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Power Spectra Estimation

1.0 INTRODUCTION

Perhaps one of the more important application areas of digi-

tal signal processing (DSP) is the power spectral estimation

of periodic and random signals. Speech recognition prob-

lems use spectrum analysis as a preliminary measurement

to perform speech bandwidth reduction and further acoustic

processing. Sonar systems use sophisticated spectrum

analysis to locate submarines and surface vessels. Spectral

measurements in radar are used to obtain target location

and velocity information. The vast variety of measurements

spectrum analysis encompasses is perhaps limitless and it

will thus be the intent of this article to provide a brief and

fundamental introduction to the concepts of power spectral

estimation.

Since the estimation of power spectra is statistically based

and covers a variety of digital signal processing concepts,

this article attempts to provide sufficient background

through its contents and appendices to allow the discussion

to flow void of discontinuities. For those familiar with the

preliminary background and seeking a quick introduction

into spectral estimation, skipping to Sections 6.0 through

11.0 should suffice to fill their need. Finally, engineers seek-

ing a more rigorous development and newer techniques of

measuring power spectra should consult the excellent refer-

ences listed in Appendix D and current technical society

publications.

As a brief summary and quick lookup, refer to the Table of

Contents of this article.
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2.0 WHAT IS A SPECTRUM?

A spectrum is a relationship typically represented by a plot

of the magnitude or relative value of some parameter

against frequency. Every physical phenomenon, whether it

be an electromagnetic, thermal, mechanical, hydraulic or

any other system, has a unique spectrum associated with it.

In electronics, the phenomena are dealt with in terms of

signals, represented as fixed or varying electrical quantities

of voltage, current and power. These quantities are typically

described in the time domain and for every function of time,

f(t), an equivalent frequency domain function F(0) can be

found that specifically describes the frequency-component

content (frequency spectrum) required to generate f(t). A

study of relationships between the time domain and its cor-

responding frequency domain representation is the subject

of Fourier analysis and Fourier transforms.

The forward Fourier transform, time to frequency domain, of

the function x(t) is defined

F[x(t)] e #%

b%

x(t)fbj0t dt e X(0) (1)

and the inverse Fourier transform, frequency to time do-

main, of X(0) is

Fb1[X(0)] e

1

2q #%

b%

X(0)fj0t d0 e x(t) (2)

(For an in-depth study of the Fourier integral see reference

19.) Though these expressions are in themselves self-ex-

planatory, a short illustrative example will be presented to

aid in relating the two domains.

If an arbitrary time function representation of a periodic

electrical signal, f(t), were plotted versus time as shown in

Figure 1, its Fourier transform would indicate a spectral con-

tent consisting of a DC component, a fundamental frequen-

cy component 0o, a fifth harmonic component 50o and a

ninth harmonic component 90o (see Figure 2). It is illustra-

tively seen in Figure 3 that the superposition of these fre-

quency components, in fact, yields the original time function

f(t).

TL/H/8712–1

FIGURE 1. An Electrical Signal f(t)

TL/H/8712–2

FIGURE 2. Spectral Composition or

Spectrum F(0) or f(t)

TL/H/8712–3

FIGURE 3. Combined Time Domain and Frequency Domain Plots
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3.0 ENERGY AND POWER

In the previous section, time and frequency domain signal

functions were related through the use of Fourier trans-

forms. Again, the same relationship will be made in this sec-

tion but the emphasis will pertain to signal power and ener-

gy.

Parseval’s theorem relates the representation of energy,

0(t), in the time domain to the frequency domain by the

statement

0(t) e #%

b%

f1(t)f2(t) dt e #%

b%

F1(f)F2(f) df (3)

where f(t) is an arbitrary signal varying as a function of time

and F(t) its equivalent Fourier transform representation in

the frequency domain.

The proof of this is simply#%

b%

f1(t)f2(t) dt e #%

b%

f1(t)f2(t) dt (4a)

Letting F1(f) be the Fourier transform of f1(t)#%

b%

f1(t)f2(t) dt e #%

b% Ð#%

b%

F1(f)fj2qft df ( f2(t) dt (4b)

e #%

b% ÐF1(f) #%

b%

fj2qft df ( f2(t) dt (4c)

Rearranging the integrand gives#%

b%

f1(t)f2(t) dt e #%

b%

F1(f) Ð#%

b%

f2(t)fj2qft dt ( df (4d)

and the factor in the brackets is seen to be F2(bf) (where

F2(bf) e F2
* (f) the conjugate of F2(f) so that#%

b%

f1(t)f2(t) dt e #%

b%

F1(f)F2(bf) df (4e)

A corollary to this theorem is the condition f1(t) e f2(t) then

F(bf) e F*(f), the complex conjugate of F(f), and

0(t) e #%

b%

f2(t) dt e #%

b%

F(f)F*(f) df (5a)

e #%

b%
lF(f)l2 df (5b)

This simply says that the total energy² in a signal f(t) is

equal to the area under the square of the magnitude of its

Fourier transform. lF(f)l2 is typically called the energy densi-
ty, spectral density, or power spectral density function and

lF(f)l2df describes the density of signal energy contained in

the differential frequency band from f to f a dF.

In many electrical engineering applications, the instanta-

neous signal power is desired and is generally assumed to

be equal to the square of the signal amplitudes i.e., f2(t).
²Recall the energy storage elements

Inductor v e L
di

dt

0(t) e #T

0
vidt e # T

0
L

di

dt
idt e # I

0
Lidt e

1

2
LI2

Capacitor i e c
dv

dt

0(t) e #T

0
vidt e # T

0
vc

dv

dt
dt e # V

0
cvdv e

1

2
cv2

This is only true, however, assuming that the signal in the

system is impressed across a 1X resistor. It is realized, for

example, that if f(t) is a voltage (current) signal applied

across a system resistance R, its true instantaneous power

would be expressed as [f(t)]2/R (or for current [f(t)]2R)

thus, [f(t)]2 is the true power only if R e 1X.

So for the general case, power is always proportional to the

square of the signal amplitude varied by a proportionality

constant R, the impedance level in a circuit. In practice,

however, it is undesirable to carry extra constants in the

computation and customarily for signal analysis, one as-

sumes signal measurement across a 1X resistor. This al-

lows units of power to be expressed as the square of the

signal amplitudes and the units of energy measured as

volts2-second (amperes2-second).

For periodic signals, equation (5) can be used to define the

average power, Pavg, over a time interval t2 to t1 by integrat-

ing [f(t)]2 from t1 to t2 and then obtaining the average after

dividing the result by t2 b t1 or

pavg e

1

t2 b t1 #t2

t1
f2(t) dt (6a)

e

1

T #T

0
f2(t) dt (6b)

where T is the period of the signal.

Having established the definitions of this section, energy

can now be expressed in terms of power, P(t),

0(t) e #%

b%

[f(t)]2 dt (7a)

e #%

b%

P(t) dt (7b)

with power being the time rate of change of energy

P(t) e

d0(t)

dt
(8)

As a final clarifying note, again, lF(f)l2 and P(t), as used in

equations (7b) and (8), are commonly called throughout the

technical literature, energy density, spectral density, or pow-
er spectral density functions, PSD. Further, PSD may be

interpreted as the average power associated with a band-

width of one hertz centered at f hertz.

4.0 RANDOM SIGNALS

It was made apparent in previous sections that the use of

Fourier transforms for analysis of linear systems is wide-

spread and frequently leads to a saving in labor.

In view of using frequency domain methods for system anal-

ysis, it is natural to ask if the same methods are still applica-

ble when considering a random signal system input. As will

be seen shortly, with some modification, they will still be

useful and the modified methods offer essentially the same

advantages in dealing with random signals as with nonran-

dom signals.

It is appropriate to ask if the Fourier transform may be used

for the analysis of any random sample function. Without

proof, two reasons can be discussed which make the trans-

form equations (1) and (2) invalid.

3



Firstly, X(0) is a random variable since, for any fixed 0,

each sample would be represented by a different value of

the ensemble of possible sample functions. Hence, it is not

a frequency representation of the process but only of one

member of the process. It might still be possible, however,

to use this function by finding its mean or expected value

over the ensemble except that the second reason netages

this approach. The second reason for not using the X(0) of

equations (1) and (2) is that, for stationary processes, it al-

most never exists. As a matter of fact, one of the conditions

for a time function to be Fourier transformable is that it be

integrable so that, #%

b%
lx(t)l dt k % (9)

A sample from a stationary random process can never satis-

fy this condition (with the exception of generalized functions

inclusive of impulses and so forth) by the argument that if a

signal has nonzero power, then it has infinite energy and if it

has finite energy then it has zero power (average power).

Shortly, it will be seen that the class of functions having no

Fourier integral, due to equation (9), but whose average

power is finite can be described by statistical means.

Assuming x(t) to be a sample function from a stochastic

process, a truncated version of the function xT(t) is defined

as

xT(t) e Ðx(t)

0

l t l s T

l t l l T
(10)

and

x(t) e lim xT(t)
Tx%

(11)

This truncated function is defined so that the Fourier trans-

form of xT(t) can be taken. If x(t) is a power signal, then

recall that the transform of such a signal is not defined#%

b%
lx(t)l dt not less than % (12)

but that #%

b%
lxT(t)l dt k % (13)

The Fourier transform pair of the truncated function xT(t)

can thus be taken using equations (1) and (2). Since x(t) is a

power signal, there must be a power spectral density func-

tion associated with it and the total area under this density

must be the average power despite the fact that x(t) is non-

Fourier transformable.

Restating equation (5) using the truncated function xT(t)#%

b%

x
2
T(t) dt e #%

b%
lXT(f)l2 df (14)

and dividing both sides by 2T

1

2T #%

b%

x
2
T(t) dt e

1

2T #%

b%
lXT(f)l2 df (15)

gives the left side of equation (15) the physical significance

of being proportional to the average power of the sample

function in the time interval bT to T. This assumes xT(t) is a

voltage (current) associated with a resistance. More pre-

cisely, it is the square of the effective value of xT(t)

and for an ergodic process approaches the mean-square
value of the process as T approaches infinity.

At this particular point, however, the limit as T approaches

infinity cannot be taken since XT(f) is non-existent in the

limit. Recall, though, that XT(f) is a random variable with

respect to the ensemble of sample functions from which x(t)

was taken. The limit of the expected value of

1

2T
lXT(f)l2

can be reasonably assumed to exist since its integral, equa-

tion (15), is always positive and certainly does exist. If the

expectations EÀ Ó, of both sides of equation (15) are taken

E Ð 1

2T #%

b%

x
2
T(t) dt( e E Ð 1

2T #%

b%
lxT(f)l2 df( (16)

then interchanging the integration and expectation and at

the same time taking the limit as Tx%

lim
Tx%

1

2T #%

b%

x2 (t) dt e
lim
Tx%

(17)

1

2T #%

b%

EÀlxT(f)l2Ó df

results in

k x2 (t) l e #%

b%

lim
Tx%

EÀlxT(f)l2Ó

2T
df (18)

where x2 (t) is defined as the mean-square value (
Ð

de-

notes ensemble averaging and k l denotes time averag-

ing).

