
 

M68HC05TB/D
Rev. 2.0

 

M68HC05 Family

 

Understanding Small Microcontrollers

 

C 5H
    

  

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.

For More Information On This Product,
  Go to: www.freescale.com

n
c

..
.



    

  

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.

For More Information On This Product,
  Go to: www.freescale.com

n
c

..
.



    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

Acknowledgment
   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  
James M. Sibigtroth, a principal member of the technical staff
at Motorola, is author of this text book. He is based in Austin,
Texas.

The author wishes to acknowledge Gordon Doughman for
contributing the chapter entitled On-Chip Periphera l
Systems . Gordon is a field applications engineer for Motorola
in Dayton, Ohio.

Motorola reserves the right to make changes without further notice to
any products herein to improve reliability, function or design. Motorola
does not assume any liability arising out of the application or use of any
product or circuit described herein; neither does it convey any license
under its patent rights nor the rights of others. Motorola products are not
designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended
to support or sustain life, or for any other application in which the failure
of the Motorola product could create a situation where personal injury or
death may occur. Should Buyer purchase or use Motorola products for
any such unintended or unauthorized application, Buyer shall indemnify
and hold Motorola and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or
indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Motorola
was negligent regarding the design or manufacture of the part.

Motorola and the Motorola logo are registered trademarks of Motorola, Inc.
IBM is a registered trademark of IBM Corporation
Macintosh is a trademark of Apple Computer, Inc.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Acknowledgment 3  
For More Information On This Product,

  Go to: www.freescale.com



Acknowledgment

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

4 Acknowledgment MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

List of Sections
   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  
Table of Contents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

List of Tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

What is a Microcontroller? . . . . . . . . . . . . . . . . . . . . . . . 17

Computer Numbers and Codes  . . . . . . . . . . . . . . . . . . 27

Basic Logic Elements  . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Computer Memory and Parallel I/O . . . . . . . . . . . . . . . 51

Computer Architecture  . . . . . . . . . . . . . . . . . . . . . . . . . 65

M68HC05 Instruction Set  . . . . . . . . . . . . . . . . . . . . . . . . 97

Programming  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

The Paced Loop  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

On-Chip Peripheral Systems  . . . . . . . . . . . . . . . . . . . . 179

Instruction Set Details . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Reference Tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA List of Sections 5  
For More Information On This Product,

  Go to: www.freescale.com



List of Sections

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

6 List of Sections MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

Table of Contents
   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  
What is a Microcontroller?
Contents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

Overall View of a Computer System . . . . . . . . . . . . . . . . . . . . . . . . . .18

Computer System Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

Computer System Outputs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

Central Processor Unit (CPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

Computer Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

Computer Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

The Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

Review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
The Parts of Any Computer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Kinds of Computers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

Computer Numbers and Codes
Contents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

Binary and Hexadecimal Numbers  . . . . . . . . . . . . . . . . . . . . . . . . . . .28

ASCII Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

Computer Operation Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

Instruction Mnemonics and Assemblers . . . . . . . . . . . . . . . . . . . . . . .32

Octal  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32

Binary Coded Decimal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34

Review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Table of Contents 7  
For More Information On This Product,

  Go to: www.freescale.com



Table of Contents

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Basic Logic Elements
Contents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37

Logic Levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38

CMOS Transistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

Simple Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
Inverter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
NAND Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
NOR Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42

Transmission Gates, Buffers, and Flip Flops. . . . . . . . . . . . . . . . . . . .44
Transmission Gate  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
Three-State Buffer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
Half Flip Flop (HFF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48

Review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49

Computer Memory and Parallel I/O
Contents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52

Pigeon Hole Analogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52

How a Computer Sees Memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53

Kilobytes, Megabytes, and Gigabytes . . . . . . . . . . . . . . . . . . . . . . . . .54

Kinds of Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
Random Access Memory (RAM). . . . . . . . . . . . . . . . . . . . . . . . . . .55
Read-Only Memory (ROM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
Programmable ROM (PROM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55

EPROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
OTP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
EEPROM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56

I/O as a Memory Type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
Internal Status and Control Registers . . . . . . . . . . . . . . . . . . . . . . .59

Memory Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60

Memory Peripherals  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62

Review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

8 Table of Contents MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Table of Contents

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Computer Architecture
Contents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66

Computer Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66

CPU Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67

Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69

CPU View of a Program  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70

CPU Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
Detailed Operation of CPU Instructions  . . . . . . . . . . . . . . . . . . . . .73

Store Accumulator (Direct Addressing Mode). . . . . . . . . . . . . . .74
Load Accumulator (Immediate Addressing Mode) . . . . . . . . . . .75
Conditional Branch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
Subroutine Calls and Returns . . . . . . . . . . . . . . . . . . . . . . . . . . .76

Playing Computer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80

Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
RESET Pin  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
Watchdog Timer Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
Illegal Address Reset  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87

Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
External Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91
On-Chip Peripheral Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
Software Interrupt (SWI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
Interrupt Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
Nested Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93

Review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94

M68HC05 Instruction Set
Contents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98

Central Processor Unit (CPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98
Arithmetic/Logic Unit (ALU). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98
CPU Control  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
CPU Registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99

Accumulator  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
Index Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
Condition Code Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Table of Contents 9  
For More Information On This Product,

  Go to: www.freescale.com



Table of Contents

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Half-Carry Bit (H)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
Interrupt Mask Bit (I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
Negative Bit (N). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
Zero Bit (Z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102
Carry/Borrow Bit (C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102
Program Counter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103
Stack Pointer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103

Addressing Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104
Inherent Addressing Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105
Immediate Addressing Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . .107
Extended Addressing Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
Direct Addressing Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110
Indexed Addressing Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112

Indexed, No Offset  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112
Indexed, 8-Bit Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114
Indexed, 16-Bit Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116

Relative Addressing Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118
Bit Test and Branch Instructions . . . . . . . . . . . . . . . . . . . . . . . . . .120
Instructions Organized by Type  . . . . . . . . . . . . . . . . . . . . . . . . . .120

Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125

Review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133
CPU Registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133
Addressing Modes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133
Instruction Execution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134

Programming
Contents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136

Writing a Simple Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136
Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137

Mnemonic Source Code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139

Software Delay Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141

Assembler Listing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143
Object Code File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

10 Table of Contents MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Table of Contents

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Assembler Directives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149
Originate (ORG)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149
Equate (EQU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149
Form Constant Byte (FCB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150
Form Double Byte (FDB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150
Reserve Memory Byte (RMB) . . . . . . . . . . . . . . . . . . . . . . . . . . . .151
Set Default Number Base to Decimal . . . . . . . . . . . . . . . . . . . . . .152

Instruction Set Dexterity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153

Application Development. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154

Review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156

The Paced Loop
Contents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159

System Equates  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160
Register

Equates for MC68HC705J1A  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160
Application System Equates . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161

Vector Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162
Reset Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162
Unused Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163

RAM Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165

Paced Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165
Loop Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167
Loop System Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168
Your Programs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168
Timing Considerations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169
Stack Considerations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170

An Application-Ready Framework . . . . . . . . . . . . . . . . . . . . . . . . . . .171

Review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178

On-Chip Peripheral Systems
Contents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180

Types of Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181
Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181
Serial Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Table of Contents 11  
For More Information On This Product,

  Go to: www.freescale.com



Table of Contents

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Analog-to-Digital Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183
Digital-to-Analog Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183
EEPROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183

Controlling Peripherals  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183

The MC68HC705J1A Timer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184

A Timer Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187
Using the PWM Software  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195

A Practical Motor Control Example . . . . . . . . . . . . . . . . . . . . . . . . . .198
Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .198
Motor Control Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201
Motor Control Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204
Listing 6 — Speed Control Program Listing . . . . . . . . . . . . . . . . .210

Review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215
Other Kinds of Peripherals  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215

Instruction Set Details
Contents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .217

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219

M68HC05 Instruction Set  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221

Reference Tables
Contents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .287

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .287

ASCII to Hexadecimal Conversion  . . . . . . . . . . . . . . . . . . . . . . . . . .288

Hexadecimal to Decimal Conversion. . . . . . . . . . . . . . . . . . . . . . . . .290

Decimal to Hexadecimal Conversion. . . . . . . . . . . . . . . . . . . . . . . . .292

Hexadecimal Values vs. M68HC05 Instructions . . . . . . . . . . . . . . . .293

Glossary
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .299

Index
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .317
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

12 Table of Contents MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

List of Figures
   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  
Figure Title Page

1 Overall View of a Computer System  . . . . . . . . . . . . . . . . . .18
2 Expanded View of a Microcontroller . . . . . . . . . . . . . . . . . . .24
3 N-Type and P-Type CMOS Transistors . . . . . . . . . . . . . . . .39
4 CMOS Inverter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
5 CMOS NAND Gate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
6 CMOS NOR Gate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
7 CMOS Transmission Gate . . . . . . . . . . . . . . . . . . . . . . . . . .44
8 2:1 Data Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
9 Three-State Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46

10 Half Flip Flop  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
11 Memory and I/O Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . .58
12 I/O Port with Data Direction Control . . . . . . . . . . . . . . . . . . .59
13 Expanded Detail of One Memory Location. . . . . . . . . . . . . .60
14 Typical Memory Map  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
15 M68HC05 CPU Registers  . . . . . . . . . . . . . . . . . . . . . . . . . .68
16 Memory Map of Example Program. . . . . . . . . . . . . . . . . . . .72
17 Subroutine Call Sequence . . . . . . . . . . . . . . . . . . . . . . . . . .77
18 Worksheet for Playing Computer . . . . . . . . . . . . . . . . . . . . .81
19 Completed Worksheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82
20 Hardware Interrupt Flowchart . . . . . . . . . . . . . . . . . . . . . . . .90
21 Interrupt Stacking Order . . . . . . . . . . . . . . . . . . . . . . . . . . . .91
22 M68HC05 CPU Block Diagram  . . . . . . . . . . . . . . . . . . . . . .98
23 Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
24 Accumulator (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
25 Index Register (X)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
26 Condition Code Register (CCR) . . . . . . . . . . . . . . . . . . . . .101
27  How Condition Codes are Affected

by Arithmetic Operations . . . . . . . . . . . . . . . . . . . . . . . .102
28 Program Counter (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . .103
29 Stack Pointer (SP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA List of Figures 13  
For More Information On This Product,

  Go to: www.freescale.com



List of Figures

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Figure Title Page

30 Example Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138
31 Flowchart and Mnemonics . . . . . . . . . . . . . . . . . . . . . . . . .140
32 Delay Routine Flowchart and Mnemonics . . . . . . . . . . . . .141
33 Explanation of Assembler Listing . . . . . . . . . . . . . . . . . . . .145
34 Syntax of an S1 Record . . . . . . . . . . . . . . . . . . . . . . . . . . .148
35 S-Record File for Example Program  . . . . . . . . . . . . . . . . .148
36 Four Ways to Check a Switch  . . . . . . . . . . . . . . . . . . . . . .153
37 Flowchart of Main Paced Loop. . . . . . . . . . . . . . . . . . . . . .166
38 Flowchart of RTI Service Routine. . . . . . . . . . . . . . . . . . . .167
39 15-Stage Multifunction Timer Block Diagram . . . . . . . . . . .185
40 PWM Waveforms with Various Duty Cycles. . . . . . . . . . . .187
41 Portion of the MC68HC705J1A Timer . . . . . . . . . . . . . . . .188
42 PWM With 16 Discrete Duty Cycle Outputs . . . . . . . . . . . .189
43 Each TOF Interrupt Sliced into 16 Separate

Time Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191
44 Timer Interrupt Service Routine . . . . . . . . . . . . . . . . . . . . .192
45 Real-Time Interrupt Routine Flowchart  . . . . . . . . . . . . . . .193
46 Timer Overflow Interrupt Flowchart  . . . . . . . . . . . . . . . . . .194
47 Motor Speed Controlled by a Variable Resistor . . . . . . . . .199
48 Motor Speed Controlled by a Transistor. . . . . . . . . . . . . . .199
49 Transistor Used as an Electronic Switch . . . . . . . . . . . . . .200
50 PWM Waveforms with 50 and 80 Percent

Duty Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201
51 Power Section of the Motor Speed Control Circuit . . . . . . .203
52 Microcontroller Section of the Motor

Speed Control Circuit  . . . . . . . . . . . . . . . . . . . . . . . . . .203
53 Revised RTI Routine Flowchar. . . . . . . . . . . . . . . . . . . . . .205
54 Flowchart for Main Program Loop  . . . . . . . . . . . . . . . . . . .206
55 Flowchart for MotorOn/Off Routine  . . . . . . . . . . . . . . . . . .208
56 Flowchart for Motor Speed-Up Routine . . . . . . . . . . . . . . .209
57 Flowchart for Motor Speed-Down Routine . . . . . . . . . . . . .209
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

14 List of Figures MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

List of Tables
   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  
Table Title Page

1 Decimal, Binary, and Hexadecimal Equivalents .....................29
2 ASCII to Hexadecimal Conversion ........................................31
3 Octal, Binary, and Hexadecimal Equivalents..........................33
4 Decimal, BCD, and Binary Equivalents ..................................35
5 Inverter Gate Operation..........................................................40
6 NAND Gate-Level Operation ..................................................41
7 NOR Gate Truth Table ...........................................................43
8 Data Multiplexer Operation.....................................................46
9 Buffer Gate Operation ............................................................47

10 Vector Addresses for Resets and Interrupts
on the MC68HC705J1A.....................................................89

11 Register/Memory Instructions...............................................121
12 Read/Modify-Write Instructions ............................................122
13 Branch Instructions...............................................................123
14 Control Instructions...............................................................124
15 Instruction Set Summary ......................................................126
16 M68HC05 Instruction Set Opcode Map................................132
17 RTI and COP Timer Rates (E clock = 2 MHz) ......................186
18 PWM Characteristics for Various RTI Rates ........................190
19 Hexadecimal to ASCII Conversion ......................................289
20 Hexadecimal to Decimal Conversion....................................291
21 Hexadecimal to M68HC05 Instruction Mnemonics...............293
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA List of Tables 15  
For More Information On This Product,

  Go to: www.freescale.com



List of Tables

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

16 List of Tables MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

What is a Microcontroller?
   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  
Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

Overall View of a Computer System . . . . . . . . . . . . . . . . . . . . . . . . . .18

Computer System Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

Computer System Outputs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

Central Processor Unit (CPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

Computer Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

Computer Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

The Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

Review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
The Parts of Any Computer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Kinds of Computers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

Introduction

This chapter sets the groundwork for a detailed exploration of the inner
workings of a small microcontroller. We will see that the microcontroller
is one of the most basic forms of computer system. Although much
smaller than its cousins — personal computers and mainframe
computers — microcontrollers are built from the same basic elements.
In the simplest sense, computers produce a specific pattern of outputs
based on current inputs and the instructions in a computer program.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA What is a Microcontroller? 17  
For More Information On This Product,

  Go to: www.freescale.com



What is a Microcontroller?

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Like most computers, microcontrollers are simply general-purpose
instruction executors. The real star of a computer system is a program
of instructions that is provided by a human programmer. This program
instructs the computer to perform long sequences of very simple actions
to accomplish useful tasks as intended by the programmer.

Overall View of a Computer System

Figure 1  provides a high level view of a computer system . By simply
changing the types of input and output devices, this could be a view of a
personal computer , a room-sized mainframe computer , or a simple
microcontroller (MCU). The input and output (I/O) devices shown in the
figure happen to be typical I/O devices found in a microcontroller
computer system.

Figure 1. Overall View of a Computer System

INPUTS

MEMORY

CENTRAL
PROCESSOR UNIT

(CPU)

CRYSTAL

CLOCK

PROGRAM

SWITCH

KEYPAD

TEMPERATURE
SENSOR

LED LAMP

BEEPER

RELAY

1 2 3 A
4 5 6 B
7 8 9 C
< 0 > !

°F

OUTPUTS
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

18 What is a Microcontroller? MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



What is a Microcontroller?
Computer System Inputs

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Computer System Inputs

Input devices supply information to the computer system from the
outside world. In a personal computer system, the most common input
device is the typewriter-style keyboard. Mainframe computers use
keyboards and punched card readers as input devices. Microcontroller
computer systems usually use much simpler input devices such as
individual switches or small keypads, although much more exotic input
devices are found in many microcontroller-based systems. An example
of an exotic input device for a microcontroller is the oxygen sensor in an
automobile that measures the efficiency of combustion by sampling the
exhaust gases.

Most microcontroller inputs can only process digital input signals at the
same voltage levels as the main logic power source. The 0-volt ground
level is called VSS and the positive power source (VDD) is typically 5 Vdc
(direct current). A level of approximately 0 volts indicates a logic 0 signal
and a voltage approximately equal to the positive power source indicates
a logic 1  signal.

Of course, the real world is full of analog signals or signals that are some
other voltage level. Some input devices translate signal voltages from
some other level to the VDD and VSS levels needed for the
microcontroller. Other input devices convert analog  signals into digital
signals (binary values made up of 1s and 0s) that the computer can
understand and manipulate. Some microcontrollers even include such
analog-to-digital converter circuits on the same integrated circuit.

Transducers can be used to translate other real-world signals into logic
level signals that a microcontroller can understand and manipulate.
Some examples include temperature transducers, pressure sensors,
light level detectors, and so forth. With such transducers, almost any
physical property can be used as an input to a computer system.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA What is a Microcontroller? 19  
For More Information On This Product,

  Go to: www.freescale.com



What is a Microcontroller?

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Computer System Outputs

Output devices are used to communicate information or actions from the
computer system to the outside world. In a personal computer system,
the most common output device is the CRT (cathode ray tube) display.
Microcontroller systems often use much simpler output devices such as
individual indicator lamps or beepers.

Translation circuits (sometimes built into the same integrated circuit as
the microcomputer) can convert digital signals into analog voltage levels.
If necessary, other circuits can translate VDD and VSS levels that are
native to an MCU into other voltage levels.

The “controller” in microcontroller comes from the fact that these small
computer systems usually control something as compared to a personal
computer that usually processes information. In the case of the personal
computer, most output is information (either displayed on a CRT screen
or printed on paper). In contrast, in a microcontroller system, most
outputs are logic level digital signals that are used to drive display LEDs
(light-emitting diodes) or electrical devices such as relays or motors.

Central Processor Unit (CPU)

The CPU is at the center of every computer system. The job of the CPU
is to obediently execute the program of instructions that was supplied by
the programmer. A computer program  instructs the CPU to read
information from inputs, to read information from and write information to
working memory, and to write  information to outputs. Some program
instructions involve simple decisions that cause the program to either
continue with the next instruction or to skip to a new place in the
program. In a later chapter, we will look closely at the set of available
instructions for a particular microcontroller.

In mainframe and personal computers, there are actual layers of
programs, starting with internal programs, that control the most basic
operations of the computer. Another layer includes user programs that
are loaded into the computer system memory when they are about to be
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

20 What is a Microcontroller? MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



What is a Microcontroller?
Clock

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

used. This structure is very complex and would not be a good example
for showing a beginner how a computer works.

In a microcontroller, usually only one program is at work in a particular
control application. For example, the M68HC05 CPU recognizes only
about 60 different instructions , but these are representative of the
instruction sets of any computer system. This kind of computer system
is a good model for learning the basics of computer operation because
it is possible to know exactly what is happening at every tiny step as the
CPU executes a program.

Clock

With very few exceptions, computers use a small clock oscillator  to
trigger the CPU to move from one step in a sequence to the next. In the
chapter on computer architecture, we will see that even the simple
instructions of a microcontroller are broken down into a series of even
more basic steps. Each of these tiny steps in the operation of the
computer takes one cycle of the CPU clock.

Computer Memory

Several kinds of computer memory are used for various purposes in
computer systems. The main kinds of memory found in microcontroller
systems are:

• Read-only memory (ROM)

• Random access read/write memory (RAM)

ROM is used mainly for programs and permanent data that must remain
unchanged even when there is no power applied to the microcontroller.

RAM is used for temporary storage of data and intermediate calculation
results during operation.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA What is a Microcontroller? 21  
For More Information On This Product,

  Go to: www.freescale.com



What is a Microcontroller?

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Some microcontrollers include other kinds of memory, such as:

• Erasable programmable read-only memory (EPROM)

• Electrically erasable programmable read-only memory
(EEPROM)

We will learn more about these kinds of memory in a later chapter.

The smallest unit of computer memory is a single bit that can store one
value of 0 or 1. These bits are grouped into sets of eight bits to make one
byte . Larger computers further group bits into sets of 16 or 32 to make
a unit called a word . The size of a word can be different for different
computers, but a byte is always eight bits.

Personal computers work with very large programs and large amounts
of data, so they use special forms of memory called mass storage
devices. Floppy disks, hard disks, and compact discs are memory
devices of this type. It is not unusual to find several million bytes of RAM
memory in a personal computer. Even this is not enough to hold the
large programs and data used by personal computers, so most personal
computers also include a hard disk with tens or even hundreds of
millions or even billions of bytes of storage capacity. Compact discs,
very similar to those used for popular music recordings, have a capacity
of about 600 million bytes of read-only memory. In comparison, the small
microcontroller systems we are discussing in this book typically have a
total of 1,000 to 64,000 bytes of memory.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

22 What is a Microcontroller? MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



What is a Microcontroller?
Computer Program

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Computer Program

Figure 1  shows the program as a cloud because it originates in the
imagination of a computer programmer or engineer. This is comparable
to an electrical engineer thinking up a new circuit or a mechanical
engineer figuring out a new assembly. The components of a program are
instructions from the instruction set of the CPU. Just as a circuit designer
can build an adder circuit out of simple AND, OR, and NOT elements, a
programmer can write a program to add numbers together out of simple
instructions.

Programs are stored in the memory of a computer system where they
can be sequentially executed by the CPU. In the chapter on
programming, we will learn how to write programs and prepare them for
loading into the memory of a computer.

The Microcontroller

Now that we have discussed the various parts of a computer system, we
are ready to talk about just what a microcontroller is. The top half of
Figure 2 shows a generic computer system with a portion enclosed in a
dashed outline. This outlined portion is a microcontroller and the lower
half of the figure is a block diagram showing its internal structure in
greater detail. The crystal is not contained within the microcontroller, but
it is a required part of the oscillator circuit. In some cases, a less
expensive component such as a ceramic resonator or a
resistor-capacitor (R-C) circuit may be used instead of this crystal.

A microcontroller  can be defined as a complete computer system
including a CPU, memory, a clock oscillator, and I/O on a single
integrated circuit chip. When some of these elements such as the I/O or
memory are missing, the integrated circuit would be called a
microprocessor . The CPU in a personal computer is a microprocessor.
The CPU in a mainframe computer is made up of many integrated
circuits.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA What is a Microcontroller? 23  
For More Information On This Product,

  Go to: www.freescale.com



What is a Microcontroller?

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Figure 2. Expanded View of a Microcontroller

CENTRAL PROCESSING UNIT
CPU

POWER

DDV

SSV

GROUND

CRYSTAL

DATA
MEMORY

RESET

AD
D

R
ES

S 
BU

S

D
AT

A 
BU

S

DIGITAL
INPUTS

DIGITAL
OUTPUTS

IN
PU

TS

MEMORY

CRYSTAL

CLOCK

PROGRAM

SWITCH

KEYPAD

TEMPERATURE
SENSOR

LED LAMP

BEEPER

RELAY

1 2 3 A
4 5 6 B
7 8 9 C
< 0 > !

°F

O
U

TP
U

TS

CENTRAL
PROCESSOR UNIT

CPU

PROGRAM
MEMORY

OSCILLATOR
&

CLOCKS

I/O  &
PERIPHERALS
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

24 What is a Microcontroller? MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



What is a Microcontroller?
Review

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Review

A microcontroller  is a complete computer system, including a CPU,
memory, a clock oscillator, and I/O on a single integrated circuit chip.

The Parts
of Any Computer

The parts of any computer are:

• A central processor unit (CPU)

• A clock  to sequence the CPU

• Memory  for instructions and data

• Inputs  to get information into the computer system

• Outputs  to get information out of the computer system

• A program  to make the computer do something useful

Kinds
of Computers

Although all computers share the same basic elements and ideas, there
are different kinds of computers for different purposes.

• For instance, mainframe computers are very large computer
systems that are used for big information processing jobs such as
checking the tax returns for all of the taxpayers in a region.

• Personal computers are small versions of mainframe computers
that are used for smaller tasks such as word processing and
engineering drawing.

• Microcontrollers are very small single-chip computers that are
used for such things as controlling a small appliance.

The smallest microcontrollers are used for such things as converting the
movements of a computer mouse into serial data for a personal
computer. Very often microcontrollers are embedded into a product and
the user of the product may not even know there is a computer inside.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA What is a Microcontroller? 25  
For More Information On This Product,

  Go to: www.freescale.com



What is a Microcontroller?

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

26 What is a Microcontroller? MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

Computer Numbers and Codes
   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  
Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

Binary and Hexadecimal Numbers  . . . . . . . . . . . . . . . . . . . . . . . . . . .28

ASCII Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

Computer Operation Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

Instruction Mnemonics and Assemblers . . . . . . . . . . . . . . . . . . . . . . .32

Octal  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32

Binary Coded Decimal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34

Review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36

Introduction

This chapter discusses binary, hexadecimal, octal, and binary coded
decimal (BCD) numbers which are commonly used by computers.

Computers work best with information in a different form than people use
to solve problems. Humans typically work in the base 10 (decimal)
numbering system (probably because we have 10 fingers). Digital binary
computers work in the base 2 (binary) numbering system because this
allows all information to be represented by sets of digits, which can only
be 0s or 1s. In turn, a 1 or 0 can be represented by the presence or
absence of a logic voltage on a signal line or the on and off states of a
simple switch.

Computers also use special codes to represent alphabetic information
and computer instructions. Understanding these codes will help you
understand how computers can do so much with strings of digits that can
only be 1s or 0s.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Computer Numbers and Codes 27  
For More Information On This Product,

  Go to: www.freescale.com



Computer Numbers and Codes

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Binary and Hexadecimal Numbers

In decimal  (base 10 ) numbers, the weight of each digit is 10 times as
great as the digit immediately to its right. The rightmost digit of a decimal
integer is the ones place, the digit to its left is the tens digit, and so on.

In binary  (base 2 ) numbers, the weight of each digit is two times as
great as the digit immediately to its right. The rightmost digit of the binary
integer is the ones digit, the next digit to the left is the twos digit, next is
the fours digit, then the eights digit, and so on.

Although computers are quite comfortable working with binary numbers
of 8, 16, or even 32 binary digits, humans find it inconvenient to work with
so many digits at a time. The base 16 (hexadecimal ) numbering system
offers a practical compromise. One hexadecimal digit can exactly
represent four binary digits, thus, an 8-bit binary number can be
expressed by two hexadecimal digits.

The correspondence between a hexadecimal digit and the four binary
digits it represents is simple enough that humans who work with
computers easily learn to mentally translate between the two. In
hexadecimal (base 16) numbers, the weight of each digit is 16 times as
great as the digit immediately to its right. The rightmost digit of a
hexadecimal integer is the ones place, the digit to its left is the sixteens
digit, and so on.

Table 1  demonstrates the relationship among the decimal, binary, and
hexadecimal representations of values. These three different numbering
systems are just different ways to represent the same physical
quantities. The letters A through F are used to represent the
hexadecimal values corresponding to 10 through 15 because each
hexadecimal digit can represent 16 different quantities; whereas, our
customary numbers only include the 10 unique symbols (0 through 9).
Thus, some other single-digit symbols had to be used to represent the
hexadecimal values for 10 through 15.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

28 Computer Numbers and Codes MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Computer Numbers and Codes
Binary and Hexadecimal Numbers

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

To avoid confusion about whether a number is hexadecimal or decimal,
place a $ symbol before hexadecimal numbers. For example, 64 means
decimal “sixty-four”; whereas, $64 means hexadecimal “six-four,” which
is equivalent to decimal 100. Some computer manufacturers follow
hexadecimal values with a capital H (as in 64H).

Hexadecimal is a good way to express and discuss numeric information
processed by computers because it is easy for people to mentally
convert between hexadecimal digits and their 4-bit binary equivalent.
The hexadecimal notation is much more compact than binary while
maintaining the binary connotations.

Table 1. Decimal, Binary, and Hexadecimal Equivalents

Base 10 Decimal Base 2 Binary Base 16 Hexadecimal

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

16 0001 0000 10

17 0001 0001 11

100 0110 0100 64

255 1111 1111 FF

1024 0100 0000 0000 400

65,535 1111 1111 1111 1111 FFFF
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Computer Numbers and Codes 29  
For More Information On This Product,

  Go to: www.freescale.com



Computer Numbers and Codes

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

ASCII Code

Computers must handle many kinds of information other than just
numbers. Text (alphanumeric characters) and instructions must be
encoded in such a way that the computer can understand this
information. The most common code for text information is the American
Standard Code for Information Interchange (or ASCII). The ASCII code
establishes a widely accepted correlation between alphanumeric
characters and specific binary values. Using the ASCII code, $41
corresponds to capital A, $20 corresponds to a space character, etc. The
ASCII code translates characters to 7-bit binary codes, but in practice
the information is most often conveyed as 8-bit characters with the most
significant bit equal to 0. This standard code allows equipment made by
various manufacturers to communicate because all of the machines use
this same code.

Table 2  shows the relationship between ASCII characters and
hexadecimal values.

Computer Operation Codes

Computers use another code to give instructions to the CPU. This code
is called an operation code or opcode . Each opcode instructs the CPU
to execute a very specific sequence of steps that together accomplish an
intended operation. Computers from different manufacturers use
different sets of opcodes because these opcodes are internally
hard-wired in the CPU logic. The instruction set  for a specific CPU is
the set of all operations that the CPU knows how to perform. Opcodes
are one representation of the instruction set and mnemonics are
another. Even though the opcodes differ from one computer to another,
all digital binary computers perform the same kinds of basic tasks in
similar ways. For instance, the CPU in the MC68HC05 MCU can
understand 62 basic instructions. Some of these basic instructions have
several slight variations, each requiring a separate opcode. The
instruction set of the MC68HC05 is represented by 210 unique
instruction opcodes. We will discuss how the CPU actually executes
instructions in another chapter, but first we need to understand a few
more basic concepts.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

30 Computer Numbers and Codes MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Computer Numbers and Codes
Computer Operation Codes

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Table 2. ASCII to Hexadecimal Conversion
Hex ASCII Hex ASCII Hex ASCII Hex ASCII

$00 NUL $20
SP

space
$40 @ $60 `

grave

$01 SOH $21 ! $41 A $61 a
$02 STX $22 “ $42 B $62 b
$03 ETX $23 # $43 C $63 c
$04 EOT $24 $ $44 D $64 d
$05 ENQ $25 % $45 E $65 e
$06 ACK $26 & $46 F $66 f

$07
BEL
beep

$27
‘

apost.
$47 G $67 g

$08
BS

back sp
$28 ( $48 H $68 h

$09
HT
tab

$29 ) $49 I $69 i

$0A
LF

linefeed
$2A * $4A J $6A j

$0B VT $2B + $4B K $6B k

$0C FF $2C
,

comma
$4C L $6C l

$0D
CR

return
$2D

–
dash

$4D M $6D m

$0E SO $2E
.

period
$4E N $6E n

$0F SI $2F / $4F O $6F o
$10 DLE $30 0 $50 P $70 p
$11 DC1 $31 1 $51 Q $71 q
$12 DC2 $32 2 $52 R $72 r
$13 DC3 $33 3 $53 S $73 s
$14 DC4 $34 4 $54 T $74 t
$15 NAK $35 5 $55 U $75 u
$16 SYN $36 6 $56 V $76 v
$17 ETB $37 7 $57 W $77 w
$18 CAN $38 8 $58 X $78 x
$19 EM $39 9 $59 Y $79 y
$1A SUB $3A : $5A Z $7A z
$1B ESCAPE $3B ; $5B [ $7B {
$1C FS $3C < $5C \ $7C |
$1D GS $3D = $5D ] $7D }
$1E RS $3E > $5E ^ $7E ~

$1F US $3F ? $5F
_

under
$7F

DEL
delete
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Computer Numbers and Codes 31  
For More Information On This Product,

  Go to: www.freescale.com



Computer Numbers and Codes

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Mnemonics and Assemblers

An opcode such as $4C is understood by the CPU, but it is not very
meaningful to a human. To solve this problem, a system of mnemonic
instruction equivalents is used. The $4C opcode corresponds to the
INCA mnemonic, which is read “increment accumulator.” Although there
is printed information to show the correlation between mnemonic
instructions and the opcodes they represent, this information is seldom
used by a programmer because the translation process is handled
automatically by a separate computer program called an assembler . An
assembler is a program that converts a program written in mnemonics
into a list of machine codes  (opcodes and other information) that can
be used by a CPU.

An engineer develops a set of instructions for the computer in mnemonic
form and then uses an assembler to translate these instructions into
opcodes that the CPU can understand. We will discuss instructions,
writing programs, and assemblers in other chapters. However, you
should understand now that people prepare instructions for a computer
in mnemonic form, but the computer understands only opcodes; thus, a
translation step is required to change the mnemonics to opcodes, and
this is the function of the assembler.

Octal

Before leaving this discussion of number systems and codes, we will
look at two additional codes you may have heard about. Octal (base 8)
notation was used for some early computer work but is seldom used
today. Octal notation used the numbers 0 through 7 to represent sets of
three binary digits in the same way hexadecimal is used to represent
sets of four binary digits. The octal system had the advantage of using
customary number symbols, unlike the hexadecimal symbols A through
F discussed earlier.

Two disadvantages caused octal to be abandoned for the hexadecimal
notation used today. First of all, most computers use 4, 8, 16, or 32 bits
per word; these words do not break down evenly into sets of three bits.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

32 Computer Numbers and Codes MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Computer Numbers and Codes
Octal

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

(Some early computers used 12-bit words that did break down into four
sets of three bits each.) The second problem was that octal is not as
compact as hexadecimal. For example, the ASCII value for capital A is
10000012 in binary, 4116 in hexadecimal, and 1018 in octal. When a
human is talking about the ASCII value for A, it is easier to say “four-one”
than it is to say “one-zero-one.”

Table 3  demonstrates the translation between octal and binary. The
“direct binary” column shows the digit-by-digit translation of octal digits
into sets of three binary bits. The leftmost (ninth) bit is shown in bold italic
typeface. This bold italic 0 is discarded to get the desired 8-bit result. The
“8-bit binary” column has the same binary information as the direct
binary column, except the bits are regrouped into sets of four. Each set
of four bits translates exactly into one hexadecimal digit.

Table 3. Octal, Binary, and Hexadecimal Equivalents

Octal Direct Binary 8-Bit Binary Hexadecimal

000 000 000 000 0000 0000 $00

001 000 000 001 0000 0001 $01

002 000 000 010 0000 0010 $02

003 000 000 011 0000 0011 $03

004 000 000 100 0000 0100 $04

005 000 000 101 0000 0101 $05

006 000 000 110 0000 0110 $06

007 000 000 111 0000 0111 $07

010 000 001 000 0000 1000 $08

011 000 001 001 0000 1001 $09

012 000 001 010 0000 1010 $0A

013 000 001 011 0000 1011 $0B

014 000 001 100 0000 1100 $0C

015 000 001 101 0000 1101 $0D

016 000 001 110 0000 1110 $0E

017 000 001 111 0000 1111 $0F

101 001 000 001 0100 0001 $41

125 001 010 101 0101 0101 $55

252 010 101 010 1010 1010 $AA

377 011 111 111 1111 1111 $FF
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Computer Numbers and Codes 33  
For More Information On This Product,

  Go to: www.freescale.com



Computer Numbers and Codes

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

When mentally translating octal values to binary byte values, the octal
value is represented by three octal digits. Each octal digit represents
three binary bits so there is one extra bit (3 digits × 3 bits = 9 bits). Since
Western-speaking people typically work from left to right, it is easy to
forget to throw away the leftmost extra bit from the leftmost octal digit
and end up with an extra (ninth) bit. When translating from hexadecimal
to binary, it is easier because each hexadecimal digit translates into
exactly four binary bits. Two hexadecimal digits exactly match the eight
binary bits in a byte.

Binary Coded Decimal

Binary coded decimal (BCD) is a hybrid notation used to express
decimal values in binary form. BCD uses four binary bits to represent
each decimal digit. Since four binary digits can express 16 different
physical quantities, there will be six bit-value combinations that are
considered invalid (specifically, the hexadecimal values A through F).
BCD values are shown with a $ sign because they are actually
hexadecimal numbers that represent decimal quantities.

When the computer does a BCD add operation, it performs a binary
addition and then adjusts the result back to BCD form. As a simple
example, consider the following BCD addition.

 910 + 110 = 1010

 The computer adds

0000 10012 + 0000 00012 = 0000 10102

But 10102 is equivalent to A16, which is not a valid BCD value. When the
computer finishes the calculation, a check is performed to see if the
result is still a valid BCD value. If there was any carry from one BCD digit
to another or if there was any invalid code, a sequence of steps would
be performed to correct the result to proper BCD form. The 0000 10102
is corrected to 0001 00002 (BCD 10) in this example.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

34 Computer Numbers and Codes MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Computer Numbers and Codes
Binary Coded Decimal

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

In most cases, using BCD notation in computer calculations is inefficient.
It is better to change from decimal to binary as information is entered, do
all computer calculations in binary, and change the binary result back to
BCD or decimal as needed for display. This is true because: First, not all
microcontrollers are capable of doing BCD calculations because they
need a digit-to-digit carry indicator that is not present on all computers
(although Motorola MCUs do have this half-carry indicator). And,
second, forcing the computer to emulate human behavior is inherently
less efficient than allowing the computer to work in its native binary
system.

Table 4. Decimal, BCD, and Binary Equivalents

Decimal BCD Binary Hexadecimal
(reference)

0 $0 0000 $0

1 $1 0001 $1

2 $2 0010 $2

3 $3 0011 $3

4 $4 0100 $4

5 $5 0101 $5

6 $6 0110 $6

7 $7 0111 $7

8 $8 1000 $8

9 $9 1001 $9

1010 $A

1011 $B

Invalid 1100 $C

BCD 1101 $D

Combinations 1110 $E

1111 $F

10 $10 0001 0000 $10

99 $99 1001 1001 $99
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Computer Numbers and Codes 35  
For More Information On This Product,

  Go to: www.freescale.com



Computer Numbers and Codes

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Review

Computers have two logic levels (0 and 1) so they work in the binary
numbering system. Probably because people have 10 fingers, they work
in the base 10 decimal numbering system.

Hexadecimal numbers use the 16 symbols 0 through 9 and A through F.
Each hexadecimal digit can represent a set of four binary digits exactly.
Table 2  shows the decimal, binary, and hexadecimal equivalents of
various values. A $ symbol is used before a hexadecimal valueor an H
is used after a hexadecimal value to distinguish it from decimal numbers.

ASCII is a widely accepted code that allows alphanumeric information to
be represented as binary values.

Each instruction or variation of an instruction has a unique opcode
(binary value) that the CPU recognizes as a request to perform a specific
instruction. CPUs from different manufacturers have different sets of
opcodes.

Programmers specify instructions by a mnemonic such as INCA. A
computer program, called  an assembler, translates mnemonic
instructions into opcodes the CPU can understand.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

36 Computer Numbers and Codes MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

Basic Logic Elements
   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  
Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37

Logic Levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38

CMOS Transistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

Simple Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
Inverter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
NAND Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
NOR Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42

Transmission Gates, Buffers, and Flip Flops. . . . . . . . . . . . . . . . . . . .44
Transmission Gate  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
Three-State Buffer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
Half Flip Flop (HFF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48

Review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49

Introduction

Digital computers are made up of relatively simple logic elements
sometimes called gates, which are small circuits that can be connected
in various ways to manipulate logic-level signal voltages. Although this
textbook is not intended to provide detailed information on logic design,
some knowledge of the most basic logic elements will help you
understand the inner workings of microcontrollers.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Basic Logic Elements 37  
For More Information On This Product,

  Go to: www.freescale.com



Basic Logic Elements

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

This chapter begins with a close look at the requirements for logic-level
voltages. Transistors and interconnections for a typical CMOS
(complementary metal-oxide semiconductor) microcontroller are
discussed. A simple inverter, NAND gate, and NOR gate are explained.
Finally, a transmission gate, a three-state buffer, and a flip-flop circuit
are described. Virtually any part of a microcontroller can be explained in
terms of these few simple logic elements.

Logic Levels

Earlier, in the discussion of what a microcontroller is, we said a level of
approximately 0 volts indicates a logic 0 and a voltage approximately
equal to the positive power source indicates a logic 1 signal. To be more
precise, there is a voltage level below which the microcontroller
manufacturer guarantees that a signal will be recognized as a valid
logic 0. Similarly, there is a voltage level above which the microcontroller
manufacturer guarantees that a signal will be recognized as a valid
logic 1. When designing a microcontroller system, be sure that all signals
conform to these specified limits, even under worst-case conditions.

Most modern microcontrollers use a technology called complementary
metal-oxide semiconductor (CMOS). This means the circuits include
both N-type and P-type transistors. Transistors will be explained in
greater detail later in this chapter.

In a typical CMOS circuit, a logic 0 input may be specified as 0.0 volts to
0.3 times VDD. If VDD is 5.0 volts, this translates to the range 0.0 to
1.5 volts. A logic 1 input may be specified as 0.7 times VDD to VDD. If
VDD is 5.0 volts, this translates to the range 3.5 to 5.0 volts.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

38 Basic Logic Elements MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Basic Logic Elements
CMOS Transistors

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

CMOS Transistors

Figure 3  shows the symbols for an N-type and a P-type CMOS
transistor. The exact characteristics of these transistors can be
determined by their physical layout, size, and shape. For the purposes
of this textbook, they may be treated as simple switching devices.

Figure 3 . N-Type and P-Type CMOS Transistors

The N-type transistor in Figure 3  has its source terminal [3] connected
to ground. For an N-type transistor to be on (conducting), its gate voltage
[2] must be higher than its source voltage [3] by an amount known as a
threshold. This N-type transistor is said to be on (conducts between
terminals [1] and [3]) when there is a logic 1 voltage on its gate [2]. When
the gate is at logic 0, this N-type transistor is said to be off and acts as
an open circuit between terminals [1] and [3].

The P-type transistor in Figure 3  has its source terminal [4] connected
to VDD. For a P-type transistor to be on, its gate voltage [5] must be lower
than its source voltage [4] by an amount known as a threshold. A P-type
transistor is indicated by the small opened circle at its gate [5]. When
there is a logic 0 voltage on the gate [5] of this P-type transistor, it is said
to be on and acts like there is a short circuit between terminals [4] and
[6]. When the gate is at logic 1, this P-type transistor is off and acts as
an open circuit between terminals [4] and [6].

It is relatively easy to assemble thousands of N- and P-type transistors
on a single microcontroller integrated circuit and to connect them in
various ways to perform complex logical operations. In the following
paragraphs, we look at some of the most basic logic circuits that are
found in a microcontroller.

[1]
[2]

[3]

[4]
[5]

[6]

VDD

P-TYPEN-TYPE
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Basic Logic Elements 39  
For More Information On This Product,

  Go to: www.freescale.com



Basic Logic Elements

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Simple Gates

The three most basic types of logic gates found in a microcontroller are
the inverter, the NAND gate, and the NOR gate. A logic designer uses
various combinations of these basic gates to form more-complex logic
circuits, such as those that add two binary numbers together. While this
textbook is not intended to teach logic design techniques, these circuits
are discussed to give you a better understanding of how a
microcontroller operates on digital information.

Inverter Figure 4  shows the inverter logic symbol, a truth table for an inverter,
and  a CMOS equivalent circuit. When a logic-level signal (0 or 1) is
presented to the input [1] of an inverter, the opposite logic level appears
at its output [2].

Figure 4. CMOS Inverter

Refer to the CMOS equivalent circuit at the right of Figure 4   and to
Table 5  for the following discussion: When input [1] is a logic 0, N
transistor [4] is off and P transistor [3] is on, connecting output [2] to VDD
(logic 1). When input [1] is a logic 1, P transistor [3] is off and N transistor
[4] is on, connecting output [2] to ground (logic 0).

Table 5. Inverter Gate Operation

Input
[1]

Transistor Output
[2][3] [4]

0 On Off Connected to VDD (1)

1 Off On Connected to ground (0)

[3]

[1]

[4]

VDD

[2]

Input
[1]

Output
[2]

0 1

1 0

[1] [2]
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

40 Basic Logic Elements MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Basic Logic Elements
Simple Gates

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

NAND Gate Figure 5  shows the NAND gate logic symbol, a truth table for a CMOS
NAND gate, and a CMOS equivalent circuit. When both input [1] and
input [2] of the NAND gate are logic-level 1 signals, the output [3] will be
a logic 0. If any of the inputs to a NAND gate are logic 0s, the output will
be a logic 1.

Figure 5 . CMOS NAND Gate

Refer to the CMOS equivalent circuit at the right of Figure 5  and to
Table 6  for the following discussion: When both inputs [1] and [2] are
logic 1s, P transistors [6] and [4] are both off and N transistors [5] and [7]
are both on, so output [3] is connected to ground (logic 0). When input
[1] is at logic 0, N transistor [5] is off, which disconnects output [3] from
ground regardless of the condition of N transistor [7]. Also, when input
[1] is logic 0, P transistor [4] is on, connecting output [3] to VDD (logic 1).
Similarly, when input [2] is logic 0, N transistor [7] is off, which
disconnects output [3] from ground regardless of the condition of N
transistor [5]. Also, when input [2] is logic 0, P transistor [6] is on,
connecting output [3] to VDD (logic 1).

Table 6.  NAND Gate-Level Operation
Input Transistor Output

 [1]  [2] [6] [4] [5] [7]  [3]

0 0 On On Off Off VDD (1)

0 1 Off On Off On VDD (1)

1 0 On Off On Off VDD (1)

1 1 Off Off On On GND (0)

[4]

[1]

[7]

VDD

[3]

Input Output
[3][1] [2]

0 0 1

0 1 1

1 0 1

1 1 0

[1]

[2]
[3]

[5]

[6]

VDD

[2]
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Basic Logic Elements 41  
For More Information On This Product,

  Go to: www.freescale.com



Basic Logic Elements

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Although this is a simple logical function, it shows how CMOS transistors
can be interconnected to perform Boolean logic on simple logic-level
signals. Boolean logic is a 2-valued (0 and 1) algebraic system based on
mathematical forms and relationships, and is named for the Irish
mathematician who formulated it.

NOR Gate Figure 6  shows the logic symbol, a truth table for a CMOS NOR gate,
and a CMOS equivalent circuit. When neither input [1] nor input [2] of a
NOR gate is a logic-level 1 signal, the output [3] will be a logic 1. If any
input to a NOR gate is a logic 1, the output will be a logic 0.

Figure 6. CMOS NOR Gate

[6]

[1]

[5]

VDD

[3]

Input Output
[3][1] [2]

0 0 1

0 1 0

1 0 0

1 1 0

[1]

[2]
[3]

[4]

[7][2]
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

42 Basic Logic Elements MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Basic Logic Elements
Simple Gates

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Refer to the CMOS equivalent circuit at the right of Figure 6   and to
Table 7  for the following discussion: When both inputs [1] and [2] are
logic 0s, N transistors [5] and [7] are both off and P transistors [4] and [6]
are both on, so output [3] is connected to VDD (logic 1). When input [1]
is at logic 1, P transistor [4] is off, which disconnects output [3] from VDD
regardless of the condition of P transistor [6]. Also, when input [1] is logic
1, N transistor [5] is on, connecting output [3] to ground (logic 0).
Similarly, when input [2] is logic 1, P transistor [6] is off, which
disconnects output [3] from VDD regardless of the condition of P
transistor [4]. Also when input [2] is logic 1, N transistor [7] is on,
connecting output [3] to ground (logic 0).

Table 7.  NOR Gate Truth Table

Input Transistor Output

 [1]  [2] [4] [5] [6] [7]  [3]

0 0 On Off On Off VDD (1)

0 1 On Off Off On GND (0)

1 0 Off On On Off GND (0)

1 1 Off On Off On GND (0)
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Basic Logic Elements 43  
For More Information On This Product,

  Go to: www.freescale.com



Basic Logic Elements

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Transmission Gates, Buffers, and Flip Flops

Microcontrollers include more-complex types of logic gates and
functional elements than those shown in the previous section. In this
section, we explore some of these more-complex structures. The first
two structures — transmission gate and three-state buffer — introduce
the idea of logically controlled high-impedance signals. The third — half
flip flop — introduces a structure that can maintain a signal at its output
even after the input signal has changed. Flip flops are vital for a
microcontroller to perform counting and sequencing tasks.

Transmission Gate Figure 7 shows the logic symbol, a truth table for a CMOS transmission
gate, and a CMOS equivalent circuit. When control input [3] is a logic 1,
the transmission gate is said to be on and whatever logic level is present
on the input [1] is also seen at the output [2]. When the control input [3]
is a logic 0, the transmission gate is said to be off and the output node
[2] appears to be disconnected from everything (high impedance or
Hi-Z).

Figure 7. CMOS Transmission Gate

Refer to the CMOS equivalent circuit at the right of Figure 7  for the
following discussion: When control input [3] is logic 0, the gate of N
transistor [6] will be logic 0 and the gate of P transistor [5] will be logic 1
(VDD). There is no voltage between ground and VDD that would cause P
transistor [5] or N transistor [6] to turn on, so there is no conduction
between the input [1] and the output [2]. Since output node [2] is
effectively isolated from everything, it is said to be high impedance.

Control
[3]

Input
[1]

Output
[2]

0 0 Hi-Z

0 1 Hi-Z

1 0 0

1 1 1

[1] [2]

[3]

[1]

[4]

[5]

[2]

[6]

[3]
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

44 Basic Logic Elements MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Basic Logic Elements
Transmission Gates, Buffers, and Flip Flops

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

When control input [3] is a logic 1, the transmission gate is said to be on
and there appears to be a direct connection from the input [1] to the
output [2]. If both control [3] and input [1] are at logic 1, P transistor [5]
will be on and will form the connection between the input [1] and output
[2]. Although the gate of N transistor [6] is a logic 1, the source [1] is also
at the same voltage, so transistor [6] will be off. If control [3] is at logic 1
and input [1] is at logic 0, N transistor [6] will be on and will form the
connection between the input [1] and output [2]. Although the gate of P
transistor [5] is a logic 0, the source [1] is also at the same voltage, so
transistor [5] will be off.

The transmission gate shown in Figure 7 is sometimes called an analog
switch because it is capable of passing signals that fall between legal
digital logic levels. For this discussion, however, we are interested only
in digital logic-level signals, so we will refer to this structure as a
transmission gate.

Transmission gates can form data multiplexers, as shown in Figure 8 .
When select signal [3] is a logic 1, transmission gate [6] is on and
transmission gate [7] (because of inverter [5]) is off. Thus output [4] will
have the same logic level as input [1], and signals on input [2] will not
affect output [4]. When select signal [3] is a logic 0, transmission gate [7]
is on and transmission gate [6] is off. Thus output [4] will have the same
logic level as input [2] and signals on input [1] will not affect output [4].

Figure 8. 2:1 Data Multiplexer

Select
[3]

Input Output
[4][1] [2]

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

[1]

[2]

[3]

[4]

[5]

[6]

[7]
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Basic Logic Elements 45  
For More Information On This Product,

  Go to: www.freescale.com



Basic Logic Elements

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Three-State Buffer Figure 9 shows the logic symbol, a CMOS equivalent circuit, and a truth
table for a CMOS three-state buffer. When control input [3] is a logic 0,
the buffer is said to be off and output [2] is an isolated high impedance
node. When control input [3] is a logic 1, the buffer is said to be on and
whatever logic level is present on the input [1] is also seen at the output
[2].

Figure 9. Three-State Buffer

Refer to the CMOS equivalent circuit at the right of Figure 9  and to
Table 9 for the following discussion: When control input [3] is logic 0, the
gate of N transistor [6] will be logic 0 and the gate of P transistor [5]
through inverter [9], will be logic 1 (VDD), so both transistors [5] and [6]

Table 8. Data Multiplexer Operation

Select
[3]

Input Transmission Gate Output

 [1]  [2] [6] [7]  [4]

0 0 0 Off On 0

0 0 1 Off On 1

0 1 0 Off On 0

0 1 1 Off On 1

1 0 0 On Off 0

1 0 1 On Off 0

1 1 0 On Off 1

1 1 1 On Off 1

[1] [2]

[3]
[7]

[3]

VDD

[2][1]

[9]
[5]

[6]

[8]

[4]Control
[3]

Input
[1]

Output
[2]

0 0 Hi-Z

0 1 Hi-Z

1 0 0

1 1 1
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

46 Basic Logic Elements MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Basic Logic Elements
Transmission Gates, Buffers, and Flip Flops

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

are off. Since output node [2] is effectively isolated from everything, it is
said to be high impedance.

When control input [3] is logic 1, the gate of N transistor [6] will be a logic
1 and the gate of P transistor [5] will be logic 0. If buffer input [1] is logic
0, the output of inverter [4] is logic 1, which turns on N transistor [8] and
turns off P transistor [7]. With control [3] at logic 1 and input [1] at logic
0, buffer output [2] is connected to ground through N transistors [6] and
[8], which are both on.

When control input [3] is logic 1, the gate of N transistor [6] will be a logic
1 and the gate of P transistor [5] will be logic 0. If buffer input [1] is logic
1, the output of inverter [4] is logic 0, which turns on P transistor [7] and
turns off N transistor [8]. With control [3] and input [1] both at logic 1,
buffer output [2] is connected to VDD through P transistors [7] and [5],
which are both on.

Table 9. Buffer Gate Operation

Control
[3]

Input
[1]

Node Transistor Output
[2][4] [9] [5] [6] [7] [8]

0 0 1 1 Off Off Off On Hi-Z

0 1 0 1 Off Off On Off Hi-Z

1 0 1 0 On On Off On GND (0)

1 1 0 0 On On On Off VDD (1)
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Basic Logic Elements 47  
For More Information On This Product,

  Go to: www.freescale.com



Basic Logic Elements

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Half Flip Flop
(HFF)

Figure 10  shows the logic symbol and a CMOS equivalent circuit for a
half flip flop (HFF). When clock input [2] is a logic 1, transmission gate
[9] is on and transmission gate [8] is off. The half flip flop is said to be
transparent because input signal [1] passes directly to the Q [3] and
Q-bar (Q) [4] outputs. When the clock [2] is logic 0, transmission gate [8]
turns on and transmission gate [9] turns off. In this state, the half flip flop
is said to be latched. Transmission gate [8], inverter [6] and inverter [7]
form a stable “ring,” and the Q [3] and Q-bar [4] outputs remain at the
same logic level as when the clock changed from 1 to 0.

Figure 10. Half Flip Flop

[1]

[2]

[3]

[4]

[5]

[6]

[7][8]

[9]

[3]

[4]

[1]

[2]

D

C

Q

Q

HFF
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

48 Basic Logic Elements MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Basic Logic Elements
Review

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Review

Although we often think about logic levels being 0 volts or 5 volts, they
are actually ranges of voltages that are guaranteed by the MCU
manufacturer. For a specific MCU operating with VDD equal to 5.0 volts,
a logic 0 could be 0.0 to 1.5 volts and a logic 1 might be 3.5 to 5.0 volts.
Always refer to the data sheets for the MCU you are using to obtain the
voltage ranges of logic 0 and logic 1.

