
M68HCOSTB / D

68HC05 ~~SE_RI_ES __ _

UNDERSTANDING SMALL MICROCONTROLLERS
JAMES M. SIBIGTROTH

Motorola reserves the right, without further notice, to make changes to any of its products
described or referred to herein to improve reliability, function, or design. Motorola does
not assume any liability arising out of the application or use of any product or circuit
described herein, neither does it convey any license under its patent rights nor the rights
of others. The software described herein will be provided on an "as is" basis and without
warranty. Motorola accepts no liability for incidental or consequential damages arising
from use of the software. This disclaimer of warranty extends to Motorola's licensee, to
licensee's transferees, and to licensee's customers or users and is in lieu of all warranties
whether expressed, implied, or statutory, including implied warranties of merchantability
or fitness for a particular purpose.

Motorola and the Motorola logo are registered trademarks of Motorola Inc.

Motorola Inc. is an Equal Opportunity/Affmnative Action Employer.

Motorola Inc. general policy does not recommend the use of its components in life
support applications wherein a failure or malfunction of the component may directly
threaten life or injury. Per Motorola Terms and Conditions of Sale, the user of Motorola
components in life support applications assumes all risks of such use and indemnifies
Motorola against all damages.

mM is a registered trademark of mM Cotporation.
Macintosh is a tgrademark of Apple Computer, Inc.

Acknowledgement

I wish to express my appreciation to the following people for
helping to make this textbook possible.

To Gordon Doughman for contributing chapter 8 on MCU
peripherals. Gordon is a field applications engineer for
Motorola in Dayton, Ohio.

To Mark McQuilken and Tim Ahrens for initially encouraging
me to write this textbook and for carefully reviewing the
contents. Mark McQuilken is the technical marketing manager
for the CSIC MCU division of Motorola in Austin, Texas. Tim
Ahrens is the manager of CSIC Development Tools at Motorola
in Austin.

To Robert Chretien, Mark Johnson, and Ed Csoltko for
reviewing the contents for accuracy. Robert and Mark work in
the CSIC MCU applications engineering group at Motorola in
Austin. Ed Csoltko is the technical writing manager for CSIC
MCU products at Motorola.

Software programs in this textbook were developed with the
IlASM assembler for Macintosh™ by Micro Dialects, Inc.
Cincinnati, OH. All programs were also tested with the IASM
assembler and 05KICS in-circuit simulator from P & E
Microcomputer Sytems, Inc. in Boston, MA.

Understanding Small Microcontrollers

James M. Sibigtroth

Printed in U.S.A.
Rev 1

© MOTOROLA INC., 1992

Table of Contents
Chapter 1 - What is a Microcontroller? .. 1·1

Overall View of a Computer System ... 1-2
Computer System Inputs .. 1-2
Computer System Outputs ... 1-3
Central Processor Unit (CPU) .. 1-4
Clock .. 1-4
Computer Memory ... 1-5
Computer Program ... 1-5

The Microcontroller ... 1-6
Chapter 1 Review ... 1-8

Chapter 2 - Computer Numbers and Codes ... 2·1
Binary and Hexadecimal Numbers .. 2-2
ASCII Code .. 2-4
Computer Operation Codes (Opcodes) .. 2-4
Instruction Mnemonics and Assemblers .. 2-6
Octal ... 2-6
Binary Coded Decimal (BCD) ... 2-8
Chapter 2 Review ... 2-10

Chapter 3 - Computer Memory and Parallel I/O ... 3·1
Pigeon Hole Analogy ... 3-2
How a Computer Sees Memory ... 3-3
Kilobytes, Megabytes, and Gigabytes .. 3-3
Kinds of Memory ... 3-4

Random Access Memory (RAM) .. 3-4
Read-Only Memory (ROM) ... 3-4
Programmable ROM (PROM) ... 3-5

EPROM .. 3-5
OTP .. 3-6
EEPROM ... 3-6

I/O as a Memory Type ... 3-6
Internal Status and Control Registers ... 3-8

Memory Maps .. 3-9
Memory Peripherals ... 3-12
Chapter 3 Review ... 3-13

Chapter 4 - Computer Architecture .. 4·1
Computer Architecture ... 4-2
CPU Registers .. 4-3
Timing .. 4-5
CPU View of a Program .. 4-5
CPU Operation ... 4-8

Detailed Operation of CPU Instructions4-8
Store Accumulator (Direct Addressing Mode) .. 4-9
Load Accumulator (Immediate Addressing Mode)4-10
Conditional Branch .. 4-11
Subroutine Calls and Returns ... 4-11

Playing Computer .. 4-15
Resets ... 4-20

RESET Pin ... 4-21
Power-On Reset ... 4-21
Low-Voltage Reset .. 4-21
Watchdog Timer Reset. .. 4-21
Illegal Address Reset ... 4-22

Interrupts .. 4-22
External Interrupts .. 4-23
On-chip Peripheral Interrupts ... 4-25
Software Interrupt (SWI) ... 4-25

Chapter 4 Review ... 4-26

Chapter S - M68HCOS Instruction Set .. S·l
M68HC05 Central Processor Unit (CPU) .. 5-2

Arithmetic/Logic Unit (ALU) : ... 5-2
CPU Control ... 5-2
CPU Registers .. 5-3

Accumulator (A) .. 5-3
Index Register (X) ...• 5-4
Condition Code Register (CCR) .. 5-4

Half-Carry Bit (H) , .. 5-4
Interrupt Mask Bit (I) ... 5-4
Negative (N)•................................•...•....•..........•.......•...•• 5-5
Zero (Z) .. 5-5
Carry/Borrow (C) ... 5-5

Program Counter (PC) ... 5-6
Stack Pointer (SP) .. 5-7

Addressing Modes .. 5-7
IMMEDIATE Addressing Mode ... 5-9
INHERENT Addressing Mode .. 5-10
EXTENDED Addressing Mode ... 5-12
DIRECT Addressing Mode .. 5-14
INDEXED Addressing Mode .. 5-16

Indexed-No Offset ... 5-16
Indexed-8-Bit Offset. ... 5-18
Indexed-16-Bit Offset .. 5-19

RELATIVE Addressing Mode ... 5-20
Bit Test and Branch Instructions .. 5-22

Instructions Organized by Type ... 5-22
Instruction Set Summary .. 5-27
Chapter 5 Review ... 5-37

Chapter 6 - Programming .. 6·1
Writing a Simple Program ... 6-2

Flowchart ... 6-2
Mnemonic Source Code ... 6-4
Software Delay Program .. 6-6
Assembler Listing .. 6-7
Object Code File .. 6-11

Assembler Directives ... 6-13
Originate (ORG) .. 6-13
Equate (EQU) ... 6-13
Form Constant Byte (FCB) .. 6-14
Form Double Byte (FOB) .. 6-14
Reserve Memory Byte (RMB) ... 6-15

ii

Set Default Number Base to Decimal .. 6-15
Instruction Set Dexterity .. 6-16
Application Development .. 6-18
Chapter 6 Review ... 6-20

Chapter 7 - The Paced Loop ... 7-1
System Equates .. 7-2

Register Equates for MC68HC705Kl ... 7-2
Application System Equates .. 7-3

Vector Setup ... 7~3
Reset Vector ... 7-4
Unused Interrupts ... 7-4

RAM Variables .. 7-6
Paced Loop ... 7-6

Loop Trigger .. 7 -7
Loop System Clock .. 7-8
Your Programs ... 7-10
Timing Considerations ... 7 -11
S tack Considerations .. 7 -11

An Application-Ready Framework .. 7-12
Chapter 7 Review ... 7-20

Chapter 8 - On-Chip Peripheral Systems ... 8-1
Types of Peripherals ... 8-2

Timers .. 8-3
Serial Ports ... 8-3
Analog to Digital Converters (A/D) ... 8-4
Digital to Analog Converters (D/A) ... 8-4
EEPROM ... 8-4

Controlling Peripherals .. 8-5
The MC68HC705Kl Timer ... 8-6

A Timer Example ... 8-8
Using The PWM Software ... 8-16

Chapter 8 Review ... 8-19

Appendix A - M68HC05 Instruction Set Details ... A-l

Appendix B - Reference Tables ... B-1
ASCII to Hexadecimal Conversion ... B-2
Hexadecimal to Decimal Conversion ... B-4
Decimal to Hexadecimal Conversion ... B-5
Hexadecimal Values vs. M68HC05 Instructions .. B-6

Glossary .. G-l

iii

List of Figures
Figure

Number Title
Page

Number

1-1 Overall View of a Computer System ... 1-2
1-2 Expanded View of a Microcontroller ... 1-7

3-1 Memory and I/O Circuitry ... 3-7
3-2 I/O Port with Data Direction ControL .. 3-9
3-3 Expanded Detail of One Memory Location ... 3-10
3-4 Typical Memory Map .. 3-11

4-1 M68HC05 CPU Registers .. 4-3
4-2 Memory Map of Example Program ... 4-7
4-3 Subroutine Call Sequence .. 4-12
4-4 Worksheet for Playing Computer .. 4-16
4-5 Completed Worksheet .. 4-17
4-6 Hardware Interrupt Flowchart .. 4-24
4-7 Interrupt Stacking Order .. 4-25

5-1 M68HC05 CPU Block Diagram .. 5-2
5-2 Programming Model .. 5-3
5-3 How Condition Codes are Affected by Arithmetic Operations 5-6

6-1 Example Flowchart .. 6-3
6-2 Flowchart and Mnemonics ... 6-5
6-3 Delay Routine Flowchart and Mnemonics ... 6-6
6-4 Explanation of Assembler Listing .. 6-9
6-5 Syntax of an S! Record .. 6-12
6-6 S-Record File for Example Program .. 6-12
6-7 Four Ways to Check a Switch .. 6-17

7 -1 Flowchart of Main Paced Loop .. 7-8
7-2 Flowchart of RTI Interrupt Service Routine .. 7-9

8-1 15-Stage Multifunction Timer Block Diagram .. 8-6
8-2 PWM Wave Forms with Various Duty Cycles .. 8-2
8-3 Portion of the MC68HC705Kl Timer ... 8-9
8-4 PWM with 16 Discrete Duty Cycle Outputs .. 8-10
8-5 Each TOF Interrupt Sliced into 16 Separate Time Intervals 8-12
8-6 Timer Interrupt Service Routine .. 8-13
8-7 Real Time Interrutp Routine Flowchart ... 8-14
8-8 Timer Overflow Interrupt Flowchart ... 8-15

iv

Listing
Number Title

Listings
Page

Number

4-1 Exrunple Program ... 4-6
4-2 Subroutine Call Example ... 4-12

6-1 Assembler Listing .. 6-8

7-1 Paced Loop Framework Program ... 7-14-7-19

8-1 PWM Progrrun Listing ... 8-17 ,8-18

Table
Number Title

List of Tables
Page

Number

2-1 Decimal, Binary, and Hexadecimal Equivalents ... 2-3
2-2 ASCII to Hexadecimal Conversion .. 2-5
2-3 Octal, Binary, and Hexadecimal Equivalents .. 2-7
2-4 Decimal, BCD, Binary Equivalents ... 2-8

4-1 Vector Addresses for Resets and Interrupts (MC68HC705Kl)4-23

5-1 IMMEDIATE Addressing Mode Instructions ... 5-9
5-2 INHERENT Addressing Mode Instructions .. 5-11
5-3 EXTENDED Addressing Mode Instructions ... 5-13
5-4 DIRECT Addressing Mode Instructions .. 5-15
5-5 INDEXED (No Offset or 8-Bit Offset) Addressing Mode Instructions 5-17
5-6 INDEXED (16-Bit Offset) Addressing Mode Instructions 5-20
5-7 RELATIVE Addressing Mode Instructions ... 5-22
5-8 Register/Memory Instructions .. 5-23
5-9 Read-Modify-Write Instructions .. 5-24

5-10 Branch Instructions .. 5-25
5-11 Control Instructions .. 5-26
5-12 Instruction Set Summary ... 5-28-5-36

8-1 RTI and COP Timer Rates (E-clock = 2.0 MHz) .. 8-7
8-2 PWM Characteristics for Various RTI Rates ... 8-11

B-1 Hexadecimal to ASCII .. B-3
B-2 Hexadecimal to Decimal Conversion ... B-4
B-3 Hexadecimal to M68HC05 Instruction Mnemonics B-6-B-9

v

vi

About This Textbook

Welcome to the world of microcontrollers. This textbook will help you
understand the inner workings of these small general purpose computers and then
explain how to design microcontrollers into useful applications. This book places
special emphasis on the smallest micro controllers in the Motorola M68HC05
family although the ideas apply to all microcontrollers and even to the largest
computers.

This textbook does not assume any prior knowledge of microprocessors or
software programming. Students can use this book in an instructor-led technical
class. Experienced engineers can also use this book to learn about
microcontrollers.

About This Textbook vii

The following paragraphs provide a brief description of each
chapter and appendix of this textbook.

1] - What is a Microcontroller?

This chapter introduces the major elements that make up any
computer system. This chapter discusses different kinds of
computer systems and the features that distinguish
micro controllers from other types of computer systems.

~ - Computer Numbers and Codes

This chapter explores the numbering systems and special
codes used by computers. Computers count in binary (base 2)
instead of decimal (base 10). The American Standard Code
for Information Interchange (ASCII) is another code that lets
computers work with alphabetic information. Finally
computers use special coded instructions when they execute
computer programs.

~ - Com puter Memory and Parallel 1/0

Memory is a basic building block of all computers. This
chapter discusses several different kinds of memory. The
idea of parallel I/O as a kind of memory is discussed. As the
idea of a computer memory map is explained in detail, you
will get your first view into the inner workings of a
computer.

~ - Computer Architecture

viii

This chapter describes the internal structure and operation of
the M68HC05 central processing unit (CPU). This chapter
will bring together the ideas that were presented in the first
three chapters to show how computers operate. This detailed
view of internal computer operations will make the
subsequent discussions of software easier to understand.

About This Textbook

® - M68HC05 Instruction Set

This chapter begins with an overview of the M68HC05 CPU
as seen by a programmer. Addressing modes are explained to
show the different ways a program can specify the location
of an operand. The instruction set is presented in three ways.
First, instructions are grouped by addressing mode. Second,
instructions are summarized by functional type. Finally the
whole instruction set is summarized alphabetically.

® - Programming

Computers are not smart. They only do what the instructions
in a program tell them to do. Computers only know how to
perform a relatively small set of simple instructions. It is the
endless combination of ways these instructions can be
combined that allows computers to do so many different
jobs. This chapter shows you how to prepare a set of
instructions for the computer to execute. Assemblers and
simulators are also discussed.

71 - The Paced Loop

This programming structure can be used as the basis for
many microcontroller applications. Sub-tasks that are
specific to an application can be written independently,These
sub-tasks can then be added to the paced loop framework.

® - On-Chip Peripheral Systems

Microcontrollers often include special purpose peripherals
systems. This chapter describes the 15-bit multifunction
timer that is found on small M68HC05 microcontrollers. A
complete design of a digital to analog converter is discussed
including a software program that uses this timer to produce
a PWM signal.

About This Textbook ix

fA - Instruction Set Details

This appendix includes detailed descriptions of all M68HC05
instructions.

[ID - Reference Tables

x

This appendix includes useful conversion tables.

Glossary items are highlighted as bold italic words or
phrases where they first appear in the text.

About This Textbook

What is a Microcontroller?

This chapter sets the groundwork for a detailed exploration of the inner workings
of a small microcontroller. We will see that the micro controller is one of the most
basic forms of computer system. Although much smaller than its cousins, personal
computers and mainframe computers, microcontrollers are built from the same
basic elements. In the simplest sense, computers produce a specific pattern of
outputs based on current inputs and the instructions in a computer program.

Like most computers, microcontrollers are simply general purpose instruction
executors. The real star of a computer system is a program of instructions that are
provided by a human programmer. This program instructs the computer to perform
long sequences of very simple actions to accomplish useful tasks as intended by the
programmer.

What is a Microcontroller? 1·1

Overall View of a Computer System

1·2

Figure 1-1 is a high level view of a computer system. By
simply changing the types of input and output devices this
could be a view of a personal computer, a room-sized
mainframe computer, or a simple microcontroller (MeU).
The input and output (/10) devices shown in the figure happen
to be typical I/O devices found in a microcontroller computer
system.

SWITCH

1 2 3 A
4 5 6 B
7 8 9 C
< 0 > !

KEYPAD

~
TEMPERATURE

SENSOR

Figure 1·1.

CRYSTAL

Overall View of a Computer System

Computer System Inputs

LED LAMP

BEEPER

L;~

~I
RELAY

Input devices supply information to the computer system from
the outside world. In a personal computer system, the most
common input device is the typewriter-style keyboard.
Mainframe computers use keyboards and punched card
readers as input devices. Microcontroller computer systems
usually use much simpler input devices such as individual
switches or small keypads although much more exotic input
devices are found in many microcontroller based systems. An
example of an exotic input device for a microcontroller is the
oxygen sensor in an automobile that measures the efficiency
of combustion by sampling the exhaust gasses.

What is a Microcontroller?

Most micro controller inputs can only process digital input
signals at the same voltage levels as the main logic power
source. The zero volt ground level is called V ss and the
positive power source (VDD) is typically 5 Vdc. A level of
approximately zero volts indicates a logic zero and a voltage
approximately equal to the positive power source indicates a
logic one signal.

Of course the real world is full of analog signals, or signals
that are some other voltage level. Some input devices translate
signal voltages from some other level to the VDD and V ss
levels needed for the microcontroller. Other input devices
convert analog signals into digital signals (binary values made
up of ones and zeros) that the computer can understand and
manipulate. Some micro controllers even include such analog
to digital converter circuits on the same integrated circuit.

Transducers can be used to translate other real-world signals
into logic level signals that a microcontroller can understand
and manipulate. Some examples include temperature
transducers, pressure sensors, light level detectors, and so
forth. With such transducers, almost any physical property can
be used as an input to a computer system.

Computer System Outputs

Output devices are used to communicate information or
actions from the computer system to the outside world. In a
personal computer system, the most common output device is
the CRT display. Microcontroller systems often use much
simpler output devices such as individual indicator lamps or
beepers.

Translation circuits (sometimes built into the same integrated
circuit as the microcomputer) can convert digital signals into
analog voltage levels. If necessary, other circuits can translate
V DD and V ss levels that are native to an MeV, into other
voltage levels.

The "controller" in microcontroller comes from the fact that
these small computer systems usually control something as
compared to a personal computer that usually processes
information. In the case of the personal computer, most output
is information (either displayed on a CRT screen or printed on
paper). In a microcontroller system most outputs are logic

What is a Microcontroller? 1-3

1·4

level digital signals that are used to drive display LEDs or
electrical devices such as relays or motors.

Central Processor Unit (CPU)

The CPU is at the center of every computer system. The job
of the CPU is to obediently execute the program of
instructions that were supplied by the programmer. A
computer program instructs the CPU to read information
from inputs, to read information from and write information to
working memory, and to write information to outputs. Some
program instructions involve simple decisions that cause the
program to either continue with the next instruction or to skip
to a new place in the program. In a later chapter we will look
closely at the set of available instructions for a particular
microcontroller.

In mainframe and personal computers there are actually layers
of programs starting with internal programs that control the
most basic operations of the computer. Another layer includes
user programs that are loaded into the computer system
memory when they are about to be used. This structure is very
complex and would not be a good example to show a beginner
how a computer works.

In a microcontroller there is usually only one program at work
in a particular control application. The M68HC05 CPU
recognizes only about 60 different instructions but these are
representative of the instruction sets of any computer system.
This kind of computer system is a good model for learning the
basics of computer operation because it is possible to know
exactly what is happening at every tiny step as the CPU
executes a program.

Clock

With very few exceptions, computers use· a small clock
oscillator to trigger the CPU to move from one step in a
sequence to the next. In the chapter on computer architecture
we will see that even the simple instructions of a
micro controller are broken down into a series of even more
basic steps. Each of these tiny steps in the operation of the
computer, takes one cycle of the CPU clock.

What is a Microcontroller?

Computer Memory

There are several kinds of computer memory that are used for
various purposes in computer systems. The main kinds of
memory found in micro controller systems are read-only
memory (R 0 M) and random access read/write memory
(RAM). ROM is used mainly for programs and permanent
data that must remain unchanged even when there is no power
applied to the microcontroller. RAM is used for temporary
storage of data and intermediate calculation results during
operation. Some micro controllers include other kinds of
memory such as erasable programmable read-only memory
(EPROM) and electrically erasable programmable read-only
memory (EEPROM). We will learn more about these kinds of
memory in a later chapter.

The smallest unit of computer memory is a single bit that can
store one value of zero or one. These bits are grouped into sets
of 8 bits to make one byte. Larger computers further group
bits into sets of 16 or 32 to make a unit called a word. The size
of a word can be different for different computers, but a byte
is always eight bits.

Personal computers work with very large programs and large
amounts of data so they use special forms of memory called
mass storage devices. Floppy disks, hard disks, and compact
discs are memory devices of this type. It is not unusual to fmd
several million bytes of RAM memory in a personal
computer. Even this is not enough to hold the large programs
and data used by personal computers so most personal
computers also include a hard disk with tens or even hundreds
of millions of bytes of storage capacity. Compact discs, very
similar to those used for popular music recordings, have a
capacity of about 600 million bytes of read-only memory.
Small microcontroller systems typically have a total of 1
thousand to 64 thousand bytes of memory.

Computer Program

Figure 1-1 shows the program as a cloud because it originates
in the imagination of a computer programmer or engineer.
This is comparable to an electrical engineer thinking up a new
circuit or a mechanical engineer figuring out a new assembly.
The components of a program are instructions from the
instruction set of the CPU. Just as a circuit designer can build

What is a Microcontroller? 1-5

an adder circuit out of simple AND, OR, and NOT elements, a
programmer can write a program to add numbers together out
of simple instructions.

Programs are stored in the memory of a computer system
where they can be sequentially executed by the CPU. In the
chapter on programming, we will learn how to write programs
and prepare them for loading into the memory of a computer.

The Microcontroller
Now that we have discussed the various parts of a computer
system, we are ready to talk about just what a microcontroller
is. The top half of figure 1-2 shows a generic computer system
with a portion enclosed in a dashed outline. This outlined
portion is a microcontroller and the lower half of the figure is
a block diagram showing its internal structure in greater detail.
The crystal is not contained within the microcontroller but it is
a required part of the oscillator circuit. In some cases, a less
expensive component such as a ceramic resonator or a
resistor-capacitor (R-C) circuit may be used instead of this
crystal.

A microcontroller can be defined as a complete computer
system including a CPU, memory, a clock oscillator, and I/O
on a single integrated circuit chip. When some of these
elements such as the I/O or memory are missing, the
integrated circuit would be called a microprocessor. The CPU
in a personal computer is a microprocessor. The CPU in a
mainframe computer is made up of many integrated circuits.

What is a Microcontroller?

SWITCH

1 2 3 A
4 5 6 B
7 8 9 C
< 0 > !

KEYPAD

TEMPERATURE
SENSOR

(POWER)

--
(GROUND)

DIGITAL
INPUTS

RESET

VDD

VSS

• •
•

en
:;:)
aJ
en en
w
a:
0
0 «

CENTRAL PROCESSING UNIT
CPU

...---+-------1 OSCILLATOR -
CRYSTAL

Figure 1·2.
Expanded View of a Microcontroller

&
CLOCKS

What is a Microcontroller?

LED LAMP

BEEPER

RELAY

•
• DIGITAL
• OUTPUTS

1·7

Chapter 1 Review

A lllieroeontroller is a complete computer system, including a
CPU, memory, a clock oscillator, and I/O on a single
integrated circuit chip.

The Parts of any Computer

• A central processor unit (CPU)
• A clock to sequence the CPU
• Memory for instructions and data
• Inputs to get infonnation into the computer system
• Outputs to get infonnation out of the computer system
• A program to make the computer do something useful

Kinds of Computers

.-8

Although all computers share the same basic elements and
ideas, there are different kinds of computers for different
purposes. Mainframe computers are very large computer
systems that are used for big infonnation processing jobs such
as checking the tax returns for all of the taxpayers in a region.
Personal computers are small versions of mainframe
computers that are used for smaller tasks such as word
processing and engineering drawing. Microcontrollers are
very small single chip computers that are used for such things
as controlling a small appliance. The smallest microcontrollers
are used for such things as converting the movements of a
computer mouse into serial data for a personal computer. Very
often, microcontrollers are embedded into a product and the
user of the product may not even know there is a computer
inside.

What is a Microcontroller?

Computer Numbers and Codes

Computers work best with information in a different form than people use.
Humans typically work in the base 10 (decimal) numbering system (probably
because we have ten fingers). Digital binary computers work in the base 2
(binary) numbering system because this allows all information to be represented
by sets of digits, which can only be zeros or ones. In tum, a one or zero can be
represented by the presence or absence of a logic voltage on a signal line or the
on and off states of a simple switch. This chapter discusses binary, hexadecimal,
octal, and binary coded decimal (BCD) numbers which are commonly used by
computers.

Computers also use special codes to represent alphabetic information and
computer instructions. Understanding these codes will help you understand how
computers can do so much with strings of digits that can only be ones or zeros.

Computer Numbers and Codes 2-1

Binary and Hexadecimal Numbers

2-2

In decimal (base 10) numbers, the weight of each digit is
ten times as great as the digit immediately to its right. The
rightmost digit of a decimal integer is the ones place, the
digit to its left is the tens digit, and so on. In binary (base
2) numbers, the weight of each digit is two times as great as
the digit immediately to its right. The rightmost digit of the
binary integer is the ones digit, the next digit to the left is the
twos digit, next is the fours digit, then the eights digit, and so
on.

Although computers are quite comfortable working with
binary numbers of 8, 16, or even 32 binary digits, humans
find it very inconvenient to work with so many digits at a
time. The base 16 (hexadecimal) numbering system offers
a practical compromise. One hexadecimal digit can exactly
represent four binary digits, thus, an 8-bit binary number
can be expressed by two hexadecimal digits.

The correspondence between a hexadecimal digit and the
four binary digits it represents is simple enough that humans
who work with computers easily learn to mentally translate
between the two. In hexadecimal (base 16) numbers, the
weight of each digit is 16 times as great as the digit
immediately to its right. The rightmost digit of a
hexadecimal integer is the ones place, the digit to its left is
the sixteens digit, and so on.

Table 2-1 demonstrates the relationship between the decimal,
binary, and hexadecimal representations of values. These
three different numbering systems are just different ways to
represent the same physical quantities. The letters A through
F are used to represent the hexadecimal values corresponding
to 10 through 15 because each hexadecimal digit can
represent 16 different quantities; whereas, our customary
numbers only include the 10 unique symbols (0 through 9).
Thus, some other single-digit symbols had to be used to
represent the hexadecimal values for 10 through 15.

Computer Numbers and Codes

Tabl. 2·1.
Decimal, Binary, and Hexadecimal Equivalents

Base 10 Base 16
Decimal Base 2 Binary Hexadecimal

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9

10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F
16 0001 0000 10
17 0001 0001 11

100 0110 0100 64
255 1111 1111 FF

1024 0100 0000 0000 400
65,535 1111 1111 1111 1111 FFFF

To avoid confusion about whether a number is hexadecimal
or decimal, place a $ symbol before hexadecimal numbers.
For example, 64 means decimal "sixty-four"; whereas, $64
means hexadecimal "six-four," which is equivalent to decimal
100. Some computer manufacturers follow hexadecimal
values with a capital H (as in 64H).

Hexadecimal is a good way to express and discuss numeric
infonnation processed by computers because it is easy for
people to mentally convert between hexadecimal digits and
their 4-bit binary equivalent. The hexadecimal notation is
much more compact than binary while maintaining the
binary connotations.

Computer Numbers and Codes 2·3

ASCII Code

Computers must handle many kinds of information other
than just numbers. Text (alphanumeric characters) and
instructions must be encoded in such a way that the computer
can understand this information. The most common code for
text information is the American Standard Code for
Information Interchange (or ASCII). The ASCII code
establishes a widely accepted correlation between
alphanumeric characters and specific binary values. Using
the ASCII code, $41 corresponds to capital A, $20
corresponds to a space character, etc. The ASCII code
translates characters to 7 -bit binary codes, but in practice the
information is most often conveyed as 8-bit characters with
the most significant bit equal to zero. This standard code
allows equipment made by various manufacturers to
communicate because all of the machines use this same code.

Table 2-2 shows the relationship between ASCII characters
and hexadecimal values.

Computer Operation Codes

2·4

Computers use another code to give instructions to the CPU.
This code is called an operation code or opcode. Each
opcode instructs the CPU to execute a very specific sequence
of steps that together accomplish an intended operation.
Computers from different manufacturers use different sets of
opcodes because these opcodes are internally hard-wired in
the CPU logic. The instruction set for a specific CPU is
the set of all operations that the CPU knows how to perform.
Opcodes are one representation of the instruction set and
mnemonics are another. Even though the opcodes differ
from one computer to another, all digital binary computers
perform the same kinds of basic tasks in similar ways. The
CPU in the MC68HC05 MCU can understand 62 basic
instructions. Some of these basic instructions have several
slight variations, each requiring a separate opcode. The
instruction set of the MC68HC05 is represented by 210
unique instruction opcodes. We will discuss how the CPU
actually executes instructions in another chapter. First we
need to understand a few more basic concepts.

Computer Numbers and Codes

Table 2·2.
ASCII to Hexadecimal Conversion

Hex I ASCII Hex I ASCII Hex I ASCII Hex I ASCII
$00 NUL $20 SP $40 @ $60 "

space grave
$01 SOH $21 ! $41 A $61 a
$02 STX $22 " $42 B $62 b
$03 ETX $23 # $43 C $63 c
$04 EOT $24 $ $44 0 $64 d
$05 ENQ $25 % $45 E $65 e
$06 ACK. $26 & $46 F $66 f
$07 BEL $27 , $47 a $67 g

beep apost.
$08 BS $28 ($48 H $68 h

backsp
$09 HT $29) $49 I $69 i

tab
$OA LF $2A * $4A J $6A j

linefeed
SOB vr $2B + $4B K $6B k
SOC FF $2C · $4C L $6C I

comma
$00 CR $20 - $40 M $60 m

return dash
$OE SO $2E · $4E N $6E n

period
$OF SI $2F / $4F 0 $6F 0

$10 OlE $30 0 $50 P $70 P
$11 DC1 $31 1 $51 Q $71 q
$12 0C2 $32 2 $52 R $72 r
$13 DC3 $33 3 $53 S $73 s
$14 OC4 $34 4 $54 T $74 t

$15 NAK $35 5 $55 U $75 u
$16 SYN $36 6 $56 V $76 v
$17 ETB $37 7 $57 W $77 w
$18 CAN $38 8 $58 X $78 x
$19 EM $39 9 $59 Y $79 y
$lA SUB $3A · $5A Z $7A z · $IB ESC $3B · $5B [$7B { ,
$IC FS $3C < $5C \ $7C I
$10 as $30 = $50] $70 }
$1E RS $3E > $5E 1\ $7E -
$IF US $3F '1 $5F $7F OFL -

under delete

Computer Numbers and Codes

Instruction Mnemonics and Assemblers

Octal

2-6

An opcode such as $4C is understood by the CPU, but it is
not very meaningful to a human. To solve this problem, a
system of mnemonic instruction equivalents is used. The
$4C opcode corresponds to the INCA mnemonic, which is
read "increment accumulator". Although there is printed
information to show the correlation between mnemonic
instructions and the opcodes they represent, this information
is seldom used by a programmer because the translation
process is automatically handled by a separate computer
program called an assembler. An assembler is a program
that converts a program written in mnemonics into a list of
machine codes (opcodes and other information) that can be
used by a CPU.

An engineer develops a set of instructions for the computer
in mnemonic form and then uses an assembler to translate
these instructions into opcodes that the CPU can understand.
We will discuss instructions, writing programs, and
assemblers in other chapters, but you should understand that
people prepare instructions for a computer in mnemonic
form and the computer understands only opcodes; thus, a
translation step is required to change the mnemonics to
opcodes, and this is the function of the assembler.

Before leaving this discussion of number systems and codes,
we will look at two additional codes you may have heard
about. Octal (base 8) notation was used for some early
computer work but is seldom used today. Octal notation uses
the numbers 0 through 7 to represent sets of three binary
digits in the same way hexadecimal is used to represent sets
of four binary digits. The octal system had the advantage of
using customary number symbols (unlike the hexadecimal
symbols A through F discussed earlier).

Two disadvantages caused octal to be abandoned for the
hexadecimal notation used today. First of all, most computers
use 4, 8, 16, or 32 bits per word; these words do not break
down nicely into sets of three bits. (Some early computers
used 12-bit words that did break down into four sets of three
bits each.) The second problem was that octal is not as

Computer Numbers and Codes

compact as hexadecimal. For example, the ASCII value for
capital A is 10000012 in binary, 41t6 in hexadecimal, and
1018 in octal. When a human is talking about the ASCII value
for A, it is easier to say "four-one" than it is to say "one­
zero-one. "

Table 2-3 demonstrates the translation between octal and
binary. The "direct binary" column shows the digit-by-digit
translation of octal digits into sets of three binary bits. The
leftmost (ninth) bit is shown in bold typeface. This bold zero
is discarded to get the desired eight bit result. The "8-bit
binary" column has the same binary information as the direct
binary column, except the bits are regrouped into sets of
four. Each set of four bits translates exactly into one
hexadecimal digit.

Table 2-3.
Octal, Binary, and Hexadecimal Equivalents

Direct
Octal Binary 8-Bit Binary Hexadecimal

000 000000000 00000000 $00
001 000 000 001 0000 0001 $01
002 000 000 010 0000 0010 $02
003 000 000 all 0000 0011 $03
004 000 000 100 0000 0100 $04
005 000 000 101 0000 0101 $05
006 000 000 110 0000 0110 $06
007 000 000 111 0000 0111 $07
010 000 001000 0000 1000 $08
011 000 001001 00001001 $09
012 000 001010 00001010 $OA
013 000001011 00001011 $OB
014 000001100 00001100 $OC
015 000 001101 00001101 $OD
016 000 001 110 00001110 $OE
017 000001 111 00001111 $OF
101 001000001 01000001 $41
125 001010101 01010101 $55
252 010 101010 1010 1010 $AA
377 011111111 11111111 $FF

When mentally translating octal values to binary byte values,
the octal value is represented by three octal digits. Each octal
digit represents three binary bits so there is one extra bit (3

Computer Numbers and Codes 2-7

digits x 3 bits = 9 bits). Since people typically work from
left to right, it is easy to forget to throwaway the leftmost
extra bit from the leftmost octal digit and end up with an
extra (ninth) bit. When translating from hexadecimal to
binary, it is easier because each hexadecimal digit translates
into exactly four binary bits. Two hexadecimal digits exactly
match the eight binary bits in a byte.

Binary Coded Decimal

2-8

Binary coded decimal (BCD) is a hybrid notation used to
express decimal values in binary form. BCD uses four binary
bits to represent each decimal digit. Since four binary digits
can express 16 different physical quantities, there will be six
bit-value combinations that are considered invalid
(specifically, the hexadecimal values A through F). BCD
values are shown with a $ sign because they are actually
hexadecimal numbers that represent decimal quantities.

Table 2·4.
DeCimal, BCD, Binary Equivalents

Hexadecimal
Decimal BCD Binary (reference)

0 $0 0000 $0
1 $1 0001 $1
2 $2 0010 $2
3 $3 0011 $3
4 $4 0100 $4
5 $5 0101 $5
6 $6 0110 $6
7 $7 0111 $7
8 $8 1000 $8
9 $9 1001 $9

1010 $A
1011 $B

Invalid 1100 $C
BCD 1101 $D

Combinations 1110 $E
1111 $F

10 $10 00010000 $10
99 $99 10011001 $99

Computer Numbers and Codes

When the computer does a BCD add operation, it performs a
binary addition and then adjusts the result back to BCD
form. As a simple example, consider the following BCD
addition.

910+ 110= 1010

The computer adds ...

0000 10012 + 000000012 = 000010102

But 10102 is equivalent to A16, which is not a valid BCD
value. When the computer finishes the calculation, a check is
performed to see if the result is still a valid BCD value. If
there was any carry from one BCD digit to another or if
there was any invalid code, a sequence of steps would be
performed to correct the result to proper BCD form. The
0000 10102 is corrected to 0001 00002 (BCD 10) in this
example.

In most cases, it is inefficient to use BCD notation in
computer calculations. It is better to change from decimal to
binary as information is entered, do all computer calculations
in binary, and change the binary result back to BCD or
decimal as needed for display. First, not all microcontrollers
are capable of doing BCD calculations because they need a
digit-to-digit carry indicator that is not present on all
computers (though Motorola MCUs do have this half-carry
indicator). Second, forcing the computer to emulate human
behavior is inherently less efficient than allowing the
computer to work in its native binary system.

Computer Numbers and Codes 2·'

Chapter 2 Review

Computers have two logic levels (0 and 1) so they work in
the binary numbering system. People have ten fingers so they
work in the decimal numbering system.

Hexadecimal numbers use the sixteen symbols 0 through 9
and A through F. Each hexadecimal digit can exactly
represent a set of four binary digits. Table 2-1 shows the
decimal, binary, and hexadecimal equivalents of various
values. A $ symbol is used before a hexadecimal value to
distinguish it from decimal numbers.

ASCII is a widely accepted code that allows alphanumeric
infonnation to be represented as binary values.

Each instruction or variation of an instruction has a unique
opcode (binary value) that the CPU recognizes as a request to
perform a specific instruction. CPU s from different
manufacturers have different sets of opcodes.

Programmers specify instructions by a mnemonic such as
"INCA". A computer program called an assembler, translates
mnemonic instructions into opcodes the CPU can understand.

Computer Numbers and Codes

Computer Memory and Parallel I/O

Before the operation of a CPU can be discussed in detail, some conceptual
knowledge of computer memory is required. In many beginning programming
classes, memory is presented as being similar to a matrix of pigeon holes where
you can save messages and other information. The pigeon holes we are referring to
are like the mailboxes in a large apartment building. This is a good analogy but
needs a little refmement if it is to be used to explain the inner workings of a CPU.

Computer Memory and Parallel I/O 3·1

Pigeon Hole Analogy

3·2

The whole idea of any memory is to be able to save'
information. Of course there is no point in saving information
if you don't have a reliable way to recall that information
when you need it. The array of mailboxes in a large apartment
building could be used as a memory. You could put
information into a mail box with a certain apartment number
on it. When you wanted to recall that information you could
go to the mailbox with that address and retrieve the
information. Next we will carry this analogy further to explain
just how a computer sees memory. We will confine our
discussion to an 8-bit computer so that we can be very
specific.

In an 8-bit CPU, each pigeon hole (or mailbox) can be thought
of as containing a set of eight on/off switches. Unlike a pigeon
hole, you cannot fit more information in by writing smaller,
and there is no such thing as an empty pigeon hole (the eight
switches are either on or off). The contents of a memory
location can be unknown or undefined at a given time, just as
the switches in the pigeon holes may be in an unknown state
until you set them the first time. The eight switches would be
in a row where each switch represents a single binary digit
(bit). A binary one corresponds to the switch being on, and a
binary zero corresponds to the switch being off. Each pigeon
hole (memory location) has a unique address so that
information can be stored and reliably retrieved.

In an apartment building, the addresses of the mailboxes
might be 100-175 for the first floor, 200-275 for the second
floor, etc. These are decimal numbers that have meaning for
people. As we discussed earlier, computers work in the binary
number system. A computer with four address wires could
uniquely identify 16 addresses because a set of four 1s and Os
can be arranged in 16 different combinations. This computer
would identify the addresses of the 16 memory locations
(mailboxes) with the hexadecimal values $0 through $F.

In the smallest MC68HC05 micro controllers there are ten
address lines so these computers can address 1024 unique
memory locations. The MC68HC11 general purpose 8-bit
microcontroller has 16 address lines so it can address 65,536
unique memory locations.

Computer Memory and Parallel/IO

How a Computer Sees Memory

An 8-bit computer with ten address lines sees memory as a
continuous row of 1024, 8-bit values. The first memory
location has the address 00 0000 00002 and the last location
has the address 11 1111 11112. These 10-bit addresses are
normally expressed as two 8-bit numbers that are in tum
expressed as four hexadecimal digits. In hexadecimal
notation, these addresses would range from $0000 to $03FF.

The computer specifies which memory location is being
accessed (read from or written to) by putting a unique
combination of ones and zeros on the ten address lines. The
intention to read the location or write to the location is
signalled by placing a one (read) or a zero (write) on a line
called read/write (RIW). The information from or for the
memory location is carried on eight data lines.

To a computer any memory location can be written to or read
from. Not all memory types are writable, but it is the job of
the programmer to know this, not the computer. If a
programmer erroneously instructs the computer to write to a
read-only memory, it will try to do so.

Kilobytes, Megabytes, and Gigabytes

The smallest unit of computer memory is a single bit that can
store one value of zero or one. These bits are grouped into sets
of 8 bits to make one byte. Larger computers further group
bits into sets of 16 or 32 to make a unit called a word. The size
of a word can be different for different computers.

In the decimal world we sometimes express very small or very
large numbers by including a prefix such as "milli-", "kilo-",
etc., before the unit of measure. In the binary world we use
similar prefixes to describe large amounts of memory. In the
decimal system, the prefix "kilo-" means 1000 (or 103) times a
value. In the binary system, the integer power of 2 that comes
closest to 100010 is 210=102410. We say "kilobytes" but we
mean "K bytes" which are multiples of 102410 bytes.
Although this is sloppy scientific terminology, it has become a
standard through years of use.

Computer Memory and Parallel I/O 3·3

A megabyte is 220 or 1,048,57610 bytes. A gigabyte is 230 or
1,073,741,82410 bytes. A personal computer with 32 address
lines can theoretically address 4 gigabytes (4,294,967,29610)
of memory. The small microcontrollers discussed in this
textbook have only about 512 bytes to 16 kilobytes of
memory.

Kinds of Memory

3-4

Computers use several kinds of information that require
different kinds of memory. The instructions that control the
operation of a micro controller are stored in a non-volatile
memory so the system does not have to be reprogrammed
after power has been off. Working variables and intermediate
results need to be stored in a memory that can be written
quickly and easily during system operation. It is not important
to remember this kind of information when there is no power
so a volatile form of memory can be used. These types of
memory are changed (written) and read only by the CPU in
the computer.

Like other memory information, input data is read by the CPU
and output data is written by the CPU. I/O and control
registers are also a form of memory to the computer, but they
are different than other kinds of memory because the
information can be sensed and/or changed by sometJiing other
than the CPU.

Random Access Memory (RAM)

RAM memory is a volatile form of memory that can be read
or written by the CPU. As its name implies, RAM locations
may be accessed in any order. This is the most common type
of memory in a personal computer. RAM requires a relatively
large amount of area on an integrated circuit chip. Because of
the relatively large chip area (and thus higher cost), usually
only small amounts of RAM are included in micro controller
ChIpS.

Read-Only Memory (ROM)

ROM memory gets its information during the manufacturing
process. The information must be provided by the customer
before the integrated circuit that will contain this information

Computer Memory and ParallelllO

is made. When the finished microcontroller is used, this
information can be read by the CPU but cannot be changed.
ROM is considered a non-volatile memory because the
information does not change if power is turned off. ROM is
the simplest, smallest, and least expensive type of non-volatile
memory.

Programmable ROM (PROM)

PROM is similar to ROM except that it can be programmed
after the integrated circuit is made. Some variations of PROM
include erasable PROM (EPROM), one-time-programmable
PROM (OTP), and electrically erasable PROM (EEPROM).

EPROM EPROM can be erased by exposing it to an
ultraviolet light source. Microcontrollers where the EPROM
can be erased, have a small quartz window that allows the
integrated circuit chip inside to be exposed to the ultraviolet
light. The number of times an EPROM can be erased and
reprogrammed is limited to a few hundred cycles depending
on the particular device.

A special procedure is used to program information into an
EPROM memory. Most EPROM micro controllers also use an
additional power supply such as +12Vdc during the EPROM
programming operation. The CPU cannot simply write
information to an EPROM location the way it would write to a
RAM location.

