

TECHNICAL UPDATE

MC68HC705C8
MC68HC705C8A

MC68HSC705C8A
MC68HC705C4A

Technical Update contains updates to documented information appearing in other
Motorola technical documents as well as new information not covered elsewhere.

We are confident that your Motorola product will satisfy your design needs. This
Technical Update and the accompanying manuals and reference documentation are
designed to be helpful, informative, and easy to use.

Should your application generate a question or a problem not covered in the current
documentation, please call your local Motorola distributor or sales office. Technical
experts at these locations are eager to help you make the best use of your Motorola
product. As appropriate, these experts will coordinate with their counterparts in the
factory to answer your questions or solve your problems. To obtain the latest
document, call your local Motorola sales office.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no
warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does
Motorola assume any liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental damages. "Typical"
parameters can and do vary in different applications. All operating parameters, including "Typicals" must be
validated for each customer application by customer's technical experts. Motorola does not convey any license
under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for
use as components in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any
such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers,
employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses,
and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated
with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and µ

are registered trademarks of Motorola, Inc. Motorola, Inc.
is an Equal Opportunity/Affirmative Action Employer.

Page 2
MOTOROLA Table of Contents

MC68HC705C8,C8A

TABLE OF CONTENTS

Modules

Serial Peripheral Interface (SPI) Module...3

SPI Test Program .. 3

SPI Code Snippet (Master) ... 4

SPI Code Snippet (Slave).. 10

Computer Operating Properly (COP) COP0COP14

COP Timeout Period ... 14

CPU ..15

Correction to SUB in Applications Guide ... 15

External Interrupt Timing.. 15

I Bit in CCR During Stop Mode... 16

BSET and BCLR are Read-Modify-Write Instructions.................................... 16

I Bit in CCR During Wait Mode ... 17

Timer Module ..18

Input Capture/Output Compare Code Snippet ... 18

Interrupt Driven Output Compare Code .. 20

Input Capture Test... 22

Parts Specific

MC68HC705C8 ..24

SPIF Bit Errata ... 24

Keypad Decoding .. 25

Mask Set C16W Bootloader Code.. 29

Memory Map Diagram Clarification ... 37

Bootloader Mask Set 1C11C, 2C11C, 3C11C, 6C11C, 7C11C, and 9C11C ... 37

MC68HC705C8A..45

Bootloader for Mask Set 0E20T, 1E20T, 2E20T, 3E20T, 0E79R, 1E79R,
2E79R, and 3E79R ... 45

Mask Set Errata 68HC705C8AMSE1 .. 53

Mask Set Errata 68HC705C8AMSE2 (R1) .. 53

Page 3
MOTOROLA Modules

MC68HC705C8,C8A

TECHNICAL UPDATE

Modules

 Serial Peripheral Interface (SPI) Module

SPI Test Program

Reference Document: Not applicable

Tracker Number: HC705C8.004 Revision: 2.00

The following code will work on all MCUs that have the SPI_A module. The code was
tested on an HC705C8. Some equates and vectors may have to be changed to properly
work on a specific part.

*
* Program Name: 7C8_SPI.ASM (SPI Test on the 705C8)
* Revision: 1.00
* Date: June 7, 1993
*
* Written By: Mark Glenewinkel
* Motorola CSIC Applications
*
* Assembled Under: P&E Microcomputer Systems IASM05
*
* *********************************
* * Revision History *
* *********************************
*
* Rev 1.00 06/07/93 Mark Glenewinkel
* Initial Release
*

SPI_A

Revision History

Date Revision Description

5/2/95 2.00

Includes trackers HC705C8.004, HC05C8.005, and
HC05C8.006.

Page 4
MOTOROLA Modules

MC68HC705C8,C8A

*
* Program Description:
*
* Use the HC705C8 resident MCU on the HC05EVM to
* run this test.
* Jumper pin #34 on header J19 on the EVM to 5v through
* A 10kOhm resistor. This ties the SS pin of the SPI
* high insuring against the possibility of a mode
* fault error.
* Download the program.
* Make sure the PC is at $800.
* Type GO.
* Look at pin #32 of header J19. This is the MOSI pin
* of the SPI. You should see '$55' come out of this
* pin. The MOSI pin's steady state level is a logic '1'.
* The bitstream's width is 8usecs. Each bit using
* 1usec of time. The program executes in an
* infinite loop.
* ABORT the program to stop operation.
*

*** Equates for 705C8
SPCR EQU $0A ;spi ctrl reg
SPSR EQU $0B ;spi status reg
SPDR EQU $0C ;spi data reg

*** Start of program ***

 ORG $0800 ;start of user eprom

START LDA #$50
 STA SPCR ;spi enabled, mstr
 ; cpha=cpol=spr1=spr0=0

AGAIN LDA #$55
 STA SPDR ;send $55 out on spi

LOOP LDA SPSR ;load spi status reg
 AND #$80 ;check if SPIF bit is set
 BEQ LOOP ;if not, go back
 ; and check again

 BRA AGAIN

SPI Code Snippet (Master)

Reference Document: HC68HC05C4/D, Section 6

Tracker Number: HC05C8.005 Revision: 1.00

The following code will work on all MCUs that have the SPI_A module. The code was
tested on an HC705C8. Some equates and vectors may have to be changed to properly
work on a specific part.

Page 5
MOTOROLA Modules

MC68HC705C8,C8A

**
*
* Program Name: C8SPIM.ASM
* Revision: 2.0
* Target MCU: MC68HC05C8, MC68HC705C8
* Date: 8/18/93
* Written by: David Yoder, Motorola CSIC Applications
* Assembly: P&E Microcomputer Systems IASM05 3.0m
*
**
* Rev history:
* Rev 2.0 8/18/93 No longer outputs through DACIA of
* EVM. Only outputs PA2 if error occurs.
*
* Rev 1.0 8/13/93 original
**
*
* This code shows a basic SPI transfer protocol between one master
* and one slave. A string is continuously transmitted to the slave.
* The companion slave program reverses the case of all alpha
* characters before sending the message back. The message received
* by the master is again case switched and then compared to the
* original message. If a difference is noted, PA2 is driven low. PA2
* idles high.
*
* In order for the handshaking to operate, the MCU's should be
* connected as shown below.
*
* Master Slave
* ------ -----
* PD2/MISO -------------- PD2/MISO
* PD3/MOSI -------------- PD3/MOSI
* PD4/SCK -------------- PD4/SCK
* PD5/SS -----\
* PA1 --------/
* PA0 ------------------- PD5/SS
* PA2 ------------------O Error indicator
*
* PA0 controls SS_ (slave select) on the slave. For the mode used
* (cpol=1, cpha=0), the slave SS_ must be brought high between each
* transfer. If it is not, a write collision will result when the
* slave SPDR is written.
*
* PA1 controls SS_ on the master.
* MC68HCx05C8: The master SS_ must be pulled high while the SPI is
* enabled in master mode. If it is not, a mode fault will result.
* MC68HCx05C9: The master PD5/SS pin may be set as output in DDRD bit5.
* If this is done, master SS_ need not be pulled high. This was not
* done to insure compatibility with the MC68HCx05C8, which has an
* input-only Port D.
*
* PA2 pulses low to indicate transmission errors.
*
* PortD DDR
* MC68HCx05C8: Does not have a data direction register. No need to
* write to address $07.
* MC68HCx05C9: Has data direction register. It must be set up
* appropriately for the SPI to operate.

************** Equates *******************
cr equ $0d ;Carriage Return character
lf equ $0a ;Line Feed character

Page 6
MOTOROLA Modules

MC68HC705C8,C8A

************ MCU Equates *****************
porta equ $00
ddra equ $04
portd equ $03
ddrd equ $07

ROM0 equ $20 ;Start of ROM0
RAM equ $50 ;Start of main RAM

************ SPI Equates *****************
spcr equ $0a ;SPI control register
spsr equ $0b ;SPI status register
spdr equ $0c ;SPI data register

************* SPI Bit Equates ************

********** SPCR ***********
spie equ 7 ;SPI interrupt enable bit
spe equ 6 ;SPI enable
mstr equ 4 ;SPI master enable
cpol equ 3 ;SPI clock polarity
cpha equ 2 ;SPI clock phase
spr1 equ 1 ;SPI rate
spr0 equ 0 ;SPI rate

********** SPSR ************
spif equ 7 ;SPI interrupt flag
wcol equ 6 ;SPI write collision
modf equ 4 ;SPI mode fault

********** PortA ***********
sss equ 0 ;port a0 is tied to ss on slave spi
mss equ 1 ;port a1 is tied to ss on the master
error equ 2 ;port a2 pulses low when an SPI error
 ; is caught

***************DACIA Equates*******************

IER equ $20 ;interrupt enable register(write)
ISR equ $20 ;interrupt status register(read)
TDR equ $23 ;transmit data register(write)
RDR equ $23 ;receive data register(read)

*************DACIA bit Equates********************

DTDRE equ 6 ;transmit data reg. empty

***************End of Equates******************

************** Variables **********************
 org RAM ;start of main RAM
temp rmb 1 ;temporary variable

Page 7
MOTOROLA Modules

MC68HC705C8,C8A

************** Reset Vectors ******************
 org $1ff4 ;vectors
SPI fdb trap
SCI fdb trap
TIMER fdb trap
IRQ fdb trap
SWI fdb trap
RESET fdb start

 org $0200 ;start of program area

****************Program Beginning**************

start: bsr spistrsetup ;initialise system
 bsr checksetup
start10 ldx #msg ;point to string
start20 bsr spistr ;xmit one char of string
 beq start10 ;start over if end of string
 bsr casesw ;reverse case of rec'd char
 bsr check ;same as xmit'd char?
 bra start20 ;xmit next char

**
* Subroutine: spistrsetup
* Inputs:
* none
* Outputs:
* none
* Alters Regs:
* A
* CCR
*
**
spistrsetup:
 lda #$18 ;sck=1,mosi=1 this does nothing on C8
 sta ddrd ;but MUST be done on C9

 lda #{1<sss + 1<mss}
 ;left shift 1's into these bit positions
 ;port a0 controls ss on the slave spi
 ;port a1 controls ss on the master
 sta ddra

 bset sss,porta ;deselect slave
 ; the slave ss must go low during the
 ; transfer and high between transfers
 ; for the mode cpha=1,cpol=0. If the
 ; spdr of the slave is written while
 ; ss of the slave is low, a write
 ; collision will occur.
 bset mss,porta ;deselect master
 ; the master ss must be held high during
 ; all time that the master spe and mstr
 ; bits are set. A mode fault will result
 ; if it is not held high during this
 ; time.
 lda #{1<spe + 1<mstr + 1<cpol + 1<spr0}
 ;left shift 1's into these bit positions
 ;set the master up as follows
 ; do not enable spi interrupts
 ; enable spi
 ; enable master mode
 ; cpol=1
 ; cpha=0
 ; spr=01 : sck=eck/4

Page 8
MOTOROLA Modules

MC68HC705C8,C8A

 sta spcr

 rts ;return from subroutine

**
* Subroutine: checksetup
* Inputs:
* none
* Outputs:
* none
* Alters Regs:
* none
*
**
checksetup:
 bset error,ddra ;set error bit as output
 bset error,porta ;put error flag in idle state
 ; pa2 will toggle low if an error is
 ; detected in the SPI system

 rts ;return from subroutine
********************SPI Data Transfer***********
* Subroutine: spistr
* Inputs:
* X: address of string to xmit
* Outputs:
* A: character received by SPI
* X: address of next character to xmit
* CCR: Z bit set if end of string is reached
* Depends upon:
* spistrsetup
* Alters Regs:
* A
* X
* CCR
* Variable TEMP
* Description:
* Transmits one character of a string out the SPI
* system. Returns with Z bit set when the "$"
* is reached. Returns with Z bit clear if "$"
* is not reached.
**

spistr:
 lda ,x ;get message data
 cmp #"$" ;is it the end of the message?
 beq spistr10 ;done with string
 ;return with Z bit set
 bclr sss,porta ;select slave
 sta spdr ;send character
 brclr spif,spsr,* ;check spif, wait until set
 bset sss,porta ;deselect slave
 ; slave must be deselected so that
 ; it can write to it's own spdr
 ; and not cause a write collision
 incx ;set up to send next byte

 lda spdr ;get the recieved character

 clr temp ;we are not done with the
 com temp ; string, so insure that Z
 ; bit is clear for return

spistr10:
 rts ;return to calling routine

Page 9
MOTOROLA Modules

MC68HC705C8,C8A

* Subroutine: casesw
* Intputs:
* ASCII character in acc
* Outputs:
* ASCII character in acc
* Alters Regs:
* A
* CCR
*
* Routine changes upper case to lower case and
* lower case to upper case. Leaves non-alpha
* characters unchanged.
**

casesw cmp #$41 ;below alphas?
 bmi casesw20
 cmp #$5b ;above caps?
 bpl casesw10
 add #$20 ;must be cap, change to low
 bra casesw20
casesw10:
 cmp #$61 ;between alphas?
 bmi casesw20
 cmp #$7b ;above alphas?
 bpl casesw20
 sub #$20 ;must be lowercase, change to cap

casesw20:
 rts ;return

* Subroutine: check
* Intputs:
* A: value to check
* X: pointer to next character to xmit
* offset from received char by -2
* Outputs:
* A: unaffected
* X: unaffected
* Depends upon:
* checksetup
* Alters Regs:
* CCR
*
* Routine compares the value in accumulator to value
* pointed to by (X-2).
*
* If the value do not match, PA0 is pulsed low
*
* If X=msg+1, the routine returns immediately.
*
* This is usefull for comparing
* received to transmitted data with the SPI.
**

check:
 cpx #msg+1 ;was this the 1st xfer?
 beq check20 ;if so, don't bother
 decx ;X=X-2
 decx
 cmp ,x ;rec char = xmit char?
 beq check10
 bclr error,porta ;if not, pulse error
 bset error,porta

Page 10
MOTOROLA Modules

MC68HC705C8,C8A

check10:
 incx ;X=X+2
 incx
check20:
 rts ;done

****************Trap************************

trap bra trap ;trap for unused vectors

**************Message data*******************
 org ROM0 ;store message in Page0 ROM
msg: db "The Quick Brown Fox jumped over the Lazy Dog",cr,lf,"$"

SPI Code Snippet (Slave)

Reference Document: HC68HC05C4/D, Section 6

Tracker Number: HC05C8.006 Revision: 2.00

The following code will work on all MCUs that have the SPI_A module. The code was
tested on an HC705C8. Some equates and vectors may have to be changed to properly
work on a specific part.

