
TL/EE10434

B
re

s
e
n
h
a
m

’s
L
in

e
A

lg
o
rith

m
Im

p
le

m
e
n
te

d
fo

r
th

e
N

S
3
2
G

X
3
2

A
N

-6
1
1

National Semiconductor
Application Note 611
Rick Pelleg
September 1989

Bresenham’s Line
Algorithm Implemented for
the NS32GX32

1.0 INTRODUCTION

Even with today’s achievements in graphics technology, the

resolution of computer graphics systems will never reach

that of the real world. A true real line can never be drawn on

a laser printer or CRT screen. There is no method of accu-

rately printing all of the points on the continuous line de-

scribed by the equation y e mx a b. Similarly, circles, ellip-

ses and other geometrical shapes cannot truly be imple-

mented by their theoretical definitions because the graphics

system itself is discrete, not real or continuous. For that

reason, there has been a tremendous amount of research

and development in the area of discrete or raster mathemat-

ics. Many algorithms have been developed which ‘‘map’’

real-world images into the discrete space of as raster de-

vice. Bresenham’s line-drawing algorithm (and its deriva-

tives) is one of the most commonly used algorithms today

for describing a line on a raster device. The agorithm was

first published in Bresenham’s 1965 article entitled ‘‘Algo-

rithm for Computer Control of a Digital Plotter’’. It is now

widely used in graphics and electronic printing systems.

This application note describes the fundamental algorithm

and shows an implementation specially tuned for the

NS32GX32 microprocessor. Although given in the context

of this specific application note, the assembly level opti-

mizations are relevant to general programming for the

NS32GX32. Timing figures are given in Appendix C.

2.0 DESCRIPTION

Bresenham’s line-drawing algorithm uses an iterative

scheme. A pixel is plotted at the starting coordinate of the

line, and each iteration of the algorithm increments the pixel

one unit along the major, or x-axis. The pixel is incremented

along the minor, or y-axis, only when a decision variable

(based on the slope of the line) changes sign. A key feature

of the algorithm is that it requires only integer data and sim-

ple arithmetic. This makes the algorithm very efficient and

fast.

TL/EE/10434–1

FIGURE 1

The algorithm assumes the line has positive slope less than

one, but a simple change of variables can modify the algo-

rithm for any slope value. This will be detailed in Section 2.2.

2.1 Bresenham’s Algorithm for 0 k slope k 1

Figure 1 shows a line segment superimposed on a raster

grid with horizontal axis X and vertical axis Y. Note that xi
and yi are the integer abscissa and ordinate respectively of

each pixel location on the grid.

Given (xi, yi) as the previously plotted pixel location for the

line segment, the next pixel to be plotted is either (xi a 1, yi)

or (xi a 1, yi a 1). Bresenham’s algorithm determines

which of these two pixel locations is nearer to the actual line

by calculating the distance from each pixel to the line, and

plotting that pixel with the smaller distance. Using the famil-

iar equation of a straight line, y e mx a b, the y value

corresponding to xi a 1 is

y e m(xi a 1) a b

The two distances are then calculated as:

d1 e y b yi

d1 e m(xi a 1) a b b yi

d2 e (yi a 1) b y

d2 e (yi a 1) b m(xi a 1) b b

and,

d1 b d2 e m(xi a 1) a b b yi b (yi a 1) a m(xi a 1) a b

d1 b d2 e 2m(xi a 1) b 2yi a 2b b 1

Multiplying this result by the constant dx, defined by the

slope of the line m e dy/dx, the equation becomes:

dx(d1bd2) e 2dy(xi) b 2dx(yi) a c

where c is the constant 2dy a 2dxb b dx. Of course, if

d2 l d1, then (d1 b d2) k 0, or conversely if d1 l d2, then

(d1 b d2) l 0. Therefore, a parameter pi can be defined

such that

pi e dx(d1 b d2)

pi e 2dy(xi) b 2dx(yi) a c

TL/EE/10434–2

Distances d1 and d2 are compared.

The smaller distance marks next pixel to be plotted.

FIGURE 2

Series 32000É is a registered trademark of National Semiconductor Corporation.

C1995 National Semiconductor Corporation RRD-B30M75/Printed in U. S. A.