For stationary processes, the time average of the mean-

square value is equal to the mean-square value so that

equation (18) can be restated as

x2 (t) e #%

b%

lim
Tx%

EÀlXT(f)l2Ó

2T
df (19)

The integrand of the right side of equation (19), similar to

equation (5b), is called the energy density spectrum or pow-
er spectral density function of a random process and will be

designated by S(f) where

S(f) e
lim
Tx%

EÀXT(f)l2Ó

2T
(20)

Recall that letting Tx% is not possible before taking the

expectation.

Similar to the argument in Section III, the physical interpre-

tation of power spectral density can be thought of in terms

of average power. If x(t) is a voltage (current) associated

with a 1X resistance, x2(t) is just the average power dissi-

pated in that resistor and S(f) can be interpreted as the

average power associated with a bandwidth of one hertz

centered at f hertz.

S(f) has the units volts2-second and its integral, equation

(19), leads to the mean square value hence,

x2 (t) e #%

b%

S(f) df (21)
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Having made the tie between the power spectral density

function S(f) and statistics, an important theorem in power

spectral estimation can now be developed.

Using equation (20) and recalling that XT(f) is the Fourier

transform of xT(t), assuming a nonstationary process,

S(f) e
lim
Tx%

EÀlXT(f)l2Ó

2T
(22)

S(f) e
lim
Tx%

1

2T
E Ð#%

b%

xT(t1)f
j0t1 dt1

(23)#%

b%

xT(t2)f
j0t2 dt2(

Note that lXT(f)l2 e XT(f)XT(bf) and that in order to distin-

guish the variables of integration when equation (23) is re-

manipulated the subscripts of t1 and t2 have been intro-

duced. So, (see Appendix B)

S(f) e
lim
Tx% Ð 1

2T
(24)

E Ð#%

b%

dt2 #%

b%

f
bj0(t2bt1)xT(t1)xT(t2) dt1 ( (

e
lim
Tx% Ð 1

2T #%

b%

dt2 #%

b%

E[xT(t1)xT(t2)] (25)

f
bj0(t2bt1) dt1(

Finally, the expectation E[xT(t1)xT(t2)] is recognized as the

autocorrelation, Rxx(t1, t2) (Appendix A.14) function of the

truncated process where

E[xT(t1)xT(t2)] e Rxx(t1, t2) l t1 l, l t2 l s T

e 0 everywhere else.

Substituting

t2 b t1 e u (26)

dt2 e du (27)

equation (25) next becomes

S(f) e
lim
Tx%

1

2T #%

b%

du
(28)#T

bT
Rxx(t1,t1au)fbj0u dt

or

S(f) e Ð Ð#%

b%

lim
Tx%

1

2T (29)#T

bT
Rxx(t1,t1au) dt1 ( fbj0t(du

We see then that the special density is the Fourier transform

of the time average of the autocorrelation function. The rela-

tionship of equation (29) is valid for a nonstationary process.

For the stationary process, the autocorrelation function is

independent of time and therefore

(30)kRxx(t1,t1,au)l e Rxx(u)

From this it follows that the spectral density of a stationary

random process is just the Fourier transform of the auto-

correlation function where

S(f) e #%

b%

Rxx(u)fbj0t du (31)

and

Rxx(u) e #%

b%

S(f)fj0t df (32)

are described as the Wiener-Khintchine theorem.

The Wiener-Khintchine relation is of fundamental impor-

tance in analyzing random signals since it provides a link

between the time domain [correlation function, Rxx(u)] and

the frequency domain [spectral density, S(f)]. Note that the

uniqueness is in fact the Fourier transformability. It follows,

then, for a stationary random process that the autocorrela-

tion function is the inverse transform of the spectral density

function. For the nonstationary process, however, the auto-

correlation function cannot be recovered from the spectral

density. Only the time average of the correlation is recover-

able, equation (29).

Having completed this section, the path has now been

paved for a discussion on the techniques used in power

spectral estimation.

5.0 FUNDAMENTAL PRINCIPLES OF

ESTIMATION THEORY

When characterizing or modeling a random variable, esti-

mates of its statistical parameters must be made since the

data taken is a finite sample sequence of the random pro-

cess.

Assume a random sequence x(n) from the set of random

variables ÀxnÓ to be a realization of an ergodic random pro-

cess (random for which ensemble or probability averages,

E[ ], are equivalent to time averages, k l) where for all n,

m eE[xn] e #%

b%

xfx(x) dx (33)

Assuming further that the estimate of the desired averages

of the random variables ÀxnÓ from a finite segment of the

sequence, x(n) for 0 s n s Nb1, to be

m e kxnl e
lim
Nx%

1

2N a 1 &N

n e bN

xn (34)

then for each sample sequence

m e kx(n)l e
lim
Nx%

1

2N a 1 &N

n e bN

x(n) (35)

Since equation (35) is a precise representation of the mean

value in the limit as N approaches infinity then

!

me

1

N &N b 1

n e 0

x(n) (36)
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may be regarded as a fairly accurate estimate of m for suffi-

ciently large N. The caret (!) placed above a parameter is

representative of an estimate. The area of statistics that

pertains to the above situations is called estimation theory .

Having discussed an elementary statistical estimate, a few

common properties used to characterize the estimator will

next be defined. These properties are bias, variance and

consistency .

Bias

The difference between the mean or expected value E[
!

h] of

an estimate
!

h and its true value h is called the bias .

bias e B !
h

e h b E[
!

h] (37)

Thus, if the mean of an estimate is equal to the true value, it

is considered to be unbiased and having a bias value equal

to zero.

Variance

The variance of an estimator effectively measures the width

of the probability density (Appendix A.4) and is defined as

s2
!
hEe Ð (!

h b E[
!

h])2 ( (38)

A good estimator should have a small variance in addition to

having a small bias suggesting that the probability density

function is concentrated about its mean value. The mean

square error associated with this estimator is defined as

mean square error e E Ð (!

h b h)2 ( e s2
!
h

a B
2
!
h

(39)

Consistency

If the bias and variance both tend to zero as the limit tends

to infinity or the number of observations become large, the

estimator is said to be consistent. Thus,

lim
Nx%

s2
!
h

e 0 (40)

and

lim
Nx%

B !
h

e 0 (41)

This implies that the estimator converges in probability to

the true value of the quantity being estimated as N becomes

infinite.

In using estimates the mean value estimate of mx, for a

Gaussian random process is the sample mean defined as

!

mx e

1

N &N b 1

i e 0

xi (42)

the mean square value is computed as

E[
!

m
2
x] e

1

N2 &N b 1

i e0
&N b 1

j e 0

E[xixj] (43)

e

1

N2 % &
N b 1

i e 0

E[x2
i ] a &N b 1

i e 0
&N b 1

j e 0
i i j

E[xi] #E[xj] – (44)

e

1

N2 %N(E[x2
n]) a K&N b 1

i e 0

E[xi]L K&N b 1

j e 0
i i j

E[xj]L –(45)

e

1

N
E[x2

n] a (mx)2
N b 1

N
(46)

thus allowing the variance to be stated as

s 2
!
m

x

e E[(
!

mx)2] b ÀE[
!

mx]Ó2 (47)

e

1

N
E[x2

n] a (m
2
x)

N b 1

N
b ÀE[

!

mx]Ó2 (48)

e

1

N
E[x2

n] a (m
2
x)

N b 1

N
bm

2
x (49)

e

1

N
(E[x2

n] b m
2
x) (50)

e

s2
x

N
(51)

This says that as the number of observations N increase,

the variance of the sample mean decreases, and since the

bias is zero, the sample mean is a consistent estimator.

If the variance is to be estimated and the mean value is a

known then

!

s2
x e

1

N &N b 1

i e 0

(xi b mx)2 (52)

this estimator is consistent.

If, further, the mean and the variance are to be estimated

then the sample variance is defined as

!

s2
x e

1

N &N b 1

i e 0

(xi b
!

mx)2 (53)

again
!

mx is the sample mean.

The only difference between the two cases is that equation

(52) uses the true value of the mean, whereas equation (53)

uses the estimate of the mean. Since equation (53) uses an

estimator the bias can be examined by computing the ex-

pected value of
!

s2
x therefore,

E[
!

s2
x] e

1

N &N b 1

i e 0

(E[xi] b E[
!

mx])2 (54)

e

1

N &N b 1

i e 0 ÐE[x2
i ] b 2E[xi

!

mx] a E[
!

m
2
x]( (55)

e

1

N &N b 1

i e 0

E[x2
i ] b

2

N2 &N b 1

i e 0 #&N b 1

j e 0
(56)

E[xixj]Ja

1

N2 &N b 1

i e 0
&N b 1

j e 0

E[xixj]
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e

1

N &N b 1

i e 0

E[x2
i ] b

2

N2 #&N b 1

i e 0

E[x2
I ] a

&N b 1

i e 0
&N b 1

j e 0
i i j

E[Xi] #E[xj]J a

1

N2 #&N b 1

i e 0

(57)

E[x2
i ] a &N b 1

i e 0
&N b 1

j e 0

E[xi] #E[xj]J
e

1

N #N#E[x2
i ] J b

2

N2 ÐN#E[x2
i ] a N(N b 1)m

2
x (

(58)

a

1

N2 ÐN#E[x2
i ] a N(N b 1)m

2
x (

e

1

N #N#E[x2
i ] J b

2N

N2 #E[x2
i ] J b

2N(N b 1)

N2
m

2
x

(59)

a

N

N2
E[x2

i ] a

N(N b 1)

N2
m

2
x

e

1

N #N#E[x2
i ] J b

2

N
(E[x2

i ]) b

2(N b 1)

N
m

2
x

(60)

a

1

N
E[x2

i ] a

(N b 1)

N
m

2
x

e

1

N
(N b E[x2

i ]) b

1

N
(E[x2

i ]) b

(N b 1)

N
m

2
x (61)

e

(N b 1)

N
(E[x2

i ]) b

(N b 1)

N
m

2
x (62)

e

(N b 1)

N
s2

x (63)

It is apparent from equation (63) that the mean value of the

sample variance does not equal the variance and is thus

biased. Note, however, for large N the mean of the sample

variance asymptotically approaches the variance and the

estimate virtually becomes unbiased. Next, to check for

consistency, we will proceed to determine the variance of

the estimate sample variance. For ease of understanding,

assume that the process is zero mean, then letting

z e

!

s2
x e

1

N &N b 1

i e 0

x
2
i (64)

so that,

E[z2] e

1

N2 &N
i e 1

&N

k e 1

E[x2
i x

2
k] (65)

e

1

N2 ÐNE[x4
n] a N(N b 1) (E[x2

n])2 ( (66)

e

1

N ÐE[x4
n] a (N b 1)(E[x2

n])2 ( (67)

the expected value

(68)E[z] e E[x2
n]

so finally

(69)var[
!

s2
x] e E[z2] b (E[z])2

e

1

N ÐE[x4
n] b (E[x2

n]2 ( (70)

Re-examining equations (63) and (70) as N becomes large

clearly indicates that the sample variance is a consistent

estimate. Qualitatively speaking, the accuracy of this esti-

mate depends upon the number of samples considered in

the estimate. Note also that the procedures employed

above typify the style of analysis used to characterize esti-

mators.

