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Introduction to IBM Data Communications 

IBM 3270/3299 PROTOCOL 

The IBM 3270/3299 serial communications protocol was 
developed by IBM for the cluster controller-peripheral link in 
370 class mainframe systems. Fortune 1000 corporations 
that use these systems have large scale networking needs 
and often support thousands of terminals and printers. Al­
though PC-based networks have increased in popularity, 
shipments of IBM 3270 peripherals have remained steady 
over the last few years due to the huge investments made in 
both hardware and software application development. 

The 3299 protocol is a variation of the 3270 protocol in that 
an 8·bit address byte is asserted between the starting se­
quence and the first word for each out board transmission 
from the controller. This was done to allow up to eight 3270 
peripherals to be multiplexed and connected to the control­
ler via a single coax cable, thus reducing cabling costs. The 
multiplexing and de-multiplexing is done with a 3299 termi­
nal multiplexer. 

IBM 5250 PROTOCOL 

The 5250 serial communications protocol was developed by 
IBM originally for the mid-range System 3x line of comput­
ers. IBM has updated the System 3x series to the AS/400. 
The AS/400 line can vary from small office environment 
processors to more powerful processors with greatly en­
hanced networking facilities that rival the smaller 370 class 
mainframes. They are typically used in hotels, bank branch 
offices and hospitals for a variety of tasks. 
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NATIONAL'S SOLUTION 

With over a decade of shipments into the IBM 3270 connec­
tivity market, National is the leading standard product semi­
conductor supplier. The first generation DP8340/41 proto­
col translation chips were used in DCA's industry standard 
IRMA cards which were the first 3270 terminal emulation 
products available for IBM PC's. Although the DP8340/41 
pair solved many design issues regarding IBM 3270 proto­
col, bit slice microcontrollers were still required to meet 
the fast response times specified by IBM. To address this 
issue National introduced the DP8344 Biphase Communi­
cations Processor in 1987. This product features a 
3270/3299/5250 transceiver tightly coupled to a high 
speed RISC. CPU. The BCP was the first single hardware 
platform capable of supporting the 3270, 3299 and 5250 
datastreams. This new product was well received by corpo­
rations such as Memorex Telex, IBM, DEC, Harris Adacom, 
Tandberg Data, liS, Apple Computer, and many others. 

With a combination of experience in IBM connectivity proto­
cols, mixed signal design capabilities, extensive laboratory 
resources, and knowledge of IBM peripherals (terminals, 
printers, terminal emulation cards), National will continue to 
develop products that meet the semiconductor needs of our 
customers. By working in conjunction with third parties, Na­
tional can offer the complete hardware and software solu­
tion to IBM Data Communications. 
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a.. Definition of Terms 

This data sheet contains the design specifications for product 
development. Specifications may change in any manner without notice. 

This data sheet contains preliminary data, and supplementary data will 
be published at a later date. National Semiconductor Corporation 
reserves the right to make changes at any time without notice in order 
to improve design and supply the best possible product. 

This data sheet contains final specifications. National Semiconductor 
Corporation reserves the right to make changes at any time without 
notice in order to improve design and supply the best possible product. 

National Semiconductor Corporation reserves the right to make changes without further notice to any products herein to 
improve reliability, function or design. National does not assume any liability arising out of the application or use of any product 
or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. 
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DP8340 IBM 3270 Protocol Transmitter/Encoder 

General Description 
The DP8340 generates a complete encoding of parallel 
data for high speed serial transmission which conforms to 
the protocol as defined by the IBM 3270 information display 
system standard. The DP8340 converts parallel input data 
into a serial data stream. Although the IBM standard covers 
biphase serial data transmission over a coax line, the 
DP8340 also adapts to general high speed serial data trans­
mission over other than coax lines, at frequencies either 
higher or lower than the IBM standard. 

The DP8340 and its complementary chip, the DP8341 (re­
ceiver/decoder) have been designed to provide maximum 
flexibility in system designs. The separation of the transmit­
ter/receiver functions provides convenient addition of more 
receivers at one end of a biphase line without the need of 
unused transmitters. This is specifically advantageous in 
control units where typical biphase data is multiplexed over 
many biphase lines and the number of receivers generally 
exceeds the number of transmitters. 

Connection Diagram 

Features 
• Ten bits per data byte transmission 
• Single-byte or multi-byte transmission 
• Internal parity generation (even or odd) 
• Internal crystal controlled oscillator used for the genera­

tion of all required chip timing frequencies 

• Clock output directly drives receiver (DP8341) clock in-
put 

• Input data holding register 
• Automatic clear status response feature 
• Line drivers at data outputs provide easy interface to 

biphase coax line or general transmission lines 
II < 2 ns driver output skew 

• Bipolar technology provides TTL input/output compati-
bility 

• Data outputs power up/down glitch free 
II Internal power up clear and reset 

• Single + 5V power supply 

Dual·ln·L1ne Package 

0111 

0110 

Dig 

DiS 

Dl7 

016 

015 

014 

013 

012 

eLK OUT 

GNO 

Top View 

FIGURE 1 
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Block Diagram 
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~ ..... '\N\I-II-t~ X2 
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FIGURE 2. DP8340 Serial BI-Phase Transmitter/Encoder Block Diagram 

Functional Description 
Figure 2 is a block diagram of the DP8340 biphase Trans­
mitter/Encoder. The transmitter/encoder contains a crsytal 
oscillator whose input is a crystal with a frequency eight (8) 
times the data rate. A Clock Output is provided to drive the 
DP8341 receiver/decoder Clock Input and other system 
components at the oscillator frequency. Additionally, the os­
cillator drives the control logic and output shift register/for­
mat logic blocks. 

Data is parallel loaded from the sytem data bus to the trans­
mitter/encoder's input holding register. This data is in turn 
loaded by the transmitter/encoder to its output shift register 
if this register was empty at the time of the load. During this 
load, message formatting and parity are generated. The for­
matted message is then shifted out at the bit rate frequency 
to the TIL to biphase block which generates the proper 
data bit formatting. The three data outputs, DATA, DATA, 
and DATA DELAY provide for flexible interface to the coax 
line with a minimum of external components. 

The Control Logic block interfaces to all blocks to insure 
proper chip operation and sequencing. It controls the type 
of parity generation through the Even/Odd Parity input. An 
additional feature provided by the transmitter/encoder is 
generation of odd parity and placement in bit 10 position 
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while still maintaining even or odd parity in the bit 12 posi­
tion. This is the format of data word bytes and other com­
mands in the 3270 Standard. The Parity Control input is the 
pin which controls when this operation is in effect. 

Another feature of the transmitter/encoder is the internal 
TI / AR (Transmission Turnaround/Auto Response) capabil­
ity. After each Write type message from the control unit in 
the 3270 Standard, the receiving unit must respond with 
clean status (bits 2 through 11). With the transmitter/encod­
er, this function is accomplished simply by forcing the Auto­
Response input to the Logic "0" state. 

Operation of the transmitter/encoder is automatic. After the 
first data byte is loaded, the Transmitter Active output is set 
and the transmitte.r/encoder immediately formats the input 
data and serially shifts it out its data outputs. If the message 
is a multi-byte message, the internal format logic will modify 
the message data format for multi byte as long as the next 
byte is loaded to the input holding register before the last 
data bit of the previous data byte is transferred out of the 
internal output shift register. After all data is shifted out of 
the transmitter/encoder the Transmitter Active output will 
return to the inactive state. 



Detailed Pin/Functional Description 
Crystal Inputs X 1 and X2 

The oscillator is controlled by an external, parallel resonant 
crystal connected between the X1 and X2 pins. Normally, a 
fundamental mode crystal is used to determine the operat­
ing frequency of the osicllator; however, overtone mode 
crystals may be used. 

Crystal Specifications (Parallel Resonant) 

Type AT-cut crystal 

Tolerance 

Stability 

Resonance 

Maximum Series Resistance 

Load Capacitance 

R C 
TO PIN X2 ~L- VCC 

PIN (14) ..L r-
CJ CRYSTAL 

.... 
___ T.... SEE (FIG. 16) 

TO PIN Xl _ 
PIN (13) 

0.005% at 25°C 

0.01 % from O°C to + 70°C 

Fundamental (Parallel) 

Dependent on Frequency 
(For 18.867 MHz, 50n) 

15 pF 

FREQ R C 

10 MHzto 500n 
30 pF 

20 MHz ±10% 

>20 MHz 
120n 

15 pF 
±10% 

TL/F/5251-3 

FIGURE 3. Connection Diagram 

If the DP8340 transmitter is clocked by a system (clock 
crystal oscillator not used), pin 13 (X1 input) should be 
clocked directly using a Schottky series (74S) circuit. Pin 14 
(X2 input) may be left open. The clocking frequency must be 
set at eight times the data bit rate. Maximum input frequen­
cy is 28 MHz. For the IBM 3270 Interface, this frequency is 
18.867 MHz. At this frequency, the serial bit rate will be 
2.358 Mbits/sec. 

Clock Output 

The Clock Output is a buffered output derived directly from 
the crystal oscillator block and clocks at the oscillator fre­
quency. It is designed to directly drvie the DP8341 receiver/ 
decoder Clock Input as well as other system components. 

Registers Full 

This output is used as a flag by the external operating sys­
tem. A logic "1" (active state) on this output indicates that 
both the internal output shift register and the input holding 
register contain active data. No additional data should be 
loaded until this output returns to the logic "0" state (inac­
tive state). 

Transmitter Active 

This output will be in the logic "1" state while the transmit­
ter/encoder is about to transmit or in the process of trans­
mitting data. Otherwise, it will assume the logic "0" state 
indicating no data presently in either the input holding or 
output shift registers. 

Register Load 

The Register Load input is used to load data from the Data 
Inputs to the input holding register. The loading function 

1-5 

is edge sensitive, the data present during the logic "0" state 
of this input is loaded, and the input data must be valid 
before the logic "0" to logic "1" transition. It is after this 
transition that the transmitter/encoder begins formatting of 
data for serial transmission. 

Auto Response (IT/ AR) 

This input provides for automatic clear data transmission (all 
bits in logic "0") without the need of loading all zero's. 
When a logic "0" is forced on this inpiut the transmitter/en­
coder immediately responds with transmission of "clean 
status". This function is necessary after the completion of 
each write type command and in other functions in the 3270 
specification. In the logic "1" state the transmitter/encoder 
transmits data entered on the Data Inputs. 

Even/Odd Parity 

This input sets the internal logic of the DP8340 transmitter/ 
encoder to generate either even or odd parity for the data 
byte in the bit 12 position. When this pin is in the logic "0" 
state odd parity is generated. In the logic "1" state even 
parity is generated. This feature is useful when the control 
unit is performing a loop back check and at the same time 
the controller wishes to verify proper data transmission with 
its receiver/decoder. 

Parity Control/Reset 

Depending on the type of message transmitted, it is at times 
necessary in the IBM 3270 specification to generate an ad­
ditional parity bit in the bit 10 position. The bit generated is 
odd parity on the previous eight (8) bits of data. When the 
Parity Control input is in the logic "1" state the data entered 
at the Data Bit 10 position is placed in the transmitted word. 
With the Parity Control input in the logic "0" state the Data 
Bit 10 input is ignored and odd parity on the previous data 
bits is placed in the normal bit 10 position while overall word 
parity (bit 12) is even or odd (controlled by Even/Odd Parity 
input). This eliminates the need for external logic to gener­
ate the parity on the data bits. 

Truth Table 

Parity Control Input Transmitted Data Bit 10 

Logic "1" Data entered on Data Input 10 

Logic "0" Odd Parity on 8-bit data byte 

When this input is driven to a voltage that exceeds the pow­
er supply level (9V to 13V) the transmitter/ encoder is reset. 

Serial Outputs-DATA, DATA, and DATA DELAY 

These three output pins provide for convenient application 
of data to the biphase Coax line (see Figure 15 for applica­
tion). The Data outputs are a direct bit representation of the 
biphase data while the DATA DELAY output provides the 
necessary increment to clearly define the four (4) DC levels 
of the pulse. The DATA and DATA outputs add flexibility to 
the DP8340 transmitter/encoder for use in high speed dif­
ferential line driving applications. 
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~ Functional Timing Waveforms-Message Format 
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t 
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REG FULL --I1 ____________ ----(~,~ 

DATA ___ .... 
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. DATA DELAY 

111 11 11 1 1 

\-STARTING SEQUENCE-----~ 
FIGURE 4. Overall Timing Waveforms for Single Byte 

Multi-Byte Transmission 

SYNC BIT PARITY 
BYTE 2 BYTE X 

u (( 

TA-----1 

TL/F/5251-4 

DATA ___ .... ~~ 
I I I I 

DATA 

~~ 
r-IJ.D~ 

L1 11 11 1 1 ICODEVIOLATION SY~CI B~T(? B1T IsY1cIB~T B1T I j 
BIT 2 12 BIT 2 12 

STARTING SEQUENCE -si~8~~~E 

DATA DELAY 
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FIGURE 5. Overall Timing Waveforms for Multi-Byte 
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Absolute Maximum Ratings (Note 1) 

If Military/Aerospace specified devices are required, Maximum Power Dissipation @25°C· 
please contact the National Semiconductor Sales Dual-In-Line Package 2500mW 
Office/Distributors for availability and specifications. 'Derate dual·in·line package 20 mWI'C above 25"C. 

Supply Voltage, Vee 7V 

Input Voltage 5.5V Operating Conditions, 
Output Voltage 5.25V 

Min Max Units 
Supply Voltage, (Vee) 4.75 5.25 V 

Storage Temperature Range - 65°C to + 150°C 
Ambient Temperature, T A a +70 °C 

lead Temperature (Soldering, 10 sec.) 300°C 

Electrical Characteristics (Notes 2 and 3) 

Symbol Parameter ConditIons Min Typ Max Units 

VIH logic "1" Input Voltage 
2.0 V 

(All Inputs Except X1 and X2) 

VIL logic "a" Input Voltage 
0.8 V 

(All Inputs Except X1 and X2) 

VeLAMP Input Clamp Voltage liN = -12 mA -0.8 -1.2 V 
(All Inputs Except X1 and X2) 

IIH logic "1" Input Current Vee = 5.25V 
0.3 120 ,.,.A 

Register load Input VIN = 5.25V 

All Others Except X1 and X2 0.1 40 ,.,.A 

IlL logic "a" Input Current ,Vee = 5.25V 
-15 -300 ,.,.A 

Register load Input VIN = 0.5V 

All Inputs Except X1 and X2 -5 -100 ,.,.A 

VOH1 logic "1" All Outputs Except ClK OUT, 'IOH = -100,.,.A 3.2 3.9 V 
DATA, DATA, and DATA DELAY 10H = -1 mA 2.5 3.4 V 

VOH2 logic" 1" for CKl OUT, DATA, 
10H = -10 mA 2.6 3.0 V 

OAT A and DATA DELAY Outputs 

VOL1 logic "a" All Outputs Except ClK OUT, 
10L = 5 mA 0.35 0.5 V 

DATA, OAT A and DATA DELAY Outputs " . 

VOL2 logic "a" for ClK OUT, DATA, 
IOL = 20 mA 0.4 0.6 V 

DATA and DATA DELAY Outputs 

IOS1 Short Circuit Current for All Outputs 
VOUT = OV 

Except ClK OUT, DATA, DATA, and -10 -30 -100 mA 
DATA DELAY 

(Note 4) 

IOS2 Short Circuit Current for DATA, VOUT = OV -50 -140 -350 mA 
DATA, and DATA DELAY Outputs (Note 4) 

IOS3 Short Circuit Current for ClK OUT (Note 4) -30 -90 -200 mA 

lee Power Supply Current Vee = 5.25V 170 250 mA 

Timing Characteristics Oscillator Frequency = 18.867 MHz (Notes 2 and 3) 

Symbol Parameter Conditions Min Typ Max Units 

tpd1 REG LOAD to Transmitter Active (T A) load Circuit 1 
60 90 

Positive Edge Figure 7 
ns 

tpd2 REG lOAD to REG Full; Positive Edge Load Circuit 1 
45 75 

Figure 7 
ns 

I 

tpd3 Register Full to T A; Negative Edge load Circuit 1 
40 70 

Figure 7 
ns III 

tpd4 Positive Edge of REG lOAD to load Circuits 1 & 2 
50 80 

Positive Edge of DATA Figure 9 
ns 

1-7 



Timing Characteristics Oscillator Frequency = 18.867 MHz (Notes 2 and 3) (Continued) 

Symbol Parameter Conditions Min Typ Max Units 

tpd5 REG LOAD to DATA; Positive Edge Load Circuits 1 & 2 
380 475 

Figure 9, (Note 6) 
ns 

tpd6 REG LOAD to DATA DELAY; Positive Edge Load Circuits 1 & 2 
160 250 

Figure 9, (Note 6) 
ns 

tpd7 Positive Edge of DATA to Negative Edge Load Circuit 2 
100 115 

of DATA DELAY Figure 9, (Note 6) 
ns 

tpd8 Positive Edge of DATA DELAY to Negative Load Circuit 2 
110 125 

Edge of DATA Figure 9, (Note 6) 
ns 

tpd9, Skew between OAT A and DATA Load Circuit 2 
2 6 

tpd10 Figure 9 
ns 

tpd11 Negative Edge of Auto Response to Load Circuit 1 
70 110 

Positive Edge of T A Figure 10 
ns 

tpd12 Maximum Time Delay to Load Second Byte Load Circuit 1 
4 X T -50 

after Positive Edge of REG FULL Figure 8, (Note 6) 
ns 

tpd13 X1 to CLK OUT; Positive Edge Load Circuit 2 
21 30 

Figure 13 
ns 

tpd14 X1 to CLK OUT; Negative Edge Load Circuit 2 
23 33 

Figure 13 
ns 

tpd15 Negative Edge of AR to Positive Load Circuit 1 
45 75 

Edge of REG FULL Figure 10 
ns 

tpd16 Skew between TA and REG FULL during Load Circuit 1 
50 80 

Auto Response Figure 10 
ns 

tpd17 REG LOAD to REG FULL; Positive Edge Load Circuit 1 
45 75 

for Second Byte Figure 14 
ns 

tpw1 REG LOAD Pulse Width Figure 12 40 ns 

tpw2 First REG FULL Pulse Width (Note 5) Load Circuit 1 
8 x T + 60 8 x T + 100 

Figure 7, (Note 6) 
ns 

tpw3 REG FULL Pulse Width prior to Ending Load Circuit 1 , 
5XB ns 

Sequence (Note 5) A'gure 7, (Note 6) 

tpw4 Pulse Width for Auto Response Figure 10 40 ns 

ts Data Setup Time prior to REG LOAD Figure 12 
15 25 ns 

Positive Edge, Hold Time (tH) = 0 ns 

tr1 Rise Time for DATA, OAT A, and DATA Load Circuit 2 
7 13 

DELAY Output Waveform Figure 11 
ns 

tf1 Fall Time for DATA, DATA, and DATA Load Circuit 2 
5 11 

DELAY Output Waveform Figure 11 
ns 

tr2 Rise Time for T A and REG FULL Load Circuit 1 
20 30 

Figure 15 
ns 

tf2 Fall Time for TA and REG FULL Load Circuit 1 
15 25 

Figure 15 
ns 

fMAX Data Rate Frequency (Note 7) 
DC 3.5 Mbits/s 

(Clock Input must be ax this Frequency) 

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device 
should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation. 
Note 2: Unless otherwise specified, min.lmax. limits apply across the O·C to + 70·C temperature range and the 4.7SV to S.2SV power supply range. All typical 
values are for T A = 2S·C and Vee = S.OV. 
Note 3: All currents into device pins are shown as positive; all currents out of device pins are shown as negative; all voltages are referenced to ground, unless 
otherwise specified. All values shown as max. or min. are so classified on absolute basis. 
Note 4: Only one output should be shorted at a time. Output should not be shorted for more than one second at a time. 
Note 5: T = 1/(Oscillator Frequency), unit for T should be ns. 8 = 8T 
Note 6: Oscillator Frequency Dependent. 
Note 7: For the IBM 3270 Interface, the data rate frequency is 2.3S8 Mbits/s. 28 MHz clock frequency corresponds to 3.7S% jitter when referenced to Figure 10 of 
DP8341 Datasheet. 
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Timing Characteristics (Continued) 

Load Circuit 1 

vee 

TL/F/5251-6 

Load Circuit 2 

Vee 

FIGURE 6. Test Load Circuits 

Timing Waveforms 

~--------~~------------------3V 

50% 

I~ I ,2 VOH 

R~ru:: ------I------Jf.~ .. r J-
50

%-VOL 

-tPW2-! ~(--J !-tpw3-

TLlF/5251-7 

TLlF/5251-B 

FIGURE 7. Timing Waveforms for Single Byte Transfer 

REG FULL 

~~r.:~ 

It:' --=it__t~Pd12 VOH 

". ~% 
_____ oJ. VOL 

WINDOW 
TO LOAD MULTI-BYTE DATA - . 

17'1zxB 

3V 

TL/F/5251-9 

FIGURE 8. Maximum Window to Load Multi-Byte Data 

3V 

tpd4 
DATA \ 

'----------' VOL 

VOH 

DATA DELAY 

TL/F/5251-10 

FIGURE 9. Timing Waveforms for Three Serial Outputs 

1-9 

C 
." 
co 
w 
~ 
o 

• 



C) ,------------------------------------------------------------------------------------, 
~ 
C") 
co 
a. 
C 

Timing Waveforms (Continued) 

~, __ ------~~-----------------------3Y 
50% 

TA 

REG FULL 

TL/F/5251-11 

FIGURE 10. Timing Waveforms for Auto-Response 

10% 
1'----YoL 

TL/F/5251-12 

FIGURE 11. Output Waveform for DATA, DATA, DATA DELAY (Load Circuit 2) 

i lPW1i 
REG LOAO --------,.i 50% llory----- 3Y 

I-'s- 1-'H=on5 
DATA OR PARITY -------~'V 'V 

CONTROL Ii\ 11\ .... _______ OY 

3Y 

TLlF/5251-13 

FIGURE 12. Register Load Waveform Requirement 

Xl 

OV 

eLK OUT 

VOL 
TL/F/5251-14 

FIGURE 13. Timing Waveforms for Clock Pulse 

REG LOAD y 
TO ~"l 

,-----------------------------3Y 

50% 
OV 

50% 

~
OH 

REG FULL 

-I -lpd2 
_lpd17 VOL 

Ipd3 -
VoH 
50% 

VoL 

FIGURE 14. Timing Waveforms for Two Byte Transfer 

10% 
1 ..... ------- VOL 

TLlF/5251-16 

FIGURE 15. Rise and Fall Time Measurement for TA and REG Full 
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Typical Applications 

FIG.J 

~VCC 

'PARITY CONTROL r--....&.;;;.;...---il..,,;..;;~., 

~I 
~ I 

AUTO RESPONSE 

REG FULL 

DATA 
AVAILABLE 

~I+-----t 

~ ... __ ER_R_O_R_-I 
t;; 
~ OUTPUT CONTROL 

OUTPUT ENABLE 

I RECEIVER ACTIVE 

DP8340 
TRANSMITTERI 

ENCODER 

DP8341 
RECEIVERI 
DECODER 

TRANSMITTER 
ACTIVE 

RECEIVER 
DISABLE 

tiN 

-IN 

BI·PHASE 
INPUT 

• 
1:1:1 PULSE 
TRANSFORMER 
FIG. 17 

FIGURE 16. Typical Applications for IBM 3270 Interface 

+5V 

__ 1'!..._ 
I' OS3487 -, Rl 

1 A A 150 
DATA 

DELAY 

a: 

~ DATA 

~ 
z 90Q COAX c 
a: (RG62A/U) .... 
e 

& 
... 
~ 
~ R6 

R5 120 
E 150 5. 

+IN] I 2 
CONNECT TO TRANSMITTER I ACTIVE OPB341 

L __ ,*,s_--1 RECEIVER 

-IN 
6 

GND 

Note 1: Resistance values are in n, ± 5%, 114 W 

TL/F/5251-17 

TL/F/5251-18 

Note 2: Tl is a 1:1:1 pulse transformer, LMIN = 500 ",H for 18 MHz system clock. Pulse Engineering Part No. 5762/Surface Mount, 5762M/PE·85762. Technitrol 
Part No. 11 LHA, Valor Electronics Part No. CT1501 or equivalent transformers. 

Note 3: Crystal manufacturer's Midland Ross Corp. NEL Unit Part No. NE·18A (C2560N) @ 18.867 MHz and the Viking Group of San Jose, CA Part No. VXB46NS 
@ 18.867 MHz. 

FIGURE 17. Translation Logic 

1-11 

• I 
I 



.,.. 
"II:t 
Cf) 
co 
a.. 
C ~National U Semiconductor 

DP8341 IBM 3270 Protocol Receiver/Decoder 

General Description 
The DP8341 provides complete decoding of data for· high 
speed serial data communications. In specific, the DP8341 
recognizes serial data that conforms to the IBM 3270 Infor­
mation Display System Standard and converts it into ten 
(10) bits of parallel data. Although this standard covers bi­
phase serial data transmission over a coax line, this device 
easily adapts to generalized high speed serial. data trans­
mission on other than coax lines atfrequencles either high­
er or lower than the IBM 3270 standard. 

The DP8341 receiver and· its complementary chip, the 
DP8340 transmitter, are designed to provide maximum flexi­
bility in system designs. The separation of transmitter and 
receiver functions allows addition of more receivers at one 
end of the biphase line without the necessity of adding un­
used transmitters. This is advantageous specifically in con­
trol units where typically biphase data is multiplexed over 
many biphase lines and the number of receivers generally 
outnumber the number of transmitters. Tile separation of 
transmitter and receiver function provides an additional ad­
vantage in flexibility of data bus. organization. The data bus 
outputs of the receiver are TRI-STATE®, thus enabling the 
bus configuration to be organized as either a common trans­
mit/receive (bi-directional) bus or as separate transmit and 
receive busses for higher speed. 

Connection Diagram 

Features 
_ DP8341 receivers ten (10) bit data bytes and conforms 

to the IBM 3270 Interface Display System Standard 
_ Separate receiver and transmitter provide maximum 

system design flexibility 
iii Even parity detection 
_ High sensitivity input on receiver easily interfaces to 

coax line 
II Standard TTL data input on receiver provides general­

ized transmission line interface and also provides 
hysteresis 

• Data holding register 
• Multi-byte or single byte transfers 
_0 TRI-STATE receiver data outputs provide flexibility for 

common or separated transmit/receive data bus 
operation . 

_ Data transmission error detection or receiver provides 
o for both error detection and error type definition 
_ Bi-polar technology provides TTL input/output compati­

bility with excellent drive characteristics 
_ Single + 5V power supply operation 

Dual-ln-L1ne Package 

RECEIVER DISABLE VCC 

+AMPlIFIER INPUT 0011 

-AMPLIFIER INPUT 0010 

DATA (TTL) DOg 

DATA CONTROL D08 

CLOCK 007 

RECEIVER ACTIVE 006 

ERROR DOS 

REGISTER IIEAII D04 

DATA AVAILABLE 003 

OUTPUT CONTROL 002 

GNO 12 13 OUTPUT ENABLE 

Top View 

Order Number DP8341N 
See NS Package Number N24A 

FIGURE 1 
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Block Diagram 

CLOCK ---------, 

CON~:J~ -------, 

AMPLIFIER 
(INPUT) 

R~fll~t~ ------.... --~I 

1-------------. :mJ~EII 

IIEOISTEII 
mil 

DATA 
AVAILABLE 

OUTPUT 
ENABLE 

ERROR OUTPUT PARALLEL OUTPUT DATA 

TL/F/5238-3 

FIGURE 2. DP8341 Serial BI-Phase Receiver/Decoder Block Diagram 

Block Diagram Functional Description 
Figure 2 is a block diagram of the DP8341. This chip is 
essentially a serial in/parallel out shift register. However, 
the serial input data must conform to a very specific format 
(see Figures 3-5). The message will not be recognized un­
less the format of the starting sequence is. correct. Devia­
tions from the format in the data, sync bit, parity or ending 
sequence will cause an error to be detected, terminating the 
message. 

Data enters the receiver through the differential input ampli­
fier or the TTL Data input. The differential amplifier is a high 
sensitivity input which may be used by connecting it directly 
to a transformer coupled coax line, or other transmission 
medium. The TTL Data input provides 400 mV of hysteresis 
and recognizes TTL logic levels. The data then enters the 
demodulation block. 