Some micro controllers have built in EPROM programming
circuits so that the CPU in the micro controller can program
EPROM locations. When the EPROM is being programmed,
it is not connected to the address and data busses the way a
normal memory would be. In the pigeon hole analogy this
would be like removing the entire rack of mailboxes and
taking it to a warehouse where the boxes would be filled with
information. While the mailboxes are away being
programmed, the people at the apartment building cannot
access the mailboxes.

Some EPROM microcontrollers (not the MC68HC705Kl)
have a special mode of operation that makes them appear to
be an industry standard EPROM memory. These devices can
be programmed with a general purpose commercial EPROM
programmer.

Computer Memory and Parallel //0 3-5

3·6

OlP When an EPROM microcontroller is packaged in an
opaque plastic package, it is called a one-time programmable
or OTP micro controller. Since ultraviolet light cannot pass
through the package, the memory cannot be erased. The
integrated circuit chip inside an OTP MCU is identical to that
in the quartz window package. The plastic package is much
le,ss expensive than a ceramic package with a quartz window.
OTP MCUs are ideal for quick tum around, first production
runs, and low volume applications.

EEPROM EEPROM can be erased electrically by
commands in a microcontroller. In order to program a new
value into a location you must first erase the location and then
perform a series of programming steps. This is somewhat
more complicated than changing a RAM location that can
simply be written to a new value by the CPU. The advantage
of EEPROM is that it is a non-volatile memory. EEPROM
does not lose its contents when power is turned off. Unlike
RAM memory, the number of times you can erase and
reprogram an EEPROM location is limited (typically to
10,000 cycles). The number of times you can read an
EEPROM location is not limited.

1/0 as a Memory Type

I/O status and control information is a type of memory
location that allows the computer system to get information to
or from the outside world. This type of memory location is
unusual because the information can be sensed and/or changed
by something other than the CPU.

The simplest kinds of I/O memory locations are simple input
ports and simple output ports. In an 8-bit MCU, a simple input
port consists of eight pins that can be read by the CPU. A
simple output port consists of eight pins that the CPU can
control (write to). In practice, a simple output port location is
usually implemented with eight latches and feedback paths
that allow the CPU to read bQck what was previously written
to the address of the output port.

Computer Memory and Parallel 110

Figure 3-1 shows the equivalent circuits for one bit of RAM,
one bit of an input port, and one bit of a typical output port
having readback capability. In a real MeU, these circuits
would be repeated eight times to make a single 8-bit RAM
location, input port, or output port. The half flip-flops (HFF)
in Figure 3-1 are very simple transparent flip-flops. When the
clock signal is high, data passes freely from the D input to the
Q and Q-bar outputs. When the clock input is low, data is
latched at the Q and Q-bar outputs.

READ

~

HFF

DATABITn
~

D a
(n= 0, 1...or 7)

WRITE C a
(1)

(a) RAM Bit

READ

~I DATA BIT n <] (n= 0, Lor 7) ~

BUFFER

(b) Input Port Bit

READ

~

HFF (4)

DATABITn D a
(n= 0, Lor 7) ~ ~

WRITE C a

(c) Output Port with Read·Back

Figure 3·1.
Memory and I/O Circuitry

t

~ DIGITAL
INPUT

DIGITAL
OUTPUT

When the CPU stores a value to the address that corresponds
to the RAM bit in Figure 3-1 (a), the WRITE signal is
activated to latch the data from the data bus line into the flip­
flop [1]. This latch is static and remembers the value written

Computer Memory and Parallel I/O 3·7

3-8

until a new value is written to this location (or power is
removed). When the CPU reads the address of this RAM bit,
the READ signal is activated, which enables the multiplexer at
[2]. This multiplexer couples the data from the output of the
flip-flop onto the data bus line. In a real MCU, RAM bits are
much simpler than shown here, but they are functionally
equivalent to this circuit.

When the CPU reads the address of the input port shown in
Figure 3-1 (b), the READ signal is activated, which enables
the multiplexer at [3]. The multiplexer couples the buffered
data from the pin onto the data bus line. A write to this
address would have no meaning.

When the CPU stores a value to the address that corresponds
to the output port in Figure 3-1 (c), the WRITE signal is
activated to latch the data from the data bus line into the flip­
flop [4]. The output of this latch, which is buffered by the
buffer driver at [5], appears as a digital level on the output pin.
When the CPU reads the address of this output port, the
READ signal is activated, which enables the multiplexer at
[6]. This multiplexer couples the data from the output of the
flip-flop onto the data bus line.

Internal Status and Control Registers

Internal status and control registers are just specialized
versions of I/O memory locations. Instead of sensing and
controlling external pins, status and control registers sense and
control internal logic level signals.

Look at figure 3-1 and compare the RAM bit to the output
port. The only difference is that the output bit has a buffer to
connect the state of the flip-flop to an external pin. In the case
of an internal control bit, the buffer output is connected to
some internal control signal rather than an external pin. An
internal status bit is like an input port bit except that the signal
that is sensed during a read is an internal signal rather than an
external pin.

M68HC05 microcontrollers include general-purpose parallel
I/O pins. The direction of each pin is programmable by a
software-accessible control bit. Figure 3-2 shows the logic for
a bi-directionall/O pin including an output port latch and a
data direction control bit.

Computer Memory and Parallel lID

A port pin is configured as an output if its corresponding DDR
bit is set to a logic one. A pin is configured as an input if its
corresponding DDR bit is cleared to a logic zero. At power-on
or reset, all DDR bits are cleared, which configure all port
pins as inputs. The DDRs are capable of being written to or
being read by the processor.

t

----+­
BUFFER - DRIVER

READ _____ ~
PORT

Figure 3·2.
1/0 Port with Data Direction Control

Memory Maps

Since there are a thousand or more memory locations in an
MCU system, it is important to have a convenient way to keep
track of where things are. A memory map is a pictorial
representation of the total MCU memory space. Figure 3-4 is
a typical memory map showing the memory resources in the
MC68HC705Kl.

The four-digit hexadecimal values along the left edge of
Figure 3-4 are addresses beginning with $0000 at the top and
increasing to $03FF at the bottom. $0000 corresponds to the
first memory location (selected when the CPU drives all
address lines of the internal address bus to logic zero). $03FF
corresponds to the last memory location selected (when the
CPU drives all ten address lines of the internal address bus to
logic one). The labels within the vertical rectangle identify

Computer Memory and Parallel I/O 3·9

3-10

what kind of memory (RAM, EPROM, I/O registers, etc.),
resides in a particular area of memory.

Some areas, such as I/O registers, need to be shown in more
detail because' it is important to know the names of each
individual location. The whole vertical rectangle can be
interpreted as a row of 1024 pigeon holes (memory locations).
Each of these 1024 memory locations contains eight bits of
data as shown in Figure 3-3.

Port A Data Direction Register $04

'" '" .. ~ I DDRA7 I DORM I DORM I DORM II DDRA3 I DDRA2 I DORA1 I DDRAO I

Figure 3-3.
Expanded Detail of One Memory Location

The first 256 memory locations ($OOOO-$OOFF) can be
accessed by the computer in a special way called direct
addressing mode. Addressing modes are discussed in greater
detail in chapter 5. In direct addressing mode, the CPU
assumes that the upper two hexadecimal digits of address are
zeros; thus, only the two low-order digits of the address need
to be explicitly given in the instruction. On-chip I/O registers
and 32 bytes of RAM are located in the $OOOO--$OOFF area of
memory. In the memory map (Figure 3-4), the expansion of
the I/O area of memory identifies each register location with
the two low-order digits of its address rather than the full four­
digit address. For example, the two-digit hexadecimal value
$00 appears to the right of the port A data register, which is
actually located at address $0000 in the memory map.

Computer Memory and Parallel 110

$0000

$OOIF
$0020

$OODF
$OOEO

$OOFF
$0100

$OIFF
$0200

$03EF
$03FO

$03F7
$03F8

$03FF _

I/O
32 Bytes

Unused
192 Bytes

t
Stack RAM

32 Bytes

I

Unused
256 Bytes

J

User EPROM
496 Bytes

Test ROM and
COP Register

User Vectors
(EPROM)
8 Bytes

Figure 3-4.
Typical Memory Map

See Figure 3-3 ~

Computer Memory and Parallel I/O

I

Port A Data Register
Port B Data Register

Unused
Unused

Port A Data Direction Register
Port B Data Direction Register

Unused
Unused

Timer Status & Control
Timer Counter Register

IRQ Status & Control
Unused
Unused
Unused

PEPROM Bit Select Register
PEPROM Status & Control

Pulldown Register A
Pulldown Register B

Unused
Unused
Unused
Unused
Unused

Mask Option Register
EPROM Programming Register

Unused
Unused
Unused
Unused
Unused
Unused

Reserved

COP Register
Reserved

• • •
Reserved

Timer Vector (High Byte)
Timer Vector (Low Byte)
IRQ Vector (High Byte)
IRQ Vector (Low Byte)
SWI Vector (High Byte)
SWI Vector (Low Byte)

RESET Vector (High Byte)
RESET Vector (Low Byte)

I

$00
$01
$02
$03
$04
$05
$06
$07
$08
$09
$OA
$OB
$OC
$00
$OE
$OF
$10
$11
$12
$13
$14
$15
$16
$17
$18
$19
$IA
$IB
$IC
$10
$IE
$IF

$03FO
$03Fl
•
•
•

$03F7
$03F8
$03F9
$03FA
$03FB
$03FC
$03FD
$03FE
$03FF

3-11

Memory Peripherals
Memories can be a fonn of peripheral. The uses for different
types of memory were discussed earlier, but the logic required
to support these memories was not considered. ROM and
RAM memories are very straightforward and require no
support logic other than address-select logic to distinguish one
location from another. This select logic is provided on the
same chip as the memory itself.

EPROM (erasable PROM) and EEPROM (electrically
erasable PROM) memories require support logic for
programming (and erasure in the case of EEPROM). The
peripheral support logic in the MC68HC70SKl is like having
a PROM programmer built into the MCU. A control register
includes control bits to select between programming and
reading modes and to enable the high-voltage programming
power supply.

Computer Memory and Paraliel/fO

Chapter 3 Review

We think of memory as an array of mailboxes. A computer
views memory as a series of 8-bit values.

If a computer has n address lines, it can uniquely address 2n

memory locations. A computer with ten address lines can
address 210, or 102410 locations.

lOne kilobyte (written lK byte) is equal to 102410 bytes.

Kinds of Memory
• RAM Random access memory can be read or written by a

CPU. Contents are remembered as long as power is applied.
• ROM Read-only memory can be read but not changed. The

contents must be determined before the integrated circuit is
manufactured. Power is not required for ROM to remember
its contents.

• EPROM Erasable programmable ROM can be changed by
erasing it with an ultraviolet light and then programming it
with a new value. The erasure and programming operations
can be performed a limited number of times after the
integrated circuit is manufactured. Power is not required for
EPROM to remember its contents.

• OTP The chip in a one-time-programmable EPROM is
identical to that in an EPROM, but it is packaged in an
opaque package. Since ultraviolet light cannot get through
the package, this memory cannot be erased after it is
programmed the first time.

• EEPROM Electrically erasable PROM can be changed
using electrical signals and remembers its contents even
when no power is applied. Typically an EEPROM location
can be erased and reprogrammed up to 10,000 times before
it wears out.

• I/O I/O, control, and status registers are a special kind of
memory because the information can be sensed and/or
changed by something other than the CPU.

Computer Memory and Parallel I/O 3·13

3-14

Non-volatile memory remembers its contents even when there
is no power.

Volatile memory forgets its contents when power is turned
off.

A memory map is a pictorial view of all of the memory
locations in a computer system.

The first 256 locations in a microcontroller system can be
accessed in a special way called direct addressing mode. In
direct addressing mode the CPU assumes the high order byte
of the address is $00 so it does not have to be explicitly given
in a program (saving the space it would have taken and
eliminating the clock cycle it would have required to fetch it).

Specialty memories such as EPROM and EEPROM can be
considered peripherals in a computer system. Support circuitry
and programming controls are required to modify the contents
of these memories. This differs from simple memories such as
RAM that can be read or written in a single CPU clock cycle.

Computer Memory and Parallel //0

Computer Architecture

This chapter will take us into the very heart of a computer to see what makes it
tick. This will be a more detailed look than you nonnally need to use an MCU but
it will help you understand why some things are done in a certain way.

Everything the CPU does is broken down into sequences of very simple steps. A
clock oscillator generates a CPU clock that is used to step the CPU through these
sequences. The CPU clock is very fast in human terms, so things seem to be
happening almost instantaneously. By going through these sequences step by step,
you will gain a working understanding of how a computer executes programs. You
will also gain valuable knowledge of a computer's capabilities and limitations.

Computer Architecture 4·1

Computer Architecture

4-2

Motorola M68HC05 and M68HCll 8-bit MCUs have a
specific organization that is called a Von Neumann
architecture after an American mathematician of the same
name. In this architecture, a CPU and a memory array are
interconnected by an address bus and a data bus. The address
bus is used to identify which memory location is being
accessed, and the data bus is used to convey information
either from the CPU to the memory location (pigeon hole) or
from the memory location to the CPU.

In the Motorola implementation of this architecture, there are
a few special pigeon holes (called CPU registers) inside the
CPU, which act as a small scratch pad and control panel for
the CPU. These CPU registers are similar to memory in that
information can be written into them and remembered.
However, it is important to remember that these registers are
directly wired into the CPU and are not part of the addressable
memory available to the CPU.

All information (other than the CPU registers) accessible to
the CPU is envisioned (by the CPU) to be in a single row of a
thousand or more pigeon holes. This organization is
sometimes called a memory-mapped lID system because the
CPU treats all memory locations alike whether they contain
program instructions, variable data, or input-output (I/O)
controls. There are other computer architectures, but this
textbook is not intended to explore these variations.
Fortunately, the Motorola M68HC05 architecture we are
discussing is one of the easiest to understand and use. This
architecture encompasses the most important ideas of digital
binary computers; thus, the information presented in this
textbook will be applicable even if you go on to study other
architectures.

The number of wires in the address bus determines the total
possible number of pigeon holes; the number of wires in the
data bus determines the amount of information that can be
stored in each pigeon hole. In the MC68HC705Kl, the
address bus has 10 lines, making a maximum of 1024 separate
pigeon holes (in MCU jargon you would say this CPU can
access lK locations). Since the data bus in the
MC68HC705Kl is eight bits, each pigeon hole can hold one
byte of information. One byte is eight binary digits, or two

Computer Architecture

hexadecimal digits, or one ASCII character, or a decimal
value from 0 to 255.

CPU Registers

Different CPUs have different sets of CPU registers. The
differences are primarily the number and size of the registers.
Figure 4-1 shows the CPU registers found in an M68HC05.
While this is a relatively simple set of CPU registers, it is
representative of all types of CPU registers and can be used to
explain all of the fundamental concepts. This chapter provides
a brief description of the M68HC05 registers as an
introduction to CPU architecture in general. A separate
chapter in this textbook addresses the instruction set of the
M68HC05 and includes more detailed infonnation about
M68HC05 registers.

I 7: : ACfUMpLATpR :

I 7: : IND~X R~GlstER :
:0 I A

: 0 I x
9 7 4 0

I 0 I 0 111 11 11 I ~TAC~ PO!NTE~ I SP

15 9 o
PC

7 4 3 2 1 0

CONDITION CODE REGISTER 11 11 11 I H : I : N :z : C I CCR

Figure 4-1.
M68HC05 CPU Registers

lll l Z~~ARRY
NEGATIVE

I INTERRUPT MASK
HALF·CARRY (FROM BIT 3)

The A register, an 8-bit scratch-pad register, is also called an
accumulator because it is often used to hold one of the
operands or the result of an arithmetic operation.

The X register is an 8-bit index register, which can also serve
as a simple scratch pad. The main purpose of an index register
is to point at an area in memory where the CPU will load
(read) or store (write) infonnation. Sometimes an index

Computer Architecture 4·3

4-4

register is called a pointer register. We willieam more about
index registers when we discuss indexed addressing modes.

The program counter (PC) register is used by the CPU to keep
track of the address of the next instruction to be executed.
When the CPU is reset (starts up), the PC is loaded from a
specific pair of memory locations called the reset vector. The
reset vector locations contain the address of the first
instruction that will be executed by the CPU. As instructions
are executed, logic in the CPU increments the PC such that it
always points to the next piece of information that the CPU
will need. The number of bits in the PC exactly matches the
number of wires in the address bus. This determines the total
potentially available memory space that can be accessed by a
CPU. In the case of an MC68HC705Kl, the PC is 10 bits
long; therefore, its CPU can access up to lK (1024) bytes of
memory. Values for this register are expressed as four
hexadecimal digits where the upper-order six bits of the
corresponding 16-bit binary address are always zero.

The condition code register (CCR) is an 8-bit register, holding
status indicators that reflect the result of some prior CPU
operation. The three high-order bits of this register are not
used and always equal logic one. Branch instructions use the
status bits to make simple either/or decisions.

The stack pointer (SP) is used as a pointer to the next
available location in a last-in-first-out (LIFO) stack. The stack
can be thought of as a pile of cards, each holding a single byte
of information. At any given time, the CPU can put a card on
top of the stack or take a card off the stack. Cards within the
stack cannot be picked up unless all the cards piled on top are
removed first. The CPU accomplishes this stack effect by way
of the SP. The SP points to a memory location (pigeon hole),
which is thought of as the next available card. When the CPU
pushes a piece of data onto the stack, the data value is written
into the pigeon hole pointed to by the SP, and the SP is then
decremented so it points at the next previous memory location
(pigeon hole). When the CPU pulls a piece of data off the
stack, the SP is incremented so it points at the most recently
used pigeon hole, and the data value is read from that pigeon
hole. When the CPU is first started up or after a reset stack
pointer (RSP) instruction, the SP points to a specific memory
location in RAM (a certain pigeon hole).

Computer Architecture

Timing

A high-frequency clock source (typically derived from a
crystal connected to the MCU) is used to control the
sequencing of CPU instructions. Typical MCUs divide the
basic crystal frequency by two or more to arrive at a bus-rate
clock. Each memory read or write takes one bus-rate clock
cycle. In the case of the MC68HC705K1 MCU, a 4-MHz
(maximum) crystal oscillator clock is divided by two to arrive
at a 2-MHz (maximum) internal processor clock. Each substep
of an instruction takes one cycle of this internal bus-rate clock
(500 ns). Most instructions take two to five of these substeps;
thus, the CPU is capable of executing more than 500,000
instructions every second.

CPU View of a Program

Listing 4-1 is a listing of a small example program that we
will use in our discussion of a CPU. The chapter on
programming provides detailed information on how to write
programs. A program listing provides much more information
than the CPU needs because humans also need to read and
understand programs. The first column in the listing shows
four digit hexadecimal addresses. The next few columns show
8-bit values (the contents of individual memory locations).
The rest of the information in the listing is for the benefit of
humans who need to read the listing. The meaning of all this
information will be discussed in greater detail in the chapter
on programming.

Figure 4-2 is a memory map of the MC68HC705Kl, showing
how the example program fits in the memory of the MCU.
This figure is the same as Figure 3-4 except that a different
portion of the memory space has been expanded to show the
contents of all locations in the example program.

Figure 4-2 shows that the CPU sees the example program as a
linear sequence of binary codes, including instructions and
operands in successive memory locations. An operand is any
value other than the opcode, that the CPU needs to complete
the instruction. The CPU begins this program with its program
counter (PC) pointing at the first byte in the program. Each
instruction opcode tells the CPU how many (if any) and what
type of operands go with that instruction. In this way, the CPU

Computer Architecture 4·5

4·6

can remain aligned to instruction boundaries even though the
mixture of opcodes and operands looks confusing to us.

Listing 4·1.
Example Program

0000
0004
OOEO

0200

0200
0202
0204

0206
0208
020A
020C
020F
0211
0213
0216
0217
0219
021B
021E
0221

0223
0225
0227
0228
0229
022B
022C
022E
0230

A6 80
B7 00
B7 04

B6 00
A4 01
27 FA
CD 02 23
IF 00
A6 14
CD 02 23
4A
26 FA
IE 00
00 00 FD
CD 02 23
20 E3

B7 EO
A6 41
5F
5A
26 FD
4A
26 F9
B6 EO
81

* Simple 68RC05 Program Example
* Read state of switch at port A bit-O, l=closed
* When sw. closes, light LED for about 1 sec, LED on
* when port A bit-7 = O. Wait for sw release,
* then repeat. Debounce sw 50mS on & off
* NOTE: Timing based on instruction execution times
* If using a simulator or crystal less than 4MRz,
* this routine will run slower than intended

*
*
*
*
*
*
*
*

$BASE

PORTA
DORA
TEMP 1

lOT

EQU
EQU
EQU

ORG

INIT LOA
STA
STA

* Rest of port

TOP

DLYLP

OFFLP

LOA
AND
BEQ
JSR
BCLR
LOA
JSR
DECA
BNE
BSET
BRSET
JSR
BRA

$00
$04
$EO

$0200

,Tell assembler to use decimal
,unless $ or % before value
,Direct address of port A
,Data direction control, port A
,One byte temp storage location

,Program will start at $0200

#$80 ,Begin initialization
PORTA ,So LED will be off
DORA ,Set port A bit-7 as output
A is configured as inputs

PORTA
#$01
TOP
DLY50
7,PORTA
#20
DLY50

,Read swat LSB of Port A
;To test bit-O
,Loop till Bit-O = 1
,Delay about 50 mS to debounce
,Turn on LED (bit-7 to zero)
,Decimal 20 assembles to $14
,Delay 50 mS
,Loop counter for 20 loops

DLYLP ,20 times (20-19,19-18, ... 1-0)
7,PORTA ,Turn LED back off
O,PORTA,OFFLP ,Loop here till swoff
DLY50 ,Debounce release
TOP ,Look for next sw closure

* DLY50 - Subroutine to delay -50mS
* Save original accumulator value
* but X will always be zero on return

DLY50

OUTLP
INNRLP

STA
LOA
CLRX
DEC X
BNE
DECA
BNE
LOA
RTS

TEMPI
#65

INNRLP

OUTLP
TEMP1

,Save accumulator in RAM
,Do outer loop 32 times
,X used as inner loop count
,O-FF, FF-FE, ... 1-0 256 loops
,6cyc*256*500ns/cyc = 0.768ms
,65-64, 64-63, ... 1-0
,1545cyc*65*500ns/cyc=50.212ms
,Recover saved Accumulator val
,Return

Computer Architecture

$0000 $A6 $0200
110 $80 $0201

$001F
32 Bytes $B7 $0202

$0020 - $00 $0203

Unused $B7 $0204

192 Bytes $04 $0205
$B6 $0206

$OOOF $00 $0207
$OOEO $A4 $0208

Slack RAM $01 $0209

32 Byles $27 $02OA

$OOFF $FA $0208
$0100 - $CO $02OC

$02 $0200
$23 $02OE
$1F $02OF

Unused $00 $0210
256 Bytes $A6 $0211

$14 $0212
$CO $0213
$02 $0214

$01FF $23 $0215
$0200 - $4A $0216

$26 $0217

$0230
$FA $0218

$0231 $1E $0219
$00 $021 A
$00 $021B
$00 $021C
$FO $0210
$CO $021E

User EPROM $02 $021F
496 Bytes $23 $0220

$20 $0221

,p'"
,.,.$

($B7
$EO $0224
.~ It "tg

$41 $0226
$SF $0227
$5A $0228

$03EF $26 $0229
$03FO $FO $022A

Test ROM and $4A $022B
$03F7 _

COP Register $26 $022C
$03F8 User Vectors $F9 $0220

(EPROM) $B6 $022E
$03FF 8 Byles $EO $022F

$81 $0230

Figure 4·2.
Memory Map of Example Program

Computer Architecture 4·'

0223 B7 EO

Most application programs would be located in ROM,
EPROM, or OTPROM, although there is no special
requirement that instructions must be in a ROM-type memory
to execute. As far as the CPU is concerned, any program is
just a series of binary bit patterns that are sequentially
processed.

Carefully study the program listing in Listing 4-1 and the
memory map of Figure 4-2. Find the first instruction of the
DLY50 subroutine in Listing 4-1 and then find the same two
bytes in Figure 4-2.

You should have found the following line from near the
bottom of Listing 4-1.

DLY50 STA TEMPI iSave accumulator in RAM

The highlighted section of memory at the right side of Figure
4-2 is the area you should have identified.

CPU Operation

4·8

This section will first discuss the detailed operation of CPU
instructions and then explain how the CPU would execute an
example program. The detailed descriptions of typical CPU
instructions are intended to make you think like a CPU. We
can then go through an example program using a teaching
technique called "playing computer" in which you pretend
you are the CPU interpreting and executing the instructions in
a program.

Detailed Operation of CPU Instructions

Before seeing how the CPU executes programs, it would help
to know (in detail) how the CPU breaks down instructions into
fundamental operations and performs these tiny steps to
accomplish a desired instruction. As we will see, many small
steps execute very quickly and very accurately within each
instruction, but none of the small steps is very complicated.

The logic circuitry inside the CPU would seem
straightforward to a design engineer accustomed to working
with TTL logic or even relay logic. What sets the MeU and
its CPU apart from these other forms of digital logic is the
packing density. Very large scale integration (VLSI)

Computer Architecture

techniques have made it possible to fit the equivalent of
thousands of TIL integrated circuits on a single silicon die.
By arranging these logic gates to form a CPU, you can get a
general-purpose instruction executor capable of acting as a
universal black box. By placing different combinations of
instructions in the device, it can perform virtually any
definable function.

A typical instruction takes two to five cycles of the internal
processor clock. Although it is not normally important to
know exactly what happens during each of these execution
cycles, it will help to go through a few instructions in detail to
understand how the CPU works internally.

STORE ACCUMULATOR (DIRECT ADDRESSING
MODE) Look up the ST A instruction in Appendix A. In the
table at the bottom of the page, we see that $B7 is the direct
(DIR) addressing mode version of the store accumulator
instruction. We also see that the instruction requires two
bytes, one to specify the opcode ($B7) and the second to
specify the direct address where the accumulator will be
stored. (The two bytes are shown as "B7 dd" in the machine
code column of the table.)

We will be discussing the addressing modes in more detail in
another chapter, but the following brief description will help
in understanding how the CPU executes this instruction. In
direct addressing modes, the CPU assumes the address is in
the range of $0000 through $ooFF; thus, there is no need to
include the upper byte of the address of the operand in the
instruction (since it is always $00).

The table at the bottom of the ST A page shows that the direct
addressing version of the ST A instruction takes four CPU
cycles to execute. During the first cycle, the CPU puts the
value from the program counter on the internal address bus
and reads the opcode $B7, which identifies the instruction as
the direct addressing version of the ST A instruction and
advances the PC to the next memory location.

During the second cycle, the CPU places the value from the
PC on the internal address bus and reads the low-order byte of
the direct address ($00 for example). The CPU uses the third
cycle of this ST A instruction to internally construct the full
address where the accumulator is to be stored, and advances

Computer Architecture 4-9

4-10

the PC so it points to the next address in memory (the address
of the opcode of the next instruction).

In this example, the CPU appends the assumed value $00
(because of direct addressing mode) to the $00 that was read
during the second cycle of the instruction to arrive at the
complete address $0000. During the fourth cycle of this
instruction, the CPU places this constructed address ($0000)
on the internal address bus, places the accumulator value on
the internal data bus, and asserts the write signal. That is, the
CPU writes the contents of the accumulator to $0000 during
the fourth cycle of the ST A instruction.

While the accumulator was being stored, the N and Z bits in
the condition code register were set or cleared according to the
data that was stored. The Boolean logic formulae for these bits
appear near the middle of the instruction set page. The Z bit
will be set if the value stored was $00; otherwise, the Z bit
will be cleared. The N bit will be set if the most significant bit
of the value stored was a logic one; otherwise, N will be
cleared.

LOAD ACCUMULATOR (IMMEDIATE ADDRESSING
MODE) Next, look up the LDA instruction in the instruction
set appendix. The immediate addressing mode (IMM) version
of this instruction appears as "A6 ii" in the machine code
column of the table at the bottom of the page. This version of
the instruction takes two internal processor clock cycles to
execute.

The $A6 opcode tells the CPU to get the byte of data that
immediately follows the opcode and put this value in the
accumulator. During the first cycle of this instruction, the
CPU reads the opcode $A6 and advances the PC to point to
the next location in memory (the address of the immediate
operand ii). During the second cycle of the instruction, the
CPU reads the contents of the byte following the opcode into
the accumulator and advances the PC to point at the next
location in memory (Le., the opcode byte of the next
instruction).

While the accumulator was being loaded, the N and Z bits in
the condition code register were set or cleared according to the
data that was loaded into the accumulator. The Boolean logic
formulae for these bits appear near the middle of the

Computer Architecture

instruction set page. The Z bit will be set if the value loaded
into the accumulator was $00; otherwise, the Z bit will be
cleared. The N bit will be set if the most significant bit of the
value loaded was a logic one; otherwise, N will be cleared.

The N (negative) condition code bit may be used to detect the
sign of a twos-complement number. In twos-complement
numbers, the most significant bit is used as a sign bit, one
indicates a negative value, and zero indicates a positive value.
The N bit may also be used as a simple indication of the state
of the most significant bit of a binary value.

CONDITIONAL BRANCH Branch instructions allow the
CPU to select one of two program flow paths, depending upon
the state of a particular bit in memory or various condition
code bits. If the condition checked by the branch instruction is
true, program flow skips to a specified location in memory. If
the condition checked by the branch is not true, the CPU
continues to the instruction following the branch instruction.
Decision blocks in a flowchart correspond to conditional
branch instructions in the program.

Most branch instructions contain two bytes, one for the
opcode and one for a relative offset byte. Branch on bit clear
(BRCLR) and branch on bit set (BRSET) instructions require
three bytes: the opcode, a one-byte direct address (to specify
the memory location to be tested), and the relative offset byte.

The relative offset byte is interpreted by the CPU as a twos­
complement signed value. If the branch condition checked is
true, this signed offset is added to the PC, and the CPU reads
its next instruction from this calculated new address. If the
branch condition is not true, the CPU just continues to the
next instruction after the branch instruction.

SUBROUTINE CALLS AND RETURNS The jump-to­
subroutine (JSR) and branch-to-subroutine (BSR) instructions
automate the process of leaving the normal linear flow of a
program to go off and execute a set of instructions and then
return to where the normal flow left off. The set of
instructions outside the normal program flow is called a
subroutine. A JSR or BSR instruction is used to go from the
running program to the subroutine. A return-from-subroutine
(RTS) instruction is used, at the completion of the subroutine,
to return to the program from which the subroutine was called.

Computer Architecture 4-11

4-12

The Listing 4-2 shows lines of an assembler listing that will
be used to demonstrate how the CPU executes a subroutine
call. Assume that the stack pointer (SP) points to address
$OOFF when the CPU encounters the JSR instruction at
location $0202. Assembler listings are described in greater
detail in Chapter 6.

Listing 4-2.
Subroutine Call Example

M R

0200 A6 02
0202 CD 03
0205 B7 EO
0207

0300 4A
0301 26 FD
0303 81

TOP LDA #$02 ;Load an immediate value
00 JSR SUBBY ;Go do a subroutine

STA $EO ;Store accumulator to RAM

SUBBY DECA ;Decrement'accumulator
BNE SUBBY ;Loop till accumulator=O
RTS ;Return to main program

Refer to Figure 4-3 during the following discussion. We will
begin the explanation with the CPU executing the instruction
"LDA #$02" at address $0200. The left side of the figure
shows the normal program flow composed of TOP LDA #$02,
JSR SUBBY, and STA $EO (in that order) in consecutive
memory locations. The right half of the figure shows
subroutine instructions SUBBY DECA, BNE SUBBY, and
RTS.

$0200 $A6 (1) [15] $0300 SUBBY DECA tr~
TOP LDA #$02 (16)

$0201 $02 (2) (17)

$0202 $CD (3)
(18)

(19) (13) I
JSR SUBBY $0203 $03 (4)

(20) (14)

$0204 $00 (5) ~(21)1
(6) (22)

(7) (23)

[8) [24)

JJ ,--(25)
$0205 I $87 I (27) (26)

STA $EO
$0206 I $EO I (28)

(29)
(30)

Figure 4-3.
Subroutine Call Sequence

Computer Architecture

$26 $0301

$FD I $0302
BNE SUBBY

$81 $0303 RTS

The CPU clock cycle numbers (in square brackets) will be
used as references in the following explanation of this figure.

[1] CPU reads $A6 opcode from location $0200 (LDA
immediate).

[2] CPU reads immediate data $02 from location $0201 into the
accumulator.

[3] CPU reads $CD opcode from location $0202 (JSR extended).

[4] CPU reads high-order extended address $03 from $0203.

[5] CPU reads low-order extended address $00 from $0204.

[6] CPU builds full address of subroutine ($0300).

[7] CPU writes $05 to $OOFF and decrements SP to $OOFE.
Another way to say this is "push low-order half of return
address on stack."

[8] CPU writes $02 to $OOFE and decrements SP to $OOFD.
Another way to say this is "push high-order half of return
address on stack." The return address that was saved on the
stack is $0205, which is the address of the instruction that
follows the JSR instruction.

[9] CPU reads $4A opcode from location $0300. This is the first
instruction of the called subroutine.

[10] The CPU uses its ALU to subtract one from the value in the
accumulator.

[11] The ALU result (A -1) is written back to the accumulator.

[12] CPU reads BNE opcode ($26) from location $0301.

[13] CPU reads relative offset ($FD) from $0302.

[14] During the LDA #$02 instruction at [1], the accumulator was
loaded with the value 2; during the DECA instruction at [9],
the accumulator was decremented to 1 (which is not equal to
zero). Thus, at [14], the branch condition was true, and the
twos-complement offset ($FD or -3) was added to the internal
PC (which was $0303 at the time) to get the value $0300.

Computer Architecture 4-13

[15] through [19] are a repeat of cycles [9] through [13] except that when the
DECA instruction at [15] was executed this time, the
accumulator went from $01 to $00.

4·14

[20] Since the accumulator is now "equal to zero," the BNE [19]
branch condition is not true, and the branch will not be taken.

[21] CPU reads the RTS opcode ($81) from $0303.

[22] Increment SP to $OOFE.

[23] Read high order return address ($02) from stack.

[24] Increment SP to $OOFF.

[25] Read low order return address ($05) from stack.

[26] Build recovered address $0205 and store in Pc.

[27] CPU reads the STA direct opcode ($B7) from location $0205.

[28] CPU reads the low-order direct address ($EO) from location
$0206.

[29] [30] The ST A direct instruction takes a total of four cycles. During
the last two cycles of the instruction, the CPU constructs the
complete address where the accumulator will be stored by
appending $00 (assumed value for the high-order half of the
address due to direct addressing mode) to the $EO read during
[28]. The accumulator ($00 at this time) is then stored to this
constructed address ($OOEO).

Computer Architecture

Playing Computer
Playing computer is a learning exercise where you pretend to
be a CPU that is executing a program. Programmers often
mentally check programs by playing computer as they read
through a software routine. While playing computer, it is not
necessary to break instructions down to individual processor
cycles. Instead, an instruction is treated as a single complete
operation rather than several detailed steps.

The following paragraphs demonstrate the process of playing
computer by going through the subroutine-call exercise of
Figure 4-3. The playing-computer approach to analyzing this
sequence is much less detailed than the cycle-by-cycle
analysis done earlier, but it accomplishes the same basic goal
(Le., it shows what happens as the CPU executes the
sequence). After studying the chapter on programming, you
should attempt the same thing with a larger program.

You begin the process by preparing a worksheet like that
shown in Figure 4-4. This sheet includes the mnemonic
program and the machine code that it assembles to. (You
could alternately choose to use a listing positioned next to the
worksheet.) The worksheet also includes the CPU register
names across the top of the sheet. There is ample room below
to write new values as the registers change in the course of the
program.

On this worksheet, there is an area for keeping track of the
stack. After you become comfortable with how the stack
works, you would probably leave this section off, but it will
be instructive to leave it here for now.

As a value is saved on the stack, you will cross out any prior
value and write the new value to its right in a horizontal row.
You must also update (decrement) the SP value. Cross out any
prior value and write the new value beneath it under the SP
heading at the top of the worksheet. As a value is recovered
from the stack, you would update (increment) the value of SP
by crossing out the old value and writing the new value below
it. You would then read the value from the location now
pointed to by the SP and put it wherever it belongs in the CPU
(e.g., in the upper or lower half of the PC).

Computer Architecture 4-15

4·16

Cond. Codes
Stack Pointer Accumulator 1 1 1 H I N Z C

Index
Re&ister

ProlUam
Counter

$OOFC
$OOFD
$OOFE
$OOFF

0200 A6 02
0202 CD 02 00
0205 B7 02

TOP LDA #$02
JSR
STA

0300

0303

Figure 4-4.
Worksheet for Playing Computer

~'cremE~nt accumulator
;Loop till accumulator=O
;Return to main program

Figure 4-5 shows how the worksheet will look after working
through the whole JSR sequence. Follow the numbers in
square brackets as the process is explained. During the
process, many values were written and later crossed out; a line
has been drawn from the square bracket to either the value or
the crossed-out mark to show which item the reference
number applies to.

Computer Architecture

f-''-----"~W~'-.... '''''-.. ----''''--''''w.-'--'---------'w.--'-w~'w.-w.,_w ... -, , .. , 'w·,,---"'''--''-'---1
i Condo Codes Index Program
! Stack Pointer Accumulator 1 1 1 HI N Z C Register Counter
i [2]'cMn " [31" ,.., .. [5]' ... ~._?-~W[15] [l]"'lt.n .
, .~FP'[7] ... ;W2" Ill] ,.IJ...J .. u U [/ _....pt}200j4]
! /" ",.'" ./ ,/" 1
~I ~'I9] ... $O-l~·'[14] 1 1 1 ? ? 0 1 ? . ..$02lJZ""Jl0]

~--~ / /"
! . ..$WH7~[18) $00 ...$().3-ott··112)
! / /
! ~$OOFEW[19]$030:[--[13)

I $OOFF" •. JQ300:116]
~ #-:.P

! ·$3&1-117) , ,/"

! ~.$O~20)
i $OOEO - RAM $00 [21) $0205

I::;
! $OOFE $02 [8] I
I $OOFF $05 [6) !
~ .. ·········· .. ·························1
! 0200 A6 02 TOP LDA #$02 ;Load an immediate value !
! 0202 CD 02 00 JSR SUBBY ;Go do a subroutine ~
. ! ! 0205 B7 02 STA $EO ;Store accumulator to RAM I
I "" """ I I "" .,,"
, 0300 4A SUBBY DECA ;Decrement accumulator I 0301 26 FD . BNE SUBBY ;Loop till accumulator=O I
. 0303 81 RTS ;Return to main program
L .. .

Figure 4-5.
Completed Worksheet

Beginning the sequence, the PC should be pointing to $0200
[1] and the SP should be pointing to $OOFF [2] (due to an
earlier assumption). The CPU reads and executes the LDA
#$02 instruction (load accumulator with the immediate value
$02); thus, you write $02 in the accumulator column [3] and
replace the PC value [4] with $0202, which is the address of
the next instruction. The load accumulator instruction affects
the N and Z bits in the CCR. Since the value loaded was $02,
the Z bit would be cleared, and the N bit would be cleared [5].
This information can be found in Appendix A. Since the other
bits in the CCR are not affected by the LDA instruction, we
have no way of knowing what they should be at this time, so
we put question marks in the unknown positions for now [5].

Next, the CPU reads the JSR SUBBY instruction.
Temporarily remember the value $0205, which is the address

Computer Architecture 4-17

4-18

where the CPU should come baqk to, after executing the
called subroutine. The CPU saves the low-order half of the
return address on the stack; thus, you write $05 [6] at the
location pointed to by the SP ($OOFF) and decrement the SP
[7] to $OOFE. The CPU then saves the high-order half of the
return address on the stack; you write $02 [8] to $OOFE and
again decrement the SP [9] (this time to $OOFD). To finish the
JSR instruction, you load the PC with $0300 [10], which is the
address of the called subroutine.

The CPU fetches the next instruction. Since the PC is $0300,
the CPU executes the DECA instruction, the first instruction
in the subroutine. You cross out the $02 in the accumulator
column and write the new value $01 [11]. You also change the
PC to $0301 [12]. Because the DECA instruction changed the
accumulator from $02 to $01 (which is not zero or negative),
the Z bit and N bit remain clear. Since N and Z were already
cleared at [5], you can leave them alone on the worksheet.

The CPU now executes the BNE SUBBY instruction. Since
the Z bit is clear, the branch condition is met, and the CPU
will take the branch. Cross out the $0301 under PC and write
$0300 [13].

The CPU again executes the DEC A instruction. The
accumulator is now changed from $01 to $00 [14] (which is
zero and not negative); thus, the Z bit is set, and the N bit
remains clear [15]. The PC advances to the next instruction
[16].

The CPU now executes the BNE SUBBY instruction, but this
time the branch condition is not true (Z is set now), so the
branch will not be taken. The CPU simply falls to the next
instruction (the RTS at $0303). Update the PC to $0303 [17].

The RTS instruction causes the CPU to recover the previously
stacked Pc. Pull the high-order half of the PC from the stack
by incrementing the SP to $OOFE [18] and by reading $02
from location $OOFE. Next, pull the low-order half of the
address from the stack by incrementing SP to $OOFF [19] and
by reading $05 from $OOFF. The address recovered from the
stack replaces the value in the PC [20].

The CPU now reads the ST A $EO instruction from location
$0205. Program flow has returned to the main program

Computer Architecture

sequence where it left off when the subroutine was called. The
STA (direct addressing mode) instruction writes the
accumulator value to the direct address $EO ($OOEO), which is
in the RAM of the MC68HC705Kl. We can see from the
worksheet that the current value in the accumulator is $00;
therefore, all eight bits of this RAM location will be cleared.
Since the original worksheet did not have a place marked for
recording this value in RAM, you would make a place and
write $00 there [21].

For a larger program, the worksheet would have many more
crossed out values by the time you are done. Playing computer
on a worksheet like this is a good learning exercise, but, as a
programmer gains experience, the process would be
simplified. In the programming chapter we will see a
development tool called a simulator that automates the playing
computer process. The simulator is a computer program that
runs on a personal computer. The current contents of registers
and memory locations are displayed on the terminal display of
the personal computer.

One of the first simplifications you could make to a manual
worksheet would be to quit keeping track of the PC because
you learn to trust the CPU to take care of this for you. Another
simplification is to stop keeping track of the condition codes.
When a branch instruction that depends on a condition code
bit is encountered, you can mentally work backwards to
decide whether or not the branch should be taken.

Next, the storage of values on the stack would be skipped,
although it is still a good idea to keep track of the SP value
itself. It is fairly common to have programming errors
resulting from incorrect values in the SP. A fundamental
operating principle of the stack is that over a period of time,
the same number of items must be removed from the stack as
were put on the stack. Just as left parentheses must be
matched with right parentheses in a mathematical formula,
JSRs and BSRs must be matched one for one to subsequent
RTSs in a program. Errors that cause this rule to be broken
will appear as erroneous SP values while playing computer.

Even an experienced programmer will play computer
occasionally to solve some difficult problem. The procedure
the experienced programmer would use is much less formal
than what was explained here, but it still amounts to placing

Computer Architecture 4-19

Resets

4·20

yourself in the role of the CPU and working out what happens
as the program is executed.

Reset is used to force the MCU system to a known starting
place (address). Peripheral systems and many control and
status bits are also forced to a known state as a result of reset.

The following internal actions occur as the result of any MCU
reset:

1) All data direction registers are cleared to zero (input)
2) Stack pointer forced to $OOFF
3) I bit in the CCR set to 1 to inhibit maskable interrupts
4) External interrupt latch cleared
5) STOP latch cleared
6) WAIT latch cleared

As the computer system leaves reset, the program counter is
loaded from the two highest memory locations ($03FE and
$03FF in an MC68HC705Kl). The value from $03FE is
loaded into the high order byte of the PC and the value from
$03FF is loaded into the low order byte of the Pc. This is
called ''fetching the reset vector". At this point the CPU
begins to fetch and execute instructions, beginning at the
address that was stored in the reset vector.

