

The CPM on members of the MPC8xx PowerQUICC family (which includes the MPC850,
MPC823, MPC855T, MPC860, MPC857DSL, MPC857T, MPC862, MPC852T,
MPC859DSL, MPC859, MPC866, MPC885, MPC880, MPC875, and MPC870) provides
specialized hardware and library functions to support DSP applications. The communication
processor’s multiply-and-accumulate (MAC) handles real or complex numbers, and the
address generator calculates modulo addressing for circular buffer structures. Library
functions include finite impulse response (FIR) filtering done with or without adaptive
equalization, data compression, and scrambling. The following topics are addressed in this
addendum:

Topic Page

Section 1, “Features” 2
Section 2, “DSP Functionality” 2
Section 3, “DSP Function Descriptors (FDs)” 3
Section 4, “Data Representation” 5
Section 5, “Input and Output Buffers” 5
Section 6, “Buffer and Coefficient Base Pointers (CBASE, XPTR, XYPTR)” 6
Section 7, “DSP Parameter RAM” 6
Section 8, “DSP CP Commands” 7
Section 9, “DSP Function Priority within the CPM” 7
Section 10, “DSP Event/Mask Registers (SDSR/SDMR)” 7
Section 11, “FIR Library Functions” 8
Section 12, “IIR–Real C, Real X, Real Y” 19
Section 13, “Modulation (MOD)–Real Sin, Real Cos, Complex X, and

Real/Complex Y” 21
Section 14, “DEMOD–Real Sin; Real Cos, Real X, and Complex Y” 24
Section 15, “LMS1–Complex Coefficients, Complex Samples, and Real/Complex

Scalar” 26
Section 16, “LMS2–Complex Coefficients, Complex Samples, and Real/Complex

Scalar” 27
Section 17, “Weighted Vector Addition (WADD)–Real X and Real Y” 29
Section 18, “DSP Performance Using the Core Alone Versus Using the CPM” 31
Section 19, “DSP Function Execution Times and CPM Performance Calculation” 35
Section 20, “Document Revision History” 35

Addendum

MPC8xxRMAD
Rev. 0.1, 10/2003

MPC8xx
Digital Signal Processing
Addendum

Manuals that this
addendum is
applicable to are:

MPC885RM, Rev 0.1
MPC866UM, Rev 1.1
MPC862UM, Rev 2.0
MPC860UM, Rev 2.0
MPC855TUM, Rev 1
MPC850UM, Rev 1
MPC823UM, Rev 1

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

rxzb30
freescalecolorjpeg

MPC8xx Digital Signal Processing Addendum

Features Features

1 Features

The following outlines the user interface to the DSP functionality:

• ROM microcode library provides basic DSP routines for such applications as V.32bis and V.34

• Data and function parameters are formatted by the core using function descriptors (FDs)

• DSP routines are core-initiated using CP commands (

INIT

DSP

 and

START

DSP

)

• Maskable interrupts are issued to the core upon completion of DSP routines

The following summarizes the DSP features of the CPM:

• 16-bit

×

 16-bit multiply-and-accumulate (MAC) engine

— Two 40-bit accumulators with overflow saturation logic

— Two 32-bit input registers

— One MAC operation per clock (2-clock latency, 1-clock blockage)

— A single instruction triggers a sequence of one, two or four MACs

— Concurrent operation with other instructions

— Complex (16-bit real, 16-bit imaginary) FIR loop: 4 clocks per 4 multiplies

• Load/store instructions with automatic post increment/decrement

— Post increment/decrement by 0, 1, 2, or 4

— Modulo addressing and modifier for circular buffer support

2 DSP Functionality

DSP functionality can be divided into three layers—hardware, firmware, and software. Figure 1 shows the
DSP functionality implementation.

Figure 1. DSP Functionality Implementation

The user defines the software layer to build an application. A software interface is defined that enables
parameters (pointer to filter coefficients, and pointers to input and output buffers) to be passed between the
core and the CPM. Several functions can be chained together to reduce core intervention and interrupt rates,
assuming that all data structures are in the dual-port RAM. Two special DSP host commands signal the CPM
to initialize or execute the DSP function descriptor (FD) chain. A maskable interrupt signals the core to
resume control once the CPM executes the chain.

Function descriptor chain in external
Core Software memory defines the sequence and data

flow of the DSP functions.

Generic DSP microcode routine library
stored in the internal ROM.

MAC and address generator modules
in the CP architecture.

CPM Firmware

CPM Hardware

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC8xx Digital Signal Processing Addendum

DSP Function Descriptors (FDs)

Table 1 lists the available DSP functions with opcodes.

3 DSP Function Descriptors (FDs)

Similar in structure to SCC buffer descriptors, a function descriptor (FD) specifies the DSP function and
contains function-specific parameters. Prepared in external memory, a group of FDs can be chained together
to form a circular queue of programmable length. There are two such FD chains—one for the transmitter
and one for the receiver. (FD chains are logically equivalent to BD tables for SCCs.) Figure 2 shows the FD
chain structure.

Figure 2. DSP Function Descriptor (FD) Chain Structure

Table 1. DSP Library Functions

Function Opcode Input Coefficient Output Application

FIR1 00001 Real Real Real Decimation, Rx interpolation

FIR2 00010 Complex Real Complex Tx filter, Rx filter

FIR3 00011 Complex Complex Real/Complex EC computation, equalizer

FIR5 00101 Complex Complex Real/Complex Fractionally spaced equalizer

FIR6 00110 Real Complex Complex —

IIR 00111 Real Real Real Biquad filter

MOD 01000 Complex Complex Real/Complex Tx modulation

DEMOD 01001 Real Complex Complex Rx demodulation

LMS1 01010 — — — EC update, equalizer update (T/2, T/3)

LMS2 01011 — — — Equalizer update (2T/3)

WADD 01100 Real — Real Interpolation

Dual-Port RAM System Memory

RxFD Chain

FD Base (Rx Chain)

Input, Output, and
Coefficient Buffers

TxFD Chain

FD Base (Tx Chain)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC8xx Digital Signal Processing Addendum

DSP Function Descriptors (FDs) DSP Function Descriptors (FDs)

A FD consists of eight 16-bit entries. The first entry contains status and control bits including the function
opcode. The remaining seven entries contain the function’s parameter packet. Figure 3 shows the general
structure of a FD.

Table 2 describes the status and control bits. All of the library functions use the stop, wrap, and interrupt
bits. The use of the remaining control bits, apart from the opcode, depends on the particular function. The
parameter packets are described with the individual functions.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Offset + 0x0 S — W I X IALL INDEX PC — — OPCODE

Offset + 0x2 Parameter 1

• • • • • •

• • • • • •

• • • • • •

Offset + 0xE Parameter 7

Figure 3. Function Descriptor (FD) Structure

Table 2. FD Status and Control Bits

Bits Name Description

0 S Stop processing.
0 Do not stop after processing this FD.
1 Stop after processing this FD.

1 — Reserved

2 W Wrap to the beginning of the chain. Determines the length of the FD chain.
0 Not the last FD in the chain.
1 The last FD in the chain. After this FD has been processed, the CP returns to the top of the

chain pointed to by FDBASE.

3 I Interrupt the core.
0 No interrupt is generated after this function is processed.
1 A maskable interrupt is generated after this function is processed.

4 X Complex number option. Used to specify a real/complex output, or a real/complex scalar for LMS.
0 Use only the real component.
1 Use both the real and imaginary components.

5 IALL Auto-increment X for all iterations.
0 X (input) data pointer is incremented (Modulo M+1) by the number of samples specified in

FD[INDEX] after the last iteration.
1 X (input) data pointer is incremented (Modulo M+1) by the number of samples specified in

FD[INDEX] after each iteration.

6–7 INDEX Auto-increment index.
00 X (input) pointer is not incremented.
01 X (input) pointer is incremented by one sample.
10 X (input) pointer is incremented by two samples.
11 X (input) pointer is incremented by three samples.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC8xx Digital Signal Processing Addendum

Data Representation

4 Data Representation

The inputs, coefficients, and outputs are represented by 16-bit, fixed-point, two’s-complement numbers.
Figure 4 shows the real number representation.