6.0 THE PERIODOGRAM

The first method defines the sampled version of the Wiener-

Khintchine relation, equations (31) and (32), where the pow-

er spectral density estimate SNxx
(f) is the discrete Fourier

transform of the autocorrelation estimate RNxx
(k) or

(71)SNxx
(f) e &%

k e b %

RNxx
(k) fbj0kT

This assumes that x(n) is a discrete time random process

with an autocorrelation function RNxx
(k).

For a finite sequence of data

x(n) e Ðxn

0

for n e 0, 1, . . . , Nb1

elsewhere
(72)

called a rectangular data window, the sample autocorrela-

tion function (sampled form of equation A.14-9)

RNxx
(k) e

1

N &%
n e b %

x(n)x(n a k) (73)

can be substituted into equation (71) to give the spectral

density estimate

SNxx
(f) e

1

N
lXN(f)l2 (74)

called the periodogram.#Note:
lXN(f)l2

N
e

XN(f)XN*(f)

N
e

XN
2(f)real a XN

2(f)imag

N

e F ÐRNxx
(k) ( e F ÐE[x(n)x(n a k)] ( J .

Hence,

(75)
SNxx

(f) e &%
k e b %

RNxx
(k) fbj0kT

e &%
k e b % Ð 1

N &%
n e b %

x(n)x(nak)( fbj0kT (76)
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so letting 1 e fj0nT fbj0nT

SNXX
(f) e

1

N # &%
n e b %

x(n)fj0nT (77)

&%
k e b %

x(n a k) fbj0(n a k)TJ
and allowing the variable m e n a k

SNxx
(f) e

1

N
XN(f)XN

*(f) e

1

N
lXN(f)l2 (78)

in which the Fourier transform of the signal is

(79)
XN(f) e &%

n e b %

x(n) fbj0nT

The current discussion leads one to believe that the perio-

dogram is an excellent estimator of the true power spectral

density S(f) as N becomes large. This conclusion is false

and shortly it will be verified that the periodogram is, in fact,

a poor estimate of S(f). To do this, both the expected value

and variance of SNxx
(f) will be checked for consistency as N

becomes large. As a side comment it is generally faster to

determine the power spectral density, SNxx
(f), of the ran-

dom process using equation (74) and then inverse Fourier

transforming to find RNxx
(k) than to obtain RNxx

(k) directly.

Further, since the periodogram is seen to be the magnitude

squared of the Fourier transformed data divided by N, the

power spectral density of the random process is unrelated

to the angle of the complex Fourier transform XN(f) of a

typical realization.

Prior to checking for the consistency of SNxx
(f), the sample

autocorrelation must initially be found consistent. Proceed-

ing, since the sample autocorrelation estimate

RNxx
(k) e (80)

x(0)x(k)ax(1)x(lkla1)a...ax(Nb1blkl)x(Nb1)

N

e

1

N &Nb1b lkl

ne0

x(n)x(na lkl) (81)

k e 0, g1, g2, ... , gN b 1

which averages together all possible products of samples

separated by a lag of k, then, the mean value of the esti-

mate is related to the true autocorrelation function by

E[RNxx
(k)] e # 1

N &Nb1b lkl

n e 0

E[x(n)x(na lkl)]J
(82)

e

N b lkl
N

R(k)

where the true autocorrelation function R(k) is defined as

(the sample equivalent of equation A.14-8)

(83)R(k) e E[x(n)x(n a k)]

From equation (82) it is observed that RNxx
(k) is a biased

estimator. It is also considered to be asymptotically unbi-

ased since the term

N b lkl
N

approaches 1 as N becomes large. From these observa-

tions RNxx
(k) can be classified as a good estimator of R(k).

In addition to having a small bias, a good estimator should

also have a small variance. The variance of the sample au-

tocorrelation function can thus be computed as

(84)var[RNxx
(k)] e E[R2

Nxx
(k)] b E2[RNxx

(k)]

Examining the E[RNxx
(k)] term of equation (84), substituting

the estimate of equation (81) and replacing n with m, it fol-

lows that

E[R2
Nxx

(k)] e E Ð Ð 1

N &N b1 b lkl

n e 0

x(n)x (n a lkl)( (85)Ð 1

N &N b 1 b lkl

m e 0

x(m)x(m a lkl)((
e

1

N2 # &N b 1 b lkl

n e 0
&N b 1 b lkl

m e 0

(86)

E[x(n)x(n a lkl)x(m)x(m a lkl)] J
If the statistical assumption that x(n) is a zero-mean Gauss-

ian process, then the zero-mean, jointly Gaussian, random

variables symbolized as X1, X2, X3 and X4 of equation (86)

can be described as [Ref. (30)].
E[X1X2X3X4] e E[X1X2] E[X3X4] a E[X1X3] E[X2X4]

(87)
a E[X1X4] E[X2X3]

e ÐE[x(n) x(n a lkl)] E[x(m) x(m a lkl)]
(88)a E[x(n)x(m)]E[x(n a lkl)x(m a lkl]

a E[x(n) x(m a lkl)] E[x(n a lkl) x(m)] (
Using equation (88), equation (84) becomes

Var[RNxx
(k)] e Ð 1

N2 &N b 1 b lkl

n e 0
&N b 1 b lkl

m e 0 (89)

RNxx
(k)RNxx

(k) a RNxx
(n b m) RNxx

(n b m)

a RNxx
(n b m b lkl) RNxx

(n b m a lkl)(
b Ð 1

N &
n e 0

RNxx
(k)(2

Var[RNxx
(k)] e

1

N2 &N b 1 b lkl

n e 0
&N b 1 b lkl

m e 0 ÐR
2
Nxx

(n b m)

(90)

a RNxx
(n b mb k)RNxx

(n b m a lkl)(
8



where the lag term n b m was obtained from the lag differ-

ence between u e n b m e (n a k) b (m a k) in the

second term of equation (88). The lag term n b k a m and

n b k b m was obtained by referencing the third term in

equation (88) to n, therefore for

E[x(n) x(m a lkl)] (91)

the lag term u e n b (m a lkl) so

E[x(n) x(m a lkl)] e RNxx
(n b m a lkl) (92)

and for

E[x(n a lkl) x(m)] (93)

first let n b m then add lkl so u e n b m a lkl and

E[x(n a lkl) x(m)] e RNxx
(n b m a lkl) (94)

Recall that a sufficient condition for an estimator to be con-

sistent is that its bias and variance both converge to zero as

N becomes infinite. This essentially says that an estimator is

consistent if it converges in probability to the true value of

the quantity being estimated as N approaches infinity.

Re-examining equation (90), the variance of RNxx
(k), and

equation (82), the expected value of RNxx
(k), it is found that

both equations tend toward zero for large N and therefore

RNxx
(k) is considered as a consistent estimator of R(k) for

fixed finite k in practical applications.

Having established that the autocorrelation estimate is con-

sistent, we return to the question of the periodogram con-

sistency.

At first glance, it might seem obvious that SNxx
(f) should

inherit the asymptotically unbiased and consistent proper-

ties of RNxx
(k), of which it is a Fourier transform. Unfortu-

nately, however, it will be shown that SNxx
(f) does not pos-

sess these nice statistical properites.

Going back to the power spectral density of equation (71).

SNxx
(f) e &%

k e b%

RNxx
(k) fbj0kT

and determining its expected value

E[SNxx
(f)] e &%

k e b%

E[RNxx
(k)] fbj0kT (95)

the substitution of equation (82) into equation (95) yields the

mean value estimate

E[SNxx
(f)] e &N

K e bN

R(k) #1 b
lkl
N J fbj0kT (96)

the #1 b
lkl
N J

term of equation (96) can be interpreted as a(k), the triangu-

lar window resulting from the autocorrelation of finite-se-

quence rectangular-data window 0(k) of equation (72).

Thus,

lkl k N b 1 (97a)
a(k) e Ð 1 b

lkl
N

0 elsewhere (97b)

and the expected value of the periodogram can be written

as the finite sum

E[SNxx
(f)] e &%

k e b%

RNxx
(k) a(k) fbj0kT (98)

Note from equation (98) that the periodogram mean is the

discrete Fourier transform of a product of the true auto-

correlation function and a triangular window function. This

frequency function can be expressed entirely in the frequen-

cy domain by the convolution integral. From equation (98),

then, the convolution expression for the mean power spec-

tral density is thus,

E[SNxx
(f)] e # (/2

b(/2
S(h) A(f b h) dh (99)

where the general frequency expression for the transformed

triangular window function A(f) is

A(f) e

1

N %
sin (2qf)

N

2

sin
(2qf)

2 –
2

(100)

Re-examining equation (98) or (96) it can be said that equa-

tion (71) or (74) gives an asymptotically unbiased estimate

of S(f) with the distorting effects of a(k) vanishing as N

tends toward infinity. At this point equation (98) still appears

as a good estimate of the power spectral density function.

For the variance var [SNxx
(f)] however, it can be shown

[Ref. (10)] that if the data sequence x(n) comes from a

Gaussian process then the variance of SNxx
(f) approaches

the square of the true spectrum, S2(f), at each frequency f.

Hence, the variance is not small for increasing N,

lim
Nx%

var[SNxx
(f)] e S2(f) (101)

More clearly, if the ratio of mean to standard deviation is

used as a kind of signal-to-noise ratio, i.e.
E[SNxx

(f)]

Àvar[SNxx
(f)]Ó(/2

j
S(f)

S(f)
e 1 (102)

it can be seen that the true signal spectrum is only as large

as the noise or uncertainty in SNxx
(f) for increasing N. In

addition, the variance of equation (101), which also is ap-

proximately applicable for non-Gaussian sequences, indi-

cates that calculations using different sets of N samples

from the same x(n) process will yield vastly different values

of SNxx
(f) even when N becomes large. Unfortunately, since

the variance of SNxx
(f) does not decrease to zero as N ap-

proaches infinity, the periodogram is thus an inconsistent

estimate of the power spectral density and cannot be used

for spectrum analysis in its present form.

7.0 SPECTRAL ESTIMATION BY

AVERAGING PERIODOGRAMS

It was shown in the last section that the periodogram was

not a consistent estimate of the power spectral density
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function. A technique introduced by Bartlett, however, al-

lows the use of the periodogram and, in fact, produces a

consistent spectral estimation by averaging periodograms.

In short, Bartlett’s approach reduces the variance of the

estimates by averaging together several independent perio-

dograms. If, for example X1, X2, X3, . . . , XL are uncorrelated

random variables having an expected value E[x] and a vari-

ance s2, then the arithmetic mean

X1 a X2 a X3 a . . . a XL

L
(103)

has the expected value E[x] and a variance of s2/L. This

fact suggests that a spectral estimator can have its variance

reduced by a factor of L over the periodogram. The proce-

dure requires the observed process, an N point data se-

quence, to be split up into L nonoverlapping M point sec-

tions and then averaging the periodograms of each individu-

al section.

To be more specific, dividing an N point data sequence x(n),

0 s n s N b 1, into L segments of M samples each the

segments X
fi
M(n) are formed. Thus,

x
fi
M(f) e x(n a fiM b M) Ð0 s n s M b 1

1 s fi s L

(104)

where the superscript fi specifies the segment or interval of

data being observed, the subscript M represents the num-

ber of data points or samples per segment and depending

upon the choice of L and M, we have N t LM. For the

computation of L periodograms

S
fi
M(f) e À 1M &M b 1

n e 0

x
fi
M(n) fbj0nT À2 1sfisL (105)

If the autocorrelation function RNxx
(m) becomes negligible

for m large relative to M, m l M, then it can be said that the

periodograms of the separate sections are virtually indepen-

dent of one another. The corresponding averaged periodo-

gram estimator
!

