
@ MOTOROLA

Advance Infor:rnation

MEMORY MANAGEMENT UNIT

The principle function of the MC6829 Memory Management Unit
(MMUI is to expand the address space of the MC6809 from 64K bytes to
a maximum of 2 Megabytes. Each MMU is capable of handling four dif­
ferent concurrent tasks including DMA. The MMU can also protect the
address space of one task from modification by another task. Memory
address space expansion is accomplished by applying the upper five ad­
dress lines of the processor (A 11-A 151 along with the contents of a 5-bit
task register to an internal high-speed mapping RAM. The MMU output
consists of ten physical address lines (PA 11-PA201 which, when com­
bined with the eleven lower address lines of the processor (AO-A 101,
forms a physical address space of 2 Megabytes. Each task is assigned
memory in increments of 2K bytes up to a total of 64K bytes. In this
manner, the address spaces of different tasks can be kept separate from
one another. The resulting simplification of the address space program­
ming model will increase the software reliability of a complex multi­
process system.

• Expands Memory Address Space from 64K to 2 Megabytes

• Each MMU is Capable of Handling Four Separate Tasks
• Up to Eight M MUs can be Used in a System
• Provides Task Isolation and Write Protection
• Provides Efficient Memory Allocation; 1024 Pages of 2K Bytes Each

• Designed for Efficient Use with DMA
• Fast, Automatic On-Chip Task Switching

• Allows Inter-Process Communication Through Shared Resources

• Simplifies Programming Model of Address Space

• Increases System Software Reliability

• MC6809/MC6800 Bus Compatible
• Single 5-Volt Power Supply

All-A15

m

~

BLOCK DIAGRAM

Mapping RAM

Task 0 Registers

Task 1 Registers

Task 2 Registers

Task 3 Registers

PAll-PAlO

BA

BS

RESET

This document contains information on a new product. Specifications and information herein
are subject to change without notice.

MC6829

HMOS
(HIGH DENSITY N-CHANNEL, SILICON-GATEI

MEMORY MANAGEMENT UNIT
(MMU)

CASE 71'

PIN ASSIGNMENT

VSS PAll

A15 PA12

A14 PA13

A13 PA14

A12 PA15

All PA16

Ai'. PA17

RS6 PAlS

RS5 PA19

RS4 PA20

RS3 07

RS2 06

RSl 05

RSO 04

KVA 03

0 02

E 01

BA 00

BS 19 VCC

RESET 20 R/W

MC6829

MAXIMUM RATINGS

Characteristics Symbol Value Unit
Supply Voltage Vcc -0.3to+7.0 V
Input Voltage Yin -0.3 to + 7.0 V
Operating Temperature Range TL to TH

MC6829, MC68A29, MC68B29 TA o to 70 'c
MC6829C, MC68A29C, MC68B29C -40 to +85

Storage Temperature Range Tsta -55to+150 'c

THERMAL CHARACTERISTICS
Symbol Value Rating

Thermal Resistance
Plastic

8JA
100

'C/W
Cerdip 60
Ceramic 50

POWER CONSIDERATIONS

The average chip-junction temperature, T J, in °c can be obtained from:

T J = T A + IPD-8JAI
Where:

TA '" Ambient Temperature, °c

8JA=Package Th"ermal Resistance, Junction-to-Ambient, °C/W

PD'" PINT+ PPORT
PINT=lccxVCC, Watts - Chip Internal Power

PPORT- Port Power Dissipation, Watts - User Determined

This device contains circuitry to protect the in­
puts against damage due to high static voltages
or electric fields; however, it is advised that nor­
mal precautions be taken to avoid application of
any voltage higher than maximum rated voltages
to this high-impedance circuit. Reliability of
operation'is enhanced if unused inputs are tied to
an appropriate logic voltage level (e.g., either
VSS or VCCI.

(1)

For most applications PPORT<C PINT and can be neglected. PPORT may become significant if the device is configured to
drive Darlington bases or sink LED loads.

An approximate relationship betwElen PD and T J lif PPORT is neglected) is:

PD=K+ITJ+273°C) (2)
Solving equations 1 and 2 for K gives:

K = PD-IT A + 273°C) + 8JA-PD2 (3)

Where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring PD lat equilibrium)
for a known T A. Using this value of K the values of PD and T J can be obtained by solving equations (1) and (2) iteratively for any
value of TA.

DC ELECTRICAL CHARACTERISTICS IVcC=5.0 Vdc ±5%, VSS=O,'TA=TL to TH unless otherwise noted I
Characteristic Symbol Min Typ Max Unit

Input High Voltage All Inputs VIH VSS+2.0 - VCC V
Input Low Voltage All Inputs VIL VSS-0.3 - VSS+0.8 V

Input Leakage Current IVin = 0 to 5.25 VI VCC= Max lin - 1.0 2.5 /tA
Hi-Z IOff Statellnput Current IVin - 0.4 to 2.4 VI 00-07 liZ 2.0 10 /tA
Output High Voltage

IILoad= -205 /tA, VCC= Mini 00-07 VOH VSS + 2.4 - - V
IILoad= -145 /tA, VCC= Mini PAll-PA20 VSS + 2.4 - -

Output Low Voltage

IILoad=2.0 mA, VCC= Mini All Outputs VOL - - VSS+0.5 V

Internal Power Dissipation (Measured at T A - QOC) PINT - - 800 mW

Input Capacitance IVin-O, TA-25'C, f-l.5 MHzl All Inputs Cin lU.U 12.U p~

Output Capacitance IVin-O, TA -25'C, 1-1.5 MHzl All Outputs Cout 12.0 pF

MC6829

BUS TIMING CHARACTERISTICS (See Notes 1 and 21

Ident.
Char8c:teristi~ Symbol MC6B29 MC88A29 MC68B29 Unit Number "M!n. Max Min Max Min Max

