AN-230

Fine Tuning the ALU
Camry Path

Most applications information for the IDM2902 Look-
Ahead Carry Generator Family show three standard
connections for 16-, 32-, and 64-bit Arithmetic Logic
Units (ALUs). The three methods are shown in
Figure 1.

With ALU cycle times in the 200ns area, the standard
connections shown in Figure 1 were quite adequate.
A 5 to 10ns overall savings did not warrant the time
spent to examine alternative look-ahead carry

National Semiconductor
Application Note 230
Harry Holt

May 1979

methods. However, with the introduction in 1978 of
the IDM2901A-1, cycle times began to approach
100ns. This was further reduced to less than 80ns
(for a 16-bit ALU) with the introduction of the
IDM2901A-2 in 1979. Now, obviously, a 5 to 10ns
savings is significant and well worth a new look at
look-ahead carry techniques. The purpose of this
application note is to do just that and, as will be
shown, some of the results do not favor the standard
approaches.

ALY ALy

ALU AL

Sl

© D=0 &
= j0-0f =
oo-qﬂ

{Cn

Figure 1(a). Conventional 16-Bit

L Zir Zlf r {

sl dl

4) . 1DM2802 ¥ Cn 1DM2902
G P
G P
P{Cn 1DM2902

Figure 1(b). Conventional 32-Bit

ettt

Rl

[l

Ca 102902 Cn 10M2302

Cn 10M2902 Cn 10M2902

1

I

Co+y
10M2902

Cn+z

Figure 1(c). Conventional 64-Bit

BASIC METHODS

Thé basic methods examined in this :
can be divided into four categories:

1. Ripple Carry

2. Conventional Single Level
3. Multi-Level

4. Shifted

Ripple carry is generally considered to
bits it turns out to be the fastest metho
shown that ripple carry can be used inc
other methods to eliminate parts while
to system cycle time. In most cas
methods will result in tradeoffs betw
and system speed. It will be shown that
however, generate the highest perfor
fewest parts!

Single-level will be used to describe ¢
single layer of look-ahead carry even th:
this is a multi-level solution since the
across four bits. An example of a singl!
is the 16-bit solution of Figure 1(a).

The conventional 32-bit cdnnection [F
example of multi-level look-ahead. In th
carry-in is connected to two IDM2902s.

4 The least well known of the four metho
4 approach shown in Figure 2. Although

slightly slower method in the 16-bit

q there are word sizes where it can be the

Furthermore, freeing a set of G, P pins
can have advantages in certain applicat
extension is required. (See Reference °

As alluded to above, the various m
combined in a number of ways. The foll
the various combinations that were e
study. Almost all were applied to ALU s
bits to identify the advantages and d
each. These will be summarized later.

Table I. Look-Ahead Carry Me

. Ripple

Cn

. Shifted

. Chained

. Shifted Chain

. Two Level

. Two Level with Helpers

. Shifted Two Level

. Shifted Two Level with Help
. Double Shifted Two Level

. Double Shifted Two Level wi
. Three Level

. Shifted Three Level

. Double Shifted Three Level

©NDO AWM

—_ h
S WN - 00

A ZE S o B R T/ R

1 8Asic METHODS .
4 The basic methods examined in this application note

can be divided into four categories:
1. Ripple Carry
2. Conventional Single Level
3. Multi-Level
4. Shifted

Ripple carry is generally considered to be slow, but at 8
bits it turns out to be the fastest method. Also, it will be
shown that ripple carry can be used in combination with
other methods to eliminate parts while adding very little
to system cycle time. In most cases, the various
methods will result in tradeoffs between parts count
and system speed. It will be shown that some solutions,
however, generate the highest performance with the
fewest parts!

Single-level will be used to describe a system with a
single layer of look-ahead carry even though technically
this is a multi-level solution since the ALU itself looks
across four bits. An example of a single-level approach
is the 16-bit solution of Figure 1(a).

The conventional 32-bit connection [Figure 1(b)] is an
example of multi-level look-ahead. In this approach, the
carry-in is connected to two IDM2902s.