S
fi
M(f) computed from L individual periodo-

grams of length M is thus defined

!

S
fi
M(f) e

1

L &L

fi e 1

S
fi
M(f) (106)

Since the L subsidiary estimates are identically distributed

periodograms, the averaged spectral estimate will have the

same mean or expected value as any of the subsidiary esti-

mates so

E[
!

S
fi
M(f)] e

1

L &L

fi e 1

E[Sfi
M(f)] (107)

e E[Sfi
M(f)] (108)

From this, the expected value of the Bartlett estimate can

be said to be the convolution of the true spectral density

with the Fourier transform of the triangular window function

corresponding to the M sample periodogram where MsN/L

equations (98) or (99) we see that

E[
!

S
fi
M(f)] e E[Sfi

M(f)] e

1

M # (/2

b(/2
S(h) A(f b h) dh (109)

where A(f) is the Fourier transformed triangular window

function of equation (100). Though the averaged estimate is

no different than before, its variance, however, is smaller.

Recall that the variance of the average of L identical inde-

pendent random variables is 1/L of the individual variances,

equation (51). Thus, for L statistically independent periodo-

grams, the variance of the averaged estimate is

var[
!

S
fi
M(f)] e

1

L
var[SNxx

(f)] j
1

L
[S(f)]2 (110)

So, again, the averaging of L periodograms results in ap-

proximately a factor of L reduction in power spectral density

estimation variance. Since the variance of equation (110)

tends to zero as L approaches infinity and through equation

(98) and (99)
!

S
fi
M(f) is asymptotically unbiased,

!

S
fi
M(f) can be

said to be a consistent estimate of the true spectrum.

A few notes are next in order. First, the L fold variance

reduction or (L)(/2 signal-to-noise ratio improvement of equa-

tion (102) is not precisely accurate since there is some de-

pendence between the subsidiary periodograms. The adja-

cent samples will correlated unless the process being ana-

lyzed is white.

However, as indicated in equation (110), such a depen-

dence will be small when there are many sample intervals

per periodogram so that the reduced variance is still a good

approximation. Secondly, the bias of
!

S
fi
M(f), equation (106),

is greater than
!

S
fi
M(f), equation (105), since the main lobe of

the spectral window is larger for the former. For this situa-

tion, then, the bias can be thought of as effecting spectral

resolution. It is seen that increasing the number of periodo-

grams for a fixed record length N decreases not only the

variance but, the samples per periodograms M decrease

also. This decreases the spectral resolution. Thus when us-

ing the Bartlett procedure the actual choice of M and N will

typically be selected from prior knowledge of a signal or

data sequence under consideration. The tradeoff, however,

will be between the spectral resolution of bias and the vari-

ance of the estimate.

8.0 WINDOWS

Prior to looking at other techniques of spectrum estimation,

we find that to this point the subject of spectral windows has

been brought up several times during the course of our dis-

cussion. No elaboration, however, has been spent explain-

ing their spectral effects and meaning. It is thus appropriate

at this juncture to diverge for a short while to develop a

fundamental understanding of windows and their spectral

implications prior to the discussion of Sections 9 and 10 (for

an in depth study of windows seeWindows, Harmonic Anal-
ysis and the Discrete Fourier Transform; Frederic J. Harris;

submitted to IEEE Proceedings, August 1976).

In most applications it is desirable to taper a finite length

data sequence at each end to enhance certain characteris-

tics of the spectral estimate. The process of terminating a

sequence after a finite number of terms can be thought of

as multiplying an infinite length, i.e., impulse response se-

quence by a finite width window function. In other words, the

window function determines how much of the original im-

pulse sequence can be observed through this window,

10



see Figures 4a, 4b, and 4c. This tapering by mulitiplying the

sequence by a data window is thus analogous to multiplying

the correlation function by a lag window. In addition, since

multiplication in the time domain is equivalent to convolution

in the frequency domain then it is also analogous to con-

volving the Fourier transform of a finite-length-sequence

with the Fourier transform of the window function, Figures
4d, 4e, and 4f . Note also that the Fourier transform of the

rectangular window function exhibits significant oscillations

and poor high frequency convergence, Figure 4e. Thus,

when convolving this spectrum with a desired amplitude

function, poor convergence of the resulting amplitude re-

sponse may occur. This calls for investigating the use of

other possible window functions that minimize some of the

difficulties encountered with rectangular function.

TL/H/8712–5

FIGURE 4

In order for the spectrum of a window function to have mini-

mal effects upon the desired amplitude response, resulting

from convolving two functions, it is necessary that the win-

dow spectrum approximate an impulse function. This im-

plies that as much of its energy as possible should be con-

centrated at the center of the spectrum. Clearly, an ideal

impulse spectrum is not feasible since this requires an infi-

nitely long window.

In general terms, the spectrum of a window function typical-

ly consists of a main lobe, representing the center of the

spectrum, and various side lobes, located on either side of

the main lobe (see Figures 6 thru 9). It is desired that the

window function satisfy two criteria; (1) that the main lobe

should be as narrow as possible and (2) relative to the

main lobe, the maximum side lobe level should be as small

as possible. Unfortunately, however, both conditions cannot

be simultaneously optimized so that, in practice, usable win-

dow functions represent a suitable compromise between

the two criteria. A window function in which minimization of

the main lobe width is the primary objective, fields a finer

frequency resolution but suffers from some oscillations, i.e.,

the spectrum passband and substantial ripple in the spec-

trum stopband. Coversely, a window function in which mini-

mization of the side lobe level is of primary concern tends to

have a smoother amplitude response and very low ripple in

the stopband but, yields a much poorer frequency resolu-

tion. Examining Figure 5 assume a hypothetical impulse re-

sponse, Figure 5a, whose spectrum is Figure 5b. Multiplying

the impulse response by the rectangular window, Figure 4b,

yields the windowed impulse response, Figure 5c, implying

the convolution of the window spectrum, Figure 4e, with the

impulse response spectrum, Figure 5b. The result of this

convolution is seen inFigure 5d and is a distorted version of

the ideal spectrum, Figure 5b, having passband oscillations

and stopband ripple. Selecting another window, i.e., Figure
9 with more desirable spectral characteristics, we see the

appropriately modified windowed data, Figure 5e, results in

a very good approximation of Figure 5b.

This characteristically provides a smoother passband and

lower stopband ripple level but sacrifices the sharpness of

the roll-off rate inherent in the use of a rectangular window

(compare Figures 5d and 5f ). Concluding this brief discus-

sion, a few common window functions will next be consid-

ered.

TL/H/8712–4

FIGURE 5. (a)(b) Unmodified Data Sequence

(c)(d) Rectangular Windowed Data Sequence

(e)(f) Hamming Windowed Data Sequence
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Rectangular window: Figure 6

w(n) e 1 lnl k

N b 1

2
(111)

e 0 otherwise

Bartlett or triangular window: Figure 7

w(n) e 1 b

2lnl
N

lnl k

N b 1

2
(112)

e 0 otherwise

Hann window: Figure 8

w(n) e 0.5 a 0.5 cos #2qn

N J lnl k

N b 1

2
(113)

e 0 otherwise

Hamming window: Figure 9

w(n) e 0.54 a 0.46 cos #2qn

N J lnl k

N b 1

2
(114)

e 0 otherwise

Again the reference previously cited should provide a more

detailed window selection. Nevertheless, the final window

choice will be a compromise between spectral resolution

and passband (stopband) distortion.

9.0 SPECTRAL ESTIMATION BY USING WINDOWS TO

SMOOTH A SINGLE PERIODOGRAM

It was seen in a previous section that the variance of a

power spectral density estimate based on an N point data

sequence could be reduced by chopping the data into short-

er segments and then averaging the periodograms of the

individual segments. This reduced variance was acquired at

the expense of increased bias and decreased spectral reso-

lution. We will cover in this section an alternate way of com-

puting a reduced variance estimate using a smoothing oper-

ation on the single periodogram obtained from the entire N

point data sequence. In effect, the periodogram is

smoothed by convolving it with an appropriate spectral win-

dow. Hence if SXX(f) denotes the smooth periodogram then,

SWXX
(f)e#(/2

b(/2
SNXX

(h) W(fbh) dheSNXX
(h)*W(h) (115)

TL/H/8712–6

FIGURE 6. Rectangular Window

TL/H/8712–8

FIGURE 8. Hann Window

TL/H/8712–7

FIGURE 7. Bartlett or Triangular Window
TL/H/8712–9

FIGURE 9. Hamming Window
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where W(f b h) is the spectral window and * denotes con-

volution. Since the periodogram is equivalent to the Fourier

transform of the autocorrelation function RNxx
(k) then, using

the frequency convolution theorem

FÀx(t) y(t)Ó e X(f) * Y(h b f) (116)

where F À Ó denotes a Fourier transform, SXX(f) is the Fouri-

er transform of the product of RNxx
(k) and the inverse Fouri-

er transform of W(f). Therefore for a finite duration window

sequence of length 2K b 1,

SWxx
(f) e &K b 1

k e b(K b 1)

RNxx
(k) w(k) fbj0kT

(117)

where

w(k) e &(/2

b(/2

W(f) fj0kT df
(118)

References (10)(16)(21) proceed further with a develop-

ment to show that the smoothed single windowed periodo-

gram is a consistent estimate of the power spectral density

function. The highlights of the development, however, show

that a smoothed or windowed spectral estimate, SWxx
(f),

can be made to have a smaller variance than that of the

straight periodogram, SNxx
(f), by b the variance ratio rela-

tionship

b e

var [SWxx
(f)]

var [SNxx
(f)]

e

1

N &M b 1

m e b(M b 1)

w2(m)

(119)

e

1

N # (/2

b(/2
W2(f) df

where N is the record length and 2M b 1 is the total window

width. Note that the energy of the window function can be

found in equation (119) as

E0 e &M b 1

m e b(M b 1)

w2(m) e # (/2

b(/2
W2(f) df (120)

Continuing from equation (119), it is seen that a satisfactory

estimate of the periodogram requires the variance of

SWxx
(f) to be small compared to S

2
NXX

so that

b m 1 (121)

Therefore, it is the adjusting of the length and shape of the

window that allows the variance of SWxx
(f) to be reduced

over the periodogram.

Smoothing is like a low pass filtering effect, and so, causes

a reduction in frequency resolution. Further, the width of the

window main lobe, defined as the symmetric interval be-

tween the first positive and negative frequencies at which

W(f) e 0, in effect determines the bandwidth of the

smoothed spectrum. Examining Table I for the following de-

fined windows;

Rectangular window

w(m) e 1 (122)lml s M b 1

otherwisee 0

Bartlett or triangular window

w(m) e 1 b
lml
M

(123)lml s M b 1

otherwisee 0

Hann window

w(m) e 0.5 a 0.5 cos # qm

M b 1J lml s M b 1 (124)

e 0 otherwise

Hamming window

w(m) e 0.54 a 0.46 cos # qm

M b 1J lml s M b 1 (125)

e 0 otherwise

We see once again, as in the averaging technique of spec-

tral estimation (Section 7), the smoothed periodogram tech-

nique of this discussion also makes a trade-off between var-

iance and resolution for a fixed N. A small variance requires

a small M while high resolution requires a large M.

