
COP8™ FLASH ISP
HANDBOOK—Intro to ISP

ABSTRACT

This application note describes the COP8 In System Pro-
gramming (ISP) Software. ISP method of programming the
flash memory are thoroughly discussed.

INTRODUCTION

In-System Programming (ISP) allows the user to re-program
a microcontroller without physical removal. The COP8 ISP
Software allows the user to program the flash memory in
three ways. A user may choose to program the flash memory
by using the boot ROM’s user support portion, the
MetaLink™ support portion (via the Flash emulator module)
or the MICROWIRE/PLUS™ support portion. The use of a
user and MICROWIRE/PLUS support portion is fully docu-
mented and its requirements are specified. Other application
notes that relates to COP8 FLASH ISP software include
AN-1151 (Parallel Port Programming Adapter), AN-1152
(FLASHDOS Programmer Source), AN-1153 (Virtual E2

Guide), AN-1154 (FLASHWIN Programmer’s Guide) and
AN-1161 (FLASHDOS Programmer’s Guide).

1.0 INTRODUCTION TO ISP — SOFTWARE TOPICS

The Flash Family provides the capability to program the pro-
gram memory while installed in an application board. This
feature is called In System Programming (ISP). It provides a
means of ISP by using the MICROWIRE/PLUS, or the user
can provide his own, customized ISP routine. This custom-
ized routine may use any of the capabilities of the device,
such as USART, parallel port, etc. The factory installed ISP
uses only the MICROWIRE/PLUS port.

1.1 FUNCTIONAL DESCRIPTION

The organization of the ISP feature consists of the user flash
program memory, the factory boot ROM, and some registers
dedicated to performing the ISP function. See Figure 1 for a

simplified block diagram. The factory installed ISP that uses
MICROWIRE/PLUS is located in the Boot ROM. The size of
the Boot ROM is 1K bytes and also includes the ICE™ moni-
tor code. If a user chooses to write his own ISP routine, it
must be located in the flash program memory.

In the next section, ADVANCED ISP SOFTWARE TOPICS,
a discussion regarding the FLEX bit is presented. The FLEX
bit controls whether the device exits RESET executing from
the flash memory or the Boot ROM. The user must program
this Configuration Register bit as appropriate for the applica-
tion. In the erased state, the FLEX bit = 0 and the device will
power-up executing from Boot ROM. When FLEX = 0, this
assumes that either the MICROWIRE/PLUS ISP routine or
external programming is being used to program the device. If
using the MICROWIRE/PLUS ISP routine, the software in
the boot ROM will monitor the MICROWIRE/PLUS for com-
mands to program the flash memory. When programming
the flash program memory is complete, the FLEX bit will
have to be programmed to a 1 and the device will have to be
reset, either by pulling external Reset to ground or by soft-
ware, before execution from flash program memory will oc-
cur.

If FLEX = 1, upon exiting Reset, the device will begin execut-
ing from location 0000 in the flash program memory. The as-
sumption, here, is that either the application is not using ISP,
is using MICROWIRE/PLUS ISP by jumping to it within the
application code or is using a customized ISP routine. If a
customized ISP routine is being used, then it must be pro-
grammed into the flash memory by means of MICROWIRE/
PLUS ISP or external programming as described in the pre-
ceding paragraph.

COP8™, MICROWIRE/PLUS™ and WATCHDOG™ are trademarks of National Semiconductor Corporation.
ICE™ is a trademark of Intel Corporation
IBM® is a registered trademark of International Business Machines Corp.
Windows® is a registered trademark of Microsoft Corporation.

National Semiconductor
Application Note 1150
Wallace Ly
April 2000

C
O

P
8

FLA
S

H
IS

P
H

A
N

D
B

O
O

K
—

Intro
to

IS
P

A
N

-1150

© 2000 National Semiconductor Corporation AN101252 www.national.com

1.2 REGISTERS

There are six registers required to support ISP: Address
Register Hi byte (ISPADHI), Address Register Low byte (IS-
PADLO), Read Data Register (ISPRD), Write Data Register
(ISPWR), Write Timing Register (PGMTIM), and the Control
Register (ISPCNTRL).

1.2.1 ISP Address Registers

The address registers (ISPADHI & ISPADLO) are used to
specify the address of the byte of data being written or read.
For page erase operations, the address of the beginning of
the page should be loaded. When reading the Option regis-
ter, FFFF should be placed into the address registers. Reg-
isters ISPADHI and ISPADLO are cleared to 00 on Reset.
These registers can be loaded from either flash program
memory or Boot ROM and must be maintained for the entire
duration of the operation.

TABLE 1. High Byte of ISP Address

ISPADHI

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Addr
15

Addr
14

Addr
13

Addr
12

Addr
11

Addr
10

Addr
9

Addr
8

TABLE 2. Low Byte of ISP Address

ISPADLO

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Addr
7

Addr
6

Addr
5

Addr
4

Addr
3

Addr
2

Addr
1

Addr
0

1.2.2 ISP Read Data Register

The Read Data Register (ISPRD) contains the value read
back from a read operation. This register can be accessed
from either flash program memory or Boot ROM. This regis-
ter is undefined on Reset. CAUTION: Read/Modify/Write in-
structions are not allowed to be used on this register.

TABLE 3. ISP Read Data Register

ISPRD

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

1.2.3 ISP Write Data Register

The Write Timing Register (PGMTIM) is used to control the
width of the timing pulses for write and erase operations. The
value to be written into this register is dependent on the fre-
quency of CKI and is shown in Table 17. This register must
be written before any write or erase operation can take
place. It only needs to be loaded once, for each value of CKI
frequency. If a dedicated E2 block exists on the device and
it’s in the process of writing, this register should not be
changed until the E2 write cycle is complete.

TABLE 4. ISP Write Data Register

ISPWR

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

1.2.4 ISP Write Timing Register

The Write Timing Register (PGMTIM) is used to control the
width of the timing pulses for write and erase operations. The
value to be written into this register is dependent on the fre-
quency of CKI and is shown in Table 17. This register must
be written before any write or erase operation can take
place. It only needs to be loaded once, for each value of CKI
frequency. This register can be loaded from either flash pro-
gram memory or Boot ROM and must be maintained for the
entire duration of the operation. If a dedicated E2 block exists
on the device and it’s in the process of writing, this register
should not be changed until the E2 write cycle is complete.

AN101252-1

FIGURE 1. Block Diagram of ISP

A
N

-1
15

0

www.national.com 2

1.3 MANUEVERING BACK AND FORTH BETWEEN
FLASH MEMORY AND BOOT ROM

When using ISP, at some point, it will be necessary to ma-
neuver between the flash program memory and the Boot
ROM, even when using customized ISP routines. This is be-
cause it’s not possible to execute from the flash program
memory while it’s being programmed.

The JSRB instruction is used to Jump to the Boot ROM. Re-
fer to the COP8 Flash Family User Manual for specific de-
tails on the operation of this instruction. The JSRB instruc-
tion must be used in conjunction with the Key register. This is
to prevent jumping to the Boot ROM in the event of run-away
software. For the JSRB instruction to actually jump to the
Boot ROM, the Key bit must be set. This is done by writing
the value shown in Table 5 to the Key register. The Key is a
6-bit key and, if the key matches, the KEY bit will be set for
8 instruction cycles. The JSRB instruction must be executed
while the KEY bit is set. If the KEY does not match, then the
KEY bit will not be set and the JSRB will jump to the speci-
fied location in the flash memory. In emulation mode, if a
breakpoint is encountered while the KEY is set, the counter
that counts the instruction cycles will be frozen until the
breakpoint condition is cleared. The Key register is a
memory mapped register. Its format when writing is shown in
Table 5. Its format when reading is shown in Table 6. In nor-
mal operation, it is not necessary to test the KEY bit before
using the JSRB instruction. The reading of the Key register is
primarily used for testing. Also, located in the Key register is
a bit called EFLEX. This bit is also used for testing.

TABLE 5. Key Register Write Format

KEY when Writing

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

1 0 0 1 1 0 X X

Bits 7–2: Key value that must be written to set the KEY bit.

Bits 1–0: Don’t care.

TABLE 6. Key Register Read Format

KEY when Reading

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 0 0 0 0 EFLEX KEY

R R R R R R R R

Bits 7–2: Read back as 0.

EFLEX
(FLASH
EXECUTION):

This is the bit that actually controls whether
program execution occurs from flash
memory or Boot ROM. It uses data from the
Option Register bit in combination with
other logic controlled by the JSRB instruc-
tion, and the G6 hardware override. When
EFLEX = 1, execution is from the flash pro-
gram memory. When EFLEX = 0, program
execution occurs from the Boot ROM. This
is a Read Only bit.

KEY: This is the state of the Key. If it is set, it in-
dicates that a valid key was written to the
Key register and the JSRB instruction will
jump correctly to the Boot ROM. If it’s
cleared, the key is not valid and the JSRB
instruction will jump to the specified address

in flash program memory. Once set, the
hardware will clear it to 0 after 8 instruction
cycles. This is used primarily for testing.
This is a Read Only bit.

1.4 FORCED EXECUTION FROM BOOT ROM

When the user is developing his own ISP routine, he may en-
counter code lockups due to mistakes in his software. There
is a hardware method to get out of these lockups and force
execution from the Boot ROM’s MICROWIRE/PLUS routine,
so that the customer can erase his flash code and start over.
The method to force this condition is to drive the G6 pin to
high voltage (2X VCC) and activate Reset. As a note for user
of the parallel printer port connect, it is advisable that the
user remove the G6 line from the PC when applying high
voltage. The voltage may be high enough to permanently
damage the PC parallel port logic circuits. The high voltage
condition on G6 must be held for at least 3 instruction cycles
longer than Reset is active. This special condition will start
execution from location 0000 in the Boot ROM where the
user can input the appropriate commands, using
MICROWIRE/PLUS, to erase the flash program memory and
reprogram it.

1.5 RETURN TO FLASH WITHOUT HARDWARE RESET

After programming the entire program memory, including op-
tions (and setting the FLEX bit in the Option Register), it is
necessary to exit the Boot ROM and return to the flash pro-
gram memory for program execution. This can be accom-
plished through the use of the MICROWIRE/PLUS ISP Exit
command as described later.

1.6 MICROWIRE/PLUS ISP COMMANDS

The MICROWIRE/PLUS ISP will support the following fea-
tures and commands:

• Read a byte from a specified address.

• Write a byte from a specified address.

• Erase a page at a specified address.

• Erase the entire flash program memory (mass erase).

• Read multiple bytes starting at a specified address.

• Write multiple bytes starting at a specified address.

• Read Option register.

• Exit ISP by resetting the device and return execution to
flash program memory if the FLEX bit is set in the Option
Register.

1.7 VIRTUAL E2 COMMANDS

The following commands will support transferring blocks of
data from RAM to flash program memory, and vice-versa.

• Erase a page of flash memory at a specified address.

• Copy a block of data from RAM into flash program
memory.

• Copy a block of data from program flash memory to RAM.

1.8 SAMPLE PROGRAM: A Light Sequencer.
Since we have completed our introduction to Flash Family
device lets begin to work on our sample application program.

The goal of this section is familiarize the user with the follow-
ing:

A
N

-1150

www.national.com3

1. Writing and saving a program for the COP8 Flash Family
devices

2. Using the MICROWIRE/PLUS flash command: Set
PGMTIM (write timing register)

3. Using the internal flash command: cwritebf (write a byte
to the flash)

4. Using the internal flash command: creadbf (read a byte
from the flash)

5. Using the internal/MICROWIRE/PLUS flash command:
EXIT (reset the microcontroller).

We will achieve the above commands by using the FLASH-
WIN Programmer’s Guide. See Application Note–1154 for
additional information.

1.8.1 Description of the Sample Application Program

The goal of the sample program is to teach the user the ba-
sics of using the COP8 flash family devices. The schematic
in Figure 2 shows the circuit we are going to use. We will be
attaching 8 LEDs, Each LED will be in connected in such a
way as to sink current from the microcontroller. The cathode
(long leg of the LED) will be connected toward the COP8
Flash Family devices. The short leg of the LED (anode) will
be connected through a resistor toward the VCC power
supply.

AN101252-2

FIGURE 2. Sample Application Circuit

A
N

-1
15

0

www.national.com 4

1.8.2 Writing the Program

We will begin first by writing the program. Launch the Win-
dows 95 Edit by going to the taskbar and clicking on the
Start button. Then click on Run . At the new dialog Open
window type in edit . Type in exactly as is listed in Figure 3.

When done, Click on File and then Save. At the new dialog
window type in c:\asm\sequencer.asm (where asm is the di-
rectory in which the assembler is installed in). When done,
click on File and then click on Exit .

; Program: Sequence.asm
; Purpose: Demonstrate the use of flash routines
; Date: 02/5/00

.INCLD COP8CBR.INC ;INCLUDE FILE FOR THE COP8CBR

creadbf = 011 ; Entry point for the read byte of flash command
cwritebf = 014 ; Entry point for the write byte of flash command
exit = 062 ; Entry point for Resetting the microcontroller

.sect data,reg,abs=0x ;FOR RAM STORAGE AREA
LED_BITPOS:.DSB 1 ;STORAGE FOR THE LED POSITION
DELAY_NUM: .DSB 1 ;STORAGE FOR THE NUMBER OF DELAYS
.sect code,rom,abs=0 ;BEGINING CODE SPACE
.org 0 ;START AT LOCATION 0

MAIN:
LD S,#000
RBIT 2,PORTLC ;USE PORTL.2 AS AN INPUT
SBIT 2,PORTLD ;CAUSE PORTL.2 TO BE AN INPUT WITH PULL-UP
LD PGMTIM,#07B ;FOR A 10MHZ CLOCK

LD ISPADHI,#000 ;LOAD THE HIGH BYTE ADDRESS
LD ISPADLO,#000 ;LOAD THE LOW BYTE ADDRESS
LD ISPWR,#80 ;FOR LED POSITION 10000000
LD ISPKEY,#098 ;LOAD THE KEY
JSRB cwritebf ;CALL THE ROUTINE

LD ISPADLO,#001 ;LOAD THE LOW BYTE ADDRESS
LD ISPWR,#40 ;FOR LED POSITION 01000000
LD ISPKEY,#098 ;LOAD THE KEY
JSRB cwritebf ;CALL THE ROUTINE

LD ISPWR,#20 ;FOR LED POSITION 00100000
LD ISPADLO,#002 ;LOAD THE LOW BYTE ADDRESS
LD ISPKEY,#098 ;LOAD THE KEY
JSRB cwritebf ;CALL THE ROUTINE

LD ISPWR,#10 ;FOR LED POSITION 00010000
LD ISPADLO,#003 ;LOAD THE LOW BYTE ADDRESS
LD ISPKEY,#098 ;LOAD THE KEY
JSRB cwritebf ;CALL THE ROUTINE

FIGURE 3. Sample Application Code (sequence.asm)

A
N

-1150

www.national.com5

LD ISPWR,#008 ; FOR LED POSITION 00001000
LD ISPADLO,#004 ; LOAD THE LOW BYTE ADDRESS
LD ISPKEY,#098 ; LOAD THE KEY
JSRB cwritebf ; CALL THE ROUTINE

LD ISPWR,#004 ; FOR LED POSITION 00000100
LD ISPADLO,#005 ; LOAD THE LOW BYTE ADDRESS
LD ISPKEY,#098 ; LOAD THE KEY
JSRB cwritebf ; CALL THE ROUTINE

LD ISPWR,#002 ; FOR LED POSITION 00000010
LD ISPADLO,#006 ; LOAD THE LOW BYTE ADDRESS
LD ISPKEY,#098 ; LOAD THE KEY
JSRB cwritebf ; CALL THE ROUTINE

LD ISPWR,#001 ; FOR LED POSITION 00000001
LD ISPADLO,#007 ; LOAD THE LOW BYTE ADDRESS
LD ISPKEY,#098 ; LOAD THE KEY
JSRB cwritebf ; CALL THE ROUTINE

LOOP: ; BEGINNING OF THE LOOP
LD LED_BITPOS,#0 ; POSITION IS INITIALIZED TO ZERO

SEQUENCE: ; BEGINING OF THE SEQUENCE
JSR DELAY ; JUMP TO THE DELAY ROUTINE
LD A,LED_BITPOS ; GET THE BIT POSITION
X A,ISPADLO ; SWAP IT WITH THE ISP LOW ADDRESS BYTE
LD ISPKEY,#098 ; LOAD THE KEY
JSRB creadbf ; CALL THE ROUTINE
LD A,ISPRD ; LOAD THE RESULTS INTO THE ACCUMULATOR
X A,PORTD ; SWAP IT WITH PORTD

LD A,LED_BITPOS ; LOAD THE LED_BITPOS VARIABLE

; ROTATE THROUGH THE BIT POSITIONS
INC A ; INCREMENT THE ACCUMULATOR
X A,LED_BITPOS ; SWAP IT WITH THE LED_BITPOS

IFEQ A,#007 ; STOP AT THE EIGHTH BIT POSITION SHIFT
JP LOOP ; RETURNING TO THE MAIN LOOP
JP SEQUENCE ; RETURN TO THE MAIL LOOP SEQUENCE

DELAY:
LD DELAY_NUM,#0FF ; CREATE 256 NOPS

DELAY_LOOP: ; THE DELAY ROUTINE
NOP ; CREATE A 1 CYCLE DELAY
NOP ; CREATE A 1 CYCLE DELAY
DRSZ DELAY_NUM ; COUNT DOWN UNTIL ZERO
JP DELAY_LOOP ; OTHERWISE JUST JUMP INTO THE DELAY
RET

IFBIT 2,PORTLP ; DETECT IF THE SWITCH IS OFF
JP NEXT2 ; IF OFF THEN GOTO NEXT COMMAND
JP QUIT ; OTHERWISE QUIT
NEXT2: ; NEXT COMMAND
RET ; RETURN FROM THE SUBROUTINE

QUIT: ; THIS ROUTINE WILL EXIT WITH AN INTERNAL RESET
LD ISPKEY,#098 ; LOAD THE KEY
JSRB exit ; CALL THE EXIT
.END MAIN ; END OF PROGRAM

FIGURE 4. Sample Application Code (sequence.asm) (continued)

A
N

-1
15

0

www.national.com 6

1.8.3 Assembling and Linking the Sample Program

Figure 5 shows the assembled code. Linking must occur af-
ter assembling the code. This can be accomplished via the
command: “lncop sequencer”. A hex file named sequencer-
.hex will be produced as a result of this command. Launch
the FLASHWIN Programmer’s Guide. Click on Set CLOCK
Button to set the write timer register. A dialog box will appear.
Enter 10 for a 10 MHz CKI frequency. Next, click on the “Up-
load from a hex file” command. Click on the “Select File” but-

ton. Either click on the file or enter it by click on it. Click Ok
and the upload process will begin. At the end perform a write
byte to the Configuration Operation. Write a 1 to location
0xFFFF (See Table 8 for additional information) in order to
program the microcontroller for execution out of the flash
memory. Next click Reboot to exit the MICROWIRE/PLUS
ISP routine. Execution will be from the flash array once the
reset cycle has completed.

