StarCore® SC140
Application
Development Tutorial

by Dror Halahmi,
Sharon Ronen,
Shlomi Malka, Zvika
Rozenshein, Assaf
Naor, and Brett

Lindsley
CONTENTS
1 Getting Started....... 1-1
2 Application
Development.......... 2-1
3 Structured C Approach
to Application
Development.......... 31
4 Code Optimization
Techniques............. 4-1
5 Multisample
Programming
Techniques............. 51
6 Application Code Size
Estimation............. 6-1
A SC140 Assembly
Writing Format
Sandard................ A-1
B Running the SC140
Assembly Code
Example................. B-1
C Runningthe SC140C
Code Example....... C-1
D Example Assembly
Codein SC140
Format.................. D-1
E Example C Codein
SC140 Format........ E-1
INdeX.....ccocvneennee. Index-1

© Freescale Semiconductor, Inc., 2004. All rights reserved.

Freescale Semiconductor, Inc.

The SC140 is alow-cost, high-performance, third-generation digital signa processor (DSP) core. The
processor has four arithmetic logic units (AL Us) that enable execution of multiple parallel operationsin
each clock cycle. The main features of the SC140 Core include:

« Architecture optimized for efficient C/C++ code compilation

* Four 16-bit ALUs and two 32-bit address generation units (AGUS)
» Variable-Length Execution Set (VLES) execution model

e JTAG/Enhanced OnCE™ debug port

This tutorial instructs DSP programmersin how to develop applications for the StarCore® SC140 DSP
coreusing parallel processing and the other SC140 capabilities. The guidelines and recommendations are
based on extensive experience in developing efficiently functioning applications.

This tutorial consists of the following:

e Chapter 1, Getting Started. A read-me-first chapter that familiarizes you with the SC140 compiler,
simulator, and other basic tools. It presents a special code-writing format for the SC140 core and
provides quick-start exercises.

» Chapter 2, Application Development. Describes the process of developing a mature DSP application
that capitalizes on the parallel execution capabilities of the SC140 core.

» Chapter 3, Sructured C Approach to Application Development. Describes a method for achieving
high speed implementations that modify selected portions of the C code. Test cases use functions from
the GSM EFR vocoder standard.

» Chapter 4, Code Optimization Techniques. An in-depth description of optimization methods, along
with example code for each method. Other relevant issues are discussed, such as memory contention
and double-precession arithmetic support.

» Chapter 5, Multisample Programming Techniques. Describesthe “multisample”’ programming method
for achieving high speed implementations, in which a pipelining technique is used to process multiple
samples simultaneously.

» Chapter 6, Application Code S ze Estimation. Describes methods for evaluating the code size required
for implementing a given application developed for Motorola DSP56300 or DSP56600 on the SC140
core.

» Appendix A, Example C Code in SC140 Format.

» Appendix B, Running the SC140 C Code Example.

» Appendix C, SC140 Assembly Writing Format Standard.

» Appendix D, Example Assembly Code in SC140 Format.

» Appendix E, Running the SC140 Assembly Code Example.

The chapters of thistutorial originated as self-contained documents. This application note brings them
together into a coherent set of guidelines for devel oping an application on the SC140 core.

.

Z “freescale*

For More Information On This semiconductor

Go to: www.freescale

O
]

Freescale Semiconductor, Inc.

The following documents provide supporting material and examples:

» Speed and Code-Size Trade-off with the Star Core SC140 (AN1838/D)

* Introduction to the Star Core SC140 Tools: An Approach in Nine Exercises (AN2009/D)

* Implementing the Levinson-Durbin Algorithm on the SC140 (AN2197/D)

» Developing Optimized Code for Both Size and Speed on the Star Core SC140 Core (AN2266/D)

» SC100 Application Binary Interface Reference Manual (MNSC100ABI/D)

» SC100 Assembly Language Tools User’s Manual (MNSC100ALT/D)

» SC100 C Compiler User’'s Manual (MNSC100CC/D)

» SC140 DSP Core Reference Manual (MNSC140CORE/D)

» StarCore Digital Sgnal Processor (DSP) Application Development Framework (ADF)
(SCDSPADFUG/D)

For More Information On This Product,
Go to: www.freescale.com

[]

]

1

Freescale Semiconductor, Inc.
Getting Started

Getting Started

This chapter explains how to start writing and running basic applications for the SC140 DSP core. It is
intended as a"quick start" to familiarize you with the following essential StarCore tools:

» Assembler
e Linker

» Simulator

o Compiler

This chapter helps you get started using these tool s without the need to read their user manualsin
advance, and, it provides an overview of the assembly writing format.

1.1 Approaches to Application Writing

The basic approaches to writing a DSP application are as follows:

* Fixed Point C. Writing straight forward fixed-point C code and simply compiling it. The compiler
produces functional assembly code, but it is not optimized. The required effort is very low, but also the
level of parallelism achieved is lower than that achieved by the other approaches.

» Modified Fixed Point C. Writing parallel fixed-point C code using the multisample technique. This
code compiles into more optimized assembly code. It may reach a high level of parallelism, but it also
requires more extensive effort.

» Assembly. Writing assembly code, making it executable by using the assembler and, if required, the
linker. This approach produces the best performing code, but it requires the highest level of effort.

A combination of C code and assembly code is usually the approach that best optimizes code
performance and the invested effort. All these approaches to DSP application writing are described in
detail in Chapter 2, Application Devel opment.

1.2 Writing C Code

1.2.1

Writing in C code is an important approach to developing an application for the SC140 core, which hasa
very powerful compiler to provide high performance assembly code. This section provides some
quick-start essential s to using the SC140 compiler and running the compiled, executable code. Detailed
considerations for writing and optimizing C code are provided in subsequent chapters.

The basic C subroutine should include the following line above the main part:
#i ncl ude "prototype.h".

Thepr ot ot ype. h library contains the C implementation as C functions of the SC140 instructions.
Thus, when the compiler encounters such afunction in the C program, it translates it to the appropriate
SC140 assembly instruction.

Compiling the Code

After writing a C code subroutine, you can invoke the compiler to create an executable file. Table 1-1
lists the major compiler commands and options.

Table 1-1. Compiler Commands and Options

Command/Option Description
ccscl00 filenane.c. Activates the compiler on the file f i | enane. c.
-S. Generates an assembly file (*. sl).

-C. Generates an object file (*. ¢l n).

11

For More Information On This Product,
Go to: www.freescale.com

A Freescale Semiconductor, Inc.
Getting Started

Table 1-1. Compiler Commands and Options (Continued)

Command/Option Description
-dm Generates a map file.
- Q0. No optimization (the letter o followed by zero).
- Og. Global optimization.
filenane. cln. The name to be given to the created object file (if requested by - C).
a.cld. The name to be given to the created executable file.

1.2.2 Running the Code

The executable file can then be loaded and run by the simulator. The simulator supports reading and
writing of files, aslong as the files are entered in the simulator or in the simulator command file. For
details on using the simulator, refer to Section 1.6.

Example 1-1. Running the Code

input #1 pi:FBufferln input_file.in -rh
out put #2 pi: FBufferQut output_file.out -o

The reading and writing process is performed in the C file asfollows:

 Declare input and output buffers outside the main as follows:
vol atile Wrdl6 Bufferln;
vol atil e Wrdl6 BufferCut;

» Codeto perform the reading process inside the main:
for (i = 0; i < new_speech_length; i++)

{

new_speech[i] = Bufferln;
}
» Codeto perform the output process, wherey is written into afile:

Buf ferQut = vy;
Next, the program can be loaded and executed.

For more examples, refer to Appendix D, Example Assembly Code in SC140 Format and Appendix E,
Example C Codein SC140 Format.

1.3 Writing Assembly Code

An optimal DSP application capitalizes upon the processor and necessitates changesin the writing
format. The SC140 core has a VLIW architecture, and the assembler interprets each line of code asan
execution set of up to six instructions grouped together for parallel execution. Long lines are required for
these instruction sets that, unfortunately, lead to almost unreadable code and leave no space in the lines
for comments.

A standard has been created that provides a highly readable code writing format for the SC140 core
without impeding creativity of the writer. The standard applies to both assembly code and C code and
includes a module header format. See Example 1-2 and Example 1-3.

By separating the AGU and DALU instructions, each line can be limited to only two instructions and a
comment. The entire execution set is enclosed in brackets.

Example 1-2. Assembly Instruction Lines

[mac do, di1,d2 mac d3, d4, d5 ; multiply operands
add do, d1, d3 add d3, d4, dé ; add operands
nove.f (r0)+,d0 nove.w (rl)+,dl ; 1 oad new operands

]

For More Information On This Product,
Go to: www.freescale.com

A Freescale Semiconductor, Inc.
Getting Started

Example 1-3. Assembly Code Appearance

START equ $1000
MEMORY_| NI TI ALI ZATI ON equ $400

org p: MEMORY_I NI TI ALI ZATI ON ; initialize nmenory val ues
dc $400, $f6c2.... ; dc: define constant
org p: START ; start program

[exec. set 1

[exec. set 2

Note: Rather than separate memory spaces for data and program memory, the SC140 core has one
shared memory, called P memory. This must be taken into account when allocating the memory for your
application.

Note: All theinstructions are described in the SC140 DSP Core Reference Manual
(MNSC140CORE/D).

Note A set of benchmarksis avail able that describes many basic DSP kernels, such as, FIR, IR, FFT,
and other filters and operations. These benchmarks are also in the user’s manual.

Standards for the assembly writing format are presented in Appendix C, SC140 Assembly Writing Format
Standard. Examples of assembly code and C code for the SC140 are provided in Appendix D, Example
Assembly Code in SC140 Format and Appendix E, Running the SC140 Assembly Code Example.

1.4 Special SC140 Instructions

The SC140 core has a very powerful assembly language. Its wide range of instruction capabilities and
flexible addressing modes make it ideal for DSP algorithms and general-purpose computing. The
instruction set also enables efficient parallel coding of DSP algorithms, high-level language compilers,
and control code. A few of the more special and significant improvements are described here.

For efficient use of processor time, most change-of-flow instructions have a delayed version of the code
so that one set of instructions executes while the pipeline is filling. The delayed instruction version
effectively executes one or more fewer cycles than its non-delayed version.

Example 1-4. Improving Execution Time

j mpd destination_l abe
nove. f (r0+n0), dO ; this instruction is
; executed before the junp

Execution timeis further enhanced by the hardware |ooping capabilities. The loop initialization occursin
parallel with other instructions and does not consume extra cycles.

Example 1-5. Using Looping Capabilitiesto Improve Execution Time

doset up0 START_LOOP ; set loop no. O start
; address
doen0 #5 ; set loop no. 0 to 5
; iterations
[exec-set ; "doen" can not cone

; right before the | oop

]
START_LOCOP ; loop start |abe

| oopstartO ; beginning of the |oop

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Getting Started

[exec-set 1

]

[exec-set 2

]

[exec-set 3
]
| oopend0 ; end of the |l oop

Another feature of the SC140 instruction set isthe ability to condition either al or part of the instructions
in an execution set with the state of the T (true) bit in the status register (SR). The bit options for
execution sets are;

o ift.lIf true
o i ff.If fase
« i fa. If always (the corresponding instruction always executes, asif thereisno if statement).

The following single instruction options are also designated by the SR[T] bit:

o tfrt. Transferif true
e jt.Jump if true

Example 1-6. Using Conditional Executions

[ift ; execute entire execution
; set if true (T is set)
add do, d1, d2
nove. |l (r0)+,d0

[ift ; execute the next 3
; instructions if T is set
add do, d1, d2 mac do, do, d3
nove.|l (r0)+,d0
ifa ; execute the next 3
; unconditionally
sub do, d1, d2 mac doO, dO, d3

nove.|l (r0)+,d0

tfrt do,d1l ; transfer if true

1.5 Using the Assembler and Linker

The StarCore assembler and linker convert assembly code into an executable code.

1.5.1 Assembler

The linker is not required when the source code is contained in onefile,. The following command line
executes the assembler:

asmscl00 -a -1 -b source_file

Explanation and notes for this command line:

* asnmsc100. The assembler tool, which should be |ocatable via the path.

* - a. Absolute mode, which assigns absol ute addresses to the program and the related data.

» -|. Createsalisting file. Optionaly, the name for the listing file can immediately follow the- 1 .
* - b. Creates an object file. Optionally, the name for the object file can immediately follow the - b.
» source_file. Filewrittenin assembly, called *. asm

For More Information On This Product,
Go to: www.freescale.com

1.5.2 Linker

Freescale Semiconductor, Inc.
Getting Started

If running this command line produces no error messages, the assembl er stage successfully produces an
executablefile (source_fil e. cl d).

When the program codeis contained in two or more separate files, you must define each source as a
section. The sources can then be assembled in one of the following two ways:

1. Assembleall thefilesinto one executable file (*. cl d).
Example 1-7. Executable File

asnscl00 -a -1 -b sourcel source2 ; sourcel.asm +source2.asm
; => sourcel.cld

2. Assemble each source separately into separate relocatable files, (*. cl n), and then use the linker to
combine them into one executable file (*. cl d). This method saves time for large programs because
only the modified file is recompiled.

Example 1-8. Source Files

asnscl00 -b sourcel ; sourcel.asnF>sourcel.cln
asnscl00 -b source2 ; source2.asnF>source2.cln
dspl nk -bnain.cld sourcel.cln source2.cln ; sourcel.cln +source2.cln

; => main.cld

The linker combines the separately-compiled relocatable modules created by the StarCore assembl er into
one complete executable program. The linker assigns each rel ocatable code section to an absolute
memory address. The linker enables you to break up alarge program into more manageable modules that
may be assembled or compiled separately. These modules are linked to produce a complete program. If a
problem arises, only the module with the problem must be edited and reassembled.

The linker execution command, dspl nk, has the following options:

* - b. Creates an object file.

* -r. Usescontrol file (*. ct |) to point to specific addresses for the sections.

* - m Createsamap file.

» - f. Usesan argument file asinput.

- 0. Start address of the code. This option should not conflict with the or g setting in the program.

For options that create or read a specific file, the file name should be included in the command line
immediately after the option (with no space). If there is a space, the first name found is used.

Example 1-9. Activating the Linker

dspl nk -m -o0p: 1000 -b sourcel.cln source2.cln
sourcel. cl nandsource2. cl narelinked into sourcel. cl d. The executablesourcel. cl d starts
at absolute address p: 1000. A map file is produced named sour cel. map.

Instead of typing thislong line each time, you can use the - f option to invoke a predefined argument file
containing all the options and parameters. In the following example, all the parameters of the command
line are specified in the filear g1.

Example 1-10. Using aCommand File

dspl nk -fargl

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Getting Started

Where ar g1 is pre-defined as the following file:

-bmain.cld
- mrai n. map
- op: 1000

sourcel.cln
source2.cln

1.6 Using the Simulator

1.6.1

An executable fileis loaded into the SC140 simulator, and atest is performed. The simulator
auto-completes a command that you start to type and shows all the optional parameters when you press
the space bar. The simulator aso has numerous running options described in the built-in help. This
section describes the common options that enable you to get started easily.

The simulator is called simsc100 and is locatable viathe path defined during installation. The simulator is
activated by si msc100, and the simulator prompt is displayed. The simulator is stopped by the qui t
command.

Initialization

This section introduces and provides usage examples for the following simulator command options:

* radi x. Setstheradix with which the simulator works. For example, if r adi x h is specified, each
number the simulator encountersis interpreted as a hexadecimal number.

e i nput. Definesinput files from which the program can load data.

* out put . Defines output files to which the program can write data.

Example 1-11. Usingi nput andr adi x

i nput #1 p:inp_addr data_filel.inp -rh

In this exanple, Input file no. 1isdeclared (any humber isfine), whichisnamed
data_fil el.inp. Thedataread fromit is hexadecimal, and it is read through the I/O address
p: i np_addr.

If an input is declared in the simulator, its address should be defined in the program, that is, i np_addr
equ $3000. Thisaddress should not interfere with any other part of the code. Example 1-12 is aportion
of assembly code that reads the data.

Example 1-12. Reading the Data

doensh0 #4 ; loop initialization for
; loops up to 2 exec-set
| ong
nmove. w #$150,r0
| oopstartO ; loop start address
nove. f inp_addr, dO ; read one word fromthe

input file (the address
; inp_addr is only virtua
; - the data is not there)
noves. f dO, (r0)+ ; save the word in nenory
| oopend0 ; loop end address

Example 1-13. Using out put

out put #2 p:out_addr data_file2.out -rh -0 ; (-o neans override if file exists)

Datain the input/output filesis read or written line by line. Therefore, each line should include only one
word of data.

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.

1.6.2 Execution

Getting Started

This section introduces and provides usage examples for the following simulator command options. Each
command has a single-letter short form, designated by a highlighted letter in the simulator display.

Table 1-2. Simulator Command Examples

Command Description Examples
| oad Loads the executable code into memory. | oad main.cld
di sassenbl e | Shows the content of memory, starting from a specific di sassenbl e p: 100
address.
di spl ay Shows memory/registers. di splay r2 p:100..110
Displays the contents of the r2 register, and the contents of the
memory at addresses p: 100 to p: 110. If you specify
di spl ay on, then each subsequent time that di spl ay is
invoked, the registers/memory is displayed. To cancel this
feature, specify di spl ay of f.
save Saves machine state (registers) or memory contents in a save p:400..420 outfile -0
file. Save memory contents from p:400 to p:420 in outfile.lod,
overwriting any existing file of that name.
br eak Sets a breakpoint in the program. The breakpoint can be break r0==r1 : break if rO=r1
the execution-set address, a label, an action, or an break p:100 ; break when reaching
expression. Each breakpoint is assigned a number, if not : address p:100 in
manually then automatically by the simulator. Program . execut abl e
stops at the specified breakpomt..You can e.llso specify that break pc>=200 . break if program counter
the program runs to the breakpoint a certain amount of T .
times. ; is bigger than or equal s
;200
break w p: 200 ; break when detecting
; Wwiting to nmenory
; address 200
br eak eof : break at the end of the
; input file, when there
: is no nore data to read
go Runs the program. The program continues to run, unlessa | go #2 :3
breakpoint is encountered. Runs the program three times. Stops at breakpoint number #2
and prompts the operator before continuing.
step Executes one/several execution sets. step 3 cy
Runs the program and stops after 3 execution cycles.
| og Prints execution data to a file. The data includes the log s output_file.log -a
executed commands, sessions and profiling information. Logs the session to filename out put _fil e. | 0g. If the file
already exists, the session is appended to the end.
quit Quits the simulator.

1.6.3 Command File

Instead of entering along series of commands in the simulator, you can save time by invoking a
predefined command file containing all the command options and parameters. This techniqueis valuable

when you need to run a program repetitively.

si msc100 run. cnd. Runsthe simulator with the specified command file (r un. cnd)

For More Information On This Product,
Go to: www.freescale.com

A Freescale Semiconductor, Inc.
Getting Started

Example 1-14. Command File Contents

break off ; Cancel any previously declared breakpoint.
out put off ; Cancel any previously declared output files.
i nput off ; Cancel any previously declared input files.
| oad corr.cld ; Load execut abl e program

radi x h ; Every nunmber from now on i s hexadeci mal .
break out ; Stop execution when reaching | abel out.

go ; Start running the program

save p:400..420 corr -0 ; After the execution stops, save nmenory
; contents in addresses 400 to 420 (hexadeci mal)
in corr.lod. Saved data is al so hexadeci mal,
; as declared before
q ; Short for quit. Every conmand here can be
; witten in its short version, (the letters
; that are highlighted inside the sinmulator).-

1.7 Using the Application Development System (ADS) Debugger

The Motorola ADS is a development tool to aid in the design of real-time signal processing systems. It
enables you to run, debug, and evaluate the performance of an executable file on atarget SC140 board,
such as the MSC8101ADS. The ADS tool consists of four components, three hardware and one software:

* Host-Bus Interface Board

» Command Converter (CC)

» Application Development Module (ADM)
» Debugger software

The ADS debugger has the same interface as the simulator and can execute the same commands, such as
setting a break point (br eak) and displaying registers and memory content (di spl ay). However, there
are several important differences between the ADS debugger and the simulator, for example, restriction
violations, cycle count, and data 1/O.

Restriction violations in the code have different effects on a simulator, which usually ignores restrictions.
Because the simulator is not simulating the exact pipeline of the machine, it is not recommended to allow
restriction violations in your code.

Cycle count is not measured in the hardware as it isin the simulator. Cycle count can be measured using
the EOnCE module (refer to the StarCore SC140 DSP Core Reference Manual).

Data l/O from filesis usually slower than in the simulator, because it istransferred on a physical
connection to the board.

The following commands are required to run the debugger:

» adscc 100. Activates the debugger and displays the debugger prompt.

* adssc100 -d pci . Specifiesthat the board connects to the host platform by means of a PCl
command converter interface.

e adscc100 -d parall el . Specifies that the board connects to the host platform by means of a
parallel port interface.

e adssc100 -d pci run. cnd. Runsthe debugger with the command file specified by r un. cnd. An
example command file is provided in Section 1.6.3.

1-8

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.
Application Development

2 Application Development

This chapter describes how to develop an efficient, high performance DSP application for the StarCore
SC140 DSP corethat capitalizes on the chip’s four-ALU parallel execution capability. The many
guidelines and recommendations herein are based on the experience of developing cellular applications,
mainly the GSM Enhanced Full Rate (EFR) speech vocoder and GSM Channel codingl, but apply to
other DSP applications as well.

The SC140 has a powerful, user-friendly architecture. The SC140 is supported by a very powerful
compiler with arich orthogonal instruction set that helps you to reduce cycle time and achieve high
parallelism.? The main steps required to develop a DSP application for the SC140 include:

Assess the devel opment requirements.

Modify the algorithm.

Profile the code execution.

Write and optimize the code.

Integrate the code.

Run and test the code.

S O A

An application usually starts as an a gorithm description written in a special description language such as
MATLAB. The agorithm description is converted to a floating-point implementation to enable
simulation on a convenient target system. After simulations are successfully performed, the code is
converted, mostly manually, to fixed-point C code designed for the specific target DSP. The conversion
of the C code to the DSP assembly code is usually the longest and most difficult stage, the goal of which
is to achieve the best performance while maintaining a reasonable code size. This processis streamlined
by the SC140 core, because of the efficient optimizing compiler and because the architecture provides
faster code execution thourgh parallel execution of multiple execution units.

Next, aset of test sequences is performed to verify the implementation. By comparing the reference test
sequences of the fixed-point C with the output sequences of the assembly implementation, the devel oper
can determine how accurately his implementation follows that of the fixed-point C code. Thus, it can be
judged whether the implementation follows the fixed-point C code exactly or within an acceptable
deviation. In cellular vocoder standards, it is common to supply these test sequences along with
description of the standard.

2.1 Assessing Development Requirements
This section describes the materials required in order to begin the development process:

* Source code of the application.

« If thereisabit-exact requirement, then definitive test sequences are required.

* Definition of Million Cycles Per Second (M CPS) consumption and memory figures.

 Application programming interface (API) and other system requirements, such as, re-entered code and
multi-channels.

1See GSM 06.60 (ETS 300 726): “Digital cellular telecommunications system: Enhanced Full Rate (EFR) speech transcoding.”
2For details, see Chapter 4 Code Optimization Techniques, Chapter 5 Multisample Programming Techniques, and the
StarCore SC140 DSP Core Reference Manual.

2-1
For More Information On This Product,
Go to: www.freescale.com

O
]

Freescale Semiconductor, Inc.
Application Development

2.1.1 Source Code

The application should include the following:

* Fixed-point C code of the application, which defines the a gorithms and all application features.
o A set of bit-exact test sequences.

The fixed-point C code defines the application. Every feature to be implemented in the final product
appearsin that C code. For the entire assembly code implementation, from beginning to end, the C code
provides the reference by which to eval uate the application implementation.

2.1.2 Bit-exact Implementation

A bit-exact application isis defined by C code and by a definitive set of test sequences that verify all the
application’s features against the C code. An implementation of a bit-exact application is correct only if
all the test sequences produce the same results, bit by bit, as the reference test sequence. The order of
operations can be changed to improve performance as long as the test sequences pass. There are some
restrictionsin reordering the operations because of the need to guarantee compatibility with the set of test
sequences. Operations should not be reordered unless the accuracy is maintained. Reordering is
permissibleif all official test sequences pass and the accuracy is either improved or unchanged.

2.1.3 MCPS and Memory

2.1.4 API

2-2

To design and eval uate the application, the MCPS and memory goals must be defined. The MCPS figure
is usually the worst-case MCPS that is assigned after the overall system M CPS budget is examined under
extreme conditions. The memory figure isusually divided into three sections:

» Program memory. Defines the maximum number of bytes that isallocated for code. Thisfigure can be
determined from the compiler memory map file.

 Constants data memory. Defines the maximum number of bytesthat is allocated for tables and
constants. This figure can be determined directly from the origina C code.

* Variables data memory. Defines the maximum number of bytes allocated for variable storage and stack
memory. Thisfigure can be determined from the compiler memory map file.

The requirements for both minimal cycles and minimal memory usage are sometimes contradictory
because cycle reduction involves more memory usage and decreased memory usage requires more cycle
time. Tradeoffs are required and priorities must be decided between speed and memory space.

A DSP application is usualy developed to work as part of a system rather than as a stand-alone
application. The system typically has a micro-controller or general purpose processor that runs an
operating system (OS). Therefore, the application programming interface (API) for the DSP should be
well defined so that it can be easily introduced to the system when development is completed. The
process of defining the API is beyond the scope of this document, but it usually includes a set of functions
that the DSP application implements along with parameters that are passed to/from the application in any
data structure defined.

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.
Application Development

2.2 Modifying the Algorithm

Because a gorithmic changes highly contribute to the optimization process, a good understanding of the
algorithm isvital for achieving a high performance implementation. Algorithmic changes should be
performed on the C code before compilation to assembly code and should be verified on a
workstation/personal computer. After al the test sequences have passed, the optimization process can
continue. Optimization is extremely important and has a great impact on the final performance results.
Performance is bounded by afinite number, and all optimization stages aim at reaching their bounds.
Efficient algorithm changes may help to break these bounds.

Typically, the source code used for simulation is not the code that is implemented in the final application.
Theinitia codeiswritten to establish afast and accurate description of all application featuresrather than
to satisfy the application requirements. There are two general kinds of algorithmic changes:

« Algorithmic changes necessitated by system requirements. These changes usually involve changesin
data structures due to system requirements such as restrictions imposed by the OS or by the API. For
example, in the EFR project the data structure was changed to enable multi-channel processing from a
single common data segment to a channel based data structure that includes all channel dependent
variables and aglobal data structure that includes all shared variables.

« Algorithmic changes aimed at reducing the computational complexity or the number of operations
performed. For example, areduction in algorithm complexity can be achieved using the FFT algorithm
that computes the fourier transform much faster than the straight forward DFT algorithm. In another
example, areduced number of operations can be achieved by sorting an unordered list two elements at
atime rather than sequentially going through every element of thelist N times (where N = number of
elements).

2.3 Profiling the Code Execution

Profiling the code execution enables you to determine where to invest your optimization effort. To begin,
you must have fixed-point C code and a set of bit-exact test sequences. Compile the C code and execute
and verify it for al of the test sequences. Then, identify the worst case frame. The worst case frame
should then be profiled to generate alist, in decreasing order, of subroutines consuming the most MCPS.
According to arule of thumb, 20 percent of the code consumes 80 percent of the overall execution time,
which means that most of the optimization effort should be concentrated on that 20 percent of the code.
However, if a set of subroutines consume 80 percent of the MCPS after compilation, it will consume less
M CPS after optimization. More than 80 percent of the MCPS of the compiled code should be optimized.
The following equation helps to decide which part of the application should be optimized:

nr

P= l1-n+nr

r = speedup achieved by optimization
p = original percentage of the optimized part
n = new percentage of the optimized part

Setting: n = 80%; r = 3we get p = 92%
The equation demonstrates the trade-off between the amount of code to be optimized and the resulting
performance improvement.

2-3

For More Information On This Product,
Go to: www.freescale.com

O
]

Freescale Semiconductor, Inc.
Application Development

2.4 Writing and Optimizing the Code

The SC140 C compiler is user friendly and has arich orthogonal instruction set. Using the SC140
compiler, you can obtain an efficient assembly code with little effort by simply compiling an application
written in C. However, the best possible performance is achieved by manually optimizing the assembly
code. In apractical compromise between these extremes, you can obtain high performance code with a
reasonable amount of effort. This section describes the implementation strategy that achieves a high
performance level while minimizing the required effort.

2.4.1 Worst Case Versus Average

Power consumption and system timing are primary parameters in a real-time system. Optimization of
these parameters is constrained by the real time events to which the application must respond. A typical
DSP system istriggered by real time events that occur at pre-defined intervals and time periods. System
data should be processed within these constraints and additional pre-defined latency requirements. These
constraints impose timing requirements so that each DSP function should execute within a given
maximum number of clock cycles.

The function designs must satisfy the extremes demanded by the worst case scenarios.
Design-for-worst-case is usualy the main methodol ogy to ensure that the application processes data
under the given timing constraints.

Power consumption isadirect result of the operating frequency and number of execution cycles. Effort
should be made to minimize the number of cycles required to execute the application in addition to
guaranteeing compliance to worst case timing constraints.

2.4.2 Performance Bounds

2.4.2.1 Parallelism

2-4

Before attempting to optimize the code, you should determine the theoretical performance bound as a
performance goal. This bound isthe minimum MCPS that can be attained if the code is best optimized.
Knowing this bound is very helpful for on-line evaluation of optimization quality. Asyour successive
code improvements produce optimizations that asymptotically approach the bound, you can judge when
to stop the code optimization process. The following sections show how to compute these performance
bounds for the code sections that are to be optimized.

Highly parallelized code harnesses the potentia of the SC140 four-ALU architecture and yields faster
performance. Two types of parallelism must be considered:

» DALU parallelism. Defined as the actual number of DAL U operations executed divided by the number
of execution sets.

» AGU parallelism. Defined asthe actual number of AGU operations executed divided by the number of
execution sets.

Number of DALU instructions
Number of execution sets

DALU parallelism =

Number of AGU instructions
Number of execution sets

AGU parallelism =

For More Information On This Product,
Go to: www.freescale.com

A Freescale Semiconductor, Inc.
Application Development

Because of the SC140 architecture, the DALU and AGU parallelisms are upper bounded by 4 and 2
respectively. Thus, the number of execution setsis lower bounded by the number of DALU operations
divided by 4 and a so by the number of AGU operations divided by 2. In other words, code is optimally
paraldized if its DALU parallelism is 4 and its AGU parallelism is 2. The more these parameters
approach 4 and 2, the more the code's parallel performance is optimized. Further optimizations can be
accomplished using the conventional single-ALU DSP methods.

Experience shows that in most cases the DALU parallelism reaches 4 before the AGU parallelism
reaches 2. Thus, when attempting to fill the execution sets, the DAL U operations determine the number
of execution sets while providing sufficient space for the AGU operations. Here it is assumed that the
number of execution setsislower bounded by the DAL U operations, and the bound is calculated
accordingly. However, you should be alert for cases in which there are relatively few DALU operations
and more AGU operations. In these cases, the AGU operations control the bound.

2.4.2.2 Calculating the Bounds.

There are two kinds of performance bounds, namely, the theoretical bound, and the real bound. Both are
calculated from the algorithm/C code and are specified in number of execution sets.

The theoretical bound is the number of execution sets obtained with aDALU parallelism of 4 and is
calculated with the assumption that all AGU operations (memory reads/writes or calculating pointers) are
performed in parallel. The theoretical bound is calculated by counting all the Data ALU instructions
(mac, mpy, add, and so on) in the subroutine, dividing this number by 4 (for four ALUs), and rounding
up the result to the nearest integer. This process gives us the minimum number of execution sets and
therefore the minimum number of cyclesfor the code. Again, the theoretical bound assumesthat all AGU
operations can be performed in parallel with the ALU execution sets and that the code actually includes
this high parallelism.

Unfortunately, this bound can seldom be achieved because the algorithm contains dependencies—for
example, a certain calculation uses the result of a previous calculation as input or calculations must be
performed in a specific order. When dependencies exist, four successive instructions cannot be grouped
into one execution set, and the theoretical bound can never be achieved. Therefore, thereis aneed to
calculate the real bound.

Thereal bound is calculated by examining the program flow while marking specific cases of dependent
code sections and changes of flow. For each of these code sections, atheoretical bound is calculated. The
real bound is determined by the sum of these theoretical bounds.

Example 2-1. C Pseudo Code

s
a
b

The example containsfive arithmetic instructions (L _mac, mult, round, mult, transfer). The theoretical
bound calculation is:

L_mac (s, h[k], h[k+1]);
milt (round (s), mult (sign[k], sign[k+1]));
a;

5/4 = 1.25 => 2 execution sets

This calculation statesthat if the codeis written in the most optimal way, it requires two execution sets.
That is the theoretical bound, which assumes that all AGU operations can be performed in parallel with
those execution sets. However, the code dependencies constrain the calculations to the following order:

L_mac, round, mult, transfer

2-5

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Application Development

The remaining mult is assumed to execute in parallel with one of the first two instructions because its
result is required for the second mult. To accommodate the dependency restrictions, the code iswritten as
follows:

mac h[k], h[k+1],s nmpy sign[k], sign[k+1],tnp

rnd s, s

nmpy s, tnp, a
tfr a,b

To calculate the real bound, assume that the first line contains two instructions and the other lines contain
only oneinstruction. The calculationis:

[2/41+[1/41+[1/47+[1/47 = 1+1+1+1 = 4 execution sets.

If this code is optimized by itself, the final lower bound is the larger between the theoretical bound and
thereal bound. In thisexampleit is max (2,4) = 4 execution sets. Nevertheless, if this code had to execute
20 times, calculating the bounds would be alittle different. The theoretical bound would be:

[5x20/47 = 25 execution sets.

The real bound should be calculated block by block, with each block dependent on the previous one. For
the first iteration of the loop, four blocks are initiated (one for each line of the assembly code). The
second iteration is independent of the first (but has the same dependenciesinside it), so it can occupy the
same four blocks. At the end, the first block contains 2 x 20 instructions, and the rest of the blocks
contain 20 instructions each. Each block can be optimized inside it, so thereal bound is as follows, which
is similar to the theoretical bound:

[2x20/47+[20/4]+[20/47+[20/4] = 10+5+5+5 = 25

The rule of thumb implies that the number of blocks and the sum of theoretical bounds of teh blocks
should both be as minimal as possible. If the theoretical bound for one block is [9/47 and for the next
block itis[11/47, you should attempt to move one instruction from the first block to the second block to
lower the bound as follows:

[9/747+[11/4] = 3+3
[8/41+[12/47] = 2+3

6

5

As an estimate of the optimal performance of a subroutine, performance bounds provide you with agoal.
If the bound cannot be reached, you should determine the reason. However, remember that the bounds are
not final, and better performance can sometimes be achieved through algorithmic changes.

2.4.3 Optimization Techniques

2-6

This section briefly describes several recommended optimization methods for al processorsin general
and for the SC140 core in particular. To achieve high performance in SC140 applications, you should use
the four ALUs as much as possible. The arithmetic operations should be divided into groups of four
instructions that are executed simultaneously. As discussed in Section 2.4.2, in most cases the DALU
parallelism reachesits optimal value (4) faster than the AGU parallelism reachesits optimal (2). Thusthe
optimization should concentrate on filling the execution sets efficiently with DALU operations and
adjusting the AGU operations to them.

Parallelism can be performed by a number of methods, which are described in detail in Chapter 4 Code
Optimization Techniques.

For More Information On This Product,
Go to: www.freescale.com

[]

]

24.4

Freescale Semiconductor, Inc.
Application Development

Implementation Approaches

This section discusses the benefits and trade-offs of two approaches to application implementation:

 C code programming. The source code is written in high-level C language providing good performance
with minimal development effort.

» Assembly code programming. The source code is written in assembly language providing the most
powerful performance possible. However, writing in assembly requires arelatively high investment of
time and effort.

A combination approach in which selected portions of the code are written in assembly is often
employed. Optimizations can be performed in each of these implementation approaches.

2.4.4.1 C Code Programming

The C language is a popular programming languages, mainly becauseit is a high-level language,
structured, portable, and supported by numerous development tools. It is the description language for
many applications, such as speech coders and simulation tools. The SC140 C/C++ compiler is user
friendly with a powerful optimizer that harnesses the capabilities of the SC140 architecture. The
following section describes several issues regarding C code programming and the trade-offs between
writing in C and writing in assembly.

The standard C language does not define afirst class fixed-point type, not in the way that it defines
integer and floating-point types. To express fixed-point DSP agorithmsin C, the language has been
extended to express fractional operations. The SC140 compiler extends the language by adding intrinsic
operations, which are represented syntactically as function calls. These predefined functions are usually
implemented by a single native machine instruction that captures the semantics of the operation. For
portability and ease of maintenance, the syntax is similar to the ETSI vocoder syntax.

For example, thenul t (var1, var2, result) intrinsic function shiftsleft 15 bits of the result of
(varl times var?2); multiplying -1 by —1 gives almost 1, instead of exactly 1. The compiler
substitutes an MPY assembly instruction that performs the same operation.

A Specid Case Is Generated For The Intrinsic Function Mac(Var 1, Var 2, Resul t).In saturation
mode, the generated instruction is not saturated after the multiplication, which can affect bit-exact
applications. In this case, useL_nac(accunul ator, varl, var2),which corresponds to the SC140
mac(varl, var2, result) instructionand performs saturation after the multiplication part of the
L_nmac.

However, the application should take this specia case into account only with bit-exact test vectors.
Retain the |ess-compatible but faster instruction unless some test vectors fail. Eliminating the saturation
after multiplication may even improve accuracy.

There are two approaches to C programming: the compiled C approach and the structured C approach.
The compiled C approach simply compiles the standard C code for the SC140 core. Its main advantageis
the minimal effort required to achieve functional assembly code. Another important benefit is that the
source code remainsin the high-level C language, which isreadable, portable across many platforms, and
easy to maintain and update.