If pi l 0, then d1 l d2 and yia1 is chosen such that the

next plotted pixel is (xi a 1, yi). Otherwise, if pi k 0, then

d2 l d1 and (xi a 1, yi a 1) is plotted. (See Figure 2.)

Similarly, for the next iteration, pia1 can be calculated and

compared with zero to determine the next pixel to plot. If

pia1 k 0, then the next plotted pixel is at (xia1 a 1, yia1);

if pia1 l 0, then the next point is (xia1 a 1, yia1 a 1).

Note that in the equation for pia1, xia1 e xi a 1.

pi a 1 e 2dy(xi a 1) b 2dx(yi a 1) a c

Subtracting pi from pia1, we get the recursive equation:

pia1 e pi a 2dy b 2dx(yia1 b yi)

Note that the constant c has conveniently dropped out of

the formula. And, if pi k 0 then yia1 e yi in the above

equation, so that:

pia1 e pi a 2dy

or, if pi l 0 then yia1 e yi a 1, and

pia1 e pi a 2(dy b dx)

To further simplify the iterative algorithm, constants c1 and

c2 can be initialized at the beginning of the program such

that c1 e 2dy and c2 e 2(dy b dx). Thus, the actual meat

of the algorithm is a loop of length dx, containing only a few

integer additions and two compares (Figure 3) .

2.2 For Slope k 0 and lSlopel l 1

The algorithm fails when the slope is negative or has abso-

lute value greater than one (ldyl l ldxl). The reason for this

is that the line will always be plotted with a positive slope if

xi and yi are always incremented in the positive direction,

and the line will always be ‘‘shorted’’ if ldxl k ldyl since the

algorithm executes once for every x coordinate (i.e., dx

times). However, a closer look at the algorithm must be tak-

en to reveal that a few simple changes of variables will take

care of these special cases.

For negative slopes, the change is simple. Instead of incre-

menting the pixel along the positive direction (d1) for each

iteration, the pixel is incremented in the negative direction.

The relationship between the starting point and the finishing

point of the line determines which axis is followed in the

negative direction, and which is in the positive. Figure 4
shows all the possible combinations for slopes and starting

points, and their respective incremental directions along the

X and Y axis.

Another change of variables can be performed on the incre-

mental values to accommodate those lines with slopes

greater than 1 or less than b1. The coordinate system con-

taining the line is rotated 90 degrees so that the X-axis now

becomes the Y-axis and vice versa. The algorithm is then

performed on the rotated line according to the sign of its

slope, as explained above. Whenever the current position is

incremented along the X-axis in the rotated space, it is actu-

ally incremented along the Y-axis in the original coordinate

space. Similarly, an increment along the Y-axis in the rotat-

ed space translates to an increment along the X-axis in the

original space. Figures 4a., g, and h. illustrate this transla-

tion process for both positive and negative lines with various

starting points.

do while count kl dx

if (p k 0) then p0 4 c1

else

p0 4 c2

next y 4 prev y 0 y inc

next x 4 prev x 0 x inc

plot(next x,next y)

count 04 1

/* PSEUDO CODE FOR BRESENHAM LOOP */

FIGURE 3

2



TL/EE/10434–3

a.

start p1: xÐinc e yÊÐinc e 0

yÐinc e xÊÐinc e a1

start p2: xÐinc e yÊÐinc e 0

yÐinc e xÊÐinc e b1

TL/EE/10434–4

b.

start p1: xÐinc e a1

yÐinc e 0

start p2: xÐinc e b1

yÐinc e 0

TL/EE/10434–5

c.

start p1: xÐinc e a1

yÐinc e b1

start p2: xÐinc e b1

yÐinc e a1

TL/EE/10434–6

d.

start p1: xÐinc e a1

yÐinc e a1

start p2: xÐinc e b1

yÐinc e b1

TL/EE/10434–7

e.

start p1: xÐinc e a1

yÐinc e b1

start p2: xÐinc e b1

yÐinc e a1

TL/EE/10434–8

f.

start p1: xÐinc e b1

yÐinc e b1

start p2: xÐinc e b1

yÐinc e b1

TL/EE/10434–9

g.

start p1: xÐinc e yÊÐinc e b1

yÐinc e xÊÐinc e b1

start p2: xÐinc e yÊÐinc e b1

yÐinc e xÊÐinc e b1

TL/EE/10434–10

h.

start p1: xÐinc e yÊÐincl e b1

yÐinc e xÊÐinc e a1

start p2: xÐinc e yÊÐinc e a1

yÐinc e xÊÐinc e b1

Note: a., g., and h. are rotated 90 degrees left and xÊ, yÊ refer to the original axis.

