[ENUEIA] UARIY TINdD

VI7TOHO.LOW @

CPU12RM/AD

CPU12

REFERENCE
MANUAL

@ MOTOROLA

CPU12
REFERENCE MANUAL

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not
convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
@ is a registered trademark of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© Motorola, Inc., 1996

Paragraph

SECTION 1

INTRODUCTION

1.1 CPUT2 FEatUreS ...ttt
1.2 Readership ...
1.3 Symbols And Notation..........cccoeeeeiiiniciie e

SECTION 2

OVERVIEW
2.1 Programming Model............ooiiiiiiiieccee e
P22 B - | - R Y/ o= SO
2.3 Memory Organization..........c.ocoeeieeiceeeeeeeeeee e e
2.4 InStruction QUEUE.........ceiiuviiiiiee et

SECTION 3

ADDRESSING MODES

3.1 MOdE SUMMAIYciiiieiiiiee et et e e e eneeeens
3.2 Effective AdAreSScccuveeiiiiiieee et
3.3 Inherent Addressing Mode........ccccceeiieiiiiiiiiiinic e
3.4 Immediate Addressing Modeccoeiiiniiiiiiie e
3.5 Direct Addressing Mode.........ccoociiiiiiiiiiiiiieiiieeeeeeee e
3.6 Extended Addressing Mode.........ccceeeieiiiiiiiiiciiceeeeeeen
3.7 Relative Addressing Mode ..o
3.8 Indexed Addressing MOAES.........ccceeiiiiiiiiiieeiiennie et
3.9 Instructions That Use Multiple Modes.......c...ccooeeiiieeiiceenneen.
3.10 Addressing'More Than 64 Kbytes..........c..cccoeriieiiiiciiniiiee

SECTION 4

INSTRUCTION QUEUE

41 Queue DeSsCriptioncccocciiiiiiiiieeeeeeee e
4.2 Data Movementin the QUEUE.cccueevvciieiecieieeie e,
4.3 Changes in Execution FIOW..........ccccoecuuviveveiiniiieeceie e

SECTION 5

INSTRUCTION SET OVERVIEW

5.1 Instruction Set Descriptionccccivieiiiieeccie e
5.2 Load and Store INStructionsoccceeeiiiiiiiiiciieeree e
5.3 Transfer and Exchange Instructionscccoceeeeeveeeeeesnecnnee.
5.4 Move INStrUCONSoeeiiiiiiiieiecececee e
5.5 Addition and Subtraction Instructions.............ccceeevieeiiiceieenn.l
5.6 Binary Coded Decimal InStructions........c..cccccoveeeeiveceeeecveeenneen.
5.7 Decrement and Increment Instructionsc.ccccveevieeveeennen.n.
5.8 Compare and Test INStructions.............ccccoeeeeeieceeeceeceeeeee.
5.9 Boolean Logic INStructions............ccceuiriiienienieir e
5.10 Clear, Complement, and Negate Instructionscc...........
CPU12

TABLE OF CONTENTS

REFERENCE MANUAL

Page

MOTOROLA
iii

TABLE OF CONTENTS (Continued)

Paragraph Page
5.11 Multiplication and Division INStrUCLIONSccoiiiiiiiiiiiiie e, 5-7
5.12 Bit Test and Manipulation INStruCtions ..o, 5-7
5.13 Shift and Rotate INStruCtiONScviriieieeee e 5-8
5.14 Fuzzy LOGIC INSIIUCHIONS.o.uiiiiiiiiiiieecet et 5-9
5.15 Maximum and Minimum INStructions............ccccceeiiriiiiiiiiiiiie e 5-11
5.16 Multiply and Accumulate INStruCtion............cccoueeeiiiiiiiiiei e 5-11
5.17 Table Interpolation INSrUCHIONSoeiiiiiieereeeeee e 5-12
5.18 Branch INStrUCHONSooieiiieeeiiee e e 5-13
5.19 Loop Primitive INStrUCHONSeeeriiiieeeciieeeeee e 5-16
5.20 Index Manipulation INStruCtions..............cccceeiiiiiiiinne e 5-19
5.21 Stacking INStrUCHONScovieiieiee e 5-20
5.22 Pointer and Index Calculation INStructions............cccccceeerviiiiiiieiinnc e 5-20
5.23 Condition Codes INSIUCHONSccceiuiiiieeieee e 5-21
5.24 Stop and Walit INStruCtioNSooviiiiiiie e 5-21
5.25 Background Mode and Null Operationscccccceeeieeinnic i 5-22

SECTION 6

INSTRUCTION GLOSSARY

6.1 Glossary INfOrmationcoioiiiiiriiie e ecceeeee e te e e e eeeeeens 6-1
6.2 Condition Code ChangeS.......c.ucuiiriieeeiiieeeieeeiee e ee e e eite e e senneeeeanee e 6-2
6.3 Object Code NOtatioN..........coeciieiicie e s eee e e raee e 6-2
B.4 SOUICE FOIMMIS. ..ottt ettt et e 6-3
6.5 Cycle-by-Cycle EXECULIONooiiiiieeieee et 6-5
B.6 GIOSSANY ..ottt e e s nn e e e eaaeeeeas 6—7

SECTION 7

EXCEPTION PROCESSING

7.1 Types Of EXCEPHONS.....cccueiiiieeeieeeee et e e e eaneee e 7-1
A=A = (o7=Y o) (1) o I o €T) 1|V 7-2
R T = 1= 1= (= ROV 72
A (01 (=4 V1 o] (= U 7-3
7.5 Unimplemented Opcode Trap........cccceuerieeieeieseenreeieeieeeeestee e e sseesseeseesaeenns 7-5
7.6 Software Interrupt INStructionccccovcieiiriiniiicee e 7-6
7.7 Exception Processing FIOWooiiiiiiiireee et 7-6

SECTION 8

DEVELOPMENT AND DEBUG SUPPORT

8.1 External Reconstruction of the QUeUEe.ccoviiriiiriiiicee e, 8-1
8.2 Instruction Queue Status Signals.........cccceeeeiinieiinieenee e 8-1
8.3 Implementing Queue RECONSIIUCHION.............eeeevvieiiiiecceieec e 84
8.4 Background Debugging Mode...........cccocciriiirniinieniieiesiieceee et 8-6
8.5 INStrUCtON TagQiNg.....ceeeueeeeeieeiie et et 8-13
8.8 BreakpOoiNtScooiiiiiiiiieieee ettt et et 8-14
MOTOROLA CPU12

iv REFERENCE MANUAL

TABLE OF CONTENTS (Continued)

Paragraph Page
SECTION 9
FUZZY LOGIC SUPPORT

9.1 INEFOAUCHION ..t e e e e e e e e e e e e 91
9.2 Fuzzy LOGIC BASICS ..ooiiiiiiiiiiiiee e 9-2
9.3 Example Inference Kernel............ooooeiiiiiiieiiiieeee e 9-7
9.4 MEM INStruction DetailSoooiiiieiiee e 9-9
9.5 REV, REVW Instruction Detailsc.coeoiieriiiiiiiieee e 9-13
9.6 WAV Instruction Detailscooiiiiiiiiiiiiiiiieec e 922
9.7 Custom Fuzzy LogiC Programming.......cccccoeoueeeeiiiiieniieeieceeeiecaeee e 926

SECTION 10

MEMORY EXPANSION

10.1 Expansion System DeSCHPIONccceiviiiiiiiiieiieeie e 10-1
10.2 CALL and Return from Call Instructions.............c.cooooiiiiiiiiiiiiiiieeeeeeee 10-3
10.3 Address Lines for Expansion Memoryccceevviiiieeniieiiiieiie e 10-4
10.4 Overlay WINdow COontrolS........cooiiuiiieiieeiee e 10-5
10.5 Using Chip-select CirCUILSc...coeoiiiiieiiieiiie et 10-5
10.6 SYStEM NOLES.......oiiiiiiiiiie et s 10-8

APPENDIX A

INSTRUCTION REFERENCE

A1 Instruction Set SUMMArY..........cociiiiiiiiiiie e A1
A2 OPCOAE MEP. ..ttt ettt st e e et ene A-1
A.3 Indexed Addressing Postbyte ENCOdiNgcccoooireiieeiiinniieeeeeece e, A-1
A.4 Transfer and Exchange Postbyte Encoding...........cccoviiiiiiiieniiiincieceeeee A-1
A5 Loop Primitive Postbyte ENCOdiNgcccvviieeiiiieiciiie e A1

APPENDIX B

M68HC11 TO M68HC12 UPGRADE PATH

B.1 CPUI2Design GoalS....ooocooiiiiiiieieeee e B—1
B.2 Source Code Compatibility............cceeeeueiiiiieeiieiieieeeeee e B—1
B.3 Programmer’s Model and Stacking.........ccccerieiieniniiiniieeeieee e B-3
B.4 True 16-Bit ArchiteCturecoccieiiiiei e B-3
B.5 IMProved INAEXiNgG......c.coicuiieieieeie ettt B-6
B.6 Improved Performance...........ccueeoouiiieciie e B-9
B.7 Additional FUNCHONS........c.eiiiiiiiieceeece e B—-11

APPENDIX C

HIGH-LEVEL LANGUAGE SUPPORT

C.1 DAATYPES ..ottt sttt en e bt e e C-1
C.2 Parameters and Variables..........ccocuoueiieieiiceieceieeceeeeeeeeeeee e C-1
C.3 Increment and Decrement OPErators..............ocoeueeveeeeeueeeeieeeeeee e C-3
C.4 Higher Math FUNCHONSoouivieeeee e C-3
C.5 Conditional If CONSIIUCESc.coviieeiieeiiiecteeeeeeceeeee et C-4
CPU12 MOTOROLA

REFERENCE MANUAL v

TABLE OF CONTENTS (Continued)

Paragraph Page
C.6 Case and SWiItCh StatementS.......coooooiiiiiiiiieeeeeeeeeeeee e Cc-4
(O A = o1 01 (=Y = TR c+4
C.8 FUNCHON CallS ... c—4
C.9 Instruction Set Orthogonality..........ccocueeiiriiiiieiecee e C-5
INDEX
SUMMARY OF CHANGES
MOTOROLA CPU12

Vi REFERENCE MANUAL

Title
2-1

7-2
8-1
8-2

8-4
8-5
9-1

9-3
9-4

9-6
9-7
9-8

9-10

9-11
9-12

CPU12

LIST OF FIGURES

Page
Programming Model..........coooiiiiiii s 2-1
Example GIOSSary Page.......ccoieeiiiiii et ee e 6—1
Exception Processing Flow Diagramccccoioiiiiiiiiiiiiieeeee e 7-7
Queue Status Signal TimiNgGcooieiiiriieeeee e 8-2
BDM Host to Target Serial Bit Timingccccooiirioiiniieeceeeeeee 8-8
BDM Target to Host Serial Bit Timing (LOGIC 1) ..ccooviiiiiiiiiiiiiieeieceeeeee 8-8
BDM Target to Host Serial Bit Timing (LOGIC 0)ccceeiiiiiiiiiiiniciiieeieee 8-9
Tag INPUL TIMING ..ot 8-13
Block Diagram of a Fuzzy LogiC SyStem..........ccccocveiiiiiiiiniiinicinee e 9-3
Fuzzification Using Membership FUNCLIONS...........cooooiiiiiiiieiiieeeeeeee 9-4
Fuzzy Inference ENGINeccoo i 9-8
Defining a Normal Membership Function..............cccoooiiiiniiiiiieccceee 9-10
MEM Instruction Flow Diagram...........ccocomieeiieieeiceie e 9-11
Abnormal Membership Function Case 1..........ccoiiiiiiiiii e, 9-12
Abnormal Membership Function Case 2.........cccceeiviriiieiiriiienceeeeeee 9-13
Abnormal Membership Function Case 3.........cccceoverireiieeiiese e 9-13
REV Instruction FIow Diagramccceviiiiiinienieeceeeceee e 9-16
REVW Instruction Flow Diagram..........ccccceeriiriiiinieiiineeee e 9-21
WAV and wavr Instruction Flow Diagram..........c.cccoeoiiiiiiininienceeieenieeene 9-25
Endpoint Table Handling..........ccoouiriiiiiii e 9-28
MOTOROLA

REFERENCE MANUAL vii

MOTOROLA CPU12
Viii REFERENCE MANUAL

Table

3-1
3-2
3-3
5-1
5-2
5-3
5-4
55
5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27
5-28
7-1
7-2
8-1
8-2
8-3
8-4
8-5
10-1
A-1
A-2
A-3
A-4

CPU12

LIST OF TABLES

Page
M68HC 12 Addressing Mode SUMmMAry..........ccocceriviiiiiiiiiicienceiccee e 3-1
Summary of Indexed Operationscoceeiviiciiiiieniieee e 3-6
PC Offsets for Move INStructionscccooiriiiiiiiiiiiceee e 3-11
Load and Store INStruCtiONSooeeiieeiiieeei e 5-2
Transfer and Exchange INStructionsccccevviiiiiiiiiiiincccecee 5-3
MOVE INSIIUCTIONS ...ttt e e e e 5-3
Addition and Subtraction INStructions..............cooiireriiii e 5-4
BCD INSIrUCHIONS ...ttt 54
Decrement and Increment INStructionscccoeeiiiiiiiiie i 5-5
Compare and Test INStrUCONScocveereiieeriier e e 5-5
Boolean Logic INStrUCHONSoiiiiiieieiee et 5-6
Clear, Complement, and Negate Instructionsccccoceveeeeiiiieeecccieiieeee 5-6
Multiplication and Division INStructionscccoccceiiiiieeiiiiieecee 5-7
Bit Test and Manipulation INStruCtioNScccciiiiiiiiiiiii e 5-7
Shift and Rotate INStrucCtionsoooeiieiioiee e 5-8
Fuzzy Logic INSTrUCHONS........c.cooiiiiiiiiecie e 5-10
Minimum and Maximum INStructions............cceoeiiiin i 5-11
Multiply and Accumulate INStructions...........cocuiriiiiiiiiici e, 5-12
Table Interpolation INStrUCIONSoooiiiiiier et 5-12
Short Branch INStruCtions...........ooooiieiiiiieee e 5-14
Long Branch INStruCtioNSc.oouviiiiiiee e 5-15
Bit Condition Branch INStruCtions............ccccvvveriieiiiiciie e 5-16
Loop Primitive INSTrUCHIONScccciiiiiii e 5-16
Jump and Subroutine INStrUCHONS.cccoiiiiiiiieee e 5-17
INterrupt INSIrUCHONS ... e e 5-18
Index Manipulation INStructions..............cccceeiiiiii i 5-19
Stacking INSrUCHONScccciiiiiiee e 5-20
Pointer and Index Calculation Instructions.............ccccooveeveiicicciiecie e, 5-21
Condition Codes INSrUCONSccciiiiieiieee e 5-21
Stop and Waiit INStrUCHONSc..eeiiiiiiiiieceeecee e 522
Background Mode and Null Operation Instructions...........c.cccooviiieiiieeeicene. 5-22
CPU12 Exception VECtor Mapcccvevieeiieeeiecciieeie s 7-1
Stacking Order on Entry t0 INterrupts.......co.veeeeveeeeieeeeeeeeeeeeeeeeeeeee e 7-5
IPIPE[1:0] DECOAINGeiitieiieeiee ettt et et as 8-2
BDM Commands Implemented in Hardware.............cccocciviniiniineieneee 8-10
BDM Firmware Commands...........cccuvereeerereenieeiieeeie et eeeeeesee e eeseeesee e 8-11
BDM Register Mappingcccecueeiuiieeeieieeiie et e 8-11
Tag Pin FUNCHON ..ottt e 8-13
Mapping PreCeAENCEccouvveiieeiieeeeeeeeeee e 10-2
Instruction Set SUMMANY........ccviiiiiieeiiee et A-2
CPUT2 OPCOAE MaP ...cciiieiiciieiicteee ettt ettt et nee e A-20
Indexed Addressing Mode SumMmaryc.cccccvvririnierenneneesceeeeeee e A-22
Indexed Addressing Mode Postbyte Encoding (Xb)ccccecvevvieieeeneennee. A-23
MOTOROLA

REFERENCE MANUAL ix

LIST OF TABLES (Continued)
Title

A-5 Transfer and Exchange Postbyte Encoding
A-6 Loop Primitive Postbyte Encoding (Ib)
B-1 Translated M68BHC11 Mnemonics

B-3 Comparison of Math Instruction Speeds
B-4 New HC12 Instructions

MOTOROLA
X

B2 Instructions with Smaller Obect COUErrer.r.