Usually, the compiled C approach leads to longer execution time and only moderate M CPS performance.
However, for an application containing mostly control code, the MCPS and memory performance are
high and till include the benefits of high-level source code. When most of the code is DSP-based, use the
compiled C approach as the basis for application development and consider optimizations to the
functions for which the performance of the compiled codeis not satisfactory.

2-7

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.
Application Development

In the structured C approach, you review and analyze the original C code and manually modify it to use
the potential of the SC140 architecture fully. The main advantage of this approach isthat the code
remains in a high-level language, which is more convenient for maintenance. The drawback is that the
considerable coding effort invested does not yield the best possible performance. Writing in assembly
achieves the best code performance with asimilar level of effort.

The C codeisoptimized locally (inside afunction) by changing the original C code. Several optimization
techniques can be used, as described in Section 2.4.3. Many iterations of modification and evaluation
may be required until satisfactory performance is achieved or no further improvements are possible.

The process requires a thorough knowledge of the compiler behavior and architectural features as well as
considerable devel opment effort and time. Usually, manually written assembly code gives better
performance with less effort and a shorter development time. For details on compiler optimization
techniques see the Star Core 140 C/C++ Compiler User’s Guide, Chapter 5, Optimization
Techniques and Hints.

The SC140 C/C++ compiler offers two main compilation options:

» Compilation for speed. The compiler uses all optimization levels to achieve the best MCPS
performance:
ccscl00 -Og -2 *.c
» Compilation for space. The compiler generates the smallest possible code size for the application:
ccscl00 -Gs *.c

For more details on using the C/C++ compiler, see the StarCore 140 C/C++ Compiler User’s Guide,
Chapter 5, Optimization Techniques and Hints.

2.4.4.2 Assembly Code Programming

2-8

The assembly language provides the developer with full control over the SC140 core resources and the
potential to provide the fastest and most efficient performance. When code is written in assembly, the
exact instructions and execution sets are planned to achieve the best performance.

The drawback to programming in assembly is that it usually requireslong development time and high
effort, especially when writing for a complex DSP architecture. However, the SC140 orthogonal
programming model and powerful instruction set reduces the development time and effort compared to
other multiple ALU DSPs. Another consideration isthat assembly languageisrather unreadabl e code that
cannot be ported and is not convenient for maintenance.

A good compromise can be achieved between the benefits of C and assembly by targeting only certain
sections of code for assembly implementation. The recommended approach is to implement the most

M CPS-intensive subroutines in assembly, thus optimizing the small part of the code that has the greatest
impact on performance.

To write in assembly code, you must have avery good understanding of the subroutines, including the
following:

» Theexact function performed by the subroutine
* Itsinputs and outputs

e |[tsmemory usage

* Itslocation in the caling tree

» Thecalling and called subroutines

When you understand these aspects of the subroutine, you can analyze it and suggest
algorithmic/structural changes that exploit the SC140 architecture features (mainly parallelism) to
generate an optimized code.

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.
Application Development

Asdescribed for C code optimization in Section 2.4.2, after the a gorithmic changes, the next stagein
writing optimized code is to calculate the theoretical performance bounds. Asyour successive code
improvements produce optimizations that asymptotically approach this performance bound, you can
judge when to stop the code optimization process.

2.4.4.3 C Code Versus Assembly Code Summary

The compiled C, structured C, and assembly implementation approaches are each suitable for different
applications and customer requirements. The approach should be selected on the basis of system
requirements, effort required, project schedule, future needs, and so on. Usually, the suitable approach is
a combination of compiled C and either structured C or assembly. Table 2-1 summarizes these
approaches for comparison.

Table 2-1. Implementation Approaches

Characteristic Compiled C Structure C Assembly
MCPS performance Good High The best
Readability Excellent Good Moderate
Development effort Minimal High Very high
Maintenance Very convenient Convenient Moderate
Portability Yes Yes No

2.5 Integrating the Code

25.1

Integration isthefina step in the application development process. In this step, al the code (compiled C,
structured C or assembly) is combined into one program that can be stored in the SC140 program
memory for regular use. The integration must handle the different parts of the source codesin away that
ensures the best MCPS and memory performance. You can assist the compiler in meeting this goal by
adding special directives (#pr agnma) in the code and by using severa switches at compilation time.

Interfacing C and Assembly Code

Interfacing assembly code in Cis essentia for achieving the best performance and minimizing
development time. The SC140 compiler supports callsto assembly functionslocated in separate files, and
it enables integration of these files with the C application. To include a call to an assembly function,
perform the following steps:

1. Write the assembly function in a file separate from your C source files. Use the standard calling
conventions as described in the SC100 C Compiler User’s Manual (MNSC100CC/D), Chapter 5,
Optimization Techniques and Hints. Define the function name as global so that it can be called
from C. All required function alignment restrictions should be written in the C code function header.

Note: When using any of the four registers r6, r7, d6 or d7, the compiler assumes that you save the
register contents. Any called function using these registers should save the register contents so
as not to interfere with the higher-level code.

2. Createtestsvectors for al function inputs and outputs from the standard C code.

3. Write awrapper in C that reads the input vector, calls the assembly function, and writes the output
vector. Define the assembly function as an external function. Add #pragnma al i gn directives if
memory alignment is needed (see the next section for details).

2-9
For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.
Application Development

4. Specify both the C wrapper file and assembly file asinput filesin the shell command line to integrate
the files during compilation. For example, to integrate the subroutine f oo(), written in assembly,
use: ccscl00 -0y -Ox2 *.c foo.asm

5. Debugl/test your assembly code using the SC140 assembler and simulator by comparing the output
vectors created during simulation with the reference vectors.

6. Replace the C function with the assembly function in the application source code, similar to the way
itisdonein steps 3 and 4.

7. Repeat steps 1-6 for each assembly file.

2.5.2 Alignment and Memory Structure

This section describes special considerations in working with the SC140 memory structure. You can write
the code and change the memory configuration file to control the way that the compiler all ocates
memory. The SC140 memory structure consists of one memory space for both program and data memory.
In most applications, memory structure can be defined as follows:

» Program memory. Memory section used to store the application code.

 Constant data memory. Memory section that stores data constants such as tables.

* Variable data memory. This memory section consists of two types, scratch and static. Scratch memory
isused for local variables and temporary storage known as stack/heap. Static memory is used to store
global variables, which must exist between successive executions of the application, such as between
frame processing in a speech coder.

The SC140 compiler relies on amemory configuration file that specifies alocation of each physical
memory address to the above types. To change the default configuration, perform the following steps:

1. Copy thefileconpil er _env_dir/etc/crtscl00. memto your working directory.
2. Edit thefile for your custom setting.
3. Specify your custom memory file using the - memswitch during compilation.

To exploit the SC140 capabilities in memory transfer operations, the start address must be aligned. The
alignment directive for memory location is defined in both C and assembly. In C code there is adirective
called '#pragna al i gn’ that tellsthe compiler/linker to assign the aligned address to avariable or an
array. For example, to transfer fractions from the array R[100] to array T[100], we add the #pr agna
lines as follows:

Wrdi16 R[100], T[100];

#pragma align R 8

#pragma align T 8
These lines tell the compiler/linker that the start address of the R and T arrays should be amultiple of 8
and that the nove. 4f instruction can be used to transfer four fraction wordsin one cycle.

2.5.3 Global Optimization

2-10

After all source files are optimized individually, global optimization may be invoked to achieve the best
performance over the entire application. Global optimization isinvoked by adding the - Og switch to the
compilation command line. Global optimization involves several techniques, such as function inlining
and variable sharing.

In global optimization mode, the compiler processes all the code in the application at the same time. The
compiler has no need to allow for worst cases, since all the necessary information is available. In global
mode, the compiler achieves an extremely powerful level of optimization.

For More Information On This Product,
Go to: www.freescale.com

A Freescale Semiconductor, Inc.
Application Development

Inlining is atechnique in which you can intervene in the compiler global optimization process by
inserting special directivesinto the C code. You can insert the directive #pr agma i nl i ne immediately
following a function declaration to tell the compiler to inline the function. Inserting #pr agnma

noi nl i ne forces the compiler to call the function rather than inline it.

These techniques may increase the code size, but they are useful when cycle reduction is the main
priority. The main disadvantages of compiling in global optimization mode are the high consumption of
resources required and the slow compilation time. In addition, because of the interdependency that global
optimization creates between all segments of the application, the entire application must be re-compiled
if any one source code file is changed. For these reasons, global optimization is generaly reserved until
the final stage of development.

2.6 Running and Testing the Code

After the application isintegrated, it should be tested to assureits functionality. Bit-exact applications are
easily tested with the test sequences supplied along with the standard description C code. Applications
that are not bit exact can be checked against test vectors that are created from the model or from floating
point C or a simulation language such as MATLAB. If abit by bit comparison is not made, a more
complicated technique is used that checks a range of values.

2.6.1 Create Test Vectors

To test a stand-al one subroutine without running the entire program, the programmer must create vectors
that include a printout of all the subroutine inputs and outputs. Thisincludes all the variables, constants
and memory status that the subroutine expects, and the subroutine outputs, for comparison with the
SC140 implementation. Thisis done by running all the test vectors on the complete C application, and
printing out the desired variables.

Example 2-2. Test Vectors

In the following example program flow, only subroutinel is to be tested. In the beginning of subroutinel
we save all the inputsto an external input vector file. At the end of the subroutine, save all the outputsto
an external output vector file. In order to skip the subroutine2 call, save all the parameters before and
after the call and use those parameters instead of calling subroutine2.

nodul e start

{

éall subroutinel
}

subroutinel

{

save all inputs to test vector file

save all subroutine2 inputs
call subroutine2
save all subroutine2 outputs

save all outputs to test vector file
}
-}
2-11

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Application Development

2.6.2 Run the Code on the Simulator

2-12

Finally, when the application is ready and acl d file has been created, you can test it using the SC140
simulator. The SC140 simulator has I/O capabilities that help in the testing phase by accessing external
vector files (input/output). The standard C codeis usually delivered with such vectors to enabl e bit-exact
testing. The simulator is usually controlled by specifying a command file, as shown in Example 2-3.

Example 2-3. Simulator Example

break off
out put off
i nput off
radi x h

| oad application_nane.cld

i nput #1 pi:FBufferln test_vector.inp -rh
out put #2 pi: FBufferQut test_vector.cod -0

change p: Fdtx_flag 1

break eof
break stop

go
qui t

For More Information On This Product,
Go to: www.freescale.com

O
]

Freescale Semiconductor, Inc.
Structured C Approach to Application Development

Structured C Approach to Application Development

The StarCore SC140 processor tools include a C language compiler for developing applicationsin C. To
increase speed, the programmer can also use assembly language, which provides full control over the
processor resources. Another method of increasing speed isto modify the slow parts of the C code. This
chapter concentrates on this method and presents three test cases using functions from the GSM EFR
vocoder standard (Vg_subvec_s, Lag_max, and Nor m corr).

For details, see Chapter 4, Code Optimization Techniques and Chapter 5, Multisample Programming
Technigques and the SC100 C Compiler User’s Manual (MNSC100CC/D), particularly Chapter 5,
Optimization Techniques and Hints, and GSM 06.60 (ETS 300 726): “Digital cellular
telecommunications system; Enhanced Full Rate (EFR) Speech”.

3.1 General Guidelines

Suppose a programmer wants an application to run as fast as possible, using the C compiler to generate
machine code for SC140 core. To achieve this goal, the programmer should focus on the following tasks:

» Write C code that has Instruction Level Parallelism (ILP) potential. Methods for obtaining high ILP
include multisample processing, split-summation, and loop merging.

» Make the compiler exploit this ILP to produce machine code that has as high an ILP as possible. To
accomplish this, the programmer should work in feedback loop mode, that is, compile the code and
anayze it, and modify the code until the objective is achieved (using add/remove temporary variables,
changing the position of statements, using array accessing instead of pointer accessing or vice versa,
and so on).

Figure 3-1illustrates these tasks.

Write C code with
higher ILP potential

Compiler
b achieves the
v required ILP
- for the given
Compile and
C code
analyze the -
generated Based on the analysis, change the
assembly code way of writing (so the compiler
may generate better code)

y

Is the NO
resut o— —— — — — — — —
satisfactory?

Figure 3-1. Optimized C General Workflow

3-1
For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.
Structured C Approach to Application Development

3.2 Studying Test Cases

This section presents test cases that illustrate the techniques of writing structured C code. The test cases
are taken from the standard C description of the GSM EFR vocoder. For each test case, the standard C
code and an evolutionary track towards a structured C version are presented. The code is compiled in a
separate mode (each module is compiled alone) using switch O 2 for speed optimization. The test cases
presented are :

* Vg_subvec_s. Performsvector quantization, using distances between vectors, as described in Section
3.2.1.

» Lag_max. Determines the maximum correlation between an input signal and the same signal with a
delay, within arange of input signal delays, as described in Section 3.2.2.

* Nor m_Cor r . Determines the normalized correlation between atarget vector and the filtered past
excitation, as described in Section 3.2.3.

3.2.1 Vqg_subvec_s Test Case

3-2

The Vvg_subvec_s function performs vector quantization. The distance (weighted Euclidean norm) is
computed for an input with afour element vector from a vector in afixed codebook. The vector with the
minimum distance to the input vector is used to represent it. Actualy, the input vector is compared with a
vector from the codebook and with the same vector with the opposite direction.

index of nearest vector = arg{min { |V —V/|}}
i
3

2
where [V =Vi[=% IWgo TV ~Vigo))
k=0

The standard C code is as follows:

/* Quantization of a 4 dinmensional subvector with a signed codebook */

Word16 Vq_subvec_s (/* output: return quantization index */
Word16 *Isf_r1,/* input : 1st LSF residual vector */
Word16 *Isf_r2,/* input : 2nd LSF residual vector */
const Wordl16 *dico,/* input : quantization codebook */
Word16 *wfl1,/* input : 1st LSF weighting factors */

Word16 *wf2,/* input : 2nd LSF weighting factors */

Word16 dico_size)/* input : size of quantization codebook */

Word16 i, index, sign, tenp;
const Wordl16 *p_dico;
Word32 dist_mn, dist;

dist_mn = MAX_32;
p_dico = dico;

for (i =0; i < dico_size; i++)
{

/* test positive */

tenp = sub (Isf_r1[0], *p_dico++);
tenp = nult (wWf1[0], tenp);

dist = L_mult (tenp, tenp);

tenp = sub (Isf_r1[1], *p_dico++);
tenp = nult (wWf1[1], tenp);

dist = L_mac (dist, tenp, tenp);
tenp = sub (Isf_r2[0], *p_dico++);

For More Information On This Product,
Go to: www.freescale.com

[]

L |

Freescale Semiconductor, Inc.

mul t
L_ma

tenp
di st

sub
mul t
L_ma

tenp
tenp
di st

if (L_sub (
{
di st_m
i ndex =
sign =
}

/* test negative

p_dico -= 4
tenp add

Structured C Approach to Application Development

(Wf2[0], tenp);
c (dist, tenp, tenp);

(I'sf_r2[1], *p_dico++);
(Wf2[1], tenp);
c (dist, tenp, tenp);

dist, dist_nmin) < (Wrd32) 0)

n = dist;
i
0

*/

(I'sf_r1[0], *p_dico++);
(wf1[0], tenp);
It (tenp, tenp);

(I'sf_ri1[1], *p_dico++);
(W1[1], tenp);

L_mac (dist, tenp, tenp);

(I'sf_r2[0], *p_dico++);
(Wf2[0], tenp);

L_mac (dist, tenp, tenp);

(I'sf_r2[1], *p_dico++);
(Wf2[1], tenp);

L_mac (dist, tenp, tenp);

dist, dist_min) < (Wrd32) 0)
n = dist;
1;

tenp = nult
dist = L_nu
tenp = add
tenp = nult
dist =
tenp = add
tenp = nmult
dist =
tenp = add
tenp = nult
dist =
if (L_sub (
{
di st _m
i ndex = i;
sign =
}

}
/* Reading the

p_dico = &dico

if (sign == 0)

{
Isf_ri1[0] =
Isf_ri[1] =
Isf_r2[0] =
Isf_r2[1] =

}

el se

{
Isf_r1[0] =
Isf_ri[1] =
Isf_r2[0] =
Isf_r2[1] =

}

i ndex =

i ndex =

return index;

For More Information On This Product,
Go to: www.freescale.com

sel ected vector */

shl (index, 2)];

*p_di co++;
*p_di co++;
*p_di co++;
*p_di co++;

negate (*p_di co++);
negate (*p_di co++);
negate (*p_di co++);
negate (*p_di co++);

shl (index, 1);
add (index, sign);

3-3

[]

]

Freescale Semiconductor, Inc.
Structured C Approach to Application Development

The structured C code shown is the following sections is described step-by-step. An explanation is
provided for the impact of each step on the produced code.

Note: The altered code is shown in bold.

A loop in the code typically consumes the most processing cycles. Each loop iteration, as shown in the
preceding code, contains two distance calculations followed by a comparison and update, if necessary.
This C code shows high ILP potential.

In principle, the two distances, positive and negative cases, can be calculated concurrently. The
calculations that are accumulated to the distance measure can a so be computed concurrently to provide
further ILP. Using bound calculations from index [2] shows that the minimum loop length is seven
execution sets. The assembly code for this loop contains few points of accessto the stack. These are
directly linked to the two variables i ndex and si gn. In the update phase (after comparison), these two
variables are stored in two DAL U registers. The compiler needs these registers later, for calcul ations, and
spills them to the stack. The spill code, suchas i ff nmoves.f di11l, (sp-44), takestwo cyclesto
execute if the true bit is set to off (that is, an update is needed and probably occurs, but arelatively small
number of times). It takes one cycle to execute if the true bit is set to on (that is, no update is required,
probably the situation for most cases). We recommend that you avoid, where possible, a code with a spill
to stack, as defined in loops.

3.2.1.1 Vg_subvec_s—The First Step

3-4

The following code shows the first step towards more efficient compiled C code:

Word16 Vq_subvec_s (/* output: return quantization index */
Word16 *Isf_r1, /* input : 1st LSF residual vector */
Word16 *Isf_r2, /* input : 2nd LSF residual vector */
const Wordl6 *dico, /* input : quantization codebook */
Word16 *wf 1, /* input : 1st LSF weighting factors */
Wor d16 *wf 2, /* input : 2nd LSF weighting factors */

i

Wor d16 di co_si ze) /* input : size of quantization codebook */
Word16 i, index, sign, tenp;

const Wordl16 *p_dico;

Word32 dist_mn, dist;

Word16 tenpl6_1, tenpl6_2, tenpl6_3, tenpl6_4;

dist_mn = MAX_32;
p_dico = dico;

for (i =1; i < dico_size+l; i++)

{

/* test positive */

tenp = sub (Isf_r1[0], *p_dico++);
tenp = nult (wWf1[0], tenp);

dist = L_mult (tenp, tenp);

tenp = sub (Isf_r1[1], *p_dico++);
tenp = nult (wWf1[1], tenp);

dist = L_mac (dist, tenp, tenp);
tenp = sub (Isf_r2[0], *p_dico++);
tenp = nult (wWf2[0], tenp);

dist = L_mac (dist, tenp, temp);
tenp = sub (Isf_r2[1], *p_dico++);
tenp = nult (wWf2[1], tenp);

dist = L_mac (dist, tenp, temp);

For More Information On This Product,
Go to: www.freescale.com

[]
L |

Freescale Semiconductor, Inc.
Structured C Approach to Application Development

if (L_sub (dist, dist_mn) < (Wrd32) 0)
{

dist_mn = dist;
i ndex = i;

/* test negative */

p_dico -= 4;

tenp = add (Isf_r1[0], *p_dico++);
tenp = nult (wWf1[0], tenp);

dist = L_mult (tenp, tenp);

tenp = add (Isf_r1[1], *p_dico++);
tenp = mult (wf1[1], tenp);

dist = L_mac (dist, tenp, temp);
tenp = add (Isf_r2[0], *p_dico++);
tenp = nult (wWf2[0], tenp);

dist = L_mac (dist, tenp, temp);
tenp = add (Isf_r2[1], *p_dico++);
tenp = nult (wWf2[1], tenp);

dist = L_mac (dist, tenp, temp);

if (L_sub (dist, dist_mn) < (Wrd32) 0)

dist_mn = dist;
i ndex = negate (i);

/* Extracting sign and index true val ues */

sign = O;
if (index <0)
{

sign = 1;

i ndex = negate (index);
i ndex = sub (index, 1);
/* Reading the selected vector */

p_dico = &dico[shl (index, 2)];

tenpl6_1 = p_dico[0];

tenpl6_2 = p_dico[1];

tenpl6_3 = p_dico[2];

tenpl6_4 = p_dico[3];

if (sign == 1)

{
tenmpl6_1 = negate (tenpl6_1);
tenpl6_2 = negate (tenpl6_2);
tenpl6_3 = negate (tenpl6_3);
tenpl6_4 = negate (tenpl6_4);

}

Isf_ri1[0] = tenpl6_1,

Isf_ri[1] = tenpl6_2;

Isf_r2[0] = tenpl6_3;

Isf_r2[1] = tenpl6_4,

i ndex shl (index, 1);

i ndex add (index, sign);

3-5

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.
Structured C Approach to Application Development

return index;

To avoid the spill code in the loop, we eliminate the variable si gn from the loop and including the sign
information in the index. For the positive case (sign = 0), i ndex isupdated with i , which isalways
positive. For the negative case (sign = 1), index is updated with the negated val ue, meaning the value that
is always negative. To avoid the case of zero, i is preset to avalue of one. After the loop, the true values
of si gn and i ndex are restored. This change reduces the spill code. For the standard code, the loop has
23 execution sets with four accesses to stack. For the structured code, the loop has only 20 execution sets
with two access to stack. We also change how the selected vector isread (after the loop), asfollows:

1. Thevector isread from the codebook into temporary variables (t enp16_1, tenpl6_2,tenpl6_3,
and tenpl6_4).

2. According to the sign, the values of these variables are updated.

3. Vaiablesarestoredtol sf _r1andlsf _r2.

This code sizeisimproved over the standard code because the vector isread only once from the
codebook and | sf _r 1 and | sf _r 2 are written only once. However, for the standard code, there are two
segments of code that read the vector from codebook: one for the case si gn is zero and the other for the
case si gn isone. In addition, there remains two segments of code to writeto | sf _r1 and | sf _r 2 for
both cases.

3.2.1.2 Vg_subvec_s—The Second Step

3-6

The second towards more efficient code eliminates the remaining spill code in the loop.

Word16 Vq_subvec_s (/* output: return quantization index */
Word16 *Isf_r1, /* input : 1st LSF residual vector */
Word16 *Isf_r2, /* input : 2nd LSF residual vector */
const Wordl6 *dico, /* input : quantization codebook */
Word16 *wf 1, /* input : 1st LSF weighting factors */
Wor d16 *wf 2, /* input : 2nd LSF weighting factors */

i

Wor d16 di co_si ze) /* input : size of quantization codebook */
Word16 i, index, sign, tenp;

const Wordl16 *p_dico;

Word32 dist_mn, dist;

Word16 *indexAGQU, ten{2], *j, *j_negate;

Word16 tenpl6_1, tenpl6_2, tenpl6_3, tenpl6_4;

dist_mn = MAX_32;
i ndexAGU = &eni0]; /* This has been done to avoid the stack-rel ated

addressing (sp-offset) which takes two cycl es.
The indexAGU is allocated to the AGU register.

Therefore, two DALU registers are freed. */
j = indexAG;
j _negate = i ndexAGU,
p_dico = dico;
for (i =0; i < dico_size; i++)
{

/* test positive */

tenp = sub (Isf_r1[0], *p_dico++);
tenp = nult (wWf1[0], tenp);

dist = L_mult (tenp, tenp);

tenp = sub (Isf_r1[1], *p_dico++);
tenp = nult (wWf1[1], tenp);

dist = L_mac (dist, tenp, temp);

For More Information On This Product,
Go to: www.freescale.com

[]

L |

}

/* Extracting the sign and index true val ues */

Freescale Semiconductor, Inc.

tenp = sub (Isf_r2[0], *p_dico++);
tenp = nmult (wWf2[0], tenp);
dist = L_mac (dist, tenp, temp);
tenp = sub (Isf_r2[1], *p_dico++);
tenp = mult (wWf2[1], tenp);
dist = L_mac (dist, tenp, temp);
j ++;
if (L_sub (dist, dist_min) < (Wrd32) 0)
{
dist_mn = dist;
i ndexAQU = j;
}
/* test negative */
p_dico -= 4;
tenp = add (Isf_r1[0], *p_dico++);
tenp = nult (wWf1[0], tenp);
dist = L_mult (tenp, tenp);
tenp = add (Isf_r1[1], *p_dico++);
tenp = mult (wWf1[1], tenp);
dist = L_mac (dist, tenp, temp);
tenp = add (Isf_r2[0], *p_dico++);
tenp = nult (wWf2[0], tenp);
dist = L_mac (dist, tenp, temp);
tenp = add (Isf_r2[1], *p_dico++);
tenp = mult (wWf2[1], tenp);
dist = L_mac (dist, tenp, temp);
j _negate--;
if (L_sub (dist, dist_mn) < (Wrd32) 0)
dist_mn = dist;
i ndexAGU = j _negate
}

index = ind
sign = O;
if (index

{

}

sign = 1;
index = n

i ndex = sub

Structured C Approach to Application Development

exAQU - &tenf0];

<0)

egate (index);

(i ndex, 1);

/* Reading the selected vector */

p_dico = &d

tenpl6_1
tenpl6_2
tenpl6_3
tenpl6_4

if (sign

{

tenpl6_1
tenpl6_2
tenpl6_3
tenpl6_4

For More Information On This Product,
Go to: www.freescale.com

ico[shl (index, 2)];

p_dico[0] ;

p_dico[1];

p_dico[2] ;

p_dico[3];

= 1)
= negate (tenpl6_1);
= negate (tenpl6_2);
= negate (tenpl6_3);
= negate (tenpl6_4);

3-7

[]

]

Freescale Semiconductor, Inc.
Structured C Approach to Application Development

}

Isf_r1[0] = tenpl6_1;
Isf_r1[1] = tenpl6_2;
Isf_r2[0] = tenpl6_3;
Isf_r2[1] = tenpl6_4;

i ndex = shl (index, 1);
i ndex = add (index, sign);

return index;
The spill code in the loop (linked to the variable i ndex of the former code) is eliminated by allocating
i ndex to an AGU register. A variablei ndexAGU is declared to be of the type: pointer to Word16. This
variable replacesthei ndex role in the loop. Once the index is stored in an AGU register, the operations
index = i andi ndex = negate (i) arereplaced by an AGU operation. Two Word16 pointers,j and
j _negat e, are defined and initialized to point to a dummy location &t enf 0] .

During theloop, j isincreased by j ++ operation (it is compiled to an AGU add operation).j _negat e
isdecreased by j _negat e- - operation (it isaso compiled to an AGU add operation). The index updateis
performed by i ndexAGU = j or indexAGU = j _negat e, which are AGU operations. As before,

i ndex and si gn arerestorable from i ndexAGU. Loop length is reduced to 18 execution sets without
stack access (however, the code size increases dightly by 24 bytes).

The statement:

if (L_sub (dist, dist_mn) < (Wrd32) 0)

is replaced with:

if (dist < dist_min)

The sub operation is saved and the statement occurs twice in the loop. Loop length is reduced to 16
execution sets.

3.2.1.3 Vg_subvec_s—The Third Step

The next step isto try to increase the speed of the code. Observing the generated assembly code for the
loop shows that access to the codebook is through one pointer (r5). Therefore, the calculation of the
distance for the negative case cannot start before the first element from the codebook isloaded. The
compiler does not recognize that it is a so the first element needed for the calculation of the distance for
the positive case. Therefore, the first element for the negative caseisloaded after the last element for the
positive case isloaded. The following code tells the compiler that vector elementsfor the negative case
are the same elements as for the positive case. In this step, the following shows the code of the loop (the
rest is not changed):

for (i =0; i < dico_size; i++, p_dico+=4)

{

/* test positive */

tenp = sub (Isf_r1[0], p_dico[0]);
tenp = nult (wWf1[0], tenp);

dist = L_mult (tenp, tenp);

tenp = sub (Isf_r1[1], p_dico[1]);
tenp = mult (wWf1[1], tenp);

dist = L_mac (dist, tenp, temp);
tenp = sub (Isf_r2[0], p_dico[2]);
tenp = nmult (wWf2[0], tenp);

dist = L_mac (dist, tenp, temp);
tenp = sub (Isf_r2[1], p_dico[3]);

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.

Structured C Approach to Application Development

temp = mult (W 2[1], tenp);
dist = L_mac (dist, tenp, tenp);
j++;
if (dist <dist_mn)
{

dist_mn = dist;

i ndexAQU = j;
}

/* test negative */

tenp = add (Isf_r1[0], p_dico[0]);
tenp = nult (wWf1[0], tenp);
dist = L_mult (tenp, tenp);
tenp = add (Isf_r1[1], p_dico[1]);
tenp = mult (wWf1[1], tenp);
dist = L_mac (dist, tenp, temp);
tenp = add (Isf_r2[0], p_dico[2]);
tenp = mult (wWf2[0], tenp);
dist = L_mac (dist, tenp, temp);
tenp = add (Isf_r2[1], p_dico[3]);
tenp = mult (wWf2[1], tenp);
dist = L_mac (dist, tenp, temp);
j _negate--;
if (dist <dist_mn)
{

dist_mn = dist;

i ndexAGU = j _negate;
}

}

Access to codebook elements occurs through p_di col k] . The corresponding generated assembly code
loads each element from the codebook only once (and not twice as before). In addition, it calculates the
distances in parallel for the positive case and negative case. However, the loop length decreases by only

one execution set to atotal of 15 execution sets.

This unsatisfying result is based on the compiler using the same register to hold the values for both

distances, positive and negative cases. In other words, al calculations that do not assign avalueto di st

in the negative case occur in parallel with distance calculations for the positive case. However, all
assignmentsto di st in the negative case begin only after the distance of the positive case is used for
comparison and update. The following code overcomes this problem:

for (i =0; i < dico_size; i++, p_dico+=4)

{

/* conpute positive */

tenp = sub (Isf_r1[0], p_dico[0]);
tenp = nult (wWf1[0], tenp);

dist = L_mult (tenp, tenp);

tenp = sub (Isf_r1[1], p_dico[1]);
tenp = mult (wWf1[1], tenp);

dist = L_mac (dist, tenp, temp);
tenp = sub (Isf_r2[0], p_dico[2]);
tenp = nmult (wWf2[0], tenp);

dist = L_mac (dist, tenp, temp);
tenp = sub (Isf_r2[1], p_dico[3]);
tenp = nmult (wWf2[1], tenp);

dist = L_mac (dist, tenp, temp);

For More Information On This Product,
Go to: www.freescale.com

3-9

[]

]

Freescale Semiconductor, Inc.
Structured C Approach to Application Development

/* conpute negative */

tenp = add (Isf_r1[0], p_dico[0]);
tenp = mult (wf1[0], tenp);

distl = L_nmult (tenp, tenp);

tenp add (Isf_r1[1], p_dico[1]);
tenp mult (wf1[1], tenmp);
distl = L_nmac (distl, tenp, tenp);

tenp add (Isf_r2[0], p_dico[2]);
tenp mult (wf2[0], temp);
distl = L_nmac (distl, tenp, tenp);

tenp add (Isf_r2[1], p_dico[3]);
tenp mult (wf2[1], tenmp);
distl = L_mac (distl, tenp, tenp);

/* test positive */
j++;
if (dist <dist_mn)

{
dist_mn = dist;
i ndexAQU = j;
}
/* test negative */
j _negate--;
if (distl <dist_mn)
{
dist_mn = distl;
i ndexAGU = j _negate;
}

}

Two changes were made:

1. The distances for the negative and positive cases are stored in different variables (positive case in
di st, negative casein di st 1).

2. Thecodethat calculatesdi st 1 ismoved before the compare and select statement of the positive case.
The loop length is reduced by three to atotal of 12 execution sets.

3.2.1.4 Vg_subvec_s—The Fourth Step

3-10

The compiler does not pipeline the calculations in the loop (meaning that it does not begin operations of
the next iteration in the current iteration). If pipelineing or split-summation are not used for calculating
di st then, di st isready only at the eighth execution unit. Therefore, the comparison of di st 1 to

di st _mi n cannot be before the tenth execution set, which meansthat all loops can take no less then 12
execution sets. Remember, i ndexAGU isstored in an AGU register, and due to processor pipeline latency,
its update can occur at least one cycle after the TRUE bit is written. The compiler achieves this result.

To reduce loop length further, we use a pipelineing technique. For example, if p_di co[0] for the next
iteration isloaded at the current iteration, then loop length can reduce to 11 execution sets. The code for
thislast stage, isasfollows:

tenpl6_1 = p_dico[0];
for (i =0; i < dico_size; i++, p_dico+=4)

{

/* test positive */

tenp = sub (Isf_r1[0], tenpl6_1);
tenp = nult (wWf1[0], tenp);
dist = L_mult (tenp, tenp);

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.
Structured C Approach to Application Development

tenp = sub (Isf_r1[1], p_dico[1]);
tenp = mult (wf1[1], tenp);

dist = L_mac (dist, tenp, temp);
tenp = sub (Isf_r2[0], p_dico[2]);
tenp = mult (wWf2[0], tenp);

dist = L_mac (dist, tenp, temp);
tenp = sub (Isf_r2[1], p_dico[3]);
tenp = nmult (wWf2[1], tenp);

dist = L_mac (dist, tenp, temp);
tenp = add (Isf_r1[0], tenpl6_1);
tenp = nult (wWf1[0], tenp);

distl = L_nult (tenp, tenp);

tenp add (Isf_r1[1], p_dico[1]);
tenp mult (wf1[1], tenmp);
distl = L_nmac (distl, tenp, tenp);

tenp add (Isf_r2[0], p_dico[2]);
tenp mult (wf2[0], temp);
distl = L_mac (distl, tenp, tenp);

tenp add (Isf_r2[1], p_dico[3]);
tenp mult (wf2[1], temp);
distl = L_mac (distl, tenp, tenp);

j++;
if (dist <dist_mn)
{

dist_mn = dist;

i ndexAQU = j;
}
/* test negative */
j _negate--;
if (distl <dist_mn)
{

dist_mn = dist1l;

i ndexAGU = j _negate;
}

tenpl6_1 = p_dico[4];
}
Beforethefirstiteration, p_di co[0] isloadedintot enp16_1. Therefore, di st calculation begins at the
first execution set. At the end of the current iteration, p_di co[0] of the next iteration isloaded to
tenpl6_1 (tenpl6_1 = p_di co[4]). Loop lengthis now 11 execution units.

3.2.1.5 Vg_subvec_s—Example Summary

Intheinitial C code, each loop iteration requires at least 23 cycles. Inthe final C code, each loop iteration
requires 11 cycles. Theinitial C Code of the loop had high ILP potential, but the compiler failed to
deliver high IL P machine code, so the C code was rewritten. The number of variablesin the loop,
assigned to DALU registers, is reduced by eliminating a variable and assighing a variable to an AGU
register.

3-11

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.
Structured C Approach to Application Development

A statement with two operations was transformed to a statement with one equivalent operation. Direct
access to the array is replaced by indirect access to the array. A code segment in the loop has moved and
as aresult, another variableis defined. Thisresultsin pipelining the load operation and reducing the code
size from 464 bytes to 428 bytes.

3.2.2 Lag_max Test Case

3-12

Another code example usesthe Lag_max function. We next evaluate how to optimize its performance.
Thisfunction is part of the open loop pitch search. It computes the correlation of the input signal with the
same signal delayed, for arange of delays. The function finds the delay with the maximum correlation
and returns the delay with its correlation value after normalization.

The standard C code, is as follows:
#i ncl ude "prototype. h"

#i ncl ude "oper_32b. h"
#i nclude "sig_proc.h"
#def i ne THRESHOLD 27853

/***

* FUNCTI ON: Lag_nmax

* PURPOSE: Find the lag that has the maxi num correl ation of scal_sig[] in a
* gi ven del ay range

*

* DESCRI PTI O\:

* The correlation is given by

* cor[t] = <scal_sig[n],scal _sig[n-t]> t=lag_mn,...,|ag_nax

* The function output is the maxi mumcorrelation after normalization
* and the corresponding | ag

***/

Word16 Lag_mex (/* output: lag found */
Word16 scal _sig[], /* input : scaled signal */
Word16 scal _fac, /* input : scaled signal factor */
Word16 L_frane, /* input : length of the frame to conpute the pitch*/
Word16 | ag_max, /* input : maxi mum |l ag */
Word16 |lag_mn, /* input : mnimmlag */
Wor d16 *cor _max) /* output: normalized correlation of selected lag */
{
Wordi6 i, j;
Word16 *p, *pil;
Wor d32 max, tO;
Word16 mex_h, nmax_l, ener_h, ener_Il;

Wor d16 p_nax;

max = M N_32;

for (i =lag_max; i >=lag_mn; i--)
{
p = scal _sig;
pl = &scal _sig[-i];
to = 0;
for (j =0; j < L_frame; j++, p++, pl++)
t0 = L_mac (tO, *p, *pl);

}

if (L_sub (t0, max) >= 0)

For More Information On This Product,
Go to: www.freescale.com

O
]

Freescale Semiconductor, Inc.
Structured C Approach to Application Development

3
x
1
n =
o

}

/* conpute energy */

to = 0;

p = &scal _sig[-p_nex];

for (i =0; i < L_frane; i++, p++)
t0 = L_mac (t0, *p, *p);

/* 1/ sqrt(energy) */

t0 = Inv_sqgrt (t0);

t0 = L_shl (t0, 1);

/* max = max/sqrt(energy) */

L_Extract (max, &max_h, &max_|);
L_Extract (tO, &ener_h, &ener_l);

t0 = Mpy_32 (max_h, max_|, ener_h, ener_l);

t0 = L_shr (tO, scal _fac);

cor_max = extract_h (L_shl (tO0, 15)); / divide by 2 */
return (p_nmex);
}
The nost consunming cycle count part is the follow ng:
for (j =0; j < L_frame; j++, p++, pl++)
{

t0 = L_mac (tO, *p, *pl);
}
Thiscode haslow ILP. It was compiled to aloop with one execution set that uses only one MAC unit. For
better speed, this code must be transformed into code with a higher ILP potential. The correlation
calculation is compatible with multisample processing, which can reduce cycle count for the SC140 core
by as much as a factor of four, relative to single sample processing.

