Simple Embedded Control
NS32CG16 System
Graphics Application Note
2

1.0 INTRODUCTION

This design is for a stand alone NS32CG16 execution vehi-
cle. The design includes the NS32081 Floating Point Unit,
DP8511 BitBIt Processing Unit, NS32202 Interrupt Control
Unit and SCN2681 Dual channel serial interface. MONCG, a
modified version of MON16, is supported in this design for
interface to DBG32 debug utilities. The NS32202 timers
may be used to time program execution.

1.1 Specification
. 256 Kbytes of Static RAM (32K x 8).

-

2. 4 sockets of EPROM, capable of 27C256 or 27C512
EPROM.
3.Serial 1/0—2 ports RS-232, configured for

MONCG/DBG16 debug.

Circuits required to interface the DP8511 with the
NS32CG16. The interface utilizes an 8-bit counter to
control the DP8511 allowing a maximum of a 256 word
wide pattern to be BitBlted.

Memory and 1/0 map controlled with PALs to allow
changes.

Simple LED indicators to show board status.
NS32081D-15 installed for floating point tests.
NS32202-10 interface to verify interrupts.

3 push buttons, INT into NS32202, NMI and RESET to
NS32CG16.

10. NS32CG16V-15 installed.

11. MONCG (a new mon16) installed in EPROMs.
12. HOLD/input available for testing.

13. “SPLICE” Control Signal interface.

14. PROM Shadow feature.

15. Operates at 15 MHz.

1.2 BPU Control Circuit Programming Information

On the board, the addresses of the control registers are
PAL programmable, but default to the following:

>

o

© ® N o

Address Description

0xFF0000 Duart (SCN2861)

0xFF0020 BPU Control Register on DP8511
0xFF0022 BPU Function select register on DP8511
0xFF0040 BPU Mask Register

0xFF0060 BPU Counter Register

The BPU Control register and Function select register are
as described in the DP8511 BitBIt Processing Unit Data
sheet, and are 13 bits and 4 bits wide respectively.

Series 32000® is a registered trademark of National Semiconductor Corporation.
PAL® is a registered trademark of and used under license from Monolithic Memories, Inc.

National Semiconductor
Application Note 564
June 1989

When programming the control logic, the following se-
quence should be used.

1. Write BPU Counter

2. Write BPU Mask Register

3. Write BPU Control Register

4. Write BPU Function Select Register

Note that the BPU Enable in the Mask register must be
turned on prior to writing the BPU Control register.

When the BILBLT operation is complete, it is recommended
that the BPU be turned off by writing a zero to the BPU
Mask register. This is not required, however.

2.0 NS32CG16/DP8511 INTERFACE

The following sections describe the logic required to inter-
face the NS32CG16 to the DP8511 BitBIt Processing Unit
(BPU). The NS32CG16 facilitates the interface require-
ments by supporting a special signal, BPU, and an BitBIt
instruction, EXTBLT.

The schematic and PAL equations in this document de-
scribe an implementation that supports BitBIt operations in
4 directions, left to right or right to left while moving top to
bottom or bottom to top. Most typical printer applications
require only left to right BitBlting while moving top to bottom.

2.1 Features

Following are the features of described interface:

® 32-bit CPU.

® 16 megabyte address range for BitBlt operations.
e BitBIt operations in all 4 directions.

® 16 logical BitBIt functions.

0 (0 to 4d)
-s AND -4
—-s AND d
-s
s AND -4
-4
s XOR d
-s OR -d
s AND d
s XNOR 4d
d (d to @)
-s OR d
s (s to d)
s OR -d
s OR d
1 (1 to Q)

©1995 National Semiconductor Corporation TL/EE10085

RRD-B30M105/Printed in U. S. A.

Z 910N uonediddy salydesn walsAs 91HIZESN [043U0D pappaquy ajdwis

V9S-NV

e Operates with conventional DRAMs.

® High-speed barrel shift of data.

® Hardware masking of data.

® Bus bandwidth limits on external BitBlting.

2.2 Image Memory Configuration

To obtain optimum performance in graphics applications the
Image Memory must be organized to support the Series
32000 byte and bit manipulating instructions. Figure 2.1, be-
low, illustrates the memory organization at the byte (8 bits),
word (16 bits) and double-word (32 bits) level.

In the rest of this document hexadecimal numbers will be
represented with a leading Ox. e.g., hexadecimal 1a5a will
appear in this document as Ox1a5a.

Figure 2.1 represents one scan line of a standard 81/, inch
by 11 inch page, on a 300 Dot Per Inch (DPI) laser printer in
the portrait orientation (84 inches wide, 11 inches high).
There are 3300 such scan lines on each page. The start of
the second scan line on the page would be at byte offset
320 decimal, 140 hex. Since the first scan line is at the top
of the page, successive scan lines proceed down the page.

All Series 32000 microprocessors have 32-bit internal data
paths, with a “natural” size of 32 bits, or 4 bytes. Memory
accesses are always Least Significant Byte (LSB) to Most
Significant Byte (MSB). Referring to Figure 2.1, writing a
byte of OxA5 to address zero would result in address zero
containing OxA5. Writing a word of 0xA55A to address zero
would result in address zero containing Ox5A, and address 1
containing OxA5. Writing a doubleword of OxFFA55A00 to
address zero would result in address zero containing 0x00,
address 1 containing 0x5A, address 2 containing 0xA5, and
3 containing OxFF.

The Series 32000 microprocessors do not have an align-
ment restriction in that data of byte, word or doubleword
size need not reside on an even memory address. The Bus
Interface Unit, internal to all Series 32000 microprocessors,
request multiple bus transfers as required, aligning the data
automatically.

The bit offset is equally consistent. Bit ordering is always
least significant to most significant bit. In Figure 2.1, bit zero

LOW MEMORY ADDRESS
BYTE OFFSET

of byte zero would be the first pixel imaged on the page. Bit
one would be the next pixel, bit two the next, and so on. Bit
2549 would be the last pixel imaged on the page in the
horizontal direction, since 81/, inches * 300 DPI yields a
width of 2,550 dots, or pixels. Bit 2549 is contained within
byte 318, at bit position 5. Both Bit Addressing (e.g., SB/ITD
2549,page) and Byte Addressing with a byte address and a
bit offset (e.g., SBITD 5,page + 318) are available in Series
32000. Figure 2.2 is an expansion of the first three bytes of
the scan line, showing the bit addressing, as it would appear
on the page printer or graphics screen.