The following conditions can cause the MC68HC705Kl
MCU to reset:

1) External, active-low input signal on the RESET pin
2) Internal power-on reset (POR)
3) Internal low-voltage inhibit (LVI)
4) Internal computer operating properly (COP) watchdog

timed out
5) An attempt to execute an instruction from an illegal

address

Computer Architecture

RESET Pin

An external switch or circuit can be connected to this pin to
allow a manual system reset.

Power-On Reset

The power-on reset occurs when a positive transition is
detected on V DD. The power-on reset is used strictly for power
tum-on conditions and should not be used to detect any drops
in the power supply voltage. A low-voltage inhibit (LVI)
circuit is provided to detect loss of power.

The power-on circuitry provides for a 4064 cycle delay from
the time that the oscillator becomes active. If the external
RESET pin is low at the end of the 4064 cycle delay time-out,
the processor remains in the reset condition until RESET goes
high.

Low-Voltage Reset

The low-voltage inhibit (LVI) circuit is provided to trigger
reset if VDD falls below 3.5 volts. Since the MC68HC705Kl
can be used in 3 volt systems there is a control bit that enables
or disables the LVI reset function. This control bit is located
in the non-volatile mask option control register (MaR). This
register is built out of EPROM bits so that the controls remain
set or cleared even when there is no V DD power.

Watchdog Timer Reset

The computer operating properly (COP) watchdog timer
system is intended to detect software errors. When the COP is
being used, software is responsible for keeping a free-running
watchdog timer from timing out. If the watchdog timer times
out, it is an indication that software is no longer being
executed in the intended sequence; thus, a system reset is
initiated.

A control bit in the non-volatile mask option control register
can be used to enable or disable the COP reset. If the COP is
enabled, the operating program must periodically write a zero
to the COPC bit in the COPR control register. Refer to the
data sheet for the MC68HC705Kl for information about the
COP time-out rate. Some members of the M68HC05

Computer Architecture 4-21

Interrupts

4.22

microcontroller family have different COP watchdog timer
systems.

Illegal Address Reset

If a program is written incorrectly, it is possible that the CPU
will attempt to jump or branch to an address that has no
memory. If this happened, the CPU would continue to read
data (though it would be unpredictable values) and attempt to
act on it as if it was a program. These nonsense instructions
could cause the CPU to write unexpected data to unexpected
memory or register addresses. This situation is called program
runaway.

To guard against this runaway condition there is an illegal
address detect circuit in the MC68HC705Kl. If the CPU
attempts to fetch an instruction from an address that is not in
the EPROM ($0200 - $03FF) or RAM ($OOEO - $OOFF), a
reset is generated to force the program to start over.

It is sometimes useful to interrupt normal processing to
respond to some unusual event. The MC68HC705Kl may be
interrupted by any of th,e following sources:

I} A logic zero applied to the external interrupt (IRQ) pin
2) A logic one applied to any of the P A3-PAO pins (provided

the port interrupt function is enabled).
3} An overflow (TOF) or real-time interrupt (RTIF) request

from the on-chip multifunctional timer system (if enabled).
4} The software interrupt (SWI) instruction

If an interrupt comes while the CPU is executing an
instruction, the instruction is completed before the CPU
responds to the interrupt.

Interrupts can be inhibited by setting the I bit in the condition
code register (CCR) or by clearing individual interrupt enable
control bits for each interrupt source. Reset forces the I bit to
one and clears all local interrupt enable bits to prevent
interrupts during the initialization procedure. When the I bit is
one, no interrupts (except the SWI instruction) are recognized.

Computer Architecture

However, interrupt sources may still register a request that
will be honored at some later time when the I bit is cleared.

Figure 4-6 shows how interrupts fit into the normal flow of
CPU instructions. Interrupts cause the processor registers to
be saved on the stack and the interrupt mask (I bit) to be set,
to prevent additional interrupts until the present interrupt is
finished. The appropriate interrupt vector then points to the
starting address of the interrupt service routine (Table 4-1).
Upon completion of the interrupt service routine, an RTI
instruction (which is normally the last instruction of an
interrupt service routine) causes the register contents to be
recovered from the stack. Since the program counter is loaded
with the value that was previously saved on the stack,
processing continues from where it left off before the
interrupt. Figure 4-7 shows that registers are restored from the
stack in the opposite order they were saved.

Table 4-1.
Vector Addresses for Resets and Interrupts (MC68HC705K1)

Reset or Interrupt Source Vector Address
On-Chip Timer $03F8,$03F9
IRQ or Port A Pins $03FA, $03FB
SWI Instruction $03FC, $03FD
Reset (PaR, LVI, Pin, COP, or Illegal Address) $03FE,$03FF

External Interrupts

External interrupts come from the IRQ pin or from bits 3-0 of
port A if port A is configured for port interrupts. In the
MC68HC705Kl MCU, the IRQ pin sensitivity is software
programmable. Either edge-sensitive triggering only, or
negative edge- and level-sensitive triggering are available.
The MC68HC705Kl MCU uses a bit in an option register at
location $OOOA to configure the IRQ pin sensitivity. The IRQ
pin is low true and the port A interrupts are high true.

When an interrupt is recognized, the current state of the CPU
is pushed onto the stack and the I bit is set. This masks further
interrupts until the present one is serviced. The address of the
external interrupt service routine is specified by the contents
of memory locations $03F A and $03FB.

Computer Architecture 4-23

NO

YES

ClEAR IRQ
REQUEST LATCH

LOAD PC FROM VECTOR:
SWI: $03FC, $03FD

IRQ OR PORT A: $03FA, $03FS
TIMER: $03F8, $03F9

YES RESTORE REGISTERS
FROM STACK I----+t
CCRAXPC

Figure 4-6.
Hardware Interrupt Flowchart

Computer Architecture

STACK

TOWARD LOWER ADDRESSES
(LOWEST STACK ADDRESS IS $OOEO)

7 ft 0

1 I 1 I 1 I C?NDITION :COD~S I
: : AqCUM~LA~OR: : I
: : IN~EX R:EGlS!ER : : I

o I 0 I 0 I 0 I 0 I 0 IPC +GHI
: PR?<>R~M c?UNtER ~OW : I UNST ACK

..JJ.
TOWARD HIGHER ADDRESSES

(HIGHEST STACK ADDRESS IS $OOFF)

NOTE: When an interrupt occurs, CPU registers are
saved on the stack in the order PCl, PCH, X, A, CCA.
On a return from interrupt registers are recovered from
the stack in reverse order.

Figure 4-7.
Interrupt StaCking Order

On-chip Peripheral Interrupts

Microcontrollers often include on-chip peripheral systems that
can generate interrupts to the CPU. The timer system in the
MC68HC705Kl is an example of such a peripheral. On-chip
peripheral interrupts work just like external interrupts except
that there are normally separate interrupt vectors for each on­
chip peripheral system.

Software Interrupt (SWI)

The software interrupt is an executable instruction. The action
of the SWI instruction is similar to the hardware interrupts.
An SWI is executed regardless of the state of the interrupt
mask (I bit) in the condition code register. The interrupt
service routine address is specified by the contents of memory
location $03FC and $03FD (in an MC68HC705Kl).

Computer Architecture 4-25

4-26

Chapter 4 Review

ill the M68HC05 architecture there are five CPU registers that
are directly connected within the CPU and are not part of the
memory map. All other information available to the CPU is
located in a series of 8-bit memory locations. A memory map
shows the names and types of memory at all locations that are
accessible to the CPU. The expression memory mapped 110
means that the CPU treats I/O and control registers exactly
like any other kind of memory. (Some computer architectures
separate the I/O registers from program memory space and
use separate instructions to access I/O locations.)

To get started in a known place, a computer must be reset.
Reset forces on-chip peripheral systems and I/O logic to
known conditions and loads the program counter with a
known starting address. The user specifies the desired starting
location by placing the upper and lower order bytes of this
address in the reset vector locations ($03FE and $03FF on the
MC68HC705KI).

The CPU uses the stack pointer (SP) register to implement a
last-in-first-out stack in RAM memory. This stack holds
return addresses while the CPU is executing a subroutine, and
holds the previous contents of all CPU registers while the
CPU is executing an interrupt sequence. By recovering this
information from the stack, the CPU can resume where it left
off before the subroutine or interrupt was started.

Computers use a high speed clock to step through each small
substep of each operation. Although each instruction takes
several cycles of this clock, it is so fast that operations seem to
be instantaneous to a human. An MC68HC705KI can execute
about 500,000 instructions per second.

A CPU sees a program as a linear sequence of 8-bit binary
numbers. Instruction opcodes and data are mixed in this
sequence but the CPU remains aligned to instruction
boundaries because each opcode tells the CPU how many
operand data bytes go with each instruction opcode.

Playing computer is a learning exercise where you pretend to
be a CPU that is executing a program.

Computer Architecture

Reset can be caused by internal or external conditions. A reset
pin allows an external cause to initiate a reset. Voltage
detection circuits can cause reset as power is applied or when
power falls below some limit. A watchdog timer and an illegal
address detect system can cause reset in the event software is
not executing in the intended sequence.

Interrupts cause the CPU to temporarily stop main program
processing to respond to the interrupt. All CPU registers are
saved on the stack so the CPU can go back to where it left off
in the main program as soon as the interrupt is serviced.

Interrupts can be inhibited globally by setting the I bit in the
CCR or locally by clearing enable control bits for each
interrupt source. Requests can still be registered while
interrupts are inhibited so the CPU can respond as soon as the
interrupts are re-enabled. SWI is an instruction and cannot be
inhibited.

Computer Architecture

M68HC05 Instruction Set

A computer's instruction set is its vocabulary. This chapter describes the CPU and
instruction set of the M68HC05. Appendix A contains detailed descriptions of each
M68HC05 instruction and can be used as a reference. This chapter discusses the
same instructions in groups of functionally similar operations. The structure and
addressing modes of the M68HC05 are also discussed. Addressing modes refer to
the various ways a CPU can access operands for an instruction.

M68HC051nstruction Set 5-1

M68HC05 Central Processor Unit (CPU)

5-2

The M68HC05 CPU is responsible for executing all software
instructions in their programmed sequence for a specific
application. A block diagram of a typical M68HC05 CPU is
shown in Figure 5-1.

FlgureS-1.

CPU
CONTROL

CPU REGISTERS

ARITHMETICIlOGIC UNIT
(ALU)

M68HC05CPU

ACCUMULATOR

INDEX REGISTER

10 10 11 11 11 1 STACK PNTR

1 0 1 0 1 0 1 0 1 0 1 0 1 PROGRAM COUNTER

CONDITION CODES' 11 11 11 I H II I N I z I C

M68HC05 CPU Block Diagram

Arithmetic/Logic Unit (ALU)

The arithmetic/logic unit (ALU) is used to perform the
arithmetic and logical operations defined by the instruction
set.

The various binary arithmetic operation circuits decode the
current instruction and set up the ALU for the desired
function. Most binary arithmetic is based on the addition
algorithm, and subtraction is carried out as negative addition.
Multiplication is not performed as a discrete instruction but as
a chain of addition and shift operations within the ALU under
control of CPU control logic. The multiply instruction (MUL)
requires 11 internal processor cycles to complete this chain of
operations.

CPU Control

The CPU control circuitry sequences the logic elements of the
ALU to carry out the required operations. A central element of
the CPU control section is the instruction decoder. Each
opcode is decoded to determine how many operands are

M68HC05 Instruction Set

needed and what sequence of steps will be required to
complete the instruction. When one instruction is finished, the
next opcode is read and decoded.

CPU Registers

The CPU contains five registers as shown in Figure 5-2.
Registers in the CPU are memories inside the microprocessor
(not part of the memory map). The set of registers in a CPU is
sometimes called a programming model. An experienced
programmer can tell a lot about a computer from its
programming model.

I 7: : AC~UMPLATPR :

I 7: : IND~X R~GISTER :
:0 I A

:0 I x
9 7 4 0

I 0 I 0 " 1 I 1 I 1 I ~T AC~ POiNTE~ I SP

15 9 o
PC

7 4 3 2 1 0

CONDITION CODE REGISTER I 1 I 1 I 1 I H : I : N : Z : C I CCR

Figure 5-2.
Programming Model

llll L CARRY
ZERO

NEGATIVE
I INTERRUPT MASK

HALF-CARRY (FROM BIT 3)

Accumulator (A) The accumulator is an 8-bit general­
purpose register used to hold operands, results of the
arithmetic calculations, and data manipulations. It is also
directly accessible to the CPU for non arithmetic operations.
The accumulator is used during the execution of a program
when the contents of some memory location are loaded into
the accumulator. Also, the store instruction causes the
contents of the accumulator to be stored at some prescribed
memory location.

M68HC05 Instruction Set 5-3

5-4

Index Register (X) The index register is used for indexed
modes of addressing or may be used as an auxiliary
accumulator. This 8-bit register can be loaded either directly
or from memory, have its contents stored in memory, or its
contents can be compared to memory.

In indexed instructions, the X register provides an 8-bit value
that is added to an instruction-provided base address to create
an effective address. The instruction-provided value can be 0,
1, or 2 bytes long.

Condition Code Register (CCR) The condition code
register contains an interrupt mask and four status indicators
that reflect the results of arithmetic and other operations of the
CPU. The five flags are half-carry (H), negative (N), zero (Z),
and carrylborrow (C).

7 4 3 2 1 0

CONDITION CODE REGISTER I 1 I 1 I 1 I H : I : N : Z : C I CCR

llll L CARRY
ZERO

NEGATIVE
I INTERRUPT MASK

HALF-CARRY (FROM BIT 3)

Half-Carry Bit (H) The half-carry flag is used for binary­
coded decimal (BCD) arithmetic operations and is affected by
the ADD or ADC addition instructions. The H bit is set to a
one when a carry occurs from the low order hexadecimal digit
in bits 3-0 and the high order digit in bits 7-4. After the
binary addition of two 2-digit BCD values, this half-carry bit
is one piece of information needed to restore the result to a
valid BCD value.

Interrupt Mask Bit (I) The I bit is not a status flag but an
interrupt mask bit that disables all maskable interrupt sources
when the I bit is set. Interrupts are enabled when this bit is a
zero. When any interrupt occurs, the I bit is automatically set
after the registers are stacked but before the interrupt vector is
fetched.

M68HC05 Instruction Set

If an external interrupt occurs while the I bit is set, the
interrupt is latched and processed after the I bit is cleared;
therefore, an IRQ interrupt that occurs while the I bit is set
will not be lost.

After an interrupt has been serviced, a return from interrupt
(RTI) instruction causes the registers to be restored to their
previous values. Normally, the I bit would be zero after an
RTI was executed. After any reset, I is set and can only be
cleared by a software instruction.

Negative (N) The N bit is set to one when the result of the
last arithmetic, logical, or data manipulation is negative.
Twos-complement signed values are considered negative if
the most significant bit is a one.

The N bit has other uses. By assigning an often-tested flag bit
to the MSB of a register or memory location, you can test this
bit simply by loading the accumulator with the contents of that
location.

Zero (Z) The Z bit is set to one when the result of the last
arithmetic, logical, or data manipulation is zero. A compare
instruction subtracts a value from the memory location being
tested. If the values were equal to each other before the
compare, the Z bit will be set.

Carry/Borrow (C) The C bit is used to indicate whether or
not there was a carry from an addition or a borrow as a result
of a subtraction. Shift and rotate instructions operate with and
through the carry bit to facilitate multiple word shift
operations. The C bit is also affected during bit test and
branch instructions.

M68HC05 Instruction Set 5·5

5-6

Figure 5-3 is an example of the way condition code bits are
affected by arithmetic operations.

Assume Initial Values in Accumulator and Condition Codes:

ACCUMULATOR = $FF CONDITION CODES
7 0 H I N Z C 1«««<11

Execute the following Instruction:

---- AB 02 ADD #2 Add 2 to Accumulator

Condition Codes and Accumulator Reflect the Results of the Add Instruction:

ACCUMULATOR = $01 CONDITION CODES
7 0 H I N Z C

10: 0 : 0 : 0 : 0 : 0 : 0 : 1 I
H - Set because there was a carry from bit 3 to bit 4 of the accumulator
1- No change
N - Clear because result is not negative (bit 7 of accumulator is 0)
Z - Clear because result is not zero
C - Set because there was a carry out of bit 7 of the accumulator

Figure 5-3.
How Condition Codes are Affected by Arithmetic Operations

The H bit is not meaningful after the above operation because
the accumulator was not a valid BCD value before the
operation.

Program Counter (PC) The program counter is a 16-bit
register that contains the address of the next instruction or
instruction operand to be fetched by the processor. In most
variations of the M68HC05, some of the upper bits of the
program counter are not used and are always zero. The
MC68HC705Kl uses only 10 bits of the program counter so
the upper six bits are always zero. The number of useful bits
in the program counter exactly matches the number of address
lines implemented in the computer system.

15 9 o
I 0 I 0 I 0 I 0 I 0 I 0 I PC

Normally, the program counter advances one memory location
at a time as instructions and instruction operands are fetched.

M68HC05 Instruction Set

Jump, branch, and interrupt operations cause the program
counter to be loaded with a memory address other than that of
the next sequential location.

Stack Pointer (SP) The stack poh.ter must have as many
bits as there are address lines, in the MC68HC705K1 this
means the SP is a 10-bit register. During an MCU reset or the
reset-stack-pointer (RSP) instruction, the stack pointer is set to
location $OOFF. The stack pointer is then decremented as data
is pushed (stored) onto the stack and incremented as data is
pulled (recovered) from the stack.

9 7 4 0

1 0 1 0 111 11 11 I ~TAC~ PO!NTE~ I SP

Many variations of the M68HC05 allow the stack to use up to
64 locations ($OOFF to $OOCO), but the smallest versions
allow only 32 bytes of stack ($OOFF to $OOEO). In the
MC68HC705K1, the five MSBs of the SP are permanently set
to 00111. These five bits are appended to the five least
significant bits to produce an address within the range of
$OOFF to $OOEO. Subroutines and interrupts may use up to 32
(decimal) locations. If 32 locations are exceeded, the stack
pointer wraps around to $OOFF and begins to write over
previously stored information. A subroutine call uses two
locations on the stack; an interrupt uses five locations.

Addressing Modes

The power of any computer lies in its ability to access
memory. The addressing modes of the CPU provide that
capability. The addressing mode defines the manner in which
an instruction will obtain the data required for its execution.
Because of different addressing modes, an instruction may
access the operand in one of several different ways. Each
different addressing mode variation of an instruction must
have a unique instruction opcode, so the 62 basic instructions
of the M68HC05 CPU require 210 distinct instruction
opcodes.

The M68HC05 CPU uses six addressing modes to reference
memory. The six addressing modes are inherent, immediate,
extended, direct, indexed (no offset, 8-bit offset, or 16-bit
offset), and relative. In the smallest M68HC05

M68HC05 Instruction Set 5-7

5-8

microcontrollers, all program variables and I/O registers fit in
the $0000 to $OOFF area of memory so the most commonly
used addressing mode is direct addressing mode.

A general description and examples of the various modes of
addressing are provided in the following paragraphs. The term
effective address is used to indicate the memory address
where the argument for an instruction is fetched or stored. A
description of each instruction is available in Appendix A.

The information provided in the example program listings,
uses several symbols to identify the various types of numbers
that occur in a program. Chapter 2 includes a description of
computer numbers and codes. Special symbols used in listings
include:

1. A blank or no symbol indicates a decimal number. This
number will be translated into a binary value before it is
stored in memory to be used by the CPU.

2. A $ immediately preceding a number indicates the number
is a hexadecimal number; e.g., $24 is 2416 in hexadecimal or
the equivalent of 3610.

3. A # indicates an immediate operand and the number is
found in the location following the opcode. A variety of
symbols and expressions can be used following the character
sign. Since not all assemblers use the same syntax rules and
special characters, refer to the documentation for the
particular assembler that will be used.

Prefix Indicates the value that follows is •••
None Decimal

$ Hexadecimal
@ Octal
% Binary

, (apostrophe) A single ASCII character

For each addressing mode, an example instruction is
explained in detail. These explanations describe what happens
in the CPU during each processor clock cycle of the
instruction. In these examples, numbers in square brackets []
refer to a specific CPU clock cycle.

M68HC05 Instruction Set

IMMEDIATE Addressing Mode

In the immediate addressing mode, the operand is contained in
the byte immediately following the opcode. This mode is used
when a value or constant is known at the time the program is
written and does not change during program execution. These
are two-byte instructions, one for the opcode and one for the
immediate data byte.

Example Program Listing:

0200 A6 02 LDA #$02 Load accumulator with
immediate value

Execution Sequence:

$0200
$0201

$A6 [1]
$ 02 [2]

Explanation:

[1] CPU reads opcode $A6 - load accumulator with the
value immediately following the opcode.

[2] CPU then reads the immediate data $02 from location
$0201 into the accumulator.

Table 5-1 lists all M68HC05 instructions that can use the
immediate addressing mode.

Table 5·1
IMMEDIATE Addressing Mode Instructions

Instruction Mnemonic
Add with Carry ADC
Add (without carry) ADD
Logical AND AND
Bit Test Memory with Accumulator BIT
Compare Accumulator with Memory CMP
Compare Index Register with Memory CPX
Exclusive OR Memory with Accumulator EOR
Load Accumulator from Memory LDA
Load Index Register from Memory LDX
Inclusive OR ORA
Subtract with Carry SBC
Subtract (without borrow) SUB

M68HC05 Instruction Set 5·9

INHERENT Addressing Mode

In the inherent addressing mode, all information required for
the operation is already inherently known to the CPU, and no
external operand from memory or from the program is needed.
The operands (if any) are only CPU registers or stacked data
values. These are always one-byte instructions.

Example Program Listing:

0200 4C INCA Increment accumulator

Execution Sequence:

$0200 $4C [1], [2], [3]

Explanation:

[1] CPU reads opcode $4C - increment accumulator

[2] CPU adds one to the current accumulator value.

[3] CPU stores the new value in the accumulator, and
adjusts condition code flag bits as necessary.

5-10 M68HC05 Instruction Set

Table 5-2 lists all M68HC05 instructions that can use the
inherent addressing mode.

Table 5-2
INHERENT Addressing Mode Instructions

Instruction Mnemonic
Arithmetic Shift Left ASLA,ASLX
Arithmetic Shift Right ASRA,ASRX
Clear Carry Bit CLC
Clear Interrupt Mask Bit CLI
Clear CLRA,CLRX
Complement (invert all bits) COMA,COMX
Decrement DECA,DECX
Increment INCA,INCX

Logical Shift Left LSLA,LSLX
Logical Shift Right LSRA,LSRX
Multiply MUL
Negate (twos complement) NEGA,NEGX

No Operation NOP
Rotate Left thru Carry ROLA,ROLX
Rotate Right thru Carry RORA,RORX
Reset Stack Pointer RSP

Return from Interrupt RTI
Return from Subroutine RTS
Set Carry Bit SEC
Set Interrupt Mask Bit SEI

Enable IRQ, STOP Oscillator STOP
Software Interrupt SWI
Transfer Accumulator to Index Register TAX
Test for Negative or Zero TSTA,TSTX

Transfer Index Register to Accumulator TXA
Wait for Interrupt WAIT

M68HC05 Instruction Set 5-11

5-12

EXTENDED Addressing Mode

ill the extended addressing mode, the address of the operand
is contained in the two bytes following the opcode. Extended
addressing may be used to reference any location in the MCU
memory space including I/O, RAM, ROM, and EPROM.
Extended addressing mode instructions are three bytes, one
for the opcode and two for the address of the operand.

Example Program Listing:

0200 C6 03 65 LDA $0365 Load accumulator from
an extended address

Execution Sequence:

$0200
$0201
$0202

$C6 [1]
$ 03 [2]
$65 [3] and [4]

Explanation:

[1] CPU reads opcode $C6 - load accumulator using
extended addressing mode.

[2] CPU then reads $03 from location $0201 This $03 is
interpreted as the high-order half of an address.

[3] CPU then reads $65 from location $0202 This $65 is
interpreted as the low-order half of an address.

[4] CPU builds the complete extended address $0365 from
the two previously read values. This address is placed on
the address bus and the CPU reads the data value from
location $0365 into the accumulator.

M68HC05 Instruction Set

Table 5-3 lists all M68HC05 instructions that can use the
extended addressing mode.

Table 5-3
EXTENDED Addressing Mode Instructions

Instruction Mnemonic
Add with Carry ADC
Add (without carry) ADD
Logical AND AND
Bit Test Memory with Accumulator BIT
Compare Accumulator with Memory CMP
Compare Index Register with Memory CPX
Exclusive OR Memory with Accumulator EOR
Jump JMP
Jump to Subroutine JSR
Load Accumulator from Memory LDA
Load Index Register from Memory LDX
Inclusive OR ORA
Subtract with Carry SBC
Store Accumulator in Memory STA
Store Index Register in Memory STX
Subtract (without borrow) SUB

M68HC05 Instruction Set 5-13

DIRECT Addressing Mode

The direct addressing mode is similar to the extended
addressing mode except the upper byte of the operand address
is assumed to be $00. Thus, only the lower byte of the operand
address needs to be included in the instruction. Direct
addressing allows you to efficiently address the lowest 256
bytes in memory. This area of memory is called the direct
page and includes on-chip RAM and I/O registers~ Direct
addressing is efficient in both program memory space and
execution time. Direct addressing mode instructions are
usually two bytes, one for the opcode and one for the low­
order byte of the operand address.

Example Program Listing:

0200 B6 EO LDA $EO

Execution Sequence:

$0200
$0201

$B6 [1]
$EO [2] and [3]

Explanation:

Load accumulator from
a direct page address

[1] CPU reads opcode $B6 - load accumulator using direct
addressing mode.

[2] CPU then reads $EO from location $0201 This $EO is
interpreted as the low-order half of an address in the
direct page ($0000 to $OOFF).

[3] CPU builds the complete direct address $OOEO from the
assumed high-order value $00, and the previously read
low-order address value. This address is placed on the
address bus and the CPU reads the data value from
location $OOEO into the accumulator.

5-14 M68HC05 Instruction Set

Table 5-4 lists all M68HC05 instructions that can use the
direct addressing mode.

Table 5-4
DIRECT Addressing Mode Instructions

Instruction Mnemonic
Add with Carry ADC
Add (without carry) ADD
Logical AND AND
Arithmetic Shift Left ASL
Arithmetic Shift Right ASR
Clear Bit in Memory BCLR
Bit Test Memory with Accumulator BIT
Branch if Bit n is Clear BRCLR
Branch if Bit n is Set BRSET
Set Bit in Memory BSET
Clear CLR
Compare Accumulator with Memory CMP
Complement (invert all bits) COM
Compare Index Register with Memory CPX
Decrement DEC
Exclusive OR Memory with Accumulator EOR
Increment INC
Jump JMP
Jump to Subroutine JSR
Load Accumulator from Memory LOA
Load Index Register from Memory LOX
Logical Shift Left LSL
Logical Shift Right LSR
Negate (twos complement) NEG
Inclusive OR ORA
Rotate Left thru Carry ROL
Rotate Right thru Carry ROR
Subtract with Carry SBC

Store Accumulator in Memory STA
Store Index Register in Memory STX
Subtract (without borrow) SUB
Test for Negative or Zero TST

M68HC05 Instruction Set 5-15

5·16

INDEXED Addressing Mode

In the indexed addressing mode, the effective address is
variable and depends upon two factors: 1) the current contents
of the index register (X) and 2) the offset contained in the
byte(s) following the opcode. Three types of indexed
addressing are supported by the M68HC05 CPU: no offset, 8-
bit offset, and 16-bit offset. A good assembler should use the
indexed addressing mode that requires the least number of
\bytes to express the offset.

Indexed-No Offset In indexed-no offset addressing
mode, the effective address of the operand for the instruction
is contained in the 8-bit index register. Thus, this addressing
mode can access the first 256 memory locations ($0000 to
$OOFF). These instructions are one-byte instructions.

Example Program Listing:

0200 F6

Execution Sequence:

LDA O,X Load A from address
pointed-to by X

$0200 $F6 [l],[2],and[3]

Explanation:

[1] CPU reads opcode $F6 - load accumulator using
indexed-no offset addressing mode.

[2] CPU builds a complete address by adding $0000 to the
contents of the 8-bit index register (X).

[3] This address is placed on the address bus and the CPU
reads the data value from that location into the
accumulator.

M68HC05 Instruction Set

Table 5-5 lists all M68HC05 instructions that can use the
indexed-no offset and indexed-8-bit offset addressing
modes.

Table 5·5
INDEXED (No Offset or 8-Bit Offset) Addressing Mode Instructions

"

Instruction Mnemonic
Add with Carry ADC
Add (without carry) ADD
Logical AND AND
Arithmetic Shift Left ASL
Arithmetic Shift Right ASR
Bit Test Memory with Accumulator BIT
Clear CLR
Compare Accumulator with Memory CMP
Complement (invert all bits) COM
Compare Index Register with Memory CPX
Decrement DEC
Exclusive OR Memory with Accumulator EOR
Increment INC
Jump JMP
Jump to Subroutine JSR
Load Accumulator from Memory LDA
Load Index Register from Memory LDX
Logical Shift Left LSL
Logical Shift Right LSR
Negate (twos complement) NEG
Inclusive OR ORA
Rotate Left thru Carry ROL
Rotate Right thru Carry ROR
Subtract with Carry SBC
Store Accumulator in Memory STA
Store Index Register in Memory STX
Subtract (without borrow) SUB
Test for Negative or Zero TST

M68HC05 Instruction Set 5·17

5·18

Indexed-8-Blt Offset In the indexed-8-bit offset
addressing mode, the effective address is obtained by adding
the contents of the byte following the opcode to the contents
of the index register. The offset byte supplied in the
instruction is an unsigned 8-bit integer. These are two-byte
instructions with the offset contained in the byte following the
opcode. The content of the index register (X) is not changed.

Example Program Listing:

0200 E6 05

Execution Sequence:

LDA 5 , X Load A with 6th item
in table starting at X.

$0200
$0201

$E6 [1]
$05 [2], [3] and [4]

Explanation:

[1] CPU reads opcode $E6 - load accumulator using
indexed-8-bit offset addressing mode.

[2] CPU reads 8-bit offset ($05) from address $0201.

[3] CPU builds a complete address by adding the value just
read ($05) to the contents of the 8-bit index register (X).

[4] This address is placed on the address bus and the CPU
reads the data value from that location into the
accumulator.

Table 5-5 lists all M68HC05 instructions that can use the
indexed-no offset and indexed-8-bit offset addressing
modes.

M68HC05 Instruction Set

Indexed-16-Bit Offset In the indexed-16-bit offset
addressing mode, the effective address of the operand for the
instruction is the sum of the contents of the 8-bit index
register and the two-byte address following the opcode. The
content of the index register is not changed. These instructions
are three bytes, one for the opcode and two for a 16-bit offset.

Example Program Listing:

0200 D6 03 77 LDA $377,X Load A with Xth item
in table at $0377.

Execution Sequence:

$0200
$0201
$0201

$D6 [1]
$ 03 [2]
$77 [3], [4] and [5]

Explanation:

[1] CPU reads opcode $D6 - load accumulator using
indexed-16-bit offset addressing mode.

[2] CPU reads high-order half of 16-bit base address ($03)
from address $0201.

[3] CPU reads low-order half of 16-bit base address ($77)
from address $0202.

[4] CPU builds a complete address by adding the contents of
the 8-bit index register (X) to the 16-bit base address just
read.

[5] This address is placed on the address bus and the CPU
reads the data value from that location into the
accumulator.

M68HC05 Instruction Set 5-19

5-20

Table 5-6 lists all M68HC05 instructions that can use the
indexed-16-bit offset addressing mode.

Table 5·6.
INDEXED (16-Bit Offset) Addressing Mode Instructions

Instruction Mnemonic
Add with Carry ADC
Add (without carry) ADD
Logical AND AND
Bit Test Memory with Accumulator BIT
Compare Accumulator with Memory CMP
Compare Index Register with Memory CPX
Exclusive OR Memory with Accumulator EOR
Jump JMP
Jump to Subroutine JSR
Load Accumulator from Memory LDA
Load Index Register from Memory LDX
Inclusive OR ORA
Subtract with Carry SBC
Store Accumulator in Memory STA
Store Index Register in Memory STX
Subtract (without borrow) SUB

RELATIVE Addressing Mode

The relative addressing mode is used only for branch
instructions. Branch instructions, other than the branching
versions of bit-manipulation instructions, generate two
machine-code bytes: one for the opcode and one for the
relative offset. Because it is desirable to branch in either
direction, the offset byte is a signed twos-complement offset
with a range of -128 to + 127 bytes (with respect to the
address of the instruction immediately following the branch
instruction). If the branch condition is true, the content of the
8-bit signed byte following the opcode (offset) is added to the
contents of the program counter to form the effective branch
address; otherwise, control continues to the instruction
immediately following the branch instruction.

M68HC05 Instruction Set

A programmer specifies the destination of a branch as an
absolute address (or label that refers to an absolute address).
The assembler calculates the 8-bit signed relative offset,
which is placed after the branch opcode in memory.

Example Program Listing:

0200 27 rr BEQ DEST Branch to DEST if Z=l
(if equal or zero)

Execution Sequence:

$0200 $27 [1]
$0201 $rr [2] and [3]

Explanation:

[1] CPU reads opcode $27 - branch if Z=I. The Z
condition code bit will be 1 if the result of the previous
arithmetic or logical operation was zero.

[2] CPU reads the offset value $rr from $0201. After this
cycle the program counter is pointing at the first byte of
the next instruction ($0202).

[3] If the Z bit is zero, nothing happens in this cycle and the
program will just continue to the next instruction at
$0202. If the Z bit is one, the CPU will add the signed
offset $rr to the present value in the program counter to
get the address of the branch destination. This causes
program execution to continue from the new address
(DEST).

Table 5-7 lists all M68HC05 instructions that can use the
relative addressing mode.

M68HC05 Instruction Set 5·21

Table 5-7.
RELATIVE Addressing Mode Instructions

Instruction Mnemonic
Branch if Carry Clear BCC
Branch if Carry Set BCS
Branch if Equal BEQ
Branch if Half-Carry Clear BHCC
Branch if Half-Carry Set BHCS
Branch if Higher BHI
Branch if Higher or Same BHS
Branch if Interrupt Line is High BIB

Branch if Interrupt Line is Low BIL
Branch if Lower BLO
Branch if Lower or Same BLS
Branch if Interrupt Mask is Clear BMC
Branch if Minus BMI
Branch if Interrupt Mask is Set BMS
Branch if Not Equal BNE
Branch if Plus BPL

Branch Always BRA
Branch if Bit n is Clear BRCLR
Branch if Bit n is Set BRSET
Branch Never BRN
Branch to Subroutine BSR

Bit Test and Branch Instructions

These instructions use direct addressing mode to specify the
location being tested and relative addressing to specify the
branch destination. This textbook treats these instructions as
direct addressing mode instructions. Some older Motorola
documents callthe addressing mode of these instructions BTB
for "bit test and branch".

Instructions Organized by Type

5-22

Tables 5-8 through 5-11 show a summary of the M68HC05
instruction set grouped by type of instruction.

M68HCOS Instruction Set

~ g:
C"'.l
~
;;--
"" :::;-

5.
(s'
~

~

Ul

~

Immediate

Function Mne Machine
Code ,.."

Load A from Memory LDA A6 ii 2
Load X from Memory LOX AE ii 2
Store A in Memory STA -- -
Store X in Memory STX -- -
Add Memory to A ADD AB ii 2
Add Memory and ADC A9 ii 2
Carry to A

Subtract Memory SUB AO ii 2
from A
Subtract Memory SBC A2 ii 2
from A with Borrow
AND Memory with A AND A4 ii 2
OR Memory with A ORA AA ii 2
Exclusive OR EOR A8 ii 2
Memory with A

Arithmetic Compare CMP Al ii 2
A with Memory

Arithmetic Compare CPX A3 ii 2
X with Memory
Bit Test Memory with BIT A5 ii 2
A (logical compare)

Jump Unconditional JMP -- -
Jump to Subroutine JSR -- -
,.." - Indicates execution time in cycles

Register/Memory Instructions

Addressing Modes

Direct Extended Indexed
(no offset)

Machine Machine Machine
Code ,.." Code ,.." Code ,.."

B6 dd 3 C6 hh 11 4 F6 3
BE dd 3 CE hh 11 4 FE 3
B7 dd 4 C7 hh 11 5 F7 4
BF dd 4 CF hh 11 5 FF 4
BB dd 3 CB hh 11 4 FB 3
B9 dd 3 C9 hh 11 4 F9 3

BO dd 3 CO hh 11 4 FO 3

B2 dd 3 C2 hh 11 4 F2 3

B4 dd 3 C4 hh 11 4 F4 3
BA dd 3 CA hh 11 4 FA 3
B8 dd 3 C8 hh 11 4 F8 3

Bl dd 3 Cl hh 11 4 Fl 3

B3 dd 3 C3 hh 11 4 F3 3

B5 dd 3 C5 hh 11 4 F5 3

BC dd 2 CC hh 11 3 FC 2
BD dd 5 CD hh 11 6 FD 5

Indexed
(8-bit offset)
Machine

Code ,.."

E6 ff 4
EE ff 4
E7 ff 5
EF ff 5
EB ff 4
E9 ff 4

EO ff 4

E2 ff 4

E4 ff 4
EA ff 4
E8 ff 4

El ff 4

E3 ff 4

E5 ff 4

EC ff 3
ED ff 6

Indexed
(16-bit offset)
Machine

Code ,.."

D6 ee ff 5
DE ee ff 5
D7 ee ff 6
DF ee ff 6
DB ee ff 5
D9 ee ff 5

DO ee ff 5

D2 ee ff 5

D4 ee ff 5
DA ee ff 5
D8 ee ff 5

Dl ee ff 5

D3 ee ff 5

D5 ee ff 5

DC ee ff 4

DD ee ff 7

~ c::r
CD
Y'
!XI
:0
~
~
(1)

~ s::
(1)

~
-<
S'
!!l
2 g
o
~ en

Ul

~

~
~
~ a
~ ;::
::;
(So
::!

~

Read-Modify-Write Instructions

Addressing Modes

Inherent (A) Inherent (B) Direct Indexed
(no offset)

Function Mne Machine Machine Machine Machine
Code ,.., Code ,.., Code ,.., Code ,..,

Increment INC 4C 3 5C 3 3C dd 5 7C 5
Decrement DEC 4A 3 5A 3 3A dd 5 7A 5
Clear CLR 4F 3 5F 3 3F dd 5 7F 5
Complement COM 43 3 53 3 33 dd 5 73 5

(invert all bits)
Negate NEG 40 3 50 3 30 dd 5 70 5

(2s complement)

Rotate Left thru Carry ROL 49 3 59 3 39 dd 5 79 5
Rotate Right thru Carry ROR 46 3 56 3 36 dd 5 76 5
Logical Shift Left LSL 48 3 58 3 38 dd 5 78 5
Logical Shift Right LSR 44 3 54 3 34 dd 5 74 5
Arithmetic Shift Right ASR 47 3 57 3 37 dd 5 77 5
Test for TST 4D 3 5D 3 3D dd 4 7D 4

Negative or Zero
jJnsigned Multiply MUL 42 11 -- - -- - -- -

,.., - Indicates execution time in cycles

Indexed
(8-bit offset)

Machine
Code ,..,

6C ff 6
6A ff 6
6F ff 6
63 ff 6

60 ff 6

69 ff 6
66 ff 6
68 ff 6
64 ff 6
67 ff 6
6D ff 5

-
--- -----------

?J~
~2: ,CD
3:'1'
OeD c..
=:;:
~

!
CD

:;­
!!i
2
Q.
c)"
:::l
fJ)

Table 5-10.
Branch Instructions

Relative
Addressing Mode

Function Mnemonic Machine
Code

,...,

Branch Always BRA 20 rr 3
Branch Never BRN 21 rr 3
Branch if Equal BEQ 27 rr 3
Branch if Not Equal BNE 26 rr 3
Branch if Plus BPL 2A rr 3
Branch if Minus BMI 2B rr 3
Branch if Carry Clear BCC 24 rr 3
Branch if Carry Set BCS 25 rr 3
Branch if Half-Carry Clear BHCC 28 rr 3
Branch if Half-Carry Set BHCS 29 rr 3
Branch if Higher BHI 22 rr 3
Branch if Higher or Same BHS 24 rr 3

(same as BCC)
Branch if Lower BLO 25 rr 3

(same as BCS)

Branch if Lower or Same BLS 23 rr 3
Branch if Interrupt Line is Low BIL 2E rr 3
Branch if Interrupt Line is High BIB 2F rr 3
Branch if Interrupt Mask is Clear BMC 2C rr 3
Branch if Interrupt Mask is Set BMS 20 rr 3
Branch if Bit n is Clear BRCLR Ox dd rr 5
Branch if Bit n is Set BRSET Ox dd rr 5
Branch to Subroutine BSR AD rr 3

,..., - Indicates execution time in cycles

M68HC05 Instruction Set 5·25

Table 5-11.
Control Instructions

Inherent
Addressing Mode

Function Mnemonic Machine
Code

,...

Clear Carry Bit CLC 98 2
Set Carry Bit SEC 99 2
Clear Interrupt Mask Bit CLI 9A 2
Set Interrupt Mask Bit SEI 9B 2
No Operation NOP 9D 2
Reset Stack Pointer RSP 9C 2
Return from Interrupt RTI 80 9
Return from Subroutine RTS 81 6
Stop Oscillator STOP 8E 2
Software Interrupt SWI 83 10
Transfer A to X TAX 97 2
Transfer X to A TXA 9F 2
Wait for Interrupt WAIT 8F 2

,... - Indicates execution time in cycles

5·26 M68HC05 Instruction Set

Instruction Set Summary
Computers use operation codes or opcodes to give instructions
to the CPU. The instruction set for a specific CPU is the set of
all operations that the CPU knows how to penorm. The CPU
in the MC68HC705K1 MCU can understand 62 basic
instructions, some of which have several variations that
require separate opcodes. The M68HC05 instruction set is
represented by 210 unique instruction opcodes.

The following table is an alphabetical listing of all M68HC05
instructions. The following symbols are used in the instruction
set summary (Table 5-12).