Word16 Lag_mex (/* output: lag found */
Word16 scal _sig[], /* input : scaled signal. */
Word16 scal _fac, /* input : scaled signal factor. */
Word16 | ag_max, /* input : maxi mum | ag */
Word16 |lag_mn, /* input : mnimmlag */
Wor d16 *cor _max) /* output: normalized correlation of selected lag */

{

Wordi6 i, j, k;

Word16 *p, *pl;

Wrd32 mex, tO, t1, t2, t3;

Word16 mex_h, nmax_l, ener_h, ener_l;
Wor d16 p_nax;

Word32 Corr_l ocal [72];

max = M N_32;
#define L_frane 80 /*length of frane to conpute the pitch*/

/* Calculate correlations and store in a tenporary array */
for (i =lag_max, k = 0; i >=lag_mn; i-=4, k+=4)
{

p = scal _sig;

pl = &scal _sig[-i];

3-13
For More Information On This Product,
Go to: www.freescale.com

[]

]

3-14

}

Freescale Semiconductor, Inc.
Structured C Approach to Application Development

t0 =0; t1 =0; t2 =0; t3 = 0;

for (j = 0; j < L_frame; j++, p++, pl++)
{
to0 = L_mac (t0, *p, pl[0]);
tl = L_mac (t1, *p, pl[1]);
t2 = L_mac (t2, *p, pl[2]);
t3 = L_mac (t3, *p, pl[3]);
}
Corr_l ocal [k+0] = tO;
Corr_local [k+1] = t1;
Corr_local [k+2] = t2;
Corr_local [k+3] = t3;
}
/* Scan the tenporary array to find the largest correlation and its index */
p_max = O;
for (| = Iag_maX, jZO, i >= Iag_m n, i--, j++)
{
if (Corr_local[j] >= max)
{
max = Corr_local[j];
p_max = i;
}
}
/* conmpute energy */
t0 = 0;
p = &scal _sig[-p_max];
for (i =0; i < L_frame; i++, p++)

t0 = L_mac (t0, *p, *p);
/* 1/ sqrt(energy) */
t0 = Inv_sqgrt (t0);
t0 = L_shl (t0, 1);
/* max = max/sqrt(energy) */

L_Extract (max, &max_h, &max_|);
L_Extract (tO, &ener_h, &ener_l);

t0 = Mpy_32 (max_h, max_|, ener_h, ener_l);
t0 = L_shr (tO, scal _fac);
cor_max = extract_h (L_shl (tO0, 15)); / divide by 2 */

return (p_nmex);

To apply multisample processing of quad samples, some changes are required. In each call to this
function, | ag_max- | ag_ni n+1 correlations are computed. According to the EFR standard, this number
can be one of three: 72, 36, or 18. To write compact code that handles the three cases uniformly, (the
problematic case is 18 because it is not a multiple of four), the calculation of correlations is separated
from the compare/select operations, as follows:

1.

The correlations are computed and stored in a temporary array (for the case of 18 correlations two

more correlations are cal culated).

Thetemporary array is scanned and the largest correlation and its index are found (for the 18 case, the
extratwo calculated correlations are ignored).

For More Information On This Product,
Go to: www.freescale.com

o

]

Freescale Semiconductor, Inc.
Structured C Approach to Application Development

Observing the code that the compiler generates for the multisample code shows that the compiler does
not improve the machine code ILP. Still, in each execution set (in the correlations cal culation loop) only
one MAC is used. The key reason for thisis that the compiler does not recognize that p1[0] , p1[1],
and p1[2] of thecurrent iteration are actually p1[1], p1[2] and pl[3], respectively, of the
previous iteration. In the code that we show next, we pass this information to the compiler.

Two more changes are made. The passed parameter L_f r anme is always the same, so it is not passed and
is hard coded.

The following statement:

if (L_sub (t0, max) >= 0)
is replaced with:

if (Corr_local[j] >= max)

TheL_sub iseliminated and replaced by a proper relation operator. The code of the multisampleloopis
rewritten, as follows (the rest remains the same):

{ Wrdl6 tenpl6_1, tenpl6_2, tenpl6_3;

tenpl6_1 = *pl++;

tenpl6_2 = *pl++;

tenpl6_3 = *pl++;

for (j =0; j < L_frame; j++, p++)

{
t0 = L_mac (tO, *p, tenpl6_1);
tl = L_mac (t1, *p, tenpl6_2);
t2 = L_mac (t2, *p, tenpl6_3);
t3 = L_mac (t3, *p, *pl);

/* For next iteration */
tenpl6_1 = tenpl6_2;
tenpl6_2 tenpl6_3;
tenpl6_3 *pl++

}
}

The loop is compiled to a machine code with two execution sets that contain atotal of four MAC
operations and three TFR operations. The machine code ILPisimproved, but not sufficiently, because the
three TFR operations are merely for reuse of the operands. This can be improved by writing the loop
differently, by reducing the loop count and increasing the number of operations performed in each
iteration, as shown here:

{ Wrdl6 tenpl6_1, tenpl6_2, tenpl6_3, tenpl6_4;

tenpl6_1 = *pl++;

tenpl6_2 = *pl++;

tenpl6_3 = *pl++;

tenpl6_4 = *pl++;

for (j =0; j < L_frame; j+=4)

{
t0 = L_mac (tO, *p, tenpl6_1);
tl = L_mac (t1, *p, tenpl6_2);
t2 = L_mac (t2, *p, tenpl6_3);
t3 = L_mac (t3, *p, tenpl6_4);
p++;
tenpl6_1 = *pl++;
t0 = L_mac (tO0, *p, tenpl6_2);
tl = L_mac (t1, *p, tenpl6_3);
t2 = L_mac (t2, *p, tenpl6_4);
t3 = L_mac (t3, *p, tenpl6_1);
p++;

3-15

For More Information On This Product,
Go to: www.freescale.com

o

]

Freescale Semiconductor, Inc.
Structured C Approach to Application Development

tenpl6_2 = *pl++,;

t0 = L_mac (tO, *p, tenpl6_3);
tl = L_mac (t1, *p, tenpl6_4);
t2 = L_mac (t2, *p, tenpl6_1);
t3 = L_mac (t3, *p, tenpl6_2);
p++;

tenpl6_3 = *pl++,;

t0 = L_mac (tO0, *p, tenpl6_4);
tl = L_mac (t1, *p, tenpl6_1);
t2 = L_mac (t2, *p, tenpl6_2);
t3 = L_mac (t3, *p, tenpl6_3);
p++;

tenpl6_4 = *pl++,;
}
}

This code achievesthe highest ILP. Theloop has four execution sets, with four MAC operations executed
in each set. The compiler is explicitly directed how to reuse operands (with no need to TFR operands).
The original loop count is, L_f r ame, which is 80. Fortunately, this is a multiple of 4, so the new loop
countisL_frame/ 4=20. If L_frameis not a multiple of four, the code must be changed further.

For apossible solution, scal _si g[0] toscal _si g[L_f rame- 1] can be copied to atemporary array
that is padded with zerosat theend, p initialization: p = tenp_array;, andtheloop countis
x=cei | | (L_f ranme/ 4) , meaning that 4* x isthe smallest number that is greater than or equal to
L_frame.

Intheinitial C code, the main kernel has low ILP potential, so it is compiled to one execution set that
exercises only one MAC unit. In the final C code the main kernel has high ILP potentia and it is
compiled to four execution sets, in which all four MAC units are in use (maximum utilization) in each
execution set. The initial low-level potential C code istransformed to code with higher ILP potential by
using multisampl e processing to process four samples concurrently.

To reuse operands loaded from memory without using TFR operations, the loop is expended to contain
four accumulations for each sasmple. To have a uniform compact code for the range of passed arguments,
the correlation calculation is separated from choosing the maximum correlation operation. In principle,
the main kernel in the final code runs four times faster than the main kernel in theinitial code (code size
increases from 362 bytes to 596 bytes).

3.2.3 Norm_Corr Test Case

3-16

The Nor m_Cor r function finds the normalized correlation between the target vector and the filtered past
excitation. In this example, techniques not used before are applied.

The standard C code is shown, with one slight change. Originally L_subf r was passed as a parameter.
Since it always has the same value, it can be replaced by a constant.

#i ncl ude "prototype. h"

#i ncl ude "oper_32b. h"

#i nclude "sig_proc.h"
#i ncl ude "codec. h"

/* L_inter = Length for fractional interpolation = nb.coeff/2 */

#define L_inter 4

/***

*

* FUNCTI ON: Norm Corr ()
*
*

PURPOSE: Find the normalized correlation between the target vector

For More Information On This Product,
Go to: www.freescale.com

[]

L |

Freescale Semiconductor, Inc.
Structured C Approach to Application Development

and the filtered past excitation.

*
*
* DESCRI PTI O\:

* The nornelized correlation is given by the correl ation between the
* target and filtered past excitation divided by the square root of
* the energy of filtered excitation.

* corr[k] = <x[], y_Kk[]>/sqrt(y_k[],y_K[])

* where x[] is the target vector and y_k[] is the filtered past

* excitation at delay k.

*

*

**/

void Norm Corr (Word16 exc[], Wordl6 xn[], Wrd1l6 h[],
Word16 t_min, Wrdl6 t_nax, Wrd1l6 corr_norni])

{
Wordi6 i, j, k;
Word16 corr_h, corr_l, normh, norml;
Wor d32 s;

/* Usally dynami c allocation of (L_subfr) */

Word16 excf[80];

Word16 scaling, h_fac, *s_excf, scal ed_excf[80];
#define L_subfr 40

k = -t_mn;
/* conmpute the filtered excitation for the first delay t_mn */

Convol ve (&exc[k], h, excf, L_subfr);
/* scale "excf[]" to avoid overflow */

for (j =0; j < L_subfr; j++)
{

}

/* Conpute 1/sqrt(energy of excf[]) */

scal ed_excf[j] = shr (excf[j], 2);

for (j =0; j < L_subfr; j++)

s = L_mac (s, excf[j], excf[j]);

}
if (L_sub (s, 67108864L) <= 0) /* if (s <= 2726) */
{
s_excf = excf;
h_fac = 15 - 12;
scaling = 0;
}
el se
{
/* "excf[]" is divided by 2 */
s_excf = scal ed_excf;
h_fac = 15 - 12 - 2;
scaling = 2;
}
/* 1oop for each possible period */
for (i =t_mn; i <=t_max; i++)
{

/* Conmpute 1/sqrt(energy of excf[]) */

for (j =0; j < L_subfr; j++)

3-17

For More Information On This Product,
Go to: www.freescale.com

[]

]

3-18

Freescale Semiconductor, Inc.

s = L_mac (s,

}

s = Inv_sqgrt (s);

s_excf[j],

Structured C Approach to Application Development

s_excf[j]);

L_Extract (s, &ormh, &norml);
/* Conpute the correlation between xn[] and excf[] */

for (j = 0; j < L_subfr; j++)

s = L_mac (s,

}

xn[j],

s_excf[j]);

L_Extract (s, &corr_h, &corr_l);

/* Normalize correlation = correlation * (1/sqgrt(energy)) */

s = Mpy_32 (corr_h,

corr_I,

normh, norml);

corr_nornfi] = extract_h (L_shl (s, 16));

/* modify the filtered excitation excf[] for the next iteration */

if (sub (i, t_max) != 0)

k--;
for (j = L_subfr - 1; j > 0; j--)
{
s = L_mult (exc[k], h[j]);
s = L_shl (s, h_fac);
s_excf[j] = add (extract_h (s), s_excf[j - 1]);
s_excf[0] = shr (exc[k], scaling);
}
}
return;
}
We start by analyzing the code generated for the following C code:
/* scale "excf[]" to avoid overflow */
for (j =0; j < L_subfr; j++)
{
scal ed_excf[j] = shr (excf[j], 2);
}

Although this C code does not consume many cycles, it is a good example with low ILP potential. The
compiler-produced code has three execution sets, so the machine code has low ILP. If arrays excf and
scal ed_excf arealigned to eight (the array base address is a multiply of eight, with four elements that
can be loaded in one load operation), then four elements can be processed in parallel. Since these two
arrays are local to this function, using apragnma al i gn guarantees that they are aligned as eight.

The structured code is as follows:

#pragma align excf

8

#pragnme align scal ed_excf 8

/* scale "excf[]" to avoid overflow */

for (j =0; j < L_subfr; j

{
scal ed_excf[]j +0]
scal ed_excf[j +1]
scal ed_excf[]j +2]
scal ed_excf[]j +3]

shr
shr
shr
shr

+=4)

(excf[
(excf[
(excf[
(excf[

j+0], 2);
i+1], 2);
i+2], 2);
i+31, 2);

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.
Structured C Approach to Application Development

}
Thisloop also has three execution sets, but it processes four samples in each iteration (the number of
iterationsis reduced from 40 to 10). However, it can have higher machine code ILP if the loop is
pipelined (only two execution sets). The compiler does not pipeline the loop. Instead, the following code
triesto doit:

/* scale "excf[]" to avoid overflow */
{ Wrdl16 tenpl6_1, tenpl6_2, tenpl6_3, tenpl6_4;

tenpl6_1
tenpl6_2
tenpl6_3
tenpl6_4
for (j =
{

excf[0];
excf[1];
excf[2];
excf[3];
j < L_subfr; j+=4)

onmnnnn

tenpl6_1
tenpl6_2
tenpl6_3
tenpl6_4

shr (tenpl6_1, 2);
shr (tenpl6_2, 2);
shr (tenpl6_3, 2);
shr (tenpl6_4, 2);

scal ed_excf[]j +0]
scal ed_excf[]j +1]
scal ed_excf[]j +2] tenmpl6_3;
scal ed_excf[]j +3] tenpl6_4;
tenpl6_1 excf[(j +4)+0];
tenpl6_2 excf[(] +4) +1];
tenpl6_3 excf[(] +4) +2];
tenpl6_4 excf[(] +4) +3];

tenpl6_1;
tenpl6_2;

J
J
J
J
}

}

This code |oads elements prior to loop entrance and shifts them to the right. It then stores the results and
loads the next four elements, (the last two operations can occur concurrently). However the compiler

does not parallelize them, so the loop still has three execution sets. We try to improve the code
performance by writing C code with a higher |LP potential.

/* scale "excf[]" to avoid overflow */

for (j =0; j < L_subfr; j+=8)

{
scal ed_excf[j +0] = shr (excf[j+0], 2);
scal ed_excf[j +1] = shr (excf[j+1], 2);
scal ed_excf[j+2] = shr (excf[]j+2], 2);
scal ed_excf[j +3] = shr (excf[]j+3], 2);
scal ed_excf[j +4] = shr (excf[]j+4], 2);
scal ed_excf[j +5] = shr (excf[]j+5], 2);
scal ed_excf[j +6] = shr (excf[]j+6], 2);
scal ed_excf[j +7] = shr (excf[]j+7], 2);

}

The loop process eight samplesin each iteration. The compiler generates aloop with six execution sets,
meaning that the machine code | L P does not improve. Again, the compiler does not load data for the next
four elements before it stores the last four samples. Notice that the compiler uses only four registers do,
d1, d2, and d3 for all operations.

/* scale "excf[]" to avoid overflow */

{ Wrdl6 tenpl6_1, tenpl6_2, tenpl6_3, tenpl6_4;
Word16 tenpl6_5, tenpl6_6, tenpl6_7, tenpl6_8;

for (j =0; j < L_subfr; j+=8)

{
tenpl6_1 = excf[j+0]; tenpl6_2 = excf[j+1];
tenpl6_3 = excf[j+2]; tenpl6_4 = excf[j+3];
tenpl6_5 = excf[j+4]; tenpl6_6 = excf[j+5];
tenpl6_7 = excf[j+6]; tenpl6_8 = excf[j+7];

3-19

For More Information On This Product,
Go to: www.freescale.com

[]

A Freescale Semiconductor, Inc.
Structured C Approach to Application Development
tenpl6_1 = shr (tenpl6_1, 2); tenpl6_2 = shr (tenpl6_2, 2);
tenpl6_3 = shr (tenpl6_3, 2); tenpl6_4 = shr (tenpl6_4, 2);
tenpl6_5 = shr (tenpl6_5, 2); tenpl6_6 = shr (tenpl6_6, 2);
tenpl6_7 = shr (tenpl6_7, 2); tenpl6_8 = shr (tenpl6_8, 2);
scal ed_excf[j +0] = tenpl6_1; scal ed_excf[]j+1] = tenpl6_2;
scal ed_excf[j+2] = tenpl6_3; scal ed_excf[]j+3] = tenpl6_4;
scal ed_excf[j +4] = tenpl6_5; scal ed_excf[j+5] = tenpl6_6;
scal ed_excf[]j +6] = tenpl6_7; scal ed_excf[j+7] = tenpl6_8§;
}
}
The compiler generates afour execution set loop, meaning that higher IL P machine code is achieved. The
key point isthat the compiler uses adifferent set of four registersfor each four samples. Notice that at the
C level, each sampleis processed using a different temporary variable- tenpl6_1totenpl6_8, load
operations appear first, shift operations next, and then store operations.
Our next focus is the following code segment:
/* Conmpute 1/sqrt(energy of excf[]) */
s = 0;
for (j =0; j < L_subfr; j++)
s = L_mac (s, excf[j], excf[j]);
}
To have higher ILP potential, split-summation is used. The highest ILP for DALU operationsis achieved
if the sumissplitinto four sumsand all are calculated in parallel. It can be supported if four elements are
loaded every cycle.
/* Compute 1/sqrt(energy of excf[]) */
{ Wrd32 s0, sl1, s2, s3;
sO = 0; s1 =0; s2 =0; s3 =0;
for (j =0; j < L_subfr; j+=4)
{
sO = L_nmac (sO, excf[j+0], excf[j+0]);
sl = L_mac (s1, excf[j+1], excf[j+1]);
s2 = L_mac (s2, excf[j+2], excf[j+2]);
s3 = L_mac (s3, excf[j+3], excf[j+3]);
}
sO = L_add (s0,sl); s2 = L_add (s2, s3);
s = L_add (s0, s2);
}
Theloop iscompiled into a one-execution set loop. Four elements are loaded using move. 4f operations,
and four MAC operations occur in parallel.
We now consider the following code segment:
/* Conpute 1/sqrt(energy of excf[]) */
s = 0;
for (j =0; j < L_subfr; j++)
s = L_mac (s, s_excf[j], s_excf[j]);
}
s = lnv_sqgrt (s);
L_Extract (s, &ormh, &norml);
/* Conpute the correlation between xn[] and excf[] */
s = 0;
for (j =0; j < L_subfr; j++)
3-20

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.
Structured C Approach to Application Development

{

}
L_Extract (s, &corr_h, &corr_l);

s = L_mac (s, xn[j], s_excf[j]);

To increase ILP potential, we can use split summation, as before for the energy cal culation. The second
loop isacorrelation cal cul ation. Assume split summation cannot be applied to the second loop because it
is does not produce bit exact results. However, notice that the two loops iterate the same number of times
and share operands (s_excf). Therefore, we can merge the two loops into one loop.

/* Conmpute 1/sqrt(energy of excf[]) */

/* Conpute correlation between xn[] and excf[] */
{ Wrd32 s0, si;

sO 0;

sl 0;

for (j =0; j < L_subfr; j++)
{

s0
sl

L_mac (sO, s_excf[j], s_excf[j]);
L_mac (s1, xn[j], s_excf[j]);

}

L_Extract (sl1, &corr_h, &corr_l);
sO = Inv_sqrt (sO0);
L_Extract (sO, &iormh, &orml);
}
The compiler generates aloop of one execution set with two MAC operations. Notice that the loop merge

has higher ILP than using split summation for the first loop and not changing the second loop.
We now focus on the code segment that is the most cycle count intensive:

k--;
for (j = L_subfr - 1; j >0; j--)

{
s = L mult (exc[k], h[j]);
s = L_shl (s, h_fac);
s_excf[j] = add (extract_h (s), s_excf[j - 1]);
s_excf[0] = shr (exc[k], scaling);
The code executed in each iteration is highly dependent but does not depend on any of the other
iterations. Therefore, multisample processing is the natural choice to achieve ahigher ILP. Before using
multisample processing, we observe the code that the compiler generates.

The most problematic part is the software loop implementation of L_shl . To have the correct result for
the genera case, no more than eight shifts left are allowed before the saturation operation. If more than
eight shiftsleft are required, then it is divided into a number of eight shiftsleft with the saturation
operation, and concluded with a number of shifts left that is smaller or equal to eight.

Assuming that the correct result can be obtained (supported by running test vectors) if all shiftsleft occur
in one operation, we change the C code as follows:

for (j = L_subfr - 1; j > 0; j--)
{
S L_mult (exc[k], h[j]);
S s << h_fac;
s_excf[j] = add (extract_h (s), s_excf[j - 1]);

s_excf[0] = exc[k] >> scaling;
Indeed, the compiler produces aloop that does not contain the software loop for the L_Shl operation.
Instead it usesone asl | operation (without saturation operation). If the saturation operationis a
required, specify it explicitly, asfollows: s = saturate (s)). Theresulting codeisstill not
satisfying. exc[k] isaloop invariant, but it is still loaded at the beginning of each iteration, postponing
calculationsfor at least one more cycle.

3-21
For More Information On This Product,
Go to: www.freescale.com

[]

]

3-22

Freescale Semiconductor, Inc.
Structured C Approach to Application Development

{ Wordi16 exc_k;

k--;
exc_k = exc[k]; [/* Loop invariant */
for (j = L_subfr - 1; j >0; j--)
{
s = L mlt (exc_k, h[j]);
s = s << h_fac;
s_excf[j] = add (extract_h (s), s_excf[j - 1]);
s_excf[0] = exc_k >> scaling;

}
In the C code before the loop begins, exc[k] isloadedto exc_k, andthe compiler loadsexc|[k] to
aregister. The loop is reduced by one execution set to aloop with five execution sets.

The compiler does not pipeline the loop, so we pipeline at the C level. h[j] of the current iteration can
beloaded in the previousiteration. s_excf[j] of the current iteration can be stored in the next
iteration. The code is shown, as follows:
{ Wrdi16 exc_k, h_j, s_excf_j;

k--;

exc_k = exc[Kk]; /* Loop invariant */

h_j = h[L_subfr-1]; /* Load for the first iteration */

s_excf_j = 0;

for (j = L_subfr - 1; j > 0; j--)
{
s_excf[j+1] = s_excf_j; [/* Store of the previous iteration */

s =L mlt (exc_k, h_j);

s = s << h_fac;

s_excf_j = add (extract_h (s), s_excf[j - 1]);
h_j = h[j-1]; /* Load for the next iteration */
s_excf[1] = s_excf_j;
s_excf[0] = exc_k >> scaling;

}

The compiler generates the required code: aloop with three execution sets. Thisisthe best we can expect
for the given C code. To achieve faster code, we must write code with more ILP. The natural option isto
use multisample processing. The best option is to process four samplesin parallel, as follows:

{ Wordi16 exc_k;

k--;
exc_k = exc[k]; [/* Loop invariant */
for (j = L_subfr - 1; j > 0; j-=4)
{
s = L_mlt (exc_k, h[j-0]);
s = s << h_fac;
s_excf[j-0] = add (extract_h (s), s_excf[j - 1]);
s = L_mlt (exc_k, h[j-1]);
s = s << h_fac;
s_excf[j-1] = add (extract_h (s), s_excf[] - 2]);
s = L_mlt (exc_k, h[j-2]);
s = s << h_fac;
s_excf[j-2] = add (extract_h (s), s_excf[j - 3]);
s = L_mult (exc_k, h[j-3]);
s = s << h_fac;
s_excf[j-3] = add (extract_h (s), s_excf[] - 4]);
s_excf[0] = exc_k >> scaling;

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.
Structured C Approach to Application Development

This code duplicates the code for only one sample. We still useexc_k for exc[k] , the loop invariant.
We do not use pipelineing at the C level. The original loop iterates 39 times. This loop iterates 10 times
and process 40 samples. The last sampleto be calculated intheloopiss_excf [0] whichisoverwritten
by the correct value after the loop. In addition, a pragmais added to indicate that the passed pointer h is
pointing to an aligned eight address.

The compiler may benefit becausein each iterationh[j -3] ,h[j-2],h[]j-1] andh[] - 0] are
loaded, and h[j - 3] islocated in an address aligned eight, so all four elements can be loaded in one load
operation. The loop is compiled to a 14 execution set loop. The compiler compiles code that includes
multiple read and write operations from the same array, to machine code that is read from the array and is
executed only after all write operations preceding it are performed, as specified in the C code.

Therefore, s_excf [j - 2] isnotloaded befores_excf [j - 0] isstored, s_excf[j - 3] isnot loaded
befores_excf[j-0] ands_excf[]j-1] arestored, s_excf[j - 4] isnotloaded before
s_excf[j-0],s_excf[j-1] ands_excf[]-2] arestored.

Thisisan artificial dependency, which does not exist in the algorithm, that is,s_excf[j - 2],
s_excf[j-3] ands_excf[]-4] canbeloaded befores_excf [j-0],s_excf[j-1] and
s_excf[]-2] arestored sothat calculations can begin earlier.

{ Word16 exc_k;
Word16 tenpl6_1, tenpl6_2, tenpl6_3, tenpl6_4;
k__.

exc_k = exc[k]; [/* Loop invariant */
for (j = L_subfr - 1; j > 0; j-=4)
{
s L_mult (exc_k, h[j-0]);
S s << h_fac;
tenpl6_1 = add (extract_h (s), s_excf[j - 1]);

L_mlt (exc_k, h[j-1]);
s << h_fac;

S

tenpl6_2 = add (extract_h (s), s_excf[]j - 2]);
s = L mlt (exc_k, h[j-2]);

s = s << h_fac;

tenpl6_3 = add (extract_h (s), s_excf[j - 3]);

L_mlt (exc_k, h[j-3]);
s << h_fac;

tenpl6_4 = add (extract_h (s), s_excf[]j - 4]);
s_excf[j-0] = tenpl6_1
s_excf[j-1] = tenpl6_2
s_excf[j-2] = tenpl6_3
s_excf[j-3] = tenpl6_4
s_excf[0] = exc_k >> scaling;

}

To overcome this problem, the results of the add operations are stored only after all add operations are
complete (the temporary variables, tenmpl6_1,tenpl6_2,tenpl6_3,andt enpl6_4, are used to hold
the add operation results). This change reduces loop length to eight execution sets (areduction of six).
Now h[j-3],h[j-2],h[j-1],and h[]j-0] areloaded in oneload operation and L_nul t operations
for the four samples are executed in parallel. Shift |eft operations for the four samples are executed in
paralel, aswell as the four add operations.

Notice that the pointer s_excf canpointtoarray excf orarray scal ed_excf. Thesearrays, as
mentioned before, are both eight aligned. However, the compiler does not use one store operation to store
s_excf[j-0],s_excf[j-1],s_excf[j-2],ands_excf[j-3] (s_excf[]j-3] iseight aligned).

3-23

For More Information On This Product,
Go to: www.freescale.com

[]

]

3-24

Freescale Semiconductor, Inc.
Structured C Approach to Application Development

Instead, they are stored one after the other (as arule the compiler does not try to gain parallel accessto an
array through a pointer that can point to more than one array even though all this arrays are aligned to
four/eight).

We overcome this problem by defining s_excf asan array and copying the excf / scal ed_excf array
to it (prior the loop begins). s_excf array isaligned to eight.

{ Wordi16 exc_k;
Word16 tenpl6_1, tenpl6_2, tenpl6_3, tenpl6_4;
k__.

exc’_k = exc[k]; /* Loop invariant */
for (j = L_subfr - 1; j > 0; j-=4)
{

S L_mult (exc_k, h[j-0]);

S s << h_fac;
tenpl6_1 = add (extract_h (s), s_excf[j - 1]);

S L_mult (exc_k, h[j-1]);
S s << h_fac;
tenpl6_2 = add (extract_h (s), s_excf[] - 2]);

_mult (exc_k, h[j-2]);
6 3 = add (extract_h (s), s_excf[j - 3]);
L_nul't (exc_k, h[j-3]);

s << h_fac;
tenpl6_4 = add (extract_h (s), s_excf[]j - 4]);

s_excf[j-0] = tenpl6_1;
s_excf[j-1] = tenpl6_2;
J
J

s_excf[j-2] = tenpl6_3;
s_excf[j-3] = tenpl6_4;
s_excf[0] = exc_k >> scaling;

}

s_excf _local [j-1],s_excf_local [j-2],ands_excf_l ocal [j-2] areloaded in one operation,
and s_excf _l ocal [] - 4] isloaded in one more operation. s_excf[j-0],s_excf[j-1],
s_excf[j-2],ands_excf[]-3] arestill stored one after the other. Accessto the stack is added. The
machine code shows a poor schedule of operations.

Not all four L_mul t operations are done in parallel, as are the shift right operations and add operations.
Loop length increases to ten execution sets, which requires 11 cycles due to stack access. We change the
codesothat s_excf _| ocal [- 3] isstored first (its location is aligned eight), thens_excf [j - 2],
s_excf _local[j-1],ands_excf | ocal [j-0] arestored last.

{ Wordi16 exc_k;
Word16 tenpl6_1, tenpl6_2, tenpl6_3, tenpl6_4;
k__.

exc_k = exc[k]; [/* Loop invariant */
for (j = L_subfr - 1; j > 0; j-=4)
{
s = L_mlt (exc_k, h[j-0]);
s = s << h_fac;
tenpl6_1 = add (extract_h (s), s_excf[j - 1]);
s = L_mult (exc_k, h[j-1]);
s = s << h_fac;
tenpl6_2 = add (extract_h (s), s_excf[] - 2]);
s = L_mlt (exc_k, h[j-2]);
s = s << h_fac;
tenpl6_3 = add (extract_h (s), s_excf[j - 3]);

s = L_mlt (exc_k, h[j-3]);

For More Information On This Product,
Go to: www.freescale.com

O
]

Freescale Semiconductor, Inc.
Structured C Approach to Application Development

s = s << h_fac;

tenpl6_4 = add (extract_h (s), s_excf[]j - 4]);
s_excf[j-3] = tenpl6_4;
s_excf[j-2] = tenpl6_3;
s_excf[j-1] = tenpl6_2;
s_excf[j-0] = tenpl6_1;
s_excf[0] = exc_k >> scaling;

}

Now,s_excf[j-0],s _excf[j-1],s _excf[j-2],ands_excf[]-3] arestored in one store
operation. However, loop length is still ten execution sets, and stack access remains. The following
machine code shows a poorer schedule of operations:

{ Wordi16 exc_k;
Word16 tenpl6_1, tenpl6_2, tenpl6_3, tenpl6_4;
Word32 s0, sl1, s2, s3;

k--

exc_k = exc[k]; [/* Loop invariant */

for (j = L_subfr - 1; j > 0; j-=4)

{
sO
sl
s2
s3

L_mult (exc_k, h[j-0])
L_mult (exc_k, h[j-1]);
L_mult (exc_k, h[j-2]);
L_mult (exc_k, h[j-3]);

s0
sl
s2
s3

s0 << h_fac;
sl << h_fac;
s2 << h_fac;
s3 << h_fac;

tenpl6_1
tenpl6_2
tenpl6_3
tenpl6_4

add (extract_h (s0), s_excf[j
add (extract_h (sl1), s_excf[j
add (extract_h (s2), s_excf[] -
add (extract_h (s3), s_excf[j - 4

BedR
NP

s_excf[j-3]
s_excf[]j-2]
s_excf[j-1]
s_excf[]j-0]

tenpl6_4,
tenpl6_3;
tenpl6_2;
tenpl6_1,

~

s_excf[0] = exc_k >> scaling;

}

Rewriting the C code resultsin aloop length of five execution sets. Four L_nul t operations, four shifts
right operations and four add operations occur in parallel. h[j - 3] ,h[j-2],h[j-1],andh[]j - 0] are
loaded in one load operation. s_excf [j-1],s_excf[j-2],ands_excf[]j- 3] areloaded in oneload
operation. s_excf [- 4] isloaded in one moreload operation. s_excf[j-0],s_excf[j-1],
s_excf[j-2],ands_excf[]-3] arestored in one store operation. Pipelining isused: s_excf[j-0],
s_excf[j-1],s_excf[j-2],ands_excf[j-3] of the previousiteration are stored in current
iteration. The C code transformation helps the compiler to produce faster and more efficient machine
code.

Initially, the C code had low ILP potential and produced machine code with low ILP. We used the
following techniques to achieve higher ILP potential: multisample processing, split summation, and loop
merging. In addition, when arrays are aligned eight, higher |LP machine code is achieved.

We a so made the following changes to the code:

* Inthe example code, we replaced the function call, L_Shl , with the operator <<. We used temporary
variables to hold the results, in order to reveal independency to the compiler.

* Instead of pointer usage to access an array, we changed the code to access the array directly, which
requires copying the selected array to another array.

3-25

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.
Structured C Approach to Application Development

Therevised and improved C code has high ILP potential, which the compiler can use to produce machine
codewith high ILP. In the final C code, kernels accomplish speed-ups of —6, 4, 2 and the main kernel 5.6
speed-up (code size increases from 556 bytes to 768 bytes).

3.3 Reducing Code Size

3-26

So far, this chapter focused on achieving faster code. The following general guidelines discuss methods
and considerations for achieving reduced code size:

* Instruction-level parallelism does not necessarily increase code size, unless the ILP is obtained through
code “repetition.” Code repetition occurs through using programming techniques such as multisample
processing and split-summation. These techniques should not be used if reduced code size is preferred.

« Pipelining aloop usually generates additional code before and after the loop. To prevent the compiler
from pipelining loops, use the compilation switch Os. Loop unrolling, which also increases code size,
should be avoided.

» Thedeveoper can reuse as much code as possible by identifying code segments that repeat more than
once. The repeating code should be defined as a function.

A code segment should have enough “volume,” that the overhead of using it as a function call
decreases rather than increases code size. For example, a code segment may have few statements, but
use alot of variables, which results in increased code size. When replaced with a function call, these
variables are passed as arguments to the function. Therefore, the code size increases as aresult of the
function call.

» The compiler may use an inline function, meaning that afunction call is replaced by function code. For
afunction that is called more than once, code size may increase. To prevent the compiler from inlining
any functions, you can use the compilation switch Os or use pr agma noi nl i ne in a specific function
to prevent it from being inlined.

For More Information On This Product,
Go to: www.freescale.com

4

Freescale Semiconductor, Inc.
Code Optimization Techniques

Code Optimization Techniques

This chapter describes ways to optimize SC140 assembly code. The optimization techniques briefly
introduced in Chapter 2, Application Development, are described in depth. When some functions
consume alarge portion of an application’s overall MCPS, they may require optimization to satisfy the
real-time constraints or enable the customer to use alower frequency. In these cases, optimization in
assembly is sometimes needed and is the subject of this chapter.

4.1 General Optimization Methods

Before attempting to optimize the code, the developer should determine the performance bounds. This
subject is covered in Section 2.4.2. Asarule, the arithmetic operations should be divided into groups of
four instructions that can execute simultaneously. The optimization process should concentrate on filling
the execution sets efficiently with DALU operations and adjusting the AGU operations to them. The
following methods are described in this section:

Split Summation, Section 4.1.1

* Multisample, Section 4.1.2

* Loop Unralling, Section 4.1.3

» Loop Merging, Section 4.1.4
 Delayed Change of Flow, Section 4.2.1
* Pointer Calculations, Section 4.2.2
 Conditional Execution, Section 4.2.3

* Modulo Addressing, Section 4.2.4
 Looping Mechanism, Section 4.2.5

4.1.1 Split Summation

Split summation divides the processing effort among the AL Us so that each ALU performs one fourth of
the processing load. At the end of the kernel the four outputs are integrated. Split summation is the most
straight forward parallelism technique, which seeksto use the four ALU units at every time point. Each

loop iswritten so that up to four instructions are grouped together. When possible, every four sequential
instructions are grouped together into one execution set. See Example 4-1.

Example 4-1. FIR Filter

for (n=0; n<N; n++)// N = nunber of output sanples

{
for (i=0; i<T; i++)// T =filter taps
{
y[n] = L_mac (y[n], x[n-i], h[i]);
}
}

The loop seems to perform only one calculation in each iteration. It seems impossible to group, and
therefore we have to expand the calcul ations:

y[n] = x[n]h[0] + x[n-1]1h[1] + x[n-2]h[2] + ... + X[n-T+1] h[T-1]

4-1

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Code Optimization Techniques

Grouping how seems possible by cal culating each four sequential instructions together. The loop is
implemented as follows:

for (n=0; n<N; n++)// N = nunber of output sanples

{
for (1=0; i<T; i+=4)// T =filter taps
{
sunl = L_mac (sunml, x[n-i], h[i]);
sun = L_mac (sun®2, x[n-i-1], h[i+1]);
sunB = L_mac (sunB, x[n-i-2], h[i+2]);
sumd = L_mac (sum4, x[n-i-3], h[i+3]);
}
suml = L_add (suml, sun®);
sum3 = L_add (sunmB, sumi);
y[n] = L_add (sunl, sunB);
}

In thisimplementation, each iteration of the inner 1oop is one execution set long on the SC140 core.

sunt, sun?, sunB and sum4 can be calculated simultaneously, as shown in the assembly code:
doensh0 #(T/ 4)
nove. 4f (r0)+, dO: d1: d2: d3nove. 4f (r1)+,d4:d5:d6:d7; load x[n..n-3], h[O..3]

| oopstartl for (i=0; i<T; i+=4)

[mac dO, d4, d8 nac di, d5, d9 cal cul ate suml, sunR
mac d2, d6, d10mac d3, d7, d11 cal cul ate sunB, sund
nove. 4f (r0)+, dO: d1: d2: d3nove. 4f (r1l)+, d4:d5:d6:d7; load x[n-i-4..n-i-7]

| oad h[i+4..i+7]

]
| oopendl

add d8, d9, d9add d10, d11, d11

adr d9, d11 ; y[n] is in dll
Note that this implementation has a memory aignment problem. Since nove. 4f isused, itisnot
possibleto fetch x[n] . . x[n- 3] for calculating y[n], and then fetch x[n+1] . . x[n- 2] for calculating
y[n+1] . Therefore, the inner loop should be duplicated four times, and the number of memory transfers
must grow.