To clarify these conventions further, the following example
illustrates how a line 1 dot high and 10 dots wide is drawn.
This line appears on scan line one, starting at the ninth
pixel, or bit position 8. This will result in OxFF in address
one, and 0x03 in address two. This is referred to as the
horizontal direction.

The width of the memory for an image is referred to as the
image warp. The warp of the page printer image in the previ-
ous example is 320 decimal (140 hex) bytes, or 2560 bits.
Note that the image width is actually 2550 on this sample
page printer at 300 DPI, since 84 inches * 300 DPI yields a
width of 2,550 dots. The width is rounded up to 2560 bits
(320 bytes) to make memory addressing simpler in a typical
hardware design.

When the warp is known, perpendicular (or vertical, in this
case) lines can be drawn. A vertical line 10 dots high and 1
dot wide starting at the first line, ninth pixel, with a warp of
320 (140 hex) and a base address of 0 would result in ad-
dresses 1 (1 hex), 321 (141 hex), 641 (281 hex) ... 2881
(B41 hex) each containing 01 hex.

To summarize, for portrait applications, the “top left” pixel is
bit 0. The “top right” pixel is bit 2,549. The “bottom left”
pixel is bit 8,445,440. The “bottom right” pixel is bit
8,447,989. To calculate x,y bit positions on the page, the
formula:

Bit offset = (v * 2560) + x

may be used, where y is the scan line number ranging from
0 to 3299, for the sample 85, by 11 inch page, and x is the
pixel displacement across the page from the left hand edge.

HIGH MEMORY ADDRESS

| o'1l2"3[4"s5l6'7]8"9 |10'11|12| |313|314'315|3161317|318‘319
N
BYTE
WORD
DOUBLEWORD
TL/EE/10085-1
FIGURE 2.1. Memory Organization
Byte 0 Byte 1 Byte 2

0 1 2 3 4 5 6 78 9 10 11
A Y I Y I

13 14 15|16 17 18 19 20 21 22

2
| | | | | | | | |

FIGURE 2.2. Bit Order within a Byte

2.3 BitBIt Operation

It is assumed that the reader is familiar with the fundamen-
tals of BitBIt operations. More information on the BitBIt algo-
rithm may be found in the DP8511 BitBlt Processing Unit
(BPU) data sheet.

In this circuit the BPU is connected to an NS32CG16 CPU.
During the external BitBlt instruction execution, the CPU
generates an optional source word pre-read, source word
read, destination word read and destination word write,
while asserting the BPU signal. The BPU interface circuit
monitors the BPU signal and controls the BPU and asserts
left and right masks when appropriate. The interface has an
8-bit counter, enabling up to 256 word wide blocks to be
transferred.

Prior to executing the EXTBLT instruction the software must
first load the mask register with left and right beginning and
ending mask bits, pre-read enable, BPU enable, and then
load the character width count register with the width (in
words) of the BitBIt operation. Then the software loads the
BPU control register with the Barrel Swap bit, the shift
amount, the left mask, and the right mask values and the
BPU Function select register. The software must then load
the CPU registers with all the information required by the

EXTBLT instruction, for more details, refer to the
NS32CG16 Programmer’s Reference Manual. The EXTBLT
instruction will then cause the BPU to perform the required
BitBIt instruction for the width of the character by the height
of the character.

The mask register, the character width counter register, the
BPU control register and the BPU Function select register
are mapped as output devices in the CPU’s address space.
The address of these registers are implementation depen-
dent since the EXTBLT instruction does not reference them
directly. The BPU is selected by the BPU signal which is
asserted during the execution of the EXTBLT instruction.

The BPU control register is shown in Figure 2.3a. This regis-
ter is on the BPU device. Note: the left mask is asserted at
the beginning of a line on the left side of the page, the right
mask is asserted at the end of a line on the right side of the
page. This satisfies the bit-ordering of a Series 32000 bit
zero of byte zero is the first imaged pixel.

The programming of the BPU control register changes de-
pending on the direction of the BitBlt, either left to right or
right to left. The mask enable bits for the left and right
masks and the BIS bit remain the same for top to bottom or
bottom to top.

12 11|10|9|8

BIS S N

716

L

lslalalalilo

M R M

FIGURE 2.3a. BPU Control Register

Description of control register bits.

RM
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

LM

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

SN
0000

1111

MSB
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0001
0011

01
11

11
11

MSB

11
11
11
11
11
11
11
11
11
11
11
11
11
11

11
11
11
11
11
11
11
11
11
11
11
11
11
10

1100
1000

11
11
11
11

_______ LSB
0000 0001
0000 0011
0000 0111
0000 1111
0001 1111
0011 1111
0111 1111
1111 1111
1111 1111
1111 1111
1111 1111
1111 1111
1111 1111
1111 1111
1111 1111
1111 1111

_______ LSB
1111 1110
1111 1110
1111 1100
1111 1000
1111 0000
1

11

11

11

111
110
1100
1000
0000
0000
0000
0000

9
1
9
1
111
9
1
9

110 0000
1100 0000
1000 0000
1000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000

Barrel shift quantity. Causes the 32-bit barrel
shifter to rotate 0-15 bits MSB to LSB.

0

BIS
0 Left to right, shift > zero.
1 Left to right, shift = zero.
1 Right to left, any shift.
3 2 1
FS

FIGURE 2.3b. BPU Function Select Register

Description of Function Select register bits.

FS

0000 0
0001 -s AND -d
0010 -s AND d
0011 -s
0100 s AND -d
0101 -d
0110 s XOR d
0111 -s OR -d
1000 s AND d
1001 s XNOR d
1010 d
1011 -s OR d
1100 s
1101 s OR -d
1110 s OR d
1111 1

The structure of the mask register is shown in Figure 2.4. It
is an 8-bit register, located on the least significant byte of
the data bus. Following is a description of valid mask enable
sequences that can be programmed into the mask register.