TABLE I

Window
Width of

Variance Ratio*
Function

Main Lobe*
(approximate)

(approximate)

Rectangular
2q

M

2M

N

Bartlett
4q

M

2M

3N

Hann
3q

M
2MÐ (0.5)2 a (0.5)2

2

N (
Hamming

3q

M
2MÐ (0.54)2 a (0.46)2

2

N (
*Assumes M n 1

10.0 SPECTRAL ESTIMATION BY AVERAGING

MODIFIED PERIODOGRAMS

Welch [Ref. (36)(37)] suggests a method for measuring

power spectra which is effectively a modified form of Bart-

lett’s method covered in Section 7. This method, however,

applies the window w(n) directly to the data segments be-

fore computing their individual periodograms. If the data se-

quence is sectioned into

L s

N

M

segments of M samples each as defined in equation (104),

the L modified or windowed periodogram can be defined as

I
fi
M(f) e

1

UM À&M b 1

n e 0

x
fi
M(n) w(n) fbj0nT À2 1 s fi s L (126)

13



where U, the energy in the window is

U e

1

M &M e 1

n e 0

w2(n) (127)

Note the similarity between equations (126) and (105) and

that equation (126) is equal to equation (105) modified by

functions of the data window w(n).

The spectral estimate
!

I
fi
M is defined as

!

I
fi
M(f) e

1

L &L

fi e 1

I
fi
M(f) (128)

and its expected value is given by

E[IfiM(f)]e#(/2

b(/2
SNxx

(h) W (fbh) dheSNxx
(h)*W(h) (129)

where

W(f) e

1

UM À&M e 1

n e 0

w(n) fbj0nT À2 (130)

The normalizing factor U is required so that the spectral

estimate
!

I
fi
m(f), of the modified periodogram,

!

I
fi
m(f), will be

asymptotically unbiased [Ref. (34)]. If the intervals of x(n)

were to be nonoverlapping, then Welch [Ref. (37)] indicates

that

var [
!

I
fi
m(f)] j

1

L
var [SNxx

(f)] j
1

L
[S(f)]2 (131)

which is similar to that of equation (110). Also considered is

a case where the data segments overlap. As the overlap

increases the correlation between the individual periodo-

grams also increase. We see further that the number of M

point data segments that can be formed increases. These

two effects counteract each other when considering the var-

iance I
fi
m(f). With a good data window, however, the in-

creased number of segments has the stronger effect until

the overlap becomes too large. Welch has suggested that a

50 percent overlap is a reasonable choice for reducing the

variance when N if fixed and cannot be made arbitrarily

large. Thus, along with windowing the data segments prior

to computing their periodograms, achieves a variance re-

duction over the Bartlett technique and at the same time

smooths the spectrum at the cost of reducing its resolution.

This trade-off between variance and spectral resolution or

bias is an inherent property of spectrum estimators.

11.0 PROCEDURES FOR POWER SPECTRAL

DENSITY ESTIMATES

Smoothed single periodograms [Ref. (21)(27)(32)]

A. 1. Determine the sample autocorrelation RNxx
(k) of the

data sequence x(n)

2. Multiply RNxx
(k) by an appropriate window function

w(n)

3. Compute the Fourier transform of the product

RNXX
(k) w(n) Ý SWxx

(f) (71)

B. 1. Compute the Fourier transform of the data sequence

x(n)

x(n) Ý X(f)

2. Multiply X(f) by its conjugate to obtain the power spec-

tral density SNxx
(f)

SNxx
(f) e

1

N
lX(f)l2 (74)

3. Convolve SNxx
(f) with an appropriate window function

W(f)

SWxx
(f) e SNxx

(f) * W(f) (115)

C. 1. Compute the Fourier transform of the data sequence

x(n)

x(n) Ý X(f)

2. Multiply X(f) by its conjugate to obtain the power spec-

tral density SNxx
(f)

SNxx
(f) e

1

N
lX(f)l2 (74)

3. Inverse Fourier transform SNxx
(f) to get RNxx

(k)

4. Multiply RNxx
(k) by an appropriate window function

w(n)

5. Compute the Fourier transform of the product to obtain

SWxx
(f)

SWxx
(f) Ý RNxx

(k) # w(n) (117)

Averaging periodograms [Ref. (32)(37)(38)]

A. 1. Divide the data sequence x(n) into L s N/M segments,

x
fi
M(n)

2. Multiply a segment by an appropriate window

3. Take the Fourier transform of the product

4. Multiply procedure 3 by its conjugate to obtain the

spectral density of the segment

5. Repeat procedures 2 through 4 for each segment so

that the average of these periodogram estimates pro-

duce the power spectral density estimate, equation

(128)

12.0 RESOLUTION

In analog bandpass filters, resolution is defined by the filter

bandwidth, DfBW, measured at the passband half power

points. Similarly, in the measurement of power spectral den-

sity functions it is important to be aware of the resolution

capabilities of the sampled data system. For such a system

resolution is defined as

DfBW e

1

NT
(132)

and for;

Correlation resolution umax e mT, where m (133)

is the maximum value
DfBW e

1

umax
allowed to produce

umax, the maximum lag

term in the correlation

computation
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Fourier transform (FFT) resolution

where P is the record length,
DfBW e

1

PL

e

m

NT
e

1

LT N, the number of data points

and m, the samples within

each L segment,

L e

N

M
. (134)

Note that the above DfBW’s can be substantially poorer de-

pending upon the choice of the data window. A loss in de-

grees of freedom (Section 13) and statistical accuracy oc-

curs when a data sequence is windowed. That is, data at

each end of a record length are given less weight than the

data at the middle for anything other than the rectangular

window. This loss in degrees of freedom shows up as a loss

in resolution because the main lobe of the spectral window

is widened in the frequency domain.

Finally, the limits of a sampled data system can be de-

scribed in terms of the maximum frequency range and mini-

mum frequency resolution. The maximum frequency range

is the Nyquist or folding frequency, fc,

fc e

fs

2
e

1

2Ts
(135)

where fs is the sampling frequency and Ts the sampling

period. And, secondly, the resolution limit can be described

in terms of a (DfBW) NT product where

DfBW t

1

NT
(136)

or

(DfBW) NT t 1 (137)

13.0 CHI-SQUARE DISTRIBUTIONS

Statistical error is the uncertainty in power spectral density

measurements due to the amount of data gathered, the pro-

babilistic nature of the data and the method used in deriving

the desired parameter. Under reasonable conditions the

spectral density estimates approximately follow a chi-

square, y
2
n, distribution. y

2
n is defined as the sum of the

squares of y
n
, 1 s n s N, independent Gaussian variables

each with a zero mean and unit variance such that

(138)
y

2
N

e &N

n e 1

y
2
n

The number n is called the degrees of freedom and the y
2
n

probability density function is

f( y
2
n) e

1

2n/2C #n

2J Ð (y2
n)

nb2

2 ( fby
2
n

2

(139)

where C #n

2J is the statistical gamma function (Ref. (14)].

Figure 10 shows the probability density function for several

n values and it is important to note that as n becomes large

the chi-square distribution approximates a Gaussian distri-

bution. We use this y
2
n distribution in our analysis to discuss

the variability of power spectral densities. If xn has a zero

mean and N samples of it are used to compute the power

spectral density estimate S(f) then, the probability that the

true spectral density, S(f), lies between the limits

A s S(f) s B (140)

is

P e (1 b a) e probability (141)

TL/H/8712–10

FIGURE 10

The lower A and upper B limits are defined as

A e

n
!

S(f)

y
2

n;
a

2
(142)

and

B e

n
!

S(f)

y
2

n; 1 b

a

2
(143)

respectively. y
2

n; a
is defined by

y
2

n; a
e [n so that # %

n
f(y

2

n
) dy

2

n
] e a (144)

see Figure 11 and the interval A to B is referred to as a

confidence interval. From Otnes and Enrochson [Ref. (35)

pg. 217] the degrees of freedom can be described as

n e 2(DfBW) NT e 2(DfBW) PL (145)

TL/H/8712–11

FIGURE 11
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and that for large n i.e., n t 30 the y
2
n distribution ap-

proaches a Gaussian distribution so that the standard devia-

tion or standard error, fo, can be given by

fo e

1

0DfBW NT
(146)

The degrees of freedom and associated standard error for

the correlation and Fourier transform are as follows:

correlation: n e

2N

m
fo e 0m

N
(147)

FFT: n e 2M fo e 01

M
(148)

where M is the number of lX(f)l2 values

M e NT (DfBW)desired (149)

and m is the maximum lag value.

An example will perhaps clarify the usage of this informa-

tion.

Choosing T e 100 ms, N e 8000 samples and n e 20

degrees of freedom then

fc e

1

2T
e 5 Hz

n e 2(NT) (DfBW)

so

DfBW e

n

2NT
e 0.0125 Hz

If it is so desired to have a 95% confidence level of the

spectral density estimate then

P e (1 b a)

0.95 e 1 b a

a e 1 b 0.95 e 0.05

the limits

B e

n
!

S(f)

y
2

n; 1 b a/2

e

20
!

S(f)

y
2

20; 0.975

A e

n
!

S(f)

y
2

n; a/2

e

20
!

S(f)

y
2

20; 0.025

yield from Table II

y
2

20; 0.975
e 9.59

y
2

20; 0.025
e 34.17

so that

20
!

S(f)

34.17
s S(f) s

20
!

S(f)

9.59

0.5853
!

S(f) s S(f) s 2.08
!

S(f)

There is thus a 95% confidence level that the true spectral

density function S(f) lies within the interval 0.5853
!

S(f) s

S(f) s 2.08
!

S(f).

As a second example using equation (148) let T e 1 ms,

N e 4000 and it is desired to have (DfBW) desired e 10 Hz.

Then,

NT e 4

fc e

1

2T
e 500 Hz

fo e 01

M
e 0 1

NT (DfBW)desired

e 0.158

N e 2M e 2NT (DfBW)desired e 80

If it is again desired to have a 95% confidence level of the

spectral density estimate then

a e 1 b p e 0.05

y
2

80; 0.975
e 5.75

y
2

80; 0.025
e 106.63

and we thus have a 95% confidence level that the true

spectral density S(f) lies within the limits

0.75
!

S(f) s S(f) s 1.39
!

S(f)

It is important to note that the above examples assume

Gaussian and white data. In practical situations the data is

typically colored or correlated and effectively results in re-

ducing number of degrees of freedom. It is best, then, to use

the white noise confidence levels as guidelines when plan-

ning power spectral density estimates.