Condition Code Symblols

H - Half Carry (Bit 4)
I - Interrupt Mask (Bit 3)
N - Negative (Bit 2)
Z - Zero (Bit 1)
C - Carry/BoITow (Bit 0)

Boolean Expression Symbols

• Logical AND
+ Logical OR
@ Exclusive OR

Not (invert)
- - Negate or Subtract
+ - Arithmetic Add
x Multiply
~ is loaded with, "gets"
() Contents of ...

o - Cleared
1 - Set
L\ - Test and Set if True,

(cleared otherwise)
- - Not Affected

A - Accumulator
X - Index Register
M - Memory Location
CCR - Condition Codes
PC - Program Counter
PCL - PC (Low Byte)
PCH - PC (High Byte)
SP - Stack Pointer
REL - Relative Offset

Address Mode Abbreviation Operands

Inherent INH none
Immediate IMM ii
Direct DIR dd

(for bit tests) dd IT
Extended EXT hh 11
Indexed (no offset) IX none
Indexed (8-bit offset) IX1 ff
Indexed (16-bit offset) IX2 ee ff
Relative REL rr

M68HC05 Instruction Set 5-27

<II

~

~
00

~
&;
SO

I
§"

~

Source
Form(s) Operation

ADC opr Add with Carry

ADD opr Add without Carry

AND opr Logical AND

ASL opr Arithmetic Shift Left
ASLA
ASLX
ASL opr
ASL OJ>f

ASR opr Arithmetic Shift Right
ASRA
ASRX
ASR opr
ASR opr

--- _ .. _--

Addr
Description Mode

A f- (A) + (M) + C IMM
DIR
EXT
IX2
IXI
IX

A f- (A) +(M) IMM
DIR
EXT
IX2
IXI
IX

A f- (A)· (M) IMM
DIR
EXT
IX2
IXI
IX

4 DIR
~1111111~o INH

b7 bO INH
IXI
IX

~ >
DIR

:1 1 1 1 1 1 1 I->© INH
b7 bO

INH
IXI
IX

Machine Coding
Opcode Operand(s) C!,c

A9 ii 2
B9 dd 3
C9 hh 11 4
D9 ee ff 5
E9 ff 4
F9 3
AB ii 2
BB dd 3
CB hh 11 4
DB ee ff 5
EB ff 4
FB 3
A4 ii 2
B4 dd 3
C4 hh 11 4
D4 ee ff 5
E4 ff 4
F4 3
38 dd 5
48 3
58 3
68 ff 6
78 5
37 dd 5
47 3
57 3
67 ff 6
77 5

Cond.Codes
H I N Z C
L1 - A A A

I

i

I

L1 - A A A

I

- - L1 L1 ,

I

i

I

- - A L1 A
i

,

- - A L1 AI

I

~
CD
Y'
~

5"

~
(5"
::J

ff
UJ c:
3

~
en :::r
CD
~

a
$

~
~
~
~
"" ~ ::::
~
:::to
C
;::

~

U1

~

Source
Form(s)

BCC reI
BCLR n,opr

BCS reI
BEQ reI
BHCC reI

BHCS rel
BHI reI
BHS reI
BIH reI
BIL reI
BIT opr

BLO reI

BLS reI
BMC reI

BMI reI

O~eration

Branch if Carry Clear

Clear Bit n in Memory

Branch if Carry Set
Branch if Equal
Branch if Half Carry Clear
Branch if Half Carry Set
Branch if Higher
Branch if Higher or Same
Branch if IRQ Pin is High
Branch if IRQ Pin is Low
Bit Test A with Memory

Branch if Lower

Branch if Lower or Same
Branch if I Mask Clear

Branch if Minus

Addr
Description Mode

?C=O REL
Mn+-O DIRbO

DIRbl
DIRb2
DIRb3
DIRb4
DIRb5
DIRb6
DIRb7

?C=l REL
?Z=l REL
?H=O REL
?H=l REL
?C+Z=O REL

?C=O REL
? IRQ Pin High REL
? IRQ Pin Low REL
(A)· (M) IMM

DIR
EXT
IX2
IX1
IX

?C=l REL

?C+Z=l REL

? 1=0 REL

?N=l REL

Machine Codin2
Opcode Operand(s) Cyc

24 IT 3
11 dd 5
13 dd 5
15 dd 5
17 dd 5
19 dd 5
1B dd 5
1D dd 5
IF dd 5
25 IT 3
27 IT 3
28 IT 3
29 IT 3
22 IT 3
24 IT 3
2F IT 3
2E IT 3
A5 ii 2
B5 dd 3
C5 hh 11 4
D5 ee ff 5
E5 ff 4
F5 3
25 IT 3

23 IT 3
2C IT 3
2B IT 3

Condo Codes

H I N Z C
- - - - -
- - - - -

- - - - -
- - - - -
- - - - -
- - - - -
- - - - -
- - - - -
- - - - -
- - - - -

- - ~ ~ -

- - - - -
- - - - -
- - - - -
- - - - -

;
g-
il>
Y'
~

:;­
!!l.
2
$l c)"
:J
(J)

~
(J)
c:
3
~
-<
en
:::r
CD
~
I\)

9.
~

en

~

~
00

~
6;.
;;-
'" ~
~
§"
~ ...

Source
Form(s)

BMS reI
BNE reI
BPL reI
BRA reI
BRCLR n, opr, reI

BRN reI
BRSET n, opr, reI

Operation
Branch if I Mask Set
Branch if Not Equal
Branch if Plus
Branch Always
Branch if Bit n of M=O

Branch Never
Branch if Bit n of M= 1

Addr
Description Mode

11=0 REL
?Z=O REL

?N=O REL
? 1 = 1 (always true) REL
? Bitn ofM = 0 OIRbO

OIRbl
OIRb2
DIRb3
DIRb4
OIRb5
OIRb6
OIRb7

? 1 = 0 (never trUe) REL
? BitnofM= 1 OIRbO

DIRbl
OIRb2
OIRb3
OIRb4
OIRb5
OIRb6
OIRb7

Machine Coding
Opcode Operand(s) Cyc

20 IT 3
26 IT 3
2A IT 3
20 IT 3
01 dd IT 5
03 dd IT 5
05 dd IT 5
07 dd IT 5
09 dd IT 5
OB dd IT 5
00 dd IT 5
OF dd IT 5
21 IT 3
00 dd IT 5
02 dd IT 5
04 dd IT 5
06 ddIT 5
08 dd IT 5
OA dd IT 5
OC dd IT 5
OE dd IT 5

Condo Codes
H I N Z C
- - - - -
- - - - -
- - - - -
- - - - -
- - - - ~

- - - - -
- - - - ~

~
CD
Y' ...
~

~
ft c)"
:l

~
(J)
c:
3
~
-<
en
'::1'

!
(0)

9.
~

~
00

~
8:
~ ::r
~
:::to
§

~

ua
I

CM
~

Source
Form(s)

BSET n,opr

BSR reI

CLC
CLI

CLR opr
CLRA
CLRX
CLR opr
CLR opr

CMP opr

Operation
Set Bit n in Memory

Branch to Subroutine

Clear C;:1!lY Bit
Clear Interrupt Mask Bit

Clear

Compare A with Memory

Addr
Description Mode

Mn~l DIRbO
DIRbl
DIRb2
DIRb3
DIRb4
DIRb5
DIRb6
DIRb7

PC~(PC)+2 REL
push (PCL); SP=SP-1
push (PCH); SP=SP-1
PC~(PC)+REL

C~O INH
I~O INH
M~OO DIR
A~OO INH
X~OO INH
M~OO IX1
M~OO IX
(A) -(M) IMM

DIR
EXT
IX2
IX1
IX

Machine Coding
Opcode Operand(s) Cyc

10 dd 5
12 dd 5
14 dd 5
16 dd 5
18 dd 5
1A dd 5
1C dd 5
1E dd 5
AD IT 6

98 2
9A 2
3F dd 5
4F 3
5F 3
6F ff 6
7F 5

Al ii 2
B1 dd 3
Cl hh 11 4
D1 ee ff 5
E1 ff 4
F1 3

Condo Codes
H I N Z C
- - - - -

- - - - -

- - - - 0
- 0 - - -
- - 0 1 -

- - /j. /j. /j.

~
0"
a;'

Y' ...
~

~
2
Sl o·
:I
(f)

~
(f)
c:
3
3
II)

-<
en
::r
CD
~
~

9-
~

Ul

~

~
~
~
~
~
/:;
::::t­
:::::
l:l
<so
;::

~

Source

Form(s)

COM opr
COMA
COMX
COM opr
COM opr

CPX opr

DEC opr
DECA
DECX
DEC opr
DEC opr

EOR opr

INC opr
INCA
INCX
INC opr
INC opr

Operation

l' s Complement
(invert all bits)

Compare X with Memory

Decrement

DEX (same as DECX)

Exclusive OR A with
Memory

Increment

INX (same as INCX)

Addr

Description Mode

M f- M = $FF - (M) DIR
Af-A INH
Xf-X INH
Mf-M IXI
Mf-M IX
(X) - (M) IMM

DIR
EXT
IX2
IXI
IX

M f- (M)-l DIR
A f- (A)-l INH
X f- (X)-1 INH
M f- (M)-l IXI
M f- (M)-l IX
A f- (A) $ (M) IMM

DIR
EXT
IX2
IXI
IX

M f- (M) + 1 DIR
A f- (A) + 1 INH
Xf-(X)+l INH
M f- (M) + 1 IX1
~tf- (M) + I IX

Machine Coding

Opcode ODerand(s) Cye

33 dd 5
43 3
53 3
63 ff 6
73 5
A3 ii 2
B3 dd 3
C3 hh 11 4
D3 ee ff 5
E3 ff 4
F3 3
3A dd 5
4A 3
5A 3
6A ff 6
7A 5
A8 ii 2
B8 dd 3
C8 hh 11 4
D8 ee ff 5
E8 ff 4
F8 3
3C dd 5
4C 3
5C 3
6C ff 6
7C 5

Condo Codes

H I N Z C
- - ~ ~ I

- - ~ ~ ~

- - ~ ~ -

- - ~ ~ -

- - ~ ~ -

~
tr
CD
Y' ...
~

5"
!!l.
2
Sl
0°
::J
(fJ

$.
(fJ
c:
3
~
-<
en
:J
CD
$.
C11

9-
~

~
00

~
~
:;-...,
::t ;::
<"')

go

~

If'
~

Source
Form(s)

JMP opr

JSR opr

LDA opr

LDX opr

LSL opr
LSLA
LSLX
LSL opr
LSL opr

Operation
Jump

Jump to Subroutine

Load Accumulator

Load Index Register

Logical Shift Left

Addr
Description Mode

PCf-Effective Address DIR
EXT
IX2
IXl
IX

PCf-PC+n DIR
(n=l, 2, or 3) EXT

push (PCL); SPf-SP-l IX2
push (PCH); SPf-SP-l IXl
PCf-Effective Address IX
A f- (M) IMM

DIR
EXT
IX2
IXl
IX

X f- (M) IMM
DIR
EXT
IX2
IXl
IX

~ DIR
~1111111~o INH

b7 bO
INH
IXl
IX

---------- ---

Machine Coding
Opcode Operand(s) Cyc

BC dd 2
CC hh 11 3
DC ee ff 4
EC ff 3
FC 2
BD dd 5
CD hh 11 6
DD ee ff 7
ED ff 6
FD 5
A6 ii 2
B6 dd 3
C6 hh 11 4
D6 ee ff 5
E6 ff 4
F6 3
AE ii 2
BE dd 3
CE hh 11 4
DE ee ff 5
EE ff 4
FE 3
38 dd 5
48 3
58 3
68 ff 6
78 _ 5

Condo Codes
H I N Z C

- - - - -

- - - - -

- - I:l. I:l. -

- - I:l. ~ -

- - I:l. I:l. I:l.

- ---- -- - --- --

~ c,-
is'
Y.
~

~
2
Sl
0 0

::::I

en
!a
en c:
3
~
-<
en
:J
CD
!a
0>

So
~

~
~

~
~
~

~
~
~
~ :::t,
~

~

Source
Form(s)

LSR opr
LSRA
LSRX
LSR opr
LSR opr

MUL
NEG opr
NEGA
NEGX
NEG opr
NEG opr
NOP
ORA opr

ROL opr
ROLA
ROLX
ROL opr
ROL opr

·ROR opr
RORA
RORX
ROR opr
RQR~p!

Operation
Logical Shift Right

Unsigned Multiply

Negate (twos complement)

No Operation
Inclusive OR A with
Memory

Rotate Left through Carry

Rotate Right through Carry

Addr
Description Mode

• DIR

o~lllllll~ INH
b7 bO INH

IXI
IX

X:A f- (X) x (A) INH

M f- -(M) = $00 - (M) OIR
A f- -(A) INH
X f--(X) INH
M f--(M) IXI
M f--(M) IX

INH
A f- (A) + (M) IMM

OIR
EXT
IX2
IXI
IX

Lmlllllll~
OIR
INH

b7 bO
INH
IXI
IX

DIR
~1I11111~ INH

b7 bO
INH
IXI
IX

Machine Coding
Opcode Ooerand(s) Cyc

34 dd 5
44 3
54 3
64 ff 6
74 5
42 11

30 dd 5
40 3
50 3
60 ff 6
70 5
90 2
AA ii 2
BA dd 3
CA hh 11 4
DA ee ff 5
EA ff 4
FA 3
39 dd 5
49 3
59 3
69 ff 6
79 5
36 dd 5
46 3
56 3
66 ff 6
76 5

Condo Codes
H I N Z C

- - 0 L\ L\

0 - - - 0
- - L\ L\ L\

- - - - -
- - L\ L\ -

- - L\ L\ L\

- - L\ L\ L\

~ a
CD
Y'
~

~

~
2
Sl
0'
::J

~
g>
3

~
en
::J'
t1I
~
.."

a
~

~
~
~
~
"" :::;-
~
::to
§
~ ...

!II • CM
!II

Source
Form(s)

RSP
RTI

RTS

SBC opr

SEC
SEI
STA opr

STOP
STX opr

Operation
Reset Stack Pointer
Return from Interrupt

Return from Subroutine

Subtract with Carry

Set Carry Bit
Set Interrupt Mask Bit
Store A to Memory

Enable IRQ; Stop Oscillator
Store X to Memory

Addr
Description Mode

SP~$OOFF INH
SP=SP+1; pull (CCR) INH
SP=SP+ 1; pull (A)
SP=SP+1; pull (X)
SP=SP+ 1; pull (PCH)
SP=SP+1; pull (PCL)
SP=SP+ 1; pull (PCH) INH
SP=SP+ 1; pull (PCL)
A ~ (A) - (M) - C IMM

DIR
EXT
IX2
IX1
IX

C~l INH
I~ I INH
M~(A) DIR

EXT
IX2
IXI
IX

INH
M~(X) DIR

EXT
IX2
IXI
IX

Machine Coding
Opcode Operand(s) Cyc

9C 2
80 9

81 6

A2 ii 2
B2 dd 3
C2 hh 11 4
D2 ee ff 5
E2 ff 4
F2 3
99 2
9B 2
B7 dd 4
C7 hh 11 5
D7 ee ff 6
E7 ff 5
F7 4
8E 2
BF dd 4
CF hh 11 5
DF ee ff 6
EF ff 5
FF 4

Condo Codes
H I N Z C

- - - - -
(from stack)

fl fl fl fl fl

- - - - -

- - fl fl fl

- - - - I
- I - - -
- - fl fl -

- 0 - - -
- - A A -

g
CD
Y'
~

5"
~
2
Sl c)"
::J
(J)
$a
(J)
c::
3
3
III

-<
en
::::T
CD
$a
00

9-
~

UI

~

~
~
~

f c·
;l!

~

Source

Form(s)

SUB opr

SWI

TAX
TST opr
TSTA
TSTX
TST opr
TST opr

TXA
WAIT

Operation

Subtract without Carry

Software Interrupt

Transfer A to X
Test for Negative or Zero

Transfer X to A
Wait for Interrupt

Addr

Description Mode
A+- (A)-(M) IMM

OIR
EXT
IX2
IXI
IX

PC+-PC+I INH
push PCL; SP=SP-I
push PCH; SP=SP-I
push X; SP=SP-I
push A; SP=SP-I
push CCR; SP=SP-I
I Bit +- I
PCH+-($xxFC) (vector
PCL+-($xxFD) fetch)
X +- (A) INH
(M)-O OIR

INH
INH
IXI
IX

A +- (X) INH

INH
--

Machine Codin2
Opcode Operand(s) Cyc

AO ii 2
BO dd 3
CO hh 11 4
DO ee ff 5
EO ff 4
FO 3

83 .10

97 2
30 dd 4
40 3
50 3
60 ff 5
70 4
9F 2
8F 2

Condo Codes

H I N Z C

- - !!. !!. !!.

- I - - -

- - - - -
- - !!. !!. -

- - - - -
- 0 - - -

~ cr
CD
Y'
~

:;­
!!L
2
a o·
:l

en
~
en
c:
3

j
en
;;r
CD
~
<0

S.
.!E

Chapter 5 Review

CPU Registers

The five CPU registers in the M68HC05 are not locations in
the memory map. The programming model for the CPU
shows the five CPU registers.

• The accumulator (A) is an 8-bit general purpose register.
• The index register (X) is an 8-bit pointer register.
• The stack pointer (SP) is a pointer register that is

automatically decremented as data is pushed onto the stack
and incremented as data is pulled off of the stack.

• The program counter (PC) has as many bits as there are
address lines. The program counter always points at the
next instruction or piece of data the CPU will use.

• The condition codes register (CCR) contains the four
arithmetic result flags H, N, Z, and C and the interrupt mask
(disable) control bit I.

Addressing Modes

The M68HC05 CPU has six addressing modes that determine
how the CPU will get the operand(s) needed to complete each
instruction. The M68HC05 CPU has only 62 mnemonic
instructions. There are 210 instruction opcodes because each
different addressing mode variation of an instruction must
have a unique opcode.

• In immediate addressing mode, the operand for the
instruction is the byte immediately after the opcode.

• In inherent addressing mode, the CPU needs no operands
from memory. The operands, if any, are the registers or
stacked data values.

• In extended addressing mode, the 16-bit address of the
operand is located in the next two memory bytes after the
instruction opcode.

M68HC051llstruction Set 5·37

• ill direct addressing mode, the low order 8 bits of the
address of the operand are located in the next byte of
memory after the opcode and the high order byte of the
address is assumed to be $00. This mode is more efficient
than the extended addressing mode because the high order
address byte is not explicitly included in the program.

• ill indexed addressing modes, the current value of the index
register is added to a 0, 1, or l2 byte offset in the next 0, 1, or
2 memory locations after the opcode, to form a pointer to
the address of the operand in memory.

• Relative addressing mode is used for conditional branch
instructions. The byte after the opcode is a signed offset
value between -128 and +127. If the condition of the
branch is true, the offset is added to the program counter
value to get the address where the CPU will fetch the next
program instruction.

Instruction Execution

5·38

Each opcode tells the CPU the operation to be performed and
the addressing mode to be used to address any operands
needed to complete the instruction. The cycle-by-cycle
explanations of example instructions under each. addressing
mode provide a view of the tiny simple steps that make up an
instruction.

M68HC05 Instruction Set

Programming

This chapter discusses how to plan and write computer programs. We willleam
how to prepare flowcharts and write assembly language programs. A text editor or
word processor is used to write computer programs. Next, a programming tool
called an assembler is used to translate the program into a form the computer can
use. Programming tools are computer programs for personal computers that help in
the development of microcontroller computer programs. We will discuss
assemblers, simulators, and a few other useful development tools.

Programming 6·1

Writing a Simple Program

6·2

At this point, we will write a short program in mnemonic form
and translate it into machine code. The first step will be to
plan the program and document this plan with a flowchart.
Next we will write instruction mnemonics for each block in
the flowchart. Finally we will use an assembler to translate
our example program into the codes the computer needs to
execute the program.

Our program will read the state of a switch connected to an
input pin. When the switch is closed, the program will cause
an LED connected to an output pin to light for about one
second and then go out. The LED will not light again until the
switch has been released and closed again. The length of time
the switch is held closed will not affect the length of time the
LED is lighted.

Although this program is very simple, it demonstrates the
most common elements of any MCV application program.
First, it demonstrates how a program can sense input signals
such as switch closures. Second, this is an example of a
program controlling an output signal. Third, the LED on-time
of about one second demonstrates one way a program can be
used to measure real time. Because the algorithm is
sufficiently complicated, it cannot be accomplished in a trivial
manner with discrete components (at minimum, a one-shot IC
with external timing components would be required). This
example demonstrates that an MeV and a user-defined
program (software) can replace complex circuits.

Flowchart

Figure 6-1 is aflowchart of the example program. Flowcharts
are often used as a planning tool for writing software
programs because they show the function and flow of the
program under development. The importance of notes,
comments, and documentation for software cannot be
overemphasized. Just as you would not consider a circuit­
board design complete until there is a schematic diagram,
parts list, and assembly drawing, you should not consider
a program complete until there is a commented listing and
a comprehensive explanation of the program such as a
flowchart.

Programming

Figure 6·1.
Example Flowchart

FLOWCHART

SET INITIAL CONDITIONS:
PORT A BIT 7 = 1 (LED OFF)

MAKE PORT A BIT 7 AN OUTPUT

NO

YES

Programming 6·3

6-4

Mnemonic Source Code

Once the flowchart or plan is completed, the programmer
develops a series of assembly language instructions to
accomplish the function(s) called fOf in each block of the plan.
The programmer is limited to selecting instructions from the
instruction set for the CPU being used (in this case the
M68HC05). The programmer writes instructions in a
mnemonic form that is easy to understand. Figure 6-2 shows
the mnemonic source code next to the flowchart of our
example program so you can see what CPU instructions are
used to accomplish each block of the flowchart. The meanings
of the mnemonics used in the right side of Figure 6-2 can be
found in Appendix A or in Table 5-12 near the end of chapter
5.

During development of the program instructions, it was
noticed that a time delay was needed in three places. A
subroutine was developed that generates a 50-ms delay. This
subroutine is used directly in two places (for switch
debouncing) and makes the one-second delay easier to
produce. To keep this figure simple, the comments that would
usually be included within the source program for
documentation are omitted. The comments will be shown in
the completed program in Listing 6-1.

Programming

FLOWCHART

SET INITiAl CONDITIONS:
PORT A BIT 7 = 1 (LED OFF)

MAKE PORT A BIT 7 AN OUTPUT

NO

YES

Figure 6-2.
Flowchart and Mnemonics

Programming

MNEMONIC PROGRAM

INIT

TOP

LDA 11$80
STA PORTA
STA DDRA

LDA PORTA
AND 11$01

BEQ TOP

JSR DLYSO

BCLR 7,PORTA ELO' 1120
DLYLP JSR DLYSO

DECA
BNE DLYLP

BSET 7,PORTA

OFFLP BRSET O,PORTA,OFFLP

JSR DLYSO

BRA TOP

6·5

6·6

Software Delay Program

Figure 6-3 shows an expanded flowchart of the 50-ms delay
subroutine. A subroutine is a relatively small program that
performs some commonly required function. Even if the
function needs to be performed many times in the course of a
program, the subroutine only has to be written once. Each
place where this function is needed, the programmer would
call the subroutine with a branch-to-subroutine (BSR) or
jump-to-subroutine (JSR) instruction.

FLOWCHART

NO

Figure 6-3.

MNEMONIC PROGRAM INSTRUCTION
TIME (CYCLES)

6 (JSR)

DLY50 STA TEMPl 4

LDA #65 2

OUTLP CLRX 3

INNRLP DECX 3 1[1]
BNE INNRLP 3

DECA 3
[2]

BNE OUTLP 3

LDA TEMPl 3

RTS 6

[1]- INNRLP is executed 256 times per pass
through outer loop.

[2] - OUTLP is executed 65 times.

Delay Routine Flowchart and Mnemonics

Before starting to execute the instructions in the subroutine,
the address of the instruction that follows the JSR (or BSR) is
automatically stored on the stack in temporary RAM memory
locations. When the CPU finishes executing the instructions

Programming

within the subroutine, a return-from-subroutine (RTS)
instruction is performed as the last instruction in the
subroutine. The RTS instruction causes the CPU to recover
the previously saved return address; thus, the CPU continues
the program with the instruction following the JSR (or BSR)
instruction that originally called the subroutine.

The delay routine of Figure 6-3 involves an inner loop
(INNRLP) within another loop (OUTLP). The inner loop
consists of two instructions executed 256 times before X
reaches $00 and the BNE branch condition fails. This amounts
to six cycles at 500 ns per cycle times 256, which equals 0.768
ms for the inner loop. The outer loop executes 65 times. The
total execution time for the outer loop is 65(1536+9) or
65(1545)=100,425 cycles or 50.212 ms. The miscellaneous
instructions in this routine other than those in the outer loop
total 21 cycles; thus, the total time required to execute the
DLY50 routine is 50.223 ms, including the time required for
the JSR instruction that calls DLY50.

The on-chip timer system in the MC68HC705Kl can also be
used to measure time. The timer-based approach is preferred
because the CPU can perform other tasks during the delay,
and the delay time is not dependent on the exact number of
instructions executed as it is in DLY50.

Assembler Listing

After a complete program or subprogram is written, it must be
converted from mnemonics into binary machine code that the
CPU can later execute. A separate computer system, such as
an IBM PC®, is used to perform this conversion to machine
language. A computer program for the personal computer,
called an assembler, is used. The assembler reads the
mnemonic version of the program (also called the source
version of the program) and produces a machine-code version
of the program in a form that can be programmed into the
memory of the MCV.

The assembler also produces a composite listing showing both
the original source program (mnemonics) and the object code
translation. This listing is used during the debug phase of a
project and as part of the documentation for the software
program. Listing 6-1 shows the listing that results from

Programming 6-7

6·8

assembling the example program. Comments were added
before the program was assembled.

Listing 6-1.
Assembler Listing

0000
0004
OOEO

0200

0200
0202
0204

0206
0208
020A
020C
020F
0211
0213
0216
0217
0219
021B
021E
0221

0223
0225
0227
0228
0229
022B
022C
022E
0230

A6 80
B7 00
B7 04

B6 00
A4 01
27 FA
CD 02 23
IF 00
A6 14
CD 02 23
4A
26 FA
IE 00
00 00 FD
CD 02 23
20 E3

B7 EO
A6 41
5F
5A
26 FD
4A
26 F9
B6 EO
81

* Simple 68HC05 Program Example
* Read state of switch at port A bit-O; 1=c10sed
* When sw. closes, light LED for about 1 sec; LED on
* when port A bit-7 = O. Wait for sw release,
* then repeat. Debounce sw 50mS on & off
* NOTE: Timing based on instruction execution times
* If using a simulator or crystal less than 4MHz,
* this routine will run slower than intended

*
*
*
*
*
*
*
*

$BASE

PORTA
DDRA
TEMPI

lOT

EQU
EQU
EQU

ORG

INIT LDA
STA
STA

* Rest of port

TOP

DLYLP

OFFLP

LDA
AND
BEQ
JSR
BCLR
LDA
JSR
DECA
BNE
BSET
BRSET
JSR
BRA

$00
$04
$EO

$0200

;Tell assembler to use decimal
;unless $ or % before value
;Direct address of port A
;Data direction control, port A
;One byte temp storage location

;Program will start at $0200

#$80 ;Begin initialization
PORTA ;So LED will be off
DDRA ;Set port A bit-7 as output
A is configured as inputs

PORTA
#$01
TOP
DLY50
7, PORTA
#20
DLY50

;Read swat LSB of Port A
;To test bit-O
;Loop till Bit-O = 1
;Delay about 50 mS to debounce
;Turn on LED (bit-7 to zero)
;Decimal 20 assembles to $14
;Delay 50 mS
;Loop counter for 20 loops

DLYLP ;20 times (20-19,19-18, ... 1-0)
7,PORTA ;Turn LED back off
O,PORTA,OFFLP ;Loop here till swoff
DLY50 ;Debounce release
TOP ;Look for next sw closure

* DLY50 - Subroutine to delay -50mS
* Save original accumulator value
* but X will always be zero on return

DLY50

OUTLP
INNRLP

STA
LDA
CLRX
DECX
BNE
DECA
BNE
LDA
RTS

TEMPI
#65

INNRLP

OUTLP
TEMPI

Programming

;Save accumulator in RAM
;Do outer loop 32 times
;X used as inner loop count
;O-FF, FF-FE, ... 1-0 256 loops
;6cyc*256*500ns/cyc = 0.768ms
;65-64, 64-63, ... 1-0
;1545cyc*65*500ns/cyc=50.212ms
;Recover saved Accumulator val
; Return

0000

0200

0206

[1]

B6 00

Refer to Figure 6-4 for the following discussion. This figure
shows some lines of the listing with reference numbers
indicating the various parts of the line. The first line is an
example of an assembler directive line. This line is not really
part of the program; rather, it provides information to the
assembler so that the real program can be converted properly
into binary machine code.

PORTA EQU $00 ;Direct address of port A

ORG $0200 ;Prograrn will start at $0200

TOP LDA PORTA ;Read sw at LSB of Port A
--------- ------- -------- --------------------------------

[2] [3] [4] [5] [6]->

Figure 6-4.
Explanation of Assembler Listing

EQU, short for equate, is used to give a specific memory
location or binary number a name that can then be used in
other program instructions. In this case, the EQU directive is
being used to assign the name PORTA to the value $00, which
is the address of the port A register in the MC68HC705Kl. It
is easier for a programmer to remember the mnemonic name
PORTA rather than the anonymous numeric value $00. When
the assembler encounters one of these names, the name is
automatically replaced by its corresponding binary value in
much the same way that instruction mnemonics are replaced
by binary instruction codes.

The second line shown in Figure 6-4 is another assembler
directive. The mnemonic ORG, which is short for originate,
tells the assembler where the program will start (the address of
the start of the first instruction following the ORG directive
line). More than one ORG directive may be used in a program
to tell the assembler to put different parts of the program in
specific places in memory. Refer to the memory map of the
MeU to select an appropriate memory location where a
program should start.

In this assembler listing, the first two fields, [1] and [2], are
generated by the assembler, and the last four fields, [3], [4],
[5], and [6], are the original source program written by the
programmer. Field [3] is a label (TOP) which can be referred
to in other instructions. In our example program, the last
instruction was "BRA TOP", which simply means the CPU

Programming 6-9

6-10

will continue execution with the instruction that is labeled
"TOP".

When the programmer is writing a program, the addresses
where instructions will be located are not typically known.
Worse yet, in branch instructions, rather than using the
address of a destination, the CPU uses an offset (difference)
between the current PC value and the destination address.
Fortunately, the programmer does not have to worry about
these problems because the assembler takes care of these
details through a system of labels. This system of labels is a
convenient way for the programmer to identify specific points
in the program (without knowing their exact addresses); the
assembler can later convert these mnemonic labels into
specific memory addresses and even calculate offsets for
branch instructions so that the CPU can use them.

Field [4] is the instruction field. The LDA mnemonic is short
for load accumulator. Since there are six variations (different
opcodes) of the load accumulator instruction, additional
information is required before the assembler can choose the
correct binary opcode for the CPU to use during execution of
the program. Field [5] is the operand field, providing
information about the specific memory location or value to be
operated on by the instruction. The assembler uses both the
instruction mnemonic and the operand specified in the source
program to determine the specific opcode for the instruction.

The different ways of specifying the value to be operated on
are called addressing modes (a more complete discussion of
addressing modes was presented in chapter 5). The syntax of
the operand field is slightly different for each ad4ressing
mode so the assembler can determine the correct intended
addressing mode from the syntax of the operand. In this case,
the operand [5] is PORTA, which the assembler automatically
converts to $00 (recall the EQU directive). The assembler
interprets $00 as a direct addressing mode address between
$0000 and $ooFF, thus selecting the opcode $B6, which is the
direct addressing mode variation of the LDA instruction. If
PORTA had been preceded by a # symbol, that syntax would
have been interpreted by the assembler as an immediate
addressing mode value, and the opcode $A6 would have been
chosen instead of $B6.

Programming

Field [6] is called the comment field and is not used by the
assembler to translate the program into machine code. Rather,
the comment field is used by the programmer to document the
program. Although the CPU does not use this information
during program execution, a good programmer knows that it is
one of the most important parts of a good program. The
comment [6] for this line of the program says ";Read swat
LSB of port A." This comment tells someone who is reading
the listing why port A is being read, which is essential for
understanding how the program works. The semicolon
indicates that the rest of the line should be treated as a
comment (not all assemblers require this semicolon). An
entire line can be made into a comment line by using an
asterisk (*) as the first character in the line. In addition to
good comments in the listing, it is also important to document
programs with a flowchart or other detailed information
explaining the overall flow and operation of the program.

Object Code File

We learned in chapter 4 that the computer expects the
program to be a series of 8-bit values in memory. So far, our
program still looks as if it was written for people. The version
the computer needs to load into its memory is called an object
code file. For Motorola micro controllers, the most common
form of object code file is the S-record file. The assembler
can be directed to optionally produce a listing file and/or an
object code file.

An S-record file is an ASCII text file that can be viewed by a
text editor or word processor. You should not try to edit these
files because the structure and content of the files are critical
to their proper operation. Each line of an S-record file is a
record. Each record begins with a capitol letter S followed by
a code number from 0 to 9. The only code numbers that are
important to us are SO, Sl, and S9. SO is an optional header
record that may contain the name of the file for the benefit of
humans that need to maintain these files. Sl records are the
main data records. An S9 record is used to mark the end of the
S-record file. For the work we are doing with 8-bit
microcontrollers, the information in the S9 record is not
important, but an S9 record is required at the end of our S­
record files. Figure 6-5 shows the syntax of an Sl record.

Programming 6-11

ItGrn :AID:~SS I OBJECT CiDE DATA I CHECK~!I

Sl1402202320E3B7EOA641SFSA26FD4A26F9B6E081C9
LJLJLJLJLJLJLJLJLJ'-''-''-''-''-''-''-''-''-''-''-'
\ ,

CHECKSUM = ONES COMPLEMENT OF THE SUM OF ALL OF THESE BYTES

Figure 6-5.
Syntax of an 5 1 Record

All of the numbers in an S-record file are in hexadecimal. The
type field is SO, Sl, or S9 for the S-record files we will use.
The length field is the number of pairs of hexadecimal digits
in the record excluding the type and length fields. The address
field is the 16-bit address where the first data byte will be
stored in memory. Each pair of hexadecimal digits in the
machine code data field represents an 8-bit data value to be
stored in successive locations in memory. The checksum field
is an 8-bit value that represents the ones complement of the
sum of all bytes in the S-record except the type and checksum
fields. This checksum is used during loading of the S-record
file to verify that the data is complete and correct for each
record.

Figure 6-6 is the S-record file that results from assembling the
example program of Listing 6-1. The two bytes of machine
code data that are bold are the same two bytes that were
highlighted in Figure 4-2 and the text that follows Figure 4-2.
These bytes were located by looking in the listing and seeing
that the address where this instruction started was $0223. In
the S-record file we found the Sl record with the address
$0220. Moving to the right we found the data $23 for address
$0220, $20 for address $0221, $E3 for $0222, and finally the
bytes we wanted for address $0223 and $0224.

f··s·i"2·302·0·o:A6·80B7·0·0·B7·04B·6·0·0·A4·0127FAC·~0223·1·p·o·o·A614cDo·z234A2·6·FAIE·oo·o·o·o·oFoco·o·2·Bs· .. j
1 Sl1402202320E3B7EOA641SFSA26FD4A26F9B6E081C9 1

L.~.?'.9.~.~.?'.?'.~.~.~i
Flgure6-6.
S-Record File for Example Program

6·12 Programming

Assembler Directives
In this section we will discuss six of the most important
assembler directives. Assemblers from different vendors differ
in the number and kind of assembler directives supported.
You should always refer to the documentation for the
assembler you are using.

Originate (ORG)

This directive is used to set the location counter for the
assembler. The location counter keeps track of the address
where the next byte of machine code will be stored in
memory. In our example program there was an ORG directive
to set the start of our program to $0200.

As the assembler translates program statements into machine
code instructions and data, the location counter is advanced to
point at the next available memory location.

Every program has at least one ORG directive to establish the
starting place in memory for the program. Most complete
programs will also have a second ORG directive near the end
of the program to set the location counter to the address where
the reset and interrupt vectors are located ($03F8-$03FF in
the MC68HC705Kl). The reset vector must always be
specified and it is good practice to also specify interrupt

. vectors even if you do not expect to use interrupts.

Equate (EQU)

This directive is used to associate a binary value with a label.
The value may be either an 8-bit value or a 16-bit address
value. This directive does not generate any object code.

During the assembly process, the assembler must keep a cross
reference list where it stores the binary equivalent of each
label. When a label appears in the source program, the
assembler looks in this cross reference table to find the binary
equivalent. Each EQU directive generates an entry in this
cross reference table.

An assembler reads the source program twice. On the first
pass, the assembler just counts bytes of object code and
internally builds the cross reference table. On the second pass

Programming 6-13

6·14

the assembler generates the listing file and/or the S-record
object file. This two pass arrangement allows the programmer
to reference labels that are defmed later in the program.

EQU directives should appear near the beginning of a
program, before their labels are used by other program
statements. If the assembler encounters a label before it is
defined, it has no choice but to assume the worst case of a 16-
bit address value. This would cause the extended addressing
mode to be used in places where the more efficient direct
addressing mode could have been used. In other cases, the
indexed 16-bit offset addressing mode may be used where a
more efficient 8-bit or no offset indexed instruction could
have been used.

In the example program there were two EQU directives to
equate the labels PORTA and DDRA to their direct page
addresses. Another use for EQU directives is to identify a bit
position with a label like this.

LED

INIT

EQU

LDA
8TA
8TA

%10000000 ;LED is connected to bit-7

#LED ;There's a 1 in LED bit position
PORTA ;80 LED will be off
DDRA ;80 LED pin is an output

The % symbol indicates the value that follows is expressed in
binary. If we moved the LED to a different pin during
development we would only need to change the EQU
statement and reassemble the program.

Form Constant Byte (FCB)

The arguments for this directive are labels or numbers,
separated by commas, that can be converted into single bytes
of data. Each byte specified in an FCB directive, generates a
byte of machine code in the object code file. FCB directives
are used to define constants in a program.

Form Double Byte (FOB)

The arguments for this directive are labels or numbers,
separated by commas, that can be converted into 16-bit data
values. Each argument specified in an FDB directive,
generates two bytes of machine code in the object code file.

Programming

0200

0200 B6 00

031F 80

03F8

03F8 03 IF
03FA 03 IF
03FC 03 IF
03FE 02 00

OOEO

OOEO

The following lines from an assembly listing demonstrate
ORO directives and FDB directives.

ORG $0200 iBeginning of EPROM in 705Kl

START LDA PORTA ;Read swat LSB of port A

UNUSED RTI iReturn from unexpected int

ORG $03F8 ;Start of vector area

TIMVEC FDB UNUSED iAn unused vector
IRQVEC FDB $031F iArgument can be a hex value
SWIVEC FDB UNUSED iAn unused vector
RESETV FDB START jGo to START on reset

Reserve Memory Byte (RMB)

This directive is used to set aside space in RAM for program
variables. The RMB directive does not generate any object
code but it normally generates an entry in the assembler's
internal cross reference table.

In the example program (Listing 6-1), the RAM variable
TEMPI was assigned with an EQU directive. Another way to
assign this variable would have been like this.

ORG $OOEO iBeginning of RAM in 705Kl

TEMP 1 RMB 1 jOne byte temp storage location

This is the preferred way to assign RAM storage because it is
common to add and delete variables in the course of
developing a program. If you used EQU directives you might
have to change several statements after removing a single
variable. With RMB directives, the assembler assigns
addresses as they are needed.

Set Default Number Base to Decimal

Some assemblers, such as the P & E Microcomputer Systems
IASM assembler, assume that any value that is not specifically
marked otherwise should be interpreted as a hexadecimal
value. The idea is to simplify entry of numeric information by

Programming 6-15

OOOA

eliminating the need for a $ symbol before each value. If you
want the assembler to assume that unmarked values are
decimal numbers, use the $BASE directive.

$BASE lOT ;Set default # base to decimal

TEN EQU #10 ;Decimal 10 not $10=16

This directive is slightly different from the others described in
this chapter. The $BASE directive starts in the leftmost
column of the source program. This directive is included near
the start of each example program in this textbook. If you are
using an assembler that does not require this directive, you
can delete it or add an asterisk (*) at the start of the line to
"comment the line out". When you comment a line out of the
program, you change the whole line into a comment.
Comments do not affect assembly of a program.

Instruction Set Dexterity

6·16

As in most engineering fields, there is more than one sequence
of instructions that can perform any task. A good way to learn
a new instruction set is to see how many different ways you
can solve some small programming problem. I call this
"instruction set dexterity".

Figure 6-7 shows four different ways to check for closure of a
switch connected to port A bit-O. Two of these ways were
used in the example program of Listing 6-1. Although all of
the sequences accomplish the same basic task, there are subtle
differences. Usually these differences are not significant, but
sometimes they can save execution time or program memory
space. In a small microcontroller, memory space can be an
important consideration.

Programming

0000

0200

0200 B6 00
0202 A4 01
0204 27 FA

0206 01 00

0209 B6 00
020B 44
020C 24 FB

020E A6 01
0210 B5 00
0212 27 FC

PORTA EQU $00 ;Direct address of port A

ORG $0200 ;Prograrn will start at $0200

3] TOP1 LDA PORTA ;Read swat LSB of Port A
2] AND #$01 ;To test bit-O
3] BEQ TOP1 ;Loop till Bit-O = 1

FD 5] TOP2 BRCLR 0,PORTA,TOP2 ;Loop here till sw ON

3] TOP3 LDA PORTA ;Read swat LSB of Port A
3] LSRA ;Bit-O shifts to carry
3] BCC TOP3 ;Loop till switch ON

2] LDA #$01 ; 1 in LSB
3] TOP4 BIT PORTA ;To test swat bit-O
3] BEQ TOP4 ;Loop till switch ON

Figure 6-7.
Four Ways to Check a Switch

The numbers in square brackets are the number of CPU cycles
required for the instruction on that line of the program. The
TOP! sequence takes 6 bytes of program space and 8 cycles.
The accumulator is $01 when the program falls through the
BEQ statement. The TOP2 sequence takes only 3 bytes and 5
cycles, and the accumulator is not disturbed. (This is probably
the best sequence in most cases.) The TOP3 sequence takes
one less byte than the TOPI sequence but also takes 1 extra
cycle to execute. After the TOP3 sequence, the accumulator
still holds the other 7 bits from the port A read although they
have been shifted one position to the right. The last sequence
takes 6 bytes and a total of 8 cycles, but the loop itself is only
6 cycles. By working through exercises like this, you will
improve your instruction set dexterity. This will be very
helpful when you need to reduce a program by a few bytes to
fit it into the available memory space.

Programming 6-17

Application Development

6-18

A very small development system for the MC68HC705Kl is
offered by Motorola (M68HC705KICS). This system includes
an in-circuit simulator (software and hardware circuit board).
The circuit board plugs into a parallel I/O port on a personal
computer. A connector and cable allow the in-circuit
simulator to be plugged into an application system to take the
place of the microcontroller that will eventually be used. A
socket is also provided that allows an EPROM or OTP version
of the MC68HC705Kl to be programmed from the personal
computer.

A simulator is a program for a personal computer that helps
during program development and debugging. This tool
simulates the actions of a real micro controller but has some
important advantages. In a simulator you have complete
control over when and if the simulated CPV should advance to
the next instruction. You can also look at and change registers
or memory locations before going to the next instruction.

Simulators do not run at real-time speed. Since the personal
computer is simulating MCV actions with software programs,
each MCV instruction takes much longer to execute than it
would in a real MCV. For many MCV programs, this speed
reduction is not noticeable. As slow as a simulator can be, it is
still very fast in human terms. Some MCV programs generate
time delays with software loops (like the DLY50 routine in
Listing 6-1). The 50 millisecond delay of DLY50 might take
tens of seconds on some personal computers. To make the
simulation run faster, you can temporarily replace the loop
count value (65) with a much smaller number (say 2).
Remember to put the original number back before
programming the finished program into the EPROM of a real
MCV.

An in-circuit simulator is a simulator that can be connected to
a user system in place of the microcontroller. An ordinary
simulator normally only takes input information from the
personal computer and displays outputs and results on the
personal computer display. An in-circuit simulator goes
beyond this to emulate the input and output interfaces of the
real micro controller.

Programming

Program development is easier with a simulator than a real
MCV. It is easier to make program changes and try them out
in the simulator than to program an EPROM device and try it
out. With the real MCV you can only see the input and output
pins. You cannot easily stop a program between instructions.
With the simulator you can execute a single instruction at a
time and look at registers and memory contents at every step.
This makes it easier to see which instructions failed to
perform as intended. A simulator can also inform you if the
program attempts to use the value of a variable before it has
been initialized.

An in-circuit emulator is a real-time development tool. The
emulator is built around an actual MCV so it can execute
program instructions exactly as they will be executed in the
finished application. An emulator has RAM memory where
the ROM or EPROM memory will be located in the final
MCV. This allows you to quickly load programs into the
emulator and to change these programs during development.

Extra circuitry in the emulator allows you to set breakpoints
in the program under development. When the program reaches
one of these breakpoint addresses, the program under
development is temporarily stopped and a development
monitor program takes control. This monitor program allows
you to look at or change CPV registers, memory locations, or
control registers. An emulator typically has less visibility of
internal MCV actions than a simulator, but it can run at full
real-time speed. An emulator cannot normally stop clocks to
internal peripheral systems like a timer, when control switches
from the application program to the monitor program. A
simulator can stop such clocks.

Programming 6-19

6-20

Chapter 6 Review

The process of writing a program begins with a plan. A
flowchart can be used to document the plan. Mnemonic source
code statements are then written for each block of the
flowchart. Mnemonic source code statements can include any
of the instructions from the instruction set of the
microcontroller. The next step is to combine all of the
program instructions with assembler directives to get a text
source file.

