
TL/C/9313

T
h
e

N
S
1
6
5
5
0
A

:
U

A
R

T
D

e
s
ig

n
a
n
d

A
p
p
lic

a
tio

n
C

o
n
s
id

e
ra

tio
n
s

A
N

-4
9
1

National Semiconductor
Application Note 491
Martin S. Michael
Daniel G. Durich
July 1987

The NS16550A: UART
Design and Application
Considerations

BACKGROUND

UARTs like other system components have evolved for

many years to become faster, more integrated and less ex-

pensive. The rise in popularity of the personal computer with

its focus and competition primarily centered on an architec-

ture introduced by IBMÉ, has driven both UART perform-

ance and software compatibility issues. As transmission

rates have increased, the amount of time the CPU has for

other tasks while handling an active serial channel has been

sharply reduced. One byte of data received at 1200 baud

(8.3 ms) is received in (/16th the time at 19.2 kbaud (520 ms).

Software compatibility among the PC-based UARTs is crit-

ical due to the thousands of existing programs which use

the serial channel and the new programs continually being

offered.

Higher baud rates and compatibility requirements influence

new UART designs. These two constraints result in UARTs

that are capable of higher data rates, increasingly indepen-

dent of CPU intervention and providing more autonomous

features, while maintaining software compatibility. These

development paths have been brought together in a new

UART from National Semiconductor designated the

NS16550A.

The NS16550A has all of the registers of its two predeces-

sor parts (INS8250 and NS16450), so it can run all existing

IBM PC, XT, AT, RT and compatible serial port software. In

addition, it has a programmable mode which incorporates

new high-performance features. Of course, all of these ad-

vanced features are useful in any asynchronous serial com-

munications application regardless of the host architecture.

The reader is assumed to be familiar with the standard fea-

tures of the NS16450, so this paper will concentrate mainly

on the new features of the NS16550A. If the reader is unfa-

miliar with these UARTs it is advisable to start by reading

their data sheets.

The first section reviews some of the design considerations

and the operation of the NS16550A advanced features. The

second section shows an NS16550A initialization routine

written in 80286 assembly code with an explanation of the

routine. The third section gives a detailed example of com-

munications drivers written to interface two NS16550As on

individual boards. These drivers are written for use with Na-

tional Semiconductor’s DB32032 evaluation boards, but can

be ported to any NS32032-based system containing an

NS32202 (ICU).

1.0 Design Considerations and
Operation of the New
UART Features
In order to optimize CPU/UART data transactions, the

UART design takes into consideration the following con-

straints:

1. The CPU is usually much faster than the UART at trans-

ferring data. A high speed CPU could transfer a byte of

data to/from the UART in a minimum of 280 ns. The

UART would take over 1800 times longer to transmit/re-

ceive this data serially if it were operating at 19.2 kbaud.

2. There is a finite amount of wasted CPU time due to

software overhead when stopping its current task to

service the UART (context switching overhead).

3. The CPU may be required to complete a certain portion

of its current task in a multitasking system before servic-

ing the UART. This delay is the CPU latency time asso-

ciated with servicing the interrupt. The amount of time

that the receiver can accept continuous data after it re-

quests service from the CPU constrains CPU latency

time.

The design constraints listed above are met by adding two

FIFOs and specialized transmitter/receiver support circuitry

to the existing NS16450 design. The FIFOs are 16 bytes

deepÐone holds data for the transmitter, the other for the

receiver (see Figure 1). Similarity between the FIFOs stops

with their size, as each has been customized for special

TL/C/9313–1

FIGURE 1. Rx and Tx FIFOs

transmitter or receiver functions. Each has support circuitry

to minimize software overhead when handling interrupts.

The NS16550A receiver optimizes the CPU/UART data

transaction via the following features:

1. The depth of the Receiver (Rx) FIFO ensures that as

many as 16 characters will be ready to transfer when

the CPU services the Rx interrupt. Therefore, the CPU

transfer rate is effectively buffered from the serial data

rate.

