMP RETURN ADDR
PSHX TRANSFER TO A:B
PULA
PULB
TSX POINT TO STACK
STD 5,X STORE AWAY NEW PC

EXIT RTI ALL DONE
END

TOTAL ERRORS 00000--00000

Figure 5-16. A Routine to Skip the W AI Instruction

5-22

*IRQ1 INTERRUPTS ARE VECTORED TO HERE

WHODUN LDAA
BPL
JMP

*CHECK DEVICE 2

DEV2 LDAA
BPL
JMP

*CHECK DEVICE 3

DEV3 LDAA
BPL
JMP

DEV1ST
DEV2
DEV1SV

DEV2ST
DEV3
DEV2SV

DEV3ST
HDWERR
DEV3SV

DEVICE 1?
NOT IT
SERVICE DEVICE 1

GET STATUS FLAG
NOT IT
SERVICE DEVICE 2

GET STATUS FLAG
NONE OF THE ABOVE
SERVICE DEVICE 3

-NOBODY DID ITI HARDWARE ERRORI

HDWERR BRA HANG UP HERE

Figure 5-17. A "Who-Done-It" Routine

External hardware designed to provide prioritized vectored interrupts generally employs the follow­
ing elements:

1. a decoder to trap $FFF8 or $FFF9 (lRQ1) on the address bus,
2. a priority encoder circuit to map the current interrupts into a prioritized output,
3. circuitry to map the output of the priority encoder into the address in a memory element, and
4. a memory element to furnish the two bytes of the vector.

Hardware for performing this service can be used only in the expanded multiplexed modes of the
MC6801: Modes 1, 2, 3 and 6. An example of an 8-level priority interrupt encoder is included in
Chapter 8.

5.6 PROGRAM RESTARTABILITY

The MC6801 interrupt sequence provides for (1) saving the machine state, (2) vectoring to a service
routine, (3) restoring the machine state, and (4) resuming the former routine. This procedure can­
not, however, guarantee that all routines can be interrupted and subsequently restarted with
equivalent results.

Some routines logically cannot be interrupted and restarted with equivalent results. Consider a pro­
gram which controls a peripheral device with a time-dependent sequence such as a timing loop. If
the routine must perform an operation precisely at the end of a software timing loop, an interrupt
would alter the elapsed time. Routines can receive immunity from maskable interrupts (but not
NMI) during time critical sequences by preceding them with an SEI instruction and following them
with a CLI instruction.

5.6.1 Re-Entrant Routines

Another instance in which an MC6801 program cannot be successfully restarted after an interrupt is
one which has its state variables altered by the interrupt routine. Routines which can be interrupted
and subsequently re-entered (called again) must be written such that they are "re-entrant". Pro­
grams which are re-entrants use only registers or stack as working storage; routines which are not re­
entrant utilize local temporary memory locations as working storage.

5-23

As an example, consider a subroutine which converts binary data to hexadecimal. Suppose that this
subroutine was executing in background (non-interrupted state) when the processor received an in­
terrupt. During servicing of the interrupt, a binary to hexadecimal conversion is needed and the
same subroutine was entered a second time. After execution resumes in the background program,
the validity of the result obtained by the background caller depends solely on how the subroutine
was written. If the subroutine used only registers and stack, both callers received a correct result. If
temporary variables with fixed locations were used, however, the background routine most likely
received an incorrect result because execution of the interrupt service routine resulted in altering the
fixed memory locations.

Routines written to be re-entrant generally make extensive use of the stack. After pushing the ap­
propriate values onto the stack, the stack pointer can be transferred to the Index Register using the
TSX instruction. The indexed mode of addressing can then be used to manipulate values on the
stack. An example of a re-entrant routine for the MC6801 is shown in Figure 5-18.

5.6.2 Resource Sharing

Another common difficulty in implementing interrupt-driven programs is that of resource sharing.
For purposes of this discussion, a resource is anything that is used by more than one routine. This
can include a memory location, peripheral device, or register.

By way of introduction into resource sharing, a short example is given. Suppose that two bits (bit 0
and bit 7) in the Port 1 Data Register are used to generate output waveforms. Further assume bit 0 is
toggled by a routine running in background (non-interrupt driven) while bit 7 is toggled in response
to some interrupt. Instruction fragments for these two operations are as follows:

•
•
LDAA #1 BACKGROUND
EORA P1DATA TOGGLE BIT 0
STAA P1DATA
•
•
•

INTRPT LDAA #$80 INTERRUPT
EORA P1DATA TOGGLE BIT 7
STAA P1DATA
RTI

The problem with this seemingly trivial example is that it contains a programming error which can
result in an erroneous signal in the bit 7 output. The error will always occur if the interrupt is ser­
viced between the EORA and ST AA instructions of the background routine:

LDAA #1 BACKGROUND
EORA P1DATA TOGGLE BIT 7

-interrupt service
STAA P1DATA

5-24

When the interrupt occurs, ACCA contains a copy of the Port 1 Data Register with bit 0 toggled
which is then pushed onto the stack during the interrupt sequence. In the meantime, the interrupt
service routine obtains a copy of the Port 1 Data Register, toggles bit 7, overwrites the Data Register
with this value, and returns to the background routine. The former contents of ACCA is restored
during the RTI instruction and the background routine then resumes by overwriting the Data
Register with the former copy before bit 7 was toggled. Hence, bit 7 is toggled by the interrupt
serivce routine and then toggled back again by the background routine.

To correct this error, it is important to realize its cause: the inability to obtain exclusive access to a
shared resource (the Port 1 Data Register) while modifying it. Because this is necessary to prevent
the error, a scheme must be implemented whereby other routines sharing the resource are' 'locked
out" while the change is taking place.

For example, if the INTRPT routine is invoked by a maskable interrupt, the I-bit could be set to
prevent an interrupt and thus "lock out" the interrupt routine between the EORA and ST AA in­
structions. The background portion of the fragment would then appear as follows:

LDAA #1
SEI
EORA PIDATA
STAA PIDATA
CLI

BACKGROUND
LOCK OUT INTRPT
TOGGLE BIT 7

TAKE LOCK OFF

A complete discussion of this important topic is beyond the scope of this text but can typically be
found in those books which treat the design of operating systems. For a more thorough treatment,
the reader is referred to an appropriate textbook·.

*Two books are recommended. The first book uses PASCAL extensively while the second does not.

1. Brinch Hansen, Per Operating System Principles, Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1973.

2. Shaw, Alan C., The Logical Design oj Operating Systems, Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1974.

5-25

PAGE 001 MUL16

00001
00002
00003

00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016

00018A 0400
00019A 0400 3C
00020A 0401 37
00021A 0402 36
00022A 0403 EE 00
00023A 0405 3C
00024A 0406 86 10
00025A 0408 36
00026A 0409 30

00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038

00040A 040A A6
00041A 040C 05

03

00042A 040D 68 02
00043A 040F 69 01

.SA:1 MUL16 *** MULTIPLY 16 X 16 ****

A

A

A

A
A

NAM
OPT
TTL

MUL16
LLEN=80,ZOl
*** MULTIPLY 16 X 16 ****

* * M U L 1 6 -- THIS ROUTINE MULTIPLIES THE CONTENTS
* OF A: B BY 16 BITS POINTED TO BY THE
* X-REGISTER AND PUTS THE RESULT INTO
* A:B • THE X-REGISTER IS SAVED.

*
*
*
*
*

A:B * [X] --> A:B

THE ROUTINE IS RE-ENTRANT

ORG $400
MUL16 PSHX SAVE X-REGISTER ON STACK

PSHB PUSH MULTIPLICAND ONTO STACK
PSHA
LDX X LOAD UP THE MULTIPLIER
PSHX PUSH ONTO THE STACK
LDAA 1116 USE 16 AS THE COUNT
PSHA
TSX USE X TO POINT AT STACK

* THE STACK NOW LOOKS LIKE THIS:
*
*+0 COUNT
* +1 MS BYTE MULTIPLICAND
* +2 LS BYTE
* +3 MS BYTE MULTIPLIER
*+4 ~S BYTE
* +5 MS BYTE X-REGISTER
* +6 LS BYTE
* +7 MS BYTE RETURN ADDRESS
* +8 LS BYTE

LDAA 3,X
MUL002 ASLD FORM THE RESULT

ASL 2,X SHIFT MULTIPLICAND
ROL 1,X

00044A 0411 24 02 0415 BCC MUL004
00045A 0413 E3 03

00047A 0415 6A 00
00048A 0417 26 F3

00050

00052A 0419 31
00053A 041A 38
00054A 041B 38
00055A 041C 38
00056A 041D 39
00057

A ADDD 3,X

A MUL004 DEC X
040C BNE MUL002

* CLEAN UP THE STACK

INS
PULX
PULX
PULX
RTS
END

ADD MULTIPLIER

BUMP STACK POINTER
BUMP IT TWICE
BUMP IT TWICE
ONCE MORE TO RESTORE X

TOTAL ERRORS 00000--00000

Figure 5-18. Example of Re-Entrant Programming

5-26

CHAPTER 6
SERIAL COMMUNICATIONS INTERFACE (SCI)

6.0 INTRODUCTION

The Serial Communications Interface (SCI) allows the MC6801 to be efficiently interfaced with a
variety of devices which require an asynchronous serial data format. The SCI provides two serial
data formats at a variety of bit rates and can be clocked by either an internal bit rate generator which
is dependent on the MPU E-cycle or by an independent external clock. Three pins of Port 2 provide
the SCI Interface with external devices and it is functionally independent of the operating mode.

The SCI provides a great deal of flexibility which is obtained by software programmability. The
following six features of the SCI are optional using software cpntrol:

• format: standard mark/space (NRZ) or Bi-phase,
• serial clock source: internal or external,
• baud rate: one of four for a given MCU E-clock frequency or one eighth of an external clock

rate,
• wake-up feature: enabled or disabled,
• interrupt requests: enabled or masked individually for transmitter and receiver, and
• clock output: internal bit rate clock enabled or disabled to Port 2 bit 2.

6.1 SERIAL COMMUNICATIONS INTERFACE REGISTERS

The programmer interface with the SCI is provided by the four addressable registers shown in
Figure 6-1. These registers include:

• a Rate and Mode Control Register,
• a Transmit/Receive Control and Status Register,
• a Transmit Data Register, and
• a Receive Data Register.

To interface with external devices, the SCI uses Port 2 bit 3 for serial input and bit 4 for serial out­
put. Port 2 bit 2 is also used by the SCI if either the internal-clock-out or external-clock-in options
are selected. The SCI internally configures the appropriate bits in Port 2 Data Direction Register ac­
cording to the options selected. A block diagram of the SCI is shown in Figure 6-2.

11

(LSB First)

...... o
a.. 10

12

(LSB First)

Bit 7 Rate and Mode Control Register Bit 0

I 1 CC1 1 CCO 155115501$10
Transmit/Receive Control and Status Register

(Not Addressable)

Receive Shift Register

Bit Rate
Generator ----E

(Not Addressable)

Transmit Shift Register

Transmit Data Register

$12

$13

Figure 6-1. Serial Communications Interface Registers

6.1.1 Rate and Mode Control Register

The Rate and Mode Control Register (RMCR) is a four-bit write-only register which can be used to
control the following serial data characteristics:

• bit rate,
• format,
• clocking source, and
• configuration of Port 2 bit 2.

6-2

9'
~

I
I
I
L

TX
Port 2
Bit 4

Transmit Data
Register

Clock

Clock
+8

Clock Out

IRQ2
M6801 Internal Bus

TRCS

Register L... __ J-.... -.L..--r-..L...--~--,-...L..---'-_r---'-_r--.....

Transmit
Control

ClK FMT

Port 2
Bit 2

• i

Clock

Flag
Control

INT Clock

Clock Select

Port Select

Con~rol

ClK FMT
i i

Figure 6-2. Block Diagram of SCI

Bit

Receive Data
Register

Receive Shift
Register

Programmable
Timer

Rate and
Mode Control
Register $0010

I
I
I

_...1

Rx
Port 2
Bit 3

The four bits of the Rate and Mode Control Register can be considered as a pair of two-bit fields.
The least two significant bits determine the bit rate when using the internal clock and the remaining
two bits control the format (NRZ or Bi-Phase) and clock source (internal or external). The register is
depicted in Figure 6-3 and individual bits are defined as follows:

Bit 3 Bit 0 I CCl CCO I 551 550 1$10

Figure 6-3. Rate and Mode Con~rol Register

Bit 1: Bit 0 SSt :SSO Speed Select - These two bits select the Baud when using the internal
clock. Four rates which can be selected are a function of the MCU E-cycle frequen­
cy. Figure 6-4 lists bit times and rates for three selected MCU input frequencies. If
the MCU is driven by other frequencies, the appropriate divisor must be used to
determine the bit rate. If external clocking is selected (CCI = CCO = 1), then speed
select bits are ignored.

SS1:SS0
4fO- 2.4576 MHz 4.0 MHz 4.9152 MHz

E 614.4 kHz 1.0 MHz 1.2288 MHz

0 0 +16 26 ",s/38,4oo Baud 16 ",s/62,500 Baud 13.0 ",sI76,8oo Baud
0 1 + 128 208 ",s/4,8oo Baud 128 ",sI7812.5 Baud 104.2 ",s/9,6oo Baud
1 0 + 1024 1.67 ms/600 Baud 1.024 ms/976.6 Baud 833.3 ",s/1 ,200 Baud
1 1 +4096 6.67 ms/150 Baud 4.096 ms/244.1 Baud 3.33 ms/300 Baud

Figure 6-4. Selected Internal Bit Times and Rates

Bit 3: Bit 2 CC1:CCO Clock Control and Format Select - These two bits control the serial
clocking source and format. If CCI is set, the DDR value for Port 2 bit 2 (P22) is
forced to the complement of CCO and cannot be changed until CCI is cleared. If
CCI is cleared after having been set, its DDR value remains unchanged. Figure 6-5
defines the formats, clock source, and use of P22.

CC1:CCO Format
Clock Port 2

Source Bit 2

00 Bi-Phase Internal Not Used
01 NRZ Internal Not Used
10 NRZ Internal Output
11 NRZ External Input

Figure 6-5. Format and Clock Source Control

6-4

If CC1 :CCO = 10, the internal serial bit rate clock is provided at P22 regardless of the values for the
Transmit Enable (TE) and Receive Enable (RE) bits. The Rate and Mode Control Register is cleared
by Reset which configures the clocking, format, and bit rate as: internal clock, and Bi-phase format
at the highest rate.

6.1.2 Transmit/Receive Control and Status Register

The eight bits of the Transmit/Receive Control and Status (TRCS) Register provide control for
several SCI options and reveal information regarding the state of current serial operations. The five
control bits of the register enable and disable the following SCI functions:

• serial transmitter and receiver (separately),
• transmitter and/or receiver interrupts (separately), and,
• the wake-up feature.

The remaining three status bits provide a means for determining the state of serial operations and
are set when:

• the Transmitter Data Register is empty,
• the Receiver Data Register is full, and
• a Receiver overrun or framing error occurs.

All eight bits of the register can be read but only the five least significant bits can be written. During
Reset, the register is preset to $20 thereby clearing all of the bits except TDRE which is set. The
Transmit/Receive Control and Status Register is depicted in Figure 6-6 where individual bits are
defined as follows:

Bit 0 WU

Bit 1 TE

Bit 2 TIE

Bit 3 RE

Bit 4 RIE

Bit 7 Bit 0

I RDRF I DRFE I TDRE I RIE RE TIE TE WU , $11

Figure 6-6. Transmit/Receive Control and Status Register

"Wake-up" on Idle Line - When set, WU enables the wake-up function. It is
cleared by the SCI after receipt of ten consecutive l' s or by Reset. WU will not re­
main set if the line is idle.·
Transmit Enable - If set, the DDR value for Port 2 bit 4 is set, cannot be cleared
while TE is set, and will remain set if TE is subsequently cleared. A preamble of nine
consecutive l' s is produced when TE is changed from clear to set. While TE is set,
the transmitter output is coupled to Port 2 bit 4. TE is cleared by Reset.
Transmit Interrupt Enable - If set, an IRQ2 interrupt is enabled when TDRE is set;
when clear, the interrupt is inhibited. TIE is cleared by Reset.
Receive Enable - If set, the DDR value for Port 2 bit 3 is cleared, cannot be set
while RE is set, and will remain clear if RE is cleared. While RE is set, the SCI
receiver is enabled. RE is cleared by Reset.
Receive Interrupt Enable - If set, an IRQ2 interrupt is enabled when RDRF and/ or
ORFE is set; when clear, the interrupt is inhibited. RIE is cleared by Reset.

·WU will be cleared by the next bit rate clock transition if the line is idle.

6-5

Bit 5 TDRE Transmit Data Register Empty - TDRE is set when the Transmit Data Register is
transferred to the· output serial shift register and by Reset. If clear, it indicates that
transfer has not yet taken place and MPU writes to the Transmit Data Register will
overwrite the last value. Byte transfer is synchronized with the bit rate clock. TDRE
is cleared by reading the TRCS Register (with TDRE set), then writing a new byte to
the Transmit Data Register. Data will not be transmitted if it is written to the
Transmit Data Register without previously reading the TRCS Register.

Bit 60RFE Overrun-Framing Error - If set, ORFE indicates either an overrun or framing er­
ror. An overrun occurs when the next byte is ready for transfer to the Receiver Data
Register and the RDRF flag bit is set. A receiver framing error results when a stop bit
(1) is not found in the tenth bit time. An overrun can be distinguished from a fram­
ing error by noting the value of RDRF. If RDRF = ORFE = 1, then an overrun has
occurred; if RDRF=O and ORFE= 1, a framing error has been detected. Data
transfer is inhibited during an overrun. For a framing error, the misframed byte is
transferred but RDRF is not set. The ORFE bit is cleared by reading the TRCS
Register, then the Receive Data Register, or by Reset.

Bit 7 RDRF Receive Data Register Full - RDRF is set when the input serial shift register is
transferred to the Receive Data Register. It is cleared by reading the TRCS Register,
then reading the Receive Data Register, or by Reset.

6.1.3 Transmit and Receive Data Registers

Two 8-bit registers are used for the next byte to be transmitted and the last received byte. Providing
TDRE is clear, the write-only Transmit Data Register is transferred to the transmit shift register
after the current byte has been transmitted. The transfer is synchronized with the bit rate clock.

The Receive Data Register is a read-only 8-bit register and contains the last byte received. RDRF is
set to indicate when a byte has been transferred from the receive shift register to the Receive Data
Register.

6.2 SCI CLOCKING OPTIONS

There are several options associated with SCI clocking functions. An internal clock can be used to
provide a serial bit rate as a function of the MCU E-cycle. As another option, this clock can be
coupled to an output pin and used external to the MCU. Finally, an external clock can be used to
drive the SCI. Regardless of clock option, however, both the receiver and transmitter operate at the
same bit rate and format.

6.2.1 Using the Internal SCI Clock

The source of the internal clock is the Programmable Timer free-running counter which is driven by
the MCU E-cycle clock. The SSt :SSO bits in the Rate and Mode Control Register define one of four
possible divisions of the MCU E-clock for four separate SCI bit rates. While a wide range of MCU
E-clock frequencies can be used, a judicious choice of frequency must be made if a particular baud
rate is desired. Figure 6-4 provides the Baud rates achievable with four different frequencies driving
the MCU.

6-6

NOTE
The MCV Programmable Timer is the source of the internal bit rate clock. MPV writes to
the free running counter should be avoided if the SCI is being used with the internal clock
option.

6.2.2 Using an External SCI Clock

An external clock can be used with the SCI to obtain a particular Baud rate which is independent of
the MCV internal E-cycle. If an external clock is used with the SCI, the following requirements are
applicable:

1. the CC1 :CCO field in the Rate and Mode Control Register must be set to 11,
2. the input clock frequency must be eight times (8X) desired bit rate,
3. the frequency must not exceed that of the MCV E-clock with a 50070 duty cycle (± 10070), and
4. only NRZ format can be used.

6.2.3 Providing a Serial Output Clock

The SCI serial bit rate clock can be obtained as an output by suitable programming of the Rate and
Mode Control Register. If the CC1:CCO bit field of the Rate and Mode Control Register is written
to 10, the SCI internal bit rate clock will be coupled to P22. If this option is selected, the DDR value
for this bit is internally set by the SCI and cannot be changed. The output bit rate clock will be pro­
vided at P22 regardless of the values for either TE or RE.

The bit rate clock output can be used for purposes other than serial clocking. It is a free running
clock source that requires no software service. The clock has a 50070 duty cycle at the frequency
determined by both the MCV E-cycle frequency and the SSl:SS0 field of the RMCR. A positive
edge occurs at the mid-bit time during each bit interval as shown in Figure 6-7.

6.2.4 Clocking Multiple SCIs

If it is desired to drive several SCIs with a common clock, it is recommended that a separate external
clock be used. One possible clock source is the E-clock output from the MCV being driven at the
lowest frequency. This choice provides compliance with the restriction that the frequency of the ex­
ternal serial clock cannot exceed any MCV E-cycle.

It is difficult to clock another MC6801 SCI with the serial bit clock output due to the different clock
rates involved. The serial bit clock output is at the desired bit rate whereas the serial input clock re­
quirement is eight times (8X) the desired bit rate.

6-7

Figure 6-7. SCI Serial Data Formats

6.3 SERIAL DATA FORMATS

Simultaneous serial transmit and receive (full duplex) capability is provided using either of two soft­
ware selectable formats:

• industry standard mark/space (NRZ) which is used typically with terminals or modems, and
• self-clocking bi-phase which is intended primarily for use between processors.

Both formats begin with a single "start" bit (always 0) and end with a "stop" bit (always 1). The
standard mark/space (NRZ) format produces a level corresponding to the bit value during each bit
time. The level is sampled by the receiver at the middle of each bit interval. This format can tolerate
a theoretical range of 3.75010 mismatch between the transmitter and receiver clock rates for correct
operation.

The second format, Bi-phase, is included to enable processor-to-processor communications with a
much higher tolerance clocking mismatch. Bi-phase format - also called Bi-Phase-M, FM, F/2F,
and Manchester - requires a transition (in either direction) at every bit time. An additional transi­
tion at the half bit time is required whenever the bit value is a "1". This format can tolerate a
theoretical range of 25010 difference in the transmitter and receiver clock frequency and/or phase.
Both formats are illustrated in Figure 6-7 for comparison. Note that an idle line in NRZ format is
represented by a constant mark (1) on the line wheras an idle line in Bi-phase will toggle at every
half-bit time.

It should be apparent from this description that no SCI serial format includes a parity bit or pro­
vides more than one stop. bit. If a parity bit is desired, it can be generated using software before the
byte is written to the Transmit Data Register. Similarly, parity can be checked with software during
data reception.

6-8

6.4 SERIAL COMMUNICATION OPERATIONS

The SCI must be initialized prior to operation by a sequence which
• selects the clock source and format in the Rate and Mode Control Register and then
• writes the desired operational control bits to the Transmit/Receive Control and Status

Register.

6.4.1 Transmitter Operation

Serial transmitter operation is enabled by the TE bit in the Transmit/Receive Control and Status
Register. When set, this bit couples the transmit shift register to P24 and activates transmitter opera­
tion. Transmission begins with a preamble consisting of nine l's after which internal synchroniza­
tion is established and the transmitter is ready for operation. At this point, one of two situations ex­
ists:

1. if the Transmit Data Register is empty (TDRE = 1), a continuous string of ones will be trans­
mitted indicating an idle line, or

2. if data has been stored into the Transmit Data Register (TDRE = 0), the byte is transferred to
the transmit shift register and transmission will begin.

The Transmit Data Register is not transferred to the transmit shift register until the next bit time
after it has been emptied. TDRE is then set and transmission of the byte begins. The Start bit, eight
data bits (beginning with the least significant bit) and finally the Stop bit are transmitted. If TDRE is
still set when the next transfer should occur, 1 's are transmitted until more data is provided.

NOTE
If a byte is written to the Transmit Data Register without previously reading the
Transmit/Receive Control and Status Register, the TDRE flag will not be cleared and
data will not be transferred to the transmit shift register.

6.4.1 Receiver Operation

The SCI receiver is enabled by the RE bit in the Transmit/Receive Control and Status Register. In
NRZ format, the receiver is ready to accept data after the line has been idle for 1/4 bit time. In Bi­
phase format it is necessary to present an idle line (toggling at half-bit times) to the receiver for at
least one bit time.

The receiver bit interval is divided into eight sub-intervals for internal operation. In NRZ format,
the received bit stream is synchronized with the leading edge of the fust 0 (space) encountered. The
serial input is then sampled at the approximate center of each bit time interval for ten consecutive
bits. Providing the tenth bit is a "1" and RDRF is clear, the byte is transferred to the Receiver, Data
Register and RDRF is set. This sequence is the normal receiver response.

If the tenth bit is not a 1 (i.e., a Stop bit), a framing error is assumed and ORFE is set, reflecting this
condition. • The byte with the framing error is transferred to the Receive Data Register but RDRF is

*In NRZ format, holding the receiver line low (e.g., with BREAK key), and clearing ORFE, results in ORFE being set after receipt of
ten O's.

6-9

not set. If the next serial bit is also a 0, the SCI will treat it as a new Start bit. A framing error is
cleared by reading the TRCS Register followed by reading the Receive Data Register. Application
programs should always allow for the possibility of a framing error because RDRF will not be set
until the framing error is cleared.

If the Stop bit is present, but the receiver has not been serviced (RDRF is still set) ORFE will be set,
indicating that an overrun has occurred. Data transfer from the receive shift register to the Receive
Data Register is inhibited in an overrun condition.· An overrun is cleared by reading the TRCS
Register followed by reading the Receive Data Register.

There is no difference in programming procedures for NRZ and Bi-phase formats. However, inter­
nal processing is somewhat different. In Bi-phase format, sub-interval sampling is initiated by a level
transition. The receiver must then determine whether the transition interval is more or less than six
of eight sub-intervals. Short intervals are defined as 1 's, while long intervals are defined as O's. This
sequence is repeated after receipt of the next transition.

6.5 THE WAKE-UP FEATURE

The Wake-up feature is intended to provide a means for coping with a somewhat specialized prob­
lem. Attributes of the target application include the following:

• three or more processors are communicating via a common serial line,
• communications are "message" oriented where a message can be transmitted with no sig­

nificant idle line time within the interior of the message,
• the "address" of the recipient is included at the beginning of the message, and
• it is probable that typical messages are not of interest to all processors on the common line.

Given this scenario, non-interested parties are required to respond to every byte of all messages. The
Wake-up feature is provided to allow non-interested MCUs to disregard the remainder of a message
if serial communications are structured in accordance with the above conditions. If the Wake-up
feature is not used, it may be ignored without consequence. The Wake-up bit, however, should not
be set unintentionally.

In the target multi-processor application, the message contains the identification of the addressee in
its initial bytes. In order to ignore the remainder of the message, the Wake-up bit (WU) must be set
to inhibit all further flag processing until the beginning of the next message. An SCI in Wake-up
(e.g., WU is set) is reenabled (WU is cleared) by a string of ten consecutive 1 's which necessarily
must also be used as a message delimiter. The ten consecutive l' s can be generated only by an idle
line which ensures that no data byte can accidently reenable an SCI. Software must provide for the
idle period between any two consecutive messages. In addition, no ten-bit idle period can be allowed
to occur within a message in order not to disturb message synchronization.

An SCI "listener" desiring to invoke the Wake-up feature is required to set the WU control bit in
the Transmit/Receive Control and Status Register while the message is in the process of being
transmitted. When WU is set, the SCI effectively ignores the remainder of the message. Upon
receipt of ten consecutive 1 's, the SCI clears WU and resumes normal receiver operation.

*If a valid character is overrun by a misframed character, RDRF and ORFE are set (overrun) with the valid character stored in the Re­
ceive Data Register. If a framing error occurs followed by one or more overrunning characters, the result is a framing error (RDRF
clear, ORFE set) with the first (misframed) character stored in Receive Data Register.

6-10

6.5.1 Transmitter Duties During Wake-Up Operation

Software controlling the transmitter during Wake-up operation is required to meet certain obliga­
tions. A "message" consists of a character string transmitted such that the serial line does not go
idle within the message for a period sufficient to enable any receiver. The Wake-up (WV) bit is
cleared by the SCI when its receiver detects a string of ten consecutive ones~Ones included in the
eight data bits, the stop bit, and the idle line count towards the accumulation of ten consecutive
ones.

Software servicing the transmitter normally stores the next byte in the Transmit Data Register as the
response to TDRE being set. The line will be kept busy shifting out the current byte for 10 bit times
(1 Start bit, 8 data bits, 1 Stop bit) then the line will go idle if the transmitter has not again been ser­
viced.

If the last data bit transmitted was all ones ($FF), transmitter software has a total of 10 bit times to
respond to the TDRE flag before a receiver "sees" ten consecutive ones. If the most significant bit
of the data was a zero, however, the transmitter software has a total of 18 bit times to respond to the'
TDRE flag. These two cases, 10 and 18, represent minimum and maximum transmitter software
response times to avoid prematurely clearing a receiver Wake-up bit.

After the last character of a given message has been transmitted, the line must remain idle for at
least a 10-bit delay. This delay, when measured from when TDRE is set, is data dependent because
both the data bits and the Stop bit are included in the count. The TDRE flag that is used to signal
the start of the delay is the one which appears after the last byte of the message is written to the
Transmit Data Register. This corresponds with transfer of the last byte of the message to the
transmit shift register.

If the last byte is all ones, the transmitter must wait a total of 11 bit times (from when TDRE is set
for the final time) before beginning the next message (1 Start bit, 8 data bits, 1 Stop bit, 1 Idle bit).
The maximum waiting time is required if the most significant bit of the last byte transmitted was a
zero. With this condition, the transmitter must delay a total of 19 bit times before beginning the next
message to be certain that all receivers have been enabled (1 Start bit, 8 data bits, 1 Stop bit, and 9
Idle bits).

In writing software for use with the Wake-up feature, it can be convenient to have a table of bit
times at the various baud rates. The bit times could then be converted into the number of MCU
E-cycles necessary to obtain the minimum delay between messages. If the internal clock is used,
however, it is much more convenient to program timeout loops with respect to the number of MeU
E-cycles per bit rather than bit times. It should be realized that the number of MCV E-cycles per bit
is a constant for a given value of the Speed Select bits (SS 1: SSO) regardless of the frequency of the
crystal or external clock driving the MeV. The number of MeV E-cycles per bit using the internal
bit rate clock is as follows:

SSl:SS0

00
01
10
11

Meu E-cycles
Per Bit

16
128

1024
4096

*To be precise, WU is cleared when the Start bit, serial shift register, and Stop bit flip-flops all contain l's. There is no counter dedicated
to this function.

6-11

Finally, remember the above discussion assumed that both the transmitter and receiver bit rate
clocks were synchronized. For a worst case, one must assume that both clocks are at opposite ex~
tremes of the acceptable clock skew. This possible skew requires the programmer to be conservative
with respect to timing when designing software which utilizes the Wake-up feature.

6.5.2 Receiver Duties During Wake-Up Operation

Software using the Wake-up feature will invoke it after determining that it is not an addressee for
the current message. Receiver software can then effectively ignore the remainder of the message by
clearing RDRF and setting WU. With the WU bit set, RDRF will no longer be affected until the line
goes idle for ten consecutive bit times. Providing that RDRF is clear when wake-up is invoked, the
ORFE bit will also be inhibited by wake-up; otherwise, it will be set upon receipt of the next byte.
When the receiver detects ten consecutiv.e ones, the SCI will clear WU and upon receipt of the next
byte, the RDRF flag bit will be set.

6.6 PROVIDING SCI INTERRUPT SERVICE

If the SCI is interrupt-driven, there are several factors which should be taken into account. First, it
should be noted that there are two interrupt enable bits in the TRCS register which control three
types of receiver interrupts and one transmitter interrupt. There is, however, only one interrupt vec­
tor associated with all SCI interrupts·.

In the SCI interrupt service routine, it is ~sually necessary to establish a software mechanism to en­
sure" fair" service of both transmitter and receiver interrupts. It is usually undesirable to service on-
1y one of the interrupts using the same order of preference. This could result in no response to the
other flag if the preferred interrupt occurs often enough. It is generally preferable to either alternate
the order or provide service to both transmitter and receiver each time.

The SCI receiver has three states which can invoke an interrupt if the Receiver Interrupt Enable
(RIE) bit is set and the MCU I-bit is clear. These states are determined by the values of RDRF and
ORFE and are as follows:

• RDRF alone - normal receipt of the next byte,
• ORFE alone - a framing error, and
• both RDRF and ORFE - an overrun.

All three conditions are cleared (reset) by the same sequence: an MPU read of the TRCS register
followed by a read of the Receiver Data Register.

While the transmitter has only one associated interrupt condition (TDRE set), it must be treated
somewhat differently than receiver interrupts. When no data is being transmitted and none is
available, the state of the TDRE bit is a "1". If the Transmitter Interrupt Enable bit (TIE) is also
set, an interrupt would occur which requires no service. Therefore, the TIE bit should be set only
when there is more data to transmit and should be cleared after the last byte of the message has been
written to the Transmit Data Register.

*It is also possible to have no SCI interrupt enabled and be vectored to $FFFO:$FFFI under certain circumstances. See Section 5.3.1.

6-12

6.7 TWO SCI SOFTWARE EXAMPLES

Two examples are provided, in Figure 6-8 and 6-10 which illustrates functions performed by the
SCI. The examples have been chosen such that they involve only one MCU and only one teleprinter.
Due to this self-imposed constraint, they may seem trivial; however, the purpose of these two ex­
amples is to demonstrate software procedures and for this liinited purpose it is hoped they are ade­
quate. In both examples, the output of the SCI is jumpered to the serial input and, in essence, the
MCU is talking to itself. If LILbug (TM)* is used in these examples, an external MC6850 ACIA ter­
minal interface must be employed because the SCI is dedicated to the two examples.

6.7.1 Exercising the Serial Communications Interface

The SERIAL program, illustrated in Figure 6-8, can be used to exercise all SCI functions except for
the Wake-up feature. It is assumed that the SCI transmitter is jumpered to its receiver.

The program transmits a byte, waits for it to reach the receiver, and then prints both the transmitted
and received values as the most and least significant bytes of a 16-bit hexadecimal value. The pro­
gram internally compares both transmitted and received values and increments an error counter if a
discrepancy is found. An example of the output from the program is shown in Figure 6-9.

The serial rates, formats, and clocking options are controlled by the Rate and Mode Control
Register. Two program variables allow altering the contents of this 4-bit register. The variable,
MODE, indicates the starting values for the CC1:CCO and SSI:SS0 fields. The value for CCI is
never changed. A 3-bit variable called MASK controls whether the CCO, SSI, and SSO field are
changed after each set of 256 bytes. A description in the program header indicates how these bits are
affected by the MASK byte.

The program can be used to drive the SCI through all four internal baud rates. No difference in the
speed of the printer will be observed, however, unless the output baud rate is higher than the SCI.
This is more readily observed with a CRT operating at 9600 baud. The baud rate of the terminal has
no affect on the logical operation of the program.

6.7.2 Demonstrating the Wake-Up Feature

The OKBAD program demonstrates the SCI Wake-up feature and assumes that the transmitter is
connected to the receiver. The program is shown in Figure 6-10 and performs the following func­
tions:

1. the SCI output routine always transmits the character string, "OK! ZBAD",
2. the receiver routine writes all that it "sees" (except "Z") to an internal buffer,
3. upon receiving a "Z", the receiver checks a program flag byte (WAKEUP) and, if clear, sets

the SCI Wake-up bit (WU).
After transmitting the last character and delaying until Wake-up has been cleared, the contents of
the receiver buffer are written to the output printer. Buffering the 'receiver input makes the program
independent from the baud rate of the console printer. Only one of two messages will appear in the

·LILbug (TM) is a monitor programmed in the ROM of the MC6801Ll. See the LILbug Manual for details.

6-13

receiver buffer. If WAKEUP was clear, then only "OK!" should be received because the Wake-up
feature inhibited the RDRF flag while "BAD" was being transmitted. If WAKEUP was not clear,
then the entire message will appear in the buffer as "OK! BAD". An example of the output from
the OKBAD program is shown in Figure 6-11.

The character, "Z", is used in this example as a control byte to indicate when to check the internal
flag byte. The character is not written to the receiver input buffer.

The variable, MODE, controls the value used in configuring the Rate and Mode Control Register. A
table containing loop index values corresponding to a timeout of 19 bit times is used to provide an
idle time sufficient to reenable the receiver between messages. The b1:bO field (SSI:SS0) of MODE
indicates which value in the table is to be used for the timeout. Because the SSl :SSO field is unused
with an external clock, this program will not function correctly, if bit 3 in MODE (CC1) is a "1".

6-14

PAGE 001 SERIAL .SA:1 SERIAL **** SERIAL I/O DRIVER PROGRAM ****

00001
00002
00003

00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055

NAM
TTL
OPT

SERIAL
**** SERIAL I/O DRIVER PROGRAM ****
LLEN=80,ZOl

* * SERIAL -- A SERIAL COMMUNICATIONS INTERFACE DRIVER
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

THE PROGRAM ASSUMES THAT THE TRANSMITTER
OUTPUT IS JUMPERED TO THE RECEIVER INPUT.

THE PROGRAM TRANSMITS A BYTE, WAITS FOR
IT TO REACH THE RECEIVER, THEN PRINTS
OUT BOTH THE TRANSMITTED AND RECEIVED
VALUES. THE VALUES RANGE FROM $00 TO $FF.
A COUNTER ACCUMULATES DESCREPANCIES BE­
TWEEN TRANSMITTED AND RECEIVED VALUES.

THE PROGRAM USES THREE VARIABLES IN ITS
OPERATION WHICH CONTROL THE FOLLOWING
THREE CHARACTERISTICS:

MODE - THE VALUE USED TO INITIALIZE
THE RATE AND MODE CONTROL
REGISTER (CC1:CCO,Sl:S0)

MASK - A 3-BIT MASK USED IN AN
"AND" OPERATION ON THE RMCR
BYTE. AFTER RANGING THE
TRANSMITTER BYTE FROM $00 TO
$FF, THE MODE BYTE IS
FETCHED, INCREMENTED, "ANDED"
WI TH THE MASK, AND WRI TTEN
BACK INTO THE RMCR. THE
EFFECTS OF THE MASK ON PRO­
GRAM EXECUTION ARE AS FOL-
LOWS:

xxxx XOOO - CONSTANT MODE
XXXX X001 - TOG G L E SO
XXXX X011 - RANGE S 1 : S 0

FROM %00 TO %11
XXXX XIII - BOTH MODES AND

ALL RATES

KT - THE NUMBER OF DOUBLE BYTES
PRINTED PER LINE.

AN EXTERNAL CLOCK MAY ALSO BE USED WITH
THIS PROGRAM. FOR THIS OPERATION THE MODE
MAY BE SET TO $OC AND THE MASK SHOULD BE
SET TO ZERO.

Figure 6-8. Exercising the SCI: SERIAL

6-15

PAGE 002 SERIAL .SA: 1 SERIAL **** SERIAL I/O DRIVER PROGRAM ****
00057 * E QUA T E S

00059 0011 A TRCS EQU $0011 TRANSMIT/RECEIVE CONTROL & STATUS
00060 0013 ATX EQU $0013 TRANSMIT DATA REGISTER
00061 0012 ARX EQU $0012 RECEIVE DATA REGISTER
00062 0010 A RMCR EQU $0010 RATE & MODE CONTROL REGISTER
00063 F815 A OUT4HS EQU $F815 LILBUG OUTPUT 4 HEX & SPACE
00064 F818 A CRLF EQU $F818 LILBUG CR AND LF
00065 F80F A PDATA EQU $F80F LILBUG STRING PRINT

00067 * S TORAGE C ELL S

00069A 1000 ORG $1000

00071A 1000 7E 102F A JMP BEGIN A VECTOR TO START-UP

00073 * 00074 * 00075 * MOD E, MAS K, & K T ARE
00076 * USE R V A R I A B L E S
00077 *
00078 * 00079A 1003 00 A MODE FCB 0 VALUE FOR INITIALIZING RMCR
00080A 1004 07 A MASK FCB 7 BI-PH, NRZ, ALL RATES DEFAULT
00081A 1005 10 A KT FCB 16 DEFAULT DOUBLE BYTES/LINE

00083A 1006 0001 A KTDOWN RMB 1 WORKING COUNTER FOR KT
00084A 1007 0001 A CHARTX RMB 1 TRANSMITTED BYTE
00085A 1008 0001 A CHARRX RMB 1 RECEIVED BYTE
00086A 1009 0002 A ERRKT RMB 2 ERROR COUNTER

00088 * FOR MAT TED P R I N T LIN E

00090A 100B 52 A lIDRO FCC
00091A 1011 0001 ARM RMB
00092A 1012 20 A FCC
00093A 1019 0003 A FMT RMB
00094A 10lC 20 A FCC
00095A 1023 0003 A CLK RMB
00096A 1026 20 A FCC
00097A 102E 04 A FCB

00099 * M A I N

00101A 102F 8E 1115 A BEGIN LDS
00102A 1032 CC 0000 A LDD
00103A 1035 FD 1009 A STD
00104A 1038 86 FF A
00105A 103A B7 1007 A
00106A 103D B6 1005 A
00107A 1040 B7 1006 A

LDAA
STAA
LDAA
STAA

/RMCR:O/ HEADER FOR RATE & MODE REGISTER
1
/ FMT:/
3
/ CLK: /
3
/ ERRS:/
4

LIN E BEG INS HER E

#ENDPGM+30 INZ STACK PTR
#0 CLEAR ERROR COUNT

INZ CHARTX
ERRKT
#$FF
CHARTX
KT

FIRST CHARACTER WILL BE "00"
INZ KTDOWN

KTDOWN

Figure 6-8. Exercising tbe SCI: SERIAL (Continued)

6-16

PAGE 003 SERIAL .SA:1 SERIAL **** SERIAL 1/0 DRIVER PROGRAM ****

00109
00110
00111

* PRINT THE HEADER
* FIX UP THE RATE & MODE CONTROL REGISTER
* FOR NEXT PASS.

00113A 1043 7F 0011 A START
00114A 1046 B6 1003 A
0011sA 1049 84 OF A
00116A 104B 85 08 A
00117A 104D 27 08 1057
00118A 104F F6 1004 A
00119A 1052 C4 03 A
00120A 1054 F7 1004 A

00122A 1057 16 OK
00123A 1058 97 10 A
00124A 10sA 8B 30 A
0012sA 10sC 81 39 A
00126A lOSE 23 02 1062
00127A 1060 8B 07 A
00128A 1062 B7 1011 A ST2
00129A 1065 86 OA A
00130A 1067 97 11 A
00131A 1069 CS 04 A
00132A 106B 26 07 1074
00133A 106D CE 4249 A
00134A 1070 86 SO A
0013sA 1072 20 OS 1079

00137A 1074 CE 4Es2 A NXT1
00138A 1077 86 SA A
00139A 1079 FF 1019 A NXT2
00140A 107C B7 101B A

00142A 107F 86 54 A
00143A 1081 B7 1025 A
00144A 1084 C1 OB A
0014sA 1086 23 OS 108D
00146A 1088 CE 4558 A
00147A 108B 20 03 1090

CLR
LDAA
ANDA
BITA
BEQ
LDAB
ANDB
STAB

TAB
STAA
ADDA
CMPA
BLS
ADDA
STAA
LDAA
STAA
BITB
BNE
LDX
LDAA
BRA

LDX
LDAA
STX
STAA

LDAA
STAA
CMPB
BLS
LDX
BRA

00149A 108D CE 494E A NXT3 LDX
001s0A 1090 FF 1023 A NXT4 STX
001slA 1093 CE 100B A LDX
001s2A 1096 BD F80F A JSR
001s3A 1099 CE 1009 A LDX
001s4A 109C BD F81s A JSR
001ssA 109F BD F818 A JSR

TRCS
MODE
II$F
118
OK
MASK
113
}fASK

RMCR
11$30
11$39
ST2
117
RM
II$OA
TRCS
114
NXT1
11$4249
lI'p
NXT2

1I$4E52
II' Z
FMT
FMT+2

IVT
CLK+2
1111
NXT3
11$4558
NXT4

TURN OFF RE & TE
GET THE MODE
CLEAR OUT DON'T CARES
SEE IF BIT 3 IS ON
NOT ON
INSURE MASK <= 3

MAKE 2ND COpy
STASH IN RMCR
CONVERT LOWER FOUR TO ASCII
MAKE SURE NUMERIC
IT IS
IT IS NOW
USE FOR PRINT
NOW TURN ON TE & RE
ALL SET NOW
CHECK FORMAT
IT'S NRZ
"BI" INTO X

"NR" INTO X

FORMAT NOW FIXED

INT & EXT END IN "T"

WHICH CLOCK

"EX" INTO X

II$494E "IN" INTO X
CLK CLK NOW SET
IIHDRO PRINT THE WHOLE MESS
PDATA
IIERRKT NOW SHOW ERRORS
OUT4HS
CRLF

00157
00158
00159

* DO DUMMY READ ON RECEIVER TO ELIMINATE

00161A 10A2 DC 11

00163

0016sA 10A4 86 20
00166A 10A6 95 11

* POSSIBLE FALSE RECEIVER FLAG (RDRF) CAUSED
* BY CHANGING THE RATE & MODE CONTROL REGISTER

A LDD TRCS

* WAIT ON TRANSMITTER

A LOOP LDAA 11$20
A LOOP1 BITA TRCS

READ STATUS AND DATA

TDRE FLAG BIT
MAKE SURE TDRE=l

Figure 6-8. Exercising the SCI: SERIAL (Continued)

6-17

PAGE 004 SERIAL .SA:1 SERIAL **** SERIAL I/O DRIVER PROGRAM ****
00167 A 10A8 27 FC 10A6 BEQ LOOP 1 NOT YET

00169 * TRANSMITTER READY, SEND NEXT BYTE

0017lA 10AA B6 1007 A LDAA CHARTX GET NEXT VALUE
00172A lOAD 4C INCA NEXT VALUE
00173A 10AE 97 13 A STAA TX PUT IN TX REG
00174A lOBO B7 1007 A STAA CHARTX

00176 * WAIT ON DATA TO APPEAR

00178A 10B3 96 11 A LOOP2 LDAA TRCS WAIT ON CHAR
00179A lOBS 2A FC 10B3 BPL LOOP 2 NOT YET
00180A 10B7 96 12 A LDAA RX GET CHAR
0018lA 10B9 B7 1008 A STAA CHARRX SAVE IT

00183 * NOW ERROR CHECK IT

0018sA 10BC Bl 1007 A CMPA CHARTX SAME AS TX?
00186A 10BF 27 07 10C8 BEQ PASSED SURE IS
00187A 10C1 FE 1009 A LDX ERRKT UH OH ••• AN ERROR!
00188A 10C4 08 INX ONE MORE ERROR
00189A lOCs FF 1009 A STX ERRKT

00191 * SHOW RESULTS

00193A 10C8 CE 1007 A PASSED LDX IICHARTX PRINT TX:RX
00194A 10CB BD F8ls A JSR OUT4HS

00196A 10CE 7A 1006 A DEC KTDOWN i CRLF YET?
00197A 10Dl 26 09 10DC BNE PASSD2 NOT YET
00198A 10D3 BD F8l8 A JSR CRLF ISSUE CRLF
00199A 10D6 B6 1005 A LDAA KT RE-INZ KTDOWN
00200A 10D9 B7 1006 A STAA KTDOWN

00202A 10DC B6 1007 A PASSD2 LDAA CHARTX
00203A 10DF 81 FF A CMPA II$FF LAST CHAR OF BLOCK?
00204A 10El 26 Cl 10A4 BNE LOOP NOT TIME TO CHANGE RMCR

00206 * COMBINE MODE AND MASK FOR NEW RMCR VALUE

00208A 10E3 B6 1003 A LDAA MODE CHANGE BAUD RATE
00209A 10E6 16 TAB MAKE TWO COPIES
002l0A 10E7 SC INCB BUMP UP RATE
002llA 10E8 F4 1004 A AND13 MASK SAVE AS SPECIFIED
00212A lOEB 43 COMA MAKE NEW HOME
002l3A 10EC BA 1004 A ORAA MASK
002l4A 10EF 43 COMA NOW READY
002lSA 10FO lB ABA COMBINE THEM
002l6A 10Fl B7 1003 A STAA MODE NEW MODE
002l7A 10F4 7E 1043 A JMP START

00219 lOF7 A ENDPGM EQU *
00220 102F A END BEGIN
TOTAL ERRORS 00000--00000

Figure 6-8. Exercising the SCI: SERIAL (Continued)

6-18

~---------Rate and Mode Control Register

,--------Format: Bi-Phase (BIP) or NRZ

r-----Clock Source: Internal or External

[preViOUS Errors (HEX)

RMCR:02 FMT:BIP CLK:INT ERRS:OOOO
0000 0101 0202 0303 0404 0505 0606 0707 0808 0909 OAOA OBOB OCOC ODOD OEOE OFOF
1010 1111 1212 1313 1414 1515 1616 1717 1818 1919 1AIA 1B1B 1C1C 1D1D IE IE 1F1F
2020 2121 2222 2323 2424 2525 2626 2727 2828 2929 2A2A 2B2B 2C2C 2D2D 2E2E 2F2F
3030 3131 3232 3333 3434 3535 3636 3737 3838 3939 3A3A 3B3B 3C3C 3D3D 3E3E 3F3F
4040 4141 4242 4343 4444 4545 4646 4747 4848 4949 4A4A 4B4B 4C4C 4D4D 4E4E 4F4F
5050 5151 5252 5353 5454 5555 5656 5757 5858 5959 5A5A 5B5B 5C5C 5D5D 5E5E 5F5F
6060 6161 6262 6363 6464 6565 6666 6767 6868 6969 6A6A 6B6B 6C6C 6D6D 6E6E 6F6F
7070 7171 7272 7373 7474 7575 7676 7777 7878 7979 7A7A 7B7B 7C7C 7D7D 7E7E 7F7F
8080 8181 8282 8383 8484 8585 8686 8787 8888 8989 8A8A 8B8B 8C8C 8D8D 8E8E 8F8F
9090 9191 9292 9393 9494 9595 9696 9797 9898 9999 9A9A 9B9B 9C9C 9D9D 9E9E 9F9F
AOAO AlAI A2A2 A3A3 A4A4 A5A5 A6A6 A7A7 A8A8 A9A9 AAAA ABAB ACAC ADAD AEAE AFAF
BOBO B1B1 B2B2 B3B3 B4B4 B5B5 B6B6 B7B7 B8B8 B9B9 BABA BBBB BCBC BDBD BEBE BFBF
COCO CIC1 C2C2 C3C3 C4C4 C5C5 C6C6 C7C7 C8C8 C9C9 CACA CBCB CCCC CDCD CECE CFCF
DODO DIDI D2D2 D3D3 D4D4 D5D5 D6D6 D7D7 D8D8 D9D9 DADA DBDB DCDC DDDD DEDE DFDF
EOEO EIEI E2E2 E3E3 E4E4 E5E5 E6E6 E7E7 E8E8 E9E9 EAEA EBEB ECEC EDED EEEE EFEF
FOFO FIFI F2F2 F3F3 F4F4 F5F5 F6F6 F7F7 F8F8 F9F9 FAFA FBFB FCFC FDFD FEFE FFFF

L evte Received

---Byte Transmitted

Figure 6-9. Example of SERIAL Program Output

~19

PAGE 001 OKBAD .SA:1 OKBAD **** OKBAD -- WAKEUP DEMO PROGRAM ****

00001
00002
00003

00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040

00042

00044
00045
00046
00047
00048
00049
00050

00052

00054A 1000

F809
0011
0013
0012
0010
F818
F80C

NAM
TTL
OPT

OKBAD
**** OKBAD -- WAKEUP DEMO PROGRAM ****
LLEN=80,ZOl

*
* 0
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
.*
*
*
*

K ! BAD -- THIS PROGRAM ILLUSTRATES THE M6801
WAKEUP FEATURE.

THE TRANSMITTER SENDS THE STRING
"OK! ZBAD " TO THE RECEIVER. UPON
DETECTING "Z", THE RECEIVER SEC­
TION SETS THE WAKEUP BIT AND DOES
NOT SEE "BAD ". AFTER DELAYING
TO CLEAR THE WAKEUP BIT, THE PRO­
GRAM PRINTS ALL OF THE TEXT IN THE
RECEIVER'S BUFFER.

THE PROGRAM HAS TWO VARIABLES:

MODE -- RATE & MODE DESIRED
WAKEUP -- FLAG TO INDICATE

SHOULD BE RUN WITH
OR WITHOUT WAKEUP.

(0 -> WITH WAKEUP;
NOT 0 ->NO WAKEUP)

THE PROGRAM USES LILBUG I/O AND IS
INDEPENDENT OF THE TERMINAL'S BAUD
RATE.

IT ASSUMED THAT THE SERIAL OUTPUT
IS CONNECTED TO SERIAL INPUT. AN
EXTERNAL BAUD RATE CLOCK MAY NOT
BE USED WITH THIS PROGRAM.