Assembler directives are program statements that give
instructions to the assembler rather than to the CPU of the
microcontroller. These instructions tell the assembler things
like where to locate instructions in the memory of the
microcontroller. Assembler directives can also inform the
assembler of the binary meaning of a mnemonic label. Six
directives were discussed.

ORG - Originate directives set the starting address for the
object code that follows.

EQU - Equate directives associate a label with a binary
number or address.

FCB - Form constant byte directives are used to introduce 8-
bit constant data values into a program.

FDB - Form double byte directives are used to introduce 16-
bit data or address constants into a program.

RMB - Reserve memory byte(s) directives are used to assign
labels (belonging to program variables) to RAM addresses.

$BASE lOT - Change default number base to decimal.

After the complete source program is written, it is processed
by an assembler to produce a listing file and an S-record
object file. The listing file is part of the documentation of the
program. The S-record object file can be loaded into the
simulator or it can be programmed into a microcontroller.

A conditional loop can produce a timed delay. The delay is
dependent on the execution time of the instructions in the
loop. A subroutine such as this delay routine can be used

Programming

many times in a program by calling it with JSR or BSR
instructions.

Instruction set dexterity is the ability to solve a programming
problem in several different ways with different sequences of
instructions. Since each sequence takes a different number of
program bytes and a different number of CPV cycles to
execute, you can select a sequence that is best for each
situation.

A simulator is an application development tool that runs on a
personal computer and simulates the behavior of a
micro controller (though not at real-timer speed). An in-circuit
simulator takes this idea further to also simulate the I/O
interfaces of the microcontroller. The in-circuit simulator can
be plugged into an application circuit in place of the
microcontroller. A simulator makes application development
easier. It allows instructions to be executed one at a time. It
also provides visibility into the contents of registers and
memory and allows changes before executing a new
instruction.

An emulator is built around a real MCV so it can run at the
full speed of the final MCV. Emulators use RAM instead of
ROM or EPROM so the program under development can be
modified easily during development.

Programming 6-21

The Paced Loop

This chapter presents a general purpose software structure that may be used as a
framework for many microcontroller applications. Major system tasks are written
as subroutines. These subroutines are organized into a loop so that each is called
once per pass through the loop. At the top of the loop there is a small routine that
paces the loop so it is executed at regular intervals. A software clock is maintained
as the first task in the loop. This clock can be used as an input to the other task
subroutines to decide what the routine should do on each pass through the major
loop.

In addition to the loop structure itself, this chapter discusses system initialization
issues and software setup details so you can go directly to the routines that deal
with your specific applications.

The Paced Loop '·1

System Equates

'·2

It is inconvenient to use binary bit patterns and addresses in
program instructions. Equate (EQU) directives are used to
assign mnemonic names to register addresses and bit
positions. These names can then be used in program
instructions instead of the binary numbers. This makes the
program easier to write and to read. When an in-circuit
simulator is used to develop an application program, the
mnemonic names can be used in the debug displays instead of
the binary addresses.

Register Equates for MC68HC705K1

The manufacturer's recommended names for registers and
control bits are included in the paced loop program framework
of Listing 7-1. This allows you to write program instructions
using names that make sense to people instead of obscure
binary numbers and addresses.

Each register is equated to its direct-page binary address with
an EQU directive. Each control bit is defined in two ways.
First, an EQU directive equates the bit name to a number
between 7 and 0 corresponding to the bit number where each
bit is located in a control register. Second, most control bits
are equated to a binary bit pattern such as 0010 0000 ($20)
which can be used as a bit mask to identify the location of the
bit in a register. Since you cannot equate the same name to
two different binary values, the second equate uses a period
after the bit name. To get a bit name's bit number (7-0) use
the name, to get a mask indicating the bit position, use the
name followed by a period. This convention is used in the
paced loop framework but it is not necessarily a standard that
is recommended by Motorola or the assembler companies.

In the M68HC05 instruction set, the bit manipulation
instructions are of the form ...

[~~::::!:~ :::9.:~::::::::::::::::::::~:~:~:~:~:::::~~~i.:::::::~!.:~:i.:~::q~:::::::::~::~:~~::::~:E:::::~~::::~:9.i.i.~:~9.~:::~~::]
Bit# is a number between 7 and 0 that identifies the bit within
the register at location dd that is to be changed or tested.

The Paced Loop

xxxx A6 16
xxxx B7 08

xxxx A6 16
xxxx B7 08

Vector Setup

In other cases you may want to build up a mask with several
bits set, and then write this composite value to a register
location. For example, suppose you want to set RTIFR, RTIE,
and RTI bits in the TCSR register. You could use the
following instructions.

LDA #{RTIFR.+RTIE.+RT1.} iForm mask
STA TCSR iWrite mask to TCSR register

The # symbol means immediate addressing mode. The
expression (RTIFR.+RTIE.+RTl.) is the Boolean OR of three
bit position masks. The assembler evaluates the Boolean
expression during program assembly and substitutes the
answer (a single 8-bit binary value) into the assembled
program. The following program statements would produce
exactly the same results, but they are not as easy to read.

LDA #%00010110 iForm mask
STA $08 iWrite mask to TCSR

Application System Equates

There will usually be some application specific equate
directives in a program to define the signals connected to I/O
pins. These EQU directives should be placed after the
standard MCU equate directives and before the main program
starts. The paced loop framework program was developed
with a particular small development PC board in mind. This
system has a switch connected to port A bit 0 and an LED
connected to port A bit 7 so these connections were defined
with EQU directives.

The switch is not used in the paced loop framework program
of Listing 7-1, but it does no harm to include the related EQU
directives. EQU directives do not generate any object code
that takes up memory space in the final computer system.

All MeU programs should setup the reset and interrupt
vectors! Vectors specify the address where the CPU will start
processing instructions when a reset or interrupt occurs. Reset
and each interrupt source expects to find their associated
vector in a specific pair of memory locations. For example,
the reset vector is at the highest two locations in memory

The Paced Loop 7-3

03FE 02 00

'·4

($03FE and $03FF in the MC68HC705Kl). If you do not
place values in these locations, the CPU will take whatever
binary values it finds there, and treat them as if they were a
two-byte address you stored there.

Reset Vector

The usual way to define a vector is with an FDB directive.

RESETV FDB START ;Beginning of program on reset

During assembly, the assembler evaluates the label START
into a two-byte address and stores this address in the next two
available memory locations of the program. The columns at
the left of the listing line show that the address $0200 was
stored at $03FE and $03FF. ($02 @ $03FE and $00 @
$03FF).

RESETV is an optional label on this program line. Although it
is not used for reference by other statements in this particular
program, it was included to identify this FDB directive line as
the statement that defines the reset vector.

The reset vector was setup to point at the label START. The
in-circuit simulator system that Motorola offers as a very low
cost development tool, uses this information to setup the
simulator screen. When a program is loaded into the
simulator, the simulator looks for the address in the reset
vector of the loaded program. If one is found, the simulator
selects that program instruction and displays it in the source
program window of the simulator. The simulator's PC is also
set to this address. If there is no reset vector, the simulator
displays a warning message, saying that the reset vector was
not initialized. You could still debug the program, but it would
not work if it was programmed into an EPROM MCU because
the program would not start up at reset.

Unused Interrupts

For interrupts that are used, the vectors can be defined just as
the reset vector was defined (with an FDB directive). In the
paced loop framework program, the timer interrupt is used for
real time interrupts (RTI). The external interrupt and the SWI
interrupt are not used.

The Paced Loop

0245 3A EO

0251 80

0251

03F8

03F8 02 45
03FA 02 51
03FC 02 51
03FE 02 00

0251 80

It is a good idea to setup the unused interrupt vectors just in
case one of these interrupts is unexpectedly requested. This is
not to say that unexpected interrupts can occur in a working
computer system. Rather, it says that when a programmer is
first starting out, programming mistakes could result in
unintended interrupt sources being enabled and triggered.

The following listing lines show how interrupt and reset
vectors were setup in the paced loop framework program.

* RTIF interrupt service routine

RTICNT DEC

AnRTI RTI

UNUSED EQU

RTIFs

AnRTI

;On each RTIF

;Return from RTIF interrupt

;Use RTI at AnRTI for unused
;interrupts to just return

* Interrupt & reset vectors

ORG

TIMVEC FOB
IRQVEC FOB
SWIVEC FOB
RESETV FOB

$03F8

RTICNT
UNUSED
UNUSED
START

;Start of vector area

;Count RTIFs 3/TIC
;Change if vector used
;Change if vector used
;Beginning of program on reset

The first lines in this partial listing show the first and last lines
of the timer interrupt service routine. The line ...

AnRTI RTI ;Return from RTIF interrupt

shows a return from interrupt (RTI) instruction with the label
"AnRTI". The next line equates the label "UNUSED" to the
address of the RTI instruction at AnRTI. Further down in the
listing, the unused interrupt vectors for external interrupts and
SWI interrupts are setup to point at this RTI instruction.
During assembly, the assembler encounters the label
"UNUSED" and finds it should be equal to "AnRTI" that is in
turn equal to the binary address of the RTI instruction
($0251).

If an SWI interrupt were unexpectedly encountered, the CPU
would save the CPU registers on the stack (temporary RAM)
and load the program counter with the address $0251 from the
SWI vector. The CPU would then load the instruction RTI

The Paced Loop 7-5

0251

03FA 02 51

from address $0251. The R TI instruction would tell the CPU
to recover the saved CPU registers (including the program
counter) from the stack. The recovered program counter value
would determine what the CPU did next.

An alternate way to respond to unexpected interrupts would
be to reset the stack pointer (with an RSP instruction) and then
jump to the same address as if a reset had occurred. This
approach makes the pessimistic assumption that if an
unexpected interrupt occurs, there may be other serious
problems. By resetting the stack pointer and starting all over
you are more likely to correct whatever caused the unexpected
interrupt.

While debugging a program on a simulator, there is another
possible way to handle unused interrupts.

BAOINT BRA BAOINT ;Infinite loop to here

VECTOR FOB BAOINT ;Hang on unexpected int

In this scheme, an unexpected interrupt will cause the CPU to
vector to BADINT. The instruction at BADINT is an infinite
loop back to BADINT, so the system will hang there. You can
stop the simulator and check the CPU register values on the
stack to see what the program was doing when it got the
unexpected interrupt.

RAM Variables

7-6

Program variables change value during the course of
executing the program. These values cannot be specified
before the program is written and programmed into the MCU.
The CPU must use program instructions to initialize and
modify these values. When the program is written, space is
reserved for variables in the RAM memory of the MCU, using
reserve memory byte(s) (RMB) directives.

First, you would put an originate (ORG) directive to set the
assembler's location counter to the address of the start of
RAM in the MCV ($OOEO in the MC68HC705Kl). Each
variable or group of variables would be setup with an RMB
directive. The RMB line is identified by the name of the

The Paced Loop

Paced Loop

variable. The assembler assigns the name (label) to the next
available address. After each new variable or group of
variables is assigned, the location counter is advanced to point
at the next free memory location.

As the program in Listing 8-1 shows, some programmers feel
it is good practice to clear all RAM locations as one of the
first initialization steps after any reset. While you are
debugging a system, it is useful to have a known set of
starting conditions. If the entire RAM is cleared at the start of
a program, it is easy to tell if any locations have been written.

The paced loop is a general purpose software structure that is
suitable for a wide variety of MCV applications. The main
idea is to break the overall application into a series of tasks
such as keeping track of time, reading system inputs, and
updating system outputs. Each task is written as a subroutine.
A main loop is constructed out of jump to subroutine (JSR)
instructions for each task. At the top of the loop there is a
software pacemaker. When the pacemaker triggers, the list of
task subroutines is executed once and a branch instruction
takes you to the top of the loop to wait for the next pacemaker
trigger.

Figure 7 -1 shows a flowchart for the main paced loop. The top
block is a loop that waits for the pacemaker trigger (every 100
milliseconds). The next few blocks have to do with
maintaining the TIC counter. The version of this program in
Listing 7-1 has two simple main tasks, TIME and BLINK.
You would remove one, or both of these routines and
substitute your own tasks. The only limitation on the number
of main tasks is that they must all finish quickly enough so no
pacemaker triggers are lost. The last block in the flowchart is
just a branch back to the top of the loop to wait for the next
pacemaker trigger.

The Paced Loop 7-7

'·8

Figure 7·1.

MAIN
PACED LOOP

"ARNC1" 14----.....

Flowchart of Main Paced Loop

Loop Trigger

INSERT
TASK ROUTINES
HERE

In the paced loop program of Listing 7-1, the pacemaker is
based on the on-chip real time interrupt (RTI). This RTI is set
to generate an interrupt to the CPU every 32.8 milliseconds.
The flowchart in Figure 7-2 shows what happens at each RTI
interrupt. This interrupt activity can be thought of as if it was
taking place asynchronously with respect to the main
program. The most significant bit of the TIC variable is used
as a flag to tell the main program when it is time to increment
TIC and execute one pass through the paced loop.

The Paced Loop

Figure 7-2.
Flowchart of RTI Interrupt Service Routine

The RAM variable "RTIFs" is used to count 3 real time
interrupts before setting the MSB of TIC. The main program
will be watching TIC to see when the MSB becomes set.

Every 32.8 ms the RTIF flag will get set, triggering a timer
interrupt request. One of the duties of an interrupt service
routine, is to clear the flag that caused the interrupt before
returning from the interrupt. If R TIF is not cleared before the
return, a new interrupt request is generated immediately
instead of waiting for the 32.S ms trigger.

Loop System Clock

The variable "TIC" is the most basic clock for the pacemaker.
TIC counts from 0 to 10. As TIC is incremented from 9 to 10,
the program recognizes this and resets TIC to O. Except within
the pacemaker itself, TIC appears to count from 0 to 9. TIC is
equal to 0 on every tenth trigger of the pacemaker.

The first task subroutine in the main loop is called "TIME".
This routine maintains a slower clock called "TOC". TOC is
incremented each time the paced loop executes and TIC is 0

The Paced Loop '-9

7-10

(i.e., every tenth pass through the paced loop). TOC is set up
as a software counter that counts from 0 through 59. The
remaining task routines after TIME can use the current values
of TIC and TOC to decide what needs to be done on this pass
through the paced loop.

In Listing 7-1 the pace is keyed to the RTI interrupt which
does not happen to be an integer sub multiple of one second.
Three RTI periods equal 98.4 milliseconds. This is pretty
close to 0.1 seconds but not close enough to be used like a
wristwatch. You could get accurate real time if you modified
the paced loop. program to use a different trigger source such
as zero crossings of the ac line (60Hz). Although the ac line is
not as accurate as a crystal over short periods of time, it is
very accurate over long periods of time. Most clocks that plug
into the wall use the ac line timing as the basis for keeping
time.

Your Programs

There are very few restrictions on the task subroutines. Each
task subroutine should do everything it needs to do, as quickly
as it can, and then execute a return from subroutine (RTS).
The total time required to execute one pass through all of the
task subroutines must be less than two pacemaker triggers (we
will explain this in greater detail in a little while). The
important point is that a task subroutine should not wait for
the occurrence of some external event like a switch to be
pressed. This would defeat the time keeping aspects of the
paced loop.

The paced loop can automatically provide for switch
debouncing. Switches are notorious for bouncing between the
closed and opened conditions as they are pressed and released.
It is not at all unusual for a switch to bounce for 50
milliseconds or more as it is pressed. A microcontroller can
execute instructions so fast that a single press of a switch
might look like several presses to a program, unless steps are
taken to account for switch bounce. There are hardware
methods for debouncing switches but they require extra
components and increase the cost of a product.

Software can also be used to debounce a switch. The example
program in Figure 6-2 used a simple software delay program
to debounce a switch, but this routine should not be used

The Paced Loop

directly in the paced loop structure because it takes too much
time. In a paced loop you can debounce a switch by reading it
on consecutive passes through the paced loop. The first time
you see the switch pressed, you can write a special value to a
variable to indicate that a switch was tentatively pressed (you
would not consider this switch as pressed yet). On the next
pass through the paced loop, you would either mark the switch
as really pressed, or clear the mark, to indicate that it was a
false detection. Similarly, when the switch is eventually
released, you can mark it as tentatively released, and on the
next pass mark it as really released.

Timing Considerations

Ideally you should finish all of the task subroutines in the
paced loop before the next pacemaker trigger arrives. If a
single pass through the loop takes longer than the pacemaker
trigger period, the flag that indicates it is time to start the next
pass through the main loop will already be set when you get
back to the top of the loop. Nothing bad happens unless you
get so far behind that a new pacemaker trigger comes before
the previous one has been recognized. The paced loop remains
valid unless any two consecutive passes take more than two
pacemaker trigger periods.

A little bit of planning can assure that no two consecutive
passes through the loop take longer than two pacemaker
periods. Especially long task subroutines can be scheduled to
execute during a particular paced loop pass when very little
other activity is scheduled. A simple check of one of the time
variables such as TIC or TOC can be used to decide whether
or not to perform a particularly slow routine. If there were
several things that needed to be done once per second, one
could be scheduled for the TIC=O pass, another could be
scheduled for the TIC=2 pass, and so on.

Stack Considerations

Small microcontrollers like the MC68HC705Kl have only
small amounts of RAM for the stack and program variables.
Interrupts take 5 bytes of stack RAM and each. subroutine call
takes 2 bytes on the stack. If a subroutine called another
subroutine, and an interrupt was requested before the second
subroutine was finished, the stack would use 2+2+5=9 RAM

The Paced Loop 7-11

bytes of the available 32. If the stack gets too deep, there is a
danger that RAM variables can get written over with stack
data. To avoid these problems you should calculate the worst
case depth that your stack can ever get to. The sum of all
system variables plus the worst case stack depth must be less
than or equal to the 32 available RAM locations in the
MC68HC705K1.

Fortunately, an interrupt causes the interrupt mask (I) bit in
the condition code register to be set in response to any
interrupt. This blocks additional interrupts until the I bit is
cleared (normally upon return from the interrupt).

An Application-Ready Framework

7-12

The paced loop program of Listing 7 -1 can be used as the
basis for your own applications. This framework provides the
following main parts ...

• Equate statements for all MC68HC705K1 register and bit
names

• Application specific equate statements

• Program variables section

• Initialization section (START)

• Pacemaker for main loop based on RTI interrupts

• Calls to task subroutines

• Two very simple examples of task subroutines (TIME and
BLINK)

• An interrupt service routine (for RTIF interrupts)

• Vector definition section

The pacemaker in this particular paced loop program, triggers
a pass through the main loop about once every 100
milliseconds (actually 98.4 ms). This can easily be changed to
some other number of real time interrupts and the R TI rate can
be changed. For applications that need real wristwatch time,
the pacemaker can be modified to work from interrupts
generated at zero crossings of the ac power line.

Additional RMB directives should be added to the program
variables section. Additional EQU statements can be added

The Paced Loop

just above the program variables section to add application
specific equates.

In its present fonn the paced loop only has two simple task
subroutines (TIME and BLINK). The TIME task just
maintains a 0 to 59 count (TOe) which could be useful for
measuring or generating longer time periods. The BLINK task
is just a dummy routine to demonstrate how a task can use the
time variable TOe to control a system action. In this case the
action is to turn on an LED when TOe is even, and turn it off
when TOe is odd. To use the framework program for your
own application, you should remove the BLINK task and
replace it with your own tasks.

The RTI interrupt service routine serves as an example of an
interrupt handler and counts real time interrupts to set the
pacemaker rate.

The Paced Loop 7-13

7-14

Listing 7-1.
Paced Loop Framework Program (sheet 1 of 6)

0000
0007
0006
0005
0004
0003
0002
0001
0000
0080
0040
0020
0010
0008
0004
0002
0001

0001
0007
0006
0080
0040

0004
0007
0006
0005
0004
0003
0002
0001
0000
0080
0040
0020
0010
0008
0004
0002
0001

0005
0007
0006
0080
0040

$BASE lOT iSet decimal as default # base

* Equates for MC68HC705K1 MCU
* Use bit names without a dot in BSET .. BRCLR
* Use bit name followed by a dot in expressions such as
* #ELAT.+EPGM. to form a bit mask

PORTA
PA7
PA6
PAS
PA4
PA3
PA2
PAl
PAO
PA7.
PA6.
PAS.
PA4.
PA3.
PA2.
PAL
PAO.

PORTB
PB7
PB6
PB7.
PB6.

DDRA
DDRA7
DDRA6
DDRA5
DDRA4
DDRA3
DDRA2
DDRA1
DDRAO
DDRA7.
DDRA6.
DDRA5.
DDRA4.
DDRA3.
DDRA2.
DDRA1.
DDRAO.

DDRB
DDRB7
DDRB6
DDRB7.
DDRB6.

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU

$00
7
6
5
4
3
2
1
o
$80
$40
$20
$10
$08
$04
$02
$01

$01
7
6
$80
$40

$04
7
6
5
4
3
2
1
o
$80
$40
$20
$10
$08
$04
$02
$01

$05
7
6
$80
$40

The Paced Loop

i1/0 port A
iBit #7 of port A
jBit #6 of port A
jBit #5 of port A
jBit #4 of port A
iBit #3 of port A
jBit #2 of port A
jBit #1 of port A
jBit #0 of port A
iBit position PA7
jBit position PA6
jBit position PAS
jBit position PA4
iBit position PA3
jBit position PA2
jBit position PAl
jBit position PAO

jl/O port: B
jBit #7 bf port B
jBit #6 of port B
jBit position PB7
jBit position PB6

jData direction for port A
jBit #7 of port A DDR
jBit #6 of port A DDR
iBit #5 of port A DDR
jBit #4 of port A DDR
jBit #3 of port A DDR
iBit #2 of port A DDR
jBit #1 of port A DDR
jBit #0 of port A DDR
iBit position DDRA7
iBit position DDRA6
jBit position DDRA5
jBit position DDRA4
jBit position DDRA3
jBit position DDRA2
jBit position DDRA1
jBit position DDRAO

jData direction for port B
jBit #7 of port B DDR
jBit #6 of port B DDR
jBit position DDRB7
jBit position DDRB6

Listing 7·1.
Paced Loop Framework Program (sheet 2 of 6)

0008 TCSR EQU $08 ;Timer control & status reg
0007 TOF EQU 7 ;Timer overflow flag
0006 RTlF EQU 6 ;Real time interrupt flag
0005 TOlE EQU 5 ;TOF interrupt enable
0004 RTlE EQU 4 ;RTl interrupt enable
0003 TOFR EQU 3 ;TOF flag reset
0002 RTlFR EQU 2 ;RTlF flag reset
0001 RT1 EQU 1 ;RTl rate select bit 1
0000 RTO EQU 0 ;RTl rate select bit 0
0080 TOF. EQU $80 ;Bit position TOF
0040 RTlF. EQU $40 ;Bit position RTlF
0020 TOlE. EQU $20 ;Bit position TOlE
0010 RTlE. EQU $10 .;Bit position RTlE
0008 TOFR. EQU $08 ;Bit position TOFR
0004 RTlFR. EQU $04 ;Bit position RTlFR
0002 RTl. EQU $02 ;Bit position RT1
0001 RTO. EQU $01 ;Bit position RTO

0009 TCR EQU $09 ;Timer counter register

DaDA lSCR EQU $OA ;lRQ status & control reg
0007 lRQE EQU 7 ;lRQ edge/edge-level
0003 lRQF EQU 3 ; External interrupt flag
0001 lRQR EQU 1 ;lRQF flag reset

OOOE PEBSR EQU $OE ;PEPROM bit select register
0007 PEB7 EQU 7 ;Select PEPROM bit 7
0006 PEB6 EQU 6 ;Select PEPROM bit 6
0005 PEB5 EQU 5 ;Select PEPROM bit 5
0004 PEB4 EQU 4 ;Select PEPROM bit 4
0003 PEB3 EQU 3 ;Select PEPROM bit 3
0002 PEB2 EQU 2 ;Select PEPROM bit 2
0001 PEB1 EQU 1 ;Select PEPROM bit 1
0000 PEBO EQU 0 ;Select PEPROM bit 0
0080 PEB7. EQU $80 ;Bit position PEB7
0040 PEB6. EQU $40 ;Bit position PEB6
0020 PEB5. EQU $20 ;Bit position PEB5
0010 PEB4. EQU $10 ;Bit position PEB4
0008 PEB3. EQU $08 ;Bit position PEB3
0004 PEB2. EQU $04 ;Bit position PEB2
0002 PEB1. EQU $02 ;Bit position PEB1
0001 PEBO. EQU $01 ;Bit position PEBO

OOOF PESCR EQU $OF ;PEPROM status & control reg
0007 PEDATA EQU 7 ;PEPROM data
0005 PEPGM EQU 5 ;PEPROM program control
0000 PEPRZF EQU 0 ;PEPROM row zero flag
0080 PEDATA. EQU $80 ;Bit position PEDATA
0020 PEPGM. EQU $20 ;Bit position PEPGM
0001 PEPRZF. EQU $01 ;Bit position PEPRZF

The Paced Loop '·15

Listing 7·1.
Paced Loop Framework Program (sheet 3 of 6)

0010 PDRA EQU $10 ;Pulldown register for port A
0007 POlA7 EQU 7 ;Pulldown inhibit for PA7
0006 POlA6 EQU 6 ;Pulldo'1n inhibit for PA6
0005 POlA5 EQU 5 ;Pulldown inhibit for PAS
0004 PDIA4 EQU 4 ;Pulldown inhibit for PA4
0003 PDIA3 EQU 3 ;Pulldown inhibit for PA3
0002 PDIA2 EQU 2 ;Pulldown inhibit for PA2
0001 PDIA1 EQU 1 ;Pulldown inhibit for PAl
OOPO PDIAO EQU 0 ;Pulldown inhibit for PAO
00'80 PDIA7. EQU $80 ;Bit position POlA7
0040 PDIA6. EQU $40 ;Bit position POlA6
0020 PDIA5. EQU $20 ;Bit position PDIA5
0010 PDIA4. EQU $10 iBit position POlA4
0008 PDIA3. EQU $08 iBit position PDIA3
0004 PDIA2. EQU $04 iBit position POlA2
0002 POlA1. EQU $02 iBit position PDIA1
0001 PDIAO. EQU $01 iBit position POlAO

0011 PDRB EQU $11 iPulldown register for port B
0007 POlB7 EQU 7 ;Pulldown inhibit for PB7
0006 POlB6 EQU 6 iPulldown inhibit for PB6
0080 POlB7. EQU $80 ;Bit position PDIB7
0040 PDIB6. EQU $40 iBit position PDIB6

0017 MOR EQU $l7 ;Mask option register
0007 SWPDI EQU 7 ;Software pulldown inhibit
0006 PIN3 EQU 6 ;3-pin RC oscillator
0005 RC EQU 5 ;RC oscillator
0004 SWAIT EQU 4 ;STOP coversion to wait
0003 LVRE EQU 3 ;Low voltage reset enable
0002 PIRQ EQU 2 ;Port A IRQ enable
0001 LEVEL EQU 1 iEdge & level/ edge-only
0000 COPEN EQU 0 iCOP watchdog enable
0080 SWPDI. EQU $80 iBit position SWPDI
0040 PIN3. EQU $40 ;Bit position PIN3

'0020 RC. EQU $20 ;Bit position RC
0010 SWAIT. EQU $10 ;Bit position SWAIT
0008 LVRE. EQU $08 ;Bit position LVRE
0004 PIRQ. EQU $04 iBit position PIRQ
0002 LEVEL. EQU $02 ;Bit position LEVEL
0001 COPEN. EQU $01 ;Bit position COPEN

0018 EPROG EQU $18 ;EPROM programming register
0002 ELAT EQU 2 ;EPROM latch control
0001 MPGM EQU 1 ;MOR programming control
0000 EPGM EQU 0 iEPROM program control
0004 ELAT. EQU $04 iBit position ELAT
0002 MPGM. EQU $02 ;Bit position MPGM
0001 EPGM. EQU $01 ;Bit position EPGM

03FO COPR EQU $03FO iCOP watchdog reset register
0000 COPC EQU 0 JCOP watchdog clear
0001 COPC. EQU $01 ;Bit position COPC

'·16 The Paced Loop

-

Listing 7·1.
Paced Loop Framework Program (sheet 4 of 6)

OOEO
0200
03EF
03F8

0007
0080
0000
0001

OOEO

OOEO
00E1

00E2

0200

0200 A6 80
0202 B7 00
0204 B7 04
0206 A6 16
0208 B7 08

020A A6 03
020C B7 EO
020E 3F E1
0210 3F E2

* Memory area equates
RAMStart EQU $OOEO ;Start of on-chip RAM
ROMStart EQU $0200 ;Start of on-chip ROM
ROMEnd EQU $03EF ;End of on-chip ROM
Vectors EQU $03F8 ;Reset/interrupt vector area

* Application specific equates
LED EQU PA7 ;LED ON when PA7 is low (0)
LED. EQU PA7. ;LED bit position
sw EQU PAO ;Switch on PAO, closed=hi (1)
sw. EQU PAO. ;Switch bit position

* Put program variables here (use RMBs)

ORG $OOEO ;Start of 705K1 RAM

RTIFs RMB 1 ; 3 RTIFs/TIC (3-0)
TIC RMB 1 ;10 TICs make 1 TOC (10-0)

;MSB=l means RTIFs rolled over
TOC RMB 1 ;1 TOC=10*96.24ms= about 1 sec

* Program area starts here

ORG $0200 ;Start of 705K1 EPROM

* First initialize any control registers and variables

START LDA #LED. ; Configure and turn off LED
STA PORTA ;Turns off LED
STA DDRA ;Makes LED pin an output
LDA #(RTIFR.+RTIE.+RT1.)
STA TCSR ;To clear and enable RTIF

land set RTI rate for 32.8 ms
LDA #3 ;RTIFs counts 3->0
STA RTIFs ;Reset TOFS count
CLR TIC ;Initial value for TIC
CLR TOC ;Initial value for TOC

The Paced Loop 7·17

7-18

Listing 7-1.
Paced Loop Framework Program (sheet 5 of 6)

0212 OF El FD
0215 B6 El
0217 A4 OF
0219 4C
02lA B7 El
02lC Al OA
02lE 26 02
0220 3F El
0222

0222 CD 02 2A

0225 CD 02 39

0228 20 E8

022A
022A 3D El
022C 26 OA
022E 3C E2
0230 A6 3C
0232 B1 E2
0234 26 02
0236 3F E2
0238 81

* MAIN -
*
*
*
*
*
*
*
*
*
*
*
*

Beginning of main program loop
Loop is executed once every lOOms (98.4ms)
A pass through all major task routines takes
less than lOOmS and then time is wasted until
MSB of TIC set (every 3 RTIFs = 98.4ms.).
At each RTIF interrupt, RTIF cleared & RTIFs
gets decremented (3-0). When RTIFs=O, MSB of
TIC gets set and RTIFs is set back to 3.
(3*32.8/RTIF = 98.4ms).

The variable TIC keeps track of lOOmS periods
When TIC increments from 9 to 10 it is cleared
to 0 and TOC is incremented.

*~***
MAIN BRCLR 7,TIC,MAIN ;Loop here till TIC edge

LDA TIC ;Get current TIC value
AND #$OF ;Clears MSB
INCA ;TIC=TIC+l
STA TIC ;Update TIC
CMP #10 ;lOth TIC?
BNE ARNC1 ;If not, skip next clear
CLR TIC ;Clear TIC on 10th

ARNCI EQU *
* End of synchronization to lOOmS TIC; Run main tasks
* & branch back to MAIN within lOOmS. Sync OK as long
* as no 2 consecutive passes take more than 196.8mS

JSR TIME ; Update TOCs

JSR BLINK ; Blink LED

* Other main tasks would go here

BRA MAIN ;Back to Top for next TIC

** END of Main Loop ***********************************

* TIME - Update TOCs
* If TIC = 0, increment 0->59
* If TIC not = 0, just skip whole routine

TIME EQU * ;Update TOCs

TST TIC ;Check for TIC=zero
BNE XTIME ;If not; just exit
INC TOC ; TOC=TOC+l
LDA #60
CMP TOC ;Did TOC -> 60 ?
BNE XTIME ;If not; just exit
CLR TOC ;TOCs rollover

XTIME RTS ; Return from TIME

The Paced Loop

Listing 7·1.
Paced Loop Framework Program (sheet 6 of 6)

0239
0239 B6 E2
023B 44
023C 25 04
023E 1E 00
0240 20 02
0242 1F 00
0244 81

0245 3A EO
0247 26 06
0249 A6 03
024B B7 EO
0240 1E E1
024F 14 08
0251 80

0251

03F8

03F8 02 45
03FA 02 51
03FC 02 51
03FE 02 00

* BLINK - Update LED
* If TOC is even, light LED
* else turn off LED

BLINK

LEDOFF
XBLINK

EQU
LOA
LSRA
BCS
BSET
BRA
BCLR
RTS

*
TOC

LEDOFF
LED,PORTA
XBLINK
LED,PORTA

;Update LED
;If even, LSB will be zero
;Shift LSB to carry
;If not, turn off LED
;Turn on LED
;Then exit
;Turn off LED
;Return from BLINK

* RTIF interrupt service routine

RTICNT

ENDRTI
AnRTI

UNUSED

DEC
BNE
LOA
STA
BSET
BSET
RTI

EQU

RTIFs iOn each RTIF decrement RTIFs
ENDRTI ;Done if RTIFs not 0
#3 ;RTIFs counts 3->0
RTIFs ;Reset TOFS count
7,TIC ;Set MSB as a flag to MAIN
RTIFR,TCSR ;Clear RTIF flag

AnRTI

;Return from RTIF interrupt

;Use RTI at AnRTI for unused
;interrupts to just return

* Interrupt & reset vectors

TIMVEC
IRQVEC
SWIVEC
RESETV

ORG

FOB
FOB
FDB
FOB

$03F8

RTICNT
UNUSED
UNUSED
START

The Paced Loop

;Start of vector area

;Count RTIFs 3/TIC
;Change if vector used
;Change if vector used
;Beginning of program on reset

7-19

7·20

Chapter 7 Review

Equate (EQU) directives are used to associate a label with a
binary value. The binary value may be an address or a
numeric constant.

There are two different ways to equate a control bit depending
upon how the label will be used. For bit set, clear, and branch
instructions you want the equate to associate the label with a
number between 7 and O. For building logical masks, you
want the label to be equated to a bit mask where the bit that is
set is in the same bit position as the control bit.

Reset and interrupt vectors should be initialized with form
double byte (FDB) directives. Even if an interrupt source is
not going to be used, it is a good idea to initialize the vector in
case an unexpected request is generated.

Space is reserved in RAM for program variables. using
reserve memory byte (RMB) directives.

The paced loop software structure is a good general purpose
programming structure. A loop structure is established with a
pacemaker at the top of the loop. The pacemaker triggers and
causes the other instructions in the loop to be executed at
regular time intervals such as every 100 milliseconds. Tasks
for an application are written as subroutines. A list of jump to
subroutine (JSR) instructions in the main paced loop cause
each task subroutine to be executed exactly once per
pacemaker trigger.

The routines in the main loop should be designed so the
combined execution time of all routines in the loop is less than
the pacemaker trigger period. An individual pass through the
loop can take longer than the pacemaker trigger, provided the
next pass is shorter. Loop synchronization is maintained as
long as no two consecutive passes through the main loop take
longer than twice the pacemaker period.

In the smallest micro controllers the number of RAM locations
available is very small so it is important to be aware of stack
requirements. An interrupt requires 5 bytes of stack RAM and
a subroutine call requires 2 bytes (in an M68HC05).

The Paced Loop

On-Chip Peripheral Systems

To solve real world problems, a micro controller must have more than just a
powerful CPU, a program, and data memory resources. In addition, it must contain
hardware allowing the CPU to access information from the outside world. Once the
CPU gathers information and processes the data, it must also be able to effect
change on some portion of the outside world. These hardware devices, called
peripherals, are the CPU's window to the outside.

On-chip peripherals extend the capability of a microcontroller. An MeU with on­
chip peripherals can do more than one that has only general purpose I/O ports.
Peripherals serve specialized needs and reduce the processing load on the CPU.

On-Chip Peripheral Systems 8-1

The most basic form of peripheral available on
micro controllers is the general purpose I/O port. The
MC68HC705Kl has 10 general purpose I/O pins that are
arranged as a single 8-bit port and a single 2-bit port. Each of
the I/O pins can be used as either an input or an output. The
function of each pin is determined by setting or clearing
corresponding bits in a corresponding data direction register
(DDR) during the initialization stage of a program. Each
output pin may be driven to either a logic one or a logic zero
by using CPU instructions to set or clear the corresponding bit
in the port data register. Also, the logic state of each input pin
may be viewed by the CPU by using program instructions.

On-chip peripherals provide an interface to the outside world
form the CPU. Peripherals augment the CPU's capabilities by
performing tasks that the CPU is not good at. Most
micro controller peripherals perform very specific functions or
tasks. For instance, a peripheral may be capable of performing
frequency and pulse width measurement or it may generate
output wave forms. Because most peripherals do not have any
intelligence of their own, they require some amount of
assistance from the CPU. To prevent peripherals from
requiring constant attention from the CPU, they often perform
their functions in an interrupt driven manner. A peripheral
requests service from the CPU only when it requires an
additional piece of data to perform its job or when a peripheral
has a piece of information that the CPU requires to do its job.

Peripherals can be extremely powerful and can perform
complex functions without any CPU intervention once they
are setup. However, because of the cost sensitivity of most
M68HC05 family members, the peripherals used on
M68HC05 parts require a fair amount of CPU intervention.

Types of Peripherals

8-2

With the exception of general purpose I/O ports, most
peripherals perform very specific tasks. These tasks can be
very diverse and may range from time measurement and
calculation to communication with other micro controllers or
external peripherals. The following paragraphs contain a
general description of some types of peripherals found on
M68HC05 micro controllers.

On-Chip Peripheral Systems

Timers

Though a wide variety of timers exist on the many members
of the M68HC05 family, their basic functions relate to the
measurement or generation of time based events. Timers
usually measure time relative to the internal clock of the
micro controller, although soine may be clocked from an
external source. With the number of parts available in the
M68HC05 family the capabilities of the timers on each part
can vary greatly. The most sophisticated timer module,
present on the MC68HCOSBx family, can simultaneously
generate two PWM outputs, measure the pulse width of two
external signals and generate two additional output pulse
trains. The simplest timer, present on the MC68HC05Jx and
MC68HC05Kx families, only generates two periodic
interrupts; one at a fixed rate and one at a selectable rate.

Much more sophisticated timer modules exist on Motorola's
higher power processors. For instance, the MC68332 and
MC68HC16Yl contain a time processing unit (TPU) that is a
microcode programmable time processor with its own ALU.
The TPU was designed especially for internal combustion
engine control and can run an engine at steady state with no
CPU intervention.

Serial Ports

Some M68HCOS family members contain peripherals that
allow the CPU to communicate bit-serially with external
devices. Using a bit serial format instead of a bit-parallel
format requires fewer I/O pins to perform the communication
function. Two basic types of serial ports exist on M68HC05
family, the serial communications interface (SCI) and the
serial peripheral interface (SPI).

The SCI port is a universal asynchronous receiver transmitter
(UART) that communicates asynchronously with other
devices. This type of serial port requires the simplest hardware
interface. Only two pins are required for bi-directional data
transfers. Data is transmitted out of the MCU on one pin and
data is received by the MCV on the other pin. Each piece of
data transmitted or received by the SCI has a start bit, several
data bits, and a stop bit. The start and stop bits are used to
synchronize the two devices that are communicating. This
type of serial interface is used most often when a

On-Chip Peripheral Systems 8-3

8·4

microcontroller must communicate over fairly long distances.
With RS-232 level translators connected to the transmit and
receive pins, the SCI may be used to communicate with
personal computers or other larger computers.

As the name implies, the SPI port is primarily used to
communicate with inexpensive external peripherals. Because
the SPI communicates synchronously with other devices, bi­
directional data transfers require at least 3 MCV pins. In
addition to one pin each for transmitted and received data, a
third pin provides the synchronization clock for the
communicating devices. This style of serial interface is
usually used to communicate with peripheral devices on the
same board as the MCV. Standard ~PI peripherals are
available from many manufacturers. A-to-D converters,
display drivers, EEPROM, and shift registers are just a few
examples of available SPI peripherals.

Analog to Digital Converters

As mentioned in Chapter 1, many signals that exist in the real
world are not directly compatible with an MCV's I/O pins. In
fact, many signals are continuously varying analog signals
that cannot be directly translated into a logic one or zero that
the microcontroller can use. Some members of the M68HC05
family include an analog to digital (A-to-D) converter that can
be used to convert the voltage level of analog signals into a
binary number that the MCV can use.

Digital to Analog Converters

A digital to analog (D-to-A) converter performs just the
opposite function of an A-to-D converter. It allows the MCV
to convert a digital number into a proportional analog voltage
or current that can be used to control various output devices in
a system. Later in this chapter we will be developing a small
application showing how a D-to-A converter may be
implemented using an on-chip timer and a software program.

EEPROM

Since EEPROM is a type of memory, most would not
consider it a peripheral. The contents of an EEPROM can be
altered as a program is running and it is nonvolatile memory
that is electrically erasable, so it is certainly in a different class

On-Chip Peripheral Systems

than RAM, ROM or EPROM. Several M68HC05 family
members contain EEPROM memory on the same chip as the
MCU. As mentioned previously, EEPROM may even be
~r1.ded to a system as an external SPI peripheral.

Controlling Peripherals

The control and status information for peripherals, appears to
the CPU as data bits in a memory location. Using this type of
arrangement for peripheral control and status registers is
known as memory mapped I/O. There is a great advantage to
having peripherals appear as memory locations. Any CPU
instruction that can operate on a memory location can be used
to control or check the status of a peripheral. This type of I/O
architecture is especially advantageous with the M68HC05
family because of the CPU's bit manipulation instructions.
This group of instructions gives a programmer the ability to
individually set, clear, or test the state of any bit in the
peripheral control registers (at addresses $OOOO-$OOFF).

Depending upon the type and complexity of a peripheral, its
associated control and status registers may occupy one or
several locations in the microcontroller's memory map. For
instance, a general purpose I/O port occupies two memory
locations in a microcontroller's memory map. One byte
location, called the data direction register (DDR), is used to
control the function of each I/O pin. The other byte location,
the port data register is used to read the state of input pins or
assert a logic level on an output pin. A complex peripheral,
such as the timer in the MC68HC705C8, occupies ten byte
locations in that MCU's memory map.

In the next section we will take a detailed look at the timer in
the MC68HC705Kl. While this I5-stage multifunction timer
is very simple compared to many timer systems, it can
perform somewhat sophisticated timing functions. A complete
example will be discussed, showing how this timer system can
be used to generate an accurate low-frequency PWM signal.

On-Chip Peripheral Systems 8-5

The MC68HC705K1 Timer

8-6

Figure 8-1 shows a block diagram of the MC68HC705Kl's
15-stage multifunction timer. The timer consists of three
connected sections that each perform separate timing
functions.

INTERNAL FIXED
PROCESSOR CLOCK -----i~DIVIDE BY 1-----------,

(XTAL+2) 4

LEAST SIGNIFICANT EIGHT BITS OF 15 STAGE RIPPLE COUNTER

MSB LSB

TIMER COUNT REGISTER $0009
~---~TCR

MOST SIGNIFICANT SEVEN BITS OF 15 STAGE RIPPLE COUNTER

SERVICE (CLEAR) --+---+-'-'--f
COP WATCHDOG

Figure 8-1.
15-Stage Multifunction Timer Block Diagram

COP TIMEOUT-
1----- GENERATE

INTERNAL MCU RESET

The timing chain begins with the microcontroller's internal
bus-rate clock, the E-clock. The E-clock is derived by
dividing the crystal frequency by two. The E-clock is used to
drive a fixed divide-by-four prescaler. In tum, the output of
the prescaler clocks an 8-bit ripple counter. The value of this
counter may be read by the CPU anytime at memory location
$09, the timer counter register (TCR). The counter value may
not be altered by the CPU. This may seem like a very simple

On-Chip Peripheral Systems

timer, however, it is very useful in many applications. When
the 8-bit ripple counter overflows from $FF to $00, a timer
overflow flag (TOF) status bit in the timer control and status
register (TCSR) is set to a one. The state of this status flag
may be tested at any time by any of several CPU instructions.
Optionally, if the timer overflow interrupt enable (TOlE) bit
in the timer control and status register is set, the ripple counter
overflow will generate a CPU interrupt. Therefore, the timer
overflow function allows a potential interrupt to be generated.
The timer overflows every 1024 E-clock cycles (+4 prescaler
followed by an 8-bit +256 ripple counter).

