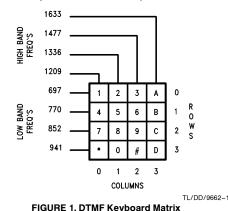
\N-521


Dual Tone Multiple Frequency (DTMF)

The DTMF (Dual Tone Multiple Frequency) application is associated with digital telephony, and provides two selected output frequencies (one high band, one low band) for a duration of 100 ms. A benchmark subroutine has been written for the COP820C/840C microcontrollers, and is outlined in detail in this application note. This DTMF subroutine takes 110 bytes of COP820C/840C code, consisting of 78 bytes of program code and 32 bytes of ROM table. The timings in this DTMF subroutine are based on a 20 MHz COP820C/840C clock, giving an instruction cycle time of 1 µs.

The matrix for selecting the high and low band frequencies associated with each key is shown in *Figure 1*. Each key is uniquely referenced by selecting one of the four low band frequencies associated with the matrix rows, coupled with selecting one of the four high band frequencies associated with the matrix columns. The low band frequencies are 697, 770, 852, and 941 Hz, while the high band frequencies are 1209, 1336, 1477, and 1633 Hz. The DTMF subroutine assumes that the key decoding is supplied as a low order hex digit in the accumulator. The COP820C/840C DTMF subroutine will then generate the selected high band and low band frequencies on port G output pins G3 and G2 respectively for a duration of 100 ms.

The COP820C/840C each contain only one timer. The problem is that three different times must be generated to satisfy the DTMF application. These three times are the periods of the two selected frequencies and the 100 ms duration period. Obviously the single timer can be used to generate any one (or possibly two) of the required times, with the program having to generate the other two (or one) times.

The solution to the DTMF problem lies in dividing the 100 ms time duration by the half periods (rounded to the nearest micro second) for each of the eight frequencies, and then examining the respective high band and low band quotients and remainders. The results of these divisions are detailed in Table I. The low band frequency quotients range from 139 to 188, while the high band quotients range from 241 to 326. The observation that only the low band quotients will each fit in a single byte dictates that the high band frequency be produced by the 16 bit (2 byte) COP820C/840C timer running in PWM (Pulse Width Modulation) Mode.

National Semiconductor Application Note 521 Verne H. Wilson June 1989

The solution then is to use the program to produce the selected low band frequency as well as keep track of the 100 ms duration. This is achieved by using three programmed register counters R0, R2, and R3, with a backup register R1 to reload the counter R0. These three counters represent the half period, the 100 ms quotient, and the 100 ms remainder associated with each of the four low band frequencies.

The theory of operation in producing the selected low band frequency starts with loading the three counters with values obtained from a ROM table. The half period for the selected frequency is counted out, after which the G2 output bit is toggled. During this half period countout, the quotient counter is decremented. This procedure is repeated until the quotient counter counts out, after which the program branches to the remainder loop. During the remainder loop. the remainder counter counts out to terminate the 100 ms. Following the remainder countout, the G2 and G3 bits are both reset, after which the DTMF subroutine is exited. Great care must be taken in time balancing the half period loop for the selected low band frequency. Furthermore, the toggling of the G2 output bit (achieved with either a set or reset bit instruction) must also be exactly time balanced to maintain the half period time integrity. Local stall loops (consisting of a DRSZ instruction followed by a JP jump back to the DRSZ for a two byte, six instruction cycle loop) are embedded in both the half period and remainder loops. Consequently, the ROM table parameters for the half period and remainder counters are approximately only one sixth of what otherwise might be expected. The program for the half period loop, along with the detailed time balancing of the loop for each of the low band frequencies, is shown in Figure 2.