CPU12
REFERENCE MANUAL

SECTION 1
INTRODUCTION

This manual describes the features and operation of the CPU12 processing unit
used in all M68HC12 microcontrollers.

1.1 CPU12 Features

The CPU12 is a high-speed, 16-bit processing unit that has a programming model
identical to that of the industry standard M68HC11 CPU. The CPU12 instruction
set is a proper superset of the M68HC11 instruction set, and M68HC11 source
code is accepted by CPU12 assemblers with no changes.

The CPU12 has full 16-bit data paths and can perform arithmetic operations up to
20 bits wide for high-speed math execution.

Unlike many other 16-bit CPUs, the CPU12 allows instructions with odd byte
counts, including many single-byte instructions. This allows much more efficient
use of ROM space.

An instruction queue buffers program information so the CPU has immediate ac-
cess to at least three bytes of machine code at the start of every instruction.

In addition to the addressing modes found in other Motorola MCUs, the CPU12 of-
fers an extensive set of indexed addressing capabilities including:

* Stack pointer can be used as an index register in all indexed operations

* Program counter can be used as an index register in all but auto inc/dec mode
* Accumulator offsets allowed using A, B, or D accumulators

e Automatic pre- or post-, increment or decrement (by -8 to +8)

* 5-bit, 9-bit, or 16-bit signed constant offsets

* 16-bit offset indexed-indirect and accumulator D offset indexed-indirect

1.2 Readership

This manual is written for professionals and students in electronic design and soft-
ware development. The primary goal is to provide information necessary to imple-
ment control systems using M68HC12 devices. Basic knowledge of electronics,
microprocessors, and assembly language programming is required to use the
manual effectively. Because the CPU12 has a great deal of commonality with the
M68HC11 CPU, prior knowledge of M6BHC11 devices is helpful, but is not essen-
tial. The CPU12 also includes features that are new and unique. In these cases,
there is supplementary material in the text to explain the new technology.

CPU12 INTRODUCTION MOTOROLA
REFERENCE MANUAL 1-1

1.3 Symbols And Notation

The following symbols and notation are used throughout the manual. More special-
ized usages that apply only to the Instruction Glossary are described at the begin-
ning of that section.

1.3.1 Abbreviations for System Resources

A

< X O w

SP
PC
CCR

Accumulator A

Accumulator B

Double accumulator D (A : B)
Index register X

Index register Y

Stack pointer

Program counter

Condition codes register

S — STOP instruction control bit

X- Non-maskable interrupt control bit

H — Half-carry status bit

| — Maskable interrupt control bit

N — Negative status bit

Z — Zero status bit

V - Two’s complement overflow status bit
C — Carry/Borrow status bit

1.3.2 Memory and Addressing

M
M : M+1

M~M+3
M(v)~M(v+3)

M(x)
M(sp
M(y+3
PPAGE
Page
XH

XL

0

$

%

MOTOROLA
1-2

8-bit memory location pointed to by the effective address of the instruction

16-bit memory location. Consists of the location pointed to by the effective ad-
dress concatenated with the next higher memory location. The most significant
byte is at location M.

32-bit memory location. Consists of the effective address of the
instruction concatenated with the next three higher memory
locations. The most significant byte is at location M or M(y).

Memory locations pointed to by index register X

Memory locations pointed to by the stack pointer

Memory locations pointed to by index register Y plus 3, respectively.
Program overlay page (bank) number for extended memory (>64K).
Program overlay page

High-order byte.

Low-order byte.

Content of register or memory location

Hexadecimal value

Binary value

INTRODUCTION CPU12

REFERENCE MANUAL

1.3.3 Operators

+ — Addition
— — Subtraction.
e — Logical AND

+ — Logical OR (inclusive)

® — Logical exclusive OR

x — Multiplication

+ — Division

M — Negation. One’s complement (invert each bit of M)

: — Concatenate
Example: A : B means: “The 16-bit value formed by concatenating
8-bit accumulator A with 8-bit accumulator B.”
Ais in the high order position.

= — Transfer
Example: (A) = M means:
“The content of accumulator A is transferred to memory location M.”

< — Exchange
Example: D < X means: “Exchange the contents of D with those of X.

1.3.4 Conventions

Logic level one is the voltage that corresponds to the True (1) state.
Logic level zero is the voltage that corresponds to the False (0) state.
Set refers specifically to establishing logic level one on a bit or bits.
Cleared refers specifically to establishing logic level zero on a bit or bits.

Asserted means that a signal is in active logic state. An active low signal changes
from logic level one to logic level zero when asserted, and an active high signal
changes from logic level zero to logic level one.

Negated means that an asserted signal changes logic state. An active low signal
changes from logic level zero to logic level one when negated, and an active high
signal changes from logic level one to logic level zero.

ADDR is the mnemonic for address bus.

DATA is the mnemonic for data bus.

LSB means least significant bit or bits; MSB, most significant bit or bits.

LSW means least significant word or words; MSW, most significant word or words.

A specific mnemonic within a range is referred to by mnemonic and number. A7
is bit 7 of accumulator A. A range of mnemonics is referred to by mnemonic and
the numbers that define the range. DATA[15:8] form the high byte of the data bus.

INTRODUCTION MOTOROLA

REFERENCE MANUAL 1-3

MOTOROLA INTRODUCTION CPU12
1-4 REFERENCE MANUAL

SECTION 2
OVERVIEW

This section describes the CPU12 programming model, register set, the data types
used, and basic memory organization.

2.1 Programming Model

The CPU12 programming model, shown in Figure 2-1, is the same as that of the
M68HC11 CPU. The CPU has two 8-bit general purpose accumulators (A and B)
that can be concatenated into a single 16-bit accumulator (D) for certain instruc-
tions, two index registers (X and Y), a 16-bit stack pointer (SP), a 16-bit program
counter (PC), and an 8-bit condition codes register (CCR).

7 A 0|7 B 0| 8-BIT ACCUMULATORS A & B
15 D 0| SeBIT DOUBLE ACCUMULATOR D
15 X 0| INDEX REGISTER X
|15 Iy 0| INDEX REGISTERY
15 sp o] stackPoINTER
15 PC 0| PROGRAM COUNTER

SXHINZV C] CONDITION CODES REGISTER

HC12 PROG MODEL

Figure 2-1 Programming Model

CPU12 OVERVIEW MOTOROLA
REFERENCE MANUAL 2-1

2.1.1 Accumulators

General-purpose 8-bit accumulators A and B are used to hold operands and re-
sults of operations. Some instructions treat the combination of these two 8-bit ac-
cumulators (A:B) as a 16-bit double accumulator (D).

Most operations can use accumulator A or B interchangeably. However, there are
a few exceptions. Add, subtract, and compare instructions involving both A and B
(ABA, SBA, and CBA) only operate in one direction, so it is important to make cer-
tain the correct operand is in the correct accumulator. The decimal adjust accumu-
lator A (DAA) instruction is used after binary-coded decimal (BCD) arithmetic
operations — there is no equivalent instruction to adjust accumulator B.

2.1.2 Index Registers

16-bit index registers X and Y are used for indexed addressing. In the indexed ad-
dressing modes, the contents of an index register are added to 5-bit, 9-bit, or 16-
bit constants or to the content of an accumulator to form the effective address of
the instruction operand. The second index register is especially useful for moves
and in cases where operands from two separate tables are used in a calculation.

2.1.3 Stack Pointer

The CPU12 supports an automatic program stack. The stack is used to save sys-
tem context during subroutine calls and interrupts, and can also be used for tem-
porary data storage. The stack can be located anywhere in the standard 64-Kbyte
address space and can grow to any size up to the total amount of memory available
in the system.

The stack pointer holds the 16-bit address of the last stack location used. Normally,
the SP is initialized by one of the first instructions in an application program. The
stack grows downward from the address the SP points to. Each time a byte is
pushed onto the stack, the stack pointer is automatically decremented, and each
time a byte is pulled from the stack, the stack pointer is automatically incremented.

When a subroutine is called, the address of the instruction following the calling in-
struction is automatically calculated and pushed onto the stack. Normally, a return
from subroutine (RTS) or a return from call (RTC) instruction is executed at the end
of a subroutine. The return instruction loads the program counter with the previous-
ly stacked return address and execution continues at that address.

When an interrupt occurs, the current instruction finishes execution (REV, REVW,
and WAV instructions can be interrupted, and resume execution once the interrupt
has been serviced), the address of the next instruction is calculated and pushed
onto the stack, all the CPU registers are pushed onto the stack, the program
counter is loaded with the address the interrupt vector points to, and execution con-
tinues at that address. The stacked registers are referred to as an interrupt stack
frame. The CPU12 stack frame is the same as that of the M68HC11.

MOTOROLA OVERVIEW CPU12
2-2 REFERENCE MANUAL

2.1.4 Program Counter

The program counter (PC) is a 16-bit register that holds the address of the next in-
struction to be executed. It is automatically incremented each time an instruction is
fetched.

2.1.5 Condition Codes Register

This register contains five status indicators, two interrupt masking bits, and a STOP
instruction control bit. It is named for the five status indicators.

The status bits reflect the results of CPU operation as it executes instructions. The
five flags are half carry (H), negative (N), zero (Z), overflow (V), and carry/borrow
(C). The half-carry flag is used only for BCD arithmetic operations. The N, Z, V, and
C status bits allow for branching based on the results of a previous operation.

In some architectures, only a few instructions affect condition codes, so that multi-
ple instructions must be executed in order to load and test a variable. Since most
CPU12 instructions automatically- update condition codes, it is rarely necessary to
execute an extra instruction for this purpose. The challenge in using the CPU12 lies
in finding instructions that do not alter the condition codes. The most important of
these instructions are pushes, pulls, transfers, and exchanges.

It is always a good idea to refer to an instruction set summary (see APPENDIX A
INSTRUCTION REFERENCE) to check which condition codes are affected by a
particular instruction.

The following paragraphs describe normal uses of the condition codes. There are
other, more specialized uses. For instance, the C status bit is used to enable
weighted fuzzy logic rule evaluation. These specialized usages are described in
the relevant portions of this manual and in SECTION 6 INSTRUCTION GLOSSA-
RY.

2.1.5.1 S Control Bit

Setting the S bit disables the STOP instruction. Execution of a STOP instruction
causes the on-chip oscillator to stop. This may be undesirable in some applica-
tions. If the CPU encounters a STOP instruction while the S bit is set, it is treated
like a no-operation (NOP) instruction, and continues to the next instruction.

2.1.5.2 X Mask Bit

The XIRQ input is an updated version of the NMI input found on earlier generations
of MCUs. Non-maskable interrupts are typically used to deal with major system fail-
ures, such as loss of power. However, enabling non-maskable interrupts before a
systemiis fully powered and initialized can lead to spurious interrupts. The X bit pro-
vides a mechanism for enabling non-maskable interrupts after a system is stable.

CPU12 OVERVIEW MOTOROLA
REFERENCE MANUAL 2-3

By default, the X bit is set to one during reset. As long as the X bit remains set,
interrupt service requests made via the XIRQ pin are not recognized. An instruction
must clear the X bit to enable nonmaskable interrupt service requests made via the
XIRQ pin. Once the X bit has been cleared to zero, software cannot reset it to one
by writing to the CCR. The X bit is not affected by maskable interrupts.

After non-maskable interrupts are enabled, when an XIRQ interrupt occurs, both
the X bit and the | bit are automatically set to prevent other interrupts from being
-recognized during the interrupt service routine. The mask bits are set after the reg-
isters are stacked, but before the interrupt vector is fetched.

Normally, an RTl instruction at the end of the interrupt service routine restores reg-
ister values that were present before the interrupt occurred. Since the CCR is
stacked before the X bit is set, the RTI normally clears the X bit, and thus re-en-
ables non-maskable interrupts. While it is possible to manipulate the stacked value
of X so that X is set after an RTI, there is no software method to re-set X (and dis-
able NMI) once X has been cleared.

2.1.5.3 H Status Bit

The H bit indicates a carry from accumulator A bit 3 during an addition operation.
The DAA instruction uses the value of the H bit to adjust a result in accumulator A
to correct BCD format. H is updated only by the ABA, ADD, and ADC instructions.

2.1.5.4 | Mask Bit

The | bit enables and disables maskable interrupt sources. By default, the | bit is
set to one during reset. An instruction must clear the | bit to enable maskable inter-
rupts. While the | bit is set, maskable interrupts can become pending and are re-
membered, but operation continues uninterrupted until the | bit is cleared.

After interrupts are enabled, when an interrupt occurs, the | bit is automatically set
to prevent other maskable interrupts during the interrupt service routine. The | bit
is set after the registers are stacked, but before the interrupt vector is fetched.

Normally, an RTl instruction at the end of the interrupt service routine restores reg-
ister values that were present before the interrupt occurred. Since the CCR is
stacked before the | bit is set, the RTI normally clears the | bit, and thus re-enables
interrupts. Interrupts can be re-enabled by clearing the | bit within the service rou-
tine, butimplementing a nested interrupt management scheme requires great care,
and seldom improves system performance.

2.1.5.5 N Status Bit

The N bit shows the state of the MSB of the result. N is most commonly used in
two’s complement arithmetic, where the MSB of a negative number is one and the
MSB of a positive number is zero, but it has other uses. For instance, if the MSB
of a register or memory location is used as a status flag, the user can test status
by loading an accumulator.

MOTOROLA OVERVIEW CPU12
2-4 REFERENCE MANUAL

2.1.5.6 Z Status Bit

The Z bit is set when all the bits of the result are zeros. Compare instructions per-
form an internal implied subtraction, and the condition codes, including Z, reflect
the results of that subtraction. The INX, DEX, INY, and DEY instructions affect the
Z bit and no other condition flags. These operations can only determine = and #.