1 Cycle Time t9'C 1.0 10 0.667 10 0.5 10 I's
2 Pulse Witdth, E Low PWEL 430 9600 2BO 9500 211) 9700 ns
3 Pulse Width, E High PWEH 450 9600 2BO 9500 220 9700 ns
4 Clock Rise and Fall Time tr, tf -' 25 - 25 - 20 ns
5 Pulse Width, a High PWaH 430 5000 2BO 5000 210 5000 ns
6 Pulse Width, a Low PWaL 450 9600 280 9500 220 9500 ns
7 E to a Rise Delay Time' tAva 250 165 125 ns I
9 Address Hold Time tAH 10 - 10 - 10 - ns
13 Address Setup Time Before E (RSO·RS61 tAS 80 - 80 - 40 - ns"

18 Read Data Hold Time tDHR 20 50t 20 50t 20 50t ns
21 Write Data Hold Time tDHW 10 10 10 ns
30 Output Data Delay Time tDDR - 290 - 180 - 150 ns
31 Input Data Setup Time .' tDSW 165 - 80 - 60 - ns

See Figures
Hi-Z Address Delay tTAD - 90 - 80 - 60 ns 2 and 3

See Figure 2 Mapped Address Delay tMAD - 200 - 145 - 110 ns

• AI' specified cycle time.
tThe data bus output buffers are no longer sourcing or sinking current by tDHR max. (High Impedancel

FIGURE 1 - BUS TIMING

~--------~2~--------~1~~ ______ ~ __ ~ ________ ~

a Note3

R/W,---+~~~~~~~~~--~~----;,----------------------------~~~
Address, RA
(Non-Muxedl----+4~~~~~~~~--------------------~+_----------------------------------_+~~~~

RSO-RS6 --++-----:r---------------=_.,

Read Data ---i-+---s MPU Read Data Non-Muxed
Non-Muxed t---------------~~~~~~~~~~~--------------~----~

~--~------++--~

Write Data MPU Write Data Non-Muxed
Non-Muxed ___ -+ __ -"1-
NOTES:
1. Voltage revels shown are VL:SO.4 V, VH",2A V, unless otherwise specified.
2. Measurement points shown are 0.8 V and 2.0 V, unless otherwise specified.
3. Depends on speed and bus structure (see bus timing example).

MC6829

Bus Timing Calculation Example:

Address
(from MC68091

.Mapped _____ ~~--~t=~~================ Address
(from MC68291

1 MHz Case:

tAVO (0 to E rise delay timel = 250 ns (maxi
tAO (address setup time before 0 from MC68091 = 50 ns

(mini
tMAD (mapped address delayl = 200 ns (maxi
tAS (address setup time before E for peripheral! = 80 ns

Then, the mapped address setup time before E = tAVO +
tAO-tMAD=l00 ns which means (100-tASI=20 ns is
allowed for address buffering. More buffer time can be
achieved by using 1.5 MHz peripheral or 1.5 MHz MC6829.

1.5 MHz Case:

tAVO= 165 ns (maxi
tAO=25 ns (mini
tMAD= 145 ns (maxi
tAS=60 ns (mini

The mapped address setup time before E = tAVO + tAO­
tMAD=45 ns which is less than the required setup time for
peripheral. Two solutions can be found as following:

1. If using 2 MHz peripherals, then tAS=40 ns. It will be
good for a non~buffered system.

2. If using 2 MHz MC68B29, then tMAD= 110 ns. There
will be a 20 ns system address buffer time for using 1.5
MHz peripherals and 40 ns for using 2 MHz peripherals.

2 MHz Case:

tAVO= 125 ns (maxi
tAQ= 15 ns (mini
tMAD= 110 ns (maxi
tAS=40 ns (mini

The mapped address setup time before E=tAVO+tAO­
tMAD = 30 ns which is less than the 40 ns th~t a peripheral
required. A clock stretch is needed for peripheral access us­
ing mapped address in 2 MHz system. However, it can still
access the memory devices at 2 MHz bus speed.

LOAD A (00·07, PA11·PA201

R 1 = 1.7 k for 00·07
Rl=16.5 k for PAll·PA20
R2=2.2 k
Cl = 82 pF for 00-07
Cl = 100 pF for PAll-PA20

VCC

R2

MM06150
or Equivalent

MM07000
Equivalent

MC6829

FIGURE 2 - MAP SWITCHING, ADDRESS MAPPING

-~/ \'---~/

Q

RA, All-A15

BA, BS

PA1HA20

FIGURE 3 - RESET TIMING

-..J/ \'-----J/ \'------'/
Q

PAlHA20 1//lIffUlJIIITrm-

Note: Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted.

MC6829

PIN DESCRIPTION

The following section describes each. pin of the MMU in
detail.

VCC, VSS - Supplies power to the MC6829. VCC is + 5
volts and VSS is ground.

E - Input E clock (from MC68091.

a - Input Q clock (from MC68091.

R/W - Read/Write Line Input; 1 = Read, 0= Write.

DO-D7 - Bi-directional Data Bus. The data bus is used
when the M M U registers are to be read or written.

A11-A16 - Logical Address Lines (Input to MMUI. The
physical address lines are generated by the M M U for every
bus cycle. When multiple MMUs are present in a system, on­
ly one MMU will output a physical address. Each physical ad­
dress line will drive one Schottky TTL load or four TTL loads
and a maximum of 90 pF.

PA 11-PA20 - Physical Address Lines (Output from
MMUI. The physical address lines are generated by the
MMU for every bus cycle. When multiple MMUs are present
in a system, only one MMU will output a physical address.
Each physical address line will drive one Schottky TTL load
or four LS TTL loads and a maximum of 90 pF.

RSG-RS6 - Register Select Lines (Access to MMU
Registersl. When accessing the MMU registers, the register
select lines determine which byte of information is being
referenced within the MMU. Valid addresses are detailed in
the Register Select Truth Table.

