v

MC88100UM/AD
REV1

[e

o DUISSON

i
 MC88100
.
(® MICROPROCESSOR
g « USER'S MANUAL
9 SECOND EDITION
| 0 | .
“ n 5%
0

F
I} >

o b

@ MOTOROLA

Introduction

Programming Model

Addressing Modes and Instruction Set
Signal Description

Bus Operation

Exceptions

Instruction Exeéution'Timing
Applications Information

Electrical Characteristics

Ordering Information and Mechanical Data
Glossary

Index

o

HEEBBEBEBEEEEEBREE

Introduction

Programming Model

Addressing Modes and Instruction Set
Signal Description

Bus Operation

Exceptions

Instruction Execution Timing

Applications Information

Electrical Characteristics

Ordering Information and Mechanical Data
Glossary

Index

EpEBBEBBABNBENE

@ MOTOROLA

MC88100

RISC
MICROPROCESSOR
USER’'S MANUAL

second edition

PRENTICE HALL, Englewood Cliffs, New Jersey 07632

© 1990, 1989 by Motorola, Inc.

Motorola reserves the right to make changes without further notice to any products herein
to improve reliability, function or design. Motorola does not assume any liability arising out
of the application or use of any product or circuit described herein; neither does it convey
any license under its patent rights nor the rights of others. Motorola products are not author-
ized for use as components in life support devices or systems intended for surgical implant
into the body or intended to support or sustain life. Buyer agrees to notify Motorola of any -
such intended end use whereupon Motorola shall determine availability and suitability of its
product or products for the use intended. Motorola and ® are registered trademarks of

Motorola, Inc. Motorola, Inc. is an Equal Employment Opportunity/Affirmative Action
Employer.

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

0 9 8 7 6 54 3 2 1

ISBN 0-13-567090-X

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Paragraph
Number

1.1
1.2
1.2.1
1.2.2
1.2.3
1.24
1.25
1.2.6
1.2.7
1.2.8
1.3
1.3.1
1.3.2
1.3.3
1.3.4
1.3.5
1.3.5.1
1.3.6.2
1.3.6
1.3.7
1.4
1.4.1
1.4.2
1.4.3
1.4.4
1.45
1.4.6

2.1
2.1
2.1.2
2.1.21
2.1.2.2

TABLE OF CONTENTS
Title

Section 1
Introduction

Register-to-Register Architecture..........c.coooeviiiiiiiiiiiiininnnn.,
Reduced INSIruction Set.......coiiiiiiiiiii e
Simplified Addressing Modescoooiiiiiiiiiiiiiiii e
INStruction FOrmats.........oouviiiiiiii e
Delayed Branchingc.cooiiiiiiiiiii i
Levels of Privileges........coviviii
Multiple External BUSEScviiuiiiiiiiiii e
Optimizing SOftWarecooiiiiiiiii e
Execution Units and Register Filecocooiiiiiiiiiiiii
INteger Unit.. ..o e
Floating-Point Unit..........oooiiiii e
Data Unit. .o
INSTrUCTION UNit. . .o e e
Register File/SequUeNCerc.oiiiii i
Register File.....o.ooiiiiiiie e T
SBQUEBNCET ..t
INternal BUSES.....oiviii i
Special-Function Units.........coovvriiiiii e
Execution Model.o
Pipelining and Parallelism ...
Fine-Grain Parallelism ...t
RegISter Sl .. it
Condition Computationsoveiiii e
Operand Types and Addressing Modes...........ccocviiiiiiiiinn.n.
INSTIUCTION St ..uiii e

Section 2
Programming Model
Processor StatesS.........ieiuiuiii i
Reset State ..o
INStrUCtion EXECULION. .. . vt
Supervisor Level of Privilegecooooiiiiiiiiiiiiii
User Level of Privilegeccooiiiiiiiiiiic

MOTOROLA MC88100 USER'S MANUAL

Page

Number

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
2.1.23 Changing Levels of Privilegecocooviiiiiiiiii e 2-2
2.1.3 EXCEPLION State.....iiiii i 2-3 -
2.2 Operand CoNVENTIONS ...ouiritiie e e enss 2-4
2.21 OPEIaNd Y POS 1 iniitiititiie ettt 2-4
222 Data Organization in Registersccoovviiiiiiniiiiiiiineen, 2-4
2.2.3 Data Organization in Memory and Byte Ordering 2-6
2.3 Register DesCriptiono.cuieieiii et 2-9
2.31 Supervisor/User Programming Modelccoiiiiiiiiiiiiinnne. 2-9
232 General-Purpose Registerscoooviiiiiiiiiiiiiiiiiieee 2-9
233 General Control Registersovviviviiiiii e, 2-11
2.3.3.1 Processor Identification Register (PID)cooviiiiiiiiiiinn. 2-11
2.33.2 Processor Status Registers (PSR)........c.ccoovviiiiiiiiiiiinnnnn, 2-12
2333 Supervisor Storage Registerscoovviiiiiiiiiiiiiiiiiiia 2-14
2.3.4 Internal RegiSterS ..o.viuii i e 2-15
24 Floating-Point Implementation.........c.coooiiiiiiiiiiir e 2-15
241 NUMEric FOrmMatsooiiiiii e 2-16
242 Denormalized NUMDErSooviiiiiii e 2-17
2.4.3 Not-a-Numbers (NANS).....uiii e 2-19
2.4.4 ROUNING. ..t e 2-19
2.4.41 Round-to-Nearest........ooovviii i 2-20
2442 ROUNA-10-ZEIO. .. 2-20
2443 Round-Toward-Positive-Infinitycooooviiiii 2-20
2444 Round-Toward-Negative-Infinitycoooois, 2-21
245 IEEE Exceptions Conformance..........ccovviiiiiiiiiiiiiiin 2-21
2.45.1 Invalid Floating-Point Operation Exceptionc.cooeevne. 2-22
2452 Floating-Point Divide-by-Zero Exception.............cccooviiinnnnn. 2-22
2453 Overflow EXCEPLioN ..c.vuieiii i 2-23
2454 Underflow EXCEptioncooiuiiiiiiiiiiiii e 2-23
2455 Inexact EXCeption........ocooiiiiiiiiii 2-24
Section 3
Addressing Modes and Instruction Set

3.1 Instruction Types and Addressing Modes............cccoviiiiiiiinninn. 3-1
3.1.1 Register-to-Register INStructionscccocoiiiiiiiiiiiiiiiiii i, 3-1
3.1.1.1 Triadic Register Addressing Modecooevviiiiiiinnn. 3-1
3.1.1.2 Register with 10-Bit Immediate Addressing...................o...... 3-4
3.1.1.3 Register with 16-Bit Immediate Addressing............coceoveennn. 3-5
3.1.1.4 Control Register Addressing.........ccovvvviiiiiiiiiiiiiiiiinn 3-6
3.1.2 Data Memory Access INStructionscooviiiiiiiiiiiniiiiinennn. 3-6
3.1.2.1 Register Indirect with Zero-Extended Immediate Index........... 3-7

iv MC88100 USER’'S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
3.1.2.2 Register Indirect with Index............coooiiiiiiii 3-8
3.1.2.3 Register Indirect with Scaled Indexcooviiiiiiint. 3-9
3.1.3 Flow-Control INStruCtioNS ...t 3-10
3.1.3.1 Triadic Register Addressing.......o.vvviiiiiiiiiiiiiiiiiieeeanas 3-10
3.1.3.1.1 Jump Instructions (Jmp, jSr).........oooiiiiiii 3-10
3.1.3.1.2 Trap-Generating Bounds-Check Instructions (tbnd) 3-11
3.1.3.2 Register with 9-Bit Vector Table Index.................cocoiinn. 3-12
3.1.3.3 Register with 16-Bit Displacement/Immediate....................... 3-13
3.1.3.3.1 Bit-Test Branch Instructions (bb0, bb1, bend).................. 3-13
3.1.3.3.2 Trap-Generating Bounds-Check Instruction (tbnd)............ 3-15
3.1.34 26-Bit Branch Displacement...........cocviiiiiiinniiiiiieie 3-16
3.2 INSTrUCtioN CatEegOriES .. v v ettt 3-17
3.21 Logical INStruCtioNS...o.uiuii i 3-19
3.2.2 Integer Arithmetic InStructionscoiiiiiiiiiiii i 3-20
3.2.3 Floating-Point INStructions..........ooiviiiiii i e 3-21
3.2.4 Bit-Field INSTrUCtiONS .. ooviiii e 3-22
3.25 Load/Store/Exchange Instructionscovieiiiiiiiiiiniiininnen, 3-23
3.2.6 Flow-Control INSTrucCtionsiviiiiiiiii i 3-24
3.3 Programming TIPS «ouereie i 3-25
3.3.1 Shift INSTrUCTIONe e 3-25
3.3.11 Shift Right Arithmeticcoooiiiiii e 3-25
3.3.1.2 Shift Right Logical.........oviiiiiiiii 3-25
3.3.1.3 Shift Left. 3-26
3.3.1.4 Shift CirCUlar. ..o e 3-26
3.3.2 Delayed Branchingccooiiiiiiiiii e 3-26
3.3.3 Condition Computation.........o.oiiiiiiiii i e 3-26
34 INSEFUCTION SEt...eitiii e 3-27
3.5 OPCOAE SUMMAIY ..\ttt 3-95
3.5.1 Logical INStruCtioNS. . ..oivi i e e 3-95
3.5.2 Integer Arithmetic INStructionsc.oooiviiiiiiiiiiii i 3-96
3.5.3 Special-Function Unit (SFU) Instructions..................ccoceieveiven.. 3-96
3.5.4 Bit-Field INStructionsccoviiiiiiiiiiiii e, 3298
3.5.5 Load/Store/Exchange INstructionscocvveiiiiiiniiinennnannnn. 3-99
3.5.6 Flow-Control INStructionscouiiieiiiieii e e 3-100
3.5.7 Instruction Encoding in Numeric Ordercocooiiiiiiiiiiiinn.. 3-101
Section 4
Signal Description

4.1 Data Processor Bus Signals..........coooiiiiiiiiiiiiii i 4-1
4.1.1 Data Address Bus (DA3T-DA2)ccviiiiiiii i 41
4.1.2 Data Bus (D3T1=D0).....c.ereiiieiitiii e e 4-1

MOTOROLA MC88100 USER'S MANUAL v

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
4.1.3 Data Supervisor/User Select (DS/U).........cccuviuriiiieiiiiiiaeianinnn, 4-3
4.1.4 Data Read/Write (DR/W)......ouiiieiie i, 4-3
415 Data Bus Lock (DLOCK)......c.oiviiiiiii e 4-3
4.1.6 Data Byte Enable (DBE3-DBEOQ)ccoocivviiiiiiinii s, 4-3
4.1.7 Data Reply (DRT=DRO)ccoiiiiiiiiii v 4-4
4.2 Instruction Processor Bus Signals...........coooiiiiiiniiiiiiiiiens 4-4
421 Code Address Bus (CA3T=CA2) ...c.oiriieiiiiie e 4-4
4.2.2 Code BUS (C3T=C0) ..oveiriiiriiie e e e e 4-4
4.2.3 Code Supervisor/User Select (CS/U)oooveiiuiiiiiiiiiieeiiiin 4-4
424 Code Fetch (CFETCH) vviiieiiii e 4-4
4.25 Code Reply (CRT=CRO) .. .uiuieiiiii e 4-5
4.3 Interrupt and Control Signals...........ccceeiiiiiiiiininenee. PP 4-5
4.3.1 INTEITUPE (INT).t e 4-5
4.3.2 Phase Lock Enable (PLLEN)cccoiiiiiiiiiiiic e 4-5
4.3.3 RESEE (RO T) ettt et et e 4-5
434 Error (ERR)...ieiritii it 4-6
4,35 P Bus Checker Enable (PCE)......ccooviviiiiiii i 4-6
4.4 Power and Clock Signalscocoiuiiiiiiii e 4-6
4.4.1 04 o o1 G (03 8 4-6
4.4.2 Power Signal (VG v ot 4-7
443 Ground (GND) ..o 4-7
Section 5
Bus Operation

5.1 BUS CharaCteriStiCS ... ouiuiitiniiee e et eaaaaes 5-1
5.2 Instruction Prefetch Mechanismc.ccoiiiiiiiiiiic e 5-4
5.2.1 Instruction Read Transaction..........coovvvviiiiiiiiiiii e ieeaenes 5-4
5.2.2 Pipelined Instruction Prefetches..........cccoooviiiiiiiiiiiiiiiiieen, 5-6
5.2.3 Instruction Memory Faults.........ccoooiiiiiiiiiiiiiiie e 5-7
5.3 Data Access MeChanisSm........cccuiuiiiiiiiiiiin e 5-9
5.3.1 Data Read Transaction.........ivvvviiiiiiiiiiniie it eenes 5-10
5.3.2 Data Write Transactionc.ieiiiiiiiiiiie e eceie e eaee e 5-12
5.3.3 Pipelined Data ACCESSESouvuiuiuiniiiiiiiiiie et eeeans 5-14
5.3.4 Locked P Bus Operationscccoveviiiiiiiiiiiiiiiiiii i 5-16
5.35 Data Access Faults......ccoveiiiiiiiiiie e 5-17
54 Reset Timing and Phase LOCKINGcccvvieiiiiiiiiiiiii e 5-18
5.4.1 Phase-Locked Loop Operationc.coeoviiiiieiiiniiiiiiiiinieeenn 5-18
5.4.2 Reset Operationcociuieiiiiiiii e 5-19
5.5 P Bus Interface to MC88200...........ccoviiriiiiiiiiiie e eieie e raeaaeens 5-21

Vi MC88100 USER'S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
Section 6
Exceptions

6.1 EXCeption OVEIVIEW.viii i e e 6-1
6.1.1 Exception Categories.........covviiiiiiiiiiiiiiii 6-1
6.1.2 ShadoWing e s 6-2
6.2 Exception Vectors and Vector Base Register (VBR)ccoeieieieinins 6-2
6.3 EXCeption Priority.....c.ooeieiiiii 6-5
6.4 EXCEPLion ProCesSiNg........c.oviiiiiiiiiiiiiii i 6-6
6.4.1 Exception Recognition..........ccooviiiiiiiii 6-6
6.4.2 Exception Handling.........c..cooiiiiiiiii 6-9
6.4.3 Return from EXCeptionscccoiiiiiiiiiiiiii e 6-10
6.4.3.1 Control Registers Restored by rte..........c.c.cooooeiiiiiiiiiinns 6-10
6.4.3.1.1 Shadow Scoreboard Register (SSBR)................... e 6-10
6.4.3.1.2 Shadow Fetch Instruction Pointer (SFIP)............c.........0. 6-11
6.4.3.1.3 Shadow Next Instruction Pointer (SNIP)c..oceeel. 6-11
6.4.3.1.4 Shadow Execute Instruction Pointer (SXIP) 6-12
6.4.3.2 rte Instruction FIOW ..o 6-13
6.4.3.3 Updating PSR with ster or Xercooooviiiiiiiiiiiiii 6-15
6.4.3.4 Completing FPU Instructions in Progresscccccevvininnn. 6-15
6.5 Instruction Unit EXCEPLIONSouiiiiiiiiii i 6-16
6.5.1 Interrupt Exception (Vector Offset $8)cccovvvviiiiviiiniiniinns 6-16
6.5.2 Misaligned Access Exception (Vector Offset $20)..........c.ccceevvvnnee. 6-17
6.5.3 Unimplemented Opcode Exception (Vector Offset $28)................ 6-17
6.5.4 Privilege Violation Exception (Vector Offset $30) e 6-18
6.5.5 Trap Instruction tend, tb1, th0 Exception

(Vector Offset $400—37F8)ccuiuiviriiiiiiiiieeineeee e 6-18
6.5.6 Bounds-Check Violation Exception (Vector Offset $48)................. 6-18
6.6 Integer Overflow Exception (Vector Offset $48).........c.cooveviiiininienenss 6-18
6.7 Memory Access EXCEePtioNS......c.ccvviiiiiiiiiiii e 6-19
6.7.1 Instruction Access Exception (Vector Offset $10)ccoveveninnnns 6-19
6.7.2 Instruction Tracing.........covviiiiiiiiiii 6-20
6.7.3 Data Access Exceptions (Vector Offset $18).......ccocoevvniiiiiininnnnnns 6-21
6.7.3.1 Data Unit General Control Registers..........coovveviiiiniiinninnnnn. 6-22
6.7.3.2 Data Access Exception RecOVeryccoooviviiiiiiiiiiiinnennnnn, 6-25
6.8 FPU EXCeption ProCesSiNg........ouvviuiriririiiiiieiieianinaiee e aianeenenes 6-29
6.8.1 FPU Exception Processing Registers........c.coovveiiiiiiiniiiiniinnnnn. 6-30
6.8.1.1 Floating-Point Exception Cause Register (FPECR).................. 6-30
6.8.1.2 Floating-Point Status Register (FPSR)ccooiiiiint. 6-32
6.8.1.3 Floating-Point Control Register (FPCR)..........c.covvviiiiiniennn, 6-33
6.8.1.4 Floating-Point Source 1 Operand High Register (FPHS1)......... 6-34
6.8.1.5 Floating-Point Source 1 Operand Low Register (FPLST).......... 6-34

MOTOROLA MC88100 USER'S MANUAL vii

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
6.8.1.6 Floating-Point Source 2 Operand High Register (FPHS2)......... 6-35
6.8.1.7 Floating-Point Source 2 Operand Low Register (FPHS2) 6-35
6.8.1.8 Floating-Point Precise Operation Type Register (FPPT)........... 6-35
6.8.1.9 Floating-Point Imprecise Operation Type Register (FPIT)......... 6-36
6.8.1.10 Floating-Point Result High Register (FPRH)c.ccoueen. 6-37
6.8.1.11 Floating-Point Result Low Register (FPRL)cccevnien. 6-38
6.8.2 Floating-Point Exception Processing Effects.................coeiininins 6-38
6.8.3 Integer-Divide Error EXception.......cccocovveiiniiiiiiiiiiniiciiieie e, 6-39
6.8.4 Floating-Point Precise Exceptions (Vector Offset $390)................. 6-40
6.8.4.1 FPU Disabledoouiuiiiiii e 6-40
6.8.4.2 Floating-Point Integer Conversion Overflow......................... 6-40
6.8.4.3 Floating-Point Unimplemented Opcode...............covevvenenenne. 6-41
6.8.4.4 Floating-Point Privilege Violation.............cooooiiiiiiiiinnn, 6-41
6.8.45 Floating-Point Reserved Operandcovviiiiiiiiiinnnnn, 6-41
6.8.4.6 Floating-Point Divide-by-Zeroc.ooviiiiiiiii, 6-41
6.8.5 Floating-Point Imprecise Exceptionscocvvviiiiiiniininenens, 6-42
6.8.5.1 Floating-Point Underflow...........ccoooiiiiiiiiiiien, 6-42
6.8.5.2 Floating-Point Overflow..........ccoooiviiiiiie 6-42
6.8.5.3 Floating-Point Inexactcocvvviiiiiiiiiii 6-44
6.8.6 FPU Control Register SUMmMaryccoooieiiiiiiiiiiiiiieneeen 6-44
6.9 Reset (Vector Offset $0)......c.ouiiiriiiiiiii e, 6-44
6.10 Error Exception (Vector Offset $50)ocvvviiiiiiiiiiiiiiiii e, 6-46
Section 7
Instruction Execution Timing

7.1 General Timing Considerations............cocovevviiiiiiniiiiici e, 7-1

7.2 Concurrent EXECULIONiuieieiiii i e e 7-3

7.3 Instruction Prefetch Timingcooovviiiiiiii e 7-4

7.3.1 Effective Prefetch Time and Prefetch Latency..........coovviviiiininin, 7-4

7.3.2 Effects of Instruction P Bus Wait Cycles...........coovviviiiiiiiinnnnnnn, 7-6

7.33 Instruction DeCOTE......iviuiniiiiie 7-6

7.4 Instruction Execution of Execution Units............coooiiiiiiiiiinn. 7-7

7.41 Integer Unit Instruction Executioncccociviiiiiiiiiiiiiiiiinnnnnne. 77

7.4.2 Data Unit Operationccouieiiiiiiieii e 7-9

7.4.2.1 Total Access LatenCyo.vviiuiiiiiiiiiiiiiec e 7-10
7.4.2.2 Memory Loads, Stores, and Exchangescocvvvviinnnn. 7-11
7.4.3 FPU Instruction EXecutionccooieiiiiiiiiiiiiiien 7-14
7.4.3.1 FPU Pipeline Operations.........co.viiuiririiiiiiniiii e 7-14
7.4.3.2 FPU Instruction Timingccooiiiiiiiiiiiiriiiiinn e 7-20
7.4.4 Flow-Control Instruction Execution and Exceptions..................... 7-20

viii MC88100 USER'S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
7.4.41 Branching Timing ..o 7-20
7.4.4.2 Delayed Branch Timingcccoevuiiiiiiiiiiiiiiieee, 7-22
7.4.4.3 Trap Instructions and Exception Timings.............cccooovviennnn. 7-25
7.5 TimMING FaCtOrs ..o 7-27
7.5.1 Scoreboard Effectsocoviiiiiiiii 7-27
7.5.2 Writeback Priorities and Feed Forwarding..................ooiiinn. 7-29
7.5.3 Wait Cycles and Pipeline Stalls..............cooiiiiiiiiiii e 7-33
7.6 Execution Example........ccooviiiiiii 7-33
7.7 Instruction Set Timing Summary ..o 7-33
Section 8
Applications Information
8.1 Cache Memory Management Units...........coovviiiiiiniiiiiniieeens 8-1
8.1.1 P BUS CONNECHIONS. .. .ttt 8-2
8.1.2 System Status Interface and ID Initialization.............c...oooviieninn. 8-4
8.1.3 M Bus Arbitration........c.couiuiiiiii 8-4
8.1.4 RESET CIrCUITS L iviniititt it e 8-5
8.2 Power and Ground Considerationsccvvviiiiiiiiniiiinniienenens, 8-7
8.3 Master/Checker Operationsccoviiiiiiiiiiiiiiin e 8-8
8.3.1 Comparator CirCUITS . .veee ittt e ae e 8-8
8.3.2 ConfigUratioNs ... 8-9
8.3.3 Fault ToleranCe ...o.vviiit i e e eeaas 8-10
8.3.4 Duplex SYStemciiieii i 8-11
8.3.5 Dynamic Redundant System...........cccooiiiiiiiiiiiiiiiiiiiee, 8-12
8.3.6 Massive Redundant System..........c.cocviiiiiiiiiiie 8-13
8.3.7 Multiprocessing System..... ..ot 8-13
8.4 Synchronization Operationscocoiuiiieiiiiiiiiiiie e, 8-14
8.4.1 Instruction Definition.........cccoiiiiiiiii 8-14
8.4.2 Synhronization Operationsc.ceivviviiiviieiiir i eeeaeans 8-15
Section 9
Electrical Characteristics

9.1 Maximum RatingS......oueuiiiiiiie e 9-1
9.2 Thermal Characteristics — PGA Package..........cocoviiiiiiiiinieiniiinnnens 9-1
9.3 Power Considerationsco.vuiuiuiiiiiiiiiii e 9-1
94 DC Electrical CharaCteristicsouvviiiiriiiiiiiiiiiie e 9-2

MOTOROLA MC88100 USER'S MANUAL ix

TABLE OF CONTENTS (Concluded)

Paragraph
Number Title
9.5 AC Electrical Specifications — Clock Input............... .
9.6 P Bus AC Specificationscocviiiiiiiiiiiiii e
9.7 Miscellaneous Signal AC Specificationsccovveveininnnns
9.8 AC Electrical Specifications Definitionsc..cccocvviviiinnnnn.
Section 10 »
Ordering Information and Mechanical Data
10.1 Ordering Information.........ccooiiiiiiiiiiiii e
10.2 Pin ASSIGNMENTS.....ooiiiiiiiiiiii
10.3 Mechanical Data........cccciviiiiiiii
Glossary
Index
|
X MC88100 USER'S MANUAL

Pége
Number

MOTOROLA

LIST OF ILLUSTRATIONS

Figure
Number Title
1-1 MC88100/MC88200 Block Diagramco.eueeirieiiniiiiiiiinanannns,
1-2 Programming Model..........coiiniiiiiii
2-1 Data Organization in RegiSters..........coooviiiiiiuiiiiiiiiiiiiii e
2-2 Byte-Ordering Configuration in Memoryccoovviiiiiiiiiieninennnn.
2-3 Operand Loads for Different Byte-Ordering Configurations..............
2-4 Floating-Point FOrmats.........cooiiiiiii i
2-5 Floating-Point Representation of 1.0 (Single Precision)...................
2-6 Guard, Round, and Sticky BitSc.ooviiviieiiiiiieiiee e
2-7 Round-to-Nearest Rounding Methodcoviiiiiiiiicncinne,
3-1 Instruction Description FOrmat..........oooviiiiiiii i,
4-1 Functional Diagram of MC88100 Signals...........cccoiviiiiiininanens
5-1 P BUS Signals... ...
5-2 Output Signal Relationship to Clock (Example)..........cocoveieinninnt.
5-3 Input Signal Requirements (Example)...........cocoiiiiiiiiiniiiin.
5-4 Instruction Read Flowchart..........oooviiiiiiiiii
5-5 Instruction Read Timingcooviviiiiiiiiii
5-6 Instruction Prefetch with Wait Cycle...........coooiiii i
5-7 Instruction Accesses During Stall...........ooooiiiiiiii
5-8 Instruction Prefetch Memory Fault — Exception Taken...................
5-9 Instruction Prefetch Memory Fault — No Exception Taken..............
5-10 Byte Enable Signal Control of Memory Read...............ocoviinenen.
5-11 Byte Enable Signal Control of Memory Writec.cooviiiinnni.
5-12 Data Read Flowchart........coooiiiiiiii e
5-13 Data Read Timing ...o.ouoiiiiiiiiiiie i
5-14 Data Write Flowchartooiiiiii e
5-15 Data Write Timing.....ocoeviiiieiiiieie e e
5-16 Pipelined Data Accesses (Read, Wait, Write, Null)
5-17 Pipelined Data Accesses (Write, Wait, Write).................ocooeiiiiennn.
5-18 Pipelined Data Accesses (Write, Wait, Read)cocoviiiiiiniinnnn.
5-19 Example of Locked Timing (Read, Wait, Write, Wait)
5-20 Data Fault Timingcooiuiiiiii e
5-21 ReSet TimMiNg covieiiiiii e
6-1 Exception-Time and Shadow Registers............cccoveviiiiiiiiinnninenn.
6-2 Exception Vector Address Formation............ccoviiiiiiiiiiiiiiiinnnnns
6-3 Exception Recognitioncociiiiiiiiiiiiiiiiiiiiiiiiiee e

MOTOROLA MC88100 USER'S MANUAL

xi

Figure
Number

xii

6-4
6-5
6-6
6-7
6-8
6-9
6-10

7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-11
7-12
7-13
7-14
7-15
7-16
7-17
7-18

8-1
8-2
8-3

8-5
8-6
8-7
8-8

8-10
8-11

LIST OF ILLUSTRATIONS (Continued)

rte Instruction FIOW ...
Data Access EXCEPLIONc.iviiiii i e
Complete Transaction FIOW.........cocoiiiiiiiiiiii
Emulate Transaction DMTX FIOWcocoviiiiiiiiiiin,
Floating-Point Exception Register Bit Relationships
Floating-Point Underflow Algorithm........c..coooiiiiiiiii
Floating-Point Overflow Exception Handlingcccooiennne,

Instruction Prefetch and Execute Timingc.coceviiiiiiiiinnnn,
Concurrent Execution EXampleccooviiviiiiiiiiiiiiiiiiieceen
Instruction Unit Pipeline (Example) ...
Integer-Unit Instruction Execution.............coooiiiiiiiiiiiiinienns
P Bus Wait CyCIBS ..euininitiiieie e
Id.d Followed by Id.d Timing (Example).........oooviviiininiiiininnne.
Store Double (Followed by Store).........ccovveviiiiiiiiiiiienee
FPU Pipeling Stagescc.ouiiiiieiiti i
FPU Multiply Pipelingccoveiiiiiii e
Double-Precision Multiplycccooiiiiiiiii
Branch (EXample)......oiiiiiii e
Trap Instruction and Other Exceptions..........ccovvviiiiiiiiiniinnnn.
Scoreboard Hold — Instruction Pipeline Stallocoeeee.
Scoreboard Hold — No Instruction Pipeline Stall
Writeback Priority (Example)ooooviiiiiiiii
Writeback and Feed Forwarding (Example).........c.cocoeiiiiiinnns
Pipeline Stalls (EXample)ccooviiiiiiiiiii e
Single-Precision Linpack Loop-Clock Cyclescccovviiiiininnnne.

Basic System Configurationoooviiiiiiiiiii
P Bus Connection t0 MCB88200'S..........cuvuvreieiiiiiniiieieieeinennenens,
System Status Interface and ID Initializationooceeveeeen.
M Bus Arbitrationooiii
ReSet CirCUIt ..uvriniii e e
Functional Timing of ERR Signalcooooiiiiiiiiii
Basic Master/Checker Configuration............ccooviiviiiiiiiiiiininnnnne,
DUPIEX SYSTOIM .. i e
Dynamic Hardware Redundancy............coovveiiiiiiiiiiiininiiiieen,
Massive System RedundanCycocoevviiiiiiiiiiiiiiiiinenne
Y UT 4] o] o ToT=T1-3 s T [

Clock Input Timing Diagramc.c.ouveiiiiiiiiiieeeeee e
P Bus Timing Diagramccocoiiiiiiiiiiiiii
Miscellaneous Signal Timing Diagram............ccoeveveiiiieiiininnne.
Drive Levels and Test Points for AC Specificatios.........................

MC88100 USER'S MANUAL

Page
Number

. Foldout
. Foldout
. 96

MOTOROLA

LIST OF TABLES

Table Page
Number Title Number
1-1 OPEraNd Ty DS it 1-13
1-2 INStrUCHION SUMIMIAIY .. vt e eeens 1-14
2-1 General-Purpose Registers.........c.cocoiiiiiniiiiiiiiii e 2-10
2-2 (070 o1 foY I ST T o TE1 (- 2-12
2-3 Exponent Values Summary ... 2-17
2-4 Floating-Point Number Representationcccocoviiiiiiiniiininn. 2-17
2-5 Rounding MoOdes ..o 2-19
2-6 Overflow Rounding Effects...........cooiiiiiiiiiii e 2-23
3-1 Instruction Description NOtations........ocooiiiiiiiiiiiiii e, 3-17
3-2 Logical INSTrUCIONS ... vuiie i e 3-19
3-3 Integer Arithmetic INStructions........ccooviiiiiiiiiii e, 3-20
3-4 Floating-Point INStructionscoiiiiiiiii e 3-21
3-5 Bit-Field INStrucCtionS.....coovieitiiii e 3-22
3-6 Load/Store/Exchange InStructions...........oooviiiiiiiiiiiiiiiii s 3-23
3-7 Flow-Control INStructions........o.vuitiiiii i 3-24
3-8 Logical INStrUCHIONSvviie e eens 3-95
3-9 Integer Arithmetic INStruCtionS.........coiiiiiiii e 3-99
3-10 Floating-Point INStruCtionscovvuiriiiiiiic e 3-97
3-1 Bit-Field InStructions..........ccooiviii i 3-98
3-12 Load/Store/Exchange INStructions..........ccccovviiiiiiiiiiiiiiiiiniiiiieeene, 3-99
3-13 Flow-Control INStruCtioNS.ouiniiii e 3-100
3-14 Instruction Numeric Listingooiiiiiiiiii e 3-101
4-1 Data Byte Enable Signals...........ccoviiiiiiiiiii 4-3
4-2 Data Reply ENcCOdingcoviviiiiiiiii e 4-4
4-3 Code Reply ENCOiNg......oeiuinieiiiiiii e 4-5
4-4 VCC Pin 1dentificationo.oviiiuiniiiiii e 4-7
4-5 GND Pin Identification.........cccooiiii 4-7
6-1 EXCEPLION VBCIOIS .o\ttt e e e ae e 6-4
6-2 EXCeption Priority.. ..o e 6-5
6-3 General Control Register States after an Exception............cccovvivnnne. 6-9
6-4 Data Unit Control Registers..........ccovuiiiiiiiiiii e 6-22
6-5 Data Memory Transaction Register Bit Usescc.ocoviiiiiiiiiinnnnn. 6-23
6-6 Floating-Point Control Registers.........c..oooviiiiiiiiiiiiiien 6-31
6-7 FPU Control Register States after an Exceptioncocoeveiniennn, 6-46
6-8 Registers State After Reset.........ocoiviiiiiiiiiii e 6-46

MOTOROLA MC88100 USER'S MANUAL xiii

LIST OF TABLES (Continued)

Table
Number Title
7-1 Instruction Prefetch Time Summarycocooiviiiiiiiinnnns
7-2 Integer, Bit-Field, Logical, and Control-Register Instruction
Execution Timing in Clock Periodscocevvviiiiiiinennn,
7-3 Load, Store, and Exchange Memory Instruction Execution

Time in Clock Periodsccooeviiiiiiiiiiiii e,
7-4 FPU Instruction Timing Cyclescccooviiiriiiiiiniiin

7-5 Flow-Control Instruction Timing in Clock Periods..................
7-6 Integer/Instruction Unit Instructions and Scoreboard Summary
7-7 FPU Instructions and Scoreboard Summary.............cccoeveens
8-1 Power and Ground Pin Assignments.............c.ccceueuenn.. s

8-2 ErrOr StatlUS cvviirei ittt

Xiv MC88100 USER'S MANUAL

Page
Number

MOTOROLA

SECTION 1
INTRODUCTION

The MC88100 is the first processor in the M88000 Family of reduced instruction set com-
puter (RISC) microprocessors. Implemented with Motorola’s high-density CMOS (HCMOS)
technology, the MC88100 incorporates 32-bit registers, data paths, and addresses. The
M88000 Family includes the MC88200 cache/memory management unit (CMMU), which
adds high-speed memory caching, two-level demand-paged memory management, and
support for shared-memory multiprocessing.

The MC88100 uses only simple instructions with extremely rapid execution times to yield
maximum efficiency and throughput for M88000 systems. In addition, a full line of highly
optimizing compilers, operating systems, boards, application programs, and development
tools are available for the M88000. Instruction mnemonics used in this section can be
identified by referring to SECTION 3 ADDRESSING MODES AND INSTRUCTION SET.

1.1 FEATURES

The MC88100 can execute a majority of the instructions in one machine cycle, or effective
concurrent execution can be accomplished through internal pipelines in one machine cycle.
Figure 1-1 shows a block diagram of the MC88100 and MC88200. Major features of the
MC88100 are as follows:

® Single-Clock Integer, Logical Bit Field, Branch and Store Operations
® Fifty-One Instructions and Seven Operand Types

® Fine-Grain Parallelism:
— Four Fully Independent Execution Units with Five Concurrent Pipelines
— Execution Synchronized in Hardware by a Scoreboard Register

e Nondestructive Register and Condition Code Model Allowing Fast Operand Access
and Operand Reuse

e Thirty-Two General-Purpose Registers

® Single- and Double-Precision |IEEE 754 Floating-Point Compatibility (Up to One Op-
eration per Clock Cycle)

e Full 32-Bit Combinatorial Multiplier

® Separate Data and Instruction Memory Ports (Harvard Bus Structure) Allowing Si-
multaneous Accesses:
— 30-Bit Data Address Bus (Byte Strobes Select Individual Bytes)
— 32-Bit Data Bus (32-Bit Word)

MOTOROLA MC88100 USER'S MANUAL 1-1

FLOATING-POINT UNIT MC88100
—-
P ADD % i muTPy
INTEGER i PIPELNE i | PIPELNE |
UNIT i HE !
: : H]
i I 1
: P :
{ 5STAGES i | 6STAGES 1
A A A 4
SOURCE 1 BUS
]
SOURCE 2 BUS
y
y | DESTINATION BUS
)))
Y v i Y
DATA UNIT REGISTER INSTRUCTION
FILE UNIT
TTToATA | [TINSTRUCTION |
ACCESS | FETCH PIPELINE
PIPELINE SEQUENCER E
|
i
L
A 40\
D A
D T
R A
P-BUS CONTROL P-BUS CONTROL
MC88200
CMMUs
MEMORY MEMORY
c%cT:E MANAGEMENT {OPTIONAL) CDAACT:E MANAGEMENT
UNIT UNIT
M-BUS CONTROL] M-BUS CONTROL
MEMORY BUS

Figure 1-1. MC88100/MC83200 Block Diagram

MC88100 USER'S MANUAL

MOTOROLA

— 30-Bit Instruction Address Bus (32-Bit Boundary Addressing)
— 32-Bit Instruction Bus (Fixed Instruction Length of 32 Bits)

® Pipelined Load and Store Operations (Up to 80 Mbytes/sec at 20 MHz)
® High-Speed Interrupt Processing with Minimal Interrupt Latency

® Functional Redundancy Fault Detection

® Selectable Big-Endian or Little-Endian Byte Ordering

® [nterfaces Directly to Memory or to MC88200 CMMU

® Complex Instruction Sequences Easily Built from Simple Instructions by High-Level
Language Compiler

® Extensible Architecture Facility through Special Function Units (SFUs)

1.2 OVERVIEW

The following paragraphs provide a brief overview of the architecture of the MC88100.
Topics such as register-to-register operations, addressing modes, instruction formats, de-
layed branching, privileged levels, memory ports, and optimizing software are discussed.

1.2.1 Register-to-Register Architecture

The MC88100 provides register-to-register operation for all data manipulation instructions.
Source operands are either located in source registers or provided as an immediate value
embedded in the instruction. A separate destination register stores the results of an in-
struction, which allows source operand registers to be reused in subsequent instructions.
Register contents are read from or written to memory only through Id, st, and xmem
instructions. An xmem instruction provides an atomic load and store operation, which is
useful for semaphore testing and multiprocessor synchronization.

1.2.2 Reduced Instruction Set

The MC88100 instruction set contains 51 instructions. All integer arithmetic, logical, bit-
field, and certain flow-control instructions can execute in a single clock cycle. Memory-
access and floating-point instructions are performed by dedicated execution units (see
Figure 1-1), releasing other processor resources during multicycle instructions. The floating-
point, data, and instruction units implement execution pipelines so one multicycle instruc-
tion can be started in each clock cycle. Although these individual instructions may take
more than one cycle to complete, effective one-cycle execution can be accomplished. All
instructions are implemented directly in hardware, precluding the need for microcoded
operations. Complex operations are handled in software by using advances in operating
system and optimizing compiler technology.

MOTOROLA MC88100 USER'S MANUAL 1-3

1.2.3 Simplified Addressing Modes

All data manipulation instructions are implemented as register-to-register or register-plus-
immediate-value instructions, which eliminates memory-access delays in data manipula-
tion instructions. In addition, there are a sufficient number of memory addressing modes:
three addressing modes for data memory, four addressing modes for instruction memory,
and three register addressing modes. Address calculations are simple and are implemented
efficiently and execute quickly.

1.2.4 Instruction Formats

All instructions are implemented as single-word (32-bit) opcodes. The fixed instruction
length eliminates the need for alignment circuitry, thereby decreasing instruction decode
time. Formats are consistent across instructions, which allows for simplified, efficient de-
coding that occurs in parallel with operand accesses. Branch address calculations and
register usage checking also operate in parallel with decoding. All instructions can be
fetched in a single memory access.

1.2.5 Delayed Branching

The MC88100 incorporates delayed branching to reduce pipeline penalties associated with
changes in program flow. In processors incorporating pipelined execution, changes in the
program flow can reduce execution speed due to the time required to flush and refill the
pipeline. However, the MC88100 takes advantage of delayed branching, which allows the
instruction fetched after the branch instruction to be optionally executed, whether or not
the branch is taken. Consequently, the pipeline continues to operate without unused cycles.
The next instruction in the pipeline executes while the branch target instruction is pre-
fetched from memory.

The execution of the instruction following the branch is under explicit software control
through the value of a bit in the instruction encoding. When delayed branching is selected,
the programmer or compiler picks a useful instruction to be executed before the change
of flow and places the instruction after the branch in the instruction stream.

1.2.6 Levels of Privileges

The MCB88100 defines two levels of privileges that allow memory accesses and control
registers to be protected. The supervisor mode is the higher privileged level of execution;
whereas, the user mode is the lower privileged level. Application software is typically
processed in the user mode; resource access is limited to the user memory space, general-
purpose registers, and certain internal registers in the execution units. The supervisor mode
is typically used by operating systems and other system-level resources; memory and
execution unit register access is unrestricted.

1-4 MC88100 USER'S MANUAL MOTOROLA

1.2.7 Multiple External Buses

The MC88100 uses a two-port nonmultiplexed memory access interface (Harvard archi-
tecture). Operand reads and writes from/to memory are performed through dedicated data
address and data paths; instruction fetches also occur over dedicated instruction address
and data paths. These ports operate concurrently, eliminating bus contention between data
accesses and instruction fetches.

The memory buses are implemented through and controlled by the data unit and instruction
unit. Each unit utilizes pipelined address calculation and data transfer/instruction fetch
operations. The data unit executes all data memory access instructions. The instruction
unit performs all instruction prefetches and executes all flow-control instructions. The
MC88100 is capable of addressing 4 gigabytes of external data and of addressing over
1 gigaword of 32-bit instructions of program memory, in either supervisor or user memory
spaces.

The MC88100 memory ports can interface directly to memory; however, most MC88100
designs incorporate at least two MC88200 CMMUs (one for data memory and one for
instruction memory). The data unit and instruction unit use the separate processor buses
(P buses) to interface these units to the respective. MC88200s/memories. Two to eight
CMMUs (see Figure 1-1) can be easily incorporated into an MC88100 system, by using up
to four for the data memory space and up to four for the instruction memory space.

1.2.8 Optimizing Software

Optimizing compilers, linkers, and operating systems, which have been designed in con-
junction with the design of the MC88100 architecture, are essential contributors to MC88100
performance. This software performs optimizations based on the concurrent execution
pipelines; instructions are scheduled to avoid pipeline stalls due to data dependencies.
Delayed branches are used a high percentage of the time. This software also makes efficient
use of the MC88100 instruction set and register model.

A register usage convention has been established that supports the cross linking of pro-
cedures from various compilers and languages. With this convention, compilers and linkers
allocate the general-purpose registers in a manner that minimizes data movement to and
from memory, even during procedure calls. When a register save is necessary, it can be
preformed in a single clock cycle due to the pipelined data unit.

1.3 EXECUTION UNITS AND REGISTER FILE

The MC88100 contains four execution units (see Figure 1-1) which operate independently
and concurrently. Two of these units, the integer unit and the floating-point unit (FPU),
execute all data manipulation instructions. Data memory accesses are performed by the
data unit, and instruction prefetches are performed by the instruction unit. The integer unit

MOTOROLA MC88100 USER’S MANUAL 1-5

performs 32-bit arithmetic and logical operations and all bit-field operations. The FPU
handles floating-point arithmetic (plus integer multiply and divide) in hardware, relieving
the integer unit from more time-consuming floating-point calculations. The FPU imple-
ments two pipelines: one for multiply operations and one for all other floating-point in-
structions. In addition to these execution units, the MC88100 contains a register file/
sequencer, which includes the general-purpose registers and performs many control func-
tions. The MC88100 also has three internal buses; a source 1 bus (S1 bus), a source 2 bus
(S2 bus), and one destination bus (D bus) that are used for passing operands between the
register file and the different execution units.

1.3.1 Integer Unit

All integer, bit-field, and control register instructions are executed by the integer unit in
one machine cycle. Integer multiply and divide are multicycle instructions executed by the
FPU.

The integer unit contains 11 general control registers including four supervisor-only storage
registers, a processor identification register (PID), and a processor status register (PSR).
The function of the four storage registers is programmer defined. In addition, shadow and
exception-time registers, copies of the instruction pointers, the scoreboard register, and
PSR are maintained for exception recovery. The integer-unit control registers are accessed
using the Idcr, ster, and xcr instructions. Complete details on the registers are given in
SECTION 2 PROGRAMMING MODEL.

1.3.2. Floating-Point Unit

The FPU executes the floating-point arithmetic instructions, integer/floating-point conver-
sions, and integer multiply and divide instructions. Single-precision, double-precision, and
mixed-mode arithmetic operations can be performed for floating-point instructions.

The FPU is implemented as two pipelines. Add, subtract, compare, divide, and convert
instructions are executed by one pipeline; multiply instructions are executed by the other
pipeline. The divide instruction is the only floating-point operation that is not completely
pipelined. A divide instruction iterates through one execution stage once for each bit of
accuracy required in the result. The free-running multiply pipeline operates independently.

The FPU contains 11 control registers. Nine of these registers are shadow registers con-
taining status and intermediate results used for exception recovery; the other two registers
are the floating-point status register and the floating-point control register. These two
registers contain information on exception conditions (divide-by-zero, overflow, etc.) and
control the floating-point rounding modes. All the FPU registers are privileged except the
status and control registers. The FPU registers, which are accessed using the fldcr, fstcr,
and fxcr instructions, are described in detail in SECTION 6 EXCEPTIONS.

1-6 MC88100 USER'S MANUAL MOTOROLA

The FPU requires more than one clock cycle per instruction. Floating-point instructions
prevent subsequent instructions from using the results prematurely by setting a bit in the
scoreboard register during their execution. For example, single-precision add, subtract,
compare, and convert instructions require five cycles and the single-precision multiply
instruction requires six cycles. However, due to the pipelined nature of the FPU, a new
instruction can begin on each clock cycle.

1.3.3 Data Unit

The data unit executes the instructions that access data memory and controls the data
memory interface portion of the data P bus. The data unit contains a dedicated calculation
unit for address computation. Addresses are formed by adding the source 1 register op-
erand specified by the instruction with either a source 2 register operand or a 16-bit im-
mediate value embedded in the instruction placed on the S2 bus. This address is driven
on the 30-bit data unit address bus. Refer to SECTION 2 PROGRAMMING MODEL for
detailed information on the addressing capabilities of the MC88100. The instruction also
selects the general-purpose register that provides the ultimate data source or destination.

Memory accesses are pipelined in the data unit. The memory access pipeline contains
three stages. The pipelined nature of the P bus allows two data memory accesses to be
active on the bus at the same time for two load/store operations. The following list identifies
the three stages:

Stage 2 — Computes address.

Stage 1 — Drives the external data address bus; if the access is a store operation, fetches
data from registers and drives the external data bus.

Stage 0 — Monitors the reply from the memory system; if the access is a load operation,
reads the data bus and writes the load result to the general-purpose register.

The data unit maintains a total of nine data-unit general control registers that are used to
reconstruct pending transactions after an exception condition has been corrected. The
data-unit control registers are accessed as the integer-unit control registers with the Idcr,
stcr, and xcr instructions.

The data-unit operations work concurrently with other MC88100 functions (instruction
execution, etc.). The scoreboard register contains 32 bits; each bit corresponds to one of
the general-purpose registers and indicates when one of the registers is awaiting the results
of a memory access or is awaiting instruction completion. The scoreboard register prevents
data that must be altered from being used by a subsequent instruction until it has been
updated, therefore maintaining a sequential instruction execution model. Refer to 1.3.5.1
REGISTER FILE for more information on the scoreboard register.

1.3.4 Instruction Unit

The instruction unit prefetches instructions from memory, performs the first steps.of in-
struction decode, and provides instructions to the appropriate execution unit via encoded

MOTOROLA MC88100 USER’S MANUAL 1-7

internal control signals. The instructions.prefetched from memory are dictated by program
flow, which includes sequential accesses, execution of absolute jump, absolute and con-
ditional-branch instructions with displacement, and exception vectoring. Other tasks, such
as partial instruction decoding and tasks related to subroutine returns and exception proc-
essing, are also performed. Registers are maintained that indicate the contents of the
instruction pipeline at all times, providing history information for exception-condition re-
covery. In addition, a vector base register (VBR) is maintained that points to a memory
page containing all of the exception vectors. The VBR is a general control register and is
accessed with Idcr, ster, and xcr instructions. Instruction prefetches from memory are
performed on the instruction P bus.

The instruction unit maintains three instruction pointers that indicate the contents of the
execution pipeline. The execute instruction pointer (XIP) points to the instruction currently
executing in the integer unit, data unit, or FPU. The next instruction pointer (NIP) points
to the instruction currently being accessed from memory and decoded for execution. The
fetch instruction pointer (FIP) points to the memory location of the next instruction to be
accessed.

The instruction unit identifies and saves the return pointer for jsr and bsr instructions to
the register file. The return pointer is written to a specific general-purpose register. The
return pointer is either the contents of the NIP or FIP at the time the jsr or bsr instruction
begins execution, depending on whether or not delayed branching is used.

When an exception occurs, all memory accesses in progress are allowed to finish before
the exception is processed. During exception processing, the processor context is frozen
and the FPU is disabled. The instruction pipeline is then cleared, and the exception target
address is computed. This address is written to the FIP so that the first instruction of the
exception routine can be prefetched and normal execution can resume.

1.3.5 Register File/Sequencer

The MC88100 contains a register file/sequencer (see Figure 1-1) that contains the general-
purpose registers and performs overall internal control functions. The following paragraphs
briefly describe the register file/sequencer.

1.3.5.1 REGISTER FILE. The register file contains the 32 general-purpose registers, main-
tains concurrency control information, optimizes the operand/result internal bus utilization,
and provides a means of separating instruction initiation from instruction completion.

The general-purpose registers provide operands for all integer and floating-point instruc-
tions, serve as the data source or destination for st and Id instructions, and provide ad-
dresses for branch and memory-access instructions. The register file has two output ports
and one input/output port. The two output ports allow source operands (selected by the
instruction unit) to be simultaneously placed on the S1 and S2 buses. The input/output

1-8 MC88100 USER’'S MANUAL MOTOROLA

port is used to store results into destination registers. The st and xmem instructions use
the D bus to transfer data from the register file unit to the data unit. General-purpose
registers can be accessed via the D bus at the same time that source operands are being
read.

Instruction execution begins sequentially but can finish in any order. All operands are read
or written from/to registers or memory. The register file contains the scoreboard register,
which maintains a bit for each of the general-purpose registers ‘in use’ except r0 (r0 contains
the constant zero and cannot be modified). All instructions that take greater than one clock
cycle to execute, cause the scoreboard bit(s) that correspond to the destination register(s)
to be set. If an instruction requires a register that is to be read or written to, the scoreboard
register is checked for the availability of that register. If the source and/or destination
registers are flagged as 'in use’ (defined as the destination register for a previous instruction
still in execution), the execution of the requesting instruction is delayed until both the
source and destination registers are flagged as available. The scoreboard register is checked
on each clock cycle until the source and destination registers are available.

When an execution unit updates a general-purpose register, the updated data is placed on
the D bus. When an execution unit reads a register, the register is read from either the S1
or S2 bus. To increase instruction throughput, the MC88100 incorporates a register feed-
forward capability. Feed-forward gates the contents of the D bus onto the appropriate
source bus so that, if an execution unit is waiting on the data, it receives the data at the
same time that the register is updated. When both source registers required by an instruc-
tion are in use and may be modified by the previous instruction, both operands can be
received by feed-forward. When the source operands are received, the destination register
scoreboard bit(s) are set, and the instruction begins execution.

1.3.5.2 SEQUENCER. The sequencer performs the register writeback arbitration, performs
exception arbitration, and generates control signals for the instruction unit and the internal
buses.

When an execution unit has a result to write to a register, the execution unit requests a
writeback slot granted by the writeback arbiter. If an exception is pending, the writeback
arbiter prohibits register writeback grants except for memory-access resulits. If no exception
is pending, the writeback arbiter generates a control signal that gates the data onto the D
bus and into the selected register. If two or more execution units request a writeback slot,
the writeback arbiter grants the writeback slot according to a defined priority scheme if no
exceptions are pending. One-cycle instructions have the highest priority, followed by the
FPU, then the data unit. If required, the sequencer also sends a control signal to the feed-
forward logic to gate data from the D bus onto the selected source bus.

The exception arbiter controls exception recognition and resolves recognition of multiple
exceptions by determining which exception the processor will recognize. The priority order
of exceptions is precise exception, interrupt, and then imprecise exception. Exceptions are
described fully in SECTION 6 EXCEPTIONS.

MOTOROLA MC88100 USER'S MANUAL 1-9

The flow-control circuitry in the sequencer monitors the scoreboard register, various signals
from the instruction decode circuit, the branch unit (in the instruction unit), and the ex-
ception arbiter. This circuit also appropriately generates signals for the instruction prefetch
mechanism in the instruction unit. These signals initiate operations such as clearing the
execution pipeline and loading the branch target address.

1.3.6 Internal Buses

The MC88100 has one bidirectional and two unidirectional 32-bit register buses that perform
all internal data transfers. The S1 and S2 buses carry source operands to the integer unit,
data unit, instruction unit, and FPU. All source data comes from the general-purpose reg-
isters or from 16-bit immediate values embedded in the instruction. The bidirectional D
bus transfers data from the execution units to the general-purpose registers. The D bus
also transfers data to be stored from the register file to the data unit.

Arbitration for the internal buses is performed by the sequéncer. The instruction unit selects
the source registers for an instruction, which are gated onto the source buses under control
of the sequencer. The destination register is selected by the writeback arbiter (part of the
sequencer); the write request for the register file is generated by the appropriate execution
unit.

1.3.7 Special-Function Units (SFUs)

A SFU executes instructions concurrently with other SFUs and with the integer, data, and
instruction units. The SFUs are designed so that they can stand alone and can be added
to or removed from a given implementation of the M88000 Family with no impact on the
architecture. Multiple SFUs are connected to common buses and share data through general-
purpose registers. The M88000 architecture allows up to seven SFUs per implementation.
The MC88100 floating-point unit is implemented as SFU #1.

1.4 EXECUTION MODEL

The MC88100 obtains a high performance level through fine-grain parallelism and other
advances in microprocessor architecture. The following paragraphs briefly describe the
parallelism and advanced features incorporated in the MC88100.

1.4.1 Pipelining and Parallelism

The four execution units allow the MC88100 to perform up to five operations in parallel:’
Access Program Memory
Execute an Arithmetic, Logical, or Bit-Field Instruction
Access Data Memory
Execute Floating-Point or Integer Divide Instructions
Execute Floating-Point or Integer Multiply Instructions

1-10 MC88100 USER’'S MANUAL MOTOROLA

In addition, the floating-point, data, and instruction units themselves are pipelined and can
complete an operation in every clock cycle:

® Up to Five Floating-Point Add, Subtract, Compare, or Convert Instructions Can Execute
Simultaneously

® Up to Six Floating-Point or Four Integer Multiply Instructions Execute Simultaneously

® Up to Three Data Memory Accesses Can Be in Progress Simultaneously
— Two Memory Accesses on the External Bus
— One Address Calculation

® Up to Two Instruction Fetches Can Be in Progress Simultaneously

The instruction unit pipeline supplies the appropriate execution unit with instructions that
are to be executed by a concurrent pipeline. Data memory access instructions are dis-
patched to the data unit; whereas, floating-point, integer multiply, and integer divide in-
structions are dispatched to the FPU. The FPU contains two pipelines, one handling floating-
point and integer multiplication, the other handling floating-point add, subtract, compare
and conversions between integer and floating-point, as well as integer and floating-point
divide instructions. All other instructions are executed by the integer unit (or instruction
unit for branches) in one machine cycle.

1.4.2 Fine-Grain Parallelism

All MC88100 execution units contain an additional level of fine-grain parallelism. Instruction
decode and source operand fetches from the registers are performed simultaneously.
Branch instruction decode and branch target address calculation are performed in parallel
with the next sequential instruction fetch. The three internal register buses allow three
simultaneous register accesses, eliminating internal bus contention by the concurrent ex-
ecution pipelines. The MC88100 also supports concurrent register writes and reads. One
execution unit can write a result to the destination register while another unit fetches the
source operands from other registers (or possibly the same register).

1.4.3 Register Set

The MC88100 has two programming models corresponding to the supervisor and. user
modes of operation. As shown in Figure 1-2, the MC88100 contains three types of registers
that provide data and execution information to the execution units. Most control registers
can be accessed only in supervisor mode. The following list briefly describes the three
types of registers:

1. General-purpose registers (r31-r0) located in the register file/sequencer contain pro-
gram data (source operands and instruction results). All of these registers, with the
exception of r0 (constant zero), have read/write access. Register r0 contains the con-
stant zero and a write operation to r0 has no effect.