Besides providing a potential periodic interrupt, the output of
the 8-bit ripple counter drives the input of an additional 7 -bit
ripple counter. The output from any of the last four bits of this
counter may be used to generate an additional periodic
interrupt. One of four rates may be selected by using a l-of-4
selector controlled by two bits, RTI and RTO, in the timer
control and status register. Table 8-1 shows the four real-time
interrupt rates available when operating the microcontroller at
an E-clock frequency of 2.0 MHz.

Table 8-1.
RTI and COP Timer Rates (E-clock = 2.0 MHz)

RTI RTO RTIRate Minimum COP Reset Period
0 0 8.2ms 57.3 ms
0 1 16.4 ms 114.7 ms
1 0 32.8 ms 229.4ms
1 1 65.5 ms 458.8 ms

The final stage of the multifunction timer system has a 3-bit
counter that forms the computer operating properly (COP)
watchdog system. The COP system is meant to protect against
software failures. When enabled, a COP reset sequence must
be performed before the time-out period expires so that the
COP does not time out and initiate an MCU reset. To prevent
the COP from timing out and generating an MCU reset, bit 0
at memory location $03FO (COPR) must be written to zero
before the COP reset period has expired. Because the input of
the COP watchdog timer is clocked by the output of the real­
time interrupt circuit, changing the R TI rate will affect the
minimum COP reset period. Table 8-1 shows the four COP
reset periods available for corresponding RTI rates.

On-Chip Peripheral Systems 8-7

8-8

A Timer Example

In this section we will develop software that uses both the real
time interrupt and the timer overflow interrupt to produce a
low-frequency pulse width modulated (PWM) signal on a
general purpose I/O pin. PWM signals are useful for a variety
of control functions. They may be used to control the speed of
a motor or can be easily converted to a dc level to drive an
analog output device or to form part of an A-to-D converter.

A PWM signal, as the name implies, has a fixed frequency but
varies the width of the on and off times. Figure 8-2 shows
several PWM signals with different duty cycles. For each
signal, the wave form period Tl is constant but the on time
varies (the period of time shown by T2). Duty cycle is usually
expressed as a percentage (the ratio of T2 to Tl).

~I: -T2=T~1-~I--~~1

I 1 ____ ----II DUTY CYCLE = T2IT1 = 50%

~T1 ~I
I 1 ________ 1 DUTY CYCLE = T2IT1 =20%

t~ -T1-~~1
/'E1OIIE,.-----T2----~~1

I I I DUTY CYCLE = T2IT1 = 80%

Figure 8-2.
PWM Wave Forms With Various Duty Cycles

To generate an accurate PWM signal, two timing references
are required. One timing reference sets the constant frequency
of the PWM signal while the second determines the amount of
time that the PWM output remains high. The basic strategy for
the PWM software we will develop is as follows. A real time
interrupt (RTIF) will be used to generate the PWM period,
and the timer overflow (TOF) will be used to determine the
PWM high time. The rest of this chapter is a detailed
development of this basic idea into a working application.

On-Chip Peripheral Systems

Begin by taking a closer look at the MC68HC705Kl's timer.
Figure 8-3 shows the timer redrawn to emphasize the portion
that we are interested in. Conceptually, the eight counter
stages surrounded by the gray box form the timer that we will
use to generate our PWM signal.

MSB LSB

TIMER COUNT REGISTER

FigureS-3.
Portion of the MC68HC705K1 Timer

Examination of Figure 8-3 shows four counter stages between
the timer overflow interrupt output and the first input to the
RTI rate select multiplexer. This indicates that timer overflow
interrupts will occur at a rate 16 times faster than the fastest
selectable real time interrupt. Using the RTI to generate the
base frequency of a PWM signal and the TOF interrupt to
determine the duty cycle, we would be able to generate a
PWM output with 16 discrete duty cycles (including 100%) as
shown in Figure 8-4. The numbers down the left hand side of
the figure indicate the number of TOF interrupts that will
occur before the PWM output is set low. The numbers down
the right hand side of the figure indicate the duty cycle of the
wave form. The alert reader will note that there is no TOF
interrupt count associated with the 100% duty cycle wave
form. As will be shown later, this is a special case that must
be tested for in the R TI interrupt routine.

On-Chip Peripheral Systems 8-9

8-10

rn=mRTIINTERRUPTSffinl
~ TOFINTERRUPTS ~

t t t t t t tty t y y t t t
1nl IIII 1116.25%

2 n I I I I I I 12.5%

3 I I I I

4 I I I I

5 I I

6

7

8

9

10

11

12

13

14

15

Figure 8-4.
PWM With 16 Discrete Duty Cycle Outputs

I I I

I I I

I I

I I

I I I

I I I

I I I

I I I

I I

I I

I I

W
U

18.75%

25.0%

31.25%

37.5%

43.75%

50.0%

56.25%

62.5%

68.75%

75.00/0

81.25%

87.5%

93.75%

100%

While the software to implement the illustrated PWM output
is very simple, having only 16 choices for pulse width, limits
the usefulness of this PWM to a small number of applications
(where accurate control is not necessary). For example, if a
motor speed control system was built using this PWM, the
target speed could only be controlled to ±6.25% (assuming
that motor speed is directly proportional to the average
applied voltage). For most motor speed control applications, a
12.5% variation in rotation speed would be unacceptable.

Obviously much finer control of the PWM duty cycle is
desired. One approach might be to use a slower RTI rate ..
Using a slower RTI rate would result in a greater number of
TOF interrupts for each RTI. For some applications this may
be an acceptable solution. However, for many applications the
resulting frequency of the PWM wave form would be too low
to be of practical use. Table 8-2 shows, the four available RTI
rates and the corresponding PWM frequency, the number of
TOF interrupts between RTIs, and the minimum variation in
duty cycle that is possible.

On-Chip Peripheral Systems

Table 8·2.
PWM Characteristics for Various RTI Rates

RTIRate PWM Frequency TOF Minimum
Interrupts Duty Cycle

8.2ms 122Hz 16 6.25%
16.4ms 61.0 Hz 32 3.125%
32.8ms 30.5 Hz 64 1.56%
65.5 ms 15.3 Hz 128 0.78%

Table 8-2 seems to suggest that we are stuck trading off PWM
frequency for duty cycle accuracy. However, the following
software program can deliver much better results than
expected.

Reexamining the portion of the timer in Figure 8-3 surrounded
by the gray box shows 8 bits of the 15-bit timer chain. Four of
the bits are accessible to the CPU as the upper four bits of the
TCR. The other four bits form a divide by 16 counter chain
whose value is not directly accessible. However, by counting
the number of TOF interrupts that occur after each RTI, we
can always know the state of these four counter bits. By using
an 8-bit number to represent the PWM duty cycle, we can
achieve a duty cycle accuracy of 1+255 or 0.4%.

To get this level of control with the MC68HC705Kl timer, we
cannot use an 8-bit duty cycle value directly. The 8-bit
number must be separated into two components. One
component will represent the value of the inaccessible 4 bits
of the 'counter' (the number of TOF interrupts that occur after
each RTI). The other component will represent the value of
the upper 4 bits of the TCR (the lower 4 bits of our 'counter'
that are directly accessible to the CPU).

To make these two components easy for the software to use,
the upper 4 bits of the desired PWM duty cycle must be
placed in the lower 4 bits of a variable we will call
PWMCoarse. This value will be used to determine during
which TOF interrupt the PWM output should be set low. The
lower four bits of the desired PWM duty cycle will be placed
in the upper 4 bits of a variable we will call PWMFine. This
value is used within the TOF interrupt to determine precisely
when during the TOF interrupt the PWM output should be set
low. By comparing the value in PWMFine to the upper four

On-Chip Peripheral Systems 8·11

8·12

bits of the TCR we can effectively divide each TOF interrupt
into 16 separate time intervals as shown in Figure 8-5.

FlgureS-5.

RTiINTERRUPTSffim
TOF INTERRUPTS ~

l l l l l l l l t
I I I I I I I I I I

RTI

/ TOF INTERRUPTS

I""""""",(""",,~

Each TOF Interrupt Sliced Into 16 Separate Time Intervals

Now that we have described the theory involved in generating
an accurate PWM wave form using the MC68HC05Kl's
timer, the next step is to write the software. We will begin by
generating flowcharts to describe the actions necessary to
produce the PWM wave form and finish by translating the
flowcharts into M68HC05 assembly language.

The flowcharts in Figures 8-6, 8-7, and 8-8 describe the PWM
software. The flowchart in Figure 8-6, although very simple,
is included for completeness and clarity. Because the
MC68HC05Kl contains only one timer interrupt vector, a
small routine must determine whether a timer interrupt was
caused by a TOF or RTIF interrupt and then branch to the
appropriate service routine.

On-Chip Peripheral Systems

___ L..-_~ YES

YES

Figure 8-6.
Timer Interrupt Service Routine

GO EXECUTE TOF
INTERRUPT ROUTINE

(Figure 8-8)

GO EXECUTE RTIF
INTERRUPT ROUTINE

(Figure 8-7)

As shown in Figure 8-7, the R TIP interrupt routine checks for
two special conditions, 0% and 100% duty cycle. It then sets
up the PWMFine and PWMCoarse variables for use by the
TOF interrupt service routine. If a 0% duty cycle is desired,
the PWM output is set low and the R TIF interrupt service
routine immediately returns. If a 100% duty cycle is desired,
the PWM output is set high and the R TIP interrupt service
routine will immediately return. If a duty cycle between 0%
and 100% is desired, the variable DesiredPWM is split into
the two components, PWMFine and PWMCoarse. If the
resulting value of PWMCoarse is zero the program will jump
to the second part of the TOF interrupt routine, which
continually compares the value in PWMFine to the upper four
bits of the TCR. If the value of PWMCoarse is not zero, TOF
interrupts are enabled and the R TIP interrupt routine returns.