FIGURE 4

3



TL/EE/10434–11

Bit Map is 500,000 bytes, 2000 x 2000 Bits

Base Address of the Bit Map is ‘‘ÐbitÐmap’’

FIGURE 5

3.0 IMPLEMENTATION IN C

Bresenham’s algorithm is easily implemented in most pro-

gramming languages. Appendix A gives a C routine imple-

menting the algorithm.

The routine accepts as parameters the line’s start and end

coordinates, (xs, ys) and (xf, yf). It plots the line on a bit-map

allocated in memory. The dimensions of the bit map are

given in the include file ‘‘bres.h’’.

The program uses the variable bit to keep track of the cur-

rent pixel position within the 2000 x 2000 bit map (Figure 5) .

Note the macro definition for setting a bit in memory:

Ýdefine sbit(buffer, pos) (buffer)[(pos)ll3] le 1kk

(((char)pos)&7)

Bit ‘‘pos’’ is set by calculating pos MOD 8, which is the

same as (pos & 7). Then 1 is shifted by this amount to

obtain a mask of the bit to set in byte pos/8 of ‘‘buffer’’,

which is the same as (pos ll 3).

4.0 IMPLEMENTATION IN SERIES 32000É ASSEMBLY,

SPECIALLY TUNED FOR THE NS32GX32

This section demonstrates several kinds of assembly level

optimizations for speeding up NS32GX32 programs. These

take into account the execution times of different instruc-

tions, data dependency between registers, the NS32GX32

on-chip cache, and the NS32GX32 branch prediction meth-

od.

4.1 Instruction Execution Time

The NS32GX32 is fully binary compatible to its predeces-

sors from the Series 32000 family of microprocessors. The

NS32GX32’s pipelined architecture and high frequency in-

ternal clock enable programs written for the other members

of the processor family to run faster, in general, on the

NS32GX32.

However, one of the characteristics of the NS32GX32 is

that although the average throughput of its pipeline is 3.5

clock cycles per instruction, there are several instructions

whose execution time is much longer than this. Further im-

provement in execution time may be achieved by avoiding

these relatively ‘‘expensive’’ instructions.

We will demonstrate here the replacement of the relatively

expensive instructions ‘‘sbit’’ and ‘‘mul’’.

4.1.1 Replacing the ‘‘SBIT’’ Instruction

The most straightforward coding of the Bresenham algo-

rithm would use the NS32000 ‘‘sbit’’ instruction for setting

the current bit of the line (see AN-524: ‘‘Introduction to Bre-

senham’s Line Algorithm using the SBIT Instruction’’).

‘‘sbit’’, however, takes about 18 cycles to execute. Because

the bit setting is a significant part of the routine’s main loop,

it is important to optimize it.

In our assembly routine, we replace the ‘‘sbitd

r1,ÐbitÐmap’’ instruction with the following sequence,

which saves an average of 3.5 cycles per bit set, or about

8% of the main loop time. This sequence is essentially an

implementation of the calculation defined in the ‘‘sbit’’ mac-

ro used in the C language routine.

movd r1,r4

andd $(7),r4 # r4 4 bit mod 8 4 which

bit to set

movqb $(1),r6

lshb r4,r6 # r6 4 1 kk (bit mod 8) 4
mask with set bit

movd r1,r4

lshd $(13),r4 # r4 4 bit div 8 4 byte

where bit is set

orb r6, bit map(r4)

4



Note the use of the ‘‘lsh’’ instruction, rather than the ‘‘ash’’

one. The former requires 3 cycles for execution, compared

to 9 for the latter. Both instructions are equivalent in our

case, as r1 (the bit to be set) is an unsigned quantity less

than 4,000,000.

4.1.2 Replacing the ‘‘MUL’’ Instruction

The setup calculations done before the main loop of the

algorithm include two multiplications by the x-dimension of

the bit-map.