The least well known of the four methods is the shifted
approach shown in Figure 2. Although this results in a
slightly slower method in the 16-bit solution shown,
there are word sizes where it can be the fastest method.
Furthermore, freeing a set of G, P pins on the IDM2902

1 can have advantages in certain applications where sign-

extension is required. (See Reference 1)

As alluded to above, the various methods can be
combined in a number of ways. The following is a list of
the various combinations that were examined in this
study. Aimost all were applied to ALU sizes from 4 to 64
bits to identify the advantages and disadvantages of
each. These will be summarized later.

Table I. Look-Ahead Carry Methods

. Ripple

Cn

. Shifted

Chained

. Shifted Chain

. Two Level

. Two Level with Helpers

. Shifted Two Level

. Shifted Two Level with Helpers
. Double Shifted Two Level

. Double Shifted Two Level with Helpers
. Three Level

. Shifted Three Level

. Double Shifted Three Level

©®NOO AWM =

- 4 4
S WN 20O

FACTORS AFFECTING CHOICE

Before applying the look-ahead carry methods to the
varlous word length ALUs, it may be worthwhile to look
at some of the factors — other than raw speed — that
could affect the choice of method. Some of these are:

. parts count

. board-to-board considerations
. board space

. sign extend

. sequencer cycle time

. board layout

. word length expansion

. different system architectures
. current spiking

© O N E WN -

While parts count, board space, and board layout are
more or less obvious considerations, the others deserve
a brief comment:

A. Board-to-board considerations refer to those
systems where half of the ALU is on one board and
half is on another. Obviously all methods would not
be readily adaptable to this situation if a sufficient
number of connector pins is not available.

B. Sign-extend requirements may favor the method that
frees a G,P input on one of the look-ahead carry
circuits. This is explained more fully in Reference 1.

C. Sequencer cycle time, in a pipelined system, may be
the limiting factor in overall system speed. Thus,
saving a few nanoseconds in the ALU may not be
worthwhile.

D. Future word length expansion is a consideration if
several models of the same basic system are
required. For example, 16 bits of address can
address 64K words; twenty bits can address 1M
words. If the ALU is used to compute addresses, the
carry method optimized for 20 bits may be desirable.

E. The architecture that was assumed for this study will
not be used in every system. Thus, the availability
and timing of input signals, worst-case delay paths,
and added components will affect the results shown
in the following section. Thus, each design could
require a separate study to achieve optimized
results.

F. Current spiking is a consideration when one method
causes several ALUs to change output states within
a few nanoseconds of each other. If this causes
system noise problems, perhaps an alternate method
would be desirable.

APPLYING THE VARIOUS METHODS

In the following discussion, the IDM2901A-1 timing is
used for the register-ALU elements. Because several
different choices of pipeline register are available, the

times shown do not include the clock-to-register output.

delay. Finally, the comparisons are based on the time
required to add two registers and obtain a valid output,
ie, A+B—Y.

4, 8 Bits: Ripple carry Is clearly the best from all con-
siderations and thus no further discussion is necessary.
Register-to-register add time for 8 bits is 75ns.

23113

0E€¢-NV

3
<
<

12 Bits: At present, the conventional single-level
method Is best (77ns). However, It future bit-slices
feature A,B~ Cp,, 4 as fast as A,B - G,Fand C,~ C, 4
as fast as the IDM2902's G, P-C,, +y: ripple carry can be
just as fast. (This illustrates the need for designers to

continually rethink the problem as new parts become

available.)

16 Bits: Without considering sign extend, the conven-
tional approach [Figure 1(a)] is optimum (75ns). The
shifted method (Figure 2) is 8.5ns slower under the
assumptions made above, but if sign extend is required,

Note: In the figures that follow, connecting lines are simplified
and terminal labels are eliminated for clarity.

It may well be as fast, in addition to eliminating multi-
plexers. (See Reference 1.) (This illustrates the fact that
two parts of a system optimized Independently may
result in an overall slower system.)