This method is also used for finding the minimum/maximum. Four local maxima are found in each
execution set, and the global maximum is found outside the loop. Therefore, theloop executes N/4 times,
where N is the number of elements, as shown in Example 4-2.

Example 4-2. Loop Execution

nove. | #$8000, d4 d4 = -1

[tfr d4,d5
tfr d4,détfr d4,d7
doensh0 #(N 4)

nove. 4f (r0)+, dO: d1: d2: d3

| oopstartO
[max dO, d4max di, d5
max d2, démax d3, d7
nove. 4f (r0)+, dO: d1: d2: d3
]
| oopend0
tfr dé,dotfr d7,d1l
max dO, d4max d1, d5
tfr db5,do
max do, d4

initialize d5 to (-1)
initialize d6,d7 to (-1)
initialize |oop

|l oad four elenments to
conpar e

find 2 local nmaxim

find 2 local nmaxim
| oad next 4 el enents

find 2 local nmaxim

gl obal maximumis in d4

For More Information On This Product,
Go to: www.freescale.com

A Freescale Semiconductor, Inc.
Code Optimization Techniques

The split summation technique, as uncomplicated and straightforward as it seems, presents us with a
problem: it can generate a bit exactness violation as the original summation order is changed. See
Example 4-3.

Example 4-3. Bit Exactness Violation

-0.5+0.3- 0.6 =-0.8

Is different from

-0.5 - 0.6 + 0.3 = -0.7 (because -0.5 - 0.6 is already saturated to -1, assuming
saturation node is activated)

Thisissue isaproblem when bit exactnessis required and saturation is reached (because of a
combination of the algorithm and the data). When bit exactnessis required, for example in a specific
code/standard, we expect the results from the handwritten code to be similar to the reference C code
results. The split summation technique guarantees correct (bit exact) results as long as saturation is not
reached. The results may be correct in some cases where saturation is reached, for exampleif all the
added val ues have the same sign. This problem is avoided by using the multisampl e technique.

4.1.2 Multisample

Asopposed to split summation, the multisample technique works on four output samples at atime, as
shownin Figure 4-1. Each ALU is dedicated to one sample. By processing four output samples
simultaneously, the summation order remains as in the original, and the number of instruction setsis
minimized. Moreover, the alignment problem is resolved since a single coefficient is fetched once but
used four times. Therefore it is unnecessary to use the nove. 4f instruction, and the overall number of
memory accessesis significantly reduced, resulting in reduced power consumption. This techniqueis
highly efficient when the number of calculated output samplesislarge and isamultiple of four. See

Example 4-4.

X ———» —» yin]
x[n+1] ————M Multisample —> yn+1]
x[n+2] —————P Kernel ——> y[n+2]
x[n+3] ————— P —» y[n+3]

Figure 4-1. Multisampling

Example 4-4. Expanding the Calculations for Correlation or Convolution (FIR filter)

y[n] = x[n]h[0] + x[n-11h[1] + x[n-2]1h[2] + ... + Xx[n-T+1] h[T-1]
y[n+1l] = x[n+1]h[0]+ Xx[n]h[1] + x[n-1]1h[2] + ... + X[n-T+2]h[T-1]
y[n+2] = x[n+2]h[0] + x[n+1]h[1] + x[n]h[2] + ... + X[n-T+3]h[T-1]
y[n+2] = x[n+3]h[0] + x[n+2] h[1] + x[n+1]h[2] + ... + x[n-T+4]h[T-1]

4-3
For More Information On This Product,
Go to: www.freescale.com

[]

]

4-4

Freescale Semiconductor, Inc.
Code Optimization Techniques

Each column can be calculated simultaneously, as shown here:
for (n=0; n<N;, n+=4)

{
for (i=0; i<T; i++)
{
y[n] = L_mac (y[n], x[n-i], h[i]);
y[n+l] = L_mac (y[n+1], x[n+1-i], h[i]);
y[n+2] = L_mac (y[n+2], x[n+2-i], h[i]);
y[n+3] = L_mac (y[n+3], x[n+3-i], h[i]);
}
}

Note: The operands are reused within the kernel, therefore only two operands are fetched at each
iteration (x[n+4-i], h[i+1]).

Theinner loop is duplicated four times to avoid register transfers. The assembly kernel executes N/4
times, as follows:

| oopstartO
doset upl COR _Sdoenl #(T/4)
[clr d4 clr d5
clr d6 clr d7
nove. 4f (r0)+, d0: d1: d2: d3 nove.f (rl)+,d8 ; load 4 X, one h.

]

COR_S
| oopstartl
[mac dO, d8, d4nac d1i, d8, d5 ; calculate y[n], y[n+1]
mac d2, d8, dénac d3, d8, d7 ; calculate y[n+2], y[n+3]
nove.f (r1)+,d8nmove.f (r0)+,d0 ; |oad next h, |oad next X
]
[mac dil,d8,d4 nmac d2,d8,d5 ; calculate y[n], y[n+1]
mac d3,d8,d6 nac dO,d8,d7 ; calculate y[n+2], y[n+3]
nove.f (rl1)+,d8 nmove.f (r0)+,dl ; |oad next h, |oad next X
]
[mac d2,d8,d4 nmac d3,d8,d5 ; calculate y[n], y[n+1]
mac dO, d8,d6 nmac dil1,d8,d7 ; calculate y[n+2], y[n+3]
nove.f (rl)+,d8 nmove.f (r0)+,d2 ; |oad next h, |oad next X
]
[mac d3,d8,d4 nac d0,d8,d5 ; calculate y[n], y[n+1]
mac dil, d8,d6 nac d2,d8,d7 ; calculate y[n+2], y[n+3]
nove.f (rl1)+,d8 move.f (r0)+,d3 ; load next h, |oad next X
]
| oopendl
[rnd d4,d4 rnd d5, d5 ; d4=>y[n], d5=>y[n+1]
rnd dé,d6 rnd d7, d7 ; d6=>y[n+2], d7=>y[n+3]
suba n0,r0 nove.w #l NPUT2,r1; n0=2T, go back T sanples
]
noves. 4f d4:d5:d6:d7,(r7)+ ; save y[n],y[n+1]
y[n+2],y[n+3]
| oopend0

For More Information On This Product,
Go to: www.freescale.com

A Freescale Semiconductor, Inc.
Code Optimization Techniques

The main differences between the split summation and the multisample implementations of the FIR filter
are summarized in Table 4-1.

Table 4-1. Split Summation Versus Multisample

Characteristic Split Summation Multisample
Performance (cycle count) High High
Number of memory 4x(NxT/2) (NxT/2)
transfers

Note: nove. 4f counts
as four memory transfers.

Bit exactness No Yes

Alignment problems Yes No: Only one operand fetched in each
memory access

Processing method Parallel processing of a single sample | Pipeline processing of 4 samples at a time

4.1.3 Loop Unrolling

In loop unrolling, the last operations from a previous iteration are performed in parallel with operations
from the current iteration and in parallel with the first operations from the next iteration. The number of
execution sets inside the loop is reduced by starting and ending the cal culations outside the loop. See
Example 4-5. The dependencies between iterations are reduced and the ability to achieve parallelismis
increased. It is efficient also for single-AL U processors and can be viewed as software pipelining.

Example 4-5. Loop Unrolling C Pseudo Code

for (i=0; i<40; i++)

{
tnp = L_sub (a[i], const);// tnp=a[i]-const
tnpl = L_mult (x[i], tnp);// tnpl=(al[i]-const)*x[i])
y = L_mac (y, tnpl, tnpl);// y +=((afi]- const)*x[i]))"2
const = L_mult (0.5, const);
}

Bit exact assembly code:

doset up0 _startdoenO #40

nop

_start

| oopstartO
nove.f (r0)+,dOnove.f (rl)+,dl; load x[i], a[i]
sub d2, d1, d3 ; sub const, a[i], tnp
npy doO, d3, d4 ;ompy x[i], tnp, tnpl
mac d4, d4, d5 ; mac tnpl, tnpl, y
npy dé, d2, d2 ; mpy hal f, const, const

; d6 = half = 0.5
| oopend0

The loop length isfive execution sets. If we begin the calculations outside the loop it can be changed to:

nove. f (r1)+,dldoenshO0 #39 ; load a[0]
[sub d2, d1, d3nmpy d6, d2, d2 ; sub const, a[0], tnp
; npy hal f, const, const
nove.f (r0)+,dOnove.f (rl)+,dl; load x[0], a[1l]

[sub d2, d1, d3nmpy doO, d3, d4 ; sub const, a[1], tnp

; mpy x[0], tnp, tnpl
npy dé, d2, d2 ; mpy hal f, const, const
nmove. f (r0)+,dOnmove.f (rl)+,dl; load x[1], a[2]

4-5
For More Information On This Product,
Go to: www.freescale.com

A Freescale Semiconductor, Inc.
Code Optimization Techniques

| oopstartO ; for (i=0; i<38; i++)
[sub d2, d1, d3nmpy doO, d3, d4 ; sub const, a[i+2], tnp
; npy x[i+1], tnp, tnpl
mac d4, d4, d5npy d6, d2, d2 ; mac tnpl, tnpl, y
; nmpy hal f, const, const
nove.f (r0)+,dOnmove.f (rl)+,dl; load a[i +3] | oad x[i +2]
]
| oopend0O
npy do, d3, d4npy d6, d2, d2 ; npy x[39], tnp, tnpl
; mac tnpl, tnpl, y
npy dé, d2, d2 ; mac tnpl, tnpl, y

Each iteration uses the results of the previous iteration and |oads the operands for the next one. The loop
length is now one execution set, and it executes only 38 times.

4.1.4 Loop Merging

Two different loops can be merged into a single loop as shown in Example 4-6 if all the following
conditions exist:

» Theloop counts are nearly equal.
» Theloops are performing mutually exclusive operations.
» The ALUsare not fully loaded for either loop.

Example 4-6. Loop Mergining

for (i=0; i<40; i++)

{
s = L _mac (s, x[i], x[i]) /] calculate x energy
}
for (i=0; i<40; i++)
{
s = L_mac (s, x[i], h[i]) /1 calculate correlation
}

Assenbl y code
doensh0 #40

nove.f (r0)+,dOnove.f (rl)+,d2; load x[0], | oad h[0]
| oopstartO ; for (i=0; i<40; i++)
[mac dO, dO, dlnac doO, d2, d3 ;o mac x[i],x[i],s

; mac x[i],h[i],sl
s=ener gy, sl=correl ation

nove.f (r0)+,dOnmove.f (rl)+,d2; load x[i+1], | oad h[i +1]
]
| oopendO

In thereis no bit exactness violation, the Split Summation method can be used. Thisincreasesthe DALU
paralelism from 2 to 4 and reduces the loop count by half.

The assembly code:

doensh0 #20
nove. 2f (r0)+, dO: dlnove. 2f (r1)+,d4:d5; |oad x[O0..1]

; load h[O0..1]
| oopstartO ; for (i=0; i<40; i+=2)

[mac dO, dO, d2nmac d1i, d1, d3 ;o mac x[i],x[i],d2
; mac x[i+1], x[i +1], d3
; d2,d3=energy partial sum
mac dO, d4, dénac di, d5, d7 ; mac x[i],h[i], d6
; mac x[i+1], h[i+1],d7
d6, d7=correl ati on
partial sums

4-6

For More Information On This Product,
Go to: www.freescale.com

A Freescale Semiconductor, Inc.
Code Optimization Techniques

nove. 2f (r0)+, dO: dlnove. 2f (r1)+,d4:d5; load x[i+2..i+3],
| oad h[i+2..i+3]

]
| oopend0

415 Precalculations

Whenever possible, calculations should be performed outside of the loop. The loop should contain only
the unavoidable calculations, as shown in Example 4-7.

Example 4-7. Precalculations

for (i=0; i<10; i++)

{
...calculate b[i]i=0..9
s =L mlt (b[i], const);
s = L_shl (s, 2);
}
"const" can be shifted left before the loop (as long as it does not saturate). The code
becones:

const = L_shl (const, 2);
for (i=0; i<10; i++)

{
. ..calculate b[i]i=0..9

s =L _mlt (b[i], const);

4.2 Optimization Methods

Apart from the general optimization methods, some instructions in the SC140 instruction set enable the
programmer to optimize code.

4.2.1 Delayed Change of Flow

To use execution time effectively, most change-of-flow instructions have a delayed version that enables
the execution of one execution set while the pipelineisfilling up. The delayed instruction executes one or
fewer cyclesthan its non-delayed version. The delayed instructions are summarized in Table 4-2.

Table 4-2. Delayed Instructions

Instruction Description
jmpd Delayed jump
brad Delayed branch
jsrd Delayed jump to subroutine
bsrd Delayed branch to subroutine
contd Delayed continue to the loop next iteration
rtsd Delayed return from subroutine
rtstkd Delayed return from subroutine, restoring PC from the stack
rted Delayed return from exception

4-7
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Code Optimization Techniques

Example 4-8. Conditional Delayed Instructions

The following flow:

nove.f (r0),d2 prepare inputs to
subroutinel (1 cycle)
prepare inputs to
subroutinel (2 cycles)
junmp to subroutinel (3

cycl es)

nove. f (r0+n0), dO

j sr subroutinel

which takes six cyclesto execute, can be replaced by:

nove.f (r0),d2 (1 cycle)
jsrd subroutinel (3 cycles)
nove. f (r0+n0), dO (2 cycles)

The last instruction executes before jumping to the subroutine during the three cycles of thej sr
instruction with an execution time of 1 + 3 = 4 cycles, instead of six. In addition, all the change of flow
instructions can be grouped with other instructions, saving more cycles.

4.2.2 Pointer Calculations

4-8

A comprehensive set of AGU instructions makes pointer calculations very easy to perform and eliminates
the need for dummy memory access. Taking advantage of these capabilities, as shown in Example 4-9,
contributes to lower power consumption.

Example 4-9. Pointer Calculations

adda #2,r0,r1
adda r0, n2
asra r3

asl 2a n0

addl 1a r4, n2

addl 2a r4,r5

cnpeqa r6,r7
deca r0
decgea r0

suba #2,r0
sxta.w rO
zxta.w ro0
tfr rO,rl
tstega.w r4

ril=r0+2

n2=r 0+n2

shift right r3 by 1 bit
shift left n0O by 2 bits
add r4 shifted left by 1

bit to n2

add r4 shifted left by 2
bits to r5

conpare 2 AGU registers
ro=ro-1

decrenent and test rO if
greater than or equals O
ro=ro0-2

sign extend word in rO
zero extend word in rO
ri=ro

test equality of the LSP
of r4 to O.

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Code Optimization Techniques

4.2.3 Conditional Execution

There are many optionsfor conditional execution. You can condition the entire execution set, a portion of
it, or asingle instruction, as shown in Table 4-3. The conditional instructions are controlled by the T
(true) bit in the status register (SR) as shown in Table 4-4. The delayed version conditional instructions
are shown in Table 4-5. This variety of conditiona instructions enables you to reduce the usage of
conditional jumps, as shown in Example 4-10.

Table 4-3. Conditional Instructions

Instruction

Description

ift

Execute if true

iff

Execute if false

ifa

Always execute

Table 4-4. Instructions Controlled by the T Bit

Instruction

Description

tfrt/tfrf

DALU registers transfer if true/false

novet / novef

AGU registers transfer if true/false

jtr/jf

Jump if true/false

bt / bf

Branch if true/false

Table 4-5. Delayed Version of Conditional Instructions

Instruction

Description

bt d/ bf d

Delayed branch if true/false

jtd/jfd

Delayed jump if true/false

Example 4-10. GSM 06.6 (ETS 300 726) build_code Subroutine

if (]
{

> 0)

cod[i]

_sign[k]

el se

cod[i]

_sign[k]

add (cod[i], 4096);
= 8192;

= sub (cod[i], 4096);
= -8192;

i ndex = add (index, 8);

}

Assuming dO isinitialized as 4096, and d5 isinitialized as -8192 (because the number of constantsin an
execution set is limited), the code can be optimized to only one execution set:

[ift

add doO, d1, dlasl

iff

do, d4 dl=cod[i], d4=_sign[Kk]

sub do, d1,ditfr d5,d4

adda #8,r3,r3

r 3=i ndex

4-9

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Code Optimization Techniques

4.2.4 Modulo Addressing

Modulo addressing is very easy to do in the SC140 core. The cyclic buffer is set by initializing the base
address register (Bn), the buffer size register (Mh), and the modifier control register (nct |). Note that the
cyclic buffer start address can be any aligned memory address, where the alignment is determined by the
memory transfers to/from the buffer. For example, if we read from the buffer using move. 4f (which
reads four fractional 16-bit words), then the buffer start address should be divisible by eight, as shown in
Example 4-11.

Example 4-11. Modulo Addressing

nove. w #10, nOtfra r0,r8 ; buffer size=10
; r8=b0O=base for r0
move. | #$0008, nct | ; r0 - nodul o addressing
;o with nD

4.2.5 Looping Mechanism

4-10

The SC140 core has a zero-overhead looping mechanism. In Example 4-12, loop no. #0 isinitialized
with start label _st art , and executes N times.

Example 4-12. Loop Initidization

doset up0 _startdoenO #N
[exec-set. ...

]

_start
| oopstartO

Ioopendd
Cycles can easily be reduced by performing the following steps:

1. Groupingthe doset up, doen instructionsin the same execution set, together with DALU
instructions.

2. Separatingthedoset up, doen instructionsinto different execution sets (with doset up proceeding),
and grouping them with other AGU/DALU instructions.

3. Inserting execution sets between thedoen andthel oopst ar t , which eliminatesthe overhead needed
between the loop initiaization and the loop execution.
For along loop, there isaminimum distance between the doen and the last execution set of the loop:
doen Dn: 4 sets (initialization by a data register)
doen Rn or #x: 3 sets (initialization by an address register or by an immediate value)
For a short loop, there is a minimum distance between the doensh to the active L C and the first
execution set of the loop:
doensh Dn: 2 sets (initialization by a data register)
doensh Rn or #x: 1 set (initialization by an address register or by an immediate val ue)

4. Organizing the program so that theloop startsin an aligned address. If necessary, dummy instructions
can be inserted in vacant placesin the previous execution sets to advance the program counter to the
correct address without adding more cycles. Also, using the directive Fal i gn before the loop directs
the assembler to start the loop in an aligned address.

5. Innested loops, write the doset up of the inner loop outside of the outer loop. This can help save
cyclesinside the loop. Remember that the loop with the lower serial number is always the outer loop.

6. Short loops (one or two execution sets long) do not need the doset up initialization, only doensh,
which replaces the doen.

For More Information On This Product,
Go to: www.freescale.com

A Freescale Semiconductor, Inc.
Code Optimization Techniques

4.2.6 Special Optimization Instructions

The SC140 has a large variety of instructions including many special instructions for special cases. They
can reduce both the cycle count and the program memory demand. See Example 4-13.

Example 4-13. Instruction Substitution

Bef ore After
add d2, d3, d3 adr d2, d3
rnd d3,d3
asl di,d1 subl doO, d1
sub do, d1, d1
deca r0 deceqga r0
tstega rO0
asrr #3,d0 extract #5, #3,d0, d1
and #$1f, dO, dO
asl | #11,d0
sxt.w doO, dl1
asrr #11,d1
crmpgt do, d4 max do, d4
tfrf doO,d4
asl2a r4 addl 2a r4,r5
adda r4,r5

4.2.7 Semaphores

The bit mask test and set instruction (bnt set) provides hardware support for semaphoring. The masking
uses a 16-bit immediate value. These instructions perform several steps:

1. Test the destination and set the T-bit, if every bit that is1 in the mask isalso 1 in the destination.
2. Set every bit in the destination register/memory address that is 1 in the mask.
3. Set the T-hit, if the set failed.

Oneinstruction saves several testing and setting instructions. See Example 4-14. The semaphore
instructions are listed in Table 4-6.

Example 4-14. Waiting for a Resource Controlled By a Semaphore

_l abel

bnt set #$0001, (r0)

jt _label

The memory destination to which r 0 pointsis read and the enabled bit is tested. Then the enabled bit is
set, and the memory destination is written back.

The T-bit is set either if the enabled bit is originally 1 (semaphore occupied), or if the write-back failed
(when the destination is a register, the write is always successful). The program jumpsto _| abel , and
continues to check the bit until the resource is free. Failure in the write-back is specific to the systemin
which the SC140 coreisintegrated. In the 68000 protocol it occurs as a bus error. In the 60x-bus protocol,
it occurs when the snooper detects an access to the same address between the BMTSET read and write.

4-11

For More Information On This Product,
Go to: www.freescale.com

A Freescale Semiconductor, Inc.
Code Optimization Techniques

Table 4-6. Semaphore-related Instructions

Instruction Description
bnset / bntl r Bit mask set/clear. Sets or clears every bit in the destination register/memory that is 1 in the
mask
bnchg Bit mask change. Inverts every bit in the destination register/memory that is 1 in the mask
bnt st c Bit mask test if clear. Sets the T-bit, if every bit that is 1 in the mask is 0 in the destination

memory/register

bntsts Bit mask test if set. Sets the T-bit, if every bit that is 1 in the mask is 1 in the destination
memory/register

4.2.8 DALU or AGU Instructions (Case Dependent)

It is usually obvious whether to use DALU or AGU instructions. DALU instructions are used for
arithmetic calculations, and AGU instructions are mainly for pointer calculations, memory accesses, and
control operations. However, dueto the large variety of AGU instructions, the AGU dlotsin the execution
sets can be used for operations other than memory access. For example, when it is necessary to keep a
loop counter different than LC, useaDALU or an AGU register. Aninstruction such ascl r do can be
written asnove. | #0, dO.

4.2.9 Instruction Timing

Although most instructions require one execution cycle, the number of cyclesrequired for an execution
set is determined by the longest instruction in the set. Therefore, group two cycle instructions together
instead of separating them, as shown as Example 4-15.

Example 4-15. Instruction Timing

nove.f (r0+n0),dOtfra r2,r3 ; 2 cycles
nove. f (r4+4),d1 ; 2 cycles

A one cyclereduction is obtained as follows:

nove. f (r0+n0), dOnmove.f (r4+4),d1 ; 2 cycles
tfrar2,r3 ; 1 cycles

If possible, find a sequence of one-cycle instructions that performs the required task. For example, it is
better to use post-update than pre-update.

nove. f (r0)+n0, d2 ; update r0 in the
previ ous nove.

nove. f (r0)-n0, d0 ; update r0 in this nove.

Each of these instructions requires one cycle.

4-12

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.
Code Optimization Techniques

4.2.10 Avoiding Memory Contentions

The SC140 memory spaceis divided into 32-KB groups, each divided into eight 4-KB modules. The
modules are divided into 32-byte lines, as shown in Figure 4-2.

GROUP 0

A

v

Module 1 Module 2 Module 8

256
0|1 30| 31 32|33 62| 63 224 254

Figure 4-2. Memory Module Organziation

Memory contentions between program memory and data memory occur when the program bus and the
data bus attempt to access the memory within the same group. To avoid memory contentions, keep the
data and program memory in different groups. For example, use the addresses 0x0000—-0x7FFF (group0)
for data storage and addresses 0x8000—0xFFFF for program memory. A memory contention aso occurs
if the DMAcontroller and data bus attempt to access the memory within the same group. To avoid this
type of contention, try not to use the DMA controller.

Data memory contentions are caused when the two AGU instructions in the execution set attempt to
access two different lines in the same memory module. This causes the execution set to take one more
cycle. To avoid data memory contentions:

1. Write each memory access in a separate execution set.

2. If thisisnot possible, analyze the code to find what combination of memory transfers may cause a
contention, and then separate them.

3. If possible, change the start addresses to avoid contention.

The analysis and contention checks can be done using the simulator, through the di spl ay on stal |
option.

4.3 Double Precision Arithmetic Support

The set of DALU operations shown in Table 4-7 facilitates fractional/integer multi-precision
multiplications.

Table 4-7. Double Precision Arithmetic Instructions

Instruction Description

nmacsu/ mpysu Fractional mac or mpy of signed by unsigned operands

nmacus/ mpyus Fractional mac or mpy of unsigned by signed operands

nmacuu/ mpyuu Fractional mac or mpy of unsigned by unsigned operands

i macsu/ i npysu Integer mac or mpy of signed by unsigned operands

i mpyuu Integer mpy of unsigned by unsigned operands

dmacss Fractional multiplication of signed by signed operands and 16-bit arithmetic right shift of
the accumulator before accumulation

dmacsu Fractional multiplication of signed by unsigned operands and 16-bit arithmetic right shift
of the accumulator before accumulation

4-13

For More Information On This Product,
Go to: www.freescale.com

4-14

Freescale Semiconductor, Inc.
Code Optimization Techniques

These instructions treat every 32-bit register as if it were composed of two 16-bit words. The higher one
(bits 16-31) is a signed word, and the lower one (bits 0—15) is an unsigned word. Therefore, they enable
multiplying any portion of the register with any other portion, and even shift right before accumulating all
inasingle cycle. A fractional double-precision multiplication can be performed using only four of those
instructions, as shown in Example 4-16.

Example 4-16. Multiplying dO and d1 (Two 32-bit Registers) by d2 (32-bit Register)

npyuu do, d1, d2
dmacsu do, d1, d2
macus do, d1, d2
dmacss do, d1, d2

Using the four ALUs enables us to perform four double-precision multiplicationsin four cycles, which
effectively resultsin one double-precision multiplication per cycle.

For a 64-bit result, two transfers must be added:
npyuu do, d1, d2

dmacsu do, d1, d2 tfr d2,d3
macus do, d1, d2
dmacss do, d1, d2 tfr d2,d4

Multiplying 16 x 32 bit registersis performed using only two instructions, as shown in Example 4-17.
Example 4-17. Multiplying d0.h (16-bit) with d1 (32-bit) into d2 (32-bit)

npysu do, d1, d2
dmacss do, d1, d2

Signed integer double-precision multiplication is shown in Example 4-18.

Example 4-18. Signed Integer Double-Precision Multiplication (dO x d1 => d3)

i mpyuu do, di, d2
i mpysu do, di, d3
i mcus do, di, d3
asl w d3, d3

add d2, d3, d3

For More Information On This Product,
Go to: www.freescale.com

A Freescale Semiconductor, Inc.
Code Optimization Techniques

The fractional double-precision multiplication diagram isin Figure 4-3.

4———— 32bhits —»

DO0.h DO.I

D1.h D1.

Unsigned x Unsigned

mpyuu D0,D1,D2

da
(tfr D2,D3) ~ > D1l x DO.I
Signed x Unsigned
+
dmacsu DO,D1,D2 > DO x DA
macus D0,D1,D2 +
< > D1.h x DO.I
(tfr D2,D4)
Signed x Signed .
dmacss DO,D1D2 <€—P» D1.h xDO.h
S Ext
D2.e D2.h D2. D4.l D3.I

4
o

64 bits

v

Figure 4-3. Fractional Double Precision Multiplication

4.3.1 Translating from C

In some cases the original code is fixed-point C code that defines the application, where the basic
operations are replaced by small C functions, each equivalent to asingle DSP instruction, including all of
its exceptions. However, those instructions and data types are not always identical to the designated
processor instructions and data types. In assembly code based on intrinsic C code, many instructions can
be eliminated due to data type changes.

4.3.1.1 Double Precision Format

The C code represents the processor registers using two data types: Wor d16 and Wor d32. To combine
two signed Wor d16s into one Wor d32, the L_Conp function must be used. To make two Wor d16s out of
one Wor d32, theL_Ext ract function must be used. Those functions are necessary in the C code,
because the intrinsic DSP operations are designed only for signed Wor d16 operands.

The SC140 core, however, has specially designed instructions, such as mpysu and dmacsu, that handle
unsigned words and enable removing the L_Ext r act and L_Conp from the code, as shown in Example
4-19.

Example 4-19. From Chebps Subroutinein GSM 06.60 (ETS 300 726)

0 =L_mc (tOo, f[1], 8192); // Wrd32 t0 is the result of "mac".
Extract (t0, &1_h, &1 _1); // L_Extract tO into 2 Wrd16:bl_h, bl_Il.
= Myy_32_16 (bl_h, bl_I, x);// bl_h and bl_| are treated as one Wrd32

// and are multiplied with Wrd16 x.
Where Mpy _32_16 standsfor:

to
to

t
L
to

L_mult (bl_h, x);
L_mac (tO,mult (bl_I, x), 1);

4-15
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Code Optimization Techniques

The StarCoreinstructions npysu, dmacss can be used instead of Mpy_32_16:

npysu d2, d3, d4nove. | #$fffe0000, d5
and d5, d4
dmacss d2, d3, d4

Thissaves usthe need for L_Ext r act .

Notee WhentheL Extract andtheL_Conp functions are eliminated, the calculations become 32-bit
precision (or double-precision). However, in many algorithms (including GSM 06.60 (ETS 300
726): “Digital cellular telecommunications system; Enhanced Full Rate (EFR) speech”) only
31-bit precision is required. Therefore the last digit of d3 should be cleared to maintain
bit-exactness.

4.3.1.2 Data Type Usage

4.4

4-16

Unnecessary cal culations can be eliminated when trandating from C to assembly by combining two
16-bit words into one 32-bit word.

Example 4-20. From Chebps Subroutine

to
to

L_mac (t0, b2_h, 0x8000);
L_msu (t0, b2_1, 1); //b2_h, b2_| are the result of L_Extract.

This becomes:
sub do, d1, d1 ; sub b2,t0,t0

Summary

To achieve high performance assembly code, start with the algorithmic improvements of the heaviest
parts of the C code, as described in Chapter 2, Application Devel opment. Next, determine the most

M CPS-intensive kernels/subroutines and implement them in assembly. The number of chosen

kernel s/subroutines depends on the expected performance; however, you should follow the rule of 80-20
(choose the 20 percent of the code that executes about 80 percent of the time). Then, compare the
subroutine M CPS consumption with its cal culated bound. If the bound has not been reached, continue the
optimization process until it isreached. If there is agap between the calcul ated bound and the real MCPS
consumption, analyze and explain it.

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.
Multisample Programming Techniques

5 Multisample Programming Techniques

The new generation DSPs use multiple AL Us to obtain higher performance on DSP algorithms. Since
most DSP programing has historically been created for use on single-ALU devices, programming
techniques for multiple ALUs are not very well known. This chapter takes an in-depth look at
programming techniques for obtaining high performance on the StarCore SC140 multiple-ALU DSP
family of products.

To obtain high performance, a pipelining technique called “ multisampl€” programming is used to process
multiple samples simultaneoudly. To accomplish this, operands (both coefficients and variables) are
reused within the kernel. Although a coefficient or operand is loaded once from memory, multiple ALUs
may use the value, or alater step of the kernel may use the value. The structure of single sample and
multisample algorithms is shown in Figure 5-1.

Single x(n) ——» Multiple ——>» Y(N)
X(n), x(ne1) ——¥ SATPIE > y(m), y(n+1) Sample
Kernel X(+1) ——> kernel > Y(0*1)
A. Single Sample Algorithm B. Multiple Sample Algorithm

Figure 5-1. Single Sample and Multisample Kernels

In asingle sample algorithm, the algorithm processes the samples serially. The kernel processes asingle
input sample and generates a single output sample. For an algorithm such as an FIR, samples are input to
the FIR kernel one at atime. The FIR kernel generates a single output for each input sample. Blocks of
samples are processed using loops and executing the FIR kernel several times.

In contrast, the multisample algorithm takes multiple sasmples at the input, in parallel, and generates
multiple samples at the output simultaneously. The multisample a gorithm operates on datain small
blocks. Operands and coefficients are held in registers and applied to both samples simultaneously,
resulting in fewer memory accesses. Multisample algorithms are ideal for block processing algorithms
where data is buffered and processed in groups (such as speech coders). Although the algorithm on the
right shows two samples being processed simultaneously, the number of simultaneous samples depends
on the processor architecture and type of agorithm.

Most DSP a gorithms have a multiply-accumulate (MAC) at their core. On aload/store machine, the
register file is the source/destination of operands to/from memory.

For the ALU, the register file is the source/destination of operands. On a single sample, single ALU
algorithm, the memory bandwidth is typically equal to the operand bandwidth, asin Figure 5-2.

I'N .
ALU [~ Operand” | Register [~ Memo_gl Memory

'Y
Bandwidth | File Bandwidth |

Figure 5-2. Single ALU Operand and Memory Bandwidth

5-1
For More Information On This Product,
Go to: www.freescale.com

O
]

Freescale Semiconductor, Inc.
Multisample Programming Techniques

When the number of ALUs increases to four, the bandwidth increases, as shown Figure 5-3.

= 7 re— — 1
Operand ; Memory
| Bandwidth| | Redister | | gandwidin |
< > File < >
ALU Pl In | .| Memory
| | | |
< > l >
ALU [y | [-] Memory
| | | |
< ' < '
ALU []] I | ["] Memory
| | | |
< ' ‘| 1)
ALU | | | ™l Memory
- ' '
——— 2 ——— o

Figure 5-3. Quad ALU Operand and Memory Bandwidth

Quadrupling the number of ALUs quadruples the operand bandwidth. If there is one address generator
per operand, this results in eight address generators. This is undesirable because it requires an 8-port
memory and a significant amount of address generation hardware. The SC140 DSP solves this problem
by providing up to a quad operand load/store over a single bus. With two quad operand |oads, eight
operands can be loaded using two address generators. Although quad operand loading provides the
proper memory bandwidth, some algorithms have special memory alignment requirements. These
alignment requirements make it difficult to use multiple operand |oad/stores.

Multisample algorithms are a solution to implement algorithms with memory alignment requirements.
Reusing previously loaded values reduces the number of operands loaded from memory, which relaxes
the alignment constraints. Both techniques are shown in Figure 5-4.

r n
Memory
Register | |Bandwidth|

B a‘r)fjra'réi(tjh e B a‘r)fjra'réi(tj
wi . i Wi
ALU | Iy Register | Bandwidth| Pl f}‘

<&
Dl

Quad Operand

File | | Data Buses ALU File |
< ! | | |
t“——»>
ALU

|

|

| Memory I |
hl I

|

|

|

ALU

A A

Memory

ALU

ALU

A A

Operand Reuse

| N < —p hll
] L

|

|

|

|

I

ALU

|

|

|

|

| ALU | » |
L lI__JI L

1
|
|
|
T
|
|
|
|
a

L

Figure 5-4. Increasing Operand Bandwidth Using Wider Data Buses or Reusing Operands

To introduce the multisample technique in this chapter, the following DSP kernel examples are presented
in multisample form:

» Direct form FIR filter
» Direct form IR filter
» Corréelation
 Biquad filter

For More Information On This Product,
Go to: www.freescale.com

O
]

Freescale Semiconductor, Inc.
Multisample Programming Techniques

5.1 Presenting the Problem

When a DSP algorithm such as an FIR filter isimplemented, trade-offs are made between the number of
samples processed and the number of ALUs. Asthe kernel computes more samples simultaneously, the
number of memory loads decreases because data and coefficient values are reused. However, to enable
thisreuse, moreintermediate results are required, which typically requires more registersin the processor
architecture. If the operand memory requires wait states, this technique improves the speed of the
algorithm. If the operand memory is at full speed, then the algorithm does not execute any faster, but may
reduce power consumption as aresult of areduction in the number of memory accesses.

Using more ALUs, it is theoretically possible to compute an algorithm more quickly. To apply multiple
ALUs, some degree of parallelism is required in the algorithm to partition the computations. Although
computing a single sample with multiple ALUs is theoretically possible, limitationsin the DSP hardware
may not allow this style of algorithm to be implemented. In particular, most processors typically require
operands to be aligned in memory and multiple operand load/stores to also be aligned.

For example, a double operand load requires an even address and a quad operand |oad requires a double
even address. These types of restrictions are typical to reduce the complexity of the address generation
hardware (particularly for modulo addressing).

Restricting the boundaries of the load makes implementing some a gorithms very difficult or even
impossible. Thisis easiest to explain by way of an example. Consider a series of (aligned) quad operand
loads from memory, as shown in Figure 5-5. The loads depicted here do not have a problem with
alignment because they occur from double even addresses.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Load Load Load Load

Figure 5-5. Quad Coefficient Loading from Memory

Alignment problems typically occur with algorithms implementing delay linesin memory. These
algorithms delete the ol dest delay and replace it with the newest sample. Thisistypically done using
modulo addressing and “backing up” the pointer after the sample is processed. This leads to an
addressing alignment problem, as shown in Figure 5-6.

First
Iteration

Pointer Load Load Load Load

Second
Iteration

Load Load Load Load Pointer

Figure 5-6. Misalignment When Loading Quad Operands

5-3

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.
Multisample Programming Techniques

On thefirst iteration of the kernel, quad data values are loaded, starting from a double even address. This
does not create an alignment problem. However, at the end of the first iteration, the pointer is backed up

one, to delete the oldest sample. On the next iteration, the pointer is not at a double even address and the
guad dataload is not aligned.

A solution to the alignment problem is to reduce the number of operands moved on each data bus. This
eases the alignment issue. However, to maintain the same operand bandwidth, each loaded operand must
be used multiple times.