14.0 CONCLUSION

This article attempted to introduce to the reader a conceptu-

al overview of power spectral estimation. In doing so a wide

variety of subjects were covered and it is hoped that this

approach left the reader with a sufficient base of ‘‘tools’’ to

indulge in the mounds of technical literature available on the

subject.
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TABLE II. Percentage Points of the Chi-Square Distribution

n
a

0.995 0.990 0.975 0.950 0.050 0.025 0.010 0.005

1 0.000039 0.00016 0.00098 0.0039 3.84 5.02 6.63 7.88

2 0.0100 0.0201 0.0506 0.1030 5.99 7.38 9.21 10.60

3 0.0717 0.115 0.216 0.352 7.81 9.35 11.34 12.84

4 0.207 0.297 0.484 0.711 9.49 11.14 13.28 14.86

5 0.412 0.554 0.831 1.150 11.07 12.83 15.09 16.75

6 0.68 0.87 1.24 1.64 12.59 14.45 16.81 18.55

7 0.99 1.24 1.69 2.17 14.07 16.01 18.48 20.28

8 1.34 1.65 2.18 2.73 15.51 17.53 20.09 21.96

9 1.73 2.09 2.70 3.33 16.92 19.02 21.67 23.59

10 2.16 2.56 3.25 3.94 18.31 20.48 23.21 25.19

11 2.60 3.05 3.82 4.57 19.68 21.92 24.72 26.76

12 3.07 3.57 4.40 5.23 21.03 23.34 26.22 28.30

13 3.57 4.11 5.01 5.89 22.36 24.74 27.69 29.82

14 4.07 4.66 5.63 6.57 23.68 26.12 29.14 31.32

15 4.60 5.23 6.26 7.26 25.00 27.49 30.58 32.80

16 5.14 5.81 6.91 7.96 26.30 28.85 32.00 34.27

17 5.70 6.41 7.56 8.67 27.59 30.19 33.41 35.72

18 6.26 7.01 8.23 9.39 28.87 31.53 34.81 37.16

19 6.84 7.63 8.91 10.12 30.14 32.85 36.19 38.58

20 7.43 8.26 9.59 10.85 31.41 34.17 37.57 40.00

21 8.03 8.90 10.28 11.59 32.67 35.48 38.93 41.40

22 8.64 9.54 10.98 12.34 33.92 36.78 40.29 42.80

23 9.26 10.20 11.69 13.09 35.17 38.08 41.64 44.18

24 9.89 10.86 12.40 13.85 36.42 39.36 42.98 45.56

25 10.52 11.52 13.12 14.61 37.65 40.65 44.31 46.93

26 11.16 12.20 13.84 15.38 38.89 41.92 45.64 48.29

27 11.81 12.88 14.57 16.15 40.11 43.19 46.96 49.64

28 12.46 13.56 15.31 16.93 41.34 44.46 48.28 50.99

29 13.12 14.26 16.05 17.71 42.56 45.72 49.59 52.34

30 13.79 14.95 16.79 18.49 43.77 46.98 50.89 53.67

40 20.71 22.16 24.43 26.51 55.76 59.34 63.69 66.77

50 27.99 29.71 32.36 34.76 67.50 71.42 76.15 79.49

60 35.53 37.48 40.48 43.19 79.08 83.80 88.38 91.95

70 43.28 45.44 48.76 51.74 90.53 95.02 100.43 104.22

80 51.17 53.54 57.15 60.39 101.88 106.63 112.33 116.32

90 59.20 61.75 65.65 69.13 113.14 118.14 124.12 128.30

100 67.33 70.06 74.22 77.93 124.34 129.56 135.81 140.17
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APPENDIX A

A.0 CONCEPTS OF PROBABILITY, RANDOM

VARIABLES AND STOCHASTIC PROCESSES

In many physical phenomena the outcome of an experiment

may result in fluctuations that are random and cannot be

precisely predicted. It is impossible, for example, to deter-

mine whether a coin tossed into the air will land with its

head side or tail side up. Performing the same experiment

over a long period of time would yield data sufficient to indi-

cate that on the average it is equally likely that a head or tail

will turn up. Studying this average behavior of events allows

one to determine the frequency of occurrence of the out-

come (i.e., heads or tails) and is defined as the notion of

probability .

Associated with the concept of probability are probability

density functions and cumulative distribution functions

which find their use in determining the outcome of a large

number of events. A result of analyzing and studying these

functions may indicate regularities enabling certain laws to

be determined relating to the experiment and its outcomes;

this is essentially known as statistics .

A.1 DEFINITIONS OF PROBABILITY

If nA is the number of times that an event A occurs in N

performances of an experiment, the frequency of occur-

rence of event A is thus the ratio nA/N. Formally, the proba-

bility, P(A), of event A occurring is defined as

P(A) e
lim
Nx% ÐnA

N ( (A.1-1)

Where it is seen that the ratio nA/N (or fraction of times that

an event occurs) asymptotically approaches some mean

value (or will show little deviation from the exact probability)

as the number of experiments performed, N, increases

(more data).

Assigning a number,

nA

N
,

to an event is a measure of how likely or probable the event.

Since nA and N are both positive and real numbers and 0 s

nA s N; it follows that the probability of a given event can-

not be less than zero or greater than unity. Furthermore, if

the occurrence of any one event excludes the occurrence of

any others (i.e., a head excludes the occurrence of a tail in a

coin toss experiment), the possible events are said to be

mutually exclusive . If a complete set of possible events A1
to An are included then

nA1

N
a

nA2

N
a

nA3

N
a . . . a

nAn

N
e 1 (A.1-2)

or

P(A1) a P(A2) a P(A3) a . . . a P(An) e 1 (A.1-3)

Similarly, an event that is absolutely certain to occur has a

probability of one and an impossible event has a probability

of zero.

In summary:

1. 0 s P(A) s 1

2. P(A1) a P(A2) a P(A3) a . . . a P(An) e 1, for an

entire set of events that are mutually exclusive

3. P(A) e 0 represents an impossible event

4. P(A) e 1 represents an absolutely certain event

A.2 JOINT PROBABILTY

If more than one event at a time occurs (i.e., events A and B

are not mutually excusive) the frequency of occurrence of

the two or more events at the same time is called the joint
probability , P(AB). If nAB is the number of times that event A

and B occur together in N performances of an experiment,

then

P(A,B) e
lim
Nx% ÐnAB

N ( (A.2-1)

A.3 CONDITIONAL PROBABILITY

The probability of event B occurring given that another

event A has already occurred is called conditional probabili-
ty . The dependence of the second, B, of the two events on

the first, A, will be designated by the symbol P(B)lA) or

P(BlA) e

nAB

nA
(A.3-1)

where nAB is the number of joint occurrences of A and B

and NA represents the number of occurrences of A with or

without B. By dividing both the numerator and denominator

of equation (A.3-1) by N, conditional probability P(BlA) can

be related to joint probability, equation (A.2-1), and the prob-

ability of a single event, equation (A.1-1)

P(BlA) e #nAB

nA J K 1

N

1

N L e

P(A,B)

P(A) (A.3-2)

Analogously

P(AlB) e

P(A,B)

P(A)
(A.3-3)

and combining equations (A.6) and (A.7)

P(AlB) P(B) e P(A, B) e P(BlA) P(A) (A.3-4)

results in Bayes’ theorem

P(AlB) e

P(A) P(BlA)

P(B)
(A.3-5)
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Using Bayes’ theorem, it is realized that if P(A) and P(B) are

statistically independent events, implying that the probability

of event A does not depend upon whether or not event B

has occurred, then P(AlB) e P(A), P(BlA) e P(B) and

hence the joint probability of events A and B is the product

of their individual probabilities or

P(A,B) e P(A) P(B) (A.3-6)

More precisely, two random events are statistically indepen-

dent only if equation (A.3-6) is true.

A.4 PROBABILITY DENSITY FUNCTIONS

A formula, table, histogram, or graphical representation of

the probability or possible frequency of occurrence of an

event associated with variable X, is defined as fX(x), the

probability density function (pdf) or probability distribution
function . As an example, a function corresponding to height

histograms of men might have the probability distribution

function depicted in Figure A.4.1 .

TL/H/8712–12

FIGURE A.4.1

The probability element , fX(x) dx, describes the probability

of the event that the random variable X lies within a range of

possible values between#x b

Dx

2 J and #x a

Dx

2 J
i.e., the area between the two points 5Ê5× and 5Ê7× shown

inFigure A.4.2 represents the probability that a man’s height

will be found in that range. More clearly,

(A.4-1)

Prob Ð #x b

Dx

2 J s X s #x a

Dx

2 J ( e # x a

Dx

2

x b

Dx

2

fX(x) dx

or

Prob [5Ê5× s X s 5Ê7×] e # 5Ê7×

5Ê5×
fX(x) dx

TL/H/8712–13

FIGURE A.4.2

Continuing, since the total of all probabilities of the random

variable X must equal unity and fX(x) dx is the probability

that X lies within a specified interval#x b

Dx

2 J and #x b

Dx

2 J ,

then, # %

b%

fX(x) dx e 1 (A.4-2)

It is important to point out that the density function fX(x) is in

fact a mathematical description of a curve and is not a prob-

ability; it is therefore not restricted to values less than unity

but can have any non-negative value. Note however, that in

practical application, the integral is normalized such that the

entire area under the probability density curve equates to

unity.

To summarize, a few properties of fX(x) are listed below.

1. fX(x) t 0 for all values of x or b% k x k %

2. # %

b%

fX(x) dx e 1

3. Prob Ð #x b

Dx

2 J s X s #x a

Dx

2 J (
e # x a

Dx

2

x b

Dx

2

fX(x) dx

A.5 CUMULATIVE DISTRIBUTION FUNCTION

If the entire set of probabilities for a random variable event

X are known, then since the probability element, fX(x) dx,

describes the probability that event X will occur, the accu-

mulation of these probabilities from x e b % to x e % is

unity or an absolutely certain event. Hence,

FX(x) # %

b%

fX(x) dx e 1 (A.5-1)
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where FX(x) is defined as the cumulative distribution func-
tion (cdf) or distribution function and fX(x) is the pdf of ran-

dom variable X. Illustratively, Figures A.5.1a and A.5.1b
show the probability density function and cumulative distri-

bution function respectively.

TL/H/8712–14

(a) Probability Density Function

TL/H/8712–15

(b) Cumulative Distribution Function

FIGURE A.5.1

In many texts the notation used in describing the cdf is

FX(x) e Prob[X s x] (A.5-2)

and is defined to be the probability of the event that the

observed random variable X is less than or equal to the

allowed or conditional value x. This implies

FX(x) e Prob[X s x] e # x

b%

fX(x) dx (A.5-3)

It can be further noted that

Prob[x1sxsx2]e#x2

x1

fX(x)dxeFX(x2)bFX(x1)

(A.5-4)

and that from equation (A.5-1) the pdf can be related to the

cdf by the derivative

fX(x) e

d[FX(x)]
dx

(A.5-5)

Re-examining Figure A.5.1 does indeed show that the pdf,

fX(x), is a plot of the differential change in slope of the cdf,

FX(x).

FX(x) and a summary of its properties.

1. 0sFX(x)s1 b%kxk% (Since FXeProb [Xkx]
is a probability)

2. FX(b%) e 0 FX(a%) e 1

3. FX(x) the probability of occurrence increases as x in-

creases

4. FX(x) e W fX(x) dx

5. Prob (x1 s x s x2) e FX(x2) b FX(x1)

A.6 MEAN VALUES, VARIANCES AND

STANDARD DEVIATION

The procedure of determining the average weight of a group

of objects by summing their individual weights and dividing

by the total number of objects gives the average value of x.