BA, BS - Bus Available and Bus State (lnputsl. These in­
puts are directly ,connected from the BA, BS lines of the
MC6809. They provide the MMU with information about the
class of bus operation for each cycle. Note that when com­
ing out of a DMA cycle, the MC6809 BA, BS pins change
back from DMA acknowledge IBA=1, BS=11 to running
IBA=O, BS=OI one cycle before the end of the DMA.

RA - Register Access IChip Select for MMU Registersl.
This active low input determines the location of the M M U
registers. Since the MMU registers are only accessible from
the last page of task #0 (FmFFFFI, this signal can be
derived from address lines A 1G-A7 of the processor. When
RA is asserted low, the MMU registers are selected if the
current task number is zero and A15-A11 are aIl1's.

KVA - Key Value Access select line Iinputl. This active
low input enables access to the 3-bit Key Value register on
the MMU. Reading the Key Value Register is allowed only
when the current task is zero, address lines A11-A15 are all
ones, RA=O lassertedl, RS6-RSO are within the range
$40-$47 and KVA=O (also assertedl. Writing the Key Value
Register has the additional requirement of having the S-bit
set.

RESET - RESET (lnputl. A low level on this input causes
the MMU to initialize its registers to a known state. An inter­
nal flag is also set which forces $3FF onto the physical ad­
dress lines until the Key Value Register is written. mrr
must be low for at least one cycle.

MMU OPERATION

For every processor cycle, the MMU supplies a mapped
address based on the processor address and the current task
number (refer to Figure 41. The curtent task number is kept
in an on-chip register called the OPERATE KEY. Changing
the value of the operate key causes a new map to be
selected.' The MMU also contains automatic task switching
logic to cause pre-defined task numbers to override the task
number in the operate key for certain events (Interrupts,
Direct Memory Access, Resetl.

The MMU registers always appear as a block of 64 bytes
located on the last page of task #0 (refer to Figure 51. When
the registers are accessed, the MMU outputs a physical ad­
dress of $3FF I PA 11-PA20 all highl. This is necessary since
the mapping RAM of the MMU cannot map an address and
be modified at the same time.

The exact location of the M M U registers within the last
page of physical memory is determined by the REGISTER
ACCESS IRAI signal which is similar to a chip select line.
The RA signal will normally be derived from processor ad­
dress lines A7-A 10 using a simple 4-input gate. For example,
a 4-input NOR gate would place the MMU registers at $FBOO
to $FB7F. In systems using DMA, the RA input must include
the externally derived DMAIVMA signal to prevent dead bus
cycles from affecting the MMU. Refer to Programming Con­
siderations.

Inputs RSO-RS6 to the MMU are the register select lines.
These lines are normally connected to the low order address
lines AO-A6 from the processor. The MMU registers are only
accessible if:

1. the current task number is zero;
2. processor address lines A11-A15 are aIl1's;

3. the Register Access line (RAI is asserted low;
4. Register Select lines IRSG-RS61 contain a defined

register address; and
5. the System Bit I S-bitl is set (for a write operation

onlyl.
As a result of the above restrictions on accessing the

MMU registers, the portion of the software that sets up and
maintains the memory maps for all tasks must run as task
zero.

The first 64 bytes of the MMU's register area comprise a
"window" through which anyone of the 4 maps may be
viewed or changed. The task number to be viewed through
this "window" is written irito a read/write register called the
ACCESS KEY. Thus, to examine or change the map for any
task, the processor must first write the task number into the
Access Key. Once set, the Access Key will retain its value
until explicitly changed.

~egister Select Truth Table for exact procedure to change this register.

MC6829

FIGURE 4 - LOGIC-TO-PHYSICAL ADDRESS TRANSLATION DIAGRAM

Interrupt-.

DMA-'

Access
Key

"Window"

Notes:

Logical Address

Task #

~
Mapping RAM

~
PA11IPA1O

Physical Address

FIGURE 5 - MMU REGISTER MODEL

Register

00

D7

01

02

03

04

05

PAIS

PAIS

PAIS

/'
/'
/'
/"
/'

I 3E

3F

40

41

42

43

44

45

46

47

48

49

4A

48

4C

PAIS I

7F

/"
/'
/'

D6

PA17

PA17

PA17

I
PA17 I

D5

PA16

PA16

PA16

I

D4

PA15

PA15

PA15

o
o

o
0

I
PA16 I PA15 I

I
I

0

0

0

0
I

D3 D2 Dl

PA20

PA14 PA13 PA12

PA20

PA14 PA13 PA12

PA20

PA14 PA13 PA12

I PA20 I
PA14 PA13 I PA12 I

KV MMUO

KV MMUI

KV MMU2

KV MMU3

KV MMU4

KV MMU5

KV MMU6

KV MMU7

I
Fuse

Access Key

Operate Key

DO

PA19

PAIl

PA19

PAIl

PA19

PAIl

PA19

PAIl

S

1. The contents of bytes $4C through $7F are undefined and do not respond to any reads or writes.
2. The Access, Operate and Key Value Registers are cleared on reset. The S-bit is set.
3. Unused bits of defined registers always read zeros.
4. Locations $40-$47 are accessible only when KVA=O.

/"
/"
/'
/"
/.

/"

Logical Address

$OOOO-07FF

$08OO-$OFFF

$1000-$17FF

$FBOO-$FFFF

Only one Key Value Register for

each MMU, but all Key Value

Registers fall in this range

System/User flag bit

Map Switch Fuse
Task Currently Accessed Through
Register #$0-$3F
Current Task

/"Undefined

/'

5. In multiple MMU configurations, the MMU whose Key Value Register matches the upper three bits of the access key will respond to a pro­
cessor read of locations $48-$4B. Processor writes to these registers will cause the data to be written to all MMUs simultaneo.usly.

