The NS16550A: UART
Design and Application
Considerations

BACKGROUND

UARTs like other system components have evolved for
many years to become faster, more integrated and less ex-
pensive. The rise in popularity of the personal computer with
its focus and competition primarily centered on an architec-
ture introduced by IBM®, has driven both UART perform-
ance and software compatibility issues. As transmission
rates have increased, the amount of time the CPU has for
other tasks while handling an active serial channel has been
sharply reduced. One byte of data received at 1200 baud
(8.3 ms) is received in 1/¢th the time at 19.2 kbaud (520 us).
Software compatibility among the PC-based UARTS is crit-
ical due to the thousands of existing programs which use
the serial channel and the new programs continually being
offered.

Higher baud rates and compatibility requirements influence
new UART designs. These two constraints result in UARTs
that are capable of higher data rates, increasingly indepen-
dent of CPU intervention and providing more autonomous
features, while maintaining software compatibility. These
development paths have been brought together in a new
UART from National Semiconductor designated the
NS16550A.

The NS16550A has all of the registers of its two predeces-
sor parts (INS8250 and NS16450), so it can run all existing
IBM PC, XT, AT, RT and compatible serial port software. In
addition, it has a programmable mode which incorporates
new high-performance features. Of course, all of these ad-
vanced features are useful in any asynchronous serial com-
munications application regardless of the host architecture.

The reader is assumed to be familiar with the standard fea-
tures of the NS16450, so this paper will concentrate mainly
on the new features of the NS16550A. If the reader is unfa-
miliar with these UARTSs it is advisable to start by reading
their data sheets.

The first section reviews some of the design considerations
and the operation of the NS16550A advanced features. The
second section shows an NS16550A initialization routine
written in 80286 assembly code with an explanation of the
routine. The third section gives a detailed example of com-
munications drivers written to interface two NS16550As on
individual boards. These drivers are written for use with Na-
tional Semiconductor’s DB32032 evaluation boards, but can
be ported to any NS32032-based system containing an
NS32202 (ICU).

1.0 Design Considerations and
Operation of the New
UART Features

In order to optimize CPU/UART data transactions, the
UART design takes into consideration the following con-
straints:

GNX™ is a trademark of National Semiconductor Corporation.

IBM® is a registered trademark of International Business Machines Corporation.
VAX™ is a trademark of Digital Equipment Corporation.

80286™ is a trademark of Intel Corporation.

National Semiconductor
Application Note 491
Martin S. Michael
Daniel G. Durich

July 1987

1. The CPU is usually much faster than the UART at trans-
ferring data. A high speed CPU could transfer a byte of
data to/from the UART in a minimum of 280 ns. The
UART would take over 1800 times longer to transmit/re-
ceive this data serially if it were operating at 19.2 kbaud.

2. There is a finite amount of wasted CPU time due to
software overhead when stopping its current task to
service the UART (context switching overhead).

3. The CPU may be required to complete a certain portion
of its current task in a multitasking system before servic-
ing the UART. This delay is the CPU latency time asso-
ciated with servicing the interrupt. The amount of time
that the receiver can accept continuous data after it re-
quests service from the CPU constrains CPU latency
time.

The design constraints listed above are met by adding two
FIFOs and specialized transmitter/receiver support circuitry
to the existing NS16450 design. The FIFOs are 16 bytes
deep—one holds data for the transmitter, the other for the
receiver (see Figure 1'). Similarity between the FIFOs stops
with their size, as each has been customized for special

Ry FIFO Ty FIFO
RG14 —p
[]
]R8 —p]
° 16
. BYTES
TRG4 —P]
RG 1 —p]
SN —>] suFTRecisTER | | surRecisteR |— sour

TL/C/9313-1
FIGURE 1. Rx and Tx FIFOs

transmitter or receiver functions. Each has support circuitry
to minimize software overhead when handling interrupts.
The NS16550A receiver optimizes the CPU/UART data
transaction via the following features:

1. The depth of the Receiver (Rx) FIFO ensures that as
many as 16 characters will be ready to transfer when
the CPU services the Rx interrupt. Therefore, the CPU
transfer rate is effectively buffered from the serial data
rate.

2. The program can select the number of bytes required in
the Rx FIFO (1, 4, 8 or 14) before the UART issues an
interrupt. This allows the software to modify the interrupt
trigger levels depending on its current task or loading. It
also ensures that the CPU doesn’t continually waste
time switching context for only a few characters.

©1995 National Semiconductor Corporation TL/C/9313

RRD-B30M105/Printed in U. S. A.

VO0SS9LSN 9yL

jedapisuo) uonesljddy pue ubisaqg 1HvVYN :

suol

L6V-NV

3. The Rx FIFO will hold 16 bytes regardless of which trig-
ger level the CPU selects. This makes allowances for a
variety of CPU latency times, as the FIFO continues to
fill after the interrupt is issued.

The NS16550A transmitter optimizes the CPU/UART data
transaction via the following features:

1. The depth of the Transmitter (Tx) FIFO ensures that as
many as 16 characters can be transferred when the
CPU services the Tx interrupt. Once again, this effec-
tively buffers the CPU transfer rate from the serial data
rate.

2. The Transmitter (Tx) FIFO is similar in structure to
FIFOs the user may have previously set up in RAM. The
Tx depth allows the CPU to load 16 characters each
time it switches context to the service routine. This re-
duces the impact of the CPU time lost in context switch-
ing.

3. Since a time lag in servicing an asynchronous transmit-
ter usually has no penalty, CPU latency time is of no
concern to transmitter operation.

TX AND RX FIFO OPERATION

The Tx portion of the UART transmits data through SOUT
as soon as the CPU loads a byte into the Tx FIFO. The
UART will prevent loads to the Tx FIFO if it currently holds
16 characters. Loading to the Tx FIFO will again be enabled
as soon as the next character is transferred to the Tx shift
register. These capabilities account for the largely autono-
mous operation of the Tx.

The UART starts the above operations typically with a Tx
interrupt. The NS16550A issues a Tx interrupt whenever the
Tx FIFO is empty and the Tx interrupt is enabled, except in
the following instance. Assume that the Tx FIFO is empty
and the CPU starts to load it. When the first byte enters the
FIFO, the Tx FIFO empty interrupt will transition from active
to inactive. Depending on the execution speed of the serv-
ice routine software, the UART may be able to transfer this
byte from the FIFO to the shift register before the CPU
loads another byte. If this happens, the Tx FIFO will be emp-
ty again and typically the UART’s interrupt line would tran-
sition to the active state. This could cause a system with an
interrupt control unit to record a Tx FIFO empty condition,
even though the CPU is currently servicing that interrupt.
Therefore, after the first byte has been loaded into the FIFO
the UART will wait one serial character transmission time
before issuing a new Tx FIFO empty interrupt.

This one character Tx interrupt delay will remain active until
at least two bytes have been loaded into the FIFO, concur-
rently. When the Tx FIFO empties after this condition, the
Tx interrupt will be activated without a one character delay.

Rx support functions and operation are quite different from
those described for the transmitter. The Rx FIFO receives
data until the number of bytes in the FIFO equals the select-
ed interrupt trigger level. At that time if Rx interrupts are
enabled, the UART will issue an interrupt to the CPU. The
Rx FIFO will continue to store bytes until it holds 16 of them.
It will not accept any more data when it is full. Any more

data entering the Rx shift register will set the Overrun Error
flag. Normally, the FIFO depth and the programmable trig-
ger levels will give the CPU ample time to empty the Rx
FIFO before an overrun occurs.

One side-effect of having a Rx FIFO is that the selected
interrupt trigger level may be above the data level in the
FIFO. This could occur when data at the end of the block
contains fewer bytes than the trigger level. No interrupt
would be issued to the CPU and the data would remain in
the UART. To prevent the software from having to check for
this situation the NS16550A incorporates a timeout inter-
rupt.

The timeout interrupt is activated when there is at least one
byte in the Rx FIFO, and neither the CPU nor the Rx shift
register has accessed the Rx FIFO within 4 character times
of the last byte. The timeout interrupt is cleared or reset
when the CPU reads the Rx FIFO or another character en-
ters it.

These FIFO related features allow optimization of CPU/
UART transactions and are especially useful given the high-
er baud rate capability (256 kbaud). However, in order to
eliminate most CPU interactions, the UART provides DMA
request signals. Two DMA modes are supported: single-
transfer and multi-transfer. These modes allow the UART to
interface to higher performance DMA units, which can inter-
leave their transfers between CPU cycles or execute multi-
ple byte transfers.

In single-transfer mode the receiver DMA request signal (Rx
RDY) goes active whenever there is at least one character
in the Rx FIFO. It goes inactive when the Rx FIFO is empty.
The transmitter DMA request signal (Tx RDY) goes active
when there are no characters in the Tx FIFO. It goes inac-
tive when there is at least one character in the Tx FIFO.
Therefore, in single-transfer mode active and inactive DMA
signals are issued on a one byte basis.

In multi-transfer mode Rx RDY goes active whenever the
trigger level or the timeout has been reached. It goes inac-
tive when the Rx FIFO is empty. Tx RDY goes active when
there is at least one unfilled position in the Tx FIFO. It goes
inactive when the Tx FIFO is completely full. Therefore in
multi-transfer mode active and inactive DMA signals are is-
sued as the FIFO fills and empties. With 2 DMA channels
(one for each Rx and Tx) assigned to it, the NS16550A
could run somewhat independently of the CPU when the
DMA unit transfers data composed of blocks with check-
sums.

SYSTEM OPERATION: THE NS16550A VS THE NS16450

Consider the typical system interface block diagram in Fig-
ure 2. This is a simple diagram, but it includes all of the
components that typically interact with a UART. The advan-
tages of the NS16550A over the NS16450 can be illustrated
by comparing some of the system constraints when each
UART is substituted into this basic system.