2. The program can select the number of bytes required in

the Rx FIFO (1, 4, 8 or 14) before the UART issues an

interrupt. This allows the software to modify the interrupt

trigger levels depending on its current task or loading. It

also ensures that the CPU doesn’t continually waste

time switching context for only a few characters.
GNXTM is a trademark of National Semiconductor Corporation.

IBMÉ is a registered trademark of International Business Machines Corporation.

VAXTM is a trademark of Digital Equipment Corporation.

80286TM is a trademark of Intel Corporation.

C1995 National Semiconductor Corporation RRD-B30M105/Printed in U. S. A.

3. The Rx FIFO will hold 16 bytes regardless of which trig-

ger level the CPU selects. This makes allowances for a

variety of CPU latency times, as the FIFO continues to

fill after the interrupt is issued.

The NS16550A transmitter optimizes the CPU/UART data

transaction via the following features:

1. The depth of the Transmitter (Tx) FIFO ensures that as

many as 16 characters can be transferred when the

CPU services the Tx interrupt. Once again, this effec-

tively buffers the CPU transfer rate from the serial data

rate.

2. The Transmitter (Tx) FIFO is similar in structure to

FIFOs the user may have previously set up in RAM. The

Tx depth allows the CPU to load 16 characters each

time it switches context to the service routine. This re-

duces the impact of the CPU time lost in context switch-

ing.

3. Since a time lag in servicing an asynchronous transmit-

ter usually has no penalty, CPU latency time is of no

concern to transmitter operation.

TX AND RX FIFO OPERATION

The Tx portion of the UART transmits data through SOUT

as soon as the CPU loads a byte into the Tx FIFO. The

UART will prevent loads to the Tx FIFO if it currently holds

16 characters. Loading to the Tx FIFO will again be enabled

as soon as the next character is transferred to the Tx shift

register. These capabilities account for the largely autono-

mous operation of the Tx.

The UART starts the above operations typically with a Tx

interrupt. The NS16550A issues a Tx interrupt whenever the

Tx FIFO is empty and the Tx interrupt is enabled, except in

the following instance. Assume that the Tx FIFO is empty

and the CPU starts to load it. When the first byte enters the

FIFO, the Tx FIFO empty interrupt will transition from active

to inactive. Depending on the execution speed of the serv-

ice routine software, the UART may be able to transfer this

byte from the FIFO to the shift register before the CPU

loads another byte. If this happens, the Tx FIFO will be emp-

ty again and typically the UART’s interrupt line would tran-

sition to the active state. This could cause a system with an

interrupt control unit to record a Tx FIFO empty condition,

even though the CPU is currently servicing that interrupt.

Therefore, after the first byte has been loaded into the FIFO

the UART will wait one serial character transmission time

before issuing a new Tx FIFO empty interrupt.

This one character Tx interrupt delay will remain active until

at least two bytes have been loaded into the FIFO, concur-

rently. When the Tx FIFO empties after this condition, the

Tx interrupt will be activated without a one character delay.

Rx support functions and operation are quite different from

those described for the transmitter. The Rx FIFO receives

data until the number of bytes in the FIFO equals the select-

ed interrupt trigger level. At that time if Rx interrupts are

enabled, the UART will issue an interrupt to the CPU. The

Rx FIFO will continue to store bytes until it holds 16 of them.

It will not accept any more data when it is full. Any more

data entering the Rx shift register will set the Overrun Error

flag. Normally, the FIFO depth and the programmable trig-

ger levels will give the CPU ample time to empty the Rx

FIFO before an overrun occurs.

One side-effect of having a Rx FIFO is that the selected

interrupt trigger level may be above the data level in the

FIFO. This could occur when data at the end of the block

contains fewer bytes than the trigger level. No interrupt

would be issued to the CPU and the data would remain in

the UART. To prevent the software from having to check for

this situation the NS16550A incorporates a timeout inter-

rupt.

The timeout interrupt is activated when there is at least one

byte in the Rx FIFO, and neither the CPU nor the Rx shift

register has accessed the Rx FIFO within 4 character times

of the last byte. The timeout interrupt is cleared or reset

when the CPU reads the Rx FIFO or another character en-

ters it.