The data demodulation block samples the data at eight (8) 
times the data rate and provides signals for detecting the 
starting sequence, ending sequence, and errors. Detection 
of the starting sequence sets the Receiver Active output 
high and enables the input shift register. 

As the ten bits of data are shifted into the shift register, the 
receiver will verify that even parity is maintained on the data 
bits and the sync bit. After one complete data byte is re­
ceived, the contents of the input shift register is parallel 
loaded to the holding register, assuming the holding register 
is empty, and the Data Available output is set. If the holding 
register is full, this load will be delayed until that register has 
been read. If another data byte is received when the shift 

1-13 

register and the holding register are full a Data Overflow 
Error will be detected, terminating the message. Data is 
read from the holding register through the TRI-ST ATE Out­
put Buffers. The Output Enable input is the TRI-STATE con­
trol for these outputs and the Register Read input signals 
the receiver that the read has been completed. 

When the receiver detects an ending sequence the Receiv­
er Active output will be reset to a logic "a" indicating the 
message has been terminated. A message will also termi~ 
nate when an error is detected. The Receiver Active output 
used in conjunction with the Error output allows quick re­
sponse to the transmitting unit when an error free message 
has been received. 

The Error Detection and Identification block insures that val­
id data reaches the outputs of the receiver. Detection of an 
error sets the Error output to a logic "1" and resets the 
Receiver Active output to a logic "0" terminating the mes­
sage. The error type may be read from the data bus outputs 
by setting the Output Control input to logic "0" and enabling 
the TRI-STATE outputs. The data bit outputs have assigned 
error definitions (see error code definition table). The Error 
output will return to a logic "a" when the next starting se­
quence is received, or when the error is read (Output Con­
trol to logiC "a" and a Register Read performed). 

The Receiver Disable input is used to disable both the am­
plifier and TTL Data receiver inputs. It will typically be con­
nected directly to the Transmitter Active output of the 
DP8340 transmitter circuit (see Figure 12). 

I 

II 
I 



Detailed Functional Pin Description 
RECEIVER ~ISABlE 

This input is used 'to disable the receiver's data inputs: The 
Receiver Disable input will typically be connected to the 
Transmitter Active output of the DP8340. However, at the 
system controller it is necessary for both the transmitter and 
receiver to be active at the same time in the loop-back 
check condition. This variation· can be' accomplished with 
the addition of minimal external ,logic. 

Truth Table 

Recelver'Disable Data Inputs 

Logic ~~O" Active 

Logic "1" Disabled 

AMPLIFIER I~~UTS 

The receiver i1asa differential input amplifier which may be 
directly connected to the transformer coupled coax line. The 
amplifier may also be connected, to, a differential type TTL 
line. The ampUfier has 20 mV of hysteresis. 

DATA INPUT' 

This input can be used either as an alternate data input or 
as a power-up check input. If the system designer prefers to 
use his own amplifier, instead of the one provided on the' 
receiver, then this TTL input may be used. Using this pin as 
an alternate data input allows self-test of the peripheral sys­
tem without disturbing the transmission line. 

DATA CONTROL 

This input is the control pin that selects which of 'the inputs 
,are used f?r ,data: entry to th~ receiver. ' 

, 'Truth Table 
. 

Data Control Oats input To 

.' Logic'~O" , Data Input 

L09ic"1" Amplifier Inputs 

Note:This input is also used for testing, When the input voltage is raised to 
7.5V the chip resets. 

CLOCK INPUT 

The input is the internal clock of the receiver. It must be set 
at eight(8) times the line data bit rate. For the IBM 3270 
Standard. this frequency is 18.87 MHz or a data bit rate of 
2.358 MHz; The crystal-controlled oscillator provided in the 
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DP8340 transmitter also operates at this frequency. The 
Clock Output of the transmitter is designed to directly drive 
the receiver's Clock Input. In addition, the receiver is de­
signed to operate correctly to a data bit rate of 3.5 MHz. 

,RECEIVER ACTIVE 

l The purpose of this output is to inform the external system 
when the DP8341 is in the process of receiving a message. 
This output will transition to a logic "1" state after the re­
ceipt of a valid starting sequence and transition to logic "0" 
when a valid ending sequence is received or an error is 
detected. This output combined with the Error output will 
.info~m the operating system of the end of an error free data 
transmission. 

ERROR 

The Error output transitions to a logic "1" when an error is 
detected. Detection of an error causes the Receiver Active 
and the Data Available outputs to transition to a logic "0". 
The Error output returns to a logic "0" after the error regis­
ter has been read or when the next starting sequence is 
detected. 

REGISTER READ 

The Register Read input when driven to the logic "0" state 
signals the receiver that data in the holding register is being 
read by the external operating system. The data present in 
the holding register will continue to remain valid until the 
Register Read input returns to the logic "1" condition. At 
this time, if an additional byte is present in the input shift 
register it will be transferred to the holding register, other­
wise the data will remain valid in the holding register. The 
Data Available output will be in the logic "0" state for a 
short interval while a new byte is transferred to the holding 
register after a register read. ' , 

DATA AVAILABLE 

This output indicates the existence of a data byte within the 
output holding register; It niay also indicate the presence of 
a data byte in both the holding register and the input shift 
register. This output will transition to the logic "1" state as 
soon as data is available and return to the logic "0" state 
after each data byte has been read. However, even after the 
last data byte has been read and the Data Available output 
has assumed the logic "0" state, the last data byte read 
from the holding register will remain until new data has been 
received. 



Detailed Functional Pin Description (Continued) 

OUTPUT CONTROL 

The Output Control input determines the type of information 
appearing at the data outputs. In the logic "1" state data will 
appear, in the logic "0" state error codes are present. 

fined in the table below. The Output Control input is the 
multiplexer control for the Data/Error bits. 

Error Code Definition 

Truth Table 

Output Control Data Outputs 

Logic "0" Error Codes 

Logic "1" Data 

OUTPUT ENABLE 

The Output Enable input controls the state of the 
TRI·STATE Data outputs. 

Truth Table 

Output Enable 
TRI-STATE 

Data Outputs 

Logic "0" Disabled 

Logic "1" Active 

DATA OUTPUTS 

The DP8341 has a ten (10) bit TRI·STATE data bus. Seven 
bits are multiplexed with error bits. The error bits are de· 

Message Format 

Data Bit 

002 

003 

004 

005 

006 

007 

008 

Single Byte Transmission 

t 
TRANSMISSION 

START 

t 
TRANSMISSION 
TERMINATION 

Multi-Byte Transmission 

SYNC BIT PARITY 
BYTE 2 BYTE X 

FIGURE 3. IBM 3270 Message Format 

1·15 

Error Type 

Data Overflow (Byte not 
removed from holding register 
when it and the input shift 
register are both full and new 
data is received) 

Parity Error (Odd parity detected) 

Transmit Check conditions 
(existence of errors on any or all 
of the following data bits: 003, 
005, and 006 

An invalid ending sequence 

Loss of mid·bit transition 
detected at other than normal 
ending sequence time 

New starting sequence detected 
before data byte in holding 
register has been read 

Receiver disabled during 
receiver active mode 

TL/F/5238-4 

I 

III 
I 



?- r----------------------------------------------------------------------------------------------, 
~ 

~ Message Format (Continued) 
a.. 
C 

DATA 

RECEIVER ACTIVE __________ ..1 

DATA AVAILABLE ______________________ --J 

REGISTER -----------------------------• .----
READ U 

TLlF/5238-5 

FIGURE 4a. Single Byte Message 

DATA~~~~~ 

1 
CODE I I I I 1 ENDING 1 

LINE QUIESCE VIOLATION r-1S1 BYTE -I--2nd BYTE - ••• r---- LAST BYTE - SEQUENCE 

RECEIVER ACTIVE _________ --1 

DATA _____________ --InL. ____ ..... r··· 
AVAILABLE • _ _ 

REGISTER -------------------U 
READ 

FIGURE 4b. Multi-Byte Message 

DATA 

LINE QUIESCE 1 VIOCL~~~ON I-CORRECT DATA BYTE ---..... 1 

RECEIVER ACTIVE _________ ---' 

DATA AVAILABLE _____________________________ ...J 

u 

LERROR DETECTED 

ERROR --------------------------------_ .... 
REGISTER 

READ 

OUTPUT 
CONTROL 

u 

FIGURE 5. Message with Error 
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Absolute Maximum Ratings (Note 1) 

If Military/Aerospace specified devices are required, Maximum Power Dissipation· at 25·C 
please contact the National Semiconductor Sales Dual-In-Line Package .2237mW 
Office/Distributors for availability and specifications. ·Derate Dual·ln·Une package 17.9 mW/,C above 2SoC. 

Supply Voltage, Vee 7V 

Input Voltage +5.5V Operating Conditions 
Output Voltage 5.25V Min Max Units 

Storage Temperature Range - 65°C to + 150·C Supply Voltage, (Vee> 4.75 5.25 V 

Lead Temperature (Soldering, 10 seconds) 300·C Ambient Temperature, (T A) a +70 ·c 

Electrical Characteristics (Notes 2,3, and 5) 

Symbol Parameter Conditions Min Typ Max Units 

VIH Input High Level 2.0 V 

VIL Input Low Level 0.8 V 

VIH-VIL Data Input Hysteresis (TTL, Pin 4) 2.0 0.4 V 

VeLAMP Input Clamp Voltage liN = -12 rnA -0.8 -1.2 V 

IIH Logic "1" Input Current Vee = 5.25V, VIN = 5.25V 2 40 }-LA 

IlL Logic "0" Input Current Vee = 5.25V, VIN = 0.5V -20 -250 }-LA 

VOH Logic "1" Output Voltage 10H = -100}-LA 3.2 3.9 V 

10H = -1 rnA 2.5 3.2 V 

VOL Logic "a" Output Voltage 10L = 5mA 0.35 0.5 V 

los Output Short Circuit Current Vee = 5V, Your = OV 
-10 ...,;20 -100 rnA 

(Note 4) 

loz TRI-STATE Output Current Vee = 5.25V, Vo = 2.5V -40 1 +40 }-LA 

Vee = 5.25V, Vo = 0.5V -40 -5 +40 }-LA 

AHYS Amplifier Input Hysteresis 5 20 30 mV 

Icc Power Supply Current Vee = 5.25V 160 250 rnA 

Timing Characteristics (Notes 2,6,7, and 8) 

Symbol Parameter Conditions Min Typ Max Units 

T01 Output Data to Data Available 
5 20 40 ns 

Positive Edge 

T02 Register Read Positive Edge to Data 
10 25 45 ns 

Available Negative Edge 

T03 Error Positive Edge to Data Available 
10 30. 50 ns 

Negative Edge 

T04 Error Positive Edge to Receiver Active 
5 20 40 ns 

Negative Edge 

T05 Register Read Positive Edge to Error 
20 45 75 ns 

Negative Edge 

T06 Delay from Output Control to Error Bits 
5 20 50 ns 

from Data Bits 

T07 Delay from Output Control to Data Bits . 
5 20 50 ns 

from Error Bits 

T08 First Sync Bit Positive Edge to Receiver 3.5 x T 
Active Positive Edge +70 

ns 

.. 
1-17 



Timing Characteristics (Notes 2,6,7, and 8) (Continued) 

Symbol Parameter Conditions Min Typ Max Units 

T09 Receiver Active Positive Edge to First Data 
92 x T ns 

Available Positive Edge 

T010 Negative Edge of Ending Sequence to 11.5 x T 

Receiver Active Negative Edge + 50 
ns 

tOl1 Data Control Set-Up Multiplexer Time Prior 
40 30 ns 

to Receiving Data through Selected Input 

TpW1 Register Read (Data) Pulse Width 40 30 ns 

TpW2 Register Read (Error) Pulse Width 40 30 ns 

TpW3 Data Available Logic "0" State between 
25 45 ns 

Data Bytes 

Ts Output Control Set-Up Time Prior to 
0 -5 ns 

Register Read Negative Edge 

TH Output Control Hold Time After the 
0 -5 ns 

Register Read Positive Edge 

TZE Delay from Output Enable to Logic "1" or Load Circuit 2 
25 35 

Logic "0" from High Impedance State 
ns 

Tez Delay from Output Enable to High Imped- Load Circuit 2 
25 35 

ance State from Logic "1" or Logic "0" 
ns 

FMAX Data Bit Frequency (Clock Input must be (Note 9) 
DC 3.5 MBits/s 

8 x the Data Bit Frequency) 

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device 
should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation. 

Note 2: Unless otherwise specified, min.lmax. limits apply across the O·C to +70·C temperature range and the 4.7SV to S.2SV power supply range. All typical 
values are for T A = 2S·C and Vee = S.OV. 

Note 3: All currents into device pins are shown as positive; all currents out of device pins are shown as negative; all voltages are referenced to ground, unless 
otherwise specified. All values shown as max. or min. are so classified on absolute value basis. 

Note 4: Only one output at a time should be shorted. 

Note 5: Input characteristics do not apply to amplifier inputs (pins 2 and 3). 

Note 6: Unless otherwise specified, all AC measurements are referenced to the 1.SV level of the input to the I.SV level of the output and load circuit 1 is used. 

Note 7: AC tests are done with input pulses supplied by generators having the following characteristics: ZOUT = son and Tr ~ S ns, Tf ~ S ns. 

Note 8: T = I/(clock input frequency). units for "T" should be ns. 

Note 9: 28 MHz clock frequency corresponds to 3.7S% iitter when referenced to Figure 10. 

Vee vee 

: Rl=2k :~ R1=1k 

'" 
.. 

....... ........ -
l'~~' 

-

1"., : 
1"""'11 ~,. -- -F-

I"" V 

R2=2k ~, -- I · -I-
~, ~~ ---::- --= -::- ~ ~ 

TLlF/523B-B 

Load Circuit 1 Load Circuit 2 

FIGURE 6. Test Load Circuits 
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Timing Waveforms 

OUTPUT --"', 5V 
ENABLE ~ ~'.5V 

~ TEl 

Og3T~8~~ ------< 
(OUTPUT CONTROL = HI) 

I-TOI 

DATA _______ ..J)(llr------"""\~~ 
AVAILABLE 1\ 

-----------------jlPw11 T02 
REGISTER ------------------------------""'\'X Vr --------------------

READ ~ 

TL/F/5238-9 

FIGURE 7. Data Sequence Timing 

DATA . \ 
AVAILABLE 

I-TD3~ 
RECEIVER ~ ACTIVE 

-TD4-1 

t ERROR t 
r-105

-
1 

REGISTER \ ;: READ 

TS --I ~Tpw2-l-lH-1 
OUTPUT \ J CONTROL 

~TD6-1 '-TDT-I 
D02-DOS DATA BITS X ERROR BITS X DATA BITS 

TL/F/5238-10 

FIGURE 8. Error Sequence Timing 

I 1 I 1 I 1 I VIJ&~~ON I 1 I DATA I 0 I MCV I MCV I 
~---r22~--J1J 

-I I-TDB I-TD1D1 

RECEIVER _____________ .... ~~2 --------.~ ___ _ 
ACTIVE • -

I-TD9--1 
DATA r-----------

AVAILABLE ----------------------------------i2~ 
TL/F/5238-11 

FIGURE 9. Message Timing II 
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~ Timing Waveforms (Continued) 
D-
C 

T. CLOCK INPU~ FREQUENCY 
4T±(T-25nl)-

-------lo3:t:rN. VIN+ 

-----,I-----Il----I-----I~----,f--- VIN-

____ -40 mV MIN. VIN+ 
-1.3V MAX. 

FIGURE 10. Data Waveform Constraints: Amplifier Inputs 

T. CLOCK INPU~ FREQUENCY 

Note: ITr - T,l :s: 10 ns 

. FIGURE 11. Data Waveform Constraints: Data Input (TTL) 
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Typical Applications 

tARITY CONTROL 

AUTO RESPONSE 

REG LOAO 

REG FULL 

DATA 
AVAILABLE 

~ 
ERROR 

Ii; 
OUTPUT CONTROL 1:; 

OUTPUT ENABLE 

REG READ 

I RECEIVER ACTIVE 

Note 3: Crystal manufacturers: Midland Ross Corp. 

NEl Unit Part No. NE18A (C2560N) @ 18.867 MHz 

OP834D 
TRANSMITTER! 

ENCOOER 

TRANSMITTER 
ACTIVE 

RECEIVER 
DISABLE 

+IN 

DP8341 
RECEIVER! 
DECODER -IN 

The Viking Group Part No. VXB-46NS @ 18,867 MHz. located in San Jose, CA. 

I 
I 
I 01 COAX 

1·
G62AIU 

I 
I 
I 

1:1:1 PULSE BI·PHASE 
TRANSFORMER INPUT FIG.14 

FIGURE 12. Typical Application for IBM 3270 Interface 

VCC-------o----~~----------o--

1k 

VIN+ 

VIN- ---------01---.....J 

TL/F/5238-15 

FIGURE 13. Equivalent Circuit for DP8341 Input Amplifier 
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Typical Applications (Continued) 

IDEAL 
WAVEFORM 
AT TRANSMITTER 
END OF CABLE 

DATA 
DELAY 

TRANSMITIER 
ACTIVE 

R1 
150 

R5 

DP8341 I

I 2 150 Cll":::J:· 
L mam 

- - ~ 8" - -1 -IN 6 

GND 

90Q COAX 

~
3 (RG62A/U) 

R6 
120 

TL/F/5238-16 

Note 1: Resistance values are in n, ±5%, Y.W 
Note 2: T1 is a 1:1:1 pulse transformer, LMIN = 500 p.H for 16 MHz system clock 

Pulse Engineering Part No. 5762/Surface Mount, 5762M/PE-65762 
Valor Electronics Part No. CT1501 
Technitrol Part No. 11 LHA or equivalent transformers 

FIGURE 14. Translation Logic 

°To maintain loss at 95% of ideal sig­
nal, select transformer inductance 
such that: 

4MIN) = 10,000 
fCLK 

EXAMPLE: 

fCLK = System Clock 
Frequency 

(e.g., 16.67 MHz) 

L = ~ -+ L(MIN) = 530p.H 
16.67 x 106 

Note 1: Less inductance will cause greater ampli­
tude attenuation 

Note 2: Greater inductance may decrease signal 
rise time slightly and increase ringing, but these 
effects are generally negligible. 

FIGURE 15. Transformer Selection 
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~National 
D Semiconductor 

DP8342 High-Speed 8-Bit Serial Transmitter/Encoder 

General Description 
The DP8342 generates a complete encoding of parallel 
data for high speed serial transmission. It generates a five 
bit starting sequence, three bit code violation, followed by a 
syn bit and eight bit per byte of data plus a parity bit. A 
three-bit ending code signals the termination of the trans­
mission. The DP8342 adapts to generalized high speed seri­
al data transmission as well as the coax lines at a maximum 
data rate of 3.5 MHz. 

The DP8342 and its complementary chip, the DP8343 (re­
ceiver/decoder) have been designed to provide maximum 
flexibility in system designs. The separation of the transmit­
ter receiver functions provides convenient addition of more 
receivers at one end of a biphase line without the need of 
unused transmitters. This is specifically advantageous in 
control units where typical biphase data is multiplexed over 
many biphase lines and the number of receivers generally 
exceeds the number of transmitters. 

Connection Diagram 

Features 
III Eight bits per data byte transmission 

• Single-byte or multi-byte transmission 
• Internal parity generation (even or odd) 

• Internal crystal controlled oscillator used for the genera­
tion of all required chip timing frequencies 

• Clock output directly drives receiver (DP8343) clock in-
put 

• Input data hold register 

• Automatic clear status response feature 
• Line drivers at data outputs provide easy interface to 

bi-phase coax line or general transmission media 

• < 2 ns driver output skew 
• Bipolar technology provides TTL input/output compati-

bility 

• Data outputs power up/down glitch free 

• Internal power up clear and reset 
• Single + 5V power supply 

Dual-In-Line Package 

OUTPUT ENABLE 24 VCC 

BYTE CLK 23 iiEiITiOOi 
BIT 8 22 REG FULL 

BIT7 21 AUTO RESPONSE 

BITS 20 TRANSMITIER ACTIVE 

BIT5 19 RESET 

BIU 18 EVEN/ODD 

BIT3 17 DATA OUT 

BIT 2 16 DATA OUT 

BIT 1 15 DATA DELAY 

CLKOUT 14 X2 

GND 13 Xl 

FIGURE 1 

Order Number DP8342N 
See NS Package Number N24A 
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Block Diagram 

... '\I\,..,. ......... X2 

CLOCK 
OUTPUT 

EXTERNAL I CRYSTAL 
CRYSTAL c::J I OSCILLATOR 

-C--4-X1 
I ...... -----' 

REGISTERS 
FULL 

TRANSMITIER 
ACTIVE 

CONTROL LOGIC 

1) BITS 

BIT 1 TO BIT B 
DATA INPUTS 

EVEN/ImD 
PARITY 

BYTE CLOCK 

DATA 

DATA 
DELAY 

OUTPUT ENABLE 

TL/F/5236-2 

FIGURE 2 

Functional Description 
Figure 2 is a block diagram of the OP8342 Biphase Trans­
mitter/Encoder. The transmitter/encoder contains a crystal 
oscillator whose input is a crystal with a frequency eight (8) 
times the data rate. A Clock Output is provided to drive the 
DPB342 receiver/decoder Clock Input and other system 
components at the oscillator frequency. Additionally, the os­
cillator drives the control logic and output shift register/ 
format logic blocks. 

Data is parallel loaded from the system data bus to the 
transmitter/encoder's input holding register. This data is in 
tum loaded by the transmitter/encoder to its output shift 
register if this register was empty at the time of the load. 
During this load, message formatting and parity are generat­
ed. The formatted message is then shifted out at the bit rate 
frequency to the TIL to Biphase block which generates the 
proper data bit formatting. The data outputs, OAT A, OAT A, 
and OAT A OELA Y provide for flexible interface to the trans­
mission medium with little or no external components. 

The control Logic block interfaces to all blocks to insure 
proper chip operation and sequencing. It controls the type 
of parity generation through the Even/Odd Parity input. An 
additional feature provided by the transmitter/encoder is 
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the Reset and Output-TRI-STATE® capability. Another fea­
ture of the OP8342 is the Byte Clock output which keeps 
track of the number of bytes transferred. 

The transmitter/encoder is also capable of internal TI / AR 
(Transmission Turnaround/ Auto Response). When the 
Auto-Response (AR) input is forced to the logic "0" state, 
the transmitter/encoder responds with clean status (all ze­
ros on data bits). 

Operation of the transmitter/encoder is automatic. After the 
first data byte is loaded, the Transmitter Active output is set 
and the transmitter/encoder immediately formats the input 
data and serially shifts it out its data outputs. If the message 
is a mutli-byte message, the internal format logic will modify 
the message data format for multibyte as long as the next 
byte is loaded to the input holding format logic will modify 
the message data format for multibyte as long as the next 
byte is loaded to the input holding register before the last 
data bit of the previous data byte is transferred out of the 
internal output shift register. After all data is shifted out of 
the transmitter/encoder the Transmitter Active output will 
return to the inactive state. 



Detailed Pin/Functional Description 
CRYSTAL INPUTS Xl AND X2 

The oscillator is controlled by an external, parallel resonant 
crystal connected between the Xl and X2 pins. Normally, a 
fundamental mode crystal is used to determine the operat­
ing frequency of the oscillator; however, over-tone mode 
crystals may be used. 

CRYSTAL SPECIFICATIONS (PARALLEL RESONANn 

Type <20 MHz AT-cut 
or> 20 MHz BT-cut 

Tolerance 

Stability 

Resonance 

Maximum Series Resistance 

0.005% at 25°C 

0.01 % from O°C to + 70°C 

Fundamental (Parallel) 

Dependent on Frequency 
(For 20 MHz, 50n) , 

Load Capacitance 15 pF 

Connection Diagram 

R C 

TO PIN 22 --'""'''' I'L-.. Vcc PIN (14) y'n ~ 

c:::=J CRYSTAL 

... 
___ .T... (FIG. 18) 

TO PIN Xl _ 
PIN (13) 

TL/F/5236-3 

Freq R C 

10 MHz-20 MHz 500n 30pF 

>20 MHz 120n 15 pF 

If the DP8342 transmitter is clocked by a system clock 
(crystal oscillator not used), pin 13 (Xl input) should be 
clock directly using a Schottky series (74S) circuit. Pin 14 
(X2 input) may be left open. The clocking frequency must be 
set at eight times the data bit rate. Maximum input frequen­
cy is 28 MHz. 

CLOCK OUTPUT 

The Clock Output is a buffered output derived directly from 
the crystal oscillator block and clocks at the oscillator fre­
quency. It is designed to directly drive the DP8343 receiver/ 
decoder Clock Input as well as other system components. 

REGISTERS FULL 

This output is used as a flag by the external operating sys­
tem. A logic "1" (active state) on this output indicates that 
both the internal output shift register and the input holding 
register contain active data. No additional data should be 
loaded until this output returns to the logic "0" state (inac-
tive state). ' 
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TRANSMITTER ACTIVE 

This output will be in the logic "1" state while the transmit­
ter/encoder is about to transmit or is in the process of trans­
mitting data. Otherwise, it will assume the logic "0" state 
indicating no data presently in ,either the input holding or 

, output shift registers. . 

REGISTER LOAD 

The Register Load input is used to load data from the Data 
Inputs to the input holding register. The loading function is 
level sensitive, the data present during the logic "0" state of 
this input is loaded, and the input data must be valid before 
the logic "0" to logic "1" transition. It is after this transition 
that the transmitter/encoder begins formatting of data for 
serial transmission. 

AUTO RESPONSE (TT/AR) 

This input provides for automatic clear data transmission (all 
bits in logic "0") without the need of loading all zero's. 
When a logic "0" is forced on this input the transmitter/en­
coder immediately responds with' transmission ., of" ~'clean 
status". When this input is in the logic "1" state the trans­
mitter/encoder transmits data entered on the Data Inputs. 

EVEN/ODD PARITY 

This input sets the internal logic of the DP8342 transmitter/ 
encoder to generate either even or odd parity for the data 
byte in the bit 10 position. When this pin is in the logic "0" 
state odd paritY is generated. In the logic "1" state even 
parity is generated. This feature is useful when the control 
unit is performing a loop back check and at the same time 
the controller wishes to verify proper data transmission with 
its receiver/decoder. 

SERIAL OUTPUTS-DATA, DATA, AND DATA DELAY 

These three output pins provide for convenient application 
of data to the Bi-Phase transmission line. The Data outputs 
are a direct bit representation of the Biphase data while the 
Data Delay output provides the necessary increment to 
clearly define the four (4) DC levels of the pulse. The DATA 
and DATA outputs add flexibility to the DP8342 transmitter/ 
encoder for use in high speed differential line driving appli­
cations. The typical DATA to DATA skew is 2 ns. 

RESET 

When a logic "0" is forced on this input, all outputs except 
Clock Output are latched low. 

, OUTPUT ENABLE 

When a logic "0" is forced on this input the three serial data 
outputs are in the high impedence state. 

BYTE CLOCK 

This pin registers a p~lse at the end of each byte transmis­
sion. The number of pulses registered corresponds to the 
number of bytes transmitted. 

• 



~ r---------------------------------------------------------------------------------------~ 
~ 

~ Message Format 
a. 
C Single Byte Transmission 

t 
TRANSMISSION 

START 

Multi-Byte Transmission 

Functional Timing Waveforms 

IIEU"t1mI --u 

FIGURE 3 

t 
TRANSMISSION 
TERMINATION 

SYNC BIT PARITY 
BYTE 2 BYTE X 

REG FULL --I1---------------r 
BYTECLOCK __ -:-I ____________ -..?, 

Dm_~1 
II 

DATA 

DATA DELAY 
I I 

~' I' I' I' I' Ic .. ".LAn~icl· 
BIT , 

STARTING SEQUENCE ""---_._--"1-. 