* E QUA T E S

A OUTCH EQU $F809 LILBUG OUTPUT CHAR ROUTINE
A TRCS EQU $0011 TX/RX CONTROL/STATUS REG
ATX EQU $0013 TX DATA REGISTER
ARX EQU $0012 RX DATA REGISTER
A RMCR EQU $0010 RATE & MODE CNTRL REG
A CRLF EQU $F818 LILBUG CR AND LF
A PDATA1 EQU $F80C LILBUG PRINT STRING ROUTINE

* S T 0 RAG E eEL L S

ORG $1000

00056A 1000 7E 101E A JMP START START-UP VECTOR

Figure 6-10. Demonstrating the Wake-Up Feature: OKRAD

6-20

PAGE 002 OKBAD .SA:1 OKBAD **** OKBAD -- WAKEUP DEMO PROGRAM ****
00058 * WAKEUP FLAG AND MODE ARE USER VARIABLES
00059 * 00060
00061

* WAKEUP = 0 : SET tlAKEUP BIT ELSE DON'T SET IT
* MODE = RATE & MODE CONTROL REGISTER VALUE

00 A WAKEUP FCB DEFAULT: SET IT 00063A 1003
00064A 1004
00065A 1005
00066A 1006

00 A MODE FCB
0001 A KT RMB
0001 A KTDOWN RMB

o
o
1
1

DEFAULT: BI-PHASE, HIGHEST RATE
NUMBER OF BUFFERS/LINE

00068

00070A 1007
00071A 1009
00072A 100D
0007,3

00075

0002
4F
5A
1012

WORKING COUNTER

* TRANSMITTER POINTER AND BUFFER

A TBUFPT RMB 2 TX BUFFER POINTER
A MSG FCC lOKI /
A FCC /ZBAD /
A MSGEND EQU *

* RECEIVER POINTER AND BUFFER

00077A 1012
00078A 1014

0002 A RBUFPT RMB
OOOA A RBUF RMB

2
10

RX BUFFER POINTER
RX BUFFER

00080
00081
00082

00084A 101E B6
00085A 1021 97
00086A 1023 86
00087A 1025 97
00088A 1027 8E
00089A 102A BD

00091
00092
00093

1004
10
OA
11 '
10DB
F818

00095A 102D 86 14
00096A 102F F6 1003

*
*
*

M A I N LIN E BEG INS

A START LDAA MODE GET THE MODE
A
A
A
A
A

A
A

STAA RMCR RATE & MODE NOW SET
LDAA #$A TURN ON TE & RE
STAA TRCS
LDS #ENDPGM+30 INZ STACK POINTER
JSR CRLF ISSUE CR & LF

* INITIALIZE CHAR COUNTER
* IF WAKEUP ON (0) PRINT 20 X 4 CHARS 80
* IF WAKEUP OFF PRINT 10 X 8 CHARS = 80

LDAA 1120 MAKE A GUESS
LDAB WAKEUP SEE IF WAKEUP ON

HER E

00097A 1032 27 01 1035 BEQ OK20 SURE IS, LUCKY GUESS
00098A 1034 44
00099A 1035 B 7 1005 A OK20
00100A 1038 B7 1006 A

00103 *

00105A 103B CE 1009 A INZ
00106A 103E FF 1007 A
00107A 1041 CE 1014 A
00108A 1044 FF 1012 A
00109A 1047 20 19 1062

00111 *

LSRA BAD GUESS, WAKEUP OFF
STAA KT BUFFER COUNT INITIALIZED
STAA K'IDOWN WORKING COUNTER INZ'D

I NIT I A LIZ E B U F FER POI N T E R

LDX IIMSG INITIALIZE POINTERS
STX TBUFPT TX BUFFER POINTER
LDX IIRBUF INZ RX BUFFER POINTER
STX RBUFPT
BRA STATUS GO TO IT!

R E C E I V E R S E R V I C E

00113A 1049 96 12 A RCVR LDAA RX GET CHAR
00114A 104B 81 5A A CMPA #'Z SNOOZING TIME?
00115A 104D 27 OA 1059 BEQ SNOOZE SURE IS!

Figure 6-10. Demonstrating the Wake-Up Feature: ~UAD (Continued)

6-21

PAGE 003 OKBAD .SA:1 OKBAD **** OKBAD -- WAKEUP DEMO PROGRAM ****
00117A 104F FE 1012 A LDX RBUFPT DISPLAY IT

SAVE IN BUFFER
BUMP POINTER
SAVE POINTER
THAT'S ALL

00118A 1052 A7 00 A STAA X
00119A 1054 08 INX
00120A 1055 FF 1012 A STX RBUFPT
00121A 1058 39 RXRTS RTS

00123A 1059 7D 1003 A SNOOZE TST WAKEUP OK TO· SNOOZE???
NOPE II! 00124A 105C 26 FA 1058

00125A lOSE 7C 0011 A
00126A 1061 39

00128 *

BNE RXRTS
INC TRCS
RTS

S TAT U S

SET THE WAKEUP BIT
BACK TO CALLER

L 0 0 P (T X & R X)

00130A 1062 96 11 A STATUS LDAA TRCS WHO NEED ATTN?
RECEIVER OK 00131A 1064 2A 04 106A

00132A 1066 8D E1 1049
00133A 1068 96 11 A

BPL
BSR
LDAA

STAT2
RCVR
TRCS

RECEIVER NEEDS SERVICE
NEW COpy

00134A 106A 85 20 A STAT2 BITA 11$20 CHECK TRANSMITTER
DO IT ALL AGAIN 00135A 106C 27 F4 1062

00137

00139A 106E FE 1007 A
00140A 1071 8C 1012 A
00141A 1074 27 12 1088
00142A 1076 A6 00 A
00143A 1078 97 13 A
00144A 107A 08
00145A 107B FF 1007 A
00146A 107E 20 E2 1062

00148
00149
00150
00151
00152
00153
00154
00155
00156
00157
00158
00159
00160
00161
00162
00163
00164
00165
00166
00167

BEQ STATUS

* T RAN S MIT T E R SEC T ION

LDX TBUFPT GET BUFFER POINTER
CPX IIMSGEND MAYBE NO MORE
BEQ DONETX THAT'S ALL
LDAA X GET NEXT CHAR FROM TX BUFFER
STAA TX WRITE TO XMIT
INX BUMP POINTER
STX TBUFPT SAVE IT
BRA STATUS GO WAIT

* THIS TABLE HAS A LOOP COUNTER FOR 19 BI T TIMES
* FOR EACH OF THE FOUR BAUD RATES. IT IS USED
* TO TIMEOUT THE TRANSMITTER WHILE CONTINUING
* TO SERVICE THE RECEIVER. THE TIMOUT LOOP
* OVERHEAD RUNS FROM "DONETX" TO "WLOOP". THE
* TIMING LOOP IS CONTAINED IN THE "WLOOP" LOOP
* BUT DOES NOT INCLUDE:
*
*
*
*
*

PSHX
BSR RCVR
PULX

* THE TIMING EQUATION FOR THE TIMEOUT IS:

* * TIMOUT (CYCLES) = (N * 12) + 19
*
* WHERE
* * TIMOUT = 19 BIT TIMES IN CYCLES
* N = LOOP COUNTER VALUE

* 00168
00169A 1080
00170A 1082
00171A 1084
00172A 1086

0018 A BITX19 FDB 24
201
1620
6484

* 12 + 19
* 12 + 19
* 12 + 19
* 12 + 19

307
2431

19459
77827

(304)
(2432)
(19456)
(77824)

00C9 A FDB
0654 A FDB
1954 A FDB

00174 * T X DON E, WAIT

Figure 6-10. Demonstrating tbe Wake-Up Feature: OKBAD (Continued)

6-22

PAGE 004 OKBAD .SA:1 OKBAD **** OKBAD -- WAKEUP DEMO PROGRAM ****
00176A 1088 CE 1080
00177A 108B F6 1004
00178A 108E C4 03
00179A 1090 58
00180A 1091 3A
00181A 1092 EE 00

A DONETX LDX
A LDAB
A ANDB

ASLB
ABX

A LDX

IIBITX19
MODE
113

x

START OF TABLE
COMPUTE OFFSET
ONLY Sl & SO BITS
X 2
ADD TO START OF TABLE
X HAS LOOP COUNT

00183
00184

*
*

W A I T FOR TIM 0 U T
S E R V ICE R E C E I V E R

00186A 1094 96 11 A WLOOP
00187A 1096 2A 04 109C
00188A 1098 3C
00189A 1099 8D AE 1049
00190A 109B 38

LDAA
BPL
PSHX
BSR
PULX

00192A 109C 09 RCVOK DEX
00193A 109D 26 F5 1094 BNE

00195

00197A 109F FE 1012 A
00198A 10A2 86 04 A
00199A 10A4 A7 00 A
00200A 10A6 CE 1014 A
0020lA 10A9 BD F80C A
00202A 10AC 7A 1006 A
00203A lOAF 26 09 10BA
00204A lOBI BD F8l8 A
00205A 10B4 B6 1005 A
00206A 10B7 B7 1006 A

* ALL

LDX
LDAA
STAA
LDX
JSR
DEC
BNE
JSR
LDAA
STAA

00208A 10BA 7E 103B A AGAIN JMP

00210 10BD A ENDPGM EQU
00211 101E A END
TOTAL ERRORS 00000--00000

TRCS
RCVOK

RCVR

WLOOP

DON E,

RBUFPT
114
X
IIRBUF
PDATA1
KTDOWN
AGAIN
CRLF
KT
KTDOWN

INZ

*
START

CHECK RECEIVER
NOTHING
SAVE CURRENT COUNT
SERVICE RECEIVER
RESTORE CURRENT COUNT

DOWN ANOTHER COUNT
NOT YET

DIS P LAY

SET END-OF-BUFFER
END-OF-BUFFER CHAR

START OF BUFFER
PRINT IT
SEE IF CRLF TIME
NOT YET
ISSUE CF & LF

R X

RE-INZ WORKING COUNTER

DO IT AGAIN

B U F F

Figure 6-10. Demonstrating the Wake-Up Feature: OKBAD (Continued)

6-23

PAGE 001 OKBOUT .SA: 1

OK!
OK!
OK!
OK!
OK!
OK!
OK!
OK!
OK!
OK! OK! OK! OK! OK! OK! OK! OK! OK! OK! OK! OK! OK! OK! OK! OK! OK!. OK! OK! OK!
OK!
OK!
OK!
OK!
OK!
OK!
OK!
OK! OK! OK! OK! OK! OK! OK! OK! OK! OK! OK! OK! OK! OK! OK! OK! OK!· OK! OK! OK!
OK!
OK!
OK!
OK!
OK!

(a) Output with WAKEUP=Q

OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD
OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD
OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD
OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD
OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD
OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD
OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD. OK! BAD
OK! BAD OK! BAD OK! BAD OK! BAD OK! :BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD
OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD
OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD
OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD
OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD
OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD
OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD
OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD
OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD
OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD
OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD
OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD
OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD
OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD
OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD
OK! BAD OK! BAD OK! "BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD
OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD OK! BAD

(b) Output with WAKEUP=$FF

Figure 6·11. Example of OKRAD Program Output

6-24

CHAPTER 7
THE MC6801 PROGRAMMABLE TIMER

7.0 INTRODUCTION

The MC6801 Programmable Timer can be used for many purposes including measuring the pulse
width of an input signal and simultaneously generating an output signal. Pulse widths for both input
and output signals can vary from several microseconds to many seconds. The Programmable Timer
is also capable of generating periodic interrupts or indicating passage of an arbitrary number of
MPU E-cycles.

In order to implement these types of applications, the reader must become familiar with the registers
which control and access the Programmable Timer. This chapter provides a detailed description of
the operation of the four addressable registers used to interface with the Programmable Timer. It
concludes with a few examples which are intended to illustrate various features.

7.1 PROGRAMMABLE TIMER REGISTERS

The capabilities of the Programmable Timer are obtained using the following four addressable
registers:

• the Counter Register,
• the Output Compare Register,
• the Input Capture Register, and
• the Timer Control and Status Register (TCSR).

The overall organization of the programmable Timer Registers is shown in Figure 7-1 while Figure
7-2 depicts a block diagram of the Programmable Timer.

There are two ways to discuss the Programmable Timer, depending upon whether the Timer Con­
trol and Status Register is mentioned first or last. Unfortunately, either choice leads to forward

15 7 0

I
IlcF IOCFI TOFI EICIIEOCIIETOIIIEDGIOLVLI $08

Counter High Byte Counter Low Byte $09:0A

Output Compare High Byte Output Compare Low Byte $OB:OC

Input Capture High Byte Input Capture Low Byte $OD:OE

Figure7-1. MC6801 Programmable Timer Registers

7-1

and
Status

Register
$08

MC6801 Internal Bus

Output Compare Pulse

Bit 1
Port 2
DDR

____ ~ Output Input
Level Edge
Bit 1 Bit 0

Port 2 Port 2

Figure 7-2. Block Diagram of Programmable Timer

references but it is felt that the latter one is somewhat preferable. Therefore, the five control bits
(EICI, EOCI,ETOI, IEDG, WU) and three status bits (ICF, OCF, TOp) referred to in the next
three sections are not defined until the discussion of the register in which they reside: namely, the
Timer Control and Status Register (TCSR).

7.1.1 Counter Register (S09:0A)

The key element in the Programmable Timer is in a 16-bit free-running counter, or Counter
Register, which is clocked to increasing values during each negative half-cycle of the MPU E-clock.
Software can read the Counter Register at any time without affecting its value. The Counter
Register is clocked and read during opposite half cycles of the MPU E-cycle clock.

The Counter Register must be read using an instruction which first addresses its most significant
byte ($09). An MPU read of this address causes the least significant byte to be transferred to a buf­
fer. This buffer is cleared by Reset and is accessed when reading the Counter Register least signifi­
cant byte ($OA). For double byte read instructions, these two accesses occur on consecutive bus
cycles. Note that unless the Counter Register most significant byte is also read, the same value will
be obtained from more than one read of the least significant byte.

7-2

The Counter Register is cleared during Reset and is a read-only register with a single exception: any
MPU write to its most significant byte ($09) will always preset it to $FFF8 regardless of the value in­
volved in the write. This preset feature is intended for use in testing but could be of value in some
applications.

NOTE
The Counter Register also provides a bit rate clock for the Serial Communications Inter­
face (SCI). MPU writes to the Counter Register should be avoided if the SCI is being used
with the internal clock.

The 16-bit Counter Register repeats every 65,536 MPU E-cycles. When the Counter Register con­
tains all ones, the Timer Overflow Flag (TOF) bit is set during the same half cycle. An interrupt can
also be enabled when rollover occurs by setting its interrupt enable bit, ETOL

7.1.2 Output Compare Register (SOB:OC)

The Output Compare Register is a 16-bit read/write register which is initialized to $FFFF by Reset
and can be used for several purposes. Two possible applications include controlling an output
waveform and indicating when a period of time has elapsed. Of the four Programmable Timer
registers, the Output Compare Register is unique in that all bits are readable and writable and are
not altered by the Timer hardware (except during Reset). If the compare function is not utilized, the
two bytes of the Output Compare Register can be used simply as a storage location.

The Output Compare Register and the Counter Register are compared during each negative half­
cycle of the MPU.E-clock. If a match is found, the Output Compare Flag (OCF) bit is set and the
Output Level (OLVL) bit is clocked to an output level register. Providing Port 2 bit 1 is defined as
an output by its corresponding bit in the Data Direction Register, the value of the output level
register will appear at P21. The values in the Output Compare Register and Output Level bit must be
changed after each successful comparison to control an output waveform or establish a new elapsed
timeout. An interrupt can also accompany a successful output compare providing the interrupt
enable bit, EOCI, is set.

After an MPU write cycle to the most significant byte of the Output Compare Register ($OB), the
output compare function is inhibited for one E-cycle. This allows both bytes to be written on con­
secutive E-cycles before making the next comparison. Therefore, if desiring to change both bytes of
the register, a double byte write instruction should be used in order to take advantage of the com­
pare inhibit feature.

MPU writes can be made to either byte of the Output Compare Register, however, without affecting
the other byte. The Output Level bit (OL VL) is clocked to the output level register regardless of
whether the Output Compare Flag (OCF) is set or clear. A timing diagram for the output compare
function is shown in Figure 7-3.

7-3

E

Hi9hByte~
Written

Output Compare
Inhibited

Low Byte ___ ---J

Written

1 t . OCF Set on This Half-Cycle;
Output Level Becomes True

Output Level Changing

'----- Output Compare Matched

Figure 7·3. Output Compare Timing

7.1.3 Input Capture Register (SOD:OE)

The Input Capture Register is a 16-bit read-only register which is cleared by Reset and is used to
latch the value of the Counter Register when a defined transition is sensed by the input capture edge
detector. The level transition which triggers a Counter Register transfer is controlled by the Input
Edge bit (IEDG).

External devices interface with the input capture function using P20. Typically, Port 2 bit 0 is con­
figured as an input but the edge detector is always sensing this line even if configured as an output.

The result obtained by an input capture corresponds to the value of the Counter Register on the sec­
ond negative half-cycle of the MPU E-clock following the transition, as shown in Figure 7-4. This
one cycle delay is required for internal synchronization.

E

rr
Edge

L Counter Register Transferred and
ICF Set On This E-Half-Cycle

Figure 7·4. Input Capture Timing

The Counter Register is transferred to the Input Capture Register on each proper signal transition
regardless of whether the Input Capture Flag (ICF) is set or clear. The register always contains the
counter value corresponding to the most recent input capture.

After a read of the most significant byte of the Input Capture Register, Counter Register transfer is
inhibited during the next negative half-cycle of E (Enable). During double byte reads, this inhibited

r transfer will occur between consecutive read cycles of the most and least significant bytes. This
characteristic requires input pulse widths be at least two MPU E-cycles for recognition under all
conditions. If the application is such that it is possible to guarantee that the Input Capture Register
will not be read during an input capture, then one MPU E-cycle is sufficient.

7-4

7.1.4 Timer Control and Status Register (508)

The Timer Control and Status Register (TCSR) is an 8-bit register which contains three status bits
and five control bits. The three most significant bits contain read-only status information and in­
dicate that:

• a proper transition has ta,ken place at P20 with an accompanying transfer of the Counter
Register to the Input Capture Register,

• a match has been found between the Counter Register and the Output Compare Register, and
• a value of $FFFF has been sensed in the Counter.

Of the remaining five bits of the TCSR, three of the bits control interrupts associated with each of
the three flag bits. The other two bits control (1) which edge is significant to the input capture edge
detector and (2) the next value to be clocked to the output level register in response to a successful
output compare.

Each of three Programmable Timer functions can generate an IRQ2 interrupt if its individual enable
bit is set and each has a separate prioritized interrupt vector. The MCU interrupt mask bit (I-bit in
the Condition Code Register) controls all maskable interrupts and must be clear to enable any Pro­
grammable Timer interrupt. The associated interrupt vectors, in order of decreasing priority, are:

1. Input Capture Vector: $FFF6:FFF7
2. Output Compare Vector: $FFF4:FFF5
3. Timer Overflow Vector: $FFF2:FFF3

7 6 5 4 3 2 o
ICF OCF TOF EICI EOCI ETOI IEDG OLVL I $08

Figure 7-5. Timer Control and Status Register (TCSR)

The TCSR is illustrated in Figure 7-5 where each bit is defined as follows:
Bit 0 OL VL Output Level - This is the next value to be clocked to the output level register by a

successful output compare and will appear at P21 if Bit 1 of Port 2 Data Direction
Register is set. OL VL is cleared by Reset. The Output Level Register is not affected
by Reset.

Bit 1 IEDG Input Edge - IEDG is cleared by Reset and controls which level transition will trig­
ger a Counter Register transfer to the Input Capture Register:

IEDG = 0 Transfer on a negative-going edge
IEDG = 1 Transfer on a positive-going edge

Bit 2 ETOI Enable Timer Overflow Interrupt - If set, an IRQ2 interrupt is enabled whenever
TOF is set; if clear, the interrupt is inhibited. It is cleared by Reset.

Bit 3 EOeI Enable Output Compare Interrupt - If set, an IRQ2 interrupt is enabled whenever
OCF is set; if clear, the interrupt is inhibited. It is cleared by Reset.

Bit 4 EICI Enable Input Capture Interrupt - If set, an IRQ2 interrupt is enabled whenever ICF
is set; if clear, the interrupt is inhibited. It is cleared by Reset.

Bit 5 TOF Timer Overflow Flag - TOF is set when the Counter Register contains $FFFF. It is
cleared by reading the TCSR (with TOF set) followed by the Counter Register most
significant byte ($09), or by Reset.

7-5

Bit 60CF

Bit 7 ICF

Output Compare Flag - OCF is set when the Output Compare Register matches the
Counter Register. It is cleared by reading the TCSR (with OCF set) and then writing
to the Output Compare Register (SOB to SOC), or by Reset.·
Input Capture Flag - ICF is set when a proper edge has been sensed by the input
capture edge detector. It is cleared by an MPU read of the TCSR (with ICF set)
followed by the Input Capture Register most significant byte (SD), or by Reset.

Note that reading the TCSR satisfies the first condition required to clear any status bits which hap­
pen to be set during the read. The only remaining step to clear the status bit is to make an access of
the appropriate register. Typically, this presents no problem for the input capture and output com­
pare functions.

A problem can occur, however, when using the timer overflow function and reading the Counter
Register at random times to, say, measure an elapsed time. Without incorporating the proper
precautions into software, the Timer Overflow Flag could unintentionally be cleared if (1) the TCSR
is read when TOF is set and (2) the most significant byte of the Counter Register is read but not for
the purpose of servicing the flag. Solutions to this problem are application-dependent, and, typical­
ly, involve always reading the TCSR before the Counter Register. Based on the value found for the
overflow flag, software must then perform some action which ensures that the flag will be serviced.

Finally, if any Programmable Timer function is operated interrupt-driven, the programmer must be
familiar with and observe the precautions noted in Section 5.3 concerning characteristics of the
IRQ2 interrupt.

7.2 SELECTED PROGRAMMABLE TIMER EXAMPLES

While the preceding discussion defines Programmable Timer operation, it is recognized that ex­
amples are valuable in demonstrating its various features. The following examples illustrate several
aspects of Programmable Timer operation. Most of the examples are tutorial in nature; their goal is
to inform rather than to provide solutions to specific applications. The examples also present
analysis techniques which could be helpful in some applications.

7.2.1 Reading tbe Counter Register

The free-running counter (Counter Register) can be considered a read-only register with one excep­
tion: any write to the Counter Register will cause it to preset to $FFF8. If the write is immediately
followed by a double byte read of the Counter Register, the value $FFFB will always be obtained as
shown in the following instruction sequence:

STX $09 IWRITE TO COUNTER REGISTER
LDX $09 IREAD THE COUNTER REGISTER

The timing description in Figure 7-6 illustrates why the Index Register will contain $FFFB after the
Counter Register is read.

*The output level register is also cleared by Reset.

7-6

E

r---STX $09

High Byte of Counter ~
Accessed; Counter FFF8

Preset to $FFF8

·1· LDX$09-4

FFFA

FFF9 FFFB

High Byte of
Counter Read;

Low Byte FFFC
Buffered

Low P"te Of
Counter Read

From Buffer

FFFD

Figure 7-6. Counter Register Write and Read Diagram

7 .2.2 Generating an Output Waveform

Many possible output waveforms can be generated by using software to control the Output Com­
pare Register and the OL VL bit in the TCSR. Software written to generate an output waveform
must satisfy the following requirements:

1. Port 2 bit 1 must be configured as an output by writing a "1" into the appropriate bit in its
Data Direction Register,

2. the Output Level Bit (OLVL) must be toggled after each successful compare, and
3. the Output Compare Register must be updated before the Counter Register reaches the new

value.
The program, WAVGEN, shown in Figure 7-8, illustrates use of the output compare function. The
purpose of the program is to generate the waveform shown in Figure 7-7. The output signal can be
observed by connecting Port 2 bit 1 (P21) to an oscilloscope. The duty cycle and period of the out­
put can be varied by changing the values of the double byte variables, OFF1 and OFF2.

OFF2-1 ~ HOFF1

5OCYCleS~ ~ I
H 100 Cycles

Figure 7-7. W A VGEN Default Output Signal

7-7

PAGE 001 WAVGEN .SA: 1 WAVGEN **** OUTPUT COMPARE FUNCTION GENERATOR

00001
00002
00003

00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033

00035
00036
00037
00038
00039

00041
00042
00043

00045
00046
00047
00048
00049

00051A 02FC
00052A 02FC
00053A 02FE

NAM
TTL
OPT

WAVGEN
**** OUTPUT COMPARE FUNCTION GENERATOR ****
LLEN=80,ZOl

*
*WAVG
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

E N -- A PROGRAM TO GENERATE A VARIABLE
DUTY CYCLE SQUARE WAVE USING THE
OUTPUT COMPARE FUNCTION OF THE
M6801 TIMER.

THE OUTPUT WAVEFORM IS DEFINED USING
VARIABLES OFF1 AND OFF2:

I<----OFF2--->I<----OFF1----->I

OFF1, OFF2 => $0027 (39 CYCLES)

NOTE: IF OFF1 = OFF2, STATEMENTS
BEGINNING WITH "." IN THE
COMMENT FIELD MAY BE OMITTED.
OFF 1 MAY THEN BE AS SMALL
AS $OOlE (30 CYCLES) AND OFF2
IS IGNORED.

*
* E QUA T E S

*

0008 A TCSR EQU
OOOB A OUTCMP EQU
0001 A P2DDR EQU

$0008
$OOOB
$0001

TIMER CONTROL & STATUS REG
OUTPUT COMPARE REG
PORT 2 DDR

*
* S TOR AGE C ELL S
*

ORG
0064 A OFF1 FDB
0032 A OFF2 FDB

$02FC
$0064
$0032

100 CYCLES DEFAULT
50 CYCLES DEFAULT

Figure 7-8. Generating a Waveform:WAVGEN

7 .. 8

PAGE 002 WAVGEN .SA:1 WAVGEN **** OUTPUT COMPARE FUNCTION GENERATOR ****

00055
00056
00057
00058
00059

* * PRO G RAM BEG INS HER E
*

00061A 0300 86 02
00062A 0302 97 01

A START LDAA 112 CHANGE PORT 2 BIT 1 TO OUTPUT
DDR NOW CONFIGURED A STAA P2DDR

00064 * WAIT ON OUTPUT COMPARE FLAG (OCF)

00066A 0304 96 08 A LOOP
00067A 0306 85 40 A
00068A 0308 27 FA 0304

LDAA
BITA
BEQ

TCSR
11$40
LOOP

CHECK OCF
KEEP CHECKING

00070 * GOT A COMPARE, CHANGE OUTPUT LEVEL

00072A 030A 88 01
00073A 030C 97 08
00074A 030E 44

A
A

EORA III
STAA TCSR
LSRA

TOGGLE OLVL BIT

.SAVE OLVL BIT IN CARRY

00076
00077

* WHICH OFFSET TO ADD IS BASED ON LAST OLVL
* COMPUTE NEXT COMPARE VALUE

00079A 030F DC OB A
00080A 0311 24 05 0318
00081A 0313 F3 02FC A
00082A 0316 20 03 031B

LDO
BCC
ADOD
BRA

00084A 0318 F3 02FE A OFFS2 ADOD
00085A 031B DD OB A ALLDUN STD
00086A 031D 20 E5 0304 BRA

00088 0300 A END
TOTAL ERRORS 00000--00000

OUTCMP
OFFS2
OFF1
ALLDUN

OFF2
OUTCMP
LOOP

START

GET OUTPUT COMPARE REG
.LAST OLVL SAVED IN CARRY BIT
ADD TO OFFSET 1

.ADD OFFSET 2
BACK INTO COMPARE REGISTER
GO AGAIN

F1lure 7-8. Generatilll a Waveform: W A VGEN (Continued)

7-9

7.2.3 Generating a Synchronized Output Compare

This example is presented only for instructional purposes and. admittedly has minimal useful ap­
plications value. Its value lies in understanding the timing considerations required for the program
to function.

The objective of this example is to generate a square wave output using the output compare function
without any reference to the Output Compare Flag (OCF). This requires that the program be syn­
chronized with the Counter Register such that a successful compare always occurs on the cycle
following the write to the Output Compare Register.

The solution is shown in Figure 7-10 and the timing involved in its iterative loop is illustrated in
Figure 7-9. The loop requires exactly 15 MPU cycles. Once the loop is entered correctly it will re­
main synchronized because 15 (the cycle count of the loop) is constantly being added to the value in
the Output Compare Register. The key task is to determine how to enter the loop with the correct
value.

r.t----LDX T'MER,----i.~I~III(E---- ABX .1 LDAB ~
(ACCB~$4) • #15 ~

High Byte of • J
Counter Read;~

Low Byte
Buffered Low Byte

Read From
Buffer

~EORA #1+ STAA TCSR --+1...:---- ABX --~.*I.--- STX OUTCMP

+ +

Target +
outPut~

Compare

Figure 7-9. Synchronized Loop Timing

The loop is synchronized with the Counter Register by reading it 19 cycles before the first compare
and then adding four to obtain the value for the next compare. The addition of four cycles is
equivalent to reading the Counter Register exactly 15 MPU E-cycles before the compare within the
loop. When the routine enters the loop, the number of cycles remaining until the next compare is
identical to that occurring from within the loop. Because this program is totally dedicated to the task
of waveform generation, its output represents the minimum period which can be generated using the
output compare function.

7-10

PAGE 001 SYNLUP .SA:1 SYNLUP **** OUTPUT COMPARE IN A SYNCHRONIZED L

00001
00002
00003

00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023

00025

NAM
TTL
OPT

SYNLUP
**** OUTPUT COMPARE IN A SYNCHRONIZED LOOP
LLEN=80,ZOl

*************************~*******************************

*
* S Y N L U P -- A PROGRAM TO GENERATE A SQUARE WAVE
* OUTPUT USING THE OUTPUT COMPARE
* FUNCTION OF THE M6801 TIMER.

*
*
*
*
*
*
*
*
*
*
*
*
*

THE PROGRAM DOES NOT USE THE OUTPUT
COMPARE FLAG AND, INSTEAD, SYNCHRONIZES
WITH THE TIMER IN A 15 CYCLE LOOP.
THE OUTPUT IS A 30-CYCLE PERIOD
SQUARE WAVE.

THE PROGRAM IS INTENDED FOR INSTRUC­
TIONAL USE ONLY AND MAY NOT BE USED
IN A "CYCLE STEALING" ENVIRONMENT
WHICH MAY DESTROY THE TIMER
SYNCHRONIZATION.

*EQUATES

00027
00028
00029
00030

0008 A TCSR EQU
0009 A TIMER EQU
OOOB A OUTCMP EQU
0001 A P2DDR EQU

$0008
$0009
$OOOB
$0001

TIMER CONTROL & STATUS REG

OUTPUT COMPARE REG
PORT 2 DDR

00032

00034A 0300
00035A 0300 86 02
00036A 0302 97 01
00037A 0304 CC 0004
00038A 0307 DE 09
00039A 0309 3A
00040A 030A C6 OF

00042
00043
00044
00045
00046
00047
00048
00049
00050

00052A 030C 88 01
00053A 030E 97 08
00054A 0310 3A
00055A 0311 OF OB

* P ROGRAM BEG INS HER E

ORG $300
A START LDAA 112 SET P21 TO OUTPUT

PORT 2 BIT 1 SET
CLEAR A, 4-->B

A
A
A

A

STAA
LDD
LOX
ABX
LDAB

P2DDR
114
TIMER

1115

GET CURRENT TIMER VALUE
ADD 4 CYCLES
B HAS CONSTANT LOOP VALUE OF 15 CY

* LEAD-IN NOW SYNCRONIZED TO TIMER

* * M A I N L 0 0 P

*
* THE FOLLOWING LOOP IS EXACTLY 15 CYCLES
* LONG. THE OUTPUT COMPARE IS MADE ON THE
* NEXT CYCLE AFTER THE WRITE TO THE LOW
* BYTE OF THE OUTPUT COMPARE REGISTER.
*

A LOOP EORA 111 TOGGLE OLVL BIT
A STAA TCSR OLVL NOW FIXED UP

ABX ADD 15 CYCLES TO OUTPUT COMPARE
A STX OUTCMP OUTPUT COMPARE NOW SET

00056A 0313 20 F7 030C BRA LOOP DO IT ALL AGAIN
00057 0300 A END START
TOTAL ERRORS 00000--00000

Figure 7-10. Synchronized Output Compare: SYNLUP

7-11

7.2.4 Echoing an Input Signal

The purpose of this example is to use the input capture function to detect an edge from an input
signal and to use the output compare function to echo it at the output level pin, P21. Because the
only way to generate a level change is by a successful output compare, the function of this program
is three-fold:

1. sense an input level change using the Input Capture Flag (ICF),
2. upon detecting the level change, toggle the Output Level Bit (OLVL), and
3. force an immediate output compare to clock the new level to the output pin.

The level change on the input can be sensed by monitoring the Input Capture Flag (ICF). After the
OL VL bit has been toggled, the remaining task is to clock it to the Output Level Register. This can
only be accomplished by a successful compare with the Output Compare Register. The following
three instructions can be used to generate an immediate output compare:

LDD
ADDD
STD

$9 IGET COUNTER REGISTER VALUE
#10 I ADD AN OFFSET
$B IUPDATE OUTPUT COMPARE

The diagram shown in Figure 7-11 illustrates the timing involved in the instruction sequence .

.... I.E-------LDD $9 --~.*'I • .---ADDD #10--.......... 1 • ..--- STD $9------I.~1

Counter Has Value, tJ t
High Byte of Counter J

Read; Low Byte Buffered

High Byte WrittenJ t
Output Compare InhibitedJ

Low Byte of Counter
Read from Buffer

Low Byte Written

Target Compare

Figure 7·11. Immediate Output Compare Timing

If it is undesirable to disturb the A accumulator, the following four-instruction sequence can also be
used:

LDAB
LOX
ABX
STX

#9 ICOUNTER OFFSET TO ACCB
$9 IREAD COUNTER REGISTER

IADD OFFSET
$B IUPDATE OUTPUT COMPARE

The program ECHO, shown in Figure 7-13, illustrates the application of these techniques. The
equipment arrangement shown in Figure 7-12 can be used to drive the program and monitor its out­
put.

7-12

MC6801

P20
"-------'

Function
Generator

14-~ I
CH1 CH2

Dual Trace
Oscilloscope

Figure 7-12. Equipment Arrangement for Program ECHO

7.2.5 Generating an Input Capture Using LILbug (TM)*

This example is concerned with illustrating the effect of Reset on the Programmable Timer registers.
Assume that the Programmable Timer output (OLVL) is connected to its input (input capture) and
an external pullup resistor is connected to Port 2 bit 1. The MC6801 has been Reset and the follow­
ing dialogue appears on the terminal:

LILBUG 1.0
!086061
!01 FFFE
!086160
!08 EO

<Set OLVL>
< Make Port 2 bit 1 an Output>
<Clear OLVL>
< ICF is set>

What value should now be contained in the Input Capture Register?

During Reset all registers in the Programmable Timer were cleared to zero except the Output Com­
pare Register which was set to $FFFF. The effect of this initialization is to cause an output compare
whenever the Counter Register cycles through $FFFF. The Input Capture Unit is armed for a
negative-going transition and the Output Level Bit is initialized· to zero.

An input capture was generated by (1) setting OLVL in the TCSR, (2) configllring Port 2 bit 1 as an
output, and (3) clearing OL VL. This sequence generates the negative-going transition which triggers
the input capture function. The task which remains is to determine the value of the Counter Register
which is transferred to the Input Capture Register.

Refer to the timing diagram in Figure 7-3. The output compare changes the output level on the
positive half-cycle of the MPU E-cycle following a successful compare. The Counter Register
transfer occurs on the second negative half-cycle following the edge. The; Counter Register contain­
ed $FFFF when the compare was made but is incremented two more times before the transfer is ac­
complished. Therefore, if LILbug is used to read the Input Capture Register, it would find:

!OD 00 01

·LILbug (TM) is a monitor programmed in the ROM of the MC6801Ll. See the LILbug Manual for details.

7-13

PAGE 001 ECHO

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028

00030
00031
00032
00033
00034

00036
00037
00038
00039
00040

.SA:1 ECHO **** TIMER INPUT CAPTURE & OUTPUT COMPARE FUN

NAM ECHO
OPT LLEN=80
OPT ZOl
TTL **** TIMER INPUT CAPTURE & OUTPUT COMPARE F

*
* E C H 0 -- THIS PROGRAM ECHOES A WAVEFORM FED INTO
* THE TIMER INPUT LEVEL (PORT 2 BIT 0) USING
* THE OUTPUT COMPARE FUNCTION (PORT2 BIT 1).
* THE INPUT LEVEL SHOULD BE REPEATED ON THE
* OUTPUT LEVEL OF THE TIMER WITH A SMALL DELAY

*
* THE PERIOD OF THE INPUT SQUARE WAVE
* MUST BE AT LEAST 64 MPU CYCLES FOR THE
* PROGRAM TO HAVE SUFFICIENT TIME TO:
* FUNCTION CORRECTLY.

*
*
*
*
*
*
*
*
*
*
*

INPUT OUTPUT
I I I I I I I I I I I I I -----------------

+
+
+
+
I I I I I I I I I I I I I I I I I I ----------

----> 26 OR 29 CYCLES <----

*
*EQUATES

*

OOOB A OUTCMP EQU
0000 A INPCAP EQU
0008 A TCSR EQU
0009 A TIMER EQU
0001 A P2DDR EQU

$OOOB
$0000
$0008
$0009
$0001

OUTPUT COMPARE REGISTER
INPUT CAPTURE REGISTER
TIMER CONTROL & STATUS REGISTER
FREE RUNNING TIMER
PORT 2 DATA DIRECTION REGISTER

Figure 7-13. Echoing an Input: ECHO

7-14

PAGE 002 ECHO

00042
00043
00044
00045
00046

00048A 0300
00049A 0300 86 02
00050A 0302 97 01

00052A 0304 7C 0008
00053A 0307 96 08
00054A 0309 96 OD

00056A 030B 96 08

.SA: 1 ECHO **** TIMER INPUT CAPTURE & OUTPUT COMPARE FUN

* * E C H 0 BEG INS HER E
*

ORG $300
A START LDAA 112 MAKE PORT 2 BIT 1 AN OUTPUT

ALL SET NOW A STAA P2DDR

A
A
A

A LOOP

INC
LDAA
LDAA

LDAA

TCSR
TCSR
INPCAP

START WITH OLVL = "1"
CLR OUT INPUT CAPTURE FLAG
READ STATUS/READ DATA CLRS FLAG

00057A 030D 2A FC 030B BPL
TCSR
LOOP

.CHECK FLAG
FLAG NOT SET

00059A 030F 88 03 A
00060A 0311 97 08 A
00061A 0313 96 OD A
00062A 0315 DC 09 A
00063A 0317 C3 OOOA A
00064A 031A DD OB A
00065A 031C 20 ED 030B

00067 0300 A
TOTAL ERRORS 00000--00000

EORA
STAA
LDAA
LDD
ADDD
STD
BRA

END

113
TCSR
INPCAP
TIMER
1110
OUTCMP
LOOP

START

CHANGE EDGE AND OUTPUT LEVEL

CLEAR INPUT CAPTURE FLAG
GET CURRENT TIMER VALUE
ADD JUST ENOUGH OFFSET
FOR AN IMMEDIATE COMPARE

Figure 7·13. Echoing an Input: ECHO (Continued)

7-15/7-16

8.0 INTRODUCTION

CHAPTER 8
SELECTED APPLICATIONS

While the preceding chapters were concerned with explaining the functional aspects of the MC6801,
this chapter focuses on its application. The topics discussed in these applications are not presented
in any particular order nor are they intended to be the solution to any specific problem. Instead,
they are in keeping with the spirit of preceding chapters and are, therefore, tutorial in nature. They
treat a wide range of topics which are considered to be of interest to many readers.

8.1 INTERFACE TO STATIC RAM (MODES 1, 2, 3, 6)

The MC6801 can be interfaced to a variety of devices using the expanded operating modes. The
directly addressable external address space in the Expanded Non-Multiplexed Mode (Mode 5),
however, is limited to $100 to $IFF due to the width of the address bus. In this mode, only eight ad­
dress lines and an Input/Output Select are available which provides an external memory space of
256 bytes.

In the Expanded Multiplexed Modes, however, the MCU can access a 64K memory space. When in­
terfacing to the expanded multiplexed bus, the following factors must be considered:

1. the MC6801 bus is synchronous, clocked by E (Enable), and cannot be easily "stretched"
either for slow devices or direct memory access (OMA),

2. the low order address bits (AO-A7) are multiplexed with the data bus (00-07),
3. the Address Strobe (AS) signal must be used to control a latch to de-mutliplex the two buses,
4. no external device can be enabled onto the data bus until the positive edge of Enable (E), and
5. all external devices must vacate the data bus by the positive edge of Address Strobe.

8.1.1. Expanded Multiplexed Bus Timing

Timing for the expanded multiplexed bus is shown in Figure 8-1 where numerical values for each of
the symbols can be obtained from the MC6801 Oata Sheet. From examination of this figure, it
should be noted that

1. the negative edge of Address Strobe (AS) can be used to latch the eight least significant bits of
the address bus,

2. although the address is valid for a short interval prior to the negative edge of the Address
Strobe, devices cannot be enabled onto the data bus until E is high in order to avoid interfer­
ence with the eight least significant lines of the address bus, and

3. the data bus must be vacated on the negative edge of E (Enable) to avoid interference with the
address bus.

8-1

Address Strobe
(AS)

Enable
(E)

R/W, A8-A15
(Port 4)

MPU Write
00-07, AO-A7

(Port 3)

MPU Read
00-07/ AO-A 7

(Port 3)

~---~-tcyc-----~

2.0 V

tHW

.. tACCM--'--~

Figure 8·1. Expanded Multiplexed Bus Timing (Repeated)

8.1.2 An MC6801 Interface with MCM2114 Static RAM

This discussion considers the interface of two MCM2114 static RAMs with the MC6801 expanded
multiplexed bus. The MCM2114 is a 4096-bit static random access memory (RAM) organized as
1024 nibbles (1024 x 4). The address space for this block of memory is arbitrarily chosen for this ex­
ample as $ECOO to $EFFF. Let us also arbitrarily require that the sixteen most significant locations
of the RAM respond to the interrupt vector addresses, $FFFO to $FFFF. The latter requirement is
only for purposes of illustration and probably would not be a typical requirement. Finally, the pro­
posed design will require only simple modifications to fill the block of addresses ($EOOO-$EBFF)
with an additional six RAMS.

The operating mode of the MC6801 can be assumed to be 1,2,.3, or 6. This design will not function
correctly with Mode 0 because the memory address decoder will not respond correctly to the inter­
rupt vectors. In modes 1,2, or 3, external interrupt vectors are located in the sixteen most significant
locations of the external RAM.

The reader could be wondering, at this point, just how these RAM locations are initialized. One ap­
proach is to Reset the system into Mode 6 and use the memory examine/change function of a
monitor such as LILbug (TM). After initializing these locations, the system could be Reset again in­
to Modes 1, 2, or 3.

8-2

It should be noted that this design does not include any buffering which implies that it is intended
for use in a minimal single board system. A typical data sheet for the MCM2114 static RAM is
shown in Figure 8-2. However, a current data sheet should be obtained for any actual design.

The MCM2114 can be interfaced to a system using ten address lines (AO-A9), a chip select (active
low), and a write enable signal (active low for write). In response to a chip select, each MCM2114
will provide four bits of data which requires two of them to obtain all eight bits to the data bus.

The objective of the interface circuitry is to provide the address and R/W (Read/Write) signals and
then enable the memory at the proper time. Details for the interface connections are shown in
Figure 8-3.

The first step is to de-multiplex the Address and Data buses using a transparent 74LS373 latch. Note
that AS (Address Strobe) can be used directly to control the latch.

The Data Bus, address lines AO to A9, and R/W are connected directly to the memories. The only
remaining required signal is a chip select, SEL. This signal is derived using combinatorial logic to .
decode either an address in the inclusive range of $EOOO to $EFFF or $FFFO to $FFFF.

If the decoder senses either of these conditions, its output signal is then further qualified using the
positive half-cycle of E (Enable). When all of these conditions are true, an active level is then
presented to the Gate (G) input of the 2-to-4line decoder which selects one of four possible pairs of
MCM2114s based on the current values of address lines, AIO and All. Because only one pair of
memories is used in this example, only the output select line, SEL3, is shown as connected. Addi­
tional I024-byte blocks of memory can be selected using the remaining three decoder outputs.

8.1.3 Final Remarks

Care should be taken when connecting any device to the MC6801 expanded multiplexed bus to en­
sure that it is not enabled to the data bus until after the positive edge of E (Enable). The reason for
this precaution is that the data bus "does not exist" until tAHL (plus a brief MCU deselect time)
after the negative edge of Address Strobe. Until that time, the lines are still half of the address bus.

Finally, one must consider the effect of the Reset state upon the circuit. During Reset, the Port 4 in­
ternal pullup resistors pull each line high. Port 3, however, is driven to a high impedance state and,
without external pullup resistors, its output levels are undefined. The AS and R/W lines will be held
high during Reset.

Note that this can result in an occasional "select" if the Port 3 lines (lower half of the address)
should happen to "float" to $FX where "X" indicates "don't care." Due to the most significant
byte of the address being held at $FF, the RAM will select any time the Port 3 lines "float" to $FX.

This will pose no difficulty in this example for two reasons; (1) the R/W line is held at a level" 1" >

(read) and, (2) only one device can be selected. If more than one device can be enabled while Port 3
"floats," then (1) external pullup resistors can be utilized or (2) chip selects can be further qualified
using low level AS signal.

8-3

® .IfIIOTOROLA

SEMICONDUCTORS
3501 ED BLUESTEIN BLVD .. AUSTIN. TEXAS 78721

4096-BIT STATIC RANDOM ACCESS MEMORY

The MCM2114 is a 4096-bit random access memory fabricated with
high density, high reliability N-channel silicon-gate technology. For ease
of use, the device operates from a single power supply, is directly com­
patible with TTL and DTL, and requires no clocks or refreshing because
of fully static operation. Data access is particularly simple, since address
setup times are not required. The output data has the same polarity as
the input data.

The MCM2114 is designed for memory applications where simple in­
terfacing is the design objective. The MCM2114 is assembled in 18-pin
dual-in-line packages with the industry standard pin-out. A separate
chip select (S) lead allows easy selection of an individual package when
the three-state outputs are OR-tied.

The MCM2114 series has a maximum current of 100 mA. Low power
versions (i.e., MCM21 L 14 series) are available with a maximum current
of only 70 mAo

• 1024 Words by 4-Bit Organization
• Industry Standard 18-Pin Configuration

• Single + 5 Volt Supply

• No Clock or Timing Strobe Required

• Fully Static: Cycle Time = Access Time

• Maximum Access Time
MCM2114-20/MCM21L14-20 200 ns
MCM2114-25/MCM21 L 14-25250 ns
MCM2114-30/MCM21L14-30 300 ns
MCM2114-45/MCM21 L14-45 450 ns

• Fully TTL Compatible

• Common Data Input and Output

• Three-State Outputs for OR-Ties

• Low Power Version Available

BLOCK DIAGRAM

15
A9

3
A4

2
A5

A6
17

A7
16

A8

14
DOl

D02
13

D03
12

Row

Select

•
•

Memory Array

64 Row
64 Columns

5 6 7 4

AO A1 A2 A3

Vcc; P!n 18

Vss;Pin9

MCM2114
MCM21L14

MOS
IN-CHANNEL, SILICON-GATE)

4096-BIT STATIC
RANDOM ACCESS

MEMORY

P SUFFIX
PLASTIC PACKAGE

CASE 707

L SUFFIX
CERAMIC PACKAGE

CASE 680

PIN ASSIGNMENT

A6

A4

AO

Al

A2

Vss

PIN NAMES

A9

DOl

D02

D03

D04

AO-A9 Address Input
W........... Write Enable
S.. " Chip Select
D01-D04 Data Input/Output
VCC Power (+5 V)
Vss " Ground

©MOTOROLA INC. 1980 DS98000

Figure 8-2. Typical Data for MCM2114 Static RAM

8-4

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating Value Unit

Temperature Under Bias -10to+80 °C

Voltage on Any Pin With Respect to VSS -0.5 to + 7.0 V

DC Output Current 5.0 mA

Power Dissipation 1.0 Watt

Operating Temperature Range o to + 70 °C
Storage Temperature Range -65 to + 150 °C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are ex­
ceeded. Functional operation should be restricted to RECOMMENDED OPERAT­
ING CONDITIONS. Exposure to higher than recommended voltages for extended
periods of time could affect device reliability.

This device contains circuitry to protect
the inputs against damage due to high
static voltages or electric fields; however,
it is advised that normal precautions be
taken to avoid application of any voltage
higher than maximum rated voltages to
this high-impedance circuit.

DC OPERATING CONDITIONS-AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED DC OPERATING CONDITIONS
Parameter Symbol

Supply Voltage VCC
VSS

Logic 1 Voltage, All Inputs VIH
Logic 0 Voltage, Alt Inputs VIL

DC CHARACTERISTICS

Min Typ Max

4.75 5.0 5.25
0 0 0

2.0 - 6.0

-0.5 - 0.8

Parameter Symbol
MCM2114 MCM21L14

Min Typ Max Min

Input Load Current (All Input Pins, Vin = 0 to 5.5 V) III - - 10 -

1/0 Leakage Current (S=2.4 V, VDO=O.4 V to VCC) IILOI - - 10 -

Power Supply Current (Vin=5.5 V, IDO=O mA, TA=25°C) ICCl - 80 95 -

Power Supply Current (Vin = 5.5 V, IDO = 0 mA, T A = O°C) ICC2 - - 100 -

Output Low Current VOL=O.4 V IOL 2.1 6.0 - 2.1
Output High Current VOH = 2.4 V IOH - -1.4 -1.0 -

NOTE: Duration not to exceed 30 seconds.

CAPACITANCE (f= 1 0 MHz T A = 25°C periodically sampled rather than 100% tested)

Characteristic Symbol

Input Capacitance (Vin = 0 V) Cin
I nputl Output Capacitance (VDO=O V) CliO

Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: C= l~t/~V.

AC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature unless otherwise noted.)

Typ Max

- 10

- 10

- 65

- 70

6.0 -

-1.4 -1.0

Max

5.0

5.0

Unit

V

V

V

Unit

p..A

p..A

mA

mA

mA

mA

Unit

pF

pF

Input Pulse Levels 0.8 Volt to 2.4 Volts Input and Output Timing Levels 1.5 Volts
Input Rise and Fall Times........................... 10 ns Output Load l TTL Gate and CL = 100 pF

READ (NOTE 1) WRITE (NOTE 2) CYCLES ,
MCM2114-20

Parameter Symbol MCM21 L 14-20
Min Max

Address Valid to Address Don't Care tAVAX 200 -

Address Valid to Output Valid tAVOV - 200

Chip Select Low to Data Valid tSLOV - 70

Chip Select Low to Output Don't Care tSLOX 20 -

Chip Select High to Output High Z tSHOZ - 60

Address Don't Care to Output High Z tAXOZ 50 -

Write Low to Write High tWLWH 120 -

Write High to Address Don't Care tWHAX 20 -

Write Low to Output High Z tWLOZ - 60

Data Valid to Write High tDVWH 120 -

Write High to Data Don't tWHDX 0 -

NOTES: 1. A Read occurs during the overlap of a low 'S' and a high W
2. A Write occurs during the overlap of a low S and a low W.

MCM2114-25 MCM2114-30 MCM2114-45
MCM21Ll4-25 MCM21L14-30 MCM21 L 14-45
Min Max Min Max Min Max

250 - 300 - 450 -

- 250 - 300 - 450

- 85 - 100 - 120

20 - 20 - 20 -

- 70 - 80 - 100

50 - 50 - 50 -

135 - 150 - 200 -
20 - 20 - 20 -

- 70 - 80 - 100

135 - 150 - 200 -

0 - 0 - 0 -

'--------® MOTOROLA Semiconductor Products Inc.

Figure 8-2. Typical Data for MCM2114 Static RAM (Continued)

8-5

Unit

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

MCM2114 • MCM21 L 14

READ CYCLE TIMING (W HELD HIGH)

~--------------tAVAX--------------~

14-----------tAVQV-----------~

Address

Q

WRITE CYCLE TIMING (NOTE 3)

1.4---------------tAVAX--------------~

Address

14----- 1WLWH -----_-I

tWLQZ

Q

D

~tDVWH tWHD~

3. If the S low transition occurs simultaneously with the W low transition, the output buffers remain in a high-impedance state.

Waveform
Symbol

~

PllZ1

~

=>-

WAVEFORMS

Input

MUST BE
VALlO

CHANGE
FROM H TO L

CHlINGE
FROM L TO H

DON·T CARE
ANY CHANGE
PERMITTED

Output

WILL BE
VALID

WILL CHANGE
FROM H TO L

WILL CHANGE
FROM L TO H

CHANGING
STATE

UNKNOWN

HIGH
IMPEDANCE

'--------® MOTOROLA Semiconductor Products Inc.

Figure 8-2. Typical nata for MCM2114 Static RAM (Continued)

8-6

MC6801 -
E~
RS~

R/W ~

AO/OO
37 3

36
~ -

A1/01
4

35
...... -

A2/02
7

A3/03
34 " S

A4/04
33 ~

13

A5/05
32

.......
14

A6/06
31 ~ 17

A7/07
30 "\l 1S

AS
29 ~

A9
2S

27 "" A10 "'\,

A11
26

00 25 "" I A12
-...J "'\, '" A13

24

11.14
23 ./it\..

A15 22 / -
.1L
I

/

/11

ENB 2

74LS373

O/C

¢'
GNO

Oata Bus (00-07)

AS-A15

~
-- -7/7

N~ \j< <
EXXX

~A10

,A11

AO

il

~

IECOO-EFFF -]

~AO 14
04 '\ /

6 A1 13
V 05

'" /
7 A2 12

V 06 '\ /
S A3 11

V 07 '\ /
3 A4

V
2 A5

/'

V MCM2114 i/
1 A6

V
17

V
A7

V 1024x4 V
16

AS Static RAM
/ V

15 A9
W V SEL V

IR/W

lOY LS

~

L Address Bus (AO-A15) ~

)
7· 7--7/ vvv/////

~I~ o' 'NIMIq-11D :;r :;r :;(:;(:;(:;r

Figure 8·3. Expanded Multiplexed Bus Interface With MCMll14

5
AO 00

6 A1 01

7 A2 02

S A3 03

3 A4

2 A5

1 A6
MCM2114

17 A7 1024 x 4
16

AS Static RAM

15
A9W SEL

10Y Vs

2

3

14
I-

'\ 13

12

11

~

a u1 1 1M

6 ~
74LS139

2-4
Oecoder to SEL2

5 SEL1

4 SELO

8.2 PORT 3 PARALLEL INTERFACES (MODE 7)

There are many devices which utilize an 8-bit parallel interface. The required number, and type of
control signals, varies depending upon the characteristics of the particular device. Some interfaces
are passive and require no control signals. Other interfaces require a "Data Ready" line which
signifies that valid data is present at the interface. Still others need an additional ' 'Data
Acknowledged" (or "Data Accepted") line which indicates that the device has accepted the last
data and the interface can be given new data. The lines which are used to facilitate the dialogue bet­
ween the control elements of two devices are called "handshake lines."