20 Blts: As word width increases above 16 bits, some of
the less conventional approaches begin to have some
advantage. First, consider the more obvious
approaches; the single level and chained approaches
are shown In Figures 3(a) and 3(b). Another solution can
be obtained by deleting parts from the conventional
32-bit solution of Figure 1(b). This is shown in Figure
3(c).

Ca Ch+d Ca

) o e FY

- j0~0f v

s

Ca

Figure 2. 16-Bit Shifted Look-Ahead

Figure 3(a). 20-Bit, Single-Level Method

¥

Figure 3(b). 20-Bit, Chained

L4

Figure 3(c). 20-Bit, Two-Level

23-114

From a timing standpoint, (b) anc
87.5ns compared to 93ns fo
method [Figure 3(a)] is superic
standpoint, requiring a single I
than two. A closer look at Figur
that only a small portion of the s:
circuit is used. Furthermore,
replaced by a circuit consisting ¢
of a 74S51 as shown in Figure 4
power, lower cost solution, th
second look-ahead carry circuit

Even more surprising is the fact t
shown in Figure 5 not only has
also runs faster (85.5ns) than the
Here is a situation where the
BOTH favor the same solution!

24, 28 Bits: Using the convent
(deleting one or two ALUs) yields
for both 24 and 28 bits. The sh
however, uses fewer parts and is
same parts count, the chained ¢
yield the fastest times (87.5ns) |
ALUs.

32 Bits: The conventional approat
Figure 1(b) is an example of the
method. For 32 bits, the register-
98ns for this method. This is a fas
chained and two-level methods
optimum for 24 and 28 bits. Ar

ol |

Cn

Figure 4. Partial Look-Ahead Ca

| H

st, in addition to eliminating multi-
nce 1.) (This illustrates the fact that
lem optimized independently may
lower system.)

th increases above 16 bits, some of
al approaches begin to have some

consider the more obvious
gle level and chained approaches
> 3(a) and 3(b). Another solution can
eting parts from the conventional
gure 1(b). This is shown in Figure

]
]

From a timing standpoint, (b) and (c) of Figure 4 are both
87.5ns compared to 93ns for (a). The single-level
method [Figure 3(a)) is superior from a parts count
standpoint, requiring a single look-ahead carry rather
than two. A closer look at Figure 3(c), however, reveals
that only a small portion of the second look-ahead carry
circuit is used. Furthermore, this portion can be
replaced by a circuit consisting of 1/6 of a 74S04 and 1/2
of a 74S51 as shown in Figure 4. In addition to a lower
power, lower cost solution, the replacement of the
second look-ahead carry circuit actually saves 1.5ns!

Even more surprising is the fact that the shifted method
shown in Figure 5 not only has the fewest parts, but
also runs faster (85.5ns) than the other methods shown.
Here is a situation where the speed-cost tradeoffs
BOTH favor the same solution!

24, 28 Bits: Using the conventional 32-bit solution
(deleting one or two ALUs) yields identical times (98 ns)
for both 24 and 28 bits. The shifted chain (Figure 6),
however, uses fewer parts and is faster (96 ns). With the
same parts count, the chained and two-level methods
yield the fastest times (87.5ns) for both 24- and 28-bit
ALUs.

{ 32 Bits: The conventional approach for 32 bits shown in
. Figure 1(b) is an example of the two-level with helpers
' method. For 32 bits, the register-to-register add time is

98ns for this method. This is a faster approach than the
chained and two-level methods (103.5ns) that were
optimum for 24 and 28 bits. Another method — the

shifted two-level — again uses fewer parts and is con-
siderably faster than the conventional approach
(87.5ns). This is illustrated in Figure 7.

36, 40, 44 Bits: A 98ns solution can be obtained for
36-bit ALUs by simply deleting parts from the 64-bit
solution of Figure 1(c). A word of caution: this is not the
path to the most significant slice (MSS). It turns out that
this path is only 87.5ns. The 98ns path is to the output
of the second MSS. The shifted two-level with helper
method (Figure 8) will also produce a 98ns result, but if
the “helper” is replaced by the circuit of Figure 4, the
result is 96.5ns.

