2

G522-0330-00

MPCG604EUM/AD
3/98

PowerPC 604e

RISC Microprocessor User's Manual
with Supplement for PowerPC 604™ Microprocessor

PawerP¢

(W) seoTOROLA



This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.
Information in this document is provided solely to enable system and software implementers to use PowerPC microprocessors. There are no express or
implied copyright licenses granted hereunder to design or fabricate PowerPC integrated circuits or integrated circuits based on the information in this
document.

The PowerPC 604e microprocessor embodies the intellectual property of IBM and of Motorola. However, neither party assumes any responsibility or
liability as to any aspects of the performance, operation, or other attributes of the microprocessor as marketed by the other party. Neither party is to be
considered an agent or representative of the other party, and neither has granted any right or authority to the other to assume or create any express or
implied obligations on its behalf. Information such as data sheets, as well as sales terms and conditions such as prices, schedules, and support, for the
microprocessor may vary as between IBM and Motorola. Accordingly, customers wishing to learn more information about the products as marketed by a
given party should contact that party.

Both IBM and Motorola reserve the right to modify this manual and/or any of the products as described herein without further notice. Nothing in this
manual, nor in any of the errata sheets, data sheets, and other supporting documentation, shall be interpreted as conveying an express or implied
warranty, representation, or guarantee regarding the suitability of the products for any particular purpose. The parties do not assume any liability or
obligation for damages of any kind arising out of the application or use of these materials. Any warranty or other obligations as to the products described
herein shall be undertaken solely by the marketing party to the customer, under a separate sale agreement between the marketing party and the customer.
In the absence of such an agreement, no liability is assumed by the marketing party for any damages, actual or otherwise.

“Typical” parameters can and do vary in different applications. All operating parameters, including “Typicals,” must be validated for each customer
application by customer’s technical experts. Neither IBM nor Motorola convey any license under their respective intellectual property rights nor the rights
of others. The products described in this manual are not designed, intended, or authorized for use as components in systems intended for surgical implant
into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the product could create a situation
where personal injury or death may occur. Should customer purchase or use the products for any such unintended or unauthorized application, customer
shall indemnify and hold IBM and Motorola and their respective officers, employees, subsidiaries, affiliates, and distributors harmless against all claims,
costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with
such unintended or unauthorized use, even if such claim alleges that Motorola or IBM was negligent regarding the design or manufacture of the part.

Motorola and @ are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

The PowerPC name, the PowerPC logotype, PowerPC 601, PowerPC 603, PowerPC 603e, PowerPC 604, and PowerPC 604e are trademarks of
International Business Machines Corporation used by Motorola under license from International Business Machines Corporation.

© Motorola Inc. 1998. All rights reserved.
Portions hereof © International Business Machines Corp. 1991-1998. All rights reserved.




CONTENTS

Paragraph : Page
NumgerIO Title Numb%r
About This Book
U o [T o ot TR XXIV
OrQANIZALION. ...ttt e et e et e e e e e e e e e e e e e e XXV
YU oo [=1Sy (=To [ m == o 1 Vo SR XXVi
General Information xxvi
PowerPC Documentation xxvi
(©70] 0177T o1 1 0] o F TSP PP PP XXViii
Acronyms and ADDIeviatioNsS ..........couuiiiiiiiiii e XXiX
Terminology CONVENTIONS .......cooiiiiiiiiii et XXXii
Chapter 1
Overview
1.1 OVEBIVIBW ...ttt et e e e ettt e s e e e e e e e e e e e eeeeeesasssssn s naaeaeeeaeeaneeeeennnnnnes 1-1
1.2 PowerPC 604e MIiCroproCessor FEAtUIrES.........ccccvvvviieeiiiiiiiiiiiiee e e e e e e e e e, 1-2
1.3 PowerPC Architecture Implementation ... 1-8
1.3.1 FRATUIES ... ettt e e eaans 1-9
1.3.2 PowerPC 604e Processor Programming Model.............cccoeeeiiiiiiiiiiiiiiiinnn, 1-10
1.3.2.1 Implementation-Specific REQISTErS.........ooiiiiiiiiiiiieeee e 1-10
1.3.2.2 Support for Misaligned Little-Endian ACCESSES.........ceeeevvvvviiiviieiiininnnns 1-12
1.3.2.3 INSTFUCTION SEL....iiiiiiiiieeee e e e e e e e e e e e e e 1-13
1.3.3 Cache and Bus Interface Unit Operation ..........ccccceeeeeeiiiiiiiiiiiciciiveeeee 1-14
1331 8ISy 0Tt 1) o = T o = 1-14
1.3.3.2 Data CaAChE .. ..ot a e e e 1-15
1.3.3.3 Additional Changes to the Cache ... 1-15
1.3.4 EXCEPUIONS. ..ot 1-16
1.35 MeMOTrY MaNAgEMENT.......uuiiiiiii it e et e e e e ean e ee 1-21
1.3.6 INSTFUCTION TIMING .o e e e e e 1-21
1.3.7 Y (o [ b= LI =2t ] o 11 [0 1-24
1.3.8 System Interface OPEeration .............ooovviiiiiiiiiiiiii e 1-27
1.3.9 PerformanCe MONITON ..... ... 1-28
Chapter 2
Programming Model
2.1 RO STET S ... e e e e e e e e 2-1
211 REGISIEN SeL ... e 2-2
2.1.2 PowerPC 604e-SpecCific REQISTEIS .........uuuiiiiiiiiiiiiieee e 2-8
2121 Instruction Address Breakpoint Register (IABR).......cccoeevviiieiiiiiiiieeiiiiiiens 2-9
Contents iii



CONTENTS

Paragraph , Page
Number Title Number
2.1.2.2 Processor Identification Register (PIR) .......cooovviiiiiiii i, 2-9
2123 Hardware Implementation-Dependent Register O............ccccccviiiviviiinennen. 2-10
2124 Hardware Implementation-Dependent Register 1 (HID1) ........cc.cccovveeee 2-12
2.1.25 Performance Monitor REQISIEIS........ccuuiiiiiiiiiiii e 2-12
21251 Monitor Mode Control Register 0 (MMCRO) .......covvvviiiiiiiiiiiiiiiiiis 2-13
2.1.25.2 Monitor Mode Control Register 1—MMCRL1.............cccovvvvvvvviviiiinnn, 2-14
2.1.25.3 Performance Monitor Counter Registers (PMC1-PMC4) .................... 2-15
21254 Sampled Instruction Address Register (SIA) ......ovvvviiiiiiiiiiies 2-20
2.1.255 Sampled Data Address Register (SDA).......ccoovvviiiieiiiiiiiiiiiee e, 2-21
2.1.3 RESEE SOUINGS . vvu it e e aaan 2-21
2.2 Operand CONVENTIONS. .........oiiiiiiiiiit e e e e e r e e e e e e ae s 2-22
221 Floating-Point Execution Models—UISA.............ouviiiiiiiiiie e 2-22
2.2.2 Data Organization in Memory and Data Transfers...........ccocovvvviiiiiiieeieiinnnnn. 2-23
2.2.3 Alignment and MiSaligNed ACCESSES........uuuuiiiiiiiiiiiiiiieeee e 2-23
224 Support for Misaligned Little-Endian ACCESSES..........ccvvvvvvvreiiiiiiieieeaeeenn, 2-23
2.2.5 Floating-Point OPerand............coooioiiiiiiiiii e e e eaaes 2-24
2.2.6 Effect of Operand Placement on Performance ...........cccceeeeeveieiiiieenninnnnnnnns 2-26
2.3 INSIrUCLION SEt SUMMAIY ... .cii i i e e e e e eaes 2-26
231 Classes Of INSIIUCTIONS ......eueiiiiieee s 2-28
2311 Definition of Boundedly Undefined ... 2-28
23.1.2 Defined INSruction ClasS ..........coooiiiiiiiiiiiiii e 2-28
2.3.1.3 [llegal INStrUCtiON ClaSS .....iiiiiiiiiii e 2-29
23.14 Reserved INSruCtion Class ........ccovveeee i 2-30
2.3.2 AdAresSSINg MOUES .......ccoooiiiieeii et e e e e e e e e e e e e eeeeeraanne 2-30
2.3.2.1 MeEMOIY AAAIrESSING . .coveviiie e e e e ars 2-30
23.2.2 MEMOIY OPEIANGS ....coeeiiiiiiiiiii ittt e e e e e e e e e e 2-30
2.3.2.3 Effective Address CalCulation ...............eeeeeeiiiiiiiiieiii e 2-31
2.3.2.4 SYNCAIONIZALION .....coiiiiii e 2-31
23241 Context SYNCAroNIZAtiON ..........oooviiiiiiiiii e 2-31
2.3.24.2 Execution Synchronization................eeuuiiiiiiiiiie e 2-32
2.3.2.4.3 Instruction-Related EXCEPLIONS........cccuviiiiiiiiiiiiie e 2-32
2.3.3 INSLIUCLION SEt OVEIVIEW ...euiiiiiii et e e e e s 2-33
234 POWErPC UISA INSIUCHIONS .....cooiiiiiiiiiiiiiiiieee ettt 2-33
2.34.1 INtEgEr INSIIUCHIONS ... i 2-33
23411 Integer Arithmetic INSIrUCTIONS.........uuviiiiiiiiiiiiiii e 2-33
2.34.1.2 Integer Compare INSrUCLIONS .......ccooeeeeiiiiieeieeeee e e 2-35
2.3.4.1.3 Integer Logical INStrUCHIONS ........ccoviiiiiiii e 2-35
23414 Integer Rotate and Shift INSIrUCHIONS ..........uuviiiiiiiiiiiiiiieieee s 2-36
2.3.4.2 Floating-Point INSIFUCHIONS ........covveiiiiicie e 2-37
23421 Floating-Point Arithmetic INStructions..............ccoovviiiiiiiiiiiei e, 2-37
23422 Floating-Point Multiply-Add INStrUCtIONS ..........eeviiiiiiiiiiiiiiiiiie 2-38
2.3.4.2.3 Floating-Point Rounding and Conversion Instructions .............ccc......... 2-38
23424 Floating-Point Compare INStruCtioNS...........cccovvviiieeiieiiie e, 2-39
iv PowerPC 604e RISC Microprocessor User's Manual



CONTENTS

Paragraph . Page
Number Title Number
2.34.25 Floating-Point Status and Control Register Instructions........................ 2-39
2.3.4.2.6 Floating-Point MOVe INSrUCHIONS .........uvviiiiiiiiiiiieeeeeeee e 2-40
2.3.4.3 Load and Store INStrUCLIONS ........ccoiiiiiiiiiiiiieiiiieee e 2-40
23431 Self-Modifying COUE .......uuueiiiiieeee e 2-41
2.3.4.3.2 Integer Load and Store Address Generation..........cccoovveeeeeeeeeeevveeeeninnnnns 2-41
2.3.4.3.3 Register Indirect Integer Load INStruCtions ............cceeeevvvivvveeiiivinnnnnnn. 2-42
23434 Integer Store INStrUCHIONS.......coooii i 2-43
2.3.4.35 Integer Load and Store with Byte Reverse Instructions...........ccccc....... 2-44
2.3.4.3.6 Integer Load and Store Multiple INStructionsS..........cccccoeeeeeeeiiiivveeiinnnn, 2-44
2.3.4.3.7 Integer Load and Store String INStrUCtiONS...........ueeeiiiiiiieeeeeeeieeeeeeiiiies 2-45
2.3.4.3.8 Floating-Point Load and Store Address Generation..............cccuvvvvveeeeee. 2-47
2.3.4.3.9 Floating-Point Store INStrUCtiONS.......ccoeiviiieeieiieeeeec e, 2-48
2344 Branch and Flow Control INStrucCtions..............euuvuieiiiiiiiieeeeeeeeeeeecceeeeiiiies 2-50
23441 Branch Instruction Address Calculation...........ccccoovvieieeieeieeeveeeeeiiiiiennes 2-50
2.3.4.4.2 Branch INSITUCHIONS ...ttt 2-50
23443 Condition Register Logical INStruCtions............cocevviiiiiiiiiiiiiiieeeeeeeeeeee 2-51
23444 TrAP INSTIUCTIONS ...ttt e e 2-51
2.3.45 System Linkage Instruction—UISA.............oooviiiiiiiiiiee e, 2-52
2.3.4.6 Processor Control INStructionS—UISA .......ueiiiiii 2-52
2346.1 Move to/from Condition Register INStructionsS..........ccccceeveeeeeeeiiiiiinnnne 2-52
2.3.4.6.2 Move to/from Special-Purpose Register Instructions (UISA)............... 2-53
2.3.4.7 Memory Synchronization Instructions—UISA ..., 2-53
2.35 POWEIPC VEA INSIIUCLIONS .....evvviiiiiiieieeeeeeeeeeeeeeeeeeeatiins s s e s e e e e e e eeeeeeeeeannnnnes 2-54
235.1 Processor Control INStruCtioNS—VEA ... 2-55
2.35.2 Memory Synchronization INStructions—VEA ............iiiiiiiiiiee 2-55
2353 Memory Control INStruCtioNS—VEA ........uuiiiiiiiiii 2-56
23531 User-Level Cache InStructionsS—VEA ..o 2-57
2354 Optional External Control INStruCtioNS............uuuvvieiiiiiiieee e 2-59
2.3.6 POWErPC OEA INSIIUCHIONS ...uvviiiieei e e eeeeee et e e e e e e e e e e e e eeeeaeennnnnnns 2-59
2.3.6.1 System Linkage INStructionsS—OEA ... 2-59
2.3.6.2 Processor Control INStructionS—OEA ........uuiiiiiiieeeeeee e 2-59
2.3.6.3 Memory Control INStructionS—OEA ...t 2-61
2.3.6.3.1 Supervisor-Level Cache Management Instruction—(OEA) ................. 2-61
2.3.6.3.2 Segment Register Manipulation Instructions (OEA).......cccoevvveeeeeeennnnee. 2-61
2.3.6.3.3 Translation Lookaside Buffer Management Instructions—(OEA) ....... 2-62
2.3.7 Recommended Simplified MNEMONICS.............oevvviiiiiiiiiie e 2-63
Chapter 3

Cache and Bus Interface Unit Operation
3.1 Data Cache Organization ..........oooooo oo 3-4
3.2 Instruction Cache Organization ............cccccieieiiiiiiiiie e 3-5
Contents %



CONTENTS

Paragraph , Page
Number Title Number
3.3 MMUS/BUS INterface UNIt..........oooiiiiiiiiiiiiieee et eeeeeeaeees 3-6
3.4 Memory CONErenCy ACHIONS .......ccooiiiiiiiiiii et 3-9
3.4.1 PowerPC 604e-Initiated Load and Store Operations.............ccevvvvvvvvviiiieeeeenn. 3-9
3.4.2 General Comments 0N SNOOPING «..vvuuiiiiiiiiiie e 3-10
3.5 Sequential CONSISIENCY .....cuiiiiiiiiieeeei e 3-11
3.5.1 Sequential Consistency Within a Single Processor .........ccccevvvvvvviviiiiiieeeenn. 3-11
3.5.2 Weak Consistency between Multiple Processors ........cccovvevvveiiiiiiicieiiiinneeen, 3-11
3.53 Sequential Consistency Within Multiprocessor SYStems ..........cccceeeeeeeeennnnns 3-12
3.6 Memory and Cache CONEIENCY.........ccoviiiiiiiiiiceee e 3-12
3.6.1 Data Cache Coherency ProtOCOl...........ccuuuiiiiiiiiiiiii e 3-13
3.6.2 Coherency and Secondary Caches............cccciiiiiiiiiiiiiie e 3-15
3.6.3 Page Table Control BitS..........coiiiiiiiiiiiiie e e e e 3-15
3.6.4 MESI State DIagram.........uiiiieiiiiiiie et e e e et e e e e aaa s 3-15
3.6.5 Coherency Paradoxes in Single-Processor SysStems .........ccccceeeeeeeiiiiiiiiiicneee 3-16
3.6.6 Coherency Paradoxes in Multiple-Processor Systems............cccceevvvvevvvvvnnnnns 3-17
3.7 Cache ConfigUIatioN ...........uoiiiiiiiiii e e e e eees 3-17
3.8 Cache Control INSIIUCLIONS .........cooiiiiiieiiiiiieree e e e e e e e 3-18
3.8.1 Instruction Cache Block Invalidatielfi).............ccccovvririiiiiiiiiiiie e, 3-18
3.8.2 INStruction SYNCHrONIZESYNC) ... ...ccviiiiiiii e 3-19
3.8.3 Data Cache Block Touctadpt) and
Data Cache Block Touch for Stomcptst)...........ccuvvvviviiiiiiiiiieeeeeeeeeee, 3-19
3.84 Data Cache Block Set to ZedTlfz).............coveeeiiiiiiiiiiiiieeie e 3-19
3.8.5 Data Cache Block StOMOPST) .........cooovviiiiiiiiiiiiie e 3-20
3.8.6 Data Cache Block FIUSHODT) ........coevvvreiiiiiiie e 3-20
3.8.7 Data Cache Block Invalidat@opi) ..............euvvviiiiiiiieiieeeeieeeeeeeeen 3-20
3.9 BasiC Cache OPerationS ............eeiiiiiiiiiiiiiii e 3-20
3.9.1 CaChe RElOAAS. ........coi i 3-20
3.9.2 Cache Cast-Out OPEratioN .........uuuiiiiiiiiiiie e e 3-21
3.9.3 Cache BIock PUSh Operation ...........ccccuuuiiiiiiiiiiiiiiiieieeeee e 3-21
3.94 Atomic Memory REfEreNCES.........ccovviiiieeee e 3-21
3.9.5 Snoop Response t0 BUS OPErationS ........covvuvuiiiieiieiiii et e e e 3-22
3.9.6 Cache Reaction to Specific Bus Operations .............coocccuivviviiiiiiiiieiiceeeeeeeeen 3-22
3.9.7 Enveloped High-Priority Cache Block Push Operation ...............ccccevvvvvvinnns 3-25
3.9.8 Bus Operations Caused by Cache Control Instructions.............ccccceeeeevvevnnnnn. 3-26
3.9.9 Cache Control INSTIUCLIONS ......coovieie e 3-26
3.10 CACNE ACHIONS ...ttt e e e e e e e e 3-27
3.11 Access to DireCt-Store SEgMENTS.........uuiii i 3-48
Chapter 4

Exceptions
4.1 PowerPC 604e MiCroproCessor EXCEPLIONS..........uuuuuuimiiiiiiiiiiiieieeeee e e 4-2
4.2 Exception Recognition and PriOMtIES ..........oevvvvviiiiiiiiiiee e 4-5
Vi PowerPC 604e RISC Microprocessor User's Manual



CONTENTS

Paragraph . Page
Number Title Number
4.3 EXCEPLION PrOCESSING .. ittt e et e e e e e e e e e e eeaes 4-6
431 Enabling and Disabling EXCEPLIONS .......cuviiiiiiiiieiieeeee e 4-9
4.3.2 Steps for EXCeption ProCeSSING......ciiiiiiii e e e e e e e e e e e eeeeanaaaanees 4-10
4.3.3 SettiNg MSRIRI] ...ttt e e e e e e e e e e e e e e e e e e aann 4-11
4.3.4 Returning from an Exception Handler.............coiiiiiiiiie 4-11
4.4 ProCess SWILCHING ......evveiiiiicee e 4-11
4.5 EXCeption DefiNItIONS .......cooiiiiiiie e 4-12
45.1 System Reset Exception (0X00100) ........uuuuurrermreriiiiiiiaeeeeeeeee e eesssiienneeeeeees 4-13
45.2 Machine Check Exception (0X00200) ..........ceuurruueiiiiieeieeeeeeeeee e 4-14
4521 Machine Check Exception Enabled (MSR[ME] = 1)......ccoevviiiiviirnnniinnnnnn. 4-15
45.2.2 Checkstop State (MSRIME] = 0) ..coooviiiiiiiiiiiiiiiiieeee e 4-16
45.3 DSI Exception (0X00300) .....uuuuuiiieeeieeeeeeeeeeeeeeeeistviisss s e e e e e e e e aeeeeeeeeeesanesnnnann 4-16
45.4 ISI Exception (OX00400)........uuuuuuuaaeeeeeeeeeeeeeeeeeietitttiss s s e e e e e e e e e e aeeeeeeasenennnnns 4-16
455 External Interrupt Exception (OX00500) ........cccoviiiiiiiiiiiiiiiiiiiiiiiieeeee e 4-16
45.6 Alignment Exception (0X00600) ..........uueiiiiiiiieeeeeeeeeeeeeeeeee e e e 4-17
4.5.7 Program Exception (OX00700)........uuuuuummiiiaeeeeeeeeeeeeeeeeeeeiieiies e e e e e e e e e eeeee 4-18
4.5.8 Floating-Point Unavailable Exception (OX00800) .........cccvvviiieieeiiiiiiiiiiiiiens 4-19
45.9 Decrementer Exception (0X00900)..........cccoiiiiiiiiiiiiiiiiiiieee e e e e e e e e ee e 4-19
4.5.10 System Call Exception (OXO0C00) .....coiieiieeeeeeieiieeeeeiiiiiiees e e e e e e eeeeeeeees 4-19
4511 Trace Exception (OXO0D00)........uuuuuruerrieieiiiiieeeeeeeeeeeaeass s eeeeeeeeas 4-19
45.12 Floating-Point Assist Exception (OXO0EQQ) .............uuvuviiiiiiieiieeeeeeeeeeeeeeeeennns 4-20
4.5.13 Performance Monitoring Interrupt (OXO0F00) .........uuiiiiiiieeeeeeieieieeeeeiiiiiiiines 4-20
4.5.14 Instruction Address Breakpoint Exception (0X01300) ........ccevvveiirieeeeennnnnnnnns 4-21
45.15 System Management Interrupt (OX01400) .........uuueeiiieieeeeeeeeeee e 4-21
4.5.16 Power ManagemeNnt ..... ... e 4-21
Chapter 5

Memory Management
5.1 IMIMU OVEIVIBW ... e eeeeeeeeeeeeeeeettees s s e e e e e e e e e e e e e e eeeeaeeaseas s e e e e eeeeeeeaaeeeeeenensnnnnnns 5-2
5.1.1 MEMOTNY AQAIESSING ..ceeveeeeiiiiiii et e s et e e e e e e e e et e et e e e e e e e e e e eaaeeeeesesrsrnnnnes 5-4
5.1.2 MMU OrganiZatiON........coeeeieeiiieiieieieiiiiii e e e e e e e e e e e e e e e e e eeees 5-4
5.1.3 Address Translation MeChaniSMS.........ccoooeeiiiiiiiiiieire e 5-9
5.1.4 Memory Protection Facilities............c.oovvvrviiiiiiiicciee e 5-11
5.1.5 Page History INfOrmation.............ooeiiiiiiiiiiiiiiii e 5-12
5.1.6 General Flow of MMU Address Translation...............cccceeiiiiiiieeeeeeeecieeeeiiines 5-12
5.1.6.1 Real Addressing Mode and Block Address Translation Selection............ 5-12
5.1.6.2 Page and Direct-Store Interface Address Translation Selection............... 5-14
5.1.6.2.1 Selection of Page Address Translation............ccccovvivniiiieiiiiiiviiiieeee 5-16
5.1.6.2.2 Selection of Direct-Store Interface Address Translation....................... 5-16
5.1.7 MMU EXCEPLIONS SUMIMANY ....evvruiiiiiiiieeeeeeeeeeeeeeeeeetieeiiiissa s e e e e e e e e e e eeeeeeeennes 5-16
5.1.8 MMU Instructions and Register SUMMArY ..........cccveeeeeiiiiininiiiiiiiiveeeeeee 5-18

Contents Vii



CONTENTS

Paragraph , Page
Number Title Number
5.1.9 TLB Entry INvValidation..............oiiiiiiiiiiii et 5-20
5.2 Real ADAressing MOGE.........coooiiiiiiii e 5-20
5.3 Block AAress TranSIation............oovviiiiiiiiiiiiiiiiee e 5-20
54 Memory Segment MOEl ...........oiiiiiiiiii e 5-20
54.1 Page History RECOIAING .........cooiiiiiiiiiiii et 5-21
54.1.1 REFEIENCEA Bil....ceiiiiiiiiiieieeee e 5-22
54.1.2 Changed Bit........ooiiiiiiiiie e 5-22
5.4.1.3 Scenarios for Referenced and Changed Bit Recording ..o 5-23
54.2 Page Memory Prote€CtiON ...........uuuuuiiiiiiii e et e e e e e e e e e e e e e eeeananenes 5-24
5.4.3 LI S B B TS T o ] (o o 5-24
5431 TLB OrganiZatiON ........ueeeeeeeiieiiieeeeeeeeeee et e e e e e e e e e e e e e e e 5-25
5.4.3.2 TLB INVAIALION ..ttt 5-26
544 Page Address Translation SUMMaAry........cccooveiiiiiiiiiieeecee e 5-28
5.4.5 Page Table Search OPEration...............eeeeiiiiiiiiiiieeie s 5-30
5.4.6 Page Table Updates ......cooooii i e e 5-34
5.4.7 Segment Register UPatesS .......coouuuiiiiiiiiiiiie et 5-35
5.5 Direct-Store Interface Address Translation ..............ceeviieeieeeeeeeeeeeeee 5-35
55.1 Direct-Store INtErface ACCESSES .. ..cccuuuiiiiiiiiiiiiieteet e e e 5-35
5.5.2 Direct-Store Segment ProteCtion ............uiiiiiiiiiiiiii e 5-36
5.5.3 Instructions Not Supported in Direct-Store Segments............ccoceevcvvvvvrnnnnne. 5-36
554 Instructions with No Effect in Direct-Store Segments ..............cceeeevvvvveeiinnns 5-36
555 Direct-Store Segment Translation Summary FIOW............ccoviiiiiiiiiiiinnee, 5-37
Chapter 6

Instruction Timing
6.1 Terminology and CONVENTIONS........oiiiiiie e e e e s 6-1
6.2 INSErUCtioN TIMING OVEIVIEW.......uuiiiiiiiiiiiiiiiieieee e e e 6-3
6.2.1 PIPEliNG SITUCIUIES ... e 6-5
6.2.1.1 Description of PIpeling Stages........coouiiiiiiiiiiiiiiiiiiiiiee e 6-7
6.2.1.1.1 FEICH StAge ....coeieeeeeee e ——————— 6-8
6.2.1.1.2 DECOAE StAQE .. .ciiiiiii i 6-8
6.2.1.1.3 DISPALCN STAGE ...ttt 6-9
6.2.1.1.4 EXECULE STAQE ..ot 6-9
6.2.1.1.5 COMPIELE StAQE.....ccieieiiii e 6-10
6.2.1.1.6 WIte-BacCK STagE........cooiiiiiiiiiiie e 6-11
6.3 Memory Performance CoNnSIderations ...........ccceveeeeeeeeeeeeriieeeeeieiiirne e e e e eeeeeas 6-11
6.3.1 IMIMU OVEIVIEW...... e e ettt e e e e e e e e e e et e et tb b e e e e e e e e e e e eeees 6-12
6.3.2 CACNE OVEIVIBW.......eiiiitiiiee et e e e e e e e e e e e e e e b e e e e as 6-12
6.3.3 BUS INterface OVEIVIEW ........cooiiiiiiiiiiiiiie ettt 6-14
6.3.4 MEMOIY OPEIALIONS .. .ciiiiiii et e e e e e e e e et e e e e eaaa e 6-14
6.3.4.1 WIHEE-BACK MOME .......vviieiiiiiii e 6-14
6.3.4.2 WIte-Through MOOE.........ovveiiiiie e e e 6-15
viii PowerPC 604e RISC Microprocessor User's Manual



CONTENTS

Paragraph . Page
Number Title Number
6.3.4.3 Cache-INhibited MOAE .......ccooiiiiie e 6-15
6.4 TiMING CONSIAEIALIONS......cciiiiiiieeieee i 6-16
6.4.1 General INStrUCION FIOW .........uuiiiiiiiiiiiiiieicee e 6-16
6.4.2 Instruction FEtCh TIMING .....ouuviiiiiiii e 6-17
6.4.2.1 Cache Hit TiIMing EXAMPIE .......uuuiiiiiiiiiiiiieeeeeeeee e 6-17
6.4.2.2 Cache Miss Timing EXample...........uuueiiiiiiiiiiiiieie e 6-21
6.4.3 (O Tod g [0 N g o1 (= 11 T0] o 1SS 6-23
6.4.4 BranCh PrediClion .............eiiiie e e e e e e e 6-23
6.4.4.1 Branch Timing EXamMPIES ........coovvviiiiiiiiiieeee e 6-24
6.44.1.1 Timing Example—Branch Timing for a BTAC Hit.........ccccoooeeeiiinine. 6-24
6.4.4.1.2 Timing Example—Branch with BTAC Miss/Decode Correction......... 6-25
6.4.4.1.3 Timing Example—Branch with BTAC Miss/Dispatch Correction....... 6-27
6.4.4.1.4 Timing Example—Branch with BTAC Miss/Execute Correction........ 6-27
6.4.5 SPeCUIAtiVE EXECULION.....cciiiiiiii ittt 6-28
6.4.6 Instruction Dispatch and Completion Considerations............cccceeeeeeeeeeeeneenn... 6-29
6.4.6.1 Rename RegisSter OPeratioN ........ccoouveeeeeeeeiiieeeeeeeiiiiiie e e e e e e e e e e eeeeeeeeeens 6-30
6.4.6.2 Execution Unit CONSIAEratiONS ..........uuuueiiiiiiieeeeeeeeeeeeeeeeieiininnee e e e eeeeeaes 6-32
6.4.7 INStruction SerialiZation ............oooiiiiii e 6-32
6.4.7.1 Dispatch Serialization MOE.............uuuueiiiiiiiiieeieeee e 6-33
6.4.7.2 Execution Serialization MOUe.........cccoeeeeiiiiiieeeeeires e 6-33
6.4.7.3 Postdispatch Serialization Mode................iiiiiiiiiiiie e 6-33
6.4.7.4 Serialization of String/Multiple INStrUCtioNS ...........cccoevviiiiieeiiiieeeeiiiies 6-34
6.4.7.5 Serialization of INPUI/OULPUL ......eueeiiiiiiiiiiieieeeeee e 6-34
6.5 EXecution UNit TIMINGS .......ooiiiiiiiiiiies e s e e e e e e e e e e e eeeeeanenes 6-34
6.5.1 Branch Unit INStruction TIMINGS ......cooeeiiiiiieeieiee e 6-34
6.5.2 Integer Unit INStruction TiMINGS .......cuuueiiiiiiiiiiiiieieeeee e 6-34
6.5.3 Floating-Point Unit InStruction TIMINGS..........covvviiiiiiiiiiiieeeeeeeeeeee e 6-36
6.5.4 Load/Store Unit INStruction TIMINGS .......coovviiiiiiiiiiiiiiaaeee e e e eeeeeeeeeeieeeinnens 6-38
6.5.5 isync, rfi, andsc INStruction TIMINGS........coovviviiiieeiiirerre e e e e e 6-40
6.6 Instruction Scheduling GUIdElINES............uuiiiiiiii i, 6-41
6.6.1 Instruction DISPatCh RUIES........cooiiiii e 6-41
6.6.2 Additional Programming Tips for the PowerPC 604e Processor .................. 6-42
6.7 INStruction LatencCy SUMMAIY .........uuuuuiiiiiieieeeeeeeeee e s e e e e e e e e e e e eeeeeananes 6-44
Chapter 7

Signal Descriptions
7.1 SigNal CoNFIQUIATION .....eeiiiiiiiiiee e e e e e s 7-2
7.2 S (o[ = LI D= od ] 11 0] o - UPRURRR 7-3
7.2.1 Address Bus Arbitration Signals..............oooviveiiiiiiiiiiii e 7-4
7.2.1.1 Bus REQUESBR)—OULPUL ......cc.eeeiieiieeieeetie ettt etee et 7-4
7.2.1.2 BUS GrantBG)—INPUL ......cc.eoiiiuiiieeie ettt 7-4
Contents iX



CONTENTS

Paragraph , Page

Number Title Number

7.2.1.3 Address BUS BUSABB) ..........cooiiiiiiee ettt evee e seaae e 7-5
7.2.1.3.1 Address Bus BUSHEBB)—OULPUL..........cccccveiieiiieiiecieciiecreecre e, 7-5
7.2.1.3.2 Address Bus BUSHKEBB)—INPUL ...........coovreiieeeiieeeiie e eevee e 7-5
7.2.2 Address Transfer Start SigNalS ........coouuiiiiiiiii e 7-6
7.2.2.1 Transfer StarlT) .....c.ccviiieie e 7-6
7.22.1.1 Transfer StarT8)—OULPUL..........cccveiiiieeeeiie et 7-6
7.22.1.2 Transfer StarTS)—INPUL .........oovieiie e 7-6
7.2.2.2 Extended Address Transfer StIATS) ......oooovvreriiiiiiieeee 7-7
7.2.2.2.1 Extended Address Transfer SAATS)—Output............cceevevvvevvinnnnnns 7-7
7.2.2.2.2 Extended Address Transfer SEATS)—Input .........coooovvviiiiiiniennnnn, 7-7
7.2.3 Address Transfer SIgNAIS ...........uuuuuiiiiiii s 7-7
7.2.3.1 Address BUS (A[J0—=31]) ....ccceeiiiiiiieeeieiiiiiirs e e e e e e e e e e e e e e e ea e 7-8
7.2.3.1.1 Address Bus (A[0-31])—Output (Memory Operations).............cccceuvuen. 7-8
7.2.3.1.2 Address Bus (A[0-31])—Input (Memory Operations) .............ccccuvvvvnee. 7-8
7.2.3.1.3 Address Bus (A[0—31])—Output (Direct-Store Operations)................... 7-8
7.2.3.1.4 Address Bus (A[0-31])—Input (Direct-Store Operations) ............c........ 7-9
7.2.3.2 Address Bus Parity (AP[0—=3]) .....cccoouuumiiiiiiieiee et 7-9
7.2.3.2.1 Address Bus Parity (AP[0—3])—OUtPUL..........cccerrrrrriiriiiiiieie e eeeeee 7-9
7.2.3.2.2 Address Bus Parity (AP[0=3])—INput .........cciiiiiiiiiiiiiieeeeeiiie e, 7-9
7.2.3.3 Address Parity EITOAPE)—OULPUL..........ccecoveieiirieireecie e 7-10
7.2.4 Address Transfer Attribute SIgNalS.........cccooeeeeiiiiiiieeer e 7-10
7.24.1 Transfer Type (TT[0—4]) oo e 7-10
72411 Transfer Type (TT[0—4])—OULPUL .......ooviiiiiiiiiiiieee e 7-10
7.2.4.1.2 Transfer Type (TT[0—4])—INPUL........cooeemrriiiiiiiiee e 7-11
7.24.2 Transfer Size (TSIZ[0=2]) ..uuoeiieiieiee e 7-12
72421 Transfer Size (TSIZ[0—2])—OULPUL.........cccuviiiiiiiiiiiieeeee e 7-12
7.2.4.2.2 Transfer Size (TSIZ[0=2])—INPUL.......cccceeeeiiiiiiieccee e, 7-13
7.2.4.3 Transfer BUISTBST) . ..o 7-13
7.243.1 Transfer BUrsTBST)—OULPUL .........uuuiiiiiiiiiiiiiiiieeee e 7-13
7.2.4.3.2 Transfer BUrsTBST)—INPUL.........coovviiiiiiiiiiieee e 7-14
7.2.4.4 Transfer Code (TC[0—2])—OUtPUL..........uiiiiiiiiiiiiie e 7-14
7.2.4.5 Cache INhibit@)—OUPUL.........ceeiiiiiiiieciece e, 7-17
7.2.4.6 Write-ThroughW/T)—OUtPUL ........c.eeeieieecrie ettt 7-17
7.2.4.7 (][] o= 1] =7 ) TSROSO 7-18
7.24.7.1 GIODAIGBL)—OULPUL.......ovieeiiieieciieie ettt 7-18
7.2.4.7.2 GIODAIBBL)—INPUL ....covveeiiieeciie ettt ettt e e eaee e 7-18
7.2.4.8 Cache Set Element (CSE[O—1])—Output.........ccoeeieiiiiiiiieeieeeiiiei e, 7-18
7.2.5 Address Transfer Termination SigNalS ..........cccociiiiiiiiiiiiieeeee e 7-18
7.25.1 Address AcknowledgBACK)—INPUL............oevvvmiiiiiiiiiee e 7-18
7.25.2 Address RetrARTRY) v 7-19
7.25.2.1 Address RetnARTRY)—OULPUL...........uuiiiiiiiiiiiiieiieeeeeee e 7-19
7.25.2.2 Address RetrARTRY)—INPUL..........ouuviiiiiieiieee e 7-20
7.2.5.3 SHArEATHD)......veectie ettt ettt et te et et aaee e, 7-20
X PowerPC 604e RISC Microprocessor User's Manual



CONTENTS

Paragraph . Page

Number Title Number

7.25.3.1 ShareBHD)—OULPUL ........eeeuieeeeeeeie ettt 7-20
7.25.3.2 SharedSHD)—INPUL.......cceeiiiiieciiecieecie et 7-21
7.2.6 Data Bus Arbitration SignalS ........cccooeeeiiiiiiiiiieece e 7-21
7.2.6.1 Data Bus GranDBG)—INPUL.........c..cooureeiiiieecie et 7-21
7.2.6.2 Data Bus Write ONYDBWO)—INPUL.......cccovviiiiieiiiiiieiiiiiiiiieeeeee 7-22
7.2.6.3 Data BUS BUSYDBB) ......cccvviiiiiieiiiiec et ettt eaae e 7-22
7.2.6.3.1 Data Bus BUSPDBB)—OULPUL ......c..cecueeeuieeieeeeieeeiee et 7-22
7.2.6.3.2 Data Bus BUSIDBB)—INPUL.........ccoeiuiiiiieiiciiecieecte e 7-23
7.2.7 Data Transfer SigNalS.............ueiiiiiiie e 7-23
7.2.7.1 Data Bus (DH[0—31], DLI0—=31]) ..eeeeeeeeeeieiiniiiiiiriiinieiereeeeeeeeeee e e e e e e s e s aennnes 7-23
7.2.7.1.1 Data Bus (DH[0—31], DL[0—31])—Output ........ccceeeerrririiiicnnrrrrrreneee 7-24
7.2.7.1.2 Data Bus (DH[0—31], DL[0—=31])—INput.........cccccmrmrmiiiiiiiiiiiiieeieee e, 7-24
7.2.7.2 Data Bus Parity (DP[O—=7])...uuuuuuuiaaaaaeaeeeeeeieeeeeeiiiiiiiiinss e e e e e e e e eeeeeeennneees 7-24
7.2.7.2.1 Data Bus Parity (DP[0O—7])—OUIPUL ..........uuuriiiiiiiiiiiiieiieeeeeeee e 7-24
7.2.7.2.2 Data Bus Parity (DP[O—=7])—INpuUt.........ccoeeeiiiiiiiiiie e 7-25
7.2.7.3 Data Parity ErTODPE)—OULPUL ......ccveeeeeeeeieecieecie et 7-25
7.2.7.4 Data Bus Disabl®BDIS)—INPUL .........coooeriiiiiiiiieeeeeceee e 7-26
7.2.8 Data Transfer Termination SigNalS..........ccccooeeeeeiiiiiiiiiiiiie e, 7-26
7.2.8.1 Transfer Acknowledg@ A)—INPUt .........ccooooiiiiiiiieeee e, 7-26
7.2.8.2 Data RetryRTRY)—INPUL .....coooriiiiiiiie e 7-27
7.2.8.3 Transfer Error Acknowledg@HEA)—INPUL .........ccceeveeeeeieieeciee e 7-27
7.2.9 System Interrupt, Checkstop, and Reset Signals ...........cccceeiiiiiiniiiiiiiiiiiiieinns 7-28
7.2.9.1 INterTUPLINT)—INPUL. ..ottt 7-28
7.2.9.2 System Management InterrUMI)—INPuUL ...........cocvveeeiieeicreeecieeeeeieenn 7-29
7.2.9.3 Machine Check InterruCP)—INPpuUL.........c..cooueeeieeieeeiece e 7-29
7.29.4 Checkstop INPEKSTP_IN)—INPpUL.....coooriiiiiiieeee e 7-30
7.2.9.5 Checkstop OutpuUEKSTP_OUT)—OUtpUL.........coeviriiiiiiiiiece e, 7-30
7.2.9.6 RESEE SIGNAIS....euiiiiiii e 7-30
7.2.9.6.1 Hard ReESEHRESET)—INPUL ........uuiiiiiiiiiiiiiiiiieceeeee e 7-30
7.2.9.6.2 Soft ReSEBRESET)—INPUL ......vvviiiiiiiiie e 7-31
7.2.10 Processor Configuration SignalsS...........coooviiiiiiiiiiiiii e 7-31
7.2.10.1 Drive Mode (DRVMOD)—INPUL........ccooiiiiiiiiiiiiiieeeeeeee e 7-31
7.2.10.2 Timebase Enable (TBEN)—INPUL.........ccoooiiiiiiiiiiiee e, 7-31
7.2.10.3 ReservatiomRERV)—OULPUL .........coeiiiiiiiiiiiiiee e 7-32
7.2.10.4 L2 Intervention (L2_INT)—INPUL.......ccoiiiiiiiiiiiiiieeeeeeeeeee e 7-32
7.2.10.5 RUN (RUN)—INPUL .. a e 7-32
7.2.10.6 Halted (HALTED) —OULPUL.........uuiiiiiiiiiiiieiiciieee e 7-33
7.2.11 COP/SCAN INTEITACE.......iiieeeeeeeeiiiee et e e e e e e e e e e e e eeeeeeeaennnes 7-33
7.2.12 (04 (o Tod 1S T [ =1 LSRR 7-34
7.2.13 Power ManagemeNnt ..o 7-34
7.2.13.1 State Transition from Normal Mode to Doze Mode..........cccccvvvveiiiieennnnn. 7-35
7.2.13.2 State Transition from Doze Mode to Nap Mode ..........cccceevvieeiiiieeenennnnne, 7-35
7.2.13.3 State Transition from Nap Mode to Doze Mode ...........cceeeeiiiiiiieeieiieneeeee, 7-35
Contents Xi



CONTENTS

Paragraph , Page
Number Title Number
7.2.13.4 State Transition from Nap Mode to Normal Mode ............cccceveeiieiiinnnnnnn. 7-35
7.2.13.5 State Transition from Doze Mode to Normal Mode............ccccciiiiennennn. 7-36
7.2.13.6 System Clock (SYSCLK)—INPUL...........uuuviiiiiiiiieee e 7-36
7.2.13.7 Test Clock (CLK_OUT)—OULPUL........iiiiiieiiiiceceeeees e 7-36
7.2.14 ANAlog VDD (AVDD)—INPUL ...ttt 7-37
7.2.15 VOLTDETGND Signal (BGA Package Only).........coovvvvviviieiiiiiiiiiieeeeeeeeeee, 7-37
7.2.16 PLL Configuration (PLL_CFG[0-3])—INput .........ccccevrmmiiiiieeiriiiiii e, 7-37
Chapter 8
System Interface Operation

8.1 OVBIVIBW ...ttt ettt e s e e e e e e e e e e e e e e e eeeaeast s e e e e e eeeeeeeeeeeeneennnnes 8-1
8.1.1 Operation of the Instruction and Data Caches..............cceeeeiiiiiiieeeeeeeeeeeeeiiiiens 8-2
8.1.2 Operation of the System INterface ... 8-4
8.1.3 DIrECE-StOIE ACCESSES ... i i e ieieeee ettt e e e e e e e e ettt e e e e e e e aeaeeeaes 8-5
8.2 MemOry ACCESS PrOtOCOL..........uuuiiiiiiiiii et e e e e e e e e e e e e eaeeeeeaannes 8-6
8.2.1 Arbitration SIgNaAlS.........ovuiiiii 8-7
8.2.2 Address Pipelining and Split-Bus Transactions................cccccuvviiiiiiiieieeeeeeeeenn. 8-9
8.3 AdAreSS BUS TENUIE ...ttt e e e e e e e e e e e e 8-10
8.3.1 Address BUs ArDITFAtION .........ueeeiiiiiiee e 8-10
8.3.2 FNe [0 LTS I = T £ = PP 8-12
8.3.2.1 AdAreSS BUS Parily .....cccooeiieiiiieeeeeeeiie e e e e e e e 8-13
8.3.2.2 Address Transfer Attribute Signals ..o, 8-13
8.3.2.21 Transfer Type (TT[0—4]) SIgNAIS ......ouiiiiiiiiiiiiiie e 8-14
8.3.2.2.2 Transfer Size (TSIZ[0-2]) SIgNalS .........ouvvvvviiiiiiiiieeeeeeeeeeeeeeen 8-14
8.3.2.3 Burst Ordering During Data Transfers ..........ccccoeeiiiiviiiiiie e, 8-14
8.3.24 Effect of Alignment in Data Transfers .........cccccvvviiiiiiiiiiiiie 8-15
8.3.24.1 Alignment of External Control INStructions ..............cevvvvviiiiiiiiieeeeeeenn, 8-17
8.3.25 Transfer Code (TC[0-2]) SIgNaAIS .......ccuvuiiiiiiiiiiiie e 8-18
8.3.3 Address Transfer Termination ...............uuvuueiiiiiiiee s 8-19
8.4 Data BUS TENUIE ......ueiiiiieeiiee et e e e e e e e e e e e e nn e e 8-20
8.4.1 Data BUS ArDITratiON ......eeeeiiiiiieieeee e eeeeeeaaaee 8-21
84.1.1 Effect oARTRY Assertion on Data Transfer and Arbitration................. 8-22
8.4.1.2 USING thOBB SIgNal .......veeevieeiiee ettt 8-23
8.4.2 Data BUS WIIE ONIY...... i e e e eaaaaas 8-24
8.4.3 [z L= T =1 ] (] RSP RURRTR 8-24
8.4.4 Data Transfer TermiNatioN...............ue e 8-25
8.4.4.1 Normal Single-Beat Termination .............ccoeiieiiiiiiiiiiee e 8-26
8.4.4.2 Data Transfer Termination Due t0 @ BUS EITOr ........ccooovviieieeiiiiiiiieiiiiiinns 8-29
8.4.5 Memory Coherency—MESI ProtoCol .........cccooviiiiiiiiiiiiieeeeeee e 8-30
8.5 TIMING EXAMPIES ... e 8-33
8.6 DIreCt-Store OPEratiON..........coeiiiiiiiiiiii et 8-39
8.6.1 DireCt-Store TranSACHONS ........ccocuiiiiiiiiiiiii e e e 8-41
Xii PowerPC 604e RISC Microprocessor User's Manual



CONTENTS

Paragraph . Page
Number Title Number
8.6.1.1 StOre OPEIALIONS ...t e e e e e e aeaaas 8-42
8.6.1.2 (=Tl @ o 1] =11 (o] 0 S TSP PPPPPPPR 8-42
8.6.2 Direct-Store Transaction Protocol DetailS.............ceviiiiiiiiiiiiiiiie, 8-43
8.6.2.1 PACKET Ottt a e e e e e e e e eaaarne 8-44
8.6.2.2 = 03 (= PSPPSR 8-45
8.6.3 FL@ R LT o] |V @ 0 1= = 1[0 SO 8-45
8.6.4 Direct-Store Operation TIMING ..... ..ottt e e e e e e eeeeeeeeeee 8-47
8.7 Optional BuS COoNfIQUIAtIONS .......cueiiiiiiiiaeeieiiei et e e e e e 8-49
8.7.1 Data Streaming MOE ........uuuiiiii e 8-49
8.7.1.1 Data Streaming Mode Design Considerations................uuuvveeiiiiiiinneeeeeeennn. 8-51
8.7.1.2 Data Streaming in the Data Streaming MOde .............uvvieeiiiiiiiiiieiinnnnnnnns 8-51
8.7.1.3 Data Bus Arbitration in Data Streaming Mode.................ceeevvvivvvvinnnns 8-52
8.7.14 Data Valid Window in the Data Streaming Mode..............ccceovvvveviiiiinnnnns 8-52
8.7.2 NO-DRTRY MOUE ....uvtiiiiiiiiiiiiiiiieee et e e e e e e e e e e e e e e e e 8-53
8.8 Interrupt, Checkstop, and Reset Signals .............ooevviviiiiiiiiiii e, 8-54
8.8.1 EXternal INTEITUPLS .. ..ot e e e e e e e e e e e eeeeeneees 8-54
8.8.2 CRECKSIOPS - 8-54
8.8.3 RESET INPULS. ... et e et e et e e e e e e aee 8-54
8.84 PowerPC 604e Processor Configuration during HRESET ............oovvviiiennn. 8-54
8.9 Processor State SIgNAIS .......uueiiiiiiiiiiiiiie e 8-55
8.9.1 Support for thievarx/stwex. Instruction Pair.............oooevvviiiiiiiiiieeeeeeeeee, 8-55
8.10 IEEE 1149.1-Compliant INterface ........cooooiiieiiiiiiiieeeeece e 8-55
8.10.1 IEEE 1149.1 Interface DeSCHPLON .........uuuriiiiiiiiiiiiiiiiieee e 8-55
8.11 Using Data BUuS WItE ONIY .....uueiiiiiii e 8-56
Chapter 9

Performance Monitor
9.1 Performance Monitor INTEITUPL.........uue e 9-2
9.1.1 Special-Purpose Registers Used by Performance Monitor................ccevvvvvvnnns 9-2
9.1.1.1 Performance Monitor Counter Registers (PMC1-PMC4) .........cccccevvvvvnnnnnn 9-3
9.1.1.2 SIA aNd SDA REQISIEIS ..ottt e e e e e e e e e eeeeeeeeenees 9-9
9.11.21 Sampled Instruction Address Register (SIA) ... 9-9
9.1.1.2.2 Sampled Data Address Register (SDA)........ccoovviiiiiiiiiieei e 9-9
9.1.1.2.3 Updating SIA and SDA ......ueioi e 9-10
9.1.1.3 Monitor Mode Control Register 0 (MMCRO) .........uuuviiiiiiiiiiiiiiieeeeeeeeees 9-10
9.1.1.3.1 Monitor Mode Control Register 1—MMCR1...............oovvvvviiiviiinnn, 9-12
9.1.2 [NV o1 @ 10 o] 1] o [P PP 9-12
9.1.2.1 V=T o1 ST =1 [T o 1o o [ 9-13
9.1.2.2 TRIESNOIA EVENTS ...ttt 9-13
9.1.2.2.1 Threshold ConditionS ...........oooviiiiiiii e 9-14
9.1.2.2.2 Lateral L2 Cache INtervention...........ccovvvviiieeeuiiiiiiiiiieee e e e e eeeeeeeeeeeenneens 9-14

Contents Xiii



CONTENTS

Paragraph , Page
Number Title Number
9.1.2.2.3 LAY =1 11 T 1 PSP
9.1.2.3 NONthreshold EVENES.........iiiiieee e

Appendix A

PowerPC Instruction Set Listings

Al Instructions Sorted by MNEMONIC..........coooiiiiiiiiieeeeeee e
A.2 Instructions Sorted by OPCOUE.........ccoviiiiiieieicrr e
A3 Instructions Grouped by Functional Categories ...........cccccceeiieeeveviiii e,
A4 Instructions Sorted by FOIM.........coo e
A5 INSLrUCtION Set LEJEN ......ceeeiiiiiiiccee e e e e e e e e e e e e e e eaeeannees

Appendix B

Invalid Instruction Forms

B.1 Invalid Forms Excluding Reserved Fields..........ccccovvviiiiiiiiii e,
B.2 Invalid Forms with Reserved Fields (Bit 31 EXCIUSIVE)...........cccevvviiiiiviinnnnnnn.
B.3 Invalid Form with Only Bit 31 Set........oooiiiiiiiii e
B.4 Invalid Forms from Invalid BO Field ENcodingS ..........ccooevvvviiiiiiviiiiiiiiee e

Appendix C
PowerPC 604 Processor System Design and Programming Considerations

C.l PowerPC 604 Programming MOdel...........ccooiiiiiiiiiiiiiiiiee e
Cl1 REGISTEI SO ..ottt
C.1l2 Operand CONVENTIONS .........uuuiiiiiiiiiiiiiiee e eaaaeeee s
C.2 Cache and Bus Interface UNit............eeeeiiiiiiiiiiii e
C.3 (o= 011 0] 1SR
C.4 Memory Management UNit...........ooooiiiiiiiiiiiiiee e
C.5 1S3 (0 T 1T T T 211 o PRSP
C.6 Y [0 = 1R
C.7 System INterface OPEratioN...........coouiiiiiiiiiiii e
C.8 Performance MONITOT ..........uuuuiiiiiiiiiiiiiiee e e e e e

Glossary of Terms and Abbreviations

Index

Xiv PowerPC 604e RISC Microprocessor User's Manual



Figure
Number

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6
Figure 1-7
Figure 1-8
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 4-1
Figure 4-2
Figure 4-3
Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7
Figure 5-8
Figure 5-9
Figure 5-10
Figure 5-11
Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 6-5
Figure 6-6
Figure 6-7

ILLUSTRATIONS

. Page

Title Number
CBIOCK DIagQram ... 3. 1-
. Programming Model—PowerPC 604e Microprocessor Registers..................... 1-11
. Big-Endian and Little-Endian Memory Mapping ............eeeeeeeeeeeeeeeeennnninnnnnnnns 1-13
. Cache Unit OrganiZation ............cceoeiiiiiiieeeee e e e e e e 1-14
B T oL T[S BT o [ = o O 1-21
. Block Diagram—Internal Data Paths..............cccuuiiiiiiiiiiii e 1-23
. PowerPC 604e Microprocessor Signal GroUPS..........covvveevvviviiiiiiiiieeeeeeeeeeaeeeee 1-25
c SYSIEM INTEITACE ... {...... 1-2
. Programming Model—PowerPC 604e Microprocessor Registers....................... 2-3
. Instruction Address Breakpoint REQISLEr ............uuuueiiiiiiiiiiieeeeeeeeeeeeee e 2-9
. Processor Identification REQISIEN ..........ueuiiiiiiiei e 2-9
. HID1 Clock Configuration REQISIEN ...........uuuuiiiiiiiiiiiiiiiieeeee e 2-12
. Monitor Mode Control Register 1 (MMCRL)........uciiiiiiiieieeiiieceeeeeee e 2-14
. Big-Endian and Little-Endian Memory Mapping .........ccoovvvviimiviiiniiininneeeeeeeeen 2-24
. Cache Unit Organization ...........oooeiiiiiiiiiiiiii ettt 3-3
. Cache INtegration ...........ooviiiiiiicie e 4....... 3-
. Bus Interface Unit and MMU............coooiiiiiiiiiiii e 3-7
. Memory QUEUE OrganiZatiON ...........uuuuurerrieeeieieeeeeeeeeeee e s s s eeaeaaeeas 3-8
CIMEST STAES ...ttt a e -14...... 3
. MESI Cache Coherency Protocol—State Diagram (WIM = 001)..................... 3-16
. Machine Status Save/Restore RegiSter 0. 4-6
. Machine Status Save/Restore RegiSter L..........ouuuiuiiiiiiiiiiieeeeeeeeeeeeeeeee 4-6
. Machine State RegiSter (MSR) ........uuuuuiiiiiiiiee e eeeeeeeees 4-7
. MMU Conceptual Block Diagram—a32-Bit Implementations.............ccccccceeeeen.n. 5-6
. PowerPC 604e Microprocessor IMMU Block Diagram.............ccccceeeeiiiiieeeeeeennn. 5-7
. PowerPC 604e Microprocessor DMMU Block Diagram .............cccceeeiiiiiieeeenenn. 5-8
. Address TranSIation TYPES......uuuuuiiiiiiiiiiiiie e a e 5-10
. General Flow of Address Translation (Real Addressing Mode and Block) ...... 5-13
. General Flow of Page and Direct-Store Interface Address Translation............. 5-15
. Segment Register and DTLB Organization ................eeeeeeeieieiieeieeeeennnsssnnenns 5-25
. Page Address Translation FIOW—TLB Hit.........cccccoooiiiiiiiiiiiieeece e 5-29
. Primary Page Table Sarch ... 5-32
. Secondary Page Table Search FIOW ... 5-33
. Direct-Store Segment Translation FIOW................iiiiiiiiiiiiieeiccceee 5-37
. Block Diagram—Internal Data Paths............ccooooiiiiiiiiiiii e 6-4
. GPR Reservation Stations and ReSUlt BUSES.............cccciiiiiiiiiiiiiiii 6-5
. PIpEling DIagram........ciei it a e B.eens 6-
. PowerPC 604e Microprocessor Pipelineg Stages ..........ccoooeviiiiiiiiiiiiiiiiiiiiiiieeeeeee 6-7
. Data Caches and Memory QUEUES ........ccuuiiiiieiieiiieeeeeeeeiite e e e 6-13
. Instruction Timing—Cache Hit.............ooooriiiii e 6-18
. Instruction Timing—Instruction Cache Miss (BTAC Hit) ..........cccceviiiiiiiininnns 6-21

Illustrations

XV



ILLUSTRATIONS

Figure . Page

Number Title Number

Figure 6-8 . Instruction Timing—Branch with BTAC Hit ...........coooiiiiiiiiiiiii e 6-24
Figure 6-9 . Instruction Timing—Branch with BTAC Miss/Decode Correction .................. 6-26
Figure 6-10 . Instruction Timing—Branch with BTAC Miss/Dispatch Correction................. 6-27
Figure 6-11 . Instruction Timing—Branch with BTAC Miss/Execute Correction.................. 6-28
Figure 6-12 . GPR RENAME REQISTEN ......uiiiiiiiiiiiiiieeee ettt 6-31
Figure 6-13 . SCIU BIOCK DI@Qram ........cccoviiiiiieiiiiiiiiiisi e e e e e eee e e eeeeeeeaaaaasss s s e e s e e eeeeeaeseeensnnnnns 6-35
Figure 6-14 . MCIU BIOCK DIagram .........cciiiiiiiiiieicceieiiie ettt e e e e e e e e eeaaa e e e eeenes 6-36
Figure 6-15 . FPU BIOCK DIBQIaM ...ttt e e e e e e e e e e 6-37
Figure 6-16 . LSU BIOCK DI@Qram........cccoiiiiiiieiiiiiiiiiiisa s e e e e eeeeeeeeeeeeesasnassnnssssesaeeaeaeeeeseesssnsnnns 6-39
Figure 6-17 . Store QUEUE SITUCLUI .......covuuiiii ittt e e e e e e e e e e e e e e e naa e e 6-40
FIQUre 7-1 . SIGNAI GIOUPS .. ..uuuiiiiiiiiiiiieiee ettt e e e e e e e e e e e e e e e e e e e 7:3........
Figure 7-2 . IEEE 1149.1-Compliant Boundary Scan Interface ..........ccccccceeeeeeeeiviivieeiiiinnnnns 7-33
Figure 7-3 . Power Management STAteS .........c.uuiiiiiiiiiiie e e e e e eens 7-34
Figure 8-1 . BIOCK DIBQIAM .....uiiiiiiiiiiiiiiiei et e e e e e e e e e e e e e e e C T 8-
Figure 8-2 . Timing Diagram LEJEN .........uuuiiiiieii et e e e e e e e e e e e e e 8-5
Figure 8-3 . Overlapping Tenures on the Bus for a Single-Beat Transfer...........ccccccooveeevennnnn. 8-6
Figure 8-4 . ADdress BUS ArDITrAtION ..........oooiiiiiiiiiieiei e 8-10
Figure 8-5 . Address Bus Arbitration Showing Bus Parking...........ccccceeeeviviiviviiiiiiiicieeeeennn 8-11
Figure 8-6 . AdAress BUS TraNSTeI ......ciiiiiiiiii e 8-13
Figure 8-7 . Snooped Address Cycle WRRTRY ..o 8-20
Figure 8-8 . Data BUS ArDItration .............uuviiiiiiiiiii i s e e e e e e e e e e e e e e eeananannnes 8-21
Figure 8-9 . Qualified DBG Generation FOIIOWIAIRRTRY .........ccoiiviiiiiiiiiiiiieeeeeiiiieeee 8-23

Figure 8-10 . Normal Single-Beat Read Termination............ccooouiiiiiiiiiiiiiiiiiiiiiiieeecee e 8-26
Figure 8-11 . Normal Single-Beat Write Termination.............ccoeeviivirieeeeeiiiiiicse e e e e e e eeeeee 8-27
Figure 8-12 . Normal BUrst TranSaCHON ...........iiiiiiiiiiiie et e e e e e eaaaaas 8-27
Figure 8-13 . Termination WitDRTRY ..o 8-28

Figure 8-14 . Read Burst wifhA Wait States an®RTRY .......ccccccovveeeieeecieeecieeeieeenes 3-29

Figure 8-15 . MESI Cache Coherency Protocol—State Diagram (WIM = 001)..................... 8-32
Figure 8-16 . Fastest Single-Beat REAUS ...........uiiiiiiiiiiiiii et 8-33
Figure 8-17 . Fastest Single-Beat WIS .........coovvieiiiiiiiii e e e e e e 8-34
Figure 8-18 . Single-Beat Reads Showing Data-Delay Controls.........cccccooeeevviiiiiiiiiieiiiieneen, 8-35
Figure 8-19 . Single-Beat Writes Showing Data Delay Controls ..............cccccvviiiiiiiiiiieieeeeenn. 8-36
Figure 8-20 . Burst Transfers with Data Delay CONtrolS..............ouuviiiiiiiiiie e 8-37
Figure 8-21 . Use of Transfer Error ACKNOWIEAFER) ...........ccvveeicrerecirieeiieeeieee e, 8-38
Figure 8-22 . DIreCE-StOrE TEINUIES ...ttt e e e e e e e e e e e e e e e e e e e aans 8-41
Figure 8-23 . Direct-Store Operation—Packet O ............ooevvviiiiiiiiiiiie e 8-44
Figure 8-24 . Direct-Store Operation—Packet 1 ..........coouiiiiiiiiiiiiiii e 8-45
Figure 8-25 . 1/O REPIY OPEIALION ......vieeiieieiiieeee ettt e e e e e e 8-46
Figure 8-26 . Direct-Store Interface Load Access EXxample .............eieiiiiiiiiiiieieeiieeeeeeeiiiiinns 8-48
Figure 8-27 . Direct-Store Interface Store Access Example.......ccccoovviviiiiiiiiiiiiiie e, 8-49
Figure 8-28 . Data Transfer in Fast-L2/Data Streaming Mode.............coevviiiiiiiiiiiiiiis 8-52
Figure 8-29 . Data Bus Write Only TranSaCtiON ...........uuuiiiiiiiiieeeeeeeeeceeeeeeeiiniss s e e e e e e e e eeeees 8-57
Figure 9-1 . Monitor Mode Control Register 1 (MMCRL).......ccoooiiiiiiiiiiieiiiiiie e 9-12
XVi PowerPC 604e RISC Microprocessor User's Manual



Figure
Number

Figure C-1
Figure C-2
Figure C-3

ILLUSTRATIONS

. Page
Title Number
. CaChE OrganiZatioN ..........oii i C-4
. PowerPC 604 Microprocessor Block Diagram Showing Data Paths................... C-5
. PowerPC 604 Microprocessor Block Diagram .............cccceeeeiiieeiieeeeeeeceeeeeeiiiiiinns C-7

Illustrations

XVii



ILLUSTRATIONS

Figure : Page
Number Title Number

Xviii PowerPC 604e RISC Microprocessor User's Manual



TABLES

Table . Page

Number Title Number

Table i . Acronyms and Abbreviated TEIMIS ......ccccciiiiiieeiiiiiei e e e e e e e e e eeeeaaans XXIX
Table ii . Terminology CONVENTIONS .......uuuuuiiiiiieeee e ettt e e e e e e e e e e eeeeennenn s XXXil
Table iii . Instruction Field CONVENLIONS ..........uuuiiiiiiiiiee e e e e e e e e e eeeeeenees XXXili
Table 1-1 . Exception ClasSifiCatiONS .............uuuuiiiiiiiiiiiee e e e e e e e e e e e e eeeeenaanens 1-18
Table 1-2 . Overview of Exceptions and ConditioNS ..............ueeuuiiiiiiiieieeeeeeeieceeeeeiiii 1-18
Table 2-1 . MSR[PM] Bl ...ttt e e e e e e e e e e e e e e e e e e e e e aaannns 6...... 2-
Table 2-2 . Instruction Address Breakpoint Register Bit SettingS...........ccceeevvviiiviiiiiiiiicenn, 2-9
Table 2-3 . Hardware Implementation-Dependent Register 0 Bit Settings ..........ccccceeeeeennn. 2-10
Table 2-4 . HIDL Bit SEEHNGS .....uuuuiiiiiiiiiiiiii ittt e e e e e e e e e e e e e e e e e e s e aaans 2-12
Table 2-5 . MMCRO Bit SEHINGS ..vvuuuiiiiiiiiee e e e e e e 2-13
Table 2-6 . MMCRL Bit SEUINGS ....coieeeiieeeeieeiee ittt e ettt a e e e e e e e e e e e e eeeeesannees 2-15
Table 2-7 . Selectable EVENIS—PMCL ........oouiiiiiiiiiiee e e e e e e e e e eeeeenannes 2-15
Table 2-8 . Selectable EVENIS—PMC2 ........ooviiiiiiiiiie ettt 2-17
Table 2-9 . Selectable EVENtS—PMC3 ... i 2-18
Table 2-10 . Selectable EVENtS—PMUCA .........ccooiiiieerere e e e e e e e e e 2-19
Table 2-11 . Settings after Hard Reset (Used at POWEr-On) ............cceeiiiiiiiiiieeeeeeeeeeeeeeeiiniinns 2-21
Table 2-12 . Floating-Point Operand Data Type Behavior ...............iiiiiiiiiieeiiiis 2-25
Table 2-13 . Floating-Point Result Data Type Behavior ............cccccoiviiiiiiiiiiiiiieeieeeeeeeee 2-26
Table 2-14 . Integer ArithmetiC INStIUCIONS ........uueiiiiiii i 2-33
Table 2-15 . Integer Compare INSITUCTIONS .........ooiiiiiiiiiiiiiiirea e e e e e 2-35
Table 2-16 . Integer Logical INSIIUCHIONS ..........ooiiiiiiiiiiiii e 2-35
Table 2-17 . Integer Rotate INSIrUCLIONS .........iiiiiiie e 2-36
Table 2-18 . Integer Shift INSIFUCHIONS .....oeviiiiiiiiiiee e e e e e e eeeeeeeeees 2-37
Table 2-19 . Floating-Point ArithmetiC INSIrUCHIONS ..........uuuiiiiiiiiiiiiiiiieee e 2-37
Table 2-20 . Floating-Point Multiply-Add INSrUCLIONS ...........ovvvviiiiiiieiee e, 2-38
Table 2-21 . Floating-Point Rounding and Conversion INStructions .............cccccevvvvvvvviiinnennn. 2-39
Table 2-22 . Floating-Point Compare INSIIUCTIONS ..........coiiiiiiiiiiiiiiiiiiiiere e 2-39
Table 2-23 . Floating-Point Status and Control Register INStructions .............cccccceeevvvvvveennnnns 2-39
Table 2-24 . Floating-Point MOVE INSIIUCLIONS ........iiiiiiiee i e eeeeeeeeeees 2-40
Table 2-25 . Integer Load INSIIUCTIONS .........cooiiiiiiiiiiiiiiie e 2-42
Table 2-26 . Integer Store INSIIUCLIONS ......uuuueiiiiiii e 2-43
Table 2-27 . Integer Load and Store with Byte Reverse INStructions ...........ccccceeeeveeeeeeeeenennee. 2-44
Table 2-28 . Integer Load and Store Multiple INSrUCHONS .......covvvviiiieriiiiiiiiieee 2-45
Table 2-29 . Integer Load and Store String INSrUCLIONS ..........vuviiiiiiiiiiiieeeeeeeeeeeeee 2-46
Table 2-30 . Floating-Point Load INStIUCIONS .........uuuiiiiiiiiiee e 2-47
Table 2-31 . Floating-Point StOre INSIrUCTIONS .........uviiiiiiiiiieeeeeeeee e 2-48
Table 2-32 . Store Floating-Point Single BENAVION .............uuviviiiiiiiiiiiieeeeeeeeeeeee 2-48
Table 2-33 . Store Floating-Point Double BENAVIOr ........cccoooeiiiiiiiiiii e 2-49
Table 2-34 . Branch INStIUCHIONS.........coovviiiiiiiiiiie e e e e e e e e e e e eeeeaanees 1. 2-5
Table 2-35 . Condition Register Logical INStrUCLIONS .........cccoeiiiiiiiiiiiiiiieeee e 2-51
Table 2-36 . Trap INSTIUCHIONS. .......ooiiiiii e 5l...... 2
Tables XiX



TABLES

Table . Page

Number Title Number

Table 2-37 . System Linkage INStruCtioN—UISA........ccooiiiiiiii e 2-52
Table 2-38 . Move to/from Condition Register INStrUCHIONS.........ccvvviiiiiiiieieiieiie 2-52
Table 2-39 . Move to/from Special-Purpose Register Instructions (UISA).........ccccceeeeieeeeennnn. 2-53
Table 2-40 . Memory Synchronization INStructions—UISA..........ccoooiviiiiiiiierc e, 2-53
Table 2-41 . Move from Time Base INStrUCHION .........cooviiiiiiiiiiiie e 2-55
Table 2-42 . Memory Synchronization INStruCtioNS—VEA ...........uuuiiiiiiiiieieeeeeeeeeeeeeeeeiiaeinanns 2-56
Table 2-43 . User-Level Cache INSrUCLIONS .......coooiiiiiiiiiiiieiiiiir e 2-57
Table 2-44 . External Control INSIrUCLIONS .........cooiiiiiiiiieee e 2-59
Table 2-45 . System Linkage INStruCtioNS—OEA .........uuuuiiiieiei e e e e 2-59
Table 2-46 . Move to/from Machine State Register INStructions............ccccccceevvieevviicnieeeeeeinnn, 2-59
Table 2-47 . Move to/from Special-Purpose Register Instructions (OEA)...........cccccvvvvviveennen. 2-60
Table 2-48 SPR Encodings for PowerPC 604e-Defined Reg(etéspr) ............ccevvvvenens 2-60

Table 2-49 . Cache Management Supervisor-Level INStruction ...........cccccceeeiiiiiiiiiiiieeeeeeviinn, 2-61
Table 2-50 . Segment Register Manipulation INStrUCLIONS .........coovviiiiieeiiiiiiieeeiie e 2-61
Table 2-51 . Translation Lookaside Buffer Management INStruction.............cccceeeeveeeeeeeennnnee. 2-62
Table 3-1 . Memory Coherency Actions on Load Operations.........cccocovvvvviiinieeeevviiineeeeeeninnn, 3-10
Table 3-2 . Memory Coherency Actions on Store OPerations .............ccceeeeeeieeeeeeeeeeeeeeeeeennns 3-10
Table 3-3 . MESI State DefiNitIONS. .......uuuiiiiiiiiiiiiiiieeee e e e e e e e e e e e e e 3-13
Table 3-4 . Response to BUS TranNSACHIONS .......cccoiiiiiiiiiieiiieiiis e e et eearae e e e eenans 3-22
Table 3-5 . Bus Operations Initiated by Cache Control InStructions...............ccoooeeciivinnnnee. 3-26
Table 3-6 . CACNE ACHONS ....eeiiiiiiiiiiie ettt T.... 3-2
Table 4-1 . Exception ClasSifiCatiONS ..........coiiiiiiiiiiiiic e 4-3
Table 4-2 . Exceptions and ConditioNS—OVEIVIEW ..........cooiiiiiiiiiiiiiiiiiiiieieee e e 4-3
Table 4-3 . MSR Bit SENGS ..oooiiieieeieceieeeee e e ettt s e e e e e e e e e e e e e e eeeeeesessnnnnan 4-7
Table 4-4 . IEEE Floating-Point Exception Mode BitS .........ccovvviiiiiiiiiiiiiiie e 4-9
Table 4-5 . MSR Setting DU t0 EXCEPLION ....cooiiiiiiiiiiiiiiee et 4-12
Table 4-6 . System Reset Exception—Register Settings ........ccccevveeiieeiiiiiiiiieeeiceee e 4-13
Table 4-7 . Machine Check ENable BitS ..........uuuuiiiiiii e 4-14
Table 4-8 . Machine Check Exception—Register Settings ...........coooeeeiiiiiiiiiiiiiiiiieeeeeeeeeeenn 4-15
Table 4-9 . Other MMU Exception ConditioNS ..........coovvviiiiiiiiiiiiiiiee e e 4-16
Table 4-10 . Trace EXCeption—SRRL SEttNQGS ......uuiiiiiiiiiiiii e 4-20
Table 5-1 . MMU Feature SUMMANY .......cooiiiiiiiiiiiiiiiiiaiiiiiiiii ettt e e e e e e e e e e e e s e s s aieneeeeaeeeees 5-3
Table 5-2 . Access Protection Options fOr PAges .......ccooiieiiieiiiiiiiieeeeiieee e ee e 5-11
Table 5-3 . Translation Exception CONAItIONS ..........uuiiiiiiiiiiiiiieeceiiiie e e e e e eeaans 5-17
Table 5-4 . Other MMU Exception Conditions for the PowerPC 604e Processor ................ 5-18
Table 5-5 . PowerPC 604e Microprocessor Instruction Summary—Control MMUs ........... 5-19
Table 5-6 . PowerPC 604e Microprocessor MMU ReQISters .......ccoovvvvveiiiiiiiieveviiiiiieeeeeeiinnn, 5-19
Table 5-7 . Table Search Operations to Update History Bits—TLB Hit Case....................... 5-21
Table 5-8 . Model for Guaranteed R and C Bit Settings ..........covvvviviviiiiiiiiiiie e eeeee e, 5-24
Table 6-1 . Execution Latencies and Throughputs ...........ccccoiiiiiiiiiiie e, 6-7
Table 6-2 . Instruction EXeCULION TIMING ...ccoiiiiiiiiiiiiiiiiiiiiiiii e e 6-45
Table 7-1 . Transfer Encoding for PowerPC 604e Processor Bus Master ...........ccccceceeeennn. 7-11
Table 7-2 . Data TranSTer SIZE .......uuuuuieeiiiiiii s 7-13
XX PowerPC 604e RISC Microprocessor User's Manual



TABLES

Table . Page

Number Title Number
Table 7-3 . Transfer Code Signal ENCOAING .....ccooiiiiiiiiiiiiiiaie e 7-14
Table 7-4 . Data Bus Lane ASSIGNMENTS .........uuuiiiiiiiiiiiiiieeiee e e e e e e e e e e ee e s 7-24
Table 7-5 . DP[0—7] Signal ASSIGNMENLS ......uuuuuiiiiiieiiieeeeeeee et e e e e e e e e e e e e e eeeeanannnns 7-25
Table 7-6 . PLL Configuration ENCOINGS......coiiiiiiiiiiiiiiiiieiiiiiiiise s 7-37
Table 8-1 . Bus Arbitration SIgNalS ............uuuiiiiiiiiiiiiiiiiee e 8-9
Table 8-2 . Transfer Size Signal ENCOAINGS..........covviiiiiiiiiiiiiie e a e 8-14
Table 8-3 . BUISt OrUeIING ....ccooi ittt e e e e e e e e e e eeeeeeenees 15......8-
Table 8-4 . Aligned Data TranSTerS .......oooveiiiiiiiiiiiiee e e e e e e e e e e e e eeeeeaeennne 8-15
Table 8-5 . Misaligned Data Transfers (Four-Byte Examples) ..........coooovviiiiiiiiiiieeeeeeeee, 8-16
Table 8-6 . Misaligned Data Transfer—Three-Byte EXamples ........ccccooeiiiiiiiiiiiiiiiiiiiinnnnnns 8-17
Table 8-7 . Transfer Code ENCOING .....cccuuuuiiiiiiiiiiiiiiie e e e 8-18
Table 8-8 . CSE[0—1] SIgNAIS ....uuuuiiiiiiiie i e e e e e e e aaes 8-32
Table 8-9 . Direct-Store BUS OPEratiONS ........ccooiiiiiiiiiiiiiiiiiaae et e e e e e 8-41
Table 8-10 . Address Bits for I/O Reply OPErations ............ooovioiiiiiiiiiiiiiiiiiieeeeeee e e e e e 8-46
Table 8-11 . Processor Modes Configurable during Assertion of HRESET ........................... 8-55
Table 8-12 . IEEE Interface Pin DeSCIPONS........ccoiiiiiiiiiiiiiiiieie e 8-56
Table 9-1 . Performance MONITOIr SPRS.......uuiiiiiii e 9-3
Table 9-2 . Selectable EVENIS—PMUCL .........uuiiiiiiiiiiiiiiiiee e a e 9-4
Table 9-3 . Selectable EVENIS—PMC2 ........u s 9-5
Table 9-4 . Selectable EVENIS—PMC3 ... ... 9-6
Table 9-5 . Selectable EVENIS—PMUCA .........ouiiiiiiiiiiiiiiieee e 9-7
Table 9-6 . MMCRO Bit SeUINGS ..o i i e eieeeeeeeeeee it e ettt e e e e e e e e e e e e aeeeeeeeneeees 9-10
Table 9-7 . MMCRL Bit SETHNGS .. .uuuuuttiiiiiiiiiiiiiiiie e e e e e e e e e e e e e e e e e s 9-12
Table A-1 . Complete Instruction List Sorted by MNe€mONIC .........cccoeveeiiieeeiiiiiiiie, A-1
Table A-2 . Complete Instruction List Sorted by Opcode ...........ooviiuiiiiiiiiiiiiieeeeeeeeeeeeeeiiiiies A-9
Table A-3 . Integer ArithmetiC INSITUCHIONS.........cooviiiiiiee e A-17
Table A-4 . Integer Compare INSIIUCLIONS ..........ooiiiiiiiiiiiiie e e e e e e A-18
Table A-5 . Integer Logical INSITUCTIONS........uuuuuiiiiiie e e e e e eeeeeeeananes A-18
Table A-6 . Integer Rotate INSIIUCLIONS ..........cooviiiiiiiiiiiiiess e e e e e e e eees A-19
Table A-7 . Integer Shift INSITUCLIONS .........ccooiiiiiiiee e e A-19
Table A-8 . Floating-Point Arithmetic INStrUCLIONS...........coovviiiiiiii e, A-19
Table A-9 . Floating-Point Multiply-Add INSTrUCTIONS ..........cccuiiiiiiiiiiiieeceeee e A-20
Table A-10 . Floating-Point Rounding and Conversion InStructions...............cccccevvvvvvviceennnn. A-20
Table A-11 . Floating-Point Compare INStIUCLIONS ..........cooiiiiiiiiiiiiiiieiee e A-20
Table A-12 . Floating-Point Status and Control Register INStructions............cccccoeeviiiiiiiiinns A-21
Table A-13 . Integer Load INSIIUCLIONS.......ccoiiiiiiiiicie e e e e e A-21
Table A-14 . Integer Store INSITUCLIONS ........uiiiiiiiiiee e e A-22
Table A-15 . Integer Load and Store with Byte Reverse INStruCtionS..........ccccvveeeeeeiniiiininnnne A-22
Table A-16 . Integer Load and Store Multiple INStruCtionS..........ccccevviieiieeieiiiiiieeeee, A-22
Table A-17 . Integer Load and Store String INStrUCIONS........iiiiiiiiie e A-23
Table A-18 . Memory Synchronization NSIFUCHIONS..........covvvviiiiiiiiiiiie e A-23
Table A-19 . Floating-Point Load INStrUCIONS ........ccoiiiiiiiieiiiceeeeeeeccs e A-23
Table A-20 . Floating-Point Store INStrUCIONS..........cooiviiiiiiiiiiiiiiee e A-23
Tables XXi



TABLES

Table . Page

Number Title Number

Table A-21 . Floating-Point MoVve INSIIUCLIONS.........c.uiiiiiiiiieicc e A-24
Table A-22 . Branch INSTIUCHIONS..........ooiiiiiiiiiiiiee e e e e e e e e e e e e eeeeeeeeennnnnes A-24
Table A-23 . Condition Register Logical INStrUCIONS........coeiiiiiieieeieiiiieeeeiirr e A-24
Table A-24 . System Linkage INStIUCHIONS ........cooviiiiiieiceii e A-25
Table A-25 . Trap INSIUCTIONS........ooieiiee e e e e e as 25..... A-
Table A-26 . Processor Control INSIIUCTIONS .........uuuiiiiiiiiiiiiiiiieieie e A-25
Table A-27 . Cache Management INStIUCHIONS ........ccouuuiiiiiiiiiiiiie e a e A-25
Table A-28 . Segment Register Manipulation INStrUCLIONS ...........eiiiiiiiieeeeiiiiieeeeee e A-26
Table A-29 . Lookaside Buffer Management INStrUCLIONS ...........ceviiiiieeeeieieieeeeeeee e A-26
Table A-30 . External Control INSIIUCLIONS .......coiiiiiiiiiiiieeeieeeei e A-26
Table A-B1 . I-FOIM .. — A-27.

Table A-32 . B-FOIM e A-217....
Table A-33 . SC-FOMM e A-27.....
TabIe A-34 . D-FOIM ... e e e A-27....
TaDIE A-35 . DS-FOMM ittt ettt A:29.....
TabIE A-36 . X-FOIM ettt A-29...
LIz (S A o] o SRR A-33....
TabIE A-38 . XIFX-FOIM ..ttt e et e e e e e e e e e e e e e e e s s s e annnes 34.... A-
Table A-39 . XFL-FOIMM. ..o e :34.... A
TabIe A-40 . XS-FOIM ... e e e e e e e e e e e e e e e e e e e aanannn e es A:-35.....
Table A-41 . XO-FOIM ..t r e e e e e e e e e e e e e e e e aaans -35.... A
TaDIE A-42 . A-FOIM ettt A-36...
TabIe A-43 . M-FOIM..iiiei e e e e e e e e e e e e e A-37...
TaDIE A-44 . IMD-FO M ..ottt e e e e e e e e e e e e s e e e eeees 37.... A
Table A-45 . MDS-FOIM ... e e e 71....A-3
Table A-46 . PowerPC INStruction Set LEgeNd.........oooiiiiiiiiiiiiiiiiiiie e A-38
Table B-1 . Invalid Forms (Excluding Reserved FieldS) ........ccccceviiiiiiiiiiiiiiiieeeeee e B-1
Table B-2 . Invalid Forms with Reserved Fields (Bit 31 EXCIUSIVE) ........cccccoevviiiiiiiiiiiieeeeen, B-3
Table C-1 . Hardware Implementation-Dependent Register O Bit Settings .............cccccvvvvnnee. C-2
Table C-2 . MMCRO Bit SEHINGS ....ciiiieeeeeiieeeeee e e e et e s e e e e e e e aaaeeeeeenennnes C-9
XXii PowerPC 604e RISC Microprocessor User's Manual



About This Book

The primary objective of this user’s manual is to define the functionality of the PowerPC
604e™ microprocessor for use by software and hardware developers. Itis important to note
that this book is intended as a companion to PogverPC™Microprocessor Family: The
Programming Environmentgeferred to asThe Programming Environments Manual
contact your local sales representative to obtain a copy. Because the PowerPC architecture
is designed to be flexible to support a broad range of proces$bes,Programming
Environments Manuaprovides a general description of features that are common to
PowerPC processors and indicates those features that are optional or that may be
implemented differently in the design of each processor.

In this document, the term ‘604e’ is used as an abbreviation for ‘PowerPC 604e
microprocessor’. The PowerPC 604e microprocessors are available from IBM as PPC604e
and Motorola as MPC604e.

This document summarizes features of the 604e that are not defined by the architecture.
This document and@ihe Programming Environments Manuhs$tinguish between the three
levels, or programming environments, of the PowerPC architecture, which are as follows:

» PowerPC user instruction set architecture (UISA)—The UISA defines the level of
the architecture to which user-level software should conform. The UISA defines the
base user-level instruction set, user-level registers, data types, memory conventions,
and the memory and programming models seen by application programmers.

* PowerPC virtual environment architecture (VEA)—The VEA, which is the smallest
component of the PowerPC architecture, defines additional user-level functionality
that falls outside typical user-level software requirements. The VEA describes the
memory model for an environment in which multiple processors or other devices
can access external memory, defines aspects of the cache model and cache control
instructions from a user-level perspective. The resources defined by the VEA are
particularly useful for optimizing memory accesses and for managing resources in
an environment in which other processors and other devices can access external
memory.
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» PowerPC operating environment architecture (OEA)—The OEA defines supervisor-
level resources typically required by an operating system. The OEA defines the
PowerPC memory management model, supervisor-level registers, and the exception
model.

Implementations that conform to the PowerPC OEA also conform to the PowerPC
UISA and VEA.

It is important to note that some resources are defined more generally at one level in the
architecture and more specifically at another. For example, conditions that cause a floating-
point exception are defined by the UISA, while the exception mechanism itself is defined
by the OEA.

Because it is important to distinguish between the levels of the architecture in order to
ensure compatibility across multiple platforms, those distinctions are shown clearly
throughout this book.

For ease in reference, this book has arranged topics described by the architecture into topics
that build upon one another, beginning with a description and complete summary of 604e-
specific registers and progressing to more specialized topics such as 604e-specific details
regarding the cache, exception, and memory management models. As such, chapters may
include information from multiple levels of the architecture. (For example, the discussion

of the cache model uses information from both the VEA and the OEA.)

The PowerPC Architecture: A Specification for a New Family of RISC Procedsdires
the architecture from the perspective of the three programming environments and remains
the defining document for the PowerPC architecture.

The information in this book is subject to change without notice, as described in the
disclaimers on the title page of this book. As with any technical documentation, it is the
readers’ responsibility to be sure they are using the most recent version of the
documentation. For more information, contact your sales representative.

Audience

This manual is intended for system software and hardware developers and applications
programmers who want to develop products using the 604e microprocessors. Itis assumed
that the reader understands operating systems, microprocessor system design, the basic
principles of RISC processing, and details of the PowerPC architecture.
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Organization
Following is a summary and a brief description of the major sections of this manual:

Chapter 1, “Overview,” is useful for readers who want a general understanding of
the features and functions of the PowerPC architecture and the 604e. This chapter
describes the flexible nature of the PowerPC architecture definition, and provides an
overview of how the PowerPC architecture defines the register set, operand
conventions, addressing modes, instruction set, cache model, exception model, and
memory management model.

Chapter 2, “Programming Model,” provides a brief synopsis of the registers
implemented in the 604e, operand conventions, an overview of the PowerPC
addressing modes, and a list of the instructions implemented by the 604e.
Instructions are organized by function.

Chapter 3, “Cache and Bus Interface Unit Operation,” provides a discussion of the
cache and memory model as implemented on the 604e.

Chapter 4, “Exceptions,” describes the exception model defined in the PowerPC
OEA and the specific exception model implemented on the 604e.

Chapter 5, “Memory Management,” describes the 604e’s implementation of the
memory management unit specifications provided by the PowerPC OEA for
PowerPC processors.

Chapter 6, “Instruction Timing,” provides information about latencies, interlocks,
special situations, and various conditions to help make programming more efficient.
This chapter is of special interest to software engineers and system designers.

Chapter 7, “Signal Descriptions,” provides descriptions of individual signals of the
604e.

Chapter 8, “System Interface Operation,” describes signal timings for various
operations. It also provides information for interfacing to the 604e.

Chapter 9, “Performance Monitor,” describes the operation of the performance
monitor diagnostic tool incorporated in the 604e.

Appendix A, “PowerPC Instruction Set Listings,” lists all the PowerPC instructions
while indicating those instructions that are not implemented by the 604e; it also
includes the instructions that are specific to the 604e. Instructions are grouped
according to mnemonic, opcode, function, and form. Also included is a quick
reference table that contains general information, such as the architecture level,
privilege level, and form, and indicates if the instruction is 64-bit and optional.

Appendix B, “Invalid Instruction Forms,” describes how invalid instructions are
treated by the 604e.

Appendix C, “PowerPC 604 Processor System Design and Programming
Considerations,” provides a brief discussion of the differences between the 604 and
604e.

This manual also includes a glossary and an index.
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Suggested Reading

This section lists additional reading that provides background for the information in this
manual as well as general information about the PowerPC architecture.

General Information

The following documentation provides useful information about the PowerPC architecture
and computer architecture in general:

* The following books are available from the Morgan-Kaufmann Publishers, 340
Pine Street, Sixth Floor, San Francisco, CA 94104; Tel. (800) 745-7323 (U.S.A)),
(415) 392-2665 (International); internet address: mkp@mkp.com.

— The PowerPC Architecture: A Specification for a New Family of RISC
ProcessorsSecond Edition, by International Business Machines, Inc.

Updates to the architecture specification are accessible via the world-wide web
at http://'www.austin.ibm.com/tech/ppc-chg.html.

— PowerPC Microprocessor Common Hardware Reference Platform: A System
Architecture by Apple Computer, Inc., International Business Machines, Inc.,
and Motorola, Inc.

— Macintosh Technology in the Common Hardware Reference Platfyrdpple
Computer, Inc.

— Computer Architecture: A Quantitative Approa&econd Edition, by
John L. Hennessy and David A. Patterson

* Inside Macintosh: PowerPC System Softwamdison-Wesley Publishing
Company, One Jacob Way, Reading, MA, 01867; Tel. (800) 282-2732 (U.S.A.),
(800) 637-0029 (Canada), (716) 871-6555 (International).

» PowerPC Programming for Intel Programmeby, Kip McClanahan; IDG Books
Worldwide, Inc., 919 East Hillsdale Boulevard, Suite 400, Foster City, CA, 94404;
Tel. (800) 434-3422 (U.S.A.), (415) 655-3022 (International).

PowerPC Documentation

The PowerPC documentation is available from the sources listed on the back cover of this
manual; the document order numbers are included in parentheses for ease in ordering:

* User’'s manuals—These books provide details about individual PowerPC
implementations and are intended to be used in conjunctionigProgramming
Environments Manuallhese include the following:

— PowerPC 602¥ RISC Microprocessor User’'s Manual
MPC604UM/AD (Motorola order #) and MPR604UMU-01 (IBM order #)

— MPC750 RISC Microprocessor User’'s Manual
MPC750UM/AD (Motorola order #)

— PowerPC 620™ RISC Microprocessor User’'s Manual
MPC620UM/AD (Motorola order #)
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* Programming environments manuals—These books provide information about
resources defined by the PowerPC architecture that are common to PowerPC
processors. There are two versions, one that describes the functionality of the
combined 32- and 64-bit architecture models and one that describes only the 32-bit
model.

— PowerPC Microprocessor Family: The Programming EnvironmedRéy 1:
MPCFPE/AD (Motorola order #) and G522-0290-00 (IBM order #)

— PowerPC Microprocessor Family: The Programming Environments for 32-Bit
MicroprocessorsRev. 1: MPCFPE32B/AD (Motorola order #)

* Implementation Variances Relative to Rev. 1 of The Programming Environments
Manualis available via the world-wide web at
http://www.motorola.com/PowerPC/or at http://www.chips.ibm.com/products/ppc.

» Addenda/errata to user’s manuals—Because some processors have follow-on parts
an addendum is provided that describes the additional features and changes to
functionality of the follow-on part. These addenda are intended for use with the
corresponding user’s manuals.

» Hardware specifications—Hardware specifications provide specific data regarding
bus timing, signal behavior, and AC, DC, and thermal characteristics, as well as
other design considerations for each PowerPC implementation. These include the
following:

— PowerPC 603 RISC Microprocessor Hardware Specifications
MPC603EC/D (Motorola order #) and G522-0289-00 (IBM order #)

— PowerPC 603e RISC Microprocessor Family: PID6-603e Hardware
Specifications
MPCG603EEC/D (Motorola order #) and G522-0268-00 (IBM order #)
— PowerPC 603e RISC Microprocessor Family: PID7v-603e Hardware
Specifications
MPCG603E7VEC/D (Motorola order #) and G522-0267-00 (IBM order #)
— PowerPC 603e RISC Microprocessor Family: PID7t-603e Hardware
Specifications
MPC603E7TEC/D (Motorola order #)

— PowerPC 604 RISC Microprocessor Hardware Specifications
MPC604EC/D (Motorola order #) and MPR604HSU-02 (IBM order #)

— PowerPC 604e RISC Microprocessor Family: PID9v-604e Hardware
Specifications
MPCG604E9VEC/D (Motorola order #) and G522-0296-01 (IBM order #)

— PowerPC 604e RISC Microprocessor Family: PID9g-604e Hardware
Specifications
MPCG604E9QEC/D (Motorola order #) and G5522-0319-00 (IBM order #)

— MPC750 RISC Microprocessor Hardware Specifications
MPC750EC/D (Motorola order #)
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Technical Summaries—Each PowerPC implementation has a technical summary
that provides an overview of its features. This document is roughly the equivalent to
the overview (Chapter 1) of an implementation’s user’s manual. Technical
summaries are available for the 601, 603, 603e, 604, 604e, and 620 microprocessors
which can be ordered as follows:

— PowerPC 604e RISC Microprocessor Technical Summary
MPCG604E/D (Motorola order #) and SA14-2053-00 (IBM order #)

PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors
MPCBUSIF/AD (Motorola order #) and G522-0291-00 (IBM order #) provides a
detailed functional description of the 60x bus interface, as implemented on the 601,
603, and 604 family of PowerPC microprocessors. This document is intended to
help system and chipset developers by providing a centralized reference source to
identify the bus interface presented by the 60x family of PowerPC microprocessors.

PowerPC Microprocessor Family: The Programmer’s Reference Guide
MPCPRG/D (Motorola order #) and MPRPPCPRG-01 (IBM order #) is a concise
reference that includes the register summary, memory control model, exception
vectors, and the PowerPC instruction set.

PowerPC Microprocessor Family: The Programmer’s Pocket Reference :Guide
MPCPRGREF/D (Motorola order #) and SA14-2093-00 (IBM order #)

This foldout card provides an overview of the PowerPC registers, instructions, and
exceptions for 32-bit implementations.

Application notes—These short documents contain useful information about
specific design issues useful to programmers and engineers working with PowerPC
processors.

Documentation for support chips—These include the following:

— MPC105 PCI Bridge/Memory Controller User’'s Manual
MPC105UM/AD (Motorola order #)

— MPC106 PCI Bridge/Memory Controller User’'s Manual
MPC106UM/AD (Motorola order #)

Additional literature on PowerPC implementations is being released as new processors
become available. For a current list of PowerPC documentation, refer to the world-wide
web at http://www.mot.com/SPS/PowerPC/ or at http://www.chips.ibm.com/products/ppc.

Conventions

This document uses the following notational conventions:

mnemonics Instruction mnemonics are shown in lowercase bold.

italics Italics indicate variable command parameters, for exarbpterx.
Book titles in text are set in italics.

0x0 Prefix to denote hexadecimal number

0b0 Prefix to denote binary number

XXViii

PowerPC 604e RISC Microprocessor User's Manual



rA, rB

rA|O

rD

frA, frB, frC
frD
REGIFIELD]

0000

Instruction syntax used to identify a source GPR
The contents of a specified GPR or the value 0.
Instruction syntax used to identify a destination GPR
Instruction syntax used to identify a source FPR
Instruction syntax used to identify a destination FPR

Abbreviations or acronyms for registers are shown in uppercase text.
Specific bits, fields, or ranges appear in brackets. For example,
MSRJLE] refers to the little-endian mode enable bit in the machine
state register.

In certain contexts, such as a signal encoding, this indicates a don’t
care.

Used to express an undefined numerical value
NOT logical operator

AND logical operator

OR logical operator

Indicates reserved bits or bit fields in a register. Although these bits
may be written to as either ones or zeros, they are always read as
zeros.

Acronyms and Abbreviations
Table i contains acronyms and abbreviations that are used in this document.

Table i. Acronyms and Abbreviated Terms

Term Meaning
ALU Arithmetic logic unit
ATE Automatic test equipment
ASR Address space register
BAT Block address translation
BIST Built-in self test
BIU Bus interface unit
BPU Branch processing unit
BUC Bus unit controller
BUID Bus unit ID
CAR Cache address register
CIA Current instruction address
CMOS Complementary metal-oxide semiconductor

About This Book
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Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
COP Common on-chip processor
CR Condition register
CRTRY Cache retry queue
CTR Count register
DAR Data address register
DBAT Data BAT
DCMP Data TLB compare
DEC Decrementer register
DMISS Data TLB miss address
DSISR Register used for determining the source of a DSI exception
DTLB Data translation lookaside buffer
EA Effective address
EAR External access register
ECC Error checking and correction
FIFO First-in-first-out
FPR Floating-point register
FPSCR Floating-point status and control register
FPU Floating-point unit
GPR General-purpose register
HASH1 Primary hash address
HASH2 Secondary hash address
IABR Instruction address breakpoint register
IBAT Instruction BAT
ICMP Instruction TLB compare
IEEE Institute for Electrical and Electronics Engineers
IMISS Instruction TLB miss address
[0) Instruction queue
ITLB Instruction translation lookaside buffer
U Integer unit
L2 Secondary cache
LIFO Last-in-first-out
LR Link register

XXX PowerPC 604e RISC Microprocessor User's Manual



Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
LRU Least recently used
LSB Least-significant byte
Isb Least-significant bit
LSuU Load/store unit
MEI Modified/exclusive/invalid
MESI Modified/exclusive/shared/invalid—cache coherency protocol
MMU Memory management unit
MQ MQ register
MSB Most-significant byte
mshb Most-significant bit
MSR Machine state register
NaN Not a number
No-op No operation
OEA Operating environment architecture
PID Processor identification tag
PIR Processor identification register
PLL Phase-locked loop
POWER Performance Optimized with Enhanced RISC architecture
PTE Page table entry
PTEG Page table entry group
PVR Processor version register
RAW Read-after-write
RISC Reduced instruction set computing
RPA Required physical address
RTL Register transfer language
RWITM Read with intent to modify
SDR1 Register that specifies the page table base address for virtual-to-physical address translation
SLB Segment lookaside buffer
SPR Special-purpose register
SR Segment register
SRRO Machine status save/restore register O
SRR1 Machine status save/restore register 1
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Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
SRU System register unit
TAP Test access port
TB Time base facility
TBL Time base lower register
TBU Time base upper register
TLB Translation lookaside buffer
TTL Transistor-to-transistor logic
UIMM Unsigned immediate value
UISA User instruction set architecture
uTLB Unified translation lookaside buffer
uuT Unit under test
VEA Virtual environment architecture
WAR Write-after-read
WAW Write-after-write
WIMG Write-through/caching-inhibited/memory-coherency enforced/guarded bits
XATC Extended address transfer code
XER Register used for indicating conditions such as carries and overflows for integer operations

Terminology Conventions

Table ii describes terminology conventions used in this manual.

Table ii. Terminology Conventions

The Architecture Specification

This Manual

Data storage interrupt (DSI)

DSl exception

Extended mnemonics

Simplified mnemonics

Fixed-point unit (FXU)

Integer unit (1U)

Instruction storage interrupt (ISI)

ISI exception

Interrupt

Exception

Privileged mode (or privileged state)

Supervisor-level privilege

Problem mode (or problem state)

User-level privilege

Real address

Physical address

Relocation

Translation

Storage (locations)

Memory
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Table ii. Terminology Conventions (Continued)

The Architecture Specification This Manual
Storage (the act of) Access
Store in Write back

Store through

Write through

Table iii describes instruction field notation used in this manual.

Table iii. Instruction Field Conventions

The Architecture Specification

Equivalent to:

BA, BB, BT crb A, crb B, crb D (respectively)
BF, BFA crfD, crf S (respectively)

D d

DS ds

FLM FM

FRA, FRB, FRC, FRT, FRS

frA, frB, frC, frD, fr S (respectively)

FXM CRM

RA, RB, RT, RS rA, rB, rD, rS (respectively)
Sl SIMM

U IMM

ul UuiMM

N/ 0...0 (shaded)
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Chapter 1
Overview

This chapter provides an overview of the PowerPC 604e™ microprocessor. It includes the
following:

* A summary of 604e features

» Details about the 604e as an implementation of the PowerPC™ architecure. This
includes descriptions of the 604e’s execution model (that is, the programming
model).

» Adescription of the 604e execution model. This section includes information about
the programming model, instruction set, exception model, and instruction timing.

1.1 Overview

The 604e is an implementation of the PowerPC family of reduced instruction set computer
(RISC) microprocessors. The 604e implements the PowerPC architecture as it is specified
for 32-bit addressing, which provides 32-bit effective (logical) addresses, integer data types
of 8, 16, and 32 bits, and floating-point data types of 32 and 64 bits (single- and
double-precision, respectively). For 64-bit PowerPC implementations, the PowerPC
architecture provides additional 64-bit integer data types, 64-bit addressing, and related
features.

The 604e is a superscalar processor capable of issuing four instructions simultaneously. As
many as seven instructions can finish execution in parallel. The 604e has seven execution
units that can operate in parallel:

* Floating-point unit (FPU)

» Branch processing unit (BPU)

» Condition register unit (CRU)

» Load/store unit (LSU)

» Three integer units (IUs):
— Two single-cycle integer units (SCIUs)
— One multiple-cycle integer unit (MCIU)

This parallel design, combined with the PowerPC architecture’s specification of uniform
instructions that allows for rapid execution times, yields high efficiency and throughput.
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The 604e’s rename buffers, reservation stations, dynamic branch prediction, and
completion unitincrease instruction throughput, guarantee in-order completion, and ensure
a precise exception model. (Note that the PowerPC architecture specification refers to all
exceptions as interrupts.)

The 604e has separate memory management units (MMUs) and separate 32-Kbyte on-chip
caches for instructions and data. The 604e implements two 128-entry, two-way set
associative translation lookaside buffers (TLBs), one for instructions and one for data, and
provides support for demand-paged virtual memory address translation and variable-sized
block translation. The TLBs and the cache use least-recently used (LRU) replacement
algorithms.

The 604e has a 64-bit external data bus and a 32-bit address bus. The 604e interface
protocol allows multiple masters to compete for system resources through a central external
arbiter. Additionally, on-chip snooping logic maintains data cache coherency for
multiprocessor applications. The 604e supports single-beat and burst data transfers for
memory accesses and memory-mapped I/O accesses.

The 604e uses an advanced, 2.5-V CMOS process technology and is fully compatible with
TTL devices.

1.2 PowerPC 604e Microprocessor Features

This section describes features of the 604e, provides a block diagram showing the major
functional units, and describes briefly how those units interact.

Figure 1-1 provides a block diagram showing features of the 604e. Note that this is a
conceptual diagram that shows basic features and does not attempt to show how these
features are physically implemented on the chip.
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Major features of the 604e are as follows:

» High-performance, superscalar microprocessor

— As many as four instructions can be issued per clock

— As many as seven instructions can be executing per clock (including three integer
instructions)

— Single-clock-cycle execution for most instructions
» Seven independent execution units and two register files
— BPU featuring dynamic branch prediction

— Two-entry reservation station
— Out-of-order execution through two branches
— Shares dispatch bus with CRU

— 64-entry fully-associative branch target address cache (BTAC). In the 604e,
the BTAC can be disabled and invalidated.

512-entry branch history table (BHT) with two bits per entry for four levels of
prediction—not-taken, strongly not-taken, taken, strongly taken

— Condition register unit (CRU)
— Two-entry reservation station
— Shares dispatch bus with BPU
— Two single-cycle 1Us (SCIUs) and one multiple-cycle IU (MCIU)

— Instructions that execute in the SCIU take one cycle to execute; most
instructions that execute in the MCIU take multiple cycles to execute.

— Each SCIU has a two-entry reservation station to minimize stalls

— The MCIU has a single-entry reservation station and provides early exit (three
cycles) for 16- x 32-bit and overflow operations.

— Thirty-two GPRs for integer operands
— Three-stage floating-point unit (FPU)

— Fully IEEE 754-1985-compliant FPU for both single- and double-precision
operations

— Supports non-IEEE mode for time-critical operations

— Fully pipelined, single-pass double-precision design

— Hardware support for denormalized numbers

— Two-entry reservation station to minimize stalls

— Thirty-two 64-bit FPRs for single- or double-precision operands
— Load/store unit (LSU)

— Two-entry reservation station to minimize stalls

— Single-cycle, pipelined cache access

— Dedicated adder performs EA calculations
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Performs alignment and precision conversion for floating-point data
— Performs alignment and sign extension for integer data

— Four-entry finish load queue (FLQ) provides load miss buffering

— Six-entry store queue

— Supports both big- and little-endian modes

« Rename buffers

— Twelve GPR rename buffers
— Eight FPR rename buffers
— Eight condition register (CR) rename buffers
» Completion unit
— Retires an instruction from the 16-entry reorder buffer when all instructions
ahead of it have been completed and the instruction has finished execution.
— Guarantees sequential programming model (precise exception model)
— Monitors all dispatched instructions and retires them in order

— Tracks unresolved branches and flushes executed, dispatched, and fetched
instructions if branch is mispredicted

— Retires as many as four instructions per clock
» Separate on-chip instruction and data caches (Harvard architecture)

— 32-Kbyte, four-way set-associative instruction and data caches
— LRU replacement algorithm
— 32-byte (eight-word) cache block size

— Physically indexed/physical tags. (Note that the PowerPC architecture refers to
physical address space as real address space.)

— Cache write-back or write-through operation programmable on a per page or per
block basis

— Instruction cache can provide four instructions per clock; data cache can provide
two words per clock.

— Caches can be disabled in software.

— Caches can be locked.

— Parity checking performed on both caches

— Data cache coherency (MESI) maintained in hardware

— Secondary data cache support provided

— Instruction cache coherency optionally maintained in hardware

— Data cache line-fill buffer forwarding. In the 604, only the critical double word
of the cache block was made available to the requesting unit at the time it was
burst into the line-fill buffer; subsequent data was unavailable until the cache
block was filled. In the 604e, subsequent data is also made available as it arrives
in the line-fill buffer.
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Separate memory management units (MMUSs) for instructions and data

— Address translation facilities for 4-Kbyte page size, variable block size, and
256-Mbyte segment size

— Both TLBs are 128-entry and two-way set associative

— The page table search is performed in hardware

— Separate IBATs and DBATSs (four each) also defined as SPRs

— Separate instruction and data translation lookaside buffers (TLBS)

— LRU replacement algorithm

— 52-bit virtual address; 32-bit physical address

Bus interface features include the following:

— Selectable processor-to-bus clock frequency ratios (1:1, 3:2, 2:1, 5:2, 3:1, 7:2,
and 4:1)

— A 64-bit split-transaction external data bus with burst transfers

— Support for address pipelining and limited out-of-order bus transactions

— Four burst write queues—three for cache copy-back operations and one for
snoop push operations

— Two single-beat write queues
— Additional signals and signal redefinition for direct-store operations

— Provides a data streaming mode that allows consecutive burst read data transfers
to occur without intervening dead cycles. This mode also disables data retry
operations.

— No-DRTRY mode eliminates thBRTRY signal from the qualified data bus
grant condition. This improves performance on read operations for systems that
do not use th®RTRY signal. NODRTRY mode makes read data available to
the processor one bus clock cycle sooner than if normal mode is used.

Multiprocessing support features include the following:

— Hardware enforced, four-state cache coherency protocol (MESI) for data cache.
Bits are provided in the instruction cache to indicate only whether a cache block
Is valid or invalid.

— Separate port into data cache tags for bus snooping

— Load/store with reservation instruction pair for atomic memory references,
semaphores, and other multiprocessor operations

Power management

— Nap mode supports full shut down and snooping
— Operating voltage of 2.5 0.2 V for processor core, 3.3 \kferral signals

Performance monitor can be used to help in debugging system designs and
iImproving software efficiency, especially in multiprocessor systems.

In-system testability and debugging features through JTAG boundary-scan
capability
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Features of the 604e that are not implemented in the 604 are as follows:

» Additional special-purpose registers

— Hardware implementation-dependent register 1 (HID1) provides four read-only
PLL_CFG bits for indicating the processor/bus clock ratio.

— Three additional registers to support the performance monitor—MMCRL1 is a
second control register that includes bits to support the use of two additional
counter registers, PMC3 and PMC4.

e Instruction execution

— Separate execution units for branch and condition register (CR) instructions. The
604e implements a condition register unit (CRU) that executes condition register
logical instructions that were executed in the 604’'s BPU. The CRU makes it
possible for branch instructions to execute and resolve before preceding CR
logical instructions. The 604e can dispatch one CR logical or branch instruction
per cycle, but it can execute both branch and CR logical instructions at the same
time.

— Branch correction in decode stage. Branch correction in the decode stage can
now predict branches whose target is taken from the count or link registers if no
updates of the count and link register are pending. This saves at least one cycle
on branch correction when the Move to Special-Purpose Regrdtpor{
instruction can be sufficiently separated from the branch that uses the SPR as a
target address.

— Ability to disable the branch target address cache (BTAC)—HIDO[30] has been
defined to allow the BTAC to be disabled. When HIDO[30] is set, the BTAC
contents are invalidated and the BTAC behaves as if it were empty. New entries
cannot be added until the BTAC is enabled.

* Enhancements to cache implementation

— 32-Kbyte, physically addressed, split data and instruction caches. Like the 604,
both caches are four-way set associative; however, each cache has twice as many
sets, logically separated into 128 sets of odd lines and 128 sets of even lines.

— Data cache line-fill buffer forwarding. In the 604, only the critical double word
of a burst operation was made available to the requesting unit at the time it was
burst into the line-fill buffer. Subsequent data was unavailable until the cache
block was filled. In the 604e, subsequent data is also made available as it arrives
in the line-fill buffer.

— Additional cache copy-back buffers. The 604e implements three copy-back write
buffers (increased from one in the 604). Having multiple copy-back buffers
provides the ability for certain instructions to take fuller advantage of the
pipelined system bus to provide more efficient handling of cache copy-back,
block invalidate operations caused by the Data Cache Block Flalsf) (
instruction, and cache block clean operations resulting from the Data Cache
Block Store @cbst) instruction.
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— Coherency support for instruction fetching. Instruction fetching coherency is
controlled by HIDO[23]. In the default mode, HIDO[23] is@GBL is not asserted
for instruction accesses, as is the case with the 604. If the bit is set, and
instruction translation is enabled (MSRJ[IR] = 1), tB8L signal is set to reflect
the M bit for this page or block. If instruction translation is disabled
(MSR[IR] = 0), theGBL signal is asserted for instruction fetches.

» System interface operation

— The 604e has the same signal configuration as the 604; however, on the 604e Vdd
and Avdd must be connected to 2.5 Vdc and OVdd must be connected to
3.3 Vdc. The 604e uses split voltage planes, and for replacement compatibility,
604/604e designs should provide both 2.5-V and 3.3-V planes and the ability to
connect those two planes together and disable the 2.5-V plane for operation with
a 604.

— Support for additional processor/bus clock ratios (7:2, 5:2, and 4:1).
Configuration of the processor/bus clock ratios is displayed through a new
604e-specific register, HID1. Note that although this register is not defined by the
PowerPC architecture, it is consistent with implementation-specific registers
implemented on some other processors.

— To support the changes in the clocking configuration, different precharge timings
for theABB, DBB, ARTRY, andSHD signals are implemented internally by the
processor. Selectable precharge timinggdaif RY andSHD can be disabled by
setting HIDO[7]. Precharge timings are provided in the 604e hardware
specifications.

— No-DRTRY mode. In addition to the normal and data streaming modes
implemented on the 604, a WIRTRY mode is implemented on the 604e that
improves performance on read operations for systems that do not use the
DRTRY signal. NoODRTRY mode makes read data available to the processor
one bus clock cycle sooner than in normal médeo-DRTRY mode, the
DRTRY signal is no longer sampled as part of a qualified bus grant.

— The VOLTDETGND output signal is implemented only on BGA packages as an
indicator of the core voltage.

» Full hardware support for little-endian accesses. Little-endian accesses take
alignment exceptions for only the same set of causes as big-endian accesses.
Accesses that cross a word boundary require two accesses with the lower-addressed
word accessed first.

» Additional events that can be tracked by the performance monitor.

1.3 PowerPC Architecture Implementation

The PowerPC architecture shares the benefits of the POWER architecture optimized for
single-chip implementations. The PowerPC architecture design facilitates parallel
instruction execution and is scalable to take advantage of future technological gains.
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This section describes the PowerPC architecture in general, and specific details about the
implementation of the 604e as a low-power, 32-bit member of the PowerPC processor
family. Note that the individual section headings indicate the chapters in the user’s manual
to which they correspond.

» Section 1.3.1, “Features,” describes general features of the 604e with respect to the
PowerPC architecture.

» Section 1.3.2, “PowerPC 604e Processor Programming Model,” describes the
aspects of the register and instruction implementation that are specific to the 604e.

» Section 1.3.3, “Cache and Bus Interface Unit Operation,” describes the
604e-specific cache features.

» Section 1.3.4, “Exceptions,” indicates that the 604e exception model is identical to
that of the 604.

e Section 1.3.5, “Memory Management,” indicates that the 604e MMU
implementation is identical to that of the 604.

» Section 1.3.6, “Instruction Timing,” describes specific characteristics of the 604e
instruction timing model.

» Section 1.3.7, “Signal Descriptions,” describes differences in the operation of the
signals implemented on the 604e.

» Section 1.3.8, “System Interface Operation,” describes differences in the 604e bus
protocol.

» Section 1.3.9, “Performance Monitor,” defines additional features and changes in
the 604e implementation of the performance monitor.

1.3.1 Features

The 604e is a high-performance, superscalar implementation of the PowerPC architecture.
Like other PowerPC processors, it adheres to the PowerPC architecture specifications but
also has additional features not defined by the architecture. These features do not affect
software compatibility. The PowerPC architecture allows optimizing compilers to schedule
instructions to maximize performance through efficient use of the PowerPC instruction set
and register model. The multiple, independent execution units in the 604e allow compilers
to maximize parallelism and instruction throughput. Compilers that take advantage of the
flexibility of the PowerPC architecture can additionally optimize instruction processing of
the PowerPC processors.

The following sections summarize the features of the 604e, including both those that are
defined by the architecture and those that are unique to the 604e implementation.

The PowerPC architecture consists of the following layers, and adherence to the PowerPC
architecture can be measured in terms of which of the following levels of the architecture
Is implemented:
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» PowerPC user instruction set architecture (UISA)—Defines the base user-level
instruction set, user-level registers, data types, floating-point exception model,
memory models for a uniprocessor environment, and programming model for a
uniprocessor environment.

» PowerPC virtual environment architecture (VEA)—Describes the memory model
for a multiprocessor environment, defines cache control instructions, and describes
other aspects of virtual environments. Implementations that conform to the VEA
also adhere to the UISA, but may not necessarily adhere to the OEA.

» PowerPC operating environment architecture (OEA)—Defines the memory
management model, supervisor-level registers, synchronization requirements, and
the exception model. Implementations that conform to the OEA also adhere to the
UISA and the VEA.

For more information, refer tdhe Programming Environments Manual

The 604e complies to all three levels of the PowerPC architecture. Note that the PowerPC
architecture defines additional instructions for 64-bit data types. These instructions cause
an illegal instruction exception on the 604e. PowerPC processors are allowed to have
implementation-specific features that fall outside, but do not conflict with, the PowerPC
architecture specification. Examples of features that are specific to the 604e include the
performance monitor and nap mode.

1.3.2 PowerPC 604e Processor Programming Model
This section provides a brief overview of the PowerPC programming model with respect to
the 604e. It describes the following:

* Implementation-specific registers

* 604e support of misaligned little-endian accesses

* The 604e instruction set

1.3.2.1 Implementation-Specific Registers

The 604e and 604 implement the register set required by the 32-bit portion of the PowerPC
architecture. In addition, the 604e supports all 604-specific registers as well as several
604e-specific registers, as described in this section.

Figure 1-2 shows the registers implemented in the 604e, indicating those that are defined
by the PowerPC architecture and those that are 604e-specific. All registers except the FPRs
are 32 bits wide.
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Figure 1-2. Programming Model—PowerPC 604e Microprocessor Registers
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The 604e includes the following registers not defined by the PowerPC architecture that are
either not provided in the 604 or incorporate changes from the 604 implementation:

* Hardware implementation-dependent register 1 (HID1)—This register, which is not
implemented in the 604, is used to display the PLL configuration. This register is
described in Section 2.1.2.4, “Hardware Implementation-Dependent Register 1
(HID1).”

» Performance monitor counter registers (PMC3-PMC4). The counters are used to
record the number of times a certain event has occurred. PMC3 and PMC4 are not
implemented in the 604. PMC1 and PMC2 are implemented in the 604 and are
described in the user's manual. See Section 2.1.2.5.3, “Performance Monitor
Counter Registers (PMC1-PMC4),” for more information.

» Performance monitor mode control register 0 (MMCRO0)—MMCRO has additional
bits not described in the user’s manuBEhe additional bits are described in Section
2.1.2.5.1, “Monitor Mode Control Register 0 (MMCRO).”

» Performance monitor mode control register 1 (MMCR1)—The performance
monitor control registers are used for enabling various performance monitoring
interrupt conditions and establishes the function of the counters. MMCRL1 is not
implemented in the 604. See Section 2.1.2.5.2, “Monitor Mode Control Register
1—MMCR1,” for more information.

» Hardware implementation-dependent register 0 (HIDO)—This register is used to
control various functions within the 604 and 604e, such as enabling checkstop
conditions, and locking, enabling, and invalidating the instruction and data caches.
Additional bits defined in the HIDO register disable the BTAC, control whether
coherency is maintained for instruction fetches, and disable the default precharge
values for the share@HD) and address retrARTRY) signals. The 604e defines
additional bits not included in the 604 implementations of the HIDO register. These
bits are described in Section Table 2-3, “. Hardware Implementation-Dependent
Register 0 Bit Settings.”

Refer to Chapter 2, “Programming Model,” for more information.

1.3.2.2 Support for Misaligned Little-Endian Accesses

The 604e provides hardware support for misaligned little-endian accesses. Little-endian
accesses in the 604e take an alignment exception for the same cases that big-endian
accesses take alignment exceptions. Any data access that crosses a word boundary requires
two accesses regardless of whether the data is in big- or little-endian format. When two
accesses are required, the lower addressed word (in the current addressing mode) is
accessed first. Consider the memory mapping in Figure 1-3.
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Big-Endian Mode

Contents| A | B | c | D | E | F | G | H |
Address 00 01 02 03 04 05 06 07
Contents| | | J | K | L | M | N | o) | P |
Address 08 09 0A 0B oC oD OE OF

Little-Endian Mode

Contents| A | B | c | D | E | F | G | H |
Address 07 06 05 04 03 02 01 00
Contents| | | J | K | L | M | N | o) | P |
Address OF OE 0D 0C 0B 0A 09 08

Figure 1-3. Big-Endian and Little-Endian Memory Mapping

If two bytes are requested starting at little-endian address 0x3, one byte at big-endian
address 0x4 containing dafais accessed first followed by one byte at big-endian address
0x3 containing dat®. For a load halfword, the data written back to the GPR would be
D, E. If four bytes are requested starting at little-endian address 0x6, two bytes at
big-endian address 0x0 containing d&taB are accessed first followed by two bytes at

big-endian address OxE containing d&aP. For a load word, the data written back to the
GPR would beD, P, A, B.

Misaligned little-endian accesses to direct-storage segments are boundedly-undefined.

1.3.2.3 Instruction Set

The 604e implements the same set of instructions that are implemented in the 604; that is,
the entire PowerPC instruction set (for 32-bit implementations) and most optional
PowerPC instructions. For information, see Section 2.3.3, “Instruction Set Overview,” in
the user’'s manual he following changes affect information provided in the user’s manual

* The undefined result of an integer divide overflow differs from that of the 604.

» Changes to the behavior of thebst anddcbtst instructions are described in
Table 2-43.
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1.3.3 Cache and Bus Interface Unit Operation

The 604e has separate 32-Kbyte data and instruction caches. This is double the size of the
604 caches. The 604e caches are logically organized as a four-way set with 256 sets
compared to the 604’s 128 sets. The physical address bits that determine the set are 19
through 26 with 19 being the most-significant bit of the index. If bit 19 is zero, the block of
data is an even 4-Kbyte page that resides in sets 0—127; otherwise, bit 19 is one and the
block of data is an odd 4-Kbyte page that resides in sets 128-255. Because the caches are
four-way set-associative, the cache set element (CSEO-CSEL1) signals remain unchanged
from the 604. Figure 1-4 shows the organization of the caches.

Sets128-255
(odd pages) e’ e
/| —
Sets 0-127 - -
(even pages) .’ — . L
[
|’l/ ! l T T T T T T T B
Block 0| Address Tag 0 || State Words 0-7 ||
I I I I I I I ]
Block 1| Address Tag 1 | | State Words 0-7 || -
f f f f f f f B
Block 2| Address Tag 2 || State Words 0—7 ||
; ; ; ; ; ; ;
Block 3| Address Tag 3 | I~ |State Words 0—7 | [~
|«——— 8 Words/Block ———— ]

Figure 1-4. Cache Unit Organization

1.3.3.1 Instruction Cache

The 604e’s 32-Kbyte, four-way set-associative instruction cache is physically indexed.
Within a single cycle, the instruction cache provides up to four instructions.

The 604e provides coherency checking for instruction fetches. Instruction fetching
coherency is controlled by HIDO[23]. In the default mode, HIDO[23] is 0 andGiE

signal is not asserted for instruction accesses on the bus, as is the case with the 604. If the
bit is set and instruction translation is enabled (MSR[IR] = 1), &L signal is set to

reflect the M bit for this page or block. If HIDO[23] is set and instruction translation is
disabled (MSRJ[IR] = 0), th&GBL signal is asserted and coherency is maintained in the
instruction cache.

The PowerPC architecture defines a special set of instructions for managing the instruction
cache. The instruction cache can be invalidated entirely or on a cache-block basis. In
addition, the instruction cache can be disabled and invalidated by setting the HIDO[16] and
HIDO[20] bits, respectively. The instruction cache can be locked by setting HIDO[18].
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1.3.3.2 Data Cache

The 604e’s data cache is a 32-Kbyte, four-way set-associative cache. It is a
physically-indexed, nonblocking, write-back cache with hardware support for reloading on
cache misses. Within one cycle, the data cache provides double-word access to the LSU.

The 604e provides additional support for data cache line-fill buffer forwarding. In the 604,
only the critical double word of a burst operation was made available to the requesting unit
at the time it was burst into the line-fill buffer. Subsequent data was unavailable until the
cache block was filled. On the 604e, subsequent data is also made available as it arrives in
the line-fill buffer.

The 604e implements three copy-back write buffers (the 604 has one). The additional
copy-back buffers allow certain instructions to take further advantage of the pipelined
system bus to provide highly efficient handling of cache copy-back operations, block
invalidate operations caused by the Data Cache Block Fhidbf)instruction, and cache
block clean operations resulting from the Data Cache Block Stobst] instruction.

Like the 604, the data cache tags are dual-ported, so snooping does not affect the internal
operation of other transactions on the system interface. If a snoop hit occurs in a modified
block, the LSU is blocked internally for one cycle to allow the eight-word block of data to

be copied to the write-back buffer, if necessary.

Like the instruction cache, the data cache can be invalidated all at once or on a per cache
block basis. The data cache can be disabled and invalidated by setting the HIDO[17] and
HIDO[21] bits, respectively. The data cache can be locked by setting HIDO[19].

The 604e introduces some changesdbt/dcbtst instruction behavior. Both the 604 and
the 604e treat thdcbt anddcbtst instructions as no-ops if any of the following conditions
IS met:

* The address misses in the TLB and in the BAT.

* The address is directed to a direct-store segment.

* The address is directed to a cache-inhibited page.

» The 604e also treats the instructions as no-ops if the data cache lock bit HIDO[19] is
set.

1.3.3.3 Additional Changes to the Cache
Note that the 604e makes the following additional changes to the cache:

* Snooping protocol change for Read-with-Intent-to-Modify bus operations—It is
now illegal for any snooping device to genera®HD snoop response without an
ARTRY response to a RWITM address tenure. This change is required for the 604
and 604e. This change is also effective for later revisions of the 604.
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» Two additional cache copy-back write buffers—The 604e bus interface unit has six
write buffers, four for burst write operations and two for single-beat operations.

— The four burst write buffers can hold a full 32-byte cache block of data for burst
write data bus tenures. Of the four burst write buffers, one is a snoop push buffer
and the other three are cache copy-back buffers.

— The snoop push buffer is dedicated for snoop push write operations.

— The three copy-back buffers are used for cache copy-back operations, block
invalidates due to the Data Cache Block Fludtb{) instruction or block
cleans due to the Data Cache Block Stdabst) instruction.

— Each of the two single-beat write buffers can hold up to 8 bytes of data.

The 604 implements only one copy-back buffer, but is otherwise the same as the 604e
implementation. Refer to Chapter 3, “Cache and Bus Interface Unit Operation,” for more
information.

1.3.4 Exceptions

The following subsections describe the PowerPC exception model and the 604e
implementation, respectively.

The PowerPC exception mechanism allows the processor to change to supervisor state as a
result of external signals, errors, or unusual conditions arising in the execution of
instructions. When exceptions occur, information about the state of the processor is saved
to various registers and the processor begins execution at an address (exception vector)
predetermined for each exception and the processor changes to supervisor mode.

Although multiple exception conditions can map to a single exception vector, a more
specific condition may be determined by examining a register associated with the
exception—for example, the DSISR and the FPSCR. Additionally, specific exception
conditions can be explicitly enabled or disabled by software.

The PowerPC architecture requires that exceptions be handled in program order; therefore,
although a particular PowerPC processor may recognize exception conditions out of order,
exceptions are handled strictly in order. When an instruction-caused exception is
recognized, any unexecuted instructions that appear earlier in the instruction stream,
including any that have not yet entered the execute state, are required to complete before
the exception is taken. Any exceptions caused by those instructions must be handled first.
Likewise, exceptions that are asynchronous and precise are recognized when they occur
(unless they are masked) and the reorder buffer is drained. The address of next instruction
to be executed is saved in SRRO so execution can resume at the proper place when the
exception handler returns control to the interrupted process.

Unless a catastrophic condition causes a system reset or machine check exception, only one
exception is handled at a time. If, for example, a single instruction encounters multiple
exception conditions, those conditions are encountered sequentially. After the exception
handler handles an exception, the instruction execution continues until the next exception
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condition is encountered. This method of recognizing and handling exception conditions
sequentially guarantees that exceptions are recoverable.

Exception handlers should save the information stored in SRRO and SRR1 early to prevent
the program state from being lost due to a system reset or machine check exception or to
an instruction-caused exception in the exception handler.

The PowerPC architecture supports the following types of exceptions:

» Synchronous, precise—These are caused by instructions. All instruction-caused
exceptions are handled precisely; that is, the machine state at the time the exception
occurs is known and can be completely restored.

» Synchronous, imprecise—The PowerPC architecture defines two imprecise
floating-point exception modes, recoverable and nonrecoverable. The 604e
implements only the imprecise nonrecoverable mode. The imprecise, recoverable
mode is treated as the precise mode in the 604e.

» Asynchronous—The OEA portion of the PowerPC architecture defines two types of
asynchronous exceptions:

— Asynchronous, maskable—The PowerPC architecture defines the external
interrupt and decrementer interrupt, which are maskable and asynchronous
exceptions. In the 604e, and in many PowerPC processors, the hardware
interrupt is generated by the assertion of the InterrINdT) signal, which is not
defined by the architecture. In addition, the 604e implements the system
management interrupt, which performs similarly to the external interrupt, and is
generated by the assertion of the System Management Int&Mptgignal,
and the performance monitor interrupt.

When these exceptions occur, their handling is postponed until all instructions,
and any exceptions associated with those instructions, complete execution.
These exceptions are maskable by setting MSR[EE].

— Asynchronous, nonmaskable—There are two nonmaskable asynchronous
exceptions that are imprecise: system reset and machine check exceptions. Note
that the OEA portion of the PowerPC architecture, which defines how these
exceptions work, does not define the causes or the signals used to cause these
exceptions. These exceptions may not be recoverable, or may provide a limited
degree of recoverability for diagnostic purposes.

The PowerPC architecture defines two bits in the machine state register (MSR)—FEO and
FE1l—that determine how floating-point exceptions are handled. There are four
combinations of bit settings, of which the 604e implements three. These are as follows:

* Ignore exceptions mode (FEO = FE1 =0). In this mode, the instruction dispatch logic
feeds the FPU as fast as possible and the FPU uses an internal pipeline to allow
overlapped execution of instructions. In this mode, floating-point exception
conditions return a predefined value instead of causing an exception.
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* Precise interrupt mode (FEO = 1; FE1 = x). This mode includes both the precise
mode and imprecise recoverable mode defined in the PowerPC architecture. In this
mode, a floating-point instruction that causes a floating-point exception brings the
machine to a precise state. In doing so, the 604e takes floating-point exceptions as
defined by the PowerPC architecture.

* Imprecise nonrecoverable mode (FEO = 0; FE1 = 1). In this mode, when a
floating-point instruction causes a floating point exception, the save restore
register 0 (SRR0) may point to an instruction following the instruction that caused
the exception.

The 604e exception classes are shown in Table 1-1.

Table 1-1. Exception Classifications

Type Exception

Asynchronous/nonmaskable Machine check
System reset

Asynchronous/maskable External interrupt
Decrementer
System management interrupt (not defined by the PowerPC architecture)

Synchronous/precise Instruction-caused exceptions

Synchronous/imprecise Floating-point exceptions (imprecise nonrecoverable mode)

The 604e’s exceptions, and a general description of conditions that cause them, are listed
in Table 1-2.

Table 1-2. Overview of Exceptions and Conditions

Exception Vector Offset Causing Conditions
Type (hex)
Reserved 00000 —
System reset 00100 A system reset is caused by the assertion of either the soft reset or hard reset
signal.
Machine check | 00200 A machine check exception is signaled by the assertion of a qualified TEA

indication on the 604e bus, or the machine check interrupt (MCP) signal. If
MSR[ME] is cleared, the processor enters the checkstop state when one of
these signals is asserted. Note that MSR[ME] is cleared when an exception is
taken. The machine check exception is also caused by parity errors on the
address or data bus or in the instruction or data caches.

The assertion of the TEA signal is determined by load and store operations
initiated by the processor; however, it is expected that the TEA signal would be
used by a memory controller to indicate that a memory parity error or an
uncorrectable memory ECC error has occurred.

Note that the machine check exception is imprecise with respect to the
instruction that originated the bus operation.
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Table 1-2. Overview of Exceptions and Conditions (Continued)

Exception
Type

Vector Offset
(hex)

Causing Conditions

DSl

00300

The cause of a DSI exception can be determined by the bit settings in the

DSISR, listed as follows:

0 Setif aload or store instruction results in a direct-store program exception;
otherwise cleared.

1 Set if the translation of an attempted access is not found in the primary table
entry group (PTEG), or in the secondary PTEG, or in the range of a BAT
register; otherwise cleared.

4 Set if a memory access is not permitted by the page or BAT protection
mechanism; otherwise cleared.

5 If SR[T] =1, set by an eciwx , ecowx , lwarx , or stwcx. instruction; otherwise
cleared. Set by an eciwx or ecowx instruction if the access is to an address
that is marked as write-through.

6 Set for a store operation and cleared for a load operation.

9 Set if an EA matches the address in the DABR while in one of the three
compare modes.

10Set if the segment table search fails to find a translation for the effective
address; otherwise cleared.

11Set if eciwx or ecowx is used and EAR[E] is cleared.

ISI

00400

An ISI exception is caused when an instruction fetch cannot be performed for

any of the following reasons:

* The effective address cannot be translated. That is, there is a page fault for
this portion of the translation, so an ISI exception must be taken to retrieve
the translation from a storage device such as a hard disk drive.

« The fetch access is to a direct-store segment.

« The fetch access violates memory protection. If the key bits (Ks and Kp) in
the segment register and the PP bits in the PTE or BAT are set to prohibit
read access, instructions cannot be fetched from this location.

External
interrupt

00500

An external interrupt occurs when the external exception signal, INT, is
asserted. This signal is expected to remain asserted until the exception handler
begins execution. Once the signal is detected, the 604e stops dispatching
instructions and waits for all dispatched instructions to complete. Any
exceptions associated with dispatched instructions are taken before the
interrupt is taken.

Alignment

00600

An alignment exception is caused when the processor cannot perform a

memory access for the following reasons:

A floating-point load, store, Imw, stmw, lwarx , stwcx. , eciwx , or ecowx

instruction is not word-aligned.

A dcbz instruction refers to a page that is marked either cache-inhibited or

write-through.

A dcbz instruction has executed when the 604e data cache is locked or
disabled.

An access is not naturally aligned in little-endian mode.

An Imw, stmw, Iswi, Iswx, stswi, or stswx instruction is issued in little-endian

mode.
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Table 1-2. Overview of Exceptions and Conditions (Continued)

Exception
Type

Vector Offset
(hex)

Causing Conditions

Program

00700

A program exception is caused by one of the following exception conditions,
which correspond to bit settings in SRR1 and arise during execution of an
instruction:

« Floating-point exceptions—A floating-point enabled exception condition
causes an exception when FPSCR[FEX] is set and depends on the values in
MSR[FEO] and MSR[FEL1].

FPSCR[FEX] is set by the execution of a floating-point instruction that
causes an enabled exception or by the execution of a “move to FPSCR”
instruction that results in both an exception condition bit and its
corresponding enable bit being set in the FPSCR.

¢ lllegal instruction—An illegal instruction program exception is generated
when execution of an instruction is attempted with an illegal opcode or illegal
combination of opcode and extended opcode fields or when execution of an
optional instruction not provided in the specific implementation is attempted
(these do not include those optional instructions that are treated as no-ops).

« Privileged instruction—A privileged instruction type program exception is
generated when the execution of a privileged instruction is attempted and
the MSR user privilege bit, MSR[PR], is set. This exception is also
generated for mtspr or mfspr with an invalid SPR field if SPR[0] = 1 and
MSR[PR] = 1.

« Trap—A trap type program exception is generated when any of the
conditions specified in a trap instruction is met.

Floating-point
unavailable

00800

A floating-point unavailable exception is caused by an attempt to execute a
floating-point instruction (including floating-point load, store, and move
instructions) when the floating-point available bit is disabled (MSR[FP] = 0).

Decrementer

00900

The decrementer exception occurs when the most significant bit of the
decrementer (DEC) register transitions from 0 to 1.

Reserved

0OOAO0-00BFF

System call

00CO00

A system call exception occurs when a System Call (sc) instruction is executed.

Trace

00DO00

Either MSR[SE] = 1 and any instruction (except rfi) successfully completed or
MSRI[BE] = 1 and a branch instruction is completed.

Floating-point
assist

00EOO

Defined by the PowerPC architecture, but not required in the 604e.

Reserved OOE10-00EFF | —

Performance 00F00 The performance monitoring interrupt is a 604e-specific exception and is used

monitoring with the 604e performance monitor, described in Chapter 9, “Performance

interrupt Monitor.”
The performance monitoring facility can be enabled to signal an exception when
the value in one of the performance monitor counter registers (PMC1 or PMC2)
goes negative. The conditions that can cause this exception can be enabled or
disabled in the monitor mode control register 0 (MMCRO).
Although the exception condition may occur when the MSR EE bit is cleared,
the actual interrupt is masked by the EE bit and cannot be taken until the EE bit
is set.

Reserved 01000-012FF | —
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Table 1-2. Overview of Exceptions and Conditions (Continued)

Exception Vector Offset Causing Conditions
Type (hex)

Instruction 01300 An instruction address breakpoint exception occurs when the address (bits O to
address 29) in the IABR matches the next instruction to complete in the completion unit,
breakpoint and the IABR enable bit IABR[30] is set.
System 01400 A system management interrupt is caused when MSR[EE] = 1 and the SMI
management input signal is asserted. This exception is provided for use with the nap mode,
interrupt which is described in Section 7.2.13, “Power Management.”
Reserved 01500-02FFF Reserved, implementation-specific exceptions. These are not implemented in

the 604e.

1.3.5 Memory Management
The 604e MMU implementation is the same as is used in the 604.

1.3.6 Instruction Timing

As shown in Figure 1-5, the common pipeline of the 604e has six stages through which all
instructions must pass. Some instructions occupy multiple stages simultaneously and some
individual execution units have additional stages. For example, the floating-point pipeline

consists of three stages through which all floating-point instructions must pass.

(Four-instruction dispatch per clock
cycle in any combination)

Fetch (IF)

Y
Decode (ID)

\

Dispatch (DS)

Execute Stage

SCIul

SCIu2

MCIU

BPU

CRU

LSU

ﬁé\

Complete (C)

\

Write-Back (W)

Vﬁé

Figure 1-5. Pipeline Diagram
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The common pipeline stages are as follows:

Instruction fetch (IF)—During the IF stage, the fetch unit loads the decode queue
(DEQ) with instructions from the instruction cache and determines from what
address the next instruction should be fetched.

Instruction decode (ID)—During the ID stage, all time-critical decoding is
performed on instructions in the dispatch queue (DISQ). The remaining decode
operations are performed during the instruction dispatch stage.

Instruction dispatch (DS)—During the dispatch stage, the decoding that is not
time-critical is performed on the instructions provided by the previous ID stage.
Logic associated with this stage determines when an instruction can be dispatched
to the appropriate execution unit. At the end of the DS stage, instructions and their
operands are latched into the execution input latches or into the unit’s reservation
station. Logic in this stage allocates resources such as the rename registers and
reorder buffer entries.

Execute (E)—While the execution stage is viewed as a common stage in the 604e
instruction pipeline, the instruction flow is split among the six execution units, some
of which consist of multiple pipelines. An instruction may enter the execute stage
from either the dispatch stage or the execution unit’s dedicated reservation station.

At the end of the execute stage, the execution unit writes the results into the
appropriate rename buffer entry and notifies the completion stage that the instruction
has finished execution.

The execution unit reports any internal exceptions to the completion stage and
continues execution, regardless of the exception. Under some circumstances, results
can be written directly to the target registers, bypassing the rename buffers.

Complete (C)—The completion stage ensures that the correct machine state is
maintained by monitoring instructions in the completion buffer and the status of
instruction in the execute stage.

When instructions complete, they are removed from the reorder buffer (ROB).
Results may be written back from the rename buffers to the register as early as the
complete stage. If the completion logic detects an instruction containing exception
status or if a branch has been mispredicted, all subsequent instructions are cancelled,
any results in rename buffers are discarded, and instructions are fetched from the
correct instruction stream.

The CR, CTR, and LR are also updated during the complete stage.

Writeback (W)—The writeback stage is used to write back any information from the
rename buffers that was not written back during the complete stage.

All instructions are fully pipelined except for divide operations and some integer multiply
operations. The integer multiplier is a three-stage pipeline. Integer divide instructions
iterate in stage two of the multiplier. SPR operations can execute in the MCIU in parallel
with multiply and divide operations.
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The floating-point pipeline has three stages. Floating-point divide operations iterate in the
first stage.

The 604e instruction timing model has a few changes from the 604, although it is basically
the same design. A conceptual model of the 604e hardware design showing the
relationships between the various units that affect the instruction timing is shown in

Figure 1-6.
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Figure 1-6. Block Diagram—Internal Data Paths
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The instruction timing in the 604e incorporates the following changes:

» Addition of a condition register unit (CRU)—The CRU executes all condition
register logical and flow control instructions. Because the CRU shares the dispatch
bus with the BPU, only one condition register or branch instruction can be issued per
clock cycle. In the 604, the CR logical unit operations are handled by the BPU. The
addition of the CRU allows branch instructions to potentially execute/resolve before
a preceding CR logical instruction. Although one CR logical or branch instruction
can be dispatched per clock cycle, both branch and CR logical instructions can
execute simultaneously. Branches are still executed in order with respect to other
branch instructions. If either the CR logical reservation station or the branch
reservation station is full then no instructions can be dispatched to either unit.

» Branch correction in decode stage—Branch correction in the decode stage has been
modified to predict branches whose target is taken from the CTR or LR. This
correction occurs if no CTR or LR updates are pending. This correction like all other
decode stage corrections is done only on the first two instructions of the decode
stage. This correction saves at least one cycle on branch correction whetsfe
instruction can be separated from the branch that uses the SPR as a target address.

* Instruction fetch when translation is disabled—If translation is disabled
(MSRJ[IR] = 0), the 604e fetches instructions when they hit in the cache or if the
previous completed instruction fetch was to the same page as this instruction fetch.
Where an instruction access hits in the cache, the 604e continues to fetch any
consecutive accesses to that same page.

1.3.7 Signal Descriptions

The 604e provides a versatile bus interface that allows a wide variety of system design
options. The interface includes a 72-bit data bus (64 bits of data and 8 bits of parity), a
36-bit address bus (32 bits of address and 4 bits of parity), and sufficient control signals to
allow for a variety of system-level optimizations. The system interface is specific for each
PowerPC processor implementation. The 604e system interface is shown in Figure 1-7.

NOTE

A bar over a signal name indicates that the signal is active
low—for example, ARTRY (address retry) and'S (transfer
start). Active-low signals are referred to as asserted (active)
when they are low and negated when they are high. Signals that
are not active-low, such as AP[0-3] (address bus parity signals)
and TT[0-4] (transfer type signals) are referred to as asserted
when they are high and negated when they are low.
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Figure 1-7. PowerPC 604e Microprocessor Signal Groups

The 604e system interface differs from that of the 604 in the following respects:

* The 604e has the same signal configuration as the 604; however, on the 604e Vdd
and Avdd must be connected to 2.5 Vdc and OVdd must be connected to 3.3 Vdc.
The 604e uses split voltage planes, and for replacement compatibility, 604/604e
designs should provide both 2.5-V and 3.3-V planes and the ability to connect those
two planes together and disable the 2.5-V plane for operation with a 604.

* Addition of noDRTRY mode. In addition to the normal and data-streaming modes
implemented on the 604, a MIRTRY mode is implemented on the 604e that
improves performance on read operations for systems that do not IHeTtR¥
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signal. NODRTRY mode makes read data available to the processor one bus clock
cycle sooner than in normal modie no-DRTRY mode, theDRTRY signal is no
longer sampled as part of a qualified bus grant.

This functionality is described more fully in Chapter 8, “System Interface
Operation.”

» Power management signals—The 604e implements signals that allow the processor
to operate in three different modes—normal, nap, and doze.

— HALTED signal—The HALTED signal is asserted when the processor is halted
internally and no snoop copy-back operations are in progress.

— In nap mode, the HALTED signal is always asserted.

— In doze mode, the HALTED signal is asserted unless a snoop-triggered
copy-back is pending.

— In normal mode, the HALTED signal is not asserted.

— RUN signal—The 604e supports nap mode with a RUN signal similar to the 604.
Asserting the RUN signal is equivalent to the doze mode in the 603.

The operation of power management on the 604e is described in Section 7.2.13,
“Power Management.”

» Internal clocking changes—The 604e internal clocking scheme is more similar to
the 603e than to the 604. The 604e requires a single system clock (SYSCLK) input
that sets the frequency of operation for the bus interface. Internally, the 604e uses a
phase-locked loop (PLL) circuit to generate a master clock for all of the CPU
circuitry (including the bus interface circuitry) which is phase-locked to the
SYSCLK input.

» Bus clock ratios—The 604e supports processor-to-bus frequency ratios of 1:1, 3:2,
2:1,5:2,3:1, 4:1, and 7:2. Each ratio is limited to the frequency ranges specified in
the PLL_CFG encodings shown in Table 7-6. Support for processor/bus clock ratios
5:2,7:2, and 4:1 is not supported in the 604.

* To support the changes in the clocking configuration, different precharge timings
for theABB, DBB, ARTRY, andSHD signals are implemented internally by the
processor. Selectable precharge timingARTRY andSHD can be disabled by
setting HIDO[7]. Precharge timings are provided in the 604e hardware
specifications.

» The 604e’s PLL_CFG settings are compatible with the 603e and the 604, although
the supported frequency ranges may differ. Changing the PLL_CFG setting during
nap mode is not permitted. For specific information, see the hardware specifications.

» The addition of the VOLTDETGND output signal (BGA package only). The
VOLTDETGND signal is an indicator of the core voltage for use with power
supplies capable of providing 2.5-V and 3.3-V outputs.

Refer to Chapter 7, “Signal Descriptions,” for further information.
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1.3.8 System Interface Operation

The system interface is specific for each PowerPC processor implementation. However, the
604e system interface differs only slightly from the 604. Some of the differences include
wider data and address buses, support for additional processor-to-bus frequencies, and
support for the optional n®RTRY bus mode. For further information, refer to Chapter 8,
“System Interface Operation.”

The 604e provides a versatile bus interface that allows a wide variety of system design
options. The interface includes a 72-bit data bus (64 bits of data and 8 bits of parity), a
36-bit address bus (32 bits of address and 4 bits of parity), and sufficient control signals to
allow for a variety of system-level optimizations. The system interface is specific for each
PowerPC processor implementation. The interface is synchronous—all 604e inputs are
sampled at and all outputs are driven from the rising edge of the bus clock. The 604e
supports processor-to-bus frequency ratios of 1:1, 3:2, 2:1, 5:2, 3:1, 4:1, and 7:2. Support
for processor/bus clock ratios 5:2, 7:2, and 4:1 is not supported in the 604.

The 604e system interface is shown in Figure 1-8.

Address Bus <«——» ~<———— Data Bus
Address Arbitration «—— <«— Data Arbitration
Address Transfer Start <——» <«——> Data Transfer
Address Transfer «——»  PowerPC I 5 pata Transfer Termination
Transfer Attribute <—— p rc?(?::sor <«——> Processor State
Address Transfer Termination <«———f <«——> System Status
Clocks «—— <«—> Test/Control/Miscellaneous

I =
+3.3V ~

Figure 1-8. System Interface

Four-beat burst-read memory operations that load an eight-word cache block into one of the
on-chip caches are the most common bus transactions in typical systems, followed by
burst-write memory operations, direct-store operations, and single-beat (noncacheable or
write-through) memory read and write operations. Additionally, there can be address-only
operations, variants of the burst and single-beat operations (global memory operations that
are snooped and atomic memory operations, for example), and address retry activity (for
example, when a snooped read access hits a modified line in the data cache).

The BIU implements the critical double-word first access where the double-word requested
by the fetcher or the load/store unit is fetched first and the remaining words in the line are
fetched later. The critical double-word as well as other words in the cache block are
forwarded to the fetcher or to the LSU before they are written to the cache.
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Memory accesses can occur in single-beat or four-beat burst data transfers. The address and
data buses are independent for memory accesses to support pipelining and split
transactions. The 604e supports bus pipelining and out-of-order split-bus transactions. In
general, the bus-pipelining mechanism allows as many as three address tenures to be
outstanding before a data tenure is initiated. Address tenures for address-only transactions
can exceed this limit.

Typically, memory accesses are weakly-ordered. Sequences of operations, including
load/store string/multiple instructions, do not necessarily complete in the same order in
which they began—maximizing the efficiency of the bus without sacrificing coherency of
the data. The 604e allows load operations to precede store operations (except when a
dependency exists, of course). In addition, the 604e provides a separate queue for snoop
push operations so these operations can access the bus ahead of previously queued
operations. The 604e dynamically optimizes run-time ordering of load/store traffic to
improve overall performance.

The 604e implements a data bus write only sigp\(VO) that can be used for reordering
write operations. AssertingBWO causes the first write operation to occur before any read
operations on a given processor. Although this may be used with any write operations, it
can also be used to reorder a snoop push operation.

Access to the system interface is granted through an external arbitration mechanism that
allows devices to compete for bus mastership. This arbitration mechanism is flexible,
allowing the 604e to be integrated into systems that use various fairness and bus-parking
procedures to avoid arbitration overhead. Additional multiprocessor support is provided
through coherency mechanisms that provide snooping, external control of the on-chip
caches and TLBs, and support for a secondary cache. The PowerPC architecture provides
the load/store with reservation instruction palwdrx/stwcx,) for atomic memory
references and other operations useful in multiprocessor implementations. Refer to
Chapter 8, “System Interface Operation,” for more information.

1.3.9 Performance Monitor

The 604e incorporates a performance monitor facility that system designers can use to help
bring up, debug, and optimize software performance, especially in multiprocessing
systems. The performance monitor is a software-accessible mechanism that provides
detailed information concerning the dispatch, execution, completion, and memory access
of PowerPC instructions.

A performance monitor control register (MMCRO or MMCR1) can be used to specify the
conditions for which a performance monitoring interrupt is taken. For example, one such
condition is associated with one of the counter registers (PMC1-PMC4) incrementing until
the most-significant bit indicates a negative value. Additionally, the sampled instruction
address and sampled data address registers (SIA and SDA) are used to hold addresses for
instruction and data related to the performance monitoring interrupt.

In addition to the performance monitor registers implemented on the 604, the 604e has two

1-28 PowerPC 604e RISC Microprocessor User's Manual



additional counter registers and one additional control register. The control register is
MMCR1 (SPR 956). The counters, PMC3 and PMC4, are SPR 957 and SPR 958,
respectively. MMCRO has also been changed slightly from the original 604 definition.
These registers are described in Section 2.1.2.5, “Performance Monitor Registers.”

When the 604e vectors to the performance monitor interrupt exception handler, it
automatically clears any pending performance monitor interrupts. Note that unlike the 604,
the 604e does not require MMCRO[ENINT] to be cleared (and possibly reset) before
external interrupts can be re-enabled.
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Chapter 2
Programming Model

This chapter describes the PowerPC programming model with respect to the PowerPC
604e. It consists of three major sections, which describe the following:

» Registers implemented in the 604e
» Operand conventions
» The 604e instruction set

2.1 Register Set

This section describes the registers in the 604e and includes an overview of the registers
defined by the PowerPC architecture and a more detailed description of 604e-specific
registers and differences in how the registers defined by the PowerPC architecture are
implemented in the 604e. Full descriptions of the basic register set defined by the PowerPC
architecture are provided in Chapter 2, “PowerPC Register Sefl’hm Programming
Environments Manual

Note that registers are defined at all three levels of the PowerPC architecture—user
instruction set architecture (UISA), virtual environment architecture (VEA), and operating
environment architecture (OEA). The PowerPC architecture defines register-to-register
operations for all computational instructions. Source data for these instructions are
accessed from the on-chip registers or are provided as immediate values embedded in the
opcode. The three-register instruction format allows specification of a target register
distinct from the two source registers, thus preserving the original data for use by other
instructions and reducing the number of instructions required for certain operations. Data
is transferred between memory and registers with explicit load and store instructions only.
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2.1.1 Register Set

The PowerPC UISA registers, shown in Figure 2-1, are user-level. The general-purpose
registers (GPRs) and floating-point registers (FPRs) are accessed through instruction
operands. Access to registers can be explicit (that is, through the use of specific instructions
for that purpose such as Move to Special-Purpose Regist&p() and Move from
Special-Purpose Registan{spr) instructions) or implicit as part of the execution of an
instruction. Some registers are accessed both explicitly and implicitly.

The number to the right of the special-purpose registers (SPRs) indicates the number that
is used in the syntax of the instruction operands to access the register (for example, the
number used to access the XER is SPR 1). These registers can be accessed ngspgy the
andmfspr instructions.

Implementation Note—The 604e fully decodes the SPR field of the instruction. If the SPR
specified is undefined, the illegal instruction program exception occurs.
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Figure 2-1. Programming Model—PowerPC 604e Microprocessor Registers
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The PowerPC'’s user-level registers are described as follows:

User-level registerUISA)—The user-level registers can be accessed by all
software with either user or supervisor privileges. The user-level register set
includes the following:

— General-purpose registers (GPRs). The PowerPC general-purpose register file

consists of thirty-two GPRs designated as GPRO-GPR31. The GPRs serve as
data source or destination registers for all integer instructions and provide data
for generating addresses. See “General Purpose Registers (GPRs),” in Chapter 2,
“PowerPC Register Set,” @the Programming Environments Mantiat more
information.

Floating-point registers (FPRs). The floating-point register file consists of
thirty-two FPRs designated as FPRO-FPR31, which serves as the data source or
destination for all floating-point instructions. These registers can contain data
objects of either single- or double-precision floating-point format. For more
information, see “Floating-Point Registers (FPRs),” in Chapter 2, “PowerPC
Register Set,” oThe Programming Environments Manual

Condition register (CR). The CR is a 32-bit register, divided into eight 4-bit
fields, CRO—CRY7, that reflects the results of certain arithmetic operations and
provides a mechanism for testing and branching. For more information, see
“Condition Register (CR),” in Chapter 2, “PowerPC Register Seflhef
Programming Environments Manual

Implementation Note—The PowerPC architecture indicates that in some
implementations the Move to Condition Register Fielusoff ) instruction may
perform more slowly when only a portion of the fields are updated as opposed to
all of the fields. The condition register access latency for the 604e is the same in
both cases. In the 604e, aricrf instruction that sets only a single field performs
significantly faster than one that sets either no fields or multiple fields. For more
information regarding the most efficient use offiterf instruction, see

Section 6.6, “Instruction Scheduling Guidelines.”

Floating-point status and control register (FPSCR). The FPSCR contains all
floating-point exception signal bits, exception summary bits, exception enable
bits, and rounding control bits needed for compliance with the IEEE 754
standard. For more information, see “Floating-Point Status and Control Register
(FPSCR),” in Chapter 2, “PowerPC Register Set,Tlo¢ Programming
Environments Manual

Implementation Note—The PowerPC architecture states that in some
implementations, the Move to FPSCR Fielaf§f) instruction may perform

more slowly when only a portion of the fields are updated as opposed to all of the
fields. In the 604e implementation, there is no degradation of performance.

The remaining user-level registers are SPRs. Note that the PowerPC architecture
provides a separate mechanism for accessing SPRat&pheandmfspr
instructions). These instructions are commonly used to explicitly access certain
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registers, while other SPRs may be more typically accessed as the side effect of
executing other instructions.

— XER register. The XER indicates overflow and carries for integer operations. It
Is set implicitly by many instructions. See “XER Register (XER),” in Chapter 2,
“PowerPC Register Set,” @he Programming Environments Mandiat more
information.

— Link register (LR). The LR provides the branch target address for the Branch
Conditional to Link Registembglrx) instruction, and can optionally be used to
hold the logical address of the instruction that follows a branch and link
instruction, typically used for linking to subroutines. For more information, see
“Link Register (LR),” in Chapter 2, “PowerPC Register Set, Thé
Programming Environments Manual

— Count register (CTR). The CTR holds a loop count that can be decremented
during execution of appropriately coded branch instructions. The CTR can also
provide the branch target address for the Branch Conditional to Count Register
(bcctrx) instruction. For more information, see “Count Register (CTR),” in
Chapter 2, “PowerPC Register Set,dfe Programming Environments Manual

» User-level registerVEA)—The PowerPC VEA introduces the time base facility
(TB), a 64-bit structure that maintains and operates an interval timer. The TB
consists of two 32-bit registers—time base upper (TBU) and time base lower (TBL).
Note that the time base registers can be accessed by both user- and supervisor-level
instructions. In the context of the VEA, user-level applications are permitted
read-only access to the TB. The OEA defines supervisor-level access to the TB for
writing values to the TB. For more information, see “PowerPC VEA Register
Set—Time Base,” in Chapter 2, “PowerPC Register Seil’hef Programming
Environments Manual

» Supervisor-level registerdOEA)—The OEA defines the registers that are used
typically by an operating system for such operations as memory management,
configuration, and exception handling. The supervisor-level registers defined by the
PowerPC architecture for 32-bit implementations are described as follows:

— Configuration registers

— Machine state register (MSR). The MSR defines the state of the processor.
The MSR can be modified by the Move to Machine State Regmsteryr),
System Call $c), and Return from Exceptiomf{) instructions. It can be read
by the Move from Machine State Registerf(msr) instruction. See “Machine
State Register (MSR),” in Chapter 2, “PowerPC Register Sethef
Programming Environments Manualr more information.

Implementation Note—Note that the 604e defines MSR[29] as the performance monitor
marked mode bit (PM). This additional bit is described in Table 2-1.
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Table 2-1. MSR[PM] Bit

Bit

Name

Description

29

PM

Performance monitor marked mode

0  Process is not a marked process.

1 Process is a marked process.

This bit is specific to the 604e, and is defined as reserved by the PowerPC architecture. For more
information about the performance monitor, see Chapter 9, “Performance Monitor.”

— Processor version register (PVR). This register is a read-only register that

identifies the version (model) and revision level of the PowerPC processor.
For more information, see “Processor Version Register (PVR),” in Chapter 2,
“PowerPC Register Set,” dthe Programming Environments Manual

Implementation Note—The processor version number is 9 for the 604e. The
processor revision level starts at 0x0100 and changes for each chip revision.
The revision level is updated on all silicon revisions.

— Memory management registers
— Block-address translation (BAT) registers. The PowerPC OEA includes eight

block-address translation registers (BATS), consisting of four pairs of
instruction BATs (IBATOU—IBAT3U and IBATOL—IBAT3L) and four pairs of
data BATs (DBATOU-DBAT3U and DBATOL-DBAT3L). See Figure 2-1 for

a list of the SPR numbers for the BAT registers. For more information, see
“BAT Registers,” in Chapter 2, “PowerPC Register Set,The Programming
Environments ManuaBecause BAT upper and lower words are loaded
separately, software must ensure that BAT translations are correct during the
time that both BAT entries are being loaded.

The 604e implements the G bit in the IBAT registers; however, attempting to
execute code from an IBAT area with G = 1 causes an IS| exception. This
complies with the revision of the architecture describeébinerPC
Microprocessor Family: The Programming Environments

SDR1. The SDR1 register specifies the page table base address used in
virtual-to-physical address translation. For more information, see “SDR1,” in
Chapter 2, “PowerPC Register Set, Tdfe Programming Environments
Manualfor more information.”

Segment registers (SR). The PowerPC OEA defines sixteen 32-bit segment
registers (SRO-SR15). Note that the SRs are implemented on 32-bit
implementations only. The fields in the segment register are interpreted
differently depending on the value of bit 0. See “Segment Registers,” in
Chapter 2, “PowerPC Register Set, Tdfe Programming Environments
Manualfor more information.
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— Exception handling registers

Data address register (DAR). After a DSI or an alignment exception, DAR is
set to the effective address generated by the faulting instruction. See “Data
Address Register (DAR),” in Chapter 2, “PowerPC Register Sethef
Programming Environments Manu@lr more information.

SPRGO0-SPRG3. The SPRGO-SPRG3 registers are provided for operating
system use. See “SPRGO0-SPRG3,” in Chapter 2, “PowerPC Register Set,” of
The Programming Environments Mandiat more information.

DSISR. The DSISR register defines the cause of DSI and alignment
exceptions. See “DSISR,” in Chapter 2, “PowerPC Register Seffiof
Programming Environments Manu@lr more information.

Machine status save/restore register 0 (SRRO0). The SRRO register is used to
save machine status on exceptions and to restore machine status when an
Instruction is executed. See “Machine Status Save/Restore Register O
(SRRO0),” in Chapter 2, “PowerPC Register Set,Thé Programming
Environments Manudbr more information.

Machine status save/restore register 1 (SRR1). The SRRL1 register is used to
save machine status on exceptions and to restore machine status when an
instruction is executed. See “Machine Status Save/Restore Register 1
(SRR1),” in Chapter 2, “PowerPC Register Set,Thé Programming
Environments Manudbr more information.

Miscellaneous registers

Time Base (TB). The TB is a 64-bit structure that maintains the time of day
and operates interval timers. The TB consists of two 32-bit registers—time
base upper (TBU) and time base lower (TBL). Note that the time base
registers can be accessed by both user- and supervisor-level instructions. See
“Time Base Facility (TB)—OEA,” in Chapter 2, “PowerPC Register Set,” of
The Programming Environments Mandiat more information.

Decrementer register (DEC). This register is a 32-bit decrementing counter
that provides a mechanism for causing a decrementer exception after a
programmable delay; the frequency is a subdivision of the processor clock.
See “Decrementer Register (DEC),” in Chapter 2, “PowerPC Register Set,” of
The Programming Environments Mandiat more information.

Implementation Note—In the 604e, the decrementer register is decremented
at a speed that is one-fourth the speed of the bus clock.

Data address breakpoint register (DABR)—This optional register can be used
to cause a breakpoint exception to occur if a specified data address is
encountered. See “Data Address Breakpoint Register (DABR),” in Chapter 2,
“PowerPC Register Set,” @he Programming Environments Mandai

more information.

Chapter 2.

Programming Model 2-7



— External access register (EAR). This optional register is used in conjunction
with theeciwx andecowxinstructions. Note that the EAR register and the
eciwx andecowxinstructions are optional in the PowerPC architecture and
may not be supported in all PowerPC processors that implement the OEA. See
“External Access Register (EAR),” in Chapter 2, “PowerPC Register Set,” of
The Programming Environments Mandatl more information.

» Hardware implementation registers—The PowerPC architecture allows
iImplementations to include SPRs not defined by the PowerPC architecture. Those
incorporated in the 604e are described as follows. Note that in the 604e, these
registers are all supervisor-level registers.

— Instruction address breakpoint register (IABR)—This register can be used to
cause a breakpoint exception to occur if a specified instruction address is
encountered.

— Hardware implementation-dependent registers (HIDO and HID1)—These
registers are used to control various functions within the 604e, such as enabling
checkstop conditions, and locking, enabling, and invalidating the instruction and
data caches.

— Processor identification register (PIR)—The PIR is a supervisor-level register
that has a right-justified, four-bit field that holds a processor identification tag
used to identify a particular 604e. This tag is used to identify the processor in
multiple-master implementations. Note that although the SPR number is defined
by the OEA, the register definition is implementation-specific.

— Performance monitor counter registers (PMC1-PMC4). The counters are used to
record the number of times a certain event has occurred.

— Monitor mode control registers (MMCRO and MMCR1)—This is used for
enabling various performance monitoring interrupt conditions and establishes
the function of the counters.

— Sampled instruction address and sampled data address registers (SIA and
SDA)—These registers hold the addresses for instruction and data used by the
performance monitoring interrupt.

Note that while it is not guaranteed that the implementation of HID registers is consistent
among PowerPC processors, other processors may be implemented with similar or
identical HID registers.

2.1.2 PowerPC 604e-Specific Registers

This section describes registers that are defined for the 604e but are not included in the
PowerPC architecture. This section also includes a description of the PIR, which is
assigned an SPR number by the architecture but is not defined by it. Note that these are all
supervisor-level registers.
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2.1.2.1 Instruction Address Breakpoint Register (IABR)

The 604e also implements an Instruction Address Breakpoint Register (IABR). When
enabled, instruction fetch addresses will be compared with an effective address that is
stored in the IABR. The granularity of these compares will be a word. If the word specified
by the IABR is fetched, the instruction breakpoint handler will be invoked. The instruction
which triggers the breakpoint will not be executed before the handler is invoked.

The IABR is shown in Figure 2-2.

ADDRESS BE|TE

0 29 30 31

Figure 2-2. Instruction Address Breakpoint Register

The instruction address breakpoint register is used in conjunction with the instruction
address breakpoint exception, which occurs when an attempt is made to execute an
instruction at an address specified in the IABR. The bits in the IABR are defined as shown
in Table 2-2.

Table 2-2. Instruction Address Breakpoint Register Bit Settings

Bit Description
0-29 Word address to be compared
30 Breakpoint enabled. Setting this bit indicates that breakpoint checking is to be done.
31 Translation enabled. This bit is compared with the MSR][IR] bit. An IABR match is
signaled only if these bits also match.

The instruction that triggers the instruction address breakpoint exception is not executed
before the exception handler is invoked. For more information about the IABR exception,
see Section 4.5.14, “Instruction Address Breakpoint Exception (0x01300).”

The IABR can be accessed with thspr andmfspr instructions using the SPR number,
1010.

2.1.2.2 Processor ldentification Register (PIR)

The processor identification register (PIR) is a 32-bit register that holds a processor
identification tag in the four least significant bits (PIR[28-31]). This tag is useful for
processor differentiation in multiprocessor system designs. In addition, this tag is used for
several direct-store bus operations in the form of a “bus transaction from” tag.

PIR [ ] Reserved

0000000O00OOOOOOOOOOOOOOOOOOOO PID
0 27 28 31

Figure 2-3. Processor Identification Register
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The PIR can be accessed with tméspr and mfspr instructions using the SPR number,
1023. Note that although this number is defined by the OEA, the register structure is defined
by each implementation that implements this optional register.

2.1.2.3 Hardware Implementation-Dependent Register O

The hardware implementation dependent register 0 (HIDO) is an SPR that controls the state
of several functions within the 604e.

Table 2-3. Hardware Implementation-Dependent Register O Bit Settings

Bit Description

0 Enable machine check input pin

0  The assertion of the MCP does not cause a machine check exception.

1  Enables the entry into a machine check exception based on assertion of the MCP input, detection of a
Cache Parity Error, detection of an address parity error, or detection of a data parity error.

Note that the machine check exception is further affected by the MSR[ME] bit, which specifies whether the

processor checkstops or continues processing.

1 Enable cache parity checking

0 The detection of a cache parity error does not cause a machine check exception.

1 Enables the entry into a machine check exception based on the detection of a cache parity error.
Note that the machine check exception is further affected by the MSR[ME] bit, which specifies whether the
processor checkstops or continues processing.

2 Enable machine check on address bus parity error

0  The detection of a address bus parity error does not cause a machine check exception.

1 Enables the entry into a machine check exception based on the detection of an address parity error.
Note that the machine check exception is further affected by the MSR[ME] bit, which specifies whether the
processor checkstops or continues processing.

3 Enable machine check on data bus parity error

0  The detection of a data bus parity error does not cause a machine check exception.

1 Enables the entry into a machine check exception based on the detection of a data bus parity error.
Note that the machine check exception is further affected by the MSR[ME] bit, which specifies whether the
processor checkstops or continues processing.

7 Disable snoop response high state restore
HID bit 7, if active, alters bus protocol slightly by preventing the processor from driving the SHD and ARTRY
signals to the high (negated) state. If this is done, then the system must restore the signals to the high state.

12 Reserved. This bit should always be set to zero.

15 | Not hard reset
0 A hard reset occurred if software had previously set this bit
1 A hard reset has not occurred.

16 Instruction cache enable

0 The instruction cache is neither accessed nor updated. All pages are accessed as if they were marked
cache-inhibited (WIM = X1X). All potential cache accesses from the bus (snoop, cache ops) are ignored.

1 Theinstruction cache is enabled

17 | Data cache enable

0 The data cache is neither accessed nor updated. All pages are accessed as if they were marked
cache-inhibited (WIM = X1X). All potential cache accesses from the bus (snoop, cache ops) are ignored.

1 The data cache is enabled.
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Table 2-3. Hardware Implementation-Dependent Register 0 Bit Settings (Continued)

Bit Description

18 | Instruction cache lock

0  Normal operation

1  Allmisses are treated as cache-inhibited. Hits occur as normal. Snoop and cache operations continue to
work as normal. This is the only method for “deallocating” an entry.

19 | Data cache lock

0  Normal operation

1  Allmisses are treated as cache-inhibited. Hits occur as normal. Snoop and cache operations continue to
work as normal. This is the only method for “deallocating” an entry. The dcbz instruction takes an
alignment exception if the data cache is locked when it is executed, provided the target address had
been translated correctly.

20 Instruction cache invalidate all

0  The instruction cache is not invalidated.

1 When set, an invalidate operation is issued that marks the state of each block in the instruction cache as
invalid without writing back any modified lines to memory. Access to the cache is blocked during this
time. Accesses to the cache from the bus are signaled as a miss while the invalidate-all operation is in
progress.

The bit is cleared when the invalidation operation begins (usually the cycle immediately following the write

operation to the register). Note that the instruction cache must be enabled for the invalidation to occur.

21 | Data cache invalidate all

0  The data cache is not invalidated.

1  When set, an invalidate operation is issued that marks the state of each clock in the data cache as
invalid without writing back any modified lines to memory. Access to the cache is blocked during this
time. Accesses to the cache from the bus are signaled as a miss while the invalidate-all operation is in
progress.

The bit is cleared when the invalidation operation begins (usually the cycle immediately following the write

operation to the register). Note that the data cache must be enabled for the invalidation to occur.

23 Coherent instruction fetch enable—controls whether instruction fetch bus operations are snooped.

0 In this default state, all instruction fetch address tenures are nonglobal, regardless of the state of the
MSRJIR] or the WIMG bits. Therefore, coherency checking on instruction fetches is disabled, as it is on
the 604.

1  The 604e presents a value on the GBL signal for instruction fetch address tenures that reflects the state
of the M bit if MSR[IR] = 1. If IR = 0 and HIDO[23] is set, the GBL signal is asserted for all instruction
fetch address tenures.

When modifying the instruction cache enable or instruction cache lock bits, software should place an isync

instruction after the mtspr [HIDO] instruction to ensure that the subsequent instructions are fetched with the

proper cache mode.

Note that, like the 604, the 604e never snoops its data cache during its own instruction fetch address tenure,

regardless of the state of GBL. Therefore, assertion of the GBL signal does not guarantee coherency

between the 604e’s own instruction cache and data cache. As in the 604, coherency between the instruction
and data caches must be maintained by software.

Additional information is provided in Section 3.2, “Instruction Cache Organization.”

24 | Serial instruction execution disable

0 The 604e executes one instruction at a time. The 604e does not post a trace exception after each
instruction completes, as it would if MSR[SE] or MSR[BE] were set.

1 Instruction execution is not serialized.
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Table 2-3. Hardware Implementation-Dependent Register 0 Bit Settings (Continued)

Bit Description

29 | Branch history table enable

0  The 604e uses static branch prediction as defined by the PowerPC architecture (UISA) for those branch
instructions that the BHT would have otherwise been used to predict (that is, those that use the CR as
the only mechanism to determine direction. For more information on static branch prediction, see
section “Conditional Branch Control,” in Chapter 4 of The Programming Environments Manual.

1  Allows the use of the 512-entry branch history table (BHT).

The BHT is disabled at power-on reset. The BHT is updated while it is disabled, so it can be initialized before

it is enabled.

30 BTAC disable—used to disable use of the 64-entry branch target address cache.

0 The BTAC is enabled and new entries can be added.

1 The BTAC contents are invalidated and the BTAC behaves as if it were empty. New entries cannot be
added until the BTAC is enabled.

Note that the BTAC can be flushed by disabling and re-enabling the BTAC using two successive mtspr

instructions.

When modifying the data cache enable or data cache lock bits, software shouldpjace a
instruction both before and after the move to the HIDO register to ensure that the data cache
is properly updated by instructions both before and after the move to HIDO instruction.

2.1.2.4 Hardware Implementation-Dependent Register 1 (HID1)

HID1 (SPR 1009), shown in Figure 2-4, is a supervisor-level register that allows software
to read the current PLL_CFG value. The PLL_CFG signal values are read from bits
HID1[0-3]. The remaining bits are reserved and are read as zeros. HID1 is a read-only
register.

E] Reserved

0000 0000 0OOOO 0000 OOOO 0OOOO OOOO
0 34 31

Figure 2-4. HID1 Clock Configuration Register

The bit settings in HID1 are described in Table 2-4.
Table 2-4. HID1 Bit Settings

Bits Description
0-3 PLL configuration bits (0-3)
4-31 Reserved (Read as zero)

2.1.2.5 Performance Monitor Registers

The remaining eight registers defined for use with the 604e are used by the performance
monitor. For more information about the performance monitor, see Chapter9,
“Performance Monitor.”
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2.1.2.5.1 Monitor Mode Control Register 0 (MMCRO)

The monitor mode control register 0 (MMCRO) is a 32-bit SPR (SPR 952) whose bits are
partitioned into bit fields that determine the events to be counted and recorded. The
selection of allowable combinations of events causes the counters to operate concurrently.

The MMCRO can be written to or read only in supervisor mode. The MMCRO includes
controls, such as counter enable control, counter overflow interrupt control, counter event
selection, and counter freeze control.

This register must be cleared at power up. Reading this register does not change its
contents. The fields of the register are defined in Table 2-5.

Table 2-5. MMCRO Bit Settings

Bit Name Description

0 DIS Disable counting unconditionally
0  The values of the PMCn counters can be changed by hardware.
1  The values of the PMCn counters cannot be changed by hardware.

1 DP Disable counting while in supervisor mode

0  The PMCn counters can be changed by hardware.

1  If the processor is in supervisor mode (MSR[PR] is cleared), the counters
are not changed by hardware.

2 DU Disable counting while in user mode

0 The PMCn counters can be changed by hardware.

1  If the processor is in user mode (MSR[PR] is set), the PMC counters are not
changed by hardware.

3 DMS Disable counting while MSR[PM] is set
0  The PMCn counters can be changed by hardware.
1 If MSR[PM] is set, the PMCn counters are not changed by hardware.

4 DMR Disable counting while MSR(PM) is zero.
0  The PMCn counters can be changed by hardware.
1 If MSR[PM] is cleared, the PMCn counters are not changed by hardware.

5 ENINT Enable performance monitoring interrupt signaling.

0 Interrupt signaling is disabled.

1 Interrupt signaling is enabled.

This bit is cleared by hardware when a performance monitor interrupt is signaled.
To reenable these interrupt signals, software must set this bit after servicing the
performance monitor interrupt. The IPL ROM code clears this bit before passing
control to the operating system.

6 DISCOUNT Disable counting of PMC1-PMC4 when a performance monitor interrupt is
signalled or the occurrence of an enabled time base transition with
((INTONBITTRANS =1) & (ENINT = 1)).

0 Signalling a performance monitoring interrupt does not affect the counting
status of PMC1-PMC4.

1  The signalling of a performance monitoring interrupt prevents the changing
of the PMC1 counter. The PMC2-PMC4 counters does not change if
PMCTRIGGER = 0.

Because, a time base signal could have occurred along with an enabled counter

negative condition, software should always reset INTONBITTRANS to zero, if the

value in INTONBITTRANS was a one.
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Table 2-5. MMCRO Bit Settings (Continued)

Bit Name Description

7-8 RTCSELECT 64-bit time base, bit selection enable
00 Pick bit 63 to count
01 Pick bit 55 to count
10 Pick bit 51 to count
11 Pick bit 47 to count

9 INTONBITTRANS Cause interrupt signalling on bit transition (identified in RTCSELECT) from off to
on

0 Do not allow interrupt signal if chosen bit transitions.

1  Signal interrupt if chosen bit transitions.

Software is responsible for setting and clearing INTONBITTRANS.

10-15 | THRESHOLD Threshold value. All 6 bits are supported by the 604e. The threshold value is
multiplied by 4, allowing threshold values from 0 to 252 in increments of 4. The
intent of the THRESHOLD support is to be able to characterize L1 data cache
misses.

16 PMC1INTCONTROL | Enable interrupt signaling due to PMC1 counter negative.
0 Disable PMCL1 interrupt signaling due to PMC1 counter negative
1 Enable PMC1 Interrupt signaling due to PMC1 counter negative

17 PMCINTCONTROL Enable interrupt signalling due to any PMCn (n>1) counter negative.
0 Disable PMCn (n>1) interrupt signalling due to PMCn (n>1) counter
negative.

1  Enable PMCn (n>1) interrupt signalling due to PMCn (n>1) counter negative.

18 PMCTRIGGER PMCTRIGGER may be used to trigger counting of PMCn (n>1) after PMC1 has

become negative or after a performance monitoring interrupt is signalled.

0  Enable PMCn (n>1) counting

1 Disable PMCn (n>1) counting until PMC1 bit 0 is “on” or until a performance
monitor interrupt is signalled.

PMCTRIGGER may be used to trigger counting of PMCn (n>1) after PMC1 has

become negative. This provides a triggering mechanism to allow counting after a

certain condition occurs or after enough time has occurred. It can be used to

support getting the count associated with a specific event.

19-25 | PMC1SELECT PMC1 input selector, 128 events selectable; 25 defined. See Table 2-7.

26-31 | PMC2SELECT PMC2 input selector, 64 events selectable; 21 defined. See Table 2-8.

2.1.2.5.2 Monitor Mode Control Register 1—MMCR1

The 604e defines an additional monitor mode control register (MMCR1), which functions
as an event selector for the two 604e-specific performance monitor counter registers
(PMC3 and PMC4). MMCR1 is SPR 956. The MMCR1 register is shown in Figure 2-5.

E] Reserved

PMC3SELECT|PMC4SELECT 00000000000O0O0O0O0OOOO0OO0OO0OOOOOO
0 45 910 31

Figure 2-5. Monitor Mode Control Register 1 (MMCR1)
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Bit settings for MMCR1 are shown in Table 2-6. The corresponding events are described
in the Section 2.1.2.5.3, “Performance Monitor Counter Registers (PMC1-PMC4).

Table 2-6. MMCR1 Bit Settings

Bits Name Description
0-4 PMC3SELECT PMC3 event selector
5-9 PMCA4SELECT PMC4 event selector
10-31 — Reserved

2.1.2.5.3 Performance Monitor Counter Registers (PMC1-PMC4)

PMC1-PMC4 are 32-bit counters that can be programmed to generate interrupt signals
when they are negative. Counters are considered to be negative when the high-order bit (the
sign bit) becomes set; that is, they reach the value 2147483648 (0x8000_0000). However,
an interrupt is not signaled unless both MMCRO[PMCINTCONTROL] and
MMCRO[ENINT] are also set.

Note that the interrupts can be masked by clearing MSR[EE]; the interrupt signal condition
may occur with MSR[EE] cleared, but the interrupt is not taken until the EE bit is set.
Setting MMCRO[DISCOUNT] forces the counters stop counting when a counter interrupt
occurs.

PMCL1 (SPR 953), PMC2 (SPR 954), PMC3 (SPR 957), and PMC4 (SPR 958) can be read
and written to by using thenfspr andmtspr instructions. Software is expected to use the
mtspr instruction to explicitly set the PMC register to non-negative values. If software sets
a negative value, an erroneous interrupt may occur. For example, if both
MMCRO[PMCINTCONTROL] and MMCRO[ENINT] are set and tmetspr instruction is

used to set a negative value, an interrupt signal condition may be generated prior to the
completion of thentspr and the values of the SIA and SDA may not have any relationship

to the type of instruction being counted.

The event that is to be monitored can be chosen by setting the appropriate bits in the
MMCRO[19-31]. The number of occurrences of these selected events is counted from the
time the MMCRO was set either until a new value is introduced into the MMCRO register
or until a performance monitor interrupt is generated. Table 2-7 lists the selectable events
with their appropriate MMCRO encodings.

Table 2-7. Selectable Events—PMC1

MMCRO0[0-4] Description

000 0000 Nothing. Register counter holds current value.

000 0001 Processor cycles Ob1. Count every cycle.

000 0010 Number of instructions completed every cycle

000 0011 RTCSELECT bit transition. 0 = 47, 1 = 51, 2 = 55, 3 = 63 (bits from the time base lower register).
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Table 2-7. Selectable Events—PMCL1 (Continued)

MMCRO0[0-4] Description

000 0100 Number of instructions dispatched

000 0101 Instruction cache misses

000 0110 Data TLB misses (in order)

000 0111 Branch misprediction correction from execute stage

000 1000 Number of reservations requested. The lwarx instruction is ready for execution in the LSU.

000 1001 Number of data cache load misses exceeding the threshold value with lateral L2 cache intervention

000 1010 Number of data cache store misses exceeding the threshold value with lateral L2 cache
intervention

000 1011 Number of mtspr instructions dispatched

000 1100 Number of sync instructions completed

000 1101 Number of eieio instructions completed

000 1110 Number of integer instructions completed every cycle (no loads or stores)

000 1111 Number of floating-point instructions completed every cycle (no loads or stores)

001 0000 LSU produced result.

001 0001 SCIU1 produced result for an add, subtract, compare, rotate, shift, or logical instruction.

001 0010 FPU produced result.

001 0011 Number of instructions dispatched to the LSU

001 0100 Number of instructions dispatched to the SCIU1

001 0101 Number of instructions dispatched to the FPU

001 0110 Valid snoop requests received from outside the 604e. Does not distinguish hits or misses.

001 0111 Number of data cache load misses exceeding the threshold value without lateral L2 intervention

001 1000 Number of data cache store misses exceeding the threshold value without lateral L2 intervention

001 1001 Number of cycles the branch unit is idle

001 1010 Number of cycles MCIUO is idle

001 1011 Number of cycles the LSU is idle. No new instructions are executing; however, active loads or
stores may be in the queues.

001 1100 Number of times the L2_INT is asserted (regardless of TA state)

001 1101 Number of unaligned loads

001 1110 Number of entries in the load queue each cycle (maximum of five). Although the load queue has
four entries, a load miss latch may hold a load waiting for data from memory.

001 1111 Number of instruction breakpoint hits
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Bits MMCRO0[26—31] are used for selecting events associated with PMC2. These settings
are shown in Table 2-8.

Table 2-8. Selectable Events—PMC2

MMCRO0[26-31] Description

00 0000 Register counter holds current value.

00 0001 Processor cycles Ob1. Count every cycle.

00 0010 Number of instructions completed. Legal values are 000, 001, 010, 011, 100.

00 0011 RTCSELECT bit transition. 0 = 47, 1 =51, 2 =55, 3 = 63 (bits from the time base lower register).
00 0100 Number of instructions dispatched (0 to 4 instructions per cycle)

00 0101 Number of cycles a load miss takes

00 0110 Data cache misses (in order)

00 0111 Number of instruction TLB misses

00 1000 Number of branches completed. Indicates the number of branch instructions being completed

every cycle (00 = none, 10 = one, 11 = two, 01 is an illegal value).

00 1001 Number of reservations successfully obtained (stwcx. operation completed successfully)

00 1010 Number of mfspr instructions dispatched (in order)

00 1011 Number of icbi instructions. It may not hit in the cache.

00 1100 Number of pipeline “flushing” instructions (sc, isync, mtspr (XER), mcrxt, floating-point operation

with divide by 0 or invalid operand and MSR[FEO, FE1] = 00, branch with MSR[BE] = 1, load
string indexed with XER = 0, and SO bit getting set)

00 1101 BPU produced result.

00 1110 SCIUO produced result (of an add, subtract, compare, rotate, shift, or logical instruction).

00 1111 MCIU produced result (of a multiply/divide or SPR instruction).

01 0000 Number of instructions dispatched to the branch unit.

01 0001 Number of instructions dispatched to the SCIUO.

01 0010 Number of loads completed. These include all cache operations and tlbie, tlbsync, sync, eieio,

and ichi instructions.

01 0011 Number of instructions dispatched to the MCIU

01 0100 Number of snoop hits occurred

01 0101 Number of cycles during which the MSR[EE] bit is cleared

010110 Number of cycles the MCIU is idle

010111 Number of cycles SCIUL is idle

01 1000 Number of cycles the FPU is idle

011001 Number of cycles the L2_INT signal is active (regardless of TA state)
011010 Number of times four instructions were dispatched

011011 Number of times three instructions were dispatched
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Table 2-8. Selectable Events—PMC2 (Continued)

MMCRO0[26-31] Description

011100 Number of times two instructions were dispatched

011101 Number of times one instruction was dispatched

011110 Number of unaligned stores

011111 Number of entries in the store queue each cycle (maximum of six)

Bits MMCR1[0-4] are used for selecting events associated with PMC3. These settings are
shown in Table 2-9.

Table 2-9. Selectable Events—PMC3

MMCR1[0-4] Comments

0 0000 Register counter holds current value.

0 0001 Count every cycle.

00010 Indicates the number of instructions being completed every cycle

00011 RTCSELECT bit transition. 0 = 47, 1 = 51, 2 = 55, 3 = 63 (bits from the time base lower register).
0 0100 Number of instructions dispatched

00101 Number of cycles the LSU stalls due to BIU or cache busy. Counts cycles between when a load or

store request is made and a response was expected. For example, when a store is retried, there
are four cycles before the same instruction is presented to the cache again. Cycles in between are
not counted.

00110 Number of cycles the LSU stalls due to a full store queue
00111 Number of cycles the LSU stalls due to operands not available in the reservation station
0 1000 Number of instructions written into the load queue. Misaligned loads are split into two transactions

with the first part always written into the load queue. If both parts are cache hits, data is returned to
the rename registers and the first part is flushed from the load queue. To count the instructions that
enter the load queue to stay, the misaligned load hits must be subtracted. See event 8 in

Table 2-10.
01001 Number of cycles that completion stalls for a store instruction
0 1010 Number of cycles that completion stalls for an unfinished instruction. This event is a superset of

PMC3 event 9 and PMC4 event 10.

01011 Number of system calls

0 1100 Number of cycles the BPU stalled as branch waits for its operand

01101 Number of fetch corrections made at the dispatch stage. Prioritized behind the execute stage.
01110 Number of cycles the dispatch stalls waiting for instructions

01111 Number of cycles the dispatch stalls due to unavailability of reorder buffer (ROB) entry. No ROB

entry was available for the first nondispatched instruction.

1 0000 Number of cycles the dispatch unit stalls due to no FPR rename buffer available. First
nondispatched instruction required a floating-point reorder buffer and none was available.

10001 Number of instruction table search operations
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Table 2-9. Selectable Events—PMC3 (Continued)

MMCR1[0-4] Comments

10010 Number of data table search operations. Completion could result from a page fault or a PTE match.
10011 Number of cycles the FPU stalled

10100 Number of cycles the SCIU1 stalled

10101 Number of times the BIU forwards noncritical data from the line-fill buffer

10110 Number of data bus transactions completed with pipelining one deep with no additional bus

transactions queued behind it

10111 Number of data bus transactions completed with two data bus transactions queued behind

11000 Counts pairs of back-to-back burst reads streamed without a dead cycle between them in data
streaming mode

11001 Counts non-ARTRYd processor kill transactions caused by a write-hit-on-shared condition

11010 This event counts non-ARTRYd write-with-kill address operations that originate from the three
castout buffers. These include high-priority write-with-kill transactions caused by a snoop hit on
modified data in one of the BIU’s three copy-back buffers. When the cache block on a data cache
miss is modified, it is queued in one of three copy-back buffers. The miss is serviced before the
copy-back buffer is written back to memory as a write-with-kill transaction.

11011 Number of cycles when exactly two castout buffers are occupied

11100 Number of data cache accesses retried due to occupied castout buffers

11101 Number of read transactions from load misses brought into the cache in a shared state
11110 CRU Indicates that a CR logical instruction is being finished.

Bits MMCR1[5-9] are used for selecting events associated with PMC4. These settings are
shown in Table 2-9.

Table 2-10. Selectable Events—PMC4

MMCR1[5-9] Description

0 0000 Register counter holds current value

00001 Count every cycle

00010 Number of instructions being completed

00011 RTCSELECT bit transition. 0 = 47, 1 = 51, 2 = 55, 3 = 63 (bits from the time base lower register).

00100 Number of instructions dispatched

00101 Number of cycles the LSU stalls due to busy MMU

00110 Number of cycles the LSU stalls due to the load queue full

00111 Number of cycles the LSU stalls due to address collision

0 1000 Number of misaligned loads that are cache hits for both the first and second accesses. Related to
event 8 in PMC3.

01001 Number of instructions written into the store queue
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Table 2-10. Selectable Events—PMC4 (Continued)

MMCR1[5-9] Description
01010 Number of cycles that completion stalls for a load instruction
01011 Number of hits in the BTAC. Warning —if decode buffers cannot accept new instructions, the

processor refetches the same address multiple times.

01100 Number of times the four basic blocks in the completion buffer from which instructions can be
retired were used

01101 Number of fetch corrections made at decode stage

01110 Number of cycles the dispatch unit stalls due to no unit available. First nondispatched instruction
requires an execution unit that is either full or a previous instruction is being dispatched to that unit.

01111 Number of cycles the dispatch unit stalls due to unavailability of GPR rename buffer. First
nondispatched instruction requires a GPR reorder buffer and none are available.

1 0000 Number of cycles the dispatch unit stalls due to no CR rename buffer available. First
nondispatched instruction requires a CR rename buffer and none is available.

10001 Number of cycles the dispatch unit stalls due to CTR/LR interlock. First nondispatched instruction
could not dispatch due to CTR/LR/mtcrf interlock.

10010 Number of cycles spent doing instruction table search operations

10011 Number of cycles spent doing data table search operations

10100 Number of cycles SCIUO was stalled

10101 Number of cycles MCIU was stalled

10110 Number of bus cycles after an internal bus request without a qualified bus grant

10111 Number of data bus transactions completed with one data bus transaction queued behind

11000 Number of write data transactions that have been reordered before a previous read data

transaction using the DBWO feature

11001 Number of ARTRYd processor address bus transactions

11010 Number of high-priority snoop pushes. Snoop transactions, except for write-with-Kkill, that hit
modified data in the data cache cause a high-priority write (snoop push) of that modified cache
block to memory.This operation has a transaction type of write-with-kill. This event counts the
number of non-ARTRYd processor write-with-kill transactions that were caused by a snoop hit on
modified data in the data cache. It does not count high-priority write-with-kill transactions caused
by snoop hits on modified data in one of the BIU’s three copy-back buffers.

11011 Number of cycles for which exactly one castout buffer is occupied

11100 Number of cycles for which exactly three castout buffers are occupied

11101 Number of read transactions from load misses brought into the cache in an exclusive (E) state
11110 Number of undispatched instructions beyond branch

2.1.2.5.4 Sampled Instruction Address Register (SIA)

The two address registers contain the addresses of the data or the instruction that caused a
threshold-related performance monitor interrupt. For more information on
threshold-related interrupts, see Section 9.1.2.2, “Threshold Events.”
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The SIA contains the effective address of an instruction executing at or around the time that
the processor signals the performance monitor interrupt condition. If the performance
monitor interrupt was triggered by a threshold event, the SIA contains the exact instruction
that caused the counter to become negative. The instruction whose effective address is put
in the SIA is called the sampled instruction.

If the performance monitor interrupt was caused by something besides a threshold event,
the SIA contains the address of the last instruction completed during that cycle. The SDA

contains an effective address that is not guaranteed to match the instruction in the SIA. The
SIA and SDA are supervisor-level SPRs.

The SIA can be read by using tmefspr instruction and written to by using thatspr
instruction (SPR 955).

2.1.2.5.5 Sampled Data Address Register (SDA)

The SDA contains the effective address of an operand of an instruction executing at or
around the time that the processor signals the performance monitor interrupt condition. In
this case the SDA is not meant to have any connection with the value in the SIA. If the
performance monitor interrupt was triggered by a threshold event, the SDA contains the
effective address of the operand of the SIA.

If the performance monitor interrupt was caused by something other than a threshold event,
the SIA contains the address of the last instruction completed during that cycle. The SDA
contains an effective address that is not guaranteed to match the instruction in the SIA. The
SIA and SDA are supervisor-level SPRs.

The SDA can be read by using thefspr instruction and written to by using thatspr
instruction (SPR 959).

2.1.3 Reset Settings

Table 2-11 shows the state of the registers after a hard reset and before the first instruction
is fetched from address OxFFFO_0100 (the system reset exception vector).

Table 2-11. Settings after Hard Reset (Used at Power-On)

Register Setting Register Setting
BATs Undefined LR Undefined
Caches* Undefined and disabled MSR 0x00000040 (only IP set)
CR Undefined PIR Undefined
CTR Undefined PVR ROM value
DABR Breakpoint is disabled. Reservation Undefined

Address is undefined. address

DAR Undefined Reservation flag | Cleared
DEC Undefined SDR1 Undefined
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Table 2-11. Settings after Hard Reset (Used at Power-On) (Continued)

Register Setting Register Setting
DSISR Undefined SPRGO-SPGR3 | Undefined
EAR E is cleared; SR Undefined

RID is undefined.
FPR Undefined SRRO Undefined
FPSCR Setto O SRR1 Undefined
GPR Undefined Time base Undefined
HIDO 0x00000000 TLB Undefined
IABR Breakpoint is disabled. XER Undefined
Address is undefined.

* The processor automatically begins operations by issuing an instruction fetch. Because caching is
inhibited at start-up, this generates a single-beat load operation on the bus.

2.2 Operand Conventions

This section describes the operand conventions as they are represented in two levels of the
PowerPC architecture—UISA and VEA. Detailed descriptions are provided of conventions
used for storing values in registers and memory, accessing PowerPC registers, and
representation of data in these registers.

2.2.1 Floating-Point Execution Models—UISA

The IEEE 754 standard defines conventions for 64- and 32-bit arithmetic. The standard
requires that single-precision arithmetic be provided for single-precision operands. The
standard permits double-precision arithmetic instructions to have either (or both)
single-precision or double-precision operands, but states that single-precision arithmetic
instructions should not accept double-precision operands.

* Double-precision arithmetic instructions may have single-precision operands but
always produce double-precision results.

» Single-precision arithmetic instructions require all operands to be single-precision
and always produce single-precision results.

For arithmetic instructions, conversion from double- to single-precision must be done
explicitly by software, while conversion from single- to double-precision is done implicitly
by the processor.

All PowerPC implementations provide the equivalent of the following execution models to

ensure that identical results are obtained. The definition of the arithmetic instructions for
infinities, denormalized numbers, and NaNs follow conventions described in the following

sections.
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Although the double-precision format specifies an 11-bit exponent, exponent arithmetic
uses two additional bit positions to avoid potential transient overflow conditions. An extra
bit is required when denormalized double-precision numbers are prenormalized. A second
bit is required to permit computation of the adjusted exponent value in the following
examples when the corresponding exception enable bit is one:

» Underflow during multiplication using a denormalized operand
» Overflow during division using a denormalized divisor

2.2.2 Data Organization in Memory and Data Transfers

Bytes in memory are numbered consecutively starting with 0. Each number is the address
of the corresponding byte.

Memory operands may be bytes, half words, words, or double words, or, for the load/store
multiple and load/store string instructions, a sequence of bytes or words. The address of a
memory operand is the address of its first byte (that is, of its lowest-numbered byte).
Operand length is implicit for each instruction.

2.2.3 Alignment and Misaligned Accesses

The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the “natural” address of an operand
is an integral multiple of the operand length. A memory operand is said to be aligned if it
is aligned at its natural boundary; otherwise it is misaligned.

Operands for single-register memory access instructions have the characteristics shown in
Table 2-12. (Although not permitted as memory operands, quad words are shown because
guad-word alignment is desirable for certain memory operands).

The concept of alignment is also applied more generally to data in memory. For example,
a 12-byte data item is said to be word-aligned if its address is a multiple of four.

Some instructions require their memory operands to have certain alignment. In addition,
alignment may affect performance. For single-register memory access instructions, the best
performance is obtained when memory operands are aligned.

Instructions are 32 bits (one word) long and must be word-aligned.

2.2.4 Support for Misaligned Little-Endian Accesses

The 604e provides hardware support for misaligned little-endian accesses. Little-endian
accesses in the 604e take an alignment exception for the same cases that big-endian
accesses take alignment exceptions. Any data access that crosses a word boundary requires
two accesses regardless of whether the data is in big- or little-endian format. When two
accesses are required, the lower addressed word (in the current addressing mode) is
accessed first. Consider the memory mapping in Figure 2-6.
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Big-Endian Mode

Contents| A | B | c | D | E | F | G | H |
Address 00 01 02 03 04 05 06 07
Contents| | | J | K | L | M | N | o) | P |
Address 08 09 0A 0B oC oD OE OF

Little-Endian Mode

Contents| A | B | c | D | E | F | G | H |
Address 07 06 05 04 03 02 01 00
Contents| | | J | K | L | M | N | o) | P |
Address OF OE 0D 0C 0B 0A 09 08

Figure 2-6. Big-Endian and Little-Endian Memory Mapping

If two bytes are requested starting at little-endian address 0x3, one byte at big-endian
address 0x4 containing dafais accessed first followed by one byte at big-endian address
0x3 containing dat®. For a load halfword, the data written back to the GPR would be
D, E. If four bytes are requested starting at little-endian address 0x6, two bytes at
big-endian address 0x0 containing d&taB are accessed first followed by two bytes at
big-endian address OXE containing détaP. For a load word, the data written back to the
GPR would beD, P, A, B.

Misaligned little-endian accesses to direct-storage segments are boundedly-undefined.

2.2.5 Floating-Point Operand

The 604e provides hardware support for all single- and double-precision floating-point
operations for most value representations and all rounding modes. This architecture
provides for hardware to implement a floating-point system as defined in ANSI/IEEE
standard 754-1985|EEE Standard for Binary Floating Point ArithmetidDetailed
information about the floating-point execution model can be found in Chapter 3, “Operand
Conventions,” inThe Programming Environments Manual

The 604e supports non-IEEE mode whenever FPSCR[29] is set. In this mode,
denormalized numbers, NaNs, and some IEEE invalid operations are treated in a non-IEEE
conforming manner. This is accomplished by delivering results that approximate the values
required by the IEEE standard. Table 2-12 summarizes the conditions and mode behavior
for operands.
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Table 2-12. Floating-Point Operand Data Type Behavior

Operand A
Data Type

Operand B
Data Type

Operand C
Data Type

IEEE Mode
(NI'=0)

Non-IEEE Mode
(NI=1)

Single denormalized
Double denormalized

Single denormalized
Double denormalized

Single denormalized
Double denormalized

Normalize all three

Zero all three

Double normalized
Double infinity
Double zero

Double normalized
Double infinity
Double zero

Double normalized
Double infinity
Double zero

Single denormalized Single denormalized Normalized or zero Normalize Aand B | Zero A and B
Double denormalized | Double denormalized
Normalized or zero Single denormalized Single denormalized Normalize Band C | ZeroB and C
Double denormalized | Double denormalized
Single denormalized Normalized or zero Single denormalized Normalize Aand C | Zero Aand C
Double denormalized Double denormalized
Single denormalized Normalized or zero Normalized or zero Normalize A Zero A
Double denormalized
Normalized or zero Single denormalized Normalized or zero Normalize B Zero B
Double denormalized
Normalized or zero Normalized or zero Single denormalized Normalize C Zero C
Double denormalized
Single QNaN Don't care Don't care QNanNH QNaNt]
Single SNaN
Double QNaN
Double SNaN
Don't care Single QNaN Don't care QNan QNaN
Single SNaN
Double QNaN
Double SNaN
Don't care Don't care Single QNaN QNant QNaN
Single SNaN
Double QNaN
Double SNaN
Single normalized Single normalized Single normalized Do the operation Do the operation
Single infinity Single infinity Single infinity
Single zero Single zero Single zero

1 Prioritize according to Chapter 3, “Operand Conventions,” in The Programming Environments Manual.
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Table 2-13 summarizes the mode behavior for results.

Table 2-13. Floating-Point Result Data Type Behavior

Precision Data Type IEEE Mode (NI = 0) Non-lIEEE Mode (NI = 1)

Single Denormalized Return single-precision Return zero.
denormalized number with trailing
zeros.

Single Normalized Return the result. Return the result.
Infinity
Zero
Single QNaN Return QNaN. Return QNaN.
SNaN
Single INT Place integer into low word of FPR. | If (Invalid Operation)
then

Place (0x8000) into FPR[32-63]
else
Place integer into FPR[32-63].

Double Denormalized Return double precision Return zero.
denormalized number.

Double Normalized Return the result. Return the result.
Infinity
Zero

Double QNaN Return QNaN. Return QNaN.
SNaN

Double INT Not supported by 604e Not supported by 604e

2.2.6 Effect of Operand Placement on Performance

The PowerPC VEA states that the placement (location and alignment) of operands in

memory may affect the relative performance of memory accesses. The best performance is
guaranteed if memory operands are aligned on natural boundaries. To obtain the best
performance across the widest range of PowerPC processor implementations, the
programmer should assume the performance model described in Chapter 3, “Operand
Conventions,” inThe Programming Environments Manual

2.3 Instruction Set Summary

This section describes instructions and addressing modes defined for the 604e. These
instructions are divided into the following functional categories:

* Integer instructions—These include arithmetic and logical instructions. For more
information, see Section 2.3.4.1, “Integer Instructions.”

* Floating-point instructions—These include floating-point arithmetic instructions, as
well as instructions that affect the floating-point status and control register (FPSCR).
For more information, see Section 2.3.4.2, “Floating-Point Instructions.”
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» Load and store instructions—These include integer and floating-point load and store
instructions. For more information, see Section 2.3.4.3, “Load and Store
Instructions.”

* Flow control instructions—These include branching instructions, condition register
logical instructions, trap instructions, and other instructions that affect the
instruction flow. For more information, see Section 2.3.4.4, “Branch and Flow
Control Instructions.”

» Processor control instructions—These instructions are used for synchronizing
memory accesses and managing caches, TLBs, and segment registers. For more
information, see Section 2.3.4.6, “Processor Control Instructions—UISA,"

Section 2.3.5.1, “Processor Control Instructions—VEA,” and Section 2.3.6.2,
“Processor Control Instructions—OEA.”

» Memory synchronization instructions—These instructions are used for memory
synchronizing. See Section 2.3.4.7, “Memory Synchronization
Instructions—UISA,” Section 2.3.5.2, “Memory Synchronization
Instructions—VEA,” for more information.

* Memory control instructions—These instructions provide control of caches, TLBs,
and segment registers. For more information, see Section 2.3.5.3, “Memory Control
Instructions—VEA,” and Section 2.3.6.3, “Memory Control Instructions—OEA."

» External control instructions—These include instructions for use with special
input/output devices. For more information, see Section 2.3.5.4, “Optional External
Control Instructions.”

Note that this grouping of instructions does not necessarily indicate the execution unit that
processes a particular instruction or group of instructions. This information, which is useful

in taking full advantage of the 604e’s superscalar parallel instruction execution, is provided
in Chapter 6, “Instruction Timing.”

Integer instructions operate on word operands. Floating-point instructions operate on
single-precision and double-precision floating-point operands. The PowerPC architecture
uses instructions that are four bytes long and word-aligned. It provides for byte, half-word,
and word operand loads and stores between memory and a set of 32 general-purpose
registers (GPRs). It also provides for word and double-word operand loads and stores
between memory and a set of 32 floating-point registers (FPRS).

Arithmetic and logical instructions do not read or modify memory. To use the contents of
a memory location in a computation and then modify the same or another memory location,
the memory contents must be loaded into a register, modified, and then written to the target
location using load and store instructions.

The description of each instruction includes the mnemonic and a formatted list of operands.
To simplify assembly language programming, a set of simplified mnemonics and symbols
is provided for some of the frequently-used instructions; see Appendix F, “Simplified
Mnemonics,” inThe Programming Environments Mandal a complete list of simplified
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mnemonics. Note that the architecture specification refers to simplified mnemonics as
extended mnemonics. Programs written to be portable across the various assemblers for the
PowerPC architecture should not assume the existence of mnemonics not described in that
document.

2.3.1 Classes of Instructions
The 604e instructions belong to one of the following three classes:

 Defined
* lllegal
 Reserved

Note that while the definitions of these terms are consistent among the PowerPC
processors, the assignment of these classifications is not. For example, a PowerPC
instruction defined for 64-bit implementations are treated as illegal by 32-bit
implementations such as the 604e.

The class is determined by examining the primary opcode and the extended opcode, if any.
If the opcode, or combination of opcode and extended opcode, is not that of a defined
instruction or of a reserved instruction, the instruction is illegal.

Instruction encodings that are now illegal may become assigned to instructions in the
architecture or may be reserved by being assigned to processor-specific instructions.

2.3.1.1 Definition of Boundedly Undefined

If instructions are encoded with incorrectly set bits in reserved fields, the results on
execution can be said to be boundedly undefined. If a user-level program executes the
incorrectly coded instruction, the resulting undefined results are bounded in that a spurious
change from user to supervisor state is not allowed, and the level of privilege exercised by
the program in relation to memory access and other system resources cannot be exceeded.
Boundedly undefined results for a given instruction may vary between implementations,
and between execution attempts in the same implementation.

2.3.1.2 Defined Instruction Class

Defined instructions are guaranteed to be supported in all PowerPC implementations,
except as stated in the instruction descriptions in Chapter 8, “Instruction Sethen
Programming Environments ManuallThe 604e provides hardware support for all
instructions defined for 32-bit implementations.

A PowerPC processor invokes the illegal instruction error handler (part of the program
exception) when the unimplemented PowerPC instructions are encountered so they may be
emulated in software, as required. Note that the architecture specification refers to
exceptions as interrupts.

The 604e provides hardware support for all instructions defined for 32-bit implementations.
The 604e does not support the optidsgtt, fsqrts, andtlbia instructions.
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A defined instruction can have invalid forms. The 604e provides limited support for
instructions that are represented in an invalid form. Appendix B, “Invalid Instruction
Forms,” lists all invalid instruction forms and specifies the operation of the 604e upon
detecting each.

2.3.1.3 lllegal Instruction Class
lllegal instructions can be grouped into the following categories:

* Instructions not defined in the PowerPC architecture.The following primary
opcodes are defined as illegal but may be used in future extensions to the
architecture:

1,4,5,6,9, 22, 56, 57, 60, 61

Future versions of the PowerPC architecture may define any of these instructions to
perform new functions.

» Instructions defined in the PowerPC architecture but not implemented in a specific
PowerPC implementation. For example, instructions that can be executed on 64-bit
PowerPC processors are considered illegal by 32-bit processors such as the 604e.

The following primary opcodes are defined for 64-bit implementations only and are
illegal on the 604e:

2, 30, 58, 62

» Allunused extended opcodes are illegal. The unused extended opcodes can be
determined from information in Section A.2, “Instructions Sorted by Opcode,” and
Section 2.3.1.4, “Reserved Instruction Class.” Notice that extended opcodes for
instructions defined only for 64-bit implementations are illegal in 32-bit
implementations, and vice versa. The following primary opcodes have unused
extended opcodes.

17,19, 31, 59, 63 (Primary opcodes 30 and 62 are illegal for all 32-bit
implementations, but as 64-bit opcodes they have some unused extended opcodes.)

* Aninstruction consisting of only zeros is guaranteed to be an illegal instruction. This
increases the probability that an attempt to execute data or uninitialized memory
invokes the system illegal instruction error handler (a program exception). Note that
if only the primary opcode consists of all zeros. The instruction is considered a
reserved instruction, as described in Section 2.3.1.4, “Reserved Instruction Class.”

The 604e invokes the system illegal instruction error handler (a program exception) when
it detects any instruction from this class or any instructions defined only for 64-bit
implementations.

See Section 4.5.7, “Program Exception (0x00700),” for additional information about illegal
and invalid instruction exceptions. With the exception of the instruction consisting entirely
of binary zeros, the illegal instructions are available for further additions to the PowerPC
architecture.
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2.3.1.4 Reserved Instruction Class

Reserved instructions are allocated to specific implementation-dependent purposes not
defined by the PowerPC architecture. An attempt to execute an unimplemented reserved
instruction invokes the illegal instruction error handler (a program exception). See
“Program Exception (0x00700),” in Chapter 6, “Exceptions,” Tine Programming
Environments Manuafor additional information about illegal and invalid instruction
exceptions.

The PowerPC architecture defines four types of reserved instructions:
» Instructions in the POWER architecture not part of the PowerPC UISA

POWER architecture incompatibilities and how they are handled by PowerPC
processors are listed in Appendix B, “POWER Architecture Cross Reference,” in
The Programming Environments Manual

* Implementation-specific instructions required to conform to the PowerPC
architecture

» Architecturally-allowed extended opcodes
» Implementation-specific instructions

2.3.2 Addressing Modes

This section provides an overview of conventions for addressing memory and for
calculating effective addresses as defined by the PowerPC architecture for 32-bit
implementations. For more detailed information, see “Conventions,” in Chapter 4,
“Addressing Modes and Instruction Set Summary,”Téfe Programming Environments
Manual

2.3.2.1 Memory Addressing

A program references memory using the effective (logical) address computed by the
processor when it executes a memory access or branch instruction or when it fetches the
next sequential instruction.

Bytes in memory are numbered consecutively starting with zero. Each number is the
address of the corresponding byte.

2.3.2.2 Memory Operands

Memory operands may be bytes, half words, words, or double words, or, for the load/store
multiple and load/store string instructions, a sequence of bytes or words. The address of a
memory operand is the address of its first byte (that is, of its lowest-numbered byte).
Operand length is implicit for each instruction. The PowerPC architecture supports both
big-endian and little-endian byte ordering. The default byte and bit ordering is big-endian.
See “Byte Ordering,” in Chapter 3, “Operand Conventions,” Tdfe Programming
Environments Manudbr more information about big- and little-endian byte ordering.
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The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the “natural” address of an operand
is an integral multiple of the operand length. A memory operand is said to be aligned if it
is aligned at its natural boundary; otherwise it is misaligned. For a detailed discussion about
memory operands, see Chapter 3, “Operand Conventions, Tiig Programming
Environments Manual

2.3.2.3 Effective Address Calculation

An effective address (EA) is the 32-bit sum computed by the processor when executing a

memory access or branch instruction or when fetching the next sequential instruction. For

a memory access instruction, if the sum of the effective address and the operand length
exceeds the maximum effective address, the memory operand is considered to wrap around
from the maximum effective address through effective address 0, as described in the

following paragraphs.

Effective address computations for both data and instruction accesses use 32-bit unsigned
binary arithmetic. A carry from bit O is ignored.

Load and store operations have three categories of effective address generation:

* Register indirect with immediate index mode
* Reqgister indirect with index mode
» Register indirect mode

Refer to Section 2.3.4.3.2, “Integer Load and Store Address Generation,” for a detailed
description of effective address generation for load and store operations.

Branch instructions have three categories of effective address generation:

* Immediate
» Link register indirect
» Count register indirect

2.3.2.4 Synchronization

The synchronization described in this section refers to the state of the processor that is
performing the synchronization.

2.3.2.4.1 Context Synchronization

The System Call 9 and Return from Interruptrfi) instructions perform context
synchronization by allowing previously issued instructions to complete before performing
a change in context. Execution of one of these instructions ensures the following:

* No higher priority exception existsd).

» All previous instructions have completed to a point where they can no longer cause
an exception. If a prior memory access instruction causes direct-store error
exceptions, the results are guaranteed to be determined before this instruction is
executed.
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» Previous instructions complete execution in the context (privilege, protection, and
address translation) under which they were issued.

» The instructions following thecor rfi instruction execute in the context established
by these instructions.

2.3.2.4.2 Execution Synchronization

An instruction is execution synchronizing if all previously initiated instructions appear to
have completed before the instruction is initiated or, in the casgmfandisync, before

the instruction completes. For example, the Move to Machine State Registarsy)
instruction is execution synchronizing. It ensures that all preceding instructions have
completed execution and will not cause an exception before the instruction executes, but
does not ensure subsequent instructions execute in the newly established environment. For
example, if themtmsr sets the MSR[PR] bit, unless async immediately follows the

mtmsr instruction, a privileged instruction could be executed or privileged access could be
performed without causing an exception even though the MSR[PR] bit indicates user mode.

2.3.2.4.3 Instruction-Related Exceptions

There are two kinds of exceptions in the 604e—those caused directly by the execution of
an instruction and those caused by an asynchronous event (or interrupts). Either may cause
components of the system software to be invoked.

Exceptions can be caused directly by the execution of an instruction as follows:

* An attempt to execute an illegal instruction causes the illegal instruction (program
exception) handler to be invoked. An attempt by a user-level program to execute the
supervisor-level instructions listed below causes the privileged instruction (program
exception) handler to be invoked. The 604e provides the following supervisor-level
instructions:dcbi, mfmsr, mfspr, mfsr, mfsrin, mtmsr, mtspr, mtsr, mtsrin, rfi,
tibie, andtlbsync. Note that the privilege level of thefspr andmtspr instructions
depends on the SPR encoding.

* An attempt to access memory that is not available (page fault) causes the ISI
exception handler to be invoked.

» An attempt to access memory with an effective address alignment that is invalid for
the instruction causes the alignment exception handler to be invoked.

* The execution of ascinstruction invokes the system call exception handler that
permits a program to request the system to perform a service.

» The execution of a trap instruction invokes the program exception trap handler.

» The execution of a floating-point instruction when floating-point instructions are
disabled invokes the floating-point unavailable handler.

» The execution of an instruction that causes a floating-point exception while
exceptions are enabled in the MSR invokes the program exception handler.

Exceptions caused by asynchronous events are described in Chapter 4, “Exceptions.”
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2.3.3 Instruction Set Overview

This section provides a brief overview of the PowerPC instructions implemented in the
604e and highlights any special information with respect to how the 604e implements a
particular instruction. Note that the categories used in this section correspond to those used
in Chapter 4, “Addressing Modes and Instruction Set SummaryTha Programming
Environments ManualThese categorizations are somewhat arbitrary and are provided for
the convenience of the programmer and do not necessarily reflect the PowerPC architecture
specification.

Note that some instructions have the following optional features:

* CR Update—The dot)(suffix on the mnemonic enables the update of the CR.
» Overflow option—Theo suffix indicates that the overflow bit in the XER is enabled.

Note that on the 604e, the undefined result of an integer divide overflow differs from
that of the 604.

2.3.4 PowerPC UISA Instructions

The PowerPC UISA includes the base user-level instruction set (excluding a few user-level
cache control, synchronization, and time base instructions), user-level registers,
programming model, data types, and addressing modes. This section discusses the
instructions defined in the UISA.

2.3.4.1 Integer Instructions
This section describes the integer instructions. These consist of the following:

» Integer arithmetic instructions

* Integer compare instructions

* Integer logical instructions

* Integer rotate and shift instructions

Integer instructions use the content of the GPRs as source operands and place results into
GPRs, into the XER register, and into condition register (CR) fields.

2.3.4.1.1 Integer Arithmetic Instructions
Table 2-14 lists the integer arithmetic instructions for the PowerPC processors.

Table 2-14. Integer Arithmetic Instructions

Name Mnemonic Operand Syntax
Add Immediate addi r D,rA,SIMM
Add Immediate Shifted addis r D,rA,SIMM
Add add (add. addo addo. ) rD,rA,rB
Subtract From subf (subf. subfo subfo. ) rD,rA,rB
Add Immediate Carrying addic r D,rA,SIMM
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Table 2-14. Integer Arithmetic Instructions (Continued)

Name Mnemonic Operand Syntax

Add Immediate Carrying and Record addic. r D,rA,SIMM
Subtract from Immediate Carrying subfic r D,rA,SIMM
Add Carrying addc (addc. addco addco. ) rD,rA,rB
Subtract from Carrying subfc (subfc. subfco subfco. ) rD,rA,rB
Add Extended adde (adde. addeo addeo. ) rD,rA,rB
Subtract from Extended subfe (subfe. subfeo subfeo. ) rD,rA,rB
Add to Minus One Extended addme (addme. addmeo addmeo. ) rD,rA
Subtract from Minus One Extended subfme (subfme. subfmeo subfmeo. ) rD,rA

Add to Zero Extended addze (addze. addzeo addzeo. ) rD,rA
Subtract from Zero Extended subfze (subfze. subfzeo subfzeo. ) rD,rA
Negate neg (neg. nego nego. ) rD,rA
Multiply Low Immediate mulli r D,rA,SIMM
Multiply Low mullw  (mullw. mullwo mullwo. ) rD,rA,rB
Multiply High Word mulhw  (mulhw. ) rD,rA,rB
Multiply High Word Unsigned mulhwu  (mulhwu. ) rD,rA,rB
Divide Word divw (divw. divwo divwo. ) rD,rA,rB
Divide Word Unsigned divwu divwu. divwuo divwuo. r| D,yArB

Although there is no Subtract Immediate instruction, its effect can be achieved by using an
addi instruction with the immediate operand negated. Simplified mnemonics are provided
that include this negation. Theibf instructions subtract the second operarfl) from the

third operand 1(B). Simplified mnemonics are provided in which the third operand is
subtracted from the second operand. See Appendix F, “Simplified Mnemonic$fian
Programming Environments Manufalr examples.

The UISA states that for some implementations that execute instructions that set the
overflow bit (OE) or the carry bit (CA) it may either execute these instructions slowly or it
may prevent the execution of the subsequent instruction until the operation is complete. The
604e arithmetic instructions may suffer this penalty. The summary overflow bit (SO) and
overflow bit (OV) in the XER are set to reflect an overflow condition of a 32-bit result. This
may only occur when the overflow enable bit is set (OE = 1).
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2.3.4.1.2 Integer Compare Instructions

The integer compare instructions algebraically or logically compare the contents of register
r A with either the zero-extended value of the UIMM operand, the sign-extended value of
the SIMM operand, or the contents of registBr The comparison is signed for tieenpi

and cmp instructions, and unsigned for thempli and cmpl instructions. Table 2-15
summarizes the integer compare instructions.

Table 2-15. Integer Compare Instructions

Name Mnemonic Operand Syntax
Compare Immediate cmpi crf D,L,rA,SIMM
Compare cmp crf D,L,rArB
Compare Logical Immediate cmpli crf D,L,rA,UIMM
Compare Logical cmpl crf D,L,rA,rB

ThecrfD operand can be omitted if the result of the comparison is to be placed in CRO.
Otherwise the target CR field must be specified in the instruatidéD field, using an
explicit field number.

For information on simplified mnemonics for the integer compare instructions see
Appendix F, “Simplified Mnemonics,” iThe Programming Environments Manual

2.3.4.1.3 Integer Logical Instructions

The logical instructions shown in Table 2-16 perform bit-parallel operations on the
specified operands. Logical instructions with the CR updating enabled (uses dot suffix) and
instructionsandi. and andis. set CR field CRO to characterize the result of the logical
operation. Logical instructions do not affect the XER[SO], XER[OV], and XER[CA] bits.

See Appendix F, “Simplified Mnemonics,” ithe Programming Environments Mandai
simplified mnemonic examples for integer logical operations.

Table 2-16. Integer Logical Instructions

Name Mnemonic Operand
Syntax
AND Immediate andi. rArS,UIMM
AND Immediate Shifted andis. r A,rS,UuiMM
OR Immediate ori rArS,UuiMM
OR Immediate Shifted oris r ArS,UuiMM
XOR Immediate XOri r ArS,UuiMM
XOR Immediate Shifted Xoris r A,rS,UlMM
AND and (and.) rA,rS,rB
OR or (or.) rA,rS,rB
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Table 2-16. Integer Logical Instructions (Continued)

Name Mnemonic OSpyenr;r)l(d

XOR xor (xor.) rA,rS,rB
NAND nand (nand.) rA,rS,rB
NOR nor (nor.) rA,rS,rB
Equivalent eqv (eqv.) rA,rS,rB
AND with Complement andc (andc.) rArS,rB
OR with Complement orc (orc.) rArS,rB
Extend Sign Byte extsb (extsh.) rArS

Extend Sign Half Word extsh (extsh.) rArS

Count Leading Zeros Word cntlzw  (cntlzw.) | rArS

2.3.4.1.4 Integer Rotate and Shift Instructions

Rotation operations are performed on data from a GPR, and the result, or a portion of the
result, is returned to a GPR. See Appendix F, “Simplified Mnemonics,”The
Programming Environments Manuébr a complete list of simplified mnemonics that
allows simpler coding of often-used functions such as clearing the leftmost or rightmost
bits of a register, left justifying or right justifying an arbitrary field, and simple rotates and
shifts.

Integer rotate instructions rotate the contents of a register. The result of the rotation is either
inserted into the target register under control of a mask (if a mask bit is 1 the associated bit
of the rotated data is placed into the target register, and if the mask bit is 0 the associated
bit in the target register is unchanged), or ANDed with a mask before being placed into the

target register.

The integer rotate instructions are summarized in Table 2-17.

Table 2-17. Integer Rotate Instructions

Name Mnemonic Operand Syntax
Rotate Left Word Immediate then AND with Mask rlwinm (rlwinm. ) rArS,SH,MB,ME
Rotate Left Word then AND with Mask rflvnm  (rlwnm. ) rA,rS,rB,MB,ME
Rotate Left Word Immediate then Mask Insert riwimi  (rlwimi. ) rA,rS,SH,MB,ME

The integer shift instructions perform left and right shifts. Immediate-form logical
(unsigned) shift operations are obtained by specifying masks and shift values for certain
rotate instructions. Simplified mnemonics (shown in Appendix F, “Simplified
Mnemonics,” inThe Programming Environments Manyale provided to make coding of
such shifts simpler and easier to understand.
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Multiple-precision shifts can be programmed as shown in Appendix C, “Multiple-Precision
Shifts,” in The Programming Environments Manudlhe integer shift instructions are
summarized in Table 2-18.

Table 2-18. Integer Shift Instructions

Name Mnemonic Operand Syntax
Shift Left Word slw  (slw.) rA,rS,rB
Shift Right Word srw - (srw.) rA;rS,rB
Shift Right Algebraic Word Immediate srawi  (srawi.) rArS,SH
Shift Right Algebraic Word sraw (sraw.) rArS,rB

2.3.4.2 Floating-Point Instructions
This section describes the floating-point instructions, which include the following:

Floating-point arithmetic instructions

Floating-point multiply-add instructions
Floating-point rounding and conversion instructions
Floating-point compare instructions

Floating-point status and control register instructions
Floating-point move instructions

See Section 2.3.4.3, “Load and Store Instructions,” for information about floating-point
loads and stores.

The PowerPC architecture supports a floating-point system as defined in the IEEE 754
standard, but requires software support to conform with that standard. All floating-point
operations conform to the IEEE 754 standard, except if software sets the non-IEEE mode
bit (NI) in the FPSCR.

2.3.4.2.1 Floating-Point Arithmetic Instructions
The floating-point arithmetic instructions are summarized in Table 2-19.

Table 2-19. Floating-Point Arithmetic Instructions

Name Mnemonic Operand Syntax
Floating Add (Double-Precision) fadd (fadd.) frD,frA,frB
Floating Add Single fadds (fadds.) frD,frA,frB
Floating Subtract (Double-Precision) fsub (fsub.) frD,frA,frB
Floating Subtract Single fsubs (fsubs.) frD,frAfrB
Floating Multiply (Double-Precision) fmul  (fmul.) frD,frAfrC
Floating Multiply Single fmuls  (fmuls.) frD,frAfrC
Floating Divide (Double-Precision) fdiv  (fdiv.) frD,frA,frB
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Table 2-19. Floating-Point Arithmetic Instructions (Continued)

Name Mnemonic Operand Syntax
Floating Divide Single fdivs (fdivs.) frD,frA,frB
Floating Square Root (Double-Precision) fsqrt (fsqrt.) frD,frB
Floating Square Root Single fsqrts  (fsqrts. ) frD,frB
Floating Reciprocal Estimate Single fres (fres.) frD,frB
Floating Reciprocal Square Root Estimate frsqrte  (frsqgrte. ) frD,frB

Floating Select

fsel

fr D,frA,frC,frB

All single-precision arithmetic instructions are performed using a double-precision format.
The floating-point architecture is a single-pass implementation for double-precision
products. In most cases, a single-precision instruction using only single-precision
operands, in double-precision format, has the same latency as its double-precision
equivalent.

2.3.4.2.2 Floating-Point Multiply-Add Instructions

These instructions combine multiply and add operations without an intermediate rounding
operation. The floating-point multiply-add instructions are summarized in Table 2-20.

Table 2-20. Floating-Point Multiply-Add Instructions

Name Mnemonic Operand Syntax

Floating Multiply-Add (Double-Precision) fmadd (fmadd.) frD,frAfrC,frB

Floating Multiply-Add Single fmadds (fmadds.) frD,frAfrC,frB

Floating Multiply-Subtract (Double-Precision) fmsub  (fmsub.) frD,frAfrC,frB

Floating Multiply-Subtract Single fmsubs (fmsubs. ) frD,frAfrC,frB
Floating Negative Multiply-Add (Double-Precision) fnmadd (fnmadd.) frD,frAfrC,frB
Floating Negative Multiply-Add Single fnmadds (fnmadds. ) frD,frAfrC,frB
Floating Negative Multiply-Subtract (Double-Precision) fnmsub  (fnmsub. ) frD,frAfrC,frB
Floating Negative Multiply-Subtract Single fnmsubs  (fnmsubs. ) frD,frAfrC,frB

2.3.4.2.3 Floating-Point Rounding and Conversion Instructions

The Floating Round to Single-Precisiofisp) instruction is used to truncate a 64-bit
double-precision number to a 32-bit single-precision floating-point number. The
floating-point convert instructions convert a 64-bit double-precision floating-point number
to a 32-bit signed integer number.

2-38 PowerPC 604e RISC Microprocessor User's Manual



Examples of uses of these instructions to perform various conversions can be found in
Appendix D, “Floating-Point Models,” imhe Programming Environments Manual

Table 2-21. Floating-Point Rounding and Conversion Instructions

Name Mnemonic Operand Syntax
Floating Round to Single frsp  (frsp.) frD,frB
Floating Convert to Integer Word fctiw  (fctiw. ) frD,frB
Floating Convert to Integer Word with Round toward Zero fctiwz  (fctiwz. ) frD,frB

2.3.4.2.4 Floating-Point Compare Instructions

Floating-point compare instructions compare the contents of two floating-point registers.
The comparison ignores the sign of zero (that is +0 = —0). The floating-point compare
instructions are summarized in Table 2-22.

Table 2-22. Floating-Point Compare Instructions

Name Mnemonic Operand Syntax
Floating Compare Unordered fcmpu crf D,frA,frB
Floating Compare Ordered fcmpo crf D,frAfrB

Within the PowerPC architecture, &mpu or fcmpo instruction with the Rc bit set can
cause an illegal instruction program exception or produce a boundedly undefined result. In
the 604ecrfD should be treated as undefined.

2.3.4.2.5 Floating-Point Status and Control Register Instructions

Every FPSCR instruction appears to synchronize the effects of all floating-point
instructions executed by a given processor. Executing an FPSCR instruction ensures that all
floating-point instructions previously initiated by the given processor appear to have
completed before the FPSCR instruction is initiated and that no subsequent floating-point
instructions appear to be initiated by the given processor until the FPSCR instruction has
completed. The FPSCR instructions are summarized in Table 2-23.

Table 2-23. Floating-Point Status and Control Register Instructions

Name Mnemonic Operand Syntax
Move from FPSCR mffs (mffs.) frD
Move to Condition Register from FPSCR mcrfs crf D,crfS
Move to FPSCR Field Immediate mtfsfi  (mtfsfi. ) crf D,IMM
Move to FPSCR Fields mtfsf  (mtfsf.) FM,frB

Move to FPSCR Bit 0 mtfsb0 (mtfsb0.) | crbD

Move to FPSCR Bit 1

mtfsbl (mtfsbl.) | crbD
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2.3.4.2.6 Floating-Point Move Instructions

Floating-point move instructions copy data from one FPR to another. The floating-point
move instructions do not modify the FPSCR. The CR update option in these instructions
controls the placing of result status into CR1. Table 2-24 summarizes the floating-point
move instructions.

Table 2-24. Floating-Point Move Instructions

Name Mnemonic Operand Syntax
Floating Move Register fmr  (fmr.) frD,frB
Floating Negate fneg (fneg.) frD,frB
Floating Absolute Value fabs (fabs.) frD,frB
Floating Negative Absolute Value fnabs (fnabs.) frD,frB

2.3.4.3 Load and Store Instructions

Load and store instructions are issued and translated in program order; however, the
accesses can occur out of order. Synchronizing instructions are provided to enforce strict
ordering. This section describes the load and store instructions, which consist of the
following:

Integer load instructions

Integer store instructions

Integer load and store with byte reverse instructions
Integer load and store multiple instructions
Floating-point load instructions

Floating-point store instructions

Memory synchronization instructions

Implementation Notes—The following describes how the 604e handles misalignment:

If an unaligned memory access crosses a 4-Kbyte page boundary, within a normal
segment, an exception may occur when the boundary is crossed (that is, a protection
violation occurs on the new page). In these cases, the 604e triggers a DSI exception
and the instruction may have partially completed.

Some misaligned memory accesses suffer performance degradation as compared to
an aligned access of the same type. Memory accesses that cross a word boundary are
broken into multiple discrete accesses by the load/store unit, except floating-point
doubles aligned on a double-word boundary. Any noncacheable access that crosses
a double-word boundary is broken into multiple external bus tenures.
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* Any operation that crosses a word boundary (double word for floating-point doubles
aligned on a double-word boundary) is broken into two accesses. Each of these
accesses is translated. If either translation results in a data memory violation, a DSI
exception is signaled. If two translations cross from T = 1 into T = 0 space (a
programming error), the 604e completes all of the accesses for the operation, the
segment information from the T = 1 space is presented on the bus for every access
of the operation, and he 604e requires a direct-store protocol “Reply” from the
device. If two translations cross from T = 0 into T = 1 space, a DSI exception is
signaled.

* In the PowerPC architecture, the Rc bit must be zero for almost all load and store
instructions. If the Rc bit is one, the instruction form is invalid. These include the
integer load indexed instructionb®x, Ibzux, lhzx, lhzux, Ihax, lhaux, lwzx,
lwzux), the integer store indexed instructioatk, stbux, sthx, sthux, stwx,
stwux), the load and store with byte-reversal instructidimsrk , Iwbrx, sthbrx,
stwbrx), the string instructiondgwi, Iswx, stswi, stswX, and the synchronization
instructions gync Iwarx). In the 604e, executing one of these invalid instruction
forms causes CRO to be set to an undefined value. The floating-point load and store
indexed instructiondfgx, Ifsux, Ifdx, Ifdux, stfsx, stfsux stfdx, stfdux) are also
invalid when the Rc bitis one. In the 604e, executing one of these invalid instruction
forms causes CRO to be set to an undefined value.

2.3.4.3.1 Self-Modifying Code

When a processor modifies a memory location that may be contained in the instruction
cache, software must ensure that memory updates are visible to the instruction fetching
mechanism. This can be achieved by the following instruction sequence:

dcbst |update memory

sync |wait for update

icbi |[remove (invalidate) copy in instruction cache
sync |wait for icbi to be globally performed

isync [remove copy in own instruction buffer

These operations are required because the data cache is a write-back cache. Since
instruction fetching bypasses the data cache, changes to items in the data cache may not be
reflected in memory until the fetch operations complete.

Special care must be taken to avoid coherency paradoxes in systems that implement unified
secondary caches, and designers should carefully follow the guidelines for maintaining
cache coherency that are provided in the VEA, and discussed in Chapter 5, “Cache Model
and Memory Coherency,” ifthe Programming Environments Manu8ecause the 604e

does not broadcast the M bit for instruction fetches, external caches are subject to
coherency paradoxes.

2.3.4.3.2 Integer Load and Store Address Generation

Integer load and store operations generate effective addresses using register indirect with
immediate index mode, register indirect with index mode, or register indirect mode. See
Section 2.3.2.3, “Effective Address Calculation,” for information about calculating
effective addresses. Note that in some implementations, operations that are not naturally
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aligned may suffer performance degradation. Refer to Section 4.5.6, “Alignment Exception
(Ox00600),” for additional information about load and store address alignment exceptions.

2.3.4.3.3 Register Indirect Integer Load Instructions

For integer load instructions, the byte, half word, word, or double word addressed by the
EA (effective address) is loaded int®. Many integer load instructions have an update
form, in whichr A is updated with the generated effective address. For these formas 0f
andrA rD (otherwise invalid), the EA is placed intA and the memory element (byte,
half word, word, or double word) addressed by the EA is loadedriBtoNote that the
PowerPC architecture defines load with update instructions with operand O or

rA =rD as invalid forms.

Implementation Notes—The following notes describe the 604e implementation of integer
load instructions:

* |n the PowerPC architecture, the Rc bit must be zero for almost all load and store
instructions. If the Rc bit is one, the instruction form is invalid. These include the
integer load indexed instructionkx, Ibzux, lhzx, lhzux, Ihax, lhaux, Iwzx, and
lwzux). In the 604e, executing one of these invalid instruction forms causes CRO to
be set to an undefined value.

* For load with update instructioiifzu, Ibzux, Ihzu, lhzux, lhau, Ihaux, lwzu,
lwzux, Ifsu, Ifsux, Ifdu, Ifdux), whenrA = 0 orr A = rD the instruction form is
considered invalid. IFA =0, the 604e sets GPRO to an undefined valueAlf rD,
the 604e setsD to an undefined value.

» The PowerPC architecture cautions programmers that some implementations of the
architecture may execute the Load Half Algebrlia,(Ihax) instructions with
greater latency than other types of load instructions. This is not the case for the 604e.

Table 2-25 summarizes the integer load instructions.

Table 2-25. Integer Load Instructions

Name Mnemonic Operand Syntax
Load Byte and Zero bz rD,d(rA)
Load Byte and Zero Indexed Ibzx rD,rArB
Load Byte and Zero with Update Ibzu rD,d(rA)
Load Byte and Zero with Update Indexed Ibzux r D,rA,rB
Load Half Word and Zero Ihz rD,d(rA)
Load Half Word and Zero Indexed lhzx rD,rArB
Load Half Word and Zero with Update lhzu rD,d(rA)
Load Half Word and Zero with Update Indexed lhzux r D,rA,rB
Load Half Word Algebraic Iha rD,d(rA)
Load Half Word Algebraic Indexed Ihax rD,rArB
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Table 2-25. Integer Load Instructions (Continued)

Name Mnemonic Operand Syntax
Load Half Word Algebraic with Update Ihau rD,d(rA)
Load Half Word Algebraic with Update Indexed | Ihaux r D,rA,rB
Load Word and Zero lwz rD,d(rA)
Load Word and Zero Indexed lwzx rD,rA,rB
Load Word and Zero with Update lwzu rD,d(rA)
Load Word and Zero with Update Indexed lwzux r D,rA,rB

2.3.4.3.4 Integer Store Instructions

For integer store instructions, the contents®fare stored into the byte, half word, word or
double word in memory addressed by the EA (effective address). Many store instructions
have an update form, in whiatA is updated with the EA. For these forms, the following
rules apply:

 If rA 0, the déctive address is placed inté.
* IfrS=rA, the contents of registefS are copied to the target memory element, then
the generated EA is placed intaA (rS).

The PowerPC architecture defines store with update instructions vithO as an inalid

form. In addition, it defines integer store instructions with the CR update option enabled
(Rc field, bit 31, in the instruction encoding = 1) to be an invalid form. Table 2-26
summarizes the integer store instructions.

Table 2-26. Integer Store Instructions

Name Mnemonic Operand Syntax
Store Byte stb rS,d(rA)
Store Byte Indexed stbx r S,rA,rB
Store Byte with Update stbu r S,d(rA)
Store Byte with Update Indexed stbux r S,rA,rB
Store Half Word sth rS,d(rA)
Store Half Word Indexed sthx rS,rArB
Store Half Word with Update sthu r S,d(rA)
Store Half Word with Update Indexed sthux r S,rArB
Store Word stw rS,d(rA)
Store Word Indexed Stwx r S,rA,rB
Store Word with Update stwu rS,d(rA)
Store Word with Update Indexed stwux r SrA,rB
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Implementation Notes—The following notes describe the 604e implementation of integer
store instructions:

* |In the PowerPC architecture, the Rc bit must be zero for almost all load and store
instructions. If the Rc bit is one, the instruction form is invalid. These include the
integer store indexed instructiorsl{x, stbux, sthx, sthux, stwx, stwux). In the
604e, executing one of these invalid instruction forms causes CRO to be set to an
undefined value.

» For the store with update instructiostbu, stbux, sthu, sthux, stwu, stwux, stfsu,
stfsux, stfdu, stfdux), whenr A = 0, the instruction form is considered invalid. In
this case, the 604e sets GPRO to an undefined value.

2.3.4.3.5 Integer Load and Store with Byte Reverse Instructions

Table 2-27 describes integer load and store with byte reverse instructions. When used in a
PowerPC system operating with the default big-endian byte order, these instructions have
the effect of loading and storing data in little-endian order. Likewise, when used in a
PowerPC system operating with little-endian byte order, these instructions have the effect
of loading and storing data in big-endian order. For more information about big-endian and
little-endian byte ordering, see Section 3.2.2, “Byte Ordering, Time Programming
Environments Manual

Implementation Note—In the PowerPC architecture, the Rc bit must be zero for almost
all load and store instructions. If the Rc bit is one, the instruction form is invalid. These
include the load and store with byte-reversal instructidimsrk , Iwbrx , sthbrx, stwbrx).

In the 604e, executing one of these invalid instruction forms causes CRO to be set to an
undefined value.

Table 2-27. Integer Load and Store with Byte Reverse Instructions

Name Mnemonic Operand Syntax
Load Half Word Byte-Reverse Indexed lhbrx r D,rA,rB
Load Word Byte-Reverse Indexed Iwbrx r D,rA,rB
Store Half Word Byte-Reverse Indexed sthbrx r S,rArB
Store Word Byte-Reverse Indexed stwhbrx r S,rArB

2.3.4.3.6 Integer Load and Store Multiple Instructions

The load/store multiple instructions are used to move blocks of data to and from the GPRs.
The load multiple and store multiple instructions may have operands that require memory
accesses crossing a 4-Kbyte page boundary. As a result, these instructions may be
interrupted by a DSI exception associated with the address translation of the second page.
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Implementation Notes—The following describes the 604e implementation of the
load/store multiple instruction:

» The PowerPC architecture requires that memory operands for Load Multiple and
Store Multiple instructiondriw andstmw) be word-aligned. If the operands to
these instructions are not word-aligned, an alignment exception occurs. The 604e
provides hardware support flonw, stmw, Iswi, Iswx, stswi, andstswxinstructions
to cross a page boundary. However, a DSI exception may occur when the boundary
is crossed (for example, if a protection violation occurs on the new page).

» Executing animw instruction in whichr A is in the range of registers to be loaded
or in which RA = RT =0 is invalid in the architecture. In the 604e, all registers
loaded are set to undefined values. Any exceptions resulting from a memory access
cause the system error handler normally associated with the exception to be invoked.

* The 604e’s implementation of thaw instruction allows one word of data to be
transferred to the GPRs per internal clock cycle (that is, one register is filled per
clock) whenever the data is found in the cache. Fostthe instruction, data is
transferred from the GPRs to the cache at a rate of one word (GPR) per clock cycle.

*  When arimw or stmw access is to noncacheable memory, data is transferred on the
external bus at a rate of one word per external bus tenure. Bus tenures are pipelined,
allowing a maximum tenure rate of one address tenure every three bus-clock cycles.

* Theload multiple and load string instructions can be interrupted after the instruction
has partially completed. HA has been modified and the instruction is restarted, the
instruction begins loading from the addresses specified by the new value of
which might be anywhere in memory; therefore, the system error handler may be
invoked.

The PowerPC architecture defines the load multiple wionav instruction withr A in the
range of registers to be loaded as an invalid form.

Table 2-28. Integer Load and Store Multiple Instructions

Name Mnemonic Operand Syntax
Load Multiple Word | Imw rD,d(rA)
Store Multiple Word | stmw r S,d(rA)

2.3.4.3.7 Integer Load and Store String Instructions

The integer load and store string instructions allow movement of data from memory to
registers or from registers to memory without concern for alignment. These instructions can
be used for a short move between arbitrary memory locations or to initiate a long move
between misaligned memory fields. However, in some implementations, these instructions
are likely to have greater latency and take longer to execute, perhaps much longer, than a
sequence of individual load or store instructions that produce the same results. Table 2-29
summarizes the integer load and store string instructions.
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In other PowerPC implementations operating with little-endian byte order, execution of a
load or string instruction causes the system alignment error handler to be invoked; see
Section 3.2.2, “Byte Ordering,” imrhe Programming Environments Manufdr more
information.

Table 2-29. Integer Load and Store String Instructions

Name Mnemonic Operand Syntax
Load String Word Immediate Iswi r D,FANB
Load String Word Indexed Iswx r D,rA,rB
Store String Word Immediate | stswi r S,rANB
Store String Word Indexed Stswx r S,rA,rB

Load string and store string instructions may involve operands that are not word-aligned.

As described in Section 4.5.6, “Alignment Exception (0x00600),” a misaligned string
operation suffers a performance penalty compared to an aligned operation of the same type.
A non—-word-aligned string operation that crosses a 4-Kbyte boundary, or a word-aligned
string operation that crosses a 256-Mbyte boundary always causes an alignment exception.
A non-word-aligned string operation that crosses a double-word boundary is also slower
than a word-aligned string operation.

Implementation Note—The following describes the 604e implementation of the
load/store string instruction:

» The 604e provides hardware supportlfow, stmw, Iswi, Iswx, stswi, andstswx
instructions to cross a page boundary. However, a DSI exception may occur when
the boundary is crossed (for example, if a protection violation occurs on the new
page).

* Anlswi orlswxinstruction in whichr A or rB is in the range of registers potentially
to be loaded or in whichA = rD = 0 is an invalid instruction form. In the 604e, all
registers loaded are set to undefined values. Any exceptions resulting from a
memory access cause the system error handler normally associated with the
exception to be invoked.

* Theload multiple and load string instructions can be interrupted after the instruction
has partially completed. HA has been modified and the instruction is restarted, the
instruction begins loading from the addresses specified by the new value of
which might be anywhere in memory; therefore, the system error handler may be
invoked.

» The 604e executes load string operations to cacheable memory at two cycles per
word if they are word-aligned. Two additional cycles per instruction are required if
they are not word-aligned. Cache-inhibited load string instructions require one bus
tenure per word if they are aligned. An additional tenure per instruction is required
if a cache-inhibited load string operation is not word aligned.
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* The 604e executes store string operations to cacheable memory at a rate of one cycle
per word if they are word-aligned. Cacheable store string operations that are not
word-aligned require five cycles per word. Cache-inhibited store string instructions
require one bus tenure per word if they are word-aligned. Two bus tenures per word
are required if a store string operation is not word aligned.

* Theload multiple and load string instructions can be interrupted after the instruction
has partially completed. HA has been modified and the instruction is restarted, the
instruction begins loading from the addresses specified by the new valie of
which might be anywhere in memory; therefore, the system error handler may be
invoked.

2.3.4.3.8 Floating-Point Load and Store Address Generation

Floating-point load and store operations generate effective addresses using the register
indirect with immediate index addressing mode and register indirect with index addressing
mode. Floating-point loads and stores are not supported for direct-store accesses. The use
of floating-point loads and stores for direct-store access results in an alignment exception.

There are two forms of the floating-point load instruction—single-precision and
double-precision operand formats. Because the FPRs support only the floating-point
double-precision format, single-precision floating-point load instructions convert
single-precision data to double-precision format before loading the operands into the target
FPR.

Implementation Notes—The following notes characterize how the 604e treats exceptions:

* On the 604e, if a floating-point number is not aligned on a word boundary, an
alignment exception occurs.

* The floating-point load and store indexed instructidfsx(Ifsux, Ifdx, Ifdux, stfsx,
stfsux, stfdx, stfdux) are invalid when the Rc bit is one. In the 604e, executing one
of these invalid instruction forms causes CRO to be set to an undefined value.

Note that the PowerPC architecture defines load with update instructionsAwtld as an
invalid form.

Table 2-30. Floating-Point Load Instructions

Name Mnemonic Operand Syntax
Load Floating-Point Single Ifs fr D,d(rA)
Load Floating-Point Single Indexed Ifsx fr D,rA,rB
Load Floating-Point Single with Update Ifsu fr D,d(rA)
Load Floating-Point Single with Update Indexed Ifsux fr D,rA,rB
Load Floating-Point Double Ifd fr D,d(rA)
Load Floating-Point Double Indexed Ifdx fr D,rA,rB
Load Floating-Point Double with Update Ifdu fr D,d(rA)
Load Floating-Point Double with Update Indexed Ifdux fr D,rA,rB
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2.3.4.3.9 Floating-Point Store Instructions

This section describes floating-point store instructions. There are three basic forms of the
store instruction—single-precision, double-precision, and integer. The integer form is
supported by the optionatfiwx instruction. Because the FPRs support only floating-point,
double-precision format for floating-point data, single-precision floating-point store
Instructions convert double-precision data to single-precision format before storing the
operands. Table 2-31 summarizes the floating-point store instructions.

Table 2-31. Floating-Point Store Instructions

Name Mnemonic Operand Syntax
Store Floating-Point Single stfs fr S,d(rA)
Store Floating-Point Single Indexed stfsx fr SrB
Store Floating-Point Single with Update stfsu fr S,d(rA)
Store Floating-Point Single with Update Indexed stfsux fr SrB
Store Floating-Point Double stfd fr S,d(rA)
Store Floating-Point Double Indexed stfdx fr S,rB
Store Floating-Point Double with Update stfdu fr S,d(rA)
Store Floating-Point Double with Update Indexed stfdux fr SrB
Store Floating-Point as Integer Word Indexed stfiwx fr S,rB

Some floating-point store instructions require conversions in the LSU. Table 2-32 shows
the conversions made by the LSU when performing a Store Floating-Point Single
instruction.

Table 2-32. Store Floating-Point Single Behavior

FPR Precision Data Type Action
Single Normalized Store
Single Denormalized Store
Single Zero Store
Infinity
QNaN
Single SNaN Store
Double Normalized If(exp 896)
then Denormalize and Store
else
Store
Double Denormalized Store Zero
Double Zero Store
Infinity
QNaN
Double SNaN Store
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Table 2-33 shows the conversions made when performing a Store Floating-Point Double
instruction. Most entries in the table indicate that the floating-point value is simply stored.
Only in a few cases are any other actions taken.

Table 2-33. Store Floating-Point Double Behavior

FPR Precision Data Type Action
Single Normalized Store
Single Denormalized Normalize and Store
Single Zero Store
Infinity
QNaN
Single SNaN Store
Double Normalized Store
Double Denormalized Store
Double Zero Store
Infinity
QNaN
Double SNaN Store

Architecturally, all floating-point numbers are represented in double-precision format
within the 604e. Execution of a store floating-point singd#fq stfsu, stfsx, stfsux)
instruction requires conversion from double- to single-precision format. If the exponent is
not greater than 896, this conversion requires denormalization. The 604e supports this
denormalization by shifting the mantissa one bit at a time. Anywhere from 1 to 23 clock
cycles are required to complete the denormalization, depending upon the value to be stored.

Because of how floating-point numbers are implemented in the 604e, there is also a case
when execution of a store floating-point dould#d, stfdu, stfdx, stfdux) instruction can
require internal shifting of the mantissa. This case occurs when the operand of a store
floating-point double instruction is a denormalized single-precision value. The value could
be the result of a load floating-point single instruction, a single-precision arithmetic
instruction, or a floating round to single-precision instruction. In these cases, shifting the
mantissa takes from 1 to 23 clock cycles, depending upon the value to be stored. These
cycles are incurred during the store.
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2.3.4.4 Branch and Flow Control Instructions

Some branch instructions can redirect instruction execution conditionally based on the
value of bits in the CR. When the processor encounters one of these instructions, it scans
the execution pipelines to determine whether an instruction in progress may affect the
particular CR bit. If no interlock is found, the branch can be resolved immediately by
checking the bit in the CR and taking the action defined for the branch instruction.

2.3.4.4.1 Branch Instruction Address Calculation

Branch instructions can alter the sequence of instruction execution. Instruction addresses
are always assumed to be word aligned; the PowerPC processors ignore the two low-order
bits of the generated branch target address.

Branch instructions compute the effective address (EA) of the next instruction address
using the following addressing modes:

» Branch relative

» Branch conditional to relative address
* Branch to absolute address

* Branch conditional to absolute address
» Branch conditional to link register

» Branch conditional to count register

Note that in the 604e, all branch instructiobsl§a, bl, bla, bc, bca, bcl, bela, belr, belrl,

bcctr, bectrl) and condition register logical instructionsré&nd, cror, crxor, crnand,

crnor, crandc, creqv, crorc, and mcrf) are executed by the BPU. Some of these
Instructions can redirect instruction execution conditionally based on the value of bits in the
CR. Whenever the CR bits resolve, the branch direction is either marked as correct or
mispredicted. Correcting a mispredicted branch requires that the 604e flush speculatively
executed instructions and restore the machine state to immediately after the branch. This
correction can be done immediately upon resolution of the condition registers bits.

2.3.4.4.2 Branch Instructions

Table 2-34 lists the branch instructions provided by the PowerPC processors. To simplify
assembly language programming, a set of simplified mnemonics and symbols is provided
for the most frequently used forms of branch conditional, compare, trap, rotate and shift,
and certain other instructions. See Appendix F, “Simplified Mnemonics,’The
Programming Environments Manufair a list of simplified mnemonic examples.
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Table 2-34. Branch Instructions

Name Mnemonic Operand Syntax

Branch b (ba bl bla) target_addr

Branch Conditional bc (bca bcl bcla) BO,Bl,target_addr

Branch Conditional to Link Register belr  (bclrl) BO,BI

Branch Conditional to Count Register beetr  (bectrl) BO,BI

2.3.4.4.3 Condition Register Logical Instructions

Condition register logical instructions, shown in Table 2-35, and the Move Condition
Register Fieldricrf) instruction are also defined as flow control instructions.

Table 2-35. Condition Register Logical Instructions

Name Mnemonic Operand Syntax

Condition Register AND crand crb D,crbA,crbB
Condition Register OR cror crb D,crbA,crbB
Condition Register XOR crxor crb D,crbA,crbB
Condition Register NAND crnand crb D,crbA,crbB
Condition Register NOR crnor crb D,crbA,crbB
Condition Register Equivalent creqv crb D,crb A, crbB
Condition Register AND with Complement crandc crb D,crbA, crbB
Condition Register OR with Complement crorc crb D,crbA, crbB
Move Condition Register Field mcrf crf D,crfS

Note that if the LR update option is enabled for any of these instructions, the PowerPC
architecture defines these forms of the instructions as invalid.

2.3.4.4.4 Trap Instructions

The trap instructions shown in Table 2-36 are provided to test for a specified set of
conditions. If any of the conditions tested by a trap instruction are met, the system trap
handler is invoked. If the tested conditions are not met, instruction execution continues
normally.

Table 2-36. Trap Instructions

Name Mnemonic Operand Syntax
Trap Word Immediate twi TO,rA,SIMM
Trap Word tw TO,rA,rB

See Appendix F, “Simplified Mnemonics,” ithe Programming Environments Mandat
a complete set of simplified mnemonics.
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2.3.4.5 System Linkage Instruction—UISA

This section describes the System Call (sc) instruction that permits a program to call on the
system to perform a service. See also Section2.3.6.1, “System Linkage
Instructions—OEA,” for additional information.

Table 2-37. System Linkage Instruction—UISA

Name Mnemonic Operand Syntax

System Call sC —

2.3.4.6 Processor Control Instructions—UISA

Processor control instructions are used to read from and write to the condition register
(CR), machine state register (MSR), and special-purpose registers (SPRs). See
Section 2.3.5.1, “Processor Control Instructions—VEA,” for tinéb instruction and
Section 2.3.6.2, “Processor Control Instructions—OEA,” for information about the
instructions used for reading from and writing to the MSR and SPRs.

2.3.4.6.1 Move to/from Condition Register Instructions
Table 2-38 summarizes the instructions for reading from or writing to the condition register.

Table 2-38. Move to/from Condition Register Instructions

Name Mnemonic Operand Syntax
Move to Condition Register Fields mtcrf CRM,rS
Move to Condition Register from XER mcrxr crf D
Move from Condition Register mfcr rb

Note that the performance of timetcrf instruction depends greatly on whether only one
field is being accessed or either no fields or multiple fields are accessed as follows:

* Thosemtcrf instructions that update only one field are executed in either of the
SCIUs and the CR field is renamed as with any other SCIU instruction.

» Thosemtcrf instructions that update either multiple fields or no fields are dispatched
to the MCIU and a count/link scoreboard bit is set. When that bit is set, no more
mtcrf instructions of the same typmtspr instructions that update the count or link
registers, branch instructions that depend on the condition register and CR logical
instructions can be dispatched to the MCIU. The bit is cleared whentthe
mtcrf, ormtlr instruction that the bit is executed.
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Becausemtcrf instructions that update a single field do not require such synchronization
that othemtcrf instructions do, and because two such single-field instructions can execute
in parallel, it is typically more efficient to use multipigcrf instructions that update only
one field apiece than to use oncrf instruction that updates multiple fields. A rule of
thumb follows:

* Itis alwaysmore efficient to use twmtcrf instructions that update only one field
apiece than to use ondcrf instruction that updates two fields.

— It is almost alwaysnore efficient to use three or faumtcrf instructions that
update only one field apiece than to use orerf instruction that updates three

fields.

— Itis oftenmore efficient to use more than fomtcrf instructions that update only
one field than to use ometcrf instruction that updates four fields.

2.3.4.6.2 Move to/from Special-Purpose Register Instructions (UISA)
Table 2-39 lists thentspr andmfspr instructions.

Table 2-39. Move to/from Special-Purpose Register Instructions (UISA)

Name Mnemonic Operand Syntax
Move to Special Purpose Register mtspr SPR,rS
Move from Special Purpose Register mfspr r D,SPR

2.3.4.7 Memory Synchronization Instructions—UISA

Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms. See Chapter 3, “Cache and
Bus Interface Unit Operation,” for additional information about these instructions and
about related aspects of memory synchronization.

Table 2-40. Memory Synchronization Instructions—UISA

Name Mnemonic Operand Syntax
Load Word and Reserve Indexed lwarx r D,rA,rB
Store Word Conditional Indexed stwcex. r S,rArB
Synchronize sync —

Note: An attempt to perform an atomic memory access (lwarx or stwcx. ) to a location in
write-through-required mode causes a DSI exception and DSISR[5] is set.
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The proper paired use of thearx with stwcx.instructions allows programmers to emulate
common semaphore operations such as “test and set,” “compare and swap,” “exchange
memory,” and “fetch and add.” Thlevarx instruction must be paired with astwcx.
instruction with the same effective address used for both instructions of the pair. Note that
the reservation granularity is implementation-dependent. See 2.3.5.2, “Memory
Synchronization Instructions—VEA,” for details about additional memory synchronization
(eieioandisync) instructions.

Implementation Notes—The following notes describe the 604e implementation of
memory synchronization instructions:

* The PowerPC architecture requires that memory operands for Load and Reserve
(lwarx) and Store Conditionas{wcx.) instructions must be word-aligned. If the
operands to these instructions are not word-aligned on the 604e, an alignment
exception occurs.

» The PowerPC architecture indicates that the granularity with which reservations for
lwarx andstwcx. instructions are managed is implementation-dependent. In the
604e reservations, this granularity is a 32-byte cache block.

* Thesyncinstruction causes the 604e to serialize. 3yt instruction can be
dispatched with other instructions that are before it, in program order. However, no
more instructions can be dispatched untilgiiec instruction completes.

Instructions already in the instruction buffer, due to prefetching, are not refetched
after thesynccompletes. If reflecting is requiredync should be executed to flush
the instruction buffer after tr®ync Thesyncis dispatched to the LSU and is
broadcast onto the external bus.

In the PowerPC architecture, the Rc bit must be zero for almost all load and store
instructions. If the Rc bit is one, the instruction form is invalid. These includeyheand

lwarx instructions. In the 604e, executing one of these invalid instruction forms causes
CRO to be set to an undefined value. Bh&cx.instruction is the only load/store instruction
that has a valid form if Rc is set. If the Rc bit is zero, the result of executing this instruction
in the 604e causes CRO to be set to an undefined value.

2.3.5 PowerPC VEA Instructions

The PowerPC virtual environment architecture (VEA) describes the semantics of the
memory model that can be assumed by software processes, and includes descriptions of the
cache model, cache control instructions, address aliasing, and other related issues.
Implementations that conform to the VEA also adhere to the UISA, but may not necessarily
adhere to the OEA.

This section describes additional instructions that are provided by the VEA.
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2.3.5.1 Processor Control Instructions—VEA

In addition to the move to condition register instructions (specified by the UISA), the VEA

defines thenftb instruction (user-level instruction) for reading the contents of the time base

register; see Chapter 3, “Cache and Bus Interface Unit Operation,” for more information.
Table 3-34 shows thaftb instruction.

Table 2-41. Move from Time Base Instruction

Name Mnemonic Operand Syntax

Move from Time Base mftb rD, TBR

Simplified mnemonics are provided for theftb instruction so it can be coded with the

TBR name as part of the mnemonic rather than requiring it to be coded as an operand. See
Appendix F, “Simplified Mnemonics,” inThe Programming Environments Manuialr
simplified mnemonic examples and for simplified mnemonics for Move from Time Base
(mftb) and Move from Time Base Uppemftbu), which are variants of thenftb
instruction rather than ohfspr. Themftb instruction serves as both a basic and simplified
mnemonic. Assemblers recognizerafib mnemonic with two operands as the basic form,

and armftb mnemonic with one operand as the simplified form.

Implementation Notes—The following information is useful with respect to using the
time base implementation in the 604e:

* The 604e allows user-mode read access to the time base counter through the use of
the Move from Time Basenr(ftb) and the Move from Time Base Upparftbu)
instructions. As a 32-bit PowerPC implementation, the 604e supports separate
access to the TBU and TBL, whereas 64-bit implementations can access the entire
TB register at once.

* The time base counter is clocked at a frequency that is one-fourth that of the bus
clock. Counting is enabled by assertion of the timebase enddite (nput signal.

2.3.5.2 Memory Synchronization Instructions—VEA

Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms. See Chapter 3, “Cache and
Bus Interface Unit Operation,” for additional information about these instructions and
about related aspects of memory synchronization.
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Table 2-42 describes the memory synchronization instruction s defined by the VEA.

Table 2-42. Memory Synchronization Instructions—VEA

Name Mnemonic Operand Implementation Notes
Syntax

Enforce In-Order eieio — The eieio instruction is dispatched by the 604e to the LSU.

Execution of I/O The eieio instruction executes after all preceding
cache-inhibited or write-through memory instructions execute;
all following cache-inhibited or write-through instructions
execute after the eieio instruction executes. When the eieio
instruction executes, an EIEIO address-only operation is
broadcast on the external bus to allow ordering to be enforced
in the external memory system.

Instruction isync — The isync instruction causes the 604e to purge its instruction

Synchronize buffers and fetch the double word containing the next
sequential instruction.

System designs that use a second-level cache should take special care to recognize the
hardware signaling caused by a SYNC bus operation and perform the appropriate actions
to guarantee that memory references that may be queued internally to the second-level
cache have been performed globally.

In addition to thesync instruction (specified by UISA), the VEA defines the Enforce
In-Order Execution of I/O€ieig and Instruction Synchronizasgnc) instructions. The
number of cycles required to complete @rioinstruction depends on system parameters
and on the processor's state when the instruction is issued. As a result, frequent use of this
instruction may degrade performance slightly.

The isync instruction causes the processor to wait for any preceding instructions to
complete, discard all prefetched instructions, and then branch to the next sequential
instruction (which has the effect of clearing the pipeline behindyime instruction).

2.3.5.3 Memory Control Instructions—VEA
Memory control instructions include the following types:

» Cache management instructions (user-level and supervisor-level)
* Segment register manipulation instructions
» Translation lookaside buffer management instructions

This section describes the user-level cache management instructions defined by the VEA.
See 2.3.6.3, “Memory Control Instructions—OEA,” for information about supervisor-level
cache, segment register manipulation, and translation lookaside buffer management
instructions.
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2.3.5.3.1 User-Level Cache Instructions—VEA

The instructions summarized in this section provide user-level programs the ability to
manage on-chip caches if they are implemented. See Chapter 3, “Cache and Bus Interface
Unit Operation,” for more information about cache topics.

The user-level cache instructions provide software a way to help manage processor caches.
The following sections describe how these operations are treated with respect to the 604e’s
cache.

As with other memory-related instructions, the effect of the cache management instructions
on memory are weakly-ordered. If the programmer needs to ensure that cache or other
instructions have been performed with respect to all other processors and system
mechanisms, syncinstruction must be placed in the program following those instructions.

Note that this discussion does not apply to direct-store segment accesses because these are
defined to be cache-inhibited and instruction fetch from them is not allowed. Cache
operations that access direct-store segment are treated as no-ops. Table 2-43 summarizes
the cache instructions defined by the VEA. Note that these instructions are accessible to
user-level programs.

Table 2-43. User-Level Cache Instructions

Operand

Name Mnemonic
Syntax

Implementation Notes

Data Cache | dcbt rArB The VEA defines this instruction to allow for potential system
Block Touch performance enhancements through the use of software-initiated
prefetch hints. Implementations are not required to take any action based
off the execution of this instruction, but they may choose to prefetch the
cache block corresponding to the effective address into their cache.
The 604e treats the dcbt instruction as a no-op if any of the following
conditions is met:

* The address misses in the TLB and in the BAT.

* The address is directed to a direct-store segment.

* The address is directed to a cache-inhibited page.

« The data cache lock bit HIDO[19] is set.
The data brought into the cache as a result of this instruction is validated
in the same way a load instruction would be (that is, if no other bus
participant has a copy, it is marked as Exclusive, otherwise it is marked
as Shared). The memory reference of a dcbt causes the reference bit to
be set.
A successful debt instruction affects the state of the TLB and cache LRU
bits as defined by the LRU algorithm.

Data Cache | dcbtst r ArB This instructions behaves like the dcbt instruction.
Block Touch
for Store
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Table 2-43. User-Level Cache Instructions (Continued)

Name

Mnemonic

Operand
Syntax

Implementation Notes

Data Cache
Block Set to
Zero

dcbz

rArB

The effective address is computed, translated, and checked for protection
violations as defined in the VEA. If the 604e does not have exclusive
access to the block, it presents an operation onto the 604e bus interface
that instructs all other processors to invalidate copies of the block that
may reside in their cache (this is the kill operation on the bus). After it has
exclusive access, the 604e writes all zeros into the cache block. If the
604e already has exclusive access, it immediately writes all zeros into
the cache block. If the addressed block is within a noncacheable or a
write-through page, or if the cache is locked or disabled, the an alignment
exception occurs.

If the operation is successful, the cache block is marked modified.

Data Cache
Block Store

dcbst

r ArB

The effective address is computed, translated, and checked for protection
violations as defined in the VEA. If the 604e does not have exclusive
access to the block, it broadcasts the essence of the instruction onto the
604e bus (using the clean operation, described in Table 3-4). If the 604e
has modified data associated with the block, the processor pushes the
modified data out of the cache and into the memory queue for future
arbitration onto the 604e bus. In this situation, the cache block is marked
exclusive. Otherwise this instruction is treated as a no-op.

A dcbst instruction followed by a store operation may appear out of order
on the bus so that systems that have L2 caches that check for cache
paradox conditions may detect a cache paradox.

When a 604e executes a dcbst instruction to a cache block in shared
state followed by a store instruction to the same cache block, the dcbst
instruction causes a clean transaction on the bus if the 604e’s L1 cache
block is not in modified data state. The store operation should cause a kill
operation on the bus because it should hit on shared data in the L1
cache. However, the 604e may send out the kill operation before the
clean operation. An L2 controller that performs paradox checking could
be confused by this kill/clean sequence to the same cache block. The Kill
operation (with TCO-TC2 = 000) implies that the 604e is obtaining
exclusive rights and will modify the line. The following clean operation
implies that the 604e does not have the block modified. This may confuse
the L2 controller.

To avoid this, put a sync instruction after the dcbst instruction or don’t
check for this paradox.

Data Cache
Block Flush

dcbf

rArB

The effective address is computed, translated, and checked for protection
violations as defined by the VEA. If the 604e does not have exclusive
access to the block, it broadcasts the essence of the instruction onto the
604e bus (using the flush operation described in Table 3-4). In addition, if
the addressed block is present in the cache, the 604e marks this data as
invalid. On the other hand, if the 604e has modified data associated with
the block, the processor pushes the modified data out of the cache and
into the memory queue for future arbitration onto the 604e bus. In this
situation, the cache block is marked invalid.

Instruction
Cache
Block
Invalidate

icbi

rArB

The effective address is computed, translated, and checked for protection
violations as defined in the PowerPC architecture. If the addressed block
is in the instruction cache, the 604e marks it invalid. This instruction
changes neither the content nor status of the data cache. In addition, the
ICBI operation is broadcast on the 604e bus unconditionally to support
this function throughout multilayer memory hierarchy.
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2.3.5.4 Optional External Control Instructions

The external control instructions allow a user-level program to communicate with a
special-purpose device. Two instructions are provided and are summarized in Table 2-44.

Table 2-44. External Control Instructions

Name Mnemonic Operand Syntax
External Control In Word Indexed eciwx rD,rA,rB
External Control Out Word Indexed ecowx rS,rArB

The eciwx and ecowx instructions cause an alignment exception if they are not
word-aligned.

2.3.6 PowerPC OEA Instructions

The PowerPC operating environment architecture (OEA) includes the structure of the
memory management model, supervisor-level registers, and the exception model.
Implementations that conform to the OEA also adhere to the UISA and the VEA. This
section describes the instructions provided by the OEA

2.3.6.1 System Linkage Instructions—OEA

This section describes the system linkage instructions (see Table 2-45cifs¢ruction

is a user-level instruction that permits a user program to call on the system to perform a
service and causes the processor to take an exception. rfTh@struction is a
supervisor-level instruction that is useful for returning from an exception handler.

Table 2-45. System Linkage Instructions—OEA

Name

Mnemonic

Operand Syntax

System Call

SC

Return from Interrupt

rfi

2.3.6.2 Processor Control Instructions—OEA
This section describes the processor control instructions that are used to read from and

write to the MSR and the SPRs.

Table 2-46 summarizes the instructions used for reading from and writing to the MSR.

Table 2-46. Move to/from Machine State Register Instructions

Name Mnemonic Operand Syntax
Move to Machine State Register mtmsr rs
Move from Machine State Register mfmsr rD
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The OEA defines encodings of tlmetspr and mfspr instructions to provide access to
supervisor-level registers. The instructions are listed in Table 2-47.

Table 2-47. Move to/from Special-Purpose Register Instructions (OEA)

Name Mnemonic Operand Syntax
Move to Special Purpose Register mtspr SPR,IS
Move from Special Purpose Register mfspr r D,SPR

Encodings for the 604e-specific SPRs are listed in Table 2-48.
Table 2-48 SPR Encodings for PowerPC 604e-Defined Registers (mfspr)

SPR'
Register Name
Decimal spr[5-9] spr[0—4]

952 11101 11000 MMCRO
956 11101 11100 MMCR1
953 11101 11001 PMC1
954 11101 11010 PMC2
957 11101 11101 PMC3
958 11101 11110 PMC4
955 11101 11011 SIA
959 11101 11111 SDA
1010 11111 10010 IABR
1023 11111 11111 PIR

INote that the order of the two 5-bit halves of the SPR number is reversed compared with actual instruction
coding.

For mtspr and mfspr instructions, the SPR number coded in assembly language does not appear directly as
a 10-bit binary number in the instruction. The number coded is split into two 5-bit halves that are reversed in

the instruction, with the high-order 5 bits appearing in bits 16—20 of the instruction and the low-order 5 bits in
bits 11-15.

Simplified mnemonics are provided for thaspr andmfspr instructions in Appendix F,
“Simplified Mnemonics,” inThe Programming Environments Manugbr a discussion of
context synchronization requirements when altering certain SPRs, refer to Appendix E,
“Synchronization Programming Examples, Tihe Programming Environments Manual

For information on SPR encodings (both user- and supervisor-level) see Chapter 8,
“Instruction Set,” in The Programming Environments Manualote that there are
additional SPRs specific to each implementation; for implementation-specific SPRs, see
the user’s manual for that particular processor.
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2.3.6.3 Memory Control Instructions—OEA
Memory control instructions include the following types of instructions:

» Cache management instructions (supervisor-level and user-level)
* Segment register manipulation instructions
» Translation lookaside buffer management instructions

This section describes supervisor-level memory control instructions. See Section 2.7.3,
“Memory Control Instructions—VEA,” for more information about user-level cache
management instructions.

2.3.6.3.1 Supervisor-Level Cache Management Instruction—(OEA)
Table 2-49 lists the only supervisor-level cache management instruction.

Table 2-49. Cache Management Supervisor-Level Instruction

Name Mnemonic Operand Syntax Implementation Notes
Data dchi rArB The EA is computed, translated, and checked for protection
Cache violations as defined in the OEA.
Block The 604e broadcasts the essence of the instruction onto the
Invalidate 604e bus (using the kill operation). In addition, if the addressed

block is present in the cache, the 604e marks this data as
invalid regardless of whether the data is clean or modified. Note
that this can have the effect of destroying modified data which is
why the instruction is privileged and has store semantics with
respect to protection.

See Section 2.7.3.1, “User-Level Cache Instructions—VEA,” for cache instructions that
provide user-level programs the ability to manage the on-chip caches. If the effective
address references a direct-store segment, the instruction is treated as a no-op. Note that any
cache control instruction that generates an effective address that corresponds to a
direct-store segment (segment descriptor[T] = 1) is treated as a no-op.

2.3.6.3.2 Segment Register Manipulation Instructions (OEA)

The instructions listed in Table 2-50 provide access to the segment registers for 32-bit
iImplementations. These instructions operate completely independently of the MSR[IR] and
MSRI[DR] bit settings. Refer to “Synchronization Requirements for Special Registers and
for Lookaside Buffers,” in Chapter 2, “PowerPC Register Set,”Tbie Programming
Environments Manudibr serialization requirements and other recommended precautions
to observe when manipulating the segment registers.

Table 2-50. Segment Register Manipulation Instructions

Name Mnemonic Operand Syntax
Move to Segment Register mtsr SR,rS
Move to Segment Register Indirect mtsrin r S,rB
Move from Segment Register mfsr rD,SR
Move from Segment Register Indirect mfsrin r D,IB

Chapter 2. Programming Model 2-61



2.3.6.3.3 Translation Lookaside Buffer Management Instructions—(OEA)

The address translation mechanism is defined in terms of segment descriptors and page
table entries (PTEs) used by PowerPC processors to locate the logical to physical address
mapping for a particular access. These segment descriptors and PTESs reside in segment
tables and page tables in memory, respectively.

Refer to Chapter 7, “Memory Management,” Bfie Programming Environments Manual
for more information about TLB operation. Table 2-51 summarizes the operation of the
TLB instructions in the 604e.

Table 2-51. Translation Lookaside Buffer Management Instruction

Operand

Name

Mnemonic

Syntax

Implementation Notes

TLB
Invalidate
Entry

tbie

rB

Execution of this instruction causes all entries in the congruence class
corresponding to the specified EA to be invalidated in the processor
executing the instruction and in the other processors attached to the

same bus by causing a TLB invalidate operation on the bus as
described in Section 7.2.4, “Address Transfer Attribute Signals.”

The OEA requires that a synchronization instruction be issued to
guarantee completion of a tlbie across all processors of a system.
The 604e implements the tlbsync instruction which causes a
TLBSYNC operation to appear on the bus as a distinct operation,
different from a SYNC operation. It is this bus operation that causes
synchronization of snooped tlbie instructions. Multiple tlbie
instructions can be executed correctly with only one tlbsync
instruction, following the last tlbie , to guarantee all previous tlbie
instructions have been performed globally.

Software must ensure that instruction fetches or memory references
to the virtual pages specified by the tlbie have been completed prior
to executing the tlbie instruction.

When a snooping 604e detects a TLB invalidate entry operation on
the bus, it accepts the operation only if no TLB invalidate entry
operation is being executed by this processor and all processors on
the bus accept the operation (ARTRY is not asserted). Once
accepted, the TLB invalidation is performed unless the processor is
executing a multiple/string instruction, in which case the TLB
invalidation is delayed until it has completed.

Other than the possible TLB miss on the next instruction prefetch, the
tibie does not affect the instruction fetch operation—that is, the
prefetch buffer is not purged and does not cause these instructions to
be refetched.

TLB tlbsync —
Synchronize

The TLBSYNC operation appears on the bus as a distinct operation,
different from a SYNC operation. It is this bus operation that causes
synchronization of snooped tlbie instructions.

See the tlbie description above for information regrading using the
tlbsync instruction with the tlbie instruction. For more information
about how other processors react to TLB operations broadcast on the
system bus of a multiprocessing system, see Section 3.9.6, “Cache
Reaction to Specific Bus Operations.”

Implementation Note—The tlbia instruction is optional for an implementation if its
effects can be achieved through some other mechanism. As described abadeiethe
instruction can be used to invalidate a particular index of the TLB based on EA[14-19].
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With that concept in mind, a sequence oftide instructions followed by a singligbsync
instruction would cause all the 604e TLB structures to be invalidated (for EA[14-19] = O,
1, 2,..., 63). Therefore thébia instruction is not implemented on the 604e. Execution of a
tibia instruction causes an illegal instruction program exception.

Because the presence and exact semantics of the TLB management instructions is
implementation-dependent, system software should incorporate uses of these instructions
into subroutines to minimize compatibility problems.

2.3.7 Recommended Simplified Mnemonics

To simplify assembly language coding, a set of alternative mnemonics is provided for some
frequently used operations (such as no-op, load immediate, load address, move register, and
complement register). Programs written to be portable across the various assemblers for the
PowerPC architecture should not assume the existence of mnemonics not described in this
document.

For a complete list of simplified mnemonics, see Appendix F, “Simplified Mnemonics,” in
The Programming Environments Manual
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Chapter 3
Cache and Bus Interface Unit Operation

This chapter describes the organization of the PowerPC 604e’s on-chip cache system, the
MESI cache coherency protocol, special concerns for cache coherency in single- and
multiple-processor systems, cache control instructions, various cache operations, and the
interaction between the cache and the memory unit.

The 604e has separate 32-Kbyte data and instruction caches. This is double the size of the
604 caches. The 604e caches are logically organized as a four-way set with 256 sets
compared to the 604’s 128 sets. The physical address bits that determine the set are 19
through 26 with 19 being the most-significant bit of the index. If bit 19 is zero, the block of
data is an even 4-Kbyte page that resides in sets 0—127; otherwise, bit 19 is one and the
block of data is an odd 4-Kbyte page that resides in sets 128—-255. Because the caches are
four-way set-associative, the cache set element (CSE[0-1]) signals remain unchanged from
the 604. Figure 3-1 shows the organization of the caches. The cache is designed to adhere
to a write-back policy, but the 604e allows control of cacheability, write policy, and memory
coherency at the page and block level, as defined by the PowerPC architecture. The caches
use a least recently used (LRU) replacement policy.

The 604e cache implementation has the following characteristics:

» The 604e has separate 32-Kbyte data and instruction caches. This is double the size
of the 604 caches.

* Instruction and data caches are four-way set associative. The 604e has 256 sets,
twice as much as the 604’s 128 sets.

» Caches implement an LRU replacement algorithm within each set.

» The cache directories are physically addressed. The physical (real) address tag is
stored in the cache directory.

» Boththeinstruction and data caches have 32-byte cache blocks. A cache block is the
block of memory that a coherency state describes, also referred to as a cache line.
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* The coherency state bits for each block of the data cache allow encoding for all four
possible MESI states:

— Modified (Exclusive) (M)
— Exclusive (Unmodified) (E)
— Shared (S)

— Invalid (1)

» The coherency state bit for each cache block of the instruction cache allows
encoding for two possible states:

— Invalid (INV)
— Valid (VAL)

» Each cache can be invalidated or locked by setting the appropriate bits in the
hardware implementation dependent register O (HIDO), a special-purpose register
(SPR) specific to the 604e.

The 604e uses eight-word burst transactions to transfer cache blocks to and from memory.
When requesting burst reads, the 604e presents a double-word-aligned address. Memory
controllers are expected to transfer this double word of data first, followed by double words
from increasing addresses, wrapping back to the beginning of the eight-word block as
required.

Burst misses can be buffered into two 8-word line-fill buffers before being loaded into the
cache. Writes of cache blocks by the 604e (for a copy-back operation) always present the
first address of the block, and transfer data beginning at the start of the block. However, this
does not preclude other masters from transferring critical double words first on the bus for
writes.

Note that in this chapter the terms multiprocessor and multiple-processor are used in the
context of maintaining cache coherency. These devices could be processors or other devices
that can access system memory, maintain their own caches, and function as bus masters
requiring cache coherency.

The organization of the 604e instruction and data caches is shown in Figure 3-1.
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Figure 3-1. Cache Unit Organization

As shown in Figure 3-2, the instruction cache is connected to the bus interface unit (BIU)
with a 64-bit bus; likewise, the data cache is connected both to the BIU and the load/store
unit (LSU) with a 64-bit bus. The 64-bit bus allows two instructions to be loaded into the
instruction cache or a double word (for example, a double-precision floating-point operand)
to be loaded into the data cache in a single clock. The instruction cache provides a 128-bit
interface to the instruction fetcher, so four instructions can be made available to the
instruction unit in a single clock cycle.
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Figure 3-2. Cache Integration

3.1 Data Cache Organization

As shown in Figure 3-2, the physically-addressed data cache lies between the load/store
instruction unit (LSU) and the bus interface unit (BIU), and provides the ability to read and
write data in memory by reducing the number of system bus transactions required for
execution of load/store instructions.

The LSU transfers data between the data cache and the result bus, which routes data to the
other execution units. The LSU supports the address generation and all the data alignment
to and from the data cache. The LSU also handles other types of instructions that access
memory, such as cache control instructions, and supports out-of-order loads and stores
while ensuring the integrity of data.

The 604e’s data cache is a 32-Kbyte, four-way set-associative cache. It is a physically-
indexed, nonblocking, write-back cache with hardware support for reloading on cache
misses. The set associativity of the data cache is shown in Figure 3-1.

Each cache block contains eight contiguous words from memory that are loaded from an
eight-word boundary (that is, bits A27—A31 of the EA are zero); as a result, cache blocks

are aligned with page boundaries. Within a single cycle, the data cache provides a double-
word access to the LSU.
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The 604e implements three copy-back write buffers (the 604 has one). The additional copy-
back buffers allow certain instructions to take further advantage of the pipelined system bus
to provide highly efficient handling of cache copy-back operations, block invalidate
operations caused by the Data Cache Block Fldsbff instruction, and cache block clean
operations resulting from the Data Cache Block Stebs) instruction.

The data cache supports a coherent memory system using the four-state MESI coherency
(modified/exclusive/shared/invalid) protocol. Like the 604, the data cache tags are dual-
ported, so snooping does not affect the internal operation of other transactions on the
system interface. If a snoop hit occurs in a modified block, the LSU is blocked internally
for one cycle to allow the eight-word block of data to be copied to the write-back buffer, if
necessary. The data cache can be invalidated on a block or invalidate-all granularity. The
data cache can be invalidated all at once or on a per cache block basis. The data cache can
be disabled and invalidated by setting the HIDO[17] and HIDO[21] bits, respectively. It can

be locked by setting HIDO[19].

The 604e provides additional support for data cache line-fill buffer forwarding. In the 604,
only the critical double word of a burst operation was made available to the requesting unit
at the time it was burst into the line-fill buffer. Subsequent data was unavailable until the
cache block was filled. On the 604e, subsequent data is also made available as it arrives in
the line-fill buffer.

3.2 Instruction Cache Organization

The 604e’s 32-Kbyte, four-way set-associative instruction cache is physically indexed. The
organization of the instruction cache, shown in Figure 3-1, is identical to that of the data

cache. Each cache block contains eight contiguous words from memory that are loaded
from an eight-word boundary (that is, bits A27—-A31 of the effective addresses are zero); as
a result, cache blocks are aligned with page boundaries.

Within a single cycle, the instruction cache provides as many as four instructions to the
instruction fetch unit. The 604e provides coherency checking for instruction fetches.
Instruction fetching coherency is controlled by HIDO[23]. In the default mode, HIDO[23]

is 0 and theGBL signal is not asserted for instruction accesses on the bus, as is the case
with the 604. If the bit is set and instruction translation is enabled (MSR[IR] = 1GBle

signal is set to reflect the M bit for this page or block. If HIDO[23] is set and instruction
translation is disabled (MSR[IR] = 0), th€BL signal is asserted and coherency is
maintained in the instruction cache.

The PowerPC architecture defines a special set of instructions for managing the instruction
cache. The instruction cache can be invalidated entirely or on a cache-block basis. In
addition, the instruction cache can be disabled and invalidated by setting the HIDO[16] and
HIDO[20] bits, respectively. The instruction cache can be locked by setting HIDO[18].

The instruction cache differs from the data cache in that it does not implement MESI cache
coherency protocol, and a single state bit is implemented that indicates only whether a
cache block is valid or invalid. If a processor modifies a memory location that may be
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contained in the instruction cache, software must ensure that memory updates are visible to
the instruction fetching mechanism. This can be achieved by the following instruction
sequence:

dcbst # update memory

sync # wait for update

icbi # remove (invalidate) copy in instruction cache
sync # wait for ICBI operation to be globally performed
isync # remove copy in own instruction buffer

These operations are necessary because the data cache is a write-back cache. Because
instruction fetching bypasses the data cache, changes made to items in the data cache may
not be reflected in memory until after a fetch operation completes.

3.3 MMUSs/Bus Interface Unit

The bus interface unit (BIU) is compatible with those of the PowerPC 601™ and
PowerPC 603™ microprocessors. It implements both tenured and split-transaction modes
and can handle as many as three outstanding transactions in pipelined mode. If permitted,
the BIU can complete one or more write transactions between the address and data tenures
of a read transaction. The BIU has 32-bit address and 64-bit data buses protected by byte

parity.

The BIU implements the critical-double-word-first access where the double word requested
by the fetcher or the LSU is fetched first and the remaining words in the line are fetched
later. The critical double word as well as other words in the cache block are forwarded to
the fetcher or to the LSU before they are written to the cache.

The bus can be run at 1x, 2/3x, 1/2x or 1/3x the speed of the processor. The programmable
on-chip phase-locked loop (PLL) generates the necessary processor clocks from the bus
clock.

When a memory access fails to hit in the cache, the 604e accesses system memory through
the bus interface unit. These operations must arbitrate for bus access.

The memory management units (MMUS) provide address translation as specified by the
PowerPC OEA, including block address translation and page translation of memory
segments. The MMUs and the bus interface unit are shown in Figure 3-3.

The 604e implements separate MMUs, one for instruction accesses and one for data
accesses. Virtual address translation uses two 128-entry, two-way set-associative (64 x 2)
translation lookaside buffers (TLBsS), one for instruction accesses and one for data accesses.
The 604e provides hardware that performs the TLB reload (also known as page table walk)
when a translation is not in a TLB. Memory management is described in Chapter 5,
“Memory Management.”
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The BIU handles block fill and write-back requests from either cache, as well as all
noncacheable reads and writes.

Instruction Unit Load/Store Unit

Instruction MMU Data MMU

TLB Reload
[

Data Cache

Instruction Cache

Bus Interface Unit

Bus

Figure 3-3. Bus Interface Unit and MMU

As shown in Figure 3-4, the 604e implements four types of memory queues to support the
four types of operations—Iine-fill, write, copy-back, and invalidation operations. For a line-

fill operation, the line-fill address from either the instruction or data cache is kept in the
memory address queue until the address can be sent out in an address tenure. After the
address tenure, the address is transferred to the line-fill address queue, which releases the
address bus for other transactions in split-transaction mode. As each double word for the
line-fill operation is returned, it is transferred to the line-fill buffer, where it is forwarded to

the LSU.

If a subsequent in-order load to the same cache block hits on valid data in the data line-fill
buffer, it is forwarded to the load/store unit from the line-fill buffer. In the 604e, a
subsequent in-order load to the same cache block is required to wait until the line-fill buffer
is completely written into the cache before data is accessed from the cache.
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Figure 3-4. Memory Queue Organization

For write operations, the address is kept in the memory address queue and the data is kept
in the write buffer until both can be sent out in a write transaction. Similarly, for copy-back
operations the address is kept in the copy-back address queue and the data is kept in the
copy-back buffer until both can be sent out in a burst write transaction. For a cache control
instruction or a store to a shared cache block, the address is kept in the cache control address
gueue until an address-only transaction is sent out to broadcast the cache control command.
Because all address queues in the 604e are treated as part of the coherent memory system,
they are checked against the data cache and snoop addresses to ensure data consistency and
to maintain MESI coherency protocol.
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To support the increased bandwidth of the nonblocking caches, the BIU can handle as many
as three pipelined transactions before data has to be provided by the memory system. The
three outstanding transactions can be any combination of the following—two noncacheable

or write-through write operations, two data cache reloads, one instruction cache reload, and
three cache block copybacks. In addition, address-only transactions are not counted in the
three outstanding transactions.

Typically, the three copy-back buffers are written to memory in the same order in which
they are filled, having the lowest priority access among all the bus interface unit’s memory
gueues. Write operations from the copy-back buffers can occur out-of-order under the two
following conditions:

* A snoop hit on one or more copy-back buffers causes the copy-back buffers to have
the second highest priority among the BIU’s memory queues, after only the snoop-
push buffer. In this case, the next write from these three copy-back buffers will be
from the buffer that contains the newest data corresponding to the snoop hit. If the
snoop address hit on multiple copy-back buffers (possibly due tichst
instruction), the accesses for all matching buffers except the one with the newest
data are cancelled.

» Similarly, if execution of thalcbstinstruction causes multiple copy-back buffers to
contain the same address, each buffer that contains this address is cancelled unless
it contains the newest data or unless the buffer is the next address transaction to go
to the bus.

Note that the three copy-back buffers in the 604e improve the performance of maitigsle
anddcbstinstructions because the address and data tenures of burst writes can be pipelined.

For details concerning the signals, see Chapter 7, “Signal Descriptions,” and for
information regarding bus protocol, see Chapter 8, “System Interface Operation.”

3.4 Memory Coherency Actions

The following sections describe memory coherency actions in response to various
operations and instructions.

3.4.1 PowerPC 604e-Initiated Load and Store Operations

The following tables provide an overview of the behavior of the 604e with respect to load
and store operations. Table 3-1 does not include noncacheable cases. The first three cases
(load when the cache block is marked 1) also involve selecting a replacement class and
copying back any modified data that may have resided in that replacement class.
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Table 3-1. Memory Coherency Actions on Load Operations

Cache State Bus Operation Snoop Response Action

[ Read —-ARTRY Load data and mark E

—SHD
Read —ARTRY Load data and mark S

SHD

[ Read ARTRY Retry read operation

S None Don't care Read from cache

E None Don't care Read from cache

M None Don't care Read from cache

Table 3-2 does not address the noncacheable or write-through cases and does not
completely describe the exact mechanisms for the operations described. The first two cases
also involve selecting a replacement class and copying back any modified data that may
have resided in that replacement class. The state dBie signal is unimportant in this

table.

Table 3-2. Memory Coherency Actions on Store Operations

Cache State

Bus Operation

Snoop Response

Action

| RWITM —ARTRY Load data, modify it, mark M
I RWITM ARTRY Retry the RWITM

S Kill —ARTRY Modify cache, mark M*

S Kill ARTRY Retry the Kill

E None Don’t care Modify cache, mark M

M None Don't care Modify cache

*When the 604e issues a kill operation (that does not receive an ARTRY snoop response)
the associated 604e’s cache block state changes from shared to modified. But if an lwarx
instruction is followed by an stwcx. instruction to a different address, the 604e may
broadcast a kill operation without marking the cache block in the on-chip cache modified.

In designing an L2 cache controller for the 604e, it should not be assumed that a kill
operation issued by the 604e results in the 604e gaining modified ownership.

The 604e does not broadcast the kill operation without marking the cache block as

modified.

3.4.2 General Comments on Snooping

When a 604e is not the bus master, it monitors all bus traffic and performs cache and
memory queue snooping as appropriate. The snooping is triggered by the receipt of a
qualified snoop request, as indicated by the simultaneous assertion of the transféBstart (
and the globalGBL) bus signals. The only exception to this qualified snoop request is for
four address-only transactions; the 604e also snoops its own TLB invalidate, TLBSYNC,
SYNC, and ICBI transactions regardless of the gloB&IL() bit setting.
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The 604e drives two snoop status signARTRY andSHD, in response to qualified snoop
requests. These signals provide information about the state of the addressed block with
respect to 604e for the current bus operation. These signals are described in more detail in
this document. The following additional comments apply:

* Any bus transaction that does not have@d. signal asserted can be ignored by
all bus snoopers. All such transactions, except the self-snooping transactions, are
ignored by the 604e.

» Several bus transactions (write with flush, read, and read with intent to modify) are
defined twice, once with the TTO reset and once with it set (for atomic operations).
These operations behave in exactly the same manner with respect to bus snooping.

» The receiving processor may ass€RTRY in response to any bus transaction as a
result of internal conflicts that prevent the appropriate snooping.

» The receiving processor may clear its reservation due to snoop address hit with
several bus transactions (write-with-flush, read- with-intent-to-modify, write-with-
kill, and kill). The reservation is clear even if the 6@®TRYs the particular bus
transaction.

3.5 Sequential Consistency

The following sections describe issues related to sequential consistency with respect to
single processor and multiprocessor systems.

3.5.1 Sequential Consistency Within a Single Processor

The PowerPC architecture requires that all memory operations executed by a single
processor be sequentially consistent with respect to that processor. This means that all
memory accesses appear to be executed in the order specified by the program with respect
to exceptions and data dependencies. Note that all potential precise exceptions are resolved
before memory accesses that miss in the cache are forwarded onto the memory queue for
arbitration onto the bus. In addition, although subsequent memory accesses can address the
cache, full coherency checking between the cache and the memory queue is provided to
avoid dependency conflicts.

3.5.2 Weak Consistency between Multiple Processors

The PowerPC architecture requires only weak consistency among processors—that is,
memory accesses between processors need not be sequentially consistent and memory
accesses among processors can occur in any order. The ability to order memory accesses
weakly provides opportunities for more efficient use of the system bus. Unless a
dependency exists, the 604e allows read operations to precede store operations.

Note that strong ordering of memory accesses with respect to the bus (and therefore, as
observed by other processors and other bus participants) can be accomplished by following
instructions that access memory with the SYNC instruction.
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3.5.3 Sequential Consistency Within Multiprocessor Systems

The PowerPC architecture defines a load operation to have been performed with respect to
all other processors (and mechanisms) when the value to be returned by the load can no
longer be changed by a subsequent store by any processor (or other mechanism). In
addition, it defines a store operation to be performed with respect to all other processors
(and mechanisms) when any load operation from the same location returns the value stored
(or a subsequently stored value).

In the 604e, cacheable load operations and cacheable, non—write-through store operations
are performed with respect to all other processors (and mechanisms) when they have
arbitrated to address the cache. If a cache miss occurs, these operations may drop a memory
request into the processor’'s memory queue, which is considered an extension to the state of
the cache with respect to snooping bus operations.

However, cache-inhibited load operations and cache-inhibited or write-through store
operations are performed with respect to other processors (and mechanisms) when they
have been successfully presented onto the 604e bus interface. As a result, if multiple
processors are performing these types of memory operations to the same addresses without
properly synchronizing one another (through the use olvtiaex/stwcx. instructions), the

results of these instructions are sensitive to the race conditions associated with the order in
which the processors are granted bus access.

If the 604e uses an L2 cache, the system designer must ensure the memory system responds
to the SYNC and EIEIO bus operations in such a way that the required ordering of memory
operations is preserved.

3.6 Memory and Cache Coherency

The 604e can support a fully coherent 4-Gbyfézxmemory address space. Bus snooping

Is used to drive a four-state (MESI) cache coherency protocol which ensures the coherency
of all processor and direct-memory access (DMA) transactions to and from global memory
with respect to each processor’s cache. It is important that all bus participants employ
similar snooping and coherency control mechanisms. The coherency of memory is
maintained at a granularity of 32-byte cache blocks (this size is also called the coherency
or cache-block size).

All instruction and data accesses are performed under the control of the four memory/cache
access attributes:

»  Write-through (W attribute)

» Caching-inhibited (I attribute)

* Memory coherency (M attribute)

* Guarded (G attribute)
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These attributes are programmed by the operating system for each page and block. The W
and | attributes control how the processor performing an access uses its own cache. The
M attribute ensures that coherency is maintained for all copies of the addressed memory

location. The G attribute prevents speculative loading and prefetching from the addressed
memory location.

3.6.1 Data Cache Coherency Protocol

Each 32-byte cache block in the 604e data cache is in one of four states. Addresses

presented to the cache are indexed into the cache directory and are compared against the
cache directory tags. If no tags match, the result is a cache miss. If a tag match occurs, a

cache hit has occurred and the directory indicates the state of the block through three state

bits kept with the tag.

The four possible states for a block in the cache are the invalid state (1), the shared state (S),
the exclusive state (E), and the modified state (M). The four MESI states are defined in
Table 3-3 and illustrated in Figure 3-5

Table 3-3. MESI State Definitions

MESI State Definition

Modified (M) | The addressed block is valid in the cache and in only this cache. The block is modified with respect
to system memory—that is, the modified data in the block has not been written back to memory.

Exclusive (E) | The addressed block is in this cache only. The data in this block is consistent with system memory.

Shared (S) The addressed block is valid in the cache and in at least one other cache. This block is always
consistent with system memory. That is, the shared state is shared-unmodified; there is no shared-
modified state.

Invalid (1) This state indicates that the addressed block is not resident in the cache and/or any data contained
is considered not useful.

The primary objective of a coherent memory system is to provide the same image of
memory to all processors in the system. This is an important feature of multiprocessor
systems since it allows for synchronization, task migration, and the cooperative use of
shared resources. An incoherent memory system could easily produce unreliable results
depending on when and which processor executed a task. For example, when a processor
performs a store operation, it is important that the processor have exclusive access to the
addressed block before the update is made. If not, another processor could have a copy of
the old (or stale) data. Two processors reading from the same memory location would get
different answers.

To maintain a coherent memory system, each processor must follow simple rules for
managing the state of the cache. These include externally broadcasting the intention to read
a cache block not in the cache and externally broadcasting the intention to write into a block
that is not owned exclusively. Other processors respond to these broadcasts by snooping
their caches and reporting status back to the originating processor. The status returned
includes a shared indicator (that is, another processor has a copy of the addressed block)
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and a retry indicator (that is, another processor either has a modified copy of the addressed
block that it needs to push out of the chip, or another processor had a queuing problem that
prevented appropriate snooping from occurring).

To maximize performance, the 604 provides a second path into the data cache directory for
snooping. This allows the mainstream instruction processing to operate concurrently with

the snooping operation. The instruction processing is affected only when the snoop control
logic detects a situation where a snoop push of modified data is required to maintain

memory coherency.

Modified in Cache A Shared in Cache A
Cache A Cache B Cache A Cache B
M—»{ Valid Data —| A alt|  S—>| ValidData | S—»{ Valid Data
System Memory System Memory
Data invalid\ i
— |  not congruent — Valid Data
Exclusive in Cache A Invalid in Cache A
Cache A Cache B Cache A Cache B
. Data invalid\ : ;
E — Valid Data —>{not congruent | — Invalid Date X— Don't Care
System Memory System Memory
— Valid Data — Don't Care

Figure 3-5. MESI States
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3.6.2 Coherency and Secondary Caches

The 604e supports the use of a larger secondary cache that can be implemented in different
configurations. The use of an L2 cache can serve to further improve performance by further
reducing the number of bus accesses. The L2 cache must operate with respect to the
memory system in a manner that is consistent with the intent of the PowerPC architecture.

L2 caches must forward all relevant system bus traffic onto the 604e so it can take the
appropriate actions to maintain memory coherency as defined by the PowerPC architecture.

3.6.3 Page Table Control Bits

The PowerPC architecture allows certain memory characteristics to be set on a page and on
a block basis. These characteristics include the following:

» Write-back/write-through (using the W bit)
» Cacheable/noncacheable (using the | bit)
* Memory coherency enforced/not enforced (using the M bit)

An additional page control bit, G, handles guarded storage and is not considered here. This
ability allows both single- and multiple-processor system designs to exploit numerous
system-level performance optimizations.

The PowerPC architecture defines two of the possible eight decodings of these bits to be
unsupported (WIM = 110 or 111).

Note that software must exercise care with respect to the use of these bits if coherent
memory support is desired. Careless specification of these bits may create situations that
present coherency paradoxes to the processor. In particular, this can happen when the state
of these bits is changed without appropriate precautions (such as flushing the pages that
correspond to the changed bits from the caches of all processors in the system) or when the
address translations of aliased real addresses specify different values for any of the WIM
bits. These coherency paradoxes can occur within a single processor or across several
processors.

It is important to note that in the presence of a paradox, the operating system software is
responsible for correctness. The next section provides a few simple examples to convey the
meaning of a paradox.

3.6.4 MESI State Diagram

The 604e provides dedicated hardware to provide data cache coherency by snooping bus
transactions. The address retry capability of the 604e enforces the MESI protocol, as shown
in Figure 3-6. Figure 3-6 assumes that the WIM bits are set to 001; that is, write-back,
caching-not-inhibited, and memory coherency enforced.
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INVALID

(On a miss, the old
line is firstinvalidated
and copied back

BUS TRANSACTIONS
RH = Read Hit (D: Snoop Push
RMS = Read Miss, Shared
RME = Read Miss, Exclusive ®: Invalidate Transaction
WH = Write Hit
WM = Write Miss @= Read-with-Intent-to-Modify

SHR = Snoop Hit on a Read
SHW = Snoop Hit on a Write or (D: Cache Block Fill
Read-with-Intent-to-Modify

Figure 3-6. MESI Cache Coherency Protocol—State Diagram (WIM = 001)

Table 3-6 gives a detailed list of MESI transitions for various operations and WIM bit
settings.

3.6.5 Coherency Paradoxes in Single-Processor Systems
The following coherency paradoxes can be encountered within a single processor:

» Load or store operations to a page with WIM = 0b011 and a cache hit occurs.
Caching was supposed to be inhibited for this page. Any load operation to a cache-
inhibited page that hits in the cache presents a paradox to the processor. The 604e
ignores the data in the cache and the state of the cache block is unchanged.

» Store operation to a page with WIM = 0b10X and a cache hit on a modified cache
block occurs. This page was marked as write-through yet the processor was given
access to the cache (write-through page are always main memory). Any store
operation to a write-through page that hits a modified cache block in the cache
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presents a coherency paradox to the processor. The 604e writes the data both to the
cache and to main memory (note that only the data for this store is written to main
memory and not the entire cache block). The state of the cache block is unchanged.

3.6.6 Coherency Paradoxes in Multiple-Processor Systems

It is possible to create a coherency paradox across multiple processors. Such paradoxes are
particularly difficult to handle since some scenarios could result in the purging of modified
data, and others may lead to unforeseen bus deadlocks.

Most of these paradoxes center around the interprocessor coherency of the memory
coherency bit (or the M bit). Improper use of this bit can lead to multiple processors

accepting a cache block into their caches and marking the data as exclusive. In turn, this
can lead to a state where the same cache block is modified in multiple processor caches.

Additional information on what bus operations are generated for the various instructions
and state conditions can be found in Chapter 8, “System Interface Operation.”

3.7 Cache Configuration

There are several bits in the HIDO register that can be used to configure the instruction and
data cache. These are described as follows:

» Bit 1—Enable cache parity checking. Enables a machine check exception based on
the detection of a cache parity error. If this bit is cleared, cache parity errors are
ignored. Note that the machine check exception is further affected by the MSR[ME]
bit, which specifies whether the processor enters checkstop state or continues
processing.

» Bit 7—Disable snoop response high state restore. If this bit is set, the processor
cannot drive th&HD andARTRY signals to the high (negated) state, and the system
must restore the signals to the high state. See Chapter 7, “Signal Descriptions,” for
more information.

» Bit 16—Instruction cache enable. If this bit is cleared, the instruction cache is
neither accessed nor updated. Disabling the caches forces all pages to be accessed
as if they were marked cache-inhibited (WIM = X1X). All potential cache accesses
from the bus are ignored.

» Bit 17—Data cache enable. If this bit is cleared, the data cache is neither accessed
nor updated. Disabling the cache forces all pages to be accessed as if they were
marked cache-inhibited (WIM = X1X). All potential cache accesses from the bus,
such as snoop and cache operations are ignored.

» Bit 18—Instruction cache lock. Setting this bit locks the instruction cache, in which
case all cache misses are treated as cache-inhibited. Cache hits occur as normal.
Cache operations and tlobi instruction continue to work as normal.
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» Bit 19—Data cache lock. Setting this bit locks the data cache, in which case all
cache misses are treated as cache-inhibited. Cache hits occur as normal, and cache
snoops and other operations continue to work as normal. This is the only way to
deallocate an entry. If the data cache is locked whed¢he instruction is executed,
it takes an alignment exception, provided the target address had been translated
correctly.

» Bit 20—Instruction cache invalidate all. When this bit is set, the instruction cache
begins an invalidate operation marking the state of each cache block in the
instruction cache as invalid without copying back any data to memory. Itis assumed
that no data in the instruction cache is modified. Access to the cache is blocked
during this time. Bit 20 is reset when the invalidation operation begins (usually the
cycle immediately following the write to the register beginning an invalidate
operation).

» Bit 21—Data cache invalidate all. When this bit is set, the data cache begins an
invalidate operation marking the state of each cache block in the data cache as
invalid without copying back any modified lines to memory. Access to the cache is
blocked during this time. Bit 21 is reset when the invalidation operation begins
(usually the cycle immediately following the write to the register). Any accesses to
the cache from the bus are signaled as a miss during the time that the invalidate-all
operation is in progress.

» Bit 30—BTAC disable. Used to disable use of the 64-entry branch target address
cache. When this bit is cleared, the BTAC is enabled and new entries can be added.
When this bit is set, the BTAC contents are invalidated and the BTAC behaves as if
it were empty. New entries cannot be added until the BTAC is enabled. The BTAC
can be flushed by disabling and re-enabling the BTAC using two succestspe
Instructions.

The HIDO register can be accessed withrthgpr andmfspr instructions.

3.8 Cache Control Instructions

The VEA and OEA portions of the PowerPC architecture define instructions that can be
used for controlling caches in both single- and multiprocessor systems. The exact behavior
of these instruction in the 604e is described in the following sections.

Several of these instructions are required to broadcast their essence (such as a kill, clean, or
flush operation) onto the 604e bus interface so that all processors in a multiprocessor
system can take the appropriate actions. The 604e contains snooping logic to monitor the
bus for these commands and control logic to keep the cache and the memory queue
coherent. Additional details on the specific bus operations can be found in Chapter 7,
“Signal Descriptions.”

3.8.1 Instruction Cache Block Invalidate (icbi)
The effective address is computed, translated, and checked for protection violations as
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defined in the PowerPC architecture. If the addressed block is in the instruction cache, the
604e marks this instruction cache block as invalid. This instruction changes neither the

content nor status of the data cache. The ICBI operation is broadcast on the 604e bus
unconditionally to support this function throughout a system’s memory hierarchy.

3.8.2 Instruction Synchronize (isync)

Theisync instruction causes the 604e to purge its instruction buffers and fetch the next
sequential instruction.

3.8.3 Data Cache Block Touch (dcbt) and
Data Cache Block Touch for Store (dcbtst)

The Data Cache Block Toucld¢bt) and Data Cache Block Touch for Storécbtst)
instructions provide potential system performance enhancements through the use of
software-initiated prefetch hints. The 604e treats these instructions identically.
Implementations are not required to take any action based off the execution of this
instruction, but they may choose to prefetch the cache block corresponding to the effective
address into their cache.

The 604e treats these instructions as a no-ops if any of the following conditions is met:
» The address misses in the TLB and in the BAT.
* The address is directed to a direct-store segment.
» The address is directed to a cache-inhibited page.
» The data cache lock bit HIDO[19] is set.

Regarding MESI cache coherency, the data brought into the cache as a result of this
instruction is validated in the same way a load instruction would be (that is, if no other bus
participant has a copy, it is marked as Exclusive, otherwise it is marked as Shared). The
memory reference ofd@cbt causes the reference bit to be set.

Note also that the successfidbt instruction affects the state of the TLB and cache LRU
bits as defined by the LRU algorithm.

3.8.4 Data Cache Block Set to Zero (dcbz)

As defined in the VEA, when thdcbz instruction is executed the effective address is
computed, translated, and checked for protection violations. If the 604e does not already
have exclusive access to this cache block, it presents a kill operation onto the 604e bus—a
kill operation instructs all other processors to invalidate copies of the cache block that may
reside in their caches. After it has exclusive access to the cache block, the 604e writes all
zeros into the cache block. In the event that the 604e already has exclusive access, it
immediately writes all zeros into the cache block. If the addressed block is within a
noncacheable or a write-through page, or if the cache is locked or disabled, an alignment
exception occurs.
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3.8.5 Data Cache Block Store (dcbst)

As defined in the VEA, when a Data Cache Block Stalebit) instruction is executed, the
effective address is computed, translated, and checked for protection violations. If the 604e
does not have modified data in this block, the 604e broadcasts a clean operation onto the
bus. If modified (dirty) data is associated with the cache block, the processor pushes the
modified data out of the cache and into the memory queue for future arbitration onto the
604e bus. In this situation, the cache block is marked as exclusive. Otherwise this
instruction is treated as a no-op.

3.8.6 Data Cache Block Flush (dcbf)

As defined in the VEA, when a Data Cache Block Fludgthf) instruction is executed, the
effective address is computed, translated, and checked for protection violations. If the 604e
does not have modified data in this cache block, it broadcasts a flush operation onto the
604e bus. If the addressed cache block is in the cache, the 604e marks this data as invalid.
However, if the cache block is present and modified, the processor pushes the modified data
into the memory queue for arbitration onto the 604e bus and the cache block is marked as
invalid.

3.8.7 Data Cache Block Invalidate (dcbi)

As defined in the OEA, when a Data Cache Block Invaliddt#y) instruction is executed,
the effective address is computed, translated, and checked for protection violations.

The 604e broadcasts a kill operation onto the 604e bus. If the addressed cache block is in
the cache, the 604e marks this data as invalid regardless of whether the data is modified.
Because this instruction may effectively destroy modified data, it is privileged and has store
semantics with respect to protection; that is, write permission is required for the DCBI (kill)
operation.

3.9 Basic Cache Operations

This section describes operations that can occur to the cache, and how these operations are
implemented in the 604e.

3.9.1 Cache Reloads

A cache block is reloaded after a read miss occurs in the cache. The cache block that
contains the address is updated by a burst transfer of the data from system memory. Note
that if a read miss occurs in a multiprocessor system, and the data is modified in another
cache, the modified data is first written to external memory before the cache reload occurs.
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3.9.2 Cache Cast-Out Operation

The 604e uses an LRU replacement algorithm to determine which of the four possible
cache locations should be used for a cache update. Updating a cache block causes any
modified data associated with the least-recently used element to be written back, or cast out,
to system memory.

3.9.3 Cache Block Push Operation

When a cache block in the 604e is snooped and hit by another processor and the data is
modified, the cache block must be written to memory and made available to the snooping
device. The cache block that is hit is said to be pushed out onto the bus. The 604e supports
two kinds of push operations—normal push operations and enveloped high-priority push
operations, which are described in Section 3.9.7, “Enveloped High-Priority Cache Block
Push Operation.”

3.9.4 Atomic Memory References

The Iwarx/stwcx. instruction combination can be used to emulate atomic memory
references. These instructions are described in Chapter 2, “Programming Model.”

In a multiprocessor system, a processor can executievanx instruction and another
processor can broadcast a flush bus operation to the target addredsvafihénvalidating

the cache block without canceling the reservation. Therefore, the first processor may
broadcast a reservation set (TT = 0x01, address only) tenure without having a valid copy of
the reservation address in its data cache.

After a data cache hit for ahwvarx instruction, the only condition that can cancel the
correspondinglwarx reservation set transaction is another snoop, which clears the
reservation before the transaction wins arbitration to the address bus.

If the processor detects that a snoop flush operation to the reservation address has
invalidated the cache for the reservation address between the time at whlalatkehit

the cache and the time tihearx reservation set broadcast won arbitration to the address
bus, the processor always retries thvarx at the cache even though it still performs the
reservation set address tenure. In this case, the rétraa® instruction misses in the cache

and causes a read-atomic transaction on the bus. Externally this would be seen as the
following:

snoop: flush (address A)
processortwarx reservation set operation (address A)
processor: read atomic (address A)
To avoid this paradox, paradox checking mechanisms should alldwaar reservation

set operation to be broadcast when the processor can have a valid reservation but does not
have a valid copy of thievarx target in its data cache.
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3.9.5 Snoop Response to Bus Operations

When the 604e is not the bus master, it monitors bus traffic and performs cache and
memory-gqueue snooping as appropriate. The snooping operation is triggered by the receipt
of a qualified snoop request. A qualified snoop request is generated by the simultaneous
assertion of th&S andGBL bus signals.

Instruction processing is interrupted for one clock cycle only when a snoop hit occurs and
the snoop state machine determines a push-out operation is required.

The 604e maintains a write queue of bus operations in progress and/or pending arbitration.
This write queue is also snooped in response to qualified snoop requests. Note that block-
length (four beat) write operations are always snooped in the write queue; however, single-

beat writes are not snooped. Coherency for single-beat writes is maintained through the use
of cache operations that are broadcast with the write on the system interface or the

lwarx/stwcex. instructions.

The 604e drives two snoop status sign@&®(RY and SHD) in response to a qualified
snoop request that hits. These signals provide information about the state of the addressed
block for the current bus operation. For more information about these signals, see
Chapter 7, “Signal Descriptions.”

3.9.6 Cache Reaction to Specific Bus Operations

There are several bus transaction types defined for the 604e bus. The 604e must snoop these
transactions and perform the appropriate action to maintain memory coherency; see
Table 3-4. For example, because single-beat write operations are not snooped when they are
gueued in the memory unit, additional operations such as flush or kill operations, must be
broadcast when the write is passed to the system interface to ensure coherency.

A processor may asse&kRTRY for any bus transaction due to internal conflicts that prevent
the appropriate snooping. In generalARRTRY is not asserted, each snooping processor
must take full ownership for the effects of the bus transaction with respect to the state of the
processor.

The transactions in Table 3-4 correspond to the transfer type signals TTO-TT4, which are
described in Section 7.2.4.1, “Transfer Type (TT[0-4]).”

Table 3-4. Response to Bus Transactions

Transaction Response

Clean block The clean operation is an address-only bus transaction, initiated by executing a dcbst
instruction. This operation affects only blocks marked as modified (M). Assuming the
GBL signal is asserted, modified blocks are pushed out to memory, changing the state
to E.
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Table 3-4. Response to Bus Transactions (Continued)

Transaction

Response

Flush block

The flush operation is an address-only bus transaction initiated by executing a dcbf
instruction. Assuming the GBL signal is asserted, the flush block operation results in the
following:

« |f the addressed block is in the S or E state, the state of the addressed block is
changed to I.

« If the addressed block is in the M state, the snooping device asserts ARTRY and SHD,
the modified block is pushed out of the cache, and its state is changed to I.

Write-with-flush
Write-with-flush-atomic

Write-with-flush and write-with-flush-atomic operations are issued by a processor after
executing stores or stwcx. , respectively to memory in a variety of different states,
particularly noncacheable and write-through. 60x processors do not use this transaction
code for burst transfers, but system use for bursts is not precluded. If they appear on the
bus and the GBL bit is asserted, the 60x processors have the same snoop response as
for flush block, except that a hit on the reservation address causes loss of the
reservation.

Kill block

Kill block is an address-only transaction issued by a processor after executing a dcbi
instruction, a dcbz instruction to a location marked | or S, or a write operation to a block
marked S. If a kill-block transaction appears on the bus, and the GBL bit is asserted, the
addressed block is forced to the | state if it is in the cache.

A kill block hit on a cache block marked modified causes a cache block push operation,
and then the block is invalidated.

Note that if a kill operation hits on a write queue entry, it does not cause that entry to be
purged. Instead the kill operation is ARTRYd and the entry is pushed to memory.

Write-with-kill

In a write-with-kill operation, the processor snoops the cache for a copy of the
addressed block. If one is found, an additional snoop action is initiated internally and the
block is forced to the | state, killing modified data that may have been in the block. In
addition to snooping the cache, the three-entry write queue is also snooped. A kill
operation that hits an entry in the write queue purges that entry from the queue.

A global write-with-kill operation on the bus can cause a loss of memory coherency and
make it appear that a program has not executed serially. Note that the 604e never
issues a global write-with-kill operation.

If data is stored at a memory location and a subsequent store to that address writes
different data into the L1 cache, it is possible for the 604e to ARTRY a snooped write-
with-kill operation to an address in the same cache block and simultaneously invalidate
the L1 cache line for address A. If the 604e attempts to load data from address A, it will
miss in the L1 cache and the 604e will arbitrate for the bus. If the 604e wins arbitration
over the ARTRYd write-with-kill operation, the load operation retrieves the original data
before the data for the write-with-kill is written to memory. Since the older data is
returned instead of the newer data, it appears that the program is not executed
sequentially.

A similar scenario occurs when data is in the 604e’s copy-back buffer, and other data is
in the L1 cache. In this scenario, the write-with-kill is ARTRYd, the data in the copy-back
buffer is pushed to memory and the data in the cache is killed. The subsequent load
retrieves from memory the data that had been in the copy-back buffer. The probability of
encountering either of these scenarios is increased by performing a dcbst to the
address before storing the newer data.

To avoid this scenario, do not write software that attempts to read from a location that
may still be in the L1 cache, and is the target address for a write-with-kill access (for
example a DMA operation). This may be done by flushing the block from the cache
before the DMA operation is initiated, or by using a software lock to indicate when the
DMA operation is complete and the location is safe for reading.

Alternatively, use write-with-flush instead of write-with-Kkill.
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Table 3-4. Response to Bus Transactions (Continued)

Transaction Response
Read Read is used by most single-beat or burst reads on the bus. A read on the bus with the
Read-atomic GBL bit asserted causes the following snoop responses:

« If the addressed block is in the cache in the | state, the processor takes no action.

« If the addressed block is in the cache in the S state, the processor asserts the SHD
snoop status signal.

« If the addressed block is in the cache in the E state, the processor asserts the SHD
snoop status signal and changes the state of that cache block to S.

« If the addressed block is in the cache in the M state, the processor asserts both the
ARTRY and SHD snoop status signals and changes the state of that block in the
cache from M to S and pushes out the modified data.

Read-atomic operations appear on the bus in response to lwarx instruction and receive
the same snooping treatment as a read operation.

Read-with-intent-to-
modify (RWITM)
RWITM atomic

The RWITM transaction is issued to acquire exclusive use of a memory location for the
purpose of modifying it. One example is a processor that writes to a block that is not
currently in its cache. When GBL is asserted, RWITM transactions on the bus cause the
processors to take the following snoop actions:

* If the addressed block is not in the cache, it takes no action.

« If the addressed block is in the cache in the S or E state, the processor changes the
state of that block in the cache to I.

« If the addressed block is present in the cache in the M state, then the 60x asserts both
the ARTRY and the SHARED snoop status signals, pushes the dirty block out of the
cache and changes the state of that block in the cache from M to I.

RWITM atomic appears on the bus in response to the stwcx. instruction and receives

the same snooping treatment as RWITM.

It is now illegal for any snooping device to generate a SHD snoop response without an

ARTRY response to an RWITM address tenure.

If the processor sees this illegal snoop response to its RWITM address tenure, it will not

respond correctly to snoops to that address until that data is fully loaded into the data

cache from the line-fill buffer.

For a snoop-read/RWNITC to that address that hits on the line-fill buffer, the processor
asserts SHD instead of ARTRY. In this case, the processor updates the data cache to
be modified and the reading device has a copy marked S (shared). Store operations to
the cache block could be lost at this point.

For all invalidating snoop operations to that address, the processor asserts no response
instead of asserting ARTRY. In this case, the processor updates the data cache to be
modified while another device could also have a modified copy. The processor’s stores
to this cache block or another processor’s stores to this cache block could be lost.

TLBSYNC

This TLB synchronize operation is an address-only transaction placed onto the bus by a
604e when it executes a tlbsync instruction.

When the TLBSYNC bus operation is detected by a snooping 604e, the 604e asserts
the ARTRY snoop status if any operations based on an invalidated TLB are pending.

TLB invalidate

A TLB invalidate transaction is an address-only transaction issued by a processor when
it executes a tlbie instruction. The address transmitted as part of this transaction
contains bits 12—19 of the EA in their correct respective bit positions.

In response to a TLB invalidate operation, snooping processors invalidate the entire
congruence class in any TLBs associated with the specified EA. In addition, a snooping
604e also asserts the ARTRY snoop status when it has a pending TLB invalidate
operation, and a second TLB invalidate operation is detected.

For more information on the tibie instruction, see Section 2.3.6.3.3, “Translation
Lookaside Buffer Management Instructions—(OEA).”
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Table 3-4. Response to Bus Transactions (Continued)

Transaction Response

I/O reply The 1/O reply operation is part of the direct-store operation. It serves as the final bus
operation in the series of bus operations that service a direct-store operation.

EIEIO An EIEIO operation is put onto the bus as a result of executing an eieio instruction. The
eieio instruction enforces ordered execution of accesses to noncacheable memory. The
604s internally enforce ordering of such accesses with respect to the eieio instruction in
that noncacheable accesses due to instructions that occur before the eieio instruction in
the program order are placed on the bus before any noncacheable accesses that result
from instructions that occur after the eieio instruction with the EIEIO bus operation
separating the two sets of bus operations.

If the system implements a mechanism that allows reordering of noncacheable
requests, the appearance of an EIEIO operation should cause it to force ordering
between accesses that occurred before and those that occur after.

SYNC The sync instruction generates an address-only transaction, which the 604e places
onto the bus.

When a 604e detects a SYNC operation on the bus, it asserts the ARTRY snoop status
if any other snooped cache operations are pending in the device.

Read-with-no-intent-to- An RWNITC operation is issued by a bus-attached device as TTO-TT4 = 0b01011. The
cache (RWNITC) 604e snoops this operation and if it gets a cache hit on a block marked M, it writes the
block back to memory and marks it E.

This operation is useful for a graphics adapter that reads display data from memory.
This data may be in the processor’s cache and may be updated frequently. Because the
adapter does not cache the data, the processor need not leave the block in the S state,
requiring a bus operation to regain exclusive access.

XFERDATA XFERDATA read and write operations are bus transactions that result from execution of
the eciwx or ecowx instructions, respectively. These instructions assist certain adapter
types (especially displays) to make high-speed data transfers. They do this by
calculating an effective address, translating it, and presenting the resulting physical
address to the adapter.

The XFERDATA read and write operations transfer a word of data to or from the
processor, respectively. They also present the 4-bit resource ID (RID) field, using the
concatenation of the bits TBST || TSIZ[0-2]. These transactions are unique in the sense
that the address that is transferred does not select the slave device; it is simply being
passed to the slave device for use in a subsequent transaction. Rather, the RID bits are
used to select among the slave devices.

Although the intent of these instructions is that the slave device that is selected by the
RID bits will use the address that is transferred in a subsequent data transfer, the exact
nature of this data transfer is not defined by 604e bus specifications. It is a private
transfer that can be defined by the system like any other direct memory access.

ICBI An ICBI transaction is issued by a processor that executes an icbi instruction. All copies
of the addressed block in bus-attached instruction caches are invalidated. In this
transaction, a 604e could assert ARTRY in response to its own transaction.

3.9.7 Enveloped High-Priority Cache Block Push Operation

If the 604e has a read operation outstanding on the bus and another pipelined bus operation
hits against a modified block, the 604e provides a high-priority push operation. This
transaction can be enveloped within the address and data tenures of a read operation. This
feature prevents deadlocks in system organizations that support multiple memory-mapped
buses. More specifically, the 604e internally detects the scenario where one or more load
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requests are outstanding and the processor has pipelined a write operation on top of the
load. Normally, when the data bus is granted to the 604e, the resulting data bus tenure is
used for the load operation.

The enveloped high-priority cache block push feature defines a bus signal, the data bus
write only qualifier DBWO), which, when asserted with a qualified data bus grant,
indicates that the resulting data tenure should be used for the first store operation instead.
If no store operation is pending, the first read operation is performed. If no write operation
is pending, the 604e can perform a read operation. This signal is described in detail in
Section 8.11, “Using Data Bus Write Only.” Note that the enveloped copy-back operation
is an internally pipelined bus operation.

3.9.8 Bus Operations Caused by Cache Control Instructions

Table 3-5 provides an overview of the bus operations initiated by cache control instructions.
Note that Table 3-5 assumes that the WIM bits are set to 001, that is, since the cache is
operating in write-back mode, caching is permitted and coherency is enforced.

3.9.9 Cache Control Instructions

Table 3-5 lists bus operations performed by the 604e when they execute cache control
instructions.

Table 3-5. Bus Operations Initiated by Cache Control Instructions

Instruction Cache State Next Cache State Bus Operation Comment
sync Don't care No change SYNC First clears memory queue
eieio Don't care No change EIEIO No clear meaning
icbi Don't care | ICBI —
dchi Don'’t care | Kill —
(invalidate)
dcbf E, S I | Flush —
(flush) ) o .
M | Write-with-Kkill Marked as write-through
dcbst E, S I No change Clean —
(store) . . .
M E Write-with-Kkill Marked as write-through
dcbz I M Kill May also replace
(zero) .
S M Kill —
M, E M None Write over modified data
dcbt, dcbtst | E,S Read State change on reload
M, E, S No Change None —
tibsync Don't care No change TLBSYNC —
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Table 3-5 does not include noncacheable or write-through cases, nor does it completely
describe the mechanisms for the operations described. For more information, see
Section 3.10, “Cache Actions.”

Chapter 3, “Addressing Modes and Instruction Set Summary,” and Chapter 8, “Instruction
Set,” inThe Programming Environments Manubdscribe the cache control instructions in
detail. Several of the cache control instructions broadcast onto the 604e interface so that all
processors in a multiprocessor system can take appropriate actions. The 604e contains
snooping logic to monitor the bus for these commands and the control logic required to
keep the cache and the memory queues coherent. For additional details about the specific
bus operations performed by the 604e, see Chapter 8, “System Interface Operation.”

3.10 Cache Actions

Table 3-6 lists the actions that occur for various operations depending on different WIM bit
settings. It also provides information about general cache conditions and does not take into
account all possible interactions and conditions. In particular, Table 3-6 does not address
many of the conditions that might be encountered in an in-line L2 cache implementation.

Table 3-6. Cache Actions

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM T10-4  Rsvin Response Action

000 | Load Read 000 01010 | (n/a) (None) Load the block of data into
cache
forward data from load
mark cache block E

000 | Load Read 000 01010 | (n/a) SHD Load the block of data into
cache
load from cache
mark cache block S

000 | Load Read 000 01010 | (n/a) ARTRY or Release the bus

ARTRY&SHD | retry the operation
000 ME Load (None) (n/a) | (n/a) (n/a) (n/a) Load from cache
S

001 | Load Read 001 01010 | (n/a) (None) Load the block of data into

cache

mark cache block E
load from cache

001 | Load Read 001 01010 | (n/a) SHD Load the block of data into
cache
load from cache
mark cache block S

001 | Load Read 001 01010 | (n/a) ARTRY or Release the bus

ARTRY&SHD | retry the operation
001 ME Load (None) (n/a) | (n/a) (n/a) (n/a) Load from cache
S
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM T10-4 | Rsvn Response Action
011 ESI | Load Single- 01M 01010 | (n/a) (None) or Load from main memory
010 beat read 11M SHD
110
111
011 ESI | Load Single- 01M 01010 | (n/a) ARTRY or Release the bus
010 beat read 11M ARTRY&SHD | retry the operation
110
111
011 M Load Single- 01M 01010 | (n/a) (None) or Paradox—cache should be |
010 beat read 11M SHD load from main memory
110
111
011 M Load Single- 01M 01010 | (n/a) ARTRY or Paradox—cache should be |
010 beat read 11M ARTRY&SHD | release the bus
110 retry the operation
111
100 | Load Read 100 01010 | (n/a) (None) Load the block of data into
cache
load from cache
mark the cache block E
100 | Load Read 100 01010 | (n/a) SHD Load the block of data into
cache
load from cache
mark cache block S
100 | Load Read 100 01010 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
100 ME Load (None) (n/a) | (n/a) (n/a) (n/a) Load from cache
S
101 | Load Read 101 01010 | (n/a) (None) Load the block of data into
cache
load from cache
mark cache E
101 | Load Read 101 01010 | (n/a) SHD Load the block of data into
cache
load from cache
mark cache block S
101 | Load Read 101 01010 | (n/a) ARTRY or | Release the bus
ARTRY&SHD | retry the operation
101 ME Load (None) (n/a) | (n/a) (n/a) (n/a) Load from cache
S
000 | Iwarx Read 000 11010 | Setby | (None) Load the block of data into
atomic this op cache
set reservation
load from cache
mark cache block E
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM T10-4 | Rsvn Response Action
000 | Iwarx Read 000 11010 | Sethy | SH Load the block of data into
atomic this op cache
set reservation
load from cache
mark cache block S
000 | Iwarx Read 000 11010 | (n/a) ARTRY or | Release the bus
atomic ARTRY&SHD | retry the operation
000 ME Iwarx Iwarx 000 00001 | Setby | (None) or Set reservation
S reservation thisop | SHD load from cache
set*
000 ME Iwarx Iwarx 000 00001 | (n/a) ARTRY or Release the bus
S reservation ARTRY&SHD | retry the operation
set*
001 | lwarx Read 001 11010 | Setby | (None) Load the block of data into
atomic this op cache
mark cache block E
set reservation
load from cache
001 | Iwarx Read 001 11010 | Sethy | SHD Load the block of data into
atomic this op cache
set reservation
load from cache
mark cache block S
001 | lwarx Read 001 11010 | (n/a) ARTRY or Release the bus
atomic ARTRY&SHD | retry the operation
001 ME Iwarx Iwarx 001 00001 | Setby | (None) or Set reservation
S reservation thisop | SHD load from cache
set*
001 ME lwarx lwarx 001 00001 | (n/a) ARTRY or Release the bus
S reservation ARTRY&SHD | retry the operation
set*
011 | lwarx Single- 01M 11010 | Sethy | (None) or Set reservation
010 beat read thisop | SHD load from main memory
atomic
011 | Iwarx Single- 01M 11010 | (n/a) ARTRY or | Release the bus
010 beat read ARTRY&SHD | retry the operation
atomic
011 ES Iwarx Single- 01M 11010 | Sethby | (None) or Set the reservation
010 beat read thisop | SHD load from main memory
atomic
011 ES Iwarx Single- 01M 11010 | (n/a) ARTRY or Release the bus
010 beat read ARTRY&SHD | retry the operation
atomic
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM T10-4 | Rsvn Response Action
011 M Iwarx Single- 01M 11010 | Setby | (None) or Paradox—cache should be |
010 beat read thisop | SHD set the reservation
atomic load from main memory
011 M Iwarx Single- 01M 11010 | (n/a) ARTRY or Paradox—cache should be |
010 beat read ARTRY&SHD | release the bus
atomic retry the operation
100 | Iwarx (n/a) (n/a) | (n/a) (n/a) (n/a) A lwarx to a page marked
101 write-through causes a data
access exception; therefore
no bus transaction results.
101 (nfa) | Iwarx (n/a) (nfa) | (n/a) (n/a) (n/a) A lwarx to a page marked
write-through causes a data
access exception; therefore
no bus transaction results.
000 | Store RWITM 000 01110 | (n/a) (None) or Load the block of data into
SHD cache
store to cache
mark cache M
000 | Store RWITM 000 01110 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
000 S Store Kill 000 01100 | (n/a) (None) or Wait for the kill to be
SHD successfully presented
store to cache
mark cache block M
000 S Store Kill 000 01100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
000 E Store (None) (n/a) | (n/a) (n/a) (n/a) Store to cache
mark cache block M
000 M Store (None) (n/a) | (n/a) (n/a) (n/a) Store to cache
001 | Store RWITM 001 01110 | (n/a) (None) or Load the block of data into
SHD cache
mark cache block E
store to cache
mark cache block M
001 | Store RWITM 001 01110 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
001 S Store Kill 001 01100 | (n/a) (None) or Wait for kill to be
SHD successfully presented
mark cache block E
store to cache
mark cache block M
001 S Store Kill 001 01100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM T10-4 | Rsvn Response Action
001 E Store (None) (n/a) | (n/a) (n/a) (n/a) Store to cache
mark cache block M
001 M Store (None) (n/a) | (n/a) (n/a) (n/a) Store to cache
011 | Store Write with 01M 00010 | (n/a) (None) or Store to main memory
010 flush 11M SHD
110
111
011 | Store Write with 01M 00010 | (n/a) ARTRY or Release the bus
010 flush 11M ARTRY&SHD | retry the operation
110
111
011 ES Store Write with 01M 00010 | (n/a) (None) or Paradox—cache should be |
010 flush 11M SHD store to main memory
110
111
011 ES Store Write with 01M 00010 | (n/a) ARTRY or Paradox—cache should be |
010 flush 11M ARTRY&SHD | release the bus
110 retry the operation
111
011 M Store Write with 01M 00010 | (n/a) (None) or Paradox—cache should be |
010 flush 11M SHD store to main memory
110
111
011 M Store Write with 01M 00010 | (n/a) ARTRY or Paradox—cache should be |
010 flush 11M ARTRY&SHD | release the bus
110 retry the operation
111
100 | Store Write with 100 00010 | (n/a) (None) or Store to main memory
flush SHD

100 ME Store Write with 100 00010 | (n/a) ARTRY or | Release the bus

Sl flush ARTRY&SHD | retry the operation
100 M E Store Write with 100 00010 | (n/a) (None) or Store to cache

S flush SHD store to main memory
101 | Store Write with 101 00010 | (n/a) (None) or Write to main memory

flush SHD (note: no reload on a store
miss)

101 ME Store Write with 101 00010 | (n/a) ARTRY or Release the bus

S| flush ARTRY&SHD | retry the operation
101 ME Store Write with 101 00010 | (n/a) (None) or Store to cache

S flush SHD store to main memory
000 Sl stwcx. (None) (nfa) | (n/a) None (n/a) Update condition register
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM T10-4 | Rsvn Response Action
000 | stwcx. RWITM 000 11110 | Yes (None) or Load the block of data into
atomic (and SHD cache
reset) release the reservation
update the condition
register
store to cache
mark cache M
000 | stwcx. RWITM 000 11110 | Yes ARTRY or Release the bus
atomic ARTRY&SHD | retry the operation
000 S stwcx. Kill 000 01100 | Yes (None) or Wait for the kill to be
(and SHD successfully presented
reset) release reservation
update condition register
store to cache
mark cache block M
000 S stwex. Kill 000 01100 | Yes ARTRY or Release the bus
ARTRY&SHD | retry the operation
000 ME stwcx. (None) (n/a) | (n/a) None (n/a) Update condition register
000 stwcx. (None) (n/a) | (n/a) Yes (n/a) Release reservation
(and update condition register
reset) store to cache
mark cache block M
000 ME stwcx. (None) (n/a) | (n/a) Yes (n/a) (n/a)
(and
reset)
000 M stwcx. (None) (nfa) | (n/a) Yes (n/a) Release reservation
(and update condition register
reset) store to cache
001 Sl stwcx. (None) (n/a) | (n/a) None (n/a) Update condition register
001 | stwcx. RWITM 001 11110 | Yes (None) or Load the block of data into
atomic (and SHD cache
reset) release the reservation
update the condition
register
store to cache
mark cache M
001 | stwex RWITM 001 11110 | Yes ARTRY or Release the bus
atomic ARTRY&SHD | retry the operation
001 S stwcx. Kill 001 01100 | Yes (None) or Release reservation
(and SHD update condition register
reset) mark cache block E
store to cache
mark cache block M
001 S stwcx. Kill 001 01100 | Yes ARTRY or Release the bus
ARTRY&SHD | retry the operation
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM T10-4 | Rsvn Response Action
001 stwcx. (None) (nfa) | (n/a) None (n/a) Update condition register
001 M E stwcx. (None) (nfa) | (n/a) Yes (n/a) Release reservation
(and update condition register
reset) store to cache
mark cache block M
001 ME stwcx. (None) (nfa) | (n/a) Yes (n/a) (n/a)
001 stwcx. (None) (nfa) | (n/a) Yes (n/a) Release reservation
(and update condition register
reset) store to cache
011 | stwcx. (None) (n/a) | (n/a) None (n/a) Update condition register
010
011 | stwcx. Write with 01M 10010 | Yes (None) or Release reservation
010 flush (and SHD update condition register
atomic reset) store to main memory
011 | Stwcx. Write with 01M 10010 | Yes ARTRY or Release the bus
010 flush ARTRY&SHD | retry the operation
atomic
011 ME stwex. (None) (nfa) | (n/a) None (n/a) Paradox—cache should be |
010 S update condition register
011 ME stwcx. Write with 01M 10010 | Yes (None) or Paradox—cache should be |
010 S flush (and SHD check/release reservation
atomic reset) update condition register
store to main memory
011 ME stwcx. Write with 01M 10010 | Yes ARTRY or Paradox—cache should be |
010 S flush ARTRY&SHD | release the bus
atomic retry the operation
011 M stwcx. (n/a) (n/a) | (n/a) None (n/a) (n/a)
010
100 (n/a) stwcx. (n/a) (n/a) | (n/a) (n/a) (n/a) A stwcx. to a page marked
101 write-though causes a data
11X access exception; therefore,
no bus transaction results.
100 (n/a) stwcx. (n/a) (n/a) | (n/a) Yes (n/a) An stwcx. to a page
101 marked write-though
11X causes a data access
exception; therefore, no bus
transaction results.
000 | dchbt Read 000 01010 | (n/a) (None) Load the block of data into

cache
mark the cache E
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM T10-4 | Rsvn Response Action
000 | dcbt Read 000 01010 | (n/a) SHD Load the block of data into
cache
mark the cache S
000 | dchbt Read 000 01010 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
000 ME dchbt (None) (nfa) | (n/a) (n/a) (n/a) No-op
S
001 | dchbt Read 001 01010 | (n/a) (None) Load the block of data into
cache
mark the cache E
001 | dchbt Read 001 01010 | (n/a) SHD Load the block of data into
cache
mark the cache S
001 | dcbt Read 001 01010 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
001 ME dcbt (None) (n/a) | (n/a) (n/a) (n/a) No-op
S
011 | dcbt (None) 01M (n/a) (n/a) (n/a) No-op
010 11M
110
111
011 ES dcbt (None) (nfa) | (n/a) (n/a) (n/a) No-op
010
110
111
011 M dchbt (None) (nfa) | (n/a) None (n/a) No-op
010
110
111
011 M dcbt (n/a) (n/a) | (n/a) None (n/a) (n/a)
010
110
111
100 | dcbt Read 100 01010 | (n/a) (None) Load the block of data into
cache
mark the cache E
100 | dcbt Read 100 01010 | (n/a) SHD Load the block of data into
cache
mark the cache S
100 | dchbt Read 100 01010 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
100 ME dchbt (None) (n/a) (n/a) (n/a) (n/a) No-op
S
3-34 PowerPC 604e RISC Microprocessor User's Manual




Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM T10-4 | Rsvn Response Action
101 | dcbt Read 101 01010 | (n/a) (None) Load the block of data into
cache
mark the cache E
101 | dchbt Read 101 01010 | (n/a) SHD Load the block of data into
cache
mark the cache S
101 | dchbt Read 101 01010 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
101 ME dchbt (None) (n/a) | (n/a) (n/a) (n/a) No-op
S
000 | dcbtst Read 000 01010 | (n/a) (None) Load the block of data into
cache
mark the cache E
000 | dcbtst Read 000 01010 | (n/a) SHD Load the block of data into
cache
mark the cache S
000 | dcbtst Read 000 01010 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
000 S dcbtst (None) (n/a) | (n/a) (n/a) (n/a) No-op
000 ME dcbtst (None) 000 (n/a) (n/a) (n/a) No-op
001 | dcbtst Read 001 01010 | (n/a) (None) Load the block of data into
cache
mark the cache E
001 | dcbtst Read 001 01010 | (n/a) SHD Load the block of data into
cache
mark the cache S
001 | dcbtst Read 001 01010 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
001 ME dcbtst (None) (n/a) | (n/a) (n/a) (n/a) No-op
S
011 | dcbtst (None) 01M (n/a) (n/a) (n/a) No-op
010 11M
110
111
011 ES dcbtst (None) (n/a) | (n/a) (n/a) (n/a) No-op
010
110
111
011 M dcbtst (None) (n/a) | (n/a) None (n/a) No-op
010
110
111
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM T10-4 | Rsvn Response Action
011 M dcbtst (n/a) (nfa) | (n/a) None (n/a) (n/a)
010
110
111
100 | dcbtst Read 100 01010 | (n/a) (None) Load the block of data into
cache
mark cache E
100 | dcbtst Read 100 01010 | (n/a) SHD Load the block of data into
cache
mark cache as block S
100 | dcbtst Read 100 01010 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
100 ME dcbtst (None) (n/a) | (n/a) (n/a) (n/a) No-op
S
101 | dcbtst Read 101 01010 | (n/a) (None) Load the block of data into
cache
mark cache block E
101 | dcbtst Read 101 01010 | (n/a) SHD Load the block of data into
cache
mark cache block S
101 | dcbtst Read 101 01010 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
101 S dcbtst (None) (nfa) | (n/a) (n/a) (n/a) No-op
E
101 M dcbtst (None) (n/a) | (n/a) (n/a) (n/a) No-op
000 | dcbz Kill 000 01100 | (n/a) (None) or Establish the block in data
SHD cache without fetching the
block from main memory
clear all bytes
mark cache block M
000 S| dcbhz Kill 000 01100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
000 S dcbhz Kill 000 01100 | (n/a) (None) or Clear all bytes in the block
SHD mark cache block M
000 E dcbz (None) 000 (n/a) (n/a) (n/a) Clear all bytes in the block
mark cache block M
000 M dcbz (None) (n/a) | (n/a) (n/a) (n/a) Write zeros to all bytes in
the cache block
001 | dcbhz Kill 001 01100 | (n/a) (None) or Establish the block in data
SHD cache without fetching the
block from main memory
clear all bytes
mark cache block M
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM T10-4 | Rsvn Response Action
001 | dcbhz Kill 001 01100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
001 S dcbz Kill 001 01100 | (n/a) (None) or Mark cache block E
SHD set all bytes of the block to
zero
mark the cache block M
001 S dcbz Kill 001 01100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | Retry the operation
001 E dcbz (None) (n/a) | (n/a) (n/a) (n/a) Write zeros to all bytes in
the Cache block
mark cache block M
001 M dcbz (None) (n/a) | (n/a) (n/a) (n/a) Write zeros to all bytes in
the cache block
010 ME dcbz (n/a) (n/a) | (n/a) (n/a) (n/a) A dcbz to a page marked
011 Sl cache inhibited or write-
110 through causes an
111 alignment exception;
100 therefore this transaction
101 does not occur on the bus
000 ESI | dcbst Clean 000 00000 | (n/a) (None) or No-op
SHD
000 ESI | dcbst Clean 000 00000 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
000 M dcbst Write with 100 00110 | (n/a) (None) or Write the block to main
kill SHD memory
mark cache block E
000 M dcbst Write with 100 00110 | (n/a) ARTRY or Release the bus
kill ARTRY&SHD | retry the operation
001 ESI | dcbst Clean 001 00000 | (n/a) (None) or No-op
SHD
001 ESI| | dcbst Clean 001 00000 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
001 M dcbst Write with 100 00110 | (n/a) (None) or Write all bytes in the cache
kill SHD block to main memory
mark cache block E
001 M dcbst Write with 100 00110 | (n/a) ARTRY or Release the bus
kill ARTRY&SHD | retry the operation
011 E S| | dcbst Clean W1M | 00000 | (n/a) (None) or No-op
010 SHD
110
111
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM T10-4 | Rsvn Response Action
011 | dcbst Clean W1M | 00000 | (n/a) ARTRY or Release the bus
010 ARTRY&SHD | retry the operation
110
111
011 M dcbst Write with 100 00110 | (n/a) (None) or Write all bytes in the cache
010 kill SHD block to main memory
110 Mark cache block E
111
011 M dcbst Write with 100 00110 | (n/a) ARTRY or Release the bus
010 kill ARTRY&SHD | retry the operation
110
111
100 ESI | dcbst Clean 100 00000 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
100 ESI | dcbst Clean 100 00000 | (n/a) (None) or No-op
SHD
100 M dcbst Write with 100 00110 | (n/a) (None) or Write the block back to
kill SHD memory
mark cache block E
100 M dcbst Write with 100 00110 | (n/a) ARTRY or Release the bus
kill ARTRY&SHD | retry the operation
101 ESI | dcbst Clean 101 00000 | (n/a) (None) or No-op
SHD
101 ESI | dcbst Clean 101 00000 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
101 M dcbst Write with 100 00110 | (n/a) (None) or Write the block back to
kill SHD memory
mark cache block E
101 M dcbst Write with 100 00110 | (n/a) ARTRY or Release the bus
kill ARTRY&SHD | retry the operation
000 | dcbf Flush 000 00100 | (n/a) (None) or No-op
SHD
000 | dcbf Flush 000 00100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
000 ES dcbf Flush 000 00100 | (n/a) (None) or Mark cache block |
SHD
000 ES dcbf Flush 000 00100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
000 M dcbf Write with 100 00110 | (n/a) (None) or Write the block of data back
kill SHD to main memory

mark the cache block |

000 M dcbf Write with 100 00110 | (n/a) ARTRY or Release the bus
kill ARTRY&SHD | retry the operation
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM T10-4 | Rsvn Response Action
001 | dcbf Flush 001 00100 | (n/a) (None) or No-op
SHD
001 ES dcbf Flush 001 00100 | (n/a) (None) or Mark cache block |
SHD
001 ESI | dcbf Flush 001 00100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
001 M dcbf Write with 100 00110 | (n/a) (None) or Write all bytes in the cache
kill SHD block to main memory
mark cache block |
001 M dcbf Write with 100 00110 | (n/a) ARTRY or Release the bus
kill ARTRY&SHD | retry the operation
011 | dcbf Flush W1M | 00100 | (n/a) (None) or No-op
010 SHD
110
111
011 | dcbf Flush W1M | 00100 | (n/a) ARTRY or Release the bus
010 ARTRY&SHD | retry the operation
110
111
011 ES dcbf Flush W1M | 00100 | (n/a) (None) or Mark cache block |
010 SHD
110
111
011 ES dcbf Flush W1M | 00100 | (n/a) ARTRY or Retry the operation
010 ARTRY&SHD
110
111
011 M dcbf Write with 100 00110 | (n/a) (None) or Flush the block
010 kill SHD mark cache block |
110
111
011 M dcbf Write with 100 00110 | (n/a) ARTRY or Release the bus
010 kill ARTRY&SHD | retry the operation
110
111
100 | dcbf Flush 100 00100 | (n/a) (None) or No-op
SHD
100 ES dcbf Flush 100 00100 | (n/a) (None) or Mark cache block |
SHD
100 ESI | dcbf Flush 100 00100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
100 M dcbf Write with 100 00110 | (n/a) (None) or Write the block back to
kill SHD memory

mark cache block |
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM T10-4 | Rsvn Response Action
100 M dcbf Write with 100 00110 | (n/a) ARTRY or Release the bus
kill ARTRY&SHD | retry the operation
101 | dcbf Flush 101 00100 | (n/a) (None) or No-op
SHD
101 ES dcbf Flush 101 00100 | (n/a) (None) or Mark cache block |
SHD
101 ESI | dcbf Flush 101 00100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
101 M dcbf Write with 100 00110 | (n/a) (None) or Flush the block
kill SHD mark cache block |
101 M dcbf Write with 100 00110 | (n/a) ARTRY or Release the bus
kill ARTRY&SHD | retry the operation
000 | dchbi Kill 000 01100 | (n/a) (None) or No-op
SHD
000 ME dcbi Kill 000 01100 | (n/a) (None) or Mark the cache block |
S SHD
000 ME dchbi Kill 000 01100 | (n/a) ARTRY or Release the bus
Sl ARTRY&SHD | retry the operation
001 | dcbi Kill 001 01100 | (n/a) (None) or No-op
SHD
001 | dchbi Kill 001 01100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
001 S dcbi Kill 001 01100 | (n/a) (None) or Mark cache block |
SHD
001 S dchbi Kill 001 01100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
001 EM dcbi Kill 001 01100 | (n/a) (None) or Mark cache block |
SHD
001 EM dchbi Kill 001 01100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
011 | dchbi Kill W1iM | 01100 | (n/a) (None) or No-op
010 SHD
110
111
011 ME dchi Kill W1M | 01100 | (n/a) (None) or Mark cache block |
010 S SHD
110
111
011 ME dchbi Kill W1iM | 01100 | (n/a) ARTRY or Release the bus
010 Sl ARTRY&SHD | retry the operation
110
111
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM T10-4 | Rsvn Response Action
100 | dchbi Kill 100 01100 | (n/a) (None) or No-op
SHD
100 ME dchi Kill 100 01100 | (n/a) ARTRY or Release the bus
S| ARTRY&SHD | retry the operation
100 ME dchi Kill 100 01100 | (n/a) (None) or Mark cache block |
S SHD
101 | dchi Kill 101 01100 | (n/a) (None) or No-op
SHD
101 ME dchi Kill 101 01100 | (n/a) ARTRY or Release the bus
S| ARTR&SHD retry the operation
101 ME dchi Kill 101 01100 | (n/a) (None) or Mark cache block |
S SHD
000 INV icbi ICBI 000 01101 | (n/a) (None) or No-op
SHD
000 INV icbi ICBI 000 01101 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
000 VAL icbi ICBI 000 01101 | (n/a) (None) or Mark icache block INV
SHD
000 VAL icbi ICBI 000 01101 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
001 INV icbi ICBI 001 01101 | (n/a) (None) or No-op
SHD
001 INV icbi ICBI 001 01101 | (n/a) ARTRY or Release the bus
VAL ARTRY&SHD | retry the operation
001 VAL icbi ICBI 001 01101 | (n/a) (None) or Mark icache block INV
SHD
011 INV icbi ICBI 01M 01101 | (n/a) (None) or No-op
010 11M SHD
110
111
011 INV icbi ICBI 01M 01101 | (n/a) ARTRY or Release the bus
010 VAL 11M ARTRY&SHD | retry the operation
110
111
011 VAL ichi ICBI 01M 01101 | (n/a) (None) or Mark icache block INV
010 11M SHD
110
111
100 INV icbi ICBI 100 01101 | (n/a) (None) or No-op
SHD
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM T10-4 | Rsvn Response Action
100 INV icbi ICBI 100 01101 | (n/a) ARTRY or Release the bus
VAL ARTRY&SHD | retry the operation
100 VAL icbi ICBI 100 01101 | (n/a) (None) or Mark icache block INV
SHD
101 INV icbi ICBI 101 01101 | (n/a) (None) or No-op
SHD
101 INV icbi ICBI 101 01101 | (n/a) ARTRY or Release the bus
VAL ARTRY&SHD | retry the operation
101 VAL icbi ICBI 101 01101 | (n/a) (None) or Mark icache block INV
SHD
(n/a) (n/a) sync SYNC xx1 01000 | (n/a) (None) or The sync instruction
SHD completed.
(Note: This table does not
give an accurate
representation of what the
sync instruction does.)
(n/a) (nfa) | sync SYNC xx1 01000 | (n/a) ARTRY or Release the bus.
ARTRY&SHD | Retry the operation.
(n/a) (nfa) | eieio EIEIO xx1 10000 | (n/a) (None) or The eieio instruction has
SHD completed.
(Note: This table does not
give an accurate
representation of what the
eieio instruction does.)
(n/a) (n/a) eieio EIEIO xx1 10000 | (n/a) ARTRY or Release the bus.
ARTRY&SHD | Retry the operation.
(n/a) (n/a) | tlbie TLB xx1 11000 | (n/a) (None) or Hold off any new storage
invalidate SHD instructions.
Wait for the completion of
any outstanding storage
instructions
Invalidate the requested
TLB entry
(Note: This table does not
thoroughly characterize the
tlbie instruction.)
(n/a) (nfa) | tlbie TLB xx1 11000 | (n/a) ARTRY or Release the bus.
invalidate ARTRY&SHD | Retry the operation
tlbsync | TLB sync xx1 01001 | (n/a) (None) or The TLB sync instruction
SHD has completed.
(Note: This table does not
thoroughly characterize the
tlbsync instruction.)
tlbbsync | TLB sync xx1 01001 | (n/a) ARTRY or Release the bus.
ARTRY&SHD | Retry the operation.
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM T10-4 | Rsvn Response Action
| Snoop-kill xx1 01100 | None (None) No-op
| Snoop-kill xx1 01100 | Yes (None) Release reservation.
(and
reset)
ME Snoop-kill xx1 01100 | None (None) Mark cache block 1.
S
ME Snoop-kill xx1 01100 | Yes (None) Mark cache block 1.
S (and Release reservation.
reset)
| Snoop- xx1 01010 | None (None) No-op
read
| Snoop- xx1 01010 | Yes SH No-op
read
S Snoop- xx1 01010 | (n/a) SHD No-op
read
E Snoop- xx1 01010 | (n/a) SHD Mark cache block S.
read
M Snoop- x01 01010 | (n/a) ARTRY&SHD | Attempt to write cache block
read back to main memory;
if successful, mark cache
block S
M Snoop- x11 01010 | (n/a) ARTRY&SHD | Attempt to write cache block
read back to main memory;
If successful, mark cache
block S
| Snoop- xx1 11010 | None (None) No-op
read
atomic
| Snoop- xx1 11010 | Yes SHD No-op
read
atomic
S Snoop- xx1 11010 | (n/a) SHD No-op
read
atomic
E Snoop- xx1 11010 | (n/a) SHD Mark cache block S
read
atomic
M Snoop- xx1 11010 | (n/a) ARTRY&SHD | Attempt to write cache block
read back to main memory; if
atomic successful, mark cache
block S.
| Snoop- xx1 01110 | None (None) No-op
RWITM
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM T10-4 | Rsvn Response Action

| Snoop- xx1 01110 | Yes (None) Release reservation.

RWITM (and
reset)

ES Snoop- xx1 01110 | None (None) Mark cache block 1.
RWITM

ES Snoop- xx1 01110 | Yes (None) Mark cache block 1.
RWITM (and Release reservation.

reset)

M Snoop- xx1 01110 | None ARTRY&SHD | Attempt to write cache block
RWITM back to main memory;

if successful, mark cache
block I.
M Snoop- xx1 01110 | Yes ARTRY&SHD | Attempt to write cache block
RWITM (and back to main memory;
reset) if successful, mark cache
block I,
release reservation

| Snoop- xx1 11110 | None (None) No-op
RWITM
atomic

| Snoop- xx1 11110 | Yes (None) Release reservation.
RWITM (and
atomic reset)

S Snoop- xx1 11110 | None (None) Mark cache block I.

E RWITM
atomic

S Snoop- xx1 11110 | Yes (None) Mark cache block I.

E RWITM (and Release reservation.
atomic reset)

M Snoop- xx1 11110 | None | ARTRY&SHD | Attempt to write cache block
RWITM back to main memory;
atomic if successful, mark cache

block I.

M Snoop- xx1 11110 | Yes ARTRY&SHD | Attempt to write cache block
RWITM (and back to main memory;
atomic reset) if successful, mark cache

block I, release reservation.
| Snoop- xx1 00100 | None (None) No-op
flush

| Snoop- xx1 00100 | Yes (None) No-op
flush

SE Snoop- xx1 00100 | (n/a) (None) Mark cache block I.
flush
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM T10-4 | Rsvn Response Action
M Snoop- xx1 00100 | (n/a) ARTRY&SHD | Attempt to write cache block
flush back to main memory;
if successful:
mark cache block I.
ESI Snoop- xx1 00000 | (n/a) (None) No-op
clean
M Snoop- xx1 00000 | (n/a) ARTRY&SHD | Attempt to write cache block
clean back to main memory; if
successful, mark cache
block E.
| Snoop- xx1 00010 | None (None) No-op
write with
flush
| Snoop- xx1 00010 | Yes (None) Release reservation.
write with (and
flush reset)
S Snoop- xx1 00010 | None (None) Mark cache block 1.
write with
flush
S Snoop- xx1 00010 | Yes (None) Mark cache block 1.
write with (and Release reservation.
flush reset)
E Snoop- xx1 00010 | None (None) Paradox—no one else
write with should be writing if this
flush cache is E.
Mark cache block |
E Snoop- xx1 00010 | Yes (None) Paradox—no one else
write with (and should be writing if this
flush reset) cacheis E.
Mark cache block I.
Release reservation.
M Snoop- xx1 00010 | None | ARTRY&SHD | Paradox—no one else
write with should be writing if this
flush cache is M.
Attempt to write cache block
back to main memory;
if successful, mark cache
block |
M Snoop- xx1 00010 | Yes ARTRY&SHD | Paradox—no one else
write with (and should be writing if this
flush reset) cache is M.

Attempt to write cache block
back to main memory;

if successful, mark cache
block I, release reservation
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM T10-4 | Rsvn Response Action
| Snoop- xx1 00110 | None (None) No-op
write with
kill
| Snoop- xx1 00110 | Yes (None) Release reservation.
write with (and
kill reset)
S Snoop- xx1 00110 | None (None) Mark cache block 1.
write with
kill
S Snoop- xx1 00110 | Yes (None) Mark cache block I.
write with (and Release reservation.
kill reset)
E Snoop- xx1 00110 | None (None) Paradox—no one else
write with should be writing if this
kill cache is E.
Mark cache block 1.
E Snoop- xx1 00110 | Yes (None) Paradox—no one else
write with (and should be writing if this
kill reset) cacheis E.
Mark cache block I.
Release reservation.
M Snoop- xx1 00110 | None (None) Paradox—no one else
write with should be writing if this
kill cache is M.
Mark cache block 1.
M Snoop- xx1 00110 | Yes (None) Paradox—no one else
write with (and should be writing if this
kill reset) cache is M.
Mark cache block I.
Release reservation.
| Snoop- xx1 10010 | None (None) No-op
write with
flush
atomic
| Snoop- xx1 10010 | Yes (None) Release reservation.
write with (and
flush reset)
atomic
S Snoop- xx1 10010 | None (None) Mark cache block 1.
write with
flush
atomic
S Snoop- xx1 10010 | Yes (None) Mark cache block 1.
write with (and Release reservation.
flush reset)
atomic
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM T10-4 | Rsvn Response Action

E Snoop- xx1 10010 | None (None) Paradox—no one else
write with should be writing if this
flush cache is E.
atomic Mark cache block I.

E Snoop- xx1 10010 | Yes (None) Paradox—no one else
write with (and should be writing if this
flush reset) cache is E.
atomic Mark cache block |,

release reservation.

M Snoop- xx1 10010 | None | ARTRY&SHD | Paradox—no one else
write with should be writing if this
flush cache is M.
atomic Attempt to write block back

to main memory;
if successful, mark cache
block |

M Snoop- xx1 10010 | Yes ARTRY&SHD | Paradox—no one else
write with (and should be writing if this
flush reset) cache is M.
atomic Attempt to write block back

to main memory;
if successful: mark cache
block |, release reservation.

(n/a) Snoop- xx1 11000 | (n/a) (None) Respond with (none) when
TLB the TLB has been
invalidate invalidated.

(n/a) Snoop- xx1 11000 | (n/a) (None) but Do not perform the TLB
TLB ARTRY is invalidate—this is to prevent
invalidate activated on a deadlock condition from

the bus from occurring.
another
processor

(n/a) Snoop- xx1 11000 | (n/a) ARTRY Respond with retry until the
TLB TLB has been invalidated.
invalidate

(n/a) Snoop- xx1 01000 | (n/a) (None) If no TLB invalidates are
SYNC pending, no-op.

(n/a) Snoop- xx1 01000 | (n/a) ARTRY If a TLB invalidate is
SYNC pending, respond with retry.

(n/a) Snoop- xx1 01001 | (n/a) (None) If no TLB invalidates are
TLBSYNC pending, no-op.

(n/a) Snoop- xx1 01001 | (n/a) ARTRY If a TLB invalidate is
TLBSYNC pending, respond with retry.

(n/a) Snoop- xx1 10000 | (n/a) (None) No-op
EIEIO
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM T10-4  Rsvn Response Action

(n/a) Snoop- xx1 10000 | (n/a) ARTRY No-op
EIEIO

| Snoop- xx1 01101 | (n/a) (None) No-op
ICBI

VAL Snoop- xx1 01101 | (n/a) (None) Invalidate entry in icache
ICBI

| Snoop- xx1 01011 | None (None) No-op
RWNITC

| Snoop- xx1 01011 | Yes SH No-op
RWNITC

ES Snoop- xx1 01011 | (n/a) SHD No-op
RWNITC

M Snoop- xx1 01011 | (n/a) ARTRY&SHD | Attempt to write cache block
RWNITC back to main memory; if

successful, mark cache
block E.

Note: It is possible for a snoop invalidate operation that invalidates both the cache block and the reservation
to preempt the operation and cause the 604e to generate a “read atomic” operation instead. It is also
possible that between the time that the lwarx instruction hits in the cache and the lwarx reservation set is
broadcast that a flush snoop operation can remove the cache block from the cache without canceling the
reservation. In this case, the lwarx broadcast still occurs even through the cache block is not in the data
cache.

3.11 Access to Direct-Store Segments

The 604e supports both memory-mapped and I/O-mapped access to I/O devices. In
addition to the high-performance bus protocol for memory-mapped I/O accesses, the 604e
provides the ability to map memory areas to the direct-store interface (SR[T] = 1) with the

following two kinds of operations:

Cache behavior (write-back, cache-inhibition, and enforcement of MESI coherency) for

Direct-store operations. These operations are considered to address the noncoherent
and noncacheable direct-store; therefore, the 604e does not maintain coherency for

these operations, and the cache is bypassed completely.

Memory-forced direct-store operations. These operations are considered to address
memory space and are therefore subject to the same coherency control as memory
accesses. These operations are global memory references within the 604e and are

considered to be noncacheable.

these operations is determined by the settings of the WIM bits.
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Chapter 4
Exceptions

The OEA portion of the PowerPC architecture defines the mechanism by which PowerPC
processors implement exceptions (referred to as interrupts in the architecture specification).
Exception conditions may be defined at other levels of the architecture. For example, the
UISA defines conditions that may cause floating-point exceptions; the OEA defines the

mechanism by which the exception is taken.

PowerPC exception mechanism allows the processor to change to supervisor state as a
result of external signals, errors, or unusual conditions arising in the execution of
instructions. When exceptions occur, information about the state of the processor is saved
to certain registers and the processor begins execution at an address (exception vector)
predetermined for each exception. Processing of exceptions begins in supervisor mode.

Although multiple exception conditions can map to a single exception vector, a more
specific condition may be determined by examining a register associated with the
exception—for example, the DSISR and the floating-point status and control register
(FPSCR). Additionally, certain exception conditions can be explicitly enabled or disabled
by software.

The PowerPC architecture requires that exceptions be taken in program order; therefore,
although a particular implementation may recognize exception conditions out of order, they
are handled strictly in order with respect to the instruction stream. When an instruction-
caused exception is recognized, any unexecuted instructions that appear earlier in the
instruction stream, including any that have not yet entered the execute state, are required to
complete before the exception is taken. For example, if a single instruction encounters
multiple exception conditions, those exceptions are taken and handled sequentially.
Likewise, exceptions that are asynchronous and precise are recognized when they occur,
but are not handled until all instructions currently in the execute stage successfully
complete execution and report their results.

Note that exceptions can occur while an exception handler routine is executing, and
multiple exceptions can become nested. It is up to the exception handler to save the states
if it is desired to allow control to ultimately return to the excepting program.
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In many cases, after the exception handler handles an exception, there is an attempt to
execute the instruction that caused the exception. Instruction execution continues until the
next exception condition is encountered. This method of recognizing and handling
exception conditions sequentially guarantees that the machine state is recoverable and
processing can resume without losing instruction results.

To prevent the loss of state information, exception handlers must save the information
stored in SRRO and SRR1 soon after the exception is taken to prevent this information from
being lost due to another exception being taken.

In this chapter, the following terminology is used to describe the various stages of exception
processing:

Recognition Exception recognition occurs when the condition that can cause an
exception is identified by the processor.
Taken An exception is said to be taken when control of instruction

execution is passed to the exception handler; that is, the context is
saved and the instruction at the appropriate vector offset is fetched
and the exception handler routine is begun in supervisor mode.

Handling Exception handling is performed by the software linked to the
appropriate vector offset. Exception handling is begun in supervisor-
level (referred to as privileged state in the architecture specification).

Note that the PowerPC architecture documentation refers to exceptions as interrupts. In this
book, the term interrupt is reserved to refer to asynchronous exceptions, and sometimes to
the event that causes the exception to be taken. Also, the PowerPC architecture uses the
word exception to refer to IEEE-defined floating-point exceptions, conditions that may
cause a program exception to be taken (See Section 4.5.7, “Program Exception (0x00700).)
The occurrence of these IEEE exceptions may in fact not cause an exception to be taken.
IEEE-defined exceptions are referred to as IEEE floating-point exceptions or floating-point
exceptions.

4.1 PowerPC 604e Microprocessor Exceptions

As specified by the PowerPC architecture, all exceptions can be described as either precise
or imprecise and either synchronous or asynchronous. Asynchronous exceptions are caused
by events external to the processor’s execution; synchronous exceptions are caused by
instructions.

The types of exceptions are shown in Table 4-1. Note that all exceptions except for the
system management interrupt and performance monitoring exception are defined by the
PowerPC architecture.
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Table 4-1. Exception Classifications

Type

Exception

Asynchronous/nonmaskable

Machine Check
System Reset

Asynchronous/maskable

External interrupt

Decrementer interrupt

System management interrupt (604e-specific)
Performance monitoring exception (604e-
specific)

Synchronous/precise

Instruction-caused exceptions

Synchronous/imprecise

Instruction-caused imprecise exceptions
(Floating-point imprecise exceptions)

Exceptions implemented in the 604e, and conditions that cause them, are listed in
Table 4-2.
Table 4-2. Exceptions and Conditions—Overview
Exception Vector Offset Causing Conditions
Type (hex)

Reserved 00000 —

System reset 00100 The causes of system reset exceptions are implementation-dependent. In the
604e a system reset is caused by the assertion of either the soft reset or hard
reset signal.

If the conditions that cause the exception also cause the processor state to be
corrupted such that the contents of SRR0 and SRR1 are no longer valid or such
that other processor resources are so corrupted that the processor cannot
reliably resume execution, the copy of the RI bit copied from the MSR to SRR1
is cleared.

Machine check | 00200 On the 604e a machine check exception is signaled by the assertion of a

qualified TEA indication on the 604e bus, or the machine check input (MCP)
signal. If the MSR[ME] is cleared, the processor enters the checkstop state
when one of these signals is asserted. Note that MSR[ME] is cleared when an
exception is taken. The machine check exception is also caused by parity errors
on the address or data bus or in the instruction or data caches.

The assertion of the TEA signal is determined by read, write, and instruction
fetch operations initiated by the processor; however, it is expected that the TEA
signal would be used by a memory controller to indicate that a memory parity
error or an uncorrectable memory ECC error has occurred.

Note that the machine check exception is imprecise with respect to the
instruction that originated the bus operation.

The machine check exception is disabled when MSR[ME] = 0. If a machine
check exception condition exists and the ME bit is cleared, the processor goes
into the checkstop state. (Note that, physical address is referred to as the real
address in the architecture specification.)

If the conditions that cause the exception also cause the processor state to be
corrupted such that the contents of SRR0 and SRR1 are no longer valid or such
that other processor resources are so corrupted that the processor cannot
reliably resume execution, the copy of the RI bit copied from the MSR to SRR1
is cleared.
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Table 4-2. Exceptions and Conditions—Overview (Continued)

Exception
Type

Vector Offset
(hex)

Causing Conditions

DSl

00300

A DSI exception occurs when a data memory access cannot be performed for
any of the reasons described in Section 4.5.3, “DSI Exception (0x00300).” Such
accesses can be generated by load/store instructions, certain memory control
instructions, and certain cache control instructions.

ISI

00400

An ISI exception occurs when an instruction fetch cannot be performed for a
variety of reasons described in Section 4.5.4, “ISI Exception (0x00400).”

External
interrupt

00500

An external interrupt occurs when the external exception signal, INT, is
asserted. This signal is expected to remain asserted until the exception handler
begins execution. Once the signal is detected, the 604e stops dispatching
instructions and waits for all dispatched instructions to complete. Any exceptions
associated with dispatched instructions are taken before the interrupt is taken.

Alignment

00600

An alignment exception may occur when the processor cannot perform a
memory access for reasons described in Section 4.5.6, “Alignment Exception
(0x00600).” Note that the PowerPC architecture defines a wider range of
conditions that may cause an alignment exception than required in the 604e. In
these cases, the 604e provides logic to handle these conditions without
requiring the processor to invoke the alignment exception handler.

Program

00700

A program exception is caused by one of the following exception conditions,
which correspond to bit settings in SRR1 and arise during execution of an
instruction:

* Floating-point enabled exception—A floating-point enabled exception
condition is generated when either MSR[FEOQ] or MSR[FE1] and
FPSCRI[FEX] are set. The settings of FEO and FE1 are described in
Table 4-4.

FPSCR[FEX] is set by the execution of a floating-point instruction that
causes an enabled exception or by the execution of a Move to FPSCR
instruction that sets both an exception condition bit and its corresponding
enable bit in the FPSCR. These exceptions are described in Chapter 3 of
The Programming Environments Manual.

< lllegal instruction—An illegal instruction program exception is generated
when execution of an instruction is attempted with an illegal opcode or illegal
combination of opcode and extended opcode fields or when execution of an
optional instruction not provided in the specific implementation is attempted
(these do not include those optional instructions that are treated as no-ops).
The PowerPC instruction set is described in Section 2.3, “Instruction Set
Summary.”

« Privileged instruction—A privileged instruction type program exception is
generated when the execution of a privileged instruction is attempted and the
MSR register user privilege bit, MSR[PR], is set. This exception is also
generated for mtspr or mfspr with an invalid SPR field if spr[0]=1 and
MSR[PR] = 1.

- Trap—A trap type program exception is generated when any of the
conditions specified in a trap instruction is met.

For more information, refer to Section 4.5.7, “Program Exception (0x00700).”

Floating-point
unavailable

00800

The floating-point unavailable exception is implemented as defined in the
PowerPC architecture.

Decrementer

00900

The decrementer interrupt exception is taken if the interrupt is enabled and the
exception is pending. The exception is created when the most significant bit
changes from 0 to 1. If it is not enabled, the exception remains pending until it is
taken.
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Table 4-2. Exceptions and Conditions—Overview (Continued)

Exception Vector Offset Causing Conditions
Type (hex)

Reserved 00AOQ0 Reserved for implementation-specific exceptions. For example, the 601 uses
this vector offset for direct-store exceptions.

Reserved 00B00 —

System call 00C00 A system call exception occurs when a System Call (sc) instruction is executed.

Trace 00D00 The trace exception, which is implemented in the 604e, is defined by the
PowerPC architecture but is optional. A trace exception occurs if either MSR[SE]
=1 and any instruction (except rfi) successfully completed or MSR[BE] = 1 and
a branch instruction is completed.

Performance 00F00 The performance monitoring interrupt is a 604e-specific exception and is used

monitoring with the 604e performance monitor, described in Section 4.5.13, “Performance

interrupt Monitoring Interrupt (0Ox0O0F00).”
The performance monitoring facility can be enabled to signal an exception when
the value in one of the performance monitor counter registers (PMC1 or PMC2)
goes negative. The conditions that can cause this exception can be enabled or
disabled by through bits in the monitor mode control register 0 (MMCRO).
Although the exception condition may occur when the MSR[EE] bit is cleared,
the actual interrupt is masked by the EE bit and cannot be taken until the EE bit
is set.

Reserved 01000-012FF | Reserved for implementation-specific exceptions not implemented on the 604e.

Instruction 01300 An instruction address breakpoint exception occurs when the address (bits 0 to

address 29) in the IABR matches the next instruction to complete in the completion unit,

breakpoint and the IABR enable bit (bit 30) is set to 1.

System 01400 A system management interrupt is caused when MSR[EE] = 1 and the SMI

management input signal is asserted. This exception is provided for use with the hap mode.

interrupt

Reserved 014FF-02FFF | Reserved for implementation-specific exceptions not implemented on the 604e.

4.2 EXxception Recognition and Priorities
Exceptions are roughly prioritized by exception class, as follows:

1. Nonmaskable, asynchronous exceptions have priority over all other exceptions—

system reset and machine check exceptions (although the machine check exception
condition can be disabled so the condition causes the processor to go directly into
the checkstop state). These exceptions cannot be delayed, and do not wait for the
completion of any precise exception handling.

Synchronous, precise exceptions are caused by instructions and are taken in strict
program order.

Imprecise exceptions (imprecise mode floating-point enabled exceptions) are
caused by instructions and they are delayed until higher priority exceptions are
taken.

Maskable asynchronous exceptions (external interrupt and decrementer exceptions)
are delayed until higher priority exceptions are taken.
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Exception priorities are described in “Exception Priorities,” in Chapter 6, “Exceptions,” in
The Programming Environments Manual

System reset and machine check exceptions may occur at any time and are not delayed even
if an exception is being handled. As a result, state information for the interrupted exception
may be lost; therefore, these exceptions are typically nonrecoverable.

All other exceptions have lower priority than system reset and machine check exceptions,
and the exception may not be taken immediately when it is recognized.

If an imprecise exception is not forced by either the context or the execution synchronizing
mechanism and if the instruction addressed by SRRO did not cause the exception then that
instruction appears not to have begun execution. For more information on context-
synchronization, see Chapter 6, “Exceptions,Tire Programming Environments Manual

4.3 Exception Processing

When an exception is taken, the processor uses the save/restore registers, SRR0 and SRR1,
to save the contents of the machine state register for user-level mode and to identify where
instruction execution should resume after the exception is handled.

When an exception occurs, the address saved in machine status save/restore register 0
(SRRO) is used to help calculate where instruction processing should resume when the
exception handler returns control to the interrupted process. Depending on the exception,
this may be the address in SRRO or at the next address in the program flow. All instructions
in the program flow preceding this one will have completed execution and no subsequent
instruction will have begun execution. This may be the address of the instruction that
caused the exception or the next one (as in the case of a system call or trap exception). The
SRRO register is shown in Figure 4-1.

SRRO (holds EA for instruction in interrupted program flow)

Figure 4-1. Machine Status Save/Restore Register 0

SRRO is 32 bits wide in 32-bit implementations.

The save/restore register 1(SRR1) is used to save machine status (selected bits from the
MSR and possibly other status bits as well) on exceptions and to restore those values when
rfi is executed. SRR1 is shown in Figure 4-2.

Exception-specific information and MSR bit values

Figure 4-2. Machine Status Save/Restore Register 1
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Typically, when an exception occurs, bits 2—-4 and 10-12 of SRR1 are loaded with
exception-specific information and bits 5-9, and 16-31 of MSR are placed into the
corresponding bit positions of SRR1.

Note that in other implementations every instruction fetch that occurs when MSR[IR] = 1,
and every instruction execution requiring address translation when MSR[DR] = 1, may
modify SRR1.

In the 604e and in other 32-bit PowerPC implementations, the MSR is 32 bits wide as
shown in Figure 4-3.

[ ] Reserved

0000000000000 POW| O | ILE |EE|PR|FP|ME|FEO|SE(BE|FE1| O [ IP [IR|CR [O|PM|RI|LE
0 12 13 14 15 16 17 1819 20 2122 23 24 25262728293031

Figure 4-3. Machine State Register (MSR)

The MSR bits are defined in Table 4-3. Full function reserved bits are saved in SRR1 when
an exception occurs; partial function reserved bits are not saved.

Table 4-3. MSR Bit Settings

Bit(s) Name Description
0 — Reserved. Full Function.

1-4 — Reserved. Partial function.

5-9 — Reserved. Full function.

10-12 | — Reserved. Partial function.

13 POW Power management enable

0 Power management disabled (normal operation mode).
1 Power management enabled (reduced power mode).
Note that power management functions are implementation-dependent.

14 — Reserved—Implementation-specific

15 ILE Exception little-endian mode. When an exception occurs, this bit is copied into MSR[LE] to
select the endian mode for the context established by the exception.

16 EE External interrupt enable

0  While the bit is cleared the processor delays recognition of external interrupts and
decrementer exception conditions.

1 The processor is enabled to take an external interrupt or the decrementer exception.

17 PR Privilege level
0  The processor can execute both user- and supervisor-level instructions.
1  The processor can only execute user-level instructions.
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Table 4-3. MSR Bit Settings (Continued)

Bit(s) Name Description
18 FP Floating-point available

0 The processor prevents dispatch of floating-point instructions, including floating-point
loads, stores, and moves.

1 The processor can execute floating-point instructions, and can take floating-point enabled
exception type program exceptions.

19 ME Machine check enable

0  Machine check exceptions are disabled.

1 Machine check exceptions are enabled.

20 FEO IEEE floating-point exception mode 0 (See Table 4-4).
21 SE Single-step trace enable

0  The processor executes instructions normally.

1 The processor generates a single-step trace exception upon the successful execution of
the next instruction (unless that instruction is an rfi instruction). Successful execution
means that the instruction caused no other exception.

22 BE Branch trace enable

0 The processor executes branch instructions normally.

1 The processor generates a branch type trace exception upon the successful execution of
a branch instruction.

23 FE1 IEEE floating-point exception mode 1 (See Table 4-4).

24 — Reserved. This bit corresponds to the AL bit of the POWER architecture.

25 P Exception prefix. The setting of this bit specifies whether an exception vector offset is
prepended with Fs or 0s. In the following description, nnnnn is the offset of the exception.

0 Exceptions are vectored to the physical address 0x000n_nnnn.

1 Exceptions are vectored to the physical address OxFFFn_nnnn.

26 IR Instruction address translation

0 Instruction address translation is disabled.

1 Instruction address translation is enabled.

For more information see Chapter 5, “Memory Management.”

27 DR Data address translation

0 Data address translation is disabled.

1 Data address translation is enabled.

For more information see Chapter 5, “Memory Management.”

28 — Reserved, full function.
29 PM Performance monitor marked mode

0 Process is not a marked process.

1 Process is a marked process.

This bit is specific to the 604e, and is defined as reserved by the PowerPC architecture. For

more information about the performance monitor, see Section 4.5.13, “Performance Monitoring

Interrupt (0Ox0O0F00).”
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Table 4-3. MSR Bit Settings (Continued)

Bit(s) Name Description

30 RI Indicates whether system reset or machine check exception is recoverable.

0  Exception is not recoverable.

1  Exception is recoverable.

The RI bit indicates whether from the perspective of the processor, it is safe to continue (that is,
processor state data such as that saved to SRRO is valid), but it does not guarantee that the
interrupted process is recoverable.

31 LE Little-endian mode enable
0  The processor runs in big-endian mode.
1  The processor runs in little-endian mode.

The IEEE floating-point exception mode bits (FEO and FE1) together define whether
floating-point exceptions are handled precisely, imprecisely, or whether they are taken at
all. The possible settings and default conditions for the 604e are shown in Table 4-4. For
further details, see Chapter 6, “Exceptions, Thé Programming Environments Manual

Table 4-4. IEEE Floating-Point Exception Mode Bits

FEO | FE1 Mode
0 0 Floating-point exceptions disabled
0 1 Floating-point imprecise nonrecoverable
1 0 Floating-point imprecise recoverable. In the 604e, this bit setting causes the 604e to operate in
floating-point precise mode.
1 1 Floating-point precise mode

MSR bits are guaranteed to be written to SRR1 when the first instruction of the exception
handler is encountered.

4.3.1 Enabling and Disabling Exceptions

When a condition exists that may cause an exception to be generated, it must be determined
whether the exception is enabled for that condition.

* |EEE floating-point enabled exceptions (a type of program exception) are ignored
when both MSR[FEO] and MSR[FE1] are cleared. If either of these bits are set, all
IEEE enabled floating-point exceptions are taken and cause a program exception.

* Asynchronous, maskable exceptions (that is, the external and decrementer
interrupts) are enabled by setting the MSR[EE] bit. When MSR[EE] =0, recognition
of these exception conditions is delayed. MSR[EE] is cleared automatically when an
exception is taken, to delay recognition of conditions causing those exceptions.
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A machine check exception can occur only if the machine check enable bit,
MSR[ME], is set. If MSR[ME] is cleared, the processor goes directly into checkstop
state when a machine check exception condition occurs. Individual machine check
exceptions can be enabled and disabled through bits in the HIDO register, which is
described in Table 4-7.

System reset exceptions cannot be masked.

4.3.2 Steps for Exception Processing

After it is determined that the exception can be taken (by confirming that any instruction-
caused exceptions occurring earlier in the instruction stream have been handled, and by
confirming that the exception is enabled for the exception condition), the processor does
the following:

1.

The machine status save/restore register 0 (SRRO) is loaded with an instruction
address that depends on the type of exception. See the individual exception
description for details about how this register is used for specific exceptions.

Bits 1-4 and 10-15 of SRR1 are loaded with information specific to the exception

type.

Bits 5-9 and 16—-31 of SRR1 are loaded with a copy of the corresponding bits of the

MSR. Note that depending on the implementation, reserved bits may not be copied.

The MSR is set as described in Table 4-3. The new values take effect beginning with
the fetching of the first instruction of the exception-handler routine located at the
exception vector address.

Note that MSR[IR] and MSR[DR] are cleared for all exception types; therefore,
address translation is disabled for both instruction fetches and data accesses
beginning with the first instruction of the exception-handler routine.

Instruction fetch and execution resumes, using the new MSR value, at a location
specific to the exception type. The location is determined by adding the exception's
vector (see Table 4-2) to the base address determined by MSRJIP]. If IP is cleared,
exceptions are vectored to the physical address 0xQ@thn If IP is set, exceptions

are vectored to the physical address OxiFHinn For a machine check exception
that occurs when MSR[ME] = 0 (machine check exceptions are disabled), the
checkstop state is entered (the machine stops executing instructions). See
Section 4.5.2, “Machine Check Exception (0x00200).”
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4.3.3 Setting MSRJRI]
The operating system should handle MSR[RI] as follows:

In the machine check and system reset exceptions—If SRR1[RI] is cleared, the
exception is not recoverable. If it is set, the exception is recoverable with respect to
the processor.

In each exception handler—When enough state information has been saved that a
machine check or system reset exception can reconstruct the previous state, set
MSRI[RI].

In each exception handler—Clear MSR[RI], set the SRRO and SRR1 registers
appropriately, and then execute

Not that the RI bit being set indicates that, with respect to the processor, enough
processor state data is valid for the processor to continue, but it does not guarantee
that the interrupted process can resume.

4.3.4 Returning from an Exception Handler

The Return from Interruptrfi ) instruction performs context synchronization by allowing
previously issued instructions to complete before returning to the interrupted process. In
general, execution of thré instruction ensures the following:

All previous instructions have completed to a point where they can no longer cause
an exception. If a previous instruction causes a direct-store interface error exception,
the results must be determined before this instruction is executed.

Previous instructions complete execution in the context (privilege, protection, and
address translation) under which they were issued.

Therfi instruction copies SRR1 bits back into the MSR.

The instructions following this instruction execute in the context established by this
instruction.

For a complete description of context synchronization, refer to Chapter 6, “Exceptions,” of
The Programming Environments Manual.

4.4 Process Switching
The operating system should execute one of the following when processes are switched:

Thesyncinstruction, which orders the effects of instruction execution. All
instructions previously initiated appear to have completed befosytize

instruction completes, and no subsequent instructions appear to be initiated until the
syncinstruction completes. For an example showing use a$yineinstruction, see
Chapter 2, “PowerPC Register Set, Tdfe Programming Environments Manual.
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* Theisyncinstruction, which waits for all previous instructions to complete and then
discards any fetched instructions, causing subsequent instructions to be fetched (or
refetched) from memory and to execute in the context (privilege, translation,
protection, etc.) established by the previous instructions.

» Thestwecx.instruction, to clear any outstanding reservations, which ensures that an
lwarx instruction in the old process is not paired witlstncx. instruction in the
new process.

The operating system should set the MSRJ[RI] bit as described in Section 4.3.3, “Setting
MSR[RI].”

4.5 Exception Definitions

Table 4-5 shows all the types of exceptions that can occur with the 604e and the MSR bit
settings when the processor transitions to supervisor mode due to an exception. Depending
on the exception, certain of these bits are stored in SRR1 when an exception is taken.

Table 4-5. MSR Setting Due to Exception

. MSR Bit
Exception
Type

POW | ILE | EE | PR | FP | ME | FEO | SE | BE | FE1 | IP | IR | DR | RI | LE
System reset 0 — 0 0 0 — 0 0 0 0 — 10 0 0 | ILE
Machine check 0 — 0 0 0 0 0 0 0 0 — 10 0 0 | ILE
DSI 0 — 0 0 0 — 0 0 0 0 — 10 0 0 | ILE
ISI 0 — 0 0 0 — 0 0 0 0 — 10 0 0 | ILE
External 0 — 0 0 0 — 0 0 0 0 — 10 0 0 | ILE
Alignment 0 — 0 0 0 — 0 0 0 0 — 10 0 0 | ILE
Program 0 — 0 0 0 — 0 0 0 0 — 10 0 0 | ILE
Floating-point 0 — 0 0 0 — 0 0 0 0 — 10 0 0 | ILE
unavailable
Decrementer 0 — 0 0 0 — 0 0 0 0 — 10 0 0 | ILE
System call 0 — 0 0 0 — 0 0 0 0 — 10 0 0 | ILE
Trace exception 0 — 0 0 0 — 0 0 0 0 — 10 0 0 | ILE
System 0 — 0 0 0 — 0 0 0 0 — 10 0 0 | ILE
management
Performance 0 — 0 0 0 — 0 0 0 0 — 10 0 0 | ILE
monitor

0 Bit is cleared.

ILE Bit is copied from the ILE bit in the MSR.
— Bit is not altered
Reserved bits are read as if written as 0.
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The setting of the exception prefix bit (IP) determines how exceptions are vectored. If the
bit is cleared, exceptions are vectored to the physical address @x0n(wherennnnn

Is the vector offset); if IP is set, exceptions are vectored to the physical address
OxFFFR_nnnn Table 4-2 shows the exception vector offset of the first instruction of the
exception handler routine for each exception type.

4.5.1 System Reset Exception (0x00100)

The 604e implements the system reset exception as defined in the PowerPC architecture
(OEA). The system reset exception is a nonmaskable, asynchronous exception signaled to
the processor through the assertion of system-defined signals. In the 604e, the exception is
signaled by the assertion of either ®RESET oHRESET inputs, described more fully in
Chapter 7, “Signal Descriptions.”.

Table 4-6. System Reset Exception—Register Settings

Register Setting Description

SRRO Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 0 Loaded with equivalent bits from the MSR
1-4 Cleared
5-9 Loaded with equivalent bits from the MSR
10-15 Cleared
16-31 Loaded with equivalent bits of the MSR

Note that if the processor state is corrupted to the extent that execution cannot resume reliably, the
MSRI[RI] bit (SRR1[30]) is cleared.

MSR POW 0 BE 0
ILE --- FE1 O
EE 0 IP —
PR 0 IR 0
FP 0 DR O
ME - RI 0
FEO O LE Set to value of ILE

SE O

The SRESET input provides a “warm” reset capability. This input is used to avoid causing
the 604e to perform the entire power-on reset sequence, thereby preserving the contents of
the architected registers. This capability is useful when recovering from certain checkstop
or machine check states. When a system reset exception is taken, instruction execution
continues at offset 0x00100 from the physical base address indicated by MSR[IP].

AssertingSRESET causes the 604e to perform a system reset excepRHEET is an
edge-sensitive signal that may be asserted and deasserted asynchronously, provided the
minimum pulse width specified in theowerPC 604e RISC Microprocessor Hardware
Specificationss met. This exception modifies the MSR, SRRO, and SRR1, as described in
The Programming Environments Manué&lnlike hard reset, soft reset does not directly
affect the states of output signals. Attempts to8RESET during a hard reset sequence or
while the JTAG logic is non-idle cause unpredictable results. Processing interrupted by a
SRESET can be restarted.
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A hard reset is initiated by assertiftRESET. Hard reset is used primarily for power-on
reset (POR), but can also be used to restart a running processetREEET signal should

be asserted during power up and must remain asserted for a period that allows the PLL to
achieve lock and the internal logic to be reset. This period is specified PotlherPC 604e

RISC Microprocessor Hardware Specificatiofite 604e internal state after the hard reset
interval is defined in Table 2-11.

If HRESET is asserted for less than this amount of time, the results are not predictable. If
HRESET is asserted during normal operation, all operations cease and the machine state is
lost.

4.5.2 Machine Check Exception (0x00200)

The 604e implements the machine check exception as defined in the PowerPC architecture
(OEA). It conditionally initiates a machine check exception after an address or data parity
error occurred on the bus or in a cache, after receiving a qualified transfer error
acknowledgeTEA) indication on the 604e bus, or after the machine check interfipR)

signal had been asserted. As defined in the OEA, the exception is not taken if the MSR[ME]
is cleared.

Machine check conditions can be enabled and disabled using bits in the HIDO described in
Table 4-7.

Table 4-7. Machine Check Enable Bits

HIDO Bit Description

0 Enable machine check input pin

1 Enable cache parity checking

2 Enable machine check on address bus parity error.
3 Enable machine check on data bus parity error.

A TEA indication on the bus can result from any load or store operation initiated by the
processor. In general, tHEEA signal is expected to be used by a memory controller to
indicate that a memory parity error or an uncorrectable memory ECC error has occurred.
Note that the resulting machine check exception is imprecise and unordered with respect to
the instruction that originated the bus operation.

If the MSR[ME] bit and the appropriate bits in HIDO are set, the exception is recognized
and handled; otherwise, the processor generates an internal checkstop condition. When a
processor is in checkstop state, instruction processing is suspended and generally cannot
continue without restarting the processor. Note that many conditions may lead to the
checkstop condition; the disabled machine check exception is only one of these.

Machine check exceptions are enabled when MSR[ME] = 1; this is described in
Section 4.5.2.1, “Machine Check Exception Enabled (MSR[ME] = 1).” If MSR[ME] = 0
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and a machine check occurs, the processor enters the checkstop state. Checkstop state is
described in Section 4.5.2.2, “Checkstop State (MSR[ME] = 0).”

4.5.2.1 Machine Check Exception Enabled (MSR[ME] = 1)
When a machine check exception is taken, registers are updated as shown in Table 4-8.

Table 4-8. Machine Check Exception—Register Settings

Register Setting Description

SRRO On a best-effort basis implementations can set this to an EA of some instruction that was executing
or about to be executing when the machine check condition occurred.

SRR1 0-9 Cleared

10 Set when an instruction cache parity error is detected, otherwise zero

11 Set when a data cache parity error is detected, otherwise zero

12 Set when Machine Check Pin (MCP) is asserted, otherwise zero

13 Set when TEA pin is asserted, otherwise zero

14 Set when a data bus parity error is detected, otherwise zero

15 Set when an address bus parity error is detected, otherwise zero

16—29 MSR(16-29)

30  Zero for APE, DPE, instruction or data cache parity error, or TEA.
For MCP or other conditions, SRR1[30] is set to value of MSR[30]. If MCP and TEA are
asserted simultaneously, SRR1[30] is zero and the exception is not recoverable.

31 MSR(31)
MSR POW 0 BE 0
ILE --- FE1 O
EE 0 1P —
PR 0 IR 0
FP 0 DR O
ME* O RI 0
FEO O LE Set to value of ILE
SE 0

* Note that when a machine check exception is taken, the exception handler should set MSR[ME] as soon
as it is practical to handle another machine check exception. Otherwise, subsequent machine check
exceptions cause the processor to automatically enter the checkstop state.

The machine check exception is usually unrecoverable in the sense that execution cannot
resume in the same context that existed before the exception. If the condition that caused
the machine check does not otherwise prevent continued execution, MSR[ME] is set to
allow the processor to continue execution at the machine check exception vector address.
Typically earlier processes cannot resume; however, the operating systems can then use the
machine check exception handler to try to identify and log the cause of the machine check
condition.

When a machine check exception is taken, instruction execution resumes at offset 0x00200
from the physical base address indicated by MSR]IP].
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4.5.2.2 Checkstop State (MSR[ME] = 0)

When a processor is in the checkstop state, instruction processing is suspended and
generally cannot resume without the processor being reset. The contents of all latches are
frozen within two cycles upon entering checkstop state.

A machine check exception may result from referencing a nonexistent physical address,
either directly (with MSR[DR] = 0), or through an invalid translation. On such a system,
for example, execution of a Data Cache Block Set to ZdebZ) instruction that introduces

a block into the cache associated with a nonexistent physical address may delay the
machine check exception until an attempt is made to store that block to main memory.

Note that not all PowerPC processors provide the same level of error checking. The reasons
a processor can enter checkstop state are implementation-dependent.

4.5.3 DSI Exception (0x00300)

A DSI exception occurs when no higher priority exception exists and a data memory access
cannot be performed. The DSI exception is implemented as it is defined in the PowerPC
architecture (OEA). Note that there are some conditions for which the PowerPC
architectures allow implementations to optionally take a DSI exception. Table 4-9 lists
conditions defined by the architecture that optionally may cause a DSI exception.

Table 4-9. Other MMU Exception Conditions

Condition Description DSISR
Iwarx or stwex. with W =1 Reservation instruction to write-through segment or block | DSISR[5] =1
Iwarx , stwcx. , eciwx , or ecowx Reservation instruction or external control instruction DSISR[5] =1
instruction to direct-store segment when SR[T] =1 or STE[T] =1
Load or store that results in a direct- | Direct-store interface protocol signalled with an error DSISR[0] =1
store error condition
eciwx or ecowx attempted when eciwx or ecowx attempted with EAR[E] =0 DSISR[11] =1
external control facility disabled

4.5.4 |S| Exception (0x00400)

An [SI exception occurs when no higher priority exception exists and an attempt to fetch
the next instruction fails. This exception is implemented as it is defined by the PowerPC
architecture (OEA). In addition, an instruction fetch from a no-execute segment results in
an IS| exception.

When an ISI exception is taken, instruction execution resumes at offset 0x00400 from the
physical base address indicated by MSR[IP].

4.5.5 External Interrupt Exception (0x00500)

An external interrupt is signaled to the processor by the assertion of the external interrupt
signal (NT). TheINT signal is expected to remain asserted until the 604e takes the external
interrupt exception. If the external interrupt signal is negated early, recognition of the
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interrupt request is not guaranteed. After the 604e begins execution of the external interrupt
handler, the system can safely negatelNie When the signal is detected, the 604e stops
dispatching instructions and waits for all pending instructions to complete. This allows any
instructions in progress that need to take an exception to do so before the external interrupt
Is taken. After all instructions have cleared, the 604e takes the external interrupt exception
as defined in the PowerPC architecture (OEA).

The interrupt may be delayed by other higher priority exceptions or if the MSR[EE] bit is
cleared when the exception occurs. Register settings for this exception are described in
Chapter 6, “Exceptions,” ithe Programming Environments Manual.

When an external interrupt exception is taken, instruction execution resumes at offset
0x00500 from the physical base address indicated by MSR]IP].

4.5.6 Alignment Exception (0x00600)

The 604e implements the alignment exception as defined by the PowerPC architecture
(OEA). An alignment exception is initiated when any of the following conditions are met:

» Afloating-point load or stordmw, stmw, Iwarx, or stwcx. instruction is not word-
aligned.

» Ifafloating-point number is not word-aligned. The 604e provides hardware support
for misaligned storage accesses for other memory access instructions. If a
misaligned memory access crosses a 4-Kbyte page boundary within a memory
segment, an exception may occur when the boundary is crossed (that is, there is a
protection violation on an attempt to access the new page). In these cases, a DSI
exception occurs and the instruction may complete partially.

* Some types of misaligned memory accesses are slower than aligned accesses.
Accesses that cross a word boundary (and double-precision values not aligned on a
double-word boundary) are broken into multiple accesses by the LSU. More
dramatically, any noncacheable memory access that crosses a double-word
boundary requires multiple external bus tenures.

» Operations that cross a word boundary (and operations involving double-precision
values not aligned on a double-word boundary) require two accesses, which are
translated separately. If either translation creates a DSI exception condition, that
exception is signaled.

» If the T-bit settings are not the same for both portions of a misaligned memory
access, (which is considered to be a programming error), the 604e completes all of
the accesses for the operation, the segment information from the T = 1 space is
presented on the bus for every access of the operation, and the 604e requires a direct-
store access reply from the device. If two translations cross memory locations that
are T=0into T =1, a DSI exception is signaled.

* A dcbzinstruction references a page that is marked either cache-inhibited or write-
through or has executed when the 604e data cache is locked or disabled. Note that
this condition may not cause an alignment exception in other PowerPC processors.
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* An access is not naturally aligned in little-endian mode.
* An ecowxor eciwxis not word-aligned.
* A lmw, stmw, Iswi, Iswx, stswi, or stswxinstruction is issued in little-endian mode.

4.5.7 Program Exception (0x00700)

The 604e implements the program exception as it is defined by the PowerPC architecture
(OEA). A program exception occurs when no higher priority exception exists and one or
more of the exception conditions defined in the OEA occur.

The 604e invokes the system illegal instruction program exception when it detects any
instruction from the illegal instruction class.

The 604e fully decodes the SPR field of the instruction. If an undefined SPR is specified, a
program exception is taken.

The UISA defines thentspr andmfspr instructions with the record bit (Rc) set to cause a
program exception or provide a boundedly undefined result. In the 604e, the appropriate
CR should be treated as undefined. Likewise, the PowerPC architecture states that the
Floating Compared Unorderedfcinpu) or Floating Compared Orderedfcinpo)
instruction with the record bit set can either cause a program exception or provide a
boundedly undefined result. In the 604e, CR field BF for these cases should be treated as
undefined.

When a program exception is taken, instruction execution resumes at offset 0x00700 from
the physical base address indicated by MSR[IP].

Note that the 604e supports one of the two floating-point imprecise modes supported by the
PowerPC architecture. The three modes supported by the 604e are described as follows:

* Ignore exceptions mode (MSR[FEO] = MSR[FE1] = 0)—In ignore exceptions
mode, the instruction dispatch logic feeds the FPU as fast as possible, and the FPU
uses an internal pipeline to allow overlapped execution of instructions. IEEE
floating-point exception conditions (as defined in the PowerPC architecture) do not
cause any exceptions.

* Precise exceptions mode (MSR[FEOQ] = 1; MSR[FE1] = x)—In this mode, a floating
point instruction that causes a floating-point exception brings the machine to a
precise state. In doing so, the 604e sequencer unit can detect floating-point exception
conditions and take floating-point exceptions as defined by the PowerPC
architecture. Note that the imprecise recoverable mode supported by the PowerPC
architecture (MSR[FEOQ] = 1; MSR[FE1] = 0) is implemented identically to precise
exceptions mode in the 604e.

* Imprecise nonrecoverable mode (MSR[FEO] = 0; MSR[FE1] = 1)—In this mode,
floating-point exception conditions cause a floating-point exception to be taken,
SRRO may point to some instruction following the instruction that caused the
exception.
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Register settings for this exception are described in Chapter 6, “Exceptionghan
Programming Environments Manual.

4.5.8 Floating-Point Unavailable Exception (0x00800)

The floating-point unavailable exception is implemented as defined in the PowerPC
architecture. A floating-point unavailable exception occurs when no higher priority
exception exists, an attempt is made to execute a floating-point instruction (including
floating-point load, store, or move instructions), and the floating-point available bit in the
MSR is disabled, (MSR[FP] = 0). Register settings for this exception are described in
Chapter 6, “Exceptions,” ithe Programming Environments Manual.

When a floating-point unavailable exception is taken, instruction execution resumes at
offset 0x00800 from the physical base address indicated by MSR[IP].

4.5.9 Decrementer Exception (0x00900)

The decrementer exception is implemented in the 604e as it is defined by the PowerPC
architecture. The decrementer exception occurs when no higher priority exception exists, a
decrementer exception condition occurs (for example, the decrementer register has
completed decrementing), and MSR[EE] = 1. In the 604e, the decrementer register is
decremented at one fourth the bus clock rate. Register settings for this exception are
described in Chapter 6, “Exceptions, ihe Programming Environments Manual.

When a decrementer exception is taken, instruction execution resumes at offset 0x00900
from the physical base address indicated by MSRJIP].

4.5.10 System Call Exception (0x00CO00)

A system call exception occurs when a System Gallifistruction is executed. In the 604e,

the system call exception is implemented as it is defined in the PowerPC architecture.
Register settings for this exception are described in Chapter 6, “Exception$han
Programming Environments Manual.

When a system call exception is taken, instruction execution resumes at offset 0x00C00
from the physical base address indicated by MSRJIP].

4.5.11 Trace Exception (0x00DO0O0)

The trace exception is taken when the single step trace enable bit (MSR[SE]) or the branch
trace enable bit (MSR[BE]) is set and an instruction successfully completes. When a trace
exception is taken, the values written to SRR1 are implementation-specific; those values for
the 604e are shown in Table 4-10.
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Table 4-10. Trace Exception—SRR1 Settings

Register Setting
SRR1 0-2 010
3 Set for a load instruction, otherwise cleared
4 Set for a store instruction, otherwise cleared
5-9 Cleared

10 Set for Iswx or stswx , otherwise cleared

11 Set for mtspr to SDR1, EAR, HIDO, PIR, IBATs, DBATs, SRs
12 Set for taken branch, otherwise cleared

13-15 Cleared

16-31 MSR(16-31).

When a trace exception is taken, instruction execution resumes as offset 0x00D0O0 from the
base address indicated by MSR[IP].

4.5.12 Floating-Point Assist Exception (0xO0E00)

The optional floating-point assist exception defined by the PowerPC architecture is not
implemented in the 604e.

4.5.13 Performance Monitoring Interrupt (0xO0OFQO0)

The PowerPC 604e performance monitor is a software-accessible mechanism that provides
detailed information concerning the dispatch, execution, completion, and memory access
of PowerPC instructions. The performance monitor is provided to help system developers
to debug their systems and to increase system performance with efficient software,
especially in a multiprocessor system where memory hierarchy behavior must be
monitored and studied in order to develop algorithms that schedule tasks (and perhaps
partition them) and distribute data optimally.

The performance monitor uses the following SPRs:

» Performance monitor counters 1 and 2 (PMC1 and PMC2)—two 32-bit counters
used to store the number of times a certain event has occurred.

» The monitor mode control register 0 (MMCRO), which establishes the function of
the counters.

» Sampledinstruction address and sampled data address registers (SIA and SDA). The
two address registers contain the addresses of the data and of the instruction that
caused a threshold-related performance monitor interrupt.

The 604e supports a performance monitor interrupt that is caused by a counter negative
condition or by a time-base flipped bit counter defined in the MMCRO register.

As with other PowerPC interrupts, the performance monitoring interrupt follows the

normal PowerPC exception model with a defined exception vector offset (0xO0F00). The
priority of the performance monitoring interrupt is below the external interrupt and above
the decrementer interrupt. The contents of the SIA and SDA are described in
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Section 2.1.2.5, “Performance Monitor Registers.” The performance monitor is described
in Chapter 9, “Performance Monitor.”

4.5.14 Instruction Address Breakpoint Exception (0x01300)

The instruction address breakpoint exception occurs when an attempt is made to execute an
instruction that matches the address in the instruction address breakpoint register (IABR)
and the breakpoint is enabled (IABR[30] is set). The instruction that triggers the instruction
address breakpoint exception is not executed before the exception handler is invoked. The
vector offset of the instruction address breakpoint exception is 0x01300.

4.5.15 System Management Interrupt (0x01400)

The 604e implements a system management interrupt exception, which is not defined by
the PowerPC architecture. The system management exception is very similar to the external
interrupt exception and is particularly useful in implementing the nap mode. It has priority
over an external interrupt and it uses a different interrupt vector in the exception table (at
offset 0x01400).

Like the external interrupt, a system management interrupt is signaled to the 604e by the
assertion of an input signal. The system management interrupt s§Mal is expected to
remain asserted until the interrupt is taken. If 8MI signal is negated early, recognition

of the interrupt request is not guaranteed. After the 604e begins execution of the system
management interrupt handler, the system can safely nega&thsignal. After theSMI

signal is detected, the 604e stops dispatching instructions and waits for all pending
instructions to complete. This allows any instructions in progress that need to take an
exception to do so before the system management interrupt is taken.

When the exception is taken, 604e vectors to the system management interrupt vector in the
interrupt table. The vector offset of the system management is 0x01400.

4.5.16 Power Management

Nap mode is a simple power-saving mode, in which all internal processing and bus
operation is suspended. Software initiates nap mode by setting MSR[POW]. After this bit
IS set, the 604e suspends instruction dispatch and waits for all activity, including active and
pending bus transactions, to complete. It then shuts down the internal chip clocks and enters
nap mode state. The 604e indicates the internal idle state by asserting the HALTED output
regardless whether the clock is stopped.

Nap mode must be entered by using the following code sequence:

naploop:

sync
mtmsr <GPR> (modify the POW bit only; at this point the EE bit should

have already been enabled by the software)

isync

ba naploop
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Since this code sequence creates an infinite loop, the programmer should ensure that the
exit routine (one of the exception handler routines listed below) properly updates SRRO to
return to a point outside of this loop.

While the 604e is in nap mode, all internal activity except for decrementer, timebase, and
interrupt logic is stopped. During nap mode, the 604e does not snoop; if snooping is
required, the system may assert the RUN signal. The clocks run while the RUN signal is
asserted, but instruction execution does not resume. The HALTED output is deasserted to
indicate any bus activity, including a cache block pushout caused by a snoop request, and
is reasserted to indicate that the processor is idle and that the RUN signal can be safely
deasserted to stop the clocks. The maximum latency from the RUN signal assertion to the
starting of clock is three bus clock cycles.

To ensure proper handling of snoops in a multiprocessor system when a processor is the
first to enter nap mode, the system must assert the RUN signal no later than the assertion of
BG to another bus master. This constraint is necessary to ensure proper handling of snoops
when the first processor is entering nap mode.

Nap mode is exited (clocks resume and MSR[POW] cleared) when an external interrupt is
signaled by the assertion tXIT, SRESET,MCP, or SMI, when a decrementer interrupt
occurs, or when a hard reset is sensed.

For more information about the RUN and HALTED signals, refer to Section 7.2.10.5, “Run
(RUN)—Input,” and Section 7.2.10.3, “Reservation (RSRV)—Output.”
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Chapter 5
Memory Management

This chapter describes the PowerPC 604e microprocessor’s implementation of the memory
management unit (MMU) specifications provided by the operating environment
architecture (OEA) for PowerPC processors. The primary function of the MMU in a
PowerPC processor is the translation of logical (effective) addresses to physical addresses
(referred to as real addresses in the architecture specification) for memory accesses, 1/0
accesses (most I/O accesses are assumed to be memory-mapped), and direct-store interface
accesses. In addition, the MMU provides access protection on a segment, block or page
basis. This chapter describes the specific hardware used to implement the MMU model of
the OEA in the 604e. Refer to Chapter 7, “Memory ManagementTha Programming
Environments Manudbr a complete description of the conceptual model.

Two general types of accesses generated by PowerPC processors require address
translation—instruction accesses and data accesses to memory generated by load and store
instructions. Generally, the address translation mechanism is defined in terms of segment
descriptors and page tables used by PowerPC processors to locate the effective-to-physical
address mapping for instruction and data accesses. The segment information translates the
effective address to an interim virtual address, and the page table information translates the
interim virtual address to a physical address.

The segment descriptors, used to generate the interim virtual addresses, are stored as
on-chip segment registers on 32-bit implementations (such as the 604e). In addition, two
translation lookaside buffers (TLBs) are implemented on the 604e to keep recently-used
page address translations on-chip. Although the PowerPC OEA describes one MMU
(conceptually), the 604e hardware maintains separate TLBs and table search resources for
instruction and data accesses that can be performed independently (and simultaneously).
Therefore, the 604e is described as having two MMUs, one for instruction accesses
(IMMU) and one for data accesses (DMMU).

The block address translation (BAT) mechanism is a software-controlled array that stores
the available block address translations on-chip. BAT array entries are implemented as pairs
of BAT reqisters that are accessible as supervisor special-purpose registers (SPRs). There
are separate instruction and data BAT mechanisms, and in the 604e, they reside in the
instruction and data MMUs respectively.
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The MMUSs, together with the exception processing mechanism, provide the necessary
support for the operating system to implement a paged virtual memory environment and for
enforcing protection of designated memory areas. Exception processing is described in
Chapter 4, “Exceptions.” Section 4.3, “Exception Processing,” describes the MSR, which

controls some of the critical functionality of the MMUSs.

5.1 MMU Overview

The 604e implements the memory management specification of the PowerPC OEA for
32-bit implementations. Thus, it provides 4 Ghytes of effective address space accessible to
supervisor and user programs with a 4-Kbyte page size and 256-Mbyte segment size. In
addition, the MMUs of 32-bit PowerPC processors use an interim virtual address (52 bits)
and hashed page tables in the generation of 32-bit physical addresses. PowerPC processors
also have a BAT mechanism for mapping large blocks of memory. Block sizes range from
128 Kbyte to 256 Mbyte and are software-programmable.

Basic features of the 604e MMU implementation defined by the OEA are as follows:

» Support for real addressing mode—Logical-to-physical address translation can be
disabled separately for data and instruction accesses.

» Block address translation—Each of the BAT array entries (four IBAT entries and
four DBAT entries) provides a mechanism for translating blocks as large as
256 Mbytes from the 32-bit effective address space into the physical memory space.
This can be used for translating large address ranges whose mappings do not change
frequently.

» Direct-store segments—Ifthe T bitin the indexed segment register is set for any load
or store request, this request accesses a direct-store segment; bus activity is different
and the memory space used has different characteristics with respect to how it can
be accessed. The address used on the bus consists of bits from the EA and the
segment register.

» Segmented address translation—The 32-bit effective address is extended to a 52-bit
virtual address by substituting 24 bits of upper address bits from the segment
register, for the 4 upper bits of the EA, which are used as an index into the segment
register. This 52-bit virtual address space is divided into 4-Kbyte pages, each of
which can be mapped to a physical page.

The 604e also provides the following features that are not required by the PowerPC
architecture:

» Separate translation lookaside buffers (TLBs)—The 128-entry, two-way set
associative ITLBs and DTLBs keep recently-used page address translations on-chip.

» Table search operations performed in hardware—The 52-bit virtual address is
formed and the MMU attempts to fetch the PTE, which contains the physical
address, from the appropriate TLB on-chip. If the translation is not found ina TLB
(that is, a TLB miss occurs), the hardware performs a table search operation (using
a hashing function) to search for the PTE.
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e TLB invalidation—The 604e implements the optional TLB Invalidate Entityi¢)

and TLB Synchronizetlpsync) instructions, which can be used to invalidate TLB

entries. For more information on thbie andtlbsync instructions, see
Section 5.4.3.2, “TLB Invalidation.”

Table 5-1 summarizes the 604e MMU features, including those defined by the PowerPC

architecture (OEA) for 32-bit processors and those specific to the 604e.

Table 5-1. MMU Feature Summary

Feature Category

Architecturally Defined/
604e-Specific

Feature

Address ranges

Architecturally defined

232 pytes of effective address

252 pytes of virtual address
232 pytes of physical address
Page size Architecturally defined 4 Kbytes
Segment size Architecturally defined 256 Mbytes

Block address
translation

Architecturally defined

Range of 128 Kbyte—256 Mbyte sizes

Implemented with IBAT and DBAT registers in BAT array

Memory protection

Architecturally defined

Segments selectable as no-execute

Pages selectable as user/supervisor and read-only or guarded

Blocks selectable as user/supervisor and read-only or guarded

Page history

Architecturally defined

Referenced and changed bits defined and maintained

Page address
translation

Architecturally defined

Translations stored as PTEs in hashed page tables in memory

Page table size determined by mask in SDR1 register

TLBs

Architecturally defined

Instructions for maintaining TLBs (tlbie and tlbsync
instructions in 604e)

604e-specific

128-entry, two-way set associative ITLB
128-entry, two-way set associative DTLB
LRU replacement algorithm

Segment descriptors

Architecturally defined

Stored as segment registers on-chip (two identical copies
maintained)

Page table search
support

604e-specific

The 604e performs the table search operation in hardware.
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5.1.1 Memory Addressing

A program references memory using the effective (logical) address computed by the
processor when it executes a load, store, branch, or cache instruction, and when it fetches
the next instruction. The effective address is translated to a physical address according to
the procedures described in Chapter 7, “Memory ManagementJ'him Programming
Environments Manual augmented with information in this chapter. The memory
subsystem uses the physical address for the access.

For a complete discussion of effective address calculation, see Section 2.3.2.3, “Effective
Address Calculation.”

5.1.2 MMU Organization

Figure 5-1 shows the conceptual organization of a PowerPC MMU in a 32-bit
implementation; note that it does not describe the specific hardware used to implement the
memory management function for a particular processor. Processors may optionally
implement on-chip TLBs and may optionally support the automatic search of the page
tables for PTEs. In addition, other hardware features (invisible to the system software) not
depicted in the figure may be implemented.

The 604e maintains two on-chip TLBs with the following characteristics:

» 128 entries, two-way set associative (64 x 2), LRU replacement

» Data TLB supports the DMMU; instruction TLB supports the IMMU

* Hardware TLB update

» Hardware update of memory access recording bits in the translation table

In the event of a TLB miss, the hardware attempts to load the TLB based on the results of
a translation table search operation.

Figure 5-2 and Figure 5-3 show the conceptual organization of the 604e instruction and
data MMUSs, respectively. The instruction addresses shown in Figure 5-2 are generated by
the processor for sequential instruction fetches and addresses that correspond to a change
of program flow. Data addresses shown in Figure 5-3 are generated by load and store
instructions (both for the memory and the direct-store interfaces) and by cache instructions.

As shown in the figures, after an address is generated, the higher-order bits of the effective
address, EAO—EA19 (or a smaller set of address bits, EAOy-EBAhe cases of blocks), are
translated into physical address bits PAO—PA19. The lower-order address bits, A20—-A31 are
untranslated and therefore identical for both effective and physical addresses. After
translating the address, the MMUs pass the resulting 32-bit physical address to the memory
subsystem.
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In addition to the higher-order address bits, the MMUs automatically keep an indicator of
whether each access was generated as an instruction or data access and a supervisor/user
indicator that reflects the state of the PR bit of the MSR when the effective address was
generated. In addition, for data accesses, there is an indicator of whether the access is for a
load or a store operation. This information is then used by the MMUSs to appropriately
direct the address translation and to enforce the protection hierarchy programmed by the
operating system. Section 4.3, “Exception Processing,” describes the MSR, which controls
some of the critical functionality of the MMUs.

The figures show the way in which the A20—-A26 address bits index into the on-chip
instruction and data caches to select a cache set. The remaining physical address bits are
then compared with the tag fields (comprised of bits PAO—PA19) of the two selected cache
blocks to determine if a cache hit has occurred. In the case of a cache miss, the instruction
or data access is then forwarded to the bus interface unit which then initiates an external
memory access.
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5.1.3 Address Translation Mechanisms
PowerPC processors support the following four types of address translation:

» Page address translation—translates the page frame address for a 4-Kbyte page size

» Block address translation—translates the block number for blocks that range in size
from 128 Kbyte to 256 Mbyte.

» Direct-store interface address translation—used to generate direct-store interface
accesses on the external bus; not optimized for performance—present for
compatibility only.

* Real addressing mode address translation—when address translation is disabled, the
physical address is identical to the effective address.

Figure 5-4 shows the four address translation mechanisms provided by the MMUs. The
segment descriptors shown in the figure control both the page and direct-store interface
address translation mechanisms. When an access uses the page or direct-store interface
address translation, the appropriate segment descriptor is required. In 32-bit
implementations, one of the 16 on-chip segment registers (which contain segment
descriptors) is selected by the four highest-order effective address bits.

A control bit in the corresponding segment descriptor then determines if the access is to
memory (memory-mapped) or to the direct-store interface space. Note that the direct-store
interface is present only for compatibility with existing I/O devices that used this interface.
When an access is determined to be to the direct-store interface space, the implementation
invokes an elaborate hardware protocol for communication with these devices. The
direct-store interface protocol is not optimized for performance, and therefore, its use is
discouraged. The most efficient method for accessing I/O devices is by memory-mapping
the 1/O areas.

For memory accesses translated by a segment descriptor, the interim virtual address is
generated using the information in the segment descriptor. Page address translation
corresponds to the conversion of this virtual address into the 32-bit physical address used
by the memory subsystem. In most cases, the physical address for the page resides in an
on-chip TLB and is available for quick access. However, if the page address translation
misses in an on-chip TLB, the MMU causes a search of the page tables in memory (using
the virtual address information and a hashing function) to locate the required physical
address.

Block address translation occurs in parallel with page and direct-store segment address
translation and is similar to page address translation; however, fewer higher-order effective
address bits are translated into physical address bits (more lower-order address bits (at least
17) are untranslated to form the offset into a block). Also, instead of segment descriptors
and a TLB, block address translations use the on-chip BAT registers as a BAT array. If an
effective address matches the corresponding field of a BAT register, the information in the
BAT register is used to generate the physical address; in this case, the results of the page
translation and the direct-store translation (occurring in parallel) are ignored.
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Figure 5-4. Address Translation Types

Direct-store address translation is used when the direct-store translation control bit (T bit)
in the corresponding segment descriptor is set. In this case, the remaining information in
the segment descriptor is interpreted as identifier information that is used with the
remaining effective address bits to generate the packets used in a direct-store interface
access on the external interface; additionally, no TLB lookup or page table search is
performed.

Real addressing mode translation occurs when address translation is disabled; in this case
the physical address generated is identical to the effective address. Instruction and data
address translation is enabled with the MSR[IR] and MSR[DR] bits, respectively. Thus
when the processor generates an access, and the corresponding address translation enable
bit in MSR (MSRJ[IR] for instruction accesses and MSR[DR] for data accesses) is cleared,

the resulting physical address is identical to the effective address and all other translation
mechanisms are ignored.
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5.1.4 Memory Protection Facilities

In addition to the translation of effective addresses to physical addresses, the MMUs
provide access protection of supervisor areas from user access and can designate areas of
memory as read-only as well as no-execute or guarded. Table 5-2 shows the protection
options supported by the MMUs for pages.

Table 5-2. Access Protection Options for Pages

User Read Supervisor Read .
User Supervisor
I-Fetch Data write I-Fetch Data write

Option

Supervisor-only — — —

Supervisor-only-no-execute — — — —

Supervisor-write-only —

Supervisor-write-only-no-execute — — —

Both user/supervisor

Both user-/supervisor-no-execute — —

Both read-only — —

Both read-only-no-execute — — — —

Guarded

Access pemitted
— Protection violation

The operating system programs whether instructions can be fetched from an area of
memory by appropriately using the no-execute option provided in the segment register.
Each of the remaining options is enforced based on a combination of information in the
segment descriptor and the page table entry. Thus, the supervisor-only option allows only
read and write operations generated while the processor is operating in supervisor mode
(corresponding to MSR[PR] = 0) to access the page. User accesses that map into a
supervisor-only page cause an exception to be taken.

Finally, there is a facility in the VEA and OEA that allows pages or blocks to be designated

as guarded preventing out-of order accesses that may cause undesired side effects. For
example, areas of the memory map that are used to control I/0O devices can be marked as
guarded so that accesses (for example, instruction prefetches) do not occur unless they are
explicitly required by the program.

For more information on memory protection, see “Memory Protection Facilities,” in
Chapter 7, “Memory Management,” in tibe Programming Environments Manual
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5.1.5 Page History Information

The MMUs of PowerPC processors also define referenced (R) and changed (C) bits in the
page address translation mechanism that can be used as history information relevant to the
page. This information can then be used by the operating system to determine which areas
of memory to write back to disk when new pages must be allocated in main memory. While
these bits are initially programmed by the operating system into the page table, the
architecture specifies that the R and C bits may be maintained either by the processor
hardware (automatically) or by some software-assist mechanism that updates these bits
when required.

Implementation Note—In the process of loading the TLB, the 604e checks the state of the
changed and referenced bits for the matched PTE. If the referenced bit is not set and the
table search operation is initially caused by a load operation or by an instruction fetch, the
604e automatically sets the referenced bit in the translation table. Similarly, if the table
search operation is caused by a store operation and either the referenced bit or the changed
bit is not set, the hardware automatically sets both bits in the translation table. In addition,
during the address translation portion of a store operation that hits in the TLB, the 604e
checks the state of the changed bit. If the bit is not already set, the hardware automatically
updates the TLB and the translation table in memory to set the changed bit. For more
information, see Section 5.4.1, “Page History Recording.”

5.1.6 General Flow of MMU Address Translation

The following sections describe the general flow used by PowerPC processors to translate
effective addresses to virtual and then physical addresses.

5.1.6.1 Real Addressing Mode and Block Address Translation
Selection

When an instruction or data access is generated and the corresponding instruction or data
translation is disabled (MSR[[IR= 0 or MSR[DR] = 0), real addressing mode is used
(physical address equals effective address) and the access continues to the memory
subsystem as described in Section 5.2, “Real Addressing Mode.”

Figure 5-5 shows the flow used by the MMUs in determining whether to select real
addressing mode, block address translation or to use the segment descriptor to select either
direct-store interface or page address translation.
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Figure 5-5. General Flow of Address Translation (Real Addressing Mode and Block)

Note that if the BAT array search results in a hit, the access is qualified with the appropriate
protection bits. If the access violates the protection mechanism, an exception (ISI or DSI
exception) is generated.

Implementation Note—The 604e BAT registers are not initialized by the hardware after
the power-up or reset sequence. Consequently, all valid bits in both instruction and data
BAT areas must be cleared before setting any BAT area for the first time. This is true
regardless of whether address translation is enabled. Also, software must avoid overlapping
blocks while updating a BAT area or areas. Even if translation is disabled, multiple BAT
area hits are treated as programming errors and can corrupt the BAT registers and produce
unpredictable results.
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5.1.6.2 Page and Direct-Store Interface Address Translation
Selection

If address translation is enabled and the effective address information does not match with
a BAT array entry, then the segment descriptor must be located. Once the segment
descriptor is located, the T bit in the segment descriptor selects whether the translation is
to a page or to a direct-store segment as shown in Figure 5-6. In addition, Figure 5-6 also
shows the way in which the no-execute protection is enforced; if the N bit in the segment
descriptor is set and the access is an instruction fetch, the access is faulted as described in
Chapter 7, “Memory Management,” the Programming Environments Manubliote that

the figure shows the flow for these cases as described by the PowerPC OEA, and sothe TLB
references are shown as optional. As the 604e implements TLBs, these branches are valid,
and described in more detail throughout this chapter.
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Figure 5-6. General Flow of Page and Direct-Store Interface Address Translation
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5.1.6.2.1 Selection of Page Address Translation

If the T bit in the corresponding segment descriptor is 0, page address translation is
selected. The information in the segment descriptor is then used to generate the 52-bit
virtual address. The virtual address is then used to identify the page address translation
information (stored as page table entries (PTES) in a page table in memory). For increased
performance, the 604e has two on-chip TLBs to store recently-used PTEs on-chip.

If an access hits in the appropriate TLB, the page translation occurs and the physical
address bits are forwarded to the memory subsystem. If the required PTE is not resident,
the MMU requires a search of the page table. In this case, the 604e hardware performs the
page table search operation. If the PTE is successfully found, a new TLB entry is created
and the page translation is once again attempted. This time, the TLB is guaranteed to hit.
Once the PTE is located, the access is qualified with the appropriate protection bits. If the
access is a protection violation (not allowed), either an I1SI or DSI exception is generated.

If the PTE is not found by the table search operation, a page fault condition exists, and an
ISI or DSI exception occurs so software can handle the page fault.

5.1.6.2.2 Selection of Direct-Store Interface Address Translation

When the segment descriptor has the T bit set, the access is considered a direct-store
interface access and the direct-store interface protocol of the external interface is used to
perform the access to direct-store space. The selection of address translation type differs for
instruction and data accesses only in that instruction accesses are not allowed from
direct-store segments; attempting to fetch an instruction from a direct-store segment causes
an ISI exception. See Section 5.5, “Direct-Store Interface Address Translation,” for more
detailed information about the translation of addresses in direct-store space.

5.1.7 MMU Exceptions Summary

In order to complete any memory access, the effective address must be translated to a
physical address. As specified by the architecture, an MMU exception condition occurs if
this translation fails for one of the following reasons:

» There is no valid entry in the page table for the page specified by the effective
address (and segment descriptor) and there is no valid BAT translation.

* An address translation is found but the access is not allowed by the memory
protection mechanism.

The translation exception conditions defined by the OEA for 32-bit implementations cause
either the ISI or the DSI exception to be taken as shown in Table 5-3.

The state saved by the processor for each of these exceptions contains information that
identifies the address of the failing instruction. Refer to Chapter 4, “Exceptions,” for a more
detailed description of exception processing.
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Table 5-3. Translation Exception Conditions

Condition Description Exception
Page fault (no PTE found) No matching PTE found in page tables (and no | access: ISI exception
matching BAT array entry) SRR1[1] =1
D access: DSI exception
DSISR[1] =1
Block protection violation Conditions described for block in “Block Memory | access: ISI exception
Protection” in Chapter 7, “Memory Management,” SRR1[4]=1

in The Programming Environments Manual." -
D access: DSI exception

DSISR[4] =1
Page protection violation Conditions described for page in “Page Memory | access: ISI exception
Protection” in Chapter 7, “Memory Management,” SRR1[4]=1
in The Programming Environments Manual. Note: DSISR[6] is also set for

store operations

D access: DSI exception

DSISR[4] =1
No-execute protection Attempt to fetch instruction when SR[N] = 1 ISI exception
violation SRR1[3] =1
Instruction fetch from Attempt to fetch instruction when SR[T] = 1 ISI exception
direct-store segment SRR1[3] =1
Instruction fetch from Attempt to fetch instruction when MSR[IR] =1 and | ISI exception
guarded memory either matching xBAT[G] = 1, or no matching BAT SRR1[3] =1

entry and PTE[G] =1

In addition to the translation exceptions, there are other MMU-related conditions (some of
them defined as implementation-specific and therefore, not required by the architecture)
that can cause an exception to occur. These exception conditions map to the processor
exception as shown in Table 5-4. The only MMU exception conditions that occur when
MSR[DR] = 0 are the conditions that cause the alignment exception for data accesses. For
more detailed information about the conditions that cause the alignment exception (in
particular for string/multiple instructions), see Section 4.5.6, “Alignment Exception
(0x00600).”

Note that some exception conditions depend upon whether the memory area is set up as
write-though (W = 1) or cache-inhibited (I = 1). These bits are described fully in
“Memory/Cache Access Attributes,” in Chapter 5, “Cache Model and Memory Coherency,”

of The Programming Environments Manu&efer to Chapter 4, “Exceptions,” and to
Chapter 6, “Exceptions,” inThe Programming Environments Manufdr a complete
description of the SRR1 and DSISR bit settings for these exceptions.
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Table 5-4. Other MMU Exception Conditions for the PowerPC 604e Processor

Condition

Description

Exception

dcbz withW=1orl=1

dcbz instruction to write-through or
cache-inhibited segment or block

Alignment exception (not
required by architecture for
this condition)

dcbz when the data cache is
locked

The dcbz instruction takes an alignment
exception if the data cache is locked (HIDO
bits 18 and 19) when it is executed.

Alignment exception

lwarx or stwex. with W =1

Reservation instruction to write-through
segment or block

DSl exception DSISR[5] =1

lwarx , stwcx. , eciwx , or ecowx
instruction to direct-store segment

Reservation instruction or external control
instruction when SR[T] =1

DSl exception
DSISR[5] =1

Floating-point load or store to
direct-store segment

FP memory access when SR[T] =1

Alignment exception (not
required by architecture)

Load or store that results in a
direct-store error

Direct-store interface protocol signalled with
an error condition

DSl exception
DSISR[0] =1

eciwx or ecowx attempted when
external control facility disabled

eciwx or ecowx attempted with EAR[E] =0

DSl exception
DSISR[11] =1

Imw, stmw, Iswi, Iswx , stswi, or
stswx instruction attempted in
little-endian mode

Imw, stmw, Iswi, Iswx , stswi , or stswx
instruction attempted while MSR[LE] = 1

Alignment exception

Operand misalignment

Translation enabled and operand is
misaligned as described in Chapter 4,
“Exceptions.”

Alignment exception (some
of these cases are
implementation-specific)

5.1.8 MMU Instructions and Register Summary

The MMU instructions and registers provide the operating system with the ability to set up
the block address translation areas and the page tables in memory.

Note that because the implementation of TLBs is optional, the instructions that refer to
these structures are also optional. However, as these structures serve as caches of the page
table, the architecture specifies a software protocol for maintaining coherency between
these caches and the tables in memory whenever changes are made to the tables in memory.
When the tables in memory are changed, the operating system purges these caches of the
corresponding entries, allowing the translation caching mechanism to refetch from the
tables when the corresponding entries are required.

Note that the 604e implements all TLB-related instructions exttejat, which is treated
as an illegal instruction.

Because the MMU specification for PowerPC processors is so flexible, it is recommended
that the software that uses these instructions and registers be “encapsulated” into
subroutines to minimize the impact of migrating across the family of implementations.
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Table 5-5 summarizes 604e instructions that specifically control the MMU.

Table 5-5. PowerPC 604e Microprocessor Instruction Summary—Control MMUs

Instruction Description

mtsr SR,rS Move to Segment Register
SR[SR#] « rS

mtsrinr S,rB Move to Segment Register Indirect
SR[rB[0-3]] «rS

mfsr r D,SR Move from Segment Register
rD «— SR[SR#]
mfsrin r D,rB Move from Segment Register Indirect

rD « SR[rB[0-3]]

tibie rB * Execution of this instruction causes all entries in the congruence class corresponding to the EA to
be invalidated in the processor executing the instruction and in the other processors attached to
the same bus.

Software must ensure that instruction fetches or memory references to the virtual pages specified
by the tlbie instruction have been completed prior to executing the tlbie instruction.

tlbsync * The tlbsync operation appears on the bus as a distinct operation that causes synchronization of
snooped tlbie instructions.

* These instructions are defined by the PowerPC architecture, but are optional.

Table 5-6 summarizes the registers that the operating system uses to program the 604e
MMUSs. These registers are accessible to supervisor-level software only. These registers are
described in Chapter 2, “Programming Model.”

Table 5-6. PowerPC 604e Microprocessor MMU Registers

Register Description
Segment registers The sixteen 32-bit segment registers are present only in 32-bit implementations of
(SR0O-SR15) the PowerPC architecture. The fields in the segment register are interpreted

differently depending on the value of bit 0. The segment registers are accessed by
the mtsr, mtsrin , mfsr, and mfsrin instructions.

BAT registers There are 16 BAT registers, organized as four pairs of instruction BAT registers
(IBATOU-IBAT3U, (IBATOU—-IBAT3U paired with IBATOL-IBAT3L) and four pairs of data BAT registers
IBATOL-IBAT3L, (DBATOU-DBAT3U paired with DBATOL-DBAT3L). The BAT registers are defined as
DBATOU-DBAT3U, and 32-bit registers in 32-bit implementations. These are special-purpose registers that
DBATOL-DBAT3L) are accessed by the mtspr and mfspr instructions.

SDR1 The SDR1 register specifies the variables used in accessing the page tables in

memory. SDR1 is defined as a 32-bit register for 32-bit implementations. This
special-purpose register is accessed by the mtspr and mfspr instructions.
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5.1.9 TLB Entry Invalidation

For PowerPC processors such as the 604e that implement TLB structures to maintain
on-chip copies of the PTEs that are resident in physical memory, the optional TLB
Invalidate Entry {lbie) instruction provides a way to invalidate the TLB entries.

Execution of this instruction causes all entries in the congruence class corresponding to the
presented EA to be invalidated in the processor executing the instruction and in the other
processors attached to the same bus.

The tlbsync operation appears on the bus as a distinct operation, that causes
synchronization of snoopedbie instructions. Section 5.4.3.2, “TLB Invalidation,”
describes the TLB invalidation mechanisms in the 604e.

5.2 Real Addressing Mode

If address translation is disabled (MSR[IR] = 0 or MSR[DR] = 0) for a particular access,
the effective address is treated as the physical address and is passed directly to the memory
subsystem as described in Chapter 7, “Memory ManagementThm Programming
Environments Manual

For information on the synchronization requirements for changes to MSRJ[IR] and
MSRI[DRY], refer to Section 2.3.2.4, “Synchronization.”

Note that the PowerPC architecture states that, for data accesses performed in real
addressing mode (MSR[DR] = 0), the WIMG bits are assumed to be 0b0011 (the data is
write-back, caching is enabled, memory coherency is enforced, and memory is guarded).
For instruction accesses performed in real addressing mode (MSR[IR] = 0), the WIMG bits
are assumed to be 0b0001 (the data is write-back, caching is enabled, memory coherency
Is not enforced, and memory is guarded).

5.3 Block Address Translation

The block address translation (BAT) mechanism in the OEA provides a way to map ranges

of effective addresses larger than a single page into contiguous areas of physical memory.
Such areas can be used for data that is not subject to normal virtual memory handling

(paging), such as a memory-mapped display buffer or an extremely large array of numerical

data.

Block address translation in the 604e is described in Chapter 7, “Memory Management,” in
The Programming Environments Mandiat 32-bit implementations.

5.4 Memory Segment Model

The 604e adheres to the memory segment model as defined in Chapter 7, “Memory
Management,” inThe Programming Environments Manu@alr 32-bit implementations.
Memory in the PowerPC OEA is divided into 256-Mbyte segments. This segmented
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memory model provides a way to map 4-Kbyte pages of effective addresses to 4-Kbyte
pages in physical memory (page address translation), while providing the programming
flexibility afforded by a large virtual address space (52 bits).

The segment/page address translation mechanism may be superseded by the block address
translation (BAT) mechanism described in Section 5.3, “Block Address Translation.” If not,
the translation proceeds in the following two steps:

1. from effective address to the virtual address (which never exists as a specific entity
but can be considered to be the concatenation of the virtual page number and the byte
offset within a page), and

2. from virtual address to physical address.

This section highlights those areas of the memory segment model defined by the OEA that
are specific to the 604e.

5.4.1 Page History Recording

Referenced (R) and changed (C) bits reside in each PTE to keep history information about
the page. They are maintained by a combination of the 604e table search hardware and the
system software. The operating system uses this information to determine which areas of
memory to write back to disk when new pages must be allocated in main memory.
Referenced and changed recording is performed only for accesses made with page address
translation and not for translations made with the BAT mechanism or for accesses that
correspond to direct-store (T = 1) segments. Furthermore, R and C bits are maintained only
for accesses made while address translation is enabled (MSR[IR] = 1 or MSR[DR] = 1).

In the 604e, the referenced and changed bits are updated as follows:

* For TLB hits, the C bit is updated according to Table 5-7.

» For TLB misses, when a table search operation is in progress to locate a PTE. The
R and C bits are updated (set, if required) to reflect the status of the page based on
this access.

Table 5-7. Table Search Operations to Update History Bits—TLB Hit Case

Rand C bits Processor Action
in TLB Entry
00 Combination doesn’t occur
01 Combination doesn'’t occur
10 Read: No special action
Write: The 604e initiates a table search operation to update C.
11 No special action for read or write

The table shows that the status of the C bit in the TLB entry (in the case of a TLB hit) is
what causes the processor to update the C bit in the PTE (the R bit is assumed to be set in
the page tables if there is a TLB hit). Therefore, when software clears the R and C bits in
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the page tables in memory, it must invalidate the TLB entries associated with the pages
whose referenced and changed bits were cleared.

Thedcbt anddcbtst instructions can execute if there is a TLB/BAT hit or if the processor
IS in real addressing mode. In case of a TLB/BAT miss, these instructions are treated as
no-ops; they do not initiate a table search operation and they do not set either the R or C bits.

As defined by the PowerPC architecture, the referenced and changed bits are updated as if
address translation were disabled (real addressing mode). Additionally, these updates are
performed with single-beat read and byte write transactions on the bus.

5.4.1.1 Referenced Bit

The referenced (R) bit of a page is located in the PTE in the page table. Every time a page
Is referenced (with a read or write access) and the R bit is zero, the 604e sets the R bit in
the page table. The OEA specifies that the referenced bit may be set immediately, or the
setting may be delayed until the memory access is determined to be successful. Because the
reference to a page is what causes a PTE to be loaded into the TLB, the referenced bit in all
604e TLB entries is effectively always set. The processor never automatically clears the
referenced bit.

The referenced bit is only a hint to the operating system about the activity of a page. At
times, the referenced bit may be set although the access was not logically required by the
program or even if the access was prevented by memory protection. Examples of this in
PowerPC systems include the following:

» Fetching of instructions not subsequently executed
» Accesses generated bylawx or stswxinstruction with a zero length

» Accesses generated by stwcx. instruction when no store is performed because a
reservation does not exist

» Accesses that cause exceptions and are not completed

5.4.1.2 Changed Bit

The changed bit of a page is located both in the PTE in the page table and in the copy of the
PTE loaded into the TLB (if a TLB is implemented, as in the 604¢e). Whenever a data store
instruction is executed successfully, if the TLB search (for page address translation) results
in a hit, the changed bit in the matching TLB entry is checked. If it is already set, the
processor does not change the C bit. If the TLB changed bit is 0, the 604e sets it and a table
search operation is performed to also set the C bit in the corresponding PTE in the page
table. The 604e initiates the table search operation for setting the C bit in this case.
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The changed bit (in both the TLB and the PTE in the page tables) is set only when a store
operation is allowed by the page memory protection mechanism and the store is guaranteed
to be in the execution path (unless an exception, other than those causedshyrtiheor

trap instructions, occurs). Furthermore, the following conditions may cause the C bit to be
set:

* The execution of astwcx. instruction is allowed by the memory protection
mechanism but a store operation is not performed.

» The execution of astswxinstruction is allowed by the memory protection
mechanism but a store operation is not performed because the specified length is
zero.

» The store operation is not performed because an exception occurs before the store is
performed.

Again, note that although the execution of thebt anddcbtst instructions may cause the
R bit to be set, they never cause the C bit to be set.

5.4.1.3 Scenarios for Referenced and Changed Bit Recording

This section provides a summary of the model (defined by the OEA) that is used by
PowerPC processors for maintaining the referenced and changed bits. In some scenarios,
the bits are guaranteed to be set by the processor, in some scenarios, the architecture allows
that the bits may be set (not absolutely required), and in some scenarios, the bits are
guaranteed to not be set. Note that when the 604e updates the R and C bits in memory, the
accesses are performed as if MSR[DR] = @ & = 0 (that is, as nonguarded cacheable
operations in which coherency is required).

Table 5-8 defines a prioritized list of the R and C bit settings for all scenarios. The entries

in the table are prioritized from top to bottom, such that a matching scenario occurring
closer to the top of the table takes precedence over a matching scenario closer to the bottom
of the table. For example, if astwcx. instruction causes a protection violation and there is

no reservation, the C bit is not altered, as shown for the protection violation case. Note that
in the table, load operations include those generated by load instructions, bygithe
instruction, and by the cache management instructions that are treated as a load with respect
to address translation. Similarly, store operations include those operations generated by
store instructions, by thecowxinstruction, and by the cache management instructions that
are treated as a store with respect to address translation.
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Table 5-8. Model for Guaranteed R and C Bit Settings

Causes Setting of Causes Setting of

Priority Scenario R Bit C Bit
OEA 604e OEA 604e
1 No-execute protection violation No No No No
2 Page protection violation Maybe Yes No No
3 Out-of-order instruction fetch or load operation Maybe No No No
4 Out-of-order store operation contingent on a branch, trap, | Maybe No No No

sc or rfi instruction, or a possible exception

5 Out-of-order store operation contingent on an exception, Maybe No No No
other than a trap or sc instruction, not occurring

6 Zero-length load (Iswx ) Maybe No No No
7 Zero-length store (stswx ) Maybe! | No Maybe! | No
8 Store conditional (stwcx. ) that does not store Maybe1 Yes Maybe1 Yes
9 In-order instruction fetch Yes? Yes No No
10 Load instruction or eciwx Yes Yes No No
11 Store instruction, ecowx , or dcbz instruction Yes Yes Yes Yes
12 icbi, dcbt, dcbtst , dcbst, or dcbf instruction Maybe Yes no no
13 dcbi instruction Maybe! | Yes Maybe! | Yes

lifcis set, R is also guaranteed to be set.
2 This includes the case in which the instruction was fetched out-of order and R was not set
(does not apply for 604e).

For more information, see “Page History Recording” in Chapter7, “Memory
Management,” oThe Programming Environments Manual

5.4.2 Page Memory Protection

The 604e implements page memory protection as it is defined in Chapter 7, “Memory
Management,” iMThe Programming Environments Manual

5.4.3 TLB Description

Because the 604e has two MMUs (IMMU and DMMU) that operate in parallel, some of
the MMU resources are shared, and some are actually duplicated (shadowed) in each MMU
to maximize performance. For example, although the architecture defines a single set of
segment registers for the MMU, the 604e maintains two identical sets of segment registers,
one for the IMMU and one for the DMMU; when a segment register instruction executes,
the 604e automatically updates both sets.
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5.4.3.1 TLB Organization

The 604e implements separate 128-entry data and instruction TLBs to support the
implementation of separate instruction and data MMUs. This section describes the
hardware resources provided in the 604e to facilitate page address translation. Note that the
hardware implementation of the MMU is not specified by the architecture, and while this
description applies to the 604e, it does not necessarily apply to other PowerPC processors.

Each TLB contains 128 entries organized as a two-way set associative array with 64 sets as
shown in Figure 5-7 for the DTLB (the ITLB organization is the same). When an address
IS being translated, a set of two TLB entries is indexed in parallel with the access to a
segment register. If the address in one of the two TLB entries is valid and matches the
virtual address, that TLB entry contains the physical address. If no match is found, a TLB
mMiss occurs.
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0 78 31
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oV B |
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Figure 5-7. Segment Register and DTLB Organization
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Unless the access is the result of an out-of-order access, a hardware table search operation
begins if there is a TLB miss. If the access is out of order, the table search operation is
postponed until the access is required, at which point the access is no longer out of order.
When the matching PTE is found in memory, it is loaded into a particular TLB entry
selected by the least-recently-used (LRU) replacement algorithm, and the translation
process begins again, this time with a TLB hit.

TLB entries are on-chip copies of PTEs in the page tables in memory and are similar in
structure. TLB entries consist of two words; the upper-order word contains the VSID and
API fields of the upper-order word of the PTE and the lower-order word contains the RPN,
the C bit, the WIMG bits and the PP bits (as in the lower-order word of the PTE). To
uniquely identify a TLB entry as the required PTE, the PTE also contains four more bits of
the page index, EA10-EA13 (in addition to the API bits of the PTE). Formats for the PTE
are given in “PTE Format for 32-Bit Implementations,” in Chapter 7, “Memory
Management,” ofrhe Programming Environments Manual.

Software does not have direct access to the TLB arrays, except to invalidate an entry with
thetlbie instruction.

Each set of TLB entries is associated with one LRU bit, which is accessed when those
entries in the same set are indexed. LRU bits are updated whenever a TLB entry is used or
after the entry is replaced. Invalid entries are always the first to be replaced.

Although both MMUs can be accessed simultaneously (both sets of segment registers and
TLBs can be accessed in the same clock), when there is an exception condition, only one
exception is reported at a time.

Although address translation is disabled on a reset condition, the valid bits of the BAT array
and TLB entries are not automatically cleared. Thus, TLB entries must be explicitly cleared
by the system software (with th#bie instruction) before the valid entries are loaded and
address translation is enabled. Also, note that the segment registers do not have a valid bit,
and so they should also be initialized before translation is enabled.

5.4.3.2 TLB Invalidation

The 604e implements the optiondbie and tlbsync instructions, which are used to
invalidate TLB entries. The execution of thkbie instruction always invalidates four
entries—both the ITLB entries indexed by EA14-EA19 and both the indexed entries of the
DTLB.

Execution of thelbie instruction causes all entries in the congruence class corresponding
to the specified EA to be invalidated in the processor executing the instruction and also in
the other processors attached to the same bus by causing a TLB invalidate broadcast
operation on the bus as described in Section 7.2.4, “Address Transfer Attribute Signals.”
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A TLB invalidate broadcast operation is an address-only transaction issued by a processor
when it executes #bie instruction. The address transmitted as part of this transaction
contains bits 12-19 of the EA in their correct respective bit positions.

When a snooping 604e detects a TLB invalidate operation on the bus, it accepts the
operation only if no TLB invalidation is being performed by this processor and all
processors on the bus accept the operathdRTRY is not asserted). Once accepted, the
TLB invalidation is performed unless the processor is executing a multiple/string
instruction, in which case the TLB invalidation is delayed until the instruction has
completed. Note that a 604e processor can only have one TLB invalidation operation
pending internally. Thus if the 604e has a pending TLB invalidate operation, it asserts the
ARTRY snoop status in response to another TLB invalidate operation on the bus. Detected
TLB invalidate operations on the bus and the execution oflthe instruction both cause

a congruence-class invalidation on both instruction and data TLBs.

The OEA requires that a synchronization instruction be issued to guarantee completion of
a tlbie instruction across all processors of a system. The 604e implementkslac
instruction which causes a TLBSYNC broadcast operation to appear on the bus as an
address-only transaction, distinct from a SYNC operation. It is this bus operation that
causes synchronization of snoopiale instructions. Multipletlbie instructions can be
executed correctly with only ortébsync instruction, following the lastibie, to guarantee

all previoustlbie instructions have been performed globally.

When the TLBSYNC bus operation is detected by a snooping 604e, the 604e asserts the
ARTRY snoop status if any operations based on an invalidated TLB are pending.

Software must ensure that instruction fetches or memory references to the virtual pages
specified by thélbie have been completed prior to executingtthie instruction.

Other than the possible TLB miss on the next instruction prefetchlliteedoes not affect
the instruction fetch operation—that is, the prefetch buffer is not purged and does not cause
these instructions to be refetched.

Thetlbia instruction is optional for an implementation if its effects can be achieved through
some other mechanism. As described abovetllhe instruction can be used to invalidate

a particular index of the TLB based on EA[14-19]. With that concept in mind, a sequence
of 64 tlbie instructions followed by a singlgbsync instruction would cause all the 604e
TLB structures to be invalidated (for EA[14-19] = 0O, 1, 2, ..., 63). Thereforetltha
instruction is not implemented on the 604e. Execution dlb&a instruction causes an
illegal instruction program exception.

Thetlbie andtlbsync instructions are described in detail in Section 2.3.6.3.3, “Translation
Lookaside Buffer Management Instructions—(OEA).” For more information about how
other processors react to TLB operations broadcast on the system bus of a multiprocessing
system, see Section 3.9.6, “Cache Reaction to Specific Bus Operations.”
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5.4.4 Page Address Translation Summary
Figure 5-8 provides the detailed flow for the page address translation mechanism.

The figure includes the checking of the N bit in the segment descriptor and then expands
on the “TLB Hit” branch of Figure 5-6. The detailed flow for the “TLB Miss” branch of
Figure 5-6 is described in Section 5.4.5, “Page Table Search Operation.” Note that as in the
case of block address translation, if th&bz instruction is attempted to be executed either

in write-through mode or as cache-inhibited (W = 1 or | = 1), the alignment exception is
generated. The checking of memory protection violation conditions for page address
translation is described in Chapter 7, “Memory Management, Tire Programming
Environments Manual
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5.4.5 Page Table Search Operation

If the translation is not found in the TLBs (a TLB miss), the 604e initiates a table search
operation which is described in this section. Formats for the PTE are given in “PTE Format
for 32-Bit Implementations,” in Chapter 7, “Memory Management,Toe Programming
Environments Manual.

The following is a summary of the page table search process performed by the 604e:

1. The 32-bit physical address of the primary PTEG is generated as described in “Page
Table Addresses” in Chapter 7, “Memory ManagementThe Programming
Environments Manual

2. The first PTE (PTEO) in the primary PTEG is read from memory. PTE reads occur
with an implied WIM memory/cache mode control bit setting of 0b001. Therefore,
they are considered cacheable and read (burst) from memory and placed in the
cache.

3. The PTE in the selected PTEG is tested for a match with the virtual page number
(VPN) of the access. The VPN is the VSID concatenated with the page index field
of the virtual address. For a match to occur, the following must be true:

— PTE[H] =0
— PTE[V] =1
— PTE[VSID] = VA[0-23]
— PTE[API] = VA[24-29]

4. If a match is not found, step 3 is repeated for each of the other seven PTEs in the
primary PTEG. If a match is found, the table search process continues as described
in step 8. If amatch is not found within the 8 PTEs of the primary PTEG, the address
of the secondary PTEG is generated.

5. Thefirst PTE (PTEO) in the secondary PTEG is read from memory. Again, because
PTE reads have a WIM bit combination of Ob001, an entire cache line is read into
the on-chip cache.

6. The PTE in the selected secondary PTEG is tested for a match with the virtual page
number (VPN) of the access. For a match to occur, the following must be true:

— PTE[H] =1
— PTE[V] =1
— PTE[VSID] = VA[0-23]
— PTE[API] = VA[24-29]

7. If a match is not found, step 6 is repeated for each of the other seven PTEs in the
secondary PTEG. If it is never found, an exception is taken (step 9).

5-30 PowerPC 604e RISC Microprocessor User's Manual



8. Ifamatchis found, the PTE is written into the on-chip TLB and the R bit is updated
in the PTE in memory (if necessary). If there is no memory protection violation, the
C bit is also updated in memory (if the access is a write operation) and the table
search is complete.

9. If a match is not found within the 8 PTEs of the secondary PTEG, the search fails,
and a page fault exception condition occurs (either an ISI exception or a DSI
exception).

Reads from memory for table search operations should be performed as global (but not
exclusive), cacheable operations, and can be loaded into the on-chip cache.

Figure 5-9 and Figure 5-10 show how the conceptual model for the primary and secondary
page table search operations, described@he Programming Environments Manuaie
realized in the 604e.

Figure 5-9 shows the case oflabz instruction that is executed withW =1 or | =1, and
that the R bit may be updated in memory (if required) before the operation is performed or
the alignment exception occurs. The R bit may also be updated if memory protection is
violated.
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If the address in one of the two selected TLB entries is valid and matches the virtual
address, that TLB entry contains the physical address. If no match is found, a TLB miss
occurs and, if this is an in-order access, a hardware table search operation begins. Once the
matching PTE is found in memory, it is loaded into the appropriate TLB entry depending
on the LRU bit setting and translation continues.

The LSU initiates out-of-order accesses without knowledge of whether it is legal to do so.
Therefore, the MMU does not perform hardware table search due to TLB misses until the
request is nonspeculative. In these out-of-order cases, the MMU does detect protection
violations and whether dcbz instruction specifies a page marked as write-through or
cache-inhibited. The MMU also detects alignment exceptions caused bylde
instruction, which prevents the changed bit in the PTE from being updated erroneously.

Note that when a TLB miss occurs, the MMU does not begin the table search operation if
the access is out of order.
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If the MMU registers are being accessed by an instruction in the instruction stream, the
IMMU stalls for one translation cycle to perform those operation. The sequencer serializes
instructions to ensure the data correctness. For updating the IBATs and SRs, the sequencer
classifies those operations as fetch serialization. After such an instruction is dispatched, the
instruction buffer is flushed and the fetch stalls until the instruction completes. However,
for reading from the IBATS, the operation is classified as execution serialization. As long
as the LSU ensures that all previous instructions can be executed, subsequent instructions
can be fetched and dispatched.

5.4.6 Page Table Updates

This section describes the requirements on the software when updating page tables in
memory via some pseudocode examples. Multiprocessor systems must follow the rules
described in this section so that all processors operate with a consistent set of page tables.
Even single-processor systems must follow certain rules, because software changes must
be synchronized with the other instructions in execution and with automatic updates that
may be made by the hardware (referenced and changed bit updates). Updates to the tables
include the following operations:

* Adding a PTE
» Modifying a PTE, including modifying the R and C bits of a PTE
» Deleting a PTE

PTEs must be locked on multiprocessor systems. Access to PTEs must be appropriately
synchronized by software locking of (that is, guaranteeing exclusive access to) PTEs or
PTEGs if more than one processor can modify the table at that time.

When TLBs are implemented, they are defined as noncoherent caches of the page tables.
TLB entries must be invalidated explicitly with the TLB invalidate entry instructiting)
whenever the corresponding PTE is modified. In a multiprocessor systenilbibe
instruction must be controlled by software locking, so thattthie is issued on only one
processor at a time. Th&ync instruction causes the processor to wait until the TLB
invalidate operation in progress by this processor is complete.

The PowerPC OEA defines th#bsync instruction that ensures that TLB invalidate
operations executed by this processor have caused all appropriate actions in other
processors. In a system that contains multiple processorhglyac functionality must be

used in order to ensure proper synchronization with the other PowerPC processors. Note
that for compatibility with PowerPC 601 microprocessor systersgna instruction must

also follow thetlbsync to ensure that thealbsync has completed execution on this
processor.

Any processor, including the processor modifying the page table, may access the page table
at any time in an attempt to reload a TLB entry. An inconsistent page table entry must never
accidentally become visible; thus, there must be synchronization between modifications to
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the valid bit and any other modifications (to avoid corrupted data). This requires as many
as twosyncoperations for each PTE update.

Because the V, R, and C bits each reside in a distinct byte of a PTE, programs may update
these bits with byte store operations (without requiring any higher-level synchronization).
However, extreme care must be taken to ensure that no store overwrites one of these bytes
accidentally. Processors write referenced and changed bits with unsynchronized, atomic
byte store operations.

Explicitly altering certain MSR bits (using thatmsr instruction), or explicitly altering

PTEs, or certain system registers, may have the side effect of changing the effective or
physical addresses from which the current instruction stream is being fetched. This kind of
side effect is defined as an implicit branch. Implicit branches are not supported and an
attempt to perform one causes boundedly undefined results. Therefore, PTEs must not be
changed in a manner that causes an implicit branch. Chapter 2, “PowerPC Register Set,” in
The Programming Environments Manubsts the possible implicit branch conditions that

can occur when system registers and MSR bits are changed.

5.4.7 Segment Register Updates

There are certain synchronization requirements for using the move to segment register
instructions. These are described in “Synchronization Requirements for Special Registers
and for Lookaside Buffers” in Chapter 2, “PowerPC Register SetThe Programming
Environments Manual

5.5 Direct-Store Interface Address Translation

As described for memory segments, all accesses generated by the processor map to a
segment descriptor in the segment table. If T = 1 for the selected segment descriptor and
there are no BAT hits, the access maps to the direct-store interface, invoking a specific bus
protocol for accessing some special-purpose 1/O devices. Direct-store segments are
provided for POWER compatibility. As the direct-store interface is present only for
compatibility with existing 1/0 devices that used this interface and the direct-store interface
protocol is not optimized for performance, its use is discouraged. Applications that require
low latency load/store access to external address space should use memory-mapped I/0,
rather than the direct-store interface.

5.5.1 Direct-Store Interface Accesses

When the address translation process determines that the segment descriptor has T = 1,
direct-store interface address translation is selected and no reference is made to the page
tables and referenced and changed bits are not updated. These accesses are performed as if
the WIMG bits were 0b0101; that is, caching is inhibited, the accesses bypass the cache,
hardware-enforced coherency is not required, and the accesses are considered guarded.

The specific protocol invoked to perform these accesses involves the transfer of address and
data information in packets; however, the PowerPC OEA does not define the exact
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hardware protocol used for direct-store interface accesses. Some instructions cause
multiple address/data transactions to occur on the bus. In this case, the address for each
transaction is handled individually with respect to the DMMU.

The following data is sent by the 604e to the memory controller in the protocol (two packets
consisting of address-only cycles) described in Section 8.6, “Direct-Store Operation.”
* Packet 0
— One of the K bits (Ks or Kp) is selected to be the key as follows:
— For supervisor accesses (MSR[PR] =0), the Ks bit is used and Kp is ignored.
— For user accesses (MSR[PR] = 1), the Kp bit is used and Ks is ignored.

— The contents of bits 3—31 of the segment register, which is the BUID field
concatenated with the “controller-specific” field.

» Packet 1—SR[28-31] concatenated with the 28 lower-order bits of the effective
address, EA4—EA31.

5.5.2 Direct-Store Segment Protection

Page-level memory protection as described in Section 5.4.2, “Page Memory Protection,” is
not provided for direct-store segments. The appropriate key bit (Ks or Kp) from the
segment descriptor is sent to the memory controller, and the memory controller implements
any protection required. Frequently, no such mechanism is provided; the fact that a
direct-store segment is mapped into the address space of a process may be regarded as
sufficient authority to access the segment.

5.5.3 Instructions Not Supported in Direct-Store Segments

The following instructions are not supported at all and cause a DSI exception (with
DSISR[5] set) when issued with an effective address that selects a segment descriptor that
has T = 1 (or when MSR[DR] = 0):

e lwarx

e stwcx.

* eciwx

* ecowx

5.5.4 Instructions with No Effect in Direct-Store Segments
The following instructions are executed as no-ops when issued with an effective address
that selects a segment where T = 1:

* dcbt

* dcbtst

o dcbf

* dchi
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e dcbst
e dcbz
e ichi

5.5.5 Direct-Store Segment Translation Summary Flow

Figure 5-11 shows the flow used by the MMU when direct-store segment address
translation is selected. This figure expands the direct-store segment translation stub found
in Figure 5-6 for both instruction and data accesses. In the case of a floating-point load or
store operation to a direct-store segment, other implementations may not take an alignment
exception, as is allowed by the PowerPC architecture. In the case efiax, ecowx

lwarx, or stwcx. instruction, the implementation either sets the DSISR register as shown
and causes the DSI exception, or causes boundedly undefined results.

Direct-Store
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T=1
Instruction Access Data Access
\(L ]
SRR1[3] - 1 Fldating-Point
Load or Store
| | N
( ISI Exception ) otherwise \I'
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- — — Optional to the PowerPC architecture. Implemented in the 604e.

Figure 5-11. Direct-Store Segment Translation Flow
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Chapter 6
Instruction Timing

This chapter describes instruction prefetch and execution through all of the execution units
of the PowerPC 604e microprocessor. It also provides examples of instruction sequences
showing concurrent execution and various register dependencies to illustrate timing

interactions.

6.1 Terminology and Conventions

This section describes terminology and conventions used in this chapter. This section
defines terms used in this chapter.

Stage—An element in the pipeline at which certain actions are performed, such as
decoding the instruction, performing an arithmetic operation, and writing back the
results. A stage typically takes a cycle to perform its operation; however, some
stages are repeated (a double-precision floating-point multiply, for example). When
this occurs, an instruction immediately following it in the pipeline is forced to stall

in its cycle.

In some cases, an instruction may also occupy more than one stage
simultaneously—for example, instructions may complete and write back their
results in the same cycle.

After an instruction is fetched, it can always be defined as being in one or more
stages.

Pipeline—In the context of instruction timing, the term pipeline refers to the
interconnection of the stages. The events necessary to process an instruction are
broken into several cycle-length tasks to allow work to be performed on several
instructions simultaneously—analogous to an assembly line. As an instruction is
processed, it passes from one stage to the next. When it does, the stage becomes
available for the next instruction.

Although an individual instruction may take many cycles to complete (the number
of cycles is called instruction latency), pipelining makes it possible to overlap the

processing so that the throughput (number of instructions completed per cycle) is
greater than if pipelining were not implemented.
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Superscalar—A superscalar processor is one that can issue multiple instructions
concurrently from a conventional linear instruction stream. In a superscalar
implementation, multiple instructions can be in the same stage at the same time. In
the 604e these instructions can leave the execute stage out of order but must leave
the other stages in order.

Branch prediction—The process of guessing whether a branch will be taken. Such
predictions can be correct or incorrect; the term predicted as it is used here does not
imply that the prediction is correct (successful). The PowerPC architecture defines
a means for static branch prediction, which is part of the instruction encoding. The
604e also implements dynamic branch prediction, where there are levels of
probability assigned to a particular instruction depending on the history of that
instruction, which is recorded in the branch history table (BHT).

Branch resolution—The determination of whether a branch is taken or not taken. A
branch is said to be resolved when it can exactly be determined which path it will
take. If the branch is resolved as predicted, speculatively executed instructions can
be completed. If the branch is not resolved as predicted, instructions on the
mispredicted path are purged from the instruction pipeline and are replaced with the
instructions from the nonpredicted path.

Program order—The original order in which program instructions are provided to
the instruction queue from the cache.

Stall—An occurrence when an instruction cannot proceed to the next stage.

Latency— The number of clock cycles necessary to execute an instruction and make
ready the results of that execution for a subsequent instruction.

Throughput—A measure of the number of instructions that are processed per cycle.
For example, a series of double-precision floating-point multiply instructions has a
throughput of one instruction per clock cycle.

Reservation station—A buffer between the dispatch and execute stages that allows
instructions to be dispatched even though the operands required for execution may
not yet be available. In the 604e, each execution unit has a two-entry reservation
station. The 604e implements two types of reservation stations. The integer units
implement out-of-order execution units so integer instructions can be executed out
of order within individual integer units and among the three units. The reservation
stations for the other execution units are in-order reservation stations—that is, all
noninteger instructions must pass through its assigned unit in program order with
respect to other like instructions.

Rename buffer—Temporary buffers used by instructions that have not completed
and as write-back buffers for those that have.

Finish—The term indicates the final cycle of execution. In this cycle, the completion
buffer is updated to indicate that the instruction has finished executing.
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» Completion—Completion occurs when an instruction is removed from the
completion buffer. When an instruction completes we can be sure that this
instruction and all previous instructions will cause no exceptions. In some situations,
an instruction can finish and complete in the same cycle.

» Write-back—Write-back (in the context of instruction handling) occurs when a
result is written from the rename registers into the architectural registers (typically
the GPRs and FPRs). Results are written back at completion time or are moved into
the write-back buffer. Results in the write-back buffer cannot be flushed. If an
exception occurs, these buffers must write back before the exception is taken.

6.2 Instruction Timing Overview

The 604e has been designed to maximize instruction throughput and minimize average
instruction execution latency. For many of the instructions in the 604e, this can be
simplified to include only the execute phase for a particular instruction. Note that the
number of additional cycles required by data access instructions depends on whether the
access hits in the cache in which case there is a single cycle required for the cache access.
If the access misses in the cache, the number of additional cycles required is affected by the
processor-to-bus clock ratios and other factors pertaining to memory access.

In keeping with this definition, most integer instructions have a latency of one clock cycle
(for example, results for these instructions are ready for use on the next clock cycle after
issue). Other instructions, such as the integer multiply, require more than one clock cycle
to finish execution.

Figure 6-1 provides a detailed block diagram—showing the additional data paths that
contribute to the improved efficiency in instruction execution and more clearly shows the
relationships between execution units and their associated register files.
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Figure 6-1. Block Diagram—Internal Data Paths

As shown in Table 6-1, effective throughput of more than one instruction per clock cycle
can be realized by the many performance features in the 604e including multiple execution
units that operate independently and in parallel, pipelining, superscalar instruction issue,
dynamic branch prediction, the implementation of two reservation stations for each
execution unit to avoid additional latency due to stalls in individual pipelines, and result
buses that forward results to dependent instructions instead of requiring those instructions
to wait until results become available in the architected registers.

The reservation stations and result buses for the GPRs are shown in Figure 6-2
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Figure 6-2. GPR Reservation Stations and Result Buses

Although it is not shown in Figure 6-1, the LSU and FPU are pipelined.

The 604e’s completion buffer can retire four instructions every clock cycle. In general,
instruction processing is accomplished in six stages—fetch stage, decode stage, dispatch
stage, execute stage, completion stage, and write-back stage. The instruction fetch stage
includes the clock cycles necessary to request instructions from the on-chip cache as well
as the time it takes the on-chip cache to respond to that request. The decode stage consists
of the time it takes to fully decode the instruction. In the complete stage, as many as four
instructions per cycle are completed in program order. In the write-back stage, results are
returned to the register file. Instructions are fetched and executed concurrently with the
execution and write-back of previous instructions producing an overlap period between
instructions. The details of these operations are explained in the following paragraphs.

6.2.1 Pipeline Structures

The master instruction pipeline of the 604e has six stages. Instructions executed by the
machine flow through these stages. Some instructions combine the completion and write-
back stages into a single cycle. Some instructions (load, store, and floating-point
instructions) flow through additional execution pipeline stages.

The six basic stages of the master instruction pipeline are as follows:

» Fetch (IF)

* Decode (ID)

» Dispatch (DS)
* Execute (E)

* Completion (C)
*  Write-back (W)
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These stages are shown in Figure 6-3. Some instructions occupy multiple stages
simultaneously and some individual execution units, such as the FPU and MCIU, have
multiple execution stages.

Fetch (IF)

Y
Decode (ID)

\

(Four-instruction dispatch per clock Dispatch (DS)
cycle in any combination)

SCiul SClu2 MCIU FPU BPU | CRU LSU

ﬁé"ﬁé

Complete (C)

Y
Write-Back (W)

Figure 6-3. Pipeline Diagram

Pipelines for typical instructions for each of the execution units are shown in Figure 6-4.
Note that this figure does not accurately reflect the latencies for all instructions that pass
through each of the pipelines. The division of instructions into branch, integer, load/store,
and floating-point instructions indicates the execution unit in which the instructions
execute. For exampleptspr instructions, which are not thought of as integer instructions
from a functional perspective, are considered with integer instructions here because they
execute in the MCIU.

Note that in many circumstances, complete and write-back can occur in the same cycle.
Also, integer multiply, integer divide, move to/from SPR, store, and load instructions that
miss in the cache can occupy both the final stage of execute (finish) and complete (and
write-back) simultaneously.

6-6 PowerPC 604e RISC Microprocessor User's Manual



Branch Instructions

Fetch Decode Dispatch :
Predict  Predict  Predict Validate  Complete

Integer Instructions

Fetch Decode Dispatch  Execute* Complete Write-Back
I [ [ [ [
Load/Store Instructions Execute
EA

Fetch Decode Dispatch Calc Cache Align Complete Write-Back

Floating-point Instructions

Execute

Fetch Decode  Dispatch  (Mmultiply) (Add) /N(()F\;%farlliczje) Complete Write-Back

* Note that several integer instructions that execute in the MCIU have multiple execute stages.

Figure 6-4. PowerPC 604e Microprocessor Pipeline Stages

Table 6-1 lists the latencies and throughputs for general groups of instructions.

Table 6-1. Execution Latencies and Throughputs

Instruction Latency Throughput
Most integer instructions 1 1
Integer multiply (32x32) 4 2
Integer multiply (others) 3 1
Integer divide 20 19
Integer load 2 1
Integer store 3 1
Floating-point load 3 1
Floating-point store 3 1
Double-precision floating-point multiply-add 3 1
Single-precision floating-point divide 18 18
Double-precision floating-point divide 31 31

6.2.1.1 Description of Pipeline Stages

This section gives a brief description of each of the six stages of the master instruction
pipeline.
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6.2.1.1.1 Fetch Stage

The fetch stage primarily is responsible for fetching instructions from the instruction cache
and determining the address of the next instruction to be fetched. Instructions fetched from
the cache are latched into an instruction buffer for subsequent consideration by the decode
stage.

The fetch unit keeps the instruction buffer (four-entry decode and four-entry dispatch
buffer) supplied with instructions for the dispatcher to process. Normally, the fetch unit
fetches instructions sequentially, even when the instruction buffer is full because space may
become available by the time the instruction cache supplies them. Instructions are fetched
from the instruction cache in groups of four along double-word boundaries. Instructions
can be fetched from only one cache block at a time, so if only two instructions remain in
the cache block, only two instructions are fetched. If fetching is sequential, then it resumes
at four instructions per clock from the next cache block.

If translation is disabled (MSR[IR] = 0), the 604e fetches instructions when they hit in the
cache or if the previous completed instruction fetch was to the same page as this instruction
fetch. Where an instruction access hits in the cache, the 604e continues to fetch any
consecutive accesses to that same page.

The next address to be fetched is affected by several different conditions. Each stage offers
its own candidate for the next instruction to be fetched, and the latest stage has the highest
priority. As a block is prefetched, the branch target address cache (BTAC) and the branch
history table (BHT) are searched with the fetch address. If the fetch address is found in the
BTAC, it is the fetch stage candidate for being the next instruction address (as shown in
Section 6.4.4.1.1, “Timing Example—Branch Timing for a BTAC Hit"); otherwise, the
next sequential address is the candidate provided by the fetch stage.

The decode logic may indicate, based on the BHT or an unconditional branch decode, that
an earlier BTAC prediction was incorrect. The BPU can indicate that a previous branch
prediction, either from the BTAC or the decoder was incorrect and it can supply a new fetch
address. In this case, the contents of the instruction buffers are flushed. Exception logic
within the completion logic may indicate the need to vector to an exception handler
address. From these choices the exception has first priority, the branch unit has second
priority, the decode correction of a BTAC prediction has third priority, and the BTAC
prediction has the final priority for instruction prefetching.

6.2.1.1.2 Decode Stage

The decode stage handles all time-critical instruction decoding for instructions in the
instruction buffer. The decode stage contains a four-instruction buffer that shifts one or two
pairs of instructions into the dispatch buffer as space becomes available.

On the 604e, the branch correction in the decode stage predicts branches whose target is
taken from the CTR or LR. This correction occurs if no CTR or LR updates are pending.
This correction, like all other decode stage corrections, is done only on the first two
instructions of the decode stage. This correction saves at least one cycle on branch
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correction when thentspr instruction can be separated from the branch that uses the SPR
as a target address.

6.2.1.1.3 Dispatch Stage

The dispatch pipeline stage is responsible for non—time-critical decoding of instructions
supplied by the decode stage and for determining which of the instructions can be
dispatched in the current cycle. Also, the source operands of the instructions are read from
the appropriate register file and dispatched with the instruction to the execute stage. At the
end of the dispatch stage, the dispatched instructions and their operands are latched into
reservation stations or execution unit input latches.

6.2.1.1.4 Execute Stage

As shown in Figure 6-3, after an instruction passes through the common stages of fetch,
decode, and dispatch, they are passed to the appropriate execution unit where they are said
to be in execute stage. Note that the time that an instruction spends in the execute stage
varies depending on the execution unit. For example, the floating-point unit has a fully-
pipelined, three-stage execution unit, so most floating-point instructions have a three-cycle
execute latency, regardless whether they are single- or double-precision. Some instructions,
such as integer divides, must repeat some stages in order to calculate the correct result.

The execute stage executes the instruction selected in the dispatch stage, which may come
from the reservation stations or from instructions arriving from dispatch. At the end of
execute stage, the execution unit writes the results into the appropriate rename buffer entry,
and notifies the complete stage that the instruction has finished execution.

If it is determined that the direction of a branch instruction was mispredicted in an earlier
stage, the instructions from the mispredicted path are flushed and fetching resumes at the
correct address.

If an instruction causes an exception, the execution unit reports the exception to the
complete stage and continues executing instructions regardless of the exception. Under
certain conditions, results can write directly into the register file and bypass the rename
registers.

Most instructions that execute in the MCIU can finish execution and complete in the same
cycle. These include the following:

* Integer divide, multiply when OE = 0 (Note that this does not include instructions
that change OV or CA (OE =1).)

o All mfspr
» All mtspr instructions except when LR/CTR is involved because they are not
serialized

An example of one of these instructionsylli, is shown in the instruction timing examples
in Figure 6-8 through Figure 6-11. An instruction can finish execution and complete only
if it is the first instruction to complete. Whether an instruction is able to complete in the
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same cycle in which it finishes execution is also subject to the normal considerations that
affect execution and completion.

For more information about individual execution units, see Section 6.5, “Execution Unit
Timings.”

6.2.1.1.5 Complete Stage

The complete stage maintains the correct architectural machine state. In doing this it
considers a number of instructions residing in the completion buffer and uses the
information about the status of instructions provided by the execute stage.

When instructions are dispatched, they are issued a position in the 16-entry completion
buffer which they hold until they meet the constraints of completion. When an instruction
finishes execution, its status is recorded in its completion buffer entry. The completion
buffer is managed as a first-in, first-out (FIFO) buffer; it examines the entries in the order
in which the instructions were dispatched. The fact that the completion buffer allows the
processor to retain the program order ensures that instructions are completed in order.

The status of four entries are examined during each cycle to determine whether the results
can be written back, and therefore, as many as four instructions can complete per clock. If
an instruction causes an exception, the status information in the completion buffer reflects
this, and this information in the completion buffer is used to generate the exception. In this
way the completion buffer is used to ensure a precise exception model. Typically,
exceptions are detected in the fetch, decode, or execute stage.

Apart from those restrictions necessary to support a precise exception model, the 604e
imposes the following restrictions per each cycle:

» Completion stops before a store since store data is read directly from GPRs or FPRs

» Completion stops after a taken branch instruction to simplify the program counter
logic.

Note that the 604e decouples instruction completion from the actual update (write-back) of
the register file; therefore, instructions can complete regardless of how many registers they
must update, and a few instructions, such as load cache misses can complete before the
result is known. The write-back occurs during the complete stage if the ports and results are
available; otherwise, the write-back is treated as a separate stage, as shown in the timing
examples in Section 6.4.1, “General Instruction Flow.” This provision allows the processor

to complete instructions, without concern for the number or presence of results. Note that
if a read operation misses in the cache, the instruction can complete (as long as it is certain
that the instruction can cause no exceptions) even though the result is not available.

Rename buffer entries for the FPRs, GPRs, and CR act as temporary buffers for instructions
that have not completed and as write-back buffers for those that have.
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Each of the rename buffers has two read ports for write-back, corresponding to the two
ports provided for write-back for the GPRs, FPRs, and CR. As many as two results are
copied from each write-back buffer to a register per clock cycle.

If the completion logic detects an instruction containing exception status or an instruction
that can cause subsequent instructions to be flushed at completion (suntspalxer],
instructions that set the summary overflow (SO) bit, and other instructions listed below), all
following instructions are cancelled, their execution results in the rename buffers are
discarded, and fetching resumes at the correct stream of instructions. Other architectural
registers, such as CTR, LR, and CR, are updated during this stage. A complete list of the
affected instructions is as follows:

* mtspr (xer)

* mcrxr

e isync

* Instructions that set the summary overflow, SO, bit
* Iswx with O bytes to load

» Floating-point arithmetidrsp, fctiw, andfctiwz instructions that cause an
exception with FPSCR[VE] =1

» A floating-point instruction that causes a floating-point zero divide with
FPSCR(ZE =1)

6.2.1.1.6 Write-Back Stage

The write-back stage is used to write back any information from the rename buffers that
was not written back by the complete stage.

As mentioned in Section 6.2.1.1.5, “Complete Stage,” each of the rename buffers has two
read ports for write-back, corresponding to the two ports provided for write-back for the
GPRs, FPRs, and CR. As many as two results are copied from the write-back buffers to a
register per clock cycle. To compensate for the extra write-back stage, the GPR rename
buffer has 12 entries, which reduces the chances for dispatch stalls for applications that
depend heavily on integer instructions.

6.3 Memory Performance Considerations

Due to the 604e’s instruction throughput of four instructions per clock cycle, lack of data
bandwidth can become a performance bottleneck. In order for the 604e to approach its
potential performance levels, it must be able to read and write data quickly and efficiently.

If there are many processors in a system environment, one processor may experience long
memory latencies while another bus master (for example, a direct memory access
controller) is using the external bus.
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To reduce this possible contention, the PowerPC architecture provides three memory
update modes—uwrite-back, write-through, and cache-inhibit. Each page of memory is
specified to be in one of these modes. If a page is in write-back mode, data being stored to
that page is written only to the on-chip cache. If a page is in write-through mode, writes to
that page update the on-chip cache on hits and always update main memory. If a page is
cache-inhibited, data in that page is never stored in the on-chip cache. All three of these
modes of operation have advantages and disadvantages. A decision as to which mode to use
depends on the system environment as well as the application. Although these modes are
described in detail in Chapter 3, “Cache and Bus Interface Unit Operation,” Section 6.3.4,
“Memory Operations,” briefly describes how these modes may affect instruction timing.

6.3.1 MMU Overview

The 604e implements separate 128-entry, two-way set-associative TLBs, one each for
instruction and data accesses. The TLBs are managed in hardware and adhere to the
specifications for segmented page virtual memory provided in the operating environment
architecture (OEA). The block address translation (BAT) registers make it possible to easily
manage large contiguous areas of memory (128 Kbyte to 256 Mbyte).

The MMUSs also control memory protection as well as the cache functions, such as whether
a block or page is write-back or write-through, is cacheable/noncacheable, is kept coherent,
or is available for speculative execution.

For more information about the 604e MMU implementation, see Chapter 5, “Memory
Management.”

6.3.2 Cache Overview

The nonblocking data cache, shown in Figure 6-5, provides continuous load or store access
during a cache block reload.
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Figure 6-5. Data Caches and Memory Queues

For a load operation, the cache is accessed first by the LSU and data is forwarded to the
execution unit and to the rename buffer if the access hits in the cache. Otherwise, the load
operation is added to the load queue.

Store operations are added to the store queue after they are successfully translated. As each
store operation is completed with respect to the execution unit, it is only marked as
completed in the queue so instruction processing can continue without having to wait for
the actual store operation to take place either in the cache or in system memory. When the
cache is not busy, one completed store can be written to the cache per cycle. In the case of
a cache miss on a store operation, that store information is placed in the store miss queue
to allow subsequent store operations to continue while the missing cache block is brought
in from system memory. The store queue can hold six instructions.

As each load miss completes, the cache is accessed a second time. If it misses again, the
instruction is moved to the load miss register while the missing cache block is brought in.
This allows a second load miss to begin without having to wait for the first one to complete.
The load queue can hold as many as four instructions.
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Requests from a mispredicted branch path are selectively removed from the memory
gueues when the misprediction is corrected, eliminating unnecessary memory accesses and
reducing traffic on the system bus. The 604e also implements the cache block touch
instructions @cbt and dcbtst) which allows the processor to schedule bus activity more
efficiently and increase the likelihood of a cache hit.

The data cache is kept coherent using MESI protocol and maintains a separate port so
snooping does not interfere with other bus traffic. Note that coherency is not maintained in
the instruction cache. Instructions are provided by the PowerPC architecture to ensure
coherency in the instruction cache.

Both caches can be disabled, invalidated, or locked by using bits in the HIDO register. For
more information, see Section Table 2-3, “. Hardware Implementation-Dependent Register
0 Bit Settings.”

For more information about the 604e cache implementation, see Chapter 3, “Cache and Bus
Interface Unit Operation.”

6.3.3 Bus Interface Overview

The bus interface unit (BIU) on the 604e is compatible with that on the PowerPC 601 and
603 processors. The BIU supports both tenured and split-transaction modes and can handle
as many as three outstanding pipelined operations. The BIU can complete one or more
write transactions between the address and data tenures of a read transaction. The BIU
provides critical double word first, so the data in the double word requested by the
instruction fetcher or LSU is presented to the cache before the other data in the cache block.
The critical double word is forwarded to the fetcher or to the LSU without having to wait

for the entire cache block to be updated.

For more information about the BIU, see Chapter 3, “Cache and Bus Interface Unit
Operation.”

6.3.4 Memory Operations

The 604e provides features that provide flexible and efficient accesses to memory in both
single- and multiple-processor systems.

6.3.4.1 Write-Back Mode

When storing data while in write-back mode, store operations for cacheable data do not
necessarily cause an external bus cycle to update memory. Instead, memory updates only
occur on modified line replacements, cache flushes, or when another processor attempts to
access a specific address for which there is a corresponding modified cache entry. For this
reason, write-back mode may be preferred when external bus bandwidth is a potential
bottleneck—for example, in a multiprocessor environment. Write-back mode is also well
suited for data that is closely coupled to a processor, such as local variables.
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If more than one device uses data stored in a page that is in write-back mode, snooping must
be enabled to allow write-back operations and cache invalidations of modified data. The
604e implements snooping hardware to prevent other devices from accessing invalid data.
When bus snooping is enabled, the processor monitors the transactions of the other devices.
For example, if another device accesses a memory location and its memory-coherent (M)
bit is set, and the 604e’s on-chip cache has a modified value for that address, the processor
preempts the bus transaction, and updates memory with the cache data. If the cache
contents associated with the snooped address are unmodified, the 604e invalidates the cache
block. The other device is then free to attempt an access to the updated memory address.
See Chapter 3, “Cache and Bus Interface Unit Operation,” for complete information about
bus snooping.

Write-back mode provides complete cache/memory coherency as well as maximizing
available external bus bandwidth.

6.3.4.2 Write-Through Mode

Store operations to memory in write-through mode always update memory as well as the
on-chip cache (on cache hits). Write-through mode is used when the data in the cache must
always agree with external memory (for example, video memory), or when there is shared
(global) data that may be used frequently, or when allocation of a cache block on a cache
miss is undesirable. Cached data is not automatically written back if that data is from a
memory page marked as write-through mode since valid cache data always agrees with
memory.

Stores to memory that are in write-through mode may cause a decrease in performance.
Each time a store is performed to memory in write-through mode, the bus remains busy for

the extra clock cycles required to update memory; therefore, load operations that miss the
cache must wait until the external store operation completes.

6.3.4.3 Cache-Inhibited Mode
If a memory page is specified to be cache-inhibited, data from this page is not cached.

Areas of the memory map can be cache-inhibited by the operating system software. If a
cache-inhibited access hits in the on-chip cache, the corresponding cache block is
invalidated. If the line is marked as modified, it is written back to memory before being
invalidated.

In summary, the write-back mode allows both load and store operations to use the on-chip
cache. The write-through mode allows load operations to use the on-chip cache, but store
operations cause a memory access and a cache update if the data is already in the cache.
Lastly, the cache-inhibited mode causes memory access for both loads and stores.
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6.4 Timing Considerations

A superscalar machine is one that can issue multiple instructions concurrently from a
conventional linear instruction stream. The 604e is a true superscalar implementation of the
PowerPC architecture since a maximum of four instructions can be issued to the execution
units during each clock cycle. Although a superscalar implementation complicates
instruction timing, these complications are transparent to the functionality of software.
While the 604e appears to the programmer to execute instructions in sequential order, the
604e provides increased performance by executing multiple instructions at a time, and by
using hardware to manage dependencies.

When an instruction is issued, the register file places the appropriate source data on the
appropriate source bus. The corresponding execution unit then reads the data from the bus.
The register files and source buses have sufficient bandwidth to allow the dispatching of
four instructions per clock. If an operand is unavailable, the instruction is kept in a
reservation station until the operand becomes available.

The 604e contains the following execution units that operate independently and in parallel:

* Branch processing unit (BPU)

» Condition register unit (CRU)

» Two 32-bit single-cycle integer units (SCIU)

* One 32-bit multiple-cycle integer units (MCIU)
* 64-bit floating-point unit (FPU)

» Load/store unit (LSU)

As shown in Figure 6-1, the BPU directs the program flow with the aid of a dynamic branch
prediction mechanism. The instruction unit determines to which of the six other execution
units an instruction is dispatched.

6.4.1 General Instruction Flow

When the IU or FPU finishes executing an instruction, it places the resulting data, if any,
into one of the GPR, FPR, or condition register rename registers. The results are then stored
into the correct register file during the write-back stage. If a subsequent instruction is
waiting for this data, it is forwarded from the result buses, directly into the appropriate
execution unit for the immediate execution of the waiting instruction. This allows a data-
dependent instruction to be executed without waiting for the data to be written into the
register file and then read back out again. This feature, known as feed forwarding,
significantly shortens the time the machine may stall on data dependencies.
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As many as four instructions are fetched from the instruction cache per cycle and placed in
the decode buffer. After they are decoded, instructions advance to the dispatch buffers as
space becomes available. The 604e tries to keep the IQ full at all times. Although four
instructions can be brought in from the on-chip cache in a single clock cycle, if there is a
two-instruction vacancy in the IQ, two instructions can be fetched from the cache to fill it.

If while filling the 1Q, the request for new instructions misses in the on-chip cache,
arbitration for a memory access begins. Whenever a pair of positions opens in the queue,
the next two instructions are shifted in.

6.4.2 Instruction Fetch Timing

The timing of the instruction fetch mechanism on the 604e depends heavily on the state of
the on-chip cache. The speed with which the required instructions are returned to the
fetcher depends on whether the instruction being asked for is in the on-chip cache (cache
hit) or whether a memory transaction is required to bring the data into the cache (cache
miss).

6.4.2.1 Cache Hit Timing Example

Assuming that the instruction fetcher is not blocked from the cache by a cache reload
operation and the instructions it needs are in the on-chip cache (a cache hit has occurred),
there will only be one clock cycle between the time that the instruction fetcher requests the
instructions and the time that the instructions enter the 1Q. As previously stated,
instructions are fetched in pairs from a single cache block, so usually four instructions are
simultaneously fetched from the on-chip cache and loaded into the IQ. If the fetch address
points to the last two instructions in the instruction cache block, as is the case in Figure 6-6,
only two instructions can be fetched into the 1Q.

Figure 6-6 shows the timing for the following simple code sequence for instructions that
use the SCIUs and the FPU:

and
or
fadd
fsub
addc
subfc
fmadd
fmsub
Xor
neg
fadds
fsubs
add
subf
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Figure 6-6. Instruction Timing—Cache Hit

The instruction timing for this example is described cycle-by-cycle as follows:

0. Two integer instructionsaid andor) and two floating-point instruction$égdd and
fsub) are fetched in cycle 0. These were fetched from the second double-word
boundary in the instruction cache, so only two instructions can be fetched in the next
clock cycle.

1. Incycle 1, the last two instructions in the cache blaaddc andsubfc) are fetched,
while instructions 0—-3 pass into the decode stage.

2. Incycle 2, the two integer add instructions (0 and 1) are dispatched, one to each of
the SCIUs. Theéadd instruction (2) is dispatched to the FPU. Tisab instruction
cannot be dispatched, so is held in the dispatch stage until the next cycle.
Instructions 4 and 5 are in the decode stage.

Instructions 6-9 are fetched from a new cache block. Note that this is the typical,
and the most efficient, alignment for instructions fetching, allowing all eight
instruction in the cache block to be fetched in two cycles (four instructions per
cycle).
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3. The following occurs in cycle 3:

— The first two integer instructionsid andor) enter the execute stages of the two
SCIlUs. The two integer instructions decoded in cyclad?2l¢ andsubfc) are
dispatched without delay to the two SCIUs. The next pair of integer instructions
(xor andneg) is in decode stage and the final pair of integer instructamt (
andsubf) is fetched from the second quad word in the instruction cache block.

— Thefadd instruction enters execute stage in the FPU, vacating the dispatch stage,
allowing thefsub instruction to dispatch. Thienadd andfmsub instructions are
in decode stage, and the final pair of floating-point instructitadds andfsubs)
is fetched.

4. The following occurs in cycle 4:

— Inthe SCIUs, the first two integer instructions complete execution and write back
their results, and the second pair of integer instructiadsl¢ andsubfc) enters
execute stage. The next pair of integer instructinas §ndneg) is held in the
dispatch stage because thesub instruction cannot dispatch.

— Thefadd instruction is in the second of the three execute stagefsamd in
the first. Themadd instruction (6) is in the dispatch stage, which foréasub
to remain in the dispatch stage, similar to the situation in cycle 1 when two
floating-point instructions were ready for dispatch. Note that because of in-order
dispatch, the integer instructions (8 and 9) are also held in the dispatch stage
behind thedmsub instruction. The final pair of floating-point instructions enters
decode stage.

5. The following occurs in cycle 5:

— The first two integer instructions have completed, written back their results, and
vacated the pipeline. The second pair of integer instructions has executed and
vacated the execution stages, but must remain in the completion buffer until the
previous floating-point instructions can complete. The third pair of integer
instructions is allowed to dispatch, and the final pair of integer instructions is
held in the decode stage behind the previous floating-point instructions
(10 and 11).

— Inthe FPUfadd is in the final execute stagisubis in the second stagenadd
isin the first, andmsub s allowed to dispatch. Because instructions 7—9 occupy
the two available positions for instruction pairs in the dispatch fanlitls and
fsubsare held in decode, again, forcing subsequent integer instructions to remain
in decode.

6. The following occurs in cycle 6:

— The second pair of integer instructions (4 and 5) remains in the completion buffer
waiting for the previous floating-point instructions to complete. The third pair of
integer instructions is in execute stage, and the final pair of integer instructions
is held in the dispatch stage behind fdwébsinstruction.
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— In the FPUfadd is in the complete and write-back stagesb is in the final
execute stagémadd is in the second stage, afrdsub is in the first. Thdadds
Instruction is in dispatch, causing the final floating-point instructearis to
stall in dispatch.

7. The following occurs in cycle 7:

— Integer instructions 4 and 5 are allowed to complete and writeback because the
previousfsub instruction completes. However, the next pair of integer
instructions (8 and 9) must wait in the complete stage fumtitid andfmsub
can complete. Thadd andsubfinstructions are in the dispatch stage along with
the previoudsubsinstruction.

— Thefsub instruction completes, allowing integer instructions 4 and 5 to
complete. Floating-point instructions continue to move through the floating-
point pipeline withfmadd in the final execute stagBnsub in the second stage,
andfaddsin the first. The final floating-point instructicisubs is allowed to
dispatch.

8. The following occurs in cycle 8:

— Integer instructions 8 and 9 continue to wait in the complete stagénusiib
can complete. Thadd andsubfinstructions move into execute stage along with
the previoudsubsinstruction, which is in the first stage of execute.

— Thefmadd instruction completes and writes back and the subsequent floating-
point instructions each move to the next stage in the floating-point pipeline.
9. The following occurs in cycle 9:

— Integer instructions 8 and 9 are allowed to complete witHitingub instruction.
However, the final pair of integer instructions (12 and 13) must wait in the
complete stage untiadds andfsubscan complete and write back.

— Thefmsub instruction completes and writes back and the subsequent floating-
point instructions each move to the next stage in the floating-point pipeline.
10. The following occurs in cycle 10:
— The two remaining integer instructions remain in the complete stage until the
fsubsinstruction completes.

— Thefaddsinstruction completes and writes back and the remaining floating-
point instructionfsubs is in the last execute stage in the floating-point pipeline.

11.In cycle 11 all remaining instructions complete.
Note that the double-precision floating-point add instructions each has a latency of three

cycles (assuming no register dependencies) but can be fully pipelined and achieve a
throughput of one floating-point instruction per clock cycle.
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6.4.2.2 Cache Miss Timing Example
Figure 6-7 illustrates the timing for a cache miss using the following code sequence.

add
fadd
add
fadd
br
add
fsub
add
fsub
add
fadd

Note that this example assumes a best-case scenario.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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[ Dispatch | \Write-Back |
| | |

| | | |

9 add

10 fsub

| | | | |

| |

Figure 6-7. Instruction Timing—Instruction Cache Miss (BTAC Hit)
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The instruction timing for this example is described cycle-by-cycle as follows:

0.
1.

In cycle 0O, the first pair &dd andfadd instructions is fetched.

In cycle 1, the second pair afld andfadd instructions is fetched as the first pair is
decoded.

In cycle 2, the first pair ochdd andfadd instructions is dispatched, the second pair
Is decoded and tH& instruction is fetched.

In cycle 3, the first pair @fdd andfadd instructions is in execute, the second pair
is in dispatch stage, and theinstruction is in decode. By this time the target
instruction,add (5) was not found in the instruction cache and arbitration for the line
fill has begun.

In cycle 4, the firshdd instruction completes and writes back, the fastl
Instruction is in the second execute stage, and the second pdd/faidd
instructions enter execute stage. Bhenstruction is in dispatch stage and
arbitration continues for the line fill. The target instructiadd (5), andfsub remain
in the fetch state.

In cycle 5fadd (1) is in the final execute stage in the floating-point pipeline, which
prevents the subsequetd instruction from completing and writing back. The
secondadd instruction is in the second cycle of the floating-point execute stage and
thebr instruction is in execute stage. During this cycle, the address for the target
instruction is on the address bus and access has been granted for the data bus.

In cycle 6fadd (1) completes and writes back, allowing #us (2) instruction to
complete and write back. Thadd (3) instruction is in the final execute stage and
thebr instruction is in complete stage. The first beat of the four-beat burst (which
contains the critical double word) is sent over the data bus.

In cycle 7fadd (3) completes and writes back, allowing breinstruction to
complete. The second beat of the burst transfer begins on the data bus.

In cycle 8, the two instructions in the critical double word transferred in cycles 6 and
7 (add (5) andfsub (6)) are placed in the instruction queue. All previous instructions
have vacated the completion buffer.

In cycle 9add (5) andfsub (6) are in decode stage and the pair of instructions
loaded in the second beat of the data buadtl((7) andfsub (8)) are fetched. Note

that although there is room in the instruction queue for as many as four instructions,
only instructions 7 and 8 are available.

10.1In cycle 10, instructions 5 and 6 are in dispatch stage, instructions 7 and 8 are in

decode stage, and the third pair of instructions are fetched. The fourth pair of
instructions are sent in the fourth and final beat of the four-beat data burst.

11.In the remaining clock cycles, the instructions shown complete processing similarly

toinstructions 0—3. Note again that although the integer instructida$7) andadd
(9) complete, they cannot write back until the previous floating-point instructions
fsub (6) andfsub (8) write back.
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6.4.3 Cache Arbitration

When a cache miss occurs, a line-fill operation is initiated to update the appropriate cache
block. When the double word containing the data at the specified address (the critical
double word) is available, it is forwarded to the cache and made available to other resources
on the 604e. Likewise, subsequent double words are also forwarded as they reach the
memory unit.

Fetches to different lines can hit in the cache during the line-fill operation; however, if a
miss occurs before the cache block has been updated, the line-fill operation must complete
before the line-fill operation caused by the subsequent miss can begin.

For more information about the cache implementation in the 604e, see Chapter 3, “Cache
and Bus Interface Unit Operation.”

6.4.4 Branch Prediction

The 604e implements several features to reduce the latencies caused by handling branch
instructions. In particular, it provides a means of dynamic branch prediction. This is
especially critical for the 604e to take fullest advantage of the possibilities of increased
throughput made available from its pipelined and highly parallel organization. Dynamic
branch prediction is implemented in the fetch, decode, and dispatch stages, as described in
the following:

In the fetch stage, the fetch address is used to access the branch target address cache
(BTAC), which contains the target address of previously executed branch instructions that
are predicted to be taken. The 64-entry BTAC is fully associative to provide a high hit
percentage. If a fetch address is in the BTAC, the target address is used in the next cycle to
fetch the instructions from the predicted path. If the address is not present, sequential
instruction flow is assumed and the appropriate sequential address is generated based on the
number of instructions added to the decode buffer. The fetch address, rather than the first
branch address, is sufficient to access the BTAC, since a BTAC entry contains the first
predicted taken branch beyond the current fetch address.

In the decode and dispatch stages, the first branch instruction is identified and its outcome
is predicted. For an unconditional branch instruction, the instruction prefetch is redirected

to the target address if this branch was predicted as not taken by a previous stage.
Conditional instructions whose direction depends on the value in the CTR are predicted

based on that value. If the prediction differs from the current branch prediction, the prefetch

is redirected.

Note that the 604e has modified branch correction in the decode stage to predict branches
whose target is taken from the CTR or LR. This correction occurs if no CTR or LR updates
are pending. This correction, like all other decode stage corrections, is done only on the first
two instructions of the decode stage. This correction saves at least one cycle on branch
correction when thentspr instruction can be separated from the branch that uses the SPR
as a target address.
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For conditional branch instructions that depend only on a bit in the CR, the BHT is used for

the prediction. The BHT is a 512-entry, direct-mapped cache with 2 bits that can indicate
four prediction states—strongly taken, taken, not-taken, and strongly not-taken. The entry
is updated each time a conditional branch instruction that depends on a bit in the condition
register is executed. For example, a BHT entry that predicts “taken” is updated to “strongly

taken” after the branch is taken or is updated to “not-taken” if the next branch is not-taken.

Note that clearing HIDO[29] disables the use of the branch history table.

6.4.4.1 Branch Timing Examples

This section shows how the timing of a branch is affected depending upon whether the
branch hits in the BTAC, or whether correction is required in one of the stages. The
following examples use the following code sequence:

and
Id
add
bc
or
cmp
Id
mulli

6.4.4.1.1 Timing Example—Branch Timing for a BTAC Hit
Figure 6-8 shows the timing for a branch instruction that had a BTAC hit.

0 1 2 3 4 5 6 7
[ L 1
| coe® |
[ oand |
1ld
[ 2add |
3 bc
4 or
[ 5cmp
61d

[ 7 mulli |

1 1 1 | | |

[ ] Fetch ] Execute I | |
[ ] Decode [ complete : : :
[ Dispatch N Write-Back | | |
I I I I I | | |

Figure 6-8. Instruction Timing—Branch with BTAC Hit
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The timing for this example is described, cycle-by-cycle, as follows:

0. In clock cycle 0, instructions 0-3 are fetched. The target instruction b€ the
instruction is found in the BTAC.

1. Incycle 1, instructions 0—3 are decoded and instructions 4—7, using the address in
the BTAC, are fetched.

2. In cycle 2, instructions 0-3 are dispatched and instructions 4—7 are decoded.

3. In cycle 3, instructions 0—3 are in the execute stage and instructions 4—7 are in the
dispatch stage.

4. In cycle 4, instructions 0, 2, and 3 are in the complete stage, but only instruction O
is allowed to complete and write back becausddhestruction (1) is still in the
execute stage of the LSU pipeline. Instructions 2and 3 wait in the complete stage.
Instructions 4—7 all enter the execute stage.

5. Incycle 5, thed (1) instruction is able to complete and write back, allowingatd
instruction to write back and vacate the pipeline in the next cyclebf restruction
also completes. Because the branch is takemrtf®) instruction, which could
otherwise write back in this cycle, stays in the complete stage and completes and
writes back in the next cycle. Tleenp (5) instruction also enters the complete stage;
Id (6) andmulli (7) enter the second stages of the LSU and MCIU pipelines,
respectively.

6. In cycle 6, instructions 4-6 complete and write back their resultantitie
instruction, which is one of the instructions that can complete and write back during
its final cycle in the execute stage, occupies the execute and complete stages, but
cannot write back because both GPR write-back ports are occupied bydheld
instructions.

7. Themulli instruction writes back its results.

6.4.4.1.2 Timing Example—Branch with BTAC Miss/Decode Correction

In the example shown in Figure 6-9, the branch target address is not found in the BTAC
during the fetch cycle of thbc instruction, as was the case in Figure 6-8. This one-cycle
delay causes the second group of instructions to be executed one cycle later than if there is
a BTAC hit.
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Figure 6-9. Instruction Timing—Branch with BTAC Miss/Decode Correction

A cycle-by-cycle description of this example is as follows:

0. Incycle 1, instructions 0 and 1 are in decode stage, but instructions 2-5 cannot be
fetched because of a miss in the BTAC.

1. Incycle 2, instructions 0 and 1 are dispatched and instructions 2-5 are located and
fetched.

2. In cycle 3, instructions 0 and 1 are in the execute stage and instructions 2-5 are in
the decode stage, and the instruction timing proceeds as normal.

3. Incycle 5, théd (1) instruction is able to write back, allowing the followeg
instruction (which completed in the previous cycle) to write back and vacate the
pipeline in the next cycle. Instructions 4—7 are in the execute stage.

4. Incycle 6, ther andcmp (5) instructions complete and write badt;(6) andmulli
(7) enter the second stages of the LSU and MCIU execute pipelines, respectively.

5. In cycle 7, thed (6) instruction completes and writes back its results. itk
instruction finishes executing, completes, and writes back its results. Note that the
mulli instruction is able to complete in the same cycle asdhestruction because,
unlike in the previous example, the two GPR write-back ports are available.
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6.4.4.1.3 Timing Example—Branch with BTAC Miss/Dispatch Correction

Figure 6-10 uses the same code sequence as the example shown in Figure 6-8, and shows
the timing when the BTAC miss is corrected in the dispatch stage. The timing in this
example is identical to that in Figure 6-9, except that the timings for instructions 4—7 are
shifted over by one cycle.

I [ X X J I
[ Oand

1ld
[ 2add |
3 bc

4 or

5cmp

[ 7muli ]
I I

[ ] Fetch [ Execute
[ ] Decode I complete
[ Dispatch N write-Back

I
I
I
| 6ld
I
I

Figure 6-10. Instruction Timing—Branch with BTAC Miss/Dispatch Correction

6.4.4.1.4 Timing Example—Branch with BTAC Miss/Execute Correction

Figure 6-11 uses the same code sequence as the previous examples, and shows the timing
when the BTAC miss is corrected in the execute stage. The timing in this example is
identical to that in Figure 6-9, except that the timings for instructions 4—7 are shifted over

by two cycles (and over one cycle when compared to the timing when correction is provided

in the dispatch stage, as shown in Figure 6-10).
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4 or

[ 5cmp |

61d
[ 7 mulli |

. . | I
[ ] Fetch [ Execute I |
[ ] Decode [ complete : :
[ Dispatch B \rite-Back I |

] ] 1 1 ! ! :

Figure 6-11. Instruction Timing—Branch with BTAC Miss/Execute Correction

6.4.5 Speculative Execution

To take fullest advantage of pipelining and parallelism, the 604e speculatively executes
instructions along a predicted path until the branch is resolved. The 604e can handle as
many as four dispatched, uncompleted branch instructions (with four more in the
instruction queue) and can execute instructions from the predicted path of two unresolved
branch instructions. The results of speculatively executed instructions (the predicted state)
are kept in temporary locations, such as rename buffers, the completion buffer, and various
shadow registers. Architecturally defined resources are updated only after a branch is
resolved.

To record the predicted state, the 604e uses many of the same resources (primarily the
rename buffers and completion buffer) and logic as the mechanism used to maintain a
precise exception model, as is common among superscalar implementations. The 604e
design avoids the performance degradation that may come from such a design due to
speculative execution of longer latency instructions, by implementing additional logic to
record the predicted state whenever a predicted branch instruction is dispatched. This
allows the state to be quickly recovered when the branch prediction is incorrect. The
recording of these predicted states makes it possible to identify and selectively remove
instructions from the mispredicted path.

A shadow register is used with the CTR and LR to accelerate instructions that access these
registers. Shadow registers are updated and the old value is saved whenever a branch
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instruction is dispatched, eveniifitis from a predicted path for a branch that has not yet been
resolved. If the prediction is correct, there is no penalty. If the prediction is incorrect,
shadow registers are restored from the saved values so instructions fetched from the correct
path can be dispatched and executed. When the branch instruction completes, architected
registers are updated.

6.4.6 Instruction Dispatch and Completion Considerations

The 604e’s ability to dispatch instructions at a peak rate of four per cycle is affected by
availability of such resources as execution units, destination rename registers, and
completion buffer entries. To avoid dispatch unit stalls due to instruction data
dependencies, each execution unit has two reservation stations. If a data dependency could
prevent an instruction from beginning execution, that instruction is dispatched to the
reservation station associated with its execution unit, clearing the dispatch unit. When the
data that the operation depends upon is returned via a cache access or as a result of a
previous operation, execution begins during the cycle after the rename register is updated.
If the second instruction in the dispatch unit requires the same execution unit, that
instruction is not dispatched until the first instruction completes execution.

Instructions are dispatched to reservation stations in order, but from the perspective of the
overall program flow, instructions can execute out of order. The following aspects of the
604e’s support for out-of-order execution should be noted:

 The BPU, CRU, FPU, and LSU each have two-entry in-order reservation stations.
These stations allow instructions to clear the dispatch stage even though operands
may not yet be available for execution to occur. The BPU, CRU, FPU, and LSU
Instructions may execute out of order with respect to one another and to other
execution units, but the BPU, CRU, FPU, and LSU instructions pass through their
respective reservation stations and pipelines in program order.

The 604e-specific condition register unit (CRU) executes all condition register
logical and flow control instructions. Because the CRU shares the dispatch bus with
the BPU, only one condition register or branch instruction can be issued per clock
cycle. In the 604e, the CR logical unit operations are handled by the BPU. The
addition of the CRU allows branch instructions to potentially execute/resolve before
a preceding CR logical instruction. Although one CR logical or branch instruction
can be dispatched per clock cycle, both branch and CR logical instructions can
execute simultaneously. Branches are still executed in order with respect to other
branch instructions. If either the CR logical reservation station or the branch
reservation station is full then no instructions can be dispatched to either unit.

» Each integer unit has a two-entry out-of-order reservation station which allows
integer instructions to execute out-of-order within each execution as well as with
respect to instructions in other execution units.

The completion unit can track instructions from dispatch through execution and ensure that
they are completed in program order. In-order completion ensures the correct architectural
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state when the 604e must recover from a mispredicted branch, or any other exception or
interrupt.

The rate of instruction completion is unaffected by the 604e’s ability to write the instruction
results from the rename registers to the architecturally defined registers when the
instruction is retired. The 604e can perform two write-back operations from each of the
rename registers to the register files (CR, GPRs, and FPRs) each clock cycle.

Due to the 604e’s out-of-order execution capability, the in-order completion of instructions
by the completion unit provides a precise exception mechanism. All program-related
exceptions are signaled when the instruction causing the exception has reached the last
position in the completion buffer. All prior instructions are allowed to complete and write
back before the exception is taken.

6.4.6.1 Rename Register Operation

To avoid contention for a given register file location in the course of out-of-order execution,
the 604e provides rename registers for the storage of instruction results prior to their
commitment (in program order) to the architecturally defined register by the completion
unit. Register renaming minimizes architectural resource dependencies, namely the output
and antidependencies, that would otherwise limit opportunities for out-of-order execution.
Twelve rename registers are provided for the GPRs, eight for the FPRs, and eight for the
condition register.

A GPR rename buffer entry is allocated when an instruction that modifies a GPR is

dispatched. This entry is marked as allocated but not valid. When the instruction executes,
it writes its result to the entry and sets the valid bit. When the instruction completes, its

result is copied from the rename buffer entry to the GPR and the entry is freed for

reallocation. For load with update instructions that modify two GPRs, one for load data and

another for address, two rename buffer entries are allocated.

The rename register for the GPRs is shown in Figure 6-12.
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Figure 6-12. GPR Rename Register

When an integer instruction is dispatched, its source operands are searched simultaneously
from the GPR file and its rename buffer. If a value is found in the rename buffer, that value

is used; otherwise, the value is read from the GPR. However, the rename buffer entry may
not yet be valid if the instruction that updates the GPR has not yet executed. In this case,
the instruction is dispatched with the rename buffer entry identifier in place of the operand,
which will be supplied by the reservation station when the result is produced. The GPR file
and its rename buffer have eight read ports for source operands to support dispatching of
four integer instructions each cycle.

The FPR file has 32 registers of 64 bits wide and an eight-entry rename buffer. The FPR file
and its rename buffer have three read ports for three source operands, which allow one
floating-point instruction to be dispatched per cycle.
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The 604e treats each of the 4-bit fields in the condition register as a register and applies
register renaming for each with an eight-entry rename buffer.

Along with the reorder buffer, the rename buffers provide the basis of the precise exception
mechanism, because the 604e’s architectural state represents, at all times, the results of
instructions completed in program order. Precise exceptions greatly simplify the exception
model by allowing the appearance of serialized execution.

6.4.6.2 Execution Unit Considerations

As previously noted, the 604e is capable of dispatching and retiring four instructions per
clock cycle. One of the factors affecting the peak dispatch rate is the availability of
execution units on each clock cycle.

For an instruction to be issued, the required reservation station must be available. The
dispatcher monitors the availability of all execution units and suspends instruction dispatch
if the required reservation station is not available. An execution unit may not be available
if it can accept and execute only one instruction per cycle, or if an execution unit’s pipeline
becomes full. This situation may occur if instruction execution takes more clock cycles than
the number of pipeline stages in the unit, and additional instructions are issued to that unit
to fill the remaining pipeline stages.

6.4.7 Instruction Serialization

Some instructions, such asfspr and mostmtspr instructions, extended arithmetic
instructions that require the carry bit, and condition register instructions, require
serialization to execute correctly. For this reason, the 604e implements a simple
serialization mechanism that allows such instructions to be dispatched properly but delays
execution until they can be executed safely. When all previous instructions have completed
and updated their results to the architectural states, the serialized instruction is executed by
directly reading and updated in the architectural states. If the instruction target is a GPR,
FPR, or the CR, the register is renamed to allow later nondependent instructions to execute.

Store instructions are dispatched to the LSU where they are translated and checked for
exception conditions. If no exception conditions are present, the instruction is passed to the
store queue where it waits for all previous instructions to complete before it can be
completed. Direct-storage accesses are handled in the same way to ensure that exceptions
are precise.

The performance is not degraded since instructions following a serializing instruction are
dispatched and executed usually before the serializing instruction is executed. One
serialized instruction can complete per clock cycle.

The following sections describe the serialization modes.
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6.4.7.1 Dispatch Serialization Mode

Dispatch serialization occurs when @uspr instruction that accesses either the counter or
link or amtcrf instruction that accesses multiple bits is dispatched to the MCIU. In these
instances, an interlock is set so that no other such instructions or branch unit instructions
(branch and CR logical) can dispatch until the original instruction executes and clears the
interlock. The interlock is cleared when the instruction that sets the interlock finishes
executing. On the next cycle the instruction that is waiting can dispatch.

6.4.7.2 Execution Serialization Mode

The occurrence of an execution serialization instruction has no effect on the dispatching
and execution of any following instructions. The only difference between an execution

serialization instruction and a nonserialization instruction is that the execution serialization
instruction cannot be executed until it is the oldest uncompleted instruction in the processor.
In other words, the instruction is dispatched into a reservation station, but cannot be
executed until the completion block informs the execution unit to execute the instruction.

This means it is guaranteed to wait at least one cycle before it can execute.

Instructions causing execution serialization include the following:

» Condition register logical operations&nd, crandc, creqv, crnand, crnor, cror,
crorc, crxor, andmcrf)

* mfspr andmfmsr
* mitspr (except count and link registers) amtinsr

» Instructions that use the carry kadde addeq subfe subfeq addme, addmeq
subfme subfmeq addze addzeq subfze andsubfzeq

6.4.7.3 Postdispatch Serialization Mode
Postdispatch serialization occurs when the serializing instruction is being completed. All

instructions following the postdispatch serialized instruction are flushed, refetched, and re-
executed. Instructions causing postdispatch serialization include the following:

* mtspr (xer)

* mcrxr

e isync

* Instructions that set the summary overflow, SO, bit

* |swx with O bytes to load

* Floating-point arithmetidrsp, fctiw, andfctiwz instructions that cause an
exception with FPSCR[VE] = 1

* Floating-point instructions with the Rc (record bit) set
* FPSCR instructions+tfsb0, mtfsbl, mtfsfi, mffs, mtfsf, andmcrfs

» A floating-point instruction that causes a floating-point zero divide with
FPSCR(ZE =1)
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6.4.7.4 Serialization of String/Multiple Instructions

Serialization is required for all load/store multiple/string instructions. These instructions
are broken into a sequence of register-aligned operations. The first operation is dispatched
along with any preceding instructions in the dispatch buffer. Subsequent operations are
dispatched one-word-per-cycle until the operation is finished. String/multiple instructions
remain in the dispatch buffer for at least two cycles even if they only require a single-word—
aligned memory operation.

Instructions causing string/multiple serialization incluiehev, stmw, Iswi, Iswx, stswi, and
Stswx.

6.4.7.5 Serialization of Input/Output

In this serialization mode, all noncacheable loads are performed in order with respect to the
eieioinstruction.

6.5 Execution Unit Timings

The following sections describe instruction timing considerations within each of the
respective execution units in the 604e. Refer to Table 6-2 for branch instruction execution
timing.

6.5.1 Branch Unit Instruction Timings

The 604e can have two unresolved branches in the branch reservation station and two
resolved branches that have not yet completed. The branch unit serves to validate branch
predictions made in earlier stages. It also verifies that the predicted target matches the
actual target address. If a misprediction is detected, it redirects the fetch to the correct
address and starts the branch misprediction recovery.

The branch execution unit also executes condition register logical instructions, which the
PowerPC architecture provides for calculating complex branch conditions. Other
architectures that lack such instructions would need to use a series of branch instructions to
resolve complex branching conditions. All execution units can update the CR fields, but
only the branch and CR logical operations use CR fields as source operands.

6.5.2 Integer Unit Instruction Timings
The two SCIUs and the MCIU execute all integer and bit-field instructions, and are shown
in Figure 6-13 and Figure 6-14, respectively.

The SCIUs consist of three one-cycle subunits:

» A fast adder/comparator subunit
* Alogic subunit
» A rotator/shifter/count-leading zero subunit
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These subunits handle all of the one-cycle arithmetic instructions. Only one subunitin each
SCIU can obtain and execute an instruction at a time.

Instruction Dispatch Buses
GPR Operand Buses
Result Buses

Y )

Reservation Station

Y

Y

Y

A

v Y Y 0
o
2
Rotate/Shift/ | _ Adder/ [ . S
CTLZ = Comparator [~ Logic 5
Q.
\ y \
\ 3:1 MUX /~
Ve

N

Figure 6-13. SCIU Block Diagram

The MCIU, which handles all integer multiple-cycle integer instructions, consists of a 32-
bit integer multiplier/divider subunit. The multiplier supports early exit on 32 x 16-bit
operations. In addition the MCIU executesmafspr andmtspr instructions.
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Figure 6-14. MCIU Block Diagram

Most instructions that execute in the MCIU can finish execution and complete in the same
cycle. These include the following:

* Integer divide, multiply when OE =0
» All mfspr instructions
» All mtspr instructions except when LR/CTR is involved

Note that all instructions that execute in the MCIU can complete during the same cycle in
which they finish executing except for the following:

» Instruction that changes OV or CA (OE =1)
* The move to CTR/LR instructions cannot because they are not execution-serialized

6.5.3 Floating-Point Unit Instruction Timings

The floating-point unit on the 604e executes all floating-point instructions. Execution of
most floating-point instructions is pipelined within the FPU, allowing up to three
instructions to be executing in the FPU concurrently. While most floating-point instructions
execute with three-cycle latency and one-cycle throughput, three instrudiiivss {div,
andfres) execute with latencies of 18 to 33 cycles. Tdes, fdiv, fres, mtfsb0, mtfsbl,
mtfsfi, mffs, andmtfsf instructions block the floating-point pipeline until they complete
execution and thereby inhibit the execution of additional floating-point instructions. With
the exception of thencrfs instruction, all floating-point instructions immediately forward
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their CR results to the CRU for fast branch resolution without waiting for the instruction to
be retired by the completion unit and the CR to be updated. Refer to Table 6-2 for floating-
point instruction execution timing.

As shown in Figure 6-15, The FPU on the 604e is a single-pass, double-precision unit. This
means that both single- and double-precision floating-point operations require one-
pass/one-cycle throughput with a latency of three cycles. This hardware implementation
supports the IEEE 754-1985 standard for floating-point arithmetic, including support for
the NaNs and denormalized data types.

Instructions are obtained from the instruction dispatcher and placed in the reservation
station queue. The operand sources are the FPR, the floating-point rename buffers, and the
result buses. The result of an FPU operation is written to the floating-point rename buffers
and to the reservation stations. Instructions are executed from the reservation station queue
in the order they were originally dispatched.

Instruction Dispatch Bus

FPR Operand Buses P

FPU Result Bus f

LS Result Bus , A
FPSCR Bus f

l Y

- > Queue 1 \%
Y \ ] Y Y Y
- > Queue 0 \%
o Y Y
o - Floating-Point Multiply
%' - Add Pre-Alignment Stage 1
© o Floating-Point Pipeline Add Stage 2
B > Normalize/Round/Write-Back Stage 3

T Result Status Bus v

Figure 6-15. FPU Block Diagram
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6.5.4 Load/Store Unit Instruction Timings

The execution of most load and store instructions is pipelined. The LSU has two pipeline
stages; the first stage is for effective address calculation, and MMU translation, and the
second stage is for accessing the data in the cache. Load instructions have a two-cycle
latency and one-cycle throughput, and store instructions have a two-cycle latency and
single-cycle throughput.

The primary function of the LSU is to transfer data between the data cache and the result
bus, which routes data to the other execution units. The LSU supports the address
generation and all the data alignment to and from the data cache. As shown in Table 6-2,
the LSU also executes special instructions such as string transfers and cache control.

To improve execution performance, the LSU allows a load operation to be executed ahead
of pending store operations. All data dependencies introduced by this out-of-order
execution are resolved by the LSU. These dependencies arise when, in the instruction
stream, a store is followed by a load from the same address. If the load instruction is
speculatively executed before the store has modified the cache, incorrect data is loaded into
the rename registers. If the low-order 12 bits of the effective addresses are equal, the two
effective addresses may be aliases for the same physical address, in which case the load
instruction waits until the store data is written back to the cache, guaranteeing that the load
operation retrieves the correct data.

The LSU provides hardware support for denormalization of floating-point numbers. Within
the 604e, all floating-point numbers are represented as double-precision numbers.
Denormalization can occur during a store floating-point single instruction, when the
double-precision number is converted to a single-precision number.

A block diagram of the load/store unit is shown in Figure 6-16. The unit is composed of:
reservation stations, an address calculation block, data alignment blocks, load queues, and
store queues.
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Figure 6-16. LSU Block Diagram

The reservation stations are used as temporary storage of dispatched instructions that
cannot be executed until all of the instruction operands are valid. The address calculation
block includes a 32-bit adder that computes the effective address for all operations. The
data alignment blocks manage the necessary byte manipulations to support aligned or
unaligned data transfers to and from the data cache. The load and store queues are used for
temporary storage of instructions for which the effective addresses have been translated and
are waiting to be completed by the sequencer unit.
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Figure 6-17 shows the structure of the store queue. There are four regions that identify the
state of the store instructions.

Empty

Finished

Completed

Committed

Figure 6-17. Store Queue Structure

When a store instruction finishes execution, it is placed in the finished state. When it is

completed, the finish pointer advances to place it in the completed state. When the store
data is committed to memory, the completion pointer advances to place it in the committed

state. If the store operation hits in the cache, the commit pointer advances to effectively
remove the instruction from the queue. Otherwise, the commit pointer does not advance
until the cache block is reloaded and the store operation can occur. During this time, the
next store instruction pointed to by the completion pointer can access the cache. If this
second store instruction hits in the cache, itis removed from the queue. If not, another cache
block reload begins.

6.5.5 isync, rfi, and sc Instruction Timings

The isync, rfi, andsc instructions do not execute in one of the execution units. These
instructions decode to branch unit instructions, as specified by the PowerPC architecture,
but they do not actually execute in the BPU in the same sense that other branch instructions
do. The completion unit treats thie andscinstructions as exceptions, and handles them
precisely. When arsync instruction reaches the top of the completion buffer, subsequent
instructions are flushed from the pipeline and are refetched during the next clock cycle.

Although therfi andscare dispatched to the branch reservation stations, these instructions
do not execute in the ordinary sense, and do not occupy a position in an execute stage in
one of the BPU. Instead, these instructions are given a position in the completion buffer at
dispatch. When thecinstruction reaches the top of the completion buffer, the system call
exception is taken. When thé@ instruction reaches the top of the completion buffer, the
necessary operations required for restoring the machine state upon returning from an
exception are performed.

Theisync instruction causes instructions to be flushed when it is completed. This means
that the decode buffers, dispatch buffers, and execution pipeline are all flushed. Fetching
resumes from the instruction following ttsync.
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6.6 Instruction Scheduling Guidelines

The performance of the 604e can be improved by avoiding resource conflicts and
promoting parallel utilization of execution units through efficient instruction scheduling.
Instruction scheduling on the 604e can be improved by observing the following guidelines:

» Schedule instructions such that they can maximize the dispatch rate.

» Schedule instructions to minimize execution-unit-busy stalls

» Avoid using serializing instructions

» Schedule instructions to avoid dispatch stalls due to renamed resource limitations

6.6.1 Instruction Dispatch Rules

The following list provides limitations on instruction dispatch that should be kept in mind
in order to ensure stalls:

* At most, four instructions can be dispatched per cycle.

» Aninstruction cannot be dispatched unless all preceding instructions in the dispatch
buffer are dispatched

* One instruction can be dispatched per functional unit.
— The branch unit executes all branch and condition register logical instructions

— The two SCIUs are identical and either can be used to execute any integer
arithmetic, logical, shift/rotate, trap, anatcrf instructions that update only one
field.

— The MCIU executes all integer multiply, divide and move to/from instructions
excepimtcrf instructions that update only one field, which are executed in either
of the SCIUs.

— The load/store unit executes load, store, and cache control instructions
— The FPU executes all floating-point instructions including move to/from FPSCR
Table 6-2 indicates which execution unit executes each instruction.

» Eachinstruction must have an entry in the 16-entry reorder buffer. The dispatch unit
stalls when the reorder buffer is full. Reorder buffer entries become available on the
cycle after the instruction has completed.

* Aninstruction that modifies a GPR is assigned one of the 12 positions in the GPR
rename buffer. Load with update instructions get two positions since they update two
registers. When the GPR rename buffer is full, the dispatch unit stalls when it
encounters the first instruction that needs an entry. A rename buffer entry becomes
available one cycle after the result is written to the GPR.

* Any floating-point instruction excepncrfs, mtfsfi, mtfsfi., mtfsf, mtfsf., mtfsbO,
mtfsb0., mtfsbl1, andmtfsbl. gets one entry in the eight-entry FPR rename buffer.
When the FPR rename buffer is full, dispatch stalls on the next floating-point
instruction. A rename buffer entry can become available one cycle after the result is
written to the FPR.
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The eight-entry CR rename buffer is similar to the GPR rename buffer in that an
instruction that modifies a CR field gets one entry. This includes, for example, all
condition register logical instructions amdcrf instructions that update only one
CR field. When the CR rename buffer is full, dispatch stalls when the next
instruction to be dispatched needs a CR entry. A rename buffer entry becomes
available one cycle after the result is written to the CR.

Each execution unit has a two-entry reservation station that holds instructions until
they are ready for execution. Instructions cannot be dispatched if the reservation
station is full.

No following instruction can dispatch in the same cycle as a branch instruction.

Since instructions are dispatched in program order, a later instruction cannot be
dispatched until all earlier ones have.

There is an interlock mechanism between CTR and LR. After dispatching a move to
CTR/LR ormtcrf with multiple field update, the dispatch stalls on the first branch,
CR logical, move to CTR/LR, antcrf that update multiple fields until one cycle
after the dispatched move to CTR/LRnotcrf instruction executes. Thos&crf
instructions that update multiple fields are execution-serialized.

The 604e can handle as many as four branch instructions in the execute and
complete stages. The dispatch stalls on the first instruction after the fourth branch
until the first branch completes.

An instruction cannot be dispatched until all destination registers for the instruction
have been assigned to a rename register.

An instruction may not be dispatched if a serialization mode is in effect for the
instruction.

6.6.2 Additional Programming Tips for the PowerPC 604e Processor
The following guidelines should be followed when writing assembly code for the 604e.

Interleave memory instructions with integer and floating-point operations.

The 604e has a dedicated LSU that does not require the use of the integer or floating-
point units to process memory operations. As a result, when scheduling code for the
604e, interleaving memory operations with integer or floating-point instructions
typically result in better performance.

Interleave integer operations.

Because the 604e has three IUs, it is also possible to interleave multiple,
independent integer operations. Two of these integer units support simple integer
operations, while the third supports complex integer operations such as bit-field
manipulation.

Avoid using instructions that write to multiple registers.

The 604e’s dynamic register renaming permits instructions to execute out of order
with respect to their original program sequence, which increases overall throughput.
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However, in other PowerPC processors, certain instructions including the load/store
multiple/string operations, monopolize these internal hardware resources, which can
affect performance. For software portability, such instructions should be avoided,
even though they do not suffer the performance degradation in the 604e that they
might in other PowerPC processors. The most common use of such instructions is
in subroutine prologues or epilogues The following alternatives are typically more
efficient:

— Expanding the register save/restore code in-line

— Branching to special save/restore functions (sometimes called millicode) that use
in-line sequences of save and restore instructions.

» Use the load with update instruction judiciously

Another frequently used set of instructions that are subject to this multiple register
usage effect are the load with update instructions. While use of such instructions is
usually desirable from a performance standpoint (they eliminate a dependent integer
operation), care must still be taken to not issue too many of these instructions
consecutively.

* Schedule code to take advantage of rename registers

As discussed previously, the 604e provides register renaming as a means of
improving execution speed. Since there are a limited number of rename buffers
implemented in hardware, it is always desirable to minimize pressure on this
resource. One relatively simple means of doing this is to use immediate addressing
when the option exists. For example, an integer register copy can be performed in a
single cycle using a number of different instructions. However, usiogi an

instruction (with an immediate operand of zero) uses only one source register
operand; whereas, the register indirect form ofothmstruction uses two source
registers.

* Minimize use of instructions that serialize execution.

Some operations, such as memory synchronization primitives and trap instructions,
have well-known serialization properties that are intended when used by a
programmer. Other instructions, however, have more subtle serialization effects that
may affect performance. For example, if operations that manipulate condition
register fields are used frequently, they can significantly hinder performance,
particularly when multiple condition fields are being accessed by a single
instruction, described in the following:

» Avoid using the mtcrf instruction to update multiple fields.

Note that the performance of thetcrf instruction depends greatly on whether only
one field is accessed or either no fields or multiple fields are accessed as follows:

— Thosemtcrf instructions that update only one field are executed in either of the
SCIlUs and the CR field is renamed as with any other SCIU instruction.

— Thosemtcrf instructions that update either multiple fields or no fields are
dispatched to the MCIU and a count/link scoreboard bit is set. When that bit is
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set, no morentcrf instructions of the same typmtspr instructions that update
the count or link registers, branch instructions that depend on the condition
register and CR logical instructions can be dispatched to the MCIU. The bit is
cleared when thmtctr, mtcrf, ormtlr instruction that set the bit is executed.

Becausantcrf instructions that update a single field do not require such
synchronization that othentcrf instructions do, and because two such single-field
instructions can execute in parallel, it is typically more efficient to use multiple
mtcrf instructions that update only one field apiece than to usento instruction
that updates multiple fields. A rule of thumb follows:

— lItis alwaysmore efficient to use twmtcrf instructions that update only one field
apiece than to use ondcrf instruction that updates two fields.

— It is almost alwaysnore efficient to use three or famtcrf instructions that
update only one field apiece than to use orterf instruction that updates three
fields.

— Itis oftenmore efficient to use more than famtcrf instructions that update only
one field than to use ometcrf instruction that updates four fields.

Minimize branching.

The 604e supports dynamic branch prediction and other mechanisms that reduce the
iImpact of branching; nevertheless, changing control flow in a program is relatively
expensive, in that fullest advantage cannot be taken of resources that can improve
throughput. such as superscalar instruction dispatch and execution. In some cases,
branches can be minimized by simply rewriting an algorithm. In other cases, special
PowerPC instructions, suchfsgl, can be used to eliminate a conditional branch
altogether.

Note that thdselinstruction is optional to the PowerPC architecture and may not be
implemented on all PowerPC implementations, so use of this instruction to improve
performance in the 604e should be weighed against portability considerations.

6.7 Instruction Latency Summary

Table 6-2 summarizes the execution cycle time of each instruction. Note that the latencies
themselves provide limited insight as to the actual behavior of an instruction. The following
list summarizes some aspects of instruction behavior:

For a store operation, availability means data is visible to the following loads from
the same address. Misaligned load or store operations require one additional cycle,
assuming cache hits.

— Floating-point stores that require denormalization take an additional cycle for
each bit of shifting that is needed up to a maximum of 23.

— Store multiple instructions are taken in pairs and take one additional cycle if an
odd number of registers is stored.
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— Misaligned load string operations require two cycles per register plus two
additional cycles.

— Misaligned store string operations take six cycles per register being stored
(although the final store may only take three cycles if it does not cross a word
boundary).

» Forinstructions with both a CR result and either a GPR or an FPR result, the cycle
count shown is for the GPR or FPR result. CR results from logical or bit field
instructions that execute in the SCIU and CR results from instructions that execute
in the FPU take one additional cycle.

» Integer multiplies that detect an early exit condition finish a cycle earlier than others.
For signed multiplies, if the top 15 bits of the RB operand are all the same it is an
early out condition. For unsigned multiplies, if the top 15 bits are all zeros it is an
early out condition.

» All instructions are fully pipelined except for divides and some integer multiplies.
The integer multiplier is a three-stage pipeline. Integer multiplies other than those
that can exit early (described in the previous bullet) stall for one cycle in the first
stage of the pipeline. Integer divide instructions iterate in stage two of the multiplier.
Special-purpose register operations can execute in the MCIU in parallel with
multiplies and divides.

— The FPU unit is a three-stage pipeline. Floating-point divides iterate in the
floating-point pipeline. The floating-point unit also has some data-dependent
delays not shown inTable 6-2. If the rounder has a carry out, that is, 1.11...111
rounds to 2.00...000, the FPU takes an additional cycle. If the final normalization
of the result requires a shift of more than 63, the FPU takes an additional cycle.
Underflow and overflow take an additional cycle. Denormalization to zero takes
an additional cycle. Massive cancellation resulting in zero takes an additional

cycle.
Table 6-2. Instruction Execution Timing
Instruction Unit Cycle (cycle) Serialization

add SCIU 1 —
addc SCIU 1 —
adde SCIU 1 Execute
addi SCIU 1 —
addic SCIU 1 —
addic. SCIU 1 —
addis SCIU 1 —
addme SCIU 1 Execute
addze SCIU 1 Execute
and SCIU 1 —
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Table 6-2

. Instruction Execution Timing (Continued)

Instruction Unit Cycle (cycle) Serialization
andc SCIU 1 —
andi. SCIU 1 —
andis. SCIU 1 —
b BPU 1 —
bc BPU 1 —
beetr BPU 1 —
bclr BPU 1 —
cmp SCIU 1 —
cmpi SCIU 1 —
cmpl SCIU 1 —
cmpli SCIU 1 —
cntlzw SCIU 1 —
crand CRU 1 Execute
crandc CRU 1 Execute
creqv CRU 1 Execute
crnand CRU 1 Execute
crnor CRU 1 Execute
cror CRU 1 Execute
crorc CRU 1 Execute
crxor CRU 1 Execute
dcbf LSuU — Execute
dcbi LSuU 3 Execute
dcbst LSU — Execute
dcbt LSU — Execute
dcbtst LSU — Execute
dcbz LSuU 3 Execute
divw MCIU 20 —
divwu MCIU 20 —
eciwx LSU 2 + bus Execute
ecowx LSU 3 + bus Execute
eieio LSU — I/0
eqv SCIU 1 —
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Table 6-2. Instruction Execution Timing (Continued)

Instruction Unit Cycle (cycle) Serialization

extsb SCIU 1 —

extsh SCIU 1 —

fabs FPU 3 —

fadd FPU 3 —

fadds FPU 3 —

fcmpo FPU 3 —

fcmpu FPU 3 —

fctiw FPU 3 —

fctiwz FPU 3 —

fdiv FPU 32 FP empty!
fdivs FPU 18 FP empty?
fmadd FPU 3 —

fmadds FPU 3 —

fmr FPU 3 —

fmsub FPU 3 —

fmsubs FPU 3 —

fmul FPU 3 —

fmuls FPU 3 —

fnabs FPU 3 —

fneg FPU 3 —

fnmadd FPU 3 —
fnmadds FPU 3 —

fnmsub FPU 3 —
fnmsubs FPU 3 —

fres FPU 18 FP empty’
frsp FPU 3 —

frsqrte FPU 3 —

fsel FPU 3 —

fsub FPU 3 —

fsubs FPU 3 —

ichi Lsu — —

isync Completion 1 Postdispatch
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Table 6-2. Instruction Execution Timing (Continued)

Instruction Unit Cycle (cycle) Serialization

Ibz LSU 2 —

Ibzu LSuU 2 —

Ibzux LSU 2 —

Ibzx LSU 2 —

Ifd LSU 3 —

Ifdu LSU 3 —

Ifdux LSU 3 —

Ifdx LSu 3 —

Ifs LSu 3 —

Ifsu LSU 3 —

Ifsux LSU 3 —

Ifsx LSU 3 —

lha LSU 2 —

lhau LSU 2 —

Ihaux LSU 2 —

Ihax LSuU 2 —

Ihbrx LSU 2 —

Ihz LSU 2 —

lhzu LSU 2 —

Ihzux LSU 2 —

lhzx LSU 2 —

Imw LSU #regs + 2 String/multiple
Iswi LSU 2(#regs) + 2 String/multiple
Iswx LSU 2(#regs) + 2 String/multiple
Iwarx LSU 3+bus Execute
Iwbrx LSU 2 —

lwz LSU 2 —

Iwzu LSU 2 —

Iwzux LSU 2 —

lwzx LSU 2 —

mcrf CRU 1 Execute
mcrfs FPU 3 —
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Table 6-2. Instruction Execution Timing (Continued)

Instruction Unit Cycle (cycle) Serialization
mcrxr MCIU 3 Execute
mfcr MCIU 3 Execute
mffs FPU 3 —
mfmsr MCIU 3 Execute
mftb MCIU 3 Execute
mfspr LR/CTR MCIU 3 Execute
mfspr (others) MCIU 3 Execute
mtcrf (0/multiple bit) MCIU 1 Dispatch/Execute
mtcrf (single bit) SCIU 1 —
mtfsbO FPU 3 —
mtfsbl FPU 3 —
mtfsf FPU 3 —
mtfsfi FPU 3 —
mtmsr MCIU 1 Execute
mtspr (LR/CTR) MCIU 1 Dispatch
mtspr (XER) MCIU 1 Complete 2
mtspr (others) MCIU 1 Execute
mulhw MCIU 4(3) —
mulhwu MCIU 4(3) —
mulli MCIU 3 —
mullw MCIU 4(3) —
nand SCIU 1 —
neg SCIU 1 —
nor SCIU 1 —
or SCIU 1 —
orc SCIU 1 —
ori SCIU 1 —
oris SCIU 1 —
rfi Completion — Postdispatch
riwimi SCIU 1 —
riwinm SCIU 1 —
riwnm SCIU 1 —
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Table 6-2

. Instruction Execution Timing (Continued)

Instruction Unit Cycle (cycle) Serialization
sc Completion — Postdispatch
slw SCIU 1 —
sraw SCIU 1 —
srawi SCIU 1 —

Srw SCIU 1 —

stb LSU 3 Execute

stbu LSU 3 Execute

stbux LSU 3 Execute

stbx LSuU 3 Execute

stfd LSU 3 Execute

stfdu LSU 3 Execute
stfdux LSU 3 Execute

stfdx LSU 3 Execute
stfiwx LSU 3 Execute

stfs LSuU 3 Execute

stfsu LSuU 3 Execute
stfsux LSU 3 Execute

stfsx LSU 3 Execute

sth LSU 3 Execute
sthbrx LSuU 3 Execute

sthu LSuU 3 Execute

sthux LSuU 3 Execute

sthx LSU 3 Execute

stmw LSU #regs + 2 String/multiple
stswi LSU #regs + 2 String/multiple
stswx LSU #regs + 2 String/multiple
stw LSU 3 Execute
stwbrx LSU 3 Execute
stwcx. LSU 3 Execute

stwu LSU 3 Execute
stwux LSU 3 Execute

stwx LSU 3 Execute
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Table 6-2. Instruction Execution Timing (Continued)

Instruction Unit Cycle (cycle) Serialization
subf SCIU 1 —
subfc SCIU 1 —
subfe SCIU 1 Execute
subfic SCIU 1 —
subfme SCIU 1 Execute
subfze SCIU 1 Execute
sync LSU — —
tibie LSU — Execute
tlbsync LSU — —
tw SCIU 1 —
twi SCIU 1 —
xor SCIU 1 —

XOri SCIU 1 —
xoris SCIU 1 —

1 These instructions are not pipelined. They cannot be executed until the previous
instruction in the FPU completes; subsequent FPU instructions cannot begin
execution until these instructions complete.

2The mtspr (XER) instruction causes instructions to be flushed when it executes.

Chapter 6. Instruction Timing 6-51



6-52 PowerPC 604e RISC Microprocessor User's Manual



Chapter 7
Signal Descriptions

This chapter describes the PowerPC 604e microprocessor’s external signals. It contains a
concise description of individual signals, showing behavior when the signal is asserted and
negated and when the signal is an input and an output.

NOTE

A bar over a signal name indicates that the signal is active
low—for example, ARTRY (address retry) and'S (transfer
start). Active-low signals are referred to as asserted (active)
when they are low and negated when they are high. Signals that
are not active-low, such as AP[0-3] (address bus parity signals)
and TT[0-4] (transfer type signals) are referred to as asserted
when they are high and negated when they are low.

The 604e signals are grouped as follows:

Address arbitration signals—The 604e uses these signals to arbitrate for address bus
mastership.

Address transfer start signals—These signals indicate that a bus master has begun a
transaction on the address bus.

Address transfer signals—These signals, which consist of the address bus, address
parity, and address parity error signals, are used to transfer the address and to ensure
the integrity of the transfer.

Transfer attribute signals—These signals provide information about the type of
transfer, such as the transfer size and whether the transaction is bursted, write-
through, or cache-inhibited.

Address transfer termination signals—These signals are used to acknowledge the
end of the address phase of the transaction. They also indicate whether a condition
exists that requires the address phase to be repeated.

Data arbitration signals—The 604e uses these signals to arbitrate for data bus
mastership.

Data transfer signals—These signals, which consist of the data bus, data parity, and
data parity error signals, are used to transfer the data and to ensure the integrity of
the transfer.
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Data transfer termination signals—Data termination signals are required after each
data beat in a data transfer. In a single-beat transaction, the data termination signals
also indicate the end of the tenure, while in burst accesses, the data termination
signals apply to individual beats and indicate the end of the tenure only after the final
data beat. They also indicate whether a condition exists that requires the data phase
to be repeated.

Interrupt signals—These signals include the external interrupt signal, machine
check signal, and system reset signal. These signals are used to interrupt and, under
various conditions, to reset the processor.

Processor state signals—These signals include the memory reservation signal, hard
reset signal, and checkstop signals.

Clock signals—These signals provide for system clock input and frequency control.

JTAG/CORP interface signals—The JTAG (IEEE 1149.1) interface and common on-
chip processor (COP) unit provides a serial interface to the system for performing
monitoring and boundary tests.

Miscellaneous signals—These signals include the time base enable signal, L2
intervention signal, the run and halted signals, and the analog VDD signal.

7.1 Signal Configuration

Figure 7-1 illustrates the pin configuration of the 604e, showing how the signals are

grouped.
NOTE
A pinout showing actual pin numbers is included in the 604e
hardware specifications.
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Figure 7-1. Signal Groups

7.2 Signal Descriptions

This section describes individual 604e signals, grouped according to Figure 7-1. Note that
the following sections are intended to provide a quick summary of signal functions.
Chapter 8, “System Interface Operation,” describes many of these signals in greater detail,
both with respect to how individual signals function and how groups of signals interact.
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7.2.1 Address Bus Arbitration Signals

The address arbitration signals are a collection of input and output signals the 604e uses to
request the address bus, recognize when the request is granted, and indicate to other devices
when mastership is granted. For a detailed description of how these signals interact, see
Section 8.3.1, “Address Bus Arbitration.”

7.2.1.1 Bus Request ( BR)—Output

The bus requesBR) signal is an output signal on the 604e. Following are the state meaning
and timing comments for tH&R signal.

State Meaning

Timing Comments

Asserted—Indicates that the 604e is requesting mastership of the
address bus. Note thAR may be asserted for one or more cycles,
and then deasserted due to an internal cancellation of the bus request
(for example, due to the loss of a memory reservation). See

Section 8.3.1, “Address Bus Arbitration.”

Negated—Indicates that the 604e is not requesting the address bus.
The 604e may have no bus operation pending, it may be parked, or
the ARTRY input was asserted on the previous bus clock cycle.

Assertion—Occurs when a bus transaction is needed and the 604e
does not have a qualified bus grant. This may occur even if the three
possible pipeline accesses have occurred.

Negation—Occurs for at least one bus clock cycle after an accepted,
gualified bus grant (see BG and ABB), even if another transaction is
pending. Itis also negated for at least one cycle after the assertion of
ARTRY, unless that processor was responsible for the assertion of
ARTRY due to the need to perform a cache block push for that snoop
operation.

7.2.1.2 Bus Grant ( BG)—Input

The bus grantBG) signal is an input signal on the 604e. Following are the state meaning
and timing comments for tH&G signal.

State Meaning

Asserted—Indicates that the 604e may, with the proper qualification,
assume mastership of the address bus. A qualified bus grant occurs
whenBG is assertedABB andARTRY are not asserted, and

ARTRY has been negated on the previous cycle. ABié and

ARTRY signals are driven by the 604e or other bus masters. If the
604e is parkedBR need not be asserted for the qualified bus grant.
See Section 8.3.1, “Address Bus Arbitration.”

Negated— Indicates that the 604e is not the next potential address
bus master.
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Timing Comments Assertion—May occur at any time to indicate the 604e is free to use
the address bus. After the 604e assumes bus mastership, it does not
check for a qualified bus grant again until the cycle during which the
address bus tenure is completed (assuming it has another transaction
to run). The 604e does not acce@@ in the cycles between the
assertion of an§'S orXATS through to the assertion AACK.

Negation—May occur at any time to indicate the 604e cannot use the
bus. The 604e may stillassume bus mastership on the bus clock cycle
of the negation oBG because during the previous cyBlB

indicated to the 604e that it was free to take mastership (if qualified).

7.2.1.3 Address Bus Busy ( ABB)
The address bus bus&EB) signal is both an input and an output signal.

7.2.1.3.1 Address Bus Busy ( ABB)—Output
Following are the state meaning and timing comments fohBi& output signal.

State Meaning Asserted—Indicates that the 604e is the address bus master. See
Section 8.3.1, “Address Bus Arbitration.”

Negated—Indicates that the 604e is not using the address bus. If
ABB is negated during the bus clock cycle following a qualified bus
grant, the 604e did not accept mastership, evBRifvas asserted.
This can occur if a potential transaction is aborted internally before
the transaction is started.

Timing Comments Assertion—Occurs on the bus clock cycle following a qualifssl
that is accepted by the processor (see Negated).

Negation—Occurs on the bus clock cycle following the assertion of
AACK. If ABB is negated during the bus clock cycle following a
qualified bus grant, the 604e did not accept mastership, eBé&n if
was asserted.

High Impedance—Occurs one-half bus cycle (two-thirds bus cycle
when using 3:1 clock mode, and one-third bus cycle when using 3:2
bus ratio) afteABB is negated. Occurs during fractional portion of
the bus cycle in whicABB is negatedABB is guaranteed by design

to be high impedance by the end of the cycle in which it is negated.

7.2.1.3.2 Address Bus Busy ( ABB)—Input
Following are the state meaning and timing comments foABi input signal.

State Meaning Asserted—Indicates that the address bus is in use. This condition
effectively blocks the 604e from assuming address bus ownership,
regardless of thBG input; see Section 8.3.1, “Address Bus
Arbitration.” Note that the 604e will not take the address bus for the
sequence of cycles beginning wills and ending witiMACK; thus
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effectively making the use &BB optional, provided that other bus
masters respond in the same way.

Negated—Indicates that the address bus is not owned by another bus
master and that it is available to the 604e when accompanied by a
gualified bus grant.

Timing Comments Assertion—May occur when the 604e must be prevented from using
the address bus (and the processor is not currently ass&stz)g

Negation—May occur whenever the 604e can use the address bus.

7.2.2 Address Transfer Start Signals

Address transfer start signals are input and output signals that indicate that an address bus
transfer has begun. The transfer starg) signal identifies the operation as a memory
transaction; extended address transfer s&T(S) identifies the transaction as a direct-
store operation.

For detailed information about hoWwS andXATS interact with other signals, refer to
Section 8.3.2, “Address Transfer,” and Section 8.6, “Direct-Store Operation,” respectively.

7.2.2.1 Transfer Start ( TS)
TheTS signal is both an input and an output signal on the 604e.

7.2.2.1.1 Transfer Start ( TS)—Output
Following are the state meaning and timing comments fof $heutput signal.

State Meaning Asserted—Indicates that the 604e has begun a memory bus
transaction and that the address-bus and transfer-attribute signals are
valid. When asserted with the appropriate TT[0—4] signals it is also
an implied data bus request for a memory transaction (unlessiitis an
address-only operation).

Negated—Has no special meaning. HoweV&js negated during
an entire direct-store address tenure.

Timing Comments Assertion—Coincides with the assertionABB.
Negation—Occurs one bus clock cycle aft€ris asserted.
High Impedance—Occurs one bus clock cycle after the negation of
TS. For the 604e, thES negation is only one bus cycle long,
regardless of th&S-toAACK delay.

7.2.2.1.2 Transfer Start ( TS)—Input
Following are the state meaning and timing comments fof $himput signal.

State Meaning Asserted—Indicates that another master has begun a bus transaction
and that the address bus and transfer attribute signals are valid for
snooping (se&BL).

Negated—Indicates that no bus transaction is occurring.
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Timing Comments Assertion—May occur at any time outside of the cycles that define
the window of an address tenure. This window is marked by either
the interval that includes the cycle of a previdi&assertion through
the cycle afteAACK.

Negation—Must occur one bus clock cycle aft&ris asserted.

7.2.2.2 Extended Address Transfer Start ( XATS)
The XATS signal is both an input and an output signal on the 604e.

7.2.2.2.1 Extended Address Transfer Start ( XATS)—Output
Following are the state meaning and timing comments foXA%S output signal.

State Meaning Asserted—Indicates that the 604e has begun a direct-store operation
and that the first address cycle is valid. When asserted with the
appropriate XATC signals it is also an implied data bus request for
certain direct-store operation (unless it is an address-only operation).

Negated—Has no special meaning; howe¥&T S remains negated
during an entire memory address tenure.

Timing Comments Assertion—Coincides with the assertionABB.
Negation—Occurs one bus clock cycle after the assertiXAo6.

High Impedance—Occurs one bus clock cycle after the negation of
XATS. For the 604e, thEATS negation is only one bus-cycle long,
regardless of th¥ATS-to-AACK delay.

7.2.2.2.2 Extended Address Transfer Start (  XATS)—Input
Following are the state meaning and timing comments foXA¥ES input signal.

State Meaning Asserted—Indicates that the 604e must check for a direct-store
operation reply.

Negated—Indicates that there is no need to check for a direct-store
operation reply.

Timing Comments Assertion—May occur at any time outside of the cycles that define
the window of an address tenure. This window is marked by either
the interval that includes the cycle of a previ¥ésl'S assertion
through the cycle aftekACK or by the cycles in whicABB is
asserted for a previous address tenure, whichever is greater.
Negation—Must occur one bus clock cycle aK&TS is asserted.

7.2.3 Address Transfer Signals

The address transfer signals are used to transmit the address and to generate and monitor
parity for the address transfer. For a detailed description of how these signals interact, refer
to Section 8.3.2, “Address Transfer.”
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7.2.3.1 Address Bus (A[0-31])
The address bus (A[0—31]) consists of 32 signals that are both input and output signals.

7.2.3.1.1 Address Bus (A[0—-31])—Output (Memory Operations)
Following are the state meaning and timing comments for the A[0—31] output signals.

State Meaning Asserted/Negated—Represents the physical address (real address in
the architecture specification) of the data to be transferred. On burst
transfers, the address bus presents the double-word—aligned address
containing the critical code/data that missed the cache on a read
operation, or the first double word of the cache line on a write
operation. Note that the address output during burst operations is not
incremented. See Section 8.3.2, “Address Transfer.”

Timing Comments Assertion/Negation—Occurs on the bus clock cycle after a qualified
bus grant (coincides with assertionABB andTS).

High Impedance—Occurs one bus clock cycle ##®CK is
asserted.

7.2.3.1.2 Address Bus (A[0—31])—Input (Memory Operations)
Following are the state meaning and timing comments for the A[0-31] input signals.

State Meaning Asserted/Negated—Represents the physical address of a snoop
operation.

Timing Comments Assertion/Negation—Must occur on the same bus clock cycle as the
assertion off S; is sampled by 604e only on this cycle.

7.2.3.1.3 Address Bus (A[0—31])—Output (Direct-Store Operations)

Following are the state meaning and timing comments for the address bus signals (AO—
A31) for output direct-store operations on the 604e.

State Meaning Asserted/Negated—For direct-store operations where the 604e is the
master, the address tenure consists of two packets (each requiring a
bus cycle). For packet 0, these signals convey control and tag
information. For packet 1, these signals represent the physical
address of the data to be transferred. For reply operations, the
address bus contains control, status, and tag information.

Timing Comments Assertion/Negation—Address tenure consists of two beats. The first
beat occurs on the bus clock cycle after a qualified bus grant,
coinciding withXATS. The address bus transitions to the second
beat on the next bus clock cycle.

High Impedance—Occurs on the bus clock cycle €K is
asserted.
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7.2.3.1.4 Address Bus (A[0-31])—Input (Direct-Store Operations)

Following are the state meaning and timing comments for input direct-store operations on
the 604e.

State Meaning Asserted/Negated—When the 604e is not the master, it snoops (and
checks address parity) on the first address beat only of all direct-store
operations for an I/O reply operation with a receiver tag that matches
its PID tag. See Section 8.6, “Direct-Store Operation.”

Timing Comments Assertion/Negation—The first beat of the I/O transfer address tenure
coincides withXATS, with the second address bus beat on the
following cycle.

7.2.3.2 Address Bus Parity (AP[0-3])

The address bus parity (AP[0-3]) signals are both input and output signals reflecting one
bit of odd-byte parity for each of the four bytes of address when a valid address is on the
bus.

7.2.3.2.1 Address Bus Parity (AP[0-3])—Output

Following are the state meaning and timing comments for the AP[0—3] output signal on the
604e.

State Meaning Asserted/Negated—Represents odd parity for each of four bytes of
the physical address for a transaction. Odd parity means that an odd
number of bits, including the parity bit, are driven high. The signal
assignments correspond to the following:

APO  A[0-7]

AP1 A[8-15]
AP2  A[16-23]
AP3  A[24-31]

For more information, see Section 8.3.2.1, “Address Bus Parity.”

Timing Comments Assertion/Negation—The same as A[0-31].
High Impedance—The same as A[0-31].

7.2.3.2.2 Address Bus Parity (AP[0-3])—Input

Following are the state meaning and timing comments for the AP[0-3] input signal on the
604e.

State Meaning Asserted/Negated—Represents odd parity for each of four bytes of
the physical address for snooping and direct-store operations.
Detected even parity causes the processor to enter the checkstop
state, or take a machine check exception depending on whether
address parity checking is enabled in the HIDO register and the
condition of the MSR[ME] bit; see Section Table 2-3, “. Hardware
Implementation-Dependent Register 0 Bit Settings.” (See also the
APE signal description.)

Timing Comments Assertion/Negation—The same as A[0-31].
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7.2.3.3 Address Parity Error (  APE)—Output

The address parity erroAPE) signal is an output signal on the 604e. Note that &feE)

signal is an open-drain type output, and requires an external pull-up resistor (for example,
10 k to Vdd) to assure proper deassertion of &fE signal). Following are the state
meaning and timing comments for tA@E signal on the 604e. For more information, see
Section 8.3.2.1, “Address Bus Parity.”

State Meaning Asserted—Indicates incorrect address bus parity has been detected
by the processor on a snoop of a transaction type that the processor
recognizes and can respond to. This includes the first address beat of
a direct-store operation.

Negated—Indicates that the 604e has not detected a parity error
(even parity) on the address bus.

Timing Comments Assertion—Occurs on the second bus clock cycle af&orXATS
IS asserted.

High Impedance—Occurs on the third bus clock cycle a®eor
XATS is asserted.

7.2.4 Address Transfer Attribute Signals

The transfer attribute signals are a set of signals that further characterize the transfer—such
as the size of the transfer, whether it is a read or write operation, and whether it is a burst

or single-beat transfer. For a detailed description of how these signals interact, see

Section 8.3.2, “Address Transfer.”

Note that some signal functions vary depending on whether the transaction is a memory
access or an /O access. For a description of how these signals function for direct-store
operations, see Section 8.6, “Direct-Store Operation.”

7.2.4.1 Transfer Type (TT[0-4])

The transfer type (TT[0—4]) signals consist of five input/output signals on the 604e. For a
complete description of TT[0—-4] signals and for transfer type encodings, see Table 7-1.

7.2.4.1.1 Transfer Type (TT[0—-4])—Output

Following are the state meaning and timing comments for the TT[0—4] output signals on
the 604e.

State Meaning Asserted/Negated—Indicates the type of transfer in progress.

For direct-store operations these signals are part of the extended
address transfer code (XATC) along with TSIZ al85T:

XATC(0-7)=TT(0-3)[TBST||TSIZ(0-2).
Timing Comments Assertion/Negation/High Impedance—The same as A[0-31].

7-10 PowerPC 604e RISC Microprocessor User's Manual



7.2.4.1.2 Transfer Type (TT[0—4])—Input

Following are the state meaning and timing comments for the TT[0—4] input signhals on the
604e.

State Meaning Asserted/Negated—Indicates the type of transfer in progress (see
Table 7-1). For direct-store operations, the TTO-TT3 signals form
part of the XATC and are snooped by the 602€ATS is asserted.

Timing Comments Assertion/Negation—The same as A[0-31].

Table 7-1 describes the transfer encodings for a 604e bus master and the 60x bus
specification.

Table 7-1. Transfer Encoding for PowerPC 604e Processor Bus Master

604e Bus Master

TT[0-4] Transaction Transaction Transaction Source
00000 |Clean block Address only Cache operation
00100 | Flush block Address only Cache operation
01000 |SYNC Address only Cache operation
01100 |Kill block Address only Store hit/shared or cache operation
10000 |Ordered I/O operation Address only eieio (The 604e does not snoop eieio transactions.)

10100 |[External control word write | Single-beat write |ecowx (The 604e does not snoop ecowx transactions.)

11000 |TLB invalidate Address only tibie

11100 |External control word read | Single-beat read |eciwx (The 604e does not snoop eciwx transactions.)

00001 |lwarx reservation set Address only Ilwarx operation that hit in the cache at the time of its
execution. The cache block may have been flushed
between execution of the Iwarx and broadcast of the
reservation set operation. Note that the 604e does not
snoop lwarx reservation set operations.

00101 |Reserved Address only N/A
01001 |TLBSYNC Address only tibsync
01101 |ICBI Address only N/A
1xx01 |Reserved — N/A (The 604e does not snoop.)
00010 | Write with flush Single-beat write | Caching-inhibited or write-through store
or burst
00110 | Write with Kkill Single-beat write | Cast-out, snoop copy-back, dcbf, or dcbst instruction
or burst that hit on modified data.
01010 |Read Single-beat read | Cacheable load miss—cacheable instruction miss,
or burst cache-inhibited load, cache-inhibited instruction fetch.
01110 |Read with intent to modify |Burst Store miss
10010 | Write with flush atomic Single-beat write | stwcx.
10110 |Reserved N/A N/A
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Table 7-1. Transfer Encoding for PowerPC 604e Processor Bus Master (Continued)

TT[0-4] 604e Bus Master Transaction Transaction Source
Transaction
11010 |Read atomic Single-beat read |Iwarx
or burst
11110 |Read with intent to modify | Burst stwcx. miss with valid reservation
atomic
00011 |Reserved — N/A (The 604e does not snoop.)
00111 |Reserved — N/A (The 604e does not snoop.)
01011 |Read with no intent to Single-beat read |N/A
cache or burst
01111 |Reserved — N/A (The 604e does not snoop.)
1xx11 |Reserved — N/A (The 604e does not snoop.)
7.2.4.2 Transfer Size (TSI1Z[0-2])

The transfer size (TSI1Z[0-2]) signals consist of three input/output signals on the 604e.

7.2.4.2.1 Transfer Size (TSIZ[0-2])—Output
Following are the state meaning and timing comments for the TSIZ[0-2] output signals on

the 604e.
State Meaning

Timing Comments

Asserted/Negated—For memory accesses, these signals along with
TBST, indicate the data transfer size for the current bus operation, as
shown in Table 7-2. Table 8-4 shows how the TSIZ signals are used
with the address signals for aligned transfers. Table 8-5 shows how
the TSIZ signals are used with the address signals for misaligned
transfers. For I/O transfer protocol, these signals form part of the I/O
transfer code; see the description in Section 7.2.4.1, “Transfer Type
(TT[O-4]).

For external control instructiong¢iwx andecowy), TSIZ[0-2] are
used to output bits 29-31 of the external access register (EAR),
which are used to form the resource MBET||TSIZ[0-2]).

Assertion/Negation—The same as A[0-31].
High Impedance—The same as A[0-31].
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Table 7-2. Data Transfer Size

TBST TSIZ[0-2] Transfer Size
Asserted 010 Burst (32 bytes)
Negated 000 8 bytes
Negated 001 1 byte
Negated 010 2 bytes
Negated 011 3 bytes
Negated 100 4 bytes
Negated 101 5 bytes
Negated 110 6 bytes
Negated 111 7 bytes

7.2.4.2.2 Transfer Size (TSIZ[0-2])—Input

Following are the state meaning and timing comments for the TSIZ[0-2] input signals on
the 604e.

State Meaning Asserted/Negated For the direct-store protocol, these signals form
part of the I/O transfer code; see Section 7.2.4.1, “Transfer Type
(TT[O-4]).

Timing Comments Assertion/Negation—The same as A[0-31].

7.2.4.3 Transfer Burst ( TBST)
The transfer burstTBST) signal is an input/output signal on the 604e.

7.2.4.3.1 Transfer Burst ( TBST)—Output
Following are the state meaning and timing comments fof B&T output signal.
State Meaning Asserted—Indicates that a burst transfer is in progress.

Negated—Indicates that a burst transfer is not in progress. Also, part
of I/O transfer code; see Section 7.2.4.1, “Transfer Type (TT[0-4]).

For external control instructions¢iwxandecowy, TBST is used to
output bit 28 of the EAR, which is used to form the resource 1D
(TBST||TSIZ[0-2)).

Timing Comments Assertion/Negation—The same as A[0-31].
High Impedance—The same as A[0-31].
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7.2.4.3.2 Transfer Burst ( TBST)—Input
Following are the state meaning and timing comments fof B&T input signal.

State Meaning

Asserted/Negated— For the I/O transfer protocol, this signal forms
part of the 1/O transfer code; see Section 7.2.4.1, “Transfer Type
(TT[O-4]).

Timing Comments Assertion/Negation—The same as A[0-31].

7.2.4.4 Transfer Code (TC[0-2])—Output

The transfer code (TC[0-2]) consists of three output signals on the 604e that, when
combined with theWT signal, provide additional information about the transaction in
progress. Following are the state meaning and timing comments for the TC[0-2] signals.

State Meaning

Timing Comments

Asserted/Negated—Represents a special encoding for the transfer in
progress (see Table 7-3).

Assertion/Negation—The same as A[0-31].
High Impedance—The same as A[0-31].

Table 7-3. Transfer Code Signal Encoding

Transfer
Type

wr?

TC[0-2]

BR
Asserted
2,3

From
Copyback
Buffer

TS after
ARTRYd
Snoop 4

Final
MESI
State®

Comments

Write
with kill

100

Never

Always

Don't
care

Cache copy-back

xx0

No

Yes

Yes

M, E, Sor

Could be cache copy-back, block
clean (dcbst ), or block flush (dcbf)
To distinguish between these
operations, this transaction must be
ARTRYd. This transaction eventually
returns (before anything but another
snoop push directly from the data
cache) indicating another WT/TC code
combination.

100

No

Yes

No

Block flush (dcbf)

000

No

Yes

No

M, E, or |

Block clean (dcbst )

The dcbst instruction changes the
data cache state to E when the
modified line is placed in the copy-
back buffer queue. Before the low-
priority copy-back buffer entry
successfully completes its address
tenure, the data cache line state can
be changed to M by a subsequent
store to that line; it can be changed to |
by either a subsequent dcbi
instruction or by a cache-miss.
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Table 7-3. Transfer Code Signal Encoding

(Continued)

Transfer
Type

TC[0-2]

BR
Asserted
2,3

From
Copyback
Buffer

TS after
ARTRYd
Snoop 4

Final
MESI
State®

Comments

Write
with kill

010

Yes

No

Don't
care

Sorl

Snoop push® directly from data cache
(read or read-atomic)

The read or read-atomic snoop
changes the data cache state to S
when the modified line is placed in the
snoop push buffer queue. Before the
snoop push buffer successfully
completes its address tenure, the data
cache line state can be changed to |
by either a subsequent dcbi
instruction or cache-miss.

010

Yes

Yes

Don't
care

Sorl

Snoop push6 from copy-back buffer
(read or read-atomic)

In this case, the processor keeps a
shared copy in the data cache if this
copy-back buffer contained a block
clean (dcbst ) transaction. If the copy-
back buffer contained a block flush
(dcbf) or a cache copy-back
transaction, the processor has no valid
copy of this line in its data cache after
this transaction completes
successfully.

To determine whether the processor
has kept a shared copy or has
invalidated this line, this transaction
must be ARTRYd. If this transaction
originated from the copy-back buffers
and no new snoops are given to the
processor, the transaction immediately
comes back as the next TS and
indicates a DCBF, DCBST, or copy-
back WT/TC code. If the transaction
comes back as a snoop push read, it
came from the data cache.

100

Yes

No

Don’t
care

Snoop push6 directly from data cache
(RWITM, RWITM-atomic, flush, write
with flush, write with flush-atomic, or
kill)

100

Yes

Yes

Don't
care

Snoop push6 from copy-back buffers
(RWITM, RWITM-atomic, flush, write
with flush atomic, write with flush, write
with Kill, or kill)
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Table 7-3. Transfer Code Signal Encoding (Continued)

Transfer
Type

TC[0-2]

BR
Asserted
2,3

From
Copyback
Buffer

TS after
ARTRYd
Snoop 4

Final
MESI
State®

Comments

Write
with kill

000

Yes

No

Don't
care

M, E, or |

Snoop push® from data cache (clean
or RWNITC).

The clean or RWNITC snoop changes
the data cache state to E when the
modified line is placed in the snoop
push buffer queue. Before the snoop
push buffer successfully completes its
address tenure, the data cache line
state can be changed to M by a
subsequent store to that line, or it can
be changed to | by either a
subsequent DCBI instruction or cache
miss.

000

Yes

Yes

Don't
care

M, E, or |
(if dcbst
in buffer)

| (if cache
copy-back
or debf in
buffer)

Snoop push® from copy-back buffers
(clean or RWNITC)

If this snoop hit on a block flush (dcbf)
or a cache copy-back in the copy-back
buffers, the processor does not have a
valid copy of this address after this
transaction completes successfully. If
this snoop hit on a block store (dcbst )
in the copy-back buffers, the processor
can keep an exclusive copy of the
cache block.

100

000

001

000

Never

No

Don't
care

Kill block deallocate (dcbi)

Kill block & allocate no castout
required (dcbz)

Kill block & allocate castout required
(dcbz)

Kill block; write to block marked S

Read

W8

0x0

Ox1

Never

No

Don't
care

EorS

Data read no castout required

The cache state is S if SHD was
asserted to the processor for a read or
read-atomic transaction. If SHD was
not asserted or if the transaction was
an RWITM or RWITM-atomic
transaction, the cache state is E.

EorS

Data read castout required

The cache state is S if SHD was
asserted to the processor for a read or
read-atomic transaction. If SHD was
not asserted, or if the transaction was
an RWITM or RWITM-atomic
transaction, the cache state is E.
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Table 7-3. Transfer Code Signal Encoding (Continued)

Transfer | - BR From TS after Final
Tvoe wrtt TC[0-2] | Asserted | Copyback | ARTRYd MESI Comments
yp 2.3 Buffer Snoop 4 State®
Read w 1x0 Never No Don't Valid in Instruction read
care instruction
cache
ICBI X 100 Never No Don't Invalid in Kill block deallocate (ichi 9)
care instruction
cache

1 The value shown in the WT column reflects the actual logic value seen on the signal (active low).

2 The window of opportunity for the assertion of BR is defined as the second cycle after AACK if ARTRY were asserted the
cycle after AACK.

3 The full condition for this column is “The BR corresponding to this transaction was asserted in the window of opportunity
for the last snoop to this address.”

4 The full condition for this column is “This transaction is the first TS asserted by this processor after one or more ARTRYd
snoop transactions and the address of this transaction matches the address of at least one of those ARTRYd snoop
transactions.”

5 This column reflects the final MESI state in the processor of the line referenced by this transaction after the transaction
completes successfully without ARTRY.

6 This snoop push is guaranteed to push the most recently modified data in the processor. No more snoop operations are
required to ensure that this snoop has been fully processed by the processor.

7 READ in this case encompasses all of read or RWITM, normal or atomic.

8w = write-through bit from translation. WT is active-high and is the inverse of the setting of the W bit.

%ichi is distinguished from kill block by assertion of TT4.

7.2.4.5 Cache Inhibit ( Cl)—Output

The cache inhibit CI) signal is an output signal on the 604e. Following are the state
meaning and timing comments for tBésignal.

State Meaning Asserted—Indicates that a single-beat transfer will not be cached,
reflecting the setting of the | bit for the block or page that contains

the address of the current transaction.

Negated—Indicates that a burst transfer will allocate a line in the
604e data cache.

Timing Comments Assertion/Negation—The same as A[0-31].
High Impedance—The same as A[0-31].

7.2.4.6 Write-Through ( WT)—Output

The write-through WT) signal is an output signal on the 604e. Following are the state
meaning and timing comments for M signal.

State Meaning Asserted—Indicates that a single-beat transaction is write-through,
reflecting the value of the W bit for the block or page that contains

the address of the current transaction.
Negated—Indicates that a transaction is not write-through.

Timing Comments Assertion/Negation—The same as A[0-31].
High Impedance—The same as A[0-31].
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7.2.4.7 Global (GBL)
The global GBL) signal is an input/output signal on the 604e.

7.2.4.7.1 Global (GBL)—Output

Following are the state meaning and timing comments faGiile output signal.

State Meaning Asserted—Indicates that a transaction is global, reflecting the setting
of the M bit for the block or page that contains the address of the

current transaction (except in the case of copy-back operations,
which are nonglobal.)

Negated—Indicates that a transaction is not global.
Timing Comments Assertion/Negation—The same as A[0-31].
High Impedance—The same as A[0-31].

7.2.4.7.2 Global (GBL)—Input

Following are the state meaning and timing comments foGBieinput signal.

State Meaning Asserted—Indicates that a transaction may be snooped by the 604e.
The 604e will not snoop, regardlessGBL signal assertion,
reserved transaction types, bus operations associated witheibe

eciwx, ecowxinstructions, or the address-only bus transaction
associated with Rvarx reservation set.

Negated—Indicates that a transaction is not snooped by the 604e.
Timing Comments Assertion/Negation—The same as A[0-31].

7.2.4.8 Cache Set Element (CSE[0-1])—Output
Following are the state meaning and timing comments for the CSE[0-1] signals.

State Meaning Asserted/Negated—Represents the cache replacement set element
for the current transaction reloading into or writing out of the cache.
Can be used with the address bus and the transfer attribute signals to
externally track the state of each cache line in the 604e’s cache.

Timing Comments Assertion/Negation—The same as A[0-31].
High Impedance—The same as A[0-31].

7.2.5 Address Transfer Termination Signals

The address transfer termination signals are used to indicate either that the address phase
of the transaction has completed successfully or must be repeated, and when it should be
terminated. For detailed information about how these signals interact, see Section 8.3.3,
“Address Transfer Termination.”

7.2.5.1 Address Acknowledge ( AACK)—Input

The address acknowledg@ACK) signal is an input signal (input-only) on the 604e.
Following are the state meaning and timing comments foA&1EeK signal.
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State Meaning Asserted—Indicates that the address phase of a transaction is
complete. The address bus will go to a high-impedance state on the
next bus clock cycle. The processor sample$RY on the bus
clock cycle following the assertion 8/ACK. The 604e also
supports sampling &&RTRY as early as the second cycle afté&:

Negated—Indicates that the address bus and the transfer attributes
must remain driven, if negated duriAgB.

Timing Comments Assertion—May occur as early as the bus clock cycle afeor
XATS is asserted; assertion can be delayed to allow adequate address
access time for slow devices. For example, if an implementation
supports slow snooping devices, an external arbiter can postpone the
assertion oAACK.

Negation—Must occur one bus clock cycle after the assertion of
AACK.

7.2.5.2 Address Retry ( ARTRY)
The address retnARTRY) signal is both an input and output signal on the 604e.

7.2.5.2.1 Address Retry ( ARTRY)—Output
Following are the state meaning and timing comments foARIERY output signal.

State Meaning Asserted—Indicates that the 604e detects a condition in which a
snooped address tenure must be retried. If the processor needs to
update memory as a result of the snoop that caused the retry, the
processor asser®&R in the window of opportunity for that snoop.
The window of opportunity is defined as the second cycle after
AACK if ARTRY was asserted the cycle afted CK.

High Impedance—Indicates that the 604e does not need the snooped
address tenure to be retried.

Timing Comments Assertion—Asserted the second bus cycle after the assertidsiof
a retry is required. Thus, when a retry is required, there is only one
empty cycle between the assertionlf&f and the assertion of
ARTRY.

Negation—Occurs the second bus cycle after the assertiAGK.
Since this signal may be simultaneously driven by multiple devices,
it is driven negated in the following ways:

 1:1 and 2:1 bus ratio—high-impedance for 1/2 bus clock cycle,
deasserted for 1 bus clock cycle, then high-impedance.

» 3:1 bus ratio—high-impedance for 1/3 bus clock cycle, deasserted
for 2/3 bus clock cycle, then high-impedance.

* 3:2 bus ratio—high-impedance for 1/3 system clock cycle,
deasserted for 1 bus clock cycle, then high-impedance.
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This special method of negation may be disabled by setting the
disable snoop response high state restore bit (bit 7) in HIDO.

ARTRY becomes high impedance for at least one half bus cycle, then
is driven high for approximately one bus cy@RTRY is then
guaranteed by design to become high impedance at latest by the start
of third cycle afte AACK.

7.2.5.2.2 Address Retry ( ARTRY)—Input
Following are the state meaning and timing comments foARIERY input signal.

State Meaning

Timing Comments

Asserted—If the 604e is the address bus maSETRY indicates

that the 604e must retry the preceding address tenure and
immediately negatBR (if asserted). If the associated data tenure has
already started, the 604e will also abort the data tenure immediately,
even if the burst data has been received. If the 604e is not the address
bus master, this input indicates that the 604e should immediately
negateBR for one bus clock cycle following the assertionr®XdRTRY

by the snooping bus master to allow an opportunity for a copy-back
operation to main memory.

Negated/High Impedance—Indicates that the 604e does not need to
retry the last address tenure.

Assertion—May occur as early as the second cycle following the
assertion off S orXATS, and must occur by the bus clock cycle
immediately following the assertion AACK if an address retry is
required.

Negation—Must occur during the second cycle after the assertion of
AACK.

7.2.5.3 Shared (SHD)
The shared3HD) signal is both an input and output signal on the 604e.

7.2.5.3.1 Shared (SHD)—Output
Following are the state meaning and timing comments fd8Hi2 output signal.

State Meaning

Timing Comments

Asserted—IfARTRY is not asserted, indicates that after this
transaction completes successfully, the master will keep a valid
shared copy of the address or that a reservation exists on this address.
If SHD is asserted witARTRY for a given snooping master, this
indicates that the snoop scored a hit on modified data that will be
pushed from that master as its next address transaction.

Negated/High Impedance—Indicates that after this address
transaction completes successfully, the processor will not have a
valid copy of the snooped address.

Assertion/Negation—Same ARTRY.
High Impedance—Same ARTRY.
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7.2.5.3.2 Shared (SHD)—Input
Following are the state meaning and timing comments fosie input signal.

State Meaning Asserted—IfARTRY is not asserted, indicates that for a self-
generated transaction the 604e must allocate the incoming cache
block as shared-unmodified.

Negated—IfARTRY is not asserted, indicates that for a self-
generated read or read-atomic transaction, the master can allocate
the incoming cache block as exclusive-unmodified.

Timing Comments Assertion/Negation—The sameARTRY.

7.2.6 Data Bus Arbitration Signals

Like the address bus arbitration signals, data bus arbitration signals maintain an orderly
process for determining data bus mastership. Note that there is no data bus arbitration signal
equivalent to the address bus arbitration sigBR (bus request), because, except for
address-only transactiongS andXATS imply data bus requests. For a detailed description

on how these signals interact, see Section 8.4.1, “Data Bus Arbitration.”

One special signaDBWO, allows the 604e to be configured dynamically to write data out
of order with respect to read data. For detailed information about USB@WO, see
Section 8.11, “Using Data Bus Write Only.”

7.2.6.1 Data Bus Grant ( DBG)—Input

The data bus granDBG) signal is an input signal (input-only) on the 604e. Following are
the state meaning and timing comments forDB& signal.

State Meaning Asserted—Indicates that the 604e may, with the proper qualification,
assume mastership of the data bus. The 604e derives a qualified data
bus grant whe®BG is asserted arildBB, DRTRY, andARTRY are
negated; that is, the data bus is not buBBB is negated), there is no
outstanding attempt to retry the current data terlDRIRY is
negated), and there is no outstanding attempt to perforARARY
of the associated address tenure.

The master achieves the position of master of the data bus (that is,
has achieved a qualified data bus grant) when the following
conditions are met:

The data bus is not bus budyBB is negated). (This condition does
not apply to the 604e or 604e in fast-L2 mode.)

DRTRY is negated. (This condition does not apply to the 604e in
fast-L2 mode or the 604e in fast-L2 or B&TRY mode.)

ARTRY is negated iARTRY applies to the associated address
tenure.

Negated—Indicates that the 604e must hold off its data tenures.
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Timing Comments Assertion—May occur any time to indicate that the processor or

other master is free to assume the position of master of the data bus.
The earliest it is sampled by the processor is the same dygler
XATS is asserted.

For the 604e in fast-L2 mod®BG must be asserted no earlier than
the cycle before 604e's data tenure is to commence only when
another master currently owns the data bus (that is, DB&h

would normally be asserted for a data tenure). If no other masters
currently own the data bus (assertiDBB), the 604e allows the
system to parlbBG on 604eDBB is still an output-only signal in
fast-L2 Mode (that iSDBB does not participate in determining
qualified data bus grant), requiring the system toB& to ensure

that different masters do not collide on data tenures. If the system
attempts to stream any back-to-back data tenures by assBBiGg

with the finalTA of the first data tenure, the processor will accept the
DBG as a qualified data bus grant only if the current data tenure is a
burst read and the next data tenure is a burst read. The 604e will not
allow the system to stream any two other types of data tenures.

7.2.6.2 Data Bus Write Only ( DBWO)—Input

The data bus write onlyDBWO) signal is an input signal (input-only) on the 604e.
Following are the state meaning and timing comments fdDBWO signal.

State Meaning

Asserted—Indicates that the 604e may run the data bus tenure for an
outstanding write address even if a read address is pipelined before
the write address. Refer to Section 8.11, “Using Data Bus Write
Only,” for detailed instructions for usirigBWO.

Negated—Indicates that the 604e must run the data bus tenures in the
same order as the address tenures.

Timing Comments Assertion—Must occur no later than a qualifi2dG for an

outstanding write tenur&BWO is only recognized by the 604e on
the clock of a qualifie®@BG. If no write requests are pending, the
604e will ignoreDBWO and assume data bus ownership for the next
pending read request.

Negation—May occur any time after a qualified data bus grant and
before the next qualified data bus grant.

7.2.6.3 Data Bus Busy ( DBB)
The data bus busyYBB) signal is both an input and output signal on the 604e.

7.2.6.3.1 Data Bus Busy ( DBB)—Output
Following are the state meaning and timing comments fdDB® output signal.
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State Meaning Asserted—Indicates that the 604e is the data bus master. The 604e
always assumes data bus mastership if it needs the data bus and is
given aqualifieddata bus grant (sé2BG).

Negated—Indicates that the 604e is not using the data bus, unless the
data tenure is being extended by the asserti@RIRY. Note that

for the 604e in NnMRTRY mode,DRTRY is tied asserted and is
ignored.

Timing Comments Assertion—Occurs during the bus clock cycle following a qualified
DBG.

Negation—Occurs for a fractional bus clock cycle following the
assertion of the findlA.

High Impedance—Occurs one-half bus cycle (two-thirds bus cycle
when using 3:1 clock mode, and one-third bus cycle when using 3:2
bus ratio) afteDBB is negated.

7.2.6.3.2 Data Bus Busy ( DBB)—Input

Following are the state meaning and timing comments foDB8 input signal. Note that
theDBB input signal cannot be used in systems that use read data streaming.

State Meaning Asserted—Indicates that another device is bus master.
Negated—Indicates that the data bus is free (with proper
gualification, se®BG) for use by the 604e.

Timing Comments Assertion—Must occur when the 604e must be prevented from using
the data bus.

Negation—May occur whenever the data bus is available.

7.2.7 Data Transfer Signals

Like the address transfer signals, the data transfer signals are used to transmit data and to
generate and monitor parity for the data transfer. For a detailed description of how the data
transfer signals interact, see Section 8.4.3, “Data Transfer.”

7.2.7.1 Data Bus (DH[0-31], DL[0-31])

The data bus (DH[0—-31] and DL[0—31]) consists of 64 signals that are both input and output
on the 604e. Following are the state meaning and timing comments for the DH and DL
signals.

State Meaning The data bus has two halves—data bus high (DH) and data bus low
(DL). See Table 7-4 for the data bus lane assignments. Direct-store
operations use DH exclusively (that is, there are no 64-bit, 1/0
transfers).

Timing Comments The data bus is driven once for noncached transactions and four
times for cache transactions (bursts).
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Table 7-4. Data Bus Lane Assignments

Data Bus Signals Byte Lane
DH[0-7] 0
DH[8-15] 1
DH[16—23] 2
DH[24-31] 3
DL[0-7] 4
DL[8-15] 5
DL[16-23] 6
DL[24-31] 7

7.2.7.1.1 Data Bus (DH[0-31], DL[0-31])—Output
Following are the state meaning and timing comments for the DH and DL output signals.

State Meaning Asserted/NegatedRepresents the state of data during a data write.
Byte lanes not selected for data transfer will not supply valid data.

Timing Comments Assertion/Negation—Initial beat coincides widB and, for
bursts, transitions on the bus clock cycle following each assertion of
TA.

High Impedance—Occurs on the bus clock cycle after the final
assertion offA.

7.2.7.1.2 Data Bus (DH[0-31], DL[0-31])—Input
Following are the state meaning and timing comments for the DH and DL input signals.

State Meaning Asserted/Negated—Represents the state of data during a data read
transaction.

Timing Comments Assertion/Negation—Data must be valid on the same bus clock cycle
thatTA is asserted.

7.2.7.2 Data Bus Parity (DP[0-7])
The eight data bus parity (DP[0—7]) signals on the 604e are both output and input signals.

7.2.7.2.1 Data Bus Parity (DP[0-7])—Output
Following are the state meaning and timing comments for the DP output signals.

State Meaning Asserted/Negated—Represents odd parity for each of eight bytes of
data write transactions. Odd parity means that an odd number of bits,
including the parity bit, are driven high. The signal assignments are
listed in Table 7-5.
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Timing Comments Assertion/Negation—The same as DL[0-31].

High Impedance—The same as DL[0-31].
Table 7-5. DP[0-7] Signal Assignments

Signal Name Signal Assignments

DPO DH[0-7]

DP1 DH[8-15]

DP2 DH[16-23]

DP3 DH[24-31]

DP4 DL[0-7]

DP5 DL[8-15]

DP6 DL[16-23]

DP7 DL[24-31]

7.2.7.2.2 Data Bus Parity (DP[0-7])—Input
Following are the state meaning and timing comments for the DP input signals.

State Meaning

Timing Comments

Asserted/Negated—Represents odd parity for each byte of read data.
Parity is checked on all data byte lanes during data read operations,
regardless of the size of the transfer. During direct-store read
operations, only the DP[0-3] signals (corresponding to byte lanes
DH[0-31]) are checked for odd parity. Detected even parity causes a
checkstop or a machine check exception (and assertidRIBY if

data parity errors are enabled in the HID register. (The DP[0-7]
signals function in the same way as the AP[0-3] signals.)

Assertion/Negation—The same as DL[0-31].

7.2.7.3 Data Parity Error ( DPE)—Output

The data parity errof¥PE) signal is an output signal (output-only) on the 604e. Note that
the OPE) signal is an open-drain type output, and requires an external pull-up resistor (for
example, 10 k to Vdd) to assure proper deassertion ofFRE] signal. Following are the
state meaning and timing comments forEHeE signal.

State Meaning

Timing Comments

Asserted—Indicates incorrect data bus parity.
Negated—Indicates correct data bus parity.

Assertion—Occurs on the second bus clock cycle s asserted
to the 604e.

High Impedance—Occurs on the third bus clock cycle aReis
asserted to the 604e.

Chapter 7. Signal Descriptions 7-25



7.2.7.4 Data Bus Disable ( DBDIS)—Input

The Data Bus DisableDBDIS) signal is an input signal (input-only) on the 604e.
Following are the state meanings and timing comments fADBiAS signal.

State Meaning Asserted—Indicates for a write transaction that the processor must
release the data bus (DH[0-31] and DL[0-31]) and the data bus
parity (DP[0-7]) to high impedance during the following cycle. The
data tenure will remain activBBB will remain driven, and the
transfer termination signals will still be monitored by the 604e.

Negated—Indicates the data bus should remain normally driven.
DBDIS is ignored during read transactions.

Timing Comments Assertion/Negation—May be asserted on any clock cycle when the
604e is driving, or will be driving the data bus; may remain asserted
multiple cycles.

7.2.8 Data Transfer Termination Signals

Data termination signals are required after each data beat in a data transfer. Note that in a
single-beat transaction, the data termination signals also indicate the end of the tenure,
while in burst accesses, the data termination signals apply to individual beats and indicate
the end of the tenure only after the final data beat.

For a detailed description of how these signals interact, see Section 8.4.4, “Data Transfer
Termination.”

7.2.8.1 Transfer Acknowledge ( TA)—Input

The transfer acknowledg@A&) signal is an input signal (input-only) on the 604e. Following
are the state meaning and timing comments folf#hsignal.

State Meaning Asserted— Indicates that a single-beat data transfer completed
successfully or that a data beat in a burst transfer completed
successfully (unledSRTRY is asserted on the next bus clock cycle).
Note thafTA must be asserted for each data beat in a burst
transaction. For more information, see Section 8.4.4, “Data Transfer
Termination.”

Negated—(Durind>BB) indicates that, untiTA is asserted, the
604e must continue to drive the data for the current write or must
wait to sample the data for reads.

Timing Comments Assertion—When the bus is configured for normal operation, must
not occur earlier than one bus clock cycle before the beginning of the
valid ARTRY window, or when the bus is configured for fast-L2
mode, must not be asserted earlier than the first cycle of a valid
ARTRY window; otherwise, assertion may occur at any time during
the assertion dPBB. The system can withhold assertionréfto
indicate that the 604e should insert wait states to extend the duration
of the data beat.
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Negation—Must occur after the bus clock cycle of the final (or only)
data beat of the transfer. For a burst transfer, the system canBssert
for one bus clock cycle and then negate it to advance the burst
transfer to the next beat and insert wait states during the next beat.

7.2.8.2 Data Retry ( DRTRY)—Input

The data retry[DRTRY) signal is input only on the 604e. Following are the state meaning
and timing comments for tHeRTRY signal.

State Meaning

Timing Comments

Asserted—Indicates that the 604e must invalidate the data from the
previous read operation.

Negated—Indicates that data presented Wilon the previous read
operation is valid. This is essentially a |afto allow speculative
forwarding of data (witiTA) during reads. Note th&RTRY is
ignored for write transactions.

Assertion—Must occur during the bus clock cycle immediately after
TAis asserted if a retry is required. TBRRTRY signal may be held
asserted for multiple bus clock cycles. WIHRTRY is negated,
data must have been valid on the previous clock Witasserted.

Negatior—Must occur during the bus clock cycle after a valid data
beat. This may occur several cycles ald®B is negated, effectively
extending the data bus tenure.

Startup—PRTRY is sampled at the negation BHRESET; ifDRTRY

Is asserted, fast-L2 mode is selecteddRTRY is negated at startup,
DRTRY is enabledDRTRY must be negated during normal
operation (followingHRESET) if fast-L2/data streaming mode is
selected.

7.2.8.3 Transfer Error Acknowledge ( TEA)—Input

The transfer error acknowledg€&EA) signal is input only on the 604e. Following are the
state meaning and timing comments for Ti&A signal.

State Meaning

Asserted—Indicates that a bus error occurred. Causes a machine
check exception (and possibly causes the processor to enter
checkstop state if machine check enable bit is cleared

(MSR[ME] = 0)). For more information, see Section 4.5.2.2,
“Checkstop State (MSR[ME] = 0).” Assertion terminates the current
transaction; that is, assertion@ andDRTRY are ignored. The
assertion o EA causes the negation/high impedancB®BB in the

next clock cycle. However, data entering the GPR or the cache are
not invalidated. Note that the architecture specification refers to all
exceptions as interrupts.

Note that IfTEA is asserted during a direct-store transaction, the
machine check or checkstop action of Ti#A is delayed and the
following direct-store transactions continue until all data transfers
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from the direct-store segment complete. The bus agent that asserts
TEA must asseffEA for every direct-store data tenure including the
last one. The processor takes a machine check or a checkstop no
sooner than the last direct-store data tenure has been terminated by
the assertion of EA. The load or store reply is not necessary after
the last data tenure has receivelE#\ assertion.

Negated—Indicates that no bus error was detected

Timing Comments Assertion—May be asserted whilBB is asserted, or during valid
DRTRY window. In fast-L2/data streaming mode, the 604e will not
recognizeTEA the cycle afteiTA during a read operation due to the
absence of ®RTRY assertion opportunity. ThEEA signal should
be asserted for one cycle only.

Negation— Thel EA signal must be negated no later than the
negation oDBB or the lasDRTRY. The 604e deasseBB within
one bus clock cycle following the assertionl&A.

7.2.9 System Interrupt, Checkstop, and Reset Signals

Most of the system interrupt, checkstop, and reset signals are input signals that indicate
when exceptions are received, when checkstop conditions have occurred, and when the
604e must be reset. The 604e generates the output SEKSITP_OUT, when it detects a
checkstop condition. For a detailed description of these signals, see Section 8.8, “Interrupt,
Checkstop, and Reset Signals.”

7.2.9.1 Interrupt ( INT)—Input

The interrupt [NT) signal is input only. Following are the state meaning and timing
comments for théNT signal.

State Meaning Asserted—The 604e initiates an interrupt if MSR[EE] is set;
otherwise, the 604e ignores the interrupt. To guarantee that the 604e
will take the external interrupt, thBT signal must be held active
until the 604e takes the interrupt; otherwise, the 604e will take an
external interrupt depending on whether the MSR[EE] bit was set
while thelNT signal was held active.

Negated—Indicates that normal operation should proceed. See
Section 8.8.1, “External Interrupts.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the input clocks. TIMT input is level-sensitive.

Negation—Should not occur until interrupt is taken.

If deterministic cycle sequencing is required (for example, in multiple processor systems
operating in lock step), thtNT signal should be asserted and negated synchronously with
the SYSCLK signal.
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7.2.9.2 System Management Interrupt ( SMI)—Input

The system management interru@Ml) signal is input only. Following are the state
meaning and timing comments for 81 signal.

State Meaning Asserted—The 604e initiates a system management interrupt
operation if the MSR[EE] is set; otherwise, the 604e ignores the
interrupt condition. The system must hold Sl signal active until
the interrupt is taken.

Negated—Indicates that normal operation should proceed. See
Section 8.8.1, “External Interrupts.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the input clocks. T8I input is level-sensitive.

Negation—Should not occur until interrupt is taken.

If deterministic cycle sequencing is required (for example, in multiple processor systems
operating in lock step), theMI signal should be asserted and negated synchronously with
the SYSCLK signal.

7.2.9.3 Machine Check Interrupt ( MCP)—Input

The machine check interrugéCP) signal is input only on the 604e. Following are the state
meaning and timing comments for thECP signal.

State Meaning Asserted—The 604e initiates a machine check interrupt operation if
MSR[ME] and HIDO[EMCP] are set; if MSR[ME] is cleared and
HIDO[EMCP] is set, the 604e must terminate operation by internally
gating off all clocks, and releasing all outputs (exdeSTP_OUT)
to the high impedance state. If HIDO[EMCP] is cleared, the 604e
ignores the interrupt condition. TRCP signal must be held
asserted for two bus clock cycles.

Negated—Indicates that normal operation should proceed. See
Section 8.8.1, “External Interrupts.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the input clocks. TRECP input is negative edge-
sensitive.

Negation—May be negated two bus cycles after assertion.

If deterministic cycle sequencing is required (for example, in multiple processor systems
operating in lock step), thCP signal should be asserted and negated synchronously with
the SYSCLK signal.
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7.2.9.4 Checkstop Input( CKSTP_IN)—Input

The checkstop inputGKSTP_IN) signal is input only on the 604e. Following are the state
meaning and timing comments for tG&STP_IN signal.

State Meaning Asserted—Indicates that the 604e must terminate operation by
internally gating off all clocks, and release all outputs (except
CKSTP_OUT) to the high impedance state. OGE&STP _IN has
been asserted it must remain asserted until the system has been reset.

Negated—Indicates that normal operation should proceed. See
Section 8.8.2, “Checkstops.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the input clocks.

Negation—May occur any time after tKSTP_OUT output signal
has been asserted.

7.2.9.5 Checkstop Output ( CKSTP_OUT)—Output

The checkstop CKSTP_OUT) signal is output only on the 604e. Note that the
(CKSTP_OUT) signal is an open-drain type output, and requires an external pull-up
resistor (for example, 10 k to Vdd) to assure proper deassertion olCK&8TP_OUT)
signal. Following are the state meaning and timing comments faCKE&TP_OUT signal.

State Meaning Asserted—Indicates that the 604e has detected a checkstop
condition and has ceased operation.

Negated—Indicates that the 604e is operating normally.
See Section 8.8.2, “Checkstops.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the 604e input clocks.

Negation—Is negated upon assertiot&ESET

7.2.9.6 Reset Signals

There are two reset signals on the 604e—hard réHESET) and soft reseSRESET).
Descriptions of the reset signals are as follows:

7.2.9.6.1 Hard Reset (HRESET)—Input

The hard resetH{RESET) signal is input only and must be used at power-on to properly
reset the processor. Following are the state meaning and timing commentsHiGtEHSEET
signal.

State Meaning Asserted—Initiates a complete hard reset operation when this input
transitions from asserted to negated. Causes a reset exception as
described in Section 4.5.1, “System Reset Exception (0x00100).”
Output drivers are released to high impedance within five clocks
after the assertion 6{RESET.
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Negated—Indicates that normal operation should proceed. See
Section 8.8.3, “Reset Inputs.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the 604e input clock; must be held asserted for a
minimum of 255 clock cycles.

Negation—May occur any time after the minimum reset pulse width
has been met.

If deterministic cycle sequencing is required (for example, in multiple processor systems
operating in lock step), thdRESET signal should be asserted and negated synchronously
with the SYSCLK signal. ThEIRESET signal has additional functionality in certain test
modes.

7.2.9.6.2 Soft Reset ( SRESET)—Input

The soft resetYRESET) signal is input only. Following are the state meaning and timing
comments for th&RESET signal.

State Meaning Asserted— Initiates processing for a reset exception as described in
Section 4.5.1, “System Reset Exception (0x00100).”

Negated—Indicates that normal operation should proceed. See
Section 8.8.3, “Reset Inputs.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the 604e input clock. BRESET input is
negative edge-sensitive.

Negation—May be negated two bus cycles after assertion.

If deterministic cycle sequencing is required (for example, in multiple processor systems
operating in lock step), thERESET signal should be asserted and negated synchronously
with the SYSCLK signal. ThRERESET signal has additional functionality in certain test
modes.

7.2.10 Processor Configuration Signals

The signals described in this section provide inputs for controlling the 604e’s timebase,
signal drive capabilities, L2 cache access, bus snooping while in nap mode, and PLL
configuration, along with output signals to indicate that a storage reservation has been set,
and that the 604e’s internal clocking has stopped.

7.2.10.1 Drive Mode (DRVMOD)—Input

The DRVMOD signals must be pulled up to VDD for the 604e to operate in accordance
with the hardware specifications.

7.2.10.2 Timebase Enable (TBEN)—Input

The timebase enable (TBEN) signal is input only on the 604e. Following are the state
meanings and timing comments for the TBEN signal.
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State Meaning Asserted—Indicates that the timebase should continue clocking.
This input is essentially a “count enable” control for the timebase
counter.

Negated—Indicates the timebase should stop clocking.
Timing Comments Assertion/Negation—May occur on any cycle.

7.2.10.3 Reservation ( RSRV)—Output

The reservationRSRY/) signal is output only on the 604e. Following are the state meaning
and timing comments for tHRSRY signal.

State Meaning Asserted/Negated—Represents the state of the reservation
coherency bit in the reservation address register that is used by the
lwarx andstwcx. instructions. See Section 8.9.1, “Support for the
lwarx/stwcx. Instruction Pair.”

Timing Comments Assertion—Occurs synchronously one bus clock cycle after the
execution of arlwarx instruction that sets the internal reservation
condition. On the 604 and 604e, tR&R/ signal is asserted as late
as the fourth cycle afteAACK for a read-atomic operation if the
lwarx instruction requires a read-atomic operation.

Negation—Occurs synchronously one bus clock cycle after the
execution of arstwcx. instruction that clears the reservation or as
late as the second bus cycle aftdiSafor a snoop that clears the
reservation.

7.2.10.4 L2 Intervention (L2_INT)—Input

The L2 intervention (L2_INT) signal is input only on the 604e. Following are the state
meanings and timing comments for the L2_INT signal.

State Meaning Asserted— Indicates that the current data transaction requires
intervention from other bus masters.
Negated—Indicates that the current data transaction requires no
intervention from other bus masters.

Timing Comments Assertion/Negation—The L2_INT signal is sampled by the 604e
concurrently with the first assertion DA for a given data tenure.

7.2.10.5 Run (RUN)—Input

The run (RUN) signal is input only on the 604e. Following are the state meanings and
timing comments for the RUN signal.

State Meaning Asserted— Forces the internal clocks to continue running during nap
mode, allowing bus snooping to occur.

Negated—Internal clocks are inhibited from running when 604e is
in nap mode.
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For additional information regarding the nap mode, refer to Section 7.2.13, “Power
Management.”

Timing Comments Assertion/Negation—Assertion may occur asynchronously to the
604e input clock; and must be held asserted for a minimum of 3 bus
clock cycles before snoop activity.

7.2.10.6 Halted (HALTED) —Output

The halted (HALTED) signal is output only on the 604e. Following are the state meaning
and timing comments for the HALTED signal.

State Meaning Asserted—Indicates that the internal clocks have stopped due to the
604e entering nap mode, no snoop copy-back operations are in
progress, or a JTAG/COP request.

Negated—Indicates that internal clocks are running.

Timing Comments Assertion/Negation—Occurs synchronously with internal processor
clock.

For additional information regarding the nap mode, refer to Section 7.2.13, “Power
Management.”

7.2.11 COP/Scan Interface
The 604e has extensive on-chip test capability including the following:
» Built-in instruction and data cache self test (BIST)

» Debug control/observation (COP)
* Boundary scan (IEEE 1149.1 compliant interface)

The BIST hardware is not exercised as part of the POR sequence. The COP and boundary
scan logic are not used under typical operating conditions.

Detailed discussion of the 604e test functions is beyond the scope of this document;
however, sufficient information has been provided to allow the system designer to disable
the test functions that would impede normal operation.

The COP/scan interface is shown in Figure 7-2. For more information, see Section 8.10.1,
“IEEE 1149.1 Interface Description.”

—— | TDI (Test Data Input)
—— | TMS (Test Mode Select)
—— | TCK (Test Clock input)
<— | TDO (Test Data Output)

—>| TRST (Test Reset)

Figure 7-2. IEEE 1149.1-Compliant Boundary Scan Interface

Chapter 7. Signal Descriptions 7-33



7.2.12 Clock Signals

The clock signal inputs of the 604e determine the system clock frequency and provide a
flexible clocking scheme that allows the processor to operate at an integer multiple of the
system clock frequency. An analog voltage input signal is provided to supply stable power
for the internal PLL clock generator.

Refer to the 604e hardware specifications for exact timing relationships of the clock signals.

7.2.13 Power Management

The 604e implements signals that allow the processor to operate in three different modes—
normal, nap, and doze. These signals are the HALTED signal, see Section 7.2.10.3,
“Reservation (RSRV)—Output,” and the RUN signal, see Section 7.2.10.5, “Run (RUN)—
Input,” for more information.

* In normal mode, all clocks are running and instruction execution is proceeding
normally. The HALTED signal is not asserted.

* In doze mode, no instructions are being executed, but clocks are still running to
allow snooping of the caches. If necessary, the caches perform copybacks of
modified data. The HALTED signal is asserted unless a snoop-triggered copy-back
Is pending. Asserting the RUN signal is equivalent to the doze mode in the PowerPC
603™.,

* In nap mode, all internal clocks except those necessary to keep the decrementer,
timebase, and interrupt logic running are stopped. The HALTED signal is always
asserted. The 604e supports nap mode with a RUN signal similar to the 604.

A transition state table for the three modes is shown in Figure 7-3.

NAP DOZE

Figure 7-3. Power Management States

The following sections describe how the processor can go from one mode to the other.
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7.2.13.1 State Transition from Normal Mode to Doze Mode

As shown in Figure 7-3, the only state transition allowed from the normal mode is to the
doze mode. This transition requires system support. The RUN signal must be asserted by
the system for at least 10 bus cycles before the software power management sequence can
begin. The RUN signal does not affect the 604e operation in the normal mode, but affects
operation during the transition from normal mode to doze mode. The software power
management sequence is the following code:

sync

_mtmsr

isync

branch back to the sync instruction

Themtmsr instruction should modify only MSR[POW]. All other MSR values such as the
external interrupt enable should be set up before the software power management sequence
is begun. Whemtmsr is executed, the processor waits for its internal state to be idle before
asserting HALTED, putting the processor in the doze mode. When entering the doze mode,
the system must assert RUN for at least 10 bus cycles after HALTED is asserted. When in
the doze state, the HALTED signal is deasserted only when a snoop-triggered copy-back is
in progress. The system must continually assert RUN whenever HALTED is negated in
doze mode due to a snoop copy-back.

7.2.13.2 State Transition from Doze Mode to Nap Mode
A processor in doze mode can enter nap mode by doing the following:

1. The system should ensure that the bus is idle and the HALTED signal is asserted for
at least 10 bus cycles.

2. The system should negate RUN and continue to prevent bus grants for at least 10
additional bus cycles. At this point, the processor is in the nap mode and bus
transactions can be resumed. The processor does not snoop any subsequent bus
transactions.

In going from doze to the nap mode, the system must ensure that the 604e not receive any
TS (orXATS) assertions by negating address bus grants to other bus masters. If the bus is
not quiescent throughout the 10 clock transition window, the system may hang.

7.2.13.3 State Transition from Nap Mode to Doze Mode
A processor in nap mode can enter doze mode with the following sequence:
1. The system should ensure that the bus is idle for at least 10 bus cycles.

2. The system should assert the RUN signal and continue to prevent bus grants
for at least an additional 10 bus cycles. At this point, the processor is in doze
mode and all bus transactions can be snooped.

7.2.13.4 State Transition from Nap Mode to Normal Mode

Normal execution resumes from the nap mode when an interrupt or reset condition occurs.
The transition from nap to normal mode is triggered by hard reset, soft reset, system
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management interrupt, machine check interrupt (if MSR[ME] = 1), external interrupt (if
MSRI[EE] = 1), or decrementer interrupt (if MSR[EE] = 1). When this transition occurs, the
processor resumes clocking and vectors to the proper exception handler. Note that SRRO
points to an instruction inside the software power management sequence.

To exit power management, the exception handler should return to code outside this loop.

To re-enter power management, the system must ensure that the above mode transition rules
are followed.

7.2.13.5 State Transition from Doze Mode to Normal Mode

The transition from doze to normal mode can be triggered by the same conditions as the
nap to normal mode transition. This transition can also be triggered by a snoop detecting a
parity error and causing a machine check exception. Other than the additional trigger
condition, this transition is identical to the nap-to-normal mode transition.

7.2.13.6 System Clock (SYSCLK)—Input

The 604e internal clocking scheme is more similar to the PowerPC 603e™ than to the 604.
The 604e requires a single system clock (SYSCLK) input. This input sets the frequency of
operation for the bus interface. Internally, the 604e uses a phase-lock loop (PLL) circuit to
generate a master clock for all of the CPU circuitry (including the bus interface circuitry)
which is phase-locked to the SYSCLK input. The master clock may be set to a multiple
(x1.5, x2, x2.5, x3, or x4) of the SYSCLK frequency allowing the CPU core to operate at
an equal or greater frequency than the bus interface.

State Meaning Asserted/Negated—The SYSCLK input is the primary clock input
for the 604e, and represents the bus clock frequency for 604e bus
operation. Internally, the 604e may be operating at a multiple of the
bus clock frequency.

Timing Comments Duty cycle—Refer to the 604e hardware specifications for timing
comments.
Note: SYSCLK is used as the frequency reference for the internal
PLL clock generator, and must not be suspended or varied during
normal operation to ensure proper PLL operation.

7.2.13.7 Test Clock (CLK_OUT)—Output

The Test Clock (CLK _OUT) signal is an output signal (output-only) on the 604e.
Following are the state meaning and timing comments for the CLK_OUT signal.

State Meaning Asserted/Negated—Provides PLL clock output for PLL testing and
monitoring. CLK_OUT clocks at the processor clock frequency. The
CLK_OUT signal is provided for testing purposes only.

Timing Comments Assertion/Negation—Refer to the 604e hardware specifications for
timing comments.
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7.2.14 Analog VDD (AVDD)—Input

The analog VDD signal is an input for supplying a stable voltage to the on-chip phase-
locked loop clock generator. Although the 604e has the same signal configuration as the
604, the 604e VDD and AVDD must be connected to 2.5 Vdc and OVDD must be
connected to 3.3 Vdc. The 604e uses split voltage planes, and for replacement
compatibility, 604/604e designs should provide both 2.5-V and 3.3-V planes and the ability
to connect those two planes together and disable the 2.5-V plane for operation with a 604.
For more information about the electrical requirements of the AVDD input signal, refer to
the 604e electrical specifications.

7.2.15 VOLTDETGND Signal (BGA Package Only)

The VOLTDETGND output signal, which is implemented only on BGA packages, is an
indicator of the core voltage. On the 604e, which has a 2.5-V core, VOLTDETGND is tied
to ground internally to indicate to a power supply that a low-power processor is present.
This signal connects to a control signal on a power supply capable of providing 2.5-V and
3.3-V outputs. Refer to the hardware specifications for more information about
VOLTDETGND.

7.2.16 PLL Configuration (PLL_CFG[0-3])—Input

The PLL (phase-lock loop) is configured by the PLL_CFG[0-3] pins. For a given SYSCLK
(bus) frequency, the PLL configuration pins set the internal CPU frequency of operation.

Following are the state meaning and timing comments for the PLL_CFG[0-3] signals.

State Meaning Asserted/Negated— Configures the operation of the PLL and the
internal processor clock frequency. Settings are based on the desired
bus and internal frequency of operation.

Timing Comments Assertion/Negation—Must remain stable during operation.

The 604e’s PLL_CFG settings are compatible with the 603e and the
604, although the supported frequency ranges may differ. Changing
the PLL_CFG setting during nap mode is not permitted. Table 7-6
lists PLL_CFG settings used for specifying processor/bus frequency
ratios ¢) and VCO divider valuegsl). For specific information, see
the hardware specifications.

Table 7-6. PLL Configuration Encodings

PLL_CFGJ[0-3]
Processor/Bus Frequency Ratio (r) VCO Divider ( d)
Bin Dec
0000 0 1x 12
0001 1 1x 18
0010 2 7x 2
0011 3 PLL bypass n/a
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Table 7-6. PLL Configuration Encodings

PLL_CFG[0-3]
Processor/Bus Frequency Ratio (r) VCO Divider ( d)

Bin Dec

0100 4 2x 2
0101 5 6.5x 12
0110 6 2.5x 12
0111 7 4.5x 2
1000 8 3x 2
1001 9 5.5x 2
1010 10 4x 2
1011 11 5x 12
1100 12 1.5x 12
1101 13 6x 2
1110 14 3.5x 12
1111 15 Off n/a
Notes:

1. The processor/bus frequency ratio (r) and the value of the VCO divider (d) shown
in Table 7-6 together determine the resulting frequency ranges according to the
following formulas:

* SYSCLK frequency range:
— Min = VCOip/(r*d)
— Max = VCOy,/(r*d)
» Core frequency range:
— Min = VCO,y/d
— Max = VCO,5,/d

The actual values supported by a given 604e are provided in the 604e hardware
specifications.

2. Bus clock ratios—The 604e supports processor-to-bus frequency ratios of 1:1,
3:2, 2:1, 5:2, 3:1, 4:1, and 7:2. Each ratio is limited to the frequency ranges
specified in the PLL_CFG encodings shown in Table 7-6. Support for
processor/bus clock ratios 5:2, 7:2, and 4:1 is not supported in the 604.
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Chapter 8
System Interface Operation

This chapter describes the PowerPC 604e microprocessor bus interface and its operation. It
shows how the 604e signals, defined in Chapter 7, “Signal Descriptions,” interact to
perform address and data transfers.

8.1 Overview

The system interface prioritizes requests for bus operations from the instruction and data
caches, and performs bus operations per the 604e bus protocol. It includes address register
gueues, prioritization logic, and the bus control unit. The system interface latches snoop
addresses for snooping in the data cache and in the address register queues, and snoops for
direct-store reply operations and for reservations controlled by the Load Word and Reserve
Indexed [warx) and Store Word Conditional Indexesi{cx.) instructions. The interface

allows two level of pipelining; that is, with certain restrictions discussed later, there can be
three outstanding transactions at any given time. Accesses are prioritized with load
operations preceding store operations.

Instructions are automatically fetched from the memory system into the instruction unit
where they are dispatched to the execution units at a peak rate of four instructions per clock.
Conversely, load and store instructions explicitly specify the movement of operands to and
from the integer and floating-point register files and the memory system.

When the 604e encounters an instruction or data access, it calculates the logical address
(effective address in the architecture specification) and uses the low-order address bits to
check for a hit in the on-chip, 16-Kbyte instruction and data caches. During cache lookup,
the instruction and data memory management units (MMUS) use the higher-order address
bits to calculate the virtual address, from which they calculate the physical address (real
address in the architecture specification). The physical address bits are then compared with
the corresponding cache tag bits to determine if a cache hit occurred. If the access misses
in the corresponding cache, the physical address is used to access system memory.

In addition to the loads, stores, and instruction fetches, the 604e performs hardware table
search operations following TLB misses, cache cast-out operations when least-recently
used cache lines are written to memory after a cache miss, and cache-line snoop push-out
operations when a modified cache line experiences a snoop hit from another bus master.
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Figure 8-1 shows the address path from the execution units and instruction fetcher, through
the translation logic to the caches and system interface logic.

The 604e provides a versatile bus interface that allows a wide variety of system design
options. The interface includes a 72-bit data bus (64 bits of data and 8 bits of parity), a
36-bit address bus (32 bits of address and 4 bits of parity), and sufficient control signals to
allow for a variety of system-level optimizations. The system interface is specific for each
PowerPC processor implementation. The interface is synchronous—all 604e inputs are
sampled at and all outputs are driven from the rising edge of the bus clock. The 604e
supports processor-to-bus frequency ratios of 1:1, 3:2, 2:1, 5:2, 3:1, 4:1, and 7:2. Support
for processor/bus clock ratios 5:2, 7:2, and 4:1 is not supported in the 604.While the 604e
operates at 3.3 \Volts, all the 1/O signals are 5.0-Volt TTL-compatible.

8.1.1 Operation of the Instruction and Data Caches

The 604e provides independent instruction and data caches. Each cache is a physically-
addressed, 16-Kbyte cache with four-way set associativity. Both caches consist of 128 sets
of four cache lines, with eight words in each cache line.

Because the data cache on the 604e is an on-chip, write-back primary cache, the
predominant type of transaction for most applications is burst-read memory operations,
followed by burst-write memory operations, direct-store operations, and single-beat
(noncacheable or write-through) memory read and write operations. Additionally, there can
be address-only operations, variants of the burst and single-beat operations (global memory
operations that are snooped, and atomic memory operations, for example), and address
retry activity (for example, when a snooped read access hits a modified line in the cache).

The 604e data cache tags are dual-ported to facilitate efficient coherency checking. This
allows data cache accesses to occur concurrently with snooping operations. Data cache
accesses are only interrupted when the snoop control logic detects a situation where snoop
push of modified data is required to maintain memory coherency.

The 604e supports a four-state coherency protocol that supports the modified, exclusive,
shared and invalid (MESI) cache states. The MESI protocol ensures that the 604e operates
coherently in systems that contain multiple four-state caches, provided that all bus
participants employ similar snooping and coherency control mechanisms.

Cache lines in the 604e are loaded in four beats of 64 bits each. The burst load is performed
as critical-double-word-first. The cache that is being loaded allows internal accesses until
the load completes (that is, the 604e supports cache hits under misses). The critical double
word is simultaneously written to the cache and forwarded to the requesting unit, thus
minimizing stalls due to load delays. If consecutive double words are required from the
same cache line following a cache line miss, the LSU stalls until the entire cache line has
been loaded into the cache,
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Cache lines are selected for replacement based on an LRU (least recently used) algorithm.
Each time a cache line is accessed, it is tagged as the most recently used line of the set.
When a miss occurs, if all lines in the set are marked as valid, the least recently used line is
replaced with the new data. When data to be replaced is in the modified state, the modified
data is written into a write-back buffer while the missed data is being read from memory.
When the load completes, the 604e then pushes the replaced line from the write-back buffer
to main memory in a burst write operation if the memory queue is idle, or at a later time if
other transactions are pending.

8.1.2 Operation of the System Interface

Memory accesses can occur in single-beat (1-8 bytes) and four-beat (32 bytes) burst data
transfers. The address and data buses are independent for memory accesses to support
pipelining and split transactions. The 604e can pipeline as many as three transactions and
has limited support for out-of-order split-bus transactions.

Access to the system interface is granted through an external arbitration mechanism that
allows devices to compete for bus mastership. This arbitration mechanism is flexible,
allowing the 604e to be integrated into systems that implement various fairness and bus-
parking procedures to avoid arbitration overhead.

Typically, memory accesses are weakly ordered—sequences of operations, including
load/store string and multiple instructions, do not necessarily complete in the order they
begin—maximizing the efficiency of the bus without sacrificing coherency of the data. The
604e allows read operations to precede store operations (except when a dependency exists).
In addition, the 604e performs snoop push operations ahead of all other bus operations.
Because the processor can dynamically optimize run-time ordering of load/store traffic,
overall performance is improved.

Note that the Synchronizeync) or Enforce In-Order Execution of I/Qe{eio) instructions
can be used to enforce strong ordering.

The following sections describe how the 604e interface operates, providing detailed timing
diagrams that illustrate how the signals interact. A collection of more general timing
diagrams are included as examples of typical bus operations.

Figure 8-2 is a legend of the conventions used in the timing diagrams.

This is a synchronous interface—all 604e input signals are sampled and output signals are
driven on the rising edge of the bus clock cycle (see the 604e hardware specifications for
exact timing information).
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Bar over signal name indicates active low

ap0 604e input (while 604e is a bus master)

BR 604e output (while 604e is a bus master)
ADDR+ 604e output (grouped: here, address plus attributes)
qual BG 604e internal signal (inaccessible to the user, but used in

diagrams to clarify operations)

Compelling dependency—event will occur on the
next clock cycle

Prerequisite dependency—event will occur on an
undetermined subsequent clock cycle

<:> 604e three-state output or input
- 604e nonsampled input
A
|
|

Signal with sample point

A sampled condition (dot on high or low state)
with multiple dependencies

\ / Timing for a signal had it been asserted (it is not
== actually asserted)

Figure 8-2. Timing Diagram Legend

8.1.3 Direct-Store Accesses
Memory and direct-store accesses use the 604e signals differently.

The 604e defines separate memory and I/O address spaces, or segments, distinguished by
the segment register T bit in the address translation logic of the 604e. If the T bit is cleared,
the memory reference is a normal memory access and uses the paged virtual memory
management mechanism of the 604e. If the T bit is set, the memory reference is a direct-
store access.

The function and timing of some address transfer and attribute signals (such as TT[0-3],
TBST, and TSIZ[0-2]) are changed for direct-store accesses. Additional controls are

required to facilitate transfers between the 604e and the specific 1/0O devices that use this
interface. Direct-store and memory transfers are distinguished from one another by their
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address transfer start signal§<S-indicates that a memory transfer is starting XAd'S
indicates that a direct-store transaction is starting.

Direct-store accesses are strongly ordered—each access occurs in strict program order and
completes before another access can begin. For this reason, direct-store accesses are less
efficient than memory accesses. The direct-store extensions also allow for additional bus
pacing and multiple transaction operations for variably-sized data transfers (1 to 128 bytes),
and they support a tagged, split request/response protocol. The direct-store access protocol
also requires the slave device to function as a bus master.

8.2 Memory Access Protocol

Memory accesses are divided into address and data tenures. Each tenure has three phases—
bus arbitration, transfer, and termination. The 604e also supports address-only transactions.
Note that address and data tenures can overlap, as shown in Figure 8-3.

Figure 8-3 shows that the address and data tenures are distinct from one another and that
both consist of three phases—arbitration, transfer, and termination. Address and data

tenures are independent (indicated in Figure 8-3 by the fact that the data tenure begins

before the address tenure ends), which allows split-bus transactions to be implemented at
the system level in multiprocessor systems. Figure 8-3 shows a data transfer that consists
of a single-beat transfer of as many as 64 bits. Four-beat burst transfers of 32-byte cache

lines require data transfer termination signals for each beat of data.

ADDRESS TENURE

N
- N\

ARBITRATION | TRANSFER | TERMINATION

/

INDEPENDENT ADDRESS AND DATA

\ DATA TENURE
N

Y Y
| ARBITRATION | SINGLE-BEAT TRANSFER | TERMINATION |

Figure 8-3. Overlapping Tenures on the Bus for a Single-Beat Transfer
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The basic functions of the address and data tenures are as follows:
e Address tenure

— Arbitration: During arbitration, address bus arbitration signals are used to gain
mastership of the address bus.

— Transfer: After the 604e is the address bus master, it transfers the address on the
address bus. The address signals and the transfer attribute signals control the
address transfer. The address parity and address parity error signals ensure the
integrity of the address transfer.

— Termination: After the address transfer, the system signals that the address tenure
is complete or that it must be repeated.

e Data tenure

— Arbitration: To begin the data tenure, the 604e arbitrates for mastership of the
data bus.

— Transfer: After the 604e is the data bus master, it samples the data bus for read
operations or drives the data bus for write operations. The data parity and data
parity error signals ensure the integrity of the data transfer.

— Termination: Data termination signals are required after each data beat in a data
transfer. Note that in a single-beat transaction, the data termination signals also
indicate the end of the tenure, while in burst accesses, the data termination
signals apply to individual beats and indicate the end of the tenure only after the
final data beat.

The 604e generates an address-only bus transfer during the execudhzafyng, eieiq,

tibie, tlbsync, andlwarx instructions, which use only the address bus with no data transfer
involved. Additionally, the 604e’s retry capability provides an efficient snooping protocol
for systems with multiple memory systems (including caches) that must remain coherent.

8.2.1 Arbitration Signals

Arbitration for both address and data bus mastership is performed by a central, external
arbiter and, minimally, by the arbitration signals shown in Section 8.3.1, “Address Bus
Arbitration.” Most arbiter implementations require additional signals to coordinate bus
master/slave/snooping activities. Note that address bus ABB)(and data bus busy
(DBB) are bidirectional signals. These signals are inputs unless the 604e has mastership of
one or both of the respective buses; they must be connected high through pull-up resistors
so that they remain negated when no devices have control of the buses.
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The following list describes the address arbitration signals:

BR (bus request)—Assertion indicates that the 604e is requesting mastership of the
address bus.

BG (bus grant)—Assertion indicates that the 604e may, with the proper
gualification, assume mastership of the address bus. A qualified bus grant occurs
whenBG is asserted\BB is negated, andRTRY is negated during the current and
previous bus cycle.

If the 604e is parkedBR need not be asserted for the qualified bus grant.

ABB (address bus busy)— Assertion by the 604e indicates that the 604e is the
address bus master.

The following list describes the data arbitration signals:

DBG (data bus grant)—Indicates that the 604e may, with the proper qualification,
assume mastership of the data bus. A qualified data bus grant occurBReis
asserted whil®BB, DRTRY, andARTRY are negated (althoughRTRY may

actually be asserted at the timBG is asserted due to the snoop of a later address
tenure).

TheDBB signal is driven by the current bus masi@RTRY is only driven from the
bus, andARTRY is from the bus, but only for the address bus tenure associated with
the current data bus tenure (that is, not from another address tenure).

DBWO (data bus write only)—Assertion indicates that the 604e may perform the
data bus tenure for an outstanding write address even if a read address is pipelined
before the write address.DBWO is asserted, the 604e will assume data bus
mastership for a pending data bus write operation; the 604e will take the data bus for
a pending read operation if this input is asserted alongDBtB and no write is
pending. Care must be taken witBBWO to ensure the desired write is queued (for
example, a cache-line snoop push-out operation).

DBB (data bus busy)—Assertion by the 604e indicates that the 604e is the data bus
master. The 604e always assumes data bus mastership if it needs the data bus and is
given a qualified data bus grant ($28G).

For more detailed information on the arbitration signals, refer to Section 8.3.1,
“Address Bus Arbitration,” and Section 8.4.1, “Data Bus Arbitration.”

Note that while operating in fast-L2/data streaming mdoieB becomes a 604e output-

only signal and is driven in the same manner as before. If systems using the 604e in fast-
L2/data streaming mode also implement data streaming across multiple mastBB8Bhe
signal must not be common among processors to avoid contention problems when one
processor is negatinDBB while another is assertingBB. Table 8-1 describes the bus
arbitration signals provided by the 604e.

8-8
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Table 8-1. Bus Arbitration Signals

Signal Name Mnemonic Signal Type Signal Connection Requirements

Bus request BR Output One per processor

Bus grant BG Input One per processor

Address bus busy ABB Input/output Common among processors

Data bus grant DBG Input One per processor

Data bus busy DBB Input/output Common among processors
(One per processor if in data streaming
mode, and data streaming across multiple
processors is implemented.)

8.2.2 Address Pipelining and Split-Bus Transactions

The 604e protocol provides independent address and data bus capability to support
pipelined and split-bus transaction system organizations. Address pipelining allows the
address tenure of a new bus transaction to begin before the data tenure of the current
transaction has finished. Split-bus transaction capability allows other bus activity to occur
(either from the same master or from different masters) between the address and data
tenures of a transaction.

While this capability does not inherently reduce memory latency, support for address

pipelining and split-bus transactions can greatly improve effective bus/memory throughput.

For this reason, these techniques are most effective in shared-memory multiprocessor
implementations where bus bandwidth is an important measurement of system

performance.

External arbitration is required in systems in which multiple devices must compete for the
system bus. The design of the external arbiter affects pipelining by regulatingGhe

DBG, andAACK signals. For example, a one-level pipeline is enabled by asse&Xi@K

to the current address bus master and granting mastership of the address bus to the next
requesting master before the current data bus tenure has completed. Three address tenures
can occur before the current data bus tenure completes.

The 604e can pipeline its own transactions to a depth of two levels (intraprocessor
pipelining); however, the 604e bus protocol does not constrain the maximum number of
levels of pipelining that can occur on the bus between multiple masters (interprocessor
pipelining). The external arbiter must control the pipeline depth and synchronization

between masters and slaves.

In a pipelined implementation, data bus tenures are kept in strict order with respect to
address tenures. However, external hardware can further decouple the address and data
buses, allowing the data tenures to occur out of order with respect to the address tenures.
This requires some form of system tag to associate the out-of-order data transaction with
the proper originating address transaction (not defined for the 604e interface). Individual
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bus requests and data bus grants from each processor can be used by the system to
implement tags to support interprocessor, out-of-order transactions.

The 604e supports a limited intraprocessor out-of-order, split-transaction capability via the
DBWO signal. For more information about usibBWO, see Section 8.11, “Using Data
Bus Write Only.”

8.3 Address Bus Tenure

This section describes the three phases of the address tenure—address bus arbitration,
address transfer, and address termination.

8.3.1 Address Bus Arbitration

When the 604e needs access to the external bus and does not have a qualified bus grant, it
asserts bus reque&R) until it is granted mastership of the bus and the bus is available (see
Figure 8-4). The external arbiter must grant master-elect status to the potential master by
asserting the bus grarBG) signal. The 604e requesting the bus determines that the bus is
available when théBB input is negated. When the address bus is not BA8B input is
negated)BG is asserted and the address re&RTRY) input is negated, and was negated

the previous cycle, the 604e has what is referred to as a qualified bus grant. The 604e
assumes address bus mastership by ass@f@Bgwhen it receives a qualified bus grant.

| -1 I 0 I 1 I
Logical Bus Clock | | | | | | |
need_bus :_\\

I
|
|
GUalBG |
I
|
|

Figure 8-4. Address Bus Arbitration
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External arbiters must allow only one device at a time to be the address bus master.
Implementations in which no other device can be a maB@rcan be grounded (always
asserted) to continually grant mastership of the address bus to the 604e.

If the 604e assertBR before the external arbiter asseBiG, the 604e is considered to be
unparked, as shown in Figure 8-4. Figure 8-5 shows the parked case, where a qualified bus
grant exists on the clock edge following a need_bus condition. Notice that the two bus clock
cycles required for arbitration are eliminated if the 604e is parked, reducing overall
memory latency for a transaction. The 604e always negeB@&sfor at least one bus clock

cycle afterAACK is asserted, even if it is parked and has another transaction pending.

Typically, bus parking is provided to the device that was the most recent bus master;
however, system designers may choose other schemes such as providing unrequested bus
grants in situations where it is easy to correctly predict the next device requesting bus
mastership.

=
o
=
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I
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need _bus |
|
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atry ___/
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|
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ABB

Figure 8-5. Address Bus Arbitration Showing Bus Parking

When the 604e receives a qualified bus grant, it assumes address bus mastership by
assertingABB and negating th&R output signal. Meanwhile, the 604e drives the address

for the requested access onto the address bus and aESadsndicate the start of a new
transaction.

When designing external bus arbitration logic, note that the 604e may 8§sevithout

using the bus after it receives the qualified bus grant. For example, in a system using bus
snooping, if the 604e assel®R to perform a queued read-with-intent-to-modify-atomic
(RWITMA), and the 604e snoops an access which cancels the reservation associated with
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the RWITMA. Once the 604e is granted the bus, it no longer needs to perform the
RWITMA,; therefore, the 604e does not asskBB and does not use the bus for the read
operation. Note that the 604e assBifsfor at least one clock cycle in these instances.

8.3.2 Address Transfer

During the address transfer, the physical address and all attributes of the transaction are
transferred from the bus master to the slave device(s). Snooping logic may monitor the
transfer to enforce cache coherency; see discussion about snooping in Section 8.3.3,
“Address Transfer Termination.”

The signals used in the address transfer include the following signal groups:
« Address transfer start signal: Transfer stag)(

Note that extended address transfer s¥I(S) signal is used for direct-store
operations and has no function for memory-mapped accesses; see Section 8.6,
“Direct-Store Operation.”

» Address transfer signals: Address bus (A[0-31]), address parity (AP[0-3]), and
address parity erroAPE)

» Address transfer attribute signals: Transfer type (TT[0—4]), transfer code (TC[0-2]),
transfer size (TSI1Z[0-2]), transfer bur§BST), cache inhibitEl), write-through
(WT), global GBL), and cache set element (CSE[0-1])

Figure 8-6 shows that the timing for all of these signals, ex@&andAPE is identical.

All of the address transfer and address transfer attribute signals are combined into the
ADDR+ grouping in Figure 8-6. Th&S signal indicates that the 604e has begun an address
transfer and that the address and transfer attributes are valid (within the context of a
synchronous bus). The 604e always ass&Bs(or XATS for direct-store operations)
coincident withABB. As an input,TS need not coincide with the assertionABB on the

bus (that is, eithefS or XATS can be asserted with, or on a subsequent clock cycle after
ABB is asserted; the 604e tracks this transaction correctly).
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Figure 8-6. Address Bus Transfer

In Figure 8-6, the address transfer occurs during bus clock cycles 1 and 2 (arbitration occurs
in bus clock cycle 0 and the address transfer is terminated in bus clock 3). In this diagram,
the address bus termination inpAACK, is asserted to the 604e on the bus clock following
assertion off S (as shown by the dependency line). This is the minimum duration of the
address transfer for the 604e; the duration can be extended by delaying the assertion of
AACK for one or more bus clocks.

8.3.2.1 Address Bus Parity

The 604e always generates one bit of correct odd-byte parity for each of the four bytes of
address when a valid address is on the bus. The calculated values are placed on the AP[0—
3] outputs when the 604e is the address bus master. If the 604e is not the Masiad

GBL are asserted together, and the transaction type is one that the 604e snoops (qualified
condition for snooping memory operations), the calculated values are compared with the
AP[0-3] inputs. If there is an error, th®PE output is asserted. If HIDO[2] is setto 1, a
parity error will cause a machine check if the MSR[ME] bit is set, or will cause a checkstop

if the MSR[ME] bit is cleared. If HIDO[2] is cleared to 0, then no action is taken. In either
case, théAPE signal will be asserted if even parity is detected. For more information about
checkstop conditions, see Chapter 4, “Exceptions.”

8.3.2.2 Address Transfer Attribute Signals

The transfer attribute signals include several encoded signals such as the transfer type
(TT[O-4]) signals, transfer bursTBST) signal, transfer size (TSIZ[0-2]) sighals, and
transfer code (TC[0-2]) signals. Section 7.2.4, “Address Transfer Attribute Signals,”
describes the encodings for the address transfer attribute signals. Note that TTE&S4],

and TSIZ[0-2] have alternate functions for direct-store operations; see Section 8.6,
“Direct-Store Operation.”
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8.3.2.2.1 Transfer Type (TT[0—4]) Signals

Snooping logic should fully decode the transfer type signals if3B& signal is asserted.
Slave devices can sometimes use the individual transfer type signals without fully decoding
the group. For a complete description of the encoding for TT[0—4] signals, refer to Table 7-
1.

8.3.2.2.2 Transfer Size (TSIZ[0-2]) Signals

The transfer size signals (TSIZ[0-2]) indicate the size of the requested data transfer as
shown in Table 8-2. The TSIZ[0-2] sighals may be used along WBBT and A[29-31]

to determine which portion of the data bus contains valid data for a write transaction or
which portion of the bus should contain valid data for a read transaction. Note that for a
burst transaction (as indicated by the assertiomBET) TSIZ[0-2] are always set to
0b010. Therefore, if th&€ BST signal is asserted (except in cases of direct-store operations,
or operations involving the use etiwx or ecowxinstructions), the memory system should
transfer a total of eight words (32 bytes), regardless of the TSIZ[0-2] encoding.

Table 8-2. Transfer Size Signal Encodings

TBST TSIZ0 TSIZ1 TSIZ2 Transfer Size
Asserted 0 1 0 Eight-word burst
Negated 0 0 0 Eight bytes
Negated 0 0 1 One byte
Negated 0 1 0 Two bytes
Negated 0 1 1 Three bytes
Negated 1 0 0 Four bytes
Negated 1 0 1 Five bytes
Negated 1 1 0 Six bytes
Negated 1 1 1 Seven bytes

The basic coherency size of the bus is defined to be 32 bytes (corresponding to one cache
line). Data transfers that cross an aligned, 32-byte boundary either must present a new
address onto the bus at that boundary (for coherency consideration) or must operate as
noncoherent data with respect to the 604e.

8.3.2.3 Burst Ordering During Data Transfers

During burst data transfer operations, 32 bytes of data (one cache line) are transferred to or
from the cache in order. Burst write transfers are always performed zero-double-word-first,
but since burst reads are performed critical-double-word-first, a burst read transfer may not
start with the first double word of the cache line, and the cache line fill may wrap around
the end of the cache line. Table 8-3 describes the various burst orderings for the 604e.

8-14 PowerPC 604e RISC Microprocessor User's Manual



Table 8-3. Burst Ordering

For Starting Address:
Data Transfer
A[27-28] =00 A[27-28] =01 A[27-28] =10 A[27-28] = 11
First data beat DWO DwW1 DW2 DW3
Second data beat DW1 DW2 DW3 DWO
Third data beat DW2 DW3 DWO DwW1
Fourth data beat DW3 DWO DW1 DW2

Note: A[29-31] are always 0b00O0 for burst transfers by the 604e.

8.3.2.4 Effect of Alignment in Data Transfers

Table 8-4 lists the aligned transfers that can occur on the 604e bus. These are transfers in
which the data is aligned to an address that is an integer multiple of the size of the data. For
example, Table 8-4 shows that one-byte data is always aligned; however, for a four-byte
word to be aligned, it must be oriented on an address that is a multiple of four.

Table 8-4. Aligned Data Transfers

Data Bus Byte Lane(s)
Transfer Size |TSIZ0 |TSIzZz1 |TSIZz2 | A[29-31]
0 1 2 3 4 5 6 7

Byte 0 0 1 000 — — — — — — —
0 0 1 001 — — — — — — —
0 0 1 010 — — — — — — —
0 0 1 011 — — — — — — —
0 0 1 100 — — — — — — —
0 0 1 101 — — — — — — —
0 0 1 110 — — — — — — —
0 0 1 111 — — — — — — —

Half word 0 1 0 000 — — — — — —
0 1 0 010 — — — — — —
0 1 0 100 — — — — — —
0 1 0 110 — — — — — —

Word 1 0 0 000 — — — —
1 0 0 100 — — — —

Double word 0 0 0 000
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The 604e supports misaligned memory operations, although their use may substantially
degrade performance. Misaligned memory transfers address memory that is not aligned to
the size of the data being transferred (such as, a word read of an odd byte address).
Although most of these operations hit in the primary cache (or generate burst memory
operations if they miss), the 604e interface supports misaligned transfers within a word (32-
bit aligned) boundary, as shown in Table 8-5. Note that the four-byte transfer in Table 8-5
is only one example of misalignment. As long as the attempted transfer does not cross a
word boundary, the 604e can transfer the data on the misaligned address (for example, a
half-word read from an odd byte-aligned address). An attempt to address data that crosses
a word boundary requires two bus transfers to access the data.

Due to the performance degradations associated with misaligned memory operations, they
are best avoided. In addition to the double-word straddle boundary condition, the address
translation logic can generate substantial exception overhead when the load/store multiple
and load/store string instructions access misaligned data. It is strongly recommended that
software attempt to align code and data where possible.

Table 8-5. Misaligned Data Transfers (Four-Byte Examples)

Transfer Size Data Bus Byte Lanes
(Four Bytes) TSIZ(0-2) A[29-31]

0 1 2 3 4 5 6 7
Aligned 100 000 A A A A — ===
Misaligned—first access 011 001 A A A BEE — —
second access 001 100 — =l =]l =1A]l=|=1|=
Misaligned—first access 010 010 — | — A Al—|—|—1|—
second access 010 100 - —=1—1—1A[A]|—]|—
Misaligned—first access 001 011 — | — | — Al—|—|—1|—
second access 011 100 —|—=1=1—=—1A[A]A]—
Aligned 100 100 — — — — A A A A
Misaligned—first access 011 101 — |-l -1 —=—]1—1A]A]A
second access 001 000 Al—-—] —=—]=|=1=]=1=
Misaligned—first access 010 110 - =1 —=1—1—1—1A A
second access 010 000 AlAl—|—T|—1—1|—1|—
Misaligned—first access 001 111 - -1 —=1—=—/—=—1—]1—1A
second access 011 000 AlALTAL—|—I—|—|—

A: Byte lane used
—. Byte lane not used
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Table 8-6 shows the signal configuration for three-word accesses.

Table 8-6. Misaligned Data Transfer—Three-Byte Examples

Data Bus Byte Lane(s)
Transfer Size TSIZO |TSIZ1 |TSIZ2 |A[29-31]

0 1 2 3 4 5 6 7

Three Bytes 0 1 1 000 A A — | —1—=1—=1—
0 1 1 001 — A Al —| —| —1|—

0 1 1 010 — | — A A A — | =1 —

0 1 1 011 —|l—=l=1AalAa]lAaA]l|l—=]|=

0 1 1 100 —|l=l=1=1A]lA]A]l|—=

0 1 1 101 — -1 —1—1— A A A

First transfer—two bytes 0 1 0 110 -] —1—=—1—1—1—1A A
Second transfer—one byte | 0 0 1 000 Al—|—1—=-—=1—=1—=1—
First transfer—one byte 0 0 1 111 -l -] =1—=1—=1 - A
Second transfer—two bytes | 0 1 0 000 A Al—]—]—|—1|—1—-

8.3.2.4.1 Alignment of External Control Instructions

The size of the data transfer associated witleitiezx andecowxinstructions is always four
bytes. However, if theeciwx or ecowx instruction is misaligned and crosses any word
boundary, the 604e will generate two bus operations, each with a size of fewer than four
bytes. For the first bus operation, bits A[29—31] equals bits 29-31 of the data, which will
be 0b101, 0b110, or Ob111. The size associated with the first bus operation will be 3, 2, or
1 bytes, respectively. For the second bus operation, bits A[29-31] equal Ob000, and the size
associated with the operation will be 1, 2, or 3 bytes, respectively. For both operations,
TBST and TSIZ[0-2] are redefined to specify the resource ID (RID). The resource ID is
copied from bits 28—31 of the external access register (EAR)e€iard/ecowxoperations,

the state of bit 28 of the EAR is presented by thBST signal without inversion (if
EAR[28] = 1,TBST =1). The size of the second bus operation cannot be deduced from the
operation itself; the system must determine how many bytes were transferred on the first
bus operation to determine the size of the second operation.

Furthermore, the two bus operations associated with such a misaligned external control
instruction are not atomic. That is, the 604e may initiate other types of memory operations
between the two transfers. Also, the two bus operations associated with a misalgmed

may be interrupted by agciwx bus operation, and vice versa. The 604e does guarantee that
the two operations associated with a misaligeedwxwill not be interrupted by another
ecowxoperation; and likewise faciwx.
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Because a misaligned external control address is considered a programming error, the
system may choose some means to cause an exception, typically by asEeAitmcause

a machine check exception &XT to cause an external interrupt, when a misaligned
external control bus operation occurs.

8.3.2.5 Transfer Code (TC[0-2]) Signals

The TCJ[0-2] signals provide supplemental information about the corresponding address.
Note that the T® signals can be used with tNgT, TT[0-4] andTBST signals to further
define the current transaction. When asserted, the transfer codes have the following
meanings:

« TCO

— Read cycle: indicates code fetch
— Write cycle: de-allocation from L1 cache

« TC1
— Write cycle: indicates new cache state is shared
« TC2
— Read and write cycle: indicates allocation cycle utilized a copy-back buffer
Table 8-7 shows the supplemental information provided by the TC[0-2Mansignals.

Table 8-7. Transfer Code Encoding

TT Type Code WT TCO TC1 TC2 Operation
Write with Kkill 1 1 0 0 Cache copyback
Write with Kkill 0 1 0 0 Block invalidate
(dchbf)
Write with Kkill 0 0 0 0 Block clean
(dcbst)
Write with Kkill 0 0 1 0 Snoop push
(read operation)
Write with Kill 0 1 0 0 Snoop push
(read-with-intent-to-modify)
Write with Kkill 0 0 0 0 Snoop push
(clean operation)
Write with Kkill 0 1 0 0 Snoop push
(flush operation)
Kill block X 1 0 0 Kill block de-allocate
(dcbi)
Kill block 1 0 0 0 Kill block and allocate, no cast

out required (dcbz)

Kill block 1 0 0 1 Kill block and allocate, cast
out required (dcbz)
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Table 8-7. Transfer Code Encoding (Continued)

TT Type Code WT TCO TC1 TC2 Operation

Kill block 1 0 0 0 Kill block, write to shared
block

Read?! w3 0 X 0 Data read, cast out required
Read w? 0 X 1 Data read, cast out required
Read w3 1 X 0 Instruction read
Instruction cache X 1 0 0 Kill block de-allocate
block invalidate (ichi )?

Note: 1. Read encompasses all of the read or read-with-intent-to-modify operations, both normal and atomic.
2. The icbi instruction is distinguished from kill block by assertion of the TT4 bit.
3. Value determined by write-through bit from translation.

8.3.3 Address Transfer Termination

The address tenure of a bus operation is terminated when completed with the assertion of
AACK, or retried with the assertion &RTRY. The SHD signal may also be asserted either
coincident with theARTRY signal, or alone to indicate that a copy of the requested data
exists in one of the devices on the bus, and that the requesting device should mark the data
as shared in its cache. The 604e does not terminate the address transfer UAICHKe
(address acknowledge) input is asserted; therefore, the system can extend the address
transfer phase by delaying the assertio®8ICK to the 604e AACK can be asserted as

early as the bus clock cycle followin§S (see Figure 8-7), which allows a minimum
address tenure of two bus cycles. As shown in Figure 8-7, these signals are asserted for one
bus clock cycle, three-stated for half of the next bus clock cycle, driven high till the
following bus cycle, and finally three-stated. Note tAAICK must be asserted for only one

bus clock cycle.

The address transfer can be terminated with the requirement to raiRTRY is asserted
anytime during the address tenure and through the cycle follo&AmQK. The assertion

causes the entire transaction (address and data tenure) to be rerun. As a snooping device,
the 604e asserBRTRY for a snooped transaction that hits modified data in the data cache
that must be written back to memory, or if the snooped transaction could not be serviced.
As a bus master, the 604e responds to an assertioRRIIRY by aborting the bus
transaction and re-requesting the bus. Note that after recognizing an asseAiRmRY

and aborting the transaction in progress, the 604e is not guaranteed to run the same
transaction the next time it is granted the bus.

If an address retry is required, tARTRY response will be asserted by a bus snooping
device as early as the second cycle after the assertido8 obnce assertedRTRY must
remain asserted through the cycle after the assertid®A@K. The assertion oARTRY
during the cycle after the assertion®ACK is referred to as a qualifiedRTRY. An earlier
assertion oARTRY during the address tenure is referred to as an ARTRY.
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As a bus master, the 604e recognizes either an early or quaiR@@Y and prevents the

data tenure associated with the retried address tenure. If the data tenure has already begun,
the 604e aborts and terminates the data tenure immediately even if the burst data has been
received. If the assertion &RTRY is received up to or on the bus cycle following the first

(or only) assertion oT A for the data tenure, the 604e ignores the first data beat, and if it is

a load operation, does not forward data internally to the cache and execution units.

If the 604e is in fast-L2/data streaming modeé) should not be asserted prior to the
gualified ARTRY cycle. If ARTRY is asserted after the first (or only) assertionTe¥,
improper operation of the bus interface may result.

During the clock of a qualifieRTRY, the 604e also determines if it should negadRand
ignoreBG on the following cycle. On the following cycle, only the snooping master that
assertedARTRY and needs to perform a snoop copy-back operation is allowed to assert
BR. This guarantees the snooping master an opportunity to request and be granted the bus
before the just-retried master can restart its transaction.
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Figure 8-7. Snooped Address Cycle with ARTRY

8.4 Data Bus Tenure

This section describes the data bus arbitration, transfer, and termination phases defined by
the 604e memory access protocol. The phases of the data tenure are identical to those of the
address tenure, underscoring the symmetry in the control of the two buses.
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8.4.1 Data Bus Arbitration

Data bus arbitration uses the data arbitration signal grdbps, DBWO, and DBB.
Additionally, the combination of S orXATS and TT[0—4] provides information about the
data bus request to external logic.

TheTS signal is an implied data bus request from the 604e; the arbiter must gu@hifjth

the transfer type (TT) encodings to determine if the current address transfer is an address-
only operation, which does not require a data bus transfer (see Figure 8-7). If the data bus
is needed, the arbiter grants data bus mastership by assertiDB@aput to the 604e. As

with the address-bus arbitration phase, the 604e must qualiyBi&&input with a number

of input signals before assuming bus mastership, as shown in Figure 8-8.
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Figure 8-8. Data Bus Arbitration

A gualified data bus grant can be expressed as the following:

QDBG =DBG asserted whil®BB, DRTRY, andARTRY (associated with the data
bus operation) are negated.

When a data tenure overlaps with its associated address tenure, a quaRfidRlY
assertion coincident with a data bus grant signal does not result in data bus mastership
(DBB is not asserted). Otherwise, the 604e always asB&Bson the bus clock cycle after
recognition of a qualified data bus grant. Since the 604e can pipeline transactions, there
may be an outstanding data bus transaction when a new address transaction is retried. In
this case, the 604e becomes the data bus master to complete the previous transaction.
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8.4.1.1 Effect of ARTRY Assertion on Data Transfer and Arbitration

The system designer must define the qualified snoop response window, and ensure that data
is not transferred prior to one cycle before the end of that window in non—fast-L2/data
streaming mode, or prior to the same cycle as the end of that window in fast-L2/data
streaming mode. The 604e supports a snoop response window as early as two cycles after
assertion off S. Operation of the 604e in fast-L2/data streaming mode requires that data be
transferred no earlier than the first cycle of RTRY window, not the cycle earlier. The
system may assefA for a data transaction prior to the termination of an address tenure;

in this case note that the snoop response window is closed either on the clo@latisat
asserted (if in fast-L2/data streaming mode), or the clock after the assertioh @f in
non—fast-L2/data streaming mode).

An assertedARTRY can invalidate a previous or current data transfer and terminate the
data cycle, invalidate a qualified data bus grant, or cancel a future data transfer. The possible
scenarios are described below:

 If datais transferred (via assertion Bh) two or more cycles before the beginning
of the snoop window in non—fast-L2/data streaming mode, or one or more cycles
before the beginning of the snoop window in fast-L2/data streaming, then data is
transferred too early to be cancelledARTRY. Therefore, systems in which
ARTRY can be asserted must not attempt data transfers (8A3eqmtior to this
cycle.

» Ifdataistransferred inthe cycle before the beginning of the snoop response window,
assertion oARTRY invalidates the data transfer, in a similar fashion to assertion of
DRTRY, except that the data tenure is aborted, not extended. If the fast-L2/data
streaming mode is active, data may not be transferred in this cycle.

« If data is transferred in the first cycle of the snoop response window, assertion of
ARTRY invalidates the data transfer. This is similar to deasser#nexcept that
the data tenure is aborted, instead of continued.

« If DBG has been asserted, the system must not attempt to transfer data in cycles
following the assertion cARTRY. The 604e negatéBB the cycle following
ARTRY, and expects no more data to be transferred. However, note that the data
related to a previous address tenure must not be affected, and that the system must
distinguish this case.

« |faDBG has not been asserted MRTRY assertion effectively negates the implied
data bus request that was associated with the address transfer, and the 604e will not
expect a transfer. The system must not ad3Bf® for this transfer if any other 604e
data transfers are pending.

* If ARTRY assertion occurs while a data transfer is in progress, the 604e will
terminate data transfers following the first cyclA&TRY assertion. This means
that a burst transfer may be cut short.

* If an ARTRY assertion occurs the same cycle as its correspobd@y the
ARTRY will disqualify the data bus grant in that cycle and the 604e will not initiate
any data transaction on the following cycle regardless of whether any other data
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transactions are queued. However, on the following cycle (the cycle after the
ARTRY assertion) the 604e processor will respond to a qualified data bus grant if it
has previously queued data transactions. Figure 8-9 shows an example where a write
address tenure receivesARRTRY snoop response in the same cycle the system
assert BWO andDBG (cycle 6) to grant the write data tenure before a previously
requested read data tenure. FollowingARI'RY assertion, the qualifiddBG

assertion to the 604e in cycle 7 will be accepted for the read data tenure.

Master 1 DBG

| 11 2 | 3 | 4 |5 |6 | 7 | 8 | 9 | 10|
System Clock |
| Master1 ! | Master1 | I I I I
TS I READ I WRITE | I I I I
I I I I I I I
— I | I | | |
AACK I—I_\+/ I \ 3IE /| I I
I I I I I I
ARTRY I I /_/_I_\_I
I X |
|
I
I

DBWO 1 /
!

ARTRY, kills_ "

Qualified DBG QDBG for WRITEI

I
I
I
I
|
I
I
[
I
I
I
I
Internal Data |
Bus Request J

I
BB |
I
|

Figure 8-9. Qualified DBG Generation Following ARTRY

8.4.1.2 Using the DBB Signal

The DBB signal should be connected between masters if data tenure scheduling is left to
the masters. Optionally, the memory system can control data tenure scheduling directly
with DBG. However, it is possible to ignore tiBB signal in the system if thBBB input

Is not used as the final data bus allocation control between data bus masters, and if the
memory system can track the start and end of the data tenure. In non—fast-L2/data
streaming mode, iDBB is not used to signal the end of a data tenDG is only asserted

to the next bus master the cycle before the cycle that the next bus master may actually begin

Chapter 8. System Interface Operation 8-23



its data tenure, rather than asserting it earlier (usually during another master’s data tenure)
and allowing the negation @BB to be the final gating signal for a qualified data bus grant.

If the 604e is in fast-L2/data streaming mode, B&B signal is an output only, and is not
sampled by the 604e. EvenDBB is ignored in the system, the 604e always recognizes its
own assertion oDBB (except when in fast-L2/data streaming mode), and requires one
cycle after data tenure completion to negate its ®@BB before recognizing a qualified

data bus grant for another data tenure. If 8B signal is not used by the systeibBB

must still be connected to a pull-up resistor on the 604e to ensure proper operation. If the
604e is in fast-L2/data streaming mode, and data streaming is to be performed across
multiple processors, tHeBB signal for each processor should be connected directly to the
memory arbiter.

8.4.2 Data Bus Write Only

As a result of address pipelining, the 604e may have up to three data tenures queued to
perform when it receives a qualifi@BG. Generally, the data tenures should be performed

in strict order (the same order) as their address tenures were performed. The 604e, however,
also supports a limited out-of-order capability with the data bus write @BWO) input.

The DBWO capability exists to alleviate deadlock conditions that are possible in certain
system topologies. When recognized on the clock of a qualdi#@, DBWO may direct

the 604e to perform the next pending data write tenure even if a pending read tenure would
have normally been performed first. For more information on the operatioBW@fO, refer

to Section 8.11, “Using Data Bus Write Only.”

If the 604e has any data tenures to perform, it always accepts data bus mastership to
perform a data tenure when it recognizes a qualib&{. If DBWO is asserted with a
qualifiedDBG and no write tenure is queued to run, the 604e still takes mastership of the
data bus to perform the next pending read data tenure. If the 604e has multiple queued
writes, the assertion @BWO causes the reordering of the write operation whose address
was sent first.

Generally, DBWO should only be used to allow a copy-back operation (burst write) to
occur before a pending read operatiorDBWO is used for single-beat write operations,
it may negate the effect of theeioinstruction by allowing a write operation to precede a
program-scheduled read operatiorDBWO is asserted when the 604e does not have write
data available, bus operations occur &3BWO had not been asserted.

8.4.3 Data Transfer

The data transfer signals include DH[0-31], DL[0-31], DP[0-7] &RE. For memory
accesses, the DH and DL signals form a 64-bit data path for read and write operations.

The 604e transfers data in either single- or four-beat burst transfers. Single-beat operations
can transfer from one to eight bytes at a time and can be misaligned; see Section 8.3.2.4,
“Effect of Alignment in Data Transfers.” Burst operations always transfer eight words and
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are aligned on eight-word address boundaries. Burst transfers can achieve significantly
higher bus throughput than single-beat operations.

The type of transaction initiated by the 604e depends on whether the code or data is
cacheable and, for store operations whether the cache is considered in write-back or write-
through mode, which software controls on either a page or block basis. Burst transfers
support cacheable operations only; that is, memory structures must be marked as cacheable
(and write-back for data store operations) in the respective page or block descriptor to take
advantage of burst transfers.

The 604e outpuT BST indicates to the system whether the current transaction is a single-

or four-beat transfer (except duriegiwx/ecowxtransactions, when it signals the state of
EAR][28]). A burst transfer has an assumed address order. For load or store operations that
missed in the cache (and are marked as cacheable and, for stores, write-back in the MMU),
the 604e uses the double-word—-aligned address associated with the critical code or data that
initiated the transaction. This minimizes latency by allowing the critical code or data to be
forwarded to the processor before the rest of the cache line is filled. For all other burst
operations, however, the cache line write operations are transferred beginning with the oct-
word—aligned data, and burst reads begin on double-word boundaries.

The 604e does not directly support dynamic interfacing to subsystems with less than a 64-
bit data path (except for direct-store operations discussed in Section 8.6, “Direct-Store
Operation”).

8.4.4 Data Transfer Termination

Four signals are used to terminate data bus transactioAs-BRTRY (data retry) TEA
(transfer error acknowledge), addRTRY. The TA signal indicates normal termination of
data transactions. It must always be asserted on the bus cycle coincident with the data that
it is qualifying. It may be withheld by the slave for any number of clocks until valid data is
ready to be supplied or acceptd&@RTRY indicates invalid read data in the previous bus
clock cycle DRTRY extends the current data beat and does not terminate it. If it is asserted
after the last (or only) data beat, the 604e neg®BB but still considers the data beat
active and waits for another assertionl@. DRTRY is ignored on write operation$EA
indicates a nonrecoverable bus error event. Upon receiving a final (or only) termination
condition, the 604e always negaf@BB for one cycle, except when data streaming in fast-
L2/data streaming mode.

If DRTRY is asserted by the memory system to extend the last (or only) data beat past the
negation oDBB, the memory system should three-state the data bus on the clock after the
final assertion oA, even though it will negat®RTRY on that clock. This is to prevent a
potential momentary data bus conflict if a write access begins on the following cycle.

The TEA signal is used to signal a nonrecoverable error during the data transaction. The
TEA signal will be recognized anytime during the assertiorD&B or when a valid
DRTRY could be sampled. The assertionI&A terminates the data tenure immediately
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even if in the middle of a burst; however, it does not prevent incorrect data that has just been
acknowledged witTA from being written into the 604e’s cache or GPRs. The assertion of
TEA initiates either a machine check exception or a checkstop condition based on the
setting of the MSR.

An assertion oARTRY causes the data tenure to be terminated immediately ARERY

is for the address tenure associated with the data tenure in operation (the data tenure may
not be terminated due to address pipelining)ARTRY is connected for the 604e, the
earliest allowable assertion oA to the 604e is directly dependent on the earliest possible
assertion oARTRY to the 604e; see Section 8.3.3, “Address Transfer Termination.”

8.4.4.1 Normal Single-Beat Termination

Normal termination of a single-beat data read operation occurs WAda asserted by a
responding slave. ThEEA andDRTRY signals must remain negated during the transfer
(see Figure 8-10).

N/

| 0 | 1 | 2 | 3 | 4 I
!_I_! | L[ 1 !_I !
TS | | |
ual%i KI\ I/ | E |
R R Gy I
: : = g@ﬁ | :
deta | AN = |
& | S~ I
T I ! B S G

| | | Cix |

| | | |

Figure 8-10. Normal Single-Beat Read Termination
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TheDRTRY signal is not sampled during data writes, as shown in Figure 8-11.

AACK i i i \—:_/—‘
| | | |

Figure 8-11. Normal Single-Beat Write Termination

Normal termination of a burst transfer occurs wiHéis asserted for four bus clock cycles,

as shown in Figure 8-12. The bus clock cycles in whioh is asserted need not be
consecutive, thus allowing pacing of the data transfer beats. For read bursts to terminate
successfullyTEA andDRTRY must remain negated during the transfer. For write bursts,
TEA must remain negated for a successful tran&J®TRY is ignored during data writes.

Figure 8-12. Normal Burst Transaction
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For read burstd)RTRY may be asserted one bus clock cycle afi&iis asserted to signal

that the data presented witiA is invalid and that the processor must wait for the negation

of DRTRY before forwarding data to the processor (see Figure 8-13). Thus, a data beat can
be speculatively terminated wilhA and then one bus clock cycle later confirmed with the
negation ofDRTRY. TheDRTRY signal is valid only for read transactionEA must be
asserted on the bus clock cycle before the first bus clock cycle of the asser&T&Y;
otherwise the results are undefined.

TheDRTRY signal extends data bus mastership such that other processors cannot use the
data bus untiDRTRY is negated. Therefore, in the example in Figure 8HBB cannot

be asserted until bus clock cycle 5. This is true for both read and write operations even
thoughDRTRY does not extend bus mastership for write operations.

5

Try: MX'/;M

Figure 8-13. Termination with DRTRY

Figure 8-14 shows the effect of usiDRTRY during a burst read. It also shows the effect

of usingTA to pace the data transfer rate. Notice that in bus clock cycle 3 of Figure 8-14,
TA is negated for the second data beat. The 604e data pipeline does not proceed until bus
clock cycle 4 when th&A is reasserted.

Note thatDRTRY is useful for systems that implement speculative forwarding of data such
as those with direct-mapped, second-level caches where hit/miss is determined on the
following bus clock cycle, or for parity- or ECC-checked memory systems.

Note thatDRTRY may not be implemented on other PowerPC processors.
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8.4.4.2 Data Transfer Termination Due to a Bus Error

The TEA signal indicates that a bus error occurred. It may be asserted DB is
asserted or when a valldRTRY could be recognized by the 604e. AsserfirEA to the

604e terminates the transaction; that is, further assertiom&@ndDRTRY are ignored
andDBB is negated. If the system ass€eFtsA for a data transaction on the same cycle or
beforeARTRY is asserted for the corresponding address transaction, the 604e will ignore
the effects of ARTRY on the address transaction and will consider it successfully
completed.

Note that from a bus standpoint, the assertiom®A causes nothing worse than the early
termination of the data tenure in progress. All the system logic involved in processing the
data transfer prior to th€EA must return to the normal nonbusy state following THeA

so that the bus operations associated with a machine check exception can proceed. Due to
bus pipelining in the 604e, all outstanding bus operations, including all queued requests, are
completed in the normal fashion following tA&A. The machine check exception can be
taken while these transactions are in progress.

If the TEA signal is asserted during a direct-store access, the action dEAés delayed

until all data transfers from the direct store access have been completed. The device causing
assertion of th@ EA signal is responsible for maintaining assertion of TR&\ signal until

the last direct-store data tenure is complete. The direct store reply, in cagésAof
assertion, is not required, and will be ignored by the 604e. The 604e will recognize the
assertion of th@EA signal at the completion of the last direct-store data tenure, and not
before.

o T TN T

Figure 8-14. Read Burst with TA Wait States and DRTRY
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Assertion of theTEA signal causes a machine check exception (and possibly a checkstop
condition within the 604e). For more information, see Section 4.5.2, “Machine Check
Exception (0x00200).” Note also that the 604e does not implement a synchronous error
capability for memory accesses. This means that the exception instruction pointer does not
point to the memory operation that caused the assertidfAf but to the instruction about

to be executed (perhaps several instructions later). However, asserfi@@®ofloes not
invalidate data entering the GPR or the cache. Additionally, the corresponding address of
the access that caus@@A to be asserted is not latched by the 604e. To recover, the
exception handler must determine and remedy the cause dEAeor the 604e must be
reset; therefore, this function should only be used to flag fatal system conditions to the
processor (such as parity or uncorrectable ECC errors).

After the 604e has committed to run a transaction, that transaction must eventually
complete. Address retry causes the transaction to be restifauait states andRTRY
assertion for reads delay termination of individual data beats. Eventually, however, the
system must either terminate the transaction or asseftBesignal (and vector the 604e

into a machine check exception.) For this reason, care must be taken to check for the end
of physical memory and the location of certain system facilities to avoid memory accesses
that result in the generation of machine check exceptions.

Note thafTEA generates a machine check exception depending on the ME bit in the MSR.
Clearing the machine check exception enable control bit leads to a true checkstop condition
(instruction execution halted and processor clock stopped); a machine check exception
occurs if the ME bit is set.

8.4.5 Memory Coherency—MESI Protocol

The 604e provides dedicated hardware to provide memory coherency by snooping bus
transactions. The address retry capability enforces the four-state, MESI cache-coherency
protocol (see Figure 8-15). In addition to the hardware required to monitor bus traffic for
coherency, the 604e has a cache port dedicated to snooping so that comparing cache entries
to address traffic on the bus does not tie up the 604e's on-chip data cache.

The global GBL) signal output, indicates whether the current transaction must be snooped
by other snooping devices on the bus. Address bus masters @G&tett indicate that the

current transaction is a global access (that is, an access to memory shared by more than one
processor/cache). GBL is not asserted for the transaction, that transaction is not snooped.
When other devices detect ti@&BL input asserted, they must respond by snooping the
broadcast address.

Normally, GBL reflects the M-bit value specified for the memory reference in the
corresponding translation descriptor(s). Note that care must be taken to minimize the
number of pages marked as global, because the retry protocol discussed in the previous
section is used to enforce coherency and can require significant bus bandwidth.
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When the 604e is not the address bus mass8L is an input. The 604e snoops a
transaction ifTS andGBL are asserted together in the same bus clock cycle (this is a
gualifiedsnooping condition). No snoop update to the 604e cache occurs if the snooped
transaction is not marked global. This includes invalidation cycles.

When the 604e detects a qualified snoop condition, the address associated Wighishe
compared against the data cache tags through a dedicated cache tag port. Snooping
completes if no hit is detected. If, however, the address hits in the cache, the 604e reacts
according to the MESI protocol shown in Figure 8-15, assuming the WIM bits are set to
write-back mode, caching allowed, and coherency enforced (WIM = 001).

Note that write hits to clean lines of nonglobal pages do not generate invalidate broadcasts.
There are several types of bus transactions that involve the movement of data that can no
longer access the TLB M-bit (for example, replacement cache block copy-back, or a snoop
push). In these cases, the hardware cannot determine whether the cache block was
originally marked global; therefore, the 604e marks these transactions as nonglobal to avoid
retry deadlocks.

The 604e's on-chip data cache is implemented as a four-way set-associative cache. To
facilitate external monitoring of the internal cache tags, the cache set element (CSE[0-1])
signals indicate which sector of the cache set is being replaced on read operations
(including RWITM). Note that these signals are valid only for 604e burst operations; for all
other bus operations, the CSE[0-1] signals should be ignored.
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INVALID

(On a miss, the old
line is firstinvalidated
and copied back

BUS TRANSACTIONS
RH = Read Hit (D: Snoop Push
RMS = Read Miss, Shared
RME = Read Miss, Exclusive ®: Invalidate Transaction
WH = Write Hit
WM = Write Miss @: Read-with-Intent-to-Modify
SHR = Snoop Hit on a Read
SHW = Snoop Hit on a Write or (D: Cache Block Fill

Read-with-Intent-to-Modify
Figure 8-15. MESI Cache Coherency Protocol—State Diagram (WIM = 001)

Table 8-8 shows the CSE[0-1] encodings.
Table 8-8. CSE[0-1] Signals

CSE[0-1] Cache Set Element
00 Set 0
01 Setl
10 Set 2
11 Set 3
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8.5 Timing Examples

This section shows timing diagrams for various scenarios. Figure 8-16 illustrates the fastest
single-beat reads possible for the 604e604e. This figure shows both minimal latency and
maximum single-beat throughput. By delaying the data bus tenure, the latency increases,
but, because of split-transaction pipelining, the overall throughput is not affected unless the
data bus latency causes the fourth address tenure to be delayed.

Note that all bidirectional signals are three-stated between bus tenures.
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Figure 8-16. Fastest Single-Beat Reads
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Figure 8-17 illustrates the fastest single-beat writes supported by the 604e. Note that all
bidirectional signals are three-stated between bus tenures. The TT[1-4] signals are binary
encoded Obx0010, and TTO can be either O or 1.
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Figure 8-17. Fastest Single-Beat Writes
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Figure 8-18 shows three ways to delay single-beat reads showing data-delay controls:

« TheTA signal can remain negated to insert wait states in clock cycles 3 and 4.
» For the second acce$3BG could have been asserted in clock cycle 6.
* In the third acces®)RTRY is asserted in clock cycle 11 to flush the previous data.

Note that all bidirectional signals are three-stated between bus tenures.
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Figure 8-18. Single-Beat Reads Showing Data-Delay Controls
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Figure 8-19 shows data-delay controls in a single-beat write operation. Note that all
bidirectional signals are three-stated between bus tenures. Data transfers are delayed in the
following ways:

« TheTA signal is held negated to insert wait states in clocks 3 and 4.
* Inclock 6,DBG is held negated, delaying the start of the data tenure.

The last access is not delay&R(TRY is valid only for read operations).
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Figure 8-19. Single-Beat Writes Showing Data Delay Controls
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Figure 8-20 shows the use of data-delay controls with burst transfers. Note that all
bidirectional signals are three-stated between bus tenures. Note the following:

» The first data beat of bursted read data (clock 3) is the critical quad word.

« The write burst shows the useT® signal negation to delay the third data beat.

« The final read burst shows the usé&TRY on the third data beat.

* The address for the third transfer is delayed until the first transfer completes.

|1]2|3|4|5]6]|7]|8]|9|10]11|12 13|14 15|16 |17 |18 |19 |20

1
BRI\_1/ T\ [ T\ 7 T\ I T O
T e
BG I\ Ny /SN ST
. | | | B
BB |\ I/_T\ T W T T T e R R
S O T T T S T T S T TR A N N TN N O O R
SN Y Y
A1) CE (- G ——— |
TTI0-4] R R L L L]
LT T T
TBSTI T\ I/ T\l I/ 7T\ /T 1T 1T 1T &= 1 1 1 1 11
T
GBL | | [ ] [ ] | [ Y (R A
I
ARCK N N Y
T T Y T Y T T N Y Y T T S SR SO TN N O B
ARTRY
i VL —— L A—— s
T T T T T T T T T T T T T T T T
R =N
T ] T T
R
TA | \ oo N NNy |
N
DRTRY | | | | | | | o
| | | | | | | | | | | | | | | | | | | | |
A L

|1|2|3|4 |5|6|7|8|9|10|11|12|13|14|15|16|17|18|19|20|

Figure 8-20. Burst Transfers with Data Delay Controls

Chapter 8. System Interface Operation 8-37



Figure 8-21 shows the use of th&A signal. Note that all bidirectional signals are three-
stated between bus tenures. Note the following:

* The first data beat of the read burst (in clock 0) is the critical quad word.
» TheTEA signal truncates the burst write transfer on the third data beat.
» The 604e604e eventually causes an exception to be taken DBAhevent.
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Figure 8-21. Use of Transfer Error Acknowledge ( TEA)
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8.6 Direct-Store Operation

The 604e defines separate memory-mapped and I/O address spaces, or segments,
distinguished by the corresponding segment register T bit in the address translation logic
of the 604e. If the T bit is cleared, the memory reference is a normal memory-mapped
access and can use the virtual memory management hardware of the 604e. If the T bit is set,
the memory reference is a direct-store access.

The following points should be considered for direct-store accesses:

» The use of direct-store segment (referred to as direct-store segments in the
architecture specification) accesses may have a significant impact on the
performance of the 604e. The provision of direct-store segment access capability by
the 604e is to provide compatibility with earlier hardware 1/O controllers and may
not be provided in future derivatives of the 604e family.

» Direct-store accesses must be strongly ordered; for example, these accesses must
run on the bus strictly in order with respect to the instruction stream.

» Direct-store accesses must provide synchronous error reporting. Chapter 3, “Cache
and Bus Interface Unit Operation,” describes architectural aspects of direct-store
segments, as well as an overview of the segmented address space management of
PowerPC processors.

The 604e has a single bus interface to support both memory accesses and direct-store
segment accesses.

The direct-store protocol for the 604e allows for the transfer of 1 to 128 bytes of data

between the 604e and the bus unit controller (BUC) for each single load or store request
issued by the program. The block of data is transferred by the 604e as multiple single-beat
bus transactions (individual address and data tenure for each transaction) until completion.
The program waits for the sequence of bus transactions to be completed so that a final
completion status (error or no error) can be reported precisely with respect to the program
flow. The completion status is snooped by the 604e from a bus transaction run by the BUC.

The system recognizes the assertion of Tiesignal as the start of a memory-mapped
access. The assertion¥ATS indicates a direct-store access. This allows memory-mapped
devices to ignore direct-store transactionsXKATS is asserted, the access is to a direct-
store space and the following extensions to the memory access protocol apply:

* A new set of bus operations are defined. The transfer type, transfer burst, and
transfer size signals are redefined for direct-store operations; they convey the opcode
for the I/O transaction (see Table 8-9).

» There are two beats of address for each direct-store transfer. The first beat (packet
0) provides basic address information such as the segment register and the sender
tag and several control bits; the second beat (packet 1) provides additional
addressing bits from the segment register and the logical address.
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 The TT[0-3],TBST, and TSIZ[0-2] signals are remapped to form an 8-bit extended
transfer code (XATC) which specifies a command and transfer size for the
transaction. The XATC field is driven and snooped by the 604e during direct-store
transactions.

* Only the data signals such as DH[0-31] and DP[0—-3] are used. The lower half of the
data bus and parity is ignored.

* The sender that initiated the transaction must wait for a reply from the receiver bus
unit controller (BUC) before starting a new operation.

» The 604e does not burst direct-store transacthdhdirect-store transactions
generated by the 604e are single-beat transactions of four bytes or less (single data
beat tenure per address tenure).

Direct-store transactions use separate arbitration for the split address and data buses and
define address-only and single-beat transactions. The address-retry vehicle is identical,
although there is no hardware coherency support for direct-store transactiodR TReY

signal is useful, however, for pacing 604e transactions, effectively indicating to the 604e
that the BUC is in a queue-full condition and cannot accept new data.

In addition to the extensions noted above, there are fundamental differences between
memory-mapped and direct-store operations. For example, only half of the 64-bit data path
is available for 604e direct-store transactions. This lowers the pin count for 1/O interfaces

but generally results in substantially less bandwidth than memory-mapped accesses.
Additionally, load/store instructions that address direct-store segments cannot complete
successfully without an error-free reply from the addressed BUC. Because normal direct-
store accesses involve multiple 1/0 transactions (streaming), they are likely to be very long

latency instructions; therefore, direct-store operations usually stall 604e instruction issue.

Figure 8-22 shows a direct-store tenure. Note that the I/O device response is an address-
only bus transaction.

It should be noted that in the best case, the use of the 604e direct-store protocol degrades
performance and requires the addressed controllers to implement 604e bus master
capability to generate the reply transactions.

8-40 PowerPC 604e RISC Microprocessor User's Manual



ADDRESS TENURE I/O RESPONSE

J\ J\
- N - N

ARBITRATION| TRANSFER |TERMINATION|e @ @ ARBITRATION| TRANSFER [TERMINATION

/

INDEPENDENT ADDRESS AND DATA

DATA TENURE

J\
- N NO DATA TENURE FOR I/0 RESPONSE

ARBITRATION| TRANSFER [TERMINATION| eee (/O responses are address-only)

Figure 8-22. Direct-Store Tenures

8.6.1 Direct-Store Transactions

The 604e defines seven direct-store transaction operations, as shown in Table 8-9. These
operations permit communication between the 604e and BUCs. A single 604e store or load
instruction (that translates to a direct-store access) generates one or more direct-store
operations (two or more direct-store operations for loads) from the 604e and one reply
operation from the addressed BUC.

Table 8-9. Direct-Store Bus Operations

Operation Address Only Direction XATC Encoding
Load start (request) Yes 604e O 10 0100 0000
Load immediate No 604e O 10 0101 0000
Load last No 604e O 10 0111 0000
Store immediate No 604e O 10 0001 0000
Store last No 604e O 10 0011 0000
Load reply Yes I0 0 604e 1100 0000
Store reply Yes 10 O 604e 1000 0000

For the first beat of the address bus, the extended address transfer code (XATC), contains
the I/O opcode as shown in Table 8-9; the opcode is formed by concatenating the transfer
type, transfer burst, and transfer size signals defined as follows:

XATC = TT[0-3]|[TBST||TSIZ[0-2]
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8.6.1.1 Store Operations
There are three operations defined for direct-store store operations from the 604e to the
BUC, defined as follows:

1. Store immediate operations transfer up to 32 bits of data each from the 604e to the
BUC.

2. Store last operations transfer up to 32 bits of data each from the 604e to the BUC.

3. Storereply from the BUC reveals the success/failure of that direct-store access to the
604e.

A direct-store store access consists of one or more data transfer operations followed by the
I/O store reply operation from the BUC. If the data can be transferred in one 32-bit data
transaction, it is marked as a store last operation followed by the store reply operation; no
store immediate operation is involved in the transfer, as shown in the following sequence:

STORE LAST (from 604e)

STORE REPLY (from BUC)

However, if more data is involved in the direct-store access, there will be one or more store
immediate operations. The BUC can detect when the last data is being transferred by
looking for the store last opcode, as shown in the following sequence:

STORE IMMEDIATE(S)

STORE LAST

STORE REPLY

8.6.1.2 Load Operations

Direct-store load accesses are similar to store operations, except that the 604e latches data
from the addressed BUC rather than supplying the data to the BUC. As with memory
accesses, the 604e is the master on both load and store operations; the external system must
provide the data bus grant to the 604e when the BUC is ready to supply the data to the 604e.
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The load request direct-store operation has no analogous store operation; it informs the
addressed BUC of the total number of bytes of data that the BUC must provide to the 604e
on the subsequent load immediate/load last operations. For direct-store load accesses, the
simplest, 32-bit (or fewer) data transfer sequence is as follows:

LOAD REQUEST

LOAD LAST

LOAD REPLY(from BUC)
However, if more data is involved in the direct-store access, there will be one or more load
immediate operations. The BUC can detect when the last data is being transferred by
looking for the load last opcode, as seen in the following sequence:

LOAD REQUEST

LOAD IMM(s)

LOAD LAST

LOAD REPLY

Note that three of the seven defined operations are address-only transactions and do not use
the data bus. However, unlike the memory transfer protocol, these transactions are not
broadcast from one master to all snooping devices. The direct-store address-only
transaction protocol strictly controls communication between the 604e and the BUC.

8.6.2 Direct-Store Transaction Protocol Details

As mentioned previously, there are two address-bus beats corresponding to two packets of
information about the address. The two packets contain the sender and receiver tags, the
address and extended address bits, and extra control and status bits. The two beats of the
address bus (plus attributes) are shown at the top of Figure 8-23 as two packets. The first
packet, packet 0, is then expanded to depict the XATC and address bus information in
detail.
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8.6.2.1 Packet O
Figure 8-23 shows the organization of the first packet in a direct-store transaction.

The XATC contains the I/O opcode, as discussed earlier and as shown in Table 8-9. The
address bus contains the following:

Key bit || segment register || sender tag

A (0-31) + Attributes

/k Address Bus (A[0-31]) ﬂ
R
31

A
—
0 7 0 123 1112 27 28
L xarc | + [ || | | |
I/O Opcode \._Y_JLYJ\ B?ﬂD /)
W . PID
V
From Segment Register
Key Bit
Reserved

Figure 8-23. Direct-Store Operation—Packet O

This information is organized as follows:

» Bits 0 and 1 of the address bus are reserved—the 604e always drives these bits to
zero.

» Key bit—Bit 2 is the key bit from the segment register (either SR[Kp] or SR[KSs]).
Kp indicates user-level access and Ks indicate supervisor-level access. The 604e
multiplexes the correct key bit into this position according to the current operating
context (user or supervisor). (Note that user- and supervisor-level refer to problem
and privileged state, respectively, in the architecture specification.)

* Segment register—Address bits 3-27 correspond to bits 3—27 of the selected
segment register. Note that address bits 3—11 form the 9-bit receiver tag. Software
must initialize these bits in the segment register to the ID of the BUC to be
addressed; they are referred to as the BUID (bus unit ID) bits.

» PID (sender tag)—Address bits 28—-31 form the 4-bit sender tag. The 604e PID
(processor ID) comes from bits 28-31 of the 604e’s processor ID register. The 4-bit
PID tag allows a maximum of 16 processor IDs to be defined for a given system. If
more bits are needed for a very large multiprocessor system, for example, it is
envisioned that the second-level cache (or equivalent logic) can append a larger
processor tag as needed. The BUC addressed by the receiver tag should latch the
sender address required by the subsequent I/O reply operation.
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8.6.2.2 Packet 1

The second address beat, packet 1, transfers byte counts and the physical address for the
transaction, as shown in Figure 8-24.

N
— —
0
|

7 0 34 31
XATC | + [SR(28-31) Bus Address

Byte Count Address Bus (A[0-31])

Figure 8-24. Direct-Store Operation—Packet 1

For packet 1, the XATC is defined as follows:

» Loadrequest operations—XATC contains the total number of bytes to be transferred
(128 bytes maximum for 604e).

* Immediate/last (load or store) operations—XATC contains the current transfer byte
count (1 to 4 bytes).

Address bits 0—31 contain the physical address of the transaction. The physical address is
generated by concatenating segment register bits 28—-31 with bits 4-31 of the effective
address, as follows:

Segment register (bits 28-31) || effective address (bits 4-31)

While the 604e provides the address of the transaction to the BUC, the BUC must maintain
a valid address pointer for the reply.

8.6.3 1/0O Reply Operations

BUCs must respond to 604e direct-store transactions with an I/O reply operation, as shown
in Figure 8-25. The purpose of this reply operation is to inform the 604e of the success or
failure of the attempted direct-store access. This requires the system direct-store to have
604e bus mastership capability—a substantially more complex design task than bus slave
iImplementations that use memory-mapped I/O access.

Reply operations from the BUC to the 604e are address-only transactions. As with packet
0 of the address bus on 604e direct-store operations, the XATC contains the opcode for the
operation (see Table 8-9). Additionally, the I/O reply operation transfers the sender/receiver
tags in the first beat.
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Figure 8-25. I/O Reply Operation

The address bits are described in Table 8-10.
Table 8-10. Address Bits for I/0O Reply Operations

Address Bits Description

0-1 Reserved. These bits should be cleared for compatibility with future PowerPC microprocessors.

2 Error bit. It is set if the BUC records an error in the access.

3-11 BUID. Sender tag of a reply operation. Corresponds with bits 3—11 of one of the 604e segment
registers.

12-27 Address bits 12—-27 are BUC-specific and are ignored by the 604e.

28-31 PID (receiver tag). The 604e effectively snoops operations on the bus and, on reply operations,
compares this field to bits 28—-31 of the PID register to determine if it should recognize this 1/O reply.

The second beat of the address bus is reserved; the XATC and address buses should be
driven to zero to preserve compatibility with future protocol enhancements.

The following sequence occurs when the 604e detects an error bit set on an I/O reply
operation:
1. The 604e completes the instruction that initiated the access.
2. If the instruction