FIGURE 4. Overall Timing Waveforms for Single Byte 

i2 

L 

L 

~~ 
I I I I 

DATA 

I II~~ 
~~ 

~
1 I' I' 11 11 I CODE VIOLATION mci Of ,lsi~Ji i lD I J 

BIT2?PARITY BlmPARITY ENDING 
STARTING SEQUENCE ~ ~ SEQUENCE 

DATA DELAY 

8 BIT + PARITY 8 BIT + PARITY 

FIGURE 5. Overall Timing Waveforms for Multi-Byte 
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Absolute Maximum Ratings (Note 1) 

If Military/Aerospace specified devices are required, Maximum Power Dissipation· at 25·C 
please contact the National Semiconductor Sales Cavity Package 2237mW 
Office/Distributors for availability and specifications. Dual·ln-Line package 2500mW 

Supply Voltage, Vee 7V °Derate cavity package 14.9 mWrC above 2SoC; derate dual in line pack-

Input Voltage 5.5V 
age 20 mW rc above 2SoC. 

Output Voltage 5.25V Operating Conditions 
Storage Temperature Range - 65·C to + 150·C Min Max Units 
lead Temperature (Soldering, 10 sec.) 300·C Supply Voltage, (Vee> 4.75 5.25 V 

Ambient Temperature, T A 0 +70 ·C 

Electrical Characteristics (Notes 2 and 3) 

Symbol Parameter Conditions Min Typ Max Units 

VIH logic "1" Input Voltage (A" Inputs Except X1 and X2) Vee = 5V 2.0 V 

VIL logic "0" Input Voltage (A" Inputs Except X1 and X2) Vee = 5V 0.8 V 

VeLAMP Input Clamp Voltage (A" Inputs Except X1 and X2) liN = -12 rnA -0.8 -1.2 V 

IIH logic "1" Register load Input Vee = 5.25V 0.3 120 p.A 
Input Current A" Others Except X1 and X2 VIN = 5.25V 0.1 40 p.A 

IlL logic "0" Register load Input Vee = 5.25V -15 -300 p.A 
Input Current A" Inputs Except X1 and X2 VIN = 0.5V -5 -100 p.A 

VOH1 logic "1" A" Outputs Except ClK OUT, 10H = -100 p.A 
3.2 3.9 V 

DATA, DATA, and DATA DELAY Vee = 4.75V 

10H = -1 rnA 2.5 3.4 V 

VOH2 logic "1" forClK OUT, DATA, Vee = 4.75V 
2.6 3.0 V 

DATA, and DATA DELAY Outputs 10H = -10 rnA 

VOL1 logic "0" A" Outputs Except ClK OUT, Vee = 4.75V 
0.35 0.5 V 

DATA, DATA, and DATA DELAY 10L = 5 rnA 

VOL2 logic "0" for ClK OUT, DATA Vee = 4.75V 
0.4 0.6 V 

DATA, and DATA DELAY Outputs 10L = 20 rnA 

1051 Output Short Circuit Current for A" Except (Note 5) 
ClK OUT, DATA, DATA, and DATA VOUT = OV -10 -30 -100 rnA 
DELAY Outputs 

1052 Output Short Circuit Current DATA, (Note 5) 
-50 -140 -350 rnA 

DATA, and DATA DELAY Outputs VOUT = OV 

1053 Output Short Circuit Current for ClK OUT (Note 5) 
-30 -90 -200 rnA 

VOUT = OV 

Icc Power Supply Current Vee = 5.25V 170 250 rnA 

Timing Characteristics Vee = 5V ± 5%, T A = O·C to 70·C, Oscillator Frequency = 28 MHz (Notes 2 and 3) 

Symbol Parameter Conditions Min Typ Max Units 

tpd1 REG lOAD to Transmitter Active (TA) load Circuit 1 
60 90 

Positive Edge Figure 6 
ns 

tpd2 REG lOAD to Register Fu"; load Circuit 1 
45 75 

Positive Edge Figure 6 
ns 

tpd3 T A to Register Fu"; load Circuit 1 
40 70 

Negative Edge Figure 6 
ns 

tpd4 Positive Edge of REG lOAD to load Circuit 2 
50 80 

Positive Edge of DATA Figure 9 
ns 

tpd5 REG lOAD to DATA; load Circuit 2 
280 380 

Positive Edge Figure 9 
ns • I 

tpd6 REG lOAD to DATA DELAY; load Circuit 2 
150 240 

Positive Edge Figure 9 
ns 
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Timing Characteristics (Continued) 

Vee = 5V ± 5%, T A = O·C to 70·C, Oscillator Frequency = 28 MHz (Notes 2 and 3) 

Symbol Parameter Conditions Min Typ Max Units 

tpd7 Positive Edge of DATA to Negative Edge load Circuit 2 
70 85 

of DATA DELAY Figure 9 
ns 

tpd8 Positive Edge of DATA DELAY to Negative load Circuit 2 
80 95 

Edge of DATA Figure 9 
ns 

tpd9. Skew between DATA and DATA load Circuit 2 
2 6 

tpd10 Figure 9 
ns 

tpd11 Negative Edge of Auto Response (AR) load Circuit 1 
70 100 

to Positive Edge of T A Figure 10 
ns 

tpd12 Maximum Time Delay to load Second Byte load Circuit 1 
4xT-50 

after Positive Edge of REG FUll Figure 8, (Note 7) 
ns 

tpd13 X1 to ClK OUT; Positive Edge load Circuit 2 
21 30 

Figure 11 
ns 

tpd14 X1 to ClK OUT; Negative Edge load Circuit 2 
23 33 

Figure 11 
ns 

tpd15 Negative Edge of AR to Positive Edge of load Circuit 1 
45 75 

REG FUll Figure 10 
ns 

tpd16 Skew betWeen TA and REG FUll during load Circuit 1 
50 80 

Auto Response Figure 10 
ns 

tpd17 REG lOAD to REG FUll; P~sitive Edge load Circuit 1 
45 75 

for Second Byte Figure 7 
ns 

tpd18 REG FULL to BYTE ClK; Negative Edge load Circuit 1 
60 90 

Figure 7 
ns 

tpd19 . REG FUll to BYTE ClK; Positive Edge load Circuit 1 
145 180 

Figure 7 
ns 

tZH Output Enable to DATA, DATA, or DATA Cl = 50pF 
25 45 ns 

DELAY outputs: HiZ to High Figures 16, 17 

tZL Output Enable to DATA. DATA, or DATA Cl = 50pF 
15 30 ns 

DELAY Outputs; HiZ to High Figures 16, 17 

tHZ Output Enable to DATA, DATA, or DATA Cl = 15 pF 
65 100 ns 

DELAY Outputs; High to HiZ Figures 16, 17 

tLZ Output Enable to DATA. DATA, or DATA Cl = 15 pF 
45 70 ns 

DELAY Outputs; low to HiZ Figures 16, 17 

tpw1 REG lOAD Pulse Width Figure 12 40 ns 

tpW2 First REG FUll Pulse Width (Note 6) load Circuit 1 
8 x T + 60 8 x T + 100 

Figure 7, (Note 7) 
ns 

tpw3 REG FUll Pulse Width Prior to Ending load Circuit 1 
5xB 

. Sequence (Note 6) Figure 7 
ns 

tpw4 ' Pulse Width for Auto Response Figure 10 40 ns 

tpu5 Pulse Width for BYTE ClK Load Circuit 1 
8 x T + 30 8 x T + 80 

Figure 7, (Note 7) 
ns 

ts Data Setup Time prior to REG lOAD 'Figure 12 
15 23 ns 

. Positive Edge; Hold Time = 0 ns 

trl Rise Time for DATA, DATA, and DATA Load Circuit 2 
7 13 

DELAY Output Waveform Figure 13 
ns 

ttl Fall Time for DATA, DATA, and DATA Load Circuit 2 
5 11 

DELAY Output Waveform Figure 13 
ns 

tr2 Rise Time f6rTA and REG FUll load Circuit 1 
20 30 

Figure 14 
ns 

... 

tt2 Fall Time for TA and REG FUll load Circuit 1 
15 25 

Figure 14 
ns 
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Timing Characteristics (Continued) 

Vee = 5V ± 5%, T A = O·C to 70·C, Oscillator Frequency = 28 MHz (Notes 2 and 3) 

Symbol Parameter Conditions Min Typ Max Units 

Mbits/s 
Data Rate Frequency 
(Clock Input must be 8 x this Frequency) 

DC 3.5 

Input Capacitance-Any Input (Note 4) 5 15 pF 

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to Imply that the device 
should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation. 

Note 2: Unless otherwise specified, minImax limits apply across the O'C to + 70'C temperature range and the 4.7SV to S.2SV power supply range. All typical 
values are for TA = 2S'C and Vee = S.OV. 

Note 3: All currents Into device pins are shown as positive; all currents out of device pins are shown as negative; all voltages are referenced to ground, unless 
otherwise specified. All values shown as max or min are so classified on absolute basis. 

Note 4: Input capacitance Is guaranteed by periodic testing. fTEST = 10 kHz at 300 mV, TA = 2S'C. 

Note 5: Only one output should be shorted at a time. 

Note 6: T = 1/(Oscillator Frequency). Unit for T should be in ns. B = ST. 

Note 7: Oscillator Frequency Dependent. 

Timing Waveforms (Continued) 

--------------~:):~--------~~~:: --50% 

~tPd2 ~tPd3~:: 

RmDlD\ 4 TA f'~' 
-l 

REG FULL 

BYTE CLOCK 

- 50% 

tpw3 VOL 

-~, 1l:$.= =~ 
TL/F/5236-7 

FIGURE 6. Single Byte Transfer 

~ ~ } __ t
P_d_1 ____ ~----;....-(?~2·~2 ~~~~~~~~~~~::::~~~~~~~~~~~~~-~~~50~%--~ : 

. _I - tpd17 VOL 

-I ~tpd2 lr(~ tpd3- -- VoH 
REO FULL 1 ,f- 50% ______ , J _ Ipw3 VoL 

- -tpw2 tpd18- - JEIPd111 

~'f\ -== 50% VoH BYTE ClK 

-------------~2~JI.1 VoL 
-, ,--lpwS 

REG FULL 

FIGURE 7. Two-Byte Transfer 

3V 

~1 \.If~ 

----/}.:~~ :: 
WINDOW 

- TO LOAD MUIll·BYTE DATA -
1SVrxa 

FIGURE 8. Maximum Window to Load Multi-Byte Data 
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Functional Timing Waveforms (Continued) 

DATA \ '--___ ..J 

:----lpd5----.1 r--..... 

DATA DELAY 

FIGURE 9. Three Serial Outputs 

,-----------~~----------------------3V 
AR ----------------- 1.5Y 

TA __ ....;..--Jr'~" 
__ -1 __ ...Jl -",d,,15 

I~' 50% YOH 

VOL 

REG FULL ,. 
II ' , - E-'Pd16 YoH 

50% 

VOL 

TL/F/5236-11 

FIGURE 10. Auto-Response 

10% 

3V 
1.5V 
OV 

VOH 

VOL 

VOL 

VOH 

VOL 
TL/F/5236-10 

Xl~-=~~5V 

';';=,,' ~ I-=---:L ~ tt -VOH 
elK OUT' - 50% 

, VOL 

TLlF/5236-12 

FIGURE' 11. Clock Pulse 

, TL/F/5236-14 
TL/F/5236-13 

FIGURE 12. REG LOAD 
FIGURE 13. Output Waveform for DATA, DATA, 

DATA DELAY (Load Circuit 2) 

10% 

TLlF/5236-15 

FIGURE 14. Rise and Fall Time Measurement 
for TA and REG FULL 
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RL=2k RL=2k 

TL/F/5236-16 

Load Circuit 1 Load Circuit 2 
FIGURE 15. Test Load Circuits 



Timing Waveforms (Continued) 

OUTPUT ENABLE 

DATA OUTPUTS 

Typical Applications 

I 
I 
I 
I RESET 
I • I AUTO RESPONS~ 

REG LOAD 

REG FULL 

BYTE CLOCK 

en 
=> 
CD .... 
c..> 
~ 

~ ::: 
~ 
~ DATA ~ AVAILABLE 

ERROR 

I OUTPUT CONTROL 

I • I OUTPUT ENABLE 
I • 
I REG READ 
I • I RECEIVER ACTIVE 
I 
I 
I 

VCC 

4.7K 

I CL -=- 2.7K 

TL/F/5236-17 

FIGURE 16. Load Circuit for Output TRI-STATE Test 

} ....... _____ .... l~5-0-%-----::: 
·1 VOH VOH - I-1HZ - -IZl 

:.. VOH-O.5V HIGH Z f-VOH-O.5V 

VOL 
VOL J VOL +O.5V -I 

r-VOl+O.5V 

-I I-Ill -IZH 

FIGURE 17. TRI-STATE Test 

DP8342 
TRANSMITTERI 

ENCODER 

~ 

~ 

DP8343 
RECEIVERI 
DECODER 

TRANSMITTER 
ACTIVE 

RECEIVER 
DISABLE 

OPTIONAL 
INTERFACE 

lOGIC 
FIG. 19 

OPTIONAL 
INTERFACE 

LOGIC 

FIGURE 18 
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COAX LINE (FIG. 19) 

TWISTED PAIR LINES 

FIBER·DPTIC 
MAGNETIC 
INFRARED 

RF 
ULTRASONIC 

AUDIO 
CURRENT CARRYING 

I DC TO 3.5MHz I 

TLiF/5236-1B 
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Typical Applications (Continued) 

DATA 
DELAY 

R1 
150 

90Q COAX 
(RG62A/U) 

R5 
150 

+IN

J
5 

• ~
3 

R6 
120 

TRANSMITTER 
ACTIVE 

Note 1: Resistance values are In n, ±5%, y .. W. 

I 2 

I 
L __ ,*S_.J 

GNO 

CONNECT TO 
OP8343 
RECEIVER 

-IN 
6 

TLlF/5236-20 

Note 2: T1 Is a 1:1:1 pulse transformer, L = 500,...H for 18 MHz to 28 MHz system clock. Pulse Engineering Part No. 5762; Technitrol Part No. 11LHA, Valor 
Electronics Part No. CT1501, or equivalent transformer. 

Note 3: Crystal manufacturer Midland Ross Corp. NEL Unit Part No. NE-18A at 28 MHz. 

FIGURE 19. Interface Logic for a Coax Transmission Line 

r----....... (NOTE) 
OATA 1. T1 

DP8342 
TRANSMITTERI 

ENCODER 

Note: Data rates up to 3.5 Mbits/s at 5000' stili apply. 

TA 

OE 

+IN

J
5

• 

CONNECT TO 
0P8343 
RECEIVER 

-IN 
6 

90QCOAX 

~ 
u:J 

4 

TL/F/5236-21 

FIGURE 20. Direct Interface for a Coax Transmission Line (Non-IBM Voltage Levels) 
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~National U Semiconductor 

DP8343 High-Speed 8-Bit Serial Receiver/Decoder 

General Description 
The DP8343 provides complete decoding of data for high 
speed serial data communications. In specific, the DP8343 
receiver recognizes biphase serial data sent from its com­
plementary chip, the DP8342 transmitter, and converts it 
into 8 bits of parallel data. These devices are easily adapted 
to generalized high speed serial data transmission systems 
that operate at bit rates up to 3.5 MHz. 

The DP8343 receiver and the DP8342 transmitter are de­
signed to provide maximum flexibility in system designs. The 
separation of transmitter and receiver functions allows addi­
tion of more receivers at one end of the biphase line without 
the necessity of adding unused transmitters. This is advan­
tageous in control units where the data is typically multi­
plexed over many lines and the number of receivers gener­
ally exceeds the number of transmitters. The separation of 
transmitter and receiver function provides an additional ad­
vantage in flexibility of data bus organization. The data bus 
outputs of the receiver are TRI-STATE®, thus enabling the 
bus configuration to be organized as either a common trans­
mit/receive (bi-directional) bus or as separate transmit and 
receive busses for higher speed. 

Connection Diagram 

Features 
g' DP8343 receives 8-bit data bytes 
III Separate receiver and transmitter provide maximum 

system design flexibility 

• Even parity detection 
• High sensitivity input on receiver easily interfaces to 

coax line 
a Standard TTL data input on receiver provides general­

ized transmission line interface and also provides 
hysteresis 

II Data holding register 
III Multi-byte or single byte transfers 
.. TRI-STATE receiver date outputs provide flexibility for 

common or separated transmit/receive data bus 
operation 

II Data transmission error detection on receiver provides 
for both error detection and error type definition 

• Bipolar technology provides TTL input/output compati­
bility with excellent drive characteristics 

II Single + 5V power supply operation 

Dual-In-Line Package 

RECEIVER DISABLE 24 VCC 

+AMPLIFIER INPUT 23 DATA CLOCK 

-AMPLIFIER INPUT 22 SERIAL DATA 

DATA (TTL) 21 BIT 8 

DATA CONTROL 20 BIT7 

CLOCK 19 BIT 6 

RECEIVER ACTIVE 18 BIT5 

ERROR 17 BIT 4 

REGISTER READ 16 BIT 3 

DATA AVAILABLE 15 BIT 2 

OUTPUT CONTROL 14 BIT 1 

GNO 12 13 OUTPUT ENABLE 

TL/F/5237-1 

FIGURE 1 
Order Number DP8343N 

See NS Package Number N24A 
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Block Diagram 

CLOCK ---------, 

CONf:~~ ------........ 

DATA (TTL) 

AMPLIFIER 
INPUT 

1-------------- :mJ~ER 

SERIAL DATA 

SERIAL DATA CLOCK 

DATA 
AVAILABLE 

OUTPUT 
CONTROL 

ERROR OUTPUT PARALLEL OUTPUT DATA 

TLlF/5237-2 

FIGURE 2. DP8343 Blphase Receiver 

Functional Description 
Figure 2 is a block diagram of the DP8343 receiver. This 
chip is essentially a serial in/parallel out shift register. How­
ever, the serial input data must conform to a very specific 
format (see Figures 3-6). The message will not be recog­
nized unless the format of the starting sequence is correct. 
Deviations from the format in the data, sync bit, parity or 
ending sequence will cause an error to be detected, termi­
nating the message. 

Data enters the receiver through the differential input ampli­
fier or the TTL Data input. The differential amplifier is a high 
sensitivity input which may be used by connecting it directly 
to a transformer coupled coax line, or other transmission 
medium. The TTL Data input provides 400 mV of hysteresis 
and recognizes TTL logic levels. The data then enters the 
demodulation block. 

The data demodulation block samples the data at eight (8) 
times the data rate and provides signals for detecting the 
starting sequence, ending sequence, and errors. Detection 
of the starting sequence sets the Receiver Active output 
high and enables the input shift register. 

As the eight bits of data are shifted into the shift register, the 
receiver will verify that even parity is maintained on the data 
bits and the sync bit. Serial Data and Serial Data Clock, the 
inputs to the shift register, are provided for use with external 
error detecting schemes. After one complete data byte is 
received, the contents of the input shift register is parallel 
loaded to the holding register, assuming the holding register 
is empty, and the Data Available output is set. If the holding 
register is full, this load will be delayed until that register has 
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been read or the start of another data byte is received, in 
which case a Data Overflow Error will be detected, terminat­
ing the message. Data is read from the holding register 
through the TRI-STATE Output Buffers. The Output Enable 
input is the TRI-STATE control for these outputs and the 
Register Read input signals the receiver that the read has 
been completed. 

When the receiver detects an ending sequence the Receiv­
er Active output will be reset to a logic "0" indicating the 
message has been terminated. A message will also termi­
nate when an error is detected. The Receiver Active output 
used in conjunction with the Error output allows quick re­
sponse to the transmitting unit when an error free message 
has been received. 

The Error Detection and Identification block insures that val­
id data reaches the outputs of the receiver. Detection of an 
error sets the Error output to a logic "1" and resets the 
Receiver Active output to a logic "0" terminating the mes­
sage. The error type may be read from the data bus outputs 
by setting the Output Control input to logic "0" and enabling 
the TRI-STATE outputs. The data bit outputs have assigned 
error definitions (see error code definition table). The Error 
output will return to a logic "0" when the next starting se­
quence is received, or when the error is read (Output Con­
trol to logic "0" and a Register Read performed). 

The Receiver Disable input is used to disable both the am­
plifier and TTL Data receiver inputs. It will typically be con­
nected directly to the Transmitter Active output of the 
DP8342 transmitter circuit. 



Detailed Functional Pin Description 
RECEIVER DISABLE 

This input is used to disable the receiver's data inputs. The 
Receiver Disable input will typically be connected to the 
Transmitter Active output of the DP8342. However, at the 
system controller it may be necessary for both the transmit­
ter and receiver to be active at the same time. This variation 
can be accomplished with the addition of minimal external 
logic. 

Truth Table 

Receiver Disable Data Inputs 

Logic "0" Active 

Logic "1" Disabled 

AMPLIFIER INPUTS 

The receiver has a differential input amplifier which may be 
directly connected to the transformer coupled coax line. The 
amplifier may also be connected to a differential type TTL 
line. The amplifier has 20 mV of hysteresis. 

DATA INPUT 

This input can be used either as an alternate data input or 
as a power-up check input. If the system designer prefers to 
use his own amplifier, instead of the one provided on the 
receiver, then this TTL input may be used. Using this pin as 
an alternate data input allows self-test of the peripheral sys­
tem without disturbing the transmission line. 

DATA CONTROL 

This input is the control pin that selects which of the inputs 
are used for data entry to the receiver. 

Truth Table 

Data Control Data Input To 

Logic "0" Data Input 

Logic "1" Amplifier Inputs 

Note: This input is also used for testing. When the input voltage is raised to 
7.5V the chip resets. 

CLOCK INPUT 

This input is the internal clock of the receiver. It must be set 
at eight (8) times the line data bit rate. The crystal-controlled 
oscillator provided in the DP8342 transmitter also operates 
at this frequency. The Clock Output of the transmitter is 
designed to directly drive the receiver's Clock Input. In addi­
tion, the receiver is designed to operate correctly to a data 
bit rate of 3.5 MHz. 

RECEIVER ACTIVE 

The purpose of this output is to inform the external system 
when the DP8343 is in the process of receiving a message. 
This output will transition to a logic "1" state after a receipt 
of a valid starting sequence and transition to logic "0" when 
a valid ending sequence is received or an error is detected. 
This output combined with the Error output will inform the 
operating system of the end of an error free data transmis­
sion. 
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ERROR 

The Error output transitions to a logic "1" when an error is 
detected. Detection of an error causes the Receiver Active 
and the Data Available outputs to transition to a logic "0". 
The Error output returns to a logic "0" after the error regis­
ter has been read or when the next starting sequence is 
detected. 

REGISTER READ 

The Register Read input when driven to the logic "0" state 
signals the receiver that data in the holding register is being 
read by the external operating system. The data present in 
the holding register will continue to remain valid until the 
Register Read input returns to the logic "1" condition. At 
this time, if an additional byte is present in the input shift 
register it will be transferred to the holding register, other­
wise the data will remain valid in the holding register. The 
Data Available output will be in the logic "0" state for a 
short interval while a new byte is transferred to the holding 
register after a register read. 

DATA AVAILABLE 

This output indicates the existence of a data byte within the 
output holding register. It may also indicate the presence of 
a data byte in both the holding register and the input shift 
register. This output will transition to the logic "1" state as 
soon as data is available and return to the logic "0" state 
after each data byte has been read. However, even after the 
last data byte has been read and the Data Available output 
has assumed the logic "0" state, the last data byte read 
from the holding register will remain until new data has been 
received. 

OUTPUT CONTROL 

The Output Control input determines the type of information 
appearing at the data outputs. In the logic "1" state data will 
appear, in the logic "0" state error codes are present. 

Truth Table 

Output Control Data Outputs 

Logic "0" Error Codes 

Logic "1" Data 

OUTPUT ENABLE 

The Output Enable input controls the state of the 
TRI-STATE Data outputs. 

Truth Table 

Output Enable 
TRI-STATE 

Data Outputs 

Logic "Oil Disabled 

Logic "1" Active 

DATA OUTPUTS 

The DP8343 has an 8-bit TRI-STATE data bus. Seven bits 
are multiplexed with error bits. The error bits are defined in 
the following table. The Output Control input is the multi­
plexer control for the Data/Error bits. • I 



(f) 
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~ Message Format 
a. 
c 

Si~gle Byte Transmission 

TRANSMISSION 
START SEQUENCE 

t 
TRANSMISSION 

START .' 

Multi-Byte Transmission 

DATA 

LINE QUIESCE 

RECEIVER 

FIGURE 3 

t 
TRANSMISSION 
TERMINATION 

SYNC BIT PARITY 
BYTE 2 BYTE X 

CODE 1 2 3 4 5 6 7 8 I I I BIT BIT BIT BIT BIT BIT BIT BIT I I ENDING I 
VIOLATION. DATA • SEQUENCE 

SYNC PARITY 

ACTIVE __________ ..1 

DMA ~ AVAILABLE ____________________ -"'1 IL. ___ _ 

REGISTER 
READ u 

TL/F/5237-3 

TL/F/5237-4 

FIGURE 4a. Single Byte (8-Blt) Message 

DATA~ U1.Jl.J1r rfl ~~ 
I CODE I . I I I \ ENDING I 

LINE QUIESCE. VIOLATION j---11t BYTE-j-2nd BYTE- ••• I-LAST BYTE- SEQUENCE 

RECEIVER· ACTIVE _________ --' 

DATA ____________ ---InL _______ r··· 
AVAILABLE • • • u L 

REGISTER ----------------U 
READ 

TL/F/5237-5 

FIGURE 4b. Multi-Byte Message 
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Message Format (Continued) 

Data Bit 
DP8343 

Bit 1 

Bit2 

Bit3 

Bit4 

Bit5 

Bit6 

Bit7 

Error Code Definition 

Error Type 

Data Overflow (Byte not removed from holding register when it and the input shift register are both full and new 
data is received) 

Parity Error (Odd parity detected) 

Transmit Check conditions (existence of errors on any or all of the following data bits: Bit 2, Bit 4, and Bit 5) 

An invalid ending sequence 

Loss of mid-bit transition detected at other than normal ending sequence time 

New starting sequence detected before data byte in holding register has been read 

Receiver disabled during receiver active mode 

SERIAL DATA DATA CLOCK 

The Serial Data output is the serial data coming into the 
input shift register. 

The Data Clock output is the clock to the input shift register. 

DATA 

ICODE~ I LERROR DETECTED 

LINE QUIESCE VIOLATION CORRECT DATA BYTE-

RECEIVER 
ACTIVE 

DATA 
AVAILABLE 

ERROR 

U REGISTER 
READ 

OUTPUT 
CONTROL 

TL/F/5237-6 

FIGURE 5. Message with Error 

DATA 

SERIAL 
DATA 

DATA 
CLOCK 

TLlF/5237-7 

FIGURE 6. Data Clock and Serial Data 
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Absolute Maximum Ratings (Note 1) 

If Military/Aerospace specified devices are required, Storage Temperature Range - 65°C to + 150°C 
please contact the National Semiconductor Sales Lead Temperature (Soldering, 10 sec.) 300°C 
Office/Distributors for availability and specifications. 