CMOS MCUs are made up of thousands of N-type and P-type
transistors. An N transistor is on (conducts from source to drain) when
its gate is at a logic 1 and its source is at logic 0. A P transistor is on when
its source is at logic 1 and its gate is at logic 0.

N and P transistors can be connected in various ways to perform logical
operations. Inverters, NAND gates, and NOR gates are three types of
simple logic gates. The output of an inverter is always the opposite logic
level of its input. The output of a NAND gate is logic 0 when all of its
inputs are logic 1s. The output of a NOR gate is a logic 0 when any or all
of its inputs are logic 1s.

The output of a transmission gate or a three-state buffer can be logic 0,
logic 1, or high impedance. An output is high impedance when it appears
to be not connected to anything (an open circuit).

Ahalf flip flop (HFF) has a transparent condition and a latched condition.
In the transparent condition (clock input equals logic 1), the Q output is
always equal to the logic level presented at the input. In the latched
condition (clock input equals logic 0), the output maintains the logic level
that was present when the flip flop was last in the transparent condition.
Changes in the input logic level, while the flip flop is latched, do not affect
the output logic level.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Basic Logic Elements 49  
For More Information On This Product,

  Go to: www.freescale.com



Basic Logic Elements

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

50 Basic Logic Elements MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

                    Computer Memory and Parallel I/O
   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  
Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51

Pigeon Hole Analogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52

How a Computer Sees Memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53

Kilobytes, Megabytes, and Gigabytes . . . . . . . . . . . . . . . . . . . . . . . . .54

Kinds of Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
Random Access Memory (RAM). . . . . . . . . . . . . . . . . . . . . . . . . . .55
Read-Only Memory (ROM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
Programmable ROM (PROM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55

EPROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
OTP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
EEPROM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56

I/O as a Memory Type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
Internal Status and Control Registers . . . . . . . . . . . . . . . . . . . . . . .59

Memory Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60

Memory Peripherals  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62

Review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62

Introduction

Before the operation of a CPU can be discussed in detail, some
conceptual knowledge of computer memory is required. In many
beginning programming classes, memory is presented as being similar
to a matrix of pigeon holes where you can save messages and other
information. The pigeon holes we refer to here are like the mailboxes in
a large apartment building. This is a good analogy, but it needs a little
refinement to explain the inner workings of a CPU.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Computer Memory and Parallel I/O 51  
For More Information On This Product,

  Go to: www.freescale.com



Computer Memory and Parallel I/O

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Pigeon Hole Analogy

The whole idea of any type of memory is to save information. Of course,
there is no point in saving information if you don’t have a reliable way to
recall that information when it’s needed. The array of mailboxes in a
large apartment building could be used as a type of memory storage.
You could put information into a mail box with a certain apartment
number on it. When you wanted to recall that information, you could go
to the mailbox with that address and retrieve the information.

Next, we will carry this analogy further to explain just how a computer
sees memory. We will confine our discussion to an 8-bit computer so
that we can be very specific.

In an 8-bit CPU, each pigeon hole (or mailbox) can be thought of as
containing a set of eight on/off switches. Unlike a real pigeon hole, you
cannot fit more information in by writing smaller, and there is no such
thing as an empty pigeon hole (the eight switches are either on or off).
The contents of a memory location can be unknown or undefined at a
given time, just as the switches in the pigeon holes may be in an
unknown state until you set them the first time. The eight switches would
be in a row where each switch represents a single binary digit (bit). A
binary 1 corresponds to the switch being on, and a binary 0 corresponds
to the switch being off. Each pigeon hole (memory location) has a unique
address so that information can be stored and reliably retrieved.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

52 Computer Memory and Parallel I/O MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Computer Memory and Parallel I/O
How a Computer Sees Memory

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

In an apartment building, the addresses of the mailboxes might be
100–175 for the first floor, 200–275 for the second floor, etc. These are
decimal numbers that have meaning for people. As we discussed earlier,
computers work in the binary number system. A computer with four
address wires could uniquely identify 16 addresses because a set of four
1s and 0s can be arranged in 16 different combinations. This computer
would identify the addresses of the 16 memory locations (mailboxes)
with the hexadecimal values $0 through $F.

In the smallest MC68HC05 microcontrollers, their 10 address lines allow
these computers to address 1024 unique memory locations. In
comparison, the MC68HC11 general-purpose 8-bit microcontroller has
16 address lines, which means it can address 65,536 unique memory
locations.

How a Computer Sees Memory

An 8-bit computer with 10 address lines sees memory as a continuous
row of 1024, 8-bit values. The first memory location has the address
00 0000 00002 and the last location has the address 11 1111 11112.
These 10-bit addresses are normally expressed as two 8-bit numbers
that are in turn expressed as four hexadecimal digits. In hexadecimal
notation, these addresses would range from $0000 to $03FF.

The computer specifies which memory location is being accessed (read
from or written to) by putting a unique combination of 1s and 0s on the
10 address lines. The intention to read the location or write to the
location is signalled by placing a 1 (read) or a 0 (write) on a line called
read/write (R/W). The information from or for the memory location is
carried on eight data lines.

To a computer any memory location can be written to or read from. Not
all memory types are writable, but it is the job of the programmer to know
this, not the computer. If a programmer erroneously instructs the
computer to write to a read-only memory, it will try to do so.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Computer Memory and Parallel I/O 53  
For More Information On This Product,

  Go to: www.freescale.com



Computer Memory and Parallel I/O

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Kilobytes, Megabytes, and Gigabytes

The smallest unit of computer memory is a single bit that can store one
value of 0 or 1. These bits are grouped into sets of eight bits to make one
byte . Larger computers further group bits into sets of 16 or 32 to make
a unit called a word . The size of a word can be different for different
computers.

In the decimal world, we sometimes express very small or very large
numbers by including a prefix such as milli, kilo, etc., before the unit of
measure. In the binary world, we use similar prefixes to describe large
amounts of memory. In the decimal system, the prefix kilo means 1000
(or 103) times a value. In the binary system, the integer power of 2 that
comes closest to 100010 is 210 = 102410. We say kilobytes but we mean
Kbytes which are multiples of 102410 bytes. Although this is sloppy
scientific terminology, it has become a standard through years of use.

A megabyte is 220 or 1,048,57610 bytes. A gigabyte is 230 or
1,073,741,82410 bytes. A personal computer with 32 address lines can
theoretically address 4 gigabytes (4,294,967,29610) of memory. The
small microcontrollers discussed in this textbook have only about 512
bytes to 16 kilobytes of memory.

Kinds of Memory

Computers use several kinds of information that require different kinds
of memory. The instructions that control the operation of a
microcontroller are stored in a non-volatile memory so the system does
not have to be reprogrammed after power has been off. Working
variables and intermediate results need to be stored in a memory that
can be written quickly and easily during system operation. It is not
important to remember this kind of information when there is no power,
so a volatile form of memory can be used. These types of memory are
changed (written) and read only by the CPU in the computer.

Like other memory information, input data is read by the CPU and output
data is written by the CPU. I/O (input/output) and control registers are
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

54 Computer Memory and Parallel I/O MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Computer Memory and Parallel I/O
Kinds of Memory

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

also a form of memory to the computer, but they are different than other
kinds of memory because the information can be sensed and/or
changed by something other than the CPU.

Random Access
Memory (RAM)

RAM is a volatile form of memory that can be read or written by the CPU.
As its name implies, RAM locations may be accessed in any order. This
is the most common type of memory in a personal computer. RAM
requires a relatively large amount of area on an integrated circuit chip.
Because of the relatively large chip area (and thus higher cost), usually
only small amounts of RAM are included in microcontroller chips.

Read-Only
Memory (ROM)

ROM gets its information during the manufacturing process. The
information must be provided by the customer before the integrated
circuit, that will contain this information, is made. When the finished
microcontroller is used, this information can be read by the CPU but
cannot be changed. ROM is considered a non-volatile memory because
the information does not change if power is turned off. ROM is the
simplest, smallest, and least expensive type of non-volatile memory.

Programmable
ROM (PROM)

PROM is similar to ROM except that it can be programmed after the
integrated circuit is made. Some variations of PROM include:

• Erasable PROM (EPROM)

• One-time-programmable PROM (OTP)

• Electrically erasable PROM (EEPROM)

EPROM EPROM can be erased by exposing it to an ultraviolet light source.
Microcontrollers with EPROM that can be erased have a small quartz
window that allows the integrated circuit chip inside to be exposed to the
ultraviolet light. The number of times an EPROM can be erased and
reprogrammed is limited to a few hundred cycles, depending on the
particular device.

A special procedure is used to program information into an EPROM
memory. Most EPROM microcontrollers also use an additional power
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Computer Memory and Parallel I/O 55  
For More Information On This Product,

  Go to: www.freescale.com



Computer Memory and Parallel I/O

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

supply, such as +12 Vdc, during the EPROM programming operation.
The CPU cannot simply write information to an EPROM location the way
it would write to a RAM location.

Some microcontrollers have built-in EPROM programming circuits so
that the CPU in the microcontroller can program EPROM locations.
When the EPROM is being programmed, it is not connected to the
address and data buses the way a normal memory would be. In the
pigeon hole analogy, this would be like removing the entire rack of
mailboxes and taking it to a warehouse where the boxes would be filled
with information. While the mailboxes are away being programmed, the
people at the apartment building cannot access the mailboxes.

Some EPROM microcontrollers (not the MC68HC705J1A) have a
special mode of operation that makes them appear to be an industry
standard EPROM memory. These devices can be programmed with a
general-purpose commercial EPROM programmer.

OTP When an EPROM microcontroller is packaged in an opaque plastic
package, it is called a one-time programmable or OTP microcontroller.
Since ultraviolet light cannot pass through the package, the memory
cannot be erased. The integrated circuit chip inside an OTP MCU is
identical to that in the quartz window package. The plastic package is
much less expensive than a ceramic package with a quartz window.
OTP MCUs are ideal for quick turn around, first production runs, and low
volume applications.

EEPROM EEPROM can be erased electrically by commands in a microcontroller.
To program a new value into a location, you must first erase the location
and then perform a series of programming steps. This is somewhat more
complicated than changing a RAM location that can simply be written to
a new value by the CPU. The advantage of EEPROM is that it is a
non-volatile memory. EEPROM does not lose its contents when power
is turned off. Unlike RAM memory, the number of times you can erase
and reprogram an EEPROM location is limited (typically to 10,000
cycles). The number of times you can read an EEPROM location is not
limited.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

56 Computer Memory and Parallel I/O MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Computer Memory and Parallel I/O
Kinds of Memory

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

I/O as a Memory
Type

I/O status and control information is a type of memory location that
allows the computer system to get information to or from the outside
world. This type of memory location is unusual because the information
can be sensed and/or changed by something other than the CPU.

The simplest kinds of I/O memory locations are basic input ports and
output ports. In an 8-bit MCU, a simple input port consists of eight pins
that can be read by the CPU. A simple output port consists of eight pins
that the CPU can control (write to). In practice, a simple output port
location is usually implemented with eight latches and feedback paths
that allow the CPU to read back what was previously written to the
address of the output port.

Figure 11 shows the equivalent circuits for one bit of RAM, one bit of an
input port, and one bit of a typical output port having read-back
capability. In a real MCU, these circuits would be repeated eight times to
make a single 8-bit RAM location, input port, or output port. The half flip
flops (HFF) in Figure 11 are very simple transparent flip flops. When the
clock signal is high, data passes freely from the D input to the Q and
Q-bar outputs. When the clock input is low, data is latched at the Q and
Q-bar outputs.

When the CPU stores a value to the address that corresponds to the
RAM bit in Figure 11 (a), the WRITE signal is activated to latch the data
from the data bus line into the flip flop [1]. This latch is static and
remembers the value written until a new value is written to this location
or power is removed. When the CPU reads the address of this RAM bit,
the READ signal is activated, which enables the multiplexer at [2]. This
multiplexer couples the data from the output of the flip flop onto the data
bus line. In a real MCU, RAM bits are much simpler than shown here,
but they are functionally equivalent to this circuit.

When the CPU reads the address of the input port shown in Figure 11
(b), the READ signal is activated, which enables the multiplexer at [3].
The multiplexer couples the buffered data from the pin onto the data bus
line. A write to this address would have no meaning.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Computer Memory and Parallel I/O 57  
For More Information On This Product,

  Go to: www.freescale.com



Computer Memory and Parallel I/O

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Figure 11. Memory and I/O Circuitry

When the CPU stores a value to the address that corresponds to the
output port in Figure 11  (c), the WRITE signal is activated to latch the
data from the data bus line into the half flip flop [4]. The output of this
latch, which is buffered by the buffer driver at [5], appears as a digital
level on the output pin. When the CPU reads the address of this output
port, the READ signal is activated, which enables the multiplexer at [6].
This multiplexer couples the data from the output of the half flip flop onto
the data bus line.

(c)  Output Port with Read-Back

HFF

D

C

Q DIGITAL
OUTPUT

PIN

READ

WRITE

[6]

[4]

Q

DATA BIT n
(n = 0, 1. . .or 7)

BUFFER – DRIVER

[5]

(b)  Input Port Bit

DIGITAL
INPUT

PIN

READ
[3]

DATA BIT n
(n = 0, 1. . .or 7)

BUFFER

(a)  RAM Bit

HFF

D

C

Q

READ

WRITE

[2]

[1]
Q

DATA BIT n
(n = 0, 1. . .or 7)
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

58 Computer Memory and Parallel I/O MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Computer Memory and Parallel I/O
Kinds of Memory

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Internal Status and
Control Registers

Internal status and control registers are just specialized versions of I/O
memory locations. Instead of sensing and controlling external pins,
status and control registers sense and control internal logic level signals.

Look at Figure 11 and compare the RAM bit to the output port. The only
difference is that the output bit has a buffer to connect the state of the
half flip flop to an external pin. In the case of an internal control bit, the
buffer output is connected to some internal control signal rather than an
external pin. An internal status bit is like an input port bit except that the
signal that is sensed during a read is an internal signal rather than an
external pin.

M68HC05 microcontrollers include general-purpose parallel I/O pins.
The direction of each pin is programmable by a software-accessible
control bit. Figure 12 shows the logic for a bidirectional I/O pin, including
an output port latch and a data direction control bit.

A port pin is configured as an output if its corresponding DDR (data
direction register) bit is set to a logic 1. A pin is configured as an input if
its corresponding DDR bit is cleared to a logic 0. At power-on or reset,
all DDR bits are cleared, which configure all port pins as inputs. The
DDRs are capable of being written to or being read by the processor.

Figure 12. I/O Port with Data Direction Control

HFF

D

C

Q
DIGITAL
I/O

PIN

READ
PORT

WRITE
PORT

Q

DATA BIT n
(n = 0, 1. . .or 7)

BUFFER – DRIVER

BUFFER

HFF

D

C

Q

READ
DDR BIT

WRITE
DDR BIT

Q

M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Computer Memory and Parallel I/O 59  
For More Information On This Product,

  Go to: www.freescale.com



Computer Memory and Parallel I/O

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Memory Maps

Since there are a thousand or more memory locations in an MCU
system, it is important to have a convenient way to keep track of where
things are. A memory map is a pictorial representation of the total MCU
memory space. Figure 14 is a typical memory map showing the memory
resources in the MC68HC705J1A.

The 4-digit hexadecimal values along the left edge of Figure 14  are
addresses beginning with $0000 at the top and increasing to $07FF at
the bottom. $0000 corresponds to the first memory location (selected
when the CPU drives all address lines of the internal address bus to logic
0). $07FF corresponds to the last memory location selected (when the
CPU drives all 11 address lines of the internal address bus to logic 1).
The labels within the vertical rectangle identify what kind of memory
(RAM, EPROM, I/O registers, etc.) resides in a particular area of
memory.

Some areas, such as I/O registers, need to be shown in more detail
because it is important to know the names of each individual location.
The whole vertical rectangle can be interpreted as a row of 2048 pigeon
holes (memory locations). Each of these 2048 memory locations
contains eight bits of data as shown in Figure 13 .

Figure 13. Expanded Detail of One Memory Location

The first 256 memory locations ($0000–$00FF) can be accessed by the
computer in a special way called direct addressing mode. Addressing
modes are discussed in greater detail in M68HC05 Instruction Set . In
direct addressing mode, the CPU assumes that the upper two
hexadecimal digits of address are 0; thus, only the two low-order digits
of the address need to be explicitly given in the instruction. On-chip I/O
registers and 64 bytes of RAM are located in the $0000–$00FF area of
memory.

$04PORT A DATA DIRECTION REGISTER

DDRA7 DDRA6 DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

60 Computer Memory and Parallel I/O MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Computer Memory and Parallel I/O
Memory Maps

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Figure 14. Typical Memory Map

$0000

$001F
$0020

$00BF
$00C0

$00FF
$0100

$02FF
$0300

$07CF
$07D0

$07FF

I/O
32 Bytes

Unused
160 Bytes

Unused
512 Bytes

User EPROM
1232 Bytes

User & Stack
RAM

64 Bytes

Port B Data Register $01

$02

$03

$04

$05

$06

$07

$08

$09

$0A

$0B

$0C

$0D

$0E

$0F

$10

$11

$12

$13

$14

$15

$16

$17

$18

$19

$1A

$1B

$1C

$1D

$1E

Reserved $1F

COP Register $07F0

Mask Option Register $07F1

Reserved $07F7

$07F8

$07F9

$07FA

$07FB

$07FC

$07FD

RESET Vector (High Byte) $07FE

RESET Vector (Low Byte) $07FF

Test ROM — 2 Bytes

User Vectors
(EPROM)
16 Bytes

$07EE
$07EF
$07F0

Port A Data Register $00

Unused

Unused

Unused

Unused

Unused

Unused

EPROM Programming Register

Unused

Unused

Unused

Unused

Unused

Unused

Port B Pulldown Register

Port A Pulldown Register

Unused

Unused

Unused

Unused

Unused

IRQ Status & Control Register

Timer Counter Register

Timer Status & Control

Unused

Unused

Port B Data Direction Register

Port A Data Direction Register

Unused

Unused

SWI Vector (High Byte)

SWI Vector (Low Byte)

IRQ Vector (High Byte)

IRQ Vector (Low Byte)

Timer Vector (High Byte)

Timer Vector (Low Byte)

$07ED

Unimplemented
30 Bytes

$07F2Reserved

See Figure 13
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Computer Memory and Parallel I/O 61  
For More Information On This Product,

  Go to: www.freescale.com



Computer Memory and Parallel I/O

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

In the memory map (Figure 14 ), the expansion of the I/O area of
memory identifies each register location with the two low-order digits of
its address rather than the full 4-digit address. For example, the 2-digit
hexadecimal value $00 appears to the right of the port A data register,
which is actually located at address $0000 in the memory map.

Memory Peripherals

Memories can be a form of peripheral. The uses for different types of
memory were discussed earlier, but the logic required to support these
memories was not considered. ROM and RAM memories are
straightforward and require no support logic — other than address-select
logic — to distinguish one location from another. This select logic is
provided on the same chip as the memory itself.

EPROM (erasable PROM) and EEPROM (electrically erasable PROM)
memories require support logic for programming (and erasure in the
case of EEPROM). For example, the peripheral support logic in the
MC68HC705J1A is like having a PROM programmer built into the MCU.
A control register includes control bits to select between programming
and reading modes and to enable the high-voltage programming power
supply.

Review

We can think of computer memory as an array of mailboxes, but a
computer views memory as a series of 8-bit values.

If a computer has n address lines, it can uniquely address 2n memory
locations. A computer with 11 address lines can address 211, or 204810
locations.

NOTE: One kilobyte (written 1 Kbyte) is equal to 102410 bytes.

Kinds of Memory
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

62 Computer Memory and Parallel I/O MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Computer Memory and Parallel I/O
Review

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

• RAM — Random access memory can be read or written by a
CPU. Contents are remembered as long as power is applied.

• ROM — Read-only memory can be read but not changed. The
contents must be determined before the integrated circuit is
manufactured. Power is not required for ROM to remember its
contents.

• EPROM — Erasable programmable ROM can be changed by
erasing it with an ultraviolet light and then programming it with a
new value. The erasure and programming operations can be
performed a limited number of times after the integrated circuit is
manufactured. Power is not required for EPROM to remember its
contents.

• OTP — The chip in a one-time-programmable EPROM is identical
to that in an EPROM, but it is packaged in an opaque package.
Since ultraviolet light cannot get through the package, this
memory cannot be erased after it is programmed.

• EEPROM — Electrically erasable PROM can be changed using
electrical signals and remembers its contents even when no
power is applied. Typically, an EEPROM location can be erased
and reprogrammed up to 10,000 times before it wears out.

• I/O — I/O, control, and status registers are a special kind of
memory because the information can be sensed and/or changed
by something other than the CPU.

• Non-Volatile Memory — Non-volatile memory remembers its
contents even when there is no power.

• Volatile Memory  — Volatile memory forgets its contents when
power is turned off.

NOTE: Memory Map — A memory map is a pictorial view of all of the memory
locations in a computer system.

The first 256 locations in a microcontroller system can be accessed in a
special way called direct addressing mode . In direct addressing mode,
the CPU assumes the high order byte of the address is $00 so it does
not have to be explicitly given in a program (saving the space it would
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Computer Memory and Parallel I/O 63  
For More Information On This Product,

  Go to: www.freescale.com



Computer Memory and Parallel I/O

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

have taken and eliminating the clock cycle it would have required to
fetch it).

Specialty memories such as EPROM and EEPROM can be considered
peripherals in a computer system. Support circuitry and programming
controls are required to modify the contents of these memories. This
differs from simple memories such as RAM that can be read or written in
a single CPU clock cycle.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

64 Computer Memory and Parallel I/O MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

Computer Architecture
   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  
Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66

Computer Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66

CPU Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67

Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69

CPU View of a Program  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70

CPU Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
Detailed Operation of CPU Instructions  . . . . . . . . . . . . . . . . . . . . .73

Store Accumulator (Direct Addressing Mode). . . . . . . . . . . . . . .74
Load Accumulator (Immediate Addressing Mode) . . . . . . . . . . .75
Conditional Branch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
Subroutine Calls and Returns . . . . . . . . . . . . . . . . . . . . . . . . . . .76

Playing Computer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80

Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
RESET Pin  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
Watchdog Timer Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
Illegal Address Reset  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87

Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
External Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91
On-Chip Peripheral Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
Software Interrupt (SWI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
Interrupt Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
Nested Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93

Review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Computer Architecture 65  
For More Information On This Product,

  Go to: www.freescale.com



Computer Architecture

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Introduction

This chapter takes us into the very heart of a computer to see what
makes it work. This will be a more detailed look than you normally need
to use an MCU, but it will help you understand why some things are done
in a certain way.

Everything the CPU does is broken down into sequences of simple
steps. For instance, a clock oscillator generates a CPU clock that is used
to step the CPU through these sequences. The CPU clock is very fast in
human terms, so things seem to be happening almost instantaneously.
By going through these sequences step by step, you will gain a working
understanding of how a computer executes programs. You will also gain
valuable knowledge of a computer’s capabilities and limitations.

Computer Architecture

Motorola M68HC05 and M68HC11 8-bit MCUs  have a specific
organization that is called a Von Neumann architecture after an
American mathematician of the same name. In this architecture, a CPU
and a memory array are interconnected by an address bus and a data
bus. The address bus is used to identify which memory location is being
accessed, and the data bus  is used to convey information either from
the CPU to the memory location  (pigeon hole) or from the memory
location to the CPU.

In the Motorola implementation of this architecture, there are a few
special pigeon holes (called CPU registers) inside the CPU, which act as
a small scratch pad and control panel for the CPU. These CPU registers
are similar to memory, in that information can be written into them and
remembered. However, it is important to remember that these registers
are directly wired into the CPU and are not part of the addressable
memory available to the CPU.

All information (other than the CPU registers) accessible to the CPU is
envisioned (by the CPU) to be in a single row of a thousand or more
pigeon holes. This organization is sometimes called a memory-mapped
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

66 Computer Architecture MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Computer Architecture
Computer Architecture

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

I/O system because the CPU treats all memory locations alike whether
they contain program instructions, variable  data, or input-output  (I/O)
controls. There are other computer architectures, but this textbook is not
intended to explore those variations.

Fortunately, the Motorola M68HC05 architecture we are discussing here
is one of the easiest to understand and use. This architecture
encompasses the most important ideas of digital binary computers; thus,
the information presented in this textbook will be applicable even if you
go on to study other architectures.

The number of wires in the address bus determines the total possible
number of pigeon holes; the number of wires in the data bus determines
the amount of information that can be stored in each pigeon hole.

In the MC68HC705J1A, for example, the address bus has 11 lines,
making a maximum of 2048 separate pigeon holes (in MCU jargon you
would say this CPU can access 2-K locations). Since the data bus in the
MC68HC705J1A is eight bits, each pigeon hole can hold one byte of
information. One byte is eight binary digits, or two hexadecimal digits, or
one ASCII character, or a decimal value from 0 to 255.

CPU Registers Different CPUs have different sets of CPU registers. The differences are
primarily the number and size of the registers. Figure 15 shows the CPU
registers found in an M68HC05. While this is a relatively simple set of
CPU registers, it is representative of all types of CPU registers and can
be used to explain all of the fundamental concepts. This chapter
provides a brief description of the M68HC05 registers as an introduction
to CPU architecture in general. M68HC05 Instruction Set  addresses
the instruction set of the M68HC05 and includes more detailed
information about M68HC05 registers.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Computer Architecture 67  
For More Information On This Product,

  Go to: www.freescale.com



Computer Architecture

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Figure 15 . M68HC05 CPU Registers

The A register, an 8-bit scratch-pad register, is also called an
accumulator because it is often used to hold one of the operands or the
result of an arithmetic operation.

The X register is an 8-bit index register, which can also serve as a simple
scratch pad. The main purpose of an index register is to point at an area
in memory where the CPU will load (read) or store (write) information.
Sometimes an index register is called a pointer register . We will learn
more about index registers when we discuss indexed addressing
modes.

The program counter (PC) register is used by the CPU to keep track of
the address of the next instruction to be executed. When the CPU is
reset (starts up), the PC is loaded from a specific pair of memory
locations called the reset vector . The reset vector locations contain the
address of the first instruction that will be executed by the CPU. As
instructions are executed, logic in the CPU increments the PC such that
it always points to the next piece of information that the CPU will need.
The number of bits in the PC exactly matches the number of wires in the
address bus. This determines the total potentially available memory
space that can be accessed by a CPU. In the case of an

CARRY

ZERO

NEGATIVE

I INTERRUPT MASK

HALF-CARRY (FROM BIT 3)

CCR

PC

SP

X

A

PROGRAM COUNTER

STACK POINTER

ACCUMULATOR

CONDITION CODE REGISTER H I N Z C

7 0

7 0

0

0

15

INDEX REGISTER7

10

7

0 0

0

1 1

9

0 0 0

1 1 1

4 3 2 1

5

0 0
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

68 Computer Architecture MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Computer Architecture
Timing

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

MC68HC705J1A, the PC is 11 bits long; therefore, its CPU can access
up to 2 Kbytes (2048 bytes) of memory. Values for this register are
expressed as four hexadecimal digits where the upper-order five bits of
the corresponding 16-bit binary address are always 0.

The condition code register (CCR) is an 8-bit register, holding status
indicators that reflect the result of some prior CPU operation. The three
high-order bits of this register are not used and always equal logic 1.
Branch instructions  use the status bits to make simple either/or
decisions.

The stack pointer (SP) is used as a pointer to the next available location
in a last-in-first-out (LIFO) stack. The stack  can be thought of as a pile
of cards, each holding a single byte of information. At any given time, the
CPU can put a card on top of the stack or take a card off the stack. Cards
within the stack cannot be picked up unless all the cards piled on top are
removed first. The CPU accomplishes this stack effect by way of the SP.
The SP points to a memory location (pigeon hole), which is thought of as
the next available card. When the CPU pushes a piece of data onto the
stack, the data value is written into the pigeon hole pointed to by the SP,
and the SP is then decremented so it points at the next previous memory
location (pigeon hole). When the CPU pulls a piece of data off the stack,
the SP is incremented so it points at the most recently used pigeon hole,
and the data value is read from that pigeon hole. When the CPU is first
started up or after a reset stack pointer (RSP) instruction, the SP points
to a specific memory location in RAM (a certain pigeon hole).

Timing

A high-frequency clock  source (typically derived from a crystal
connected to the MCU) is used to control the sequencing of CPU
instructions. Typical MCUs divide the basic crystal frequency by two or
more to arrive at a bus-rate clock. Each memory read or write takes one
bus-rate clock cycle. In the case of the MC68HC705J1A MCU, a 4-MHz
(maximum) crystal oscillator clock is divided by two to arrive at a 2-MHz
(maximum) internal processor clock. Each substep of an instruction
takes one cycle of this internal bus-rate clock (500 ns). Most instructions
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Computer Architecture 69  
For More Information On This Product,

  Go to: www.freescale.com



Computer Architecture

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

take two to five of these substeps; thus, the CPU is capable of executing
more than 500,000 instructions every second.

CPU View of a Program

Listing 1. Example Program  is a listing of a small example program
that we will use in our discussion of a CPU. The chapter on programming
provides detailed information on how to write programs. A program
listing provides much more information than the CPU needs because
humans also need to read and understand programs. The first column in
the listing shows four digit hexadecimal addresses. The next few
columns show 8-bit values (the contents of individual memory locations).
The rest of the information in the listing is for the benefit of humans who
need to read the listing. The meaning of all this information will be
discussed in greater detail in the chapter entitled Programming .

Figure 16  is a memory map of the MC68HC705J1A, showing how the
example program fits in the memory of the MCU. This figure is the same
as Figure 14  except that a different portion of the memory space has
been expanded to show the contents of all locations in the example
program.

Figure 16  shows that the CPU sees the example program as a linear
sequence of binary codes, including instructions and operands  in
successive memory locations. An operand is any value other than the
opcode that the CPU needs to complete the instruction. The CPU begins
this program with its program counter (PC) pointing at the first byte in the
program. Each instruction opcode tells the CPU how many (if any) and
what type of operands go with that instruction. In this way, the CPU can
remain aligned to instruction boundaries even though the mixture of
opcodes and operands looks confusing to us.

Most application programs  would be located in ROM, EPROM, or
OTPROM, although there is no special requirement that instructions
must be in a ROM-type memory to execute. As far as the CPU is
concerned, any program is just a series of binary bit patterns that are
sequentially processed.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

70 Computer Architecture MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Computer Architecture
CPU View of a Program

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Listing 1. Example Program

                *******************************************************
                * Simple 68HC05 Program Example                       *
                * Read state of switch at port A bit-0; 1=closed      *
                * When sw. closes, light LED for about 1 sec; LED on  *
                * when port A bit-7 = 0. Wait for sw release,         *
                * then repeat. Debounce sw 50mS on & off              *
                * NOTE: Timing based on instruction execution times   *
                *  If using a simulator or crystal less than 4MHz,    *
                *  this routine will run slower than intended         *
                *******************************************************
                $BASE   10T                 ;Tell assembler to use decimal
                                            ;unless $ or %  before value
0000           PORTA    EQU    $00          ;Direct address of port A
0004            DDRA     EQU    $04           ;Data direction control, port A
00E0            TEMP1    EQU    $C0           ;One byte temp storage location

0300                    ORG    $0300         ;Program will start at $0300

0300  A6 80     INIT    LDA    #$80          ;Begin initialization
0302  B7 00             STA    PORTA         ;So LED will be off
0304  B7 04             STA    DDRA          ;Set port A bit-7 as output
                * Rest of port A is configured as inputs

0306  B6 00     TOP     LDA    PORTA         ;Read sw at LSB of Port A
0308  A4 01             AND    #$01          ;To test bit-0
030A  27 FA             BEQ    TOP           ;Loop till Bit-0 = 1
030C  CD 03 23          JSR    DLY50         ;Delay about 50 mS to debounce
030F  1F 00             BCLR   7,PORTA       ;Turn on LED (bit-7 to zero)
0311  A6 14             LDA    #20           ;Decimal 20 assembles to $14
0313  CD 03 23  DLYLP   JSR    DLY50         ;Delay 50 ms
0316  4A                DECA                 ;Loop counter for 20 loops
0317  26 FA             BNE    DLYLP         ;20 times (20-19,19-18,...1-0)
0319  1E 00             BSET   7,PORTA       ;Turn LED back off
031B  00 00 FD  OFFLP   BRSET  0,PORTA,OFFLP ;Loop here till sw off
031E  CD 03 23          JSR    DLY50         ;Debounce release
0321  20 E3             BRA    TOP           ;Look for next sw closure

                ***
                * DLY50 — Subroutine to delay ~50ms
                * Save original accumulator value
                * but X will always be zero on return
                ***

0323  B7 C0     DLY50   STA    TEMP1         ;Save accumulator in RAM
0325  A6 41             LDA    #65           ;Do outer loop 65 times
0327  5F        OUTLP   CLRX                 ;X used as inner loop count
0328  5A        INNRLP  DECX                 ;0-FF, FF-FE,...1-0 256 loops
0329  26 FD             BNE    INNRLP        ;6cyc*256*500ns/cyc = 0.768ms
032B  4A                DECA                 ;65-64, 64-63,...1-0
032C  26 F9             BNE    OUTLP         ;1545cyc*65*500ns/cyc=50.212ms
032E  B6 C0             LDA    TEMP1         ;Recover saved Accumulator val
0330  81                RTS                  ;Return
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Computer Architecture 71  
For More Information On This Product,

  Go to: www.freescale.com



Computer Architecture

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Figure 16. Memory Map of Example Program

$0000

$001F
$0020

$00BF
$00C0

$00FF
$0100

$02FF
$0300

$07ED
$07EE

$07FF

I/O
32 Bytes

Unused
160 Bytes

Unused
512 Bytes

User EPROM
1232 Bytes

Stack RAM
64 Bytes

$0301
$0302
$0303
$0304
$0305
$0306
$0307
$0308
$0309
$030A
$030B
$030C
$030D
$030E
$030F
$0310
$0311
$0312
$0313
$0314
$0315
$0316
$0317
$0318
$0319
$031A
$031B
$031C
$031D
$031E
$031F

Test ROM

User Vectors
(EPROM)
16 Bytes

$07EF
$07F0

$0300

$80
$B7
$00
$B7
$04
$B6
$00
$A4
$01
$27
$FA
$CD
$03
$23
$1F
$00
$A6
$14
$CD
$03
$23
$4A
$26
$FA
$1E
$00
$00
$00
$FD
$CD
$03

$A6

$0320
$0321
$0322
$0323
$0324
$0325
$0326
$0327
$0328
$0329
$032A
$032B
$032C
$032D
$032E
$032F

$23
$20
$E3
$B7
$C0
$A6
$41
$5F
$5A
$26
$FD
$4A
$26
$F9
$B6
$C0

$0330$81

Example
Program

$0330
$0331

$0323
$0324

$B7
$C0

Unimplemented
30 Bytes

$07CF
$07D0
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

72 Computer Architecture MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Computer Architecture
CPU Operation

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Carefully study the program listing in Listing 1. Example Program and
the memory map of Figure 16 . Find the first instruction of the DLY50
subroutine in the example program and then find the same two bytes in
Figure 16 .

You should have found this line from near the bottom of
Listing 1. Example Program .

0323 B7 C0 DLY50 STA TEMP1 ;Save accumulator in RAM

The highlighted section of memory at the right side of Figure 16  is the
area you should have identified.

CPU Operation

This section first discusses the detailed operation of CPU instructions
and then explains how the CPU executes an example program. The
detailed descriptions of typical CPU instructions are intended to make
you think like a CPU. We will then go through an example program using
a teaching technique called “playing computer” in which you pretend you
are the CPU interpreting and executing the instructions in a program.

Detailed
Operation of CPU
Instructions

Before seeing how the CPU executes programs, it would help to know
(in detail) how the CPU breaks down instructions into fundamental
operations and performs these tiny steps to accomplish a desired
instruction. As we will see, many small steps execute quickly and
accurately within each instruction, but none of the small steps is too
complicated.

The logic circuitry inside the CPU would seem straightforward to a
design engineer accustomed to working with TTL (transistor-transistor
logic) logic or even relay logic. What sets the MCU and its CPU apart
from these other forms of digital logic is the packing density. Very large
scale integration (VLSI) techniques have made it possible to fit the
equivalent of thousands of TTL integrated circuits on a single silicon die.
By arranging these logic gates to form a CPU, you can get a
general-purpose instruction executor capable of acting as a universal
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Computer Architecture 73  
For More Information On This Product,

  Go to: www.freescale.com



Computer Architecture

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

black box . By placing different combinations of instructions in the
device, it can perform virtually any definable function.

A typical instruction takes two to five cycles of the internal processor
clock. Although it is not normally important to know exactly what
happens during each of these execution cycles, it will help to go through
a few instructions in detail to understand how the CPU works internally.

Store
Accumulator
(Direct Addressing
Mode)

Look up the STA instruction in Instruction Set Details . In the table at
the bottom of the page, we see that $B7 is the direct (DIR) addressing
mode version of the store accumulator instruction. We also see that the
instruction requires two bytes, one to specify the opcode ($B7) and the
second to specify the direct address  where the accumulator will be
stored. (The two bytes are shown as B7 dd in the machine code column
of the table.)

We will discuss the addressing modes in more detail in another chapter,
but the following brief description will help in understanding how the CPU
executes this instruction. In direct addressing modes, the CPU assumes
the address is in the range of $0000 through $00FF; thus, there is no
need to include the upper byte of the address of the operand in the
instruction (since it is always $00).

The table at the bottom of the STA page shows that the direct
addressing version of the STA instruction takes four CPU cycles to
execute. During the first cycle, the CPU puts the value from the program
counter on the internal address bus and reads the opcode $B7, which
identifies the instruction as the direct addressing version of the STA
instruction and advances the PC to the next memory location.

During the second cycle, the CPU places the value from the PC on the
internal address bus and reads the low-order byte of the direct address
($00 for example). The CPU uses the third cycle of this STA instruction
to internally construct the full address where the accumulator is to be
stored and advances the PC so it points to the next address in memory
(the address of the opcode of the next instruction).

In this example, the CPU appends the assumed value $00 (because of
direct addressing mode) to the $00 that was read during the second
cycle of the instruction to arrive at the complete address $0000. During
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

74 Computer Architecture MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Computer Architecture
CPU Operation

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

the fourth cycle of this instruction, the CPU places this constructed
address ($0000) on the internal address bus, places the accumulator
value on the internal data bus, and asserts the write signal. That is, the
CPU writes the contents of the accumulator to $0000 during the fourth
cycle of the STA instruction.

While the accumulator was being stored, the N and Z bits in the condition
code register were set or cleared according to the data that was stored.
The Boolean logic formulae for these bits appear near the middle of the
instruction set page. The Z bit will be set if the value stored was $00;
otherwise, the Z bit will be cleared. The N bit will be set if the most
significant bit of the value stored was a logic 1; otherwise, N will be
cleared.

Load
Accumulator
(Immediate
Addressing Mode)

Next, look up the LDA instruction in the instruction set appendix. The
immediate addressing mode (IMM) version of this instruction appears as
A6 ii  in the machine code column of the table at the bottom of the
page. This version of the instruction takes two internal processor clock
cycles to execute.

The $A6 opcode tells the CPU to get the byte of data that immediately
follows the opcode and put this value in the accumulator. During the first
cycle of this instruction, the CPU reads the opcode $A6 and advances
the PC to point to the next location in memory (the address of the
immediate operand ii). During the second cycle of the instruction, the
CPU reads the contents of the byte following the opcode into the
accumulator and advances the PC to point at the next location in
memory (for instance, the opcode byte of the next instruction).

While the accumulator was being loaded, the N and Z bits in the
condition code register were set or cleared according to the data that
was loaded into the accumulator. The Boolean logic formulae for these
bits appear near the middle of the instruction set page. The Z bit will be
set if the value loaded into the accumulator was $00; otherwise, the Z bit
will be cleared. The N bit will be set if the most significant bit of the value
loaded was a logic 1; otherwise, N will be cleared.

The N (negative) condition code bit may be used to detect the sign of a
twos-complement  number. In twos-complement numbers, the most
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Computer Architecture 75  
For More Information On This Product,

  Go to: www.freescale.com



Computer Architecture

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

significant bit is used as a sign bit, 1 indicates a negative value, and 0
indicates a positive value. The N bit may also be used as a simple
indication of the state of the most significant bit of a binary value.

Conditional
Branch

Branch instructions allow the CPU to select one of two program flow
paths, depending upon the state of a particular bit in memory or various
condition code bits. If the condition checked by the branch instruction is
true, program flow skips to a specified location in memory. If the
condition checked by the branch is not true, the CPU continues to the
instruction following the branch instruction. Decision blocks in a
flowchart correspond to conditional branch instructions in the program.

Most branch instructions contain two bytes, one for the opcode and one
for a relative offset byte. Branch on bit clear (BRCLR) and branch on bit
set (BRSET) instructions require three bytes: the opcode, a 1-byte direct
address (to specify the memory location to be tested), and the relative
offset byte.

The relative offset byte is interpreted by the CPU as a twos-complement
signed value. If the branch condition checked is true, this signed offset
is added to the PC, and the CPU reads its next instruction from this
calculated new address. If the branch condition is not true, the CPU just
continues to the next instruction after the branch instruction.

Subroutine Calls
and Returns

The jump-to-subroutine (JSR) and branch-to-subroutine (BSR)
instructions automate the process of leaving the normal linear flow of a
program to go off and execute a set of instructions and then return to
where the normal flow left off. The set of instructions outside the normal
program flow is called a subroutine. A JSR or BSR instruction is used to
go from the running program to the subroutine. A return-from-subroutine
(RTS) instruction is used, at the completion of the subroutine, to return
to the program from which the subroutine was called.

The Listing 2. Subroutine Call Example shows lines of an assembler
listing that will be used to demonstrate how the CPU executes a
subroutine call. Assume that the stack pointer (SP) points to address
$00FF when the CPU encounters the JSR instruction at location $0302.
Assembler listings are described in greater detail in the chapter entitled
Programming .
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

76 Computer Architecture MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Computer Architecture
CPU Operation

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Listing 2. Subroutine Call Example

 “     “  “              “                “
0300  A6 02     TOP     LDA    #$02     ;Load an immediate value
0302  CD 04 00          JSR    SUBBY    ;Go do a subroutine
0305  B7 E0             STA    $E0      ;Store accumulator to RAM
0307   “  “              “                “
 “     “  “              “                “
 “     “  “              “                “
0400  4A        SUBBY   DECA            ;Decrement accumulator
0401  26 FD             BNE    SUBBY    ;Loop till accumulator=0
0403  81                RTS             ;Return to main program

Refer to Figure 17  during the following discussion. We begin the
explanation with the CPU executing the instruction LDA #$02 at address
$0300. The left side of the figure shows the normal program flow
composed of TOP LDA #$02, JSR SUBBY, and STA $E0 (in that order)
in consecutive memory locations. The right half of the figure shows
subroutine instructions SUBBY DECA, BNE SUBBY, and RTS.

Figure 17 . Subroutine Call Sequence

The CPU clock cycle numbers (in square brackets) are used as
references in the following explanation of Figure 17 .

$00

$A6$0300 $4A $0400

$02$0301

$CD$0302

$04$0303

$0304

$B7$0305

$E0$0306

$26 $0401

$FD $0402

$81 $0403

SUBBY DECA

BNE SUBBY

RTS

TOP LDA #$02

      JSR SUBBY

      STA $E0

[1]

[2]

[3]

[4]

[5]

[27]

[28]

[9]

[10]

[11]

[12]

[13]

[22]

[29]

[30]

[14]

[21]

[23]

[24]

[25]

[26]

[15]

[16]

[17]

[18]

[19]

[20]

[6]

[7]

[8]

START
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Computer Architecture 77  
For More Information On This Product,

  Go to: www.freescale.com



Computer Architecture

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

[1] CPU reads $A6 opcode from location $0300 (LDA
immediate).

[2] CPU reads immediate data $02 from location $0301 into the
accumulator.

[3] CPU reads $CD opcode from location $0302 (JSR
extended).

[4] CPU reads high-order extended address $04 from $0303.

[5] CPU reads low-order extended address $00 from $0304.

[6] CPU builds full address of subroutine ($0400).

[7] CPU writes $05 to $00FF and decrements SP to $00FE.
Another way to say this is “push low-order half of return
address on stack.”

[8] CPU writes $03 to $00FE and decrements SP to $00FD.
Another way to say this is “push high-order half of return
address on stack.” The return address that was saved on the
stack is $0305, which is the address of the instruction that
follows the JSR instruction.

[9] CPU reads $4A opcode from location $0400. This is the first
instruction of the called subroutine.

[10] The CPU uses its ALU to subtract one from the value in the
accumulator.

[11] The ALU result (A – 1) is written back to the accumulator.

[12] CPU reads BNE opcode ($26) from location $0401.

[13] CPU reads relative offset  ($FD) from $0402.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

78 Computer Architecture MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Computer Architecture
CPU Operation

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

[14] During the LDA #$02 instruction at [1], the accumulator was
loaded with the value 2; during the DECA instruction at [9],
the accumulator was decremented to 1 (which is not equal
to 0). Thus, at [14], the branch condition was true, and the
twos-complement offset ($FD or –3) was added to the
internal PC (which was $0403 at the time) to get the value
$0400.

[15] through [19] are a repeat of cycles [9] through [13] except that when
the DECA instruction at [15] was executed this time, the
accumulator went from $01 to $00.

[20] Since the accumulator is now equal to 0, the BNE [19]
branch condition is not true, and the branch will not be taken.

[21] CPU reads the RTS opcode ($81) from $0403.

[22] Increment SP to $00FE.

[23] Read high order return address ($03) from stack.

[24] Increment SP to $00FF.

[25] Read low order return address ($05) from stack.

[26] Build recovered address $0305 and store in PC.

[27] CPU reads the STA direct opcode ($B7) from location
$0305.

[28] CPU reads the low-order direct address ($E0) from location
$0306.

[29] [30] The STA direct instruction takes a total of four cycles. During
the last two cycles of the instruction, the CPU constructs the
complete address where the accumulator will be stored by
appending $00 (assumed value for the high-order half of the
address due to direct addressing mode) to the $E0 read
during [28]. The accumulator ($00 at this time) is then stored
to this constructed address ($00E0).
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Computer Architecture 79  
For More Information On This Product,

  Go to: www.freescale.com



Computer Architecture

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Playing Computer

Playing computer  is a learning exercise where you pretend to be a
CPU that is executing a program. Programmers often mentally check
programs by playing computer as they read through a software routine.
While playing computer, it is not necessary to break instructions down to
individual processor cycles. Instead, an instruction is treated as a single
complete operation rather than several detailed steps.

The following paragraphs demonstrate the process of playing computer
by going through the subroutine-call exercise of Figure 17 . The
playing-computer approach to analyzing this sequence is much less
detailed than the cycle-by-cycle analysis done earlier, but it
accomplishes the same basic goal (for instance, it shows what happens
as the CPU executes the sequence). After studying the chapter on
programming, you should attempt the same thing with a larger program.

You begin the process by preparing a worksheet like that shown in
Figure 18 . This sheet includes the mnemonic program and the machine
code that it assembles to. (You could alternately choose to use a listing
positioned next to the worksheet.) The worksheet also includes the CPU
register names across the top of the sheet. There is ample room below
to write new values as the registers change in the course of the program.

On this worksheet, there is an area for keeping track of the stack. After
you become comfortable with how the stack works, you would probably
leave this section off, but it will be instructive to leave it here for now.

As a value is saved on the stack, you will cross out any prior value and
write the new value to its right in a horizontal row. You must also update
(decrement) the SP value. Cross out any prior value and write the new
value beneath it under the SP heading at the top of the worksheet. As a
value is recovered from the stack, you would update (increment) the
value of SP by crossing out the old value and writing the new value
below it. You would then read the value from the location now pointed to
by the SP and put it wherever it belongs in the CPU (for instance, in the
upper or lower half of the PC).
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

80 Computer Architecture MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Computer Architecture
Playing Computer

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Figure 18. Worksheet for Playing Computer

0300 A6 02    TOP  LDA #$02  ;Load an immediate value
0302 CD 04 00 JSR SUBBY ;Go do a subroutine
0305 B7 02 STA $E0   ;Store accumulator to RAM
  "     "             "    "        "
  "     "             "    "        "
  "     "             "    "        "
0400 4A       SUBBYDECA ;Decrement accumulator
0401 26 FD     BNE SUBBY ;Loop till accumulator = 0
0403 81 RTS ;Return to main program

$00FC
$00FD
$00FE
$00FF

Accumulator
Cond. Codes

1 1 1 H I N Z C
Program
CounterStack Pointer

Index
Register

LISTING of PROGRAM

to be EXAMINED
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Computer Architecture 81  
For More Information On This Product,

  Go to: www.freescale.com



Computer Architecture

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Figure 19 shows how the worksheet will look after working through the
whole JSR sequence. Follow the numbers in square brackets as the
process is explained. During the process, many values were written and
later crossed out; a line has been drawn from the square bracket to
either the value or the crossed-out mark to show which item the
reference number applies to.

Figure 19. Completed Worksheet

0300 A6 02    TOP  LDA #$02  ;Load an immediate value
0302 CD 04 00 JSR SUBBY ;Go do a subroutine
0305 B7 02 STA $E0   ;Store accumulator to RAM
  "     "             "    "        "
  "     "             "    "        "
  "     "             "    "        "
0400 4A       SUBBYDECA ;Decrement accumulator
0401 26 FD     BNE SUBBY ;Loop till accumulator = 0
0403 81 RTS ;Return to main program

$00FC
$00FD
$00FE
$00FF

Accumulator
Cond. Codes

1 1 1 H I N Z C
Program
CounterStack Pointer

Index
Register

1 1 1 ? ? 0 0 ?

1 1 1 ? ? 0 1 ?

$02

$01

$00

$0300

$0302

$0400

$0401

$0400

$0401

$0403

$0305

$00FF

$00FE

$00FD

$00FE

$00FF

$03
$05

$00E0 – RAM $00

[11]

[14]

[7]

[9]

[18]

[19]

[4]

[10]

[12]

[13]

[16]

[17]

[20]

[1][2] [3] [5] [15]

[21]

[6]

[8]
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

82 Computer Architecture MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Computer Architecture
Playing Computer

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Beginning the sequence:

• The PC should be pointing to $0300 [1] and the SP should be
pointing to $00FF [2] (due to an earlier assumption).

• The CPU reads and executes the LDA #$02 instruction (load
accumulator with the immediate value $02).

• Thus, you write $02 in the accumulator column [3] and replace the
PC value [4] with $0302, which is the address of the next
instruction.

• The load accumulator instruction affects the N and Z bits in the
CCR. Since the value loaded was $02, the Z bit would be cleared,
and the N bit would be cleared [5]. This information can be found
in the Load Accumulato r fro m Memor y LDA section of the
chapter Instruction Set Detail s .

• Since the other bits in the CCR are not affected by the LDA
instruction, we have no way of knowing what they should be at this
time, so for now we put question marks in the unknown positions
[5].

Next:

• The CPU reads the JSR SUBBY instruction. Temporarily,
remember the value $0305, which is the address where the CPU
should come back to, after executing the called subroutine. The
CPU saves the low-order half of the return address on the stack.

•  Thus, you write $05 [6] at the location pointed to by the SP
($00FF) and decrement the SP [7] to $00FE.

• The CPU then saves the high-order half of the return address on
the stack.

• You write $03 [8] to $00FE and again decrement the SP [9], this
time to $00FD.

• To finish the JSR instruction, you load the PC with $0400 [10],
which is the address of the called subroutine.

• The CPU fetches the next instruction. Since the PC is $0400, the
CPU executes the DECA instruction, the first instruction in the
subroutine.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Computer Architecture 83  
For More Information On This Product,

  Go to: www.freescale.com



Computer Architecture

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

• You cross out the $02 in the accumulator column and write the
new value $01 [11].

• You also change the PC to $0401 [12].

• Because the DECA instruction changed the accumulator from $02
to $01 (which is not zero or negative), the Z bit and N bit remain
clear. Since N and Z were already cleared at [5], you can leave
them alone on the worksheet.

• The CPU now executes the BNE SUBBY instruction. Since the Z
bit is clear, the branch condition is met, and the CPU will take the
branch. Cross out the $0401 under PC and write $0400 [13].

• The CPU again executes the DECA instruction. The accumulator
is now changed from $01 to $00 [14] (which is 0 and not negative);
thus, the Z bit is set, and the N bit remains clear [15].

• The PC advances to the next instruction [16].

• The CPU now executes the BNE SUBBY instruction, but this time
the branch condition is not true (Z is set now), so the branch will
not be taken. The CPU simply falls to the next instruction (the RTS
at $0403).

• Update the PC to $0403 [17].

• The RTS instruction causes the CPU to recover the previously
stacked PC. Pull the high-order half of the PC from the stack by
incrementing the SP to $00FE [18] and by reading $03 from
location $00FE.

• Next, pull the low-order half of the address from the stack by
incrementing SP to $00FF [19] and by reading $05 from $00FF.
The address recovered from the stack replaces the value in the
PC [20].

• The CPU now reads the STA $E0 instruction from location $0305.
Program flow has returned to the main program sequence where
it left off when the subroutine was called.

• The STA (direct addressing mode) instruction writes the
accumulator value to the direct address $E0 ($00E0), which is in
the RAM of the MC68HC705J1A. We can see from the worksheet
that the current value in the accumulator is $00; therefore, all eight
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

84 Computer Architecture MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Computer Architecture
Playing Computer

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

bits of this RAM location will be cleared. Since the original
worksheet did not have a place marked for recording this value in
RAM, you would make a place and write $00 there [21].

For a larger program, the worksheet would have many more crossed out
values by the time you are done. Playing computer on a worksheet like
this is a good learning exercise, but, as a programmer gains experience,
the process would be simplified. In the programming chapter, we will see
a development tool called a simulator that automates the playing
computer process. The simulator is a computer program that runs on a
personal computer. The current contents of registers and memory
locations are displayed on the terminal display of the personal computer.

One of the first simplifications you could make to a manual worksheet
would be to quit keeping track of the PC because you learn to trust the
CPU to take care of this for you. Another simplification is to stop keeping
track of the condition codes. When a branch instruction that depends on
a condition code bit is encountered, you can mentally work backward to
decide whether or not the branch should be taken.

Next, the storage of values on the stack would be skipped, although it is
still a good idea to keep track of the SP value itself. It is fairly common
to have programming errors resulting from incorrect values in the SP. A
fundamental operating principle of the stack is that over a period of time,
the same number of items must be removed from the stack as were put
on the stack. Just as left parentheses must be matched with right
parentheses in a mathematical formula, JSRs and BSRs must be
matched one for one to subsequent RTSs in a program. Errors that
cause this rule to be broken will appear as erroneous SP values while
playing computer.