When operating in the Single Chip Mode, Port 3 functions as an 8-bit Input/Output port with two
dedicated handshake control lines. It should also be noted that this capability exists only in Modes 7
and 4; in other modes, Port 3 is used as an address and/or data bus. Port 3 provides up to eight in­
put or output lines as defined by its Data Direction Register. The two handshake lines, Input Strobe
3 (lS3) and Output Strobe 3 (OS3), provide the capability of implementing a simple synchronized in­
terface. The two control lines function identically regardless of whether individual port bits are
defined as inputs or outputs.

The Port 3 Control and Status Register provides state information and determines whether:
• input data presented to the Port 3 Data Register will be latched,
• OS3 will be generated by an MPU read or write to the Port 3 Data Register, and
• an IRQ 1 interrupt will be enabled in response to an IS3 negative edge.

The Port 3 Control and Status Register contains a single status bit, IS3 FLAG. Its function is to in­
dicate if an IS3 negative edge has been sensed. The bit can be polled or it can generate an IRQ1 inter­
rupt if its interrupt enable bit is set. The IS3 FLAG bit is cleared by an MPU read of the Port 3 Con­
trol and Status Register (with IS3 FLAG set) followed by a read or write to its Data Register.

The following two applications illustrate hardware and software techniques involved in implemen­
ting . a Port 3 interface in Single Chip Mode. The first example uses Port 3 to drive a line printer
while the second illustrates driving the port from a keyboard.

8.2.1 Line Printer Interface to Port 3

A line printer·is typical of many output devices which require both Data Ready and Data Accepted
signals. To illustrate the details involved, this section discusses a parallel interface to a Model 306
Centronics line printer which uses two control lines. While this interface does not utilize all of the
available features of the printer, it nevertheless illustrates a practical and realistic interface.

The interface, shownin Figure 8-4, provides eight data lines to the printer where the most significant
bit (DATA8) is tied toground. The printer, therefore, will receive 7-bit positive logic ASCII data
with no parity (bit 7 is always a logic zero).

8-8

MC6801 Centronics 306 Printer

IS3
39 10 - Acknowledge -

~ 30 32
Fault P37 --

P36
31 2_

1Y1
18 8 ..

Data 7 - 1A1 -
32 4_ 1A2 1Y2

16 7~
Data 6 P35 - --33 6_

1A3 1Y3
14 6_

Data 5
Port 3 P34 - 74LS244 -

34 8_ 12
5 _

P33 - 1A4 1Y4 - Data 4
35 11.~ 2A1

9 4_
Data 3 P32 2Y1 -

36 13 _
2A2 2Y2

7 3_
Data 2 P31 - -

P30
37 ·15 __

2Y3
5 2_

Data 1 - 2A3 -- 38 17 _ 3 1 _
OS3 - 2A4 2Y4 - Data Strobe

TIT 2G
9_

Data 8

~ 0

119
19 ..

* 1 -20._

* r:;
21 __

* 22 __ - * 23 __

* -24 _

* -25 _

* -26 __

* --
* Twisted Pair Return

27 ..

* 28 __

- *

Figure 8·4. Line Printer Interface Connection Diagram

The most significant data bit in the Port 3 Data Register is configured as an input line and is used to
determine the printer status. The motivation for mixing this single input with seven outputs is the
result of an arbitrary decision to utilize only Port 3 resources. This interface does not, however,
utilize all of the capabilities of the Model 306 line printer. The double character size cannot be used
because DA T A8 is tied to ground. The interface also does not provide more definitive fault condi­
tions which are available from the printer.

A signal definition for the interface is shown in Figure 8-5. Assume that initialization has been com­
pleted and the interface is idle. Data is transferred across the interface as follows:

1. a byte is written to the Port 3 Data Register,
2. a strobe (i.e., pulse) from the MCU to the printer (Data Ready) is generated as a consequence

of the MPU write to the Data Register,
3. after a data dependent delay, the printer responds with an Acknowledge pulse (or, Data Ac­

cepted), sets the Port 3 IS3 FLAG and indicates that the printer can accept more data, and
4. after the MCU clears IS3 FLAG, the interface is again idle.

The Output Strobe Select (OSS) bit in the Port 3 Control and Status Register is typically set during
initialization if Port 3 is configured as an output data port. An output strobe (OS3) is then generated
by an MPU write to the Port 3 Data Register.

8-9

Parallel Data

Data Strobe

Acknowledge

LJ ,
I
I : ~ __ ~r--
1IIIIr't-----Delay-----...... I~---AcK_..:

Figure 8-5. Line Printer Interface Signals

The output current drive of Port 3 is not sufficient to directly drive the printer. An octal buffer
(74LS244) is utilized for the seven output data lines and Output Strobe 3 (OS3) as shown in Figure
8-5 and provides the necessary drive capability.

The most significant data line of Port 3 (P37) is not used for data output. It is configured as an input
and provides a printer status condition. A fault is indicated by checking bit 7 of the Port 3 Data
Register which is normally high and goes low to indicate a printer fault. A printer fault can denote
several conditions including "paper empty" and/or an "operator deselect."

A software driver routine for the interface is shown in Figure 8-6 and contains two entry points: one
for initialization (PINZ) and another to write a byte to the printer (POUTCR) from the A ac­
cumulator. In the initialization portion of the routine, all but bit 7 of the Port 3 Data Register are
configured as outputs while bit 7 remains an input. Output strobe Select (OSS) is set which con­
figures OS3 for a strobe-on-write.

The POUTCR entry point is used to write a 7-bit ASCII character from the A accumulator where
the value of bit 7 is of no consequence. To detect a printer fault, the calling routine can check the
N-bit upon return, using either the BMI or BPL instruction. Polling is used in this example for il­
lustrative purposes.

8.2.2 Keyboard Interface to Port 3

A keyboard with parallel output can be easily interfaced to Port 3 in Single Chip Mode. Port 3 func­
tions as an Input/Output port in Single Chip Mode where each bit can be configured as either an in­
put or an output. There are also two handshake control lines, IS3 and OS3,associated with it which
can be used to simplify interface design. Output Strobe 3 (OS3) is controlled by the Output Strobe
Select (OSS) bit andean be generated by either a read or write to the Port 3 Data Register. When
configured as inputs, it is generally preferable for the strobe to be. configured for a strobe-on-read
(OSS=O) of the Port 3 Data Register.

A typical keyboard provides parallel output data in ASCII format with a single control line which
indicates when the data is valid. The keyboard output keeps the data latched for a given time period
which is typically quite long with respect to MCU cycle times.

8-10

PAGE 001 POUTCH .SA:1 POUTCH *** PRINTER DRIVER ***

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024

00026

NAM POUTCH
OPT ZOl,LLEN=80
TTL *** PRINTER DRIVER ***

* * P 0 U T C H -- PORT 3 PRINTER DRIVER

*
* * ROUTINE HAS TWO ENTRY POINTS:
*
* JSR PINZ NO ARGS; USES NO REGISTERS
*
* LDAA CHAR PUT CHAR (7-BIT ASCII) IN ACCA
* JSR POUTCH WRITE CHARACTER
* BPL PFAULT PRINTER FAULT
* ALL OK
*
* WHERE CHAR = CHARACTER TO BE WRITTEN
*
* IF BYTE WRITTEN, ROUTINE RETURNS WITH
* N-BIT SET; OTHERWISE N-BIT IS CLEARED
* AND ACCA CONTAINS CHAR.

*

* E QUA T E S

00028
00029
00030
00031

OOOF A P3CSR EQU
0006 A P3DATA EQU
0004 A P3DDR EQU
0010 A .OSS EQU

$OF PORT 3 CONTROL & STATUS REGISTER
$06 PORT 3 DATA REGISTER
$04 PORT 3 DATA DIRECTION REGISTER
%00010000 OUTPUT STROBE SELECT BIT

00033 * PIN Z -- INITIALIZE PORT 3

00035A F980
00036AF980 36
00037A F981 86 7F
00038A F983 97 04
00039A F985 86 10
00040A F987 97 OF
00041A F989 32
00042A F98A 39

PINZ
A
A
A
A

ORG
PSHA
LDAA
STAA
LDAA
STAA
PULA
RTS

$F980

1I$7F
P3DDR
1I.0ss
P3CSR

00044 * P 0 U T C H

00046A F98B 7D 0006 A Pt)UTCH TST P3DATA
00047A F98E 2A 09 F999 BPL POUT02

00049A F990 7D OOOF A TST P3CSR
00050A F993 97 06 A STAA P3DATA
00051A F995 96 OF A POUT01 LDAA P3CSR
00052A F997 2A FC F995 BPL POUT01
00053A F999 39 POUT02 RTS
00054 END
TOTAL ERRORS 00000--00000

SAVE ACCA
BITS 0-6 OUTPUTS; 7 INPUT
CONFIGURE DDR
ONLY OUTPUT STROBE SELECT SET
CONFIGURE PORT 3 CNTRL & STATUS
RESTORE ACCA
ALL DONE

PRINT A CHARACTER FROM ACCA

CHECK FOR FAULT
A FAULT!!

CLEAR FLAG ON WRITE
WRITE DATA & GENERATE STROBE
WAIT ON ACK
NOT YET
ALL DONE

Figure 8-6. Line Printer Interface Driver: PINZ, POUTeR

8-11

This discussion illustrates interfacing a specific keyboard to Port 3: a Cherry Model B70-0SAB. It is
positive logic decoded and produces low outputs in the inactive state. When one of its keys is
depressed, data is presented to the output lines in 7-bit ASCII format. After a data setup time of 2S
microseconds, a 100 microsecond positive pulse is provided by the keyboard and indicates "Data
Ready," as shown in Figure 8-7. Data is valid on both edges of Strobe and the negative edge is used
in this example to latch the input data. The keyboard requires no reply and, therefore, does not use
the Output Strobe (OS3) signal.

Parallel Data

~25 ~+-100 ~-1
Strobe I L-I ___________ _

Figure 8·7. Keyboard Interface Signals

The Strobe output of the keyboard is connected to the Input Strobe 3 (IS3) as shown in Figure 8-8.
During program initialization, the Port 3 LATCH ENABLE bit is set and the negative edge of the
Strobe signal is used to both latch the keyboard data and set IS3 FLAG.

The IS3 FLAG bit is cleared by an MPU read of the Port 3 Control and Status Register followed by
a read of its Data Register. This also makes the latch transparent again, but it should be noted that
merely reading the Port 3 Data Register is sufficient to make the latch transparent.

A software driver routine for the interface is shown in Figure 8-9. The driver contains an entry point
for intialization (KEYINZ) and for reading data from the port (KEYIN). Polling is used for il­
lustrative purposes.

MC6801

IS3
_ 39

-
-

P30
_ 37

--
P31

_ 36

-_ 35
P32 -

_34
P33 -Port 3 :- 33
P34

P35
.- 32

- 31
P36 --_ 30
P37 -

'---

Cherry Pro Keyboard
(B70-05AB)

9 Strobe

1
Bit 1

2
Bit 2

3
Bit 3

4
Bit 4

5
Bit 5

6
Bit 6

7
Bit 7

8
Bit8

11, M_
+5V DC -13, P _
Ground

~ -
J1

Figure 8·8. Keyboard Interface Connection Diaaram

8-12

PAGE 001 KEYIN

00001
00002
00003

00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021

00023

.SA:1 KEYIN *** KEYBOARD DRIVER ***

NAM
OPT
TTL

KEYIN
ZO 1, LLEN=80
*** KEYBOARD DRIVER ***

**
* * KEY I N -- KEYBOARD DRIVER ROUTINE
*
*
*
*
*

THE ROUTINE SERVES AS A KEYBOARD
DRIVER FOR A PORT 3 INTERFACE TO
CHERRY KEYBOARD MODEL B70-05AB.

* THE DRIVER HAS TWO ENTRY POINTS:

*
*
*
*
*
*

JSR KEYINZ

JSR KEYIN

NO ARGUMENTS; USES NO REGS

RETURNS CHAR IN ACCA
USES ONLY ACCA.

*

* E QUA T E S

00025
00026
00027

OOOF A P3CSR EQU
0006 A P3DATA EQU
0004 A P3DDR EQU

$OF
$06
$04

PORT 3 CONTROL & STATUS REGISTER
PORT 3 DATA REGISTER
PORT 3 DATA DIRECTION REGISTER

00029A F980

00031
00032
00033

00035A F980 36
00036A F981 7F 0004
00037A F984 86 08
00038A F986 97 OF
00039A F988 32
00040A F989 39

00042
00043
00044

ORG $F980

*
*
*

KEY I N Z -- INITIALIZE PORT 3

KEYINZ
A
A
A

PSHA
CLR
LDAA
STAA
PULA
RTS

SAVE ACCA
P3DDR ALL INPUTS (DON'T ASSUME RESET)
#%00001000 SET ONLY LATCH ENABLE
P3CSR SET UP CONTROL & STATUS REG

RESTORE ACCA
RETURN

*
*
*

KEY I N -- INPUT A CHARACTER TO ACCA

00046A F98A 96 OF A KEYIN LDAA P3CSR
00047A F98C 2A FC F98A BPL KEYIN

WAIT ON INPUT STROBE
NOT YET

00049A F98E 96 06
00050A F990 39

00052

A

TOTAL ERRORS 00000--00000

LDAA P3DATA GET CHAR, CLEAR FLAG AND LATCH
RTS ALL DONE

END

Figure 8-9. Keyboard Interface Drive: KEYINZ, KEYIN

8-13

In the initialization routine (KEYINZ), Port 3 is configured as an 8-bit input data port by clearing its
Data Direction Register. The latching function is enabled by setting the Latch Enable bit in the Port
3 Control and Status Register.

In the data input routine (KEY IN) , the subroutine waits until IS3 FLAG is set in the Port 3 Control
and Status Register. Upon detecting the flag, the routine reads the Port 3 Data Register into the A
accumulator and returns to the caller.

8.3 PRIORITIZED INTERRUPT VECTORS (MODES 1, 2, 3)

During processing of an IRQl interrupt, it is usually necessary at some point to ascertain which
device of possibly several candidates is requesting service. While a routine which performs this task
is usually trivial to implement (a "who-done-it" routine), the time to execute it adds directly to the
interrupt response time. In some cases, this delay can result in an intolerably long response time.

It should be noted that the MC6801 IRQ2 Programmable Timer interrupts typically do not require a
"who-done-it" routine because each interrupt is provided with a unique vector. The need for a
"who-done-it" routine for IRQl interrupts can be deleted by adding external circuitry to provide
for hardware prioritized interrupt vectors.

Before beginning a discussion of the methodology involved in implementing such a scheme, it is im­
portant to realize that: (a) this hardware is not necessary in many applications which can accomplish
the task using software without any ill effects, and (b) the technique is applicable only to systems
operating in the expanded multiplexed modes with external interrupt vectors (Le., modes 1, 2, or 3).

8.3.1 General Considerations

The MC6801 uses memory mapped Input/Output and requires no specific Input/Output instruc­
tions. The communications technique embodied in this concept requires that the MPU put the "ad­
dress" of the peripheral onto the Address Bus and the peripheral device (by listening to and
decoding this "address") connects itself to the Data Bus when triggered by an appropriate "ad­
dress." Note that a peripheral can be triggered by any number of "addresses" with this scheme if
addresses are partially decoded.

The peripheral is then directed to "talk" or "listen" to the MPU as dictated by the level of the MPU
R/W (Read/Write) line. It should also be noted that while any number of peripheral devices can
"listen" to the MPU, only one can be permitted to "talk" at any given time.

While these points can appear to be irrelevent to the topic at hand, they are quite germane to the
general concept behind the priority encoder circuitry. During an IRQ 1 interrupt sequence, the MPU
will generate the two addresses $FFF8 and $FFF9 on the address bus on two consecutive MPU
E-cycles. The MPU will expect to receive a double byte address (high byte first) on the Data Bus as a
response. The two byte address vector, supplied by the data bus, points to the location of the inter­
rupt service routine. This vector can be supplied by any device capable of loading the Data Bus at
the proper time with the appropriate two bytes.

8-14

The task of the priority encoder vector hardware, therefore, is to use the state of external IRQ 1 in­
terrupts as an input and, triggered by addresses $FFF8 and $FFF9 on the Address Bus, furnish two
bytes of the appropriate vector as a response to the Data Bus. The appropriate vector points to the
location of the service routine corresponding to the highest prioritized IRQ 1 interrupt at the current
time.

8.3.2 8-Level Prioritizing Scheme

This section describes a scheme depicted in Figure 8-10 which provides eight IRQ 1 hardware
prioritized interrupt vectors. The method is discussed as two tasks which accomplish (1) generating
the address of the appropriate vector and (2) providing the vector to the Data Bus.

8.3.2.1 GENERATING THE ADDRESS OF THE VECTOR. The IRQ1 interrupt request line
should be connected to the D-type flip-flop, as shown in Figure 8-10, with respect to priority: INT7
is the highest and INTO is the lowest priority interrupt. The flip-flop normally changes state on each
negative edge of E (Enable). The effect of this operation is to periodically latch external interrupts
which permits the priority encoder to perform its mapping function using stable inputs. The output
of the priority encoder is a 3-bit code which, after inverting, can be used as address lines A1-A3 of
the interrupt vector as shown in Figure 8-11. This process is repeated on each negative edge of E but
has no effect on system operation until the addresses $FFF8 or $FFF9 appear on the Address Bus.
Normally, this would occur only during the vector fetch cycles of the MPU IRQ 1 interrupt se­
quence. A timing diagram illustrating operation of the circuit is shown in Figure 8-12.

8.3.2.2 PROVIDING THE INTERRUPT VECTOR. The IRQ 1 interrupt sequence begins after the
interrupt mask (I-bit) has been cleared and the level of any INT input to the priority encoder is low.
If this occurs, the OS output of the priority encoder is also forced low. Because this output is con­
nected to the MPU IRQ1 pin, an interrupt sequence will begin upon completion of the current in­
struction.

When address $FFF8 or $FFF9 is decoded on the Address Bus, the flip-flop is inhibited from chang­
ing state until after the vector fetch phase has been completed. The reason for this inhibit is to
preclude a higher priority interrupt from changing vectors between consecutive fetches of the two
bytes. This is accomplished by the OR-gate prior to the CLK input of the flip-flop as shown in
Figure 8-10.

The output of the IRQ 1 address decoder is also connected to the SEL input of a data selector which
presents one of two sets of four inputs to the outputs. The set of inputs gated to the selector output
depends upon the level of the SEL input. In the absence of an IRQ1 interrupt, the SEL input is low
and the MC6801 normal Address Bus lines are passed through the data selector. When the address
decoder detects $FFF8 or $FFF9, however, the SEL input is high and the data selector connects the
priority encoder to the output. Having generated the address of the vector, all that remains is to
select the device containing the interrupt vector. In this example, the decoder output is also used as a
chip select for an MCM68708 EPROM which provides the two bytes of the interrupt vector.

8-15

Interrupt Vector Address
INT7 FFEE:FFEF
INT6 FFEC:FFED
INT5 FFEA:FFEB
INT4 FFE8:FFE9
INT3 FFE6:FFE7
INT2 FFE4:FFE5
INT1 FFE2:FFE3

L._
1NTO _ L ..

FFEO:FFE1

Figure 8-10. 8-Level Priority Encoder

Interrupt
INT INT INT INT INT INT INT INT A4' A3' A2' Al' IRQl Vector

7 6 5 4 3 2 1 0
7 (Highest) 0 X X X X X X X 0 1 1 1 0 FFEE:FFEF

6 1 0 X X X X X X 0 1 1 0 0 FFEC:FFED

5 1 1 0 X X X X X 0 1 0 1 0 FFEA:FFEB

4 1 1 1 0 X X X X 0 1 0 0 0 FFE8:FFE9

3 1 1 1 1 0 X X X 0 0 1 1 0 FFE6:FFE7

2 1 1 1 1 1 0 X X 0 0 1 0 0 FFE4:FFE5

1 1 1 1 1 1 1 0 X 0 0 0 1 0 FFE2:FFE3

o (Lowest) 1 1 1 1 1 1 1 0 0 0 0 0 0 FFEO:FFE1

None 1 1 1 1 1 1 1 1 0 0 0 0 1 FFEO:FFE1

Figure 8·11. Priority Encoder Interrupt Vectors

8.3.3 Final Remarks

Two concluding pertinent remarks are necessary before leaving this topic. First, it should be noted
that the priority encoder circuitry will respond whenever $FFF8 or $FFF9 appears on the Address
Bus. Normally, this will occur only during the interrupt sequence for an IRQ1 interrupt. It can also
occur, however, during MPU reads or writes from location $FFF8 or $FFF9.

As an example, suppose that all eight external IRQl interrupt request lines are tied high. Further
suppose that the LILbug monitor is used to read location $FFF8. What location will be read during
this access?

The priority encoder hardware will be activated when $FFF8 appears on the Address Bus. When all
external interrupts are high, the priority encoder will cause address $FFEO to be accessed. This same
operation, however, will access a different location if any external interrupt (except INTO) is pulled
low.

Finally, it should be noted that the last stage of logic prior to the EPROM in Figure 8-10 is an AND­
gate which provides for selection of the device by an alternate decoding. The significance of this
feature is that the interrupt vectors have two "addresses." One address is the consequence of ad­
dress decoding which results in activation of the SEL input and the other address is $FFF8 or $FFF9
mapped through the priority encoder. With this method of addressing, one can read the vectors us­
ing the address which generates SEL instead of $FFF8 and $FFF9. Furthermore, this dual address­
ing provides a method for using the entire EPROM. It is immaterial what address generates the SEL
signal providing it does not conflict with addresses of other devices in the system.

8-17

00
•
00

(FFFS) (FFF9)

E

ClK

SEl

INTX~~~ __________________________ ~ ______ ~

IRQ1 l~ ______________________________________ ___

~ Instruction I Vector I
Completed; .. 0lIl(Fetch .. 411(Interrupt Service Routine

Interrupt
Sequence

Begun

Figure 8-12. Priority Encoder Timing

8.4 MEMORY AND ACIA INTERFACE (MODE 5)

The MCV Expanded Non-Multiplexed Mode provides a modest amount of external memory space
while retaining significant on-chip resources. The expand~d noli-multiplexed bus is compatible with
the M6800 family and this example illustrates typical techniques required to interface devices to it.
The MC6801 non-multiplexed bus consists of the following MCV signals:

• an 8-bit bidirectional data bus (Port 3),
• up to eight address lines (Port 4),

• E (Enable),
• RlW (Read/Write), and
• lOS (Input/Output Select).

The expanded non-multiplexed bus is a synchronous bus clocked by E (Enable). lOS is active (low)
whenever an address from $0100 to $01 FF appears on the internal address bus and indicates when an
address in the 256-byte external memory space is being accessed. The eight address lines and lOS
become valid during the interval when E is low and remain valid while E is high. The data bus
becomes valid during the interval when E is high. The Read/Write line controls the direction of data
bus transfers and is high during an MPV read. Timing for the bus is shown in Figure 8-13 and the
symbols are quantitatively defined in the MC6801 Data Sheet.

An MCM6810 128-byte static RAM and an MC6850 Asynchronous Interface Adapter (ACIA) can
be considered typical of devices which can be interfaced to the expanded non-multiplexed bus. In
this example, they provide an additional 128 bytes of RAM and another full duplex serial port. The
static RAM requires seven of the eight available address lines in order to access the entire RAM
while the ACIA requires only a single address line to access its two internal locations. Address lines
and lOS are also required to derive chip select signals.

Enable
{El

AO-A7
R/W, 105

MPU Write
00-07

MPU Read
00-07

~-------tcyc------~

~--PWEH----~ ~--------------­
tEF

Address Valid

Data
Valid

tos R --t4--..!

~--tACCN---~ ,---"'
2.0 V

0.8 V

Figure 8-13. Expanded Non-Multiplexed Bus Timing (Repeated)

8-19

A configuration which interfaces these two devices to the MCU expanded non-multiplexed bus is il­
lustrated in Figure 8-14. The RAM responds to 128 addresses from $100 to $17F. Address line, A7,
is used to select either the RAM (Low) or the ACIA (high). The RAM is enabled to the data bus only
if all of the following conditions are true:

• E (Enable) is high,
• lOS (Input/Output Select) is low, and

• A7 is low.

The address is only partially decoded to generate a chip select for the ACIA and address line, A 7, is
used for this purpose. It will respond, therefore, to all addresses from $180 to $1FF. The ACIA is
enabled to the bus when

• E (Enable) is high,
• lOS (Input/Output Select) is low, and

• A7 is high.

The ACIA transmitter and receiver require a bit rate clock and, in this example, the SCI provides
this clock. Setting the CC1:CCO field in the SCI Rate and Mode Control Register to 10 provides the
SCI internal bit rate clock as an output at P22. The frequency is controlled by the SS1:SS0 field and
the MCU input clock. The bit rate clock can be further divided (by 1, 16, or 64), by the ACIA and is
controlled by the CRO and CR1 bits in the ACIA Control Register.

All eight of the available address lines were used in this example. If fewer than eight are required,
however, they can be used as additional input lines. Suppose, in this example, the RAM is replaced
by a second ACIA. Two address lines and lOS would then be sufficient to decode the four locations
and the remaining six Port 4 lines could be used as additional data input lines.

From Reset, the Port 4 Data Direction Register is cleared and the port is configured as an 8-bit
parallel input data port. Any or all of its lines can be configured as address outputs (AO-A7) by set­
ting the appropriate bits in the Port 4 Data Direction Register where bit 0 controls AO. No location
in the external memory space can be accessed, however, until the Port 4 Data Direction Register has
been configured.

NOTE
While 256 bytes of external read/write memory space are available in the Expanded Non­
Multiplexed Mode, they cannot be accessed until the Port 4 Data Direction Register is
configured by setting the desired bits.

8.4.1 Obtaining 256 Additional Bytes of Read-Only Memory

An additional 256 bytes of external read-only memory space can be obtained in the Expanded Non­
Multiplexed mode by taking advantage of certain aspects of the MC6801 architecture. When the
MCU is reading any address other than internal memory space, the Port 3 bus arbitrator directs the
MPU to read from its external Data Bus. If the address being referenced is in the range of $100 to
$1FF, Input/Output Select (lOS) becomes active to indicate an access in this range.

8-20

00
I

N -

Port 3

Port 4

MC6801

MCM6810

CS4

+5;1j13 CS3
14 _

15 CS5 IN 10 I~
DO D1 D2 D3 D4 D5 D6 D7 AO A 1 A2 A3 M A5 A6 ~ ~ CS a:
12 13141516 17 18 19 1231221211201191181171121101,,116 30 D07

D7 '\
D6 31 D06

D5 32 D05: as I CD I ~ I ~ I ~ I ~ I ~ I ~
D4 33 D04" 0) 0) 0) 0) 0) 0) ';.J 0
D3 34 D03/ ~

D2 35 D02/
~3Jv~~~~

r--
<{ <{ <{ <{ <{ <{ <{ <{

- /

Dl 36 D01/

DO 37 DOO

L-- 40
E

TRS 39 J..

R/W 38 T J..

.--- 29 AO T i

AO "
A1 28 A1

,'\
A2 27 A2

26 A3" I A
~ / ~

25 M/ "', IA61 A7

M 10 I :lN~(")~,,," ';llD~CO r--24 A5 -' co CD co co co co co co
M / 0 000 0 0 0 0

A6123 A6

L-A7 > A';
• +5 V

22 121 120 119 118 117 116 115

DO D1 D2 D3 D4 D5 D6 D7

TX ClK

+~10 CS1
23 5C5

24 CTS

11 18 12 16
C/) ° ro ro
ex: ~ 8 8

MC6850

x x
ex: f-

14 19 113

E E I~
ex:

12 V -12 V RS232
MC1488 r--

1

r+-f-~
I~ I

3

~6

~:
20

MCl489

6 4
2

f ~27k
27 k t---J

-'2V

R

Figure 8-14. Memory and ACIA Interface in Expanded Non-Multiplexed Mode

Transmit Data

Data Set Read

Clear to Send

Carrier Detect

Data Terminal Ready

Receive Data

Protective Ground

Signal Ground

If the MPU read is accessing a location not within $100 to $IFF and also not an internal address, the
MPU reads from its external Data Bus although this is not detectable external to the MCU. Figure
8-15 illustrates a method whereby the system designer can take advantage of this architecture in
order to indirectly address an additional 256 bytes of Read-Only memory space. The address space
for this area is (1) not in the address range $100 to $IFF and (2) not an internal address. Note that
$200 to $2FF, for example, fulfills these requirements.

In Figure 8-15, lOS is used as an additional address line although in other applications it could be
used as a chip select qualifier. The PROM is selected when both (1) E (Enable) is high, and (2)
Read/Write is high. The overall effect of this scheme is that the PROM will be selected on every bus
cycle other than an MPU write cycle. When the MPU addresses its internal memory space, however,
it will ignore its external data bus. If referencing other than internal memory space, it will read from
the PROM.

AO DO
6

2 A1 01
7

3 A2 02 8

To MC6801 4 74S472 03
9 To MC6801

Address Bus A3 512x8 5 11 Data Bus
(Port 4) A4 PROM 04 (Port 3)

16
A5 05

12

17
06

13
A6

18
A7 07

14

19
A8

E 15
CS

R/W

Figure 8·15. PROM Interface in Mode 5

8.5 PERIOD MEASUREMENT (ALL MODES)

The M6801 Programmable Timer can be used to measure the elapsed time between two edges of an
input signal having TTL levels and a pulse width of at least two MPU E-cycles. There is no absolute
limitation on the maximum time interval which can be measured but the minimum period is depen­
dent upon the software response time in servicing the Input Capture Register. Specifically, the
minimum period is dependent upon being able to read the Input Capture Register before it is over­
written by the next sequential capture.

The programming techniques involved in the measurement procedure depend upon whether the
maximum interval can exceed the range of the free-running counter or 65,536 MPU E-cycles. If the
elapsed time is of shorter duration, then the Counter Register overflow flag (TOF) need not be con­
sidered. If the input waveform is periodic, then the minimum period which can be reliably measured
is 12 MPU E-cycles. If, however, the interval can exceed 65,535 MPU E-cycles, then the TOF bit
must be used and the minimum period which can be measured is on the order of 30 MPU E-cycles.

8-22

8.5.1 Measuring Periods Less than 65,536 Cycles

Period measurement of intervals not exceeding the 16-bit range of the free-running counter can be
obtained with a minimum of software effort. This discussion assumes reader familiarity with the
following MC6801 subsystems:

1. IEOG bit in the Timer Control and Status Register (TCSR),
2. ICF flag bit in the TCSR, and
3. Input Capture Register of the Programmable Timer.

Each time the input capture edge detector senses a transition defined by the IEOG bit, the contents
of the free-running counter are transferred to the Input Capture Register and the ICF bit is set.
These two events occur regardless of whether the ICF bit has been cleared between successive transi­
tions. The Input Capture Register, therefore, always contains the value of the free-running counter
at the time of the last transition.

To measure the interval between two successive input captures, the initial Counter Register value
(TO) must be obtained and then the next successive capture must be serviced before being overwrit­
ten by any following edge. If the direction of desired transition is not the same between the two suc­
cessive edges then the IEOG bit must also be toggled between captures.

The general algorithm for a measurement between like transitions which do not exceed 65,535 MPU
E-cycles is as follows:

1. Read the Timer Control and Status Register followed by the Input Capture Register. This ob­
tains the initial counter value (TO) and also clears the Input Capture Flag (ICF).

2. When ICF is set for the next transition, read the Input Capture Register for the second counter
value (Tl).

3. Subtract the first capture value (TO) from the second capture value (Tl). The resultant 16-bit
unsigned value (T 1-TO) is the interval in E-cycles.

The minimum interval which can be measured using the input capture function is dependent upon
the timing associated with a loop which polls the Input Capture Flag (ICF) and, when set, im­
mediately loads the Input Capture Register. This interval is 12 MPU E-cycles, as shown in Figure
8-16 where the instruction sequence is shown across the top of the figure. The figure illustrates the
worst case timing incurred by the polling loop and subsequent MPU read of the Input Capture
Register. If waveforms with shorter intervals are presented to the program, the results will indicate
an integer multiple of the actual period due to more than one input capture occurring prior to ser­
vice completion.

While the period measurement routine can be interrupt-driven, the minimum period will be in excess
of 12 MPU E-cycles due to the time taken to complete the interrupt sequence (see Chapter 5). It is
left to the reader to determine this minimum period (Le., the worst case response time) as it depends
upon the exact method of implementation.

8-23

1~""f----------12 MPU E-CYCleS------------l.~;
ICF I

I
Input Capture Could
Occur Here But Is
Inhibited for One M PU
E-Cycle to Prevent
Interference With
MPU Read Instruction

_-1

Figure 8-16. Minimum Period Measurement Using MC6801 Timer

8.5.2 Measuring Periods Exceeding 65,535 Cycles

i
ICF

If the interval between transitions can exceed the 16-bit range of the free-running counter, then the
overflow flag (TOP) must be taken into account in order to determine the period. In order to
understand this procedure, the reader must be familiar with:

1. Timer Control and Status Register (TCSR),
2. IEDG bit in the TCSR,
3. ICF flag bit in the TCSR,
4. Input Capture Register, and
5. TOF flag bit in the TCSR.

The general equation used to obtain the time interval is:
T=N*65,536+(TI-TO)

where
T = time between input captures in MPU E-cycles,
N = number of times the overflow flag is set between input captures,
Tl = value obtained from the second input capture, and
TO = value obtained from the first input capture.

It is important to note that by maintaining an overflow counter in the most significant byte(s) of an
n-byte value (where n exceeds 2) one effectively performs the multiplication: N*65,536.

The resultant period for this computation will typically exceed a double byte value. The following
algorithm arbitrarily assumes a 24-bit period but is valid with larger values by simply extending the
basic concept. The following algorithm is presented in its general form. However, there are two
special cases which must be dealt with, and three assumptions which permit treatment of these two
special cases. Both of these topics will be discussed after presenting the following general algorithm.

1. Allocate a 3-byte location for the final result. The most significant byte serves as the overflow
counter and the remaining two bytes are used first as temporary storage for TO and finally as
the least two significant bytes of the result.

8-24

2. Clear the Input Capture (ICF) and Timer Overflow (TOP) flags.
3. Save the first input capture (TO) in the two low order bytes of the result area (temporary stor­

age).
4. Increment the software overflow counter each time TOF is set between the first and second

capture.
5. Subtract the first capture (TO) from the second capture (Tl) and overwrite the temporary area

with the result.
6. If the borrow bit is set, decrement the overflow counter. The overflow counter concatenated

with the two byte temporary value is the 24-bit result in MPU E-cycles.

Problems with the above general algorithm result when the input capture occurs within the vicinity
of Counter Register rollover. "Vicinity" conditions exist when both the ICF and TOF flag bits are
found set when servicing the Timer Control and Status Register. For this condition, the problem is
to determine whether or not the overflow should be included in the total overflow count. This condi­
tion can exist during capture of either TO or Tl and leads to a pair of special cases.

The following three assumptions permit handling of these two special cases:
1. TOF is cleared before servicing the first input capture,
2. TOF is serviced while the Counter Register is between $0000 and $7FFF or, equivalently,

within 32,768 MPU E-cycles after TOF is set, and
3. the input capture is serviced before a Counter Register overflow if both are pending.

The two special cases are illustrated in Figure 8-17 where input captures for TO and Tl are depicted
which occur in the vicinity of Counter Register rollover. The arc depicts a segment of a closed cir­
cular unsigned integer number line with a range from $0000 to $FFFF in a clockwise direction. The
symbol, TOF, represents the integer $FFFF. In both examples, reading the TCSR reveals that both
the ICF and TOF flags are set and it is the task of the software to resolve whether or not to incre­
ment the software overflow counter. The most significant bit of the value in the Input Capture
register can be used to resolve this difficulty if one complies with the three assumptions indicated
above.

Figure 8-17(a) depicts two possible input captures of TO in the vicinity of Counter Register rollover.
If bit 15 of the captured value is a "I" (case 2), then the capture took place before the Counter
Register rollover and the overflow should be counted in the total. If the most significant bit is a "0"
(case 1), then the rollover occurred before the capture and the overflow should not be counted.

Figure 8-17(b) depicts two possible input captures of Tl in the vicinity of Counter Register rollover.
A procedure analogous to the scheme illustrated above can be employed except the opposite condi­
tions indicate whether or not to include the Counter Register rollover. If bit 15 of the captured value
is a "0" (case 1), then the rollover occured before the capture and the overflow should be included
in the total count. If bit 15 of the captured value is a "1' , (case 2), then the capture took place first,
followed shortly by Counter Register rollover and the rollover should not be counted in this condi­
tion.

The PER24 and TST AT subroutines of Figure 8-18 implement an interval measurement procedure
using the considerations discussed in this section. The PER24 routine will return an interval from 30
to 16,777,215 MPU E-cycles. This routine, in turn, calls a driver routine, TSTAT which services the
Input Capture register and overflow counter. Both routines are non-reentrant and use a 3-byte loca­
tion called "NUM" to store the result.

8-25

Case

2

Case

2

Input
Capture
Bit 15

o

Input
Capture
Bit 15

o

Action

lI'ncre:e~~ecount
(a) Both ICF and TOF set during service of

capture for TO.

ICF

Action

Illncre~e:~ecount

(b) Both ICF and TOF set during service of
capture for T1.

Figure 8-17. Special Cases During Period Measurement

8.S.3 Period Measurement Sample Programs

+

ICF

Two complete sample programs are presented in this section which utilize the routines described in
the previous two sections. The first program, TIM24, uses the PER24 and TST AT routines to ob­
tain a period from 30 to 16,777,215 MPU E-cycles (24-bits). The results are then formatted and
displayed on a teleprinter using LILbug monitor output routines.

The program is presented in Figure 8-18 and can be exercised after connecting a signal generator
(square wave, 0-5 V) to the MC6801 Input Capture input (pin 8). The program continuously
measures and displays the period of the input waveform in an easily readable format on the
teleprinter. The formatting routines, SHOW24, BUFFER, and FLUSH, transform the resultant
24-bit period into an 8-digit decimal number representing the period in units of MPU E-cycles.

An example of output from the program is shown in Figure 8-19 and indicates a period of 1000
(decimal) MPU E-cycles. The program is not functionally affected by the speed of the teleprinter.

The second program, TIM16, utilizes the same formatting routines as TIM24 and is shown in Figure
8-20. Only the main line and PER16 are shown. The formatting routines were presented in Figure
8-18. The TIM 16 program can be exercised in the same manner as TIM24 except that the maximum
period can not exceed 65,535 MPU E-cycles. The format of the output from the program is identical
to that presented in Figure 8-19.

8-26

PAGE 001 TIM24 .SA:1 TIM24 **** M6801 PERIOD MEASUREMENT ROUTINE *

00001
00002
00003

00005
00006
00007
00008
00009
00010
00011
00012

00014
00015
00016

00018 0008
00019 OOOD
00020 0009

00022 F818
00023 F80C

00025
00026
00027

00029A 1000
00030A 1000 001D
00031A 101D 0001
00032A 101E 0003
00033 101F

00035A 1021 0002
00036A 1023 OOOB
00037A 102E 0001

00039
00040
00041

00043A 1100

00045A 1100 8E 101D
00046A 1103 CC 2020
00047A 1106 FD 102B
00048A 1109 86 04
00049A 110B B7 102D
00050A 110E B6 115B
00051A 1111 B7 102E
00052A 1114 BD F818

NAM TIM24
TTL **** M6801 PERIOD MEASUREMENT ROUTINE ****
OPT LLEN=80,ZOl

*
* TIM 2 4 -- A PROGRAM TO MEASURE THE PERIOD OF AN
* INPUT WAVEFORM. THE INPUT CAPTURE
* REGISTER IS USED TO MEASURE THE PERIOD
* FROM 30 TO 16,777,215 CYCLES (24 BITS).

*

*
*EQUATES

*
A TCSR EQU 8

$D
9

TIMER CONTROL & STATUS REGISTER
INPUT CAPTURE REGISTER A INCAP

A TIMER

A PCRLF
A PDATA1

*

EQU
EQU

EQU
EQU

$F818
$F80C

FREE RUNNING COUNTER REGISTER

LILBUG CR & LF
LILBUG PRINT STRING NO/CR/LF

*RAM STORAGE C ELL S
*

ORG
A RMB
A STACK RMB
ANUM RMB
A TO EQU

A SHWPTR RMB
A SHWBUF ID-IB
A SHWWKT RMB

*
* M A I N
*

ORG

A START LDS
A LDD
A STD
A LDAA
A STAA
A LDAA
A STAA
A JSR

$1000
29
1
3
NUM+1

2
11
1

LIN E

$1100

PUT STACK HERE
24-BIT RESULT GOES HERE
USE LOWER TWO BYTES FOR TO

OUTPUT BUFFER POINTER
OUTPUT BUFFER
NUMS / LINE COUNTER

BEG INS HER E

#STACK INZ STACK POINTER
#$2020 INZ OUTPUT BUFFER
SHWBUF+8
#4 E-O-T
SHWBUF+I0
SHWKT INZ WORKING COUNTER
SHWWKT
PCRLF ISSUE CR & LF

00054A 1117 BD 111F A AGAIN JSR PER24 GO GET THE PERIOD
00055A lIlA BD 1174 A JSR
00056A 111D 20 F8 1117 BRA

SHOW24 NOW PRINT THE PERIOD
AGAIN

Figure 8-18. Period Measurement Sample Program: TIM14

8-27

PAGE 002 TIM24 .SA:1 TIM24 **** M6801 PERIOD MEASUREMENT ROUTINE ****

00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082

* * PER24 -- ROUTINE TO GET THE PERIOD OF A WAVEFORM USING
* THE INPUT CAPTURE FEATURE OF THE M6801 TIMER.

* * CALLING ARGUMENTS -- NONE

* * RETURNS -- A 24-BIT VALUE IN LOCATION "NUM" DEFINED AS:
*
*
*

NUM RMB 3 PERIOD & OVERFLOW COUNTER

* ASSUMPTIONS --

*
*
*
*
*
*
*
*
*
*
*
*

THE OVERFLOW FLAG WILL BE SERVICED WI THIN
32,768 CYCLES AFTER THE FLAG IS ASSERTED
(WHILE THE TIMER VALUE IS POSITIVE)

THE OVERFLOW FLAG WILL BE SERVICED BEFORE
THE FIRST INPUT CAPTURE IS SERVICED.

IF THE OVERFLAG FLAG AND INPUT CAPTURE FLAGS
ARE ASSERTED SIMULTANEOUSLY, THE INPUT CAPTURE
WILL BE SERVICED FIRST.

00084A 111F DC 08
00085A 1121 96 OD

A PER24 LDD TCSR CLEAR OUT TOF AND ICF
CLEAR ICF A LDAA INCAP

00087

00089A ll23 8D 24 1149
00090A 1125 7F 101E A
00091A 1128 FF 101F A
00092A 112B 2B 02 112F
00093A 112D 96 09 A

00095

00097A 112F 8D 18 ll49
00098A 1131 3C
00099A 1132 2B 07 l13B
OOlOOA 1134 85 20 A
OOlOlA 1136 27 03 113B
00102A 1138 7C 101E A
00103A 113B 32
00104A 113C 33
00105A l13D B3 101F A
00106A 1140 FD 101F A
00107A 1143 24 03 1148
00108A 1145 7A 101E A
00109A 1148 39

* GET 1ST EDGE (TO)

BSR
CLR
STX
BMI
LDAA

TSTAT
NUM
TO
PER002
TIMER

* NOW GET 2ND EDGE (T1)

PER002 BSR TSTAT
PSHX
BMI PER004
BITA 11$20
BEQ PER004
INC NUM

PER004 PULA
PULB
SUBD TO
STD NUM+l
BCC PER006
DEC NUM

PER006 RTS

STATUS TIMER & WAIT
CLEAR THE OVERFLOW COUNTER
SAVE
IT'S OK
SIGN IS +, CLEAR TOF

WAIT FOR 2ND CAPTURE
SAVE IT
WAS T 1 MINUS?
CHECK FOR OVERFLOW
IT'S OK
ONE MORE UPDATE
PULL OFF HIGH BYTE
PULL OFF LOW BYTE
COMPUTE PERIOD
LOWER TWO OK NOW
CHECK BORROW BIT
ALL 24-BITSOK NOW

Figure 8·18. Period Measurement Sample Program: TIM24 (Continued)

8-28

PAGE 003 TIM24

00111
00112
00113
00114
00115
00116
00117
00118
00119
00120
00121
00122
00123
00124
00125

00127A 1149
00128A 114B
00129A 114D
00130A 114F

00132A 1151

96 08
2B OB
85 20
27 F8

96 09

.SA:1 TIM24 **** M6801 PERIOD MEASUREMENT ROUTINE ****

*
* TSTAT -- ROUTINE TO STATUS THE M6801 TIMER

* * CALLING ARGUMENTS -- NONE

* * RETURNS -- VALUE OF INPUT CAPTURE REGISTER IN X AND
* A-ACCUMULATOR CONTAINS LAST TIMER STATUS
*
* THE ROUTINE SERVICES THE OVERFLOW FLAG (TOF) AND USES
* A 3-BYTE MEMORY AREA DEFINED AS
*
*
*

NUM RMB 3

A TSTAT LDAA TCSR WAIT ON FLAGS
1158 BMI TSTAT1 THAT'S IT

A BITA 11$20 MAYBE JUST OVERFLOW
1149 BEQ TSTAT NO, NOTHING

A LDAA TIMER CLEAR TIMER OVERFLOW FLAG
00133A 1153 7C 101E A INC NUM BUMP COUNTER
00134A 1156 20 F1 1149 BRA TSTAT DO IT ALL AGAIN

00136A 1158 DE OD A TSTAT1 LDX INCAP RETURN CAPTURE VALUE IN X
00137A lISA 39 RTS SPLIT BACK TO USER

Figure 8-18. Period Measurement Sample Program: TIM24 (Continued)

8-29

PAGE 004 TIM24 .SA:1 TIM24 **** M6801 PERIOD MEASUREMENT ROUTINE ****

00139
00140
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
00153

00155A 115B

00157A 115C
00158A 115F
00159A 1162
00160A 1165
00161A 1168
00162A 116B
00163A 116E
00164A 1171

00166A 1174 CE
00167A 1177 FF
00168A 117A CE

00170A 117D 4F
00171A 117E 4C
00172! 117F F6

07

98
OF
01
00
00
00
00
00

1023
1021
115C

1020
00173A 1182 EO 02
00174A 1184 F7 1020
00175A 1187 F6 101F
00176A 118A E2 01
00177A 118C F7 101F
00178A 118F F6 101E
00179A 1192 E2 00
00180A 1194 F7 101E

*
* SHOW24 -- ROUTINE TO DISPLAY 24-BITS IN DECIMAL

* * CALLING ARGUMENTS -- NONE

* * THE ROUTINE USES A 3-BYTE STORAGE AREA DEFINED AS
*
*
*

NUM RMB 3 24-BIT NUMBER TO PRINT

* ROUTINE FORMATS AN 8-DIGIT DECIMAL VALUE FOLLOWED
* BY TWO SPACES. USES LILBUG'S OUTPUT ROUTINES
* TO PRINT THE VALUE.

* ***

A SHWKT FCB 7 NUMBERS PER LINE

A SHW10 FCB $98,$96,$80 =10000000 DEC
A FCB $OF,$42,$40 = 1000000 DEC
A FCB $01,.$86, $AO = 100000 DEC
A FCB $00,$27,$10 = 10000 DEC
A FCB $00,$03,$E8 = 1000 DEC
A FCB $00,$00,$64 = 100 DEC
A FCB $OO,$OO,$OA = 10 DEC
A FCB $00,$00,$01 = 1 DEC

A SHOW24 LDX IlsHWBUF INZ POINTER
A STX SHWPTR
A LDX IIsHW10 TABLE OF CONSTANTS

SHOW02 CLRA CLEAR THE COUNTER
SHOW04 INCA EFFECTIVELY A DIVIDE

A LDAB NUM+2 SUBTRACT CONSTANT
A SUBB 2,X
A STAB NUM+2 SAVE RESULT
A LDAB NUM+1
A SBCB 1,X
A STAB NUM+1
A LDAB NUM
A SBCB X
A STAB NUM

00181A 1197 24 E5 117E BCC SHOW04 NO OVERFLOW

00183 * FORMAT DECIMAL VALUE

00185A 1199 F6 1020 A LDAB NUM+2 RESTORE REMAINDER
00186A 119C EB 02 A ADDB 2,X
00187A 119E F7 1020 A STAB NUM+2
00188A 11A1 F6 101F A LDAB NUM+1
00189A 11A4 E9 01 A ADCB 1,X
00190A 11A6 F7 101F A STAB NUM+1
00191A 11A9 F6 101E A LDAB NUM
00192A 11AC E9 00 A ADCB X
00193A 11AE F7 101E A STAB NUM
00194A 11B1 8B 2F A ADDA 11$2F CONVERT TO ASCII
00195A 11B3 8D 22 UD7 BSR BUFFER NOW WRITE IT TO THE BUFFER

Figure 8·18. Period Measurement Sample Program: TIM24 (Continued)

8-30

PAGE 005 TIM24 .SA:I TIM24 **** M680l PERIOD MEASUREMENT ROUTINE ****
00197A llB5 08
00198A llB6 08
00199A llB7 08
00200A IlB8 8C 1171 A
0020lA llBB 26 CO l17D

00203A llBD B6 1020 A
00204A llCO 8B 30 A
00205A llC2 BD llD7 A
00206A llCS 8D lC IlE3

INX
INX
INX
CPX
BNE

LDAA
ADDA
JSR
BSR

LOOK AT NEXT VALUE
#SHWl0+2l MAYBE THAT'S ALL
SHOW02 NOT YET

NUM+2
#$30
BUFFER
FLUSH

GET l'S DIGIT
CONVERT TO ASCII
WRITE LAST ONE TO BUFFER
NOW FLUSH THE BUFFER

00208 * MAYBE ISSUE ANOTHER CR/LF

002l0A llC7 7A 102E A
002llA llCA 27 01 llCD
002l2A llCC 39

DEC
BEQ
RTS

002l4A llCD B6 ll5B A SHOW06 LDAA
002l5A lIDO B7 102E A STAA
002l6A llD3 BD F8l8 A JSR
002l7A llD6 39 RTS

SHWWKT HOW MANY?
SHOW06 TIME FOR ANOTHER CRLF

AND RETURN

SHWKT
SHWWKT
PCRLF

RE-INZ NUMKT

ISSUE CR/LF

Figure 8-18. Period Measurement Sample Program: TIM24 (Continued)

8-31

PAGE 006 TIM24 .SA:I TIM24 **** M680l PERIOD MEASUREMENT ROUTINE ****

00219
00220
00221
00222
00223
00224
00225
00226
00227
00228

*
* BUFFER -- ROUTINE TO BUFFER 8 DIGITS BEFORE PRINTING

* * CALL ING ARGUMENTS -- NONE
*
* ROUTINE USES AN II-BYTE AREA LABELED AS SHWBUF AND A
* 2-BYTE POINTER LABELED AS SHWPTR

*

00230A llD7 3C BUFFER PSHX SAVE X-REGISTER
GET POINTER 0023lA llD8 FE 1021 A LDX SHWPTR

00232A llDB A7 00 A STAA X PUT IT HERE
00233A llDD 08 INX BUMP POINTER
00234A IlDE FF 1021 A STX SHWPTR SAVE POINTER

RESTORE X-REGISTER 00235A llEl 38 PULX
00236A llE2 39 RTS

00238
00239
00240
00241
00242
00243
00244
00245
00246
00247

00249A
00250A

00252A
00253A
00254A
00255A
00256A
00257A
00258A

00260A
0026lA

llE3 CE 1023
llE6 86 20

llE8 E6 00
IlEA Cl 30

* * FLUSH - STRIP LEADING ZEROES AND PRINT

* * CALLING ARGUMENTS -- NONE

* * ROUTINE EXPECTS 3-BYTE ASCII DECIMAL VALUE STARTING
* AT "SHWBUF"

*

A FLUSH LDX IISHWBUF START HERE
A LDAA 11$20 A HAS A BLANK

A FLSH02 LDAB X IS IT A ZERO?
A CMPB II' 0

llEC 26 08 llF6 BNE FLSH04
llEE A7 00 A STAA X STASH A BLANK
lIFO 08 INX NEXT ONE
llFl 8C 102A A CPX IlsHWBUF+ 7 WE DONE?
llF4 26 F2 llE8 BNE FLSH02

IlF6 'CE 1023 A FLSH04 LDX IlsHWBUF
llF9 7E F80C A JMP PDATAI (JSR & RTS)

00263 1100 A END START
TOTAL ERRORS 00000--00000

Figure 8-18. Period Measurement Sample Program: TIM24 (Continued)

8-32

1000 1000 1000 1000 1000 1000 1000
1000 1000 1000 1000 1000 1000 1000
1000 1000 1000 1000 1000 1000 1000
1000 1000 1000 1000 1000 1000 1000
1000 1000 1000 1000 1000 1000 1000
1000 1000 1000 1000 1000 1000 1000
1000 1000 1000 1000 1000 1000 1000
1000 1000 1000 1000 1000 1000 1000
1000 1000 1000 1000 1000 1000 1000
1000 1000 1000 1000 1000 1000 1000
1000 1000 1000 1000 1000 1000 1000
1000 1000 1000 1000 1000 1000 1000
1000 1000 1000 1000 1000 1000 1000
1000 1000 1000 1000 1000 1000 1000
1000 1000 1000 1000 1000 1000 1000

Figure 8-19. Example of TIM24 and TIM16 Output

8.6 SCI PARALLEL INTERFACES (ALL MODES)

To derive the advantages of a particular MC6801 configuration, it may be necessary to decrease the·
number of required MCU Input/Output lines. If the SCI is not required by the application then
perhaps some parallel data could be converted to serial format and interfaced with the SCI.