Both RS-232C and RS-422A interfaces can be used with
either UART, however, the NS16550A can drive these inter-
faces up to 256 kbaud. Regarding the RS-422A specifica-

——)

CPU >

IR

13

<H<

MEMORY

j:> TX
DMA \

EIA

RXZ—r rr»r—omMmwu

TL/C/9313-2

FIGURE 2. Typical System Interface

tion (max. 10 Mbaud) this is significantly faster than the
NS16450 (max. 56 kbaud).

The NS16450 has no DMA request signals, so the DMA unit
would not interact with the NS16450. The NS16550A, how-
ever, has DMA request signals and two modes of data
transfer, as previously described, to interface with a variety
of DMA units.

The greatest advantages of the NS16550A over the
NS16450 are seen when considering the CPU/UART inter-
face. Some characteristics of the transactions occurring be-
tween the CPU and the UART were previously cited. How-
ever, optimizing these transactions involves two issues:

1. Decreasing the amount of time the CPU interacts with
the UART.

2. Increasing the amount of data transferred between the
CPU and UART during their interaction time.

These optimization criteria are directly opposed to each oth-
er, but various features on the NS16550A have improved
both.

One of the more obvious ways to decrease the CPU/UART
interaction time is to decrease the time it takes for the trans-
action to occur. The NS16550A has an access cycle time
that is almost 25% shorter than the NS16450. In addition,
other timing parameters were made faster to simplify high
speed CPU interactions.

The actual software required to transfer the data between
the CPU and the UART is a small percentage of that re-
quired to support this transfer. However, each time a trans-
fer occurs in the NS16450, this support software (overhead)
must also be executed. With the NS16550A each time the
UART needs service the CPU can theoretically transfer 16
bytes while only running through its overhead once. Tests
have shown that this will increase the performance by a
factor of 5 at the system level over the NS16450.

Another time savings for the CPU is a new feature of the
UART interrupt structure. Unlike most other UARTs with Rx

FIFOs, the NS16550A will issue an interrupt when there are
characters below the interrupt trigger level after a preset
time delay. This saves the extra time spent by the CPU to
check for bytes that are at the end of a block, but won’t
reach the interrupt level.

Since the NS16550A register set is identical to the
NS16450 on power-up, all existing NS16450 software will
run on it. The FIFOs are only enabled under program con-
trol.

All of this added performance is not without some trade-
offs. Two of the NS16450 pins, no connect (NC) and chip
select out (CSOUT) have been replaced by the RxRDY and
TxRDY pins. Most serial cards that currently use the
NS16450 don’t use these pins, so in those situations the
NS16550A could be used as a plug-in upgrade. The soft-
ware drivers for the NS16550A operating in FIFO mode
need to be a little more sophisticated than for the NS16450.
This will not cause a great penalty in CPU operating time as
there is only one additional UART register to program and
one to check during the initialization. One additional service
routine is required to handle Rx timeout interrupts. This rou-
tine does not execute, except during intermittent transmis-
sions or as described above.

All of these speed improvements and allowances for soft-
ware constraints will make the NS16550A an optimal UART
for both multi-tasking systems and multiport systems. Multi-
tasking systems benefit from the increased time and flexibil-
ity offered to the CPU during context switching. Multiport
systems, such as terminal concentrators, benefit from the
on-board FIFOs and relatively autonomous functions of the
UART.

SYSTEM INTERRUPT GENERATION

As a prelude to the topic of the next section (80286T™-
based system initialization) a review of a typical PC hard-
ware interrupt path is given. This concerns only the interrupt
path between the UART and the CPU (see Figure 3).

NS16550A [JOUI2

INTR

TL/G/9313-3

FIGURE 3. Typical PC Interrupt System Hardware

In order to enable interrupts from the UART to the CPU
each hardware device must be correctly initialized. While
initializing the hardware path, CPU interrupts are turned off
to avoid false interrupts from this path. This initialization
should be as short as possible to avoid other devices
“stacking up” interrupts during this time.

After the NS16550A is initialized the bits 0-3 in the Interrupt
Enable Register (IER) are set enabling all UART interrupts.
Also, bit 3 in the Modem Control Register (MCR) is set to
enable the buffer between the UART and the ICU.

The ICU has bit 4 of its Interrupt Mask Register (IMR)
cleared, allowing interrupts occuring on IRQ4 to be trans-
ferred to the CPU via the group interrupt (INT). Finally, CPU
interrupts are enabled again via the STl instruction.

The programmer should be aware that the ICU will be initial-
ized for edge-triggered interrupts and that the UART always
produces level active interrupts. This allows the system to
get into a situation where the UART has multiple interrupts
pending (signaled via a constantly high INTR), but the ICU
fails to respond because it expects an edge for each pend-
ing interrupt. To avoid this situation, the programmer should
disable all UART interrupts via the IER when entering each
UART interrupt service routine and then reenable all UART
interrupts that are to be used just before exiting each inter-
rupt service routine.

SUMMARY

Up to this point the features of the NS16550A have been
described, some of the design goals that resulted in these
features have been reviewed, and a comparison has been
given between it and the NS16450. Increases in bus speed
and specialized functions make this part both faster from
the hardware point of view and more efficient from the soft-
ware point of view.

2.0 NS16550A Initialization

This initialization can be used on any 80286-based system;
it enables both FIFOs and all interrupts on the UART. Addi-
tional procedures would have to be written to actually trans-
fer data and service interrupts. These procedures would be
similar in form to the 32000-based example in the next sec-
tion, but the code would be different. The general flow of the
initialization is shown in Figure 4 and described below.

DETAILED SOFTWARE DESCRIPTION

The first block in the initialization establishes abbreviations
for the NS16550A registers and assigns addresses to them.
The next three blocks establish code and data segments for
the 80286. After jumping to the code start, the program dis-
ables CPU interrupts (CLI) until it has finished the initializa-
tion routine. Other interrupts may be active while CPU inter-

rupts are masked, so the section of code following CLI
should be as short as possible. The next block replaces the
existing COM1 interrupt vector with the address of
NS16550A interrupt handler (INTH in this case).

Initialization of the NS16550A is similar to the NS16450,
except that there is one additional register to program which
controls the FIFOs (Refer to the datasheet for a complete
description). The sequence shown here sets bit 7 (DLAB) of
the line control register (LCR), which enables access to the
baud rate generator divisor. The divisor programmed is
0006 (19.2 kbaud) in this example. Programming the LCR
again resets bit 7 (allowing access to the operational regis-
ters) and programs each frame for 7 data bits, one stop bit
and even parity. The additional register that needs to be
programmed in the NS16550A is the FIFO control register
(FCR). The FCR data is 1100 0001. Bits 6 and 7 set the Rx
FIFO interrupt trigger level at 14 characters. Bits 5 and 4 are
reserved. Bit 3 keeps the DMA signal lines in mode 0. Set-
ting bits 2 and 1 clear the Tx and Rx FIFOs, but this is done
automatically when the FIFOs are first enabled by setting bit
0. Bit 0 of the FCR should ALWAYS BE SET whenever
changes are to be made to the other bits of the FCR and the
UART is to remain in FIFO Mode. When the FIFOs on the
NS16550A are enabled bits 6 and 7 in the Interrupt Identifi-
cation Register are set. Thus the program can distinguish
between an NS16450 and an NS16550A, taking advantage
of the FIFOs.

Sending a OF to the Interrupt Enable Register enables all
UART interrupts. The next two register accesses, reading
the Line Status Register and the Modem Status Register,
are optional. They are conservatively included in this initiali-
zation in order to defeat false interrupt indications in these
registers caused by noise on the external lines.

The next block of code enables the interrupt signal to go
beyond the UART through the system hardware. In many
popular 80286-based personal computers, an interrupt con-
trol unit (ICU) has its mask register at 1/0 address 21H. To
enable interrupts through this ICU for COM1 without disturb-
ing other interrupts, the Interrupt Mask Register (IMR) is
read. This data is combined with 1110 1111 via an AND
instruction to unmask the COM1 interrupt and then loaded it
back to the IMR. On these personal computers there is also
a buffer on the interrupt line between the UART and ICU.
This buffer is enabled by setting the OUT2 bit of the MO-
DEM Control Register in the UART.

Before enabling CPU interrupts (STI) pointer registers to the
data buffers of each service routine are loaded. After en-
abling CPU interrupts this program jumps to a holding loop
to wait for an interrupt, whereas most programs would con-
tinue initializing other devices or jump to the system loop.