Even an experienced programmer will play computer occasionally to
solve some difficult problem. The procedure the experienced
programmer would use is much less formal than what was explained
here, but it still amounts to placing yourself in the role of the CPU and
working out what happens as the program is executed.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Computer Architecture 85  
For More Information On This Product,

  Go to: www.freescale.com



Computer Architecture

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Resets

Reset is used to force the MCU system to a known starting place
(address). Peripheral systems and many control and status bits are also
forced to a known state as a result of reset.

These internal actions occur as the result of any MCU reset:

1. All data direction registers cleared to 0 (input)

2. Stack pointer forced to $00FF

3. I bit in the CCR set to 1 to inhibit maskable interrupts

4. External interrupt latch cleared

5. STOP latch cleared

6. WAIT latch cleared

As the computer system leaves reset, the program counter is loaded
from the two highest memory locations ($07FE and $07FF in an
MC68HC705J1A). The value from $07FE is loaded into the high order
byte of the PC and the value from $07FF is loaded into the low order byte
of the PC. This is called “fetching the reset vector .” At this point, the
CPU begins to fetch and execute instructions, beginning at the address
that was stored in the reset vector.

Any of these conditions can cause the MC68HC705J1A MCU to reset:

1. External, active-low input signal on the RESET pin

2. Internal power-on reset (POR)

3. Internal computer operating properly (COP) watchdog timed out

4. An attempt to execute an instruction from an illegal address

RESET Pin An external switch or circuit can be connected to this pin to allow a
manual system reset.

Power-On Reset The power-on reset occurs when a positive transition is detected on
VDD. The power-on reset is used strictly for power turn-on conditions
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

86 Computer Architecture MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Computer Architecture
Resets

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

and should not be used to detect any drops in the power supply voltage.
A low-voltage inhibit (LVI) circuit should be used to detect loss of power.

The power-on circuitry provides for a 4064-cycle delay from the time that
the oscillator becomes active. If the external RESET pin is low at the end
of the 4064-cycle delay timeout, the processor remains in the reset
condition until RESET goes high.

Watchdog Timer
Reset

The computer operating properly (COP) watchdog timer system is
intended to detect software errors. When the COP is being used,
software is responsible for keeping a free-running watchdog timer from
timing out. If the watchdog timer times out, it is an indication that
software is no longer being executed in the intended sequence; thus, a
system reset is initiated.

A control bit in the non-volatile mask option control register can be used
to enable or disable the COP reset. If the COP is enabled, the operating
program must periodically write a 0 to the COPC bit in the COPR control
register. Refer to the MC68HC705J1A Technical Data (Motorola order
number MC68HC705J1A/D) for information about the COP timeout rate.
Some members of the M68HC05 Family have different COP watchdog
timer systems.

Illegal Address
Reset

If a program is written incorrectly, it is possible that the CPU will attempt
to jump or branch to an address that has no memory. If this happened,
the CPU would continue to read data (though it would be unpredictable
values) and attempt to act on it as if it were a program. These nonsense
instructions could cause the CPU to write unexpected data to
unexpected memory or register addresses. This situation is called
program runaway.

To guard against this runaway condition, there is an illegal address
detect circuit in the MC68HC705J1A. If the CPU attempts to fetch an
instruction from an address that is not in the EPROM ($0300–$07CF,
$07F0–$07FF), internal test ROM ($07EE–$07EF), or RAM
($00C0–$00FF), a reset is generated to force the program to start over.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Computer Architecture 87  
For More Information On This Product,

  Go to: www.freescale.com



Computer Architecture

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Interrupts

It is sometimes useful to interrupt normal processing to respond to some
unusual event. For instance, the MC68HC705J1A may be interrupted by
any of these sources:

1. A logic 0 applied to the external interrupt IRQ pin

2. A logic 1 applied to any of the PA3–PA0 pins, provided the port
interrupt function is enabled

3. A timer overflow (TOF) or real-time interrupt (RTIF) request from
the on-chip multifunctional timer system, if enabled

4. The software interrupt (SWI) instruction

If an interrupt comes while the CPU is executing an instruction, the
instruction is completed before the CPU responds to the interrupt.

Interrupts can be inhibited by setting the I bit in the condition code
register (CCR) or by clearing individual interrupt enable control bits for
each interrupt source. Reset forces the I bit to 1 and clears all local
interrupt enable bits to prevent interrupts during the initialization
procedure. When the I bit is 1, no interrupts (except the SWI instruction)
are recognized. However, interrupt sources may still register a request
that will be honored at some later time when the I bit is cleared.

Figure 20  shows how interrupts fit into the normal flow of CPU
instructions. Interrupts cause the processor registers to be saved on the
stack and the interrupt mask (I bit) to be set, to prevent additional
interrupts until the present interrupt is finished. The appropriate interrupt
vector then points to the starting address of the interrupt service routine
(Table 10 ). Upon completion of the interrupt service routine, an RTI
instruction (which is normally the last instruction of an interrupt service
routine) causes the register contents to be recovered from the stack.
Since the program counter is loaded with the value that was previously
saved on the stack, processing continues from where it left off before the
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

88 Computer Architecture MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Computer Architecture
Interrupts

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

interrupt. Figure 21  shows that registers are restored from the stack in
the opposite order they were saved.

Table 10. Vector Addresses for Resets and Interrupts
on the MC68HC705J1A

Reset or Interrupt Source Vector Address

On-Chip Timer $07F8, $07F9

IRQ or Port A Pins $07FA, $07FB

SWI Instruction $07FC, $07FD

Reset (POR, LVI, Pin, COP, or Illegal Address) $07FE, $07FF
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Computer Architecture 89  
For More Information On This Product,

  Go to: www.freescale.com



Computer Architecture

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Figure 20. Hardware Interrupt Flowchart

FROM
RESET

YES

NO

STACK
PC, X, A, CCR

YES

NO

YES

NO

CLEAR IRQ
REQUEST LATCH

SET I BIT
IN CCR

LOAD PC FROM VECTOR:
SWI: $07FC, $07FD

IRQ OR PORT A: $07FA, $07FB
TIMER: $07F8, $07F9

YES

NO

RTI INSTRUCTION ?
RESTORE REGISTERS

FROM STACK
CCR, A, X, PC

FETCH NEXT
INSTRUCTION

EXECUTE
INSTRUCTION

I BIT IN CCR SET ?

EXTERNAL INTERRUPT ?
(IRQ OR PORT A)

TIMER INTERRUPT ?

YES

NO

SWI INSTRUCTION ?
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

90 Computer Architecture MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Computer Architecture
Interrupts

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Figure 21. Interrupt Stacking Order

External Interrupts External interrupts come from the IRQ pin or from bits 3–0 of port A if port
A is configured for port interrupts. In the MC68HC705J1A MCU, the IRQ
pin sensitivity is software programmable.

In the MC68HC705J1A MCU, two choices of external interrupts are
available:

• Edge-sensitive triggering only

• Negative edge- and level-sensitive triggering

The MC68HC705J1A MCU uses a bit in an option register at location
$07F1 to configure the IRQ pin sensitivity. The IRQ pin is low true and
the port A interrupts are high true.

When an interrupt is recognized, the current state of the CPU is pushed
onto the stack and the I bit is set. This masks further interrupts until the
present one is serviced. The address of the external interrupt service
routine is specified by the contents of memory locations $07FA and
$07FB.

ACCUMULATOR

CONDITION CODES

INDEX REGISTER

1 1 1

PROGRAM COUNTER LOW

PC HIGH0 0 0

7 0

IN
TE

R
R

U
PT

R
ET

U
R

N

TOWARD HIGHER ADDRESSES
HIGHEST STACK ADDRESS IS $00FF

TOWARD LOWER ADDRESSES
LOWEST STACK ADDRESS IS $00C0

UNSTACK

STACK

0 0

NOTE: When an interrupt occurs, CPU registers are
saved on the stack in the order PCL, PCH, X, A, CCR.
On a return-from-interrupt, registers are recovered
from the stack in reverse order.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Computer Architecture 91  
For More Information On This Product,

  Go to: www.freescale.com



Computer Architecture

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

On-Chip
Peripheral
Interrupts

Microcontrollers often include on-chip peripheral systems that can
generate interrupts to the CPU. The timer system in the
MC68HC705J1A is an example of such a peripheral. On-chip peripheral
interrupts work just like external interrupts except that there are normally
separate interrupt vectors for each on-chip peripheral system.

Software Interrupt
(SWI)

The software interrupt is an executable instruction. The action of the SWI
instruction is similar to the hardware interrupts. An SWI is executed
regardless of the state of the interrupt mask (I bit) in the condition code
register. The interrupt service routine address is specified by the
contents of memory location $07FC and $07FD in an MC68HC705J1A.

Interrupt Latency Although we think of interrupts as if they cause the CPU to stop normal
processing immediately in order to respond to the interrupt request, this
is not quite the case. There is a small delay from when an interrupt is
requested until the CPU can actually respond. First, the CPU must finish
any instruction that happens to be in progress at the time the interrupt is
requested. (The CPU would not know how to resume processing after
the interrupt was handled if it had stopped in the middle of an
instruction.) Second, the CPU must make a record of what it was doing
before it responded to the interrupt. The CPU does this by storing a copy
of the contents of all its registers, including the program counter, on the
stack. After the interrupt has been serviced, the CPU recovers this
information in reverse order and normal processing resumes.

Interrupt latency is the total number of CPU cycles (time) from the initial
interrupt request until the CPU starts to execute the first instruction of the
interrupt service routine. This delay depends upon whether or not the I
interrupt mask is set to 1 when the interrupt is requested. If the I bit is
set, the delay could be indefinite and depends upon when an instruction
clears the I bit so the interrupt can be recognized by the CPU. In the
normal case, where the I bit is clear when the interrupt is requested, the
latency will consist of finishing the current instruction, saving the
registers on the stack, and loading the interrupt vector (address of the
interrupt service routine) into the program counter.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

92 Computer Architecture MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Computer Architecture
Interrupts

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

The longest instruction (execution time) in the M68HC05 is the multiply
(MUL) instruction, which takes 11 bus cycles. If the CPU had just started
to execute a MUL instruction when an interrupt was requested, a delay
of up to 11 cycles would be experienced before the CPU could respond.
It takes the CPU nine bus cycles to save a copy of its registers on the
stack and to fetch the interrupt vector. The total worst-case latency if I
was clear and a MUL instruction just started would be 20 cycles (11 + 9).

The I bit is set to 1 as the CPU responds to an interrupt so that (normally)
a new interrupt will not be recognized until the current one has been
handled. In a system that has more than one source of interrupts, the
execution time for the longest interrupt service routine must be
calculated in order to determine the worst-case interrupt latency for the
other interrupt sources.

Nested Interrupts In unusual cases, an interrupt service routine may take so long to
execute that the worst-case latency for other interrupts in the system is
too long. In such a case, instructions in the long interrupt service routine
could clear the I bit to zero, thus allowing a new interrupt to be
recognized before the first interrupt service routine is finished. If a new
interrupt is requested while the CPU is already servicing an interrupt, it
is called nesting. You must use great care if you allow interrupt nesting
because the stack must have enough space to hold more than one copy
of the CPU registers. On small microcontrollers like the MC68HC05K1,
the stack is small and nesting of interrupts is not recommended.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Computer Architecture 93  
For More Information On This Product,

  Go to: www.freescale.com



Computer Architecture

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Review

In the M68HC05 architecture, five CPU registers are directly connected
within the CPU and are not part of the memory map. All other information
available to the CPU is located in a series of 8-bit memory locations. A
memory map  shows the names and types of memory at all locations
that are accessible to the CPU. The expression memory-mapped I/O
means that the CPU treats I/O and control registers exactly like any
other kind of memory. (Some computer architectures separate the I/O
registers from program memory space and use separate instructions to
access I/O locations.)

To get started in a known place, a computer must be reset . Reset forces
on-chip peripheral systems and I/O logic to known conditions and loads
the program counter with a known starting address. The user specifies
the desired starting location by placing the upper and lower order bytes
of this address in the reset vector  locations ($07FE and $07FF on the
MC68HC705J1A).

The CPU uses the stack pointer  (SP) register to implement a
last-in-first-out stack in RAM memory. This stack holds return addresses
while the CPU is executing a subroutine and holds the previous contents
of all CPU registers while the CPU is executing an interrupt sequence.
By recovering this information from the stack, the CPU can resume
where it left off before the subroutine or interrupt was started.

Computers use a high speed clock to step through each small substep
of each operation. Although each instruction takes several cycles of this
clock, it is so fast that operations seem to be instantaneous to a human.
An MC68HC705J1A can execute about 500,000 instructions per
second.

A CPU sees a program as a linear sequence of 8-bit binary numbers.
Instruction opcodes  and data are mixed in this sequence but the CPU
remains aligned to instruction boundaries because each opcode tells the
CPU how many operand  data bytes go with each instruction opcode.

Playing computer  is a learning exercise where you pretend to be a
CPU that is executing a program.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

94 Computer Architecture MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Computer Architecture
Review

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Reset can be caused by internal or external conditions. A reset pin
allows an external cause to initiate a reset. A watchdog timer and an
illegal address detect system can cause reset in the event software is
not executing in the intended sequence.

Interrupts cause the CPU to temporarily stop main program processing
to respond to the interrupt. All CPU registers are saved on the stack so
the CPU can go back to where it left off in the main program as soon as
the interrupt is serviced.

Interrupts can be inhibited globally by setting the I bit in the CCR or
locally by clearing enable control bits for each interrupt source. Requests
can still be registered while interrupts are inhibited so the CPU can
respond as soon as the interrupts are re-enabled. SWI is an instruction
and cannot be inhibited.

Interrupt latency  is the delay from when an interrupt is requested to
when the CPU begins executing the first instruction in the interrupt
response program. When a CPU responds to a new interrupt while it is
already processing an interrupt (which is not normally allowed), it is
called a nested interrupt .
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Computer Architecture 95  
For More Information On This Product,

  Go to: www.freescale.com



Computer Architecture

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

96 Computer Architecture MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

M68HC05 Instruction Set
   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  
Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98
Central Processor Unit (CPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98

Arithmetic/Logic Unit (ALU). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98
CPU Control  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
CPU Registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99

Accumulator  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
Index Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
Condition Code Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
Half-Carry Bit (H)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
Interrupt Mask Bit (I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
Negative Bit (N). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
Zero Bit (Z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102
Carry/Borrow Bit (C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102
Program Counter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103
Stack Pointer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103

Addressing Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104
Inherent Addressing Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105
Immediate Addressing Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . .107
Extended Addressing Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
Direct Addressing Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110
Indexed Addressing Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112

Indexed, No Offset  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112
Indexed, 8-Bit Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114
Indexed, 16-Bit Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116

Relative Addressing Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118
Bit Test and Branch Instructions . . . . . . . . . . . . . . . . . . . . . . . . . .120
Instructions Organized by Type  . . . . . . . . . . . . . . . . . . . . . . . . . .120

Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125
Review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133

CPU Registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133
Addressing Modes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133
Instruction Execution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA M68HC05 Instruction Set 97  
For More Information On This Product,

  Go to: www.freescale.com



M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Introduction

A computer’s instruction set is its vocabulary. This chapter describes the
CPU and instruction set of the M68HC05. Instruction Set Details
contains detailed descriptions of each M68HC05 instruction and can be
used as a reference. This chapter discusses the same instructions in
groups of functionally similar operations. The structure and addressing
modes of the M68HC05 are also discussed. Addressing modes refer to
the various ways a CPU can access operands for an instruction.

Central Processor Unit (CPU)

The M68HC05 CPU is responsible for executing all software instructions
in their programmed sequence for a specific application.

The M68HC05 CPU block diagram is shown in Figure 22 .

Figure 22. M68HC05 CPU Block Diagram

Arithmetic/Logic
Unit (ALU)

The arithmetic logic unit (ALU ) is used to perform the arithmetic and
logical operations defined by the instruction set.

The various binary arithmetic operations circuits decode the instruction
in the instruction register and set up the ALU for the desired function.
Most binary arithmetic is based on the addition algorithm, and
subtraction is carried out as negative addition. Multiplication is not
performed as a discrete instruction but as a chain of addition and shift

CPU
CONTROL

ARITHMETIC
LOGIC UNIT

(ALU)

M68HC05 CPU

ACCUMULATOR

INDEX REGISTER

STACK POINTER

PROGRAM COUNTER0 0 0

0 0 0 0 0 1 1

1 1 1 H I N Z C

CPU REGISTERS

CONDITION CODES
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

98 M68HC05 Instruction Set MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



M68HC05 Instruction Set
Central Processor Unit (CPU)

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

operations within the ALU under control of CPU control logic. The
multiply instruction (MUL) requires 11 internal processor cycles to
complete this chain of operations.

CPU Control The CPU control circuitry sequences the logic elements of the ALU to
carry out the required operations. A central element of the CPU control
section is the instruction decoder . Each opcode is decoded to
determine how many operands are needed and what sequence of steps
will be required to complete the instruction. When one instruction is
finished, the next opcode is read and decoded.

CPU Registers The CPU contains five registers as shown in Figure 23 . Registers in the
CPU are memories inside the microprocessor (not part of the memory
map). The set of registers in a CPU is sometimes called a programming
model . An experienced programmer can tell a lot about a computer from
its programming model.

Figure 23. Programming Model

1 1 1 H I N Z C

07

7 0

0 0 0 PROGRAM COUNTER

0 0 0 0 0 1 1 STACK POINTER

INDEX REGISTER

ACCUMULATOR

12 5

0

0

15 12

7 4 3 2 1

CONDITION CODE REGISTER

A

X

SP

PC

CC R

CARRY
ZERO
NEGATIVE
INTERRUPT MASK
HALF-CARRY
(FROM BIT 3)
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA M68HC05 Instruction Set 99  
For More Information On This Product,

  Go to: www.freescale.com



M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Accumulator The accumulator is an 8-bit general-purpose register used to hold
operands, results of the arithmetic calculations, and data manipulations.
It is also directly accessible to the CPU for non-arithmetic operations.
The accumulator is used during the execution of a program when the
contents of some memory location are loaded into the accumulator.
Also, the store instruction causes the contents of the accumulator to be
stored at some prescribed memory location.

Figure 24. Accumulator (A)

Index Register The index register is used for indexed modes of addressing or may be
used as an auxiliary accumulator. This 8-bit register can be loaded either
directly or from memory, its contents can be stored in memory, or its
contents can be compared to memory.

In indexed instructions, the X register provides an 8-bit value that is
added to an instruction-provided value to create an effective address.
The instruction-provided value can be 0, 1, or 2 bytes long.

Figure 25. Index Register (X)

Condition Code
Register

The condition code register contains an interrupt mask and four status
indicators that reflect the results of arithmetic and other operations of the
CPU. The five flags are:

• Half-carry (H)

• Negative (N)

• Zero (Z)

• Overflow (V)

• Carry borrow (C)

07

ACCUMULATOR A

INDEX REGISTER X

07
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

100 M68HC05 Instruction Set MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



M68HC05 Instruction Set
Central Processor Unit (CPU)

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Figure 26. Condition Code Register (CCR)

Half-Carry Bit (H) The half-carry flag is used for binary-coded decimal (BCD) arithmetic
operations and is affected by the ADD or ADC addition instructions. The
H bit is set to a 1 when a carry occurs from the low-order hexadecimal
digit in bits 3–0 and the high-order digit in bits 7–4. After the binary
addition of two 2-digit BCD values, this half-carry bit is one piece of
information needed to restore the result to a valid BCD value.

Interrupt Mask
Bit (I)

The I bit is not a status flag but an interrupt mask bit that disables all
maskable interrupt sources when the I bit is set. Interrupts are enabled
when this bit is a 0. When any interrupt occurs, the I bit is set
automatically after the registers are stacked but before the interrupt
vector is fetched.

If an external interrupt occurs while the I bit is set, the interrupt is latched
and processed after the I bit is cleared; therefore, no interrupts from the
IRQ pin are lost because of the I bit being set.

After an interrupt has been serviced, a return-from-interrupt (RTI)
instruction causes the registers to be restored to their previous values.
Normally, the I bit would be 0 after an RTI was executed. After any reset,
I is set and can be cleared only by a software instruction.

Negative Bit (N) The N bit is set to 1 when the result of the last arithmetic, logical, or data
manipulation is negative. Twos-complement signed values are
considered negative if the most significant bit is a 1.

The N bit has other uses. By assigning an often-tested flag bit to the
MSB of a register or memory location, you can test this bit simply by
loading the accumulator with the contents of that location.

1 1 1 H I N Z C

07 4 3 2 1

CONDITION CODE REGISTER CC

CARRY
ZERO
NEGATIVE
INTERRUPT MASK
HALF-CARRY (FROM BIT 3)
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA M68HC05 Instruction Set 101  
For More Information On This Product,

  Go to: www.freescale.com



M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Zero Bit (Z) The Z bit is set to 1 when the result of the last arithmetic, logical, or data
manipulation is 0. A compare instruction subtracts a value from the
memory location being tested. If the values were equal to each other
before the compare, the Z bit will be set.

Carry/Borrow Bit
(C)

The C bit is used to indicate if there was a carry from an addition or a
borrow as a result of a subtraction. Shift and rotate instructions operate
with and through the carry bit to facilitate multiple word shift operations.
This bit is also affected during bit test and branch instructions.

The illustration in Figure 27 is an example of the way condition code bits
are affected by arithmetic operations. The H bit is not useful after this
operation because the accumulator was not a valid BCD value before
the operation.

Figure 27.  How Condition Codes are Affected by Arithmetic Operations

07
ACCUMULATOR CONDITION CODES

($FF)BEFORE 1 1 1 0 1 1 0 0

CH I N Z

1 1 1 1 1 1 1 1

07
ACCUMULATOR CONDITION CODES

($01)AFTER 1 1 1 1 1 0 0 1

CH I N Z

0 0 0 0 0 0 0 1

ASSUME INITIAL VALUES IN ACCUMULATOR AND CONDITION CODES:

EXECUTE THIS INSTRUCTION:

CONDITION CODES AND ACCUMULATOR REFLECT THE RESULTS OF THE ADD INSTRUCTION:

H – Set because there was a carry from bit 3 to bit 4 of the accumulator
I – No change
N – Clear because result is not negative (bit 7 of accumulator is 0)
Z – Clear because result is not 0
C – Set because there was a carry out of bit 7 of the accumulator

– – – –AB 02 ADD #2 ADD 2 TO ACCUMULATOR
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

102 M68HC05 Instruction Set MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



M68HC05 Instruction Set
Central Processor Unit (CPU)

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Program Counter The program counter is a 16-bit register that contains the address of the
next instruction or instruction operand to be fetched by the processor. In
most variations of the M68HC05, some of the upper bits of the program
counter are not used and are always 0. The MC68HC705J1A, for
instance, uses only 11 bits of the program counter so the upper five bits
are always 0. The number of useful bits in the program counter exactly
matches the number of address lines implemented in the computer
system.

Figure 28. Program Counter (PC)

Normally, the program counter advances one memory location at a time
as instructions and instruction operands are fetched.

Jump, branch, and interrupt operations cause the program counter to be
loaded with a memory address other than that of the next sequential
location.

Stack Pointer The stack pointer must have as many bits as there are address lines; in
the MC68HC705J1A this means the SP is an 11-bit register. During an
MCU reset or the reset stack pointer (RSP) instruction, the stack pointer
is set to location $00FF. The stack pointer is then decremented as data
is pushed  onto the stack and incremented as data is pulled  from the
stack.

Figure 29. Stack Pointer (SP)

Many variations of the M68HC05 allow the stack to use up to 64
locations ($00FF to $00C0), but the smallest versions allow only 32
bytes of stack ($00FF to $00E0). In the MC68HC705J1A, the five MSBs
of the SP are permanently set to 00011. These five bits are appended to
the six least significant bits to produce an address within the range of
$00FF to $00C0. Subroutines and interrupts may use up to 64 (decimal)
locations. If 64 locations are exceeded, the stack pointer wraps around
to $00FF and begins to write over previously stored information. A
subroutine call occupies two locations on the stack; an interrupt uses five
locations.

0 0 0 PROGRAM COUNTER

015 10

PC00

7 0

0 0 1 1 STACK POINTER

10 5

SP0
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA M68HC05 Instruction Set 103  
For More Information On This Product,

  Go to: www.freescale.com



M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Addressing Modes

The power of any computer lies in its ability to access memory. The
addressing modes of the CPU provide that capability. The addressing
modes  define the manner in which an instruction is to obtain the data
required for its execution. Because of different addressing modes, an
instruction may access the operand in one of up to six different ways. In
this manner, the addressing modes expand the basic 62 M68HC05
Family instructions into 210 distinct opcodes.

The M68HC05 addressing modes that are used to reference memory
are:

• Inherent

• Immediate

• Extended

• Direct

• Indexed,no offset, 8-bit offset, and 16-bit offset,

• Relative

Inherent instructions don’t need to access memory, so they are
single-byte instructions. In smaller M68HC05s, all RAM and I/O registers
are within the $0000–$00FF area of memory so two-byte direct
addressing mode instructions can be used. Extended addressing uses
3-byte instructions to reach data anywhere in memory space. The
various addressing modes make it possible to locate data tables, code
conversion tables, and scaling tables anywhere in the memory space.
Short indexed accesses are single-byte instructions, but the longest
instructions (three bytes) permit accessing tables anywhere in memory.

A general description and examples of the various modes of addressing
are provided in the following paragraphs. The term effective address
(EA) is used to indicate the memory address where the argument for an
instruction is fetched or stored. More details on addressing modes and
a description of each instruction are available in the chapter entitled
Instruction Set Details .
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

104 M68HC05 Instruction Set MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



M68HC05 Instruction Set
Addressing Modes

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

The information provided in the program assembly examples uses
several symbols to identify the various types of numbers that occur in a
program. These symbols include:

1. A blank or no symbol indicates a decimal number.

2. A $ immediately preceding a number indicates it is a hexadecimal
number; for example, $24 is 24 in hexadecimal or the equivalent
of 36 in decimal.

3. A # indicates immediate operand and the number is found in the
location following the opcode. A variety of symbols and
expressions can be used following the character # sign. Since not
all assemblers use the same syntax rules and special characters,
refer to the documentation for the particular assembler that will be
used.

For each addressing mode, an example instruction is explained in detail.
These explanations describe what happens in the CPU during each
processor clock cycle of the instruction. Numbers in square brackets
refer to a specific CPU clock cycle.

Inherent
Addressing Mode

In inherent addressing mode, all information required for the operation is
already inherently known to the CPU, and no external operand from
memory or from the program is needed. The operands, if any, are only
the index register and accumulator, and are always 1-byte instructions.

Example Program Listing:
0300 4c INCA ;Increment accumulator

Execution Sequence:
$0300   $4C      [1],   [2],   [3]

Explanation:
[1] CPU reads opcode $4C — increment accumulator

[2] and [3] CPU reads accumulator value, adds one to it, stores the new
value in the accumulator, and adjusts condition code flag
bits as necessary.

Prefix Indicates the value that follows is . . .

None Decimal

$ Hexadecimal

@ Octal

% Binary

’ Single ASCII Character
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA M68HC05 Instruction Set 105  
For More Information On This Product,

  Go to: www.freescale.com



M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

The following is a list of all M68HC05 instructions that can use the
inherent addressing mode.

Instruction Mnemonic

Arithmetic Shift Left ASLA,ASLX

Arithmetic Shift Right ASRA,ASRX

Clear Carry Bit CLC

Clear Interrupt Mask Bit CLI

Clear CLRA,CLRX

Complement COMA, COMX

Decrement DECA,DECX

Increment INCA, INCX

Logical Shift Left LSLA,LSLX

Logical Shift Right LSRA, LSRX

Multiply MUL

Negate NEGA,NEGX

No Operation NOP

Rotate Left thru Carry ROLA, ROLX

Rotate Right thru Carry RORA, RORX

Reset Stack Pointer RSP

Return from Interrupt RTI

Return from Subroutine RTS

Set Carry Bit SEC

Set Interrupt Mask Bit SEI

Enable IRQ, Stop Oscillator STOP

Software Interrupt SWI

Transfer Accumulator to Index Register TAX

Test for Negative or Zero TSTA,TSTX

Transfer Index Register to Accumulator TXA

Enable Interrupt, Halt Processor WAIT
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

106 M68HC05 Instruction Set MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



M68HC05 Instruction Set
Addressing Modes

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Immediate
Addressing Mode

In the immediate addressing mode, the operand is contained in the byte
immediately following the opcode. This mode is used to hold a value or
constant which is known at the time the program is written and which is
not changed during program execution. These are 2-byte instructions,
one for the opcode and one for the immediate data byte.

Example Program Listing:
0300 a6 03 LDA #$03 ;Load accumulator w/ immediate value

Execution Sequence:
$0300 $A6 [1]
$0301 $03 [2]

Explanation:
[1] CPU reads opcode $A6 — load accumulator with the value

immediately following the opcode.

[2] CPU then reads the immediate data $03 from location
$0301 and loads $03 into the accumulator.

The following is a list of all M68HC05 instructions that can use the
immediate addressing mode.

Instruction Mnemonic

Add with Carry ADC

Add ADD

Logical AND AND

Bit Test Memory with Accumulator BIT

Compare Accumulator with Memory CMP

Compare Index Register with Memory CPX

Exclusive OR Memory with Accumulator EOR

Load Accumulator from Memory LIDA

Load Index Register from Memory LDX

Inclusive OR ORA

Subtract with Carry SBC

Subtract SUB
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA M68HC05 Instruction Set 107  
For More Information On This Product,

  Go to: www.freescale.com



M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Extended
Addressing Mode

In the extended addressing mode, the address of the operand is
contained in the two bytes following the opcode. Extended addressing
references any location in the MCU memory space including I/O, RAM,
ROM, and EPROM. Extended addressing mode instructions are three
bytes, one for the opcode and two for the address of the operand.

Example Program Listing:
0300 c6 06 e5  LDA $06E5 ;Load accumulator from extended addr

Execution Sequence:
$0300  $C6 [1]
$0301  $06 [2]
$0302  $E5 [3] and [4]

Explanation:
[1] CPU reads opcode $C6 — load accumulator using extended

addressing mode.

[2] CPU then reads $06 from location $0301. This $06 is
interpreted as the high-order half of an address.

[3] CPU then reads $E5 from location $0302. This $E5 is
interpreted as the low-order half of an address.

[4] CPU internally appends $06 to the $E5 read to form the
complete address ($06E5). The CPU then reads whatever
value is contained in the location $06E5 into the
accumulator.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

108 M68HC05 Instruction Set MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



M68HC05 Instruction Set
Addressing Modes

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

The following is a list of all M68HC05 instructions that can use the
extended addressing mode.

Instruction Mnemonic

Add with Carry ADC

Add ADD

Logical AND AND

Bit Test Memory with Accumulator BIT

Compare Accumulator with Memory CMP

Compare Index Register with Memory CPX

Exclusive OR Memory with Accumulator EOR

Jump JMP

Jump to Subroutine JSR

Load Accumulator from Memory LDA

Load Index Register from Memory LDX

Inclusive OR ORA

Subtract with Carry SBC

Store Accumulator in Memory STA

Store Index Register in Memory STX

Subtract SUB
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA M68HC05 Instruction Set 109  
For More Information On This Product,

  Go to: www.freescale.com



M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Direct Addressing
Mode

The direct addressing mode is similar to the extended addressing mode
except the upper byte of the operand address is assumed to be $00.
Thus, only the lower byte of the operand address needs to be included
in the instruction. Direct addressing allows you to efficiently address the
lowest 256 bytes in memory. This area of memory is called the direct
page and includes on-chip RAM and I/O registers. Direct addressing is
efficient in both memory and time. Direct addressing mode instructions
are usually two bytes, one for the opcode and one for the low-order byte
of the operand address.

Example Program Listing:
0300 b6 50 LDA $50 ;Load accumulator from direct address

Execution Sequence:
$0300 $B6 [1]
$0301 $50 [2] and [3]

Explanation:
[1] CPU reads opcode $B6 — load accumulator using direct

addressing mode.

[2] CPU then reads $50 from location $0301. This $50 is
interpreted as the low-order half of an address. In direct
addressing mode, the high-order half of the address is
assumed to be $00.

[3] CPU internally appends $00 to the $50 read in the second
cycle to form the complete address ($0050). The CPU then
reads whatever value is contained in the location $0050 into
the accumulator.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

110 M68HC05 Instruction Set MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



M68HC05 Instruction Set
Addressing Modes

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

The following is a list of all M68HC05 instructions that can use the direct
addressing mode.

Instruction Mnemonic

Add with Carry ADC

Add ADD

Logical AND AND

Arithmetic Shift Left ASL

Arithmetic Shift Right ASR

Clear Bit in Memory BCLR

Bit Test Memory with Accumulator BIT

Branch if Bit n is Clear BRCLR

Branch if Bit n is Set BRSET

Set Bit in Memory BSET

Clear CLR

Compare Accumulator with Memory CMP

Complement COM

Compare Index Register with Memory CPX

Decrement DEC

Exclusive OR Memory with Accumulator EOR

Increment INC

Jump JMP

Jump to Subroutine JSR

Load Accumulator from Memory LDA

Load Index Register from Memory LDX

Logical Shift Left LSL

Logical Shift Right LSR

Negate NEG

Inclusive OR ORA

Rotate Left thru Carry ROL

Rotate Right thru Carry ROR

Subtract with Carry SBC

Store Accumulator in Memory STA

Store Index Register in Memory STX

Subtract SUB

Test for Negative or Zero TST
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA M68HC05 Instruction Set 111  
For More Information On This Product,

  Go to: www.freescale.com



M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Indexed
Addressing Modes

In the indexed addressing mode, the effective address is variable and
depends upon two factors:

1. The current contents of the index (X) register

2. The offset contained in the byte(s) following the opcode

Three types of indexed addressing exist in the MCU:

• No offset

• 8-bit offset

• 16-bit offset

A good assembler should use the indexed addressing mode that
requires the least number of bytes to express the offset.

Indexed, No Offset In the indexed, no-offset addressing mode, the effective address of the
instruction is contained in the 8-bit index register. Thus, this addressing
mode can access the first 256 memory locations. These instructions are
only one byte.

Example Program Listing:
0300 f6 LDX  ,x ;Load accumulator from location

;pointed to by index reg (no offset)

Execution Sequence:
$0300       $F6      [1],    [2],    [3]

Explanation:
[1] CPU reads opcode $F6 — load accumulator using indexed,

no offset, addressing mode.

[2] CPU forms a complete address by adding $0000 to the
contents of the index register.

[3] CPU then reads the contents of the addressed location into
the accumulator.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

112 M68HC05 Instruction Set MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



M68HC05 Instruction Set
Addressing Modes

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

The following is a list of all M68HC05 instructions that can use the
indexed, no-offset addressing mode or the indexed, 8-bit offset
addressing mode.

Instruction Mnemonic

Add with Carry ADC

Add ADD

Logical AND AND

Arithmetic Shift Left ASL

Arithmetic Shift Right ASR

Bit Test Memory with Accumulator BIT

Clear CLR

Compare Accumulator with Memory CMP

Complement COM

Compare Index Register with Memory CPX

Decrement DEC

Exclusive OR Memory with Accumulator EOR

Increment INC

Jump JMP

Jump to Subroutine JSR

Load Accumulator from Memory LDA

Load Index Register from Memory LDX

Logical Shift Left LSL

Logical Shift Right LSR

Negate NEG

Inclusive OR ORA

Rotate Left thru Carry ROL

Rotate Right thru Carry ROR

Subtract with Carry SBC

Store Accumulator in Memory STA

Store Index Register in Memory STX

Subtract SUB

Test for Negative or Zero TST
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA M68HC05 Instruction Set 113  
For More Information On This Product,

  Go to: www.freescale.com



M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Indexed, 8-Bit
Offset

In the indexed, 8-bit offset addressing mode, the effective address is
obtained by adding the contents of the byte following the opcode to the
contents of the index register. This mode of addressing is useful for
selecting the kth element in an n element table. To use this mode, the
table must begin in the lowest 256 memory locations and may extend
through the first 511 memory locations (IFE is the last location which the
instruction may access). Indexed 8-bit offset addressing can be used for
ROM, RAM, or I/O. This is a 2-byte instruction with the offset contained
in the byte following the opcode. The content of the index register (X) is
not changed. The offset byte supplied in the instruction is an unsigned
8-bit integer.

Example Program Listing:
0300 e6 05 LDA $5,x ;Load accumulator from location

;pointed to by index reg (X) + $05

Execution Sequence:
$0300     $E6        [1]
$0301     $05        [2],    [3],    [4]

Explanation:

[1] CPU reads opcode $E6 — load accumulator using indexed,
8-bit offset addressing mode.

[2] CPU then reads $05 from location $0301. This $05 is
interpreted as the low-order half of a base address. The
high-order half of the base address is assumed to be $00.

[3] CPU will add the value in the index register to the base
address $0005. The results of this addition is the address
that the CPU will use in the load accumulator operation.

[4] The CPU will then read the value from this address and load
this value into the accumulator.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

114 M68HC05 Instruction Set MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



M68HC05 Instruction Set
Addressing Modes

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

The list of all M68HC05 instructions that can use the indexed, 8-bit offset
addressing mode is the same as the list of instructions that use indexed,
no-offset addressing mode.

Instruction Mnemonic

Add with Carry ADC

Add ADD

Logical AND AND

Arithmetic Shift Left ASL

Arithmetic Shift Right ASR

Bit Test Memory with Accumulator BIT

Clear CLR

Compare Accumulator with Memory CMP

Complement COM

Compare Index Register with Memory CPX

Decrement DEC

Exclusive OR Memory with Accumulator EOR

Increment INC

Jump JMP

Jump to Subroutine JSR

Load Accumulator from Memory LIDA

Load Index Register from Memory LDX

Logical Shift Left LSL

Logical Shift Right LSR

Negate NEG

Inclusive OR ORA

Rotate Left thru Carry ROL

Rotate Right thru Carry ROR

Subtract with Carry SBC

Store Accumulator in Memory STA

Store Index Register in Memory STX

Subtract SUB

Test for Negative or Zero TST
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA M68HC05 Instruction Set 115  
For More Information On This Product,

  Go to: www.freescale.com



M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Indexed, 16-Bit
Offset

In the indexed, 16-bit offset addressing mode, the effective address is
the sum of the contents of the 8-bit index register and the two bytes
following the opcode. The content of the index register is not changed.
These instructions are three bytes, one for the opcode and two for a
16-bit offset.

Example Program Listing:
0300 d6 07 00 LDA $0700,x ;Load accumulator from location

;pointed to by index reg (X) + $0700

Execution Sequence:
$0300       $D6      [1]
$0301       $07       [2]
$0302       $00       [3],    [4],    [5]

Explanation:
[1] CPU reads opcode $D6 — load accumulator using indexed,

16-bit offset addressing mode.

[2] CPU then reads $07 from location $0301. This $07 is
interpreted as the high-order half of a base address.

[3] CPU then reads $00 from location $0302. This $00 is
interpreted as the low-order half of a base address.

[4] CPU will add the value in the index register to the base
address $0700. The results of this addition is the address
that the CPU will use in the load accumulator operation.

[5] The CPU will then read the value from this address and load
this value into the accumulator.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

116 M68HC05 Instruction Set MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



M68HC05 Instruction Set
Addressing Modes

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

The following is a list of all M68HC05 instructions that can use the
indexed, 16-bit offset addressing mode.

Instruction Mnemonic

Add with Carry ADC

Add ADD

Logical AND AND

Bit Test Memory with Accumulator BIT

Compare Accumulator with Memory CMP

Compare Index Register with Memory CPX

Exclusive OR Memory with Accumulator EOR

Jump JMP

Jump to Subroutine JSR

Load Accumulator from Memory LDA

Load Index Register from Memory LDX

Inclusive OR ORA

Subtract with Carry SBC

Store Accumulator in Memory STA

Store Index Register In Memory STX

Subtract SUB
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA M68HC05 Instruction Set 117  
For More Information On This Product,

  Go to: www.freescale.com



M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Relative
Addressing Mode

The relative addressing mode is used only for branch instructions.
Branch instructions, other than the branching versions of
bit-manipulation instructions, generate two machine-code bytes: one for
the opcode and one for the relative offset. Because it is desirable to
branch in either direction, the offset byte is a signed twos-complement
offset with a range of  –127 to +128 bytes (with respect to the address
of the instruction immediately following the branch instruction). If the
branch condition is true, the contents of the 8-bit signed byte following
the opcode (offset) are added to the contents of the program counter to
form the effective branch address; otherwise, control proceeds to the
instruction immediately following the branch instruction.

A programmer specifies the destination of a branch as an absolute
address (or label which refers to an absolute address). The Motorola
assembler calculates the 8-bit signed relative offset, which is placed
after the branch opcode in memory.

Example Program Listing:
0300 27 rr BEQ DEST ;Branch to DEST if Z = 1

;(branch if equal or zero)

Execution Sequence:
$0300      $27      [1]
$0301      $rr        [2],   [3]

Explanation:
[1] CPU reads opcode $27 — branch if Z = 1, (relative

addressing mode).

[2] CPU reads the offset, $rr.

[3] CPU internally tests the state of the Z bit and causes a
branch if Z is set.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

118 M68HC05 Instruction Set MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



M68HC05 Instruction Set
Addressing Modes

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

The following is a list of all M68HC05 instructions that can use the
relative addressing mode.

Instruction Mnemonic

Branch if Carry Clear BCC

Branch is Carry Set BCS

Branch if Equal BEQ

Branch if Half-Carry Clear BHCC

Branch if Half-Carry Set BHCS

Branch if Higher BHI

Branch if Higher or Same BHS

Branch if Interrupt Line is High BIH

Branch if Interrupt Line is Low BIL

Branch if Lower BLO

Branch if Lower or Same BLS

Branch if Interrupt Mask is Clear BMC

Branch if Minus BMI

Branch if Interrupt Mask Bit is Set BMS

Branch if Not Equal BNE

Branch if Plus BPL

Branch Always BRA

Branch if Bit n is Clear BRCLR

Branch if Bit n is Set BRSET

Branch Never BRN

Branch to Subroutine BSR
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA M68HC05 Instruction Set 119  
For More Information On This Product,

  Go to: www.freescale.com



M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Bit Test and Branch
Instructions

These instructions use direct addressing mode to specify the location
being tested and relative addressing to specify the branch destination.
This text book treats these instructions as direct addressing mode
instructions. Some older Motorola documents call the addressing mode
of these instructions BTB for bit test and branch.

Instructions
Organized
by Type

Table 11  through Table 14  show the MC68HC05 instruction set
displayed by instruction type.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

120 M68HC05 Instruction Set MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



M68HC05 Instruction Set
Addressing Modes

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Ta
bl

e 
11

. R
eg

is
te

r/
M

em
or

y 
In

st
ru

ct
io

ns

A
dd

re
ss

in
g 

M
od

es

Im
m

ed
ia

te
D

ire
ct

E
xt

en
de

d
In

de
xe

d
(N

o 
O

ffs
et

)
In

de
xe

d
(8

-B
it 

O
ffs

et
)

In
de

xe
d

(1
6-

B
it 

O
ffs

et
)

F
un

ct
io

n
M

ne
m

.
O

p-
co

de
#

B
yt

es
#

C
yc

le
s

O
p-

co
de

#
B

yt
es

#
C

yc
le

s
O

p-
co

de
#

B
yt

es
#

C
yc

le
s

O
p-

co
de

#
B

yt
es

#
C

yc
le

s
O

p-
co

de
#

B
yt

es
#

C
yc

le
s

O
p-

co
de

#
B

yt
es

#
C

yc
le

s

Lo
ad

 A
 fr

om
 M

em
or

y
LD

A
A

6
2

2
B

6
2

3
C

6
3

4
F

6
1

3
E

6
2

4
D

6
3

5

Lo
ad

 X
 fr

om
 M

em
or

y
LD

X
A

E
2

2
B

E
2

3
C

E
3

4
F

E
1

3
E

E
2

4
D

E
3

5

S
to

re
 A

 in
 M

em
or

y
S

T
A

—
—

—
B

7
2

4
C

7
3

5
F

7
1

4
E

7
2

5
D

7
3

6

S
to

re
 X

 in
 M

em
or

y
S

T
X

—
—

—
B

F
2

4
C

F
3

5
F

F
1

4
E

F
2

5
D

F
3

6

A
dd

 M
em

or
y 

to
 A

A
D

D
A

B
2

B
B

2
3

C
B

3
4

F
B

1
3

E
B

2
4

D
B

3
5

A
dd

 M
em

or
y 

an
d

C
ar

ry
 to

 A
A

D
C

A
9

2
2

B
9

2
3

C
9

3
4

F
9

1
3

E
9

2
4

D
9

3
5

S
ub

tr
ac

t M
em

or
y

S
U

B
A

0
2

2
B

0
2

3
C

0
3

4
F

0
1

3
E

0
2

4
D

0
3

5

S
ub

tr
ac

t M
em

or
y 

fr
om

A
 w

ith
 B

or
ro

w
S

B
C

A
2

2
2

B
2

2
3

C
2

3
4

F
2

1
3

E
2

2
4

D
2

3
5

A
N

D
 M

em
or

y 
to

 A
A

N
D

A
4

2
2

B
4

2
3

C
4

3
4

F
4

1
3

E
4

2
4

D
4

3
5

O
R

 M
em

or
y 

w
ith

 A
O

R
A

A
A

2
2

B
A

2
3

C
A

3
4

F
A

1
3

E
A

2
4

D
A

3
5

E
xc

lu
si

ve
 O

R
 M

em
or

y
w

ith
 A

E
O

R
A

8
2

2
B

8
2

3
C

8
3

4
F

8
1

3
E

8
2

4
D

8
3

5

A
rit

hm
et

ic
 C

om
pa

re
 A

w
ith

 M
em

or
y

C
M

P
A

1
2

2
E

11
2

3
C

1
3

4
F

1
1

3
E

1
2

4
D

1
3

5

A
rit

hm
et

ic
 C

om
pa

re
 X

w
ith

 M
em

or
y

C
P

X
A

3
2

2
B

3
2

3
C

3
3

4
F

3
1

3
E

3
2

4
D

3
3

5

B
it 

T
es

t M
em

or
y 

w
ith

A
 (

Lo
gi

ca
l C

om
pa

re
)

B
IT

A
5

2
2

B
5

2
3

C
5

3
4

F
5

1
3

E
2

4
D

5
3

5

Ju
m

p 
U

nc
on

di
tio

na
l

JM
P

—
—

—
B

C
2

2
C

C
3

3
F

C
1

2
E

C
2

3
D

C
3

4

Ju
m

p 
to

 S
ub

ro
ut

in
e

JS
R

—
—

—
B

D
2

5
C

D
3

6
F

D
1

5
E

D
2

6
D

D
3

7

M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA M68HC05 Instruction Set 121  
For More Information On This Product,

  Go to: www.freescale.com



M68HC05 Instruction

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Ta
bl

e 
12

. R
ea

d/
M

od
ify

-W
rit

e 
In

st
ru

ct
io

ns

A
dd

re
ss

in
g 

M
od

es

In
he

re
nt

 (
A

)
In

he
re

nt
 (

X
)

D
ire

ct
In

de
xe

d
(N

o 
O

ffs
et

)
In

de
xe

d
(8

-B
it 

O
ffs

et
)

F
un

ct
io

n
M

ne
m

.
O

p-
co

de
#

B
yt

es
#

C
yc

le
s

O
p-

co
de

#
B

yt
es

#
C

yc
le

s
O

p-
co

de
#

B
yt

es
#

C
yc

le
s

O
p-

co
de

#
B

yt
es

#
C

yc
le

s
O

p-
co

de
#

B
yt

es
#

C
yc

le
s

In
cr

em
en

t
IN

C
4C

1
3

5C
1

3
3C

2
5

7C
1

5
6C

2
6

D
ec

re
m

en
t

D
E

C
4A

1
3

5A
1

3
3A

2
5

7A
1

5
6A

2
6

C
le

ar
C

LR
4F

1
3

5F
1

3
3F

2
5

7F
1

5
6F

2
6

C
om

pl
em

en
t

C
O

M
43

1
3

53
1

3
33

2
5

73
1

5
63

2
6

N
eg

at
e

T
w

os
 C

om
pl

em
en

t
N

E
G

40
1

3
50

1
3

30
2

5
70

1
5

60
2

6

R
ot

at
e 

Le
ft 

T
hr

u 
C

ar
ry

R
O

L
49

1
3

59
1

3
39

2
5

79
1

5
69

2
6

R
ot

at
e 

R
ig

ht
 T

hr
u 

C
ar

ry
R

O
R

46
1

3
56

1
3

36
2

5
76

1
5

66
2

6

Lo
gi

ca
l S

hi
ft 

Le
ft

LS
L

48
1

3
58

1
3

38
2

5
78

1
5

68
2

6

Lo
gi

ca
l S

hi
ft 

R
ig

ht
LS

R
44

1
3

54
1

3
34

2
5

74
1

5
64

2
6

A
rit

hm
et

ic
 S

hi
ft 

R
ig

ht
A

S
H

47
1

3
57

1
3

37
2

5
77

1
5

67
2

T
es

t f
or

 N
eg

at
iv

e
or

 Z
er

o
T

S
T

4D
1

3
5D

1
3

3D
2

4
7D

1
4

6D
2

5

M
ul

tip
ly

M
U

L
42

1
11

—
—

—
—

—
—

—
—

—
—

—
—

B
it 

C
le

ar
B

C
LR

—
—

—
—

—
—

S
ee

N
ot

e
2

5
—

—
—

—
—

—

B
it 

S
et

B
S

E
T

—
—

—
—

—
—

S
ee

N
ot

e
2

5
—

—
—

—
—

—

N
O

T
E

: U
nl

ik
e 

ot
he

r 
re

ad
-m

od
ify

-w
rit

e 
in

st
ru

ct
io

ns
, B

C
LR

 a
nd

 B
S

E
T

 u
se

 o
nl

y 
di

re
ct

 a
dd

re
ss

in
g.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

122 M68HC05 Instruction Set MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



M68HC05 Instruction Set
Addressing Modes

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Table 13. Branch Instructions

Function Mnemonic

Relative Addressing
Mode

Opcode #
Bytes

#
Cycles

Branch Always BRA 20 2 3

Branch Never BRN 21 2 3

Branch if Higher BH1 22 2 3

Branch if Lower or Same BLS 23 2 3

Branch if Carry Clear BCC 24 2 3

Branch if Higher or Same
(Same as BCC)

BHS 24 2 3

Branch if Carry Set BCS 25 2 3

Branch if Lower
(Same as BCS)

BLO 25 2 3

Branch if Not Equal BNE 26 2 3

Branch if Equal BEQ 27 2 3

Branch if Half-Carry Clear BHCC 28 2 3

Branch if Half-Carry Set BHCS 29 2 3

Branch if Plus BPL 2A 2 3

Branch if Minus BMI 2B 2 3

Branch if Interrupt Mask Bit is Clear BMC 2C 2 3

Branch if Interrupt Mask Bit is Set BMS 2D 2 3

Branch if Interrupt Line is Low BIL 2E 2 3

Branch if Interrupt Line is High BIH 2F 2 3

Branch to Subroutine BSR AD 2 6
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA M68HC05 Instruction Set 123  
For More Information On This Product,

  Go to: www.freescale.com



M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Table 14. Control Instructions

Function Mnemonic

Relative Addressing
Mode

Opcode #
Bytes

#
Cycles

Transfer A to X TAX 97 1 2

Transfer X to A TXA 9F 1 2

Set Carry Bit SEC 99 1 2

Clear Carry Bit CLC 98 1 2

Set Interrupt Mask Bit SEI 9B 1 2

Clear Interrupt Mask Bit CLI 9A 1 2

Software Interrupt SWI 83 1 10

Return from Subroutine RTS 81 1 6

Return from Interrupt RTI 80 1 9

Reset Stack Pointer RSP 9C 1 2

No-Operation NOP 9D 1 2

Stop STOP 8E 1 2

Wait WAIT 8F 1 2
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

124 M68HC05 Instruction Set MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



M68HC05 Instruction Set
Instruction Set Summary

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Set Summary

Computers use an operation code or opcode to give instructions to the
CPU. The instruction set for a specific CPU is the set of all opcodes that
the CPU knows how to execute. For example, the CPU in the
MC68HC705J1A MCU can understand 62 basic instructions, some of
which have several variations that require separate opcodes. The
M68HC05 Family instruction set includes 210 unique instruction
opcodes.