The two interfaces presented in this application illustrate techniques for converting 8-bit parallel
data to serial format and interfacing it with the SCI. The first example represents details for im­
plementing an 8-bit parallel-to-serial input interface whereas the second example discusses an 8-bit
serial-to-parallel output interface. Both interfaces utilize the SCI output bit rate clock and NRZ for­
mat which are obtained by setting the CC1 :CCO field of the Rate and Mode Control Register to 10.
The bit rate is controlled by the SSl :SSO field of the Rate and Control Register and the MCU input
frequency.

8.6.1 SCI ParaDel-to-Serial Input Interface

A keyboard with a parallel output is a typical device which can be interfaced with the SCI. General­
ly, its output consists of 8-bit parallel data and a Strobe to indicate when its output is valid. The in­
terface must then capture the data by a specified length of time.

Two keyboard characteristics make this type of interface very attractive. First, the data rate is very
slow compared to the bit rates achievable with the SCI. Finally, the required control signals are
minimal: the keyboard merely uses its Strobe output to announce when it has valid data, holds it for
a specified period, and needs no reply. The main timing restriction is that the keyboard repeat func­
tion must be adjusted in order not to generate data faster than the 10 bit times required by the inter­
face to transmit a byte to the SCI.

Design considerations for a parallel-to-serial interface to the SCI include the following:

• both a Start bit and a Stop bit are required by the SCI and must be provided by the interface,
• the output of the shift register must be a logic high (mark) whenever the line is idle,
• data transfers through the interface must be synchronized with the SCI bit rate clock, and
• another MCU output line may be required if the device requires a reply from the interface such

as Not Busy or Data Acknowledge signals. These signals are not readily available fom the
simple interface described in this example.

8-33

PAGE 001 TIM16 .SA: 1 TIM16 **** M6801 PERIOD MEASUREMENT ROUTINE *

00001
00002
00003

00005
00006
00007
00008
00009
00010
00011
00012
00013

00015
00016
00017

00019 0008
00020 OOOD

00022 F818
00023 F80C

00025
00026
00027

00029A 1000
00030A 1000 001D
00031A 101D 0001
00032A 101E 0003
00033 101F

00035A 1021 0002
00036A 1023 OOOB
00037A 102E 0001

00039
00040
00041

00043A 1100

00045A 1100 8E 101D
00046A 1103 CC 2020
00047A 1106 FD 102B
00048A 1109 86 04
00049A 110B B7 102D
00050A 110E B6 1135
00051A 1111 B7 102E
00052A 1114 BD F818

NAM TIM16
TTL **** M6801 PERIOD MEASUREMENT ROU~INE ****
OPT LLEN=80,ZOl

*
* TIM 1 6 -- A PROGRAM TO ~mASURE THE PERIOD OF AN
* INPUT WAVEFORM. THE INPUT CAPTURE
* REGISTER IS USED TO MEASURE A PERIOD
* FROM 12 TO 65,535 CYCLES. THE OVERFLOW
* FLAG IS NOT USED IN THIS ROUTINE.

*

*
* E QUA T E S

*
A TCSR EQU $0008 TIMER CONTROL & STATUS REGISTER
A INCAP EQU $OOOD INPUT CAPTURE REGISTER

A PCRLF EQU $F818 LILBUG C/R AND L/F
A PDATA1 EQU $F80C LILBUG PRINT STRING NO/CR/LF

*
*RAM STORAGE C ELL S
*

ORG
A RMB
A STACK RMB
ANUM RMB
A TO EQU

A SHWPTR RMB
A SHWBUF RMB
A SHWWKT RMB

*
* M A I N
*

ORG

A START LDS
A LDD
A STD
A LDAA
A STAA
A LDAA
A STAA
A JSR

$1000
29 30 BYTES OF STACK
1
3 24-BIT RESULT GOES HERE
NUM+1 USE LOWER TWO BYTES FOR TO

2 OUTPUT BUFFER POINTER
11 OUTPUT BUFFER
1 NID1S / LINE COUNTER

LIN E BEG INS HER E

$1100

II STACK
11$2020 INZ OUTPUT BUFFER
SHWBUF+8
114 E-O-T
SHWBUF+10
SHWKT INZ WORKING COUNTER
SHWWKT
PCRLF ISSUE CR & LF

00054A 1117 7F 101E A AGAIN CLR NUM CLEAR OUT HIGH BYTE
00055A lIlA 8D 05 1121 BSR
00056A 111C BD 114E A JSR
00057A 111F 20 F6 1117 BRA

PER16 GO GET THE PERIOD
SHOW24 NOW PRINT ITT
AGAIN

Figure 8·20. Period Measurement Sample Program: TIM16

8-34

PAGE 002 TIM16

00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074

00076

00078A 1121 96 08
00079A 1123 DE OD

00081

00083A 1125 96 08

.SA:1 TIM16 **** M6801 PERIOD MEASUREMENT ROUTINE ****

* * PER16 -- ROUTINE TO GET THE PERIOD OF A WAVEFORM USING
* THE INPUT CAPTURE FEATURE OF THE M6801 TIMER.

* * CALLING ARGUMENTS -- NONE

* * RETURNS -- A 16-BIT VALUE IN LOCATION NUM+1:NUM+2

*
*
*

NUM RMB 3

* ASSUMPTIONS -- PERIOD WILL NOT EXCEED 65,535 CYCLES
* AND SERVICE TIME WILL NOT EXCEED THE
* PERIOD.
*

* GET THE LAST EDGE (TO) AND CLEAR ICF

A PER16 LDAA
A LDX

TCSR
INCAP

CLEAR OUT THE FLAG
GET THE LAST VALUE

* NOW WAIT ON THE 2ND EDGE (T1)

A PER001 LDAA TCSR WAIT ON 112
00084A 1127 2A FC 1125 BPL PER001 NOT YET

00086A 1129 DC OD A LDD IN CAP GET THE VALUE
00087A 112B FF 101F A STX TO STASH FIRST VALUE
00088A 112E B3 101F A SUBD TO
00089A 1131 FD 101F A STD NUM+1 ALL DONE
00090A 1134 39 RTS RETURN TO CALLER

Figure 8·20. Period Measurement Sample Program: TIM16 (Continued)

8-35

A schematic diagram for a parallel-to-serial interface is presented in Figure 8-21. Key elements in the
interface include three D-type flip-flops (Ul, U2, and U4) and a parallel-load shift register (U3). The
three flip-flops generate the Start and Stop bit in addition to providing synchronization with the SCI
bit rate clock. The shift register is used to latch the parallel output from the keyboard and to convert
it to SCI compatible serial format.

Data transfer is initiated by a positive edge of the Strobe signal. After synchronizing with the bit rate
clock using D-type flip-flops, Ul and U2, the Start bit is transmitted (by clearing U4), and data is
latched into the parallel-load shift register, U3. Data is clocked through the shift register on the
positive edge (at mid-bit time) of the SCI bit rate clock until all eight data bits have been transmit­
ted. As data is clocked out of the shift register, it is filled with 1 'so This provides the Stop bit and
"marks" the line until the next byte is strobed into the interface.

8.6.2 SCI Serial-to-Parallel Output Interface

. Some parallel output devices, such as displays, are candidates for interfacing with the SCI. The in­
terface must convert the SCI serial format to parallel and, if necessary, provide a Strobe to indicate
Data Ready. With respect to this type of interface, it is also beneficial if the output device cannot be
overrun by data, which alleviates the interface from having to provide a Data Accepted signal. This
signal is not difficult to generate but requires another MCU input line.

This discussion presents details for implementing an output serial-to-parallel interface which is il­
lustrated in Figure 8-22. Key elements in the interface include two D-type flip-flops, U3 and U4, an
8-bit parallel output shift register, Ul, and an octal D-type flip-flop, U2. The Rate and Mode Con­
trol Register must be configured at the desired rate and the CCl:CCO field set to 10.

The RESET line is used to clear the shift register and force the Strobe line high. Pullup resistors on
the output of P22 and P24 ensure that the lines remain high until software configures the SCI.

The quiescent state of the interface is a high for P24 and the Strobe, and all zeroes in the shift
register. Note that the serial output is inverted before entering the shift register. This inversion is due
to the shift register capability of being cleared (but not set) which provides a means to reinitialize the
interface after each byte is received.

Data transfer begins when a Start bit appears at the output of P24. It is inverted to a "1" , shifted
through UI, and appears at the input of U3 at the 8th mid-bit time. Note that data is clocked
through the shift register by the positive edge of the bit rate clock (mid-bit time). On the ninth mid­
bit time, the start bit is clocked into flip-flop, U3, and all eight bits of data are contained in the shift
register. The Start bit is used to enable octal latch, U2, and on the next negative edge of the SCI bit
rate clock (one-half bit time later), the output of shift register is captured by octal latch U2. A
one bit time wide negative-going strobe is generated at the output of flip-flop U4 during the tenth
bit time where either edge can be used as a Data Ready signal. The Strobe is also used to clear the
shift register (MR is low) and the interface is again ready for data.

The interface can accept data at the maximum SCI rate. The bit rate should be chosen carefully,
however, because the interface does not provide a Data Accepted line. Data must be captured from
the output latch, U2, during the next ten bit times or it can be overwritten by the following byte.

8-36

00
I

eM
-.J

Strobe

"1" Keyboard Data

/MSB -- - 1\ "1"

74lS74 I I 74lS74

MC6801

11
D Q D Q D Q PRE W PRE h ~ ABC t--------I .. ~I P23

U1 U2 SERIAL IN 74lS165 U3 U4

ClK ClK ClK INH ClK ClK
ClR ClR 1\ S/L ClR

74lS00
74lS04

74lS00

\ I \ A I
V

Synchronize Keyboard Strobe

V V
Parallel-In
Serial-Out

Figure 8-21. SCI Parallel-to-Serial Interface

Start Bit

10
• IP22

Output Data (Inverted)
/\

/ \
STROBE MSB lSB

• • ,. • • • • • ~ L-J
-.f ~ 1 Bit Time

I I I I I I
00 01 02 03 04 05 06 07

~CLK 74lS377 U2 E

DO D1 D2 D3 D4 D5 D6 D7 74lS08

+5V /l-.-RESET
MC6801 "1"

74lS74
00
I 00 01 02 03 04 05 06 07 PRE w

00 P24 A D O~

74lS164 U1 MR U3

+5V '--I B ClK ClK '0
CLR

REsET "1"

-
74lS04

""
\ / \ -v-- / v

Serial-In Synchronize Output Strobe
Parallel-Out

Figure 8-22. SCI Serial-to-ParaUel Interface

8.7 DUAL PROCESSOR PARALLEL INTERFACES (MODE 7)

Applications which utilize distributed processing have become more common in recent years. As
technology continues to make this concept more attractive, it is probable that microcomputer net­
works will be used to a greater extent. Communication between processors involves both data
transfer and control elements. In such networks, this interaction can become troublesome to the
designer. The MC6801 offers several alternatives with which to implement a processor-processor in­
terface. The options available depend upon the MCU operating mode and include:

I. the Serial Communications Interface (SCI),
2. an MC6850 Asynchronous Communications Interface Adapter (ACIA),
3. an MC6820/1 Peripheral Interface Adapter (PIA),
4. an MC6846 ROM, 1/0, Timer Unit, or
5. the Port 3 8-bit parallel handshaking data port.

The SCI can be used in all operating modes and has the advantages of an inherent control scheme
and a noise and speed tolerant Bi-Phase format. All of the remaining alternatives, except when using
Port 3, require an external bus for interfacing to another part. The ACIA and SCI provide a serial
interface whereas all of the others employ a parallel interface.

The last alternative in the above list is available only in Single Chip mode and is the subject of this
discussion. It utilizes Port 3 to implement a parallel interface between two MC6801s. Two
associated control lines make this port better suited for this application than either Port 1 or Port 4.

Data width and manipulation of control signals must be considered when designing a dual-processor
parallel interface. Following a discussion of control mechanisms, three interface schemes are
presented where the last two differ only in the method of control:

I. 8-bit half duplex,
2. 4-bit full duplex using

(a) Input Capture function, and
(b) External Exclusive-OR function.

8.7.1 Interface Control Schemes

A major concern in the interface design is the avoidance of bus contention. The control system must
ensure that only one of any pair of interconnected Port 3 lines can be configured as an output at any
given time. Two Port 3 associated lines, IS3 and OS3, are adequate to control simple designs such as
simplex (unidirectional) interfaces. A pre-defined sequence, or protocol, involving bidirectional
transfers can also depend solely on IS3 and OS3 for control. In the latter case, the significance of
either strobe depends upon the protocol.

In more general designs, however, additional control lines must be provided from available unused
1/0 port lines. If an interrupt-capable interface is desired, it must use specific MCU pins in order to
generate the interrupt. Possible Candidates include IS3, IRQ1, NMI, and the Input Capture pins.

Furthermore, service for an interrupt-capable interface is simplified if each line generates an in­
dividual interrupt. If several input request lines can generate the same interrupt, a readable status bit
is typically required for identification of the requestor.

8-39

An interrupt-driven interface has the advantage of allowing the MPU to perform other tasks while
interface service is not required. Polling, however, provides the maximum data transfer rate across
the interface.

Timing dependencies between two MCUs should be avoided. No software assumptions should be
made as to the time required for the other MCU to service the interface. An MPU with Port 3 con­
figured as outputs can be called a "talker" while its counterpart is configured as a "listener." An
output strobe from the "talker" indicates to the "listener" that its data is valid and the "talker"
must then wait for receipt of an acknowledgement from the "listener" before writing more data.

There are several schemes which can be used to reverse the direction of 8-bit transfers through a Port
3 parallel interface. One such method allows an MCU to be the "talker" until the other MCU re­
quests to talk whereupon it relinquishes control to the other MCU when convenient. This scheme is
well suited for applications where the dialogue typically alternates between the two MCUs. The
"talker" is necessarily the controller (or Master) of this type of interface because of having to avoid
bus contention. The "talker" must change its output lines to inputs before the new "talker" can
reconfigure its input lines to outputs. The 8-bit half duplex example illustrates an implementation of
these concepts.

In some applications, data transfer is predominately unidirectional and it may be undesirable for an
MCU to relinquish control for an extended period. In this case, the Master MCU can grant a Slave
permission to transmit a fixed number of bytes after which it must relinquish control of the inter­
face. An example of this interface scheme is not included in this section but it can be considered a
hybrid design of the other schemes which are discussed.

Dedicating four Port 3 lines as outputs and four as inputs resolves all bus contention problems and
saves time which would otherwise be spent reconfiguring the port. If the data is byte-oriented,
however ~ additional processing is required to divide and rejoin each byte before and after transfer.
This method of interface is well suited to those applications where both MCUs must converse at the
same time and it is also intolerable to wait for control of the interface. Two examples are included
which illustrate this 4-bit Full Duplex method.

Although there are numerous methods, the following discussion presents two different approaches
in designing a dual processor interface using Port 3. The second approach is presented with two
variations. Note that the maximum data transfer rate is very dependent upon the selection and use
of a particular method.

8.7.1 8-Bit Half Duplex Interface

Alternating control and direction of the interface between two MCUs can be used to implement an
8-bit half duplex Port 3 interface. Upon initialization~ one MCU is configured as a "talker" and the
other as a "listener." When the "listener" MCU desires to talk, it requests to become the "talker"
while continuing to accept data until the request is granted. The "talker" can write to Port 3 while
periodically checking for a request from the "listener." If a request is present and the "talker"
wishes to relinquish control of the interface, it reconfigures itself as a "listener" (i.e., as inputs) and
then grants the request. After detecting the grant, the "listener" MCU reconfigures itself to a
"talker" (i.e.~ outputs) and becomes the controller.

A typical configuration for this alternating controller scheme uses four interface control lines and is
depicted in Figure 8-23. The meaning attached to the Port 3 Output Strobe 3 (OS3) signal depends
upon the state of the two MCUs. Under various conditions, OS3 can indicate Data Ready, Data
Acknowledged, or Interface Reconfigured and is connected to the opposite MCU Input Strobe .

P37
... 30 30 "" P37 -.

P36
... 31 31 ~

P36 -. ,.

P35
..... 32 32~ P35 - --

P34
... 33 33 "" P34

P33
34 34~

P33
MC6801 - MC6801

P32
__ 35 35 ~

P32 ,

P31
~ 36 36"" P31 -.

P30
... 37 37 " P30 ,.

OS3
38 39

IS3 ,.

IS3
... 39 38

OS3

... 29 Request/ Grant 28
P40 P41

28 Request/ Grant 29 "" P41 P40

Figure 8-23. Half.Duplex Interface

A data port line in each MCU is configured as an output and is used for an interface Request/Grant
signal. The "talker" (or controller) must monitor the Request/Grant signal of the "listener." The
relationship of the MCU "talker-listener" status and the level of the Request/Grant line is shown in
Figure 8-24. Because both MCUs have identical configurations, both can use the same low-level
software.

State of MC6801 #1

Request/ Grant
Signal Output

State of MC6801 #2

Request/ Grant
Signal Output

Talker Listener

Listener Talker

Figure 8·24. Request/Grant Control Signals

Talker

Listener

Software routines which implement this scheme are shown in Figure 8-25 where it is assumed that
the calling routines utilize polling. The "no wait" feature in the IN3NW, OUT3NW, and CHKREQ
subroutines ensures that control returns promptly to the caller regardless of the outcome of the
operation and the carry bit can be tested to determine what action, if any, was taken. If the carry bit
is set, the transaction was successfully completed; otherwise, another attempt can be made.

8-41

PAGE 001 P3IO

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057

.SA:l P3IO *** HALF DUPLEX INTERFACE ROUTINES***

NAM P3IO
OPT ZOI,LLEN=80
TTL *** HALF DUPLEX INTERFACE ROUTINES***

*
* DUAL PROCESSOR PARALLEL HALF DUPLEX INTERFACE
* ROUTINES

* * TAKINZ -- INITIALIZE TALKER MCU TO TALKER STATE
* NO CALLING ARGUMENTS.

*
* LISINZ

*
*

INITIALIZE LISTENER MCU TO LISTENER
STATE. NO CALLING ARGUMENTS.

* OUT3NW -- OUTPUT BYTE IN ACCA TO PORT 3 DATA
* REGISTER IF LAST TRANSMISSION ACKNOW-
* LEDGED AND RETURN WITH C-BIT SET; ELSE
* RETURNS WITH C-BIT CLEAR. RESTORES
* ACCB.

*
*
*
*

NOTE: OUT3NW MAY BE ENTERED ONLY IF
MCU IS IN TALKER STATE.

* CHKREQ -- CHECK IF OTHER MCU IS REQUESTING TO
* TALK. IF NO REQUEST, IT RETURNS WITH
* THE C-BIT CLEAR; ELSE' IT SETS UP CON-
* TROL REGISTER AND PORT 3 FOR LISTENER
* STATE, STROBES OTHER MCU AND RETURNS
* WITH THE C-BIT SET. NO CALLING ARGU-
* MENTS. RESTORES ACCB.
*
*
*
*

NOTE: CHKREQ MAY BE ENTERED ONLY IF
MCU IS IN TALKER STATE.

* IN3NW --~ GET BYTE FROM PORT 3. IF A BYTE IS
* AVAILABLE,IN3NW RETURNS IT IN ACCA WITH
* THE C-BIT SET; OTHERWISE, THE C-BIT IS
* CLEAR. NO CALLING ARGUMENTS.
*
*
*
*

NOTE: IN3NW MAY BE ENTERED ONLY IF MCU
IS IN THE LISTENER STATE.

* REQ ----- RETURNS WITH MCU IN THE TALKER STATE.
* WHILE WAI TING FOR A GRANT, INPUT DATA
* FROM PORT 3 IS RECEIVED AND PROVIDED TO
* USER ROUTINE. NO CALLING ARGUMENTS.
* USES ACCA AND ACCB.
*
*
*
*
*
*
*

REQ CALLS USER SUBROUTINE IN BYTE WHICH
TAKES A BYTE FROM ACCA AND RETURNS.

NOTE: REQ MAY BE ENTERED ONLY IF MCU
IN LISTENER STATE.

*

Figure 8-15. Half Duplex Routines

8-42

PAGE 002 P3IO .SA:1 P3IO *** HALF DUPLEX INTERFACE ROUTINES***

00059
00060

* E QUA T E S

00061
00062
00063
00064
00065
00066

0005
0007
0004
0006
OOOF

A P4DDR EQU
A P4DATA EQU
A P3DDR EQU
A P3DATA EQU
A P3CNTL EQU

$05
$07
$04
$06
$OF

PORT 4 DATA DIRECTION REG
PORT 4 DATA REG
PORT 3 DATA DIRECTION REG
PORT 3 DATA REG
PORT 3 CONTROL & STATUS REG

00067 * TAKINZ -- INITIALIZE TALKER
00068
00069A F800
00070A F800 86 10
00071A F802 97 OF
00072A F804 86 FF
00073A F806 97 04
00074A F808 86 02
00075A y80A 97 07
00076A F80C 86 02
00077A F80E 97 05
00078A F810 39
00079
00080
00081
00082A F8l1 86 08
00083A F813 97 OF
00084A F815 4F
00085A F816 97 04
00086A F818 97 07
00087A F81A 86 02
00088A F81C 97 05
00089
00090A F81E 96 OF
00091A F820 96 06
00092A F822 39
00093

ORG
A TAKINZ LDAA
A STAA
A LDAA
A STAA
A LDAA
A STAA
A LDAA
A STAA

RTS

* Ll.,lNZ

A LISINZ LDAA
A STAA

CLRA
A STAA
A STAA
A LDAA
A STAA

* A LDAA
A LDAA

RTS

$F800
11$10
P3CNTL
II$FF
P3DDR
11$02
P4DATA
11$02
P4DDR

STROBE ON WRITE

PORT 3 OUTPUT

INTIALLY TALKER

BIT 0 HANDSHAKE FROM OTHER MCU
BIT 1 HANDSHAKE TO OTHER MCU

INITIALIZE LISTENER

11$08
P3CNTL

P3DDR
P4DATA
11$02
P4DDR

P3CNTL
P3DATA

STROBE ON READ, LATCH DATA

PORT 3 INPUT
INITIALLY LISTENER

BIT 0 HANDSHAKE FROM OTHER MCU
BIT 1 HANDSHAKE TO OTHER MCU
CLEAR ANY FALSE FLAG
STROBE TALKER MCU

00094
00095 * OUT3NW -- OUTPUT BYTE TO PORT 3

00096A F823 37
00097A F824 D6 OF
00098A F826 58

OUT3NW PSHB
A LDAB

ASLB
00099A F827 24
00100A F829 97
00101A F82B 33
00102A F82C 39
00103

02 F82B BCC
06 A STAA

OUT3EX PULB
RTS

P3CNTL

OUT3EX
P3DATA

IS3 FLAG TO BE EXAMINED

LAST TRANS NOT ACKNOWLEDGED YET
OUTPUT TO PORT 3

CARRY TO BE TESTED ON RETURN

00104
00105
00106

*
*

CHKREQ -- CHECK IF LISTENER MCU IS REQUESTING
TO TALK.

CHKREQ PSHB 00107A F82D 37
00108A F82E D6 07
00l09A F830 57

A LDAB
ASRB

00110A F831 24 11 F844
00111A F833 7F 0004 A
00112A F836 C6 08 A
00113A F838 D7 OF A
00114A F83A D6 OF A CHKR01

BCC
CLR
LDAB
STAB
LDAB
BPL
CLR

00115A F83C 2A FC F83A
00116A F83E 7F 0007 A

P4DATA

CHKREX
P3DDR
11$08
P3CNTL
P3CNTL
CHKR01
P4DATA

SAVE ACCB

NO REQUEST
PORT 3 INPUT

STROBE ON READ, LATCH

WAIT TIL LAST TRANS AKNOWLEDGED
GRANT REQUEST

Figure 8·25. Half Duplex Routines (Continued)

8-43

PAGE 003 P3IO .SA:1 P3IO *** HALF DUPLEX INTERFACE ROUTINES***

00117A F841 D6 06
00118A F843 OD
00119A F844 33
00120A F845 39
00121

A LDAB
SEC

CHKREX PULB
RTS

P3DATA STROBE NEW TALKER
MCU NOW IN LISTENER STATE
RESTORE ACCB

00122
00123 * IN3NW -- INPUT BYTE FROM PORT 3

00124A F846 96 OF
00125A F848 48

A IN3NW LDAA

00126A F849 24 02 F84D
00127A F84B 96 06 A
00128A F84D 39
00129

ASLA
BCC
LDAA

IN3EX RTS

P3CNTL

IN3EX
P3DATA

IS3 FLAG TO BE EXAMINED

NO INPUT YET
INPUT DATA & STROBE

00130
00131
00132

*
*

REQ -- REQUEST TO TALK AND RECONFIGURE WHEN RE­
QUEST IS GRANTED.

00133A F84E C6 02 A REQ
00134A F850 D7 07 A
00135A F852 D6 OF A REQ001
00136A F854 2A FC F852
00137A F856 D6 07 A
00138A F858 57
00139A F859 24 06 F861
00140A F85B 96 06 A
00141A F85D 8D OB F86A
00142A F85F 20 F1 F852
00143A F861 C6 FF A GRANTD
00144A F863 D7 04 A
00145A F865 C6 10 A
00146A F867 D7 OF A
00147A F869 39
00148

LDAB
STAB
LDAB
BPL
LDAB
ASRB
BCC
LDAA
BSR
BRA
LDAB
STAB
LDAB
STAB
RTS

11$02
P4DATA REQUEST TO BE TALKER
P3CNTL
REQ001 NO INPUT, NO REQ GRANT YET
P4DATA REQ/GRANT CONTROL WORD

GRANTD REQUEST WAS GRANTED
P3DATA INPUT DATA & STROBE TALKER
INBYTE DISPOSE OF INPUT
REQ001 STILL WAITING FOR GRANT
II$FF TO BECOME TALKER
P3DDR PORT 3 OUTPUT
11$10
P3CNTL STROBE ON WRITE

00149
00150
00151

*
*

INBYTE -- USER WRITTEN SUBROUTINE TO ACCEPT
BYTE FROM ACCA AND RETURN.

00152
00153A F86A 39
00154

F86A A INBYTE EQU
RTS
END

TOTAL ERRORS 00000--00000

* USER SUPPLIED SUBROUTINE

Figure 8·25. Half Duplex Routines (Continued)

8-44

The "talker" MCU can call the routines, OUT3NW, and CHKREQ while the "listener" MCU can
call IN3NW or REQ. A successful execution of OUT3NW causes data in the A accumulator to be
written to Port 3 and generates an OS3 (Data Ready) strobe. This latches data into the' 'listener"
and sets IS3 FLAG in the Port 3 Control and Status Register.

On the "listener" side of the interface, a successful call to IN3NW reads Port 3 and generates an
OS3 (Data Acknowledged) strobe. This sets the IS3 FLAG bit of the "talker." Unlike the routines
with the "no wait" feature, when a "listener" calls the REQ subroutine, it returns only upon receipt
of a grant to talk. A "listener" posts a request to talk by writing a "1" to its Request/Grant line.
While waiting for the grant, this subroutine continues to accept data from Port 3 and provides it to
an IN BYTE routine which disposes of it.

A grant is recognized by the "listener" upon receipt of a strobe when the Request/Grant line of the
"talker" changes to a low leve1. In response to the grant, the port is reconfigured to outputs, OS3 is
configured for a strobe-on-write (OSS = 1) and the "listener" becomes the "talker" (controller).

Subroutine, CHKREQ, can be used to detect the presence of a request from the' 'listener" and, if
present, relinquish control of the interface. This task is performed by first reconfiguring Port 3 as
inputs, configuring OS3 for a strobe-on-read (OSS = 0), and setting LATCH ENABLE. Note that
by the "listener" making use of the Port 3 input latch, it is possible for the' 'talker" to reconfigure
the port without having to wait for acknowledgement of the last transmitted byte. However, a Data
Acknowledge strobe from the "listener" must be received prior to issuing a grant signa1.

A strobe is also generated by the' 'talker" using the CHKREQ subroutine when a "listener" request
to talk is granted. This ensures that the new "talker" has an initial "Data Acknowledge" (IS3
FLAG is set) when it is ready to write. The OUT3NW routine will not write to the port until the
"listener" has acknowledged receipt of the previous byte. The "listener" provides this signal in the
IN3NW routine when reading the byte from the Port 3 Data Register.

Note that the "talker" can enter the CHKREQ subroutine regardless of whether the "listener" has
acknowledged receipt of the last byte sent. If the "listener" has issued a request to talk, however,
CHKREQ will wait until the last byte is acknowledged before granting the request.

When using these routines, precautions must be taken to ensure that the initial "talker" is out of
Reset before the "listener" side of the interface is initialized. This ensures that the initial strobe
from the "listener" sets the IS3 FLAG bit of the "talker." The "talker" cannot write data until
receipt of this strobe. The maximum data transfer rates using this interface scheme are shown in
Figure 8-26 which assumes the hardware configuration shown in Figure 8-23.

8.7.3 4-Bit Full Duplex Interface

If full duplex capability is a requirement, it can be implemented, at the expense of data transfer rate,
by configuring some Port 3 lines as outputs and the remainder as inputs. This discussion utilizes
four bits as outputs and four bits as inputs but other combinations can be used without modification
of the control scheme. One desirable objective in designing the interface is to allow both MPUs to
utilize identical controlling software which can be achieved by employing suitable symmetry. The
principal advantage in using this interface scheme is avoidance of the software overhead required to

8-45

Example for Port 3 Byte Transmit:

LOOP1 LDAA
LOOP2 LDAB

BPL
STAA
DEX
BNE

.DATA,X
P3CNTL
LOOP2
P3DATA

LOOP1

READ DATA FROM MEMORY
READ STATUS/CONTROL BYTE
WAIT FOR STROBE
OUTPUT DATA AND STROBE
DECREMENT BYTE COUNTER
LOOP UNTIL DONE

Execution time for fo = 1.0 MHz (1 E~cycle= 1 microsecond)
Maximum data rate = 52.6 k bytes/sec

Example for Port 3 Listener with No Request to Become a Talker:

LOOP LDAB P3CNTL FETCH STATUS/CONTROL BYTE
BPL LOOP WAIT FOR INPUT DATA
LDAA P3DATA READ INPUT DATA AND STROBE
STAA DATA,X STORE INPUT
DEX DECREMENT BYTE COUNTER
BNE LOOP LOOP UNTIL DONE

Execution time for f 0 = 1 .0 MHz (1 E-cycle = 1 microsecond)
Maximum data rate = 52.6 k bytes/sec

Port 3 Input While Requesting to Become a Talker:

LOOPR LDAB P3CNTL READ STATUS/CONTROL BYTE
BPL LOOPR WAIT FOR INPUT DATA STROBE
LDAB P4DATA READ REO/GRANT CONTROL
ASRB
BCC GRANTD REO IS GRANTED
LDAA P3DATA INPUT DATA AND STROBE
STAA DATA,X STORE INPUT IN MEMORY
DEX DECREMENT BYTE COUNT
BNE LOOPR LOOP UNTIL DONE

Execution time for f 0 = 1.0 MHz (1 E-cycle = 1 microsecond)
Maximum data rate = 37.0 k bytes/sec

Figure 8-26. Half Duplex Data Transfer Rate

reverse the data transfer direction. The OSS bit in the Port 3 Control and Status Register is set for an
OS3 strobe-on-write. With OS3 of each MPU connected to IS3 of the other, the IS3 FLAG bit can
be interpreted as a "Data Ready" software signal and is cleared by the input routine when it reads
the Port 3 Control and Status Register followed by its Data Register .

The remaining necessary ingredients for a two-way interface is a signal to acknowledge receipt of the
data. This signal must be generated by the input routine and be resettable by the output routine.

8.7.3.1 FULL DUPLEX WITH INPUT CAPTURE FUNCTION. One method suitable for con­
trolling a 4-bit full duplex interface is to use a data port output line and the edge detector of the in­
put capture function to control the data acknowledgement. From the viewpoint of the sender,
writing data to the Port 3 Data Register generates an OS3 strobe to indicate "Data Ready." The
state of the sender ICF (Input Capture Flag) indicates whether the last nibble has been received
(acknowledged). An interrupt can be generated upon acknowledgement from the receiver by setting
the EICI bit in the TCSR.

8 .. 46

From the viewpoint of the receiver, the IS3 FLAG bit indicates "Data Ready" when set. Reading
the data clears the bit and toggling a data port output line acknowledges receipt of the data. Note
that the IS3 IRQl ENABLE bit can be set to provide an interrupt as a response to the "Data
Ready" signal.

The following discussion considers the implementation of this type of interface and assumes reader
familiarity with the Input Capture function of the Programmable Timer and the Timer Control and
Status Register. A connection diagram for a full duplex interface, which uses the input capture func­
tion, is shown in Figure 8-27. An interrupt driven procedure for this interface is depicted in the
flowchart of Figure 8-28. Both MCUs must initialize Port 3 before either can write to the port. The
initialization sequence should:

• write $7F to the Port 3 Control and Status Register,
• set EICI in the TCSR, and
• configure the ACK bit as an output using any available data line.

After initialization is complete, interrupts are enabled by clearing the I-bit using the CLI instruction.
To initiate output, the second nibble to be transmitted is stored in a buffer specified by the user­
supplied subroutine which prepares the next output nibble. The first nibble is then written to the
Port 3 Data Register and an interrupt driven dialogue proceeds until the data is exhausted. Note that
the data to be transmitted must reside in the four least significant bits of the byte in the buffer.

P37
_ 30

34
P33

P36
_ 31 35

P32 --
P35

_ 32 36
P31 -

P34
_ 33 37

P30 --
MC6801 34 30 ..

MC6801
P33 - P37

P32
35 31 .. - P36

P31
36 32 .. - P35
37 33 ..

P30 P34

OS3
38 New Data 39 .. IS3

IS3
_ 39 New Data 38

OS3 ..
+5

P20
_ 8 L ACK

Any Unused Output

+5

Any Unused Output
ACK f 8 .. P20 -

RESET
_ 6

6 .. RESET -
u

Figure 8·27. Interface Using Input Capture Function

8-47

Input Routine

Read P3CNTL
Read Port 3 Input

ACK By Toggling
Handshake Bit

Twice

Subroutine to
Dispose of Input

Nibble

Output Routine

Read TSCR
Read Input Capture
Reg - High Byte

Get Next Output
Write Output

To Port 3

Subroutine to
Prepare Next
Output Nibble

Note: Software which implements this method is not included in this discussion.

Figure 8·28. Flowchart for Interface with Input Capture Function

The output procedure shown in Figure 8-28 is entered in response to an IRQ2/Input Capture inter­
rupt where the ACK signal (Data Acknowledged) from the other MCV produced this interrupt. In
order to clear this interrupt, the TC8R and Capture Flag (ICF) could simply be monitored if polling
is desired.

After clearing the interrupt, the output procedure reads the nibble to be transmitted from memory
and writes it to the Port 3 Data Register. This generates an 083 (Data Ready) strobe for the other
MCV. Before returning from the interrupt, the next nibble to be transmitted is obtained from the
output buffer and saved for the next interrupt. If there is.no more output data, the Input Capture
interrupt can be disabled to avoid an interrupt when the other MCV acknowledges receipt of the last
byte.

The input procedure is invoked after an IRQl interrupt generated by 183. The other MCV produces
this interrupt by writing to Port 3 which generates an 083 strobe. If other interrupt sources are also
tied to the IRQ 1 pin, then a "who-done-it" routine (see Chapter 5) must be employed to determine
which device is requesting input service. The 183 FLAG bit is set by an input strobe and can be used
to determine if Port 3 is requesting service.

8-48

The input procedure consists of clearing the IS3 interrupt by reading the Port 3 Control and Status
Register followed by reading its Data Register. Toggling the ACK line which is connected to P20
then triggers the input capture function of the other MCU. The procedure returns from the interrupt
after disposing of the input nibble by calling a user-supplied subroutine.

The IRQI and the Input Capture interrupts have individual prioritized interrupt vectors. When both
interrupts are pending, however, the IRQI interrupt is serviced first. It is possible that if an IS3
strobe occurs while processing a previous IS3 interrupt, lower priority interrupts will remain unser­
viced until all IS3 interrupts are serviced.

8.7.3.2 FULL DUPLEX WITH EXCLUSIVE·OR FUNCTION. If the Input Capture function is
not available, a few (3 or 4) unused port lines can be utilized to control a 4-bit full duplex interface.
This scheme uses an externalexclusive-ORgate to generate a Data Acknowledged (ACK) signal as
shown in Figure 8-29.

The ACK signal is generated using P12 and is cleared when the other MCU responds by toggling its
PIO output line~ Figure 8-29 indicates how PI3 can be used to locally mask an ACK interrupt.
Although not incorporated into this example, this masking feature can be useful to inhibit interrupts
when there is no more output data.

P37
__ 30 34 - P33

P36
__ 31 35

P32 -
P35 32 36

P31
- 33 37

P34 -- P30
MC6801 MC6801

34 30
P33 - P37

35 31.,
P32 - P36

36 32 --. P31 - P35

P30
37 33 ... P34

OS3
38 39 ...

IS3 -
IS3 -- 39 38 - OS3

16 Mask Mask 16
P13 P13

15 14
P12 .- P11

_ 14 _ 15
P11

13 :J P12

P10
13

~
P10

ACK
5

IRQ1 IRQ1

Figure 8-29. Interface Using Exclusive-OR Function

8-49

A low-level driver for this interface and its associated flow chart are depicted in Figures 8-30 and
8-31, respectively. To prevent writing to an MCU that has not been initialized, an ACK interrupt oc­
curs as soon as both MCUs are initialized.

Both the IS3 and ACK interrupts share the same IRQ I interrupt vector. The program shown in
Figure 8-30 provides an interrupt handler which calls low level I/O routines IS3NW and OUT3NW.
The IN3NW subroutine services the IS3 (Data Ready) interrupt while the OUT3NW subroutine ser­
vices the IRQI (Data Acknowledged) interrupt. If polling is used, these two routines can be called
individually. Both return promptly and the state of the C-bit reflects what action was taken.

If the information being transferred is byte-oriented, routines to prepare the input and output nib­
bles can use the state of control lines PI2 and PIO, respectively, to control byte packing and unpack­
ing. The maximum data transfer rate using the configuration depicted in Figure 8-29 is shown in
Figure 8-32.

8-50

PAGE 001 DUALP3 .SA:1 DUALP3 *** FULL DUPLEX PORT 3 INTERFACE USING XOR **

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045

0000
0002
0004
0006
OOOF

NAM DUALP3
OPT ZOl,LLEN=80
TTL *** FULL DUPLEX PORT 3 INTERFACE USING XOR

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

DUAL PROCESSOR PARALLEL FULL DUPLEX INTERFACE USING
EXCLUSIVE-OR FUNCTION.

INZ --- INITIALIZE PORT 3 INTERFACE
ARGUMENTS) •

(NO CALLING

IN3NW --- INPUT BYTE FROM PORT 3 IF AVAILABLE. IF
AVAILABLE, THE BYTE IS RETURNED IN ACCA
AND THE C-BIT IS SET; OTHERWISE THE C-BIT
IS CLEAR.

OUT3NW -- OUTPUT BYTE FROM ACCA TO PORT 3 IF LAST
TRANSMISSION ACKNOWLEDGED AND RETURN WITH
C-BIT SET; ELSE, RETURN WITH C-BIT CLEAR.

INT ----- ENTRY POINT FOR IRQ1 INTERRUPT VECTOR.
ROUTINE SERVICES EITHER RECEIVER OR
TRANSMITTER. PRIORITY IS ALTERNATED BE­
TWEEN THEM TO INSURE FAIR SERVICE.

INT CALLS TWO USER ROUTINES: INNYB AND
OUTNYB. INNYB TAKES BYTE FROM ACCA, DIS­
POSES OF IT, AND RETURNS. OUTNYB PUTS
NEXT BYTE TO BE TRANSMITTED INTO LOCATION
"NEXOUT" AND RETURNS. IF THERE IS NO
MORE DATA TO BE TRANSMITTED, OUTNYB MUST
INHIBIT THE TRANSMITTER INTERRUPT.

* E QUA T E S

A P1DDR EQU
A P1DATA EQU
A P3DDR EQU
A P3DATA EQU
A P3CNTL EQU

* L 0 CAL

$00
$02
$04
$06
$OF

PORT 1 DATA DIRECTION REG
PORT 1 DATA REG
PORT 3 DATA DIRECTION REG
PORT 3 DATA REG
PORT 3 CONTROL & STATUS REG

V A R I A B L E S

00046A 0080
00047A 0~80
00048A 0081
00049

ORG
0001 A NEXOUT RMB
0001 A WH01ST BSZ

$80
1
1

TEMP STORAGE FOR OUTPUT DATA
IF + SERVICE TX 1ST; ELSE RX FIRST

00050
00051
00052A F800
00053A F800 C6 OF
00054A F802 D7 04
00055A F804 C6 7F
00056A F806 D7 OF
00057A F808 7F 0002
00058A F80B C6 OD

*

A INZ
A
A
A
A
A

I N I

ORG
LDAB
STAB
LDAB
STAB
CLR
LDAB

T I A L I Z A T ION

$F800
II$OF
P3DDR
11$7F STROBE ON WRITE, LATCH ENABLED
P3CNTL
P1DATA
II$OD

Figure 8-30. Full Duplex Routine Using Exclusive-OR

8-51

PAGE 002 DUALP3 .SA: 1 DUALP3 *** FULL DUPLEX PORT 3 INTERFACE USING XOR **

00059A F80D D7 00
00060A F80F 39
00061
00062
00063

A

*

STAB
RTS

PlDDR

I N T ERR U P T S E R V ICE

00064
00065

* COME HERE FOR IRQl IS3 INTERRUPTS.

00066A F8l0 73 0081 A INT
00067A F8l3 2A 07 F8lC
00068

COM
BPL

waOlST
TX3

SWITCH AND TEST

00069
00070

* S E R V ICE R E C E I V E R

0007lA F8l5 8D OE F825 RX3
00072A F8l7 24 03 F8lC
00073A F8l9 8D 26 F84l
00074A F3lB 3B
00075
00076
00077

*
00078A F8lC 96 80 A TX3
00079A F8lE 8D 13 F833
00080A F820 25 F3 F8l5
0008lA F822 8D IE F842
00082A F824 3B
00083
00084
00085
00086

*

BSR
BCC
BSR
RTI

S E R V

LDAA
'RSR
lles
BSR
RTI

LOW

IN3NW
TX3
INNYB

ICE

NEXOUT
OUT3NW
RX3
OUTNYB

ASSUME RX
WRONG GUESS
USER ROUTINE FOR INPUT

T RAN S MIT T E R

USER ROUTINE FOR OUTPUT

LEV E L I/O R 0 UTI N E S

00087
00088

* IN3NW -- GET DATA FROM PORT 3 (MOST SIG BITS)

00089A F825 D6 OF
00090A F827 59

A IN3NW LDAB
ROLB

0009lA F828 24
00092A F82A 96
00093A F82C C6
00094A F82E D8
00J95A F830 D7
00096A F832 39
00097

08 F832 BCC
06 A LDAA
04 A LDAB
02 A IN3001 EORB
02 A STAB

IN3002 RTS

P3CNTL

IN3002
P3DATA
114
PlDATA
PlDATA

GET CNTRL/STATUS
SHIFT IS3 INTO CARRY
NOT RX INTERRUPT
GET THE DATA
TOGGLE LINE TO ACKNOWLEDGE

00098 * OUT3NW -- OUTPUT DATA TO PORT 3 (LEAST SIG BITS)
00099
OOlOOA F833 D6 02
OOlOlA F835 57

00

A OUT3NW LDAB
ASRB

A ADCB
ASRB

00102A F836 C9
00103A F838 57
00104A F839 25
00105A F83B 97
00106A F83D C6
00107 A F83F 20
00108

F7 F832 BCS
06 A STAA
01 A LDAB
ED F82E BRA

00109 F84l A INNYB EQU
RTS OOllOA F84l 39

00111 F842 A OUTNYB EQU
00112A F842 39
00113
TOTAL ERRORS 00000--00000

RTS
END

PlDATA

110

IN3002
P3DATA
111
IN3001

*
*

GET TX CNTRL/STATUS WORD

CARRY= BITO XOR BITI
NOT ACKNOWLEDGED YET
OUTPUT DATA
REMOVE TX INTERRUPT

USER SUPPLIED SUBROUTINE

USER SUPPLIED SUBROUTINE

Figure 8-30. Full Duplex Routine Using Exclusive-OR (Continued)

8-52

RX3 TX3

No No

Low Level Port 3 I/O

No No

Figure 8-31. Flowchart for Interface

8-53

Example for Port 3 Nibble Transmit:

LOOP1 LDAA
LOOP2 LDAB

ASRB
ADCB,
ASRB
BCS
STAA
LOAB
EORS
STAB
DEX
BNE

OATA,X
P1DATA

#0

LOOP2
P3DATA
;1
P1DATA
P1DATA

LOOP1

READ DATA FROM MEMORY
READ CONTROL BYTE

WAIT ~OR ACKNOWLEDGEMENT
OUTPUT DATA AND STROBE

UPDATE CONTROL BYTE
DECREMENT BYTE COUNTER
LOOP UNTIL DONE

Execution time for fo == 1.0 MHz (1 E-cycle = 1 microsecond)
Maximum Data rate = 30.3 k nibbles/sec

Example for Port 3 Nibble Receive:

LOOP LDAB P3CNTL
BPL LOOP
LDAA P3DATA
STAA X
STAB #4
EORB P1DATA
STAB P1DATA
DEX
BNE LOOP

READ SrATUS/CNTRL REG
NO INPUT YET
INPUT DATA AND STROBE

SEND ACKNOWLEDGE (ACK)
DECREMENT BYTE COUNT
LOOP UNTIL DONE

Execution time for fo= 1.0 MHz (1 E-cycle= 1 microsecond)
Maximum data rate=37.0 k nibbles/sec

APPENDIX A
DEFINITION OF THE

EXECUTABLE INSTRUCTIONS

A.1 NOMENCLATURE

The following nomenclature is used in the subsequent definitions.

(a) Operators
() = contents of register shown inside parentheses
- = is transferred to

•
+

7

*

= "is pulled from stack"
= "is pushed onto stack"
= Boolean AND
= Arithmetic addition symbol except where used as inclusive OR symbol in

Boolean Formulae
= Exclusive OR
= Boolean NOT
= Multiply
= Concatenation
= Arithmetic subtraction symbol or Negative symbol (two's complement)

(b) Registers in the MPU
ACCA = Accumulator A
ACCB = Accumulator B
ACCX = Accumulator ACCA or ACCB
ACCD = Double Accumulator. Accumulator A concatenated with Accumulator B where

A is the most significant byte.
CCR = Condition code register
IX = Index register, 16 bits
IXH = Index register, higher order 8 bits
IXL = Index register, lower order 8 bits
PC = Program counter, 16 bits
PCH = Program counter, higher order (most significant) 8 bits
PCL = Program counter, lower order (least significant) 8 bits
SP = Stack pointer
SPH = Stack pointer high
SPL = Stack pointer low

A-I

(c) Memory and Addressing
M = A memory location (one byte)
M + 1 = The byte of memory at 0001 plus the address of the memory location indicated

by "M".
ReI = Relative offset (i.e., the' two's complement number stored in the second byte of

machine code corresponding to a branch instruction).

(d) Bits 0 through 5 of the Condition Code Register
C = Carry - Borrow, bit 0
v = Two's complement overflow indicator, bit 1
Z = Zero indicator, bit· 2
N = Negative indicator, bit 3
I = Interrupt mask, bit 4
H = Half carry, bit 5

(e) Status of Individual Bits BEFORE Execution of an Instruction
An = Bit n of ACCA (n=7, 6, 5, ... , 0)
Bn = Bit n of ACCB (n=7, 6, 5, ... ,0)
Dn = Bit n of ACCD (n= 15, 14, 13, ... ,0)

Where bits 8-15 and 0-7 refer to ACCA and ACCB, respectively.
IXHn = Bit n of IXH (n=7, 6, 5, ... , 0)
IXLn = Bit n of IXL (n=7, 6, 5, ... , 0)
Mn = Bit n of M (n = 7, 6, 5, ... , 0)
SPHn = Bit n of SPH (n=7, 6,5, ... ,0)
SPLn = Bit n of SPL (n=7, 6, 5, ... ,0)
Xn = Bit n of ACCX (n = 7, 6, 5, .. '., 0)

(f) Status of Individual Bits of the RESULT of Execution of an Instruction
(i) For 8-bit Results

Rn = Bit n of the result (n=7, 6, 5, ... , 0)
This applies to instructions which provide a result contained in a single byte
of memory or in an 8-bit register.

(ii) For 16-bit Results'
RHn = Bit n of the more significant byte of the result (n = 7, 6, 5, ... , 0)
RLn = Bit n of the less significant byte of the result (n = 7, 6, 5, ... , 0)

This applies to instructions which provide a result contained in two con­
secutive bytes of memory or in a 16-bit register.

Rn = Bit n of the result (n = 15, 14, 13, ... , 0)

A.2 EXECUTABLE INSTRUCTIONS

Detailed definitions of the 83 executable instructions of the source language are provided on the
following pages. The format of these instructions is similar to those used with the MC6800. Where
new instructions are introduced or where the MC6800 instruction is enhanced (CPX), the mnemonic
heading is printed in italics.

A-2

ABA

Operation:

Description:

Condition
Codes:

Add Accumulator B to Accumulator A ABA

ACCA - (ACCA) + (ACCB)

Adds the contents of ACCB to the contents of ACCA and places the result in
ACCA.

H: Set if there was a carry from bit 3; cleared otherwise.
I: Not affected.
N: Set if most significant bit of the result is set; cleared otherwise.
Z: Set if all bits of the result are cleared; cleared otherwise.
V: Set if there was two's complement overflow as a result of the operation;

cleared otherwise.
C: Set if there was a carry from the most significant bit of the result; cleared

otherwise.

Boolean Formulae for Condition Codes:
H=A3eB3 + B3eR3 + R3eA3
N=R7
Z = R7eR6eRSeR4eR.3eR2eRleRO
V = A7eB7eR7 + A7eS7eR7
C=A7eB7 + B7eR7 + R7.A7

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of B~te of Machine Code
Machine Code Hex I Oct. I Dec.

INH 2 1 1B I 033 I 027

A-3

ABX Add Accumulator B to Index Register ABX

Operation: IX - (IX) + (ACCB)

Description: Adds the 8 bit unsigned contents of ACCB to the contents of IX taking into ac­
count the possible carry out of the low order byte of the Index Register, and
places the result in the IX. ACCB is not changed.

Condition
Codes: Not affected

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of ~ycles) Bytes of Byte of Machine Code
Machine Code Hex. I Oct. I Dec.

INH 3 1 3A I 072 I 058

ADC Add with Carry ADC

Operation: ACCX - (ACCX) + (M) + (C)

Description: Adds the contents of the C bit to the sum of the contents of ACCX and M and
places the. result in ACCX.

Condition
Codes: H: Set if there was a carry from bit 3; cleared otherwise.

I: Not affected.
N: Set if most significant bit of the result is set; cleared otherwise.
Z: Set if all bits of the result are cleared; cleared otherwise.
V: Set if there was two's complement overflow as a result of the operation;

cleared otherwise.
C: Set if there was a carry from the most significant bit of the result; cleared

otherwise.

Boolean Formulae for Condition Codes:

Addressing
Formats:

H = X3.M3 + M3.R3 + R3.X3
N=R7
Z = R7.R6.RS.R4.R3.R2.RI.RO
V = X7.M7.R7 + X7.M7.R7
C = X7.M7 + M7.R7 + R7.X7

See Table A-I.

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. Oct. Dec.

AIMM 2 2 89 211 137
ADIR 3 2 99 231 153
A EXT 4 3 B9 271 185
AIND 4 2 A9 251 169
BIMM 2 2 C9 311 201
B DIR 3 2 D9 331 217
BEXT 4 3 F9 371 249
BIND 4 2 E9 351 233

A-S

ADD Add Without Carry ADD

Operation: ACCX - (ACCX) + (M)

Description: Adds the contents of M to the contents of ACCX and places the result in ACCX.

Conditlon
Codes: H: Set if there was a carry from bit 3; cleared otherwise.

I: Not affected.
N: Set if most significant bit of the result is set; cleared otherwise.
Z: Set if all bits of the result are cleared; cleared otherwise.
V: Set if ~here was two's complement overflow as a result of the operation;

cleared otherwise.
C: Set if there was a carry from the most significant bit of the result; cleared

otherwise.

Boolean Formulae for Condition Codes:

Addressing
Formats:

H = X3.M3 + M3.R3 + R3·X3
N=R7
Z= R7.R6.RS.R4.R3.R2·RI.RO
V = X7.M7.R7 + X7.M7.R7
C = X7.M7 + M7.R7 + R7.X7

See Table A-I.

Addressing Modes, Execution Time, and Machine Code (HexadecimaI/OctaI/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. Oct. Dec.

AIMM 2· 2 8B 213 139
ADIR 3 2 9B 233 155
A EXT 4 3 BB 273 187
AIND 4 2 AB 253 171
BIMM 2 2 CB 313 203
BDIR 3 2 DB 333 219
BEXT 4 3 FB 373 251
BIND 4 2 EB 353 235

A-6

ADDD Add Double Accumulator ADDD

Operation:

Description:

Condition
Codes:

ACCD-(ACCD)+(M:M+ 1)

Adds the contents of M concatenated with M + 1 to the contents of ACCD and
places the results in ACCD.

H: Not affected.
I: Not affected.
N:
Z:
V:

C:

Set if most significant bit of result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.
Set if there was two's complement overflow as a result of the operation;
cleared otherwise.
Set if there was a carry from the most significant bit of the result; cleared
otherwise.

Boolean Formulae for Condition Codes:
N=RI5
Z = R15-R14-R..13-RI2-RI1-RI0-R9-RS-R7-R6-R5-R4-R3-R2-Rl-RO
V = DI5-MI5-RI5 + DI5-MI5-RI5
C = D15-M15 + MI5-"R.15 + R15-D15

Addressing Modes, Execution Time and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)
Bytes of Byte of Macbine Code Modes (No. of Cycles)

Macbine Code Hex. Oct. Dec.