ESTABISH REGISTER
AND ADDRESS EQUATES

+

ESTABLISH CODE AND
DATA SEGMENTS;
JUMP TO CODE START

¥

ESTABLISH DATA BUFFERS,
RAM REGISTERS

¥

CODE START

DISABLE CPU
INTERRUPTS

¥

LOAD COM1 RAM
POINTER WITH
SERVICE ROUTINE
ADDRESS

¥

| mmauze ns1essoa |

¥

ENABLE COM1 INTERRUPTS
AT THE ICU

¥

SET OUT2 TO
ENABLE COM1
INTERRUPTS

¥

ESTABLISH RUN TIME BUFFER
POINTERS IN CPU REGISTERS

| EnaBLE cPu INTERRUPTS |

READ IIR AND CALL
APPROPRIATE SERVICE ROUTINE

|

INITIALIZATION

v

=mgu=

v

}

LINE STATUS
INTTERUPT

RECEIVER
INTERRUPT

RECEIVER TIMEOUT
INTERRUPT EMPTY INTERRUPT

TRANSMITTER

MODEM STATUS
INTERRUPT

FALSE
INTERRUPT

FIGURE 4. NS16550A Initialization and Driver Flowchart

TL/C/9313-4

TITLE 550APP.ASM - NS16550A INITIALIZATION

s

sESTABLISH NS16550A REGISTER ADDRESS/DATA EQUATES

rxd EQU 3F8H ;RECEIVE DATA REG

txd EQU 3F8H ;TRANSMITT DATA REG

ier EQU 3F9H ;INTERRUPT ENABLE REG

a1l EQU 3F8H ;DIVISOR LATCH LOW

dlh EQU 3F9H ;DIVISOR LATCH HIGH

iir EQU 3FAH ;INTERRUPT IDENTIFICATION REG
fer EQU 3FAH ;FIFO CONTROL REG

ler EQU 3FBH ;LINE CONTROL REG

mer EQU 3FCH ;MODEM CONTROL REG

1sr EQU 3FDH ;LINE STATUS REG

msr EQU 3FEH ;MODEM STATUS REG

ser EQU 3FFH ;SCRATCH PAD REG
piotoososooool DATA EQUATES stttk

bufsize EQU 7CFH ;TX AND RX BUFFER SIZE

dosrout EQU 25H ;DOS ROUTINE SPECIFICATION
intnum EQU OCH ;INTERRUPT NUMBER (OCH = COML)
icumask EQU OEFH ;ICU INTERRUPT ENABLE MASK
divace EQU 80H ;DIVISOR LATCH ACCESS CODE
lowdiv EQU O8H ;LOWER DIVISOR

uppdiv EQU OOH ;UPPER DIVISOR

dataspc EQU 1AH ;DLAB = 0, 7 BITS, 1 STOP, EVEN
fifospc EQU OC1H ;FIFOS ENABLED, TRIG = 14, DMA MODE = O
setout2 EQU O8H ;SETTING OUT2 ENABLES INTRs TO THE ICU
intmask EQU OFH ;UART INTERRUPT ENABLE MASK

gikkksskskkx ESTABLISH CODE AND DATA SEGMENTS sk ok sk sk ok

cseg SEGMENT PARA PUBLIC "code"
ORG 100H
ASSUME (CS:cseg,DS:cseg

INIT:

PUSH Cs

POP DS

JMP START
gk ESTABLISH DATA BUFFERS AND RAM REGISTERS koo
msflag DB 0
txflag DB 0
sbuf DB bufsize DUP ("S") s STRING BUFFER
rbuf DB bufsize DUP ("R") ;s RECEIVE BUFFER
sbufe EQU sbuf + bufsize ; END OF STRING BUFFER
rbufe EQU rbuf + bufsize ; END OF RECEIVE BUFFER
START:

CLI 3>>> DISABLE CPU INTERRUPTS <<<

#%%%%% LOAD NEW INTERRUPT SERVICE ROUTINE POINTER FOR COM1 ***

PUSH DS sSAVE EXISTING DATA SEG

MoV AH,dosrout sDESIGNATE FUNCTION NUMBER

MoV AL, intnum sDESIGNATE INTERRUPT

PUSH Cs sALIGN CODE SEG

POP DS sWITH DATA SEG

MoV DX,0FFSET INTH ;SPECIFY SERVICE ROUTINE OFFSET
INT 21H sREPLACE EXISTING INTR VECTOR
POP DS sRESTORE CURRENT DATA SEG

skskkokk INITIALIZE NSLESB0A %ok ook sk sk sokokskok

;This enables both FIFOs for data transfers at 19.2 kbaud using
37 bit data, 1 stop bit and even parity. The Rx FIFO interrupt
strigger level is set at 14 bytes.

MOV AL,divacc sSET-UP ACCESS TO DIVISOR LATCH
MOV DX,lcr

ouT DX, AL

MoV AL,lowdiv sLOWER DIVISOR LATCH, 19.2 kbaud
MoV DX,dl1

ouT DX,AL

MoV AL,uppdiv sUPPER DIVISOR LATCH

MOV DX,dlh

ouT DX,AL

MoV AL,dataspc sDLAB = 0, 7 BITS, 1 STOP, EVEN
MOV DX,lcr

ouT DX,AL

MOV AL,fifospc sFIFOS ENABLED, TRIGGER = 14,
MoV DX, fcr sDMA MODE = 0

ouT DX,AL

MOV AL, intmask sENABLE ALL UART INTERRUPTS

MOV DX,ier

ouT DX,AL

Mov DX,1lsr sREAD THE LSR TO CLEAR ANY FALSE
IN AL,DX ;sSTATUS INTERRUPTS

MOV DX,msr sREAD THE MSR TO CLEAR ANY FALSE
IN AL,DX sMODEM INTERRUPTS

skl kokkokkokkokksk ENABLE COML INTERRUPTS stk s kst sk soskossok sk ook

IN AL,21H sCHECK IMR

AND AL, icumask sENABLE ALL EXISTING AND COM1
ouT 21H,AL

MOV AL,setout2 sSET OUT2 TO ENABLE INTR

MOV DX,mcr

ouT DX,AL

#xxx%x% ESTABLISH RUN TIME BUFFER POINTERS IN REGISTERS 3

MOV SI,OFFSET sbuf
MoV DI,OFFSET rbuf
MoV BX,0FFSET sbuf
MOV BP,0FFSET rbuf
STI 3>>> ENABLE CPU INTERRUPTS <<<

7

3.0 Board to Board Communica-
tions with the NS16550A

The following section describes the hardware and software
for a fully asynchronous two board application. The two
boards communicate simultaneously with each other via the
NS16550As. Predetermined data is exchanged between the
NS16550As and checked by the software for accuracy. Any
data mismatches are flagged and stop the programs. Any
data errors (i.e. overrun, parity, framing or break) will also
stop the program. The NS16550A interface schematic, soft-
ware flow chart and software are provided.

HARDWARE REQUIREMENTS

Running this application requires two NS32032-based
boards. Each board must have one CPU, one ICU
(NS32202), 256k of RAM (000000-03FFFF), the capability
of running a monitor program (MON 32) and the capability of
interfacing with a terminal. If MON 32 is not available, the
display monitor service calls (SVC) must be altered to inter-
face properly to the available terminal driver routines. In ad-
dition to these requirements, the NS16550A is enabled
starting at address 0d00000.

The system described above was implemented on two
DB32032 boards and used as an alpha site to test the
NS16550A during its development. An NS16550A and ap-
propriate decode logic were wirewrapped to each board
(see Figure 5). As shown, an 8 MHz crystal is used to drive
the baud rate generator, but for baud rates at or below 56
kbaud a 1.8432 MHz crystal can be substituted with chang-
es to the divisor. Once this hardware is on both boards 5
connections between the NS16550As must be made—SIN
to SOUT, SOUT to SIN, CTS to RTS, RTS to CTS, and GND
to GND. Each DB32032 board has a port for attaching a
terminal and a port available for downloading code. The ap-
plications software for these boards is downloaded from a
VAX™ running the GNX™ debugger (V1.02). Once the
downloads are complete to both boards the program
D1APPS.EXE is started, then D2APPS.EXE is started.

If a VAX or the GNX debugger is not available the code can
be loaded into PROMs and run directly.

+5v
U114 PIN11—{1 DO Voo 40
U114 PIN12—{2 D1 RI 399 NC O1pF
U114 PIN13— 3 D2 DCD 38 |9 NC $
U114 PIN14—{4 D3 PSR 37 N
U114 PIN15—]5 D4 CTS 36 |—NC
U114 PIN17—{6 D5 MR 35}—U105 PIN21
U114 PIN16—] 7 D6 OUT1 34 |—NC
Ut14 PN18—8 D7 < DTR 33[—NC
9 RCLK 3 RIS 32|—-NC
10 SN 2 0UT2 31}—NC
U102 PN 19 11 SoUT INTR 30 }—U 140 PIN 33
U102 PIN 16 12 €S0 RXRDY 29 j—NC
13 ¢St A0 28U 104 PIN6
14 €S2 Al 27|=U 104 PIN15
15 BAUDOUT A2 26|—U104 PIN5
16 XTAL1 ADS 25
—17 XTAL2 TXRDY 24 |—NcC
U140 PIN 31 18 WR DDIS 23 —NcC
19 WR RD 22
20 Vgg RD 21 }—U 140 PIN30 QF
v !
SRy =1.5Ka
HOH
8.0 MHz
A
c2=22pF == RP=1MQ C2=56pF

1
v

TL/C/9313-5

FIGURE 5. NS16550A and DB32032 Board Interconnections

SOFTWARE OVERVIEW

The programs shown at the end of this application note are
the assembly listings for D1APPS.ASM and D2APPS.ASM.
These can be assembled, linked and loaded to form the
executable (.EXE) files. The flowchart shown before them
illustrates both programs.

Both programs are interrupt driven. D1APPS.EXE has its
transmitter empty interrupt disabled until it receives its first
16 bytes from D2APPS.EXE. This allows the two programs
to be started at different times. Data flow is controlled be-
tween the programs via RTS and CTS handshakes.
D1APPS.EXE is started first and it loops until the first data
from D2APPS.EXE arrives. As D1APPS.EXE exits its receiv-
er interrupt routine, it enables its transmitter interrupt and
begins to send bytes to D2APPS.EXE.

Transmission of a block of 16 bytes occurs when the Tx
FIFO of the NS16550A is empty, the Tx interrupt is enabled
and the receiver activates its clear to send (CTS) signal.
Each transmitter sends the next sequential block of data
from a 256 byte buffer. When the bottom of the buffer is
reached, the transmitter starts at the top of the buffer,
again. The data transmitted from D1APPS.EXE to
D2APPS.EXE is 00 to FF and from D2APPS.EXE to
D1APPS.EXE is FF to 00. Since these are bench test pro-
grams for the NS16550A, the receiver subroutines compare
the data they receive with the data they expect. This is done
on a block-by-block basis and any mismatches result in both
a message sent to the terminal and the program stopping.