A complex number is represented by a pair of 16-bit components—16 bits for the imaginary component and
16 bits for the real component. Figure 5 shows the complex number representation.

5 Input and Output Buffers

The input and output buffers are circular in implementation, with their sizes programmed in the FD
parameter packets. The input and output buffer lengths are (M + 1) and (N + 1) bytes, respectively, where
(M + 1) and (N + 1) are both multiples of four.

The input and output buffers must each be aligned on natural boundaries in the dual-port RAM. A natural
boundary is an address evenly divisible by 2

z

, where 2

z

 is greater than the size of the buffer. For example,
an input buffer with a size of 24 bytes must reside in dual-port RAM at an address evenly divisible by 32
(2

5

). Figure 6 illustrates a circular buffer.

Figure 6. Circular Buffer

8 PC Preset coefficients pointer.
0 Coefficients pointer is not preset after each iteration.
1 Coefficients pointer is preset to CBASE after each iteration.

11–15 OPCODE Function operation code. Specifies the function to be executed. See Table 1 above.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field S Real

Figure 4. Real Number Representation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field S Imaginary

Bit

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field S Real

Figure 5. Complex Number Representation

Table 2. FD Status and Control Bits (continued)

Bits Name Description

BUFFER BASE ADDRESS (NATURALLY ALIGNED)

SIZE = (M +1) OR (N +1) DATA
POINTER

CIRCULAR
BUFFER

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC8xx Digital Signal Processing Addendum

Buffer and Coefficient Base Pointers (CBASE, XPTR, XYPTR) Buffer and Coefficient Base Pointers (CBASE, XPTR, XYPTR)

6 Buffer and Coefficient Base Pointers
(CBASE, XPTR, XYPTR)

The input buffer, output buffer, and coefficient buffer pointers are 16-bit offsets from the base of the
dual-port RAM. These include CBASE and the buffer pointers in the structures pointed to by XPTR and
XYPTR. The structures pointed to by XPTR and XYPTR consist of a halfword-aligned array of the 16-bit
pointers as defined by the specific DSP library function.

7 DSP Parameter RAM

Two areas of the dual-port RAM hold the DSP parameters and scratchpad. The Rx chain (DSP1) parameter
area begins at the dual-port RAM offset 0x1EC0, and the Tx chain (DSP2) parameter area begins at 0x1FC0.

The FDBASE parameter defines the starting address for the FD chain in system memory. FDBASE should
be 16-byte aligned and initialized before issuing

INIT

_

DSP

. Table 3 shows the DSP

x

 parameter RAM
memory map.

Table 3. DSP

x

 Parameter RAM Memory Map

Offset

 1

1

Offset from DSP base. DSP1 base is 0x1EC0; DSP2 base is 0x1FC0.

Name Width Description

0x00

FDBASE

Word Function descriptor chain base address.

0x04 FD_PTR Word Current FD pointer

0x08 DSTATE Word DSP state

0x0C — Word Reserved

0x10 DSTATUS Hword Current FD status

0x12 I Hword Current FD number_of_iterations

0x14 TAP Hword Current FD number_of_taps

0x16 CBASE Hword Current FD coefficient buffer base

0x18 — Hword Current FD sample buffer_size – 1

0x1A XPTR Hword Current FD pointer to input buffer

0x1C — Hword Current FD output buffer_size – 1

0x1E YPTR Hword Current FD pointer to output buffer

0x20 M Hword Current FD input buffer_size – 1

0x22 — Hword Current FD input buffer data pointer

0x24 N Hword Current FD output buffer_size – 1

0x26 — Hword Current FD output buffer data pointer

0x28 K Hword Current FD coefficient buffer_size – 1

0x2A — Hword Current FD coefficient buffer data pointer

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC8xx Digital Signal Processing Addendum

DSP CP Commands

8 DSP CP Commands

Once the DSP parameters are in place, use

INIT

DSP

 and

START

DSP

 to begin processing the FD chain. Table 4
provides descriptions of these commands.

9 DSP Function Priority within the CPM

The execution of DSP functions has a priority level within the CPM that tracks the priority level
programmed for IDMA; see the chapter, “Communications Processor,” in the specific microprocessor user’s
manual for details. The IDMA priority (and thus the DSP priority) is programmed in the RCCR. IDMA and
DSP effectively share the same priority slot; however, within that slot, DSP has priority. See the section,
“RISC Controller Configuration Register (RCCR)” for details.

10 DSP Event/Mask Registers (SDSR/SDMR)

Since there is no dedicated DSP event register, the CP uses the SDMA status register (SDSR) to report the
maskable DSP interrupts to the core. Figure 7 shows the register format. Note that writing a 1 to the
corresponding bits clears the events. SDSR is cleared by reset and can be read at any time.

Table 5 describes the SDSR/SDMR fields.

Table 4. DSP Opcodes

OPCODE Command Description

1100

INIT

DSP

Initializes the DSP chain. Deactivates the current chain and initializes the current FD
pointer (FD_PTR) to the FD chain base address (FDBASE).

1101

START

DSP

Starts the DSP chain. Activates the current chain.

0 1 2 3 4 5 6 7

Field SBER — DSP2 DSP1

Reset 0

R/W R/W

Addr 0x908 (SDSR); 0x90C (SDMR)

Figure 7. DSP Event/Mask Registers (SDSR/SDMR)

Table 5. SDSR/SDMR Field Descriptions

Bits Name Description

0 SBER SDMA channel bus error. Indicates that an error caused the SDMA channel to be terminated during
a read or write cycle. The SDMA bus error address can be retrieved from the SDMA address register
(SDAR) at internal address (IMMR offset) 0x904.

1–5 — Reserved. Must be cleared.

6 DSP2 DSP chain2 (Tx) interrupt. Set when the current FD in the transmitter chain has been completed.
However, DSP2 only reports if the descriptor’s I bit is set.

7 DSP1 DSP chain1 (Rx) interrupt. Set when the current FD in the receiver chain has been completed.
However, DSP1 only reports if the descriptor’s I bit is set.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC8xx Digital Signal Processing Addendum

FIR Library Functions FIR Library Functions

The SDMA mask register (SDMR) is used to mask the DSP interrupts. The SDMR mirrors the bit format
of the SDSR. Setting an SDMR bit enables the corresponding interrupt in SDSR; clearing a bit masks the
interrupt. Reset clears the SDMR, disabling all interrupts.

11 FIR Library Functions

The DSP library provides five basic finite-impulse response filters, each specializing in a different
combination of real or complex coefficients, input samples, and output. The following sections describe
each variety of FIR filter. Table 6 shows the parameter packet common to all FIR filters.

11.1 FIR1–Real C, Real X, and Real Y

Using the values provided in the parameter packet, FIR1 implements a basic finite-impulse filter, shown in
Figure 8, with K real coefficients, real input samples, and real output. The input data is in a circular buffer
with size (M+1), and the output data is in a circular buffer with size (N+1).

Table 6. FIR Parameter Packet

Offset

 1

1

Offset from base of the FD.

Name Description

0x2

I

Number of iterations

0x4

K

Number_of_taps – 1. The number of taps should be a multiple of four.

0x6

CBASE

Filter coefficient vector base address

0x8

M

Input buffer_size – 1. The minimum input buffer size is 8 (4 real or 2 complex samples).

0xA

XYPTR

Pointer to a structure composed of the input buffer pointer and the output buffer pointer

0xC

N

Output buffer_size – 1. When FD[X]=1, the minimum output buffer size is 8 (2 complex outputs);
when FD[X]=0, it is 4 (2 real outputs).

0xE — Reserved

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC8xx Digital Signal Processing Addendum

FIR Library Functions

Figure 8. FIR1 Function

11.1.1 FIR1 Coefficient, Input, and Output Buffers

The coefficient vector occupies K 16-bit entries in memory, with C(0) stored in the first location. The 16-bit
input samples are stored in order in a circular buffer containing (M+1) bytes. The 16-bit outputs are stored
consecutively in a circular buffer containing (N+1) bytes. Table 7 displays the FIR1 coefficient, input, and
output buffers.