2.1.5.7 V Status Bit
The V bitis set when two’s complement overflow occurs as a result of an operation.

2.1.5.8 C Status Bit

The C bit is set when a carry occurs during addition or a borrow occurs during sub-
traction. The C bit also acts as an error flag for multiply and divide operations. Shift
and rotate instructions operate through the C bit to facilitate multiple-word shifts.

2.2 Data Types
The CPU12 uses the following types of data:

¢ Bits

* 5-bit signed integers

e 8-bit signed and unsigned integers

* 8-bit, 2-digit binary coded decimal numbers
* 9-bit signed integers

* 16-bit signed and unsigned integers

e 16-bit effective addresses

* 32-bit signed and unsigned integers

Negative integers are represented in two’s complement form.

5-bit and 9-bit signed integers are used only as offsets for indexed addressing
modes.

16-bit effective addresses are formed during addressing mode computations.

32-bit integer dividends are used by extended division instructions. Extended mul-
tiply and extended multiply-and-accumulate instructions produce 32-bit products.

2.3 Memory Organization

The standard CPU12 address space is 64 Kbytes. Some M68HC12 devices sup-
port a paged memory expansion scheme that increases the standard space by
means of predefined windows in address space. The CPU12 has special instruc-
tions that support use of expanded memory. See SECTION 10 MEMORY EXPAN-
SION for more information.

CPU12 OVERVIEW MOTOROLA
REFERENCE MANUAL 2-5

8-bit values can be stored at any odd or even byte address in available memory.
16-bit numbers are stored in memory as two consecutive bytes; the high byte oc-
cupies the lowest address, but need not be aligned to an even boundary. 32-bit
numbers are stored in memory as four consecutive bytes; the high byte occupies
the lowest address, but need not be aligned to an even boundary.

All' /O and all on-chip peripherals are memory-mapped. No special instruction syn-
tax is required to access these addresses. On-chip registers and memory are typ-
ically grouped in blocks which can be relocated within the standard 64-Kbyte
address space. Refer to device documentation for specific information.

2.4 Instruction Queue

The CPU12 uses an instruction queue to buffer program information. The mecha-
nism is called a queue rather than a pipeline because a typical pipelined CPU ex-
ecutes more than one instruction at the same time, while the CPU12 always
finishes executing an instruction before beginning to execute another. Refer to
SECTION 4 INSTRUCTION QUEUE for more information.

MOTOROLA OVERVIEW CPU12

2-6

REFERENCE MANUAL

SECTION 3
ADDRESSING MODES

Addressing modes determine how the CPU accesses memory locations to be op-
erated upon. This section discusses the various modes and how they are used.

3.1 Mode Summary

Addressing modes are an implicit part of CPU12 instructions. APPENDIX A IN-
STRUCTION REFERENCE shows the modes used by each instruction. All CPU12
addressing modes are shown in Table 3-1.

’ Table 3-1 M68BHC12 Addressing Mode Summary

Addressing Mode Source Format Abbreviation Description
INST
Inherent (no externally supplied op- INH Operands (if any) are in CPU registers
erands)
) INST #0pr8i Operand is included in instruction stream
Immediate or IMM R
INST #0pr16i 8- or 16-bit size implied by context
' Operand is the lower 8-bits of an address
Direct INST opréa DR in the range $0000 - $00FF
Extended INST opri16a EXT Operand is a 16-bit address
Relative INSI rreIB REL An 8-bit or 16-bit relative offset from the current
INST rel16 pc is supplied in the instruction
Indexed Y
(5-bit offset) INST oprx5,xysp IDX 5-bit signed constant offset from x, y, sp, or pc
Indexed
(pre-decrement) INST oprx3,-xys IDX Auto pre-decrement x, y,orspby 1 ~8
Indexed i
(pre-increment) INST oprx3,+xys IDX Auto pre-increment x, y,orspby 1 ~ 8
Indexed
(post-decrement) INST oprx3,xys— IDX Auto post-decrement x, y, orspby 1 ~ 8
Indexed .
(post-increment) INST oprx3,xys+ IDX Auto post-increment x, y, orspby 1 ~ 8
Indexed Indexed with 8-bit (A or B) or 16-bit (D)
(accumulator offset) INST abd,xysp DX accumulator offset from x, y, sp, or pc
Indexed 9-bit signed constant offset from x, y, sp, or pc
(9-bit offset) INST oprx9,xysp IDX (lower 8-bits of offset in one extension byte)
Indexed 16-bit constant offset from x, y, sp, or pc
(16-bit offset) INST oprx16,xysp IDx2 (16-bit offset in two extension bytes)

-Indi Pointer to operand is found at...
In(c:eggicti é?g;%d INST [oprx16,xysp] [IDX2] 16-bit constant offset from x, y, sp, or pc
(16-bit offset in two extension bytes)

Indexed-Indirect

3 Pointer to operand is found at...
D accusrgl.t:;ator off INST [D,xysp] [D,IDX] X, ¥, sp, or pc plus the value in D
CPU12 ADDRESSING MODES MOTOROLA

REFERENCE MANUAL 3-1

The CPU12 uses all M6BHC11 modes as well as new forms of indexed addressing.
Differences between M68HC11 and M68HC12 indexed modes are described in
3.8 Indexed Addressing Modes. Instructions that use more than one mode are
discussed in 3.9 Instructions That Use Multiple Modes.

3.2 Effective Address

Each addressing mode except inherent mode generates a 16-bit effective address
which is used during the memory reference portion of the instruction. Effective ad-
dress computations do not require extra execution cycles.

3.3 Inherent Addressing Mode

Instructions that use this addressing mode either have no operands or all operands
are in internal CPU registers. In either case, the CPU does not need to access any
memory locations to complete the instruction.

Examples:
NOP ;this instruction has no operands
INX ;operand is a CPU register

3.4 Immediate Addressing Mode

Operands for immediate mode instructions are included in the instruction stream,
and are fetched into the instruction queue one 16-bit word at a time during normal
program fetch cycles. Since program data is read into the instruction queue several
cycles before it is needed, when an immediate addressing mode operand is called
for by an instruction, it is already present in the instruction queue.

The pound symbol (#) is used to indicate an immediate addressing mode operand.
One very common programming error is to accidentally omit the # symbol. This
causes the assembler to misinterpret the following expression as an address rather
than explicitly provided data. For example LDAA #$55 means to load the immedi-
ate value $55 into the A accumulator, while LDAA $55 means to load the value
from address $0055 into the A accumulator. Without the # symbol the instruction
is erroneously interpreted as a direct addressing mode instruction.

Examples:
LDAA #$55
LDX #$1234
LDY #$67

These are common examples of 8-bit and 16-bit immediate addressing mode. The
size of the immediate operand is implied by the instruction context. In the third ex-
ample, the instruction implies a 16-bit immediate value but only an 8-bit value is
supplied. In this case the assembler will generate the 16-bit value $0067 because
the CPU expects a 16-bit value in the instruction stream.

MOTOROLA ADDRESSING MODES CPU12
3-2 REFERENCE MANUAL

BRSET FOO, #5503, THERE

In this example, extended addressing mode is used to access the operand FOO,
immediate addressing mode is used to access the mask value $03, and relative
addressing mode is used to identify the destination address of a branch in case the
branch-taken conditions are met. BRSET is listed as an extended mode instruction
even though immediate and relative modes are also used.

3.5 Direct Addressing Mode

This addressing mode is sometimes called zero-page addressing because it is
used to access operands in the address range $0000 through $00FF. Since these
addresses always begin with $00, only the eight low-order bits of the address need
to be included in the instruction, which saves program space and execution time.
A system can be optimized by placing the most commonly accessed data in this
area of memory. The eight low-order bits of the operand address are supplied with
the instruction and the eight high-order bits of the address are assumed to be zero.

Examples:

LDAA $55

This is a very basic example of direct addressing. The value $55 is taken to be the
low order half of an address in the range $0000 through $00FF. The high order half
of the address is assumed to be zero. During execution of this instruction, the CPU
combines the value $55 from the instruction with the assumed value of $00 to form
the address $0055, which is then used to access the data to be loaded into the A
accumulator.

LDX $20
In this example, the value $20 is combined with the assumed value of $00 to form
the address $0020. Since the LDX instruction requires a 16-bit value, a 16-bit word
of data is read from addresses $0020 and $0021. After execution of this instruction,
the X index register will have the value from address $0020 in its high order half
and the value from address $0021 in its low order half.

3.6 Extended Addressing Mode

In this addressing mode, the full 16-bit address of the memory location to be oper-
ated on is provided in the instruction. This addressing mode can be used to access
any location in the 64-Kbyte memory map.

Example:

LDAA SFO3B

This is a very basic example of extended addressing. The value from address
$FO03B is loaded into the A accumulator.

CPU12 ADDRESSING MODES MOTOROLA
REFERENCE MANUAL 3-3

3.7 Relative Addressing Mode

The relative addressing mode is used only by branch instructions. Short and long
conditional branch instructions use relative addressing mode exclusively, but
branching versions of bit manipulation instructions (BRSET and BRCLR) use mul-
tiple addressing modes, including relative mode. Refer to 3.9 Instructions That
Use Multiple Modes for more information.

Short branch instructions consist of an 8-bit opcode and a signed 8-bit offset con-
tained in the byte that follows the opcode. Long branch instructions consist of an
8-bit prebyte, an 8-bit opcode and a signed 16-bit offset contained in the two bytes
that follow the opcode.

Each conditional branch instruction tests certain status bits in the condition code
register. If the bits are in a specified state, the offset is added to the address of the
next memory location after the offset to form an effective address, and execution
continues at that address; if the bits are not in the specified state, execution con-
tinues with the instruction immediately following the branch instruction.

Bit-condition branches test whether bits in a memory byte are in a specific state.
Various addressing modes can be used to access the memory location. An 8-bit
mask operand is used to test the bits. If each bit in memory that corresponds to a
one in the mask is either set (BRSET) or clear (BRCLR), an 8-bit offset is added to
the address of the next memory location after the offset to form an effective ad-
dress, and execution continues at that address; if all the bits in memory that corre-
spond to a one in the mask are not in the specified state, execution continues with
the instruction immediately following the branch instruction.

Both 8-bit and 16-bit offsets are signed two’s complement numbers to support
branching upward and downward in memory. The numeric range of short branch
offset values is $80 (—128) to $7F (127). The numeric range of long branch offset
values is $8000 (—32768) to $7FFF (32767). If the offset is zero, the CPU executes
the instruction immediately following the branch instruction, regardless of the test
involved.

Since the offset is at the end of a branch instruction, using a negative offset value
can cause the PC to point to the opcode and initiate a loop. For instance, a branch
always (BRA) instruction consists of two bytes, so using an offset of $FE sets up
an infinite loop; the same is true of a long branch always (LBRA) instruction with
an offset of $FFFC.

An offset that points to the opcode can cause a bit-condition branch to repeat ex-
ecution until the specified bit condition is satisfied. Since bit condition branches can
consist of four, five, or six bytes depending on the addressing mode used to access
the byte in memory, the offset value that sets up a loop can vary. For instance, us-
ing an offset of $FC with a BRCLR that accesses memory using an 8-bit indexed
postbyte sets up a loop that executes until all the bits in the specified memory byte
that correspond to ones in the mask byte are cleared.

MOTOROLA ADDRESSING MODES CPU12
3-4 REFERENCE MANUAL

3.8 Indexed Addressing Modes

The CPU12 uses redefined versions of MC68HC11 indexed modes that reduce ex-
ecution time and eliminate code size penalties for using the Y index register. In
most cases, CPU12 code size for indexed operations is the same or is smaller than
that for the M68HC11. Execution time is shorter in all cases. Execution time im-
provements are due to both a reduced number of cycles for all indexed instructions
and to faster system clock speed.

The indexed addressing scheme uses a postbyte plus 0, 1, or 2 extension bytes
after the instruction opcode. The postbyte and extensions do the following tasks:

Specify which index register is used.
Determine whether a value in an accumulator is used as an offset.

1. Enable automatic pre or post increment or decrement.
2. Specify size of increment or decrement.
3. Specify use of 5-, 9-, or 16-bit signed offsets.

This approach eliminates the differences between X and Y register use while dra-
matically enhancing the indexed addressing capabilities.
Major advantages of the CPU12 indexed addressing scheme are:

* The stack pointer can be used as an index register in all indexed operations.
* The program counter can be used as an index register in all but autoincrement
and autodecrement modes.
* A, B, or D accumulators can be used for accumulator offsets.
* Automatic pre- or post- increment or decrement by —8 to +8
* A choice of 5-, 9-, or 16-bit signed constant offsets.
* Use of two new Indexed-indirect modes.
—Indexed-indirect mode with 16-bit offset
—Indexed-indirect mode with accumulator D offset

Table 3-2 is a summary of indexed addressing mode capabilities and a description
of postbyte encoding. The postbyte is noted as xb in instruction descriptions. De-
tailed descriptions of the indexed addressing mode variations follow the table.

All indexed addressing modes use a 16-bit CPU register and additional information
to create an effective address. In most cases the effective address specifies the
memory location affected by the operation. In some variations of indexed address-
ing, the effective address specifies the location of a value that points to the memory
location affected by the operation.

Indexed addressing mode instructions use a postbyte to specify X, Y, SP, or PC as
the base index register and to further classify the way the effective address is
formed. A special group of instructions (LEAS, LEAX, and LEAY) cause this calcu-
lated effective address to be loaded into an index register for further calculations.

CPU12 ADDRESSING MODES MOTOROLA
REFERENCE MANUAL 3-5

Table 3-2 Summary of Indexed Operations

Postbyte Operand Comments
Code (xb) Syntax
rronnnnn r 5-bit constant offset
n,r n=-16to +15
-n,r rr can specify X, Y, SP, or PC
111rr0zs n,r Constant offset (9- or 16-bit signed)
-n,r z- 0 = 9-bit with sign in LSB of postbyte (s)
1 = 16-bit)

if z=s =1, 16-bit offset indexed-indirect (see below)
rr can specify X, Y, SP, or PC

111rr011 [n,r] 16-bit offset indexed-indirect
rr can specify X, Y, SP, or PC

rripnnnn n,—r Auto pre-decrement /increment or Auto post-decrement/increment;
n,+r p = pre-(0) or post-(1), n=-8to -1, +1to +8
n,r— rr can specify X, Y, or SP (PC not a valid choice)
n,r+
111rr1aa Ar Accumulator offset (unsigned 8-bit or 16-bit)
B,r aa-00=A
D,r 01=B
10 = D (16-bit)

11 = see accumulator D offset indexed-indirect
rr can specify X, Y, SP, or PC

111rr111 [D,r] Accumulator D offset indexed-indirect
rr can specify X, Y, SP, or PC

3.8.1 5-Bit Constant Offset Indexed Addressing

This indexed addressing mode uses a 5-bit signed offset which is included in the
instruction postbyte. This short offset is added to the base index register (X, Y, SP,
or PC) to form the effective address of the memory location that will be affected by
the instruction. This gives a range of -16 through +15 from the value in the base
index register. Although other indexed addressing modes allow 9- or 16-bit offsets,
those modes also require additional extension bytes in the instruction for this extra
information. The majority of indexed instructions in real programs use offsets that
fit in the shortest 5-bit form of indexed addressing.