The following is an alphabetical listing of the M68HC05 Family
instructions available to the user. In listing all the factors necessary to
program, the table uses these symbols:

Condition Code Symbols
H — Half Carry (Bit 4) ↕ — Test and Set if True,
I — Interrupt Mask (Bit 3)                Cleared Otherwise
N — Negate (Sign Bit 2) — — Not Affected
Z — Zero (Bit 1) 0 — Cleared
C — Carry/Borrow (Bit 0) 1 — Set

Boolean Operators
( ) — Contents of (For Example, (M) + — Inclusive OR

       Means the Contents ⊕ — Exclusive OR
       of Memory Location M — — NOT

– — Negation,
← — is loaded with, gets       Twos Complement
• — Logical AND x — Multiplication

CPU Registers
A — Accumulator PC — Program Counter
ACCA — Accumulator PCH — PC High Byte
CCR — Condition Code Register PCL — PC Low Byte
X — Index Register SP — Stack Pointer
M — Any memory location REL — Relative Address, One Byte

Addressing Modes Abbreviation Operands
Inherent INH none
Immediate IMM ii
Direct (For Bit DIR dd
   Test Instructions) dd rr
Extended EXT hh ll
Indexed 0 Offset IX none
Indexed 1-Byte Offset IX1 ff
Indexed 2-Byte Offset IX2 ee ff
Relative REL rr
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA M68HC05 Instruction Set 125  
For More Information On This Product,

  Go to: www.freescale.com



M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Table 15. Instruction Set Summary (Sheet 1 of 6)

Source
Form Operation Description

Effect on
CCR

A
dd

re
ss

M
od

e

O
pc

od
e

O
pe

ra
nd

C
yc

le
s

H I N Z C

ADC #opr
ADC opr
ADC opr
ADC opr,X
ADC opr,X
ADC ,X

Add with Carry A ← (A) + (M) + (C) ↕ — ↕ ↕ ↕

IMM
DIR
EXT
IX2
IX1
IX

A9
B9
C9
D9
E9
F9

ii
dd

hh ll
ee ff

ff

2
3
4
5
4
3

ADD #opr
ADD opr
ADD opr
ADD opr,X
ADD opr,X
ADD ,X

Add without Carry A ← (A) + (M) ↕ — ↕ ↕ ↕

IMM
DIR
EXT
IX2
IX1
IX

AB
BB
CB
DB
EB
FB

ii
dd

hh ll
ee ff

ff

2
3
4
5
4
3

AND #opr
AND opr
AND opr
AND opr,X
AND opr,X
AND ,X

Logical AND A ← (A) ∧ (M) — — ↕ ↕ —

IMM
DIR
EXT
IX2
IX1
IX

A4
B4
C4
D4
E4
F4

ii
dd

hh ll
ee ff

ff

2
3
4
5
4
3

ASL opr
ASLA
ASLX
ASL opr,X
ASL ,X

Arithmetic Shift Left (Same as LSL) — — ↕ ↕ ↕

DIR
INH
INH
IX1
IX

38
48
58
68
78

dd

ff

5
3
3
6
5

ASR opr
ASRA
ASRX
ASR opr,X
ASR ,X

Arithmetic Shift Right — — ↕ ↕ ↕

DIR
INH
INH
IX1
IX

37
47
57
67
77

dd

ff

5
3
3
6
5

BCC rel Branch if Carry Bit Clear PC ← (PC) + 2 + rel ? C = 0 — — — — — REL 24 rr 3

BCLR n opr Clear Bit n Mn ← 0 — — — — —

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

11
13
15
17
19
1B
1D
1F

dd
dd
dd
dd
dd
dd
dd
dd

5
5
5
5
5
5
5
5

BCS rel Branch if Carry Bit Set (Same as BLO) PC ← (PC) + 2 + rel ? C = 1 — — — — — REL 25 rr 3

BEQ rel Branch if Equal PC ← (PC) + 2 + rel ? Z = 1 — — — — — REL 27 rr 3

BHCC rel Branch if Half-Carry Bit Clear PC ← (PC) + 2 + rel ? H = 0 — — — — — REL 28 rr 3

BHCS rel Branch if Half-Carry Bit Set PC ← (PC) + 2 + rel ? H = 1 — — — — — REL 29 rr 3

BHI rel Branch if Higher PC ← (PC) + 2 + rel ? C ∨ Z = 0 — — — — — REL 22 rr 3

BHS rel Branch if Higher or Same PC ← (PC) + 2 + rel ? C = 0 — — — — — REL 24 rr 3

BIH rel Branch if IRQ Pin High PC ← (PC) + 2 + rel ? IRQ = 1 — — — — — REL 2F rr 3

BIL rel Branch if IRQ Pin Low PC ← (PC) + 2 + rel ? IRQ = 0 — — — — — REL 2E rr 3

C

b0b7

0

b0b7

C

M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

126 M68HC05 Instruction Set MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



M68HC05 Instruction Set
Instruction Set Summary

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

BIT #opr
BIT opr
BIT opr
BIT opr,X
BIT opr,X
BIT ,X

Bit Test Accumulator with Memory Byte (A) ∧ (M) — — ↕ ↕ —

IMM
DIR
EXT
IX2
IX1
IX

A5
B5
C5
D5
E5
F5

ii
dd

hh ll
ee ff

ff

2
3
4
5
4
3

BLO rel Branch if Lower (Same as BCS) PC ← (PC) + 2 + rel ? C = 1 — — — — — REL 25 rr 3

BLS rel Branch if Lower or Same PC ← (PC) + 2 + rel ? C ∨ Z = 1 — — — — — REL 23 rr 3

BMC rel Branch if Interrupt Mask Clear PC ← (PC) + 2 + rel ? I = 0 — — — — — REL 2C rr 3

BMI rel Branch if Minus PC ← (PC) + 2 + rel ? N = 1 — — — — — REL 2B rr 3

BMS rel Branch if Interrupt Mask Set PC ← (PC) + 2 + rel ? I = 1 — — — — — REL 2D rr 3

BNE rel Branch if Not Equal PC ← (PC) + 2 + rel ? Z = 0 — — — — — REL 26 rr 3

BPL rel Branch if Plus PC ← (PC) + 2 + rel ? N = 0 — — — — — REL 2A rr 3

BRA rel Branch Always PC ← (PC) + 2 + rel ? 1 = 1 — — — — — REL 20 rr 3

BRCLR n opr rel Branch if Bit n Clear PC ← (PC) + 2 + rel ? Mn = 0 — — — — ↕

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

01
03
05
07
09
0B
0D
0F

dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr

5
5
5
5
5
5
5
5

BRN rel Branch Never PC ← (PC) + 2 + rel ? 1 = 0 — — — — — REL 21 rr 3

BRSET n opr rel Branch if Bit n Set PC ← (PC) + 2 + rel ? Mn = 1 — — — — ↕

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

00
02
04
06
08
0A
0C
0E

dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr

5
5
5
5
5
5
5
5

BSET n opr Set Bit n Mn ← 1 — — — — —

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

10
12
14
16
18
1A
1C
1E

dd
dd
dd
dd
dd
dd
dd
dd

5
5
5
5
5
5
5
5

BSR rel Branch to Subroutine

PC ← (PC) + 2; push (PCL)
SP ← (SP) – 1; push (PCH)

SP ← (SP) – 1
PC ← (PC) + rel

— — — — — REL AD rr 6

CLC Clear Carry Bit C ← 0 — — — — 0 INH 98 2

CLI Clear Interrupt Mask I ← 0 — 0 — — — INH 9A 2

Table 15. Instruction Set Summary (Sheet 2 of 6)

Source
Form Operation Description

Effect on
CCR

A
dd

re
ss

M
od

e

O
pc

od
e

O
pe

ra
nd

C
yc

le
s

H I N Z C
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA M68HC05 Instruction Set 127  
For More Information On This Product,

  Go to: www.freescale.com



M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

CLR opr
CLRA
CLRX
CLR opr,X
CLR ,X

Clear Byte

M ← $00
A ← $00
X ← $00
M ← $00
M ← $00

— — 0 1 —

DIR
INH
INH
IX1
IX

3F
4F
5F
6F
7F

dd

ff

5
3
3
6
5

CMP #opr
CMP opr
CMP opr
CMP opr,X
CMP opr,X
CMP ,X

Compare Accumulator with Memory Byte (A) – (M) — — ↕ ↕ ↕

IMM
DIR
EXT
IX2
IX1
IX

A1
B1
C1
D1
E1
F1

ii
dd

hh ll
ee ff

ff

2
3
4
5
4
3

COM opr
COMA
COMX
COM opr,X
COM ,X

Complement Byte (One’s Complement)

M ← (M) = $FF – (M)
A ← (A) = $FF – (A)
X ← (X) = $FF – (X)
M ← (M) = $FF – (M)
M ← (M) = $FF – (M)

— — ↕ ↕ 1

DIR
INH
INH
IX1
IX

33
43
53
63
73

dd

ff

5
3
3
6
5

CPX #opr
CPX opr
CPX opr
CPX opr,X
CPX opr,X
CPX ,X

Compare Index Register with Memory Byte (X) – (M) — — ↕ ↕ ↕

IMM
DIR
EXT
IX2
IX1
IX

A3
B3
C3
D3
E3
F3

ii
dd

hh ll
ee ff

ff

2
3
4
5
4
3

DEC opr
DECA
DECX
DEC opr,X
DEC ,X

Decrement Byte

M ← (M) – 1
A ← (A) – 1
X ← (X) – 1
M ← (M) – 1
M ← (M) – 1

— — ↕ ↕ —

DIR
INH
INH
IX1
IX

3A
4A
5A
6A
7A

dd

ff

5
3
3
6
5

EOR #opr
EOR opr
EOR opr
EOR opr,X
EOR opr,X
EOR ,X

EXCLUSIVE OR Accumulator with Memory Byte A ← (A) ⊕ (M) — — ↕ ↕ —

IMM
DIR
EXT
IX2
IX1
IX

A8
B8
C8
D8
E8
F8

ii
dd

hh ll
ee ff

ff

2
3
4
5
4
3

INC opr
INCA
INCX
INC opr,X
INC ,X

Increment Byte

M ← (M) + 1
A ← (A) + 1
X ← (X) + 1
M ← (M) + 1
M ← (M) + 1

— — ↕ ↕ —

DIR
INH
INH
IX1
IX

3C
4C
5C
6C
7C

dd

ff

5
3
3
6
5

JMP opr
JMP opr
JMP opr,X
JMP opr,X
JMP ,X

Unconditional Jump PC ← Jump Address — — — — —

DIR
EXT
IX2
IX1
IX

BC
CC
DC
EC
FC

dd
hh ll
ee ff

ff

2
3
4
3
2

Table 15. Instruction Set Summary (Sheet 3 of 6)

Source
Form Operation Description

Effect on
CCR

A
dd

re
ss

M
od

e

O
pc

od
e

O
pe

ra
nd

C
yc

le
s

H I N Z C
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

128 M68HC05 Instruction Set MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



M68HC05 Instruction Set
Instruction Set Summary

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

JSR opr
JSR opr
JSR opr,X
JSR opr,X
JSR ,X

Jump to Subroutine

PC ← (PC) + n (n = 1, 2, or 3)
Push (PCL); SP ← (SP) – 1
Push (PCH); SP ← (SP) – 1

PC ← Effective Address

— — — — —

DIR
EXT
IX2
IX1
IX

BD
CD
DD
ED
FD

dd
hh ll
ee ff

ff

5
6
7
6
5

LDA #opr
LDA opr
LDA opr
LDA opr,X
LDA opr,X
LDA ,X

Load Accumulator with Memory Byte A ← (M) — — ↕ ↕ —

IMM
DIR
EXT
IX2
IX1
IX

A6
B6
C6
D6
E6
F6

ii
dd

hh ll
ee ff

ff

2
3
4
5
4
3

LDX #opr
LDX opr
LDX opr
LDX opr,X
LDX opr,X
LDX ,X

Load Index Register with Memory Byte X ← (M) — — ↕ ↕ —

IMM
DIR
EXT
IX2
IX1
IX

AE
BE
CE
DE
EE
FE

ii
dd

hh ll
ee ff

ff

2
3
4
5
4
3

LSL opr
LSLA
LSLX
LSL opr,X
LSL ,X

Logical Shift Left (Same as ASL) — — ↕ ↕ ↕

DIR
INH
INH
IX1
IX

38
48
58
68
78

dd

ff

5
3
3
6
5

LSR opr
LSRA
LSRX
LSR opr,X
LSR ,X

Logical Shift Right — — 0 ↕ ↕

DIR
INH
INH
IX1
IX

34
44
54
64
74

dd

ff

5
3
3
6
5

MUL Unsigned Multiply X : A ← (X) × (A) 0 — — — 0 INH 42 11

NEG opr
NEGA
NEGX
NEG opr,X
NEG ,X

Negate Byte (Two’s Complement)

M ← –(M) = $00 – (M)
A ← –(A) = $00 – (A)
X ← –(X) = $00 – (X)
M ← –(M) = $00 – (M)
M ← –(M) = $00 – (M)

— — ↕ ↕ ↕

DIR
INH
INH
IX1
IX

30
40
50
60
70

dd

ff

5
3
3
6
5

NOP No Operation — — — — — INH 9D 2

ORA #opr
ORA opr
ORA opr
ORA opr,X
ORA opr,X
ORA ,X

Logical OR Accumulator with Memory A ← (A) ∨ (M) — — ↕ ↕ —

IMM
DIR
EXT
IX2
IX1
IX

AA
BA
CA
DA
EA
FA

ii
dd

hh ll
ee ff

ff

2
3
4
5
4
3

ROL opr
ROLA
ROLX
ROL opr,X
ROL ,X

Rotate Byte Left through Carry Bit — — ↕ ↕ ↕

DIR
INH
INH
IX1
IX

39
49
59
69
79

dd

ff

5
3
3
6
5

Table 15. Instruction Set Summary (Sheet 4 of 6)

Source
Form Operation Description

Effect on
CCR

A
dd

re
ss

M
od

e

O
pc

od
e

O
pe

ra
nd

C
yc

le
s

H I N Z C

C

b0b7

0

b0b7

C0

C

b0b7
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA M68HC05 Instruction Set 129  
For More Information On This Product,

  Go to: www.freescale.com



M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

ROR opr
RORA
RORX
ROR opr,X
ROR ,X

Rotate Byte Right through Carry Bit — — ↕ ↕ ↕

DIR
INH
INH
IX1
IX

36
46
56
66
76

dd

ff

5
3
3
6
5

RSP Reset Stack Pointer SP ← $00FF — — — — — INH 9C 2

RTI Return from Interrupt

SP ← (SP) + 1; Pull (CCR)
SP ← (SP) + 1; Pull (A)
SP ← (SP) + 1; Pull (X)

SP ← (SP) + 1; Pull (PCH)
SP ← (SP) + 1; Pull (PCL)

↕ ↕ ↕ ↕ ↕ INH 80 9

RTS Return from Subroutine
SP ← (SP) + 1; Pull (PCH)
SP ← (SP) + 1; Pull (PCL)

— — — — — INH 81 6

SBC #opr
SBC opr
SBC opr
SBC opr,X
SBC opr,X
SBC ,X

Subtract Memory Byte and Carry Bit from
Accumulator

A ← (A) – (M) – (C) — — ↕ ↕ ↕

IMM
DIR
EXT
IX2
IX1
IX

A2
B2
C2
D2
E2
F2

ii
dd

hh ll
ee ff

ff

2
3
4
5
4
3

SEC Set Carry Bit C ← 1 — — — — 1 INH 99 2

SEI Set Interrupt Mask I ← 1 — 1 — — — INH 9B 2

STA opr
STA opr
STA opr,X
STA opr,X
STA ,X

Store Accumulator in Memory M ← (A) — — ↕ ↕ —

DIR
EXT
IX2
IX1
IX

B7
C7
D7
E7
F7

dd
hh ll
ee ff

ff

4
5
6
5
4

STOP Stop Oscillator and Enable IRQ Pin — 0 — — — INH 8E 2

STX opr
STX opr
STX opr,X
STX opr,X
STX ,X

Store Index Register In Memory M ← (X) — — ↕ ↕ —

DIR
EXT
IX2
IX1
IX

BF
CF
DF
EF
FF

dd
hh ll
ee ff

ff

4
5
6
5
4

SUB #opr
SUB opr
SUB opr
SUB opr,X
SUB opr,X
SUB ,X

Subtract Memory Byte from Accumulator A ← (A) – (M) — — ↕ ↕ ↕

IMM
DIR
EXT
IX2
IX1
IX

A0
B0
C0
D0
E0
F0

ii
dd

hh ll
ee ff

ff

2
3
4
5
4
3

SWI Software Interrupt

PC ← (PC) + 1; Push (PCL)
SP ← (SP) – 1; Push (PCH)

SP ← (SP) – 1; Push (X)
SP ← (SP) – 1; Push (A)

SP ← (SP) – 1; Push (CCR)
SP ← (SP) – 1; I ← 1

PCH ← Interrupt Vector High Byte
PCL ← Interrupt Vector Low Byte

— 1 — — — INH 83 10

TAX Transfer Accumulator to Index Register X ← (A) — — — — — INH 97 2

Table 15. Instruction Set Summary (Sheet 5 of 6)

Source
Form Operation Description

Effect on
CCR

A
dd

re
ss

M
od

e

O
pc

od
e

O
pe

ra
nd

C
yc

le
s

H I N Z C

b0b7

C

M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

130 M68HC05 Instruction Set MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



M68HC05 Instruction Set
Instruction Set Summary

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

TST opr
TSTA
TSTX
TST opr,X
TST ,X

Test Memory Byte for Negative or Zero (M) – $00 — — ↕ ↕ —

DIR
INH
INH
IX1
IX

3D
4D
5D
6D
7D

dd

ff

4
3
3
5
4

TXA Transfer Index Register to Accumulator A ← (X) — — — — — INH 9F 2

WAIT Stop CPU Clock and Enable Interrupts — 0 — — — INH 8F 2

A Accumulator opr Operand (one or two bytes)
C Carry/borrow flag PC Program counter
CCR Condition code register PCH Program counter high byte
dd Direct address of operand PCL Program counter low byte
dd rr Direct address of operand and relative offset of branch instruction REL Relative addressing mode
DIR Direct addressing mode rel Relative program counter offset byte
ee ff High and low bytes of offset in indexed, 16-bit offset addressing rr Relative program counter offset byte
EXT Extended addressing mode SP Stack pointer
ff Offset byte in indexed, 8-bit offset addressing X Index register
H Half-carry flag Z Zero flag
hh ll High and low bytes of operand address in extended addressing # Immediate value
I Interrupt mask • Logical AND
ii Immediate operand byte + Logical OR
IMM Immediate addressing mode ⊕ Logical EXCLUSIVE OR
INH Inherent addressing mode ( ) Contents of
IX Indexed, no offset addressing mode –( ) Negation (twos complement)
IX1 Indexed, 8-bit offset addressing mode ← Loaded with
IX2 Indexed, 16-bit offset addressing mode ? If
M Memory location : Concatenated with
N Negative flag ↕ Set or cleared
n Any bit — Not affected

Table 15. Instruction Set Summary (Sheet 6 of 6)

Source
Form Operation Description

Effect on
CCR

A
dd

re
ss

M
od

e

O
pc

od
e

O
pe

ra
nd

C
yc

le
s

H I N Z C
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA M68HC05 Instruction Set 131  
For More Information On This Product,

  Go to: www.freescale.com



F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
 

n
c

..
.

M68HC05 Instruction
Ta

bl
e 

16
. M

68
H

C
05

 In
st

ru
ct

io
n 

S
et

 O
pc

od
e 

M
ap

R
ea

d-
M

od
ify

-W
rit

e
C

on
tr

ol
R

eg
is

te
r/

M
em

or
y

IN
H

IN
H

IX
1

IX
IN

H
IN

H
IM

M
D

IR
E

X
T

IX
2

IX
1

IX

4
5

6
7

8
9

A
B

C
D

E
F

3
N

E
G

A IN
H

3
N

E
G

X
1

IN
H

6
N

E
G

2
IX

1

5
N

E
G

1
IX

9
R

T
I

1
IN

H

2
S

U
B

2
IM

M

3
S

U
B

2
D

IR

4
S

U
B

3
E

X
T

5
S

U
B

3
IX

2

4
S

U
B

2
IX

1

3
S

U
B

1
IX

0

6
R

T
S

1
IN

H

2
C

M
P

2
IM

M

3
C

M
P

2
D

IR

4
C

M
P

3
E

X
T

5
C

M
P

3
IX

2

4
C

M
P

2
IX

1

3
C

M
P

1
IX

1

11
M

U
L IN

H

2
S

B
C

2
IM

M

3
S

B
C

2
D

IR

4
S

B
C

3
E

X
T

5
S

B
C

3
IX

2

4
S

B
C

2
IX

1

3
S

B
C

1
IX

2

3
C

O
M

A IN
H

3
C

O
M

X
1

IN
H

6
C

O
M

2
IX

1

5
C

O
M

1
IX

10
S

W
I

1
IN

H

2
C

P
X

2
IM

M

3
C

P
X

2
D

IR

4
C

P
X

3
E

X
T

5
C

P
X

3
IX

2

4
C

P
X

2
IX

1

3
C

P
X

1
IX

3

3
LS

R
A IN

H

3
LS

R
X

1
IN

H

6
LS

R
2

IX
1

5
LS

R
1

IX

2
A

N
D

2
IM

M

3
A

N
D

2
D

IR

4
A

N
D

3
E

X
T

5
A

N
D

3
IX

2

4
A

N
D

2
IX

1

3
A

N
D

1
IX

4

2
B

IT
2

IM
M

3
B

IT
2

D
IR

4
B

IT
3

E
X

T

5
B

IT
3

IX
2

4
B

IT
2

IX
1

3
B

IT
1

IX
5

3
R

O
R

A IN
H

3
R

O
R

X
1

IN
H

6
R

O
R

2
IX

1

5
R

O
R

1
IX

2
LD

A
2

IM
M

3
LD

A
2

D
IR

4
LD

A
3

E
X

T

5
LD

A
3

IX
2

4
LD

A
2

IX
1

3
LD

A
1

IX
6

3
A

S
R

A IN
H

3
A

S
R

X
1

IN
H

6
A

S
R

2
IX

1

5
A

S
R

1
IX

2
TA

X
1

IN
H

4
S

TA
2

D
IR

5
S

TA
3

E
X

T

6
S

TA
3

IX
2

5
S

TA
2

IX
1

4
S

TA
1

IX
7

3
S

LA
/L

S
LA IN
H

3
A

S
LX

/L
S

LX
1

IN
H

6
A

S
L/

LS
L

2
IX

1

5
A

S
L/

LS
L

1
IX

2
C

LC
1

IN
H

2
E

O
R

2
IM

M

3
E

O
R

2
D

IR

4
E

O
R

3
E

X
T

5
E

O
R

3
IX

2

4
E

O
R

2
IX

1

3
E

O
R

1
IX

8

3
R

O
LA

IN
H

3
R

O
LX

1
IN

H

6
R

O
L

2
IX

1

5
R

O
L

1
IX

2
S

E
C

1
IN

H

2
A

D
C

2
IM

M

3
A

D
C

2
D

IR

4
A

D
C

3
E

X
T

5
A

D
C

3
IX

2

4
A

D
C

2
IX

1

3
A

D
C

1
IX

9

3
D

E
C

A IN
H

3
D

E
C

X
1

IN
H

6
D

E
C

2
IX

1

5
D

E
C

1
IX

2
C

LI
1

IN
H

2
O

R
A

2
IM

M

3
O

R
A

2
D

IR

4
O

R
A

3
E

X
T

5
O

R
A

3
IX

2

4
O

R
A

2
IX

1

3
O

R
A

1
IX

A

2
S

E
I

1
IN

H

2
A

D
D

2
IM

M

3
A

D
D

2
D

IR

4
A

D
D

3
E

X
T

5
A

D
D

3
IX

2

4
A

D
D

2
IX

1

3
A

D
D

1
IX

B

3
IN

C
A IN

H

3
IN

C
X

1
IN

H

6
IN

C
2

IX
1

5
IN

C
1

IX

2
R

S
P

1
IN

H

2
JM

P
2

D
IR

3
JM

P
3

E
X

T

4
JM

P
3

IX
2

3
JM

P
2

IX
1

2
JM

P
1

IX
C

3
T

S
TA

IN
H

3
T

S
T

X
1

IN
H

5
T

S
T

2
IX

1

4
T

S
T

1
IX

2
N

O
P

1
IN

H

6
B

S
R

2
R

E
L

5
JS

R
2

D
IR

6
JS

R
3

E
X

T

7
JS

R
3

IX
2

6
JS

R
2

IX
1

5
JS

R
1

IX
D

2
S

TO
P

1
IN

H

2
LD

X
2

IM
M

3
LD

X
2

D
IR

4
LD

X
3

E
X

T

5
LD

X
3

IX
2

4
LD

X
2

IX
1

3
LD

X
1

IX
E

3
C

LR
A IN

H

3
C

LR
X

1
IN

H

6
C

LR
2

IX
1

5
C

LR
1

IX

2
W

A
IT

1
IN

H

2
T

X
A

1
IN

H

4
S

T
X

2
D

IR

5
S

T
X

3
E

X
T

6
S

T
X

3
IX

2

5
S

T
X

2
IX

1

4
S

T
X

1
IX

F

ffs
et

it 
O

ffs
et

B
it 

O
ffs

et

0
M

S
B

 o
f O

pc
od

e 
in

 H
ex

ad
ec

im
al

LS
B

 o
f O

pc
od

e 
in

 H
ex

ad
ec

im
al

0
5

B
R

S
E

T
0

3
D

IR

N
um

be
r 

of
 C

yc
le

s
O

pc
od

e 
M

ne
m

on
ic

N
um

be
r 

of
 B

yt
es

/A
dd

re
ss

in
g 

M
od

e

LS
B

M
S

B

LS
B

M
S

B

    Freescale Semiconductor, Inc.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

132 M68HC05 Instruction Set MOTOROLA

B
it 

M
an

ip
ul

at
io

n
B

ra
nc

h

D
IR

D
IR

R
E

L
D

IR

0
1

2
3

0
5

B
R

S
E

T
0

3
D

IR

5
B

S
E

T
0

2
D

IR

3
B

R
A

2
R

E
L

5
N

E
G

2
D

IR
1

1
5

B
R

C
LR

0
3

D
IR

5
B

C
LR

0
2

D
IR

3
B

R
N

2
R

E
L

2
5

B
R

S
E

T
1

3
D

IR

5
B

S
E

T
1

2
D

IR

3
B

H
I

2
R

E
L

1

3
5

B
R

C
LR

1
3

D
IR

5
B

C
LR

1
2

D
IR

3
B

LS
2

R
E

L

5
C

O
M

2
D

IR
1

4
5

B
R

S
E

T
2

3
D

IR

5
B

S
E

T
2

2
D

IR

3
B

C
C

2
R

E
L

5
LS

R
2

D
IR

1

5
5

B
R

C
LR

2
3

D
IR

5
B

C
LR

2
2

D
IR

3
B

C
S

/B
LO

2
R

E
L

6
5

B
R

S
E

T
3

3
D

IR

5
B

S
E

T
3

2
D

IR

3
B

N
E

2
R

E
L

5
R

O
R

2
D

IR
1

7
5

B
R

C
LR

3
3

D
IR

5
B

C
LR

3
2

D
IR

3
B

E
Q

2
R

E
L

5
A

S
R

2
D

IR
1

8
5

B
R

S
E

T
4

3
D

IR

5
B

S
E

T
4

2
D

IR

3
B

H
C

C
2

R
E

L

5
A

S
L/

LS
L

2
D

IR
A 1

9
5

B
R

C
LR

4
3

D
IR

5
B

C
LR

4
2

D
IR

3
B

H
C

S
2

R
E

L

5
R

O
L

2
D

IR
1

A
5

B
R

S
E

T
5

3
D

IR

5
B

S
E

T
5

2
D

IR

3
B

P
L

2
R

E
L

5
D

E
C

2
D

IR
1

B
5

B
R

C
LR

5
3

D
IR

5
B

C
LR

5
2

D
IR

3
B

M
I

2
R

E
L

C
5

B
R

S
E

T
6

3
D

IR

5
B

S
E

T
6

2
D

IR

3
B

M
C

2
R

E
L

5
IN

C
2

D
IR

1

D
5

B
R

C
LR

6
3

D
IR

5
B

C
LR

6
2

D
IR

3
B

M
S

2
R

E
L

4
T

S
T

2
D

IR
1

E
5

B
R

S
E

T
7

3
D

IR

5
B

S
E

T
7

2
D

IR

3
B

IL
2

R
E

L

F
5

B
R

C
LR

7
3

D
IR

5
B

C
LR

7
2

D
IR

3
B

IH
2

R
E

L

5
C

LR
2

D
IR

1

IN
H

 =
 In

he
re

nt
R

E
L 

=
 R

el
at

iv
e

IM
M

 =
 Im

m
ed

ia
te

IX
 =

 In
de

xe
d,

 N
o 

O
D

IR
 =

 D
ire

ct
IX

1 
=

 In
de

xe
d,

 8
-B

E
X

T
 =

 E
xt

en
de

d
IX

2 
=

 In
de

xe
d,

 1
6-

LS
BM

S
B

  

 

For More Information On This Product,
  Go to: www.freescale.com



M68HC05 Instruction Set
Review

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Review

CPU Registers The five CPU registers in the M68HC05 MCUs are not locations in the
memory map. The programming model  for the CPU shows the five
CPU registers.

• The accumulator  (A) is an 8-bit general-purpose register.

• The index register  (X) is an 8-bit pointer register.

• The stack pointer  (SP) is a pointer register that is decremented
automatically as data is pushed onto the stack and incremented
as data is pulled off of the stack.

• The program counter  (PC) has as many bits as there are
address lines. The program counter always points at the next
instruction or piece of data the CPU will use.

• The condition code register  (CCR) contains the four arithmetic
result flags H, N, Z, and C and the interrupt mask (disable) control
bit I.

Addressing Modes The M68HC05 CPU has six addressing modes that determine how the
CPU will get the operand(s) needed to complete each instruction. The
M68HC05 CPU has only 62 mnemonic  instructions. There are 210
instruction opcodes because each different addressing mode variation
of an instruction must have a unique opcode.

• In immediate addressing mode, the operand for the instruction is
the byte immediately after the opcode.

• In inherent  addressing mode, the CPU needs no operands from
memory. The operands, if any, are the registers or stacked data
values.

• In extended addressing mode, the 16-bit address of the operand
is located in the next two memory bytes after the instruction
opcode.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA M68HC05 Instruction Set 133  
For More Information On This Product,

  Go to: www.freescale.com



M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

• In direct addressing mode, the low order eight bits of the address
of the operand are located in the next byte of memory after the
opcode and the high order byte of the address is assumed to be
$00. This mode is more efficient than the extended addressing
mode because the high order address byte is not explicitly
included in the program.

• In indexed  addressing mode, the current value of the index
register is added to a 0-, 1-, or 2-byte offset in the next 0, 1, or 2
memory locations after the opcode to form a pointer to the address
of the operand in memory.

• Relative  addressing mode is used for conditional branch
instructions. The byte after the opcode is a signed offset value
between –128 and +127. If the condition of the branch is true, the
offset is added to the program counter value to get the address
where the CPU will fetch the next program instruction.

Instruction
Execution

Each opcode  tells the CPU the operation to be performed and the
addressing mode to be used to address any operands  needed to
complete the instruction. The cycle-by-cycle explanations of example
instructions under each addressing mode provide a view of the tiny
simple steps that make up an instruction.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

134 M68HC05 Instruction Set MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

Programming
   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  
Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136

Writing a Simple Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136
Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137

Mnemonic Source Code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139

Software Delay Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141

Assembler Listing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143
Object Code File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147

Assembler Directives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149
Originate (ORG)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149
Equate (EQU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149
Form Constant Byte (FCB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150
Form Double Byte (FDB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150
Reserve Memory Byte (RMB) . . . . . . . . . . . . . . . . . . . . . . . . . . . .151
Set Default Number Base to Decimal . . . . . . . . . . . . . . . . . . . . . .152

Instruction Set Dexterity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153

Application Development. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154

Review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Programming 135  
For More Information On This Product,

  Go to: www.freescale.com



Programming

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Introduction

This chapter discusses how to plan and write computer programs. We
will learn how to prepare flowcharts, write assembly language programs,
and use a text editor or word processor to write computer programs.
Next, a programming tool called an assembler is used to translate the
program into a form the computer can use. Programming tools are
computer programs for personal computers that help in the development
of microcontroller computer programs. We will discuss assemblers,
simulators, and a few other useful development tools.

Writing a Simple Program

At this point, we will write a short program in mnemonic form and
translate it into machine code. These are the steps:

• The first step will be to plan the program and document this plan
with a flowchart.

• Next we will write instruction mnemonics for each block in the
flowchart.

• Finally, we will use an assembler to translate our example
program into the codes the computer needs to execute the
program.

Our program will read the state of a switch connected to an input pin.
When the switch is closed, the program will cause an LED (light-emitting
diode) connected to an output pin to light for about one second and then
go out. The LED will not light again until the switch has been released
and closed again. The length of time the switch is held closed will not
affect the length of time the LED is lighted.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

136 Programming MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Programming
Writing a Simple Program

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Although this program is simple, it demonstrates the most common
elements of any MCU application program:

• First, it demonstrates how a program can sense input signals such
as switch closures.

• Second, this is an example of a program controlling an output
signal.

• Third, the LED on-time of about one second demonstrates one
way a program can be used to measure real time.

Because the algorithm is sufficiently complicated, it cannot be
accomplished in a trivial manner with discrete components. At minimum,
a one-shot IC (integrated circuit) with external timing components would
be required. This example demonstrates that an MCU and a
user-defined program (software) can replace complex circuits.

Flowchart Figure 30 is a flowchart of the example program. Flowcharts are often
used as planning tools for writing software programs because they show
the function and flow of the program under development. The
importance of notes, comments, and documentation for software cannot
be over-emphasized. Just as you would not consider a circuit-board
design complete until there is a schematic diagram, parts list, and
assembly drawing, you should not consider a program complete
until there is a commented listing and a comprehensive
explanation of the program such as a flowchart.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Programming 137  
For More Information On This Product,

  Go to: www.freescale.com



Programming

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Figure 30. Example Flowchart

BEGIN

READ SWITCH

YES

NO
CLOSED ?

SET INITIAL CONDITIONS:
PORT A BIT 7 = 1 (LED OFF)

MAKE PORT A BIT 7 AN OUTPUT

DELAY TO DEBOUNCE

TURN ON LED

DELAY 1 SECOND

TURN OFF LED

YES

NO

SWITCH
STILL CLOSED ?

DELAY TO DEBOUNCE
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

138 Programming MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Programming
Mnemonic Source Code

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Mnemonic Source Code

Once the flowchart or plan is completed, the programmer develops a
series of assembly language instructions to accomplish the function(s)
called for in each block of the plan. The programmer is limited to
selecting instructions from the instruction set for the CPU being used (in
this case the M68HC05). The programmer writes instructions in a
mnemonic form that is easy to understand. Figure 31  shows the
mnemonic source code  next to the flowchart of our example program
so you can see what CPU instructions are used to accomplish each
block of the flowchart. The meanings of the mnemonics used in the right
side of Figure 31  can be found in Instruction Set Details  or in
Instruction Set Summary .

During development of the program instructions, it was noticed that a
time delay was needed in three places. A subroutine  was developed
that generates a 50-ms delay. This subroutine is used directly in two
places (for switch debouncing) and makes the 1-second delay easier to
produce. To keep this figure simple, the comments that would usually be
included within the source program for documentation are omitted. The
comments will be shown in the completed program in Listing 3.
Assembler Listing .
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Programming 139  
For More Information On This Product,

  Go to: www.freescale.com



Programming

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Figure 31. Flowchart and Mnemonics

INIT    LDA   #$80

MNEMONIC PROGRAM

        STA   PORTA

        STA   DDRA

TOP     LDA   PORTA

        BEQ   TOP

        JSR   DLY50

        BCLR  7,PORTA

        LDA   #20

DLYLP   JSR   DLY50

        DECA

        BNE   DLYLP

        BSET  7,PORTA

OFFLP   BRSET 0,PORTA,OFFLP

        JSR   DLY50

        BRA   TOP

BEGIN

READ SWITCH

YES

NO
CLOSED ?

DELAY TO DEBOUNCE

TURN ON LED

DELAY 1 SECOND

TURN OFF LED

YES

NO

SWITCH
STILL CLOSED ?

DELAY TO DEBOUNCE

FLOWCHART

SET INITIAL CONDITIONS:
PORT A BIT 7 = 1 (LED OFF)

MAKE PORT A BIT 7 AN OUTPUT

        AND   #$01
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

140 Programming MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Programming
Software Delay Program

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Software Delay Program

Figure 32 shows an expanded flowchart of the 50-ms delay subroutine.
A subroutine is a relatively short program that performs some commonly
required function. Even if the function needs to be performed many times
in the course of a program, the subroutine only has to be written once.
Each place where this function is needed, the programmer would call the
subroutine with a branch-to-subroutine (BSR) or jump-to-subroutine
(JSR) instruction.

Figure 32. Delay Routine Flowchart and Mnemonics

START
SUBROUTINE

SAVE ACCUMULATOR

YES

NO COUNT
EXPIRED ?

LOAD VALUE
CORRESPONDING TO 50 ms

DECREMENT COUNT

RESTORE
ACCUMULATOR

RETURN FROM
SUBROUTINE

DLY50   STA   TEMP1     4

FLOWCHART MNEMONIC PROGRAM INSTRUCTION
TIME (CYCLES)

        LDA   #65       2

OUTLP   CLRX            3

INNRLP  DECX            3

        BNE   INNRLP    3

        DECA            3

        BNE   OUTLP     3

        LDA   TEMP1     3

        RTS             6

                        6 (JSR)

[1]

[2]

[1] – INNRLP is executed 256 times per pass through outer loop.
[2] – OUTLP is executed 65 times.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Programming 141  
For More Information On This Product,

  Go to: www.freescale.com



Programming

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Before starting to execute the instructions in the subroutine, the address
of the instruction that follows the JSR (or BSR) is stored automatically on
the stack in temporary RAM memory locations. When the CPU finishes
executing the instructions within the subroutine, a
return-from-subroutine (RTS) instruction is performed as the last
instruction in the subroutine. The RTS instruction causes the CPU to
recover the previously saved return address; thus, the CPU continues
the program with the instruction following the JSR (or BSR) instruction
that originally called the subroutine.

The delay routine of Figure 32  involves an inner loop (INNRLP) within
another loop (OUTLP). The inner loop consists of two instructions
executed 256 times before X reaches $00 and the BNE branch condition
fails. This amounts to six cycles at 500 ns per cycle times 256, which
equals 0.768 ms for the inner loop. The outer loop executes 65 times.
The total execution time for the outer loop is 65(1536+9) or
65(1545) = 100,425 cycles or 50.212 ms. The miscellaneous
instructions in this routine other than those in the outer loop total 21
cycles; thus, the total time required to execute the DLY50 routine is
50.223 ms, including the time required for the JSR instruction that calls
DLY50.

The on-chip timer system in the MC68HC705J1A can also be used to
measure time. The timer-based approach is preferred because the CPU
can perform other tasks during the delay, and the delay time is not
dependent on the exact number of instructions executed as it is in
DLY50.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

142 Programming MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Programming
Assembler Listing

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Assembler Listing

After a complete program or subprogram is written, it must be converted
from mnemonics into binary machine code that the CPU can later
execute. A separate computer system, such as an IBM PC®, is used to
perform this conversion to machine language. A computer program for
the personal computer, called an assembler, is used. The assembler
reads the mnemonic version of the program (also called the source
version of the program) and produces a machine-code version of the
program in a form that can be programmed into the memory of the MCU.

The assembler also produces a composite listing showing both the
original source program (mnemonics) and the object code translation.
This listing is used during the debug phase of a project and as part of the
documentation for the software program. Listing 3. Assembler Listing
shows the listing that results from assembling the example program.
Comments were added before the program was assembled.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Programming 143  
For More Information On This Product,

  Go to: www.freescale.com



Programming

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Listing 3. Assembler Listing

                *******************************************************
                * Simple 68HC05 Program Example                       *
                * Read state of switch at port A bit-0; 1 = closed    *
                * When sw. closes, light LED for about 1 sec; LED on  *
                * when port A bit-7 = 0. Wait for sw release,         *
                * then repeat. Debounce sw 50 ms on & off             *
                * NOTE: Timing based on instruction execution times   *
                *  If using a simulator or crystal less than 4 MHz,   *
                *  this routine will run slower than intended         *
                *******************************************************
                $BASE     10T                   ;Tell assembler to use decimal
                                                ;unless $ or % before value
0000            PORTA     EQU     $00           ;Direct address of port A
0004            DDRA      EQU     $04           ;Data direction control, port A
00E0            TEMP1     EQU     $C0           ;One byte temp storage location

0300                      ORG     $0300         ;Program will start at $0300

0300  A6 80     INIT      LDA     #$80          ;Begin initialization
0302  B7 00               STA     PORTA         ;So LED will be off
0304  B7 04               STA     DDRA          ;Set port A bit-7 as output
                * Rest of port A is configured as inputs

0306  B6 00     TOP       LDA     PORTA         ;Read sw at LSB of Port A
0308  A4 01               AND     #$01          ;To test bit-0
030A  27 FA               BEQ     TOP           ;Loop till Bit-0 = 1
030C  CD 03 23            JSR     DLY50         ;Delay about 50 ms to debounce
030F  1F 00               BCLR    7,PORTA       ;Turn on LED (bit-7 to zero)
0311  A6 14               LDA     #20           ;Decimal 20 assembles to $14
0313  CD 03 23  DLYLP     JSR     DLY50         ;Delay 50 ms
0316  4A                  DECA                  ;Loop counter for 20 loops
0317  26 FA               BNE     DLYLP         ;20 times (20-19,19-18,...1-0)
0319  1E 00               BSET    7,PORTA       ;Turn LED back off
031B  00 00 FD  OFFLP     BRSET   0,PORTA,OFFLP ;Loop here till sw off
031E  CD 03 23            JSR     DLY50         ;Debounce release
0321  20 E3               BRA     TOP           ;Look for next sw closure

                ***
                * DLY50 - Subroutine to delay ~50mS
                * Save original accumulator value
                * but X will always be zero on return
                ***

0323  B7 C0     DLY50     STA     TEMP1         ;Save accumulator in RAM
0325  A6 41               LDA     #65           ;Do outer loop 65 times
0327  5F        OUTLP     CLRX                  ;X used as inner loop count
0328  5A        INNRLP    DECX                  ;0-FF, FF-FE,...1-0 256 loops
0329  26 FD               BNE     INNRLP        ;6 cyc*256*500ns/cyc = 0.768 ms
032B  4A                  DECA                  ;65-64, 64-63,...1-0
032C  26 F9               BNE     OUTLP         ;1545cyc*65*500ns/cyc=50.212ms
032E  B6 C0               LDA     TEMP1         ;Recover saved Accumulator val
0330  81                  RTS                   ;Return
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

144 Programming MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Programming
Assembler Listing

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Refer to Figure 33 for the following discussion. This figure shows some
lines of the listing with reference numbers indicating the various parts of
the line. The first line is an example of an assembler directive line. This
line is not really part of the program; rather, it provides information to the
assembler so that the real program can be converted properly into binary
machine code.

0000            PORTA   EQU    $00      ;Direct address of port A

0300                    ORG    $0300    ;Program will start at $0200

0306  B6 00     TOP     LDA    PORTA    ;Read sw at LSB of Port A
----  --------- ------- ----   -------- --------------------------------
[1]    [2]      [3]     [4]    [5]       [6]->

Figure 33. Explanation of Assembler Listing

EQU, short for equate, is used to give a specific memory location or
binary number a name that can then be used in other program
instructions. In this case, the EQU directive is being used to assign the
name PORTA to the value $00, which is the address of the port A
register in the MC68HC705J1A. It is easier for a programmer to
remember the mnemonic name PORTA rather than the anonymous
numeric value $00. When the assembler encounters one of these
names, the name is replaced automatically by its corresponding binary
value in much the same way that instruction mnemonics are replaced by
binary instruction codes.

The second line shown in Figure 33 is another assembler directive. The
mnemonic ORG, which is short for originate, tells the assembler where
the program will start (the address of the start of the first instruction
following the ORG directive line). More than one ORG directive may be
used in a program to tell the assembler to put different parts of the
program in specific places in memory. Refer to the memory map of the
MCU to select an appropriate memory location where a program should
start.

In this assembler listing, the first two fields, [1] and [2], are generated by
the assembler, and the last four fields, [3], [4], [5], and [6], are the original
source program written by the programmer. Field [3] is a label (TOP)
which can be referred to in other instructions. In our example program,
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Programming 145  
For More Information On This Product,

  Go to: www.freescale.com



Programming

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

the last instruction was BRA TOP, which simply means the CPU will
continue execution with the instruction that is labeled TOP.

When the programmer is writing a program, the addresses where
instructions will be located are not typically known. Worse yet, in branch
instructions, rather than using the address of a destination, the CPU
uses an offset (difference) between the current PC value and the
destination address. Fortunately, the programmer does not have to
worry about these problems because the assembler takes care of these
details through a system of labels. This system of labels is a convenient
way for the programmer to identify specific points in the program (without
knowing their exact addresses); the assembler can later convert these
mnemonic labels into specific memory addresses and even calculate
offsets for branch instructions so that the CPU can use them.

Field [4] is the instruction field. The LDA mnemonic is short for load
accumulator. Since there are six variations (different opcodes) of the
load accumulator instruction, additional information is required before
the assembler can choose the correct binary opcode for the CPU to use
during execution of the program.

Field [5] is the operand field, providing information about the specific
memory location or value to be operated on by the instruction. The
assembler uses both the instruction mnemonic and the operand
specified in the source program to determine the specific opcode for the
instruction.

The different ways of specifying the value to be operated on are called
addressing modes. (A more complete discussion of addressing modes
was presented in Addressing Modes .) The syntax of the operand field
is slightly different for each addressing mode, so the assembler can
determine the correct intended addressing mode from the syntax of the
operand. In this case, the operand [5] is PORTA, which the assembler
automatically converts to $00 (recall the EQU directive). The assembler
interprets $00 as a direct addressing mode address between $0000 and
$00FF, thus selecting the opcode $B6, which is the direct addressing
mode variation of the LDA instruction. If PORTA had been preceded by
a # symbol, that syntax would have been interpreted by the assembler
as an immediate addressing mode value, and the opcode $A6 would
have been chosen instead of $B6.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

146 Programming MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Programming
Assembler Listing

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Field [6] is called the comment field and is not used by the assembler to
translate the program into machine code. Rather, the comment field is
used by the programmer to document the program. Although the CPU
does not use this information during program execution, a programmer
knows that it is one of the most important parts of a good program. The
comment [6] for this line of the program says ;Read sw at LSB of

port A . This comment tells someone who is reading the listing
something about the instruction or why it is there, which is essential for
understanding how the program works . The semicolon indicates that
the rest of the line should be treated as a comment (not all assemblers
require this semicolon). An entire line can be made into a comment line
by using an asterisk (*) as the first character in the line. In addition to
good comments in the listing, it is also important to document programs
with a flowchart or other detailed information explaining the overall flow
and operation of the program.

Object Code File We learned in Computer Architecture  that the computer expects the
program to be a series of 8-bit values in memory. So far, our program
still looks as if it were written for people. The version the computer needs
to load into its memory is called an object code file . For Motorola
microcontrollers, the most common form of object code file is the
S-record  file. The assembler can be directed to optionally produce a
listing file and/or an object code file.

An S-record file is an ASCII text file that can be viewed by a text editor
or word processor. You should not edit these files because the structure
and content of the files are critical to their proper operation.

Each line of an S-record file is a record . Each record begins with a
capital letter S followed by a code number from 0 to 9. The only code
numbers that are important to us are S0, S1, and S9 because other
S-number codes apply only to larger systems. S0 is an optional header
record that may contain the name of the file for the benefit of humans
that need to maintain these files. S1 records are the main data records.
An S9 record is used to mark the end of the S-record file. For the work
we are doing with 8-bit microcontrollers, the information in the S9 record
is not important, but an S9 record is required at the end of our S-record
files. Figure 34  shows the syntax of an S1 record.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Programming 147  
For More Information On This Product,

  Go to: www.freescale.com



Programming

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Figure 34. Syntax of an S1 Record

All of the numbers in an S-record file are in hexadecimal. The type field
is S0, S1, or S9 for the S-record files we will use. The length field is the
number of pairs of hexadecimal digits in the record excluding the type
and length fields. The address field is the 16-bit address where the first
data byte will be stored in memory. Each pair of hexadecimal digits in the
machine code data field represents an 8-bit data value to be stored in
successive locations in memory. The checksum  field is an 8-bit value
that represents the ones complement of the sum of all bytes in the
S-record except the type and checksum fields. This checksum is used
during loading of the S-record file to verify that the data is complete and
correct for each record.

Figure 35 is the S-record file that results from assembling the example
program of Listing 3. Assembler Listing . The two bytes of machine
code data that are bold are the same two bytes that were highlighted in
Figure 16 and the text that follows Figure 16 . These bytes were located
by looking in the listing and seeing that the address where this
instruction started was $0323. In the S-record file, we found the S1
record with the address $0320. Moving to the right, we found the data
$23 for address $0320, $20 for address $0321, $E3 for $0322, and
finally the bytes we wanted for address $0323 and $0324.

S1130300A680B700B704B600A40127FACD03231FC3
S113031000A614CD03234A26FA1E000000FDCD03D7
S11303202320E3 B7C0A6415F5A26FD4A26F9B6C08A
S10403308147
S9030000FC

Figure 35. S-Record File for Example Program

TYPE

LENGTH

ADDRESS OBJECT CODE DATA CHECKSUM

13 03 20 23 20 E3 B7 C0 A6 41 5F 5A 26 FD 4A 26 F9 B6 C0 8AS1

CHECKSUM = ONES COMPLEMENT OF THE SUM OF  ALL OF THESE BYTES
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

148 Programming MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Programming
Assembler Directives

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Assembler Directives

In this section we discuss six of the most important assembler directives.
Assemblers from varying vendors differ in the number and kind of
assembler directives that are supported. Always refer to the
documentation for the assembler you are using.

Originate (ORG) This directive is used to set the location counter for the assembler. The
location counter keeps track of the address where the next byte of
machine code will be stored in memory. In our example program, there
was an ORG directive to set the start of our program to $0300.

As the assembler translates program statements into machine code
instructions and data, the location counter is advanced to point at the
next available memory location.

Every program has at least one ORG directive to establish the starting
place in memory for the program. Most complete programs also will have
a second ORG directive near the end of the program to set the location
counter to the address where the reset and interrupt vectors are located
($07F8–$07FF in the MC68HC705J1A). The reset vector must always
be specified, and it is good practice to also specify interrupt
vectors, even if you do not expect to use interrupts.

Equate (EQU) This directive is used to associate a binary value with a label. The value
may be either an 8-bit value or a 16-bit address value. This directive
does not generate any object code.

During the assembly process, the assembler must keep a cross
reference list where it stores the binary equivalent of each label. When
a label appears in the source program, the assembler looks in this cross
reference table to find the binary equivalent. Each EQU directive
generates an entry in this cross reference table.

An assembler reads the source program twice. On the first pass, the
assembler just counts bytes of object code and internally builds the
cross reference table. On the second pass, the assembler generates the
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Programming 149  
For More Information On This Product,

  Go to: www.freescale.com



Programming

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

listing file and/or the S-record object file. This 2-pass arrangement
allows the programmer to reference labels that are defined later in the
program.

EQU directives should appear near the beginning of a program, before
their labels are used by other program statements. If the assembler
encounters a label before it is defined, it has no choice but to assume
the worst case of a 16-bit address value. This would cause the extended
addressing mode to be used in places where the more efficient direct
addressing mode could have been used. In other cases, the indexed
16-bit offset addressing mode may be used where a more efficient 8-bit
or no offset indexed instruction could have been used.

In the example program, there were two EQU directives to equate the
labels PORTA and DDRA to their direct page addresses. Another use for
EQU directives is to identify a bit position with a label like this:

LED     EQU    %10000000  ;LED is connected to bit-7
 "       "      "            "
 "       "      "            "
INIT    LDA    #LED       ;There’s a 1 in LED bit position
        STA    PORTA      ;So LED will be off
        STA    DDRA       ;So LED pin is an output

The % symbol indicates the value that follows is expressed in binary. If
we moved the LED to a different pin during development, we would only
need to change the EQU statement and reassemble the program.

Form Constant
Byte (FCB)

The arguments for this directive are labels or numbers, separated by
commas, that can be converted into single bytes of data. Each byte
specified in an FCB directive generates a byte of machine code in the
object code file. FCB directives are used to define constants in a
program.

Form Double Byte
(FDB)

The arguments for this directive are labels or numbers, separated by
commas, that can be converted into 16-bit data values. Each argument
specified in an FDB directive generates two bytes of machine code in the
object code file.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

150 Programming MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Programming
Assembler Directives

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

These assembly listing lines demonstrate ORG directives and FDB
directives.

 "     "  "      "       "      "        "
 "     "  "      "       "      "        "
0300                    ORG    $0300    ;Beginning of EPROM in 705J1A

0300  B6 00     START   LDA    PORTA    ;Read sw at LSB of port A
 "     "  "      "       "      "        "
 "     "  "      "       "      "        "
041F  80        UNUSED  RTI             ;Return from unexpected int
 "     "  "      "       "      "        "
 "     "  "      "       "      "        "
07F8                    ORG    $07F8    ;Start of vector area

07F8  04 1F     TIMVEC  FDB    UNUSED   ;An unused vector
07FA  04 1F     IRQVEC  FDB    $041F    ;Argument can be a hex value
07FC  04 1F     SWIVEC  FDB    UNUSED   ;An unused vector
07FE  03 00     RESETV  FDB    START    ;Go to START on reset

Reserve Memory
Byte (RMB)

This directive is used to set aside space in RAM for program variables.
The RMB directive does not generate object code but it normally
generates an entry in the assembler’s internal cross reference table.

In the example program (Listing 3. Assembler Listing ), the RAM
variable TEMP1 was assigned with an EQU directive. Another way to
assign this variable is like this:

 "     "  "      "       "      "        "
00C0                    ORG    $00C0    ;Beginning of RAM in 705J1A

00C0            TEMP1   RMB    1        ;One byte temp storage location
 "     "  "      "       "      "        "

This is the preferred way to assign RAM storage because it is common
to add and delete variables in the course of developing a program. If you
used EQU directives, you might have to change several statements after
removing a single variable. With RMB directives, the assembler assigns
addresses as they are needed.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Programming 151  
For More Information On This Product,

  Go to: www.freescale.com



Programming

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Set Default
Number Base
to Decimal

Some assemblers, such as the P & E Microcomputer Systems IASM
assembler, assume that any value that is not specifically marked
otherwise should be interpreted as a hexadecimal value. The idea is to
simplify entry of numeric information by eliminating the need for a $
symbol before each value. If you want the assembler to assume that
unmarked values are decimal numbers, use the $BASE directive.

 "     "  "      "       "      "        "
....            $BASE   10T             ;Set default # base to decimal

000A            TEN     EQU    #10      ;Decimal 10 not $10 = 16
 "     "  "      "       "      "        "

This directive is slightly different from the others described in this
chapter. The $BASE directive starts in the leftmost column of the source
program. This directive is included near the start of each example
program in this textbook. If you are using an assembler that does not
require this directive, you can delete it or add an asterisk (*) at the start
of the line to comment the line out. When you comment a line out of the
program, you change the whole line into a comment. Comments do not
affect assembly of a program.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

152 Programming MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Programming
Instruction Set Dexterity

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Set Dexterity

As in most engineering fields, more than one sequence of instructions
can perform any task. A good way to learn a new instruction set is to see
how many different ways you can solve some small programming
problem. This is called instruction set dexterity.

Figure 36  shows four different ways to check for closure of a switch
connected to port A bit 0. Two of these ways were used in the example
program of Listing 3. Assembler Listing . Although all of the sequences
accomplish the same basic task, there are subtle differences. Usually
these differences are not significant, but sometimes they can save
execution time or program memory space. In a small microcontroller,
memory space can be an important consideration.

0000                 PORTA  EQU    $00      ;Direct address of port A

0300                        ORG    $0300    ;Program will start at $0300

0300  B6 00     [ 3] TOP1   LDA    PORTA    ;Read sw at LSB of Port A
0302  A4 01     [ 2]        AND    #$01     ;To test bit-0
0304  27 FA     [ 3]        BEQ    TOP1     ;Loop till bit-0 = 1

0306  01 00 FD  [ 5] TOP2   BRCLR  0,PORTA,TOP2  ;Loop here till sw ON

0309  B6 00     [ 3] TOP3   LDA    PORTA    ;Read sw at LSB of Port A
030B  44        [ 3]        LSRA            ;Bit-0 shifts to carry
030C  24 FB     [ 3]        BCC    TOP3     ;Loop till switch ON

030E  A6 01     [ 2]        LDA    #$01     ;1 in LSB
0310  B5 00     [ 3] TOP4   BIT    PORTA    ;To test sw at bit-0
0312  27 FC     [ 3]        BEQ    TOP4     ;Loop till switch ON

Figure 36. Four Ways to Check a Switch

The numbers in square brackets are the number of CPU cycles required
for the instruction on that line of the program. The TOP1 sequence takes
six bytes of program space and eight cycles. The accumulator is $01
when the program falls through the BEQ statement. The TOP2
sequence takes only three bytes and five cycles, and the accumulator is
not disturbed. (This is probably the best sequence in most cases.) The
TOP3 sequence takes one less byte than the TOP1 sequence but also
takes one extra cycle to execute. After the TOP3 sequence, the
accumulator still holds the other seven bits from the port A read,
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Programming 153  
For More Information On This Product,

  Go to: www.freescale.com



Programming

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

although they have been shifted one position to the right. The last
sequence takes six bytes and a total of eight cycles, but the loop itself is
only six cycles. By working through exercises like this, you will improve
your instruction set dexterity. This will be very helpful when you need to
reduce a program by a few bytes to fit it into the available memory space.