Supply Voltage, (VeC> 7.0V Operating Conditions 
Input Voltage 5.5V Min Max Unlt$ 
Output Voltage 5.25V Supply Voltage, (VeC> 4.75 5.25 V 

Ambient Temperature, T A 0 +70 °C 

Electrical Characteristics (Notes 2, 3 and 5) 

Symbol Parameter Conditions Min Typ Max Units 

VIH Input High Level 2.0 V 

Vil Input Low Level 0.8 V 

VIH"Vll Data Input Hysteresis (TTL, Pin 4) 0.2 0.4 V 

VeLAMP Input Clamp Voltage liN = -12 mA -0.8 -1.2 V 

IIH Logic "1" Input Current Vee = 5.25V, VIN = 5.25V 2 40 /LA 

III Logic "0" Input Current Vee = 5.25V, VIN = 0.5V -20' -250 /LA 

VOH Logic "1" Output Voltage IOH = -100/LA 3.2 3.9 V 

IOH = -1 mA 2.5 3.2 V 

VOL . Logic "0" Output Voltage IOl = 5 mA 0.35 0.5 V 

los Output Short Circuit Current Vee = 5V, VOUT = OV -10 -20 -100 mA 
(Note 4) 

10Z TRI-STATE Output Current Vee = 5.25V, Vo = 2.5V -40 1 +40 /LA 

Vee = 5.25V, Vo = 0.5V -40 -5 +40 /LA 

AHYS Amplifier Input Hysteresis 5 20 30 mV 

Icc Power Supply Current Vee = 5.25V 160 250 mA 

Timing Characteristics (Notes 2,6,7, and 8) 

Symbol Parameter Conditions Min Typ Max Units 

T01 Output Data to Data Available 
5 20 40 ns 

Positive Edge 

T02 Register Read Positive Edge to 
10 25 45 ns 

Data Available Negative Edge ' 

T03 Error Positive Edge to 
10 30 50 ns 

Data Available Negative Edge 

T04 Error Positive Edge to 
5 20 40 ns 

Receiver Active Negative Edge 

T05 Register Read Positive Edge to 
20 45 75 ns 

Error Negative Edge 

T06 Delay from Output Control to 
5 20 50 ns 

Error Bits from Data Bits 

TO? Delay from Output Control to 
5 20 50 ns 

Data Bits from Error Bits 

T08 First Sync Bit Positive Edge to 3.5 x T 
Receiver Active Positive Edge +70 

ns 

TOg Receiver Active Positive Edge to 
76 x T ns 

First Data Available Positive Edge 

T010 Negative Edge of Ending Sequence to 11.5 x T 
Receiver Active Negative Edge +50 

ns 

T011 Data Control Set-up Multiplexer Time Prior 
40 30 ns 

to Receiving Data through Selected Input 

T012 Serial Data Set-Up Prior to 
3xT ns 

Data Clock Positive Edge 
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Timing Characteristics (Notes 2,6, 7, and 8) (Continued) 

Symbol 

TpW1 

TpW2 

TpW3 

T5 

TZE 

Parameter 

Register Read (Data) Pulse Width 

Register Read (Error) Pulse Width 

Data Available Logic "a" State between 
Data Bytes 

Output Control Set-Up Time Prior to 
Register Read Negative Edge 

Output Control Hold Time after the 

Register Read Positive Edge 

Delay from Output Enable to Logic "1" or 

Logic "a" from High Impedance State 

Delay from Output Enable to High Imped­

ance State from Logic "1" or Logic "a" 

Data Bit Frequency (Clock Input must be 
8 x the Data Bit Frequency) 

Conditions 

Load Circuit 2 

Load Circuit 2 

Min Typ Max Units 

30 40 ns 

40 30 ns 

25 45 ns 

a -5 ns 

a -5 ns 

25 35 ns 

25 35 ns 

DC 3.5 MBits/s 

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device 
should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation. 

Note 2: Unless otherwise specified, min.lmax. limits apply across the O'C to -+- 70'C temperature range and the 4.75V to 5.25V power supply range. All typical 
values are for TA = 25'C and Vec = 5.0V. 

Note 3: All currents into device pins are shown as positive; all currents out of device pins are shown as negative; all voltages are referenced to ground, unless 
otherwise specified. All values shown as max. or min. are so classified on absolute value basis. 

Note 4: Only one output at a time should be shorted. 

Note 5: Input characteristics do not apply to amplifier inputs (pins 2 & 3). 

Note 6: Unless otherwise specified, all AC measurements are referenced to the 1.5V level of the input to the 1.5V level of the output and load circuit 1 is used. 

Note 7: AC tests are done with input pulses supplied by generators having the following characteristics: ZOUT = 50, Tr ~ 5 ns, and Tr ~ 5 ns. 

Note 8: T = 1/(clock input frequency). units for "T' should be ns. 

Test Load Circuits 

Vee Vee 

I~ -1 ....... ~, 
I> --

1
15PF.: R2=2k~' 

.. --
~~ 

~ ~ 

- l'~~' --'I 15PF ~, --
~~ 

-=- ~ 
TlIF/5237-8 

Load Circuit 2 
TlIF/5237-9 

Load Circuit 1 

FIGURE 7 
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~ r---------------------------------------------------------------------------------------~ 
~ 

~ Timing Waveforms 
a. 
c 

OUTPUT J-1 SV 
ENABLE ~ t 

1"--· --
--I TEl 

(VOH-O.5IV og3j~U -r-_~(Z~+"':'O.~SIVo:_:__< 
(OUTPUT CONTROL = Hil (Z - O.SIV 

I-T
Ol 

t 1-'--T-0-2-------
,'

PW1

1 REGISTER ---------------"'"\~ V,..------------
REAO "-----..Ii 

TL/F/5237-10 

FIGURE 8. Data Sequence Timing 

DATA \ AVAILABLE 

I-T03-\ 

RECEIVER ~ ACTIVE 

-T04-1 

'\ ERROR t 
r-lD5~ 

REGISTER \ ;: REAO 

Ts-I I-, .. ,-I-'H-l 
OUTPUT \ ;( CONTROL 

~'''I Lro'-I 
BIT1·BIT7 DATA BITS X ERROR BITS X DATA BITS 

TL/F/5237-11 

FIGURE 9. Error Sequence Timing 

1 1 1 1 I 1 I VIOC&~~ON I 1 I DATA I 0 I MCV I MCV I 

~---{2l~--JlJ 

-I I-TD8 I .. T011 

RECEIVER ______________ ...I~(;O---------. .. ____ _ 
ACTIVE ! . 

I-TD9-1 
O~A ~-----------

AVAILABLE ------------------f2~ 
TL/F/5237-12 

FIGURE 10. Message Timing 
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Timing Waveforms (Continued) 

SERIAL DATA ____ -'X'-_______ -'X'-___ _ 
1- T012-1 

_____ 11
,..-----\'----_ DATA CLOCK . _ 

. TLlF/5237-13 

FIGURE 11. Data Clock and Serial Data Timing 

.- BT±(T -25nl)- T. 
CLOCK INPUT FREOUENCY 

4T±(T-25ns)-

------~----~----~----~-----+------~N-

____ -40 mY MIN. VIN+ 
-1.3Y MAX. 

FIGURE 12. Data Waveform Constraints: Amplifier Inputs 

-BT±(T-25ns)-

T.. CLOCK INPU~ FREOUENCY 
4T±(T-25ns)-

1'--------
Note: ITr - T,I s: 10 ns 

FIGURE 13. Data Waveform Constraints: Data Input (TTL) 

VCC-----~----~----------~--

1k 

VIN+ 

VIN- ---------f-----~ 

TL/F/5237-16 

FIGURE 14. Equivalent Circuit for DP8343 Input Amplifier 
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(f) 
~ 
(f) Typical Applications co 
a.. 
c 

r-o VCC 

RESET 

I AUTO RESPONSE 

REG LOAD DPB342 DPTIONAL 
INTERFACE ., TRANSMITTERI LOGIC 

REG FULL ENCODER (FIG. 16) 

BYTE CLOCK COAX LINE (FIG. 16) 

TWISTED PAIR LINES 

CI,I FIBER·OPTIC 
::> TRANSMITTER III 
w ACTIVE MAGNETIC ... 
~ 

:00: ... INFRARED 

~ 
9 ... 

RF 
! RECEIVER .... DISABLE ULTRASONIC 
CI,I DATA >-
CI,I AVAILABLE AUDIO 

ERROR CURRENT CARRYING 

I OUTPUT CONTROL DP8343 OPTIONAL 
I OUTPUT ENABLE RECEIVERI INTERFACE DC TO 3.5MHz 

DECODER LOGIC 

I REG READ 
I ., 
I RECEIVER ACTIVE 

TLlF/5237-17 

Note 1: Crystal manufacturer Midland Ross Corp., NEL Unit Part No. NE·18A @ 28 MHz 

FIGURE 15 
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Typical Applications (Continued) 

DATA 
DELAY 

TRANSMITTER 
ACTIVE 

I 2 

I 

L--*8-~ 
GND 

R1 
150 

R5 
150 50 

+IN

J CDNNECT TD 
DP8341 
RECEIVER 

-IN 
6 

90Q CDAX 
(RG62A/U) 

dJ
3 

R6 
120 

TUF/5237-18 

IDEAL 
WAVEFORM 

Note 1: Resistance values are in n, ±5%, V.w. 
Note 2: T1 is a 1:1:1 pulse transformer, LMIN = 500 J.LH for 18 MHz system clock. 
Pulse Engineering Part No. 5762, 
Valor Electronics Part No. CT1501 
Technitrol Part No. 11 LHA or equivalent transformers. 

FIGURE lS.lnterface Logic for a Coax Transmission Line 

AT TRANSMITIER 
END OF CABLE 

°To maintain loss at 95% of ideal signal, select 
transformer inductance such that: 

10,000 
L(MIN) = fCLK 

Example: 

fCLK = System Clock 
Frequency 
(e.g., 18.87 MHz) 

L=~- L(MIN) = 530 H 
18.87 x 106 po 

Note 1: Less inductance will cause greater amplitude 
attenuation. 

Note 2: Greater inductance may decrease signal rise 
time slightly and Incease ringing, but these effects are 
generally negligible. 

FIGURE 17. Transformer Selection 
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DP8344B Biphase Commun\ications Processor-BCP® 
General Description 
The DP8344B BCP is a communications processor de­
signed to efficiently process IBM® 3270, 3299 and 5250. 
communications protocols. A general purpose 8-bit protocol 
is also supported. 

The BCP integrates a 20 MHZ 8-bit. Harvard architecture 
RISC processor, and an intelligent, software-configurable 
transceiver on the same low power microCMOS chip. The 
transceiver is capable of operating without significant proc­
essor interaction, releasing processor power for other tasks. 
Fast and flexible interrupt and subroutine' capabilities with 
on-chip stacks make this power readily available. 

The transceiver is mapped into the processor's register 
space, communicating with the processor via,an asynchro­
nous interface which enables both sections of the chip to 
run from different clock sources. The transmitter and receiv­
er run at the same basic clock frequency although the re­
ceiver extracts a clock from the incoming data stream to 
ensure timing accuracy. 

The BCP is designed to stand alone and is capable of imple­
menting a complete communications interface, using .the 
processor's spare power to control the complete system. 
Alternatively, the BCP can be interfaced to another proces­
sor with an on-chip interface controller arbitrating access to 
data memory. Access to program memory is also possible, 
providing the ability to download BCP code. 

A simple line intertace connects the Bep to the communica­
tions line. The receiver includes an on-chip analog compar­
ator, suitable for use in a transformer-coupled environment, 

Block Diagram 

although a TTL-level serial input is also provided for applica­
tions where an external comparator is preferred. 

A typical system is shown below. Both coax and twinax line 
interfaces are shown, as well as an example of the (option­
al) remote processor interface. 

Features 
Transceiver 
• Software configurable for 3270, 3299, 5250 and general 

8-bit protocols 
II Fully registered status and control 
• On-chip analog line receiver 
Processor 
• 20 MHz clock (50 ns T-states) 
• Max. instruction cycle: 200 ns 
• 33 instruction types (50 total opcodes) 
• ALU and barrel shifter 
• 64k x 8 data memory address range 
• 64k x 16 program memory address range 

(note: typical system requires <2k program memory) 
• Programmable wait states 
• Soft-Ioadable program memory 
• Interrupt and subroutine capability 
• Stand alone or host operation 
• Flexible bus interface with on-chip arbitration logic 

General 
• Low power microCMOS; typo Icc = 25 rnA at 20 MHz 
• 84-pin plastic leaded chip carrier (PLCC) package 

Typical BCP System 

Coax 
Line 

Program r,;:::::-;;;=-,c~~1ill:I 
.. emory 

Twin .. ----f..-:.It-+-... 
Lint 

DP8344B 

FIGURE 1 
TL/F/9336-S1 
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The DP8344B Is an enhanced version of the DP8344A, exhibiting Improved switching performance and additional 
functionality. The device has been been characterized In a number of applications and found. to be. a compatible 
replacement for the DP8344A. Differences between the DP8344A and DP8344B are noted by shading of the text on the 
pages of this data sheel For more Information, refer to Section 6.6. 

Note: In this document [XXX] denotes a control or status bit in a register, (YYyJ denotes a register. 
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1.0 Communications Processor Introduction 
The increased demand for computer connectivity has driven 
National Semiconductor to develop the next generation of 
special purpose microprocessors. The DP8344B is the first 
example of a "Communications Processor" for the IBM en­
vironment. It integrates a very fast, full function microproc­
essor with highly specialized transceiver circuitry. The com­
bination of speed, power, and features allows the designer 
to easily implement a state-of-the-art communications inter­
face. Typical applications for a communications processor 
are terminal emulation boards for PCs, stand-alone termi­
nals, printer interfaces, and cluster controllers. 

The transceiver is designed to simplify the handling of spe­
cific communication protocols. This feature makes it possi­
ble to quickly develop interfaces and software with little con­
cern for the "housekeeping" details of the protocol being 
used. 

1.1 COMMUNICATIONS PROTOCOLS 

A communication protocol is a set of rules which defines the 
physical, electrical, and software specifications required to 
successfully transfer data between two systems. 

.The physical specification includes the network architec­
ture, as well as the type of connecting medium, the connec­
tors used, and the maximum distance between connections. 
Networks may be configured in "loops," "stars," or "daisy 
chains," and they often use standard coaxial or twisted-pair 
cable. 

The electrical specification includes the polarity and ampli­
tude of the signal, the frequency (bit rate), and encoding 
technique. One common method of encoding is called "bi­
phase" or "Manchester II." This technique combines the 
clock and data information into one transmission by encod­
ing data as a "mid-bit" transition. Figure 1-1 shows how the 
data transition is related to the bit boundary in a typical 
transmission. The polarity of the "mid-bit" transition en-

BIT BOUNDARY 

ENCODED 
SIGNAL 

DATA 
VALUE "0" "0" 

codes the data value, other transitions lie on bit boundaries. 
Bit boundaries are not always indicated by transitions, so 
techniques employing start sequences and sync bits are 
used with bi-phase transmissions to ensure proper frame 
alignment and synchronization. 

The software specification covers the use of start se­
quences and sync bits, as well as defining the. message 
format. Parity bits may be used to ensure data integrity. The 
message format is the "language" that is used to exchange 
information across the connecting medium. It defines com­
mand and control words, response times, and expected re­
sponses. 

The DP8344B Bi-phase Communications Processor sup­
ports both the IBM 3270 and 5250 communication proto­
cols, as well as IBM 3299 and a general purpose 8-bit proto­
col. The specialized transceiver is combined with a micro­
processor whose instruction set is optimized for use in a 
communications environment. This makes the DP8344 a 
powerful single-chip solution to a wide range of communica­
tion applications. 

An example of an IBM 3270 message is shown in Figure 
1-2. The transmission begins with a very specific start se­
quence and sync pulse for synchronization. This is followed 
by the data, command, and parity bits. Finally, the end se­
quence defines the end of the transmission. 

The IBM 3270 and 5250 are two widely used protocols. The 
3270 protocol was developed for the 370 class mainframe, 
and it employs coaxial cable in a "star" configuration. The 
5250 protocol was developed for the System/3x machines, 
and it uses a "daisy-chain" of twin-ax cable. A good over­
view of both of these environments may be found in the 
"Multi-Protocol Adapter System User Guide" from National 
Semiconductor, and in the Transceiver section of this docu­
ment. 

"1" "1" "0" 

TlIF /9336- 87 

FIGURE 1-1. Biphase Encoding 

START 
SEQUENCE 

SYNC DATA COt.Ct.CAND END 
& SEQUENCE 

~PARITY-+-

1 1 1 1 1 1 1-] ,..-------

TlIF/9336-8B 

FIGURE 1-2. IBM 3270 Message Format 
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"'I:t' 
~ 1.0 Communications Processor Introduction (Continued) 
~ 1.2 INTERNAL ARCHITECTURE INTRODUCTION' (ALU) which performs addition, subtraction, Boolean opera-
C The DP8344B Biphase Communications Processor (BCP) is tions, rotations and shifts. Separate instruction and data 

divided into three major functional blocks: the Transceiver, memory systems are supported, each with 16-bit address 
the Central Processing Unit (CPU), and the Remote Inter- buses, for a total of 64k address space in each. 
face and Arbitration System, RIAS. Figure 1-3 shows how There are 44 internal registers accessible to the CPU. 
these blocks are related to each other and to other system These include special configuration and control registers for 
components. the transceiver and processor, four 16-bit indices to data 
The transceiver consists of an asynchronous transmitter memory,and 20 8-bit general purpose registers. There is 
and re'ceiver which can communicate across' a serial data also a 16-bit timer and a 16-byte deep LIFO data stack 
path. The transmitter takes parallel data frornthe CPU and which are accessible in the' register address space. For 
appends to it the appropriate framing information. The re- more detailed information, see the specific sections on the 
suiting message is shifted out and is available as a serial Register set, the Timer, and the ALU. 
data stream on two output ,pins. The receiver shifts in serial The BCP can operate independently or with another proces-
messagesi'strips off the framing information, and makes the sor as the host system. If such a system is required, com-
data available in parallel form to the CPU. The framing infor~ munication with the BCP is possible by sharing data memo-
mation supplied by'the BCP provides the proper message ry. The Remote Interface controls bus arbitration and ac-
format for several popular communication protocols. These cess to data memory, as well as program up-loading and 
include IBM 3270,' 3299, and 5250, as well as a general execution. For example, it is possible for a host system to 
purpose 8-bit mode. .' load the BCP's instruction memory and begin program exe-
The transceiver clock may be derived from the' internal os- cution, then pass data back and forth through data memory 
cillator, either directly or through internal divide-down circuit- accesses. The section on the Remote Interface and Arbitra-
ry. There is also an' input for an external transceiverciock, tion System provides all of the necessary timing and control 
thus allowing complete flexibility in the choice of data rates. information to implement an interface between a BCP and a 
The receiver input can come from three possible sources. remote system. 
There is a built-in differential amplifier which is suitable for As shown in Figure 1-4, the BCP uses two entirely separate 
most line interfaces; a single-ended digital input for use with memory systems, one for program storage and the other for 
an external comparator, and an internal loopbackpath for data storage. This type of memory arrangement is referred 
self testing. Refer to the Transceiver section for a detailed to as Harvard architecture. Each system has 16 address 
description of all transmitter and receiver functions, and to lines, for a maximum of 64k words in each, and its own set 
the application note on coax interfaces for the proper use of of data lines. The instruction (program) memory is two bytes 
the differential amplifier. (16 bits) wide, and the data memory' is one byte (8 bits) 

, U' ' ' wide. The CP ,Is a general purpose, ,a-bit microprocessor capa-
ble of 20 MHz operation. It has a reduced instruction set In order to reduce the number of pins required for these 
which is optimized for transceiver and data handling per- Signals, the address and data lines for data memory are 
formance. It also has a full function arithmetic/logic unit multiplexed together. This requires an external latch and the 

Address Latch Enable signal (ALE) for de-multiplexing. 

TRANSMISSION 
INTERFACE' ..-I--

CENTRAL PROCESSING 
UNIT .A 

~ 

~I ~ ~ ~ 17 
7 

., 
REMOTE 

TRANSCEIVER INTERFACE .A 

~ 

FIGURE 1-3. Simplified Block Diagram 

1-52 

\ 
v 

1 

" ) 
--y 

I 

RAM/ROM 
MEMORY 

II 
HOST COMPUTER 

(OPTIONAL) 

TL/F/9336-B9 



1.0 Communications Processor Introduction (Continued) 

Simultaneous access to both data and program memory, 
and instruction pipelining greatly enhance the speed per­
formance of the BCP, making it well suited for real-time pro­
cessing. The pipeline allows the next instruction to be re­
trieved from program memory while the current instruction is 
being executed. 

1.3 TIMING INTRODUCTION 

The timing of all CPU operations, instruction execution and 
memory access is related to the CPU clock. This clock is 
usually generated by a crystal and the internal oscillator, 
with optional divide by two circuitry. The period of the result­
ing CPU clock is referred to as a T-state; for example, a 
20 MHz CPU clock yields a 50 ns T-state. Most CPU func­
tions, such as arithmetic and logical operations, shifts and 

A 

~ 

BCP 

rotates, and register moves, require only two T-states. 
Branching instructions and data memory accesses require 
three to four T-states. 

Each memory system has a separate, programmable num­
ber of wait states to allow the use of slower memory devic­
es. Instruction memory wait states are inserted into all in­
structions, as shown in Figure 1-5, thus they affect the 
overall speed of program execution. Instruction memory 
wait states can also apply when the Remote Interface is 
loading a program into instruction memory. Data memory 
wait states are only inserted into data memory access in­
structions, hence there is less degradation in overall pro­
gram execution. Refer to the Timing section for detailed ex­
amples of all BCP instruction and data memory timing. 

ADDRESS I\. 

I' 

DATA J\ INSTRUCTION 

R7W 
v MEMORY 

64k x 16 

READ 

WRITE 

ADDRESS I\. DATA 
I' MEMORY 

roNmOl~ 64k x 8 
LATCH 

A " 

INSTRUCTION 
BOUNDARY 

CPU CLOCK 

T-STATE 

INSTRUCTION 
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~ ADDRESS/DATA v 

FIGURE 1-4. Memory Configuration 

TWO T-STATE 
INSTRUCTION 

WITH NO WAIT STATES 

TWO T-STATE 
INSTRUCTION 
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FIGURE 1-5. Effect of Memory Wait States on Timing 
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1.0 Communications Processor Introduction (Continued) 

1.4 DATA FLOW 

The CPU registers are all dual port, that is, they have sepa­
rate input and output paths. This arrangement allows a sin­
gle register to function as both a source and a destination 
within the same instruction. 

Figures 1-6a through 1-6f show the internal data flow path 
for the BCP. The CPU registers are a central element to this 
path. When a register functions as an output, its contents 
are placed on the Source bus. When a register is an input, 
data from the Destination bus is written into that register. 

The other key element in the data path is the ALU. This unit 
does all of the arithmetic and data manipulation operations, 
but it also has bus multiplexing capabilities. Both the Data 
Memory bus and a portion of the Instruction Memory bus 
are routed to this unit and serve as alternative sources of 
data. Since the data flow is always through this unit, most 
data moves may include arithmetic manipulations with no 
penalty in execution time. 

Figure 1-6a shows the data path for all arithmetic instruc­
tions and register to register moves. The source register 
contents are placed on the Source bus, routed through the 

DATA 
I-.... ~~ MEMORY 

ADDRESS 

FROM DATA 
MEMORY 

DATA 
MEMORY 
ADDRESS 

TLIF/9336-C5 

TL/F/9336-C3 

FIGURE 1·6a. Register to Register 
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FIGURE 1·6b. Data Memory WRITE FIGURE 1·6c. Data Memory READ 

TRANSMITTER 
nFO 
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FIGURE 1·6d. WRITE to Transmitter 

~ ... __ ~~~EIVER 
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FIGURE 1·6e. READ from Receiver 
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1.0 Communications Processor Introduction (Continued) i " 

ALU/MUX, and then placed on the destination bus. This 
data is then stored into the appropriate destination register. 

Figures 1-6b and 1-6c show the data path for data memory 
accesses. For a WRITE operation, the source register con­
tents follow the same path through the ALU/MUX, but the 
Destination bus is routed to output pins and on to data 
memory. For ,a READ operation, incoming data is routed 
onto the Destination bus by the ALU/MUX, and then stored 
in a register. The address for all data memory accesses is 
provided by one of four 16-bit index registers which can 
operate in a variety of automatic increment and decrement 
modes. 

Transfer of the data byte between the CPU and the Trans­
ceiver is accomplished through a register location. This reg­
ister, ! RTR J, appears as a normal CPU register, but writing 
to it automatically transfers data' to the transmitter FIFO, 
and reading from it retrieves data from the receiver FIFO. 
These paths are illustrated in Figures 1-6d and 1-6e. 

It is also possible to load immediate data into a CPU regis­
ter. This data is supplied by the program and is usually a 
constant such as a pointer or character. As shown in Figure 
1-6f, a portion of the Instruction bus is routed through the 
ALUlMUX for this purpose. 

BCP 

1.5 REMOTE INTERFACE AND ARBITRATION SYSTEM 
INTRODUCTION 

The BCP is designed to serve as a complete, standalone 
communications interface. Alternately;ihari be interfaced 
with another processor by means of 'the Remdtelnterface 
and Arbitration System. Communication' between the BCP 
and the remote processor is possible by,sharing data mem­
ory. Harvard architecture allows the remote system' to ac­
cess any BCP data memory location while the BCP' contin~ 
ues to fetch and execute instructions, thereby' minimizing 
performance'degradation. 

Figure 1-7 shows a simplified remote processor interface. 
This includes tri-state buffers on the address'and data bus­
es of the BCP's Data MemorY, and all of the-control and 
handshaking signals required tocomrilunicate' between the 
BCP and the host system: 

There is an 8-bit control register~ Rem'ote Interf~c'e Control 
! RIC J, accessible only to the remote system, which is used 
to control a variety of features, including the types'of memo­
ry accesses, interface speeds, single step program execu-' 
tion, CPU start/stop, instruction memdry loads, and so forth. 
Detailed information on all interface options is provided in 
the section on Remote Interface' and,ArbitratiOn' System, 
and in the related Reference section: 
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2.0 CPU Description 
The CPU Is a general purpose, 8-bit microprocessor capa-
ble of 20 MHz operation. It contains a large register set for 
standard CPU operations and control of the transceiver. 
The reduced InstructlQn set is optimized for the communica-
tions environment. The following sections are an architec-
tural and functional description of the DP8344B CPU. 

2.1 CPU ARCHITECTURAL DESCRIPTION 

2.1.1 Register Set 

This section describes the BCP's internal CPU registers. It is 
a general overview of the register structure and the func-
tions mapped Into the CPU register space. It is not a de-
tailed or exhaustive description of every bit. For such a de-
scription, please refer to Section 6.2, Register Set Refer-
ence. Also, the Remote Interface Configuration register, 
(RIC), Is not accessible to the BCP (being accessible only 
by the remote system) and is described in Section 6.3, Re-
mote Interface Reference. 

The register set of the BCP provides for a compliment of 
both special function and general purpose registers. The 
special function registers provide access to on-chip periph-
erals (transceiver, timer, Interrupt control, etc.) while the 
general purpose registers maximize CPU throughput by min-
Imlzlng accesses to external data memory. The CPU can 
address a total of 44 8·bit registers, providing access to: 

• 20 general purpose registers 

• 8 configuration and control registers 

• 4 transceiver access registers 

• 2 8-bit accumulators 

• 4 16-bit pointers 

• 16·blt timer 

• 16 byte data stack 

• address and data stack pointers 

The CPU addresses internal registers with a 5-bit field, ad-
dressing 32 locations generically named RO through R31. 
The first twelve locations (RO-R11) are further organized by 
function as two groups of banked registers (A and B) as 
shown In Figure 2-1. Each group contains both a main and 
an alternate bank. Only one bank is active for group A and 
one for bank B and thus accessible during program execu-
tion. Switching between the banks is performed by the ex-
change Instruction EXX which selects whether Main A or 
Alternate A occupies RO-R3 and whether Main B or Alter-
nate B occupies R4-R11. 
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Alternate t.laln 

OCR I - CCR RO IBR 
A: "ATR Ncr Rl 

- ICR R2 rBR - ACR R3 

RTR I 

- GPO R4 
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W (high byte) R13 

x (low byte) R14 

Index Registers X (high byte) R1S 

(pointers) Y (low byte) R16 

Y (high byte) R17 

Z (low byte) RIB 

Z (high byte) RI9 

GPB R20 

GP9 R21 

GP10 R22 

GPII R23 

GP12 R24 

GP13 R2S 

GP14 R26 

GP1S R27 

TIm" I:~ I R28 
R29 

rsp 
st"k. DS 1'30 R31 
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FIGURE 2·1. Register Map 



2.0 CPU Description (Continued) 

Registers in the RO-R11 address space are allocated in a 
manner that minimizes the need to switch banks: 

Main A: CPU control and transceiver status 

Alternate A: CPU and transceiver configuration 

Main B: 8 general purpose 

Alternate B: 4 transceiver access, 4 general purpose 

Most of the BCP's instructions with register operand(s) can 
access all 32 register locations. Only instructions with an 
immediate operand are limited to the first sixteen register 
locations (RO-R15). These instructions, however, still have 
access to all registers required for transceiver operation, 
CPU status and control registers, 12 general purpose regis­
ters, and two of the index registers. 

The general purpose registers are used for the majority of 
BCP operations. There are 8 general purpose registers in 
Main Bank B (R4-R11), 4 in Alternate Bank B (R8-R11), 
and 8 more (R20-R27) that are always accessible but are 
outside the limited register range. Since these registers are 
internal to the BCP, they can be accessed without data 
memory wait states, speeding up processing time. The in­
dex registers may also be used as general purpose registers 
if required. 