Examples:
LDAA 0,X
STAB -8,Y

For these examples, assume X has a value of $1000 and Y has a value of $2000
before execution. The 5-bit constant offset mode does not change the value in the
index register, so X will still be $1000 and Y will still be $2000 after execution of
these instructions. In the first example, A will be loaded with the value from address
$1000. In the second example, the value from the B accumulator will be stored at
address $1FF8 ($2000 - $8).

MOTOROLA ADDRESSING MODES CPU12

REFERENCE MANUAL

3.8.2 9-Bit Constant Offset Indexed Addressing

This indexed addressing mode uses a 9-bit signed offset which is added to the
base index register (X, Y, SP, or PC) to form the effective address of the memory
location affected by the instruction. This gives a range of -256 through +255 from
the value in the base index register. The most significant bit (sign bit) of the offset
is included in the instruction postbyte and the remaining 8 bits are provided as an
extension byte after the instruction postbyte in the instruction flow.

Examples:
LDAA $FF, X
LDAB -20,Y

For these examples assume X is $1000 and Y is $2000 before execution of these
instructions (These instructions do not alter the index registers so they will still be
$1000 and $2000 respectively after the instructions). The first instruction will load
A with the value from address $10FF and the second instruction will load B with the
value from address $1FEC.

This variation of the indexed addressing mode in the CPU12 is similar to the
M68HC11 indexed addressing mode, but is functionally enhanced. The M68HC11
CPU provides for unsigned 8-bit constant offset indexing from X or Y, and use of Y
requires an extra instruction byte and thus, an extra execution cycle. The 9-bit
signed offset used in the CPU12 covers the same range of positive offsets as the
HC11, and adds negative offset capability. The CPU12 can use X, Y, SP or PC as
the base index register.

3.8.3 16-Bit Constant Offset Indexed Addressing

This indexed addressing mode uses a 16-bit offset which is added to the base in-
dex register (X, Y, SP, or PC) to form the effective address of the memory location
affected by the instruction. This allows access to any address in the 64-Kbyte ad-
dress space. Since the address bus and the offset are both 16 bits, it does not mat-
ter whether the offset value is considered to be a signed or an unsigned value
($FFFF may be thought of as +65,535 or as -1). The 16-bit offset is provided as
two extension bytes after the instruction postbyte in the instruction flow.

3.8.4 16-Bit Constant Indirect Indexed Addressing

This indexed addressing mode adds a 16-bit instruction-supplied offset to the base
index register to form the address of a memory location that contains a pointer to
the memory location affected by the instruction. The instruction itself does not point
to the address of the memory location to be acted upon, but rather to the location
of a pointer to the address to be acted on. The square brackets distinguish this ad-
dressing mode from 16-bit constant offset indexing.

Example:

LDAA [10,X]

CPU12 ADDRESSING MODES MOTOROLA
REFERENCE MANUAL 3-7

In this example, X holds the base address of a table of pointers. Assume that X has
an initial value of $1000, and that the value $2000 is stored at addresses $100A
and $100B. The instruction first adds the value 10 to the value in X to form the ad-
dress $100A. Next, an address pointer ($2000) is fetched from memory at $100A.
Then, the value stored in location $2000 is read and loaded into the A accumulator.

3.8.5 Auto Pre/Post Decrement/Increment Indexed Addressing

This indexed addressing mode provides four ways to automatically change the val-
ue in a base index register as a part of instruction execution. The index register can
be incremented or decremented by an integer value either before or after indexing
takes place. The base index register may be X, Y, or SP (auto-modify modes would
not make sense on PC).

Predecrement and preincrement versions of the addressing mode adjust the value
of the index register before accessing the memory location affected by the instruc-
tion — the index register retains the changed value after the instruction executes.
Postdecrement and postincrement versions of the addressing mode use the initial
value in the index register to access the memory location affected by the instruc-
tion, then change the value of the index register.

The CPU12 allows the index register to be incremented or decremented by any in-
teger value in the ranges -8 through -1, or 1 through 8. The value need not be re-
lated to the size of the operand for the current instruction. These instructions can
be used to incorporate an index adjustment into an existing instruction rather than
using an additional instruction and increasing execution time. This addressing
mode is also used to perform operations on a series of data structures in memory.

When an LEAS, LEAX, or LEAY instruction is executed using this addressing
mode, and the operation modifies the index register that is being loaded, the final
value in the register is the value that would have been used to access a memory
operand (premodification is seen in the result but postmodification is not).

Examples:
STAA 1,-SP ;equivalent to PSHA
STX 2,-SP ;equivalent to PSHX
LDX 2,SP+ ;equivalent to PULX
LDAA 1,SP+ ;equivalent to PULA

For a “last-used” type of stack like the CPU12 stack, these four examples are
equivalent to common push and pull instructions. For a “next-available” stack like
the M68HC11 stack, PSHA is equivalent to STAA 1,SP-and PULA is equivalent to
LDAA 1,+SP. However, in the M68HC11, 16-bit operations like PSHX and PULX
require multiple instructions to decrement the SP by one, then store X, then decre-
ment SP by one again.

MOTOROLA ADDRESSING MODES CPU12
3-8 REFERENCE MANUAL

In the STAA 1,-SP example, the stack pointer is pre-decremented by 1 and then A
is stored to the address contained in the stack pointer. Similarly the LDX 2,SP+ first
loads X from the address in the stack pointer then post-increments SP by two.

Example:

MOVW 2,X+,4,+Y
This example demonstrates how to work with data structures larger than bytes and
words. With this instruction in a program loop, it is possible to move words of data
from a list having one word per entry into a second table that has four bytes per
table element. In this example the source pointer is updated after the data is read
from memory (post-increment) while the destination pointer is updated before it is
used to access memory (pre-increment).

3.8.6 Accumulator Offset Indexed Addressing

In this indexed addressing mode, the effective address is the sum of the values in
the base index register and one of the accumulators. The value in the index register
itself is not changed. The index register can be X, Y, SP, or PC and the accumula-
tor can be either of the 8-bit accumulators (A or B) or the 16-bit D accumulator.

Example:

LDAA B,X
This instruction internally adds B to X to form the address where A will be loaded
from. B and X are not changed by this instruction. This example is similar to the
following two instruction combination in an M68HC11.

ABX

LDAA 0,X
However, this two instruction sequence alters the index register. If this sequence
was part of a loop where B changed on each pass, the index register would have
to be reloaded with the reference value on each loop pass. The use of LDAA B,X
is more efficient in the CPU12.

3.8.7 Accumulator D Indirect Indexed Addressing

CPU12

This indexed addressing mode adds the value in the D accumulator to the value in
the base index register to form the address of a memory location that contains a
pointer to the memory location affected by the instruction. The instruction operand
does not point to the address of the memory location to be acted upon, but rather
to the location of a pointer to the address to be acted upon. The square brackets
distinguish this addressing mode from D accumulator offset indexing.

Example:
JMP [D, PC]
GO1 DC.W PLACE1
GO2 DC.W PLACE2
GO3 DC.W PLACE3

ADDRESSING MODES MOTOROLA

REFERENCE MANUAL 3-9

This example is a computed GOTO. The values beginning at GO1 are addresses
of potential destinations of the jump instruction. At the time the JMP [D,PC] instruc-
tion is executed, PC points to the address GO1, and D holds one of the values
$0000, $0002, or $0004, which was determined by the program some time before
the JMP. Assume that the value in D is $0002. The JMP instruction adds the values
in D and PC to form the address of GO2. Next the CPU reads the address PLACE2
from memory at GO2 and jumps to there. The locations of PLACE1 through
PLACES3 were known at the time of program assembly but the destination of the
JMP depends upon the value in D computed during program execution.

3.9 Instructions That Use Multiple Modes

Several CPU12 instructions use more than one addressing mode in the course of
execution.

3.9.1 Move Instructions

Move instructions use separate addressing modes to access the source and des-
tination of a move. There are move variations for most combinations of immediate,
extended, and indexed addressing modes.

The only combinations of addressing modes that are not allowed are those with an
immediate mode destination (the operand of an immediate mode instruction is da-
ta, not an address). For indexed moves, the reference index register may be X, Y,
SP, or PC.

Move instructions do not support indirect modes and 9-bit and 16-bit offset modes
that require extra extension bytes.There are special considerations when using
PC-relative addressing with move instructions.

PC-relative addressing uses the address of the location that immediately follows
the last byte of object code for the current instruction as a reference point. The
CPU12 normally corrects for queue offset and for instruction alignment so that
queue operation is transparent to the user. However, move instructions pose three
special problems.

1. Some moves use an indexed source and an indexed destination.

2. Some moves have object code that is too long to fit in the queue at one time,
so the PC value changes during execution.

3. All moves do not have the indexed postbyte as the last byte of object code.

These cases are not handled by automatic queue pointer maintenance, butit s still
possible to use PC-relative indexing with move instructions by providing for PC off-
sets in source code.

Table 3-3 shows PC offsets from the location immediately following the current in-
struction by addressing mode.

MOTOROLA ADDRESSING MODES CPU12
3-10 REFERENCE MANUAL

Table 3-3 PC Offsets for Move Instructions

MOVE Instruction | Addressing Modes Offset Value
IMM = IDX +1
EXT = IDX +2
MovB IDX = EXT -2

— 1 for 1st Operand

IDX = IDX + 1 for 2nd Operand
IMM = IDX +2
EXT = IDX +2
Movw IDX = EXT -2
IDX = IDX -1 for 1st Operand

+ 1 for 2nd Operand

Example:

1000 18 09 C2 20 00 MOVB $2000 2,PC

Moves a byte of data from $2000 to $1009
The expected location of the PC = $1005. The offset = +2.
(1005 + 2 (for 2,PC) + 2 (for correction) = 1009)

$18 is the page pre-byte, 09 is the MOVB opcode for ext-idx, C2 is the indexed
postbyte for 2,pc (without correction).

The Motorola MCUasm assembler produces corrected object code for PC-relative
moves (18 09 c0 20 00 for the example shown). Note that, instead of assembling
the 2,PC as C2, the correction has been applied to make it CO. Check whether an
assembler makes the correction before using PC-relative moves.

3.9.2 Bit Manipulation Instructions

Bit manipulation instructions use either a combination of two or a combination of
three addressing modes.

The BCLR and BSET instructions use an 8-bit mask to determine which bits in a
memory byte are to be changed. The mask must be supplied with the instruction
as an immediate mode value. The memory location to be modified can be specified
by means of direct, extended, or indexed addressing modes.

The BRCLR and BRSET instructions use an 8-bit mask to test the states of bits in
a memory byte. The mask is supplied with the instruction as an immediate mode
value. The memory location to be tested is specified by means of direct, extended,
or indexed addressing modes. Relative addressing mode is used to determine the
branch address. A signed 8-bit offset must be supplied with the instruction.

CPU12 ADDRESSING MODES MOTOROLA
REFERENCE MANUAL 3-11

3.10 Addressing More Than 64 Kbytes

Some M68HC12 devices incorporate hardware that supports addressing a larger
memory space than the standard 64 Kbytes. The expanded memory system uses
fast on-chip logic to implement a transparent bank-switching scheme.

Increased code efficiency is the greatest advantage of using a switching scheme
instead of a large linear address space. In systems with large linear address spac-
es, instructions require more bits of information to address a memory location, and
CPU overhead is greater. Other advantages include the ability to change the size
of system memory, and the ability to use various types of external memory.

However, the add-on bank switching schemes used in other microcontrollers have
known weaknesses. These include the cost of external glue logic, increased pro-
gramming overhead to change banks, and the need to disable interrupts while
banks are switched.

The M68HC12 system requires no external glue logic. Bank switching overhead is
reduced by implementing control logic in the MCU. Interrupts do not need to be dis-
abled during switching because switching tasks are incorporated in special instruc-
tions that greatly simplify program access to extended memory.

MCUs with expanded memory treat 16 Kbytes of memory space from $8000 to
$BFFF as a program memory window. Expanded-memory devices also have an
8-bit program page register (PPAGE), which allows up to 256 16-Kbyte program
memory pages to be switched into and out of the program memory window. This
provides for up to 4 Megabytes of paged program memory.

The CPU12 instruction set includes CALL and RTC (return from call) instructions,
which greatly simplify the use of expanded memory space. These instructions also
execute correctly on devices that do not have expanded-memory addressing ca-
pability, thus providing for portable code.

The CALL instruction is similar to the JSR instruction. When CALL is executed, the
current value in PPAGE is pushed onto the stack with a return address, and a new
instruction-supplied value is written to PPAGE. This value selects the page the
“called subroutine resides upon, and can be considered to be part of the effective
address. For all addressing mode variations except indexed indirect modes, the
new page value is provided by an immediate operand in the instruction. For in-
dexed indirect variations of CALL, a pointer specifies memory locations where the
new page value and the address of the called subroutine are stored. Use of indirect
addressing for both the page value and the address within the page frees the pro-
gram from keeping track of explicit values for either address.

The RTC instruction restores the saved program page value and the return ad-
dress from the stack. This causes execution to resume at the next instruction after
the original CALL instruction.

Please refer to SECTION 10 MEMORY EXPANSION for a detailed discussion of
memory expansion.

MOTOROLA ADDRESSING MODES CPU12
3-12 REFERENCE MANUAL

SECTION 4
INSTRUCTION QUEUE

The CPU12 uses an instruction queue to increase execution speed. This section
describes queue operation during normal program execution and changes in exe-
cution flow. These concepts augment the descriptions of instructions and cycle-by-
cycle instruction execution in subsequent sections, but it is important to note that
queue operation is automatic, and generally transparent to the user.

The material in this section is general. SECTION 6 INSTRUCTION GLOSSARY
contains detailed information concerning cycle-by-cycles execution of each in-
struction. SECTION 8 DEVELOPMENT AND DEBUG SUPPORT contains de-
tailed information about tracking queue operation and instruction execution.

4.1 Queue Description

The fetching mechanism in the CPU12 is best described as a queue rather than as
a pipeline. Queue logic fetches program information and positions it for execution,
but instructions are executed sequentially. A typical pipelined CPU can execute
more than one instruction at the same time, but interactions between the prefetch
and execution mechanisms can make tracking and debugging difficult. The CPU12
thus gains the advantages of independent fetches, yet maintains a straightforward
relationship between bus and execution cycles.

There are two 16-bit queue stages and a 16-bit buffer. Program information is
fetched in aligned 16-bit words. Unless buffering is required, program information
is first queued into stage 1, then advanced to stage 2 for execution.

At least two words of program information are available to the CPU when execution
begins. The first byte of object code is in either the even or odd half of the word in
stage 2, and at least two more bytes of object code are in the queue.

Queue logic manages the position of program information so that the CPU itself
does not deal with alignment. As it is executed, each instruction initiates at least
enough program word fetches to replace its own object code in the queue.