Table 7. FIR1 Coefficient, Input, and Output Buffers

Coefficients Input Samples Output

C(0) * *

C(1) * *

C(2) x(n–k+1) Y(n–k+1)

* * *

* * *

C(k–1) x(n–2) Y(n–2)

x(n–1) Y(n–1)

x(n) Y(n)

∑

T

T

T

X(n)
{Real}

Y(n)
{Real}

C(0)
{Real}

C(1)

C(2)

C(k–1)

Y n() C p()X n p–()
p 0=

k 1–

∑=

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC8xx Digital Signal Processing Addendum

FIR Library Functions FIR Library Functions

11.1.2 FIR1 Function Descriptor

The FIR1 function descriptor is shown in Figure 9.

The status and control bits (at offset 0x00) are described in Table 2. The FIR1 parameter packet consists of
seven 16-bit entries and is described in Table 8

11.1.3 FIR1 Applications

The FIR1 is used in decimation and Rx interpolation. For example, the partial FD in Figure 10 can be used
to implement a 2:1 decimation.

11.2 FIR2–Real C, Complex X, and Complex Y

Using the values provided in the parameter packet, the FIR2 implements a basic FIR filter, shown in
Figure 11, with K real coefficients, complex input samples, and complex output. The input data is in a
circular buffer with size (M+1), and the output data is in a circular buffer with size (N+1).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Offset + 0x0

S

—

W I

—

IALL INDEX PC — — 00001

Offset + 0x2 I

Offset + 0x4 K

Offset + 0x6 CBASE

Offset + 0x8 M

Offset + 0xA XYPTR

Offset + 0xC N

Offset + 0xE —

Figure 9. FIR1 Function Descriptor

Table 8. FIR1 Parameter Packet

Address Name Description

Hword 1 I Number of iterations

Hword 2 K Number_of_taps – 1. The number of taps should be a multiple of four.

Hword 3 CBASE Filter coefficient vector base address

Hword 4 M Input buffer_size – 1. The minimum input buffer size is 8 (4 samples).

Hword 5 XYPTR Pointer to a structure composed of the input buffer pointer and the output buffer pointer

Hword 6 N Output buffer_size – 1. The minimum output buffer size is 4 (2 outputs).

Hword 7 — Reserved

S — W I — IALL INDEX PC — — OPCODE

Offset + 0 S 0 W I 0 1 10 1 0 0 00001

Offset + 2 I=3 (Three iterations)

Figure 10. FIR1 Decimation Example

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC8xx Digital Signal Processing Addendum

FIR Library Functions

Figure 11. FIR2 Function

11.2.1 FIR2 Coefficient, Input, and Output Buffers
The coefficient vector occupies K 16-bit entries in memory, with C(0) stored in the first location. The input
sample buffer is a circular buffer that contains (M+1) bytes; each input sample is two 16-bit entries (real and
imaginary components). The next sample is stored in the address that follows the previous sample. The
output buffer is a circular buffer containing (N+1) bytes; each output is two 16-bit entries (real and
imaginary components). The next output is stored in the address that follows the previous output. Table 9
displays the FIR2 coefficient, input, and output buffers.

Table 9. FIR2 Coefficient, Input, and Output Buffers

Coefficients Input Samples Output

C(0) * *

C(1) * *

C(2) imaginary {x(n–k+1)} imaginary{Y(n–k+1)}

* real {x(n–k+1)} real{Y(n–k+1)}

* * *

C(k–1) * *

imaginary {x(n–2)} imaginary{Y(n–2)}

real{x(n–2)} real{Y(n–2)}

imaginary{x(n–1)} imaginary{Y(n–1)}

real{x(n–1)} real{Y(n–1)}

imaginary{x(n)} imaginary{Y(n)}

real{x(n)} real{Y(n)}

∑

T

T

T

X(n)
{Complex}

Y(n)
{Complex}

C(0)
{Real}

C(1)

C(2)

C(k–1)

Y n() C p()X n p–()
p 0=

k 1–

∑=

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC8xx Digital Signal Processing Addendum

FIR Library Functions FIR Library Functions

11.2.2 FIR2 Function Descriptor
The FIR2 function descriptor is shown in Figure 12.

The status and control bits (at offset 0x00) are described in Table 2. The FIR2 parameter packet consists of
seven 16-bit entries and is described in Table 10.

11.2.3 FIR2 Applications
The FIR2 is used for Tx and Rx filters. For example, the partial FD shown in Figure 13 can be used to
implement a Tx filter.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Offset + 0 S — W I — IALL INDEX PC — — 00010

Offset + 0x2 I

Offset + 0x4 K

Offset + 0x6 CBASE

Offset + 0x8 M

Offset + 0xA XYPTR

Offset + 0xC N

Offset + 0xE —

Figure 12. FIR2 Function Descriptor

Table 10. FIR2 Parameter Packet

Address Name Description

Hword 1 I Number of iterations

Hword 2 K Number_of_taps – 1

Hword 3 CBASE Filter coefficient vector base address

Hword 4 M Input buffer_size – 1. The minimum input buffer size is 8 (4 samples).

Hword 5 XYPTR Pointer to a structure composed of the input buffer pointer and the output buffer pointer

Hword 6 N Output buffer_size – 1. The minimum output buffer size is 8 (2 outputs).

Hword 7 — Reserved

S — W I — IALL INDEX PC — — OPCODE

Offset + 0 S 0 W I 0 0 01 0 0 0 00010

Offset + 2 I=3 (Three iterations)

Figure 13. FIR2 Filter Example

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC8xx Digital Signal Processing Addendum

FIR Library Functions

11.3 FIR3–Complex C, Complex X, and Real/Complex Y
Using the values provided in the parameter packet, the FIR3 implements a basic FIR filter, shown in
Figure 14, with K complex coefficients, complex input samples, and real or complex output. The input data
is in a circular buffer with size (M+1), and the output data is in a circular buffer with size (N+1).

Figure 14. FIR3 Function

11.3.1 FIR3 Coefficient, Input, and Output Buffers
The coefficient vector occupies K pairs of 16-bit entries (real and imaginary components) in memory, with
C(0) stored in the first location. The input sample buffer is a circular buffer containing (M+1) bytes; each
input sample is two 16-bit entries (real and imaginary components). The next sample is stored in the address
that follows the previous sample. The output buffer is a circular buffer that contains (N+1) bytes; each output
is two 16-bit entries (real and imaginary components). The next output is stored in the address that follows
the previous output. Table 11 displays the FIR3 coefficient, input, and output buffers.

Table 11. FIR3 Coefficient, Input, and Output Buffers

Coefficients Input Samples Complex Output, FD[X]=1 Real Output, FD[X]=0

imaginary{C(0)} * * *

real{C(0)} * * *

imaginary{C(1)} imaginary {x(n–k+1)} imaginary{Y(n–k+1)} Y(n–k+1)

real{C(1)} real {x(n–k+1)} real{Y(n–k+1)} *

* * * *

* * * Y(n–2)

imaginary{C(k–1)} imaginary {x(n–2)} imaginary{Y(n–2)} Y(n–1)

real{C(k–1)} real{x(n–2)} real{Y(n–2)} Y(n)

imaginary{x(n–1)} imaginary{Y(n–1)}

∑

T

T

T

X(n)
{Complex}

Y(n)
{Real or Complex}

C(0)
{Complex}

C(1)

C(2)

C(k–1)

OR Y n() C p()X n p–()
p 0=

k 1–

∑=

Y n() Real C p()X n p–()
p 0=

k 1–

∑
 
 
 
 
 

=

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC8xx Digital Signal Processing Addendum

FIR Library Functions FIR Library Functions

11.3.2 FIR3 Function Descriptor
The FIR3 function descriptor is shown in Figure 15.

The status and control bits (at offset 0x00) are described in Table 2. The FIR3 parameter packet consists of
seven 16-bit entries and is described in Table 12.

real{x(n–1)} real{Y(n–1)}

imaginary{x(n)} imaginary{Y(n)}

real{x(n)} real{Y(n)}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Offset + 0 S — W I X IALL INDEX PC — 00011

Offset + 0x2 I

Offset + 0x4 K

Offset + 0x6 CBASE

Offset + 0x8 M

Offset + 0xA XYPTR

Offset + 0xC N

Offset + 0xE —

Figure 15. FIR3 Function Descriptor

Table 12. FIR3 Parameter Packet

Address Name Description

Hword 1 I Number of iterations

Hword 2 K Number_of_taps – 1

Hword 3 CBASE Filter coefficient vector base address

Hword 4 M Input buffer_size – 1. The minimum input buffer size is 8 (2 samples).