These FIFO related features allow optimization of CPU/

UART transactions and are especially useful given the high-

er baud rate capability (256 kbaud). However, in order to

eliminate most CPU interactions, the UART provides DMA

request signals. Two DMA modes are supported: single-

transfer and multi-transfer. These modes allow the UART to

interface to higher performance DMA units, which can inter-

leave their transfers between CPU cycles or execute multi-

ple byte transfers.

In single-transfer mode the receiver DMA request signal (Rx

RDY) goes active whenever there is at least one character

in the Rx FIFO. It goes inactive when the Rx FIFO is empty.

The transmitter DMA request signal (Tx RDY) goes active

when there are no characters in the Tx FIFO. It goes inac-

tive when there is at least one character in the Tx FIFO.

Therefore, in single-transfer mode active and inactive DMA

signals are issued on a one byte basis.

In multi-transfer mode Rx RDY goes active whenever the

trigger level or the timeout has been reached. It goes inac-

tive when the Rx FIFO is empty. Tx RDY goes active when

there is at least one unfilled position in the Tx FIFO. It goes

inactive when the Tx FIFO is completely full. Therefore in

multi-transfer mode active and inactive DMA signals are is-

sued as the FIFO fills and empties. With 2 DMA channels

(one for each Rx and Tx) assigned to it, the NS16550A

could run somewhat independently of the CPU when the

DMA unit transfers data composed of blocks with check-

sums.

SYSTEM OPERATION: THE NS16550A VS THE NS16450

Consider the typical system interface block diagram in Fig-
ure 2. This is a simple diagram, but it includes all of the

components that typically interact with a UART. The advan-

tages of the NS16550A over the NS16450 can be illustrated

by comparing some of the system constraints when each

UART is substituted into this basic system.

Both RS-232C and RS-422A interfaces can be used with

either UART, however, the NS16550A can drive these inter-

faces up to 256 kbaud. Regarding the RS-422A specifica-

2

TL/C/9313–2

FIGURE 2. Typical System Interface

tion (max. 10 Mbaud) this is significantly faster than the

NS16450 (max. 56 kbaud).

The NS16450 has no DMA request signals, so the DMA unit

would not interact with the NS16450. The NS16550A, how-

ever, has DMA request signals and two modes of data

transfer, as previously described, to interface with a variety

of DMA units.

The greatest advantages of the NS16550A over the

NS16450 are seen when considering the CPU/UART inter-

face. Some characteristics of the transactions occurring be-

tween the CPU and the UART were previously cited. How-

ever, optimizing these transactions involves two issues:

1. Decreasing the amount of time the CPU interacts with

the UART.

2. Increasing the amount of data transferred between the

CPU and UART during their interaction time.

These optimization criteria are directly opposed to each oth-

er, but various features on the NS16550A have improved

both.

One of the more obvious ways to decrease the CPU/UART

interaction time is to decrease the time it takes for the trans-

action to occur. The NS16550A has an access cycle time

that is almost 25% shorter than the NS16450. In addition,

other timing parameters were made faster to simplify high

speed CPU interactions.

The actual software required to transfer the data between

the CPU and the UART is a small percentage of that re-

quired to support this transfer. However, each time a trans-

fer occurs in the NS16450, this support software (overhead)

must also be executed. With the NS16550A each time the

UART needs service the CPU can theoretically transfer 16

bytes while only running through its overhead once. Tests

have shown that this will increase the performance by a

factor of 5 at the system level over the NS16450.

Another time savings for the CPU is a new feature of the

UART interrupt structure. Unlike most other UARTs with Rx

FIFOs, the NS16550A will issue an interrupt when there are

characters below the interrupt trigger level after a preset

time delay. This saves the extra time spent by the CPU to

check for bytes that are at the end of a block, but won’t

reach the interrupt level.

Since the NS16550A register set is identical to the

NS16450 on power-up, all existing NS16450 software will

run on it. The FIFOs are only enabled under program con-

trol.

All of this added performance is not without some trade-

offs. Two of the NS16450 pins, no connect (NC) and chip

select out (CSOUT) have been replaced by the RxRDY and

TxRDY pins. Most serial cards that currently use the

NS16450 don’t use these pins, so in those situations the

NS16550A could be used as a plug-in upgrade. The soft-

ware drivers for the NS16550A operating in FIFO mode

need to be a little more sophisticated than for the NS16450.