MOTOROLA MC88100 USER’S MANUAL -1

4"

TVNNVYIAI S.43SN 001880

VI104O1OW

CENEALPURPOSE REGISTERS e PID PROCESSOR IDENTIFICATION REGISTER

o1 PSR PROCESSOR STATUS REGISTER

0 ZERO cr2 EPSR EXCEPTION TIME PROCESSOR STATUS REGISTER

2] SUBROUTINE RETURN POINTER fer0 FPECR FLOATING-POINT EXCEPTION CAUSE REGISTER o3 SSeR SHADOW SCOREBOARD REGISTER

2 N forl FPHS1 F.P. SOURCE 1 OPERAND HIGH REGISTER s SXIP SHADOW EXECUTE INSTRUGTION POINTER

PARAMETER REBISTERS for2 FPLS1 F.P. SOURCE 1 OPERAND LOW REGISTER a5 SNIP SHADOW NEXT INSTRUCTION POINTER

9 fer3 FPHS2 F.P. SOURCE 2 OPERAND HIGH REGISTER o6 SFIP SHADOW FETCHED INSTRUGTION POINTER

1o CALLED PROCEDURE fcrd FPLS2 £.P. SOURCE 2 OPERAND LOW REGISTER a7 VBR VECTOR BASE REGISTER

3 TEMPORARY REGISTERS fer5 FPPT F.P. PRECISE OPERATION TYPE REGISTER o8 DMTO TRANSACTION REGISTER 0

14 fer6 FPRH F.P. RESULT HIGH REGISTER @9 DMDO DATA REGISTER 0

CALLING PROCEDURE fer7 FPRL F.P. RESULT LOW REGISTER 10 DMAO ‘ADDRESS REGISTER 0
RESERVED REGISTERS forg FPIT F.P. IMPRECISE OPERATION TYPE REGISTER ¢l DMT1 TRANSACTION REGISTER 1

25 cri2 DMD1 DATA REGISTER 1

126 LINKER cri3 DMA1 ADDRESS REGISTER 1

27 LINKER crl4 DMT2 TRANSACTION REGISTER 2

128 LINKER crls DMD2 DATA REGISTER 2

r29 LINKER cr16 DMA2 ADDRESS REGISTER 2

30 FRAME POINTER fer62 FPSR F.P. USER STATUS REGISTER cr17 SRoO SUPERVISOR STORAGE REGISTER 0

31 STACK POINTER fcr63 FPCR F.P. USER CONTROL REGISTER cri8 SR1 SUPERVISOR STORAGE REGISTER 1
erl3 SR2 SUPERVISOR STORAGE REGISTER 2

USER PROGRAMMING MODEL
cr20 SR3 SUPERVISOR STORAGE REGISTER 3
SUPERVISOR PROGRAMMING MODEL
INTERNAL REGISTERS

XIP EXECUTE INSTRUCTION POINTER

NIP NEXT INSTRUCTION POINTER

FIP FETCH INSTRUCTION POINTER

SB SCOREBOARD REGISTER |

Figure 1-2. Programming Model

2. Control registers in the various execution units contain status, execution control, and
exception processing information. Some of these registers have read/write access;
others are read only.

3. Internal registers located in the register file/sequencer and instruction unit control
instruction execution and data availability. These registers are not explicitly accessible
to the programmer.

1.4.4 Condition Computations

Conditional test results are generated in a manner that complements concurrent operations
and parallel execution. Conditions are computed at the explicit request of the programmer
using compare instructions. Conditional test results are loaded into any specified general-
purpose register instead of into a dedicated condition code register, eliminating contention
between concurrent execution units accessing a dedicated condition code register. Since
conditions are computed by explicit instructions, optimizing compilers can reorder the
execution sequence of instructions to obtain maximum efficiency. The MC88100 also pro-
vides dedicated branch and trap instructions that combine an explicit compare with con-
ditional branching into a single, fast operation.

1.4.5 Operand Types and Addressing Modes

The MC88100 supports seven operand types grouped into three categories. The categories
are integer, floating-point, and bit fields, as shown in Table 1-1. Additional data types may
be included in future members of the M88000 Family through inclusion of additional SFUs.

The MC88100 provides three methods of addressing the data memory space and four
methods of addressing the instruction memory space. The following list identifies the three
data addressing modes:

Register Indirect with Unsigned Immediate Index
Register Indirect with Register Index
Register Indirect with Scaled Register Index

Table 1-1. Operand Types

Operand Type Expressed As

Integer Signed and Unsigned Byte (8 Bits)

Signed and Unsigned Half Word (16 Bits)
Signed and Unsigned Word (32 Bits)
Signed and Unsigned Double Word (64 Bits)

Floating Point IEEE 754 Single Precision (32 Bits)
IEEE 754 Double Precision (64 Bits)
Bit Fields Signed and Unsigned Bit Fields from 1 to 32 Bits

MOTOROLA MC88100 USER'S MANUAL 1-13

The following list identifies the four instruction addressing modes:
1 Register with 9-Bit Vector Number
Register with 16-Bit Signed Displacement
Instruction Pointer Relative (26-Bit Signed Displacement)
Register Direct

Refer to SECTION 2 PROGRAMMING MODEL for more detailed information on the oper-
ation of the addressing modes.

1.4.6 Instruction Set

The MC88100 instruction set is divided into six categories: integer arithmetic, floating-

point arithmetic, logical, bit field, load/store/exchange, and flow control. The MC88100
instruction set is summarized in Table 1-2.

Table 1-2. Instruction Summary

Integer Arithmetic Instructions Load/Store/Exchange Instructions
Mnemonic Description Mnemonic Description
add Add Id Load Register from Memory
addu Add Unsigned Ida Load Address
cmp Compare Idcr Load from Control Register
div Divide st Store Register to Memory
divu Divide Unsigned ster Store to Control Register
mul Multiply xcr Exchange Control Register
sub Subtract xmem Exchange Register with Memory
subu Subtract Unsigned
Flow-Control Instructions
i i Mnemonic Description
Floating-Point Arithmetic Instructions bbo Branch on Bit Clear
Mnemonic Description bb1 Branch on Bit Set
fadd | Floating-Point Add bend) Conditional Branch
. . br Unconditional Branch
fcmp Floating-Point Compare R
. .) g bsr Branch to Subroutine
fdiv Floating-Point Divide m Unconditional Jum
fldcr Load from Floating-Point Control Register] p mp
. . jsr Jump to Subroutine
fit Convert Integer to Floating Point :
. N . rte Return from Exception
fmul Floating-Point Multiply X
. X . tb0 Trap on Bit Clear
fster Store to Floating-Point Control Register .
i R tb1 Trap on Bit Set
fsub Floating-Point Subtract
! ! . tbnd Trap on Bounds Check
fxcr Exchange Floating-Point Control Register tend Conditional Tra
int Round Floating Point to Integer P
nint Round Floating Point to Nearest Integer N .
trne Truncate Floating Point to Integer Bit-Field Instructions
Mnemonic Description
clr Clear Bit Field
Logical Instructions ext Extract Signed Bit Field
- - extu Extract Unsigned Bit Field
Mnemonic Description fo Find First Bit Clear
and AND ff1 Find First Bit Set
mask Logical Mask Immediate mak Make Bit Field
or OR rot Rotate Register
xor Exclusive OR set Set Bit Field

1-14 MC88100 USER’'S MANUAL MOTOROLA

SECTION 2
PROGRAMMING MODEL

This section briefly describes the MC88100 processor states, operand conventions, regis-
ters, and floating-point implementation. These aspects affect all operations such as in-
struction execution and memory accesses. Exceptions are briefly described in this section,
but the details of individual exceptions (including exception recovery) are given in SECTION
6 EXCEPTIONS. Instruction mnemonics used in this section can be identified by referring
to SECTION 3 ADDRESSING MODES AND INSTRUCTION SET.

2.1 PROCESSOR STATES

The MC88100 is always in one of three states: normal instruction execution, exception, or
reset. The reset state is entered when the reset (RST) signal is asserted. The exception
state is entered under two types of conditions. One condition is caused when the program
encounters certain unusual or erroneous conditions. The other type of exception occurs
when the program requires a resource administered by system software executing at a
higher level of privilege or an external interrupt is detected. The following paragraphs
describe the three states of the MC88100.

2.1.1 Reset State

When RST is asserted, all current processor operations abort. When RST is negated, the
processor restarts instruction execution in a defined sequence. The control registers are
initialized as appropriate, external signals are placed in the high-impedance state, and
when RST is negated the processor begins instruction execution at a defined address in
physical memory (defined by the reset vector). Refer to SECTION 5 BUS OPERATIONS and
SECTION 6 EXCEPTIONS for more information on the effects of reset.

2.1.2 Instruction Execution

During normal instruction execution, the MC88100 operates at either the supervisor or user
level of privilege. These levels define which memory space is accessed during external
bus transactions and which registers are available to the programmer. The level of privilege
is determined by the MODE bit in the processor status register (PSR). The following par-
agraphs describe the levels of privilege.

MOTOROLA MC88100 USER'S MANUAL 2-1

2.1.2.1 SUPERVISOR LEVEL OF PRIVILEGE. The supervisor mode is the highest level of
privilege. The processor operates in the supervisor mode when the MODE bit is set. When
operating in the supervisor mode, memory accesses reference the supervisor address space
in data (data supervisor/user select (DS/U) asserted) or instruction (code supervisor/user
select (CS/U) asserted) memory. The programmer can specify the [.usr] option for memory-
access instructions to force access to the user data address space while operating at the
supervisor mode. The supervisor mode allows execution of all instructions and allows
access to all control registers and general-purpose registers.

Operating system software typically executes in the supervisor mode. Among the operating
system services provided are resource allocation (memory and peripherals), exception
handling, and software execution control (task initiation, scheduling, etc.). Execution control
normally includes control of the user programs and protecting the system from accidental
or malicious corruption by a user program.

The MODE bit is set automatically when an exception is recognized so that the exception
handler executes in supervisor mode. All bus transactions performed during exception
processing reference the supervisor memory spaces. Reset also causes the MODE bit to
be set, placing the processor into supervisor mode.

2.1.2.2 USER LEVEL OF PRIVILEGE. The processor operates at the user level of privilege
when the MODE bit in the PSR is clear. For memory accesses, the DS/U and CS/U signals
are negated, causing the user data and user instruction memory to be referenced. Control
register access is restricted at the user level of privilege. The only control registers acces-
sible are the floating-point control and status registers. Using other control registers in the
user privilege mode causes an exception.

2.1.2.3 CHANGING LEVELS OF PRIVILEGE. The user mode changes to the supervisor mode
under four conditions:

1. An exception occurs. An exception places the processor into the exception processing
state, which includes the switch to the supervisor mode.

2. A reset is signaled, which is a special form of exception processing.
3. A user program executes a trap instruction.

4. An interrupt or memory access fault occurs.

When the processor switches to supervisor mode, the MODE bit is set in the PSR, and all
memory accesses default to supervisor memory. Therefore, the .usr option must be spec-
ified for Id, st, and xmem instructions to access user memory. All control registers are
accessible to the supervisor software.

2-2 MC88100 USER'S MANUAL MOTOROLA

The supervisor mode changes to the user mode under two conditions:

1. The processor executes an rte instruction to restore the processor context in effect
before a trap instruction or exception occurs as part of its execution. The rte instruction
restores the PSR, which returns the processor to user mode when the mode bit of
the restored PSR is clear.

2. A ster or xcr instruction explicitly clears the MODE bit in the PSR. Since the FIP and
NIP registers are not changed, this method of clearing the MODE bit usually causes
undesired program execution results.

2.1.3 Exception State

Exceptions are conditions that cause the processor to suspend execution of the current
instruction stream and perform exception processing. Exception processing provides an
efficient context switch so that system software can handle the exception condition while
maintaining the integrity of the hardware and other software. Exceptions include:

Interrupts, which are Signaled Externally via the Interrupt Input

Externally Signaled Errors, such as a Memory Access Fault

Internally Recognized Errors, such as Divide-by-Zero

Trap Instructions

Exceptions can occur at any time during normal instruction execution. Exceptions are
recognized internally when the processor is between instructions (the previous instruction
has been executed or dispatched, and the next instruction has not begun). When an ex-
ception is recognized, the processor freezes the execution context in shadow and exception-
time registers (which precludes other exceptions from occurring), explicitly disables in-
terrupts, and enters the supervisor mode. In addition, the floating-point unit (FPU) is dis-
abled and the data unit is allowed to complete all pending accesses. Instruction execution
transfers in an orderly manner to the appropriate exception handler routine. The exception
handler routine is the software that processes the exception condition and restores the
processor to normal operation.

To provide the necessary information to recover from an exception, the MC88100 maintains
copies of certain internal registers and the PSR. Shadowing is used for tracking these
internal registers at each stage of instruction execution. When shadowing is enabled, copies
of these registers are written to corresponding general control and FPU control shadow
registers on each machine cycle. The registers that are shadowed are the three instruction
pointers, the scoreboard register, the data-unit pipeline registers, and the FPU source
operand, result, precise operands, and imprecise operation type registers. These shadow
registers maintain a copy of the instruction pipeline, the memory-access pipeline, and the
floating-point source operands at the end of each cycle. The PSR has a corresponding
exception-time register. The exception-time register is only updated at the time an excep-
tion is recognized (not on each machine cycle). The exception-time PSR and shadow reg-
isters should be explicity modified by software only when shadowing is disabled.

MOTOROLA MC88100 USER'S MANUAL 2-3

When an exception occurs, the shadow registers and exception-time PSR contain the
processor context at the time of the exception (instruction pointers, status, etc.). The ex-
ception handler routine uses this saved context to determine the exact cause of the ex-
ception and to take corrective action. For example, when an integer divide exception occurs,
the shadow execute instruction pointer (SXIP) points to the instruction that caused the
exception. When a trap instruction is executed, the shadow registers are used to restore
the processor context after the trap is handled. (The trap may be a request for operating
system services or another operation performed at the supervisor level.) At the end of an
exception handler routine, an rte instruction is usually executed. This instruction restores
the context saved in the control registers to the corresponding internal registers. Refer to
SECTION 6 EXCEPTIONS for detailed information on registers, priorities, and exception
handling.

2.2 OPERAND CONVENTIONS

The following paragraphs describe how the various data types are represented in the
MC88100, both in registers and in memory.

2.2.1 Operand Types

The MC88100 supports seven operand types. The following list defines the different op-
erand types:

Byte — 8 Bits

Half Word — 16 Bits (two bytes)

Word — 32 Bits (four bytes)

Double Word — 64 Bits (eight bytes)

Single-Precision Floating Point — 32 Bits (four bytes)

Double-Precision Floating Point — 64 Bits (eight bytes)

Bit Field — 1 to 32 Bits in a 32-Bit Register

The operand size for each instruction is either explicitly encoded in the instruction or
implicitly defined by the instruction operation. Bit fields are explicitly defined by the in-
struction or by a source register specified in the instruction.

2.2.2 Data Organization in Registers

The general-purpose registers contain operands of all seven types. Refer to Figure 2-1 for
a description of the data organization in registers.

Since the memory interface supports operand types other than 32-bit words, the MC88100
incorporates rules for placing memory data into registers or extracting data from registers
(for storing to memory). Byte operands are always loaded or extracted from the lower
eight bits of a register, but when an Id instruction loads a byte into a register, it either sign

2-4 MC88100 USER'S MANUAL MOTOROLA

31 8 7 0

SIGNED BYTE [ssSSsSssSSSSSSSSSSSSSSSSSS[s By |
31 87 0
UNSIGNED BYTE {ooocooo0o0o00000000000000000] B7E |
31 16 15 0
SIGNED HALF WORD [ssssssssssssssssis HALF WORD |
31 16 15 0
UNSIGNED HALF WORD {oo00000000000000 HALF WORD
31 0
WORD WORD |
63 R
m WORD 0 (MOST SIGNIFICANT WORD; REGISTER n)
DOUBLE WORD ., , 4 WORD 1 {LEAST SIGNIFICANT WORD; REGISTER n+1)

31 30 B0 0

SINGLE-PRECISION FLOATING POINT [s | exonent | MANTISSA
63 62 52 51 E)

m|s] exeonent | HIGH-ORDER BITS OF MANTISSA

DOUBLE-PRECISIONFLOATING POINT . | LOW-ORDER BITS OF MANTISSA

BIT NO.= BIT NO.=

OFFSET +WIDTH OFFSET
31 ¥ y 0
BIT FIELD BIT FIELD | |

< »le
WIDTH >l OFFSET —————->|

Figure 2-1. Data Organization in Registers

extends or zero extends bits 31 through 8. Half words are always loaded or extracted from
the lower 16 bits of a register, except the Id instruction either sign extends or zero extends
bits 31 through 16. Word operands load or store the entire 32 bits to/from memory; double-
word operands load and store two adjacent registers (rn and rn+ 1) with rn always con-
taining the higher order word. For single-precision floating-point operands, bit 31 contains

MOTOROLA h MC88100 USER'S MANUAL 2-5

the sign bit, bits 30-23 contain the exponent, and the remaining bits comprise the mantissa.
For double-precision floating-point operands, the upper order register (rn) contains the
sign bit, an exponent field, and the upper 20 bits of the mantissa. The lower order register
(rn+1) contains the remaining bits of the mantissa. Double-word operands and double-
precision floating-point operands can be specified as beginning with r31, in which case r0
contains the lower order word. However, r0 may never be modified (writes to r0 are
ignored). Bit-field operands are specified by an offset and a width. The most significant
bit (MSB) of the bit field is closest to bit 31 of the register and the least significant bit (LSB)
is closest to bit 0 of the register. The value of the offset equals the bit number of the LSB
of the bit field and the offset+ width — 1 equals the bit number of the MSB of the bit field.

2.2.3 Data Organization in Memory and Byte Ordering

The organization of data in memory is similar to the register organization, except that bit
fields are represented as part of bytes, half words, and words. In addition, the MC88100
supports two byte-ordering configurations for operands in memory. In the “Big-Endian”’
byte-ordering configuration, the lower addresses correspond to higher order bytes. The
address n (modulo 4 address) of a word corresponds to the most significant byte of the
word. The least significant byte corresponds to address n+ 3. In the "Little-Endian” byte-
ordering configuration, the less significant bytes, half-words, and words reside at the lowest
addresses (see Figure 2-2). In effect, the byte ordering, is controlled by the byte-ordering
(BO) bit in the PSR. The BO bit is cleared, enabling “’Big-Endian’’ byte ordering after a
processor reset.

/ WORD $00000000 (MSW)
HALF WORD $00000000 (MSH) HALF WORD $00000002 (LSH)
BYTE $00000000 BYTE $00000001 BYTE $00000002 BYTE $00000003
DOUBLE WORD (MSB) (HMB) (LMB) (LSB)

$00000000
WORD $00000004 (LSW)

HALF WORD $00000004 HALF WORD $00000006

\. | BYTE 00000004 | BYTE $00000005 BYTE $00000006 | BYTE $00000007

7 3 1 7

WORD $FFFFFFFC

HALF WORD $FFFFFFFC HALF WORD $FFFFFFFE

BYTE SFFFFFFFC__ | BYTE SFFFFFFFD BYTE SFFFFFFFE | BYTE SFFFFFFFF
BIG-ENDIAN BYTE ORDERING

Figure 2-2. Byte-Ordering Configuration in Memory (Sheet 1 of 2)

2-6 MC88100 USER'S MANUAL MOTOROLA

4 WORD $00000000 (LSW)
HALF WORD $00000002 (MSH) HALF WORD $00000000 (LSH)
BYTE $00000003 BYTE $00000002 BYTE $00000001 BYTE $00000000
DOUBLE WORD (MSB) (HMB) (LMB) (LSB)
$00000000
WORD $00000004 (MSW)
HALF WORD $00090006 HALF WORD $00000004
N\ BYTE $00000007 l BYTE $00000006 BYTE $00000005] BYTE $00000004
WORD $FFFFFFFC
HALF WORD $FFFFFFFE HALF WORD S$FFFFFFFC
BYTE SFFFFFFFF | BYTE $FFFFFFFE BYTE SFFFFFFFD | BYTE $FFFFFFFC
LITTLE-ENDIAN BYTE ORDERING
LEGEND: MSB - Most Significant Byte HMB - Higher Middle Byte
LMB - Lower Middle Byte LSB - Least Significant Byte
LSH - Least Significant Half Word ~ MSH - Most Significant Half Word
MSW - Most Significant Word LSW - Least Significant Word

Figure 2-2. Byte-Ordering Configuration in Memory (Sheet 2 of 2)

The relationship between the way data is stored in memory and the way it is loaded into
registers is shown in Figure 2-3. This figure shows the results of a Id instruction for byte,
half-word, word, and double-word operands. In each example, the “Big-Endian” config-
uration is shown first, and the “Little-Endian’’ is shown second. Word loads are the same
for either byte-ordering configuration. For any operand size, the same value is placed in
the register for both configurations; the only difference is the address of each value in
memory. For example, Figure 2-3 shows how the lower middle byte (LMB) is loaded into
a register in each configuration. The byte address is different for the ‘Big-Endian”’ and the
“Little-Endian’ configurations for an LMB load; the address is one less for the “Little-
Endian” configuration.

The store operations work the same as load operations, except the direction of the transfer
between the register and memory is reversed.

NOTE

All data in memory must be aligned to the appropriate address boundary. Half
words are aligned on modulo two boundaries, words are aligned on modulo four

MOTOROLA MC88100 USER'S MANUAL 2-7

MEMORY REGISTER

31 0 31 0
BiGENDIAN | msB [wwB | v | s | [sioN or zero extension | v |
LOAD ADDR: X X4l X+2| X3 A
BYTE
(LM8) 31 0 3
urreenoian | mse | wme | v | tse | [‘sien or zero extension | tme |
ADDR: X+3 X+2 X+1 | X
31 0 3 0
81G ENDIAN | MSH | tsho | [exvension] MSH]
LOAD ADDR: x| X+2 A
HALF
WORD
(MSH) 31 0 31 0
UTTLE ENDIAN | MSH | LSH | [exenson | MSH]
ADDR: x+2 | X }
108D BIGAND 3! 0 3 0
LITTLE WORD F—> WORD
WORD ENDIAN
ADDR: X
63 32 31 0
ADDR: X MSW > MSW m
BIG ENDIAN
ADDR: X +4 LSW > Lsw m+1
LOAD 3 0
DOUBLE
WORD 3 0 31 0
ADDR: X LSW MSW m
LITTLE ENDIAN
ADDR: X +4 Msw Lsw m+1
63 32
LEGEND: MSB - Most Significant Byte HMB - Higher Middle Byte
LMB - Lower Middle Byte LSB - Least Significant Byte
LSH - Least Significant Half Word ~ MSH - Most Significant Half Word
MSW - Most Significant Word LSW - Least Significant Word

Figure 2-3. Operand Loads for Different Byte-Ordering Configurations

2-8 MC88100 USER'S MANUAL MOTOROLA

boundaries, and double words are aligned on modulo eight boundaries. An at-
tempt to perform a misaligned access causes an exception if misaligned excep-
tions are enabled in the PSR. Otherwise, an attempt to perform a misaligned
access causes the address to be truncated to a proper boundary.

2.3 REGISTER DESCRIPTION

The MC88100 contains three types of registers which provide data and execution infor-
mation to the execution units and to software. Register access rights depend on the register
type and current level of privilege. The following paragraphs describe the programmer’s
view of some of the MC88100 general-purpose, control, and internal registers. Refer to
SECTION 6 EXCEPTIONS for more information on floating-point and exception control
registers.

2.3.1 Supervisor/User Programming Model

The supervisor programming model includes all general-purpose and control registers.
The general-purpose registers (r31-r0) provide data and address information for instruction
execution. The general control registers (cr20-cr0) provide exception recovery and status
information for the integer unit, data unit, and instruction unit. The general control registers
are copied to and from the general-purpose registers using the Idcr, ster, and xcr instruc-
tions. These instructions restrict access of the general control registers to only the super-
visor software. The FPU control registers (fer8—fcr0) provide exception recovery and status
and control information for the FPU. These registers are copied to and from the general-
purpose registers using the flder, fster, and fxcr instructions. Refer to SECTION 6 EXCEP-
TIONS for the full description of these registers. Refer to Figure 1-2 for an illustration of
the programming model.

In user mode, all of the general-purpose registers can be accessed. However, the only
control registers accessible in the user mode are the floating-point control register (fcr63)
and floating-point status register (fcr62).

2.3.2 General-Purpose Registers

There are 32 general-purpose registers, each 32 bits wide. These registers contain instruc-
tion operands and results, and provide address and bit-field information. In addition, the
general-purpose registers have hardware and software usage conventions. Hardware con-
ventions are strictly enforced by the MC88100. Although the software conventions are not
enforced, they should be observed to guarantee compatibility with future hardware and
software. Table 2-1 shows the organization of the general-purpose registers.

Double-word and double-precision floating-point operands can be read from and written

to any two adjacent registers. However, the conventions listed below should be considered
when defining double words.

MOTOROLA MC88100 USER'S MANUAL 29

The

2-10

Table 2-1. General-Purpose Registers

Register Number Name

r0 Zero
r Subroutine Return Pointer
r2
. Called Procedure
. Parameter Registers
r9
r10
. Called Procedure
. Temporary Registers
r13.

L
ri4
. Calling Procedure
. Reserved Registers
r25
r26 Linker
r27 Linker
r28 Linker
r29 Linker
r30 Frame Pointer
r31 Stack Pointer

register conventions are as follows:

. Register r0 always contains zero, which is used in instructions requiring the constant

zero as an operand (for example, compare to zero). This is a hardware convention;
the software can write to r0 but this operation has no effect (i.e., writes are ignored).

. Register r1 contains the return pointer generated by bsr or jsr to subroutine instruc-

tions. This is a hardware convention; both of these instructions overwrite the data in
r1 when they execute. However, this register is not protected; software can read or
overwrite the return pointer (or any other data) contained in r1.

. Registers r9 through r2 are used for passing parameters to a called routine. These

registers can be overwritten by the called routine. This is a software convention.

. Register r13 through r10 are used as temporary storage. They can be overwritten by

a called routine but do not contain parameters for the called routine. This is a software
convention.

. Registers r25 through r14 are used as data storage for the current routine. A called

routine must ensure that the data in these registers is returned without modification
when it finishes execution. These registers must be preserved for the calling routine.
This is a software convention.

. Registers r29 through r26 are reserved for use by the linker, which is a software

convention.

. Register r30 is reserved for use as a software frame pointer, which is a software

convention.

MC88100 USER'S MANUAL MOTOROLA

8. Register r31 is reserved for use as a software stack pointer, which is a software
convention.

2.3.3 General Control Registers

The MC88100 contains 21 general control registers accessible only in supervisor mode.
Fourteen of these registers provide exception information for integer-unit and data-unit
exceptions. The remaining registers provide status information, the base address of the
exception vector table, and general-purpose storage. Table 2-2 shows all the general control
and floating-point control registers. When a control register is read, reserved bits are
returned as zeros in the current implementation. Writes to reserved bits are ignored. The
following paragraphs describe the processor identification register (PID), the PSR, and the
supervisor storage registers. Refer to SECTION 6 EXCEPTIONS for more detailed infor-
mation on the other control registers.

2.3.3.1 PROCESSOR IDENTIFICATION REGISTER (PID). This register contains the architec-
tural revision number, the processor version number, and a bit that indicates whether the
processor is in master or checker mode. This register is read only.

31 16 15 87 10
0 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 O 0| ARCHREVISION | VERSION# | miC |

Bits 31-16 — Reserved
Read as zero; not guaranteed to be zero in future implementations.

ARCH REVISION — Architectural Revision Number

Identifies the particular processor (MC88100 future-generation, special-purpose pro-
cessors). The revision number changes when a major architectural change is made
that warrants a new part number. The revision number for MC88100 is zero.

VERSION # — Version Number

Identifies the particular mask version of the MC88100 processor. The version number
is changed by Motorola when mask changes are made that affect the functionality of
the device.

M/C — Master/Checker

The M/C bit reflects the inverted value of the PCE input signal. When this bit is set,
the MC88100 operates in its normal fashion. When this bit is clear, the MC88100
operates in checker mode as described in SECTION 8 APPLICATIONS INFORMATION.

1 - Master Mode
0 — Checker Mode

MOTOROLA MC88100 USER'S MANUAL 2-1

Table 2-2. Control Registers

zii:s;:: Acronym Name
cr0 PID Processor Identification Register
cr1 PSR Processor Status Register
cr2 EPSR Exception-Time Processor Status Register
cr3 SSBR Shadow Scoreboard Register
cr4 SXIP Shadow Execute Instruction Pointer
crb5 SNIP Shadow Next Instruction Pointer
cré SFIP Shadow Fetched Instruction Pointer
cr? VBR Vector Base Register
cr8 DMTO Transaction Register 0
cr9 DMDO Data Register 0
cr10 DMAO Address Register 0
cri1 DMT1 Transaction Register 1
cr12 DMD1 Data Register 1
cri3 DMA1 Address Register 1
crl4 DMT2 Transaction Register 2
cr15 DMD2 Data Register 2
cr16 DMA2 Address Register 2
cr1?7 SRO Supervisor Storage Register 0
cr18 SR1 Supervisor Storage Register 1
cr19 SR2 Supervisor Storage Register 2
cr20 SR3 Supervisor Storage Register 3
fcr0 FPECR Floating-Point Exception Cause Register
fer1 FPHS1 Floating-Point Source 1 Operand High Register
fer2 FPLS1 Floating-Point Source 1 Operand Low Register
fer3 FPHS2 Floating-Point Source 2 Operand High Register
fcra FPLS2 Floating-Point Source 2 Operand Low Register
fers FPPT Floating-Point Precise Operation Type Register
fcré FPRH Floating-Point Result High Register
fer7 FPRL Floating-Point Result Low Register
fcr8 FPIT Floating-Point Imprecise Operation Type Register
fcr62 FPSR Floating-Point User Status Register
fcr63 FPCR Floating-Point User Control Register

2.3.3.2 PROCESSOR STATUS REGISTER (PSR). The PSR contains information about the
current operations of the processor. These bits are set by hardware or software to report
the status of processor operations or to control processor operations. The operation of
various bits in the PSR depends on the value of the shadow freeze bit (SFRZ, bit 0) in the
PSR. For detailed information on the implications and effects of the SFRZ bit, refer to

2-12 MC88100 USER'S MANUAL MOTOROLA

SECTION 6 EXCEPTIONS. This register has read/write access. Only bits 31-28 and 3-0 can
be modified by an stcr or xcr instruction.

31 30 29 28 27 109 4 3 2 1 0

ert |MobE] Bo | seR | c Joooooooooo0o000 000001111 fsror[mm] o [serz] n

MODE — Supervisor/User Mode
This bit is set by hardware when the processor changes to the supervisor mode (due
to an exception condition or trap instruction); it may be cleared by software to return
the MC88100 to operating in the user mode. Refer to 2.1.2.3 CHANGING LEVELS OF
PRIVILEGE for more information related to the MODE bit.
0 - User Mode
1 - Supervisor Mode

NOTE

The MODE bit should only be cleared by an rte instruction. When the MODE
bit is cleared by a control register instruction (load or exchange), two prob-
lems can occur. First, the privilege check on the next instruction may not be
correct and second, the next instruction may have been fetched from the
incorrect (user or supervisor) memory space.

BO — Byte Ordering
This bit is set by an ster or xcr instruction to indicate the current byte ordering. See
2.2.3 Data Organization in Memory and Byte Ordering for a full description of byte
ordering.
0 - Big-Endian Byte Ordering
1 — Little-Endian Byte Ordering

SER — Serial Mode
The serial mode is generally used for debugging purposes since it significantly reduces
machine throughput. Refer to SECTION 8 APPLICATIONS INFORMATION for more
information on serializing the processor. This bit is set by software as appropriate.
0 - Concurrent Operation Allowed
1 — Serial Mode

C — Carry
This bit is modified by hardware according to the results of an add or subtract instruc-
tion. It is only modified when the instruction explicitly requests the use of the carry
bit. .

0 - Carry Was Not Generated by an Add or Subtract Instruction

1 - Carry Was Generated by an Add or Subtract Instruction

Bit 27-10 —Reserved

Always read as zero but are not guaranteed in future implementations; writes are
ignored.

MOTOROLA MC88100 USER'S MANUAL 2-13

Bits 9-4 — SFU Disable
These bits will be used to enable additional SFUs in future versions of the MC88100.
These bits are hardwired to “one’’ since the MC88100 contains only one special function
unit (SFU1), the FPU. An attempt to execute an instruction that selects an unimple-
mented SFU causes a precise exception for that SFU.
1 — Unimplemented SFUs Always Disabled

SFD1 — SFU1 Disable
This bit is automatically set by hardware when an exception or reset occurs. This bit
can also be set or cleared explicitly by load or exchange control register instructions.
0 - SFU1 Enabled
1 - SFU1 Disabled

NOTE
Initiating a floating-point instruction or an integer multiply or divide instruc-
tion while this bit is set causes a floating-point unimplemented precise ex-
ception.

MXM — Misaligned Access Enable
This bit is set by software to disable the misaligned access exception. When this bit
is set and a misaligned access is attempted, the processor truncates the address to a
consistent boundary. See 6.5.2 Misaligned Access Exception for more information.
0 - Misaligned Data Access Causes an Exception
1 - Misaligned Data Access Does Not Cause an Exception

IND — Interrupt Disable
This bit is automatically set by hardware to disable interrupts when an exception
occurs. This bit can also be set or cleared explicitly by ster or xcr instructions to
specifically disable/enable interrupts. Interrupts must be disabled when shadowing is
frozen to avoid an error exception.
0 - Interrupt Enabled
1 - Interrupt Disabled

SFRZ — Shadow Freeze

This bit is set by hardware when an exception occurs to preserve the processor context
for the exception. This bit can also be set or cleared explicitly by ster or xcr instructions
or implicitly by an rte. If this bit is set and any exception occurs, the MC88100 takes
the error exception. Setting the SFRZ bit in the PSR with an ster or xer instruction does
not cause the SFRZ bit to be set in the EPSR. The EPSR contains the value of the PSR
before the ster or xcr instruction is executed.

0 - Shadow Registers Enabled

1 - Shadow Registers Frozen

2.3.3.3 SUPERVISOR STORAGE REGISTERS. The integer unit contains four 32-bit super-
visor storage registers. These registers provide high-speed storage for supervisor software
to store data and pointers, which are protected from user-mode access. Their use and

2-14 MC88100 USER'S MANUAL MOTOROLA

contents are determined by software. These registers have read/write access through the
Idcr, ster, and xcr instructions.

2.3.4 Internal Registers

The internal registers of the MC88100 are the registers that the processor uses to track
instruction execution and register dependencies. These include the three instruction point-
ers and the scoreboard register. The internal registers are not available in any of the register
models; they can only be modified and used indirectly. There are additional internal reg-
isters in the MC88100, but these are not visible to the programmer. Refer to SECTION 6
EXCEPTIONS for information on the shadow registers.

1. The execute instruction pointer (XIP) register contains the address of the instruction
that is currently being executed by the integer unit or that was just issued to the FPU
or data unit (depending on the instruction).

2. The next instruction pointer (NIP) register contains the address of the instruction that
is currently being received from memory and decoded by the instruction unit (next
instruction to execute).

3. The fetch instruction pointer (FIP) points to the memory location of the next accessed
instruction; this address is being driven to memory for the instruction prefetch. For
sequential execution, the fetched instruction is read from the address of the next
instruction to execute plus four bytes (FIP=NIP+4). Jump target addresses are re-
ceived on the source 2 bus from the operand specified in the jump instruction. Un-
conditional branch addresses are computed from the XIP plus the signed 26-bit word
displacement included in the branch instruction (FIP=XIP + d26). Conditional branch
addresses for the branch taken case are calculated as FIP =XIP +d16.

4. The scoreboard (SB) register contains a bit corresponding to each general-purpose
register (r31 through r1). If a bit is set, the corresponding register is currently in use
(specified as a destination) by a previous instruction. Scoreboarding is discussed in
detail in SECTION 3 ADDRESSING MODES AND INSTRUCTION SET and SECTION 7
INSTRUCTION SET TIMING.

2.4 FLOATING-POINT IMPLEMENTATION

The following paragraphs summarize the MC88100 floating-point implementation and how
it conforms to ANSI/IEEE Standard 754-1985. Numeric representations, operations, and
handling of exception are discussed.

NOTE

The MC88100 implements ANSI/IEEE Standard 754-1985 functionality. Although
the information presented in the following paragraphs will aid in understanding
the MC88100 floating-point implementation, they are not intended as a complete
definition of the ANSI/IEEE floating-point functionality. The ANSI/IEEE standard
is the governing document for this information.

MOTOROLA MC88100 USER'S MANUAL 2-15

2.4.1 Numeric Formats

The MC88100 supports two floating-point formats: single and double precision. Single-
precision floating-point numbers are represented in 32 bits; double-percision numbers are
represented in 64 bits. Figure 2-4 shows the two floating-point formats. In each case, the
numbers are encoded as three fields:

1. Sign — A one-bit field which is 0 (clear) for positive numbers and 1 (set) for negative
numbers. For an add or subtract operation, the sign bit reflects the sign of the result
unless the operation is x+{—x). In the x4+ (—x) case, the sign bit is set if the rounding
mode is round-toward-negative-infinity or else it is cleared. For a multiplication or
division operation, the sign bit is the exclusive-OR of the signs of the operands. The
femp instruction does not consider the sign bit for zero (i.e., +0=—0).

2. Exponent — A bit field which represents the exponent of the floating-point number.
The exponent is eight bits for single-precision numbers and 11 bits for double-precision
numbers. The exponent is represented in excess 127 notation for single-precision
numbers and in excess 1023 notation for double-precision numbers.

3. Mantissa — A bit field which represents the fractional binary portion of the normalized
floating-point number. The mantissa is 23 bits for single-precision numbers and 52
bits for double-precision numbers.

31 30 23 2 0

SINGLE-PRECISION FLOATING-POINT [S I EXP8 SINGLE-PRECISION MANTISSA
63 62 52 51 32
m|S l EXP11 DOUBLE-PRECISION MANTISSA
DOUBLE-PRECISION FLOATING-POINT (MANTISSA)
31 0

Figure 2-4. Floating-Point Formats

Exponents are biased so that positive and negative exponents do not require sign bits or
complementary arithmetic. Two exponent values are reserved for special representations.
One representation, an exponent value of zero, indicates a denormalized number (mantissa
nonzero) or zero (mantissa zero). The other representation is an exponent value of all ones
(binary) which indicates infinity (mantissa zero) or a not-a-number (NAN, mantissa non-
zero). Exponents are adjusted so that the mantissa is always normalized. Table 2-3 sum-
marizes the exponent values; Table 2-4 summarizes the representation of floating-point
numbers. The biasing and special representations are consistent with the IEEE standard.

Since all normalized, real floating-point numbers have an integer part of one, the IEEE

standard does not represent the one in the mantissa. This bit is implied in all normalized,
real floating-point numbers and is referred to as the “hidden’ bit. The bits contained in

2-16 MC88100 USER'S MANUAL MOTOROLA

Table 2-3. Exponent Values Summary

Exponent Single-Precision Double-Precision
Maximum Exponent (Unbiased) +127 +1023
Minimum Exponent (Unbiased) - 126 -1022
Exponent Bias +127 +1023
Width 8 Bits 11 Bits

Table 2-4. Floating-Point Number Representation

Sé?tn Exponent (Biased) Mantissa Result
0 Maximum Nonzero +NAN
0 Maximum Zero + Infinity
0 0<Exponent<Max Nonzero + Real
0 0 Nonzero +Denormalized
0 0 Zero +0
1 0 Zero -0
1 0 Nonzero —Denormalized
1 0<Exponent<Max Nonzero —Real
1 Maximum Zero —Infinity
1 Maximum Nonzero —NAN

the mantissa represent only the binary fraction of the floating-point number. Figure 2-5
illustrates the normalized representation of the number 1.01g in single-precision format
and the function of the hidden bit.

Floating-point numbers are normalized to the format of

1. <binary fraction>

The 1 (represented by the hidden bit) is followed by the binary point (the binary
equivalent of the decimal point) then followed by the binary fraction. The following
is an example of the normalization process for the number 1/8 (.125):

.12510=.0012=(1.0¥2-3)
In single-precision format:

Sign bit= 0
Biased Exponent= +124(—-3+127)
Hidden Bit= 1
Mantissa= 0

2.4.2 Denormalized Numbers

Denormalization occurs when a number is too small or too large to be represented as a
normalized number in the result format. For example, the smallest single-precision number

MOTOROLA MC88100 USER'S MANUAL 2-17

'SIGN (POSITIVE)
I HIDDEN BIT (1)
31 l

0 01111111 000. 00(]0
[— BINARY POINT
EXPONENT

(+127)

Exponent (biased) = +127
Minus bias -127
True Exponent = 0
Mantissa = 1.0
Value = 1.0% 20

1.02=101p

Figure 2-5. Floating-Point Representation of 1.0 (Single Precision)

that can be represented is (1.0¥2-126), |f this number is divided by four, the result cannot
be represented as a single-precision normalized number:

(1.0%2-126) = (1,0%22) = (1.0%2 - 128)

In this case, the denormalized result is represented with a sign bit of zero (positive), an
exponent of zero (denormalized number), and a mantissa having the second bit from the

left set. Since the mantissa is 2-2 (.012), the format indicates that the desired result was
2128

SIGN EXPONENT MANTISSA (.019)
(POSITIVE) (—126)

31 30) 0
[ofo o 0o 0 o o o ofo 1 00000000 0000000000000

When a denormalization occurs, a floating-point exception occurs (in this case, a floating-
point underflow exception). The MC88100 adjusts the result so that the exception handler
can determine the actual value of the result and take corrective actions. Refer to SECTION
6 EXCEPTIONS for detailed information on exceptions.

2-18 MC88100 USER'S MANUAL MOTOROLA

2.4.3 Not-a-Numbers (NANSs)

The IEEE standard includes representations for not-a-numbers (NANs). There are two types
of NANs, signaling and nonsignaling. Both NANs cause a reserved operand exception; the
signaling NAN causes the user exception handler to be invoked when available (see SEC-
TION 6 EXCEPTIONS). A signaling NAN is useful for flagging uninitialized variables and
uninitialized memory. A signaling NAN is a NAN representation with bit 22 clear. A non-
signaling NAN is useful for representing the results of invalid operations such as 0/0. A
nonsignaling NAN is a NAN representation with bit 22 set.

2.4.4 Rounding

The MC88100 supports four rounding modes. These rounding modes use three added bits
of precision associated with the result of a floating-point operation. The rounding modes
and extra precision bits are consistent with the |EEE standard; the rounding mode is
selected by loading bits 15 and 14 in the floating-point control register (FPCR). The four
rounding modes are listed in Table 2-5.

Table 2-5. Rounding Modes

FPCR Bits .
Rounding Modes
15 14
0 0 Round-to-Nearest
Results rounded down toward closest number.
0 1 Round-Toward-Zero
Extra bits of precision are truncated.
1 0 Round-Toward-Negative-Infinity
Results are rounded towards the more negative
number.
1 1 Round-Toward-Positive-Infinity
Results are rounded towards the more positive
number.

The three extra bits of precision are:

1. Guard Bit (G) — This bit represents the bit immediately to the right of the least
significant bit (LSB).

2. Round Bit (R) — This bit represents the bit immediately to the right of the guard bit.
Although not necessary for all rounding, certain floating-point operations extend the
precision by one bit before normalization. The round bit represents this bit.

3. Sticky Bit (S) — This bit represents all bits immediately to the right of the round bit.
The value of the sticky bit is determined by taking the logical OR of all the bits that
would be in the result if the result was infinitely precise. For example, a single-precision
multiply instruction might generate 24 extra bits of precision in the product. The first
bit of extra precision (to the right of bit zero) would be the guard bit and the next bit
would be the round bit. The remaining 22 bits would be logically ORed to produce
the sticky bit.

MOTOROLA MC88100 USER'S MANUAL 2-19

Figure 2-6 illustrates the guard, round, and sticky bits for the previous example.

BITS OF
MANTISSA EXTRA PRECISION
/e
31 30 B 2 0/
[1Jorot1o0101Jororo0101o0r10101010101010[1[1]o1 001«
LOGICAL
OR
3130 B0 0 y
{1Jororo0r101]or 01010101010t 010101010[1]1]1]
G R S

Figure 2-6. Guard, Round, and Sticky Bits

2.4.4.1 ROUND-TO-NEAREST. Rounding to the nearest number is the default rounding
mode of the MC88100 processor. In this mode, numbers are rounded up when the guard,
round, and sticky bits make a result closer to the higher number. However, a ““tie’ situation
occurs when the guard bit is one and the other bits are zero. In the case of a tie, the number
is rounded up if the higher number is even and is not rounded if the higher number is
odd.

Figure 2-7 illustrates the round-to-nearest rounding method for the numbers 00", “01”,
and “10". When the guard bit is one and the round and sticky bits are both zero, then the
rounding depends on the LSB. When the LSB is one, the number is not rounded (00). When
the LSB is one, the number is round (10). The following logic statements summarize this
rounding method.

IfG=0 Do Not Round
fG=1and (R=10rS=1) Round Up
If G=1,R=0,and S=0
If LSB=0 Do Not Round
If LSB=1 Round Up

2.4.42 ROUND-TO-ZERO. When round-to-zero is selected, the guard, round, and sticky
bits are ignored (i.e., no rounding is performed).

2.4.4.3 ROUND-TOWARD-POSITIVE-INFINITY. When round-toward-positive-infinity is
selected, the number is rounded to the next higher number when any of the extra precision
bits are set. In the case of positive numbers, a one is added to the mantissa to make the
number more positive and with negative numbers, nothing is added to the result. Then

2-20 MC88100 USER'S MANUAL MOTOROLA

DO NOT
ROUND RESULT

S=0 S=1

S=1]S=0

N

DO NOT
ROUND RESULT

S-'U‘S=1 S$=0

S=1

G=1

§=0|S=1]S=0 IS

R=0 R=1

00

R=0,8=0,LSB=0
DO NOT ROUND RESULT

|

ROUND RESULT T0 10

R=0,5=0, LSB=1

01

ALL OTHER ALL OTHER
COMBINATIONS, COMBINATIONS,
ROUND T0 01

ROUND T0 10

Figure 2-7. Round-to-Nearest Rounding Method

the guard, round, and sticky bits are discarded. In other words, if (G=1 or R=1or S=1)
a positive number is rounded up and a negative number is not changed.

2.4.4.4 ROUND-TOWARD-NEGATIVE-INFINITY. When round-toward-negative-infinity is
selected, the number is rounded down to the next lower number when any of the extra
precision bits are set. In the case of positive numbers, nothing is subtracted from the result,
but with negative numbers, a one is added to the mantissa to make the number more
negative. Then the guard, round, and sticky bits are discarded. In other words, if (G=1 or
R=1 or S=1) a negative number is rounded down and a positive number is not changed.

2.45 IEEE Exceptions Conformance

The IEEE standard defines five exceptions that are supported by the MC88100. The following
paragraphs briefly describe these exceptions. In addition to these five exceptions, the
MC88100 implements other exceptions such as the privilege-violation exception. Further

MOTOROLA MC88100 USER'S MANUAL 2-21

information on exceptions (such as exception handling information) can be found in SEC-
TION 6 EXCEPTIONS.

Whenever an exception occurs, the MC88100 traps to an exception handler routine. Default
exception handler routines are available from Motorola that perform the actions described
in the following paragraphs, and user exception handler routines can be incorporated into
software to perform other processing. When the user exception handlers are available
(installed and enabled), then they are executed when the appropriate IEEE exceptions occur.
When they are not available, the default handlers are executed. The actions performed by
the default routines are consistent with the IEEE standard.

2.4.5.1 INVALID FLOATING-POINT OPERATION EXCEPTION. This exception is signaled
when the MC88100 hardware determines that the operand is invalid for the operation being
performed. This does not mean that the operation is in error. Only certain conditions are
considered an exception according to the IEEE standard. The other conditions cannot be
handled by the MC88100 hardware and must be completed by software. When the operation
is not an exception according to the standard, the software provides the proper result.
When the operation results in a true exception, then the appropriate bit(s) are set in the
floating-point exception cause register (FPECR), and either the user exception handlers are
called or the default action is performed. When an exception occurs and no user handier
is available, then the appropriate bit is set in the floating-point status register (FPSR) and
the default action is performed. Specifically:

1. Operations on NANs. If a signaling NAN is detected, bit 4 (AFINV) in the FPSR is set,
and a nonsignaling NAN is written to the destination. If a nonsignaling NAN is de-
tected, a nonsignaling NAN is written to the destination, but the FPSR is not modified.

2. Operations on Infinities. If one operand is infinity and the other a real number, then
the properly signed infinity is written to the destination. If the operation is the mag-
nitude subtraction of infinities ((+)+ (—x)), =/= or 0*x, then bit 4 in the FPSR is set,
and a nonsignaling NAN is written to the destination.

3. Operations on Denormalized Numbers. Operations on denormalized numbers are
always completed. The result, which may or may not be a denormalized number, is
written to the specified destination.

4. Zero-Divide-By-Zero (0/0). Bit 4 in the FPSR is set, and a nonsignaling NAN is written
to the destination.

5. Conversion to Integer Overflow. Bit 4 in the FPSR is set, and a nonsignaling NAN is
written to the destination.

2.45.2 FLOATING-POINT DIVIDE-BY-ZERO EXCEPTION. This exception is signaled for all
divide-by-zero operations. The supervisor exception code first checks if the operation is
divide-by-zero. If the operation is considered an invalid operation by the IEEE standard,
then the appropriate invalid operation handler is called. Otherwise, the result is infinity

2-22 MC88100 USER'S MANUAL MOTOROLA

with the appropriate sign: +finite/+0= +x=, +finite/—0= —2x, —finite/+0= —x, —finite/
0=+

2.45.3 OVERFLOW EXCEPTION. This exception is signaled when a floating-point oper-
ation produces an exponent that is too large to be represented in the result format. The
overflow exception is caused when the exponent is greater than + 127 for single-precision
results and greater than + 1023 for double-precision results. When this exception occurs,
the MC88100 normally executes the user overflow exception handler. If that is not available,
then the user inexact exception handler is executed. When neither exception handler is
available, then the default exception handler formulates the result according to the round-
ing mode in effect as listed in Table 2-6.

Table 2-6. Overflow Rounding Effects

FPCR Bits 5
Rounding Effects

15 14

0 0 For the round-to-nearest case, the result is set of =
with the appropriate sign.

0 1 For the round-to-zero case, the result is set to the
format’s largest value with the appropriate sign.

1 0 For round to — =, the result depends on whether it
is positive or negative. A positive result is set to the
format'’s largest positive value; whereas, a negative
result is set to —=.

1 1 For round to + =, the result depends on whether it
is positive or negative. A positive result is set to
+=; whereas, a negative result is set to the format’s
largest (most negative) negative value.

When the user overflow exception handler is enabled, the result passed to the handler is
the intermediate result (inifinitely precise) divided by 22, where ‘a’ (bias adjust) is +192
for single-precision numbers and + 1536 for double-precision numbers.

2.45.4 UNDERFLOW EXCEPTION. This exception can be signaled under two conditions.
First, this exception can occur when an operation produces an exponent smaller (more
negative) than can be represented in the result format. (The IEEE standard refers to this
condition as “tinniness”’, and allows tinniness to be determined either before or after any
appropriate rounding is performed.) The MC88100 determines this condition after rounding.
The second cause is the loss of precision during normalization or rounding (inexactness).
The MC88100 software can execute a user exception handler when only tinniness is de-
tected. The result passed to the handler is the intermediate result (infinitely precise) mul-
tiplexed by 22, where ‘a’ (bias adjust) is + 192 for single-precision number and + 1536 for
double-precision numbers. If the exception handler is not available, then the default ex-
ception handler writes the denormalized result to the destination register (specified by the
instruction). Both tinniness and loss of accuracy must be detected (i.e., bit 2 (AFUNF) set
in the FPSR) for this exception to occur when the exception handler is not available.

MOTOROLA MC88100 USER'S MANUAL 2-23

2.45.5 INEXACT EXCEPTION. This exception occurs when rounding causes a loss of
accuracy, or when an overflow occurs and the overflow exception handler is not available.
For loss of accuracy, bit 0 (EFINX) in the FPCR is checked. If this bit is set (user handler
available), then the exception is taken. The control registers contain the result of the op-
eration, the guard, round, and sticky bits, and whether or not the result was rounded by
adding one. If the user handler is not available, the hardware writes the rounded result to
the destination register.

For overflow, the inexact exception handler is taken if there is no exception handler for
overflow. First, bit 0 (AFINX) in the FPSR is set. Then, if there is a user handler for the
inexact exception, that user handler is taken. Otherwise, the result is the properly signed
largest finite number or infinity, depending on the rounding mode in effect. This exception
is the only exception that can be masked by hardware. If the MC88100 sets bit 0 (EFINX)
in the FPCR, then this exception is not signaled. ’

2-24 MC88100 USER'S MANUAL MOTOROLA

SECTION 3
ADDRESSING MODES AND INSTRUCTION SET

This section describes the various instruction types and categories and the corresponding
addressing modes available in the MC88100. The complete instruction set, an opcode
summary, and programming tips are listed.

3.1 INSTRUCTION TYPES AND ADDRESSING MODES

All instructions are one word (32 bits) in length. Immediate operands and displacements
are encoded in the instruction word. All other operands are located in registers which can
be moved to and from memory with load and store instructions.

The MC88100 executes three types of instructions: flow-control, data memory access, and
register-to-register instructions. Flow-control instructions alter the sequential flow of in-
structions through the processor. Data memory access instructions load data into the
general-purpose registers, store data to memory, exchange a memory location with a
general-purpose register, or can compute effective addresses. Register-to-register instruc-
tions manipulate data stored in the general-purpose registers.

Each instruction type has unique addressing capabilities. Flow-control instructions refer-
ence those sections of memory that contain instructions; these references are made by
the instruction unit. Data memory access instructions address those sections of memory
that contain program data. These references are made by the data unit. Register-to-register
instructions are confined to accessing only the general-purpose registers, or in certain
cases, the control registers.

The following paragraphs describe the operations of the three instruction types showing
the instruction formats for each addressing mode.

3.1.1 Register-to-Register Instructions

The MC88100 supports four addressing modes for its register-to-register instructions. The

following paragraphs describe these addressing modes.’

3.1.1.1 TRIADIC REGISTER ADDRESSING MODE. Triadic register addressing uses three 5-
bit fields encoded in the instruction to specify two source registers and a destination register
(rD). This addressing mode is common to all data manipulation instructions. Some instruc-
tions do not use all three register selection fields (unused fields should be zero).

MOTOROLA MC88100 USER'S MANUAL 3-1

For arithmetic and logical instructions, the data in the source 1 (rS1) and source 2 (rS2)
registers.is processed by the integer unit or floating-point unit (FPU) as directed by the top
six bits and the subopcode, and the result is placed in the destination register (rD). These
instructions include add, addu, and, cmp, div, divu, fadd, femp, fdiv, fmul, fsub, mul, or,
sub, subu, and xor. in addition, the int, nint, flt, and trnc instructions use this form of
addressing, although the source 1 register (rS1) is unused.

Bit-field instructions can use this addressing mode such that the lower ten bits of the source
2 register (rS2) comprise two 5-bit fields that specify a bit-field operand in rS1. One of the
5-bit values specifies the offset of the bit field in rS1, and the other specifies the width of
the bit field. The upper 22 bits of rS2 are ignored. The specified bit field is appropriately
processed by the integer unit (set bit field, clear bit field, etc.), and the result is placed in
rD. The width and offset values can also be specified as immediate operands, as described
in 3.1.1.2 REGISTER WITH 10-BIT IMMEDIATE ADDRESSING. The bit-field instructions in-
clude clr, ext, extu, mak, rot, and set.

For bit scan instructions (ff0 and ff1), the operand in rS2 is searched by the integer unit to
find either the first bit set or the first bit clear. The register is scanned from most significant
bit (bit 31) to least significant bit (bit 0). The result is returned in rD. The S1 field is ignored.

The rte instruction uses a variation of triadic addressing in which no operands are specified.
When this instruction executes, the exception-time and shadow registers are loaded into
the run-time registers. Program execution resumes in the context saved in the exception-
time and shadow registers.

31 15 0
rS1 | SOURCE 1 REGISTER

3 0
rs2 | SOURCE 2 REGISTER]

\

INTEGER ARITHMETIC OPERATION
FLOATING-POINT OPERATION
BIT-FIELD OPERATION
LOGICAL OPERATION

0 DESTINATION REGISTER

3-2 MC88100 USER'S MANUAL MOTOROLA

Instruction Format (Floating-Point)

31 2% % 21 2 16 15 5 4 0
{1 0000 1] D [St | SUBOPCODE | 52 |

D The D field specifies the destination register which receives the result of
the operation.

S1 The S1 field specifies the source 1 operand register. For the int, nint, fit,
and trnc instructions, S1 must be zero.

SUBOPCODE This field identifies the floating-point instruction (fadd, femp, fdiv, fmul,
fsub, int, nint, flt, and trnc).

S2 The S2 field specifies the source 2 operand register.

Instruction Format (Nonfloating-Point)

31 2% 25 2120 16 15 5 4 0
(10100 D | S1 { SUBOPCODE | 52 |
D The D field specifies the destination register which receives the result of
the operation. This field is ignored for instructions that do not generate
results.
S1 The S1 field specifies the source 1 operand register. For bit scan and the

rte instructions, this field is ignored.
SUBOPCODE This field identifies the nonfloating-point instruction (add, addu, and, cmp,
div, divu, ext, extu, ff0, ff1, mak, mul, or, rot, rte, set, sub, subu, trnc, and

xor).