Hword 5 XYPTR Pointer to a structure composed of the input buffer pointer and the output buffer pointer

Hword 6 N Output buffer_size – 1. The minimum output buffer size for FD[X] = 1 is 8 (2 complex outputs).
The minimum output buffer size for FD[X] = 0 is 4 (2 real outputs).

Hword 7 — Reserved

Table 11. FIR3 Coefficient, Input, and Output Buffers (continued)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC8xx Digital Signal Processing Addendum

FIR Library Functions FIR Library Functions

11.3.3 FIR3 Applications
The FIR3 with the real output can be used in echo cancellation as shown in the sample in Figure 16; an
equalizer can be implemented using the complex output.

11.4 FIR5–Complex C, Complex X, and Complex Y
Using the values provided in the parameter packet, the FIR5 implements a basic FIR filter, shown in
Figure 17, with complex coefficients, complex input samples, and complex output. The input data is in a
circular buffer with size (M+1), and the output data is in a circular buffer with size (N+1).

Figure 17. FIR5 Function

S — W I X IALL INDEX PC — OPCODE

Offset + 0 S 0 W I 0 0 01 0 00 00011

Offset + 2 I=3 (Three iterations)

Figure 16. FIR3 Echo Cancellation Example

∑

T

T

T

X(n)
{Complex}

Y(n)
{Complex}

C(0)
{Complex}

C(1)

C(2)

C(k–1)

Y n() C p()X n p–()
p 0=

k 1–

∑=

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC8xx Digital Signal Processing Addendum

FIR Library Functions FIR Library Functions

11.4.1 FIR5 Coefficient, Input, and Output Buffers
The coefficient vector occupies K pairs of 16-bit entries (real and imaginary components) in memory, with
C(0) stored in the first location. The input sample buffer is a circular buffer containing (M+1) bytes; each
input sample is two 16-bit entries (real and imaginary components). The next sample is stored in the address
that follows the previous sample. The output buffer is a circular buffer that contains (N+1) bytes, and the
next output is stored in the address that follows the previous output. Table 13 displays the FIR5 coefficient,
input, and output buffers.

11.4.2 FIR5 Function Descriptor
The FIR5 function descriptor is shown in Figure 18.

Table 13. FIR5 Coefficient, Input, and Output Buffers

Coefficients Input Samples Complex Output, FD[X]=1 Real Output, FD[X]=0

imaginary{C(0)} * * *

real{C(0)} * * *

imaginary{C(1)} imaginary {x(n–k+1)} imaginary{Y(n–k+1)} Y(n–k+1)

real{C(1)} real {x(n–k+1)} real{Y(n–k+1)} *

* * * *

* * * Y(n–2)

imaginary{C(k–1)} imaginary {x(n–2)} imaginary{Y(n–2)} Y(n–1)

real{C(k–1)} real{x(n–2)} real{Y(n–2)} Y(n)

imaginary{x(n–1)} imaginary{Y(n–1)}

real{x(n–1)} real{Y(n–1)}

imaginary{x(n)} imaginary{Y(n)}

real{x(n)} real{Y(n)}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Offset + 0 S — W I X IALL INDEX PC — — 00101

Offset + 0x2 I

Offset + 0x4 K

Offset + 0x6 CBASE

Offset + 0x8 M

Offset + 0xA XYPTR

Offset + 0xC N

Offset + 0xE —

Figure 18. FIR5 Function Descriptor

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC8xx Digital Signal Processing Addendum

FIR Library Functions FIR Library Functions

The status and control bits (at offset 0x00) are described in Table 2. The FIR5 parameter packet consists of
seven 16-bit entries and is described in Table 14.

11.4.3 FIR5 Applications
The FIR5 is used for fractionally spaced equalizers. The partial FD shown in Figure 19 can be used to
implement a fractionally spaced equalizer.

11.5 FIR6–Complex C, Real X, and Complex Y
Using the values provided in the parameter packet, the FIR6 implements a basic FIR filter, shown in
Figure 20, with complex coefficients, real input samples, and complex output. The input data is in a circular
buffer with size (M+1), and the output data is in a circular buffer with size (N+1).

Table 14. FIR5 Parameter Packet

Address Name Description

Hword 1 I Number of iterations

Hword 2 K Number_of_taps – 1

Hword 3 CBASE Filter coefficient vector base address

Hword 4 M Input buffer_size – 1. The minimum input buffer size is 8 (2 samples).

Hword 5 XYPTR Pointer to a structure composed of the input buffer pointer and the output buffer pointer

Hword 6 N Output buffer size – 1. The minimum output buffer size for FD[X] = 1 is 8 (2 outputs). The
minimum output buffer size for FD[X] = 0 is 4 (2 outputs).

Hword 7 — Reserved

S — W I X IALL INDEX PC — — OPCODE

Offset + 0 S 0 W I 1 0 11 0 0 0 00101

Offset + 2 I=1 (One Iteration)

Figure 19. FIR5 Fractionally Spaced Equalizer Example

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC8xx Digital Signal Processing Addendum

FIR Library Functions FIR Library Functions

Figure 20. FIR6 Function

11.5.1 FIR6 Coefficient, Input, and Output Buffers
The coefficient vector occupies K pairs of 16-bit entries (real and imaginary components) in memory, and
C(0) is stored in the first location. The input sample buffer is a circular buffer containing (M+1) bytes, and
each sample is a 16-bit entry. The next sample is stored in the address that follows the previous sample. The
output buffer is a circular buffer that contains (N+1) bytes, and the next output is stored in the address that
follows the previous output. Table 15 displays the FIR6 coefficient, input, and output buffers.

Table 15. FIR6 Coefficient, Input, and Output Buffers

Coefficients Input Samples Output

imaginary{C(0)} * *

real{C(0)} * *

imaginary{C(1)} x(n–k+1) imaginary{Y(n–k+1)}

real{C(1)} * real{Y(n–k+1)}

* * *

* x(n–2) *

imaginary{C(k–1)} x(n–1) imaginary{Y(n–2)}

real{C(k–1)} x(n) real{Y(n–2)}

imaginary{Y(n–1)}

real{Y(n–1)}

imaginary{Y(n)}

real{Y(n)}

T

T

T

X(n)
{Real}

Y(n)
{Complex}

C(0)
{Complex}

C(1)

C(2)

C(k–1)

∑

Y n() C p()X n p–()
p 0=

k 1–

∑=

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC8xx Digital Signal Processing Addendum

IIR–Real C, Real X, Real Y IIR–Real C, Real X, Real Y

11.5.2 FIR6 Function Descriptor
The FIR6 function descriptor is shown in Figure 21.

The status and control bits (at offset 0x00) are described in Table 2. The FIR6 parameter packet consists of
seven 16-bit entries and is described in Table 16.

12 IIR–Real C, Real X, Real Y
Using the values provided in the parameter packet, the IIR implements a basic biquad IIR filter, shown in
Figure 22, with six real coefficients, real input samples, and real outputs. The input data is in a circular buffer
with size (M+1), and the output data is in a circular buffer with size (N+1). Several stages of the biquad filter
can be cascaded by specifying an iteration count greater than one and concatenating the filter coefficients
into one vector.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Offset + 0 S — W I — IALL INDEX PC — — 00110

Offset + 0x2 I

Offset + 0x4 K

Offset + 0x6 CBASE

Offset + 0x8 M

Offset + 0xA XYPTR

Offset + 0xC N

Offset + 0xE —

Figure 21. FIR6 Function Descriptor

Table 16. FIR6 Parameter Packet

Address Name Description

Hword 1 I Number_of_iterations

Hword 2 K Number_of_taps – 1. The number of taps should be a multiple of 2.