The buffer is used when a program word arrives before the queue can advance.
This occurs during execution of single-byte and odd-aligned instructions. For in-
stance, the queue cannot advance after an aligned, single-byte instruction is exe-
cuted, because the first byte of the next instruction is also in stage 2. In these
cases, information is latched into the buffer until the queue can advance.

Two external pins, IPIPE[1:0], provide time-multiplexed information about data
movement in the queue and instruction execution. Decoding and use of these sig-
nals is discussed in SECTION 8 DEVELOPMENT AND DEBUG SUPPORT.

CpPU12 INSTRUCTION QUEUE MOTOROLA
REFERENCE MANUAL 4-1

4.2 Data Movement in the Queue

All queue operations are combinations of four basic queue movement cycles. De-
scriptions of each of these cycles follows. Queue movement cycles are only one
factor in instruction execution time, and should not be confused with bus cycles.

4.2.1 No Movement

There is no data movement in the instruction queue during the cycle. This occurs
during execution of instructions that must perform a number of internal operations,
such as division instructions.

4.2.2 Latch Data From Bus

All instructions initiate fetches to refill the queue as execution proceeds. However,
a number of conditions, including instruction alignment and the length of previous
instructions, affect when the queue advances. If the queue is not ready to advance
when fetched information arrives, the information is latched into the buffer. Later,
when the queue does advance, stage 1 is refilled from the buffer. If more than one
latch cycle occurs before the queue advances, the buffer is filled on the first latch
event and subsequent latch events are ignored until the queue advances.

4.2.3 Advance and Load from Data Bus

The content of queue stage 1 advances to stage 2, and stage 1 is loaded with a
word of program information from the data bus. The information was requested two
bus cycles earlier but has only become available this cycle, due to access delay.

4.2.4 Advance and Load from Buffer

The content of queue stage 1 is advanced to stage 2, and stage 1 is loaded with a
word of program information from the buffer. The information in the buffer was
latched from the data bus during a previous cycle because the queue was not
ready to advance when it arrived.

4.3 Changes in Execution Flow

During normal instruction execution, queue operations proceed as a continuous
sequence of queue movement cycles. However, situations arise which call for
changes in flow. These changes are categorized as resets, interrupts, subroutine
calls, conditional branches, and jumps. Generally speaking, resets and interrupts
are considered to be related to events outside the current program context that re-
quire special processing, while subroutine calls, branches, and jumps are consid-
ered to be elements of program structure.

During design, great care is taken to assure that the mechanism that increases in-
struction throughput during normal program execution does not cause bottlenecks
during changes of program flow, but internal queue operation is largely transparent
to the user. The following information is provided to enhance subsequent descrip-
tions of instruction execution.

MOTOROLA INSTRUCTION QUEUE CPU12
4-2 REFERENCE MANUAL

4.3.1 Exceptions

Exceptions are events that require processing outside the normal flow of instruc-
tion execution. CPU12 exceptions include four types of resets, an unimplemented
opcode trap, a software interrupt instruction, X-bit interrupts, and I-bit interrupts. All
exceptions use the same microcode, but the CPU follows different execution paths
for each type of exception.

CPU12 exception handling is designed to minimize the effect of queue operation
on context switching. Thus, an exception vector fetch is the first part of exception
processing, and fetches to refill the queue from the address pointed to by the vector
are interleaved with the stacking operations that preserve context, so that program
access time does not delay the switch. Please refer to SECTION 7 EXCEPTION
PROCESSING for detailed information.

4.3.2 Subroutines

The CPU12 can branch to (BSR), jump to (JSR), or CALL subroutines. BSR and
JSR are used to access subroutines in the normal 64-Kbyte address space. The
CALL instruction is intended for use in MCUs with expanded memory capability.

BSR uses relative addressing mode to generate the effective address of the sub-
routine, while JSR can use various other addressing modes. Both instructions cal-
culate a return address, stack the address, then perform three program word
fetches to refill the queue. The first two words fetched are queued during the sec-
ond and third cycles of the sequence. The third fetch cycle is performed in antici-
pation of a queue advance, which may occur during the fourth cycle of the
sequence. If the queue is not yet ready to advance at that time, the third word of
program information is held in the buffer.

Subroutines in the normal 64-Kbyte address space are terminated with a return
from subroutine (RTS) instruction. RTS unstacks the return address, then performs
three program word fetches from that address to refill the queue.

CALL is similar to JSR. MCUs with expanded memory treat 16 Kbytes of addresses
from $8000 to $BFFF as a memory window. An 8-bit PPAGE register switches
memory pages into and out of the window. When CALL is executed, a return ad-
dress is calculated, then it and the current PPAGE value are stacked, and a new
instruction-supplied value is written to PPAGE. The subroutine address is calculat-
ed, then three program word fetches are made from that address.

The RTC instruction is used to terminate subroutines in expanded memory. RTC
unstacks the PPAGE value and the return address, then performs three program
word fetches from that address to refill the queue.

CALL and RTC execute correctly in the normal 64-Kbyte address space, thus pro-
viding for portable code. However, since extra execution cycles are required, rou-
tinely substituting CALL/RTC for JSR/RTS is not recommended.

CPU12 INSTRUCTION QUEUE MOTOROLA
REFERENCE MANUAL 4-3

4.3.3 Branches

Branch instructions cause execution flow to change when specific pre-conditions
exist. The CPU12 instruction set includes short conditional branches, long condi-
tional branches, and bit-condition branches. Types and conditions of branch in-
structions are described in 5.18 Branch Instructions. All branch instructions affect
the queue similarly, but there are differences in overall cycle counts between the
various types. Loop primitive instructions are a special type of branch instruction
used to implement counter-based loops.

Branch instructions have two execution cases. Either the branch condition is satis-
fied, and a change of flow takes place, or the condition is not satisfied, and no
change of flow occurs.

4.3.3.1 Short Branches

The “not-taken” case for short branches is simple. Since the instruction consists of
a single word containing both an opcode and an 8-bit offset, the queue advances,
another program word is fetched, and execution continues with the next instruction.

The “taken” case for short branches requires that the queue be refilled so that ex-
ecution can continue at a new address. First, the effective address of the destina-
tion is calculated using the relative offset in the instruction. Then, the address is
loaded into the program counter, and the CPU performs three program word fetch-
es at the new address. The first two words fetched are loaded into the instruction
queue during the second and third cycles of the sequence. The third fetch cycle is
performed in anticipation of a queue advance, which may occur during the first cy-
cle of the next instruction. If the queue is not.yet ready to advance at that time, the
third word of program information is held in the buffer.

4.3.3.2 Long Branches

The “not-taken” case for all long branches requires three cycles, while the “taken”
case requires four cycles. This is due to differences in the amount of program in-
formation needed to fill the queue.

Long branch instructions begin with a $18 prebyte that indicates the opcode is on
page 2 of the opcode map. The CPU12 treats the prebyte as a special one-byte
instruction. If the prebyte is not aligned, the first cycle is used to perform a program
word access; if the prebyte is aligned, the first cycle is used to perform a free cycle.
The first cycle for the prebyte is executed whether or not the branch is taken.

The first cycle of the branch instruction is an optional cycle. Optional cycles make
the effects of byte-sized and misaligned instructions consistent with those of
aligned word-length instructions. Optional cycles are always performed, but serve
different purposes determined by instruction alignment. Program information is al-
ways fetched as aligned 16-bit words. When an instruction consists of an odd num-
ber of bytes, and the first byte is aligned with an even byte boundary, an optional
cycle is used to make an additional program word access that maintains queue or-
der. In all other cases, the optional cycle appears as a free cycle.

MOTOROLA INSTRUCTION QUEUE CPU12
4-4 REFERENCE MANUAL

In the “not-taken” case, the queue must advance so that execution can continue
with the next instruction. Two cycles are used to refill the queue. Alignment deter-
mines how the second of these cycles is used.

In the “taken” case, the effective address of the branch is calculated using the 16-
bit relative offset contained in the second word of the instruction. This address is
loaded into the program counter, then the CPU performs three program word fetch-
es at the new address. The first two words fetched are loaded into the instruction
gueue during the second and third cycles of the sequence. The third fetch cycle is
performed in anticipation of a queue advance, which may occur during the first cy-
cle of the next instruction. If the queue is not yet ready to advance, the third word
of program information is held in the buffer.

4.3.3.3 Bit Condition Branches

Bit-conditional branch instructions read a location in memory, and branch if the bits
in that location are in a certain state. These instructions can use direct, extended,
or indexed addressing modes. Indexed operations require varying amounts of in-
formation to determine the effective address, so instruction length varies according
to the mode used, which in turn affects the amount of program information fetched.
In order to shorten execution time, these branches perform one program word
fetch in anticipation of the “taken” case. The data from this fetch is overwritten by
subsequent fetches in the “not-taken” case.

4.3.3.4 Loop Primitives

The loop primitive instructions test a counter value in a register or accumulator, and
branch to an address specified by a 9-bit relative offset contained in the instruction
if a specified pre-condition is met. There are auto-increment and auto-decrement
versions of the instructions. The test and increment/decrement operations are per-
formed on internal CPU registers, and require no additional program information.
In order to shorten execution time, these branches perform one program word
fetch in anticipation of the “taken” case. The data from this fetch is overwritten by
subsequent fetches in the “not-taken” case. The “taken” case performs two addi-
tional program word fetches at the new address. In the “not-taken” case, the queue
must advance so that execution can continue with the next instruction. Two cycles
are used to refill the queue. Alignment determines how the second cycle is used.

4.3.4 Jumps

JMP is the simplest change of flow instruction. JMP can use extended or indexed
addressing. Indexed operations require varying amounts of information to deter-
mine the effective address, so instruction length varies according to the mode
used, which in turn affects the amount of program information fetched. All forms of
JMP perform three program word fetches at the new address. The first two words
fetched are loaded into the instruction queue during the second and third cycles of
the sequence. The third fetch cycle is performed in anticipation of a queue ad-
vance, which may occur during the first cycle of the next instruction. If the queue is
not yet ready to advance, the third word of program information is held in the buffer.

CPU12 INSTRUCTION QUEUE MOTOROLA
REFERENCE MANUAL 4-5

MOTOROLA INSTRUCTION QUEUE CPU12
4-6 REFERENCE MANUAL

SECTION 5
INSTRUCTION SET OVERVIEW

This section contains general information about the CPU12 instruction set. It is or-
ganized into instruction categories grouped by function.

5.1 Instruction Set Description

CPU12 instructions are a superset of the M6BHC11 instruction set. Code written
for an M68HC11 can be reassembled and run on a CPU12 with no changes. The
CPU12 provides expanded functionality and increased code efficiency.

In the M68HC12 architecture, all memory and 1/0O are mapped in a common 64-
Kbyte address space (memory mapped 1/O). This allows the same set of instruc-
tions to be used to access memory, 1/O, and control registers. General-purpose
load, store, transfer, exchange, and move instructions facilitate movement of data
to and from memory and peripherals.

The CPU12 has a full set of 8-bit and 16-bit mathematical instructions. There are
instructions for signed and unsigned arithmetic, division and multiplication with 8-
bit, 16-bit, and some larger operands.

Special arithmetic and logic instructions aid stacking operations, indexing, BCD
calculation, and condition code register manipulation. There are also dedicated in-
structions for multiply and accumulate operations, table interpolation, and special-
ized fuzzy logic operations that involve mathematical calculations.

Refer to SECTION 6 INSTRUCTION GLOSSARY for detailed information about
individual instructions. APPENDIX A INSTRUCTION REFERENCE contains
quick-reference material, including an opcode map and postbyte encoding for in-
dexed addressing, transfer/exchange instructions, and loop primitive instructions.

5.2 Load and Store Instructions

Load instructions copy memory content into an accumulator or register. Memory
content is not changed by the operation. Load instructions (but not LEA_ instruc-
tions) affect condition code bits so no separate test instructions are needed to
check the loaded values for negative or zero conditions.

Store instructions copy the content of a CPU register to memory. Register/accumu-
lator content is not changed by the operation. Store instructions automatically up-
date the N and Z condition code bits, which can eliminate the need for a separate
test instruction in some programs.

Table 5-1 is a summary of load and store instructions.

CPU12 INSTRUCTION SET OVERVIEW MOTOROLA
REFERENCE MANUAL 5-1

Table 5-1 Load and Store Instructions

Load Instructions
Mnemonic Function Operation
LDAA Load A M)=A
LDAB Load B M)=8B
LDD Load D (M:M+1)= (AB)
LDS Load SP (M:M+1)= SP
LDX Load Index Register X M:M+1)=X
LDY Load Index Register Y M:M+1)=Y
LEAS Load Effective Address Into SP Effective Address = SP
LEAX Load Effective Address Into X Effective Address = X
LEAY Load Effective AddRess Into Y Effective Address = Y
Store Instructions
Mnemonic Function Operation
STAA Store A (A)=>M
STAB Store B B)=M
STD Store D (A)=>M, (By=>M+1
STS Store SP (SP)=>M:M+1
STX Store X X)=M:M+1
STY Store Y Y)=M:M+1

5.3 Transfer and Exchange Instructions

MOTOROLA

Transfer instructions copy the content of a register or accumulator into another reg-
ister or accumulator. Source content is not changed by the operation. TFR is a uni-
versal transfer instruction, but other mnemonics are accepted for compatibility with
the M6BHC11. The TAB and TBA instructions affect the N, Z, and V condition code
bits in the same way as M68HC11 instructions. The TFR instruction does not affect
the condition code bits.

Exchange instructions exchange the contents of pairs of registers or accumulators.

The SEX instruction is a special case of the universal transfer instruction that is
used to sign-extend 8-bit two’s complement numbers so that they can be used in
16-bit operations. The 8-bit number is copied from accumulator A, accumulator B,
or the condition codes register to accumulator D, the X index register, the Y index
register, or the stack pointer. All the bits in the upper byte of the 16-bit result are
given the value of the MSB of the 8-bit number.

SECTION 6 INSTRUCTION GLOSSARY contains information concerning other
transfers and exchanges between 8- and 16-bit registers.

Table 5-2 is a summary of transfer and exchange instructions.

INSTRUCTION SET OVERVIEW CPU12
REFERENCE MANUAL

Table 5-2 Transfer and Exchange Instructions

Transfer Instructions
Mnemonic Function Operation
TAB Transfer ATo B (A)=B
TAP Transfer A To CCR (A) = CCR
TBA Transfer B To A B)Y=A
TFR Transfer Register To Register (A,B,CCR, D, X, Y,orSP)= A,B,CCR, D, X, Y, or SP
TPA Transfer CCR To A (CCR)= A
TSX Transfer SP To X (SP) = X
TSY Transfer SP To Y (SP)=Y
TXS Transfer X To SP (X) = SP
TYS Transfer Y To SP (Y)=> SP
Exchange Instructions
Mnemonic Function Operation
EXG Exchange Register To Register (A, B,CCR, D, X, Y,orSP) & (A, B,CCR, D, X, Y, or SP)
XGDX Exchange D With X (D) & (X)
XGDY Exchange D With Y (D) & (Y)
Sign Extension Instruction
Mnemonic Function Operation
SEX Sign Extend 8-bit Operand (A,B,CCR)= X, Y, orSP

5.4 Move Instructions

These instructions move data bytes or words from a source (M1, M: M +14) to a
destination (M2, M : M +12) in memory. Six combinations of immediate, extended,
and indexed addressing are allowed to specify source and destination addresses
(IMM = EXT, IMM = IDX, EXT = EXT, EXT = IDX, IDX = EXT, IDX = IDX).