The DTMF subroutine makes use of two 16 byte ROM tables. The first ROM table contains the translation table for the input hex digit into the core vector. The encoding of the hex digit along with the hex digit ROM translation table is shown in Table II. The row and column bits (RR, CC) representing the low band and high band frequencies respectively of the keyboard matrix shown in *Figure 1*, are encoded in

TABLE I. Frequency Half Periods, Quotients, and Remainders

	Freq.	Half	Half	Period in μs Quotient Remainde 717 139 337 649 154 54 587 170 210 531 188 172 414 241 226 6 + 158) 374 6 + 118) 339 294 334 56 + 83) 306 326 244	ns/0.5P
	Hz	Period 0.5P			Remainder
Low	697	717.36	717	139	337
Band	770	649.35	649	154	54
Freq.'s	852	586.85	587	170	210
	941	531.35	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	172	
	1209	Period 0.5P Period in μs Quotient Ren 717.36 717 139	226		
High Band	1336	374.25		267	142
Freq.'s	1477	338.52		294	334
	1633	306.18		326	244

the two upper and two lower bits of the hex digit respectively. Consequently, the format for the hex digit bits is RRCC, so that the input byte in the accumulator will consist of 0000RRCC. The program changes this value into 1101RRCC before using it in setting up the address for the hex digit ROM translation table.

The core vectors from the hex digit ROM translation table consist of a format of XX00TT00, where the two T (Timer) bits select one of four high band frequencies, while the two X bits select one of four low band frequencies. The core vector is transformed into four different inputs for the second ROM table. This transformation of the core vector is shown in Table III. The core vector transformation produces a timer vector 1100TT00 (T), and three programmed coun-

ter vectors for R1, R2, and R3. The formats for the three counter vectors are 1100XX11 (F), 1100XX10 (Q), and 1100XX01 (R) for R1, R2, and R3 respectively. These four vectors produced from the core vector are then used as inputs to the second ROM table. One of these four vectors (the T vector) is a function of the T bits from the core vector, while the other three vectors (F, Q, R) are a function of the X bits. This correlates to only one parameter being needed for the timer (representing the selected high band frequency), while three parameters are needed for the three counters (half period, 100 ms quotient, 100 ms remainder) associated with the low band frequency and 100 ms duration. The frequency parameter ROM translation table, accessed by the T, F, Q, and R vectors, is shown in Table IV.

	Progra	m	Bytes/Cycle		Conditional Cycles		Total Cycles
	LD	B,#PORTGD	2/3				
	LD	X,#R1	2/3				
LUP1:	LD	A,[X-]	1/3			3	
LOF I.	IFBIT	2,[B]	1/3			1	
	JP	EYP1	1/1	3	1	'	
	X	A,[X+]	1/3	3	3		
	SBIT	2,[B]	1/3		1 1		
	JP	BYP2	1/1		3		
BYP1:	NOP	BTPZ	1/3	1	3		
BYPI:	RBIT	2,[B]	1/1				
	Х	2,[B] A,[X+]	1/1	3			
BYP2:	A DRSZ	R2	1/3 DECREMENT	3		3	
BTP2:	JP	HZ LUP2	1/3 DECREMENT			3	
	JP	FINI	1/3 QCOON1			3	
	JP	LIM	1/3				
LUP2:	DRSZ	R0	1/3 DECREMENT		3	3	
	JP	LUP2	1/3 F COUNT		3	1	
	NOP		1/1			1	
	LD	A,[X]	1/1			3	
	IFEQ	A, # 104	2/2			2	
	JP	A,#104 LUP1	1/3		1	3	31
	JF	LUPT	1/3		'	3	31
	NOP		1/1		1		
	IFEQ	A,#93	2/2		2		
BACK:	JP	LUP1	1/3	1	3		35
	JP	BACK	1/3	3			
	JF	DACK	1/3	3			39

```
Table IV
              Stall
                       Total
                                   Half
                       Cycles
                                  Period
Frequency
              Loop
((114 - 1)
              x 6)
                       + 39
                                  = 717
((104 - 1)
              x 6)
                       + 31
                                  = 649
((93 - 1)
              x 6)
                       + 35
                                  = 587
((83 - 1)
                       + 39
              x 6)
                                 = 531
```

FIGURE 2. Time Balancing for Half Period Loop

			TAE	BLE I	II. Hex Digit ROM Translation Table	
	0	1	2	3	3	
ROW	697 Hz	770 Hz	852	Ηz	941 Hz	
COLUMN	1209 Hz	1336 Hz	1477	Ηz	1633 Hz	
ADDRESS	DATA (HE	X) KEY	BOARD			
*					* HEX DIGIT IS RRCC,	
0xD0	000		1		WHERE R = ROW #	
0xD1	004		2		AND C = COLUMN #	
0xD2	800		3		- EXAMPLE: KEY 3 IS ROW #0,	
0xD3	OOC		A		COLUMN #2, SO HEX DIGIT	
0xD4	040		4		IS 0010 = 2	
0xD5	044		5		RRCC	
0xD6	048		6			
0xD7	04C		В			
0xD8	080		7			
0xD9	084		8			
0xDA	088		9			
0xDB	080		C			
0xDC	000		*			
0xDD	004		0			
0xDE	008		#			
0xDF	OCC		D			

TABLE III. Core Vector Translation

(CORE	AECI	OR	-	XXOOTTOO	-	-	-	-	-	-	-	-	-	-	
															*	
														*		*

* *

TIMER VECTOR	TIMER	T	1100TT00
HALF PERIOD VECTOR	Rl	F	1100XX11
QUOTIENT VECTOR	R2	Q	1100XX10
REMAINDER VECTOR	R3	R	1100XX01

TABLE IV. Frequency Parameter ROM Translation Table

T - TIMER F - FREQUENCY Q - QUOTIENT R - REMAINDER

ADDRESS	DATA (DEC)	VECTOR
0xC0	158	T
OxCl	53	R
0xC2	140	Q
0xC3	114	F
0xC4	118	T
0xC5	6	R
0xC6	155	Q
0xC7	104	F
0xC8	83	T
0xC9	32	R
OxCA	171	Q
0xCB	93	F
0xCC	50	T
0xCD	25	R
OxCE	189	Q
OxCF	83	F

In summary, the input hex digit selects one of 16 core vectors from the first ROM table. This core vector is then transformed into four other vectors (T, F, Q, R), which in turn are used to select four parameters from the second ROM table. These four parameters are used to load the timer, and the respective half period, quotient, and remainder counters. The first ROM table (representing the hex digit matrix table) is arbitrarily placed starting at ROM location 01D0, and has a reference setup with the ADD A,#0D0 instruction. The second ROM table (representing the frequency parameter table) must be placed starting at ROM location 01C0 (or 0xC0) in order to minimize program size, and has reference setups with the OR A,#0C0 instruction for the F vector and with the OR A,#0C0 instruction for the T vector.

The three parameters associated with the two X bits of the core vector require a multi-level table lookup capability with the LAID instruction. This is achieved with the following section of code in the DTMF subroutine:

	LD	B,#Rl
	LD	X,#R4
	X	A,[X]
LUP:	LD	A,[X]
	LAID	
	X	A,[B+]
	DRSZ	R4
	IFBNE	#4
	JP	LUP

This program code loads the F frequency vector into R4, and then decrements the vector each time around the loop. This successive loop decrementation of the R4 vector changes the F vector into the Q vector, and then changes the Q vector into the R vector. This R4 vector is used to access the R0M table with the LaID instruction. The X pointer references the R4 vector, while the B pointer is incremented each time around the loop after it has been used to store away the three selected R0M table parameters (one per loop). These three parameters are stored in sequential RAM locations R1, R2, and R3. The IFBNE test instruction is used to skip out of the loop once the three selected R0M table parameters have been accessed and stored away.

The timer is initialized to a count of 15 so that the first timer underflow and toggling of the G3 output bit (with timer PWM mode and G3 toggle output selected) will occur at the same time as the first toggling of the G2 output bit. The half period counts for the high band frequencies range from 306 to 414, so these values minus 256 are stored in the timer section of the second ROM table. The selected value from this frequency ROM table is then stored in the lower half of the timer autoreload register, while a 1 is stored in the upper half. The timer is selected for PWM output mode and started with the instruction LD [B], #OBO where the B pointer is selecting the CNTRL register at memory location 0EE.

The DTMF subroutine for the COP820C/840C uses 110 bytes of code, consisting of 78 bytes of program code and 32 bytes of ROM table. A program routine to sequentially call the DTMF subroutine for each of the 16 hex digit inputs is supplied with the listing for the DTMF subroutine.

```
NATIONAL SEMICONDUCTOR CORPORATION
                                                                       PAGE:
                                                                                        1
 COP800 CROSS ASSEMBLER, REV: B, 20 JAN 87
 DTMF
                                                                                            VERNE H. WILSON
                             ;DTMF PROGRAM FOR COP820C/840C
                                                                                                    5/1/89
                             ;DTMF - DUAL TONE MULTIPLE FREQUENCY
                             ;PROGRAM NAME: DTMF.MAC
                                              .TITLE DTMF
                                              CHIP 840
                             ;****** THE DTMF SUBROUTINE CONTAINS 110 BYTES ******
; **** THE DTMF SUBROUTINE TIMES OUT IN 100MSEC ****
; ** FROM THE FIRST TOGGLE OF THE G2/G3 OUTPUTS **
; *** BASED ON A 20 MHZ COP820C/840C CLOCK ***
                             G PORT IS USED FOR THE TWO OUTPUTS

HIGH BAND (HB) FREQUENCY OUTPUT ON G3

LOW BAND (LB) FREQUENCY OUTPUT ON G2
                             ;TIMER COUNTS OUT
; - HB FREQUENCIES
   18
19
20
22
22
22
22
23
33
33
33
33
33
41
                             PROGRAM COUNTS OUT
                                             LB FREQUENCIES
100 MSEC DIVIDED BY LB HALF PERIOD QUOTIENT
100 MSEC DIVIDED BY LB HALF PERIOD REMAINDER
                             ;FORMAT FOR THE 16 HEX DIGIT MATRIX VECTOR IS 1101RRCC,
; WHERE - RR IS ROW SELECT (LB FREQUENCIES)
; - CC IS COLUMN SELECT (HB FREQUENCIES)
                             ;FORMAT FOR THE 16 CORE VECTORS FROM THE MATRIX SELECT;
TABLE IS XX00TT00, WHERE - TT IS HB SELECT;
XX IS LB SELECT
                             FREQUENCY VECTORS (HB & LB) FOR FREQ PARAMETER TABLE
                                     MADE FROM CORE VECTORS
                             ; HB FREQUENCY VECTORS(4) END WITH 00 FOR TIMER COUNTS, WHERE VECTOR FORMAT IS 1100TT00
                             42
   44
45
   46
                             ;HEX DIGIT MATRIX TABLE AT HEX 01D* (OPTIONAL LOCATION, DEPENDING ON 'ADD A,*0DO' INST. IMMEDIATE VALUE)
                              FREQ PARAMETER TABLE AT HEX OIC* (REQUIRED LOCATION)
```

TL/DD/9662-2

```
NATIONAL SEMICONDUCTOR CORPORATION
COP800 CROSS ASSEMBLER, REV: B, 20 JAN 87
                                                                                                          PAGE:
                                                                                                                                  2
                                                               . FORM
     53
54
55
                                            ; MAGIC:
                                                                             CORE VECTOR
                                                                                  XXOOTTOO
                                                        TIMER
                                                                                T
                                                                                             TTOO
     57
                                                                                            XX11
     58
                                                        R1
                                                                                QR
                                                        R2
                                                                                             XX10
     59
     60
61
62
63
                                                        R3
                                                                                             XX01
                                            ; DECLARATIONS:
                                                                                                            PORTL DATA REG
PORTL CONFIG REG
PORTG DATA REG
PORTG CONFIG REG
PORTD REG
TIMER LOW COUNTER
CONTROL REG
PROC STATUS WORD
IB FREG LOOP COUNT
                                                   PORTLD = 0D0
PORTLC = 0D1
                         00D0
     64
65
                         00D1
                         00D4
                                                   PORTGD = 0D4
     66
67
                                                   PORTGC = 0D5
PORTD = 0DC
                         00D5
                         OODC
     68
69
70
                                                 TIMERLO =
                                                                        0EA
                         OOEA
                                                          NTRL = 0EE
PSW = 0EF
                                                     CNTRL =
                         OOEE
                         00EF
                                                                                                        ; LB FREQ LOOP COUNTER; LB FREQ LOOP COUNT; LB FREQ Q COUNT; LB FREQ R COUNT; LB FREQ TABLE VECTOR
                         00F0
                                                             R0 = 0F0
                                                             R1 = 0F1
R2 = 0F2
R3 = 0F3
     72
73
                         00F1
                         00F2
                         00F3
00F4
      74
     75
                                                             R4 = 0F4
     76
77
                                                                                            SP,#02F
PORTLC,#0FF
PORTLD,#080
B,#PORTD
[B],#0
A,[B]
DTMF
                                                                                                                                     HEX DIGIT MATRIX
1 2 3 A
4 5 6 B
                                            START:
            0000 DD2F
                                                                     LD
            0002 BCD1FF
0005 BCD080
                                                                                                                                                   3
6
9
                                                                    LD
                                                                                                                                 ;
                                                                     LD
                                                                                                                                     ż
                                                                                                                                             8
                                                                                                                                                           č
     80 0008 DEDC
                                                                     LD
     81 000A 9E00
82 000C AE
83 000D 3160
84 000F DEDC
                                                                                                                                                          Ď
                                                                                                                                             0
                                                                    L D
                                                                                                                                    * 0 * D
DTMF TEST LOOP
HEX MATRIX DIGIT
TO SUBROUTINE IS
OUTPUT TO PORTD
DO WILL TOGGLE
FOR EACH CALL OF
DTMF SUBROUTINE
PORTL OUTPUTS
PROVIDE SYNC
OUTPUIT ORDER IS
                                            L00P:
                                                                     JSR
                                                                                             B, #PORTD
                                                                    LD
     84 000F DEDC
85 0011 AE
86 0012 9405
87 0014 A6
88 0015 6C
89 0016 9DD0
90 0018 A1
91 0019 B0
92 001A 9CD0
93 001C EF
                                                                                             A,[B]
A,#5
                                                                     LD
                                                                    ĀDD
X
                                                                                            A,[B]
                                                                     RBIT
                                                                                            A, PORTLD
                                                                     LD
                                                                     ŠČ
                                                                                                                                     OUTPUT ORDER IS
1,5,9,D,4,8,#,A,
7,0,3,B,*,2,6,C
                                                                    RRC
                                                                                             A,PORTLD
LOOP
                                                                     JΡ
     96
                                            ;
                                                                                                                                                                      TL/DD/9662-3
```

```
.=0160
                0160
  98
                                                                B, #PORTGC
[B-], #03F
3,[B]
2,[B]
99 0160 DED5
100 0162 9B3F
101 0164 6B
102 0165 6A
103
                             DTMF:
                                               L D
                                               LD
                                                                                         ; OPTIONAL
                                               RBIT
                                                                                         ; OPTIONAL
                                               RBIT
                             ;
104 0166 94D0
105 0168 A4
                                                                A, #0D0
                                               ADD
                                               LAID
                                                                                          ; DIGIT MATRIX TABLE
106
                                                                B,#0
107 0169 5F
                                               LD
107 0164 A6
109 016B AE
110 017B 65
111 016C 97C3
112 016E DEF1
113 0170 DCF4
114 0172 B6
                                                                Ã,[B]
A,[B]
                                               ĹD
                                               SWAP
                                                                Ä,#0C3
                                               OR
                                               LD
                                                                B, #R1
                                                                X,#R4
                                               ĹD
                                                                A,[X]
115 0173 BE
116 0174 A4
117 0175 A2
118 0176 C4
119 0177 44
                                                                A,[X]
                                               ĹD
                             LUP:
                                                                                          ; LB FREQ TABLES
                                               LAID
                                                                A,[B+]
                                                                                                (3 PARAMETERS)
                                               DRSZ
                                                                #4
                                               IFBNE
                                                                LUP
120 0178 FA
                                               JP
                              ;
                                                                B,#0
A,[B]
A,#0C0
                                               LD
122 0179 5F
123 0177 AE
124 017C 97C0
125 017E A4
126 017F DEEA
127 0181 9A0F
                                               I D
                                               NR
                                                                                          ; HB FREQ TABLE
                                               LAID
                                               LD
                                                                B, #TIMERLO
                                                                                              (1 PARAMETER)
                                                                [B+], #15
[B+], #0
                                               LD
127 0161 9A07
128 0183 9A00
129 0185 A2
130 0186 9A01
131 0188 9EB0
                                               LD
                                                                A,[B+]
                                               LD
                                                                [B+],#1
                                                                                          ; START TIMER PWM
                                               ĹD
                                                                [B],#0BO
 132
                             ;
                                                                B, #PORTGD
X, #R1
133 018A DED4
134 018C DCF1
                                               LD
                                               LD
135
136 018E BB
137 018F 72
                                                                A,[X-]
2,[B]
BYP1
A,[X+]
2,[B]
                              ĹUP1:
                                               LD
                                               ĪFBIT
                                                                                          ; TEST LB OUTPUT
138 0190 03
                                               ĴΡ
138 0190 03
139 0191 B2
140 0192 7A
141 0193 03
142 0194 B8
143 0195 6A
144 0196 B2
145 0197 C2
                                               SBIT
                                                                                          ; SET LB OUTPUT
                                               JP.
                                                                BYP2
                                               NOP
                             BYP1:
                                                                                          ; RESET LB OUTPUT
                                                                2,[B]
                                               RBIT
                                                                A,[X+]
R2
                             BYP2:
                                               DRSZ
                                                                                          ; DECR. QUOT. COUNT
                                                                LUP2
 146 0198 01
                                               JP
                                                                                          ; Q COUNT FINISHED
 147 0199 OC
                                               ĴΡ
                                                                FINI
148
149 019A C0
150 019B FE
151
152 019C B8
153 019D BE
154 019E 9268
155 01AO ED
148
                                                                                          ; DECR. F COUNT
                             ĹUP2:
                                               DRSZ
                                                                RO
                                                                LUP2
                                                                                          ; LB (HALF PERIOD)
                                               JР
                                               NOP
                                                                                             *********
                                                                A,[X]
                                                                                          ; BALANCE
                                               LD
                                                                                            LB FREQUENCY
HALF PERIOD
                                               IFEQ
                                                                A,#104
                                                                LUPI
                                               JP
                                                                                          ; RESIDUE
; DELAY FOR
156
157 01A1 B8
158 01A2 925D
159 01A4 E9
                                               NOP
                                                                A,#93
                                                                                          ; EACH OF
                                               IFEQ
                                               ĴΡ
                                                                LÚP1
                                                                                          ; LB FREQ'S
                             BACK:
160 01A5 FE
                                               JP
                                                                BACK
                                                                                          ; *********
161
162 01A6 C3
163 01A7 FE
                                                                                         ; DECR. REM. COUNT
; R CNT NOT FINISHED
                             FINI:
                                               DRSZ
                                                                FINI
 164
165 01A8 BDEE6C
166 01AB 6B
167 01AC 6A
                                                                4,CNTRL
3,[B]
2,[B]
                                                                                         ; STOP TIMER
; CLR HB OUTPUT
; CLR LB OUTPUT
                                               RBIT
                                               RBIT
                                               RBIT
168
                              ;
       01AD 8E
169
                                               RET
                              ;
 170
                                                                                                                      TL/DD/9662-4
```

```
NATIONAL SEMICONDUCTOR CORPORATION COP800 CROSS ASSEMBLER, REV: B, 20 JAN 87
                                                                                      PAGE:
                                                                                                         4
 171
172
173
174
175
176
177
178
179
180
                                                                 . FORM
                                   ; FREQUENCY AND 100MSEC PARAMETER TABLE .=01C0
                    01C0
                                                      . BYTE
          01C0 9E
                                                                          158
         01C1 35
01C2 8C
01C3 72
01C4 76
01C5 06
                                                      .BYTE
                                                                         53
140
                                                                                                           R Q F T
                                                      . BYTE
                                                                          114
180
181 01C5
182 01C6
183 01C7
184 01C8
                                                      . BYTE
                                                                          118
                                                      . BYTE
                                                                              6
                                                                                                          R
Q
F
T
                                                      BYTE
                   9 B
                   68
                                                      . BYTE
                                                                          104
                                                      . BYTE
                                                                           83
                   20
                                                       . BYTE
                                                                                                          R Q F T
                                                      . BYTE
  186
         01CA
                   ΑB
                                                                          171
  187
         01CB
                   5 D
                                                       BYTE
                                                                            93
  188
         01CC
                   32
                                                      . BYTE
                                                                                                         R
Q
F
  189 01CD
                   19
                                                       . BYTE
                                                                                                       ;
  190 01CE BD
191 01CF 53
                                                      . BYTE
                                                                         189
  191
192
                                                       . BYTE
                                                                           83
  193
194
                                   ;DIGIT MATRIX TABLE .=01D0
                   01D0
                                                                                                                    ROW
                                                                                                                              COL
  195
  196
197
          01D0 00
                                                       . BYTE
                                                                          000
                                                                                                         123A456B789CX0
                                                                                                                        0000111122223333
                                                                                                                                  0123012301230123
         01D1 04
01D2 08
01D3 0C
                                                      . BYTE
                                                                          004
  198
199
                                                      BYTE
                                                                          800
                                                       .BYTE
                                                                          00C
  200
         01D4
                                                       . BYTE
                                                                          040
  201 01D5
                                                                          044
                   44
                                                       . BYTE
  202 01D6
203 01D7
                   48
4C
                                                       . BYTE
                                                                          048
                                                      BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
                                                                         04C
080
084
088
 203 01D7 4C
204 01D8 80
205 01D9 84
206 01DA 88
207 01DB 8C
208 01DC CO
209 01DD C4
210 01DE C8
211 01DF CC
212
213
                                                                          08C
                                                                          000
                                                                          0C4
                                                                                                       ; #
; D
                                                                          0C8
                                                      BYTE
                                                                          0CC
                                                      . BYTE
                                  ;
                                                      . END
```