S2 The S2 field specifies the source 2 operand register. For the rte instruction
this field is ignored.

MOTOROLA MC88100 USER’'S MANUAL 3-3

3.1.1.2 REGISTER WITH 10-BIT IMMEDIATE ADDRESSING. This mode of addressmg is
used in bit-field instructions (clr, ext, extu, mak, rot, set).

The appropriate data in the register specified by the S1 field is processed by the integer
unit, and the result is placed in rD. The 10-bit immediate field serves as two 5-bit fields
that specify the width and offset of the S1 operand field.

3 9 0
INSTRUCTION L | immiows,05) |

rs1 | SOURCE 1 REGISTER]

Y
.y |
> BIT-FIELD OPERATION l

31 y 0
0 | DESTINATION REGISTER |
Instruction Format
2% 25 2120 16 15 10 9 0
[1 111 0 0] D | s1 | SUBOPCODE [w0 ws, o5) 1
D Instructions write the result to the destination register specified by the D
field.
S1 The S1 field specifies the source 1 operand register.

SUBOPCODE This field identifies the particular instruction (clr, ext, extu, mak, rot, set).

IMM10 This field contains the 10-bit immediate value which represents a 5-bit
width and a 5-bit offset.
Bits 9-5 — 5-bit width
Bits 4-0 — 5-bit offset

3-4 MC88100 USER'S MANUAL MOTOROLA

3.1.1.3 REGISTER WITH 16-BIT IMMEDIATE ADDRESSING. This form of addressing is used
by arithmetic and logical instructions requiring an immediate source value. The data in
the rS1 and the 16-bit immediate operand are processed by the integer unit or FPU, and
the result is placed in rD. The instructions that use this mode include add, addu, and, cmp,

div, divu, mask, mul, or, sub, subu, and xor.

INSTRUCTION L | Mmie]
31 y 15 0
IVEDIATE | ZERO EXTENDED IMM16)
NOT ZERQ-EXTENDED
. 0 FOR LOGICAL OPERATIONS
(USED WITH 16 BITS
st | SOURCE 1 REGISTER | OF rS1)

\

INTEGER ARITHMETIC OPERATION
> FLOATING-POINT OPERATION

LOGICAL OPERATION

A

=)

D [

DESTINATION REGISTER

Instruction Format

31 % 25 2120 16 15 0
{ oecope | D [S1 | IMM16 |

OPCODE This field identifies the particular instruction (add, addu, and, cmp, div,
divu, mask, mul, or, sub, subu, xor).

D Operations write the result to the destination register specified by the D
field.

S1 The S1 field specifies the source 1 operand register.

IMM16 This field contains the unsigned immediate value.

MOTOROLA MC88100 USER’'S MANUAL 3-5

3.1.1.4 CONTROL REGISTER ADDRESSING. Control register addressing is used to refer-
ence the general control and FPU control registers. General-purpose registers are loaded
from, stored to, or exchanged with the control registers. This addressing mode applies to
both the user and supervisor programming modes. The instructions that use this mode
include Idcr, ster, xcr, flder, fster, and fxcer.

Instruction Format

31 2% 25 21 20 16 1514 13 11 10 5 4 0
[t o000 o] o [st Jor | s | cmscro | 52 j
D For load and exchange instructions, the D field specifies the general-purpose

register that is loaded with the contents of the selected control register.
For store instructions, the D field is ignored.

S1 For store and exchange instructions, the S1 field specifies the general-
purpose register containing the data to be transferred to the selected con-
trol register. For load instructions, the S1 field is ignored.

oP This field identifies the particular instruction (lder, ster, xcr, fider, fster,
fxcr).
SFU This field specifies the special function unit (SFU) accessed by the instruc-

tion. The value zero specifies the integer unit control registers; the value
one specifies the floating-point unit control registers. Other values (2-7)
cause an SFU precise exception for the addressed SFU.

CRS/CRD This field specifies the control register. In the case of a load instruction,
the control register is the source; in the case of a store instruction, the
control register is the destination.

S2 The S2 field must contain the same value as the S1 field (for decoding
purposes) and serves the same purpose as the S1 field.

3.1.2 Data Memory Access Instructions

The MC88100 supports three addressing modes for accessing the data memory space. All
of these addressing modes can be used by the Id, st, xmem, and Ida instructions to access
data in memory or to generate a memory address. The addressing modes used are the
same as the triadic register and register with 16-bit immediate (see 3.1.1 Register-to-
Register Instructions).

Address calculations are performed using unsigned arithmetic. Overflows are not detected;
results are truncated to the number of available bits.

3-6 MC88100 USER'S MANUAL MOTOROLA

3.1.2.1 REGISTER INDIRECT WITH ZERO-EXTENDED IMMEDIATE INDEX. The contents of
rS1 are added to the 16-bit zero-extended immediate index contained in the 116 field of
the instruction. The result is a data memory address used to load or store data via the data
processor bus (P bus). For a load instruction, the memory data is loaded into the register
specified by the D field. For a store or exchange memory instruction, the data in the register
specified by the D field is stored to memory. For the Ida instruction, the calculated address
is loaded into the specified destination register.

3 15 0
INSTRUCTION | | 116 B
31 y15 0
IMMEDIATE | zero ExTENDED 116 |
31 0 Y
S1 l SOURCE 1 REGISTER +
31 0
MEMORY ADDRESS { rS1 + 116 |
Y
Ida MEMORY
ACCESS
A
3 / 0 STORE
D) | DESTINATION REGISTER
LOAD
Instruction Format
31 % 25 2120 16 15 0
[opcobe] D | S1 [116 |
OPCODE This field identifies the particular instruction (ld, st, xmem, and lda).
D The D field specifies the destination register for a load instruction. In the

case of a store or exchange memory instruction, the D field specifies the
source register for the data. (The D field specifies the register that is stored
since the internal D bus is used for accessing the source register).

S1 The S1 field specifies the source 1 operand register used in the address
‘ calculation.
116 This field contains a 16-bit immediate index.

MOTOROLA MC88100 USER'S MANUAL 3-7

3.1.2.2 REGISTER INDIRECT WITH INDEX. The contents of rS1 is added to the contents of
rS2. The result is a data memory address used to load or store data via the data P bus.
For a load instruction, the memory data is loaded into the register specified by the D field.
For a store or exchange memory instruction, the data in the register specified by the D
field is stored to memory. For the Ida instruction, the calculated address is loaded into the
specified destination register.

31 0
s | SOURCE 1 REGISTER 1
3 0
rs2 l SOURCE 2 REGISTER
3 0
MEMORY ADDRESS | (ST + 2 |
Y
Ida MEMORY
ACCESS
A
3 / 0 STORE
I | DESTINATION REGISTER ‘
, L0AD
Instruction Format
3t % 2 21 20 16 15 54 0
(b 00] D [s | SUBOPCODE | $2 |
D The D field specifies the destination register for a load instruction. For the

store or exchange memory instructions, the D field specifies the source
register for the data. (The D field specifies the register that is stored since
the internal D bus is used to access the source register).

S1 The S1 field specifies the source 1 operand register used in the address
calculation.

SUBOPCODE This field identifies the particular instruction (ld, st, xmem, or Ida).
S2 The S2 field specifies the source 2 operand register used in the address

calculation.

3-8 MC88100 USER'S MANUAL MOTOROLA

3.1.2.3 REGISTER INDIRECT WITH SCALED INDEX. The contents of rS2 is scaled by the
size of the access and then added to the contents of rS1. The result is a data memory
address used to load or store data via the data P bus. For a load instruction, the memory
data is loaded into the register specified by the D field of the instruction. For a store or
exchange memory instruction, the data in the register specified by the D field is stored to
memory. For the Ida instruction, the calculated address is loaded into the specified des-
tination register.

31 0
rS1 | SOURCE 1 REGISTER |
31 0
rs2 1 SOURCE 2 REGISTER |
SCALE SCALE FACTOR * >(+
(1,2,4,0R 8)
31 0
MEMORY ADDRESS | rS1 + rS2 (SCALED) B
\
Ida MEMORY
: ACCESS
A
3 Y 3 sToRe
D | DESTINATION REGISTER
LOAD
Instruction Format
31 % 25 210 - 16 15 5 4 0
(111010 1] D | s1 | SUBOPCODE | s2 |
D The D field specifies the destination register for a load instruction. For the

store or exchange memory instruction, the D field specifies the source
register for the data. (The D field specifies the register that is stored since
the internal D bus is used to access the source register.)

S1 The S1 field specifies the source 1 operand register used in the address
calculation.

MOTOROLA MC88100 USER'S MANUAL L 3-9

SUBOPCODE This field identifies the particular instruction (ld, st, xmem, lda), including
the scaling factor for the memory data. When the source 2 operand is
scaled, it is shifted by 0, 1, 2, or 3 bits (multiplied by scale factor 1, 2, 4,
or 8) for byte, half-word, word, or double-word accesses, respectively. For
byte accesses, the SUBOPCODE field is distinctly different from the register
indirect with index (unscaled) cases but the result is identical.

S2 The S2 field specifies the source 2 operand register used in the address
calculation.

3.1.3 Flow-Control Instructions

Flow-control instructions address or reference instruction memory using four different
addressing modes. The following paragraphs describe the flow-control instructions and
addressing modes, showing the instruction format and a flow diagram of the instruction.
The triadic register addressing mode uses the same instruction format as the register-to-
register instructions.

Address calculations are performed using signed arithmetic. Overflows are not detected;
results are truncated to the number of available bits.

3.1.3.1 TRIADIC REGISTER ADDRESSING. This form of addressing is used to specify the
target of a jump instruction or the operands of a trap-on-bound instruction. These instruc-
tions have the same format as the register-to-register instructions. Like the register-to-
register instructions, all three of the specified registers do not have to be used.

3.1.3.1.1 Jump Instructions (jmp, jsr). The contents of the rS2 is placed in the fetch in-
struction pointer (FIP), causing program execution to be transferred to that address. The
lower two bits of S2 are ignored so that FIP contains a word address. The S1 and D fields
are not used and are ignored by the processor.

3 0
rs2 | SOURCE 2 REGISTER |
31 Y 0
FIP I SOURCE 2 REGISTER CONTENTS |
Instruction Format
31 % 25 21 20 16 15 5 4 0
IEEEEE D | S [SUBOPCODE | 2|
D This field is ignored.
S1 This field is ignored.

3-10 MC88100 USER’'S MANUAL MOTOROLA

SUBOPCODE This field identifies the particular instruction (jmp, jmp.n, jsr, jsr.n).

S2 The S2 field specifies the source 2 register.

3.1.3.1.2 Trap-Generating Bounds-Check Instruction (tbnd). The data in rS1 and rS2 is
compared, and a trap is taken if the source 1 data is greater than the source 2 data
(unsigned). The D field is not used and is ignored by the processor. If the trap is taken,
execution transfers to the bounds check exception vector as follows: the 20-bit address in
the vector base register (VBR) is concatenated with the bounds check exception vector and
three trailing zeros to form the 30-bit instruction address. The result is placed in the FIP,
and program execution begins from that address.

S1 | SOURCE 1 REGISTER B

3 0
| SOURCE 2 REGISTER]

rS1>rS2

tbnd INSTRUCTION
EXCEPTION VECTOR

victor 31 12 _ 2 2 0
BASE [VECTOR PAGE BASE ADDRESS | 3 000
REGISTER -
31 320
FIP [vecron pace Bast aporess | vector Jooo

Instruction Format

31 % 25 220 16 15 5 4 0
(0] D [s [SUBOPCODE s2

D - This field is ignored.

ST The S1 field specifies the source 1 operand register.

SUBOPCODE This field identifies the particular instruction (tbnd).

S2 The S2 field specifies the source 2 register.

MOTOROLA MC88100 USER’S MANUAL 3-1

3.1.3.2 REGISTER WITH 9-BIT VECTOR TABLE INDEX. This addressing method is used by
the tb0, tb1, and tend (trap-generating) instructions.

For bit-test trap instructions, the bit in rS1 specified by the B5 field is tested for either a
set or clear condition. For conditional trap instructions, the source 1 register is tested for
the condition(s) specified in the M5 field. In either case, if the test condition is true, the 20-
bit address in the vector base register (VBR) is concatenated with the VEC9 field of the
instruction and three trailing zeros to form the 30-bit instruction address. Exception proc-
essing begins, and the vector is fetched from the resulting address.

3 225 2120 0
INSTRUCTION | | B3/ms | |
3
st | SOURCE 1 REGISTER
31 98 0
INSTRUCTION [| vecs |
|
VECTOR i” ‘2I _____ S 0
BASE VECTOR PAGE BASE ADDRESS) 000
ReGisTeR e e 4 TRAILING ZEROS
31 1211 320
FIP | VECTOR PAGE BASE ADDRESS | vecs Jooof
Instruction Format
31 2% 2 20 16 15 98 0
[0 0 o] Baws] St | susopcooe | VECY |
B5/M5 For bit test, the B5 field specifies the bit to be tested in the register specified

by the S1 field. For conditional tests, bits 25-21 of the M5 field specify
which conditions to test out of four possible conditions:

Bit 25:

Bit 24:
Bit 23:
Bit 22:
Bit 21:

Reserved, unused by the branch selection logic (must be zero
for future compatibility).

Maximum negative number [Sign and Zero]

Less than zero [Sign and (not Zero)]
Equal to zero [(not Sign) and Zero]
Greater than zero [(not Sign) and (not Zero)]

Multiple conditions can be specified by setting more than one bit in this
field. These conditions are shown in the following table.

3-12

MC88100 USER'S MANUAL MOTOROLA

Bit: 25 24 23 22 21
eq0 (equals zero) 0 0 0 1 O
ne0 (not equal to zero) 0 1 T 0 1
gt0 (greater than zero) 0o 0 o0 0 1
It0 (less than zero) 0 1 1 0 O
ge0 (greater than/equals zero) o 0o o 1 1
le0 (less than/equals zero) o 1 1 1 0

S1 The S1 field specifies the source 1 operand register.

SUBOPCODE This field identifies the particular instruction (tb0, th1, tend).

VEC9 This field contains the 9-bit vector number.

3.1.3.3 REGISTER WITH 16-BIT DISPLACEMENT/IMMEDIATE. This form of addressing is
used by branch and trap instructions for target address and test condition generation.

3.1.3.3.1 Bit-Test Branch Instructions (bb0, bb1, bend). For bit-test branch instructions, the
bitin rS1is specified by the B5 field is tested for either a set or clear condition. For condition-
test branch instructions, rS1 is tested for the condition(s) specified in the M5 field. In either
case, if the test condition is true, the 16-bit displacement specified in the instruction is
shifted left two positions and sign extended to 32 bits. The two least significant bits are
cleared to force word alignment. This value is added to the execute instruction pointer
(XIP), and the result is loaded into the FIP. Program execution is transferred to that address.

31 %2 212 0
INSTRUCTION [| Bms |]
31 0
st SOURCE 1 REGISTER |
31 0
INSTRUCTION { |
31 210
DISPLACEMENT | sionextenpen | D16 [oo}
31 0
xie | EXECUTE INSTRUCTION POINTER
31 7 210
FIP | XIP + D16 foo]
MOTOROLA MC88100 USER’S MANUAL 3-13

Instruction Format

31

26 25

2120 16 15 0

OPCODE

| ems | s1 | D16 |

OPCODE

S1

D16

3-14

This field identifies the particular instruction (bb0, bb0.n, bb1, bb1.n, bend,

bend.n).

For bit test, the B5 field specifies the bit to be tested in the register specified
by the S1 field. For conditional tests, bits 25-21 of the M5 field specify
which conditions to test out of four possible conditions:

Bit 25:

Bit 24:
Bit 23:
Bit 22:
Bit 21:

Reserved, unused by the branch selection logic (must be zero
for future compatibility).
Maximum negative number [Sign and Zero]

Less than zero [Sign and (not Zero)]
Equal to zero [(not Sign) and Zero]
Greater than zero [(not Sign).and (not Zero)]

Multiple conditions can be specified by setting more than one bit in this
field. These conditions are:

Bit: 25 24 23 22 21
eq0 (equals zero) 0 0o 0 1 O
ne0 (not equal to zero) o 1 1 0 1
gt0 (greater than zero) 0 0 0 0 1
It0 (less than zero) 0o 1 1 0 O
ge0 (greater than/equals zero) o 0 0 1 1
le0 (less than/equals zero) o 1t 1 1 0
The S1 field specifies the source 1 operand register.
This field specifies a signed 16-bit displacement.
MC88100 USER'S MANUAL MOTOROLA

3.1.3.3.2 Trap-Generating Bounds-Check Instruction (tbnd). The data in rS1 is compared
to the specified immediate operand, and a trap is taken if the register data is greater than
the immediate operand (unsigned). If the trap is taken, the bounds check vector number
is combined with the VBR, and the result is concatenated with three trailing zeros and
loaded into the FIP. Exception processing begins for the bounds check exception.

3 16 15 0
INSTRUCTION | | IMM16 |
31 16 {15 0
| ZERO EXTENDED IMM16]

31 0

st | SOURCE 1 REGISTER B

tbnd INSTRUCTION
EXCEPTION VECTOR

31 12 0 2 0
vecron B M - 2
-« 000
BASE | VECTOR PAGE BASE ADDRESS |] A ATING 25705 {oo0]
REGISTER
31 121 320
FIP | vecror pace Base ADDRESS | vector ooo

Instruction Format

31 % 25 2120 16 15 0
[oecooe] D | S1 [IMM 16 |
OPCODE This field identifies the particular instruction (bb0, bb0.n, bb1, bb1.n, bend,
bend.n, tbnd).
D Unused — should be zero for future compatibility.
S1 The S1 field specifies the source 1 operand register.
IMM16 This field specifies a 16-bit immediate operand for the tbnd instruction.

MOTOROLA MC88100 USER'’S MANUAL 3-15

3.1.3.4 26-BIT BRANCH DISPLACEMENT. This form of addressing is used to specify the
branch target instruction in unconditional branch instructions (br, bsr).

Unconditional branch instructions use a sign-extended 26-bit displacement to calculate the
location of a new target instruction. The displacement is shifted left by two bits and sign
extended to 32 bits. The two least significant bits are cleared to force word alignment. This
value is then added to the XIP to form the address of the target instruction. The computed
address is placed in the FIP, causing program execution to be transferred to that address.

31 2 25 0
INSTRUCTION D26
3 2 27 v 21 0
SIGN
DISPLACEMENT EXTENDED D26 00
31 21 0
XIP EXECUTE INSTRUCTION POINTER 00
31 21 0
FIP XIP+ D26 00
Instruction Format
31 2% 25 0
[oecooe | 026 ' |
OPCODE This field identifies the particular instruction (br, br.n, bsr, bsr.n).
D26 This field specifies the displacement to the target instruction.

3-16 MC88100 USER'S MANUAL MOTOROLA

3.2 INSTRUCTION CATEGORIES

The instructions used in the MC88100 fall into six categories: logical, integer arithmetic,
floating point, bit field, load/store/exchange, and flow control. The following paragraphs
describe the different categories along with the operand syntax and the operation per-
formed. Table 3-1 provides the identification of abbreviations and symbols used in the
instruction tables and instruction set.

Table 3-1. Instruction Description Notations

MOTOROLA

Abbreviation Description
r1 General-Purpose Register 1
rS1 Source 1 Register — register containing the first source operand
rS2 Source 2 Register — register containing the second source operand
D Destination Register — register destination that will be modified by the operation (source of data on
a store operation)

crS Source Control Register
crD Destination Control Register
crS/D Source and Destination Control Register (for xcr instruction)
ferS Source Floating-Point Control Register
fcrD Destination Floating-Point Control Register
ferS/D Floating-Point Source and Destination Control Register (for fxcr instruction)
D16, D26 16- and 26-Bit Signed Instruction Address Displacement
IMM16 Unsigned 16-Bit Immediate Operand
116 Unsigned 16-Bit Immediate Index
VEC9 Offset from the page address contained in the Vector Base Register
M5 5-Bit Condition Match Field — the bits indicate the following conditions:

Bit 25: Reserved

Bit 24: Sand Z

Bit 23: S and (not Z)

Bit 22: (not S) and Z

Bit 21: (not S) and (not Z)

S: Sign bit (bit 31 of the tested register)
Z: Zero bit (logical NOR of bits 30 through 0 of the tested register)
B5 Unsigned 5-Bit Integer denoting a bit number within a word
<05> Unsigned 5-Bit Integer denoting a bit-field offset within a word
W5 Unsigned 5-Bit Integer denoting a bit-field width within a word, with 0 denoting a width of 32
1.n Delay Branch Option — if specified, execute the next sequential instruction before the branch target
instruction
—Continued —
MC88100 USER'S MANUAL 3-17

Table 3-1. Instruction Description Notations — Continued

Abbreviation

Description

{.c}

Complement Option — if specified, the second operand is ones complemented before it is used in
the operation

{u}

Upper Half-Word Option — if specified, the 16-bit logical operation is performed with the upper 16
bits of the source register

{.car}
.ci
.co

.cio

Carry

‘Carry In’ Option — if specified, include the PSR carry bit in the arithmetic operation

‘Carry Out’ Option — if specified, set or clear the PSR carry bit based on the result of the arithmetic
operation

‘Carry In/Carry Out’ Option — if specified, include the PSR carry bit in the arithmetic operation and
set or clear the carry bit based on the result

.8Z

Memory Size: default=word
Byte (8 bits)

Unsigned Byte (8 bits)

Half Word (16 bits)

Unsigned Half Word (16 bits)
Single Word (32 bits)

Double Word (64 bits)

fsz

-’}

Floating-Point Operand Size — The .fsz is a three-letter designator that corresponds to the sizes of
the D, S1, and S2 operands, respectively (two-letter designator for D and S2 operands for the con-
version instructions). Floating-point operations support mixed operand sizes; two or three register
operands can use two or three of the “.s" or “.d" qualifiers in any combination to support the operand
size mix. For example:
fadd.dds r3,r5,r9; r3 and r5 are double precision, r9 is single precision

Single Precision

Double Precision

{.usr}

User memory option. This option pertains to memory access instructions, allowing the user memory
space to be accessed while in the supervisor mode.

[rS2]

Scaled Index

“Don’t Care” Bit

Add

Subtract

Multiply

Compare

Divide

OR

Concatenate

Shift Left

Replaced By

AND

Exclusive OR

Relational test, true if left operand is less than right operand

Relational test, true if left operand is greater than right operand

Optional

3-18

MC88100 USER'S MANUAL MOTOROLA

3.2.1 Logical Instructions

The logical instructions provide three common logical operations: AND, OR, and exclusive
OR. An immediate mask instruction is also provided. These instructions operate on the
entire source 1 operand (when triadic addressing is used) or can operate only on the lower
or upper half-word of the source 2 operand (when register with 16-bit immediate addressing
is used). In addition, when triadic addressing is used, the logical instructions can optionally
complement the source 2 operand before the operation occurs. Table 3-2 lists the logical
instructions.

Table 3-2. Logical Instructions

Instruction Name Operand Operation
Syntax
and|.u} Logical AND rD,rS1,IMM16 rD 4 rS1 (lower or upper 16 bits) \ IMM16;
remaining 16 bits of rS1 are copied to rD.
and|.c| rD,rS1,rS2 rD 4rS1 \ rS2 (normal or complemented).
mask.u} Logical Mask rD,rS1,IMM16 rD (lower or upper 16 bits) 4 rS1 (lower or upper
Immediate 16 bits) \ IMM16. Remaining bits 4 zero.
ori.uj Logical OR rD,rS1,IMM16 rD 4 rS1 (lower or upper 16 bits) V IMM16;
remaining 16 bits of rS1 or copied to rD.
or|.c| rD,rS1,rS2 rD 4rS1V rS2 (normal or complemented).
xor|.u} Logical rD,rS1,IMM16 rD 4 rS1 (lower or upper 16 bits) + IMM16;
Exclusive OR remaining 16 bits of rS1 are copied to rD.
xor|.c| rD,rS1,rS2 rD 4rS1 & rS2 (normal or complemented)
MOTOROLA MC88100 USER’'S MANUAL . 3-19

3.2.2 Integer Arithmetic Instructions

These instructions provide the standard arithmetic operations and an integer compare
operation. For add, subtract, and divide operations, both a signed and an unsigned in-
struction are available in the instruction set. Various combinations of carry bits can be
optionally specified for the add and subtract instructions. Table 3-3 lists the integer arith-

metic instructions.

Table 3-3. Integer Arithmetic Instructions

Instruction Name Operand Operation
Syntax

add Integer Add rD,rS1,IMM16 rD ¢ rS1+IMM16

add|.car} rD,rS1,rS2 rD ¢rS1+rS2

adduj.car| Unsigned rD,rS1,IMM16 rD 4¢rS1+IMM16
Integer Add rD,rS1,rS2 rD 4rS1+rS2

cmp Integer rD,rS1,IMM16 rD 4rS1 :: IMM16
Compare rD,rS1,rS2 rD 4rS1 :: rS2

div Integer rD,rS1,IMM16 D ¢ rS1/IMM16
Divide rD,rS1,rS2 rD 4 rS1/rS2

divu Unsigned rD,rS1,IMM16 rD ¢ rS1/IMM16
Integer Divide rD,rS1,rS2 rD 4rS1/rS2

mul Integer rD,rS1,IMM16 rD 4rS1 x IMM16
Multiply rD,rS1,¢S2 rD 4¢¥S1 x rS2

sub Integer rD,rS1,IMM16 D ¢rS1-1IMM16

sub.car} Subtract rD,rS1,rS2 rD 4rS1-rS2

subu Unsigned rD,rS1,IMM16 rD ¢ rS1-IMM16

subu|.car| Integer Subtract |rD,rS1,rS2 rD 4rS1-rS2

by the floating-point unit.

3-20

MC88100 USER'S MANUAL

NOTE: Although the div, divu, and mul instructions are classified as integer instructions, these instructions are executed

MOTOROLA

3.2.3 Floating-Point Instructions

The floating-point instructions provide ANSI-IEEE 754-1985 (/EEE Standard for Binary Float-
ing-Point Arithmetic) standard floating-point arithmetic and integer/floating-point conver-
sions for various operand sizes (single- and double-precision). This instruction category
also includes the instructions that access the floating-point control registers. Table 3-4 lists
the floating-point instructions.

Table 3-4. Floating-Point Instructions 3
. Operand .
Instruction Name Syntax Operation
fadd.fsz Floating-Point rD,rS1,rS2 rD 4rS1+rS2
Add
femp.fsz Floating-Point rD,rS1,rS2 rD ¢rS1 :: 1S2
Compare
fdiv.fsz Floating-Point rD,rS1,rS2 rD 4rS1/rS2
Divide
fider Load From D ferS D 4 ferS

Floating-Point
Control Register

fit.fsz Convert rD,rS2 rD ¢ float(rS2)
Integer to
Floating Point

fmul.fsz Floating-Point rD,rS1,rS2 rD 4rS1 x rS2
Multiply

fster Store to rD ferD ferD 41D

Floating-Point
Control Register

fsub.fsz Floating-Point rD,rS1,rS2 rD ¢ rS1-rS2
Subtract

fxer Exchange rD,rS ferS/D rD ¢ fcrS/D, temp 4 1S
Floating-Point fcrS/D ¢ temp
Control Register | .

int.fsz Round Floating rD,rS2 rD ¢ round(rS2)
Point to Integer

nint.fsz Round Floating rD,rS2 rD ¢ round_nearest(rS2)
Point to
Nearest Integer

trnc.fsz Truncate rD,rS2 rD ¢ trunc(rS2)

Floating Point

NOTE: If general-purpose register r0 is specified as the destination register for any floating-point instruction except fster,
flder, and fxcr, the MC88100 takes a floating-point unimplemented opcode exception as described in SECTION 6
EXCEPTIONS.

MOTOROLA MC88100 USER'S MANUAL 3-21

3.2.4 Bit-Field Instructions

The bit-field instructions set, clear, make, extract, rotate, and find bit fields in the source
operand. Bit fields are specified by a width and an offset field in the instruction, or by the
lower ten bits of the rS2 operand. These lower ten bits are treated as two 5-bit fields, with
bits 4-0 specifying the offset (<05>) from the source 1 operand bit 0 position and with
bits 9-5 specifying the width of the field (W5). Bit-field instructions also perform left and
right shift operations. A width of zero specifies all 32 bits. Table 3-5 lists the bit-field

instructions.

Table 3-5. Bit-Field Instructions

. Operand .
Instruction Name Syntax Operation
clr Clear Bit Field rD,rS1,W5<05> rD 4 rS1 with bit field clear. Bit field is O5 bits from bit zero,
rD,rS1,rS2 W5 bits wide.
ext Extract Bit Field rD,rS1,W5<05> rD 4 rS1 bit field. ¥rS1 bit field is O5 bits from bit zero, W5
rD,rS1,rS2 bits wide, sign extended. The resulting bit field is placed in
rD starting at bit 0.
extu Extract Bit Field rD,r,S1,W5<05> | rD 4rS1 bit field. rS1 bit field is O5 bits from bit zero, W5
Unsigned rD,rS1,rS2 bits wide, zero extended. The resulting bit field is placed in
rD starting at bit 0.
ffo Find First rD,rS2 rD ¢ position of rS2 first zero bit (32 if none found). The
Bit Clear search begins at bit 31 of rS2 (the most significant bit).
ff1 Find First rD,rS2 rD ¢ position of rS2 first one bit (32 if none found). The
Bit Set search begins at bit 31 of rS2 {the most significant bit).
mak Make Bit Field rD,rS1,W5<05> rS1 bit field is W5 bits wide starting at bit zero.
rD,rS1,rS2 rD 4 rS1 bit field shifted left by offset O5.
Remaining rD bits cleared.
rot Rotate Register rD,rS1,<05> rD ¢ rS1 rotated right by 05 bits.
rD,rS1,rS2
set Set Bit Field rD,rS1,W5<05> rD 4 rS1 with bit field set. Bit field is O5 bits from bit zero,
rD,rS1,rS2 W5 bits wide.
3-22 M88100 USER'S MANUAL MOTOROLA

3.2.5 Load/Store/Exchange Instructions

These instructions perform the memory accesses that move data of various sizes between
memory and general-purpose registers. Also, this category includes the instructions that
access the integer unit control registers. Table 3-6 lists the load/store/exchange instructions.

Table 3-6. Load/Store/Exchange Instructions

Instruction Name Operand Operation
Syntax

Id |.sz} Load Register rD,rS1,116 rD 4 contents of memory location. Memory address is

Id {.sz{{.usr| from Memory rD,rS1,rS2 rS1+116, rS1+rS2, or rS1+ (rS2<<scale). Scale factor=0,
rD,rS1,[rS2] 1, 2, or 3 for byte, half word, word, or double word,

respectively.

Ida |.sz} Load Address rD,rS1,116 rD 4rS1+116, rS1+rS2, or rS1+(rS2--~scale). Scale
rD,rS1,rS2 factor=0, 1, 2, or 3 for byte, half word, word, or double
rD,rS1,[rS2] word, respectively.

Idcr Load from rD,crS rD 4 crS

Control Register

st |.sz| Store Register rD,rS1,116 Contents of memory location 4rD. Memory address is

st {.sz}{.usr} to Memory rD,rS1,rS2 rS1+116, rS1+rS2, or rS1+(rS2<<scale). Scale factor=0,
rD,rS1,[rS2] 1, 2, or 3 for byte, half word, word, or double word,

respectively.

ster Store to rD,crD crD4rD

Control Register

xmem.bu Exchange Register |rD,rS1,116 rD 4 contents of memory location. Contents of memory

xmem.bu/{.usr} with Memory rD,rS1,rS2 location 4 rD. Memory address is rS1+116, rS1+rS2, or

xmem)|.usr| rD,rS1,[rS2) rS1+(rS2<:<scale). Scale factor=0 or 2 for byte or word,
respectively.

xcr Exchange rD,rS,crS/D temp 4 rS; rD 4 crS/D; crS/D ¢ temp

Control Register
MOTOROLA MC88100 USER’S MANUAL 3-23

3.2.6 Flow-Control Instructions

The flow-control instructions alter the sequential execution stream. These instructions
include jump, branch, and trap instructions. Table 3-7 lists the flow-control instructions.

Table 3-7. Flow-Control Instructions

: Operand)
Instruction Name Syntax Operation
3 jmp {.n} Unconditional rS2 FIP ¢ rS2
Jump
jsr {.n} Jump to rS2 FIP 4 rS2
Subroutine With .n option, r1 4 NIP +4; without .n option r1 4 NIP
bb0 {.n} Branch on B5,rS1,D16 If bit B5 of register rS1 clear, FIP ¢ XIP+D16
Bit Clear
bb1 {.n} Branch on B5,rS1,D16 If bit B5 of register rS1 set, FIP 4 XIP+D16
Bit Set
bend {.n}) Conditional M5,rS1,D16 If rS1 meets condition(s) M5, FIP ¢ XIP+D16
Branch
br {.n| Unconditional D26 FIP ¢ XIP + D26
Branch
bsr {.n} Branch to D26 FIP ¢ XIP + D26
Subroutine With .n option, r1 4 NIP +4; without .n option r1 ¢ NIP
tb0 Trap on B5,rS1,VEC9 If bit B5 of register rS1 clear, save execution context;
Bit Clear FIP 4 VBR || VEC9 || 3 trailing zeros
tb1 Trap on B5,rS1,VEC9 If bit B5 of register rS1 set, save execution context,
Bit Set FIP ¢ VBR || VEC9 || 3 trailing zeros
tbnd Trap on rS1,IMM16 If rS1>IMM16 or rS1>rS2(unsigned comparison), save ex-
Bounds Check rS1,rS2 ecution context FIP 4 VBR || bounds check vector || 3 trailing
zeros
tend Conditional Trap | M5,rS1,VEC9 If rST meets condition(s) M5, save execution context;
FIP ¢ VBR || VEC9 | 3 trailing zeros
rte Return from (none) Restore saved context
Exception

3-24 MC88100 USER’S MANUAL MOTOROLA

3.3 PROGRAMMING TIPS

The following paragraphs provide information to the programmer on shift instructions,
delayed branching, and condition computations.

3.3.1 Shift Instructions

Shift functions are easily performed through MC88100 bit-field instructions. The following
paragraphs list common shift functions and the instructions used to perform them. Refer
to 3.4 INSTRUCTION SET for more detailed information on how the shift functions are
invoked.

3.3.1.1 SHIFT RIGHT ARITHMETIC. When the W5 field of an ext (extract signed bit field)
instruction contains all zeros (specifying a width of 32 bits), the instruction operates as an
arithmetic shift right instruction. The offset specifies the number of positions to shift. The
high-order bits are sign filled in the destination register. The following illustration shows
the shift usage of the ext instruction:

WIDTH =32, OFFSET =5

rSt |1111111011111110111111101111111o|
[t ot v i o 1100 1010010111
S ———
EXTENDED
SIGN BIT

3.3.1.2 SHIFT RIGHT LOGICAL. When the W5 field of an extu instruction contains all zeros
(specifying a width of 32 bits), this instruction operates as a logical shift right instruction.
The offset specifies the number of positions to shift. The high-order bits are zero filled in

the destination register. The following illustration shows the shift usage of the extu in-
struction:

WIDTH =32, OFFSET=5

S IR RN

o oo o oo T T ot Tttt 101

N ——————

ZERO FILL

MOTOROLA MC88100 USER'S MANUAL 3-25

3.3.1.3 SHIFT LEFT. When the W5 field of a mak instruction contains all zeros (specifying
a width of 32 bits), the instruction operates as a shift left instruction. That is, the width
field selects the entire register; the offset specifies the number of positions to shift. The
low-order bits are zero filled in the destination register. The following illustration shows
the shift usage of the mak instruction:

IGNORED

e ——

rS1 I1111111111110111111101111111011ﬂ

WIDTH =32, OFFSET=5

w [T i ot t 1o 1111011100 0 0 of

ZERO FILL

3.3.1.4 SHIFT CIRCULAR. The rot (rotate register) instruction rotates the bits in rS1 to the
right by the number of bits specified in the O5 field. The result is placed in rD. For triadic
register addressing, the five low-order bits of the data contained in rS2 are used as the 05
field. Bits 9-5 in rS2 must be zero; the other bits are ignored.

3.3.2 Delayed Branching

The branch and jump instructions have a delayed branch option (.n) that can be specified
so that the next sequential instruction is executed before the branch instruction (regardless
of the branch condition). This provides an efficient use of processor resources when branches
are taken because the time required to prefetch the target instruction is overlapped with
useful instruction execution.

The programmer can take advantage of the delayed branching feature for unconditional
branch or jump instructions by intentionally placing an instruction that normally resides
before the branch so that it physically follows the branch (in the delay slot) and specifying
the .n option for the branch. Alternately, the first instruction from the target can be copied
from the target address to fill the delay slot. For conditional branch or jump instructions,
the delay slot can also be filled with an instruction from before the branch (if it does not
affect the execution of the branch instruction). The delay slot can also be filled with an
instruction from the target address, provided that program execution is not adversely
affected by the extra execution of that instruction in the case of the branch not taken.

3.3.3 Condition Computation
The MC88100 architecture requires that condition bits be evaluated explicitly when they

are needed. Therefore, looping structures in the MC88100 are most efficiently implemented

3-26 MC88100 USER'S MANUAL MOTOROLA

by branch instructions that count down to zero (rather than counting up to the loop count)
because the compare and branch function can be easily implemented with one instruction
(bend). If the bend instruction is used, no other conditions must be evaluated for the branch,
and an extra comparison instruction is not required.

Other conditions can be evaluated by executing a compare instruction (cmp or fcmp)
followed by an extract bit-field instruction. An unsigned extract (extu) of the appropriate
condition bit in the destination register for the cmp creates a Boolean variable with the
values 0 and 1. A signed extract (ext) of the appropriate condition bit creates a Boolean
variable with the values 0 and — 1. If the condition does not need to be assigned, a branch-
on-bit instruction efficiently branches on any condition generated by the compare instruction.

3.4 INSTRUCTION SET

These paragraphs provide detailed descriptions of each instruction in the MC88100 instruc-
tion set. The instructions are arranged in alphabetical order with the instruction mnemonic
in large bold type for easy reference.

Each instruction description provides a complete discussion of the instruction operation,
the assembler syntax, and the instruction encoding. The assembler syntax is supported
by the Motorola MC88100 assembiler. Figure 3-1 illustrates how the information is presented
for each instruction.

MOTOROLA MC88100 USER'S MANUAL 3-27

INSTRUCTION NAME

»

add

(o]

Integer Add

OPERATION DESCRIPTION
ASSEMBLER SYNTAX FOR THE INSTRUCTION ———————————3»

POTENTIAL EXCEPTIONS CAUSED BY THE INSTRUCTION ~———3»

!

Destination 4 Source 1+ Source 2

P

add
add.ci
add.co
add.cio
add

rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2
rD,r$1,rS2
rD,rS$1,IMM16

Assembler
Syntax:

signed add (without!
signed add plus car:
signed add, propag
signed add plus car
signed add with imi

Exceptions: Integer Overflow

D

TEXT DESCRIPTION OF INSTRUCTION OPERATION

INSTRUCTION FORMAT: THE INSTRUCTION CATEGORY,
THE ADDRESSING MODES, THE BIT PATTERNS AND
THE FIELDS OF THE INSTRUCTION ENCODING.

—

EXPLANATION OF FIELDS WITHIN THE INSTRUCTION -———bg

p The add instruction adds the contents of the rS
contents of the rS2 register or a 16-bit, zero-extended in-
addition is performed. The result is placed in the rD regi
the carry bit to be added to the result (rD=rS1+rS2+ca
the generated carry bit to be written to the processor sta
option causes the carry bit to be added to the result and
carry bit to be written to the PSR. If the result cannot be
bit integer, an integer overflow exception occurs.

The add.ci instruction can be used to implement a ‘load
add.ci rD,r0,r0

Both source operands are r0, which by hardware conventi
of this operation will be zero plus the value of the carry bi
into the destination register.

The add.co instruction can be used to clear the carry bit:
add.co r0,r0,r0

Both source operands are r0, which by hardware conventic

of this operation is zero, which has a ‘carry out’ of zero e

bit. Because the instruction specifies r0 as the destination a

contents are altered as a result of this operation.
Instruction Encoding:

Integer Category — Register with 16-Bit Inmediate

Figure 3-1. Instruction Description Format

3-28

MC88100 USER'S MANUAL

31 2% 25 220 1615
[or 110 0f 0 [st A
L — A
Integer Category — Triadic Register
3 %% 70 1615 09 8
[Cr 10 4] 0 [st fo v v 0 o[i]d .
D: Destination Register
St Source 1 Register
IMM16: 16-Bit Unsigned Immediate Operand
| 0 - Disable Carry in .
1 - Add Carry to Result
0: 0 - Disable Carry Out
1 - Generate Carry
S2: Source 2 Register
MOTOROLA

add Integer Add add

Operation: Destination 4 Source 1+ Source 2
Assembler add rD,rS1,rS2 signed add (without carry)
Syntax: add.ci rD,rS1,rS2 signed add plus carry
add.co rD,rS1,rS2 signed add, propagate carry out
add.cio rD,rS1,rS2 signed add plus carry, propagate carry out

add rD,rS1,IMM16 signed add with immediate (without carry)
Exceptions: Integer Overflow

Description: The add instruction adds the contents of the rS1 register with either the
contents of the rS2 register or a 16-bit, zero-extended immediate operand. Binary
addition is performed. The result is placed in the rD register. The .ci option causes
the carry bit from the PSR to be added to the result (rD=rS1+rS2+carry); the .co
option causes the generated carry bit to be written to the processor status register
(PSR). The .cio option causes the carry bit to be added to the result and also causes
the generated carry bit to be written to the PSR. If the result cannot be represented
as a signed 32-bit integer, an integer overflow exception occurs.

The add.ci instruction can be used to implement a 'load carry bit’ operation:
add.ci rD,r0,r0

Both source operands are r0, which by hardware convention contains zero. The result
of this operation will be zero plus the value of the carry bit; i.e., the carry bit is loaded
into rD.

The add.co instruction can be used to clear the carry bit:
add.co r0,ro,r0

Both source operands are r0, which by hardware convention contains zero. The result
of this operation is zero, which has a ‘carry out’ of zero effectively clearing the carry
bit. Because the instruction specifies r0 as the destination and it is read only, no register
contents are altered as a result of this operation.

MOTOROLA MC88100 USER'S MANUAL 3-29

3]

a d d - Integer Add

Instruction Encoding:

3-30

Integer Category — Register with 16-Bit Immediate

~add

31 % 25 2 20 16 15 0
fo 1 11 0 0] D [81 | IMM16_ |
Integer Category — Triadic Register
31 % 25 21 20 16 15 09 8 7 54 0
[+ 7010 1] D | $1 lo v 11001]ofo o of $2
D: Destination Register
S1: Source 1 Register
IMM16: 16-Bit Unsigned Immediate Operand
| 0 - Disable Carry In

1 - Add Carry to Result
O: 0 - Disable Carry Out

1 - Generate Carry
S2: Source 2 Register

MC88100 USER'S MANUAL MOTOROLA

addu

Operation:

Assembler
Syntax:

Exceptions:

Description:

PSR.

Unsigned Integer Add ad d u

Destination 4 Source 1+ Source 2

addu rD,rS1,rS2
addu.ci rD,rS1,rS2
addu.co rD,rS1,rS2
addu.cio rD,rS1,rS2
addu rD,rS1,IMM16

None

unsigned add (without carry)

unsigned add plus carry

unsigned add, propagate carry out

unsigned add plus carry, propagate carry out
unsigned add with immediate (without carry)

The addu instruction adds the contents of the rS1 register with either the
contents of the rS2 register or a 16-bit, zero-extended immediate operand. Binary
addition is performed. The result is placed in the rD register. The .ci option causes
the carry bit to be added to the result (rD=rS1+rS2+carry). The .co option causes
the generated carry bit to be written to the PSR. The .cio option causes the carry bit
to be added to the result and also causes the generated carry bit to be written to the

The addu instruction does not cause an overflow exception when the sum of the
operands cannot be represented as an unsigned 32-bit integer (see the add instruction).

Instruction Encoding:

Integer Category — Register with 16-Bit Immediate

31 % 25 21 20 16 15 0
o1 1 00 of D | St [IMM16
Integer Category — Triadic Register
31 % 25 21 20 16 15 09 8 7 54 0
{11010] D | s1 [o + 1 00 o0fi]ofo o of 52
D: Destination Register
S1: Source 1 Register
IMM16: 16-Bit Unsigned Immediate Operand
I: 0 - Disable Carry In
1 - Add Carry to Result
O: 0 — Disable Carry Out
1 - Generate Carry
S2: Source 2 Register

MOTOROLA

MC88100 USER’S MANUAL 3-31

and

Operation:

Assembler
Syntax:

Exceptions:

Description:

Logical AND and

Destination 4 Source 1 A Source 2
and rD,rS1,rS2

and.c rD,rS1,rS2

and rD,rS1,IMM16

and.u rD,rS1,IMM16

None

For triadic register addressing, the data contained in the rS1 and rS2 reg-

isters is logically ANDed. The result is stored into the rD register. If the .c (complement)
option is specified, the source 2 operand is complemented before being ANDed.

For register with immediate addressing, the lower 16 bits of the rS1 register and the
16-bit unsigned immediate operand encoded in the instruction are logically ANDed.
The upper 16 bits of rS1 are copied unchanged into rD. If the .u (upper word) option
is specified, the upper 16 bits of the source 1 operand are ANDed with the immediate
operand, and the lower 16 bits of ¥rS1 are copied unchanged into rD. The result is
stored into the rD register.

Instruction Encoding:

Logical Category — Register with 16-Bit Immediate

31

21 26 25 21 20 16 15 0

o100 0ful D | st [IMM16

Logical Category — Triadic Register

26 25 21 20 16 15 11 10 9 55 0

3
[+ 1

10 1| D | $1 [o 1 00 o0fclo oo 0o $2

S1:
IMM16:
C:

S2:

3-32

0 - AND IMM16 to bits 15-0 of S1

1 - AND IMM16 to bits 31-16 of S1

Destination Register

Source 1 Register

16-Bit Unsigned Immediate Operand

0 - Second operand not complemented before the operation
1 — Second operand complemented before the operation
Source 2 Register

MC88100 USER'S MANUAL MOTOROLA

bbo Branch On Bit Clear bbo

Operation: If bit clear: FIP ¢ XIP+D16<<2

Assembler bb0 B5, rS1, D16
Syntax: bb0.n B5, rS1, D16

Exceptions: None :

Description: The bb0 instruction examines the bit of the rS1 register specified by the
B5 field. If the bit is clear, the branch is taken. The 16-bit displacement is signh extended
and shifted left two bits to form a word displacement; the branch target address is
formed by adding this displacement to the address of the bb0 instruction. The .n
(delayed branch) option causes the instruction following the bb0 instruction to be
executed before the branch target instruction is executed.

To ensure future compatibility, the instruction following a bb0.n instruction should
not be a trap, jump, branch, or any other instruction that modifies the instruction
pointer. This programming error is not detected.

Instruction Encoding:

Flow-Control Category — Register with 16-Bit Displacement

31 27 % 2 21 20 16 15 0
EEERID 51 [D16]
N: 0 — Next sequential instruction suppressed

1 — Next sequential instruction executed before branch is taken
B5: 5-Bit Unsigned Integer denoting a bit number in'the S1 operand
S1: Source 1 Register

D16: 16-Bit Sign-Extended Displacement

MOTOROLA MC88100 USER'S MANUAL : 3-33

bb1 , Branch On Bit Set bb1

Operation: If bit set: FIP ¢ XIP+D16<<2
Assembler bb1 B5,rS1, D16

Syntax: bb1.n B5, rS1, D16
Exceptions: None

Description: The bb1 instruction examines the bit of the rS1 register specified by the
B5 field. If the bit is set, a branch is taken. The 16-bit displacement is sign extended
and shifted left two bits to form a word displacement; the branch target address is
formed by adding this displacement to the address of the bb1 instruction. The .n
(delayed branch) option causes the instruction following the bb1 instruction to be
executed before the branch target instruction.

To ensure future compatibility, the instruction following a bb1.n instruction should
not be a trap, jump, branch, or any other instruction that modifies the instruction
pointer. This programming error is not detected.

Instruction Encoding:

Flow-Control Category — Register with 16-Bit Displacement

31 27 % 25 2120 16 15 0
[t 101 1]n] B [= | D16
N: 0 — Next sequential instruction suppressed
1 — Next sequential instruction executed before branch is taken
B5: 5-Bit Integer denoting a bit number in the S1 operand
S1: Source 1 Register

D16: 16-Bit Sign-Extended Displacement

3-34 MC88100 USER'S MANUAL MOTOROLA

bcnd Conditional Branch bcnd

Operation: If condition true: FIP ¢ XIP+D16<<2

Assembler bend eq0,rS1,D16 bend.n eq0,rS1,D16

Syntax: bend ne0,rS1,D16 bend.n ne0,rS1,D16
bend gt0,rS1,D16 bend.n gt0,rS1,D16
bend 1t0,rS1,D16 bend.n 1t0,rS1,D16
bend ge0,rS1,D16 bend.n ge0,rS1,D16
bend 1€0,rS1,D16 bend.n 1€0,rS1,D16
bend M5,rS1,D16 b¢énd.n M5,rS1,D16

Exceptions: None

Description: The bend instruction compares the data contained in the rS1 register to
zero and branches if the value in the register meets the condition specified in the
instruction (eq0 for equals zero, etc.). The condition of the rS1 register is determined
by the value of two bits: 1) the sign bit (most significant bit) and 2) the zero bit (logical
NORing of the 31 low-order operand bits). These two bits are concatenated to form
an index into the M5 field of the instruction (see the instruction encoding below). If
the indexed bit is set, the branch is taken. This allows branching on conditions such
as zero, negative, positive, greater than or equal to zero, and less than or equal to
zero without preceding the branch instruction with a compare instruction. The 16-bit
displacement is sign extended and shifted left two bits to form a word displacement;
the branch target address is formed by adding this displacement to the address of the
bend instruction. The .n (delayed branch) option causes the instruction following the
bend.n instruction to be executed before the branch target instruction.

The Motorola MC88100 assembler provides mnemonics for commonly used compar-
ison conditions. The following chart lists these mnemonics and their corresponding
bit values for the M5 field. The M5 field may also be indicated explicitly by a literal

value.

Bit: 25 24 23 22 21
eq0 (equals zero) 0 0 0 1 0
ne0 (not equal to zero) 0 1 1 0 1
gt0 (greater than zero) 0 0 0 0 1
It0 (less than zero) 0 1 1 0 0
ge0 (greater than/equals zero) 0 0 0 1 1
le0 (less than/equals zero) 0 1 1 1 0

To ensure future compatibility, the instruction following a bend.n instruction should
not be a trap, jump, branch, or any other instruction that modifies the instruction
pointer. This programming error is not detected.

MOTOROLA MC88100 USER'S MANUAL 3-35

bcnd ' Conditional Branch bcnd

Instruction Encoding:

Flow-Control Category — Register with 16-Bit Displacement

31 27 2% 25 21 20 16 15 0
(1 11 0 1]n] Ms | St | D16
N: 0 — Next sequential instruction suppressed
1 - Next sequential instruction executed before branch is taken

M5: 5-Bit Condition Match Field:

bit 25: reserved, unused by the branch selection logic (must be zero for

future compatibility)
bit 24: maximum negative number [Sign and Zero]

bit 23: less than zero [Sign and (not Zero)]

bit 22: equal to zero [(not Sign) and Zero]

bit 21: greater than zero [(not Sign) and (not Zero)]
S1: Source 1 Register

D16: 16-Bit Signed-Extended Displacement

3-36 MC88100 USER'S MANUAL MOTOROLA

b r Unconditional Branch b I‘

Operation: FIP ¢ XIP+D26<<2

Assembler br D26
Syntax: br.n D26

Exceptions: None

Description: The br instruction causes an unconditional transfer of program flow to the
address formed by adding the 26-bit, sign-extended word displacement (shifted left
two bits) to the address of the branch instruction. The .n (delayed branch) option
causes the instruction following the br.n instruction to be executed before the branch
target instruction.

To ensure future compatibility, the instruction following a br.n instruction should not
be a trap, jump, branch, or any other instruction that modifies the instruction pointer.
This programming error is not detected.

Instruction Encoding:

Flow-Control Category — 26-Bit Displacement

31 27 26 25 0
{1100 0]n] D26
N: 0 — Next sequential instruction suppressed

1 — Next sequential instruction executed before branch is taken
D26: 26-Bit Sign-Extended Displacement

MOTOROLA MC88100 USER'S MANUAL 3-37

bsr Branch To Subroutine bSI‘

Operation: FIP 4 XIP+D26<<2

r1 ¢ NIP (+4 if .n option)

Assembler bsr D26
Syntax: bsr.n D26

Exceptions: None

Description: The bsr instruction causes an unconditional transfer of program flow to

the target address and the return address is saved in register r1. The branch target
address is formed by adding the 26-bit, sign-extended word displacement (shifted left
two bits) to the address of this instruction (value of XIP). If the .n option is not specified,
the return address is the address of the instruction following the bsr instruction (value
of NIP). The .n (delayed branch) option causes the instruction following the bsr.n
instruction to be executed before the branch target instruction. When the .n option is
specified, the return address is the address of the second instruction following the
bsr.n instruction (value of NIP +4).

To ensure future compatibility, the instruction following a bsr.n instruction should not
be a trap, jump, branch, or any other instruction that modifies the instruction pointer.
This programming error is not detected.

The bsr instruction can be used to implement a ‘load instruction pointer’ operation:
bsr label
label:

This instruction branches to the instruction identified by label, which is also the next
instruction in the instruction stream . The return address (instruction following the bsr
instruction) identified by label is stored in register r1. Therefore, r1 contains the value
of the XIP.

Instruction Encoding:

3-38

Flow-Control Category — 26-Bit Displacement

31 27 2% 25 0
{1100 1]n] D2
N: 0 — Next sequential instruction suppressed

1 — Next sequential instruction executed before branch is taken
D26: 26-Bit Sign-Extended Displacement

MC88100 USER'S MANUAL MOTOROLA

clr Clear Bit Field clr

Operation: Destination 4 (Source 1 A (Bit-Field of 0s))
Assembler clr rD,rS1, W5<05>
Syntax: clr rD,rS1,rS2

clr rD,rS1,[<]05[>]
Exceptions: None

Description: The clr instruction copies the contents of the rS1 register into the rD register
and inserts a field of zeros, of width W5, into the data. The field is offset from bit zero
of the rS1 register by the number of bits specified in the O5 field. For example, if W5
contains 5 and O5 contains 16, a field of 5 zeros is placed in bits 16 through 20 of the -
rS1 operand. For triadic register addressing, bits 9-5 and bits 4-0 of the rS2 register
are used as the W5 and O5 fields, respectively, and the rest of the rS2 register is
ignored. If the specified field extends beyond bit 31, those bits are ignored.

The following illustration shows the operation of the clr rD, rS1, 5<16> instruction.

31 0

rS1 IO tr1Tro011 1001100111 1010111000000 1 01
31 2120 16 15 0

] IO 10t 1 1001 110000 O0f1T01TO0OTTTOOO0O0O00O0T1T 01
[€— WIDTH—{= OFFSET >

Instruction Encoding:

Bit-Field Category — Register with 10-Bit Immediate

31 2% 25 21 20 16 15 10 9 5 4 0
[1 111 0 0] D [S1 [1 0000 0f W5 05 |

Bit-Field Category — Triadic Register

31 % 25 21 20 16 15 5 4 0
[1 11 10 0] D [st |1 0 0 0 00 0 0 0 O 52
D: Destination Register

S1: Source 1 Register

W5: 5-Bit Unsigned Integer denoting a Bit-Field Width (0 denotes 32 bits)
05: 5-Bit Unsigned Integer denoting a Bit-Field Offset

S2: Source 2 Register

MOTOROLA MC88100 USER'S MANUAL 3-39

cmp

Operation:

Assembler
Syntax:

Exceptions:

Integer Compare Cm p

Destination 4 Source 1 :: Source 2

cmp rD,rS1,rS2
cmp rD,rS1,IMM16

None

Description: The cmp instruction compares the data contained in the rS1 register with

either the data in the rS2 register or with the specified, zero-extended 16-bitimmediate
operand. The instruction returns the evaluated conditions as a bit string in the des-
tination register. The format and interpretation of the returned bit string in the rD

register is given below:

Returned String:

31

121 1 9 8 7 6 5 4 3 2 10

foooooooo0000000000000]ns[iofisnifge]nfie]qt]neleq] o 0]

*Bits 31—

12 and 1-0 are not guaranteed to be zeros in future implementations.

hs: true (1) if and only if S1 U=S2 (unsigned greater than or equal)
lo: true (1) if and only if S1 U<S2 (unsigned less than)

Is: true (1) if and only if S1 U<S2 (unsigned less than or equal)
hi: true (1) if and only if ST U>S2 (unsigned greater than)

ge: true (1) if and only if S1=S2 (signed greater than or equal)

It: true (1) if and only if S1<S2 (signed less than)

le: true (1) if and only if S1<S2 (signed less than or equal)

gt: true (1) if and only if S1>S2 (signed greater than)

ne: true (1) if and only if S1#S2 (not equal)

eq: true (1) if and only if S1=S2 (equal)

The results of the comparison can be used by branch on bit instructions (bb0 and bb1)
to synthesize ‘compare and branch on condition’ operations. The results can also be
used by trap on bit instructions (tb0 and tb1). Note that the trap-on bounds-check
(tbnd) instruction is more efficient for out-of-bounds array access checking.