NSC ASMCOP, Version 5.1 (June 2 17:13 1999) SEQUENCE 06-Jan-00 17:43
PAGE 1
1 ; Program: Sequence.asm
2 ; Purpose: Demonstrate the use of flash routines
3 ; Date: 02/5/00
4
5 .INCLD COP8CBR.INC ;INCLUDE FILE FOR THE COP8CBR
6
7 0011 creadbf = 011 ; Entry point for the read byte of
8 0014 cwritebf = 014 ; Entry point for the write byte of
9 0062 exit = 062 ; Entry point for Resetting the micro
10
11 00F4 .sect data,reg,abs=0xF4 ;FOR RAM STORAGE AREA
12 00F4 LED_BITPOS:.DSB 1 ;STORAGE FOR THE LED POSITION
13 00F5 DELAY_NUM: .DSB 1 ;STORAGE FOR THE NUMBER OF DELAYS
14 0000 .sect code,rom,abs=0 ;BEGINING CODE SPACE
15 0000 .org 0 ;START AT LOCATION 0
16
17 0000 MAIN:
18 0000 DF00 3 LD S,#000
19 0002 BDD16A 4 RBIT 2,PORTLC ;USE PORTL.2 AS AN INPUT
20 0005 BDD07A 4 SBIT 2,PORTLD ;CAUSE PORTL.2 TO BE AN INPUT WITH PULL-
21 0008 BCE17B 3 LD PGMTIM,#07B ;FOR A 10MHZ CLOCK
22
23 000B BCA900 3 LD ISPADHI,#000 ;LOAD THE HIGH BYTE ADDRESS
24 000E BCA800 3 LD ISPADLO,#000 ;LOAD THE LOW BYTE ADDRESS
25 0011 BCAB50 3 LD ISPWR,#80 ;FOR LED POSITION 10000000
26 0014 BCE298 3 LD ISPKEY,#098 ;LOAD THE KEY
27 0017 6114 5 JSRB cwritebf ;CALL THE ROUTINE
28
29 0019 BCA801 3 LD ISPADLO,#001 ;LOAD THE LOW BYTE ADDRESS
30 001C BCAB28 3 LD ISPWR,#40 ;FOR LED POSITION 01000000
31 001F BCE298 3 LD ISPKEY,#098 ;LOAD THE KEY
32 0022 6114 5 JSRB cwritebf ;CALL THE ROUTINE
33
34 0024 BCAB14 3 LD ISPWR,#20 ;FOR LED POSITION 00100000
35 0027 BCA802 3 LD ISPADLO,#002 ;LOAD THE LOW BYTE ADDRESS
36 002A BCE298 3 LD ISPKEY,#098 ;LOAD THE KEY
37 002D 6114 5 JSRB cwritebf ;CALL THE ROUTINE
38
39 002F BCAB0A 3 LD ISPWR,#10 ;FOR LED POSITION 00010000
40 0032 BCA803 3 LD ISPADLO,#003 ;LOAD THE LOW BYTE ADDRESS
41 0035 BCE298 3 LD ISPKEY,#098 ;LOAD THE KEY
42 0038 6114 5 JSRB cwritebf ;CALL THE ROUTINE
43
44 003A BCAB08 3 LD ISPWR,#008 ;FOR LED POSITION 00001000
45 003D BCA804 3 LD ISPADLO,#004 ;LOAD THE LOW BYTE ADDRESS
46 0040 BCE298 3 LD ISPKEY,#098 ;LOAD THE KEY
47 0043 6114 5 JSRB cwritebf ;CALL THE ROUTINE
48
49 0045 BCAB04 3 LD ISPWR,#004 ;FOR LED POSITION 00000100
50 0048 BCA805 3 LD ISPADLO,#005 ;LOAD THE LOW BYTE ADDRESS

FIGURE 5. The Listing of the Assembled Code (sequence.lis)

A
N

-1150

www.national.com7

51 004B BCE298 3 LD ISPKEY,#098 ; LOAD THE KEY
52 004E 6114 5 JSRB cwritebf ; CALL THE ROUTINE
53
54
55 0050 BCAB02 3 LD ISPWR,#002 ; FOR LED POSITION 00000010
56 0053 BCA806 3 LD ISPADLO,#006 ; LOAD THE LOW BYTE ADDRESS
NSC ASMCOP, Version 5.1 (June 2 17:13 1999) SEQUENCE 06-Jan-00 17:43
PAGE 2
57 0056 BCE298 3 LD ISPKEY,#098 ; LOAD THE KEY
58 0059 6114 5 JSRB cwritebf ; CALL THE ROUTINE
59
60 005B BCAB01 3 LD ISPWR,#001 ; FOR LED POSITION 00000001
61 005E BCA807 3 LD ISPADLO,#007 ; LOAD THE LOW BYTE ADDRESS
62 0061 BCE298 3 LD ISPKEY,#098 ; LOAD THE KEY
63 0064 6114 5 JSRB cwritebf ; CALL THE ROUTINE
64
65 0066 LOOP: ; BEGINNING OF THE LOOP
66 0066 D400 3 LD LED_BITPOS,#0 ; POSITION IS INITIALIZED TO ZERO
67
68 0068 SEQUENCE: ; BEGINING OF THE SEQUENCE
69 0068 3080 5 JSR DELAY ; JUMP TO THE DELAY ROUTINE
70 006A 9DF4 3 LD A,LED_BITPOS ; GET THE BIT POSITION
71 006C 9CA8 3 X A,ISPADLO ; SWAP IT WITH THE ISP LOW ADDRESS BYTE
72 006E BCE298 3 LD ISPKEY,#098 ; LOAD THE KEY
73 0071 6111 5 JSRB creadbf ; CALL THE ROUTINE
74 0073 9DAA 3 LD A,ISPRD ; LOAD THE RESULTS INTO THE ACCUMULATOR
75 0075 9CDC 3 X A,PORTD ; SWAP IT WITH PORTD
76
77 0077 9DF4 3 LD A,LED_BITPOS ; LOAD THE LED_BITPOS VARIABLE
78
79 ; ROTATE THROUGH THE BIT POSITIONS
80 0079 8A 1 INC A ; INCREMENT THE ACCUMULATOR
81 007A 9CF4 3 X A,LED_BITPOS ; SWAP IT WITH THE LED_BITPOS
82
83 007C 9207 2 IFEQ A,#007 ; STOP AT THE EIGHTH BIT POSITION SHIFT
84 007E E7 3 JP LOOP ; RETURNING TO THE MAIN LOOP
85 007F E8 3 JP SEQUENCE ; RETURN TO THE MAIL LOOP SEQUENCE
86
87 0080 DELAY:
88 0080 D5FF 3 LD DELAY_NUM,#0FF ; CREATE 256 NOPS
89 0082 DELAY_LOOP: ; THE DELAY ROUTINE
90 0082 B8 1 NOP ; CREATE A 1 CYCLE DELAY
91 0083 B8 1 NOP ; CREATE A 1 CYCLE DELAY
92 0084 C5 3 DRSZ DELAY_NUM ; COUNT DOWN UNTIL ZERO
93 0085 FC 3 JP DELAY_LOOP ; OTHERWISE JUST JUMP INTO THE DELAY
94 0086 8E 5 RET
95
96 0087 BDD272 4 IFBIT 2,PORTLP ; DETECT IF THE SWITCH IS OFF
97 008A 01 3 JP NEXT2 ; IF OFF THEN GOTO NEXT COMMAND
98 008B 01 3 JP QUIT ; OTHERWISE QUIT
99 008C NEXT2: ; NEXT COMMAND
100 008C 8E 5 RET ; RETURN FROM THE SUBROUTINE
101
102 008D QUIT: ; THIS ROUTINE WILL EXIT WITH AN INTERNAL RESET
103 008D BCE298 3 LD ISPKEY,#098 ; LOAD THE KEY
104 0090 6162 5 JSRB exit ; CALL THE EXIT
105 0092 .END MAIN ; END OF PROGRAM
**** Errors: 0, Warnings: 0
Checksum: 0x4FBC
Byte Count: 0x0092 (146)
Input File: sequence.asm
Output File: sequence.obj
Memory Model: Large
Chip: 8CBR

FIGURE 6. The Listing of the Assembled Code (sequence.lis) (continued)

A
N

-1
15

0

www.national.com 8

1.8.4 Analysis of the Program

The best way to understand a program is to cut it apart line
by line. Lines 14-53 shows how to use the function cwritebf
(customer write byte). They also show the correct calling for-
mat and usage of the JSRB instruction. Loading the KEY
register bit is also shown in code sample. The code write the
bit patterns listed in Table 7 to the flash memory.

Lines 66-86 makes up the main calling routine. The code will
use the creadbf function to read flash memory. Lines 92-104
makes up the delay and detect_exit routine. Lines 106-109
makes up the exit routine. The exit routine calls the reset
function and will cause the microcontroller to reset.

The flow to this program is represented in Figure 7.

TABLE 7. Bit Patterns for the Sample Program

Sequence # Sequence Pattern

1 1 0 0 0 0 0 0 0

2 0 1 0 0 0 0 0 0

3 0 0 1 0 0 0 0 0

4 0 0 0 1 0 0 0 0

5 0 0 0 0 1 0 0 0

6 0 0 0 0 0 1 0 0

7 0 0 0 0 0 0 1 0

8 0 0 0 0 0 0 0 1

2.0 ADVANCED ISP — SOFTWARE TOPICS

2.1 IN SYSTEM PROGRAMMING (ISP) SUPPORT
BLOCKS

The Flash Family’s Boot ROM consists of three main blocks:
The user support portion, the MetaLink support portion and
the MICROWIRE/PLUS support portion. Figure 8 shows the
relative organization of these support blocks. Each com-
mand portion is both independent and self contained. The
entire boot ROM is 1 Kbytes. This document assumes that
the reader is fluent in the use of MICROWIRE/PLUS and its
transmission protocol. For reference please refer the
MICROWIRE/PLUS section of the Flash Family datasheet.

2.1.1 Boot Rom Memory Layout

Figure 9 shows how the Boot ROM is organized. FLEX is a
hardware bit that controls whether program execution occurs
from flash memory of Boot_ROM. It uses data from the Op-
tion register. With FLEX bit option register=1, execution is
from the flash program memory. When bit FLEX=0, program
execution occurs from the Boot ROM.

AN101252-3

FIGURE 7. Flow for the Sequencer Program

AN101252-4

FIGURE 8. ISP Boot ROM Interface

A
N

-1150

www.national.com9

2.2 PROGRAMMABLE OPTIONS DESCRIPTION

The programmable configuration options for this device are
listed below.

• Program Memory Security

• Watchdog feature

• Halt Enable feature

• Power-up execution feature

The options will be stored in the highest location in program
memory. This location will be called the Option Register. For
devices with 32K of Program Memory, the options are stored
at location 7FFF. For 16K devices, they will be stored at
3FFF, for 8K devices 1FFF, and for 4K devices 0FFF, how-

ever the Option Register can always be accessed by refer-
encing Flash address FFFF. The options are programmed
with either external programming or ISP. The location must
be erased before programming. The user must not store in-
structions in the Option register location. If the software tries
to execute from the Option register, 00 data will be returned
to the instruction register and the device will execute the
Software Trap.

2.3 OPTION REGISTER BIT ASSIGNMENTS

The format of the Option Register bit locations are shown in
Table 8.

TABLE 8. Option and TCON Register Bit Assignments

Option Register

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved Reserved SEC Reserved Reserved WD HALT FLEX

Bit 7 - Reserved

Bit 6 - Reserved

Bit 5 - SEC - Security bit

=1 Security enabled

=0 Security disabled

Bits 4,3 - Reserved

Bit 2 - WD - Watchdog

=1 Watchdog feature is disabled with G1 being a
standard I/O.

=0 Watchdog feature is enabled to G1 output
with weak pull-up enabled when output is not
valid.

Bit 1 - HALT - Halt Enable

=1 Halt mode is disabled

=0 Halt mode is enabled

Bit 0 - FLEX - Flash execution

=1 Execute from Flash program memory upon
exiting Reset

=0 Execute from Boot ROM upon exiting Reset

2.4 SECURITY

The device has a security feature, when enabled, that pre-
vents reading, writing, and page erases of the flash program
memory. Bit-5 in the Option register determines whether se-
curity is enabled or disabled. If the security option is dis-
abled, the contents of the internal flash program memory are
not protected. If the security feature is enabled:

When executing from user ISP:

1. Reads, writes, page erases, mass erases are all al-
lowed. The user is expected to enforce security within
the application code.

When executing from NSC (Boot ROM) ISP or ICE emula-
tion. All writes, reads, and page erases are prohibited.

1. Reads will return FF.

2. Mass erase is permitted. This also erases the Option
register.

3. The Option register is readable by reading location
FFFF.

4. Reads, writes, page erases are prohibited.

AN101252-5

FIGURE 9. COP8 FLASH Memory Layout

A
N

-1
15

0

www.national.com 10

2.5 MICROWIRE/PLUS SUPPORT BLOCKS

2.5.1 Introduction

MICROWIRE/PLUS is a synchronous SPI compatible serial
communication system that allows this device to communi-
cate with any other device that also supports the
MICROWIRE/PLUS system. Examples of such devices in-
clude A/D converters, comparators, EEPROMs, display driv-
ers, telecommunications devices, and other processors. The
MICROWIRE/PLUS serial interface uses a simple and eco-
nomical 3-wire connection between devices.

Several MICROWIRE/PLUS devices can be connected to
the same 3-wire system. One of these devices, operating in
what is called the master mode, supplies the synchronous
clock for the serial interface and initiates the data transfer.
Another device, operating in what is called the slave mode,

responds by sending (or receiving) the requested data. The
slave device uses the master’s clock for serially shifting data
out (or in), while the master device shifts the data in (or out).

On this device, the three interface signals are called SI (Se-
rial Input), SO (Serial Output), and SK (Serial Clock). To the
master, SO and SK are outputs (connected to slave inputs),
and SI is an input (connected to slave outputs).

This device can operate either as a master or a slave, de-
pending on how it is configured by the software. Figure 10
shows an example of how several devices can be connected
together using the MICROWIRE/PLUS system, with the de-
vice (on the left) operating as the master, and other devices
operating as slaves. The protocol for selecting and enabling
slave devices is determined by the system designer.

2.5.2 Firmware — MICROWIRE/PLUS Initialization

The MICROWIRE/PLUS support block will initialize the inter-
nal communication block with the following parameters:
CTRL.MSEL=1, PORTGD.SO=1, PORTGD.SK=1, PORT-

GC.SI=1, and PORTGC.SK=0. Table 9 and Table 10 con-
tains information about the MICROWIRE/PLUS mode. Fig-
ure 11 shows the waveforms that are from the MICROWIRE/
PLUS block.

TABLE 9. Initialization of the MICROWIRE/PLUS by the Firmware

Port G Config. Reg. Bits
G5-G4

MICROWIRE/PLUS
Operation

G4 Pin Function G5 Pin Function G6 Pin Function

0-1 Slave, Data Out and Data In SO Output SK Input SI Input

TABLE 10. MICROWIRE/PLUS Mode Selected by the Firmware

Port G
SO Clocked Out On: SI Sampled On: SK Idle Phase

G6 (SKSEL) Config. Bit G5 Data Bit

1 1 SK Falling Edge SK Rising Edge High

AN101252-6

FIGURE 10. MICROWIRE/PLUS Example

A
N

-1150

www.national.com11

2.6 PC to Boot from MICROWIRE/PLUS Connection Diagram

Figure 12 shows the necessary connections to attach the
MICROWIRE/PLUS to the PC’s parallel port. The flash mi-
crocontroller connection to the PC will be accomplished via a
four wire interface.

Table 11 shows the necessary connections used in the build-
ing of the parallel adapter for the COP8 Flash Family micro-
controller.

TABLE 11. Parallel Port <-> MICROWIRE/PLUS
Conversion

Parallel Port
Printer Port
Pin Names

Parallel
Printer Port

Pin Numbers

MICROWIRE/PLUS
Pin Names

STROBE 1 SK/G5

DO 2 SI/G6

NEG(ACK) 10 SO/G4

GND 18 GND

2.7 FIRMWARE — MICROWIRE/PLUS INITIALIZATION

The MICROWIRE/PLUS support block will initialize the inter-
nal communication block with the following parameters:
CTRL.MSEL=1, PORTGD.SO=1, PORTGD.SK=1, PORT-
GC.SI=1, and PORTGC.SK=0. Table 9 and Table 10 con-
tains information about the MICROWIRE/PLUS mode. Fig-
ure 11 shows the waveforms that are from the MICROWIRE/
PLUS block.

TABLE 12. Initialization of the MICROWIRE/PLUS by the Firmware

Port G Config. Reg. Bits
G5-G4

MICROWIRE/PLUS
Operation

G4 Pin Function G5 Pin Function G6 Pin Function

0-1 Slave, Data Out and Data In SO Output SK Input SI Input

TABLE 13. MICROWIRE/PLUS Mode Selected by the Firmware

Port G
SO Clocked Out On: SI Sampled On: SK Idle Phase

G6 (SKSEL) Config. Bit G5 Data Bit

1 1 SK Falling Edge SK Rising Edge High

AN101252-7

FIGURE 11. MICROWIRE/PLUS Interface Timing, Normal SK Mode, SK Idle Phase being High

AN101252-8

FIGURE 12. Parallel Port Connection Diagram

AN101252-9

FIGURE 13. MICROWIRE/PLUS Interface Timing, Normal SK Mode, SK Idle Phase being High

A
N

-1
15

0

www.national.com 12

2.7.1 The MICROWIRE/PLUS Packet Composition

A typical MICROWIRE/PLUS packet is composed of a three
byte frame (although this varies with the chosen command).
Figure 14 is a symbolic representation of the ISP-
MICROWIRE/PLUS packet. A trigger byte is a value which
will cause a ISP (In System Programming) command to be
executed (e.g. erase, read or write a byte of flash). The
COMMAND Byte holds this trigger byte value. Refer to

Table 16 for valid MICROWIRE/PLUS commands and their
trigger byte values. Bytes ADDRESS_HI and ADDRESS_LO
refer to the high and low byte address of the flash memory
that is to be operated upon. The symbol tdelay represents the
delay that is required when sending the command,
ADDRESS_HI and ADDRESS_LO bytes. Table 16 shows
the valid commands and their corresponding byte value.

2.7.2 Required Delays In Cascading Microwire
Command Frames

A certain amount of delay must be observed when sending
multiple command frames in a data stream. The symbol
tcascade-delay represents the delay that is required when
sending several commands in a data stream. The host must
wait tcascade-delay cycles before sending the next command
frame to the COP8 Flash Family device. Figure 15 shows the
delay relationship. Refer to Table 14 for the values of
tcascade-delay. Refer to Table 15 for the values of tdelay. The
symbol t1...tN denotes individual delay requirements (which
varies among different commands).