The ‘‘mul’’ instruction takes 37 cycles to multiply by num-

bers in the order of magnitude of a reasonable bit-map di-

mension. For any specific application it is usually possible to

replace the ‘‘mul’’ by one or a few faster instructions. If the

dimension is a power of two, one ‘‘lsh’’ instruction, execut-

ing in 3 cycles, is enough.

In other cases the dimension can be factored into a sum/

difference of powers of two. The multiplication is then re-

placed by a series of shifts and adds. An example of multi-

plication by 2000 is demonstrated in Appendix D.

4.2 Avoiding Register Interlocks

In certain circumstances the flow of instructions in the

NS32GX32 pipeline will be delayed when the result of an

instruction is used as the source of the following instruction.

One of these interlocks occurs in Section 4.1.1 Ð the in-

struction ‘‘orb r6,ÐbitÐmap(r4)’’ immediately follows the

calculation of an r4 in ‘‘lshd $(b3), r4’’. To avoid this inter-

lock, we can exchange the order of calculating the byte and

the bit, as follows:

movd r1,r0

lshd $(13),r0 # r0 4 bit div 8 4 byte

where bit is set

movd r1,r4

andd $(7),r4 # r4 4 bit mod 8 4 which

bit to set

movqb r4,r6

lshb r4,r6 # r6 e 1 kk (bit mod 8) 4
mask with set bit

orb r6, bit map(r0)

Moving the calculation of the byte away from its use in the

‘‘orb’’ instruction saves about 2.5 cycles per bit, or another

6% of the main loop time. Added to the optimization of

4.1.1, this gives a potential improvement of about 14% com-

pared to the straightforward ‘‘sbit’’ instruction. This, howev-

er, is not the actual improvement we get: The new se-

quence requires keeping extra registers free in the loop,

forcing us to use memory for some of the algorithm vari-

ables (see Section 4.3 below). This has an overhead of

about 2% of the main loop time, giving a net improvement

of about 12%.

4.3 Data Cache Considerations

The main loop of the Bresenham algorithm uses seven vari-

ables: ‘‘c1’’ and ‘‘c2’’ the loop-constants, ‘‘p’’ the decision

variable, ‘‘x-increment’’ and ‘‘y-increment’’, ‘‘bit’’ and ‘‘last-

bit’’. If the ‘‘sbit’’ instruction is used, all of these can reside

in registers, as the NS32GX32 has eight general-purpose

registers.

As mentioned above, the replacement of ‘‘sbit

r1,ÐbitÐmap’’ with the above sequence has the cost of

requiring three intermediate temporary values. These val-

ues, with the addition of the algorithm’s seven loop-used

variables, give us the problem of deciding what should be

put in registers and what in memory. This decision must be

strongly influenced by the NS32GX32 data cache, and its

write-through update policy.

The most important consideration is that due to the write-

through policy, a write to memory is more expensive than a

write to a register. Thus, the loop-invariant variables (‘‘c1’’,

‘‘c2’’, ‘‘last-bit’’, ‘‘x-increment’’ and ‘‘y-increment’’) are bet-

ter candidates for allocation in memory rather than in a reg-

ister. The additional temporary values for the ‘‘sbit’’ alterna-

tive sequence are written, so registers should be allocated

to them. Reading one of the variables from a memory loca-

tion may also result in a data cache miss, because the

‘‘ÐbitÐmap’’ references may overwrite them. Thus the final

choice for memory instead of registers was for ‘‘c2’’ and ‘‘x-

increment’’. ‘‘lastÐbit’’ was not chosen because it is read in

every iteration of the loop. ‘‘c1’’ and ‘‘x-increment’’ are nev-

er both read in any of the branches inside the loop, so for

each bit set we always have only one read from memory.

4.4 Optimizing Branch Instructions

An additional improvement of 2.4% is achieved in Appendix

B’s assembly routine by optimizing the flow of branches in

the main loop. This is a relatively complicated issue, so its

details are given in Appendix D.

4.5 Loop Unrolling

Another method to speed up the main loop of the algorithm

is to reduce the overhead of branches in this loop. The idea

is to replicate the code in the loop, so that in each iteration

two bits will be set, without any conditional branch between

them. To ensure that there is an even number of bits to plot

when entering the loop, we must add another test after set-

ting the first bit before the loop, and perhaps plot another

bit. This slightly lengthens the pre-loop execution time, but

is worth doing for the reduction in the loop time.

The general outline of the routine, after the initial calcula-

tions, becomes:

1. set first bit

2. if an odd number of bits remains, plot an extra bit.

3. LOOP:

a. plot bit

b. plot bit

c. if not last bit, goto LOOP

Without the code replication, there is a test to check if it is

the last bit for each bit plotted. The replication saves one

such test and the delay associated with its conditional

branch.

The actual code (reverting to the simple ‘‘sbit’’ code) is giv-

en in Figure 6.

In Appendix B, an additional code replication is done, to

save the ‘‘br nextÐbit’’ instruction in the code above. The

total improvement from the code replication is an additional

5% over the code that sets one bit per iteration.

5



TL/EE/10434–13

FIGURE 6

6



TL/EE/10434–14

FIGURE 6 (Continued)

7



5.0 CONCLUSION

An optimized Bresenham line-drawing algorithm has been

presented for the NS32GX32 microprocessor. The optimiza-

tions used are relevant to general coding for the

NS32GX32. Appendix C gives timing results for the imple-

mentations given in Appendix A and Appendix B.

Several variations of the Bresenham algorithm have been

developed. One particular variation by Bresenham himself

relies on ‘‘run-length’’ segments of the line for speed opti-

mization. This is explored in Application Note AN-522.

APPENDIX A. IMPLEMENTATION IN C

TL/EE/10434–15

8



TL/EE/10434–16

9



APPENDIX B. IMPLEMENTATION IN ASSEMBLY LANGUAGE

TL/EE/10434–17

10



TL/EE/10434–18

11



TL/EE/10434–19

12



TL/EE/10434–20

13



TL/EE/10434–21

14



TL/EE/10434–22

15



APPENDIX C. TIMING PERFORMANCE OF THE

NS32GX32 MICROPROCESSOR

Timing was measured on the Star-Burst image of Figure 7.
The driving ‘‘main’’ program in C (given below) was used to

call the assembly ‘‘lineÐdraw’’ routine. For greater accura-

cy, time was measured for 100 iterations of the Star-Burst

image, and divided by 100 for the results given in Figure 8.
File ‘‘bres.h’’ is in Appendix A.

TL/EE/10434–23

16



TL/EE/10434–12

Star-Burst BenchmarkÐThis Star-Burst image was drawn on a 2000 x 2000 pixel bit-map. Each line is 2000 pixels in length and passes through the center of the

image, bisecting the square.

The lines are 25 pixels apart, and were drawn using the ‘‘lineÐdraw.s’’ routine. There is a total of 160 lines.

The total drawing time for this image was 0.44 seconds on a 25 MHz NS32GX32.

FIGURE 7. Graphics Image (2000 x 2000 Pixels), 300 DPI

17



Parameter
Time on 25 MHz

NS32GX32

Setup Time per Line 4.82 ms

Lines per Second 364.3

Pixels per Second 728,531

Total Time of Star-Burst Image 439.5 ms

FIGURE 8. Timing Performance for the Star-Burst

Image ofFigure 7. The Whole Image Consists

of 160 Lines of 2000 Pixels Each.

The setup time was measured from the start of the

‘‘ÐlineÐdraw’’ routine, up to the setting of the first bit. The

overhead of the ‘‘main’’ routine and of calling the

‘‘ÐlineÐdraw’’ routine are not included.

The number lines-per-second includes only net time in the

‘‘ÐlineÐdraw’’ routine itself, including setup time. It was

calculated as follows: The overhead of the ‘‘main’’ driving

routine, including its call of ‘‘ÐlineÐdraw’’, was subtracted

from the time measured for the whole image. The difference

was divided by 100 (the amount of iterations of the whole

image) and then by 160 (the amount of lines per image).

This gives the time for one line. The reciprocal of this time is

the number of lines per second drawn.

The numbers of Pixels-per-second is Lines-per-second mul-

tiplied by 2000 (the number of pixels-per-line).

The total time for the image includes the overhead of the

‘‘main’’ routine.

Note: The total time for the C version of the ‘‘lineÐdraw’’ routine (Appendix

A), as compiled by the GNX version 3 C optimizing compiler, was

850 ms.

APPENDIX D. REPLACING THE ‘‘MUL’’ INSTRUCTION

As mentioned in Section 4.1.2, two multiplications are need-

ed in the setup calculations before the algorithm’s main

loop. A ‘‘mul’’ instruction takes 37 cycles to executeÐmuch

more than the average of 3.5 cycles per instruction.

In this appendix, we show a specific example, suitable for a

bit-map with a x-dimension of 2000 pixels. We represent

2000 as 16 * (128 b 3). ‘‘muld $(2000),r0’’ is replaced by

the following sequence, saving about 24 cycles per multipli-

cation (a 3X speedup):

movd r0,r3

lshd $(7),r3 # r3 4 128 * r0

movd r0,r6

addd r6,r6 # r6 4 r0 0 r0 4 2 * r0

addd r0,r0 # r6 4 r6 0 r0 4 3 * r0

subd r6,r3 # r3 4 r3 1 r6 4 (128 1 3)

* r0 4 125 * r0

lshd $(4),r3 # r3 1 16 * r3 1 16 * 125

* r0 4 2000 * r0

APPENDIX E. OPTIMIZING BRANCH INSTRUCTIONS

One of the features of the NS32GX32 that enables it to

achieve its high performance is the incorporation of a pipe-

lined instruction processor.

The flow of instructions through the pipeline is delayed

when the address from which to fetch an instruction de-

pends on a previous instruction, such as when a conditional

branch is executed. The loader includes special circuitry to

handle branch instructions, which calculates the destination

address and selects between the sequential and non-se-

quential streams.

An incorrect prediction of the branch causes a breakage in

the instruction pipeline, resulting in a delay of 4 cycles.

For conditional branches the branch is predicted taken if it is

backward or if the tested condition is NE or LE. A branch

predicted incorrectly, whether taken or not, causes the de-

lay of 4 cycles. On the other hand, a branch predicted cor-

rectly causes a delay of 1 cycle if it is taken, and no delay if

not taken. Thus in the main loop we use

cmpqd $(0),r7 # is p k 0 ?

bgt p negative2

rather than

cmpqd $(0),r7 # is p k 0 ?

ble p non negative2

On the average, half of the branches are taken. For the half

incorrectly predicted there is no difference between the two.

With ble, however, the prediction is ‘‘branch taken’’, with a

delay of 1 cycle when correct, while with bgt the prediction

is ‘‘not taken’’, with no delay when correct. This gives an

additional 2.4% improvement in loop time.

Similarly, we use

bne MAIN LOOP

br EXIT SEQUENCE

near the end of the loop, rather than

beq EXIT SEQUENCE

br MAIN LOOP

because the second sequence would result mostly in a

wrong prediction.

18



19



A
N

-6
1
1

B
re

s
e
n
h
a
m

’s
L
in

e
A

lg
o
ri
th

m
Im

p
le

m
e
n
te

d
fo

r
th

e
N

S
3
2
G

X
3
2

Lit. Ý 100611

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor National Semiconductores National Semiconductor
Corporation GmbH Japan Ltd. Hong Kong Ltd. Do Brazil Ltda. (Australia) Pty, Ltd.
2900 Semiconductor Drive Livry-Gargan-Str. 10 Sumitomo Chemical 13th Floor, Straight Block, Rue Deputado Lacorda Franco Building 16
P.O. Box 58090 D-82256 F 4urstenfeldbruck Engineering Center Ocean Centre, 5 Canton Rd. 120-3A Business Park Drive
Santa Clara, CA 95052-8090 Germany Bldg. 7F Tsimshatsui, Kowloon Sao Paulo-SP Monash Business Park
Tel: 1(800) 272-9959 Tel: (81-41) 35-0 1-7-1, Nakase, Mihama-Ku Hong Kong Brazil 05418-000 Nottinghill, Melbourne
TWX: (910) 339-9240 Telex: 527649 Chiba-City, Tel: (852) 2737-1600 Tel: (55-11) 212-5066 Victoria 3168 Australia

Fax: (81-41) 35-1 Ciba Prefecture 261 Fax: (852) 2736-9960 Telex: 391-1131931 NSBR BR Tel: (3) 558-9999
Tel: (043) 299-2300 Fax: (55-11) 212-1181 Fax: (3) 558-9998
Fax: (043) 299-2500

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.