IMM 4 3 C3 303 195
DIR 5 2 D3 323 211
EXT 6 3 F3 363 243
IND 6 2 E3 343 227

A-7

AND Logical AND AND

Operation: ACCX - (ACCX)e(M)

Description: Performs logical AND between the contents of ACCX and the contents of M and
places the result in ACCX. (Each bit of ACCX after the operation will be the
logical AND of the corresponding bits of M and of ACCX before the operation.)

Condition
Codes: H: Not affected.

I: Not affected.
N: Set if most significant bit of the result is set; cleared otherwise.
Z: Set if all bits of the result are cleared; cleared otherwise.
V: Cleared~

C: Not affected.

Boolean Formulae for Condition Codes:

Addressing
Formats:

N=R7
Z = R7eR6eRSeR4eR3eR2eRteRO
V=O

See Table A-t.

Addressing Modes, Execution Time, and Machine Code (HexadecimaI/OctaI/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Codes Hex. Oct. Dec.

AIMM 2 2 84 204 132
ADIR 3 2 94 224 148
A EXT 4 3 B4 264 180
AIND 4 2 A4 244 164
BIMM 2 2 C4 304 196
B DIR 3 2 D4 324 212
BEXT 4 3 F4 364 244
BIND 4 2 E4 344 228

A-8

ASL·
Operation:

Description:

Condition
Codes:

Arithmetic Shift Left ASL

~ "'4~-- ___ --"-_--L-_....L-_--L-_....L-_--L-_....L-_...j1 ... 4J--- 0
b7 bO

Shifts all bits of the ACCX or M one place to the left. Bit 0 is loaded with a
zero. The C bit is loaded from the most significant bit of ACCX or M.

H: Not affected.
I: Not affected.
N: Set if most significant bit of the result is set; cleared otherwise.
Z: Set if all bits of the result are cleared; cleared othewise.
V: Set if, after the completion of the shift operation, (N is set and C is cleared)

OR (N is cleared and C is set); cleared otherwise.
C: Set if, before the operation, the most significant bit of the ACCX or M was

set; cleared otherwise.

Boolean Formulae for Condition Codes:
N=R7
Z = R7eR6eRSeR4eR3eR2eRleRO
V=N (I C= [Nee] + [NeC]

(the foregoing formula assumes values of Nand C after the shift operation)
C=M7

Addressing
Formats: See Table A-3.

Addressing Modes, Execution Time, and Machine Code (HexadecimaIlOctaI/Decimal):

Addressing Execution Time
Number of Coding of First (or Only)

Bytes of Byte of Machine Code
Modes (No. of Cycles) Machine Code Hex. Oct. Dec.

A 2 1 48 110 072
B 2 1 58 130 088

EXT 6 3 78 170 120
IND 6 2 68 150 104

A-9

ASLD Arithmetic Shift Left Double Accumulator ASLD

Operation:

Description:

Condition
Codes:

~ ~~~~--------------

~4--~1 ~I ~~I~I~I~~I~I~I~ ~I ~~I ~I ~I ~~I ~I'-o
b7 ACCA bO b7 ACCB bO

Shifts all bits of ACCD one place to the left. Bit 0 is loaded with a zero. The C
bit is loaded from the most significant bit of ACCD.

H: Not affected.
I: Not affected.
N: Set if most significant bit of result is set; cleared otherwise.
Z: Set if all bits of the result are cleared; cleared otherwise.
V: Set if, after the completion of the shift operation, (N is set and Cis cleared)

OR (N is cleared and C is set); cleared otherwise.
C: Set if before the operation the most significant bit of ACCD was set;

cleared otherwise. .

Boolean Formulae for Condition Codes:
N=RlS
Z = RlSeRl4eRl3eR12eRlleRlOeRgeRSeR7eR6eRSeR4eR3eR2eRleRO
V=N E9C= [Nee] + [NeC]
C=DlS

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. I Oct. I Dec.

INH 3 1 05 I 005 I 005

A-lO

ASR Arithmetic Shift Right ASR
Operation:

Description: Shifts all bits of ACCX or M one place to the right. Bit 7 is held constant. Bit 0
is loaded into the C bit.

Condition
Codes: H: Not affected.

I: Not affected.
N: Set if the most significant bit of the result is set; cleared otherwise.
Z: Set if all bits of the result are cleared; cleared otherwise.
V: Set if, after the completion of the shift operation, (N is set and C is cleared)

OR (N is cleared and C is set); cleared otherwise.
C: Set if, before the operation, the least significant bit of the ACCX or M was

set; cleared otherwise.

Boolean Formulae for Condition Codes:

Addressing
Formats:

N=R7
Z = R7eR6eRSeR4eR3eR2eRleRO
V=N ED C= [NeC] + [NeC]

(the foregoing formula assumes values of Nand C after the shift operation)
C=MO

See Table A-3.

Addressing Modes, Execution Time, and Machine Code (HexadecimaIlOctaI/Decimal):

Addressing Execution Time Number of Coding of First (or Only)
Bytes of Byte of Machine Code

Modes (No. of Cycles) Machine Code Hex. Oct. Dec.
A 2 1 47 107 071
B 2 1 57 127 087

EXT 6 3 77 167 119
IND 6 2 67 147 103

A-II

Bee Branch if Carry Clear Bee
Operation: PC - (PC) + 0002 + Rei if (C) = 0

Description: Tests the state of the C bit in the condition code register and causes a branch if it is
clear.

See BRA instruction for further details of the execution of the branch.

Condition
Codes: Not affected.

Addressing
Formats: See Table A-S.

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
-Machine Code Hex. I Oct. I Dec.

REL 3 2 .- 24 I 044 I 036

A-12

Bes Bes
Operation: PC - (PC) + *2 + Rei if (C) = 1

Description: Tests the state of the C "it in tl:te cOllciition code register and causes a branch if it is
set.
See BRA instruction for fu.nker dotails of the e:Kecution of the branch.

Condition
Codes: Not affected.

Addressing
Formats: See Table A-S.

Addressing Modes, Execution Time, aad MaelaiDe Code (Hexadecimal/Octal/Decimal):

Addressing Exeeution Time Number of Coding of Flnt (or Oaly)

Modes (No. of Cyeles) _tes of Byte of Machin, Code
MaGhine Code Hex. Od. Dee.

REL 3 2 25 045 037

A-13

BEQ Brancb if Equal BEQ

Operation: PC - (PC) + 0002 + Rei if (Z) = 1

Description: Tests the state of the Z bit in the condition code register and causes a branch if it
is set.

See BRA instruction for further details of the execution of the branch.

Condition
Codes: Not affected.

Addressing
Formats: See Table A-S.

Addressing Modes, Execution Time, and Macbine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. I Oct. I Dec.

REL 3 2 27 I 047 I 039

A-14

BGE Branch if Greater Than or Equal to Zero BGE

Operation: pc (PC) + 0002 + ReI if (N) • (V) = 0
i.e., if (ACCX) C!: (M)
(Two'S complement numbers)

Description: Causes a branch if (N is set and V is set) OR (N is clear and V is clear).

Condition

If the BOB instruction is executed immediately after execution of any of the in­
structions CBA, CMP, SBA, or SUB, the branch will occur if and only if the
two's complement number represented by the minuend (i.e., ACCX) was greater
than or equal to the two's complement number represented by the subtrahend
(i.e., M).

See BRA instruction for details of branch.

Codes: Not affected.

Addressing
Formats: See Table A-S.

Addressing Modes, Execution Time, and Machine Code (HexadeeimaI/OctaI/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. I Oct. I Dec.

REL 3 2 2C I 054 I 044

A-1S

BGT Branch if Greater than Zero BGT

Operadon: PC-(PC) +0002+ Rei if (Z)+[(N)E9(V)] =0
i.e., if (ACCX) > (M)
(two's complement numbers)

Descripdon: Causes a branch if [Z is clear] AND [(N is set AND V is set) OR(N is clear AND V
is clear)].

Condidon

If the BOT instruction is executed· immediately after execution of any of the in­
structions CBAj ,eMP ,SBA, or SUB, the branch will occur if and only if the

. two's complement number represented by the minuend (Le.,ACCX) was greater
than the two's complement number represented by the subtrahend (Le., M).
See BRA instruction for details of the branch.

Codes: Not affected.

Addressing
Formats: See Table A-S.

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):
.

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. I Oct. I Dec.

REL 3 2 2E I 056 I 046

A-16

DRI Branch if Higher DRI

Operation: PC - (PC) + 0002 + ReI if (C) + (Z) = 0
i.e., if (ACCX) > (M)
(unsigned binary numbers)

Description: Causes a branch if(C is clear) AND (Z is clear).
If the BHI instruction is executed immediately after execution of any of the in­
structions CBA, CMP, SBA, or SUB, the branch will occur if and only if the un­
signed binary number represented by the minuend (i.e., ACCX) was greater than
the unsigned binary number represented by the subtrahend (Le., M).
See BRA instruction for details of the execution of the branch.

Condition
Codes: Not affected.

Addressing
Formats: See Table A-S.

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. I Oct. I Dee.

REL 3 2 22 r 042 I 034

A-I7

BHS Branch if Higher or Same BHS

Operation: PC - (PC) + 0002 + ReI if (C) = 0

Description: Tests the state of the C bit in the condition code register and causes a branch if it
is clear.
See BRA instruction for further details of the execution of the branch.

Condition
Codes: Not: affected.

Addressing
Formats: See Table A-S.

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. I Oct. I Dec.

REL 3 2 24 I 044 I 036

A-IS

BIT Bit Test BIT

Operation: (ACCX)e(M)

Description: Performs the logical AND comparison of the contents of ACCX and the contents
of M and modifies condition codes accordingly. Neither the contents of ACCX or
M operands are affected. (Each bit of the result of the AND would be the logical
AND of the corresponding bits of M and ACCX.)

Condition
Codes: H: Not affected.

I: Not affected.
N: Set if the most significant bit of the result of the AND is set; cleared

otherwise.
Z: Set if all bits of the result of the AND are cleared; cleared otherwise.
V: Cleared.
C: Not affected.

Boolean Formulae for Condition Codes:

Addressing

N=R7
Z = R7eR6eRSeR4eR3eR2eRIeRO
V=O

Formats: See Table A-I.

Addressing Modes, Execution Time, and Machine Code (HexadecimaI/OctaI/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. Oct. Dec.

AIMM 2 2 85 205 133
ADIR 3 2 95 225 149
A EXT 4 3 B5 265 181
AIND 4 2 AS 245 165
BIMM 2 2 C5 305 197
BDIR 3 2 D5 325 213
BEXT 4 3 F5 365 245
BIND 4 2 E5 345 229

A-19

BLE Branch if Less than or Equal to Zero BLE

Operation: PC +- (PC) + 0002 + Rei if (Z) + [(N) • (V)] = 1
i.e., if (ACCX) s (M)
(two'S complement numbers)

Description: Causes a branch if [Z is set] OR [(N is set AND V is clear) OR (N is clear ANQ
V is set)].

Condition

If the. BLE instruction is executed immediately after execution of any of the in­
structions CBA, CMP, SBA, or SUB, the branch will occur if and only if the
two's complement number represented by the minuend (i.e., ACCX) was less
than or equal to the two's complement number represented by the subtrahend
(i.e., M).
See BRA instruction for details of the branch.

Codes: Not affected.

Addressing
Formats: See Table A-S.

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Exeeution TilDe Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte)f Machine Code
Machine Code Hex. Oct. I Dee.

REL 3 2 2F 057 I 047

A-20

BLO Branch If 'Lower

Operation: PC - (PC) + 0002 + ReI if (C) = 1
i.e., if (ACCX)«M)
(unsigned binary numbers)

BLO

Description: Tests'the state of the C bit in the condition 'code register and causes a branch 'if
it is set.
See BRA instruction' for further details of the execution of the branch.

Condition
Codes: Not affected.

Addressing
Formats: See Table A-S.

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of Fint (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Macbine Code Hex. I Oct. I Dec.

REL 3 2 25 I 045 I 037

A-21

BLS Branch if Lower or Same BLS

Operation: PC - (PC) + 0002 + ReI if (C) + (Z) = 1
Le., if (ACCX) s (M)
(unsigned binary numbers)

Description: Causes a branch if (C is set) OR (Z is set).
If the BLS instruction is executed immediately after execution of any of the in­
structions CBA, CMP, SBA, or SUB, the branch will occur if and only if the
unsigned binary number represented by the minuend (Le., ACCX) was less than
or equal to the unsigned binary number represented by the subtrahend (Le., M).
See BRA instruction for details of the execution of the branch.

Condition
Codes: Not affected.

Addressing
Formats: See Table A-S.

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. I Oct. I Dec.

REL 3 2 23 I 043 I 035

A-22

BLT Brancb if Less tban Zero BLT

Operation: PC - (PC) + 0002 + ReI if (N) • (V) = 1
i.e., if (ACCX)< (M)
(two's complement numbers)

Description: Causes a branch if (N is set AND V is clear) OR (N is clear AND V is set).

Condition

If the BL T instruction is executed immediately after execution of any of the in­
structions CBA, CMP, SBA, or SUB, the branch will occur if and only if the
two's complement number represented by the minuend (i.e., ACCX) was less
than the two's complement number represented by the subtrahend (i.e., M).
See BRA instruction for details of the branch.

Codes: Not affected.

Addressing
Formats: See Table A-S.

Addressing Modes, Execution Time, and,Macbine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. I Oct. l Dec.

REL 3 2 2D I 055 I 045

A-23

BMI Branch if Minus' BMI

Operation: PC - (PC) + 0002 + Rei if (N) = 1

Description: . Tests the state· of the N bit in· the condition code register and· causes a branch if it
is set.
See BRA instruction for details of the execution of the branch.

Condition
Codes: Not affected.

Addressing
Formats: See Table A-S.

Addressing Modes, Execution Time, .ndMachine CoCie (Hexadecimal/Octal/Decimal):

Addressing. Exeelltion· Time Number of· <:;oding of First (or Only)

Modes (No •. of Cycles) Bytes of Byte. of Machine. Code
Machine Code Hex. I Oct. J Dec.

REL 3 2 2B I 053 I 043

BNE Branch if Not Equal BNE
Operation: PC - (PC) + 0002 + ReI if (Z) = 0

. Deseription: Tests·the state of the Zbit in the condition code register and causes a branch if it
is clear.
See BRA instruction for details of the execution of the branch.

Condition
Codes: Not affected.

Addressing
Formats: See Table A-S.

Addressing. Modes, Execution Time, and· Machine Code (HexadecimaIIOctaIIDecimal):

Addressing Execution Time Number of Codinl of First (or Only)

Modes (No. of Cycles) Bytes of Byte· of Machine Code
Machine Code Hex. I Oct. I . Dec.

REL 3 2 26 I 046 I 038

A-2S

BPL ,Branch if Plus BPL
Operation: PC - (PC) + 0002 + ReI if (N) = 0

Description: Tests the state of the N bit in the condition code register and causes a branch if it
is clear.
See BRA instruction for details of the execution of the branch.

Condition
Codes: Not affected.

Addressing
Formats: See Table A-S.

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. I Oct. I Dec.

REL 3 2 2A I 052 I 042

A-26

BRA Bnnch Always BRA

Opendon: PC - (PC) + 0002 + ReI

Descripdon: Unconditional branch to the address given by the foregoing formula, in which
REL is the relative offset stored as a two's complement number in the second
byte of machine code corresponding to the branch instruction.

Condition

Note: The source program specifies the destination of any branch instruction by
its absolute address, either as a numerical value or as a symbol or expression
which can be numerically evaluated by the assembler. The assembler obtains the
relative address ReI from the absolute address and the current value of the loca­
tion counter.

Codes: Not affected.

Addressing
Formats: See Table A-S.

Addressing Modes, Execudon Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execudon Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Bvte of Machine Code
Machine Code Hex. I Oct. I Dec.

REL 3 2 20 I 040 I 032

A-27

Branch Never BRN

Operadon: PC - (PC) + 0002

Description: Never branches. In effect, this two byte instruction can be considered as a NOP
(No operation) requiring three cycles for execution. Its inclusion in the MC6801
instruction set is to provide a complement for the BRA instruction. The instruc­
tion is useful during program debug to "negate" the effect of another branch in­
struction without disturbing its offset byte. Having a complement for BRA is
useful in compiler implementations. All MC6801 branch instructions have a com­
plement.

Condidon
Codes: Not affected.

Addressing
Formats: See Table A-8.

Addressing Modes, Execution Time, and Machine Code (HexadecimaI/OctaI/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. I Oct. I Dec.

REL 3 2 21 I 041 I 033

A-28

BSR

Operation: PC - (PC) + 0002
'(PCL)
SP - (SP) -" 0001
'(PCH)
SP - (SP) - 0001
PC - (PC) + ReI

Branch to Subroutine BSR

Description: The program counter is incremented by '2. The less significant byte of the con­
tents of the program counter is pushed into the stack. The stack pointer is then
decremented (by 1). The more significant byte of the contents of the program
counter is then pushed onto the stack. The stack pointer is again decremented (by
1). A branch then occurs to the location specified by the branch.
See BRA instruction for details of the execution of the branch.

Condition
Codes: Not affected.

Addressing
Formats: See Table A-S.

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. I Oct. I Dec.

REL 6 2 80 I 215 I 141

BRANCH TO SUBROUTINE EXAMPLE

Memory Machine Assembler

Location Code (Hex) Label Language Operand
Operator

A. Before
PC - $1000 80 BSR CHARLI

$1001 50
SP - $EFFF

B. After
PC $1052 •• CHARLI ••• •••••
SP $EFFO

$EFFE 10
$EFFF 02

A .. 29

Bve Branch if Overflow Clear Bve
Operadon: PC - (PC) + 0002 + ReI if (V) = 0

Description: Tests the state of the V bit in the condition code register and causes a branch if it
is clear.
See BRA instruction for details of the execution of the branch.

Condidon
Codes: Not affected.

Addressing
Formats: See Table A-S.

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. I Oct. I Dec.

REL 3 2 28 I 050 I 040

A-30

BVS Branch if Overflow Set BVS
Operation: PC - (PC) + 0002 + Rei if (V) = 1

Description: Tests the state of the V bit in the condition code register and causes a branch if it
is set.
See BRA instruction for details of the execution of the branch.

Condition
Codes: Not affected.

Addressing
Formats: See Table A-S.

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. I Oct. I Dec.

REL 3 2 29 I 051 I 041

A-31

'eBA

Operation:

Description:

Condition
Codes:

Compare Accumulators eBA
(ACCA) - (ACCB)

Compares the contents of ACCA to the contents of ACCB and sets the condition
codes, which may be used for arithmetic and logical conditional branches. Both
operands are unaffected.

H: Not affected.
I: Not affected.
N: Set if the most significant bit of the result of the subtraction is set; cleared

otherwise.
Z: Set if all bits of the result of the subtraction are cleared; cleared otherwise.
V: Set if the subtraction results in two's complement overflow; cleared

otherwise.
C: Set if the subtraction requires a borrow in the most significant bit of the re­

sult; cleared otherwise.

Boolean Formulae for Condition Codes:
N=R7
Z = R7eR6eR.seR4eRJeR2eRleRO
V = A 7eS7eR7 + A 7eB7eR7
C = A7eB7 + B7eR7 + R7eA7

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. I Oct. I Dec.

INH 2 1 11 I 021 I 017

A-32

CLC

Operation:

Description:

Condition
Codes:

Clear Carry

C bit-O

Clears the C bit in the condition code register.

H: Not affected.
I: Not affected.
N: Not affected.
Z: Not affected.
V: Not affected.
C: Cleared.

Boolean Formulae for Condition Codes:
C=O

CLC

Addressing Modes, Execution Time, and Machine Code (HexadecimaI/OctaI/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. I Oct. I Dec.

INH 2 1 OC I 014 I 012

A-33

CLI Clear Interrupt Mask CLI

Operation: lbit-O

Description: Clears the interrupt mask bit in the condition code register. When the 1 bit is clear,
all interrupts are enabled.

Condition
Codes: H: Not affected.

I: Cleared.
N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.

Boolean Formulae for Condition Codes:
1=0

Addressing Modes, Execution Time, and Machine Code (HexadecimaI/OctaI/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. I Oct. I Dec.

INH 2 1 OE I 016 I 014

A-34

CLR

Operation:
or:

Description:

Condition
Codes:

ACCX-OO
M-OO

Clear

The contents of ACCX or M are replaced with zeros.

H: Not affected.
I: Not affected.
N: Cleared.
Z: Set.
V: Cleared.
C: Cleared.

Boolean Formulae for Condition Codes:

Addressing
Formats:

N=O
Z=l
V=O
C=O

See Table A-3.

CLR

Addressing Modes, Execution Time, and Machine Code (HexadecimaI/OctaI/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. Oct. Dec.

A 2 1 4F 117 079
B 2 1 SF 137 095

EXT 6 3 7F 177 127
IND 6 2 6F 157 111

A-3S

CLV Clear Two's Complement Overflow Bit CLV

Operation: V bit-O

Description: Clears the two's complement overflow bit in the condition code register.

Condition
Codes: H: Not affected.

I: Not affected.
N: Not affected.
Z: Not affected.
V: Cleared.
C: Not affected.

Boolean Formulae for Condition Codes:
V=O

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. I Oct. I Dec.

INH 2 1 OA I 012 I 010

A-36

CMP Compare CMP

Operation: (ACCX)-(M)

Description: Compares the contents of ACCX to the contents of M and determines the condi­
tion codes, which may be used subsequently for controlling conditional branch­
ing. Both operands are unaffected.

Condition
Codes: H: Not affected.

I: Not affected.
N: Set if the most significant bit of the result of the subtraction is set; cleared

otherwise.
Z: Set if all bits of the result of the subtraction are cleared; cleared otherwise.
V: Set if the subtraction results in two's complement overflow: cleared other­

wise.
C: Set if the absolute value of the contents of memory is larger than the abso­

lute value of the accumulator; cleared otherwise.

Boolean Formulae for Condition Codes:

Addressing
Formats:

N=R7
Z = R7.R6.RS.R4.R3.R2.RI.RO
V = X7.M7.R7 + X7.M7.R7
C = X7.M7 + M7.R7 + R7.X7

See Table A-I.

Addressing Modes, Execution Time, and Machine Code (HexadecimaI/OctaI/Decimal):

Addressing Execution Time Number of Coding of First (or Only)
Bytes of Byte of Machine Code Modes (No. of Cycles)

Machine Code Hex. Oct. Dec.
AIMM 2 2 81 201 129
ADIR 3 2 91 221 145
A EXT 4 3 Bl 261 177
AIND 4 2 Al 241 161
BIMM 2 2 Cl 301 193
BDIR 3 2 Dl 321 209
BEXT 4 3 Fl 361 241
BIND 4 2 El 341 225

A-37

COM Complement COM
Operation: ACCX - -, (ACCX) = FF - (ACCX)
or: M- ., (M)=FF-(M)

Description: Replaces the contents of ACCX or M with its one's complement. (Each bit of the
. contents of ACCX or M is replaced with the complement of that bit).

Condition
Codes: H: Not affected.

I: Not affected.
N: Set if most significant bit of the result is set; cleared otherwise.
Z: Set if all bits of the result are cleared; cleared otherwise.
V: Cleared.
C: Set.

Boolean Formulae for Condition Codes:

Addressing
Formats:

N=R7
Z=R7eR6eRSeR4eR3eR2eRleRO
V=O
C=l

See Table A-3.

Addressing Modes, Execution Time, and Machine Code (HexadeeimaI/OctaI/Deeimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. Oct. Dec.

A 2 1 43 103 067
B 2 1 53 123 083

EXT 6 3 73 163 115
IND 6 2 63 143 099

A-38

CPX

Operation:

Description:

Condition
Codes:

Compare Index Register CPX

(IX)-(M:M+ 1)

Compares the contents of the index register with a 16 bit value at the address
specified and sets the condition codes accordingly. The compare is accomplished
internally by doing a 16 bit subtract of (M:M + 1) from the index register without
modifying either the index register or (M:M + 1).

H: Not affected.
I: Not affected.
N: Set if most significant bit c;>f the result of the subtraction is set; cleared

otherwise.
Z: Set if all bits of the internal result are cleared; cleared otherwise.
V: Set if the subtraction results in two's complement overflow; cleared other­

wise.
C: Set if the absolute value of the contents of memory is larger than the abso­

lute value of the index register; cleared otherwise.

Boolean Formulae for Condition Codes:

Addressing
Formats:

N=RlS
Z = RlSeR14eR13eR12eRlleRlOeRgeRSeR7eR6eRSeR4eR3eR2eRleRO
V = IXlSeMlSeRlS + IXlSeMlSeRlS
C = IXlSeMlS + MlSeRlS + RlSeIXlS

See Table A-S.

Addressing Modes, Execution Time, and Machine Code (HexadecimaI/OctaI/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. Oct. Dec.

IMM 4 3 8C 214 140
DIR 5 2 9C 234 156
EXT 6 3 BC 274 188
IND 6 2 AC 254 172

A-39

DAA
Operation:

State of
C-Bit

Before
DAA

Decimal Adjust ACCA DAA
Adds hexadecimal numbers 00, 06, 60, or 66 to ACCA, and may also set the car­
ry bit, as indicated in the following table:

Number State of
Upper Initial Lower Added C-Bit

Half-Byte Half-Carry to ACCA After
(Bits 4-7) H-Bit (Bits 0-3) ByDAA DAA

(Column 1) (Column 2) (Column 3) (Column 4) (Column 5) (Column 6)

0
0
0
0
0
0
1
1
1

Description:

Condition
Codes:

0-9 0 0-9 00 0
0-8 0 A-F 06 0
0-9 1 0-3 06 0
A-F 0 0-9 60 1
9-F 0 A-F 66 1
A-F 1 0-3 66 1

0-2 0 0-9 60 1
0-2 0 A-F 66 1
0-3 1 0-3 66 1

NOTE:
Columns (l)through (4) of the above table represent all possible cases which can
result from any of the operations ABA, ADD, or ADC, with initial carry either
set or clear, applied to two binary-coded-decimal operands. The table shows hex­
adecimal values.

If the contents of ACCA and the state of the carry-borrow bit C and tbe half­
carry bit H are all the result of applying any of the operations ABA, ADD, or
ADC to binary-coded-decimal operands, with or without an initial carry, the
DAA operation will function as follows.
Subject to the above condition, the DAA operation will adjust the contents of
ACCA and the C bit to represent the correct binary-coded-decimal sum and the
correct state of the carry.

H: Not affected.
I: Not affected.
N:
Z:
V:
C:

Set if most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.
Not defined.
Set or clear according to the same rule as if the DAA and an immediately
preceding ABA, ADD, or ADC were replaced by a hypothetical binary­
coded-decimal addition.

Boolean Formulae for Condition Codes:
N=R7
Z = R7eR6eRSeR4eR3eR2eR.leRO
C = See table above.

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. I Oct. I Dec.

INH 2 1 19 I 031 I 025

A-40

DEC Decrement DEC

Operation: ACCX - (ACCX) - 01
or: M-(M)-01

Description: Subtract one from the contents of ACCX or M.

Condition
Codes:

The N, Z, and V condition codes are set or reset according to the results of the
operation.
The C bit is not affected by the operation.

H: Not affected.
I: Not affected.
N: Set if most significant bit of the result is set; cleared otherwise.
Z: Set if all bits of the result are cleared; cleared otherwise.
V: Set if there was two's complement overflow as a result of the operation;

cleared otherwise. Two's complement ·overflow occurs if and only if (ACCX)
or (M) was 80 before the operation.

C: Not affected.

Boolean Formulae for Condition Codes:
N=R7
Z = R7eR6eRSeR4eR3eR2eR1eRO
V = X7eX6eXSeX4.X3eX2,eX1'-XO = R7eR6eRSeR4eR3eR2eR1eRO

Addressing
Formats: See Table A-3.

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cydes) Bytes of Byte of Machine Code
Machine Code Hex. Oct. Dec.

A 2 1 4A 112 074
B 2 1 SA 132 090

EXT 6 3 7A 172 122
IND 6 2 6A 152 106

A-41

DES Decrement Stack Pointer DES

Operation: SP (SP) - 0001

Description: Subtract one from the stack pointer.

Condition
Codes: Not affected.

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of Fint (or OnlY)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. I Oct. I Dec.

INH 3 1 34 I 064 I 052

A .. 42

DEX

Operation:

Description:

Condition
Codes:

Decrement Index Register

IX - (IX) - ()()() 1

Subtract one from the index register.
Only the Z bit is set or reset according to the result of this operation.

H: Not affected.
I: Not affected.
N: Not affected.
Z: Set if all bits of the result are cleared; cleared otherwise.
V: Not affected.
c: Not affected.

Boolean Formulae for Condition Codes:
Z = (IUI7-RH6-RHS-RH4-RR3-m2-RHI-RHO)­

(IlL7-IlL6-IlLS-IlL4-IlL3-1UL2-~1-IOCO)

DEX

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. I Oct. I Dec.

INH 3 1 09 I 011 r 009

A-43

EOR

Operation:

Description:

Condition
Codes:

Exclusive OR EOR

ACCX - (ACCX) ED (M)

Perform logical EXCLUSIVE OR between the contents of ACCX and the con­
tents of M, and places the result in ACCX. (Each bit of ACCX after the opera­
tion will be the logical EXCLUSIVE OR of the corresponding bit of M and
ACCX before the operation.)

H: Not affected.
I: Not affected.
N:
Z:
V:
C:

Set if most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.
Cleared.
Not affected.

Boolean Formulae for Condition Codes:

Addressing
Formats:

N=R7
Z=R7eR6eRSeR4eR3eR2eRteRO
V=O

See Table A-t.

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. Oct. Dec.

AIMM 2 2 88 210 136
ADIR 3 2 98 230 152
A EXT 4 3 B8 270 184
AIND 4 2 A8 250 168
BIMM 2 2 C8 310 200
B DIR 3 2 D8 330 216
BEXT 4 3 F8 370 248
BIND 4 2 E8 350 232

A-44

INC Increment INC

Operation: ACCX - (ACCX) + 01
or: M-(M)+01

Description: Add one to the contents of ACCX or M.
The N, Z, and V condition codes are set or reset according to the results of this
operation.

Condition
Codes:

The C bit is not affected by the operation.

H: Not affected.
I: Not affected.
N:
Z:
V:

C:

Set if most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.
Set if there is a two's complement overflow as a result of the operation;
cleared otherwise. Two's complement overflow will occur if and only if
(ACCX) or (M) was 7F before the operation.
Not affected.

,Boolean Formulae for Condition Codes:

Addressing
Formats:

N=R7
Z = R7-R6-R5-R4-R3-R2-RI-RO
V = X7-X6-X5-X4.X3-X2-X1-XO

See Table A-3.

Addressing Modes, Execution'Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. Oct. Dec.

A 2 1 4C 114 076
B 2 1 5C 134 092

EXT 6 3 7C 174 124
, IND 6 2 6C 154 108

A-45

INS Increment Stack Pointer INS

Operation: SP - (SP) + ()()() 1

Description: Add one to the stack pointer.

Condition
Codes: Not affected.

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. 1 Oct. I Dec.

INH 3 1 31 I 061 I 049

A-46

INX

Operation:

Description:

Condition
Codes:

Increment Index Register

IX - (IX) + ()()() 1

Add one to the index register.
Only the Z bit is set or reset according to the result of this operation.

H: Not affected.
I: Not affected.
N: Not affected.
Z: Set if all 16 bits of the result are cleared; cleared otherwise.
V: Not affected.
C: Not affected.

Boolean Formulae for Condition Codes:
Z = (RH7.RH6.RHS.RH4.RH3.RH2.RH1.RHO).

(RL7·RL6·RLS·RL4·RL3·RL2·RL1·RLO)

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)
Bytes of Byte of Machine Code Modes (No. of Cycles)

Machine Code Hex. T Oct. I Dec.
INH 3 1 08 T 010 r 008

A-47

INX

JMP Jump JMP

Operadon: PC - effective address

Descripdon: A jump occurs to the instruction stored at the effective address. The effective
address is obtained according to the rules for EXTended or INDexed addressing.

Condition
Codes: Not affected.

Addressing
Formats: See Table A-7.

Addressing Modes,· Execudon· Time, and Machine Code· (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. Oct. Dec.

EXT 3 3 7E 176 126
IND 3 2 6E 156 110

A-48

JSR Jump to Subroutine

Operation: PC - (PC) + 0003 (for EXTended addressing)
PC - (PC) + 0002 (for INDexed addressing)
1 (PCL)
SP - (SP) - 0001
1 (PCH)
SP - (SP) - 0001
PC - effective address

JSR

Description: The program counter is incremented by 3 or by 2, depending on the addressing
mode, and is then pushed onto the stack, eight bits at a time. The stack pointer
points to the next empty location in the stack. A jump occurs to the instruction
stored at the numerical address. The effective address is obtained according to
the rules for EXTended or INDexed addressing.

Condition
Codes: Not affected.

Addressing
Formats: See Table A-7.

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. Oct. Dec.

EXT 6 3 BD 275 189
IND 6 2 AD 25S 173
DIR 5 2 9D 235 157

JUMP TO SUBROUTINE EXAMPLE (EXTENDED MODE)

Memory Machine Assembler

Location Code (Hex) Label Language Opennd
Operator

A. Before:
PC $OFFF BD JSR CHARLI

$1000 20
$1001 77

SP - $EFFF
B. After:

PC $2077 •• CHARLI ••• •••••
S $EFFD

$EFFE 10
$EFFF 02

A-49

LDA Load Accumulator LDA

Operation: ACCX-(M)

Description: Loads the contents of memory into the accumulator. The condition codes are set
according to the data.

Condition
Codes: H: Not affected.

I: Not affected.
N: Set if most significant bit of the result is set; cleared otherwise.
Z: Set if all bits of the result are cleared; cleared otherwise
V: Cleared.
C: Not affected.

Boolean Formulae for Condition Codes:

Addressing
Formats:

N=R7
Z = R7eR6eR.5eR4eRJeR2eRleRO
V=O

See Table A-I.

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. Oct. Dec.

AIMM 2 2 86 206 134
ADIR 3 2 96 226 150
A EXT 4 3 B6 266 182
AIND 4 2 A6 246 166
BIMM 2 2 C6 306 198
BDIR 3 2 D6 326 214
BEXT 4 3 F6 366 246
BIND 4 2 E6 346 230

A-50

LDD

Operation:

Description:

Condition
Codes:

Load Double Accumulator LDD

ACCD-(M:M+ 1)

Loads the contents of memory locations M and M + 1 into the double accumu­
lator D. The condition codes are set according to the data.

H: Not affected.
I: Not affected.
N: Set if most significant bit of the result is set by the operation; cleared other-

wise.
Z: Set if all bits of the result are cleared by the operation; cleared otherwise.
V: Cleared.
C: Not affected.

Boolean Formulae for Condition Codes:
N=R1S
Z = R1S-RI4-RI3-RI2-RII-RI0-R9-RS-R7-R6-RS-R4-R3-R2-RI-RO
V=O

Addressing
Formats: See Table A-S.

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. Oct. Dec.

IMM 3 3 CC 314 204
DIR 4 2 DC 334 220
EXT 5 3 FC 374 252
IND 5 2 EC 354 236

A-51

LDS

Operation:

Description:

Condition
Codes:

SPH-(M)
SPL-(M+ 1)

Load Stack Pointer LDS

Loads the more significant byte of the stack pointer from the byte of memory at
the address specified by the program, and loads the less significant byte of the
stack pointer from the next byte of memory, at one plus the address specified by
the program.

H: Not affected.
I: Not affected.
N: Set if the most significant bit of the stack pointer is set by the operation;

cleared otherwise .
. Z: Set if all bits of the stack pointer are cleared by the operation; cleared

otherwise.
V: Cleared.
c: Not affected.

Boolean Formulae for Condition Codes:

Addressing
Formats:

N=RH7
Z = (RH7-RH6-RHS-RH4-RH3-RH2-RH1-RHO)­

(RL7-RL6-RLS-RL4eRL3-RL2e RL1-RLO)
V=O

See Table A-S.

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. Oct. Dec.

IMM 3 3 8E 216 142
DIR 4 2 9E 236 IS8
EXT 5 3 BE 276 190
IND 5 2 AE 256 174

A-52

LDX

Operation:

Description:

Condition
Codes:

IXH-(M)
IXL-(M+ 1)

Load Index Register LDX

Loads the more significant byte of the index register from the byte of memory at
the address specified by the program, and loads the less significant byte of the
index register from the next byte of memory, at one plus the address specified by
the program.

H: Not affected.
I: Not affected.
N: Set if the most significant bit of the index register is set by the operation;

cleared otherwise.
Z: Set if all bits of the index register are cleared by the operation; cleared

otherwise.
V: Cleared.
C: Not affected.

Boolean Formulae for Condition Codes:

Addressing
Formats:

N=RH7
Z=(RH7.RH6.RHS·RH4.RH3.RH2·RH1.RHO)·

(RL 7·RL6. RLS. RL4. RL3. RL2. RL1. RLO)
v=o

See Table A-S.

Addressing Modes, Execution Time, and Machine Code (HexadecimaI/OctaI/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. Oct. Dec.

IMM 3 3 CE 316 206
DIR 4 2 DE 336 222
EXT 5 3 FE 376 254
IND 5 2 EE 356 238

A-53

LSL

Operation:

Description:

Condition
Codes:

Logical Shift Left LSL

[£J---....,. __ --'--_~_~_---'--_ __'__ _ __'__ _ __'___ 1·4-- 0
b7 bO

Shifts all bits of the ACCX or M one place to the left. Bit 0 is loaded with a
zero. The C bit is loaded from the most significant bit of ACCX or M.

H: Not affected.
I: Not affected.
N: Set if most significant bit of the result is set; cleared otherwise.
Z: Set if all bits of the result are cleared; cleared otherwise.
V: Set if, after the completion of the shift operation, (N is set and C is cleared)

OR (N is cleared and C is set); cleared otherwise.
C: Set if, before the operation, the most significant bit of the ACCX or M was

set; cleared otherwise.

Boolean Formulae for Condition Codes:

Addressing
Formats:

N=R7
Z=R7eR6eRSeR4eR3eR2eRleRO
V=NeC= [Nee] + [NeC]

(the foregoing formula assumes values of Nand C after the shift operation)
C=M7

See Table A-3.

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Codes Hex. Oct. Dec.

A 2 1 48 110 072
B 2 1 58 130 088

EXT 6 3 78 170 120
IND 6 2 68 150 104

A-54

LSLD Logical Shift Left Double LSLD

Operation:

Description:

Condition
Codes:

~ ~4~----------------

[Q +-1 L.-.....",..JIL...-...-L---LI--L.I ~I -L----L...,.I -,.,JI.-I I I I I I I+-0
b7 ACCA bO b7 ACCB bO

Shifts all bits of ACCD one place to the left. Bit 0 is loaded with a zero. The C
bit is loaded from the most significant bit of ACCD.

H: Not affected.
I: Not affected.
N: Set if most significant bit of result is set; cleared otherwise.
Z: Set if all bits of the result are cleared; cleared otherwise.
V: Set if, after the completion of the shift operation, (N is set and C is cleared)

or (N is cleared and C is set); cleared otherwise.
C: Set if before the operation the most significant bit of ACCD was set;

cleared otherwise.

Boolean Formulae for Condition Codes:
N=R15
Z = R15eR14eR13eR12.Rl1e'R.10eRge'RSeR7eR6eR5eR4eR3eR2eRl eRO
V = NED C= [NeC] + [NeC]
C=D15

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. I Oct. I Dec.

INH 3 1 05 I 005 I 005

A-55

LSR

Operadon:

Description:

Condidon
Codes:

Logical Shift Right . LSR

o ----.~I ___ ..L-_.&----''----'_--.L._ _~ ------i.~ m
b7 bO

Shifts all bits of ACCX or M one place to the right. Bit 7 is loaded with a zero.
The C bit is loaded from the least significant bit of ACCX or M.

H: Not affected.
I: Not affected.
N: Cleared.
Z:
V:

C:

Set if all bits of the result are cleared; cleared otherwise.
Set if, after the completion of the shift operation, (Nis set and C is cleared)
OR (N is cleared and C is set); cleared otherwise.
Set if, before the operation, the least significant bit of the ACCX or M was
set; cleared otherwise.

Boolean Formulae for Condition Codes:
N=O
Z = R7eR6eRSeR4e'R3eR2eRleRO
V=NEBC=[NeC] + [NeC]

(the foregoing formula assumes values of Nand C after the shift operation).
C=MO

Addressing
Formats: See Table A-3.

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. Oct. Dec.

A 2 1 44 104 068
B 2 1 54 124 084

EXT 6 3 74 164 116
IND 6 2 64 144 100

A-S6

LSRD

Operations:

Description:

Condition
Codes:

Logical Shift Right Double Accumulator LSRD

----------------~.. .
O~L..:_"'="'_I --,-~I ~I ~I--L---II~I--.I'--1-1 ____ \----....\---....\----''---&-I ---01---+ [£]

b7 ACCA bO b7 ACCB bO

Shifts all bits of ACCD one place to the right. Bit 15 (MSB of ACCA) is loaded
with zero. The C bit is loaded from the least significant bit of ACCD (LSB of
ACCB).

H: No affected.
I: Not affected.
N: Cleared.
Z: Set if all bits of the result are cleared; cleared otherwise.
V: Set if, after completion of the shift operation, (N is set and C is cleared) OR

(N is cleared and C is set); cleared otherwise.
C: Set if, before the shift, the least significant bit of ACCD was set; cleared

otherwise.

Boolean Formulae for Condition Codes:
N=O
Z = R15eR14eR13eR12eRlleRlOeRgeRSeR7eR6eR5eR4eR3eiUeRleRO
V = N E9 C=(NeC] + [NeC]
C=DO

Addressing Modes, Execution Time, and Machine Code (HexadecimaV Octal/Decimal):

Number of Coding of First (or Only)

Addressing Execution Time Bytes Byte of Machine Code

Modes (N o. of Cycles) Machine Code Hex. I Oct. I Dec.

INH 3 1 04 I 004 I 004

A-57

MUL

Operation:

Description:

Condition
Codes:

Multiply Unsigned MUL

ACCD+- ACCA· ACCB

Multiplies the 8 bits in Accumulator A by the 8 bits in Accumulator B to obtain
a 16 bit unsigned number in the double accumulator, D.

H: Not affected.
I: Not affected.
N: Not affected.
Z: Not affected.
V: Not affected.
C: Set if bit 7 of result (ACCB B7) is set; cleared otherwise.

Boolean Formulae for Condition Codes:
C=R7

NOTE:
The C-bit can be used to round the 16-bit result to an 8-bit result as shown in the follow­
ing sequence:

MUL
ADCA #0

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)
Bytes of Byte of Machine Code Modes (No. of Cycles)

Machine Code Hex. I Oct. I Dec.

INH 10 1 3D I 075 I 061

A-58

NEG
Operation:
or:

Description:

Condition
Codes:

Negate

ACCX - - (ACCX) = 00 - (ACCX)
M - - (M) = ()()()() - (M)

NEG

Replaces the contents of ACCX or M with its two's complement. Note that 80
is left unchanged.

H: Not affected.
I: Not affected.
N:
Z:
V:

Set if most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.
Set if there is two's complement overflow as a result of the implied subtrac­
tion from zero; this will occur if and only if the contents of ACCX or M is
80.

C: Set if there is a borrow in the implied subtraction from zero; the C bit will
be set in all cases except when the contents of ACCX or M is 00.

Boolean Formulae for Condition Codes:

Addressing
Formats:

N=R7
Z = R7eR6eR.5eR4eR3eR2eRleRO
V = R7eR6eR5eR4eR3eR2eRleRO
C= R7 + R6+ R5 + R4+ R3 + R2+ Rl + RO

See Table A-3.

Addressing Modes, Execution Time, and Machine Code (HexadecimaI/OctaI/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. Oct. Dec.

A 2 1 40 100 064
B 2 1 50 120 080

EXT 6 3 70 160 112
IND 6 2 60 140 096

A-59

NOP No Operation NOP
Descripdon: This is a single byte instruction which causes only the program counter to be

incremented. No other registers are affected.

Condldon
Codes: Not affected.

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decima)):

Addressing Execution Number Coding of First (or Only)
Modes (No. of Cycles) Bytes of Byte of Machine Code

Machine Code Hex. Oct. Dee.
INH 2 1 01 001 001

A-60

ORA Inclusive OR ORA

Operation: ACCX -(ACX) +(M)

Description: Performs logical OR between the contents of ACCX and the contents of M and
places the result in ACCX. (Each bit of ACCX after the operation will be the
logical OR of the corresponding bits of M and of ACCXbefore the operation.)

Condition
Codes: H: Not affected.

I: Not affected.
N:
Z:
V:
C:

Set if most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are Cleared; cleared otherwise.
Cleared.
Not affected.

Boolean Formulae for Condition Codes:

Addressing
Formats:

N=R7
Z = R7eR6eRSeR4eR3eiUeRIeRO
V=O

See Table A-I.

Addressing Modes, Execution Time, and Machine Code (HexadecimaV OctaVDecimal):

Number of Coding of First (or Only)
Addressing Execution Time Bytes of Bytes of Machine Code

Modes (N o. of Cycles) Machine Code Hex. Oct. Dec.
AIMM 2 2 8A 212 138
ADIR 3 2 9A 232 154
A EXT 4 3 BA 272 186
AIND 4 2 AA 252 170
BIMM 2 2 CA 312 202
BDIR 3 2 DA 332 218
BEXT 4 3 FA 372 250
BIND 4 2 EA 352 234

A-61

PSH Push Data Onto Stack PSH

Operation: l (ACCX)
SP - (SP) - 0001

Description: The contents of ACCX is stored in the stack at the address contained in the stack
pointer. The stack pointer is then decremented.

Condition
Codes: Not affected.

Addressing
Formats: See Table A-4.

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. Oct. Dec.

A 3 1 36 066 054
B 3 1 37 067 055

A-62

PSHX Push X-Register Onto Stack

Operation: l (IXL), SP - (SP) - 0001
l(IXH), SP-(SP)-OOOI

PSHX

Description: The contents of the index register is pushed onto the stack at the address con­
tained in the stack pointer. The stack pointer is decremented by 2.

Condition
Codes: Not affected.

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. I Oct. ' I Dec.

INH 4 1 3C I 074 I 060

A-63

PUL
Operation: sp:- (SP) + 0001

tACCX

Pull Data from Stack PUL

Description: The stack pointer is incremented. The ACCX is then loaded from the stack, from
the address which,is·contained in the stack pointer.

Condition
Codes: Not affected.

Addressing
Formats: See Table A-4.

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. Oct. Dec.

A 4 1 32 062 050
B 4 1 33 063 051

A-64

PULX Pull X·Register From Stack

Operation: SP - (SP) + 1; t IXH
SP-(SP)+ 1; tIXL

PULX

Description: The index register is pulled from the stack beginning at the current address con­
tained in the stack pointer + 1. The stack pointer is incremented by 2 in total.

Condition
Codes: Not affected.

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. I Oct. I Dec.

INH 5 1 38 I 070 I 056

A·65

ROL

Operation:

Description:

Condition
Codes:

Rotate Left ROL

b7 bO

Shifts all bits of ACCX or M one place to the left. Bit 0 is loaded from the C bit.
The C bit is loaded from the most significant bit of ACCX or M.

H: Not affected.
I: Not affected.
N:
Z:
V:

C:

Set if most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.
Set if, after the completion of the operation, (N is set and C is cleared) OR
(N is cleared and C is set); cleared otherwise.
Set if, before the:: operation, the most significant bit of the ACCX or M was
set; cleared otherwise.

Boolean Formulae for Condition Codes:
N=R7
Z = R7eR6eR.5eR4eR3eR2eRleRO
V=N E9C= [Nee] + [NeC]

(the foregoing formula assumes value of Nand C after the rotation)
C=M7

Addressing
Formats: See Table A-3.

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. Oct. Dec.

A 2 1 49 III 073
B 2 1 59 131 089

EXT 6 3 79 171 121
IND 6 2 69 151 105

A-66

ROR

Operation:

Description:

Condition
Codes:

Rotate Right ROR

w-~·I I
b7 bO

Shifts all bits of ACCX or M one place to the right. Bit 7 is loaded from the C
bit. The C bit is loaded from the least significant bit of ACCX or M.

H: Not affected.
I: Not affected.
N:
Z:
V:

C:

Set if most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.
Set if, after the completion of the operation, (N is set and C is cleared) OR
(N is cleared and C is set); cleared otherwise.
Set if, before the operation, the least significant bit of the ACCX or M was
set; cleared otherwise.

Boolean Formulae for Condition Codes:

Addressing
Formats:

N=R7
Z = R7eR6eR5eR4eR3eR2eRleRO
V = N ED C = [Nee] + [NeC]

(the foregoing formula assumes values of Nand C after the rotation)
C=MO

See Table A-3.

Addressing Modes, Execution Time, and Machine Code (HexadecimaI/OctaI/Decimal):

Addressing Execution Time
Number of Coding of First (or Only)

Bytes of Byte of Machine Code Modes (No. of Cycles)
Machine Code Hex. Oct. Dec.

A 2 1 46 106 070
B 2 1 56 126 086

EXT 6 3 76 166 118
IND 6 2 66 146 102

A-67

RTI Return from Interrupt

Operation: SP - (SP) + 0001, t CC
SP - (SP) + 0001, t ACCB
SP - (SP) + 0001, t ACCA
SP - (SP) + 000 1, t IXH
SP - (SP) + 0001, t IXL
SP - (SP) + 000 1, . t PCH
SP - (SP) + 0001, t PCL

RTI

Description: The condition codes, Accumulators B and A, the index register, and the program
counter, will be restored to a state pulled from the stack. Note that the interrupt
mask bit will be reset if and only if the corresponding bit stored in the stack is
zero.

Condition
Codes: Restored to the states pulled from the stack.

Addressing Modes, Execution Time, and Machine Code (HexadecimaI/OctaI/DecimaI):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cydes) Bytes of Byte of Machine Code
Machine Code Hex. I Oct. I Dec.

INH 10 1 3B I 073 J 059

Return from Interrupt
Example

Memory Machine Assembler

Location Code (Hex) Label Language Operand
Operator

A. Before
PC - $0066 3B RTI
SP - $EFF8

$EFF9 IIHINZVC (Binary)
$EFFA 12
$EFFB 34
$EFFC 56
$EFFD 78
$EFFE 55
$EFFF 67

B. After
PC $5567 •• ••• • ••••

$EFF8
$EFF9 I1HINZVC (Binary)
$EFFA 12
$EFFB 34
$EFFC 56
$EFFD 78
$EFFE 55

SP - $EFFF 67
CC = HINZVC (Binary)
ACCB = 12 (Hex)
ACCA = 34 (Hex)
IXH = 56 (Hex)
IXL = 78 (Hex)

A-68

RTS

Operation: SP - (SP) + 0001
tPCH
SP - (SP) + 0001
tPCL

Return from Subroutine RTS

Description: The stack pointer is incremented (by 1). The contents of the byte of memory, at
the address now contained in the stack pointer, are loaded into the 8 bits of high­
est significance in the program counter. The stack pointer is again incremented
(by 1). The contents of the byte of memory, at the address now contained in the
stack pointer, are loaded into the 8 bits of lowest significance in the program
counter.

Condition
Codes: Not affected.

Addressing Modes, Execution Time, and Machine Code (HexadecimaI/OctaI/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. J Oct. I Dec.

INH 5 1 39 ' I 071 I 057

Return from Subroutine

Memory Machine Assembler

Location Code (Hex) Label Language Operand
Operator

A. Before
PC $30A2 39 RTS
SP $EFFD

$EFFE 10
$EFFF 02

B. After
PC $1002 •• ••• • •••••

$EFFD
$EFFE 10

SP $EFFF 02

A-69

SBA

Operation:

Description:

Condition
Codes:

Subtract Accumulators SBA

ACCA - (ACCA) - (ACCB)

Subtracts the contents of ACCB from the contents of ACCA and places. the re­
sult in ACCA. The contents of ACCB are not affected.

H: Not affected.
I: Not affected.
N:
Z:
V:
C:

Set if most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.
Set if there is two's complement overflow as a result of the operation.
Carry is set if the absolute value of Accumulator B is larger than the
absolute value of Accumulator A; cleared otherwise.

Boolean Formulae for Condition Codes:
N=R7
Z = R7eR6eRSeR4eR3eR2eRleRO
V = A 7eB7eR7 + A7eB7eR7
C =A7eB7 + B7eR7 + R7eA7

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Bl'te of Machine Code
Machine Code Hex. T Oct. T Dec.

INH 2 1 10 I 020 T 016

A-70

SHC Subtract with Carry SHC

Operation: ACCX - (ACCX) - (M) - (C)

Description: Subtracts the contents of M and the contents of C from the contents of ACCX
and places the result in ACCX.

Condition
Codes: H: Not affected.

I: Not affected.
N: Set if most significant bit of the result is set; cleared otherwise.
Z: Set if all bits of the result are cleared; cleared otherwise.
V: Set if there is two's complement overflow as a result of the operation;

cleared otherwise.
C: Carry is set if the absolute value of the contents of memory plus previous

carry is larger than the absolute value of the accumulator; cleared otherwise.

Boolean Formulae for Condition Codes:

Addressing

N=R7
Z = R7-R6-R5-R4-R3-R2-RI-RO
V = X7-M7-R7 + X7-M7-R7
C = X7-M7 + M7-R7 + R7-X7

Formats: See Table A-I.

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Times Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. Oct. Dec.

AIMM 2 2 82 202 130
ADIR 3 2 92 222 146
A EXT 4 3 B2 262 178
AIND 4 2 A2 242 162
BIMM 2 2 C2 302 194
BDIR 3 2 D2 322 210
BEXT 4 3 F2 362 242
BIND 4 2 E2 342 226

A-7I

SEC

Operation:

Description:

Condition
Codes:

SetCaror

C Bit-l

Sets the C bit. in the condition code register.

H: Not affected.
I: Not affected.
N:Not affected.
Z: Not affected.
V: Not affected.
C: Set.