TABLE 14. Required time delays (in instruction cycles)
for cascading command frames after an initial

command was executed

Command t CASCADE-DELAY

READ_BYTE 6

WRITE_BYTE 6

BLOCKR 13

BLOCKW 6

PGERASE 6

MASS_ERASE 6

EXIT N/A

PGMTIM_SET 6

TABLE 15. Required Time Delays (In Instruction Cycles)

COMMAND t1 t2 t3 t4 t5 t6 tN
READ_BYTE 35 100 100 N/A N/A N/A N/A

WRITE_BYTE 35 100 20 10 N/A N/A N/A

BLOCKR 35 100 100 100 140 140 140

BLOCKW 35 100 100 100 100 100 52

AN101252-10

FIGURE 14. ISP Command Frame

AN101252-11

FIGURE 15. Cascade Delay Requirement

A
N

-1150

www.national.com13

TABLE 15. Required Time Delays (In Instruction Cycles) (Continued)

COMMAND t1 t2 t3 t4 t5 t6 tN
PGERASE 35 100 100 N/A N/A N/A N/A

MASS_ERASE 25 100 N/A N/A N/A N/A N/A

EXIT N/A N/A N/A N/A N/A N/A N/A

PGMTIM_SET 35 35 N/A N/A N/A N/A N/A

2.7.3 Variable Host Delay

A special type of communication has been implemented in
the device firmware in order to allow the microcontroller
enough time to complete a write or erase operation. This
type of communication was developed since the microcon-
troller may be used in situations where the clock is extremely
slow and writes to the flash memory will take a large amount
of time. This implementation relieves the user of having to
manually change the write delays in their host software. Fig-
ure 16 shows how the VARIABLE HOST DELAY configura-
tion is implemented on a byte write. Figure 17 shows how the

VARIABLE HOST DELAY configuration is implemented on a
block write. Figure 18 shows how the VARIABLE HOST DE-
LAY configuration is implemented on a page erase. Figure
19 shows how the VARIABLE HOST DELAY configuration is
implemented on a mass erase. Since the SK (Serial CLOCK)
is normally high, the microcontroller brings SK low to indicate
to the host that a WAIT condition (i.e. the SK pin is low) ex-
ists. The host then goes into a loop until the WAIT condition
changes to a READY condition (i.e., the SK pin is high
again). The controller then returns to command decode and
waits for the next command.

AN101252-12

FIGURE 16. Byte Write Waveform (Relative Bytes are Shown)

AN101252-13

FIGURE 17. Block Write Waveform (Relative Bytes are Shown)

AN101252-14

FIGURE 18. Page Erase Waveform (Relative Bytes are Shown)

A
N

-1
15

0

www.national.com 14

2.7.4 MICROWIRE/PLUS — Boot ROM Startup Behavior

Upon startup the ISP boot ROM will detect if the G6 pin is
high. This is used to detect if a high voltage condition on the
G6 pin is present (i.e., a forced boot ROM re-entry due to
code lockup, for additional information refer to 1.4 FORCED
EXECUTION FROM BOOT ROM.) By using this technique
the boot ROM avoids any bit that may be inadvertently en-
tered on to the SI pin. If the G6 pin is not high at startup, the
ISP boot ROM will try to detect if a valid command is re-
ceived on a transmission. If a valid command is received, the
boot ROM firmware will check to see if the SECURITY bit is
set. Table 16 shows the valid MICROWIRE/PLUS com-

mands. If security is set, the boot ROM will disable all ISP
functions except the reading of the OPTION register at
0xFFFF, the execution of a mass erase on the flash memory
and the setting of the PGMTIM Register. Read attempts of
flash memory, other than location 0xFFFF, Option Register,
while security is set, will result with a 0xFF sent back through
the MICROWIRE/PLUS. In general, the boot ROM firmware
will decode the command, check security, execute the com-
mand (if security is off) and execute the MICROWIRE/PLUS
Main Support Block (e.g., triggering the PSW.BUSY bit in or-
der to send the data back to the host.) See Figure 20 for the
ISP — MICROWIRE/PLUS Control flow.

TABLE 16. MICROWIRE/PLUS Commands

Command Function
Byte Value

Parameters
Variable Host Delay

Implemented?
Return Data

PGMTIM_SET Write Pulse
Timing
Register

0x3B Value No N/A

PAGE_ERASE Page Erase 0xB3 Starting Address of Page Yes N/A

MASS_ERASE Mass Erase 0xBF Confirmation Code Yes N/A (The entire Flash
Memory will be erased)

READ_BYTE Read Byte 0x1D Address High, Addrwss
Low

No Data Byte if Security not
set. 0xFF if Security set.

BLOCKR Block Read 0xA3 Address High, Address
Low, Byte Count (n) High,
Byte Count (n) Low (0 ≤ n
≤ 32767)

No n Data Bytes if Security
not set. n Bytes of 0xFF if
Security set

WRITE_BYTE Write Byte 0x71 Address High, Address
Low, Data Byte

Yes N/A

BLOCKW Block Write 0x8F Address High, Address
Low, Byte Count (0 ≤ n ≤
16), n Data Bytes
Data location must be
within a 64 byte segment
for a 32k device, 32 byte
for 1k and 4k devices
(1/2 page) due to
multi-byte write limitation

Yes N/A

EXIT EXIT 0xD3 N/A No N/A (Device will Reset)

INVALID N/A Any other invalid
command will be ignored

N/A N/A

AN101252-15

FIGURE 19. Mass Erase Waveform (Relative Bytes are Shown)

A
N

-1150

www.national.com15

2.8 MICROWIRE COMMANDS AVAILABLE

2.8.1 PGMTIM_SET

Sets the flash write timing register to match that of the CKI
frequency. See Table 17 for values.

Description: Figure 21 shows the format of the
PGMTIM_SET command. The PGMTIM_SET command will
transfer the next byte sent into the flash programming time

register. No acknowledgment will be sent. The symbol t1 de-
notes the time delay between the command byte and the
setting of the PGMTIM register. This command is always
available. This command must be used before any “writes”
can occur (i.e., page erase, mass erase, write byte or block
write). See Table 21 for the value(s) of t1 and t2. Table 17
shows valid values for the PGMTIM register. This command
is security independent.

TABLE 17. Valid PGMTIM Values

Bit Values for the PGMTIM Register
Hex Value CKI Frequency Range

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0x01 25 kHz–33.3 kHz

0 0 0 0 0 0 1 0 0x02 37.5 kHz–50 kHz

0 0 0 0 0 0 1 1 0x03 50 kHz–66.67 kHz

0 0 0 0 0 1 0 0 0x04 62.5 kHz–83.3 kHz

0 0 0 0 0 1 0 1 0x05 75 kHz–100 kHz

0 0 0 0 0 1 1 1 0x07 100 kHz–133 kHz

0 0 0 0 1 0 0 0 0x08 112.5 kHz–150 kHz

0 0 0 0 1 0 1 1 0x0B 150 kHz–200 kHz

0 0 0 0 1 1 1 1 0x0F 200 kHz–266.67 kHz

0 0 0 1 0 0 0 1 0x11 225 kHz–300 kHz

0 0 0 1 0 1 1 1 0x17 300 kHz–400 kHz

0 0 0 1 1 1 0 1 0x1D 375 kHz–500 kHz

0 0 1 0 0 1 1 1 0x39 500 kHz–666.67 kHz

0 0 1 0 1 1 1 1 0x2F 600 kHz–800 kHz

0 0 1 1 1 1 1 1 0x3F 800 kHz–1.067 MHz

0 1 0 0 0 1 1 1 0x47 1 MHz–1.33 MHz

0 1 0 0 1 0 0 0 0x48 1.125 MHz–1.5 MHz

0 1 0 0 1 0 1 1 0x4B 1.5 MHz–2 MHz

0 1 0 0 1 1 1 1 0x4F 2 MHz–2.67 MHz

0 1 0 1 0 1 0 0 0x54 2.625 MHz–3.5 MHz

0 1 0 1 1 0 1 1 0x5B 3.5 MHz–4.67 MHz

0 1 1 0 0 0 1 1 0x63 4.5 MHz–6 MHz

0 1 1 0 1 1 1 1 0x6F 6 MHz–8 MHz

0 1 1 1 1 0 1 1 0x7B 7.5 MHz–10 MHz

R R/W R/W R/W R/W R/W R/W R/W

AN101252-16

FIGURE 20. The ISP — MICROWIRE Control

AN101252-17

FIGURE 21. The Set PGMTIM Command

A
N

-1
15

0

www.national.com 16

2.8.2 PAGE_ERASE — Erase a Page of Flash Memory

Description: Figure 22 shows the format of the
PAGE_ERASE command. The PAGE_ERASE command
will erase a 128 bytes page (depends on the array size, 64
bytes for devices containing 1k and 4k) from the flash
memory. The next two bytes after the PAGE_ERASE byte
refer to the beginning high and low bytes of the beginning
address of the target flash page. A WAIT/READY technique
is used to delay the host when the controller is executing and
writing to the flash memory. For a full description of the
WAIT/READY command refer to the section regarding VARI-
ABLE HOST DELAY (2.7.3 Variable Host Delay). The sym-

bol t1, t2 denotes the time delay between the command byte,
the delay required after loading the high address byte, and
the delay after loading of the low address byte. The symbol
t3 denotes the time delay after loading the ADDRESS_LO
value. The PAGE_ERASE command is NOT always avail-
able (i.e., it is security dependent). If security is set, then the
command will be aborted and no acknowledgment will be
sent back. See section 10.4 for details on the number of en-
durance cycles and the number of page erase commands
that should be issued prior to writing data into the erased
page. See Table 15 for the value(s) of t1, t2, and t3.

2.8.3 MASS_ERASE — Erase the Entire Flash Memory
Array

Description: Figure 23 shows the format of the
MASS_ERASE command. The MASS_ERASE command
will erase the entire flash memory, including the Option Reg-
ister. The next byte after the MASS_ERASE command refers
to the confirmation key used to double check that a mass
erase request was actually sent. The confirmation key must
equal 0x55 in order for the MASS_ERASE command to con-
tinue. The symbol t1 denotes the time delay between the

command byte and the transmission of the CONFIRM_KEY.
The symbol t2 denotes the time delay after the CON-
FIRM_KEY has been checked. A WAIT/READY technique is
used to delay the host when the controller is executing and
writing to the flash memory. For a full description regarding
the WAIT/READY command refer to the section regarding
VARIABLE HOST DELAY (2.7.3 Variable Host Delay). The
MASS_ERASE command is always available. It is security
independent. See Table 15 for the value(s) of t1, and t2.

2.8.4 READ_BYTE — Read a Byte from the Flash
Memory Array

Description: Figure 24 shows the format of the READ_BYTE
command. The READ_BYTE command will read a byte from
the flash memory. The next two bytes after the READ_BYTE
refer to the address of the target flash location. The symbol
t1, t2 denotes the time delay between the command byte, the

delay after loading of the high address byte. Data is sent
back after t3 delay(s) has elapsed. If security is set, the user
is only allowed to read location 0xFFFF (Option Register). In
other words, if security is set and ADDRESS_HI and
ADDRESS_LO=0xFFFF then the firmware will allow that op-
eration, otherwise it will send back a 0xFF in the DATA_RTN
byte. See Table 15 for the value(s) of t1, t2, and t3.

AN101252-18

FIGURE 22. The PAGE ERASE Command

AN101252-19

FIGURE 23. The MASS_ERASE Command

AN101252-20

FIGURE 24. The READ_BYTE Command

A
N

-1150

www.national.com17

2.8.5 WRITE_BYTE — Write a Byte to the Flash Memory
Array

Description: Figure 25 shows the format of the
WRITE_BYTE routine. The WRITE_BYTE command will
write a byte to the flash memory. The next two bytes after the
WRITE_BYTE byte refer to the high and low byte address of
the target flash location. The next byte (DATA_REC) after
the ADDRESS_LO byte will contain the value that will be
stored into the flash location. The symbols t1, t2 denote the
time delay between the command byte and the delay after

loading of the high address byte. The symbol t3 denotes the
time delay after loading the ADDRESS_LO value. Data is
saved into the flash location after a t4 delay. A WAIT/READY
signal is used to delay the host. For full description regarding
the WAIT/READY command refer to the section regarding
VARIABLE HOST DELAY (2.7.3 Variable Host Delay). This
command, WRITE_BYTE, is NOT always available (i.e. it is
security dependent.) If security is set, then the command will
be aborted and no acknowledgment will be sent back. See
Table 15 for the value(s) of t1, t2, t3, and t4.

2.8.6 BLOCK WRITE — Write a Block of Data to the
Flash Memory Array

Description: Figure 26 is a symbolic representation of the
BLOCK_WRITE routine. Data is written in sequential order.
This routine is intended to write bytes of data which will re-
side in a page of flash memory. The next two bytes after the
BLOCK_WRITE byte refer to the beginning high and low
byte address of the target flash location. The next byte after
the ADDRESS_LO byte refers to the BYTECOUNTLO vari-
able. The BYTECOUNTLO variable is used by the microcon-
troller to transfer N bytes (i.e, N=BYTECOUNTLO). The
maximum number of bytes that can be written is 16. If the
number of bytes exceeds 16, it may not be guaranteed that
all of the bytes were written. The data cannot cross page
boundaries. Data must be placed with-in the same 1/2 page
segment, 64 bytes for 32k devices and 32 bytes for 1k and
4k devices. This is due to the multi-byte write limitation. If

N=0 then the firmware will abort. The symbols t1 and t2 de-
note the time delay between the command byte and the de-
lay after loading of the high address byte. The symbol t3 de-
notes the time delay after loading the ADDRESS_LO value.
The symbol t4 denotes the necessary time delay after load-
ing the BYTECOUNTLO variable. Data arrives at t5 cycles
after the ADDRESS_LO value is loaded (i.e. DATA1 - DATA2
has the same delay as DATA2 - DATA3). After the last byte
(DATA_N) is received, a WAIT/ READY signal will be sent to
delay the host. For full description regarding the WAIT/
READY command refer to the section regarding VARIABLE
HOST DELAY (2.7.3 Variable Host Delay). The command
(BLOCK_WRITE) is NOT always available (i.e. it is security
dependent). If security is set, then the command will be
aborted after the last data (DATA_N) is received and no ac-
knowledgment will be sent back. See Table 15 for the val-
ue(s) of t1, t2, t3, t4, t5, and t6.

2.8.7 BLOCK_READ — Read a Block from the Flash
Memory Array

Description: Figure 27 shows the format of the
BLOCK_READ command. The BLOCK_READ command
will read multiple bytes from the flash memory. The next two
bytes after the BLOCK_READ byte refer to the beginning
high and low byte address of the target flash location. The

next two bytes after the ADDRESS_LO byte refer to the up-
per and lower byte of BYTECOUNT. The BYTECOUNT vari-
able is used by the microcontroller to send back N number of
bytes (i.e, N=BYTECOUNT). The maximum value of N is 32
kBytes. If N=0 then the firmware will abort. The symbols t1,
t2, t3 denotes the time delay between the command byte, the
delay in loading of the ADDRESS_HI, and the delay after

AN101252-21

FIGURE 25. The WRITE_BYTE Command

AN101252-22

FIGURE 26. The Block Write Routine

A
N

-1
15

0

www.national.com 18

loading the ADDRESS_LO. The symbol t4 denotes the re-
quired time delay between loading BYTECOUNTHI and
BYTECOUNTLO. Subsequent data are sent to the host at t5
cycles after BYTECOUNTLO (i.e. DATA1–DATA2 has the
same delay as DATA2–DATA3). This command is capable of
sending up to 32 kB of flash memory through the
MICROWIRE/PLUS. This command is always available

however, if security is set, the user is only allowed to read
0xFFFF (Option Register). In other words, if at anytime
ADDRESS_HI and ADDRESS_LO=0xFFFF, the firmware
will allow that operation. If at any time ADDRESSHI and
ADDRESS_LO does not equal 0xFFFF and security is set,
then the firmware will return 0xFF. This routine will acknowl-
edge by returning data to the host.

2.8.8 EXIT — Reset the Microcontroller

Description: Figure 28 shows the format of the EXIT com-
mand. The EXIT command will reset the microcontroller.
There is no additional information required after the EXIT
byte is received. No acknowledgment will be sent back re-
garding the operation. This command is always available. It
is security independent.

3.0 ISP DOWNLOADER

3.1 IMPLEMENTATION EXAMPLE — BUILDING A
FIRMWARE MODIFIER/DOWNLOADER

The following section deals with construction of a portable
downloader. Several microcontrollers exists which have the
MICROWIRE/PLUS compatible peripheral built in. National’s
COP8SGx line of microcontrollers are used to demonstrate
the construction of a portable downloader.

National’s COP8SGx microcontrollers are easily interfaced
to the COP8 Flash Family microcontrollers. Communication
are established via the built-in MICROWIRE/PLUS periph-
eral block. A 3 + GND wire setup is used. Code samples are
provided and documented procedures are given. Figure 29
shows how to interface the COP8SGR to the COP8 Flash
Family devices. The 100Ω resistor is used to protect both de-
vices from bus contention. The 5.6 kΩ pull-up resistor is
used by the firmware to detect an idle condition on the bus.

3.1.1 COP8SGR Initialization Routine

The COP8SGR microcontroller must initialize the internal
communication block with the following parameters:
CTRL.MSEL=1, PORTGD.SO=1, PORTGD.SK=1,

PORTGC.SI=1, and PORTGC.SK=1. Tables 18, 19 contains
information about the MICROWIRE/PLUS mode. Figure 11
shows the waveforms that are from the MICROWIRE/PLUS
block. Figure 30 shows the flow for the initialization routine.

TABLE 18. Required Initialization of the MICROWIRE/PLUS

Port G Config. Reg. Bits
G5-G4

MICROWIRE/PLUS
Operation

G4 Pin Function G5 Pin Function G6 Pin Function

1-1 Master, Data Out and Data In SO Output SK Input SI Input

Figures 31, 32 shows the sample assembly and C source for the routine.

AN101252-23

FIGURE 27. The Block Read Command

AN101252-24

FIGURE 28. The EXIT Command

AN101252-25

FIGURE 29. Interfacing the COP8SGR and COP8CBR Microcontrollers

A
N

-1150

www.national.com19

TABLE 19. MICROWIRE/PLUS Mode Required for Communication

Port G
SO Clocked Out On: SI Sampled On: SK Idle Phase

G6 (SKSEL) Config. Bit G5 Data Bit

1 1 SK Falling Edge SK Rising Edge High

AN101252-26

FIGURE 30. Flow Chart for the Initialization Routine

; MICROWIRE/PLUS COP8SGR Initialization Routine
; Assume That The Wire Are Connected As In Figure 29
.INCLD cop8sgr.INC ; INCLUDE FILE FOR THE COP8SGR
.sect code,rom,abs=0 ; BEGINING CODE SPACE

; Main Routine
MAIN:

jsr MICROINIT ; CALL THE ROUTINE
jp MAIN ; RETURN TO MAIN

;INITIALIZATION CODE
MICROINIT:

sbit MSEL,CNTRL ; CNTRL.MSEL= 1, SET MICROWIRE INTO
sbit SK,PORTGC ; PORTGC.SK = 1, MODE, DATA OUT,
sbit SO,PORTGC ; PORTGC.S O = 1 ,DATA IN
rbit SO,PORTGD ; PORTGD.S O = 0 to let the firmware know that

; you want to go into ISP Mode

; Set MICROWIRE/PLUS into standard sk mode,
; IDLE = High, SET ACCORDING TO Table 20

sbit SK,PORTGD ; PORTGD.SK=1
sbit SI,PORTGC ; PORTGC.SI = 1
ret ; RETURN FROM THE CALL

.END MAIN ; END OF PROGRAM

FIGURE 31. Required Initialization Routine — Assembly Version

A
N

-1
15

0

www.national.com 20

3.1.2 The PGMTIM_SET Routine

Sets the flash write timing register to match that of the CKI frequency. See Table 11.5 for values. Figure 34 shows the flow of the
PGMTIM_SET routine. Figures 34, 35 shows the assembly and C version of the routine.