On-Chip Peripheral Systems 8-13

8·14

see Figure 8-8

Figure 8·7_

RETURN FROM
INTERRUPT

Real Time Interrupt Routine Flowchart

~~~ PWM OUTPUT = 0 

The flowchart in Figure 8-8 describes the actions required for 
the TOF interrupt routine. The first action is to decrement the 
value of PWMCoarse. When PWMCoarse becomes zero, it 
means that the value in the upper 4 bits of our 'counter' is 
equal to the upper 4 bits of DesiredPWM. Next, we 
continually compare the upper 4 bits of the TCR with the 
value of PWMFine (which is the lower 4 bits of 
DesiredPWM). When these two values match, the PWM 
output is set low, the TOF interrupt is reset and disabled, and 
the TOF interrupt returns. 

On-Chip Peripheral Systems 



Irom 
FigureS-7 A r----.... ~---_, 

Figure 8-8. 

RETURN FROM 
INTERRUPT 

Timer Overflow Interrupt Flowchart 

RESETTOF 
INTERRUPT FLAG 

Listing 8-1 shows the assembly language listing for the three 
routines described by the flowcharts in Figures 8-6, 8-7, and 
8-8. The translation of the flow charts into assembly language 
is fairly straight forward. The possible exception is the 
assembly code in the RTIF interrupt routine that splits the 
DesiredPWM variable into the PWMCoarse and PWMFine 
components. This routine works by using a combination of 
shift left and rotate left instructions that operate on the A and 
the X registers. The LSLA instruction shifts the most 
significant bit of the A register into the carry and a zero into 
the least significant bit of A. The ROLX instruction places the 
carry (from the previous LSLA instruction) into the least 
significant bit of the X register. After the execution of four of 
these instruction pairs, the four most significant bits of the A 
register (DesiredPWM) will end up in the least significant 4 
bits of the X register (PWMCoarse). The least significant 4 
bits of the A register will end up in the most significant 4 bits 
of the A register (pWMFine). 

On-Chip Peripheral Systems 8-15 



8-16 

Using The PWM Software 

In normal circumstances, the PWM software of Listing 8-1 
would be used as a part of a larger program. The value of 
DesiredPWM would be generated by some other part of the 
main program. To demonstrate the PWM software, the value 
of DesiredPWM was arbitrarily set to $80 (12810) by program 
instructions. If a simulator or emulator is used to study this 
program, you can change the value of DesiredPWM and 
observe the effect. 

The PWM program is interrupt driven. This means that the 
timer generates interrupt requests for the CPU to stop 
processing the main program and respond to the interrupt 
request. Since the demonstration version of this program in 
Listing 8-1 has no other main program to perform, a "branch 
to here" instruction was included after the clear interrupt mask 
(CLI) instruction. This instruction is an infinite loop. Timer 
interrupts will cause the CPU to periodically leave this infinite 
loop to respond to the timer requests, and then return to 
executing the infinite loop. 

On-Chip Peripheral Systems 



Listing 8-1. 
PWM Program Listing (Sheet 1 of 2) 

OOFF 
0007 

OOEO 

OOEO 

00E1 

00E2 

00E3 

0200 

0200 
0200 9C 
0201 3F 00 
0203 A6 FF 
0205 B7 04 

0207 AE EO 
0209 7F 
020A 5C 

020B 26 FC 

020D A6 80 
020F B7 EO 
0211 A6 1C 
0213 B7 08 
0215 9A 
0216 20 FE 

0218 
0218 
021B 
021E 

OE 08 04 
OC 08 12 
80 

;Equates for all 705K1 are included but not shown 
; in this listing 

Percent100 EQU 
PWM EQU 

ORG 

$FF 
PA7 

RAMS tart 

;DesiredPWM value for 100% duty 
;PWM output on port A bit 7 

DesiredPWM RMB 1 ;Desired PWM duty cycle ... 
expressed as the numerator of DesiredPWM/255. 

; 0 = continuous low 255 = continuous high. 

PWMCoarse RMB 1 ;Number of TOF interrupts ... 
; before we start to compare PWMFine to value in the TCR. 

PWMFine RMB 1 ;When TCR matches PWMFine, ... 
; the PWM is set low. 

PWMFine is derived from the lower 4 bits of DesiredPWM. 
These 4 bits are placed in the upper 4 bits of PWMFine. 

VarEnd EQU * 

i***************************************************** *** 

Start 

ClrLoop 

ORG 

EQU 
RSP 
CLR 
LDA 
STA 

LDX 
CLR 
INCX 

BNE 

LDA 
STA 
LDA 
STA 
CLI 
BRA 

ROMS tart 

* 

PORTA 
#$FF 
DDRA 

;Reset the stack pointer 
;Set Port A outputs to all O's 
;Make all Port A's pins outputs 

Clear out all of RAM 
#RAMStart ;Point to the start of RAM 
O,X ;C1ear a byte 

;Point to the next location 
;Cleared the last location? 

ClrLoop ;No, Continue to clear RAM 

#$80 ;Corresponds to 50% (128/255) 
DesiredPWM ;Establish a PWM duty cycle 
#$lC ;Clear timer ints ... 
TCSR ;and enable RTIF interrupt 

;Enable interrupts 

* ;Infinite loop, PWM uses ints 

.******************************************************** , 
;RTI sets 
;or about 
Timerlnt 

period. 
122 Hz 

EQU 
BRSET 
BRSET 
RTI 

@2MHz & RT1:RTO = 0:0, period = 8.192ms 

* 
TOF,TCSR,TOFlnt 
RTIF,TCSR,RTllnt 

On-Chip Peripheral Systems 

;TOF interrupt? 
;RTI interrupt? 

8-17 



8-18 

Listing 8-1. 
PWM Program Listing (Sheet 2 of 2) 

021F 
021F 3A E1 
0221 26 OA 
0223 B6 E2 
0225 B1 09 
0227 22 FC 
0229 1F 00 
022B 1B 08 
022D 16 08 
022F 80 

0230 
0230 14 08 
0232 B6 EO 
0234 27 19 
0236 1E 00 
0238 A1 FF 
023A 27 13 
023C SF 
023D 48 
023E 59 
023F 48 
0240 59 
0241 48 
0242 59 
0243 48 
0244 59 
0245 B7 E2 
0247 BF E1 
0249 27 D8 

024B 16 08 
024D 1A 08 
024F 80 

03F8 

03F8 02 18 
03FA 02 00 
03FC 02 00 
03FE 02 00 

.******************************************************** , 
;TOF interrupt response - Decrement PWMCoarse, when 0 ... 
;Compare PWMFine to TCR. When TCR passes PWMFine clear 
;PWM output pin and disable further TOF. RTI re-enables. 

TOFInt EQU * 
DEC PWMCoarse ;Is PWMCoarse=O? 
BNE ExitTOF ;No. Clear TOF and return 

TOFInt1 LDA PWMFine ;To compare to upper 4 of TCR 
CmpMore CMPA TCR 

BHI CmpMore ;Loop till PWMFine <= TCR 
BCLR PWM,PortA ;Set the PWM output low (OV) 
BCLR TOIE,TCSR ;Disab1e the TOF Interrupt 

ExitTOF BSET TOFR,TCSR ;Reset the TOF Interrupt Flag 
RTI ;Return to the main program 

.******************************************************** , 
;RTIF interrupt response - Set PWM out pin high, and 
;enab1e TOF. Make PWMCoarse & PWMFine from DesiredPWM 

RTIInt EQU * 
BSET RTIFR,TCSR ;Clear the RT Interrupt Flag 
LDA DesiredPWM ;Get desired PWM level. =O? 
BEQ RTIInt2 ;Yes. Leave PWM output low 
BSET PWM,PORTA ;No. Set PWM output high 
CMPA #Percent100 ;Desired PWM level 100%? 
BEQ RTIInt2 ;Yes. Leave PWM output high 
CLRX ;No. Put upper 4 bits of 
LSLA ;DesiredPWM into lower 4 bits 
ROLX ;of A and the lower 4 bits of 
LSLA ;DesiredPWM into the upper 
ROLX ;4 bits of X. 
LSLA 
ROLX 
LSLA 
ROLX 
STA PWMFine ;Save result into PWMFine. 

RTIInt1 STX PWMCoarse ;Save result into PWMCoarse. 
BEQ TOFInt1 ;If PWMCoarse=O, go to 2nd 

;half of the TOF routine 
BSET TOFR,TCSR ;Clear Timer Overflow Flag 
BSET TOIE,TCSR ire-enable the TOF interrupt 

RTIInt2 RTI ;return from RTIF interrupt 

ORG Vectors ; interrupt/reset vectors. 

FDB TimerInt ;timer interrupt routine. 
FDB Start ;IRQ vector (not used) 
FDB Start ;SWI vector (not used) 
FDB Start ;Reset vector. 

On-Chip Peripheral Systems 



Chapter 8 Review 

A peripheral is a specialized piece of computer hardware that 
allows the CPU to gather information about and affect change 
on the system that a micro controller is part of. 

General purpose I/O ports may be programmed to act as either 
inputs or outputs. When a port pin is configured to act as an 
input, the CPU may read the logic level that is present on the 
port pin. When configured as an output, the CPU may set the 
port pin's output level to a logic one or logic zero. 

Although all microcontrollers contain some general purpose 
I/O ports as peripherals, they also contain additional 
peripherals that perform more specific tasks. 

Other Kinds Of Peripherals 

Timers - Timers are peripherals that are used to measure or 
generate time related events in a micro controller system. 
Timers are capable of performing frequency measurements or 
generating variable width pulse trains. Timers can be very 
sophisticated or very simple. 

Serial Ports - Sometimes microcontrollers need to 
communicate with specialized external peripherals or with 
another computer system. The communication is usually 
performed bit-serially (one bit of information at a time). The 
two most common types of serial ports are the Serial 
Communications Interface (SCI) and the Serial Peripheral 
Interface (SPI). The SCI communicates asynchronously with 
other devices and is usually used to exchange data between 
two computer systems. The SPI communicates synchronously 
with other devices and is usually used to control peripheral 
devices that are external to the microcontroller. 

On-Chip Peripheral Systems 8-19 



8-20 

Analog to Digital Converters - Many signals that exist 
outside the microcontroller are continuously varying analog 
signals. An Analog to Digital (A-to-D) converter is a 
peripheral that is used to convert these signals into a binary 
number that the microcontroller can use. 

Digital to Analog Converters - A digital to analog (D-to­
A) converter performs the opposite function of an A-to-D 
converter. It allows the microcontroller to convert a digital 
number into a proportional analog voltage or current that can 
be used to control various output devices· in a microcontroller 
system. 

EEPROM - Although EEPROM is a type of non-volatile 
memory it is considered by many to be a peripheral. 
EEPROM is unique because its contents may be erased and 
rewritten under program control. Some EEPROM devices 
exist as a separate device that may be connected to an SPI 
port. 

On-Chip Peripheral Systems 



M68HC05 Instruction Set Details 

This appendix contains complete detailed information for all M68HC05 
instructions. The instructions are arranged in alphabetical order with the instruction 
mnemonic set in larger type for easy reference. 

M68HC05 Instruction Set Details A-I 



Operators 

The nomenclature listed below is used in the instruction 
description sheets throughout this appendix. 

( ) = Contents of register or memory location shown inside 
parentheses 

~ = Is loaded with (read: "gets") 
i = Is pulled from stack 
..l- = Is pushed onto stack 
• = Boolean AND 
+ = Arithmetic addition (except where used as inclusive-OR in 

Boolean formula) 
Ee = Boolean exclusive-OR 
x = Multiply 

= Concatenate 
= Negate (twos complement) 

CPU Registers 

ACCA = Accumulator 
CCR = Condition Code register 

X = Index register 
PC = Program Counter 

PCH = Program Counter, Higher order (most significant) 8 bits 
PCL = Program Counter, Lower order (least significant) 8 bits 

SP = Stack Pointer 

Memory and Addressing 

M = A memory location or absolute data, depending on 
addressing mode 

ReI = Relative offset (Le., the twos-complement number stored 
in the last byte of machine code corresponding to a branch 
instruction) 

Condition Code Register (CCR) bits 

A-2 

H = Half carry, bit 4 
I 

N 
C 
Z 

= 
= 
= 
= 

Interrupt mask, bit 3 
Negative indicator, bit 2 
Carry/borrow, bit 1 
Zero indicator, bit 0 

M68HC05 Instruction Set Details 



Bit status BEFORE execution 

An = Bitn of ACCA (n = 7, 6, 5, ... 0) 
Xn = BitnofX(n=7,6,5, ... 0) 
Mn = Bit n of M (n = 7, 6, 5, ... 0) 

Bit status AFTER execution 
Rn = bit n of the result (n = 7,6,5, ... 0) 

CCR activity figure notation 

= Bit not affected 
o = Bit forced to zero 
I = Bit forced to one 

A = Bit set or cleared according to results of operation 

Machine coding notation 

dd = Low-order 8 bits of a direct address $0000 - $OOFF (high 

ee 
ff 
11 

hh 
11 
IT 

= 
= 
= 
= 
= 
= 

byte assumed to be $00) 
Upper 8 bits of 16-bit offset 
Lower 8 bits of 16-bit offset or 8-bit offset 
One byte of immediate data 
High-order byte of 16-bit extended address 
Low-order byte of 16-bit extended address 
Relative offset 

Source form notation 

(opr) = Operand (one or two bytes depending on address mode) 
(reI) = Relative offset used in branch and bit manipulation 

instructions 
,X = Indexed addressing mode 

Address modes 
INH = Inherent 

IMM = Immediate 
DIR = Direct 
EXT = Extended 

IX = Indexed - No offset 
IXI = Indexed - 8-bit offset 
IX2 = Indexed - 16-bit offset 

REL = Relative 

M68HC05 Instruction Set Details A-3 



ADC 
Operation: 

Add with Carry 

ACCA t- (ACCA) + (M) + (C) 

ADC 

Description: Adds the contents of the C bit to the sum of the contents of 
ACCA and M and places the result in ACCA. 

Condition Codes and Boolean Formulae: 

H I N Z C 

H: A3.M3 + M3.R3 + R3.A3 
Set if there was a carry from bit 3; cleared otherwise. 

N: R7 
Set if MSB of result is one; cleared otherwise. 

Z: R7.R6.R5.R4.R3.R2.RI.RO 
Set if the result is $00; cleared otherwise. 

C: A7.M7 + M7.R7 + R7.A7 
Set if there was a carry from the MSB of the result; cleared 
otherwise. 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode Operand(s) Cycles 

ADC (opr) IMM A9 ii 2 
ADC (opr) DIR B9 dd 3 
ADC (opr) EXT C9 hh 11 4 
ADC ,X IX F9 3 
ADC (opr),X IXI E9 ff 4 
ADC (opr),X IX2 D9 ee ff 5 

A·4 M68HC05 Instruction Set Details 



ADD 
Operation: 

Description: 

Add without Carry ADD 
ACCA f- (ACCA) + (M) 

Adds the contents of M to the contents of ACCA and places 
the result in ACCA. 

Condition Codes and Boolean Formulae: 

H I N Z C 

H: A3.M3 + M3.R3 + R3.A3 
Set if there was a carry from bit 3; cleared otherwise. 

N: R7 
Set if MSB of result is one; cleared otherwise. 

Z: R7.R6.R5.R4.R3.R2.RI.RO 
Set if the result is $00; cleared otherwise. 

C: A7.M7 + M7.R7 + R7.A7 
Set if there was a carry from the MSB of the result; cleared 
otherwise. 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 

Forms Mode Opcode Operand(s) Cycles 

ADD (opr) IMM AB 11 2 
ADD (opr) DIR BB dd 3 
ADD (opr) EXT CB hh 11 4 
ADD ,X IX FB 3 
ADD (opr),X IXI EB ff 4 
ADD (opr),X IX2 DB ee ff 5 

M68HC05 Instruction Set Details A-S 



AND 
Operation: 

Logical AND 

ACCA f- (ACCA). (M) 

AND 

Description: Performs the logical AND between the contents of ACCA and 
the contents of M and places the result in ACCA. (Each bit of 
ACCA after the operation will be the logical AND of the 
corresponding bits of M and of ACCA before the operation.) 

Condition Codes and Boolean Formulae: 

H I N Z C 

N: R7 
Set if MSB of result is one; cleared otherwise. 

Z: R7.R6.R5.R4.R3.R2.RI.RO 
Set if the result is $00; cleared otherwise. 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode Operand(s) Cycles 

AND (opr) IMM A4 ii 2 
AND (opr) DIR B4 dd 3 
AND (opr) EXT C4 hh 11 4 
AND ,X IX F4 3 
AND (opr),X IXI E4 ff 4 
AND (opr),X IX2 D4 ee ff 5 

A-6 M68HC05 Instruction Set Details 



ASL 

Operation: 

Arithmetic Shift Left 
(Same as LSL) 

0( 

bol~ 0 

ASL 

Description: Shifts all bits of the ACCA, X, or M one place to the left. Bit 
o is loaded with a zero. The C bit in the CCR is loaded from 
the most significant bit of ACCA, X, or M. 

Condition Codes and Boolean Formulae: 

H I N Z C 

N: R7 
Set if MSB of result is one; cleared otherwise. 

Z: R7.R6.R5.R4.R3.R2.Rl.RO 
Set if the result is $00; cleared otherwise. 

C: b7 
Set if, before the shift, the MSB of the shifted value was set; cleared 
otherwise. 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode Operand(s) Cycles 

ASLA INH (A) 48 3 
ASLX INH (X) 58 3 

ASL (opr) DIR 38 dd 5 
ASL ,X IX 78 5 
ASL (opr),X IXI 68 ff 6 

M68HC05 Instruction Set Details A-7 



ASR 

Operation: 

Description: 

Arithmetic Shift Right ASR 

Y17 --
Shifts all bits of ACCA, X, or M one place to the right. Bit 7 
is held constant. Bit 0 is loaded into the C bit of the CCR. 
This operation effectively divides a twos complement value 
by two without changing its sign. The carry bit can be used to 
round the result. 

Condition Codes and Boolean Formulae: 

H I N Z C 

I I I I I I I - I - I A I A A 

N: R7 
Set if MSB of result is one; cleared otherwise. 

Z: R7.R6.R5.R4.R3.R2.RI.RO 
Set if the result is $00; cleared otherwise. 

C: bO 
Set if, before the shift, the LSB of the shifted value was set; cleared 
otherwise. 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode Operand(s) Cycles 

ASRA INH(A) 47 3 
ASRX INH (X) 57 3 

ASR (opr) DIR 37 dd 5 
ASR ,x IX 77 5 
ASR (opr),X IXI 67 ff 6 

A-8 M68HC051nstruction Set Details 



Bee 
Operation: 

Description: 

Branch if Carry Clear 
(Same as BHS) 

PC f- (PC) + $0002 + ReI if (C) = 0 

Bee 

Tests the state of the C bit in the CCR and causes a branch if 
C is clear. See BRA instruction for further details of the 
execution of the branch. 

Condition Codes and Boolean Formulae: 

H I N Z C 

1111111-1-1-1-1-1 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code "CMOS 
Forms Mode Opcode I Operand(s) Cycles 

BCC (reI) REL 24 I IT 3 

The following is a summary of all branch instructions. 

Branch Opposite Branch Type 
Test Boolean Mnemonic Opcode Test Mnemonic Opcode 

r>m C+Z=O BHI 22 r:S;m BLS 23 Unsigned 

r~m C=O BHS 24 r<m BLO 25 Unsigned 
(BCC) (BCS) 

r=m Z=l BEQ 27 r;tom BNE 26 Unsigned 

r:S;m C+Z=I BLS 23 r>m BHI 22 Unsigned 

r<m C=I BLO 25 r~m BHS 24 Unsigned 
(BCS) (BCC) 

Carry C=I BCS 25 No Carry BCC 24 Simple 

r= $00 Z=I BEQ 27 r;to$OO BNE 26 Simple 

Negative N= I BMI 2B Plus BPL 2A Simple 

I Mask I = I BMS 2D I Mask = 0 BMC 2C Simple 

H-Bit H= I BHCS 29 H=O BHCC 28 Simple 

IRQ High - BIH 2F IRQ Low BIL 2E Simple 

Always - BRA 20 Never BRN 21 Uncond. 

r = register (ACCA or X) m = memory operand 

M68HC05 Instruction Set Details A-9 



BCLRn Clear Bit in Memory BCLRn 
Operation: Mn~O 

Description: Clear bit n (n = 7, 6, 5, ... 0) in location M. All other bits in M 
are unaffected. M can be any RAM or I/O register address in 
the $0000 to $OOFF area of memory (i.e., direct addressing 
mode is used to specify the address of the operand). 

Condition Codes and Boolean Formulae: 

H I N Z C 

1111111-1-1-1-1-1 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode Operand(s) Cycles 

BCLR O,(opr) DIRbO 11 dd 5 
BCLR 1,(opr) DIRbl 13 dd 5 
BCLR 2,(opr) DIRb2 15 dd 5 
BCLR 3,(opr) DIRb3 17 dd 5 
BCLR 4,(opr) DIRb4 19 dd 5 
BCLR 5,(opr) DIRb5 1B dd 5 
BCLR 6,(opr) DIRb6 ID dd 5 
BCLR 7,(opr) DIRb7 IF dd 5 

A-tO M68HC05 Instruction Set Details 



Bes 

Operation: 

Description: 

Branch if Carry Set B es 
(Same as BlO) 

PC f- (PC) + $0002 + ReI if (C) = 1 

Tests the state of the C bit in the CCR and causes a branch if 
C is set. See BRA instruction for further details of the 
execution of the branch. 

Condition Codes and Boolean Formulae: 

H I N Z C 

1111111-1-1-1-1-1 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode I Operand(s) Cycles 

BCS (reI) REL 25 I IT 3 

The following is a summary of all branch instructions. 

Branch Opposite Branch Type 
Test Boolean Mnemonic Opcode Test Mnemonic Opcode 

r>m C+Z=O BRI 22 r~m BLS 23 Unsigned 

r~m C=O BHS 24 r<m BLO 25 Unsigned 
(BCC) (BCS) 

r=m Z=l BEQ 27 r;!:m BNE 26 Unsigned 

r~m C+Z=l BLS 23 r>m BRI 22 Unsigned 

r<m C=l BLO 25 r~m BHS 24 Unsigned 
(BCS) (BCC) 

Carry C=l BCS 25 No Carry BCC 24 Simple 

r=$OO Z=l BEQ 27 r;!:$OO BNE 26 Simple 

Negative N=l BMI 2B Plus BPL 2A Simple 

I Mask 1=1 BMS 2D I Mask = 0 BMC 2C Simple 

H-Bit H=l BHCS 29 ' H=O BHCC 28 Simple 

IRQ High - BIR 2F IRQ Low BIL 2E Simple 

Always - BRA 20 Never BRN 21 Uncond. 

r = register (ACCA or X) m = memory operand 

M68HC05 Instruction Set Details A-ll 



BEQ 
Operation: 

Description: 

Branch if Equal B EQ 
PC ~ (PC) + $0002 + ReI if (Z) = 1 

Tests the state of the Z bit in the CCR and causes a branch if Z 
is set. After a CMP or SUB instruction, BEQ will cause a 
branch if the arguments were equal. See BRA instruction for 
further details of the execution of the branch. 

Condition Codes and Boolean Formulae: 

H I N Z C 

11111 1 I - I - I - I - I - I 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode I Operand(s) Cycles 

BEQ (reI) REL 27 I IT 3 

The following is a summary of all branch instructions. 

Branch Opposite Branch Type 
Test Boolean Mnemonic Opcode Test Mnemonic Opcode 

r>m C+Z=O BHI 22 rSm BLS 23 Unsigned 

r;;::m C=O BHS 24 r<m BLO 25 Unsigned 
(BCC) (BCS) 

r=m Z=l BEQ 27 r;tm BNE 26 UnsiBned 

rSm C+Z=l BLS 23 r>m BHI 22 Unsigned 

r<m C=l BLO 25 r;;::m BHS 24 Unsigned 
(BCS) (BCC)-

Carry C= 1 BCS 25 No Carry BCC 24 Simple 

r=$oo Z=l BEQ 27 r;t $00 BNE 26 Simple 

Negative N= 1 BMI 2B Plus BPL 2A Simple 

I Mask 1=1 BMS 2D I Mask = 0 BMC 2C Simple 

H-Bit H= I BHCS 29 H=O BHCC 28 Simple 

IRQ High - BIH 2F IRQ Low BIL 2E Simple 

Always - BRA 20 Never BRN 21 Uncond. 

r = register (ACCA or X) m = memory operand 

A-12 M68HC05 Instruction Set Details 



BHCC 
Operation: 

Description: 

Branch if Half Carry Clear BHCC 
PC ~ (PC) + $0002 + ReI if (H) = 0 

Tests the state of the H bit in the CCR and causes a branch if 
H is clear. This instruction is used in algorithms involving 
BCD numbers. See BRA instruction for further details of the 
execution of the branch. 

Condition Codes and Boolean Formulae: 

H I N Z C 

1 1 1 1 1 1 1 - 1 - 1 - 1 - 1- 1 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode I Operand(s) Cycles 

BHCC (reI) REL 28 I rr 3 

The following is a summary of all branch instructions. 

Branch Opposite Branch Type 
Test Boolean Mnemonic Opcode Test Mnemonic Opcode 

r>m C+Z=O BIll 22 r:5:m BLS 23 Unsigned 
r~m C=O BHS 24 r<m BLO 25 Unsigned 

(BCC) (BCS) 

r=m Z=l BEQ 27 r~m BNE 26 Unsigned 
r:5:m C+Z=1 BLS 23 r>m BIll 22 Unsigned 
r<m C= I BLO 25 r~m BHS 24 Unsigned 

(BCS) (BCC) 
Carry C=l BCS 25 No Carry BCC 24 Simple 

r=$OO Z=l BEQ 27 r~$OO BNE 26 Simple 
Negative N= I BMI 2B Plus BPL 2A Simple 
I Mask 1=1 BMS 2D I Mask = 0 BMC 2C Simple 

H-Bit H=l BHCS 29 H=O BHCC 28 Simple 
IRQ High - BIH 2F IRQ Low BIL 2E Simple 

Always - BRA 20 Never BRN 21 Uncond. 

r = register (ACCA or X) m = memory operand 

M68HC051nstruction Set Details A-13 



BHCS 
Operation: 

Description: 

Branch if Half Carry Set BHCS 
PC f- (PC) + $0002 + ReI if (H) = 1 

Tests the state of the H bit in the CCR and causes a branch if 
H is set. This instruction is used in algorithms involving BCD 
numbers. See BRA instruction for further details of the 
execution of the branch. 

Condition Codes and Boolean Formulae: 

H I N Z C 

1111111-1-1-1-1-1 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode I Operand(s) Cycles 

BHCS (reI) REL 29 I IT 3 

The following is a summary of all branch instructions. 

Branch Opposite Branch Type 

Test Boolean Mnemonic Opcode Test Mnemonic Opcode 

r>m C+Z=O Bill 22 r~m BLS 23 Unsigned 

r~m C=O BHS 24 r<m BLO 25 Unsigned 
(BCC) (BCS) 

r=m Z=l BEQ 27 r;tm BNE 26 Unsigned 

r~m C+Z=l BLS 23 r>m Bill 22 Unsigned 

r<m C=l BLO 25 r~m BHS 24 Unsigned 
(BCS) (BCC) 

Carry C=l BCS 25 No Carry BCC 24 Simple 

r=$OO Z=l BEQ 27 r;t $00 BNE 26 Simple 

Negative N= 1 BMI 2B Plus BPL 2A Simple 

I Mask I = I BMS 2D lMask=O BMC 2C Simple 

H-Bit H=l BHCS 29 H=O BHCC 28 Simple 

IRQ High - BIH 2F IRQ Low BIL 2E Simple 

Always - BRA 20 Never BRN 21 Uncond. 

r = register (ACCA or X) m = memory operand 

A·14 M68HC05 Instruction Set Details 



BHI 
Operation: 

Description: 

Branch if Higher 

PC ~ (PC) + $0002 + ReI 
i.e., if (ACCA) > (M) 

BHI 
if (C) + (Z) = 0 
(unsigned binary numbers) 

Causes a branch if both C and Z are cleared. If the BHI 
instruction is executed immediately after execution of a CMP 
or SUB instruction, the branch will occur if the unsigned 
binary number in ACCA was greater than the unsigned binary 
number in M. See BRA instruction for further details of the 
execution of the branch. 

Condition Codes and Boolean Formulae: 

H I N Z C 

1 1 1 - I - I - I - I - I 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode I Operand(s) Cycles 

BHI (reI) REL 22 I rr 3 

The following is a summary of all branch instructions. 

Branch Opposite Branch Type 

Test Boolean Mnemonic: Opc:ode Test Mnemonic: Opc:ode 

r>m C+Z=O BHI 22 rS; m BLS 23 Unsigned 
r~m C=O BHS 24 r<m BW 25 Unsigned 

(BCC) (BCS) 

r=m Z=1 BEQ 27 r*m BNE 26 Unsigned 
rS;m C+Z=1 BLS 23 r>m BHl 22 Unsigned 

r<m C=1 BW 25 r~m BHS 24 Unsigned 
(BCS) (BCC) 

Carry C=1 BCS 25 No Carry BCC 24 Simple 

r == $00 Z=1 BEQ 27 r*$oo BNE 26 Simple 
Negative N==1 BMI 2B Plus BPL 2A Simple 
I Mask 1==1 BMS 2D I Mask = 0 BMC 2C Simple 
H-Bit H== 1 BHCS 29 H=O BHCC 28 Simple 

IRQ High - BIH 2F IRQ Low BIL 2E Simple 

Always - BRA 20 Never BRN 21 Uncond. 
r = register (ACCA or X) m == memory operand 

M68HC05 Instruction Set Details A·IS 



BHS 

Operation: 

Description: 

Branch if Higher or Same 
(Same as BCC) 

if (C) = 0 

BHS 

PC f- (PC) + $0002 + ReI 
i.e., if (ACCA) ~ (M) (unsigned binary numbers) 

If the BHS instruction is executed immediately after execution 
of a CMP or SUB instruction, the branch will occur if the 
unsigned binary number in ACCA was greater than or equal to 
the unsigned binary number in M. See BRA instruction for 
further details of the execution of the branch. 

Condition Codes and Boolean Formulae: 

H I N Z C 

11111 1 I - I - I - I - I - I 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode I Operand(s) Cycles 

BHS (reI) REL 24 I IT 3 

The following is a summary of all branch instructions. 

Branch Opposite Branch Type 
Test Boolean Mnemonic Opcode Test Mnemonic Opcode 

r>m C+Z=O BHI 22 r$; m BLS 23 Unsigned 

r~m C=O BHS 24 r<m BLO 25 Unsigned 
(BCC) (BCS) 

r=m Z=l BEQ 27 r*m BNE 26 Unsigned 

r$;m C+Z=l BLS 23 r>m BHI 22 Unsigned 

r<m C=l BLO 25 r~m BHS 24 Unsigned 
(BCS) (BCC) 

Carry C=l BCS 25 No Carry BCC 24 Simple 

r=$oo Z=l BEQ 27 r*$oo BNE 26 Simple 

Negative N= 1 BMI 2B Plus BPL 2A Si11lple 

I Mask 1= 1 BMS 2D I Mask = 0 BMC 2C Simple 

H-Bit H= 1 BHCS 29 H=O BHCC 28 Simple 

IRQ High - BIH 2F IRQ Low BIL 2E Simple 

Always - BRA 20 Never BRN 21 Uncond. 

r = register (ACCA or X) m = memory operand 

A.16 M68HC05 Instruction Set Details 



BIH 
Operation: 

Description: 

Branch if Interrupt Pin is High BIH 
PC ~ (PC) + $0002 + ReI if IRQ = 1 

Tests the state of the external interrupt pin and causes a 
branch if the pin is high. See BRA instruction for further 
details of the execution of the branch. 

Condition Codes and Boolean Formulae: 

H I N Z C 

11111 1 I - I - I - I - I - I 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode I Operand(s) Cycles 

BIH (reI) REL 2F I IT 3 

The following is a summary of all branch instructions.-

Branch Opposite Branch Type 

Test Boolean Mnemonic: Opcode Test Mnemonic: Opcode 

r>m C+Z=O BID 22 r~m BLS 23 Unsigned 

r~m C=O BHS 24 r<m BW 25 Unsigned 
(BCC) (BCS) 

r=m Z=l BEQ 27 r;tm BNE 26 Unsigned 

r~m C+Z=1 BLS 23 r>m BID 22 Unsigned 

r<m C=l BW 25 r~m BHS 24 Unsigned 
(BCS) (BCC) 

Carry C=l BCS 25 No Carry BCC 24 Simple 

r=$OO Z=l BEQ 27 r;t $00 BNE 26 Simple 

Negative N= 1 BMI 2B Plus BPL 2A Simple 

I Mask 1=1 BMS 2D I Mask = 0 BMC 2C Sim~le 

H-Bit H=l BHCS 29 H=O BHCC 28 Simple 

IRQ High - BIH 2F IRQ Low BIL 2E Simple 

Always - BRA 20 Never BRN 21 Uncond. 

r = register (ACCA or X) m = memory operand 

M68HC05 Instruction Set Details A·17 



Bil 
Operation: 

Description: 

Branch if Interrupt Pin is Low Bil 
PC ~ (PC) + $0002 + Rei if IRQ = 0 

Tests the state of the external interrupt pin and causes a 
branch if the pin is low. See BRA instruction for further 
details of the execution of the branch. 

Condition Codes and Boolean Formulae: 

H I N Z C 

1111111-1-1-1-1-1 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode I Operand(s) Cycles 

BIL (reI) REL 2E I IT 3 

The following is a summary of all branch instructions. 

Branch Opposite Branch Type 

Test Boolean Mnemonic Opcode Test Mnemonic Opcocle 

r>m C+Z=O BHI 22 r~m BLS 23 Unsigned 

r~m C=O BHS 24 r<m BLO 25 Unsigned 
(BCC) (BCS) 

r=m Z=l BEQ 27 r.e:m BNE 26 Unsigned 

rSm C+Z=l BLS 23 r>m BHI 22 Unsigned 

r<m C=l BW 25 r~m BHS 24 Unsigned 
(BCS) (BCC) 

Carry C=l BCS 25 No Carry BCC 24 Simple 

r=$OO Z=I BEQ 27 f.e:$OO BNE 26 Simple 

Negative N= 1 BMI 2B Plus BPL 2A Simple 

I Mask 1= I BMS 2D I Mask = 0 BMC 2C Simple 

H-Bit H= 1 BHCS 29 H=O BHCC 28 Simple 

IRQ High - BIH 2F IRQ Low BIL 2E Simple 

Always - BRA 20 Never BRN 21 Uncond. 

r = register (ACCA or X) m = memory operand 

A·IS M68HC05lnstruction Set Details 



BIT 
Operation: 

Description: 

Bit Test Memory with Accumulator BIT 
(ACCA). (M) 

Performs the logical AND comparison of the contents of 
ACCA and the contents of M, and modifies the condition 
codes accordingly. Neither the contents of ACCA or Mare 
altered. (Each bit of the result of the AND would be the 
logical AND of the corresponding bits of ACCA and M.) 

Condition Codes and Boolean Formulae: 

H I N Z C 

N: R7 
Set if MSB of result is one; cleared otherwise. 

Z: R7.R6.R5.R4.R3.R2.RI.RO 
Set if the result is $00; cleared otherwise. 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode Operand(s) Cycles 

BIT (opr) IMM A5 ii 2 
BIT (opr) DIR B5 dd 3 
BIT (opr) EXT C5 hh 11 4 
BIT ,X IX F5 3 
BIT (opr),X IXI E5 ff 4 
BIT (opr),X IX2 D5 ee ff 5 

M68HC05 Instruction Set Details A-19 



BlO 

Operation: 

Description: 

Branch if Lower 
(Same as BCS) 

PC ~ (PC) + $0002 + ReI 
Le.; if (ACCA) < (M) 

BlO 

if (C) = 1 
(unsigned binary numbers) 

If the BLO instruction is executed immediately after execution 
of a CMP or SUB instruction, the branch will occur if the 
unsigned binary number in ACCA was less than the unsigned 
binary number in M. See BRA instruction for further details 
of the execution of the branch. 

Condition Codes and Boolean Formulae: 

H I N Z C 

1111111-1-1-1-1-1 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode I Operand(s) Cycles 

BLO (reI) REL 25 l IT 3 

The following is a summary of all branch instructions. 

Branch Opposite Branch Type 
Test Boolean Mnemonic Opcode Test Mnemonic Opcode 

r>m C+Z=O BID 22 r::;;m BLS 23 Unsigned 

r~m C=O BRS 24 r<m BLO 25 Unsigned 
(BCC) (BCS) 

r=m Z=l BEQ 27 r~m BNE 26 Unsigned 

r::;;m C+Z=l BLS 23 r>m BRI 22 Unsigned 

r<m C= 1 BLO 25 r<!:m BRS 24 Unsigned 
(BCS) (BCC) 

Carry C= 1 BCS 25 No Carry BCC 24 Simple 

r=$OO Z=l BEQ 27 r~$OO BNE 26 Siml!le 

Negative N= 1 BMI 2B Plus BPL 2A Simple 

I Mask 1= 1 BMS 2D I Mask = 0 BMC 2C Simple 

R-Bit R= 1 BRCS 29 R=O BRCC 28 Simple 

IRQ High - BIR 2F IRQ Low BIL 2E Simple 

Always - BRA 20 Never BRN 21 Uncond. 

r = register (ACCA or X) m = memory operand 

A-20 M68HC05 Instruction Set Details 



BLS 
Operation: 

Description: 

Branch if Lower or Same BLS 
if [(C) + (Z)] = 1 PC f- (PC) + $0002 + ReI 

Le.; if (ACCA) :5 (M) (unsigned binary numbers) 

Causes a branch if (C is set) or (Z is set). If the BLS 
instruction is executed immediately after execution of a CMP 
or SUB instruction, the branch will occur if the unsigned 
binary number in ACCA was less than or equal to the 
unsigned binary number in M. See BRA instruction for further 
details of the execution of the branch. 

Condition Codes and Boolean Formulae: 

H I N Z C 

1111111-1-1-1-1-1 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode I Operand(s) Cycles 

BLS (reI) REL 23 I rr 3 

The following is a summary of all branch instructions. 

Branch Opposite Branch Type 
Test Boolean Mnemonic Opcode Test Mnemonic Opeode 

r>m C+Z=O BHI 22 r~m BLS 23 Unsigned 

r~m C=O BHS 24 r<m BLO 25 Unsigned 
(BCC) (BCS) 

r=m Z=l BEQ 27 r*m BNE 26 Unsigned 

r~m C+Z=l BLS 23 r>m BHI 22 Unsigned 

r<m C= 1 BLO 25 r~m BHS 24 Unsigned 
(BCS) (BCC) 

Carry C=l BCS 25 No Carry BCC 24 Simple 

r=$OO Z=l BEQ 27 r*$OO BNE 26 Simple 

Negative N= 1 BM! 2B Plus BPL 2A Simple 

1 Mask 1=1 BMS 2D I Mask = 0 BMC 2C Simple 

H-Bit H= 1 BHCS 29 H=O BHCC 28 Simple 

IRQ High - BIR 2F IRQ Low BIL 2E Simple 

Always - BRA 20 Never BRN 21 Uncond. 

r = register (ACCA or X) m = memory operand 

M68HC05 Instruction Set Details A·21 



BMC 
Operation: 

Description: 

Branch if Interrupt Mask is Clear BMC 
PC f- (PC) + $0002 + ReI if 1=0 

Tests the state of the I bit in the CCR and causes a branch if I 
is clear (Le., if interrupts are enabled). See BRA instruction 
for further details of the execution of the branch. 

Condition Codes and Boolean Formulae: 

H I N Z C 

1111111-1-1-1-1-1 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode I Operand(s) Cycles 

BMC (reI) REL 2C I IT 3 

The following is a summary of all branch instructions. 

Branch Opposite Branch Type 

Test Boolean Mnemonic Opcode Test Mnemonic Opcode 

r>m C+Z=O BID 22 rSm BLS 23 Unsigned 

r~m C=O BHS 24 r<m BLO 25 Unsigned 
(BCC) (BCS) 

r=m Z=1 BEQ 27 r¢m BNE 26 Unsigned 

rSm C+Z=1 BLS 23 r>m BID 22 Unsigned 

r<m C=1 BLO 25 r~m BHS 24 Unsigned 
(BCS) (BCC) 

Carry C=l BCS 25 No Carry BCC 24 Simple 

r=$OO Z=1 BEQ 27 r¢$OO BNE 26 Sill!ple 

Negative N= 1 BMI 2B Plus BPL 2A Simple 

I Mask 1=1 BMS 2D I Mask = 0 BMC 2C SimJ'le 

H·Bit H=1 BHCS 29 H=O BHCC 28 Simple 

IRQ High - BIH 2F IRQ Low BIL 2E Simple 

Always - BRA 20 Never BRN 21 Uncond. 

r = register (ACCA or X) m = memory operand 

A·22 M68HC05 Instruction Set Details 



BMI 
Operation: 

Description: 

Branch if Minus BMI 
PC ~ (PC) + $0002 + ReI if(N) = 1 

Tests the state of the N bit in the CCR and causes a branch if 
N is set. See BRA instruction for further details of the 
execution of the branch. 

Condition Codes and Boolean Formulae: 

H I N Z C 
1111111-1-1-1-1-1 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode I Operand(s) Cycles 

BMI (reI) REL 2B I IT 3 

The following is a summary of all branch instructions. 

Branch Opposite Branch Type 

Test Boolean Mnemonic Opcode Test Mnemonic Opcode 

r>m C+Z=O BIll 22 r:S:m BLS 23 Unsigned 

r~m C=O BHS 24 r<m BLO 25 Unsigned 
(BCC) (BCS) 

r=m Z=l BEQ 27 r;tm BNE 26 Unsigned 

r:S:m C+Z=1 BLS 23 r>m BIll 22 Unsigned 

r<m C=l BLO 25 r~m BHS 24 Unsigned 
(BCS) (BCC) 

Carry C=l BCS 25 No Carry BCC 24 Simple 

r= $00 Z=l BEQ 27 r;t $00 BNE 26 Simple 

Negative N=l BMI 2B Plus BPL 2A Simple 

I Mask 1= 1 BMS 2D I Mask = 0 BMC 2C Simple 

H-Bit H=l BHCS 29 H=O BHCC 28 Simple 

IRQ High - BIH 2F IRQ Low BIL 2E Simple 

Always - BRA 20 Never BRN 21 Uncond. 

r = register (ACCA or X) m = memory operand 

M68HC05 Instruction Set Details A-23 



BMS 
Operation: 

Description: 

Branch if Interrupt Mask is Set BMS 
PC t- (PC) + $0002 + ReI if I = 1 

Tests the state of the I bit in the CCR and causes a branch if I 
is set (Le., if interrupts are disabled). See BRA instruction for 
further details of the execution of the branch. 

Conditi()n Codes and Boolean Formulae: 

H I N Z C 

1111111-1-1-1-1-1 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode I Operand(s) Cycles 

BMS (reI) REL 2D I IT 3 

The following is a summary of all branch instructions. 

Branch Opposite Branch Type 
Test Boolean Mnemonic Opcode Test Mnemonic Opcode 

r>m C+Z=O BHI 22 r:!>m BLS 23 Unsigned 

r~m C=O BHS 24 r<m BLO 25 Unsigned 
(BCC) (BCS) 

r=m Z=l BEQ 27 r;1l:m BNE 26 Unsigned 

r:!>m C+Z=l BLS 23 r>m BHI 22 Unsigned 

r<m C= 1 BLO 25 r~m BHS 24 Unsigned 
(BCS) (BCC) 

Carry C= 1 BCS 25 No Carry BCC 24 Simple 

r=$OO Z=I BEQ 27 r;1l:$OO BNE 26 Simple 

Negative N=I BMI 2B Plus BPL 2A Simple 

I Mask I = I BMS 2D lMask=O BMC 2C Simple 

H-Bit H= 1 BHCS 29 H=O BHCC 28 Simple 

IRQ High - BIR 2F IRQ Low BIL 2E Simple 

Always - BRA 20 Never BRN 21 Uncond. 

r = register (ACCA or X) m = memory operand 

A·24 M68HC05 Instruction Set Details 



BNE 
Operation: 

Description: 

Branch if Not Equal BNE 
PC ~ (PC) + $0002 + ReI if (Z) = 0 

Tests the state of the Z bit in the CCR and causes a branch if Z 
is clear. If the BNE instruction is executed immediately after 
execution of a CMP or SUB instruction, the branch will occur 
if the arguments were not equal. See BRA instruction for 
further details of the execution of the branch. 

Condition Codes and Boolean Formulae: 

H I N Z C 

11111 1 I - I - I - I - I - I 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode I Operand(s) Cycles 

BNE (reI) REL 26 I IT 3 

The following is a summary of all branch instructions. 

Branch Opposite Branch Type 
Test Boolean Mnemonic Opcode Test Mnemonic Opcode 

r>m C+Z=O BHI 22 r::;;m BLS 23 Unsigned 

r~m C=O BHS 24 r<m BLO 25 Unsigned 
(BCC) (BCS) 

r=m Z=l BEQ 27 r*m BNE 26 Unsigned 
r::;;m C+Z=l BLS 23 r>m BHI 22 Unsigned 

r<m C= 1 BLO 25 r~m BHS 24 Unsigned 
(BCS) (BCC) 

Carry C= 1 BCS 25 No Carry BCC 24 Simple 

r= $00 Z=l BEQ 27 r*$OO BNE 26 Simple 

Negative N=1 BMI 2B Plus BPL 2A Simple 

I Mask 1= 1 BMS 2D I Mask = 0 BMC 2C Simple 

H-Bit H= 1 BHCS 29 H=O BHCC 28 Simple 

IRQ High - BIH 2F IRQ Low BIL 2E Simple 

Always - BRA 20 Never BRN 21 Uncond. 

r = register (ACCA or X) m = memory operand 

M68HC05 Instruction Set Details A-25 



BPL 
Operation: 

Description: 

Branch if Plus B P L 
PC f- (PC) + $0002 + ReI if (N) = 0 

Tests the state of the N bit in the CCR and causes a branch if 
N is clear. See BRA instruction for further details of the 
execution of the branch. 

Condition Codes and Boolean Formulae: 

H I N Z C 

1111111-1-1-1-1-1 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode I Operand(s) Cycles 

BPL (reI) REL 2A 1 IT 3 

The following is a summary of all branch instructions. 

Branch Opposite Branch Type 
Test Boolean Mnemonic Opcode Test Mnemonic Opcode 

r>m C+Z=O BIll 22 r~m BLS 23 Unsigned 

r;;:m C=O BHS 24 r<m BLO 25 Unsigned 
(BCC) (BCS) 

r=m Z=l BEQ 27 rotm BNE 26 Unsigned 

r~m C+Z=l BLS 23 r>m BHI 22 Unsigned 

r<m C= 1 BLO 25 r:<?:m BHS 24 Unsigned 
(BCS) (BCC) 

Carry C= 1 BCS 25 No Carry BCC 24 Simple 

r= $00 Z=l BEQ 27 £*$00 BNE 26 Simple 

Negative N= 1 BMI 2B Plus BPL 2A Simple 

1 Mask 1=1 BMS 2D IMask=O BMC 2C Simple 

H-Bit H=l BHCS 29 H=O BHCC 28 Simple 

IRQ High - BIH 2F IRQ Low BIL 2E Simple 

Always - BRA 20 Never BRN 21 Uncond. 

r = register (ACCA or X) m = memory operand 

A·26 M68HC05 Instruction Set Details 



BRA 
Operation: 

Description: 

Branch BRA 
PC ~ (PC) + $0002 + ReI 

Unconditional branch to the address given in the foregoing 
formula, in which "ReI" is the twos-complement relative 
offset in the last byte of machine code for the instruction and 
(PC) is the address of the opcode for the branch instruction. 

A source program specifies the destination of a branch 
instruction by its absolute address, either as a numerical value 
or as a symbol or expression which can be numerically 
evaluated by the assembler. The assembler calculates the 
relative offset (ReI) from this absolute address and the current 
value of the location counter. 

Condition Codes and Boolean Formulae: 

H I N Z C 

1111111-1-1-1-1-1 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode I Operand(s) Cycles 

BRA (reI) REL 20 I rr 3 

The table on the facing page is a summary of all branch 
instructions. 

M68HC05 Instruction Set Details A-27 



BRCLR n 
Operation: 

Description: 

Branch if Bit n is Clear BRCLR n 
PC ~ (PC) + $0003 + ReI if bit n of M = 0 

Tests bit n (n = 7, 6, 5, ... 0) of location M and branches if the 
bit is clear. M can be any RAM or I/O register address in the 
$0000 to $ooFF area of memory (i.e., direct addressing mode 
is used to specify the address of the operand). 

The C bit is set to the state of the tested bit. When used with 
an appropriate rotate instruction, BRCLR n provides an easy 
method for perfonning serial to parallel conversions. 

Condition Codes and Boolean 'Formulae: 

H I N Z C 

1111111-1-1-1-111 
C: Set if Mn = 1; cleared otherwise. 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode Operands Cycles 

BRCLR O,(opr),(rel) DIRbO 01 dd IT 5 
BRCLR l,(opr),(rel) DIRbl 03 dd IT 5 
BRCLR 2,(opr),(rel) DIRb2 OS dd IT 5 
BRCLR 3,(opr),(rel) DIRb3 07 dd IT 5 
BRCLR 4,(opr),(rel) DIRb4 09 dd IT 5 
BRCLR 5,(opr),(rel) DIRb5 OB dd IT 5 
BRCLR 6,(opr),(rel) DIRb6 OD dd IT 5 
BRCLR 7,(opr),(rel) DIRb7 OF dd IT 5 

A·28 M68HC05 Instruction Set Details 



BRN Branch Never BRN 
Operation: PC f- (PC) + $0002 

Description: Never branches. In effect, this instruction can be considered as 
a two-byte NOP (no operation) requiring three cycles for 
execution. Its inclusion in the instruction set is to provide a 
complement for the BRA instruction. The BRN instruction is 
useful during program debug to negate the effect of another 
branch instruction without disturbing the offset byte. 

Condition Codes and Boolean Formulae: 

H I N Z C 

1111111-1-1-1-1-1 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code DCMOS 
Forms Mode Opcode I Operand(s) Cycles 

BRN (reI) REL 21 I IT 3 

The following is a summary of all branch instructions. 

Branch Opposite Branch Type 
Test Boolean Mnemonic Opcode Test Mnemonic Opcode 

r>m C+Z=O BHI 22 r~m BLS 23 Unsigned 
r~m C=O BHS 24 r<m BLO 25 Unsigned 

(BCC) (BCS) 

r=m Z=1 BEQ 27 r;tm BNE 26 Unsigned 
r~m C+Z=1 BLS 23 r>m BHI 22 Unsigned 
r<m C=l BLO 25 r~m BHS 24 Unsigned 

(BCS) (BCC) 

Carry C=l BCS 25 No Carry BCC 24 Simple 

r=$oo Z=l BEQ 27 r;t$oo BNE 26 Simj)le 

Negative N=l BMI 2B Plus BPL 2A Simple 
I Mask 1= 1 BMS 2D I Mask=O BMC 2C Simple 
H-Bit H=l BHCS 29 H=O BHCC 28 Simple 

IRQ High - BIH 2F IRQ Low BIL 2E Simple 

Always - BRA 20 Never BRN 21 Uncond. 
r = register (ACCA or X) m = memory operand 

M68HC05 Instruction Set Details A-29 



BRSET n 
Operation: 

Description: 

Branch if Bit n is Set BRSET n 
PC ~ (PC) + $0003 + ReI if bit n of M = 1 

Tests bit n (n = 7, 6, 5, ... 0) of location M and branches if the 
bit is set. M can be any RAM or I/O register address in the 
$0000 to $OOFF area of memory (i.e., direct addressing mode 
is used to specify the address of the operand). 

The C bit is set to the state of the tested bit. When used with 
an appropriate rotate instruction, BRSET n provides an easy 
method for perfonning serial to parallel conversions. 

Condition Codes and Boolean Formulae: 

H I N Z C 

IIIIIII-I-I-I-It1 
C: Set if Mn = 1; cleared otherwise. 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode Operands Cycles 

BRSET O,(opr),(rel) DIRbO 00 dd IT 5 
BRSET l,(opr),(rel) DIRbl 02 dd IT 5 
BRSET 2,(opr),(rel) DIRb2 04 dd IT 5 
BRSET 3,( opr),(rel) DIRb3 06 dd IT 5 
BRSET 4,(opr),(rel) DIRb4 08 dd IT 5 
BRSET 5,( opr),(rel) DIRb5 OA dd IT 5 
BRSET 6,(opr),(rel) DIRb6 OC dd IT 5 
BRSET 7,(opr),(rel) DIRb7 OE dd IT 5 

A·30 M68HC05 Instruction Set Details 



BSETn Set Bit in Memory BSETn 
Operation: Mnf-l 

Description: Set bit n (n = 7, 6, 5, ... 0) in location M. All other bits in M 
are unaffected. M can be any RAM or I/O register address in 
the $0000 to $OOFF area of memory (i.e., direct addressing 
mode is used to specify the address of the operand). 

Condition Codes and Boolean Formulae: 

H I N Z C 

1111111-1-1-1-1-1 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode Operand(s) Cycles 

BSET O,(opr) DIRbO 10 dd 5 
BSET 1,(opr) DIRbl 12 dd 5 
BSET 2,(opr) DIRb2 14 dd 5 
BSET 3,(opr) DIRb3 16 dd 5 
BSET 4,(opr) DIRb4 18 dd 5 
BSET 5,(opr) DIRb5 lA dd 5 
BSET 6,(opr) DIRb6 lC dd 5 
BSET 7,(opr) DIRb7 IE dd 5 

M68HC05 Instruction Set Details A-31 



BSR 
Operation: 

Description: 

Branch to Subroutine BSR 
PC f- (PC) + $0002 
..!.(PCL); SP f- (SP) - $0001 
..!.(PCH); SP f- (SP) - $0001 
PC f- (PC) + ReI 

Advance PC to return address 
Push low half of return addr 
Push high half of return addr 
Load PC with start address of 
requested subroutine 

The program counter is incremented by 2 from the opcode 
address. (Le., so it points to the opcode of the next instruction 
which will be the return address). The least significant byte of 
the contents of the program counter (low order return address) 
is pushed onto the stack. The stack pointer is then 
decremented (by 1). The most significant byte of the contents 
of the program counter (high order return address) is pushed 
onto the stack. The stack pointer is then decremented (by 1). 
A branch then occurs to the location specified by the branch 
offset. See BRA instruction for further details of the execution 
of the branch. 

Condition Codes and Boolean Formulae: 

H I N Z C 

1111111-1-1-1-1-1 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode I Operand(s) Cycles 

BSR (reI) REL AD I rr 6 

A-32 M68HC05 Instruction Set Details 



CLC Clear Carry Bit CLC 
Operation: Cbit ~ 0 

Description: Clears the C bit in the CCR. CLC may be used to setup the C 
bit prior to a shift or rotate instruction that involves the C bit. 

Condition Codes and Boolean Formulae: 

H I N Z C 

11111 1 - I - I - I - I 0 

C: 0 (cleared) 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode Cycles 
CLC INH 98 2 

M68HC05 Instruction Set Details A-33 



Cli Clear Interrupt Mask Bit Cli 
Operation: I bit t- 0 

Description: Clears the interrupt mask bit in the CCR. When the I bit is 
clear, interrupts are enabled. There is a one E-clock cycle 
delay in the clearing mechanism for the I bit such that if 
interrupts were previously disabled, then the next instruction 
after a CLI will always be executed even if there was an 
interrupt pending prior to execution of the CLI instruction. 

Condition Codes and Boolean Formulae: 

H I N Z C 

111111 -10 -1-1-1 
I: 0 (cleared) 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode Cycles 

CLI INH 9A 2 

A·34 M68HC051nstruction Set Details 



CLR 
Operation: ACCA~$OO 

or: X~ $00 
or: M~ $00 

Clear CLR 

Description: The contents of ACCA, X, or M are replaced with zeros. 

Condition Codes and Boolean Formulae: 

H I N Z C 

[ 1 I 1 I 1 - I - I 0 1 - I 
N: o (cleared) 

Z: 1 (set) 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode Operand(s) Cycles 

CLRA INH (A) 4F 3 
CLRX INH (X) 5F 3 

CLR (opr) DIR 3F dd 5 
CLR ,X IX 7F 5 
CLR (opr),X IXl 6F ff 6 

M68HC05 Instruction Set Details A-35 



CMP Compare Accumulator with Memory CMP 
Operation: (ACCA)-(M) 

Description: Compares the contents of ACCA to the contents of M and sets 
the condition codes, which may then be used for arithmetic 
and logical conditional branching. The contents of both 
ACCA and M are unchanged. 

Condition Codes and Boolean Formulae: 

H I N Z C 

I I I I I - I - I A A A 

N: R7 
Set if MSB of result is one; cleared otherwise. 

Z: R7.R6.R5.R4.R3.R2.RI.RO 
Set if the result is $00; cleared otherwise. 

C: A7.M7 + M7.R7 + R7.A7 
Set if the unsigned contents of memory is larger than the unsigned 
value in the accumulator; cleared otherwise. 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode Operand(s) Cycles 

CMP (opr) IMM Al ii 2 
CMP (opr) DIR BI dd 3 
CMP (opr) EXT CI hh 11 4 
CMP ,X IX FI 3 
CMP (opr),X IXI EI ff 4 
CMP (opr),X IX2 DI ee ff 5 

A·36 M68HC05 Instruction Set Details 



COM 
Operation: 

Complement 

ACCA ~_ACCA = $FF - (ACCA) 
or: X ~ X = $FF - (X) 
or: M~ M=$FF-(M) 

COM 

Description: Replace the contents of ACCA, X, or M with the ones 
complement. (Each bit of ACCA, X, or M is replaced with the 
complement of that bit). 

Condition Codes and Boolean Formulae: 

H I N Z C 

N: R7 
Set if MSB of result is one; cleared otherwise. 

Z: R7.R6.R5.R4.R3.R2.RI.RO 
Set if the result is $00; cleared otherwise. 

C: I (set) 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode Operand(s) Cycles 

COMA INH (A) 43 3 
COMX INH (X) 53 3 

COM (opr) DIR 33 dd 5 
COM ,X IX 73 5 
COM (opr),X IXI 63 ff 6 

M68HC05 Instruction Set Details A-37 



CPX 
Operation: 

Description: 

Compare Index Register with Memory CPX 
(X)-(M) 

Compares the contents of X to the contents of M and sets the 
condition codes, which may then be used for arithmetic and 
logical conditional branching. The contents of both X and M 
are unchanged. 

Condition Codes and Boolean Formulae: 

H I N Z C 

I 1 I 1 1 - I - I ~ ~ ~ 

N: R7 
Set if MSB of result is one; cleared otherwise. 

Z: R7.R6.R5.R4.R3.R2.Rl.RO 
Set if the result is $00; cleared otherwise. 

C: X7.M7 + M7.R7 + R7.X7 
Set if the unsigned contents of memory is larger than the unsigned 
value in the accumulator; cleared otherwise. 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 

Forms Mode Opcode Operand(s) Cycles 
CPX (opr) IMM A3 ii 2 
CPX (opr) DIR B3 dd 3 
CPX (opr) EXT C3 hh 11 4 
CPX ,X IX F3 3 
CPX (opr),X IXI E3 ff 4 
CPX (opr),X IX2 D3 ee ff 5 

A-38 M68HC05 Instruction Set Details 



DEC 
Operation: 

Description: 

Decrement 

ACCA f- (ACCA) - $01 
or: X f- (X) - $01 
or: M f- (M) - $01 

DEC 

Subtract one from the contents of ACCA, X, or M. The N and 
Z bits in the CCR are set or cleared according to the results of 
this operation. The C bit in the CCR is not affected, therefore 
the BLS, BLO, BHS, and BHI branch instructions are not 
useful following a DEC instruction. 

Condition Codes and Boolean Formulae: 

H I N Z C 

N: R7 
Set if MSB of result is one; cleared otherwise. 

Z: R7.R6.RS.R4.R3.R2.RI.RO 
Set if the result is $00; cleared otherwise. 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode Operand(s) Cycles 

DECA INH (A) 4A 3 
DECX INH (X) SA 3 

DEC (opr) DIR 3A dd 5 
DEC ,X IX 7A 5 
DEC (opr),X IXI 6A ff 6 

(DEX is recognized by assemblers as being equivalent to DECX) 

M68HC05 Instruction Set Details A-39 



EOR Exclusive-OR Accumulator with Memory EOR 
Operation: ACCA f- (ACCA) Ee (M) 

Description: Perfonns the logical exclusive-OR between the contents of 
ACCA and the contents of M, and places the result in ACCA. 
(Each bit of ACCA after the operation will be the logical 
exclusive-OR of the corresponding bits of M and ACCA 
before the operation.) 

Condition Codes and Boolean Formulae: 

H I N Z C 

I I I I I I I - I - I A I A - I 

N: R7 
Set if MSB of result is one; cleared otherwise. 

Z: R7.R6.R5.R4.R3.R2.Rl,.RO 
Set if the result is $00; cleared otherwise. 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode Operand(s) Cycles 

EaR (opr) IMM A8 ii 2 
EaR (opr) DIR B8 dd 3 
EaR (opr) EXT C8 hh 11 4 
EaR ,x IX F8 3 
EaR (opr),X IXI E8 ff 4 
EaR (opr),X IX2 D8 ee ff 5 

A·40 M68HC05 Instruction Set Details 



INC 
Operation: 

Description: 

Increment 

ACCA ~ (ACCA) + $01 
or: X ~ (X) + $01 
or: M ~ (M) + $01 

INC 

Add one to the contents of ACCA, X, or M. The Nand Z bits 
in the CCR are set or cleared according to the results of this 
operation. The C bit in the CCR is not affected, therefore the 
BLS, BLO, BHS, and BHI branch instructions are not useful 
following an INC instruction. 

Condition Codes and Boolean Formulae: 

H I N Z C 

N: R7 
Set if MSB of result is one; cleared otherwise. 

Z: R7.R6.R5.R4.R3.R2.RI.RO 
Set if the result is $00; cleared otherwise. 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode Operand(s) Cycles 

INCA INH (A) 4C 3 

INCX INH (X) 5C 3 
INC (opr) DIR 3C dd 5 
INC ,X IX 7C 5 

INC (opr),X IXI 6C ff 6 

(INX is recognized by assemblers as being equivalent to INCX) 

M68HC05lnstruction Set Details A-41 



JMP Jump JMP 
Operation: PC ~ Effective Address 

Description: A jump occurs to the instruction stored at the effective 
address. The effective address is obtained according to the 
rules for extended, direct, or indexed addressing. 

Condition Codes and Boolean Formulae: 

H I N Z C 

11111 I I - I - I - I - I - I 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode Operand(s) Cycles 

JMP (opr) DIR BC dd 2 
JMP (opr) EXT CC hh 11 3 
JMP ,X IX FC 2 
JMP (opr),x IXI EC ff 3 
JMP (opr),X !X2 DC ee ff 4 

A-42 M68HC05 Instruction Set Details 



JSR 
Operation: 

Jump to Subroutine JSR 
PC f- (PC) +n 

..l-(PCL); SP f- (SP) - $0001 

..l-(pCH); SP f- (SP) - $0001 
PC f- Effective Address 

n = 1, 2, or 3 depending on 
address mode 
Push low half of return addr 
Push high half of return addr 
Load PC with start address of 
requested subroutine 

Description: The program counter is incremented by n so that it points to 
the opcode of the next instruction that follows the JSR 
instruction (n = 1, 2, or 3 depending on the addressing mode). 
The PC is then pushed onto the stack, eight bits at a time, least 
significant byte first. Unused bits in the program counter high 
byte are stored as Is on the stack. The stack pointer points to 
the next empty location on the stack. A jump occurs to the 
instruction stored at the effective address. The effective 
address is obtained according to the rules for extended, direct, 
or indexed addressing. 

Condition Codes and Boolean Formulae: 

H I N Z C 

1111111-1-1-1-1-1 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode Operand(s) Cycles 

JSR (opr) DIR BD dd 5 
JSR (opr) EXT CD hh 11 6 
JSR ,X IX FD 5 
JSR (opr),X IXl ED ff 6 
JSR (opr),X IX2 DD ee ff 7 

M68HC05 Instruction Set Details A-43 



LOA Load Accumulator from Memory LOA 
Operation: ACCA~(M) 

Description: Loads the contents of the specified memory location into the 
accumulator. The Nand Z condition codes are set or cleared 
according to the loaded data. 

Condition Codes and Boolean Formulae: 

H I N Z C 

N: R7 
Set if MSB of result is one; cleared otherwise. 

Z: R7.R6.RS.R4eR3.R2.RleRO 
Set if the result is $00; cleared otherwise. 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode Operand(s) Cycles 

LOA (opr) IMM A6 ii 2 
LOA (opr) DIR B6 dd 3 
LOA (opr) EXT C6 hh 11 4 
LOA ,X IX F6 3 
LOA (opr),x IXl E6 ff 4 
LOA (opr),x IX2 06 ee ff 5 

A·44 M68HC05 Instruction Set Details 



LOX Load Index Register from Memory LOX 
Operation: X~(M) 

Description: Loads the contents of the specified memory location into the 
index register. The Nand Z condition codes are set or cleared 
according to the loaded data. 

Condition Codes and Boolean Formulae: 

H I N Z C 

I 1 I 1 1 Ll - I 

N: R7 
Set if MSB of result is one; cleared otherwise. 

Z: R7.R6.R5.R4.R3.R2.RleRO 
Set if the result is $00; cleared otherwise. 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 

Forms Mode Opcode Operand(s) Cycles 

LDX (opr) IMM AE 11 2 

LDX (opr) DIR BE dd 3 
LDX (opr) EXT CE hh 11 4 

LDX ,X IX FE 3 
LDX (opr),X IXl EE ff 4 

LDX (opr),X IX2 DE ee ff 5 

M68HC05 Instruction Set Details A-45 



LSL Logical Shift Left LS L 
(Same as ASL) 

• 
Operation: 

Description: Shifts all bits of the ACCA, X, or M one place to the left. Bit 
o is loaded with a zero. The C bit in the CCR is loaded from 
the most significant bit of ACCA, X, or M. 

Condition Codes and Boolean Formulae: 

H I N Z C 

N: R7 
Set if MSB of result is one; cleared otherwise. 

Z: R7.R6.R5.R4.R3.R2.Rl.RO 
Set if the result is $00; cleared otherwise. 

C: b7 
Set if, before the shift, the MSB of the shifted value was set; cleared 
otherwise. 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode Operand(s) Cycles 

LSLA INH (A) 48 3 
LSLX INH (X) 58 3 

LSL (opr) DIR 38 dd 5 
LSL ,X IX 78 5 
LSL (opr),x IXI 68 ff 6 

A·46 M68HC05 Instruction Set Details 



LSR 

Operation: 

Description: 

Logical Shift Right LSR 

o ~ I b7 - - --bol~@] 

Shifts all bits of ACCA, X, or M one place to the right. Bit 7 
is loaded with a zero. Bit 0 is shifted into the C bit. 

Condition Codes and Boolean Formulae: 

H I N Z C 

I 1 I 1 I 1 - I - I 0 ~ ~ 

N: 0 (cleared) 

Z: R7.R6.R5.R4.R3.R2.Rl.RO 
Set if the result is $00; cleared otherwise. 

C: bO 
Set if, before the shift, the LSB of the shifted value was set; cleared 
otherwise. 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode Operand(s) Cycles 

LSRA INH (A) 44 3 