Mathematically the discrete sample mean can be described

x e

1

n&n

i b 1

xi (A.6-1)

for the continuous case thatmean value of the random vari-

able X is defined as

x e E[X] e # %

b%

xfX(x) dx (A.6-2)

where E[X] is read ‘‘the expected value of X’’.

Other names for the same mean value x or the expected
value E[X] are average value and statistical average.

It is seen from equation (A.6-2) that E[X] essentially repre-

sents the sum of all possible values of x with each value

being weighted by a corresponding value of the probability

density function of fX(x).

Extending this definition to any function of X for example

h(x), equation (A.6-2) becomes

E[h(x)] e # %

b%

h(x) fX(x) dx (A.6-3)

An example at this point may help to clarify matters. As-

sume a uniformly dense random variable of density 1/4 be-

tween the values 2 and 6, see Figure A.6.1 . The use of

equation (A.6-2) yields the expected value

x e E[X] e # 6

2
x (/4 dx e

x2

8 À62 e 4

TL/H/8712–16

FIGURE A.6.1
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which can also be interpreted as the first moment or center

of gravity of the density function fX(x). The above operation

is analogous to the techniques in electrical engineering

where the DC component of a time function is found by first

integrating and then dividing the resultant area by the inter-

val over which the integration was performed.

Generally speaking, the time averages of random variable

functions of time are extremely important since essentially

no statistical meaning can be drawn from a single random

variable (defined as the value of a time function at a given

single instant of time). Thus, the operation of finding the

mean value by integrating over a specified range of possible

values that a random variable may assume is referred to as

ensemble averaging.

In the above example, x was described as the first moment

m1 or DC value. The mean-square value x2 or E[X2] is the

second moment m2 or the total average power, AC plus DC

and in general the nth moment can be written

mn e E[Xn] e # %

b%

[h(x)]2 fX(x) dx (A.6-4)

Note that the first moment squared m
2
1, x2 or E[X]2 is equiv-

alent to the DC power through a 1X resistor and is not the

same as the second moment m2, x2 or E[X]2 which, again,

implies the total average power.

A discussion of central moments is next in store and is sim-

ply defined as the moments of the difference (deviation)

between a random variable and its mean value. Letting
[h(x)]n e (X b x)n, mathematically

(X b x)n e E[(X b x)n] e # %

b%

(X b x)n fX(x) dx
(A.6-5)

For n e 1, the first central moment equals zero i.e., the AC

voltage (current) minus the mean, average or DC voltage

(current) equals zero. This essentially yields little informa-

tion. The second central moment, however, is so important

that it has been named the variance and is symbolized by

s2. Hence,

s2 e E[(X b x)2] e # %

b%

(X b x)2 fX(x) dx (A.6-6)

Note that because of the squared term, values of X to either

side of the mean x are equally significant in measuring varia-

tions or deviations away from x i.e., if x e 10, X1 e 12 and

X2 e 8 then (12 b 10)2 e 4 and (8 b 10)2 e 4 respective-

ly. The variance therefore is the measure of the variability of
[h(x)]2 about its mean value x or the expected square devia-

tion of X from its mean value. Since,

s2 e E[(X b x)2] e E ÐX2 b 2xX a x
2
1 ( (A.6-7a)

e E[X2] b 2x E[X] a x
2
1 (A.6-7b)

e x2 b 2xx a x
2
1 (A.6-7c)

e x2 b x
2
1 (A.6-7d)

or

m2 b m
2
1 (A.6-7e)

The analogy can be made that variance is essentially the

average AC power of a function h(x), hence, the total aver-

age power, second moment m2, minus the DC power, first

moment squared m
2
1. The positive square root of the vari-

ance.

0s2 e s

is defined as the standard deviation . The mean indicates

where a density is centered but gives no information about

how spread out it is. This spread is measured by the stan-

dard deviation s and is a measure of the spread of the

density function about x, i.e., the smaller s the closer the

values of X to the mean. In relation to electrical engineering

the standard deviation is equal to the root-mean-square

(rms) value of an AC voltage (current) in circuit.

A summary of the concepts covered in this section are listed

in Table A.6.1.

A.7 FUNCTIONS OF TWO JOINTLY DISTRIBUTED

RANDOM VARIABLES

The study of jointly distributed random variables can per-

haps be clarified by considering the response of linear sys-

tems to random inputs. Relating the output of a system to its

input is an example of analyzing two random variables from

different random processes. If on the other hand an attempt

is made to relate present or future values to its past values,

this, in effect, is the study of random variables coming from

the same process at different instances of time. In either

case, specifying the relationship between the two random

variables is established by initially developing a probability

model for the joint occurrence of two random events. The

following sections will be concerned with the development

of these models.

A.8 JOINT CUMULATIVE DISTRIBUTION FUNCTION

The joint cumulative distribution function (cdf) is similar to

the cdf of Section A.5 except now two random variables are

considered.

FXY(x,y) e Prob [X s x, Y s y] (A.8-1)

defines the joint cdf, FXY(x,y), of random variables X and Y.

Equation (A.8-1) states that FXY(x, y) is the probability asso-

ciated with the joint occurrence of the event that X is less

than or equal to an allowed or conditional value x and the

event that Y is less than or equal to an allowed or condition-

al value y.
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TABLE A.6-1

Symbol Name Physical Interpretation

X, E[X], m1: # %

b%

xfX(x) dx
Expected Value, # Finding the mean value of a random voltage (current) is

Mean Value, equivalent to finding its DC component.

Statistical Average # First moment; e.g., the first moment of a group of masses is just
Value the average location of the masses or their center of gravity.

# The range of the most probable values of x.

E[X]2, X2, m
2
1 # DC power

X2, E[X2], m2: # %

b%

x2fX(x) dx
Mean Square Value # Interpreted as being equal to the time average of the square of a

random voltage (current). In such cases the mean-square value

is proportional to the total average power (AC plus DC) through a

1X resistor and its square root is equal to the rms or effective

value of the random voltage (current).

# Second moment; e.g., the moment of inertia of a mass or the

turning moment of torque about the origin.

# The mean-square value represents the spread of the curve about

x e 0

var[ ], s2, (X b x)2, E[(X b x)2], Variance # Related to the average power (in a 1X resistor) of the AC

) components of a voltage (current) in power units. The square

m2; # %

b%

(X b x)2 fX(x) dx
root of the variances is the rms voltage (current) again not

reflecting the DC component.

# Second movement; for example the moment of inertia of a mass

or the turning moment of torque about the value x.

# Represents the spread of the curve about the value x.

0s2,s Standard Deviation # Effective rms AC voltage (current) in a circuit.

# A measure of the spread of a distribution corresponding to the

amount of uncertainty or error in a physical measurement or

experiment.

# Standard measure of deviation of X from its mean value x.

(X)2 is a result of smoothing the data and then squaring it and (X2) results from squaring the data and then smoothing it.
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A few properties of the joint cumulative distribution function

are listed below.

1. 0 s FXY(x,y) s 1 b% k x k %

b% k y k %

(since FXY(x,y) e Prob[X s x, Y s y] is a probability)

2. FXY(b%,y) e 0

FXY(x,b%) e 0

FXY(b%,b%) e 0

3. FXY(a%,a%) e 0

4. FXY(x,y) The probability of occurrence

increases as either x or y, or

both increase

A.9 JOINT PROBABILITY DENSITY FUNCTION

Similar to the single random variable probability density

function (pdf) of sections A.4 and A.5, the joint probability

density function fXY(x, y) is defined as the partial derivative

of the joint cumulative distribution function FXY(x, y). More

clearly,

fXY(x,y) e

d2

dx dy
FXY(x,y) (A.9-1)

Recall that the pdf is a density function and must be inte-

grated to find a probability. As an example, to find the prob-

ability that (X, Y) is within a rectangle of dimension (x1 s X
s x2) and (y1 s Y s y2), the pdf of the joint or two-dimen-

sional random variable must be integrated over both ranges

as follows,

Prob[x1 s X s x2, y1 s Y s y2] e

(A.9-2)# x2

x1 # y2

y1

fXY(x,y) dydx e 1

It is noted that the double integral of the joint pdf is in fact

the cumulative distribution function

FXY(x, y) e # #%

b%

fXY(x, y) dxdy e 1 (A.9-3)

analogous to Section A.5. Again fXY(x, y) dxdy represents

the probability that X and Y will jointly be found in the ranges

x g

dx

2
and y g

dy

2
,

respectively, where the joint density function fXY(x, y) has

been normalized so that the volume under the curve is unity.

A few properties of the joint probability density functions are

listed below.

1. fXY(x,y) l 0 For all values of x and y or b% k x k

% and b% k y k %, respectively

2. # # %

b%

fXY(x,y) dxdy e 1

3. FXY(x,y) e # y

b% # x

b%

fXY(x,y) dxdy

4. Prob[x1sXsx2, y1sYsy2]e #y2

y1 # x2

x1

fXY(x,y) dxdy

A.10 STATISTICAL INDEPENDENCE

If the knowledge of one variable gives no information about

the value of the other, the two random variables are said to

be statistically independent. In terms of the joint pdf

fXY(x,y) e fX(x) fY(y) (A.10-1)

and

fX(x) fY(y) e fXY(x,y) (A.10-2)

imply statistical independence of the random variables X

and Y. In the same respect the joint cdf

(A.10-3)FXY(x, y) e FX(x)FY(y)

and

(A.10-4)FX(x)FY(y) e FXY(x, y)

again implies this independence.

It is important to note that for the case of the expected

value E[XY], statistical independence of random variables X

and Y implies

E[XY] e E[X] E[Y] (A.10-5)

but, the converse is not true since random variables can be

uncorrelated but not necessarily independent.

In summary

1. FXY(x,y) e FX(x) FY(y) reversible

2. fXY(x,y) e fX(x) fY(y) reversible

3. E[XY] e E[X] E[Y] non-reversible

A.11 MARGINAL DISTRIBUTION AND MARGINAL DEN-

SITY FUNCTIONS

When dealing with two or more random variables that are

jointly distributed, the distribution of each random variable is

called the marginal distribution . It can be shown that the

marginal distribution defined in terms of a joint distribution

can be manipulated to yield the distribution of each random

variable considered by itself. Hence, the marginal distribu-

tion functions FX(x) and FY(y) in terms of FXY(x, y) are

FX(x) e FXY(x, %) (A.11-1)

and

FY(y) e FXY(%,y) (A.11-2)

respectively.
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The marginal density functions fX(x) and fY(x) in relation to

the joint density fXY(x, y) is represented as

fX(x) e # %

b%

fXY(x,y) dy (A.11-3)

and

fY(x) e # %

b%

fXY(x,y) dx (A.11-4)

respectively.

A.12 TERMINOLOGY

Before continuing into the following sections it is appropri-

ate to provide a few definitions of the terminology used

hereafter. Admittedly, the definitions presented are by no

means complete but are adequate and essential to the con-

tinuity of the discussion.

Deterministic and Nondeterministic Random Process-

es: A random process for which its future values cannot be

exactly predicted from the observed past values is said to

be nondeterministic . A random process for which the future

values of any sample function can be exactly predicted from

a knowledge of all past values, however, is said to be a

deterministic process.