#include ″8sgr.h ″; // Include file for the COP8SGR Microcontroller
void microinit(void); // The MICROWIRE/PLUS initialization routine

void main(){ // The main
microinit(); // Set up MICROWIRE/PLUS for CBR Xmission
while(1); // Endless loop
} // End of the main

void microinit(){ // MICROWIRE/PLUS Initialization Routine
CNTRL.MSEL=1; // The MICROWIRE/PLUS Control Select Bit is set.
PORTGC.SK=1; // Set the MICROWIRE/PLUS into PORTGC.SK=1
PORTGC.SO=1; // MODE: DATA OUT, PORTGC.SO=1
PORTGD.SO=0; // To tell the firmware that you want to go into

// ISP Mode
// Set MICROWIRE/PLUS into standard sk mode, IDLE=High, Set According
// to Table 2

PORTGD.SK=1; // Set IDLE MODE=High
PORTGC.SI=1; // Set the configuration bit
} // End of microinit routine

FIGURE 32. Required Initialization Routine — C Version

AN101252-27

FIGURE 33. Flow for the PGMTIM_SET Program

A
N

-1150

www.national.com21

; MICROWIRE/PLUS COP8SGR Write PGMTIME routine
; Assume That The Wire Are Connected As In Figure 29

.INCLD cop8sgr.INC ;INCLUDE FILE FOR THE COP8SGR

.sect data,reg,abs=0xF0 ;FOR RAM STORAGE AREA
DELAY_NUM: .DSB 1 ;STORAGE FOR THE NUMBER OF DELAYS

.sect code,rom,abs=0 ;BEGINING CODE SPACE

MAIN:
jsr MICROINIT ;CALL THE MICROWIRE INITIALIZATION ROUTINE
jsr PGMTIM_SET ;CALL THE SET PROGRAMMING TIMING
jp MAIN ;RETURN TO THE MAIN LOOP

PGMTIM_SET: ;THE SET WRITE TIMING ROUTINE
ld SIOR,#03B ;PGMTIM_SET COMMAND Byte
jsr MICROWIRE_SEND ;Send the command byte out

ld A,#023 ;The amount of delay cycles required, For more info
;see Table 18 regarding required time delay cycles

jsr DELAY ;The delay routine

ld SIOR,# 06F ;Send the Write Time - Assume a 10MHz CKI CBR CKI
;frequency, See Table 2-13 for additional information

jsr MICROWIRE_SEND ;Send the value out to the COP8CBR
ret ;end of the PGMTIM_SET routine

MICROWIRE_SEND: ;The MICROWIRE/PLUS send routine

sbit BUSY,PSW ;SET THE PSW.BUSY BIT TO TURN ON
ld B,#PSW ;while (PSW.BUSY)

wait_uwire: ;THE MICROWIRE WAIT ROUTINE
ifbit 02,[B] ;IF THE BIT IS ON THEN WAIT
jp wait_uwire ;Otherwise stay in the loop
ret ;RETURN FROM THE FUNCTION CALL

MICROINIT:
sbit MSEL,CNTRL ;CNTRL.MSEL= 1, SET MICROWIRE INTO
sbit SK,PORTGC ;PORTGC.SK = 1, MODE, DATA OUT,
sbit SO,PORTGC ;PORTGC.SO = 1, DATA IN
rbit SO,PORTGD ;PORTGD.S O = 0 to let the firmware know that

;you want to go into ISP Mode

; Set MICROWIRE/PLUS into standard sk mode, sk high during idle
; IDLE = High, SET ACCORDING TO Table 20

sbit SK,PORTGD ;PORTGD.SK=1
sbit SI,PORTGC ;PORTGC.SI=1
ret ;RETURN FROM THE CALL

DELAY: ;THE DELAY ROUTINE
; ASSUME THE AMOUNT OF NOPS IS STORED IN
; THE ACCUMULATOR A

LD DELAY_NUM,#023 ;Corresponds to 35 cycles

LOOP_POINT: ;POINT WHERE THE LOOP ACTUALLY OCCURS
NOP ;THE ACTUAL NOPS
drsz DELAY_NUM ;DECREMENT DELAY_NUM, SKIP NEXT INSTR. IF

jp LOOP_POINT ;ZERO
ret ;RETURN FROM TO THE FUNCTION CALL

.END MAIN ;END OF PROGRAM

FIGURE 34. Code Sample For PGMTIM_SET. Assembly Version: COP8SGR

A
N

-1
15

0

www.national.com 22

#include ″8sgr.h ″; // Include file for the COP8SGR Microcontroller
void pgmtim_set(void); // The pgmtim_set routine
void delay(unsigned int delay_num); // The actual num of delays
void microwire_send(void);
void microinit(void);

void main(){ // The main
microinit(); // Initialize the MICROWIRE/PLUS port
pgmtim_set(0x7B); // For a 10 MHZ CKI Frequency
delay(6); // Just in case of cascading
while(1); //Endless loop
}

void pgmtim_set(unsigned int frequency){ // The PGMTIM_SET
SIOR=0x3B; // Routine, Send out the PGMTIM_SET command byte
microwire_send(); // Start up the MICROWIRE/PLUS and send the byte
delay(35); // Wait for 35 NOPs as required in the time delay
req.
SIOR=frequency; // Now send out the frequency
microwire_send(); // Start out the MICROWIRE/PLUS
} // End of the routine

void microwire_send(void){ // The routine that starts the microwire
CNTRL.MSEL=1; // Set the MICROWIRE/PLUS Control Bit
PSW.BUSY=1; // Set the PSW busy bit
while(PSW.BUSY); // Wait until the bit has cleared
} // end of the routine

void delay(unsigned int delay_num){ // The delay routine
unsigned int i; // temp variable
for (i=0;i<delay_num; i++) // The loop control
NOP; // Wait on NOP
} // End of the delay routine

void microinit(){ // MICROWIRE/PLUS Initialization Routine
CNTRL.MSEL=1; // The MICROWIRE/PLUS Control Select Bit is set.
PORTGC.SK=1; // Set the MICROWIRE/PLUS into PORTGC.SK=1
PORTGC.SO=1; // MODE: DATA OUT, PORTGC.SO=1
PORTGD.SO=0; // To tell the firmware that you want to go

// into ISP Mode
// Set MICROWIRE/PLUS into standard sk mode,

IDLE=High,
// Set According to Table 2

PORTGD.SK=1; // Set IDLE MODE=High
PORTGC.SI=1; // Set the configuration bit
} // End of microinit routine

FIGURE 35. The PGMTIM_Set Routine — C Version

A
N

-1150

www.national.com23

3.1.3 PAGE_ERASE — Erase a Page of Flash Memory

Figure 36 shows the flow for the PAGE_ERASE routine. Figures 37, 38, 39, 40 shows the assembly and C version for the
routines.

AN101252-28

FIGURE 36. Flow for the Page Erase Function

A
N

-1
15

0

www.national.com 24

; ERASE A PAGE FROM FLASH
.INCLD cop8sgr.INC ;INCLUDE FILE FOR THE COP8SGR
.sect DATA,REG,ABS=0F0;
DELAY_NUM .DSB 1 ;Allocate some memory
ADDRESSHI .DSB 1 ;To Hold the Upper Byte
ADDRESSLO .DSB 1 ;To Hold the Lower Byte

.SECT CODE,ROM,ABS=0 ;Beginning of the code
MAIN: ;Beginning of the main

jsr MICROINIT ;Call the initialization routine
jsr PGMTIM_SET ;Set the PGMTIM_SET routine
ld ADDRESSHI,#000 ;Addresshi=0
ld ADDRESSLO,#000 ;Addresslo=0
jsr PAGE_ERASE ;Call the erase page routine
ld A,#006 ;Create a delay of at least 6 NOPS
jsr DELAY ;Jump to the delay routine
jp MAIN ;Return to the main function

PAGE_ERASE: ;The erase function

ld SIOR,#0B3 ;The command byte for page erase
jsr MICROWIRE_SEND ;Start the MICROWIRE/PLUS up
ld A,#023 ;Wait at least 35 cycles
jsr DELAY ;Call the delay routine

ld A,ADDRESSHI ;Load the low address into the SIOR register
x A,SIOR ;Do the swap here
jsr MICROWIRE_SEND ;Start the MICROWIRE/PLUS up
ld A,#064 ;Create a delay of at least 100 NOPS
jsr DELAY ;Jump to the delay routine
ld A, ADDRESSLO ;Load the high address into the SIOR register
x A,SIOR ;Do the swap here
jsr MICROWIRE_SEND ; Start the MICROWIRE/PLUS up
ld A,#064 ;Create a delay of at least 100 NOPS
jsr DELAY ;Jump to the delay routine
jsr DETECT_READY ;Detect if its ready to continue

; Variable Host Delay implementation
ret ;Return from the call

DETECT_READY: ; Variable Host Delay routine
rbit SK,PORTGC ;Set portg.sk into read only mode
rbit SK,PORTGD ;

VARIABLE_DELAY: ;The holding is here
ifbit SK,PORTGP ;If high then return and proceed to next
jp NEXT ;instruction
jp VARIABLE_DELAY ;Otherwise stay here

FIGURE 37. The Page Erase Routine — Assembly Version: COP8SGR

A
N

-1150

www.national.com25

NEXT: ;Continue on to the next instruction
sbit SK,PORTGC ;Reset to normal mode when done
sbit SK,PORTGD ;
ret ;Return to function call

MICROWIRE_SEND: ;The MICROWIRE/PLUS send routine

sbit BUSY,PSW ;SET THE PSW.BUSY BIT TO TURN ON
wait_uwire: ;THE MICROWIRE WAIT ROUTINE
ifbit BUSY,PSW ;IF THE BIT IS ON THEN WAIT
jp wait_uwire ;Otherwise stay in the loop
ret ;End of MICROWIRE/PLUS_SEND

DELAY: ;THE DELAY ROUTINE
; ASSUME THE AMOUNT OF NOPS IS STORED IN
; THE ACCUMULATOR A

x A,DELAY_NUM ;SET THE DELAY_NUM VARIABLE
LOOP_POINT: ;POINT WHERE THE LOOP ACTUALLY OCCURS

NOP ;THE ACTUAL NOPS
drsz DELAY_NUM ;DECREMENT DELAY_NUM, SKIP NEXT INSTR. IF
jp LOOP_POINT ;ZERO
ret ;End of DELAY

PGMTIM_SET: ;THE SET WRITE TIMING ROUTINE
ld SIOR,#03B ; PGMTIM_SET COMMAND Byte
jsr MICROWIRE_SEND ;Send the command byte out

ld A,#023 ; The amount of delay cycles required, For more information
; see 2-11 regarding required time delay cycles

jsr DELAY ; The delay routine

ld SIOR,# 07B ; Send the Write Time - Assume a 10MHz CKI CBR CKI
; frequency, See Table 2-13 for other values

jsr MICROWIRE_SEND ; Send the value out to the COP8CBR
ret ; End of PGMTIM_SET Program

MICROINIT:
sbit MSEL,CNTRL ; CNTRL.MSEL= 1, SET MICROWIRE INTO
sbit SK,PORTGC ; PORTGC.SK = 1, MODE, DATA OUT,
sbit SO,PORTGC ; PORTGC.SO = 1, DATA IN
rbit SO,PORTGD ; PORTGD.S O = 0 to let the firmware know that

; you want to go into ISP Mode

; Set MICROWIRE/PLUS into standard sk mode,
; IDLE = High, SET ACCORDING TO Table 20

sbit SK,PORTGD ;PORTGD.SK=1
sbit SI,PORTGC ;PORTGC.SI = 1
ret ;RETURN FROM THE CALL

.END MAIN ;END OF PROGRAM

FIGURE 38. The Page Erase Routine — Assembly Version: COP8SGR (Continued)

A
N

-1
15

0

www.national.com 26

#include ″8sgr.h ″; //Include file for the COP8SGR Microcontroller
void page_erase(unsigned int addresshi, unsigned int addresslo);
void pgmtim_set(unsigned int frequency); //Set the write time
void microinit(void); //Call the MICROWIRE/PLUS initialization routine
void delay(unsigned int delay_num); //The delay routine
void detect_ready(); //Detect if it is ready to continue routine
void microwire_send(); //The send microwire routine
void main(){ //The main
microinit(); //Initialize the program
pgmtim_set(0x7B); //Call the pgmtim_set routine
page_erase(0,0); //Erase location 0000 of the flash
delay(6); //Delay for at least 6 NOPs as specified in Table 18
detect_ready(); //Detect if it is ready to continue
while(1); //Endless loop
}

//The page erase routine
void page_erase(unsigned int addresshi, unsigned int addresslo){
SIOR=0xB3; //Send out the command byte value
microwire_send(); //tell MICROWIRE/PLUS to transmit
delay(35); //Delay for at least 35 NOPS as specified in Table 18

SIOR=addresshi; // Set the high address
microwire_send(); // tell MICROWIRE/PLUS to transmitt
delay(100); // Delay for at least 100 NOPs

SIOR=addresslo; // Set the low address
microwire_send(); // tell MICROWIRE/PLUS to transmitt
delay(100); // Delay for at least 100 NOPs

detect_ready();
}

void pgmtim_set(unsigned int frequency){ // The PGMTIM_SET
SIOR=0x3B; // Routine, Send out the PGMTIM_SET command byte
microwire_send(); // Start up the MICROWIRE/PLUS and send the byte
delay(35); // Wait for 35 NOPs as required in the time delay req.
SIOR=frequency; // Now send out the frequency
microwire_send(); // Start out the MICROWIRE/PLUS
} // End of the routine

void microinit(){ // MICROWIRE/PLUS Initialization Routine
CNTRL.MSEL=1; // The MICROWIRE/PLUS Control Select Bit is set.
PORTGC.SK=1; // Set the MICROWIRE/PLUS into PORTGC.SK=1
PORTGC.SO=1; // MODE: DATA OUT, PORTGC.SO=1

// Set MICROWIRE/PLUS into standard sk mode,
// IDLE=High, Set According to Table 2

PORTGD.SK=1; // Set IDLE MODE=High
PORTGC.SI=1; // Set the configuration bit
} // End of the routine

void delay(unsigned int delay_num){ // The delay routine
unsigned int i; // temp variable
for (i=0;i<delay_num; i++) // The loop control
NOP; // Wait on NOP
} // End of the delay routine

void detect_ready(){ // Detect if the host is ready to send routine
PORTGC.SK=0; // Set the PORTG.SK into input mode
PORTGD.SK=0;

while(PORTGP.SK==0) // While the CLOCK line is still low
NOP; // Stay Here

FIGURE 39. The Page Erase Routine — C Version: COP8SGR

A
N

-1150

www.national.com27

3.1.4 MASS_ERASE — Bulk Erase the Flash Memory

Figure 41 shows the flow for the MASS_ERASE routine. Figures 42, 43, 44, 45 shows the assembly and C version of the
MASS_ERASE routine.

PORTGC.SK=1; //Other wise reset
PORTGD.SK=1; //And Exit Routine
} //End of detect_ready()

void microwire_send(void){ // The routine that starts the microwire
CNTRL.MSEL=1; // Set the MICROWIRE/PLUS Control Bit
PSW.BUSY=1; // Set the PSW busy bit
while(PSW.BUSY); // Wait until the bit has cleared
} // end of the routine

FIGURE 40. The Page Erase Routine — C Version: COP8SGR (Continued)

AN101252-29

FIGURE 41. Flow for the Mass Erase Function

A
N

-1
15

0

www.national.com 28

; Mass Erase The FLASH
.INCLD cop8sgr.INC ;INCLUDE FILE FOR THE COP8SGR
.sect DATA,REG,ABS=0F0;
DELAY_NUM .DSB 1 ;Allocate some memory
ADDRESSHI .DSB 1 ;To Hold the Upper Byte
ADDRESSLO .DSB 1 ;To Hold the Lower Byte

.SECT CODE,ROM,ABS=0 ;Beginning of the code
MAIN: ;Beginning of the main

jsr MICROINIT ;Call the initialization routine
jsr PGMTIM_SET ;Set the PGMTIM_SET routine
ld ADDRESSHI,#000 ;Addresshi=0
ld ADDRESSLO,#000 ;Addresslo=0
jsr Mass_ERASE ;Call the Mass Erase routine
ld A,#006 ;Create a delay of at least 6 NOPS
jsr DELAY ;Jump to the delay routine
jp MAIN ;Return to the main function

MASS_ERASE: ;The erase function

ld SIOR,#0BF ;The command byte for page erase
jsr MICROWIRE_SEND ;Start the MICROWIRE/PLUS up
ld A,#023 ;Wait at least 35 cycles
jsr DELAY ;Call the delay routine

ld A,#055 ;Load the confirmation code into the SIOR register
x A,SIOR ;Do the swap here
jsr MICROWIRE_SEND ;Start the MICROWIRE/PLUS up
ld A,#064 ;Create a delay of at least 100 NOPS
jsr DELAY ;Jump to the delay routine
jsr DETECT_READY ;Detect if its ready to continue

;Variable Host Delay implementation
ret ;Return from the call

DETECT_READY: ;Variable Host Delay routine
rbit SK,PORTGC ;Set portg.sk into read only mode
rbit SK,PORTGD ;

VARIABLE_DELAY: ;The holding is here
ifbit SK,PORTGP ;If high then return and proceed to next
jp NEXT ;instruction
jp VARIABLE_DELAY ;Otherwise stay here

FIGURE 42. The Mass Erase Routine — Assembly Version: COP8SGR

A
N

-1150

www.national.com29

NEXT: ; Continue on to the next instruction
sbit SK,PORTGC ; Reset to normal mode when done
sbit SK,PORTGD ;
ret ; Return to function call

MICROWIRE_SEND: ; The MICROWIRE/PLUS send routine

sbit BUSY,PSW ; SET THE PSW.BUSY BIT TO TURN ON
wait_uwire: ; THE MICROWIRE WAIT ROUTINE
ifbit BUSY,PSW ; IF THE BIT IS ON THEN WAIT
jp wait_uwire ; Otherwise stay in the loop
ret ; End of MICROWIRE/PLUS_SEND

DELAY: ;THE DELAY ROUTINE
; ASSUME THE AMOUNT OF NOPS IS STORED IN
; THE ACCUMULATOR A

x A,DELAY_NUM ; SET THE DELAY_NUM VARIABLE
LOOP_POINT: ; POINT WHERE THE LOOP ACTUALLY OCCURS

NOP ; THE ACTUAL NOPS
drsz DELAY_NUM ; DECREMENT DELAY_NUM, SKIP NEXT INSTR. IF
jp LOOP_POINT ; ZERO
ret ; End of DELAY

PGMTIM_SET: ; THE SET WRITE TIMING ROUTINE
ld SIOR,#03B ; PGMTIM_SET COMMAND Byte
jsr MICROWIRE_SEND ; Send the command byte out

ld A,#023 ; The amount of delay cycles required, For more information
; see 2-11 regarding required time delay cycles

jsr DELAY ; The delay routine

ld SIOR,# 07B ; Send the Write Time - Assume a 10MHz CKI CBR CKI
; frequency, See Table 2-13 for other values

jsr MICROWIRE_SEND ; Send the value out to the COP8CBR
ret ; End of PGMTIM_SET Program