For those instructions that require two operands, an accu­
mulator (RB, one in each bank) serves as the second oper­
and. The result of such an operation is stored back in the 
accumulator only if it is specified as the destination, thus 
allowing three operand operations such as R5 + 
RB ~ R20. See Section 2.1.3 Instruction Set for further ex­
planation. 

Most registers have a predetermined state following a reset 
to the BCP. Refer to Section 6.2, Register Set Reference for 
a detailed summary. 

2.1.1.1 Banked Registers 

The CPU register set was designed to optimize CPU per­
formance in an' environment which supports multiple tasks. 
Generally the most important and time critical of these tasks 
will be maintaining the serial link (servicing the transceiver 
section) which often requires real time processing of com­
mands and data. Therefore, all transceiver functions have 
been mapped into special function registers which the CPU 
can access quickly and easily. Switching between this task 
and other tasks has been facilitated by dedicating a register 
bank (Alternate B) to transceiver functions. Alternate Bank 
B provides access to all transceiver status, control, and 
data, in addition to four general purpose registers for proto­
col related storage. Main Bank B contains eight general pur­
pose registers for use by other tasks. Having general pur­
pose registers in both, B banks allows for quick context 
switching and also helps eliminate some of the overhead of 
saving general purpose registers. The main objective of this 
banked register structure is to expedite servicing of the 
transceiver as a background (interrupt driven) task allowing 
the CPU to efficiently interleave that function with other 
background and foreground operations. 

To facilitate using the transceiver in a polled fashion (in­
stead of using interrupts), many of the status flags neces­
sary to handshake with the transceiver are built into the 
conditional jump instructions, with others available in the 
Main A bank (normally active) so that Alternate Bank B does 
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not have to be switched in to poll the transceiver. Timer and 
BIRQ tasks may also be run using polling techniques to 
Main A bank. 

In general, the registers have been f3,rranged within the 
banks so as to minimize the need to switch banks. The pow­
er-up state is Alternate bank A, Alternate bank B' allowing 
access to configuration registers. Again, the banks switch 
by using theEXX instruction which explicitly specifies which 
bank is active (Main or Alternate) for each register group (A 
and B). The EXX instruction allows selecting any of four 
possible bank settings with a single two T-state instruction. 
This instruction also has the option of enabling or disabling 
the maskable interrupts. ' 

The cO!1tents of the special function registers can be divid­
ed into several groups for general discl1ssion-timing/con­
trol, interrupt control, the tr<insceiver, the condition codes, 
the index registers, the timer, the stacks, and remote inter. 
face. "", ' 

2.1.1.2 Timing/Control Registers 

The BCP provides a means to configure its external timing 
through setting bits in the Device Control Register, {OCR I, 
and the Auxiliary Control Register, {ACR I. One of the first 
configuration registers to be initialized on power-up/reset is 
{OCR 1 which defines the hardware environment in which 
the BCP is functioning. Specifically, {OCR 1 controls' the 
clock select logic for both the CPU and transceiver, in addi­
tion to the number of wait states to:be used for instruction 
and data memory accesses. 

The BCP allows either one clock source operation for the 
CPU and the transceiver from the on-chip, oscillator, or an 
independent clock source can run the transceiver from the 
eXternal Transceiver CLocK input,'X-TCLK.The Transceiv­
er Ciock Select bits, [TCS1 :0], select the clock source for 
the transceiver which is either the on-chip Osc'illator CLocK, 
OCLK, or X-TCLK. Options for selecting divisions of the on­
chip oscillator frequency are also provided (see the descrip~ 
tion of' {OCR 1 in Section 6.2, Register Set Reference. The 
CPU Clock Select bit, [CCS], allows the CPU to run at the 
OCLK frequency or at half that speed. The clock output at 
the pinCLK-OUT, however,is never diVided and always re­
flects thEfcrystal frequency OCLK. The frequency selected 
for the transceiver (referred to as TCLK) should always be 
eight times' the desired serial data rate. The frequency se .. 
lected for the CPU defines the length of each T-state (e.g., 
20 MHz implies 50 ns T-states)." ' . 

There are two independent fields for defining wait states; 
one for instruction memory access (nIW) and one for data 
memory access (now). These fields specifY to the BCP how 
many wait states to insert to meet the 'access time, require­
ments of both memory systems. The Instruction memory 
Wait-state select bits" [lW1 ,0], and the Data memory Wait­
state select bits, [DW2-0], control the number of inserted 
wait states for instruction and data memorY, respectively. 

After a reset, the maximum number of ~ait states 'are ,set in 
{OCR}, nlW = 3 T-states and nOw = 7T-states.', Wait,­
states are discussed in moredetail,in Section 2.2:2, Timing. 
For a complete discussion on choos(ng your memory and 
determining the number of 'N~it states required, piease r~fer 
to the application note Choosing Your RAM lor the 8iphase 
Communication Processor. ' , , ' 



2.0 CPU Description (Continued) 

Another control bit in the (ACRI register is the Clock Out 
Disable bit, [COD]. When [COD] is asserted, the buffered 
clock output at pin CLK-OUT is tri-stated. 

2.1.1.3 Interrupt Control Registers 

The configuration bank (Alternate Bank A) includes an Inter­
rupt Base Register, (IBR I, which defines the high byte of all 
interrupt and trap vector addresses. Thus, the interrupt vec­
tor table can be located in any 256 byte page of the 64k 
range of instruction addresses. The interrupt base is nor­
mally initialized once on reset before interrupts are enabled 
or any traps are executed. Since NMI is nonmaskable and 
may occur before (IBR I is initialized, the power-up/reset 
value of (IBR I (OOh) should be used to accommodate iiIMi 
during initialization. In other words, if iiIMi is used in the 
system, the absolute address 001 Ch (the iiIMi vector) 
should contain a jump to an NMi service routine. 

The Interrupt Control Register, (ICR I, provides individual 
masks [lM4-0] for each of the maskable interrupts. The 
Global Interrupt Enable bit, [GIE], located in (ACRI works 
in conjunction with these individual masks to control each of 
the maskable interrupts. 

The external pin called BiRO is a Bidirectional Interrupt 
ReOuest. BiRO is defined as an input or an output by the 
Bidirectional Interrupt Control bit, [BIC], in (ACR}. [1M3] 
functions as BIRO's interrupt mask if BIRQ is an input as 
defines by [BIC]. When [BIC] defines BIRO as an output, 
[1M3] controls the output state of BiRO. 
Section 2.2.3, Interrupts provides a further description of 
these registers. 

2.1.1.4 Timer Registers 

The timer block interfaces with the CPU via two registers, 
TimeR Low byte, (TRL}, and TimeR High byte, (TRH}, 
which form the input/output ports to the timer. Writing to 
(TRLI and (TRHI stores the low and high byte, respective­
ly, of a 16-bit time-out value into two holding registers. The 
word stored in the holding registers is the value that the 
timer will be loaded with via [TLD). Also, the timer will auto­
matically reload this word upon timing out. Reading (TRLI 
and (TRH I provides access to the count down status of the 
timer. 

Control of timer operation is maintained via three bits in the 
Auxiliary Control Register (ACR}. Timer STart [TSn, bit 7 
in (ACR I, is the start/ stop control bit. Writing a one to 
[TST] allows the timer to start counting down from its cur­
rent value. When low, the timer stops and the timer interrupt 
is cleared. Timer Load [TLD] , bit 6 in (ACR I, is the load 
control of the timer. After writing the desired values into 
(TRLI and (TRH I, writing a one to [TLD] will load the 16-bit 
word in the holding registers into the timer and initialize the 
timer clock to zero in preparation to start counting. Upon 
completing the load operation, [TLD] is automatically 
cleared. Timer Clock Selection [TCS], bit 5 in (ACR}, deter­
mines the clock frequency of the timer count down. When 
low, the timer divides the CPU clock by sixteen to form the 
clock for the down counter. When [TCS] is high, the timer 
divides the CPU clock by two. The input clock to the timer is 
the CPU clock and should not be confused with the oscilla­
tor clock, OCLK. The rate of the CPU clock will be either 
equal to OCLK or one-half of OCLK depending on the value 
of bit 7 in the Device Control Register, (OCR I. 
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When the timer reaches a count of zero, the timer interrupt 
is generated, the Time Out flag, [TO], (bit 7 in the Condition 
Code Register (CCR I), goes high, and the timer reloads the 
16-bit word stored in the holding registers to recycle through 
a count down. The timer interrupt and [TO] can be cleared 
by either writing a one to [TO] in (CCR I or stopping the 
timer by writing a zero to [TST] in (ACR I. Refer to Section 
2.1.2, Timer for more information on the timer operation. 

2.1.1.5 Transceiver Registers 

Two registers in the Alternate A bank initialize transceiver 
functions. The Auxiliary Transceiver Register, (ATR I, speci­
fies a station address used by the address recognition logic 
within the transceiver when using the non-promiscuous 
5250 and 8-bit protocol modes. In 5250 modes, (ATRI also 
defines how long the TX-ACT pin stays asserted after the 
end of a transmitted message. The Fill Bit Register, (FBR I, 
specifies the number of optional fill bits inserted between 
frames in a multiframe 5250 message. 

(lCR I contains the Receiver Interrupt Select bits, [RIS1,O]. 
These bits determine the receiver interrupt source selection. 
The source may be either Receiver FIFO Full, Data Avail­
able, or Receiver Active. 

The Receive/Transmit Register, (RTRI, is the input/output 
port to both the transmitter and receiver FIFO's. It appears 
to the BCP CPU like any other register. The (RTR I register 
provides the least significant eight bits of data in both re-
ceived and transmitted messages. . 

The Transceiver Mode Register, (TMR}, contains bits used 
to set the configuration of the transceiver. As long as the 
Transceiver RESet bit, [TRES], is high, the transceiver re­
mains in reset. Internal LOOP-back operation of the trans­
ceiver can be selected by asserting [LOOP]. The RePeat 
ENable bit, [RPEN], allows the receiver to be active at the 
same time as the transmitter. When the Receiver INvert bit, 
[RIN], is set, all data sent to the receiver is inverted. The 
Transmitter INvert bit, [TIN], is analogous to [RIN] except it 
is for the transmitter. The protocol that the transceiver is 
using is selected with the Protocol Select bits, [PS2-0]. 

The Transceiver Command Register, (TCRI, controls the 
workings of the transmitter. To generate 5.5 line quiesce 
pulses at the start of a transmission rather than 5, the Ad­
vance Transmitter Active bit, [ATA], must be set high. Parity 
is automatically generated on a transmission and the Odd 
Word Parity bit, [OWP], determines whether that parity is 
even or odd. Bits 2-0 of (TCR} make up part of the Trans­
mitter FIFO [TF10-8] along with (RTR}. Whenever a write 
is made to (RTR}, [TF10-8] are automatically pushed on 
the FIFO with the 8 bits written to (RTR}. 

Other bits in (TCRI control the operation of the on-Chip 
receiver. The number of line quiesce bits the receiver must 
detect to recognize a valid message is determined by the 
Receive Line Ouiesce bit, [RLO). The BCP has its own inter­
nal analog comparator, but an off-chip one may be connect­
ed to DATA-IN. The receiver source is determined by the 
Select Line Receiver bit, [SLR). To view transceiver errors 
in the Error Code Register, (ECR I, the Select Error Codes, 
[SEC], bit in (TCR} must be set high. When [SEC] is high, 
Alternate Bank B R4 is remapped from (RTR} to (ECR} so 
that (ECR} can be read. , 
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Just as [TF10-8] bits get pushed onto the transmitter FIFO 
when a write to I RTR I occurs, the Receiver FIFO bits, 
[RF10-8], in the Transceiver Status Register, ITSRI, re­
flect the state of the top word of the receive FIFO. ITSRI 
also contains flags that show Transmit FIFO Full, [TFF], 
Transmitter Active, [TA], Receiver Error, [RE], Receiver Ac­
tive, [RA], and Data AVailable, [DAVl. These flags may be 
polled to determine the state of the transceiver. For in­
stance, during a Receiver Active interrupt, the. BCP can que­
ry the [DAV] bit to determine whether data is ready in the 
receiver FIFO yet. 

The Error Code Register, I ECR I, contains flags for receiver 
errors. As previously stated, the [SEC] bit in ITRCI must be 
set high to read this register. Reading I ECR I or resetting 
the transceiver with [TRES] will clear all the errors that are 
present. The receiver OVerFlow flag, [OVF], is set when the 
receiver attempts to add another word to the FIFO when it is 
full. If internally checked parity and parity transmitted with a 
3270 message conflict, then the PARity error bit, [PAR], is 
set high. The Invalid Ending Sequence bit, [lES], is set 
when the ending sequence in a 3270, 3299, or 8-bit mes­
sage is incorrect. When the expected mid-bit transition in 
the Manchester waveform does not occur, a Loss of Mid-Bit 
Transition occurs ([LMBTl). Finally, if the transmitter is acti­
vated while the receiver is active, the Receiver DISabled 
while active flag, [RDIS], will be set unless [RPEN] is as­
serted. 

The second register in Main A bank is called the Network 
Command Flag register, I NCF I, and contains information 
about the transceiver which is useful for polling the trans­
ceiver (during other tasks for example) to see if it needs 
servicing. These flags include bits to indicate Transmit FIFO 
Empty [TFE], Receive FIFO Full [RFF], Line Active [LA], 
and a Line Turn Around [L TAl. [L TA] indicates that a mes­
sage has been received without error and a valid ending 
sequence has occurred. These flags facilitate polling of the 
transceiver section when transceiver interrupts are not 
used. Also included in this register is a bit called [DEME] 
(Data Error/Message End). In 3270/3299 modes, this bit 
indicates a mismatch between received and locally generat­
ed byte parity. In 5250 modes, [DEME] decodes an end of 
message indicator (111 in the address field). Three other 
bits: Received Auto Response [RAR], Acknowledge [ACK] 
and Poll [POLL] are decoded from a received message (at 
the output of the receive FIFO) and are valid only in 3270/ 
3299 modes where response time is critical. 

Section 3.0 Transceiver provides comprehensive coverage 
of this on-chip peripheral. 

2.1.1.6 Condition Codes/Remote Handshaking Register 

The ALU condition codes are available in the Condition 
Code Register I CCR I. The [Z] bit is set when a zero result 
is generated by an arithmetic, logical, or shift instruction. 
Similarly, [N] indicates the Negative result of the same op­
erations. An oVerflow condition from an arithmetic instruc­
tion sets the [V] bit in I CCR I. The Carry bit [C] indicates a 
carry or borrow result from an arithmetic instruction. See 
Section 2.2.2, ALU for more information. 

The Condition Code Register, I CCR I, also contains [BIRO], 
a status bit which reflects the logic level of the bidirectional 
interrupt input pin BIRO. Hence, this pin can be used as a 
general purpose input/output port as well as a bidirectional 
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interrupt request as defined by bits in I ACR I and I ICR I. If a 
remote CPU is present and shares data memory (dual port 
memory) with the BCP, handshaking can be accomplished 
by using the two status bits in I CCR I called [RR] and [RW], 
which indicate Remote Read and Remote Write accesses, 
respectively. 

In I ACR I, a lock bit, [LOR], is available to lock out all host 
accesses. When this bit is set, all host accesses are dis­
abled. Locking out remote accesses is often done during 
interrupts to ensure quick response times. 

The Remote Interface Configuration register, IRICI, is not 
available to the BCP internally. The Remote Interface Refer­
ence section provides further detail on {RIC I and interfac­
ing a remote processor. 

2.1.1.7 Index Registers 

Four index registers called IW, IX, IY, and IZ provide 16-bit 
addressing for both data memory and instruction memory. 
Each of these index registers is actually a pair of 8-bit regis­
ters which are individually addressable just like any other 
CPU register. They occupy register addresses R 12 through 
R19. Thus, the first two pointers IW and IX (comprising 
R12-R15) can be accessed with immediate mode instruc­
tions (which can access only RO to R15). Refer to Section 
2.1.3.2, Addressing Modes to see how the index registers 
are formed from R12-R19. 

Accessing data memory requires the use of one of the four 
index registers. All such instructions allow you to specify 
which pointer is to be used, except the immediate-relative 
moves: MOVE rs, [lZ + n] and MOVE [lZ + n],rd. These in­
structions always use the IZ pointer. Register indirect opera­
tions have options to alter the value of the index register; 
the options include pre-increment, post-increment, and 
post-decrement. These options facilitate block moves, 
searches, etc. Refer to Section 2.1.3, Instruction Set for 
more information about data moves. 

Since the BCP's ALU is 8 bits wide, all code that manipu­
lates the index registers must act on them eight bits at a 
time. 

The index registers can also be used in register indirect 
jumps (LJMP [lrl), useful in implementing relocatable code. 
Anyone of the index registers can be specified to provide 
the 16-bit instruction address for the indirect jump. 

2.1.1.8 Stack Registers 

The last two register addresses (R30,R31) are dedicated to 
provide access to the two on-chip stacks-the data stack 
and the address stack. The data stack is 8 bits wide and 16 
words deep. It is a Last In First Out (LIFO) type and provides 
high speed storage for variables, pointers, etc. The address 
stack is 23 bits wide and 12 words deep, providing twelve 
levels of nesting of subroutines and interrupts. It is also a 
LIFO structure and stores processor status as well as return 
addresses from CALL instructions, TRAP instructions, and 
interrupts. The seven bits of processor status consist of the 
four ALU flags, ([C], [N], [V], and [Zl), the current bank 
setting (two bits), and [GIEl. 

Stack pointers for both the on-chip stacks are provided in 
R30, the Internal Stack Pointer register, liSP/' The lower 
four bits are the pointer for the data stack and the upper 
four bits are the pointer for the address stack. Both internal 
stacks are circular. For example if 16 bytes are written to 
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the data stack, the next byte pushed will overwrite the first. 
liSP} can be read and written to like any other register, but 
after a write, the BCP must execute one instruction before 
reading the stack Whose pointer was modified. 

The Data Stack register, {DS}, is the input/output port for 
the data stack. This port is accessed like any other register, 
but a write to it will "push" a byte onto the stack and a read 
from it will "pop" a byte .from the stack. The data stack 
pOinter is updated when a read or write of {DS} occurs. 

Information bits in the instruction address stack are not 
mapped into the CPU's register space and, therefore, are 
not directly accessible. A remote system running a monitor 
program can access this information by forcing the BCP to 
single-step through a return instruction and then reading the 
program counter. Since the stack pointers are writeable, the 
remote system can access any location (return· address) in 
the address stack to trace program flow and then restore 
the stack pOinter to its original position. 

2.1.2 Timer 

The BCP has an internal 1S-bit timer that can be used in a 
variety of ways. The timer counts independently of the CPU, 
eliminating the waste of valuable processor bandwidth. The 
timer can be used in a polled or interrupt driven configura­
tion for user software flexibility. 

The timer interfaces with the CPU via two registers, TimeR 
Low byte, {TRLI. and TimeR High byte, {TRHI. which form 
the input/output ports to the timer. Writing to {TRL} and 
{TRH} stores the low and high byte, respectively, of a 1S-bit 
time-out value into two holding registers. The word stored in 
the holding registers is the value that the timer will be load-

CPU 

ed with via [TLD]. Also, the timer will automatically reload 
this word upon timing out. Reading {TRL} and {TRH} pro­
vides access to the count down status of the timer. 

Control of timer operation is maintained via three bits in the 
Auxiliary Control Register {ACR}. Timer STart [TST], bit 7 
in iACRl, is the start/stop control bit. Writing a' one to 
[TST] allows the timer to start counting down from its cur­
rent value. When low, the timer stops and the timer interrupt 
is cleared: Timer Load [TLD], bit S in {ACRI. is the load 
control of the timer. After writing the desired values into 
{TRL} and {TRHI. writing a one to [TLD] will load the 1S-bit 
word in the holding registers into the timerand initialize the 
timer clock to zero in preparation to start counting .. Upon 
completing the toad operation, [TLD] is automatically 
cleared. Timer Clock Selection [TCS], bit 5 in {ACR I , deter­
mines the clock frequency of the timer count down. When 
low, the timer divides the CPU clock by sixteen to form the 
clock for the down counter. When [TCS] is high, the timer 
divides the CPU clock by two: The input clock to the timer is 
the CPU Clock and should not be confused with the oscilla­
tor clock, OCLK. The rate of the CPU clock will be either 
equal to OCLK or one-half of OCLK depending on the value 
of bit 7 in the Device Control Register, {DCR}. 

When the timer reaches a count of zero, the timer interrupt 
is generated, the Time Out flag, [TO], (bit 7 in the Condition 
Code Register (CCR}), goes high, and the timer reloads the 
1S-bit word stored in the holding registers to recycle through 
a count down. The timer interrupt and [TO] can be cleared 
by either writing a one to [TO] in {CCR} or stopping the 
timer by writing a zero to [TST] in {ACR}. A block diagram 
of the timer is shown in Figure 2-2. 

TIMER AND CLOCK DIVIDER 

CPU Clock· 
TL/F/9336-D1 

FIGURE 2·2. Timer Block. Diagram 
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2.1.2.1 Timer Operation 
After the desired 16-bit time-out value is written into (TRL) 
and (TRH), the start, load, and clock selection can be 
achieved in a single write to (ACR). A restriction exists on 
changing the timer clock frequency in that [TCS] should not 
be changed while the timer is running (Le., [TST] is high). 
After a write to (ACR) to load and start the timer, the timer 
begins counting down at the selected frequency from the 
value in (TRL) and (TRH). Upon reaching a count of zero, 
the timer interrupt is generated and, the timer reloads the 
current word from (TRL) and (TRH) to cycle through a 
countdown again. The timing waveforms shown in Figure 
2-3 show a write to (ACR) that loads, starts, selects the 
CPU clock rate/2 for the countdown rate, and asserts the 
Global Interrupt Enable [GIE]. Prior to the write to (ACR), 
(TRL) and (TRH) were loaded with OOh and 01h respec­
tively, the timer interrupt was unmasked in the Interrupt 
Control Register (ICR) by clearing bit 4, and zero instruc­
tion wait states were selected in (OCR). Since the write to 
(ACR) asserted [GIEl. the timer interrupt is enabled and 
the CPU will vector to the timer interrupt service routine 
address when the timer reaches a count of zero. The timer 
interrupt is the lowest priority interrupt and is latched and 
maintained until it is cleared in software. (See CPU Inter­
rupts section). For very long time intervals, time-outs can be 
accumulated under software control by writing a one to [TO] 
in (CCR) allowing the timer to recycle its count down with 
no other intervention. For time-outs attainable with one 
count down, stopping the timer will clear the interrupt and 
[TO]. When the timer interrupt is enabled, the call to the 
interrupt service routine occurs at different instruction 
boundaries depending on when the timer interrupt occurs in 
the instruction cycle. If the timer times out prior to T2, where 
T2 is the last T-state of an instruction cycle, the call to the 
interrupt service routine will occur in the next instruction. 
When the time-out occurs in T2, the call to the interrupt 
service routine will not occur in the next instruction. It occurs 
in the second instruction following T2. 
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The count status of the timer can be monitored by reading 
(TRL) and/or (TRH). When the registers are read, the out­
put of the timer, not the value in the input holding registers, 
IS presented to the ALU. Some applications might require 
monitoring the count status of the timer while it is counting 
down. Since the timer can time-out between reads of (TRL) 
and (TRH), the software should take this fact into consider­
ation. To read back what was written to (TRL) and (TRH) 
the timer must first be loaded via [TLO] without starting th~ 
timer followed by a one instruction delay before reading 
(TRL) and (TRH) to allow the output registers to be updat­
ed from the load operation. 

To determine the time-out delay for a given value in (TRL) 
and (TRH) other than OOOOh, the following equation can be 
used: 

TO = (value in (TRH }(TRL) • T • k 
where: 

k = 2 when [TCS] = 1 or 16 when [TCS] = 0 

T = The period of the CPU clock 

TO = The amount of time delay after the end of the in­
struction that asserts [TST] in (ACR) 

When the value of OOOOh is loaded in the timer, the maxi­
mum time-out is obtained and is calculated as follows: 

TO = 65536 • T • k 
With the CPU running full speed with an 18.8 MHz crystal, 
the maximum single loop time delay attainable would be 
55.6 ms ([TCS] = 0). The minimum time delay with the 
~ame co~straints is 106 ns ([TCS] = 1). For accumulating 
time-out Intervals, the total time delay is simply the number 
of loops accumulated multiplied by the calculated time de­
lay. The equations above do not account for any overhead 
for processing the timer interrupt. The added overhead of 
processing the interrupt may need to be included for preci­
sion timing. 
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2.0 CPU Description (Continued) 

2.1.3 Instruction Set 

The followng paragraphs introduce the BCP's architecture 
by discussing addressing modes and briefly discussing the 
Instruction Set. For detailed explanations and examples of 
each instruction, refer to the Instruction Set Reference Sec­
tion. 

2.1.3.1 Harvard Architecture Implications 

The BCP utilizes a true Harvard Architecture, where the in­
struction and data memory are organized into two indepen­
dent memory banks, each with their own address and data 
buses. Both the Instruction Address Bus and the Instruction 
Bus are 16 bits wide with the Instruction Address Bus ad­
dressing memory by words. (A word of memory is 16 bits 
long; Le., 1 word = 2 bytes.) Most of the instructions are 
one word long. The exceptions are two words long, contain­
ing a word of instruction followed by a word of immediate 
data. The combination of word sized instructions and a word 
based instruction address bus eliminates the typical instruc­
tion alignment problems faced by many CPU's. 

The Data Address Bus is 16 bits wide (with the low order 8 
bits multiplexed on the Data Bus), and the Data Bus is 8 bits 
wide (Le., one byte wide). The Data Address Bus addresses 
memory by bytes. Most of the BCP's instructions operate on 
byte-sized operands. 

Note that although both instruction addresses and data ad­
dresses are 16 bits long, these addresses are for two differ­
ent buses and, therefore, have two different numerical 
meanings, (Le., byte address or word address.) Each in­
struction determines whether the meaning of a 16-bit ad­
dress is that of an instruction word address or a data byte 
address. Little confusion exists though because only the 
program flow instructions interpret 16-bit addresses as in­
struction addresses. 

2.1.3.2 Addressing Modes 

An addressing mode is the mechanism by which an instruc­
tion accesses its operand(s). The BCP's architecture sup­
ports five basic addressing modes: register, immediate, in­
dexed, immediate-relative, and register-relative. The first 
two allow instructions to execute the fastest because they 
require no memory access beyond instruction fetch .. The 
remaining three addressing modes point to data or instruc­
tion memory. Typical of a RISC processor, most of the in­
structions only support the first three addressing modes, 
with one of the operands always limited to the register ad­
dressing mode. 

Register Addressing Modes 

There. are two terminologies for the register addressing 
modes: Register and Limited Register. Instructions that al­
low Register operands can access all the registers in the 
CPU. Note that only 32 of the 44 CPU registers are available 
at any given point in time because the lower 12 register 
locations (RO-R11) access one of two switchable register 
banks each. (See Section 2.1.1.1, Banked Registers for 
more information on the CPU register banks.) Instructions 
that allow the Limited Register operands can access just 
the first 28 registers of the CPU. Again, note that only 16 of 
these 28 registers are available at any given point in time. 
Table 2-1 shows the notations used for the Register and 
Limited Register operands. Some instructions also imply the 
use of certain registers, for example the accumulators. This 
is noted in the discussions of those instructions. 

Immediate Addressing Modes 

The two types of the immediate addressing modes available 
are: Immediate numbers and Absolute numbers. Immediate 
numbers are 8 bits of data, (one data byte), that code direct­
ly into the instruction word. Immediate numbers may repre­
sent data, data address displacements, or relative instruc­
tion addresses. Absolute numbers are 16-bit numbers. They 
code into the second word of two word instructions and they 
represent absolute instruction addresses. Table 2-2 shows 
the notations used for both of these addressing modes. 