**
*
* Program Name: C8SPIS.ASM
* Revision: 1.1
* Target MCU: MC68HC05C8, MC68HC705C8
* Date: 8/18/93
* Written by: David Yoder, Motorola CSIC Applications
* Assembly: P&E Microcomputer Systems IASM05 3.0m
*
**
* Rev History:
* 1.1 8/18/93 changed label names for consistancy
* 1.0 8/12/93 original for MC68HCx05C9 memory map
**
*
* This code shows a basic SPI transfer protocol between one master
* and one slave. This slave module receives characters, changes
* the case of all alpha characters, and transmits the character
* back. Non-alpha characters are transmitted unchanged.
*
* In order for the handshaking to operate, the master should use the
* code snippet (C9SPIM.ASM), and the MCU's should be connected as
* shown below.
*
* Master Slave
* ------ -----
* PD2/MISO -------------- PD2/MISO
* PD3/MOSI -------------- PD3/MOSI
* PD4/SCK -------------- PD4/SCK
* PD5/SS -----\
* PA1 --------/
* PA0 ------------------- PD5/SS
* PA2 ------------------O Error indicator
*

Page 11
MOTOROLA Modules

MC68HC705C8,C8A

* PA0 in the master code snippet controls SS_ (slave select) on the
* slave. For the mode used (cpol=1, cpha=0), the slave SS_ must be
* brought high between each transfer. If it is not, a write collision
* will result when the slave SPDR is written.
*
* PA1 controls SS_ on the master. The master code snippet is written
* such that the master controls it's own slave select line.
* MC68HCx05C8: The master SS_ must be pulled high while the SPI is
* enabled in master mode. If it is not, a mode fault will result.
* MC68HCx05C9: The master PD5/SS pin may be set as output in DDRD bit5.
* If this is done, master SS_ need not be pulled high. This was not
* done to insure compatibility with the MC68HCx05C8, which has an
* input-only Port D.
*
* PA2 of the master code snippet pulses low to indicate transmission
* errors.
*
* PortD DDR
* MC68HCx05C8: Does not have a data direction register. No need to
* write to address $07.
* MC68HCx05C9: Has data direction register. It must be set up
* appropriately for the SPI to operate.

************** Equates *******************
cr equ $0d ;carriage return character
lf equ $0a ;line feed character
dc1 equ $11
************ SPI Equates *****************

portd equ $03 ;port d
ddrd equ $07 ;data direction register for port d
spcr equ $0a ;SPI control register
spsr equ $0b ;SPI status register
spdr equ $0c ;SPI data register

************* SPI Bit Equates ************

******* SPCR ***********
spie equ 7 ;SPI interrupt enable bit
spe equ 6 ;SPI enable bit
mstr equ 4 ;SPI master mode bit
cpol equ 3 ;SPI clock polarity bit
cpha equ 2 ;SPI clock phase bit
spr1 equ 1 ;SPI rate bit 1
spr0 equ 0 ;SPI rate bit 0

******* SPSR ************
spif equ 7 ;SPI interrupt flag bit
wcol equ 6 ;SPI write collision bit
modf equ 4 ;SPI mode fault bit

***************End of Equates******************

 org $1ff4 ;reset vectors

*************** Vectors ************************

SPI fdb echosw
SCI fdb trap
TIMER fdb trap
IRQ fdb trap
SWI fdb trap
reset fdb start

 org $0200 ;start of program area

Page 12
MOTOROLA Modules

MC68HC705C8,C8A

****************Program Beginning**************

start:
 bsr setup
 cli ;enable system wide interrupts

start10:
 nop ;wait for interrupts
 bra start10

*****************Init SPI**********************
* Subroutine: setup
* Inputs:
* none
* Outputs:
* none
*
* Initializes SPI system***
setup: lda #$04 ;set up PD2/MOSI as output
 sta ddrd ;others as input
 ;MUST be done on C9,
 ;has no effect on C8

 lda #{1<spie + 1<spe + 1<cpol + 1<spr0}
 ;shift 1's into appropriate
 ; bit postions
 sta spcr ;setup SPI as follows:
 ; enable SPI interrupts
 ; enable SPI system
 ; do not enable master mode
 ; cpol=1 : in this mode, ss must
 ; cpha=0 : go high between xfers
 ; spr=01 : sck=eck/4
 rts

********************SPI Data Transfer ISR*******
* ISR: echosw
* Depends upon:
* setup
* casesw
*
* Slave SPI ISR.
* Receives character from SPI system. Assumes the character
* to be ASCII. Switches the case of all alpha characters.
* Does not affect non-alpha characters. Transmits the
* resulting character back to master.

echosw:
 brclr spif,spsr,* ;make sure transmission is complete

 lda spdr ;get data received from SPI

 bsr casesw ;reverse the case of alphas

echosw10:
 sta spdr ;send data
 ; with cpha=1, ss must go low
 ; before this write is made.
 ; If not, a write collision
 ; will occur. In this example,
 ; the master controls the slave
 ; ss line.

Page 13
MOTOROLA Modules

MC68HC705C8,C8A

 brset wcol,spsr,echosw10
 ;if a write collision occurred,
 ;try again

 rti ;return to main loop

* Subroutine: casesw
* Intputs:
* ASCII character in acc
* Outputs:
* ASCII character in acc
* Alters Regs:
* A
* CCR
*
* Routine changes upper case to lower case and
* lower case to upper case. Leaves non-alpha
* characters unchanged.
**

casesw cmp #$41 ;below alphas?
 bmi casesw20
 cmp #$5b ;above caps?
 bpl casesw10
 add #$20 ;must be cap, change to low
 bra casesw20
casesw10:
 cmp #$61 ;between alphas?
 bmi casesw20
 cmp #$7b ;above alphas?
 bpl casesw20
 sub #$20 ;must be lowercase, change to cap

casesw20:
 rts ;return

*******************Trap************************
trap bra * ;trap for unused vectors

Page 14
MOTOROLA Modules

MC68HC705C8,C8A

Computer Operating Properly (COP) COP0COP

Revision History

COP Timeout Period

Reference Documents: MC68HC705C8AD/D Rev. 4.0, pages 14 (705C4A),
31 (705C8A), and 51; HC705C5GRS/D Rev. 1.3, page 49; HC05P1AGRS/D
Rev 1.3; MC68HC05P4/D, page 4-2; HC05P5GRS/D Rev. 1.3;
MC68HC05P7/D, page 4-2; HC05P15GRS/D Rev. 0.0, page 33;
HC05P18GRS/D Rev. 0.5, page 12.

Tracker Number: HC705P6.012 Revision: 1.00

The timeout period for the watchdog timer on the COP0COP is a direct function of the
crystal frequency. The equation is:

 262,144
 Timeout Period = -----------
 Fxtal

For example, the timeout period for a 4-MHz crystal would be 65.536 ms.

Date Revision Description

6/27/95 1.00 Includes tracker HC705P6.012

Page 15
MOTOROLA Modules

MC68HC705C8,C8A

CPU

HC05CPU

Revision History

Correction to SUB in Applications Guide

Reference Documents: M68HC05 Applications Guide MC68HC05AG/AD, page
A-62; M68HC05 Applications Guide MC68HC05AG/AD Rev. 1, page A-62

Tracker Number: HC05CPU.001 Revision: 1.00

Replace the C bit description with:

The C bit (carry flag) in the condition code register gets set if the absolute value of the
contents of memory is larger than the absolute value of the accumulator, cleared
otherwise.

External Interrupt Timing

Reference Documents: MC68HC705C8/D Rev. 1, page 3-5; MC68HC05B6/
D, Rev. 3, page 11-11, note 4; MC68HC705C8/D, Rev. 1, page 3-5;
MC68HC05C9/D, page 13-7, note 3; MC68HC05C12/D, page 13-9, note 4;
MC68HC05D9/D, Rev. 1, page 10-4, note 1; MC68HC05J3/D, page 9-6, note
3; and MC68HC05X16/D, page 12-6, note 4

Tracker Number: HC705C8.002 Revision: 2.00

This time (Tilil) is obtained by adding 19 instruction cycles to the total number of cycles
needed to complete the service routine. The return to interrupt (RTI) is included in the 19
cycles.

Date Revision Description

5/3/95 1.00 Includes trackers HC05CPU.001, HC705C8.002R2,
HC705C8.017, HC705C8.018R2, and HC705C8019.

Page 16
MOTOROLA Modules

MC68HC705C8,C8A

I Bit in CCR During Stop Mode

Reference Document: M68HC05 Applications Guide, page 3-93

Tracker Number: HC705C8.017 Revision: 1.00

The stop mode flow chart shows that the I bit is set when stop mode is entered.
However, this is not true. The I bit actually is cleared when stop mode is entered so that
an external IRQ may release the processor from stop mode.

This error is present in the original applications guide as well as the revision.

BSET and BCLR are Read-Modify-Write Instructions

Reference Documents: MC68HC705C8/D Rev. 1, page 7-6; MC68HC05J1/
D Rev. 1, page 5-7; MC68HC05J3/D, page 8-4; MC68HC705J2/D, page 4-
16; HC05J3/705J3 Technical Databook - MC68HC05J3/D, page 8-6;
MC68HC05K1/D, page 10-10; MC68HC705K1/D, page 11-10

Tracker Number: HC705C8.018 Revision: 2.00

In many data books, the read-modify-write instruction table located in the instruction set
and addressing mode section does not list the BSET and BCLR instructions. These data
books list BSET and BCLR as bit-manipulation instructions only.

While this is correct, it is not complete. These operations use a read-modify-write
method to accomplish their task and, therefore, should be included in the table of read-
modify-write instructions.

NOTE: These instructions do not use the same addressing modes as the other
read-modify-write istructions. Only direct addressing is valid for BSET

and BCLR.

Because BSET and BCLR are read-modify-write instructions, they may not be used with
write-only registers. These registers will read back undefined data. Therefore, a read-
modify-write operation will read undefined data, modify it as appropriate, and then write it
back to the register. Because the original data is undefined, the data written back will be
undefined also.

Page 17
MOTOROLA Modules

MC68HC705C8,C8A

I Bit in CCR During Wait Mode

Reference Document: M68HC05 Applications Guide, page 3-93

Tracker Number: HC705C8.019 Revision: 1.00

The wait mode flow chart does not show that the I bit gets cleared upon entering wait
mode. The I bit is cleared when wait is entered. An external IRQ or any of the internal
interrupts (timer, SCI, SPI) can release the processor from wait mode.

This error is present in the original applications guide as well as the revision.

Page 18
MOTOROLA Modules

MC68HC705C8,C8A

Timer Module

TIM1IC1OC_A

Revision History

 Input Capture/Output Compare Code Snippet

Reference Document: Not applicable

Tracker Number: HC05C4.002 Revision: 2.00

Changes include added memory map disclaimer.

**
*
* Program Name: ICOCC4.ASM
* Revision: 1.0
* Date: 9/6/93
*
* Written By: Mark Johnson
* Motorola CSIC Applications
*
* Assembled Under: P&E Microcomputer Systems
* IASM05 Version 3.02m
*
* ********************************
* * Revision History *
* ********************************
*
* Revision 1.00 9/1/93 Original Release
*
**
*
* Program Description:
*
* This was written for the timer module TIM1IC1OC_A and tested
* on the HC05C4. In order to use this with other HC05 MCU's,
* reset vectors and memory map equates may have to be changed.
* See the Technical Databook for the appropriate part for this
* memory map information.
*
* This simple program was written to demonstrate the input
* capture and output compare functions of the MC68HC(8)05C4
* timer. The routine generates a level transition on port A
* which is fed into the input capture pin (TCAP). When
* the input capture occurs an offset of 50us is added to
* value in the input capture registers and stored in the
* output compare registers. The output compare generates
* a level transition on the TCMP pin and then the entire
* process is repeated.
*

Date Revision Description

5/3/95 2.00 Includes trackers HC05C4.002, HC05C4.003, and
HC705P9.005.

Page 19
MOTOROLA Modules

MC68HC705C8,C8A

*
* The program was run on the M68HC05EVM using the
* following setup conditions:
*
* 1) HC705C8 Resident Processor
* 2) Fop = 2MHz
* 3) Pin 11 (PA0) on target header J19 jumpered to pin
* 37 (TCAP).
* 4) The user should see a level transition on the
* TCMP pin approximately* 50us after the level
* transition on port A.
*
* *NOTE: The level transition on the TCMP pin will occur at
* 50us + 1 count of the free-running counter = 52us.
* This is the result of an internal synchronization
* delay which occurs during an input capture.
* (1 count = 4 internal bus cycles)
**
*
* Register Equates
*
porta equ $00 ;port A data register
ddra equ $04 ;port A data dir. reg.
tcr equ $12 ;timer control register
tsr equ $13 ;timer status register
inpcaph equ $14 ;input capture (MSB)
inpcapl equ $15 ;input capture (LSB)
outcomph equ $16 ;output compare (MSB)
outcompl equ $17 ;output compare (LSB)
*
* RAM Variables
*
 org $50 ;RAM address space
templ rmb 1 ;storage for O/C low byte
*
* Beginning of main routine
*
 org $200 ;EPROM/ROM address space
start lda #$ff
 sta ddra ;all port A pins are outputs
 clra
 sta porta ;output a low on port A
 lda #3
 sta tcr ;IEDG = positive edge
 ;OLVL = high output
loop lda tsr ;read timer status register
 lda outcompl ;clear OCF
 com porta ;toggle port A
 lda #!25 ;I/C low byte offset
 add inpcapl ;add I/C low byte value
 sta templ ;save new value in temp storage
 lda inpcaph ;get high byte of I/C reg.
 adc #0 ;add carry from last addition
 sta outcomph ;store value to O/C high byte
 lda templ ;get low byte offset
 sta outcompl ;store value in O/C low byte
 lda inpcapl ;enable input captures
 brclr 6,tsr,* ;wait for output compare
 lda tcr ;get Timer Control Register
 eor #3 ;toggle IEDG and OLVL
 sta tcr ;store new IEDG and OLVL values
 bra loop ;repeat process indefinitely
*
* Reset vector setup
*
 org $1ffe
 fdb start

Page 20
MOTOROLA Modules

MC68HC705C8,C8A

Interrupt Driven Output Compare Code

Reference Document: MC68HC05C4/D (ADI-991-R2), page 4-7

Tracker Number: HC05C4.003 Revision: 2.00

Changes include added memory map disclaimer.

The following code listing shows the procedure of using the output compare function
driven by an interrupt to produce a square wave. The code was tested with an HC705C8
on the HC05EVM board. The code will work on an HC05C4.