Table 5-3 shows byte and word move instructions.

Table 5-3 Move Instructions

Mnemonic Function Operation
MOVB Move Byte (8-bit) My) =M,
MOVW Move Word (16-bit) M:M+1)=M:M+1p

5.5 Addition and Subtraction Instructions

Signed and unsigned 8- and 16-bit addition can be performed between registers or
between registers and memory. Special instructions support index calculation. In-
structions that add the CCR carry bit facilitate multiple precision computation.

Signed and unsigned 8- and 16-bit subtraction can be performed between registers
or between registers and memory. Special instructions support index calculation.
Instructions that subtract the CCR carry bit facilitate multiple precision computa-
tion. Table 5-4 shows addition and subtraction instructions.

CPU12 INSTRUCTION SET OVERVIEW MOTOROLA
REFERENCE MANUAL 5-3

Table 5-4 Addition and Subtraction Instructions

Addition Instructions

Mnemonic Function Operation
ABA Add AToB (A)+(B)=>A
ABX Add B To X (B) +(X) = X
ABY AddBToY B)+(Y)=Y
ADCA Add With Carry To A (A)+(M)+C=A
ADCB Add With Carry To B B)+M)+C=B
ADDA Add Without Carry To A (A)+(M)= A
ADDB Add Without Carry To B B)+(M)=B
ADDD Add ToD (AB)+M:M+1)=A:B
Subtraction Instructions
Mnemonic Function Operation
SBA Subtract B From A (A)-(B)=A
SBCA Subtract With Borrow From A (A)—-M)-C=>A
SBCB Subtract With Borrow From B B)-M-C=8B
SUBA Subtract Memory From A A)-M=A
SUBB Subtract Memory From B B)-M)=B
SUBD Subtract Memory From D (A:B) D)-M:M+1)=D

5.6 Binary Coded Decimal Instructions

To add binary coded decimal operands, use addition instructions that set the half-
carry bit in the CCR, then adjust the result with the DAA instruction. Table 5-5 is a
summary of instructions that can be used to perform BCD operations.

Table 5-5 BCD Instructions

Mnemonic Function Operation
ABA Add B To A (A)+(B)=A
ADCA Add With Carry To A A)+M)+C=A
ADCB Add With Carry To B B)+M+C=B
ADDA Add Memory To A (A)+M)=>A
ADDB Add Memory To B B)+M)=>B
DAA Decimal Adjust A (A)10

5.7 Decrement and Increment Instructions

These instructions are optimized 8- and 16-bit addition and subtraction operations.
They are generally used to implement counters. Because they do not affect the car-
ry bit in the CCR, they are particularly well suited for loop counters in multiple-pre-
cision computation routines. Please refer to 5.19 Loop Primitive Instructions for
information concerning automatic counter branches. Table 5-6 is a summary of
decrement and increment instructions.

MOTOROLA
5-4

INSTRUCTION SET OVERVIEW

CPU12
REFERENCE MANUAL

Table 5-6 Decrement and Increment Instructions

Decrement Instructions
Mnemonic Function Operation
DEC Decrement Memory (M)-$01 =M
DECA Decrement A (A)-$01 = A
DECB Decrement B (B)-$01 =B
DES Decrement SP (SP) — $0001 = SP
DEX Decrement X (X) — $0001 = X
DEY Decrement Y (Y) - $0001 = Y
Increment Instructions
Mnemonic Function Operation
INC Increment Memory (M) +$01 =M
INCA Increment A (A)+$01 = A
INCB Increment B (B)+%$01 =B
INS Increment SP (SP) + $0001 = SP
INX Increment X (X) + $0001 = X
INY Increment Y (Y) + $0001 = Y

5.8 Compare and Test Instructions

Compare and test instructions perform subtraction between a pair of registers or
between a register and memory. The result is not stored, but condition codes are
set by the operation. These instructions are generally used to establish conditions
for branch instructions. In this architecture, most instructions update condition code
bits automatically, so it is often unnecessary to include separate test or compare
instructions. Table 5-7 is a summary of compare and test instructions.

Table 5-7 Compare and Test Instructions

Compare Instructions
Mnemonic Function Operation
CBA Compare A To B (A) - (B)
CMPA Compare A To Memory (A) — (M)
CMPB Compare B To Memory (B) — (M)
CPD Compare D To Memory (16-bit) (A:B)-(M:M+1)
CPS Compare SP To Memory (16-bit) (SP)-(M:M+1)
CPX Compare X To Memory (16-bit) X)-(M:M+1)
CPY Compare Y To Memory (16-bit) Y)=(M:M+1)
Test Instructions
Mnemonic Function Operation
TST Test Memory For Zero Or Minus (M) — $00
TSTA Test A For Zero Or Minus (A) — $00
TSTB Test B For Zero Or Minus (B) — $00
CPU12 INSTRUCTION SET OVERVIEW

REFERENCE MANUAL

5.9 Boolean Logic Instructions

These instructions perform a logic operation between an 8-bit accumulator or the
CCR and a memory value. AND, OR, and Exclusive OR functions are supported.
Table 5-8 summarizes logic instructions.

Table 5-8 Boolean Logic Instructions

Mnemonic Function Operation
ANDA AND A With Memory (A) e (M)=A
ANDB AND B With Memory (B)e(M)=B

ANDCC AND CCR With Memory (Clear CCR bits) (CCR) ¢ (M) = CCR
EORA Exclusive OR A With Memory (A)® M) = A
EORB Exclusive OR B With Memory B)® M)=B
ORAA OR A With Memory (A) +(M)= A
ORAB OR B With Memory B)+M)=B
ORCC OR CCR With Memory (Set CCR bits) (CCR) + (M) = CCR

5.10 Clear, Complement, and Negate Instructions

Each of these instructions performs a specific binary operation on a value in an ac-
cumulator or in memory. Clear operations set the value to 0, complement opera-
tions replace the value with its one’s complement, and negate operations replace
the value with its two’s complement. Table 5-9 is a summary of clear, complement
and negate instructions.

Table 5-9 Clear, Complement, and Negate Instructions

Mnemonic Function Operation
CLC Clear C Bit In CCR 0=C
(o] Clear | Bit In CCR 0=1
CLR. Clear Memory $00 =M
CLRA Clear A $00 = A
CLRB Clear B $00 =B
CLv Clear V bit in CCR 0=V
COM One’s Complement Memory $FF—M)=Mor(M)=M
COMA One’s Complement A $FF—(A)=Mor(A) = A
COMB One’s Complement B $FF-(B)=>Mor(B)=B
NEG Two’s Complement Memory $00-M)y=>MorM)+1=M
NEGA Two’s Complement A $00-(A)=>Aor(A)+1=>A
NEGB Two's Complement B $00-(B)=Bor(B)+1=1B
MOTOROLA INSTRUCTION SET OVERVIEW

5-6

REFERENCE MANUAL

5.11 Multiplication and Division Instructions

There are instructions for signed and unsigned 8- and 16-bit multiplication. 8-bit
multiplication operations have a 16-bit product. Sixteen-bit multiplication opera-
tions have 32-bit products.

Integer and fractional division instructions have 16-bit dividend, divisor, quotient,
and remainder. Extended division instructions use a 32-bit dividend and a 16-bit di-

visor to produce a 16-bit quotient and a 16-bit remainder.

Table 5-10 is a summary of multiplication and division instructions.

Table 5-10 Multiplication and Division Instructions

Multiplication Instructions
Mnemonic Function Operation
EMUL 16 By 16 Multiply (Unsigned) D)yx(Y)=Y:D
EMULS 16 By 16 Multiply (Signed) D)x((Y)=Y:D
MUL 8 By 8 Multiply (Unsigned) (A)x(B)=A:B
Division Instructions
Mnemonic Function Operation
(Y : D) = (X)
EDIV 32 By 16 Divide (Unsigned) Quotient = Y
Remainder = D
(Y:D)+(X)
EDIVS 32 By 16 Divide (Signed) Quotient =Y
Remainder = D
FDIV 16 By 16 Fractional Divide (D)« (X) = X
remainder = D
- . D)+ (X)=>X
IDIV 16 By 16 Integer Divide (Unsigned) remainder = D
. . (D) = (X) = X
IDIVS 16 By 16 Integer Divide (Signed) remainder = D

5.12 Bit Test and Manipulation Instructions

These operations use a mask value to test or change the value of individual bits in
an accumulator or in memory. BITA and BITB provide a convenient means of test-
ing bits without altering the value of either operand. Table 5-11 is a summary of Bit
test and manipulation instructions.

Table 5-11 Bit Test and Manipulation Instructions

Mnemonic Function Operation
BCLR Clear Bits in Memory (M)e (mm)=M
BITA Bit Test A (A) » (M)
BITB Bit Test B (B) * (M)
BSET Set Bits In Memory (M) + (mm)=M
CPU12 INSTRUCTION SET OVERVIEW

REFERENCE MANUAL

5.13 Shift and Rotate Instructions

There are shifts and rotates for all accumulators and for memory bytes. All pass
the shifted-out bit through the C status bit to facilitate multiple-byte operations. Be-
cause logical and arithmetic left shifts are identical, there are no separate logical
left shift operations. LSL mnemonics are assembled as ASL operations. Table 5-
12 shows shift and rotate instructions.

Table 5-12 Shift and Rotate Instructions

Logical Shifts
Mnemonic Function Operation
LSL Logic Shift Left Memory -«
LSLA Logic Shift Left A (e{TTTTTIT}e¢0
LSLB Logic Shift Left B C b7 b0
<+« <«
LSLD Logic Shift Left D (e[TTe{IT 11«0
C b7 A b0 b7 B b0
LSR Logic Shift Right Memory —>
LSRA Logic Shift Right A 0 [TI T T +»]
LSRB Logic Shift Right B b7 B0 C
—> —>
LSRD Logic Shift Right D 0T TTH I TTH»]
b7 A b0 b7 B b0 C
Arithmetic Shifts
Mnemonic Function Operation
ASL Arithmetic Shift Left Memory <
ASLA Arithmetic Shift Left A [o I]
ASLB Arithmetic Shift Left B C b7 b0
<+ <+
ASLD Arithmetic Shift Left D (e{IT T TIeTT TT]e0
C b7 A b0 b7 B b0
ASR Arithmetic Shift Right Memory —>
ASRA Arithmetic Shift Right A Q}:[D]j]]——»[j
ASRB Arithmetic Shift Right B b7 0 C
Rotates
Mnemonic Function Operation
ROL Rotate Left Memory Through Carry
ROLA Rotate Left A Through Carry I<—D<—EE]:I:ED:D<—'
ROLB Rotate Left B Through Carry C b7 b0
ROR Rotate Right Memory Through Carry
RORA Rotate Right A Through Carry I—»D:E[[[[D—»(}J
RORB Rotate Right B Through Carry b7 b0 C
MOTOROLA INSTRUCTION SET OVERVIEW

5-8

CPU12
REFERENCE MANUAL

5.14 Fuzzy Logic Instructions

The CPU12 instruction set includes instructions that support efficient processing of
fuzzy logic operations. The descriptions of fuzzy logic instructions that follow are
functional overviews. Table 5-13 summarizes the fuzzy logic instructions. Refer to
SECTION 9 FUZZY LOGIC SUPPORT for detailed discussion.

5.14.1 Fuzzy Logic Membership Instruction

The MEM instruction is used during the fuzzification process. During fuzzification,
current system input values are compared against stored input membership func-
tions to determine the degree to which each label of each system input is true. This
is accomplished by finding the y value for the current input on a trapezoidal mem-
bership function for each label of each system input. The MEM instruction performs
this calculation for one label of one system input. To perform the complete fuzzifi-
cation task for a system, several MEM instructions must be executed, usually in a
program loop structure.

5.14.2 Fuzzy Logic Rule Evaluation Instructions

The REV and REVW instructions perform MIN-MAX rule evaluations that are cen-
tral elements of a fuzzy logic inference program. Fuzzy input values are processed
using a list of rules from the knowledge base to produce a list of fuzzy outputs. The
REV instruction treats all rules as equally important. The REVW instruction allows
each rule to have a separate weighting factor. The two rule evaluation instructions
also differ in the way rules are encoded into the knowledge base. Because they re-
quire a number of cycles to execute, rule evaluation instructions can be interrupted.
Once the interrupt has been serviced, instruction execution resumes at the point
the interrupt occurred.

5.14.3 Fuzzy Logic Averaging Instruction

The WAV instruction provides a facility for weighted average calculations. In order
to be usable, the fuzzy outputs produced by rule evaluation must be defuzzified to
produce a single output value which represents the combined effect of all of the
fuzzy outputs. Fuzzy outputs correspond to the labels of a system output and each
is defined by a membership function in the knowledge base. The CPU12 typically
uses singletons for output membership functions rather than the trapezoidal
shapes used for inputs. As with inputs, the x-axis represents the range of possible
values for a system output. Singleton membership functions consist of the x-axis
position for a label of the system output. Fuzzy outputs correspond to the y-axis
height of the corresponding output membership function.The WAV instruction cal-
culates the numerator and denominator sums for a weighted average of the fuzzy
outputs. Because WAV requires a number of cycles to execute, it can be interrupt-
ed. The wavr pseudoinstruction causes execution to resume at the point is was in-
terrupted.

CPU12 INSTRUCTION SET OVERVIEW MOTOROLA
REFERENCE MANUAL 5-9

Table 5-13 Fuzzy Logic Instructions

Mnemonic

Function

Operation

MEM

Membership Function

1 (grade) = M(y)
(X) +4 = X; (Y)+1=Y; Aunchanged

if (A) <P1or(A)>P2,thenu=0, else
w=MIN [((A) — P1) x S1, (P2 — (A)) x S2, $FF]
where:
A = current crisp input value
X points to a four byte data structure that describes a trap-
ezoidal membership function as base intercept points
and slopes (P1, P2, S1, S2)
Y points at fuzzy input (RAM location)

See instruction details for special cases

REV

MIN-MAX Rule Evaluation

Find smallest rule input (MIN)
Store to rule outputs unless fuzzy output is larger (MAX)

Rules are unweighted
Each rule input is an 8-bit offset from a base address in Y
Each rule output is an 8-bit offset from a base address in Y
$FE separates rule inputs from rule outputs

$FF terminates the rule list

REV can be interrupted

REVW

MIN-MAX Rule Evaluation

Find smallest rule input (MIN)
Multiply by a rule weighting factor (optional)
Store to rule outputs unless fuzzy output is larger (MAX)

Each rule input is the 16-bit address of a fuzzy input
Each rule output is the 16-bit address of a fuzzy output
Address $FFFE separates rule inputs from rule outputs
$FFFF terminates the rule list

Weights are 8-bit values in a separate table

REVW can be interrupted

B
Calculates Numerator (Sum of Products) Y SiFi= YD
and Denominator (Sum of Weights) for i=1
WAV Weighted Average Calculation 8
Results Are Placed In Correct Registers FoX
For EDIV immediately After WAV 2 Fi=
i=1
wavr Resumes Execution Of Recover immediate results from stack
Interrupted WAV Instruction rather than initializing them to 0.
MOTOROLA INSTRUCTION SET OVERVIEW CPU12

5-10

REFERENCE MANUAL

5.15 Maximum and Minimum Instructions

These instructions are used to make comparisons between an accumulator and a
memory location. These instructions can be used for linear programming opera-
tions, such as Simplex-method optimization or for fuzzification.