MC6829

Pages in physical memory require 10 bits to define their
location (refer to Figure 51. These 10 bits are arranged as a
pair of bytes in the MMU in order to allow the use of double
byte instructions (e.g., LDDI in manipulating the MMU
registers. These first 64 bytes of the register area are then ac­
cessed as 32 pairs of bytes with each pair describing the
logical-to-physical mapping for one 2K page. Registers 0 and
1 contain the page number for logical addresses
$0000-$07FF. register 2 and 3 control logical addresses
$Q800-$OFFF, etc.

Each MMU has a 3-bit register called the KEY VALUE
REGISTER. This register determines the range of task
numbers an MMU controls. The top three bits of the Operate
Key must match the Key Value Register for that task to be
active. Similarly, the Key Value Register must match the top
three bits of the Access Key to change or view registers #0
through #$3F. Each MMU must receive a unique key value
when the system is initialized to guarantee that no two
MMUs control the same range of tasks. To be able to write
to each MMU's Key Value Register separately, an external
decoder must be provided. This decode function can be
derived from address lines AO, A 1 and A2 using a 3-to-8 line
decoder. Writing to locations $40-$47 will cause the Key
Value of the MMU to be updated only if the KVA input is
low. In systems using a single MMU, the KVA input may be
wired low.

BUILDING AN MMU SYSTEM

Up to 8 chips may be connected in parallel to ~te a max­
imum of 32 tasks. All MMU pins except one (KVA) may be
wired in parallel. Each MMU chip contains 1280 bits of fast
on-chip lookup RAM. This RAM is accessible 10 bits at a
time for mapping purposes, and as 2 and 8 bits at a time
when the Operating System OS is changing the contents of
the RAM. In addition to the lookup RAM, each MMU con­
tains a separate copy of the Access Key, Operate Key, Fuse
Register, Key Value Register, and S-bit. A CPU write to the
Access, Operate, or Fuse Register causes all registers on all
MMUs to be updated. In contrast, the lookup RAM for each
chip is updated· only when the top three bits of the Access
Key match the Key Value Register for that chip. During map­
ping operations, each MMU compares the value in its
Operate Key (top three bits) with its Key Value Register and
responds only if a match is found. Similarly, when the pro­
cessor reads the RAM, each MMU compares its Key value
with the Access Key (Figure 61.

REGISTER SELECT TRUTH TABLE
Table 1 shows how the M M U registers are accessed by

the processor. It is assumed that the current task is zero and
that the processor address lines A 11-A 15 are all ones. If the
S-bit is not set, the registers are still readable, but cannot be
modified.

TABLE 1 - REGISTER SELECT TRUTH TABLE

RA R/iN KVA RS6 RS5 RS4

1 X X X X X

a X 1 1 a a
a 1 a 1 a a
a a a 1 a a

a X X a n n

a a X 1 a a
a a X 1 a a
a a X 1 a a
a a X 1 a a

a 1 X 1 a a
a 1 X 1 a a
a 1 X 1 a a
a 1 X 1 a a

a X X 1 a a
a X X 1 a 1
a X X , 1 X

Notes:

RS3 RS2 RS1

X X X

a X X
a X X
a X X

n n n

1 a a
1 a a
1 a 1
1 a 1

1 a a
1 a a
1 a 1
1 a 1

1 1 X
X X X
X X X

RSO

X

X
X
X

n

a
1
a
1

a
1
a
1

X
X
X

register addressed

none

none
read Key Value Register
write Key Value Register

byte nnnnnn of MMU RAM (Note 1)

none (Note 2)
write Fuse Register
write Access Key
write Operate Key

read S-bi! (Note 3)
read Fuse Register (Note 3)
read Access Key (Note 3)
read Operate Key (Note 31

none
none
none

1. The MMU RAM is accessible only if the Key Value Register is equal to the top 3 bits of the Access Key Register. The lower two bits of the
Access Key Register then determines which task is to be accessed (R/WI.

2. The S-bit is read-only.
3. The S-bit, Fuse, Access or Operate registers are readable only if the Key Value Register is equal to the top 3 bits of the Access Key Register .

. This insures that only one MMU will respond to a read request of these locations.

MC6829

MC6B09
,MCeeooE

FIGURE 6 - MMU SYSTEMS CONFIGURATION

Up to 8 8829s
r-~T:-a-:sk-28-~3:-1-"" in Parallel

BAI---------t

BS 1-------+1

E 1---~--'--+1

Q 1---'-'----.\

MC8809/MC8809E ~ ___ -I,\

A10

AO

•••
Task 8-11

8829

Task 0

Task 1

Task 2

Task 0 = Operating System Task
Task 1 = DMA Task
Tasks 2-31 = User Tasks

PAO

System Bus

System
Memory

MC6829

REGISTER DESCRIPTION

System Bit IS-bitl - Read-only bit that must be set IS = 1)
to write MMU registers. Reset and Interrupts set the S-bit.
Refer to Fuse Register for clearing the S-bit.

Operate Key - 5-bit R/IN register that contains the cur­
rent task number. The operate key retains its value until ex­
plicitly changed. During DMA transfers, the MMU overrides
the value in the operate key and forces task #1 to be the ac­
tive task. When the S-bit is set, the operate key is also over­
ridden, and task #0 is forced to be the active key.

Key Value - 3-bit R/W register that contains the range of
tasks an MMU controls. The Key Value Register must match
the t£e...!.hree bits of the OperatE> Key for a task to be active.
The KV A signal must be low for an access of this register.

Access Key - 5-bit R/W register that contains the task
number of a task to be viewed or changed. This register re­
tains its value until explicitly changed.

Register #0 to #3F - 64 bytes accessed as 32 pairs of
bytes with each pair describing the logical to physical mapp­
ing for one 2K page. Refer to Figure 5.

Fuse Register - 3-bit count down register used to change
from task #0 to a user task. When a write to this register is
detected, the value written is loaded into the counter and it
begins to decrement by one for every processor cycle. When
the counter underflows, the S-bit is cleared and the next pro­
cessor cycle will be mapped using the task number in the
operate key.