BRME BLME ERME ELME

1 1 0 Left to right,
Right to left,
Shift of zero,
Any direction,
Any direction,

H O H O K
o+ H O O
o o o oo
o o o o~

Any direction,

ENBPU Active High. When low, resets the BPU and the
interface circuitry state machine.

PRERD Active High. When asserted, forces the interface
circuitry to perform an additional read at the be-
ginning of each BitBlIt source read. This is termed
source pre-read, and is required at the beginning
of each line if the width of the first destination data
write is greater than the amount of valid data con-
tained in the first source read.

7 6 5 4 3 2 1 0
B B E E E P
R L R L N R
M M M M B E
E E E E P R
U D

FIGURE 2.4. Mask Register

The structure of the counter register is shown in Figure 2.5.
It is an 8-bit register, located on the least significant byte of
the data bus. The value written to this register is the two’s
complement of the width in words of the destination data to
be BitBlted. Each word is 16 bits in width, thus for a font
character 32 pixels wide, the counter register would be
loaded with the value OXFE. The two’s complement of the
width can easily be obtained via the NS32CG16’s NEGi
gen,gen instruction.

71l el s 1T alalal11o

Width in Words
(Two’s Complement)

FIGURE 2.5. Counter Register

2.4 Interface Circuit Description

The EXTBLT instruction causes the CPU to output source
and destination addresses, the BPU signal and read/write
bus cycles. The BPU interface circuit monitors these signals
and issues control signals to the BPU. The BPU must be
interfaced to the data bus on the system side of the trans-
ceivers. During BPU data transfer cycles, a signal is gener-
ated by the BPU interface circuit to disable the data bus
transceivers. The CPU must be disabled from driving the
system data bus during an EXTBLT write cycle because the
BPU will be driving the BitBIt result onto the bus.

A detailed description of the BPU interface circuit and all the
external signals follows.

A left mask in the following documentation means a mask
that preserves the least significant bits, a right mask pre-
serves the most significant bits. The BPU applies the left
and right masks on the write to the destination.

both masks, width > 1

both masks, width > 1

no masks, width = n * 16 bits
both masks, width =1

left mask, width = 1

right mask, width = 1

Description of interface signals follows.

Signal Description
BPU From NS32CG16, BPU cycle active.
ST1-ST3 From NS32CG186, status signals

describing the type of bus cycle.
BD00-BD15 | Buffered system data bus.

RESET From NS32CG186, reset signal.

TS From NS32CG186, signifies data
portion of bus cycle.

CTTL From NS32CG16, TTL clock output.

DDIN From NS32CG186, signifies direction
of data transfer.

CSYNC Similar timing to TSO, but is deasserted
one T-state early, at the end of T3.

BPUCYC Signal to turn off the data

bus transceivers. The CPU data bus must
be isolated from the BPU-memory data
bus during the execution of

the EXBLT instruction.

The following signals are decoded
address lines, gated with TSO

BPUMSKWR | Write the 8-bit mask register.
BPUCNTWR | Write the 8-bit counter register.
BPUCTLWR | Write the BPU control register.

Refer to the BPU interface schematic diagram for the rest of
this section. Functional description of the interface circuit
follows.

2C and 6C decode status signals from the CPU along with
the BPU signal to produce the BPUCYC signal. BPUCYC
indicates that the current bus cycle is an EXTBLT data
transfer cycle. The status signals must be used to qualify
the BPU signal because the CPU can assert BPU and then
perform instruction pre-reads to fill it’s internal pre-fetch
queue. The status signals are decoded to uniquely detect a
data transfer cycle, as against any other type of bus cycle.

3F is the mask register. It is a 6-bit write only latch with
reset. On power-on the NS32CG16 RESET output signal
will cause all the outputs of the latch to be cleared to ze-
roes. Writing to the latch simply involves a move of a byte to
the BPUMSKWR address. Once programmed the mask reg-
ister will remain unchanged until it is written to again or
RESET is asserted.

3D is the counter register. It is an 8-bit write only latch and
counter. Writing to the latch simply involves a move of a
byte to the BPUCNTWR address. Once programmed the
counter register will remain unchanged until it is written to
again. The synchronous binary up counter portion of 3D is
loaded when 4D asserts the CTR_LOAD output. CTR__
LOAD is asserted when the BPUMSKWR signal is active,
which implies that the programmer must program the coun-
ter register prior to the mask register. The counter in 3D
enables characters up to 256 words wide to be BitBlted with
the BPU. Note again that the value programmed into the
counter register must be the two’s complement of the width
in words of the character.

BPU bus cycles consist of an optional source pre-read (only
on the first word of a new line), source read, destination
read and destination write. 4D detects destination writes
and only increments or re-loads 3D on completion of the
write. The PRERD bit in the mask register must be set by
the programmer if pre-reads are required. This bit causes
the state machine in 4D to perform an extra source read
(pre-read), at the beginning of each BitBlt line.

CTR__LOAD is also asserted on the last BPU write cycle at
the end of each BitBIt line, causing the value in the counter
register, 3D, to be re-loaded into 8-bit counter in preparation
for the next BitBIt line. The TSO signal from the NS32CG16
is the clock, rising (positive-going) edge sensitive, for 4D
and 3D. During a BitBIt of more than one word in width, 4D
also asserts the CTR_ENBP signal to enable 3D to count
on the next rising edge of TSO. 3D counts up until it reaches
a count of 255, at which point the RCO of 3D is asserted. 4D
treats the assertion of the RCO signal as an indication that
the next BPU bus cycle (source read, destination read and
destination write) is at the end of BitBIt line. 4D then asserts
the MASK__SEL and MASK__ENB signals, and causes 3D
to re-load from the counter register as explained above. The
MASK_SEL and MASK__ENB signals control the multi-
plexer in 4F selecting the appropriate masks control signals
that connect to the BPU, refer to the description of the mask
register in Section 2.3.

Refer to the attached timing diagrams for detailed BPU con-
trol signal timing. Figure 2.6 depicts a complete BPU cycle
with pre-read. Only the data path control signals are shown.
Figure 2.7 depicts a write bus cycle to the mask register.
Figure 2.8 depicts the assertion of the appropriate masks
during the first, a middle word and then the last word of a
BPU BitBIt line.