DETAILED SOFTWARE DESCRIPTION

Initialization begins by equating NS16550A and ICU
(NS32202) registers to the addresses in memory. The
equates finish with a list of offsets associated with the static
base register. These offsets give the starting locations for
the RAM areas assigned to be data buffers. These include
the UART interrupt entry offset (irl__mod); the string (sbuf),
receive (rbuf), compare (cbuf) buffers and the interrupt table
offset (intable).

At the code start (START::) the processor is put in the su-
pervisor mode so that the interrupt dispatch table can be
transferred from ROM to RAM. This transfer is essential in
order to change the starting address of the UART interrupt
service routine. To do this the interrupt service routine offset
from the code start is calculated (isr-start). Combining this
with the module table address (set-up by the linker, i.e.,
9020) results in the interrupt table descriptor entry for UART
interrupt service routine (isrent).

The next two sections of code load the data to be transmit-
ted and compared into the RAM buffers sbuf and cbuf, re-
spectively. The two programs differ at this point—
D1APPS.EXE transmits 00 to FF and compares FF to 00
sequentially. D2APPS.EXE transmits FF to 00 and com-
pares 00 to FF sequentially.

The NS16550A initialization starts with setting the divisor
latch access bit, so the divisor can be loaded. It then deter-
mines the serial data format and disables all UART inter-
rupts. The NS16550A initialization finishes by enabling and
resetting the FIFOs and programming the receiver interrupt
level for 14 bytes.

Next the ICU interrupt registers are set-up and interrupts are
enabled. In program D1APPS.ASM the initialization finishes
by enabling the receive data and line status interrupts. Since
the transmitter FIFO empty interrupt is disabled
D1APPS.EXE will stay in its hold loop until it receives data
from D2APPS.EXE. D2APPS.EXE has its transmitter FIFO
empty interrupt enabled at the end of its initialization, so it
will send one block of 16 characters to D1APPS.EXE imme-
diately.
When there are no interrupts pending and no service rou-
tines being executed, the programs run in a holding loop
until the next interrupt.
Whenever the CPU enters the service routine (isr:) it checks
the interrupts identification register (lIR) for the type of inter-
rupt pending and branches to the appropriate subroutine. If
the IIR value doesn’t match a known interrupt condition, an
invalid interrupt message is sent to the terminal and the
program stops. Out of the five possible interrupts, two (line
status and receiver timeout) have simple routines that only
send a message to the terminal and then branch to the
receiver data available routine. Modem status interrupts
send a message to the CRT and then stop the program.
Two robust interrupt service routines exist—one for the re-
ceiver and one for the transmitter.
The receiver interrupt service routine (rdai:) does the follow-
ing:
1. Disables the RTS signal which stops the transmitter on
the other board from sending more data.
2. Transfers all data from the UART Rx FIFO to the RAM
receiver buffer (rbuf).
3. Branches to the compare subroutine when all data is
transferred from the Rx FIFO.

4. Enables Tx interrupts in D1APPS.EXE.

5. Enables the RTS signal which allows the transmitter on
the other board to send another block of data.

The compare interrupt service routine (compare:) does the

following:

1. Aligns the receive buffer pointer to the last character
taken in to the receive buffer (rbuf).

2. Compares each new byte in rbuf with the expected val-
ue (data stored in cbuf).

3. Sends a data mismatch message to the terminal and
stops the program if the rbuf data fails to match the cbuf
data.

4. Returns to rdai: when all of the new data in rbuf has
compared successfully.

The transmitter interrupt service routine (threi:) does the fol-

lowing:

1. Decides whether to send 16 or 15 bytes in a block of
data. Note: This decision is for testing purposes.

2. Sends one byte of data.

3. Checks for an active CTS condition. If it is active then it
sends another byte of data. It continues to check and
send a byte of data until all 15 or 16 bytes are sent.

DIAPPS.ASM Flow Chart

ESTABLISH REGISTER AND
ADDRESS EQUATES FOR THE NS16550A INITIALIZATION

AND THE NS32202 (ICU)

v

ESTABLISH STATIC BASE
STARTING LOCATIONS

v

SET UP INTERRUPT DISPATCH
TABLE FOR THE 32032

START::

—

LOAD RAM STRING BUFFER
FF TO 00 (NOTE)

<>

YES j4¢———

LOAD RAM COMPARISON
BUFFER 00 TO FF

!

<>

YES
SET UP INTERRUPT SERVICE
ROUTINE PARAMETER

INITIALIZE NS16550A
(NOTE)

v

INITIALIZE NS32202 >
INITIALIZE TRANSMITTER
BUFFER OFFSET

ENABLE CPU INTERRUPTS, ENABLE
/RTS AND NS16550A INTERRUPTS

HOLDLOOP:: NO w YES @

Note: This part of the software differs slightly in D2APPS.ASM

N AN N

TL/C/9313-7

10

ISR:

SAVE CPU INTERRUPT
GENERAL PURPOSE SERVICE
REGISTERS ROUTINE

v

READ UART INTERRUPT
STATUS REGISTER

v

ISITA
LINE STATUS
INTERRUPT

-

IS T

A RECEIVER JuMP
DATA AVAILABLE T0
INTERRUPT RDAI:
?
IS 1T A JuMP
RECEIVER TIMEOUT 10
INTERRUPT RTMOUT:
Is
A TRANSMITTER YES JuMp
HOLDING REGISTER EMPTY 10
THRE:

INTERRUPT
?

ISITA
MODEM STATUS
INTERRUPT

PRINT INVALID
INTERRUPT

TL/C/9313-8

LSINT:

RTMOUT:

MSINT:

POPALL:

SEND MESSAGE

"LINE STATUS
INTERRUPT"

SAVE RECEIVER
STATUS REGISTER

——»

SEND MESSAGE

“LINE STATUS
INTERRUPT"

SEND MESSAGE

""MODEM STATUS
INTERRUPT"

RESTORE CPU GENERAL
PURPOSE REGISTERS

¥

RETURN
FROM

INTERRUPT

JUMP TO
RDALI:

JUMP TO
RDAL:

JUMP TO
POPALL:

TL/C/9313-9

1

RDAI:

RDRBR:

CONTINUE:

DISABLE /RTS, SET=UP
RECEIVER POINTER BASE
ADDRESS AND OFFSET

v

STORE RECEIVER BYTE

A

INCREMENT RECEIVER OFFSET

v

LAST
POSITION IN RECEIVER
BUFFER

READ RECEIVER STATUS P

REINITIALIZE RECEIVER
POINTER OFFSET

REGISTER IN UART -

v

IS
THERE
ANOTHER BYTE IN THE

YES

RECEIVER
?

SAVE RX
POINTER OFFSET

ENABLE /RTS
ENABLE TX INTERRUPTS
(NOTE)

v

JUMP
TO
POPALL

Note: This part of the software differs slightly in D2APPS.ASM

TL/G/9313-10

12

SET UP TRANSMITTER
POINTER BASE ADDRESS
AND POINTER OFFSET

THREI:

!

INITIALIZE BYTE COUNTER TO
SEND 1 BLK OF 15 BYTES

LOAD TRANSMITTER

A

v

WITH 1 BYTE OF DATA

v

INCREMENT
OFFSET R1

!

END
OF TX BUFFER
?

REINITIALIZE
POINTER OFFSET

IS

RECEIVER

/CTS INACTIVE
?

SAVE
POINTER OFFSET

DECREMENT
BYTE COUNTER

l—I

ALL
BYTES SENT
?

SAVE TX
POINTER OFFSET

16
BLOCKS SENT
?

DECREMENT
BYTE COUNTER

YES

RELOAD BLOCK
COUNTER WITH H'10

!

JUMP
TO
POPALL

TL/C/9313-11

13

COMPARE:

INCREMENT TRANSMITTER
BUFFER COUNT

v

RESET COMPARE
BUFFER OFFSET

SET UP COMPARE
BUFFER POINTER
BASE ADDRESS

!

IS

RECEIVED
OFFSET AT TOP OF RECEIVE
BUFFER

YES _ | LOAD LAST BYTE POSITION OFFSET

INTO RECEIVER BYTE POINTER

?

DECREMENT RECEIVE
OFFSET

LOAD COMPARE

A

BUFFER OFFSET

v

COMPARE DATA SENT
WITH DATA RECEIVER

!

DOES

DATA MATCH
?

SET ERROR
STROBE SIGNAL

IS

v

CALL SERVICE ROUTINE
TO DISPLAY
"DATA MISMATCH MESSAGE",

THIS THE END
OF THE COMPARE

BUFFER
?

INCREMENT COMPARE
BUFFER OFFSET

OFFSET = TO THE RECEIVE
BUFFER OFFSET
?

NO

'

STOP

TL/C/9313-12

14

#3/30/87.....D1APPS.ASM.usu.v....ADAPTED ORIGINALLY FROM D1RONS56K.ASM

#

#THIS PROGRAM RUNS USING 2 DB32000 BOARDS WITH 16550As ENABLED AT ADDRESS 0400000
#WIRE-WRAPPED ON THE BOARDS. THIS SOFTWARE TRANSMITS THE DATA 00 THROUGH FF
#REPEATEDLY TO THE REMOTE UART AND EXPECTS TO REPEATEDLY RECEIVE THE DATA FF
#THROUGH 00 FROM THE REMOTE UART. IT SHOULD BE RUN IN CONJUNCTION WITH THE
#PROGRAM D2APPSC.ASM RUNNING ON THE OTHER DB32000 BOARD. THE TX PIN OF

#THIS 16550A SHOULD CONNECT TO THE RX PIN OF THE 16550A ON THE OTHER BOARD AND
#VICE VERSA., ALSO, THE CTS PIN OF THIS 16550A SHOULD BE CONNECTED TO THE RTS PIN
#0F THE 16550A ON THE OTHER BOARD AND VICE VERSA. THIS WILL ENABLE THE

APPROPRIATE HANDSHAKES TO OCCUR.