*
* Program Name: 7C8_OCI.ASM (Square wave generation on OC)
* Revision: 1.00
* Date: September 29, 1993
*
* Written By: Mark Glenewinkel
* Motorola CSIC Applications
*
* Assembled Under: P&E Microcomputer Systems IASM05
*
* *********************************
* * Revision History *
* *********************************
*
* Rev 1.00 09/29/93 Mark Glenewinkel
* Initial Release
*

*
* Program Description:
*
* This was written for the timer module TIM1IC1OC_A and tested
* on the HC05C4. In order to use this with other HC05 MCU's,
* reset vectors and memory map equates may have to be changed.
* See the Technical Databook for the appropriate part for this
* memory map information.
*
* This program uses the Output Compare function of the
* timer to generate a square wave. The output compare
* interrupt is utilized to take care of adding the
* appropriate value to the 16 bit output compare
* register to create the square wave. With some
* modification, this routine can perform pulse width
* modulation.
*
* Use the HC705C8 resident MCU on the HC05EVM to
* run this test.
* Download the program.
* Make sure the PC is at $1000. Type GO.
* OR, hit USER RESET on the EVM.
* Look at pin #35 of header J19. This is the Timer
* Compare Output pin (TCMP) of the timer. You should
* see a 3.906kHz square wave on this pin with a
* 256 usec period.
* Press ABORT on the EVM to halt program execution.
*

Page 21
MOTOROLA Modules

MC68HC705C8,C8A

*** Equates for 705C8
TCR equ $12 ;timer ctrl reg
TSR equ $13 ;timer status reg
OCH equ $16 ;output compare high reg
OCL equ $17 ;output compare low reg
TCH equ $18 ;timer counter high reg
TCL equ $19 ;timer counter low reg
TEMP equ $50 ;temp loc for OCL

*** Start of program ***

 org $1000 ;start of user code
START lda #$41 ;output compare interrupt
 ;enabled, output level 0
 sta TCR ;store to timer ctrl reg
 cli ;clear the I bit in CCR

DUMLOOP bra DUMLOOP ;dummy loop waiting for
 ; timer interrupt

*** Interrupt Service Routine ***
OCISR lda TSR ;read timer status
 ; to clear flag

* Flip the OLVL bit in the TCR reg
 lda TCR ;load ACCA w/ TCR
 eor #$01 ;flip bit 0 of ACCA
 sta TCR ;store ACCA to TCR

* Add 64 counts to timer counter reg
* With a 2 MHz internal bus clock, the timer count
* period is 2 usec. 64 counts of the timer counter
* will produce a square wave half cycle of 128 usecs.
 lda #$40 ;load #$40 into acca
 add OCL ;add OCL to ACCA
 sta TEMP ;store res to temp loc
 lda #$00 ;add $00 to out comp hi
 adc OCH ; with carry
 sta OCH ;store res to out comp hi
 lda TEMP ;store temp to out
 sta OCL ; comp low

 rti ;return from interrupt

*** Set up vectors
 org $1FF8 ;define timer
 dw OCISR ; interrupt vector

 org $1FFE ;define reset vector
 dw START

Page 22
MOTOROLA Modules

MC68HC705C8,C8A

Input Capture Test

Reference Document: Not applicable

Tracker Number: HC705P9.005 Revision: 2.00

Listed below is a program that tests the input capture function on the HC705P9 on the
HC05P9EVS.

*
* Program Name: P9_INCAP.ASM (Input Capture Test for the P9EVS)
* Revision: 1.00
* Date: June 7, 1993
*
* Written By: Mark Glenewinkel
* Motorola CSIC Applications
*
* Assembled Under: P&E Microcomputer Systems IASM05
*
* *********************************
* * Revision History *
* *********************************
*
* Rev 1.00 06/07/93 M.R. Glenewinkel
* Initial Release
*

*
* Program Description:
*
* This was written for the timer module TIM1IC1OC_A and tested
* on the HC705P9. In order to use this with other HC05 MCU's,
* reset vectors and memory map equates may have to be changed.
* See the Technical Databook for the appropriate part for this
* memory map information.
*
* Tests the Input capture pin.
* Use the HC705P9 resident MCU on the HC05P9EVS to
* run this test.
* Jumper pins PA0 and PD7/TCAP on Target Header P4.
* We will use Port A, bit 0 to toggle the TCAP pin.
* Download the program.
* Make sure the PC is at $100.
* Type GO.
* ABORT the program and look at locations $80-$83.
* After the first Input Capture, the Input Capture
* Registers High and Low are loaded into RAM
* location $80 and $81, respectively. After the
* second Input Capture, the Input Capture Registers
* High and Low are loaded into RAM location $82
* and $83, respectively.
* If you trace this program, the Input capture
* flag will look like its not being set when you
* view with the emulator software. Remember, the
* flag gets cleared when a read of ICL and TSR occurs.
* The emulator software does this automatically when
* reading those locations to display in the
* emulator window.
*

Page 23
MOTOROLA Modules

MC68HC705C8,C8A

*** Equates
PORTA EQU $00
PORTB EQU $01
PORTC EQU $02
DDRA EQU $04
DDRB EQU $05
DDRC EQU $06
DDRD EQU $07
TCR EQU $12
TSR EQU $13
ICRH EQU $14
ICRL EQU $15

TEMP1 EQU $0080
TEMP2 EQU $0081
TEMP3 EQU $0082
TEMP4 EQU $0083

*** Start of code

 ORG $0100 ;start of program

START LDA #$FF
 STA PORTA ;PortA is $FF
 LDA #$00
 STA DDRD ;PortD is input
 LDA #$FF
 STA DDRA ;PortA is output
 STA DDRC

 LDA #$00
 STA TCR ;set InCap to fall edge
 LDA TSR ;look at tsr
 LDA ICRL ;look at input reg low
 ;this clears any flags

 LDA #$00 ;falling edge created
 STA PORTA ; on PortD/TCAP

LOOP LDA TSR ;wait in loop for flag
 AND #$80 ; to be set
 BEQ LOOP

 LDA ICRH ;write counter values
 STA TEMP1 ;in memory
 LDA ICRL
 STA TEMP2

 LDA #$02 ;set InCap to rising edge
 STA TCR
 LDA #$FF ;rising edge created
 STA PORTA ;on PortD/TCAP

LOOP2 LDA TSR ;wait in loop for flag
 AND #$80 ; to be set
 BEQ LOOP2

 LDA ICRH ;write counter values
 STA TEMP3 ;in memory
 LDA ICRL
 STA TEMP4

LOOP3 NOP
 BRA LOOP3

Page 24
MOTOROLA Parts Specific

MC68HC705C8,C8A

Parts Specific

MC68HC705C8

SPIF Bit Errata

Revision History

Reference Document: HC68HC705C8/D Rev. 1, page 6-7

Tracker Number: HC705C8.001 Revision: 1.00

Errata statement:

When the serial peripheral interrupt (SPI) is operating as a slave and the serial clock
(SCK) is asynchronous to the E clock, SPI transfers can fail. The failure rate is in the
range of one error in several million transfers. The error is expressed differently for
CPHA = 0 vs. CPHA = 1, but the cause is always due to metastable behavior of an
internal flip-flop whose clock is related to E and whose data input is related to the SPI
SCK signal. (Errors occur when the data input is in transition at exactly the same time as
the flip-flop clock changes.)

When CPHA = 0, the error is expressed as the failure of data to transfer from the shift
register to the parallel receive data buffer (SPDR) at the end of a transfer. When CPHA =
1, the error is expressed as a failure of SPIF to be set at the end of a transfer. Also,
when CPHA = 1, the data transfer error described for CPHA = 0 can occur, although
even less often than the SPIF error.

Because they are rare and difficult to produce, most users would attribute these errors to
random system noise. A hardware logic fix has been identified and is included on new
mask sets, which currently are being qualified.

Users are encouraged to design their software to tolerate rare transfer errors, such as
those caused by this bug or by random noise. Remember that the SPI transfer protocol
does not tolerate noise on the SCK clock.

No mask sets of MC68HC705C8 have the fix.

New part MC68HC705C8A, which is in qualification, contains the fix.

Date Revision Description

5/2/95 1.00 Initial release. Includes trackers HC705C8.001,
HC705C8.003, HC705C8.006, HC705C8.015,
HC705C8.020, and HC705C8.021.

Page 25
MOTOROLA Parts Specific

MC68HC705C8,C8A

Keypad Decoding

Reference Document: M68HC05AG/AD, pages 4-18 through 4-21

Tracker Number: HC705C8.003 Revision: 1.00

This is a general clarification of the keypad routine used on the thermostat project
described in the guide.

Clarification:

Section 4 of the

M68HC05 Applications Guide

, especially the keypad checkout program,
should be studied along with this document. While studying this document, refer to the
figure of a typical keypad schematic at the end of the text.

Assume that the MCU port is port B and that it is configured such that bits 4 through 7
are inputs and bits 0 through 3 are outputs.

Also assume that the output bits are initialized to all ones and are attached to the keypad
columns. The input bits are attached to the keypad rows. The rows also have pulldown
resisters.

With everything in a static state as described above, a read of the input/output (I/O) port
would return a value of 00001111 or $0F.

Initially, the program will loop to read the port and check if the upper nibble has changed
from 0000 to any other value. If the port has not changed, the program continues
looping. For example, if the push button labeled zero is pushed, the upper nibble would
read 1000.

Next, turn off all but one of the column outputs. Then read the port to ensure that ones
are on the row inputs. If the ones are there, turn off the current column and turn on the
next one and repeat until a value greater than zero is read from the row inputs. If a zero
value is read after scanning all columns, the key was released.

The table below contains all of the possible values that can be generated by the keypad.
This “look-up table” can be used automatically to scan the columns and do the
comparisons. A code example also is included to help demonstrate what is happening.

Page 26
MOTOROLA Parts Specific

MC68HC705C8,C8A

The first two instructions make the column outputs all ones. This has to be done before
every scan so that it can be determined if a key has been pressed.

lda $0F ;make col outputs all ones
sta portb ;someplace else portb lower nibble was

 ;made an output

At this point, the port is checked repeatedly until a one is read on one of the row inputs.
If a zero is read, no key has been pressed. Because the interest is only in the row input
bits, the lower nibble is ignored.

first: lda portb ;key data from keypad port
and #$F0 ;we are interested in only the row inputs

 ;so mask off the cols.
beq first ;if no key is pushed go back and check
 ;again.

Key #
Row Column
7654 3210

Hex Value

key: 0 1000 1000 $88

1 1000 0100 $84

2 1000 0010 $82

3 1000 0001 $81

4 0100 1000 $48

5 0100 0100 $44

6 0100 0010 $42

7 0100 0001 $41

8 0010 1000 $28

9 0010 0100 $24

A 0010 0010 $22

B 0010 0001 $21

C 0001 1000 $18

D 0001 0100 $14

E 0001 0010 $12

F 0001 0001 $11

null: 0000 0000 $00

Page 27
MOTOROLA Parts Specific

MC68HC705C8,C8A

Once a key is pressed, determine which key it is. To do so, output all possible key
combinations to port B, read the data back, and compare it to the output. This is easily
done using a table to generate all of the possible values. The index register is used to
increment through the table. The index register should be initialized to zero or to the total
number of entries into the table. If the latter is used when the index register is zero, the
end of the table has been reached. In this example, the end of table byte (null character)
will be checked to see if that value has been accessed.

ldx #$00 ;init the index register
keylp: bnlda key,x ;This loads acca with the value point to by key +x

 ;the first time thru it would be$88
cmp $00 ;check to see if end of table
beq end ;must be end of table
sta portb ;write to portb.This will affect only the lower 4 bits

Next, the port is immediately read back. For example, if the first table entry is pointed to,
in this case $88, this value is driven out of the port. Remember, only the col bits are
driven, and they will have a value of 1000. If the zero key was pushed, bit 7 of the port
would be high because the column that is being driven intersects with the row the zero
key is on. If the port is read at this time, 1000 1000 will be returned, the same value that
is being driven out. If the two key had been pushed, a value of $08 would have been
returned because the column that intersects with the row is being driven with a zero. So
comparing the value driven out by the value being returned shows if the right entry is in
the table. The following instructions indicate how this is done.

cmp portb ;acca has the value driven out. The cmp instruction read
 ;reads the port and does the compare at the same
 ;time

beq found ;we've found the right entry

Organize the table a little differently than the table above so that the value to be driven
out of the port and the ascii value this code represents results. This is useful when the
right location in the table is found. The contents of the index register and the starting
address of the table (key) added together point to the correct entry. Adding one to the
value of the index register points to the ascii equivalent of the key being pressed.

The first byte in each entry is the value generated for each column and row pattern. The
second byte of each pair is what that combination should represent.

Page 28
MOTOROLA Parts Specific

MC68HC705C8,C8A

If the right pattern is not found, the index register is incremented twice to skip over the
current pattern and the next byte, which is the ascii equivalent of that pattern. The new
value pointed to is loaded into acca and checked to see if it is the end of table character.
If not, the new pattern is output to the port and the routine starts from the beginning until
the correct pattern is found or the end of table is reached. When the correct key is found,
incrementing the index register by one points to the ascii equivalent byte.

incx
incx
bra keylp ;start the search again.

found: ;this is where we go to if correct pattern
;is found. We can increment the index register

incx ;and retrieve the ascii equivalent if we want
 ;when done we can start the scan over again.
end: ;do what we want exit start over or error recovery

Also consider keypad debounce. After a key press is detected, a debounce delay should
be inserted and the key checked again after the delay period.

key: fcb $88,’0’ ;1000 1000

fcb $84,’1’ ;1000 0100

fcb $82,’2’ ;1000 0010

fcb $81,’3’ ;1000 0001

fcb $48,’4’ ;0100 1000

fcb $44,’5’ ;0100 0100

fcb $42,’6’ ;0100 0010

fcb $41,’7’ ;0100 0001

fcb $28,’8’ ;0010 1000

fcb $24,’9’ ;0010 0100

fcb $22,’A’ ;0010 0010

fcb $21,’B’ ;0010 0001

fcb $18,’C’ ;0001 1000

fcb $14,’D’ ;0001 0100

fcb $12,’E’ ;0001 0010

fcb 11,’F’ ;0001 0001

fcb $00
;0000 0000 null
character to show
end of table

Page 29
MOTOROLA Parts Specific

MC68HC705C8,C8A

Mask Set C16W Bootloader Code

Reference Document: Not applicable

Tracker Number: HC705C8.006 Revision: 1.00

* *
* 68HC705C8 EPROM BOOTLOADER PROGRAM *
* ================================== *
* *
* This version:- 10/11/89 - REV 6 *
* FIXED 'PROGRAM SECURITY' MODE *
* *

*
* I/O DEFINITIONS
*
PORTA EQU $00 PORT A DATA
PORTB EQU $01 PORT B DATA
PORTC EQU $02 PORT C DATA
PORTD EQU $03 PORT D DATA (Input Only!)
DDRA EQU $04 PORT A DDR
DDRB EQU $05 PORT B DDR
DDRC EQU $06 PORT C DDR
*
* SERIAL PERIPHERAL INTERFACE REGISTERS
*
SPCR EQU $0A SERIAL PERIPHERAL CONTROL
SPSR EQU $0B SERIAL PERIPHERAL STATUS
SPDAT EQU $0C SERIAL PERIPHERAL DATA
*
* SERIAL COMMUNICATIONS INTERFACE REGISTERS
*
BAUD EQU $0D BAUD RATE CONTROL
SCCR1 EQU $0E SERIAL COMM'S CONTROL REGISTER 1
SCCR2 EQU $0F SERIAL COMM'S CONTROL REGISTER 2
SCSR EQU $10 SERIAL COMM'S STATUS
SCDAT EQU $11 SERIAL COMM'S DATA
*
* TIMER REGISTERS
*
TIMCR EQU $12 TIMER CONTROL
TIMSR EQU $13 TIMER STATUS
IPCAPH EQU $14 INPUT CAPTURE (High Byte)
IPCAPL EQU $15 INPUT CAPTURE (Low Byte)
OPCOMH EQU $16 OUTPUT COMPARE (High Byte)
OPCOML EQU $17 OUTPUT COMPARE (Low Byte)
COUNTH EQU $18 COUNTER (High Byte)
COUNTL EQU $19 COUNTER (Low Byte)
DUALTH EQU $1A DUAL TM REGISTER (High Byte)
DUALTL EQU $1B DUAL TM REGISTER (Low Byte)
*
* EPROM CONTROL REGISTER
*
PROG EQU $1C EPROM CONTROL
*

Page 30
MOTOROLA Parts Specific

MC68HC705C8,C8A

* MEMORY MAP DEFINITIONS
*
EPROM0 EQU $20 BASE OF PAGE ZERO EPROM AREA
RAM EQU $50 BEGINNING OF RAM
STACK EQU $FF STACK RESET ADDRESS
EPROM EQU $0100 BASE OF MAIN EPROM AREA
BOOTST EQU $1F00 START OF BOOTSTRAP ROM AREA
BOOTV EQU $1FE0 START OF BOOTSTRAP VECTOR AREA
VECTOR EQU $1FF0 START OF USER VECTOR AREA
*
* RAM VARIABLES
*
RAMSUB EQU RAM LOCATION OF RAM SUBROUTINE
ADDR EQU RAMSUB+1 EXTENDED ADDRESS FOR RAM SUBROUTINE
LOOP EQU RAMSUB+4 INTER-BYTE DELAY
TIME EQU RAMSUB+5 PROGRAMMING PULSE WIDTH
*
* PORT A DEFINITIONS
*
ADDRLO EQU PORTA LOW ORDER ROM ADDRESSES A0 - A7
A5 EQU 5 BIT 5 :- ADDRESS LINE A5
*
* PORT B DEFINITIONS
*
DATAIN EQU PORTB ROM DATA INPUT PORT
*
* PORT C DEFINITIONS
*
ADDRHI EQU PORTC HIGH ORDER ROM ADDRESSES A8 - A12
VFYLED EQU 5 BIT 5 DRIVES 'VERIFY' LED
PRGLED EQU 6 BIT 6 DRIVES 'PROGRAMMING' LED
TSC EQU 7 BIT 7 CONTROLS EXTERNAL ROM TRI-STATING..
* OUTPUT PIN - 0=MEMORY ENABLED 1= MEMORY
* TRI-STATED (FLOAT IF NOT USED).
*
* PORT D DEFINITIONS
*
MODES EQU PORTD BOOTSTRAP MODE INPUT PORT
PIND2 EQU 2 BIT 2
PIND3 EQU 3 BIT 3
PIND4 EQU 4 BIT 4
PIND5 EQU 5 BIT 5
*
* MISCELLANEOUS DEFINITIONS
*
CMASK EQU %11100000 PORTC CONTROL LINES MASK
EPGM EQU 0 PROG BIT0; - Vpp CONTROL BIT
ERASED EQU $00 VALUE OF AN ERASED EPROM BYTE
INSTAT EQU %01100000 INITIAL PORT C LED STATUS
LAT EQU 2 PROG BIT2; - EPROM ADDRESS LATCH BIT
LATCH EQU %00000100 PROG BIT2
MUL EQU $42 OP-CODE FOR MULTIPLY INSTRUCTION
OCF EQU 6 TIMSR BIT6; - OUTPUT COMPARE FLAG
OLVL EQU 0 TIMCR BIT0; - TIMER COMPARE OUTPUT LEVEL
RDRF EQU 5 SCSR BIT5; - RCV DATA REG FULL FLAG
TDRE EQU 7 SCSR BIT7; - XMIT DATA REG EMPTY FLAG
TEST EQU 2 PORTD BIT2; - '0' GO BOOT,'1'GO $51 (RAM)
OPTION EQU $1FDF OPTION REGISTER
TSTREG EQU $1F TEST REGISTER
*

Page 31
MOTOROLA Parts Specific

MC68HC705C8,C8A

*
* INITIAL REGISTER VALUES
* FCB %00100000 PORT A :- ROM ADDRESSES A7-A0 SET TO $20
* FCB $00 PORT B :- DON'T CARE
* FCB %01100000 PORT C :- ROM ENABLED/ LED'S OFF.....
* ...A12-A8 ZEROED
* FCB $00 PORT D :- DON'T CARE
* FCB %11111111 PORT A DDR :- ALL OUTPUTS
* FCB $00 PORT B DDR :- ALL INPUTS
* FCB %11111111 PORT C DDR :- ALL OUTPUTS
* FCB $00 SPCR :- DISABLE OPERATION
* FCB $00 SPSR :- DON'T CARE
* FCB $00 SPDAT :- DON'T CARE
* FCB %00110000 BAUD :- =4800Baud @2Mhz XTAL
* FCB %00000000 SCCR1 :- 8 DATA BITS
* FCB %00001100 SCCR2 :- INHIBIT INTERRUPTS, ENABLE...
* RX/TX NO WAKE-UP, NO BREAK
* FCB $00 SCSR :- DON'T CARE
* FCB $00 SCDAT :- DON'T CARE
* FCB $00 TIMCR :- DISABLE TIMER INTERRUPTS
* FCB $00 TIMSR :- DON'T CARE
* FCB $00 IPCAPH :- DON'T CARE
* FCB $00 IPCAPL :- DON'T CARE
* FCB $00 OPCOMH :- DON'T CARE
* FCB $00 OPCOML :- DON'T CARE
* FCB $00 COUNTH :- DON'T CARE
* FCB $00 COUNTL :- DON'T CARE
* FCB $00 DUALTH :- DON'T CARE
* FCB $00 DUALTL :- DON'T CARE
* FCB $00 PROG :- DISABLE PROGRAMMING
*
*
* RAM AREA IS INITIALISED AS FOLLOWS;
*
* LOCATION:- INSTRUCTION:-
*
* RAMSUB $50 $C7 STA EPROM0
* ADDR $51 $00
* ADDR+1 $52 $20
* $53 $81 RTS
*
* TIMER VARIABLES
*
* LOOP $54 2 -
* TIME $55 1 -
*
*
**
 ORG BOOTST
*
TABLE FCB $C7 'STA EXTENDED' INSTRUCTION
 FCB $00 ADDRESS $0020
 FCB $20 .
 FCB $81 'RTS' INSTRUCTION
 FCB 2 2 PASSES THRU PROG
 FCB $01 1 mS PROGRAMMING PULSE CONSTANT
*
START EQU *
*
* FIRST CHECK FOR SECURITY AND HANG IF ENABLED
*
 LDA OPTION
 AND #%00001000
 BEQ NOSEC
 STOP
*

Page 32
MOTOROLA Parts Specific

MC68HC705C8,C8A

* THEN CHECK PORT D, BIT 2, TO SEE IF USER WISHES TO JUMP TO
* RAM OR JUMP INTO THE BOOTLOADER PROGRAM.
*
*
NOSEC BRCLR TEST,PORTD,BOOT
 JMP RAM+1 GO TO RAM PROGRAM AT $0051
*
*
*
* SET UP PORTS, TIMER, RAM SUBROUTINE, AND RAM VARIABLES
*
*
BOOT CLR SCCR1 SET SCI TO 8 DATA BITS OPERATION
 LDX #DDRA POINT TO DDRA & INIT X FOR MULTIPLY
 COM ,X SET PORTA TO ALL OUTPUTS
 COM DDRC SET PORTC TO ALL OUTPUTS
*
 LDA #%00001100 GET SCCR2 INITIAL VALUE
 STA SCCR2 SET UP SCCR2
*
* GET BAUD INITIAL VALUE (N.B. MUL NOT SUPPORTED BY ASSEMBLER!)
 FCB MUL X=0, A=%00110000 <== X=4, A=%00001100
 STA BAUD SET UP BAUD
*
 LSLA INITIAL PORT C VALUE (%01100000)
 STA PORTC ENABLE ROM, TURN OFF LED'S, ZERO..
* ZERO A12-A8
 LDA #EPROM0 GET INITIAL PORT A (A7 - A0) VALUE
 STA ,X SET UP PORT A
*
* INITIALISE RAM SUBROUTINE AND VARIABLES THEN JUST FILL RAM
*
MOVE LDA TABLE,X GET A BYTE FROM THE TABLE
 STA RAM,X MOVE IT INTO RAM
 INCX POINT TO THE NEXT BYTE TO BE MOVED
 BNE MOVE KEEP MOVING UNTIL ALL ARE IN PLACE
*
*
*
 BRCLR PIND5,MODES,MOVED
*
*DO THE GATE STRESS TEST
*
GTEST LDA #$15 MOE/TS1=0,STE/ST0=1 ALSO RCKH=1
 BRSET PIND3,MODES,SEC
 STA TSTREG ENABLE GATE STRESS TEST
* ...AND OUTPUT XMIT CLOCK ON TDO
 BSET 0,ADDR SET UP FOR ADDRESS $0120
 BRCLR PIND4,MODES,NOCOM
 COM ADDR+1 USE ALTERNATE ADDRESS ($01DF)
NOCOM BSR ZAP
 WAIT
*
*PROGRAM THE SECURITY BIT
*
SEC LSLA A HAS $15 FROM START OF GTEST
 BSET LAT,PROG
 STA OPTION (A=$2A <== A=$15)
 BSR ZAPSUB
*

Page 33
MOTOROLA Parts Specific

MC68HC705C8,C8A

*
* THE BOOTLOADER PROGRAM HAS 5 MODES OF OPERATION:
*
* I. PROGRAM/VERIFY - PERFORMS A NORMAL PROGRAM CYCLE FOLLOWED BY A
* VERIFY CYCLE WHICH HANGS IF THE EPROM IS NOT
* CORRECTLY PROGRAMMED. EITHER 1ms OR 5ms PULSE
* WIDTH CAN BE SELECTED.
*
* II. VERIFY - PERFORMS ONLY A VERIFY CYCLE WHICH HANGS IF THE EPROM
* IS NOT CORRECTLY PROGRAMMED.
*
* III. LOAD RAM - LOADS A PROGRAM FROM SCI INTO THE RAM
* THEN JUMPS TO RAM TO EXECUTE THE PROGRAM.
*
* IV. DUMP EPROM - DUMPS THE EPROM CONTENTS OF THE 705C8 TO THE SCI
*
* V. SECURE THE PART - PROGRAMS ONLY THE SECURITY BIT AND THEN
* EITHER DOES ANOTHER VERIFY (NOT THE SEC BIT)
* OR HANGS IN THE DUMP EPROM MODE
*
* WHEN COMING OUT OF RESET INTO THE BOOTLOADER PROGRAM (ASSUMING THAT
* PORT D PIN 2 ALLOWS YOU TO ENTER THE BOOTLOADER) THE STATE OF
* PORT D PINS 3, 4 AND 5 DETERMINES WHICH MODE OF OPERATION THE
* PROGRAM WILL ENTER.
*
* THE GATE STRESS TEST CAN ALSO BE INVOKED THROUGH THE BOOTLOADER.
*
* |--------------------------|---------------------|
* | PORT D | |
* |-------|--------|---------| MODE |
* | PIN 5 | PIN 4 | PIN 3 | |
* |-------|--------|---------|-------------------------------|
* | 0 | 0 | 0 | PROGRAM/VERIFY 15ms PULSE |
* |-------|--------|---------|-------------------------------|
* | 0 | 0 | 1 | VERIFY |
* |-------|--------|---------|-------------------------------|
* | 0 | 1 | 0 | LOAD RAM |
* |-------|--------|---------|-------------------------------|
* | 0 | 1 | 1 | DUMP EPROM |
* |=======|========|=========|===============================|
* | 1 | 0 | 0 | GATE STRESS TEST |
* |-------|--------|---------|-------------------------------|
* | 1 | 0 | 1 | SECURE/VERIFY |
* |-------|--------|---------|-------------------------------|
* | 1 | 1 | 0 | GATE STRESS TEST |
* |-------|--------|---------|-------------------------------|
* | 1 | 1 | 1 | SECURE/DUMP EPROM |
* |=======|========|=========|===============================|
*

*
*
* CHECK PORT D PINS 3, 4 AND 5 TO DETERMINE WHICH MODE TO ENTER
*
*
MOVED BRCLR PIND4,MODES,PRGVER DO A PROGRAM/VERIFY OR VERIFY
 BRCLR PIND3,MODES,LDRAM DO A LOAD RAM - EXECUTE CYCLE
*

Page 34
MOTOROLA Parts Specific

MC68HC705C8,C8A

* DUMP THE CONTENTS OF THE 705C8 EPROM TO THE SCI OUTPUT.
* (ASSUMES 'RAMSUB' CONTAINS $C7)
*
DMPEPR DEC RAMSUB CHANGE 'STA' TO 'LDA' EXTENDED ($C6).
DUMPIT JSR RAMSUB READ ONE BYTE OF EPROM
WAITTX BRCLR TDRE,SCSR,WAITTX WAIT FOR TRANSMIT REGISTER TO EMPTY
 STA SCDAT SEND EPROM DATA TO SERIAL OUTPUT
 BSR NXTADR MOVE TO NEXT ADDRESS
 BNE DUMPIT IF NOT FINISHED, CONTINUE
 WAIT HANG WHEN FINISHED.
*
*
* CHOOSE BETWEEN PROGRAM/VERIFY AND JUST VERIFY MODES
*
*
PRGVER BRSET PIND3,MODES,VERIFY DO A VERIFY CYCLE
 BCLR PRGLED,PORTC LIGHT 'PROGRAMMING' LED
*
*
* PROGRAM THE EPROM WITH THE CONTENTS OF THE EXTERNAL ROM
*
*
PRGLOP BSR PRGSUB PROGRAM ONE EPROM BYTE
 BSR NXTADR POINT TO NEXT ADDRESS
 BNE PRGLOP KEEP PROGRAMMING UNTIL DONE
 STA ADDR+1 RESET LOW ORDER ADDR TO $20
 STA PORTC RESET HIGH ORDER ADDRESS ON PORTC TO $20
 CLR ADDR RESET HIGH ORDER ADDR TO $00
 BSET A5,ADDRLO PUT $20 ON PORT A
 DEC LOOP DECREMENT LOOP COUNTER
 BNE PRGLOP RELOAD PARAM. FOR 2ND PASS
*
*
* VERIFY THE EPROM CONTENTS AGAINST EXTERNAL MEMORY.
* (ASSUMES 'RAMSUB' CONTAINS $C7)
*
VERIFY LDA #INSTAT GET INITIAL LED STATUS FOR A VERIFY
COMPAR INC RAMSUB CHANGE 'STA' TO 'EOR' EXTENDED ($C8).
 STA PORTC PLACE LED AND ROM STATUS ON PORT PINS
 BSET A5,ADDRLO SET A7 - A0 TO $20 (START OF EPROM)
*
CHECK LDA DATAIN READ A BYTE FROM THE EXTERNAL MEMORY
 JSR RAMSUB COMPARE TO AN EPROM BYTE
 BNE * HANG IF THEY DON'T MATCH
 BSR NXTADR POINT TO NEXT ADDRESS TO BE COMPARED
 BNE CHECK KEEP CHECKING BYTES UNTIL EPROM END
*
DONE BCLR VFYLED,PORTC INDICATE EPROM VERIFIED AS CORRECT
 STOP
*
*
*
* LOAD THE RAM WITH A USER'S PROGRAM VIA THE SCI.
*
* THE DATA SHOULD BE IN THE FORM OF 1 START-BIT, 8 DATA-BITS,
* 1 STOP-BIT. THE FIRST BYTE SHOULD BE A COUNT OF THE TOTAL NUMBER
* OF BYTES TO BE SENT, INCLUDING THAT BYTE. THE FIRST BYTE IS
* LOADED INTO $50 SO THE FIRST PROGRAM BYTE WILL BE LOADED INTO
* $51. THAT IS WHERE PROGRAM EXECUTION WILL BEGIN.
* IF A COUNT IS USED THAT IS GREATER THAN (PROGRAM LENGTH + 1)
* THEN THE ROUTINE WILL HANG AFTER THE LAST PROGRAM BYTE IS SENT.
* THIS CAN BE USED TO HOLD OFF EXECUTION OF THE PROGRAM UNTIL BIT-2
* OF PORTD IS SET AND RESET IS ASSERTED.
*
*