Hword 3 CBASE Filter coefficient vector base address

Hword 4 M Input buffer_size – 1. The minimum input buffer size is 4 (2 samples).

Hword 5 XYPTR Pointer to a structure composed of the input buffer pointer and the output buffer pointer

Hword 6 N Output buffer_size – 1. The minimum output buffer size is 8 (2 outputs).

Hword 7 — Reserved

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC8xx Digital Signal Processing Addendum

IIR–Real C, Real X, Real Y IIR–Real C, Real X, Real Y

Figure 22. IIR Function

12.1 IIR Coefficient, Input, and Output Buffers
The coefficient vector occupies six 16-bit entries in memory, and C(0) is stored in the first location. C(1) is
only used in the last stage of a cascaded IIR filter. The input sample buffer is a circular buffer that contains
(M+1) bytes. The next sample is stored in the address that follows the previous one. The output buffer is a
circular buffer that contains (N+1) bytes, and the next output is stored in the address that follows the
previous one. Table 17 displays the IIR coefficient, input, and output buffers.

Table 17. IIR Coefficient, Input, and Output Buffers

Coefficients Input Samples Output

C(0) * *

C(1) * *

C(2) x(n–2) Y(n–2)

C(3) x(n–1) Y(n–1)

C(4) x(n) Y(n)

C(5)

∑

∑

∑

∑

T

T

X(n)
{Real}

Y(n)
{Real}

C(5)

C(4)

C(0)
{Real} C(1)

C(2)

C(3)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC8xx Digital Signal Processing Addendum

Modulation (MOD)–Real Sin, Real Cos, Complex X, and Real/Complex Y Modulation (MOD)–Real Sin, Real Cos, Complex X, and Real/Complex Y

12.2 IIR Function Descriptor
The IIR function descriptor is shown in Figure 23.

The status and control bits (at offset 0x00) are described in Table 2. The IIR parameter packet consists of
seven 16-bit entries and is described in Table 18.

12.3 IIR Applications
The IIR is used in timing recovery and interpolating filter, among other things.

13 Modulation (MOD)–Real Sin, Real Cos, Complex X,
and Real/Complex Y

Using the values provided in the parameter packet, the MOD implements a basic modulator function, shown
in Figure 24, with a modulation table composed of {cos ωnT, sin ωnT} pairs, complex input samples, and
real outputs. The input data is in a circular buffer with size (M+1), and the output data is in a circular buffer
with size (N+1).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Offset + 0 S — W I — INDEX — 00111

Offset + 0x2 I

Offset + 0x4 TPTR

Offset + 0x6 CBASE

Offset + 0x8 M

Offset + 0xA XYPTR

Offset + 0xC N

Offset + 0xE —

Figure 23. IIR Function Descriptor

Table 18. IIR Parameter Packet

Address Name Description

Hword 1 I Number of iterations (= cascaded stages)

Hword 2 TPTR Pointer to a structure of temporary variables used by the delay line blocks. The structure consists
of two real numbers and can be left uninitialized.

Hword 3 CBASE Filter coefficient vector base address

Hword 4 M Input buffer_size – 1. The minimum input buffer size is 4 (2 samples).

Hword 5 XYPTR Pointer to a structure composed of the input buffer pointer and the output buffer pointer

Hword 6 N Output buffer_size – 1. The minimum output buffer size is 4 (2 outputs).

Hword 7 — Reserved

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC8xx Digital Signal Processing Addendum

Modulation (MOD)–Real Sin, Real Cos, Complex X, and Real/Complex Y Modulation (MOD)–Real Sin, Real Cos, Complex X, and Real/Complex Y

Figure 24. MOD Function

13.1 Modulation Table, Input, and Output Buffers
The modulation table consists of 16-bit cosine and sine pairs that occupy (K+1) bytes in memory. The input
sample buffer is a circular buffer containing (M+1) bytes. Each sample is a pair of 16-bit entries (real and
imaginary components), and the next sample is stored in the address that follows the previous sample. The
output buffer is a circular buffer that contain (N+1) bytes, and the next output is stored in the address that
follows the previous output. The output buffer can be real or complex, depending on FD[X]. Table 19 shows
the modulation table, input, and output buffers.

Table 19. Modulation Table, Input, and Output Buffers

Modulation Table Input Samples Complex Output, FD[X]=1 Real Output, FD[X]=0

sin q1 * * *

cos q1 * * *

sin q2 imaginary{x(n–k+1)} imaginary{Y(n–k+1)} real{Y(n–k+1)}

cos q2 real{x(n–k+1)} real{Y(n–k+1)} *

* * * *

* * * real{Y(n–2)}

sin qn imaginary{x(n–2)} imaginary{Y(n–2)} real{Y(n–1)

cos qn real{x(n–2)} real{Y(n–2)} real{Y(n)}

imaginary{x(n–1)} imaginary{Y(n–1)}

real{x(n–1)} real{Y(n–1)}

imaginary{x(n)} imaginary{Y(n)}

real{x(n)} real{Y(n)}

 cos ωnT, sin ωnT
{Real}

X(n) Y(n)
{Complex} {Real or Complex}

Real Y n(){ } Real X n(){ } ωωωωnTcos× Image X n(){ } ωωωωnTsin×–=

Image Y n(){ } Real X n(){ } ωωωωnTsin× Image X n(){ } ωωωωnTcos×+=

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC8xx Digital Signal Processing Addendum

Modulation (MOD)–Real Sin, Real Cos, Complex X, and Real/Complex Y Modulation (MOD)–Real Sin, Real Cos, Complex X, and Real/Complex Y

13.2 MOD Function Descriptor
The MOD function descriptor is shown in Figure 25.

The status and control bits (at offset 0x00) are described in Table 2. The MOD parameter packet consists of
seven 16-bit entries and is described in Table 20.

13.3 MOD Applications
The MOD function is used in modulation. The partial FD shown in Figure 26 can be used to implement a
modulator.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Offset + 0 S — W I X — 01000

Offset + 0x2 I

Offset + 0x4 K

Offset + 0x6 MPTR

Offset + 0x8 M

Offset + 0xA XYPTR

Offset + 0xC N

Offset + 0xE —

Figure 25. MOD Function Descriptor

Table 20. MOD Parameter Packet

Address Name Description

Hword 1 I Number of iterations

Hword 2 K Modulation table_size – 1. The minimum modulation table size is 8 (2 sin/cos pairs).

Hword 3 MPTR Pointer to modulation table

Hword 4 M Input buffer_size – 1. The minimum input buffer size is 8 (2 samples).

Hword 5 XYPTR Pointer to a structure composed of the input buffer pointer and the output buffer pointer

Hword 6 N Output buffer_size – 1. The minimum output buffer size for FD[X] = 1 is 8 (2 outputs). The
minimum output buffer size for FD[X] = 0 is 4 (2 samples).

Hword 7 — Reserved

S — W I X — — — — — — OPCODE

Offset + 0 S 0 W I 0 0 0 0 0 0 0 01000

Offset + 2 I=3 (Three iterations)

Figure 26. MOD Modulation Example

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC8xx Digital Signal Processing Addendum

DEMOD–Real Sin; Real Cos, Real X, and Complex Y DEMOD–Real Sin; Real Cos, Real X, and Complex Y

14 DEMOD–Real Sin; Real Cos, Real X, and Complex Y
Using the values provided in the parameter packet, the DEMOD implements a basic demodulator function,
shown in Figure 27, with a modulation table composed of (cos ωnT, sin ωnT) pairs, real input samples, and
complex outputs. The input data is in a circular buffer with size (M+1), and the output data is in a circular
buffer with size (N+1). The AGC parameter controls the demodulator gain.