#

#TO RUN THIS PROGRAM YOU MUST:

1. CONNECT THE RX & TX OF THE 2 16550As ON THE 2 DB32000 BOARDS

2. CONNECT THE CTS & RTS OF THE 2 16550As ON THE 2 DB32000 BOARDS

3. DOWNLOAD DLAPPS.EXE TO THIS BOARD VIA THE GNX DEBUGGER [REV 1.02]
4. DOWNLOAD D2APPS.EXE TO OTHER BOARD VIA THE GNX DEBUGGER [REV 1.02]
5. START D1APPS.EXE RUNNING ON THIS DB32000 BOARD

6. START D2APPS.EXE RUNNING ON THE OTHER DB32C00 BOARD

PROGRAM DETAILS:

ISR contains the TX SERVICE ROUTINE

TX OVERWRITES are PREVENTED by the ICU
TX FIFO 18 CLEARED before a transmission
DATA SENT 00 -~---- FF

DATA RECEIVED and COMPARED FF -=---- 00

HHoFE 3R 3 3E 3 3E 3 e S 3 3 3 Ak 3 3R 3 3R 3E 3 3 S

BAUDRATE 128k WITH A 8.0 MHZ XTAL INPUT TO THE 16550A

#
#1********************** ESTABLISH 16550A REGISTER ADDRESSES LR SRR SRS EREERE RS

#
.globl isrc #
.8et rxd, 0x0d00000 #Equate registers to their addresses
.set txd, 0x0d00000 #
.set ier, 0x0d00004 #
.set iir, 0x0d00008 #
.set fcr, 0x0d00008 #
.set lcr, 0x0d0000¢c #
.set mcr, 0x0d00010 #
.set lsr, 0x0d00014 #
.set msreg, 0x0d00018 #
.set scr, 0x0d0001c #
#

grrxxxxxxxkxk*kxkxx*x ESTABLISH ADDRESSES FOR THE 32202 (ICU)

.set a0,4 $Establish address alignment
tpetween CPU and ICU

.8et 1cu hvet,0 #ICU register addresses

.set icu_svct,l *a0 #

.set 1cu_elgt,2 *al #

.set icu_tpl,4 *al #

.set icu_ipnd,6 *al #

.set icu_isrv,8 *a0 #

#

TokKokH K KKK KK KKK KKKk

TL/C/9313-13

15

.s5et icu_imsk,10 *al
.set icu_csrc,12 *a0
.set 1cu fprt,l4 *al
.set icu mctl,l16 *a0
.set icu_ciptr,18 *a0
.set 1cu_pdat,l19 *al
.3et icu 1ps,20 *a0
.set 1cu pdir,21 *a0
.set icu cctl,22 *a0
-set icu_cictl,23 *a0
-3et 1lcu_addr,0xtffe00
#t************%k**k***‘k*tt STATIC BASE
.8et 1rl mod, 17*4
.set irl off, L7*%4+2
.set start2, 0x0
.set startl, OxOa
.set txflag, O0x1l4
.set sbuf, Oxle
.set rbuf, Ox4ie
.set cbuf, Ox6le
.set 1ntable, Ox8le

#**k*******t***k‘k*k**** SET UP DISPATCH
start:: bicpsrw $(0x100)
movd $0x0c,r0O

movd $0x055555555,rl
addr 1intable(sb),r2
movd $0x0c,r3

sve
sprd
movd

intbase,r2
isrent,irl_mod(r2)

FrAxAAKRKXRXKRXXXAXAAXxxx [[OAD TRANSMITTER

#
#
#
#
#
#
#
#
#
#
#
#F1rst ICU register address
#
#
#
STARTING LOCAT]_ONS R SRS E SRR SRR RS RS EEE]
#
#
#

#The following are static base variables
#used as base pointers. Startl/2 = flags
#txflaf = flag, sbuf = area used to
#store data to be transmitted, rbuf =
farea used to store received data,

#cbuf = area used to store compare
#pbuffer, intable = base pointer to the
$interrupt table

#

TABLE FOR THE 32032 Xt kkkxAkkXAXhXkXxhk kX * X

#Clear intr's

#Set for monitor svc to move intbase
#from ROM to ram because you have
#to change the address for the
#interrupt service routine.

#Actual svc for move

#Put base addr of intbase in r2

#Put offset of isr into lst location
#of dispatch table

#

BUFE‘ER (00 to E‘F) AXKKXRKKAAKRKAKRKKRXKXRRNKN KK
#

#RO contains string buffer ptr.

#R1 contains offset

#Init data reg.

#Load char. to string buffer

#Increment offset pctr.
#Increment data

#Check for 256 chars.
#Jump back 1f not done
#

loaded

FrEXXFAXXAKAKA KA X kN kkkkkxxx [OAD COMPARISON BUFFER (FF TO OQO)*X**x*xxkkxkkhkkkkkkxkkxx

senddat: addr sbuf(sb),r0

movd $0,rl

movb $0,r2
sbufloop: movb r2,0(r0)[rl:b]

addgw 1,rl

addgw 1l,r2

cmpw rl,$256

bne sbufloop
compdat: addr cbuf(sb),r0

movd $O,rl

movb $Ox0ff,r2
cbufloop: movb r2,0{(r0)[rl:b]

addgw 1,ri

subb S$l,r2

cmpw rl,$256

#

#RO contains pointer

#R1 containas offset

#Init data reg.

#Load char. to compare buffer
#Increment ptr. offset
#Decrement data

#Check for 256 chars. loaded

TL/C/9313-14

16

FEKAXKRRAKRKRKAKRAR

bne cbuflocop

movd
movd
movd
movd

$16,blkléent
$0,sbufecnt

$0x0ff,start2(sb)
$0x0ff,startl(sb)

$Jump back if not done

BrARKFXKRKAXKRKAKRKARKXKRKKN K XN A *% 1] G550A INITIALIZATION * XXXk kkk kA A AR A XN KX AR AXK K KA XXX

#
SET UP INTERRUPT SERVICE ROUTINE PARAMETERS ***Xx*xx&xaxxkkkdkxxxxax
#Initiralize compare
#Initialize receiver data intr
#Initialize 16 byte block counter
#Initialize string bufffer transmitted
#count
#
#
movb $0x080,1l1lcr #Set dlab = 1 for divisor latch access
movb $4,txd
movb $0,ier
movb $0x003,1lcr
movb $0,1er
movb $0x0c7,fcr

#Low divisor latch 128k w/8.0 MHz xtal
#Upper divisor latch

#Dlab = 0, 8 bits, no parity,
#Disable UART interrupts

1l stop

FRAKXXKXXXXXR KKK KKRAKKXKARAR** INITIALIZE 32202 (ICU) * AKXk AXXXKK KKK XXX KK KN KA AR KK

movd
movb

movgb
movgb
movgb
movagb
movb

movgb
movgb
movgb
movgb
movgb
movgb
movgb
movgb
movgb
movgb
setct
movd

movb

movb

movb

movb

bisps

movd

$icu_addr,r0

$0xca,icu_mctl(r0)

O,1cu_cctl(r0)
-1l,icu_1ps(r0)
O,icu_csrc(r0)
0,icu_csrc+a0(r0)
$0x10,1cu_svce(c0)
-l,1cu_elgt(r0)
-l,1cu_elgt+a0(r0)
$2sicu_tpl(z0)
O,icu_tpl+a0(r0)
O,icu fpre(r0)
0,icu fprt+al
O,icu_1srv(r0)
O,icu_isrv+aO(r0)
-l,icu_imsk(r0)
-l,icu_imsk+a0(r0)
g [1]

$icu_addr,c0
$0x02,icu_mctl(c0)
$0x010,icu_cctl(r0)
$0xfd,icu_imsk(r0)

$Oxft,icu_imsk+ald(r0)

rw $(0x800)

$0,rl

$#Fifo=> trigger = 14, reset & enable
#

#

#RO = icu address

#Set mode : 8 bit bus mode,

freeze counters,

disable interrupts,

fixed priority.

#Halt the counters

#Set all pins to interrupt source

#No cascaded interrupts (low reg)

(high reg)

#Set 1nterrupt base vector

#Set level triggering mode (low reg)
#(high regqg)

#Set level triggering mode (low reg)
$(high reg)

#Set highest priority to O (low reg)
#(high reg)

#Clear intr in-service regs (low reg)
$(high reg)

#Mask all intr {(low reg)

#(high reg)H

#Enable vectored intrp
#

#Fixed mode, 8 bit bus mode

#Set to internal sampling

#Enable irl

#Mask all other interrupts

#Enable cpu intr's

#

#Initialize transmitter buffer offset
#

(1=1)

FEXXXKRXKRAXKKKRRXAKKAN XA,k *x** ENABLE 16550A INTERRUPTS ****Xxxakkxkhkrkrxrxkahrxnhsss

endinit:

movb $2,mcr
movb $0x05,ier

#

#Clear outl, out2 and enable rts
#Enable all but modem status interrupts
#and the THRE so the boards can be
#started.