Another solution, requiring only two parts, is shown in
Figure 9. This solution — the double shifted two-level
method — turns out to be the best two-part solution for
all word sizes from 36 to 64 bits. Speed for this method
is 101.5ns.

The shifted two-level with helper and double-shifted
two-level methods turn out to be the optimum three-part
and two-part solutions for 40- and 44-bit ALUs also.

48 Bits: As mentioned above, the double shifted two-
level method shown in Figure 9 is also the optimum two-
part solution for 48 bits. Three-part solutions are shown
in Figure 10. The shifted three-level solution of Figure
10(a) results in a 114ns system. The double shifted
three-level solution is 101.5ns. Note how the worst-case
path varies between the two solutions. This points out
the fact that several paths must be evaluated to ensure
that the longest one has been found.

ol |

Cn+x

Figure 4. Partial Look-Ahead Carry Circuit

e e e i

Figure 5. 20-Bit, Shifted

—— == =

: 1F :"'“--J

Figure 6. 24, 28-Bit, Shifted Chain

[

4

Figure 7. 32-Bit, Shifted Two-Level

23-115

0€C-NV

@
N
Z
<

N

Figure 8. 36-Bit, Shifted Two-Level with Helper

Figure 9. 36-Bit, Double-Shifted, Two-Level

rLl_JrI_I_I | el el

WORST-CASE
PATH

Figure 10(a). 48-Bit, Shifted, Three-Level

Soen

WORST-CASE
PATH

L 4

TR

Figure 10(b). 48-Bit, Double Shifted, Three-Level

The four-part system of Figure
mance slightly (98ns) and may
additional expense. It is, howeve
choice from 48 to 60 bits. This me
shifted two-level with helpers.

52 Bits: Not a particularly popula
system nevertheless provides an ¢
strate another look-ahead carry m
shifted, two-level with helpers. Thi
the fastest three-part method for w
64 bits. This method, illustrated in
117.5ns for 52-bit systems.

56 Bits: ALUs of 56 bits are be
floating point systems using 56 bi

23-116

@_
WORST-CASE
PATH

i

WORST-CASE
PATH

i The four-part system of Figure 11 improves perfor-
i mance slightly (98ns) and may not be worth the
iadditlonal expense. It Is, however, the best four-part

i choice from 48 to 60 bits. This method is referred to as
i shifted two-level with helpers.

| 52 Bits: Not a particularly popular ALU size, the 52-bit
{ system nevertheless provides an opportunity to demon-
strate another look-ahead carry method — the double-
shifted, two-level with helpers. This also turns out to be
ihe fastest three-part method for word widths from 52 to
¢4 bits. This method, illustrated in Figure 12, results in
117.5ns for 52-bit systems.

56 Bits: ALUs of 56 bits are becoming common in
floating point systems using 56 bits of mantissa and 8

bits of exponent. Deleting components from the conven-
tional 64-bit approach [Figure 1(c)] results in a 98ns
.solution. This same speed, however, can be achieved
with four parts using the shifted two-level with helper
method of Figure 13.

60 Bits: The fastest 60-bit solution is the conventional
approach for 64 bits [Figure 1(c)] with one alu deleted.
This results in a 98ns solution. The shifted two-level
with helper method (Figures 11 and 13) is a four-part
solution that results in 103.5ns.

64 Bits: Again, the fastest 64-bit solution (98ns) is the
conventional approach of Figure 1(c). The fastest four-
part solution is a double-shifted two-level with helper
method (117.5ns) illustrated in Figure 14.

ealien

*j?@%

»

Figure 11. 48-Bit, Shifted Two-Level with Helpers

oG

Figure 12. 52-Bit, Double-Shifted, Two-Level with Helpers

e emiealias

el

=

4

e

Figure 13. 56-Bit, Shifted, Two-Level with Helper

oo

DR

Figure 14. 64-Bit, Double Shifted, Two-Level with Helper

23-117

0€2-NV

AN-230

Table Il is a summary of the data generated from this
study. It lists, for each word size, the fastest solution for
look-ahead carry parts count from 0 to 5. The number:

under the “Method” column corresponds to the
numbered list of Table I. The fastest solution for each
word size Is shaded.