Boolean Formulae for Condition Codes:
C=l

Addressing Modes, Execution Time, and Machine Code (HexadecimaI/OctaI/Decimal):

Addressing Exec,udon Tlm,e ' Number of Coding of First (or Only)

Modes (No. of Cycles) , Bytes of Byte of Machine Code
Machine Code Hex. I Oct. I Dec.

INH 2 1 OD 1 015 -1 013

A'!"72

SEC

SEI SetInte~pt~ask SEI

Operation: I Bit- 1

Description: Sets the interrupt mask bit in the condition code register. When the I bit is set,
all maskable interrupts are inhibited and the MPU will recognize only a Non­
Maskable Interrupt (NMI) Request.

Condition
Codes: H: Not affected.

I: Set.
N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.

Boolean Formulae for Condition Codes:
1=1

Addressing Modes, Execution Time, and Machine Code (HexadecimaIlOctaI/DecimaI):

Addressing Execution Time Number of Coding of Fint (or Only)
Bytes of Byte of Machine Code Modes (No. of Cycles)

Machine Code Hex. T Oct. I Dec.
INH 2 1 OF I 017 I 015

A-73

SEV Set Two's Complement Overflow Bit

Operation: V Bit-l

Description: Sets the two's complement"overfiow bit in the condition code register.

Condition
Codes: H: Not affected.

I: Not affected.
N: Not affected.
Z: Not affected.
V: Set.
C: Not affected.

Boolean Formulae for Condition Codes:
V=l

Addressing Modes, Execution Time, and Macbine Code (HexadecimaI/OctaI/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. I Oct. I Dec.

INH 2 1 OB I 013 I 011

A-74

SEV

STA Store Accumulator STA

Operation: M-(ACCX)

Description: Stores the contents of ACCX in memory. The contents of ACCX remains un­
changed.

Condition
Codes: H: Not affected.

I: Not affected.
N: Set if the most significant bit of the contents of ACCX is set; cleared

otherwise.
Z: Set if all bits of the contents of ACCX are cleared; cleared otherwise.
V: Cleared.
C: Not affected.

Boolean Formulae for Condition Codes:

Addressing

N=X7
Z = X7eX6eXSeX4eX3.X2eXleXO
v=o

Formats: See Table A-2.

Addressing Modes, Execution Times, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. Oct. Dec.

AOIR 3 2 97 227 151
A EXT 4 3 B7 267 183
AINO 4 2 A7 247 167
B OIR 3 2 07 327 215
BEXT 4 3 F7 367 247
BIND 4 2 E7 347 231

A-7S

STD

Operation:

Description:

'Condition
Codes:

Store Double Accumulator STD

M:M + 1-(ACCO)

Stores the contents of double Accumulator A:B in memory. The contents of
ACCO remain unchanged.

H: Not affected.
I: Not affected.
N: Set if the most significant bit of the contents of ACCO is set; cleared

otherwise.
Z: Set if all bits of the contents of ACCO are cleared; cleared otherwise.
V: Cleared.
C: Not affected .

. Boolean Formulae for Condition Codes:
N=015
Z = 015-014-013-012-011-010-09-08-07-06-05-04-03-02-01-00
V=O

Addressing
Formats: See Table A-6.

Addressing Modes, Execution Time, and Macblne Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. Oct. Dec.

DIR 4 2 DD 335 . 221
EXT 5 3 FD 375 253
IND 5 2 ED 355 237

A-76

STS

Operation:

Description:

Condition
Codes:

M-(SPH)
M+ l-(SPL)

Store Stack Pointer STS

Stores the more significant byte of the stack pointer in memory at the address
specified by the program, and stores the less significant byte of the stack pointer
at the next location in memory, at one plus the address specified by the program.

H: Not affected. '
I: Not affected.
N: Set if the most significant bit of the stack pointer is set; cleared otherwise.
Z: Set if all bits of the stack pointer are cleared; cleared otherwise.
V: Cleared.
C: Not affected.

Boolean Formulae for Condition Codes:

Addressing
Formats:

N=SPH7
Z = (SPH7.SPH6.SPHS.SPH4.SPH3.SPH2.SPHl.SPH0)·

(SPL7.SPL6.SPLS.SPL4.SPL3.SPL2.SPLl.SPL0)
V=O

See Table A-6.

Addressing Modes, Execution Time, and Machine Code (HexadecimaI/OctaI/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. Oct. Dec.

DIR 4 2 9F 237 159
EXT 5 3 BF 277 191
IND 5 2 AF 257 175

A-77

STX

Operation:

Description:

Condition
Codes:

M-(lXH)
M+l-(lXL)

Store Index Register STX

Stores the more significant byte of the index register in memory at the address
specified by the program, and stores the less significant byte of the index register
at the next location in memory, at one plus the address specified by the program.

H: Not affected.
I: Not affected.
N: Set if the most significant bit of the index register is set; cleared otherwise.
Z: Set if all bits of the index register are cleared; cleared otherwise.
V: Cleared.
C: Not affected.

Boolean Formulae for Condition Codes:

Addressing

N=IXH7
Z=(IXH7.IXH6.IXlIS.IXH4.IXH3.IXH2.IXFll.IXHO)·

(IXL7.IXL6.IXLS.IXL4.IXL3.IXL2.IXLl.IXL0)
V=O

Formats: See Table A-6.

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decima)):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. Oct. Dec.

DIR 4 2 DF 337 223
EXT 5 3 FF 377 255
IND 5 2 EF 357 239

A-78

SUB Subtract SUB

Operation: ACCX - (ACCX) - (M)

Description: Subtracts the contents of M from the contents of ACCX and places the result in
ACCX.

Condition
Codes: H: Not affected.

I: Not affected.
N:
Z:
V:

C:

Set if most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.
Set if there is a two's complement overflow as a result of the operation;
cleared otherwise.
Set if the absolute value of the contents of memory are larger than the abso­
lute value of the accumulator; cleared otherwise.

Boolean Formulae for Condition Codes:

Addressing
Formats:

N=R7
.z = R7-R6-RS-R4-R3-R2-RI-RO
V = X7-M7-R7 + X7-M7-R7
C = X7-M7 + M7-R7 + R7-X7

See Table A-t.

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of' Cycles) Bytes of Byte of Machine Code
Machine Code Hex. Oct. Dec.

AIMM 2 2 80 200 128
ADIR 3 2 90 220 144
A EXT 4 3 BO 260 176
AIND 4 2 AO 240 160
BIMM 2 2 CO 300 192
BDIR 3 2 DO 320 208
BEXT 4 3 FO 360 240
BIND 4 2 EO 340 224

A-79

SUBD Subtract Double Accumulator SUBD

Operation:

Description:

Condition
Codes:

ACCO-(ACCO)-(M:M+ 1)

Subtracts the contents of M:M + 1 from the contents of double Accumulator D
and places the result in ACCD.

H: Not affected.
I: Not affected.
N:
Z:
V:

C:

Set if most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.
Set if there is a two's complement overflow as a result of the operation;
cleared otherwise.
Set if absolute value of the contents of memory is larger than the absolute
value of the accumulator; cleared otherwise.

Boolean Formulae for Condition Codes:

Addressing
Formats:

N=RIS
Z = RISeR14.RI3eRI2eRIIeRIOeRgeRSeR7eR6eRSeR4eR3eR2eRIeRO
V = DISeMISeRIS + DlSeMlSeRlS
C = DlSeMIS + MlSeRlS + RlSeOlS

See Table A-5.

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. Oct. Dec.

IMM 4 3 83 203 131
DIR 5 2 93 223 147
EXT 6 3 B3 263 179
IND 6 2 A3 243 163

A-SO

SWI Software Interrupt

Operation: PC-(PC) + 0001
l(PCL), SP-(SP) -0001
1 (PCH), SP - (SP) - 000 1
l(IXL), SP-(SP)-OOOI
l(lXH), SP-(SP) -0001
l(ACCA), SP-(SP) - 0001
1 (ACCB), SP - (SP) - 0001
l(CCR), SP-(SP) - 0001
1-1
PCH - (n - 0(05)
PCL - (n - 0004)

SWI

Description: The program counter is incremented (by 1). The program counter, index register,
and Accumulator A and B, are pushed onto the stack. The condition code regi­
ster is then pushed onto the stack, with condition codes H, I, N, Z, V, C going
respectively into bit positions 5 through 0, and the top two bits (in bit positions 7
and 6) are set (to the 1 state). The stack pointer is decremented (by 1) after each
byte of data is stored on the stack.

Condition
Codes:

The interrupt mask bit is then set. The program counter is loaded with the vector
(address) located at $FFFA:FFFB and instruction execution resumes at this loca­
tion.

H: Not affected.
1: Set.
N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.

NOTE:
This instruction is not affected by the I bit.

Boolean Formulae for Condition Codes:
1=1

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)
Bytes of Byte of Machine Code Modes (No. of Cycles)

Machine Code Hex. I Oct. I Dec.
INH 12 1 3F I 077 I 063

A-81

Software Interrupt
Example:

A.Be/ore:
CC = HINZVC (binary)
ACCB = 12 (Hex) IXH = 56 (Hex)
ACCA = 34 (Hex) IXL = 78 (Hex)

Memory Machine Assembler

Location Code (Hex) Label Language Opennd
Operator

PC $5566 3F SWI
SP - $EFFF

$FFFA DO
$FFFB 55

B. After:
PC - $D055
SP $EFF8

$EFF9 IIHINZVC (binary)
$EFFA 12
$EFFB 34
$EFFC 56
$EFFD 78
$EFFE 55
$EFFF 67

A-82

TAB

Operation:

Description:

Condition
Codes:

Transfer from Accumulator A to Accumulator B TAB

ACCB - (ACCA)

Moves the contents of ACCA to ACCB. The former contents of ACCB are lost.
The contents of ACCA are not affected.

H: Not affected.
I: Not affected.
N: Set if the most significant bit of the contents of the accumulator is set;

cleared otherwise.
Z: Set if all bits of the contents of the accumulator are cleared; cleared other­

wise.
V: Cleared.
C: Not affected.

Boolean Formulae for Condition Codes:
N=R7
Z = R7eR6eRSeR4eR3eR2eRle'RO
V=O

~ Addressing Modes, Execution Time, and Machine Code (HexadecimaI/OctaI/Decimal):

Addressing Execution Time Number of COdi~Of Fist (or Only)

Modes (No. of Cycles) Bytes of Byte 0 Machine Code
Machine Code Hex. I Oct. I Dec.

INH 2 1 16 I 026 I 022

A-83

TAP

Operation:

Transfer from Accumulator A to Condition Code Register

CCR-(ACCA)

Bit Positions
76543 10

ACCA

CCR

Carry-Borrow

Overflow ·(Two's Complement)

'------- Zero

'---------- Negative

'---------- Interrupt Mask

'----------- ·Half Carry

TAP

Description:· Transfers the contents of bit positions 0 through 5 of Accumulator A to the
corresponding bit positions of the condition code register. The contents

Condition
Codes:

of Accumulator A remain unchanged.

Set or reset according to the contents of the respective bits 0 through S of Accu­
mulator A.

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Byte of Byte of Machine Code
Machine Code Hex. I Oct. 1 Dee.

INH 2 1 06 I 006 I 006

A-84

TBA
Operation:

Description:

Condition
Codes:

Transfer from Accumulator B to Accumulator A TBA
ACCA - (ACCB)

Moves the contents of ACCB to ACCA. The former contents of ACCA are lost.
The contents of ACCB are not affected.

H: Not atTected.
I: Not atTected.
N: Set if the most significant bit of the accumulator is set; cleared otherwise.
Z: Set if all bits of the accumulator are cleared; cleared otherwise.
V: Cleared.
C: Not atTected.

Boolean Formulae for Condition Codes:
N=R7
Z = R7eR6eRSeR4eR3eR2eRleRO
V=O

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. I Od. I Dee.

INH 2 1 17 I 027 I 023

A-8S

TPA

Operation:

Transfer from Condition Code Register to Accumulator A

ACCA-(CCR)

Bit Positions

765432 0
ACCA

CCR

Carry-Borrow

'------ Overflow
(Two's Complement)

'"------ Zero

'"-------- Negative

'---------- Interrupt Mask

'------------ Half Carry

TPA

Descripdon: Transfers the contents of the condition code register to corresponding bit positions
o through 5 of Accumulator A. Bit positions 6 and 7 of Accumulator A are
effectively read as 1 'so The condition code register remains unchanged.

Condidon
Codes: Not affected.

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. I Oct. I Dec.

INH 2 1 07 I 007 I 007

A-86

-TST

Operation:

Description:

Condition
Codes:

(ACCX)-OO
(M)-OO

Test

Set condition codes Nand Z according to the contents of ACCX or M.

H: Not affected.
I: Not affected.

TST

N: Set if most significant bit of the contents of ACCX or M is set; cleared
otherwise.

Z: Set if all bits of the contents of ACCX or M are cleared; cleared otherwise.
V: Cleared.
C: Cleared.

Boolean Formulae for Condition Codes:

Addressing
Formats:

N=M7
Z = M7.M6.MS.M4.M3.M2.Ml·MO
v=o
C=O

See Table A-3.

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Macbine Code
Macbine Code Hex. Oct. Dec.

A 2 1 40 11S 077
B 2 1 SO 13S 093

EXT 6 3 70 17S 12S
INO 6 2 60 ISS 109

A-87

TSX Transfer from Stack Pointer to. Index Register TSX
Operation: IX - (SP) + 000 1

Description: Loads the index register with one plus the contents of the stack pointer. The con~·
tents of the stack pointer remain unchanged.

Condition
Codes: Not affected.

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. I Oct. I Dec.

INH 3 1 30 I 060 I 048

A-88

TXS Transfer from Index Register to Stack Pointer TXS

Operation: SP - (IX) - 0001

Description: Loads the stack pointer with the contents of the index register, minus one. The
contents of the index register remain unchanged.

Condition
Codes: Not affected.

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. I Oct. I Dec.

INH 3 1 35 I 065 I 053

A';'S9

WAI Wait for Interrupt WAI

Operation: PC - (PC) + 0001
l(PCL), SP-(SP)-OOOI
1 (PCH), SP - (SP) - 0001
l(lXL), SP - (SP) - 0001
1 (lXH) , SP - (SP) - 000 1
1 (ACCA), SP - (SP) - 0001
1 (ACCB), SP - (SP) - 0001
l(CCR), SP-(SP) -0001

Description: The program counter is incremented (by 1). The program counter, index register,
and Accumulators A and B, are pushed onto the stack. The condition code
register is then pushed onto the stack, with condition codes H, I, N, Z, V, C
going respectively into bit positions 5 through 0, and the top two bits (in bit
positions 7 and 6) are set (to the 1 state). The stack pointer is decremented (by 1)
after each byte of data is stored in the stack.

Condition
Codes:

The MPU then enters a "Wait State." The MPU leaves the Wait State when it
senses a Non-Maskable Interrupt (NMI) or, if the I-bit is clear, any Maskable
Interrupt (lRQ1 or IRQ2).
Upon leaving the Wait State, the MPU sets the I bit, fetches the vector (address)
corresponding to the interrupt sensed, and instruction execution is resumed at this
location.

H: Not affected.
I: Not affected until the 10th E-cycle of the interrupt sequence. It is set during

this cycle.
N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.

Addressing Modes, Execution Time, and Machine Code (Hexadecimal/Octal/Decimal):

Addressing Execution Time Number of Coding of First (or Only)

Modes (No. of Cycles) Bytes of Byte of Machine Code
Machine Code Hex. I Oct. I Dec.

INH 9 1 3E I 076 I 062

A-90

Table A-I. Addressing Formats

Addressing Mode of First Operand
Second Operation Accumulator A Accumulator B

IMMediate eee A #number eee B #number
eee A #symbol eee B #symbol
eee A #expression eee B #expression
eee A #'e eee B #'e

DIRect or EXTended eee A number eee B number
eee A symbol eee B symbol
eee A expression eee B expression

INDexed eee A X eee B X
eee Z,X eee B ,X
eee A number,X eee B number,X
eee A symbol,X eee B symbol,X
eee A expression,X eee B expression,X

Notes: 1. eee = mnemonic operator of source instruction.
2. "symbol" may be the special symbol ".".
3. "expression" may contain the special symbol ".".
4. Space may be omitted before A or B.

Applicable to the following source instructions:
ADe ADD AND BIT eMP
EOR LDA ORA SBe SUB

·Special symbol indicating the location counter or, equivalently,
the address of the opcode.

Table A-2. Addressing Formats

Addressing Mode of First Operand
Second Operand Accumulator A Accumulator B

DIRect or EXTended STA A number STA B number
STA A symbol STA B symbol
ST A A expression ST A B expression

INDexed STA A X STA B X
STA A,X STA B ,X
STA A number,X ST A B number,X
STA A symbol,X STA B symbol,X
ST A A expression,X ST A B expression,X

Notes: 1. "symbol" may be the special symbol ".".
2. "expression" may contain the special symbol ".".
3. Space may be omitted before A or B.

Applicable to the source instruction:

STA

·Special symbol indicating the location counter or, equivalently,
the address of the opcode.

A-91

Table A-3. Addressing Formats

Operand or
Formats Addressing Mode

Accumulator A eee A
Accumulator B eee B
EXTended eee number

eee symbol
eee expression

INDexed eee X
eee,x
eee number,X
eee symbol,X
eee expression,X

Notes: 1. eee = mnemonic operator of source instruction.
2. "expression" may contain the special symbol "*".
3. Space may be omitted before A or B.

Applicable to the following source instructions:

ASL ASR eLR eOM
LSL LSR NEG ROL

DEe
ROR

Table A-4. Addressing Formats

Operand Formats
Accumulator A eee A
Accumulator B eee B

Notes: 1. eee = mnemonic operator of source instruction.
2. Space may be omitted before A or B.

Applicable to the following source instructions:

PSH PUL

Table A-S. Addressing Formats

Addressing Mode Formats
IMMediate eee #number

eee #symbol
eee #expression
eee #'e

DIRect or EXTended eee number
eee symbol
eee expression

INDexed eee X
eee,x
eee number,X
eee symbol,X
eee expression,X

Notes: 1. eee= mnemonic operator of source instruction.
2. "symbol" may be the special symbol ".".
3. "expression" may contain the special symbol ".".

Applicable to the following source instructions:

INe
TST

ADDD epx LDD LDS LDX SUBD

·Special symbol indicating the location counter or, equivalently,
the address of the opcode.

A-92

Table A-6. Addressing Formats

Addressing Mode Formats
DIRect or EXTended eee number

eee symbol
eee expression

INDexed eee X
eee,x
eee number,X
eee symbol,X
eee expression, X

Notes: 1. eee= mnemonic operator of source instruction.
2. "expression" may contain the special symbol ".".

Applicable to the following source instructions:

JSR STD STS STX

Table A-7. Addressing Formats

Addressing Mode Formats
EXTended eee number

eee symbol
eee expression

INDexed eee X
eee,x
eee number,X
eee symbol,X
eee expression,X

Notes: 1. eee = mnemonic operator of source instruction.
2. "symbol" may be the special symbol ".".
3. "expression" may contain the special symbol ".".

Applicable to the following source instructions:
JMP

·Special symbol indicating the location counter or, equivalently,
the address of the opcode.

Table A-8. Addressing Formats

Addressing Mode Formats
RELative eee number

eee symbol
eee expression

Notes: 1. eee = mnemonic operator of source instruction.
2. "symbol" may be the special symbol ".".
3. "expression" may contain the special symbol ".".

Applicable to the following source instructions:

Bee Bes BEQ BGE BGT BHI BHS BLE BLO BLS
BLT BMI BNE BPL BRA BRN BSR Bve BVS

• Special symbol indicating the location counter or, equivalently,
the address of the opcode.

A-93/A-94

t::Jj
I -" t::Jj
I
tv

APPENDIXB
MC6801 OPERATION CODE MAP

MC6801 Microcomputer Instructions

Op ACC ACC
IND EXT

ACCA or SP ACCB or X

Code A B Imm Dir Ind Ext Imm Dir Ind

~ 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110

Lo 0 1 2 3 4 5 6 7 8 9 A B C 0 E

0000 0 ~ SBA BRA TSX NEG SUB

0001 1 NOP CBA BRN INS - CMP

0010 2 ~ ~ BHI PULA SBC

0011 3 ~ ~ BLS PULB COM SUBD ADDD

0100 4 LSRD ~ BCC DES LSR AND

0101 5 ASLD ~ BCS TXS BIT

0110 6 TAP TAB BNE PSHA ROR LDA

0111 7 TPA TBA BEQ PSHB ASR ~ STA ~ STA

1000 8 INX ~ BVC PULX ASL EOR

1001 9 DEX DAA BVS RTS ROL ADC

1010 A CLV / BPL ABX DEC ORA

1011 B SEV ABA BMI RTI -- ADD

1100 C CLC ~ BGE PSHX INC CPX LDD

1101 D SEC ~ BLT MUL TST BSR JSR ~ STD

1110 E CLI ~ BGT WAI ---- JMP LDS LDX

1111 F SEI ~ BLE SWI CLR ~ STS ~ STX

0 1 2 3 4 5 6 7 ~L9 _Al ~ __ _C_l ~ I E

C2J Undefined Opcode

Note: Certain opcodes provide duplicate instructions. These include: $05, ASLD and LSLD; $24, BCC and BHS; $25, BCS and BLO; and
$48, $58, $68, and $78, ASL and LSL.

Ext

1111

F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

I F

APPENDIX C
ASCII CONVERSION TABLE

Bits 4 through 6 0 1 2 3 4 5 6 7
,;'

0 NUL DLE SP 0 @ P I P
1 SOH DC1 ! 1 A 0 a q

2 STX DC2 " 2 B R b r

3 ETX DC3 # 3 C S c s

4 EOT DC4 $ 4 D T d t

5 ENO NAK % 5 E U e u

6 ACK SYN & 6 F V f v

Bits 0 through 3 7 BEL ETB
,

7 G W 9 w

8 BS CAN (8 H X h x
9 HT EM) 9 I Y i y

A LF SUB * J Z j z

B VT ESC + K [k {

C FF FS < L \ I I
I

D CR GS - = M] m }

E SO RS > N 1\ n -
F SI US / ? 0 - 0 DEL

C-l/C-2

Powers of 2

2" " 256 8
512 9

1 024 10
2048 11
4096 12
8192 13

16384 14
32768 15
65536 16

131 072 17
262 144 18
524288 19

1 048 576 20
2097 152 21
4 194 304 22
8388608 23

16777 216 24

APPENDIX D
SELECTED POWERS OF 2 AND 16

20 = 160

I
24 = 161

28 = 162

I
212 = 163

216 = 164

220 = 165
224 = 166

228 = 167

232 = 168

236 = 169

240 = 1610

244 = 1611

248 = 1612

252 = 1613

256 = 1614

I 260 = 1615

0-1/0-2

Powers of 16

16"

1
16

256
4096

65536
1 048 576

16777 216
268 435 456

4294 967 296
68719 476 736

1 099511 627776
17592 186044 416

281 474976 710656
4 503 599 627 370 496

72 057 594 037 927 936
1 152 921 504 606 846 976

" 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

APPENDIX E
THE MC68701 MICROCOMPUTER UNIT

E.I INTRODUCTION

The MC68701 Microcomputer Unit (MCU) is a monolithic computer that is nearly identical to the
MC6801 MCU. The primary difference is that the read-only memory (ROM) in the MC68701 con­
tains an unltraviolet (UV) Erasable Programmable Read-Only Memory (EPROM) instead of the
masked ROM available in the MC6801.

The ability to program the EPROM allows the MC68701 to be used in a variety of applications. The
MC68701 is particularly effective in:

• applications which are low in volume and do not warrant mask programming, and
• prototype equipment in which it is desired to debug the resident firmware before committing it

to an MC6801 masked ROM.
Note that in the former case, compatibility with the MC6801 is inherently achieved. Should the pro­
duct volume increase to economical levels, a mask programmed MC6801 could be substituted for
the MC68701 with minimal changes to the system.

The MC68701 includes a clock oscillator, microprocessor unit (MPU), 2048 bytes of EPROM, 128
bytes of RAM, serial communications interface (SCI), programmable timer, and input/output pins.
The resources, except for the EPROM, are identical to those of the MC6801. Because the MC68701
is so similar to the MC6801, this appendix will focus only on the differences between the two parts.

E.2 DIFFERENCES BETWEEN MC6801 AND MC68701 MCUs

The MC68701 contains 2048 bytes of Erasable Programmable Read-Only Memory (EPROM) which
replaces the 2048 bytes of Read-Only Memory (ROM) contained in the MC6801. The differences
between the two parts involve MC68701 features which support EPROM programming. The essen­
tial differences are: (1) the functional and electrical characteristics of the RESET pin, (2) the Mode 0
memory map, (3) mask options involving the ROM, and (4) the RAM Control Register ($14). Signal
timing and other detailed information are presented in the MC68701 Data Sheet. Symbolic values
used in this discussion - such as Vpp and tpp - are defined quantitatively in the MC68701 Data
Sheet.

E.2.1 MC68701 RESET/Vpp Pin

The RESET/Vpp pin for the MC68701 performs three functions: (1) it resets the microcomputer
when the pin voltage falls below VIL, (2) it is used as a control signal to capture the operating mode
of the MCU, and (3) it provides an input for an EPROM programming voltage (Vpp) at a max­
imum current of Ipp.

B-1

It is possible that an external Reset circuit for the MC6801 may not function with the MC68701 due
to the input current requirements. An external circuit designed for the MC68701, however, can be
designed to be compatible with the MC6801. For low volume applications, one should consider im­
plementing the reset circuit for the MC68701 and thus achieving dual compatibility.

Several Reset circuits can be designed for the MC68701 depending upon the objectives of the
designer. For example, a circuit could be designed for (a) both EPROM programming and normal
operation, (b) normal operation only, or (c) EPROM programming only. Three circuits designed for
(a) through (c) are shown in Figures E-1 through E-3, respectively. Each of the circuits has its advan­
tages and disadvantages.

A general purpose Reset circuit for the MC68701 is shown in Figure E-L The circuit provides the
capability of switch selecting the operating mode and enabling or inhibiting programming power.
Therefore, this circuit can be used to both program the EPROM and execute instructions from it
depending upon the position of S1. In designing the RESET circuit, the reader should note that the
current specifications (lin) for the MC68701 and MC6801 are significantly different with respect to
each other and with respect to whether or not the MC68701 is programming the EPROM.

In Figure E-1, compatibility between both MCUs with respect to lin is achieved by using a value of
V CC for V. A voltage of VIH must be achieved at the RESET /Vpp input at operating current, lin.
Assuming a voltage drop of 0.7 volt across the diode, 02, the voltage drop across the pullup
resistor, R2, must equal (V - VIH -0.7) volts. With a normal load current of lin, the value (ohms)
of the resistance, R2, can be calculated from

R2 = (V - VIH - O. 7)/(lin>

The principal advantage of this circuit is that it requires only a single power supply (V CC) except
when programming the EPROM. Its principal disadvantage is the high power consumption in both
the programming and normal modes due to amount of the current which must be sunk by the
RESET circuit.

When programming the EPROM is not a consideration, the circuit of Figure E-2 can be used. It uses
a single power supply and does not require the switch and diode of Figure E-1. However, it also
results in high power consumption due to the amount of the current which must be sunk by the
RESET circuit. Note this is the same RESET circuit recommended for the MC6801.

The advantages of the circuit in Figure E-3 are that it consumes less power and supports both nor­
mal operation and EPROM programming. However, its disadvantage is that Vpp is also required in
normal operation. When compared with the circuit of Figure E-1, one finds that the lower power
consumption is obtained by using a higher pullup voltage (Vpp instead of V) in series with a higher
resistance for R2. A clamping diode keeps the level at the RESET value in the "Normal" switch
position and maintains compatibility with the MC6801 RESET leakage current. The value of the
resistor, R2, is obtained by using lin (Vin High) for the RESET input and 2 milliamperes for the
clamping diode. This results in a (Vpp - VIH) voltage drop across the resistor with a current of (lin
+0.002) amperes or

R2=(Vpp- VIH)/(lin +0.002) ohms

E-2

VCC

R1

P2o-------4a-~--+---------------~8 P20 (PCG)

P21-----+--a~_I_--------------~9 P21 (PC1)

P22 _____ 4--+_ ... ______________ 1~O P22 (PC2)

Mode Control
Switches

D1

"Normal"
RESET--------~~ ____ ~--_<r_--__

v MC68701

D2

S1 __ --41~--~6 RESETIVpp

VppO~----~O~--~~--

"Program"

1: C

Notes:

1. Mode 0 as shown.
2. R1 = 10k ohms (typical).
3. The RESET time constant is equal to RC where R is the equivalent parallel resistance of R2 and

the number of res"istors (R 1) placed in the circuit by closed mode control switches.
4. D2= 1N914, 1 N4001 (typical).
5. If V = VCC, then R2= (VCC- VIH - O.7)/lin ohms to meet VIH for the RESET IVpp pin. Set­

ting V equal to V CC is also compatible with the M C6801. The RES ET time constant in this case
is approximately R2 xC.

6. Switch S1 allows selection of normal (RESET) or programming (Vpp) as the input to the
RESET IVpp pin. During switching, the input level is held at a value determined by a diode
(D2), resistor (R2) and input voltage (VI.

7. While S1 is in the "Program" position, RESET should not be asserted.
8. See Data Sheet for typical diode for D1.

Figure E·l. General Purpose MC68701 RESET Circuit

E-3

P20

P21

P22

RESET

VCC

R1

8
P20 (PCo)

9 P21 (PC1)

10
P22 (PC2)

VCC MC68701

Mode Control
Switches

R2

D

6
RESET/Vpp

T
C

Notes:

1. Mode 1 as shown.
2. R1';" 10k ohms (typical).
3. The RESET time constant is equal to RC where R is the equivalent parallel resistance of H2 and

the number of resistors (R1) placed in the circuit by closed mode control 'switches.
4. See Data Sheet for typical diode for D.
5. R2= V II=(VCC- VIH)/ljo ohms to meet VIH for the RESET IVpp pin. This is also compatible

with the MC6801. The RESET time constant in this case is approximately R2 xC.

Figure E·2. MC68701 RESET Circuit for Normal Operation

VCC

R1

P20
8

P20 (PCO)

P21 9 P2l (PC1)

P22 10
P22 (PC2)

VCC
MC68701

01 02

"Normal"
RESET--------~--~~._~--o_--__ _

S1 ~ ___ --tl ---6~ RESET /Vpp

VpPo-__ ~_c~--..

" Program"

R2

Notes:

1. Mode 0 as shown.
2. R1 = 10k ohms (typical).
3. The RESET time constant is equal to RC where R is the equivalent parallel resistance of R2 and

the number of resistors (R1) placed in the circuit by closed mode control switches.
4. 02= 1N914, 1N4001 (typical),
5. R2=V/I=(VpP-VIH)/Oin+0.OO2) ohms.
6. Switch S1 allows selection of normal (RESET) or programming (Vpp) as the input to the

RESET /Vpp pin. During switching, the input level is held at a value determined by R2 and
Vpp.

7. See Data Sheet for typical diode for 01.
8. The diode, 02, clamps the maximum RESET input voltage to (Vpp - VCC - 0.7) volts for com­

patibility with the MC6801.

Figure E-3. MC68701 RESET Circuit for EPROM Programming

E-S

E.l.l MC68701 Mode 0 Memory Map

In Mode 0, the interrupt vector area is changed from $FFFO through $FFFF (in the MC6801) to
$BFFO through $BFFF in the MC68701. Note that this is a static address assignment that does not
depend upon timing with respect to the RESET signal as does the MC6801 in Mode O. A Mode 0
memory map for the MC68701 is shown in Figure E-4. Table E-llists the MC68701 interrupt vector
locations in Mode O.

Table E·l. Mode 0 External Interrupt Vectors

Priority Location Interrupt Vector
Highest $BFFE:BFFF RESET

$BFFC:BFFD Non-Maskable Interrupt
$BFFA:BFFB Software Interrupt (SWI)
$BFF8:BFF9 IR01/lnput Strobe 3
$BFF6:BFF7 IR02ITimer Input Capture
$BFF4:BFF5 IR02ITimer Output Compare
$BFF2:BFF3 IR02ITimer Counter Overflow

Lowest $BFFO:BFF1 I R02/ SCI Interrupt

E.l.3 MC6801 Mask Options

When specifying the ROM mask for the MC67801, a mask option may be selected which
"relocates" the ROM to one of the following addresses: $C8OO, $0800, or $E8oo. Useful memory
maps which result from this mask option include Modes lR and 6R. Initial versions of the
MC68701, however, do not support either of these modes. Therefore, the current Data Sheet should
be referenced to determine availability.

NOTE
If attempting to emulate the MC6801 lR and 6R operating modes with an MC68701, a
current MC68701 Data Sheet should be referenced to determine if these modes are sup­
ported.

E.l.4 MC68701 RAM/EPROM Control Register (514)

The RAM/EPROM Control Register provides a function similar to the RAM Control Register in
the MC6801. The register contains four bits: STBY PWR, RAME, PPC, and PLC. The STBY
PWR and RAME bits are described in the discussion for the RAM Control Register (Section
3.1.5.1.3). In the MC68701, two additional control bits (PPC and PLC) are included in the
RAM/EPROM Control Register to facilitate programming the EPROM. The PLC and PPC bits
are readable in all modes but can be changed only in Mode O. The PLC bit can be written without
restriction in Mode o but operation of the PPC bit is controlled by the value of PLC. A description
of this register follows.

E-6

MC68701 0
Mode

Notes:

Multiplexed Test and
EPROM Programming Mode

MC68701 0
Mode

Internal Registers(1)

External Memory Space

Internal RAM(3)

External Memory Space

External Interrupt Vectors

External Memory Space

Internal EPROM

(1) Excludes the following addresses which can be used externally: $04, $05,
$06, $07, and $OF.

(2) There must be no overlapping of internal and external memory spaces to
avoid driving the data bus with more than one device.

(3) Assumes RAME (RAM Enable bit) is set.

Figure E-4. MC68701 Memory Map for Mode 0

E-7

Bit 0 PLC

Bit 1 PPC

Bits 2-5
Bit 6

Bit 7

MC68701 RAM/EPROM Control Register

765 4 3 2 1 o.

x I x I X I PPC I PLC I $14

The Programming Latch Control bit controls (a) a latch which captures the EPROM
address to be programmed and (b) whether the PPC bit can be cleared. The latch is trig­
gered by an MPU write to a location in the EPROM. This bit is set by Reset and can be
cleared only in Mode O. The PLC bit is defined as follows:

PLC = 0 EPROM address latch enabled; EPROM address is latched during MPU
writes to the EPROM.

PLC = 1 EPROM address latch is transparent.
The Programming Power Control bit gates power from the RESET /Vpp pin to the
EPROM programming circuit. PPC is set by Reset and whenever the PLC bit is set. It
can be cleared only if (a) operating in Mode 0, and (b) if PLC has been previously
cleared. The PPC bit is defined as follows:

PPC = 0 EPROM programming power (Vpp) enabled.
PPC= 1 EPROM programming power (Vpp) is not applied.

Unused.
RAME. RAM Enable bit. Refer to the RAM Control Register (Section 3.1.5.1.3).
STBY PWR. Standby Power bit. Refer to the RAM Contr~ Register (Section
3.1.5.1.3).

Note that if PPC and PLC are set, they cannot be simultaneously cleared as the result of a single
MPU write. The PLC bit must be cleared prior to attempting to clear PPC. If both PPC and PLC
are clear, setting PLC will also set PPC. In addition, it is assumed that Vpp is applied to the
RESET/Vpp pin whenever PPC is clear. If this is not the case, the results to the EPROM are
undefined.

E.3 DESCRIPTION OF INTERNAL EPROM PROGRAMMING CIRCUITRY

A block diagram of the internal EPROM programming circuitry is shown in Figure E-5. The
EPROM programming circuitry consists of (a) address and data latches (b) RAM/EPROM Control
Register, (c) RESET/Vpp programming power, and (d) associated control logic. The output data
buffer used for MPU reads of the EPROM is also shown for completeness.

Data associated with an MPU write to an EPROM address is always captured in an 8-bit data latch.
The II-bit EPROM address latch is transparent providing the PLC bit is set. When PLC is clear,
however, it latches the address during MPU writes to the EPROM. When Vpp is subsequently ap­
plied to the EPROM by clearing the PPC bit, the "1's" in the data latch are programmed into the
EPROM location specified by the address latch.

E-8

Programming power, Vpp, is used to program the EPROM and control some EPROM functions.
Whenever Vpp is applied to the RESET /Vpp pin, it is always provided to the EPROM control cir­
cuits. This could adversely affect the result of an EPROM MPU read.

NOTE
While Vpp is applied to the RESET /Vpp pin, the result of an EPROM MPU read is
undefined regardless of the operating mode or value of PPC.

E.4 PROGRAMMING THE MC68701 EPROM

Ultraviolet erasure will clear all bits of the EPROM to the "0" state. Note that this erased state dif­
fers from that of some other widely used EPROMs (such as the MCM68708) where the erased state
is a "1". The MC68701 EPROM is programmed by erasing it to "O's" and entering" 1 's" into the
desired bit locations.

When the MC68701 is released from Reset in Mode 0, a vector is fetched from location
$BFFE:$BFFF. This provides a method for an external program to obtain control of the microcom­
puter with access to every location in the EPROM.

To program the EPROM, it is necessary to operate the MC68701 in Mode 0 under the control of a
program· resident in external memory which can facilitate loading and programming of the
EPROM. After the pattern has been loaded into external memory, the EPROM can be programmed
as follows:

a. Apply programming power (Vpp) to the RESET/Vpp pin.
b. Clear the PLC control bit and set the PPC bit by writing $FE to the RAM/EPROM Control

Register.
c. Write data to the next EPROM location to be programmed. Triggered by an MPU write to the

EPROM, internal latches capture both the EPROM address and the data byte.
d. Clear the PPC bit for programming time, tpp, by writing $FC to the RAM/EPROM Control

Register and waiting for time, tpp. This step gates the programming power (Vpp) from the
RESET /Vpp pin to the EPROM which programs the location.

e. Repeat steps b through d for each byte to be programmed.
f. Set PPC and PLC by writing $FF to the RAM/EPROM Register.
g. Remove the programming power (Vpp) from theRESET/Vpp pin. The EPROM can now be

read and verified.

Because the erased state of an EPROM byte is $00, it is not necessary to program a location which is
to contain $00. Finally, it should be noted that the result of inadvertently programming a location
more than once is the logical OR of the data patterns.

*A monitor called PRObug™ is available in a masked ROM which can be used to load a pattern and then program it into the EPROM.
The monitor can be used with the MEX6801EVM Evaluation Module (see Appendix K). See PRObug manual for details. Motorola
Microsystems, 3102 N. 56th St., Phoenix, Arizona 85018.

E-9

A routine which can be used to program the MC68701 EPROM is shown in Figure E-6. This non­
reentrant routine requires four double byte variables named 1M BEG , IMEND, PNTR, and WAIT
to be initialized prior to entry to the routine. These variables indicate (a) the first and last memory
locations which bound the data to be programmed into the EPROM, (b) the first EPROM location
to be programmed, and (c) a quantity which can be used to generate the programming time delay.
The last variable, WAIT, takes into account the MCU input crystal (or TTL-compatible clock) fre­
quency to insure the programming time, tpp, is met. WAIT is defined as the number of MPU
E-cycles that will occur in the real-time EPROM programming interval, tpp. For example, if
tpp = SO milliseconds and the MC68701 is being driven with a 4.00 MHz TTL-compatible clock:

WAIT (MPU E-cycles) =tpp(MCU INPUT FREQ)/4x 106
= (SOOOO) (4 x 106)/4 x 106
=S()()()()

E.5 ERASING THE MC68701 EPROM

The MC68701 EPROM can be erased by exposing it to high-intensity ultraviolet light of a particular
wavelength. The erasure time is a function of the intensity of the light and the exposure time. The
MC68701 Data Sheet should be referenced for the details involved in selection of vendor equipment.

NOTE
The MC68701 transparent lid should always be covered with an opaque material after
erasing. This shields both the EPROM and dynamic light-sensitive nodes from uninten­
tional exposure to ultraviolet light.

E-I0

7

tr1
I --

Internal Addressl Data Bus

o 7 o 10

Buffer Data Latch

Latch:
0= Transparent
j= Latched

MC68701 EPROM ($F800-FFFF)

Notes:

1. PPC and PLC bits are set during Reset.
2. PPC and PLC can be changed only in Mode O.
3. PLC must already be clear in order to clear PPC.
4. Setting PLC will also set PPC.

Address Latch

5. Individual EPROM bits can be electrically set but not cleared. They
must be cleared (erased) using ultraviolet light.

6. Data from EPROM MPU reads are undefined when either (1) the PLC
bit is clear or (2) RESET/Vpp=Vpp.

o

Program 1 C

RAM/EPROM Control
Register ($14)

• ~ R/W
(. EPROM SEL

E

• RESET/Vpp

Control '-1------------'

Figure E-S. Block Diagram of MC68701 EPROM Programming Circuit

PAGE 001 EPROM .SA: 1 EPROM *** ROUTINE TO PROGRAM THE MC68701 EPROM ***

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058

NAM EPROM
OPT ZOI,LLEN=80
TTL *** ROUTINE TO PROGRAM THE MC68701 EPROM **

*
* E PRO M -- A NON-REENTRANT ROUTINE TO PROGRAM
* THE MC68701 EPROM.

*
*
*
*
*
*

THE ROUTINE PROGRAMS THE MC68701 EPROM
STARTING AT ADDRESS "PNTR" FROM A
BLOCK OF MEMORY STARTING AT "IMBEG"
AND ENDING AT "IMEND".

* CALLING CONVENTION:

*
* JSR EPROM

*
* NOTES:

*
* 1. THE ROUTINE" EXPECTS FOUR DOUBLE BYTE VALUES
* TO BE INITIALIZED PRIOR TO BEING CALLED.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

THESE VALUES ARE:

IMBEG = A DOUBLE BYTE ADDRESS WHICH POINTS
TO THE FIRST BYTE TO BE PROGRAMMED
INTO THE EPROM.

IMEND = A DOUBLE BYTE ADDRESS WHICH POINTS
TO THE LAST BYTE TO BE PROGRAMED IN­
INTO THE EPROM.

PNTR = A DOUBLE BYTE ADDRESS WHICH POINTS
TO THE FIRST BYTE IN THE EPROM TO BE
PROGRAMMED.

WAIT = A DOUBLE BYTE COUNTER VALUE WHICH IS
A FUNCTION OF THE MCU INPUT FREQUEN­
CY AND IS USED WITH THE OUTPUT COM­
PARE FUNCTION "TO GENERATE A 50 MSEC
TIMEOUT. IT IS EQUIVALENT TO

50000 * (MCU INPUT FREQ) / 4 * 10**6

VALUES FOR TYPICAL INPUT FREQS ARE:

WAIT

30615 ($7797)
50000 ($C350)
61375 ($EFBF)

Meu INPUT FREQ

2.45 MHZ
4.00 MHZ
4.91 MHZ

* 2. IT IS ASSUMED THAT POWER (VPP) IS AVAILABLE
* TO THE RESET PIN FOR PROGRAMMING.

*
* 3. THIS ROUTINE PERFORMS NO ERROR CHECKING.

*

Figure E·6. Programming the MC68701 EPROM: EPROM

E-12

PAGE 002 EPROM .SA:1 EPROM *** ROUTINE TO PROGRAM THE MC68701 EPROM ***

00060
00061
00062

* E QUA T E S

00063
00064
00065
00066
00067
00068

0008 A TCSR EQU
0009 A TIMER EQU
OOOB A OUTCMP EQU
0014 A EPMCNT EQU

00069
00070A 0080

* L 0 CAL

ORG
00071A 0080
00072A 0082
00073A 0084
00074A 0086
00075

0002 A IMBEG RMB
0002 A lMEND RMB
0002 A PNTR RMB
0002 A WAIT RMB

00076
00077
00078A 3000
00079A 3000 DE 84
00080A 3002 3C
00081A 3003 DE 80
00082
00083A 3005 3C
00084A 3006 86 FE
00085A3008 97 14
00086A 300A A6 00
00087A 300C DE 84
00088A 300E A7 00
00089A 3010 08
00090A 3011 DF 84
00091A 3013 86 FC
00092A 3015 97 14
00093

* EPROM

ORG
A EPROM LDX

PSHX
A LDX

EPR002 PSHX
A LDAA
A STAA
A LDAA
A LDX
A STAA

A
A
A

INX
S7X
LDAA
8TAA

$08
$09
SOB
$14

TIMER CONTROL/STAT REGISTER
COUNTER REGISTER
OUTPUT COMPARE REGISTER
RAM/EPROM CONTROL REGISTER

V A R I A B L E S

$80
2
2
2
2

START OF MEMORY BLOCK
LAST BYTE OF MEMORY BLOCK
FIRST BYTE OF EPROM TO BE PGM'D
COUNTER VALUE

S TAR T S HER E

$3000
PNTR

IMBEG

II$FE
EPMCNT
X
PNTR
X

PNTR
II$FC
EPMCNT

SAVE CALLING ARGUMENT
RESTORE WHEN DONE
USE STACK

SAVE POINTER ON STACK
REMOVE VPP, SET LATCH
PPC=l, PLC=O
MOVE DATA MEMORY-TO-LATCH
GET WHERE TO PUT IT
STASH AND LATCH
NEXT ADDR
ALL SET FOR NEXT
ENABLE EPROM POWER (VPP)
PPC=O, PLC=O

00094
00095

* NOW WAIT FOR 50 MSEC TIMEOUT USING OUTPUT COMPARE.

A
A

00096A 3017 DC 86
00097A 3019 D3 09
00098A 301B 7F 0008 A
00099A 301E DD OB A
00100A 3020 86 40 A
00101
00102A 3022 95 08 A EPR004
00103A 3024 27 FC 3022
00104A 3026 38
00105A 3027 08
00106A 3028 9C 82 A
00107A 30~A 23 D9 3005
00108A 302C 86 FF A
00109A 302E 97 14 A
00 llOA 3030 38
00111A 3031 DF 84
00112A 3033 39
00113

A

TOTAL ERRORS 00000--00000

LDD
ADDD
CLR
STD
LDAA

BITA
BEQ
PULX
INX
CPX
BLS
LDAA
STAA
PULX
STX
RTS
END

WAIT
TIMER
TCSR
OUTCMP
11$40

TCSR
EPR004

lMEND
EPR002
II$FF
EPMCNT

PNTR

GET CYCLE COUNTER
BUMP CURRENT VALUE
CLEAR OCF
SET OUTPUT COMPARE
NOW WAIT FOR OCF

NOT YET
SETUP FOR NEXT ONE
NEXT
MAYBE DONE
NOT YET
REMOVE VPP, INHIBIT LATCH
EPROM CAN NOW BE READ
RESTORE PNTR

THAT'S ALL

Figure E-6. Programming the MC68701 EPROM: EPROM (Concluded)

E-13/E-14

APPENDIX F
CYCLE-BY -CYCLE BUS ACTIVITY

Table F-l provides a detailed description of the information present on the Address Bus, Data Bus,
and the Read/Write (R/W) line during each cycle of each instruction.

The information is useful in comparing actual with expected results during debug of both software
and hardware as the program is executed. The information is categorized in groups according to ad­
dressing mode and number of cycles per instruction. In general, instructions with the same address­
ing mode and number of cycles execute in the same manner. Exceptions are indicated in the table.

Note that during MPU reads of internal locations, the resultant value will not appear on the external
Data Bus except in Mode O. "High order" byte refers to the most significant byte of a 16-bit value.