RESET OPERATION

When reset, the M M U performs the following operations:

1. The Key Value Register is cleared;
2. The Fuse Register is disabled;
3. The System bit IS:bit) is set;
4. The Operate Key Register is cleared;
5. The Access Key Register is cleared;
6. An internal reset flag is set.
Reset causes the MC6829 to automatically switch the

memory map to task #0. An internal flag is set causing all bus
cycles to access physical addresses $1 FF800-$1 FFFFF IPA 11
to PA20 all high, page $3FF). This flag is cleared when the
Key Value Register is first written. While the internal reset
flag is set, each MMU in the system will be actively driving
the address bus. An orderly start up procedure must assign
each MMU a key value before individual task allocations are
made.

FUSE REGISTER OPERATION

The Fuse Register is a 3-bit register used to switch from
task #0 to any other task. A write to this register causes an
internal 3-bit counter to be loaded with the data. On each
successive valid Inon-DMA) processor cycle the internal

counter is decremented once. When the counter reaches
zero, the task number in the Operate Key will be the active
task, mapping logical to physical address. The value written
into the Fuse Register must be the number of cycles it takes
to transfer program control from the store to Fuse Register
instruction. It is the responsibility of the Operating System
Itask #01 to make sure the processor will execute code from
the new task properly by changing the Program Counter the
same cycle that the Fuse Register reaches zero Isee follow­
ing example).

Change from Task 10 to Task n
LDA In
STA OPERATE
LDA 14
STA FUSE
JMP $XXXX

Cycle by
Cycle

Operation

Fuse Register
Contents

Write 14
to Fuse
Register JMP

o 4

Address Address
High Low

3 2

Task N
VMA Opcode

1 0

Refer to Section MMU in a MC6809 System for Fuse
Register use in returning from an interrupt.

MMU INITIALIZATION PROCEDURE

The following steps should be followed to initialize a multi­
ple MMU system. IRefer to Hardware/Programming Con­
siderations; Programming Examples section.'

1. Out of Reset, all MMUs are driving the address lines,
PA 11 to PA20, high. This requires the initialization
program to be located in this 2K byte page of physical
memory. Each M M U must be deselected by writing a
unique value to its Key Value Register except for the
MMU that will run task #0 IMMUOI. MMUO's Key
Value Register must not be written to until task #0
registers $00 to $3F are programmed, specifying the
logical to physical mapping of memory. In addition, if
MMUO Key Value Register is also initialized with a
non-zero value at this time the entire memory space is
deselected and the operating system Itask #01 cannot
be accessed I Example 11.

2. Only one MMU is now driving the address bus. Task
#0 memory pages 12K per page) must be assigned by
writing the corresponding values into registers $00 to
$3F I Example 21.

3. The Key Value Register must be written to MMUO's
key value to allow initialization of all other tasks by
removal of automatic mapping of PA 11 to PA20 high
IExample 21.

4. At this time, each MMU has a unique key value, Task
#0 has a specified memory map, and Task #0 is
operating. Tasks can now be started by writing the
task number to be specified in the Access Key
Register, writing registers $00 to $3F to the memory
map desired, loading the program into memory and
causing a task switch by a correct use of the Fuse
Register.

MC6829

INTERRUPTS/MAP SWITCHING

The MC6829 monitors. the Bus Available (BA) and Bus
Status (BS) lines from the processor· to determine what type
of bus operation is occurring. When an interrupt is detected,
the current task is overridden by Task #0. The map switch
occurs during th·e processor vector fetch (BA= 0, BS = 1) so·
that Task #0 supplies the interrupt vector address. Detecting
an interrupt also sets the S-bit within the MMU aliowing
Task #0 to be the operating task while the interrupt is ser­
viced.

DMA OPERATION

For a DMA transfer, the memory map is switched to Task
#1. This allows transfers of up to 64K bytes without pro­
cessor intervention and without interfering with any other
task. (An external DMAIVMA signal should be included in
the decode circuitry for the RA input to prevent dead bus
cycles from affecting the MMUI. At the end of the DMA
transfer, the MC6829 returns to the task being used before
the transfer began (refer to Programming Considerations!.

MMU IN A MC6809 SYSTEM

The M C6829 is designed to work directly with the M C6809
. processor. Other B-bit microcomputers may also use the
M M U by generating the appropriate inputs to the M M U. The
crucial area for interfacing the computer to the MMU is the
design of the map switching hardware.

For the MC6809, the BA and BS signals are extremely
useful for this function. Decoding these two signals provides
the following information:

~ BS
o 0
o 1
1 0
11

MC6B09 State
Normal (runningl mode
Interrupt Acknowledge (lACKI
SYNC Acknowledge
HALT or Bus Grant

The MMU uses these two signals. directly from the pro­
cessor to determine what action to take for every bus cycle.

The MMU, unlike other M6800 peripherals, introduces an
additional delay (tMAD) in the system configuration as it ac­
cepts address signals from the MPU and maps the MC6809
logical address to the system physicai address. When a
system is constructed this additional delay must be . con­
sidered.

The system clock frequency is determined by these ad­
dress timing delays. Figure 7 shows this (jata. The System
Cycle time may be determined by adding: '

1. the MPU E to 0 rise delay tAVO (max)

2. the MPU address valid to 0 rise to tAO (min)

3. the MMU mapping delay tMAD (max)

4. the system decode and buffer time tB (this is the delay
due to bus buffers and decoding circuitry)

5, the address setup time required by peripherals tAS
(note the setup time is required for the peripheral to
determine if it is selected as well as deselected during
every bus cycle!. '

6. the MPU pulse width high tpWEH.

NOTE

This equation must be satisfied:
tPWEL'" tAVO- tAO + tMAD + tB + tAS

[)MA OPERATION - By decoding the bus grant signal
(BA= 1, BS= 1), the MMU will automatically switch to Task
#1. Even when the MC6809 occasionally steals back a cycle
to refresh its internal buses, this is reflected by achange in
the bus grant signal which causes the map to temporarily
switch back to the normal running mode.