Instruction Encoding:

Integer Category — Register with 16-Bit Immediate

3 % % 210 16 15 0
fo 1111 1] D [s1 | IMM16

MC88100 USER'S MANUAL MOTOROLA

cim p Integer Compare cm p

Integer Category — Triadic Register

31 % 2 21 0 16 15 09 87 54 0
[t 1010 0] D | S1 fo 1 11 1 1]o o*x[o 0 o] 52

*The MC88100 does not decode these bits; however, assemble as shown to guarantee compatibility with future implemen-

- -

D: Destination Register

S1: Source 1 Register

IMM16: 16-Bit Unsigned Immediate Operand
S2: Source 2 Register

MOTOROLA MC388100 USER'S MANUAL 3-41

div
Operation:

Assembler
Syntax:

Exceptions:

Description:

Signed Integer Divide d v

Destination 4 Source 1/Source 2

div rD,rS1,rS2
div rD,rS1,IMM16

Integer Divide
Floating-Point Unimplemented (only if FPU disabled)

The data contained in the rS1 register is divided by either the data in the

rS2 register or by the zero-extended 16-bit immediate operand specified in the instruc-
tion. A 32-bit twos complement binary division is performed. The quotient is stored
in the rD register.

If the divisor is zero or either operand is negative, an integer divide exception is
generated, and program control is transferred to the integer divide exception handler.
A floating-point unimplemented exception is taken if execution of the div is attempted
while the FPU is disabled.

Instruction Encoding:

Integer Category — Register with 16-Bit Immediate

31

o

26 25 2120 16 15

fo 1 10

10| D | s | IMM16 |

Integer Category — Triadic Register

31

26 25 2120 16 15 10 9 8 7 5 4 0

[1 1 1

10 1] D | st Jor 1t 11 0]o oo 0 o] 52 |

*The MC88100 does not decode these bits; however, assemble as shown to guarantee compatibility with future implemen-

tations.

D:
S1:

IMM16:

S2:

3-42

Destination Register

Source 1 Register

16-Bit Zero-Extended Immediate Operand
Source 2 Register

MC88100 USER'S MANUAL MOTOROLA

d iVU Unsigned Integer Divide d iVU

Operation: Destination 4 Source 1/Source 2

Assembler divu rD,rS1,rS2
Syntax: divu rD,rS1,IMM16

Exceptions: Integer Divide
Floating-Point Unimplemented (only if FPU is disabled)

Description: The data contained in the rS1 register is divided by either the data in the
rS2 register or by the zero-extended 16-bit immediate operand specified in the instruc-
tion. A 32-bit twos complement binary division is performed. The quotient is stored
in the rD register.

If the divisor is zero, an integer divide exception is generated and program control is
transferred to the integer divide exception handler. A floating-point unimplemented
exception is taken if execution of divu is attempted while FPU is disabled.

Instruction Encoding:

Integer Category — Register with 16-Bit Immediate

26 25 2120 16 15 0

3
[o 117 01 o] D [s [IMM16]

Integer Category — Triadic Register

31 % 2 21 20 16 15 09 87 54 0
[0] D | s1 Jo 1t 701 0fo o]0 0 o] $2

*The MC88100 does not decode these bits; however, assemble as shown to guarantee compatibility with future implemen-
tations.

D: Destination Register

S1: Source 1 Register

IMM16: 16-Bit Zero-Extended Immediate Operand
S2: Source 2 Register

MOTOROLA MC88100 USER'S MANUAL 3-43

eXt Extract Signed Bit Field eXt

Operation: Destination ¢ (sign-extended bit field) of Source 1
Assembler ext rD,rS1,W5<05>
Syntax: ext rD,rS1,rS2

ext rD,rS1,[<]05[>]

Exceptions: None

Description: The ext instruction extracts a bit field from the rS1 register. The bit-field

3-44

width is specified by the W5 field, and the offset from the least significant bit is specified
by the 05 field. The extracted bit field is sign extended to 32 bits and placed in the
rD register. For triadic register addressing, bits 9-5 and 4-0 of the rS2 register are
used for the W5 and O5 fields, respectively, and the rest of the rS2 register is ignored.
If the bit field extends beyond bit 31, then bit 31 is used as the sign bit and is extended
in the destination register. The following illustration shows the operation of the ext

instruction.

SIGNED BIT
FIELD

31 2| . 15 0

rS1 lXXXXXXXXXXXSYYYYXXXXXXXXXXXXXXXXI

l€«— WIDTH —>1<€ OFFSET >!

” SIGNED BIT FIELD
A ——

D $SSSSSSSSSSSSSSSSSSSSSSSSS SIS vyyyy

l€— WIDTH —>1

When the W5 field contains all zeros (specifying a width of 32 bits), this instruction
operates as an arithmetic shift right instruction. The offset specifies the number of
positions to shift. The high-order bits are sign filled in the destination register. The
following illustration shows an example of a shift operation with the ext instruction:

WIDTH =32, OFFSET=5

31 5 4 0
s [1 1111110111 11 1101111t 101 T[T 1110
31 2%
I I
EXTENDED
SIGN BIT

MC88100 USER'S MANUAL MOTOROLA

eXt Extract Signed Bit Field eXt

Instruction Encoding:

Bit-Field Category — Register with 10-Bit Immediate

3 % 25 2 0 16 15 10 9 5 4 0
{1 1110 0 D | S1 [1 001 0 0] W5 05

Bit-Field Category — Triadic Register

31 % 25 2720 16 15 5 4 0
(11010 1] D [s1 {1 001 000000 o0f 52
D: Destination Register

S1: Source 1 Register

W5: 5-Bit Unsigned Integer denoting a Bit-Field Width (0 denotes 32 bits)
05: 5-Bit Unsigned Integer denoting a Bit-Field Offset

S2: Source 2 Register

MOTOROLA MC88100 USER’'S MANUAL 3-45

extu Extract Unsigned Bit Field extu

Operation: Destination 4 (zero-extended bit field) of Source 1

Assembler extu rD,rS1,W5<05>
Syntax: extu rD,rS1,rS2

extu rD,rS1,[<]05[>]

Exceptions: None

Description: The extu instruction extracts a bit field from the rS1 register. The bit-field

3-46

width is specified by the W5 field, and the offset from the least significant bit is specified
by the O5 field. The extracted bit field is zero extended to 32 bits and placed in the
rD register. For triadic register addressing, bits 9-5 and 4-0 of the register specified
by the rS2 field are used for the W5 and O5 fields, respectively, and the rest of rS2 is
ignored. If the field extends beyond bit 31, then the result is zero extended in the
destination register. The following illustration shows the operation of the extu instruc-

tion.

31 212 16 15 ’ 0
S XX X X X X X x x x x| BIT-FED X X X X X X X X X X X X X X X X]

|<— WIDTH —>|<—— OFFSET ————)I
31 0

0 [0 0 0 000000 0000000000O000000O0G0GO0 BTRAED |

|<— \MDTH ——»I

When the W5 field contains all zeros (specifying a width of 32 bits), this instruction
operates as a logical shift right instruction. The offset specifies the number of positions
to shift. The high-order bits are zero filled in the destination register. The following
illustration shows an example of a shift operand with the extu instruction:

WIDTH =32, OFFSET=5

3 0
S IR E R
\ \
w o foooooft T o 0o 0111
ZERO FILL
MC88100 USER’S MANUAL MOTOROLA

eXtU Extract Unsigned Bit Field eXtu

Instruction Encoding:

Bit-Field Category — Register with 10-Bit Immediate

31 2% 25 2% 16 15 10 9 5 4 0
(11 v 10 0] D | s1 110011 0 ws | 05

Bit-Field Category — Triadic Register

31 % 25 2120 16 15 5 4 0
[0 0] D [St [1 001 1 00000 of 52
D: Destination Register

S1: Source 1 Register

W5: 5-Bit Unsigned Integer denoting a Bit-Field Width (0 denotes 32 bits)
05: 5-Bit Unsigned Integer denoting a Bit-Field Offset

S2: Source 2 Register

MOTOROLA MC88100 USER'S MANUAL 3-47

fadd

Operation:

Assembler
Syntax:

Exceptions:

Description:

Floating-Point Add fadd

Destination 4 Source 1+ Source 2

fadd.sss
fadd.ssd
fadd.sds
fadd.sdd
fadd.dss
fadd.dsd
fadd.dds
fadd.ddd

rD,rS1,¢S2
rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2

Floating-Point Reserved Operand
Floating-Point Overflow
Floating-Point Underflow
Floating-Point Inexact (if not masked)
Floating-Point Unimplemented

The fadd instruction checks the data in the rS1 and rS2 registers for re-
served operands. If no reserved operands are found, the rS1 and rS2 operands are
added according to the IEEE 754 standard, and the result is placed in the rD register.
If reserved operands are found, a floating-point reserved operand exception is taken.
The other exception conditions occur when an overflow, underflow, or inexact result
is detected. Any combination of single- and double-precision operands can be spec-
ified. If r0 is specified as the destination register or if execution of fadd is attempted
while the FPU is disabled, a floating-point unimplemented exception is taken.

SECTION 6 EXCEPTIONS contains more information on the floating-point implemen-

tation.

3-48

MC88100 USER'S MANUAL MOTOROLA

fadd Floating-Point Add fadd

Instruction Encoding:

Floating-Point Category — Triadic Register

31 26 25 21 20 16 15 m1ws9 87 65 4 0
(1 0000 1] D | S| oo v o] nn]mn] 52

D: Destintion Register (r0 not allowed)
S1: Source 1 Register

T1: Source 1 Operand Size

T2: Source 2 Operand Size

TD: Destination Operand Size

Note: For the T1, T2, and TD Fields:
00 - Single Precision
01 — Double Precision
S2: Source 2 Register

MOTOROLA MC88100 USER'S MANUAL 3-49

femp

Floating-Point Compare fC m p

Operation: Destination 4 Source 1 :: Source 2
Assembler femp.sss rD,rS1,rS2
Syntax: fcmp.ssd rD,rS1,rS2
femp.sds rD,rS1,rS2
femp.sdd rD,rS1,rS2
Exceptions: Floating-Point Reserved Operand

Floating-Point Unimplemented

Description: The femp instruction checks the contents of the rS1 and rS2 registers for

reserved operands. If reserved operands are found, a floating-point reserved operand
exception is taken. If no reserved operands are found, the instruction subtracts the
rS2 operand from rS1 and evaluates a number of conditions according to the IEEE
754 standard. The evaluation results are returned as a bit string in the rD register and
the subtraction result is discarded. A comparison to zero and a comparison with bound
is also initiated by this instruction, returning bits that correspond to the following
conditions: ou (out of range), ib (in range or on boundary), in (in range), or ob (out
of range or on boundary). The range is between zero and the value in the rS2 register.
If the rS2 operand is negative, ou, ib, in, and ob are all zero. Any combination of
single- and double-precision source operands can be specified. If r0 is specified as the
destination register or if execution of femp is attempted while the FPU is disabled, a
floating-point unimplemented exception is taken.

The returned comparison results can be used by branch on bit instructions (bb0, bb1)
to synthesize ‘conditional branch on comparison’ operations {branch equal, branch
high, etc).

The reserved operand exception handler can complete some operations in software
when an exception occurs. For example, comparison of denormalized numbers can
be performed in software. The exception handler can then generate a return string,
setting the appropriate bits from the comparison.

SECTION 6 EXCEPTIONS contains more information on the floating-point exceptions.

MC88100 USER'S MANUAL MOTOROLA

fcm p Floating-Point Compare fcm p

Result String:

31 211109 8 7 6 5 4 3 2 1 0
[00000000000000000000* ob[in]iblou[gelltlle[gtlneleth]ncl

*Bits 31-12 are not guaranteed to be zeros in future implementations.

0 (rS2)

ob: out of range or on boundary . .-
. . 0 rS2)
in: in range o- O
. . 0 (rS2)
ib: in range or on boundary °- °

0 (rS2)
ou: outof range O o

ge: true (1) if and only if (rS1)=(rS2) (signed greater than or equal)

It: true (1) if and only if (rS1)<(rS2) (signed less than)

le: true (1) if and only if (rS1)<(rS2) (signed less than or equal)

gt: true (1) if and only if (rS1)>(rS2) (signed greater than)

ne: true (1) if and only if (rS1)#(rS2) (not equal)

eq: true (1) if and only if (rS1)=(rS2) (equal)

cp: true (1) if and only if the two operands are comparable (i.e., the two operands
are ordered as specified by IEEE standard 754-1985)

nc: true (1) if, and only if, the two operands are not comparable (i.e., the two
operands are unordered as specified by IEEE standard 754-1985)

Instruction Encoding:

Floating-Point Category — Triadic Register

31 % 25 2720 16 15 11109 87 65 4 0
[1 000 0 1] D [S1 NEEERERERNE s2 |
D: Destination Register (r0 not allowed)

S1: Source 1 Register

T1: Source 1 Operand Size

T2: Source 2 Operand Size

Note: For the T1 and T2 Fields:
00 — Single Precision
01 — Double Precision
S2: Source 2 Register

MOTOROLA MC88100 USER'S MANUAL 3-51

fd iV Floating-Point Divide fd iV

Operation: Destination 4 Source 1/Source 2

Assembler fdiv.sss rD,rS1,rS2
Syntax: fdiv.ssd rD,rS1,rS2

fdiv.sds rD,rS1,rS2
fdiv.sdd rD,rS1,rS2
fdiv.dss rD,rS1,rS2
fdiv.dsd rD,rS1,rS2
fdiv.dds rD,rS1,rS2
fdiv.ddd rD,rS1,rS2

Exceptions: Floating-Point Reserved Operand

Floating-Point Divide by Zero
Floating-Point Overflow
Floating-Point Underflow
Floating-Point Inexact (if not masked)
Floating-Point Unimplemented

Description: The contents of the rS1 and rS2 registers are checked for reserved oper-

3-52

ands. If no reserved operands are found, the ¥rS1 operand is divided by the rS2 operand
according to the IEEE 754. The result is placed in the rD register. Any combination of
single- and double-precision operands can be specified. An attempt to divide by zero
causes a floating-point divide-by-zero exception. If reserved operands are found, a
floating-point reserved operand exception is taken. The other exception conditions
occur when an overflow, underflow, or inexact result is detected. If r0 is specified as
the destination register or if execution of fdiv is attempted while FPU is disabled, a
floating-point unimplemented exception is taken.

SECTION 6 EXCEPTIONS contains more information on the floating-point exceptions.

MC88100 USER'S MANUAL MOTOROLA

fd iV Floating-Point Divide fd iV

Instruction Encoding:

Floating-Point Category — Triadic Register

31 2% 25 21 20 1615 11109 §7 654 0
{1 0000 1] D [51 NEEEIERERER s2

D: Destintion Register (r0 not allowed)
S1: Source 1 Register

T1: Source 1 Operand Size

T2: Source 2 Operand Size

TD: Destination Operand Size

Note: For the T1, T2, and TD Fields:
00 - Single Precision
01 — Double Precision
S2: Source 2 Register

MOTOROLA MC88100 USER'S MANUAL 3-563

ff0 Find First Bit Clear ff0

Operation: Destination 4 (bit number) of Source 2 Scanned for First Bit Clear
Assembler

Syntax: ffo rD,rS2

Exceptions: None

Description: This instruction scans the rS2 register from the most significant bit to the
least significant bit. The destination register is loaded with the bit number of the first
bit that was found clear: zero for the least significant bit and 31 for the most significant
bit. If no bits are found clear, the destination register is loaded with 32.

Instruction Encoding:

Bit-Field Category — Triadic Register

31 2% 2 21 20 1615 5 4 0
[0] D [o oo oot 1 101 10000 0f $2]

*The MC88100 does not decode these bits; however, they should be assembled as shown to guarantee compatibility with
future implementations.

D: Destination Register
S2: Source 2 Register

3-54 MC88100 USER'S MANUAL MOTOROLA

1

Operation:

Assembler
Syntax:

Exceptions:

Description:

Find First Bit Set ff1
Destination 4 (bit number) of Source 2 Scanned for First At Set

ff1 rD,rS2

None

This instruction scans the rS2 register from the most significant bit to the

least significant bit. The destination register is loaded witk the bit number of the first
bit that was found set, zero for the least significant bit ard 31 for the most significant
bit. If no bits are found set, the destination register is loaded with 32.

Instruction Encoding:

Bit-Field Category — Triadic Register

26 25 21 20 16 15 5 4 0

3
{11 1

0 1] D fo o oo o1 1 101000000 52 |

*The MC88100 does not decode these bits; however, they should bs assembled as shown to guarantee compatibility with
future implementations.

MOTOROLA

Destination Register
Source 2 Register

MC88100 USER'S MANUAL 3-55

f' d Ccr Load from Floating-Point Control Register fl d Ccr

Operation: Destination 4 Floating-Point Control Register
Assembler

Syntax: flduw D fcrS

Exceptions: Floatirg-Point Privilege Violation

Description: The conwents of the floating-point unit control register specified by the
FCRS field is loaded in the general-purpose register specified by the D field. Floating-
point control registers Scr8—fcr0 are privileged registers and can only be accessed in
the supervisor mode. Registers fcr63 and fer62 are the floating-point control and status
registers, respectively, and can be accessed in either the supervisor or user mode.

Registers fer61-fer9 are curreatly unimplemented but are privileged. A load from these
registers returns zeros to rD when executed in the supervisor mode in the current
implementation, and causes a toating-point privilege violation exception when exe-
cuted in the user mode.

Refer to SECTION 6 EXCEPTIONS for more information on FPU control registers.
Instruction Encoding:

Floating-Point Category — Control Register

3 % 2 21 20 16 15 1110 5 4 0
[t 000 0 of D o000 0o 1 0 1 FCRS 00 0 0 0*

*The MC88100 does not decode these bits; however, they should be assembled as shown to guarantee compatibility with
future implementations.

D: Destination Register
FCRS: Floating-Point Control Register Source

3-56 MC88100 USER'S MANUAL MOTOROLA

flt Convert Integer to Floating Point flt

Operation: Destination 4 Float (Source 2)

Assembler fit.ss rD,rS2
Syntax: fit.ds rD,rS2

Exceptions: Floating-Point Inexact (if not masked)
Floating-Point Unimplemented

Description: The signed integer number contained in the rS2 register is converted to
floating-point representation. The result is placed in the rD register. The rS2 can only
be specified as single precision because it is an integer, but the destination register
can be single or double precision (not r0). If r0 is specified as the destination register
or if execution of flt is attempted while the FPU is disabled, a floating-point unimple-
mented exception is taken.

SECTION 2 PROGRAMMING MODEL and SECTION 6 EXCEPTIONS contain more in-
formation on the floating-point implementation.

Instruction Encoding:

Floating-Point Category — Triadic Register

31 % 25 21 2 765 4 0
[+ 0 000 1] D [o 0o 000001 000000[m] 52
D: Destination Register (r0 not allowed)

TD: Destination Operand Size

Note: For the TD Field:
00 - Single Precision
01 - Double Precision
S2: Source 2 Register

MOTOROLA MC88100 USER'S MANUAL 3-57

fmul Floating-Point Multiply fmul

Operation: Destination ¢ Source 1 X Source 2
Assembler fmul.sss rD,rS1,rS2
Syntax: fmul.ssd rD,rS1,rS2

fmul.sds rD,rS1,rS2
fmul.sdd rD,rS1,rS2
fmul.dss rD,rS1,rS2
fmul.dsd rD,rS1,rS2
fmul.dds rD,rS1,rS2
fmul.ddd rD,rS1,rS2

Exceptions: Floating-Point Reserved Operand

Floating-Point Overflow
Floating-Point Underflow
Floating-Point Inexact (if not masked)
Floating-Point Unimplemented

Description: The contents of the rS1 and rS2 registers are checked for reserved oper-

ands. If no reserved operands are found, the rS1 and rS2 operands are multiplied
according to the IEEE 754. The result is placed in the rD register. Any combination of
single- and double-precision operands can be specified. If reserved operands are found,
a floating-point reserved operand exception is taken. The other exception conditions
occur when an overflow, underflow, or inexact result is detected. If r0 is specified as
the destination register or if execution of fmul is attempted while the FPU is disabled,
a floating-point unimpiemented exception is taken.

Instruction Encoding:

3-58

Floating-Point Category — Triadic Register

31 % 25 2120 16 15 11109 87 65 4 0
[1 0000 1] D [st Jooooof m |2 |m] s2 |
D: Destination Register (r0 not allowed)

S1: Source 1 Register

T1: Source 1 Operand Size

T2: Source 2 Operand Size

TD: Destination Operand Size

Note: For the T1, T2, and TD Fields:
00 - Single Precision
01 - Double Precision
S2: Source 2 Register

MC88100 USER'S MANUAL MOTOROLA

fStCI‘ Store to Floating-Point Control Register fStcr

Operation: Floating-Point Control Register 4 Destination
Assembler

Syntax: fster rS1,ferD

Exceptions: Floating-Point Privilege Violation

Description: The contents of the general-purpose register specified by the S1 field is
stored to the FPU control register specified by the FCRD field. Floating-point control
registers fcr8—fcr0 are privileged registers and can only be accessed in the supervisor
mode. Registers fcr63 and fcr62 are the floating-point control and status registers,
respectively, and can be accessed in either the supervisor or user mode. Registers
fcr8—fcr1 are readonly, and an fster instruction addressing these registers performs
a null operation.

Registers fer61-fcr9 are currently unimplemented but are privileged. An fster instruc-
tion to any of these registers performs a null operation in supervisor mode and causes
a floating-point privilege violation exception in user mode.

Instruction Encoding:

Floating-Point Category — Control Register

3 % 2 212 16 15 1110 5 4 0
[t ooooofooooo st 10001 FCRD [=

*The MC88100 does not decode these bits; however, they should be assembled as shown to guarantee compatibility with
future implementations.

S1: Source 1 Register
FCRD: Floating-Point Control Destination Register
S2: Source 2 Register

Note: S1 and S2 fields must contain the same value.

MOTOROLA MC88100 USER'S MANUAL 3-59

fsu b Floating-Point Subtract fSU b

Operation: Destination ¢ Source 1—Source 2

Assembler fsub.sss rD,rS1,rS2
Syntax: fsub.ssd rD,rS1,rS2

fsub.sds rD,rS1,rS2
fsub.sdd rD,rS1,rS2
fsub.dss rD,rS1,rS2
fsub.dsd rD,rS1,rS2
fsub.dds rD,rS1,rS2
fsub.ddd rD,rS1,rS2

Exceptions: Floating-Point Reserved Operand

Floating-Point Overflow
Floating-Point Underflow
Floating-Point Inexact (if not masked)
Floating-Point Unimplemented

Description: The contents of the rS1 and rS2 registers are checked for reserved oper-

ands. If no reserved operands are found, the source 2 operand is subtracted from the
source 1 operand according to the IEEE 754 standard. The result is placed in the
destination register. Any combination of single- and double-precision operands can
be specified. If invalid operands are found, a floating-point reserved operand exception
is taken. The other exception conditions occur when an overflow, underflow, or inexact
result is detected. If ¥0 is specified as the destination register or if execution of fsub

is attempted while the FPU is disabled, a floating-point unimplemented exception is
taken.

Instruction Encoding:

3-60

Floating-Point Category — Triadic Register

31 % 25 2120 16 15 1109 87 65 4 0
[1 0000 1] D [S1 oo v v o] m [2]] $2
D: Destintion Register (r0 not allowed)

S1: Source 1 Register

T1: Source 1 Operand Size

T2: Source 2 Operand Size

TD: Destination Operand Size

Note: For the T1, T2, and TD Fields:
00 - Single Precision
01 — Double Precision
S2: Source 2 Register

MC88100 USER'S MANUAL MOTOROLA

fxcr Exchange Floating-Point Control Register fxcr

Operation: Destination 4 Floating-Point Control Register
Floating-Point Control Register 4 Source 1

Assembler
Syntax: fxcr rD,rS1,ferS/D
Exceptions: Floating-Point Privilege Violation

Description: The contents of the general-purpose register specified by the S1 field are
transferred to the FPU control register specified by the FCRS/D field, and the contents
of the ferS/D register are transferred to the rD register. Floating-point control registers
fcr8-fcr0 are privileged registers and can only be accessed in the supervisor mode.
Registers fcr63 and fcr62 are the floating-point control and status registers, respec-
tively, and can be accessed in either the supervisor or the user mode. Register fcr8—fcr1
are readonly, and an fxcr instruction addressing these registers performs a load into
the general-purpose destination registers only.

Registers fer61-fcr9 are currently unimplemented but are privileged. An fxer instruc-
tion to any of these registers performs a load of all zeros into rD when executed in
the supervisor mode, and causes a floating-point privilege violation exception in user
mode.

Instruction Encoding:

Floating-Point Category — Control Register

31 % 25 2120 16 15 1n 10 5 4 0
[1 000 0 of D | St [1 1 00 FCRS/D s2

D: Destination Register

S1: Source 1 Register

FCRS/D: Floating-Point Control Register Source/Destination

S2: Source 2 Register

Note: S1 and S2 fields must contain the same value.

MOTOROLA MC88100 USER'S MANUAL 3-61

Int
Operation:

Assembler
Syntax:

Exceptions:

Description:

Round Floating Point to Integer

Destination 4 Round (Source 2)

int.ss rD,rS2
int.sd rD,rS2

Floating-Point Reserved Operand

Floating-Point Integer Conversion Overflow

Floating-Point Unimplemented

The single- or double-precision floating-point number contained in the rS2
register is converted to a 32-bit integer using the rounding mode specified in the
floating-point control register (FPCR). The result is placed in the rD register. If the rS2
operand exponent is greater than or equal to 30, then the floating-point integer con-
version overflow exception is taken. If invalid operands are found, a floating-point
reserved operand exception is taken. If r0 is specified as the destination register or if
execution of int is attempted while the FPU is disabled, a floating-point unimplemented
exception is taken.

Instruction Encoding:

Floating-Point Category — Triadic Register

31

26 25 2120

9 8 17

6 5 4

[1 0000 1] D [o 0000010010012 o0o0]

S2

T2:

S2:

3-62

Destination Register (r0 not allowed)
Source 2 Operand Size
Note: For the T2 Field:

00 - Single Precision

01 - Double Precision
Source 2 Register

MC88100 USER'S MANUAL

MOTOROLA

i m p Unconditional Jump l m p

Operation: Fetch Instruction Pointer ¢ Source 2

Assembler jmp rS2
Syntax: jmp.n rS2

Exceptions: None

Description: This instruction performs an unconditional transfer of program flow to the
absolute address contained in the rS2 register. The two least significant bits of that
register are masked to force the FIP to an instruction (word) boundary. The .n (delayed
branch) option causes the instruction following the jmp.n instruction to execute before
the target instruction.

To ensure future compatibility, the instruction following a jmp.n instruction should
not be a trap, jump, branch, or any other instruction that modifies the instruction
pointers. This programming error is not detected.

The jmp instruction can be used to return from subroutines as in the following ex-
ample:
jmp n

The bsr and jsr instructions place the return address in register r1 as a hardware
convention. The jmp instruction above jumps to this return address.

Instruction Encoding:

Flow-Control Category — Triadic Register

3 % 2 16 16 1109 5 4 0
[t 1 1 1 0 1]ooooo00000 o1 1 000[nfo 00 0 0f 52 |

*The MC88100 does not decode these bits; however, they should be assembled as shown to guarantee compatibility with
future implementations.

N: 0 - Next sequential instruction suppressed
1 - Next sequential instruction executed before branch is taken
S2: Source 2 Register

MOTOROLA MC88100 USER’S MANUAL 3-63

jsr

Jump to Subroutine]S r

Operation: Fetch Instruction Pointer 4 Source 2
r1 4 Next Instruction Pointer (+4 if .n specified)
Assembler jsr rS2
Syntax: jsr.n rS2
Exceptions: None
Description: This instruction performs an unconditional transfer of program control and

saves the return address in register r1. The jsr target address is contained in the rS2
register. The two least significant bits of that register are masked, forcing the FIP to
an instruction (word) boundary. The return address is the address of the instruction
following the jsr instruction (value of NIP). The .n (delayed branch) option causes the
instruction following the jsr.n instruction to execute before the jump target instruction.
When the .n option is specified, the return address is the address of the second
instruction following the jsr.n instruction (value of NIP +4).

To ensure future compatibility, the instruction following a jsr.n instruction should not
be a trap, jump, branch, or any other instruction that modifies the instruction pointers.
This programming error is not detected.

Instruction Encoding:

Flow-Control Category — Triadic Register

3 % 2 16 16 1110 9 5 4 0
[t 11 1 0 1Jooooo0o0o0o00 o1 100 1 [n]oo o 0o 2|

*The MC88100 does not decode these bits; however, they should be assembled as shown to guarantee compatibility with
future implementations.

N: 0 - Next sequential instruction suppressed
1 — Next sequential instruction executed before branch is taken
S2: Source 2 Register

MC88100 USER'S MANUAL MOTOROLA

Id Load Register from Memory Id

Operation: Destination Register 4 Source Data

Assembler UNSCALED UNSCALED SCALED

Syntax: Id.b rD,rS1,IMM16 Id.b rD,rS1,rS2 Id.b rD,rS1[rS2]
Id.bu rD,rS1,IMM16 Id.bu rD,rS1,rS2 Id.bu rD,rS1[rS2]
Id.h D,rS1,IMM16 Id.h rD,rS1,rS2 Id.h rD,rS1[rS2]
Id.hu rD,rS1,IMM16 Id.hu rD,rS1,rS2 Id.hu rD,rS1[rS2]
Id rD,rS1,IMM16 Id rD,rS1,rS2 id rD,rS1[rS2]
idd rD,rS1,IMM16 Id.d rD,rS1,rS2 Id.d rD,rS1[rS2]

Id.b.usr rD,rS1,rS2 Id.b.usr rD,rS1[rS2]
Id.bu.usr rD,rS1,rS2 Id.bu.usr rD,rS1[rS2]
Id.h.usr rD,rS1,rS2 Id.h.usr ¢D,rS1[rS2]
Id.hu.usr rD,rS1,rS2 Id.hu.usr rD,rS1[rS2]
Id.usr rD,rS1,rS2 Id.usr rD,rS1[rS2]
Id.d.usr rD,rS1,rS2 Id.d.usr rD,rS1[rS2]

Exceptions: Data Access Exception
Misaligned Access Exception (if not masked)
Privilege Violation (.usr option only)

Description: This instruction reads data from the specified memory location and loads
it into the destination register. The memory base address is contained in the rS1
register. Added to this base is either a zero-extended 16-bit immediate index or an
unsigned 32-bit word index contained in the rS2 register. The index in the rS2 register
can be scaled or unscaled. The destination register is marked ‘in use’ (in the scoreboard
register) until the memory fetch completes.

Exceptions are recognized between any two memory transactions on the P bus. There-
fore, the double-word load (ld.d) can encounter a data access exception between word
accesses. Also, if the destination register is r31 for the Id.d instruction, the most
significant word of the data is placed in r31. The least significant word is read from
memory but is not written into r0; r0 always contains zero (due to hardware conven-
tion). The two bus transactions required for a double-word load do not lock the P bus.
Therefore, in a system that interfaces the data P bus to CMMUSs, the double-word load
to memory may be interrupted by an alternate memory bus master.

The Id instruction with no options specifies a 32-bit operation. The .b option specifies
signed byte (8 bits), .bu specifies unsigned byte (8 bits), .h specifies signed half word
(16 bits), .hu specifies unsigned half word (16 bits), and .d specifies double word (64
bits). For the scaled index modes, the scale factor is determined by the size option of
the instruction. Operations that are byte, half word, word, and double word in size
define scale factors of 1, 2, 4, and 8, respectively, when the rS2 field is specified within
square brackets [1.

MOTOROLA MC88100 USER’'S MANUAL 3-65

ld : Load Register from Memory Id

When the MODE bit of the PSR is set, the memory address is normally to supervisor
memory space; when MODE is clear, the memory address is normally to user memory
space, and the value of the MODE bit is reflected on the DS/U P bus signal. The .usr
option specifies that the memory access must be to the user address space regardless
of the mode bit (user or supervisor) in the PSR. The .usr option is privileged and only
available in supervisor mode.

Instruction Encoding:

Load/Store/Exchange Category — Register Indirect with Zero-Extended Immediate
Index

3130 2928 2726 25 21 20 16 15 ! 0

foof P[] D [st | 116 |

Load/Store/Exchange Category — Register Indirect with Index

3 % 25 212 16 1514 1312 1110 9 8 1 54 0
INEEEE D | 51 [o ol P Jrv]olulooo =

Load/Store/Exchange Category — Register Indirect with Scaled Index

31 % 25 21 20 % 1514 1312 1110 9 8 7 54 0
(i 10 o [s Toofl P T v i]ufoo o 52 |
P: 00 - Load Unsigned (half-word and byte operation only)
01 - Load Signed
TY: 00 — Double Word
01 - Word
10 - Half Word
11 - Byte
D: Destination Register
S1: Source 1 Register
116: 16-Bit Immediate Index
u: 0 - Access per User/Supervisor Bit in PSR (normal mode)
1 — Access User Space Regardless of PSR
S2: Source 2 Register

3-66 MC88100 USER'S MANUAL MOTOROLA

Ida Load Address Ida

Operation: Destination 4 Source 1+ Source 2

Assembler Ida.h rD,rS1[rS2]
Syntax: Ida rD,rS1[rS2]

Ida.d rD,rS1[rS2]

Exceptions: None

Description: This instruction creates a memory address from the specified operands.

The memory base address is contained in the rS1 register. Added to this base is either
a zero-extended 16-bit immediate index or an unsigned 32-bit word index contained
in the rS2 register. The index in the rS2 register can be scaled or unscaled. The resulting
address is placed in the destination register. The address calculated by this instruction
is not checked for alignment relative to the operation type.

The lda instruction with no options specifies a 32-bit operation. The .b option specifies
byte (8 bits), .h specifies half word (16 bits), and .d specifies double word (64 bits).
For the scaled index modes, the scale factor is determined by the size option of the
instruction. Operations that are byte, half word, word, and double word in size define
scale factors of 1, 2, 4, and 8, respectively, when the rS2 field is specified within square
brackets [].

Instruction Encoding:

Load/Store/Exchange Category — Register Indirect with Zero-Extended Immediate
Index

28 2726 25 2120 16 15 0

31
[0 o 1 1]w] o | s [116 |

MOTOROLA MC88100 USER'S MANUAL 3-67

Id a Load Address

3-68

Load/Store/Exchange Category — Register Indirect with Index

26 25 21 20 16 15 12 1110 9 8 7 5 4

Ida

o

31
(11010 1] D | s1 fo o 1 1] v [ofoe*]o o df 52

*|f set and the instruction attempted in user mode, a privilege violation exception occurs.

Load/Store/Exchange Category — Register Indirect with Scaled Index

26 25 21 20 16 15 12 110 9 8 7 5 4

31
IR D | s1 fo o v a[v [1]o*]o o of 52

*1f set and the instruction is attempted in user mode, a privilege violation exception occurs.

TY: 00 - Double Word

01 - Word
10 - Half Word
11 - Byte
D: Destination Register
S1: Source 1 Register
S2: Source 2 Register
116: 16-Bit Immediate Index

MC88100 USER'S MANUAL

MOTOROLA

Id Ccr Load from Control Register I d CI’

(Privileged Instruction)

Operation: Destination Register 4 Control Register
Assembler

Syntax: Ider rD,crS

Exceptions: Privilege Violation

Description: The data contained in the integer-unit control register specified by the CRS
field of the instruction is loaded to the general-purpose register specified by the des-
tination field. Integer-unit control registers may only be accessed in the supervisor
mode; otherwise, a privilege violation occurs.

Instruction Encoding:

Load/Store/Exchange Category — Control Register

31 2% 2 21 2 18 15 1110 5 4 0
[1 000 0 o] D o 000 0o 1 00 of CRS 00 0 0 0%

*The MC88100 does not decode these bits; however, they should be assembled as shown to guarantee compatibility with
future implementations.

D: Destination Register
CRS: Control Register Source

MOTOROLA MC88100 USER'S MANUAL 3-69

ma k Make Bit Field mak

Operation: (bit field) Destination 4 (bit field) of Source 1

Assembler mak rD,rS1,W5<05>
Syntax: mak rD,rS1,rS2

mak rD,rS1,[<]05[>]

Exceptions: None

Description: The mak instruction extracts a bit field from the rS1 register. The bit field,

3-70

whose width is specified by the W5 field, begins with the least significant bit of the
rS1 register. The extracted field is placed in the rD register, offset from the least
significant bit by the Ob field. Any bits outside of the field are cleared to zero. For
triadic register addressing, bits 9-5 and bits 4-0 of the rS2 register are used for the
W5 and O5 fields, respectively, and the rest of rS2 is ignored. If the W5 field specifies
bits outside of the destination register, those bits are ignored.

The following illustration shows the operation of the mak instruction.

31 0
S XX X X X X X X X X XX XXXXXXXXXXXXXXX AELD |

3 0
" fo o0 o0o0o0 00000 AED oo ooo 00000000000

S Rt

y

!4—- WIDTH >!1 OFFSET

When the W5 field contains all zeros (specifying a width of 32 bits), this instruction
operates as a shift left instruction. That is, the width field selects the entire register;
the offset specifies the number of positions to shift. The low-order bits are zero-filled
in the destination register. The following illustration shows an example of a shift left
operation with the mak rD, rS1, 0<5> instruction:

IGNORED WIDTH = 32, OFFSET =5
T ————
3 0
N R R N]|
3 0
™ [101111110 1111110111 11110]oooo o]
S ———
ZERO FILL
MC88100 USER'S MANUAL MOTOROLA

mak Make Bit Field mak

Instruction Encoding:

Bit-Field Category — Register with 10-Bit Immediate

31 2% 2 21 2 16 15 10 9 5 4 0
[1 71100 D | $1 [1 0100 0f W5 05

Bit-Field Category — Triadic Register

31 % 25 2120 16 15 5 4 0
[+ 1010 1] b | s [1 01 0000000 0f $2
D: Destination Register

S1: Source 1 Register

WS5: 5-Bit Unsigned Integer denoting a Bit-Field Width (0 denotes 32 bits)
0O5b: 5-Bit Unsigned Integer denoting a Bit-Field Offset

S2: Source 2 Register

MOTOROLA MC88100 USER'S MANUAL 3-71

maSk \ Logical Mask Immediate maSk

Operation: Destination 4 Source 1 A IMM16
Assembler mask rD,rS1,IMM16

Syntax: mask.u rD,rS1,IMM16
Exceptions: None

Description: The lower 16 bits of the rS1 register are logically ANDed with the unsigned
16-bit immediate value, and the upper 16 bits of the destination register are cleared.
If the .u (upper word) option is specified, the upper 16 bits of the rS1 register are
ANDed, and the lower 16 bits of the destination register are cleared. The result is
stored in the rD register.

Instruction Encoding:

Logical Category — Register with 16-Bit Immediate

31 27 % 5 2120 16 15 0
[o 100 1Jul o | St [IMM16 |
U: 0 - Apply IMM16 to bits 15-0 of S1

1 - Apply IMM16 to bits 31-16 of S1
D: Destination Register
S1: Source 1 Register

IMM16: 16-Bit Unsigned Immediate Operand

3-72 MC88100 USER'S MANUAL MOTOROLA

mu I Integer Multiply mu I

Operation: Destination ¢ Source 1x Source 2

Assembler mul rD,rS1,rS2
Syntax: mul rD,rS1,IMM16

Exceptions: Floating-Point Unimplemented (if FPU is disabled)

Description: The data in the rS1 register is multiplied by either the data in the rS2
register or by the unsigned, zero-extended 16-bitimmediate value. The least significant
32 bits of the product are stored into the rD register. If mul instruction execution is
attempted while the FPU is disabled, a floating-point unimplemented exception is

taken.
Instruction Encoding:

Integer Category — Register with 16-Bit Immediate

31 26 25 2120 16 15 0

fo 11000 D | IMM16

Integer Category — Triadic Register

3 % 25 212 16 15 009 8 7 54 0
[1 11 10 1] D | 3 [o 1101 1]0 0xfo o o] 52

*The MC88100 does not decode these bits; however, they should be assembled as shown to guarantee compatibility with
future implementations.

D: Destination Register

S1: Source 1 Register

IMM16: 16-Bit Zero-Extended Immediate Operand
S2: Source 2 Register

MOTOROLA MC88100 USER'S MANUAL 3-73

nint

Operation:

Assembler
Syntax:

Exceptions:

Description:

Floating-Point Round to Nearest Integer

Destination ¢ Round-Nearest (Source 2)

nint.ss rD,rS2
nint.sd rD,rS2

Floating-Point Reserved Operand
Floating-Point Integer Conversion Overflow
Floating-Point Unimplemented

nint

This instruction converts the floating-point number contained in the rS2
register to an integer using the IEEE 754 round-to-nearest rounding method, and
delivers the result to the rD register. The rS2 operand can be either single or double
precision. If the rS2 operand exponent is greater than or equal to 30, a floating-point
integer conversion overflow exception is taken. If reserved operands are found, a
floating-point reserved operand exception is taken. If r0 is specified as the destination
register or if execution of the nint instruction is attempted while the FPU is disabled,
a floating-point unimplemented exception is taken.

Instruction Encoding:

Floating-Point Category — Triadic Register

26 25 2120 9 8 7 6 54

31
[0000 1] D [o 000000 101 00 o] 12 o of

T2:

S2:

3-74

Destination Register (r0 not allowed)
Source 2 Operand Size

00 - Single Precision

01 - Double Precision
Source 2 Register

MC88100 USER'S MANUAL

MOTOROLA

or Logical OR or

Operation: Destination 4 Source 1V Source 2

Assembler or rD,rS1,rS2
Syntax: orc rD,rS1,rS2
or rD,rS1,IMM16
or.u rD,rS1,IMM16

Exceptions: None

Description: For triadic register addressing, the contents of the rS1 register is logically
ORed with the contents of the rS2 register. The result is stored into the rD register. If
the .c (complement) option is specified, the source 2 operand is complemented before
being ORed.

For register with immediate addressing, the contents of the rS1 register is ORed with
the unsigned 16-bit immediate operand, and the upper 16 bits of rS1 are copied
unchanged to rD. If the .u (upper word) option is specified, the upper 16 bits of the
source 1 operand are ORed with the immediate operand, and the lower 16 bits of rS1
are copied unchanged to rD. The result is stored into the rD register.

Instruction Encoding:

Logical Category — Register with 16-Bit Immediate

3 2 2% 2 21 20 1615 0
01 0 1 1{u] D [s | IMM16

Logical Category — Triadic Register

31 % 25 2120 16 15 1M 10 9 5 4 0
[1 1010 1] D] s1 fo 101 1fclooooo $2]
U: 0 - OR IMM16 to Bits 15-0 of S1
1 - OR IMM16 to Bits 31-16 of S1
D: Destination Register
S1: Source 1 Register
IMM16: 16-bit Unsigned Immediate Operand
C: 0 - Second operand not complemented before the operation
1 - Second operand complemented before the operation
S2: Source 2 Register

MOTOROLA MC88100 USER'S MANUAL 3-75

rot

Operation:

Assembler
Syntax:

Exceptions:

Description:

Rotate Register r Ot

Destination ¢ Source 1 rotated by 05

rot rD,rS1,<05>
rot rD,rS1,rS2

None

The rot instruction rotates the bits in the rS1 register to the right by the

number of bits specified in the O5 field. The result is placed in the rD register. For
triadic register addressing, the five low-order bits of the data contained in the rS2
register are used as the O5 field. Bits 5 through 9 in the rS2 register should be zero

to guarantee future compatibility; the other bits are ignored.

Instruction Encoding:

Bit-Field Category — Register with 10-Bit Immediate

2% 25 2120 16 15 109 5 4 0

3
(1111 0 0] b | w [1 0101 000000 05

*The MC88100 does not decode these bits; however, they should be assembled as shown to guarantee compatibility with
future implementations.

Bit-Field Category — Triadic Register

31 % 25 21 20 16 15 5 4 0
IEEEEE D [S1 [+ 0 1 01 00000 of s2 |
D: Destination Register
S1: Source 1 Register
05: 5-Bit Unsigned Integer denoting a Bit-Field Offset
S2 Source 2 Register

3-76 MC88100 USER’'S MANUAL MOTOROLA

rte Return from Exception rte

(Privileged Instruction)

Operation: PSR ¢ EPSR

NIP 4 SNIP

FIP 4 SFIP

SB ¢ SSBR -
Assembler
Syntax: rte
Exceptions: Privilege Violation

Description: This instruction provides an orderly termination of exception processing.
It causes the exception time and shadow registers to be restored into the appropriate
execution units and pipelines. Instruction execution resumes in the context defined
by the SNIP, SFIP, EPSR, and SSBR registers. An rte instruction executed in the user
mode causes a privilege violation.

Execution of the rte instruction synchronizes the MC88100 in that all previous oper-
ations are allowed to complete (effectively clearing the scoreboard register and data-
unit pipeline) before the rte executes.

See SECTION 6 EXCEPTIONS for more information on exceptions and the side effects
of executing an rte instruction. Refer-to SECTION 8 APPLICATIONS INFORMATION

for information on serialization.
Instruction Encoding:

Flow-Control Catageory — Triadic Register

2% 2 16 15 5 4 0
[1 11 0 1]Jooooo0o000o0 ot 111 11 000 0o0foo0o0o 0¥

*The MC88100 does not decode these bits; however, they should be assembled as shown to guarantee compatibility with
future implementations.

MOTOROLA MC88100 USER'S MANUAL 377

set

Operation:

Assembler
Syntax:

Exceptions:

Description:

Set Bit Field set

Destination 4 (Source 1 V (Bit Field of 1's))

set rD,rS1,W5<05>
set rD,rS1,rS2
set rD,rS1,[<]05[>]

None

The set instruction reads the rS1 register and inserts a field of ones, of

width W5, into the data. The offset from bit zero is specified (in bits) by the 05 field.
The result is placed in the rD register. For example, when W5 contains 5 and 05
contains 16, the destination register will contain the rS1 operand with a field of five
ones in bit 16 through bit 20. For triadic register addressing, bits 9-5 and bits 4-0 of
the rS2 register are used for the W5 and 05 fields, respectively. If the W5 field specifies
bits outside of the destination register, those bits are ignored.

The following illustration shows the operation of the set rD,rS1,5<16> instruction.

0

't (1 1 100 101 1 110000101 1 1000111111100 1]

0

3
o100t ol o 000111111 100 1]

|<-—- WIDTH :I: OFFSET *'!

Instruction Encoding:

Bit-Field Category — Register with 10-Bit Immediate

31

26 25 21 20 16 15 10 9 5 4 0

[t v o1 00] o | st [1 0001 0] ws [o5

Bit-Field Category — Triadic Register

26 25 2120 16 15 5 4 0

3
[1 11

10 1] D | s1 [1 0001 000000 52

D:
S1:
W5:
05:
S2:

3-78

Destination Register

Source 1 Register

Unsigned 5-Bit Integer denoting a Bit-Field Width (0 denotes 32 bits)
Unsigned 5-Bit Integer denoting a Bit-Field Offset

Source 2 Register

MC88100 USER'S MANUAL MOTOROLA

St Store Register to Memory St

Operation: Memory Location 4 Source Register (specified as rD)

Assembler UNSCALED UNSCALED SCALED

Syntax: st.b rD,rS1,IMM16 st.b rD,rS1,rS2 st.b rD,rS1[rS2]
st.h rD,rS1,IMM16 st.h rD,rS1,rS2 st.h rD,rS1[rS2]
st rD,rS1,IMM16 st rD,rS1,rS2 st rD,rS1[rS2}
st.d rD,rS1,IMM16 st.d rD,rS1,rS2 st.d rD,rS1[rS2]

st.b.usr rD,rS1,rS2 st.b.usr rD,rS1[rS2]
st.h.usr rD,rS1,rS2 st.h.usr rD,rS1[rS2]
st.usr rD,rS1,rS2 st.usr rD,rS1[rS2]
st.d.usr rD,rS1,rS2 st.d.usr rD,rS1[rS2]

Exceptions: Data Access Exception
Misaligned Access Exception (if not masked)
Privilege Violation (.usr option only)

Description: This instruction writes the contents of the specified register to the specified
memory location. The rD field is used to specify the register data that will be stored
in memory. The memory base address is contained in the rS1 register. Added to this
base is either a zero-extended 16-bit immediate index or the signed 32-bit word index
contained in the rS2 register. The index in the rS2 register can be scaled or unscaled.

Exceptions are recognized between any two memory transactions on the P bus. There-
fore, the double-word instruction (st.d) can encounter a data access exception between
word accesses. Also, if the source register is r31 for the st.d instruction, the data is
taken from r31 and r0. The two bus transactions required for a double-word store do
not lock the P bus. Therefore, in a system that interfaces the data P bus to CMMUs,
the double-word store to memory may be interrupted by an alternate memory bus
master.

The st instruction with no options specifies a 32-bit operation. The .b option specifies
byte (8 bits), .h specifies half word (16 bits), and .d specifies double word (64 bits,
registers rD and rD + 1). For the scaled index modes, the scale factor is determined by
the size option of the instruction. Operations that are byte, half word, word, and double
word in size define scale factors of 1, 2, 4, and 8, respectively, when the rS2 field is
specified within square brackets [1.

When the MODE bit of the PSR is set, the memory address is normally to supervisor
memory space; when MODE is clear, the memory address is normally to user memory
space, and the value of the MODE bit is reflected on the DS/U P bus signal. The .usr
option specifies that the memory access must be to the user address space regardiess
of the mode bit (user or supervisor) in the PSR. The .usr option is privileged and only
available in supervisor mode.

MOTOROLA MC88100 USER'S MANUAL 3-79

St Store Register to Membry ' St

Instruction Encoding:

Load/Store/Exchange Category — Register Indirect with Zero-Extended Immediate
Index

3 3 8 2% % 210 16_15 0
oo 1 0] 1v] D | s | 16 |

Load/Store/Exchange Category — Register Indirect with Index

31 % 2 20 16 15 21110 9 87 54
[+ 111 0 1] b | s [o o1 ol [ofulo o of $2

Load/Store/Exchange Category — Register Indirect with Scaled Index

31 % 25 2120 16 15 121110 9 8 7 5 4 0
(1111 0 1] D [= [o o1 of v [i1]ulo o of 2 |
D: For the store instruction, this destination field actually specifies the data
(source) that is stored
TY: 00 - Double Word
01 - Word
10 - Half Word
11 - Byte
S1: Source 1 Register
116: 16-Bit Immediate Index
U: 0 - Access per User/Supervisor Bit in PSR (normal mode)
1 — Access User Space Regardless of PSR
S2: Source 2 Register

3-80 MC8§100 USER’S MANUAL MOTOROLA

Stcr Store to Control Register StCI‘

(Privileged Instruction)

Operation: Control Register 4 Source Register
Assembler
Syntax: ster rS1,erD -
Exceptions: Privilege Violation
Description: The data contained in the general-purpose register specified by the S1 field
of the instruction is stored to the integer-unit control register specified by the CRD
field. The integer-unit control registers can only be accessed in supervisor mode.

Instruction Encoding:

Load/Store/Exchange Category — Control Register

31 % 25 21 %0 16 15 110 54 0
[+ 0 000 0foo0 00 0¥ 81 [1 00 0 of CRD $2

*The MC88100 does not decode these bits; however, they should be assembled as shown to guarantee compatibility with
future implementations.

S1: Source 1 Register
CRD: Control Register Destination
S2: Source 2 Register

Note: The S1 and S2 fields must contain the same register number.

MOTOROLA MC88100 USER'S MANUAL 3-81

SU b Integer Subtract SuU b

Operation: Destination 4 Source 1—Source 2

Assembler sub rD,rS1,rS2 subtract (without borrow)

Syntax: sub.ci rD,rS1,rS2 subtract and use borrow in
sub.co rD,rS1,rS2 subtract and propagate borrow out
sub.cio rD,rS1,rS2 subtract and propagate borrow in and out
sub rD,rS1,IMM16 subtract immediate (without borrow)

Exceptions: Integer Overflow

Description: The data contained in the rS2 register is subtracted from the data contained

in the rS1 register, or an unsigned zero-extended 16-bit immediate operand is sub-
tracted from the rS1 register. The result is placed in the rD register. The carry bit can
optionally be used to perform subtract with borrow operations. A cleared carry bit
indicates a borrow, and a set carry bit indicates no borrow. (Effectively, borrow for
subtraction is the opposite of carry for addition.) If the results cannot be reported as
a signed 32-bit integer, an integer overflow exception occurs.

Subtraction is performed by adding the ones complement of the source 2 operand
and either a constant one or the carry bit to the source 1 operand. All 32 bits of the
operand participate in the addition. The generated carry bit can optionally be written
to the PSR. If the carry out of the sign bit position and the carry into the sign bit are
not the same, an overflow exception occurs.

The sub.co instruction can be used to implement a ““set carry bit"” operation:
sub.co r0,r0,r0

The instruction subtracts zero from zero (r0 contains zero by hardware convention),
resulting in a one carry bit. Because the instruction specifies r0 as the destination and
it is read-only, no register contents are altered as a result of this operation.

Instruction Encoding:

3-82

Integer Category — Register with 16-Bit Immediate

31 % 2 2 0 16 15 0
o 1 11 0 1] D | s1 | IMM16

MC88100 USER’S MANUAL MOTOROLA

SuU b Integer Subtract SU b

Integer Category — Triadic Register

31 % 25 21 20 16 15 09 87 5 4 0
(11010 1] D | S1 Jo 1 v 10 a]iJofo o of 2 |
D: Destination Register

S1: Source 1 Register

IMM16: 16-Bit Zero-Extended Immediate Operand
I: 0 - Disable Carry In
1 - Enable Carry In

O: 0 - Disable Carry Out
1 - Enable Carry Out
S2: Source 2 Register

MOTOROLA MC88100 USER’S MANUAL 3-83

Su bu Unsigned Integer Subtract Su bu

Operation: Destination 4 Source 1—Source 2

Assembler subu rD,rS1,rS2

Syntax: subu.ci rD,rS1,rS2
subu.co rD,rS1,rS2
subu.cio rD,rS1,rS2
subu rD,rS1,IMM16

Exceptions: None

Description: The data contained in the rS2 register is subtracted from the data contained
in the rS1 register, or an unsigned zero-extended 16-bit immediate operand is sub-
tracted from the rS1 register. The result is placed in the rD register. The carry bit can
optionally be used to perform subtract with borrow operations.

Subtraction is performed by adding the ones complement of the source 2 operand
and either a constant one or the carry bit to the source 1 operand. All 32 bits of the
operand participate in the addition. The generated carry bit can optionally be written
to the PSR.

Instruction Encoding:

Integer Category — Register with 16-Bit Immediate

31 % 2 21 20 16 15 0
[0 1 1 00 1] D | St [IMM16

Integer Category — Triadic Register

31 % 25 2120 16 15 109 8 7 5 4 0
[1 1110 1] D [st [o 1 100 1[i]ofo o of 52

D: Destination Register

S1: Source 1 Register

IMM16: 16-Bit Zero-Extended Immediate Operand
I: 0 - Disable Carry In
1 - Enable Carry In

0: 0 - Disable Carry Out
1 - Enable Carry Out
S2: Source 2 Register

3-84 MC88100 USER'S MANUAL MOTOROLA

tb0

Operation:

Assembler
Syntax:

Exceptions:

Description:
B5 field.

Trap On Bit Clear tbo

If Bit B5 Clear: Trap VEC9

tb0 B5,rS1,VECY

Trap VEC9
Privilege Violation

The th0 instruction examines the bit in the rS1 register specified by the
If that bit is clear, exception processing is initiated. The exception vector

address is formed by concatenating the upper 20 bits of the vector base register with
the 9-bit VEC9 field, followed by a 3-bit field of zeros.

Execution of the tb0 instruction synchronizes the MC88100 in that all previous oper-
ations are allowed to compiete (effectively clearing the scoreboard register and data
unit pipeline) before the tb0 executes.

When executed in user mode, a trap to a hardware vector (vectors 0 through 127)

causes a

privilege violation exception whether or not the trap condition is met.

Instruction Encoding:

Flow-Control Category — 9-Bit Vector Table Address

26 25 21 20 16 15

3
[+ 11

9 8
0 o] B5 | s1 [1 10 1 00 0] VEC9

B5:
S1:
VEC9:

MOTOROLA

5-Bit Unsigned Integer denoting a Bit Number
Source 1 Register
Vector Number from the start of the Page Address in the Vector Base Register

MC88100 USER'S MANUAL 3-85

tb1

Operation:

Assembler
Syntax:

Exceptions:

Description:

Trap On Bit Set tb1

If Bit B5 Set: Trap VEC9

tb1 B5,rS1,VECY

Trap VEC9
Privilege Violation

The tb1 instruction examines the bit in the rS1 register specified by the

B5 field. If that bit is set, exception processing is initiated. The exception vector address
is formed by concatenating the upper 20 bits of the vector base register with the 9-
bit VEC9 field followed by a 3-bit field of zeros.