Thisisa situation in which multisample processing is useful. As the number of samples per iteration
increases, more operands are reused and the number of moves per sampleis reduced. With fewer moves
per sample, the number of memory loadsis decreased, allowing fewer operands per bus and the datato be
loaded with fewer restrictions on alignment.

5.1.1 Computing Memory Bandwidth and Computation Time

Determining memory bandwidth and computation time (instructions) is not obvious because kernels may
compute multiple samples simultaneously. The number of instructions per sasmple (ins/sample) is
computed, as shown below:

Instructions _ InstructionslnABasicK ernel x LoopPasseslnAnlteration

Sample NumberOf SamplesProcessedl nAnlteration

The number of instructions per ssmpleis a direct measure of computation time. The lower this number,
the fewer instructions that the kernel requires and consequently, the faster the algorithm executes. Using
the common FIR filter implementation with asingle MAC and two parallel moves as an example, the
Instructions/Sampleis (1)* (N)/1 = N where N is the number of tapsin the filter. The number of moves
per sample (moves/sample) is computed, as shown in Equation 1.

MemoryMoves - MemoryMoveslnABasicK ernel x LoopPasseslnAnlteration
Sample NumberOfSamplesProcessedl nAnlteration

(Eg. 1)

The number of memory moves per sample is an indication of the bus bandwidth. For example, the most
common FIR filter implementation is implemented with asingle MAC and two parallel moves. Thisis
(2) x (N) / 1 =2N memory moves for each sample processed. In the context of this chapter, memory
bandwidth isthe number of moves rather than the number of bytes. The number of memory movesrelates
to the number of address generations required by the a gorithm.

5.2 Assumptions

5-4

This chapter makes the following assumptions:

» The DSP kernels are highly optimized.

» The supporting set-up code is not fully optimized and is written to be illustrative.

» The number of samples processed and the number of coefficients in the filters are selected to keep the
examples consistent. For different size filters, well-known techniques such as loop unrolling, zero
padding, specia passes and others, can be used but are not covered in this chapter.

» C programs are of two types, one for illustrative purposes (to describe in C, as clearly as possible, the
assembly code to be shown), the other is C code that demonstrates how the algorithm should be
written, if the SC140 C compiler is to be used. The process of generating such codeisiterativein
nature: start with a multisample version of the algorithm then changeit, if the result is satisfactory halt,
if not change it again, and so on.

For More Information On This Product,
Go to: www.freescale.com

[]

Freescale Semiconductor, Inc.
Multisample Programming Techniques

]

5.3 DSP Algorithms and Multisampling

The remainder of this chapter presents, in the context of multisample programming techniques, the four
common simple DSP algorithms: FIR, IR (all pole), Correlation and Biquad (general second order
filter). For each algorithm, a detailed explanation is provided for the process of devel oping the
multisample version, followed by floating-point C code that describes the algorithm. In addition StarCore
SC140 assembly code and fixed point C code versions are presented. This code presents the
implementation of the algorithm, both in assembly and in C, using the multisampl e technique. The fixed
point C code takes advantage of the use of a StarCore SC140 C compiler.

5.3.1 Direct Form FIR Filter

This section presents an implementation of the benchmark FIR algorithm. Although the direct form FIR
filter is one of the simplest DSP kernels, it requires amajority of the DSP architecture, such astwo
operands (coefficients and delayed input samples), a multiply-accumulate, pointer arithmetic, and so on.
Thisfilter requires only delayed input samples and does not have any feedback (the output is afunction
of only past input samples). A direct form FIR filter is shown in Figure 5-7.

x(n-1) X(n-2) | X(n-3) | x(n-4)

x(n) g Z-l

ozt z1t z1t

v v v v
\ /0 \ /C1 Cc2 C3 C4

» Y(n)

M-1
y(n) = z c(i) x x(n—1i)
i=0
Figure 5-7. Direct Form FIR Filter

Past input samples are multiplied by coefficients. The products are added together to form the output. The
algorithm processes 40 samples of data with an 8 tap FIR filter.

5-5

For More Information On This Product,
Go to: www.freescale.com

[]

L |

Freescale Semiconductor, Inc.
Multisample Programming Techniques

The quad sample FIR data flow is shown in Figure 5-8.

— x(n)

€ x(n+1)
€« x(n+2)
€« x(n+3)
—» y(n)

—— y(n+1)
—— y(n+2)
—— y(n+3)
« x(n+4)
 X(n+5)
€ X(n+6)
« x(n+7)
——» y(n+4)
—— y(n+5)
—— y(n+6)
——» y(n+7)

4 ALUs 4 ALUs [X X)

—>
—

Coefficients

Coefficients
Past Input Samples ¢——p|

Past Input Samples ¢——p

Figure 5-8. Quad Sample FIR Filter Data Flow

Input samples are grouped together, four at atime. Coefficients and delays are loaded and applied to all
four input values to compute four output values. By using four ALUs, the execution time of the filter is
only one quarter the execution time of asingle AL U filter.

To develop the FIR filter equations for processing four samples simultaneously, the equations for the
current sample y(n) and the next three output samplesy(n+1), y(n+2) and y(n+3) are shown in Figure
5-9.

‘(n)— x(n)((]-+\(n l)(l-+\(n 2)(2 ‘ + \(n—3)(.‘3i + x(n- 4)(4a +\(|1 ‘*)(‘%- +\(|16)(6-+\{n 7 C7

¥(nt3) = x(n+3) C 0. + x(n+2) C l. + x(nt+1) C 2.;

<«— Generic Kernel

Figure 5-9. FIR Filter Equations for Four Samples

The generic kernel has the following characteristics:

* Four parallel MACs.

 One coefficient that is loaded and used by all four MACs in the same generic kernel.

» Onedeay value that isloaded and used by the generic kernel and saved for the next three generic
kernels.

» Three delays that are reused from the previous generic kernel.

For More Information On This Product,
Go to: www.freescale.com

O
]

Freescale Semiconductor, Inc.
Multisample Programming Techniques

To develop the structure of the kernel, the filter operations are written in parallel and the loads are moved
ahead of where they were first used. This creates the generic kernel shown in Figure 5-10.

Generic Kernel load x(n+3)
load x(n+2)
load x(n+1)

y(n)=0 y(n+1) =0 y(n+2) =0 y(m+3) =0 _load CO, load x(n) _
() +=COX(n) Y0+ +=COX(HD) _y(n+2) += CO*x(m2) - Y(n+3) += COx(n+3) | oad CL load x(n-D)

y(n) += CI*x(n-1) = y(n+1) += C1*x(n)
YOy +=TZX(M2) — YL +=C2ZX(FL) — yi2+=C2*X(n)~ ~y(M3yF=T2*X(n+1)
y(n) +=C3*x(n-3) y(n+l) +=C3*x(n-2) y(n+2) +=C3*x(n-1) y(m+3) +=C3*x(n)
y(n) +=C4*x(n-4) y(n+l) +=C4*x(n-3) y(n+2) +=C4*x(n-2) y(n+3) += C4A*x(n-1)
y(n) +=C5*x(n-5) y(n+1) +=C5*x(n-4) y(n+2) +=C5*x(n-3) y(n+3) += C5*x(n-2)
y(n) +=C6*x(n-6) y(n+1l) +=C6*x(n-5) y(n+2) +=C6*x(n-4) y(n+3) += C6*x(n-3)
y(n) +=C7*x(n-7) y(n+1l) +=C7*x(n-6) y(n+2) +=C7*x(n-5) y(n+3) += C7*x(n-4)

y(n+2) += CI*x(n+I) y(n+3) += CT*x(m+2) I foad C2,Toad x(n-2) -
load C3, load x(n-3)
load C4, load x(n-4)
load C5, load x(n-5)
load C6, load x(n-6)
load C7, load x(n-7)

Figure 5-10. Generic Kernel For FIR

The generic kernel requires four MACs and two parallel loads. The example in Figure 5-11 illustrates
how the kernel isimplemented in asingle instruction.

y(n)+=C*d1 y(n+1)+=C*d2 y(n+2)+=C*d3 y(n+3)+=C*d4 Load C, Copy d3 to d4, Copy d2 to d3, Copy d1 tod2, Load d1

Figure 5-11. Single Instruction Quad ALU Generic Filter Kernel

To allow for delay reuse, the delays are copied using registers d1, d2, d3 and d4 asa delay line. This
imposes a requirement on the kernel to perform two MACs and five move operations (two loads and three
copies) in asingle instruction.

Because the SC140 DSP architecture cannot perform five moves simultaneously, a different kernel
structure is required. Assuming there are at least four coefficients in the FIR filter, the generic kernel is
replicated to create the basic kernel shown in Figure 5-12.

Basic Kernel load x(n+3)
load x(n+2)
load x(n+1)

_ym=0__ __ __ y(th=0 _ __ _ y(m2A=0 _ __ _ yn+=0 __ __ Toed CO, Toad x(n)

y(n+1) += CO*x(n+1) y(n+2) += CO*x(n+2) y(n+3) += CO*x(n+3) load C1, load x(n-1)
y(n) += C1*x(n-1) y(n+1) += C1*x(n) y(n+2) += C1*x(n+1) y(n+3) += C1*x(n+2) load C2, load x(n-2)
y(n) += C2*x(n-2) y(n+1) += C2*x(n-1) y(n+2) += C2*x(n) y(n+3) += C2*x(n+1) load C3, load x(n-3)
y(n) +=C3*x(n-3) y(n+l) +=C3*x(n-2) y(n+2) +=C3*x(n-1) y(n+3) += C3*x(n) _ll— load C4, |oad x(n-4)

V() +=TAX(FE) T Y I +=TATX(F3) T y(m2) += CATX(n-2) T y(MF3) F=TA*X(n-1) load C5, load x(n-5)
y(n) +=C5*x(n-5) y(n+1) += C5*x(n-4) y(n+2) += C5*x(n-3) y(n+3) += C5*x(n-2) load C6, load x(n-6)
y(n) += C6*x(n-6) y(n+l) += C6*x(N-5) y(n+2) += C6*x(n-4) y(n+3) += C6*x(n-3) load C7, load x(n-7)
y(n) +=C7*x(n-7) y(ntl) +=C7*x(n-6) y(n+2) +=C7*x(n-5) y(n+3) += C7*x(n-4)

y(n) += CO*x(n)

Figure 5-12. Forming a Basic Kernel by Replicating the Generic Kernel for Quad ALU FIR

For example, the lifetime of coefficient CO ends after the first generic kernel of the basic kernel. The
lifetime of the delay x(n) isfor al four of the generic kernels within the basic kernel. After four generic
kernels, al loaded values have been used and the basic kernel repeats. By folding the coefficient and
delay loads, the basic kernel iswritten as shown in Figure 5-13

y(n)+=C*dl y(mt1)+=C*d2 y(m2)+=C* d3y(m+3)+=C*d4 LoadC, Loadd4
y(n) +=C* d4 y(n+l)+=C*dl y(n+2) +=C* d2y(n+3)+=C*d3 LoadC, Load d3
y(n) +=C* d3 y(n+l) +=C* d4 y(n+2) +=C* dly(n+3)+=C*d2 LoadC, Load d2
y(n) +=C* d2 y(n+l) +=C*d3 y(n+2) +=C* d4y(n+3)+=C*dl LoadC,Loaddl

Figure 5-13. FIR Basic Kernel Without Register Copies

For More Information On This Product,
Go to: www.freescale.com

5-7

[]

]

Freescale Semiconductor, Inc.
Multisample Programming Techniques

Rather than copying the registers, the generic kernel is replicated and each copy of the generic kernel
references different operands to implement reuse. A very important aspect of this kernel isthat only two
data moves are required, yet al four ALUs maintain full operand bandwidth (8 operands). Each move is
only asingle operand.

The kernel is now four lines long, but each iteration of the kernel computes four taps for four samples.
The number of loop passes is reduced to one fourth of the filter size to compensate for the generic kernel
being duplicated four times in the basic kernel. The total speed remains the same as in the example on
Figure 5-11, except that the register copies have been removed. This structure can now be implemented
onaDSP

5.3.2 C Simulation Code for the Optimized Kernel

// Nunmber of sanpl es/kernel: 4.
#i ncl ude <stdio. h>

#def i ne Dat aBl ockSi ze 40// size of data block to process
#define FirSize 8// nunber of coefficients in FIR

doubl e Dat al n[Dat aBl ockSi ze] = {

0.01, 0.3, 0.25, -0.2, -.1, 0.1, 0.1, -0.2, -0.3, 0.15,
0.25, -0.2, 0.01, 0.3, 0.15, -0.2, -.1, 0.1, 0.1, -0.3,
0.15, -.1, -0.3, 0.25, -0.2, 0.01, 0.3, -0.2, 0.1, 0.1,
0.1, 0.01, 0.3, 0.15, -.1, -0.3, 0.25, -0.2, -0.2, 0.1
b

doubl e Coef[FirSize] = {

0.1, 0.2, -0.3, -0.2, -.15, 0.10, 0.25, -0.2

b

doubl e Del ay[FirSize + 3];

int main(int argc, char *argv[])

{

int CoefPtr, Del ayPtr;

doubl e C, d1,d2, d3, d4, suni, sun®, sunB, sum4, | nput ;

int i,j;

Coef Ptr = O; /1 init coef ptr
Del ayPtr = O; // init delay ptr

for (i =0; i < DataBlockSize; i +=4) {// do 4 sanples at a tine

Input = Dataln[i]; // 1oad input sanple
Del ay[Del ayPtr] = Input; // store in delay line
Del ayPtr = (DelayPtr - 1) % (FirSize + 3); /1 delete ol dest sanple
if (DelayPtr < 0) DelayPtr += (FirSize + 3); /1 correct if negative
Input = Dataln[i + 1]; // 1oad input sanple
Del ay[Del ayPtr] = Input; // store in delay line
Del ayPtr = (DelayPtr - 1) % (FirSize + 3); /1 delete ol dest sanple
if (DelayPtr < 0) DelayPtr += (FirSize + 3); /1 correct if negative
Input = Dataln[i + 2]; // 1oad input sanple
Del ay[Del ayPtr] = Input; // store in delay line
Del ayPtr = (DelayPtr - 1) % (FirSize + 3); /1 del ete ol dest sanple
if (DelayPtr < 0) DelayPtr += (FirSize + 3); /1 correct if negative
Input = Dataln[i + 3]; // 1oad input sanple

5-8

For More Information On This Product,
Go to: www.freescale.com

[]
L |

Freescale Semiconductor, Inc.
Multisample Programming Techniques

Del ay[Del ayPtr] = Input; // store in delay line
suml = 0.0 /1 init sumto zero
sum2 = 0.0 /1l init sumto zero
sum8 = 0.0 /1l init sumto zero
sumd = 0.0 /1l init sumto zero
C = Coef[CoefPtr]; /1 get first coef
Coef Ptr = (CoefPtr + 1) % FirSize; /1 inc and wap ptr
d4 = Del ay[Del ayPtr]; /1 get del ay
Del ayPtr = (DelayPtr + 1) % (FirSize + 3); /1 inc and wap ptr
d3 = Del ay[Del ayPtr]; /1 get del ay
Del ayPtr = (DelayPtr + 1) % (FirSize + 3); /1 inc and wap ptr
d2 = Del ay[Del ayPtr]; /1 get del ay
Del ayPtr = (DelayPtr + 1) % (FirSize + 3); /1 inc and wap ptr
dl = Del ay[Del ayPtr]; /1 get del ay
Del ayPtr = (DelayPtr + 1) % (FirSize + 3); /1 inc and wap ptr
for (j =0; j <FirSize/ 4 - 1; j++) { /1 evaluate FIR

suml += C * di; /1 do MAC

sum2 += C * d2; /1 do MAC

sumB += C * d3; /1 do MAC

sumd += C * d4; /1 do MAC

C = Coef[CoefPtr]; /1 get next coef

Coef Ptr = (CoefPtr + 1) % FirSize;// inc and wap ptr

d4 = Del ay[Del ayPtr]; /1 get next del ay
Del ayPtr = (DelayPtr + 1) % (FirSize + 3);// inc and wap ptr

suml += C * d4; /1 do NMAC
sun2 += C * dil; /1 do MAC
sunB += C * d2; /1 do MAC
sumd += C * d3; /1 do MAC
C = Coef[CoefPtr]; /1 get next coef

Coef Ptr = (CoefPtr + 1) % FirSize;// inc and wap ptr

d3 = Del ay[Del ayPtr]; /1 get next del ay
Del ayPtr = (DelayPtr + 1) % (FirSize + 3);// inc and wap ptr

suml += C * d3; /1 do NMAC
sun2 += C * d4; /1 do MAC
sunB += C * dil; /1 do MAC
sumd += C * d2; /1 do MAC
C = Coef[CoefPtr]; /1 get next coef

Coef Ptr = (CoefPtr + 1) % FirSize;// inc and wap ptr

d2 = Del ay[Del ayPtr]; /1 get next del ay
Del ayPtr = (DelayPtr + 1) % (FirSize + 3);// inc and wap ptr

suml += C * d2; /1 do MAC
sun2 += C * d3; /1 do MAC
sunB8 += C * d4; /1 do MAC
sumd += C * dil; /1 do MAC
C = Coef[CoefPtr]; /1 get next coef

For More Information On This Product,
Go to: www.freescale.com

[]

A Freescale Semiconductor, Inc.
Multisample Programming Techniques
Coef Ptr = (CoefPtr + 1) %FirSize;// inc and wap ptr
dl = Del ay[Del ayPtr]; /1 get next delay
Del ayPtr = (DelayPtr + 1) % (FirSize + 3);// inc and wap ptr
}

suml += C * di; /1 do MAC
sum2 += C * d2; /1 do MAC
sumB += C * d3; /1 do MAC
sumd += C * d4; /1 do MAC
C = Coef[CoefPtr]; /1 get next coef
Coef Ptr = (CoefPtr + 1) %FirSize; /1 inc and wap ptr
d4 = Del ay[Del ayPtr]; /1 get next del ay
Del ayPtr = (DelayPtr + 1) % (FirSize + 3); /1 inc and wap ptr
suml += C * d4; /1 do MAC
sum2 += C * di; /1 do MAC
sumB += C * d2; /1 do MAC
sumd += C * d3; /1 do MAC
C = Coef[CoefPtr]; /1 get next coef
Coef Ptr = (CoefPtr + 1) %FirSize; /1 inc and wap ptr
d3 = Del ay[Del ayPtr]; /1 get next del ay
Del ayPtr = (DelayPtr + 1) % (FirSize + 3); /1 inc and wap ptr
unl += C * d3; /1 do MAC
sum2 += C * d4; /1 do MAC
sum8 += C * di; /1 do MAC
sumd += C * d2; /1 do MAC
C = Coef[CoefPtr]; /1 get next coef
Coef Ptr = (CoefPtr + 1) %FirSize; /1 inc and wap ptr
d2 = Del ay[Del ayPtr]; /1 get next del ay
/1 the last tap is usually done out of the loop so it can be rounded
suml += C * d2; /1 do MAC
sum2 += C * d3; /1 do MAC
sumB += C * d4; /1 do MAC
sumd += C * di; /1 do MAC
printf("lndex: %l, output: %\n",i,suml);
printf("lndex: %l, output: %\n",i+1, sunR);
printf("lndex: %l, output: %\n",i+2,sunB);
printf("lndex: %l, output: %\n",i+3, sun4);

}

return(0);

}

5-10

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.
Multisample Programming Techniques

Addressing the filter coefficientsis shown in Figure 5-14.

Before

CO C1 Cc2 C3 ca C5 C6 c7

|

CoefPtr

After

CO C1 Cc2 C3 ca C5 C6 c7

|

CoefPtr

Figure 5-14. Coefficient Addressing

Addressing the delays is shown in Figure 5-15.

Before

XXX XXX XXX XXX x(n-1) | x(n-2) | x(n-3) | x(n-4) | x(n-5) | x(n-6) | x(n-7)

DelayPtr

After

x(n+3) [x(n+2) [x(n+1) [x(n) x(n-1) | x(n-2) | x(n-3) | x(n-4) | x(n-5) | x(n-6) | x(n-7)

DelayPtr

Figure 5-15. Delay Addressing

5.3.3 StarCore SC140 DSP Code to Implement the Filter

org p:0
Bl ockl n
dc 0.01,0.3,0.25,-0.2,-.1,0.1,0.1,-0. 2, -
dc 0.25,-0.2,0.01,0.3,0.15,-0.2,-.1,0.1,0.
dc 0.15,-.1,-0.3,0.25,-0.2,0.01,0.3,-0.2,0.1
dc 0.1,0.01,0.3,0.15,-.1,-0.3,0.25,-0.2,-0. 2,
Bl ockSi ze equ (*-Blockln)/2

Coef
dc 0.1,0.2,-0.3,-0.2,-.15,0.10,0.25,-0.2
FirSize equ (*-Coef)/2

Delay ds 2*(FirSize+3)

org p: $400
nove #Coef,r0
nove #Del ay+6,r1

5-11

For More Information On This Product,
Go to: www.freescale.com

[]

A Freescale Semiconductor, Inc.
Multisample Programming Techniques
nove #Bl ockln,r2
nove #2*(FirSize)-1,nD
nove #2*(FirSize+3)-1, m
move #$98, nttl ;bind rO to nD, rl to nt
doset up0 FI R_SdoenO #Bl ockSi ze/ 4
| oopstartO
FIR_S
doset upl Kernel doenl #(FirSize/4)-1;set up kernel |oop
nove. f (r2)+,d0 ;get input sanple
noves. f dO, (rl)- ;store in delay buffer
nove. f (r2)+,d0 ;get input sanple
noves. f dO, (rl)- ;store in delay buffer
nove. f (r2)+,d0 ;get input sanple
noves. f dO, (rl)- ;store in delay buffer
nove. f (r2)+,d0 ;get input sanple
noves. f doO, (r1) ;store in delay buffer
[clr do
nove.f (r1)+,d4nmove.f (r0)+,d8
]
[clr di
nmove. f (rl1)+,d5
]
[clr d2
nmove. f (rl)+, d6
]
[clr d3
nmove. f (rl)+,d7
]
| oopstartl
Ker nel
[mac d8, d7, donac d8, d6, d1
mac d8, d5, d2nac d8, d4, d3
nove.f (r0)+,d8nmove.f (rl)+,d4
]
[mac d8, d4, donac d8, d7, d1
mac d8, d6, d2nac d8, d5, d3
nove.f (r0)+,d8nmove.f (rl)+,d5
]
[mac d8, d5, donac d8, d4, d1
mac d8, d7, d2nac d8, d6, d3
nove.f (r0)+,d8nmove.f (rl)+,d6
]
[mac d8, d6, donac d8, d5, d1
mac d8, d4, d2nac d8, d7, d3
nove.f (r0)+,d8nmove.f (rl)+,d7
]
| oopendl
[mac d8, d7,d0 nac d8, d6, d1
mac d8, d5,d2 nac d8, d4, d3
nove.f (r0)+,d8 nmove.f (rl)+, d4
]
[mac d8, d4,d0 nac d8, d7,d1
mac d8, d6, d2 nac d8, d5, d3
nove.f (r0)+,d8 nmove.f (rl)+, d5
]
[mac d8, d5, d0 nac d8, d4, d1
mac d8, d7,d2 nac d8, d6, d3
nove.f (r0)+,d8nmove.f (rl), dé
]
5-12

For More Information On This Product,
Go to: www.freescale.com

o

]

Freescale Semiconductor, Inc.
Multisample Programming Techniques

[macr d8, d6, dOomacr d8, d5, d1
macr d8, d4, d2 macr d8, d7, d3

nmoves.f dO, p:$fffffe ;out put sanple

nmoves.f dil,p:$fffffe ;out put sanple

nmoves.f d2,p:$fffffe ;out put sanple

moves.f d3,p:$fffffe ;out put sanple
| oopend0

end

The performance of thisfilter is calculated as follows:

* Instruction Cycles Per Sample = (4) (N/4) / 4 = N/4.
* Memory Moves Per Sample = (8) (N/4) / 4 = N/2.

5.3.4 C Code for the SC140 C Compiler

The C compiler recognizes the use of multisample programming and produces parallel code. The C code
in this section represents a fixed-point version of the multisample FIR algorithm obtained by use of a
special library (pr ot ot ype. h) that is part of the SC140 C compiler. Thislibrary contains the definition
of appropriate data types and arithmetic operations to manipulate them, such as add, multiply, multiply
and accumulate. The data types used are:

* Wor di16. A fraction of 16-bit length.
* Wor d32. A fraction of bit length.

The arithmetic operations to manipulate the two data types are:

» L_mac. This function multiplies two operands of type Word16 to produce an intermediate result of
Word32 type and then adds it to a third operand of type Word32. The resultsis of type Word32. d =
L_mac(ab,c) and issymbolically equivalenttod=c+a* b.

» Round. Thisfunction takes one operand of type Word32 and returnsit rounded to the nearest Word16
type number.

Note: For more detailed explanation of these data types and arithmetic operations, refer to the SC100
C Compiler User’'s Manual (MNSC100CC/D).

The goal isto obtain good results for an algorithm by using its compiled C code description. You should
start with a multisample version and then iteratively (change and check) achieve satisfactory results.

// Nunmber of sanpl es/kernel: 4.
#i ncl ude <prototype. h>

#defi ne Dat aBl ockSi ze40 /1 size of data block to process
#define FirSize8 /1 nunmber of coefficients in FIR

Wor d16 Dat al n[Dat aBl ockSi ze] = {
328, 9830, 8192, -6553, -3277, 3277, 3277, -6553, -9830, 4915
8192, -6553, 328, 9830, 4915, -6553, -3277, 3277, 3277, -9830
4915, -3277, -9830, 8192, -6553, 328, 9830, -6553, 3277, 3277
3277, 328, 9830, 4915, -3277, -9830, 8192, -6553, -6553, 3277

Word16 Coef[FirSize] = {
3277, 6553, -9830, -6553, -4915, 3277, 8192, -6553

}s

5-13

For More Information On This Product,
Go to: www.freescale.com

[]

L |

5-14

Freescale Semiconductor, Inc.
Multisample Programming Techniques

Wor d16 Del ay[FirSi ze+3] ;
volatile Wrdl6 res;

#i f def NOMOD

#define I ncMd(a) (a=(a+l))

#define DecMd(a) (a=(a-1))

#el i f MODADDRESSI NG

#define IncMd(a) (a=((a+l)% FirSize+3)))

#define DecMod(a) (a=((a+FirSize+2) % FirSize+3)))

#el se

#define IncMd(a) (a=(a+l));((a)>=(FirSize+3)?(a=(a-FirSize-3)):(a))
#define DecMd(a) (a=(a-1));((a)<0?(a=(atFirSize+3)):(a))

#endi f

int main()
{
int DelayPtr;
Wor d32 sunt, sun®, sunB, suny;
Word16 di, d2, d3, d4;
int i,j;

Del ayPtr = O; /1 init delay ptr

for (i =0; i < DataBlockSize; i +=4) { // do 4 sanples at a tine

Del ay[Del ayPtr] = Dataln[i]; DecMod(Del ayPtr);
Del ay[Del ayPtr] Dat al n[i +1] ; DecMod(Del ayPtr);
Del ay[Del ayPtr] Dat al n[i +2] ; DecMod(Del ayPtr);
Del ay[Del ayPtr] = Dataln[i+3];

suml = 0; // init sumto zero
sum2 = 0; // init sumto zero
sumB = 0; // init sumto zero
sumd = 0; // init sumto zero
d4 = Del ay[Del ayPtr]; I ncMod(Del ayPtr);
d3 = Del ay[Del ayPtr]; I ncMod(Del ayPtr);
d2 = Del ay[Del ayPtr]; I ncMod(Del ayPtr);
for (j =0; j <FirSize/ 4 ; j++) { /1 evaluate FIR
dl = Del ay[Del ayPtr]; /'l get del ay
I ncMod(Del ayPtr);
sunl = L_mac (sunl, Coef[4*j], d1);
sun = L_mac (sunR, Coef[4*j], d2);
sunB = L_mac (sunB, Coef[4*j], d3);
sumd = L_mac (sund, Coef[4*j], d4);
d4 = Del ay[Del ayPtr]; /1 get del ay
I ncMod(Del ayPtr);
sunl = L_mac (sunl, Coef[4*j+1], d4);
sunR2 = L_mac (sunR, Coef[4*j+1], dl);
sunB = L_mac (sunB, Coef[4*j+1], d2);
sumd = L_mac (sund, Coef[4*j+1], d3);
d3 = Del ay[Del ayPtr]; /1 get next del ay
I ncMod(Del ayPtr);
sunl = L_mac (sunl, Coef[4*j+2], d3);
sunR = L_mac (sunR, Coef[4*j+2], d4);
sunB = L_mac (sunB, Coef[4*j+2], dl);
sumd = L_mac (sumd, Coef[4*j+2], d2);
d2 = Del ay[Del ayPtr]; /1 get next del ay

For More Information On This Product,
Go to: www.freescale.com

o

]

suml = L_mac
sun? = L_mac
sunB = L_mac
sumd = L_mac
}
res = round(suml);
res = round(sun?);
res = round(sunB);
res = round(sund);
}
return(0);
}

I nchvod(Del ayPtr);

DechMod(Del ayPtr);

5.4 Direct Form IIR Filter

This section presents several implementations of 1IR agorithmsfor various numbers of ALUs. The direct
form IR filter is distinctly different from the direct form FIR filter (in Figure 5-7) because of
feedback—the output is a function of past output values.

(
(
(
(

suml,
sung,
suns,
sumd,

Coef [4*] +3]
Coef [4*] +3]
Coef [4*] +3]
Coef [4*] +3]

A direct form IIR filter is shown in Figure 5-16.

x(n)

Freescale Semiconductor, Inc.

Multisample Programming Techniques

dz2);
d3);
d4);
di);

» Y()

y(n) = x(n) + z c(i) xy(n—i)
i=1
Figure 5-16. Direct Form IIR Filter

For More Information On This Product,
Go to: www.freescale.com

5-15

A Freescale Semiconductor, Inc.
Multisample Programming Techniques

Past output samples are multiplied by coefficients. The sum is added to the input sample to form the
output sample, which isthen stored in a delay line. The algorithm processes 40 samples of datawith an 8
tap IR filter.

The data flow for aquad ALU, quad sample algorithm is shown in Figure 5-17.

« x(n
« x(n+l)
« x(n+2)
« x(n+3)
— > y()

——> y(n+1)
——> y(n+2)
——> y(n+3)
« x(n+4)
«_ X(n+5)
«_ X(n+6)
« x(n+7)
———> y(n+4)
> y(n+5)
———> y(n+6)
> y(n+7)

4 ALUs 4 ALUs ([X X)

—
—>

Coefficients

Coefficients
Past Input Samples ¢——p|

Past Input Samples ¢——p|

Figure 5-17. Quad Sample IIR Filter Data Flow

Input samples are grouped together, four at atime. Coefficients and delays are loaded and applied to all
four input values to compute four output values. By using four ALUs, the execution time of the filter is
only one quarter of the time of asingle ALU filter.

To develop the lIR filter equations for processing four samples simultaneously, the equations for the
current sample y(n) and the next three output samplesy(n+1), y(n+2) and y(n+3) are shown in Figure
5-18.

x(n) ++ C8 y(n-8) i+ C7 y(n-7) 1+ C6 y(n-6) 1+ C5 y(n-5)1 +| C4 y(n-4) + |C3 ym-3) + C2 y(n-2) 1+1

+C2y(1)
A 1

@+1)'+ C8 y@m-7)' + C7 y(n-6)*+ C6 y(n-5)'+| C5 ym-4) +

C4y(n-3)'+ C3y(n-2)

(m+2);+ C8 y(n-6), + C7 y(n-5) ;+| C6 y(n-4), +|CS y(n-3);+ C4y(n-2);+ C3y(n-1);+ C2y(m) i+

(m+3):+ C8 y(n-5)1 + | C7 y(n-4) 1+ | C6 y(n-3)1 + C5 y(n-2) 1 + C4y(n-1),+ C3 y(n) ?:--+ 2 _"(n+l)§‘:.—'|: (

<— Generic Kernel

Figure 5-18. lIR Filter Equations for Four Samples

The generic kernel has the following characteristics:

* Four parallel MACs.

» Onedeay value that isloaded and used by all four MACs.
 One coefficient that is loaded and used.

 Three coefficients that are reused from the previous loop passes.

5-16

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Multisample Programming Techniques

To develop the structure of the kernel, the filter operations are written in parallel and the loads are moved

ahead from where they are first used. This creates the generic kernel shown in Figure 5-19.

y(m)=x(n)
y(m+=C8*y(n-8)

y(n+D)=x(n+1)

y(n)+=C7*y(n7) y(n+1)+=C8*y(n-7) y(n+2)+=X(N+2)

y(n)+= C6*y(n-6)
y(r7+— (=
y(n)+= y(w4)
y(n)+=C3*y(n-3)
y(n)+=C2*y(n-2)
y(n)+=C1*y(n-1)

y(n+1)+= C7*y(n-6)

+= C67y(N-5) _
ATz Cory (i
y(n+1)+= C4*y(n-3)

y(n+1)+= C3*y(n-2)
y(n+1)+= C2*y(n-1)

y(n+2)+= C8*y(n-6)
_ Y(2+=C7ry(ne5) _
y(n+2)+= C6*y(n-4)
y(m+2)+= C5*y(n-3)
y(m2)+= C4*y(n-2)
y(n+2)+= C3*y(n-1)

Generic
Kernel

y(n+3)+= x(n+3)

Load C8, Load y(n-8)
Load C7, Load y(n-7)
Load C6, L oad y(n-6) _
Load C5, Load y(n-5)

__Y(nF)+=CB*y(n-5) _[Load C4, Loady(1+4) ~

y(n+3)+= C7*y(n-4)
y(n+3)+= C6*y(n-3)
y(m+3)+= C5*y(n-2)
y(m+3)+= C4*y(n-1)

Load C3, Load y(n-3)
Load C2, Load y(n-2)
Load C1, Load y(n-1)

y(n+1)+= C1*y(n) y(n+2)+= C2*y(n) y(n+3)+= C3*y(n) Store y(n)
y(m2)+=Cl*y(n+1) y(n+3)+=C2*y(n+1l) Storey(n+1)
y(n+3)+= CIl*y(n+2) Storey(n+2)
Store y(n+3)

Figure 5-19. Generic Kernel for IIR

The generic kernel requires four MACs and two parallel loads. The following exampleillustrates how the
kernel isimplemented in a single instruction.

y(n)+=C1*D y(n+1)+=C2*D y(n+2)+=C3*D y(n+3)+=C4*D Load D, Copy C3 to C4,Copy C2to C3,Copy C1to C2, Load C1

To provide coefficient reuse, the coefficients are copied by using registers C1, C2, C3 and C4 asa delay
line. This imposes a requirement on the kernel to perform four MACs and five move operations (two
loads and three copies) in a single instruction. SC140 DSP architecture cannot perform five moves
simultaneously, adifferent kernel structureisrequired. Assuming thereare at least four coefficientsin the
IR filter, the generic kernel is replicated to create a basic kernel as shown in Figure 5-20.

y(n)=x(n) Load C8, Load y(n-8)

y(n)+=CB*y(n-8) y(n+L)=x(n+1) Basic Load C7, Load y(n-7)
y(m+=Cr*y(n-7) y(n+1)+=C8*y(n-7) y(n+2)+=x(n+2) Kemel LLoad C6. L oad y(n-6)
y(n)+= C6*y(n-6) y(n+1)+= C7*y(n-6) y(n+2)+=C8*y(n-6) y(n+3)+=x(n+3) Load C5, Load y(n-5)
y(n)yF= C57y(B) ~y(n+1)+= Co¥y (D) y(m+2)+= C7y(i5) — y(n+3)+=CEy(75)" Load C4, Load y(n-4)

y(n)+= C4+y(n-4)
y(n)+= C3+Y(n-3)
V()= C2ry(n-2)
Y(R)#= CTy(-I)

y(n+1)+= C5*y(n-4) y(n+2)+= C6*y(n-4)

y(n+1)+= C4*y(n-3) y(n+2)+=C5*y(n-3) y(n+3)+= C6*y(n-3)

y(n+1)+= C3*y(n-2) y(n+2)+=C4*y(n-2) y(n+3)+=C5*y(n-2) |

Y(nt+= C2*y(n-1) y(n+2)+= C3*y(n-I) — y(n+3)+= C4%y(n-I)
y(n+1)+= C1*y(n) y(n+2)+= C2*y(n) y(n+3)+= C3*y(n) Store y(n)

y(n+2)+= C1*y(n+l) y(n+3)+=C2*y(n+1l) Storey(n+1)

y(n+3)+= C1l*y(n+2) Storey(n+2)

Store y(n+3)

y(n+3)+= C7*y(n-4) Load C3, Load y(n-3)

Load C2, Load y(n-2) .
"Load C1, Load y(n-1)

Figure 5-20. Forming a Basic Kernel by Replicating the Generic Kernel

For example, the lifetime of delay y(n —5) ends after the first generic kernel of the basic kernel. The
lifetime of the coefficient C5 isfor all four generic kernels within the basic kernel. After four generic
kernels, al loaded values have been used and the basic kernel repeats.

By folding the coefficient and delay loads, the basic kernel is as shown in Figure 5-21.

y(n)+=C1*D y(n+tl)+=C2*D y(n+2)+=C3*D y(nt3)+=C4*D Load D, Load C4

y(n)+=C4*D y(n+tl)+=C1*D y(n+2)+=C2*D y(Mt3)+=C3*D Load D, Load C3

y(n)+=C3*D y(n+tl)+=C4*D y(n+2)+=Cl*D y(M3)+=C2*D Load D, Load C2

y(n)+=C2*D y(n+tl)+=C3*D y(n+2)+=C4*D y(M3)+=C1*D Load D, Load C1
Figure 5-21. IR Basic Kernel Without Register Copies

5-17

For More Information On This Product,
Go to: www.freescale.com

o

]

Freescale Semiconductor, Inc.
Multisample Programming Techniques

Rather than copying the registers, the generic kernel is replicated and each copy references different
operands to implement reuse. This technique is exactly the same as that used by FIR filters for
referencing delay valuesin memory. Rather than physically shifting all of the delay values, they are left
in the registers and referenced with a shifted pattern.