Note that the bus grant status is identical to the Halt status
and is thus indistinguishable from a HALT. This should not
cause a problem since halting the processor will simply cause
the MMU to switch to Task #1. When the tvlC6809 starts to
run again, the status lines will change and cause the MMU to
switch to the proper map.

FIGURE 7 - ADDRESS DELAY

\'+------tPwEL 2 }--------I~

E

o

'tAO is a MPU specification; refer to the
MC6809 Data Sheet for this value.

MC6829

CHANGING TASK TO OPERATING SYSTEM (OS) -
The as map ITask 10) is automatically selected to service all
interrupts. The Interrupt Acknowledge IIACK; BA = 0,
BS = 1) Signal is used to determine when an interrupt vector
is being fetched. The map is switched at this time in order to
supply the processor with an interrupt vector from the as
address space, not the user's. At the time lACK is asserted,
all of the registers have been stacked for the interrupt in the
user's address map. This means that the only information
the as needs to save concerning the running process is its
stack pointer. All other information about the task is saved
on the user's stack and in the MMU registers. The map
switch is latched since lACK will only be present for two
machine cycles, yet the as must retain control until the in­
terrupt is serviced. This latched information is kept in a flag
register called the S-bit. This bit is set on any lACK and re­
mains set until cleared by software. The first thing the as
must do is save the interrupted task's stack pointer in a table
and load the stack pointer with the current top of stack in the
as map. This is a critical section of code and must not be in­
terrupted. For this reason, an MMU system cannot accept
two interrupts in a row. The first interrupt causes the map to
switch to task zero. The second interrupt would stack the
machine state at the wrong address in the operating system.
As a consequence of this, Non-Maskable Interrupts INMII
must be forbidden in multi-tasking systems since an NMI is
possible at any time (even during another interrupt). Similar­
ly, normal interrupts IIRO) do not set the Fast Interrupt
IFIRQ), bit F of the status register, in the processor and,
thus, potentially allow another interrupt before the processor
has a chance to switch stack pointers. Simple external hard­
ware can be used to disable FIRO when IRO is pending.
Unlike the NMI input, the FIRO input is level sensitive and

EXIT LDA TASK
STA OPE RAT
STS OSSP
ORCC IF+I
LDS SAVESP
LDA 11
STA FUSE
RTI

may be masked with external hardware during IRO opera­
tions.

A typical interrupt service routine begins like this:

ORCC 11 +F
STS SAVESP
LDS OSSP

RETURNING FROM THE OS TO TASK N - The as must
execute an RTI instruction to get the processor to reload the
user registers. The map switch must occur after the opcode
for the RTI is fetched and before the first register is pulled
from the stack. Prior to the RTI, the as must reload the
stack pointer from the one that corresponds to the task
about to run. There must be no interrupts from the time the
stack pointer is reloaded until the RTI is executed. The signal
to the MMU that the map should be returned to the user task
is noted by a write to a 3-bit down counter called the FUSE
REGISTER. When a write to this register is detected, the
value written is loaded into the counter and it begins to
decrement by one for every processor cycle. When the
counter under flows, the S-bit is cleared and the next pro­
cessor cycle will be mapped using the task number in the
Operate Key. For most systems, a 1 would be written to th'l
Fuse Register immediately before the RTI opcode is ex­
ecuted. Note that DMA operations are still possible within
this Critical section. The Fuse Register counts only non-DMA
cycles after the Write to the Fuse Register in order to be sure
of when to switch the map. Bus dead cycles are also exclud­
ed when clocking the Fuse Register. Thus, the Fuse Register
is inhibited from counting whenever BA is high, and for the
cycle after BA transitions from high to low. The common ex­
it point for all as functions looks something like this:

GET NEXT TASK TO RUN
AND PLACE IT IN THE OPERATE KEY
SAVE CURRENT STACK POINTER
SET F AND I IENTER CRITICAL SECTION)
RESTORE USER'S STACK POINTER
CAUSE MAP SWITCH 1 CYCLE AFTER
WRITE TO FUSE REGISTER
RETURN TO USER TASK

MAP SWITCH OCCURS, USER TASK RESUMES

MC6829

USING THEMC6800

When using a MC6800 processor external logic is required
to determine when to switch maps. The MMU is controlled
by its BA, BS inputs, the S-bit and the Operate Key. For ex­
ample, decoding any references to the interrupt vectors and
generating lACK as a result will work as long as each task
references these locations only when the processor is fetch­
ing an interrupt vector. Another possibility is to monitor the
processor R/W line. For the MC6800, the only time seven
writes occur in a row is_ during an interrupt sequence. Tbus
the external logic that generates BA and BS must wait until it
sees the seven writes and then assert lACK for the next two
cycles.

A MC6800 processor interface to the MMU must also in­
clude logic to generate the 0 bus Signal.

HARDWARE/PROGRAMMING CONSIDERATIONS

The following sections contain examples and suggestions
on how to apply the M MU in a system .

MEMORY PROTECTION - The MMU can provide
memory protection on a per page basis by defining the high
order physical address line (PA20) as a write access line. If
write protection is desired, this. signal can be gated with the
read/write line, from the processor, \0 generate a disable
signal. This can be used to inhibit the memory chip select
logic or generate an interrupt to signal a violation of a write
protected area. The write protect line can also be combined
with the DMAIVMA logic that is necessary in systems using
DMA. In this case, writes to protected memory would ap­
pear as dead cycles to the main memory. Note that the
designtion of the write protect line is purely arbitrary. The
MMU simply combines the incoming address with the cur­
rent task number to determine a 10-bit result. If no write pro­
tection is needed, PA20 can be used as a 21st address line,
giving a total addressing range of 2 Megabyte. This scheme
can be reversed if desired and additional output lines from
the M M U can be used to specify more attributes of the
physical pages at the expense of reducing the number of
pages in physical memory.