TABLE 2-1. Register Addressing Mode Notations 

Notation Type of Register Operand Registers Allowed 

Rs Source Register RO-R31 
Rd Destination Register RO-R31 
Rsd Register is both a Source & Destination RO-R31 

rs Limited Source Register RO-R15 
rd Limited Destination Register RO-R15 
rsd Limited Register is both a Source & Destination RO-R15 

TABLE 2-2. Immediate Addressing Mode Notations 

Notation Type of Immediate Operand Size 

n Immediate Number 8 Bits 
nn Absolute Number 16 Bits 
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2.0 CPU Description (Continued) 

Indexed Addressing Modes 

Indexed operands involve one of four possible CPU register 
pairs referred to as the index registers. Figure 2-4 illustrates 
how the index registers map into the CPU Register Set. 
Note that the index registers are 16 bits wide. 

Index registers allow for indirect memory addressing and 
usually contain data memory addresses, although, the 
LJMP instruction can use index registers to hold instruction 
memory addresses. Most of the instructions that allow 
memory indirect addressing, (Le. the use of index registers), 
also allow pre-incrementing, post-incrementing, or post-dec­
rementing of the index register contents during instruction 
execution, if desired. Table 2-3.lists the notations used for 
the. index register modes. . . 
The Index registers are settozero when the SCP's 'R'ESl:i 
pin is asserted. 

Index CPU Register Pair Forming Index Register 
Register (MSB) (LSB) 

IW I I I I R;3 I I I I I I R;2 I I I I 
15 87 0 

I I I I I 
IX R15 R14 

15 87 0 

I I I 

I 
I I I 

IY R17 R16 

15 87 0 

I I I 

I 
I I I 

IZ R19 R18 

15 87 0 
FIGURE 2-4. Index Register Map 

Immediate-Relative and Register-Relative 
Address Modes 

The Immediate-Relative mode adds an unsigned 8-bit im­
mediate number to the index register IZ forming a data byte 
address. The Register-Relative mode adds the unsigned 
8-bit value in the current accumulator, A, to anyone of the 
index registers forming a data byte address. Both of these 
indirect memory addressing modes are available only on the 
MOVE instruction. Table 2-4 shows the notation used for 
these two addressing modes. 

2.1.3.3 Instruction Set Overview 

The BCP's RISC instruction set contains seven categories 
of instructions: Data Movement, Integer Arithmetic, Logic, 
Shift-Rotate, Comparison, Program Flow, and Miscellane­
ous. 

Data Movement Instructions 

The MOVE instruction is responsible for all the data transfer 
operations that the BCP can perform. Moving one byte at a 
time, five different types of transfer are allowed: register to 
register, data memory to register, register to data memory, 
instruction memory to register, and instruction memory to 
data memory. Table 2-5 lists all the variations of the MOVE 
instruction. 

TABLE 2-3. Index Register Addressing Mode Notations 

Notation Meaning 

[lr] Index Register, Contents Not Changed 
[lr-] Index Register, Contents Post-Decremented 
[lr+] Index Register, Contents Post-Incremented 
[+Ir] Index Register, Contents Pre-Incremented 
[mlr] General Notation Indicating that Any of the Above Modes Is Allowed 

Note: [ I denotes indirect memory addressing and is part of the instruction syntax. 

TABLE 2-4. Relative Index Register Mode Notations 

Notation Type of Action Performed to Calculate a Data Memory Address 

[IZ + n] IZ + Immediate Number (unsigned) ~ Data Memory Address 
[lr + A] Index Register + Current Accumulator (unsigned) ~ Data Memory Address 

Note: [I denotes indirect memory addressing and is part of the instruction syntax. 

TABLE 2-5. Data Movement Instructions 

Syntax Instruction Operation Addressing Modes 

MOVE Rs, Rd register ~ register Register, Register 
MOVE Rs, [mlr] register ~ data memory Register, Indexed 
MOVE [mlr], Rd data memory ~ register Indexed, Register 
MOVE Rs, [lr + A] register ~ data memory Register, Register-Relative 
MOVE [lr + A], Rd data memory ~ register Register-Relative, Register 
MOVE rs, [IZ + n] register ~ data memory Limited Register, Immediate-Relative 
MOVE [lZ + n], rd data memory ~ register Immediate-Relative, Limited Register 
MOVE n, rd instruction memory ~ register Immediate, Limited Register 
MOVE n, [lr] instruction memory ~ data memory Immediate, Indexed 
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2.0 CPU Description (Continued) 

Integer Arithmetic Instructions Logic Instructions 

The integer arithmetic instructions operate on a-bit signed 
(two's complement) binary numbers. Two arithmetic func­
tions are supported: Add and Subtract. Three versions of 
the Add and Subtract instructions exist: operand ± accumu­
lator, operand ± accumulator ± carry, and immediate oper­
and ± operand. The first two versions support both the reg­
ister and indexed addressing modes for the destination op­
erand. These two versions also allow the specification of a 
separate register or data address for the destination oper­
and so that the sources may retain their integrity; (Le., true 
three-operand instructions). Note that the currently active 
"B" register bank selects which accumulator is used in 
these instructions. The third version, immediate operand ± 
operand, only supports the register addressing mode for the 
destination operand with the register as both a source and 
the destination. Table 2-6 lists the integer arithmetic instruc­
tions along with their variations. 

The logic instructions operate on a-bit binary data. A full set 
of logic functions is supported by the BCP: AND, OR, eXclu­
sive OR, and Complement. All the logic functions except 
complement allow either an immediate operand or the cur­
rently active accumulator as an implied operand. Comple­
ment only allows one register operand which is both tile 
source and destination. The other logic instructions include 
the following addressing modes: register, indexed, and im­
mediate. As with the integer arithmetic instructions, the in­
tegrity of the sources may be maintained by specifying a 
destination register which is different from the source. Table 
2-7 lists all the logic instructions; . 

TABLE 2-6. Integer Arithmetic Instructions 

Syntax Instruction Operation Addressing Modes 

ADD n, rsd register + n ~ register Immediate, Limited Register 
ADDA Rs, Rd Rs + accumulator ~ Rd Register, Register 
ADDA Rs, [mlr] Rs + accumulator ~ data memory Register, Indexed 
ADCA Rs, Rd Rs + accumulator + carry ~ Rd Register, Register 
ADCA Rs, [mlr] Rs + accumulator + carry ~ data memory Register, Indexed 
SUB n, rsd register - n ~ register Immediate, Limited Register 
SUBA Rs, Rd Rs - accumulator ~ Rd Register, Register 
SUBA Rs, [mlr] Rs - accumulator ~ data memory Register, Indexed 
SBCA Rs, Rd Rs - accumulator - carry ~ Rd Register, Register 
SBCA Rs, [mlr] Rs - accumulator - carry ~ data memory Register, Indexed 

TABLE 2-7. Logic Instructions 

Syntax Instruction Operation Addressing Modes 

AND n, rsd register & n ~ register Immediate, Limited Register 
ANDA Rs, Rd Rs & accumulator ~. Rd Register, Register 
ANDA Rs, [mlr] Rs & accumulator ~ data memory Register, Indexed 
OR n, rsd register I n ~ register Immediate, Limited Register 
ORA Rs, Rd Rs I accumulator ~ Rd Register, Register 
ORA Rs, [mlr] Rs I accumulator ~ data memory Register, Indexed 
XOR n, rsd register Ell n ~ register Immediate, Limited Register 
XORA Rs, Rd Rs Ell accumulator ~ Rd Register, Register 
XORA Rs, [mlr] Rs Ell accumulator ~ datame~ory Register, Indexed 
CPL Rsd register ~ register Register 

Note: & = logical AND operation 
I = logical OR operation 
Ell = logical exclusive OR operation 
r = one's complement 

., 
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2.0 CPU Description (Continued) 

Shift and Rotate Instructions 

The shift and rotate instructions operate on any of the 8-bit 
CPU registers. The BCP supports shift left, shift right, and 
rotate operations. Table 2-8 lists the shift and rotate instruc­
tions. 

Comparison Instructions 

The BCP utilizes two comparison instructions. The CMP in­
struction performs a two's complement subtraction between 
a register and immediate data. The BIT instruction tests se­
lected bits in a register by ANDing it with immediate data. 
Neither instruction stores its results, only the ALU flags are 
affected. Table 2-9 lists both of the comparison instructions. 

Program Flow Instructions 

The BCP has a wide array of program flow instructions: un­
conditional jumps, calls and returns; conditional jumps, 
calls, and returns; relative or absolute instruction addressing 
on jumps and calls; a specialized register field decoding 

jump; and software interrupt capabilities. These instructions 
redirect program flow by changing the Program Counter. 

The unconditional jump instructions support both relative in­
struction addressing, the (JuMP instruction), and absolute 
instruction addressing, (the Long JuMP instruction), using 
the following addressing modes: Immediate, Register, Abso­
lute, and Indexed. Table 2-10 lists the unconditional jump 
instructions and their variations. 

The conditional jump instructions support both relative in­
struction addressing and absolute instruction addressing us­
ing the Immediate and Absolute addressing modes. The 
conditional relative jump instruction tests flags in the Condi­
tion Code Register, I CCR I, and the Transceiver Status 
Register, ITSRI. Two possible syntaxes are supported for 
the conditional relative jump instruction; see Table 2-11. 

Table 2-12 lists the various flags "f" that the conditional 
JMP instruction can test and Table 2-13 lists the various 
conditions "cc" that the Jcc instruction can test for. Keep in 

TABLE 2-8_ Shift and Rotate Instructions 

Syntax Instruction Operation Addressing Mode 

0+-i i i i i i i i ~o SHL Rsd,b Register 4 

Rsd 

o~ i i i i i i i J---.E] SHR Rsd,b ~ Register 

Rsd 

W 
i i i i i i i ~ ROT Rsd,b Register 

~ 

Rsd 

Note: "b" = the number of bit shifts/rotates to perform. 

TABLE 2-9. Comparison Instructions 

Syntax Instruction Operation Addressing Mode 

CMP rs, n register - n Limited Register 
BIT rs, n register & n Limited Register 

Note: & = logical AND operation 

TABLE 2-10. Unconditional Jump Instructions 

Syntax Instruction Operation Operand Range Addressing Mode 

JMP n PC + n (sign extended) ~ PC -128, + 127 Immediate 
JMP Rs PC + Rs (sign extended) ~ PC -128, + 127 Register 
LJMP nn nn~PC O,64k Absolute 

LJMP [lr] Ir~PC O,64k Indexed 

Note: PC = Program Counter; contents initially points to instruction following jump. 

1-66 



2.0 CPU Description (Continued) 

mind that the Jcc instruction is just an optional syntax for 
the conditional JMP instruction. 

The example in Figure 2-5 demonstrates two possible ways 
to code the conditional relative jump instruction when test­
ing for a false [Z] flag in (CCR}. In the example, assume 
that the symbol "z" equals "000" binary, that the symbol 
"NS" equals "0" binary, and that the symbol "SKIP. IT" 
points to the desired instruction with which to begin execu­
tion if [Z] is false. 

On the other hand, the conditional absolute jump instruc­
tion, LJMP, can test any bit in any currently active CPU reg­
ister. Table 2-14 shows the conditional long jump instruction 
syntax. 

Syntax 

JMP f,s,n 

Jcc n 

JMP Z,NS,SKIP.IT ;If [Z]=O gota SKIP.IT 

-or-
JNZ SKIP.IT ;If [Z]=O gota SKIP. IT 

FIGURE 2-5. Coding Examples of Equivalent 
Conditional Jump Instructions 

TABLE 2-11. Conditional Relative Jump Instruction 

Instruction Operation 

If the flag "f" is in the state "s" 
then PC + n (sign extended) ~ PC 

If the condition "cc" is met 
then PC + n (sign extended) ~ PC 

Operand Range Addressing Mode 

-128, + 127 Immediate 

-128, + 127 Immediate 

Note: PC = Program Counter; contents initially points to instruction following jump. 

Syntax 

LJMP Rs,p,s,nn 

Note: PC = Program Counter 

"f"(Binary) Flag 

000 Z 
001 C 
010 V 
011 N 
100 RA 
101 RE 
110 DAV 
111 TFF 

TABLE 2-12. "f" Flags 

Flag Name 

Zero 
Carry 
Overflow 
Negative 
Receiver Active 
Receiver Error 
Data Available 
Transmitter FIFO Full 

Register 
Containing Flag 

(CCR) 
(CCR) 
(CCR) 
(CCR) 
(TSR) 
(TSR) 
(TSR) 
(TSR) 

TABLE 2-13. "cc" Conditions Tested 

"cc" Field Condition Tested for Flag "f"'s Condition 

Z Zero [Z] = 1 
NZ Not Zero [Z] =0 
EO Equal [Z] = 1 
NEO Not Equal [Z] =0 
C Carry [C) = 1 
NC No Carry [C) =0 
V Overflow [V] = 1 
NV No Overflow [V] =0 
N Negative [N] = 1 
P Positive [N] =0 
RA Receiver Active [RA] = 1 
NRA Not Receiver Active [RA] =0 
RE Receiver Error [RE] = 1 
NRE No Receiver Error [RE] =0 
DA Data Available [DAV] = 1 
NDA No Data Available [DAV] =0 
TFF Transmitter FIFO FULL [TFF] = 1 
NTFF Transmitter FIFO Not Full [TFF] =0 

TABLE 2-14. Conditional Absolute Jump Instruction 

Instruction Operation 

If the bit of register "Rs" in 
position "p" is in the state "s" 

then nn ~ PC 
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Operand Range 

0,64k 

Addressing Mode 

Register, Absolute 
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2.0 CPU Description (Continued) 

The BCP also has a specialized relative jump instruction 
called relative Jump with Rotate and Mask on source regis­
ter; JRMK. This instruction facilitates' the decoding of regis­
ter fields often involved in communications processing. 
JRMK does this by rotating and masking a copy of its regis­
ter op-erand to form a signed program counter displacement 
which usually points into a jump table. Table 2-15 shows the 
syntax a'nd 'operationof the JRMK instruction. 

JRMK's masking, (setting to zero), the least significant bit of 
the displacement allows the construction· of a jump table 
using either one or two word instructions; for instance, a 
table of JMP and/or LJMP instructions, respectively. The 
example in Figure 2-6 demonstrates the JRMK instruction 
decoding the address frame of the 3299 Terminal Multiplex-

er protocol which is located in the Receive/Transmit Regis­
ter, I RTR[4-2) J. 
The BCP has two unconditional call instructions; CALL, 
which supports relative instruction addressing and LCALL, 
(Long CALL), which supports absolute instruction address­
ing. These instructions push the following information onto 
the CPU's internal Address Stack: the address of the next 
instruction; the status of the Global Interrupt Enable flag, 
[GIE); the status of the ALU flags [Z], [C], [N), and [V); and 
the status of which register banks are currently active. Table 
2-16 lists the two unconditional call instructions. Note that 
the Address Stack is only twelve positions deep; therefore, 
the BCP allows twelve levels of nested subroutine invoca­
tions, (this includes both interrupts and calls). 

TABLE 2-15. JRMK Instruction 

Syntax 

JRMK RS,b,m 

Instruction Operation 

(a) Rotate a copy of register "Rs" "b" bits to the right. 
(b) Mask the most significant "m" bits and the least 

significant bit of the above result. 
(c) PC + resulting displacement (sign extended) ~ PC. 

Note: PC = Program Counter; contents initially points to instruction following jump. 

Example Code 

JRMK RTR.l.4 ;decode terminal address 
LJMP ADDR.O ;jump to device handler #0 
LJMP ADDR.l ;jump to device handler #1 

LJMP ADDR.7 ;jump to device handler #7 

Displacement 
Range 

-128, + 126 

Addressing Mode 

Register 

Instruction Execution JRMK Displacement Register Contents 
(a) Copy I RTR 1 into JRMK's displacement register: 
(b) Rotate displacement register 1 bit to the right: 
(c) AND result with "00001110" binary mask: 

x 
y 
o 

x x A2 A1 AO Y y 
y 
o 

x x x A2 A1 AO 
o 0 0 A2 A1 AO 

(d) Sign extend resulting displacement and add 
it to the program counter, (PC). 
If the bits A2 A 1 AO equal "0 0 1" binary then 
+ 2 is added to the Program Counter; 
(Le., PC + 2 ~ PC). 

(e) Execute the instruction pointed to by the PC, 
which in this example is: 

LJMP ADDR.1 

o o 

FIGURE 2-6. JRMK Instruction Example 

o 

TABLE 2-16. Unconditional Call Instructions 

Syntax Instruction Operation 

o o 

Operand 
Range 

o 

CALL n PC & [GIE) & ALU flags & reg. bank selection ~ Address Stack -128, + 127 
PC + n (sign extended) ~ PC 

LCALL nn PC & [GIE) & ALU flags & reg. bank selection ~ Address Stack O,64k 
nn ~ PC 

t~otc: PC = Program Counter; contents initially pOints to instruction following call. 
[GIE] = Global Interrupt Enable bit 
& = concatenation operator, combines operands together forming one long operand. 
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2.0 CPU Description (Continued) 

The BCP has one conditional call instruction capable of 
testing any bit in any currently active CPU register. This call 
only supports absolute instruction addressing. Table 2-17 
shows the conditional call instruction syntax and operation. 

flags, and the register bank selection. Table 2-18 shows the 
syntax and operation of the unconditional return instruction. 

The return instruction complements the above call instruc­
tions. Two versions of the return instruction exist, the un­
condtional return and the conditional return. When the un­
conditional return instruction is executed, it pops the last 
address on the CPU's Address Stack into the program 
counter and it can optionally affect the [GIE] bit, the ALU 

The conditional return instruction functions the same as the 
unconditional return instruction if a desired condition is met. 
As with the conditional jump instruction, the conditional re­
turn instruction has two possible syntaxes. Table 2-19 lists 
the syntax for the conditional return. The "f" flags and the 
"cc" conditions for the return instruction are the same as 
for the conditional jump instruction, therefore refer to Table 
2-12 and Table 2-13 for the listing of "f" and "cc", respec­
tively. 

Syntax 

LCALL Rs,p,s,nn 

TABLE 2·17. Conditional Call Instruction 

Instruction Operation 

If the bit of register "Rs" in position 
"p" is in the state "s" then 

PC & [GIE] & ALU flags & 
reg. bank selection ~ Address Stack 
nn ~ PC 

End if 

Operand Range 

0,64k 

Note: PC = Program Counter; contents initially points to instruction following call. 
[GIE] = Global Interrupt Enable bit 
& = concatenation operator, combines operands together forming one long operand. 

Syntax 

RET [g L rfll 

Note: PC = Program Counter 

TABLE 2·18. Unconditional Return Instruction 

Instruction Operation 

Case "g" of 
0: leave [GIE] unaffected, (default) 
1: restore [GIE] from Address Stack 
2: set [GIE] 
3: clear [GIE] 

End case 
If "rf" = 1 then 

restore ALU flags from Address Stack 
restore register bank selection from Address Stack 

Else (the default) 
leave the ALU flags and register bank selections unchanged 

End if 
Address Stack ~ PC 

[GIE] = Global Interrupt Enable bit 
II = surrounds optional operands that are not part of the instruction syntax. 
Optional operands may either be specified or omitted. 

TABLE 2·19. Conditional Return Instruction 

Syntax Instruction Operand 

Addressing Mode 

Register, Absolute 

RETF f, s L [gl, L rfll 
Rcc [gLrfll 

If the flag "f" is in the state "s" then perform a RET [g L rfll 
If the condition "cc" is met then perform a RET [g [,rfll 

Note: See Table XVIII for an explanation of "RET I g I, rill" 
II = surrounds optional operands that are not part of the instruction syntax. 
Optional operands may either be specified or omitted. 
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2.0 CPU Description (Continued) 

Miscellaneous Instructions In addition to the above jump, call and return program flow 
instructions, the BCP is capable of generating software in­
terrupts via the TRAP instruction. This instruction generates 
a call to anyone of 64 possible interrupt table addresses 
based on its vector number operand. This allows both the 
simulation of hardware interrupts and the construction of 
special software interrupts, if desired. The actual interrupt 
table entry address is determined by concatenating the In­
terrupt Base Register, I IBR I, to an 8-bit representation of 
the vector number operand in the TRAP instruction. This 
instruction may also clear the [GIE) bit, if desired. Table 
2-20 shows the syntax and operation of the TRAP instruc­
tion. 

As stated in the "CPU Register Set" section, the BCP has 
44 registers with 24 of them arranged into four register 
banks: Main Bank A, Alternate Bank A, Main Bank B, and 
Alternate Bank B. The exchange instruction, EXX, selects 
which register banks are currently available to the CPU, for 
example either Main Bank A or Alternate Bank A. The dese­
lected register banks retain their current values. The EXX 
instruction can also alter the state of [GIE), if desired. Table 
2-21 shows the EXX instruction syntax and operation. 

TABLE 2-20. TRAP Instruction 

Syntax Instruction Operation Operand Range 

TRAP v (, g'l PC & [GIE) & ALU flags & 
reg. Bank Selection ~ Address Stack 

If "g'" = 1 then clear [GIE) 
Form PC address as shown below: 

I i i i i i i i 10 i 0 I i i i i i 
{IBR} v 

15 7 5 

Note: PC = Program Counter; contents initially points to instruction following call. 
[GIE] = Global Interrupt Enable bit 
IBR = Interrupt Base Register 
& = concatenation operator, combines operands together forming one long operand. 
I ) = surrounds optional operands that are not part of the instruction syntax. 
Optional operands may either be specified or omitted. 

TABLE 2-21. EXX Instruction 

Syntax Instruction Operation 

EXX ba, bb I, gl Case "ba" of 
0: activate Main Bank A 
1 : activate Alternate Bank A 

End case 
Case "bb" of 

0: activate Main Bank B 
1 : activate Alternate Bank B 

End case 
Case "g" of 

~PC 
0 

0: leave [GIE) unaffected, (default) 
1 : (reserved) 
2: set [GIE) 
3: clear [GIE) 

End case 

Note: [GIE] = Global Interrupt Enable bit 
I I = surrounds optional operands that are not part of the instruction syntax. 
Optional operands may either be specified or omitted. 
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2.0 CPU Description (Continued) 

2.2 CPU FUNCTIONAL DESCRIPTION 

2.2.1 AlU 

The BCP provides a full function high speed a-bit Arithmetic 
Logic Unit (ALU) with full carry look ahead, signed arithme­
tic, and overflow decision capabilities. The ALU can perform 
six arithmetic, nine logic, one rotate and two shift operations 
on binary data. Full access is provided to all CPU registers 
as both source and destination operands, and using the in­
direct addressing mode, results may be placed directly into 
data memorY. All operations which have an internal destina­
tion (register addressing) are completed in two (2) T-states. 
External destination operations (indirect addressing to data 
memory) complete in three (3) T-states. ' 

Arithmetic operations include addition with or without carry, 
and subtraction with or without borrow (represented by car­
ry). Subtractions are performed using 2's complement addi­
tion to accommodate signed operands .. The subtrahend is 
converted to its 2's complement equivalent by the ALU and 
then added to the minuend. The result is left in 2's comple­
ment form. 

The remaining ALU operations include full logic, shift and 
rotate operations. The logic functions include Complement, 
AND, OR, Exclusive-OR, Compare and Bit Test. Zero 
through seven bit right and left shift operations are provided, 
along with a zero through seven bit right rotate operation. 
Note that the shift and rotate operations may only be per­
formed on a register, which is both the source and destina­
tion. (See the Instruction Set Overview section for detailed 
descriptions of these operations.) 

The BCP ALU provides the programmer with four instruction 
result status bits for conditional operations. These bits 
(known as condition code flags) indicate the status (or con­
dition) of the destination byte produced by certain instruc­
tions. Not all instructions have an affect on every status flag. 
(See the Instruction Set Reference section for the specific 
details on what status flags a given instruction affects.) 
These flags are held in the Condition Code Register, 
{CCR), see Figure 2-7. 

76543210 

I TO I RR I RW I BIRO I N V 'e z 

where: 

N = Negative 

C = Carry 

V = Overflow 

Z = Zero 
FIGURE 2-7. Condition Code Register AlU Flags 

If an instruction is documented as affecting a given flag, 
then the flags are set (to 1) or cleared (to 0) under the 
following conditions: 

[N]- The Negative flag is set if the most significant bit 
(MSB) of the result is one (1), otherwise it is cleared. 
This flag represents the sign of the result if it is inter­
preted as a 2's complement number. 
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[C] - The Carry flag is set if: 

a) An addition operation generates a carry, see Fig­
ure2-8a. 

b) A subtract or compare operation generates a bor­
row, see Figure 2-8b. 

c) The last bit shifted out during a shift operation (in 
either direction) is a one (1), see Figure 2-9. 

d) The last bit rotated by the rotate operation is a one 
(1), see Figure 2-10. 

In all other conditions [C] is cleared. 

[V]-:- Overflow is set whenever the result of an arithmetic or 
compare operation on signed operands is not repre­
sentable by the operand size, thereby producing an 
incorrect result. For example, the addition of the two 
signed negative numbers in Figure 2-8a would set [V] 
since the correct representation of the result, both 
sign and magnitude, is not possible in a bits. On the 
other hand, in Figure 2-8b and 2-8c [V] would be 
cleared because the results are correctly represented 
in both sign and magnitude. It is important to remem­
ber that Overflow is only meaningful in signed arith­
metic and that it is the programmer's responsibility to 
determine if a given operation involves signed or un­
signed values. 

[Z]- The Zero flag is set only when an operation produces 
an all bits cleared result (Le., a zero). In all. other con­
ditions [Z] is cleared. 

11101010 10111010 11011100 
+ 10001100 - 11000100 + 01100011 

1- 01110110 1- 11110110 1- 00111111 

[el = 1 [e] = 1 [e] = 1 
[V] = 1 [V] = 0 [V] = 0 

(a) (b) (c) 

FIGURE 2.8. Carry and Overflow Calculations 

&i I I I I I I r- o 
Shift Left 

0-1 I I I I I 

~ 
Shift Right 

TL/F/9336-D3 

FIGURE 2·9. Shifts' Effect on Carry 

Y III II i Il0 
Rotate 

TLlF/9336-D4 

FIGURE 2·10. Rotate's Effect on Carry 
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2.0 CPU Description (Continued) 

Several conditions apply to these flags, independent of their 
operation and the way they are calculated. These conditions 
are: 

1. A flag's previous state is retained when an instruction has 
no affect on that flag. 

2. Direct reading and writing of all AlU flags is possible via 
the (CCR I register. 

3. Currrent flag values are saved onto the address stack 
during interrupt and call operations, and can be restored 
to their original values if a return instruction with the re­
store flags option is executed. 

4. Flag status is calculated in parallel with the instruction 
result, therefore no time penalty is associated with flag 
operation. 

When performing single byte arithmetic (Le., the values are 
completely represented in one byte) the Add (ADD,ADDA) 
and Subtract (SUB,SUBA) instructions should be used, but 
when performing multi-byte arithmetic the Add with Carry 
(ADCA) and Subtract with Carry (SBCA) instructions should 
be used. This is because the carry (in an add operation) or 
the borrow (in a subtract operation) must be carried forward 
to the higher order bytes. Figure 2-11 demonstrates an in­
struction sequence for a 16-bit add and an instruction se­
quence for a 16-bit subtract. 

Assume the 16-bit variable X is represented by the reg­
ister pair R4(MSB), R5(lSB), and that the 16-bit variable 
Y is represented by the register pair R6(MSB), R7(lSB). 