Page 35
MOTOROLA Parts Specific

MC68HC705C8,C8A

LDRAM LDX #RAM POINT TO START OF RAM
WAITRX BRCLR RDRF,SCSR,WAITRX WAIT FOR RX REGISTER TO FILL
 LDA SCDAT READ DATA BYTE FROM RX REGISTER
 STA ,X STORE THE DATA IN RAM
 INCX MOVE TO NEXT RAM LOCATION
 DEC RAM DECREMENT THE PROGRAM SIZE COUNTER (1st BYTE)
 BNE WAITRX IF ENTIRE PROGRAM NOT LOADED, CONTINUE
JMPRAM JMP RAM+1 JUMP TO THE PROGRAM IN THE RAM
*
**
* *
* S U B R O U T I N E S *
* *
**
*
* PROGRAM AN EPROM ADDRESS WITH DATA RECEIVED FROM PORTB.
* THE ADDRESS TO BE PROGRAMMED SHOULD BE PLACED IN LOCATION
* 'ADDR' & 'ADDR+1'.
*
*
PRGSUB LDA DATAIN READ DATA FROM PORTB
 BEQ SKIP RETURN IF EQUAL TO ERASED STATE ($00)
*
ZAPSUB BSR ZAP
 CLR PROG REMOVE Vpp FROM CIRCUIT
* CLEAR THE LAT BIT
SKIP RTS
*
ZAP BSET LAT,PROG
 JSR RAMSUB WRITE ONE BYTE OF DATA
 BSET EPGM,PROG APPLY Vpp TO CIRCUIT
 LDA TIME GET PROGRAMMING PULSE LENGTH
**
*
*
* DELAY N mS SUBROUTINE. ON ENTRY, ACCUMULATOR SHOULD CONTAIN THE
* TIME DELAY WANTED IN MILLISECONDS. AT THE END OF THE DELAY BIT
* 'OLVL' WILL BE CLOCKED TO THE 'TCMP' PIN.
* (ASSUMES 2MHz OSCILLATOR FREQUENCY).
*
*
DELNMS LDX #$A6 1 MS INNER LOOP
MS1 DECX
 BNE MS1
 DECA DECREMENT OUTER LOOP
 BNE DELNMS
 RTS RETURN AFTER WANTED DELAY

 NOP PADDING TO KEEP REST OF CODE SAME
 NOP
 NOP
 NOP
 NOP
*
**
*
* NXTADR SUBROUTINE
*
* COMPUTES NEXT EPROM ADDRESS TO BE PROGRAMMED, VERIFIED, OR DUMPED.
* PUTS THIS ADDRESS ON PORTS A (LS BYTE) AND C (MS BYTE) AND
* UPDATES RAMSUB ALSO. SKIPS THE RAM, BOOTSTRAP AND UNUSED AREAS.
* RETURNS WITH Z=1 IF THE COMPUTED ADDRESS IS = $2000, MEANING THAT
* A PASS THROUGH THE MEMORY MAP HAS BEEN COMPLETED. OTHERWISE Z=0.
*

Page 36
MOTOROLA Parts Specific

MC68HC705C8,C8A

NXTADR LDA ADDR GET MS.BYTE OF LAST ADDRESS USED
 BNE NOT04F BRANCH IF NOT IN PAGE ZERO EPROM AREA
 LDX ADDR+1 GET LS.BYTE OF LAST ADDRESS USED
 CPX #RAM-1 LAST BYTE OF PAGE ZERO EPROM?
 BNE NOT04F BRANCH IF NOT $004F
*
* MUST HAVE JUST ACCESSED LAST PAGE ZERO EPROM LOCATION IF HERE SO
* FORCE NEXT ADDRESS INCREMENT TO POINT TO MAIN EPROM AREA AT $0100.
*
 LDX #$0100-1 POINT TO ADDRESS BELOW THE ONE WANTED
 STX ADDR+1 PLACE IN LOCATION TO BE INCREMENTED
 STX ADDRLO PRESET PORTA PRIOR TO INCREMENT
*
* 16 BIT ADDRESS INCREMENT
*
NOT04F INC ADDR+1 INCREMENT LS. ADDRESS BYTE
 INC ADDRLO UPDATE LS.ADDRESS AT PORT A
 BNE GOBACK RETURN IF A PAGE BOUNDARY NOT REACHED
 INCA INCREMENT MS. ADDRESS
*
* LOOK OUT FOR HAVING GONE THROUGH THE ENTIRE MEMORY MAP.
*
 CMP #$20 WAS THAT THE END OF MEMORY ($1FFF)?
 BEQ GOBACK EXIT WITH Z=1 IF THE END WAS REACHED.
*
* LOOK OUT FOR HAVING ACCESSED THE LAST LOCATION IN THE MAIN BLOCK
*
 CMP #$1F WAS THAT THE END OF THE MAIN BLOCK
 BNE INMAIN BRANCH IF STILL WITHIN THE MAIN BLOCK
*
* SKIP OVER THE UNUSED AND BOOTSTRAP AREAS
*
 LDA #$F0 FORCE LS. ADDRESS BYTE TO $F0
 STA ADDR+1 .
 STA ADDRLO MAKE SURE PORT A GETS UPDATED AS WELL
 BRN * DUMMY INSTRUCTION TO AVOID OPTION REG
*
 LDA #$1F FORCE MS. ADDRESS BYTE TO $1F
INMAIN STA ADDR UPDATE MS. ADDRESS
*
* COMBINE MS. ADDRESS BYTE WITH OLD TSC & LED LEVELS & UPDATE PORT C
*
 LDA PORTC GET OLD MS. ADDRESS AND CONTROL LINES
 AND #CMASK MASK OUT ADDRESS LINES
 ORA ADDR COMBINE CONTROL LINES WITH NEW ADDRES
 STA ADDRHI UPDATE PORT C
GOBACK RTS

 FCB 0 ONE SPARE BYTE!
*
 ORG $1FEE
*
RESET FDB START RESET VECTOR
*
 END

?

Page 37
MOTOROLA Parts Specific

MC68HC705C8,C8A

Memory Map Diagram Clarification

Reference Document: MC68HC705C8/D Rev. 1, page 2-7

Tracker Number: HC705C8.015 Revision: 1.00

The memory map diagram (Figure 2-3, page 2-7) shows only one address as the
separator ($002F) between the unused 16 bytes and the 32 bytes of RAM. The question
arises about whether the address $002F is the end of the unused section or the
beginning of the 32 bytes of RAM.

The diagram should be changed to indicate that the address $002F is the end of the
unused section and that the 32 bytes of RAM start at address $0030.

 Bootloader for Mask Set 1C11C, 2C11C, 3C11C, 6C11C, 7C11C,
and 9C11C

Reference Document: Not applicable

Tracker Number: HC705C8.021 Revision: 1.00

* *
* 68HC705C8 EPROM BOOTLOADER PROGRAM *
* ================================== *
* *
* This version:- - REV 2 *
* Fixed initial prog time *
* 11/17/87 - REV 1 *
* *

*
* I/O DEFINITIONS
*
PORTA EQU $00 PORT A DATA
PORTB EQU $01 PORT B DATA
PORTC EQU $02 PORT C DATA
PORTD EQU $03 PORT D DATA (Input Only!)
DDRA EQU $04 PORT A DDR
DDRB EQU $05 PORT B DDR
DDRC EQU $06 PORT C DDR
*
* SERIAL PERIPHERAL INTERFACE REGISTERS
*
SPCR EQU $0A SERIAL PERIPHERAL CONTROL
SPSR EQU $0B SERIAL PERIPHERAL STATUS
SPDAT EQU $0C SERIAL PERIPHERAL DATA
*
* SERIAL COMMUNICATIONS INTERFACE REGISTERS
*
BAUD EQU $0D BAUD RATE CONTROL
SCCR1 EQU $0E SERIAL COMM'S CONTROL REGISTER 1
SCCR2 EQU $0F SERIAL COMM'S CONTROL REGISTER 2
SCSR EQU $10 SERIAL COMM'S STATUS
SCDAT EQU $11 SERIAL COMM'S DATA
*

Page 38
MOTOROLA Parts Specific

MC68HC705C8,C8A

* TIMER REGISTERS
*
TIMCR EQU $12 TIMER CONTROL
TIMSR EQU $13 TIMER STATUS
IPCAPH EQU $14 INPUT CAPTURE (High Byte)
IPCAPL EQU $15 INPUT CAPTURE (Low Byte)
OPCOMH EQU $16 OUTPUT COMPARE (High Byte)
OPCOML EQU $17 OUTPUT COMPARE (Low Byte)
COUNTH EQU $18 COUNTER (High Byte)
COUNTL EQU $19 COUNTER (Low Byte)
DUALTH EQU $1A DUAL TM REGISTER (High Byte)
DUALTL EQU $1B DUAL TM REGISTER (Low Byte)
*
* EPROM CONTROL REGISTER
*
PROG EQU $1C EPROM CONTROL
*
* MEMORY MAP DEFINITIONS
*
EPROM0 EQU $20 BASE OF PAGE ZERO EPROM AREA
RAM EQU $50 BEGINNING OF RAM
STACK EQU $FF STACK RESET ADDRESS
EPROM EQU $0100 BASE OF MAIN EPROM AREA
BOOTST EQU $1F00 START OF BOOTSTRAP ROM AREA
BOOTV EQU $1FE0 START OF BOOTSTRAP VECTOR AREA
VECTOR EQU $1FF0 START OF USER VECTOR AREA
*
* RAM VARIABLES
*
RAMSUB EQU RAM LOCATION OF RAM SUBROUTINE
ADDR EQU RAMSUB+1 EXTENDED ADDRESS FOR RAM SUBROUTINE
DELAY EQU RAMSUB+4 INTER-BYTE DELAY
TIME EQU RAMSUB+5 PROGRAMMING PULSE WIDTH
*
* PORT A DEFINITIONS
*
ADDRLO EQU PORTA LOW ORDER ROM ADDRESSES A0 - A7
A5 EQU 5 BIT 5 :- ADDRESS LINE A5
*
* PORT B DEFINITIONS
*
DATAIN EQU PORTB ROM DATA INPUT PORT
*
* PORT C DEFINITIONS
*
ADDRHI EQU PORTC HIGH ORDER ROM ADDRESSES A8 - A12
VFYLED EQU 5 BIT 5 DRIVES 'VERIFY' LED
PRGLED EQU 6 BIT 6 DRIVES 'PROGRAMMING' LED
TSC EQU 7 BIT 7 CONTROLS EXTERNAL ROM TRI-STATING..
* OUTPUT PIN - 0=MEMORY ENABLED 1= MEMORY
* TRI-STATED (FLOAT IF NOT USED).
*
* PORT D DEFINITIONS
*
MODES EQU PORTD BOOTSTRAP MODE INPUT PORT
PIND2 EQU 2 BIT 2
PIND3 EQU 3 BIT 3
PIND4 EQU 4 BIT 4
PIND5 EQU 5 BIT 5
*

Page 39
MOTOROLA Parts Specific

MC68HC705C8,C8A

* MISCELLANEOUS DEFINITIONS
*
CMASK EQU %11100000 PORTC CONTROL LINES MASK
EPGM EQU 0 PROG BIT0; - Vpp CONTROL BIT
ERASED EQU $00 VALUE OF AN ERASED EPROM BYTE
INSTAT EQU %01100000 INITIAL PORT C LED STATUS
LAT EQU 2 PROG BIT2; - EPROM ADDRESS LATCH BIT
LATCH EQU %00000100 PROG BIT2
MUL EQU $42 OP-CODE FOR MULTIPLY INSTRUCTION
OCF EQU 6 TIMSR BIT6; - OUTPUT COMPARE FLAG
OLVL EQU 0 TIMCR BIT0; - TIMER COMPARE OUTPUT LEVEL
RDRF EQU 5 SCSR BIT5; - RCV DATA REG FULL FLAG
TDRE EQU 7 SCSR BIT7; - XMIT DATA REG EMPTY FLAG
TEST EQU 2 PORTD BIT2; - '0' GO BOOT,'1'GO $51 (RAM)
OPTION EQU $1FDF OPTION REGISTER
TSTREG EQU $1F TEST REGISTER
*

*
* INITIAL REGISTER VALUES
* FCB %00100000 PORT A :- ROM ADDRESSES A7-A0 SET TO $20
* FCB $00 PORT B :- DON'T CARE
* FCB %01100000 PORT C :- ROM ENABLED/ LED'S OFF.....
* ...A12-A8 ZEROED
* FCB $00 PORT D :- DON'T CARE
* FCB %11111111 PORT A DDR :- ALL OUTPUTS
* FCB $00 PORT B DDR :- ALL INPUTS
* FCB %11111111 PORT C DDR :- ALL OUTPUTS
* FCB $00 SPCR :- DISABLE OPERATION
* FCB $00 SPSR :- DON'T CARE
* FCB $00 SPDAT :- DON'T CARE
* FCB %00110000 BAUD :- =4800Baud @2Mhz XTAL
* FCB %00000000 SCCR1 :- 8 DATA BITS
* FCB %00001100 SCCR2 :- INHIBIT INTERRUPTS, ENABLE...
* RX/TX NO WAKE-UP, NO BREAK
* FCB $00 SCSR :- DON'T CARE
* FCB $00 SCDAT :- DON'T CARE
* FCB $00 TIMCR :- DISABLE TIMER INTERRUPTS
* FCB $00 TIMSR :- DON'T CARE
* FCB $00 IPCAPH :- DON'T CARE
* FCB $00 IPCAPL :- DON'T CARE
* FCB $00 OPCOMH :- DON'T CARE
* FCB $00 OPCOML :- DON'T CARE
* FCB $00 COUNTH :- DON'T CARE
* FCB $00 COUNTL :- DON'T CARE
* FCB $00 DUALTH :- DON'T CARE
* FCB $00 DUALTL :- DON'T CARE
* FCB $00 PROG :- DISABLE PROGRAMMING
*
*
* RAM AREA IS INITIALISED AS FOLLOWS;
*
* LOCATION:- INSTRUCTION:-
*
* RAMSUB $50 $C7 STA EPROM0
* ADDR $51 $00
* ADDR+1 $52 $20
* $53 $81 RTS
*
* TIMER VARIABLES
*
* DELAY $54 1 -
* TIME $55 3 -
*
*

Page 40
MOTOROLA Parts Specific

MC68HC705C8,C8A

**
 ORG BOOTST
*
TABLE FCB $C7 'STA EXTENDED' INSTRUCTION
 FCB $00 ADDRESS $0020
 FCB $20 .
 FCB $81 'RTS' INSTRUCTION
 FCB 1 1mS INTER-BYTE DELAY CONSTANT
 FCB $03 3 mS PROGRAMMING PULSE CONSTANT
*
START EQU *
*
* FIRST CHECK FOR SECURITY AND HANG IF ENABLED
*
 LDA OPTION
 AND #%00001000
 BEQ NOSEC
 STOP
*
* THEN CHECK PORT D, BIT 2, TO SEE IF USER WISHES TO JUMP TO
* RAM OR JUMP INTO THE BOOTLOADER PROGRAM.
*
*
NOSEC BRCLR TEST,PORTD,BOOT
 JMP RAM+1 GO TO RAM PROGRAM AT $0051
*
*
*
* SET UP PORTS, TIMER, RAM SUBROUTINE, AND RAM VARIABLES
*
*
BOOT CLR SCCR1 SET SCI TO 8 DATA BITS OPERATION
 LDX #DDRA POINT TO DDRA & INIT X FOR MULTIPLY
 COM ,X SET PORTA TO ALL OUTPUTS
 COM DDRC SET PORTC TO ALL OUTPUTS
*
 LDA #%00001100 GET SCCR2 INITIAL VALUE
 STA SCCR2 SET UP SCCR2
*
* GET BAUD INITIAL VALUE (N.B. MUL NOT SUPPORTED BY ASSEMBLER!)
 FCB MUL X=0, A=%00110000 <== X=4, A=%00001100
 STA BAUD SET UP BAUD
*
 LSLA INITIAL PORT C VALUE (%01100000)
 STA PORTC ENABLE ROM, TURN OFF LED'S, ZERO..
* ZERO A12-A8
 LDA #EPROM0 GET INITIAL PORT A (A7 - A0) VALUE
 STA ,X SET UP PORT A
*
* INITIALISE RAM SUBROUTINE AND VARIABLES THEN JUST FILL RAM
*
MOVE LDA TABLE,X GET A BYTE FROM THE TABLE
 STA RAM,X MOVE IT INTO RAM
 INCX POINT TO THE NEXT BYTE TO BE MOVED
 BNE MOVE KEEP MOVING UNTIL ALL ARE IN PLACE
*
*
*
 BRCLR PIND5,MODES,MOVED
 BRSET PIND3,MODES,SEC
*
*DO THE GATE STRESS TEST
*

Page 41
MOTOROLA Parts Specific

MC68HC705C8,C8A

GTEST LDA #$15 MOE/TS1=0,STE/ST0=1 ALSO RCKH=1
 STA TSTREG ENABLE GATE STRESS TEST
* ...AND OUTPUT XMIT CLOCK ON TDO
 BSET 0,ADDR SET UP FOR ADDRESS $0120
 BRCLR PIND4,MODES,NOCOM
 COM ADDR+1 USE ALTERNATE ADDRESS ($01D0)
NOCOM BSR ZAP
 WAIT
*
*PROGRAM THE SECURITY BIT
*
SEC COMA A HAS $06 FROM RAM MOVE
 BSET LAT,PROG
 STA OPTION
 BSR ZAPSUB
*

*
* THE BOOTLOADER PROGRAM HAS 5 MODES OF OPERATION:
*
* I. PROGRAM/VERIFY - PERFORMS A NORMAL PROGRAM CYCLE FOLLOWED BY A
* VERIFY CYCLE WHICH HANGS IF THE EPROM IS NOT
* CORRECTLY PROGRAMMED. EITHER 1ms OR 5ms PULSE
* WIDTH CAN BE SELECTED.
*
* II. VERIFY - PERFORMS ONLY A VERIFY CYCLE WHICH HANGS IF THE EPROM
* IS NOT CORRECTLY PROGRAMMED.
*
* III. LOAD RAM - LOADS A PROGRAM FROM SCI INTO THE RAM
* THEN JUMPS TO RAM TO EXECUTE THE PROGRAM.
*
* IV. DUMP EPROM - DUMPS THE EPROM CONTENTS OF THE 705C8 TO THE SCI
*
* V. SECURE THE PART - PROGRAMS ONLY THE SECURITY BIT AND THEN
* EITHER DOES ANOTHER VERIFY (NOT THE SEC BIT)
* OR HANGS IN THE DUMP EPROM MODE
*
* WHEN COMING OUT OF RESET INTO THE BOOTLOADER PROGRAM (ASSUMING THAT
* PORT D PIN 2 ALLOWS YOU TO ENTER THE BOOTLOADER) THE STATE OF
* PORT D PINS 3, 4 AND 5 DETERMINES WHICH MODE OF OPERATION THE
* PROGRAM WILL ENTER.
*
* THE GATE STRESS TEST CAN ALSO BE INVOKED THROUGH THE BOOTLOADER.
*
* |--------------------------|---------------------|
* | PORT D | |
* |-------|--------|---------| MODE |
* | PIN 5 | PIN 4 | PIN 3 | |
* |-------|--------|---------|-------------------------------|
* | 0 | 0 | 0 | PROGRAM/VERIFY 15ms PULSE |
* |-------|--------|---------|-------------------------------|
* | 0 | 0 | 1 | VERIFY |
* |-------|--------|---------|-------------------------------|
* | 0 | 1 | 0 | LOAD RAM |
* |-------|--------|---------|-------------------------------|
* | 0 | 1 | 1 | DUMP EPROM |
* |=======|========|=========|===============================|
* | 1 | 0 | 0 | GATE STRESS TEST |
* |-------|--------|---------|-------------------------------|
* | 1 | 0 | 1 | SECURE/VERIFY |
* |-------|--------|---------|-------------------------------|
* | 1 | 1 | 0 | GATE STRESS TEST |
* |-------|--------|---------|-------------------------------|
* | 1 | 1 | 1 | SECURE/DUMP EPROM |
* |=======|========|=========|===============================|
*

Page 42
MOTOROLA Parts Specific

MC68HC705C8,C8A

*
*
* CHECK PORT D PINS 3, 4 AND 5 TO DETERMINE WHICH MODE TO ENTER
*
*
MOVED BRCLR PIND4,MODES,PRGVER DO A PROGRAM/VERIFY OR VERIFY
 BRCLR PIND3,MODES,LDRAM DO A LOAD RAM - EXECUTE CYCLE
*
* DUMP THE CONTENTS OF THE 705C8 EPROM TO THE SCI OUTPUT.
* (ASSUMES 'RAMSUB' CONTAINS $C7)
*
DMPEPR DEC RAMSUB CHANGE 'STA' TO 'LDA' EXTENDED ($C6).
DUMPIT JSR RAMSUB READ ONE BYTE OF EPROM
WAITTX BRCLR TDRE,SCSR,WAITTX WAIT FOR TRANSMIT REGISTER TO EMPTY
 STA SCDAT SEND EPROM DATA TO SERIAL OUTPUT
 BSR NXTADR MOVE TO NEXT ADDRESS
 BNE DUMPIT IF NOT FINISHED, CONTINUE
 BRA * HANG WHEN FINISHED.
*
*
* CHOOSE BETWEEN PROGRAM/VERIFY AND JUST VERIFY MODES
*
*
PRGVER BRSET PIND3,MODES,VERIFY DO A VERIFY CYCLE
 BCLR PRGLED,PORTC LIGHT 'PROGRAMMING' LED
*
*
* PROGRAM THE EPROM WITH THE CONTENTS OF THE EXTERNAL ROM
*
*
PRGLOP BSR PRGSUB PROGRAM ONE EPROM BYTE
 BSR NXTADR POINT TO NEXT ADDRESS
 BNE PRGLOP KEEP PROGRAMMING UNTIL DONE
 STA ADDR+1 RESET LOW ORDER ADDR TO $20
 CLR ADDR RESET HIGH ORDER ADDR TO $00
*
*
* VERIFY THE EPROM CONTENTS AGAINST EXTERNAL MEMORY.
* (ASSUMES 'RAMSUB' CONTAINS $C7)
*
VERIFY LDA #INSTAT GET INITIAL LED STATUS FOR A VERIFY
COMPAR INC RAMSUB CHANGE 'STA' TO 'EOR' EXTENDED ($C8).
 STA PORTC PLACE LED AND ROM STATUS ON PORT PINS
 BSET A5,ADDRLO SET A7 - A0 TO $20 (START OF EPROM)
*
CHECK LDA DATAIN READ A BYTE FROM THE EXTERNAL MEMORY
 JSR RAMSUB COMPARE TO AN EPROM BYTE
 BNE * HANG IF THEY DON'T MATCH
 BSR NXTADR POINT TO NEXT ADDRESS TO BE COMPARED
 BNE CHECK KEEP CHECKING BYTES UNTIL EPROM END
*
DONE BCLR VFYLED,PORTC INDICATE EPROM VERIFIED AS CORRECT
 BRA *
*
*
*
* LOAD THE RAM WITH A USER'S PROGRAM VIA THE SCI.
*
* THE DATA SHOULD BE IN THE FORM OF 1 START-BIT, 8 DATA-BITS,
* 1 STOP-BIT. THE FIRST BYTE SHOULD BE A COUNT OF THE TOTAL NUMBER
* OF BYTES TO BE SENT, INCLUDING THAT BYTE. THE FIRST BYTE IS
* LOADED INTO $50 SO THE FIRST PROGRAM BYTE WILL BE LOADED INTO
* $51. THAT IS WHERE PROGRAM EXECUTION WILL BEGIN.
* IF A COUNT IS USED THAT IS GREATER THAN (PROGRAM LENGTH + 1)
* THEN THE ROUTINE WILL HANG AFTER THE LAST PROGRAM BYTE IS SENT.
* THIS CAN BE USED TO HOLD OFF EXECUTION OF THE PROGRAM UNTIL BIT-2
* OF PORTD IS SET AND RESET IS ASSERTED.

Page 43
MOTOROLA Parts Specific

MC68HC705C8,C8A

*
*
LDRAM LDX #RAM POINT TO START OF RAM
WAITRX BRCLR RDRF,SCSR,WAITRX WAIT FOR RX REGISTER TO FILL
 LDA SCDAT READ DATA BYTE FROM RX REGISTER
 STA ,X STORE THE DATA IN RAM
 INCX MOVE TO NEXT RAM LOCATION
 DEC RAM DECREMENT THE PROGRAM SIZE COUNTER (1st BYTE)
 BNE WAITRX IF ENTIRE PROGRAM NOT LOADED, CONTINUE
JMPRAM JMP RAM+1 JUMP TO THE PROGRAM IN THE RAM
*
**
* *
* S U B R O U T I N E S *
* *
**
*
* PROGRAM AN EPROM ADDRESS WITH DATA RECEIVED FROM PORTB.
* THE ADDRESS TO BE PROGRAMMED SHOULD BE PLACED IN LOCATION
* 'ADDR' & 'ADDR+1'.
*
*
PRGSUB LDA DATAIN READ DATA FROM PORTB
 BEQ SKIP RETURN IF EQUAL TO ERASED STATE ($00)
*
ZAPSUB BSR ZAP
 BCLR EPGM,PROG REMOVE Vpp FROM CIRCUIT
*
 LDA DELAY GET INTER-BYTE DELAY LENGTH
 BSR DELNMS DELAY BEFORE CONTINUING
 BCLR LAT,PROG CLEAR THE LAT BIT
SKIP RTS
*
ZAP BSET LAT,PROG
 JSR RAMSUB WRITE ONE BYTE OF DATA
 BSET EPGM,PROG APPLY Vpp TO CIRCUIT
 LDA TIME GET PROGRAMMING PULSE LENGTH
**
*
*
* DELAY N mS SUBROUTINE. ON ENTRY, ACCUMULATOR SHOULD CONTAIN THE
* TIME DELAY WANTED IN MILLISECONDS. AT THE END OF THE DELAY BIT
* 'OLVL' WILL BE CLOCKED TO THE 'TCMP' PIN.
* (ASSUMES 2MHz OSCILLATOR FREQUENCY).
*
*
DELNMS ADD DUALTH ADD WANTED DELAY TO CURRENT COUNT
 STA OPCOMH STORE NEW VALUE INTO MS.COMPARE REG
 LDA TIMSR ACCESS TIMER STATUS REGISTER.......
 LDA #$00
 STA OPCOML ...THEN WRITE TO LS.COMPARE REGISTER
HOLD BRCLR OCF,TIMSR,HOLD NOW WAIT FOR COMPARE FLAG TO BE SET
 RTS RETURN AFTER WANTED DELAY
*
**
*
* NXTADR SUBROUTINE
*
* COMPUTES NEXT EPROM ADDRESS TO BE PROGRAMMED, VERIFIED, OR DUMPED.
* PUTS THIS ADDRESS ON PORTS A (LS BYTE) AND C (MS BYTE) AND
* UPDATES RAMSUB ALSO. SKIPS THE RAM, BOOTSTRAP AND UNUSED AREAS.
* RETURNS WITH Z=1 IF THE COMPUTED ADDRESS IS = $2000, MEANING THAT
* A PASS THROUGH THE MEMORY MAP HAS BEEN COMPLETED. OTHERWISE Z=0.
*

Page 44
MOTOROLA Parts Specific

MC68HC705C8,C8A

NXTADR LDA ADDR GET MS.BYTE OF LAST ADDRESS USED
 BNE NOT04F BRANCH IF NOT IN PAGE ZERO EPROM AREA
 LDX ADDR+1 GET LS.BYTE OF LAST ADDRESS USED
 CPX #RAM-1 LAST BYTE OF PAGE ZERO EPROM?
 BNE NOT04F BRANCH IF NOT $004F
*
* MUST HAVE JUST ACCESSED LAST PAGE ZERO EPROM LOCATION IF HERE SO
* FORCE NEXT ADDRESS INCREMENT TO POINT TO MAIN EPROM AREA AT $0100.
*
 LDX #$0100-1 POINT TO ADDRESS BELOW THE ONE WANTED
 STX ADDR+1 PLACE IN LOCATION TO BE INCREMENTED
 STX ADDRLO PRESET PORTA PRIOR TO INCREMENT
*
* 16 BIT ADDRESS INCREMENT
*
NOT04F INC ADDR+1 INCREMENT LS. ADDRESS BYTE
 INC ADDRLO UPDATE LS.ADDRESS AT PORT A
 BNE GOBACK RETURN IF A PAGE BOUNDARY NOT REACHED
 INCA INCREMENT MS. ADDRESS
*
* LOOK OUT FOR HAVING GONE THROUGH THE ENTIRE MEMORY MAP.
*
 CMP #$20 WAS THAT THE END OF MEMORY ($1FFF)?
 BEQ GOBACK EXIT WITH Z=1 IF THE END WAS REACHED.
*
* LOOK OUT FOR HAVING ACCESSED THE LAST LOCATION IN THE MAIN BLOCK
*
 CMP #$1F WAS THAT THE END OF THE MAIN BLOCK
 BNE INMAIN BRANCH IF STILL WITHIN THE MAIN BLOCK
*
* SKIP OVER THE UNUSED AND BOOTSTRAP AREAS
*
 LDA #$F0 FORCE LS. ADDRESS BYTE TO $F0
 STA ADDR+1 .
 STA ADDRLO MAKE SURE PORT A GETS UPDATED AS WELL
 BRN * DUMMY INSTRUCTION TO AVOID OPTION REG
*
 LDA #$1F FORCE MS. ADDRESS BYTE TO $1F
INMAIN STA ADDR UPDATE MS. ADDRESS
*
* COMBINE MS. ADDRESS BYTE WITH OLD TSC & LED LEVELS & UPDATE PORT C
*
 LDA PORTC GET OLD MS. ADDRESS AND CONTROL LINES
 AND #CMASK MASK OUT ADDRESS LINES
 ORA ADDR COMBINE CONTROL LINES WITH NEW ADDRES
 STA ADDRHI UPDATE PORT C
GOBACK RTS

 FCB 0 ONE SPARE BYTE!
*
 ORG $1FEE
*
RESET FDB START RESET VECTOR
*
 END
?