MANAGING INTERRUPTS - An interrupt causes the
processor to suspend the current running task and perform a
service routine for the interrupting device. User programs
should not have to handle interrupts directly. Thus on inter­
rupts; the MMU (the operating system aS) must switch
from the current map to task 0 so that it can handle the inter­
rupt. (The as may of course elect to pass the work of handl­
ing a specific interrupt to a task that is expecting it.) The map
switching is latched (indicated by the S-bit) so that the pro­
cessor has as much time as it needs to service the interrupt.
After the interrupt has been processed, the as can then look
at the current process priorities and determine the next pro­
cess to run. If, after the interrupt service, the task that was
running before the interrupt is to continue to run, the as
causes the map to switch back to that task. If, however,
another task is to start running, the as can simply write the
new task number into the Operate Key Register and then
cause the map switch. Returning to the normal map clears

the S-bit and allows,the user process to continue. By supply­
ing a somce of periodic interrupts, the as can regain control
of the processor and reschedule running processes.

Operating system requests for privileged operations by
running tasks are ideally handled using the SWI instruction.
This causes a map switch to task zero (lACK is asserted on
SWII which then processes the request and eventually
returns control to the requesting task. Note that SWI sets
the I and F bits during execution olthe instruction so that
when the as is entered, the critical section of saving the
user task pointer and reloading the as stack pointer can be
safely executed. Note that SWI2 and SWI3 do not have this
property and therefore require special handling. To safely
use SWI2 or SWI3, .Jhe programmer must explicitly mask
hardware interrupts,

ORCC
SWI2/3

#1+ F DISABLE INTERRUPTS
CALL OS

MANAGING NON-EXISTENT MEMORY ACCESSES
Memory accesses to non-existent memory requires careful
consideration. Once an instruction has begun execution,
there is no way to stop it from completing. Thus, an instruc­
tion may reference a non-existent memory location, or an in­
terrupt may cause the machine state to be stacked into non­
existent memory. Once this has occurred, there is not always
enough information available to backtrack the last instruc­
tion.

One solution to this problem is a hardware FIFO. When a
task is initialized, a certain number of pages will be assigned
from available memory. For example, a ROM program could
be placed in a task's map along with RAM for stack and
variable data areas. The remaining pages in ·the task's map
are unassigned and references to these unassigned areas re­
quire special handling. These gaps in the memory map ofa
task may be filled by constructing a "FIFO pageHthat returns
a known value when read (zero) and when written saves the
(logical) address and the data written to it. If at any time the
FIFO is not empty, the FIFO causes an interrupt at the end of
the current instruction. The processor then examines the
contents of the FIFO and allocates real pages where there
were none before. The data in the FIFO is then placed in real
memory and the task may resume execution. Thus, the pro­
gram is stopped at the end of the instruction that causes a
page fault, and all writes to non-existent memory are cap­
tured in the FIFO.

The maximum number of new pages that may be required
after any page fault is four. Consider the following instruc­
tion sequence. A task has just started running and has only
one page allocated to it ($OOOO-$lFFF). The program to be
executed is as follows:

ORG
LDS
LDX
LDD
STD

$0000
#$8000
#$3FFF
#$1234
,X

PROGRAM START ADDRESS
INITIALIZE STACK
POINT TO DATA AREA

INITIALIZE VARIABLE

Execution then proceeds as follows. Upon executing the
fourth instruction, two bytes are written, one at location
$3FFF and the other at $4000. Since neither of these two
pages actually exist, the FIFO catches the address and data
written and pulls the IRO line to signal a page fault. At the

MC6829

end of the STD instruction, the processor will stack the
machine registers which causes two further page faults since
the stacking operation writes data to locations $7FF5-$8000.
The FI FO must also catch these references since they con­
tain the machine state at the time of the original interrupt.
When task zero gains control, the FIFO data must be cleared
before any attempt is made to reference the task's memory
map. If there are no available pages, the task may be made
inactive until sufficient space exists to allow the program to
continue.

The maximum number of bytes that may be written to
non-existent memory before task zero gains control is 24.
This occurs when the task pushes all of its registers onto the
stack when the stack points to an uninitialized page. Pushing
all registers requires 12 bytes. At the end of the instruction,
an interrupt will be generated which again pushes the entire
machine state. Thus, the FIFO must be 24 bits wide (16 ad­
dress + 8 data lines) and 24 words deep.

The primary benefit of this scheme is to allow the MC6809
stack to grow dynamically. When a task starts to run, the
stack could be initialized to $FFFF with no real memory at
that location. When the task did its first subroutine call or

stack push, the FIFO interrupt would catch the information
and the operating system would then allocate memory. If the
task never used this area, it would remain unallocated and
thus be available for other uses. Note that this approach pro­
vides for dynamic memory expansion of growing data areas.
If the size of the static data areas is known at load-time, then
memory can be allocated to a task as needed. Heap manage­
ment (such as for an editor buffer) can be handled by task
resident memory allocation routines which make operating
system calls to obtain more heap space.

The FIFO scheme does not implement a demand paging
system: It is assumed that once a page has been assigned to
a task the page remains assigned until the task ends execu­
tion or possibly gives it back (via a system call) to the
operating system.

DMAIVMA CIRCUIT

The following circuit, Figure 8 , is suggested to keep the
MC6829 deselected during dead bus cycles of DMA. This cir­
cuit will also work in a non-MMU system.