4D generates a signal, DESTCYGC, that indicates the type of
bus access that the EXTBLT instruction is performing.
When high, it indicates a source pre-read or read, when low,
it indicates either a destination read or destination write.
DESTCYC connects to 4F which controls most functions of
the BPU.

4F controls the BPU data paths, FIFO operation, and con-
trol registers. The programmer must load the BPU contro/
register prior to executing the EXTBLT instruction, refer to
Section 2.3 for a detailed description of the bits. The pro-
grammer accesses the 13-bit, write only control register by
writing to the BPUCTLWR address. 2C generates the CRE
signal which writes the 13-bit data into the BPU control reg-
Ister.

2C also generates the FSE signal which writes 4-bit data
into the BPU Function select register. All references to reg-
isters within the BPU use the same terminology as in the
DP8511 data sheet. 2D is clocked from inverted CTTL, its
function is to delay the assertion of the FRD, FWR, RME,

LME, BSE and DLE signals to satisfy the setup and hold
time requirements of the DP8511. The B__DLE signal caus-
es the BPU to latch the data on the data bus into the DIL-
MASTER register. Both the source and destination read
data is temporarily stored in this register during the EXTBLT
instruction execution. The B__BSE signal causes the BPU
to latch the data from the DIL-MASTER register into the
DIL-SOURCE register during a source pre-read or read bus
cycle.

When B__BSE is not asserted, the data contained in the
DIL-MASTER register will be latched into the DIL-DEST reg-
ister. The DIL-DEST register contains the read destination
data.

The barrel rotator performs the rotation, 0 to 15 bits. The
result is transferred to a multiplexer at the input of the 16
word FIFO. 4F generates the FWR signal to write this value
into FIFO location 0. 4F delays the assertion of FRD two
clocks, as required by the BPU. The FRD signal transfers
the data stored in FIFO location 0 to a holding latch, then
through another multiplexer (always in BitBIt mode, B/L low)
to the source input of the BitBIt Logic Unit, BLU.

The B_BSE is deasserted during the destination source
read, causing the DIL-MASTER data to be loaded into the
DIL-DEST register, through to the destination input of the
BLU.

The BLU performs the required logical operation, based in
the 4-bit Function Select code programmed into the BPU
control register. The left and right masks are then applied to
the result and finally the destination read data is ored with
this result. This method of masking is called destination
masking and is different to the NS32CG16’s software BitBIt
instructions which perform source masking. The final result
is the same regardless of the method used.

The result from the BLU is now available for writing back to
memory. The NS32CG16 performs a write bus cycle, 6C
generates DOE which enables the BPU output buffers, the
result appears on DQ00-DQ15 and is written to memory.

The entire BitBIt operation takes 12 clock cycles to perform
a source read, destination read and destination write. The
whole BitBIt cycle can then repeat for the next word of the
BitBIt line. Note that interrupts if enabled and pending will
be serviced at the end of each BPU write cycle. The preread
(optional), read source, read destination and write destina-
tion cycle is indivisible at the interrupt level. The NS32CG16
will deassert the BPU signal prior to fetching the vector from
the interrupt source. The BPU signal remains deasserted
during the entire interrupt service routine and only on return
from interrupt and resumption of the EXTBLT instruction will
the NS32CG16 again assert the BPU signal.

The DP8511 BPU has many functions that are not used by
the NS32CG16 during the EXTBLT instruction execution.
Figure 2.9 depicts the functional blocks inside the BPU that
are used during an EXTBLT instruction. Refer to the
DP8511 Data Sheet for the complete BPU model.

Following are two example programs that perform tests of
the EXTBLT instruction and interface. The first program per-
forms a left to right, top to bottom test, the second performs
a right to left, bottom to top test. The programs check the
result of the EXTBLT instruction by comparing the output
with that from the BBFOR instruction. If the results are the
same, the shift amount is incremented and the test is per-
formed again. The programs test the EXTBLT for shifts of
zero through to 15.

#Program extblt.s
#Program to test the extblt instruction, left to right, top to bottom

.globl __test,dest
#BitBlt test program
—-test: movqd 0,shift # start with shift of zero
loopl: movd $108,height # height in lines
movqd 1,width # start with width of 1 word
loop: addr dest,r0 #point to destination block
movgd 4,rl #increment value
addr 1024,r2 #number of patterns to write
movqd 0,r3 #pattern to write
movmpd #fill area
addr 0xff0000,r0 #point to the control base
movd width,r2 # get current width
movd shift,rl # get current shift value
movb $0x0e,r3 # assume shift is zero.
movqgd 4,r7 # set destination warp
movqd 0,r6 # set source warp
cmpqd o,rl # is shift zero?
beq noinc # yes, all is ok, else
movb $0x6e,r3 # set up left and right masks
addqd 1,r2 # one extra word of destination
movqd 2,r7 # set destination warp
movgd -2,76 # set source warp
noinc: negb r2.0x60(r0) # set up counter
movb r3,0x40(r0) #set up mask register
movw bputab[rl:w],0x20(r0) #set up BPU register
movw $0x7,0x22(r0) #set up BPU register, OR function
addr chara-2,r0 #point to source character
addr dest,rl #point to destination
movd height,r3 # get current height
movqd 2,74 #increment value
addd r2,r2 # width = r4 * r2
movd r2,r5
cmpgb 1,82 #do pre read
extblt
movgb $0,0x40 + 0xff0000 #clear mask register, disable
#bpu, reset logic
addr chara,r0 #point to source char
addr destl,rl #point to destination
movd shift,r2 #shift value wanted
movd height,r3 #height in lines
movd $oxreff, ré #first mask
movd $OxfELLf, r5 #second mask
movqd 2,16 #source warp
movqd 4,r7 #dest warp
movd width,tos #width in words
cmpb r2,$0
bbfor
cmpqgd O,tos #unstack
addr 512 ,r0 #number of doubles to compare
addr destl,rl #destl

bad:

bputab:

width:
shift:
count :
height:

addr
cmpsd
bne

addgd
movd
divd
movd
cmpgd
blt
addqd
cmpd
bne

ret

bpt
.data
.data
<word
.word
~word
<word
.word
.word
~word
<word
.word
~word
.word
<word
.word
<word
<word
.word
.double
.double
.double
.double
.comm
.comm

dest,r2
bad

1,width
$54%4,r0
width,r0
r0,height
1,r0

loop
1,shift
$16,shift
loopl

$0

0x100f
0x0f10
0x0e21
0x0d432
0x0c43
0x0b54
0x0a65
0x0976
0x0887
0x0798
0x06a9
0x05ba
0x04chb
0x03de
0x02ed
0x01lfe
0