Stationary and Nonstationary Random Processes: If the

marginal and joint density functions of an event do not de-

pend upon the choice of i.e., time origin, the process is said

to be stationary . This implies that the mean values and mo-

ments of the process are constants and are not dependent

upon the absolute value of time. If on the other hand the

probability density functions do change with the choice of

time origin, the process is defined nonstationary . For this

case one or more of the mean values or moments are also

time dependent. In the strictest sense, the stochastic pro-

cess x(f) is stationary if its statistics are not affected by the

shift in time origin i.e., the process x(f) and x(t a u) have the

same statistics for any u.

Ergodic and Nonergodic Random Processes: If every

member of the ensemble in a stationary random process

exhibits the same statistical behavior that the entire ensem-

ble has, it is possible to determine the process statistical

behavior by examining only one typical sample function.

This is defined as an ergodic process and its mean value

and moments can be determined by time averages as well

as by ensemble averages. Further ergodicity implies a sta-

tionary process and any process not possessing this prop-

erty is nonergodic .

Mathematically speaking, any random process or, i.e., wave

shape x(t) for which

lim
Tx%

x(t) e
lim
Tx%

1

T # T/2

bT/2
x(t) dt e E[x(t)]

holds true is said to be an ergodic process. This simply says

that as the averaging time, T, is increased to the limit

Tx%, time averages equal ensemble averages (the ex-
pected value of the function).

A.13 JOINT MOMENTS

In this section, the concept of joint statistics of two continu-

ous dependent variables and a particular measure of this

dependency will be discussed.

The joint moments mij of the two random variables X and Y

are defined as

mij e E[XiYj] e # %

b% # %

b%

xiyj fXY(x,y) dx dy (A.13-1)

where i a j is the order of the moment.

The second moment represented as m11 or sXY serves as

a measure of the dependence of two random variables and

is given a special name called the covariance of X and Y.

Thus

m11 e sXY e E[(X b x) (Y b y)] e

(A.13-2)# # %

b%

(X b x)(Yb y) fXY(x,y) dx dy

e E[XY] b E[X] E[Y] (A.13-3)

or

e m11 b xy (A.13-4)

If the two random variables are independent, their covari-

ance function m11 is equal to zero and m11, the average of

the product, becomes the product of the individual averages

hence.

m11 e 0 (A.13-5)

implies

m11 e E[(X b x)(Y b y)] e E[X b x] E[Y b y] (A.13-6)

Note, however, the converse of this statement in general is

not true but does have validity for two random variables

possessing a joint (two dimensional) Gaussian distribution.

In some texts the name cross-covariance is used instead of

covariance, regardless of the name used they both describe

processes of two random variables each of which comes

from a separate random source. If, however, the two ran-

dom variables come from the same source it is instead

called the autovariance or auto-covariance.

It is now appropriate to define a normalized quantity called

the correlation coefficient , r, which serves as a numerical

measure of the dependence between two random variables.

This coefficient is the covariance normalized, namely

r e

covar[X,Y]

0var[X] var[Y]
e

EÀ[X b E[X]] [Y b E[Y]]Ó

0s2
X s2

Y

(A.13-7)

e

m11

sX sY
(A.13-8)
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where r is a dimensionless quantity

b1 s r s 1

Values close to 1 show high correlation of i.e., two random

waveforms and those close to b1 show high correlation of

the same waveform except with opposite sign. Values near

zero indicate low correlation.

A.14 CORRELATION FUNCTIONS

If x(t) is a sample function from a random process and the

random variables

x1 e x(t1)

x2 e x(t2)

are from this process, then, the autocorrelation function

R(t1, t2) is the joint moment of the two random variables;

Rxx(t1,t2) e E[x(t1)x(t2)] (A.14-1)

e # # %

b%

x1x2 fx1x2
(x1,x2) dx1

dx2

where the autocorrelation is a function of t1 and t2.

The auto-covariance of the process x(t) is the covariance of

the random variables x(t1) x(t2)

cxx(t1,t2) e EÀ[x(t1) b x(t1)] [x(t2) b x(t2)]Ó (A.14-2)

or rearranging equation (A.14-1)

c(t1,t2) e EÀ[x(t1) b x(t1)] [x(t2) b x(t2)]Ó

e EÀx(t1) x(t2) b x(t1) x(t2) b x(t1) x(t2)

a x(t1)x(t2)Ó

e EÀx(t1) x(t2) b x(t1) E[x(t2)] b E[x(t1)] x(t2)

a E[x(t1)] E[x(t2)]Ó

e E[x(t1) x(t2)] b E[x(t1)] E[x(t2)]
b E[x(t1)] E[x(t2)] a E[x(t1)] E[x(t2)]

e E[x(t1) x(t2)] b E[x(t1)] E[x(t2)] (A.14-3)

or

e R(t1, t2) b E[x(t1)] E[x(t2)] (A.14-4)

The autocorrelation function as defined in equation (A.14-1)

is valid for both stationary and nonstationary processes. If

x(t) is stationary then all its ensemble averages are indepen-

dent of the time origin and accordingly

Rxx(t1,t2) e Rxx(t1 aT, t2 a T) (A.14-5a)

e E[x(t1 a T), x(t2 a T)] (A.14-5b)

Due to this time origin independence, T can be set equal to
bt1, T e bt1, and substitution into equations (A.14-5a, b)

Rxx(t1,t2) e Rxx(0,t2 b t1) (A.14-6a)

e E[x(0) x(t2 b t1)] (A.14-6b)

imply that the expression is only dependent upon the time

difference t2 b t1. Replacing the difference with u e t2 b t1
and suppressing the zero in the argument RXX(0, t2 b t1)

yields

Rxx(u) e E[x(t1) x(t1 b u)] (A.14-7)

Again since this is a stationary process it depends only on u.

The lack of dependence on the particular time, t1, at which

the ensemble was taken allows equation (A.14-7) to be writ-

ten without the subscript, i.e.,

Rxx(u) e E[x(t) x(t a u)] (A.14-8)

as it is found in many texts. This is the expression for the

autocorrelation function of a stationary random process.

For the autocorrelation function of a nonstationary process

where there is a dependence upon the particular time at

which the ensemble average was taken as well as on the

time difference between samples, the expression must be

written with identifying subscripts, i.e., Rxx(t1, t2) or

Rxx(t1, u).

The time autocorrelation function can be defined next and

has the form

Rxx(u) e
lim
tx%

1

T # T/2

bT/2
x(t) x(t a u) dt (A.14-9)

For the special case of an ergodic process (Ref. Appendix

A.12) the two functions, equations (A.14-8) and (A.14-9), are

equal

Rxx(u) e Rxx(u) (A.14-10)

It is important to point out that if u e 0 in equation (A.14-7)

the autocorrelation function

Rxx(0) e E[x(t1) x(t1)] (A.14-11)

would equal the mean square value or total power (AC plus

DC) of the process. Further, for values other than u e 0,

Rx(u) represents a measure of the similarity between its

waveforms x(t) and x(t a u).
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In the same respect as the previous discussion, two random

variables from two different jointly stationary random pro-

cesses x(t) and y(t) have for the random variables

x1 e x(t1)

y2 e y(t1 a u)

the crosscorrelation function

(A.14-12)Rxy(u) e EÀx(t1) y(t1au)]

e # # %

b%

x1y2 fx1y2
(x1,y2) dx1 dy2

The crosscorrelation function is simply a measure of how

much these two variables depend upon one another.

Since it was assumed that both random processes were

jointly stationary, the crosscorrelation is thus only depen-

dent upon the time difference u and, therefore

Rxy(u) e Ryx(u) (A.14-13)

where

y1 e y(t1)

x2 e x(t1 a u)

and

(A.14-14)Ryx(u) e EÀy(t1) x(t1au)]

e # # %

b%

y1x2 fy1x2
(y1,x2) dy1 dx2

The time crosscorrelation functions are defined as before by

Rxy(u) e
lim
tx%

1

T # T/2

bT/2
x(t) y(t a u) dt (A.14-15)

and

Ryx(u) e
lim
tx%

1

T # T/2

bT/2
y(t) x(t a u) dt (A.14-16)

and finally

Rxy(u) e Rxy(u) (A.14-17)

Ryx(u) e Ryx(u) (A.14-18)

for the case of jointly ergodic random processes.

APPENDIX B

B.0 INTERCHANGING TIME INTEGRATION

AND EXPECTATIONS

If f(t) is a nonrandom time function and a(t) a sample func-

tion from a random process then,

EÐ# t2

t1
a(t) f(t) dt( e # t2

t1
E[a(t)] f(t) dt

(B.0-1)

This is true under the condition

a) # t2

t1
E[la(t)l] lf(t)l dt k % (B.0-2)

b) a(t) is bounded by the interval t1 to t2. [t1and t2 may be

infinite and a(t) may be either stationary or nonstation-

ary]

APPENDIX C

C.0 CONVOLUTION

This appendix defines convolution and presents a short

proof without elaborate explanation. For complete definition

of convolution refer to National Semiconductor Application

Note AN-237.

For the time convolution if

f(t)ÝF(0) (C.0-1)

x(t)ÝX(0) (C.0-2)

then

(C.0-3)

y(t) e # %

b%

x(u) f(t b u) duÝY(0) e X(0) * F(0)

or

y(t) e x(t) * f(t)ÝY(0) e X(0) * F(0) (C.0-4)

proof:

Taking the Fourier transform, F[ ], of y(t)

(C.0-5)

F[y(t)] e Y(0) e #%

b% Ð#%

b%

x(u) f(t b u) du( fbj0t dt

Y(0) e # %

b%

x(u) Ð # %

b%

f(t b u)bj0t dt( du

(C.0-6)

and letting k e t b u, then, dk e dt and t e k a u.

26



Thus,

Y(0) e # %

b%

x(u) Ð# %

b%

f(k) fbj0(k a u) dk( du (C.0-7)

e # %

b%

x(u) fbj0u du

# %

b%

f(k) fbj0k dk (C.0-8)

Y(0) e X(0) # F(0) (C.0-9)

For the frequency convolution of

f(t)ÝF(0) (C.0-10)

x(t)ÝX(0) (C.0-11)

then

H(0) e

1

2q # %

b%

F(n) X(0 b n) dnÝh(t) e f(t) # x(t)

(C.0-12)

or

H(0) e

1

2q
F(0) * X(0)Ýh(t) e f(t) # x(t) (C.0-13)

proof:

Taking the inverse Fourier transform Fb1[ ] of equation

(C.0-13)

h(t) e Fb1 Ðx(0) * F(0)

2q ( (C.0-14)

e

1

2q # %

b%Ð 1

2q # %

b%

F(n)(0 b n) dn ( fj0t d0

e # 1

2q J2 # %

b%

F(n) # %

b%

X(0 b n) fj0t d0 dn

(C.0-15)

and letting g e 0 b n, then dg e d0 and 0 e g a n.

Thus,

Fb1
X(0) * F(0)

2q

(C.0-16)

h(t) e # 1

2q J2 # %

b%

F(n) # %

b%

X(g) fj(g a n)t dg dn

h(t) e

1

2q # %

b%

F(n) fjnt dn## %

b%

X(g) fjgt dg (C.0-17)

h(t) e f(t) # x(t) (C.0-18)
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