Figure 27. DEMOD Function

14.1 Modulation Table, Input and Output Buffers, and AGC
Constant

The modulation table consists of 16-bit cosine and sine pairs that occupy (K+1) bytes in memory. The input
sample buffer is a circular buffer containing (M+1) bytes. The next 16-bit sample is stored in the address
that follows the previous sample. The output buffer is a circular buffer that contains (N+1) bytes, and the
next output is stored in the address that follows the previous output. The AGC constant is in the range -1≤
AGC≤1. Table 21 shows the DEMOD modulation table, input, and output buffers.

Table 21. DEMOD Modulation Table, Input, and Output Buffers

Modulation Table Input Samples Output (Complex)

sin q1 * *

cos q1 * *

sin q2 x(n–k+1) imaginary{Y(n–k+1)}

cos q2 * real{Y(n–k+1)}

* * *

* x(n–2) *

sin qn x(n–1) imaginary{Y(n–2)}

cos qn x(n) real{Y(n–2)}

imaginary{Y(n–1)}

real{Y(n–1)}

imaginary{Y(n)}

real{Y(n)}

 cos ωnT, sin ωnT, AGC
{Real}

X(n) Y(n)
{Real} {Complex}

Real Y n(){ } 1 AGC+() X× n() ωωωωnTcos×=

Image Y n(){ } 1 AGC+() X× n() ωωωωnTsin–()×=

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC8xx Digital Signal Processing Addendum

DEMOD–Real Sin; Real Cos, Real X, and Complex Y DEMOD–Real Sin; Real Cos, Real X, and Complex Y

14.2 DEMOD Function Descriptor
The DEMOD function descriptor is shown in Figure 28.

The status and control bits (at offset 0x00) are described in Table 2. The DEMOD parameter packet consists
of seven 16-bit entries and is described in Table 22.

14.3 DEMOD Applications
The DEMOD function is used in modulation. The partial FD shown in Figure 29 can be used for
implementations.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Offset + 0 S — W I — 01001

Offset + 0x2 I

Offset + 0x4 K

Offset + 0x6 DPTR

Offset + 0x8 M

Offset + 0xA XYPTR

Offset + 0xC N

Offset + 0xE —

Figure 28. DEMOD Function Descriptor

Table 22. DEMOD Parameter Packet

Address Name Description

Hword 1 I Number of iterations

Hword 2 K Modulation table_size – 1. The minimum modulation table size is 8 (2 sin/cos pairs).

Hword 3 DPTR Pointer to a structure consisting of the modulation table pointer and the AGC constant (real)

Hword 4 M Input buffer_size – 1. The minimum input buffer size is 8 (2 samples).

Hword 5 XYPTR Pointer to a structure composed of the input buffer pointer and the output buffer pointer

Hword 6 N Output buffer_size – 1. The minimum output buffer size is 8 (2 outputs).

Hword 7 — Reserved

S — W I X — OPCODE

Offset + 0 S 0 W I 0 0 01001

Offset + 2 I=3 (Three iterations)

Figure 29. DEMOD Modulation Example

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC8xx Digital Signal Processing Addendum

LMS1–Complex Coefficients, Complex Samples, and Real/Complex Scalar LMS1–Complex Coefficients, Complex Samples, and Real/Complex Scalar

15 LMS1–Complex Coefficients, Complex Samples,
and Real/Complex Scalar

The LMS1 implements a basic FIR filter coefficients update. The coefficients and input samples are complex
numbers, but the scalar is a real or complex number. Figure 30 shows the LMS1 function.

Figure 30. LMS1 Function

15.1 Coefficients and Input Buffers
The coefficient vector occupies K pairs of 16-bit entries (real and imaginary components) in memory, with
C(0) stored in the first location. The input sample buffer is a circular buffer that contain (M+1) bytes. Each
sample is a pair of 16-bit entries (real and imaginary components). The next sample is stored in the address
that follows the previous sample.

Table 23. LMS1 Coefficients and Input Buffers

Coefficients Input Samples

imaginary{C(0)} *

real{C(0)} *

imaginary{C(1)} imaginary{X(n–k+1)}

real{C(1)} real{X(n–k+1)}

* *

* *

imaginary{C(k–1)} imaginary{X(n–2)}

real{C(k–1)} real{X(n–2)}

imaginary{X(n–1)}

real{X(n–1)}

imaginary{X(n)}

real{X(n)}

Cn 1+
i Cn

i E X n i–×+=

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC8xx Digital Signal Processing Addendum

LMS2–Complex Coefficients, Complex Samples, and Real/Complex Scalar LMS2–Complex Coefficients, Complex Samples, and Real/Complex Scalar

15.2 LMS1 Function Descriptor
The LMS1 function descriptor is shown in Figure 31.

The status and control bits (at offset 0x00) are described in Table 2. The LMS1 parameter packet consists
of seven 16-bit entries and is described in Table 24.

15.3 LMS1 Applications
The LMS1 is used for updating the coefficients for echo cancellation.

16 LMS2–Complex Coefficients, Complex Samples,
and Real/Complex Scalar

The LMS2 implements a basic FIR filter coefficients update. The sample pointer is incremented by two,
which is required for fractionally spaced equalizer updates. The coefficients and input samples are complex
numbers, but the scalar is a real or complex number. Figure 32 shows the LMS2 function.

Figure 32. LMS2 Function

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Offset + 0 S — W I X — INDEX — — — 01010

Offset + 0x2 —

Offset + 0x4 K

Offset + 0x6 CBASE

Offset + 0x8 M

Offset + 0xA XPTR

Offset + 0xC EPTR

Offset + 0xE —

Figure 31. LMS1 Function Descriptor

Table 24. DEMOD Parameter Packet

Address Name Description

Hword 1 — Reserved

Hword 2 K Number_of_taps – 1

Hword 3 CBASE Filter coefficient vector base address

Hword 4 M Input buffer_size – 1. The minimum input buffer size is 8 (2 samples).

Hword 5 XPTR Pointer to input buffer pointer

Hword 6 EPTR Pointer to scalar

Hword 7 — Reserved

Cn 1+
i Cn

i E X n i–×+=

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC8xx Digital Signal Processing Addendum

LMS2–Complex Coefficients, Complex Samples, and Real/Complex Scalar LMS2–Complex Coefficients, Complex Samples, and Real/Complex Scalar

16.1 LMS2 Coefficients and Input Buffers
The coefficient vector occupies K pairs of 16-bit entries (real and imaginary components) in memory, with
C(0) stored in the first location. The sample input buffer is a circular buffer containing (M+1) bytes. Each
sample is a pair of 16-bit entries (real and imaginary components). The next sample is stored in the address
that follows the previous sample.

16.2 LMS2 Function Descriptor
The LMS2 function descriptor is shown in Figure 33.

Table 25. LMS2 Coefficients and Input Buffers

Coefficients Input Samples

imaginary{C(0)} *

real{C(0)} *

imaginary{C(1)} imaginary{X(n–k+1)}

real{C(1)} real{X(n–k+1)}

* *

* *

imaginary{C(k–1)} imaginary{X(n–2)}

real{C(k–1)} real{X(n–2)}

imaginary{X(n–1)}

real{X(n–1)}

imaginary{X(n)}

real{X(n)}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Offset + 0 S — W I X — INDEX — — — 01011

Offset + 0x2 —

Offset + 0x4 K

Offset + 0x6 CBASE

Offset + 0x8 M

Offset + 0xA XPTR

Offset + 0xC EPTR

Offset + 0xE —

Figure 33. LMS2 Function Descriptor

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC8xx Digital Signal Processing Addendum

Weighted Vector Addition (WADD)–Real X and Real Y Weighted Vector Addition (WADD)–Real X and Real Y

The status and control bits (at offset 0x00) are described in Table 2. The LMS2 parameter packet consists
of seven 16-bit entries and is described in Table 26.

16.3 LMS2 Applications
The LMS2 is used in updating fractionally spaced equalizer coefficients.

17 Weighted Vector Addition (WADD)–Real X and Real
Y

Using two real, scalar coefficients α and β, the WADD function generates a linear combination of two real
input vectors. Figure 34 shows the WADD output vector Y as a function of the two input vectors X1 and X2.