#
AKX KKRKKKIXKKXKAXKXAX*x* ENDLESS LOOP WAITING FOR INTERRUPTS ***akkkkxxXxhkxkxhhkkxx

#

TL/C/9313-15

17

holdloop: nop #

br holdloop #
#*****k**************t*tt*t**** INTERRUP":‘ HANDLER RS S EE SRR EREEEEE SRR SR SRR RS EER]
#
isr: save [(rO,rl,r2,r3,r4,r5,r6,c7]
movb 1ir,r0 #RO~- contains iir
cmpb r0,$0x0cé #
beq lsant #Line status interrupt
cmpb £0,$0x0c4 #
beq rdai #Receiver interrupt
cmpb r£0,$0x0cc #
beg rtmout #Rec timeout interrupt
cmpb £0,$0x0c2 #
beqg threi #THRE interrupt
cmpb r0,$0x0c0 #
beq msint #Modem status i1nterrupt
#

FHRFXAAKKAKKXRKR XXX K XXX K XX x %% [INVALID INTERRUPT ROUTINE *AXX XA x kXXX Ak KXk X XXX K AXAKK

#
save [rO,rl,c2,r3] #
movd $4,r0 #
addr message2,rl #
movd $21,r2 #
movd $0,r3 #
svc #
restore [rO,rl,r2,r3] #
#
#
jump stop #Restore all registers
#
#
#**k****t***********k* RECEIVER TIMEOUT INTERRUPT ROUTINE LA SRS S SRS RS SRR EEESEEE]
#
rtmout: jump rdai
#’**'k*k'k*****k***'k****t***** RECEIVER IN:‘ERRUPT ROUTINE LR RS E RS S S R E SRR R SRR X
#

#This portion of the program is reached by a positive test for the received data
#available interrupt. Once in this routine each byte is removed from the FIFO,
#placed in a designated static base memory location and the LSR is tested to see
#1f tne data ready (DR) bit 1s still set. Data is removed from the FIFO and
#placed in memory until the DR bit is no longer set. The data sent will be
#compared to known data, located in another designated static base location, by
#calling the compare subroutine.

#
rdai: movb $O,mcr #Disable RTS; stop transmisaion
addr rbuf(sb),r4d #r4 contains rbuf base address
movd rbufoff,ré #Put rbuf offset runner into ré6
rdrbr: movb rxd,0(r4)[r6:b] #Store a byte in the receiver buffer
cmpb $0x00,0(r4){r6:b] #Is it the last character
addgw 1,r6 #Increment offset ptr.
addgw 1l,rpufoff #Track r6
bne continue #
movw $0O,r6 #Reset pointer offset
movw $0,rbufoff #Reset rbufoff
continue: movb lsr,r3 #Read lsr
andb $01,r3 #Mask all but bit O
cmpb $01,r3 #

TL/C/9313-16

18

beqg rdrbr #Read rbr again if set

movd r6,rbufoff #Put result of r6 back into rpbufoff
bsr compare #
movb $7,1ier #Turn on transmitter interrupts
movb $2,mcr #Enable rts
jump popall #
#x’r****k***************t****t** TRANSMIT#ROUTINE LEE SRR SR EREEEEE SRR R RE R EESEESS]
#

#Before the transmitter sends data, the data has been loaded into static base
#memory for transmission. The transmitter routine is called to send data. (ie
#THREI is set) Data is sent as 16 blocks of 16 bytes and 1 block of 15 bytes
#continuously. NOTE: Before transmission occurs /CTS is checked to ensure that
#the receiver is ready.

#
threi: addr sbuf(sb),rQ #RO contains base pointer
movw xmitoff,rl $setup xmit ptr offset
cmpd $0,blkléent #Check to see if it is the 16th block *
beq sendl5 #Yes, send only 15 bytes instead of 16 *
movd $0x10,r7 #No, send 16 bytes *
jump sendnext $Jump around 15 byte load *
sendl5: movd $O0x0f,r7 #Load counter for 15 byte load *
sendnextc: movb 0(r0)[rl:b],txd #Load a byte into the transmitter
addgw 1,rl #
cmpw rl,$256 #Are we one address past end of table
beq reload #Yes, reload ptr
finish: save [r7]
movb msreg,r7 $Read modem atatus reg
andb $0x10,r7 #Mask all bits except CTS (MSR4)
cmpb $0,r7 #Check for disabled CTS
restore [r7]
beq abort #Wait for active CTS (MSR4=1)
subb $1,r7 #No, decrement counter and continue
cmpb $0,c7 #1s byte counter 07
bne sendnext #No, send next byte
abort: movw rl,xmitoff #save xmit ptr offset 1in ram
cmpd $0,blklécnt #Check to see 1f it is 16th block *
beq setsndlé $Yes, reload block counter *
subb $1,blklécnt $Decrement block counter *
jump popall #Finished sending 16 bytes
setsndl6: movd $16,blkléent #Reload block counter *
jump popali #Finished sending 15 bytes *
reload: movd $O,rl #Reset offaet
jump finish #Go back and finish
#*t**t*?*****xkx**i‘ttt*** LINE STATUS IN'I#‘ERRUPT ROUTINE SR SRR R SRS SRR R R EEEESE]
#
lsint: save [r0O,rl,rc2,r3] #
movd $4,r0 #
addr message6,rl #
movd $25,r2 #
movd $0,r3 #
svc #
restore [rO,rl,r2,r3] #
movb lsr,r3 #Read lsr
#
#
jump rdai #
#

BERKAXXKXXKXKIKKAXAKXAKRXAX* MODEM STATUS INTERRUPT ROUTINE ** A XXX KKK KAXKK KA XX XXk K K

TL/C/9313-17

19

msint: save [rO,rl,r2,r3]

movd $4,r0

addr message7,rl

movd $26,r2

movd $0,r3

ave

movb 0x0d00018,r0

restore (rO,rl,r2,r3]

jump popall
#xk*ﬁt*?***tk!*k‘k**ktkt*t***xr COMPARE DATA ROUTINE tE R E RS SRS SR RS RS ERRREREE RSN

C#

#This subroutine 1s called by the receiver interrupt routine which has set the
#receiver offset (rbufoff) to point at the last byte received. This subroutine
#uses the compare offset (compoff) pointer as the pointer for both receive
#buffer data and compare buffer data. Each location is compared to ensure data
#sent is 1dentical to data received. This i1is done until compoff equals rpufoff
#stopping the process and returning from the interrupt. NOTE: Data being
#received is known data and an exact copy is loaded into memory prior to any
#transmission.

B e L T

#
compare: addr cbuf(sb),rl #R1- base address of cbuf base
cmpd $0,r6 #Check for potential invalid subtraction
beg zeror6 #Jump around subtraction
subd $1,r6 #
jump compbyte $#Jump around subtraction fix
zeror6: movd $Oxff,r6 #
compbyte: movd compoff,r5 #
cmpb 0(rl)[r5:b],0(r4)(c5:b] #Compare data sent to data received
bne wrong #Branch and set outl if wrong

#
cmpb $0x00,0(r4)[r5:b] #Check for end of buffer

bne notend #Branch and 1ncrement pointers
jump reloadl #Test for having compared all bytes
#
notend: addd $1,compoff #Increment pointer
notendl: cmpd 5,6 #
beq bye #
jump compbyte #
#
reloadl: addd $1,sbufcnt #Increment transmiter cnt
movd $0O,compoff #Reload offset of pointer
jump notendl #
#
wrong: nop #
movb $0x0c,mcr #Set out 2, for error strobe

FrRIKKAKKAKK R AR KKK * XA XKk x** DATA MISMATCH MESSAGE * XA XK XAk kA XA K KA KA KKK AR RAXR K Ik kK

#
save [rO,rl,r2,r3] $Save register for supervisor call
movd $4,r0 #Value required by svc call
addr message8,rl #Mover address of message into rl
movd $17,r2 #Number of characters into r2
movd $0,r3 #Value required by svc call
svc #Actual call
restore [(r0,rl,r2,r3] #Restore registers
#
stop: nop #
jump stop #Test point
#

TL/C/9313-18

20

bye: ret O #

FEXIXX KKK I IIAXKKR AKX XXX XXAKNAAk** RETURN FROM INTERRUPT * XA Xk Ak akkk kX k kXXX XX AXARKAKRRX KX

popall: restore [rO,rl,r2,r3,r4,r5,c6,r7]
reti
#
#******t***************t**k*i**t**** Messages R R ES RS RS SRS SRR EEE R R R EREES]
#

messagel: .byte 13,10, "Compare Complete",13,10
message2: .byte 13,10,"Invalid Interrupt",13,10
message3: .byte 13,10, "Receiver Timeout",13,10
message4: .byte 13,10,"Receive data available Interrupt",13,10
message5: .byte 13,10,"THRE Interrupt",13,10
message6: ,byte 13,10,"Line Status Interrupt",13,10
message7: .byte 13,10,"Modem Status Interrupt",13,10
message8: .byte 13,10,"Data Mismatch”",13,10
xmitoff: .double O
compoff: .double O
blklécnt: .double O
sbufcnt: .double O
rtbufoff: .double O
isrent: .word 0x9020 #Mod table
.word 1sr-start #0ffset of service routine for
#Dispatch table.