Address Mode &
Instructions

IMMEDIATE

ADC EOR
ADD LOA
AND ORA
BIT SBC
CMP SUB

LOS
LOX
LDD

CPX
SUBD
ADDD

DIRECT

ADC EOR
ADD LOA
AND ORA
BIT SBC
CMP SUB

STA

LOS
LOX
LDD

STS
STX
STD

CPX
SUBD
ADDD

JSR

2

3

4

3

3

4

4

5

5

Table F -1. Cycle-By-Cycle Operation

Address Bus

1 Op Code Address
2 Op Code Address + 1

1 Op Code Address
2 Op Code Adoress T 1
3 Op Code Address + 2

1 Op Cude Address
2 Op Code Addres!) + 1
3 Op Code Address + 2
4 Address Bus FFFF

1 Op Code Address
2 Op Code Address + 1
3 Address of Operand

1 Op Code Address
2 Op Code Address + 1
3 Destination Address

1 Op Code Address
2 Op Code Address + 1
3 Address of Operand
4 Operand Address + 1

1 Op Code Address
2 Op Code Address + 1
3 Address of Operand
4 Address of Operand + 1

1 Op Code Address
2 Op Code Address + 1
3 Operand Address
4 Operand Address + 1
5 Address Bus FFFF

1 Op Code Address
2 Op Code Address + 1
3 Subroutine Address
4 Stack Pointer
5 Stack Pointer -1

F-l

Data Bus

1 Op Code
1 Operand Data

1 Op Code
1 Operand Data (High Order Byte)
1 Operand Data (Low Order Byte)

1 Op Code
1 Operand Data (High Order Byte)
1 Operand Data (Low Order Byte)
1 ,Low Byte of Restart Vector

1 Op Code
1 Address of Operand , Operand Data

1 Op Code
1 Destination Address
0 Data from Accumulator

1 Op Code
1 Address of Operand
1 Operand Data (High Order Byte)
1 Operand Data (Low Order Byte)

1 Op Code
1 Address of Operand
0 Register Data (High Order Byte)
0 Register Data (Low Order Byte)

1 Op Code
1 Address of Operand
1 Operand Data (High Order Byte)
1 Operand Data (Low Order Byte)
1 Low Byte of Restart Vector

1 Op Code
1 Irrelevant Data
1 First Subroutine Op Code
0 Return Address (Low Order Byte)
0 Return Address (High Order Byte)

Address Mode &.
Instructi.ons

EXTENDED
JMP 3

ADC EOR 4
ADD LDA
AND ORA

BIT SBC
CMP SUB

STA 4

LDS 5
LDX

LDD

STS 5
STX

STD

ASL LSR 6
ASR NEG

CLR ROL

COM ROR
DEC TST
INC

CPX 6
SUBD

ADDD

JSR 6

Table F-l. Cycle-By-Cycle Operation
(Continued)

Address Bus

1 Op Code Address
2 Op Code Address +.1
3 Op Code Address + 2

1 Op Code Address
2 Op Code Address + 1
3 Op Code Address + 2

4 Address of Operand

1 Op Code Address
2 Op Code Address + 1

3 Op Code Address + 2

4 Operand Destination Address

1 Op Code Address
2 Op Code Address + 1

3 Op Code Address + 2

4 Address of Operand
5 Address of Operand + 1

1 Op Code Address
2 Op Code Address + 1

3 Op Code Address + 2

4 Address of Operand
5 Address of Operand + 1

1 I Op Code Address
2

I
Op Code Address + 1

3 Op Code Address + 2

4 Address of Operand
5 Address Bus FFFF
6 Address of Operand

1 Op Code Address
2 Op Code Address + 1

3 Op code Address + 2

4 Operand Address
5 Operand Address + 1
6 Address Bus FFFF

1 Op Code Address
2 Op Code Address + 1

3 Op Code Address + 2

4 Subroutine Starting Address
5 Stack Pointer

6 Stack Pointer - 1

F-2

Data Bus·

1 Op Code
1 Jump Address (High Order Byte)
1 Jump Address (Low Order Byte)

1 Op Code
1 Address of Operand
1 Address of Operand

(Low Order Byte)
1 Operan~ Data

1 Op Code
1 Destination Address

(High Order Byte)
1 Destination Address

(Low Order Byte)
0 Data from Accumulator

1 Op Code
1 Address of Operand

(High Order Byte)
1 Address of Operand

(Low Order Byte)
1 Operand Data (High Order Byte)
1 Operand Data (Low Order Byte)

1 Op Code
1 Address of Operand

(High Order Byte)
1 Address of Operand

(Low Order Byte)
0 Operand Data (High Order Byte)
0 Operand Data (Low Order Byte)

1 Op Code
1 Address of Operand

(High Order Byte)
1 Address of Operand

(Low Order Byte)
1 Current Operand Data
1 Low Byte of Restart Vector
0 New Operand Data

1 Op Code
1 Operand Address

(High Order Byte)
1 Operand Address

(Low Order Byte)
1 Operand Data (High Order Byte)
1 Operand Data (Low Order Byte)
1 Low Byte of Restart Vector

1 Op Code
1 Address of Subroutine

(High Order Byte)
1 Address of Subroutine

(Low Order Byte)
1 Op Code of Next Instruction
0 Return Address

(Low Order Byte)
0 Return Address

IIHiah Order Byte)

Address Mode &
Instructions

INDEXED

JMP

ADC EOR
ADD LOA
AND ORA
BIT SBC
CMP SUB

STA

LOS
LOX
LDD

STS
STX
STD

ASL LSR
ASR NEG
CLR ROL
COM ROR
DEC TST (1)
INC

CPX
SUBD
ADDD

JSR

3

4

4

5

5

6

6

6

Table F-1. Cycle-By-Cycle Operation
(Continued)

Address Bus

1 Op Code Address
2 Op Code Address + 1
3 Address Bus FFFF

1 Op Code Address
2 Op Code Address + 1
3 Address Bus FFFF
4 Index Register Plus Offset

1 Op Code Address
2 Op Code Address + 1
3 Address Bus FFFF
4 Index Register Plus Offset

1 Op Code Address
2 Op Code Address + 1
3 Address Bus FFFF
4 Index Register Plus Offset
5 Index Register Plus Offset + 1

1 Op Code Address
2 Op Code Address + 1
3 Address Bus FFFF
4 Index Register Plus Offset
5 Index Register Plus Offset + 1

1 Op Code Address
2 Op Code Address + 1
3 Address Bus FFFF
4 Index Register Plus Offset
5 Address Bus FFFF
6 Index Register Plus Offset

1 Op Code Address
2 Op Code Address .;- 1
3 Address Bus FFFF
4 Index Register + Offset
5 Index Register + Offset + 1
6 Address Bus FFFF

1 Op Code Address
2 Op Code Address + 1
3 Address Bus FFFF
4 Index Register + Offset
5 Stack Pointer
6 Stack Pointer - 1

F-3

Data Bus

1 Op Code
1 Offset
1 Low Byte of Restart Vector

1 Op Code
1 Offset
1 Low Byte of Restart Vector
1 Operand Data

1 Op Code
1 Offset
1 Low Byte of Restart Vector
0 Operand Data

1 Op Code
1 Offset
1 Low Byte of Restart Vector
1 Operand Data (High Order Byte)
1 Operand Data (Low Order Byte)

1 Op Code
1 Offset
1 Low Byte of Restart Vector
0 Operand Data (High Order Byte)
0 Operand Data (Low Order Byte)

1 Op Code
1 Offset
1 Low Byte of Restart Vector
1 Current Operand Data
1 Low Byte of Restart Vector
0 New Operand Data

1 Op Code
1 Offset
1 Low Byte of Restart Vector
1 Operand Data (High Order Byte)
1 Operand Data (Low Order Byte)

Low Byte of Restart Vector

1 Op Code
1 Offset
1 Low Byte of Restart Vector
1 First Subroutine Op Code
0 Return Address (Low Order Byte)
0 Return Address(High Order Byte)

Address Mode &
Instructions

INHERENT

ABA DAA SEC
ASL DEC SEI
ASR INC SEV
CBA LSR TAB
CLC NEG TAP
CLI NOP TBA
CLR ROL TPA
CLV ROR TST
COM SBA

ABX

ASLD
LSRD

DES
INS

INX
DEX

PSHA
PSHB

TSX

TXS

PULA
PULB

PSHX

PULX

2

3

3

3

3

3

3

3

4

4

5

Table F-l. Cycle-By-Cycle Operation
(Continued)

Address Bus

1 Op Code Address
2 Op Code Address + 1

1 Op Code Address
2 Op Code Address + 1
3 Address Bus FFFF

1 Op Code Address
2 Op Code Address +1
3 Address Bus FFFF

1 Op Code Address
2 Op Code Address +1
3 Previous Register Contents

1 Op Code Address
2 Op Code Address + 1
3 Address Bus FFFF

1 Op Code Address
2 Op Code Address +1
3 Stack Pointer

1 C'p Code Address
2 Op Code Address +1
3 Stack Pointer

1 Op Code Address
2 Op Code Address + 1
3 Address Bus FFFF

1 Op Code Address
2 Op Code Address + 1
3 Stack Pointer
4 Stack Pointer +1

1 Op Code Address
2 Op Code Address + 1
3 Stack Pointer
4 Stack Pointer-1
1 Op Code Address
2 Op Code Address + 1
3 Stack Pointer
4 Stack Pointer +1
5 Stack Pointer +2

F-4

Data Bus

1 Op Code
1 Op Code of Next Instruction

1 Op Code
1 Irrelevent Data
1 Low Byte of Restart Vector

1 Op Code
1 Irrelevant Data
1 Low Byte of Restart Vector

1 Op Code
1 Op Code of Next Instruction
1 Irrelevant Data

1 Op Code
1 Op Code of Next Instruction
1 Low Byte of Restart Vector

1 Op Code
1 Op Code of Next Instruction
0 Accumulator Data

1 Op Code
1 Op Code of Next Instruction
1 Irrelevant Data

1 Op Code
1 Op Code of Next Instruction
1 Low Byte of Restart Vector

1 Op Code
1 Op Code of Next Instruction
1 Irrelevant Data
1 Operand Data from Stack

1 Op Code
1 Irrelevant Data
0 Index Register (Low Order Byte)
0 Index Register (High Order Byte)
1 Op Code
1 Irrelevant Data
1 Irrelevant Data
1 Index Register (High Order Byte)
1 Index Register (Low Order Byte)

Address Mode &.
Instructions

INHERENT

RTS 5

WAI 9

MUL 10

RTI 10

SWI 12

Table F-l. Cycle-By .. Cycle Operation
(Continued)

Address Bus

1 Op Code Address
2 Op Code Address + 1
3 Stack Pointer
4 Stack Pointer +1

5 Stack Pointer +2

1 Op Code Address
2 Op Code Address + 1
3 Stack Pointer
4 Stack Pointer -1

5 Stack Pointer -2
6 Stack Pointer -3
7 Stack Pointer -4
8 Stack Pointer -5
9 . Stack Pointer -6

1 Op Code Address
2 Op Code Address +1
3 Address Bus FFFF
4 Address Bus FFFF
5 Address Bus FFFF
6 Address Bus FFFF
7 Address Bus FFFF
8 Address Bus FFFF
9 Address Bus FFFF
10 Address Bus FFFF

1 Op Code Address
2 Op Code Address + ,
3 Stack Pointer
4 Stack Pointer +1

5 Stack Pointer +2

6 Stack Pointer +3

7 Stack Pointer +4

8 Stack Pointer +5

9 Stack Pointer +6

10 Stack Pointer +7

1 Op Code Address
2 Op Code Address +1
3 Stack Pointer
4 Stack Pointer -1

5 Stack Pointer -2
6 Stack Pointer -3
7 Stack Pointer -4
8 Stack Pointer -5
9 Stack Pointer -6
10 Stack Pointer -7
11 Vector Address FFFA (Hex)

12 Vector Address FFFB (Hex)

F-5

Data Bus

1 Op Code
1 Irrelevant Data
1 Irrelevant Data
1 Address of Next Instruction

(High Order Byte)
1 Address of Next Instruction

(Low Order Byte)

1 Op Code
1 Op Code of Next Instruction
0 Return Address (Low Order Byte)
0 Return Address

(High Order Byte)
0 Index Register (Low Order Byte)
0 Index Register iHigh Order Byte)
0 Contents of Accumulator A
0 Contents of Accumulator B
0 Contents of Condo Code Register

1 Op Code
1 Irrelevant Data
1 Low Byte of Restart Vector
1 Low Byte of Restart Vector
1 Low Byte of Restart Vector
1 Low Byte of Restart Vector
1 Low Byte of Restart Vector
1 Low Byte of Restart Vector
1 Low Byte of Restart Vector
1 Low Byte of Restart Vector

1 Op Code
1 Irrelevant Data
1 Irrelevant Data
1 Contents of Condo Code Reg.

from Stack
1 Contents of Accumulator B

from Stack
1 Contents of Accumulator A

from Stack
1 Index Register from Stack

(High Order Byte)
1 Index Register from Stack

(Low Order Byte)
1 Next Instruction Address from

Stack (High Order Byte)
1 Next Instruction Address from

Stack (Low Order Byte)

1 Op Code
1 Irrelevant Data
0 Return Address (Low Order Byte)
0 Return Address

(High Order Byte)
0 Index Register (Low Order Byte)
0 Index Register (High Order Byte)
0 Contents of Accumulator A
0 Contents of Accumulator B
0 Contents of Condo Code Register
1 Irrelevant Data
1 Address of Subroutine

(High Order Byte)
1 Address of Subroutine

(Low Order Byte)

Address Mode 8t
Instructions

RELATIVE

BCC BHI BNE BlO
BCS BlE BPl BHS
BEQ BlS BRA BRN
BGE BlT BVC
BGT BMT BVS

BSR

3

6

Table F -1. Cycle-By-Cycle Operation
(Concluded)

Address Bus

1 Op Code Address
2 Op Code Address + 1
3 Address Bus FFFF

1 Op. Code Address
2 OpCode Address +1
3 Address Bus FFFF
4 Subroutine Starting Address
5 Stack Pointer
6 Stack Pointer -1

F-6

Data Bus

1 Op Code
1 Branch Offset
1 low Byte of Restart Vector

.

1 Op Code
1 Branch Offset
1 low Byte of Restart Vector
1 Op Code of Next Instruction
0 Return Address (low Order Byte)
0 Return Address(High Order Byte)

APPENDIX G
GLOSSARY

This glossary provides an explanation of terms found in the text and Data Sheet. While some terms
are very general, others are peculiar to the MC6801/MC6803/MC6803NR/MC68701. All terms are
equally applicable to all of these MPUs unless specifically excluded.

-aaaa-

absolute address The physical location of a byte as specified using either the direct or extended ad­
dressing modes.

access A read or write of a particular address.

access time During a MPU read bus cycle, it is the period of time from when address is valid on the
address bus until data is required to be valid.

ACIA (MC6850 Asynchronous Communications Interface Adapter) An M6800 Family device
which can be used to interface the MPU with devices utilizing an asynchronous NRZ serial format.

ACCA (Accumult(tor A) One of two MC6801 accumulators.

ACCB (Accumulator B) One of two MC6801 accumulators.

accumulator A register used to contain the result of arithmetic and logical operations. The MC6801
has two such 8-bit registers referred to as accumulator A and accumulator B. In addition, the A and
B accumulators can be concatenated to form a single 16-bit accumulator referred to as the D ac­
cumulator.

address A location defined by logic levels appearing on the address bus. The set of levels to which a
device will respond is known as the "address(es)" of the device.

address/input port An MC6801 Port 4 configuration (Modes 5 and 6) in which any or all Port 4
lines can be used as either (a) address outputs or (b) data inputs. The configuration of each bit is
determined its the corresponding bit in the Port 4 Data Direction Register (1 = output, 0 = input).

Address Strobe (See AS)

addressable Capable of being directly accessed using an MPU instruction. Bytes and double bytes'
are addressable in M6800 Family devices. Nibbles, bits, and values larger than two bytes are not
directly addressable.

0-1

address bus A set of conductors used to carry an address. With respect to the MC6801, the number
of lines is dependent upon the operating mode and configuration.

algorithm A step-by-step procedure which produces a specified result.

alphanumeric The set of letters (A-Z) and numerals (0-9).

AS (Address Strobe) An MC6801 output signal on the SCI pin in the expanded multiplexed modes
(0, 1, 2, 3 and 6). It can be used to control a transparent latch to de-multiplex the least significant
eight address lilies from the address/data bus.

ASCII (American Standard Code for Information Interchange) A code used in data communica­
tions to represent characters, numbers, and control characters. The code uses seven bits to define
128 possible characters.

assembler A computer program which converts assembly language programs into machine
language. If the machine language is not compatible with the computer w~ich executes the
assembler, it is called a "cross-assembler".

assert To make a signal "active" independent of whether the voltage is high or low.

-bbbb-

background In an interrupt-driven program, background is used to describe that portion of execu­
tion time during which the MPU is not responding to an interrupt. When responding to interrupts,
the program is said to be executing in "foreground".

backward reference With respect to an assembly language program, it refers to the use of a label in
the operand field which has already appeared in the label field of a prior statement.

baud A unit of data transmission speed. In this text, it is equivalent to "bits per second".

BCD (Binary Coded Decimal) A scheme for encoding the decimal digits, 0 to 9, in four bits which
range from binary 0000 to 1001. If two BCD digits are encoded ina single byte, it is referred to as
packed BCD. Unpacked BCD contains a single BCD digit per byte typically right justified.

binary A number system containing two digits: 0 and 1.

binary coded decimal (See BCD)

Bi-Phase One of two SCI serial communications format. In bi-phase format, the level toggles at the
start of each bit and, if the data is a "1", at the half-bit time. Bi-phase format is notable for its
relatively large tolerance of transmitter· and receiver clocking mismatch.

bit A unit of information having only two states. It is derived from binary and digit.

0-2

bit rate A term used in serial communications to describe the data rate. It is commonly expressed as
the number of bits per second.

bit time The reciprocal of the bit rate. The length of time devoted to a single bit in serial data.

Booth's Algorithm An algorithm for performing signed multiplication using a binary machine.

branch To cause execution of an instruction other than the next sequential one. This is implemented
by loading the Program Counter with the address of the branch destination. In the MC6801, a jump
instruction performs similar operation except that (I) branch instructions use the relative addressing
mode whereas jump instructions use extended or direct addressing and (2) branch instructions can
be made conditional whereas jump instructions can not.

break condition In asynchronous communications, a break condition is generated by holding the
communications line low for ten or more consecutive bit times.

buffer Temporary storage that is used to compensate for differences in data flow rates.

bug The result of a design or implementation error in either hardware or software.

bus A set of two or more parallel conductors which carry data.

bus arbitrator A circuit employed to determine which of two or more requesting devices is to be
given control of the bus.

bus cycle The bus activity which occurs between two successive negative edges of E (Enable).

byte A group of eight (typically) adjacent bits. A byte is the smallest quantity which can be directly
accessed using an MC6801 instruction.

-cccc-

Ca"y Bit (See C-bit)

C-bit (Ca"y Bit) Bit 0 of the Condition Code Register which is set when a carry-out or borrow oc­
curs during an arithmetic operation. The BCC and BCS instructions provide a branch based on the
value of the C-bit.

CCl :CCO (Clock Control) Bits 2 and 3 of the Rate and Mode Control Register which define the
following SCI variables: (a) the source of the serial clock, (b) the serial data format, and (c) whether
or not the internal bit rate clock will be supplied as an output.

CCR (Condition Code Register) A 6-bit register used to (a) control maskable interrupts, (b) control
conditional branches, (c) reflect the outcome of certain operations, and (d) adjust the results in BCD
additions.

0-3

character An element of an alphabet typically encoded into five to eight bits. The ASCII character
set is a 7-bit representation of characters.

chip A single unpackaged integrated circuit.

chip select An input signal for M6800 Family devices which indicates that the particular device is be­
ing addressed.

clear To initialize a bit or several bits to "0" in the MC6801. Bytes can be cleared using the CLR in­
struction. Selected bits can be cleared by using the AND instruction with a suitable mask.

c,lock A signal used for timing or a circuit which generates a timing signal.

CMOS (Complementary Metal Oxide Semiconductor) An integrated circuit technology character­
ized by low power consumption, and high device densities.

code In software, it is a term used to indicate instructions to a computer.

complement A value obtained by toggling each bit to its opposite state. This result is also called the
one's complement of the value.

concatenate To join together.

Condition Code Register (See CCR)

conditional branches An operation which could result in execution of an instruction other than the
next sequential one depending upon a bit or combination of bits in the Condition Code Register.

configuration With respect to the MC6801, it refers to a particular functionality of its pins and
registers. Some pin and register functionality is operating mode dependent.

coupler A MOSFET used in MOS circuits as a bi-directional transfer device. Enhancement mode
devices are used for couplers in the MC6801. If the gate input is high, the coupler is enabled ("()n")
and current flows through the device. If the gate input is low, it is not enabled ("off").

CPU (Central Processing Unit) That part of the MC6801 which is responsible for processing in­
structions. This term is equivalent to MPU in MC6801literature.

-dddd-

D accumulator An MC6801 16-bit accumulator consisting of the A accumulator concatenated with
the B accumulator. The A accumulator contains the most significant byte.

D flip-flop A device which transfers the level at the input (D) to the output (Q) in response to a
specified transition at its clock input (CLK).

0-4

Darlington drive cu"ent The current available (IOH) at a given voltage (V 0) which is used to drive a
Darlington transistor configuration.

data Unprocessed information.

data bus A collection of parallel lines used to transmit data between a processor and peripheral
devices. The MC6801 data bus consists of eight lines (00-07) and is controlled by a timing signal (E)
and a transfer direction signal (R/W).

data direction register (See DDR)

data port The MC6801 hardware elements required to perform data transfers using the data register
assigned to the port. When functioning as a data port, it is controlled by a data direction register and
the programmer has direct access to the port pins using the assigned data register.

Data Register A register used to perform data transfers with an external device. MC6801 registers
have a single address but are implemented using separate input and output registers. The
Read/Write line is used during an access to discriminate between the two registers.

DDR (Data Direction Register) A register used to define the direction of data transfer of each bit in
an associated data register. In all MC6801 Data Direction Registers, a "0" defines a bit (or pin) as
an input whereas a "1" defines it as an output.

debug To remove or correct bugs, or errors, in a system.

demultiplex To separate two or more signals which are transmitted at different times using common
lines. With respect to the MC6801, this term refers to separating the least significant eight lines of
the address bus (AO-A7) from the data bus(DO-D7). A control line, AS, is provided for this pur­
pose.

depletion mode transistor A field effect transistor (FET) which has appreciable channel current
when zero gate-source voltage is applied. Channel conduction can be increased or decreased by ap­
plication of a gate-source voltage of the correct polarity. In NMOS, a negative voltage is required to
decrease channel conduction to virtually zero.

direct addressing mode An addressing scheme in which the least significant byte of the address is ex­
plicitly contained in the second byte of the instruction and the most significant byte is implicitly $00.

double byte Two contiguous bytes which, taken jointly, define a 16-bit value. Double bytes are
stored in memory with the most significant byte having the lower address.

double byte reads/writes Accesses which involve two consecutive read or write bus cycles. Instruc­
tions which perform double byte reads include LOX, LDD, SUBD, ADDD, PULX, and LOS. In­
structions which perform double byte writes include ·STX, STS, PSHX, and STD.

duty cycle With respect to a square waveform, it is the ratio of the high time to the period, express­
ed as a percentage. A perfect square wave has a duty cycle of 50070.

G-S

dynamic offset An offset value used in the indexed addressing mode which is defined during execu­
tion as opposed to during assembly of the program. The MC6801 instruction, ABX, can be used to
obtain a dynamic offset.

-eeee-

E (Enable) A timing signal used to synchronize bus transfers. A bus cycle occurs between con­
secutive negative edges of E.

EA (Effective Address) An address obtained by evaluating the addressing mode specified by an in­
struction.

E-Cycle (Enable Cycle) The period of time between consecutive negative edges of E. All MC6801
timing data given as "cycles" is with respect to E unless otherwise specified.

edge-sensitive An attribute of an input circuit which provides a single response for a specified level
transition. Each subsequent response requires an additional transition. NMI and IS3 are MC6801
inputs which have this property.

effective address (See EA)

EICI (Enable Input Capture Interrupt) Bit 4 of the Timer Control and Status Register (TCSR).
EICI defines whether IRQ2 is asserted in response to a proper level transition on P20. If EICI is set,
IRQ2 is asserted while ICF is set. The I-bit must be clear to obtain an IRQ2 interrupt. Which level
transition is "proper" is defined by the IEDO bit.

Enable (See E)

enhancement mode transistor A field-effect transistor which has virtually no channel conduction
when a zero gate-source voltage is applied. Channel conduction can be increased by applying a gate­
source voltage of appropriate polarity. In NMOS, a positive voltage increases channel conduction.

EOCI (Enable Output Compare Inte""pt) Bit 3 of the Timer Control and Status Register (TCSR).
EOCI defines whether IRQ2 is asserted in response to a match between the Counter and Output
Compare Registers. If the bit is set, IRQ2 will be asserted while OCF is set. The I-bit must be clear in
order to obtain an IRQ2 interrupt.

EPROM (Erasable Programmable Read-Only Memory) A read-only memory which is both
erasable and programmable.

ETOI (Enable Timer Overflow Interrupt) Bit 2 of the Timer Control and Status Register (TCSR).
ETOI defines whether IRQ2 is asserted/when the Counter Register contains all ones (i.e., counter
overflow). If the bit is set, IRQ2 is asse~ted while TOF is set. The I-bit must be clear in order to ob­
tain an IRQ2 interrupt.

0-6

exclusive OR A boolean operation in which the outcome is "0" if both inputs are identical and" 1 "
if they are not. The EOR instruction implements this operation in the MC6801.

expanded multiplexed mode One of three fundamental operating modes of the MC6801 consisting
of Modes 0, 1, 2, 3, and 6. In this configuration, the MC6801 can access an expanded 64K address
space using a multiplexed address/data bus consisting of AO-A7 time multiplexed with 00-07. Port
4 provides A8-A15.

expanded non-multiplexed mode One of three fundamental operating modes of the MC6801 con­
sisting only of Mode 5. This mode can directly access an additional 256 bytes of external address
space using separate address (AO-A7) and data (00-07) buses.

EXTAL2 An MC6801 input pin which can be used as (a) one of two quartz crystal resonator inputs
with XT AL 1 providing the other input, or (b) an input for a TTL-compatible clock with XT AL 1
grounded.

extended addressing mode An addressing mode in which the effective address of the instruction is
explicitly specified in the second and third bytes of an instruction.

external address space The set of addresses which are not defined as internal to the MC6801 for a
given operating mode.

-ffff-

fall time The time required for a voltage level change from VIH to VIL (an input) or VOH to VOL
(an output).

falling edge A high to low level transition.

firmware Software that is implemented in hardware (e.g., EPROM or masked ROM).

fo (See 4fo)

foreground That portion of execution time in an interrupt-driven program which is used to service
interrupts. When not responding to interrupts, the program is considered to be operating in
"background.' ,

forward reference With respect to an assembly language program, it refers to the use of a label in
the operand field which has not yet appeared in the label field of a prior statement. When the
assembler has a forward reference in the operand field and it must choose between direct and ex­
tended addressing, the extended addressing mode will always be chosen.

4f 0 (Four times E-cycle Frequency from an External Clock) The frequency of an external TTL com­
patible clock which is connected to EXTALI. Note that fo is equal to the frequency of E.

0-7

framing error In asynchronous communications, it is the absence of a stop bit (" 1") in the tenth bit
time. It can occur only during serial reception and the SCI will set the ORFE bit to indicate this con­
dition. It can indicate either misframed data or a break condition.

full duplex The capability of transmitting and receiving data simultaneously.

fXTAL (Input Crystal Frequency) The frequency of a quartz crystal resonator used to drive the
MC6801. Note that the frequency of E is equal to fXTAL/4.

-gggg-

global variable A variable which can be accessed by all subroutines within a program.

-bbhh..;

H-bit (Half-carry bit) Bit 5 of the Condition Code Register (CCR). It is set during certain instruc­
tions (ADD, ADC, ABA) to indicate a half carry from bit 3 and is used only in the DAA instruction
to adjust the results of BCD addition.

half-carry bit (See H-bit)

half duplex The capability of transmitting and receiving but not simultaneously.

hardware vectored interrupts A mechanism for jumping directly to a device-dependent address
(vector) in response to an interrupt. The programmable timer and the SCI provide hardware vec­
tored interrupts using an internal priority encoder.

hexadecimal A number system which uses 16 as a base consisting of the digits 0 to 9 and the letters A
to F. The decimal values 10-15 are represented by the lestters A-F, respectively. The hexadecimal
system is used as a convenience in representing binary values. Each group of four binary digits can
be combined to form a single hexadecimal digit. Motorola assemblers and literature commonly use a
dollar sign ("$") prefix to indicate a hexadecimal value. For example, $23 is equivalent to 35
decimal.

high-impedance state A configuration in which a device acts as a negligible load. Devices capable of
being switched to this state are effectively disconnected from a bus. This is normally referred to as
the third state of a three-state device.

HMOS (High density, short-channel MOS) An integrated circuit technology characterized by its
high density and low power consumption. As a refinement of the NMOS technology, it can typically
achieve twice the circuit density and four times the speed-power product.

hold time The interval of time following a clock transition during which the logic levels must remain
constant in order to be reliably recognized.

0-8

·ilil·

I·bit (Interrupt Mask Bit) Bit 4 of the Condition Code Register (CCR). It is used to enable (if clear)
or mask (if set) IRQl and IRQ2 interrupts. It does not affect NMI interrupts or the SWI instruction
and is set during Reset and all interrupt sequences.

ICF anput Capture Flag) Bit 7 of the Timer Control and Status Register which is used to indicate
that a proper transition has occurred on the P20 pin. The Counter Register is also transferred to the
Input Capture Register when this occurs. Which transition is proper is defined by the IEDO bit.

idle bus cycle A bus cycle during which the MCU performs internal operations. Externally, most
idle bus cycles appear as an MPU read of the LSB of the Reset Vector ($FFFF). Data obtained from
an idle bus cycle is ignored.

IEDG (Input Edge) Bit 1 of the Timer Control and Status Register. IEDO is used to define which
edge of a signal present at P20 initiates the input capture function.

lin anput Load Current) anput Leakage Cu"ent) The maximum input or output current when
configured as an input. The input load current applies to Port 4 pins and IS3 which have internal
pullup resistors. The input leakage current applies to NMI, IRQl and RESET which are always con­
figured as inputs.

immediate addressing mode An MC6801 addressing mode in which the value of the operand - as
opposed to the address - is explicitly contained in the byte(s) which follow the opcode. The size of
the operand matches the size of the register specified as the destination.

inclusive OR A Boolean function in which the result is a "I" if any of the inputs is a "I"; other­
wise, the result is "0". The ORAA and ORAB instructions implement this function in the MC6801.

. index register A register used primarily to contain the address of (Le., point to) another location. In
the MC6801, the X (or IX) Register is used for this purpose.

indexed addressing mode An addressing mode which contains an unsigned offset byte in the second
byte of the instruction. The most significant byte of the offset is zero. The effective address of an in­
dexed instruction is computed by adding the offset to the current value of the index register. The in­
dex register remains unchanged during this operation.

indexing An addressing technique which uses a pointer to locate a memory operand. The pointer
address can be biased by an offset as an extension to this technique. See indexed addressing mode.

indirection A referencing technique which uses a pointer address to locate either (a) the address of
an operand or (b) another pointer address. Each pointer address in a path to the operand represents
a "level of indirection."

inherent addressing mode An addressing mode which does not require a memory operand and,
therefore, requires no bus access. Only internal register operands are specified by inherent address­
ing using single byte instructions. TSX, ABA, COMA, and NOP are examples of MC6801 inherent
instructions.

0-9

input capture junction A programmable timer function which transfers the current contents of the
Counter Register to the Input Capture Register in response to a proper level transition at P20.
Which transition is "proper" is controlled by the IE DO bit in the TCSR. The purpose of the input .
capture function is to facilitate measurement of elapsed time between external level transitions using
software.

input/output Data entered (input) or data received (output) from a computer.

instruction An MC6801 machine instruction consists of one to three consecutive bytes which define
a single operation. An instruction consists of an opcode byte and may be followed by one or two
bytes which define a memory-resident or immediate operand.

internal address space The set of addresses to which MC6801 internal devices respond. Internal ad­
dresses are a function of the operating mode and, in some cases, the RAME bit in the RAM Control
Register.

interrupt A control mechanism which suspends execution of a program, saves certain registers, and
transfers control to an interrupt routine. The suspended program can be resumed by restoring the
saved registers.

interrupt-driven A program control structure utilizing interrupts (as opposed to polling) to initiate
service to a device.

interrupt mask bit (See I-bit)

interrupt response time The elapsed time from assertion of the interrupt until the device is serviced.
The response time includes recognition of the interrupt and stacking the registers.

interrupt vector An address obtained during the eleventh and twelfth cycle of the MC6801 interrupt
sequence which is subsequently transferred to the Program Counter. Hence, instruction execution is
resumed at this address. Interrupt vectors are obtained from fixed addresses in either the internal or
external memory space depending upon the operating mode.

I/O (See Input/Output)

I/O Port One of four MC6801 ports which is controlled by a Data Direction Register and provides
direct access to the port pins using the Data Register. Ports 1 and 2 are always available as 1/0
ports. Ports 3 and 4 can be used as I/O ports in some operating modes.

IDS (Input/Output Select) The configuration of the SCI pin in Mode 5. lOS is an active low output
signal which is asserted whenever an address from $100 to $lFF (inclusive) appears on the internal
address bus. It should be used as an input to a chip select circuit for devices residing in the Mode 5
external address space. Note that internal addresses will also appear on the address bus.

IRQ} One of two types of maskable interrupts in the MC6801. IRQ 1 is an active low, level-sensitive
interrupt.

0-10

IRQ2 One of two types of MC6801 maskable interrupts. IRQ2 is an internal active low, level­
sensitive interrupt which is asserted internally by a certain combination of active high flags and in­
terrupt enable bits. This is indicated in the following Boolean equation where IRQ2 is active low:

IRQ2 = [(TOF.ETOI) + (OCF.EOCI) + (ICF.EICI)) + [(ORFE + RORF).RIE + (TORE.TIE)]

ISBB (Standby Cu"ent) The current consumption at" the maximum supply voltage (VSB) for VCC
Standby. The current will not exceed this value in the powerdown state (V CC Standby = V SBB).

IS3 (Input Strobe 3) The configuration of the SCI pin in the single chip modes (4 and 7). An IS3
negative edge always sets the IS3 FLAG bit as a response and can also be used to (a) latch data into
Port 3 if the LATCH ENABLE bit is set and/or (b) assert IRQl if the IS3 IRQl ENABLE bit is set.

IS3 FLA G (Input Strobe 3 Flag) Bit 7 of the Port 3 Control and Status Register. IS3 FLAG is set in
response to a negative edge on IS3. It is active only in Modes 4 and 7 and is cleared by a proper ac­
cess of the Port 3 Data Register °

IS3 IRQl ENABLE (Input Strobe 3 IRQl Interrupt Enable) Bit 6 of the Port 3 Control and Status
Register. If set, IRQl is asserted whenever IS3 FLAG is also set. It is active only in Modes 4 and 7.

ITSI (Three-state Input Cu"ent) The maximum allowable current (either as a source or a sink)
when the pin is configured as a high impedance input. This parameter applies to Ports 1, 2 and 3.

IX (See Index Register)

°wO -J -

jump To cause execution of aQ instruction other than the next sequential one. This is implemented
by loading the Program Counter with the address of the jump destination. This is very similar to a
branch operation. See branch for differences.

-kkkk-

K When referring to memory sizes, K is an abbreviation for 1024 decimal. The number of bits in a
64K bit RAM, therefore, is 65,536 decimal bits. It is also used here as an abbreviation for "kilo" or
1 ()()() decimal.

-1111-

label In the MC6801 Macroassembler, a label is a symbol which appears in the label field of an
assembly language statement. A label consists of one to six alphanumeric characters (upper case let­
ters A-Z, digits 0-9) and the three special characters, period (.), dollar ($) and underscore (_). A
label must begin with either a letter or period (.).

0-11

LA TeH ENABLE Bit 3 of the Port 3 Control and Status Register. It can be used to cause input
data to be latched into the Port 3 Data Register in Modes 4 and 7 in response to an IS3 negative
edge.

level-sensitive An attribute of an input circuit which results in a response to a level. If the level is not
removed or masked, it can cause continuous responses. IRQl and RESET are level-sensitive signals
in the MC6801.

LILbug™ The name of the firmware monitor mask programmed into the ROM of the MC6801Ll.
Commands and a source listing are included in the LILbug Manual. lie /

local variable A variable which can be accessed only by a given subroutine.

logic analyzer A device capable of capturing and displaying the bus signals for a given processor.

loop A control mechanism which causes a sequence of instructions to be repeated.

LSB (Least Significant Byte/Bit) That portion of a multi-byte/bit value which contains the least
arithmetic significance. Double byte values used in MC6801 instructions are situated in/memory
with the MSB having the lower address. /

LSI (Large Scale Integration) A term used to describe integrated circuits having an arbitrarily large
number of gates. LSI is the third category of four types of integrated circuits consisting of SSI
(Small scale integration), MSI (Medium Scale integration), LSI, and VLSI (Very Large Scale In­
tegration).

-mmmm-

machine code A sequence of one or more bytes which defines a single operation. MC6801 machine
codes consist of one to three bytes. Machine code is typically shown in hexadecimal format.

machine state A term used to describe the; contents of the MPU registers at a specified time. With
respect to the MC6801, the term usually eX:cludes the stack pointer (SP) and consists of: CCR, AC­
CA, ACCB, X, and PC. These registers are stacked during an interrupt sequence to save the
machine state. The stack pointer then points to where the machine state is saved. This procedure
allows a program to be interrupted and resumed.

macro In software, it defines a sequence of characters which is substituted into the program each
time it is invoked by a macroinstruction. The sequence can typically accept argument substitutions.
The purpose of a macro is to reduce the amount of programming effort required to generate similar
sequences of instructions.

*Motorola Semiconductor Products, Inc., Box 20912, Phoenix, Arizona 85036

0-12

macroinstruction A source language statement which causes a sequence of instructions defined by a
macro to be substituted into a program.

macroprocessor A program which is typically a module of an assembler and can be used to expand
macroinstructions into sequences of assembly language instructions. An assembler having this
capability is usually called a macroassembler.

mask A sequence of bits used as an operand in a Boolean operation. Mask is also sometimes used as
a synonym for "inhibit." When an IRQl interrupt is masked, for instance, it is inhibited. Mask is
also used to identify a photographic plate used in the manufacture of integrated circuits.

mask option Certain configuration options which may be chosen during specification of the
MC680l masked ROM.

MCU (Microcomputer Unit) A microcomputer implemented as a monolithic chip. It typically con­
sists of at least an MPU, ROM, RAM, and some form of 1/0.

MC6801Ll An MC680l which has the LILbug monitor mask programmed into the ROM. See the
LILbug manual for details.

MC6803 A microcomputer equivalent to an MC680l operating in Modes 2 or 3.

MC6803NR A microcomputer equivalent to an MC680l operating in Mode 3.

MC68701 A microcomputer which is nearly identical to the MC680l. The MC6870l includes a
2048-byte EPROM instead of a masked ROM which provides a method for debugging software.

memory mapA graphical illustration of the available addressable areas including annotations
which describe subareas of the space.

memory space The set of addresses which can be directly accessed by the address bus. This is
sometimes also referred to as the "physical' 'memory space.

Microcomputer Unit (See MCU)

Microcroprocessor (See MPU)

mnemonic An abbreviation for an operation which, by its appearance, makes details of the opera­
tion easier to remember. LDAA, for example, is the assembler mnemonic for "load accumulator
A."

monitor A collection of routines which typically provide a uniform method of inputloutput and
certain debugging functions.

MPU (Microprocessor Unit) A Central Processing Unit (CPU) implemented with LSI technology.

MPU Read Any bus cycle during which the RIW line is high. MC680l instructions LDAA and TST
both perform MPU reads.

0-13

MPU Write Any bus cycle during which the R/W line is low. MC6801 instructions ST AA and COM
both perform MPU writes.

MOS (Metal Oxide Semiconductors) An integrated circuit technology characterized by its high den­
sity and low power consumption. Subcategories of MOS include CMOS, HMOS, NMOS and
PMOS.

MSB (Most Significant Byte/Bit) That portion of a multi-byte/bit value which contains the most
arithmetic significance. The MSB of values used in MC6801 double byte instructions are situated in
memory witH the MSB having the lower address.

multiplex To use the same set of lines to carry more than one signal. In the MC6801 expanded
multiplexed modes, eight Port 3 pins are used for both address (AO-A7) and data (00-07).

-0000-

N-bit Bit 3 of the Condition Code Register. The N-bit is set according to the most significant bit of
the result in certain operations. Operation of the BPL and BMI instructions is controlled by the
N-bit.

negate To form the two's complement of a value. The MC6801 NEG instruction performs this
operation. Negate is also used to indicate the inactive state of a signal independent of whether the
voltage is high or low.

negative edge A high-to-Iow level transition.

nested An operation which is repeated while performing a similar operation. For example, a nested
interrupt is an interrupt taken while servicing a prior interrupt. A nested loop isa loop within a loop.

nibble A quantity consisting of a half-byte, or 4 bits.

NMI (Non-Maskable Interrupt) An MC6801 edge-sensitive non-maskable interrupt input.

NMOS (N-channel Metal Oxide Semiconductor) An integrated circuit technology noted for its high
density.

NRZ (Non-Retum to Zero) Oile of two MC6801 serial communications formats. IN NRZ format,
the level throughout each bit time represents the value of the data.

-0000-

object code An output of an assembler or compiler. Typically, it contains information pertaining to
where the program is to reside in memory along with some representation of the machine code.

OCF (Output Compare Flag) Bit 6 of the Timer Control and Status Register. OCF is set when the
contents of the Output Compare Register matches the Counter Register.

G-14

offset byte The second byte of machine code in all instructions which use either the indexed or
relative addressing modes. The offset byte is added to the current value of the index register (indexed
addressing mode) or program counter (relative addressing mode) to obtain the effective address of
the instruction.

OL VL (Output Level) Bit 0 of the Timer Control and Status Register. OL VL is used with the output
compare function to control an output waveform.

"1" In a binary system, a "I" refers to one of two possible states where "0" is the other state. In
positive logic, it refers to a logic high or "true" condition.

operand That which is operated on. In an assembly language statement, the operand field follows
the operation field, and defines both the addressing mode and the effective address. With respect to
machine language, it is those byte(s) which follow the opcode byte and specifies an immediate value,
offset, or an address.

operating mode One of eight possible MC680I configurations which is defined by the levels on P20,
P2I, and P22 on the positive transition of RESET.

opcode (operation code) The first byte of machine code in any MC680I instruction. The opcode
defines the type of operation, the register(s) involved, and the addressing mode.

ORFE (Overrun or Framing E"or) Bit 6 of the Transmit/Receive Control and Status Register.
ORFE is set by the SCI receiver to indicate either a receiver overrun or framing error. The type of er­
ror can be distinguished by noting the RDRF bit: if RDRF and ORFE are set, it indicates an over­
run. If ORFE is set and RDRF is not set, a framing error or break condition has occurred.

OS3 (Output Strobe 3) SC2 is configured as OS3 in Modes 4 and 7. It is an active low output which
is asserted by a proper access of the Port 3 Data Register. Which access is "proper" is defined by the
OSS bit.

OSS (Output Strobe Select) Bit 4 of the Port 3 Control and Status Register. OSS is active only in
Modes 4 and 7 and is used to define whether an OS3 output signal is to be generated by an MPU
write or an MPU read of the Port 3 Data Register.

Output Compare Register A I6-bit read/write register which is compared with the Counter Register
during each E-cycle. If a match is found between the two registers, the OCF bit is set. The Output
Compare Register can be used (1) with the OLVL bit to generate an output waveform or (2) without
regard to the OL VL bit to generate an interrupt after an elapsed time.

output level register A 0 flip-flop in the MC680I Programmable Timer for which the OLVL bit is
an input (D) and the clock (CLK) is an output compare pulse. Providing P2I is configured as an out­
put, the output of the flip-flop (Q) will appear at the pin. Note that the level of P2I reflects the value
of theOL VL bit during the last successful output compare.

overrun error An error which occurs due to a delayed response to the RDRF flag. An overrun error
occurs whenever a byte is ready to be transferred from the Receive Shift Register to the Receive Data
Register and RDRF is still set.

0-15

-pppp-

parasitic capacitance The capacitance inherent in a device by virtue of its fabrication.

PC (Program Counter) A 16-bit counter which alw~ys points to the first byte of the next instruction
to be executed. The register is incremented once for each instruction byte fetched.

PCO-PC2 (Program Control bits) Bits 5.;.7 of the Port 2 Data Register. These three bits reflect the
current operating mode of the MC6801 where PCO is the value latched from P20 on the positive
edge of RESET. The bits are read-only with one exception: Mode 5 can be irreversibly entered from
Mode 4 without going through Reset by writing a "1" to PCO in Mode 4.

PD (Power Dissipation) The maximum power required for powerup operation of the MC6801 in­
chiding both VCC and VCC Standby at maximum supply voltage and lowest temperature.

PDB (Peripheral Data Bus) The internal segment of the MC6801 Data Bus.

Peripheral Device A device which can be interfaced with a computer to provide some function.

Pij (Port i, bit j) A notational convention whereby an MC6801 pin is referred to by its port number
and bit position. P24, for example, indicates Port 2 bit 4.

PLC (Program Latch Control) Bit 0 of the MC68701 RAM/EPROM Control Register which is us­
ed to enable latching the EPROM address during programming.

polling A software technique involving a loop which checks (i.e., polls) the status bits of devices to
determine if service is required.

Port 3 Control and Status Register An 8-bit register which is active only in Modes 4 and 7. The bits
provide control and status information for Port 3 including operation of the IS3 and OS3 lines.

positive edge A low-to-high level transition.

PPC (Program Power Control) Bit 1 of the MC68701 RAM/EPROM Control Register which is
used to enable power from the RESET/Vpp pin to the EPROM during programming.

precharge The act of charging the capacitance of an internal node to a logic high during a particular
time interval. The output is then generated by discharge paths of those nodes whose values are to be
"0" . This technique is used to improve the speed at high capacitance nodes and decrease power con­
sumption.

priority encoder A device in which the output is based on a hierarchical order of inputs. The output
is the identity of the active input with the highest priority. A 74LS147 is an example of a priority en­
coder.

PRObug™ The name of an MC68701 monitor available in a masked ROM which can be used for
system development and EPROM programming. Consult the PRObug manual for details.·

·Motorola Microsystems, 3102 N. 56th st., Phoenix, Arizona 85018

0-16

program counter (See PC)

Programmable Timer One of the major modules of the MC6801 consisting of registers which imple­
ment the output compare function, input capture function, and the free running counter.

pullup resistor A resistor which connects a line to V CC. Its purpose is to provide a logic high when
no other device is driving the line. The value of the resistor is determined by the current capacity of
each device connected to the line. Values between 3K and 10K ohms are tyically used in MC6801
systems. Wire-OR configurations always require a pullup resistor and the value of the resistor must
be determined from the number and type of devices sharing the line.

push-pull driver A circuit which includes two transistors, a pullup resistor (which could have the
value zero), and a connection to ground. If the output is a "I", one of the two transistors conducts
and connects the output through a pullup resistor to VCC. If the output is a "0", the opposite tran­
sistor conducts and connects the output to VSS. Most of the MC6801 data port output drivers
employ this type of device.

PW ASH (Pulse Width Address Strobe High) Applies in Modes 0, I, 2, 3 and 6. It is the minimum
width of the logic high portion of the Address Strobe signal.

PWEH (Pulse Width E High) The minimum width of the logic high portion of E.

PWEL (Pulse Width E Low) The minimum width of the logic low portion of E.

PWRSTL (RESET Low Pulse Width) The minimum number of E-cycles for which the RESET line
must be held low during a Reset when operating in a powerup state. During initial powerup (from a
powerdown condition), however, RESET must be held low for tRC to provide time for the
oscillator to stabilize.

-rrrr-

RAM (Random Access Memory) A memory in which each location can be individually read or writ­
ten in any order.

RAM Control Register An MC6801 register used for controlling and determining the status of the
RAM. It includes the RAME and STBY PWR bits.

RAM/EPROM Control Register An MC68701 register used for controlling and determining the
status of the RAM and for programming the EPROM. It includes the RAME, STBY PWR, PPC,
and PLC bits.

RAME (RAM Enable bit) Bit 6 of the RAM Control Register. RAME defines whether the RAM is
included in the internal memory space of the MC6801. When set (and not in Mode 3), the RAM is
included in the internal memory space. When clear, the address space of the RAM is considered to
be external. The purpose of the bit is to inhibit undesirable accesses to the RAM during transition to
powerdown operation.

0-17

Rate and Mode Control Register (See RMCR)

RDRF (Receive Data Register Full) Bit 7 of the Transmit/Receive Control and Status Register.
When set, RDRF indicates that a byte has been transferred from the receive shift register to the
Receive Data Register.

RE (Receiver Enable) Bit 3 of the Transmit/Receive Control and Status Register. Setting RE
enables operation of the receiver section of the SCI.

read-modify-write instruction An instruction which fetches data from a memory location or
register, modifies it, and writes the modified version back. This type of instruction performs both an
MPU read and write to the same location. LSL, COM, and NEG are examples of MC6801 read­
modify-write instructions. These instructions have opcodes which range from $40 to $7F, inclusive­
ly, excepting JMP (see Appendix B).

read-only A property of a memory element which is to be read but not modified. Writes to the loca­
tion are allowed but have no affect on the value.

Read/Write (See R/W)

Receive Data Register An 8-bit read-only register which is used by the MPU to obtain data from the
SCI receiver after it has been converted to parallel format.

receive shift register An 8-bit shift register which is clocked by the bit rate clock and is used to con­
vert a serial data stream to parallel. The receive shift register is not directly addressable.

recursion A software technique which uses a procedure that invokes itself. For example, the follow­
ing instructions implement a recursive software delay loop:

LDAA
JSR
•
•

TIMOUT DECA
BEQ
BSR

OUT RTS

#VALUE
TIMOUT

OUT
TIMOUT

re-entrant routine A routine which is written in such a manner as to allow execution of it to be inter­
rupted, executed again by the interrupt service routine, and then be resumed without ill effects. Re­
entrant routines modify no local variables with absolute. addressing.

relative addressing mode An addressing mode in which the effective address is obtained by adding
an 8-bit signed offset byte to the current value of the Program Counter. This addressing mode is
used only for branches in the MC6801.

Reset To return a device or system to a defined state.

RESET An MC6801 active low level-sensitive input which causes a Reset sequence to be executed.

G-18

RESET/Vpp An MC68701 active low level-sensitive input which (1) resets the microcomputer
when the pin voltage falls below VIL, (2) is used as a control signal to capture the operating mode of
the MCU, and (3) provides an input for an EPROM programming voltage (VPP) at a maximum cur­
rent of Ipp.

Reset vector A 16-bit address which is loaded into the Program Counter in response to addresses
$FFFE and $FFFF in the first two E-cycles after RESET goes high. Hence, instruction execution
begins at the address obtained from $FFFE:FFFF.

RIE (Receiver Interrupt Enable) Bit 5 of the Transmit/Receive Control and Status Register. When
set, IRQ2 is asserted whenever RDRF and/or ORFE are set.

rise time The time required for a voltage level change from VIL to VIH (an input) or from VOL to
VOH (an output).

rising edge A low-to-high level transition.

RMCR (Rate and Mode Control Register) A 4-bit write-only register. It is used by the SCI to define
(a) the source of the serial bit rate clock, (b) the serial data format, (c) whether the internal bit rate
clock is to be provided as an output, and (d) if the internal clock is selected, the serial bit rate.

ROM (Read-Only Memory) A memory in which each location can be individually read in a random
order but not altered. Note that a RAM can be temporarily converted to a ROM by tieing the R/W
input line to a logic high through a switch. Typically, a ROM will retain its data in the absence of
power.

RX (Receiver Data) Serial data intended for the input to a receiver or the receiver, itself.

R/W (Read/Write) The configuration of SC2 in all operating modes except Modes 4 and 7. It is
used in MC6801 systems to control the direction of data bus transfers. When the level is high, it in­
dicates a memory-to-MPU transfer (MPU read) whereas a low level indicates an MPU-to-memory
(MPU write) transfer.

-ssss-

SCLK (Serial Clock) A bi-directionalline to the SCI (P22) which can be used to input an external
clock at eight times the desired bit rate or provide the internal bit rate clock as an output. Both func­
tions are controlled by the RMCR.

SCI (Serial Communications Interface) A major module of the MC6801 which provides the
capability to transmit and receive serial data in one of two formats, using several bit rates.

self-modifying instructions An instruction sequence which modifies itself as it executes. Such a se­
quence cannot be stored in ROM. Its use is generally considered poor programming practice due to
debugging and modification difficulties.

Serial Communications Interface (See SCI)

0-19

set To change the value of a bit or device to a "1" (logic high).

serial data Data presented one bit-at-a-time in sequence. The LSB is typically transmitted first.

setup time The minimum time that the correct logic level must be present prior to a clock transition
in order for it to be correctly recognized.

sligned A notational scheme which provides a numbering system that extends in both positive and
negative directions from zero. MC6801 signed values uses two's complement format. A negative
value is indicated by a "1" in the most significant position whereas a positive value contains a "0"
in this position. Note that a signed single byte can have a value from -128 to + 127 while a signed
double byte value has a range from - 32,768 to + 32,767.

single chip mode One of two operating modes (4 and 7) of the MC6801. Mode 4 is used for testing
while Mode 7 is used in single chip applications. Note that no external bus is provided in this mode.

source code The input to an assembler or compiler consisting of statements in the language being
assembled or compiled.

SP (Stack Pointer) A 16-bit register which always points to the next available location in a last-in­
first-out queue. The initial value of the stack pointer must be specified by the programmer. The
stack pointer is automatically decremented as data is pushed onto the stack and incremented as data
is pulled from it.

SCl (Strobe Controll) An MC6801 pin which is configured as an output in all modes except modes
4 and 7. In modes 0, 1, 2, 3, and 6, SCI provides Address Strobe (AS). In mode 5, it provides the
lOS signal. In modes 4 and 7, however, it is an input signal configured as IS3.

SCl (Strobe Control 1) An MC6801 pin which is configured as an output in all modes. In all modes
except 4 and 7, it provides the Read/Write (R/W) signal. In modes 4 and 7, it is configured as OS3.

SR flip-flop (Set/Reset flip-flop) A device having two inputs and a single output where only logic
high inputs affect the output. A logic high at the "set" input provides a logic high at the output
whereas a logic high at the "reset" input provides a logic low at the output. A logic low at both in­
puts produces no change in the output. However, if a logic high is presented to both inputs
simultaneously, the output state is undefined.

SSl :SSO (Speed Select bits) Bits 1 and 0 of the SCI Rate and Mode Control Register. They are write­
only bits which control the SCI bit rate only when using the internal bit rate clock.

stack A linear list in which all additions and deletions are made at one end of the list. This is
sometimes referred to as a last-in-first-out (LIFO) discipline. A stack is managed in hardware by the
MC6801 16-bit stack pointer (SP).

Stack Pointer (See SP)

0-20

standby RAM That portion of the RAM which is addressed from $80 through $BF. During a
powerdown state, data in this portion of the RAM can be kept valid by providing power to the V CC
Standby pin.

start bit With respect to asynchronous serial communications, it is the first negative transition
following an idle (mark) period. Following a framing error, however, a start bit is recognized
without the transition if the following bit is also a zero (space). The start bit is used to synchronize a
serial receiver with the data and is, by convention, always a "0". In SCI serial data transition, it is
followed by eight data bits and a single stop bit (" 1 ").

STBY PWR (Standby Power) Bit 7 of the RAM Control Register. The STBY PWR bit is used to
determine whether the power source to the standby portion of the RAM was sufficient to maintain
the data.

stop bit The last element using serial asynchronous protocol. The stop bit occurs during the tenth
bit time and is always a "1" . If the stop bit is not detected, a framing error or break condition exists.

subroutine linkage A scheme used to (a) transfer control to a subroutine, (b) transmit arguments to
the subroutine, (c) transmit the results to the caller, and (d) transfer control back to the caller. With
respect to the MC6801, the JSR and BSR instructions push the return address onto the stack and
pass control to a subroutine. The programmer must adopt a convention for argument passing in the
absence of a specified convention. Control can be returned to the caller by using the RTS instruction
to pull the return address from the stack into the Program Counter.

symbolic addressing A programming technique which utilizes symbols or labels to define addresses
as opposed to their actual value.

symbol With respect to the MC6801 Macroassembler, a symbol is used as a substitute for a specific
value. A symbol consists of from one to six alphanumeric characters (upper case letters A-Z, digits

. 0-9), and the special characters period (.), dollar sign ($), and underscore (_). A symbol must begin
with a letter or period (.).

-tttt-

tACCM (Expanded Multiplexed Read Access Time) During an MPU read, tACCM is the maximum
time from when the address bus is valid (AO-A15) to when data is required to be valid.

tACCN (Expanded Non-Multiplexed Read Access Time) During an MPU read, it is the maximum
time from when the address bus is valid (AO-A7) to when data is required to be valid.

tAD (Address Delay Time) The maximum time following the negative edge of E until R/W and
either A8-A15 (Expanded Multiplexed) or AO-A7 (Expanded Non-multiplexed) are valid.

tAH (Address Hold Time) The minimum time that the address bus remains valid after the negative
edge of E. Because addresses are typically used to generate external system chip selects, these signals
would also be affected at this time.

0-21

tAHL (Address Hold Timefor Latch) The minimum hold time for AO-A7 after the negative edge of
AS. This provides a hold time for latching AO-A 7 in the expanded multiplexed modes.

tAS (Address, RIW Setup Time before E) The minimum setup time before the positive edge of E
for RIW and either A8-A15 (Expanded Multiplexed) or AO-A7 (Expanded Non-multiplexed).

tASD (Address Strobe Delay Time) The time between the negative edge of E and the positive edge
of AS. This value represents the amount of time a peripheral device has to vacate the multiplexed
data bus before the MCV will begin to drive it with AO-A 7. This parameter is affected by the duty
cycle of the MCV input clock (4fo or fXTAL). (See Appendix I). The minimum value listed in the
Data Sheet for tASD corresponds to a 60070 duty cycle.

tASED (Address Strobe to Enable Delay Time) The time between a negative edge of AS and the
positive edge of E. This parameter is affected by the duty cycle of the MCV input clock (4fo or
fXTAL). (See Appendix I.) The minimum value given in the Data Sheet for tASED corresponds

. to a 40070 duty cycle.

tASF (Address Strobe Fall Time) The time required for AS to change from a logic high to a logic
low.

tASL (Address Setup Time for Latch) The minimum setup time for AO-A 7 to be valid before the
negative edge of AS. This provides a setup time for latching AO-A7.

tASM (AO-A 7 Setup Time before E) With respect to the Multiplexed Bus, it is the minimum setup
time before the positive edge of E that address lines AO-A7 are valid. Because A8-A15 are always
valid before this time, this represents the minimum setup time for the entire bus.

tASR (Address Strobe Rise Time) The time required for AS to change from a logic low to a logic
high.

tCMOS (Delay, E to Data Valid) Applies to Ports 1, 2, 3, and 4 Data Registers (except for P21)
only when configured as output data ports. During MPV writes, tCMOS is the time from the
negative edge of E to when the level reaches 70070 of the CMOS supply voltage. It should also be
noted that (a) Port 4 outputs cannot be pulled above the MC6801 supply voltage, and (b) a 10k ohm
pullup resistor is required for Port 2 when interfacing with CMOS.

TCSR (Timer Control and Status Regiser) An 8-bit register used to control and determine the status
of the MC6801 Programmable Timer.

tcyc (Bus Cycle Time) The period of an MCV bus cycle. It is equivalent to 4/fXTAL, 4/4fo, lifo or
liE.

tDD W (Data Delay Write Time) The maximum time after the positive edge of E until data is valid
during an MPV write cycle.

TDRE (Transmitter Data Register Empty) Bit 5 of the TransmitlReceive Control and Status
Register. When set, it indicates that the SCI transmitter is ready for more data. TDRE is cleared
by reading TDRE and writing a byte to the Transmit Data Register.

0-22

tDSR (Data Setup Time for Read) The minimum MCU data setup time for an MPU read that must
be provided by a peripheral device before the negative edge of E.