MAX and MIN instructions use the A accumulator to perform 8-bit comparisons,
while EMAX and EMIN instructions use the D accumulator to perform 16-bit com-
parisons. The result (maximum or minimum value) can be stored in the accumula-

tor (EMAXD, EMIND, MAXA, MINA) or the memory address (EMAXM, EMINM,
MAXM, MINM).

Table 5-14 is a summary of minimum and maximum instructions.

Table 5-14 Minimum and Maximum Instructions

Minimum Instructions

Mnemonic Function Operation
MIN Of 2 Unsigned 16-bit Values
Result to Accumulator
MIN Of 2 Unsigned 16-bit Values

EMIND MIN ((D), M:M+1)) =D

EMINM Result to Memory MIN (D), (M : M + 1)) = M : M+1
MIN Of 2 Unsigned 8-bit Values
MINA Result to Accumulator MIN ((A), (M)) = A
MINM MIN Of 2 Unsigned 8-bit Values MIN ((A), (M) = M

Result to Memory

Maximum Instructions
Mnemonic Function Operation
MAX Of 2 Unsigned 16-bit Values

EMAXD Result to Accumulator MAX (D), M :M+1)) =D
MAX Of 2 Unsigned 16-bit Values . .
EMAXM Result to Memory MAX (D), M:M+1))=>M:M+1
MAX Of 2 Unsigned 8-bit Values
MAXA Result to Accumulator MAX ((A), (M) = A
MAXM MAX Of 2 Unsigned 8-bit Values

Result to Memory MAX((A), (M)) =M

5.16 Multiply and Accumulate Instruction

The EMACS instruction multiplies two 16-bit operands stored in memory and ac-
cumulates the 32-bit result in a third memory location. EMACS can be used to im-
plement simple digital filters and defuzzification routines that use 16-bit operands.
The WAV instruction incorporates an 8- to 16-bit multiply and accumulate opera-
tion that obtains a numerator for the weighted average calculation. The EMACS in-
struction can automate this portion of the averaging operation when 16-bit
operands are used. Table 5-15 shows the EMACS instruction.

CPU12 INSTRUCTION SET OVERVIEW MOTOROLA
REFERENCE MANUAL 5-11

Table 5-15 Multiply and Accumulate Instructions

Mnemonic Function Operation
Multiply And Accumulate (Signed) X)
EMACS 16 x 16 Bit = 32 Bit ((M(x).M(X+1)) X (M(Y).M(Y+1))) + (M ~M+ 3) =M~M+3

5.17 Table Interpolation Instructions

The TBL and ETBL instructions interpolate values from tables stored in memory.
Any function that can be represented as a series of linear equations can be repre-
sented by a table of appropriate size. Interpolation can be used for many purposes,
including tabular fuzzy logic membership functions. TBL uses 8-bit table entries
and returns an 8-bit result; ETBL uses 16-bit table entries and returns a 16-bit re-
sult. Use of indexed addressing mode provides great flexibility in structuring tables.

Consider each of the successive values stored in a table to be y-values for the end-
point of a line segment. The value in the B accumulator before instruction execution
begins represents change in x from the beginning of the line segment to the lookup
point divided by total change in x from the beginning to the end of the line segment.
B is treated as an 8-bit binary fraction with radix point left of the MSB, so each line
segment is effectively divided into 256 smaller segments. During instruction exe-
cution, the change in y between the beginning and end of the segment (a signed
byte for TBL or a signed word for ETBL) is multiplied by the content of the B accu-
mulator to obtain an intermediate delta-y term. The result (stored in the A accumu-
lator by TBL, and in the D accumulator by ETBL) is the y-value of the beginning
point plus the signed intermediate delta-y value. Table 5-16 shows the table inter-

polation instructions.

Table 5-16 Table Interpolation Instructions

Mnemonic Function Operation
M:M+1)+[B)x(M+2:M+3)-(M:M+1))] =D
ETBL 16-bit Table Lookup And Interpolate Initialize B, and index before ETBL.
(no indirect addressing modes allowed) <ea> points to the first table entry (M : M + 1)
B is fractional part of lookup value
(M) +[(B) x (M +1) ~ (M))] = A
TBL 8-bit Table Lookup And Interpolate Initialize B, and index before TBL.
(no indirect addressing modes allowed.) <ea> points to the first 8-bit table entry (M)
B is fractional part of lookup value.
MOTOROLA INSTRUCTION SET OVERVIEW CPU12
5-12 REFERENCE MANUAL

5.18 Branch Instructions

5.18.1

5.18.1

CPU12

Branch instructions cause sequence to change when specific conditions exist. The
CPU12 uses three kinds of branch instructions. These are Short branches, Long
branches, and Bit-Conditional branches.

Branch instructions can also be classified by the type of condition that must be sat-
isfied in order for a branch to be taken. Some instructions belong to more than one
classification.

Unary branch instructions always execute.

Simple branches are taken when a specific bit in the condition code register is
in a specific state as a result of a previous operation.

Unsigned branches are taken when comparison or test of unsigned quantities
results in a specific combination of condition code register bits.

Signed branches are taken when comparison or test of signed quantities results
in a specific combination of condition code register bits.

Short Branch Instructions

Short branch instructions operate as follows. When a specified condition is met, a
signed 8-bit offset is added to the value in the program counter. Program execution
continues at the new address.

The numeric range of short branch offset values is $80 (-128) to $7F (127) from
the address of the next memory location after the offset value.

Table 5-17 is a summary of the short branch instructions.

.1 Long Branch Instructions

Long branch instructions operate as follows. When a specified condition is met, a
signed 16-bit offset is added to the value in the program counter. Program execu-
tion continues at the new address. Long branches are used when large displace-
ments between decision-making steps are necessary.

The numeric range of long branch offset values is $8000 (-32768) to $7FFF
(32767) from the address of the next memory location after the offset value. This
permits branching from any location in the standard 64-Kbyte address map to any
other location in the map.

Table 5-18 is a summary of the long branch instructions.

INSTRUCTION SET OVERVIEW MOTOROLA

REFERENCE MANUAL 5-13

Table 5-17 Short Branch Instructions

Unary Branches

Mnemonic Function Equation or Operation
BRA Branch Always 1=1
BRN Branch Never 1=0
Simple Branches
Mnemonic Function Equation or Operation
BCC Branch if Carry Clear C=0
BCS Branch if Carry Set c=1
BEQ Branch if Equal Z=1
BMI Branch if Minus N=1
BNE Branch if Not Equal Z=0
BPL Branch if Plus N=0
BVC Branch if Overflow Clear V=0
BVS Branch if Overflow Set V=1
Unsigned Branches
Mnemonic Function Relation Equation or Operation
BHI Branch if Higher R>M C+Z=0
BHS Branch if Higher or Same R>M C=0
BLO Branch if Lower R<M C=1
BLS Branch if Lower or Same Rs<M C+2Z=1
Signed Branches
Mnemonic Function Relation Equation or Operation
BGE Branch if Greater than or Equal R>M NeV=0
BGT Branch if Greater Than R>M Z+(NoV)=0
BLE Branch if Less than or Equal R<M Z+(NeV)=1
BLT Branch if Less Than R<M NeV=1
MOTOROLA INSTRUCTION SET OVERVIEW CPU12
5-14 REFERENCE MANUAL

Table 5-18 Long Branch Instructions

Unary Branches

Mnemonic Function Equation or Operation
LBRA Long Branch Always 1=1
LBRN Long Branch Never 1=0
Simple Branches
Mnemonic Function Equation or Operation
LBCC Long Branch If Carry Clear C=0
LBCS Long Branch If Carry Set C=1
LBEQ Long Branch If Equal Z=1
LBMI Long Branch If Minus N=1
LBNE Long Branch If Not Equal Z=0
LBPL Long Branch If Plus N=0
LBVC Long Branch If Overflow Clear V=0
LBVS Long Branch If Overflow Set V=1
Unsigned Branches
Mnemonic Function Equation or Operation
LBHI Long Branch If Higher C+Z=0
LBHS Long Branch If Higher Or Same C=0
LBLO Long Branch If Lower Z=1
LBLS Long Branch If Lower Or Same C+Z=1
Signed Branches
Mnemonic Function Equation or Operation
LBGE Long Branch If Greater Than Or Equal N®V=0
LBGT Long Branch If Greater Than Z+(N®V)=0
LBLE Long Branch If Less Than Or Equal Z+(N®V)=1
LBLT Long Branch If Less Than N@Vv=1
CPU12 INSTRUCTION SET OVERVIEW MOTOROLA

REFERENCE MANUAL

5-15

5.18.2 Bit Condition Branch Instructions

These branches are taken when bits in a memory byte are in a specific state. A
mask operand is used to test the location. If all bits in that location that correspond
to ones in the mask are set (BRSET) or cleared (BRCLR), the branch is taken.

The numeric range of 8-bit offset values is $80 (-128) to $7F (127) from the ad-
dress of the next memory location after the offset value. Table 5-19 is a summary
of bit-condition branches.

Table 5-19 Bit Condition Branch Instructions

Mnemonic Function Equation or Operation
BRCLR Branch if Selected Bits Clear (M)e(mm)=0
BRSET Branch if Selected Bits Set (M) e (mm) =0

5.19 Loop Primitive Instructions

The loop primitives can also be thought of as counter branches. The instructions
test a counter value in a register or accumulator (A, B, D, X, Y, or SP) for zero or
nonzero value as a branch condition. There are predecrement, preincrement and
test-only versions of these instructions.

The numeric range of 8-bit offset values is $80 (-128) to $7F (127) from the ad-
dress of the next memory location after the offset value. Table 5-20 is a summary
of bit-condition branches.

Table 5-20 Loop Primitive Instructions

Mnemonic Function Equation or Operation
o (counter) — 1= counter
DBEQ Decrement Counter and Branch if = 0 If (counter) = 0, then Branch
(counter= A, B, D, X, Y, or SP) . . .
else Continue to next instruction
. (counter) — 1= counter
D
DBNE ecrement Counter and Branch if # 0 if (counter) not = 0, then Branch
(counter = A, B, D, X, Y, or SP) .) .
else Continue to next instruction
. (counter) + 1= counter
| =
IBEQ ncrement Counter and Branch if =0 If (counter) = 0, then Branch
(counter = A, B, D, X, Y, or SP) . . .
else Continue to next instruction
R (counter) + 1= counter
IBNE Increment Counter and Branch if # 0 if (counter) not = 0, then Branch
(counter= A, B, D, X, Y, or SP) . . .
else Continue to next instruction
TBEQ Test Counter and Branch if = 0 If (counter) = 0, then Branch
(counter = A, B, D, X,Y, or SP) else Continue to next instruction
TBNE Test Counter and Branch if = 0 If (counter) not = 0, then Branch
(counter = A, B, D, X,Y, or SP) else Continue to next instruction
MOTOROLA INSTRUCTION SET OVERVIEW CPU12
5-16

REFERENCE MANUAL

5.19.1 Jump and Subroutine Instructions

Jump instructions cause immediate changes in sequence. The JMP instruction
loads the PC with an address in the 64-Kbyte memory map and program execution
continues at that address. The address can be provided as an absolute 16-bit ad-
dress or determined by various forms of indexed addressing.

Subroutine instructions optimize the process of transferring control to a code seg-
ment that performs a particular task. A short branch (BSR), a jump (JSR), or an ex-
panded-memory call (CALL) can be used to initiate subroutines. There is no LBSR
instruction, but a PC-relative JSR performs the same function. A return address is
stacked, then execution begins at the subroutine address. Subroutines in the nor-
mal 64-Kbyte address space are terminated with an RTS instruction. RTS unstacks
the return address so that execution resumes with the instruction after BSR or JSR.

The CALL instruction is intended for use with expanded memory. CALL stacks the
value in the PPAGE register and the return address, then writes a new value to
PPAGE to select the memory page where the subroutine resides. The page value
is an immediate operand in all addressing modes except indexed indirect modes;
in these modes, an operand points to locations in memory where the new page val-
ue and subroutine address are stored. The RTC instruction is used to terminate
subroutines in expanded memory. RTC unstacks the PPAGE value and the return
address so that execution resumes with the next instruction after CALL. For soft-
ware compatibility, CALL and RTC execute correctly on devices that do not have
expanded addressing capability. Table 5-21 summarizes the jump and subroutine
instructions.

Table 5-21 Jump and Subroutine Instructions

Mn

emonic Function Operation

SP-2=SP
BSR Branch to Subroutine RTNH : RTNL = M(sp) : M(sp+1)
Subroutine address = PC

CALL Call Subroutine in Expanded Memory

SP-2=SP
RTNH:RTNL= M(sp) : M(sP+1)
SP-1=SP
(PPAGE) = M(sp)

Page = PPAGE
Subroutine address = PC

JMP Jump Subroutine Address = PC

SP-2=SP
JSR Jump to Subroutine RTNH : RTNL = M(sp) : M(sP+1)
Subroutine address = PC

M(sp) : M(sp+1) = PCH : PCL

RTC Return from Call SP+2 = SP

M(sp) = PPAGE
SP+1=SP
M(sp) : M(sp+1) = PCH : PCL
SP+2 = SP

RTS Return from Subroutine

CPU12

INSTRUCTION SET OVERVIEW MOTOROLA

REFERENCE MANUAL 5-17

5.19.2 Interrupt Instructions

Interrupt instructions handle transfer of control to a routine that performs a critical
task. Software interrupts are a type of exception. SECTION 7 EXCEPTION PRO-
CESSING covers interrupt exception processing in detail.

The SWI instruction initiates synchronous exception processing. First, the return
PC value is stacked. After CPU context is stacked, execution continues at the ad-
dress pointed to by the SWI vector.

Execution of the SWI instruction causes an interrupt without an interrupt service re-
quest. SWI is not inhibited by global mask bits | and X in the CCR, and execution
of SWI sets the | mask bit. Once an SWI interrupt begins, maskable interrupts are
inhibited until the | bit in the CCR is cleared. This typically occurs when an RTl in-
struction at the end of the SWI service routine restores context.

The CPU12 uses the software interrupt for unimplemented opcode trapping. There
are opcodes in all 256 positions in the Page 1 opcode map, but only 54 of the 256
positions on Page 2 of the opcode map are used. If the CPU attempts to execute
one of the unimplemented opcodes on Page 2, an opcode trap interrupt occurs.
Traps are essentially interrupts that share the $FFF8:$FFF9 interrupt vector.