This will not cause a great penalty in CPU operating time as

there is only one additional UART register to program and

one to check during the initialization. One additional service

routine is required to handle Rx timeout interrupts. This rou-

tine does not execute, except during intermittent transmis-

sions or as described above.

All of these speed improvements and allowances for soft-

ware constraints will make the NS16550A an optimal UART

for both multi-tasking systems and multiport systems. Multi-

tasking systems benefit from the increased time and flexibil-

ity offered to the CPU during context switching. Multiport

systems, such as terminal concentrators, benefit from the

on-board FIFOs and relatively autonomous functions of the

UART.

SYSTEM INTERRUPT GENERATION

As a prelude to the topic of the next section (80286TM-

based system initialization) a review of a typical PC hard-

ware interrupt path is given. This concerns only the interrupt

path between the UART and the CPU (see Figure 3).

3

TL/C/9313–3

FIGURE 3. Typical PC Interrupt System Hardware

In order to enable interrupts from the UART to the CPU

each hardware device must be correctly initialized. While

initializing the hardware path, CPU interrupts are turned off

to avoid false interrupts from this path. This initialization

should be as short as possible to avoid other devices

‘‘stacking up’’ interrupts during this time.

After the NS16550A is initialized the bits 0–3 in the Interrupt

Enable Register (IER) are set enabling all UART interrupts.

Also, bit 3 in the Modem Control Register (MCR) is set to

enable the buffer between the UART and the ICU.

The ICU has bit 4 of its Interrupt Mask Register (IMR)

cleared, allowing interrupts occuring on IRQ4 to be trans-

ferred to the CPU via the group interrupt (INT). Finally, CPU

interrupts are enabled again via the STI instruction.

The programmer should be aware that the ICU will be initial-

ized for edge-triggered interrupts and that the UART always

produces level active interrupts. This allows the system to

get into a situation where the UART has multiple interrupts

pending (signaled via a constantly high INTR), but the ICU

fails to respond because it expects an edge for each pend-

ing interrupt. To avoid this situation, the programmer should

disable all UART interrupts via the IER when entering each

UART interrupt service routine and then reenable all UART

interrupts that are to be used just before exiting each inter-

rupt service routine.

SUMMARY

Up to this point the features of the NS16550A have been

described, some of the design goals that resulted in these

features have been reviewed, and a comparison has been

given between it and the NS16450. Increases in bus speed

and specialized functions make this part both faster from

the hardware point of view and more efficient from the soft-

ware point of view.

2.0 NS16550A Initialization
This initialization can be used on any 80286-based system;

it enables both FIFOs and all interrupts on the UART. Addi-

tional procedures would have to be written to actually trans-

fer data and service interrupts. These procedures would be

similar in form to the 32000-based example in the next sec-

tion, but the code would be different. The general flow of the

initialization is shown in Figure 4 and described below.

DETAILED SOFTWARE DESCRIPTION

The first block in the initialization establishes abbreviations

for the NS16550A registers and assigns addresses to them.

The next three blocks establish code and data segments for

the 80286. After jumping to the code start, the program dis-

ables CPU interrupts (CLI) until it has finished the initializa-

tion routine. Other interrupts may be active while CPU inter-

rupts are masked, so the section of code following CLI

should be as short as possible. The next block replaces the

existing COM1 interrupt vector with the address of

NS16550A interrupt handler (INTH in this case).