TE (Transmit Enable) Bit 1 of the Transmit/Receive Control and Status Register. When set, it in­
itializes the SCI transmitter and enables operation of the transmitter.

tEF (Enable Fall Time) The time required for E to change from a logic high to a logic low.

tER (Enable Rise Time) The time required for E to change from a logic low to a logic high.

t HR (Data Hold Time for Read) During an MPU read, it is the minimum time following the
negative edge of E during which a peripheral is expected to hold the data valid.

tHw(Data Hold Tlmefor Write) For an MPU write, it is the minimum time following the negative
edge of E during which the MCU will keep the data valid.

TIE (Transmit Interrupt Enable) Bit 3 of the Transmit Receive Control and Status Register. When
set, it asserts IRQ2 whenever the TDRE bit is set; otherwise, the interrupt is inhibited.

tIH (Input Data Hold Time) Applies only in Modes 4 and 7 when port 3 is configured as a latched
input data port (LATCH ENABLE bit is set). It is the minimum time after the negative edge of IS3
that data must remain valid to insure latching the correct logic levels into the Port 3 data register.

timer overflow Timer overflow occurs when the I6-bit Counter Register contains $FFFF. The TOF
bit is set to reflect this condition.

TIN (Timer Input) An input to P20 which is connected to the MCU input capture edge detector.

tIS (Input Data Setup Time) Applies only in Modes 4 and 7 when Port 3 is configured as a latched
input data port (LATCH ENABLE bit is set). It is the minimum time prior to the negative edge of
IS3 that data must be held valid to insure latching the correct logic levels into the Port 3 data
register.

tMPH (Mode Programming Hold Time) The minimum time after the positive edge of RESET that
the mode programming levels must remain valid to insure correct recognition.

tMPS (Mode Programming Setup Time) The minimum time before the positive edge of RESET
that the mode programming levels must remain valid to insure correct recognition.

TOF (Timer Overflow Flag) Bit 5 of the Timer Control and Status Register. TOF is set when the
I6-bit Counter· Register contains $FFFF.

toggle To change the value of a bit or byte to its opposite state.

TOUT (Timer Output) An output from the output level register to P2I. The value of the OL VL bit
is clocked to this unaddressable register during a successful output compare. It is provided as an
MCU output if P2I is defined as an output by bit 1 of the Port 2 Data Direction Register.

0-23

tpcs (Processor Control Setup Time) The minimum time prior to the negative edge ofE that inter~
rupts and RESET must be valid to be recognized during that E-cycle.

Transmit Data Register An 8-bit write-only register used to provide data to the SCI transmitter.

tRC (Oscillator Stabilization Time) The minimum time which RESET must be held low from a
powerdown state (initial startup). This provides time for the MC6801 internal oscillator to stabilize.
After a powerup condition has been established, RESET must be held low for a minimum . of
PWRSTL cycles.

tOSDl (First Edge Delay Time, E to OS3) A timing parameter associated with OS3 (Modes 4 and
7). It is the delay time between the first positive edge of E following a proper access of the Port 3
Data Register and the negative edge of OS3. Which access (read or write) is proper is. defined by the
OSS bit.

tOSD2 (Second Edge Delay Time, E to OS3) A timing parameter associated with OS3 (Modes 4 and
7). It is the delay time between the second positive edge of E following a proper access of the Port 3
Data Register and the positive edge of OS3.Which access (read or write) is proper is defined by the
OSS bit.

tPDH (Peripheral Data Hold Time) Applies to Ports 1, 2, 3, and 4 only when configured as input
data ports. With respect to Ports 1, 2, and 4, it is the required hold time after the positive edge of E
during the MPU read of the port Data Register. With respect to Port 3, it applies only to unlatched
operation in Modes 4 or 7 (LATCH ENABLE bit = 0) and is the required hold time after the nega­
tive edge of E with respect to the end of an MPU read cycle of the Port 3 Data Register.

tPDSU (Peripheral Data Setup Time) Applies to Ports 1,2, 3, and 4 only when configured as input
data ports. With respect to Ports 1,2, and 4, it is the required setup time before the positive edge of
E during an MPU read of the port Data Register. With respect to Port 3, it applies only to unlatched
operation in Modes 4 or 7 (the LATCH ENABLE bit is clear) and is the required setup time prior to
the negative edge of E at the end of an MPU read of the Port 3 Data Register.

tpp (Programming Time) The minimum interval during which the address, data, and programming
power (Vpp) must remain constant when programming the MC68701 EPROM.

t PWD (Delay Time, E to Data Valid) Applies to Ports 1, 2, 3, and 4 when configured as output data
ports. tpWD is specified as the delay from the negative edge of E at the end of the port MPU write
cycle to' when the data is valid at the output pins of the port.

tPWIS (IS3 Pulse Width) Applies only in Modes 4 and 7. It refers to the minimum width of an ac­
tive low IS3 input pulse to insure recognition.

transmit shift register An 8-bit shift register which converts parallel data from the Transmit Data
Register into serial format. This register is not addressable.

transparentiatch A device in which the outputs are the same as the inputs (i.e., transparent) until
the latching feature is activated. When this occurs, the outputs will remain fixed to the value of the
inputs. The MC6882 and 74LS373 are representative of this type of latch.

0-24

TRCSR (Transmit/Receive Control and Status Register) An 8-bit register used to control and deter­
mine the status of the MC6801 Serial Communications Interface.

two's complement A scheme for which negative values are formed from their corresponding
positive values by complementing every bit and then adding one to the result. MC6801 instructions
use this form of representing numbers.

TX (Transmit) A transmitter or serial data which is the output of a transmitter.

-uuuu-

unsigned A numbering scheme which contains no negative value and extends from 0 to a positive
number limited by the number of bits used to represent the number. Note a single byte can represent
any unsigned integer from 0 to 255 while a double byte can range from 0 to 65,535.

upward compatible Compatibility which implements all features of its predecessor. The MC6801 is
upward compatible with the MC6800 with respect to both source and object code. However, the
MC6801 executes some instructions with fewer cycles which may require some MC6800 execution
time-dependent sequences (e.g., software timing loops) to be modified.

-vvvv-

VCC (MCU Supply Voltage) One of two MC6801 power supply pins. The VCC pin provides all
MC6801 power except to the standby portion of the RAM and RAM Control Register. In the
MC68701 V CC does not furnish power to the EPROM control circuits or to the EPROM itself (this
voltage is furnished by the RESET /Vpp pin). V CC is a traditional term for the supply voltage
which has been borrowed from TTL terminology. With respect to MC6801 documentation, it is
synonomous with the MOS term, VOO.

V CC Standby (Standby Power Supply Voltage) Power to the MC6801 standby portion of the RAM
and RAM Control Register is connected to the VCC Standby pin. (See VCC.)

VDD (Supply Voltage) An MOS term which specifies the supply voltage. In MC6801 documenta­
tion it can be considered as synonomous with the TTL term Vce.

V-Bit (Overflow bit) Bit 1 of the Condition Code Register. When set, it indicates that a two's com­
plement overflow has occurred during a preceding operation.

vector An address stored in memory which is transferred to the Program Counter in response to
either an interrupt or Reset. The vector is usually named after the condition which causes it to be
loaded (e.g., a Reset vector).

V 1H (Input Voltage for a Logic High) The minimum input voltage which will be recognized as a
logic high. The maximum voltage should not exceed V CC to prevent potential damage to the MCU.

0-25

VIL (Input Voltage for a Logic Low) The maximum input voltage which will be recognized as a
logic low. The minimum voltage should not be less than V SS to prevent potential damage to the
MCU.

VLSI (Very Large Scale Integration) An integrated circuit containing a very large number of gates
as opposed to a circuit using smaller scale technology (LSI, MSI, or SSI).

VMPDD (Mode Programming Diode Differential) Applies when programming the mode with
diodes. VMPDD is the minimum voltage difference between a Port 2 logic low for mode program­
ming (VMPL) and the RESET voltage level at the point when the mode logic level is latched. The di­
ode forward voltage cannot exceed VMPDD minimum.

VMPL (Mode Programming Input Voltage Low) The maximum input voltage to P20, P21, and/or
P22 which will be recognized as a logic low when programming the MC6801 operating mode. Note
that this value is not identical to VIL.

VMPH (Mode Programming Input Voltage High) The minimum input voltage to P20, P21, and
P22 which will be recognized as a logic high when programming the MC6801 operating mode.·Note
that this value is not identical to VIH.

VOH (Output Voltage for a Logic High) The minimum output voltage provided for a logic high.
This value is specified for a corresponding maximum output load current as shown in the Data
Sheet.

VOL (Output Voltage for a Logic Low) The maximum output voltage provided for a logic low.
This value is specified for a corresponding maximum input current as shown in the Data Sheet.

VPP (Programming Power) The power applied to the MC68701 RESET /VPP pin which is used in
Mode 0 to provide power to the EPROM for programming.

VSS The return path for the power supply. The Ground reference.

V SB (Powerup Standby Voltage) The range of voltage required to insure reliable operation of the
standby portion of the RAM in a powerup state.

V SBB (Powerdown Standby Voltage) The range of voltage required to insure adequate power to the
standby portion of the RAM in a powerdown state.

-wwww-

Wake-up feature A feature of the SCI which allows the receiver to ignore the remaining characters
in the current message.

"who-done-it" routine Upon interrupt, it is a routine which polls the status flags of candidates in
order to determine the interrupt source. Note this is a consequence of using a single vector for multi­
ple interrupt sources.

G-26

wire-OR A configuration in which two or more open collector (TTL) or open drain (MOS) devices
are connected to a common line which is tied to a logic high using an external pullup resistor. When
an open collector device is in an inactive state, it has no effect on the common line. When the device
is active, however, it sinks current causing a logic low on the line. Note that the line is pulled low
unless all devices are inactive.

WU (Wake-up bit) Bit 0 of the Transmit/Receive Control and Status Register. WU can be set to in­
hibit the SCI receiver during data reception until a sequence of ten consecutive l' s is sensed by the
receiver. WU is cleared by the SCI when this occurs.

-xxsx-

X Register (See Index Register)

XTALI One of a pair of MC6801 pins which interface with either a quartz crystal resonator or a
TTL-compatible clock. If a crystal is used, it is connected beween XT AL 1 and EXT AL2. For an ex­
ternal clock, XTALl is connected to ground.

-zzzz-

Z-Blt (Zero bit) Bit 2 of the Condition Code Register which is set when the result of certain opera­
tions is zero. A branch based on the value of this bit is obtained with the BEQ or BNE instructions.

"0" In a binary system, a "0" refers to one of two possible states where" 1" is the other state. In
positive logic, it refers to a logic low or "false" condition.

0-27/0-28

APPENDIX H
SUMMARY OF INSTRUCTION E-CYCLE COUNTS

ADDRESSING MODE ADDRESSING MODE

! 'a III Q) 'a
.. Q)

~ 'a C > .. Q) e Q) u C >C ';l
E e Q) Q) Q) III

.E
.. 'a .z:. 'i i5 >C

.E .E w a:

! 'a III Q) 'a
.. Q)

~ 'a Q)
C > .. e Q) u c ~

.~

E e ! Q) III
'a .z:. 'i .E i5 >C .E .E w a:

ABA • • • • 2 • INX • • • • 3 • ABX • • • • 3 • JMP • • 3 3 • • ADC 2 3 4 4 • • JSR • 5 6 6 • • ADD 2 3 4 4 • • lOA 2 3 4 4 • • AD DO 4 5 6 6 • • lDD 3 4 5 5 • • AND 2 3 4 4 • • lDS 3 4 5 5 • • ASl • • 6 6 2 • lOX 3 4 5 5 • • ASlD • • • • 3 • lSl • • 6 6 2 • ASR • • 6 6 2 • lSlD • • • • 3 • BCC • • • • • 3 lSR • • 6 6 2 • BCS • • • • • 3 lSRD • • • • 3 • BEQ • • • • • 3 MUl • • • • 10 • BGE • • • • • 3 NEG • • 6 6 2 • BGT • • • • • 3 NOP • • • • 2 • BHI • • • • • 3 ORA 2 3 4 4 • • BHS • • • • • 3 PSH • • • • 3 • BIT 2 3 4 4 • • PSHX • • • • 4 • BlE • • • • • 3 PUl • • • • 4 • BlO • • • • • 3 PUlX • • • • 5 • BlS • • • • • 3 ROl • • 6 6 2 • BlT • • • • • -~- ROR • • 6 6 2 • BMI • • • • • 3 RTI • • • • 10 • BNE • • • • ~ • 3
BPl • • • • • 3

RTS • • • • 5 • SBA • • • • 2 • BRA • • • .. • 3 SBC 2 3 4 4 • • BRN • • • ., • 3 SEC • • • • 2 • BSR • • • • • 6 SEI • • • • 2 • BVC • • • • • 3 SEV • • • • 2 • BVS • • • • • 3 STA • 3 4 4 • • CBA • • • • 2 • STD • 4 5 5 • • ClC • • • • 2 • STS • 4 5 5 • • CLI • • • • 2 • STX • 4 5 5 • • ClR • • 6 6 2 • SUB 2 3 4 4 • • ClV • • • • 2 • SUeD 4 5 6 6 • • CMP 2 3 4 4 • • SWI • • • • 12 • COM • • 6 6 2 • TAB • • • • 2 • CPX 4 5 6 6 • • TAP • • • • 2 • DAA • • • • 2 • TBA • • • • 2 • DEC • • 6 6 2 • TPA • • • • 2 • DES • • • • 3 • TST • • 6 6 2 • DEX • • • • 3 • TSX • • • • 3 • EOR 2 3 4 4 • • TXS • • • • 3 • INC • • 6 6 • • WAI • • • • 9 • INS • • • • 3 •

H-I/H-2

APPENDIX I
EXPANDED MULTIPLEXED BUS CLOCKING

The principal clocking source for the MC6801 is the MCU input clock. Either a TTL compatible
clock or a crystal can be used to control the MCU internal clock generator, which includes a divide­
by-four circuit in the output. In the expanded multiplexed modes, two clocks, which are derived
from the MCU input clock, provide synchronization for all external bus activity. This appendix
describes the relationship of these two clocks - E (Enable) and AS (Address Strobe) - to the clock
from which both are derived - the MCU input clock.

E is generated from the MCU input clock by toggling the level on alternating negative clock edges.
AS is generated by toggling the level on every positive clock edge provided that E is low.

Two properties of the MCU input clock affect E and AS: the period and duty cycle. The affect of
these two parameters on E and AS is illustrated in Figure 1-1. The input clock period determines the
period of E and the widths of the active and inactive portions of AS. Note that (1) E always has a
50010 duty cycle while AS does not and (2) a slight skew (delay) exists between the MCU input clock
and both E and AS.

While the duty cycle does not affect the widths of E or AS, it doe's determine the position of AS with
respect to the negative half-cycle ofE as indicated by the values specified for tASD and tASED. The
effect of increasing tASD is to increase the amount of time a peripheral device has to vacate the
multiplexed data bus before the MCU will begin to drive it with address (AO-A 7). However, this in­
crease is accompanied by a corresponding decrease in the address setup time. A duty cycle of 50010,
therefore, is considered ideal although a tolerance of 10010 is acceptable with respect to MCU opera­
tion.

The effects of duty cycle on E and AS are shown in Figure 1-1. While the duty cycle for the MCU in­
put clock is specified not to exceed 50010 (± 10010), the duty cycle shown in the figure admittedly ex­
ceeds this value for illustrative purposes. Note that if the duty cycle is 50010, tASD and tASED are
equal. However, if the input clock high time is increased, tASD decreases while tASED increases.
The opposite is true if the input clock low time increases.

In Figure 1-1, it should be noted that a TTL compatible clock is shown as the MCU input clock. The
output of a quartz crystal resonator, however, is not a square wave. The waveform produced by the
clock generator for this sinusoidal input depends upon the particular threshold voltage of the clock
generator level detector. Note that a 50010 duty cycle will be produced only if the threshold is at the
mid-point of the voltage range of the sinusoidal input. If it is at a lower voltage, a longer high time
will result; if it is above the mid-voltage point, a longer low time will result.

1-1

The exact threshold voltage is affected by the manufacturing process and typically the resut(ant duty
cycle is not precisely 50070. However, for a sinusoidal input, the output waveform of the clock
generator will conform to the duty cycle specified in the·Data Sheet .. Because one cannot precisely
predict the duty cycle produced by a crystal input, the values specified fot tASD and tASED both
represent minimum values. In practice, however, the two minimum values are mutually exclusive:
achieving minimum values for tASD and tASEDsimultaneously is not physically possible. The
values specified, therefore, represent worst case situations. .,

1-2

MCU Input
Clock

(EXTAL2)

Enable (E)

Address ---,
Strobe I
(AS) ~------------------~

tAsoM

(a) High Time Equals Low Time

MCU Input lJ U U U U U U Clock
(EXTAL2)

Enable (E)

I Address I Strobe
(AS)

tASo--l ~ HtASEO

(b) High Time Exceeds Low Time

MCU Input

J n n n n n n Clock
(EXTAL2)

Enable (E)

I I Address
Strobe
(AS)

tAsoH ~ I--~ASEO
(e) Low Time Exceeds High Time

Filare 1-1. E and AS versas Input Clock Duty Cycle

1-3/1-4

U LJ

n

APPENDIX J
RESET VECTOR CHIP SELECT CIRCUIT FOR MODE 0

Mode 0 is an expanded multiplexed mode with two characteristics which are not present in other ex­
panded multiplexed modes. These characteristics are incorporated to facilitate testing and include:

1. the external data bus is also driven during MPU reads of internallocationst and
2. the Reset vector is treated as external within two E-cycles after RESET goes high but subse­

quent MPU reads of the vector area are read from internal locations $FFFE:FFFF*.

A consequence of the first characteristic is that no memory map overlap can be allowed to occur,
when using Mode Ot in order to avoid bus contention during MPU reads of internal locations. For
examplet if it is desired to include a monitor in a Mode 0 test systemt the monitor cannot be located
at any address which is defined as a Mode 0 internal address.

A consequence of the second characteristic is that the chip select circuit for the device which pro­
vides the Reset vector must be active when within two E-cycles after the last positive edge of
RESET. This characteristic makes it possible to obtain control of the MC6801 with an external
Reset vector yet retain the capability of reading the entire internal ROM including the vector area.

The circuit shown in Figure J-l can be used to implement a Reset vector chip select circuit for Mode
o. Note that the asynchronous reset signal is first synchronized with E using a D-type flip-flop.

After RESET has remained low for two E-cycles t the chip select signal (SEL) for the Reset vector
will be active for as long as RESET remains low. When RESET returns hight the chip select signal
will remain asserted until the RESET signal is clocked to the last D-type flip-flop which requires two
E-cycles. It is not necessary to decode the address as part of the vector select circuit because only two
addresses are possible after RESET goes high: $FFFE followed by $FFFF.

Note that the chip select circuit will not respond again until two E-cycles after RESET is asserted. If
the Reset vector is read using an MPU instruction (such as LDX $FFFF)t the chip select will remain
negated and only the contents of the internal location will be driven onto the data bus.

·It should be noted that this Reset vector chip select circuit is not applicable to the MC68701. The Mode 0 chip select circuit for the
MC68701 should be designed to trap SBFFE:BFFF on the address bus.

J-l

RESET 6

+5

reset

E 40

~
I

N

+5

Q

ClK
74lS74

PRE

D

ClK
74lS74

PRE

ClR
D Q

ClK
74lS74

PRE

ClK
74lS74

PRE

SEl

$FFFE $FFFF

E

reset t111

RESET

SEL ___ --....JI

Figure J-l. Schematic for Mode 0 Reset Vector Chip Select Circuit

APPENDIX K
MC6801 SYSTEM DEVELOPMENT TOOLS

K-l

® MOTOROLA

MEX6801EVM

Advance Information

MICROSYSTEMS

MC6801 Microcomputer
Evaluation Module

• Single Module - EXORciser-Bus Compatible

• Incorporates an MC6801 DEbug Monitor

• Provides RS-232C Interface

• Sockets Can Be Added to Incorporate Optional
ACIA, PTM, 2K EPROM, and 4K Bytes
of Static RAM

• Address Map Established by Programmable Gate
Array to Permit Reconfiguration

• Additional Decoding Provided for 8K of
Off-Board Memory

• Large Wirewrap Area
• Two Modes of Operation: Single-Chip or E>:panded

• Low Cost

The MEX6801 EVM Microcomputer E·"aidation Module is a completely self-contained microcomputer
on a single printed circuit card, providing the user with the means of evaluating the
MC6801 microcomputer.

The system allows the user to easily evaluate the MC6801 microcomputer. As configured, the
MC6801 may be evaluated in the Single-Chip mode by attaching an RS-232C-compatible terminal to the
serial port of the module. Thus, the minimum functioning system consists of only the MC6801 and an
MC 1488 and MC1489.

In the Expanded mode, the customer may add an ACIA, PTM, 4K bytes RAM or 2K EPROM and a
programmable gate array for address configuration.

The Evaluation Module provides the user with the ability to evaluate the MC6801 microcomputer using
the DEbug monitor via the serial 1/0 port and RS-232C interface. Refer to Table A for a description of the
DEbug commands. A 4.9 MHz crystal is used to generate the standard baud rates of 300, 1200, and 9600
baud. Sufficient space remains within the on-chip RAM for the user towrite a small 1/0 program towork in
conjunction with the DEbug monitor. The DEbug monitor program (ULbug) uses a patch table established
within RAM for all 110. Thus, the DEbug program's 1/0 routines can be readily modified by the user for the
purpose of evaluation. Since the DEbug monitor uses the timer output and the serial 1/0 port, these
resources are not available to the user in the Single-Chip mode. However, by uSing the Expanded mode, the
user has the choice of adding an ACIA or PTM, thereby freeing more of the on-chip resources. The
Evaluation Module has provisions for adding 4K bytes of static RAM and a 2K byte EPROM. This permits the
user to develop his programs if desired. In addition, the Expanded mode allocates 8K bytes of off-board
program space for further programming flexibility.

A wirewrap area is provided to permit the user to interface other peripheral devices or special interface
circuits to the MC6801.

This is advance information and specifications are subject to change without notice.
DEbug and LlLbug are trademarks of Motorola Inc.

K-2

ISSUE A
©MOTOROLA INC .• 1979

TABLE A. MEX6801 EVM DEbug COMMANDS (continued)

Command

o <ADDR1> <ADDR2>

B

B

B

B

G

G

R

<ADDR>

-<ADDR>

<ADDR>

<DATA>

SP

T <HEX NUMBER>

C <ADDR>

C

LO

HI

Explanation

Calculate the relative offset of a branch instruction from ADDRl
to ADDR2.

Display all breakpoints.

Delete all breakpoints.

Enter a breakpoint at the specified address.

Remove a breakpoint at the specified address.

Start program exe.;ution at the specified address.

Start program execution at the current program counter setting.

Display/change the contents of the program registers and counter.
Register contents are displayed using the following format:

P-XXXX X-XXXX A-XX B-XX C-XX S-XX
P-

where: P = Program Counter
X = Index Register
A = Accumulator A
B = Accumulator B
C = Condition Code Register
S = Stack Pointer .
XXXX = Current 16-bit Value
XX = Current 8-bit Value

Replace current register value with new DATA.

Display current register value (unless changed by the <DATA> com­
mand). Close the current register and display the next register
mnerr.onic and dash. The R command terminates after examining/
changing the stf!ck pointer or whenever any character other than
<DATA> or SP is entered (SP = SPace).

Trace O!le instruction.

-:-race the number of instructions specified in hexadecimal.

(,,,II and execute a user routine as a subroutine starting at the specified
address. A return address to the DEbug program is stored in the user's
f.,laCK. When the user's RTS instruction is executed (at the end of the
usar's routi!1e), the DEbug program regains program control and the
current contents of the register are displayed.

Same as the C <ADDR> command except that the execution begins
from the current address in the program counter.

Set low speed - 30/15 characters per second for on-chip clock.

Set high speed - 120/60 characters per second for on-chip clock.

K-3

® MOTOROLA

EXORciser II
Development
Systems

• Versatile and easily expandable design development
tool, used to develop, evaluate, and debug the user's
system hardware and software

• Reduces system development time and cost

• Emulates final system architecture and performance
through modular building block concept

• Permits debugging of final system design through built­
in diagnostic firmware

• Facilitates program development using separately avail-
able Resident Software

• Dual Memory Map mode of operation

• Selectable clock speeds of 1.0, 1.5, and 2.0 MHz

• 8 selectable baud rates from 110 to 9600 baud

• A single RS-232C compatible serial communications
interface

• A chassis containing a 14-card motherboard and the
necessary +5 Vdc and ±12 Vdc power supplies

The EXORciser II Development System is the basic tool
for designing and developing microprocessor-based
systems using any of Motorola's families of micropro­
cessor and microprogram mabie parts. It is an extremely
powerful and easy-to-use development system that ilas
been designed to be highly user-oriented in order to
reduce system development time and cost. The EXORciser
is a modularized, expandable instrument that permits
"instant breadboarding" and evaluation of any M6800 or
M6809-based microcomputer system. It consists of a
prewired, bus-oriented chassis and power supply,
together with two basic modules - an MPU Module and a
Debug Module. These provide the basic control and inter­
face functions of a microcomputer, and house the system
development and diagnostic programs. A number of
separately available, optional memory modules and
additional interface modules (up to twelve) may be added,
simply by plugging them into existing prewired sockets,
to convert the basic system into an exact prototype of a
desired end system. Thus, the EXORciser, with its
built-in EXbug Firmware, enables the designer to con­
figure, evaluate and debug his final system hardware
and software. The EXORciser II incorporates several
advanced features, i'lcluding Dual Memory Map mode of
operation and the ability to develop high performance
systems using the M6800 and M6809 parts (1.0to 2.0 MHz).
It also adapts for use with the single chip M3870, M6801,
M6805 and M146805 devices.

MICROSYSTEMS _

M6800EXOR
M6800EXORU
M6809EXOR

DESCRIPTION AND OPERATION
The basic EXORciser II contains the common ingre­

dient!:; vf a microcomputer, and offers the system designer
a low-cost, versatile means of achieving unique final­
system performance through the selective addition of
separalely available, optional modules. These separate
dssernblies plug directly into the EXORciser's bus so that
system expansion becomes quick, easy, and essentially
error-proof. With provisions for up to 12 add-on assem­
bl,es, a system of almost any complexity can rapidly be
assembled.

Supplied with the basic EXORciser II are the MPU II
Module and DEbug II Module. The DEbug II Module sup­
plies eight selectable baud rates, and serves as a com­
munication link between the terminal and the EXbug 2
Firmware on the DEbug II Module.

The MPU II Module provides the 1.0, 1.5, or 2.0 MHz
clock timing for the microprocessor system under devel­
opment, as well as for the rest of the EXORciser II. In
addition, this module houses the 6800 or 6809 Micro­
processing Unit, which imparts to the EXORciser its
computation and control capabilities. Also included with
the 6800 EXORciser are a Timer, MC6840, and Priority
Interrupt Controller, MC6828.

The DEbug II module is a system development tool
which provides the user with instant capability to com­
municate with his system, load programs, monitor the
execution of his program in real time, and to isolate and
analyze hardware and software problems. The DEbug II
module places no restrictions upon the user's system
design since al164K bytes of memory space are available
to the user.

These functional subsystems of the basic EXORciser
are supplemented by a power supply and a bus-oriented
distribution system. This bus system transfers the power
supply voltage (as well as the data, address, and control
signals) to the optional modules. Overall, the EXORCiser
can address up to 64K bytes of memory, and addresses
the input/output modules (as well as the memory modules)
as memory.

BASIC-M. EXORciser'~. EXbug. EXORdisk. EXORterm and Micromodule are trademarks of Motorola Inc.
ISSUE B

~~MOTOROLA INC., 1980

K-4

In order to provide the user additional flexibility, the
appropriate EXORciser II modules have a 20-pin con­
nector available for implementation of such system cap­
abilities as priority interrupts, multi-paged memory and
I/O systems, parity error detection, and power down/
restart features.

Furthermore, the modules will have a standard jumper­
ing arrangement for assigning memory and peripherals to
either map in the dual map mode or to any page-extended
memory systems.

MICROCOMPUTER DESIGN WITH EXORciser II
A design normally begins by defining the functions to be

performed by the proposed system. This is followed by
design of both hardware and software and trade-off
decisions between them.

Using the appropriate memory and input/output modules,
such as Micromodules, the designer now emulates his
proposed system in the EXORciser. Recognizing that some
systems may require special interface circuitry and cus­
tomized circuitry, provisions have been made on input!
output modules for the designer to insert wirewrap sockets
and construct the special interface circuitry. Also, the
designer can construct any customized circuitry on the
Wirewrap Module.

The resident software provides the designer with a powE?r­
ful software development tool. Using the Resident CRT
Editor, which is supplied with the floppy disk system, the
designer enters a source program via the terminal key­
board. The user now can modify and change his source
program as required to meet his proposed systems require­
ments. This includes:

• Printing out all or any part of the program for detailed
examination

• Changing any characters or string of characters in the
source program

• Deleting or adding instruction lines or characters any­
where in the program

At the end of the editing process, the Resident Editnt wi!1
provide a source program that may be stored on diskettE'!.
This source program may be used in subsequent assef'Y'.blv
or compilation operations on any of the compatible
Motorola assemblers or compilers. The Resident Macro
Assembler which is supplied with the floppy disk system
can be used to translate the source program to produce:

• A printed assembly listing of the source program

• An object program on diskette

• A machine file, consisting of the machine-coded
program stored directly into the EXORciser II memory.
This option permits the program to be executed immedi­
ately after assembly with no need for subsequent loading

During the assembly process, the Macro Assembler
allows the assignment of relocatable memory addresses
which are assigned by the Linking Loader at load time,
rather than fixed during the assembly operation.

Once the designer has configured the EXORciser II to
emulate his hardware uSing Micromodules and memory or
other I/O modules and has developed his software, he is
ready to debug hiS system. The EXORciser II, with its
EXbug 2 system development firmware, permits the user to
debug both his system hardware and his system software,
as required, until he has his system operating correctly.

The EXORciser with USE (User System Evaluator) option
can test and evaluate equipment external to its chassis. By
removing the microprocessing unit from the user's system
and connecting the USE cable from the EXORciser into
the MPU socket, the EXORciser with its EXbug Firmware
can debug and troubleshoot microprocessor systems.

K-5

MICROSYSTEMS _
USE not only extends all of the development system

EXbug functions into the user's system, but also all of the
optional Systems Analyzer functions. The USE-equipped
development system provides the designer with the
capability of configuring an emulation of his M6800-family
microprocessor system in the EXORciser, external to the
EXORciser, or a combination of EXORciser-mounted
modules working with the user's external system.

The designer can develop his system software and firm­
ware on the development system and can use the USE­
equipped development system to debug his system hard­
ware and software. The USE EXORciser can also be used
as a production tool in testing and evaluating the user's
production systems.

USE consists of two assemblies: The USE Processor
Module, and the USE Cable and Buffer Assembly which
connects it into the user's system. A 40-pin connector
on this assembly plugs into the MPU socket in the user's
system permitting the USE Processor Module's MPU to
control the operation of the user's system. In addition, the
USE Cable and Buffer Assembly buffers the transferred
signals. In this application, everything within the EXORciser
appears to be within the MPU in the user's system.

MODULES
(Included with the EXORciser II)

MPU II Module
• M6800 or M6809-Based

• 1.0, 1.5, 2.0 MHz Clock Speeds

• Triple Programmable Timer (on M6800 Module only)

• Priority Interrupt Controller (on M6800 Module only)

• Refresh Control

• Go/Halt Control

• user-Controlled Three-State Logic

• Internal or External Clock Option

4 Interrupt Control

• Generation of ¢1, ¢2 and Memory Clock

The MPU Module includes both the system clock and
the Micropocessor Unit (MPU). The MPU Module also
automatically initiates an EXORciser or user RESTART
when power is first applied to the EXORciser.

The clock circuit generates 1.0, 1.5 or 2.0 MHz clock
signals. The system may be operated with an external
clock over the range 800 kHz to 2.0 MHz.

In addition to generating the basic EXORbus timing
signals, the clock circuit provides the EXORciser with
the capability of refreshing dynamic memories and work­
ing with slow memories. The dynamic memories are
refreshed on a cycle-stealing basis. In working with
slow memories, the MPU Module stretches the clock
pulse to give the memory sufficient time to complete its
assigned operation.

Debug Module
• EXbug 2 System Monitor Firmware (3K bytes)

• System Console Interface

• Dual Map Address Control

• STOP-ON-ADDRESS/SYNC ENABLE

• Power Up/Restart Control

• Load, Verify, Search Tape

• Display, Change Memory and MPU Registers

• Trace Instruction(s)

• Set Up to 8 Software Breakpoints

• Search Memory

• Line Printer Echo Option

• Parity Detect

The DEbug II Module, through its EXbug 2 firmware and
associated hardware, provides the EXORciser II with its
powerful hardware/software debug capability.

Using the EXbug routines provides the designer
virtually unlimited freedom in examining and debugging
his proposed system hardware and software, He can, for
example, search the input medium for a file,load a file into
EXORciser memory, verify the contents in the EXORciser
memory, print out the contents of the EXORci3er memory,
and record the memory contents on the selected medium.
In between these input/output functions, the user can
examine and, if required, change the memory contents.
He can insert and remove one hardware breakpoint and
up to eight software breakpoints. He also can run in real
time or trace through the user's program or a selected
portion of the user's program. While using these routines,
the user modifies his hardware and software, as required,
until he has his system operating to specifications.

The STOP-ON-ADDRESS/SYNC ENABLE switch on
the DEbug Module is used to generate a sync pulse at a
preselected address or to enable the hardware breakpoint
function.

The DEbug Ii Module provides the EXORciser II with
the ability to address two separate 64K memory maps
(Dual Map mode). To accomplish this, the DEbug II
Module takes the Valid Memory Address (VMA) signal
from the MPU II Module and converts it to two other
signals: Valid User Address (VUA) and Valid Executive
Address (VXA). All EXORciser II hardware modules may
be configured to respond to one of these enabling signals.
As a result, two complete maps of 64K bytes are address­
able for either random access data storage or for data I/O.

A serial I/O port allows interfacing with any RS-232C
compatible terminal. Baud rates are selectable from 110
baud to 9600 baud. The module also interfaces to the
EXORciser's front panel RESTART and ABORT switches.

The RESTART and ABORT push-button switches allow
manual termination of program execution.

MICROSYSTEMS _

RESTART initializes the EXORciser II system and,
depending upon the EXbug/USER toggle switch setting,
forces program execution to start at either the EXbug 2
or the user's restart vector address.

ABORT generates a non-maskabie interrupt and returns
program control to the EXbug firmware.

OPTIONAL RANDOM ACCESS MEMORY
Dynamic RAM
• 1.0, 1.5, 2.0 MHz Clock Speeds

• I"dividual Address and Enable for Each 16K Block

• System Cycle Stealing Refresh

• 16,32,48, 56/64K Single Board Versions

• Dual Map and Page Control

• Standard Parity

Static RAM
• Clock Speed Independent to 2.0 MHz

• RAM/ROM Mode Selection

• 8, 16K Single Board Versions

• Up to 64K-Byte per EXORciser

• Individual Address and Enable for Each 8K Block

• Dual Map and Page Control

• Standard Parity

Hidden Refresh RAM
• 1.0 MHz Clock Speed

• Individual Address and Enable for each 16K Block

• Memory Refresh Without Processor Interruption

• 16, 32, 48, 56/64K Single Board Version

• Dual Map and Page Control

• Standard Parity

SPECIFICATIONS

Power Requirements 95-135/205-250 Vac
47-420 Hz
250W

Word Size
Data: 8-bits
Address: 16-bits
Instruction: 8, 16, and 24-bits

Memory Capability 65,536 bytes (maximum)

Instructions 72, variable length

Clock Signal Crystal controlled with logic for generating
2-phase non-overlapping signal to MPU
and system bus

Memory Speed Jumper selectable 1.0, 1.5, or 2.0 MHz

Interrupt Maskable and nonmaskable

Data Terminal Interface
Characteristics

Baud Rates 110,150,300,600,1200,2400,4800,
(Jumper Selectable) and 9600

Signal Characteristic EIA RS-232C compatible

Operating Temperatures o to 55°C

K-6

MICROSYSTEMS -

ORDERING INFORMATION
The following table identifies the options of the EXORciser II Development System. For further

information contact your local sales office.

Part Number Description

M6800EXOR EXORciser II Development System with chassis,
6800 MPU II Module and DEbug II Module. 110 V, 60 Hz

M6809EXOR EXORciser II Development System with chassis,
6809 MPU Module and DEbug II Module. 110 V, 60 Hz

M6800EXORU EXORciser II Development System with 6800 USE
Module and DEbug II Module. 110 V, 60 Hz

RECOMMENDED CONFIGURATION GUIDE

6800-Based 6809-Based

A. EXORciser M6800EXOR M6809EXOR

B. EXORterm 155 Terminal M68SXD10155 M68SXD10155

C. 48K RAM (2 MHz Dyn) MEX6848-22 MEX6848-22

D. EXORdisk II M68DSK2 M68DSK2

E. 781 Printer M68SP781C1A M68SP781C1A

Recommended Options:
System Analyzer MEX68SA2 M6809SA

PROM Programmer M68PP3 M68PP3

USE MEX68USEC M6809USE
(see Alternatives A)

M6801 USE MEX6801 MEX6801

M6805 USE MEX6805 MEX6805

M146805 USE MEX146805 MEX146805

M3870 USE MEX31370M N/A

M68000 Development Module MEX68KDM MEX68KDM

BASIC/BASIC-M M688ASR010M M6809BASICM

FORTRAN M68FTNR012M M6809FORTRN

COBOL M68COBOL010M N/A

PASCAL Interpreter' WA M6809PASCLI

MPL* M68MPLR020M M6809MPL

M68000 Cross Macro Assembler' M68KOXASMBLO M68KOXASMBL 1

M68000 Cross PASCAL Compiler' N/A M68KOXPASCL 1

Alternatives:
A. EXORciser with USE M6800EXORU N/A (see options)

C. 48K RAM 1 MHz HR MEX6848-1 HR M EX6848-1 H R

56/64K RAM 1 MHz HR MEX6864-1 HR MEX6864-1HR

56/64K RAM 2 MHz Dyn MEX6864-22 MEX6864-22

16K Static RAM (2 MHz) MEX6816-22S MEX6816-22S

8K Static RAM (2 MHz) MEX6808-22 MEX6808-22

D. EXORdisk III M68DSK3 M68DSK3

E. 702 Printer M68SP702C10 M68SP702C10

703 Printer MPRINT703 MPRINT703

*Note: Requires 56K bytes of RAM, minimum.

Motorola reserves the right to make changes to any products herein to improve reliability, function or design. Motorola does not assume any liability arising
out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

_ @ MOTOROLA Semiconductor Products Inc .••••••••••
"CY po. BOX 20912 • PHOENIX, ARIZONA 85036. A SUBSIDIARY OF MOTOROLA INC.

K-7

TABLE A. MEX8801EVM DEbug COMMANDS

Command

L

L <OFFSET>

v
v <OFFSET>

D <ADDR1>,

P <ADDR1>

M <ADDR>

<DATA>

L F

S P

UA

/

CR

<ADDR>/

/

<ADDR·2;>

<ADDR2>

Explanation

Load a program from tape.

Load a program from tape with an offset.

Verify that a program was properly loaded.

Verify that a program was properly loaded with an offset .•

Display contents of memory from <ADDR1> to <ADDR2>.

Punch/record on tape the contents of memory trom <ADDR1> to
<ADDR2>.

Examine/modify the contents of the specified address location.

Enter one byte of data to repiace the value at the current address
location.

Display the contents of the next sequential memory location on the next
line and enable the contents of this location to be changed
(LF = Line Feed).

Display the contents of the next sequential memory location on the
same line and enable the contents of this location to be changed
(SP = SPace).

I ncrement the memory location poi nter, but do not display the address or
data. The contents of this memory location may still be changed. This
entry permits data to be entered at sequential memory locations with­
out displaying the current address or data.

Display the contents of the previous memory location on the next line
and enable the contents of this location to be changed (UA = Up Arrow).

Display the current address. of the memory location pointer and the con­
tents of that location.

Terminate the mzrnory examine/modify command and accept next
command (CR = Carriage Return).

UicOlily the contents of the specified address location and enable the
Cllrn.ants of this location to be changed.

Display the address and contents of the memory location last
reh,·E'Pced b\' the memory examine/modify command.

® MOTOROLA MICROSYSTEMS

MEX6801
MC6801 EXORciser
Support System
• User System Evaluator (USE) Capability
• Real-Time Emulation of MC6801

Single-Chip Mode
Multiplexed Mode
Non-Multiplexed Mode

• MC68701 Program Capability
• Compatible with Current System

Development Tools Including EXORciser/
EXORterm and all support modules

Minimum System
Requirements
• EXORciser /EXORterm with 6800 MPU

and DEbug Modules
• EXORdisk"
• 24K Memory
• EXORterm 150 (EXORciser® system only)

\

".

'" \
\
\

The MC6801 Support System - MEX6801 - upgrades existing Motorola EXORciser development tools
for development of MC6801 -based systems. All three modes of MC6801 operation; single-chip, expanded
multiplexed and expanded non-multiplexed, are supported by MEX6801.

MEX6801 is fully compatible with all current EXORciser/EXORterm M6800 supporting hardware and
software and includes the USE (User System Evaluator) function to provide designers with the widest range
of development capabilities. Used with an EXORciser I or "or an EXORterm 200 or 220, the support system
fosters real-time emulation of the MC6801 application hardware and facilitates the debugging of software
developed for use on the hardware.

The MC6801 Support System comprises the following: three printed circuit boards including the Intercept
Module, the Control Module and the Buffer Board and housing; four cable assemblies and an MOOS diskette
containing the MC6801 monitor/debug program - ONEbug, and a Macro Assembler.

MEX6801 utilizes a two processor technique in which the support system's MC6801 is slaved to the
EXORciser IEXORterm's MC6800 with just one allowed control of the bus at anyone time. The MC6800
executes its own instructions, controls disk operation and, in conjunction with EXbug 2, provides MC6800-
dependent monitoring and debugging capabilities. Additional capabilities for debugging code calling for
execution of MC6801 instructions are provided by the ONEbug monitor which controls MC6801 operation.
ONEbug also controls the MEX6801 provision for programming the 2K bytes of EPROM contained in
MC68701, the EPROM version of MC6801 .

For system emulation, MEX6801 provides the user with various options for structuring the address map,
selection of MC6801 operating mode and a choice of several system clocks. The MEX6801 also permits
MC6801 system emulation with its own control module completely isolated from the EXORciser bus
signals to provide final assurance of correct design prior to mask commitment.

EXORciser:~. EXORterm, EXORdisk, MOOS, EXbug and ONEbug are Motorola trademarks.

K-9

ISSUEA
©MOTOROI.A INC., 1979

K-IO

User
System

6800
MPU

Module

MEX8801 DEbug Functions
• Load/verify object tape from/against memory

• Search/punch object tape

• Display/change terminal pad value

• Abort current entry

• Wait for character entry

• Initialize memory

• Move/display/change/print memory

• Calculate relative offset

• Display/change offset

• Display/change search mask and memory range

• Search memory and display location of match

• Display/change MPU register(s)

A accumulator

B accumulator

Index register

Program (location) counter

Stack pointer

• Display/change program register(s)

• Display/change second level SWI vector

• Display/set/remove breakpoint(s)

• Display/enable/change halt-on-address or scope sync

• Display/enable/change trace to address

• Trace n instruction(s)

• Go to specified/restart program address

• Execute program

• Execute, pass breakpoint n times

Ordering Information
Part Number Description

MEX6801 Me6801 Support System

K-II/K-12

-aaaa-

Accumulator, 1-3, 4-10
Address formats, A-91, A-92, A-93
Addressing modes, 4-3

direct, 4-5
extended, 4-5
inherent, 4-4
immediate, 4-4
indexed, 4-7
relative, 4-6

Applications, 8-1
Arithmetic instructions, 4-11, 4-12, 4-34
AS (Address Strobe), 3-37, 3-42, 8-1, 8-2, 1-1
ASCII conversion table, C-l
Assembler source statements, 4-2

-bbbb-

Block diagram
MC6801, 1-2, 3-2
MC68701 EPROM programming circuit,

E-ll
Programmable Timer, 1-8, 7-1, 7-2
SCI, 1-7, 6-3

Bus
Expanded multiplexed, 2-7, 3-42
Expanded non-multiplexed, 2-5, 3-33

BCD 1 (Routine), 4-28
BLOCKC (Routine), 4-30
BLOCKM (Routine), 4-31
BCDADI (Routine), 4-39
BCDAD2 (Routine), 4-40
BCDSBI (Routine), 4-42
BCDSB2 (Routine), 4-43

INDEX

Index-l

-cccc-

CCl:CC2 (bits), 1-7, 6-2, 6-4
Comparisons

MC6800 bus, 2-21
MC6803, 2-21
MC68701, 2-21, E-l
MC68120, 2-22

Condition code register, 1-3, 4-10, 4-11
Configurations, 1-4
Counter register, 1-8, 7-1, 7-2
Cycle-by-cycle bus activity, F-l
Crystal parameters, 3-5

-dddd-

Data direction register, 1-6, 3-16
Data handling instructions, 4-14
Data test instructions, 4-13
Direct addressing mode, 4-5
Division, 4-53
DIV16B (Routine), 4-55
Dual processor interface, 8-39

-eeee-

ECHO (Routine), 7-14
E (Enable), 3-6
EICI (bit), 1-8, 7-1, 7-5
Enable (E), 3-6 See also Timing
EOCI (bit), 1-8, 7-1, 7-5
EPROM (Routine), E-12
EPROM programming, E-9
ETOI (bit), 1-8, 7-1, 7-5
Expanded non-multiplexed mode, See Mode
Expanded multiplexed mode bus clocking, 1-1
Expanded multiplexed mode, See Mode
EXTAL2, 3-4
Extended addressing mode, ·4-5
Executable instructions (See Instruction Set)

-ffff-

Framing error, 6-6, 6-10

-gggg-

Glossary, 0-1

ICF (bit), 1-8, 7-1
IEDG (bit), 1-8, 7-1

-iiii-

Immediate addressing mode, 4-4
Index register instructions, 4-16, 4-25, 5-25
Indexed addressing mode, 4-7
Inherent addressing mode, 4-4
Input capture register, 1-8, 7-1, 7-5
Instruction cycle count, H-l
Instruction set, 4-7, 4-8, A-I
Internal register area, 2-19
Interrupt

considerations, 5-1, 5-3
flowchart, 5-10
generation, 5-3
instructions, 5-18
response, 5-7
SCI, 6-12
service, 5-21
sequence, 5-14
sources, 5-1
vectors, 5-15, 5-17, E-6
window, 5-9

lOS (Input/Output Select), 1-5, 3-29, 3-33
3-34, 8-19, 8-20

IRQl, 3-14, 5-6
IRQ2, 1-2, 5-6
IS3, 3-23
IS3 FLAG (bit) 3-27
IS3 IRQ 1 ENABLE (bit) 3-27

-jjjj-

Jump and branch instructions, 4-9

Index-2

-kkkk-

Keyboard interface, 8-10
KEYIN (Routine), 8-13

Labels, 4-3
Latch

-1111-

Port 3, 3-24
De-multiplexing, 3-43

Line printer interface, 8-8
Logic diagram

Port 1, 3-16
Port 2 bit 0, 3-20
Port 2 bit 1, 3-20
Port 2 bit 2, 3-21
Port 2 bit 3, 3-22
Port 2 bit 4, 3-23
Port 3, 3-26, 3-31, 3-38
Port 4, 3-29, 3-33, 3-41

Logic instructions, 4-11
LATCH ENABLE (bit), 3-27, 8-12

-mmmm-

Mask option, 2-20, E-6
MC6800, 2-21
MC6803, 2-21
MC68120, 2-22
MC68701, 2-21, E-l
Memory maps, 2-9, E-7
Memory interface, 8-1
Mode

Characteristics, 2-2
Expanded multiplexed, 1-1, 1-2, 1-5, 2-2,

2-6,2-7,3-36,3-37,3-42,8-14
Expanded non-multiplexed, 1-1, 1-2, 1-5,

2-2, 2-4, 2-6, 3-29, 3-33, 8-19
Fundamental modes, 2-3
Levels and timing, 3-9
Programming, 2-20, 3-8
Select pins, 3-19
Single chip, 1-1, 1-2, 1-4, 2-2, 2-4, 2-18

3-23, 3-24, 8-8
Test modes, 2-2, 2-8, 2-9, 2-14, 3-39, J-l

MUL16 (Routine), 5-26
MUL16A (Routine), 4-46
MUL 16B (Routine), 4-48
MULT16 (Routine), 4-52
Multi-byte addition and subtraction, 4-36
Multiplication 4-38

Using MUL, 4-45
Booth's Algorithm, 4-50

-nnnn-

~MI, 3-7, 3-13, 5-3
~umber systems, 4-29

-0000-

OCF (bit), 1-8, 1-9, 7-1, 7-5
OKBAD (Routine), 6-20
OLVL (Bit), 1-8, 7-1, 7-5
Opcode map, B-1
Operating mode (See mode)
ORFE (bit), 1-7, 6-2, 6-5
OS3, 3-24
OSS (bit), 3-27
Output compare register, 1-8
Overrun (SCI), 6-6

-pppp­

PIO-P17 (Port 1), 3-14
P20-P24 (Port 2), 3-18
P30-P37 (Port 3), 3-25, 3-30, 3-37, 3-38
P40-P47 (Port 4), 3-27, 3-32, 3-40
PC0-2 (bits), 2-8, 2-14, 2-15, 2-20, 3-19
Period measurement, 8-22
Pin description, 3-4
Pin diagram, 3-1
PLC (bit), E-8
Polling, 5-2
Port 2 Data Register, 3-19
Port 3 Control and Status Register, 3-27
POUTCH (Routine), 8-11
Powers of two, D-l
PPC (bit), E-8
Prioritized interrupts, 5-4, 5-15, 8-14
Program control instructions, 4-16
Program restartability, 5-23

Index-3

Programmable timer,
Block diagram, 1-8, 7-1
Counter register, 1-8, 7-1, 7-2
Description, 1-8, 7-1
Examples, 7-6
Input capture register, 1-8, 7-1, 7-4
Interface pins, 3-19
Output compare register, 1-8, 7-1
Output level register, 7-2, 7-3
Timer control and status register (TCSR),

1-8, 1-9, 7-1, 7-5
Programming model, 1-3, 4-1

-rrrr-

RAM Control Register, 3-13
RAM/EPROM Control Register, E-8
RAME (bit), 3-11
Rate and Mode Control Register (See SCI)
RDRF (bit), 1-7, 6-2, 6-5
RE (bit), 1-7, 6-2, 6-5
R/W (Read/Write), 3-9, 3-30, 3-34, 3-42.

5-14, 5-20, 8-2, 8-19
Re-entrant programming, 5-23
Relative addressing mode, 4-6
RESET, 3-7, E-3, J-l
RESET /Vpp, E-l
RIE (bit), 1-7, 6-2, 6-5
RMCR (See SCI)

SCI
IS3, 3-23
lOS, 3-29
AS, 3-37

SC2
OS3, 3-24
R/W, 3-30, 3-37
AS, 3-37

-ssss-

SCI (Serial Communications Interface)
Baud Rates, 6-4
Block diagram, 6-3
Clocking options, 6-4, 6-6
Data formats, 6-4, 6-8
Examples, 6-13
Framing error, 6-9
Interface pins, 3-21

Interrupts, 6-12
Operations, 6-9
Overrun, 6-9
Parallel-to-Serial Interface, 8-33

- Rate and mode control register (RMCR)
1-7, 6-2, 6-3, 6-4

Registers, 1-7, 6-2
Serial-to-Parallel Interface, 8-36
Transmit/Receive control and status

(TRCS) register, 1-7, 6-2, 6-3, 6-5
Wake-up, 6-10

SERIAL (Routine), 6-15
Single chip mode, See Mode
SKPWAI (Routine), 5-22
Stack pointer instructions, 4-17
Standby power operation, 3-11
SSI:SS0 (bits), 1-7, 6-2, 6-4
STBY PWR (bit), 3-12
SYNLUP (Routine), 7-11

-tttt-

TCSR (See Programmable Timer)
TORE (bit), 1-7, 6-2, 6-5
TE (bit), 1-7, 6-2, 6-5
TIE (bit), 1-7, 6-2, 6-5
Timer (See Programmable Timer)
Timing

Counter register, 7-7
Data Ports, 3-15
Expanded non-multiplexed bus, 3-33,

3-34, 8-19
Expanded multiplexed bus, 3-42, 8-1, 8-2,

1-1
Input capture register, 7-4
Interrupt sequence, 5-14

Index-4

Interrupt window, 5-9
Keyboard, 8-12
Line Printer, 8-10
Mode Programming, 3-9
OS3, 3-25
Port 3 latch, 3-24
Priority encoder, 8-18
RESET, 3-9
W AI sequence, 5-20

TIM16 (Routine), 8-34
TIM24 (Routine), 8-27
TOF (bit), 1-9, 7-1, 7-5
Transmit/Receive Control and Status Regi­

ster, 1-7, 6-2, 6-5
Transmit Data Register, 6-6
TRCS (Transmit/Receive Control and Status)

Register, See SCI
Two's complement overflow, 4-32

-vvvv-

VCC, 3-4, 3-11
V CC Standby, 3-4, 3-11
Vpp, E-l
VSS, 3-4, 3-11

-wwww-

WAVGEN (Routine), 7-8
WU (bit), 1-7, 6-2, 6-5

-xxxx-

XTAL1, 3-4

® MOTOROLA Semiconductor Products Inc.
3501 ED BLUESTEIN BLVD., AUSTIN, TEXAS 78721 • A SUBSIDIARY OF MOTOROLA INC.

A12040-4 PRINTED IN USA 5-84 IMPERIAL LITHO C22121 2,500 MC6801RM

ItIIOTOROLA Semiconductor Products Inc.
3501 ED BLUESTEIN BLVD., AUSTIN, TEXAS 78721 • A SUBSIDIARY OF MOTOROLA INC.

A12040-4 PRINTED IN USA 5-84 IMPERIAL LITHO C22121 2.500