Figure 34. WADD Function

17.1 WADD Coefficients and Input Buffers
Each input vector is stored in a circular buffer containing (M+1) bytes. Each sample is a 16-bit entry, and
the next sample is stored in the address that follows the previous sample. The output buffer is a circular
buffer that contains (N+1) bytes. Each output is 16 bits, and the newest output is stored in the address that
follows the previous one.

Table 26. LMS2 Parameter Packet

Address Name Description

Hword 1 — Reserved

Hword 2 K Number_of_taps – 1

Hword 3 CBASE Filter coefficient vector base address

Hword 4 M Input buffer_size – 1. The minimum input buffer size is 8 (2 samples).

Hword 5 XPTR Pointer to input buffer pointer

Hword 6 EPTR Pointer to scalar

Hword 7 — Reserved

Table 27. WADD Modulation Table and Sample Data Buffers

X1 Input Samples X2 Input Samples Output

* * *

x1(n–k+1) x2(n–k+1) Y(n–k+1)

* * *

* * *

x1(n–1) x2(n–1) Y(n–1)

x1(n) x2(n) Y(n)

Y n() ααααX 1 n() ββββX 2 n()+=

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC8xx Digital Signal Processing Addendum

Weighted Vector Addition (WADD)–Real X and Real Y Weighted Vector Addition (WADD)–Real X and Real Y

17.2 WADD Function Descriptor
The WADD function descriptor is shown in Figure 35.

The status and control bits (at offset 0x00) are described in Table 2. The WADD parameter packet consists
of seven 16-bit entries and is described in Table 28.

17.3 WADD Applications
Table 29 shows the linear functions available using different α and β values.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Offset + 0 S — W I 0 01100

Offset + 0x2 I

Offset + 0x4 α

Offset + 0x6 β

Offset + 0x8 M

Offset + 0xA XYPTR

Offset + 0xC N

Offset + 0xE —

Figure 35. WADD Function Descriptor

Table 28. WADD Parameter Packet

Address Name Description

Hword 1 I Number of iterations

Hword 2 α X1 weight coefficient

Hword 3 β X2 weight coefficient

Hword 4 M Sample’s buffer_size – 1

Hword 5 XYPTR Pointer to a structure composed of X1 input buffer pointer, the output buffer pointer, and the X2
input buffer pointer.

Hword 6 N Output buffer_size – 1

Hword 7 — Reserved

Table 29. WADD Applications

α β Function

0 ≤ α ≤1 1– α Linear interpolation

α 0 y(n)=αx(n) scalar multiply

1 -1 y(n)=x1(n)–x2(n) vector subtract

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC8xx Digital Signal Processing Addendum

DSP Performance Using the Core Alone Versus Using the CPM DSP Performance Using the Core Alone Versus Using the CPM

18 DSP Performance Using the Core Alone Versus
Using the CPM

A DSP task on the MPC885 can be done with the core alone or with the help of the built-in DSP capabilities
of the CPM. A V.32 modem’s Tx data pump flow compares DSP performance using the core alone versus
using the CPM. Figure 36 shows the Tx filter example application, which consists of three subfilters.

Figure 36. Example DSP Application—Tx Filter

18.1 Tx Filter Example (Core Only)
Implementing the filter using the following C code on the core takes 476 instructions—371 for the filter and
105 for the modulation. The transmission symbol rate requires running the filter 2,400 times a second. Thus,
implementing the filter in software alone requires the core to execute 1.14 million instructions per second.

void tx_filter ()

{

 S16 *coefr

 S16 *samplr, *sampli

 S16 *coefend;

 S32 filtoutr, filtouti;

 U8 subcount, sampleindex;

 extern S16 mult(S16 p1, S16 p2); /* in-line invocation */

 coefr=txfiltcoef_str;

 coefend=txfiltcoef_end;

 samplr=&txfiltdly[REAL][txfiltptr];

 sampli=&txfiltdly[IMAG][txfiltptr];

 sampleindex=0;

 while (coefr<coefend) {

 filtoutr=filtouti=0;

 subcount=0;

MOD

1 INPUT / BAUD 3 OUTPUTS / BAUD 3 OUTPUTS / BAUD

Tx Filter

 cos ωnT, sin ωnT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC8xx Digital Signal Processing Addendum

DSP Performance Using the Core Alone Versus Using the CPM DSP Performance Using the Core Alone Versus Using the CPM

 while (subcount<TXSUBFILTLEN) {

 filtoutr+=mult(*coefr, *samplr--);

 filtouti+=mult(*coefr++, *sampli--);

 }

 samplr=&txfiltdly[REAL][txfiltptr];

 sampli=&txfiltdly[IMAG][txfiltptr];

 modbuff[REAL][sampleindex]= filtoutr;

 modbuff[IMAG][sampleindex++]= filtouti;

 }

}

void modulator ()

{

 U8 i;

 S32 termrnd;

 extern S16 mult(S16 p1, S16 p2); /* in-line invocation */

 i=0;

 while (i<SAMPLE_PER_T) {

 sigout[i]= mult(sn1800[REAL][cosindx], modbuf[REAL][i]) -

 mult(sn1800[IMAG][cosindx], modbuf[IMAG][i]);

 cosindx++;

 if (cosindx==SIN1800TBL_LEN)cosindx=0;

 i++;

 }

void main ()

{

 *

 *

 tx_filter();

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC8xx Digital Signal Processing Addendum

DSP Performance Using the Core Alone Versus Using the CPM DSP Performance Using the Core Alone Versus Using the CPM

 modulator();

 *

 *

}

18.2 Tx Filter Example (Core and CPM)
Implementing the filter using the CPM functions, the user software builds a static FD chain of two
functions—an FIR and a MOD. The core activates the CPM to execute the chain with a single write to the
CP command register—START DSP. The CPM then signals completion using an interrupt.

The performance load on the core from executing the filter software is negligible. The performance load on
the CPM is based on the functions called, the number of clocks required to perform those functions, and the
transmission symbol rate. Using the CPM, this filter example consumes 0.55 million clocks per second.

The filter executes three subfilters each time a new sample arrives, invoking the FIR2 function with a
three-iteration count and auto-increment of the input sample pointer after the last iteration. FIR2 writes the
three subfilter results into the output buffer, which then feeds into the modulation. Modulation invokes the
MOD function with a three-iteration count. The MOD function automatically increments the sample pointer
on each iteration. Figure 37 shows a conceptual view of the filter implementation followed by example code.

Figure 37. Core and CPM Implementation of Filter Example

Dual-Port RAM System Memory

Tx Filter FD

Opcode = FIR2

of Iterations

of Taps

Coefficient Base

In Buffer Size

XYPTR

Out Buffer Size

Modulation FD

Opcode = MOD

of Iterations

MOD Table Size

MPTR

In Buffer Size

XYPTR

Out Buffer Size

Input Pointer

Output Pointer

MOD Table Pointer

Input Pointer

Output Pointer

Coefficient
Table

Input
Buffer

Output
Buffer

MOD
TableOutput

Buffer

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC8xx Digital Signal Processing Addendum

DSP Performance Using the Core Alone Versus Using the CPM DSP Performance Using the Core Alone Versus Using the CPM

/* Function Descriptors */

typedef struct dsp_fd {

 unsigned short status;

 unsigned short parameter[7];

} DSP_FD;

#define WRAP 0x2000 /* wrap bit */

#define INTR 0x1000 /* interrupt on completion */

/* define for function opcodes */

#define FIR_2 0x0102 /* FIR2 filter */

#define MOD 0x0008 /* Modulation function opcode */

/* Initialize a static fd chain of 2 functions */

DSP_FD filters[2]= {

 { FIR_2,P11,P12, …, P17}

 ,{(WRAP | INTR | MOD),P21,P22, …, P27}

};

void main()

{

 *

 *

 *

 /* issue command to CP to start processing the FD chain */

 issue_command(START_FD);

 *

 *

 *

}

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC8xx Digital Signal Processing Addendum

DSP Function Execution Times and CPM Performance Calculation DSP Function Execution Times and CPM Performance Calculation

19 DSP Function Execution Times and CPM
Performance Calculation

A DSP function’s execution time is directly related to the number of taps and iterations specified. Table 30
lists the execution times for each function, including overhead for context switching, handling the FD, and
initialization.