The RTI instruction is used to terminate all exception handlers, including interrupt
service routines. RTI first restores the CCR, B:A, X, Y, and the return address from
the stack. If no other interrupt is pending, normal execution resumes with the in-
struction following the last instruction that executed prior to interrupt.

Table 5-22 is a summary of interrupt instructions.

Table 5-22 Interrupt Instructions

Mnemonic Function Operation

M(sp) = CCR; SP+1= SP
M(sp): M(spn) =B:A;SP+2=SP
RTI Return from Interrupt Msp) : M(sps1) = Xny: X ; SP +2 = SP
M(Sp) . M(sp+1) = Yu: YL; SP+2 = SP
Msp) : M(sps1) = PCy: PC; SP +2 = SP
SP—2 = SP; RTNy: RTN_ = Mgp) : M(sp1)
SP-2=S8P; Yq:YL= M(Sp) : M(sp+1)
SWI Software Interrupt SP —2 = SP; Xu : XL = M(sp) : M(sps)
SP-2=SP;B:A= M(sp) : M(5p+1)
SP -1 = SP; CCR = Msp
SP-2= SP; RTNH : RTNL = M(sp) : M(sp+1)
SP -2 = SP; Yy : YL = Misp): Misps)
TRAP Software Interrupt SP-2=SP; Xy: X, = M(sp)i M(sp+1)
SP-2=SP;B:A= M(sp) H M(sp.n)
SP — 1= SP; CCR = Msp,

MOTOROLA INSTRUCTION SET OVERVIEW CPU12
5-18 REFERENCE MANUAL

5.20 Index Manipulation Instructions

These instructions perform 8- and 16-bit operations on the three index registers
and accumulators, other registers, or memory, as shown in Table 5-23.

Table 5-23 Index Manipulation Instructions

Addition Instructions
Mnemonic Function Operation
ABX Add B to X (B) + (X) = X
ABY AddBtoY B)+(Y)=>Y
Compare Instructions
Mnemonic Function Operation
CPS Compare SP to Memory (SP)-(M:M+1)
CPX Compare X to Memory X)-M:M+1)
CPY Compare Y to Memory Y)-M:M+1)
Load Instructions
Mnemonic Function Operation
LDS Load SP from Memory M:M+1 = SP
LDX Load X from Memory M:M+1)=X
LDY Load Y from Memory M:M+1)=Y
LEAS Load Effective Address into SP Effective Address = SP
LEAX Load Effective Address into X Effective Address = X
LEAY Load Effective Address into Y Effective Address = Y
Store Instructions
Mnemonic Function Operation
STS Store SP in Memory (SP) = M:M+1
STX Store X in Memory X)=M:M+1
STY Store Y in Memory Y)y=>M:M+1
Transfer Instructions
Mnemonic Function Operation
TFR Transfer Register to Register (A,B,CCR,D, X, Y,orSP)= A, B,CCR, D, X, Y, or SP
TSX Transfer SP to X (SP) = X
TSY Transfer SPto Y (SP)=>Y
XS Transfer X to SP (X) = SP
TYS Transfer Y to SP (Y) = SP
Exchange Instructions
Mnemonic Function Operation
EXG Exchange Register to Register (A, B,CCR, D, X, Y, or SP) & (A, B, CCR, D, X, Y, or SP)
XGDX EXchange D with X (D) & (X)
XGDY EXchange D with Y (D) & (Y)
CPU12 INSTRUCTION SET OVERVIEW MOTOROLA

REFERENCE MANUAL

5-19

5.21 Stacking Instructions

There are two types of stacking instructions, as shown in Table 5-24. Stack pointer
instructions use specialized forms of mathematical and data transfer instructions
to perform stack pointer manipulation. Stack operation instructions save informa-

tion on and retrieve information from the system stack.

Table 5-24 Stacking Instructions

Stack Pointer Instructions

Mnemonic Function Operation
CPS Compare SP to Memory (SP)-=(M: M+ 1)
DES Decrement SP (SP)-1=SP
INS Increment SP (SP)+1=SP
LDS Load SP M:M+1)=SP
LEAS Load Effective Address into SP Effective Address = SP
STS Store SP (SP)=M:M+1
TSX Transfer SP to X (SP)= X
TSY Transfer SPto Y (SP)=Y
TXS Transfer X to SP (X) = SP
TYS Transfer Y to SP (Y)= SP

Stack Operation Instructions

Mnemonic Function - Operation
PSHA Push A (SP)— 1= SP; (A) = Msp)
PSHB Push B (SP) -1 = SP; (B) = M(sp
PSHC Push CCR (SP) —1 = SP; (A) = Msp)
PSHD Push D (SP) -2 = SP; (A : B) = M(sp): M(sp.)
PSHX Push X (SP) — 2 = SP; (X) = Msp): Msps1)
PSHY Push Y (SP) —2 = SP; (Y) = M(sp) : M(sps1)
PULA Pull A (Msp) = A; (SP) + 1= SP
PULB Pull B (M(sp)) = B; (SP) +1 = SP
PULC Pull CCR (M(sp)) = CCR; (SP) + 1 = SP
PULD Pull D (M(sp): M(sps1)) = A: B; (SP) +2 = SP
PULX Pull X (Mspy : M(sps1)) = X; (SP) +2 = SP
PULY Pull Y (M(sp): M(sps1)) = Y; (SP) +2 = SP

5.22 Pointer and Index Calculation Instructions

The Load Effective Address instructions allow 5-, 8-, or 16-bit constants, or the con-
tents of 8-bit accumulators A and B or 16-bit accumulator D to be added to the con-
tents of the X and Y index registers, the SP, or the PC. Table 5-25 is a summary

of pointer and index instructions.

MOTOROLA
5-20

INSTRUCTION SET OVERVIEW

CPU12
REFERENCE MANUAL

Table 5-25 Pointer and Index Calculation Instructions

Mnemonic Function Operation
Load Result Of Indexed Addressing Mode r + Constant = SP or
LEAS Effective Address Calculation (r) + (Accumulator) = SP
Into Stack Pointer r=X,Y, SP,orPC
Load Result Of Indexed Addressing Mode r + Constant =X or
LEAX Effective Address Calculation (r) + (Accumulator) =X
Into X Index Register r=X,Y,SP,orPC
Load Result Of Indexed Addressing Mode r+ Constant =Y or
LEAY Effective Address Calculation (r) + (Accumulator) = Y
Into Y Index Register r=X,Y,SP,orPC

5.23 Condition Codes Instructions

Condition code instructions are special forms of mathematical and data transfer in-
structions that can be used to change the condition codes register. Table 5-26
shows instructions that can be used to manipulate the CCR.

Table 5-26 Condition Codes Instructions

Mnemonic Function Operation
ANDCC Logical AND CCR with Memory (CCR) « (M) = CCR
CLC Clear C bit 0=C
CLI Clear | bit 0=1
CLvV Clear V bit 0=V
ORCC Logical OR CCR with Memory (CCR) + (M) = CCR
PSHC Push CCR onto Stack (SP) -1 = SP; (CCR) = Msp)
PULC Pull CCR from Stack (Msp)) = CCR; (SP) +1 = SP
SEC Set C bit 1=C
SEI Set | bit 1=1
SEV Set V bit 1=V
TAP Transfer A to CCR (A) = CCR
TPA Transfer CCRto A (CCR)= A

5.24 Stop and Wait Instructions

As shown in Table 5-27, there are two instructions that put the CPU12 in an inac-
tive state that reduces power consumption.

The STOP instruction stacks a return address and the contents of CPU registers
and accumulators, then halts all system clocks.

The WAIT instruction stacks a return address and the contents of CPU registers
and accumulators, then waits for an interrupt service request; however, system
clock signals continue to run.

CPU12 INSTRUCTION SET OVERVIEW : MOTOROLA
REFERENCE MANUAL 5-21

Both STOP and WAIT require that either an interrupt or a reset exception occur be-
fore normal execution of instructions resumes. Although both instructions require
the same number of clock cycles to resume normal program execution after an in-
terrupt service request is made, restarting after a STOP requires extra time for the
oscillator to reach operating speed.

Table 5-27 Stop and Wait Instructions

Mnemonic Function Operation

SP -2 = SP; RTNH : RTN_. = M(sp)Z M(qu)
SP -2 = SP; YH : YL = Msp) : M(sps)
SP -2 = SP; Xy : XL = M(sp): M(spn)

SP-2=SP;B:A= M(sp)i M(sp+1)
SP-1=SP;CCR= M(sp)
STOP CPU Clocks

STOP Stop

SP — 2 =5 SP; RTNp : RTNL = Msp) : Misps1)
SP-2=SP;YH:YL= M(sp): M(sp”)
WAI Wait for Interrupt SP —2 = SP; XH : XL = Msp) : Msp41)
SP-2=SP;B:A= M(sp) : M(sp+1)
SP - 1= SP; CCR = Msp,

5.25 Background Mode and Null Operations

Background debugging mode is a special CPU12 operating mode that is used for
system development and debugging. Executing BGND when BDM is enabled puts
the CPU12 in this mode. For complete information refer to SECTION 8 DEVELOP-
MENT AND DEBUG SUPPORT.

Null operations are often used to replace other instructions during software debug-
ging. Replacing conditional branch instructions with BRN, for instance, permits
testing a decision-making routine without actually taking the branches.

Table 5-28 shows the BGND and NOP instructions.

Table 5-28 Background Mode and Null Operation Instructions

Mnemonic Function Operation
BGND Enter Background Debugging Mode I BDM enabled, enter BDM.;
else, resume normal processing
BRN Branch Never Does not branch
LBRN Long Branch Never Does not branch
NOP Null operation —_
MOTOROLA INSTRUCTION SET OVERVIEW CPU12

REFERENCE MANUAL

SECTION 6
INSTRUCTION GLOSSARY

This section is a comprehensive reference to the CPU12 instruction set.

6.1 Glossary Information

The glossary contains an entry for each assembler mnemonic, in alphabetic order.
Figure 6-1 is a representation of a glossary page.

MNEMONIC " LDX Load Inde

| Opemtion: _» (M:M+ 1)< X

SYMBOLIC DESCRIPTION —

Description: Loads the most significa
OF OPERATION / memory at the addres
P
DETA(l)IFEgP%IIER%\?%ilﬂON Condition Codes and Boolean Form
s X H
[T =124
N: Set if MSB of resu.
EFFECT ON / Z: Set if resultis $00
CONDITION CODES REGISTER — V: 0;Cleared.
STATUS BITS

Addressing Modes, Machine Code, an

Source Form Address Mode | Obije
LDX #opr16i MM CE 33
LDX opr8a DIR DE d
LDX opri6a EXT FE h
/’V LDX oprx0_xysp IDX EE
DETAILED SYNTAX LDX oprx9,xysp IDX1 E
AND LDX oprx16,xysp IDX2 E
CYCLE-BY-CYCLE LDX [D,xysp] [D,IDX] —
OPERATION LDX {oprx16,xysp] [IDX2]
|_— EXGLO PG
Figure 6-1 Example Glossary Page
CPU12 INSTRUCTION GLOSSARY MOTOROLA
REFERENCE MANUAL 6-1

Each entry contains symbolic and textual descriptions of operation, information
concerning the effect of operation on status bits in the condition codes register, and
a table that describes assembler syntax, cycle count, and cycle-by-cycle execution
of the instruction.

6.2 Condition Code Changes

The following special characters are used to describe the effects of instruction ex-
ecution on the status bits in the condition codes register.

— — Status bit not affected by operation.
— Status bit cleared by operation.
— Status bit set by operation.
— Status bit affected by operation.
Status bit may be cleared or remain set, but is not set by operation.
— Status bit may be set or remain cleared, but is not cleared by operation.
— Status bit may be changed by operation but the final state is not defined.
I — Status bit used for a special purpose.

B > A)
I

6.3 Object Code Notation

The digits 0 to 9 and the upper case letters A to F are used to express hexadecimal
values. Pairs of lower case letters represent the 8-bit values as described below.

dd — 8-bit direct address $0000 to $00FF. (High byte assumed to be $00).
ee — High-order byte of a 16-bit constant offset for indexed addressing.
eb — Exchange/Transfer post-byte.

ff — Low-order 8 bits of a 9-bit signed constant offset for indexed addressing, or low-
order byte of a 16-bit constant offset for indexed addressing.

hh — High-order byte of a 16-bit extended address.

ii — 8-bit immediate data value.

ji — High-order byte of a 16-bit immediate data value.
kk — Low-order byte of a 16-bit immediate data value.
Ib — Loop primitive (DBNE) post-byte.

Il — Lowe-order byte of a 16-bit extended address.

mm — 8-bit immediate mask value for bit manipulation instructions.
Set bits indicate bits to be affected.

pg — Program overlay page (bank) number used in CALL instruction.
qq — High-order byte of a 16-bit relative offset for long branches.
tn — Trap number $30-$39 or $40-$FF.

rr — Signed relative offset $80 (—128) to $7F (+127).
Offset relative to the byte following the relative offset byte, or
Low-order byte of a 16-bit relative offset for long branches.

xb — Indexed addressing post-byte.

MOTOROLA INSTRUCTION GLOSSARY CPU12
6-2 REFERENCE MANUAL

6.4 Source Forms

CPU12

The glossary pages provide only essential information about assembler source
forms. Assemblers generally support a number of assembler directives, allow def-
inition of program labels, and have special conventions for comments. For com-
plete information about writing source files for a particular assembler, refer to the
documentation provided by the assembler vendor.

Assemblers are typically very flexible about the use of spaces and tabs. Often, any
number of spaces or tabs can be used where a single space is shown on the glos-
sary pages. Spaces and tabs are also normally allowed before and after commas.
When program labels are used, there must also be at least one tab or space before
all instruction mnemonics. This required space is not apparent in the source forms.

Everything in the source forms columns, except expressions in italic characters, is
literal information which must appear in the assembly source file exactly as shown.
The initial 3 to 5 letter mnemonic is always a literal expression. All commas, pound
signs (#), parentheses, square brackets ([or]), plus signs (+), minus signs (-),
and the register designation D (as in [D,...), are literal characters.

Groups of italic characters in the columns represent variable information to be sup-
plied by the programmer. These groups can include any alphanumeric character
or the underscore character, but cannot include a space or comma. For example,
the groups xysp and operx0_xysp are both valid, but the two groups operx0 xysp
are not valid because there is a space between them. Permitted syntax is de-
scribed below.

The definition of a legal label or expression varies from assembler to assembler.
Assemblers also vary in the way CPU registers are specified. Refer to assembler
documentation for detailed information. Recommended register designators are a,
A, b, B, ccr, CCR, d,D, x, X, v, Y, sp, SP, pc, and PC).

abc — Any one legal register designator for accumulators A or B or the CCR.

abcdxys — Any one legal register designator for accumulators A or B, the CCR, the double
accumulator D, index registers X or Y, or the SP. Some assemblers may accept
t2, T2, 13, or T3 codes in certain cases of transfer and exchange instructions, but
these forms are intended for Motorola use only.

abd — Any one legal register designator for accumulators A or B or the double accumu-
lator D.

abdxys — Any one legal register designator for accumulators A or B, the double accumulator
D, in