Initialization of the NS16550A is similar to the NS16450,

except that there is one additional register to program which

controls the FIFOs (Refer to the datasheet for a complete

description). The sequence shown here sets bit 7 (DLAB) of

the line control register (LCR), which enables access to the

baud rate generator divisor. The divisor programmed is

0006 (19.2 kbaud) in this example. Programming the LCR

again resets bit 7 (allowing access to the operational regis-

ters) and programs each frame for 7 data bits, one stop bit

and even parity. The additional register that needs to be

programmed in the NS16550A is the FIFO control register

(FCR). The FCR data is 1100 0001. Bits 6 and 7 set the Rx

FIFO interrupt trigger level at 14 characters. Bits 5 and 4 are

reserved. Bit 3 keeps the DMA signal lines in mode 0. Set-

ting bits 2 and 1 clear the Tx and Rx FIFOs, but this is done

automatically when the FIFOs are first enabled by setting bit

0. Bit 0 of the FCR should ALWAYS BE SET whenever

changes are to be made to the other bits of the FCR and the

UART is to remain in FIFO Mode. When the FIFOs on the

NS16550A are enabled bits 6 and 7 in the Interrupt Identifi-

cation Register are set. Thus the program can distinguish

between an NS16450 and an NS16550A, taking advantage

of the FIFOs.

Sending a 0F to the Interrupt Enable Register enables all

UART interrupts. The next two register accesses, reading

the Line Status Register and the Modem Status Register,

are optional. They are conservatively included in this initiali-

zation in order to defeat false interrupt indications in these

registers caused by noise on the external lines.

The next block of code enables the interrupt signal to go

beyond the UART through the system hardware. In many

popular 80286-based personal computers, an interrupt con-

trol unit (ICU) has its mask register at I/O address 21H. To

enable interrupts through this ICU for COM1 without disturb-

ing other interrupts, the Interrupt Mask Register (IMR) is

read. This data is combined with 1110 1111 via an AND

instruction to unmask the COM1 interrupt and then loaded it

back to the IMR. On these personal computers there is also

a buffer on the interrupt line between the UART and ICU.

This buffer is enabled by setting the OUT2 bit of the MO-

DEM Control Register in the UART.

Before enabling CPU interrupts (STI) pointer registers to the

data buffers of each service routine are loaded. After en-

abling CPU interrupts this program jumps to a holding loop

to wait for an interrupt, whereas most programs would con-

tinue initializing other devices or jump to the system loop.

4

TL/C/9313–4

FIGURE 4. NS16550A Initialization and Driver Flowchart

5

TITLE 550APP.ASM – NS16550A INITIALIZATION

;

;ESTABLISH NS16550A REGISTER ADDRESS/DATA EQUATES

;

;************ UART REGISTERS ************************

;

rxd EQU 3F8H ;RECEIVE DATA REG

txd EQU 3F8H ;TRANSMITT DATA REG

ier EQU 3F9H ;INTERRUPT ENABLE REG

dll EQU 3F8H ;DIVISOR LATCH LOW

dlh EQU 3F9H ;DIVISOR LATCH HIGH

iir EQU 3FAH ;INTERRUPT IDENTIFICATION REG

fcr EQU 3FAH ;FIFO CONTROL REG

lcr EQU 3FBH ;LINE CONTROL REG

mcr EQU 3FCH ;MODEM CONTROL REG

lsr EQU 3FDH ;LINE STATUS REG

msr EQU 3FEH ;MODEM STATUS REG

scr EQU 3FFH ;SCRATCH PAD REG

;

;**************** DATA EQUATES *****************

;

bufsize EQU 7CFH ;TX AND RX BUFFER SIZE

dosrout EQU 25H ;DOS ROUTINE SPECIFICATION

intnum EQU 0CH ;INTERRUPT NUMBER (OCH 4 COM1)

icumask EQU 0EFH ;ICU INTERRUPT ENABLE MASK

divacc EQU 80H ;DIVISOR LATCH ACCESS CODE

lowdiv EQU 06H ;LOWER DIVISOR

uppdiv EQU 00H ;UPPER DIVISOR

dataspc EQU 1AH ;DLAB 4 0, 7 BITS, 1 STOP, EVEN

fifospc EQU 0C1H ;FIFOS ENABLED, TRIG 4 14, DMA MODE 4 0

setout2 EQU 08H ;SETTING OUT2 ENABLES INTRs TO THE ICU

intmask EQU 0FH ;UART INTERRUPT ENABLE MASK

;

;*********** ESTABLISH CODE AND DATA SEGMENTS ******************

;

cseg SEGMENT PARA PUBLIC ‘code‘

ORG 100H

ASSUME CS:cseg,DS:cseg

INIT:

PUSH CS

POP DS

JMP START

;

;********* ESTABLISH DATA BUFFERS AND RAM REGISTERS ********

;

msflag DB 0

txflag DB 0

sbuf DB bufsize DUP (‘S‘) ; STRING BUFFER

rbuf DB bufsize DUP (‘R‘) ; RECEIVE BUFFER

sbufe EQU sbuf 0 bufsize ; END OF STRING BUFFER

rbufe EQU rbuf 0 bufsize ; END OF RECEIVE BUFFER

;

START:

CLI ;lll DISABLE CPU INTERRUPTS kkk

6

;

;****** LOAD NEW INTERRUPT SERVICE ROUTINE POINTER FOR COM1 ***

;

PUSH DS ;SAVE EXISTING DATA SEG

MOV AH,dosrout ;DESIGNATE FUNCTION NUMBER

MOV AL,intnum ;DESIGNATE INTERRUPT

PUSH CS ;ALIGN CODE SEG

POP DS ;WITH DATA SEG

MOV DX,OFFSET INTH ;SPECIFY SERVICE ROUTINE OFFSET

INT 21H ;REPLACE EXISTING INTR VECTOR

POP DS ;RESTORE CURRENT DATA SEG

;

;**************** INITIALIZE NS16550A ***********************

;

;This enables both FIFOs for data transfers at 19.2 kbaud using

;7 bit data, 1 stop bit and even parity. The Rx FIFO interrupt

;trigger level is set at 14 bytes.

MOV AL,divacc ;SET-UP ACCESS TO DIVISOR LATCH

MOV DX,lcr

OUT DX,AL

MOV AL,lowdiv ;LOWER DIVISOR LATCH, 19.2 kbaud

MOV DX,dll

OUT DX,AL

MOV AL,uppdiv ;UPPER DIVISOR LATCH

MOV DX,dlh

OUT DX,AL

MOV AL,dataspc ;DLAB 4 0, 7 BITS, 1 STOP, EVEN

MOV DX,lcr

OUT DX,AL

MOV AL,fifospc ;FIFOS ENABLED, TRIGGER 4 14,

MOV DX,fcr ;DMA MODE 4 0

OUT DX,AL

MOV AL,intmask ;ENABLE ALL UART INTERRUPTS

MOV DX,ier

OUT DX,AL

MOV DX,lsr ;READ THE LSR TO CLEAR ANY FALSE

IN AL,DX ;STATUS INTERRUPTS

MOV DX,msr ;READ THE MSR TO CLEAR ANY FALSE

IN AL,DX ;MODEM INTERRUPTS

;

;*************** ENABLE COM1 INTERRUPTS **********************

;

IN AL,21H ;CHECK IMR

AND AL,icumask ;ENABLE ALL EXISTING AND COM1

OUT 21H,AL

MOV AL,setout2 ;SET OUT2 TO ENABLE INTR

MOV DX,mcr

OUT DX,AL

;

;********* ESTABLISH RUN TIME BUFFER POINTERS IN REGISTERS ***

;

MOV SI,OFFSET sbuf

MOV DI,OFFSET rbuf

MOV BX,OFFSET sbuf

MOV BP,OFFSET rbuf

STI ;lll ENABLE CPU INTERRUPTS kkk

7

3.0 Board to Board Communica-
tions with the NS16550A
The following section describes the hardware and software

for a fully asynchronous two board application. The two

boards communicate simultaneously with each other via the

NS16550As. Predetermined data is exchanged between the

NS16550As and checked by the software for accuracy. Any

data mismatches are flagged and stop the programs. Any

data errors (i.e. overrun, parity, framing or break) will also

stop the program. The NS16550A interface schematic, soft-

ware flow chart and software are provided.

HARDWARE REQUIREMENTS

Running this application requires two NS32032-based

boards. Each board must have one CPU, one ICU

(NS32202), 256k of RAM (000000–03FFFF), the capability

of running a monitor program (MON 32) and the capability of

interfacing with a terminal. If MON 32 is not available, the

display monitor service calls (SVC) must be altered to inter-

face properly to the available terminal driver routines. In ad-

dition to these requirements, the NS16550A is enabled

starting at address 0d00000.