0

0

0
dest,2048
destl,2048

#dest

#compare those strings

3k 3k 3 3k 3k 3 i3

FHFHEFHIHF IR IHII IS
030w,

next width

get max lines

of
of
of
of

divide to get current lines
and store it
is it OK?

next shift
done yet?
no, back for more

zero, set masks & BIS
one

two

three

#Program extblt.s

#Program to test the extblt instruction right to left, bottom to top

.globl

_-test,dest

#BitBlt test program

__test: movgd
loopl: movd
movqd
loop: addr
movgd
addr
movqd
movmpd
addr
movd
movd
movb
movqgd
movqd
cmpqd
beq
movb
addqd
movqd
movgd
noinc: negb
movb
movw
movw
addr
addr
addd
movd
movqd
muld
movd

cmpgb
extblt

movgb

addr
addr
movd
movd
movd
movd
movgd
movqd
movd
cmpb
bbor
cmpqd
addr

0,shift
$108,height
1,width
dest,r0
4,rl
1024,r2
0,r3

0xff0000,r0
width,r2
shift,rl
$0x0e,r3
-4,r7

0,r6

o,rl

noinc
$0x6e,r3
1,r2

-2,r7

2,16
r2,0x60(r0)
r3,0x40(r0)

bputab[rl:w],0x20(r0)

$0x7,0x22(r0)
chara+220,r0
dest+1024,rl
ré,rl
height,r3
-2,r4

r4,r2

r2,r5

1,%2

$0,0x40 + 0xff0000

chara+218,r0
destl+1024,rl
shift,r2
height,r3
$0xffff, r4
$OXFELL, 5
-2,7r6

-4,r7
width,tos
r2,$0

—-da

O,tos

512 ,r0

start with shift of zero

height in lines

start with width of 1 word
#point to destination block
#increment value

#number of patterns to write
#pattern to write

#£ill area

#point to the control base

get current width

get current shift value
assume shift is zero

set destination warp

set source warp

is shift zero?

yes, all is ok, else

set up left and right masks
one extra word of destination
set destination warp

set source warp

set up counter

#set up mask register

#set up BPU register

#set up BPU register, OR function
#point to source character
#point to destination
#pre-increment destination for sh>0
get current height

#increment value

width = r4 * r2

33k 3k 3k 3R 36 36 3 3 3 3 3

#do pre read

#clear mask register, disable
#bpu, reset logic
#point to source char
#point to destination
#shift value wanted
#height in lines
#first mask

#second mask

#source warp

#dest warp

#width in words

#unstack
#number of doubles to compare

bad:

bputab:

width:
shift:
count :
height:

addr

addr
cmpsd
bne

addqd
movd
divd
movd
cmpqd
blt
addgd
cmpd
bne

ret

bpt
.data
.data
<word
<word
.word
~word
~word
<word
.word
~word
<word
<word
.word
<word
<word
.word
~word
.word
.double
.double
.double
.double
.comm
.comm

destl,rl
dest,r2
bad

1,width
$54*4,r0
width,r0
rO,height
1,r0

loop
1,shift
$16,shift
loopl

$0

0x100f
0x1f10
0xle2l
0x1d32
0xlc43
0x1b54
0xlaeb
0x1976
0x1887
0x1798
0xle6a9
0x15ba
0x1l4chb
0x13de
0x1l2ed
Oxllfe
0

0

0

0
dest,2048
destl,2048

#destl

#dest

#compare those strings

I 3 3% 33k 3k I I

I I I I I IR

of
of
of
of

next width

get max lines

divide to get current lines
and store it

is it OK?

next shift
done yet?
no, back for more

zero, set masks & BIS
one

two

three

10

T T2 T3 T4

T T2 T3 T4 T T2

T3 T4 T T2 T3 T4

UL I S Iy S Iy

DESTCYC

B_DLED __/

B_BSED

N

FWRD /1T \ /1T \

e
N
e

Q1

Q2

FRDD

/T \

/T \

B_DOE

OPTIONAL BPU SOURCE PRE=READ
(FOR FIRST WORD ON EACH SCAN LINE)

\

BPU SOURCE READ BPU DESTINATION READ BPU DESTINATION WRITE

FIGURE 2.5. BPU Data Cycle
T T2 T3 T4

em LML
/N
CSYNC /
oo 7

BPUCYC

TSO

BPUMSKWR

EN_BPU

BMSK

MASK_ENB

()

MASK_SEL

CTR_ENBP

A

CTR_LOAD \
MASK WRITE
FIGURE 2.6. Mask Register Write

TL/EE/10085-2

TL/EE/10085-3

1

T
CTTL

T2 T3

T4

T T2 T3 T4

T

T2 T3 T4

BPUMSKWR

EN_BPU

BMSK

MASK_ENB

—
—

MASK_SEL

N\
N\

I

CTR_ENBP

/

/

CTR_LOAD

BPU WRITE

FIRST WORD OF SCAN LINE

BPU Write
First Word of Scan Line

N\

BPU WRITE

SECOND LAST WORD OF SCAN LINE

BPU Write
Second Last Word of Scan Line

FIGURE 2.7. BPU Mask Register Timing

/

\

—

BPU WRITE

LAST WORD OF SCAN LINE

TL/EE/10085-4
BPU Write
Last Word of Scan Line

12

DQO-DQ15

I !

FSE FSR CRE CONTROL
I et
FS BIS SN LM RM
DLE1

A 4
PH2
SLE DIL-MASTER
A 4 *
PH1—b] PH1
Bse1—p| PIL-SOURCE| ot DIL-DESTINATION
BIL
l v
Bs—» Mux
By Awvw
BARREL |, 4
SHIFTER [¢7—SN
< D
A 4 l
LME — 4
BITBLT (LM
RME— 2
FWR—3 Locic ¢ —Ru
FRD —» (—Fs
DOE
DQO-DQ15

TL/EE/10085-5

FIGURE 2.9. BPU Model

Figure 2.9 is a block diagram of the functional model of the
BPU as used with the NS32CG16. All the data paths in the
figure are 16 bits wide. The barrel shifter is actually a rotator
that rotates from right to left, i.e., least significant bits, DQO
to DQ15, are shifted towards the most significant bits. Re-
ferring to Figure 2.9 the data paths to and from the barrel
shifter are A, B and C. Path A is the current source read
data and is loaded into the 16 LSB’s of the barrel shifter,
path B is the source read data from the previous word (if in
the middle of a BitBIt block) and is loaded into the

16 MSB’s. The data is rotated left by the appropriated num-
ber of bits specified by the SN inputs and the resulting 16
MSB’s are output via data path C to the BitBIt Logic Unit
(BLU). Path D contains the 16 bits from the destination read
data, and connects to the BLU destination data input. The
BLU performs the required function and asserts the appro-
priate masks and the result is then made available at the
output of the BLU for writing back to the destination BitBIt
address.

13

Name MASK.PLD;

Date 03/06/89;

Revision 1B;

Designer Bill Fox;

Company NSC;

Assembly APP Note;

Location us;

Device plérd;

Partno 0d81;

/ ** * /
/* */
/* BPUMASK: DP8511 MASK AND MASK COUNTER CONTROL */
/* */
/******t***t****‘k***‘l’*******************1‘**t********t*****k*****i**/
/* Allowable Target Device Types: PALI1GR4A */
/ iailalaielalalel falaiahalaalaiokiolal sl skl a4
/** Inputs **/

Pin 1 = clk ; /* tso from cglb */

Pin 2 = nc0 Y A

Pin 3 = Imrco ; /* counter ripple carry out */

Pin 4 = ncl VAR

Pin 5 = lddin ;. /* data direction in */

Pin 6 = thpumskwr ; /* bpu mask write strobe */

Pin 7 = b_prerd ; /* bpu preread */

Pin 8 = b_enbpu . /* enable BPU */

Pin] = Ibpucyc ; /* bpu cycie */

Pin 11 = loe ; /* output enable, always gnd */

/** Qutputs **/

Pin 12 = lctr_enbp ; /* counter enable p */

Pin 13 = lctr_ltoad ; /* counter load */

Pin 14 = ldestcyc ; /* destination cycle indicator */
Pin 15 = Ibmsk ; /* beginning mask */

Pin 16 = lread_cnt ; /* count of readsq */

Pin 17 = nc2 A

Pin 18 = Imask_enb ; /* mask enable */

Pin 19 = lemask_sel ; /* ending mask select */

/** Declarations and Intermediate Variable Definitions **/

bpuread = bpucyc & ddin;
bpuwrite= bpucyc & !'ddin;

field bpuseq = [destcyc, read_cnt];
$define source0 'b'00

$define sourcel 'b'01
$define dst 'b'10

TL/EE/10085-13

14

/** Logic Equations **/
sequence bpuseq {

present source0 if !b_enbpu
next source0;

if b_enbpu & bpuread & b_prerd
next sourcel;

if b_enbpu & bpuread & !b_prerd
next dst;

default
next sourcel;

present sourcel if !'b_enbpu
next source0;

if b_enbpu & bpuread
next dst;

default
next sourcel;

present dst if 'b_enbpu
next source0;

if b_enbpu & bpuwrite & end_mask
next source0;

if b_enbpu & bpuwrite & 'end_mask
next sourcel;

default
next dst;

bmsk.d = b_enbpu & (
!bpumskwr & bpuwrite & mrco /* bpu write cycle */
!bpumskwr & !bpuwrite & bmsk /* hold data */
)

bpumskwr; /* load initial mask */
ctr_enbp= bpuwrite;

ctr_load = bpuwrite & mrco
bpumskwr;

mask_enb = bmsk
mcro;

emask_sel= mrco;

TL/EE/10085-14

15

/** Logic

b_fwr.d

q0.d

ql.d

b_frd.d

b_dle.d

b_bse.d

b_ime

b_rme

*

»

R

Equations **/
bpusrd & b_dle;
b_fwr;

q0;

ql;

bpudrd & csync
bpusrd & csync;

bpusrd;

elme & mask_enb & mask_sel
bime & mask_enb & !mask_sel;

erme & mask_enb & mask_sel
brme & mask_enb & !mask_sel;

TL/EE/10085-15

16

Name BCTL;

Partno H

Date 03/06/89;

Revision 1B;

Designer George Scolaro;

Company NSC;

Assembly BPU interface PAL;

Location H

Device p20r6;

/ o *rEEX]
/* Control pal for DP8511 interface */
/* * /
/* Allowable Target Device Types: PAL20REA */
[* * ** /

/** Inputs **/

Pin 1 = clk p/*
Pin 2 = !bpucyc A
Pin 3 = !ddin s/
Pin 4 = lcsync /*
Pin 5 = ldestcyc A
Pin 6 = brme D /F
Pin 7 = blme e
Pin 8 = erme e
Pin 9 = elme A
Pin 10 = Imask_sel A
Pin 11 = Imask_enb A
Pin 13 = loe H
Pin 14 = nc0

Pin 23 = ncl :
/** Outputs **/

Pin 15 = b_lme A
Pin 16 = Ib_dle e
Pin 17 = b_bse A
Pin 18 = 1g0 A
Pin 19 = gl e
Pin 20 = b_fwr A
pin 21 = b_frd e
Pin 22 = b_rme P/

clock */

bpu cycle in progress */
data direction */

1 t state prior to T3 */
destination bpu cycle */
beginning right mask */
beginning left mask */
ending right mask */
ending left mask */
select left/right mask */
enable masks */

left mask enable */
data input latch */
bpu source enable */
internal delay */
internal delay */
fifo write */

fifo read */

right mask enable */

/** Declarations and Intermediate Variable Definitions **/

bpusrd = bpucyc & !destcyc & ddin;
bpudrd = bpucyc & destcyc & ddin;
bpuwrite= bpucyc & tddin;

TL/EE/10085-16

17

Name DECODE.PLD;

Date 07/08/87;

Revision 1A;

Designer FOX;

Company NSC;

Assembly APP Note;

Location 5F;

Device pl618;

/ * ialaaiale falaaleV)

* */

/* DECODE: Memory & 1/0 decode */

/* */

/* ekl * falslololalalalalold *xx/

/* Allowable Target Device Types: PAL16L8B */

/ ool * /

/** Inputs **/

Pin [1..9] = [a23..16,bal5] ;/* address bus */
Pin 10 = gnd ;/* ground */
Pin 11 = shdwn ;/* shadow enable */
/** OQutputs **/

Pin 12 = !ram0 ;/* ram0 enable */
Pin 13 = traml ;/* raml enable */
Pin 14 = Iram2 ;/* ram2 enable */
Pin 15 = Iram3 ;/* ram3 enable */
Pin 16 = lIramsel ;/* common ram select for wait state ct1*/
Pin 17 = !promsel ;/* prom select */
Pin 18 = liosel ;/* io device select */

/** Declarations and Intermediate Variable Definitions **/

$define

/** Logic Equations **/

field ad
romn
ramdcd
ram0
raml
ram2
ram3
ramse!

promsel

josel

r

[

= [223..16,bal5];

adr: (0100000..013Ffff];
adr: [0200000..0efffff] | (adr:[0..03ffff] & !shdwn);
fal7 & !al6 & ramdcd;

'al7 & alb & ramdcd;

al? & 'al6 & ramdcd;

al? & al6 & ramdcd;

ramdcd;

romn | (shdwn & adr:[0..03ffff]);

adr: [0ff0000..0ffffff];

TL/EE/10085-17

18

Name WAIT.PLD;
Date 07/08/87;
Revision 1A;
Designer FOX;
Company NSC;
Assembly APP note;
Location 5D;
Device plérs;

/** ool * jalalalaaialaialalalsialalalols /
r* */
/* WAIT.PLD: Wait recreation logic */
/* */
/ jalolalalalololel * el
/* Allowable Target Device Types: PALI16R4A */
Vol lalalole ialalaiicle * */

/** Inputs **/

Pin 1 = cttl /% CTTL

Pin 2 = tl ;/* T1 indication from CPU
Pin 3 = t2 /* T

Pin 4 = !ddin ;/* data direction

Pin 5 = tdbe ;/* data bus enable

Pin 7 = lcwait ;/* cwait into CG

Pin 8 = Iwait2 J/* wait 2

Pin 9 = lwaijtl i/* wait 1

Pin 11 = gnd ;/* ground

/** Qutputs **/

Pin 12 = liord ;/* i/o read strobe

Pin [16..14] = ![ctr2..0] ;/* wait state counter

Pin 17 = ldctr2 ;/* peripheral strobe for write
Pin 18 = csync ;/* sync strobe to bpu

Pin 19 = liowr ;/* i/o write strobe

/** Declarations and Intermediate Variable Definitions **/
$define | #
/** Logic Equations **/

field cnt = [ctr2..0];

load = {cwait & ctr2) | tl;
count = ctre;
ctr0.d load & !waitl

| t1oad & (count § ctr0):

*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

TL/EE/10085-18

19

ctrl.d

ctr2.d

dctr2.d

cycend

fcsync

iord
iowr

load & !wait2
Noad & ((count & ctr0) § ctrl);

Toad
toad & ((count & ctrl & ctr0) $ctr2);

ctre;
tcwait & cnt: [7];
cycend;

dctr2 & ddin;
(ctr2 & dctr2) & !ddin;

TL/EE/10085-19

20

32CG16 Functional Block Diagram

SERIAL
RS232C
INTERFACE

SHEET 7

[e—> J1
[—>»J2

N N WAIT ROM/EPROM
> 32CC16 CPU 1€ CONTROL 256KB MAX
SHEET 2 SHEET 3 SHEET 5
BDOO—BD15
32202 DP8511
U e 256KB SRAM
SHET 3 SHEET 6 SHET 4

TL/EE/10085-6

21

£-58004/33/71L

/

JINCOA JOLVTTIOSO TVISAYD

UD OSL ¥M QYW Q¥ 380

38H

7L $1S-0IS NIGd

<108-0008

W

SLESVYL
401

S1va-oove

22

~
3
2
=
2

Ndd ZLX3 L3

£TY=91¥

a9sifel] 9isoze
Vo6

1visndg

Buuiayyng pue ndd

8-G8004+/33/71L

NOILYIId3Y Liv#

Y91IVd
as

VKO QHOI Yol
Ol ZAVM LIV
TISHONd ‘SHYA=0NYY

SoLIvNng
YMTLONE

IR
TRINonds

d074=dN4 MOAVHS KOdd

INmt

£008-0008

g [
w LISVPZ OF SYIIANT LIVA
ve
s |
™6
S D=
Vawm| e o7 U 11
LISYVZ OF 7 0
ve h s
Al hod 7151
army O
O D 7 TR ST
TR
91 ¥3dANT
NS NS NS NS NS NG NS IS
LSS TS YIS SIS TS 1IUS 01N e %
G+
380
NIgg ‘13534
mm._ﬁ._um =l
g SZY-91Y
S1va-10ve
JOVAYIINI 001
T
T =
TESVYL
9 OSYPL
g _lN 8 7ive
mr-
gosT. s
o o
T
® i2 oI5
(A g =
SOve 8C i ST
©
= LN
70 ¢s
S
>
TNEWS
7 1N

MSINN

JITETTI

23

256 kbyte Static RAM

BDO0=BD15

. 16E
S_BDIS A 18 _BD15 A
8 BD14 A 18_BD14 A
7_BDI13 A 17 _BD13 A
6§ _BDI12 A4 16 BD12 A
S_BDI1A 15_BD11 A
3 _BDICA 13 _BD10 A
2__BD09 A 12__BDOS A
1__BDO8 A 11__BDO3 A

9 _BDO7 A 19 BDO7 A
8 __BD06 A 18 _BDO6 A
7__BD05 A 17__BDOS A
6 _BD04 A 16 __BDO4 A
S_BD03 A 15 __BDO3 A
3__BD02 2 |L3BD02
1A 1A
1_BDOO/ 11_BDOO /

0 11__BDOB A

19 _BD15 A
18_BD14 A
17_BD13 A
16 _BD12 A
15_BD11A

13 _BD10A
12__BDOS A

19 BDO7 A
18 _BDO6 A
17__BDOS A
16 _BDO04 A
15__BDO3 A

13 _BD02 A
P

1
11_BDOO /

BAOO-BA15 MRD RAMO-RAM3

6C
R 4 J4AS32

TL/EE/10085-9

24

04+-5800+/33/1L

oo,

Q¥ “S1¥8-00vE

»
ww Pz ZSSVIL
o ¥ oL o. &
g
o /]
ov /] o,
W /] O,
ov “ a,
o o
/] g 6 = 4
/000811 ﬁwm m« /000811 /1 YOSYPL rim_ o
M A B &y /100821 /] ® T 0,
z008 1) o0 oIy l/2008_¢1 % o
008 G1f .0 1y SR 91 i
/7008 901] ¢ M T /] 91 d3dnnr
V/s0ae 21| oo oy L/ soae_71 /] o 8
9008 e1] 0 v /00881 %
7008 61 oIy 7008 61
4l
[tz Sl=¥1 % £1=Z) :SIOIAI0 ONZIS
vri 91-G1 ¥ plL=¢1 :SI0AI EN9ST *ILON
= o1
e ©
oL
0 5 S
0 w7 T3SNo¥d
ov o
o Sﬁ“
v
Al
v
av 7
800811 mm m« /800811 i/
G R [ota—t 4
Tiaa_c1| 20 oy ANTER A
Zigs o1 ° Hy AT /]
e O Ll 71}
viaa_g1] 0 R viag_8l A
cias 61] © MW« Siag 6/ 1/
A Iy
71812
8l

Slaa-ooag

NOYd3 a1Aa) 952

25

Bit Processing Unit (DP8511)

7F
/o0 74AS00 .
us
BPUSTAT
7415139
3 BPUCTC
s12 s v C; DATACYC
s sf VEs
51 24, oo
= 3
745174
N__BD07 14 B_BRME
N__Boos 13 B_BLNE
N—800s il o :,z::g
N_Boot sl oo f—8 »
N800z 4y, o, |5 B-FNBRU ’ 7445174
e GO as32 FRD (7% [()
RESET % WASK ! 12 " TWR N A VAT
RESET ° T 3 RUE 58 [BIRCT
17 It D o3 [LMD
b ; o o |2 BB
e 0o 2 _BDLED
BPUMSKWR BPUMSKWR [e oestec | A
DDIN 19 EMASK_SEL w 9 1
18 NASK_ENB JaAsod
13 CIR_LOAD |)
12 CIR_ENBP
0 5
E))
7415592
BDO7 7 o - BCTL
ET A PAL20R6
Bpos sl B_ENBPY
N—B8004 4]
£ FRDD
B33}, TWRD 23 A3 /FRD
N—8002____2f. b Z_ZIPH/FWR QDS
N80t iy e A
N—BD00 sl 7o JPA0/LME Doo7
BPUCNTWR s % 2206
[V fhing 5 R DQ0s
— g oo QD4
12, g B_BSED 3 FSE bao3
o 5O D02
T e I 4 oot
2 B_DLED 1
= 000
v
1T
3
ol
2
5
RIS
1k
v+

TL/EE/10085-11

26

8A
681
&'—2720 RXDA TXDA
"= RXDB TXDB
A 119
BDO7 13 P
. 58 BD07 13 Jp7 oPi
=2 g_ 232 BDO6 16 |pe
= 7[120 o I i [8005 12 Ips _
3 RX1 BDO4 17 |ps 0oP0
=S R2I R20
=< 1 12 RX2__ BDO3 11
< s Ll Riop< e 03
= 110 ll / 5002 18 Jp,
=))—‘ BDOT 10 |y
|,) BDOO 19 |py e RE DUARTINT
* R
T > H o2 PRI BAO4
=z > T22 3 16__T22 A3
=< c1= Voo BAO A2 c6
e 4 15 BAO: Z3
= A1 Xt CLK—I—'
- ; o [GND] 5 % BAO A0 / XTAL1 15 pF
=< T2 50, gl T2 o7 s | 3,686 MHz C7
= — RD xz“_I_|
. OWR 5 R
—
v 74AS04 26| cE o
11 10 RESET | 25 IRESET
0 T i
DUARTCS
+.
-1 > °
= |
g3 = L cg-c12 £locis..
.
55>
=1 v
=7

TL/EE/10085-12

27

Simple Embedded Control NS32CG16 System Graphics Application Note 2

AN-564

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL
SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or

systems which, (a) are intended for surgical implant
into the body, or (b) support or sustain life, and whose
failure to perform, when properly used in accordance
with instructions for use provided in the labeling, can
be reasonably expected to result in a significant injury

to the user.

2. A critical component is any component of a life

support device or system whose failure to perform can
be reasonably expected to cause the failure of the life
support device or system, or to affect its safety or

effectiveness.

National Semiconductor
Corporation
1111 West Bardin Road

Arlington, TX 76017
Tel: 1(800) 272-9959
Fax: 1(800) 737-7018

National Semiconductor

Europe

Fax:
Email:
Deutsch Tel:
English Tel:
Francais Tel:
ltaliano Tel:

(+49) 0-180-530 85 86
cnjwge @tevmz2.nsc.com
(++49) 0-180-530 85 85
(+49) 0-180-532 78 32
(+49) 0-180-532 93 58
(+49) 0-180-534 16 80

National Semiconductor
Hong Kong Ltd.

18th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.
Tsimshatsui, Kowloon

Hong Kong

Tel: (852) 2737-1600

Fax: (852) 2736-9960

National Semiconductor
Japan Ltd.

Tel: 81-043-299-2309
Fax: 81-043-299-2408

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