LSRX INH (X) 54 3 

LSR (opr) DIR 34 dd 5 
LSR ,X IX 74 5 

LSR (opr),X IXl 64 ff 6 

M68HCOS Instruction Set Details A·47 



MUL 
Operation: 

Description: 

Multiply Unsigned MUL 
X:ACCA f-- X x ACCA 

Multiplies the eight bit value in the index register by the eight 
bit value in the accumulator to obtain a 16 bit unsigned result 
in the concatenated index register and accumulator. After the 
operation, X contains the upper 8 bits of the l6-bit result and 
ACCA contains the lower 8 bits of the result. 

Condition Codes and Boolean Formulae: 

H: 0 (cleared) 

C: 0 (cleared) 

H I N Z C 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code 
Forms Mode Opcode 
MUL INH 42 

A-48 M68HC05 Instruction Set Details 

HCMOS 
Cycles 

11 



NEG 
Operation: 

Negate (Twos Complement) 

ACCA ~ - (ACCA) = $00 - (ACCA) 
or: X ~ - (X) = $00 - (X) 
or: M ~ - (M) = $00 - (M) 

NEG 

Description: Replaces the contents of ACCA, X, or M with its twos 
complement. Note that the value $80 is left unchanged. 

Condition Codes and Boolean Formulae: 

H I N Z C 

N: R7 
Set if MSB of result is one; cleared otherwise. 

Z: R7.R6.R5.R4.R3.R2.RI.RO 
Set if the result is $00; cleared otherwise. 

C: R7+R6+R5+R4+R3+R2+RI+RO 
Set if there is a borrow in the implied subtraction from zero; cleared 
otherwise. The C bit will be set in all cases except when the 
contents of ACCA, X, or M was $00 prior to the NEG operation. 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode Operand(s) Cycles 

NEGA INH (A) 40 3 
NEGX INH (X) 50 3 

NEG (opr) DIR 30 dd 5 
NEG ,x IX 70 5 
NEG (opr),X IXI 60 ff 6 

M68HC05 Instruction Set Details A-49 



NOP 
Operation: 

Description: 

No Operation NOP 
None 

This is a single byte instruction which does nothing except to 
consume 2 CPU clock cycles while the program counter is 
advanced to the next instruction. No register or memory 
contents are affected by this instruction. 

Condition Codes and Boolean Formulae: 

H I N Z C 

11111 1 I - I - I - I - I - I 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode Cycles 
NOP INH 90 2 

A-50 M68HC05 Instruction Set Details 



ORA Inclusive-OR ORA 
Operation: ACCA f- (ACCA) + (M) 

Description: Perfonns the logical inclusive-OR between the contents of 
ACCA and the contents of M and places the result in ACCA. 
Each bit of ACCA after the operation will be the logical 
inclusive-OR of the corresponding bits of M and ACCA 
before the operation. 

Condition Codes and Boolean Formulae: 

H I N Z C 

N: R7 
Set if MSB of result is one; cleared otherwise. 

Z: R7.R6.R5.R4.R3.R2.RleRO 
Set if the result is $00; cleared otherwise. 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode Operand(s) Cycles 

ORA (opr) IMM AA ii 2 
ORA (opr) DIR BA dd 3 
ORA (opr) EXT CA hh 11 4 
ORA ,X IX FA 3 
ORA (opr),x IXI EA ff 4 
ORA (opr),X IX2 DA ee ff 5 

M68HC05 Instruction Set Details A-51 



ROL Rotate Left thru Carry ROL 

Operation: - - bol~@] 

Description: Shifts all bits of ACCA, X, or M one place to the left. Bit 0 is 
loaded from the C bit. Bit 7 is shifted into the C bit. The rotate 
instructions include the carry bit to allow extension of the shift 
and rotate instl1Ictions to multiple bytes. For example, to shift 
a 24-bit value left one bit, the sequence {ASL LOW, 
ROL MID, ROL HIGH} could be used, where LOW, MID, 
and HIGH refer to the low-order, middle, and high-order bytes 
of the 24-bit value, respectively. 

Condition Codes and Boolean Formulae: 

H I N Z C 

N: R7 
Set if MSB of result is one; cleared otherwise. 

Z: R7.R6.R5.R4.R3.R2.Rl.RO 
Set if the result is $00; cleared otherwise. 

C: b7 
Set if, before the shift, the MSB of the shifted value was set; cleared 
otherwise. 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode Operand(s) Cycles 

ROLA INH (A) 49 3 
ROLX INH (X) 59 3 

ROL (opr) DIR 39 dd 5 
ROL ,X IX 79 5 
ROL (opr),X IXl 69 ff 6 

A-52 M68HC05 Instruction Set Details 



ROR Rotate Right thru Carry ROR 

Operation: 

Description: Shifts all bits of ACCA, X, or M one place to the right. Bit 7 
is loaded from the C bit. Bit 0 is shifted into the C bit. The 
rotate instructions include the carry bit to allow extension of 
the shift and rotate instructions to multiple bytes. For 
example, to shift a 24-bit value left one bit, the sequence 
{LSR HIGH, ROR MID, ROR LOW} could be used, where 
LOW, MID, and HIGH refer to the low-order, middle, and 
high-order bytes of the 24-bit value, respectively. 

Condition Codes and Boolean Formulae: 

H I N Z C 

N: R7 
Set if MSB of result is one; cleared otherwise. 

Z: R7.R6.R5.R4.R3.R2.RI.RO 
Set if the result is $00; cleared otherwise. 

C: bO 
Set if, before the shift, the LSB of the shifted value was set; cleared 
otherwise. 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode Operand(s) Cycles 

RORA INH (A) 46 3 
RORX INH (X) 56 3 

ROR (opr) DIR 36 dd 5 
ROR ,x IX 76 5 
ROR (opr),X IXI 66 ff 6 

M68HC05 Instruction Set Details A-53 



RSP Reset Stack Pointer RSP 
Operation: SP~$OOFF 

Description: Resets the stack pointer to the top of the stack (address 
$OOFF). 

Condition Codes and Boolean Formulae: 

H I N Z C 

1111111-1-1-1-1-1 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode Cycles 

RSP INH 9C 2 

A-54 M68HCOS Instruction Set Details 



RTI 
Operation: 

Description: 

Return from Interrupt 

SP ~ SP + $0001; t CCR 
SP ~ SP + $0001; t ACCA 
SP~SP+$0001; iX 
SP ~ SP + $0001; i PCH 
SP ~ SP + $0001; t PCL 

RTI 
Restore CCR from stack 
Restore ACCA from stack 
Restore X from stack 
Restore PCH from stack 
Restore PCL from stack 

The condition codes, the accumulator, the index register, and 
the program counter are restored to the state previously saved 
on the stack. The I bit will be cleared if the corresponding bit 
stored on the stack is zero (this is the normal case). 

Condition Codes and Boolean Formulae: 

H I N Z C 

Set or cleared according to the byte pulled from the stack into CCR. 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode Cycles 

RTI INH 80 9 

M68HC05 Instruction Set Details A-55 



RTS 
Operation: 

Description: 

Return from Subroutine RTS 
SP t- SP + $0001; i PCH 
SP t- SP + $0001; i PCL 

Restore PCH from stack 
Restore PCL from stack 

The stack pointer is incremented (by 1). The contents of the 
byte of memory that is pointed to by the stack pointer is 
loaded into the high-order byte of the program counter. The 
stack pointer is again incremented (by 1). The contents of the 
byte of memory that is pointed to by the stack pointer is 
loaded into the low-order 8 bits of the program counter. 
Program execution resumes at the address that was just 
restored from the stack. 

Condition Codes and Boolean Formulae: 

H I N Z C 

1111111-1-1-1-1-1 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode Cycles 

RTS INH 81 6 

A-56 M68HC051nstruction Set Details 



SBC 
Operation: 

Description: 

Subtract with Carry SBC 
ACCA f-- (ACCA) - (M) - (C) 

Subtracts the contents of M and the contents of the C bit of the 
CCR from the contents of ACCA and places the result in 
ACCA. 

Condition Codes and Boolean Formulae: 

H I N Z C 

N: R7 
Set if MSB of result is one; cleared otherwise. 

Z: R7.R6.R5.R4.R3.R2.Rl.RO 
Set if the result is $00; cleared otherwise. 

C: A7.M7 + M7.R7 + R7.A7 
Set if the unsigned contents of memory plus the previous carry is 
larger than the unsigned value in the accumulator; cleared 
otherwise. 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode Operand(s) Cycles 

SBC (opr) IMM A2 ii 2 
SBC (opr) DIR B2 dd 3 
SBC (opr) EXT C2 hh 11 4 
SBC ,X IX F2 3 
SBC (opr),X IXl E2 ff 4 
SBC (opr),X IX2 D2 ee ff 5 

M68HC05 Instruction Set Details A-57 



SEC 
Operation: 

Description: 

Set Carry Bit SEC 
C bit f- 1 

Sets the C bit in the CCR. SEC may be used to setup the C bit 
prior to a shift or rotate instruction that involves the C bit. 

Condition Codes and Boolean Formulae: 

H I N Z C 

C: 1 (set) 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode Cycles 

SEC INH 99 2 

A-58 M68HC05 Instruction Set Details 



SEI Set Interrupt Mask Bit SEI 
Operation: I bit ~ 1 

Description: Sets the interrupt mask bit in the CCR. The microprocessor is 
inhibited from responding to interrupts while the I bit is set. 

Condition Codes and Boolean Formulae: 

H I N Z C 

I: 1 (set) 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code DCMOS 
Forms Mode Opcode Cycles 

SEI INH 9B 2 

M68HC05 Instruction Set Details A·59 



STA Store Accumulator in Memory STA 
Operation: M~(ACCA) 

Description: Stores the contents of ACCA in memory. The contents of 
ACCA remain unchanged. The Nand Z condition codes are 
set or cleared according to the value stored. 

Condition Codes and Boolean Formulae: 

H I N Z C 

N: A7 
Set if MSB of result is one; cleared otherwise. 

Z: A7.A6.A5.A4.A3.A2.AI.AO 
Set if ACCA is $00; cleared otherwise. 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode Operand(s) Cycles 

STA (opr) DIR B7 dd 4 
STA (opr) EXT C7 hh 11 5 
STA ,x IX F7 4 
STA (opr),X IXI E7 ff 5 
STA (opr),X IX2 D7 ee ff 6 

A·60 M68HC05 Instruction Set Details 



STOP 
Operation: 

Description: 

Enable IRQ, Stop Oscillator STOP 
I bit f- 0; Stop Oscillator 

Reduces power consumption by eliminating all dynamic 
power dissipation. Timer interrupts are disabled and any 
existing timer interrupt flag is cleared. The external interrupt 
pin is enabled and the I bit in the CCR is cleared to enable the 
external interrupt. Finally the oscillator is inhibited to put the 
MCV into the STOP condition. 

When either the RESET or IRQ pin goes low, the oscillator is 
enabled. A delay of 1920 processor clock cycles is imposed 
allowing the oscillator to stabilize. The reset vector or 
interrupt request vector is fetched, and the associated service 
routine is executed. 

External interrupts are enabled after a STOP command. 

Condition Codes and Boolean Formulae: 

H I N Z C 

11111 1 - I 0 - I - I - I 
I: 0 (cleared) 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode Cycles 
STOP INH 8E 2 

M68HC05 Instruction Set Details A·61 



STX Store Index Register in Memory STX 
Operation: Mf- (X) 

Description: Stores the contents of X in memory. The contents of X remain 
unchanged. The Nand Z condition codes are set or cleared 
according to the value stored. 

Condition Codes and Boolean Formulae: 

H I N Z C 

N: X7 
Set if MSB of result is one; cleared otherwise. 

Z: X7.X6.X5.X4.X3.X2.XI.XO 
Set if X is $00; cleared otherwise. 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code 
Forms Mode Opcode Operand(s) 

STX (opr) DIR BF dd 

STX (opr) EXT CF hh 11 

STX ,X IX FF 
STX (opr),X IXI EF ff 
STX (opr),X IX2 DF ee ff 

A-62 M68HC05 Instruction Set Details 

DCMOS 
Cycles 

4 
5 
4 
5 
6 



SUB 
Operation: 

Description: 

Subtract SUB 
ACCA ~ (ACCA) - (M) 

Subtracts the contents of M from ACCA and places the result 
in ACCA. 

Condition Codes and Boolean Formulae: 

H I N Z C 

N: R7 
Set if MSB of result is one; cleared otherwise. 

Z: R7.R6.RS.R4.R3.R2.RI.RO 
Set if the result is $00; cleared otherwise. 

C: A7.M7 + M7.R7 + R7.A7 
Set if the unsigned contents of memory is larger than the unsigned 
value in the accumulator; cleared otherwise. 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode Operand(s) Cycles 

SUB (opr) IMM AO 11 2 
SUB (opr) DIR BO dd 3 
SUB (opr) EXT CO hh 11 4 
SUB ,X IX FO 3 
SUB (opr),X IXI EO ff 4 
SUB (opr),x IX2 DO ee ff S 

M68HC05lnstruction Set Details A-63 



SWI 
Operation: 

Software Interrupt 

PC (- (PC) + $0001 
,j,(PCL); SP (- (SP) - $0001 
,j,(PCH); SP (- (SP) - $0001 

,j,(X); SP (- (SP) - $0001 
,j,(ACCA); SP (- (SP) - $0001 
,j,(CCR); SP (- (SP) - $0001 
I bit (- 1 
PCH (- ($xxFC) 
PCL (- ($xxFD) 

SWI 
Move PC to return address 
Push low half of return addr 
Push high half of return 
address 
Push index register on stack 
Push ACCA on stack 
Push CCR on stack 
Mask further interrupts 
Vector fetch 
(xx=03, IF, or 3F depending 
on M68HC05 device) 

Description: The program counter is incremented (by 1). The program 
counter, index register, accumulator, and condition code 
register are pushed onto the stack. The stack pointer is 
decremented (by 1) after each byte of data is stored on the 
stack. The interrupt mask bit is then set. The program counter 
is then loaded with the address stored in the SWI vector 
(located at memory locations n-0002 and n-0003, where n is 
the address corresponding to a high state on all implemented 
lines of the address bus). The address of the SWI vector can 
be expressed as $xxFC:$xxFD, where xx is 03, IF, or 3F 
depending on the M68HC05 device being used. This 
instruction is not maskable by the I bit. 

Condition Codes and Boolean Formulae: 

H I N Z C 

I: 1 (set) 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode Cycles 

SWI INH 83 10 

A-64 M68HC05 Instruction Set Details 



TAX Transfer Accumulator to Index Register TAX 
Operation: X~(ACCA) 

Description: Loads the index register with the contents of the accumulator. 
The contents of the accumulator are unchanged. 

Condition Codes and Boolean Formulae: 

H I N Z C 

1111111-1-1-1-1-1 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code DCMOS 
Forms Mode Opcode Cycles 
TAX INH 97 2 

M68HC05 Instruction Set Details A-65 



TST 
Operation: 

Test for Negative or Zero 

(ACCA)-$OO 
or: (X) -$00 
or: (M) -$00 

TST 

Description: Sets the N and Z condition codes according to the contents of 
ACCA, X, or M. The contents of the tested register or 
memory location are not altered. 

Condition Codes and Boolean Formulae: 
H I N Z C 

11111 1 I - I ~ I ~ I ~ - I 
N: M7 

Set if MSB of the tested value is one; cleared othelWise. 

Z: M7.M6.M5.M4.M3.M2.Ml.MO 
Set if ACCA, X, or M contains $00; cleared otherwise. 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 

Forms Mode Opcode Operand(s) Cycles 
TSTA INH (A) 40 3 
TSTX INH (X) 50 3 

TST (opr) DIR 30 dd 4 

TST ,X IX 70 4 

TST (opr),X IXl 6D ff 5 

A·66 M68HC05 Instruction Set Details 



TXA Transfer Index Register to Accumulator TXA 
Operation: ACCA~(X) 

Description: Loads the accumulator with the contents of the index register. 
The contents of the index register are not altered. 

Condition Codes and Boolean Formulae: 

H I N Z C 

11111 1 I - I - I - I - I - I 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode Cycles 
TXA INH 9F 2 

M68HC05 Instruction Set Details A-67 



WAIT 
Operation: 

Description: 

Wait for Interrupt WAIT 
I bit f- 0; Inhibit CPV clocking until interrupted 

Reduces power consumption by eliminating dynamic power 
dissipation in some portions of the MCV. The timer,the timer 
prescaler, and the on-chip peripherals continue to operate 
because they are potential sources of an interrupt. Wait causes 
enabling of interrupts by clearing the I bit in the CCR, and 
stops clocking of processor circuits. 

Interrupts from on-chip peripherals may be enabled or 
disabled by local control bits prior to execution of the WAIT 
instruction. 

When either the RESET or IRQ pin goes low, or when any 
on-chip system requests interrupt service, the processor clocks 
are enabled, and the reset, IRQ, or other interrupt service 
request is processed. 

Condition Codes and Boolean Formulae: 

H I N Z C 

111111 -10 -1-1-1 
I: 0 (cleared) 

Source Forms, Addressing Modes, Machine Code, and Cycles: 

Source Addr Machine Code HCMOS 
Forms Mode Opcode Cycles 
WAIT INH 8F 2 

A-68 M68HC05 Instruction Set Details 



Reference Tables 

This appendix includes the following conversion lookup tables ... 

• Hexadecimal to ASCII 

• Hexadecimal to Decimal 

• Hexadecimal to M68HC05 Instruction Mnemonics 

Reference Tables B-1 



ASCII to Hexadecimal Conversion 

B-2 

The American Standard Code for Infonnation Interchange 
(ASCII) provides a widely accepted standard for encoding 
alphanumeric infonnation as binary numbers. The original 
code was designed as a 7 -bit code with an additional parity 
bit. Since most modem computers work best with 8-bit values, 
the code has been adapted slightly such that it is expressed as 
8-bit values. The low order seven bits are the original ASCII 
code and the eighth bit is zero. 

The first 32 codes contain device control codes such as 
carriage return and the audible bell code. Many of these are 
special codes for old teletype transmissions which have 
similar meanings on a modem tenninal or have slipped into 
disuse. 

Reference Tables 



Table B·1. 
Hexadecimal to ASCII 

Hex I ASCII 
$00 NUL 

$01 SOH 
$02 STX 
$03 ETX 
$04 EOT 
$05 ENQ 
$06 ACK 
$07 BEL 

beep 
$08 BS 

back sp 
$09 HT 

tab 
$OA LF 

linefeed 
SOB VT 
SOC FF 

SOD CR 
return 

$OE SO 

$OF SI 
$10 DLE 
$11 DC1 
$12 DC2 
$13 DC3 
$14 DC4 
$15 NAK 
$16 SYN 
$17 ETB 
$18 CAN 
$19 EM 
$lA SUB 
$~B ESC 
$lC FS 
$ID GS 
$lE RS 
$lF US 

Hex I ASCII 
$20 SP 

space 
$21 ! 
$22 " 
$23 # 
$24 $ 
$25 % 
$26 & 
$27 , 

apost. 
$28 ( 

$29 ) 

$2A * 
$2B + 
$2C , 

comma 
$2D -

dash 
$2E 

period 
$2F / 
$30 0 
$31 1 
$32 2 
$33 3 
$34 4 
$35 5 
$36 6 
$37 7 
$38 8 
$39 9 
$3A 
$3B . , 
$3C < 
$3D = 
$3E > 
$3F ? 

Reference Tables 

Hex I ASCII Hex I ASCII 
$40 @ $60 " 

grave 
$41 A $61 a 
$42 B $62 b 
$43 C $63 c 
$44 D $64 d 
$45 E $65 e 
$46 F $66 f 
$47 G $67 g 

$48 H $68 h 

$49 I $69 i 

$4A J $6A j 

$4B K $6B k 
$4C L $6C 1 

$4D M $6D rn 

$4E N $6E n 

$4F 0 $6F 0 

$50 P $70 p 
$51 Q $71 q 
$52 R $72 r 
$53 S $73 s 
$54 T $74 t 

$55 U $75 u 
$56 V $76 v 
$57 W $77 w 
$58 X $78 x 
$59 Y $79 y 
$5A Z $7A z 
$5B [ $7B { 

$5C \ $7C I 
$5D ] $7D } 
$5E A $7E -
$5F $7F DEL -

under delete 

B-3 



Hexadecimal to Decimal Conversion 

B-4 

To convert a hexadecimal number (up to four hexadecimal 
digits) to decimal, look up the decimal equivalent of each 
hexadecimal digit in table B-2. The decimal equivalent of the 
original hexadecimal number is the sum of the weights found 
in the table for all hexadecimal digits. 

Example: Find the decimal equivalent of $3E7. 

The decimal equivalent of the 3 in the 3rd hex digit is 768. 
The decimal equivalent of the E in the 2nd hex digit is 224. 
The decimal equivalent of the 7 in the 1st hex digit is 7. 

768 
224 

+ ---.1. 
= 999 

Table B-2. 

$3E7 = 99910 

Hexadecimal to Decimal Conversion 

15 Bit 8 7 
15 12 11 8 7 

Bit 
4 3 

0 
0 

4th Hex Digit 3rd HexDigit 2nd Hex Digit 1st Hex Digit 
Hex I Decimal Hex I Decimal Hex I Decimal Hex I Decimal 

0 0 0 0 0 0 0 0 
1 4,096 1 256 1 16 1 1 
2 8,192 2 512 2 32 2 2 
3 12,288 3 768 3 48 3 3 
4 16,384 4 1,024 4 64 4 4 
5 20,480 5 1,280 5 80 5 5 
6 24,576 6 1,536 6 96 6 6 
7 28,672 7 1,792 7 112 7 7 
8 32,768 8 2,048 8 128 8 8 
9 36,864 9 2,304 9 144 9 9 
A 40,960 A 2,560 A 160 A 10 
B 45,056 B 2,816 B 176 B 11 

C 49,152 C 3,072 C 192 C 12 
D 53,248 D 3,328 D 208 D 13 
E 57,344 E 3,484 E 224 E 14 
F 61,440 F 3,840 F 240 F 15 

Reference Tables 



Decimal to Hexadecimal Conversion 

To convert a decimal number (up to 65,53510) to hexadecimal, 
find the largest decimal number in table B-2 that is less than 
or equal to the number you are converting. The corresponding 
hexadecimal digit is the most significant hexadecimal digit of 
the result. Subtract the decimal number found from the 
original decimal number to get the remaining decimal value. 
Repeat the procedure using the remaining decimal value for 
each subsequent hexadecimal digit. 

Example: Find the hexadecimal equivalent of 77710. 

The largest decimal number from table B-2, that is less than or 
equal to 77710, is 76810. This corresponds to a $3 in the third 
hexadecimal digit. 

Subtract this 76810 from 77710 to get the remaining decimal 
value 910. 

Next look in the column for the next lower order hexadecimal 
digit (2nd hex digit in this case). Find the largest decimal 
value that is less than or equal to the remaining decimal value. 
The largest decimal value in this column that is less than or 
equal to 910 is 0 so you would place a zero in the second hex 
digit of your result. 

910 minus 0 is the remaining decimal value 910. 

Next look in the column for the next lower order hexadecimal 
digit (1st hex digit in this case). Find the largest decimal value 
that is less than or equal to the remaining decimal value. The 
largest decimal value in this column that is less than or equal 
to 910 is 9 so you would place a 9 in the first hex digit of your 
result. 

77710 = $309 

Reference Tables B-S 



Hexadecimal Values vs. M68HC05 Instructions 

B·6 

Table B-3 lists all hexadecimal values from $00 to $FF and 
the equivalent M68HC05 instructions with their addressing 
modes. Since there are only 210 M68HC05 instructions, 46 of 
the hexadecimal values do not correspond to a legal 
instruction. 

Table B·3. (1 of 4) 
Hexadecimal to M68HC05 Instruction Mnemonics 

I I Address 
Op Instruc Mode 

I I Address 
Op Instruc . Mode 

$00 BRSETO direct $20 BRA relative 
$01 BRCLRO direct $21 BRN relative 
$02 BRSETl direct $22 BHI relative 
$03 BRCLR1 direct $23 BLS relative 
$04 BRSET2 direct $24 BCC relative 
$05 BRCLR2 direct $25 BCS relative 
$06 BRSET3 direct $26 BNE relative 
$07 BRCLR3 direct $27 BEQ relative 

$08 BRSET4 direct $28 BHCC relative 
$09 BRCLR4 direct $29 BHCS relative 
$OA BRSET5 direct $2A BPL relative 
SOB BRCLR5 direct $2B BMI relative 
SOC BRSET6 direct $2C BMC relative 
SOD BRCLR6 direct $2D BMS relative 
$OE BRSET7 direct $2E BIL relative 
$OF BRCLR7 direct $2F BIH relative 
$10 BSETO direct $30 NEG direct 
$11 BCLRO direct $31 - -
$12 BSET1 direct $32 - -
$13 BCLR1 direct $33 COM direct 
$14 BSETI direct $34 LSR direct 
$15 BCLR2 direct $35 - -
$16 BSET3 direct $36 ROR direct 
$17 BCLR3 direct $37 ASR direct 
$18 BSET4 direct $38 LSL direct 
$19 BCLR4 direct $39 ROL direct 
$IA BSET5 direct $3A DEC direct 
$IB BCLR5 direct $3B - -
$lC BSET6 direct $3C INC direct 
$ID BCLR6 direct $3D TST direct 
$1E BSETI direct $3E - -
$lF BCLR7 direct $3F CLR direct 

Reference Tables 



Table B-3. (2 of 4) 
Hexadecimal to M68HC051nstruction Mnemonics 

I I Address 
Op Instruc Mode 

I I Address 
Op Instruc Mode 

$40 NEGA inherent $60 NEG indexed 1 
$41 - - $61 - -
$42 - - $62 - -
$43 COMA inherent $63 COM indexed 1 
$44 LSRA inherent $64 LSR indexed 1 
$45 - - $65 - -
$46 RORA inherent $66 ROR indexed 1 
$47 ASRA inherent $67 ASR indexed 1 
$48 LSLA inherent $68 LSL indexed 1 
$49 ROLA inherent $69 ROL indexed 1 
$4A DECA inherent $6A DEC indexed 1 
$4B - - $6B - -
$4C INCA inherent $6C INC indexed 1 
$4D TSTA inherent $6D TST indexed 1 
$4E - - $6E - -
$4F CLRA inherent $6F CLR indexed 1 
$50 NEGX inherent $70 NEG indexed 0 
$51 - - $71 - -
$52 - - $72 - -

$53 COMX inherent $73 COM indexed 0 
$54 LSRX inherent $74 LSR indexed 0 
$55 - - $75 - -
$56 RORX inherent $76 ROR indexed 0 
$57 ASRX inherent $77 ASR indexed 0 
$58 LSLX inherent $78 LSL indexed 0 
$59 ROLX inherent $79 ROL indexed 0 
$5A DECX inherent $7A DEC indexed 0 
$5B - - $7B - -

$5C INCX inherent $7C INC indexed 0 
$5D TSTX inherent $7D TST indexed 0 
$5E - - $7E - -
$5F CLRX inherent $7F CLR indexed 0 

Reference Tables B-' 



Table B·3. (3 of 4) 
Hexadecimal to M68HC05 Instruction Mnemonics 

I I Address 
Op Instruc Mode 

I I Address 
Op Instruc Mode 

$80 RTI inherent $AO SUB immediate 
$81 RTS inherent $Al CMP immediate 
$82 - - $A2 SBC immediate 
$83 SWI inherent $A3 CPX immediate 
$84 - - $A4 AND immediate 
$85 - - $A5 BIT immediate 
$86 - - $A6 LDA immediate 
$87 - - $A7 - -
$88 - - $A8 EOR immediate 
$89 - - $A9 ADC immediate 
$8A - - $AA ORA immediate 
$8B - - $AB ADD immediate 
$8C - - $AC - -
$8D - - $AD BSR relative 
$8E STOP inherent $AE LDX immediate 
$8F WAIT inherent $AF - -

$90 - - $BO SUB direct 
$91 - - $Bl CMP direct 
$92 - - $B2 SBC direct 
$93 - - $B3 CPX direct 
$94 - - $B4 AND direct 
$95 - - $B5 BIT direct 
$96 - - $B6 LDA direct 
$97 TAX inherent $B7 STA direct 
$98 CLC inherent $B8 EOR direct 
$99 SEC inherent $B9 ADC direct 
$9A CLI inherent $BA ORA direct 
$9B SEI inherent $BB ADD direct 
$9C RSP inherent $BC JMP direct 
$9D NOP inherent $BD JSR direct 
$9E - - $BE LDX direct 
$9F TXA inherent $BF STX direct 

B-8 Reference Tables 



Table B-3. (4 of 4) 
Hexadecimal to M68HC05 Instruction Mnemonics 

I I Address Op Instruc Mode I I Address Op Instruc Mode 
$CO SUB extended $EO SUB indexed 1 
$Cl CMP extended $El CMP indexed 1 
$C2 SBC extended $E2 SBC indexed 1 
$C3 CPX extended $E3 CPX indexed 1 
$C4 AND extended $E4 AND indexed 1 
$C5 BIT extended $E5 BIT indexed 1 
$C6 LOA extended $E6 LOA indexed 1 
$C7 STA extended $E7 STA indexed 1 
$C8 EOR extended $E8 EOR indexed 1 
$C9 AOC extended $E9 ADC indexed 1 
$CA ORA extended $EA ORA indexed 1 
$CB AOO extended $EB ADO indexed 1 
$CC JMP extended $EC JMP indexed 1 
$CO JSR extended $EO JSR indexed 1 
$CE LOX extended $EE LOX indexed 1 
$CF STX extended $EF STX indexed 1 
$00 SUB indexed 2 $FO SUB indexed 0 
$01 CMP indexed 2 $Fl CMP indexed 0 
$02 SBC indexed 2 $F2 SBC indexed 0 
$03 CPX indexed 2 $F3 CPX indexed 0 
$04 AND indexed 2 $F4 ANO indexed 0 
$05 BIT indexed 2 $F5 BIT indexed 0 
$06 LOA indexed 2 $F6 LOA indexed 0 
$07 STA indexed 2 $F7 STA indexed 0 
$08 EOR indexed 2 $F8 EOR indexed 0 
$09 ADC indexed 2 $F9 AOC indexed 0 
$OA ORA indexed 2 $FA ORA indexed 0 
$OB AOO indexed 2 $FB AOO indexed 0 
$OC JMP indexed 2 $FC JMP indexed 0 
$00 JSR indexed 2 $FD JSR indexed 0 
$OE LOX indexed 2 $FE LOX indexed 0 
$OF STX indexed 2 $FF STX indexed 0 

Reference Tables B·9 





Glossary 

lK - One kilobyte or 102410 bytes. Similar to the use of the prefix in kilogram, 
which means 1000 grams in the decimal numbering system. 1024 is 210. 

8-bit MeV - A microcontroller where data is communicated over a data bus made 
up of 8 separate data conductors. Members of the M68HC05 family of 
microcontrollers are 8-bit MCUs. 

A - Abbreviation for "accumulator" in the M68HC05 MCU. 

accumulator - An 8-bit register in the CPU of the M68HC05. The contents of 
this register may be used as an operand of an arithmetic or logical 
instruction. 

addressing mode - The way that the CPU obtains (addresses) the information 
needed to complete an instruction. The M68HC05 CPU has six addressing 
modes ... 
• Inherent - The CPU needs no additional information from memory, to 

complete the instruction. 
• Immediate - The information needed to complete the instruction is located 

in the next memory location(s) after the opcode. 
• Direct - The low-order byte of the address of the operand is located in the 

next memory location after the opcode, and the high-order byte of the 
operand address is assumed to be $00. 

• Extended - The high-order byte of the address of the operand is located in 
the next memory location after the opcode, and the low-order byte of the 
operand address is located in the next memory location after that. 

• Indexed - The address of the operand depends upon the current value in 
the X index register and a 0-,8-, or 16-bit, instruction-provided value. 

• Relative - Used for branch instructions to specify the destination address 
where processing will continue if the branch condition is true. 

address bus - The set of conductors that are used to select a specific memory 
location so the CPU can write information into the memory location or read 
its contents. If a computer has 10 wires in its address bus it can address 210 
or 102410 memory locations. In most M68HC05 MCUs, the address bus is 
not accessible on external pins. 

ALV - Arithmetic logic unit. This is the portion of the CPU of a computer, where 
mathematical and logical operations take place. Other circuitry decodes each 
instruction and configures the ALU to perform the necessary arithmetic or 
logical operations at each step of an instruction. 

Glossary G-l 



ASCII - American Standard Code for Information Interchange. A widely 
accepted correlation between alphabetic and numeric characters and specific 
7 -bit binary numbers. Refer to Table B-1 in Appendix B. 

analog - A signal that can have voltage level values that are neither the V ss level 
or the V DD level. In order for a computer to use such signals, they must be 
converted into a binary number that corresponds to the voltage level of the 
signal. An analog to digital converter can be used to perform this conversion. 
By contrast, a digital signal has only two possible values, one (=::: V DD) or zero 
(=:::Vss). 

application programs - Software programs that instruct a computer to solve an 
application problem. 

arithmetic logic unit - This is the portion of the CPU of a computer, where 
mathematical and logical operations take place. Other circuitry decodes each 
instruction and configures the ALU to perform the necessary arithmetic or 
logical operations at each step of an instruction. 

assembler - A software program that translates source code mnemonics into 
opcodes that can then be loaded into the memory of a microcontroller. 

assembly language - Instruction mnemonics and assembler directives that are 
meaningful to programmers and can be translated into an object code 
program that a microcontroller understands. The CPU uses opcodes and 
binary numbers to specify the operations that make up a computer program. 
These numbers are not meaningful to people so they use assembly language 
mnemonics to represent instructions. Assembler directives provide 
additional infonnation such as the starting memory location for a program. 
Labels are used to mean an address or binary value. 

base 2 - Binary numbers that use only the two digits, zero and one. Base 2 is the 
numbering system used by computers. 

base 10 - Decimal numbers that use the ten digits, zero through nine. This is the 
customary numbering system used by people. 

base 16 - The hexadecimal numbering system. The sixteen characters (0 through 
9 and the letters A through F), are used to represent hexadecimal values. One 
hexadecimal digit can exactly represent a 4-bit binary value. Hexadecimal is 
used by people to represent binary values because it is easier to use a two 
digit number than the equivalent 8-digit binary number. Refer to Table 2-l. 

BCD - Binary Coded Decimal is a notation that uses binary values to represent 
decimal quantities. Each BCD digit uses 4 binary bits. Six of the possible 16 
binary combinations are considered illegal. 

G-2 Glossary 



binary - The numbering system used by computers because any quantity can be 
represented by a series of ones and zeros. Electrically, these ones and zeros 
are represented by voltage levels of approximately VDD and Vs s 
respectively. 

bit - A single binary digit. A bit can hold a single value of zero or one. 

black box - A hypothetical block of logic or circuitry that performs some input to 
output transformation. A black box is used when the input to output 
relationship is known but the means to achieve this transformation is not 
known or is not important to the discussion. 

branch instructions - Computer instructions that cause the CPU to continue 
processing at a memory location other than the next sequential address. Most 
branch instructions are conditional. That is, the CPU will continue to the 
next sequential address (no branch) if a condition is false, or continue to 
some other address (branch) if the condition is true. 

breakpoint - During debugging of a program, it is useful to run instructions until 
the CPU gets to a specific place in the program, and then enter a debugger 
program. A breakpoint is established at the desired address by temporarily 
substituting a software interrupt (SWI) instruction for the instruction at that 
address. In response to the SWI, control is passed to a debugging program. 

byte - A set of exactly eight binary bits. 

C - Abbreviation for "carry/borrow" in the condition codes register of the 
M68HC05. When adding two unsigned 8-bit numbers, the C bit is set if the 
result is greater than 255 ($FF). 

CCR - Abbreviation for "condition codes register" in the M68HC05. The CCR 
has five bits (H, I, N, Z, and C) that can be used to control conditional 
branch instructions. The values of the bits in the CCR are determined by the 
results of previous operations. For example, after a load accumulator (LDA) 
instruction, Z will be set if the loaded value was $00. 

central processor unit - The part of a computer that controls execution of 
instructions. 

checksum - A value that results from adding a series of binary numbers. When 
exchanging information between computers, a checksum gives an indication 
about the integrity of the data transfer. If values were transferred incorrectly, 
it is very unlikely that the checksum would match the value that was 
expected. 

clock - A square wave signal that is used to sequence events in a computer. 

Glossary G-3 



computer program - A series of instructions that cause a computer to do 
something. 

computer system - A CPU plus other components needed to perform a useful 
function. A minimum computer system includes a CPU, a clock, memory, a 
program, and input/output interfaces. 

condition codes register - The CCR has five bits (H, I, N, Z, and C) that can be 
used to control conditional branch instructions. The values of the bits in the 
CCR are determined by the results of previous operations. For example, after 
a load accumulator (LDA) instruction, Z will be set if the loaded value was 
$00. 

CPU - Central Processor Unit. The part of a computer that controls execution of 
instructions. 

CPU cycles - A CPU clock cycle is one period of the internal bus-rate clock. 
Normally this clock is derived by dividing a crystal oscillator source by two 
or more so the high and low times will be equal. The length of time required 
to execute an instruction is measured in CPU clock cycles. 

CPU registers - Memory locations that are wired directly into the CPU logic 
instead of being part of the addressable memory map. The CPU always has 
direct access to the information in these registers. The CPU registers in an 
M68HC05 are ... 
• A - 8-bit accumulator 
• X - 8-bit index register 
• CCR - condition codes register containing the H, I, N, Z, and C bits 
• SP - stack pointer 
• PC - program counter 

CRT - Cathode Ray Tube. Also used as an informal expression to refer to a 
complete communication terminal that has a keyboard and a video display. 

cycles - See CPU cycles. 

data bus - A set of conductors that are used to convey binary information from a 
CPU to a memory location or from a memory location to a CPU. In the 
M68HC05, the data bus is eight bits. 

decimal - Base ten numbers use the digits, zero through nine. This is the 
numbering system normally used by humans. 

development tools - Software or hardware devices that are used to develop 
computer programs and application hardware. Examples of software 
development tools include text editors, assemblers, debug monitors, and 

G-4 Glossary 



simulators. Examples of hardware development tools include emulators, 
logic analyzers, and prom programmers. An in-circuit simulator combines a 
software simulator with hardware interfaces. 

digital - A binary logic system where signals can have only two states - zero 
(==Vss) or one (==VDD). 

direct address - Any address within the first 256 addresses of memory ($0000 
through $OOFF). The high order byte of these addresses is always $00. 
Special instructions allow these addresses to be accessed using only the low­
order byte of their address. These instructions automatically fill in the 
assumed $00 value for the high-order byte of the address. 

direct addressing mode - Direct addressing mode uses a program-supplied value 
for the low-order byte of the address of an operand. The high-order byte of 
the operand's address is assumed to be $00 so it does not have to be 
explicitly specified. 

direct page - The first 256 bytes of memory ($0000 through $OOFF). 

EEPROM - Electrically Erasable, Programmable Read-Only Memory. A non­
volatile type of memory that can be erased and reprogrammed by program 
instructions. Since no special power supplies or ultra-violet light source is 
needed, the contents of this kind of memory can be changed without 
removing the MCV from the application system. 

effective address - The address where an instruction operand is located. The 
addressing mode of an instruction determines how the CPV calculates the 
effective address of the operand. 

embedded - When an appliance contains a microcontroller, the MCV is said to be 
an "embedded controller". Often, the end user of the appliance is not aware 
(or does not care) that there is a computer inside. 

EPROM - Erasable, Programmable Read-Only Memory. A non-volatile type of 
memory that can be erased by exposure to an ultra-violet light source. MCVs 
that have EPROM are easily recognized because the package has a quartz 
window to allow exposure to the u-v light. If an EPROM MCV is packaged 
in an opaque plastic package, it is called a "one-time-programmable" OTP 
MCV because there is no way to expose the EPROM to a u-v light. 

extended addressing mode - In this addressing mode the high-order byte of the 
address of the operand is located in the next memory location after the 
opcode. The low-order byte of the operand's address is located in the second 
memory location after the opcode. 

Glossary G·5 



fetching a vector - When the CPU is reset or responds to an interrupt, the 
contents of a specific pair of memory locations is loaded into the program 
counter and processing continues from the loaded address. The process of 
reading these two locations is called "fetching the vector". 

flowchart - A symbolic means to show the sequence of steps required to perform 
an operation. A flowchart not only tells what needs to be done, but also the 
order that the steps should be done in. 

H - Abbreviation for "half-carry" in the condition codes register of the 
M68HC05. This bit indicates a carry from the low-order four bits of an 8-bit 
value to the high-order four bits. This status indicator is used during BCD 
calculations. 

hexadecimal- The base 16 numbering system. The sixteen characters (0 through 
9 and the letters A through F), are used to represent hexadecimal values. One 
hexadecimal digit can exactly represent a 4-bit binary value. Hexadecimal is 
used by people to represent binary values because it is easier to use a two 
digit number than the equivalent 8-digit binary number. Refer to Table 2-1. 

high order - The leftmost digit(s) of a number. Five is the high-order digit of the 
number 57. 

I - Abbreviation for "interrupt mask bit" in the condition codes register of the 
M68HC05. 

immediate addressing mode - In immediate addressing mode, the operand is 
located in the next memory location(s) after the opcode. 

inherent addressing mode - In inherent addressing mode, the CPU already 
inherently knows everything it needs to know to complete the instruction. 
The operands (if there are any) are in the CPU registers. 

in-circuit simulator - A simulator with hardware interfaces that allows 
connection into an application circuit. The in-circuit simulator replaces the 
MCU and behaves as a real MCU would. The developer has greater control 
and visibility of internal MCU operations because they are being simulated 
by instructions in the host computer. An in-circuit simulator, like other 
simulators, is not as fast as a real MCU. 

indexed addressing mode - In indexed addressing mode, the current value of the 
index register is added to a 0-,8-, or 16-bit value in the instruction, to get the 
effective address of the operand. There are separate opcodes for 0-, 8-, and 
16-bit variations of indexed mode instructions, so the CPU knows how many 
additional memory locations to read after the opcode. 

G·6 Glossary 



index register - An 8-bit CPU register in the M68HC05 that is used in indexed 
addressing mode. X can also be used as a general purpose 8-bit register (in 
addition to the 8-bit accumulator). 

input-output - Interfaces between a computer system and the external world. A 
CPU reads an input to sense the level of an external signal and writes to an 
output to change the level on an external signal. 

instruction decoder - The portion of a CPU that receives an instruction opcode 
and produces the necessary control signals so that the rest of the CPU will 
perform the desired operations. 

instructions - Instructions are operations that a CPU can perform. Instructions are 
expressed by programmers as assembly language mnemonics. A CPU 
interprets an opcode and its associated operand(s) as and instruction. 

instruction set - The instruction set of a CPU is the set of all operations that the 
CPU knows how to perform. One way to represent an instruction set is with 
a set of shorthand mnemonics such as LDA meaning "load A". Another 
representation of an instruction set is the set of opcodes that are recognized 
by the CPU. 

lID - Input/output interfaces between a computer system and the external world. 
A CPU reads an input to sense the level of an external signal and writes to an 
output to change the level on an external signal. 

kilobyte - One kilobyte is 102410 bytes. Similar to the use of the prefix in 
kilogram, which means 1000 grams in the decimal numbering system. 1024 
is 210. 

least significant bit - The rightmost digit of a binary value. 

listing - A program listing shows the binary numbers that the CPU needs 
alongside the assembly language statements that the programmer wrote. The 
listing is generated by an assembler in the process of translating assembly 
language source statements into the binary information that the CPU needs. 

logic one - A voltage level approximately equal to the VDD power supply. 

logic zero - A voltage level approximately equal to V ss (ground). 

low order - The rightmost digit(s) of a number. Seven is the low-order digit of the 
number 57. 

LSB - Least Significant Bit. The rightmost digit of a binary value. 

Glossary G-7 



machine codes - The binary codes that are processed by the CPU as instructions. 
Machine code includes both opcodes and 'Operand data. 

mainframe computer - A large computer system that is usually confined to a 
special room. Mainframe computers are used for large information 
processing jobs like checking the tax returns for all taxpayers in a region. 

mass storage - A very large capacity storage device such as a magnetic disk. 
Information in a mass storage device takes longer to access than information 
in the memory map of a CPU. 

MeU - Microcontroller Unit. A complete computer system, including a CPU, 
memory, a clock oscillator, and I/O on a single integrated circuit. 

memory location - In the M68HC05, each memory location holds one byte of 
data and has a unique address. To store information into a memory location 
the CPU places the address of the location on the address bus, the data 
information on the data bus, and asserts the write signal. To read information 
from a memory location the CPU places the address of the location on the 
address bus and asserts the read signal. In response to the read signal, the 
selected memory location places its data onto the data bus. 

memory map - A pictorial representation of all memory locations in a computer 
system. A memory map is similar to a city street map in that it shows where 
things are located. 

memory-mapped 110 - In this type of system, I/O and control registers are 
accessed in the same way as RAM or ROM memory locations. Any 
instruction that can be used to access memory can also be used to access I/O 
registers. 

microcontroller - A complete computer system, including a CPU, memory, a 
clock oscillator, and I/O on a single integrated circuit. 

microprocessor - A microprocessor is similar to a micro controller except that one 
or more of the subsystems needed to make a complete computer system is 
not included on the same chip with the CPU. A microprocessor typically 
includes a CPU and a clock oscillator but does not include program memory 
or I/O registers. 

monitor program - A software program that is intended to assist in system 
development. A typical monitor program allows a user the examine and 
change memory or CPU register contents, set breakpoints, and selectively 
execute application programs. 

most significant bit - The leftmost digit of a binary value. 

G-8 Glossary 



mnemonic - Three to five letters that represent a computer operation. For 
example, the mnemonic fonn of the "load accumulator" instruction is LDA. 

MSB - Most Significant Bit. The leftmost digit of a binary value. 

N - Abbreviation for "negative", a bit in the condition codes register of the 
M68HC05. In twos-complement computer notation, positive signed numbers 
have a zero in their MSB and negative numbers have a one in their MSB. 
The N condition code bit reflects the sign of the result of an operation. After 
a load accumulator instruction, the N bit will be set if the MSB of the loaded 
value was a one. 

non-volatile - A type of memory that does not forget its contents when power is 
turned off. ROM, EPROM, and EEPROM are all non-volatile memories. 

object code file - A text file containing numbers that represent the binary opcodes 
and data of a computer program. An object code file can be used to load 
binary infonnation into a computer system. Motorola uses the S-record file 
fonnat for object code files. See Figure 6-5. 

octal - Base 8 numbers that use the characters zero through seven to represent 
sets of three binary bits. Octal is seldom used in modem computer work. 

one - A logic high level (=VDD). 

ones-complement - To get the logical ones-complement of a binary value, invert 
each bit. 

operand - An input value to a logical or mathematical operation. 

opcode - A binary code that instructs the CPU to do a specific operation in a 
specific way. The M68HC05 CPU recognizes 210 unique 8-bit opcodes that 
represent addressing mode variations of 62 basic instructions. 

oscillator - A circuit that produces a constant frequency square-wave that is used 
by the computer as a timing and sequencing reference. A microcontroller 
typically includes all elements of this circuit except the frequency­
detennining component(s) (the crystal or R-C components). 

OTP - See OTPROM. 

OTPROM - A non-volatile type of memory that can be programmed but cannot 
be erased. An OTPROM is an EPROM MCU that is packaged in an opaque 
plastic package, it is called a "one-time-programmable" MCU because there 
is no way to expose the EPROM to a u-v light. 

Glossary G·9 



parity - An extra bit in a binary word that is intended to indicate the validity of 
the remaining bits in the word. In "even" parity, the parity bit is set or 
cleared as needed to make the total number of logic ones in the word 
(including the parity bit) equal to an even number (0, 2, 4, etc.). 

PC - Abbreviation for "program counter", a CPU register in the M68HC05 MeU. 

personal computer - A small computer system that is normally used by a single 
person to process information. 

playing computer - A learning technique in which you pretend to be a CPU that 
is executing the instructions of a program. 

pointer register - An index register is sometimes called a pointer register because 
its contents are used in the calculation of the address of an operand. A 
straightforward example is an indexed-no offset instruction where the X 
register contains the direct address of (points to) the operand. 

program - A set of computer instructions that cause a computer to perform an 
application task. 

program counter - The program counter (PC) is the CPU register that holds the 
address of the next instruction or operand that the CPU will use. 

programming model - The registers of a particular CPU. The programming 
model of the M68HC05 CPU is shown in Figure 5-2. 

PROM - Programmable Read-Only Memory. A non-volatile type of memory that 
can be programmed after it is manufactured. EPROM and EEPROM are two 
types of PROM memory. 

pulled - The act of reading a value from the stack. In the M68HC05, a value is 
pulled by the following sequence of operations. First, the stack pointer 
register is incremented so that it points at the last value that was saved on the 
stack. Next the value, that is at the address contained in the stack pointer 
register, is read into the CPU. 

pushed - The act of storing a value at the address contained in the stack pointer 
register and then decrementing the stack pointer so it points at the next 
available stack location. 

RAM - Random Access Memory. Any RAM location can be read or written by 
the CPU. The contents of a RAM memory location remain valid until the 
CPU writes a different value or until power is turned off. 

read - Transfer the contents of a memory location to the CPU. 

G-IO Glossary 



record - One line of an object code text file. 

registers - Memory locations that are wired directly into the CPU logic instead of 
being part of the addressable memory map. The CPU always has direct 
access to the information in these registers. The CPU registers in an 
M68HC05 are ... 
• A - 8-bit accumulator 
• X - 8-bit index register 
• CCR - condition codes register containing the H, I, N, Z, and C bits 
• SP - stack pointer 
• PC - program counter 

Memory locations that hold status and control information for on-chip 
peripherals are called I/O and control registers. 

relative addressing mode - Relative addressing mode is used to calculate the 
destination address for branch instructions. If the branch condition is true, 
the signed 8-bit value after the opcode is added to the current value of the 
program counter to get the address where the CPU will fetch the next 
instruction. 

relative offset - An 8-bit signed twos-complement value that is added to the 
program counter when a branch condition is true. The relative offset is 
located in the byte after a branch opcode. 

reset - Reset is used to force a computer system to a known starting point and to 
force on-chip peripherals to known starting conditions. 

reset vector - The contents of the last two memory locations in an M68HC05 
MCV are called the reset vector. As the MCV leaves reset, the program 
counter is loaded with the contents of these two locations so the first 
instruction after reset will be fetched from that address. 

ROM - Read-Only Memory. A type of memory that can be read but cannot be 
changed (written). The contents of ROM must be specified before 
manufacturing the MCV. 

S-record - A Motorola standard format used for object code files. See Figure 6-5. 

simulator - A computer program that copies the behavior of a real MCV. 

source code - See source program. 

Glossary G-ll 



source program - A text file containing instruction mnemonics, labels, 
comments, and assembler directives. The source file is processed by an 
assembler to produce a composite listing and an object file representation of 
the program. 

SP - Abbreviation for "stack pointer", a CPU register in the M68HC05 MCU. 

stack - A mechanism for temporarily saving CPU register values during 
interrupts and subroutines. The CPU maintains this structure with the stack 
pointer register which contains the address of the next available storage 
location on the stack. When a subroutine is called, the CPU pushes (stores) 
the low-order and high-order bytes of the return address on the stack before 
starting the subroutine instructions. When the subroutine is done, a return 
from subroutine (RTS) instruction causes the CPU to recover the return 
address from the stack and continue processing where it left off before the 
subroutine. Interrupts work in the same way except all CPU registers are 
saved on the stack instead of just the program counter. 

stack pointer - A CPU register that holds the address of the next available storage 
location on the stack. 

subroutine - A sequence of instructions that need to be used more than once in 
the course of a program. The last instruction in a subroutine is a return from 
subroutine (RTS) instruction. Each place in the main program where the 
subroutine instructions are needed, a jump or branch to subroutine (JSR or 
BSR) instruction is used to call the subroutine. The CPU leaves the flow of 
the main program to execute the instructions in the subroutine. When the 
RTS instruction is executed, the CPU returns to the main program where it 
left off. 

transducer - A device that converts some physical property such as pressure, into 
electrical signals that can be used by a computer. 

twos-complement - A means of performing binary subtraction using addition 
techniques. The most significant bit of a twos complement number indicates 
the sign of the number (1 indicates negative). The twos complement negative 
of a number is obtained by inverting each bit in the number and then adding 
1 to the result. For example, the twos complement negative of 0000 0011 
(310) is 1111 1100 + 0000 0001 = 1111 1101. 

variable - A value that changes during the course of executing a program. 

VDD - The positive power supply to a microcontroller (typically 5 volts dc). 

V ss - The 0 volt dc power supply return for a microcontroller. 

G·12 Glossary 



volatile - A type of memory that forgets its contents when power is turned off. 
RAM is a type of volatile memory. In modem microcontrollers, it takes very 
little power to maintain the contents of a RAM under good conditions. In 
some cases the contents of RAM and registers may appear to be unchanged 
after a short interruption of power. 

word - A group of binary bits. Some larger computers consider a set of 16 bits to 
be a word but this is not a universal standard. 

write - The transfer of a byte of data from the CPU to a memory location. 

X - Abbreviation for "index register", a CPU register in the M68HC05 MCU. 

Z - Abbreviation for "zero", a bit in the condition codes register of the 
M68HC05. A compare instruction subtracts the contents of the tested value 
from a register. If the values were equal, the result of this subtraction would 
be zero so the Z bit would be set. After a load accumulator instruction, the Z 
bit will be set if the loaded value was $00. 

zero - A logic low level (:=V ss). 

zero crossings - When an alternating current signal goes from a positive to a 
negative or from a negative to a positive value, it is called a zero crossing. 
the 60 Hz ac power line crosses zero every 8.33 milliseconds. 

Glossary G-13 







IATX31213-0 Prinled in USA 1216192 BANTA CO. MOTOf26 5,000 MCU YGACAA 



® MOTOROLA 

Literature Distribution Centers : 
USA: Motorola Literature Distribution; P.O. Box 20912 ; Phoenix, Arizona 85036. 
EUROPE: Motorola Ltd .; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes , MK14 5BP, England. 
JAPAN: Nippon Motorola Ltd .; 4-32-1, Nishi-Gotanda, Shinagawa-ku , Tokyo 141 , Japan. 

ASIA PACIFIC: Motorola Semiconductors H.K. Ltd .; Sil icon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, 
Tai Po, N.T. , Hong Kong. 

M68HC05TB/D 

11111111111111111111111111111111111111111111111111111111111111111 