MICROINIT:
sbit MSEL,CNTRL ; CNTRL.MSEL= 1, SET MICROWIRE INTO
sbit SK,PORTGC ; PORTGC.SK = 1, MODE, DATA OUT,
sbit SO,PORTGC ; PORTGC.SO = 1, DATA IN
rbit SO,PORTGD ; PORTGD.S O = 0 to let the firmware know that

; you want to go into ISP Mode

; Set MICROWIRE/PLUS into standard sk mode,
; IDLE = High, SET ACCORDING TO Table 20

sbit SK,PORTGD ; PORTGD.SK=1
sbit SI,PORTGC ; PORTGC.SI = 1
ret ; RETURN FROM THE CALL

.END MAIN ; END OF PROGRAM

FIGURE 43. The Mass Erase Routine — Assembly Version: COP8SGR (Continued)

A
N

-1
15

0

www.national.com 30

#include ″8sgr.h ″; // Include file for the COP8SGR Microcontroller
void mass_erase();
void pgmtim_set(unsigned int frequency); // Set the write time
void microinit(void); // Call the MICROWIRE/PLUS initialization routine
void delay(unsigned int delay_num); // The delay routine
void detect_ready(); // Detect if it is ready to continue routine
void microwire_send(); // Send the data out that is in the SIOR buffer

void main(){ // The main
microinit(); // Initialize the program
pgmtim_set(0x7B); // Call the pgmtim_set routine
mass_erase(); // Mass erase the flash
delay(6); //Delay for at least 6 NOPs as specified in Table 18
detect_ready(); // Detect if it is ready to continue
while(1); // Endless loop
}

// The mass erase routine
void mass_erase(){
SIOR=0xBF; // Send out the command byte value
microwire_send(); // tell MICROWIRE/PLUS to transmitt
delay(35); // Delay for at least 35 NOPS as specified in the
Table 18

SIOR=0x55; // Set the confirmation code
microwire_send(); // tell MICROWIRE/PLUS to transmitt
delay(100); // Delay for at least 100 NOPs
detect_ready();
}
void pgmtim_set(unsigned int frequency){ // The PGMTIM_SET
SIOR=0x3B; // Routine, Send out the PGMTIM_SET command byte
microwire_send(); // Start up the MICROWIRE/PLUS and send the byte
delay(35); // Wait for 35 NOPs as required in the time delay
req.
SIOR=frequency; // Now send out the frequency
microwire_send(); // Start out the MICROWIRE/PLUS
} // End of the routine

void microinit(){ // MICROWIRE/PLUS Initialization Routine
CNTRL.MSEL=1; // The MICROWIRE/PLUS Control Select Bit is set.
PORTGC.SK=1; // Set the MICROWIRE/PLUS into PORTGC.SK=1
PORTGC.SO=1; // MODE: DATA OUT, PORTGC.SO=1

// Set MICROWIRE/PLUS into standard sk mode,
IDLE=High,

// Set According to Table 2
PORTGD.SK=1; // Set IDLE MODE=High
PORTGC.SI=1; // Set the configuration bit
} // End of the routine

void delay(unsigned int delay_num){ // The delay routine
unsigned int i; // temp variable
for (i=0;i<delay_num; i++) // The loop control
NOP; // Wait on NOP
} // End of the delay routine

void detect_ready(){ // Detect if the host is ready to send routine
PORTGC.SK=0; // Set the PORTG.SK into input mode
PORTGD.SK=0;

FIGURE 44. The Mass Erase Routine — C Version: COP8SGR

A
N

-1150

www.national.com31

3.1.5 READ_BYTE — Read a Byte from the Flash Memory Array

Figure 46 shows the flow for the READ_BYTE routine. Figures 47, 48, 49 shows the assembly and C version for the routine.

while(PORTGP.SK==0) // While the CLOCK line is still low
NOP; // Stay Here
PORTGC.SK=1; // Otherwise reset
PORTGD.SK=1; // And Exit Routine
} // End of detect_ready()

void microwire_send(void){ // The routine that starts the microwire
CNTRL.MSEL=1; // Set the MICROWIRE/PLUS Control Bit
PSW.BUSY=1; // Set the PSW busy bit
while(PSW.BUSY); // Wait until the bit has cleared
} // end of the routine

FIGURE 45. The Mass Erase Routine — C Version: COP8SGR

AN101252-30

FIGURE 46. Flow for the Read Byte Routine

A
N

-1
15

0

www.national.com 32

; The following routine will read a byte from the flash memory array
.INCLD cop8sgr.INC ;INCLUDE FILE FOR THE COP8SGR
.sect DATA,REG,ABS=0F0 ;Set the beginning of the RAM location
DELAY_NUM .DSB 1 ;To be starting at 0F0
ADDRESSHI .DSB 1 ;The high address byte
ADDRESSLO .DSB 1 ;The low address byte
DATA_READ .DSB 1 ;The variable to store the returned data

.SECT CODE,ROM,ABS=0 ;Beginning of the code
MAIN: ;The Main

jsr MICROINIT ;Call the MICROWIRE/PLUS initialization routine
ld ADDRESSHI,#000 ;Addressh i = 0 of flash
ld ADDRESSLO,#000 ;Addressl o = 0 of flash
jsr READ_BYTE ;Call the read byte routine
ld A,#006 ;Delay for 6 cycles
jsr DELAY ;Call the delay routine
ld A,SIOR ;Copy the buffer into the accumulator
x A,DATA_READ ;Save into the RAM location now
jp MAIN ;Return to the main

READ_BYTE: ;The read byte routine

ld SIOR,#01D ;The command byte for read byte
jsr MICROWIRE_SEND ;Call the MICROWIRE/PLUS send routine
ld A,#023 ;Delay for 35 cycles
jsr DELAY ;Call the delay function

ld A,ADDRESSHI ;Set the actual high byte if the flash address
x A,SIOR ;Swap it with the MICROWIRE/PLUS buffer and send it out
jsr MICROWIRE_SEND ;Call the MICROWIRE/PLUS send routine
ld A,#064 ;Delay for 100 NOPs
jsr DELAY ;Call the delay routine

ld A, ADDRESSLO ;Set the actual low byte of the flash address
x A,SIOR ;Swap it with SIOR
jsr MICROWIRE_SEND ;Call the MICROWIRE/PLUS send routine
ld A,#064 ;Wait for 100 Nops
jsr MICROWIRE_SEND ;One last time to get the data

;Data should be in the SIOR register now
jsr DELAY ;Call the delay routine

jsr MICROWIRE_SEND ;ONE LAST CALL FOR THE DATA
;DATA SHOULD BE IN THE SIOR NOW

ret ;

FIGURE 47. Read A Byte Of Flash — Assembly Version: COP8SGR

A
N

-1150

www.national.com33

MICROWIRE_SEND: ; MICROWIRE/PLUS Routine

sbit BUSY,PSW ; SET THE PSW.BUSY BIT TO TURN ON
wait_uwire: ; THE MICROWIRE WAIT ROUTINE

ifbit BUSY,PSW ; IF THE BIT IS ON THEN WAIT
jp wait_uwire ; Otherwise stay in the loop
ret ; End of MICROWIRE/PLUS_SEND

DELAY: ; THE DELAY ROUTINE
; ASSUME THE AMOUNT OF NOPS IS STORED IN
; THE ACCUMULATOR A

x A,DELAY_NUM ; SET THE DELAY_NUM VARIABLE
LOOP_POINT: ; POINT WHERE THE LOOP ACTUALLY OCCURS

NOP ; THE ACTUAL NOPS
drsz DELAY_NUM ; DECREMENT DELAY_NUM, SKIP NEXT INSTR. IF
jp LOOP_POINT ; ZERO
ret ; End of DELAY

MICROINIT:
sbit MSEL,CNTRL ; CNTRL.MSEL= 1, SET MICROWIRE INTO
sbit SK,PORTGC ; PORTGC.SK = 1, MODE, DATA OUT,
sbit SO,PORTGC ; PORTGC.SO = 1, DATA IN
rbit SO,PORTGD ; PORTGD.S O = 0 to let the firmware know that

; you want to go into ISP Mode

; Set MICROWIRE/PLUS into standard sk mode,
; IDLE = High, SET ACCORDING TO Table 20

sbit SK,PORTGD ; PORTGD.SK=1
sbit SI,PORTGC ; PORTGC.SI = 1
ret ; RETURN FROM THE CALL

.END MAIN ; END OF PROGRAM

FIGURE 48. Read A Byte Of Flash — Assembly Version: COP8SGR (Continued)

A
N

-1
15

0

www.national.com 34

#include ″8sgr.h ″; //Include file for the COP8SGR Microcontroller
unsigned int read_byte(unsigned int addresshi, unsigned int addresslo); //The read
byte function
void microinit(void); //The MICROWIRE/PLUS initialization routine
void delay(unsigned int delay_num); //The delay routine
void microwire_send(); //The microwire send routine

void main(){ //The main routine
unsigned int data_read; //The buffer that would hold the result data
microinit(); //Initialize the data vector
data_read=read_byte(0,1); //Read at location 1 of the flash
while(1); //Endless loop
}

//The read_byte routine, it will return the data byte read
unsigned int read_byte(unsigned int addresshi, unsigned in addresslo){

SIOR=0x1D; //The read_byte command byte
microwire_send(); //Send it out to the MICROWIRE/PLUS
delay(35); //Wait for 35 NOPs as stated in Table 18

SIOR=addresshi; //Set up the high address
microwire_send(); //Send it out on the MICROWIRE/PLUS line
delay(100); //Wait for 100 Nops

SIOR=addresslo; //Set up the low address
microwire_send(); //Send it out on the MICROWIRE/PLUS line
delay(100); //Wait for 100 Nops
microwire_send(); //One last time for the data
return SIOR; //Data should now be in the SIOR buffer
} //End of read_byte routine

void microinit(){ // MICROWIRE/PLUS Initialization Routine
CNTRL.MSEL=1; // The MICROWIRE/PLUS Control Select Bit is set.
PORTGC.SK=1; // Set the MICROWIRE/PLUS into PORTGC.SK=1
PORTGC.SO=1; // MODE: DATA OUT, PORTGC.SO=1
PORTGD.SO=0; // To tell the firmware that you want to go into

// ISP Mode
// Set MICROWIRE/PLUS into standard sk mode, IDLE=High,
// Set According to Table 2

PORTGD.SK=1; // Set IDLE MODE=High
PORTGC.SI=1; // Set the configuration bit
} // End of microinit routine

void delay(unsigned int delay_num){ // The delay routine
unsigned int i; // temp variable
for (i-0;i<delay_num;i++) // The loop control
NOP; // Wait on NOP
} // End of the delay routine

void microwire_send(void){ // The routine that starts the microwire
CNTRL.MSEL=1; // Set the MICROWIRE/PLUS Control Bit
PSW.BUSY=1; // Set the PSW busy bit
while(PSW.BUSY); // Wait until the bit has cleared
} // end of the routine

FIGURE 49. Read A Byte of Flash — C Version: COP8SGR

A
N

-1150

www.national.com35

3.1.6 WRITE_BYTE — Write a Byte to the Flash Memory Array

Figure 50 shows the flow for the WRITE_BYTE routine. Figures 51, 52, 53, 54 shows the assembly and C version for the routine.

AN101252-31

FIGURE 50. Flow for the Write Byte Function

A
N

-1
15

0

www.national.com 36

; WRITE A BYTE TO THE FLASH ROUTINE
.INCLD cop8sgr.INC ;INCLUDE FILE FOR THE COP8SGR
.sect DATA,REG,ABS=0F0 ;DECLARE SOME VARIABLE
DELAY_NUM .DSB 1 ;The number of delays
ADDRESSHI .DSB 1 ;The high address byte
ADDRESSLO .DSB 1 ;The low address byte
WRITE_DATA .DSB 1 ;The variable where the data is to be read
; from

.SECT CODE,ROM,ABS=0 ;Beginning of the program

MAIN: ;The main routine
jsr MICROINIT ;Initialize the MICROWIRE/PLUS
jsr PGMTIM_SET ;Set the write time
ld A,#006 ;Delay for 6 cycles
jsr DELAY ;Call the delay routine
ld ADDRESSHI,#000 ;Set the high address byte
ld ADDRESSLO,#001 ;Set the low address byte
ld WRITE_DATA,#005 ;Loa d a 5 where the write data variable is
jsr WRITE_BYTE ;Call the write byte variable
jp MAIN ;Jump to the main function

WRITE_BYTE: ;The write byte variable

ld SIOR,#071 ;The write byte command values
jsr MICROWIRE_SEND ;Startup the MICROWIRE/PLUS function
ld A,#023 ;Delay for 35 Nops
jsr DELAY ;Call the delay function

ld A,ADDRESSHI ;Set the high address byte
x A,SIOR ;Then swap it with the SIOR register
jsr MICROWIRE_SEND ;Call the MICROWIRE/PLUS send routine
ld A,#064 ;Delay for 100 Nops
jsr DELAY ;Call the delay routine

ld A, ADDRESSLO ;Set the low address byte
x A,SIOR ;Swap it with the SIOR register
jsr MICROWIRE_SEND ;Call the MICROWIRE/PLUS send routine
ld A,#014 ;Delay for 20 Nops
jsr DELAY ;Call the delay routine

ld A, WRITE_DATA ;Set the low address byte
x A,SIOR ;Swap it with the SIOR register
jsr MICROWIRE_SEND ;Call the MICROWIRE/PLUS send routine
ld A,#014 ;Delay for 20 Nops
jsr DELAY ;Call the delay routine

ld A,WRITE_DATA ;Get the data
x A,SIOR ;Get ready to send it out
jsr MICROWIRE_SEND ;ONE LAST CALL FOR THE DATA

ld A,#00A ;Delay for 10 Nops
jsr DELAY ;Call the delay routine

jsr DETECT_READY ;Call the routine to detect if it is ready
ret ;Return to the function call

PGMTIM_SET: ;THE SET WRITE TIMING ROUTINE
ld SIOR,#03B ;PGMTIM_SET COMMAND Byte
jsr MICROWIRE_SEND ;Send the command byte out

FIGURE 51. Write a Byte to the Flash — Assembly Version: COP8SGR

A
N

-1150

www.national.com37

ld A,#023 ; The amount of delay cycles required, For more informa-
; tion see Table 18 regarding required time delay cycles

jsr DELAY ; The delay routine

ld SIOR,# 07B ; Send the Write Time - Assume a 10MHz CKI CBR
; CKI frequency

ld A,#064 ; The amount of delay cycles required, For more informa-
; tion see Table 18 regarding required time delay cycles

jsr DELAY ; The delay routine

jsr MICROWIRE_SEND ; Send the value out to the COP8CBR
ret ; End of PGMTIM_SET routine

DETECT_READY: ; Variable Host Delay routine
rbit SK,PORTGC ; Set portg.sk into read only mode
rbit SK,PORTGD ;

VARIABLE_DELAY: ; The holding is here
ifbit SK,PORTGP ; If high then return and proceed to next
jp NEXT ; instruction
jp VARIABLE_DELAY ; Otherwise stay here

NEXT: ; Continue on to the next instruction
sbit SK,PORTGC ; Reset to normal mode when done
sbit SK,PORTGD ;
ret ;R eturn to function call

DELAY: ; THE DELAY ROUTINE
; ASSUME THE AMOUNT OF NOPS IS STORED IN
; THE ACCUMULATOR A

x A,DELAY_NUM ; SET THE DELAY_NUM VARIABLE
LOOP_POINT: ; P01NT WHERE THE LOOP ACTUALLY OCCURS

NOP ; THE ACTUAL NOPS
drsz DELAY_NUM ; DECREMENT DELAY_NUM, SKIP NEXT INSTR. IF
jp LOOP_POINT ; ZERO
ret ; End of DELAY

MICROINIT:
sbit MSEL,CNTRL ; CNTRL.MSEL= 1, SET MICROWIRE INTO
sbit SK,PORTGC ; PORTGC.SK = 1, MODE, DATA OUT,
sbit SO,PORTGC ; PORTGC.SO = 1, DATA IN
rbit SO,PORTGD ; PORTGD.S O = 0 to let the firmware know that

; you want to go into ISP Mode

; Set MICROWIRE/PLUS into standard sk mode,
; IDLE = High, SET ACCORDING TO Table 20

sbit SK,PORTGD ; PORTGD.SK=1
sbit SI,PORTGC ; PORTGC.SI = 1
ret ; RETURN FROM THE CALL

MICROWIRE_SEND: ; MICROWIRE/PLUS Routine
sbit BUSY,PSW ; SET THE PSW.BUSY BIT TO TURN ON

wait_uwire: ; THE MICROWIRE WAIT ROUTINE
ifbit BUSY,PSW ; IF THE BIT IS ON THEN WAIT
jp wait_uwire ; Otherwise stay in the loop
ret ; End of MICROWIRE/PLUS_SEND

.END MAIN ; End of the Program

FIGURE 52. Write a Byte to the Flash — Assembly Version: COP8SGR (Continued)

A
N

-1
15

0

www.national.com 38

#include ″8sgr.h ″; // Include file for the COP8SGR Microcontroller
void write_byte(unsigned int addresshi, unsigned int addresslo, usigned int write_data);

// The write byte routine
void microinit(void); // Initialize the MICROWIRE/PLUS initialization
void delay(unsigned int delay_num); // Delay routine
void detect_ready(); // Detect when CBR is ready
void microwire_send(); // The microwire send routine
void main(){ // The main routine
microinit(); // The main initialization routine
pgmtim_set(0x7B); // Call the pgmtim_set routine
write_byte(0,1,5); // Write a byte at location 1 of flash with a 5
detect_ready();
while(1); // Endless loop
}

void pgmtim_set(unsigned int frequency){ // The PGMTIM_SET
SIOR=0x3B; // Routine, Send out the PGMTIM_SET command byte
microwire_send(); // Start up the MICROWIRE/PLUS and send the byte
delay(35); // Wait for 35 NOPs as required in the time delay req.
SIOR=frequency; // Now send out the frequency
microwire_send(); // Start out the MICROWIRE/PLUS
delay(100); // Wait for at least 100 NOPs
} // End of the routine

void write_byte(unsigned int addresshi, unsigned in addresslo, unsigned int write_data){
// The actual function call

SIOR=0x1D; // The command byte value
microwire_send(); // Send it out to the CBR
delay(35); // Delay for 35 Nops

SIOR=addresshi; // Send out the high address byte
microwire_send(); // Tell MICROWIRE/PLUS to send it
delay(100); // Delay for 100 Nops

SIOR=addresslo; // Send out the low address byte
microwire_send(); // Tell MICROWIRE/PLUS to send it
delay(100); // Delay for 100 Nops

microwire_send(); // Now send the actual data to the microcontroller
delay(10); // Wait till the end of 10 cycles
detect_ready(); // Detect if the CBR is ready for additional data
} // end of the write_byte routine

void microinit(){ // MICROWIRE/PLUS Initialization Routine
CNTRL.MSEL=1; // The MICROWIRE/PLUS Control Select Bit is set
PORTGC.SK=1; // Set the MICROWIRE/PLUS into PORTGC.SK=1
PORTGC.SO=1; // MODE: DATA OUT, PORTGC.SO=1
PORTGD.SO=0; // To tell the firmware that you want to go into

// ISP Mode
// Set MICROWIRE/PLUS into standard sk mode, IDLE=High,
// Set According to Table 2

PORTGD.SK=1; // Set IDLE MODE=High
PORTGC.SI=1; // Set the configuration bit
} // End of microinit routine

FIGURE 53. Write a Byte to the Flash — C Version: COP8SGR

A
N

-1150

www.national.com39

void detect_ready(){ //Detect if the host is ready to send routine
PORTGC.SK=0; //Set the PORTG.SK into input mode
PORTGD.SK=0;
while(PORTGP.SK==0) //While the CLOCK line is still low
NOP; //Stay Here

PORTGC.SK=1; //Otherwise reset
PORTGD.SK=1; //And Exit Routine
} //End of detect_ready()

void delay(unsigned int delay_num){ // The delay routine
unsigned int i; // temp variable
for (i=0;i<delay_num;i++) // The loop control
NOP; // Wait on NOP
} //End of delay routine

void detect_ready(){ // Detect if the host is ready to send routine
PORTGC.SK=0; //Set the PORTG.SK into input mode
PORTGD.SK=0;

while(PORTGP.SK==0) //While the CLOCK line is still low
NOP; //Stay Here
PORTGC.SK=1; //Otherwise reset
PORTGD.SK=1; //And Exit Routine
} //End of the detect ready event

void microwire_send(void){ // The routine that starts the microwire
CNTRL.MSEL=1; // Set the MICROWIRE/PLUS Control Bit
PSW.BUSY=1; // Set the PSW busy bit
while(PSW.BUSY); // Wait until the bit has cleared
} // end of the routine

FIGURE 54. Write a Byte to the Flash — C Version: COP8SGR (Continued)

A
N

-1
15

0

www.national.com 40

3.1.7 BLOCK WRITE — Write a Block of Data to the Flash Memory Array

Figure 55 shows the flow for the BLOCK WRITE routine. Figures 56, 57, 58, 59 shows the assembly and C version for the routine.

AN101252-32

FIGURE 55. Flow for the Block Write Function

A
N

-1150

www.national.com41

; WRITE A BLOCK OF DATA TO THE FLASH MEMORY
.INCLD cop8sgr.INC ;INCLUDE FILE FOR THE COP8SGR
.sect DATA,REG,ABS=0F0 ;Declare some variables
DELAY_NUM .DSB 1 ;For the delay routine
ADDRESSHI .DSB 1 ;To hold the high address byte
ADDRESSLO .DSB 1 ;To hold the low address byte
BYTECOUNTLO .DSB 1 ;To hold the number of bytes to send
WRITE_DATA1 .DSB 1 ;To hold the sample data #1
WRITE_DATA2 .DSB 1 ;To hold the sample data #2
WRITE_DATA3 .DSB 1 ;To hold the sample data #3
.SECT CODE,ROM,ABS=0 ;Beginning of the program

MAIN: ;The main function
jsr PGMTIM_SET ;Set the write time
ld A,#006 ;Delay for 6 Nops before jumping
jsr DELAY ;Call the delay routine

jsr MICROINIT ;Initialize the MICROWIRE/PLUS routine
ld WRITE_DATA1,#001 ;Set the first variable WRITE_DATA1=1
ld WRITE_DATA2,#002 ;Set the second var. WRITE_DATA2=2
ld WRITE_DATA3,#003 ;Set the third var. WRITE_DATA3=3
ld ADDRESSHI,#000 ;The high address byte is 0
ld ADDRESSLO,#001 ;The low address byte is 1
ld B,#WRITE_DATA1 ;Set the pointer to the WRITE_DATA1
ld BYTECOUNTLO,#003 ;Set the number of bytes to read as 3
jsr BLOCK_WRITE ;Call the block write routine
ld A,#006 ;Delay for 6 Nops
jsr DELAY ;Call the delay routine
jp MAIN ;Return to the MAIN function

BLOCK_WRITE: ;The BLOCK_WRITE routine definition
ld SIOR,#08F ;The BLOCK_WRITE command byte
jsr MICROWIRE_SEND ;Startup MICROWIRE/PLUS
ld A,#023 ;Delay for 35 Nops as specified in Table 18
jsr DELAY ;Call the delay routine

ld A,ADDRESSHI ;Load the high byte of the address to the
x A,SIOR ;SIOR Buffer
jsr MICROWIRE_SEND ;Send it out to the COP8CBR
ld A,#064 ;Delay for 100 Nops
jsr DELAY ;Call the delay function
ld A, ADDRESSLO ;Load the low byte of the address to the
x A,SIOR ;SIOR Buffer
jsr MICROWIRE_SEND ;Send it out to the COP8CBR
ld A,#064 ;Delay for 100 Nops
jsr DELAY ;Call the delay function

ld A,BYTECOUNTLO ;Load the value of bytecountlo into the
; accumulator

x A,SIOR ;Swap it with the SIOR buffer
jsr MICROWIRE_SEND ;Call MICROWIRE/PLUS to send it out
ld A,#064 ;Setup a delay for 100 Nops
jsr DELAY ;Call the delay function

READ_PT: ;The point where the read loops around
ld A,[B+] ;Load the value where the B pointer is pointing at
x A,SIOR ;It assume the user has already setup the B pointer
jsr MICROWIRE_SEND ;Call the MICROWIRE/PLUS to send it out
ld A,#064 ;Swap it with the SIOR buffer and delays it for 100 Nops
jsr DELAY ;Call the delay routine
drsz BYTECOUNTLO ;Decrement bytecount and jump next if zero
jp READ_PT ;Go back to the read point

FIGURE 56. The Block Write Sample Code — Assembly Version: COP8SGR

A
N

-1
15

0

www.national.com 42

jsr DETECT_READY ;Detect if it is ready to send
ret ;End of Block Write Routine

DETECT_READY: ;Variable Host Delay routine
rbit SK,PORTGC ;Set portg.sk into read only mode
rbit SK,PORTGD ;

VARIABLE_DELAY: ;The holding is here
ifbit SK,PORTGP ;If high then return and proceed to next
jp NEXT ;instruction
jp VARIABLE_DELAY ;Otherwise stay here

NEXT: ;Continue the next instruction
sbit SK,PORTGC ;Reset to normal mode when done
sbit SK,PORTGD ;
ret ;Return to function call

DELAY: ;THE DELAY ROUTINE
; ASSUME THE AMOUNT OF NOPS IS STORED IN
; THE ACCUMULATOR A

x A,DELAY_NUM ;SET THE DELAY_NUM VARIABLE
LOOP_POINT: ;P01NT WHERE THE LOOP ACTUALLY OCCURS

NOP ;THE ACTUAL NOPS
drsz DELAY_NUM ;DECREMENT DELAY_NUM, SKIP NEXT INSTR. IF
jp LOOP_POINT ;ZERO
ret ;End of DELAY

MICROINIT:
sbit MSEL,CNTRL ; CNTRL.MSEL= 1, SET MICROWIRE INTO
sbit SK,PORTGC ; PORTGC.SK = 1, MODE, DATA OUT,
sbit SO,PORTGC ; PORTGC.SO = 1, DATA IN
rbit SO,PORTGD ; PORTGD.S O = 0 to let the firmware know that

; you want to go into ISP Mode

; Set MICROWIRE/PLUS into standard sk mode,
; IDLE = High, SET ACCORDING TO Table 20

sbit SK,PORTGD ; PORTGD.SK=1
sbit SI,PORTGC ; PORTGC.SI = 1
ret ; RETURN FROM THE CALL

PGMTIM_SET: ; THE SET WRITE TIMING ROUTINE
ld SIOR,#03B ; PGMTIM_SET COMMAND Byte
jsr MICROWIRE_SEND ; Send the command byte out
ld A,#023 ; The amount of delay cycles required, For more informa-

; tion see Table 18 regarding required time delay cycles
jsr DELAY ; The delay routine

ld SIOR,# 07B ; Send the Write Time - Assume a 10MHz CKI CBR CKI frequency

jsr MICROWIRE_SEND ; Send the value out to the COP8CBR
ld A,#064 ; The amount of delay cycles required, For more informa-

; tion see Table 18 regarding required time delay cycles
jsr DELAY ; The delay routine
ret ; End of PGMTIM_SET

MICROWIRE_SEND: ; MICROWIRE/PLUS Routine
sbit BUSY,PSW ; SET THE PSW.BUSY BIT TO TURN ON
wait_uwire: ; THE MICROWIRE WAIT ROUTINE
ifbit BUSY,PSW ; IF THE BIT IS ON THEN WAIT
jp wait_uwire ; Otherwise Wait until cleared
ret ; End of MICROWIRE/PLUS_SEND

.END MAIN ; END OF PROGRAM

FIGURE 57. The Block Write Sample Code — Assembly Version: COP8SGR (Continued)

A
N

-1150

www.national.com43

#include ″8sgr.h ″; // Include file for the COP8SGR Microcontroller
// The write byte routine

void block_write(unsigned int addresshi, unsigned int addresslo, unsigned int
bytecountlo); void microinit(void); // Initialize the

// MICROWIRE/PLUS initalization
void delay(unsigned int delay_num); // Delay it for 6 Nops
void detect_ready(); // Detect when CBR is ready
void microwire_send(); // The microwire send routine

unsigned int write_data[3]; // Declare three data points for data storage

void main(){ //The main routine

microinit(); //The main initialization routine
pgmtim_set(0x7B); //Call the pgmtim_set routine
write_data[1]=1; //Storage location 1 for the block write routine
write_data[2]=2; //Storage location 2 for the block write routine
write_data[3]=3; //Storage location 3 for the block write routine
block_write(0,1,3); //Write a block of data beginning at flash(001) and

//bytecountlo=3, the assumed array is global with the name
write_data[]
while(1); //Endless loop
}

void block_write(unsigned int addresshi, unsigned int addresslo, unsigned
int bytecountlo){ //The actual function call
unsigned int i; //A counter variable
SIOR=0x8F; //The command byte value
microwire_send(); //Send it out to the CBR
delay(35); //Delay for 35 Nops

SIOR=addresshi; //Send out the high address byte
microwire_send(); //Tell MICROWIRE/PLUS to send it
delay(100); //Delay for 100 Nops

SIOR=addresslo; //Send out the low address byte
microwire_send(); //Tell MICROWIRE/PLUS to send it
delay(100); //Delay for 100 Nops
microwire_send(); //Now send the actual data to the microcontroller
SIOR=bytecountlo; //Send out the low address byte
microwire_send(); //Tell MICROWIRE/PLUS to send it
delay(100); //Delay for 100 Nops
for (i=0;i<bytecountlo;i++){ //Send the data out until it reaches bytecountlo
SIOR=write_data[i]; //Send out the low address byte
microwire_send(); //Tell MICROWIRE/PLUS to send it
delay(100); //Delay for 100 Nops
}
detect_ready(); //Detect if the CBR is ready for additional data
} //end of the block write routine

FIGURE 58. The Block Write Sample Code–C Version: COP8SGR

A
N

-1
15

0

www.national.com 44

void microinit(){ // MICROWIRE/PLUS Initialization Routine
CNTRL.MSEL=1; // The MICROWIRE/PLUS Control Select Bit is set.
PORTGC.SK=1; // Set the MICROWIRE/PLUS into PORTGC.SK=1
PORTGC.SO=1; // MODE: DATA OUT, PORTGC.SO=1
PORTGD.SO=0; // To tell the firmware that you want to go into

// ISP Mode
// Set MICROWIRE/PLUS into standard sk mode, IDLE=High,
// Set According to Table 2

PORTGD.SK=1; // Set IDLE MODE=High
PORTGC.SI=1; // Set the configuration bit
} // End of microinit routine

void detect_ready(){ // Detect if the host is ready to continue
PORTGC.SK=0; // Set the PORTG.SK into input mode
PORTGD.SK=0;
while(PORTGP.SK==0) // While the CLOCK line is still low
NOP; // Stay Here

PORTGC.SK=1; // Otherwise reset
PORTGD.SK=1; // And Exit Routine
} // End of detect_ready()

void pgmtim_set(unsigned int frequency){ // The PGMTIM_SET
SIOR=0x3B; // Routine, Send out the PGMTIM_SET command byte
microwire_send(); // Start up the MICROWIRE/PLUS and send the byte
delay(35); // Wait for 35 NOPs as required in the time delay req.
SIOR=frequency; // Now send out the frequency
microwire_send(); // Start out the MICROWIRE/PLUS
delay(100);
} // End of the routine

void microwire_send(void){ // The routine that starts the microwire
CNTRL.MSEL=1; // Set the MICROWIRE/PLUS Control Bit
PSW.BUSY=1; // Set the PSW busy bit
while(PSW.BUSY); // Wait until the bit has cleared
} // end of the routine

FIGURE 59. The Block Write Sample Code–C Version: COP8SGR (Continued)

A
N

-1150

www.national.com45

3.1.8 BLOCK_READ_Read a Block from the Flash Memory Array

Figure 60 shows the flow for the BLOCK READ routine. Figures 61, 62, 63, 64, 65 shows the assembly and C version for the
routine.

AN101252-33

FIGURE 60. Flow for the BLOCK_READ Function

A
N

-1
15

0

www.national.com 46

;READ A BLOCK OF DATA FROM THE FLASH MEMORY
.INCLD cop8sgr.INC ;INCLUDE FILE FOR THE COP8SGR
.sect DATA,REG,ABS=0F0 ;Declare some variables
DELAY_NUM .DSB 1 ;For the delay routine
ADDRESSHI .DSB 1 ;To hold the high address byte
ADDRESSLO .DSB 1 ;To hold the low address byte
BYTECOUNTLO .DSB 1 ;To hold the lower num of bytes to rec.
BYTECOUNTHI .DSB 1 ;To hold the upper num of bytes to rec.
READ_DATA1 .DSB 1 ;To hold the sample data #1
READ_DATA2 .DSB 1 ;To hold the sample data #2
READ_DATA3 .DSB 1 ;To hold the sample data #3

.SECT CODE,ROM,ABS=0 ;Begining of the program

MAIN: ;The main function
jsr MICROINIT ;Initialize the MICROWIRE/PLUS routine
ld ADDRESSHI,#000 ;The high address byte is 0
ld ADDRESSLO,#001 ;The low address byte is 1
ld B,#READ_DATA1 ;Set the pointer to the READ_DATA1
ld BYTECOUNTLO,#003 ;Set the lower num of bytes to read as 3
ld BYTECOUNTHI,#000 ;Set the up num of bytes to read
jsr BLOCK_WRITE ;Call the block write routine
ld A,#006 ;Delay for 6 Nops
jsr DELAY ;Call the delay routine
jp MAIN ;Return to the MAIN function

BLOCK_READ: ;The BLOCK_WRITE routine definition
ld SIOR,#0A3 ;The BLOCK_WRITE command byte
jsr MICROWIRE_SEND ;Startup the MICROWIRE/PLUS
ld A,#023 ;Delay for 35 Nops as specified in Table 18
jsr DELAY ;Call the delay routine

ld A,ADDRESSHI ;Load the high byte of the address to the
x A,SIOR ;SIOR Buffer
jsr MICROWIRE_SEND ;Send it out to the COP8CBR
ld A,#064 ;Delay for 100 Nops
jsr DELAY ;Call the delay function
ld A, ADDRESSLO ;Load the low byte of the address to the
x A,SIOR ;SIOR Buffer
jsr MICROWIRE_SEND ;Send it out to the COP8CBR
ld A,#064 ;Delay for 100 Nops
jsr DELAY ;Call the delay function

FIGURE 61. The MICROWIRE/PLUS BLOCK_READ Routine — Assembly Routine: COP8SGR

A
N

-1150

www.national.com47

ld A,BYTECOUNTHI ;Load the value of bytecountlo into the
;accumlator

x A,SIOR ;Swap it with the SIOR buffer
jsr MICROWIRE_SEND ;Call MICROWIRE/PLUS to send it out
ld A,#064 ;Setup a delay for 100 Nops
jsr DELAY ;Call the delay function

ld A,BYTECOUNTLO ;Load the value of bytecountlo into the accumlator
x A,SIOR ;Swap it with the SIOR buffer
jsr MICROWIRE_SEND ;Call MICROWIRE/PLUS to send it out
ld A,#064 ;Setup a delay for 100 Nops
jsr DELAY ;Call the delay function

SAVE_PT: ;The point where the read loops around
ld A,#08C ;First wait until the delay is ready, 140 NOPs
jsr DELAY ;by calling the delay routine
jsr MICROWIRE_SEND ;Tell MICROWIRE/PLUS to send the data over
ld A,[B+] ;Load the value where the B pointer is pointing at
x A,SIOR ;It assumes the user has already setup the B pointer
drsz BYTECOUNTLO ;Decrement bytecount and jump next if zero
jp READ_PT ;Go back to the read point

jsr DETECT_READY ;Detect if it is ready to send
ret ;Return to the call

DETECT_READY: ;Variable Host Delay routine
rbit SK,PORTGC ;Set portg.sk into read only mode
rbit SK,PORTGD ;

VARIABLE_DELAY: ;The holding is here
ifbit SK,PORTGP ;If high then return and proceed to next
jp NEXT ;instruction
jp VARIABLE_DELAY ;Otherwise stay here

NEXT: ;Continue the next instruction
sbit SK,PORTGC ;Reset to normal mode when done
sbit SK,PORTGD ;
ret ;Return to function call

FIGURE 62. The MICROWIRE/PLUS BLOCK_READ Routine — Assembly Routine: COP8SGR (Continued)

A
N

-1
15

0

www.national.com 48

DELAY: ;THE DELAY ROUTINE
;ASSUME THE AMOUNT OF NOPS IS STORED IN
;THE ACCUMULATOR A

x A,DELAY_NUM ;SET THE DELAY_NUM VARIABLE
LOOP_POINT: ;P01NT WHERE THE LOOP ACTUALLY OCCURS

NOP ;THE ACTUAL NOPS
drsz DELAY_NUM ;DECREMENT DELAY_NUM, SKIP NEXT INSTR. IF
jp LOOP_POINT ;ZERO
ret ;End of DELAY

MICROINIT:
sbit MSEL,CNTRL ;CNTRL.MSEL= 1, SET MICROWIRE INTO
sbit SK,PORTGC ;PORTGC.SK = 1, MODE, DATA OUT,
sbit SO,PORTGC ;PORTGC.SO = 1, DATA IN
rbit SO,PORTGD ;PORTGD.S O = 0 to let the firmware know that

;you want to go into ISP Mode

;Set MICROWIRE/PLUS into standard sk mode,
;IDLE = High, SET ACCORDING TO Table 20

sbit SK,PORTGD ;PORTGD.SK=1
sbit SI,PORTGC ;PORTGC.SI = 1
ret ;RETURN FROM THE CALL

MICROWIRE_SEND: ;MICROWIRE/PLUS Send Routine
sbit BUSY,PSW ;SET THE PSW.BUSY BIT TO TURN ON
wait_uwire: ;THE MICROWIRE WAIT ROUTINE
ifbit BUSY,PSW ;IF THE BIT IS ON THEN WAIT
jp wait_uwire ;STAY MICROLOOP IF NOT DOT
ret ;End of MICROWIRE/PLUS_SEND

.END MAIN ;END OF PROGRAM

FIGURE 63. The MICROWIRE/PLUS BLOCK_READ Routine — Assembly Routine: COP8SGR (Continued)

A
N

-1150

www.national.com49

#include ″8sgr.h ″; // Include file for the COP8SGR Microcontroller
// The write byte routine

void block_read(unsigned int addresshi, unsigned int addresslo, unsigned int bytecounthi,
unsigned int bytecounthi);
void microinit(void); // Initialize the

// MICROWIRE/PLUS initalization
void delay(unsigned int delay_num); // Delay it for 6 Nops
void detect_ready(); // Detect when CBR is ready
void microwire_send();

unsigned int write_data[3]; //Declare three data points for data storage
void main(){ //The main routine

microinit(); //The main initialization routine
pgmtim_set(0x7B); //Call the pgmtim_set routine
write_data[1]=1; //Storage location 1 for the block write routine
write_data[2]=2; //Storage location 2 for the block write routine
write_data[3]=3; //Storage location 3 for the block write routine
block_write(0,1,0,3); //Write a block of data begining at flash(001) and

//bytecounthi=0 and bytecountlo=3, the assumed array
//is global with the name write_data[]

while(1); //Endless loop
}

void block_read(unsigned int addresshi, unsigned in addresslo, unsigned int bytecounthi,
unsigned int bytecountlo){ //The actual

//function call
unsigned int i, j ; //Counter Variables
SIOR=0x8F; //The command byte value
microwire_send(); //Send it out to the CBR
delay(35); //Delay for 35 Nops

SIOR=addresshi; //Send out the high address byte
microwire_send(); //Tell MICROWIRE/PLUS to send it
delay(100); //Delay for 100 Nops

SIOR=addresslo; //Send out the low address byte
microwire_send(); //Tell MICROWIRE/PLUS to send it
delay(100); //Delay for 100 Nops
microwire_send(); //Now send the actual data to the microcontroller
SIOR=bytecounthi; //Send out the high address byte
microwire_send(); //Tell MICROWIRE/PLUS to send it
delay(100); //Delay for 100 Nops

FIGURE 64. The MICROWIRE/PLUS BLOCK_READ Routine — C Version: COP8SGR

A
N

-1
15

0

www.national.com 50

3.1.9 EXIT — Reset the Microcontroller

Figure 66 shows the flow for the EXIT routine. Figures 67, 68 shows the assembly and C version for the routine.

SIOR=bytecountlo; // Send out the low address byte
microwire_send(); // Tell MICROWIRE/PLUS to send it
delay(100); // Delay for 100 Nops

for (j=0;j<bytecountlo;j++){ // Send the data out until it reaches bytecountlo
delay(140); // Delay for 140 Nops
read_data[i]=SIOR; // Send out the low address byte
microwire_send(); // Tell MICROWIRE/PLUS to send it
}
detect_ready(); // Detect if the CBR is ready for additional data
} // end of the block write routine

void microinit(){ // MICROWIRE/PLUS Initialization Routine
CNTRL.MSEL=1; // The MICROWIRE/PLUS Control Select Bit is set.
PORTGC.SK=1; // Set the MICROWIRE/PLUS into PORTGC.SK=1
PORTGC.SO=1; // MODE: DATA OUT, PORTGC.SO=1
PORTGD.SO=0; // To tell the firmware that you want to go into

// ISP Mode
// Set MICROWIRE/PLUS into standard sk mode, IDLE=High,
// Set According to Table 2

PORTGD.SK=1; // Set IDLE MODE=High
PORTGC.SI=1; // Set the configuration bit
} // End of microinit routine

void microwire_send(void){ // The routine that starts the microwire
CNTRL.MSEL=1; // Set the MICROWIRE/PLUS Control Bit
PSW.BUSY=1; // Set the PSW busy bit
while(PSW.BUSY); // Wait until the bit has cleared
} // end of the routine

FIGURE 65. The MICROWIRE/PLUS BLOCK_READ Routine — C Version: COP8SGR (Continued)

AN101252-34

FIGURE 66. Flow for the Exit Routine

A
N

-1150

www.national.com51

;Cause the microcontroller to perform a reset
.INCLD cop8sgr.INC ;INCLUDE FILE FOR THE COP8SGR
.sect DATA,REG,ABS=0F0 ;Declare some variables
DELAY_NUM .DSB 1 ;For the delay routine
.SECT CODE,ROM,ABS=0 ;Begining of the program

MAIN: ;The main function
jsr MICROINIT ;Initialize the MICROWIRE/PLUS routine
jsr EXIT ;Jump to the exit routine
jp MAIN ;Return to the MAIN function

EXIT: ;The MICROWIRE/PLUS send routine
ld SIOR,#0D3 ;The MICROWIRE/PLUS command byte
jsr MICROWIRE_SEND ;Tell the MICROWIRE/PLUS to send the byte out
ret ;End of the Exit routine

MICROINIT:
sbit MSEL,CNTRL ;CNTRL.MSEL= 1, SET MICROWIRE INTO
sbit SK,PORTGC ;PORTGC.SK = 1, MODE, DATA OUT,
sbit SO,PORTGC ;PORTGC.SO = 1, DATA IN
rbit SO,PORTGD ;PORTGD.S O = 0 to let the firmware know that

;you want to go into ISP Mode

;Set MICROWIRE/PLUS into standard sk mode,
;IDLE = High, SET ACCORDING TO Table 20

sbit SK,PORTGD ;PORTGD.SK=1
sbit SI,PORTGC ;PORTGC.SI = 1
ret ;RETURN FROM THE CALL

MICROWIRE_SEND: ;MICROWIRE/PLUS Send Routine
sbit BUSY,PSW ;Set the PSW.BUSY bit to turn on

wait_uwire: ;The MICROWIRE/PLUS wait routine
ifbit BUSY,PSW ;If the busy bit is on then wait.
jp wait_uwire ;Otherwise wait here until it has cleared
ret ;End of MICROWIRE/PLUS_SEND

.END MAIN ;END OF PROGRAM

FIGURE 67. The MICROWIRE/PLUS Exit Routine — Assembly Routine: COP8SGR

A
N

-1
15

0

www.national.com 52

#include ″8sgr.h ″; //Include file for the COP8SGR Microcontroller
//The write byte routine

void block_read(unsigned int addresshi, unsigned int addresslo, unsigned int bytecounthi,
unsigned int bytecounthi);
void microinit(void); //Initialize the

//MICROWIRE/PLUS initialization
void delay(unsigned int delay_num); //Delay it for 6 Nops
void detect_ready(); //Detect when CBR is ready
void exit();
unsigned int write_data[3]; //Declare three data points for data storage
void microwire_send();

void main(){ //The main routine
microinit(); //The main initialization routine
exit(); //Call the exit routine
while(1); //Endless loop
}

void exit(){ //The MICROWIRE/PLUS exit routine
SIOR=0xD3; //The exit command byte
microwire_send(); //Tell MICROWIRE/PLUS to send it out
}
void block_read(unsigned int addresshi, unsigned in addresslo, unsigned int bytecounhi,
unsigned int bytecountlo){ //The actual

//function call
unsigned int i, j ; //Counter Variables
SIOR=0x8F; //The command byte value
microwire_send(); //Send it out to the CBR
delay(35); //Delay for 35 Nops

SIOR=addresshi; //Send out the high address byte
microwire_send(); //Tell MICROWIRE/PLUS to send it
delay(100); //Delay for 100 Nops

SIOR=addresslo; //Send out the low address byte
microwire_send(); //Tell MICROWIRE/PLUS to send it
delay(100); //Delay for 100 Nops
microwire_send(); //Now send the actual data to the microcontroller
SIOR=bytecounthi; //Send out the high address byte
microwire_send(); //Tell MICROWIRE/PLUS to send it
delay(100); //Delay for 100 Nops
}

void microinit(){ // MICROWIRE/PLUS Initialization Routine
CNTRL.MSEL=1; // The MICROWIRE/PLUS Control Select Bit is set.
PORTGC.SK=1; // Set the MICROWIRE/PLUS into PORTGC.SK=1
PORTGC.SO=1; // MODE: DATA OUT, PORTGC.SO=1
PORTGD.SO=0; // To tell the firmware that you want to go into

// ISP Mode
// Set MICROWIRE/PLUS into standard sk mode, IDLE=High,
// Set According to Table 2

PORTGD.SK=1; // Set IDLE MODE=High
PORTGC.SI=1; // Set the configuration bit
} // End of microinit routine

void microwire_send(void){ // The routine that starts the microwire
CNTRL.MSEL=1; // Set the MICROWIRE/PLUS Control Bit
PSW.BUSY=1; // Set the PSW busy bit
while(PSW.BUSY); // Wait until the bit has cleared
} // end of the routine

FIGURE 68. The MICROWIRE/PLUS Exit Routine — C Routine: COP8SGR

A
N

-1150

www.national.com53

3.2 USER SUPPORT BLOCK

This section deals with the User Support Block. Entry point
locations are shown in Table 20. Register locations are
shown in Table 21. Registers are shown in Table 22. In addi-
tion, each description contains details about security depen-
dencies. There are no checks made for the validity of the ISP
Address and the BYTECOUNT register. Data transfers will
take place from whatever RAM locations are specified by the
segment register.

3.2.1 JSRB LABELS User Routines

TABLE 20. User Entry Points and
Their Associated Labels

Command/Labels ROM ADDRESS

cpgerase 0x17

Command/Labels ROM ADDRESS

cmserase 0x1A

creadbf 0x11

vblockr 0x26

cwritebf 0x14

vblockw 0x23

exit 0x62

To execute commands listed in Table 20, the JSRB instruc-
tion must be used. In order for correct behavior, a “KEY”
must be set prior to executing the JSRB instruction. The
PGMTIM register must be set prior to any write or erase
commands. It is up to the user to enforce security when us-
ing these commands. At the end of each command, a RETF
is issued to return control back to the user code in flash
memory.

TABLE 21. Registers

Register Name Purpose
RAM

LOCATION

ISPADHI High Address of Flash Memory 0xA9

ISPADLO Low Address of Flash Memory 0xA8

ISPWR Must store the byte to be written into this register before jumping into the write byte
routine.

0xAB

ISPRD Data will be returned to this register after the read byte routine execution. 0xAA

ISPKEY Register which will hold the KEY value. The KEY value is utilized to verify that a
JSRB execution is requested in the next 6 instruction cycles.

0xE2

BYTECOUNTLO Holds the low byte of the counter. 0xF1

SIOR MICROWIRE/PLUS Buffer 0xE9

PGMTIM Write Timing Register 0xE1

Confirmation
Code

The code used to verify that a mass erase was requested, Confirmation Code must
be loaded prior to the jump to the cmserase routine.

Accumulator A

KEY Must write to the ISPKEY register before a JSRB executed. 0x98

TABLE 22. User Entry Points

Command/
Label

Function Parameters Return Data

cpgerase Page Erase Register ISPADHI is loaded by the user
with the high byte of the address.
Register ISPADLO is loaded by the user
with the low byte of the address.

N/A (A page of memory beginning at
ISPADHI, ISPADLO will be erased).

cmserase Mass Erase Accumulator A contains the confirmation
key 0x55.

N/A (The entire Flash Memory will be
erased). The boot ROM will return the
user to the MICROWIRE/PLUS Boot ISP
since the Flash is not completely erased.

creadbf Read Byte Register ISPADHI is loaded by the user
with the high byte of the address.
Register ISPADLO is loaded by the user
with the low byte of the address.

Data Byte in Register ISPRD.

A
N

-1
15

0

www.national.com 54

TABLE 22. User Entry Points (Continued)

Command/
Label

Function Parameters Return Data

cblockr Block Read Register ISPADHI is loaded by the user
with the high byte of the address.
Register ISPADLO is loaded by the user
with the low byte of the address.
X pointer contains the beginning RAM
address where the result(s) will be
returned.
Register BYTECOUNTLO contains the
number of n bytes to read (0 ≤ n ≤ 255).
Register BYTECOUNTHI is ignored .
It is up to the user to setup the segment
register.

n Data Bytes if 0 ≤ n ≤ 255

Data will be returned beginning at a
location pointed to by the RAM address in
X.

cwritebf Write Byte Register ISPADHI is loaded by the user
with the high byte of the address.
Register ISPADLO is loaded by the user
with the low byte of the address.
Register ISPWR contains the Data Byte
to be written.

N/A

cblockw Block Write Register ISPADHI is loaded by the user
with the high byte of the address.
Register ISPADLO is loaded by the user
with the low byte of the address.
Register BYTECOUNTLO contains the
number of n bytes to write (0 ≤ n ≤ 16)
X pointer contains the beginning RAM
address of the data to be written.
It is the user’s responsibility to initialize
the segment register.
Data must be placed with-in the 1/2 page
segment (64 byte for 32k devices and 32
byte for 1k and 4k devices). This limitation
is due to the multi-byte write limitation.

N/A

exit EXIT N/A N/A (Device will Reset).

3.3.1 Interrupt Lock Out Time

Interrupts are inhibited during execution from Boot ROM.
Table 23 shows the amount of time that the user is LOCKED
OUT of their interrupt service routine(s). The servicing of in-
terrupts will be resumed once the ISP boot ROM returns the
user to the flash. Any interrupt(s) that are pending during
user ISP will be serviced after the user has returned to the
flash area. The user should take into account the amount of

time they are locked out of their interrupts. Some of the
LOCK OUT times are dependent upon the PGMTIM.
PGMTIM is a value entered into the PGMTIM register (refer
to 2.8.1 PGMTIM_SET regarding PGMTIM). Although 2.8.1
PGMTIM_SET pertains to MICROWIRE/PLUS commands,
the user code MUST set the PGMTIM register before any
write routines occur (e.g., a LD PGMTIM,#06F is needed to
specify a CKI frequency of 6 MHz).

TABLE 23. Required Interrupt Lockout Time (in Instruction Cycles)

Flash Routines (User Accessable) Minimum Interrupt Latency Time (In Instruction Cycles)

cppgerase 120 + 100*PGMTIMa

cmserase 120 + 300*PGMTIMa

creadbf 100

cblockr 140/BYTE

cblockw 100 + 3.5*PGMTIM/BYTEa + 68/BYTE

cwritebf 168 + 3.5*PGMTIMa

exit 100

a. Refer to 2.8.1 PGMTIM_SET for additional information on the PGMTIM variable.

A
N

-1150

www.national.com55

3.3.2 cpgerase — User Entry Point: Erase a Page of
Flash Memory

This routine requires that ISPADHI and ISPADLO are loaded
before the jump. A KEY is a number which must be loaded
into the KEY Register (location at 0xE2) before issuing a
JSRB instruction. Table 1-5 shows the possible format of the
KEY number. Loading the KEY, and a “JSRB cpgerase” are
all that is needed to complete the call to the routine. No ac-
knowledgement will be sent back regarding the operation.
For details regarding the registers ISPADHI and ISPADLO

please refer to Table 21. See Table 25 for details on the num-
ber of endurance cycles and the number of page erase com-
mands that should be issued prior to writing data into the
erase page. Since this is a user command, this routine will
work regardless of security (security independent). Figure 69
is an example of how to use the cpgerase
function — assembly version. Figure 70 shows the C version
of the pgerase() function. Table 24 shows the necessary re-
sources needed to run the routine.

TABLE 24. Resource Utilization for the Command: cpgerase (Page Erase)

Input
Data

Accumulator
A Used?

B Pointer
Used?

X Pointer
Used?

WD
Serviced

JSRB/Key
Required

Returned
Data/

Location

Interrupt
Lock
Out

Cycles

Stack
Usage

(in Bytes)

ISPADHI
ISPADLO

YES YES NO YES YES NONE 120 +100*
PGMTIMa

4

a. Refer to 2.8.1 PGMTIM_SET for additional information on the PGMTIM variable.

; ERASE A PAGE FROM FLASH, 0x0080
; ASSUME A 6 MHz CKI FREQUENCY

.INCLD COP8CBR.INC ; INCLUDE FILE FOR THE COP8CBR

.sect code,rom,abs=0 ; BEGINING CODE SPACE
MAIN: ; THE MAIN FUNCTION

LD PGMTIM,#06F ; FOR A 10 MHz CLOCK (DEFAULT)
LD ISPADHI,#000 ; LOAD THE HIGH BYTE ADDRESS
LD ISPADLO,#080 ; LOAD THE LOW BYTE ADDRESS
LD ISPKEY,#098 ; LOAD THE KEY
JSRB cpgserase ; CALL THE ROUTINE
.END MAIN ; END OF THE PROGRAM

FIGURE 69. SAMPLE cpgerase (PAGE ERASE) EXECUTION — Assembly Version

#include ″8cbr.h ″; // Include file for the COP8CBR Microcontroller
#include ″flash_OP.h ″; // Include file that contain the flash routines

void main(){
PGMTIM=0x6F; // Fo r a 6 MHz CKI Frequency
page_erase(0x80); // Call the erase routine
}

FIGURE 70. SAMPLE pgerase(unsigned long) EXECUTION — C Version

A
N

-1
15

0

www.national.com 56

TABLE 25. Typical Endurance Cycles vs. Erase Time
and Temperature

Erase
Time in

ms

Low End of Operating Temp Range

-40˚C -20˚C 0˚C 25˚C

1 60k 60k 60k 100k

2 60k 60k 60k 100k

3 60k 60k 60k 100k

4 60k 60k 100k 100k

5 70k 70k 100k 100k

6 80k 80k 100k 100k

7 90k 90k 100k 100k

8 100k 100k 100k 100k

3.3.3 cmserase — User Entry Point: Mass Erase the
Flash Memory

This routine requires the Accumulator A to contain 0x55 prior
to the jump. The value 0x55 is used to verify that a mass
erase was requested. Loading the KEY, “LD A,#055”, and a

“JSRB cmserase” are all that is needed to complete the func-
tion. No acknowledgement will be sent back regarding the
operation. Since this is a user command, this routine will
work regardless of security (security independent). After a
mass erase is executed the user will be brought back (after
112 instruction cycles) to the beginning of the boot ROM.
Control and execution will be returned to the MICROWIRE/
PLUS ISP handling routine. Table 24 shows the necessary
resources needed to run the routine. Figure 71 is an ex-
ample of how to use the cmserase function — assembly ver-
sion. Figure 72 shows the C version of the mass_erase()
function. Table 26 shows the necessary resources needed to
run the routine.

TABLE 26. Resource Utilization for the Command: cmserase (Mass Erase)

Input
Data

Accumulator
A Used?

B Pointer
Used?

X Pointer
Used?