A very important aspect of thiskernel is that only two data moves are required, yet all four ALUs
maintain full operand bandwidth (8 operands). Also, each moveinvolvesonly asingle operand. The basic
kernel isnow four lines long, but each iteration of the basic kernel computes four taps for four samples.
The number of loop passes is reduced to one fourth of the filter size to compensate for duplicating the
generic kernel four times in the basic kernel. The total speed remains the same as in the example in
Figure 5-17, except that the register copies have been removed. This structure can now be implemented
onaDSP

5.4.1 C Simulation Code for the Optimized Kernel

5-18

// Nunmber of sanpl es/kernel: 4.
#i ncl ude <stdio. h>

#def i ne Dat aBl ockSi ze 40// size of data block to process
#define lirSize 8// nunber of coefficients in IIR

doubl e Dat al n[Dat aBl ockSi ze] = {

0.01, 0.3, 0.25, -0.2, -.1, 0.1, 0.1, -0.2, -0.3, 0.15,
0.25, -0.2, 0.01, 0.3, 0.15, -0.2, -.1, 0.1, 0.1, -0.3,
0.15, -.1, -0.3, 0.25, -0.2, 0.01, 0.3, -0.2, 0.1, 0.1,
0.1, 0.01, 0.3, 0.15, -.1, -0.3, 0.25, -0.2, -0.2, 0.1
b

doubl e Coef[lirSize] = {
0.4,-0.3,0.25,-.20,-.15,0.10,-.10,0.05

b

doubl e Delay[lirSize];

int DecMbd(int a,int b) {

a=(a-1) %b;

if (a<0) a+=b;

return a;

}

int main(int argc, char *argv[])

{

int CoefPtr, Del ayPtr;

doubl e C1, C2, C3, C4, D, sunl, sun®, sunB, sun#,

int i,j;

Coef Ptr = 1lirSize-1; // init coef ptr at end
Del ayPtr = lirSize-1; // init delay ptr

for (i = 0; i < DataBlockSize; i+=4) {// do all sanples

sunl = Dataln[i]; // 1oad input sanple
sunR = Datal n[i+1]; // 1oad input sanple
sunB = Datal n[i+2]; // 1oad input sanple
sumd = Datal n[i+3]; // 1oad input sanple
C4 = Coef[CoefPtr]; /1 get first coef

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.

Multisample Programming Techniques

Coef Ptr = DecMod(CoefPtr,lirSize);

D = Del ay[Del ayPtr];
Del ayPtr = DecMod(Del ayPtr,lirSize);

sunl += C4 * D

C3 = Coef[CoefPtr];
Coef Ptr = DecMod(CoefPtr,lirSize);

D = Del ay[Del ayPtr];
Del ayPtr = DecMod(Del ayPtr,lirSize);

sunl += C3 * D
sun += C4 * D

C2 = Coef[CoefPtr];
Coef Ptr = DecMod(CoefPtr,lirSize);

D = Del ay[Del ayPtr];
Del ayPtr = DecMod(Del ayPtr,lirSize);

sunl += C2 * D
sun += C3 * D
sunB += C4 * D

Cl = Coef[CoefPtr];
Coef Ptr = DecMod(CoefPtr,lirSize);

D = Del ay[Del ayPtr];
Del ayPtr = DecMod(Del ayPtr,lirSize);

for (j =0; j <lirSizel/d4 - 1; j++) {// evaluate IIR

get first

first

get

get

get

get

get

get

fi

fi

fi

fi

fi

fi

sunl += C1 * D; sun += @ * D, sunB += C3 * D; sund += C4

D = Del ay[Del ayPtr]; DelayPtr = DecMd(Del ayPtr,lirSize);

C4 = Coef[CoefPtr]; CoefPtr = DecMd(CoefPtr,lirSize);

sunl += C4 * D; sunR += C1L * D, sunB += C2 * D; sund += C3

D = Del ay[Del ayPtr]; DelayPtr = DecMod(Del ayPtr,lirSize);

C3 = Coef[CoefPtr]; CoefPtr = DecMd(CoefPtr,lirSize);

sunl += C3 * D; sun += G4 * D, sunB += C1 * D; sund += C2

D = Del ay[Del ayPtr]; DelayPtr = DecMd(Del ayPtr,lirSize);

C2 = Coef[CoefPtr]; CoefPtr = DecMd(CoefPtr,lirSize);

sunl += C2 * D; sunk += C3 * D, sunB += C4 * D; sund += Cl

D = Del ay[Del ayPtr]; DelayPtr = DecMbd(Del ayPtr,lirSize);

Cl = Coef[CoefPtr]; CoefPtr = DecMd(CoefPtr,lirSize);

}

sunl += Cl1 * D
sun += C2 * D
sunB += C3 * D
sumd += C4 * D
sun += Cl * suni;
sunB += C2 * suni;
sund += C3 * suni;

sunB += Cl * sun®;
sund += C2 * sun®;

sund += Cl * sunB;

For More Information On This Product,
Go to: www.freescale.com

11

sum 1

sum 2

sum 3

sum 4

mac

rst

rst

rst

rst

rst

rst

done

done

done

done

del ay

out si de | oop

coef

del ay

coef

del ay

coef

del ay

5-19

[]

]

Freescale Semiconductor, Inc.
Multisample Programming Techniques

Del ay[Del ayPtr] = sunti; /] store output
Del ayPtr = DecMod(Del ayPtr,lirSize);

Del ay[Del ayPtr] = sun®; /] store output
Del ayPtr = DecMod(Del ayPtr,lirSize);

Del ay[Del ayPtr] = sunB; /] store output
Del ayPtr = DecMod(Del ayPtr,lirSize);

Del ay[Del ayPtr] = sun#; /] store output
Del ayPtr = DecMod(Del ayPtr,lirSize);

printf("lndex: %l, output: %\n",i ,sunil);
printf("lndex: %l, output: %\n",i+1, sunR);
printf("lndex: %l, output: %\n",i+2,sunB);
printf("lndex: %l, output: %\n",i+3, sund);
}
return(0);

}
Addressing the filter coefficients and the delays is shown in Figure 5-22. Four samples are overwritten at
the end of the filter.

Before

c1 |c2|c3|ca|cs|ce|c7 | cs y(n-1)| y(n-2)| y(n-3)[y(n-4)| y(n-5)| y(n-6)[y(n-7)| y(n-8)
CoefPtr DelayPtr
After

c1 |c2|c3|ca|cs5|ce | c7 | cs y(n-1)| y(n-2)| y(n-3)[y(n-4)| y(n+3)| y(n+2) y(n+1)| y(n)
CoefPtr DelayPtr

Figure 5-22. Pointer Operation

5.4.2 StarCore SC140 DSP Code to Implement This Filter

org p: 0

Bl ockl n

dc 0.01,0.3,0.25,-0.2,-.1,0.1,0.1,-0.2,-0.3,0.15
dc 0.25,-0.2,0.01,0.3,0.15,-0.2,-.1,0.1,0.1,-0.3
dc 0.15,-.1,-0.3,0.25,-0.2,0.01,0.3,-0.2,0.1,0.1
dc 0.1,0.01,0.3,0.15,-.1,-0.3,0.25,-0.2,-0.2,0.1

Bl ockSi ze equ (*-Blockln)/2

Coef
dc 0.4,-0.3,0.25,-.20,-.15,0.10,-.10,0.05
lirSize equ (*-Coef)/2

Delay ds 2*lirSize

org p: $400
nove #Coef +2*(1irSize-1),r0;end of coefficients
nove #Del ay,rl
nove #Bl ockln,r2

nove #(2*lirSize)-1,nD

5-20

For More Information On This Product,
Go to: www.freescale.com

[]
L |

Freescale Semiconductor, Inc.
Multisample Programming Techniques

nove #$88, nttl ;bind rO,r1 to nD

dosetupO |1 R_Sdoen0 #Bl ockSi ze/ 4
| oopstartO
IIR_S
doset upl Kernel doenshl #(1irSize/4)-1;set up kernel |oop

nove. f (r2)+,d0 ;get input sanple

nove. f (r2)+,d1l ;get input sanple

nove. f (r2)+,d2 ;get input sanple

nove. f (r2)+,d3 ;get input sanple

nmove.f (r0)-,d7nmove.f (rl)-,d8 ;get coef, del ay
[mac d7, d8, do

nove.f (r0)-,d6nmove.f (rl)-,d8

[mac dé, d8, donac d7, d8, di
nove.f (r0)-,d5nmove.f (rl)-,d8

[mac d5, d8, donac d6, d8, di1
mac d7, d8, d2
nove.f (r0)-,d4nove.f (rl)-,d8
]
| oopstartl
Ker nel
[mac d4, d8, donac d5, d8, d1
mac dé6, d8, d2nac d7, d8, d3
nove.f (r0)-,d7 nmove.f (rl)-,d8

[mac d7,d8,d0 nac d4, d8, d1
mac d5, d8, d2nac d6, d8, d3
nove.f (r0)-,d6 move.f (rl)-,d8

[mac dé, d8, d0 nac d7, d8, d1
mac d4, d8, d2 nac d5, d8, d3
nove.f (r0)-,d5nmove.f (rl)-,d8

[mac d5, d8, d0 nac d6, d8, d1
mac d7,d8,d2 nac d4, d8, d3
nove.f (r0)-,d4nove.f (rl)-,d8
]
| oopendl
nop
[macr d4, d8, donac d5, d8, d1
mac dé6, d8, d2nac d7, d8, d3
]
[macr d4, d0,dl mac d5, dO, d2
mac dé6, do, d3
noves. f dO, (rl)-

[macr d4,d1, d2mac d5, d1, d3
noves. f di,(rl)-

[macr d4, d2, d3
noves. f d2,(rl)-

noves. f d3,(rl)-

moves.f dO, p:$fffffe ;out put sanple

moves.f dil,p:$fffffe ;out put sanple

moves.f d2,p:$fffffe ;out put sanple

moves.f d3,p:$fffffe ;out put sanple
| oopend0

end

5-21

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.
Multisample Programming Techniques

The performance of thefilter is, asfollows:

* Instruction Cycles Per Sample = (4) (N/4) / 4 = N/4.
* Memory Moves Per Sample = (8) (N/4) / 4 = N/2.

5.4.3 C Code for the StarCore SC140 C Compiler
The C code presented here is a fixed-point version of the multisample IR a gorithm:

// Nunmber of sanpl es/kernel: 4.
#i ncl ude <prototype. h>

#defi ne Dat aBl ockSi ze 40 // size of data block to process
#define lirSize 8 /1 nunber of coefficients in IIR

Wor d16 Dat al n[Dat aBl ockSi ze] = {
328, 9830, 8192, -6553, -3276, 3277, 3277, -6553, -9829, 4915,
8192, -6553, 328, 9830, 4915, -6553, -3276, 3277, 3277, -9829,
4915, -3276, -9829, 8192, -6553, 328, 9830, -6553, 3277, 3277,
3277, 328, 9830, 4915, -3276, -9829, 8192, -6553, -6553, 3277,

}s

Word16 Coef[lirSize] = {
13107, - 9830, 8192, - 6554, - 4915, 3277, - 3277, 1638

}s

Word16 Del ay[lirSize];
volatile Wrdl6 res;

#i f def NOMOD

#define I ncMd(a) (a=(a+l))

#define DecMd(a) (a=(a-1))

#el se

#define IncMd(a) (a=((a+l)%lirSize)))

#define DecMod(a) (a=((a+lirSize-1)%lirSize)))
#endi f

int main()
{
int CoefPtr, Del ayPtr;
Wor d32 sunt, sun®, sunB, sun;
Wordi6 Ci1, C2, C3, C4, D;
int i,j;

Coef Ptr = 1irSize-1; // init coef ptr at end
Del ayPtr = lirSize-1; /] init delay ptr

for (i = 0; i < DataBl ockSize; i+=4) { // do all sanples

sunl = L_deposit_h(Dataln[i]); [/ fetch input sanple

sunR = L_deposit_h(Dataln[i+1]); // fetch input sanple

sunB = L_deposit_h(Dataln[i+2]); // fetch input sanple

sumd = L_deposit_h(Dataln[i+3]); // fetch input sanple

C4 = Coef[CoefPtr]; /1 get first coef
DecMod(Coef Ptr);

D = Del ay[Del ayPtr]; /1 get first delay

DecMod(Del ayPtr);
sunl = L_mac(sunl, C4 ,D); /1 first mac outside |oop

C3 = Coef[CoefPtr]; /1 get first coef
DecMod(Coef Ptr);

5-22
For More Information On This Product,
Go to: www.freescale.com

[]

L |

sunl =

sun®
sunB
sun4

sun®
sunB
sund

sunB
sund

sun¥

Freescale Semiconductor, Inc.

D = Del ay[Del ayPtr]; /1 get first
DecMod(Del ayPtr);

sunl = L_mac(sunl, C3 , D);

sun = L_mac(sunk, C4 , D);

C2 = Coef[CoefPtr]; /1 get first
DecMod(Coef Ptr);

D = Del ay[Del ayPtr]; /1 get first
DecMod(Del ayPtr);

sunl = L_mac(sunl, C2 , D);

sun2 = L_mac(sunk, C3 , D);

sunB = L_mac(sunB, C4 , D);

Cl = Coef[CoefPtr]; /1 get first
DecMod(Coef Ptr);

D = Del ay[Del ayPtr]; /1 get first
DecMod(Del ayPtr);

for (j = 0; < lirSizel4 -
sunl = L_mac(sunl, Cl1 , D);
sun = L_mac(sunk, C2 , D);
sunB = L_mac(sunB, C3 , D);
sumd = L_mac(sun4, C4 , D);
D = Del ay[Del ayPtr]; DechMod(Del ayPtr);
C4 = Coef [Coef Ptr]; DecMod(Coef Ptr);
sunl = L_mac(sunl, C4 , D);
sun2 = L_mac(sunk, Cl1 , D);
sunB = L_mac(sunB, C2 , D);
sumd = L_mac(sum4, C3 , D);
D = Del ay[Del ayPtr]; DechMd(Del ayPtr);
C3 = Coef[CoefPtr]; DecMd(CoefPtr);
sunl = L_mac(sunl, C3 , D);
sun = L_mac(sunk, C4 , D);
sunB = L_mac(sunB, Cl1L , D);
sumd = L_mac(sum4, C2 , D);
D = Del ay[Del ayPtr]; Dechd(Del ayPtr);
C2 = Coef [Coef Ptr]; DecMod(Coef Ptr);
sunl = L_mac(sunl, C2 , D);
sun = L_mac(sunk, C3 , D);
sunB = L_mac(sunB, C4 , D);
sumd = L_mac(sun4, Cl1 , D);
D = Del ay[Del ayPtr]; DechMd(Del ayPtr);
Cl = Coef[CoefPtr]; DecMd(CoefPtr);

}

L_mac(sunl, Cl , D);

L_mac(sunk, C2 , D);

L_mac(sunB, C3 , D);

L_mac(sumd, C4 , D);

L_mac(sun2, Cl1 , D);

L_mac(sunB, C2 , D);

L_mac(sum4, C3 , D);

L_mac(sunB, Cl , D);

L_mac(sumd, C2 , D);

L_mac(sumd, Cl , D);

Del ay[Del ayPtr] = round(suml);

Multisample Programming Techniques

del ay

coef

del ay

coef

del ay

1, j++) { // evaluate IIR

/] store output

5-23

For More Information On This Product,

Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.
Multisample Programming Techniques

DecMod(Del ayPtr);

Del ay[Del ayPtr] = round(sun®); /] store output
DecMod(Del ayPtr);

Del ay[Del ayPtr] = round(sunB); /'l store output
DecMod(Del ayPtr);

Del ay[Del ayPtr] = round(sund); /] store output
DecMod(Del ayPtr);

res = round(suml);

res = round(sun?);

res round(sunB);
res = round(sumd);

return(0);

5.5 Correlation

5-24

The correlation function determines how a data series relatesto itself. The correlation is not afilter in the
sense that it does not manipulate input samplesto create an output. Rather, the correlation function
operates on a block of samples to produce correlation values. The correlation algorithm differs from a
FIR because there is no loading of input samples, storing input samplesin adelay line or modulo
addressing. The correlation function is shown in Equation 2.

WindowSize—1
R(n) = z x(i) x x(i +n) (EQ2)

i=0

The correlation function multiplies samplesin a window of length W ndowSi ze by samples from the
same sequence shifted in time. The time shift nis called alag. The correlation function of I ag n is
shown in Figure 5-23.

x(n) WindowsSize)
Shifted Data
» N
~ / Sequence
|
W
>
Data \
x(0) Sequence
Multiply And
Accumulate

Figure 5-23. Data Correlation

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Multisample Programming Techniques

The algorithm computes eight correlations with a W ndowSi ze of 40. In the context of the correlation, a
sample refersto a computed correlation. To develop the correlation equations for four correlations, the
equations for R(n), R(n + 1), R(n + 2) and R(n + 3) are shown in Figure 5-24.

,,

'+ x(6) \:n+m x(T) \{1.+"1

Rin)= x(0) x(n) x(4) x(n+4 :+ X(5) x(n+5 : +x(8) \In+8]:
Y e T

E+ x(1) x[n+l}5+ x(2) t{n+2; +x(3) \{n+3|' +

' ' . pronnenestt "
Ri(n+1)= x(lnx(n+l}'+x{l]x(n+2]'+x(1] x(n+3) x(5) x(n+6) i+ x(6) x(n+7) i+ x(7 jﬂnﬂli i+ x(8) x(n+9)

x(6) x(n+8),} + \{T} \{n+9l

x(6) 1{n~9} +x(7) \(n+1|)] + x(8) x(n+11)

I p—

i+ \(.S}\{u+6) + x(4) x(n+7) i

Rin+1) = \[II}\(n+2} +x(1) x(nt+3) : + x(8) x(nt+10)

Rin+1) = \(I]}\(n+.§} +\[1}\(n+4} *\(2] x(n+5 .}\(n+8] i

<«— Generic Kernel

Figure 5-24. Correlation Equations for Four Samples

The generic kernel has the following characteristics:

* Four parallel MACs.

* Onedatavauethat isloaded and used by all four MACs.

» Onedatavaluethat isloaded, used in the generic kernel, and saved for the next three generic kernels.
» Three data values that are reused from previous generic kernels.

To develop the structure of the quad ALU kernel, the operations are written in parallel and the loads are
moved ahead of where they are first used. This creates the generic kernel shown in Figure 5-25.

Generic Kernel Load x(n)
\T Load x(n+1), x(n+2)
Rm=0_ _ _ RMmH=0__ _ _ RM2H=0_ _ _ _RM+3)=0 ~Load X(0), X(n3) _

R(n+1) += x(0)*x(n+1) Rgn+2) +=x(0)*x(n+2) R(n+3) +=x(0)*x(n+3) I'Load x(1), x(n+4)
R(NFI) ¥= X(D*X(n¥2) R(n+2) ¥= X(L)*x(nF3) R(n3) 7= X(1)*X(n4) ~ Load x(2), x(n+5)
R(n+1) +=x(2*x(n+3) R(n+2) +=x(2)*x(m+4) R(n+3) +=x(2)*x(n+5) Load x(3), x(n+6)
R(+1) += X(J*X(n+4) R(n+2) += x(3)*x(m+5) R(n+3) += x(3)*x(n+6) Load x(4), x(n+7)

R(n) += x(0)*x(n)
"R A= X(D*X(n+ 1)

R(n) +=x(2)*x(n+2)

R(n) +=x(3)*x(n+3)

R(n) += x(4)*x(n+4)
R(n) +=x(5)*x(n+5)
R(n) += x(6)* x(n+6)
R(n) +=x(7)*x(n+7)

R(n+1) += X(4*X(Nn+5) R(N+2) += x(4)* X(n+6)
R(n+1) += X(§)*x(n+6) R(n+2) += x(5)* X(n+7)
R(n+1) += X(6)*x(n+7) R(n+2) += x(6)* x(n+8)
R(n+1) +=X(7)*x(n+8) R(n+2) += x(7)*x(n+9)

R(n+3) += x(4)*x(n+7)
R(n+3) += x(5)*x(n+8)
R(n+3) += x(6)*x(n+9)
R(n+3) += x(7)*x(n+10)

Load x(5), x(n+8)
Load x(6), x(n+9)
Load x(7), x(n+10)

Figure 5-25. Generic Kernel for Correlation

The generic kernel requires four parallel MACs and two loads. The example in Figure 5-26 illustrates
how the kernel isimplemented in asingle instruction.

R(n) +=xb* xd4 R(n+1) +=xb* xd3 R(n+2) +=xb* xd2 R(n+3) +=xb* Xdl
Load xb, Copy xd3 to xd4, Copy xd2 to xd3, Copy xd1 to xd2, Load xd1

Figure 5-26. Correlation Generic Kernel

To provide reuse, xd1, xd2 and xd3 are copied to xd2, xd3 and xd4, respectively. Thisimposes a
requirement on the kernel to perform four MA Cs and five move operations (two loads and three copies).

5-25

For More Information On This Product,
Go to: www.freescale.com

O
]

Freescale Semiconductor, Inc.
Multisample Programming Techniques

Since SC140 architecture cannot perform five moves simultaneously, a different kernel structureis
required. Assuming the WindowSize is at least four, the generic kernel is replicated to create a basic
kernel, as shown in Figure 5-27.

Basic Kernel

Load x(n)
\ Load x(n+1), x(n+2)
R(n) =0 R(n+1) =0 _Rm2=0_ _ _ _R(n+3)=0_ ~ Load x(0), x(n+3) ~

RN +=x0)*x(n) ~ R(N+1) +=x(0)*x(n*+1) R(n+2) +=x(0)*x(n*+2) R(n+3) += x(0)*x(n+3) Load x(1), x(n+4)

~ R) = x(@ "Xty RIN*1) #= X(@) XM+5)” RI+2) +=X(4) X(R6)~ RIHI+=X(A)X(TF7)" Load X(5), X(n+8)

R(n) +=x(1)*x(n+1)
R(n) +=x(2)*x(n+2)
R(n) +=Xx(3)*x(n+3)

R(n) +=Xx(5)*x(n+5)
R(n) +=x(6)*x(n+6)
R(n) +=x(7)*x(n+7)

R(n+1) +=x(1)*x(n+2) R(N+2) +=x(1)*x(n+3) R(n+3) +=x(1)*x(n+4) Load x(2), x(n+5)
R(n+1) +=x(2)*X(n+3) R(n+2) +=x(2)*x(n+4) R(n+3) += x(2)*x(n+5) _ Load x(3), X(n+6)

R(n+1) +=x(3)*x(n+4) R(n+2) +=x(3)*x(n+5) R(n+3) += x(3)*x(n+6) I Load X(4), X(N+7)

R(n+1) +=x(5)*x(n+6) R(n+2) +=x(5)*x(n+7) R(n+3) +=x(5)*x(n+8) Load x(6), x(n+9)
R(n+1) +=x(6)*x(n+7) R(n+2) +=x(6)*x(n+8) R(n+3) +=x(6)*x(n+9) Load x(7), x(n+10)
R(n+1) +=x(7)*x(n+8) R(n+2) +=x(7)*x(n+9) R(n+3) += X(7)*x(n+10)

Figure 5-27. Forming A Basic Kernel by Replicating the Generic Kernel for Correlation

For example, the lifetime of x(0) ends after the first generic kernel. The lifetime of x(n+3) isfor all
four generic kernels within the basic kernel. After four generic kernels, all loaded values are used and the
kernel repeats. By folding the data loads, the basic kernel is as shown in Figure 5-28.

R(n) += xb* xd1
R(n) += xb * xd2
R(n) += xb * xd3
R(n) += xb * xd4

R(n+1) += xb * xd2
R(n+1) += xb* xd3
R(n+1) += xb * xd4
R(n+1) += xb * xd1

R(n+2) +=xb* xd3
R(n+2) +=xb * xd4
R(n+2) +=xb * xd1
R(n+2) += xb * xd2

R(n+3) +=xb * xd4
R(n+3) +=xb * xd1
R(n+3) +=xb * xd2
R(n+3) +=xb * xd3

Load xb, Load xd1
Load xb, L oad xd2
Load xb, L oad xd3
Load xb, L oad xd4

Figure 5-28. Correlation Basic Kernel Without Register Copies

To remove the register copy, copy the kernel and reference the registersin a rotating pattern.

5.5.1 C Simulation Code for the Optimized Kernel (version h)
// quad sanpl e.
#i ncl ude <stdio. h>

#def i ne Dat aBl ockSi ze 50// size of data block to process
#defi ne W ndowSi ze 40// wi ndow si ze
#defi ne NumLags 8// nunber of |ags

doubl e Dat al n[Dat aBl ockSi ze] = {

.01, 0.03, 0.25, -0.02, -.1, 0.1, 0.1, -0.2, -0.03, 0.15,
.025, -0.2, 0.01, 0.03, 0.15, -0.02, -.1, 0.1, 0.1, -0.03,
.15, -.1, -0.03, 0.025, -0.2, 0.01, 0.03, -0.02, 0.1, 0.1,
1, 0.01, 0.03, 0.15, -.1, -0.03, 0.025, -0.02, -0.02, 0.1,
1, 0.1, -0.2, -0.03, 0.15,0.15, -.1, -0.03, 0.025, -0.2

~ O O O0OO0OOo

int main(int argc, char *argv[])
{

doubl e Cor 1, Cor 2, Cor 3, Cor 4;

doubl e xd1, xd2, xd3, xd4, xb;

int i,j;

int LagPtr, BasePtr, OffsetPtr;

LagPtr = O;
for (i =0; i < NumLags; i += 4) {
BasePtr = 0;

O fsetPtr = LagPtr;
Corl = 0.0; Cor2 =0.0; Cor3 =0.0; Cor4 = 0.0;

5-26

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.

Multisample Programming Techniques

xdl = Dataln[OffsetPtr]; OfsetPtr += 1;
xd2 = Dataln[OffsetPtr]; OfsetPtr += 1;
xd3 = Dataln[OffsetPtr]; OfsetPtr += 1;
xd4 = Dataln[OffsetPtr]; OfsetPtr += 1;
xb = Datal n[BasePtr]; BasePtr += 1;
for (j =0; j < WndowSi ze/ 4; j++) {
Corl += xb * xd1; Cor2 += xb * xd2; Cor3 += xb * xd3; Cor4 += xb * xd4,
xdl = Dataln[OffsetPtr]; OfsetPtr += 1;
xb = Datal n[BasePtr]; BasePtr += 1;
Corl += xb * xd2; Cor2 += xb * xd3; Cor3 += xb * xd4; Cor4 += xb * xdi,
xd2 = Dataln[OffsetPtr]; OfsetPtr += 1;
xb = Datal n[BasePtr]; BasePtr += 1;
Corl += xb * xd3; Cor2 += xb * xd4; Cor3 += xb * xdl; Cor4 += xb * xd2;
xd3 = Dataln[OffsetPtr]; OfsetPtr += 1;
xb = Datal n[BasePtr]; BasePtr += 1;
Corl += xb * xd4; Cor2 += xb * xdl; Cor3 += xb * xd2; Cor4 += xb * xd3;
xd4 = Dataln[OffsetPtr]; OfsetPtr += 1;
xb = Datal n[BasePtr]; BasePtr += 1;
}
printf("lndex: %l, Correlation: %\n", LagPtr, Corl);
printf("lndex: %l, Correlation: %\n", LagPtr+1, Cor2);
printf("lndex: %l, Correlation: %\n", LagPtr+3, Cor3);
printf("lIndex: %l, Correlation: %\n", LagPtr+4, Cor4);
LagPtr += 4;
}
return(0);
}
5.5.2 SC140 DSP Code to Implement the Correlation (version 1)
org p: 0
Bl ockl n
dc 0.01,0.03,0.25,-0.02,-.1,0.1,0.1,-0.2,-0.03,0. 15
dc 0.025,-0.2,0.01,0.03,0.15,-0.02,-.1,0.1,0.1,-0.03
dc 0.15,-.1,-0.03,0.025,-0.2,0.01,0.03,-0.02,0.1,0.1
dc 0.1,0.01,0.03,0.15,-.1,-0.03,0.025,-0.02,-0.02,0.1
dc 0.1,0.1,-0.2,-0.03,0.15,0.15,-.1,-0.03,0.025,-0.2
Bl ockSi ze equ (*-Blockln)/2
Nunmiags equ 8
W ndowSi ze equ 40
org p: $400
nove #Bl ockln,r0 ; LagPtr
doset up0 COR_Sdoen0O #Nunlags/ 4
| oopstartO
COR_S
doset upl Kernel doenl #W ndowsSi ze/ 4 ;set up kernel 1oop
[clr do
nove #Bl ockln,rl ; BasePtr
]
[clr di
tfrar0,r2 ; OffsetPtr

5-27

For More Information On This Product,

Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.
Multisample Programming Techniques

[clr d2
nove. f (r2)+,d4

[clr d3
nove. f (r2)+,d5

nove. f (r2)+,d6

nove. f (r1)+,d8nmove.f (r2)+,d7
| oopstartl
Ker nel
[mac d8, d4, donac d8, d5, d1

mac d8, d6, d2nac d8, d7, d3

nove. f (r2)+,d4nmove.f (rl)+,d8

[mac d8, d5, donac d8, d6, d1
mac d8, d7, d2nac d8, d4, d3
nove. f (r2)+,d5move.f (rl)+,d8

[mac d8, d6, donac d8, d7, d1
mac d8, d4, d2nmac d8, d5, d3
nove.f (r2)+,d6énmove.f (rl)+,d8

[mac d8, d7, donac d8, d4, d1
mac d8, d5, d2nac d8, d6, d3
nove. f (r2)+,d7nmove.f (rl)+,d8

]

| oopendl
nop

[rnd dOrnd di
rnd d2rnd d3

]
moves.f dO, p:$fffffe
moves.f di,p:$fffffe
nmoves.f d2,p:$fffffe
moves.f d3,p:$fffffe
adda #2*4,r0,r0

| oopend0

end

;out put sanple
;out put sanple
;out put sanple
;out put sanple

The performance of thisfilter is described, as follows:

* Instruction Cycles Per Sample = (4) (N/4) / 4 = N/4.

» Memory Moves Per Sample = (8) (N/4) / 4 = N/2.

« Although the implementation shown in Figure 5-28 is optimal for the number of instruction cycles per
sample, the number of memory moves can be further decreased by using the SC140 quad operand
move. This allows the SC140 core to move four operands per load.

» Todevelop the kernel for using quad operand loads, the basic kernel from Figure 5-28 is doubled and
an alternating set of registersis used for the delayed samples. The basic kernel is shown in Figure
5-29.

5-28

R(n) +=xb1 * xd1
R(n) +=xb2 * xd2
R(n) +=xb3* xd3
R(n) +=xb4 * xd4

R(n) +=xb1 * xd5
R(n) +=xb2 * xd6
R(n) +=xb3* xd7
R(n) +=xb4 * xd8

R(n+1) +=xbl * xd2
R(n+1) +=xb2 * xd3
R(n+1) +=xb3 * xd4
R(n+1) +=xb4 * xd5
R(n+1) +=xbl * xd6
R(n+1) +=xb2 * xd7
R(n+1) +=xb3 * xd8
R(n+1) +=xb4 * xd1

Figure 5-29.

R(n+2) +=xbl * xd3
R(n+2) +=xb2* xd4
R(n+2) +=xb3* xd5
R(n+2) +=xb4 * xd6

R(n+2) +=xbl * xd7
R(n+2) +=xb2* xd8
R(n+2) +=xb3* xd1
R(n+2) +=xb4 * xd2

R(n+3) +=xbl* xd4
R(n+3) +=xb2 * xd5
R(n+3) += xb3 * xd6
R(n+3) +=xb4* xd7

R(n+3) +=xbl* xd8
R(n+3) +=xb2 * xd1
R(n+3) += xb3 * xd2
R(n+3) +=xb4* xd3

L oad xd5:xd6:xd7:xd8

L oad xb1:xb2:xb3:xb4
L oad xd1:xd2:xd3:xd4

L oad xb1:xb2:xb3:xb4

Correlation Using Quad Operand Loads

For More Information On This Product,
Go to: www.freescale.com

O
]

Freescale Semiconductor, Inc.
Multisample Programming Techniques

The basic kernel consists of eight generic kernels. On every fourth generic kernel, the xb values are

loaded and used in the next four generic kernels. The XD values are alittle more difficult to visualize.
They are reused and loaded in alternating sets because the lifetime of the fourth XD operand is seven. For
example, xd5, xd6, xd7 and xd8 are loaded together at the first generic kernel of the basic kernel. The

lifetime of xd5 starts at the second generic kernel and the lifetime of xd8 extends to the last generic

kernel. If these registers are reloaded at the fifth generic kernel, xd8 is overwritten. Therefore, a second

set of registersis necessary for the XD values because the lifetimes overlap where the loads occur.

5.5.3 C Simulation for the Correlation Using Quad Operand Loads (version Il)

// quad sanpl e.
#i ncl ude <stdi

#def i ne Dat aBl
process

#defi ne W ndowSi ze
#defi ne NumLags

0. h>

ockSi ze 50
40
8

doubl e Dat al n[Dat aBl ockSi ze] =

{

0.01, 0.03, 0.25, -0.02, -.1, 0.1, 0.1, -0.2, -0.03, 0.15,
0.025, -0.2, 0.01, 0.03, 0.15, -0.02, -.1, 0.1, 0.1, -0.03,
0.15, -.1, -0.03, 0.025, -0.2, 0.01, 0.03, -0.02, 0.1, 0.1,
0.1, 0.01, 0.03, 0.15, -.1, -0.03, 0.025, -0.02, -0.02, 0.1,
0.1, 0.1, -0.2, -0.03, 0.15,0.15, -.1, -0.03, 0.025, -0.2
b
int main(int argc, char *argv[])
{
doubl e Cor 1, Cor 2, Cor 3, Cor 4;
doubl e xd1, xd2, xd3, xd4, xd5, xd6, xd7, xd8;
doubl e xb1l, xb2, xb3, xb4;
int i,j;
int LagPtr, BasePtr,OffsetPtr;
LagPtr = O;
for (i =0; i < NumLags; i += 4) {
BasePtr = 0;
O fsetPtr = LagPtr;
Corl = 0.0; Cor2 = 0.0;
xdl = Dataln[OffsetPtr];
xd2 = Dataln[OffsetPtr];
xd3 = Dataln[OffsetPtr];
xd4 = Dataln[OffsetPtr];
xbl = Datal n[BasePtr];
xb2 = Dat al n[BasePtr];
xb3 = Dat al n[BasePtr];
xb4 = Dat al n[BasePtr];
for (j =0; j < WndowSi ze/ 8; j++) {
Corl += xbl*xdl; Cor2 += xbl*xd2; Cor3 += xbl*xd3;
xd5 = Dataln[OffsetPtr];
xd6 = Dataln[OffsetPtr];
xd7 = Dataln[COffsetPtr];
xd8 = Dataln[OffsetPtr];

Cor1l += xb2*xd2;
Cor1l += xb3*xd3;
Cor1l += xb4*xd4;

Cor 2 += xb2*xd3; Cor3
Cor 2 += xb3*xd4; Cor3
Cor 2 += xb4*xd5; Cor3

+= xb2*xd4;
+= xb3*xd5;
+= xb4*xd6;

For More Information On This Product,
Go to: www.freescale.com

/1 size of data block to

/1 wi ndow si ze
/1 nunber of |ags

Cor3 = 0.0;Cor4 =

OffsetPtr += 1;
OffsetPtr += 1;
OffsetPtr += 1;
OffsetPtr += 1;

BasePtr += 1;
BasePtr += 1;
BasePtr += 1;
BasePtr += 1;

Cor4 += xbl*xd4;
OffsetPtr += 1;
OffsetPtr += 1;
OffsetPtr += 1;
OffsetPtr += 1;

Cor4 += xb2*xd5;
Cor4 += xb3*xd6;
Cor4 += xb4*xd7;

5-29

[]

]

Freescale Semiconductor, Inc.
Multisample Programming Techniques

xbl = Datal n[BasePtr]; BasePtr += 1;
xb2 = Dat al n[BasePtr]; BasePtr += 1;
xb3 = Dat al n[BasePtr]; BasePtr += 1;
xb4 = Dat al n[BasePtr]; BasePtr += 1;

Corl += xbl*xd5; Cor2 += xbl*xd6; Cor3 += xbl*xd7; Cor4 += xbl*xd8;

xdl = Dataln[OffsetPtr]; OffsetPtr += 1;
xd2 = Dataln[OffsetPtr]; OffsetPtr += 1;
xd3 = Dataln[OffsetPtr]; OffsetPtr += 1;
xd4 = Dataln[OffsetPtr]; OffsetPtr += 1;

Corl += xb2*xd6; Cor2 += xb2*xd7; Cor3 += xb2*xd8; Cor4 += xb2*xd1l;
Corl += xb3*xd7; Cor2 += xb3*xd8; Cor3 += xb3*xdl; Cor4 += xb3*xd2;
Corl += xb4*xd8; Cor2 += xb4*xdl; Cor3 += xb4*xd2; Cor4 += xb4*xd3;

xbl = Datal n[BasePtr]; BasePtr += 1;
xb2 = Dat al n[BasePtr]; BasePtr += 1;
xb3 = Dat al n[BasePtr]; BasePtr += 1;
xb4 = Dat al n[BasePtr]; BasePtr += 1;

}

printf("lndex: %l, Correlation: %\n", LagPtr, Corl);

printf("lndex: %l, Correlation: %\n", LagPtr+1, Cor2);
printf("lndex: %l, Correlation: %\n", LagPtr+3, Cor3);
printf("lndex: %l, Correlation: %\n", LagPtr+4, Cor4);

LagPtr += 4;
}
return(0);
}

5.5.4 SC140 DSP Code For Correlation Using Quad Operand Loads (version Il)

org p: 0

Bl ockl n

dc 0.01,0.03,0.25,-0.02,-.1,0.1,0.1,-0.2,-0.03,0. 15
dc 0.025,-0.2,0.01,0.03,0.15,-0.02,-.1,0.1,0.1,-0.03
dc 0.15,-.1,-0.03,0.025,-0.2,0.01,0.03,-0.02,0.1,0.1
dc 0.1, 0.01,0.03,0.15,-.1,-0.03,0.025,-0.02,-0.02,0.1
dc 0.1,0.1,-0.2,-0.03,0.15,0.15,-.1,-0.03,0.025,-0.2

Bl ockSi ze equ (*-Blockln)/2

Nunmiags equ 8
W ndowSi ze equ 40

org p: $400
nove #Bl ockln,r0 ; LagPtr
doset up0 COR_Sdoen0O #Nunlags/ 4

| oopstartO

COR_S
doset upl Kernel doenl #W ndowSi ze/ 8 ;set up kernel 1oop
nove #Bl ockln,rl ; BasePtr
tfrar0,r2 ; OffsetPtr

[clr dOclr dil
clr d2clr d3

nove. 4f (r2)+,d8:d9:d10: d11
nove. 4f (r1)+, d4: d5: d6: d7

| oopstartl

Ker nel

5-30

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.
Multisample Programming Techniques

[mac d4, d8, d0 nac d4, d9, d1
mac d4, d10, d2 nac d4,dll, d3
nove. 4f (r2)+,d12: d13: d14: d15

[mac d5, d9, d0 mac d5, d10, d1
mac d5, d11, d2mac d5, d12, d3

[mac dé, d10, dOnac d6, d11, d1
mac d6,d12, d2 nmac d6, d13, d3

[mac d7,d11, dOmac d7,d12,d1l
mac d7,d13,d2 nac d7,d14, d3
nove. 4f (r1)+, d4: d5: d6: d7

[mac d4,d12, dOmac d4, d13, d1
mac d4, d14,d2 nmac d4, d15, d3
nove. 4f (r2)+,d8:d9:d10: d11

[mac d5, d13, dOmac d5, d14, d1
mac d5, d15, d2mac d5, d8, d3

[mac dé, d14, d0 mac d6, d15, d1
mac d6, d8, d2nac d6, d9, d3

[mac d7, d15, dOnac d7, d8, d1
mac d7,d9, d2 nmac d7,d10, d3
nove. 4f (r1)+, d4: d5: d6: d7

]

| oopendl
nop

[rnd dOrnd di
rnd d2rnd d3

]

moves.f dO, p:$fffffe ;out put sanple
moves.f dil,p:$fffffe ;out put sanple
nmoves.f d2,p:$fffffe ;out put sanple
moves.f d3,p:$fffffe ;out put sanple
adda #2*4,r0,r0

| oopend0

end

The performance of thisimplementation is:

* Instruction Cycles Per Sample = (8) (N/8) / 4 = N/4. Thisis the same speed asin version |
implementation.