TL/C/9313-19

21

#3/30/87.....D2APPS.ASM..e......ADAPTED ORIGINALLY FROM D1RON56K.ASM

#

#THIS PROGRAM RUNS USING 2 DB32000 BOARDS WITH 16550As ENABLED AT ADDRESS
#0d00000 WIRE-WRAPPED ON THE BOARDS. THIS SOFTWARE TRANSMITS THE DATA FF
#THROUGH 00 REPEATEDLY TO THE REMOTE UART AND EXPECTS TO REPEATEDLY RECEIVE
#THE DATA 00 THROUGH FF FROM THE REMOTE UART. IT SHOULD BE RUN IN CONJUNCTION
#WITH THE PROGRAM D1APPS.ASM RUNNING ON THE OTHER DB32000 BOARD. THE TX PIN OF
#THIS 16550A SHOULD CONNECT TO THE RX PIN OF THE 16550A ON THE OTHER BOARD AND
#VICE VERSA. ALSO, THE CTS PIN OF THIS 16550A SHOULD BE CONNECTED TO THE RTS PIN
#0OF THE 16550A ON THE OTHER BOARD AND VICE VERSA. THIS WILL ENABLE THE

APPROPRIATE HANDSHAKES TO OCCUR.

#

#TO RUN THIS PROGRAM YOU MUST:

#
1. CONNECT THE RX & TX OF THE 2 16550As ON THE 2 DB32000 BOARDS
2. CONNECT THE CTS & RTS OF THE 2 16550As ON THE 2 DB32000 BOARDS
3. DOWNLOAD D2APPS.EXE TO THIS BOARD VIA THE GNX DEBUGGER [REV 1.02]
4. DOWNLOAD D1APPS.EXE TO OTHER BOARD VIA THE GNX DEBUGGER [REV 1.02]
5. START D1APPS.EXE RUNNING ON THE OTHER DB32000 BOARD
6. START D2APPS.EXE RUNNING ON THIS DB32000 BOARD
#
#PROGRAM DETAILS:
#
#
ISR contains the TX SERVICE ROUTINE
#
TX FIFO 18 CLEARED before a tranamission
#
4 DATA SENT FF —==-== 00
#
DATA RECEIVED and COMPARED 00 ---=== FF
#
4 BAUDRATE 128k WITH A 8.0 MHZ XTAL INPUT TO THE 16550A
#
#tt********k****tkt*k*t* ESTABLISH 16550A REGISTER ADDRBSSES PR SR E SRR SRR EREEESEE]
#
.globl isr #
.set rxd, 0x0400000 #Equate registers to their addresses
.set txd, 0x0400000 #
.set ier, 0x0400004 #
.set 1iir, 0x0d00008 #
.set fcr, 0x0400008 #
.set lcr, 0x0d40000c #
.set mcr, 0x0400010 #
.set lsr, 0x0d00014 #
.set msreg, 0x0d00018 #
.set scr, 0x0d40001c #
#

FrRAXAK X XA x AKX XX Rk**x* ESTABLISH ADDRESSES FOR THE 32202 (ICU)

.3et

a0,4

#

#Establish address alignment

$pbetween CPU and ICU

KEAKKKAKRKKRAKRKK KKK KX

#ICU register addresses

.set icu_hvet,0

.Set
.8et
. 8et
.8et
.set
.8et
.8et

icu svet,l
icu_elge,2
icu_tpl,4
icu_ipnd,6
icu_1isrv,8

*a0
*a0
*a0
*a0
*a0

icu_imsk,10 *a0
icu_csrc,12 *al

3= 3k IF IE IE 36 3

TL/C/9313-20

22

5t
.sSet
.set
.3et
.8et
.Set
.3et
.8et

First ICU register address

#= o3k S 3 3 3 3k Sk Sk e

FERKXXKKXXXK KKK ARXXAXXANX, STATIC BASE STARTING LOCATIONS A XA x Xk kx kXXX X X XXX K XK K

.set
.sSet
.8et
«8et

icu_fpre,14 *al
icu_mctl,16 *al
icu_ciptr,18 *a0
icu_pdat,19 *a0
icu_ips,20 *a0
icu_pdir,21 *a0
icu_cctl,22 *a0
icu_cictl,23 *a0
.set 1cu_addr,0xfffe00
irl _mod, 17*4
sbuf, Oxle
rouf, Ox4dle
cbuf, Ox6le
intable, Ox8le

.8et

FXAXXXKKKAKKXXKKXAXKkX%**x SET UP DISPATCH

start::

frexxxrxxxkxxxxxxkkxxkx [OAD TRANSMITTER

senddat:

sbufloop:

rREXXAXA XA AR KR KRk AKX *wk*% [OAD COMPARISON BUFFER (00 TO FF)

compdat:

cobufloop:

bicps
movd
movd
addr
movd
svc
sprd
movd

rw $(0x100)
$0x0c, 0
$0x055555555,r1
intable(sb),r2
$0x0c,r3

intbase,r2
isrent,irl mod(r2)

addr sbuf(sb),r0
movd $0,rl

movb $0x0tf,r2

movb r£2,0(r0)[rl:p]
addgw 1l,rl

subb $1,r2

crmpw rl,$256

bne sbufloop

addr cbuf(sb),r0
movd $0,rl

movb $0O,r2

movb r2,0(r0)(rl:b]
addgw 1l,rl

addgw 1,r2

cmpw ri,$256

bne cbufloop

#

$Dispatch table offset for IRl entry
#sbuf = area used to

$store data to be transmitted, rbuf =
farea used to store received data,

#cbuf = area used to store compare
#buffer, intable = base pointer to the
#interrupt table

#

TABLE E‘OR THE 32032 R R R E R R R ERERESSERS]
#

#Clear intr's

#Set for monitor svc to move intbase
#from ROM to ram because you have
#to change the address for the
#interrupt service routine.

#Actual svc for move

$Put base addr of intbase in r2

#Put offset of isr into lst location
#of dispatch table

EUE‘FER (FE‘ to 00) PR 2SS SRS S SRR REEREERE RS SES]
#

$RO contains string buffer ptr.
#R1 contains offset

#Init data reg.

$Load char. to string buffer
$#Increment offset ptr.
#Increment data

#Check for 256 chars.
$Jump back 1f not done
#

loaded

de e ok Rk de ke ok ke k ok ok ok ke ke k ok ko
#

#RO contains pointer

#R1 contains offset

#Init data reg.

#Load char. to compare buffer

#Increment ptr. offsec
#Decrement data

#Check for 256 chars.
#Jump back if not done
#

loaded

grExxxxxxxkkxkx*x SET UP INTERRUPT SERVICE ROUTINE PARAMETERS ***xx*xkkkxxkxxkakxs

movd

$16,blklécnt

#Initialize 16 byte block counter

TL/C/9313-21

23

#

#***'k**t*t****x*k*********** 16550A INITIALIZATION * %A XX kA XXX Ik AXKAXK AR K I XK XX A K%

#
movb $0x080,1lcr #Set dlab = 1 for divisor latch access
movb $4,txd #Low divisor latch 56k w/8.0 xtal
movb $0,1er #Upper divisor latch
movb $0x003,lcr #Dlab = 0, 8 bits, no parity, 1 stop
movb $0,ier #Disable UART interrupts
movb $0x0c7,fcr #Fifo=> trigger = 14, reset & enable

BrErhXAXAXKI XXX NN kR Rk kxkxkxxx TNITIALIZE 32202 (ICU) * XXX XXXXNKXRRKRKXXXRRARA R AKX KX

#

#
movd $icu_addr, r0 #RO = icu address
movb $Oxca,icu mctl(r0) #Set mode : 8 bit bus mode,

- 4 freeze counters,

disable interrupts,

fixed priority.
movgb O,icu cctl(r0) #Halt the counters
movgb —l,icﬁ_ips(ro) #Set all pins to interrupt source
movgb O,1cu_csrc(r0Q) #No cascaded interrupts (low reg)
movgb O,1cu csrc+a0(r0) # (high reg)
movb $0x10,1cu svct(r0) #Set interrupt base vector
movgb -1,1icu elgt(rO) #Set level triggering (low reg)
movgb -1,1cu elgt+a0(r0) #(high reg)
movgb $2,1cu_tpl(r0) #Set high polarity mode (low reg)
movgb O,icu tpl+al(r0) #(h1igh reg)
movgb O,icu _fprt(r0) #Set highest priority to O (low reg)
movgb O,icu fprt+ad #(high reg)
movgb O,icu isrv(r0) §Clear intr in-service regs (low reg)
movgb O,icu_1srv+a0(r0) #(high reg)
movgb -1l,icu_imsk(r0) #Mask all intr (low reg)
movgb -1l,icu i1imsk+al(r0) #(high reg)H
setcfg [1]1 #Enable vectored intrp (I=1)
movd $i1cu_addr,r0 #
movb $0x02,1cu_mctl(r0) #Fixed mode, 8 bit bus mode
movb $0x010,icu_cctl(r0) #Set to internal sampling
movb $0xfd,icu_imsk(r0) #Enable irl
movb $Oxff,i1cu imsk+a0(r0) #Mask all other interrupts
bispsrw $(0x800) #Enable cpu intr's

#******i***t********t******* ENAELE 1655(#)A INTERRUPTS IR 2RSSR EER RS SRR RS SRS SR
movb $2,mcr #Clear outl, out2 and enable rts
endinit: movb $0x07,1er #Enable all but modem status interrupts

4
FXHXFFFXRXFXRXFXXKXHA XXX ENDLESS LOOP WAITING FOR INTERRUPTS ***¥ %%k kkkkkxsksssrx

#
holdloop: nop #
br holdloop #
#%***********t*‘ktr**ﬂt*’tti**** INTERRUPT HANDLER * Xk *x kkx A hkhkXkXKkKKXKXKKRKX R KAk khk*
#
isr: save [rO,rl,r2,r3,r4,r5,r6,r7)
movb 1ir,rc0 #R0O- contains iir
cmpb r0,$0x0c6 #
beqg lsint #Line status interrupt
cmpb r0,$0x0c4
beq rdai #Receiver interrupt
cmpb r0,$0x0cc #

TL/C/9313-22

24

beq rtmout #Rec timeout interrupt

cmpb r0,$0x0c2 #

beq threi #THRE interrupt

cmpb r0,$0x0c0 #

beq msint #Modem status interrupt
#
#

BEXXKRI XA AR I AA XK A IA Nk X Xkxkxx%x* TNVALID INTERRUPT ROUTINE ***x*kxkhkhrkkrkk kX XXX XA KA KK

#
save [(rO,rl,r2,r3] #
movd $4,r0 #
addr message2,rl #
movd $21,r2 #
movd $0,r3 #
svc #
restore [rO,rl,r2,r3] #
#
#
jump stop #Restore all reglsters
#
#
FREXKKXX AKX AKX AKX XX **x* % RECEIVER TIMEOUT INTERRUPT ROUTINE XX Ak XX AXKXAXKKXAX KKK KX
#
rcmout: jump rdai
#***********************t*** RECEIVER IN;ERRUPT ROUTINE RS2SRRSR RS R R R SRS E]
#

#This portion of the program is reached when the received data available
#interrupt is active. Once in this routine each byte removed from the FIFO

#1838 placed in the designated static base memory location (labelled rbuf).