Application Development

A simple development system for the MC68HC705J1A is offered by
Motorola (M68HC705JICS). This system includes an in-circuit simulator
(software and hardware circuit board). The circuit board plugs into a
serial (com) port on a personal computer. A connector and cable allow
the in-circuit simulator to be plugged into an application system to take
the place of the microcontroller that will eventually be used. A socket is
also provided that allows an EPROM or OTP version of the
MC68HC705J1A to be programmed from the personal computer.

A simulator  is a program for a personal computer that helps during
program development and debugging. This tool simulates the actions of
a real microcontroller but has some important advantages. For instance,
in a simulator, you have complete control over when and if the simulated
CPU should advance to the next instruction. You can also look at and
change registers or memory locations before going to the next
instruction.

Simulators do not run at real-time speed. Since the personal computer
is simulating MCU actions with software programs, each MCU
instruction takes much longer to execute than it would in a real MCU. For
many MCU programs, this speed reduction is not noticeable. As slow as
a simulator can be, it is still very fast in human terms. Some MCU
programs generate time delays with software loops (like the DLY50
routine in  Listing 3. Assembler Listing ). The 50-millisecond delay of
DLY50 might take tens of seconds on some personal computers. To
make the simulation run faster, you can temporarily replace the loop
count value (65) with a much smaller number (for instance, 2).

NOTE: Remember to put the original number back before programming the
finished program into the EPROM of a real MCU.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

154 Programming MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Programming
Application Development

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

An in-circuit simulator  is a simulator that can be connected to a user
system in place of the microcontroller. An ordinary simulator normally
only takes input information from the personal computer and displays
outputs and results on the personal computer display. An in-circuit
simulator goes beyond this to emulate the input and output interfaces of
the real microcontroller.

Program development is easier with a simulator than a real MCU. It is
easier to make program changes and try them out in the simulator than
to program an EPROM device and try it out. With the real MCU, you can
only see the input and output pins, and you cannot easily stop a program
between instructions. But with the simulator, you can execute a single
instruction at a time and look at registers and memory contents at every
step. This makes it easier to see which instructions failed to perform as
intended. A simulator can also inform you if the program attempts to use
the value of a variable before it has been initialized.

An in-circuit emulator is a real-time development tool. The emulator is
built around an actual MCU, so it can execute program instructions
exactly as they will be executed in the finished application. An emulator
has RAM memory where the ROM or EPROM memory will be located in
the final MCU. This allows you to load programs quickly into the emulator
and to change these programs during development.

Extra circuitry in the emulator allows you to set breakpoints  in the
program under development. When the program reaches one of these
breakpoint addresses, the program under development is temporarily
stopped and a development monitor program  takes control. This
monitor program allows you to look at or change CPU registers, memory
locations, or control registers. An emulator typically has less visibility of
internal MCU actions than a simulator, but it can run at full real-time
speed. An emulator cannot normally stop clocks to internal peripheral
systems like a timer, when control switches from the application program
to the monitor program. A simulator can stop such clocks.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Programming 155  
For More Information On This Product,

  Go to: www.freescale.com



Programming

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Review

The process of writing a program begins with a plan. A flowchart can be
used to document the plan. Mnemonic source code statements are then
written for each block of the flowchart. Mnemonic source code
statements can include any of the instructions from the instruction set of
the microcontroller. The next step is to combine all of the program
instructions with assembler directives to get a text source file.

Assembler directives are program statements that give instructions to
the assembler rather than to the CPU. These instructions tell the
assembler things like where to locate instructions in the memory of the
microcontroller. Assembler directives can also inform the assembler of
the binary meaning of a mnemonic label. Six directives were discussed.

• ORG — Originate directives set the starting address for the object
code that follows.

• EQU — Equate directives associate a label with a binary number
or address.

• FCB — Form constant byte directives are used to introduce 8-bit
constant data values into a program.

• FDB — Form double byte directives are used to introduce 16-bit
data or address constants into a program.

• RMB — Reserve memory byte(s) directives are used to assign
labels (belonging to program variables) to RAM addresses.

• $BASE   10T — Change default number base to decimal.

After the complete source program is written, it is processed by an
assembler to produce a listing file and an S-record object file. The listing
file is part of the documentation of the program. The S-record object file
can be loaded into the simulator or it can be programmed into a
microcontroller.

A conditional loop can produce a timed delay. The delay is dependent
on the execution time of the instructions in the loop. A subroutine such
as this delay routine can be used many times in a program by calling it
with JSR or BSR instructions.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

156 Programming MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Programming
Review

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Instruction set dexterity is the ability to solve a programming problem in
several different ways with different sequences of instructions. Since
each sequence takes a different number of program bytes and a
different number of CPU cycles to execute, you can select a sequence
that is best for each situation.

A simulator is an application development tool that runs on a personal
computer and simulates the behavior of a microcontroller (though not at
real-time speed). An in-circuit simulator takes this idea further to also
simulate the I/O interfaces of the microcontroller. The in-circuit simulator
can be plugged into an application circuit in place of the microcontroller.
A simulator makes application development easier. It allows instructions
to be executed one at a time. It also provides visibility into the contents
of registers and memory and allows changes before executing a new
instruction.

An emulator is built around a real MCU so it can run at the full speed of
the final MCU. Emulators use RAM instead of ROM or EPROM so the
program under development can be modified easily during
development.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Programming 157  
For More Information On This Product,

  Go to: www.freescale.com



Programming

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

158 Programming MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

The Paced Loop
   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  
Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159

System Equates  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160
Register Equates for MC68HC705J1A . . . . . . . . . . . . . . . . . . . . .160
Application System Equates . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161

Vector Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162
Reset Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162
Unused Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163

RAM Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165

Paced Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165
Loop Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167
Loop System Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168
Your Programs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168
Timing Considerations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169
Stack Considerations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170

An Application-Ready Framework . . . . . . . . . . . . . . . . . . . . . . . . . . .171

Review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178

Introduction

This chapter presents a general-purpose software structure that may be
used as a framework for many microcontroller applications. Major
system tasks are written as subroutines. These subroutines are
organized into a loop so that each is called once per pass through the
loop. At the top of the loop there is a short routine that paces the loop so
that it is executed at regular intervals. A software clock is maintained as
the first task in the loop. This clock can be used as an input to the other
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA The Paced Loop 159  
For More Information On This Product,

  Go to: www.freescale.com



The Paced Loop

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

task subroutines to decide what the routine should do on each pass
through the major loop.

In addition to the loop structure itself, this chapter discusses system
initialization issues and software setup details so you can go directly to
the routines that deal with your specific applications.

System Equates

Because using binary bit patterns and addresses in programs
instructions is inconvenient, equate (EQU) directives are used to assign
mnemonic names to register addresses and bit positions. These names
can then be used in program instructions instead of the binary numbers.
This makes the program easier to write and to read. When an in-circuit
simulator is used to develop an application program, the mnemonic
names can be used in the debug displays instead of the binary
addresses.

Register
Equates for
MC68HC705J1A

The manufacturer’s recommended names for registers and control bits
are included in the paced loop program framework of Listing 4. Paced
Loop Framework Program  in this chapter . This allows you to write
program instructions using names that make sense to people instead of
obscure binary numbers and addresses.

Each register is equated to its direct-page binary address with an EQU
directive. Each control bit is defined in two ways:

• First, an EQU directive equates the bit name to a number between
7 and 0 corresponding to the bit number where each bit is located
in a control register.

• Second, most control bits are equated to a binary bit pattern such
as 0010 0000 ($20) which can be used as a bit mask to identify the
location of the bit in a register.

Since you cannot equate the same name to two different binary values,
the second equate uses a period after the bit name. To get a bit name’s
bit number (7–0), use the name; to get a mask indicating the bit position,
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

160 The Paced Loop MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



The Paced Loop
System Equates

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

use the name followed by a period. This convention is used in the paced
loop framework, but it is not necessarily a standard that is recommended
by Motorola or the assembler companies.

In the M68HC05 instruction set, the bit manipulation instructions are of
the form

xxxx 14 08     ----- BSET bit#,dd   ;Set bit in location dd

Bit# is a number between 7 and 0 that identifies the bit within the register
at location dd that is to be changed or tested.

In other cases, you may want to build up a mask with several bits set,
and then write this composite value to a register location. For example,
suppose you want to set RTIFR, RTIE, and RT1 bits in the TSCR
register. You could use these instructions.

xxxx A6 16 LDA #{RTIFR.+RTIE.+RT1.};Form mask
xxxx B7 08 STA TSCR ;Write mask to TSCR register

The # symbol means immediate addressing mode. The expression
(RTIFR.+RTIE.+RT1.) is the Boolean OR of  three bit position masks.
The assembler evaluates the Boolean expression during program
assembly and substitutes the answer (a single 8-bit binary value) into the
assembled program. These program statements would produce exactly
the same results, but they are not as easy to read.

xxxx A6 16       LDA  #%00010110 ;Form mask
xxxx B7 08       STA  $08        ;Write mask to TSCR register

Application
System Equates

Usually, some application-specific equate directives will be in a program
to define the signals connected to I/O pins. These EQU directives should
be placed after the standard MCU equate directives and before the main
program starts. The paced loop framework program was developed with
a particular small development PC board in mind. This system has a
switch connected to port A bit 0 and an LED connected to port A bit 7,
so these connections were defined with EQU directives.

The switch is not used in the paced loop framework program of
Listing 4. Paced Loop Framework Program , but it does no harm to
include the related EQU directives. EQU directives do not generate any
object code that takes up memory space in the final computer system.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA The Paced Loop 161  
For More Information On This Product,

  Go to: www.freescale.com



The Paced Loop

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Vector Setup

All MCU programs should set up the reset and interrupt vectors.

Vectors specify the address where the CPU will start processing
instructions when a reset or interrupt occurs. Reset and each interrupt
source expect to find their associated vector in a specific pair of memory
locations. For example, the reset vector is at the highest two locations in
memory ($07FE and $07FF in the MC68HC705J1A). If you do not place
values in these locations, the CPU will take whatever binary values it
finds there and treat them as if they were a 2-byte address you stored
there.

Reset Vector The usual way to define a vector is with an FDB directive.

07FE 03 00 RESETV FDB START ;Beginning of program on reset

During assembly, the assembler evaluates the label START into a
2-byte address and stores this address in the next two available memory
locations of the program. The columns at the left of the listing line show
that the address $0300 was stored at $07FE and $07FF ($03 at $07FE
and $00 at $07FF).

RESETV is an optional label on this program line. Although it is not used
for reference by other statements in this particular program, it was
included to identify this FDB directive line as the statement that defines
the reset vector.

The reset vector was set up to point at the label START. The in-circuit
simulator system that Motorola offers as a low-cost development tool
uses this information to set up the simulator screen. When a program is
loaded into the simulator, the simulator looks for the address in the reset
vector of the loaded program. If one is found, the simulator selects that
program instruction and displays it in the source program window of the
simulator. The simulator’s PC is also set to this address. If there is no
reset vector, the simulator displays a warning message, saying that the
reset vector was not initialized. You could still debug the program, but it
would not work if it was programmed into an EPROM MCU because the
program would not start at reset.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

162 The Paced Loop MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



The Paced Loop
Vector Setup

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Unused Interrupts For interrupts that are used, the vectors can be defined just as the reset
vector was defined (with an FDB directive). In the paced loop framework
program, the timer interrupt is used for real-time interrupts (RTI). The
external interrupt and the SWI (software interrupt) are not used.

It is a good idea to set up the unused interrupt vectors just in case one
of these interrupts is requested unexpectedly. This is not to say that
unexpected interrupts can occur in a working computer system. Rather,
it says that when a programmer is first starting out, programming
mistakes could result in unintended interrupt sources being enabled and
triggered.

This listing shows how interrupt and reset vectors were set up in the
paced loop framework program.

               *******************************************************
               * RTIF interrupt service routine
               *******************************************************
0345 3A E0     RTICNT   DEC     RTIFs     ;On each RTIF
 "   "  "       "        "       "          "
 "   "  "       "        "       "          "
0351 80        AnRTI    RTI               ;Return from RTIF interrupt

0351           UNUSED   EQU     AnRTI     ;Use RTI at AnRTI for unused
                                          ;interrupts to just return

               *******************************************************
               * Interrupt & reset vectors
               *******************************************************
07F8                    ORG     $07F8     ;Start of vector area

07F8 03 45     TIMVEC   FDB     RTICNT    ;Count RTIFs 3/TIC
07FA 03 51     IRQVEC   FDB     UNUSED    ;Change if vector used
07FC 03 51     SWIVEC   FDB     UNUSED    ;Change if vector used
07FE 03 00     RESETV   FDB     START     ;Beginning of program on reset

The first lines in this partial listing show the first and last lines of the timer
interrupt service routine. The line

0351 80        AnRTI    RTI        ;Return from RTIF interrupt

shows a return-from-interrupt (RTI) instruction with the label AnRTI. The
next line equates the label UNUSED to the address of the RTI instruction
at AnRTI. Further down in the listing, the unused interrupt vectors for
external interrupts and SWI interrupts are set up to point at this RTI
instruction. During assembly, the assembler encounters the label
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA The Paced Loop 163  
For More Information On This Product,

  Go to: www.freescale.com



The Paced Loop

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

UNUSED and finds it should be equal to AnRTI that is in turn equal to
the binary address of the RTI instruction ($0351).

If an SWI interrupt were unexpectedly encountered, the CPU would save
the CPU registers on the stack (temporary RAM) and load the program
counter with the address $0351 from the SWI vector. The CPU would
then load the instruction RTI from address $0351. The RTI instruction
would tell the CPU to recover the saved CPU registers (including the
program counter) from the stack. The recovered program counter value
would determine what the CPU did next.

An alternate way to respond to unexpected interrupts would be to reset
the stack pointer (with an RSP instruction) and then jump to the same
address as if a reset had occurred. This approach makes the pessimistic
assumption that if an unexpected interrupt occurs, there may be other
serious problems. By resetting the stack pointer and starting all over you
are more likely to correct whatever caused the unexpected interrupt.

While debugging a program on a simulator, there is another possible
way to handle unused interrupts.

 "   "  "       "        "       "          "
0351 BADINT BRA BADINT ;Infinite loop to here
 "   "  "       "        "       "          "
 "   "  "       "        "       "          "
07FA 03 51 VECTOR FDB BADINT ;Hang on unexpected int
 "   "  "       "        "       "          "

In this scheme, an unexpected interrupt will cause the CPU to vector to
BADINT. The instruction at BADINT is an infinite loop back to BADINT,
so the system will hang there. You can stop the simulator and check the
CPU register values on the stack to see what the program was doing
when it got the unexpected interrupt.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

164 The Paced Loop MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



The Paced Loop
RAM Variables

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

RAM Variables

Program variables change value during the course of executing the
program. These values cannot be specified before the program is written
and programmed into the MCU. The CPU must use program instructions
to initialize and modify these values. When the program is written, space
is reserved for variables in the RAM memory of the MCU, using reserve
memory byte(s) (RMB) directives.

First, you would put an originate (ORG) directive to set the assembler’s
location counter to the address of the start of RAM in the MCU ($00C0
in the MC68HC705J1A). Each variable or group of variables would be
set up with an RMB directive. The RMB line is identified by the name of
the variable. The assembler assigns the name (label) to the next
available address. After each new variable or group of variables is
assigned, the location counter is advanced to point at the next free
memory location.

As the program in Listing 4. Paced Loop Framework Program shows,
some programmers feel it is good practice to clear all RAM locations as
one of the first initialization steps after any reset. While you are
debugging a system, it is useful to have a known set of starting
conditions. If the entire RAM is cleared at the start of a program, it is easy
to tell if any locations have been written.

Paced Loop

The paced loop is a general-purpose software structure that is suitable
for a wide variety of MCU applications. The main idea is to break the
overall application into a series of tasks such as keeping track of time,
reading system inputs, and updating system outputs. Each task is
written as a subroutine. A main loop is constructed out of
jump-to-subroutine (JSR) instructions for each task. At the top of the
loop is a software pacemaker. When the pacemaker triggers, the list of
task subroutines is executed once and a branch instruction takes you to
the top of the loop to wait for the next pacemaker trigger.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA The Paced Loop 165  
For More Information On This Product,

  Go to: www.freescale.com



The Paced Loop

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Figure 37 shows a flowchart for the main paced loop. The top block is a
loop that waits for the pacemaker trigger (every 100 milliseconds). The
next few blocks have to do with maintaining the TIC counter. The version
of this program in Listing 4. Paced Loop Framework Program has two
simple main tasks, TIME and BLINK. You would remove one or both of
these routines and substitute your own tasks. The only limitation on the
number of main tasks is that they must all finish quickly enough so no
pacemaker triggers are lost. The last block in the flowchart is just a
branch back to the top of the loop to wait for the next pacemaker trigger.

Figure 37. Flowchart of Main Paced Loop

MAIN
PACED LOOP

TIC = 10 ?

YES

NO

CLEAR MSB OF TIC

CALL TASK ROUTINE TIME

MAIN

ARNC1

MSB OF TIC = 1 ?

YES

NO

TIC = TIC + 1

SET TIC = 0

CALL TASK ROUTINE BLINK

INSERT
TASK ROUTINES
HERE
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

166 The Paced Loop MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



The Paced Loop
Paced Loop

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Loop Trigger In the paced loop program of Listing 4. Paced Loop Framework
Program , the pacemaker is based on the on-chip real-time interrupt
(RTI). This RTI is set to generate an interrupt to the CPU every 32.8
milliseconds. The flowchart in Figure 37  shows what happens at each
RTI. This interrupt activity can be thought of as if it were taking place
asynchronously with respect to the main program. The most significant
bit of the TIC variable is used as a flag to tell the main program when it
is time to increment TIC and execute one pass through the paced loop.

Figure 38. Flowchart of RTI Service Routine

The RAM variable RTIFs is used to count three real-time interrupts
before setting the MSB of TIC. The main program will be watching TIC
to see when the MSB becomes set.

Every 32.8 ms the RTIF flag will get set, triggering a timer interrupt
request. One of the duties of an interrupt service routine is to clear the
flag that caused the interrupt before returning from the interrupt. If RTIF

BEGIN RTIF
INTERRUPT ROUTINE

RTIFs = 0 ?

YES

NO

RETURN FROM
INTERRUPT

RTIFs = RTIFs – 1

RTIFs = 3

CLEAR RTIF INTERRUPT FLAG

RTICNT

SET MSB OF TIC

ENDRTI

AnRTI
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA The Paced Loop 167  
For More Information On This Product,

  Go to: www.freescale.com



The Paced Loop

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

is not cleared before the return, a new interrupt request is generated
immediately instead of waiting for the 32.8-ms trigger.

Loop System
Clock

The variable TIC is the most basic clock for the pacemaker. TIC counts
from 0 to 10. As TIC is incremented from 9 to 10, the program recognizes
this and resets TIC to 0. Except within the pacemaker itself, TIC appears
to count from 0 to 9. TIC is equal to 0 on every tenth trigger of the
pacemaker.

The first task subroutine in the main loop is called TIME. This routine
maintains a slower clock called TOC. TOC is incremented each time the
paced loop executes and TIC is 0 (every tenth pass through the paced
loop). TOC is set up as a software counter that counts from 0 through
59. The remaining task routines after TIME can use the current values
of TIC and TOC to decide what needs to be done on this pass through
the paced loop.

In Listing 4. Paced Loop Framework Program , the pace is keyed to
the RTI which does not happen to be an integer submultiple of one
second. Three RTI periods equal 98.4 milliseconds. This is pretty close
to 0.1 second but not close enough to be used like a wristwatch. You
could get accurate real time if you modified the paced loop program to
use a different trigger source such as zero crossings  of the ac
(alternating current) line (60 Hz). Although the ac line is not as accurate
as a crystal over short periods of time, it is very accurate over long
periods. Most clocks that plug into the wall use the ac line timing as the
basis for keeping time.

Your Programs The task subroutines have few restrictions. Each task subroutine should
do everything it needs to do, as quickly as it can, and then execute a
return from subroutine (RTS). The total time required to execute one
pass through all of the task subroutines must be less than two
pacemaker triggers. (We will explain this in greater detail.) The important
point is that a task subroutine should not wait for the occurrence of some
external event like a switch to be pressed. This would defeat the
timekeeping aspects of the paced loop.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

168 The Paced Loop MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



The Paced Loop
Paced Loop

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

The paced loop can automatically provide for switch debouncing.
Switches are notorious for bouncing between the closed and opened
conditions as they are pressed and released. It is not at all unusual for a
switch to bounce for 50 milliseconds or more as it is pressed. A
microcontroller can execute instructions so fast that a single press of a
switch might look like several presses to a program, unless steps are
taken to account for switch bounce. There are hardware methods for
debouncing switches but they require extra components and increase
the cost of a product.

Software can also be used to debounce a switch. The example program
in Figure 31. Flowchart and Mnemonics used a simple software delay
program to debounce a switch, but this routine should not be used
directly in the paced loop structure because it takes too much time. In a
paced loop, you can debounce a switch by reading it on consecutive
passes through the paced loop. The first time you see the switch
pressed, you can write a special value to a variable to indicate that a
switch was tentatively pressed. (You would not consider this switch as
pressed yet.) On the next pass through the paced loop, you would either
mark the switch as really pressed or clear the mark to indicate that it was
a false detection. Similarly, when the switch is eventually released, you
can mark it as tentatively released and on the next pass mark it as really
released.

Timing
Considerations

Ideally, you should finish all of the task subroutines in the paced loop
before the next pacemaker trigger arrives. If a single pass through the
loop takes longer than the pacemaker trigger period, the flag that
indicates it is time to start the next pass through the main loop will
already be set when you get back to the top of the loop. Nothing bad
happens unless you get so far behind that a new pacemaker trigger
comes before the previous one has been recognized. The paced loop
remains valid unless any two consecutive passes take more than two
pacemaker trigger periods.

A little bit of planning can ensure that no two consecutive passes through
the loop take longer than two pacemaker periods. Especially long task
subroutines can be scheduled to execute during a particular paced loop
pass when very little other activity is scheduled. A simple check of one
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA The Paced Loop 169  
For More Information On This Product,

  Go to: www.freescale.com



The Paced Loop

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

of the time variables such as TIC or TOC can be used to decide whether
or not to perform a particularly slow routine. If there were several things
that needed to be done once per second, one could be scheduled for the
TIC = 0 pass, another could be scheduled for the TIC = 2 pass, and so
on.

Stack
Considerations

Small microcontrollers like the MC68HC705J1A have only small
amounts of RAM for the stack and program variables. Interrupts take five
bytes of stack RAM and each subroutine call takes two bytes on the
stack. If a subroutine called another subroutine and an interrupt was
requested before the second subroutine was finished, the stack would
use 2+2+5 = 9 RAM bytes of the available 64. If the stack gets too deep,
there is a danger that RAM variables can get written over with stack data.
To avoid these problems, you should calculate the worst case depth that
your stack can ever get to. In the MC68HC705J1A, the sum of all system
variables plus the worst case stack depth must be less than or equal to
the 64 available RAM locations.

Fortunately, an interrupt causes the interrupt mask (I) bit in the condition
code register to be set in response to any interrupt. This blocks
additional interrupts until the I bit is cleared (normally upon return from
the interrupt).
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

170 The Paced Loop MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



The Paced Loop
An Application-Ready Framework

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

An Application-Ready Framework

The paced loop program of Listing 4. Paced Loop Framework
Program  can be used as the basis for your own applications. This
framework provides these main parts:

• Equate statements for all MC68HC705J1A register and bit names

• Application-specific equate statements

• Program variables section

• Initialization section (START)

• Pacemaker for main loop based on RTI

• Calls to task subroutines

• Two simple examples of task subroutines (TIME and BLINK)

• An interrupt service routine for RTIF interrupts

• Vector definition section

The pacemaker in this particular paced loop program triggers a pass
through the main loop about once every 100 milliseconds (actually 98.4
ms). This can be changed easily to some other number of real-time
interrupts and the RTI rate can be changed. For applications that need
real wristwatch time, the pacemaker can be modified to work from
interrupts generated at zero crossings of the ac power line.

Additional RMB directives should be added to the program variables
section. Additional EQU statements can be added just above the
program variables section to add application-specific equates.

In its present form, the paced loop has only two simple task subroutines
(TIME and BLINK). The TIME task just maintains a 0 to 59 count (TOC)
which could be useful for measuring or generating longer time periods.
The BLINK task is just a dummy routine to demonstrate how a task can
use the time variable TOC to control a system action. In this case, the
action is to turn on an LED when TOC is even, and turn it off when TOC
is odd. To use the framework program for your own application, you
should remove the BLINK task and replace it with your own tasks.

The RTI service routine serves as an example of an interrupt handler
and counts real-time interrupts to set the pacemaker rate.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA The Paced Loop 171  
For More Information On This Product,

  Go to: www.freescale.com



The Paced Loop

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Listing 4. Paced Loop Framework Program

Listing 4. Paced Loop Framework Program  (Sheet 1 of 6)

$BASE    10T
*******************************************************
* Equates for MC68HC705J1A MCU
* Use bit names without a dot in BSET..BRCLR
* Use bit name preceded by a dot in expressions such as
*  #.ELAT+.EPGM to form a bit mask
*******************************************************
PORTA    EQU     $00       ;I/O port A
PA7      EQU     7         ;Bit #7 of port A
PA6      EQU     6         ;Bit #6 of port A
PA5      EQU     5         ;Bit #5 of port A
PA4      EQU     4         ;Bit #4 of port A
PA3      EQU     3         ;Bit #3 of port A
PA2      EQU     2         ;Bit #2 of port A
PA1      EQU     1         ;Bit #1 of port A
PA0      EQU     0         ;Bit #0 of port A
PA7.     EQU     $80       ;Bit position PA7
PA6.     EQU     $40       ;Bit position PA6
PA5.     EQU     $20       ;Bit position PA5
PA4.     EQU     $10       ;Bit position PA4
PA3.     EQU     $08       ;Bit position PA3
PA2.     EQU     $04       ;Bit position PA2
PA1.     EQU     $02       ;Bit position PA1
PA0.     EQU     $01       ;Bit position PA0

PORTB    EQU     $01       ;I/O port B
PB5      EQU     5         ;Bit #5 of port B
PB4      EQU     4         ;Bit #4 of port B
PB3      EQU     3         ;Bit #3 of port B
PB2      EQU     2         ;Bit #2 of port B
PB1      EQU     1         ;Bit #1 of port B
PB0      EQU     0         ;Bit #0 of port B
PB5.     EQU     $20       ;Bit position PB5
PB4.     EQU     $10       ;Bit position PB4
PB3.     EQU     $08       ;Bit position PB3
PB2.     EQU     $04       ;Bit position PB2
PB1.     EQU     $02       ;Bit position PB1
PB0.     EQU     $01       ;Bit position PB0

DDRA     EQU     $04       ;Data direction for port A
DDRA7    EQU     7         ;Bit #7 of port A DDR
DDRA6    EQU     6         ;Bit #6 of port A DDR
DDRA5    EQU     5         ;Bit #5 of port A DDR
DDRA4    EQU     4         ;Bit #4 of port A DDR
DDRA3    EQU     3         ;Bit #3 of port A DDR
DDRA2    EQU     2         ;Bit #2 of port A DDR
DDRA1    EQU     1         ;Bit #1 of port A DDR
DDRA0    EQU     0         ;Bit #0 of port A DDR
DDRA7.   EQU     $80       ;Bit position DDRA7
DDRA6.   EQU     $40       ;Bit position DDRA6
DDRA5.   EQU     $20       ;Bit position DDRA5
DDRA4.   EQU     $10       ;Bit position DDRA4
DDRA3.   EQU     $08       ;Bit position DDRA3
DDRA2.   EQU     $04       ;Bit position DDRA2
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

172 The Paced Loop MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



The Paced Loop
An Application-Ready Framework

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Listing 4. Paced Loop Framework Program  (Sheet 2 of 6)

DDRA1.   EQU     $02       ;Bit position DDRA1
DDRA0.   EQU     $01       ;Bit position DDRA0

DDRB     EQU     $05       ;Data direction for port B
DDRB5    EQU     5         ;Bit #5 of port B DDR
DDRB4    EQU     4         ;Bit #4 of port B DDR
DDRB3    EQU     3         ;Bit #3 of port B DDR
DDRB2    EQU     2         ;Bit #2 of port B DDR
DDRB1    EQU     1         ;Bit #1 of port B DDR
DDRB0    EQU     0         ;Bit #0 of port B DDR
DDRB5.   EQU     $20       ;Bit position DDRB5
DDRB4.   EQU     $10       ;Bit position DDRB4
DDRB3.   EQU     $08       ;Bit position DDRB3
DDRB2.   EQU     $04       ;Bit position DDRB2
DDRB1.   EQU     $02       ;Bit position DDRB1
DDRB0.   EQU     $01       ;Bit position DDRB0

TSCR     EQU     $08       ;Timer status & control reg
TOF      EQU     7         ;Timer overflow flag
RTIF     EQU     6         ;Real time interrupt flag
TOIE     EQU     5         ;TOF interrupt enable
RTIE     EQU     4         ;RTI interrupt enable
TOFR     EQU     3         ;TOF flag reset
RTIFR    EQU     2         ;RTIF flag reset
RT1      EQU     1         ;RTI rate select bit 1
RT0      EQU     0         ;RTI rate select bit 0
TOF.     EQU     $80       ;Bit position TOF
RTIF.    EQU     $40       ;Bit position RTIF
TOIE.    EQU     $20       ;Bit position TOIE
RTIE.    EQU     $10       ;Bit position RTIE
TOFR.    EQU     $08       ;Bit position TOFR
RTIFR.   EQU     $04       ;Bit position RTIFR
RT1.     EQU     $02       ;Bit position RT1
RT0.     EQU     $01       ;Bit position RT0

TCR      EQU     $09       ;Timer counter register

ISCR     EQU     $0A       ;IRQ status & control reg
IRQE     EQU     7         ;IRQ edge/edge-level
IRQF     EQU     3         ;External interrupt flag
IRQR     EQU     1         ;IRQF flag reset

PDRA     EQU     $10       ;Pulldown register for port A
PDIA7    EQU     7         ;Pulldown inhibit for PA7
PDIA6    EQU     6         ;Pulldown inhibit for PA6
PDIA5    EQU     5         ;Pulldown inhibit for PA5
PDIA4    EQU     4         ;Pulldown inhibit for PA4
PDIA3    EQU     3         ;Pulldown inhibit for PA3
PDIA2    EQU     2         ;Pulldown inhibit for PA2
PDIA1    EQU     1         ;Pulldown inhibit for PA1
PDIA0    EQU     0         ;Pulldown inhibit for PA0
PDIA7.   EQU     $80       ;Bit position PDIA7
PDIA6.   EQU     $40       ;Bit position PDIA6
PDIA5.   EQU     $20       ;Bit position PDIA5
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA The Paced Loop 173  
For More Information On This Product,

  Go to: www.freescale.com



The Paced Loop

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Listing 4. Paced Loop Framework Program  (Sheet 3 of 6)

PDIA4.   EQU     $10       ;Bit position PDIA4
PDIA3.   EQU     $08       ;Bit position PDIA3
PDIA2.   EQU     $04       ;Bit position PDIA2
PDIA1.   EQU     $02       ;Bit position PDIA1
PDIA0.   EQU     $01       ;Bit position PDIA0

PDRB     EQU     $11       ;Pulldown register for port B
PDIB5    EQU     5         ;Pulldown inhibit for PB5
PDIB4    EQU     4         ;Pulldown inhibit for PB4
PDIB3    EQU     3         ;Pulldown inhibit for PB3
PDIB2    EQU     2         ;Pulldown inhibit for PB2
PDIB1    EQU     1         ;Pulldown inhibit for PB1
PDIB0    EQU     0         ;Pulldown inhibit for PB0
PDIB5.   EQU     $20       ;Bit position PDIB5
PDIB4.   EQU     $10       ;Bit position PDIB4
PDIB3.   EQU     $08       ;Bit position PDIB3
PDIB2.   EQU     $04       ;Bit position PDIB2
PDIB1.   EQU     $02       ;Bit position PDIB1
PDIB0.   EQU     $01       ;Bit position PDIB0

EPROG    EQU     $18       ;EPROM programming register
ELAT     EQU     2         ;EPROM latch control
MPGM     EQU     1         ;MOR programming control
EPGM     EQU     0         ;EPROM program control
ELAT.    EQU     $04       ;Bit position ELAT
MPGM.    EQU     $02       ;Bit position MPGM
EPGM.    EQU     $01       ;Bit position EPGM

COPR     EQU     $07F0     ;COP watchdog reset register
COPC     EQU     0         ;COP watchdog clear
COPC.    EQU     $01       ;Bit position COPC

MOR      EQU     $07F1     ;Mask option register
SOSCD    EQU     7         ;Short osc delay enable
EPMSEC   EQU     6         ;EPROM security
OSCRES   EQU     5         ;Oscillator parallel resistor
SWAIT    EQU     4         ;STOP instruction mode
PDI      EQU     3         ;Port pulldown inhibit
PIRQ     EQU     2         ;Port A IRQ enable
LEVEL    EQU     1         ;IRQ edge sensitivity
COP      EQU     0         ;COP watchdog enable
SOSCD.   EQU     $80       ;Bit position SOSCD
EPMSEC.  EQU     $40       ;Bit position EPMSEC
OSCRES.  EQU     $20       ;Bit position OSCRES
SWAIT.   EQU     $10       ;Bit position SWAIT
PDI.     EQU     $08       ;Bit position PDI
PIRQ.    EQU     $04       ;Bit position PIRQ
LEVEL.   EQU     $02       ;Bit position LEVEL
COPEN.   EQU     $01       ;Bit position COPEN

* Memory area equates
RAMStart EQU     $00C0     ;Start of on-chip RAM
ROMStart EQU     $0300     ;Start of on-chip ROM
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

174 The Paced Loop MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



The Paced Loop
An Application-Ready Framework

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Listing 4. Paced Loop Framework Program  (Sheet 4 of 6)

ROMEnd   EQU     $07CF     ;End of on-chip ROM
Vectors  EQU     $07F8     ;Reset/interrupt vector area

* Application specific equates
LED      EQU     PA7       ;LED ON when PA7 is low (0)
LED.     EQU     PA7.      ;LED bit position
SW       EQU     PA0       ;Switch on PA0, closed=high (1)
SW.      EQU     PA0.      ;Switch bit position

*******************************************************
* Put program variables here (use RMBs)
*******************************************************
         ORG     $00C0     ;Start of 705J1A RAM

RTIFs    RMB     1         ;3 RTIFs/TIC (3-0)
TIC      RMB     1         ;10 TICs make 1 TOC (10-0)
                           ;MSB=1 means RTIFs rolled over
TOC      RMB     1         ;1 TOC=10*96.24ms= about 1 sec

*******************************************************
* Program area starts here
*******************************************************
         ORG     $0300     ;Start of 705J1A EPROM

* First initialize any control registers and variables

START    CLI               ;Clear I bit for interrupts
         LDA     #LED.     ;Configure and turn off LED
         STA     PORTA     ;Turns off LED
         STA     DDRA      ;Makes LED pin an output
         LDA     #{RTIFR.+RTIE.+RT1.}
         STA     TSCR      ;To clear and enable RTIF
                           ;and set RTI rate for 32.8 ms
         LDA     #3        ;RTIFs counts 3->0
         STA     RTIFs     ;Reset TOFS count
         CLR     TIC       ;Initial value for TIC
         CLR     TOC       ;Initial value for TOC
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA The Paced Loop 175  
For More Information On This Product,

  Go to: www.freescale.com



The Paced Loop

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Listing 4. Paced Loop Framework Program  (Sheet 5 of 6)

*******************************************************
* MAIN - Beginning of main program loop
*        Loop is executed once every 100 ms (98.4 ms)
*        A pass through all major task routines takes
*        less than 100mS and then time is wasted until
*        MSB of TIC set (every 3 RTIFs = 98.4 ms).
*        At each RTIF interrupt, RTIF cleared & RTIFs
*        gets decremented (3-0). When RTIFs = 0, MSB of
*        TIC gets set and RTIFs is set back to 3.
*        (3*32.8/RTIF = 98.4 ms).
*
*        The variable TIC keeps track of 100mS periods
*        When TIC increments from 9 to 10 it is cleared
*        to 0 and TOC is incremented.
*******************************************************
MAIN     CLRA              ;Kick the watch dog
         STA     COPR      ; if enabled
         BRCLR   7,TIC,MAIN  ;Loop here till TIC edge

         LDA     TIC       ;Get current TIC value
         AND     #$0F      ;Clears MSB
         INCA              ;TIC = TIC+1
         STA     TIC       ;Update TIC
         CMP     #10       ;10th TIC ?
         BNE     ARNC1     ;If not, skip next clear
         CLR     TIC       ;Clear TIC on 10th
ARNC1    EQU     *         ;
* End of synchronization to 100 ms TIC; Run main tasks
*  & branch back to MAIN within 100 ms.  Sync OK as long
*  as no 2 consecutive passes take more than 196.8 ms

         JSR     TIME      ;Update TOCs

         JSR     BLINK     ;Blink LED

* Other main tasks would go here

         BRA     MAIN      ;Back to Top for next TIC

** END of Main Loop ***********************************

*******************************************************
* TIME - Update TOCs
*  If TIC = 0, increment 0->59
*  If TIC not = 0, just skip whole routine
*******************************************************
TIME     EQU     *         ;Update TOCs
         TST     TIC       ;Check for TIC = zero
         BNE     XTIME     ;If not; just exit
         INC     TOC       ;TOC = TOC+1
         LDA     #60
         CMP     TOC       ;Did TOC -> 60 ?
         BNE     XTIME     ;If not, just exit
         CLR     TOC       ;TOCs rollover
XTIME    RTS               ;Return from TIME
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

176 The Paced Loop MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



The Paced Loop
An Application-Ready Framework

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Listing 4. Paced Loop Framework Program  (Sheet 6 of 6)

*******************************************************
* BLINK - Update LED
*  If TOC is even, light LED
*     else turn off LED
*******************************************************
BLINK    EQU     *         ;Update LED
         LDA     TOC       ;If even, LSB will be zero
         LSRA              ;Shift LSB to carry
         BCS     LEDOFF    ;If not, turn off LED
         BSET    LED,PORTA ;Turn on LED
         BRA     XBLINK    ;Then exit
LEDOFF   BCLR    LED,PORTA ;Turn off LED
XBLINK   RTS               ;Return from BLINK

*******************************************************
* RTIF interrupt service routine
*******************************************************
RTICNT   DEC     RTIFs     ;On each RTIF decrement RTIFs
         BNE     ENDTOF    ;Done if RTIFs not 0
         LDA     #3        ;RTIFs counts 3->0
         STA     RTIFs     ;Reset TOFS count
         BSET    7,TIC     ;Set MSB as a flag to MAIN
ENDTOF   BSET    RTIFR,TSCR  ;Clear RTIF flag
AnRTI    RTI               ;Return from RTIF interrupt

UNUSED   EQU     AnRTI     ;Use RTI at AnRTI for unused
                           ;interrupts to just return

*******************************************************
* Interrupt & reset vectors
*******************************************************
         ORG     $07F8     ;Start of vector area

TIMVEC   FDB     RTICNT    ;Count RTIFs 3/TIC
IRQVEC   FDB     UNUSED    ;Change if vector used
SWIVEC   FDB     UNUSED    ;Change if vector used
RESETV   FDB     START     ;Beginning of program on reset
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA The Paced Loop 177  
For More Information On This Product,

  Go to: www.freescale.com



The Paced Loop

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Review

Equate (EQU) directives are used to associate a label with a binary
value. The binary value may be an address or a numeric constant.

There are two different ways to equate a control bit, depending upon
how the label will be used. For bit set, clear, and branch instructions, you
want the equate to associate the label with a number between 7 and 0.
For building logical masks, you want the label to be equated to a bit mask
where the bit that is set is in the same bit position as the control bit.

Reset and interrupt vectors should be initialized to form double byte
(FDB) directives. Even if an interrupt source is not going to be used, it is
a good idea to initialize the vector in case an unexpected request is
generated.

Space is reserved in RAM for program variables, using reserve memory
byte (RMB) directives.

The paced loop software structure is a good general-purpose
programming structure. A loop structure is established with a pacemaker
at the top of the loop. The pacemaker triggers and causes the other
instructions in the loop to be executed at regular time intervals such as
every 100 milliseconds. Tasks for an application are written as
subroutines. A list of jump to subroutine (JSR) instructions in the main
paced loop cause each task subroutine to be executed exactly once per
pacemaker trigger.

The routines in the main loop should be designed so the combined
execution time of all routines in the loop is less than the pacemaker
trigger period. An individual pass through the loop can take longer than
the pacemaker trigger, provided the next pass is shorter. Loop
synchronization is maintained as long as no two consecutive passes
through the main loop take longer than twice the pacemaker period.

In the smallest microcontrollers, the number of RAM locations available
is small, so it is important to be aware of stack requirements. An interrupt
requires five bytes of stack RAM and a subroutine call requires two bytes
in an M68HC05.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

178 The Paced Loop MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

On-Chip Peripheral Systems
   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  
Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180

Types of Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181
Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181
Serial Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182
Analog-to-Digital Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183
Digital-to-Analog Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183
EEPROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183

Controlling Peripherals  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183

The MC68HC705J1A Timer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184

A Timer Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187
Using the PWM Software  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195

A Practical Motor Control Example . . . . . . . . . . . . . . . . . . . . . . . . . .198
Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .198
Motor Control Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201
Motor Control Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204
Listing 6. Speed Control Program Listing . . . . . . . . . . . . . . . . . . .210

Review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215
Other Kinds of Peripherals  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA On-Chip Peripheral Systems 179  
For More Information On This Product,

  Go to: www.freescale.com



On-Chip Peripheral Systems

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Introduction

To solve real world problems, a microcontroller must have more than just
a powerful CPU, a program, and data memory resources. In addition, it
must contain hardware allowing the CPU to access information from the
outside world. Once the CPU gathers information and processes the
data, it must also be able to effect change on some portion of the outside
world. These hardware devices, called peripherals, are the CPU’s
window to the outside.

On-chip peripherals extend the capability of a microcontroller. An MCU
with on-chip peripherals can do more than one that has only
general-purpose I/O (input/output) ports. Peripherals serve specialized
needs and reduce the processing load on the CPU.

The most basic form of peripheral available on microcontrollers is the
general-purpose I/O port. The MC68HC705J1A has 14 general-purpose
I/O pins that are arranged as a single 8-bit port and a single 6-bit port.
Each of the I/O pins can be used as either an input or an output. The
function of each pin is determined by setting or clearing corresponding
bits in a corresponding data direction register (DDR) during the
initialization stage of a program. Each output pin may be driven to either
a logic 1 or a logic 0 by using CPU instructions to set or clear the
corresponding bit in the port data register. Also, the logic state of each
input pin may be viewed by the CPU by using program instructions.

On-chip peripherals provide an interface to the outside world from the
CPU. Peripherals augment the CPU’s capabilities by performing tasks
that the CPU is not good at. Most microcontroller peripherals perform
very specific functions or tasks. For instance, a peripheral may be
capable of performing frequency and pulse width measurement or it may
generate output waveforms. Because most peripherals do not have any
intelligence of their own, they require some amount of assistance from
the CPU. To prevent peripherals from requiring constant attention from
the CPU, they often perform their functions in an interrupt-driven
manner. A peripheral requests service from the CPU only when it
requires an additional piece of data to perform its job or when a
peripheral has a piece of information that the CPU requires to do its job.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

180 On-Chip Peripheral Systems MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



On-Chip Peripheral Systems
Types of Peripherals

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Peripherals can be extremely powerful and can perform complex
functions without any CPU intervention once they are set up. However,
because of the cost sensitivity of most M68HC05 Family members, the
peripherals used on M68HC05 parts require a fair amount of CPU
intervention.

Types of Peripherals

With the exception of general-purpose I/O ports, most peripherals
perform very specific tasks. These tasks can be diverse and may range
from time measurement and calculation to communication with other
microcontrollers or external peripherals. The following paragraphs
contain a general description of some types of peripherals found on
M68HC05 microcontrollers.

Timers Even though a wide variety of timers exist on the many members of the
M68HC05 Family, their basic functions relate to the measurement or
generation of time-based events. Timers usually measure time relative
to the internal clock of the microcontroller, although some may be
clocked from an external source. With the number of parts available in
the M68HC05 Family, the capabilities of the timers on each part can vary
greatly. For instance, the most sophisticated timer module present on
the MC68HC05Bx Family can simultaneously generate two PWM
outputs, measure the pulse width of two external signals, and generate
two additional output pulse trains. In comparison, the simplest timer
present on the MC68HC05Jx and MC68HC05Kx Families only
generates two periodic interrupts; one at a fixed rate and one at a
selectable rate.

Much more sophisticated timer modules exist on Motorola's higher
power processors. For instance, the MC68332 and MC68HC16Y1
contain a time processing unit (TPU) that is a microcode programmable
time processor with its own ALU (arithmetic logic unit). The TPU was
designed especially for internal combustion engine control and can run
an engine at a steady state with no CPU intervention.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA On-Chip Peripheral Systems 181  
For More Information On This Product,

  Go to: www.freescale.com



On-Chip Peripheral Systems

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Serial Ports Some M68HC05 Family members contain peripherals that allow the
CPU to communicate bit-serially with external devices. Using a bit-serial
format instead of a bit-parallel format requires fewer I/O pins to perform
the communication function.

Two basic types of serial ports exist on M68HC05 Family:

• Serial communications interface (SCI)

• Serial peripheral interface (SPI)

The SCI port is a universal asynchronous receiver transmitter (UART)
that communicates asynchronously with other devices. This type of
serial port requires the simplest hardware interface. Only two pins are
required for bidirectional data transfers. Data is transmitted out of the
MCU on one pin and data is received by the MCU on the other pin. Each
piece of data transmitted or received by the SCI has a start bit, several
data bits, and a stop bit. The start and stop bits are used to synchronize
the two devices that are communicating. This type of serial interface is
used most often when a microcontroller must communicate over fairly
long distances. With RS-232 level translators connected to the transmit
and receive pins, the SCI may be used to communicate with personal
computers and other larger computers.

As the name implies, the SPI port is used primarily to communicate with
inexpensive external peripherals. Because the SPI communicates
synchronously with other devices, bidirectional data transfers require at
least three MCU pins. In addition to one pin each for transmitted and
received data, a third pin provides the synchronization clock for the
communicating devices. This style of serial interface is usually used to
communicate with peripheral devices on the same board as the MCU.

Standard SPI peripherals are available from many manufacturers.

A-to-D converters, display drivers, EEPROM, and shift registers are just
a few examples of available SPI peripherals.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

182 On-Chip Peripheral Systems MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



On-Chip Peripheral Systems
Controlling Peripherals

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Analog-to-Digital
Converters

As mentioned in What is a Microcontroller? , many signals that exist in
the real world are not directly compatible with an MCU's I/O pins. In fact,
many signals are continuously varying analog signals that cannot be
directly translated into a logic 1 or 0 that the microcontroller can use.
Some members of the M68HC05 Family include an analog-to-digital
(A-to-D) converter that can be used to convert the voltage level of analog
signals into a binary number that the MCU can use.

Digital-to-Analog
Converters

A digital-to-analog (D-to-A) converter performs just the opposite function
of an A-to-D converter. It allows the MCU to convert a digital number into
a proportional analog voltage or current that can be used to control
various output devices in a system. Later in this chapter, we will develop
an application showing how a D-to-A converter may be implemented
using an on-chip timer and a software program.

EEPROM Since EEPROM is a type of memory, most would not consider it a
peripheral. However, the contents of an EEPROM can be altered as a
program is running, and it is non-volatile memory that is electrically
erasable, so it is certainly in a different class than RAM, ROM, or
EPROM. Several M68HC05 Family members contain EEPROM
memory on the same chip as the MCU. As mentioned previously,
EEPROM may even be added to a system as an external SPI peripheral.

Controlling Peripherals

The control and status information for peripherals appears to the CPU
as data bits in a memory location. Using this type of arrangement for
peripheral control and status registers is known as memory mapped I/O.
There is a great advantage to having peripherals appear as memory
locations. Any CPU instruction that can operate on a memory location
can be used to control or check the status of a peripheral. This type of
I/O architecture is especially advantageous with the M68HC05 Family
because of the CPU's bit manipulation instructions. This group of
instructions gives a programmer the ability to individually set, clear, or
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA On-Chip Peripheral Systems 183  
For More Information On This Product,

  Go to: www.freescale.com



On-Chip Peripheral Systems

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

test the state of any bit in the peripheral control registers at addresses
$0000–$00FF.

Depending upon the type and complexity of a peripheral, its associated
control and status registers may occupy one or several locations in the
microcontroller's memory map. For instance, a general-purpose I/O port
occupies two memory locations in a microcontroller's memory map. One
byte location, called the data direction register (DDR), is used to control
the function of each I/O pin. The other byte location, the port data
register, is used to read the state of input pins or assert a logic level on
an output pin. A complex peripheral, such as the timer in the
MC68HC705C8, occupies 10 byte locations in that MCU's memory map.

In The MC68HC705J1A Timer , we take a detailed look at the timer in
the MC68HC705J1A. While this 15-stage multifunction timer is simple
compared to many timer systems, it can perform somewhat
sophisticated timing functions. A complete example is discussed,
showing how this timer system can be used to generate an accurate
low-frequency PWM signal.

The MC68HC705J1A Timer

Figure 39  shows a block diagram of the MC68HC705J1A's 15-stage
multifunction timer. The timer consists of three connected sections that
each perform separate timing functions.

The timing chain begins with the microcontroller's internal bus-rate
clock, the E-clock. The E-clock is derived by dividing the crystal
frequency by two. The E-clock is used to drive a fixed divide-by-four
prescaler. In turn, the output of the prescaler clocks an 8-bit ripple
counter. The value of this counter may be read by the CPU any time at
memory location $09, the timer counter register (TCR). The counter
value may not be altered by the CPU. This may seem like a simple timer;
however, it is useful in many applications. When the 8-bit ripple counter
overflows from $FF to $00, a timer overflow flag (TOF) status bit in the
timer control and status register (TCSR) is set to a 1. The state of this
status flag may be tested at any time by any of several CPU instructions.
Optionally, if the timer overflow interrupt enable (TOIE) bit in the timer
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

184 On-Chip Peripheral Systems MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



On-Chip Peripheral Systems
The MC68HC705J1A Timer

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

control and status register is set, the ripple counter overflow will
generate a CPU interrupt. Therefore, the timer overflow function allows
a potential interrupt to be generated. The timer overflows every 1024
E-clock cycles (divide by four prescaler followed by an 8-bit, divide by
256-ripple counter).

Figure 39. 15-Stage Multifunction Timer Block Diagram

INTERNAL
PROCESSOR CLOCK

(XTAL ÷ 2)

FIXED
DIVIDE BY

4

÷ 2

MSB LSB

$0009
TCR

TIMER COUNT REGISTER

$0008
TCSR

TOF RTIF TOFE RTIE RT1 RT0

LEAST SIGNIFICANT EIGHT BITS OF 15-STAGE RIPPLE COUNTER

MOST SIGNIFICANT SEVEN BITS OF 15-STAGE RIPPLE COUNTER

SERVICE (CLEAR)
COP WATCHDOG

S Q

R

COP TIMEOUT—
GENERATE
INTERNAL MCU RESET

RTI RATE SELECT

TOFR RTIFR

÷ 2 ÷ 2 ÷ 2 ÷ 2 ÷ 2 ÷ 2

÷ 2

÷ 2

÷ 2 ÷ 2 ÷ 2 ÷ 2 ÷ 2 ÷ 2

÷ 2 ÷ 2 ÷ 2
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA On-Chip Peripheral Systems 185  
For More Information On This Product,

  Go to: www.freescale.com



On-Chip Peripheral Systems

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Besides providing a potential periodic interrupt, the output of the 8-bit
ripple counter drives the input of an additional 7-bit ripple counter. The
output from any of the last four bits of this counter may be used to
generate an additional periodic interrupt. One of four rates may be
selected by using a 1-of-4 selector controlled by two bits, RT1 and RT0,
in the timer control and status register. Table 17 shows the four real-time
interrupt rates available when operating the microcontroller at an E-clock
frequency of 2.0 MHz.

The final stage of the multifunction timer system has a 3-bit counter that
forms the computer operating properly (COP) watchdog system. The
COP system is meant to protect against software failures. When
enabled, a COP reset sequence must be performed before the timeout
period expires so that the COP does not time out and initiate an MCU
reset. To prevent the COP from timing out and generating an MCU reset,
bit 0 at memory location $07F0 (COPR) must be written to 0 before the
COP reset period has expired. Because the input of the COP watchdog
timer is clocked by the output of the real-time interrupt circuit, changing
the RTI rate will affect the minimum COP reset period. Table 17 shows
the four COP reset periods available for corresponding RTI rates.

Table 17. RTI and COP Timer Rates (E Clock = 2 MHz)

RT1 RT0 RTI Rate Minimum COP Reset Period

0 0 8.2 ms 57.3 ms

0 1 16.4 ms 114.7 ms

1 0 32.8 ms 229.4 ms

1 1 65.5 ms 458.8 ms
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

186 On-Chip Peripheral Systems MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



On-Chip Peripheral Systems
A Timer Example

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

A Timer Example

In this section we will develop software that uses both the real-time
interrupt and the timer overflow interrupt to produce a low-frequency
pulse width modulated (PWM) signal on a general-purpose I/O pin.
PWM signals are useful for a variety of control functions. They may be
used to control the speed of a motor or can be easily converted to a dc
level to drive an analog output device or to form part of an A-to-D
converter.

A PWM signal, as the name implies, has a fixed frequency but varies the
width of the on and off times. Figure 40 shows three PWM signals with
different duty cycles. For each signal, the waveform period T1 is
constant but the on time varies (the period of time shown by T2). Duty
cycle is usually expressed as a percentage (the ratio of T2 to T1).

Figure 40. PWM Waveforms with Various Duty Cycles

To generate an accurate PWM signal, two timing references are
required. One timing reference sets the constant frequency of the PWM
signal while the second determines the amount of time that the PWM
output remains high.

The basic strategy for the PWM software we will develop is as follows. A
real-time interrupt (RTIF) will be used to generate the PWM period, and

DUTY CYCLE = T2/T1 = 50%

DUTY CYCLE = T2/T1 = 20%

DUTY CYCLE = T2/T1 = 80%

T2

T1

T2

T1

T2

T1
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA On-Chip Peripheral Systems 187  
For More Information On This Product,

  Go to: www.freescale.com



On-Chip Peripheral Systems

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

the timer overflow (TOF) will be used to determine the PWM high time.
The rest of this chapter is a detailed development of this basic idea into
a working application.

Begin by taking a closer look at the MC68HC705J1A's timer. Figure 41
shows the timer redrawn to emphasize the portion that we are interested
in. Conceptually, the eight counter stages surrounded by the gray box
form the timer that we will use to generate our PWM signal.