» Memory Moves Per Sample = (4) (N/8) / 4 = N/8. Thisis one fourth the number of moves asin version
| implementation.

5.5.5 C Code for the SC140 C Compiler

The C code presented here is a fixed-point version of the multisample correlation algorithm.

// quad sanpl e
#i ncl ude <prototype. h>

#def i ne Dat aBl ockSi ze 50 /1 size of data block to
process

#defi ne W ndowSi ze 40 /'l wi ndow si ze

#define NunmLags 8 /1 nunber of |ags

volatile Wrdl6 res

Wor d16 Dat al n[Dat aBl ockSi ze] = {
328, 983, 8192, -654, -3276, 3277, 3277, -6553, -982, 4915

5-31

For More Information On This Product,
Go to: www.freescale.com

[]

L |

5-32

}s

i nt

{

res
res
res
res

Freescale Semiconductor, Inc.
Multisample Programming Techniques

819, -6553, 328, 983, 4915, -654, -3276, 3277, 3277, -982,
4915, -3276, -982, 819, -6553, 328, 983, -654, 3277, 3277,
3277, 328, 983, 4915, -3276, -982, 819, -654, -654, 3277,
3277, 3277, -6553, -982, 4915, 4915, -3276, -982, 819, -6553,

mai n()

Wor d32 Cor 1, Cor 2, Cor 3, Cor 4;

Word16 xdi, xd2, xd3, xd4;

int i,j;

for (i =0; i < NunmLags; i += 4) {
Corl =
Cor 2

Cor 3
Cor 4

O O OO

i

xdl = Dataln[i];
xd2 Dat al n[i +1] ;
xd3 Dat al n[i +2] ;

for (j = 0; j < WndowSi ze/ 4; | ++)
xd4 = Datal n[4*j +i +3];

Corl = L_nmac(Corl, Dataln[4*j], xdl1);

Cor2 = L_nmac(Cor2, Dataln[4*j], xd2);
Cor3 = L_nmac(Cor3, Dataln[4*j], xd3);
Cor4 = L_nmac(Cor4, Dataln[4*j], xd4);

xd1l = Datal n[4*j +i +4] ;

Corl = L_nmc(Corl, Dataln[4*j+1], xd2);
Cor2 = L_nac(Cor2, Dataln[4*j+1], xd3);
Cor3 = L_nmc(Cor3, Dataln[4*j+1], xd4);
Cor4 = L_nac(Cor4, Dataln[4*j+1], xdl);

xd2 = Datal n[4*j +i +5] ;

Corl = L_nmc(Corl, Dataln[4*j+2], xd3);
Cor2 = L_nmc(Cor2, Dataln[4*j+2], xd4);
Cor3 = L_nmc(Cor3, Dataln[4*j+2], xdl);
Cor4 = L_nmc(Cor4, Dataln[4*j+2], xd2);

xd3 = Dat al n[4*j +i +6] ;

Corl = L_nmc(Corl, Dataln[4*j+3], xd4);
Cor2 = L_nmc(Cor2, Dataln[4*j+3], xdl);
Cor3 = L_nmc(Cor3, Dataln[4*j+3], xd2);
Cor4 = L_nmc(Cor4, Dataln[4*j+3], xd3);

round(Cor1);
round(Cor 2) ;
round(Cor 3) ;
round(Cor 4) ;

return(0);

For More Information On This Product,
Go to: www.freescale.com

[]

Freescale Semiconductor, Inc.
Multisample Programming Techniques

]

5.5.6 Cross Correlations
Although this section focuses on the auto correlation function (how a data sequence relates to itself), you
can use the same technique with minor code modifications to compute the cross correlation function
(how a data sequence relates to another data sequence). The cross correlation function is determined by
pointing the offset pointer to the second sequence rather than to the same sequence as the base pointer.
Cross correlations are used for computing orthogonal expansions of signals or for efficient code

searching for speech coders.

5.6 Biquad Filter
This section presents several implementations of biquad algorithms. The biquad filter, a combination of
an FIR and IR filter, isimportant becauseit directly implements a second order filter. Higher order filters
are obtained by cascading biquads. The biquad filter is shown in Figure 5-30.

o) T(n) (O ED

x(n) >

T(n-2)

T(n) = x(n)+alxT(n—-1)+a2xT(h-2)
y(n) = T(n) +b1xT(n-1) +b2xT(n-2)

Figure 5-30. Biquad Filter
This biquad is more challenging than the direct form | IR or FIR filters because it is not as regular and the

kernel isnot iterative. Implementing the biquad also requires calculation of intermediate values (T(n)s).
Block processing with cascaded biquad sectionsiis typically implemented as shown in Figure 5-31.

T1(n-1 T2(n-1 T3(n-1
T1(n-2 T2(n-2 T3(n-2
n @
[} o
= » » » » %
E BQ1 BQ2 BQ3]
N 5
e | | | S
Qo >
1S)
al,a2 al,a2, al,a2
b1,b2 b1,b2 b1,b2

Figure 5-31. Typical Biquad Block Processing

5-33

For More Information On This Product,
Go to: www.freescale.com

[]

]

5-34

Freescale Semiconductor, Inc.
Multisample Programming Techniques

Each input sample is processed by a cascade of bigquad sections. Each biquad section reads/'updates the
T(n) values and reads its coefficients. This particular structure is inefficient because each filter section
loads/updates/storesthe T values for each sample. Additionally, the coefficients are read for each section
of each sample (assuming each biquad has different coefficients). This structure creates difficulty when
optimizing the DSP kernel.

Asthe number of instructionsin the kernel is reduced, there are fewer opportunities to perform the
necessary moves. Each biquad requires ten moves: sample input, sample output, load al/a2/b1/b2, load
T(n-1)/T(n-2) and store (updated) T(n-1)/T(n-2). It may be possible to implement the biquad with only
nine moves if the algorithm can take advantage of the fact that T(n-2) is updated to T(n-1) at the next
sample (meaning that the values are shifted with a pointer). With up to ten movesin the kernel, the
performance of the kernel can become 1/O limited. To avoid 1/O limiting the performance of the kernel,
samples are processed a section at atime, as shown in Figure 5-32.

T1(n -1), T2(n - 1), T3(n -1),
Ti(n -2 T2(n -2 T3(n-2
[%]
; INE: INE: I
- o o
1 : £ 3
8 > BQ1 » 0 > BQ2 » 0 > BQ3 > =
= Q Q 2
a2 IS IS =
(o o o >
£ - = o
al,a2, al,a2, al,a2,
b1,b2 b1,b2 b1,b2

Figure 5-32. Block Processing One Biguad Section at a Time

Each biquad section is applied to the entire set of samples at atime. Thisis an in-place operation because
the temp samples can overwrite the input sample buffer.

Inthisfilter, T(n—1)/T(n—2) are loaded at the start of the filter, as are coefficients al/a2/b1/b2. These
values are held in registers during the processing of the block. The kernel then requires only two moves:
asample input and a sample output. This allows the biquad to be further optimized without being I/O
limited. At the end of the kernel, the T values are saved for processing the next block of samples. Each
section hasits own individual set of T values.

The filter structure shown on page 5-33 optimizes the number of delays by combining delay storage for
the lIR and FIR sections of the filter. Instead of saving both past values of the output (y(n)) and past
values of the inputs (x(n)), the filter equations use the internal T variable, as shown in Figure 5-33.

T(n)=al* T(n-1) + a2* T(n-2) + x(n)
y(n) =T(n) + b1* T(n-1) + b2* T(n-2)

Figure 5-33. Biquad Filter Equations Using Internal Variables

The biquad filter performs differntly than the previously discussed filters. Since all coefficients and
delays are loaded prior to the start of the block processing, there are no memory moves except for the
sample input and result output. The concept of memory bandwidth does not apply to the biquad
implementation. Since the biquad does not have variable length (such asan IR or FIR), thereisno
multiplication by the number of tapsin thefilter. The biguad has only an absolute number of instructions
in itskernel. When two samples are processed simultaneously, observe that:

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.
Multisample Programming Techniques

» The second sample requires T(n-1) but not T(n-2). Therefore, it is desirable to perform the cal cul ations
with T(n-2) as early as possible. T(n-1) for thefirst sample is T(n-2) for the second sample.

» The second sample requires T(n). T(n) for the first sampleis T(n-1) for the second sample. Thisisa
serial dependency.

To usethe four ALUs effectively, two samples are computed in paralel. Thereis not an exact overlap in
the computation of the two samples because of the serial dependency between biquads using the T values.

Figure 5-34 shows that the equations for y(n) and y(n+1) are written in parallel. It also shows the basic
kernel biquad computations (and serial dependency).

T(n) = input

T(n)+=T(n-2)*a2 y(n)=T(n-2) * b2 T(n+1) = input

T(n)+=T(n-1)* al _ y(n) +=T(n-1) * bl _T(n+1) +=T(n-1) * a2 y(n+1) = T(n-1) * b2
VST~ 0D ST~ () T e YD) = T ot
output y(n) y(n+1) += T(n+1) T(n-1) = T(n)

output y(n+1)

Figure 5-34. Dual Sample Biquad Basic Kernel

Thisisamultisample kernel because the computations of y(n) and y(n + 1) are interleaved with each
other. Thisinterleaving alows the computation of a second biquad to begin before the computation for
the first biquad has completed. A serial dependency exists between T(n) from the first to the second
biguad. As many computations as possible are performed before the seria dependency to maximize
pipelining. Since T(n — 1) is shared from the first to the second biquad, the second biquad beginsits
computation ahead of the serial dependency using T(n—1). A specific diagram of the T computation is
shown in Figure 5-35.

Generic Kernel n

TE) Use T(n-2) Generic Kernel n+1

N _ Compute T(n) . __ __ UseT(n-l) _ _|__ __ | __ __ __ __ __ __ Use T(n-1) _
o T(n-2) =T(n) Compute T(n+1) Use T(n)

§ T(n-1) = T(n+1)

Figure 5-35. Computation of T for the Dual Sample Biquad

Generic kernel nuses T(n—2) and T(n— 1) to compute T(n). Generic kernel n + 1 uses T(n—1) asits
second delay and T(n) from generic kernel n asitsfirst delay. It isimportant to note that T(n—1) is shared
between both generic kernels although it represents two different points in time from the point of view of
the generic kernel. It isthe first delay in generic kernel n, but the second delay in generic kernel n + 1.

A second generic kernel is executed prior to the next iteration of the basic kernel; therefore, each delay is
in effect shifted a second time. Thus, T(n) is shifted two times and becomes T(n — 2) at the start of the
next basic kernel. Likewise, T(n + 1) isshifted two times and becomes T(n — 1) at the next iteration of the
start of the next generic kernel. The pipelining of the basic kernel bigquad computationsin Figure 5-34
shows that the basic kernel requires four instructions.

5-35

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.
Multisample Programming Techniques

5.6.1 C Simulation Code (version l.a)

5-36

//Bi quad simul ation.
#i ncl ude <stdio. h>

#def i ne Dat aBl ockSi ze 40// size of data block to process

doubl e Dat al n[Dat aBl ockSi ze] = {

0.01, 0.3, 0.25, -0.2, -.1, 0.1, 0.1, -0.2, -0.3, 0.15,
0.25, -0.2, 0.01, 0.3, 0.15, -0.2, -.1, 0.1, 0.1, -0.3,
0.15, -.1, -0.3, 0.25, -0.2, 0.01, 0.3, -0.2, 0.1, 0.1,
0.1, 0.01, 0.3, 0.15, -.1, -0.3, 0.25, -0.2, -0.2, 0.1
b

double al = -0.6;

double a2 = 0. 2;

double bl = 0.5;

double b2 = -0.2;

int main(int argc, char *argv[])

{

doubl e TNML=0. 0, TNWR=0. 0;

doubl e TN, TNP1, YN, YNP1;

int i,InPtr;

InPtr = 0;

for (i =0; i < DataBlockSize; i += 2) { /1 do all sanples

TN = Dataln[InPtr++]; TNP1 = Datal n[|nPtr++];

TN += TNM2 * a2; YN = TNM2 * b2;
TN += TNML * al; YN += TNML * bl; TNP1 += TNML * a2; YNP1 = TNML * b2;
YN += TN, TNM2 = TN; TNP1 += TN * al; YNP1 += TN * bil;
YNPL1 += TNP1; TNML = TNP1;
printf("Qutput %\n", YN);
printf("Qutput %\n", YNP1);
}

return(0);

}

Theinner kernel requires four instructions for computing two samples. The number of instructions per
biquad is (4) (1) / (2) = 2. Assuming loads/stores occur with dual operand moves, the kernel on page 5-35
requires four instructions with two moves for atotal of six instructions. To implement this on a DSP, the
algorithm requires pipelining to overlap moveswith the ALU instructions. The pipelined algorithm is
shown in Figure 5-36.

T =x(n) T+ =x(n+1)

Pipeli
Stgrt—ltrj]g T(N)+=T(n-2)* a2 y(n)=T(n-2) * b2

T +=T(n-1)*al yn)+=T(-1)*bl T(M+)+=T(n-H)* a2 y(n+l)=T(n-1)* b2
y(n) +=T(n) T(n-2) =T(n) T(n+1) +=T(n) * al y(n+1) += T(n) * bl

y(n+1) += T(n+1) T(n-1) =T(n) T) =x(n) T(n+1) = x(n+1)
e B I U TOAE, v ronem yoenotono SN0 SO0
en = -2) = +1) += * +1) += *
y(n) +=T(n) T(n-2) = T(n) y((rr1]+1)) = T((rr:ll) ¥((?1—1)):T(n()n) T =x) T =x(n+1)

Pipeline

Clean-up output y(n) output y(n+1)

Figure 5-36. Pipelined Dual Sample Biquad

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.

Multisample Programming Techniques

The filter output stores have been moved to the first line of the kernel. After the kernel computes the

output values, the next iteration of the kernel outputs the values. To start up the pipeline and make values
available for thefirst iteration of the kernel, the loop is unrolled and one iteration is used for the pipeline

start-up. The pipeline clean-up outputs the last two values computed by the last iteration of the basic
kerndl.

5.6.2 C Simulation Code (version l.b)

//Bi quad simul ation.
#i ncl ude <stdio. h>

#def i ne Dat aBl ockSi ze 40// size of data block to process

doubl e Dat al n[Dat aBl ockSi ze] = {

0.01, 0.3, 0.25, -0.2, -.1, 0.1, 0.1, -0.2, -0.3, 0.1
0.25, -0.2, 0.01, 0.3, 0.15, -0.2, -.1, 0.1, 0.1,
0.15, -.1, -0.3, 0.25, -0.2, 0.01, 0.3, -0.2, 0.1,
0.1, 0.01, 0.3, 0.15, -.1, -0.3, 0.25, -0.2, -0.2,
b

double al = -0.6;
double a2 = 0.
double bl =0
double b2 = -0.2;

o O o
PP Wwo

int main(int argc, char *argv[])
{

doubl e YNML=0. 0, YNMR2=0. 0;

doubl e TN, TNP1, YN, YNP1;

int i,InPtr;

InPtr = 0;
TN = Dataln[InPtr++]; TNP1 = Dataln[InPtr++];

TN += YNM2 * a2; YN = YNM2 * b2;
TN += YNML * al; YN += YNML * bl; TNP1 += YNML * a2; YNP1 = YNML * b2;

YN += TN, YNM2 = TN; TNP1 += TN * al; YNPL += TN * b1l;
YNP1 += TNP1; YNML = TNP1; TN = Dataln[lnPtr++]; TNP1 = Dataln[InPtr++];
for (i = 0; i < DataBlockSize/2-1; i++) { /1 do all sanples

TN+=YNMR*a2; printf("Qutput%\n",YN); printf("Qutpu %\n", YNP1); YN=YNWR*b2;
TN += YNML * al; YN += YNML * bl; TNP1 += YNML * a2; YNP1 = YNML * b2;
YN += TN, YNM2 = TN, TNP1 += TN * al; YNP1 += TN * bil;
YNP1 += TNP1; YNML = TNP1; TN = Dataln[lnPtr++]; TNP1 = Dataln[InPtr++];
}
printf("Qutput %\n", YN);
printf("Qutput %\n", YNP1);
return(0);

}

5-37

For More Information On This Product,
Go to: www.freescale.com

[]

L |

Freescale Semiconductor, Inc.

Multisample Programming Techniques

5.6.3 SC140 DSP Code (version 1.b)

5-38

org p:0
Bl ockl n
dc 0.01,0.3,0.25,-0.2,-.1,0.1,0.1,-0.2,-0.3,0. 15
dc 0.25,-0.2,0.01,0.3,0.15,-0.2,-.1,0.1,0.1,-0.3
dc 0.15,-.1,-0.3,0.25,-0.2,0.01,0.3,-0.2,0.1,0.1
dc 0.1,0.01,0.3,0.15,-.1,-0.3,0.25,-0.2,-0.2,0.1
Bl ockSi ze equ (*-Blockln)/2
Bl ockQut ds 2*Bl ockSi ze
org p: $400
nove #Bl ockln,r0
nove #Bl ockQut,r1l
doset up0 BQ _SdoenO #(Bl ockSi ze-2)/2
nove. f #-0.6,d6 ;al
nove. f #0.2,d7 ;a2
nove. f #0.5,d4 i bl
nove. f #-0.2,d5 ;b2
[clr d8clr d9 Sart Ws at value from
previ ous bl ock processed.
Snce thisis the first
bl ock, we start fromO.
nove. 2f (r0)+, d0: d1

[
]

mac
macr
mac

add
macr

add
nove

| oopstartO

BQ S
[

]
[

]

mac

ds, d7, donpy d8, d5, d2
d9, d6, domac d9, d4, d2
d9, d7, dinpy d9, d5, d3

do, d2, d2tfr do, d8
do, d6, dimac doO, d4, d3

di, d3,d3tfr di,d9
.2f (r0)+,d0:d1

ds, d7, donpy d8, d5, d2

noves. 2f d2:d3, (rl1)+

macr
mac

add
macr

add
nove

| oopend0
noves. 2f d2:d3, (rl1)+

end

nove

d9, d6, domac d9, d4, d2
d9, d7, dinpy d9, d5, d3

do, d2, d2tfr do, d8
do, d6, dimac doO, d4, d3

di, d3,d3tfr di,d9
.2f (r0)+,d0:d1

Copy the data block to
the output file. This is
only needed to check the
si mul ati on.

#Bl ockQut , r0

doset up0 WiteBl ockdoenshO #Bl ockSi ze
| oopstartO
WiteBl ock

nove

f (ro)+ do

noves. f dO,p:$fffffe
| oopend0

For More Information On This Product,
Go to: www.freescale.com

O
]

Freescale Semiconductor, Inc.
Multisample Programming Techniques

The performancefor thisfilter is(4) (1) / (2) = 2, for two instructions per biquad. Additional pipelining of
the algorithm presented in Figure 5-36 can result in afaster algorithm. To squeeze the two instruction
generic kernel (four instruction basic kernel for two samples) into a smaller kernel, the following
modifications are made:

» Combinethe last instruction of the kernel (parallel add and tfr) with the empty ALU dots on the first
instruction of the kernel.

« If thelast instruction of the kernel is removed, the load for x(n) and x(n+1) is moved to the previous
instruction. However, loading these variables one instruction earlier overwrites variables currently in
use. The solution is to load the variables one instruction earlier into a different set of registers.

» Thelast instruction is merged with the first instruction of the loop; therefore, writing outputsis moved
from the first instruction to the second instruction.

» Variables are loaded into a different set of registers for the next iteration, so the kernel must be
duplicated to reference the different set of registers.

The new pipelining is shown in Figure 5-37.

Step 1 Step 3
Biquad Step 2 Step 1
1
Biquad
Step 3 Step 2 2 q Basic
Kernel
Step 1 Step 3
Biquad Step 2 Step 1
3
Step 3 Step 2 Elquad

Figure 5-37. Increased Pipelining of the Dual Sample Biquad

Biquads 3 and 4 are computed using the same overlap as biquads 1 and 2; however, biquad 3 evaluation
overlaps biquad 2. Duplicating the basic kernel creates additional opportunities for moving datain and
out. The kernel now appears as shown in Figure 5-38.

%ﬁ%ﬁﬁ T BN RO e § PO e autput v,)
= n) += * n - *

=T(n) +E(n) Tx}n 2) (T(n; T§n+1; +=T §n) * al n+13 += Sr(n) * bl Input Tx(r% Tx(n+1)
%@% IR0 2 %22; Lty i R e i R S TExX§n lg T1§x§n Dbz ot (), Y(ni)
Yx(n) = Tx(n-1) + Ex(n) T(n-2) = Tx(n) Tx§n+1§ += Tx§n) * a1 Ex(n+1) = Tx(n) input T(n), T(n+1)

Figure 5-38. Three Instruction Pipelined Dual Sample Biquad Kernel

5-39
For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.
Multisample Programming Techniques

Thekernel in Figure 5-39 computes four biquadsin six instructions for an average of 1.5 instructions per
biquad. For thiskernel, it is somewhat difficult to see the biquad cal culations because the kernel is
heavily pipelined. To clarify the pipelining, it is best to highlight the individual biquad calculations. The
first biquad is shown in Figure 5-39.

T(m+=T n:2 : a2 2) * Pz Yx(n+1) = Tx(n+1) + Ex(n+1) T% Tx(n+1)* v v "
$§?§ Z‘Té\?} " T>§<<§1 5 gr‘r? SRR e, DR) el N R A ALY
Kéﬂi b e =+ PRI IR e Eﬁ%” DT s b2 autpu (o), V(e
Yx(n) = Tx(n-1) + Ex(n) T(n-2) = TX(n) Tx2n+1g += Tx2n) * a1 Ex n+1g +=Tx()* bl input T(n), T(n+1)

Figure 5-39. Calculations for the First Biquad

The second biquad is shown in Figure 5-40.

T(m+=T(n-2* a2 n 2) * 2 Yx(n+1) = Tx(n+1) +Ex(n+l) T(n-1 Tx n+1)

T =T(n-1)* al n * bl T(n+1 +—T * a2 E(n+1) = T(n-1) * b2 output YX(n), YX(n+1)
T(n) +E(n) T(n+1) += T n) al E(n+1) +=T(n) * bl input Tx(n), Tx(n+1)

Tx(n) +=Tx(n- 2 a2 BEx(nN)=Tx(n2)* b2 Y(n+L n+1) + E(n+1) TX(n-1) = T(n+1)

Tx(M) +=Tx(n-1) * al Ex(n) =Tx(n-1) * bl Tx(n+ Ex(n+ x(n-1) * b2 output Y(n), Y(n+1)

Yx(n) =Tx(n- l) +EX(n) T(n-2) =Tx(n) TX(+1 = % n) Y a1 Ex(n+l) +=Tx(n) * b1 input T(m), T(n+1)

Figure 5-40. Calculations for the Second Biquad

The third biquad is shown in Figure 5-41.

IM+=T(n2*a2 =T(n-2) **b2 YX(n+1) = Tx(n+l) + Ex(n+1) Eg TX(n+1)

MRS BRSNS MRS el meovey
TX(n) += Tx(n-2) * a2 Ex n)=Tx(n-2)* b2 Y(r+1)=T(n+1) + E(n+l) TX(n-1) = T(n+1)

Txg §+_ Tx§ j Tx§n 13 *bl TX(nt EX§n+ g X(n-1)* b2 output st) Y(nt1)
Yx(n) = Tx(n- 1) + Ex(n) T(n-2) = Tx(n) Tx§n+1§ += Tx§n) al Ex(n+1) +=Tx(n)* bl input T(n), T(n+1)

Figure 5-41. Calculations for the Third Biquad

The fourth biquad is shown in Figur e 5-42.

T(n) += Tgn-Zg a2 = T_%_n 2) * b2 Yx(n+1) = Tx(n+D) + Ex(n+1) T(n Tx(n+1)
T(n) +=T(n-1) * al += * bl T(n+1) +=T(n-1)* g gr n-1) * b2 output YxSn) Yx(n+1)
=T(n) +E(n) T 2 T§n+13 +=T En)* al D) += ()™ bl input Tx(n), Tx(n+1)
W%%QWWWWWN”%W%WWWM
= - +1) +=
Yx(n) = Tx(n-1) + Ex(n) ¢) 'I)'(x?n) T§22+1g += T§ R) *) al Ex n+1g +=Tx(n)* bl input T(nS T(n+1)

Figure 5-42. Calculations for the Fourth Biquad

5.6.4 C Simulation Code (version Il)

5-40

//Bi quad simul ation.
#i ncl ude <stdio. h>
#def i ne Dat aBl ockSi ze 40 /1 size of data block to process

doubl e Dat al n[Dat aBl ockSi ze] = {

0.01, 0.3, 0.25, -0.2, -.1, 0.1, 0.1, -0.2, -0.3, O.15,
0.25, -0.2, 0.01, 0.3, 0.15, -0.2, -.1, 0.1, 0.1, -0.3,
0.15, -.1, -0.3, 0.25, -0.2, 0.01, 0.3, -0.2, 0.1, 0.1

For More Information On This Product,
Go to: www.freescale.com

[]

L |

Freescale Semiconductor, Inc.
Multisample Programming Techniques

0.1, 0.01, 0.3, 0.15, -.1, -0.3, 0.25, -0.2, -0.2, 0.1
}s

double al = -0.6;
double a2 = 0.2;
double bl = 0.5;
double b2 = -0.2;

int main(int argc, char *argv[])

{

doubl e W.=0. 0, W2=0.0;

doubl e TN, TNP1, EN, ENP1, YN, YNP1, TNML, TNM2;

doubl e TNx, TNP1x, ENx, ENP1x, YNX, YNP1x, TNMLX, TNM2X;
int i,InPtr;

InPtr = 0;

TNx = Dataln[InPtr++]; TNP1x = Dataln[InPtr++];

TNx += TNM2x * a2; ENx = TNMEx * b2;

TNx += TNMLlx * al; ENx += TNMLx * bl; TNP1x += TNMLx * a2; ENP1x = TNMLx * b2;
YN = TNx + ENx; TNM2 = TNx; TNP1x += TNx * al; ENP1x += TNx * bil;

TN = Dataln[InPtr++]; TNP1 = Datal n[I nPtr++];

for (i = 0; i < DataBl ockSize/4-1; i++) {// do all sanples
TN += TNM2 * a2; EN = TNM2 * b2; YNP1x = TNP1x + ENP1x; TNML = TNP1x;
TN += TNML * al; EN += TNML * bl; TNP1 += TNML * a2; ENP1 = TNML * b2;
printf("%\n", YNX); printf("%\n", YNP1x);
YN = TN + EN; TNM2x = TN; TNP1 += TN * al; ENP1 += TN * bil;
TNx = Dataln[InPtr++]; TNP1x = Dataln[lnPtr++];

TNx += TNM2x * a2; ENx = TNMEx * b2; YNP1 = TNP1 + ENP1; TNMLx = TNP1;
TNx += TNMLx * al; ENx += TNMLx * bl; TNP1x += TNMLx * a2; ENP1x=TNMLx*b2;
printf("%\n",YN; printf("%\n", YNP1);
YN = TNx + ENx; TNM2 = TNx; TNP1x += TNx * al; ENP1x += TNx * bil;
TN = Dataln[InPtr++]; TNP1 = Dataln[InPtr++];
}
TN += TNM2 * a2; EN = TNM2 * b2; YNP1x = TNP1x + ENP1x; TNML = TNP1x;
TN += TNML * al; EN += TNML * bl; TNP1 += TNML * a2; ENP1 = TNML * b2;
printf("%\n", YNX); printf("%\n", YNP1x);
YN = TN + EN; TNP1 += TN * al; ENP1 += TN * bil;
YNP1 = TNP1 + ENP1;
printf("%\n", YN ;printf("%\n", YNP1);
return(0);

}

5.6.5 SC140 DSP Code (version Il)

org p: 0

Bl ockl n

dc 0.01,0.3,0.25,-0.2,-.1,0.1,0.1,-0.2,-0.3,0.15
dc 0.25,-0.2,0.01,0.3,0.15,-0.2,-.1,0.1,0.1,-0.3
dc 0.15,-.1,-0.3,0.25,-0.2,0.01,0.3,-0.2,0.1,0.1
dc 0.1,0.01,0.3,0.15,-.1,-0.3,0.25,-0.2,-0.2,0.1

i

Bl ockSi ze equ (*-Blockln)/2

Bl ockQut
ds 2*Bl ockSi ze

org p: $400
nove #Bl ockln,r0
nove #Bl ockQut,r1l

doset up0 BQ _SdoenO #Bl ockSi ze/ 4-1
5-41

For More Information On This Product,
Go to: www.freescale.com

[]
L |

5-42

]

Freescale Semiconductor, Inc.
Multisample Programming Techniques

nove.f #-0.6,d6 ;al
nove. f #0.2,d7 ;a2
nove. f #0.5,d4 i bl
nove. f #-0.2,d5 ;b2
clr d8clr d9 ; Sart Ws at value from

previ ous bl ock processed.
Since this is the first
bl ock, we start fromO.

nove. 2f (r0)+, d12:d13
mac d8, d7, d12npy d8, d5, d2

macr d9, d6, d12mac d9, d4, d2
mac d9, d7, d13npy d9, d5, d3

add di12,d2,d2tfr di2,ds
macr dl12,d6,d13mac di12, d4, d3
nove. 2f (r0)+, d0: d1

| oopstartO

BQ S
[

]
[

]

mac d8, d7, donpy d8, d5, d14
add di3,d3,d3tfr di3,d9

macr d9, d6, dOnmac d9, d4, d14
mac d9, d7, dlnpy d9, d5, d15
noves. 2f d2:d3, (rl1)+

add do, di14, diotfr do, d8
macr dO, d6, d1 nmac dO, d4, d15
nove. 2f (r0)+, d12:d13

mac d8, d7, d12npy d8, d5, d2
add di,d15,d11 tfr di,d9

macr d9, d6, d12nmac d9, d4, d2
mac d9, d7, d13 npy d9, d5, d3
noves. 2f d10:d11, (r1)+

add di12,d2,d2 tfr di2,d8
macr dl12,d6,d13mac di2, d4, d3
nove. 2f (r0)+, d0: d1

| oopend0

[

]
[

mac d8, d7, donpy d8, d5, d14
add di13,d3,d3tfr di3,d9

macr d9, d6, dOonmac d9, d4, d14
mac d9, d7, dinpy d9, d5, d15
noves. 2f d2:d3, (rl1)+

add dO, d14, d10macr dO, d6, d1
mac dO, d4, d15

add d1i, d15, d11
noves. 2f d10:d11, (rl1)+
Copy the data block to
the output file. This is
only needed to check the
simul ati on.
nove #Bl ockQut,r0
doset up0 WiteBl ockdoenshO #Bl ockSi ze

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.
Multisample Programming Techniques

| oopstartO
WiteBl ock
nove. f (r0)+,dO0
moves.f dO, p:$fffffe
| oopend0
end

The performance of this codeis (6) (1) / (4) = 1.5 instructions per biquad. Thisis 25 percent faster than
the previous implementation.

5.6.6 C Code for the SC140 C Compiler
The C code presented is a fixed point version of the multisample correlation algorithm.

//Bi quad simul ation.
#i ncl ude <prototype. h>

#defi ne Dat aBl ockSi ze 40 Il size of data block to process

#define al -19661
#define a2 6554
#define bl 16384
#define b2 -6554

Wor d16 Dat al n[Dat aBl ockSi ze] = {
328, 9830, 8192, -6553, -3276, 3277, 3277, -6553, -9829, 4915,
8192, -6553, 328, 9830, 4915, -6553, -3276, 3277, 3277, -9829,
4915, -3276, -9829, 8192, -6553, 328, 9830, -6553, 3277, 3277,
3277, 328, 9830, 4915, -3276, -9829, 8192, -6553, -6553, 3277,

s
Wor d16 Dat aQut [Dat aBl ockSi ze] ;
volatile Wrdl6 res;

int main()

{

Word16 YNML=0, YNMR=0;
Word32 TN, TNP1, YN, YNP1;
int i;

for (i = 0; i < DataBl ockSize/2; i++) { /1 do all sanples
TN = L_deposit_h(Dataln[2*i]);

TNP1 = L_deposit_h(Dataln[2*i +1]);

TN = L_mac(TN, YNM2, a2); YN = L_mul t (YNM2, b2);

TN = L_mac(TN, YNML, al); YN = L_mac(YN, YNML, b1);

YN = L_add(YN, TN) ; YNM2 = round(TN);

TNPL = L_mac(TNPL, YNML, a2); YNPL = L_nult (YNML, b2);

TNP1 = L_mac(TNP1, round(TN),al); VYNP1 = L_mac(YNPL, YNM2, bl);
YNP1 = L_add(YNP1, TNP1); YNML = round(TNP1);
Dat aCut[2*i] = round(YN);

Dat aCut [2*i +1] = round(YNP1);
}

for (i = 0; i < DataBl ockSize; i++)
res = DataQut[i]);

return(0);

}

5-43

For More Information On This Product,
Go to: www.freescale.com

[]

]

5.7 Summary

5-44

Freescale Semiconductor, Inc.
Multisample Programming Techniques

The multisample processing technique described in this chapter is only a pipelining technique that
exploits operand reuse of an algorithm. A few simple guidelines on developing a multisample algorithm
are presented, as follows:

 Typically the number of samples that the kernel should process simultaneoudly is four (as the number
of ALUsin the SC140 core).

» Write the equations for the samples that are simultaneously computed. Determine which operands are
reused.

 Determine when the operands need to be loaded.

» Usemultiple register sets to avoid copy operations within the kernel.

 Determine when the kernel repeats. Thisisthe length of the kernel.

» Observethelifetime of an operand from when it isloaded to when it is no longer needed. The lifetime
of the operand indicates the length of the basic kernel.

» Move serial dependenciesto the end of the computation. Sometimes this may be as easy as evaluating
the equation from the last term to the first term.

The reuse of operandsis similar to data caching. The register file acts as a data cacheto allow ALUs fast
access to operands without going to memory. The pipelining of the algorithm creates the locality of
reference to create the effect of adata cache.

Although it is not obvious, multisample algorithms provide the same bit exact results as single sample
algorithms. Thisis possible because the a gorithm performs the same exact operations but with a different
pipeline. Thisisimportant for algorithms requiring bit exact compliance, such as speech coders.

Due to the multisample method, the number of memory moves per sample islower. Thisincreasesthe
algorithm performance if the data memory has wait states. Additionally, fewer memory moves may result
in less power consumption. Thisis also beneficial for reducing potential contention between operandsin
the same memory or allowing more bus bandwidth for other activities, such as DMA.

Reusing operands relaxes the alignment requirements for loading operands, allowing simpler addressing
of operands. By relaxing the requirements, multisample algorithms effectively solve the problem of
memory bus bandwidth, operand alignment or limited algorithm parallelism when multiple ALUs are
used.