To perform the assignment Y = X + Y: 

MOVE R7,A ;GET LSB OF Y 
ADDA R5,R7 ;Y(LSB)=X(LSB)+Y(LSB) 
MOVE R6,A ;GET MSB OF Y 
ADCA R4,R6 ;Y(MSB)=X(MSB)+Y(MSB) 

+ CARRY 
To perform the assignment Y = X - Y: 

MOVE R7,A ;GET LSB OF Y 
SUBA R5,R7 ;Y(LSB)=X(LSB)-Y(LSB) 
MOVE R6,A ;GET MSB OF Y 
SBCA R4,R6 ;Y(MSB)=X(MSB)-Y(MSB) 

-CARRY 

FIGURE 2-11. Multi-Byte Arithmetic 
Instruction Sequences 

When using the AlU to perform comparisons, the program­
mer has two options. If the compare is to a constant value 
then the CMP instruction can be used, else one of the sub­
tract instructions must be used. When determining the re­
sults of any compare, the programmer must keep in mind 
whether they are comparing signed or unsigned values. Ta­
ble 2-22 lists the Boolean condition that must be met for 
unsigned comparisons and Table 2-23 lists the Boolean 
condition that must be met for signed comparisons. 
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TABLE 2-22 

Unsigned Comparison Results 

Comparison: x - y 

x<y 
x~y 

x=y 
x~y 

x>y 

Note: & = logical AND 

I = logical OR 

z = one's complement 

Boolean Condition 

C 
clz 
z 
C 

C&l 

TABLE 2-23 

Signed Comparison Results 

Comparison: x - y 

x<y 
x~y 

x=y 
X~y 

x>y 

Note: & = logical AND 

I = logical OR 

z = one's complement 

2.2.2 Timing 

Boolean Condition 

(N&V) I (N&V) 
z I (N&V) I (N&V) 

z 
(N&V) I (N&Y) 

(N&V&l) I (N&V&l) 

Timing on the BCP is controlled by an internal oscillator and 
circuitry that generates the internal timing signals. This cir­
cuitry in the CPU is referred to as Timing Control. The inter­
nal timing of the CPU is synchronized to an internal clock 
called the CPU clock, CPU-ClK. A period of CPU-ClK is 
referred to as a T-state. The clock for the BCP is provided 
by a crystal connected between X1 and X2 or from a clock 
source connected to X1. This clock will be referred to as the 
oscillator clock, OClK. The frequency of OClK is divided in 
half when the CPU clock select bit, [CCS] , in the Device 
Control Register, (DCR I, is set to a one. Either OClK or 
OClK/2 is used by Timing Control to generate CPU-ClK 
and other synchronous signals used to control the CPU tim­
ing. 

After the BCP is reset, [CCS] is high and CPU-ClK is gener­
ated from OClK/2. Since the output of the divider that cre­
ates OClK/2 can be high or low after reset, CPU-ClK can 
also be in a high or low state. Therefore, the exact number 
of clock cycles to the start of the first instruction cannot be 
determined. Automatic test equipment can synchronize to 
the BCP by asserting RESET as shown in Figure 2-12. The 
falling edge of RESET generates a clear signal which caus­
es CPU-ClK to fall. The next rising edge of X1 removes the 
clear signal from CPU-ClK. The second rising edge of X1 
will cause CPU-ClK to rise and the relationship between X1 
and CPU-ClK can be determined from this point. 

Writing a zero to [CCS] causes CPU-ClK to switch from 
OClK/2 to OClK. The transition from OClK to OClK/2 
occurs following the end of the instruction that writes to 



2.0 CPU Description (Continued) 

[CCS) as shown in Figure 2-13. The switch occurs on the 
falling edge of X1 when CPU-ClK is low. CPU-ClK can be 
changed back to OClK/2 by writing a one to [CCS). The 
point at which CPU-ClK changes depends on whether 
there has been an odd or even number of T-states since 
[CCS) was set low. The change would require a maximum 
of two T-states and a minimum of one T-state following the 
end of the instruction that writes to [CCS]. 

The CPU is a RISC processor with a limited number of in­
structions which execute in a short period of time. The maxi­
mum instruction cycle time is four T-states and the minimum 
is two T-states. Six types of instruction timing are used in 

X1 

CPU-ClK 

the CPU: two T-state, three T-state program control, three 
T-state data memory access, four T-state read data memory 
access, four T-state program control, and four T-state two 
word program control .. The first T-state of each instruction 
is T1 and the last T-state is T2. Intermediate T-states re­
quired to complete the instruction are referred to as TX. 

The instruction clock output, IClK, defines the instruction 
boundaries. IClK rises at the beginning of each instruction 
and falls one-half T -state after the next address is generat­
ed on the instruction address bus, IA. Thus, IClK indicates 
the start of each instruction and when the next instruction 
address is valid. 

TLlF/9336-D5 

FIGURE 2-12. CPU-ClK Synchronization with X1 ' 

:�:=======--Tl--------w-rR-e-to~(OC-R-17-])----T2------~:1 
XI 

CPU-ClK 

Ices] 

Tl/F/9336-D6 

FIGURE 2-13. Changing from OClK/2 to OClK 
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2.0 CPU Description (Continued) 

Figure 2-14 shows the relationship between CPU-ClK, 
IClK, and IA for a two T-state instruction. The rising edge of 
CPU-ClK generates IClK at the start of T1. The next falling 
edge of CPU-ClK increments the instruction address which 
appears on IA. IClK falls one-half T-state later. The instruc­
tion completes during T2 which ends with IClK rising, signi­
fying the beginning of the next instruction. 

The three T-state program control instruction is similar and 
is shown in Figure 2-15. An additional T-state, TX, is added 
between T1 and T2. IClK rises at the beginning of T1 as 
before but falls at the end 6f TX. The next instruction ad­
dress is generated one-half T-state before the end of TX 
and the instruction ends with T2. 

The three T-state data memory access instruction timing is 
shown in Figure 2-16. Again, TX is inserted between T1 and 
T2. IClK rises at the beginning of the instruction and falls at 
the end of T1. The next instruction address appears on IA 
one-half clock cycle before IClK falls. The address latch 
enable output, ALE, rises halfway through T1 and falls half-

way through TX. The BCP has a 16-bit data memory ad­
dress bus and an a-bit data bus. The data bus is multiplexed 
with the lower a bits of the address bus and ALE is used to 
latch the lower a bits of the address during a data memory 
access. The upper a bits of the address become valid one­
half T-state after the beginning of T1 and go invalid one-half 
T-state after the end of T2. The lower a bits of the address 
become valid on the address-data bus, AD, when ALE rises 
and goes invalid one-half T -state after ALE falls. Figure 2-16 
shows a write to data memory in· which case AD switches 
from address to data at the beginning of T2. The data is 
held valid until one-half T-state after the end of T2. The 
write strobe, WRITE, falls at the beginning of T2 and rises at 
the end of T2. A read of data memory is shown in Figure 
2-17. The read timing is the same as a write except one-half 
T-state after ALE falls AD goes into a high impedance state 
allowing data to enter the BCP from data memory. AD re­
turns to an active state at the end of T2. The read strobe, 
READ, timing is identical to WRITE. 

~ T1 -.j.oo,I·- 12 --1 
---

CPU-CLK 

ICLK 

IA PC PC+ 1 

TLIF/9336-D7 

FIGURE 2-14. Two T-state Instruction 

CPU-CLK 

ICLK 

IA 
TLIF/9336-DB 

FIGURE 2-15. Three T-state Program Control Instruction 
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2.0 CPU Description (Continued) 

f.-- Tl ~I 114-1 - TX -.II 114-1 - T2 --I 
.--....., 

CPU-ClK 

IClK 

IA PC PC+ 1 

ALE 

AD Address 

A 

TlIF/9336-D9 

FIGURE 2-16. Three T-state Data Memory Write Instruction 

f.-- Tl -'~I''''-- TX -~I 1-- T2 --I 
.--.... 

CPU-ClK 

IClK 

IA· PC PC+ 1 

ALE 

AD Address 

A 

READ 

TL/F/9336-El 

FIGURE2-17.,..hree T-state Da~aMernoryRead Instructl()n [4TR] ,==0 

I 

II 
I 
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2.() GPlJ [)e~Cripti()n ... (Continu~d) 
V'hen the Four T·state Readmode isselected ([4TR] ':'1); 
a second TX state is inserted before T2and the timing of 
the read strobe, READ,is changed such that READ falls 
one-half T·state after the beginning 'of the secondTX. Fig~ 
ure 2·18 shows a FourT-state Read of data memory. Th~ 
extra half T-state before READ falls allciws more time tor the 
BC? to TRI-STATE the AD Hnes before the memory circuit 
begins driving those lines. 

The four T-state program control instruction timing is-shown' 
in Figure 2-19. The instruction has two TX states inserted 
between T1 and T2. IClK rises at the beginning of T1 and 
falls at the end of the second TX. The next instruction ad­
dress becomes valid halfway through the second TX. The 
four T-state two word program control instruction timing is 
the same as two consecutive two T-state instructions and is 
shown in Figure 2-20. 

This timing describes the minimum cycle time required by 
each type of instruction.:T"he BCP can be slowed down' by 

changing the number of wait states selected in the Device 
Control Register, I DCR I. The BCP can be programmed for 
up to three instruction memory wait states (instruction wait 
states) and seven data memory wait states (data wait 
states). Instruction wait states affect all instruction types 
while data wait states affect only data memory access in­
structions. Bits three and four in I DCR I control the number 
of instruction wait states and bits. zero, one and two are 
used to select the number of data wait states. The relation­
ships between the control bits and the number of wait states 
selected are shown in Table 2-24 and Table 2-25. The BCP 
is . configured with . ,three instruction ,.wai.! states, and . seven 
data walt states,and. [4TR] seUo zero after reset. A write 
to I DCR[4,311 to change the number of instruction wait 
states takes effect on the following instruction if that instruc­
tion is a three T-state or four T-state program control in­
struction. For the other instruction types, the new number of 
instruction wait states will take effect on the instruction fol-

.,. . . Tx--·*' .... · --Tx 

CPU-ClK 

IClK 

IA ----+-' 

AD 

A 

. READ 
TL/F/9336-H5 
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2.0 CPU Description (Continued) 

CPU-CLK 

ICLK 

IA 

FIGURE 2-19. Four T-state Program Control Instruction 

~ T1 -~./.- T2 -~,/,- T1 - ...... / • .....-- T2 --I 
CPU-CLK 

ICLK 

IA 

FIGURE 2-20. Four T-state Two Word Instruction 

TABLE 2-24. Data Memory 
Walt States 

TABLE 2-25. Instruction Memory 
Walt States 

TLlF/9336-E2 

TLlF/9336-E3 

(DCR[2-0]! Data Walt States (DCR[4,3]! Instruction Walt States 

000 0 00 0 
001 1 01 1 
010 2 10 2 
011 3 11 3 
100 4 
101 5 
110 6 
111 7 
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2.0 CPU Description (Continued) 

lowing the instruction after the write to IOCR I. A write to 
IDCR[2-011 to change the l1umber of datawait states will 
take effect on the next data memory access instruction 
even if it immediately follows the. write to {DCRj. 
A write to {OCR [2-:;0] I. to phange th~ number of data wait 
states or to (ACR [4TR] 1 will take effect on the next data 
memory. access instruction even If it·· immediately follows 
write to .. {OCR} or' {ACRL Both instruction and data 
wait states cause the insertion of additional T-states prior to 
T2 and these T-states are. refer~ed to as TW. The purpose 
of instruction wait states is to increase the time fro'm instruc­
tion address generation. to the beginning of the ~ext instruc­
tioncycle., Data wait states increase the time from data 
memory address generation to the removal.of the strobe at 
the end of data memory access instructions. Therefore, in­
struction and data wait states are counted concurrently in a 
data memory access instruction and TX of a data memory 
access instruction iii cOlirited as one instruction wait state. 
The actual number. of wait states added to a data memory 
access is calc~lated a~the maximum ,between the 

number of data wait states and one less than the number of 
instruction wait states. Figure 2-21 shows a write of data 
memory with one wait state. This could be accomplished by 

, selecting two instruction wait states or one data wait state. 
The effect of the wait state is to increase the time the write 
strobe is active and the data is valid on AD. The same situa­
tionJorareadoLdata memory is shown in Figure 
2-22. Note that if [4TR] Iss'et to one then one data wait 
state has no additional affect ana read of data memory and 
the timing is the same as shown in Figure 2-18. The affect of 
tWo data me'mory wait states and [4TR] set to one is shown 
in Figure 2-23 .. A two T-state Instruction with two instruction 
wait states is shown in Figure 2-24 and a four T-state in­
struction with, one instruction wait state is shown in Figure 
2-25. As stated earlier, instruction wait states are inserted 
before T2. Adding wait states to a four T-state two word 
instruction causes the wait states to count twice when cal­
culating total instruction cycle time. The wait states are add­
ed to each of the two words of the instruction. 

TLIF/9336-E4 

FIGURE 2-21. Data Memory Write with One Wait State 
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I- Tl -I ~ TX -*.11
1--- TW --*1 ~I--- T2-1 

~--~ ~--~ 

CPU-ClK 

IClK 

IA 

ALE 

AD 

A 

WRITE 

TL/F/9336-ES 

FIGURE 2-22. Data Memory Read with One Walt State and [4TR} = 0 

TLIF/9336-H6 

FIGURE 2-23. Data Memory Read with Two Wait States and [4TR] = 1 
I • I 
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2.0 CPU Description (Continued) 

f----- T1 ' I· rw -"*,' 1·- rw -"*',1,- T2 ---l 
~--~ ~----

CPU-ClK 

IClK 

IA PC PC+ 1 

TLlF/9336-E6 

FIGURE 2-24. Two T-state Instruction with Two Walt States 

f----- Tl -"*',1,- TX -"*,' 1,- TX -~, 1·- rw -"*,' 1·- T2 ---l 
~---

CPU-ClK 

IClK 

IA PC PC+ 1 + n 

TLlF/9336-E7 

FIGURE 2-25. FourT-state Instruction with One Walt State 
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2.0 CPU Description (Continued) 

The WAIT pin can also be used to add wait states to BCP 
instruction execution. The CPU will be waited as long as 
WAIT is low. To wait a given instruction, WAIT must be as­
serted low one-half T-state prior to the beginning of T2 in 
the instruction to be affected. Figure 2-26 shows WAIT as­
serted during a write to data memory. In order to wait this 
instruction, WAIT must fall prior to the falling edge of CPU­
ClK in TX. One wait state is added to the access and WAIT 
rises prior to the falling edge of CPU-ClK in TW which ai-

lows the access to finish. If WAIT had remained low, the 
access would have been held off indefinitely. Programmed 
wait states would delay when WAIT must be asserted since 
they would delay the beginning of T2. Figures 2-27 through 
Figure 2-29 depict the use of WAIT with three other instruc­
tion types. In all three cases, WAIT is asserted one-half 
T-state prior to when T2.would normally begin. Also, it is 
evident that the effect of WAIT on instruction timing is iden­
tical to adding programmed wait states. 

I-- T1 -~. /.- TX -~. /.- TW -~. /.- T2-1 

CPU-ClK 

(ClK 

IA PC PC+ t 

ALE 

AD Address Data 

A Address 

Tl/F/9336-EB 

FIGURE 2-26. Data Memory Access WAIT Timing 

I-- T1 --.I. /1+-, - TW -' /1+-, - T2.-1 

CPU-ClK 

(ClK 

(A 

TLIF/9336-E9 

FIGURE 2-27. Two T-state Instruction WAIT Timing 

1-81 

III 
I 



2.0 CPU Description (Continued) 

CPU-ClK 

IClK 

IA 

TL/F/9336-Fl 

FIGURE 2-28. Three T-state Program Control Instruction WAIT Timing 

--~-- TX --"*,f--- TX --.,J.o-- TW --... ·11-0·-- T2 ---l 
---

CPU-ClK 

IClK 

IA 

TL/F/9336-F2 

FIGURE 2-29. Four T -state Program Control Instruction WAIT Timing 

IT5CK is another input which affects BCP instruction timing. 
IT5CK prevents the BCP from accessing data memory. 
When asserted low, ~ will cause the BCP to wait when 
it executes a data memory access instruction. The BCP will 
be waited until IT5CK is taken high. To prevent a given ac­
cess of data memory, LOa< must be asserted low one-half 
T-state prior to the beginning of the instruction accessing 
data memory. Figure 2-30 shows '['QCi( being used to wait a 
write to data memory. IDCK falls prior to the falling edge of 
CPU-ClK before T1. In order to guarantee at least one wait 
state, IT5CK is held low until after the falling edge of CPU­
ClK in T1. This causes the insertion of TW into the cycle 
prior to TX. ALE remains high and the address is delayed on 
AD until IDCK is removed. After '[()'Ci( rises the access 
concludes normally with ALE falling halfway through TX and 
WRITE occurring during T2. Note that lOCK waits the ac­
cess at a different point in the cycle than programmed wait 
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states or WAIT. Additional wait states could occur from 
these sources prior to T2. Figure 2-31 shows an example of 
lOCK holding off a write to data memory with one pro­
grammed wait state. 

With timing similar to lOCK, the BCP will be delayed from 
making a data memory access by an access from the re­
mote system. If the remote system is accessing the Remote 
Interface Configuration register, (RICI. or data memory, the 
BCP will be waited by the Remote Interface and Arbitration 
System, RIAS, until the remote access is finished. The 
length of time the BCP is waited depends on the speed of 
the remote system and the type of remote access. The wait 
states are added prior to TX in the same manner as for 
lOCK shown in Figure 2-30. A more detailed description of 
the operation of RIAS can be found in Section 4.0, Remote 
Interface and Arbitration System. 
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CPU-ClK 

lOCK 

IClK 

IA PC PC+ 1 

ALE 

AD Address 

A Address 

WRITE 

FIGURE 2-30. LOCK Timing 

I--- T2 ---+--- 11 ---.-\4--- TW --0\+--- TX ---.0\+--- TW ---';1+-- 12 ---l 
CPU-ClK 

lOCK 

IClK 

IA PC PC+ 1 

ALE 

AD Address Data 

A 

WRITE 

FIGURE 2-31. LOCK Timing with One Walt State 
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2.0 CPU Description (Cqntinued) 

The CPU will be stopped after RESET is asserted low. The 
CPU can be externally controlled by changing the state of 
the start bit, [STRT], in (RIC). TheCPU starts executing 
instructions from the current address in the program control 
register when a one is written to [STRT] and stops when 
[STRT] is cleared. The CPU will complete the current in­
struction before stopping. Controlling the CPU from (RIC) 
requires a processor to access (RIC). If no external proces­
sor is present, the CPU can be made to start automatically 
after reset by holding REM-WR and REM-RD low and RAE 
high while RESET is transitioning from low to high. The CPU 
"kick-starts" and will begin executing instructions, from ad­
dress zero. The timing for kick-starting the CPU is shown in 
Figure 2-32. IClK rises on the rising edge of CPU-ClK one 
T-state after RESET is de-asserted. The falling edge of 
IClK signifies the beginning of the first instruction fetch. 
Three instruction' wait states and T2 precede the first in­
struction. 

A functional state diagram describing the timing of the CPU 
is shown in Figure 2~33. The fun9tional state diagram is sim­
ilar to a flowchart, except that transitions to a new state 
(states are denoted as rectangular boxes) can only occur on 
the rising edge of the CPU-ClK. A state box can specify 
several actions, and each action is separated by a horizon­
tal line. A signal name listed in a state box indicates that that 
pin will be asserted high when Timing Control has entered 
that state. When the signal is omitted from a box, it is as­
serted low. (Note: this requires using the inversion of a sig­
nal in some cases.) Decision blocks are shown as diamonds 
and their meaning is the same as in a flow chart. The func­
tional state diagram is a generalized approach to determin­
ing instruction flow while allowing for any combination of 
wait ,states and control signals. Timing Control always starts 
from a reset in the state IDLE. After RESET goes high, Tim­
ing Control remains in IDLE until [STRT] is written high. If 
the BCP kick-starts, Timing Control enters TST on the next 
rising edge of CP,U-ClK. Timing Control starts with a dummy 

instruction cycle in order to fetch the first instruction. IClK 
goes high in T1 and the instruction wait state counter is 
loaded. IClK falls when either T2 or TW is entered as deter­
mined by the value of ilw and WAIT. The normal instruction 
flow begins afte( T2 at B on the diagram. As an example, 
consider a three T-state data memory write instruction with 

, one data wait state. The instruction cycle path for this in­
struction would begin at T1 following the decision block for 
data memory access. In T1, IClK is asserted high, the in­
struction wait state counter is loaded, and a bus request to 
RIAS is generated. Also, ALE is asserted high on the falling 
edge of CPU-ClK during T1. A branch decision is now made 
based on the state of'[()C'K and the response from RIAS to 
the bus request. Assuming that '[()C'K is not asserted and a 
remote access is not in progress, Timing Control enters TX 
on the next rising edge of CPU-ClK. In TX, the data wait 
state counter is loaded and the instruction wait state coun­
ter is decremented. In this example, the instruction wait 
state counter is at zero and is not counting. The data wait 
state counter is loaded with one. ALE goes low on the fail­
ing edge of CPU-ClK during TX. The next decision block 
checks for a read of data memory. This example is a write to 
data memory so the decision is no and the branch is to the 
right. The wait state conditions are evaluated in the follow­
ing decision block. iow is one and Timing Control enters TW 
on the next rising edge of CPU-ClK. WRITE is asserted low 
when TW is entered and the data wait state counter is dec­
remented to zero. The decision on iow, ilW, and WAIT is 
now true and T2 is entered on the next rising edge of CPU­
ClK. WRITE remains low. The CPU will stop execution if 
[STRT] is low at B in the diagram. Otherwise, the next in­
struction will be executed beginning at A~ To summarize, 
this instruction went through the following states: T1, TX, 
TW, and T2. The complete instruction cycle is shown in Fig­
ure 2-21. Any instruction cycle can be analyzed in a similar 
manner using this functional state diagram. 

!== ' nrst Inst~ctlon fetch +Innlng of first Instruction 

TI~TW~TW~TW~T2 n-j 
XI 

TL/F/9336-FS 

FIGURE 2-32. CPU Start-Up Timing 
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2.0 CPU Description (Continued) 

2.2.3 Interrupts 

The DP8344B has two external and four internal interrupt 
sources. The external interrupt sources are the Non-Maska­
ble Interrupt pin, NMI, and the Bi-directional Interrupt Re­
quest pin, BIRO. 

External 

A non-maskable interrupt is detected by the CPU when a 
falling edge is detected at the NMI pin. The interrupt is auto­
matically cleared internally when the CPU recognizes the 
interrupt. 

BIRO can function as both an interrupt into the DP8344B 
and as an output which can be used to interrupt other devic­
es. BIRO is configured as an input or output according to 
the state of [BIC] in the Auxiliary Control Register, {ACR}. 
BIRO is an input if [BIC] is a zero and an output when [BIC] 
is a one. The reset state of [BIC] is a zero, causing BIRO to 
be an input after the BCP is reset. [BIRO] in the Condition 
Code Register, {CCR}, is a read only bit which mirrors the 
state of BIRO regardless of whether BIRO is configured as 
an input or output. This bit is updated at the beginning of T1 
of each instruction. 

When BIRO is configured as an input, an interrupt will occur 
if the pin is held low. BIRO must be held low until the inter­
rupt is recognized or the interrupt will not be processed. Due 
to the prioritizing of interrupts as described below, BIRO 
may not be recognized by the CPU until higher priority inter­
rupts have been serviced. BIRO will be recognized after 
higher priority interrupts have been processed. The low 
state on BIRO should be removed after the CPU recognizes 
the interrupt or the interrupt will be processed multiple 
times. 

When BIRO is configured as an output, its state is controlled 
by [1M3] in the Interrupt Control Register, {ICR}. Changing 
the state of this bit will change BIRO at the beginning of T1 
of the instruction following the write to [1M3). Note that 
[BIRO] in {CCR} is also updated at the beginning of T1. 
Therefore, there is a one instruction cycle delay from when 
[1M3] changes to when the new value of BIRO is made 
available in [BIRO). [BIS] in the Remote Interface Configu­
ration register, {RICI. mirrors the state of [1M3]. When 
BIRO is an output, writing a one to [BIS] will change the 
state of [IME] thus changing BIRO and allowing a remote 
processor to acknowledge an interrupt from the SCPo Note, 
If the SCP code operates on [1M3] at the same time that the 
remote processor acknowledges the interrupt by writing a 
one to [BIS], 'BTRQ will toggle and then assume the state of 
{1M3] resulting from the BCP code operation. Therefore, if 
the designer chooses to operate on [1M31 while waiting for 
the remote processor to acknowledge a BIRQ interrupt, the 
designer should ensure that the remote processor is locked 
out from accessing [BIS] during the operation' on [1M3]. 
This can be accomplished by setting [LOR] in {ACR1,·hav~ 
Ing the SCP perform a data memory access to ensure that 
any current remote accesses are complete, operating an 
[IM31, and finally clearing [LOR]. BIRO will change state 
two T-states after the end of the write to [BIS]. Writing a 

. one to [BIS] will have no effect on [1M3] when BIRQ is an 
input. Table 2-26 summarizes the relationship between 
BIRO and its associated register bits. 

TASLE2-26. BIRQControl Summary 

(a) BIRQ Is an Input ([BIC] = 0): Remote Processor Controls the State of BIRQ 

[1M3] [BIS] BIRQ [BIRQ] 

0 [1M3] = 0 Active Interrupt to the BCP: state of Reflects the state of BIRQ 
BIRO controlled by the Remote 
Processor 

1 [1M3] = 1 Masked Interrupt to the BCP: state of Reflects the state of BIRO 
BIRO controlled by the Remote 
Processor 

(b) BIRQ Is an Output ([BIC] = 1): BCP Controls the State of BIRQ 

[1M3] [BIS] BIRQ [BIRQ] 

0 [1M3] = 0 State of [1M3] = 0 Reflects the state of BIRO = 0 

1 [1M3] = 1 State of [1M3] = 1 Reflects the state of BIRO = 1 

(c) BIRQ Is an Output ([BIC] = 1): Remote Processor Acknowledges BIRQ 

[BIS] [1M3] [BIS] BIRQ [BIRQ] 

Remote Processor writes a 1 to [BIS] Toggles [1M3] State of [1M3] Reflects the 
state of BIRO 
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2.0 CPU Description (Continued) 

Internal 

The internal interrupts consist of the Transmitter FIFO Emp­
ty, TFE, interrupt, the Line Turn Around, L TA; interrupt, the 
Time Out, TO, interrupt, and a user selectable receiver inter­
rupt source. The receiver interrupt source is selected from 
either the Receiver FIFO, Full, RFF, interrupt, the Data 
Available, DA, interrupt, or the Receiver Active, RA, inter­
rupt. The receiver interrupt is selected using bits [RIS1] and 
[RISO] in the Interrupt Control Register, (ICR}. See the 
Section 3.0, Transceiver for a description of these inter­
rupts. 

Masking 

The BCP uses two levels of interrupt masking: a global inter­
rupt mask which affects all. interrupts except NMland indi­
vidual interrupt mask bits. Global enabling and disabling of 
the interrupts is performed. by. changing the state of the 
Global Interrupt Enable bit, [GIE], in (ACRJ. The maskable 
interrupts are. disabled when [GIE] is a zero and enabled 
when [GIE] is a one. [GIE] is a zero after the BCP is reset. 
[GIE] is a read/write register bit and may be changed by 
using any instruction that can write to (ACR}. In addition, 
the RET, RETF, and EXX instructions have Option fields 
which can be used to alter the state of [GIE]. The EXX 
instruction can set or clear [GIE] as well as leaving it un­
changed. The RET and RETF instructions can restore [GIE] 
to the value that was saved on ,the address stack at the time 
the interrupt was recognized. These instructions also pro-

vide the options of clearing or setting [GIE] or leaving it 
unchanged. [GIE] is set to a zero when anI interrupt is rec­
ognized'by the CPU. It is necessary to set [GIE] tei a one if 
interrupts are to be recognized within an interrupt routine. ' 

The Individual interrupt mask bits" are lci~'ated in (Ic'R J'. 
When set to a one, bits [IMO], [IM1],' [1M2], [1M3], and [IM4) 
in (lCR} mask the receiver interrupt, TFE interrupt, L TA in­
terrupt, BIRO interrupt, and TO interrupt,: respectively. To 
enable an interrupt, its mask bit must be set to a zero. The 
interrupts and associated mask bits are; shown' . in 
Table 2-27. These bits are set to a one when the' DP8344 is 
: reset. 

Masking interrupts with [GIE] or the mask bits'in. (ICR} pre~ 
vents the CPU from acknowledging interrupts but does not 
prevent the interrupts from occurring. Therefore, if an inter~ 
rupt is asserted,it will beprocessep as, soon. as it is un­
masked by changing [GIE] to a one and/or changing the 
appropriate mask bit in (ICR} ~o a zero. 

,Prlorites 
. I 

When more than one interrupt is'unmasked'i,md asserted, 
the CPU processes the interrupt with the highest priority 
first NMlhas'the highest priority followed by the receiver 
interrupt, TFE, L T A; BIRO, and TO: Each time the interrup'ts 
are sampled, the highest priority interruptis processed first, 
regardless of how'long a-Iower' priority interrupt has been 
active. Interrupt priority is'summarized in Table 2-27: . 