$The data ready bit (DR) in the LSR is checked before each byte is removed
#from the FIFO. Data sent will be compared to known data in another designaced
#static base area (labelled cbuf) by calling the compare subroutine.

rdai: movb $0,mcr #Di1saple RTS; stop transmission
addr rbuf(sb),r4 #r4 contains rbuf base address
movd rbufoff,r6 #Put rbuf offset runner into r6
rdrbr: movb rxd,0(r4)[r6:b] #Store a byte in the receive buffer
cmpb $0xff,0(r4)[r6:b] #Is it the last character
addgw 1,r6 #Increment offset ptr.
addgw l,cbufoff $Track r6
bne continue #
movw $0,r6 #Reset pointer offset
movw $O,rbufoff $Reset rbufoff
continue: movb lsr,r3 #Read lsr
andp $01,r3 #Mask all but bit O
cmpb $01,r3 #
beg rdrbr #Read rbr again if set
movd r6,cbufoff #Put result of r6 back into rbufoff
bsr compare #
movb $2,mecr #Enable rts
jump popall #
#t****k***‘k**’(***t************* TRANSMIT#ROUTINB LR R R SRS EERS SRR RS ER R RS EEREREE]
#

#The transmitter sends data previously loaded into the statlc base memory area
#labelled sbuf. Thids routine sends data as 16 blocks of 16 bytes and 1 block
#0f 15 bytes, continuously. NOTE: Before each block transmission occurs /CTS
#1s checked to ensure that the receiver ready.

¥

TL/C/9313-23

25

threi: addr sbuf(sb),r0 #RO contains base pointer
movw xmitoff,rl #setup xmit ptr offset
cmpd $0,blklécnt #Check to see 1f 1t is the 16th block
beq sendl5 #Yes, send only 15 bytes instead of 16
movd $0x10,r7 #No, senda 16 bytes
jump sendnext #Jump arcund 15 byte load
sendl5: movd $0xO0f,c7 #Load counter for 15 byte load
sendnext: movb O(r0){rl:b]l,txd $Load a byte into the transmitter
addagw 1l,rl #
cmpw £l,$256 #Are we one address past end of table
beg reload #Yes, reload ptr
finish: save [r7]
movb msreg,r7 #Read modem status reg
andb $0x10,r7 #Mask all bits except CTS (MSR4)
cmpb $0,r7 #Check for disabled CTS
restore [r7]
beg abort #Leave on inactive CTS (MSR4=0)
subb $1,r7 #No, decrement counter and continue
cmpb $0,r7 #Is byte counter 07
bne sendnext #No, send next byte
abort: movw rl,xmitoff #save xmit ptr offset in ram
cmpd $0,blkléent #Check to see if it is 16th block
beqg setsndlé #Yes, reload block counter
subb $1l,blklécnt $Decrement block counter
jump popall #Finished senaing 16 bytes
setsndl6: movd $16,blklécnt #Reload block counter
jump popall #Finished sending 15 bytes
reload: movd $0,rl #Reset offset

#Go back and finish

#
BrAXXXKRRXAKRKAXK XA XA AKX AX*%* [[INE STATUS INTERRUPT ROUTINE ** XX kXA XA XXX XRAXKAKKR KKK X

jump finish

lsint: save (rO,rl,r2,rc3]
movd $4,r0
addr messageb,rl
movd $25,r2
movd $0,r3
svc
restore [rO,rl,r2,r3]
movb lsr,r3
jump rdai

Read lsr

S 3k e S 3 3R 3R e oE e

FEXXAKXXEXXX KA AX KKK XAk *x* MODEM STATUS INTERRUPT ROUTINE ***x*xkkxxkhhrkkhkxkrxhhxk
#
msint: save [r0O,rl,r2,r3] #
movd $4,r0 #
addr message7,rl #
movd $26,r2 #
movd $0,r3 #
sve #
movb 0x0d400018,r0 #
restore [rO,rl,r2,r3] #
jump popall
#tx***fk*‘kk*****k!**!*****k**i COMPARE DATA ROUTINE A RS S S R RS SRS R SRR X SRS RS R R
#
#The receiver subroutine branches to this subroutine after it has removed all of
#the data from the Rx FIFO. The receive offset (rbufoff) is changed to point to
#the last byte received in rbuf. The compare offset (compoff) points to each
tbyte in the receive buffer and its associated byte 1n the compare register.
#Compoff is incremented after each successful comparison and the comparisons

TL/C/9313-24

26

#end when compoff equals rbufoff. NOTE: Data being received by this test program
#is known data and a copy of it is loaded into cbuf before transmissions begin.

#
compare: addr cbuf(sb),rl #R1~- base address of cbuf base
cmpd $O,r6 #Check for potential invalid subtraction
beq zeror6 #Jump around subtraction
subd $1,r6 #
jump compbyte #Jump around subtraction fix
zeror6: movd $Oxtf,ré6 #
compbyte: movd compoff,r5 #
cmpb 0(rl)[r5:0]1,0(r4)[r5:b] #Ccmpare data sent to data received
bne wrong $Branch and set outl 1f wrong
#
#
cmpb SOxff,0(r4)[r5:b] #Check for end of buffer
bne notend $Branch and 1ancrement pointers
jump reloadl $Test for having compared all bytes
#
#
notend: addd $1,compoff #Increment pointer
notendl: cmpd £5,r6 #
beq bye #
jump compbyte #
#
reloadl: addd S$1,sbufcnt $#Increment transmiter cnt
movd $0,compoff #Reload offset of pointer
jump notendl #
#
wrong: movb $0x0c,mcr #Set out 2, for error strobe

BEXXKEXRKXAKRKXXRAKRKRA XK AA XXX A* DATA MISMATCH MESSAGE * A A KA x kXXX AKX AKX KK ARKKXNN KA RKAAAK K

#
save [(rO,rl,rc2,r3] #Save register for supervisor call
movd $4,r0 #Value required by svc call
addr message8,rl #Mover address of message into rl
movd $17,r2 #Number of characters into r2
movd $0,r3 #Value required by svc call
svc #Actual call
restore [rO,rl,r2,r3] #Restore registers
stop: nop #
jump stop #Test point
#
bye: ret O #
#
#*****k****‘kt*it******t**t*i* RETURN E‘ROM INTERRUPT ************1‘:***************
#
popall: restore [rO,rl,r2,r3,r4,c5,c6,r7]
reti #
#
#**‘k*****‘k************k************* Messages R R R SR S S SRS E R S R R R R RS E R RN
#

messagel: .byte 13,10, "Compare Complete",13,10

message2: .byte 13,10,"Invalid Interrupt”,13,10

message3: .byte 13,10,"Receiver Timeout",13,10

messaged: .byte 13,10,"Receive data available Interrupt",13,10
message5: .byte 13,10,"THRE Interrupt",13,10

message6: .byte 13,10,"Line Status Interrupt",13,10

message7: .byte 13,10,"Modem Status Interrupt”,13,10

message8: .byte 13,10,"Data Mismatch",13,10

TL/C/9313-25

27

ions

tion Considerati

ica

d Appl

ign an

UART Des

The NS16550A

AN-491

xmitoff:
compoft:
plklécnt:
sbufcnt:
rbufoff:

.double O
.double O
.double O
.double O
.double O

0x9020
isr-start

.word
.word

isrent:

LIFE SUPPORT POLICY

#Mod table
#0ffset of service routine for
#Di1spatch table.

TL/C/9313-26

Lit. # 100491

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2.

systems which, (a) are intended for surgical implant
into the body, or (b) support or sustain life, and whose
failure to perform, when properly used in accordance
with instructions for use provided in the labeling, can
be reasonably expected to result in a significant injury
to the user.

A critical component is any component of a life
support device or system whose failure to perform can
be reasonably expected to cause the failure of the life
support device or system, or to affect its safety or
effectiveness.

National Semiconductor

o)

National Semiconductor

National Semiconductor

Corporation Europe

1111 West Bardin Road Fax: (+49) 0-180-530 85 86

Arlington, TX 76017 Email: cnjwge @tevm2.nsc.com

Tel: 1(800) 272-9959 Deutsch Tel: (+49) 0-180-530 85 85

Fax: 1(800) 737-7018 English Tel: (+49) 0-180-532 78 32
Frangais Tel: (+49) 0-180-532 93 58
ltaliano ~ Tel: (+49) 0-180-534 16 80

Hong Kong Ltd.

18th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.
Tsimshatsui, Kowloon

Hong Kong

Tel: (852) 2737-1600

Fax: (852) 2736-9960

National Semiconductor
Japan Ltd.

Tel: 81-043-299-2309
Fax: 81-043-299-2408

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