WD
Serviced

JSRB/Key
Required

Returned
Data/

Location

Interrupt
Lock
Out

Cycles

Stack
Usage

(in Bytes)

Confirmation
Code

’’0x55’’ is
Loaded

into
Accumulator

A

YES YES NO YES YES NONE 120 +300*
PGMTIMa

6

a. Refer to 2.8.1 PGMTIM_SET for additional information on the PGMTIM variable.

; MASS ERASE THE FLASH
; ASSUME A 6 MHz CKI FREQUENCY

.INCLD COP8CBR.INC ; INCLUDE FILE FOR THE COP8CBR

.sect code,rom,abs=0 ; BEGINING CODE SPACE
MAIN: ; THE MAIN FUNCTION

LD PGMTIM,#06F ; FOR A 6 MHz CLOCK
LD ISPADHI,#055 ; LOAD THE CONFIRMATION CODE
LD ISPKEY,#098 ; LOAD THE KEY
JSRB cmserase ; CALL THE FUNCTION
.END MAIN ; END OF THE PROGRAM

FIGURE 71. SAMPLE cmserase (MASS ERASE) EXECUTION — Assembly Version

#include ″8cbr.h ″; // Include file for the COP8CBR Microcontroller
#include ″flash_OP.h ″; // Include file that contain the flash routines

void main(){
PGMTIM=06F; // For a 10 MHz CKI Frequency
mass_erase(); // Call the erase routine
}

FIGURE 72. SAMPLE mass_erase() EXECUTION — C Version

A
N

-1150

www.national.com57

3.3.4 creadbf — User Entry Point: Read a Byte of Flash
Memory

This routine requires that ISPADHI and ISPADLO are loaded
before the jump. Loading the KEY, and a “JSRB creadbf” are
all that is needed to complete the call to the routine. Data will
be returned to the ISPRD Register. No acknowledgement
will be sent back regarding the operation. For details regard-
ing the register ISPADHI, ISPADLO, and ISPRD please refer

to Table 21. Since this is a user command, this routine will
work regardless of security (security independent). Figure 73
is an example of how to use the creadbf function — assembly
version. Figure 74 shows the C version of the readbf() func-
tion. Table 24 shows the necessary resources needed to run
the routine. Table 27 shows the necessary resources
needed to run the routine.

TABLE 27. Resource Utilization for the Command: creadbf (Read a Byte of Flash Memory)

Input
Data

Accumulator
A Used?

B Pointer
Used?

X Pointer
Used?

WD
Serviced

JSRB/Key
Required

Returned
Data/

Location

Interrupt
Lock
Out

Cycles

Stack
Usage

(in Bytes)

ISPADHI
ISPADLO

YES YES NO YES YES Data/ISPRD
Register

100 4

3.3.5 cblockr — User Entry Point: Read a Block of
Flash Memory

The cblockr routine will read multiple bytes from the flash
memory. ISPADHI and ISPADLO are assumed to be loaded
before the jump. Register BYTECOUNTLO is also assumed
to be loaded. The X pointer contains the address where the
data will be placed. The BYTECOUNTLO register is used by
the microcontroller to send back N number of bytes (i.e.,
N=BYTECOUNTLO). If N=0 then the firmware will abort.
Data is saved into the RAM address pointed to by the X
pointer. It is up to the user to setup the segmentation regis-
ter. This routine is capable of reading up to 256 bytes of flash
memory (limited due to the mem available) to RAM. This rou-
tine is limited to reading blocks of 128 bytes due to the RAM

segmentation. If an attempt to read greater than 128 bytes is
issued, the firmware will begin to write to RAM locations be-
ginning at 0x80 (possibly corrupting the I/O and CONTROL
REGISTERS) and above. After the X pointer and the BYTE-
COUNTLO is set, the KEY must be loaded, and a “JSRB
cblockr” must be issued. No acknowledgement will be sent
back regarding the operation. For details regarding the reg-
ister ISPADHI, ISPADLO, and BYTECOUNTLO please refer
to Table 21. Since this is a user command, this routine will
work regardless of security (security independent). Figure 75
is an example of how to use the cblockr function — assembly
version. Figure 76 shows the C version of the block_read()
function. Table 28 shows the necessary resources needed to
run the routine.

; READ A BYTE FROM THE FLASH [0001]
.INCLD COP8CBR.INC ; INCLUDE FILE FOR THE COP8CBR
.sect code,rom,abs=0 ; BEGINING CODE SPACE

MAIN: ; BEGINING OF THE CODE
LD ISPADHI,#000 ; LOAD THE HIGH ADDRESS BYTE
LD ISPADLO,#001 ; LOAD THE LOW ADDRESS BYTE
LD ISPKEY,#098 ; LOAD THE KEY
JSRB creadbf ; CALL THE FUNCTION

; TRANSFER RAM[5]=FLASH[0001]
LD A,ISPRD ; LOAD THE RESULT ONTO THE ACCUMULATOR
X A,005 ; TRANSFER IT TO RAM[0x05]
.END MAIN ; END OF PROGRAM

FIGURE 73. SAMPLE unsigned int creadbf (Read a Byte of Flash Memory) EXECUTION

#include ″8cbr.h ″; // Include file for the Flash Microcontroller
#include ″flash_OP.h ″; // Include file that contain the flash routines

void main(){
unsigned int storage[10];

// read a byte from flash location 0x0001 and store it storage[5]
storage[5]=readbf(0x01);
}

FIGURE 74. SAMPLE readbf(unsigned long) EXECUTION — C Version

A
N

-1
15

0

www.national.com 58

TABLE 28. Resource Utilization for the Command: cblockr (Block Read of the Flash Memory)

Input
Data

Accumulator
A Used?

B Pointer
Used?

X Pointer
Used?

WD
Serviced

JSRB/Key
Required

Returned
Data/

Location

Interrupt
Lock
Out

Cycles

Stack
Usage

(in Bytes)

BYTCONTLO
ISPADHI
ISPADLO

YES YES YES YES YES DATA/RAM[X] 140/BYTE 6

3.3.6 cblockw — User Entry Point: Write to a Block
Flash Memory

ISPADHI and ISPADLO must be set by the user prior to the
jump into the command. The BYTECOUNTLO variable is
used by the microcontroller to transfer N number of bytes
(i.e, N=BYTECOUNTLO). This variable also must be set
prior to the jump into the command. The maximum number
of bytes that can be written is 16. If the number of bytes ex-
ceed 16, then the user may not be guaranteed that all of the
bytes were written. The data cannot cross 1/2 page bound-
aries (i.e. all data must be within the 64 bytes segment for
32k devices and within 32 bytes for 4k, and 1k devices). If
N=0 then the firmware will abort. Data is read from the RAM
address pointed to by the X pointer. It is up to the user to

setup the segmentation register. Data transfers will take
place from wherever the RAM locations are specified by the
segment register. However, if the X pointer exceeds the top
of the segment, the firmware will begin to transfer from 0x80
(I/O and CONTROL REGISTERS) and above. After the X
pointer and the BYTECOUNTLO is set, the KEY must be
loaded, and a “JSRB cblockw” must be issued. For details
regarding the register ISPADHI, ISPADLO, and BYTE-
COUNTLO please refer to Table 21. Since this is a user
command, this routine will work regardless of security (secu-
rity independent). Figure 77 is an example of how to use the
cblockw function — assembly version. Figure 78 shows the
C version of the block_write() function. Table 29 shows the
necessary resources needed to run the routine.

; BLOCK READ, READ 3 BYTE(S) BEGINING
; AT FLASH [0001] AND PLACE DATA AT
; RAM[0x0D]

.INCLD COP8CBR.INC ; INCLUDE FILE FOR THE COP8CBR

.sect code,rom,abs=0 ; BEGINING CODE SPACE
MAIN: ; THE BEGINING OF THE MAIN ROUTINE

LD ISPADHI,#000 ; THE HIGH ADDRESS BYTE
LD ISPADLO,#001 ; THE LOW ADDRESS BYTE
LD S,#000 ; SETUP OF THE SEGMENTATION REGISTER
LD X,00D ; THE RESULTS ARE FROM RAM[0x0D]
LD BYTECOUNTLO,#003 ; THE NUMBER OF BYTES TO WRITE
LD ISPKEY,#098 ; LOAD THE KEY
JSRB cblockr ; CALL THE ROUTINE
.END MAIN ; END OF PROGRAM

FIGURE 75. SAMPLE cblockr (Read a Block of Flash Memory) EXECUTION — Assembly Version

#include ″8cbr.h ″; // Include file for the COP8CBR Microcontroller
#include ″flash_OP.h ″; // Include file that contain the flash routines

void main(){
// storage location with room for 10 elements

unsigned int storage[10] @ 0x0D;
// read 3 bytes from flash, begining at location 0x0001
// and store it in storage memory array beginning at 0x0D.

block_readf(0x01,3,0x0D);
}

FIGURE 76. SAMPLE block_read(unsigned long, unsigned int, unsigned long) — C Version

A
N

-1150

www.national.com59

TABLE 29. Resource Utilization for the Command: cblockw (Write to a Block of Flash Memory)

Input
Data

Accumulator
A Used?

B Pointer
Used?

X Pointer
Used?

WD
Serviced

JSRB/Key
Required

Return
Data

Interrupt
Lock

Out Cycles

Stack
Usage

(in Bytes)

BYTECOUNTLO
Data is

Assumed to
be in the
RAM[X]

Location(s)

YES YES YES YES YES NONE 100 +
3.5*PGM-

TIME/BYTE
+ 68/BYTEa

6

a. Refer to 2.8.1 PGMTIM_SET for additional information on the PGMTIM variable.

3.3.7 cwritebf — User Entry Point: Write a Byte to the
Flash Memory

This routine requires that ISPADHI, ISPADLO, and ISPWR
be loaded prior to the jump. Loading the KEY and a “JSRB
cwritebf” are all that is needed to complete this call. No ac-
knowledgement will be sent back regarding the operation.
For details regarding the register ISPADHI, ISPADLO, and

ISPRD please refer to Table 21. Since this is a user com-
mand, this routine will work regardless of security (security
independent). Figure 79 is an example of how to use the
cwritebf function — assembly version. Figure 80 shows the C
version of the writebf() function. Table 30 shows the neces-
sary resources needed to run the routine.

; BLOCK WRITE, READ 16 BYTE(S) BEGINING
: AT RAM[008] AND PLACE DATA BEGINING AT FLASH [0080]
; ASSUME A 6 MHz CKI FREQUENCY

.INCLD COP8CBR.INC ; INCLUDE FILE FOR THE COP8CBR

.sect code,rom,abs=0 ; BEGINING CODE SPACE
MAIN: ; MAIN PROGRAM CODE SPACE

LD PGMTIM,#06F ; FOR A 6 MHz CLOCK
LD ISPADHI,#000 ; THE HIGH ADDRESS BYTE
LD ISPADLO,#080 ; THE LOW ADDRESS BYTE
LD S,#000 ; SETUP OF THE SEGMENTATION REGISTER
LD X,#008 ; THE DATA TO BE WRITTEN BEGINS AT RAM[0x08]
LD BYTECOUNTLO,#010 ; THE NUMBER OF BYTES TO WRITE
LD ISPKEY,#098 ; LOAD THE KEY
JSRB cblockw ; CALL THE ROUTINE
.END MAIN ;END OF PROGRAM

FIGURE 77. SAMPLE cblockw (Write to a Block of Flash Memory) EXECUTION

#include ″8cbr.h ″; // Include file for the COP8CBR Microcontroller
#include ″flash_OP.h ″; // Include file that contain the flash routines

void main(){

PGMTIM=0x6F; // Assum e A 6 MHz CKI Frequency
// storage location with room for 20 elements

unsigned int storage[20] @ 0x0D;
// write 16 bytes from the storage array to flash, begining at
// location 0x0D in RAM to the starting location 0x0080 in the flash

block_writef(0x80,16,0x0D);
}

FIGURE 78. SAMPLE block_writef(unsigned long, unsigned int, unsigned long) — C Version

A
N

-1
15

0

www.national.com 60

TABLE 30. Resource Utilization for the Command: cwritebf (Write a Byte to the Flash)

Input
Data

Accumulator
A Used?

B Pointer
Used?

X Pointer
Used?

JSRB/Key
Required

Returned
Data/

Location

Interrupt
Lock
Out

Cycles

Stack
Usage

(in Bytes)

ISPWR
Contains
the Data

YES YES NO YES NONE 168 + 3.5*
PGMTIM

4

3.3.8 Exit — Reset the Microcontroller

This routine will cause the microcontroller to reset itself.
Loading the KEY, and a “JSRB Exit” are the only actions
needed to complete the call. No additional parameters need
to be passed. Since this is a user command, this routine will

work regardless of security (security independent). Figure 81
is an example of how to use the exit function — assembly
version. Figure 82 shows the C version of the exit() function.
Table 31 shows the necessary resources needed to run the
routine.

; WRITE A BYTE TO THE FLASH [000A]=5
; ASSUME A 10 MHz CKI FREQUENCY

.INCLD COP8CBR.INC ; INCLUDE FILE FOR THE COP8CBR

.sect code,rom,abs=0 ; BEGINING CODE SPACE
MAIN: ; THE MAIN ROUTINE

LD PGMTIM,#06F ; FOR A 6 MHz CLOCK
LD ISPWR,#005 ; LOAD THE WRITE REGISTER WITH 5
LD ISPADHI,#000 ; LOAD THE HIGH ADDRESS BYTE
LD ISPADLO,#00A ; LOAD THE LOW ADDRESS BYTE
LD ISPKEY,#098 ; LOAD THE KEY
JSRB cwritebf ; CALL THE FUNCTION

; TRANSFER FLASH[000B]=RAM[0x0C]
LD ISPADHI,#000 ; LOAD THE HIGH ADDRESS BYTE
LD ISPADLO,#00B ; LOAD THE LOW ADDRESS BYTE
LD A,00C ; LOAD THE DATA INTO THE ACCUMULATOR
X A,ISPWR ; SWAP IT WITH THE ISPWR REGISTER
LD ISPKEY,#098 ; LOAD THE KEY
JSRB cwritebf ; CALL THE FUNCTION
.END MAIN ;END OF PROGRAM

FIGURE 79. SAMPLE cwritebf (Write a Byte to Flash Memory) EXECUTION — Assembly Version

#include ″8cbr.h ″; // Include file for the COP8CBR Microcontroller
#include ″flash_OP.h ″; // Include file that contain the flash routines

void main(){
// location in RAM

unsigned int variable @ 0x0C;

PGMTIM=0x6F; // Assum e a 6 MHz CKI Frequency

// write to location 0x000A with 5
cwritebf(0x00,0x0A,5);

// write to location 0x00B of flash memory with the contents
// of RAM at location 0x0C (variable)

cwritebf(0x00,0x0B,variable); // Call the exit routine
}

FIGURE 80. SAMPLE writebf(unsigned int, unsigned long, unsigned int)
(Write a byte to flash memory) EXECUTION — C Version

A
N

-1150

www.national.com61

TABLE 31. Resource Utilization for the Command: exit (reset the microcontroller)

Input
Data

Accumulator
A Used?

B Pointer
Used?

X Pointer
Used?

Register(s)
Used?

JSRB/Key
Required

Return
Data

Interrupt
Lock
Out

Cycles

Stack
Usage

(in Bytes)

N/A YES NO NO NO YES NONE 100 2

3.3.9 WATCHDOG™ SERVICES

The Watchdog register will be serviced periodically in order
to ensure that a watchdog event has not occurred. All rou-
tines in the ISP boot ROM incorporate automatic watchdog
services. Periodically, the boot ROM firmware will service the
watchdog if the routine will take greater than the 8k upper
window requirement.

APPENDIX A

MICROWIRE AND USER INTERFACE MECANISIMS

The following instruction allow the user to interface directly to
the routines in the boot ROM.

A.1 JSRB — Jump Subroutine in Boot ROM

Syntax: JSRB ADDR

Description: The JSRB instruction causes execution to be-
gin at the address specified within the first 256
bytes of the Boot ROM. The switch to Boot
ROM is only successful if the JSRB instruction
was immediately preceded by writing a valid
key to the ISP KEY register. The instruction
pushes the return address onto the software
stack in data memory and then jumps to the
subroutine address in Boot ROM. If the key
has not been written, or if the key was invalid,
the instruction jumps to the same address in
program memory.

The contents of PCL (Lower 8 bits of PC) are
transferred to the data memory location refer-
enced by SP (Stack Pointer). SP is then decre-
mented, followed by the contents of PCU (Up-
per 7 bits of PC) being transferred to the new
data memory location referenced by SP. The
return address is now saved on the software
stack in data memory RAM. Then SP is again
decremented to set up the software stack ref-
erence for the next subroutine.

Next, the values found in the second byte of
the instruction is transferred to PCL. PCU is
loaded with 0. The program then jumps to the
program memory location accessed by PC in
the Boot ROM, if the key write was successful,
or in program memory if it was not.

Operation: [SP] <- PCL

[SP - 1] <- PCU

[SP - 2]: SET UP FOR NEXT STACK REFER-
ENCE

PC14-8 <- 00

PC7-0 <- LOADDR (SECOND BYTE OF IN-
STRUCTION)

Instruction Addressing Mode Instruction Cycles Bytes Hex Op Code

JSRB ADDR Absolute 5 2 61/LOADDR

; RESET THE MICROCONTROLLER
.INCLD COP8CBR.INC ; INCLUDE FILE FOR THE COP8CBR
.sect code,rom,abs=0 ; BEGINING CODE SPACE

MAIN: ; THE MAIN ROUTINE
LD ISPKEY,#098 ; LOAD THE KEY
JSRB exit ; CALL THE FUNCTION
.END MAIN ; END OF PROGRAM

FIGURE 81. SAMPLE exit (reset the microcontroller) EXECUTION — Assembly Version

#include ″8cbr.h ″; // Include file for the COP8CBR Microcontroller
#include ″flash_OP.h ″; // Include file that contain the flash routines

void main(){
reset(); // reset the microcontroller
}

FIGURE 82. SAMPLE exit() (reset the microcontroller) EXECUTION — C Version

A
N

-1
15

0

www.national.com 62

Notes

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or
systems which, (a) are intended for surgical implant
into the body, or (b) support or sustain life, and
whose failure to perform when properly used in
accordance with instructions for use provided in the
labeling, can be reasonably expected to result in a
significant injury to the user.

2. A critical component is any component of a life
support device or system whose failure to perform
can be reasonably expected to cause the failure of
the life support device or system, or to affect its
safety or effectiveness.

National Semiconductor
Corporation
Americas
Tel: 1-800-272-9959
Fax: 1-800-737-7018
Email: support@nsc.com

National Semiconductor
Europe

Fax: +49 (0) 180-530 85 86
Email: europe.support@nsc.com

Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790

National Semiconductor
Asia Pacific Customer
Response Group
Tel: 65-2544466
Fax: 65-2504466
Email: ap.support@nsc.com

National Semiconductor
Japan Ltd.
Tel: 81-3-5639-7560
Fax: 81-3-5639-7507

www.national.com

C
O

P
8

FLA
S

H
IS

P
H

A
N

D
B

O
O

K
—

Intro
to

IS
P

A
N

-1150

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