Execution of the th1 instruction synchronizes the MC88100 in that all previous oper-
ations are allowed to complete (effectively clearing the scoreboard register and data
unit pipeline) before the tb1 executes.

When in the user mode, a trap to a hardware vector (vectors 0 through 127) causes
a privilege violation exception whether or not the trap condition is met.

Instruction Encoding:

Flow-Control Category — 9-Bit Vector Table Address

31 % 25 21 20 16 15 9 8 0
[1 111 0 0] B5 | s1 [1 101 1 0 of VECS

B5: 5-Bit Unsigned Integer denoting a Bit Number

S1: Source 1 Register

VEC9: Vector Number from the start of the Page Address in the Vector Base Register

MC88100 USER'S MANUAL MOTOROLA

tbl’ld Trap On Bounds Check tbnd

Operation: If unsigned(S1)>unsigned(S2): Trap (bounds check vector)
If unsigned(S1)>unsigned (IMM16): Trap (bounds check vector)

Assembler tbnd rS1,rS2
Syntax: tbnd rS1,IMM16

Exceptions: Bounds Check

Description: The data contained in the rS1 register is compared either to the data con-
tained in the rS2 register or to the zero-extended 16-bit immediate operand using
unsigned arithmetic. If the source 1 operand is larger (out of bounds), a bounds check
trap is taken and exception processing is initiated.

Although this instruction is a conditional trap instruction, it does not synchronize the
processor before it executes.

Instruction Encoding:

Flow-Control Category — Register with 16-Bit Immediate

3 2% 25 21 20 16 15 0
[t 1110 ofo o o0 0¥ St [IMM16 |

*The MC88100 does not decode these bits; however, they should be assembled as shown to guarantee compatibility with
future implementations.

Flow-Control Category — Triadic Register

3 2% 25 21 20 16 15 5 4 0
[1 111 0 1[oo o0 0¥ St [1 1 1 1 1 000000 $2

*The MC88100 does not decode these bits; however, they should be assembled as shown to guarantee compatibility with
future implementations.

S1: Source 1 Register
IMM16: 16-Bit Zero-Extended Immediate Operand
S2: Source 2 Register

MOTOROLA MC88100 USER’S MANUAL 3-87

tCI‘I d Conditional Trap tcn d

Operation: If Condition True: Trap

Assembler tend eq0,rS1,VEC9

Syntax: tend ne0,rS1,VEC9
tend gt0,rS1,VEC9
tend 1t0,rS1,VEC9
tcnd ge0,rS1,VEC9S
tend 1e0,rS1,VEC9Y
tend M5,rS1,VECY

Exceptions: Trap VEC9
Privilege Violation

Description: The tend instruction examines the data contained in the rS1 register to
determine the value of two bits: 1) the sign bit (most significant bit) and 2) the zero
bit (logical NORing of the 31 low-order operand bits). These two bits are concatenated
to form an index into the M5 field of the instruction. If the indexed bit is one, then
exception processing is initiated. This allows traps on conditions such as zero, neg-
ative, positive, greater than or equal to zero, and less than or equal to zero, without
preceding the trap instruction by a compare instruction. The exception vector address
is formed by concatenating the upper 20 bits of the vector base register with the 9-
bit VECS field followed by a 3-bit field of zeros.

The Motorola MC88100 assembler provides mnemonics for commonly used compar-
ison conditions. The following chart lists these mnemonics and their corresponding
bit values for the M5 field. The M5 field may also be indicated explicitly by a literal

value.

Bit: 25 24 23 22 21
eq0 (equals zero) 0 0 0 1 0
ne0 (not equal to zero) 0 1 1 0 1
gt0 (greater than zero) 0 0 0 0 1
It0 (less than zero) 0 1 1 0 0
ge0 (greater than/equal zero) 0 0 0 1 1
le0 (less than/equals zero) 0 1 1 1 0

Execution of the tend instruction synchronizes the MC88100 in that all previous op-
erations are allowed to complete (effectively clearing the scoreboard register and data
unit pipeline) before the tend executes.

In the user mode, a trap to a hardware vector (vectors 0 through 127) causes a privilege
violation exception whether or not the trap condition is met.

3-88 MC88100 USER'S MANUAL MOTOROLA

tcnd Conditional Trap tcnd

Instruction Encoding:

Flow-Control Category — 9-Bit Vector Table Address

31 % 2 210 16 15 98 0
(1 1110 0] Ms | s1 [1 11 01 00 VEC9

M5: 5-Bit Condition Match Field
bit 25: reserved, unused by the branch selection logic
bit 24: maximum negative number [Sign and Zero]

bit 23: less than zero [Sign and (not Zero)]

bit 22: equal to zero [(not Sign) and Zero]

bit 21: greater than zero [(not Sign) and (not Zero)]
S1: Source 1 Register

VEC9: Vector Number from the start of the Page Address in the Vector Base Register

MOTOROLA MC88100 USER'S MANUAL 3-89

trnc

Operation:

Assembler
Syntax:

Exceptions:

Description:

Truncate Floating-Point to Integer

Destination ¢ Truncate(Source 2)

trnc.ss rD,rS2
trnc.sd rD,rS2

Floating-Point Reserved Operand
Floating-Point Integer Conversion Overflow
Floating-Point Unimplemented

trnc

The single- or double-precision number specified by the rS2 register is
converted to a 32-bit integer using the IEEE 754 round-to-zero rounding method. The
result is placed in the rD register. If the rS2 operand exponent is greater than or equal
to 30, the floating-point integer conversion overflow exception is taken. If reserved
operands are found, a floating-point reserved operand exception is taken. If r0 is
specified as the destination register or if execution of the trnc instruction is attempted
while the FPU is disabled, a floating-point unimplemented exception is taken.

Instruction Encoding:

Floating-Point Category — Triadic Register

31

26 25 21 20 16 15 9 8 7

[000 0 1] D Jo 0o 0 0o0fo 1 01 100 ™ oo

T2:

S2:

3-90

Destination Register (r0 not allowed)
Source 2 Operand Size

00 - Single Precision
01 - Double Precision

Source 2 Register

MC88100 USER'S MANUAL

MOTOROLA

XCr Exchange Control Register XCr

(Privileged Instruction)

Operation: (temp) 4 Source 1
Destination Register 4 Control Register
Control Register 4 (temp)

Assembler
Syntax: xcr rD,rS1,crS/D
Exceptions: Privilege Violation

Description: The data contained in the general-purpose register specified by the source
1 field of the instruction is copied into the control register specified by the CRS/D field,
while the contents of the specified control register are loaded into the general-purpose
register specified by the D field.

Instruction Encoding:

Load/Store/Exchange Category — Control Register

31 2% 25 2120 16 15 110 5 4 0
[1 0000 0of D | st [+ 1 0 0 of CRS/D s2

D: Destination Register

S1: Source 1 Register

CRS/D: Control Register Source and Destination

S2: Source 2 Register

Note: S1 and S2 fields must contain the same register number.

MOTOROLA MC88100 USER’'S MANUAL 3-91

Xm e m Exchange Register with Memory xXm e m

Operation: (temp) 4 Source Register
Source Register 4 Destination
Destination 4 (temp)
Assembler UNSCALED UNSCALED
Syntax: xmem.bu rD,rS1,IMM16 xmem.bu rD,rS1,rS2
Xxmem rD,rS1,IMM16 Xxmem rD,rS1,rS2
xmem.bu.usr rD,rS1,rS2
Xxmem.usr rD,rS1,rS2
SCALED
xmem.bu rD,rS1[rS2]
xmem rD,rS1[rS2]
xmem.bu.usr rD,rS1[rS2]
Xmem.usr rD,rS1[rS2]
Exceptions: Data Access Exception
Misaligned Access Exception (if not masked)
Privilege Violation (.usr option only)
Description: The xmem instruction exchanges the contents of the destination register

with a memory location. The memory base address is contained in the rS1 register.
Added to this base is either a zero-extended 16-bit immediate index or the unsigned
32-bit word index contained in the rS2 register. The index in the rS2 register can be
scaled or unscaled. If the instruction does not cause a priviledge exception, the contents
of the rD register are exchanged (load and store) with the memory location. The
destination register is marked ‘in use’ (in the scoreboard register) until the memory
fetch completes.

The memory accesses generated for the load and store are indivisible; that is, the
instruction cannot be interrupted by external interrupts, bus arbitration, or imprecise
exceptions. The only potential interruption occurs if the store causes a data access
exception after the load has already been performed. After the software handles the
exception, the xmem instruction must be executed again to ensure operand consist-
ency.

Execution of the xmem instruction synchronizes the MC88100 in that all previous
operations are allowed to complete (effectively clearing the scoreboard register and
data unit pipeline) before the xmem executes.

The xmem instruction with no options specifies a 32-bit operation. The .bu option
specifies an unsigned byte (8 bits).

For the scaled index modes, the scale factor is determined by the size option of the
instruction. Operations that are byte and word in size define scale factors of one and
four respectively, when the rS2 field is specified within square [1.

3-92 MC88100 USER'S MANUAL MOTOROLA

Xm e m Exchange Register with Memory xXm e m

The current memory space is defined by the value of bit 31 (MODE) in the PSR. When
MODE is set, the memory address is normally to supervisor memory space; when
MODE is clear, the memory address is to user memory space, and the value of the
MODE bit is reflected on the DS/U P bus signal. The .usr option specifies that the
memory access must be to the user address space regardless of the mode bit (user
or supervisor) in the PSR. The .usr option is privileged and only available in supervisor
mode.

The xmem instruction asserts the DLOCK (bus lock) signal on the P bus to prevent
the memory accesses from being interrupted. Bus locking with the xmem instruction
is intended for semaphore operations and can have side effects on the on-chip cache
of an MC88200 (CMMU). Refer to SECTION 8 APPLICATIONS INFORMATION for more
information on synchronization operations.

Instruction Encoding:

Load/Store/Exchange Category — Register Indirect with Zero-Extended Immediate
Index

3 28 212 2 21 % 16 15 0
fo o0 of v] D [$1 | IMM16 |

Load/Store/Exchange Category — Register Indirect with Index

3 % 25 21 2% 16 15 2 1110 9 8 7 54 0
(1101 0 1] D | Si [o 0 0o of v]oJulo o o 52

Load/Store/Exchange Category — Register Indirect with Scaled Index

31 % 25 7N 16 15 121110 9 8 7 5 4 0
(1111 0] D | s1 [o 0 o of v]ifulo o o 52
TY: 00 - Byte
01 - Word
D: Destination Register
S1: Source 1 Register
IMM16: 16-Bit Immediate Index
S2: Source 2 Register
U: 0 - Access per User/Supervisor Bit in PSR (normal mode)

1 - Access User Space Regardless of PSR

MOTOROLA MC88100 USER'S MANUAL 3-93

XOr

Operation:

Assembler
Syntax:

Exceptions:

Description:
XORed with the contents of the rS2 register. The result is stored into the rD register.
If the .¢c (complement) option is specified, the source 2 operand is complemented
before being XORed.

Logical Exclusive OR XOr

Destination 4 Source 1 @ Source 2

xor rD,rS1,rS2
xor.c rD,rS1,rS2
xor rD,rS1,IMM16
xor.u rD,rS1,IMM16

None

For triadic register addressing, the contents of the rS1 register are exclusive

For register with immediate addressing, the contents of the rS1 register are logically
XORed with the unsigned 16-bit immediate operand, and the upper 16 bits of rS1 are
copied unchanged to rD. If the .u (upper word) option is specified, the upper 16 bits
of the source 1 operand are XORed, and the lower 16 bits of rS1 are copied unchanged
to rD. The result is stored into the rD register.

Instruction Encoding:

3-94

Logical Category — Register with 16-Bit Immediate

31

21 26 25 21 20 16 15 0

fo 1001 0ful D | St | IMM16

Logical Category — Triadic Register

26 25 21 20 16 15 n 10 9 5 4 0

31
[1 11

10 1] D [s1 f[o 1 01 o]clooooo $2]

S1:
IMM16:
C:

S2:

0 - XOR IMM16 with Bits 15-0 of S1

1 - XOR IMM16 with Bits 31-16 of S1

Destination Register

Source 1 Register

16-bit Unsigned Immediate Operand

0 - Second operand not complemented before the operation
1 - Second operand complemented before the operation
Source 2 Register

MC88100 USER'S MANUAL MOTOROLA

3.5 OPCODE SUMMARY

The following paragraphs present two maps of the MC88100 instruction encodings. The
paragraphs are organized by instruction category, and provide definitions for all of the
instruction fields. See 3.5.7 Instruction Encodings In Numeric Order for a list of instructions
in ascending order by opcode.

3.5.1 Logical Instructions

Table 3-8 lists the opcode map for the logical instructions category.

Table 3-8. Logical Instructions

Mnemonic Encoding
31 27 26 25 2120 16 15 0
and 01 0 0 0fU D S1 IMM16
mask 01 0 0 1|U D S1 IMM16
xor 01 0 1 0|U D S1 IMM16
or o1 0 1 1|U D S1 IMM16
31 26 25 2120 16 15 11 10 9 54 0
and 111 1 0 1| D st {01 0 0 0(C|O0O O O 0 O S2
xor 111 1 0 1|, D st (01 0 1 0|C|O O O O O S2
or 111 1 0 1 D st (01 0 1 1{C|0 O O O O S2
U: 0 - Apply IMM16 to Bits 15-0 of S1
1 - Apply IMM16 to Bits 31-16 of S1
D: Destination Register
S1: Source 1 Register
IMM16: 16-bit Unsigned Immediate Operand
C: 0 - Second operand not complemented before the operation
1 - Second operand complemented before the operation
S2: Source 2 Register

MOTOROLA MC88100 USER'S MANUAL 3-95

3.5.2 Integer Arithmetic Instructions

Table 3-9 lists the opcode map for the integer arithmetic instructions category.

Table 3-9. Integer Arithmetic Instructions

Mnemonic Encoding
31 26 25 2120 16 15 0
addu o1 1 0 0 O D S1 IMM16
subu o1 1 0 0 1 D S1 IMM16
divu o1 1 0 1 0 D S1 IMM16
mul o1 1 0 1 1 D S1 IMM16
add o1 1 1 0 O D S1 IMM16
sub o 1 1 1 0 1 D S1 IVM16
div 01 1 1 1 0 D S1 IMM16
cmp o1 1 1 1 1 D S1 IMM16
31 26 25 2120 16 15 0 9 8 54 0
addu 11 1 1 0 1 D S1 011 0 0 O0(IfO]|]0 0 O S2
subu 11 1 1 01 D S1 o1 1 0 0 1{1lO]|0 0 O S2
divu T 1 1 1 0 1 D S1 017 1 0 1 0[00%¥ 0 0 O S2
mul T 1 1 1 0 1 D S1 01 1 0 1 1[/00%¥ 0 0 O S2
add T 1 1 1 0 1 D S1 01 1 1 0 O0jlIlO}]O0 O O S2
sub T 1 1 1 0 1 D S1 o1 1 1 0 1 I1{O|0 0 O S2
div T 1 1 1 0 1 D S1 01 1 1 1 0|00% 0 0 O S2
cmp T 1 1 1 0 1 D S1 o1 1 1 1 1/00% 0 0 O S2
D: Destination Register

IMM16:
I:

S2:

Source 1 Register)

16-bit Unsigned Immediate Operand
0 - Disable Carry In
0 - Disable Carry Out
Source 2 Register

1 - Add Carry to Result
1 - Generate Carry

The MC88100 does not decode these bits; however, assemble as shown to guarantee compatibility with future

implementations.

3.5.3 Special-Function Unit (SFU) Instructions

The general opcode map for instructions executed by an SFU is identified below:

31

29 28 26 25 2120 16 15

76

54

[1 o

o] sruip | D | s1

SUB OPCODE

[o |

$2 |

3-96

MC88100 USER'S MANUAL

MOTOROLA

The SFU ID field (bits 28-26) identifies which SFU is specified. If SFUID=00 1, the floating-
point unit is specified. If SFU ID=0 0 0, the instruction is an SFU control register instruction
as shown below:

3 298 2625 212 1615 1413 1110 54 0
[t o ofo o of D | S1 | om [srus | sruer] $2 |

The SFU # field (bits 13-11) identifies which SFU is specified. The encoding of SFU #
field=0 0 0 is used for general control register instructions. If SFU #=0 0 1, the floating-
point unit control registers are specified.

In the current implementation, an attempt to execute an instruction that specifies SFU2
through SFU7 causes an SFU precise exception for that particular SFU. However, all
encodings that correspond to SFU2 through SFU7 are reserved for future definition by
Motorola. Table 3-10 lists the opcode map for the floating-point instruction category:

Table 3-10. Floating-Point Instructions

Mnemonic Encoding
31 26 25 2120 16 15 11109 87 654 0
fmul 100001 D s1 looooo|[T [T2]m s2
fit 100001 D 00000 O0O0O11T00 OO OO}] TD S2
fadd 17000 0 1 D S 00101 T T2 D S2
fsub 170000 1 D S1 00110 M T2 T™D S2
femp 1000 01 D S1 00111 T T2 00 S2
int 100001 D 0000 O01T0O01T 00| T2 {00 S2
nint 100001 D 0000 01010 OO T2 {00 S2
trne 100001 D 0000 O0O1TO011T1T 0O T21{00 S2
fdiv 100001 D S1 01110 M T2 TD S2
31 26 25 21 20 16 15 1110 54 0
fider 1000 D 000O00% 01001 FCRS 0 0 0 00%
fster 100000000 O0O0% S1 1000 1 FCRD S2
fxer 100000 D S1 11001 FCRS/D S2
D: Destination Register (r0 allowed for fidcr, fstcr, and fxcr only)
S1: Source 1 Register
T1: Source 1 Operand Size
T2: Source 2 Operand Size
TD: Destination Operand Size

Note: For the T1, T2, and TD Fields:
00 - Single Precision
01 - Double Precision

S2: Source 2 Register
FCRS: Floating-Point Control Register Source
FCRD: Floating-Point Control Destination Register

FCRS/D: Floating-Point Control Source/Destination
* The MC88100 does not decode these bits; however, assemble as shown to guarantee compatibility with future
implementation.

MOTOROLA MC88100 USER'S MANUAL 3-97

3.5.4 Bit-Field Instructions

Table 3-11 lists the opcode map for the bit-field instruction category.

Table 3-11. Bit-Field Instructions

Mnemonic Encoding
31 26 25 2120 16 15 109 54 0
clr 111100 D S1 100000 W5 05
set 111100 D S1 100010 W5 05
ext 111100 D S1 100100 W5 05
extu Tt1 1100 D S1 100110 W5 05
mak 1171100 D S1 101000 W5 05
rot 111100 D S1 101010[000O0 0O 05
31 26 25 2120 16 15 54 0
clr 111101 D S1 100000 0O0OO0OOO S2
set 111101 D S1 100010 0O0O0O0TO S2
ext 111101 D S1 100100 0O0O0COO S2
extu 111101 D S1 100110 0000O0O0 S2
mak 111101 D S1 101000 0O0O0O0O S2
rot 111101 D S1 101010 000O0TO S2
31 26 25 2120 16 15 54 0
ff1 111101 D 000O00%¥ 111010 0 00 S2
ffo 111101 D 000O00* 1110110 00 S2
D: Destination Register
S1: Source 1 Register
W5: 5-Bit Unsigned Integer Denoting a Bit-Field Width (0 denotes 32 bits)
05: 5-Bit Unsigned Integer Denoting a Bit-Field Offset
S2: Source 2 Register
* The MC88100 does not decode these bits; however, assemble as shown to guarantee compatibility with future
implementation.
3-98 MC88100 USER'S MANUAL MOTOROLA

3.5.5 Load/Store/Exchange Instructions

Table 3-12 lists the opcode map for the load/store/exchange instruction category.

Table 3-12. Load/Store/Exchange Instructions

Mnemonic Encoding
31 30 29 28 27 26 25 2120 1615 0
xmem (imm) 00 0 0| TY D S1 116
Id (imm) 00 P Y D S1 116
st (imm) 00 1 0| TY D S1 116
ida (imm) 00 11 TY D S1 116
31 2625 2120 1615 1110 54 0
Ider 10 0 0 0O D 0 00 000 1 0 0 O CRS 0 0 0 0 o*
ster 10 00 0 OO O 0 O o S1 10 00 O CRD S2
xcr 10 0 0 0O D S1 11 0 0 O CRS/CRD S2
31 2625 2120 1615 14 13 12 11 10 9 8 7 54 0
Id {uns) 11 1 1 01 D S1 oo P TY [0jU]|o0 S2
Id (scl) 11 1 1 0 1 D S1 0 P TY ulo S2
31 2625 2120 16 15 12 110 9 87 54 0
xmem (uns) 11 11 01 D S1 00 0 O TY |O|JUJO 0 O S2
xmen (scl) 171 1 1 01 D S1 00 0 0] TY 1(Uul0 0 O S2
st (uns) 1T 1 1 1 0 1 D S1 0 0 1 0 TY |[O|U|O 0 O S2
st (scl) T 1 1 1 01 D S1 00 1 0| TY 1(Uulo0 0 O S2
Ida (uns) T1 1 1 01 D S1 00 11 TY |ofot|0 0 O S2
Ida (scl) T 1 1 1 01 D S1 00 11 TY 1(0t|{0 0 O S2
P: 00 - Load Unsigned (byte and half-word only)
01 - Load Signed
TY: 00 - Double Word
01 - Word
10 - Half Word
00 — Byte
D: Destination Register (Source for Store Operations)
S1: Source 1 Register
116: 16-Bit Immediate Index
u: 0 - Access per User/Supervisor Bit in PSR (normal mode)
1 - Access User Space Regardless of PSR
S2: Source 2 Register
CRS: Control Register Source
CRD: Control Register Destination
t Causes privilege violation exception if bit is set and instruction is executed in user mode.
*

The MC88100 does not decode these bits; however, assemble as shown to guarantee compatibility with future

implementation.

MOTOROLA MC88100 USER'S MANUAL

3-99

3.5.6 Flow-Control Instructions

Table 3-13 lists the opcode map for the flow-control instruction category.

Table 3-13. Flow-Control Instructions

Mnemonic Encoding
3 27 26 25 0
br 11700 0[N D26
bsr 171 0 0 1N D26
31 27 26 25 2120 1615 0
bb0 1101 0N B5 S1 D16
bb1 110 1 1|N B5 S1 D16
bend 1110 1|N M5 S1 D16
31 26 25 2120 1615 98 0
b0 117110 0 B5 S1 11010 0 0 VEC9
b1 117110 0 B5 S1 1717011 0 0 VEC9
tend 11110 0 M5 St 11101 0 0 VEC9
31 2625 1615 1110 9 54 0
jmp 1111 1 00 00 00%¥ 1 100 0N 0 0 S2
jsr 11110 1]0 00 0 00% 1 1 00 1]|N 0 0 S2
31 2625 1615 0
rte [1 1110 1]0o000000000%11111 1000000000 0]
31 26 25 2120 1615 0
tbnd 11111 0f0 0 0o0% S1 IMM16
tbnd 11110 1]0 0 00% S1 11111 ooooooL S2
N: 0 - Next sequential instruction suppressed

B5:

D16:
M5:

D26:
S2:
VEC9:
*

3-100

1 - Next sequential instruction executed before branch is taken

5-Bit Integer Denoting a Bit Number in the S1 Operand

Source 1 Register

16-Bit Sign-Extended Displacement

5-Bit Condition Match Field:

Bit 25: reserved, unused by the branch selection logic

Bit 24: maximum negative number

Bit 23: less than zero
Bit 22: equal to zero

Bit 21: greater than zero

26-bit Sign-Extended Displacement

Source 2 Register

[Sign and Zero]

[Sign and (not Zero)]
[(not Sign) and Zero]
[(not Sign) and (not Zero)]

Vector number from the start of the page address in the vector base register
The MC88100 does not decode these bits; however, assemble as shown to guarantee compatibility with future implementation.

MC88100 USER'S MANUAL

MOTOROLA

3.5.7 Instruction Encodings In Numeric Order

Table 3-14 lists the opcode map for the MC88100 instruction set in ascending order.

Table 3-14. Instruction Numeric Listing (Sheet 1 of 3)

Mnemonic Encoding

3130 29 28 27 26 25 2120 16 15 0
xmem{imm)l |9 o o 0| TY D S1 IMM16
Id (imm) oof P TY D S IMM16
st (imm) 00 1 0| TY D S1 IMM16
Ida (imm) 00 1 1| TY D S1 IMM16
and 01 00 0fU D S1 IMM16
mask 01 00 1|U D S1 IMM16
xor 01 01 0|U D S1 IMM16
or 01 01 11U D S1 IMM16
addu 01 10 0 0 D S1 IMM16
subu 01 10 0 1 D S1 IMM16
divu 01 10 1 0 D S1 IMM16
mul 01 10 1 1 D S1 IMM16
add 01 11 0 0 D S1 IMM16
sub 01 11 0 1 D S1 IMM16
div 01 11 1 0 D S1 IMM16
cmp 01 11 1 1 D S IMM16

31 26 25 2120 1615 1110 54 0
dcr 10 00 0 O D 000 00¥ 01000 CRS 0 0 0 00%
flder 10 00 0 0 D 000 00¥ 01001 FCRS 0 0 0 00%
ster 10 00 0 O 0 o0 o0¥ S1 10000 CRD S2
fstor 10 00 0 O 0 0 0% s1 100 0 1 FCRD S2
xcr 10 00 0 O D S1 1100 0 CRS/CRD S2
fxor 10 00 0 0 D S1 1710 0 1 FCRS/D S2

31 26 25 2120 16 15 1110 9 8 7 6 5 4 0
fmul 10 00 0 1 D 1 coooolm[mn]m® s2
fit 10 00 0 1 D 00000 O0O0OT1O0UO0 0O0 O0OO0|TD s2
fadd 10 00 0 1 D s1 0010 1| T T2 | ™ S2
fsub 10 00 0 1 D S1 00 1 10| T T2 | T S2
femp 10 00 0 1 D s1 001 11| M T2 |0 0 S2
int 10 00 0 1 D 0000001001 00| T2 |00 S2
nint 10 00 0 1 D 00000 O01010 00| T2/ (00 S2
trnc 10 00 0 1 D 0000001011 00| T2 (00 S2
fdiv 10 00 0 1 D s1 —[o 11 10| T T2 | T S2

31 27 26 25 0
br 11 00 0[N D26
bsr 11 00 1[N D26

* The MC88100 does not decode these bits; however, assemble as shown to guarantee compatibility with future implementation.

MOTOROLA MC88100 USER'S MANUAL 3-101

Table 3-14. Instruction Numeric Listing (Sheet 2 of 3)

Mnemonic Encoding
31 27 26 25 2120 1615 0
bb0 110 1 0N B5 s1 D16
bb1 1101 1|N B5 S1 D16
bend 7110 1(N M5 S1 D16
31 26 25 2120 1615 1009 54 0
clr 11110 0 D S1 10 00 0 0 w5 05
set 11110 0 D S1 10 00 1 0 W5 05
ext 11110 0 D S1 10 01 0 0 w5 05
extu 11110 0 D S1 10 01 1 0 w5 05
mak 11110 0 D St 10 10 0 0 W5 05
rot 11110 0 D S1 10 10 1 0l0 0 0 00% 05
31 26 25 2120 16 15 98 0
b0 11110 0 B5 S1 171 01 0 0 0 VEC9
th1 11110 0 B5 S1 171 01 1 0 0 VEC9
tend 11110 0 M5 S1 171 10 1 0 0 VEC9
31 26 25 2120 1615 121110 9 8 7 54 0
xmem(uns)| [1 1 1 1 0 1 D S1 00 0oO0| TY {ofulo 0 0 S2
xmem (scl) 111 1 0 1 D S1 00 0o0| TY [1[Uufl0 0 0 S2
Id (uns) 111 1 0 1 D s1 00 TY |ofulo 0 o S2
Id (scl) 11 1 10 1 D S1 00 Y {1|uf0 0 0 S2
st (uns) 111 1 0 1 D S1 00 10 TY {(ofulo 00O S2
st (scl) 111 10 1 D S1 00 10 TY [1|Uul0 00 s2
Ida (uns) 111 1 0 1 D S1 00 1 1(TY [ofof|0 0 0 S2
Ida (scl) 1111 0 1 D S1 00 1 1| TY [1]ot|0 0 0 S2
31 26 25 2120 16 15 1110 9 54 0
and 1111 1 D S1 00 0f|C|O0 O 0 S2
xor 111 10 1 D S1 01 01 0|C|0 0 00O S2
or 11110 1 D S1 101 1]/clo o 00 S2
31 26 25 2120 1615 09 87 54 0
addu 1111 0 1 D S1 01 10 0 0fl 000 s2
subu 11110 1 D S1 01 10 0 1(1[0]l0 00O S2
divu 11 1 10 1 D S1 01 10 1 0|00% o000 S2
mul 111 1 0 1 D S1 01 10 1 1/00% o000 S2
add 11110 1 D S1 01 11 0 0|1]|0j0o 00 s2
sub 11110 1 D S1 01 11 0 1/1]0|0 00 s2
div 1111 0 1 D S1 01 11 1 0}00¥%¥ o000 S2
cmp 11 1 10 1 D S1 01 11 1 1]|/00% o000 s2
* The MC88100 does not decode these bits; however, assemble as shown to guarantee compatibility with future implementation.
+ Causes privilege violation exception if bit is set and instruction is executed in user mode.
3-102 MC88100 USER’'S MANUAL MOTOROLA

Table 3-14. Instruction Numeric Listing (Sheet 3 of 3)

Mnemonic Encoding

31 26 25 2120 16 15 54 0
clr 111 01 D S1 10000 O 0O0GOO0O S2
set 1111 0 1 D S1 10001 0 00O0O0O s2
ext 111 1 0 1 D S1 10010 0 00000 S2
extu 111 1 0 1 D S1 10011 0 00000 S2
mak 111 1 0 1 D S1 170100 0 00000 S2
rot 11110 1 D S1 101 01 0 00000 s2

31 26 25 16 15 1110 9 54 0
jmp 171110 1]00 0 0 0 00¥/ 1 100 O0|N|OOOTU OO S2
isr 1111 01(00000 00000%¥ 1100 1|N/OOOOO S2

31 26 25 2120 16 15 54 0
ff1 111 1 01 D 000 00¥(11101 0 00000 S2
ffo 1111 01 D 000 00¥ 11101 1 00000 S2
tbnd 11110 1[0 0 0 00% S1 1717111 0 00000 S2
rte 1111010000000000*11111100000_00000*
tbnd 17111 10[(000 00% S1 IMM16

* The MC88100 does not decode these bits; however, assemble as shown to guarantee compatibility with future implementation.

MOTOROLA MC88100 USER'S MANUAL 3-103

3-104

MC88100 USER’S MANUAL

MOTOROLA

SECTION 4
SIGNAL DESCRIPTION

This section supplies information about the external signals of the MC88100. Figure 4-1
shows the functional organization of the signals by function, type, active state, pin count,
and mnemonic name. Following the figure are paragraphs describing each signal or group
of signals. Refer to SECTION 5 BUS OPERATION for more information on the data processor
bus (P bus) and instruction P bus operation. Instruction mnemonics used in this section
can be identified by referring to SECTION 3 ADDRESSING MODES AND INSTRUCTION
SET.

All output signals, except the error (ERR) signal, are placed in the high-impedance state
when the P bus checker enable (PCE) signal is asserted.

NOTE

The terms assert and negate are used extensively in this manual to avoid con-
fusion between active-high and active-low signals. Assert or assertion indicates
that a signal is active or true, regardless of whether the signal is active high or
active low. Negate or negation indicates that the signal is inactive or false.

4.1 DATA PROCESSOR BUS SIGNALS

The following paragraphs describe the signals that interface the data unit to external
memory or cache memory management units (CMMUs) across the data P bus.

4.1.1 Data Address Bus (DA31-DA2)

The data address bus provides the 30-bit word address to the data memory space. An
entire data word (32 bits) is always addressed; individual bytes or half words are selected
by the data byte enable (DBE3-DBEO) signals.

4.1.2 Data Bus (D31-D0)

D31-D0 are the 32 bidirectional data bus signals that interface the MC88100 to the data
memory space. The data on this bus corresponds to addresses supplied by the data address
bus.

MOTOROLA MC88100 USER'S MANUAL 4-1

DATA P BUS INSTRUCTION P BUS

D80 DATA INSTRUCTION f——— CS/U ——
_ UNIT UNIT

«——— DRW ————— L CFETCH ——

<«——— DLOCK ——— e (R1-CR) e

~agifmm DBE3-DBE(e

s DR1-DRO) i

— | .
j S ERR ———>
j€«—— CLK
l€«——— PLLEN ———
MC88100 -
|€——— RST
—— \/(— e———— INT
o GND m—— | <€—— PCE
Function Mnemonic Type Active Count Reset
Data Address DA31-DA2 Output — 30 High Impedance*
Data D31-D0 /0 — 32 High Impedance*
Data Supervisor;User Select DSU Qutput — 1 High lmpedance*
Data Read/Write DR/W Output — 1 High Impedance*
Data Bus Lock DLOCK Output Low 1 High Impedance*
Data Byte Enable DBE3-DBEO Qutput High 4 High lmpedance*
Data Reply DR1-DR0O Input — 2 Input
Code Address CA31-CA2 Output — 30 High Impedance*
Code C31-Co Input — 32 High Impedance*
Code Supervisor/User Select CcS/iU Output — 1 Input
Code Fetch CFETCH Output High 1 High Impedance*
Code Reply CR1-CRO Input — 2 Input
Error ERR Output High 1 Low
Reset RST Input Low 1 Input
Interrupt INT Input High 1 Input
P Bus Checker Enable PCE Input High 1 Input
Clock CLK Input High 1 Input
Phase Lock Enable PLLEN Input High 1 Input
Power Vee — — 18 —
Ground GND — — 18 —

*These signals remain in the high-impedance state for one clock cycle after the RST signal is recognized as negated (high).

Figure 4-1. Functional Diagram of MC88100 Signals

4-2 MC88100 USER'S MANUAL MOTOROLA

4.1.3 Data Supervisor/User Select (DS/U)

The DS/U signal selects between the user and supervisor data memory spaces. The high
level selects supervisor memory, and the low level selects user memory. The level on this
signal for a given access is determined by the value of the MODE bit in the processor status
register (PSR) or by the {.usr} (user memory) option of the Id and st instructions.

4.1.4 Data Read/Write (DR/W)

The DR/W signal indicates whether the memory transaction is a read (DR/W = high level)
or a write (DR/W =low level).

4.1.5 Data Bus Lock (DLOCK)

The DLOCK signal is a memory lock signal used by the xmem instruction in conjunction
with the MC88200 CMMU. When DLOCK is asserted, the CMMU does not allow the system
memory to be accessed by any other bus master between the two xmem accesses. Refer
to SECTION 8 APPLICATIONS INFORMATION for more information on memory locking
and memory access synchronization.

4.1.6 Data Byte Enable (DBE3-DBEO)

The data byte enable signals are used during data memory accesses to the MC88200 CMMU
(or memory). Table 4-1 lists the signals and indicates which bytes are accessed at the
addressed location.

Table 4-1. Data Byte
Enable Signals

Signal Data Bits
DBE3 D31-D24
DBE2 D23-D16
DBE1 D15-D8
DBEO D7-D0

DBE3-DBEO are valid during the address phase of memory write transactions and indicate
which byte(s) in memory should be modified. A memory read can be four bytes wide, and
the processor uses the enable signals to extract the required data. Therefore, during a Id
instruction, the memory system can drive all 32 data signals, regardless of whether one,
two, or four byte enable signals are asserted.

When the byte enable signals are all negated, the pending transaction (address phase) is
a null transaction; otherwise, the transaction is a valid load or store operation.

MOTOROLA MC88100 USER'S MANUAL 4-3

4.1.7 Data Reply (DR1-DRO)

The data reply input signals indicate the status of a memory access during the reply phase
of a bus transaction. Table 4-2 lists the different encodings for the data reply signals.

Table 4-2. Data Reply Encodings

DR1 DRO Transaction
0 0 Reserved
1 0 Successful Memory Transaction
0 1 Memory Wait
1 1 Transaction Fault

The addition of an external pullup resistor is recommended on each reply signal so that,
if no external device responds to a transaction, a fault is indicated.

4.2 INSTRUCTION PROCESSOR BUS SIGNALS

The following paragraphs describe the signals that interface the instruction unit to external
memory or CMMUs.

4.2.1 Code Address Bus (CA31-CA2)

The code address lines provide the 30-bit word address to the instruction memory space.
All instructions are 32 bits wide and are aligned on 32-bit boundaries; therefore, the lower
two bits of the address space are not required and are implied to be zero.

4.2.2 Code Bus (C31-C0)

C31-C0 are the 32 signals that interface the MC88100 to the instruction memory space.
Instructions are always 32 bits wide. The code bus is a unidirectional, read-only bus.

4.2.3 Code Supervisor/User Select (CS/U)

The CS/U output signal selects between the user and supervisor instruction memory spaces.
A high level selects supervisor memory, and a low level selects user memory. The level
on the CS/U signal is determined by the value of the MODE bit in the PSR.

4.2.4 Code Fetch (CFETCH)
The CFETCH output signals when an instruction fetch is in progress. When CFETCH is

asserted during the address phase of a bus transaction, an instruction fetch is beginning.
A negated signal indicates that a null transaction is beginning.

4-4 MC88100 USER'S MANUAL MOTOROLA

4.2.5 Code Reply (CRO-CR1)

The code reply input signals indicate the status of an instruction memory access during
the reply phase of a bus transaction. Table 4-3 lists the encodings for the code reply signals.

Table 4-3. Code Reply Encodings

CR1 CRO Transaction
0 0 Reserved
1 0 Successful Memory Transaction
0 1 Memory Wait
| 1 Transaction Fault

The addition of an external pullup resistor is recommended on each reply signal so that,
if no external device responds to a transaction, a fault is indicated.

4.3 INTERRUPT AND CONTROL SIGNALS

The following paragraphs describe the signals used by the MC88100 for interrupt and
control functions.

4.3.1 Interrupt (INT)

Assertion of the INT input indicates that an external interrupt has been requested. When
an interrupt exception is processed, the MC88100 processor freezes its execution context
and then proceeds with exception processing using the interrupt exception vector. Software
is responsible for saving the context of the processor to memory and for handling all
recognized interrupts. Interrupts are sampled on every falling edge of the clock and are
recognized and processed when no internal exception is pending and when interrupts are
enabled in the PSR.

4.3.2 Phase Lock Enable (PLLEN)

The PLLEN signal controls the internal phase lock circuit that synchronizes the internal
clocks to the CLK signal. This signal is asserted during reset to select phase locking. Refer
to 5.4 RESET TIMING AND PHASE LOCKING for specific details.

4.3.3 Reset (RST)

The RST signal is used to perform an orderly restart of the processor, bringing it to a
known state and beginning program execution at address $0 (the reset vector). When reset

MOTOROLA MC88100 USER'S MANUAL 4-5

is asserted, all pipeline valid bits and certain internal registers are initialized. When RST
is negated, the reset vector is fetched from memory, with execution beginning in supervisor
mode. Refer to 5.4 RESET TIMING AND PHASE LOCKING, for more information on the
operation of the reset signal and to SECTION 6 EXCEPTIONS for information on reset
exception processing.

4.3.4 Error (ERR)

This signal is asserted when a bus comparator error occurs, indicating that the MC88100
detected either a P bus mismatch when operating in checker mode or detected an output
drive error when operating in master mode. This signal is used in systems implementing
a master/checker application, which is described in 4.3.5 P Bus Checker Enable (PCE).

4.3.5 P Bus Checker Enable (PCE)

The PCE signal is used in systems incorporating two or more redundant MC88100s. In this
application, two processors are wired together. The master processor (PCE negated) op-
erates normally. The checker processor (PCE asserted) places all of its outputs in the high-
impedance state except ERR; all outputs are monitored as inputs. The checker processor
performs the same operations as the master processor and compares its internal results
with the results read from the high-impedance pins. If a mismatch occurs between the
master and checker, the checker asserts ERR. External logic must then determine the
appropriate action for the system.

The master processor also checks that the internal value of the signals that it is driving
are the same as the external values. The processor makes this test by comparing the signals
on the input and output sides of the internal line drivers. If there is an error, the master
processor asserts ERR. This feature is useful for determining P bus shorts or timing prob-
lems; the internal and external values of a signal may be different when a bus signal is
externally shorted.

4.4 POWER AND CLOCK SIGNALS

The following paragraphs describe the clock and power signals used on the MC88100.

4.4.1 Clock (CLK)

The clock input signal generates the internal timing signals for the processor. The processor
internal clock is derived from the CLK signal, and is phase locked to minimize the skew
between the external and internal signals. Because the CLK signal is driven to other devices
in the system (such as CMMU devices), exact timing of internal signals is required to
properly synchronize the devices to the P bus. Refer to SECTION 9 ELECTRICAL CHAR-
ACTERISTICS for specific details on the CLK signal requirements.

4-6 MC88100 USER'S MANUAL MOTOROLA

4.4.2 Power Signals (VcC)

These signals provide the means for routing +5 V to the processor components. Eighteen
power signals are provided to the processor component; these signals are interfaced to
two separate power buses. The external line drivers are supplied by one bus; all other
circuits are supplied by the second bus. This scheme provides more stable power to the
internal circuits of the processor, since their power supply is separate from the potentially
noisy external line drivers. Refer to Table 4-4 for VcC pin identification for the power buses
and SECTION 10 ORDERING INFORMATION AND MECHANICAL DATA for full MC88100
pin assignment identification.

Table 4-4. V¢c Pin
Identification

Internal External Signals
Logic and Buses
C11, K3 C7, C9, D5, D13
M3, M15 F3, F15, H3, H15
P5 P13, R7, R9, R11, K15

4.4.3 Ground (GND)

These are the ground pins for the power signals. There are 18 ground pins separated into
two separate ground buses, matching the VC(C signals. Refer to Table 4-5 for GND pin
identification for the power buses and SECTION 10 ORDERING INFORMATION AND ME-
CHANICAL DATA for full MC88100 pin assignment identification.

Table 4-5. GND Pin
Identification

Internal External Signals
Logic and Buses
L3, C12 C6, C8, C10, E4
J3, N4 E14, G3, G15, J15
N14 L15, R6, R8, R10, R12

MOTOROLA MC88100 USER'S MANUAL 4-7

MC88100 USER’'S MANUAL

MOTOROLA

SECTION 5
BUS OPERATION

The MCB88100 features a dual external bus architecture called the processor bus (P bus).
The P bus provides a dedicated bus for instruction memory accesses and a dedicated bus
for data memory accesses. The P bus signals for the two buses are shown in Figure 5-1.

In a typical MC88100-based system, the processor buses do not interface directly to mem-
ory. Instead, each bus is connected to one or more MC88200 cache/memory management
units (CMMUs) which communicate with memory. The CMMUs provide address translation
caches and a 16K-byte data cache for instructions or data. The CMMUs interface to the
system memory and to peripheral devices via the the memory bus (M bus). Instruction
mnemonics used in this section can be identified by referring to SECTION 3 ADDRESSING
MODES AND INSTRUCTION SET.

5.1 BUS CHARACTERISTICS

The P bus is a fully synchronous bus; the bus transfers between the MC88100 and attached
MC88200s (or memory) are clocked by the CLK signal. Full 32-bit transfers are supported,
with byte and half-word transfer capability available on the data P bus. The peak transfer
rate is one word per clock cycle (80 Mbytes per second at 20 MHz). All instructions and
data words are aligned on word (modulo 4) address boundaries, precluding the need for
the two lowest order address lines and misaligned accesses. On a data read of a byte or
half-word operand, the memory system supplies either the required bytes or a full 32-bit
word; the processor automatically selects the required byte(s) from the bus. All memory
transactions access either the user or supervisor address space.

The MC88100 is the bus master of the P buses and always drives the address buses, the
data byte enable (DBE3-DBEO) signals, the code fetch (CFETCH) signal, and the data bus
(except for P bus reads). The instruction P bus code signals (C31-C0) and the data P bus
data signals (D31-D0) are inputs during read accesses, as are the reply signals for both
buses. All MC88200 CMMUs (or memory devices) on the P bus are slaves to the MC88100
processor and drive the data, code, and reply signals accordingly. MC88100 bus transac-
tions are pipelined, which allows the processor to begin a transaction before receiving the
result or status of the previous transaction. Since the processor can initiate a new trans-
action on each clock cycle, the responding devices (or memory system) should monitor
the bus signals on each clock cycle and respond to valid transactions accordingly (as the
MC88200 does).

Instructions and data bus transactions are not necessarily required by the processor on
every clock cycle. The buses insert null transactions during those clock cycles in which a

MOTOROLA MC88100 USER'S MANUAL 5-1

DATA P BUS INSTRUCTION
P BUS
________ . ===
DA31 DA2 ! CA31 CA2
I
|
]
MEMORY DS/U DATA INSTRUCTION e/ ——>]
CMMU _ UNIT UNIT
S le——rW CFETCH ——>
1 1
1 N
F— DLOCK ——— | ~esf— CR1-CRO ——{l
)]
=¢ DBE3-DBEO q :
| [}
:—— DR1-DRO -—" | :
MC88100
DATA P BUS INSTRUCTION P BUS
Signal Description Signal Description
DA31-DA2 Data Address Bus CA31-CA2 Code Address Bus
D31-D0 Data Bus C31-Co Code Bus
DS/U Data Supervisor/User cs/U Code Supervisor/User
Select Select
DRW I_Z)ata Read/Write (no corresponding signal)
logic high for read,
logic low for write
DLOCK Data Bus Lock (no corresponding signal)
asserted for bus lock
DBE3-DBEO | Data Byte Enable Strobes CFETCH Code Fetch
DBEO » D7-D0 asserted for fetch
DBE1 # D15-D8
DBE2 » D23-D16
DBE3 » D31-D24
DR1-DR0O Data Reply 1 and 0 CR1-CRO Code Reply 1 and 0
DR1 DRO CR1 CRO
0 0 Reserved 0 0 Reserved
1 0 Success 1 0 Success
0 1 Wait 0 1 Wait
1 1 Fault 1 1 Fault

Figure 5-1. P Bus Signals

MC88100 USER’'S MANUAL

MEMORY
OR
CMMUs

MOTOROLA

transfer is not required. The data (data P bus only) and address lines are driven during a
null transaction, but either the DBE3-DBEO (data P bus) or the CFETCH (instruction P bus)
signals are negated. The processor ignores the reply signals for all null transactions.

The P bus input and output signals are synchronous in that all setup and hold times are
specified in reference to the clock signal. MC88100 outputs are driven from a clock edge
and a maximum delay is specified. In addition, minimum hold times are specified in relation
to the clock (see Figure 5-2). The requirements for MC88100 P bus inputs are shown in
Figure 5-3. The minimum setup and hold times must be met to guarantee proper device
operation.

—_————— e ——

——————— e —
'_.‘

I tdelay

ADDRESS 0UT

le—>|
I tdelay Ithold

DATA 0UT

Figure 5-2. Output Signal Relationship to Clock (Example)

>
<«

tsetup,

DATA IN

thold

REPLY

Figure 5-3. Input Signal Requirements (Example)

MOTOROLA MC88100 USER'S MANUAL 5-3

5.2 INSTRUCTION PREFETCH MECHANISM

The instruction unit controls all instruction prefetch operations. The control functions in-
clude maintenance of the instruction pointers and instruction decode as well as the gen-
eration and interpretation of instruction P bus signals.

Except for three instances described in the following paragraph, the instruction unit at-
tempts to prefetch an instruction on every clock cycle, regardless of the state of the in-
struction pipeline. If the MC88100 instruction unit pipeline is stalled due to the delay of a
data access to memory or an internal delay, the instruction unit repeats the address phase
for the next appropriate instruction until the instruction pipeline advances. For repeated
accesses due to a stalled processor, the data and reply signals are ignored until the in-
struction unit advances the pipeline. However, the memory system can not easily predict
when the pipeline advances internally, so the system should respond to these repeated
accesses appropriately.

There are only three instances when the instruction P bus performs null transactions
(CFETCH not asserted). One instance immediately follows a processor reset (one null trans-
action inserted with CFETCH high impedance); the second instance occurs when an in-
struction pointer that is marked ‘not valid’ is loaded into the next instruction pointer (NIP)
or fetch instruction pointer (FIP) (as a result of an rte instruction). The third instance
corresponds to the instruction access that is initiated after an instruction memory faulit
occurs and the exception is taken. Refer to 5.4 RESET TIMING AND PHASE LOCKING for
more information on the transaction following a reset.

5.2.1 Instruction Read Transaction

All instruction memory accesses are read accesses, and one 32-bit instruction is read per
access. In systems incorporating an MC88200 on the instruction bus, the instruction is
prefetched either from the cache or from the system memory via the MC88200. In systems
without an MC88200 for instructions, the processor instruction P bus interfaces directly to
memory.

Figure 5-4 shows a flowchart of an instruction read transaction. Figure 5-5 shows the relative
timing of the signals that perform the instruction read. To select the appropriate MC88200
CMMU or memory device, a chip-select signal (CS) is generated by external logic.

P bus transactions have an address phase and a reply phase associated with each access.
The address phase of an access is defined by two states: address low (AL), corresponding
to the low time of the CLK, and address high (AH), corresponding to the high time of the
CLK. Similarly, the reply phase is defined by two states: reply low (RL) and reply high (RH),
corresponding to the low time of the CLK and high time of the CLK, respectively, for the
reply phase of the transaction.

The code (CA31-CA2), CFETCH, and code supervisor/user select (CS/U) signals are driven
by the falling edge of the processor clock at the beginning of state AL and are set up to

5-4 MC88100 USER'S MANUAL MOTOROLA

MASTER SLAVE

ADDRESS DEVICE

1) Assert CFETCH
2) Drive Address on CA31-CA2 > RECOGNIZE ADDRESS

1) Decode Address
2) Generate PS from CA31-CA12

Y
PRESENT INSTRUCTION

1) Place instruction on C31-C0
2) Drive Success Reply on CR1, CRO

A

ACQUIRE DATA

1) Latch Instruction
2) Read CR1, CRO

Figure 5-4. Instruction Read Flowchart

ADDRESS REPLY
PHASE — € PHASE
R .
CLK AL AH RL RH RH
CFETCH /
CA3I-CA2
i X ADDRESS

-— — s

C31-C0 ‘ INST. x
- — b
CR1-CRO suc. [

Not guaranteed to be asserted or negated

Figure 5-5. Instruction Read fiming

the rising edge at the beginning of AH. The appropriate CMMU or memory device responds
to the access by placing the instruction on C31-C0 and by driving the reply signals (CR1-CRO0)
with the appropriate setup and hold times during the reply phase. Figure 5-1 shows the
various encodings of the reply signals.

MOTOROLA MC88100 USER'S MANUAL 5-5

The reply signals indicate whether or not the bus transaction is successful. If the instruction
on C31-CO0 is guaranteed to have met the appropriate setup and hold times with respect
to the rising edge of the clock of state RH, then the reply during RH should have the
‘success’ encoding. If the responding device (CMMU or memory) is unabie to supply the
instruction on the instruction P bus with the required setup time to the rising edge of state
RH, then the reply should indicate a ‘wait’ response. This response causes the instruction
unit to ignore C31-C0O and continue driving the next address until a successful or fault
encoding is indicated with the reply signals. The responding device can insert as many
wait cycles as necessary until the instruction is supplied. Finally, if the memory system
can not supply the required instruction (for example, due to a page fault) then the reply
signals should indicate ‘fault.” This response causes the instruction pointer corresponding
to the faulted prefetch to be marked as invalid. If the MC88100 attempts to execute that
instruction (i.e., it is not discarded due to a change of program flow), an instruction access
exception is generated. An encoding of ‘00" on the reply signals is reserved and may cause
unpredictable behavior in the current implementation.

5.2.2 Pipelined Instruction Prefetches

The instruction P bus is pipelined in that the address phase of an access coincides with
the reply phase of the previous access. Therefore, the responding device must latch the
address and CS/U signal information at the beginning of a transaction and qualify the
beginning of the next access with the reply for the current transaction. A reply of ‘success’
for the current access should cause the responding device to update the latched address
and begin the next transaction. Figure 5-6 shows an example timing diagram for a read

ADDRESS ADDRESS

O PHASE1 T pHASE2 |
CLK ALT AHI1 AL2 AH2 AL2 AH2 AL3 AH3
ALY RH1 RL1 RH1 RL2 RH2
CFETCH
CAS1-CAZ, X ADDRESS 1 ADDRESS 2 ADDRESS 2
ST .
1
— — o
€31-C0 :X INST. 1 * _X INST. 1X__X INST. 2 x
_ — ! l ! -

(IGNORED) (TAKEN)

— I
CR1-CRO y WAIT x Ix SUC. 1 SUC. 2 x
_ 4

Not guaranteed to be asserted or negated

Figure 5-6. Instruction Prefetch with Wait Cycle

5-6 MC88100 USER'S MANUAL MOTOROLA

cycle with one wait cycle followed by a read access with zero wait cycles. Since the reply
for address phase 1 was ‘wait’, the address phase for the second access is repeated by
the MC88100 until the device responds successfully to the first access.

Figure 5-7 shows the relative timing of signals on the instruction P bus when a transaction
is initiated but ignored by the instruction unit due to a pipeline stall within the MC88100.
The processor ignores the reply and repeats the access until the pipeline advances. The
memory system responds to each of these transactions so that the next access can begin
as soon as the pipeline advances.

5.2.3 Instruction Memory Faults

When a memory fault occurs for an instruction prefetch, the processor ignores the trans-
action that follows the faulted one. The memory system should also ignore the access
following the fault. The address phase for the next normal processor access immediately
follows the faulted-reply phase (see Figure 5-8), and the memory system must respond
accordingly. Depending on whether the faulted instruction access is required or not (due
to a change in program flow), the MC88100 may then take an instruction access exception.

Figure 5-8 shows the relative timing for the case of an instruction prefetch fault that causes
an exception. When an instruction P bus access results in a fault that causes an exception,
the next normal transaction is a null transaction. Then the access following the null trans-
action is the first instruction prefetch from the instruction access exception vector. Refer
to SECTION 6 EXCEPTIONS for more information on fault exception processing and how
the MC88100 supports a demand-paged virtual memory model.

CLK ﬁ AL AH1 Al AH1 ALt AH1 AL2 AH2

CFETCH /
CA3“€§‘/% X ADDRESS 1 X:X ADDRESS 1 ADDRESS 1X:X ADDRESS 2

I

€31-C0 INST. 1 l l INST. 1 x ” INST. 1 u INST. 2
— b
CR1-CRO SUC. 1 x ~ SuC. 1 SUC. 1 SucC. 2 X:
p— s 3 "
| 1N |

PIPELINE STALLED PIPELINE ADVANCES

3
<«

L

Not guaranteed to be asserted or negated

Figure 5-7. Instruction Accesses during Stall

MOTOROLA MC88100 USER’S MANUAL 5-7

8-G

AVNNVIA S, 43SN 001880

V104010

NEXT NORMAL
ACCESS
ADDRESS
PHASE

CLK ALl AH1 RL1 RH1 RL1 RH1 AL NULL JAH NULL| AL VEC. | AH VEC.| RL VEC. | RH VEC.

RL NULL { RH NULL

CFETCH

CA31-CA2, VECTOR
cha J ADDRESS 1 ADDRESS 2 ADDRESS 2 NULL ADDRESS x

C31-Co IGNORED N ' IGNORED ” N IGNORED u * IGNORED x X VECTOR X
! Il Il Il
CR1-CRO - WAIT 1 FAULT 1 IGNORED IGNORED SUC
) , . | VECTOR

| | I | 1
ACCESS FOR ADDRESS 2
COMPLETELY IGNORED.

Not guaranteed to be asserted or negated

Figure 5-8. Instruction Prefetch Memory Fault — Exception Taken

A faulted instruction access that is discarded due to a pipeline flush associated with a
change in program flow (i.e., the instruction following the branch is faulted, and delayed
branching is not used) does not cause an exception, and normal instruction execution must
continue. Therefore, the next normal access is a duplicate of the access ‘ignored’ after the
fault. Figure 5-9 shows the relative timing for an instruction fault that does not cause an
exception.

5.3 DATA ACCESS MECHANISM

The data unit controls all data transfers between the processor and MC88200 CMMUs or
memory via the data P bus. Data P bus operation is pipelined and similar to the operation
of the instruction P bus. However, data transfers can be 8, 16, or 32 bits, memory accesses
can be read or write accesses, and memory accesses can be locked for the xmem instruc-
tion. Therefore, the data P bus incorporates additional signals that control these functions.

The DBE3-DBEO signals indicate which byte(s) on the data bus (D3-D0) are valid during
a data memory transaction. For a data read operation, the upper 30 data address lines
select a word in memory, and the asserted byte enable signals indicate which byte(s) within
that word are required by the processor. The memory system responds to the read by
placing the requested byte(s) on the data P bus corresponding to the asserted byte enable
signals. The memory system can supply a complete 32-bit word, and the processor au-
tomatically extracts the desired byte(s) from the bus. The processor loads the target register
with the proper sign- or zero-extended result. Figure 5-10 shows an example of a byte read
operation and the relationship of the byte enable signals to the four bytes on the data bus.

NEXT NORMAL
ACCESS ADDRESS

PHASE
- AL AH AL AR
oK —-I ALl AHV | A2 | AHZ | apeer | TaReeT | TARGET | TARGET
RL1 RH1 RL2 RH2 RL RH
_ TARGET | TARGET
CFETCH
CA“‘&% ADDRESSIDADDRESSZ TARGET X:X TARGET
_ f
T (BRANCH TAKEN) (REPEAT)
. . NEE
£31-C0 :X BRANCH “ _X IGNORED IGNORED TARGET x x
p— — ! L Il
CRI-CRO SuC. 1 FAULT 2 IGNORED SuC. 3 x
| 1 1
_ : /!

Not guaranteed to be asserted or negated

Figure 5-9. Instruction Prefetch Memory Fault — No Exception Taken

MOTOROLA MC88100 USER'S MANUAL 5-9

During a memory write operation, the byte enable signals indicate which byte(s) in memory
should be updated. On a byte write, the MC88100 places the data byte in all four byte
positions on the data bus. The byte enable signals indicate the byte in memory where the
data is to be stored, and the memory system can extract valid data from any of the four
byte positions. Similarly, on the write of a half word, the memory system can extract valid
data from either the high-order or low-order half word of the data P bus. Figure 5-11 shows
the operation of a byte write transaction.

5.3.1 Data Read Transaction

During a data read transaction, the MC88100 receives a byte, half word, or word from
memory. The DBE3-DBEO signals indicate the size and byte offset of the memory access.

Figure 5-12 shows a flowchart of a data read operation. The CS signal is generated by
external logic to select the appropriate memory device (e.g., MC88200). Figure 5-13 shows
the relative timing of the signals involved in the data read.

The data P bus read transactions are very similar to instruction prefetch transactions; the
address phase is the clock period identified by states AL and AH, and the reply phase is

DBE3 DBE2 DBE1 DBEO
] i .J__—l_ |) | i

MEMORY/ 3 24 23 16 15 87 0

IGNORED BYTE 1 IGNORED INGORED

CcMMU I I l T

D31-D24 D23-D16 D15-D8 D7-DO

MC88100
31 87 I\ / 0
REGISTER rN
(SIGN-EXTENDED) S $ S S S S S S S S S S S S S S S S S s s s s s|s BYTE 1

31 87 0

REGISTER rN
(ZERO-EXTENDED)

0 00O0OOODOODOOOODODODODOODDOOOO0O0O0O BYTE 1

Figure 5-10. Byte Enable Signal Control of Memory Read

5-10 MC88100 USER’S MANUAL MOTOROLA

DBE3 DBE2 DBE1 DBEO

S R N S|

MEMORY/ 31 24 23 16 15 87 0
UNCHANGED UNCHANGED BYTE 2 UNCHANGED
MORV | | | |]
D31-D24 D23-D16 D15-D8 D7-DO

MC88100 I/\ |/ \ I/ \
3 87]
- : E

=}

REGISTER N | IGNORED |

Figure 5-11. Byte Enable Signal Control of Memory Write

MASTER SLAVE

ADDRESS DEVICE

1) Drive DR/W high, Negate DLOCK

2) Drive Address on DA31-DA2

3) Assert Appropriate Data Byte Enables
(DBE3-DBEO) and DS/U > INTERPRET ADDRESS

1) Decode Address
2) Geneate CS from DA31-DA12

Y
PRESENT DATA

1) Drive Data on D31-D0
ACQUIRE DATA < 2) Drive Success Reply on DR1, DRO

1) Latch Data from D31-D0
2) Read DR1, DRO

Figure 5-12. Data Read Flowchart

identified by states RL and RH. During the AL state of a read transaction, the DA31-DA2,
DBE3-DBEQ, and data supervisor/user select (DS/U) signals are driven appropriately, and
the data read/write (DR/W) signal is driven high. All of these signals are set up to the rising

MOTOROLA MC88100 USER'S MANUAL 5-11

ADDRESS REPLY
< Cphast T pHASE

CLK AL AH RL RH

DRW

BLOCK
DA31-DA2, —

DS/, ADDRESS X:X
DBE3-DBEO —

D31-D0 HDATAH

DR1-DRO SUC. X

2| Not guaranteed to be asserted or negated

Figure 5-13. Data Read Timing

edge of AH and remain valid through the specified hold time from the falling edge of AH.
If possible, the responding device (CMMU or memory) supplies the data on the D31-D0
lines with the required setup and hold times, and also indicates that the transfer was
successful with the DR1-DRO signals.

If the responding device is unable to supply the data appropriately, the reply on DR1-DR0O
should indicate a ‘wait’ response. The data unit then continues to drive the next address
until a ‘success’ or ‘fault’ encoding is signaled with the reply lines. The responding device
can insert as many wait cycles as necessary until the data is supplied.

If the memory system can not supply the required data (e.g., due to a parity error or a
page fault) then the reply signals should indicate ‘fault.” This causes the MC88100 to initiate
exception processing for a data access exception.

5.3.2 Data Write Transaction

During a data write transaction, the MC88100 transfers a byte, half word, or word to
memory. The DBE3-DBEOQ signals indicate the size and byte offset of the memory access.

Figure 5-14 shows a flowchart of a data write transaction. The CS signal is generated by
external logic to select the appropriate memory device (e.g., MC88200). Figure 5-15 shows
the relative timing of the signals that perform the data write.

5-12 MC88100 USER'S MANUAL MOTOROLA

MASTER SLAVE

ADDRESS DEVICE

1) Drive DR/W Low, Negate DLOCK

2) Drive Address on DA31-DA2

3) Assert Appropriate Data Byte
Enables (DBE3-DBEO) and DS/U

> RECOGNIZE ADDRESS

1) Decode Address from DA31-DA2

PRESENT DATA 2) Generate CS from DA31-DA12

A

1) Wait for Successful Reply for
Previous Transaction (if not Null)
2) Drive Data on D31-D0

Y

ACQUIRE DATA

1) Latch Data from D31-D0
2) Drive Success Reply on DR1, DRO

A

READ STATUS

1) Read DR1, DRO for Current
Transaction

Figure 5-14. Data Write Flowchart

ADDRESS PHASE REPLY PHASE

AH RL RH I—

CLK

DRW

DLOCK
DA31-DA2, —
DS/, x ADDRESSX
DBE3-DBED —
D31-D0 ﬂ DATA X
- K SuC X ; x
DR1-DR0O _ PREVIOUS* K SUC.
|

Not guaranteed to be asserted or negated

* or Previous Transaction is Null

Figure 5-15. Data Write Timing

MOTOROLA MC88100 USER'S MANUAL 5-13

During a memory write transaction, the MC88100 drives DA31-DA2, DBE3-DBEO, and
DS/U appropriately; the DR/W signal is driven low. All these signals are set up to the rising
edge of AH and remain valid through the specified hold time from the falling edge of AH.
If the reply for the previous data transaction was ‘success’ or if the previous transaction
is null, the processor then drives the data on D31-D0 so that the data is set up to the falling
edge of RL and remains valid through the rising edge of state RL. However, if the reply
for the previous transaction was ‘wait’, the processor does not drive the data signals of
the data P bus. Instead, the address phase of the write transaction is repeated until a
‘success’ is driven for the previous reply. If a ‘fault’ is signaled for the previous reply, the
processor drives the data signals for the current write transaction but ignores the reply.

If possible, the responding device indicates with DR1-DRO0 that the current access was
successful and latches the data appropriately. Otherwise, the responding device signals a
‘wait’ response on DR1-DRO, causing the data P bus to repeat the reply phase and drive
D31-D0 again with the appropriate setup and hold times with respect to the clock. The
responding device can insert as many wait cycles as necessary until the data is latched.

If the system cannot latch the data and complete the access, the DR1-DRO signals drive a
‘fault’ encoding, causing the MC88100 to initiate exception processing for a data access
exception.

5.3.3 Pipelined Data Accesses

The data P bus is pipelined in the same way as the instruction P bus. The address phase
of a memory access can overlap with the reply phase for the previous transaction; the
processor may begin a new transaction (and drive a new value on DA31-DA2) even if the
initial transaction is extended due to wait replies. Therefore, as with instruction P bus
operations, the responding device (or external logic) must latch the value on DA31-DA2
when it is first driven, in case the device requires more than one clock of access time.

The data P bus differs from the instruction P bus in that both read and write operations
are performed and the D31-DO are bidirectional. Therefore, the MC88100 always monitors
the reply signals for a transaction before driving the D31-DO0 signals for the next transaction.
Figure 5-16 shows the relative timing of a data read transaction with one wait cycle followed
by a data write transaction. Although the address phase of the write immediately follows
the address phase for the read, the data signals are not driven for the write transaction
until a successful reply is signaled for the previous access, thus avoiding data bus con-
tention. Figure 5-16 also illustrates a null transaction following the write access.

Figures 5-17 and 5-18 illustrate two other examples of pipelined operations on the data P
bus. Figure 5-17 illustrates two successive write transactions (due to two successive store
instructions or a store double instruction) with one wait cycle inserted for the first access.
Figure 5-18 illustrates the relative timing for a write transaction with one wait cycle followed
by one read transaction. Since the timing for the DR/W signal is only valid during the
address phase of a transaction, it may also require latching by the responding device.

5-14 MC88100 USER'S MANUAL MOTOROLA

o | oar [anr | oace [ane | a2 [ane
RL1 | RH1 RH1
DRIW
BLOCK
DA“BDS’/% B X READ X:X WRITE WRITE .
DBESy ?DDRESS 1 ADDRESS 2 ADDRESS 2 x
- READ WRITE
D310 _<D—/-\-M‘_1H DATA 2 IGNORED
(IGNORED) (TAKEN)
DR1-DRO K WAIT SuC. 1 x (suc,Lx xnewonﬁox
—_ L {
[READ) [READ] (WRITE) T

Not guaranteed to be asserted or negated

Figure 5-16. Pipelined Data Accesses (Read, Wait, Write, Null)

CLK

DRW

DLOCK

DA31-DA2,
DS/,
DBE3-DBEO

D31-D0

DR1-DR0

MOTOROLA

-_] AL1

AH1 AL2 AH 2 AL2 AH 2
RH 1 RL1 RH 1
WRITE WRITE WRITE
ADDRESS ADDRESS 2 ADDRESS 2
1
WRITE WRITE WRITE
DATA 1 DATA 1 DATA 2
(IGNORED) (TAKEN)
WAIT 1 Suc. 1 SUC. 2
| |
I |

Not guaranteed to be asserted or negated

Figure 5-17. Pipelined Data Accesses (Write, Wait, Write)

MC88100 USER'S MANUAL

CLK |AL1 AH1 | ALz | aH2 | ALz | Au2
) RL 1 RH 1

RH 1 RL2 RH 2

DRW

DLOCK

DA3'BDS‘/‘UZ' - WRITE X:X READ X:X READ X:X
DBESDBE] — XADDRESSI ADDRESS 2 ADDRESS 2 x

- WRITE WRITE READ
D31-D0 x DATA 1 X___X DATA 1 —< DATA 2

(IGNORED) (TAKEN)

DR1-DR0 W/-\lTll N P SUC.l1 x K SUCA% x

Not guaranteed to be asserted or negated

Figure 5-18. Pipelined Data Accesses (Write, Wait, Read)

5.3.4 Locked P Bus Operations

Execution of the xmem instruction causes the contents of a general-purpose register to be
exchanged with a memory location. To perform this operation, the data unit performs a
read transaction from the specified address, immediately followed by a write transaction
to that address. The data bus lock (DLOCK) signal is asserted from the beginning of the
address phase of the read transaction (with the same timing as DA31-DA2) and remains
asserted through the address phase(s) of the write transaction, regardless of the number
of wait cycles in the read. However, DLOCK is not asserted during the reply phase(s) of
the write transaction. Figure 5-19 shows an example of a locked operation followed by a
normal write transaction with one wait cycle in the xmem read and one wait cycle in the
xmem write.

The only way to interrupt a locked operation is to signal a fault for the read transaction
via DR1-DRO. Either the read or the write transaction, may be terminated with a fault. A
fault response for either the read or the write transaction of a locked operation has the
same effect as a fault signaled during normal read or write transactions described in 5.3.5
Data Access Faults.

When the read transaction of an xmem instruction is terminated with a data access ex-
ception, the entire xmem instruction should be emulated in the exception handler. However,
if the write transaction of an xmem instruction is terminated with a fault, the software
handler may not be able to guarantee that the rest of the program is synchronized with

5-16 MC88100 USER’S MANUAL MOTOROLA

AL AH AL AH AL AH

ok Read | ReaD | write | wrme | weme | weime | Atz | aws | Atz | aws

RH AL RH RH RL RH

_ READ | READ | READ WRITE | WRITE | WRITE
DRW

BLOCK \ /
DA31-DAZ, xmem READ xmem xmem NEXT NEXT
DS/U ADDRESS WRITE ADD. WRITE_ADD. WRITE 3 WRITE 3

T (REPEATED)
D31-D0 3——(DATIA1)-—(DATA 2 DATA 2 X:X DATA 3
- IGNORED Xmem xmem REPEATED)
READ WRITE
- T t
DR1-DRO K WAIT 1 x x suc.}mm% XJ suC. 7 x
—_]
xmem xmem Xmeﬂ'\ xmem
READ READ WRITE WRITE

Not guaranteed to be asserted or negated

Figure 5-19. Example of Locked Timing (Read, Wait, Write, Wait)

the xmem. By the time the write transaction reply phase occurs, the read transaction has
already completed, and the general-purpose register has been altered with the data from
memory. Therefore, the scoreboard bit for the load operation is cleared, and a subsequent
instruction may use the new contents of the register before the xmem has been emulated.
To prevent this situation from occurring, the programmer can include a trap not taken
instruction immediately after the xmem. This guarantees that no other instruction can
execute before the xmem completes the write.

The DLOCK signal should be used by the system bus as an indication that the read and
write operations should not be interrupted by an alternate bus master. The xmem instruc-
tion can be used by the processor for semaphore manipulation and, as such, requires
indivisible operation between the read and write transactions.

5.3.5 Data Access Faults

When a memory fault occurs during a data access, the processor ignores the transaction
that follows the faulted transaction. The memory system should also ignore the access
following the fault. When a fault occurs on a data read or write transaction, a data access
exception is taken. The next normal data access is generated by the instructions in the
exception handler routine.

MOTOROLA MC88100 USER'S MANUAL 5-17

Figure 5-20 shows the relative timing for the case of a data write access fault. Refer to
SECTION 6 EXCEPTIONS for more information on fault exception processing and MC88100
support of a demand-paged virtual memory model.

5.4 RESET TIMING AND PHASE LOCKING

The following paragraphs describe the phase locking operations and hardware reset of the
MC88100.

5.4.1 Phase-Locked Loop Operation

The MC88100 is designed to operate completely synchronously with other devices in the
M88000 system. In this way, all devices communicating on the P bus can make assumptions
about the validity of signals with respect to the master clock. The signals can be used by
the receiving device as soon as they are valid from the device driving them. To provide a
tight tolerance on the relationship between the input clock and the output signals, the
internal clock is derived on-chip by a digital phase-locked loop circuit that uses the input
clock as its reference. Therefore, fabrication variations between multiple devices do not
cause differences in timing delays that might otherwise be induced in the internal clock
circuity. The phase-locked loop circuit of the MC88100 is also implemented on the MC88200
CMMU. This allows multiple M88000 devices to reside on the P bus with tightly coupled

CLK AL | AHT | AL2 | AH2
RH 1
DRW \
DLOCK
DAS]BDSA/\UZ' - x WRITE WRITE X:X’
DBE3-DBED — ?onaesm ADORESS 2 i
- WRITE WRITE
03100 x WRITE X___X WATE
(FAULT) {IGNORED)
- +
DR10-DRO K FAULT IGNORED X
4 L
- |]

Not guaranteed to be asserted or negated

Figure 5-20. Data Fault Timing

5-18 MC88100 USER'S MANUAL MOTOROLA

timing relationships between them. Since the clock signal is used as a reference for the
phase-locked loop, care should be taken in the layout and routing of the clock signal to
minimize propagation delays induced by transmission line effects of board traces.

To initialize the phase-locked loop circuit on powerup, the PLLEN signal must be asserted
with the appropriate timing in relationship to the RST signal as shown in Figure 5-21 (a).
The combination of the RST and PLLEN requirements shown in the figure provide sufficient
time for the phase-locked loop to be reset and for the internal clock to phase lock to the
external clock on powerup. The PLLEN signal must subsequently remain stable and as-
serted to guarantee proper phase-locked operation. In addition, these requirements also
ensure that the remainder of the MC88100 is properly reset.

NOTE

Unless the processor is properly phase locked, the AC specifications described
in SECTION 9 ELECTRICAL SPECIFICATIONS cannot be guaranteed. Nonphase-
locked operation is NOT recommended.

5.4.2 Reset Operation

To guarantee that the operation of multiple M88000 devices is completely synchronous,
the RST and PLLEN signals for all devices in the system must meet the setup and hold
times specified in SECTION 9 ELECTRICAL SPECIFICATIONS for the same falling edge of
the input clock signal (the clock signal must be shared). The same setup and hold time
requirements must be met for both the assertion and negation of the RST and PLLEN
signals for all devices in the system.

During the time that the RST signal is asserted on powerup, all output signals are placed
in the high-impedance state except ERR. The ERR signal is driven low (negated) while the
MC88100 is in the reset state. Refer to SECTION 4 SIGNAL DESCRIPTION for a list of signal
states during processor reset. For detailed information on the state of the processor reg-
isters after reset, refer to SECTION 6 EXCEPTIONS.

Figure 5-21 (a) shows the timing relationships on the MC88100 P bus for the first instruction
prefetch after the negation of reset on powerup. The bus signals remain in the high-
impedance state for one clock after RST is detected as negated. The MC88200 CMMU
automatically ignores the bus for one clock after the negation of RST. In systems that
interface an MC88100 directly to memory or peripheral devices, some of the signals may
require external circuitry to prevent them from being detected as asserted by the system
for that one clock (to make this a null transaction). The first prefetch after the negation of
RST is always a read from the reset vector (address $0). No accesses are initiated on the
data P bus until the program explicitly requests a data access.

Figure 5-21 .(b) shows the timing relationships for a processor reset after the system has
powered up and has already been phase locked (warm reset). The only difference between

MOTOROLA MC88100 USER'S MANUAL 5-19

vee

/ |
o~ W /AR AR AR

RST x_ \{ ! _l
PLLEN _ =256 ADDRESS REPLY
CLOCKS PHASE 1 PHASE 1
€— 8 CLOCKS
PBUS — g

SIGNAL
(EXCEPT ERR) —

N—N
N—N

(a) Power-Up Reset

L_f'\’\f\/

[€— =8 CLOCKS ——

/

DX

PCE

|

CLK

R AR

PLLEN
ADDRESS REPLY

PHASE 1 PHASE 1

D

P BUS —
SIGNALS
(EXCEPT ERR) —

7 7 77

PCE

R

(b) Warm Reset

Figure 5-21. Reset Timing

5-20 MC88100 USER'S MANUAL MOTOROLA

a warm reset and powerup reset is the assertion length requirements of RST. Because the
phase-locked loop has presumably been properly initialized, RST must only be asserted
for aminimum of eight clock cycles to ensure a full processor reset. The state of the internal
registers and the operation of the buses after the warm reset is the same as that of the
powerup reset. The powerup reset sequence Figure 5-21 (a) may also be used for subse-
qguent reset operations.

5.5 P BUS INTERFACE TO MC88200

The MC88200 CMMU provides a P bus interface for communicating with the MC88100
processor and an M bus interface for communicating with memory and the rest of the
system. The P bus interfaces of the processor and the CMMU are designed to operate
completely synchronously with one another and with little external logic required between
them. Up to eight CMMUs can be directly connected to one MC88100: four connected to
the instruction P bus and four connected to the data P bus, providing caching and memory
management facilities for both instruction and data accesses. The only external logic re-
quired for the MC88200 P bus is an address decoder that generates a CS signal for each
CMMU in the system. Refer to SECTION 8 APPLICATIONS INFORMATION for the signal
connections for a processor with one CMMU servicing the instruction P bus and one CMMU
servicing the data P bus.

The MC88200 automatically latches the addresses at the beginning of a P bus transaction
and generates the reply signals to the processor with the appropriate timing. The CMMU
conforms to the P bus operations initiated by the processor by not latching a new address
until a successful or fault reply is driven (by any CMMU) for the previous access. The
CMMU also automatically ignores the access that follows a faulted transaction and re-
sponds appropriately to the next transaction that begins after the reply phase that signaled
‘fault’. Finally, the CMMU (when servicing the data P bus) recognizes the assertion of the
DLOCK signal from the processor and passes it on to the M bus, ensuring that the read
and write accesses generated by an xmem instruction are not interrupted by alternate M
bus masters.

Refer to MC88200 Cache/Memory Management Unit User’s Manual for more information
on the CMMU functions and the system memory bus.

MOTOROLA MC88100 USER'S MANUAL 5-21

5-22 M88100 USER'S MANUAL MOTOROLA

SECTION 6
EXCEPTIONS

This section details the exceptions encountered and processed by the MC88100. The de-
scriptions include the actions performed by the MC88100 to recognize an exception and
to resume normal processing after the exception, as well as the operations required from
software to handle certain exception conditions. Instruction mnemonics used in this section
can be identified by referring to SECTION 3 ADDRESSING MODES AND INSTRUCTION
SET.

The instruction unit initiates exception processing for all exceptions. However, some ex-
ceptions are recognized by the floating-point unit while the integer overflow exception is
recognized by the integer unit.

6.1 EXCEPTION OVERVIEW

Exceptions occur due to four types of conditions:
® Interrupts, which are signaled externally via the INT input signal
e Externally signaled errors, such as a memory access fault
® Internally recognized errors, such as divide-by-zero
® Trap instructions

The MC88100 begins exception processing at the next instruction boundary after an ex-
ception is recognized. The processor freezes the execution context in shadow and excep-
tion-time registers (which also precludes other exceptions from occurring), explicitly disables
interrupts, and enters the supervisor mode. Additionally, the floating-point unit (FPU) is
disabled (and frozen) and the data unit is allowed to complete pending accesses. Instruction
execution transfers in an orderly manner to the appropriate exception handler routine,
which is defined by the exception vector associated with the particular exception. The
exception handler routine is the software that processes the exception condition and re-
stores the processor to normal operation.

6.1.1 Exception Categories

Exceptions fall into two categories: precise and imprecise. With a precise exception, the
exact processor context when the exception occurred is available, and the exact cause of
the exception is always known. With an imprecise exception, the exact processor context
is not known when the exception is processed. The context is not known because concurrent
operations have affected the information that comprises the processor context.

MOTOROLA MC88100 USER'S MANUAL 6-1

Data memory access and floating-point instructions may cause imprecise exceptions. For
example, with a floating-point overflow, since the FPU does not save the source operands
internally, it does not have a local copy of those operands when the exception is processed.
However, the exact context is not needed to recover from the exception condition. With a
floating-point overflow, it is sufficient to know the operation in progress and the inter-
mediate result (with the extra precision) in order to recover appropriately.

6.1.2 Shadowing

The instruction unit maintains copies of certain internal registers for use during MC88100
exception processing. The data unit and FPU also maintain copies of internal registers to
allow full recovery when exceptions occur. The copies of internal registers are referred to
as shadow registers and are updated on every clock cycle when shadowing is enabled.

For shadowing to occur, it must be specifically enabled. Shadowing is enabled when the
shadow freeze bit (bit 0) in the processor status register (PSR) is cleared by software (either
by writing to the PSR with a ster instruction or by executing an rte instruction). The shadow
freeze bit is set by hardware when an exception is processed to preserve the processor
context. It can be cleared by software after the context is saved (for example, when the
context is stored on a stack).

The exception-time processor status register (EPSR) is an exception-time register and not
a shadow register. The integer unit updates the EPSR only at the time an exception is
processed. Figure 6-1 shows all the exception registers for the MC88100.

6.2 EXCEPTION VECTORS AND VECTOR BASE REGISTER (VBR)

Exception vectors are the entry points into the exception handler routines. The MC88100
maintains a vector table consisting of 512 exception vectors on a 4K-byte memory page
pointed to by the vector base address in the vector base register (VBR). Each exception
and exception vector has a corresponding exception number which is generated by hard-
ware or specified as a 9-bit field in a trap instruction. This number is used as the index
into the vector table. Each exception vector is two instructions (eight bytes) long. Table
6-1 lists the exception conditions and their respective exception vectors.

An exception vector contains the first two instructions of an exception handler routine; a
common practice is to encode the vector with a branch instruction that uses the .n (delayed
branch) option. The second instruction can then be the first instruction in the exception
handler; this instruction is executed while the branch target is being prefetched.

The VBR is loaded by software, normally during part of the system initialization procedure.
It may be modified by software to dynamically specify different pages of exception vectors.
However, it is recommended that this register only be modified when exceptions are
disabled (the shadow freeze, SFD1, and IND bits of the PSR are set). The lower twelve bits

6-2 MC88100 USER'S MANUAL MOTOROLA

INTEGER UNIT

FLOATING-POINT UNIT

FPHS1 fer1
FPLS1 fer2
FPLS2 fcrd
FPPT fers
[sk |fers2 | FeRL | fer?
crl PSR EPSR cr2 FPCR fcr63 FPIT fcr8
I | I | | | |
INSTRUCTION UNIT DATA UNIT
VBR cr? omT2 | ompz | Dma2
L P I I P | . cri4 cri5 cr16
or DMTI | DMD1 | DMAI
l NIP l | SNIP l o5 cri1 cr12 cr13
[xe] [sxp | era e | os | erlo
REGISTER FILE/SEQUENCER
[s8] [sser | ers

MOTOROLA

Figure 6-1. Exception-Time and Shadow Registers

MC88100 USER'S MANUAL

6-3

Table 6-1. Exception Vectors

E&:::::;i;)rn Address Definition
0 0 Reset (the VBR is Cleared Before Vectoring) Exception
1 VBR +$8 Interrupt Exception
2 VBR +$10 Instruction Access Exception
3 VBR+$18 Data Access Exception
4 VBR +$20 Misaligned Access Exception
5 VBR +$28 Unimplemented Opcode Exception
6 VBR +$30 Privilege Violation Exception
7 VBR + $38 Bounds Check Violation Exception
8 VBR + $40 Illegal Integer Divide Exception
9 VBR + $48 Integer Overflow Exception
10 VBR + $50 Error Exception
11-113 Reserved for Supervisor and Future Hardware Use Only
114 VBR + $390 SFU 1 Precise — Floating-Point Precise Exception
115 VBR +$398 SFU 1 Imprecise — Floating-Point Imprecise Exception
116 VBR +$3A0 SFU 2 Precise (see Note) Exception
117 VBR +$3A8 Reserved
118 VBR + $3B0 SFU 3 Precise (see Note) Exception
19 VBR + $3B8 Reserved
120 VBR +$3C0 SFU 4 Precise (see Note) Exception
121 VBR +$3C8 Reserved
122 VBR+$3D0 SFU 5 Precise (see Note) Exception
123 VBR +$3D8 Reserved
124 VBR + $3E0 SFU 6 Precise (see Note) Exception
125 VBR +$3E8 Reserved
126 VBR + $3F0 SFU 7 Precise (see Note) Exception
127 VBR+$3F8 Reserved
128-511 Supervisor Call Exceptions — Reserved for User Definition (Trap Vectors)

NOTE: SFU2 through SFU7 are not implemented. Executing an instruction that is coded for these SFUs causes a precise
exception for that SFU.

of the VBR are unused. The VBR is initialized to zero on reset. This register has read/write
access.

31 12 1 0
I VECTOR TABLE BASE ADDRESS 0 0 0 0 0 0 0 0 0 0 0 O

VBR cr?

Bits 31-12 — Vector Table Base Address

6-4 MC88100 USER'S MANUAL MOTOROLA

Bits 11-0 — Reserved
Always contain zero. Not guaranteed to be zeros in future implementations.

Exception vector addresses are formed by concatenating the 20 most significant bits of
the VBR with the 9-bit exception vector number, which is generated by hardware or spec-
ified as a 9-bit field in trap instructions. This 29-bit value has three zeros appended to form
a 32-bit value. Figure 6-2 shows the exception vector address formation.

8 0

VECTOR

31 12 2 0
| vector paE BASE ADDRESS | [000

31 121 320
| vecror paGe Base ADDRESS | vectoR] aoo]

Figure 6.2. Exception Vector Address Formation

6.3 EXCEPTION PRIORITY

Due to the concurrent execution units of the MC88100, multiple exceptions can occur at
the same time within the processor. When multiple exceptions occur, they are recognized
by the processor according to the priority shown in Table 6-2. Exceptions that have the
same priority never occur simultaneously.

Table 6-2. Exception Priority

Priority Exceptions
1 Reset
2 Instruction Access
3 Unimplemented Opcode
4 Privileged Violation
5 Misaligned Access

Integer Overflow
lllegal Integer Divide
Trap Instructions
Bounds Check

SFU Precise
6 Interrupt
7 SFU Imprecise
8 Data Access

MOTOROLA MC88100 USER'S MANUAL 6-5

6.4 EXCEPTION PROCESSING

For all exceptions except reset and the error exception, the MC88100 and software handler
perform standard procedures for exception processing. These procedures are to recognize
the exception, save the processor context, service the exception, and return to normal
processing after the exception.

The MC88100 does not automatically save the processor context to memory as part of
exception processing; the processor context is stored in appropriate shadow and exception-
time registers. Saving the necessary contextto memory is the responsibility of the software
exception handier.

The processor is in the exception processing state when shadowing is frozen (SFRZ bit of
the PSR is set). When the MC88100 is in the exception processing state, it cannot process
another exception except for trap instructions. If another exception occurs (other than a
trap instruction), the MC88100 takes the error exception, which is a fatal error. In systems
requiring nested exceptions, shadowing must be enabled as soon as possible after an
exception is recognized to place the processor in the normal state. This allows subsequent
exceptions to occur and be processed properly. Shadowing can be enabled as soon as the
shadow registers required for handling the exception are saved into general-purpose reg-
isters or memory. See 6.10 ERROR EXCEPTION (VECTOR OFFSET $50) for more information
on error exceptions.

External interrupts, the misaligned access exception, and the floating-point inexact excep-
tion can be masked. When a masked exception occurs, the processor continues to operate
in the normal mode and no actions are taken.

Exception processing is performed in three interrelated phases:

1. Exception recognition, during which the processor saves the execution context in
shadow registers and changes program flow to the exception handler routine.

2. Exception handling, during which the software corrects the exception condition or
performs the function initiated by a trap instruction.

3. Return from exception, during which the processor restores the execution context in
effect before the exception occurred, and then resumes execution at the program
location before the exception occurred.

The exception handler routine performs specific functions based on the type of exception
that occurred. The following paragraphs describe the three interrelated phases.

6.4.1 Exception Recognition

When an exception occurs, the exception-time processor status register (EPSR) is auto-
matically loaded with a copy of the PSR in effect before the PSR is updated with exception

6-6 MC88100 USER'S MANUAL ‘ MOTOROLA

information unless shadowing is frozen. The EPSR has read/write access. The contents of
the EPSR are copied back into the PSR by an rte instruction. Figure 6-3 shows the logical
flow for the exception recognition procedure.

31 30 29 28 27 10 8 4 3 2 1 0
|MODEI B0 | SERl C l000000000000000000|1 T 111 1|SFD1|MXM| IND]SFRZl
PSR crl

31 30 29 28 2 10 9 4 3 2 1
l * l * | * | * IUOOOOUOOUODOUOOOUU']]111I| * [* | * [* I
EPSR cr2

*Bit setting of PSR at time exception is processed.

When an exception occurs and shadowing is enabled, the processor automatically performs
the following actions:

1. Waits until all pending data memory accesses complete or until a data access excep-
tion is signaled. If any of the accesses result in a data memory access exception, the
memory access exception does not pre-empt the earlier exception. Instead, the valid
bit is set in the DMTO register to notify the exception handler that a data exception
has occurred. The exception handler software must check the DMTO register to de-
termine if this bit is set. If the valid bit is set, the exception handler must correct the
data exception (or branch to the data access exception handler) before re-enabling
shadowing. The DMTO register is described in 6.7.3.1 DATA UNIT GENERAL CONTROL
REGISTERS.

If the initial exception was a data access exception, the processor does not wait for
pending data accesses to complete.

At any time during this exception recognition sequence, instructions requested prior
to the exception can be prefetched by the processor. These instructions are discarded,
and any code access faults encountered while prefetching these instructions are ig-
nored.

2. Copies the PSR into the EPSR. This saves the PSR value at the time of the exception.

3. Switches the processor into the exception processing state by performing the follow-
ing actions concurrently:

® Freeze all shadow registers by setting the shadow freeze bit (bit 0) in the PSR. This
saves the contents of the register scoreboard and instruction pipeline at the time
of the exception.

e Disable the FPU by setting the SFU1 disable bit (bit 3) in the PSR. This prevents
the FPU from writing results back to the general-purpose registers and from sig-
naling exceptions.

® Disable interrupts by setting the interrupt disable bit (bit 1) in the PSR.

® Switch the processor into supervisor mode by setting the MODE bit (bit 31) in the
PSR.

e Clear the register scoreboard so that the exception handler software has access to
all general-purpose registers.

MOTOROLA MC88100 USER'S MANUAL 6-7

INSTRUCTION
EXECUTION

NO EXCEPTION
EXCEPTION

PSR [SFRZ] =0

FREEZE ALL PSR [SFRZ] =1 NOT TRAP

INSTRUCTION
PIPELINES EXCEPT O

THE DATA UNIT

NOT DATA DATA
FAULT FAULT

ALLOW DATA UNIT
TO COMPLETE
OR FAULT

ERROR

TRAP
INSTRUCTION

FREEZE ALL
SHADOW REGISTERS
AND TPSR 4 PSR

PSR [SFRZ] 4 1
PSR [IND] 4 1
PSR [SFD1] ¢ 1
PSR [MODE] ¢ 1
SB 4 0's

GENERATE
VECTOR

PREFETCH VECTOR
AND
VECTOR +4

l

Figure 6-3. Exception Recognition

6-8 MC88100 USER'S MANUAL MOTOROLA

4. Generates the exception vector entry point using the VBR and the vector number. The
generated entry point is used to initiate execution of the exception handling software.

5. Prefetches and executes the exception handler instructions while in the exception
processing state (shadowing frozen).

Table 6-3 lists the control register states after an exception is recognized, when the MC88100
branches to the appropriate exception handler.

Table 6-3. General Control Register States after an Exception

Register State
Processor Status Register Bits 31, 3, 1, and 0 set (supervisor mode, FPU and interrupts disabled, shadow registers
(PSR) frozen); all other bits unchanged.
Exception-Time Processor Status | Contains the value in the PSR before the exception occurred and after all data unit
Register (EPSR) operations have completed or faulted.
Scoreboard Cleared
(SB)
Shadow Scoreboard Contains the value in the scoreboard before the exception occurred.
(SSBR)
Instruction Pointers FIP = exception vector address, V bits in NIP and XIP are cleared
(XIP, NIP, FIP)
Shadow Instruction Pointers Contains XIP, NIP, and FIP values before the exception occurred. Instructions pointed
(SXIP, SNIP, SFIP) to by the SNIP and SFIP have not been executed. The instruction pointed to by the
SXIP may have been aborted or completed, depending on the exception type.
Vector Base Register Unchanged
(VBR)
Data Memory Transaction For a data access exception, DMT2, DMT1, DMTO contain information on the memory
Registers (DMT0, DMT1, DMT2) | transaction in progress. Valid bits are clear if no memory access exception has oc-
curred.
Data Memory Address Registers | For a data access exception, DMA2, DMA1, DMAO contain information on the memory
(DMAQ, DMA1, DMA2) transaction in progress. Undefined for all other exceptions.
Data Memory Data Registers For a data access exception, DMD2, DMD1, DMDO contain information only for store
(DMDO, DMD1, DMD2) operations in progress. Undefined for all other exceptions and conditions.
General-Purpose Registers Unchanged
(r31-r0)

Floating-Point Control Registers | FPECR contains information on floating-point exceptions, floating-point precise reg-
isters contain information on precise exception, and floating-point imprecise registers
contain information on imprecise exceptions; otherwise these are undefined. FPCR
and FPSR are unchanged by exception recognition.

6.4.2 Exception Handling

Exception handlers typically process exceptions in one of two ways:

1. Interrupts, the FPU, and shadowing are disabled while the exception handler executes.
All information required for exception processing is retained in control registers. This
method of handling exceptions removes the need for saving any of the processor
context to memory and for restoring the context when the exception condition is

MOTOROLA MC88100 USER'S MANUAL 6-9

corrected. An rte instruction restores the processor context from the control registers
at the end of the exception handler routine. If another exception (other than a trap
instruction) occurs while shadowing is disabled, the MC88100 takes the error excep-
tion.

2. The exception handler software first saves the processor context from the control
registers (and possibly the general-purpose registers) to memory. Shadowing is then
re-enabled in the exception handler by an ster instruction or an rte instruction that
clears the SFRZ bit in the PSR, thereby returning the MC88100 to the normal processing
state. This allows another exception (a nested exception) to occur while the first
exception is being handled. At the end of this type of exception handler routine, the
exception handler freezes the shadow registers (with a ster or trap instruction) so they
can be reloaded with the saved context from memory. An rte instruction then restores
the processor context from the exception-time and shadow registers. Refer to 6.4.3.3.
UPDATING PSR WITH stcr OR xcr for more information on software modifications to
the PSR.

As stated earlier, the MC88100 allows all pending data unit accesses to complete as part
of exception processing. The processor, however, does NOT vector to the data access
exception handler if any of these pending accesses results in a fault while processing
another exception. Therefore, all exception handlers should check the status of the data-
unit shadow registers (mainly the DMTO register) and handle any pending data access
exceptions. Note that this is not required for trap handler because trap instructions syn-
chronize the processor before they execute (ensuring no pending data accesses).

6.4.3 Return from Exceptions

When an exception occurs, shadow registers are frozen. The information in the shadow
registers is then used to handle the exception as required. When returning to the normal
processing state, certain internal registers can be restored from the shadow registers by
executing an rte instruction.

6.4.3.1 CONTROL REGISTERS RESTORED BY rte. The following paragraphs describe the
shadow registers that are restored by the execution of the rte instruction (in addition to
the EPSR) and how the MC88100 returns to the normal processing state and the original
context.

6.4.3.1.1 Shadow Scoreboard Register (SSBR). The SSBRis a 32-bit register that shadows
the scoreboard register when the SFRZ bit of the PSR is clear. When an exception occurs,
this register contains a copy of the scoreboard register in effect before the scoreboard
exception. The contents of this register are copied back into the scoreboard register by an
rte instruction. Since register r0 is read-only (constant zero), bit zero of the shadow sco-
reboard register always contains zero.

6-10 MC88100 USER'S MANUAL MOTOROLA

The SSBR is not a true shadow register because the entire scoreboard register (SB) is not
copied to the SSBR on every clock cycle. Individual bits in the SSBR are set/cleared only
when the corresponding bits in the SB are changed. Therefore, after an exception, the
SSBR only represents the SB if the contents of the SB and SSBR were equal when the
shadow freeze bit in the PSR was cleared. This register has read/write access.

31 0
[r31 r30 r29 r28 r27 r26 r25 r24 r23 r22 r21 r20 19 r18 r17 r16 r15 r14 r13 r12 r11 r10 r9 r8 r7 r6 15 r4 ¥r3 r2 r1 r0

SSBR cr3

NOTE

After an MC88100 reset, the contents of SSBR are not defined. The SSBR must
be explicitly cleared before shadowing is enabled. This guarantees that the SSBR
reflects the SB when shadowing is enabled.

6.4.3.1.2 Shadow Fetch Instruction Pointer (SFIP). The SFIP is a 32-bit register that shad-
ows the FIP when shadowing is enabled. When a precise exception occurs, the SFIP contains
a pointer either to the instruction following the next instruction or to the target of a jump
or branch instruction. An rte instruction fetches the instruction pointed to by the SNIP and
then the instruction pointed to by the SFIP.

The SFIP contains a valid (V) and an exception (E) bit. The V bit can be cleared by software,
effectively making the corresponding instruction a no-operation instruction when an rte is
executed. In this case, the corresponding instruction is not prefetched from memory. If
both the V and E bits are set, an rte instruction causes the instruction pointed to by the
SFIP to generate an instruction access exception when it advances to the NIP, regardless
of whether the transaction receives a ‘success’ or ‘fault’ reply from the memory system.
An rte instruction can be made to return to a particular instruction by placing a valid
instruction address in the SNIP and the next sequential instruction address in the SFIP
(with V bits set and E bits clear). The rte resumes execution at the instruction pointed to
by the SNIP, then the SFIP. This register has read/write access.

31 2 1 0

I SHADOW OF FIP v] e |

SFIP cré

Bits‘i31—2 — Shadow of Fetch Instruction Pointer

V — Valid
0 — Fetch instruction is not valid (corresponds to no-operation); ignore E bit.
1 — Fetch instruction is valid.

E — Exception

0 — Fetch instruction is fetched normally.
1 — Force instruction access fault if execution of the instruction is attempted.

MOTOROLA MC88100 USER'S MANUAL 6-11

6.4.3.1.3 Shadow Next Instruction Pointer (SNIP). The SNIP is a 32-bit shadow register
that is updated by processor hardware whenever the NIP is updated and shadowing is
enabled. When a precise exception occurs, the SNIP contains a pointer to the next instruc-
tion to be executed. An rte instruction causes instruction prefetch and execution to resume
with the instruction pointed to by the SNIP.

The SNIP contains two bits that indicate the status of the corresponding instruction and
that can be used to control instruction execution. The valid (V) bit indicates that the SNIP
corresponds to a valid instruction. When the V bit is set, the SNIP contains the address of
the instruction that was being decoded when the exception occurred. When the V bit is
clear, the instruction is invalid. An instruction can be invalid for three reasons. First, if the
instruction pointed to by the SNIP followed a branch or jump instruction, the instruction
is invalid if the .n option was not specified and the branch is taken. Second, the V bit can
be cleared by software, effectively making the instruction corresponding to the NIP stage
a no-operation instruction after execution of an rte instruction and pre-emptying the in-
struction prefetch for that stage. Thirdly, the V bit of SNIP is clear if the V bit of FIP is clear,
the pipeline advances, and shadowing is enabled.

The exception (E) bit is set when the E bit of the FIP is set, the FIP is updated to NIP, and
shadowing is enabled. This bit can also be set by software with a ster or xcr instruction.
If the E bit and V bit are set and an rte instruction is executed, the NIP instruction generates
an instruction access exception, regardless of whether the transaction receives a ‘success’
or ‘fault’ reply from the memory system. If the V bit is clear, then the NIP is considered to
be invalid and a no-operation is performed when the XIP is updated with the NIP infor-
mation; the E bit is ignored in this case. Also, when the V bit is clear and an rte instruction
is executed, the instruction corresponding to SNIP is not prefetched. This register has read/
write access.

31 2 1 0
[SHADOW OF NIP [v [e |

SNIP cr5

Bits 31-2 — Shadow of Next Instruction Pointer

V — Valid
0 — Fetch instruction is not valid so prefetch is not performed (corresponds to no-
operation); ignore E bit.
1 — Fetch instruction is valid.

E — Exception
0 — Next instruction is fetched normally.
1 — Force instruction access fault if execution of the instruction is attempted.

6.4.3.1.4 Shadow Execute Instruction Pointer (SXIP). The SXIP is a 32-bit register that is
updated by processor hardware whenever the XIP is updated and shadowing is enabled.
If an instruction causes a precise exception, the SXIP points to that instruction. If an interrupt
or imprecise exception occurs, SXIP points to the last instruction executed by the integer

6-12 MC88100 USER'S MANUAL MOTOROLA

unit, dispatched to the FPU, or dispatched to the data unit. The processor hardware does
not use the SXIP on return from an exception; an rte instruction resumes execution at the
instruction pointed to by the SNIP.

The SXIP contains two bits that indicate whether or not the instruction was executed. When
the valid (V) bit is set, it indicates that the SXIP contains an instruction that was attempting
to execute. When the V bit is clear, the instruction was not executed (invalid instruction).
The V bit in the SXIP is clear whenever the NIP has the valid bit clear, the NIP is updated
to the XIP, and shadowing is enabled.

The exception (E) bit indicates whether or not the instruction was successfully prefetched
from memory. The E bit is set when the fetch of the SXIP instruction faulted or when the
previous stage (NIP) advanced to XIP with the E bit (and shadowing is enabled) set. The
processor sets the exception bit to prevent the execution of a faulted instruction in the
pipeline. If the V bit is clear, then the E bit is ignored. MC88100 hardware only sets the E
bit of the XIP stage; the E bits of the NIP and FIP stages are not set by the hardware. This
register is read only.

31 2 1 0

[SHADOW OF XIP v] e |

SXIP cr4

Bits 31-2 — Shadow of Execute Instruction Pointer

V — Valid
0 — Current instruction is not valid; ignore E bit.
1 — Current instruction is valid.

E — Exception
0 — Current instruction fetched successfully
1 — Current instruction not executed due to an instruction access fault

6.4.3.2 rte INSTRUCTION FLOW. After an exception condition has been handled, the rte
instruction should be executed to exit from the exception handler routine. Figure 6-4 shows
the flow for an rte instruction. This instruction restores the processor context from shadow
and exception-time registers as follows:

1. The shadow instruction pointers (SNIP and SFIP) are copied to the instruction pointers
appropriately, and the corresponding instructions are re-prefetched.

2. The shadow scoreboard (SSBR) is copied to the scoreboard (SB) register.

3. The EPSR is copied to the PSR.

4. ‘Instruction execution resumes after the instruction corresponding to NIP is prefetched.
The instruction pointed to by the SNIP is the first instruction to execute after the return.

This instruction is fetched from memory again since the instruction pipeline was cleared
during exception processing. If the MC88100 enables shadowing as part of the restore of

MOTOROLA MC88100 USER’'S MANUAL 6-13

6-14

rte

SYNCHRONIZE
PROCESSOR

FIP 4 SNIP
NIP (V) 4 0

PREFETCH FROM
FIP

FIP 4 SFIP
NIP 4 SNIP
XIP (V) 40
SB ¢ SSBR
PSR ¢ EPSR

PREFETCH FROM
FIP

SFRZ=1
FPU IMPRECISE
OR INTERRUPT FPU IMPRECISE OR
EXCEPTION INTERRUPT EXCEPTION
EXCEPTION CONTINUE EXECUTING ERROR
RECOGNITION IN EXCEPTION EXCEPTION
PROCESSING STATE
NORMAL
PROCESSING

Figure 6-4. rte Instruction Flow

MC88100 USER'S MANUAL MOTOROLA

the PSR from the EPSR, the rte instruction guarantees that register usage indications are
consistent between the SB and SSBR (the SB is guaranteed to match the SSBR because
it is restored from the SSBR). Additionally, if the FPU is enabled with the rte and there
were FPU instructions in progress before the exception, the SB will have the scoreboard
bits for the destination registers set appropriately (automatically restored from the SSBR)
after execution of the rte. The FPU instructions then continue executing. Finally, if the
interrupts are enable with the rte, a pending interrupt is recognized immediately after the
rte.

The rte instruction also prefetches the next two instructions to be executed after the ex-
ecution of the rte is complete. The next two instructions are guaranteed to be prefetched
from the address space specified by the EPSR MODE bit, and the privilege check on the
execution of the next two instructions is guaranteed to be based on the EPSR MODE bit.

The rte instruction is a flow-control instruction and synchronizes the processor before
execution. Therefore, all instructions in the handler are guaranteed to complete before the
rte begins execution.

6.4.3.3 UPDATING PSR WITH stcr OR xcr. It is recommended that changes to the PSR
be made with the execution of an rte instruction. An stecr or xcr instruction can also alter
the PSR, but the following effects must be considered. First, for register usage to be correct
after an exception is taken, the scoreboard and shadow scoreboard must match before
shadowing is re-enabled. This can be accomplished by explicitly clearing the SSBR and
by executing a trap (not-taken) instruction to wait for the SB to clear. The trap instruction
waits until all scoreboard bits are clear before it executes. At this point, shadowing can be
re-enabled.

The SSBR and SB do not necessarily match after a processor reset; thus, the SSBR should
always be cleared at initialization time. The SSBR can be cleared by executing an stcr
instruction that stores all zeros to the SSBR.

Secondly, when the FPU is explicitly disabled with a ster or xcr instruction, care must be
taken to ensure that there are no instructions executed by the FPU currently in progress.
Otherwise, the scoreboard bits of the corresponding destination registers will be set; pre-
venting subsequent instructions from accessing these registers. If a subsequent instruction
attempts to use one of these registers, the machine will remain in an indefinite scoreboard
hold. The prevent this from occuring, a trap or a trap-not-taken instruction should be
executed before the ster or xcr to ensure that the FPU is disabled only when it is empty.

Thirdly, a trap instruction (can be a trap-not-taken) should be executed immediately before
a stcr or xcr instruction is executed that sets the shadow freeze bit (bit 0) in the PSR. This
ensures that instructions in progress that can cause exceptions complete and report the
exception before shadowing is frozen.

Fourthly, when a stcr or xer instruction that sets the interrupt disable bit (bit 1) is executed,
interrupts are disabled following the subsequent instruction. Therefore, care must be taken
not to freeze shadowing (set the freeze bit) and disable interrupts with the same instruction.
Otherwise, an interrupt that is pending at the time that shadowing is frozen may result in
the error exception (i.e., interrupt recognized while shadowing is frozen). Combining this

MOTOROLA MC88100 USER'S MANUAL 6-15

precaution with the precaution for setting the shadow freeze bit described in the preceding
paragraph, a recommended procedure for disabling interrupts and freezing shadowing is
as follows: '

trap-not-taken

ster to disable interrupts

ster to freeze shadowing

Alternately, a trap instruction can be executed that branches to a specific code segment
that modifies the appropriate shadow and exception registers and then executes an rte
instruction.

Note that when interrupts are enabled with a stcr instruction, there is a delay of one
instruction before interrupts are recognized again. However, if interrupts are enabled with
an rte instruction a pending interrupt is recognized immediately after the rte.

Fifth, when the FPU is explicitly enabled (SFD1 bit cleared in the PSR) with an ster or xer
instruction, the scoreboard bits corresponding to destination registers of FPU instructions
in progress will not be set. Therefore, FPU instructions could overwrite the results of other
concurrent operations, and the scoreboard bits for the floating-point instruction will not
be set. When the FPU is enabled in this way, it must be empty.

Finally, if the MODE bit of the PSR is changed by an ster or xcr instruction, two problems
can occur with the instructions following the ster or xcr. First, the privilege check for the
next instruction may not be correct (in the case where the MODE bit is set by the stcr or
xcr). Secondly, the next one or two instructions may have been prefetched from the in-
correct address space because the prefetches occurred before the execution of the ster or
Xcr.

6.4.3.4 COMPLETING FPU INSTRUCTIONS IN PROGRESS. The exception processing se-
quence performed by the MC88100 causes the FPU to be disabled (SFD1 bit of PSR set).
This prevents the FPU from writing results back to the register file and from executing new
instructions. To allow all FPU instructions in progress to complete within the exception
handler, an rte can be executed that returns control to a trap-not-taken instruction. The rte
can restore the SB from the SSBR and can enable the FPU so that all operations complete.
The trap-not-taken instruction forces the software to wait for the FPU to complete. This
can be performed in supervisor mode.

6.5 INSTRUCTION UNIT EXCEPTIONS

The following paragraphs describe the external interrupt exception and the different types
of exceptions that are generated by the instruction unit.

6.5.1 Interrupt Exception (Vector Offset $8)

Interrupts are exceptions generated by the assertion of the INT input signal. Since the

MC88100 has only a single interrupt request signal, external hardware must map all external
interrupt requests to this signal. Interrupts do not force immediate exception processing;

6-16 MC88100 USER'S MANUAL MOTOROLA

the INT signal is sampled externally on every falling clock edge, and, if it is asserted, the
exception is signaled internally on the next falling edge of the clock. Upon detecting an
interrupt exception, the MC88100 performs the standard exception processing as described
in 6.4 EXCEPTION PROCESSING. Because interrupt recognition is voltage-level sensitive
(not edge triggered), the interrupting device should keep the interrupt signal asserted until
it receives an explicit recognition (normally generated by the interrupt exception handler).

Interrupts can be disabled by setting the IND bit (bit 1) in the PSR. Interrupts should be
disabled during exception processing (when shadow registers are frozen). If an interrupt
occurs while shadowing is frozen and interrupts are enabled, the MC88100 takes the error
exception described in 6.10 ERROR EXCEPTION.

Typically, systems incorporate an interrupt controller or other hardware that maps multiple
external interrupt requests to the INT input. In these systems, the exception handler soft-
ware acknowledges the interrupt by reading a system interrupt controller (located in the
control memory address space in systems that use the MC88200 CMMU devices). The
controller can update its interrupt mask and write the vector number of the interrupting
device on the data bus. The exception handler uses the vector number to process the
interrupt. The vector from the interrupt controller allows the exception handler to incor-
porate its own vectoring scheme, allowing multiple devices to be serviced through the
single interrupt request input. When the interrupt handler finishes execution, the rte in-
struction restores the processor context, the same as with any other exception. When an
interrupt is processed, the SXIP points to the last instruction executed or dispatched for
execution before the interrupt was recognized.

Since interrupts occur in real time, the interrupt latency (time between when the interrupt
is signaled and interrupt processing begins) is usually important. The following guidelines
provide a method to calculate the interrupt latency, based on the actions performed by
the processor to recognize an interrupt.

1. One clock cycle for internal synchronization of the interrupt signal (time between
when the interrupt is sampled and any exception processing begins).

2. From zero to four times maxmemgq (longest data memory access latency) cycles for
clearing the data unit pipeline. The data unit can have, at most, four outstanding
memory accesses, each of which may require the longest memory access time. How-
ever, MC88100-based systems normally incorporate MC88200 CMMUs. With the -
CMMUs, it is probable that all four memory accesses will result in cache hits. If this
occurs, then each memory access effectively requires only one clock cycle to finish.
Also, the processor normally has less than four outstanding memory accesses, re-
ducing the time required to clear the data unit pipeline.

3. From one cycle to two times maxmemj (maximum instruction memory access latency)
cycles for possibly completing a prefetch already in progress and for prefetching the
first instruction in the exception vector. The prefetch in progress is completed in
parallel with the data access cycles.

4. One cycle to propagate the instruction through the pipeline and begin instruction
decoding.

5. One cycle for instruction execution.

MOTOROLA MC88100 USER'S MANUAL 6-17

In summary, the worst-case interrupt latency n can be expressed in clock cycles as:
3 + max (4 * maxmemd, maxmemj) + maxmem;j

6.5.2 Misaligned Access Exception (Vector Offset $20)

Misaligned access exceptions occur when a load, store, or exchange instruction is at-
tempted to a memory address that is not consistent with the size of the access. For example,
this exception occurs when a half-word access is attempted to an odd byte address. This
exception is a precise exception; the exception condition is detected before the memory
access is dispatched to the data unit. When this exception occurs, the SXIP contains the
address of the instruction that caused the exception. For a Id or xmem instruction, the
appropriate scoreboard bit is set. The exception handler can emulate the memory access
in software or can discard the instruction, as appropriate. This exception also occurs when
a double-word access is attempted to an address that is not an even-word boundary.

This exception can be masked by setting the MXM bit (bit 2) in the PSR. If this exception
is masked and a misaligned access is attempted, the processor rounds the address down
to a consistent boundary (for example, a half-word read operation attempted to address
$401 returns the half word at location $400).

6.5.3 Unimplemented Opcode Exception (Vector Offset $28)

"This exception occurs when an instruction with an unimplemented opcode is loaded into
the instruction pipeline. Unimplemented SFU instructions do not cause this exception but
generate an SFU precise exception. The SXIP points to the.instruction that caused the
exception. The exception handler can fetch, decode, and process this instruction, thereby

~ emulating unimplemented-opcodes in software. If instruction emulation is not needed, the

handler can discard the instruction or perform other appropriate processing.

6.5.4 Privilége Violation Exception (Vector Offset $30) -
A privilege violation occurs when software aftempts to perform a privileged operation
while in user mode. Privilege violations occur under three conditions:
1. Accessing a control register other than the FPCR.or FPSR while in the user mode.
2. Using the .usr option while in the user mode. (This is for virtural machine support.)
3. Specifying exception vectors 0-127 in a trap instruction while in user mode.
When a privilege violation occurs, the instruction that caused the exception is pointed to
by the SXIP. The privileged operation is not performed. For load and xmem instructions

thatresultin privilege violations (due to inappropriate use of .usr option), the corresponding
scoreboard bits are set and must be cleared by the exception handler.

6.5.5 Trap Instructions tcnd, th1, tb0 Exceptions (Vector Offset $400-$7F8)

Trap instructions are MC88100 instructions that explicitly cause the MC88100 to complete
execution of all previous instructions and to begin exception processing. When a trap

6-18 MC88100 USER'S MANUAL MOTOROLA

instruction executes, the MC88100 performs the standard exception processing described
in 6.4.1 Exception Recognition. When the exception handler software finishes, an rte (that
enables shadowing in the PSR) instruction returns the MC88100 processor to the normal
state described in 6.4.3 Return from Exceptions.

The MC88100 includes four trap instructions: the tbnd, tb1, tb0, and tend instruction. The
tbnd instruction is described in 6.5.6 Bounds Check Violation. The tend, tb1, and tb0
instructions can initiate any exception handler by specifying the appropriate vector number
(see Table 6-1). Vectors 0-127 can only be accessed in supervisor mode. The tend, tbh1,
and tb0 instructions do not begin execution until all scoreboard bits are clear and all data
memory operations are completed. This condition applies regardless of whether or not
the trap is taken.

Trap instructions that are executed while shadowing is frozen do not cause the error
exception. When a trap instruction is executed while shadowing is frozen, the PSR is
updated as it is with other exception conditions, and program execution continues at the
location specified by the instruction. However, none of the exception-time or shadow
registers are modified.

6.5.6 Bounds-Check Violation Exception (Vector Offset $38)

This exception occurs when the tbnd instruction detects a value that is out of bounds. The
instruction specifies the limit that must be met; if the tested value falls outside of that limit
(out of bounds), the trap is taken. The SXIP points to the tbnd instruction. The bounds test
is an unsigned comparison.

6.6 INTEGER OVERFLOW EXCEPTION (VECTOR OFFSET $48)

The integer overflow exception occurs when the result of a signed integer arithmetic
instruction cannot be represented as a 32-bit signed number. The SXIP points to the in-
struction that caused the exception. The destination register and carry bit are unchanged
by an instruction that causes an integer overflow exception.

6.7 MEMORY ACCESS EXCEPTIONS

Memory access exceptions occur when a data memory access or an instruction prefetch
fails to complete normally. These exceptions, which are generated by the MC88200 CMMU
or other hardware, are signaled as a fault encoding on the reply signals during the reply
phase of a memory transaction. Memory access exceptions can occur under the following
conditions:

1. A load, store, xmem, or instruction prefetch operation was issued to an address that
is not valid in the current address space (nonexistent address fault).

2. Aload, store, or instruction prefetch operation was issued to a segment or page in a
virtual memory system that does not reside in main memory and must be read from
disk (segment or page fault).

MOTOROLA MC88100 USER'S MANUAL 6-19

3. Aload, store, or instruction prefetch operation was issued by software with insufficient
rights (privilege or write protection violation).

4. Problems were detected by error-detection hardware (bus error).

6.7.1 Instruction Access Exception (Vector Offset $10)

Instruction access exceptions occur when an attempt is made to execute an instruction
and the corresponding prefetch to instruction memory resulted in a fault reply on the
instruction P bus reply signals (CR1-CR0). The instruction access exception occurs when
execution of the faulted instruction is attempted. The XIP points to the instruction that
caused the exception, and this is reflected in the SXIP. The memory system must provide
a status register or other means of indicating the reason that the exception occurred. The
MC88200 CMMU includes a local status register, which the exception handler must read
to determine the cause of the exception in systems with an MC88200 residing on the
instruction P bus.

An instruction access exception is recognized in the following way:

1. The FIP contains the address of the instruction being fetched from memory, which is
the fetch that will cause the exception.

2. The value in the FIP propagates to the NIP after the transaction has been initiated
(but before the reply is received). When the fault reply is received on the P bus reply
signals (CR1-CRO0), an internal flag is set that prevents the MC88100 from executing
the instruction.

3. The value in the NIP propagates to the XIP. The MC88100 now sets the E bit in the
XIP, recognizes the exception, and begins exception processing as described in 6.4.1
Exception Recognition. The SXIP contains the address of the instruction that caused
the exception, while the SNIP and SFIP contain the addresses of the two following
instructions. If the V bit of the XIP is cleared, the fault is ignored.

The exception handler must determine the cause of the exception and then optionally retry
the instruction fetch. The retry is performed by “backing up’ and restarting the instruction
pipeline. Specifically, the exception handler

1. Saves the execution context from the control registers into memory. This context
should include the EPSR and the three shadow instruction pointers (SXIP, SNIP, and
SFIP).

2. Once the context is saved, enables shadowing by clearing the SFRZ bit (bit 0) in the
PSR.

3. Determines and corrects the cause of the exception. For example, if the exception
was caused by a page fault, the requested memory page must be read in from memory.
If the exception was caused by a privilege violation or a nonexistent memory fault,
the exception handler may abort the instruction fetch and the task that attempted it.

4. Clears the E bits in the SXIP and SNIP copied to memory. The SFIP is not needed to
restart the instruction pipeline.

5. Freezes shadowing by setting the SFRZ bit (bit 0) in the PSR.

6-20 MC88100 USER'S MANUAL MOTOROLA

6.

Restores the saved context by:

a. Copying the EPSR saved in memory to the EPSR.

b. Copying the SXIP saved in memory to the SNIP control register (i.e., back up the
XIP to the NIP).

¢. Copying the SNIP saved in memory to the SFIP control register (i.e., back up the
NIP to the XIP).

Executes an rte instruction to return control to the task that encountered the exception.
The instructions pointed to by the SNIP and SFIP are prefetched from memory again;
the SXIP is discarded. The instruction prefetches should now return valid instructions
without exceptions.

6.7.2 Instruction Tracing

Instruction tracing is a valuable method of debugging programs. Tracing permits the
MCB88100 execution state to be examined after execution of each instruction if necessary.
The instruction access exception can be used to implement an instruction tracing mech-
anism. As stated above, an instruction access exception is recognized when the MC88100
encounters an XIP with the E bit set. Software can cause this exception by setting the E
bit in either the FIP or the NIP, which propagates to the XIP. To enable instruction tracing,
the software must

1.

Trap so that the instruction pipeline is reflected in the shadow registers (SXIP, SNIP,
and SFIP). The trap instruction is effectively a program breakpoint. At this point, the
software can save the execution context to memory and enable shadowing to perform
typical debugger functions such as displaying memory, etc. The debugger software
should enable shadowing; however, the instruction pipeline must not be corrupted.
The pipeline should be saved to memory or to general-purpose registers.

. Set the E bit in the saved SFIP. This forces an instruction access exception when

processing is restored to normal operation. If SNIP points to a trap instruction or a
branch/jump instruction that does not use delayed branching, the value of the E bit
in SFIP is ignored (because the V bit of SNIP is cleared when the instruction propagates
to the NIP stage), and the instruction corresponding to the SNIP must be emulated
in software.

Freeze shadowing and copy the values of SNIP and SFIP saved in memory to the
SNIP and SFIP control registers, respectively.

Execute an rte instruction. The MC88100 fetches the instructions addressed by the
SNIP and SFIP. The instruction corresponding to the SNIP executes, but the instruction
corresponding to the FIP causes an instruction access exception (since the E bit was
set). This instruction is not yet executed.

The instruction access exception handler software can now perform any debug op-
erations. To return to normal operations, the exception handler performs the same
actions as described in 6.7.1 Instruction Access Exception. If single-instruction exe-
cution is to be performed, the exception handler should set the E bit in the saved
SNIP since the saved SNIP is copied to the SFIP before returning from the exception.
Setting the E bit in the SFIP allows one instruction (SNIP) to execute, and then the
exception occurs again.

Because instructions residing in the delay slot of a branch, jump, or a trap-taken
instruction are never executed (i.e., the V bit for instruction is cleared in the NIP stage),
the ‘trace’ handler may need to check the opcode of the current instruction and take

MOTOROLA MC88100 USER'S MANUAL 6-21

appropriate action in case no delayed branching is used. The following instructions
must be emulated in software in this case: bsr, jsr, bb0, bb1, bend, jmp, tbnd, tb0
tb1, tend, and rte.

6.7.3 Data Access Exception (Vector Offset $18)

Data access exceptions are recoverable imprecise exceptions; none of the shadow instruc-
tion pointers are guaranteed to point to the instruction that caused the exception, but this
information is not required to recover from the exception. The exception is caused by a
fault reply on the data P bus reply signals (DR1-DR0). The exact cause of the exception is
not stored in the MC88100; the memory subsystem must provide a status register or other
means of indicating the cause of the exception, if necessary. The MC88200 CMMU includes
a local status register, which the exception handler must read to determine the cause of
the exception in systems using an MC88200 on the data P bus.

Aside from the cause of the exception, all pertinent information about a data access fault
is stored in the memory access shadow registers (accessed as general control registers).
There are three sets of shadow registers corresponding to the three stages in the data unit
pipeline. When a data access exception occurs, the data corresponding to each memory
access in the data unit pipeline is latched into the memory access shadow registers. The
first set of data unit control registers (DMx0) contains the information about the access
that caused the exception (corresponding to stage 0 of the data unit pipeline). The second
set of the data unit registers (DMx1) contain information on the next memory access (stage
1 of the data unit pipeline), which may be a separate access (i.e., a subsequent Id, st, or
load access of an xmem instruction), the second part of a double-word load or store, or
the second access (store) of an xmem instruction. The address phase of this access initiated,
but the access was aborted by the memory subsystem due to the previous exception. The
third set (DMx2) corresponds to the information in stage 2 of the data unit pipeline. This
memory transaction has not begun. Again, this may be a separate access, part of a double-
word load or store, or one of the accesses of an xmem instruction.

When an rte instruction is executed, the data unit control registers are not restored, and
the operations are not retried; thus, the exception handler software must retry all of the
memory accesses in progress (or abort them if appropriate). To retry the memory accesses,
the exception handler emulates the instruction using the saved information. In addition,
the shadow scoreboard bits corresponding to pending data accesses must be cleared when
the instruction(s) are emulated. An rte instruction is used to return from the exception.

6.7.3.1 DATA UNIT GENERAL CONTROL REGISTERS. The DMTx (data memory trans-
action) registers contain the information about the memory access in the data unit when
an exception occurs. Table 6-4 lists the data unit control registers. The following text details
the information contained in the transaction registers, and Table 6-5 summarizes the bit
values.

31 B 15 14 13 12 n 7.6 5 4 3 2 10
[oo0o0o0000000000000[8o [pas [oousi|tock| ores | so [ena | ena | et [eno wrire[vaun |

DMTO, DMT1, and DMT2 cr8, cr11, and cr14
SD =SIGNED

6-22 M88100 USER’'S MANUAL MOTOROLA

Table 6-4. Data Unit Control Registers

Register

Number Acronym Name
cr8 DMTO Transaction Register #0
cr9 DMDO Data Register #0
cr10 DMAO Address Register #0
cri1 DMT1 Transaction Register #1
cr12 DMD1 Data Register #1
cr13 DMA1 Address Register #1
cr14 DMT2 Transaction Register #2
cr1s DMD2 Data Register #2
cr16 DMA2 Address Register #2

Table 6-5. Data Memory Transaction Register Bit Uses

Data Unit Transaction
Register Bits

Actions and Options for Synthesizing
Load, Store, and Exchange Memory Instructions

BO (Bit 15) If BO does not match the current value in the PSR, the PSR bit must be changed to
match BO for emulating the faulted instruction.
DAS (Bit 14) If DAS =0, use the .usr option for the instruction.
If DAS =1, access in supervisor mode.
DOUB1 (Bit 13) All synthesized load and store instructions can be single word (or less); the .d option
is not needed.
LOCK (Bit 12) If LOCK =0, the transaction is not a part of an xmem instruction.

If LOCK =1, the two transactions must be combined into an xmem instruction.

DREG (Bits 11-7)

Used to place the data from a load or xmem instruction into the proper general-purpose
register before returning from the exception handler. (Not used for store operations)

SIGNED (Bit 6)

If SIGNED =0, the byte or half word is zero extended.
If SIGNED =1, the byte or half word is sign extended.
Not used for word, double, and store operations.

Byte Enable (Bits 5-2)

w

E

N

E

=

E

-2 20000z
- nmo0o-_0O0OZ
o

—ococo-==02Z
000202

Use address of LSB in data address register and .b option.

Use address of LMB in data address register and .b option.
Use address of LSH in data address register and .h option.

Use address of UMB in data address register and .b option.
Use address of MSB in data address register and .b option.
Use address of MSB in data address register and .h option.
User word address in data address register, no option.

WRITE (Bit 1)

WRITE =0, retry load instruction if LOCKBAR =1.
WRITE =1, retry store instruction if LOCKBAR=1.

VALID (Bit 0)

VALID =0, no pending memory transaction in this stage.
VALID =1, construct a load, store, or exchange memory instruction.

LSB = Least Signifcant Byte
LMB = Lower Middle Byte
LSH = Least Significant Half
UMB = Upper Middle Byte
MSB = Most Significant Byte
MSH = Most Significant Half

MOTOROLA

MC88100 USER'S MANUAL 6-23

BO — Byte Ordering

Normally, the byte order has not changed when the exception handler begins exe-
cution. If the BO bit is different from the setting in the PSR, then the PSR bit must be
changed before the memory accesses are performed by the exception handler.

0 — Big Endian

1 — Little Endian

DAS — Data Address Space

Since the exception handler executes in supervisor mode, the .usr option must be
encoded in the synthesized instructions that access user memory.

0 — User Address Space

1 — Supervisor Address Space

DOUB1 — Double Word

This bit is set if the access is the first access in a double-word transaction (or the load
portion of an xmem operation). When this bit is set, the following stage in the data
unit pipeline is the second access of the double-word transaction. For a Id.d or st.d
instruction residing in stage 2 in the pipeline, the second access has not entered the
pipeline but always involves the 'next word’ in memory and the next consecutive
general-purpose register. The ‘next word’ address depends on the byte ordering; the
‘next word’ address should be generated by inverting the lowest order address bit
(A2) The second access of an xmem instruction is always a store of the same register
to the same address. When retrying the instructions, two single-word load or store
instructions can be generated instead of one double-word load or store, but in the
case of an xmem, it must be performed as an xmem.

LOCK — Bus Lock

This bit is set if the P bus lock signal (DLOCK) is asserted, wich occurs only if the
transaction is a part of an xmem instruction. In the two accesses of the xmem instruc-
tion, the load is followed by the store; if the transaction in this register is a load and
LOCK is set, the next memory access must be a store with the same address and

‘destination register. The corresponding DMDx register contains the data for storage.

If the load access is in stage 2 of the pipeline, then the store access will not yet be in
the pipeline. However, the DMD2 register contains the data to be stored in this case.

DREG — Destination Register

These bits indicate the destination register for the memory access. For a load or
exchange operation, the data read from memory should be loaded into this register.
For a store or exchange operation, this field is undefined. The corresponding DMDx
register contains the data for storage.

SIGNED — Sign-Extended Bit

This bit is set if the data for a load operation should be sign extended; if clear, the
data for a load operation should be zero extended. This bit is valid only for byte and
half-word accesses.

MC88100 USER'S MANUAL MOTOROLA

EN3-ENO — Byte Enable Bits
These bits are set to indicate which byte(s) are to be accessed by the instruction. For
a byte instruction (.b option), one of these four enables is set; for a half-word instruction
(.h option), bits EN3 and EN2 or EN1 and ENO are set. For a word or double-word
access, all of the enables are set. The value of the enables must be encoded to form
the two least significant bits of the memory address (see Table 6-5).

WRITE — Read/Write Transaction Bit
If the transaction is not an xmem (LOCK is set), then the value of WRITE indicates
whether the memory access instruction was an Id instruction (read) or an st instruction
(write). If LOCK is clear, then the value of WRITE indicates whether the transaction is
the read or write access of an xmem instruction.
0 — Read
1 — Write

VALID — Valid Transaction Bit
This bit indicates whether or not the transaction is valid. If this bit is clear, then the
entire transaction (stage of the pipeline) can be ignored. If this bit is set, then the
transaction represented in the pipeline was a valid memory transaction in progress
and must be recovered (or aborted) by the exception handler.

Each stage in the memory pipeline has a corresponding data and address register. When
the DMTx register indicates that the transaction was a store (st or xmem instruction), then
the corresponding DMDx register contains the data to be stored. The corresponding DMAX
registers contain the effective logical address generated by the instruction.

Data in the data unit shadow register (DMD2-DMDO) is only valid if the corresponding
transaction is a valid store operation. Therefore, when operating in the master/checker
mode, the programmer should store these registers to memory only when the pipeline
stage is for a valid store operation.

31 0
L DATA]
DMDO, DMD1, AND DMD2 cr9, cr12, and cri5
31 2 1 0
[ADDRESS [o[o]
DMAQ, DMA1, AND DMA 2 cr10, cr13, and cr16

6.7.3.2 DATA ACCESS EXCEPTION RECOVERY. The data access exception handler should
only be entered if the valid bit is set for stage 0 of the pipeline. The exception handler
must first repair the cause of the fault. Then each stage must be examined for pending
transactions; pending transactions must be retried by the exception handler before re-
turning from the exception. If a fault occurs while retrying the transactions, it is properly
nested.

MOTOROLA MC88100 USER'S MANUAL 6-25

To process a data access exception, the data access exception handler normally performs
the following steps (see Figure 6-5):

1.

Saves the execution context from the control registers into memory. This context
should include the the EPSR, the shadow instruction pointers, the SSBR, and the
appropriate data unit control registers.

Once the context is saved, enables shadowing by clearing the SFRZ bit (bit 0) in the
PSR.

Determines and corrects the cause of the exception. For example, if the exception
was caused by a page fault, the requested memory page must be read in from memory.
If the exception was caused by a privilege violation, a write protection violation, or a
nonexistent memory fault, the exception handler may abort the memory transaction
that caused the exception (and the task that attempted it). Otherwise, the exception
handler must retry the pending memory transactions that were in the data unit pipe-
line.

. Emulates the memory access instructions in the pipeline using the information in the

saved memory access registers. As listed above, the transaction registers contain the
information needed for recreating the instruction. The data for storage (DMDx) must
be loaded when applicable into a general-purpose register. The effective logical ad-
dress (DMAx) must be loaded into another general-purpose register (the original
address operands are not needed). If the operation is a byte or half-word transaction,
address bits 1 and 0 must be inserted appropriately into the general-purpose register
containing the address.

The instructions that emulate pending memory transactions can use the indexed form
of addressing with r0 as one of the source operands or the immediate index form.
The instructions can use the general-purpose register containing the effective logical
address (loaded above) as one source operand and r0 (which contains 0) as the other
operand or an immediate value of zero for the other operand. Therefore, the effective
logical address indexed by zero results in the required effective address. When a load
or xmem instruction is emulated, the appropriate bits of the SSBR (possibly saved in
memory as part of the context) must also be cleared. Step 4 should be repeated for
all valid data unit instructions in progress.

Freezes shadowing by setting the SFRZ bit (bit 0) in the PSR and restores the saved
EPSR and shadow instruction pointers to their corresponding control registers. Shad-
owing must be frozen for the shadow registers to be loaded without corruption.

Executes an rte instruction to return control to the task that encountered the exception.
The instructions pointed to by the SNIP and SFIP are fetched from memory again;
the value in the SXIP is discarded.

Figure 6-5 shows the general flow of a data access exception handler.

Figure 6-6 shows how pending transactions should be handled, and Figure 6-7 shows an
example of how load and store instructions can be emulated in the data access exception
handler. Instructions can be emulated in software by table lookup. Each store, load, and

6-26

MC88100 USER'S MANUAL MOTOROLA

xmem in the table operates on a fixed supervisor register, and the result is moved into
the proper place in the user register file. If the user’'s byte ordering differs from the su-
pervisor’s byte ordering, the supervisor temporarily must change its byte ordering.

NOTE

The values shown in italics in the figures refer to the copies of these registers
saved in memory for the exception.

DATA ACCESS
EXCEPTION

SAVE EXECUTION CONTEXT
T0 MEMORY (EPSR, SSBR,
SNIP, SFIP, VALID DMTx)
REGISTERS AND THEIR
CORRESPONDING DMAx AND
DMDx REGISTERS

PSR [SFRZ] 4 0

CORRECT MEMORY
FAULT

ERROR

COMPLETE PENDING
TRANSACTIONS

EXIT

PSR [SFRZ] ¢ 1

RESTORE CONTEXT
FROM MEMORY TO
SHADOW REGISTERS

' .
" rte ’

Figure 6-5. Data Access Exception

MOTOROLA MC88100 USER'S MANUAL 6-27

8¢9

IAVNANVIA S.43SN 001880

VIOHOLON

COMPLETE PENDING
TRANSACTIONS

x40
: DMTO [0]=0

OTHERWISE

INVALID CASE FOR
DATA ACCESS EXCEPTION

DMTx 01=0 orHeRWiISE

RERUN xmem
WITH DMD2

v EXIT

OTHERWISE DMTX [LOCK] =1
X =2 AND ‘(5 OTHWO\
DMTx [DOUB1} =1
DMTx [WRITE] =0 DMT2 [DOUBT}=1 QQ x=0 % x=0, 7> x=2
EMULATE Id.d rDREG 4 DMDO RERUN xmem
INSTRUCTION [(STORE DOUBLE WILL SFIP & SNIP WITH DMD {x+ 1)
BE RE-INITIATED (EMULATE TRANSACTION SNIP ¢ SXIP
BY rte) FOR DMTx {xmemRERUN
ON rte)

: XeX+1 4———(}

e> X<3

X =3

EXIT

*This step recovers a fault on the store operation of an xmem only if the processor is guaranteed to be synchronized (i.e.,
xmem instruction followed by a trap); otherwise, this case is unrecoverable.

Figure 6-6. Complete Transaction Flow

EMULATE TRANSACTION

FOR DM Tx

rm ¢ DMAx
m[1,0] ¢ SYNTHESIZE
FROM DM Tx [EN3-ENO]

rm ¢ DMDx

PSR[BO] + DMTx(BO]

OTHERWISE TOGGLE
PSR (BO)

FORM INDEX FROM
DAS, SIGNED, AND
WRITE BITS OF DMTx

JUMP INTO INSTRUCTION GENERAL
TABLE USING INDEX id rm, rn, r0 or
AND RETURN st rn, rm, r0

N

Id INSTRUCTION

rDREG 4 rm

PSR (BO] TOGGLED
~ ABOVE

TOGGLE PSR[BO]
BACK

EXIT

Figure 6-7. Emulate Transaction DMTx Flow

MOTOROLA MC88100 USER'S MANUAL 6-29

If an imprecise exception occurs while in the middle of issuing a store double instruction,
the first half of the store double may be seen by the memory system before the exception
is recognized. When returning from the exception, the entire store double will be re-
executed. The first half of the store double may get sent to the memory system multiple
times. Store double should not be used for I/O devices. Both store and load doubles are
not guaranteed to be atomic operations in any way.

Some additional considerations apply to the xmem instruction (see Figure 6-6). This in-
struction results in two separate memory accesses, a load followed by a store. Depending
on the system hardware, the exception may occur on either of these accesses, or an
exception may occur while the two xmem accesses are in other stages of the data unit
pipeline.

If the load access of the xmem instruction is at stage 0 (caused the exception) or stage 1
(aborted when the fault occurred), the store access follows the load access in the pipeline,
and the entire xmem can be rerun in the handler.

If the system hardware allows the store access of an xmem instruction to fault, the software
must ensure that the MC88100 is synchronized following the xmem, in order to recover
from this condition. When the store access of an xmem is in stage 0 (determined by
DMTO[LOCK] set and DMTO[DOUB1] clear), the load completed successfully but the store
encountered the exception. The xmem instruction must then be recreated from the stage
0 registers (DMTO0, DMDO, and DMAO), and the load access of the xmem instruction must .
be repeated. The instruction pointers can be used to back up the instruction pipeline so
that the rte instruction causes the xmem to execute again from the beginning. If the xmem
instruction was followed by a trap instruction, the SXIP is guaranteed to point to the xmem
instruction. Otherwise, this condition is unrecoverable.

If the exception occurs while the load access is in stage 2, then the store access is not in
the pipeline. However, all of the information needed to reconstruct the xmem instruction
can be taken from the stage 2 registers (DMT2, DMD2, and DMAZ2).

6.8 FPU EXCEPTION PROCESSING

The FPU generates precise and imprecise exceptions. The exception types and actions are
governed by the |IEEE 754 standard. The floating-point exceptions use two exceptlon vec-
tors, one for precise and one for imprecise.

When a floating-point precise or imprecise exception occurs, the instruction unit saves the
execution context (instruction pointers, scoreboard, etc.) to the shadow and exception-
time registers, and then branches to the appropriate exception vector. In addition, the
specificinformation needed for handling the exception is stored in the FPU control registers.

The information in the FPU control registers pertains only to the instruction that caused
the exception. As part of exception processing, the MC88100 disables the FPU and purges
the instruction that caused the exception from the FPU pipelines. All other FPU instructions
in progress remain in the FPU and are frozen.

6-30 MC88100 USER’'S MANUAL MOTOROLA

The MC88100 requires software support to comply with the IEEE 754 standard because
the floating-point exception handlers are responsible for performing the default operation
when an exception occurs. More detailed information about the default operations for-
exceptions can be found in the IEEE 754 standard.

Users can supply exception handlers that replace or pre-empt the Motorola-supplied ex-
ception handlers. Each exception handler must correct or otherwise process the exception
condition, again in conformance with the |IEEE 754 standard.

The MC88100 branches to the precise or imprecise exception handler for a variety of
conditions. Not all of these conditions are exceptions according to the IEEE 754 standard,
but the MC88100 completes the operation in the exception handler software. An example
of an operation completed in software is arithmetic operations with infinity.

6.8.1 FPU Exception Processing Registers

The FPU contains 11 control registers. Registers fer0—fer8 contain exception information
such as the exception type, the source operands and results, and the instruction that caused
the exception. These registers are accessible only in supervisor mode. Registers fer62 and
fcr63 are used to enable user-supplied exception handler software and to report exception
causes in user mode. These two registers are not privileged; they can be accessed in
supervisor or user mode. Table 6-6 shows the FPU control registers.

Table 6-6. Floating-Point Control Registers

Zis::ls;:: Acronym Name
fer0 FPECR Floating-Point Exception Cause Register
fer1 FPHS1 FP Source 1 Operand High Register
fer2 FPLS1 FP Source 1 Operand Low Register
fer3 FPHS2 FP Source 2 Operand High Register
fcrd FPLS2 FP Source 2 Operand Low Register
ferd FPPT FP Precise Operation Type Register
fcré FPRH FP Results High Register
fer7 FPRL FP Results Low Register
fcr8 FPIT FP Imprecise Operation Type Register
fer62 FPSR FP User Status Register
fcr63 FPCR FP User Control Register

The fcr6-fcr8 registers are only valid for imprecise exceptions; fcr1—fcrb are only valid for
precise and integer-divide error exceptions. As with the general control registers, reserved
fields return zeros on reads and are not affected by writes.

MOTOROLA MC88100 USER'S MANUAL 6-31

6.8.1.1 FLOATING-POINT EXCEPTION CAUSE REGISTER (FPECR). This register is up-
dated by the MC88100 to indicate the cause of a floating-point exception. Bits 7-3 corre-
spond to the precise exceptions, and bits 2-0 correspond to the imprecise exceptions.
When a precise exception occurs, bits 2-0 are undefined. When an exception occurs, more
than one bit may be set. If FUNIMP is set, all other FPECR bits are undefined. This register
has read/write access. The FPECR is configured by hardware to indicate the exception that
occurred.

31 8 7 § 5 4 3 2 1 0
loo0o0000000000000000000000] Fov [runime] rerv | rrop | rovz | Fune | Fove [rnx |

FPECR fcr0

Bits 31-8 — Reserved
Always contain zero; not guaranteed to be zeros in future implementations.

FIOV — Floating-Point Integer Overflow
When set, the precise exception was caused by a conversion to integer overflow.

FUNIMP — Floating-Point Unimplemented
When set, the precise exception was caused by an unimplemented floating-point in-
struction.

FPRV — Floating-Point Privilege Violation
When set, the precise exception was caused by a privilege violation of a floating-point
instruction. This occurs during user-mode accesses to any floating-point control reg-
ister except the FPSR and FPCR.

FROP — Floating-Point Reserved Operand
When set, the precise exception was caused by floating-point reserved operand check
logic (infinity, NAN, or denormalized).

FDVZ — Floating-Point Divide-by-Zero
When set, the precise exception was caused by floating-point divide-by-zero.

FUNF — Floating-Point Underflow
When set, the imprecise exception was caused by floating-point underflow. This bit is
undefined for precise exceptions.

FOVF — Floating-Point Overflow
When set, the imprecise exception was caused by floating-point overflow. This bit is
undefined for precise exceptions.

FINX — Floating-Point Inexact
When set, the floating-point inexact condition existed for the result that caused an
exception. This bit may be set even if the exception was caused by overflow or un-
derflow. This bit is undefined for precise exceptions.

6-32 MC88100 USER'S MANUAL MOTOROLA

When a precise exception is caused by accessing the FPU while it is disabled, the FPECR
does not contain valid information.

6.8.1.2 FLOATING-POINT STATUS REGISTER (FPSR). This register indicates the types of
IEEE 754 exceptions that occurred in the FPU. This register is set by software to indicate
the exception that occurred (except for the inexact bit, which can be set by hardware or
software). Bits in this register are set by the default software operation (in Motorola's
exception handlers). This register can be accessed by user exception handler software.
This register has read/write access.

31 5 4 3 2 1 0
{0 0 0000000 00000000000000000|arw]|amvz]|awune| arov | arnx |

FPSR fcr62

Bits 31-5 — Reserved
Always contain zero; not guaranteed to be zeros in future implementations.

AFINV — Accumulated Invalid Operation Flag
Set by software when an IEEE 754 invalid operation exception occurs. Cleared explicitly
by software.

AFDVZ — Accumulated Divide-by-Zero Flag
Set by software when an |IEEE 754 divide-by-zero exception occurs and the user ex-
ception handler is disabled. Cleared explicitly by software.

AFUNF — Accumulated Underflow Flag
Set by software when an IEEE 754 underflow exception occurs. Cleared explicitly by
software.

AFOVF — Accumulated Overflow Flag
Set by software when IEEE 754 overflow exception occurs. Cleared explicitly by soft-
ware.

AFINX — Accumulated Inexact Flag
Set by the MC88100 when an IEEE 754 inexact exception occurs and the user exception
handler is disabled. This bit may also be set by software. Cleared explicitly by software.

NOTE

AFINX is the only bit set by either the hardware or software. All other bits are set
only by software exception handlers.

MOTOROLA MC88100 USER’S MANUAL 6-33

6.8.1.3 FLOATING-POINT CONTROL REGISTER (FPCR). This register is used to specify
the desired rounding mode and to specify which floating-point exceptions the user-supplied
exception handlers are to process. This register has read/write access. This register is set
by software to enable user exception handler routines.

31 1515 1413 5 4 3 2 1 0
[0 000000000000000 M Jo 0o 0 o o o o o ofernv | erovz [erunr | erove [ernx |

FPCR fcr63

Bits 31-16, 13-56 — Reserved
Always contain zero; not guaranteed to be zeros in future implementations.

RM — Rounding Mode
00 — Round to nearest
01 — Round toward zero
10 — Round toward negative infinity
11 — Round toward positive infinity

EFINV — Enable Invalid Operation Handler
0 — Disable invalid operation user exception handler
1 — Enable invalid operation user exception handler

EFDVZ — Enable Divide-by-Zero Handler
0 — Disable divide-by-zero user exception handler
1 — Enable divide-by-zero user exception handler

EFUNF — Enable Underflow Handler
0 — Disable underflow user exception handler
1 — Enable underflow user exception handler

EFOVF — Enable Overflow Handler
0 — Disable overflow user exception handler
1 — Enable overflow user exception handler

EFINX — Enable Inexact Handler
If EFINX is clear, the MC88100 performs the default exception handling without vec-
toring.
0 — Disable inexact user exception handler
1 — Enable inexact user exception handler

NOTE

EFINX and RM are the only bits used by the hardware. All other bits are used
only by software exception handlers.

6-34 MC88100 USER’'S MANUAL MOTOROLA

6.8.1.4 FLOATING-POINT SOURCE 1 OPERAND HIGH REGISTER (FPHS1). This register
contains the sign, exponent, and the high-order 20 bits of a single-precision source 1
operand or the upper word of a double-precision operand. It is undefined for integer values.
This register is read only.

31 30 20 19 0
[sion | EXPONENT | HIGH-ORDER 20 BITS OF MANTISSA

FPHS1 fer1

Bit 31 — Source 1 Operand Sign Bit
This field is undefined for an integer-divide error exception.

Bits 30-20 — Exponent
The source 1 operand exponent (for single-precision operands, the exponent is sign
extended). This field is undefined for an integer-divide error exception.

Bits 19-0 — Mantissa
High-order 20 bits of the mantissa, excluding the hidden bit. This field contains all
zeros for an integer-divide error exception.

6.8.1.5 FLOATING-POINT SOURCE 1 OPERAND LOW REGISTER (FPLS1). This register
contains the three low-order bits of a single-precision source 1 operand, the low-order
word of a double-precision source 1 operand, or the integer operand for integer divide
instructions when a floating-point precise exception occurs. This register is read only.

31 0
l LOW-ORDER BITS OF MANTISSA OR INTEGER OPERAND J

Bits 31-0 — Low-Order Bits of Manitissa or Integer Operand
For double-precision operands, the low-order 32 bits of the source 1 operand. For
single-precision operands, the low-order 3 bits of the source 1 operand followed by
29 trailing zeros. For integers, the 32-bit source 1 integer.

6.8.1.6 FLOATING-POINT SOURCE 2 OPERAND HIGH REGISTER (FPHS2). This register
contains the sign, exponent, and the high-order 20 bits of a single-precision source 2
operand or the upper word of a double-precision operand. It is undefined for integer values.
This register is read only.

31 30 20 19 0
| SIGN | EXPONENT HIGH-ORDER 20 BITS OF MANTISSA

FPHS2 fer3

MOTOROLA MC88100 USER'S MANUAL 6-35

Bit 31 — Source 2 Operand Sign Bit
This field is undefined for integer operand.

Bits 30—-20 — Exponent
The source 2 operand exponent (for single-precision operands, the exponent is sign-
extended); undefined for integer operand.

Bits 19-0 — Mantissa
High-order 20 bits of the mantissa excluding the hidden bit; undefined for integer
operand.

6.8.1.7 FLOATING-POINT SOURCE 2 OPERAND LOW REGISTER (FPLS2). This register
contains the three low-order bits of a single-precision source 2 operand, the low-order
word of a double-precision source 2 operand, or the integer operand for integer divide
and convert instructions when a floating-point precise exception occurs. This register is
read only.

31 0
L LOW-ORDER BITS OF MANTISSA OR INTEGER OPERAND

FPLS2 ferd

Bits 31-0 — Low-order Bits of Mantissa or Integer Operand
For double-precision operands, the low-order 32 bits of the source 2 operand. For
single-precision operands, the low-order 3 bits of the source 2 operand followed by
29 trailing zeros. For integer operation, the 32-bit source 2 integer.

6.8.1.8 FLOATING-POINT PRECISE OPERATION TYPE REGISTER (FPPT). This register
contains opcode and destination register number for the floating-point instruction that
caused the exception. FPPT is undefined for integer multiply instructions. This register is
read only.

31 16 15 5 4 0
0 00 0 0O 0O O0OOUO OO OO0 0 O OPERATION DEST

FPPT fcrs

Bits 31-16 — Reserved
Always contain zero; not guaranteed to be zeros in future implementations.

6-36 MC88100 USER'S MANUAL MOTOROLA

Bits 15-5 — Operation
Bits 15-5 of the instruction that caused the exception. This includes a 5-bit opcode
and three 2-bit size fields. The upper bit of each size field is cleared. The size fields
are:

Bits 10-9 — Source 1 Operand Size
00 — Single precision
01 — Double precision

Bits 8-7 — Source 2 Operand Size
00 — Single precision
01 — Double precision

Bits 6-5 — Destination Size
00 — Single precision
01 — Double precision

Bits 4-0 — Destination
The destination register number.

6.8.1.9 FLOATING-POINT IMPRECISE OPERATION TYPE REGISTER (FPIT). This register
contains information on the instruction that caused an imprecise exception and indicates
which user-supplied exception handlers were enabled (by software) when the instruction
was initiated. This register is read only.

3 019 815 1010 3 8 7 6 5 4 0
RESEXP [o 0 o o] opcooe [pestsiz| ernv | erovz | erune | erove | ernx | pest |
FPIT fcr8

RESEXP — Result Exponent
The 12-bit result exponent formed by taking the 8-bit (single-precision) or the 11-bit
(double-precision) exponent, then complementing and extending the most significant
bit to 12 bits. This representation of the exponent is equivalent to the unbiased ex-
ponent minus one. Refer to SECTION 2 PROGRAMMING MODEL for floating-point
representations.

Bits 19-16 — Reserved
Always contain zero; not guaranteed to be zeros in future implementations.

OPCODE — The 5-bit operation code, bits 15-11 of the instruction.

DESTSIZ — Destination Size
The value of this bit is determined from bit 5 of the instruction.
0 — Single-precision destination operand
1 — Double-precision destination operand

MOTOROLA MC88100 USER’S MANUAL 6-37

EFINV — Enable Invalid Operation Handler
0 — Invalid operation user exception handler disabled
1 — Invalid operation user exception handler enabled
(Taken from the FPCR at the time the instruction is initiated)

EFDVZ — Enable Divide-by-Zero Handler
0 — Divide-by-zero user exception handler disabled
1 — Divide-by-zero user exception handler enabled
(Taken from the FPCR at the time the instruction is initiated)

EFUNF — Enable Underflow Handler
0 — Underflow user exception handler disabled
1 — Underflow user exception handler enabled
(Taken from the FPCR at the time the instruction is initiated)

EFOVF — Enable Overflow Handler
0 — Overflow user exception handler disabled
1 — Overflow user exception handler enabled
(Taken from the FPCR at the time the instruction is initiated)

EFINX — Enable Inexact Handler
0 — Inexact user exception handler disabled
1 — Inexact user exception handler enabled
(Taken from the FPCR at the time the instruction is initiated)

DEST — Destination Register Number

6.8.1.10 FLOATING-POINT RESULT HIGH REGISTER (FPRH). This register contains status
information and the high-order 21 bits (including the hidden bit) of the partial result that
was computed at the time of the exception. An exception handler may use the contents
of the FPRH and FPRL registers to generate a result. For example, in the case of an un-
derflow, the value in the FPRH and FPRL registers may be modified to a value that can be

represented by the MC88100. This register is read only.

31 30 29 28 27 26 25 24 2120 0
| SIGN J RNDMODE I GUARD I ROUND LSTICKY |ADDONE]0 0 0 0| HIGH-ORDER BITS OF MANTISSA
FPRH fcré

SIGN — Result Sign

RNDMODE — Rounding Mode Used for this Result:
00 — Round to nearest
01 — Round towards zero
10 — Round towards negative infinity
11 — Round towards positive infinity
(Taken from the FPCR at the time the instruction is initiated)

6-38 MC88100 USER'S MANUAL

MOTOROLA

GUARD — Guard Bit for the Result
ROUND — Round Bit for the Result
STICKY — Sticky Bit for the Result

ADDONE — Add One
Set if the result mantissa was rounded by logically adding one

Bits 24-21 — Reserved
Always contain zero; not guaranteed to be zeros in future implementations.

Bits 20-0 — High-Order Bits of Mantissa
The high-order 21 bits of the result mantissa (including the hidden bit). If the result is
an integer, these bits are invalid.

6.8.1.11 FLOATING-POINT RESULT LOW REGISTER (FPRL). This register contains the
low-order 32 bits of the partial result that was computed at the time of the exception. An
exception handler may use the contents of the FPRH and FPRL registers to generate a
result. For example, in the case of an overflow, the value in the FPRH and FPRL registers
may be truncated to a value that can be represented by the MC88100. This register is read
only. C) :

31 . . 0
| LOW-ORDER BITS OF MANTISSA |

Bits 31-0 — Low-Order Bits of Mantissa (DP)
For a double-precision result, the low-order 32 bits of the result. For integers and
precise exceptions, it is undefined.

10 29 0
L T UNDEFINED

Bits 31-29 — Low-Order Bits of Mantissa (SP)
For single-precision result, the low-order three bits of the result; the remaining 29 bits
of this register are undefined. For integers and precise exceptions, it is undefined.

6.8.2 Floating-Point Exception Processing Effects
A bit is set in the FPECR whenever the MC88100 branches to a floating-point exception
vector due to an exception condition. The MC88100 then checks the corresponding bit in

the FPCR to see if a user handler is enabled. The relationship of the bits in these registers
is defined by the IEEE 754 standard and is shown in Figure 6-8.

MOTOROLA MC88100 USER'S MANUAL 6-39

FPECR FPCR, FPSR

7 FIovV
6 FUNIMP
5 FPRV
4 FROP 4 (EAFINV
3 FDVZ / 3 (E,A)FDVZ
2 FUNF > 2 (EAJFUNV
1 FOVF > | (E,AJFOVF
0 FINX » 0 (EAJFINX

Figure 6-8. Floating-point Exception Register Bit Relationships

When a floating-point exception occurs, the FPU performs the following actions:
1. Signals the instruction unit that the exception occurred.
2. Sets the appropriate bit in the FPECR to indicate the exception type.

3. Sets the SFUD1 bit in the PSR, which disables the FPU and freezes the floating-point
execution pipelines. When the execution pipelines are frozen, the internal registers
are frozen. The information saved within the FPU as part of the context depends on
whether the exception is precise or imprecise.

4. The floating-point instruction that caused the exception is removed from the FPU
pipeline.

Once the instruction unitis signaled and recognizes the exception, the integer unit performs
the standard exception processing. The exact cause of the exception is determined when
the exception handler reads the FPECR.

When the FPU is frozen, the control registers can be read or written, but no floating-point
instructions (except flder, fstcr, and fxcr) can be executed. However, only the instruction
that caused the exception is affected by the exception. When the FPU is restarted (at the
end of exception processing by an rte instruction), the instructions in the pipeline resume
execution. The instruction that caused the exception must be completed (or discarded) by
software. Scoreboard bits for destination registers of an instruction that causes a floating-
point exception may be set, and the handler must clear them appropriately.

6.8.3 Integer-Divide Error Exception

This exception occurs when the divisor of a div or divu instruction is zero or when either
operand is negative in a div instruction. The SXIP points to the instruction that caused the
exception. The destination register is not changed, but the scoreboard bit is set for the
destination register.

6-40 MC88100 USER'S MANUAL MOTOROLA

Integer divide instructions are performed by the FPU. When an integer-divide error excep-
tion occurs, floating-point control registers fer2, ferd, and ferd contain information pertinent
to the integer-divide error exception. Registers fcr2 and fcr4 contain the source operands,
and fer5 contains the destination register number. The source operands can be examined
by the exception handler to determine the cause of the exception (zero divisor or negative
operand). The data in fer5 can be used to clear the destination register scoreboard bit. The
opcode in fcr5 can not determine which instruction (div or divu) caused the exception.

6.8.4 Floating-Point Precise Exceptions (Vector Offset $390)

The following paragraphs provide information on each of the conditions that cause a
floating-point precise exception. In all of the cases, the scoreboard bit(s) for the destination
register(s) are set before the exception is recognized. The exception handler must clear
those bits as part of exception handling; since the instruction that caused the precise
exception is not executed, no result will be written to the general-purpose registers.

6.8.4.1 FPUDISABLED. This exception occurs when the FPU is disabled and an instruction
is dispatched to the FPU. The unit is disabled when SFD1 (bit 3) bit of the PSR is set. The
instructions executed by the FPU include all floating-point arithmetic and convert instruc-
tions and the integer multiply and divide instructions.

When this exception occurs, the FPECR does not contain valid information. The exception
handler must test the SFD1 (bit 3) of the value saved in EPSR to determine if the FPU was
disabled. If this bit is set, then the exception occurred because the FPU was disabled. If
this bit is clear, then the exception handler should read FPECR to determine the cause of
the exception.

6.8.4.2 FLOATING-POINT INTEGER CONVERSION OVERFLOW. This exception occurs
when a conversion to integer is attempted for a floating-point number that may be too
large in magnitude after rounding to be represented as an integer. Overflow occurs when
the floating-point exponent is greater than or equal to 30 since rounding may cause ov-
erflow. The exception handler must determine if overflow will really occur. If not, the correct
result should be placed in the destination. If the operation results in a true overflow, then
the operation is considered invalid by the IEEE standard. The largest-magnitude positive
integer that can be represented by the MC88100 is 23" — 1; the largest-magnitude negative
integer that can be represented by the MC88100 is —237.

This exception causes the FIOV bit (bit 7) of the FPECR to be set by the hardware. The
EFINV bit (bit 4) of the FPCR must be set by software to enable the user exception handler
(if supplied). If this exception handler is not enabled, software sets the AFINV bit (bit 4) of
the FPSR, and a NAN is written to the destination. This exception, the floating-point reserved
operand exception, and the floating-point divide-by-zero exception all use the same bit in
the FPCR and FPSR to indicate an invalid operation; the bits in the FPECR can be used to
determine which exception occurred.

MOTOROLA MC88100 USER'S MANUAL 6-41

6.8.4.3 FLOATING-POINT UNIMPLEMENTED OPCODE. This exception is caused by an
attempt to execute an unimplemented instruction in the floating-point opcode class. This
allows unimplemented functions, such as the trigonometric functions, to be emulated in
software. If the instruction is truly an invalid operation, the exception handler can discard
the instruction or otherwise process the exception.

When this exception occurs, the FUNIMP bit (bit 6) of the FPECR is set by hardware. The
unimplemented instruction has no effect on the scoreboard. There is no user exception
handler for this exception.

6.8.4.4 FLOATING-POINT PRIVILEGE VIOLATION. This exception occurs when a flder,
fster, or fxcr instruction is executed while the processor is in user mode, and the addressed
register is not the FPSR or FPCR. When this exception occurs, the FPRV bit (bit 4) in the
FPECR is set by hardware. There is no user exception handler for this exception.

6.8.4.5 FLOATING-POINT RESERVED OPERAND. This exception occurs when a reserved
operand is detected.

This exception causes the FROP bit (bit 4) of the FPECR to be set by the hardware. The
handling of this exception depends on the exact operands and operation. The default
exception handler provides results for most operations performed on reserved operands,
in accordance with the IEEE standard. The exception allows processing of IEEE reserved
operands (infinity, NAN, denorm) by the exception handler. If the operation is invalid
according to the IEEE standard, then the user exception handler is invoked (if supplied).
The EFINV bit (bit 4) of the FPCR must be set by software to enable the user exception
handler. Regardless of whether the user exception handler is supplied or enabled, the
AFINV bit (bit 4) of the FPSR is set by the default operation.

This exception, the floating-point integer conversion overflow exception, and the floating-
point divide-by-zero exception all use the same bit in the FPCR and FPSR to signal an
invalid operation.

6.8.4.6 FLOATING-POINT DIVIDE-BY-ZERO. This exception occurs when division by zero
is detected. When this exception occurs, the FDVZ bit (bit 3) of the FPECR is set by hardware.
The bits used in the FPCR and FPSR depend on the value of the divisor. If the divisor is
zero (i.e., 0/0), then the EFINV bit (bit 4) of the FPCR must be set by software to enable the
user exception handler (if supplied). Regardless of whether this exception handler is en-
abled, the AFINV bit (bit 4) of the FPSR will be set by software when the exception occurs.
If the numerator is non-zero, then the EFDVZ bit (bit 3) of the FPCR must be set by software
to enable the user exception handler (if supplied). Regardless of whether this exception
handler is not enabled, the AFDVZ bit (bit 3) of the FPSR is set by the default operation.

6-42 . MC88100 USER'S MANUAL MOTOROLA

6.8.5 Floating-Point Imprecise Exceptions (Vector Offset $398)

The following paragraphs provide information on each of the conditions that cause a
floating-point imprecise exception. After an imprecise exception occurs, the scoreboard
bit for the second register of a double-precision result remains set. The scoreboard bit for
a single-precision result and for the first register of a double-precision result are cleared,
~and the destination register is overwritten.

6.8.5.1 FLOATING-POINT UNDERFLOW. This exception occurs when the result of a float-
ing-point operation is too small to be represented as a normalized floating-point number
(“tinniness”). The processor takes the floating-point imprecise exception and sets FUNF
(bit 2) in the FPECR. The expanded exponent, the result mantissa, sign, and exponent, and
the instruction opcode are available in FPU control registers when this exception occurs.

How the exception handler processes the exception depends on the setting of the EFUNF
bit (bit 2) in the FPCR. If the EFUNF bit is set, then control passes to the underflow user
handler routine. If the EFUNF bit is not set (no user handler routine), then the default
handler checks for loss of accuracy. Loss of accuracy occurs either when the hardware
detects that significant bits were lost due to rounding (inexact result) or when software
detects that significant bits were lost when the result is denormalized (denormalization
loss). If a loss of accuracy exists, AFUNF (bit 2) and AFINX (bit 0) in the FPSR are set, then
the exception handler checks if a user handler is available for the inexact exception (bit 0
in the FPCR set). If there is, then control passes to the inexact exception user handler.
Finally, if there is no underflow user exception handler and there is no loss of accuracy or
if there is loss of accuracy but no inexact exception handler, then the exception handler
performs the default operation, writing the denormalized result to the destination register.
Once the result is generated, the default exception handler performs an rte instruction to
return the processor to normal operation.

Figure 6-9 illustrates the exception handling algorithm for the floating-point underflow
exception.

6.8.5.2 FLOATING-POINT OVERFLOW. This exception indicates that the rounded result
of a floating-point calculation exceeds the magnitude of the largest finite number that can
be represented in the destination format. The processor takes the floating-point imprecise
exception and sets the FOVF bit (bit 1) in the FPECR. The expanded exponent, the sign,
and the mantissa of the result and the instruction opcode are available in the FPU control
registers.

How the exception handler processes this exception depends on the setting of the EFOVF
bit (bit 1) in the FPCR. If the EFOVF bit is set, then control passes to the user handler
routine. If the EFOVF bit is not set (no user handler routine), then the AFOVF bit (bit 1) is
set in the FPSR, and the exception handler checks if there is a user handler for the inexact
exception (bit 0 in the FPCR set). If there is a user exception handler, then control passes

MOTOROLA MC88100 USER’S MANUAL 6-43

UNDERFLOW

DETECTED

Y

HARDWARE SETS
BIT 2 IN FPECR

Y

PROCESSOR TAKES
UNDERFLOW
EXCEPTION
VECTOR

6-44

USER

CD\ LOSS

/

WRITE BACK

HANDLER?

HARDWARE

SOFTWARE

ﬂ)\UNDERFLOW

BRANCH TO UNDERFLOW
USER HANDLER AND
RESUME PROCESSING

OF ACCURACY

SET BIT 2
IN FPSR

y

SETBITO
IN FPSR

DENORMALIZED -
RESULT

RESUME
PROCESSING

INEXACT
USER HANDLER

Figure 6-9. Floating-Point Underflow Algorithm

MC88100 USER'S MANUAL

BRANCH TO INEXACT
USER HANDLER AND
RESUME PROCESSING

MOTOROLA

to it. If there is not, then the AFINX bit (bit 0) is set in the FPSR and the exception is ignored.
The exception handler performs the default operation, writing the properly signed, largest
finite number or infinity, depending on the rounding mode in effect.

Figure 6-10 illustrates the exception handling algorithm for the floating-point overflow
exception.

6.8.5.3 FLOATING-POINT INEXACT. This exception occurs when rounding the result of
a calculation to the destination format has caused a loss of accuracy to occur. That is, digits
were lost when the result was rounded. The result of the operation, the guard, round, and
sticky bits, and whether or not the result was rounded by adding one are available in the
FPU control registers. If significant bits will be lostin the result when an underflow exception
occurs, the inexact exception also occurs. If an overflow exception occurs and the overflow
user exception handler enable bit is not set, the inexact exception is taken.

When this exception is signaled by the FPU, the processor checks the value of the EFINX
bit (bit 0) in the FPCR. If EFINX is set, then the floating-point imprecise exception is taken,
and bit 0 of the FPECR is set by hardware. If EFINX is clear, then exception processing
does not occur, but the AFINX bit (bit 0) is set in the FPSR. EFINX is set or cleared by
software, meaning that the floating-point inexact exception can be enabled or disabled by
software. This is the only floating-point exception that is enabled under hardware control.

The floating-point inexact exception bits also have a bearing on the underflow and overflow
exceptions, as described in the previous paragraphs and illustrations.

6.8.6 FPU Control Register Summary

When a floating-point exception occurs, the FPU control registers take on defined values
or enter specific states. Table 6-7 lists the control register states after an exception is
recognized when the MC88100 branches to the exception handler.

6.9 RESET (VECTOR OFFSET $0)

Processor reset is a special exception case that occurs when the RST signal is detected as
asserted. Reset exception processing forces the MC88100 into a predefined initial state.
No pending exceptions or partially executed instructions are retained. The VBR is cleared,
and the PSR and bus signals enter predefined states.

The exception vector for reset is vector zero, which resides at logical memory address zero
because the VBR is forced to zero. The RST signal cannot be masked.

MOTOROLA MC88100 USER’'S MANUAL 6-45

6-46

OVERFLOW

DETECTED

\

HARDWARE SETS
BIT 1IN FPECR

Y

PROCESSOR TAKES

OVERFLOW
EXCEPTION
VECTOR
HARDWARE
v SOFTWARE
SET BIT 1
IN FPSR
OVERFLOW USER
HANDLER
BRANCH TO OVERFLOW
USER HANDLER
4
SETBITO
IN FPSR
INEXACT

USER HANDLER

BRANCH TO INEXACT

USER HANDLER

PERFORM
DEFAULT
EXCEPTION
ACTION

Figure 6-10. Floating-Point Overflow Exception Handling

MC88100 USER'S MANUAL

MOTOROLA

Table 6-7.

FPU Control Register States after an Exception

Register

State

Floating-Point Exception
Cause Register

Bit(s) set to indicate which exception occurred; all other bits clear. If multiple bits are
set, they are prioritized from 7 to 0.

Floating-Point Source
Operand Registers

For precise exceptions, this register contains the source operands of the instruction
that caused the exception. For imprecise exceptions, these registers are undefined.

Floating-Point Precise Operation
Type Register

For precise exceptions, this register contains the opcode, size fields, and destination
register number of the instruction that caused the exception. For imprecise exceptions,
this register is undefined.

Floating-Point Imprecise
Control Register

For imprecise exceptions, this register contains the opcode, destination size and reg-
ister number, result exponent, and user exception handler information. For precise
exceptions, this register is undefined.

Floating-Point Result
Registers

For imprecise exceptions, these registers contain the partial result and information on
the rounding used on the result. For precise exceptions, these registers are undefined.

Floating-Point User Status and
User Control Registers

Contain the values in effect before the exception occurred.

Table 6-8 shows the contents of the MC88100 registers after reset. The general-purpose

registers and the shadow

scoreboard are not initialized; the shadow scoreboard must be

cleared by the reset handler routine.

Table 6-8. Register States After Reset

Register State
Processor Status Register Bit 31 set, bits 9-0 set, all others cleared ($800003FF)
Trap PSR Undefined
Scoreboard Cleared
Shadow Scoreboard Undefined

Instruction Pointers

FIP =reset vector address (physical address 0); V bits in NIP and XIP are cleared.

Shadow Instruction Pointers

Undefined

Vector Base Register

Cleared

Data Memory Transaction
Registers

Bit O clear (no-op pattern); remaining bits are undefined.

Data Memory Address Registers | Undefined
Memory Data Registers Undefined
General-Purpose Registers Undefined
Internal Temporary Registers Undefined

FPU Control Registers

FPECR, FPCR, FPSR cleared; all others undefined.

6.10 ERROR EXCEPTION (VECTOR OFFSET $50)

The error exception occurs when shadowing is frozen (SFRZ bit setin PSR) and an exception

other than a trap instructi

MOTOROLA

on occurs. When shadowing is frozen, the shadow registers do

MC88100 USER'S MANUAL 6-47

not contain valid data because they are not updated from the time that they were frozen.
Shadowing is only frozen by the MC88100 when an exception occurs, so the error exception
usually occurs when the MC88100 has not finished processing a first exception and a
second exception occurs (catastrophic condition). The error exception provides the means
to terminate processing when catastrophic situations are encountered.

Since the shadow registers are not updated when shadowing is frozen, the processor
context needed for recovering from an error exception is not available. Therefore, the
exception handler for the error exception should halt the processor or initiate a reset
operation. The error handler routine can initialize the processor and resume execution at
address $0. Alternately, external circuitry can perform a reset operation.

The error exception also occurs when the MC88100 encounters a fault while fetching an
exception vector. (i.e., an exception vector could not be fetched). If the error exception
vector then cannot be fetched successfully (e.g., memory error on the vector table page),
then the error exception cannot be taken. This situation causes the MC88100 to loop on
fetching the error exception vector. This loop can only be exited by a processor reset.

To eliminate error exceptions, the exception handlers for all other exceptions should either
execute without exception (including interrupts, which should be masked) or they should
enable shadowing. The processor must not encounter an exception during the time that
shadowing is frozen (i.e., the vector table and the beginning of all exception handlers
should be locked into main memory and should always be accessible). 6.4 EXCEPTION
PROCESSING describes how shadowing may be enabled in an exception handler.

6-48 MC88100 USER'S MANUAL MOTOROLA

SECTION 7
INSTRUCTION EXECUTION TIMING

This section describes the instruction execution time for the MC88100 instructions and the
factors that affect the timing. The execution and operation times are presented as guide-
lines, because exact timing of all possible circumstances cannot be listed. This guideline
approach is used since exact execution time, either instruction or operation, is highly
dependent on memory speed and other variables in the system. Refer to 7.1 GENERAL
TIMING CONSIDERATIONS for list of guidelines. The remainder of this section describes
the detailed timing information for instruction prefetches and then the execution times for
all instructions through their respective execution units. Example timings are included for
exception processing, scoreboard holds, writeback priorities, and processor stalls due to
wait cycles on the buses. An example of instruction arrangement, which shows concurrent
execution and various register dependencies, is provided to illustrate some timing inter-
actions. Refer to SECTION 5 BUS OPERATIONS for more information regarding bus op-
eration timing. Instruction mnemonics used in this section can be identified by referring
to SECTION 3 ADDRESSING MODES AND INSTRUCTION SET.

7.1 GENERAL TIMING CONSIDERATIONS

The MC88100 is designed to minimize average instruction execution time. Logical, bit field,
and most integer instructions execute in one clock period. Other instructions, such as the
integer multiply and divide instructions require more than one clock period. These types
of instructions can effectively realize single-cycle execution by using the various features
of the MC88100, such as pipelining and feed forwarding. In general, instruction execution
is accomplished in four parts (see Figure 7-1): prefetch, decode, execute, and writeback.
The instruction prefetch time consists of the address and reply phases on the instruction
P bus to fetch the instruction from program space. The prefetch time is not included in the
instruction execution timing tables and can be calculated separately (see 7.3 INSTRUCTION
PREFETCH TIMING). The decode time is overlapped with the reply phase of the prefetch
and usually does not contribute to overall latency. The total instruction execution time
corresponds to the execution phase. The writeback time is the time required to return
results to the register file and does not contribute to overall execution time if writeback
slots are available when required (some instructions do not require a writeback). Instruc-
tions are prefetched and executed concurrently with previous instructions, which produces
an overlap period (see Figure 7-1) that is measured in clock periods. This overlap decreases
the overall execution time for a sequence of instructions.

The following general guidelines should be used when programming to implement code
scheduling that produces the most efficient software for the MC88100 processor. The main

MOTOROLA MC88100 USER'S MANUAL 7-1

|€—CLOCK 1 —»{«——CLOCK 2 —3»{— CLOCK 3 —»}—CLOCK 4 —3»{—— CLOCK 5 —3»{—CLOCK B—»‘
ADDRESS REPLY EXECUTE
PHASE A PHASE A PHASE A
PREFETCH PREFETCH X PREFETCH)(PREFETCH (PREFETCH
A B C D E
[(Address of the]
/ instruction cur- /] // REPLY REPLY
rently being A < B) < c)
read from
memory — /4
fetch instruc- / DECODE
tion pointer) A B C
“~“~q (Address of the
instruction cur- ‘Y
rently being re-
ceived and %
decoded — 1
next instruction EXECUTE EXECUTE X EXECUTE)
pointer) A B c
[P(Address of the
instruction
being executed WB A WB B W8 C
by the integer
unit or that
was issued to
the FPU or the
data unit — ex-

ecute instruc-
-« PREFETCH LATENCY A »1/ tion pointer)

<—| INSTRUCTION A PREFETCH AND EXECUTE LATENCYJ—->

INSTRUCTION B PREFETCH AND EXECUTE LATENCY |

|

INSTRUCTION C PREFETCH AND EXECUTE LATENCY [

\Y4
OVERLAP

WB = WRITEBACK
Figure 7-1. Instruction Prefetch and Execute Timing

objective when optimizing software for maximum efficiency is to avoid stalling the instruc-
tion unit pipeline. The remainder of this section is dedicated to explaining the reasons for
following these guidelines, providing more detailed information on the meaning of certain
dependencies, and optimizing performance.

\
7-2 MC88100 USER’S MANUAL MOTOROLA

. Minimize register dependencies between multicycle instructions and subsequent in-

structions that use their results. Total execution latency must be used as the minimum
amount of time from the dispatch of the multicycle instructions until the time a sub-
sequent instruction that uses the result should be dispatched. In general, execute load
and FPU instructions for as many clock periods as possible before their results are
required.

. Consecutive data-unit instructions should be scheduled in groups of three or less. If

wait cycles are inserted by the responding memory device, the instruction pipeline
can continue execution of other instructions.

. Delayed branching should be used as often as possible. This can be maximized by

implementing conditional branch loops such as counting down to zero and checking
the value of the count with the bend instruction. If a useful instruction within the loop
cannot be placed in the delay slot, the first instruction at the target address could be
moved to the delay slot.

. Do not follow Id.d and xmem instructions with a data-unit instruction as this causes

the instruction pipeline to stall for one clock.

. Double-times-double multiply instructions followed by other floating-point instruc-

tions should be spaced by at least two other nonfloating-point instructions.

. Divide instructions should not be immediately followed by other nonmultiply FPU

instructions. These types of operations should be spaced by at least 34, 26, and 55
clock periods for single-precision, integer, and double-precision divide results, re-
spectively.

. Critical-time loops should schedule the writeback slots so that instructions that waive

the writeback slot are strategically mixed with instructions that require a deferred
writeback.

NOTE

To maximize performance, the hardware should be designed to minimize wait
cycles on both the instruction P bus and the data P bus.

7.2 CONCURRENT EXECUTION

The concurrent execution units and the multiple bus design of the MC88100 can perform
up to five types of operations in parallel, which allows the performance to approach single-
cycle execution. These operations are:

Access program memory

Execute an arithmetic, logical, or bit-field instruction

Access data memory

Execute nonmultiply floating-point instructions or an integer divide instruction
Execute floating-point or integer multiply instructions

MOTOROLA ‘ MC88100 USER’S MANUAL 7-3

Figure 7-2 shows an example timing diagram in which all units are operating in parallel.
In addition, the floating-point, data, and instruction units are pipelined and capable of
completing an operation in every clock period. These units are staged as follows:

e Each of the five floating-point add pipeline stages can contain a floating-point add,
subtract, or convert instruction.

® The six-stage floating-point multiplication pipeline may contain up to six multiplication
instructions.

® Each of the three data memory unit stages may contain a data access instruction.

® The instruction unit’'s prefetch mechanism maintains two outstanding code accesses.

Knowledge about the operation of these stages can be utilized by code-scheduling software
to fully exploit the high level of hardware execution concurrency, thus maximizing MC88100
instruction throughput.

7.3 INSTRUCTION PREFETCH TIMING

As described in SECTION 5 BUS OPERATIONS, the instruction unit of the MC88100 pre-
fetches instructions in advance of their execution (via the instruction P bus) and executes
flow-control instructions. The instruction unit maintains three instruction pointers: the
execute instruction pointer (XIP), which contains the address of the instruction most re-
cently dispatched for execution, the next instruction pointer (NIP), and the fetch instruction
pointer (FIP), which correspond to the next two instructions in the instruction stream. The
instruction P bus is a pipelined bus and processes the reply phase of one access (corre-
sponding to the NIP) simultaneously with the address phase for the next access (which
corresponds to FIP). When a change of flow occurs (e.g., a branch is taken), the NIP and
FIP are updated appropriately, and instructions are prefetched from the appropriate target
address.

7.3.1 Effective Prefetch Time and Prefetch Latency

The prefetch time for an instruction can be calculated as the total number of clocks from
the beginning of the address phase for an instruction access to the end of the reply phase
(‘prefetch latency’ period) for the prefetch (see Figure 7-1). This time is two clocks in a no-
wait-cycle environment. However, two accesses are in different stages of prefetch at any
given time, and they overlap by one clock, making the ‘effective prefetch time’ for each
access in a sequence only one clock. Therefore, as an arbitrary convention, the address
phase of a prefetch is depicted as the ‘prefetch’ cycle in the figures for this section. Even
though the reply phase is also part of the prefetch, it occurs simultaneously with the address
phase of the next access, and the second clock is counted as the first clock for the next
access. This convention also clearly shows the beginning of an instruction prefetch.

7-4 MC88100 USER'S MANUAL MOTOROLA

V104O10WN

AVNANVIA S.43SN 001880\

S-L

|l€—CLOCK 1 —]€— CLOCK 2 — 3w} CLOCK 3 —>}€— CLOCK 4 —>}€— CLOCK 5 —]e— CLOCK 6 —3}€—CLOCK 7 —|—CLOCK 38—
tdiv (PREFETCH)(REPLY EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE (EXECUTE
fdiv fdiv fdiv fdiv fdiv fdiv fdiv fdiv
PREFETCH REPLY EXECUTE EXECUTE EXECUTE EXECUTE
fmul
fmul fmul fmul fmul fmul fmul
1d.d (PREFETCH REPLY x EXECUTE x EXECUTE
. Id.d Id.d Id.d 1 Id.d 2
(ADDRESS ADDRESS)
Id.d 1 Id.d 2
REPLY REPLY
Id.d 1 Id.d 2
and PREFETCH x REPLY EXECUTE
_and and and
st (PREFETCH REPLY EXECUTE ADDRESS
st st st st
b PREFETCH REPLY EXECUTE
su sub sub sub
7 stages of
execution
in progress
in this clock
period with
4 execution
units oper-
ating in par-
allel.

Figure 7-2. Concurrent Execution Example

~

7.3.2 Effects of Instruction P Bus Wait Cycles

Wait cycles in instruction P bus accesses are counted as occurring in the reply phase of
the corresponding access. Therefore, as wait cycles are inserted, they are simply added to
the one clock of address phase time for a particular prefetch (see Figure 7-3). In Figure 7-
3, the effective prefetch time for instruction A is two clocks; whereas, the effective prefetch
time for instruction B is only one clock, even though the address phase for B is repeated
twice. It is the execution of instruction A that is delayed by the wait cycle, and the prefetch
of instruction B does not cause any additional delay. Table 7-1 summarizes the various
instruction prefetch times for all MC88100 instructions.

[€——CLOCK 1 —»1— CLOCK 2 —»{——CLOCK 3 —3»1——CLOCK 4 —»]

ADDRESS PHASE A [ADDRESS PHASE B | ADDRESS PHASE B | ADDRESS PHASE C
REPLY PHASE A REPLY PHASE A REPLY PHASE A

PREFETCH PREFETCH PREFETCH PREFETCH I P]
A B c

B

WAIT suc :) y

B
NIP

DECODE

B |
Y
—

EXEE\UTE XIP

EFFECTIVE PREFETCH] EFFECTIVE
<..I >l PREFETCH
TIME FOR A I 71" |rme For 8

Figure 7-3. Instruction Unit Pipeline (Example)

Table 7-1. Instruction Prefetch Time Summary

Effective Prefetch Time Prefetch Latency

1 Clock + number of waits 2 Clocks + number of waits

7.3.3 Instruction Decode
All instructions are decoded during the reply phase of the prefetch. For most instructions

at the end of the decode time, the scoreboard bits for the source and destination registers
are checked. They must all be clear before the instruction is dispatched to the appropriate

7-6 MC88100 USER’S MANUAL MOTOROLA

execution unit for immediate execution. For floating-point instructions that specify double-
precision results, the processor checks the scoreboard bits of both destination registers
(rD and rD + 1) while the instruction is in the decode stage (or both decode stages as in
the case of double-precision source operands). If one or more double-precision source
operands are specified, the availability of the source operands is checked one at a time
{one register checked during each decode stage). For the st.d instruction, the scoreboard
bits for both the sources and destinations are checked one at a time (the first source and
destination are checked during the first decode stage and the second source and destination
are checked during the second decode stage).

If the instruction to be executed is a multicycle instruction that can alter the contents of a
general-purpose register, the appropriate bits in the scoreboard register (corresponding
to the destination register) are set in the clock period after the last stage of instruction
decode.

NOTE

The instruction execution times listed throughout the remainder of this section
do not include the one clock of effective prefetch time, since it is nearly always
overlapped by the execution of other instructions.

7.4 EXECUTION UNIT TIMINGS

After instructions are prefetched, they are either executed by the instruction unit (for the
case of flow-control instructions) or dispatched to another on-chip execution unit. The
following paragraphs describe the execution of instructions within the four execution units
(integer, data, floating-point, and instruction units).

7.4.1 Integer-Unit Instruction Execution

The integer unit instructions, which are the simplest of the MC88100 instruction set, execute
in one clock period. Table 7-2 lists the instructions executed by the integer unit and explicitly
defines the execution time for each of these instructions as one clock. Figure 7-4 shows
the sequencing for a series of integer unit instructions. The writeback time for updating
the destination register is not included in the execution time listed because the writeback
occurs in parallel with the execution of other instructions and causes no perceivable delay.
The Ider, ster, xcr, fldcr, fster, and fxcr instructions operate entirely within the integer unit
and do notinitiate any memory accesses. The stcr and fster instructions waive the writeback
slot, and the processor can pass it on to another execution unit requesting a writeback slot
at that time.

The instructions executed by the integer unitinclude the integer arithmetic, bit-field, logical,
and load/store/exchange control register instructions. The integer multiply and divide (mul,
div, and divu) instructions are executed by the FPU and are not listed in Table 7-2. Refer
to 7.4.3.2 FPU INSTRUCTION TIMING for information on these instructions.

MOTOROLA MC88100 USER'S MANUAL 7-7

8-L

TVNANVYIA S.43SN 00188\

V10HOLOW

r&— CLOCK 1 —3»f

€—CLOCK 2 —»l—CLOCK 3 —»{«—CLOCK 4 —»l—CLOCK 5 —3»

+€—CLOCK 6 —3»f

[€——CLOCK 7" —3»

[PREFETCH PREFETCH PREFETCH
add sub or and

WB = WRITEBACK

=

REPL REPLY
add or

T

REPLY
and

‘DECODE‘
add

DECODE
and

Figure 7-4. Integer-Unit Instruction Execution

EXECUTE EXECUTE EXECUTE
sub or and
WB add WB sub)

WB and ’

Table 7-2. Integer, Bit-Field, Logical, and Control-Register
Instruction Execution Timing in Clock Periods

Instruction Execution Time Instruction Execution Time
Integer Logical
add 1 and 1
addu 1 mask 1
cmp 1 or 1
sub 1 xor 1
subu 1
Bit Field Control Register
clr 1 fider 1
ext 1 fster 1%
extu 1 fxcr
ffo 1 Ider 1
f1 1 ster 1%
mak 1 xcr 1
rot 1
set 1

*No writeback slot required for these instructions.

7.4.2 Data Unit Operation

The data unit pipeline has three stages and executes all load, store, and exchange instruc-
tions to and from memory. As described in SECTION 5 BUS OPERATIONS, the data P bus
performs all external data accesses. The data P bus is pipelined like the instruction P bus
and can process the address phase of an access simultaneously with the reply phase for
the previous access. The three pipeline stages are numbered 2, 1, and 0, and data memory
transactions sequence through the stages in that order (2, 1, and then 0).

Stage 2 of the data unit is the address calculation stage and is considered the ‘execute’
stage for all data unit instructions. Stage 1 of the data unit contains the instruction in the
address phase, and stage 0 contains the instruction in the reply phase on the data P bus.
Stages 0 and 1 have latches associated with them (referred to as primary and secondary
writeback latches, respectively) that can store the results of load operations that are initiated
but that cannot writeback to the register file because other instructions are using the
destination bus at the time required by the data unit. Figures 7-5 and 7-6 show examples
of the data-unit pipeline execution.

The total time required to perform a data unit access is three clock periods, one clock for
each stage, assuming no-wait-cycle bus operation. However, as with instruction prefetch
operations, the effective execution time is only one clock in many cases because three
overlapping operations can be in progress at any one time. Table 7-3 shows the effective
execute time for the memory access instructions.

Memory load and exchange instructions set the scoreboard bit for the destination register

during the execute phase of the operation. Therefore, the total time to perform the operation
may impact average instruction timing. The ‘latency’ for the execution of a load instruction

MOTOROLA MC88100 USER'S MANUAL 7-9

Table 7-3. Load, Store, and Exchange Memory
Instruction Execution Time in Clock Periods

Instruction Effective Minimum
Execution Time Access Latency

db 1 3+CW
Id.bu 1 340W
Id.h 1 3+CW
Id.hu 1 3+ CW
td 1 3+CW
Ida 1 No Access
Id.d 1% % 4+ CWH***
st L 3+CW
stb 1 3+CW
sth ! 3+CW
st.d { 2% 44 CWH*¥*
xmem.b # 1%% 44 CW***
xmem # 1%% 4+CW*¥%*

These instructions synchronize the processor so that all previous instruc-
tions must complete before the xmem executes.
* Includes automatic stall of instruction pipeline.
* % Causes data unit to be busy for an additional clock so add one more clock
to this number if instruction is followed by another data unit instuction.
*%% CW is the total number of wait cycles for both bus transactions.
CW =Number of wait cycles during reply phase on data bus.

is the delay from the time the instruction is decoded until the results are available to a
subsequent instruction. The latency for a store instruction is the total number of clocks it
takes the access to complete.

Although store and Ida instructions do not return results and do not set the scoreboard
bits, they do make use of the writeback phase. The writeback used by store and Ida in-
structions follows the execute cycle for address calculation. This is the time in which the
source data is fetched from the register file. Because the fetch occurs on the internal
destination bus (D bus), no other instruction can write back to the register file at this time.

Memory load and exchange instructions do not use the writeback slot immediately after
the execute clock(s); therefore, that writeback slot is available for other execution units.
However, these instructions request a writeback slot when the memory access(es) are
complete.

7.4.2.1 TOTAL ACCESS LATENCY. The total access latency is dependent on the availa-
bility of the processor resources (the data unit pipeline, access to a writeback slot, etc.)

7-10 MC88100 USER’'S MANUAL MOTOROLA

and the number of wait cycles incurred in the reply phases of other accesses as well as
the required data access. The pipeline latency can be described as follows:

Data Access Latency =3+ CW +BW + AW clocks

where CW, BW, and AW are the wait cycles associated with accesses already in the data
pipeline (BW and AW) and the current access (CW). Assuming the data unit pipeline does
not stall due to other instructions or causes, the latency is three clocks plus the number
of wait cycles incurred by the access as shown in Table 7-3. Data access latency does not
include the writeback time for load operations because the writeback may occur simulta-
neously with the execution of the instruction requiring the result (see 7.5.2 Writeback
Priorities and Feed Forwarding). Figure 7-5 shows the timing associated with memory
access latency. Code-scheduling software should consider the access latency for a load
operation before issuing an instruction that requires the results from the load.

Wait cycles on the data P bus have four possible effects on total instruction execution.
First, they affect the access latency for the execution of the particular instruction with the
wait replies. Secondly, they may cause delays in subsequent data unit instructions by
causing the data unit pipeline to stall. Thirdly, they may cause the instruction pipeline to
stall, delaying the execution of all subsequent instructions. This may occur in the case of
a string of data unit instructions awaiting execution when the data unit pipeline is full
(three accesses pending) and stalled due to wait cycles on the data P bus. Finally, wait
cycles on the data P bus may be an indication that the memory is not responding to the
data access quickly. In this case, if instructions are prefetched from the same main memory,
prefetches may also be delayed because the long data access prevents the prefetch from
accessing the memory when required.

7.4.2.2 MEMORY LOADS, STORES, AND EXCHANGES. Execution time calculations for
the Id.d, st.d, and xmem instructions are special cases. Load double (ld.d) and xmem
instructions split into two transactions in the execute phase (stage 2) of the data unit
pipeline. Therefore, the effective execute stage time is two clocks if it is followed by another
data unit instruction. This creates a stall in the instruction pipeline only if the instruction
following the Id.d or xmem is a data unit instruction. Figure 7-6 shows a timing example
of a Id.d (A) followed by an Id.d (B) instruction. In the sequence shown, Id.d (A) causes a
stall in the instruction pipeline because Id.d (A) resides in stage 2 of the data unit for two
clocks. Because the first Id.d is still in stage 2, the second Id.d cannot advance to the data
unit immediately after decode. In addition, the example shows that instruction C is also
prevented from advancing to the data unit because the second Id.d (B) instruction resides
in stage 2 for two clocks. However, if instruction C is not a data unit instruction, the
instruction pipeline does not have this additional stall, and instruction C can advance to
the appropriate execution unit after decode.

The st.d instruction is different from the Id.d and xmem instructions because it must reside
in the decode stage of the instruction pipeline for two clocks. Therefore, it always stalls
the instruction pipeline for at least one clock, regardless of the following instruction. Sub-
sequently, the effective execution time for the st.d is always two clocks. Additionally, the

MOTOROLA MC88100 USER'S MANUAL 7-1

cl-L

TVYNANVIA S, 43SN 00L880IN

VIO4O1OW

}&—CLOCK 1 —»t«——CLOCK 2 —3»}«—CLOCK 3 —»1«—CLOCK 4 —»«—CLOCK 5 —»}€&—— CLOCK 6 —»}¢—— CLOCK 7 —»t—— CLOCK 8 —+€——CLOCK 9 —>>|

PREFETCH PREFETCH PREFETCH
A B C
REPLY REPLY REPL
A B C
DECODE DECODE DECODE
A B C

INSTRUCTION UNIT

DATA UNIT
STAGE 2 > EXECUTE * EXECUTE) EXECUTE
A B C
STAGE 1 >

AODRESS ADDRESS ADDRESS
A B c
REPLY REPLY REPLY
STAGE 0 r ,)(,)
WB A Qve B) (WB C)
ACCESS LATENCY FOR C IS 3 CLOCKS P BUS WAIT REPLIES
‘_l WITH 0 WAIT CYCLE BUS (CACHE MISS, ETC

1
<————-r] TOTAL ACCESS LATENCY IF WAIT REPLIES, €7C. | N

I I

2

WB = WRITEBACK

Figure 7-5. P Bus Wait Cycles

VIOHOLOW

TVNNVIN S.43SN 001L88JIN

€l-L

r—— CLOCK 1 —»{—— CLOCK 2 —3|

€~ CLOCK 3 —3»1«€«——CLOCK 4 —»

r€—— CLOCK 5 —3»

+&—— CLOCK 6 —3»

r€——CLOCK 7 —3»

INSTRUCTION UNIT

DECODE
Id.d B

DECODE
Id.d B

INSTRUCTION INSTRUCTION

PIPELINE PIPELINE

STALL CREATED STALL CREATED

BY id.d A BY SECOND Id.d
PREFETCH PREFETCH PREFETCH \ PREFETCH PREFETCH PREFETCH

Id.d A Id.dB C C / D D
REPLY REPLY REPLY REPLY
Id.d B c c D

DECODE
C

DECODE
C

DATA UNIT

WB = WRITEBACK

EXECUTE
IddA1

EXECUTE
Id.d A2

EXECUTE
Id.dB1

EXECUTE
Id.d B 2

)

ADDRESS
Idd A1

)

EXECUTE
C
ADDRESS
Idd B2

REPLY
IddB1

)

ADDRESS ADDRESS
IddA?2 IddB1
REPLY REPLY
IddA1 Id.d A2

WB 1

ws2)

Figure 7-6. Id.d Followed by Id.d Timing (Example)

N

st.d instructions check the scoreboard bits for the two source registers independently. The
first source register scoreboard bit is checked during the first decode clock; the second
source register scoreboard bit is checked during the second decode clock. The two halves
of the instruction also proceed to the data unit independently. Therefore, the two halves
of a st.d operation may be separated if the second source register is not available due to
a scoreboard hold. In fact, an exception may occur in between the two halves of the store
operation, and the handler then must rerun both halves.

Figure 7-7 shows a timing example of a st.d followed by a st instruction. This example
also shows that wait cycles on the data P bus do not necessarily cause additional instruction
pipeline stalls. In the example, although the wait cycle causes the data unit to stall, it does
not cause additional delay in the execution of instructions A or B, because A and B are
not data unit instructions. These instructions can proceed to the appropriate execution unit
once the previous instructions have been issued to the data unit.

7.4.3 FPU Instruction Execution

Floating-point instructions require more than one clock period for execution. However,
effective single-cycle execution can be realized because of the pipelined architecture of the
FPU.

A sequence of instructions executed by the FPU that specify single-precision operands (32-
bit source and destination) can attain an effective throughput of one instruction per clock
period. Instructions that specify one or more double-precision (64-bit) source operands
take an additional cycle (in the first stage) to initiate, and can attain a throughput of as
little as two clock periods per instruction. Instructions that specify double-precision (64-
bit) destinations also require two clock periods to write back to the register file. However,
the writeback time is usually not perceivable due to the feed forwarding of the individual
32-bit portions of the result. Although one-to-two clock instruction throughput can be
achieved, subsequent instructions that use the results of any multicycle operation must
wait until the total execution of the operation is complete.

All instructions executed by the FPU waive the writeback slot that corresponds to the clock
period after the first execute clock. Therefore, the writeback slot is available for another
execution unit. However, the FPU instructions request a writeback slot when instruction
execution is complete.

7.4.3.1 FPU PIPELINE OPERATIONS. The FPU is implemented as two pipelines that share
the initial (FP1) and final (FPLAST) stages (see Figure 7-8). Integer and floating-point mul-
tiply instructions use the multiply pipeline; all other floating-point instructions and integer
divide instructions use the add pipeline. Floating-point instructions sequence through the
pipelines at a rate of one clock per stage in most cases. Multiply instructions can operate
in parallel with instructions executed by the add pipeline, and up to six multiply operations

7-14 MC88100 USER'S MANUAL MOTOROLA

V104010

TVNNVYIN S.43SN 00L88ON

Sl-L

[€— CLOCK 1 —»t«¢—— CLOCK 2 —3»te—— CLOCK 3 —3»]

l@— CLOCK 4 —t—— CLOCK 5 —3

t—— CLOCK 6 —»r—CLOCK 7 —»]

INSTRUCTION UNIT

DECODE
st.d 2

INTEGER UNIT

DATA UNIT

EXECUTE
st.d |

AUTOMATIC
STALL
BECAUSE OF
STORE DOUBLE
PREFETCH PREFETCH PREFETCH (PREFETCH)(_P'RE'F‘ETCH"
std st st A B y
REPLY REPLY REPLY
st.d st A

DECODE
st

EXECUTE
st.d 2

DECODE
A

EXECUTE
st

REPLY
B
DECODE
B

CL O DT T T

EXECUTE
A

=)

WB 2)

(o)

If a wait reply or scoreboard hold
was issued here, there would be no
additional delay in the instruction
pipe unless instruction A requires the
data unit.

)

WB = WRITEBACK

Figure 7-7. Store Double (Followed by Store)

~

ADDRESS ADDRESS ADDRESS)
st.d 1 st.d 2 st
(REPLY REPLY REPLY
st.d | st.d 2 st
WRITEBACK SLOTS FOR STORE
- OPERATIONS ARE USED TO FETCH DATA >
OPERANDS.

Py DOUBLE-PRECISION
SOURCE OPERANDI(S)

div

ADD2 MUL2
INTEGER mul

ADD3 MUL3

ADD4 MUL4

@ MUL5
©, ! ®

FPLAST -

ADD PIPELINE y FLOATING-POINT mul

DOUBLE-PRECISION
DESTINATION OPERAND

@ = PRIORITIES

Figure 7-8. FPU Pipeline Stages

can be in progress at one time. Alternately, up to five add-pipe floating-point instructions
can also execute concurrently.

When a floating-point instruction or integer mul or div instruction is decoded by the in-
struction unit, the scoreboard bits for all the sources and all destination registers are
checked. When double-precision source operand(s) are specified, the sources are checked
one at a time. When the appropriate scoreboard bits are clear, the instruction is loaded
into FP1, and the operands are fetched from the register file. During this first execute cycle,
the operands are checked for validity and exponents are calculated. Single-precision op-
erands are converted to an internal double-precision format.

If one or both of the source operands are specified as double precision, the instruction
remains in FP1 for an additional clock while the second half of the operands are accessed
from the register file and additional validity checks are performed (see Figure 7-10). Because
the instruction pipeline in the instruction unit maintains the address of the instruction that
is being issued to the first execution stage, the instruction unit pipeline can not advance
until all source registers specified by a floating-point instruction are available and have
been fetched from the register file. Therefore, when double-precision source operands are
specified, a one-clock stall is incurred in the instruction pipeline; no other instructions can
begin execution while a previous instruction is in the process of fetching source operands.
Once all the source registers are fetched, the scoreboard bit(s) for the destination register(s)
are set. All precise floating-point exceptions are reported at the end of the one-to-two clock
period during which the instruction address resides in the instruction pipeline.

7-16 MC88100 USER'S MANUAL MOTOROLA

Integer multiply instructions sequence (see Figure 7-8) through stages MUL2 and MUL3
of the multiply pipeline and then proceed to stage FPLAST. The FPLAST stage is shared
between all instructions executed by the FPU.

Floating-point multiply instructions sequence (see Figure 7-8) through all four stages of
the multiply pipeline. If both the source operands for a floating-point multiply operation
are specified as double precision, the floating-point pipeline is also stalled in the FP1 stage
for two additional clocks after all source operands are supplied. When the double-times-
double multiply instruction is stalled in FP1, no other instructions can be dispatched to the
FPU. Figure 7-9 shows the basic timing for a single-precision multiply instruction with a
single-precision result. Figure 7-10 shows the equivalent timing for a multiply operation
with two double-precision source operands and a double-precision result.

Except for the divide instructions, the sequence through the add pipeline (see Figure 7-8)
is the same for all other floating-point unit instructions. The instruction resides in stage
FP1 for one or two clocks, depending on the size of the source operands, and then pro-
gresses through stages ADD2, ADD3, and ADD4 in one-clock increments. The divide in-
structions iterate in stage ADD2, and the number of iterations (not including the first clock
in stage ADD2) corresponds to 1+ R, where R is the number of bits of precision specified
for the result. Therefore, for divides, extra clocks in stage ADD2 equal 1+R where

R=24 for a single-precision floating-point result,
R=32 for ainteger result, and
R=53 for a double-precision floating-point result.

While a divide instruction is iterating in stage ADD2, only the add pipeline is stalled. The
multiply pipeline can continue to execute instructions. However, if execution of a subse-
quent add-pipe FPU instruction is attempted, it remains in stage FP1 until the add pipeline
advances. This prevents a third floating-point instruction from advancing to the FPU, caus-
ing the instruction unit pipeline to stall, and no other instructions may be executed. This
type of delay can be avoided by appropriately spacing divide instructions and other in-
structions that depend on the add pipeline of the FPU.

The FPLAST stage checks for imprecise exceptions caused by floating-point instructions
and performs arbitration with the other execution units for a writeback slot to return results
to the register file. Because three FPU instructions can be ready to proceed to stage FPLAST
at the same time (e.g., fadd, integer mul, and fmul), there is also a priority scheme enforced
for the FPLAST stage. The integer multiply path has first priority, followed by the floating-
point multiply path, and then the add pipeline (see Figure 7-8).

The writeback for double-precision results requires two cycles through stage FPLAST, one
for each register. However, due to feed forwarding, the time through FPLAST does not
appear to be greater than one clock except when the result is not used by another floating-
point double instruction. The floating-point double instructions can take advantage of feed-
forwarding for the second register because they do not use the writeback slot and allow
the FPU to receive a writeback slot at that time.

MOTOROLA MC88100 USER'S MANUAL 7-17

8L-L

IAVNANVIA S, H3SN 001880

V104OL1OW

<€—CLOCK 1 —>1€—CLOCK 2 —»1<— CLOCK 3 —3»«— CLOCK 4 —31«€—(CLOCK 5 —»1— CLOCK 6 —3»1— CLOCK 7 —»««—CLOCK 8 —3}e— CLOCK 3 —3»|

PREFETCH -
fmul.sss
< REPLY)
DECODE
FP1 (XIP)

(MuL2 x MUL3 X MuL4 MUL5)

(FPLAST j(WwB)

WB =WRITEBACK

Figure 7-9. FPU Multiply Pipeline

VIO4O1OW

TVNNVYIA S.H3SN 001880

6l-L

[€— CLOCK 1 —»

[<€—CLOCK 2 —3»

r€— CLOCK 3 —3

[<€— CLOCK 4 —>

€—— CLOCK 5 —»t&——CLOCK 6 —3»

(<€—CLOCK 7 —3»

‘ PREFETCH
] fmul.ddd

‘ REPLY
DECODE

DECODE

(FP1 fmul.ddd X FP1 fmul.ddd >

[€— CLOCK 8 —r<——CLOCK 9 —)L—— CLOCK 10 —1<—CLOCK 11—

(FP1 fmul.ddd

FP1 fmul.dd;)

L'_CI.DCK 12 —<€—CLOCK 13—

(MUL3 X MuL4 “X MULS)

WB = WRITEBACK

(FPLAST 1 X FPLAST 2)

)

)

Figure 7-10. Double-Precision Multiply

~

MuL2

Code-scheduling software can minimize these types of stalls and delays by considering
the interdependencies of the floating-point unit pipelines and the other execution units of
the MC88100.

7.4.3.2 FPU INSTRUCTION TIMING. In most cases, the timing for a particular code segment
of floating-point instructions can be calculated by using the information supplied by the
sequencing of instructions through the floating-point pipelines. The summary in Table
7-4 can also be used to calculate instruction execution time. The time listed in the FP1
column corresponds to the amount of delay from the time an FPU instruction is decoded
to the time a second FPU instruction can be dispatched to the FPU for execution.

The time in. FPLAST is usually not perceived to be greater than one clock; however, the
asterisk in the table identifies those instructions that cause two cycles through FPLAST.
This second cycle can be seen when a subsequent instruction requires the result that is
immediately restored to the second destination register. The total latency column assumes
no delays associated with scoreboard holds, writeback priority delays, or pipeline stalls
caused by other instructions.

7.4.4 Flow-Control Instruction Execution and Exceptions

The instruction unit executes all flow-control instructions by calculating the target address
for subsequent instruction execution and appropriately saving the return address for sub-
routine calls. The bsr and jsr flow-control instructions save return pointers as a result of
their execution and use the writeback slot to update the register file (r1) accordingly.
However, the writeback time is not included in the execution time because it is not a
preceivable delay. All other flow-control instructions waive the writeback slot.

Flow-control instructions are divided into three categories: unconditional, conditional, and
trap. Table 7-5 lists the different flow-control instructions and their effective execution
times.

When delayed branching is not selected, the unconditional and conditional instructions
effectively take two clocks to execute when the branch is taken and one clock when the
branch is not taken. For the branch-taken case, the instruction fetched immediately after
the branch or jump is not executed, and, although it has already been prefetched, it is
discarded. Subsequently, the instruction pipeline is filled with new instructions located at
the target address. The following paragraphs provide further explanation on the timing
related to branching, delayed branching, and traps processed by the instruction unit.

7.4.41 BRANCHING TIMING. Figure 7-11 (a) shows an example code sequence of a con-

- ditional branch instruction with no delayed branching followed by an add instruction with

a Id instruction as the target of the branch. Although the add instruction is prefetched
(before the branch is executed), it is discarded. The example also illustrates the timing

7-20 MC88100 USER'S MANUAL MOTOROLA

Table 7-6. FPU Instruction Timing Cycles

Instruction FP1 ‘:i"’)': ';:‘;: FPLAST L::’;::y
fadd.sss 1 3 1 5
fadd.sds, .ssd 2 3 1 6
fadd.dss 1 3 1% 5
fadd.dsd, .dds 2 3 1% 6
fadd.sdd 2 3 1 6
fadd.ddd 2 3 1% 6
fcmp.sss 1 3 1 5
fecmp.sds, .ssd 2 3 1 6
femp.sdd 3 1 6

Interations
in ADD2
fdiv.sss 1 3 +25 1 30
fdiv.sds, .ssd 2 3 +25 1 31
fdiv.dss 1 3 +54 1% 59
fdiv.dsd, .dds 2 3 +54 1% 60
fdiv.sdd 2 3 +25 1 31
fdiv.ddd 2 3 +54 1% 60
fit.ss 1 3 1 5
fit.ds 1 3 1% 5
FP1 Extra
(Not in
instruction
pipe)
fmul.sss 1 — 4 1 6
fmul.sds, .ssd 2 — 4 1 7
fmul.dss 1 — 4 1% 6
fmul.dsd, .dds 2 — 4 1% 7
fmul.sdd 2 +2 4 1 9 7
fmul.ddd 2 +2 4 1% 9
fsub.sss 1 3 1 5
fsub.sds, .ssd 2 3 1 6
fsub.dss 1 3 1% 5
fsub.dsd, .dds 2 3 1% 6
fsub.sdd 2 3 1 6
fsub.ddd 2 3 1% 6
int.ss 1 3 1 5
int.sd 2 3 1 6
nint.ss 1 3 1 5
nint.sd 2 3 1 6
trnc.ss 1 3 1 5
trnc.sd 2 3 1 6
lterations
in ADD2
div 1 3 +33 1 38
divu 1 3 +33 1 38
mul 1 — 2 1 4

*Add one more clock of effective FPLAST time delay only if the result is used either by a st.d, integer instruction, or an
instruction that requires the results of a second destination register.

MOTOROLA MC88100 USER'S MANUAL 7-21

Table 7-5. Flow-Control Instruction Timing in Clock Periods

Effective Execution Time

Instruction
Branch/Trap Taken Branch/Trap Not Taken

Unconditional
br
br.n
bsr
bsr.n
jmp
jmp.n
jsr
jsr.n

BRSNS N =N

[A N

Conditional
bb0o
bb0.n
bb1
bb1.n
bend
bend.n

Trap*
th0
tb1
thnd
tend
rte

BN =SN=N
PN N

1
1
1
1

W WwWwwww

Other Exceptions¥*

*The trap instructions, with the exception of tbnd, synchronize the processor so
that all previous instructions must complete before the trap. Synchronization time
must be added to the effective execution time shown in the table.

relationship between the execution clocks attributed to the branch instruction and the
beginning of the target Id instruction prefetch. In reality, these two events do not occur
simultaneously as implied in Figure 7-11. The instruction unit performs all address cal-
culations for flow-control instructions during the decode stage for the branch instruction,
and the actual execution of the branch occurs in zero clocks. Thus, by the beginning of the
next clock (depicted as the first execute phase for the branch), the target address has
already been computed, and the address phase for the target instruction prefetch begins.
However, no other instructions can be dispatched for execution at this time. This ‘dead’
clock is therefore attributed as one of the execution clocks for the branch. The second clock
for the branch-taken case is caused by the reply phase necessary for the prefetch of the
target instruction. Again, no other instruction can be dispatched for execution during this
clock if delayed branching is not used.

7.4.4.2 DELAYED BRANCH TIMING. Delayed branching is a feature that can be used for
more efficient execution of instruction sequences when branches are taken. Delayed
branching (invoked by specifying the .n option in a flow-control instruction) instructs the
processor to execute the instruction that sequentially follows the branch instruction before
the branch target instruction. The next sequential instruction has already been prefetched

7-22 M88100 USER’'S MANUAL MOTOROLA

VIOHOLOW

TVNNVYIN S.43SN 001880

€L

bend loop

add r2, r3, r4

loop Id 6, r7, r8

WB = WRITEBACK

|l€e— cLoCK 1 —>]

r€— CLOCK 2 —3»

r€— CLOCK 3 —3»1«€—CLOCK 4 —3»r«—CLOCK 5 —3»

PREFETCH
bend

Y
PREFETCH
1d

REPLY
bend
DECODE EXECUTE EXECUTE
bend bend bend

| {REPEATED)

PREFETCH EPLY
add add
DECODE
add (add DISCARDED)

L

REPLY
Id

+€—— CLOCK 6 —3»r€—CLOCK 7 —3»

EXECUTE
Id

REPLY
Id

WB)

(a) Branch Taken (Delayed Branching — Not Selected)

Figure 7-11. Branch Example (Sheet 1 of 2)

’(ADDRESS
I Id

ve-L

AVNANVYIN S.H3SN 001880

V104010

bend.n LOOP

add r2, r3, r4

LOOP Id r6, 17, r8

WB = WRITEBACK

[€— CLOCK 1—3

€— CLOCK 2 —>1<— (CLOCK 3 —3{<——CLOCK 4 —>1

[€——CLOCK 5—3

<€ CLOCK 6 —f

<€——CLOCK 7 —>>

PREFETCH
bend.n

REPLY

bend.r
DECODE
bcnd.n

)
EXECUTE
bend.n

PREFET!

PREFETCH
Id

EXECUTE
add

add EXECUTED IN
DELAY SLOT FOR
THE BRANCH

EXECUTE
Id

ADDRESS
Id

REPLY
Id

(b) Branch Taken (Delayed Branching — Selected)

Figure 7-11. Branch Example (Sheet 2 of 2)

by the time the branch executes; thus, it can execute while the instruction pipeline is
refilled with the instruction at the target address. Figure 7-11 (b) shows the relative timing
for an instruction sequence that uses the delayed branch option. The added efficiency
afforded by the delayed branch featues is apparent by comparing the two diagrams in
Figure 7-11. Figure 7-11 (a) shows that a branch taken with no delayed branching takes
two clocks to execute, and Figure 7-11 (b) shows that the delayed branch option allows
the add instruction (in the delay slot) to execute in one of those clocks. Therefore, the
effective execution time for branch instructions that use delayed branching is reduced to
one clock, providing the add is a useful instruction for the program. This time is the same
as that of the branch-not-taken time. The delay slot instruction following a jsr.n or bsr.n
can use the value in r1 with no scoreboard delay; the value is the result of the subroutine
call instruction.

7.4.4.3 TRAP INSTRUCTIONS AND EXCEPTION TIMINGS. The execution timing for trap
instructions and other exceptions is listed in Table 7-5; the timing of events relative to the
clock is shown in Figure 7-12.

All trap instructions, except the tbnd, cause the MC88100 to synchronize its activities
(complete execution of all previous instructions) before the execute phase for the trap (this
synchronize time is not included in Table 7-5). The execution of the trap-not-taken instruc-
tions is similar to that of the branch-not-taken instructions and takes one clock period (not

[€—CLOCK 1 —>»r«—CLOCK 2 —»<€— CLOCK 3 —»«€¢—CLOCK 4 —>»1«€—CLOCK 5 —»+—CLOCK 6 ———)‘

PREFETCH PREFETCH PREFETCH (PREFETCH PREFETCH)
TRAP B C VECTOR VECTOR +4

REPLY REPL' REPLY (REPLY)

TRAP B C VECTOR

DECODE DIS- DIS- DECODE
TRAP CARDED CARDED VECTOR

EXECUTE
VECTOR

Y

EXECUTE
TRAP

A

SYNCHRONIZES
PROCESSOR
T

(A) Trap Instruction

Figure 7-12. Trap Instructions and Other Exceptions (Sheet 1 of 2)

MOTOROLA MC88100 USER’'S MANUAL 7-25

<¢——CLOCK 2—»1—CLOCK 3 —> [<¢—CLOCK 4 —>»1«¢—CLOCK 5 —>}«—CLOCK 6 —-A

PREFETCH)(PREFETCH (PREFETCH PREFETCH

8 c VECTOR VECTOR + 4
REPL REPLY | REPL
A B_ | VECTOR
(DECjOD DIS- DIS- DECODE
A CARDED CARDED, VECTOR

EXECUTE
VECTOR

EXECUTE

Y

Fault reply
phase for in-
struction or
data access ex-
ceptions.

Last execute
phase for in-
struction caus-
ing exception.

3 CLOCKS MINIMUM >

| 1l

Wait for data
unit to com-
plete. Freeze
state of other
execution units.

A

(B) Other Exceptions

Figure 7-12. Trap Instructions and Other Exceptions (Sheet 2 of 2)

including the time to synchronize the processor). The time to execute trap-taken instructions
is allocated as three clocks although the vector fetch for the trap begins after one clock of
execution for the trap. Similar to the case of branch instructions that do not use delayed
branching, the two extra clocks are necessary to refill the instruction pipeline and decode
the instruction at the trap vector. Even though the trap instruction is not still executing
during these two clocks, no other instructions can be executed. Therefore, the time is
attributed to the trap. The two instructions that follow the trap in the instruction stream
are not executed and are discarded.

7-26 MC88100 USER'S MANUAL MOTOROLA

All other exception conditions processed by the MC88100 follow the same relative timing
sequence described for the trap instruction. Exception conditions caused by bus access
faults take three clocks to process (i.e., three clocks from the end of the fault reply phase
and the beginning of the instruction execution at the exception vector). All exceptions
freeze the FPU and wait for the data unit to complete pending accesses between clock
periods 3 and 4 (see Figure 7-12). When pending accesses are complete (or faulted), the
processor freezes the state of the machine, and the vector instruction is prefetched. Ex-
ceptions caused by unimplemented instructions are reported during the execute phase for
the unimplemented instruction. As in the case of the trap, two more clocks are attributed
to the unimplemented instruction timing to account for the prefetch time of the vector
instruction. Clock period 3 is the point of reference in Figure 7-12 for floating-point precise/
imprecise exceptions as the last phase of execution in FP1 or FPLAST, respectively. Refer
to SECTION 6 EXCEPTIONS for more detail on processing exceptions and how to handle
the FPU when exceptions occur.

7.5 TIMING FACTORS

Certain factors may affect the total execution time of an instruction sequence. These factors
include the preceding and following instructions, the residency of operands and instruction
words in the caches in the attached cache/memory management units (CMMUs), and the
residency of address translations in the address translation cache. Other factors such as
scoreboard holds, writeback priorities, wait cycles on the buses, and exceptions determine
the total number of clock cycles. The following paragraphs describe scoreboarding, write-
back priorities, and wait cycles on the buses.

7.5.1 Scoreboard Effects

Because there are multiple execution units in the MC88100, an operation may require use
of the value in a particular general-purpose register that is in the process of being modified
by another concurrent operation. Scoreboarding essentially sets an ‘in use’ bit for each
instruction destination register. Subsequent instructions needing this register for either a
source or a destination are held in the instruction pipeline decode stage of the instruction
unit pipeline (a scoreboard hold) and are not allowed to proceed into the execution stage
until this bit is cleared. A scoreboard bit is cleared when the instruction setting the bit has
written its result back to the register file, thus providing subsequent operations (possibly
on scoreboard hold) with the updated register contents.

Figure 7-13 shows an example of a timing diagram which demonstrates an instruction
pipeline stall because of a scoreboard hold. Instruction A requires the contents of the
preceding Id instruction. During clock period 3, the scoreboard bit is set for the register
that is to be altered by the Id instruction. During clock periods 4 and 5, instruction A remains
in the instruction reply phase (decode) until the scoreboard hold is released; then it enters
the execution stage in the appropriate execution unit in clock period 6. Instruction B con-
tinues in the address phase (prefetch) until instruction A has entered the execution phase.

MOTOROLA MC88100 USER'S MANUAL 7-27

l&——CLOCK 1 —>e— CLOCK 2 —»t— CLOCK 3 —»{«€¢—— CLOCK 4 —3»l— CLOCK 5 —»}— CLOCK 6 —=]

[€— INSTRUCTION PIPELINE STALL —3

PREFETCH PREFETCH PREFETCH)(PREFETCH PREFETCH JL PREFETCH)
A B B B C

REPLY < REPLY REPLY' REPLY REPL'
Id A B B B
ECODE DECODE DECODE (DECODE) DECODE

Id A A A B

EXECUTE EXECUTE
| A

‘ A:DD;R;CEs:S)
K_REPLY
id

WB Id

—
SCOREBOARD SCOREBOARD
BIT SET SCOREBOARD HOLD BIT CLEARED_ |
Scoreboard bit | Instruction A’s Writeback for Id
set for register | normal execute completed
to be altered cycle deferred
by Id instruc- Scoreboard bit
tion. cleared for
WB = WRITEBACK general-purpose
Execution of Id register
instruction

Instruction A
executed

Figure 7-13. Scoreboard Hold — Instruction Pipeline Stall

Register dependencies in sequential instructions have a distinct effect on average instruc-
tion timing. A subsequent instruction that is held in the decode stage because of a score-
board hold stalls the instruction prefetch pipeline until the appropriate registers are available.
Overall execution of a code sequence is delayed until the scoreboard hold is released and
allows the pipeline to proceed. Although useful work can be accomplished during this
delay (floating-point operations or data memory operations already in progress can con-
tinue); scoreboard hold may increase execution time for a given code sequence. Figure 7-
14 shows a code sequence where instruction A does not require the results of the general-
purpose register that is altered by the Id instruction. Even though the scoreboard hold

7-28 MC88100 USER'S MANUAL MOTOROLA

€& CLOCK 1 —»+«——CLOCK 2 —»1«——CLOCK 3 —»{— CLOCK 4 —1«€——CLOCK 5 —»1—— CLOCK 6 —3{

PREFETCH PREFETCH PREFETCH PREFETCH PREFETCH
| A B C D
—
REPLY REPL REPLY
A B C

DECODE DECODE DECODE
A B C
EXECUTE EXECUTE EXECUTE EXECUTE
Id__ A B C
ADDRESS ADDRESS
Id A
‘ REPLY REPLY
Id A
WB Id WB A
SCOREBOARD “SCOREBOARD |
BIT SET L - —— BIT CLEARED_ |
Scoreboard bit Instruction A Instruction B Writeback for
set for register executed executed Id completed.
to be altered Scoreboard bit
by Id instruc- cleared for
tion. general-pur-

pose register
Execution of Id
instruction Instruction C
can use results
from Iid if B
does not re-

quire a write-
WB = WRITEBACK back

Figure 7-14. Scoreboard Hold — No Instruction Pipeline Stall

begins in clock period 4, instruction A still enters the execution phase at that time. Instruc-
tion B may or may not create a stall in the instruction pipeline, depending on whether or
not it requires the results of the register that is on scoreboard hold. Code-scheduling
software can effectively order operations to minimize the dependencies that lead to score-
board holds.

7.5.2 Writeback Priorities and Feed Forwarding

All execution units write results to the register file (and store instructions fetch their op-
erands) through the internal D bus. When multiple execution units need to simultaneously

MOTOROLA MC88100 USER’'S MANUAL 7-29

write a result (or fetch a source in case of a store), the sequencer grants a writeback slot
to the highest priority execution unit. Instruction completion is delayed if higher priority
execution units prevent an execution unit from receiving a writeback slot. The order of
priority enforced by the sequencer is as follows:

1. Integer unit, store, Ida, jsr, and bsr instructions
2. FPU — integer multiply (from multiply pipeline)
3. FPU — floating-point multiply instructions
4

. FPU — add pipeline (floating-point add, subtract, divide, compare, and convert in-
structions, plus integer divide instructions)

5. Data unit — load instructions

Figure 7-15 shows an example of execution completion that depends on writeback priority.
In clock period 1, the FPU and the integer unit complete the execution phase of two
instructions. The data unit completes the reply phase for instruction A, instruction B com-
pletes its address phase, and instruction C completes its execution phase. By the beginning
of clock period 2, all three units have requested a writeback slot. The FPU repeats its last
execution phase denoted as FPLAST. The data unit loads the data read for instruction A
into a writeback latch that it uses as a holding register and completes the reply phase for
instruction B. In clock period 3, the FPU, having the next priority, is granted the writeback
slot. Instruction A is allowed to complete its writeback (from the writeback latch) in clock
period 4. The secondary writeback latch in the data unit is used to store the results of
instruction B until the first writeback latch for instruction A is released. To avoid writeback
latch overflow, the data unit does not initiate any new data transactions on the data P bus
while there are two outstanding accesses and one of them is awaiting writeback in a
writeback slot.

Writeback priorities do not necessarily have any adverse effect on execution timing. How-
ever, indirect effects are induced in two ways. First, if an operation is delayed from writing
back to its destination register, it may cause a scoreboard hold for a subsequent instruction.
Second, an operation not allowed to writeback stalls its pipeline until it is completed.

Figue 7-16 shows an example where the data unit is granted a writeback slot before the
integer unit. During clock period 3, the scoreboard bit for general-purpose register r6 is
set. In clock period 5, the execution phase of the add instruction is stalled due to the
scoreboard hold. During clock period 6, the writeback slot is granted to the Id instruction
because the add instruction requires the results of the Id (in r6).

Figure 7-16 also shows an example of feed forwarding, which allows execution by the
integer unit at the same time the writeback is completed even though both events require
the same register. Feed forwarding reduces the number of clock periods that an execution
unit must wait to use a register. The D bus is gated to the waiting execution unit over one
of the source buses, allowing the new contents of the register to be used while the processor
updates the register file. During clock period 6, feed forwarding allows execution of the
add instruction to overlap in the same clock period as the writeback for the results of the
Id.

7-30 MC88100 USER'S MANUAL MOTOROLA

FLOATING-POINT
UNIT INSTRUCTION

INTEGER UNIT
INSTRUCTION

DATA UNIT
INSTRUCTIONS

WB =WRITEBACK

MOTOROLA

[€— CLOCK 1—3

{€—— CLOCK 2 —»

r€——CLOCK 3 —3

|

r€— CLOCK 4 —>{

]

EXECUTE
PHASE

REPEAT
(FPLAST ’(FPLAST ‘)
o e——y
Uy WB \ ‘ WB)
NREQUEST/

If C were not present, another data unit
instruction could proceed to execute
phase.

EXECUTE REPEAT REPEAT
PHASE C EXECUTE C EXECUTE C
ADDRESS ADDRESS PHASE ADDRESS PHASE ADDRESS
PHASE B NOT USED NOT USED PHASE C
(REPLY \(REPLY j
PHASEA [\ PHASEB
PRIMARY PRIMARY
WRITEBACK V;ﬂﬁ'MAEEK WRITEBACK
LATCH LOADED TEB LATCH UPDATED)
FOR LATCH STILL FOR
INSTRUCTION A FuLL INSTRUCTION B
SECONDARY
WB LATCH
LOADED FOR
INSTRUCTION B
o —— =
i 2 0
\ 1 W8
oroustf fpeauesy
Integer unit All 3 units re- Writeback com- Writeback for
and FPU com- quest writeback pleted for the instruction A
pleted the exe- slot. Priority FPU. Next completed for
cute phase. given to the in- writeback slot the data unit.
Data unit com- teger unit. FPU granted to the Writeback for
pletes reply repeats another data unit. Pri- instruction B
phase. execute phase mary writeback still pending.
and is granted latch is still full.

the next write-
back slot. The
primary write-
back latch is
loaded by the
data unit.

Figure 7-15. Writeback Priority (Example)

MC88100 USER’'S MANUAL

7-31

ce-L

TVNANVYIA S.43SN 00L88ON

VI0HOLOW

Id r6, r7, r8

orr2, 15, r7

xor r3, r4, r7

add r2, r5, r6

WB =WRITEBACK

[€—CLOCK 1—»

~

PREFETCH Id

PREFETCH
or

PREFETCH
xor

Scoreboard set
for register r6.

EXECUTE
or

REPLY
xor

(DECODE}
Xor

)
(

EXECUTE wB
xor xor

PREFETCH
add

EXECUTIO
add DEFERRED
-

-
N

DECODE
add

+€—CLOCK 2 —»1— CLOCK 3 —»|— CLOCK 4 —3»{€—— CLOCK 5 —»t— CLOCK 6 —m{——CLOCK 7 —3»{
REPLY “WE 3
Id EQUES Id

FEED-FORWARDING I

EXECUTE

SCOREBOARD
HOLD

Scoreboard bit for
r6 set — add can-
not execute.

Figure 7-16. Writeback and Feed Forwarding (Example)

l-le-n
REQUES'G

Writeback slot
given to Id instruc-
tion.

Scoreboard bit for
r6 cleared.

7.5.3 Wait Cycles and Pipeline Stalls

Wait responses occur during the reply phase of prefetch or during data accesses when an
instruction or a data operand cannot be placed on the data or instruction P bus during the
required clock period. The following instruction remains in the address phase until a ‘suc-
cess’ reply is received. The responding device can insert as many wait replies as necessary
until the instruction or data is supplied. Therefore, the wait reply stalls the instruction or
data pipeline in relation to the number of wait replies received.

Pipeline stalls are created when an instruction cannot enter the next stage of execution.
Pipeline stalls are induced by wait replies, scoreboard holds, and writeback priorities. Also,
certain instructions automatically create pipeline stalls because of the number of clock
periods required for execution. Figure 7-17 shows an example of pipeline stalls created by
wait cycles, scoreboard holds, and writeback delays. In clock period 2, the prefetch for
instruction A has received a wait reply, and the address phase for instruction B must be
repeated in the instruction unit pipeline. In clock period 3, a ‘success’ reply was received,
and instruction A enters the execution phase and sets a scoreboard bit in clock period 4.
The normal execution phase for instruction B is clock period 5, but it cannot execute because
it requires use of the register reserved by instruction A. In clock period 7, the scoreboard
bit is released and instruction B enters the execution phase. Because instruction B was
delayed in enteri