Table Il. Optimum Speed for 4- 64-Bit ALUs

Number of IDM2902s

Word 0 1 2 3 4 5
Size |Method| Time [Method| Time |Method| Time |Method| Time |Method| Time |Method| Time

4 1 50 4

8 1 75

12 1 9 A L

16 1 107 2 77

20 1 123 3 855 | 4 87.5

24 1 139 3 1015 | 4,6.8 | 875" 98

28 1 155 3 1175 | 4.6,8 | 875" 98

32 1 171 3 1335 8 87.5 98

36 1 187 3 1495 | 10 | 1015 |7,9.12| 98

40 1 203 3 | 185 | 10 | 1175 ;" ssu T

44 1 219 3 1815 10 1335 | 9,13 | 98

48 1 235 3 1975 10 149.5 14 1015 | 7.9 98

52 1 251 3 2135 10 165.5 1 175 | 7.9 98

56 1 267 3 2295 10 181.5 11 1335 | 9,13 | 98 77| 98
60 1 283 3 2455 10 197.5 1 1495 9 1035 | 7.9 98
64 1 299 3 261.5 10 2135 11 165.5 11 1175 | 7.9 98 —I
CONCLUSIONS

It may appear that a lot of time was spent investigating
alternate look-ahead carry schemes that save “a few
nanoseconds’ in overall speed. While this is certainly
true for systems with ALU cycle times in the 200ns
range, it has been shown that with the more recent 2900
components from National Semiconductor, ALU cycle
times in the 100ns region are certainly feasible, and
here those same few nanoseconds could become sig-
nificant. This will be even more apparent with the
introduction of the IDM2901A-2, which will improve the
register/ALU times listed in Table Ill by another
20-25%.

It has also been shown that no one solution is “best"”
for all applications. Even the “‘fastest” solution may not
be optimum for a specific system when parts count,
system wiring, board space, etc., are considered.

Table Ill. Delay Times Used to Calculate Cycle Time

IDM2901A-1: 1DM2902:
AB=Y............ 50ns G,P—=G,P....... 10.5ns
AB—=G,P 45ns Cp—Cpyyyz - 10.5ns
AB=Cpryg:oevennn- 50ns G,P= Cpyxyz--+- 7.0ns
Cn=Crst eevvrnnnn 16ns
G =Y wrvmen vmnans 25ns

Finally, the entire study will soon be obsolete as new
components with different (albeit faster) specifications
are introduced. Therefore, the only conclusion that
seems legitimate is that each application should be
considered individually with the requirements of the
system, the devices available, and sound engineering
judgement determining the optimum solution. It is
hoped that the information contained in this application
note will provide some guidelines for finding that
solution.

REFERENCES

1. AN-203, Bit-Slice Microprocessor Design Takes a
Giant Step Forward with “Schottky-Coupled-Logic”
Circuits.

2. AN-217, High Speed Bit-Slice Microsequencing
Design.

23-118

Introduction and General
The PAL—A New Exten
Comparison (PROMs, P
PALs For Every Task (F¢
PAL Part Numbers
PAL Logic Symbols

Data Sheets
Programmable Array Lc
Programmable Array Lc

PAL Design
Selecting the Right PAL
PAL Logic Diagrams
Designing the PAL; Mar
Designing the PAL; PAL
PALASM Flow Chart
PALASM Source Code f
PALASM Source Code f
PAL Logic Diagrams an

Application Suggestions

Basic Gates
6-Bit Shift Register
Control Store Sequence
Memory Mapped I/0
8080 Control Logic for C
Hexadecimal Decoder/l
Hex Keyboard Scanner
Micro Floppy Control L¢
Between Limits Compai
Priority Encoder with Re
Quad 3-line/1-line Data !
4-Bit Counter with Multi
4-Bit Up/Down Counter
ALU Accumulator