TL/DD/9662-5

NATIONAL SE COP800 CRO DTMF			ORATION :B,20 JAN 87	PAGI	Ē:	5			
SYMBOL TABL	E								
B OOF CNTRL OOE LUP O17 PORTGC OOE PSW OOE R3 OOF TIMERL OOE	E 4 5 F * 3	BACK DTMF LUP1 PORTGD RO R4 X	01A4 0160 018E 00D4 00F0 00F4	BYP1 FINI LUP2 PORTLC R1 SP	0194 01A6 019A 00D1 00F1 00FD		BYP2 LOOP PORTD PORTLD R2 START	0197 000C 00DC 00D0 00F2 0000	*

MACRO TABLE

NO WARNING LINES

NO ERROR LINES

139 ROM BYTES USED

SOURCE CHECKSUM = 99A7 OBJECT CHECKSUM = 03E1

INPUT FILE C:DTMF.MAC LISTING FILE C:DTMF.PRN OBJECT FILE C:DTMF.LM

TL/DD/9662-6

The code listed in this App Note is available on Dial-A-Helper.

Dial-A-Helper is a service provided by the Microcontroller Applications Group. The Dial-A-Helper system provides access to an automated information storage and retrieval system that may be accessed over standard dial-up telephone lines 24 hours a day. The system capabilities include a MESSAGE SECTION (electronic mail) for communicating to and from the Microcontroller Applications Group and a FILE SECTION mode that can be used to search out and retrieve application data about NSC Microcontrollers. The minimum system requirement is a dumb terminal, 300 or 1200 baud modem, and a telephone.

With a communications package and a PC, the code detailed in this App Note can be down loaded from the FILE SECTION to disk for later use. The Dial-A-Helper telephone lines are:

Modem (408) 739-1162 Voice (408) 721-5582

For Additional Information, Please Contact Factory

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

AN-521

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor

Europe Europe Fax: (+49) 0-180-530 85 86 Email: onjwge@tevm2.nsc.com
Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408