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.
Application Code Size Estimation

6 Application Code Size Estimation

This chapter presents a method for estimating the code size of application to be ported from the
DSP56300 core to the SC140 core. This method has been verified by comparing the code size estimated
by the method to the actual compiled code size of afunctional routine. The results of this comparison are
presented in Section 6.4.

This method yields a code size estimate that is close to the lower bound of the SC140 CORE, assuming
that the given source code is optimized for space. The overall stepsin the method are:

1. Coallect the profiler output.

2. Cadculate the estimated code size.

3. Verify the method on real code.

4. Obtain aMillion Cycles Per Second (M CPS) estimate for the code.

6.1 Requirements and Assumptions

This method requires, a profiler output of the application implementation on the DSP56300 core. To
obtain this output, execute the code using input data that causes the implementation to passthrough all its
parts. There are no requirements on the number of frames or any other dynamic data-rel ated issues since
the analysis is based only on static information.

The following assumptions are made:

1. Every DSP56300 operation can be trandlated to a single SC140 operation.

2. Every two words of operation in the DSP56300 core can be translated into a single two-word
operation in the SC140 core.

3. Every arithmetic operation with a parallel single-move that is a single instruction in the DSP56300
core can be trandated into two SC140 instructions, one arithmetic and one move.

4. Every arithmetic operation with a parallel double-move that is asingle instruction in the DSP56300
core can be trandated into three SC140 instructions, one arithmetic and two moves.

5. Each DSP56300 instruction can be translated into an SC140 execution set.

6. Twenty percent of the DSP56300 instructions that contain asingle parallel move result in aoneword
additional prefix due to parallelism cost. This rule should not be applied to the double parallel move
instructions since thiskind of move can be performed without a prefix on the SC140 core.

7. Thismethod isinherently biased since there are someinstructions, mainly including immediate data,
that consume more bytes on the SC140 core than on the DSP56300 core. This bias is described by
examplesin Section 6.4. Thisalso appliesto theloop mechanism of the SC140 core, whichisagreater
code consumer than the DSP56300 core. To compensate for thisbias, afactor of ten percent is added
to the overall estimation.

6-1

For More Information On This Product,
Go to: www.freescale.com

O
]

Freescale Semiconductor, Inc.
Application Code Size Estimation

6.2 Collecting Data From the DSP56300 Profiler Output

The following figures should be collected from the DSP56300 profiler output:

1.
2.

5.

Code size. C Located at the beginning of the report, under a table entitled “Basic Profile.”

Single Sy . Located in the report under atable entitled “ Instruction moves break-down,” at the bottom
line“TOTAL,” inthe“static moves’ column.

Double D+ . Located as listed above for Single Sy.

Single S, . Located under the table “Instruction moves breakdown”, in the line starting with
mnemonic "move", “static moves’ column (These figures represent move operations without

aDALU one.
Double Dy,. Located as listed above for Single Sy.

Next, assign the above parameter values to the following equations:

» Number of instructions translated into a two-operations execution set: S=S;-S,+Dy

» Number of instructions translated into three-operations execution set: D=D

77 Dwm

» Number of instructions translated into a single-operation executionset: U = C-S-D

6.3 Calculating the Estimated Code Size

Each execution set type (U, S, or D) istrandated to one, two, or three wordsin the SC140 core,
respectively. Sometimes, however, an additional prefix word is created in the SC140 core. The prefix is
generated by any of the following:

1.

Use of the higher bank of DALU registers, D8 to D15. Thisis not expected in a program created by
tranglation as described here. Therefore, it is assumed that the translated program can be written
without these registers.

Use of type 4 instructions. When thistype of instruction is parallelized, an additiona prefix word may
be generated under some conditions.

The source of these instructions cannot be a DSP56300 instruction of asingle operation (which is
tranglated into a single-instruction execution set). It also cannot be a DSP56300 instruction of a
DALU operation with a double move, because this type of instruction does not belong to type 4.
Therefore, only part of the DSP56300 instructions of aDALU operation with single move can
generate a prefix word during translation. A 20 percent correction is factored in for this type of
instruction.

Use of an If condition. It is assumed that the increase of words dueto an if condition is compensated
by fewer instructions per agorithmic operation in the SC140 core. Thisreduction is expected due to
improvements that exist in the SC140 corerelative to the DSP56300.

Following is a summary of the SC140 code size calculation considerations:

Single parallel-move instructions result in two words plus 0.2 prefix words, that is, 2.2 words.
Double parallel-move instructions result in three words.

Theinstructions that cannot contain a parallel move and the unpaired instructionsresult in asingle
word.

The sum of all words should be multiplied by 2 in order to translate the code size into bytes.

This value should be multiplied by 1.1 to correct the estimate for inherent bias.

Thus, the formula used to estimate the SC140 code size is:

6-2

SC140size = 2.2 x (U + 2.2S + 3D)

For More Information On This Product,
Go to: www.freescale.com

[]

]

6.4

6.5

6.6

Freescale Semiconductor, Inc.
Application Code Size Estimation

Verifying the Method on Real Code

The code size estimation method was tested on two GSM EFR vocoder subroutines: t x_dt x and
Lag_max. The experiment successfully completed and therefore demonstrated such trandlation is
possible. The results are summarized in Table 6-1.

Table 6-1. Vocoder Subroutine Tests

SC140
. SC140
S D S D
Subroutine C T T M Ml S D U dee Code Actual
Estimate
tx_dtx 68 31 0 28 0 3 0 65 157 162
Lag_max 53 20 10 18 5 7 5 41 157 156

Obtaining an MCPS Estimate

The code size estimation method deal swith the lower bound to the code size. However, it isalso useful to
know the M CPS value achieved in the code. Since the production of the code assumes atranslation of a
single DSP56300 instruction to a single SC140 execution set, the same cycle count is expected; that is,
the estimated M CPS value is the same for the SC140 core as for the DSP56300 core.

Example—GSM EFR Vocoder

In the EFR implementation for a DSP56300 version 2.3, the following figures are collected from the
profiler output 56300_bot h_test2_v2_3.1 og:

C = 8638

Sr = 4522

D; = 562

Sy = 3788

Dy = 271

S =S; - Sy+ Dy= 4522 - 3788 + 271 = 1005
D=D - Dy= 562 - 271 = 291

U=C- S- D= 8638 - 1005 - 291 = 7342
U= Ur + Sy = 608 + 3788 = 4396

We applied the following formula:

SC140size = 2.2 x (7342 + 2.2 x 1005+ 3 x 291) = 22937 = 23KBytes

The SC140 to DSP56300 ratio in this example can be calculated as follows:

22937 _ (gq

SC140 to DSP56600 ratio = 3x8638

Note: A different ratio can be calculated for a different application.

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.
Application Code Size Estimation

6.7 Getting More Practical Results

Assuming this method is acceptable and achievable, this section describes practical considerations for
achieving a high performance implementation on the SC140 core.

It is most practical to apply this method only to the less DSP-intensive code. If part of the codeis
manually written in SC140 assembly, the code size estimate should be applied only on the rest of the code
and the final result should integrate these figures. The values of C, U, S, and D are calculated without
these subroutines, the code size is estimated with them, and they are added to the code size achieved in
the manually written subroutine. Similarly, the MCPS consumption of the manually written subroutines
in the DSP56300 should be subtracted and the value of the SC140 assembly subroutines should be added
in order to get the practical MCPS figure.

The drawback of this approach isthe need for manipulations on the DSP56300 figures that make the
estimation process less straightforward. However, the results are more practical and can achieve the goal
of the implementation.

6.8 Example—GSM EFR Vocoder

For the GSM EFR vocoder, the application is divided into three groups. Groups | and |l are manually
implemented in assembly, and Group 111 is compiled. The results are summarized in Table 6-2.

Table 6-2. GSM EFR Vocoder Results

Code Section Compi_lation Program MCPS
Option Bytes

DSP subroutines (Group | + 1) 14996 3.64
Control code (Group lll) compiled space 26680 5.16
Group Il translated (estimation) 15788 3.2
Integration version: Total EFR, Group Ill compiled space 41676 8.8
Integration version: Total EFR, Group Ill compiled speed 61184 7.25
Total EFR, Group Il translated (estimation) 30784 6.84
Standard version: Total EFR, all compiled space 35968 27.97
Standard version: Total EFR, all compiled speed 43098 18.77
Total EFR, all translated (estimation) 22937 17.69

Theresults are further summarized in the graph in Figure 6-1, and the following conclusions are derived:
1. Inadll non-dashed curves, the impact of manual assembly programming is demonstrated. If this effort
isinvested, asignificant improvement in MCPS is expected with some penalty in code size.

2. Thedashed [curve demonstrates the trade off between MCPS and code size that is possible simply
by use of the compiler switch options.

3. Improvement in compiler performance can be expected, resulting in the [curvemovi ngtowardsthe
0. Thetwo U curve points represent about the same code size as the al.

4. About the same MCPS performance is achieved in both the translated code and the compiled code.
See the corresponding U and O curve points.

For More Information On This Product,
Go to: www.freescale.com

O
]

Freescale Semiconductor, Inc.

Application Code Size Estimation

MCPS

all compiled space

30 +—
|
25 + \
\\D all compiled speed
20 +— all translated .
15 +—
D G3 compiled space
10 +—
5 1 G3 translated
f f f f f f |
10 20 30 40 50 60 code size [KB]
Legend

D Translation curve

D Compilation for space curve

D Compilation for speed curve

D Compiler switches space/speed curves

Figure 6-1. Code Size Versus MCPS Curves

6.9 Summary

The estimation method discussed in this chapter is based on many assumptions that reduce its accuracy,
for example, the estimated number of prefix words. The assumption that the DSP56300 can be
one-to-one translated to the SC140 core is not true. For example, the hardware |oop mechanism of the
DSP56300 is completely different from that of the SC140 core. An SC140 loop consumes two
instructions, but a D SP56300 loop consumes only one instruction. This analysis assumes that all these
differences are balanced by a 20 percent addition to the single parallel move instructions.

For More Information On This Product,
Go to: www.freescale.com

[]

2 |

6-6

Freescale Semiconductor, Inc.
Application Code Size Estimation

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.

Example C Code in SC140 Format

A Example C Code in SC140 Format

R R R R R R R R

*
*

*

/

*

*

GSM 06. 60 - Enhanced Full Rate (EFR) Vocoder

C CODE FOR MOTOROLA StarCore SC140

LR EEEREEEEREEREEEEEEEEEEEREEREEREEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES

MODULE NAME: Az_| sp

SUBROUTI NES | NCLUDED: az_| sp

chebps

LR R R R R R R R R R R R R R R R R R R R

SUBROUTI NE NAMVE: az_| sp

LR E R EREEREEREEREEEEEREEREEEEREEREEREES

INPUT: Wordl6 a[]: predictor coefficients

Word16 ol d_Isp[]: old Isp[] (in case not found 10 roots)

OQUTPUT: Word16 |sp[]: line spectral pairs

USAGE: void az_lsp (a[], Isp[], old_lsp[])

DESCRI PTI ON:
- The sumand difference filters are conputed and divi ded by

1+z7{-1} and 1-z~{-1}, respectively.

f1[i] = a[i] + a[11-i] - f1[i-1] ; i=1,...,5
f2[i] = a[i] - a[11-i] + f2[i-1] ; i=1,...,5

- The roots of F1(z) and F2(z) are found using Chebyshev pol ynom a

eval uation. The polynom als are evaluated at 60 points regularly
spaced in the frequency domain. The sign change interval is
subdivided 4 times to better track the root.

The LSPs are found in the cosine donain [1,-1]

If less than 10 roots are found, the LSPs fromthe past frane are
used.

ALGORI THM

For More Information On This Product,
Go to: www.freescale.com

*

*

**/

*

[]
L |

Freescale Semiconductor, Inc.
Example C Code in SC140 Format

* find the sumand diff. pol. F1(z) and F2(z) *
* Fl(z) <--- F1(z)/(1l+z**-1) & F2(z) <--- F2(z)/(1-z**-1) *
* *
* f1[0] = 1.0; *
* f2[0] = 1.0; *
* for (i =0; i< NC i++) *
* { *
* fa[i+1] = a[i+1] + a[Mi] - f1[i] ; *
* f2[i+1] = a[i+1] - a[Mi] + f2[i] ; *
* } *
* *

LR R

* BUGS: None *

***/

/***

* *
* SUBROUTI NE NAME: chebps *
* *

R R R R R R R S R R S

* INPUT: Wordlé x - Point val ue. *
* Word16 f[] - The coeffient vector of Chebyshev pol ynom al s. *
* Word16 n - The pol ynom al order (coeff vector |ength). *
* *
* QUTPUT: Wordl6 C(x) - The value of C(x) for the input x. *
* *
* USACE: C(x) = Chebps (x, f[], n) *
* *
* DESCRI PTI O\: *
* - The pol ynom al order is n=m2-=25 *
* - The polynom al F(z) (F1(z) or F2(z)) is given by *
* F(w) = 2 exp(-j5wW C(x) *
* where *
* C(x) = T_n(x) + f(1)T_n-2(x) + ... +Hf(n-1)T_2(x) + f(n)/2 *
* and T_m(x) = cos(mw) is the nmth order Chebyshev polynom al (x=cos(w)) *
* - The function returns the value of C(x) for the input x. *
* *
* ALGORI THM *
* *

R R R R R R S S R S

* BUGS: None *

R R R R R R R

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.
Running the SC140 C Code Example

B Running the SC140 C Code Example

This appendix shows how to run the same code as in Appendix E, Running the SC140 Assembly Code
Example, which performs the same correlation, but written in C.

B.1 Source File: corr.c

#i ncl ude "prototype. h"
#define N 12
#define T 12

Word16 x[N+T]; /* first input vector */
Word16 h[T]; /* second input vector */
Wordi16 y[N ; /* output vector */

volatile Wrdl6 Bufferln; /* input and output files */
vol atile Wrdl6 BufferCut;

void main ()

{

Word16 n, i, new_speech[2*T+N];
Word32 tnp;

Word16 count = O;

setnosat (); /* Disable the default saturation node */

while (count < 2)/* dumy count. the run ends at the end of the
input file, as defind in the sinmulator conmand file*/

{
for (i=0; i<2*T+N;, i++)
{
new _speech[i] = Bufferln; /* |load data */
}
for (n = 0; n < N+T; n+4)
{
x[n] =new_speech[n]; /* assign the data to x */
}
for (n =0; n < T, n++)
{
h[n] =new_speech[N+T+n]; /* assign the data to h */
}

for (n =0; n< N n++) /* MAIN LOOP */

{
t np=0;
for (i =0; i <T; i++)
{
tnp = L_mac (tnp, h[i], x[n+i]);
}

y[n] = round (tnp);

B-1

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.
Running the SC140 C Code Example

BufferQut = y[n]; /* save output to file */
count ++;

B.2 Compilation

The code is compiled with: ccsc100 corr. ¢

B.3 Running the Code

A command file (cor r . cnd) is created first:

load a.cld

radi x h

input #1 pi:FBufferln input_file.in -rh
out put #2 pi: FBufferQut output_file.out -o
break eof

go

qui t

Theinput file should include all the data that is loaded into the program, in the correct order.

From looking at the code it is easy seen that the first N+T words combine the first input vector, and the
next T words combine the second input vector. Each word in the file must be in adifferent line, so that the
simulator will be able to read it.

Therefore the input file will ook like this:

2175
aeb9
0729
30e7
bl2c
2613
f42c
a31lf
085e
1fd3
fdo2

The program is run with: si nsc100 corr. cnd
The output file can be compared (by value, not visually) to the assembler output filecorr.ref (see
Appendix E, Running the SC140 Assembly Code Example).

Note: Instead of the declaring an output file and writing to it, the save instruction can be used in the
simulator.

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.
SC140 Assembly Writing Format Standard

C SC140 Assembly Writing Format Standard

C.1 Columns Definitions

| abel o1
[,], loopstart, |oopend 6
ift, iff, ifa 7
1st instruction . 8
2nd instruction . 38
; . 68
coment . 70
end of line ;100

C.2 General Definitions

» Each line shall contain up to two instructions.

» An execution set with more than one line shall start with [and end with].

» An execution set shall start with DALU instructions and end with AGU ones.
* DALU and AGU instructions shall be in different lines.

» TABS shall not be used, only spaces.

Note: These definitions are for asm files, not documents. In the documents we use tabs to achieve the
most readable code. Below you can see an example of an assembly written file.

C.3 Example
| abel 1

EEE R R R R
i

This is a standard bl ock conment
The 1st and last lines are one ; and 79 * i.e. 80 characters
One blank line before and after the bl ock comment

EEE R R R R R R
i

| oopstartO
[mac doO, d1, d2 npy d3, d4, d5 ; coment 1
npyus doO, d4, d7 add do, d4, d8 ; This comment gets to the end!!
nove. w #3, n3 doenl #8 ; comment 3
]
LOOP1
| oopstartl
[mac doO, d1, d2 npy d3, d4, d5 ; This comment is too long so it
; gets another line.
npyus do, d4, d7 add do, d4, d8 ; coment 2a
nove. w #3, n3 nove.l (r5)+,r0 ; coment 3a
]
| ebel 2
[mac doO, d1, d2 npy d3, d4, d5 ; coment 1b
npyus do, d4, d7 add do, d4, d8 ; coment 2b

C-1

For More Information On This Product,
Go to: www.freescale.com

[]

L |

C-2

Freescale Semiconductor, Inc.
SC140 Assembly Writing Format Standard

nove. w #3, n3 nove.l (r5)+,r0 ; coment 3b
]

npyus doO, d4, d7 add do, d4, d8 ; coment 2c
| oopendl

EEEEEEEEEEEEEEEEEREEREEREEEEREEEEEEEREE TS
i

i

i

i

If condition of all execution set

EEEEEEEEEEEEEEEEEREEREEREEEEREEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESE]
i

[ift
mac do, d1, d2 npy d3, d4, d5 ; coment 4
npyus doO, d4, d7 add do, d4, d8 ; coment 5
nove. w #3, n3 nove.l (r5)+,r0 ; coment 6

EEE R R R R R R
i

i

i

i

If condition of D,D,A. The rest is done al ways

EEEEEEEEEEEEEREEEEREEREEREEEEREEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEES]
i

[iff
mac do, d1, d2 ; coment 7
nove. w #3, n3 ; comment 8

ifa
npyus doO, d4, d7 add do, d4, d8 ; coment 9

B R R R R R
i

i

i

i

1f, then, else

B R
i

[ift
mac do, d1, d2 npy d3, d4, d5 ; coment 10
nove. w #3, n3 ; comment 11

iff
nove. w #3, n3 ; comment 12

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.

Example Assembly Code in SC140 Format

D Example Assembly Code in SC140 Format

-k

i

i

- %

i

i

- %

i

- %

i

i

-k

i

-k

i

i

i

-k

i

i

i

- %

i

i

- %

i

i

-k

i

i

i

i

i

-k

i

-k

i

i

i

B R R R R
;* GSM 06.60 - Enhanced Full Rate (EFR) Vocoder
;¥ MOTOROLA StarCore SC140 ASSEMBLY *
EEE R R R R R R R
;* MODULE NAME: chebps
EEE R R R R
;% I NPUT: ro : & [0], coefficients of the chebychev polynom al, f[0:5]
0 * d2 : function input value
;¥ OUTPUT: d4 : function return val ue
*
;* CALLED BY: Az_|sp
;* CALLS TO None
;¥ MACROS USED: None
;* REQ STERS USED
;¥ CORRUPTED: do, d1, d2, d3, d4, d5, d7, d8
0 x ro
;¥ RESTORED:
EEE R R R R R R
;* BUGS: None
*
EEE R R R R R R
*
;* FUNCTION : Eval uates the Chebyshev pol ynom al series.
0 * The polynomial order is n=m2 =5
0 * The polynomial F(z) (F1(z) or F2(z)) is given by
o F(w) = 2 exp(-j5w) C(x)
0 * wher e
0 * C(x) = T_n(x) + f(1) T_n-L(x)+....+#f(n-1)T_1(x) + f(n)/2
0 * and T_m(x) = cos(mn) is the nmth order Chebychev pol ynom al
0 * This function returns the value of C(x) for the input x
*

EEE R R R R R R R R
i

EEE R R R R R R R
i

i

i

St ar Core SC140 Assenbly Witing Format

For More Information On This Product,
Go to: www.freescale.com

*

*

*

*

[]
L |

Freescale Semiconductor, Inc.
Example Assembly Code in SC140 Format

; Columms Definitions:

1
; [, 1, loopstart, |oopend 6
ift, iff, ifa 7
; 1st instruction 8

; 2nd instruction : 38
S 68
; comment 70
; end of line ;100

; General Definitions:

; - Each line shall contain up to two instructions.

- An execution set with nore than one line shall start with [and end with].
- An exectution set shall start with DALU instructions and end with AGU ones.
- DALU and AQJ instructions shall be in different lines.

- TABS shall not be used. Only spaces.

; The rest of the document is an exanple.

EEE R R R R
i

| abel 1

EEE R R R R R R
i

; This is a standard bl ock comment
; The 1st and last lines are one ; and 79 * i.e. 80 characters
; One blank line before and after the bl ock comment

EEE R R R S
i

| oopstartO
[mac doO, d1, d2 npy d3, d4, d5 ; coment 1
npyus doO, d4, d7 add do, d4, d8 ; This commrent gets to the end!!!
nove. w #3, n3 doenl #8 ; comment 3
]
LOOP1
| oopstartl
[mac doO, d1, d2 npy d3, d4, d5 ; This comment is too long so it
; gets another line.
npyus doO, d4, d7 add do, d4, d8 ; coment 2a
nove. w #3, n3 nove.l (r5)+,r0 ; coment 3a
]
| ebel 2
[mac doO, d1, d2 npy d3, d4, d5 ; coment 1b
npyus do, d4, d7 add do, d4, d8 ; coment 2b

For More Information On This Product,
Go to: www.freescale.com

[]

L |

Freescale Semiconductor, Inc.
Example Assembly Code in SC140 Format

nove. w #3, n3 nove.l (r5)+,r0 ; coment 3b
npyus doO, d4, d7 add do, d4, d8 ; coment 2c
| oopendl

EEE R R R R R
i

i

If condition of all execution set

EEE R R R R R R R
i

[ift
mac do, d1, d2 npy d3, d4, d5 ; coment 4
npyus doO, d4, d7 add do, d4, d8 ; coment 5
nove. w #3, n3 nove.l (r5)+,r0 ; coment 6

B R R R R R R R R R R R R R R R
i

i

If condition of D,D,A. The rest is done al ways

B R R R R R
i

[iff
mac do, d1, d2 ; coment 7
nove. w #3, n3 ; comment 8

ifa
npyus doO, d4, d7 add do, d4, d8 ; coment 9

B R R R R R R R
i

1f, then, else

EEEEEEEEEEEEEEEEEREEREEREEEEREEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEE]
i

[ift
mac do, d1, d2 npy d3, d4, d5 ; coment 10
nove. w #3, n3 ; comment 11

iff
nove. w #3, n3 ; comment 12

D-3

For More Information On This Product,
Go to: www.freescale.com

[]

2 |

D-4

Freescale Semiconductor, Inc.
Example Assembly Code in SC140 Format

For More Information On This Product,
Go to: www.freescale.com

o

]

Freescale Semiconductor, Inc.
Running the SC140 Assembly Code Example

E Running the SC140 Assembly Code Example

Thisappendix provides an example of how to run asimple benchmark program that performs correl ation.
It begins with the assembly code source file and shows the compilation and execution on the simulator.

correlation length

no. of outputs
cal cul at ed

address of first
vect or

i nput

address of second input
vect or

address of output vector

contents of first input

contents of second input

reset address

code start address

find 4 output sanples

load 4 X, one h

calc. y[n],y[n+1]

E.1 Source File: corr.asm
T equ 12
N equ 12
I NPUT1 equ $100
I NPUT2 equ $150
OUTPUT equ $400
org p: 1 NPUT1
dc $2175, $aeb59, $0729, $30e7, $bl2c, $2613, $f 42c, $a31f
dc $085e, $1f d3, $f d92, $bb0e, $39b9, $10f e, $f 2ce, $2442
dc $0663, $caef, $1580, $a0al, $0eeb, $cd5b, $f eOb, $2bic
org p: 1 NPUT2
dc $6cla, $0f 2f , $401d, $ea3e, $3f 88, $5968, $2f c3, $e101
dc $f 582, $3b9of, $f 895, $54e5
org p:0
jmp $1000
org p: $1000
doset up0 COR_LOCP
nmove. w #OUTPUT, r 7 nove. w #l NPUT2, r 1
doen0 #N 4 doset upl COR _TAP
nove. w #l NPUT1, r O nove. w #T*2, n0
COR_LOCOP
| oopstartO
doenl #(T/4)
[clr d4 clr d5
clr dé clr d7
nove. 4f (r0)+, dO: d1: d2: d3nove.f (rl)+, d8
]
COR_TAP
| oopstartl
[mac do, d8,d4 mac di, d8, d5
mac d2, d8, dé mac d3, d8, d7

nove. f (r1)+,d8

[mac di,d8,d4
mac d3, d8, d6
nove. f (r1)+,d8

For More Information On This Product,

nove.f (r0)+,dO0

mac d2, d8, d5
mac dO, d8, d7
nove.f (r0)+,dl

Go to: www.freescale.com

cal c.
| oad

y[n+2], y[n+3]
next h & next X

cal c.
cal c.
| oad

y[n],y[n+1]
y[n+2], y[n+3]
next h & next X

[]

]

Freescale Semiconductor, Inc.
Running the SC140 Assembly Code Example

[mac d2,d8, d4 mac d3, d8, d5 ; calc. y[n],y[n+1]
mac doO, d8, d6 mac di, d8, d7 ; calc. y[n+2],y[n+3]
nove. f (r1)+,d8 nove. f (r0)+,d2 ; load next h & next X

]

[mac d3,ds,d4 mac do, d8, d5 ; calc. y[n],y[n+1]
mac di, d8, dé mac d2, d8, d7 ; calc. y[n+2],y[n+3]
nove. f (r1)+,d8 nove. f (r0)+,d3 ; load next h & next X

]

| oopendl

[rnd d4,d4 rnd d5, d5 ; d4,d5=>y[n], y[n+1]
rnd dé, dé rnd d7,d7 ; d6, d7=>y[n+2], y[n+3]
suba n0,r0 nove. w #l NPUT2, r 1

noves. 4f d4:d5: d6:d7, (r7)+

| oopend0
out
E.2 Assembler
The command line: asnsc100 -a -1 -b corr producescorr.cld, corr.lst

E.3 Simulator

A command file (corr . cnd) is created first:

break off

|l oad corr.cld

radi x h

break out

go

save p:400..417 corr -0
qui t

Then the program is run: si nsc100 corr. cnd.

In order to observe and follow the program execution, the program should be run step by step, without a
command file.

In order to see the results of the correlation, an output file (cor r . | od) is produced. Thisfile saves the
output sasmpleswhich are calculated in cor r . asm(follow the program and notice that the 12 outputs are
written to memory addresses 400-417).

The output file then needs to be compared to the referencefile, corr. ref:

_DATA p 400

f1 f3 47 ee 0 80 a 30
f9 11 cc cf 3d b8 el e3
6b d6 3a 17 2a el 3a e5

_END 400
If thetwo files are identical, the program ran correctly.

E-2

For More Information On This Product,
Go to: www.freescale.com

[]

]

A

Addressing
Modulo 4-10
ADS 1-8
adscc 100 1-8
AGU 1-2, 4-12
Algorithm
DSP 5-5
Multiple Sample 5-1
Single Sample 5-1
Alignment Structure 2-10
ALU
IIR Filter 5-15
APl 2-2
Architecture 1-2
Assembler 1-4, E-2
Programming 2-8
Subroutine 2-8
Assembly 1-1
Instructions 1-3, 2-7
Assembly Code
Interfacing with C 2-9
Programming 2-8
Running E-1
Average 2-4

B

Bandwidth
Memory 5-4
Bit-exact |mplementation 2-2
Bounds
Calculating 2-5
Performance 2-4
Real 2-5
Theoretical 2-5

C

C Basic Functions 2-7

C Code
Compiler 5-22, 5-31, 5-43
Running B-1
SC140 C Compiler 5-13

Simulation 5-8, 5-18, 5-26, 5-36, 5-37, 5-40

Structured 3-1
Writing 1-1
ccscl00 1-1
Code
Speed 3-8
Code Size 3-26
Estimation 6-1
Command File 1-7

MOTOROLA

Freescale Semiconductor, Inc.

Compiler 5-13, B-2
C Code 1-1, 5-22, 5-31, 5-43
SC140 C/C++ 2-8
Computation Time 5-4
Conditional Execution 4-9
Correlation 5-24
C Simulation 5-29
Cross 5-33
Implementation 5-27
Quad Operand Loads 5-30
Using Quad Operand 5-29
Cross Corréelations 5-33

D

DALU 1-2, 4-12

Data Types Usage 4-16
Debugger 1-8

Development Requirements 2-1
Direct Form FIR Filter 5-5
Direct Form IIR Filter 5-15
Double Precision Format 4-15
DSP Algorithms 5-5

E

Estimation
Code Size 6-1
Execution
Simulator 1-7

F

Filter 5-11
FIR 5-5
IR 5-15
Implementation 5-20
FIR Filter 5-5, 5-33
Fixed Point C 1-1
Modified 1-1
Format
Writing 1-2
Writing Standard C-1

G
Global Optimization 2-10

IIR Filter 5-15, 5-33
ILP3-1
Implementation 2-4
Approaches 2-7
Initialization

For More Information On This Product,
Go to: www.freescale.com

Index-1

[]

]

Simulator 1-6
Instruction Level Parallelism 3-1
Instruction Timing 4-12
Instructions

DALU and AGU 4-12
Integration 2-9

K

Kernd 1-3, 5-1, 5-7
Multi Sample 4-3
Optimization 5-8, 5-18, 5-26

L

Less Straight Forward Instructions 4-11
Loop Merging 4-6

Loop Unralling 4-5

Looping Mechanism 4-10

M

MATLAB 2-1
MCPS 2-2, 2-3
Estimate 6-3
MCPS & Memory 2-2
Memory 2-2
Bandwidth 5-4
Constants data 2-10
Contentions 4-13
Program 2-10
Structure 2-10
Variables 2-10
Modified Fixed Point C 1-1
Modulo Addressing 4-10
Multi Sampling 4-3, 5-5
Algorithm 5-1
Programming 5-1

N
Norm_Corr Test Case 3-16
@)

Optimization
Example 3-12
Global 2-10
Kernel 5-8, 5-18, 5-26
Methods 4-1, 4-7
Structured C 2-8

P

Performance Bounds 2-4

Index-2

Freescale Semiconductor, Inc.

Pointer Calculations 4-8
Pre-calculations 4-7
Profiler Output 6-2
Profiling 2-3
Programming
Assembly Code 2-8

Q

Quad Operand Loads 5-30
R

Real Bounds 2-5

Real Code 6-3

Requirements
APl 2-2

Bit-exact Implementation 2-2

Development 2-1

MCPS & Memory 2-2
Running 2-11

Assembly Code E-1

C Code 1-2, B-1

Simulator 2-12

S

SC140 C/C++ Compiler 2-8
Semaphore Support 4-11
Simulation

C Code 5-18, 5-26, 5-36, 5-37, 5-40
Using Quad Operand 5-29

Simulator E-2

Running 2-12
Single Sample Algorithm 5-1
Single Source Code 1-4
Size

Code 3-26

Code Estimation 6-1
Source Code

Single 1-4
Speed

Code 3-8
Split Summation 4-1
Structure

Memory and Alignment 2-10

Structured C
Code 3-1
Optimizations 2-8
Subroutine 2-8
System Requirements

Algorithmic Changes 2-3

For More Information On This Product,
Go to: www.freescale.com

MOTOROLA

[]

]

T

Test Vectors 2-11
Testing 2-11
Theoretical Bounds 2-5
Time

Computation 5-4
Translating from C 4-15

Vv

Vectors 2-11
VLIW 1-2
Vq_subvec sTest Case 3-2

wW

Worst Case 2-4
Writing
C Code 1-1
Format 1-2
Format Standard C-1

MOTOROLA

Freescale Semiconductor, Inc.

For More Information On This Product,
Go to: www.freescale.com

Index-3

[]

2 |

Index-4

Freescale Semiconductor, Inc.

For More Information On This Product,
Go to: www.freescale.com

MOTOROLA

[]

2 |

Freescale Semiconductor, Inc.

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064

Japan

0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.

Technical Information Center
2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center

P.O. Box 5405

Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150

LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

z “freescale”

semiconductor

AN2441/D, REV. 0

For More Information On This Product,

Go to: www.freescale.com

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

	Cover
	1 Getting Started
	1.1 Approaches to Application Writing
	1.2 Writing C Code
	1.2.1 Compiling the Code
	1.2.2 Running the Code

	1.3 Writing Assembly Code
	1.4 Special SC140 Instructions
	1.5 Using the Assembler and Linker
	1.5.1 Assembler
	1.5.2 Linker

	1.6 Using the Simulator
	1.6.1 Initialization
	1.6.2 Execution
	1.6.3 Command File

	1.7 Using the Application Development System (ADS) Debugger

	2 Application Development
	2.1 Assessing Development Requirements
	2.1.1 Source Code
	2.1.2 Bit-exact Implementation
	2.1.3 MCPS and Memory
	2.1.4 API

	2.2 Modifying the Algorithm
	2.3 Profiling the Code Execution
	2.4 Writing and Optimizing the Code
	2.4.1 Worst Case Versus Average
	2.4.2 Performance Bounds
	2.4.2.1 Parallelism
	2.4.2.2 Calculating the Bounds.

	2.4.3 Optimization Techniques
	2.4.4 Implementation Approaches
	2.4.4.1 C Code Programming
	2.4.4.2 Assembly Code Programming
	2.4.4.3 C Code Versus Assembly Code Summary

	2.5 Integrating the Code
	2.5.1 Interfacing C and Assembly Code
	2.5.2 Alignment and Memory Structure
	2.5.3 Global Optimization

	2.6 Running and Testing the Code
	2.6.1 Create Test Vectors
	2.6.2 Run the Code on the Simulator

	3 Structured C Approach to Application Development
	3.1 General Guidelines
	3.2 Studying Test Cases
	3.2.1 Vq_subvec_s Test Case
	3.2.1.1 Vq_subvec_s—The First Step
	3.2.1.2 Vq_subvec_s—The Second Step
	3.2.1.3 Vq_subvec_s—The Third Step
	3.2.1.4 Vq_subvec_s—The Fourth Step
	3.2.1.5 Vq_subvec_s—Example Summary

	3.2.2 Lag_max Test Case
	3.2.3 Norm_Corr Test Case

	3.3 Reducing Code Size

	4 Code Optimization Techniques
	4.1 General Optimization Methods
	4.1.1 Split Summation
	4.1.2 Multisample
	4.1.3 Loop Unrolling
	4.1.4 Loop Merging
	4.1.5 Precalculations

	4.2 Optimization Methods
	4.2.1 Delayed Change of Flow
	4.2.2 Pointer Calculations
	4.2.3 Conditional Execution
	4.2.4 Modulo Addressing
	4.2.5 Looping Mechanism
	4.2.6 Special Optimization Instructions
	4.2.7 Semaphores
	4.2.8 DALU or AGU Instructions (Case Dependent)
	4.2.9 Instruction Timing
	4.2.10 Avoiding Memory Contentions

	4.3 Double Precision Arithmetic Support
	4.3.1 Translating from C
	4.3.1.1 Double Precision Format
	4.3.1.2 Data Type Usage

	4.4 Summary

	5 Multisample Programming Techniques
	5.1 Presenting the Problem
	5.1.1 Computing Memory Bandwidth and Computation Time

	5.2 Assumptions
	5.3 DSP Algorithms and Multisampling
	5.3.1 Direct Form FIR Filter
	5.3.2 C Simulation Code for the Optimized Kernel
	5.3.3 StarCore SC140 DSP Code to Implement the Filter
	5.3.4 C Code for the SC140 C Compiler

	5.4 Direct Form IIR Filter
	5.4.1 C Simulation Code for the Optimized Kernel
	5.4.2 StarCore SC140 DSP Code to Implement This Filter
	5.4.3 C Code for the StarCore SC140 C Compiler

	5.5 Correlation
	5.5.1 C Simulation Code for the Optimized Kernel (version�h)
	5.5.2 SC140 DSP Code to Implement the Correlation (version I)
	5.5.3 C Simulation for the Correlation Using Quad Operand Loads (version II)
	5.5.4 SC140 DSP Code For Correlation Using Quad Operand Loads (version II)
	5.5.5 C Code for the SC140 C Compiler
	5.5.6 Cross Correlations

	5.6 Biquad Filter
	5.6.1 C Simulation Code (version I.a)
	5.6.2 C Simulation Code (version I.b)
	5.6.3 SC140 DSP Code (version I.b)
	5.6.4 C Simulation Code (version II)
	5.6.5 SC140 DSP Code (version II)
	5.6.6 C Code for the SC140 C Compiler

	5.7 Summary

	6 Application Code Size Estimation
	6.1 Requirements and Assumptions
	6.2 Collecting Data From the DSP56300 Profiler Output
	6.3 Calculating the Estimated Code Size
	6.4 Verifying the Method on Real Code
	6.5 Obtaining an MCPS Estimate
	6.6 Example—GSM EFR Vocoder
	6.7 Getting More Practical Results
	6.8 Example—GSM EFR Vocoder
	6.9 Summary

	A Example C Code in SC140 Format
	B Running the SC140 C Code Example
	B.1 Source File: corr.c
	B.2 Compilation
	B.3 Running the Code

	C SC140 Assembly Writing Format Standard
	C.1 Columns Definitions
	C.2 General Definitions
	C.3 Example

	D Example Assembly Code in SC140 Format
	E Running the SC140 Assembly Code Example
	E.1 Source File: corr.asm
	E.2 Assembler
	E.3 Simulator
	A
	B
	C
	D
	E
	F
	G
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W

	Index