As seen in Table 30, the CPM loading from DSP applications depends on which functions are called and
their parameters. The frequency with which the functions are called also affects CPM loading.

20 Document Revision History
Table 31 provides a revision history for this addendum.

Table 30. DSP Function Execution Times

Function Execution Time

FIR1 53 + 20 ⋅ (i–1) + 1.25 ⋅ i ⋅ (k+1)

FIR2 47 + 17 ⋅ (i–1) + 3 ⋅ i ⋅ (k+1)

FIR3 44 + 14 ⋅ (i–1) + 4 ⋅ i ⋅ (k+1)

FIR5 44 + 14 ⋅ (i–1) + 5 ⋅ i ⋅ (k+1)

FIR6 50 + 20 ⋅ (i–1) + 3 ⋅ i ⋅ (k+1)

IIR 44 + 11 ⋅ i

MOD 44 + 7 ⋅ i

DEMOD 47 + 14 ⋅ i

LMS1 42 + 7 ⋅ (k+1)

LMS2 42 + 7 ⋅ (k+1)

WADD 46 + 7 ⋅ i

Notes:
Add 1 clock for wrap, 5 clocks for stop, and 4 clocks for interrupt.
i = number of iterations.
k+1 = number of taps.

Table 31. Document Revision History

Revision
Number

Significant Changes

0.1 Initial release

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

rxzb30
disclaimer

	MPC8xx Digital Signal Processing Addendum
	1 Features
	2 DSP Functionality
	Figure�1. DSP Functionality Implementation
	Table�1. DSP Library Functions�

	3 DSP Function Descriptors (FDs)
	Figure�2. DSP Function Descriptor (FD) Chain Structure
	Figure�3. Function Descriptor (FD) Structure
	Table�2. FD Status and Control Bits�

	4 Data Representation
	Figure�4. Real Number Representation
	Figure�5. Complex Number Representation

	5 Input and Output Buffers
	Figure�6. Circular Buffer

	6 Buffer and Coefficient Base Pointers (CBASE, XPTR, XYPTR)
	7 DSP Parameter RAM
	Table�3. DSPx Parameter RAM Memory Map�

	8 DSP CP Commands
	Table�4. DSP Opcodes�

	9 DSP Function Priority within the CPM
	10 DSP Event/Mask Registers (SDSR/SDMR)
	Figure�7. DSP Event/Mask Registers (SDSR/SDMR)
	Table�5. SDSR/SDMR Field Descriptions�

	11 FIR Library Functions
	Table�6. FIR Parameter Packet�
	11.1 FIR1–Real C, Real X, and Real Y
	Figure�8. FIR1 Function
	11.1.1 FIR1 Coefficient, Input, and Output Buffers
	Table�7. FIR1 Coefficient, Input, and Output Buffers�

	11.1.2 FIR1 Function Descriptor
	Figure�9. FIR1 Function Descriptor
	Table�8. FIR1 Parameter Packet�

	11.1.3 FIR1 Applications
	Figure�10. FIR1 Decimation Example

	11.2 FIR2–Real C, Complex X, and Complex Y
	Figure�11. FIR2 Function
	11.2.1 FIR2 Coefficient, Input, and Output Buffers
	Table�9. FIR2 Coefficient, Input, and Output Buffers�

	11.2.2 FIR2 Function Descriptor
	Figure�12. FIR2 Function Descriptor
	Table�10. FIR2 Parameter Packet�

	11.2.3 FIR2 Applications
	Figure�13. FIR2 Filter Example

	11.3 FIR3–Complex C, Complex X, and Real/Complex Y
	Figure�14. FIR3 Function
	11.3.1 FIR3 Coefficient, Input, and Output Buffers
	Table�11. FIR3 Coefficient, Input, and Output Buffers�

	11.3.2 FIR3 Function Descriptor
	Figure�15. FIR3 Function Descriptor
	Table�12. FIR3 Parameter Packet�

	11.3.3 FIR3 Applications
	Figure�16. FIR3 Echo Cancellation Example

	11.4 FIR5–Complex C, Complex X, and Complex Y
	Figure�17. FIR5 Function
	11.4.1 FIR5 Coefficient, Input, and Output Buffers
	Table�13. FIR5 Coefficient, Input, and Output Buffers�

	11.4.2 FIR5 Function Descriptor
	Figure�18. FIR5 Function Descriptor
	Table�14. FIR5 Parameter Packet�

	11.4.3 FIR5 Applications
	Figure�19. FIR5 Fractionally Spaced Equalizer Example

	11.5 FIR6–Complex C, Real X, and Complex Y
	Figure�20. FIR6 Function
	11.5.1 FIR6 Coefficient, Input, and Output Buffers
	Table�15. FIR6 Coefficient, Input, and Output Buffers�

	11.5.2 FIR6 Function Descriptor
	Figure�21. FIR6 Function Descriptor
	Table�16. FIR6 Parameter Packet�

	12 IIR–Real C, Real X, Real Y
	Figure�22. IIR Function
	12.1 IIR Coefficient, Input, and Output Buffers
	Table�17. IIR Coefficient, Input, and Output Buffers�

	12.2 IIR Function Descriptor
	Figure�23. IIR Function Descriptor
	Table�18. IIR Parameter Packet�

	12.3 IIR Applications

	13 Modulation (MOD)–Real Sin, Real Cos, Complex X, and Real/Complex Y
	Figure�24. MOD Function
	13.1 Modulation Table, Input, and Output Buffers
	Table�19. Modulation Table, Input, and Output Buffers�

	13.2 MOD Function Descriptor
	Figure�25. MOD Function Descriptor
	Table�20. MOD Parameter Packet�

	13.3 MOD Applications
	Figure�26. MOD Modulation Example

	14 DEMOD–Real Sin; Real Cos, Real X, and Complex Y
	Figure�27. DEMOD Function
	14.1 Modulation Table, Input and Output Buffers, and AGC Constant
	Table�21. DEMOD Modulation Table, Input, and Output Buffers�

	14.2 DEMOD Function Descriptor
	Figure�28. DEMOD Function Descriptor
	Table�22. DEMOD Parameter Packet�

	14.3 DEMOD Applications
	Figure�29. DEMOD Modulation Example

	15 LMS1–Complex Coefficients, Complex Samples, and Real/Complex Scalar
	Figure�30. LMS1 Function
	15.1 Coefficients and Input Buffers
	Table�23. LMS1 Coefficients and Input Buffers�

	15.2 LMS1 Function Descriptor
	Figure�31. LMS1 Function Descriptor
	Table�24. DEMOD Parameter Packet�

	15.3 LMS1 Applications

	16 LMS2–Complex Coefficients, Complex Samples, and Real/Complex Scalar
	Figure�32. LMS2 Function
	16.1 LMS2 Coefficients and Input Buffers
	Table�25. LMS2 Coefficients and Input Buffers�

	16.2 LMS2 Function Descriptor
	Figure�33. LMS2 Function Descriptor
	Table�26. LMS2 Parameter Packet�

	16.3 LMS2 Applications

	17 Weighted Vector Addition (WADD)–Real X and Real Y
	Figure�34. WADD Function
	17.1 WADD Coefficients and Input Buffers
	Table�27. WADD Modulation Table and Sample Data Buffers�

	17.2 WADD Function Descriptor
	Figure�35. WADD Function Descriptor
	Table�28. WADD Parameter Packet�

	17.3 WADD Applications
	Table�29. WADD Applications�

	18 DSP Performance Using the Core Alone Versus Using the CPM
	Figure�36. Example DSP Application—Tx Filter
	18.1 Tx Filter Example (Core Only)
	18.2 Tx Filter Example (Core and CPM)
	Figure�37. Core and CPM Implementation of Filter Example

	19 DSP Function Execution Times and CPM Performance Calculation
	Table�30. DSP Function Execution Times�

	20 Document Revision History
	Table�31. Document Revision History�

