
TL/EE10085

S
im

p
le

E
m

b
e
d
d
e
d

C
o
n
tro

l
N

S
3
2
C

G
1
6

S
y
s
te

m
G

ra
p
h
ic

s
A

p
p
lic

a
tio

n
N

o
te

2
A

N
-5

6
4

National Semiconductor
Application Note 564
June 1989

Simple Embedded Control
NS32CG16 System
Graphics Application Note
2

1.0 INTRODUCTION

This design is for a stand alone NS32CG16 execution vehi-

cle. The design includes the NS32081 Floating Point Unit,

DP8511 BitBlt Processing Unit, NS32202 Interrupt Control

Unit and SCN2681 Dual channel serial interface. MONCG, a

modified version of MON16, is supported in this design for

interface to DBG32 debug utilities. The NS32202 timers

may be used to time program execution.

1.1 Specification

1. 256 Kbytes of Static RAM (32K x 8).

2. 4 sockets of EPROM, capable of 27C256 or 27C512

EPROM.

3. Serial I/OÐ2 ports RS-232, configured for

MONCG/DBG16 debug.

4. Circuits required to interface the DP8511 with the

NS32CG16. The interface utilizes an 8-bit counter to

control the DP8511 allowing a maximum of a 256 word

wide pattern to be BitBlted.

5. Memory and I/O map controlled with PALs to allow

changes.

6. Simple LED indicators to show board status.

7. NS32081D-15 installed for floating point tests.

8. NS32202-10 interface to verify interrupts.

9. 3 push buttons, INT into NS32202, NMI and RESET to

NS32CG16.

10. NS32CG16V-15 installed.

11. MONCG (a new mon16) installed in EPROMs.

12. HOLD/input available for testing.

13. ‘‘SPLICE’’ Control Signal interface.

14. PROM Shadow feature.

15. Operates at 15 MHz.

1.2 BPU Control Circuit Programming Information

On the board, the addresses of the control registers are

PAL programmable, but default to the following:

Address Description

0xFF0000 Duart (SCN2861)

0xFF0020 BPU Control Register on DP8511

0xFF0022 BPU Function select register on DP8511

0xFF0040 BPU Mask Register

0xFF0060 BPU Counter Register

The BPU Control register and Function select register are

as described in the DP8511 BitBlt Processing Unit Data

sheet, and are 13 bits and 4 bits wide respectively.

When programming the control logic, the following se-

quence should be used.

1. Write BPU Counter

2. Write BPU Mask Register

3. Write BPU Control Register

4. Write BPU Function Select Register

Note that the BPU Enable in the Mask register must be

turned on prior to writing the BPU Control register.

When the BILBLT operation is complete, it is recommended

that the BPU be turned off by writing a zero to the BPU

Mask register. This is not required, however.

2.0 NS32CG16/DP8511 INTERFACE

The following sections describe the logic required to inter-

face the NS32CG16 to the DP8511 BitBlt Processing Unit

(BPU). The NS32CG16 facilitates the interface require-

ments by supporting a special signal, BPU, and an BitBlt

instruction, EXTBLT.

The schematic and PAL equations in this document de-

scribe an implementation that supports BitBlt operations in

4 directions, left to right or right to left while moving top to

bottom or bottom to top. Most typical printer applications

require only left to right BitBlting while moving top to bottom.

2.1 Features

Following are the features of described interface:

32-bit CPU.

16 megabyte address range for BitBlt operations.

BitBlt operations in all 4 directions.

16 logical BitBlt functions.

0 (0 to d)

1s AND 1d

1s AND d

1s

s AND 1d

1d

s XOR d

1s OR 1d

s AND d

s XNOR d

d (d to d)

1s OR d

s (s to d)

s OR 1d

s OR d

1 (1 to d)

Series 32000É is a registered trademark of National Semiconductor Corporation.

PALÉ is a registered trademark of and used under license from Monolithic Memories, Inc.

C1995 National Semiconductor Corporation RRD-B30M105/Printed in U. S. A.

Operates with conventional DRAMs.

High-speed barrel shift of data.

Hardware masking of data.

Bus bandwidth limits on external BitBlting.

2.2 Image Memory Configuration

To obtain optimum performance in graphics applications the

Image Memory must be organized to support the Series
32000 byte and bit manipulating instructions. Figure 2.1 , be-

low, illustrates the memory organization at the byte (8 bits),

word (16 bits) and double-word (32 bits) level.

In the rest of this document hexadecimal numbers will be

represented with a leading 0x. e.g., hexadecimal 1a5a will

appear in this document as 0x1a5a.

Figure 2.1 represents one scan line of a standard 8(/2 inch

by 11 inch page, on a 300 Dot Per Inch (DPI) laser printer in

the portrait orientation (8(/2 inches wide, 11 inches high).

There are 3300 such scan lines on each page. The start of

the second scan line on the page would be at byte offset

320 decimal, 140 hex. Since the first scan line is at the top

of the page, successive scan lines proceed down the page.

All Series 32000 microprocessors have 32-bit internal data

paths, with a ‘‘natural’’ size of 32 bits, or 4 bytes. Memory

accesses are always Least Significant Byte (LSB) to Most

Significant Byte (MSB). Referring to Figure 2.1 , writing a

byte of 0xA5 to address zero would result in address zero

containing 0xA5. Writing a word of 0xA55A to address zero

would result in address zero containing 0x5A, and address 1

containing 0xA5. Writing a doubleword of 0xFFA55A00 to

address zero would result in address zero containing 0x00,

address 1 containing 0x5A, address 2 containing 0xA5, and

3 containing 0xFF.

The Series 32000 microprocessors do not have an align-

ment restriction in that data of byte, word or doubleword

size need not reside on an even memory address. The Bus

Interface Unit, internal to all Series 32000 microprocessors,

request multiple bus transfers as required, aligning the data

automatically.

The bit offset is equally consistent. Bit ordering is always

least significant to most significant bit. In Figure 2.1 , bit zero

of byte zero would be the first pixel imaged on the page. Bit

one would be the next pixel, bit two the next, and so on. Bit

2549 would be the last pixel imaged on the page in the

horizontal direction, since 8(/2 inches * 300 DPI yields a

width of 2,550 dots, or pixels. Bit 2549 is contained within

byte 318, at bit position 5. Both Bit Addressing (e.g., SBITD
2549,page) and Byte Addressing with a byte address and a

bit offset (e.g.,SBITD 5,page a 318) are available inSeries
32000. Figure 2.2 is an expansion of the first three bytes of

the scan line, showing the bit addressing, as it would appear

on the page printer or graphics screen.

To clarify these conventions further, the following example

illustrates how a line 1 dot high and 10 dots wide is drawn.

This line appears on scan line one, starting at the ninth

pixel, or bit position 8. This will result in 0xFF in address

one, and 0x03 in address two. This is referred to as the

horizontal direction.

The width of the memory for an image is referred to as the

imagewarp. Thewarp of the page printer image in the previ-

ous example is 320 decimal (140 hex) bytes, or 2560 bits.

Note that the image width is actually 2550 on this sample

page printer at 300 DPI, since 8(/2 inches * 300 DPI yields a

width of 2,550 dots. The width is rounded up to 2560 bits

(320 bytes) to make memory addressing simpler in a typical

hardware design.

When the warp is known, perpendicular (or vertical, in this

case) lines can be drawn. A vertical line 10 dots high and 1

dot wide starting at the first line, ninth pixel, with a warp of

320 (140 hex) and a base address of 0 would result in ad-

dresses 1 (1 hex), 321 (141 hex), 641 (281 hex) . . . 2881

(B41 hex) each containing 01 hex.

To summarize, for portrait applications, the ‘‘top left’’ pixel is

bit 0. The ‘‘top right’’ pixel is bit 2,549. The ‘‘bottom left’’

pixel is bit 8,445,440. The ‘‘bottom right’’ pixel is bit

8,447,989. To calculate x,y bit positions on the page, the

formula:

Bit offset e (y * 2560) a x

may be used, where y is the scan line number ranging from

0 to 3299, for the sample 8(/2 by 11 inch page, and x is the

pixel displacement across the page from the left hand edge.

TL/EE/10085–1

FIGURE 2.1. Memory Organization

Byte 0 Byte 1 Byte 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

FIGURE 2.2. Bit Order within a Byte

2

2.3 BitBlt Operation

It is assumed that the reader is familiar with the fundamen-

tals of BitBlt operations. More information on the BitBlt algo-

rithm may be found in the DP8511 BitBlt Processing Unit

(BPU) data sheet.

In this circuit the BPU is connected to an NS32CG16 CPU.

During the external BitBlt instruction execution, the CPU

generates an optional source word pre-read, source word

read, destination word read and destination word write,

while asserting the BPU signal. The BPU interface circuit

monitors the BPU signal and controls the BPU and asserts

left and right masks when appropriate. The interface has an

8-bit counter, enabling up to 256 word wide blocks to be

transferred.

Prior to executing the EXTBLT instruction the software must

first load the mask register with left and right beginning and

ending mask bits, pre-read enable, BPU enable, and then

load the character width count register with the width (in

words) of the BitBlt operation. Then the software loads the

BPU control register with the Barrel Swap bit , the shift
amount , the left mask, and the right mask values and the

BPU Function select register . The software must then load

the CPU registers with all the information required by the

EXTBLT instruction, for more details, refer to the

NS32CG16 Programmer’s Reference Manual. The EXTBLT

instruction will then cause the BPU to perform the required

BitBlt instruction for the width of the character by the height

of the character.

The mask register , the character width counter register , the

BPU control register and the BPU Function select register
are mapped as output devices in the CPU’s address space.

The address of these registers are implementation depen-

dent since the EXTBLT instruction does not reference them

directly. The BPU is selected by the BPU signal which is

asserted during the execution of the EXTBLT instruction.

The BPU control register is shown inFigure 2.3a. This regis-

ter is on the BPU device. Note: the left mask is asserted at

the beginning of a line on the left side of the page, the right

mask is asserted at the end of a line on the right side of the

page. This satisfies the bit-ordering of a Series 32000 bit

zero of byte zero is the first imaged pixel.

The programming of the BPU control register changes de-

pending on the direction of the BitBlt, either left to right or

right to left. The mask enable bits for the left and right

masks and the BIS bit remain the same for top to bottom or

bottom to top.

12 11 10 9 8 7 6 5 4 3 2 1 0

BIS S N L M R M

FIGURE 2.3a. BPU Control Register

3

Description of control register bits.

RM MSB Ð Ð Ð Ð Ð Ð ÐÐ LSB

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

1 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

1 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

1 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

LM MSB Ð Ð Ð Ð Ð Ð ÐÐ LSB

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

1 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SN

0 0 0 0 Barrel shift quantity. Causes the 32-bit barrel

l shifter to rotate 0–15 bits MSB to LSB.

1 1 1 1

BIS

0 Left to right, shift l zero.

1 Left to right, shift e zero.

1 Right to left, any shift.

3 2 1 0

FS

FIGURE 2.3b. BPU Function Select Register

Description of Function Select register bits.

FS

0 0 0 0 0

0 0 0 1 1s AND 1d

0 0 1 0 1s AND d

0 0 1 1 1s

0 1 0 0 s AND 1d

0 1 0 1 1d

0 1 1 0 s XOR d

0 1 1 1 1s OR 1d

1 0 0 0 s AND d

1 0 0 1 s XNOR d

1 0 1 0 d

1 0 1 1 1s OR d

1 1 0 0 s

1 1 0 1 s OR 1d

1 1 1 0 s OR d

1 1 1 1 1

4

The structure of the mask register is shown in Figure 2.4 . It

is an 8-bit register, located on the least significant byte of

the data bus. Following is a description of valid mask enable

sequences that can be programmed into the mask register .

A left mask in the following documentation means a mask

that preserves the least significant bits, a right mask pre-

serves the most significant bits. The BPU applies the left

and right masks on the write to the destination.

BRME BLME ERME ELME

0 1 1 0 Left to right, both masks, width l 1

1 0 0 1 Right to left, both masks, width l 1

0 0 0 0 Shift of zero, no masks, width 4 n * 16 bits

1 1 0 0 Any direction, both masks, width 4 1

0 1 0 0 Any direction, left mask, width 4 1

1 0 0 0 Any direction, right mask, width 4 1

ENBPU Active High. When low, resets the BPU and the

interface circuitry state machine.

PRERD Active High. When asserted, forces the interface

circuitry to perform an additional read at the be-

ginning of each BitBlt source read. This is termed

source pre-read, and is required at the beginning

of each line if the width of the first destination data

write is greater than the amount of valid data con-

tained in the first source read.

7 6 5 4 3 2 1 0

B B E E E P

R L R L N R

M M M M B E

E E E E P R

U D

FIGURE 2.4. Mask Register

The structure of the counter register is shown in Figure 2.5 .

It is an 8-bit register, located on the least significant byte of

the data bus. The value written to this register is the two’s

complement of the width in words of the destination data to

be BitBlted. Each word is 16 bits in width, thus for a font

character 32 pixels wide, the counter register would be

loaded with the value 0xFE. The two’s complement of the

width can easily be obtained via the NS32CG16’s NEGi

gen,gen instruction.

7 6 5 4 3 2 1 0

Width in Words

(Two’s Complement)

FIGURE 2.5. Counter Register

2.4 Interface Circuit Description

The EXTBLT instruction causes the CPU to output source

and destination addresses, the BPU signal and read/write

bus cycles. The BPU interface circuit monitors these signals

and issues control signals to the BPU. The BPU must be

interfaced to the data bus on the system side of the trans-

ceivers. During BPU data transfer cycles, a signal is gener-

ated by the BPU interface circuit to disable the data bus

transceivers. The CPU must be disabled from driving the

system data bus during an EXTBLT write cycle because the

BPU will be driving the BitBlt result onto the bus.

A detailed description of the BPU interface circuit and all the

external signals follows.

Description of interface signals follows.

Signal Description

BPU From NS32CG16, BPU cycle active.

ST1–ST3 From NS32CG16, status signals

describing the type of bus cycle.

BD00–BD15 Buffered system data bus.

RESET From NS32CG16, reset signal.

TSO From NS32CG16, signifies data

portion of bus cycle.

CTTL From NS32CG16, TTL clock output.

DDIN From NS32CG16, signifies direction

of data transfer.

CSYNC Similar timing to TSO, but is deasserted

one T-state early, at the end of T3.

BPUCYC Signal to turn off the data

bus transceivers. The CPU data bus must

be isolated from the BPU-memory data

bus during the execution of

the EXBLT instruction.

The following signals are decoded

address lines, gated with TSO

BPUMSKWR Write the 8-bit mask register.

BPUCNTWR Write the 8-bit counter register.

BPUCTLWR Write the BPU control register.

Refer to the BPU interface schematic diagram for the rest of

this section. Functional description of the interface circuit

follows.

2C and 6C decode status signals from the CPU along with

the BPU signal to produce the BPUCYC signal. BPUCYC

indicates that the current bus cycle is an EXTBLT data

transfer cycle. The status signals must be used to qualify

the BPU signal because the CPU can assert BPU and then

perform instruction pre-reads to fill it’s internal pre-fetch

queue. The status signals are decoded to uniquely detect a

data transfer cycle, as against any other type of bus cycle.

3F is the mask register . It is a 6-bit write only latch with

reset. On power-on the NS32CG16 RESET output signal

will cause all the outputs of the latch to be cleared to ze-

roes. Writing to the latch simply involves a move of a byte to

the BPUMSKWR address. Once programmed themask reg-
ister will remain unchanged until it is written to again or

RESET is asserted.

5

3D is the counter register . It is an 8-bit write only latch and

counter. Writing to the latch simply involves a move of a

byte to the BPUCNTWR address. Once programmed the

counter register will remain unchanged until it is written to

again. The synchronous binary up counter portion of 3D is

loaded when 4D asserts the CTRÐLOAD output. CTRÐ
LOAD is asserted when the BPUMSKWR signal is active,

which implies that the programmer must program the coun-
ter register prior to the mask register . The counter in 3D

enables characters up to 256 words wide to be BitBlted with

the BPU. Note again that the value programmed into the

counter register must be the two’s complement of the width

in words of the character.

BPU bus cycles consist of an optional source pre-read (only

on the first word of a new line), source read, destination

read and destination write. 4D detects destination writes

and only increments or re-loads 3D on completion of the

write. The PRERD bit in the mask register must be set by

the programmer if pre-reads are required. This bit causes

the state machine in 4D to perform an extra source read

(pre-read), at the beginning of each BitBlt line.

CTRÐLOAD is also asserted on the last BPU write cycle at

the end of each BitBlt line, causing the value in the counter
register , 3D, to be re-loaded into 8-bit counter in preparation

for the next BitBlt line. The TSO signal from the NS32CG16

is the clock, rising (positive-going) edge sensitive, for 4D

and 3D. During a BitBlt of more than one word in width, 4D

also asserts the CTRÐENBP signal to enable 3D to count

on the next rising edge of TSO. 3D counts up until it reaches

a count of 255, at which point the RCO of 3D is asserted. 4D

treats the assertion of the RCO signal as an indication that

the next BPU bus cycle (source read, destination read and

destination write) is at the end of BitBlt line. 4D then asserts

the MASKÐSEL and MASKÐENB signals, and causes 3D

to re-load from thecounter register as explained above. The

MASKÐSEL and MASKÐENB signals control the multi-

plexer in 4F selecting the appropriate masks control signals

that connect to the BPU, refer to the description of themask
register in Section 2.3.

Refer to the attached timing diagrams for detailed BPU con-

trol signal timing. Figure 2.6 depicts a complete BPU cycle

with pre-read. Only the data path control signals are shown.

Figure 2.7 depicts a write bus cycle to the mask register .
Figure 2.8 depicts the assertion of the appropriate masks

during the first, a middle word and then the last word of a

BPU BitBlt line.

4D generates a signal, DESTCYC, that indicates the type of

bus access that the EXTBLT instruction is performing.

When high, it indicates a source pre-read or read, when low,

it indicates either a destination read or destination write.

DESTCYC connects to 4F which controls most functions of

the BPU.

4F controls the BPU data paths, FIFO operation, and con-

trol registers. The programmer must load the BPU control
register prior to executing the EXTBLT instruction, refer to

Section 2.3 for a detailed description of the bits. The pro-

grammer accesses the 13-bit, write only control register by

writing to the BPUCTLWR address. 2C generates the CRE

signal which writes the 13-bit data into the BPU control reg-
ister .

2C also generates the FSE signal which writes 4-bit data

into the BPU Function select register . All references to reg-

isters within the BPU use the same terminology as in the

DP8511 data sheet. 2D is clocked from inverted CTTL, its

function is to delay the assertion of the FRD, FWR, RME,

LME, BSE and DLE signals to satisfy the setup and hold

time requirements of the DP8511. The BÐDLE signal caus-

es the BPU to latch the data on the data bus into the DIL-

MASTER register. Both the source and destination read

data is temporarily stored in this register during the EXTBLT

instruction execution. The BÐBSE signal causes the BPU

to latch the data from the DIL-MASTER register into the

DIL-SOURCE register during a source pre-read or read bus

cycle.

When BÐBSE is not asserted, the data contained in the

DIL-MASTER register will be latched into the DIL-DEST reg-

ister. The DIL-DEST register contains the read destination

data.

The barrel rotator performs the rotation, 0 to 15 bits. The

result is transferred to a multiplexer at the input of the 16

word FIFO. 4F generates the FWR signal to write this value

into FIFO location 0. 4F delays the assertion of FRD two

clocks, as required by the BPU. The FRD signal transfers

the data stored in FIFO location 0 to a holding latch, then

through another multiplexer (always in BitBlt mode, B/L low)

to the source input of the BitBlt Logic Unit, BLU.

The BÐBSE is deasserted during the destination source

read, causing the DIL-MASTER data to be loaded into the

DIL-DEST register, through to the destination input of the

BLU.

The BLU performs the required logical operation, based in

the 4-bit Function Select code programmed into the BPU

control register . The left and right masks are then applied to

the result and finally the destination read data is ored with

this result. This method of masking is called destination
masking and is different to the NS32CG16’s software BitBlt

instructions which perform source masking. The final result

is the same regardless of the method used.

The result from the BLU is now available for writing back to

memory. The NS32CG16 performs a write bus cycle, 6C

generates DOE which enables the BPU output buffers, the

result appears on DQ00–DQ15 and is written to memory.

The entire BitBlt operation takes 12 clock cycles to perform

a source read, destination read and destination write. The

whole BitBlt cycle can then repeat for the next word of the

BitBlt line. Note that interrupts if enabled and pending will

be serviced at the end of each BPU write cycle. The preread

(optional), read source, read destination and write destina-

tion cycle is indivisible at the interrupt level. The NS32CG16

will deassert the BPU signal prior to fetching the vector from

the interrupt source. The BPU signal remains deasserted

during the entire interrupt service routine and only on return

from interrupt and resumption of the EXTBLT instruction will

the NS32CG16 again assert the BPU signal.

The DP8511 BPU has many functions that are not used by

the NS32CG16 during the EXTBLT instruction execution.

Figure 2.9 depicts the functional blocks inside the BPU that

are used during an EXTBLT instruction. Refer to the

DP8511 Data Sheet for the complete BPU model.

Following are two example programs that perform tests of

the EXTBLT instruction and interface. The first program per-

forms a left to right, top to bottom test, the second performs

a right to left, bottom to top test. The programs check the

result of the EXTBLT instruction by comparing the output

with that from the BBFOR instruction. If the results are the

same, the shift amount is incremented and the test is per-

formed again. The programs test the EXTBLT for shifts of

zero through to 15.

6

#Program extblt.s

#Program to test the extblt instruction, left to right, top to bottom

.globl test,dest

#BitBlt test program

test: movqd 0,shift # start with shift of zero

loop1: movd $108,height # height in lines

movqd 1,width # start with width of 1 word

loop: addr dest,r0 #point to destination block

movqd 4,rl #increment value

addr 1024,r2 #number of patterns to write

movqd 0,r3 #pattern to write

movmpd #fill area

addr 0xff0000,r0 #point to the control base

movd width,r2 # get current width

movd shift,r1 # get current shift value

movb $0x0e,r3 # assume shift is zero.

movqd 4,r7 # set destination warp

movqd 0,r6 # set source warp

cmpqd 0,r1 # is shift zero?

beq noinc # yes, all is ok, else

movb $0x6e,r3 # set up left and right masks

addqd 1,r2 # one extra word of destination

movqd 2,r7 # set destination warp

movqd 12,r6 # set source warp

noinc: negb r2.0x60(r0) # set up counter

movb r3,0x40(r0) #set up mask register

movw bputab[r1:w],0x20(r0) #set up BPU register

movw $0x7,0x22(r0) #set up BPU register, OR function

addr chara-2,r0 #point to source character

addr dest,r1 #point to destination

movd height,r3 # get current height

movqd 2,r4 #increment value

addd r2,r2 # width 4 r4 * r2

movd r2,r5

cmpqb 1,$2 #do pre read

extblt

movqb $0,0x40 0 0xff0000 #clear mask register, disable

#bpu, reset logic

addr chara,r0 #point to source char

addr dest1,r1 #point to destination

movd shift,r2 #shift value wanted

movd height,r3 #height in lines

movd $0xffff,r4 #first mask

movd $0xffff,r5 #second mask

movqd 2,r6 #source warp

movqd 4,r7 #dest warp

movd width,tos #width in words

cmpb r2,$0

bbfor

cmpqd 0,tos #unstack

addr 512 ,r0 #number of doubles to compare

addr dest1,r1 #dest1

7

addr dest,r2 #dest

cmpsd #compare those strings

bne bad

addqd 1,width # next width

movd $54*4,r0 # get max lines

divd width,r0 # divide to get current lines

movd r0,height # and store it

cmpqd 1,r0 # is it OK?

blt loop

addqd 1,shift # next shift

cmpd $16,shift # done yet?

bne loop1 # no, back for more

#
ret $0

bad: bpt

.data

.data

bputab: .word 0x100f # shift of zero, set masks & BIS

.word 0x0f10 # shift of one

.word 0x0e21 # shift of two

.word 0x0d32 # shift of three

.word 0x0c43 # 4

.word 0x0b54 # 5

.word 0x0a65 # 6

.word 0x0976 # 7

.word 0x0887 # 8

.word 0x0798 # 9

.word 0x06a9 # 10

.word 0x05ba # 11

.word 0x04cb # 12

.word 0x03dc # 13

.word 0x02ed # 14

.word 0x01fe # 15

width: .double 0

shift: .double 0

count: .double 0

height: .double 0

.comm dest,2048

.comm dest1,2048

8

#Program extblt.s

#Program to test the extblt instruction right to left, bottom to top

.globl test,dest

#BitBlt test program

test: movqd 0,shift # start with shift of zero

loop1: movd $108,height # height in lines

movqd 1,width # start with width of 1 word

loop: addr dest,r0 #point to destination block

movqd 4,rl #increment value

addr 1024,r2 #number of patterns to write

movqd 0,r3 #pattern to write

movmpd #fill area

addr 0xff0000,r0 #point to the control base

movd width,r2 # get current width

movd shift,r1 # get current shift value

movb $0x0e,r3 # assume shift is zero

movqd 14,r7 # set destination warp

movqd 0,r6 # set source warp

cmpqd 0,r1 # is shift zero?

beq noinc # yes, all is ok, else

movb $0x6e,r3 # set up left and right masks

addqd 1,r2 # one extra word of destination

movqd 12,r7 # set destination warp

movqd 2,r6 # set source warp

noinc: negb r2,0x60(r0) # set up counter

movb r3,0x40(r0) #set up mask register

movw bputab[r1:w],0x20(r0) #set up BPU register

movw $0x7,0x22(r0) #set up BPU register, OR function

addr charaa220,r0 #point to source character

addr desta1024,r1 #point to destination

addd r6,r1 #pre-increment destination for shl0

movd height,r3 # get current height

movqd 12,r4 #increment value

muld r4,r2 # width 4 r4 * r2

movd r2,r5

cmpqb 1,$2 #do pre read

extblt

movqb $0,0x40 0 0xff0000 #clear mask register, disable

#bpu, reset logic

addr charaa218,r0 #point to source char

addr dest1a1024,r1 #point to destination

movd shift,r2 #shift value wanted

movd height,r3 #height in lines

movd $0xffff,r4 #first mask

movd $0xffff,r5 #second mask

movqd 12,r6 #source warp

movqd 14,r7 #dest warp

movd width,tos #width in words

cmpb r2,$0

bbor 1da

cmpqd 0,tos #unstack

addr 512 ,r0 #number of doubles to compare

9

addr dest1,r1 #dest1

addr dest,r2 #dest

cmpsd #compare those strings

bne bad

addqd 1,width # next width

movd $54*4,r0 # get max lines

divd width,r0 # divide to get current lines

movd r0,height # and store it

cmpqd 1,r0 # is it OK?

blt loop

addqd 1,shift # next shift

cmpd $16,shift # done yet?

bne loop1 # no, back for more

#
ret $0

bad: bpt

.data

.data

bputab: .word 0x100f # shift of zero, set masks & BIS

.word 0x1f10 # shift of one

.word 0x1e21 # shift of two

.word 0x1d32 # shift of three

.word 0x1c43 # 4

.word 0x1b54 # 5

.word 0x1a65 # 6

.word 0x1976 # 7

.word 0x1887 # 8

.word 0x1798 # 9

.word 0x16a9 # 10

.word 0x15ba # 11

.word 0x14cb # 12

.word 0x13dc # 13

.word 0x12ed # 14

.word 0x11fe # 15

width: .double 0

shift: .double 0

count: .double 0

height: .double 0

.comm dest,2048

.comm dest1,2048

10

TL/EE/10085–2

FIGURE 2.5. BPU Data Cycle

TL/EE/10085–3

FIGURE 2.6. Mask Register Write

11

TL/EE/10085–4

BPU Write

First Word of Scan Line

BPU Write

Second Last Word of Scan Line

BPU Write

Last Word of Scan Line

FIGURE 2.7. BPU Mask Register Timing

12

TL/EE/10085–5

FIGURE 2.9. BPU Model

Figure 2.9 is a block diagram of the functional model of the

BPU as used with the NS32CG16. All the data paths in the

figure are 16 bits wide. The barrel shifter is actually a rotator

that rotates from right to left, i.e., least significant bits, DQ0

to DQ15, are shifted towards the most significant bits. Re-

ferring to Figure 2.9 the data paths to and from the barrel

shifter are A, B and C. Path A is the current source read

data and is loaded into the 16 LSB’s of the barrel shifter,

path B is the source read data from the previous word (if in

the middle of a BitBlt block) and is loaded into the

16 MSB’s. The data is rotated left by the appropriated num-

ber of bits specified by the SN inputs and the resulting 16

MSB’s are output via data path C to the BitBlt Logic Unit

(BLU). Path D contains the 16 bits from the destination read

data, and connects to the BLU destination data input. The

BLU performs the required function and asserts the appro-

priate masks and the result is then made available at the

output of the BLU for writing back to the destination BitBlt

address.

13

TL/EE/10085–13

14

TL/EE/10085–14

15

TL/EE/10085–15

16

TL/EE/10085–16

17

TL/EE/10085–17

18

TL/EE/10085–18

19

TL/EE/10085–19

20

32CG16 Functional Block Diagram

TL/EE/10085–6

21

C
P
U

a
n
d

B
u
ff

e
ri
n
g

T
L
/
E
E
/
1
0
0
8
5
–
7

22

T
L
/
E
E
/
1
0
0
8
5
–
8

23

256 kbyte Static RAM

TL/EE/10085–9

24

2
5
6

k
b
y
te

E
P
R

O
M

T
L
/
E
E
/
1
0
0
8
5
–
1
0

25

Bit Processing Unit (DP8511)

TL/EE/10085–11

26

TL/EE/10085–12

27

A
N

-5
6
4

S
im

p
le

E
m

b
e
d
d
e
d

C
o
n
tr

o
l
N

S
3
2
C

G
1
6

S
y
s
te

m
G

ra
p
h
ic

s
A

p
p
li
c
a
ti
o
n

N
o
te

2

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor
Corporation Europe Hong Kong Ltd. Japan Ltd.
1111 West Bardin Road Fax: (a49) 0-180-530 85 86 13th Floor, Straight Block, Tel: 81-043-299-2309
Arlington, TX 76017 Email: cnjwge@ tevm2.nsc.com Ocean Centre, 5 Canton Rd. Fax: 81-043-299-2408
Tel: 1(800) 272-9959 Deutsch Tel: (a49) 0-180-530 85 85 Tsimshatsui, Kowloon
Fax: 1(800) 737-7018 English Tel: (a49) 0-180-532 78 32 Hong Kong

Fran3ais Tel: (a49) 0-180-532 93 58 Tel: (852) 2737-1600
Italiano Tel: (a49) 0-180-534 16 80 Fax: (852) 2736-9960

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