Examination of Figure 41 shows four counter stages between the timer
overflow interrupt output and the first input to the RTI rate select
multiplexer. This indicates that timer overflow interrupts will occur at a
rate 16 times faster than the fastest selectable real-time interrupt. Using
the RTI to generate the base frequency of a PWM signal and the TOF
interrupt to determine the duty cycle, we would be able to generate a
PWM output with 16 discrete duty cycles (including 100%) as shown in
Figure 42 . The numbers down the lefthand side of the figure indicate the
number of TOF interrupts that will occur before the PWM output is set
low. The numbers down the righthand side of the figure indicate the duty
cycle of the waveform. The alert reader will note that there is no TOF
interrupt count associated with the 100% duty cycle waveform. As will be
shown later, this is a special case that must be tested in the RTI routine.

Figure 41. Portion of the MC68HC705J1A Timer

MSB LSB

TIMER COUNT REGISTER

TOF RTIF TOFE RTIE RT1 RT0TOFR RTIFR

÷ 2

RTI RATE SELECT

TCSR

÷ 2 ÷ 2 ÷ 2 ÷ 2 ÷ 2 ÷ 2 ÷ 2 ÷ 2 ÷ 2 ÷ 2 ÷ 2 ÷ 2 ÷ 2
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

188 On-Chip Peripheral Systems MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



On-Chip Peripheral Systems
A Timer Example

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Figure 42. PWM With 16 Discrete Duty Cycle Outputs

While the software to implement the illustrated PWM output is simple,
having only 16 choices for pulse width limits the usefulness of this PWM
to a small number of applications (where accurate control is not
necessary). For example, if a motor speed control system was built
using this PWM, the target speed could only be controlled to 6.25%
(assuming that motor speed is directly proportional to the average
applied voltage). For most motor speed control applications, a 12.5%
variation in rotation speed would be unacceptable.

Obviously, much finer control of the PWM duty cycle is desired. One
approach might be to use a slower RTI rate. Using a slower RTI rate
would result in a greater number of TOF interrupts for each RTI. For
some applications, this may be an acceptable solution. However, for
many applications the resulting frequency of the PWM waveform would
be too low to be of practical use. Table 18 shows the four available RTI
rates and the corresponding PWM frequency, the number of TOF

RTI INTERRUPTS

TOF INTERRUPTS

6.25%1

12.5%2

18.75%3

25.0%4

31.25%5

37.5%6

43.75%7

50.0%8

56.25%9

62.5%10

68.75%11

75.0%12

81.25%13

87.5%14

93.75%15

100%—
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA On-Chip Peripheral Systems 189  
For More Information On This Product,

  Go to: www.freescale.com



On-Chip Peripheral Systems

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

interrupts between RTIs, and the minimum variation in duty cycle that is
possible.

Table 18 seems to suggest that we are stuck trading off PWM frequency
for duty cycle accuracy. However, the following software program can
deliver much better results than expected.

Re-examining the portion of the timer in Figure 41  surrounded by the
gray box shows eight bits of the 15-bit timer chain. Four of the bits are
accessible to the CPU as the upper four bits of the TCR. The other four
bits form a divide-by-16 counter chain whose value is not directly
accessible. However, by counting the number of TOF interrupts that
occur after each RTI, we can always know the state of these four counter
bits. By using an 8-bit number to represent the PWM duty cycle, we can
achieve a duty cycle accuracy of 1 ÷ 255 or 0.4%.

To get this level of control with the MC68HC705J1A timer, we cannot
use an 8-bit duty cycle value directly. The 8-bit number must be
separated into two components. One component will represent the value
of the inaccessible four bits of the counter (the number of TOF interrupts
that occur after each RTI). The other component will represent the value
of the upper four bits of the TCR (the lower four bits of our counter that
are directly accessible to the CPU).

To make these two components easy for the software to use, the upper
four bits of the desired PWM duty cycle must be placed in the lower four
bits of a variable we will call PWMCoarse. This value will be used to
determine during which TOF interrupt the PWM output should be set
low. The lower four bits of the desired PWM duty cycle will be placed in
the upper four bits of a variable we will call PWMFine. This value is used

Table 18. PWM Characteristics for Various RTI Rates

RTI Rate PWM
Frequency

TOF
Interrupts

Minimum Duty
Cycle

8.2 ms 122 Hz 16 6.25%

16.4 ms 61.0 Hz 32 3.125%

32.8 ms 30.5 Hz 64 1.56%

65.5 ms 15.3 Hz 128 0.78%
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

190 On-Chip Peripheral Systems MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



On-Chip Peripheral Systems
A Timer Example

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

within the TOF interrupt to determine precisely when during the TOF
interrupt the PWM output should be set low. By comparing the value in
PWMFine to the upper four bits of the TCR, we can effectively divide
each TOF interrupt into 16 separate time intervals as shown in
Figure 43 .

Figure 43. Each TOF Interrupt Sliced into 16 Separate
Time Intervals

Now that we have described the theory involved in generating an
accurate PWM waveform using the MC68HC05J1A's timer, the next
step is to write the software. We begin by generating flowcharts to
describe the actions necessary to produce the PWM waveform and
finish by translating the flowcharts into M68HC05 assembly language.

The flowcharts in Figure 44 , Figure 45 , and Figure 46  describe the
PWM software. The flowchart in Figure 45 , although simple, is included
for completeness and clarity. Because the MC68HC05J1A contains only
one timer interrupt vector, a short routine must determine whether a
timer interrupt was caused by a TOF or an RTIF interrupt and then
branch to the appropriate service routine.

RTI INTERRUPTS

TOF INTERRUPTS

RTI
TOF INTERRUPTS
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA On-Chip Peripheral Systems 191  
For More Information On This Product,

  Go to: www.freescale.com



On-Chip Peripheral Systems

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Figure 44. Timer Interrupt Service Routine

As shown in Figure 45 , the RTIF interrupt routine checks for two special
conditions, 0% and 100% duty cycle. It then sets up the PWMFine and
PWMCoarse variables for use by the TOF interrupt service routine. If a
0% duty cycle is desired, the PWM output is set low and the RTIF
interrupt service routine immediately returns. If a 100% duty cycle is
desired, the PWM output is set high and the RTIF interrupt service
routine will return immediately. If a duty cycle between 0% and 100% is
desired, the variable DesiredPWM is split into the two components,
PWMFine and PWMCoarse. If the resulting value of PWMCoarse is 0
the program will jump to the second part of the TOF interrupt routine,
which continually compares the value in PWMFine to the upper four bits
of the TCR. If the value of PWMCoarse is not 0, TOF interrupts are
enabled and the RTIF interrupt routine returns.

BEGIN TIMER
INTERRUPT SERVICE

TOF INTERRUPT ?

NO

YES

RTIF INTERRUPT ?

NO

YES

RETURN

GO EXECUTE TOF
INTERRUPT ROUTINE

(FIGURE 46)

GO EXECUTE RTIF
INTERRUPT ROUTINE

(FIGURE 45)
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

192 On-Chip Peripheral Systems MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



On-Chip Peripheral Systems
A Timer Example

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Figure 45. Real-Time Interrupt Routine Flowchart

BEGIN RTIF
INTERRUPT ROUTINE

DesiredPWM = 0% ?

NO

YES

RETURN FROM
INTERRUPT

PWM OUTPUT = 0

RESET RTIF
INTERRUPT FLAG

PWM OUTPUT = 1

DesiredPWM = 100% ?

NO

YES

PWMFine = DesiredPWM <<4

PWMCourse = DesiredPWM >>4

PWMCourse = 0 ?

NO

YES

CLEAR TOF INTERRUPT FLAG

ENABLE TOF INTERRUPTS

EXECUTE SECOND
PART OF TOF INTERRUPT

A

SEE FIGURE 46
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA On-Chip Peripheral Systems 193  
For More Information On This Product,

  Go to: www.freescale.com



On-Chip Peripheral Systems

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

The flowchart in Figure 46  describes the actions required for the TOF
interrupt routine. The first action is to decrement the value of
PWMCoarse. When PWMCoarse becomes 0, it means that the value in
the upper four bits of our counter is equal to the upper four bits of
DesiredPWM. Next, we continually compare the upper four bits of the
TCR with the value of PWMFine (which is the lower four bits of
DesiredPWM). When these two values match, the PWM output is set
low, the TOF interrupt is reset and disabled, and the TOF interrupt
returns.

Figure 46. Timer Overflow Interrupt Flowchart

Listing 5. PWM Program Listing shows the assembly language listing
for the three routines described by the flowcharts in Figure 44 ,
Figure 45 , and Figure 46 . The translation of the flowcharts into
assembly language is fairly straightforward. The possible exception is
the assembly code in the RTIF interrupt routine that splits the

BEGIN TOF
INTERRUPT ROUTINE

PWMCourse = 0 ?

YES

NO

RETURN FROM
INTERRUPT

RESET TOF
INTERRUPT FLAG

 TCR ≥ PWMFine ?

YES

NO

SET PWM OUTPUT = 0

RESET & DISABLE
TOF INTERRUPT

A

PWMCourse = PWMCourse – 1

FROM
FIGURE 45
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

194 On-Chip Peripheral Systems MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



On-Chip Peripheral Systems
A Timer Example

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

DesiredPWM variable into the PWMCoarse and PWMFine components.
This routine works by using a combination of shift left and rotate left
instructions that operate on the A and the X registers. The LSLA
instruction shifts the most significant bit of the A register into the carry
and a 0 into the least significant bit of A. The ROLX instruction places
the carry (from the previous LSLA instruction) into the least significant bit
of the X register. After the execution of four of these instruction pairs, the
four most significant bits of the A register (DesiredPWM) will end up in
the least significant four bits of the X register (PWMCoarse). The least
significant four bits of the A register will end up in the most significant
four bits of the A register (PWMFine).

Using the PWM
Software

In normal circumstances, the PWM software of Listing 5. PWM
Program Listing would be used as a part of a larger program. The value
of DesiredPWM would be generated by some other part of the main
program. To demonstrate the PWM software, the value of DesiredPWM
was arbitrarily set to $80 (12810) by program instructions. If a simulator
or emulator is used to study this program, you can change the value of
DesiredPWM and observe the effect.

The PWM program is interrupt driven. This means that the timer
generates interrupt requests for the CPU to stop processing the main
program and respond to the interrupt request. Since the demonstration
version of this program in Listing 5. PWM Program Listing  has no
other main program to perform, a “branch to here” instruction was
included after the clear interrupt mask (CLI) instruction. This instruction
is an infinite loop. Timer interrupts will cause the CPU to periodically
leave this infinite loop to respond to the timer requests and then return
to executing the infinite loop.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA On-Chip Peripheral Systems 195  
For More Information On This Product,

  Go to: www.freescale.com



On-Chip Peripheral Systems

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Listing 5. PWM Program Listing (Sheet 1 of 2)

Listing 5. PWM Program Listing

             ;Equates for all 705J1 are included but not shown
             ; in this listing
             ;
 0000        Percent100 EQU   $FF          ;DesiredPWM value for 100% duty
 0000        PWM        EQU   PA7          ;PWM output on port A bit 7
             ;                             ;update the DesiredPWM variable.

 00C0                   ORG   RAMStart

 00C0        DesiredPWM RMB   1            ;Desired PWM duty cycle...
             ; expressed as the numerator of DesiredPWM/255.
             ; 0 = continuous low 255 = continuous high.

 00C1        PWMCoarse  RMB   1            ;Number of TOF interrupts...
             ; before we start to compare PWMFine to value in the TCR.

 00C2        PWMFine    RMB   1            ;When TCR matches PWMFine,...
             ;                             ; the PWM is set low.
             ; PWMFine is derived from the lower 4 bits of DesiredPWM.
             ; These 4 bits are placed in the upper 4 bits of PWMFine.

 00C3        VarEnd     EQU   *

             ;********************************************************
             ;
 0300                   ORG   ROMStart
             ;
 0300        Start      EQU   *
 0300 9C                RSP                ;Reset the stack pointer
 0301 3F00              CLR   PORTA        ;Set Port A outputs to all 0's
 0303 A6FF              LDA   #$FF         ;Make all Port A's pins outputs
 0305 B704              STA   DDRA
                                           ;Clear out all of RAM
 0307 AEC0              LDX   #RAMStart    ;Point to the start of RAM
 0309 7F     ClrLoop    CLR   ,X           ;Clear a byte
 030A 5C                INCX               ;Point to the next location
                                           ;Cleared the last location?
 030B 26FC              BNE   ClrLoop      ;No, Continue to clear RAM

 030D A680              LDA   #$80         ;Corresponds to 50% (128/255)
 030F B7C0              STA   DesiredPWM   ;Establish a PWM duty cycle
 0311 A61C              LDA   #$1C         ;Clear timer ints...
 0313 B708              STA   TSCR         ;and enable RTIF interrupt
 0315 9A                CLI                ;Enable interrupts
 0316 20FE              BRA   *            ;Infinite loop, PWM uses ints
             ;********************************************************
             ;RTI sets period. @2MHz & RT1:RT0 = 0:0, period = 8.192 ms
             ;or about 122 Hz
 0318        TimerInt   EQU   *
 0318 0E0804            BRSET TOF,TSCR,TOFInt  ;TOF interrupt?
 031B 0C0812            BRSET RTIF,TSCR,RTIInt ;RTI interrupt?
 031E 80                RTI
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

196 On-Chip Peripheral Systems MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



On-Chip Peripheral Systems
A Timer Example

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Listing 5. PWM Program Listing (Sheet 2 of 2)

             ;********************************************************
             ;TOF interrupt response - Decrement PWMCoarse, when 0...
             ;Compare PWMFine to TCR. When TCR passes PWMFine clear
             ;PWM output pin and disable further TOF. RTI re-enables.
             ;
 031F        TOFInt     EQU   *
 031F 3AC1              DEC   PWMCoarse      ;Is PWMCoarse=0?
 0321 260A              BNE   ExitTOF        ;No. Clear TOF and return
 0323 B6C2   TOFInt1    LDA   PWMFine        ;To compare to upper 4 of TCR
 0325 B109   CmpMore    CMPA  TCR
 0327 22FC              BHI   CmpMore        ;Loop till PWMFine <= TCR
 0329 1F00              BCLR  PWM,PORTA      ;Set the PWM output low (0V)
 032B 1B08              BCLR  TOIE,TSCR      ;Disable the TOF Interrupt
 032D 1608   ExitTOF    BSET  TOFR,TSCR      ;Reset the TOF Interrupt Flag
 032F 80                RTI                  ;Return to the main program

             ;********************************************************
             ;RTIF interrupt response - Set PWM out pin high, and
             ;enable TOF. Make PWMCoarse & PWMFine from DesiredPWM
             ;
 0330        RTIInt     EQU   *
 0330 1408              BSET  RTIFR,TSCR      ;Clear the RT Interrupt Flag
 0332 B6C0              LDA   DesiredPWM      ;Get desired PWM level. =0?
 0334 2719              BEQ   RTIInt2         ;Yes. Leave PWM output low
 0336 1E00              BSET  PWM,PORTA       ;No. Set PWM output high
 0338 A1FF              CMPA  #Percent100     ;Desired PWM level 100%?
 033A 2713              BEQ   RTIInt2         ;Yes. Leave PWM output high
 033C 5F                CLRX                  ;No. Put upper 4 bits of
 033D 48                LSLA                  ;DesiredPWM into lower 4 bits
 033E 59                ROLX                  ;of A and the lower 4 bits of
 033F 48                LSLA                  ;DesiredPWM into the upper
 0340 59                ROLX                  ;4-bits of x.
 0341 48                LSLA
 0342 59                ROLX
 0343 48                LSLA
 0344 59                ROLX
 0345 B7C2              STA   PWMFine         ;Save result into PWMFine.
 0347 BFC1   RTIInt1    STX   PWMCoarse       ;Save result into PWMCoarse.
 0349 27D8              BEQ   TOFInt1         ;If PWMCoarse=0, go to 2nd
                                              ;half of the TOF routine
 034B 1608              BSET  TOFR,TSCR       ;Clear Timer Overflow Flag
 034D 1A08              BSET  TOIE,TSCR       ;re-enable the TOF interrupt
 034F 80     RTIInt2    RTI                   ;return from RTIF interrupt

 07F8                   ORG   Vectors         ;interrupt/reset vectors.

 07F8 0318              FDB   TimerInt        ;timer interrupt routine.
 07FA 0300              FDB   Start           ;IRQ vector (not used)
 07FC 0300              FDB   Start           ;SWI vector (not used)
 07FE 0300              FDB   Start           ;Reset vector.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA On-Chip Peripheral Systems 197  
For More Information On This Product,

  Go to: www.freescale.com



On-Chip Peripheral Systems

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

A Practical Motor Control Example

In this section, we will develop a practical application by expanding some
of the software developed in this book. The example will add some
external hardware to the MC68HC705K1 so that we can observe the
effects of our software on the world outside the microcontroller. We will
use a slightly modified version of the PWM routine that was developed
in this chapter to control the speed of a small permanent-magnet direct
current (DC) motor. In addition, we will use the concepts developed in
the chapter titled On-Chip Peripheral Systems that allow the CPU to
read the state of switches connected to the MCU’s general-purpose I/O
pins.

Theory DC motors are often the best choice for variable-speed motor
applications. Brush DC motors are the easiest to control electronically.
Electronic control of brushless DC, stepper, AC induction, and switched
reluctance motors all require more-complex control circuits in addition to
more power-switching devices. Small, low-cost brush DC motors are
available off the shelf for many low-volume applications where custom
designs would be too expensive. The reliability of brush motors is
adequate for most applications. However, eventually, the brushes will
wear out and need to be replaced.

To vary the speed of a brush DC motor, we must vary the voltage that is
applied to the motor. Several approaches can be used to accomplish
this. We will examine several of the methods, explaining the major
advantages and disadvantages of each.

The first and most obvious approach to varying the voltage applied to a
motor might be to place a variable resistor in series with the motor and
the power source, as shown in Figure 47 . While this approach is very
simple, it has some serious disadvantages. First, the resistor’s power
dissipation capabilities must be matched to the power requirements of
the motor. For very small fractional-horsepower DC motors, the size of
the variable resistor will be quite modest. However, as the size of the
motor increases, the motor’s power requirement increases and the size
and cost of the variable resistor will increase.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

198 On-Chip Peripheral Systems MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



On-Chip Peripheral Systems
A Practical Motor Control Example

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Figure 47. Motor Speed Controlled by a Variable Resistor

The second major disadvantage of this type of speed control is the
inability to automatically adjust the speed of the motor to compensate for
varying loads. This is a primary disadvantage for applications that
require precise speed control under varying mechanical loads.

An electronic variation of the variable resistor form of speed control is
shown in Figure 48 . In this arrangement, we have replaced the variable
resistor with a transistor. Here, the transistor is operated in its linear
mode. When a transistor operates in this mode, it essentially behaves as
an electrically controlled variable resistor. By applying a proportional
analog control signal to the transistor, the "resistivity" of the transistor
can be varied, which will in turn vary the speed of the motor. By using a
transistor to control the speed of the motor in this manner, the magnitude
of the control signal is reduced to much lower voltage and current levels
that can be readily generated by electronic circuity.

Figure 48. Motor Speed Controlled by a Transistor

Unfortunately, using a transistor in its linear mode still retains a major
disadvantage of using a variable resistor. Like a variable resistor, a

MOTOR

M

MOTOR

M

RB

VBB
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA On-Chip Peripheral Systems 199  
For More Information On This Product,

  Go to: www.freescale.com



On-Chip Peripheral Systems

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

power transistor operating in its linear region will have to dissipate large
amounts of power under varying speed and load conditions. Even
though power transistors capable of handling high power levels are
widely available at relatively modest prices, the power dissipated by the
transistor will usually require a large heat sink to prevent the device from
destroying itself.

In addition to being operated as a linear device, transistors also may be
operated as electronic switches. By applying the proper control signal to
a transistor, the device will either be turned on or turned off. As shown in
Figure 49 , when the transistor is turned on, it will essentially behave as
a mechanical switch allowing electric current to pass through it and its
load virtually unimpeded. When turned off, no current passes through
the transistor or its load. Because the transistor dissipates very little
power when it is fully turned on or saturated, the device operates in an
efficient manner.

Figure 49. Transistor Used as an Electronic Switch

It would seem that, when using a transistor to control the speed of a DC
motor, we are stuck using the device in its inefficient linear mode if we
want a motor to operate at something other than full speed. Fortunately,
there is an alternative method of controlling the speed of a DC motor
using a transistor. By using the transistor as an electronically controlled
switch and applying a PWM control signal of sufficient frequency, we can
control the speed of the motor. To help understand how turning a motor

M

TRANSISTOR “ON”

M

TRANSISTOR “OFF”

VCCVCC
IC

RB

VBB
VCE ≅ 0 VOLTS

IC = 0

VCE = VCCRB

VBB = 0
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

200 On-Chip Peripheral Systems MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



On-Chip Peripheral Systems
A Practical Motor Control Example

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

fully on and then fully off can control its speed, consider the PWM
waveforms in Figure 50 .

Figure 50. PWM Waveforms with 50 and 80 Percent Duty Cycles

Figure 50 (a) shows a single cycle of a 50 percent duty cycle PWM
waveform that is 5 volts during the first half of its period and at 0 volts
during the second half. If we integrate (or average) the voltage of the
PWM waveform in Figure 50 (a) over its period, T1, the average DC
voltage is 50 percent of 5 volts or 2.5 volts. Correspondingly, the
average DC voltage of the PWM waveform in Figure 50 (b), which has a
duty cycle of 80 percent, is 80 percent of 5 volts or 4.5 volts. By using a
PWM singal to switch a motor on and off in this manner, it will produce
the same effect as applying a continuous or average DC voltage at
varying levels to the motor. The frequency of the PWM signal must be
sufficiently high so that the rotational inertia of the motor integrates the
on/off pulses and causes the motor to run smoothly.

Motor Control
Circuit

As mentioned earlier, we will be using a slightly modified version of our
PWM routine to control the speed of a small motor. However, before
discussing the software involved, we need to take a look at the hardware
components required to drive the motor.

Figure 51  is a schematic diagram of the power section of our motor
control circuit. There are a number of differences between this

a)  DUTY CYCLE = T2/T1 = 50%

b)  DUTY CYCLE = T2/T1 = 80%

T2
T1

T2
T1

0 VOLTS

+5 VOLTS

0 VOLTS

+5 VOLTS
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA On-Chip Peripheral Systems 201  
For More Information On This Product,

  Go to: www.freescale.com



On-Chip Peripheral Systems

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

schematic and the conceptual ones used in Figure 48  and Figure 49 .
We will describe these differences in the following paragraphs.

The most noticeable difference is the schematic symbol for the power
transistor that will be used as an electronic switch. This device is a power
MOSFET. Unlike the bipolar transistor shown in Figure 48  and
Figure 49 , this special type of transistor is controlled by the magnitude
of a voltage applied to its gate. Additionally, this particular power
MOSFET, the MTP3055EL, may be completely saturated with only 5
volts applied to its gate. These two characteristics allow this device to be
controlled directly by a microcontroller’s output pin for many
applications.

Because the input iimpedance of a power MOSFET is very high (greater
than 40 megaohms), a 10 KΩ resistor is placed between the MOSFET
gate and ground to prevent erratic operation of the motor should the
connection between the microcontroller and the gate ever become cut.
The 15-volt zener diode is placed in parallel with the resistor to protect
the gate of the MOSFET from possible damage from high voltage
transients that may be generated in the system. The 1N4001 diode in
parallel with the motor is used to snub the inductive kick of the motor
each time the MOSFET is turned off. The 0.1-µf capacitor in parallel with
the motor is used to reduce the electrical noise generated by the motor’s
brushes.

For further information on designing with power MOSFETs, it is
suggested that the reader study the Theory and Applications section of
the Motorola Power MOSFET Transistor Data Book (DL153).

Figure 52  is a schematic diagram of the microprocessor section of the
circuit that we will be using in this example. In addition to generating a
PWM output, the MC68HC705K1 is reading three momentary
pushbutton switches connected to its I/O pins. As the schematic shows,
a single switch turns the motor on and off while two switches set the
speed of the motor.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

202 On-Chip Peripheral Systems MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



On-Chip Peripheral Systems
A Practical Motor Control Example

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Figure 51. Power Section of the Motor Speed Control Circuit

Figure 52. Microcontroller Section
of the Motor Speed Control Circuit

M

MTP3055EL15 V10 k

1N40010.1 F

+5  V

FROM PA7 OF
MC68HC705K1

10 M

0.1 F

+5 V

TO GATE OF
MTP3055EL

27 pF

27 pF

4 MHz

VDD
VSS

PA7
PA0

PA1

PA2

ON/OFF

SPEED
DOWN

SPEED
UP

10 k
(5)

IRQ

MC68HC705K1+5 V

MOTOR
CONTROL
SWITCHES

OSC1

OSC2
RESET
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA On-Chip Peripheral Systems 203  
For More Information On This Product,

  Go to: www.freescale.com



On-Chip Peripheral Systems

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

One side of each switch is connected to circuit ground, while the other
side of the switch is connected to an I/O pin on the MC68HC705K1
microcontroller. Each of the input pins on the microcontroller is "pulled
up" through a 10-kΩ resistor to +5 volts. These 10-kΩ pullup resistors
keep each of the three input pins at a logic 1 when the pushbutton
switches are not pressed.

In this exampel circuit, the switch controls will operate in the following
manner. The motor on/off switch operates as an alternate-action control.
Each time the switch is pushed and released, the motor will alternately
be turned on or off. When the motor is turned on, its speed will be set to
the speed it was going the last time the motor was on.

The speed up and speed down switches increase or decrease motor
speed, respectively. To increase or decrease the speed of the motor, the
respective switch must be pressed and held. The motor speed PWM will
be increased or decreased at a rate of approximately 0.4 percent every
24 ms. This "ramp" rate will allow the motor speed to be adjusted across
its entire speed range in approximately six seconds.

Motor Control
Software

Figure 53  shows a flowchart that describes the new RTI interrupt
software. The only functional change to the PWM routine developed
earlier in this chapter is the addition of one instruction at the beginning
of the RTI interrupt service routine. This instruction decrements the
variable RTIDlyCnt. This variable is used by the three routines that read
the input switches to develop a switch debounce delay.

As mentioned in the Programming chapter, there are usually many
ways to perform a specific task using the microcontroller’s instruction
set. To demonstrate this, one part of the revised RTI interrupt routine has
been impmlemented in a slightly different manner. Remember, looking
at Listing 6. Speed Control Program Listing , that we had to split the
variable DesiredPWM into two parts, PWMFine and PWMCoarse. To do
this, we used a combination of shifts and rotates to place the upper four
bits of the A accumulator (DesiredPWM) into the lower four bits of the X
register (PWMCoarse) and the lower four bits of A into the upper four bits
of A (PWMFine). This method required nine bytes of program memory
and 26 CPU cycles.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

204 On-Chip Peripheral Systems MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



On-Chip Peripheral Systems
A Practical Motor Control Example

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Figure 53. Revised RTI Routine Flowchar

BEGIN RTIF
INTERRUPT ROUTINE

DesiredPWM = 0% ?

NO

YES

RETURN FROM
INTERRUPT

PWM OUTPUT = 0

RESET RTIF
INTERRUPT FLAG

PWM OUTPUT = 1

DesiredPWM = 100% ?

NO

YES

PWMFine = DesiredPWM <<4

PWMCourse = DesiredPWM >>4

PWMCourse = 0 ?

NO

YES

CLEAR TOF INTERRUPT FLAG

ENABLE TOF INTERRUPTS

GO EXECUTE SECOND
PART OF TOF INTERRUPT

A

see Figure 9-8

RTIDlyCnt = RTIDlyCnt – 1
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA On-Chip Peripheral Systems 205  
For More Information On This Product,

  Go to: www.freescale.com



On-Chip Peripheral Systems

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

By using the alternative approach in  Listing 6. Speed Control
Program Listing , we can get the same result in only three bytes of
program memory and 13 CPU cycles.

The RTIInt routine in  Listing 6. Speed Control Program Listing
demonstrates the alternative approach. The original 9-byte instrtuction
sequence has been replaced with two instructions, LDX #16 and MUL.
The MUL instruction multiples the value in the accumulator by the value
in the index register and places the result in X:A (concatenation of X and
A). Multiplying a binary number by 16 is equivalent to shifting the value
left by four positions. Just as in the original implementation, the upper
four bits of DesiredPWM are now in the lower four bits of the X register
(PWMCoarse) and the lower four bits of the A register have been moved
into the upper four bits a A (PWMFine).

The flowchart in Figure 54 describes the main loop routine of our motor
control module. This module checks the state of each of the three input
switches. If any one of the three switches is pressed, a routine that
handles the actions for that switch is called. If there are no switches
pressed, the main loop is repeated.

Figure 54. Flowchart for Main Program Loop

BEGIN
MAIN PROGRAM

MOTOR ON/OFF SW. PRESSED ?

NO

YES
TURN MOTOR ON / OFF

SPEED UP SW. PRESSED ?

NO

YES
INCREASE MOTOR SPEED

SPEED DOWN SW. PRESSED ?

NO

YES
DECREASE MOTOR SPEED
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

206 On-Chip Peripheral Systems MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



On-Chip Peripheral Systems
A Practical Motor Control Example

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Figure 55 , Figure 56 , and Figure 57  are flowcharts for the three
routines that handle the actions of the three input switches. Each of
these routines begins with the execution of a 50-ms switch debounce
routine. As decribed in the Programming chapter, this delay is required
because the mechanical bounce produced by the closure of a switch is
seen by the microcontroller as multiple switch closures during the first
several milliseconds after the switch is pressed. This small section of
code stores the value DebounceDly into the variable RTIDlyCnt and then
waits until the value is decremented to zero by the RTI interrupt service
routine. When the value reaches zero, the switch is again checked to be
sure a valid switch closure occurred. The value used for the delay
constant (DebounceT) will produce a minimum delay of approximately
50 milliseconds.

The flowchart in Figure 55  describes the MotorOnOff routine. It is
responsible for handling the actions of the alternate action switch that
turns the motor on and off. After the switch debounce delay, this routine
waits until the on/off switch is released before it performs the rest of its
task and returns to the main loop. Otherwise, the main loop would detect
another switch closure as soon as the MotorOnOff program finished and
returned to the main program loop.

The routines described by the flowcharts in Figure 56  and Figure 57
operate in essentially the same manner. First, each of these routines
checks to see if the motor is currently turned on. If the motor is off, the
routine returns to the main program loop. Each routine then loops
continuously as long as its associated switch remains pressed. Each
time through the loop, the MotorPWM and DesiredPWM variables are
incremented or decremented to increase or decrease the duty cycle of
the PWM output. To keep the speed of the motor from increasing or
decreasing too rapidly when a switch is pressed, a delay of
approprixmately 25 ms is inserted each time through the loop. This
25-ms delay allows the motor to be adjusted across its entire speed
range in approximately six seconds.

 Listing 6. Speed Control Program Listing  contains the assembly
language listing for the routines described by the flowcharts in Figure 46
and Figure 53  through Figure 57 .
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA On-Chip Peripheral Systems 207  
For More Information On This Product,

  Go to: www.freescale.com



On-Chip Peripheral Systems

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Figure 55. Flowchart for MotorOn/Off Routine

TURN MOTOR
ON  OR  OFF

MOTOR ON/OFF SW. PRESSED ?

YES

NO

RETURN

TURN MOTOR ON
BY SETTING

DesiredPWM = LAST SPEED

MOTOR ON ?

YES

NO

TURN MOTOR OFF
BY SETTING

DesiredPWM = 0

MOTOR ON/OFF SW. PRESSED ?

NO

YES

DEBOUNCE FOR 50 ms
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

208 On-Chip Peripheral Systems MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



On-Chip Peripheral Systems
A Practical Motor Control Example

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Figure 56. Flowchart for Motor Speed-Up Routine

Figure 57. Flowchart for Motor Speed-Down Routine

INCREASE
MOTOR SPEED

SPEED UP SW. PRESSED ?

YES

NO

RETURN

MotorPWM = MotorPWM + 1
DesiredPWM = DesiredPWM +1

MOTOR PWM AT 100% ?

YES

NO

DEBOUNCE FOR 50 ms

MOTOR ON ?

YES

NO

DELAY FOR ABOUT 25 ms

DECREASE
MOTOR SPEED

SPEED DOWN SW. PRESSED ?

YES

NO

RETURN

MotorPWM = MotorPWM – 1
DesiredPWM = DesiredPWM –1

MOTOR PWM AT MinPWM ?

YES

NO

DEBOUNCE FOR 50 ms

MOTOR ON ?

YES

NO

DELAY FOR ABOUT 25 ms
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA On-Chip Peripheral Systems 209  
For More Information On This Product,

  Go to: www.freescale.com



On-Chip Peripheral Systems

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Listing 6. Speed Control Program Listing (Sheet 1 of 5)
Listing 6. Speed Control Program Listing

               ;Equates for all 705K1 are included but not shown

00FF           Percent100 EQU   $FF      ;DesiredPWM value for 100% duty
0003           RampTime   EQU   3        ;Speed up/down ramp constant
0007           DebounceT  EQU   7        ;Switch debounce constant
0010           MinPWM     EQU   $10      ;Minimum PWM value.
0007           PWM        EQU   PA7      ;Port A bit 7 is PWM output
0000           MotorOnOff EQU   PA0      ;Sw. for the Motor On/Off
0001           SpeedUp    EQU   PA1      ;Sw. for raising the speed
0002           SpeedDn    EQU   PA2      ;Sw. for lowering the speed

00E0                      ORG   RAMStart

00E0           DesiredPWM RMB   1        ;Desired PWM/255 = duty cycle
                                         ;0 = continuous low
                                         ;255 = continuous high

00E1           PWMCoarse  RMB   1        ;Number of TOFs before...
                                         ;start watching PWMFine vs TCR
00E2           PWMFine    RMB   1        ;When TCR matches PWMFine,...
                                         ;set PWM output low

00E3           MotorPWM   RMB   1        ;Last PWM/speed while motor.on
00E4           RTIDlyCnt  RMB   1        ;Decremented on each RTI...
                                         ;used to debounce switches

00E5           MotorOnFlg RMB   1        ;1 = PWM out is on / 0 = off
00E6           VarEnd     EQU   *

               ;*********************************************************
0200                      ORG   ROMStart

0200           Start      EQU   *

0200 9C                   RSP            ;Reset stack pointer in case...
                                         ;we got here from an error
0201 3F 00                CLR   PortA    ;Set up Port A outs to all 0's
0203 A6 80                LDA   #$80     ;Make PA7 an output

0205 B7 04                STA   DDRA

   ;Clear out all of RAM
0207 AE E0                LDX   #RAMStart;Point to the start of RAM
0209 7F        ClrLoop    CLR   0,x      ;Clear a byte.
020A 5C                   INCX           ;Point to the next loc./ done?
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

210 On-Chip Peripheral Systems MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



On-Chip Peripheral Systems
A Practical Motor Control Example

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Listing 6. PWM Program Listing (Sheet 2 of 5)

020B 26 FC                BNE   ClrLoop  ;No; continue to clear RAM
020D A6 1C                LDA   #$1C     ;Enable TOF & RTI interrupts
020F B7 08                STA   TSCR
0211 A6 10                LDA   #MinPWM  ;Initialize PWM to min speed
0213 B7 E3                STA   MotorPWM
0215 9A                   CLI            ;Enable interrupts

               ;*********************************************************
               ;Main program loop. Read motor control switches. If a
               ; switch is pressed, BSR to perform the requested action.
               ; Loop continuously looking for switch closures.
               ;
0216 00 00 02  Main       BRSET MotorOnOff,PortA,Main1 ;On/Off pressed?
0219 AD 0C                BSR   DoOnOff       ;If yes, go to DoOnOff
021B 02 00 02  Main1      BRSET SpeedUp,PortA,Main2  ;Speed Up pressed?
021E AD 25                BSR   DoSpeedUp     ;If yes, go to DoSpeedUp
0220 04 00 F3  Main2      BRSET SpeedDn,PortA,Main   ;Speed Down ?
0223 AD 44                BSR   DoSpeedDn     ;If yes, go to DoSpeedDown
0225 20 EF                BRA   Main          ;Repeat loop continuously

               ;*********************************************************
               ;DoOnOff handles the closure of the Motor On/Off switch
               ; Debounces switch and waits for release.
               ;
0227           DoOnOff    EQU   *
0227 A6 07                LDA   #DebounceT  ;DebounceT * RTI time = 50mS
0229 B7 E4                STA   RTIDlyCnt   ;Initialize software counter
022B 3D E4     DoOnOff1   TST   RTIDlyCnt   ;RTI interrupt decrements it
022D 26 FC                BNE   DoOnOff1    ;Loop till RTIDlyCnt = 0
022F 00 00 12             BRSET MotorOnOff,PortA,DoOnOff3 ;Then check sw
                                            ;If open, not a good press
0232 01 00 FD             BRCLR MotorOnOff,PortA,*  ;Wait for sw release
0235 3D E5                TST   MotorOnFlg  ;Motor already on?
0237 26 07                BNE   DoOnOff2    ;Yes, turn the motor off.
0239 3C E5                INC   MotorOnFlg  ;No, Set ‘MotorOn’ flag
023B B6 E3                LDA   MotorPWM    ;And get last motor speed
023D B7 E0                STA   DesiredPWM  ;Turns on the PWM output
023F 81                   RTS               ;Return (1 of 2)
0240 3F E0     DoOnOff2   CLR   DesiredPWM  ;Turns the PWM output off
0242 3F E5                CLR   MotorOnFlg  ;Clear ‘MotorOn’ flag
0244 81        DoOnOff3   RTS               ;Return (2 of 2)
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA On-Chip Peripheral Systems 211  
For More Information On This Product,

  Go to: www.freescale.com



On-Chip Peripheral Systems

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Listing 6. PWM Program Listing (Sheet 3 of 5)

       ;***********************************************************
               ;DoSpeedUp handles the closure of the Speed Up switch
               ; Debounces sw then increments duty cycle till release
               ; Duty cycle incremented approx every 24 ms.
               ; Adj across full speed range in approx 6 seconds
               ;
0245           DoSpeedUp  EQU   *
0245 3D E5                TST   MotorOnFlg  ;Motor currently on?
0247 26 01                BNE   DoSpeedUp2  ;Yes, branch
0249 81        DoSpeedUp1 RTS               ;No, sws don't work if off
024A A6 07     DoSpeedUp2 LDA   #DebounceT  ;Debounce delay approx 50 ms
024C B7 E4                STA   RTIDlyCnt   ;Initialize software counter
024E 3D E4     DoSpeedUp3 TST   RTIDlyCnt   ;RTI interrupt decrements it
0250 26 FC                BNE   DoSpeedUp3  ;Loop till RTIDlyCnt = 0
0252 02 00 F4  DoSpeedUp4 BRSET SpeedUp,PortA,DoSpeedUp1 ;RTS if sw off
0255 B6 E3                LDA   MotorPWM    ;Sw pressed, do speed up
0257 A1 FF                CMPA  #Percent100 ;Already full on?
0259 27 EE                BEQ   DoSpeedUp1  ;If yes just return
025B A6 03                LDA   #RampTime   ;No, get ramp time delay
                                            ;(3 * 8.2Ms = 24.6)
025D B7 E4                STA   RTIDlyCnt   ;Store to software counter
025F 3D E4     DoSpeedUp5 TST   RTIDlyCnt   ;Ramp time delay expired?
0261 26 FC                BNE   DoSpeedUp5  ;No, continue to wait
0263 3C E3                INC   MotorPWM    ;Yes, increase motor speed
0265 3C E0                INC   DesiredPWM  ;Adv the desired PWM value
0267 20 E9                BRA   DoSpeedUp4  ;Loop for sw still pressed

               ;**********************************************************
               ;DoSpeedDn handles the closure of the Speed Down switch
               ; Debounces sw then increments duty cycle till release
               ; Duty cycle incremented approx every 24 ms.
               ; Adj across full speed range in approx 6 seconds
               ;
0269           DoSpeedDn  EQU   *
0269 3D E5                TST   MotorOnFlg  ;Motor currently on?
026B 26 01                BNE   DoSpeedDn2  ;Yes, branch
026D 81        DoSpeedDn1 RTS               ;No, sws don't work if off
026E A6 07     DoSpeedDn2 LDA   #DebounceT  ;Debounce delay approx 50 ms
0270 B7 E4                STA   RTIDlyCnt   ;Initialize software counter
0272 3D E4     DoSpeedDn3 TST   RTIDlyCnt   ;RTI interrupt decrements it
0274 26 FC                BNE   DoSpeedDn3  ;Loop till RTIDlyCnt = 0
0276 02 00 F4  DoSpeedDn4 BRSET SpeedUp,PortA,DoSpeedDn1 ;RTS if sw off
0279 B6 E3                LDA   MotorPWM    ;Sw pressed, do speed up
027B A1 10                CMPA  #MinPWM     ;Already at minimum speed?
027D 27 EE                BEQ   DoSpeedDn1  ;If yes just return
027F A6 03                LDA   #RampTime   ;No, get ramp time delay
                                            ;(3 * 8.2Ms = 24.6)
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

212 On-Chip Peripheral Systems MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



On-Chip Peripheral Systems
A Practical Motor Control Example

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Listing 6. PWM Program Listing (Sheet 4 of 5)

0281 B7 E4                STA   RTIDlyCnt   ;Store to software counter
0283 3D E4     DoSpeedDn5 TST   RTIDlyCnt   ;Ramp time delay expired?
0285 26 FC                BNE   DoSpeedDn5  ;No, continue to wait
0287 3A E3                DEC   MotorPWM    ;Yes, decrease motor speed
0289 3A E0                DEC   DesiredPWM  ;Reduce desired PWM value
028B 20 E9                BRA   DoSpeedDn4  ;Loop for sw still pressed

               ;**********************************************************
               ;Since RTI and TOF interrupts share 1 vector, TimerInt is
               ;used to decide which source was requesting service.
               ;TOFInt and RTIInt service routines are used together to
               ;generate a PWM signal.
               ;
028D           TimerInt   EQU   *
028D 0E 08 04             BRSET TOF,TSCR,TOFInt       ;TOF interrupt?
0290 0C 08 12             BRSET RTIF,TSCR,RTIInt      ;RTI interrupt?
0293 80                   RTI       ;Shouldn’t get here (defensive code)

               ;*********************************************************
               ;TOF interrupt response - Decrement PWMCoarse, when 0...
               ;Compare PWMFine to TCR. When TCR passes PWMFine clear
               ;PWM output pin and disable further TOF. RTI re-enables.
               ;
0294           TOFInt     EQU   *
0294 3A E1                DEC   PWMCoarse  ;Is PWMCoarse=0?
0296 26 0A                BNE   ExitTOF    ;No. Clear TOF and return
0298 B6 E2     TOFInt1    LDA   PWMFine    ;To compare to upper 4 of TCR
029A B1 09     CmpMore    CMPA  TCR
029C 22 FC                BHI   CmpMore    ;Loop till PWMFine <= TCR
029E 1F 00                BCLR  PWM,PortA  ;Set the PWM output low (0V)
02A0 1B 08                BCLR  TOIE,TSCR  ;Disable the TOF Interrupt
02A2 16 08     ExitTOF    BSET  TOFR,TSCR  ;Reset the TOF Interrupt Flag
02A4 80                   RTI              ;Return to the main program

               ;**********************************************************
               ;RTIF interrupt response - Set PWM out pin high, and
               ;enable TOF. Make PWMCoarse & PWMFine from DesiredPWM
               ;
02A5           RTIInt     EQU   *
02A5 3A E4                DEC   RTIDlyCnt  ;RTIDlyCnt = RTIDlyCnt - 1.
02A7 14 08                BSET  RTIFR,TSCR ;Clear the RT Interrupt Flag
02A9 B6 E0                LDA   DesiredPWM ;Get desired PWM level = 0?
02AB 26 03                BNE   RTIInt2    ;No,. Go set the output high
02AD 1F 00                BCLR  PWM,PortA  ;Make out low, duty is 0%
02AF 80                   RTI              ;Return from interrupt

02B0 1E 00     RTIInt2    BSET  PWM,PortA  ;PWM output high, duty > 0%
02B2 A1 FF                CMPA  #Percent100 ;Is desired PWM duty = 100%?
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA On-Chip Peripheral Systems 213  
For More Information On This Product,

  Go to: www.freescale.com



On-Chip Peripheral Systems

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Listing 6. PWM Program Listing (Sheet 5 of 5)

02B4 27 0D                BEQ   RTIInt3    ;Yes, Output always high
02B6 AE 10                LDX   #16        ;No, Put upper 4-bits of
02B8 42                   MUL              ;DesiredPWM in low 4-bits of
                                           ;X & low 4-bits of DesiredPWM
                                           ;in upper 4-bits of A.
02B9 B7 E2                STA   PWMFine    ;Save result into PWMFine
02BB BF E1                STX   PWMCoarse  ;Save result into PWMCoarse
02BD 27 D9                BEQ   TOFInt1    ;If PWMCoarse=0, go to 2nd
                                           ;half of TOF routine
02BF 16 08                BSET  TOFR,TSCR  ;Clear Timer Overflow Flag
02C1 1A 08                BSET  TOIE,TSCR  ;re-enable the TOF interrupt
02C3 80        RTIInt3    RTI              ;Return from RTIF interrupt

               ;**********************************************************
03F8                      ORG   Vectors    ;Interrupt & reset vectors

03F8 02 8D                FDB   TimerInt   ;Timer interrupt routine
03FA 02 00                FDB   Start      ;External IRQ (not used)
03FC 02 00                FDB   Start      ;SWI vector (not used)
03FE 02 00                FDB   Start      ;Reset vector
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

214 On-Chip Peripheral Systems MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



On-Chip Peripheral Systems
Review

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Review

A peripheral is a specialized piece of computer hardware that allows the
CPU to gather information about and affect change on the system that a
microcontroller is part of.

General-purpose I/O ports may be programmed to act as either inputs or
outputs. When a port pin is configured to act as an input, the CPU may
read the logic level that is present on the port pin. When configured as
an output, the CPU may set the port pin's output level to a logic 1 or
logic 0.

Although all microcontrollers contain some general-purpose I/O ports as
peripherals, they also contain additional peripherals that perform more
specific tasks.

Other Kinds
of Peripherals

Timers — Timers are peripherals that are used to measure or generate
time-related events in a microcontroller system. Timers are capable of
performing frequency measurements or generating variable width pulse
trains. Timers can be sophisticated or simple.

Serial Ports — Sometimes microcontrollers need to communicate with
specialized external peripherals or with another computer system. The
communication is usually performed bit-serially (one bit of information at
a time). The two most common types of serial ports are the serial
communications interface (SCI) and the serial peripheral interface (SPI).
The SCI communicates asynchronously with other devices and is
usually used to exchange data between two computer systems. The SPI
communicates synchronously with other devices and is usually used to
control peripheral devices that are external to the microcontroller.

Analog-to-Digital Converters  — Many signals that exist outside the
microcontroller are continuously varying analog signals. An
analog-to-digital (A-to-D) converter is a peripheral that is used to convert
these signals into a binary number that the microcontroller can use.

Digital-to-Analog Converters — A digital-to-analog (D-to-A) converter
performs the opposite function of an A-to-D converter. It allows the
microcontroller to convert a digital number into a proportional analog
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA On-Chip Peripheral Systems 215  
For More Information On This Product,

  Go to: www.freescale.com



On-Chip Peripheral Systems

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

voltage or current that can be used to control various output devices in
a microcontroller system.

EEPROM — Although EEPROM is a type of non-volatile memory, it is
considered by many to be a peripheral. EEPROM is unique because its
contents may be erased and rewritten under program control. Some
EEPROM devices exist as a separate device that may be connected to
an SPI port.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

216 On-Chip Peripheral Systems MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

Instruction Set Details
   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  
Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219

M68HC05 Instruction Set  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221
ADC — Add with Carry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  222
ADD — Add without Carry  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  223
AND — Logical AND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  224
ASL — Arithmetic Shift Left. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  225
ASR — Arithmetic Shift Right . . . . . . . . . . . . . . . . . . . . . . . . . . .  226
BCC — Branch if Carry Clear . . . . . . . . . . . . . . . . . . . . . . . . . . .  227
BCLR n — Clear Bit in Memory  . . . . . . . . . . . . . . . . . . . . . . . . .  228
BCS — Branch if Carry Set. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  229
BEQ — Branch if Equal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  230
BHCC — Branch if Half Carry Clear . . . . . . . . . . . . . . . . . . . . . .  231
BHCS — Branch if Half Carry Set. . . . . . . . . . . . . . . . . . . . . . . .  232
BHI — Branch if Higher. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  233
BHS — Branch if Higher or Same. . . . . . . . . . . . . . . . . . . . . . . .  234
BIH — Branch if Interrupt Pin is High . . . . . . . . . . . . . . . . . . . . .  235
BIL — Branch if Interrupt Pin is Low . . . . . . . . . . . . . . . . . . . . . .  236
BIT — Bit Test Memory with Accumulator  . . . . . . . . . . . . . . . . .  237
BLO — Branch if Lower  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  238
BLS — Branch if Lower or Same  . . . . . . . . . . . . . . . . . . . . . . . .  239
BMC — Branch if Interrupt Mask is Clear . . . . . . . . . . . . . . . . . .  240
BMI — Branch if Minus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  241
BMS — Branch if Interrupt Mask is Set. . . . . . . . . . . . . . . . . . . .  242
BNE — Branch if Not Equal  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  243
BPL — Branch if Plus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  244
BRA — Branch Always . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  245
BRCLR n — Branch if Bit n is Clear . . . . . . . . . . . . . . . . . . . . . .  246
BRN — Branch Never . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  247
BRSET n — Branch if Bit n is Set . . . . . . . . . . . . . . . . . . . . . . . .  248
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Instruction Set Details 217  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

BSET n — Set Bit in Memory . . . . . . . . . . . . . . . . . . . . . . . . . . .  249
BSR — Branch to Subroutine . . . . . . . . . . . . . . . . . . . . . . . . . . .  250
CLC — Clear Carry Bit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  251
CLI — Clear Interrupt Mask Bit . . . . . . . . . . . . . . . . . . . . . . . . . .  252
CLR — Clear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  253
CMP — Compare Accumulator with Memory . . . . . . . . . . . . . . .  254
COM — Complement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  255
CPX — Compare Index Register with Memory. . . . . . . . . . . . . .  256
DEC — Decrement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  257
EOR — Exclusive-OR Memory with Accumulator. . . . . . . . . . . .  258
INC — Increment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  259
JMP — Jump. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  260
JSR — Jump to Subroutine. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  261
LDA — Load Accumulator from Memory  . . . . . . . . . . . . . . . . . .  262
LDX — Load Index Register from Memory . . . . . . . . . . . . . . . . .  263
LSL — Logical Shift Left . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  264
LSR — Logical Shift Right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  265
MUL — Multiply Unsigned. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  266
NEG — Negate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  267
NOP — No Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  268
ORA — Inclusive-OR  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  269
ROL — Rotate Left thru Carry. . . . . . . . . . . . . . . . . . . . . . . . . . .  270
ROR — Rotate Right thru Carry . . . . . . . . . . . . . . . . . . . . . . . . .  271
RSP — Reset Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . .  272
RTI — Return from Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . .  273
RTS — Return from Subroutine  . . . . . . . . . . . . . . . . . . . . . . . . .  274
SBC — Subtract with Carry. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  275
SEC — Set Carry Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  276
SEI — Set Interrupt Mask Bit  . . . . . . . . . . . . . . . . . . . . . . . . . . .  277
STA — Store Accumulator in Memory  . . . . . . . . . . . . . . . . . . . .  278
STOP — Enable IRQ, Stop Oscillator. . . . . . . . . . . . . . . . . . . . .  279
STX — Store Index Register X in Memory . . . . . . . . . . . . . . . . .  280
SUB — Subtract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  281
SWI — Software Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  282
TAX — Transfer Accumulator to Index Register . . . . . . . . . . . . .  283
TST — Test for Negative or Zero . . . . . . . . . . . . . . . . . . . . . . . .  284
TXA — Transfer Index Register to Accumulator . . . . . . . . . . . . .  285
WAIT — Enable Interrupt, Stop Processor . . . . . . . . . . . . . . . . .  286
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

218 Instruction Set Details MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details
Introduction

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Introduction

This section contains complete detailed information for all M68HC05
instructions. The instructions are arranged in alphabetical order with the
instruction mnemonic set in larger type for easy reference.

This nomenclature is used in the following definitions:

(a) Operators
( ) = Contents of Register or Memory Location Shown inside

Parentheses
← = Is Loaded with (Read: gets)
↑ = Is Pulled from Stack
↓ = Is Pushed onto Stack
• = Boolean AND
+ = Arithmetic Addition (Except Where Used as Inclusive-OR

in Boolean Formula)
⊕ = Boolean Exclusive-OR
X = Multiply
: = Concatenate
– = Negate (Twos Complement)
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Instruction Set Details 219  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

(b) CPU Registers
ACCA = Accumulator
CCR = Condition Code Register
X = Index Register
PC = Program Counter
PCH = Program Counter, Higher Order (Most Significant) 8 Bits
PCL = Program Counter, Lower Order (Least Significant) 8 Bits
SP  = Stack Pointer

(c) Memory and Addressing
M = A memory location or absolute data, depending on

addressing mode
Rel = Relative offset; for instance, the twos-complement number

stored in the last byte of machine code corresponding to a
branch instruction

(d) Condition Code Register (CCR) Bits
H = Half Carry, Bit 4
I = Interrupt Mask, Bit 3
N = Negative Indicator, Bit 2
Z = Zero Indicator, Bit 1
C = Carry/Borrow, Bit 0

(e) Bit Status BEFORE Execution (n = 7, 6, 5, . . . 0)
An = Bit n of ACCA
Xn = Bit n of X
Mn = Bit n of M

(f) Bit status AFTER execution
Rn = Bit n of the Result (n = 7, 6, 5, . . . 0)

(g) CCR Activity Summary Figure Notation
— = Bit Not Affected
0 = Bit Forced to 0
1 = Bit Forced to 1
↕ = Bit Set or Cleared According to Results of Operation
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

220 Instruction Set Details MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details
M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

(h) Machine Coding Notation
dd = Low-Order 8 Bits of a Direct Address $0000-$00FF; High

Byte Assumed to be $0000
ee = Upper 8 Bits of 16-Bit Offset
ff = Lower 8 Bits of 16-Bit Offset or 8-Bit Offset
ii = One Byte of Immediate Data
hh = High-Order Byte of 16-Bit Extended Address
ll = Low-Order Byte of 16-Bit Extended Address
rr  = Relative Offset

(i) Source form notation
(opr) = Operand; One or Two Bytes Depending on Address Mode
(rel) = Relative Offset Used in Branch and Bit Manipulation

Instructions

M68HC05 Instruction Set

The following pages contain complete detailed information for all
M68HC05 instructions. The instructions are arranged in alphabetical
order with the instruction mnemonic set in larger type for easy reference.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Instruction Set Details 221  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

ADC Add with Carry ADC

Operation ACCA ← (ACCA) + (M) + (C)

Description Adds the contents of the C bit to the sum of the contents of ACCA and
M and places the result in ACCA.