The system described above was implemented on two

DB32032 boards and used as an alpha site to test the

NS16550A during its development. An NS16550A and ap-

propriate decode logic were wirewrapped to each board

(see Figure 5). As shown, an 8 MHz crystal is used to drive

the baud rate generator, but for baud rates at or below 56

kbaud a 1.8432 MHz crystal can be substituted with chang-

es to the divisor. Once this hardware is on both boards 5

connections between the NS16550As must be madeÐSIN

to SOUT, SOUT to SIN, CTS to RTS, RTS to CTS, and GND

to GND. Each DB32032 board has a port for attaching a

terminal and a port available for downloading code. The ap-

plications software for these boards is downloaded from a

VAXTM running the GNXTM debugger (V1.02). Once the

downloads are complete to both boards the program

D1APPS.EXE is started, then D2APPS.EXE is started.

If a VAX or the GNX debugger is not available the code can

be loaded into PROMs and run directly.

TL/C/9313–5

FIGURE 5. NS16550A and DB32032 Board Interconnections

8

SOFTWARE OVERVIEW

The programs shown at the end of this application note are

the assembly listings for D1APPS.ASM and D2APPS.ASM.

These can be assembled, linked and loaded to form the

executable (.EXE) files. The flowchart shown before them

illustrates both programs.

Both programs are interrupt driven. D1APPS.EXE has its

transmitter empty interrupt disabled until it receives its first

16 bytes from D2APPS.EXE. This allows the two programs

to be started at different times. Data flow is controlled be-

tween the programs via RTS and CTS handshakes.

D1APPS.EXE is started first and it loops until the first data

from D2APPS.EXE arrives. As D1APPS.EXE exits its receiv-

er interrupt routine, it enables its transmitter interrupt and

begins to send bytes to D2APPS.EXE.

Transmission of a block of 16 bytes occurs when the Tx

FIFO of the NS16550A is empty, the Tx interrupt is enabled

and the receiver activates its clear to send (CTS) signal.

Each transmitter sends the next sequential block of data

from a 256 byte buffer. When the bottom of the buffer is

reached, the transmitter starts at the top of the buffer,

again. The data transmitted from D1APPS.EXE to

D2APPS.EXE is 00 to FF and from D2APPS.EXE to

D1APPS.EXE is FF to 00. Since these are bench test pro-

grams for the NS16550A, the receiver subroutines compare

the data they receive with the data they expect. This is done

on a block-by-block basis and any mismatches result in both

a message sent to the terminal and the program stopping.

DETAILED SOFTWARE DESCRIPTION

Initialization begins by equating NS16550A and ICU

(NS32202) registers to the addresses in memory. The

equates finish with a list of offsets associated with the static

base register. These offsets give the starting locations for

the RAM areas assigned to be data buffers. These include

the UART interrupt entry offset (irlÐmod); the string (sbuf),

receive (rbuf), compare (cbuf) buffers and the interrupt table

offset (intable).

At the code start (START::) the processor is put in the su-

pervisor mode so that the interrupt dispatch table can be

transferred from ROM to RAM. This transfer is essential in

order to change the starting address of the UART interrupt

service routine. To do this the interrupt service routine offset

from the code start is calculated (isr-start). Combining this

with the module table address (set-up by the linker, i.e.,

9020) results in the interrupt table descriptor entry for UART

interrupt service routine (isrent).

The next two sections of code load the data to be transmit-

ted and compared into the RAM buffers sbuf and cbuf, re-

spectively. The two programs differ at this pointÐ

D1APPS.EXE transmits 00 to FF and compares FF to 00

sequentially. D2APPS.EXE transmits FF to 00 and com-

pares 00 to FF sequentially.

The NS16550A initialization starts with setting the divisor

latch access bit, so the divisor can be loaded. It then deter-

mines the serial data format and disables all UART inter-

rupts. The NS16550A initialization finishes by enabling and

resetting the FIFOs and programming the receiver interrupt

level for 14 bytes.

Next the ICU interrupt registers are set-up and interrupts are

enabled. In program D1APPS.ASM the initialization finishes

by enabling the receive data and line status interrupts. Since

the transmitter FIFO empty interrupt is disabled

D1APPS.EXE will stay in its hold loop until it receives data

from D2APPS.EXE. D2APPS.EXE has its transmitter FIFO

empty interrupt enabled at the end of its initialization, so it

will send one block of 16 characters to D1APPS.EXE imme-

diately.

When there are no interrupts pending and no service rou-

tines being executed, the programs run in a holding loop

until the next interrupt.

Whenever the CPU enters the service routine (isr:) it checks

the interrupts identification register (IIR) for the type of inter-

rupt pending and branches to the appropriate subroutine. If

the IIR value doesn’t match a known interrupt condition, an

invalid interrupt message is sent to the terminal and the

program stops. Out of the five possible interrupts, two (line

status and receiver timeout) have simple routines that only

send a message to the terminal and then branch to the

receiver data available routine. Modem status interrupts

send a message to the CRT and then stop the program.

Two robust interrupt service routines existÐone for the re-

ceiver and one for the transmitter.

The receiver interrupt service routine (rdai:) does the follow-

ing:

1. Disables the RTS signal which stops the transmitter on

the other board from sending more data.

2. Transfers all data from the UART Rx FIFO to the RAM

receiver buffer (rbuf).

3. Branches to the compare subroutine when all data is

transferred from the Rx FIFO.

4. Enables Tx interrupts in D1APPS.EXE.

5. Enables the RTS signal which allows the transmitter on

the other board to send another block of data.

The compare interrupt service routine (compare:) does the

following:

1. Aligns the receive buffer pointer to the last character

taken in to the receive buffer (rbuf).

2. Compares each new byte in rbuf with the expected val-

ue (data stored in cbuf).

3. Sends a data mismatch message to the terminal and

stops the program if the rbuf data fails to match the cbuf

data.

4. Returns to rdai: when all of the new data in rbuf has

compared successfully.

The transmitter interrupt service routine (threi:) does the fol-

lowing:

1. Decides whether to send 16 or 15 bytes in a block of

data. Note: This decision is for testing purposes.

2. Sends one byte of data.

3. Checks for an active CTS condition. If it is active then it

sends another byte of data. It continues to check and

send a byte of data until all 15 or 16 bytes are sent.

9

DIAPPS.ASM Flow Chart

TL/C/9313–7

Note: This part of the software differs slightly in D2APPS.ASM

10

TL/C/9313–8

TL/C/9313–9

11

TL/C/9313–10

Note: This part of the software differs slightly in D2APPS.ASM

12

TL/C/9313–11

13

TL/C/9313–12

14

TL/C/9313–13

15

TL/C/9313–14

16

TL/C/9313–15

17

TL/C/9313–16

18

TL/C/9313–17

19

TL/C/9313–18

20

TL/C/9313–19

21

TL/C/9313–20

22

TL/C/9313–21

23

TL/C/9313–22

24

TL/C/9313–23

25

TL/C/9313–24

26

TL/C/9313–25

27

A
N

-4
9
1

T
h
e

N
S
1
6
5
5
0
A

:
U

A
R

T
D

e
s
ig

n
a
n
d

A
p
p
li
c
a
ti
o
n

C
o
n
s
id

e
ra

ti
o
n
s

TL/C/9313–26

Lit. Ý 100491

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor
Corporation Europe Hong Kong Ltd. Japan Ltd.
1111 West Bardin Road Fax: (a49) 0-180-530 85 86 13th Floor, Straight Block, Tel: 81-043-299-2309
Arlington, TX 76017 Email: cnjwge@ tevm2.nsc.com Ocean Centre, 5 Canton Rd. Fax: 81-043-299-2408
Tel: 1(800) 272-9959 Deutsch Tel: (a49) 0-180-530 85 85 Tsimshatsui, Kowloon
Fax: 1(800) 737-7018 English Tel: (a49) 0-180-532 78 32 Hong Kong

Fran3ais Tel: (a49) 0-180-532 93 58 Tel: (852) 2737-1600
Italiano Tel: (a49) 0-180-534 16 80 Fax: (852) 2736-9960

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