Page 45
MOTOROLA Parts Specific

MC68HC705C8,C8A

MC68HC705C8A

Revision History

Bootloader for Mask Set 0E20T, 1E20T, 2E20T, 3E20T, 0E79R, 1E79R,
2E79R, and 3E79R

Reference Document: Not applicable

Tracker Number: HC705C8A.003 Revision: 1.00

* *
* 68HC705C8A EPROM BOOTLOADER PROGRAM *
* ================================== *
* *
* REV 1 - 05/18/92 NCN *
* STARTED FROM 705BOOT.5 *
* CHANGED NXTADR TO ALLOW USE OF IRQ VECTOR FOR *
* KEYSCAN TESTING IN "JMP RAM MODE". *
* REV 2 - 12/11/92 NCN *
* FIXED PROGRAMMING OF THE SECURITY BIT. *
* BY CHANGING BSR ZAPSUB AT ADDRESS 1FB7 *
* TO BSR ZAPSEC. 1 BYTE CHANGED AT ADDRESS *
* $1FB8 FROM $E5 TO $EE. *
* *
* REV 3 - 4/19/93 NCN *
* FIXED GATE STRESS BY CHANGING *
* "LDA #$20" AT ADDRESS $1F36 TO "LDA #$40". *

*
* I/O DEFINITIONS
*
PORTA EQU $00 PORT A DATA
PORTB EQU $01 PORT B DATA
PORTC EQU $02 PORT C DATA
PORTD EQU $03 PORT D DATA (Input Only!)
DDRA EQU $04 PORT A DDR
DDRB EQU $05 PORT B DDR
DDRC EQU $06 PORT C DDR
*
* SERIAL PERIPHERAL INTERFACE REGISTERS
*
SPCR EQU $0A SERIAL PERIPHERAL CONTROL
SPSR EQU $0B SERIAL PERIPHERAL STATUS
SPDAT EQU $0C SERIAL PERIPHERAL DATA
*

Date Revision Description

5/4/95 1.00 Includes trackers HC705C8A.003, 68HC705C8AMSE1,
68HC705C8AMSE2 (R1).

Page 46
MOTOROLA Parts Specific

MC68HC705C8,C8A

* SERIAL COMMUNICATIONS INTERFACE REGISTERS
*
BAUD EQU $0D BAUD RATE CONTROL
SCCR1 EQU $0E SERIAL COMM'S CONTROL REGISTER 1
SCCR2 EQU $0F SERIAL COMM'S CONTROL REGISTER 2
SCSR EQU $10 SERIAL COMM'S STATUS
SCDAT EQU $11 SERIAL COMM'S DATA
*
* TIMER REGISTERS
*
TIMCR EQU $12 TIMER CONTROL
TIMSR EQU $13 TIMER STATUS
IPCAPH EQU $14 INPUT CAPTURE (High Byte)
IPCAPL EQU $15 INPUT CAPTURE (Low Byte)
OPCOMH EQU $16 OUTPUT COMPARE (High Byte)
OPCOML EQU $17 OUTPUT COMPARE (Low Byte)
COUNTH EQU $18 COUNTER (High Byte)
COUNTL EQU $19 COUNTER (Low Byte)
DUALTH EQU $1A DUAL TM REGISTER (High Byte)
DUALTL EQU $1B DUAL TM REGISTER (Low Byte)
*
* EPROM CONTROL REGISTER
*
PROG EQU $1C EPROM CONTROL
*
* MEMORY MAP DEFINITIONS
*
EPROM0 EQU $20 BASE OF PAGE ZERO EPROM AREA
RAM EQU $50 BEGINNING OF RAM
STACK EQU $FF STACK RESET ADDRESS
EPROM EQU $0100 BASE OF MAIN EPROM AREA
BOOTST EQU $1F00 START OF BOOTSTRAP ROM AREA
BOOTV EQU $1FE0 START OF BOOTSTRAP VECTOR AREA
VECTOR EQU $1FF0 START OF USER VECTOR AREA
*
* RAM VARIABLES
*
RAMSUB EQU RAM LOCATION OF RAM SUBROUTINE
ADDR EQU RAMSUB+1 EXTENDED ADDRESS FOR RAM SUBROUTINE
LOOP EQU RAMSUB+4 INTER-BYTE DELAY
TIME EQU RAMSUB+5 PROGRAMMING PULSE WIDTH
*
* PORT A DEFINITIONS
*
ADDRLO EQU PORTA LOW ORDER ROM ADDRESSES A0 - A7
A5 EQU 5 BIT 5 :- ADDRESS LINE A5
*
* PORT B DEFINITIONS
*
DATAIN EQU PORTB ROM DATA INPUT PORT
*
* PORT C DEFINITIONS
*
ADDRHI EQU PORTC HIGH ORDER ROM ADDRESSES A8 - A12
VFYLED EQU 5 BIT 5 DRIVES 'VERIFY' LED
PRGLED EQU 6 BIT 6 DRIVES 'PROGRAMMING' LED
TSC EQU 7 BIT 7 CONTROLS EXTERNAL ROM TRI-STATING..
* OUTPUT PIN - 0=MEMORY ENABLED 1= MEMORY
* TRI-STATED (FLOAT IF NOT USED).
*
* PORT D DEFINITIONS
*
MODES EQU PORTD BOOTSTRAP MODE INPUT PORT
PIND2 EQU 2 BIT 2
PIND3 EQU 3 BIT 3
PIND4 EQU 4 BIT 4
PIND5 EQU 5 BIT 5

Page 47
MOTOROLA Parts Specific

MC68HC705C8,C8A

*
* MISCELLANEOUS DEFINITIONS
*
CMASK EQU %11100000 PORTC CONTROL LINES MASK
EPGM EQU 0 PROG BIT0; - Vpp CONTROL BIT
ERASED EQU $00 VALUE OF AN ERASED EPROM BYTE
INSTAT EQU %01100000 INITIAL PORT C LED STATUS
LAT EQU 2 PROG BIT2; - EPROM ADDRESS LATCH BIT
LATCH EQU %00000100 PROG BIT2
MUL EQU $42 OP-CODE FOR MULTIPLY INSTRUCTION
OCF EQU 6 TIMSR BIT6; - OUTPUT COMPARE FLAG
OLVL EQU 0 TIMCR BIT0; - TIMER COMPARE OUTPUT LEVEL
RDRF EQU 5 SCSR BIT5; - RCV DATA REG FULL FLAG
TDRE EQU 7 SCSR BIT7; - XMIT DATA REG EMPTY FLAG
TEST EQU 2 PORTD BIT2; - '0' GO BOOT,'1'GO $51 (RAM)
OPTION EQU $1FDF OPTION REGISTER
TSTREG EQU $1F TEST REGISTER
*

*
* INITIAL REGISTER VALUES
* FCB %00100000 PORT A :- ROM ADDRESSES A7-A0 SET TO $20
* FCB $00 PORT B :- DON'T CARE
* FCB %01100000 PORT C :- ROM ENABLED/ LED'S OFF.....
* ...A12-A8 ZEROED
* FCB $00 PORT D :- DON'T CARE
* FCB %11111111 PORT A DDR :- ALL OUTPUTS
* FCB $00 PORT B DDR :- ALL INPUTS
* FCB %11111111 PORT C DDR :- ALL OUTPUTS
* FCB $00 SPCR :- DISABLE OPERATION
* FCB $00 SPSR :- DON'T CARE
* FCB $00 SPDAT :- DON'T CARE
* FCB %00110000 BAUD :- =4800Baud @2Mhz XTAL
* FCB %00000000 SCCR1 :- 8 DATA BITS
* FCB %00001100 SCCR2 :- INHIBIT INTERRUPTS, ENABLE...
* RX/TX NO WAKE-UP, NO BREAK
* FCB $00 SCSR :- DON'T CARE
* FCB $00 SCDAT :- DON'T CARE
* FCB $00 TIMCR :- DISABLE TIMER INTERRUPTS
* FCB $00 TIMSR :- DON'T CARE
* FCB $00 IPCAPH :- DON'T CARE
* FCB $00 IPCAPL :- DON'T CARE
* FCB $00 OPCOMH :- DON'T CARE
* FCB $00 OPCOML :- DON'T CARE
* FCB $00 COUNTH :- DON'T CARE
* FCB $00 COUNTL :- DON'T CARE
* FCB $00 DUALTH :- DON'T CARE
* FCB $00 DUALTL :- DON'T CARE
* FCB $00 PROG :- DISABLE PROGRAMMING
*
*
* RAM AREA IS INITIALISED AS FOLLOWS;
*
* LOCATION:- INSTRUCTION:-
*
* RAMSUB $50 $C7 STA EPROM0
* ADDR $51 $00
* ADDR+1 $52 $20
* $53 $81 RTS
*
* TIMER VARIABLES
*
* LOOP $54 2 -
* TIME $55 1 -
*
*

Page 48
MOTOROLA Parts Specific

MC68HC705C8,C8A

**
ORG BOOTST

*
TABLE FCB $C7 'STA EXTENDED' INSTRUCTION
 FCB $00 ADDRESS $0020
 FCB $20 .
 FCB $81 'RTS' INSTRUCTION
 FCB 2 2 PASSES THRU PROG
 FCB $01 1 mS PROGRAMMING PULSE CONSTANT
*
START EQU *
*
* FIRST CHECK FOR SECURITY AND HANG IF ENABLED
*
 LDA OPTION
 AND #%00001000
 BEQ NOSEC
 BRA *
*
* THEN CHECK PORT D, BIT 2, TO SEE IF USER WISHES TO JUMP TO
* RAM OR JUMP INTO THE BOOTLOADER PROGRAM.
*
*
NOSEC BRCLR TEST,PORTD,BOOT
 JMP RAM+1 GO TO RAM PROGRAM AT $0051
*
*
*
* SET UP PORTS, TIMER, RAM SUBROUTINE, AND RAM VARIABLES
*
*
BOOT CLR SCCR1 SET SCI TO 8 DATA BITS OPERATION
 LDX #DDRA POINT TO DDRA & INIT X FOR MULTIPLY
 COM ,X SET PORTA TO ALL OUTPUTS
 COM DDRC SET PORTC TO ALL OUTPUTS
*
 LDA #%00001100 GET SCCR2 INITIAL VALUE
 STA SCCR2 SET UP SCCR2
*
* GET BAUD INITIAL VALUE (N.B. MUL NOT SUPPORTED BY ASSEMBLER!)
 FCB MUL X=4, A=%00001100 ==> X=0, A=%00110000
 STA BAUD SET UP BAUD
*
 LSLA INITIAL PORT C VALUE (%01100000)
 STA PORTC ENABLE ROM, TURN OFF LED'S, ZERO..
* ZERO A12-A8
 LDA #EPROM0 GET INITIAL PORT A (A7 - A0) VALUE
 STA ,X SET UP PORT A
*
* INITIALISE RAM SUBROUTINE AND VARIABLES THEN JUST FILL RAM
*
MOVE LDA TABLE,X GET A BYTE FROM THE TABLE
 STA RAM,X MOVE IT INTO RAM
 INCX POINT TO THE NEXT BYTE TO BE MOVED
 BNE MOVE KEEP MOVING UNTIL ALL ARE IN PLACE
*
*
*
 BRCLR PIND5,MODES,MOVED
 BRSET PIND3,MODES,SEC
*

Page 49
MOTOROLA Parts Specific

MC68HC705C8,C8A

*DO THE GATE STRESS TEST
*
GTEST LDA #$40 EPMTST = 1, TS1:TS0 = 00
 STA PROG ENABLE GATE STRESS TEST
 BSET 0,ADDR SET UP FOR ADDRESS $0120
 BRCLR PIND4,MODES,NOCOM
 COM ADDR+1 USE ALTERNATE ADDRESS ($01DF)
NOCOM BSR ZAP
 WAIT
*
*PROGRAM THE SECURITY BIT
*
SEC LDA #$08 SET SECURITY BIT
 BSET LAT,PROG
 BRA CONSEC
 NOP
*

*
* THE BOOTLOADER PROGRAM HAS 5 MODES OF OPERATION:
*
* I. PROGRAM/VERIFY - PERFORMS A NORMAL PROGRAM CYCLE FOLLOWED BY A
* VERIFY CYCLE WHICH HANGS IF THE EPROM IS NOT
* CORRECTLY PROGRAMMED. EITHER 1ms OR 5ms PULSE
* WIDTH CAN BE SELECTED.
*
* II. VERIFY - PERFORMS ONLY A VERIFY CYCLE WHICH HANGS IF THE EPROM
* IS NOT CORRECTLY PROGRAMMED.
*
* III. LOAD RAM - LOADS A PROGRAM FROM SCI INTO THE RAM
* THEN JUMPS TO RAM TO EXECUTE THE PROGRAM.
*
* IV. DUMP EPROM - DUMPS THE EPROM CONTENTS OF THE 705C8 TO THE SCI
*
* V. SECURE THE PART - PROGRAMS ONLY THE SECURITY BIT AND THEN
* EITHER DOES ANOTHER VERIFY (NOT THE SEC BIT)
* OR HANGS IN THE DUMP EPROM MODE
*
* WHEN COMING OUT OF RESET INTO THE BOOTLOADER PROGRAM (ASSUMING THAT
* PORT D PIN 2 ALLOWS YOU TO ENTER THE BOOTLOADER) THE STATE OF
* PORT D PINS 3, 4 AND 5 DETERMINES WHICH MODE OF OPERATION THE
* PROGRAM WILL ENTER.
*
* THE GATE STRESS TEST CAN ALSO BE INVOKED THROUGH THE BOOTLOADER.
*
* |--------------------------|---------------------|
* | PORT D | |
* |-------|--------|---------| MODE |
* | PIN 5 | PIN 4 | PIN 3 | |
* |-------|--------|---------|-------------------------------|
* | 0 | 0 | 0 | PROGRAM/VERIFY 15ms PULSE |
* |-------|--------|---------|-------------------------------|
* | 0 | 0 | 1 | VERIFY |
* |-------|--------|---------|-------------------------------|
* | 0 | 1 | 0 | LOAD RAM |
* |-------|--------|---------|-------------------------------|
* | 0 | 1 | 1 | DUMP EPROM |
* |=======|========|=========|===============================|
* | 1 | 0 | 0 | GATE STRESS TEST |
* |-------|--------|---------|-------------------------------|
* | 1 | 0 | 1 | SECURE/VERIFY |
* |-------|--------|---------|-------------------------------|
* | 1 | 1 | 0 | GATE STRESS TEST |
* |-------|--------|---------|-------------------------------|
* | 1 | 1 | 1 | SECURE/DUMP EPROM |
* |=======|========|=========|===============================|
*

Page 50
MOTOROLA Parts Specific

MC68HC705C8,C8A

*
*
* CHECK PORT D PINS 3, 4 AND 5 TO DETERMINE WHICH MODE TO ENTER
*
*
MOVED BRCLR PIND4,MODES,PRGVER DO A PROGRAM/VERIFY OR VERIFY
 BRCLR PIND3,MODES,LDRAM DO A LOAD RAM - EXECUTE CYCLE
*
* DUMP THE CONTENTS OF THE 705C8 EPROM TO THE SCI OUTPUT.
* (ASSUMES 'RAMSUB' CONTAINS $C7)
*
DMPEPR DEC RAMSUB CHANGE 'STA' TO 'LDA' EXTENDED ($C6).
DUMPIT JSR RAMSUB READ ONE BYTE OF EPROM
WAITTX BRCLR TDRE,SCSR,WAITTX WAIT FOR TRANSMIT REGISTER TO EMPTY
 STA SCDAT SEND EPROM DATA TO SERIAL OUTPUT
 BSR NXTADR MOVE TO NEXT ADDRESS
 BNE DUMPIT IF NOT FINISHED, CONTINUE
 WAIT HANG WHEN FINISHED.
*
*
* CHOOSE BETWEEN PROGRAM/VERIFY AND JUST VERIFY MODES
*
*
PRGVER BRSET PIND3,MODES,VERIFY DO A VERIFY CYCLE
 BCLR PRGLED,PORTC LIGHT 'PROGRAMMING' LED
*
*
* PROGRAM THE EPROM WITH THE CONTENTS OF THE EXTERNAL ROM
*
*
PRGLOP BSR PRGSUB PROGRAM ONE EPROM BYTE
 BSR NXTADR POINT TO NEXT ADDRESS
 BNE PRGLOP KEEP PROGRAMMING UNTIL DONE
 STA ADDR+1 RESET LOW ORDER ADDR TO $20
 STA PORTC RESET HIGH ORDER ADDRESS ON PORTC TO $20
 CLR ADDR RESET HIGH ORDER ADDR TO $00
 BSET A5,ADDRLO PUT $20 ON PORT A
 DEC LOOP DECREMENT LOOP COUNTER
 BNE PRGLOP RELOAD PARAM. FOR 2ND PASS
*
*
* VERIFY THE EPROM CONTENTS AGAINST EXTERNAL MEMORY.
* (ASSUMES 'RAMSUB' CONTAINS $C7)
*
VERIFY LDA #INSTAT GET INITIAL LED STATUS FOR A VERIFY
COMPAR INC RAMSUB CHANGE 'STA' TO 'EOR' EXTENDED ($C8).
 STA PORTC PLACE LED AND ROM STATUS ON PORT PINS
 BSET A5,ADDRLO SET A7 - A0 TO $20 (START OF EPROM)
*
CHECK LDA DATAIN READ A BYTE FROM THE EXTERNAL MEMORY
 JSR RAMSUB COMPARE TO AN EPROM BYTE
 BNE * HANG IF THEY DON'T MATCH
 BSR NXTADR POINT TO NEXT ADDRESS TO BE COMPARED
 BNE CHECK KEEP CHECKING BYTES UNTIL EPROM END
*
DONE BCLR VFYLED,PORTC INDICATE EPROM VERIFIED AS CORRECT
 STOP
*
*
*

Page 51
MOTOROLA Parts Specific

MC68HC705C8,C8A

* LOAD THE RAM WITH A USER'S PROGRAM VIA THE SCI.
*
* THE DATA SHOULD BE IN THE FORM OF 1 START-BIT, 8 DATA-BITS,
* 1 STOP-BIT. THE FIRST BYTE SHOULD BE A COUNT OF THE TOTAL NUMBER
* OF BYTES TO BE SENT, INCLUDING THAT BYTE. THE FIRST BYTE IS
* LOADED INTO $50 SO THE FIRST PROGRAM BYTE WILL BE LOADED INTO
* $51. THAT IS WHERE PROGRAM EXECUTION WILL BEGIN.
* IF A COUNT IS USED THAT IS GREATER THAN (PROGRAM LENGTH + 1)
* THEN THE ROUTINE WILL HANG AFTER THE LAST PROGRAM BYTE IS SENT.
* THIS CAN BE USED TO HOLD OFF EXECUTION OF THE PROGRAM UNTIL BIT-2
* OF PORTD IS SET AND RESET IS ASSERTED.
*
*
LDRAM LDX #RAM POINT TO START OF RAM
WAITRX BRCLR RDRF,SCSR,WAITRX WAIT FOR RX REGISTER TO FILL
 LDA SCDAT READ DATA BYTE FROM RX REGISTER
 STA ,X STORE THE DATA IN RAM
 INCX MOVE TO NEXT RAM LOCATION
 DEC RAM DECREMENT THE PROGRAM SIZE COUNTER (1st BYTE)
 BNE WAITRX IF ENTIRE PROGRAM NOT LOADED, CONTINUE
JMPRAM JMP RAM+1 JUMP TO THE PROGRAM IN THE RAM
*
**
* *
* S U B R O U T I N E S *
* *
**
*
* PROGRAM AN EPROM ADDRESS WITH DATA RECEIVED FROM PORTB.
* THE ADDRESS TO BE PROGRAMMED SHOULD BE PLACED IN LOCATION
* 'ADDR' & 'ADDR+1'.
*
*
PRGSUB LDA DATAIN READ DATA FROM PORTB
 BEQ SKIP RETURN IF EQUAL TO ERASED STATE ($00)
*
ZAPSUB BSR ZAP
 CLR PROG REMOVE Vpp FROM CIRCUIT
* CLEAR THE LAT BIT
SKIP RTS
*
ZAP BSET LAT,PROG
 JSR RAMSUB WRITE ONE BYTE OF DATA
ZAPSEC BSET EPGM,PROG APPLY Vpp TO CIRCUIT
 LDA TIME GET PROGRAMMING PULSE LENGTH
**
*
*
* DELAY N mS SUBROUTINE. ON ENTRY, ACCUMULATOR SHOULD CONTAIN THE
* TIME DELAY WANTED IN MILLISECONDS. AT THE END OF THE DELAY BIT
* 'OLVL' WILL BE CLOCKED TO THE 'TCMP' PIN.
* (ASSUMES 2MHz OSCILLATOR FREQUENCY).
*
*
DELNMS LDX #$A6 1 MS INNER LOOP
MS1 DECX
 BNE MS1
 DECA DECREMENT OUTER LOOP
 BNE DELNMS
 RTS RETURN AFTER WANTED DELAY
*
CONSEC STA OPTION
 BSR ZAPSEC
*

Page 52
MOTOROLA Parts Specific

MC68HC705C8,C8A

**
*
* NXTADR SUBROUTINE
*
* COMPUTES NEXT EPROM ADDRESS TO BE PROGRAMMED, VERIFIED, OR DUMPED.
* PUTS THIS ADDRESS ON PORTS A (LS BYTE) AND C (MS BYTE) AND
* UPDATES RAMSUB ALSO. SKIPS THE RAM, BOOTSTRAP AND UNUSED AREAS.
* RETURNS WITH Z=1 IF THE COMPUTED ADDRESS IS = $2000, MEANING THAT
* A PASS THROUGH THE MEMORY MAP HAS BEEN COMPLETED. OTHERWISE Z=0.
*
NXTADR LDA ADDR GET MS.BYTE OF LAST ADDRESS USED
 BNE NOT04F BRANCH IF NOT IN PAGE ZERO EPROM AREA
 LDX ADDR+1 GET LS.BYTE OF LAST ADDRESS USED
 CPX #RAM-1 LAST BYTE OF PAGE ZERO EPROM?
 BNE NOT04F BRANCH IF NOT $004F
*
* MUST HAVE JUST ACCESSED LAST PAGE ZERO EPROM LOCATION IF HERE SO
* FORCE NEXT ADDRESS INCREMENT TO POINT TO MAIN EPROM AREA AT $0100.
*
 LDX #$0100-1 POINT TO ADDRESS BELOW THE ONE WANTED
 STX ADDR+1 PLACE IN LOCATION TO BE INCREMENTED
 STX ADDRLO PRESET PORTA PRIOR TO INCREMENT
*
* 16 BIT ADDRESS INCREMENT
*
NOT04F INC ADDR+1 INCREMENT LS. ADDRESS BYTE
 INC ADDRLO UPDATE LS.ADDRESS AT PORT A
 BNE GOBACK RETURN IF A PAGE BOUNDARY NOT REACHED
 INCA INCREMENT MS. ADDRESS
*
* LOOK OUT FOR HAVING GONE THROUGH THE ENTIRE MEMORY MAP.
*
 CMP #$20 WAS THAT THE END OF MEMORY ($1FFF)?
 BEQ GOBACK EXIT WITH Z=1 IF THE END WAS REACHED.
*
* LOOK OUT FOR HAVING ACCESSED THE LAST LOCATION IN THE MAIN BLOCK
*
 CMP #$1F WAS THAT THE END OF THE MAIN BLOCK
 BNE INMAIN BRANCH IF STILL WITHIN THE MAIN BLOCK
*
* SKIP OVER THE UNUSED AND BOOTSTRAP AREAS
*
 LDX #$F0 FORCE LS. ADDRESS BYTE TO $F0
 STX ADDR+1 .
 STX ADDRLO MAKE SURE PORT A GETS UPDATED AS WELL

Page 53
MOTOROLA Parts Specific

MC68HC705C8,C8A

Mask Set Errata 1
68HC705C8AMSE1

68HC705C8A 8-Bit Microcontroller Unit

INTRODUCTION

This errata provides information pertaining to security bit programming applicable to the
following 68HC705C8A MCU mask set devices.

• 0E20T

• 1E20T

• 2E20T

• 2E79R

• 0E97N

MCU DEVICE MASK SET IDENTIFICATION

The mask set is identified by a 4-character code consisting of a letter, two numerical
digits, and a letter (for example, E20T). Slight variations to the mask set identification
code may result in an optional numerical digit preceding the standard 4-character code
(for example, 2E20T).

MCU DEVICE DATE CODES

Device markings indicate the week of manufacture and the mask set used. The data is
coded as four numerical digits where the first two digits indicate the year and the last two
digits indicate the work week. The date code "9115" would indicate the 15th week of the
year 1991.

MCU DEVICE PART NUMBER PREFIXES

Some MCU samples and devices are marked with an "SC" or "XC" prefix. An "SC"
prefix denotes special/custom device. An "XC" prefix denotes device is tested but is not
fully characterized or qualified over the full range of normal manufacturing process
variations. After full characterization and qualification, devices will be marked with the
"MC" prefix.

Page 54
MOTOROLA Parts Specific

MC68HC705C8,C8A

SECURITY BIT PROGRAMMING

When programming the security bit on the 68HC705C8A, it is required that either a
higher programming voltage (VPP) or a longer programming time be applied.
Recommended programming time for masks covered in this document is 200 ms with a
VPP of 15 volts. Do not apply a VPP of over 16.5 volts when programming. A series
resistor is not needed for IPP current limiting.

If using the evaluation module (EVM) board to program the security bit, VPP should be
set at 16.5 volts.

NOTE: Future revisions of the 68HC705C8A will require the normally specified
programming time and voltage when programming the security bit.

Above recommendations apply only to the security bit programming and not to
programming the EPROM array. Please use the normally specified programming
voltage and time when programming the EPROM array.

Page 55
MOTOROLA Parts Specific

MC68HC705C8,C8A

Mask Set Errata 1
68HC705C8AMSE2 (R1)

68HC705C8A 8-Bit Microcontroller Unit

INTRODUCTION

This errata provides information pertaining to the extra IDD current draw related to
PORTD and is applicable to the following 68HC705C8A MCU mask set devices.

• 1E20T

• 2E20T

• 3E20T

• 2E79R

• 3E79R

MCU DEVICE MASK SET IDENTIFICATION

The mask set is identified by a 4-character code consisting of a letter, two numerical
digits, and a letter (for example, E20T). Slight variations to the mask set identification
code may result in an optional numerical digit preceding the standard 4-character code
(for example, 2E20T).

MCU DEVICE DATE CODES

Device markings indicate the week of manufacture and the mask set. The data is coded
as four numerical digits where the first two digits indicate the year and the last two digits
indicate the work week. The date code "9115" would indicate the 15th week of the year
1991.

MCU DEVICE PART NUMBER PREFIXES

Some MCU samples and devices are marked with an "SC" or "XC" prefix. An "SC" prefix
denotes special/custom device. An "XC" prefix denotes device is tested but is not fully
characterized or qualified over the full range of normal manufacturing process variations.
After full characterization and qualification, devices will be marked with the "MC" prefix.

Page 56
MOTOROLA Parts Specific

MC68HC705C8,C8A

ADDITIONAL IDD CURRENT DRAW

When reading PORTD, a condition exists that causes additional IDD current to be drawn .
If any pin on PORTD transitions from a logic zero to a logic one, current through VDD
increases by approximately 300 µA. However, this does not affect pin leakage. Also, the
actual read of PORTD is not affected. This condition cannot be cleared or reset, but
powering the part down will return it to its initial condition.

The transition from logic zero to a logic one condition will cause a violation in the stop
IDD specification and may cause a violation in the wait IDD specification depending on
the frequency and voltage of operation. The operating IDD will remain within specification.

For low-power or current-sensitive applications, it is recommended not to transition
PORTD pins.

This condition will be fixed in future mask revisions of the 68HC705C8A. However, to
make the MC68HC705C8A compatible with other C Family parts, the new mask revision
will require that all input pins be tied to either a logic one or logic zero. The input pins
should not be left floating.

	TABLE OF CONTENTS
	Modules
	Serial Peripheral Interface (SPI) Module
	SPI Test Program
	SPI Code Snippet (Master)
	SPI Code Snippet (Slave)

	Computer Operating Properly (COP) COP0COP
	COP Timeout Period

	CPU
	Correction to SUB in Applications Guide
	External Interrupt Timing
	I Bit in CCR During Stop Mode
	BSET and BCLR are Read-Modify-Write Instructions
	I Bit in CCR During Wait Mode

	Timer Module
	Input Capture/Output Compare Code Snippet
	Interrupt Driven Output Compare Code
	Input Capture Test

	Parts Specific
	MC68HC705C8
	SPIF Bit Errata
	Keypad Decoding
	Mask Set C16W Bootloader Code
	Memory Map Diagram Clarification
	Bootloader for Mask Set 1C11C, 2C11C, 3C11C, 6C11C, 7C11C, and 9C11C

	MC68HC705C8A
	Bootloader for Mask Set 0E20T, 1E20T, 2E20T, 3E20T, 0E79R, 1E79R, 2E79R, and 3E79R
	Mask Set Errata 1 68HC705C8AMSE1
	INTRODUCTION
	MCU DEVICE MASK SET IDENTIFICATION
	MCU DEVICE DATE CODES
	MCU DEVICE PART NUMBER PREFIXES
	SECURITY BIT PROGRAMMING

	Mask Set Errata 1 68HC705C8AMSE2 (R1)
	INTRODUCTION
	MCU DEVICE MASK SET IDENTIFICATION
	MCU DEVICE DATE CODES
	MCU DEVICE DATE CODES
	ADDITIONAL I DD CURRENT DRAW