Condition Codes
and Boolean
Formulae

H A3 • M3 + M3 • R3 + R3 • A3
Set if there was a carry from bit 3; cleared otherwise.

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if all bits of the result are cleared; cleared otherwise.

C A7 • M7 + M7 • R7 + R7 • A7
Set if there was a carry from the MSB of the result; cleared otherwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 ↕ — ↕ ↕ ↕

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

ADC (opr) IMM A9 ii 2

ADC (opr) DIR B9 dd 3

ADC (opr) EXT C9 hh ll 4

ADC ,X IX F9 3

ADC (opr),X IX1 E9 ff 4

ADC (opr),X IX2 D9 ee ff 5
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

222 Instruction Set Details MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details
M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

ADD Add without Carry ADD

Operation ACCA ← (ACCA) + (M)

Description Adds the contents of M to the contents of ACCA and places the result in
ACCA.

Condition Codes
and Boolean
Formulae

H A3 • M3 + M3 • R3 + R3 • A3
Set if there was a carry from bit 3; cleared otherwise.

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if all bits of the result are cleared; cleared otherwise.

C A7 • M7 + M7 • R7 + R7 • A7
Set if there was a carry from the MSB of the result; cleared otherwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 ↕ — ↕ ↕ ↕

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

ADD (opr) IMM AB ii 2

ADD (opr) DIR BB dd 3

ADD (opr) EXT CB hh ll 4

ADD,X IX FB 3

ADD (opr),X IX1 EB ff 4

ADD (opr),X IX2 DB ee ff 5
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Instruction Set Details 223  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

AND Logical AND AND

Operation ACCA ← (ACCA) • (M)

Description Performs the logical AND between the contents of ACCA and the
contents of M and places the result in ACCA. (Each bit of ACCA after the
operation will be the logical AND of the corresponding bits of M and of
ACCA before the operation.)

Condition Codes
and Boolean
Formulae

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if all bits of the result are cleared; cleared otherwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — ↕ ↕ —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

AND (opr) IMM A4 ii 2

AND (opr) DIR B4 dd 3

AND (opr) EXT C4 hh ll 4

AND,X IX F4 3

AND (opr),X IX1 E4 ff 4

AND (opr),X IX2 D4 ee ff 5
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

224 Instruction Set Details MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details
M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

ASL Arithmetic Shift Left ASL
(Same as LSL)

Operation

Description Shifts all bits of the ACCA, X, or M one place to the left. Bit 0 is loaded
with a zero. The C bit in the CCR is loaded from the most significant bit
of ACCA, X, or M.

Condition Codes
and Boolean
Formulae

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if all bits of the result are cleared; cleared otherwise.

C b7
Set if, before the shift, the MSB of the shifted value was set; cleared
otherwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

C b7  –  –  –  –  –  –  b0 0

H I N Z C

1 1 1 — — ↕ ↕ ↕

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

ASLA INH (A) 48 3

ASLX INH (X) 58 3

ASL (opr) DIR 38 dd 5

ASL ,X IX 78 5

ASL (opr),X IX1 68 ff 6
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Instruction Set Details 225  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

ASR Arithmetic Shift Right ASR

Operation

Description Shifts all of ACCA, X, or M one place to the right. Bit 7 is held constant.
Bit 0 is loaded into the C bit of the CCR. This operation effectively divides
a twos-complement value by two without changing its sign. The carry bit
can be used to round the result.

Condition Codes
and Boolean
Formulae

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if all bits of the result are cleared; cleared otherwise.

C b0
Set if, before the shift, the LSB of the shifted value was set; cleared
otherwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

Cb7  –  –  –  –  –  –  b0

H I N Z C

1 1 1 — — ↕ ↕ ↕

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

ASRA INH (A) 47 3

ASRX INH (X) 57 3

ASR (opr) DIR 37 dd 5

ASR ,X IX 77 5

ASR (opr),X IX1 67 ff 6
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

226 Instruction Set Details MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details
M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

BCC Branch if Carry Clear BCC
(Same as BHS)

Operation PC ← (PC) + $0002 + Rel if (C) = 0

Description Tests the state of the C bit in the CCR and causes a branch if C is clear.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

This table is a summary of all branch instructions.

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BCC (rel) REL 24 rr 3

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r<m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

I Mask I = 1 BMS 2D I Mask = 0 BMC 2C Simple

Half Carry H = 1 BHCS 29 No Half Carry BHCC 28 Simple

IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple

Always — BRA 20 Never BRN 21 Unconditional

r = register (ACCA or X) m = memory operand
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Instruction Set Details 227  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

BCLR n Clear Bit in Memory BCLRn

Operation Mn ← 0

Description Clear bit n (n = 7, 6, 5. . . 0) in location M. All other bits in M are
unaffected. M can be any RAM or I/O register address in the $0000 to
$00FF area of memory (for instance., direct addressing mode is used to
specify the address of the operand).

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BCLR 0,(opr) DIR (bit 0) 11 dd 5

BCLR 1,(opr) DIR (bit 1) 13 dd 5

BCLR 2,(opr) DIR (bit 2) 15 dd 5

BCLR 3,(opr) DIR (bit 3) 17 dd 5

BCLR 4,(opr) DIR (bit 4) 19 dd 5

BCLR 5,(opr) DIR (bit 5) 1B dd 5

BCLR 6,(opr) DIR (bit 6) 1D dd 5

BCLR 7,(opr) DIR (bit 7) 1F dd 5
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

228 Instruction Set Details MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details
M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

BCS Branch if Carry Set BCS
(Same as BLO)

Operation PC ← (PC) + $0002 + Rel if (C) = 1

Description Tests the state of the C bit in the CCR and causes a branch if C is set.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

This table is a summary of all branch instructions.

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BCS (rel) REL 25 rr 3

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r<m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

I Mask I = 1 BMS 2D I Mask = 0 BMC 2C Simple

Half Carry H = 1 BHCS 29 No Half Carry BHCC 28 Simple

IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple

Always — BRA 20 Never BRN 21 Unconditional

r = register (ACCA or X) m = memory operand
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Instruction Set Details 229  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

BEQ Branch if Equal BEQ

Operation PC ← (PC) + $0002 + Rel if (Z) = 1

Description Tests the state of the Z bit in the CCR and causes a branch if Z is set.
Following a CMP or SUB instruction, BEQ will cause a branch if the
arguments were equal.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

This table is a summary of all branch instructions.

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BEQ (rel) REL 27 rr 3

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r<m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

I Mask I = 1 BMS 2D I Mask = 0 BMC 2C Simple

Half Carry H = 1 BHCS 29 No Half Carry BHCC 28 Simple

IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple

Always — BRA 20 Never BRN 21 Unconditional

r = register (ACCA or X) m = memory operand
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

230 Instruction Set Details MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details
M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

BHCC Branch if Half Carry Clear BHCC

Operation PC ← (PC) + $0002 + Rel if (H) = 0

Description Tests the state of the H bit in the CCR and causes a branch if H is clear.
This instruction is used in algorithms involving BCD numbers.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

This table is a summary of all branch instructions.

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BHCC (rel) REL 28 rr 3

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r<m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

I Mask I = 1 BMS 2D I Mask = 0 BMC 2C Simple

Half Carry H = 1 BHCS 29 No Half Carry BHCC 28 Simple

IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple

Always — BRA 20 Never BRN 21 Unconditional

r = register (ACCA or X) m = memory operand
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Instruction Set Details 231  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

BHCS Branch if Half Carry Set BHCS

Operation PC ← (PC) + $0002 + Rel if (H) = 1

Description Tests the state of the H bit in the CCR and causes a branch if H is set.
This instruction is used in algorithms involving BCD numbers. See BRA
instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

This table is a summary of all branch instructions.

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BHCS (rel) REL 29 rr 3

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r<m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

I Mask I = 1 BMS 2D I Mask = 0 BMC 2C Simple

Half Carry H = 1 BHCS 29 No Half Carry BHCC 28 Simple

IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple

Always — BRA 20 Never BRN 21 Unconditional

r = register (ACCA or X) m = memory operand
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

232 Instruction Set Details MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details
M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

BHI Branch if Higher BHI

Operation C ← (PC) + $0002 + Rel if (C) + (Z) = 0
for instance, if (ACCA) > (M) (unsigned binary numbers)

Description Causes a branch if both C and Z are cleared. If the BHl instruction is
executed immediately after execution of a CMP or SUB instruction, the
branch will occur if the unsigned binary number in ACCA was greater
than the unsigned binary number in M.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

This table is a summary of all branch instructions.

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BHI (rel) REL 22 rr 3

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r<m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

I Mask I = 1 BMS 2D I Mask = 0 BMC 2C Simple

Half Carry H = 1 BHCS 29 No Half Carry BHCC 28 Simple

IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple

Always — BRA 20 Never BRN 21 Unconditional

r = register (ACCA or X) m = memory operand
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Instruction Set Details 233  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

BHS Branch if Higher or Same BHS
(Same as BCC)

Operation PC ← (PC) + $0002 + Rel if (C) = 0
for instance, if (ACCA) ≥ (M) (unsigned binary numbers)

Description If the BHS instruction is executed immediately after execution of a CMP
or SUB instruction, the branch will occur if the unsigned binary number
in ACCA was greater than or equal to the unsigned binary number in M.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

This table is a summary of all branch instructions.

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BHS (rel) REL 24 rr 3

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r<m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

I Mask I = 1 BMS 2D I Mask = 0 BMC 2C Simple

Half Carry H = 1 BHCS 29 No Half Carry BHCC 28 Simple

IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple

Always — BRA 20 Never BRN 21 Unconditional

r = register (ACCA or X) m = memory operand
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

234 Instruction Set Details MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details
M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

BIH Branch if Interrupt Pin is High BIH

Operation PC ← (PC) + $0002 + Rel if IRQ = 1

Description Tests the state of the external interrupt pin and causes a branch if the
pin is high.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

This table is a summary of all branch instructions.

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BIH (rel) REL 2F rr 3

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r<m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

I Mask I = 1 BMS 2D I Mask = 0 BMC 2C Simple

Half Carry H = 1 BHCS 29 No Half Carry BHCC 28 Simple

IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple

Always — BRA 20 Never BRN 21 Unconditional

r = register (ACCA or X) m = memory operand
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Instruction Set Details 235  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

BIL Branch if Interrupt Pin is Low BIL

Operation PC ← (PC) + $0002 + Rel if IRQ = 0

Description Tests the state of the external interrupt pin and causes a branch if the
pin is low.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

This table is a summary of all branch instructions.

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BIL (rel) REL 2E rr 3

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r<m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

I Mask I = 1 BMS 2D I Mask = 0 BMC 2C Simple

Half Carry H = 1 BHCS 29 No Half Carry BHCC 28 Simple

IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple

Always — BRA 20 Never BRN 21 Unconditional

r = register (ACCA or X) m = memory operand
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

236 Instruction Set Details MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details
M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

BIT Bit Test Memory with Accumulator BIT

Operation (ACCA) • (M)

Description Performs the logical AND comparison of the contents of ACCA and the
contents of M and modifies the condition codes accordingly. Neither the
contents of ACCA nor M are altered. (Each bit of the result of the AND
would be the logical AND of the corresponding bits of ACCA and M).

Condition Codes
and Boolean
Formulae

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — ↕ ↕ —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BIT (opr) IMM A5 ii 2

BIT (opr) DIR B5 dd 3

BIT (opr) EXT C5 hh ll 4

BIT,X IX F5 3

BIT (opr),X IX1 E5 ff 4

BIT (opr),X IX2 D5 ee ff 5
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Instruction Set Details 237  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

BLO Branch if Lower BLO
(Same as BCS)

Operation PC ← (PC) + $0002 + Rel if (C) = 1
for instance, if (ACCA) < (M) (unsigned binary numbers)

Description If the BLO instruction is executed immediately after execution of a CMP
or SUB instruction, the branch will occur if the unsigned binary number
in ACCA was less than the unsigned binary number in M.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

This table is a summary of all branch instructions.

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BLO (rel) REL 25 rr 3

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r<m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

I Mask I = 1 BMS 2D I Mask = 0 BMC 2C Simple

Half Carry H = 1 BHCS 29 No Half Carry BHCC 28 Simple

IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple

Always — BRA 20 Never BRN 21 Unconditional

r = register (ACCA or X) m = memory operand
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

238 Instruction Set Details MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details
M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

BLS Branch if Lower or Same BLS

Operation PC ← (PC) + $0002 + Rel if [(C) + (Z)] = 1
for instance, if (ACCA) ≤ (M) (unsigned binary numbers)

Description Causes a branch if C is set or Z is set. If the BLS instruction is executed
immediately after execution of a CMP or SUB instruction, the branch will
occur if the unsigned binary number in ACCA was less than or equal to
the unsigned binary number in M.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

This table is a summary of all branch instructions.

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BLS (rel) REL 23 rr 3

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r<m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

I Mask I = 1 BMS 2D I Mask = 0 BMC 2C Simple

Half Carry H = 1 BHCS 29 No Half Carry BHCC 28 Simple

IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple

Always — BRA 20 Never BRN 21 Unconditional

r = register (ACCA or X) m = memory operand
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Instruction Set Details 239  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

BMC Branch if Interrupt Mask is Clear BMC

Operation PC ← (PC) + $0002 + Rel if I = 0

Description Tests the state of the I bit in the CCR and causes a branch if I is clear
(for instance., if interrupts are enabled). See BRA instruction for further
details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

This table is a summary of all branch instructions.

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BMC (rel) REL 2C rr 3

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r<m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

I Mask I = 1 BMS 2D I Mask = 0 BMC 2C Simple

Half Carry H = 1 BHCS 29 No Half Carry BHCC 28 Simple

IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple

Always — BRA 20 Never BRN 21 Unconditional

r = register (ACCA or X) m = memory operand
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

240 Instruction Set Details MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details
M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

BMI Branch if Minus BMI

Operation PC ← (PC) + $0002 + Rel if (N) = 1

Description Tests the state of the N bit in the CCR and causes a branch if N is set.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

This table is a summary of all branch instructions.

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BMI (rel) REL 2B rr 3

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r<m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

I Mask I = 1 BMS 2D I Mask = 0 BMC 2C Simple

Half Carry H = 1 BHCS 29 No Half Carry BHCC 28 Simple

IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple

Always — BRA 20 Never BRN 21 Unconditional

r = register (ACCA or X) m = memory operand
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Instruction Set Details 241  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

BMS Branch if Interrupt Mask is Set BMS

Operation PC ← (PC) + $0002 + Rel if (I) = 1

Description Tests the state of the I bit in the CCR and causes a branch if I is set (for
instance., if interrupts are disabled).

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

This table is a summary of all branch instructions.

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BMS (rel) REL 2D rr 3

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r<m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

I Mask I = 1 BMS 2D I Mask = 0 BMC 2C Simple

Half Carry H = 1 BHCS 29 No Half Carry BHCC 28 Simple

IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple

Always — BRA 20 Never BRN 21 Unconditional

r = register (ACCA or X) m = memory operand
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

242 Instruction Set Details MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details
M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

BNE Branch if Not Equal BNE

Operation PC ← (PC) + $0002 + Rel if (Z) = 0

Description Tests the state of the Z bit in the CCR and causes a branch if Z is clear.
Following a compare or subtract instruction, BEQ will cause a branch if
the arguments were not equal.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

This table is a summary of all branch instructions.

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BNE (rel) REL 26 rr 3

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r<m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

I Mask I = 1 BMS 2D I Mask = 0 BMC 2C Simple

Half Carry H = 1 BHCS 29 No Half Carry BHCC 28 Simple

IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple

Always — BRA 20 Never BRN 21 Unconditional

r = register (ACCA or X) m = memory operand
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Instruction Set Details 243  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

BPL Branch if Plus BPL

Operation PC ← (PC) + $0002 + Rel if (N) = 0

Description Tests the state of the N bit in the CCR and causes a branch if N is clear.

See BRA instruction for details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

This table is a summary of all branch instructions.

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BPL (rel) REL 2A rr 3

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r<m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

I Mask I = 1 BMS 2D I Mask = 0 BMC 2C Simple

Half Carry H = 1 BHCS 29 No Half Carry BHCC 28 Simple

IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple

Always — BRA 20 Never BRN 21 Unconditional

r = register (ACCA or X) m = memory operand
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

244 Instruction Set Details MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details
M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

BRA Branch Always BRA

Operation PC ← (PC) + $0002 + Rel

Description Unconditional branch to the address given by the foregoing formula, in
which Rel is the relative offset stored as a twos-complement number in
the last byte of machine code corresponding to the branch instruction.
PC is the address of the opcode for the branch instruction.

The source program specifies the destination of any branch instruction
by its absolute address, either as a numerical value or as a symbol or
expression which can be numerically evaluated by the assembler. The
assembler calculates the relative address, Rel, from the absolute
address and the current value of the location counter.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

This table is a summary of all branch instructions.

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BRA (rel) REL 20 rr 3

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r<m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

I Mask I = 1 BMS 2D I Mask = 0 BMC 2C Simple

Half Carry H = 1 BHCS 29 No Half Carry BHCC 28 Simple

IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple

Always — BRA 20 Never BRN 21 Unconditional

r = register (ACCA or X) m = memory operand
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Instruction Set Details 245  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

BRCLR n Branch if Bit n is Clear BRCLRn

Operation PC ← (PC) + $0003 + Rel if bit n of M = 0

Description Tests bit n (n = 7, 6, 5. . . 0) of location M and branches if the bit is clear.
M can be any RAM or I/O register address in the $0000 to $00FF area
of memory (for instance, direct addressing mode is used to specify the
address of the operand).

The C bit is set to the state of the bit tested. When used along with an
appropriate rotate instruction, BRCLR  n provides an easy method for
performing serial to parallel conversions.

Condition Codes
and Boolean
Formulae

C Set if Mn = 1; cleared otherwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — — — ↕

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BRCLR 0,(opr),(rel) DIR (bit 0) 01 dd rr 5

BRCLR 1,(opr),(rel) DIR (bit 1) 03 dd rr 5

BRCLR 2,(opr),(rel) DIR (bit 2) 05 dd rr 5

BRCLR 3,(opr),(rel) DIR (bit 3) 07 dd rr 5

BRCLR 4,(opr),(rel) DIR (bit 4) 09 dd rr 5

BRCLR 5,(opr),(rel) DIR (bit 5) OB dd rr 5

BRCLR 6,(opr),(rel) DIR (bit 6) OD dd rr 5

BRCLR 7,(opr),(rel) DIR (bit 7) OF dd rr 5
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

246 Instruction Set Details MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details
M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

BRN Branch Never BRN

Operation PC ← (PC) + $0002

Description Never branches. In effect, this instruction can be considered as a 2-byte
NOP (no operation) requiring three cycles for execution. Its inclusion in
the instruction set is to provide a complement for the BRA instruction.
The instruction is useful during program debug to negate the effect of
another branch instruction without disturbing the offset byte.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

This table is a summary of all branch instructions.

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BRN (rel) REL 21 rr 3

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r<m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

I Mask I = 1 BMS 2D I Mask = 0 BMC 2C Simple

Half Carry H = 1 BHCS 29 No Half Carry BHCC 28 Simple

IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple

Always — BRA 20 Never BRN 21 Unconditional

r = register (ACCA or X) m = memory operand
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Instruction Set Details 247  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

BRSET n Branch if Bit n is Set BRSETn

Operation PC ← (PC) + $0003 + Rel if bit n of M = 1

Description Tests bit n (n = 7, 6, 5, 0) of location M and branches if the bit is set. M
can be any RAM or I/O register address in the $0000 to $00FF area of
memory (for instance, direct addressing mode is used to specify the
address of the operand).

The C bit is set to the state of the bit tested. When used along with an
appropriate rotate instruction, BRSET n provides an easy method for
performing serial to parallel conversions.

Condition Codes
and Boolean
Formulae

C Set if Mn = 1; cleared otherwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — — — ↕

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BRSET 0,(opr),(rel) DIR (bit 0) 00 dd rr 5

BRSET 1,(opr),(rel) DIR (bit 1) 02 dd rr 5

BRSET 2,(opr),(rel) DIR (bit 2) 04 dd rr 5

BRSET 3,(opr),(rel) DIR (bit 3) 06 dd rr 5

BRSET 4,(opr),(rel) DIR (bit 4) 08 dd rr 5

BRSET 5,(opr), (rel) DIR (bit 5) 0A dd rr 5

BRSET 6,(opr),(rel) DIR (bit 6) 0C dd rr 5

BRSET 7,(opr),(rel) DIR (bit 7) 0E dd rr 5
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

248 Instruction Set Details MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details
M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

BSET n Set Bit in Memory BSETn

Operation Mn ← 1

Description Set bit n (n = 7, 6, 5 . . . 0) in location M. All other bits in M are unaffected.
M can be any RAM or I/O register address in the $0000 to $00FF area
of memory (for instance, direct addressing mode is used to specify the
address of the operand).

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BSET 0,(opr) DIR (bit 0) 10 dd 5

BSET 1,(opr) DIR (bit 1) 12 dd 5

BSET 2,(opr) DIR (bit 2) 14 dd 5

BSET 3,(opr) DIR (bit 3) 16 dd 5

BSET 4,(opr) DIR (bit 4) 18 dd 5

BSET 5,(opr) DIR (bit 5) 1A dd 5

BSET 6,(opr) DIR (bit 6) 1C dd 5

BSET 7,(opr) DIR (bit 7) 1E dd 5
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Instruction Set Details 249  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

BSR Branch to Subroutine BSR

Operation PC ← (PC) + $0002 Advance PC to return address
↓ (PCL); SP ← (SP)–$0001 Push low-order return onto stack
↓ (PCL); SP ← (SP)–$0001 Push high-order return onto stack
PC ← (PC) + Rel Load PC with start address of

requested subroutine

Description The program counter is incremented by two from the opcode address,
for instance, so it points to the opcode of the next instruction which will
be the return address. The least significant byte of the contents of the
program counter (low-order return address) is pushed onto the stack.
The stack pointer is then decremented by one. The most significant byte
of the contents of the program counter (high-order return address) is
pushed onto the stack. The stack pointer is then decremented by one. A
branch then occurs to the location specified by the branch offset.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

BSR (rel) REL AD rr 6
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

250 Instruction Set Details MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details
M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

CLC Clear Carry Bit CLC

Operation C bit ← 0

Description Clears the C bit in the CCR. CLC may be used to set up the C bit prior
to a shift or rotate instruction involving the C bit.

Condition Codes
and Boolean
Formulae

C 0

Cleared

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — — — 0

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

CLC INH 98 2
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Instruction Set Details 251  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

CLI Clear Interrupt Mask Bit CLI

Operation I bit ← 0

Description Clears the interrupt mask bit in the CCR. When the I bit is clear,
interrupts are enabled. There is a one E-clock cycle delay in the clearing
mechanism for the I bit so that, if interrupts were previously disabled, the
next instruction after a CLI will always be executed, even if there was an
interrupt pending prior to execution of the CLI instruction.

Condition Codes
and Boolean
Formulae

I 0

Cleared

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — 0 — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

CLI INH 9A 2
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

252 Instruction Set Details MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details
M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

CLR Clear CLR

Operation ACCA ← $00 or: M ← $00 or: X ← $00

Description The contents of ACCA, M, or X are replaced with 0s.

Condition Codes
and Boolean
Formulae

I 0
Cleared

Z 1
Set

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — 0 1 —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

CLRA INH (A) 4F 3

CLRX INH (X) 5F 3

CLR (opr) DIR 3F dd 5

CLR ,X IX 7F 5

CLR (opr),X IX1 6F ff 6
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Instruction Set Details 253  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

CMP Compare Accumulator with Memory CMP

Operation (ACCA) – (M)

Description Compares the contents of ACCA to the contents of M and sets the
condition codes, which may be used for arithmetic and logical
conditional branching. The contents of both ACCA and M are
unchanged.

Condition Codes
and Boolean
Formulae

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if all bits of the result are cleared; cleared otherwise.

C A7 • M7 + M7 • R7 + R7 • A7
Set if absolute value of the contents of memory is larger than the ab-
solute value of the accumulator; cleared otherwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — ↕ ↕ ↕

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

CMP (opr) IMM A1 ii 2

CMP (opr) DIR B1 dd 3

CMP (opr) EXT C1 hh ll 4

CMP ,X IX F1 3

CMP (opr),X IX1 E1 ff 4

CMP (opr),X IX2 D1 ee ff 5
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

254 Instruction Set Details MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details
M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

COM Complement COM

Operation ACCA ← (ACCA) = $FF – (ACCA) or: M ← (M) = $FF – (M) or:
X ← X = $FF – (X)

Description Replaces the contents of ACCA, X, or M with its ones complement.
(Each bit of the contents of ACCA, X, or M is replaced with the
complement of that bit.)

Condition Codes
and Boolean
Formulae

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

C 1
Set

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — ↕ ↕ 1

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

COMA INH (A) 43 3

COMX INH (X) 53 3

COM (opr) DIR 33 dd 5

COM ,X IX 73 5

COM (opr),X IX1 63 ff 6
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Instruction Set Details 255  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

CPX Compare Index Register with Memory CPX

Operation (X) – (M)

Description Compares the contents of the index register with the contents of memory
and sets the condition codes, which may be used for arithmetic and
logical branching. The contents of both ACCA and M are unchanged.

Condition Codes
and Boolean
Formulae

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

C IX7 • M7 + M7 • R7 + R7 • IX7
Set if the absolute value of the contents of memory is larger than the
absolute value of the index register; cleared otherwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — ↕ ↕ ↕

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

I CPX (opr) IMM A3 ii 2

CPX (opr) DIR B3 dd 3

CPX (opr) EXT C3 hh ll 4

CPX,X IX F3 3

CPX (opr),X IX1 E3 ff 4

CPX (opr),X IX2 D3 ee ff 5
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

256 Instruction Set Details MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details
M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

DEC Decrement DEC

Operation ACCA ← (ACCA) – $01 or:  M ← (M) – $01 or:  X ← (X)-$01

Description Subtract one from the contents of ACCA, X, or M.

The N and Z bits in the CCR are set or cleared according to the result of
this operation. The C bit in the CCR is not affected; therefore, the only
branch instructions that are useful following a DEC instruction are BEQ,
BNE, BPL, and BMI.

Condition Codes
and Boolean
Formulae

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

Source Forms,
Addressing Modes
Machine Code,
and Cycles

H I N Z C

1 1 1 — — ↕ ↕ —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

DECA INH (A) 4A 3

DECX INH (X) 5A 3

DEC (opr) DIR 3A dd 5

DEC ,X IX 7A 5

DEC (opr),X IX1 6A ff 6

DEX is recognized by the assembler as being equivalent to DECX.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Instruction Set Details 257  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

EOR Exclusive-OR Memory with Accumulator EOR

Operation ACCA ← (ACCA) ⊕ (M)

Description Performs the logical exclusive-OR between the contents of ACCA and
the contents of M and places the result in ACCA. (Each bit of ACCA after
the operation will be the logical exclusive-OR of the corresponding bits
of M and ACCA before the operation.)

Condition Codes
and Boolean
Formulae

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — ↕ ↕ —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

EOR (opr) IMM A8 ii 2

EOR (opr) DIR B8 dd 3

EOR (opr) EXT C8 hh ll 4

EOR ,X IX F8 3

EOR (opr),X IX1 E8 ff 4

EOR (opr),X IX2 D8 ee ff 5
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

258 Instruction Set Details MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details
M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

INC Increment INC

Operation ACCA ← (ACCA) + $01 or: M ← (M) + $01 or: X ← (X) + $01

Description Add one to the contents of ACCA, X, or M.

The N and Z bits in the CCR are set or cleared according to the results
of this operation. The C bit in the CCR is not affected; therefore, the only
branch instructions that are useful following an INC instruction are BEQ,
BNE, BPL, and BMI.

Condition Codes
and Boolean
Formulae

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — ↕ ↕ —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

INCA INH (A) 4C 3

INCX INH (X) 5C 3

INC (opr) DIR 3C dd 5

INC ,X IX 7C 5

INC (opr),X IX1 6C ff 6

INX is recognized by the assembler as being equivalent to INCX.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Instruction Set Details 259  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

JMP Jump JMP

Operation PC ← Effective Address

Description A jump occurs to the instruction stored at the effective address. The
effective address is obtained according to the rules for EXTended,
DIRect, or INDexed addressing.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

JMP (opr) DIR BC dd 2

JMP (opr) EXT CC hh ll 3

JMP ,X IX FC 2

JMP (opr), X IX1 EC ff 3

JMP (opr),X IX2 DC ee ff 4
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

260 Instruction Set Details MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details
M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

JSR Jump to Subroutine JSR

Operation PC ← (PC) + n n = 1, 2, 3 depending on address mode
↓ (PCL); SP ← SP –  $0001 Push low-order return address onto stack
↓ (PCH); SP ← SP – $0001 Push high-order return address onto

stack
PC ← Effective Addr Load PC with start address of

requested subroutine

Description The program counter is incremented by n so that it points to the opcode
of the instruction that follows the JSR instruction (n = 1, 2, or 3
depending on the addressing mode). The PC is then pushed onto the
stack, eight bits at a time, least significant byte first. Unused bits in the
program counter high byte are stored as ones on the stack. The stack
pointer points to the next empty location on the stack. A jump occurs to
the instruction stored at the effective address. The effective address is
obtained according to the rules for EXTended, DIRect, or INDexed
addressing.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

JSR (opr) DIR BD dd 5

JSR (opr) EXT CD hh ll 6

JSR ,X IX FD 5

JSR (opr), X IX1 ED ff 6

JSR (opr),X IX2 DD ee ff 7
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Instruction Set Details 261  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

LDA Load Accumulator from Memory LDA

Operation ACCA ← (M)

Description Loads the contents of memory into the accumulator. The condition
codes are set according to the data.

Condition Codes
and Boolean
Formulae

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — ↕ ↕ —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

LDA (opr) IMM A6 ii 2

LDA (opr) DIR B6 dd 3

LDA (opr) EXT C6 hh ll 4

LDA ,X IX F6 3

LDA (opr),X IX1 E6 ff 4

LDA (opr),X IX2 D6 ee ff 5
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

262 Instruction Set Details MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details
M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

LDX Load Index Register from Memory LDX

Operation X ← (M)

Description Loads the contents of the specified memory location into the index
register. The condition codes are set according to the data.

Condition Codes
and Boolean
Formulae

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — ↕ ↕ —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

LDX (opr) IMM AE ii 2

LDX (opr) DIR BE dd 3

LDX (opr) EXT CE hh ll 4

LDX ,X IX FE 3

LDX (opr),X IX1 EE ff 4

LDX (opr),X IX2 DE ee ff 5
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Instruction Set Details 263  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

LSL Logical Shift Left LSL
(Same as ASL)

Operation

Description Shifts all bits of the ACCA, X, or M one place to the left. Bit 0 is loaded
with 0. The C bit in the CCR is loaded from the most significant bit of
ACCA, X, or M.

Condition Codes
and Boolean
Formulae

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

C b7
Set if, before the shift, the MSB of ACCA or M was set; cleared oth-
erwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

C b7  –  –  –  –  –  –  b0 0

H I N Z C

1 1 1 — — ↕ ↕ ↕

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

LSLA INH (A) 48 3

LSLX INH (X) 58 3

LSL (opr) DIR 38 dd 5

LSL ,X IX 78 5

LSL (opr),X IX1 68 ff 6
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

264 Instruction Set Details MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details
M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

LSR Logical Shift Right LSR

Operation

Description Shifts all bits of ACCA, X, or M one place to the right. Bit 7 is loaded with
0. Bit 0 is shifted into the C bit.

Condition Codes
and Boolean
Formulae

N 0
Cleared.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

C b0
Set if, before the shift, the LSB of ACCA, X, or M was set; cleared oth-
erwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

Cb7  –  –  –  –  –  –  b00

H I N Z C

1 1 1 — — 0 ↕ ↕

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

LSRA INH (A) 44 3

LSRX INH (X) 54 3

LSR (opr) DIR 34 dd 5

LSR ,X IX 74 5

LSR (opr),X IX1 64 ff 6
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Instruction Set Details 265  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

MUL Multiply Unsigned MUL

Operation X:A ← X x A

Description Multiplies the eight bits in the index register by the eight bits in the
accumulator to obtain a 16-bit unsigned number in the concatenated
index register and accumulator. After the operation, X contains the upper
8 bits of the 16-bit result.

Condition Codes
and Boolean
Formulae

H 0
Cleared

C 0
Cleared

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 0 — — — 0

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

MUL INH 42 11
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

266 Instruction Set Details MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details
M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

NEG Negate NEG

Operation ACCA ←  – (ACCA); or:  X ←  – (X); or:  M ←  – (M)

Description Replaces the contents of ACCA, X, or M with its twos complement. Note
that the value $80 is left unchanged.

Condition Codes
and Boolean
Formulae

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

C R7 + R6 + R5 + R4 + R3 + R2 + R1 + R0
Set if there is a borrow in the implied subtraction from 0; cleared oth-
erwise. The C bit will be set in all cases except when the contents of
ACCA, X, or M (prior to the NEG operation) is $00.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — ↕ ↕ ↕

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

NEGA INH (A) 40 3

NEGX INH (X) 50 3

NEG (opr) DIR 30 dd 5

NEG ,X IX 70 5

NEG (opr),X IX1 60 ff 6
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Instruction Set Details 267  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

NOP No Operation NOP

Description This is a single-byte instruction that causes only the program counter to
be incremented. No other registers are affected.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

NOP INH 9D 2
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

268 Instruction Set Details MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details
M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

ORA Inclusive-OR ORA

Operation ACCA ←  (ACCA) + (M)

Description Performs the logical inclusive-OR between the contents of ACCA and
the contents of M and places the result in ACCA. Each bit of ACCA after
the operation will be the logical inclusive-OR of the corresponding bits of
M and of ACCA before the operation.

Condition Codes
and Boolean
Formulae

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — ↕ ↕ —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

ORA (opr) IMM AA ii 2

ORA (opr) DIR BA dd 3

ORA (opr) EXT CA hh ll 4

ORA ,X IX FA 3

ORA (opr),X IX1 EA ff 4

ORA (opr),X 1X2 DA ee ff 5
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Instruction Set Details 269  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

ROL Rotate Left thru Carry ROL

Operation

Description Shifts all bits of ACCA, X, or M one place to the left. Bit 0 is loaded from
the C bit. The C bit is loaded from the MSB of ACCA, X, or M. The rotate
instructions include the carry bit to allow extension of the shift and rotate
operations to multiple bytes. For example, to shift a 24-bit value left one
bit, the sequence {ASL LOW, ROL MID, ROL HIGH} could be used
where LOW, MID, and HIGH refer to the low-order, middle, and
high-order bytes of the 24-bit value, respectively.

Condition Codes
and Boolean
Formulae

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

C b7
Set if, before the rotate, the MSB of ACCA or M was set; cleared oth-
erwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

C b7  –  –  –  –  –  –  b0 C

H I N Z C

1 1 1 — — ↕ ↕ ↕

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

ROLA INH (A) 49 3

ROLX INH (X) 59 3

ROL (opr) DIR 39 dd 5

ROL ,X IX 79 5

ROL (opr),X IX1 69 ff 6
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

270 Instruction Set Details MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details
M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

ROR Rotate Right thru Carry ROR

Operation

Description Shift all bits of ACCA, X, or M one place to the right. Bit 7 is loaded from
the C bit. The rotate operations include the carry bit to allow extension
of the shift and rotate operations to multiple bytes. For example, to shift
a 24-bit value right one bit, the sequence {LSR HIGH, ROR MID, ROR
LOW} could be used where LOW, MID, and HIGH refer to the low-order,
middle, and high-order bytes of the 24-bit value, respectively.

Condition Codes
and Boolean
Formulae

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if all bits of the result are cleared; cleared otherwise.

C b0
Set if, before the rotate, the LSB of ACCA, X, or M was set; cleared
otherwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

Cb7  –  –  –  –  –  –  b0C

H I N Z C

1 1 1 — — ↕ ↕ ↕

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

RORA INH (A) 46 3

RORX INH (X) 56 3

ROR (opr) DIR 36 dd 5

ROR ,X IX 76 5

ROR (opr),X IX1 66 ff 6
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Instruction Set Details 271  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

RSP Reset Stack Pointer RSP

Operation SP ←  $00FF

Description Resets the stack pointer to the top of the stack.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

RSP INH 9C 2
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

272 Instruction Set Details MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details
M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

RTI Return from Interrupt RTI

Operation SP ←  (SP) + $0001; ↑ CCR Restore CCR from stack
SP ←  (SP) + $0001; ↑ ACCA Restore ACCA from stack
SP ←  (SP) + $0001; ↑ X Restore X from stack
SP ←  (SP) + $0001; ↑ PCH Restore PCH from stack
SP ←  (SP) + $0001; ↑ PCL Restore PCL from stack

Description The condition codes, accumulator, the index register, and the program
counter are restored to the state previously saved on the stack. The 1-bit
will be reset if the corresponding bit stored on the stack is 0.

Condition Codes
and Boolean
Formulae

Set or cleared according to the byte pulled from the stack.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 ↕ ↕ ↕ ↕ ↕

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

RTI INH 80 9
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Instruction Set Details 273  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

RTS Return from Subroutine RTS

Operation SP ←  (SP) + $0001; ↑ PCH Restore PCH from stack
SP ←  (SP) + $0001; ↑ PCL Restore PCL from stack

Description The stack pointer is incremented by one. The contents of the byte of
memory that is pointed to by the stack pointer is loaded into the
high-order byte of the program counter. The stack pointer is again
incremented by one. The contents of the byte of memory at the address
now contained in the stack pointer is loaded into the low-order eight bits
of the program counter.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

RTS INH 81 6
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

274 Instruction Set Details MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details
M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

SBC Subtract with Carry SBC

Operation ACCA ←  (ACCA) – (M) – (C)

Description Subtracts the contents of M and the contents of C from the contents of
ACCA and places the result in ACCA.

Condition Codes
and Boolean
Formulae

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

C A7 • M7 + M7 • R7 + R7 • A7
Set if absolute value of the contents of memory plus previous carry
is larger than the absolute value of the accumulator; cleared
otherwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — ↕ ↕ ↕

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

SBC (opr) IMM A2 ii 2

SBC (opr) DIR B2 dd 3

SBC (opr) EXT C2 hh ll 4

SBC ,X IX F2 3

SBC (opr),X IX1 E2 ff 4

SBC (opr),X IX2 D2 ee ff 5
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Instruction Set Details 275  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

SEC Set Carry Bit SEC

Operation C bit ←  1

Description Sets the C bit in the CCR. SEC may be used to set up the C bit prior to
a shift or rotate instruction that involves the C bit.

Condition Codes
and Boolean
Formulae

C 1
Set

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — — — 1

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

SEC INH 99 2
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

276 Instruction Set Details MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details
M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

SEI Set Interrupt Mask Bit SEI

Operation I bit ←  1

Description Sets the interrupt mask bit in the CCR. The microprocessor is inhibited
from servicing interrupts while the I bit is set.

Condition Codes
and Boolean
Formulae

I 1
Set

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — 1 — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

SEI INH 9B 2
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Instruction Set Details 277  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

STA Store Accumulator in Memory STA

Operation M ←  (ACCA)

Description Stores the contents of ACCA in memory. The contents of ACCA remain
unchanged.

Condition Codes
and Boolean
Formulae

N A7
Set if MSB of result is set; cleared otherwise.

Z A7 • A6 • A5 • A4 • A3 • A2 • A1 • A0
Set if result is $00; cleared otherwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — ↕ ↕ —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

STA (opr) DIR B7 dd 4

STA (opr) EXT C7 hh ll 5

STA ,X IX F7 4

STA (opr),X IX1 E7 ff 5

STA (opr),X IX2 D7 ee ff 6
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

278 Instruction Set Details MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details
M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

STOP Enable IRQ, Stop Oscillator STOP

Description Reduces power consumption by eliminating all dynamic power
dissipation. This results in: 1) timer prescaler cleared, 2) timer interrupts
disabled, 3) timer interrupt flag cleared, 4) external interrupt request
enabled, and 5) oscillator inhibited.

When the RESET or IRQ input goes low, the oscillator is enabled, a
delay of 1920 processor clock cycles is initiated allowing the oscillator to
stabilize, the interrupt request vector or reset vector is fetched, and the
service routine is executed, depending on which signal was applied.

External interrupts are enabled following the STOP command.

Condition Codes
and Boolean
Formulae

I 0
Cleared

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — 0 — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

STOP INH 8E 2
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Instruction Set Details 279  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

STX Store Index Register X in Memory STX

Operation M ←  (X)

Description Stores the contents of X in memory. The contents of X remain
unchanged.

Condition Codes
and Boolean
Formulae

N X7
Set if MSB of result is set; cleared otherwise.

Z X7 • X6 • X5 • X4 • X3 • X2 • X1 • X0
Set if result is $00; cleared otherwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — ↕ ↕ —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

STX (opr) DIR BF ii 4

STX (opr) EXT CF hh ii 5

STX ,X IX FF 4

STX (opr),X IX1 EF ff 5

STX (opr),X IX2 DF ee ff 6
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

280 Instruction Set Details MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details
M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

SUB Subtract SUB

Operation ACCA ←  (ACCA) – (M)

Description Subtracts the contents of M from the contents of ACCA and places the
result in ACCA.

Condition Codes
and Boolean
Formulae

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if all bits of the result are cleared; cleared otherwise.

C A7 • M7 + M7 • R7 + R7 • A7
The C bit (carry flag) in the condition code register gets set if the ab-
solute value of the contents of memory is larger than the absolute
value of the accumulator; cleared otherwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — ↕ ↕ ↕

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

SUB (opr) IMM A0 ii 2

SUB (opr) DIR B0 dd 3

SUB (opr) EXT C0 hh ll 4

SUB ,X IX F0 3

SUB (opr),X IX1 E0 ff 4

SUB (opr),X IX2 D0 ee ff 5
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Instruction Set Details 281  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

SWI Software Interrupt SWI

Operation PC ←  (PC) + $0001 Advance PC to return address
↓ (PCL); SP ←  (SP) – $0001 Push low-order return address

onto stack
↓ (PCH); SP ←  (SP) – $0001 Push high-order return address

onto stack
↓ (X); SP ←  (SP) – $0001 Push index register onto stack
↓ (ACCA); SP ←  (SP) – $0001 Push accumulator onto stack
↓ (CCR); SP ←  (SP) – $0001 Push CCR onto stack
I bit ←  1
PCH ←  ($xFFC) Vector fetch (x = 1 or 3 depending on
PCL ←  ($xFFD) M68HC05 device)

Description The program counter is incremented by one. The program counter,
index register, and accumulator are pushed onto the stack. The CCR
bits are then pushed onto the stack, with bits H, I, N, Z, and C going into
bit positions 4–0 and bit positions 7, 6, and 5 containing ones. The stack
pointer is decremented by one after each byte of data is stored on the
stack. The interrupt mask bit is then set. The program counter is then
loaded with the address stored in the SWI vector (located at memory
locations n–0002 and n–0003, where n is the address corresponding to
a high state on all lines of the address bus). The address of the SWI
vector can be expressed as $xFFC:$xFFD, where x is 1 or 3 depending
on the M68HC05 device being used. This instruction is not maskable by
the I bit.

Condition Codes
and Boolean
Formulae

I 1
Set

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — 1 — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

SWI INH 83 10
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

282 Instruction Set Details MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details
M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

TAX Transfer Accumulator to Index Register TAX

Operation X ←  (ACCA)

Description Loads the index register with the contents of the accumulator. The
contents of the accumulator are unchanged.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

TAX INH 97 2
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Instruction Set Details 283  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

TST Test for Negative or Zero TST

Operation (ACCA) – $00 or: (X) – $00 or:  (M) – $00

Description Sets the condition codes N and Z according to the contents of ACCA, X,
or M. The contents of ACCA, X, and M are not altered.

Condition Codes
and Boolean
Formulae

N M7
Set if the MSB of the contents of ACCA, X, or M is set; cleared oth-
erwise.

Z M7 • M6 • M5 • M4 • M3 • M2 • M1 • M0
Set if the contents of ACCA, X, or M is $00; cleared otherwise.

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — ↕ ↕ —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

TSTA INH (A) 4D 3

TSTX INH (X) 5D 3

TST (opr) DIR 3D dd 4

TST ,X IX 7D 4

TST (opr),X IX1 6D ff 5
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

284 Instruction Set Details MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details
M68HC05 Instruction Set

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

TXA Transfer Index Register to Accumulator TXA

Operation ACCA ←  (X)

Description Loads the accumulator with the contents of the index register. The
contents of the index register are not altered.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — — — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

TXA INH 9F 2
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Instruction Set Details 285  
For More Information On This Product,

  Go to: www.freescale.com



Instruction Set Details

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

WAIT Enable Interrupt, Stop Processor WAIT

Description Reduces power consumption by eliminating most dynamic power
dissipation. The timer, the timer prescaler, and the on-chip peripherals
continue to operate because they are potential sources of an interrupt.
Wait causes enabling of interrupts by clearing the I bit in the CCR and
stops clocking of processor circuits.

Interrupts from on-chip peripherals may be enabled or disabled by local
control bits prior to execution of the WAIT instruction.

When the RESET or IRQ input goes low or when any on-chip system
requests interrupt service, the processor clocks are enabled, and the
reset, IRQ, or other interrupt service request is processed.

Condition Codes
and Boolean
Formulae

I 0
Cleared

Source Forms,
Addressing
Modes, Machine
Code, and Cycles

H I N Z C

1 1 1 — 0 — — —

Source
Forms

Addressing
Mode

Machine Code HCMOS
CyclesOpcode Operand(s)

WAIT INH 8F 2
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

286 Instruction Set Details MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

Reference Tables
   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  
Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .287

ASCII to Hexadecimal Conversion  . . . . . . . . . . . . . . . . . . . . . . . . . .288

Hexadecimal to Decimal Conversion. . . . . . . . . . . . . . . . . . . . . . . . .290

Decimal to Hexadecimal Conversion. . . . . . . . . . . . . . . . . . . . . . . . .292

Hexadecimal Values vs. M68HC05 Instructions . . . . . . . . . . . . . . . .293

Introduction

This section includes these conversion lookup tables:

• Hexadecimal to ASCII

• Hexadecimal to decimal

• Hexadecimal to M68HC05 instruction mnemonics
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Reference Tables 287  
For More Information On This Product,

  Go to: www.freescale.com



Reference Tables

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

ASCII to Hexadecimal Conversion

The American Standard Code for Information Interchange (ASCII)
provides a widely accepted standard for encoding alphanumeric
information as binary numbers. The original code was designed as a
7-bit code with an additional parity  bit. Since most modern computers
work best with 8-bit values, the code has been adapted slightly so that it
is expressed as 8-bit values. The low order seven bits are the original
ASCII code and the eighth bit is 0.

The first 32 codes contain device control codes such as carriage return
and the audible bell code. Many of these are special codes for old
teletype transmissions which have similar meanings on a modern
terminal or have slipped into disuse.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

288 Reference Tables MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Reference Tables
ASCII to Hexadecimal Conversion

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

 .

Table 19. Hexadecimal to ASCII Conversion

Hex ASCII Hex ASCII Hex ASCII Hex ASCII

$00 NUL $20 SP space $40 @ $60 ` grave

$01 SOH $21 ! $41 A $61 a

$02 STX $22 “ quote $42 B $62 b

$03 ETX $23 # $43 C $63 c

$04 EOT $24 $ $44 D $64 d

$05 ENQ $25 % $45 E $65 e

$06 ACK $26 & $46 F $66 f

$07 BEL beep $27 ‘ apost. $47 G $67 g

$08 BS back sp $28 ( $48 H $68 h

$09 HT tab $29 ) $49 I $69 i

$0A LF linefeed $2A * $4A J $6A j

$0B VT $2B + $4B K $6B k

$0C FF $2C , comma $4C L $6C l

$0D CR return $2D - dash $4D M $6D m

$0E SO $2E . period $4E N $6E n

$0F SI $2F / $4F O $6F o

$10 DLE $30 0 $50 P $70 p

$11 DC1 $31 1 $51 Q $71 q

$12 DC2 $32 2 $52 R $72 r

$13 DC3 $33 3 $53 S $73 s

$14 DC4 $34 4 $54 T $74 t

$15 NAK $35 5 $55 U $75 u

$16 SYN $36 6 $56 V $76 v

$17 ETB $37 7 $57 W $77 w

$18 CAN $38 8 $58 X $78 x

$19 EM $39 9 $59 Y $79 y

$1A SUB $3A : $5A Z $7A z

$1B ESCAPE $3B ; $5B [ $7B {

$1C FS $3C < $5C \ $7C |

$1D GS $3D = $5D ] $7D }

$1E RS $3E > $5E ^ $7E ~

$1F US $3F ? $5F _ under $7F DEL delete
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Reference Tables 289  
For More Information On This Product,

  Go to: www.freescale.com



Reference Tables

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Hexadecimal to Decimal Conversion

To convert a hexadecimal number (up to four hexadecimal digits) to
decimal, look up the decimal equivalent of each hexadecimal digit in
Table 20 . The decimal equivalent of the original hexadecimal number is
the sum of the weights found in the table for all hexadecimal digits.

Example: Find the decimal equivalent of $3E7.

The decimal equivalent of the 3 in the third hex digit is 768.
The decimal equivalent of the E in the second hex digit is 224.
The decimal equivalent of the 7 in the first hex digit is 7.

768
224

+      7
= 999

$3E7 = 99910
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

290 Reference Tables MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Reference Tables
Hexadecimal to Decimal Conversion

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Table 20. Hexadecimal to Decimal Conversion

15 Bit 8 7 Bit 0

15 12 11 8 7 4 3 0

4th Hex Digit 3rd Hex Digit 2nd Hex Digit 1st Hex Digit

Hex Decimal Hex Decimal Hex Decimal Hex Decimal

0 0 0 0 0 0 0 0

1 4,096 1 256 1 16 1 1

2 8,192 2 512 2 32 2 2

3 12,288 3 768 3 48 3 3

4 16,384 4 1,024 4 64 4 4

5 20,480 5 1,280 5 80 5 5

6 24,576 6 1,536 6 96 6 6

7 28,672 7 1,792 7 112 7 7

8 32,768 8 2,048 8 128 8 8

9 36,864 9 2,304 9 144 9 9

A 40,960 A 2,560 A 160 A 10

B 45,056 B 2,816 B 176 B 11

C 49,152 C 3,072 C 192 C 12

D 53,248 D 3,328 D 208 D 13

E 57,344 E 3,484 E 224 E 14

F 61,440 F 3,840 F 240 F 15
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Reference Tables 291  
For More Information On This Product,

  Go to: www.freescale.com



Reference Tables

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Decimal to Hexadecimal Conversion

To convert a decimal number (up to 65,53510) to hexadecimal, find the
largest decimal number in Table 20  that is less than or equal to the
number you are converting. The corresponding hexadecimal digit is the
most significant hexadecimal digit of the result. Subtract the decimal
number found from the original decimal number to get the remaining
decimal value. Repeat the procedure using the remaining decimal value
for each subsequent hexadecimal digit.

Example: Find the hexadecimal equivalent of 77710.

The largest decimal number from Table 20 , that is less than or equal to
77710, is 76810. This corresponds to a $3 in the third hexadecimal digit.

Subtract this 76810 from 77710 to get the remaining decimal value 910.

Next look in the column for the next lower order hexadecimal digit (2nd
hex digit in this case). Find the largest decimal value that is less than or
equal to the remaining decimal value. The largest decimal value in this
column that is less than or equal to 910 is 0, so you would place a 0 in
the second hex digit of your result.

910 minus 0 is the remaining decimal value 910.

Next look in the column for the next lower order hexadecimal digit (first
hex digit in this case). Find the largest decimal value that is less than or
equal to the remaining decimal value. The largest decimal value in this
column that is less than or equal to 910 is 9, so you would place a 9 in
the first hex digit of your result.

77710 = $309
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

292 Reference Tables MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Reference Tables
Hexadecimal Values vs. M68HC05 Instructions

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Hexadecimal Values vs. M68HC05 Instructions

Table 21 lists all hexadecimal values from $00 to $FF and the equivalent
M68HC05 instructions with their addressing modes. Since there are only
210 M68HC05 instructions, 46 of the hexadecimal values do not
correspond to a legal instruction.

Table 21. Hexadecimal to M68HC05 Instruction Mnemonics (Sheet 1 of 5)

Operand Instruction
Addressing

Mode
Operand Instruction

Addressing
Mode

$00 BRSET0 Direct $20 BRA Relative

$01 BRCLR0 Direct $21 BRN Relative

$02 BRSET1 Direct $22 BHI Relative

$03 BRCLR1 Direct $23 BLS Relative

$04 BRSET2 Direct $24 BCC Relative

$05 BRCLR2 Direct $25 BCS Relative

$06 BRSET3 Direct $26 BNE Relative

$07 BRCLR3 Direct $27 BEQ Relative

$08 BRSET4 Direct $28 BHCC Relative

$09 BRCLR4 Direct $29 BHCS Relative

$0A BRSET5 Direct $2A BPL Relative

$0B BRCLR5 Direct $2B BMI Relative

$0C BRSET6 Direct $2C BMC Relative

$0D BRCLR6 Direct $2D BMS Relative

$0E BRSET7 Direct $2E BIL Relative

$0F BRCLR7 Direct $2F BIH Relative

$10 BSET0 Direct $30 NEG Direct

$11 BCLR0 Direct $31 — —

$12 BSET1 Direct $32 — —

$13 BCLR1 Direct $33 COM Direct

$14 BSET2 Direct $34 LSR Direct

$15 BCLR2 Direct $35 — —

$16 BSET3 Direct $36 ROR Direct

$17 BCLR3 Direct $37 ASR Direct
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Reference Tables 293  
For More Information On This Product,

  Go to: www.freescale.com



Reference Tables

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

$18 BSET4 Direct $38 LSL Direct

$19 BCLR4 Direct $39 ROL Direct

$1A BSET5 Direct $3A DEC Direct

$1B BCLR5 Direct $3B — —

$1C BSET6 Direct $3C INC Direct

$1D BCLR6 Direct $3D TST Direct

$1E BSET7 Direct $3E — —

$1F BCLR7 Direct $3F CLR Direct

$40 NEGA Inherent $60 NEG Indexed 1

$41 — — $61 — —

$42 — — $62 — —

$43 COMA Inherent $63 COM Indexed 1

$44 LSRA Inherent $64 LSR Indexed 1

$45 — — $65 — —

$46 RORA Inherent $66 ROR Indexed 1

$47 ASRA Inherent $67 ASR Indexed 1

$48 LSLA Inherent $68 LSL Indexed 1

$49 ROLA Inherent $69 ROL Indexed 1

$4A DECA Inherent $6A DEC Indexed 1

$4B — — $6B — —

$4C INCA Inherent $6C INC Indexed 1

$4D TSTA Inherent $6D TST Indexed 1

$4E — — $6E — —

$4F CLRA Inherent $6F CLR Indexed 1

$50 NEGX Inherent $70 NEG Indexed 0

$51 — — $71 — —

$52 — — $72 — —

$53 COMX Inherent $73 COM Indexed 0

$54 LSRX Inherent $74 LSR Indexed 0

$55 — — $75 — —

$56 RORX Inherent $76 ROR Indexed 0

Table 21. Hexadecimal to M68HC05 Instruction Mnemonics (Sheet 2 of 5)

Operand Instruction
Addressing

Mode
Operand Instruction

Addressing
Mode
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

294 Reference Tables MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Reference Tables
Hexadecimal Values vs. M68HC05 Instructions

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

$57 ASRX Inherent $77 ASR Indexed 0

$58 LSLX Inherent $78 LSL Indexed 0

$59 ROLX Inherent $79 ROL Indexed 0

$5A DECX Inherent $7A DEC Indexed 0

$5B — — $7B — —

$5C INCX Inherent $7C INC Indexed 0

$5D TSTX Inherent $7D TST Indexed 0

$5E — — $7E — —

$5F CLRX Inherent $7F CLR Indexed 0

$80 RTI Inherent $A0 SUB Immediate

$81 RTS Inherent $A1 CMP Immediate

$82 — — $A2 SBC Immediate

$83 SWI Inherent $A3 CPX Immediate

$84 — — $A4 AND Immediate

$85 — — $A5 BIT Immediate

$86 — — $A6 LDA Immediate

$87 — — $A7 — —

$88 — — $A8 EOR Immediate

$89 — — $A9 ADC Immediate

$8A — — $AA ORA Immediate

$8B — — $AB ADD Immediate

$8C — — $AC — —

$8D — — $AD BSR Relative

$8E STOP Inherent $AE LDX Immediate

$8F WAIT Inherent $AF — —

$90 — — $B0 SUB Direct

$91 — — $B1 CMP Direct

$92 — — $B2 SBC Direct

$93 — — $B3 CPX Direct

$94 — — $B4 AND Direct

$95 — — $B5 BIT Direct

Table 21. Hexadecimal to M68HC05 Instruction Mnemonics (Sheet 3 of 5)

Operand Instruction
Addressing

Mode
Operand Instruction

Addressing
Mode
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Reference Tables 295  
For More Information On This Product,

  Go to: www.freescale.com



Reference Tables

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

$96 — — $B6 LDA Direct

$97 TAX Inherent $B7 STA Direct

$98 CLC Inherent $B8 EOR Direct

$99 SEC Inherent $B9 ADC Direct

$9A CLI Inherent $BA ORA Direct

$9B SEI Inherent $BB ADD Direct

$9C RSP Inherent $BC JMP Direct

$9D NOP Inherent $BD JSR Direct

$9E — — $BE LDX Direct

$9F TXA Inherent $BF STX Direct

$C0 SUB Extended $E0 SUB Indexed 1

$C1 CMP Extended $E1 CMP Indexed 1

$C2 SBC Extended $E2 SBC Indexed 1

$C3 CPX Extended $E3 CPX Indexed 1

$C4 AND Extended $E4 AND Indexed 1

$C5 BIT Extended $E5 BIT Indexed 1

$C6 LDA Extended $E6 LDA Indexed 1

$C7 STA Extended $E7 STA Indexed 1

$C8 EOR Extended $E8 EOR Indexed 1

$C9 ADC Extended $E9 ADC Indexed 1

$CA ORA Extended $EA ORA Indexed 1

$CB ADD Extended $EB ADD Indexed 1

$CC JMP Extended $EC JMP Indexed 1

$CD JSR Extended $ED JSR Indexed 1

$CE LDX Extended $EE LDX Indexed 1

$CF STX Extended $EF STX Indexed 1

$D0 SUB Indexed 2 $F0 SUB Indexed 0

$D1 CMP Indexed 2 $F1 CMP Indexed 0

$D2 SBC Indexed 2 $F2 SBC Indexed 0

$D3 CPX Indexed 2 $F3 CPX Indexed 0

$D4 AND Indexed 2 $F4 AND Indexed 0

Table 21. Hexadecimal to M68HC05 Instruction Mnemonics (Sheet 4 of 5)

Operand Instruction
Addressing

Mode
Operand Instruction

Addressing
Mode
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

296 Reference Tables MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Reference Tables
Hexadecimal Values vs. M68HC05 Instructions

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

$D5 BIT Indexed 2 $F5 BIT Indexed 0

$D6 LDA Indexed 2 $F6 LDA Indexed 0

$D7 STA Indexed 2 $F7 STA Indexed 0

$D8 EOR Indexed 2 $F8 EOR Indexed 0

$D9 ADC Indexed 2 $F9 ADC indexed 0

$DA ORA Indexed 2 $FA ORA Indexed 0

$DB ADD Indexed 2 $FB ADD Indexed 0

$DC JMP Indexed 2 $FC JMP Indexed 0

$DD JSR Indexed 2 $FD JSR Indexed 0

$DE LDX Indexed 2 $FE LDX Indexed 0

$DF STX Indexed 2 $FF STX Indexed 0

Table 21. Hexadecimal to M68HC05 Instruction Mnemonics (Sheet 5 of 5)

Operand Instruction
Addressing

Mode
Operand Instruction

Addressing
Mode
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Reference Tables 297  
For More Information On This Product,

  Go to: www.freescale.com



Reference Tables

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

298 Reference Tables MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

Glossary
   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  
1 K — One kilobyte or 102410 bytes. Similar to the use of the prefix in
kilogram, which means 1000 grams in the decimal numbering

system. 1024 is 210.

8-bit MCU — A microcontroller where data is communicated over a data
bus made up of eight separate data conductors. Members of the
M68HC05 Family of microcontrollers are 8-bit MCUs.

A — Abbreviation for accumulator in the M68HC05 MCU

accumulator  — An 8-bit register in the CPU of the M68HC05. The
contents of this register may be used as an operand of an
arithmetic or logical instruction.

addressing mode  — The way that the CPU obtains (addresses) the
information needed to complete an instruction. The M68HC05
CPU has six addressing modes:

• Inherent — The CPU needs no additional information from
memory to complete the instruction.

• Immediate — The information needed to complete the
instruction is located in the next memory location(s) after
the opcode.

• Direct — The low-order byte of the address of the operand
is located in the next memory location after the opcode, and
the high-order byte of the operand address is assumed to
be $00.

• Extended — The high-order byte of the address of the
operand is located in the next memory location after the
opcode, and the low-order byte of the operand address is
located in the next memory location after that.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Glossary 299  
For More Information On This Product,

  Go to: www.freescale.com



Glossary

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

• Indexed — The address of the operand depends upon the
current value in the X index register and a 0-, 8-, or 16-bit,
instruction-provided value.

• Relative — Used for branch instructions to specify the
destination address where processing will continue if the
branch condition is true.

address bus — The set of conductors that are used to select a specific
memory location so the CPU can write information into the
memory location or read its contents. If a computer has 11 wires

in its address bus, it can address 211 or 204810 memory
locations. In most M68HC05 MCUs, the address bus is not
accessible on external pins.

ALU — Arithmetic logic unit. This is the portion of the CPU of a computer
where mathematical and logical operations take place. Other
circuitry decodes each instruction and configures the ALU to
perform the necessary arithmetic or logical operations at each
step of an instruction.

ASCII — American Standard Code for Information Interchange. A widely
accepted correlation between alphabetic and numeric characters
and specific 7-bit binary numbers. Refer to Table 19.
Hexadecimal to ASCII Conversion .

analog — A signal that can have voltage level values that are neither the
VSS level nor the VDD level. For a computer to use such signals,

they must be converted into a binary number that corresponds to
the voltage level of the signal. An analog-to-digital converter can
be used to perform this conversion. By contrast, a digital signal
has only two possible values, 1 (≈VDD) or 0 (≈VSS).

application programs — Software programs that instruct a computer to
solve an application problem

arithmetic logic unit  — This is the portion of the CPU of a computer
where mathematical and logical operations take place. Other
circuitry decodes each instruction and configures the ALU to
perform the necessary arithmetic or logical operations at each
step of an instruction.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

300 Glossary MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Glossary

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

assembler  — A software program that translates source code
mnemonics into opcodes that can then be loaded into the
memory of a microcontroller.

assembly language  — Instruction mnemonics and assembler
directives that are meaningful to programmers and can be
translated into an object code program that a microcontroller
understands. The CPU uses opcodes and binary numbers to
specify the operations that make up a computer program. These
numbers are not meaningful to people, so programmers use
assembly language mnemonics to represent instructions.
Assembler directives provide additional information such as the
starting memory location for a program. Labels are used to mean
an address or binary value.

base 2 — Binary numbers that use only the two digits, 0 and 1. Base 2
is the numbering system used by computers.

base 10 — Decimal numbers that use the 10 digits, 0 through 9. This is
the customary numbering system used by people.

base 16  — The hexadecimal numbering system. The 16 characters (0
through 9 and the letters A through F) are used to represent
hexadecimal values. One hexadecimal digit can exactly
represent a 4-bit binary value. Hexadecimal is used by people to
represent binary values because it is easier to use a 2-digit
number than the equivalent 8-digit binary number. Refer to
Table 1. Decimal, Binary, and Hexadecimal Equivalents .

BCD — Binary coded decimal is a notation that uses binary values to
represent decimal quantities. Each BCD digit uses four binary
bits. Six of the possible 16 binary combinations are considered
illegal.

binary  — The numbering system used by computers because any
quantity can be represented by a series of 1s and 0s. Electrically,
these 1s and 0s are represented by voltage levels of
approximately VDD and VSS respectively.

bit  — A single binary digit. A bit can hold a single value of 0 or 1.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Glossary 301  
For More Information On This Product,

  Go to: www.freescale.com



Glossary

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

black box — A hypothetical block of logic or circuitry that performs some
input to output transformation. A black box is used when the input
to output relationship is known but the means to achieve this
transformation is not known or is not important to the discussion.

branch instructions  — Computer instructions that cause the CPU to
continue processing at a memory location other than the next
sequential address. Most branch instructions are conditional.
That is, the CPU will continue to the next sequential address (no
branch) if a condition is false or continue to some other address
(branch) if the condition is true.

breakpoint  — During debugging of a program, it is useful to run
instructions until the CPU gets to a specific place in the program
and then enter a debugger program. A breakpoint is established
at the desired address by temporarily substituting a software
interrupt (SWI) instruction for the instruction at that address. In
response to the SWI, control is passed to a debugging program.

byte  — A set of exactly eight binary bits

C — Abbreviation for carry/borrow in the condition code register of the
M68HC05. When adding two unsigned 8-bit numbers, the C bit is
set if the result is greater than 255 ($FF).

CCR — Abbreviation for condition code register in the M68HC05. The
CCR has five bits (H, I, N, Z, and C) that can be used to control
conditional branch instructions. The values of the bits in the CCR
are determined by the results of previous operations. For
example, after a load accumulator (LDA) instruction, Z will be set
if the loaded value was $00.

central processor unit  — The part of a computer that controls
execution of instructions

checksum  — A value that results from adding a series of binary
numbers. When exchanging information between computers, a
checksum gives an indication about the integrity of the data
transfer. If values were transferred incorrectly, it is very unlikely
that the checksum would match the value that was expected.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

302 Glossary MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Glossary

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

clock  — A square wave signal that is used to sequence events in a
computer

CMOS — Complimentary metal oxide semiconductor. A silicon
semiconductor processing technology that allows fabrication of
both N-type and P-type transistors on the same integrated circuit.
Most modern microcontrollers use CMOS technology.

computer program — A series of instructions that cause a computer to
do something

computer system — A CPU plus other components needed to perform
a useful function. A minimum computer system includes a CPU,
a clock, memory, a program, and input/output interfaces.

condition code register — The CCR has five bits (H, I, N, Z, and C) that
can be used to control conditional branch instructions. The values
of the bits in the CCR are determined by the results of previous
operations. For example, after a load accumulator (LDA)
instruction, Z will be set if the loaded value was $00.

CPU — Central processor unit. The part of a computer that controls
execution of instructions

CPU cycles — A CPU clock cycle is one period of the internal bus-rate
clock. Normally, this clock is derived by dividing a crystal
oscillator source by two or more so the high and low times will be
equal. The length of time required to execute an instruction is
measured in CPU clock cycles.

CPU registers — Memory locations that are wired directly into the CPU
logic instead of being part of the addressable memory map. The
CPU always has direct access to the information in these
registers. The CPU registers in an M68HC05 are:

• A — 8-bit accumulator

• X — 8-bit index register

• CCR — condition code register containing the H, I, N, Z,
and C bits

• SP — stack pointer

• PC — program counter
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Glossary 303  
For More Information On This Product,

  Go to: www.freescale.com



Glossary

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

CRT — Cathode ray tube. Also used as an informal expression to refer
to a complete communication terminal that has a keyboard and a
video display

cycles  — See CPU cycles.

data bus  — A set of conductors that are used to convey binary
information from a CPU to a memory location or from a memory
location to a CPU. In the M68HC05, the data bus is eight bits.

decimal  — Base 10 numbers use the digits 0 through 9. This is the
numbering system normally used by humans.

development tools  — Software or hardware devices that are used to
develop computer programs and application hardware. Examples
of software development tools include text editors, assemblers,
debug monitors, and simulators. Examples of hardware
development tools include emulators, logic analyzers, and PROM
programmers. An in-circuit simulator combines a software
simulator with hardware interfaces.

digital — A binary logic system where signals can have only two states,
0 (≈VSS) or 1 (≈VDD).

direct address — Any address within the first 256 addresses of memory
($0000 through $00FF). The high-order byte of these addresses
is always $00. Special instructions allow these addresses to be
accessed using only the low-order byte of their address. These
instructions automatically fill in the assumed $00 value for the
high-order byte of the address.

direct addressing mode  — Direct addressing mode uses a
program-supplied value for the low-order byte of the address of
an operand. The high-order byte of the operand’s address is
assumed to be $00, so it does not have to be explicitly specified.

direct page  — The first 256 bytes of memory, $0000 through $00FF

EEPROM — Electrically erasable, programmable read-only memory. A
non-volatile type of memory that can be erased and
reprogrammed by program instructions. Since no special power
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

304 Glossary MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Glossary

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

supplies or ultra-violet light source is needed, the contents of this
kind of memory can be changed without removing the MCU from
the application system.

effective address  — The address where an instruction operand is
located. The addressing mode of an instruction determines how
the CPU calculates the effective address of the operand.

embedded — When an appliance contains a microcontroller, the MCU
is said to be an embedded controller. Often, the end user of the
appliance is not aware (or does not care) that there is a computer
inside.

EPROM — Erasable, programmable read-only memory. A non-volatile
type of memory that can be erased by exposure to an ultra-violet
light source. MCUs that have EPROM are easily recognized
because the package has a quartz window to allow exposure to
the ultra-violet light. If an EPROM MCU is packaged in an opaque
plastic package, it is called a one-time-programmable (OTP)
MCU because there is no way to expose the EPROM to
ultra-violet light.

extended addressing mode — In this addressing mode, the high-order
byte of the address of the operand is located in the next memory
location after the opcode. The low-order byte of the operand’s
address is located in the second memory location after the
opcode.

fetching a vector — When the CPU is reset or responds to an interrupt,
the contents of a specific pair of memory locations is loaded into
the program counter and processing continues from the loaded
address. The process of reading these two locations is called
fetching the vector.

flowchart — A symbolic means to show the sequence of steps required
to perform an operation. A flowchart not only tells what needs to
be done, but also the order that the steps should be done in.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Glossary 305  
For More Information On This Product,

  Go to: www.freescale.com



Glossary

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

H — Abbreviation for half-carry in the condition code register of the
M68HC05. This bit indicates a carry from the low-order four bits
of an 8-bit value to the high-order four bits. This status indicator
is used during BCD calculations.

half flip flop — A half flip flop (HFF) has a transparent condition and a
latched condition. In the transparent condition (clock input equal
logic 1), the Q output is always equal to the logic level presented
at the input. In the latched condition (clock input equals logic 0),
the output maintins the logic level that was present when the flip
flop was last in the transparent condition.

hexadecimal — The base 16 numbering system. The 16 characters (0
through 9 and the letters A through F) are used to represent
hexadecimal values. One hexadecimal digit can exactly
represent a 4-bit binary value. Hexadecimal is used by people to
represent binary values because it is easier to use a 2-digit
number than the equivalent 8-digit binary number. Refer to
Table 1. Decimal, Binary, and Hexadecimal Equivalents .

high order  — The leftmost digit(s) of a number. Five is the high-order
digit of the number 57.

I — Abbreviation for interrupt mask bit in the condition code register of
the M68HC05

I/O — Input/output interfaces between a computer system and the
external world. A CPU reads an input to sense the level of an
external signal and writes to an output to change the level on an
external signal.

immediate addressing mode  — In immediate addressing mode, the
operand is located in the next memory location(s) after the
opcode.

inherent addressing mode  — In inherent addressing mode, the CPU
already inherently knows everything it needs to know to complete
the instruction. The operands (if there are any) are in the CPU
registers.

in-circuit simulator — A simulator with hardware interfaces that allows
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

306 Glossary MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Glossary

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

connection into an application circuit. The in-circuit simulator
replaces the MCU and behaves as a real MCU would. The
developer has greater control and visibility of internal MCU
operations because they are being simulated by instructions in
the host computer. An in-circuit simulator, like other simulators, is
not as fast as a real MCU.

indexed addressing mode — In indexed addressing mode, the current
value of the index register is added to a 0-, 8-, or 16-bit value in
the instruction to get the effective address of the operand. There
are separate opcodes for 0-, 8-, and 16-bit variations of indexed
mode instructions, so the CPU knows how many additional
memory locations to read after the opcode.

index register (X) — An 8-bit CPU register in the M68HC05 that is used
in indexed addressing mode. X, its abbreviation, can also be used
as a general-
purpose 8-bit register (in addition to the 8-bit accumulator).

input/output — Interfaces between a computer system and the external
world. A CPU reads an input to sense the level of an external
signal and writes to an output to change the level on an external
signal.

instruction decoder  — The portion of a CPU that receives an
instruction opcode and produces the necessary control signals so
that the rest of the CPU will perform the desired operations.

instructions  — Instructions are operations that a CPU can perform.
Instructions are expressed by programmers as assembly
language mnemonics. A CPU interprets an opcode and its
associated operand(s) as an instruction.

instruction set  — The instruction set of a CPU is the set of all
operations that the CPU knows how to perform. One way to
represent an instruction set is with a set of shorthand mnemonics,
such as LDA meaning load A. Another representation of an
instruction set is the set of opcodes that are recognized by the
CPU.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Glossary 307  
For More Information On This Product,

  Go to: www.freescale.com



Glossary

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

inverter — A simple logic circuit that produces an output logic level that
is the opposite of the level presented to its input.

kilobyte — One kilobyte is 102410 bytes. Similar to the use of the prefix
in kilogram, which means 1000 grams in the decimal numbering

system. 1024 is 210.

label  — A name that is assigned (by a programmer) to a specific
address or binary value. When a program containing a lable is
assembled, the label is replaced by the binary value it represents.
Programs typically include many labels.

latch — A logic circuit that maintains a stable output state even after the
input has been removed or changed. A clock control input
determines when the latch will capture the input state and apply
it to the output.

least significant bit  — LSB, the rightmost digit of a binary value

listing  — A program listing shows the binary numbers that the CPU
needs alongside the assembly language statements that the
programmer wrote. The listing is generated by an assembler in
the process of translating assembly language source statements
into the binary information that the CPU needs.

logic 1 — A voltage level approximately equal to the VDD power supply

logic 0  — A voltage level approximately equal to VSS (ground)

low order — The rightmost digit(s) of a number. Seven is the low-order
digit of the number 57.

LSB  — Least significant bit. The rightmost digit of a binary value

machine codes — The binary codes that are processed by the CPU as
instructions. Machine code includes both opcodes and operand
data.

mainframe computer  — A large computer system that is usually
confined to a special room. Mainframe computers are used for
large information processing jobs likemaintaining a database of
all policyholders for an insurance company.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

308 Glossary MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Glossary

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

mass storage  — A very large capacity storage device such as a
magnetic disk. Information in a mass storage device takes longer
to access than information in the memory map of a CPU.

MCU — Microcontroller unit. A complete computer system, including a
CPU, memory, a clock oscillator, and I/O on a single integrated
circuit.

memory location — In the M68HC05, each memory location holds one
byte of data and has a unique address. To store information into
a memory location, the CPU places the address of the location on
the address bus, the data information on the data bus, and
asserts the write signal. To read information from a memory
location, the CPU places the address of the location on the
address bus and asserts the read signal. In response to the read
signal, the selected memory location places its data onto the data
bus.

memory map — A pictorial representation of all memory locations in a
computer system. A memory map is similar to a city street map in
that it shows where things are located.

memory-mapped I/O — In this type of system, I/O and control registers
are accessed in the same way as RAM or ROM memory
locations. Any instruction that can be used to access memory can
also be used to access I/O registers.

microcontroller  — A complete computer system, including a CPU,
memory, a clock oscillator, and I/O on a single integrated circuit.

microprocessor  — A microprocessor is similar to a microcontroller
except that one or more of the subsystems needed to make a
complete computer system is not included on the same chip with
the CPU. A microprocessor typically includes a CPU and a clock
oscillator but does not include program memory or I/O registers.

mnemonic — Three to five letters that represent a computer operation.
For example, the mnemonic form of the load accumulator
instruction is LDA.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Glossary 309  
For More Information On This Product,

  Go to: www.freescale.com



Glossary

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

monitor program  — A software program that is intended to assist in
system development. A typical monitor program allows a user to
examine and change memory or CPU register contents, set
breakpoints, and selectively execute application programs.

most significant bit  — The leftmost digit of a binary value

MSB — Most significant bit. The leftmost digit of a binary value

N — Abbreviation for negative, a bit in the condition code register of the
M68HC05. In twos-complement computer notation, positive
signed numbers have a 0 in their MSB and negative numbers
have a 1 in their MSB. The N condition code bit reflects the sign
of the result of an operation. After a load accumulator instruction,
the N bit will be set if the MSB of the loaded value was a 1.

NAND gate — A basic logic circuit. The output of a NAND gate is a logic
0 when all of its inputs are logic 1s. The output of a NAND gate is
a logic 1 if any of its inputs are logic 0.

non-volatile — A type of memory that does not forget its contents when
power is turned off. ROM, EPROM, and EEPROM are all
non-volatile memories.

NOR gate — A basic logic circuit. The output of a NOR gate is a logic 0
when any of its inputs are logic 1s. The output of a NOR gate is a
logic 1 if all of its inputs are logic 0.

object code file  — A text file containing numbers that represent the
binary opcodes and data of a computer program. An object code
file can be used to load binary information into a computer
system. Motorola uses the S-record file format for object code
files. See Figure 35. S-Record File for Example Program .

octal  — Base 8 numbers that use the characters 0 through 7 to
represent sets of three binary bits. Octal is seldom used in
modern computer work.

one  — A logic high level (≈VDD)
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

310 Glossary MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Glossary

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

ones complement  — To get the logical ones-complement of a binary
value, invert each bit.

opcode  — A binary code that instructs the CPU to do a specific
operation in a specific way. The M68HC05 CPU recognizes 210
unique 8-bit opcodes that represent addressing mode variations
of 62 basic instructions.

operand  — An input value to a logical or mathematical operation

oscillator — A circuit that produces a constant frequency square wave
that is used by the computer as a timing and sequencing
reference. A microcontroller typically includes all elements of this
circuit except the frequency-determining component(s), the
crystal or R-C (resistor-capacitor)components.

OTP — See OTPROM.

OTPROM — A non-volatile type of memory that can be programmed but
cannot be erased. An OTPROM is an EPROM MCU that is
packaged in an opaque plastic package. It is called a
one-time-programmable MCU because there is no way to expose
the EPROM to ultra-violet light.

parity  — An extra bit in a binary word that is intended to indicate the
validity of the remaining bits in the word. In even parity, the parity
bit is set or cleared as needed to make the total number of logic
1s in the word (including the parity bit) equal to an even number
(0, 2, 4, etc.).

PC — Abbreviation for program counter, a CPU register in the M68HC05
MCU. Also used as an abbreviation for personal computer.

personal computer  — A small computer system that is normally used
by a single person to process information

playing computer — A learning technique in which you pretend to be a
CPU that is executing the instructions of a program

pointer register  — An index register is sometimes called a pointer
register because its contents are used in the calculation of the
address of an operand. A straightforward example is an
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Glossary 311  
For More Information On This Product,

  Go to: www.freescale.com



Glossary

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

indexed-no offset instruction where the X register contains the
direct address of (points to) the operand.

program  — A set of computer instructions that cause a computer to
perform an application task

program counter — The program counter (PC) is the CPU register that
holds the address of the next instruction or operand that the CPU
will use.

programming model  — The registers of a particular CPU. The
programming model of the M68HC05 CPU is shown in Figure 23.
Programming Model .

PROM — Programmable read-only memory. A non-volatile type of
memory that can be programmed after it is manufactured.
EPROM and EEPROM are two types of PROM memory.

pulled — The act of reading a value from the stack. In the M68HC05, a
value is pulled by this sequence of operations: First, the stack
pointer register is incremented so that it points at the last value
that was saved on the stack. Next the value that is at the address
contained in the stack pointer register is read into the CPU.

pushed  — The act of storing a value at the address contained in the
stack pointer register and then decrementing the stack pointer so
it points at the next available stack location

RAM — Random access memory. Any RAM location can be read or
written by the CPU. The contents of a RAM memory location
remain valid until the CPU writes a different value or until power
is turned off.

read  — Transfer the contents of a memory location to the CPU

record  — One line of an object code text file. See S-record.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

312 Glossary MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Glossary

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

registers — Memory locations that are wired directly into the CPU logic
instead of being part of the addressable memory map. The CPU
always has direct access to the information in these registers.
The CPU registers in an M68HC05 are:

• A — 8-bit accumulator

• X — 8-bit index register

• CCR — condition code register containing the H, I, N, Z,
and C bits

• SP — stack pointer

• PC — program counter

Memory locations that hold status and control information for
on-chip peripherals are called I/O and control registers.

relative addressing mode  — Relative addressing mode is used to
calculate the destination address for branch instructions. If the
branch condition is true, the signed 8-bit value after the opcode is
added to the current value of the program counter to get the
address where the CPU will fetch the next instruction.

relative offset — An 8-bit, signed twos-complement value that is added
to the program counter when a branch condition is true. The
relative offset is located in the byte after a branch opcode.

reset  — Reset is used to force a computer system to a known starting
point and to force on-chip peripherals to known starting
conditions.

reset vector  — The contents of the last two memory locations in an
M68HC05 MCU are called the reset vector. As the MCU leaves
reset, the program counter is loaded with the contents of these
two locations so the first instruction after reset will be fetched from
that address.

ROM — Read-only memory. A type of memory that can be read but
cannot be changed (written). The contents of ROM must be
specified before manufacturing the MCU.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Glossary 313  
For More Information On This Product,

  Go to: www.freescale.com



Glossary

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

S-record — A Motorola standard format used for object code files. See
Figure 35. S-Record File for Example Program .

simulator  — A computer program that copies the behavior of a real
MCU

source code  — See source program

source program — A text file containing instruction mnemonics, labels,
comments, and assembler directives. The source file is
processed by an assembler to produce a composite listing and an
object file representation of the program.

SP — Abbreviation for stack pointer, a CPU register in the M68HC05
MCU

stack  — A mechanism for temporarily saving CPU register values
during interrupts and subroutines. The CPU maintains this
structure with the stack pointer register which contains the
address of the next available storage location on the stack. When
a subroutine is called, the CPU pushes (stores) the low-order and
high-order bytes of the return address on the stack before starting
the subroutine instructions. When the subroutine is done, a
return-from-subroutine (RTS) instruction causes the CPU to
recover the return address from the stack and continue
processing where it left off before the subroutine. Interrupts work
in the same way except all CPU registers are saved on the stack
instead of just the program counter.

stack pointer  — A CPU register that holds the address of the next
available storage location on the stack

subroutine  — A sequence of instructions that need to be used more
than once in the course of a program. The last instruction in a
subroutine is a return-from-subroutine (RTS) instruction. At each
place in the main program where the subroutine instructions are
needed, a jump- or branch-to-subroutine (JSR or BSR)
instruction is used to call the subroutine. The CPU leaves the flow
of the main program to execute the instructions in the subroutine.
When the RTS instruction is executed, the CPU returns to the
main program where it left off.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

314 Glossary MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Glossary

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

three-state buffer — The output of a three-state buffer can be a logic 0,
a logic 1, or a high impedance (as if connected to nothing). An
enable input controls the high impedance (off) state vs. the low
impedance (on) state. When the buffer is on, the output has the
same logic level as the input (1 or 0). When the buffer is off, the
output acts like an open circuit.

transducer  — A device that converts some physical property, such as
pressure, into electrical signals that can be used by a computer

transmission gate  — A basic logic circuit used in microcontrollers. A
transmission gate works like a series switch that is controlled by
a logic level signal. When the control input is a logic 0, the
transmission gate acts like an open circuit. When the control input
is a logic 1, the transmission gate acts like a short circuit.

twos complement  — A means of performing binary subtraction using
addition techniques. The most significant bit of a twos
complement number indicates the sign of the number (1 indicates
negative). The twos complement negative of a number is
obtained by inverting each bit in the number and then adding 1 to
the result. For example, the twos complement negative of
0000 0011 (310) is 1111 1100 + 0000 0001 = 1111 1101.

variable  — A value that changes during the course of executing a
program

VDD — The positive power supply to a microcontroller, typically 5 volts dc

vector — A pointer (address) that indicates where the CPU should
continue processing instructions after an interrupt or reset

VSS — The 0 volt dc power supply return for a microcontroller

volatile  — A type of memory that forgets its contents when power is
turned off. RAM is a type of volatile memory. In modern
microcontrollers, it takes very little power to maintain the contents
of a RAM under good conditions. In some cases, the contents of
RAM and registers may appear to be unchanged after a short
interruption of power.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Glossary 315  
For More Information On This Product,

  Go to: www.freescale.com



Glossary

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

word — A group of binary bits. Some larger computers consider a set of
16 bits to be a word, but this is not a universal standard.

write  — The transfer of a byte of data from the CPU to a memory
location

X — Abbreviation for index register, a CPU register in the M68HC05
MCU

Z — Abbreviation for zero, a bit in the condition code register of the
M68HC05. A compare instruction subtracts the contents of the
tested value from a register. If the values were equal, the result of
this subtraction would be zero, so the Z bit would be set. After a
load accumulator instruction, the Z bit will be set if the loaded
value was $00.

zero  — A logic low level (VSS)

zero crossings  — When an alternating current signal goes from a
positive to a negative or from a negative to a positive value, it is
called a zero crossing. The 60-Hz ac power line crosses zero
every 8.33 milliseconds.
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

316 Glossary MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

Index
   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  
A
Accumulator (A). . . . . . . . . . . . . . . . . . . 68, 74, 75, 100, 102, 133, 299
Address bus. . . . . . . . . . . . . . . . . . . 53, 54, 56, 63, 66, 68, 74, 75, 300
Addressing mode. . . . . . . . . . . . . . . . . . . . 98, 104, 133, 146, 150, 299

direct  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
extended  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
immediate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75, 107
indexed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
inherent  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
relative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Analog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 300
Analog switch  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Analog-to-digital converter (A-to-D). . . . . . . . . . . . . . . . . 183, 187, 215
Architecture

computer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Von Neumann  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Arithmetic logic unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . 78, 98, 300
ASCII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33, 36, 67, 105, 288, 300

code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
conversion to/from hexadecimal  . . . . . . . . . . . . . . . . . 31, 288, 289

Assembler . . . . . . . . . . . . . . . . . . 32, 36, 105, 143, 146, 147, 156, 301
directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145, 149, 156
listing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143, 144, 145, 156, 308

Assembly language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139, 301

B
Base 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27, 28, 301
Base 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28, 301
Base 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27, 28, 301
Base 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Index 317  
For More Information On This Product,

  Go to: www.freescale.com



Index

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Binary  . . . . . . . . . . . . . . . . . . . . . . . . 28, 30, 32, 36, 98, 105, 150, 301
conversion to/from decimal, hexadecimal  . . . . . . . . . . . . . . . . . .  29
conversion to/from octal, hexadecimal  . . . . . . . . . . . . . . . . . . . . .33

Binary coded decimal
conversion to/from decimal, binary  . . . . . . . . . . . . . . . . . . . . . . . 35

Binary coded decimal (BCD) . . . . . . . . . . . . . . . . 27, 34, 101, 102, 301
Bit  . . . . . . . . . . . . . . . . 22, 52, 54, 60, 62, 76, 150, 160, 161, 183, 301

carry/borrow (C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
half-carry (H)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
interrupt mask (I)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
negative (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
zero (Z). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Black box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74, 302
Branch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76, 79, 84

instructions . . . . . . . . . . . . . . . . . . . . . . . . . . 69, 119, 120, 123, 302
Branch-to-subroutine (BSR)  . . . . . . . . . . . . . . . . . . . . 76, 85, 141, 250
Breakpoint  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155, 302
Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

three-state  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46, 49
Bus

address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66, 68, 74
data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66, 75

Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22, 54, 67, 148, 302
gigabyte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
kilobyte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
megabyte  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54

C
C (bit in condition code register) . . . . . . . . . . . . . . . . 68, 102, 195, 302
Central processor unit (CPU) . . . . . . . . . . . . . . . . .18, 20, 25, 302, 303
Checksum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148, 302
Clock . . . . . . . . . . . . . . . . . . .21, 25, 69, 74, 77, 94, 105, 181, 184, 303
CMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38, 39, 303

N-type transistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
P-type transistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

318 Index MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Index

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Computer
architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
kinds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
parts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
playing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80, 94
program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20, 23, 303
system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18, 303

Computer program  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20, 23, 303
Computer system  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18, 303
Condition code register (CCR)  . . . . . . . . . . . . . . . . 68, 69, 75, 86, 100,

101, 133, 302, 303
Conditional branch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76, 84, 142
COP

watchdog timer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87, 95
CPU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80, 98

control circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
instruction set  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126
instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67, 99
view of a program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

CRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20, 304
Cycles . . . . . . . 21, 69, 74, 75, 77, 87, 92, 94, 105, 110, 142, 153, 303

D
Data bus  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56, 66, 75, 304
Data multiplexer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Decimal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28, 34, 105, 152, 304

conversion to/from hexadecimal  . . . . . . . . . . . . . 29, 290, 291, 292
conversion to/from hexadecimal, binary. . . . . . . . . . . . . . . . . 29, 35

Development tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154, 304
Dexterity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Digital. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 27, 304
Digital-to-analog converter (D-to-A). . . . . . . . . . . . . . . . . 183, 187, 215
Direct address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74, 76, 79, 304
Direct addressing mode. . . . . . . . . . . . . 60, 64, 74, 104, 110, 111, 120,

 134, 146, 150, 304
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Index 319  
For More Information On This Product,

  Go to: www.freescale.com



Index

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Direct page  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110, 304
Duty cycle  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187, 201

E
EEPROM  . . . . . . . . . . . . . . . . . . . . . . . . . . . .22, 56, 63, 183, 216, 304
Effective address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100, 104, 305
Embedded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25, 305
EPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22, 55, 63, 70, 155, 305
Equate directive (EQU) . . . . . . . . . . . . . . . . . . . . . . . . . . 145, 149, 160
Extended address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Extended addressing mode  . . . . . . . . . . .104, 108, 109, 133, 150, 305

F
FCB directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
FDB directive  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150, 162, 178
Fetching a vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
Fetching the reset vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Flip flop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
Flowchart  . . . . . . . . . . . . . . . . . . . . . .76, 136, 137, 138, 147, 156, 305

G
Gate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37, 40

buffer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
inverter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
NAND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40, 41
NOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40, 42
transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44, 49

Gigabyte  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

H
H (bit in condition code register) . . . . . . . . . . . . . . . . 68, 101, 102, 306
Half flip flop (HFF)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48, 49, 57, 306
Hexadecimal . . . . . . . . . . . . . . . . . . . . . . . . . . 28, 29, 36, 105, 148, 152, 306

conversion to /from decimal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
conversion to/from ASCII  . . . . . . . . . . . . . . . . . . . . . . .31, 288, 289
conversion to/from decimal . . . . . . . . . . . . . . . . . . . . . . . . .291, 292
conversion to/from decimal, binary  . . . . . . . . . . . . . . . . . . . . . . . 29
conversion to/from octal, binary . . . . . . . . . . . . . . . . . . . . . . . . . . 33
values vs. M68HC05 instructions. . . . . . . . . . . . . . . . . . . . . . . . 293

High order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86, 306
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

320 Index MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Index

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

I
I (bit in condition code register) . . . . . . . . 68, 86, 88, 95, 101, 170, 306
Immediate addressing mode  . . . . . . .75, 104, 107, 133, 146, 161, 306
In-circuit emulator  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
In-circuit simulator . . . . . . . . . . . . . . . . . . . . . . . . . . 155, 157, 160, 306
Index register (X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68, 100, 112, 133
Indexed addressing mode . . . . . . . . . . . . . . . . 100, 104, 112, 134, 307

16-bit offset  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
8-bit offset  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
no offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Indexed instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115, 117
Inherent addressing mode. . . . . . . . . . . . . . . . . . . . 104, 105, 133, 306
Inherent instructions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Input, see input-output
Input/output (I/O) . . . . . . . . . . 18, 25, 54, 57, 59, 63, 67, 180, 306, 307
Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . 69, 70, 73, 92, 93, 98, 103

branch  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
branch-to-subroutine (BSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
decoder  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
jump-to-subroutine (JSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
return-from-subroutine (RTS). . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Instruction decoder  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Instruction set  . . . . . . . . . . . . . . . . 30, 36, 98, 104, 139, 156, 221, 307

dexterity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153
mnemonics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32, 293
opcode map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125, 126

Instructions  . . . . . . . . . . . . . . . . . . . . . . . . . . . 21, 23, 30, 36, 219, 307
assembly language  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
bit status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
bit test and branch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
branch  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123
CCR activity summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
condition code register (CCR) bits . . . . . . . . . . . . . . . . . . . . . . . 220
CPU registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
machine coding  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
memory and addressing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
operators  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Index 321  
For More Information On This Product,

  Go to: www.freescale.com



Index

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

read-modify-write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
register/memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
source form notation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Interrupt . . . . . . . . . . . . . . . . . . . . . . . . 88, 95, 101, 103, 163, 170, 180
external  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
hardware  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92, 95
nested  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93, 95
on-chip peripheral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92, 95
sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
stacking order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61, 149, 162, 178

Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Inverter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40, 49, 308

J
Jump-to-subroutine (JSR) . . . . . . . . . . . . . . . 76, 82, 85, 141, 165, 261

K
Kilobyte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54, 63, 308

L
Label . . . . . . . . . . . . . . . . . . . . . . . . 145, 146, 149, 156, 162, 165, 308
Latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
Least significant bit (LSB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195, 308
Listing  . . . . . . . . . . . . . . . 70, 73, 76, 80, 143, 144, 145, 150, 156, 308
Logic

elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
levels  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Logic 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
Logic 0, see Zero
Logic 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
Logic 1, see One
Logic level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19, 49
Low order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86, 308
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

322 Index MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Index

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

M
Machine code  . . . . . . . . . . . 32, 75, 136, 143, 145, 147, 148, 150, 308
Mainframe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18, 20, 23, 25, 308
Mass storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22, 309
MCU, see microcontroller
Megabyte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21, 25, 52, 54

analogy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22, 56, 63
EPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22, 55, 63
how a computer sees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
I/O  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57, 58, 59, 63
map  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60, 61, 64
non-volatile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54, 64
OTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56, 63
peripheral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
PROM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21, 55, 63
ROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21, 55, 63
volatile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54, 64

Memory array  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Memory location  . . . . . . . . . . . . . . . . . . . 60, 68, 69, 70, 100, 183, 309
Memory map . . . . . . . . . . . . . . . . . . . . 60, 61, 64, 70, 72, 94, 184, 309
Memory-mapped I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94, 183, 309
Microcontroller (MCU) . . . . . . . . . . . . . . . . 17, 19, 23, 24, 66, 299, 309
Microprocessor (MPU). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23, 309
Mnemonic  . . . . . . . . . . 32, 36, 133, 136, 139, 143, 146, 160, 293, 309
Mode

addressing . . . . . . . . . . . . . . . . . . . . . . .98, 104, 133, 146, 150, 299
direct addressing . . . . . . . . . . . 60, 64, 74, 104, 110, 134, 146, 304
extended addressing . . . . . . . . . . . . . . . . . 104, 108, 133, 150, 305
immediate addressing  . . . . . . . . . 75, 104, 107, 133, 146, 161, 306
indexed addressing . . . . . . . . . . . . . . . . . . .100, 104, 112, 134, 307
inherent addressing . . . . . . . . . . . . . . . . . . . . . . . . . . 104, 105, 133
relative addressing . . . . . . . . . . . . . . . . . . . . 76, 104, 118, 134, 313

Monitor program  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155, 310
Most significant bit (MSB) . . . . . . . . . . . . . . . . . . . . . 75, 101, 195, 310
Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45, 46
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Index 323  
For More Information On This Product,

  Go to: www.freescale.com



Index

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

N
N (bit in condition code register) . . . . . . . . . . . . . . 68, 75, 84, 101, 310
NAND gate  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41, 49, 310
Negative  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
Non-volatile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54, 64, 87, 310
NOR gate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42, 49, 310

O
Object code file . . . . . . . . . . . . . . . . . . . . . . . . 143, 147, 150, 156, 310

S-record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Octal  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32, 105, 310

conversion to/from hexadecimal, binary  . . . . . . . . . . . . . . . . . . . .33
Offset (indexed) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112, 114, 116
One . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 27, 38, 40, 49, 310
Ones complement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148, 311
Opcode . . . . . 30, 32, 36, 70, 74, 78, 94, 104, 125, 133, 134, 146, 311
Opcode map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Operand. . . . . . . . . . . . . . . 68, 70, 74, 94, 99, 100, 103, 134, 146, 311
ORG directive  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149, 165
Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21, 23, 69, 87, 311
OTP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55, 56, 63, 154
OTPROM, see OTP
Output, see input-output

P
Paced loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160, 161, 165

loop trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
program example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171, 172
software use. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169, 178
switch debouncing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
system clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288, 311
PC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
Peripheral  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64, 180, 181, 215

analog-to-digital converter (ADC). . . . . . . . . . . . . . . . . . . . 183, 215
control of  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
digital-to-analog converter (DAC). . . . . . . . . . . . . . . . . . . . 183, 215
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

324 Index MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Index

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183, 216
I/O port, general-purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
on-chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
serial port  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182, 215
timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181, 215

Personal computer (PC)  . . . . . . . . . . . . . 18, 23, 25, 85, 143, 154, 311
Playing computer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73, 80, 94, 311
Pointer register  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68, 311
Port

general-purpose I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . 59, 187, 215
serial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182, 215
serial communications interface (SCI) . . . . . . . . . . . . . . . . . . . . 182
serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . 182

Program. . . . . . . . . . . . . . . . . . . 20, 23, 70, 72, 80, 141, 147, 156, 312
Program counter (PC) . . . . . . . . . . . . 68, 74, 76, 83, 88, 103, 133, 312
Program runaway  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Programming model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99, 133, 312
PROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55, 312
Pulled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69, 103, 312
Pulse width modulated (PWM)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Pushed  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69, 78, 103, 312

R
RAM  . . . . . . . . . . . . . .21, 55, 57, 63, 85, 142, 151, 156, 170, 178, 312

variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20, 57, 312
Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66, 80, 88, 313

accumulator (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68, 100, 133
condition code (CCR). . . . . . . . . . . . . . . . . . . 69, 75, 100, 133, 303
CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67, 68, 99, 133, 303
I/O  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
index (X). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68, 100, 133, 307
internal status and control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68, 311
program counter (PC)  . . . . . . . . . . . . . . . . . . . . . . . . . 68, 103, 133
stack pointer (SP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94, 103, 133
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Index 325  
For More Information On This Product,

  Go to: www.freescale.com



Index

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154, 160
Relative addressing mode . . . . . . . . . . . . . . . . . 76, 104, 118, 134, 313
Relative instructions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Relative offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76, 78, 146, 313
Reset . . . . . . . . . . . . . . . . . . . . . . . . . .59, 68, 86, 94, 95, 103, 186, 313

conditions that cause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
illegal address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
internal actions resulting from  . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
power-on reset (POR)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
RESET pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
vector . . . . . . . . . . . . . . . . . . . . 68, 86, 94, 149, 162, 163, 178, 313
watchdog timer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87

Return address  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78, 83
Return-from-interrupt (RTI) . . . . . . . . . . . . . . . . . . . . . . . . 88, 101, 163
Return-from-subroutine (RTS). . . . . . . . . . . . . . 76, 77, 79, 84, 85, 142
RMB directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151, 165, 178
ROM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21, 55, 63, 70, 313

S
Serial communications interface (SCI)  . . . . . . . . . . . . . . . . . . . . . . 182
Serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Serial port

SCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182
SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85, 154, 157, 164, 314
Software

PWM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Software delay program  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Software interrupt  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Software interrupt (SWI)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61, 88, 95
Source code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156, 314

mnemonic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139, 156
Source program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143, 145, 314
S-record. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147, 148, 150, 156, 314
Stack . . . . . . . . . . . . . . . 69, 78, 79, 83, 88, 91, 94, 142, 170, 178, 314
Stack pointer (SP) . . . . . . . . . . . . . . . . . . 69, 76, 78, 94, 103, 133, 314
Subroutine . . . . . . . . . . . . 76, 77, 80, 94, 103, 139, 141, 142, 170, 314
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

326 Index MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



Index

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

System equates  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160
application-specific. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
equate directives (EQU). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
register equates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

T
Three-state buffer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46, 49, 315
Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181, 215

example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Transducer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 315
Transistor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39, 49

N-type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
P-type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Transmission gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44, 49, 315
Twos complement . . . . . . . . . . . . . . . . . . . . . 75, 76, 79, 101, 310, 315

V
Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165, 315
VDD  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 86, 315
Vector  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61, 86, 162, 315

reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Volatile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54, 64, 315
VSS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 315

W
Word  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22, 54, 316
Write  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20, 57, 75, 316

Z
Z (bit in condition code register)  . . . . . . . . . . . . . . 68, 75, 84, 102, 316
Zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 27, 38, 40, 49, 316
Zero crossing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168, 316
M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

MOTOROLA Index 327  
For More Information On This Product,

  Go to: www.freescale.com



Index

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

M68HC05 Family — Understanding Small Microcontrollers — Rev. 2.0

328 Index MOTOROLA  
For More Information On This Product,

  Go to: www.freescale.com



    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

— NOTES —
  
For More Information On This Product,

  Go to: www.freescale.com



    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

— NOTES —
  
For More Information On This Product,

  Go to: www.freescale.com



    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

  
For More Information On This Product,

  Go to: www.freescale.com



    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

 

Freescale Semiconductor, Inc.
n

c
..

.

M68HC05TB/D

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts.
Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed:  Motorola Literature Distribution, P.O. Box 5405, Denver, Colorado 80217, 1-800-441-2447 or

1-303-675-2140. Customer Focus Center, 1-800-521-6274
JAPAN:  Nippon Motorola Ltd.: SPD, Strategic Planning Office, 141, 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan. 03-5487-8488
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd., 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298
Mfax™, Motorola Fax Back System: RMFAX0@email.sps.mot.com; http://sps.motorola.com/mfax/;

TOUCHTONE, 1-602-244-6609; US and Canada ONLY, 1-800-774-1848
HOME PAGE:  http://motorola.com/sps/

Mfax is a trademark of Motorola, Inc.

© Motorola, Inc., 1998

  

   
   

   
 

For More Information On This Product,
  Go to: www.freescale.com


	Acknowledgment
	List of Sections
	Table of Contents
	List of Figures
	List of Tables
	What is a Microcontroller?
	Contents
	Introduction
	Overall View of a Computer System
	Computer System Inputs
	Computer System Outputs
	Central Processor Unit (CPU)
	Clock
	Computer Memory
	Computer Program
	The Microcontroller
	Review
	The Parts of Any Computer
	Kinds of Computers


	Computer Numbers and Codes
	Contents
	Introduction
	Binary and Hexadecimal Numbers
	ASCII Code
	Computer Operation Codes
	Instruction Mnemonics and Assemblers
	Octal
	Binary Coded Decimal
	Review

	Basic Logic Elements
	Contents
	Introduction
	Logic Levels
	CMOS Transistors
	Simple Gates
	Inverter
	NAND Gate
	NOR Gate

	Transmission Gates, Buffers, and Flip Flops
	Transmission Gate
	Three-State Buffer
	Half Flip Flop (HFF)

	Review

	Computer Memory and Parallel I/O
	Contents
	Introduction
	Pigeon Hole Analogy
	How a Computer Sees Memory
	Kilobytes, Megabytes, and Gigabytes
	Kinds of Memory
	Random Access Memory (RAM)
	Read-Only Memory (ROM)
	Programmable ROM (PROM)
	EPROM
	OTP
	EEPROM

	I/O as a Memory Type
	Internal Status and Control Registers

	Memory Maps
	Memory Peripherals
	Review

	Computer Architecture
	Contents
	Introduction
	Computer Architecture
	CPU Registers

	Timing
	CPU View of a Program
	CPU Operation
	Detailed Operation of CPU Instructions
	Store Accumulator (Direct Addressing Mode)
	Load Accumulator (Immediate Addressing Mode)
	Conditional Branch
	Subroutine Calls and Returns


	Playing Computer
	Resets
	RESET Pin
	Power-On Reset
	Watchdog Timer Reset
	Illegal Address Reset

	Interrupts
	External Interrupts
	On-Chip Peripheral Interrupts
	Software Interrupt (SWI)
	Interrupt Latency
	Nested Interrupts

	Review

	M68HC05 Instruction Set
	Contents
	Introduction
	Central Processor Unit (CPU)
	Arithmetic/Logic Unit (ALU)
	CPU Control
	CPU Registers
	Accumulator
	Index Register
	Condition Code Register
	Half-Carry Bit (H)
	Interrupt Mask Bit (I)
	Negative Bit (N)
	Zero Bit (Z)
	Carry/Borrow Bit (C)
	Program Counter
	Stack Pointer


	Addressing Modes
	Inherent Addressing Mode
	Immediate Addressing Mode
	Extended Addressing Mode
	Direct Addressing Mode
	Indexed Addressing Modes
	Indexed, No Offset
	Indexed, 8-Bit Offset
	Indexed, 16-Bit Offset

	Relative Addressing Mode
	Bit Test and Branch Instructions
	Instructions Organized by Type

	Instruction Set Summary
	Review
	CPU Registers
	Addressing Modes
	Instruction Execution


	Programming
	Contents
	Introduction
	Writing a Simple Program
	Flowchart

	Mnemonic Source Code
	Software Delay Program
	Assembler Listing
	Object Code File

	Assembler Directives
	Originate (ORG)
	Equate (EQU)
	Form Constant Byte (FCB)
	Form Double Byte (FDB)
	Reserve Memory Byte (RMB)
	Set Default Number Base to Decimal

	Instruction Set Dexterity
	Application Development
	Review

	The Paced Loop
	Contents
	Introduction
	System Equates
	Register Equates for MC68HC705J1A
	Application System Equates

	Vector Setup
	Reset Vector
	Unused Interrupts

	RAM Variables
	Paced Loop
	Loop Trigger
	Loop System Clock
	Your Programs
	Timing Considerations
	Stack Considerations

	An Application-Ready Framework
	Review

	On-Chip Peirpheral Systems
	Contents
	Contents
	Introduction
	Types of Peripherals
	Timers
	Serial Ports
	Analog-to-Digital Converters
	Digital-to-Analog Converters
	EEPROM

	Controlling Peripherals
	The MC68HC705J1A Timer
	A Timer Example
	Using the PWM Software

	A Practical Motor Control Example
	Theory
	Motor Control Circuit
	Motor Control Software
	Listing 6. Speed Control Program Listing (Sheet 1 of 5)

	Review
	Other Kinds of Peripherals


	Instruction Set Details
	Contents
	Introduction
	M68HC05 Instruction Set
	ADC Add with Carry ADC
	ADD Add without Carry ADD
	AND Logical AND AND
	ASL Arithmetic Shift Left ASL
	ASR Arithmetic Shift Right ASR
	BCC Branch if Carry Clear BCC
	BCLR n Clear Bit in Memory BCLR n
	BCS Branch if Carry Set BCS
	BEQ Branch if Equal BEQ
	BHCC Branch if Half Carry Clear BHCC
	BHCS Branch if Half Carry Set BHCS
	BHS Branch if Higher or Same BHS
	BHI Branch if Higher BHI
	BIH Branch if Interrupt Pin is High BIH
	BIL Branch if Interrupt Pin is Low BIL
	BIT Bit Test Memory with Accumulator BIT
	BLO Branch if Lower BLO
	BLS Branch if Lower or Same BLS
	BMC Branch if Interrupt Mask is Clear BMC
	BMI Branch if Minus BMI
	BMS Branch if Interrupt Mask is Set BMS
	BNE Branch if Not Equal BNE
	BPL Branch if Plus BPL
	BRA Branch Always BRA
	BRCLR n Branch if Bit n is Clear BRCLR n
	BRN Branch Never BRN
	BRSET n Branch if Bit n is Set BRSET n
	BSET n Set Bit in Memory BSET n
	BSR Branch to Subroutine BSR
	CLC Clear Carry Bit CLC
	CLI Clear Interrupt Mask Bit CLI
	CLR Clear CLR
	CMP Compare Accumulator with Memory CMP
	COM Complement COM
	CPX Compare Index Register with Memory CPX
	DEC Decrement DEC
	EOR Exclusive-OR Memory with Accumulator EOR
	INC Increment INC
	JMP Jump JMP
	JSR Jump to Subroutine JSR
	LDA Load Accumulator from Memory LDA
	LDX Load Index Register from Memory LDX
	LSL Logical Shift Left LSL
	LSR Logical Shift Right LSR
	MUL Multiply Unsigned MUL
	NEG Negate NEG
	NOP No Operation NOP
	ORA Inclusive-OR ORA
	ROL Rotate Left thru Carry ROL
	ROR Rotate Right thru Carry ROR
	RSP Reset Stack Pointer RSP
	RTI Return from Interrupt RTI
	RTS Return from Subroutine RTS
	SBC Subtract with Carry SBC
	SEC Set Carry Bit SEC
	SEI Set Interrupt Mask Bit SEI
	STA Store Accumulator in Memory STA
	STOP Enable IRQ, Stop Oscillator STOP
	STX Store Index Register X in Memory STX
	SUB Subtract SUB
	SWI Software Interrupt SWI
	TAX Transfer Accumulator to Index Register TAX
	TST Test for Negative or Zero TST
	TXA Transfer Index Register to Accumulator TXA
	WAIT Enable Interrupt, Stop Processor WAIT


	Reference Tables
	Contents
	Introduction
	ASCII to Hexadecimal Conversion
	Hexadecimal to Decimal Conversion
	Decimal to Hexadecimal Conversion
	Hexadecimal Values vs. M68HC05 Instructions

	Glossary
	Index