FIGURE 8 - M6B09 DMAIVMA LOGIC

RESET-----------------,

CLR

o
74LS74

BA--------.r-----/D Q 1--------"""

COMMON MMU EQUATES

Here is a list of assembler equates that are used in the following examples:

MMU
MMUO
MMU7
SBIT
FUSE
ACCESS
OPERAT
NTASK
NPAGE
MAXPGE
PSIZE

EOU
EOU
EOU
EOU
EOU
EOU
EOU
EOU
EOU
EOU
EOU

$F800
MMU+$40
MMU+$47
MMU+$48
MMU+$48
MMU+$4A
MMU+$4B
32
32
$400
2048

START OF MMU REGISTERS liN TASK 01
FIRST MMU'S KEY VALUE REGISTER
LAST MMU'S KEY VALUE REGISTER
SYSTEM/USER FLAG BIT
MAP SWITCH COUNT-DOWN REGISTER
ACCESS KEY
OPERATE KEY
NUMBER OF TASKSJN SYSTEM
NUMBER OF PAGES PER TASK
MAXIMUM NUMBER OF PAGES IN SYSTEM
NUMBER OF BYTES IN A PAGE

MC6829

Programming Examples

Example #1 -

Writea program to initialize all MMU Key Value Registers except MMUO.

KVINIT

RESET ENTRY POINT FOR MMU SYSTEM

LDX
LDA
STA
DECA
BNE

#MMU7+1
#7
,-x

KVINIT

POINT TO LAST MMU KEY VALUE REGISTER + 1
INITIALIZE VALUE

CONTINUE INITIALIZATION

At this point, each MMU will have a unique key value. Note that the Key Value Register for MMUO has not yet been
written so that page $3FF is still on the physical address bus. The difference is that now only one MMU is driving the
address bus.

Example #2 -

Write an initialization program that sets up the pages of Task #0 so that an address $XXXX in Task #0 corresponds
to physical address $1 FXXXX.

MOINIT

Example #3 -

FROM KEY VALUE INITIALIZATION

NOW INITIALIZE IDENTITY MAP FOR TASK 0

CLR
LDX
LOD
STD
INCB
BNE
CLR
JMP

ACCESS
#MMU
#$3EO
,X+ +

MOl NIT
MMUO
EXBUG

TALK TO TASK 0 (ALREADY ZERO ANYWAY)

LAST PAGE - 32

QUIT WHEN D=$200

LET MMU #0 GO
TRANSFER TO MONITOR (EXBUGOO)

Give task #9 physical page #88 and place it in the task's address space so that #9 refers to this page with addresses
$1000-$17FF. Write protect this page for this task. (The write protect bit is defined as PA20 of the MMU.)

PROTEC

Example #4 -

EQU

LDA
STA
LDX
STX

$200

#9
ACCESS
IBB+ PROTEC
MMU+4

WRITE PROTECT BIT POSITION (PA20)

SELECT TASK #9 FOR
MODIFICATION
WRITE PHYSICAL PAGE INTO
THE APPROPRIATE REGISTER

Write a subroutine that reads a byte from any task. On entry, the A register contains the task number, and the X
register contains the address of that task to read. Assume that the OS task has its third page free for this use. The
byte that is read is returned in A.

FPAGE
FREE

FUBYTE

EQU
EQU

$1000
4

FUBYTE - FETCH USER BYTE

LBSR
LOA
RTS

GETPAGE
,x

DEDICATED FREE PAGE
OFFSET INTO MMU OF FPAGE

POINT TO PAGE
PICKUP BYTE

MC6829

Example #5 -
Write a subroutine that writes a byte to any task. On entry the A register contains the task number and the X

register contains the address of that task to read. The B register contains the byte to place in the task's memory.
Assume that the as task has its third page free for this use.

SUBYTE

Example #6 -

SUBYTE - SET USER BYTE

LBSR
STB
RTS

GETPAGE PLACE USER PAGE IN FPAGE
.X

Write a subroutine to be given a task number and memory address that returns a pointer to that byte of the named
task. On entry, the A register contains the task number and the X register contains the task address.

• GET PAGE - POINT TO USER BYTE
• Given a task number in A and a task address in X,
• return with X pointing to that byte in task O.
• This subroutine assumes that task a has a free
• page IFPAGEI that it uses to map a page of the
• specified task into task O's map.

GETPAGE PSHS
STA
TFR

. ASRA
. ASRA

D. Y
ACCESS
X,D

ANDA 1%00111110
LDY IMMU

SAVE SOME REGISTERS
SETUP WINDOW TO TASK
MOVE POINTER INTO ACCUMULATOR
FIND PHYSICAL PAGE I

MASK ALL BUT PAGE I

LDY A, Y PICKUP PAGE
CLR ACCESS NOW TALK TO OS MAP
STY MMU+ FREE 'FREE' OS PAGE
TFR X, D NOW POINT TO OFFSET
ANDA 1%111 MASK HIGH BITS OF ADDRESS
LDX IFPAGE POINT TO PAGE START
LEAX D, X ADD OFFSET
PULS D, Y, PC RESTORE AND RETURN

The above method of fetching bytes from other tasks is appropriate where only a few bytes of memory are to be
transferred. When larger amounts of memory are to be moved, a more general subroutine can be written that
transfers up to 2K bytes (one page) before the MMU registers need to be changed.

ORDERING INFORMATION

Package Type Frequency (MHzl Temperature Order Number

Ceramic 1.0 O°C to 70°C MC6829L
L Suffix 1.0 -40°C to 85°C MC6829CL

1.5 O°C to 70°C MC68A29L
1.5 -40°C to 85°C MC68A29CL
2.0 DOC to 70°C MC68B29L

Cerdip 1.0 OOC to 70°C MC6829S
S Suffix 1.0 -40°C to 85°C MC6829CS

1.5 DOC to 70°C MC68A29S
1.5 -40°C to 85°C MC68A29CS
2.0 DoC to 70°C MC68B29S

Plastic 1.0 DoC to 70'C MC6829P
P Suffix 1.0 -40°C to 85°C MC6829CP

1.5 DoC to 70°C MC68A29P
1.5 -40°C to 85°C MC68A29CP
2.0 DoC to 70°C MC68B29P