", .:. ~ '. :. • " , ' 1 i : r!' '. , 

TABLE2-27. (ICR} Interrupt Mask Bits 
and Interrupt Priority , 

" , 

Interrupt Mask Bit Priority 

NMI - tlighe~t: 
RFF, DA,RA [IMO] 

" 
,. ,. 

TFE [IM1] 
LTA [1M2] 
BIRO [1M3] 
TO [IM4] Lowest 
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2.0 CPU Description (Continued) 

A call to the Interrupt address Is generated when an inter­
rupt Is detected by the CPU. The address for each interrupt 
Is constructed by concatenating the Interrupt Base Register, 
IIBR), contents with the individual interrupt code as shown 
In Table 2-28. There Is room between the Interrupt address­
es for a maximum of four Instruction words. 

TABLE 2-28. Interrupt Vector Generation 

Interrupt Code 

mlI 111 
RFF, DA, RA 001 
TFE 010 
LTA 011 

mR"O 100 
TO 101 

Interrupt Vector 

IISRI Contents I 0 0 0 I Code I 0 0 I 
15 8 5 2 o 

Interrupts are sampled by each falling edge of the CPU 
clock with the last failing edge prior to the start of the next 
Instruction determining whether an Interrupt will be process­
ed. The timing of a typical interrupt event is shown in Figure 
2-34. The Interrupt occurs during the current instruction and 
Is sampled by the falling edge of the CPU clock. The next 
Instruction is not operated on and its address Is stored in the 
Internal address stack along with [GIE], the ALU flags, and 
the register bank positions. The address stack is twelve 
words deep. A two T-state internal call Is now executed in 
place of the non-executed Instruction. This call will cause a 
branch to the Interrupt address that is generated in the first 
half of T-state n. Also, [GIE] Is cleared at the end of the 
first half of T-state T1. The internal call to the interrupt ad­
dress Is subject to instruction wait states as configured in 
IOCR). 

2.2.4 Oscillator 

The crystal oscillator is an on-chip amplifier which may be 
used with an external crystal to generate accurate CPU and 
transceiver clocks. The input to this amplifier is X1, pin 33. 
The output of the amplifier is X2, pin 34. When X1 and X2 
are connected to a crystal and external capacitors (Figure 
2-35), the combined circuit forms a Pierce crystal oscillator 
with the crystal operating at parallel resonance. Crystals 
that oscillate over the frequency range of 2 MHz to 20 MHz 
may be used. The recommended crystal parameters for op­
eration with the oscillator are given in Table 2-29. The exter­
nal capacitor values should be chosen to provide the manu­
facturer's specified load capacitance for the crystal when 
combined with the parasitic capacitance of the trace, sock­
et, and package. As an example, a crystal with a specified 
load capacitance of 20 pF used in a circuit with 13 pF per 
pin parasitic capacitance will require external capacitor val­
ues of 27 pF each. This provides an equivalent capacitance 
of 40 pF on each side of the crystal, and has a 20 pF series 
equivalent value across the crystal. 

As an alternative to the crystal oscillator, an external clock 
source may be used. In this case, the external clock source 
should be connected to X1 and no external circuitry should 
be connected to X2 (Figure 2-36). The DP8344 can supply a 
clock source, equal in frequency to the crystal oscillator or 
external clock source, to other circuitry via pin 35, the ClK­
OUT output. This output is a buffered version of the Signal at 
X1. 

TABLE 2-29. Recommended Crystal Parameters 

AT Cut, Parallel Resonant 
Fundamental Mode 
load CapaCitor = 20 pF 
Series Resistance < 200 
Frequency Tolerance 0.005% at 25°C 
Stability 0.01 % 0° -70·C 
Drive Level 0.5 mW Typical 

r---- Interrupt Call ---~I 
~Tl .1, T2-~' Tl--j 

,.---
CPU-CLK 

IA non-executed Instruc. addr. Interrupt vector address 

(GIE) 

TL/F/9336-F7 

FIGURE 2-34. Interrupt Timing 
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2.0 CPU Description (Continued) 

DP8344 

Xl X2 
33 34 

TL/F/9336-FB 

FIGURE 2-35. DP8344B Operation with Crystal 

DP8344 

Xl X2 
33 34 

.... _~I .. No con1nectlon 

Clock 
Source 

50" Duty 

TUF/9336-F9 

FIGURE 2-36. DP8344B Operation with External Clock 

r----------------------, 
BCP 

3.0 Transceiver 
3.1 TRANSCEIVER ARCHITECTURAL DESCRIPTION I 

The transceiver section operates as an on-chip, indepen­
dent peripheral, implementing all the necessary formatting 
required to support the physical layer of the following serial 
communications protocols: " 

• IBM 3270 (including 3299) 
.. IBM 5250 
• NSC general purpose a-bit 

The CPU and transceiver are tightly coupled through the 
CPU register space, with the transceiver appearing to the 
CPU as a group of special function registers and three dedi­
cated interrupts. The transceiver consists of separate trans­
mitter and receiver logic sections, each capable of indepen­
dent operation, communicating with the CPU via· an asyn­
chronous interface~ This interface· is software configurable 
for both polled and interrupt-driven interaction, allowing the 
system designer to optimize his product for the· specific ap-
plication. ' . 

The transceiver connects to the line through an external line 
interface circuit which provides the required DC and AC 
drive characteristics appropriate to the application. A block 
diagram of such an interface is shown in Figure 3-1. An on­
chip differential analog comparator, optimized for use in a 
transformer coupled coax interface, is provided at the input 
to the receiver. Alternatively, if an external comparator is 
necessary, the input signal may be routed to the DATA~IN 
pin. 

Tran,smltter t----...... -":'DA':":T~A--":'D~LY~-+I 

TX-ACT 

CPU 
+ALG-IN 

Receiver -ALG-IN 

~----------------------

Optional External 
Compara~or 

Line Transmission 
Interface I==~~( 

Circuit medium 

TLI~/9336-33 

FIGURE 3-1. System Block Diagram, Showing Details of the line Interface 
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3.0 Transceiver (Continued) 

The transceiver has several modes of operation. It .can be 
configured for single line, half-duplex operation in which the 
receiver is disabled while the transmitter is active. Alterna­
tively, both receiver and transmitter can be active at the 
same time for multi-channel (such as repeater) or loopback 
operation. The transceiver has both internal and external 
loopback capabilities, facilitating testing of both the soft­
ware and external hardware. At all times, both transmitter 
and receiver operate according to the same protocol defini­
tion. 

3.1.1 Protocols 

In all protocols, data is transmitted serially in discrete mes­
sages containing one or more frames, each representing a 
single word of information. Biphase (Manchester II) encod­
ing is used, in which the data stream is divided into discrete 
time intervals (bit-times) denoted by a level transition in the 
center of the bit-time. For the IBM 3270, 3299 and NSC 
general purpose 8-bit protocols, a mid-bit transition from low 
to high represents a biphase "1 ", and a mid-bit transition 
from high to low represents a biphase "0". For the 5250 
protocol, the definition of biphase logic levels is exactly re­
versed, i.e. a biphase "1" is represented by a high to low 
transition. Depending on the bit sequence, there mayor 
may not be a transition on the bit-time boundary. The bi­
phase encoding of a simple bit sequence is illustrated in 
Figure 3-2(a). 

Each transmission begins with a unique start sequence con­
sisting of 5 biphase encoded "1 's", (referred to as "line 
quiesce pulses") followed by a 3 bit-time code violation and 
the sync bit of the first frame, Figure 3-2(b). The three bit­
time code violation does not conform to the rules of Man­
chester encoding and forms a unique recognition pattern for 
bit time synchronization by the receiver logic. The first bit of 
any frame is the sync bit, a biphase "1". The frame is then 
formatted according to the requirements of the protocol. If a 
multi-frame message is being transmitted,· additional frames 
are appended to the end of the first frame-except for the 
5250 protocol, where there may be an optional number of 
"fill bits" (biphase "0") between each frame. 

Depending on the protocol, when all data has been trans­
mitted, the end of a message will be indicated either by the 
transmission of an ending sequence, or (for 5250) simply by 
the cessation of transitions on the differential line. Later 
model 5250 equipment has incorporated a "line hold" at the 
end of the message. The line hold maintains the final differ­
ential state on the line for several bit times to eliminate 
noise or reflections that could be interpreted as a continu­
ance of the message. The ending sequence for all· but 5250 
protocols consists of a single biphase "0" followed by a low 
to high transition on the bit-time boundary and two bit-times 
with no transitions (two mini-code violation), Figure 3-2(c). 

The various protocol framing formats are shown in Figures 
3-3 through 3-5. The diagrams use a bit pattern drawing 
convention which, for clarity, shows the bit-time boundaries 
but not the biphase transitions in the center of the bit times. 
The timing relationship between the biphase encoded bit 
stream and the bit pattern diagrams is consistent with Fig­
ure 3-2. 
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bit times 2 3 5 

blphase transmission 

bit pattern 0 o o 
--~~~~~~~-

(a) Blphase Encoding 

nne qulesce pulses 
bit times 1 2 3 4 5 

biphase transmission 

bit pattern 

(b) Starting Sequence 

bit times 2 3 

blphase transmission 

bit pattern 
-'I'-...Ij\o':';';';;;;=:~ 

(c) Ending Sequence 

FIGURE 3-2. Biphase Encoding 

3.1.1.1 IBM 3270 

TLIF /9336-34 

TL/F/9336-36 

TLIF/9336-35 

The framing format of the IBM 3270 coax protocol is shown 
in Figures 3-3(a) and (b), for both single and multi-frame 
messages. Each message begins with a starting sequence 
and ends with an ending sequence, as shown in Figures 
3-2(b) and (c). Each 12-bit frame begins with a sync bit (B1) 
followed by an 8-bit data byte (MSB first), a 2-bit control 
field, and the frame delimiter bit (B12), representing even 
parity on the previous 11 bits. The bit rate on the coax line is 
2.3587 MHz. 

3.1.1.2 IBM 3299 

Adding 3299 multiplexers to the 3270 environment requires 
an address to be transmitted along with each message from 
the controller to the multiplexer. The IBM 3299 Terminal 
Multiplexer protocol provides this capability by defining an 
additional 8-bit frame as the first frame of every message 
sent from the controller, as shown in Figure 3-3(c). This 
frame contains a 6-bit data field along with the normal sync 
and word parity bits. The protocol currently utilizes bits B2-
84 as an address field that directs the message through the 
multiplexor hardware. Following the address frame, the rest 
of the message follows standard 3270 convention. The bit 
rate, 2.3587 MHz, is the same as standard 3270. 

3.1.1.3 IBM 5250 

The framing format of the IBM 5250 twinax protocol is 
shown in Figure 3-4, for both single and multi-frame mes­
sages. Each message begins with the starting sequence 
shown in Figure 3-2(b), and ends with 3 fill bits (biphase 
"0"). A 16-bit frame is employed, conSisting of a sync bit 
(B15); an 8-bit data byte (B7-B14) (LSB first); a 3-bit station 
address field (B4-B6); and the last bit (B3) representing 



3.0 Transceiver (Continued) 

Oata byte 

06 05 04 03 02 01 00' 

Frame 
TL/F/9336-37 

(a) 3270 Single-Byte Message 

Data byte Additional Frames , ~ 
06 05 04 03 02 01 00 C/O Par Sync Par 

B12 Bl B End sequence }-

First Frame t 
Sync 07 06 05 04 03 02 01 00 R C/O Par 

Additional Frames 
TLIF 19336-36 

(b) 3270 Multi-Byte Message 

Oata byte Additional Frames (if any) 

Par Sync' 07 06 05 04 03 02 01 00' R C/O Par s;;;P;" 
~ ______ ~\~I~J~-J.~J~-J'~/~~\~I\-J~-J.~J~-JI~J~-" __ '\-~\-J'~J~-J'\-.J~JB~~-d-se-q-U-en-ce~}-

Address Frame Frame 

(c) 3299 Controller/Multiplexer Message 

FIGURE 3-3. 3270/3299 Protocol Framing Format 

Station 
Oata byte address 

01 02 03 04 05 06 07" AO Al A2 Par' 0 

Frame 

TL/F/9336-39 

Fill bits 

o o 

TL/F 19336-40 

(a) 5250 Single-Byte Message 

Station Required Optional 
Data byte address fill bits fill bits Last frame 

01 02 03 04 05 06 07" AO AI A2 \ Par 00--0'-------" 'Sync 07 I I I Par 0 0 0 

~ ______ '\-J~~\-J'\-'I\-J~-'\-J~/~J~-"~~J~~~-'l-J'~J~J~~~ 

I End of t.lesSllge 
Oellmiter 

Sync DO 01 02 03 04 05 06 07 AO AI A2 Par o 0 

Additional Frames 

(b) 5250 Multi-Byte Message 

FIGURE 3-4. 5250 Protocol Framing Format 
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3.0 Transceiver (Continued) 

even word parity on the previous 12 bits. Following the pari­
ty bit, 3 biphase "0" fill bits (80-82) are transmitted. Follow­
ing these required fill bits, up to 240 additional fill bits can be 
inserted between frames before the next sync bit and the 
start of the next frame of a multi-byte message. The bit rate 
on the twinax line is 1 MHz. ..., . . . 

3.1.1.4 General Purpose 8-Bit 

The framing format of the general purpose 8-bit protocol is' 
shown in Figure 3-5, for both single and multi-frame mes­
sages. It is identical to that used by the National Semicon­
ductor DP8342 transmitter and DP8343 receiver chips. 
Each message begins with a starting sequence and ends 
with an ending sequence, as shown in Figures 3-2(b) and 
(c). A 10-bit frame is employed, consisting of the sync bit 
(81); an 8-bit data byte (82-89) (LS8 first); and the last bit 
of the frame (810) representing even word parity on the 
previous 9 bits. For multiplexed applications, the first frame 
can be deSignated as an address frame, with all 8 bits avail­
able for the logical address. (See General Purpose 8-bit 
Modes in this section.) 

3.2 TRANSCEIVER FUNCTIONAL DESCRIPTION 

A block diagram of the transceiver, revealing external inputs . 
and outputs and details of the CPU interface, is shown in 
Figure 3-6. The transmitter and receiver are largely indepen­
dent of each other, sharing only the clock, reset and proto­
col select Signals. The transceiver is mapped into the CPU 
register space, thus the status of the transceiver can always 
be polled: In addition, the CPU/Transceiver interface can be 
configured for an interrupt-driven environment. (See Trans­
ceiver Interrupts in this section.) 

80th transmitter and receiver are reset by a common Trans­
ceiver Reset bit, [TRES], allowing the CPU to independently 
reset the transceiver at any time. The Transceiver is also 
reset whenever the CPU reset is asserted, including the re-' 
quired power-up reset. When [TRES] is asserted, both 

transmitter and receiver FIFO's are emptied resulting in the 
Transmit FIFO Empty flag [TFE] being asserted and the 
Data Available flag [DAV] cleared. Other flags cleared by 
[TRES] are Transmit FIFO Full [TFF] and Transmitter Ac­
tive [TA] in the tranSmitter and Line Active [LA], Receiver 
Active [RA], Receiver Error [RE], Receive FIFO Full [RFF], 
Data Error or Message End [DEME], [POLL], [ACK], and 
[RAR],command flags in the receiver. When [TRES] is as­
serted, external pin TX-ACT is cleared, DAT A-DL Y goes to a 
state equal to the complement of Transmitter INvert [TIN] in 
{TMR I, and DATA-OUT goes into a state equal to the com­
plement of [TIN] exclusiveor'ed with the Advance Transmit­
terActive [ATA] in {TCRI. Inother words, when [TRES]is 
asserted, DATA-DLY ;:i: [TIN], and DATA-OUT = [TIN] El'.l 

{ATA].When [TRES] is asserted under software control, it 
is necessary to wait at least one instruction after asserting 
[TRES] before seeing the resulting reset state of the affect­
ed flags in the CPU. The transmitter and receiver are 
clocked by a common Transceiver Clock, TCLK, at a fre­
quency equal to eight times the required serial data rate. 
TCLK can either be obtained from the on-chip oscillator di­
vided by 1, 2 or 4, or from an external clock applied to the 
X-TCLK pin. TCLK selection is controlled by two Transceiv­
erClockSelect bits, [TCS 1-0] located in the Device Con­
trol Register, {DCR I. [TCS 1-0] should only be changed 
when the transceiver is inactive. 

Since the TCLK source can be asynchronous with respect 
to the CPU clock, the CPU/Transceiver interface can be 
asynchronous. All flags from the Transceiver are therefore 
latched at the start of all instructions, and parallel data is 
transferred through 3 word FIFOs in both the transmitter 
and receiver. 

Protocol selection is controlled by three Protocol Select 
bits, [PS2-0] in the Transceiver Mode Register, ITMR} 
(see Table 3-1). Enough flexibility is provided for the 8CP to 
operate in all required positions in the network. It is not pos-

Data byte 

01 02 03 04 05 06 07' Par 

Frame 
TL/F/9336-42 

(a) 8-Bit Single-Byte Message 

Data byte , 
01 02 03 04 05 06 07 Par Sync Par 

Bl B End sequence r-
First Frame j. 

Sync DO 01 02 03 04 05 06 07 Par 

Additional Frames 
TLlF/9336-43 

(b) 8-Bit Multi-Byte Message 

FIGURE 3-5. General Purpose 8-Bit Protocol Framing Format 
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3.0 Transceiver (Continued) 

sible for the transmitter and receiver to operate with differ­
ent protocols at the same time. The protocol mode should 
only be changed when both transmitter and receiver are 
inactive. 

If both transmitter and receiver are connected to the same 
line, they should be configured to operate sequentially (half­
duplex). This mode of operation is achieved by clearing the 
RePeater ENable control bit [RPEN] in ITMR}. In this 
mode, an active transmitter will disable the receiver, pre­
venting simultaneous operation of transmitter and receiver. 
If the transmitter FIFO is loaded while the receiver is active­
ly processing an incoming signal, the receiver will be dis­
abled and flag the CPU that a "Receiver Disabled While 
Active" error has occurred. (See Receiver Errors in this sec-

tion.) On power-up/reset the transceiver defaults to this 
half-duplex mode. 

By asserting the Repeat Enable flag [RPEN], the receiver is 
not disabled by the transmitter, allowing both transmitter 
and receiver to be active at the same time. This feature 
provides for the implementation of a repeater function or 
loopback for test purposes. 

The transmitter output can be connected to the receiver 
input, implementing a local (on-chip) loopback, by asserting 
[LOOP]. [RPEN] must also be asserted to enable both the 
transmitter and receiver at the same time. With [LOOP] as­
serted, the output TX-ACT is disabled, keeping the external 
line driver in TRI-STATE. The internal flag [TA] is still en­
abled, as are the serial data outputs. 

TABLE 3-1. Protocol Mode Definition 

PS2-0 Protocol Mode 

000 3270 
001 3299 Multiplexer 

010 3299 Controller 

01 1 3299 Repeater 
100 5250 

1 01 5250 Promiscuous 
1 10 a-Bit 

1 1 1 a-Bit Promiscuous 

Comments 

Standard IBM 3270 protocol. 
Receiver expects first frame to be address frame. Transmitter uses standard 
3270, no address frame. 
Transmitter generates address frame as first frame. Receiver expects standard 
3270, no address frame. 
Both transmitter and receiver operate with first frame as address frame. 
Non-promiscuous mode. [DAV] asserted only when first frame address matches 
IATR}. 
[DAV] asserted on all valid received data without regard to address field. 
General-purpose a-bit protocol with first frame address. Non-promiscuous mode. 
[DAV] asserted only when first frame address matches I ATR I. 
[DAV] asserted on all valid received frames. 
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3.0 Transceiver (Continued) 

3.2.1 Transmitter 

The transmitter accepts parallel data from the CPU, formats 
it according to the desired protocol and transmits it as a 
serial biphase-encoded bit stream. A block diagram of the 
transmitter logic is shown in Figure 3-6. Two biphase out­
puts, DATA-OUT, DATA-DLY, and the external line driver 
enable, TX-ACT, provide the data and control signals for the 
external line interface circuitry. The two biphase outputs are 
valid only when TX-ACT is asserted (high) and provide the 
necessary phase relationship to generate the "predistor­
tion" waveform common to all of the transceiver protocols. 
See Figure 3-1 for the timing relationships of these outputs 
as well as the output of the line driver. For a recommended 
3270/3299 coax interface, see Section 3.2.5.1 3270 Line 
Interface. For a recommended 5250 twinax interface see 
Section 3.2.5.2 5250 Line Interface. 

The capability is provided to invert DATA-OUT and DATA­
DL Y via the Transmitter Invert bit, [TIN], located in the 
Transceiver Mode Register, (TMR}, In addition, the timing 
relationship between TX-ACT and the two biphase outputs 
can be modified with the Advance Transmitter Active con­
trol, [ATA]. When [ATA] is cleared low (the power-up condi­
tion), the transmitter generates exactly five line quiesce bits 
at the start of each message, as shown in Figure 3-1. If 
[ATA] is asserted high, the transmitter generates a sixth line 
quiesce bit, adding one biphase bit time to the start se­
quence transmission. The line driver enable, TX-ACT, is as­
serted halfway through this bit time, allowing an additional 
half-bit to precede the first full line quiesce of the transmit­
ted waveform. Also, the state of OAT A-DL Y is such that no 
predistortion results on the line during this first half line 
quiesce. This modified start sequence is depicted in the dot­
ted lines shown in Figure 3-1 and is used to limit the initial 
transient voltage amplitude when the message begins. 

Data is loaded into the transmitter by writing to the Receivel 
Transmit Register (RTR I, causing the first location of the 
FIFO to be loaded with a 12-bit word (8 bits from (RTR I and 
4 bits from the Transceiver Command Register (TCR}, The 
data byte to be transmitted is loaded into (RTR I, and 
(TCRI contains additional information required by the pro­
tocol. It is important to note that if (TCRI is to be changed, 
it must be loaded before (RTR I. A multi-frame transmission 
is accomplished by sequentially loading the FIFO with the 
required data, the transmitter taking care of all necessary 
frame formatting. 

If the FIFO was previously empty, indicated by the Transmit 
FIFO Empty flag [TFE] being asserted, the first word loaded 
into the FIFO will asynchronously propagate to the last loca­
tion in approximately 40 ns, leaving the first two locations 
empty. It is therefore possible to load up the FIFO with three 
sequential instructions, at which time the Transmit FIFO Full 

1-95 

flag [TFF] will be asserted. If (RTR I is written while [TFF] is 
high, the first location of the FIFO will be over-written and 
that data will be destroyed. 

When the first word is loaded into the FIFO, the transmitter 
starts up from idle, asserting TX-ACT and the Transmitter 
Active flag [T A], and begins generating the start sequence. 
After a delay of approximately 16 TCLK cycles (2 biphase 
bit times), the word in the last location of the FIFO is loaded 
into the encoder and prepared for transmission. If the FIFO 
was full, [TFF] will be de-asserted when the encoder is 
loaded, allowing an additional word to be loaded into the 
FIFO. 

When the last word in the FIFO has been loaded into the 
encoder, [TFE] goes high, indicating that the FIFO is empty. 
To ensure the continuation of a multi-frame message, more 
data must then be loaded into the FIFO before the encoder 
starts the transmission of the last bit of the current frame 
(the frame parity bit for 3270, 3299, and 8-bit modes; the 
last of the three mandatory fill bits for 5250). This maximum 
load time from [TFE] can be calculated by subtracting two 
from the number of bits in each frame of the respective 
protocol, and multiplying that result by the bit rate. This 
number represents the best case time to load-the worst 
case value is dependent on CPU performance. Since the 
CPU samples the transceiver flags and interrupts at instruc­
tion boundaries, the CPU clock rate, wait states (from pro­
grammed wait states, asserting the WAIT pin, or remote ac­
cess cycles), and the type of instruction currently being exe­
cuted can affect when the flag or interrupt is first presented 
to the CPU. . 

If there is no further data to transmit (or if the load window is 
missed), the ending sequence (3270/3299/8-bit) is generat­
ed and the transmitter returns to idle, de-asserting TX-ACT 
and [TAJ. In 5250 mode, the three required fill bits are sent 
and TX-ACT and [T A] are de-asserted at a time dependent 
on the value of bits 7 through 3 of the Auxiliary Transceiver 
Register (ATR}, If (ATR[7-311 =00000, TX-ACT and [TA] 
are de-asserted at the end .of the third required fill bit result­
ing in no additional "line hold" at the end of the message. 
Each increment of (ATR[7-3] I results in an additional half 
bit time of line hold up to a maximum of 15.5 bit times. 

Data should not be loaded into the FIFO after the transmit­
ter is committed to ending the message and before the [T A] 
flag is deasserted. If this occurs, the load will be missed by 
the transmitter control logic and the word(s) will remain in 
the FIFO. This condition exists when [TA] and [TFE] are 
both low at the same time, and can be cleared by resetting 
the transceiver (asserting [TRES)) or by loading more data 
into the FIFO, in which case the first frame(s) transmitted 
will contain the word(s) left in the FIFO from the previous 
message. 
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FIGURE 3·7. Transmitter Output 

3.2.2 Receiver 

The receiver accepts a serial biphase-encoded bit stream, 
strips off the framing information, checks for errors and re­
formats the data for parallel transfer to the CPU. The block 
diagram in Figure 3-6 depicts the data flow from the serial 
input(s) to the FIFO's parallel outputs. Note that the FIFO 
outputs are multiplexed with the Error Code Register {ECR I 
outputs. 

The receiver and transmitter share the same TCLK, though 
in the receiver this clock is used only to establish the sam­
pling rate for the incoming biphase encoded data. All control 
timing is derived from a clock signal extracted from this 
data. Several status flags and interrupts are made available 
to the CPU to handle the asynchronous nature of the incom­
ing data stream. See Figure 3-8 for the timing relationships 
of these flags and interrupts relative to the incoming data. 

The input source to the decoder can be either the on-chip 
analog line receiver, the DATA-IN input or the output of the 
transmitter (for on-chip loop back operation). Two bits, the 
Select Line Receiver [SLR] and Loopback [LOOP], control 
this selection. For interfacing to the on-chip analog line re­
ceiver, see Section 3.2.5.1, 3270 Line Interface. An example 
of an external comparator circuit for interfacing to twinax 
cable in 5250 environments is contained in Section 3.2.5.2, 
5250 Line Interface. The selected serial data input can be 
inverted via the Receiver Invert [RIN] control bit. 

The receiver continually monitors the line, sampling at a fre­
quency equal to eight times the expected data rate. The 
Line Active flag [LA] is asserted whenever an input tran­
sition is detected and will remain asserted as long as anoth­
er input transition is detected within 16 TCLK cycles. If an­
other transition is not detected in this time frame, [LA] will 
be de-asserted. The propagation delay from the occurrence 
of the edge to [LA] being set is approximately 1 transceiver 
clock cycle. This function is independent of the mode of 
operation of the transceiver; [LA] will continue to respond to 
input Signal transitions, even if the transmitter is activated 
and the receiver disabled. 
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If the receiver is not disabled by the transmitter or by assert­
ing [TRES], the decoder will adjust its internal timing to the 
incoming transitions, attempting to synchronize to valid bi­
phase-encoded data. When synchronization occurs, the bi­
phase clock will be extracted and the serial NRZ (Non-Re­
turn to Zero) data will be analyzed for a valid start se­
quence, see Figure 3-2(b). The minimum number of line 
quiesce bits required by the receiver logic is selectable via 
the Receiver Line Quiesce [RLQ] control bit. If this bit is set 
high (the power-up condition), three line quiesce bits are 
required; if set low, only two are needed. Once the start 
sequence has been recognized, the receiver asserts the 
Receiver Active flag [RA] and enables the error detection 
circuitry. The propagation delay from the occurrence of the 
mid-bit edge of the sync bit in the starting sequence to [RA] 
being set is approximately 3 transceiver clock cycles. 

The NRZ serial bit stream is now clocked into a serial to 
parallel shift register and analyzed according to the expect­
ed data pattern as defined by the protocol. If no errors are 
detected by the word parity bit, the parallel data (up to a 
total of 11-bits, depending on the protocol) is passed to the 
first location of the FIFO. It then propagates asynchronously 
to the last location in approximately 40 ns, at which time the 
Data Available flag [DAV] is asserted, indicating to the CPU 
that valid data is available in the FIFO. The propagation 
d~lay from the occurrence of the mid-bit edge of the parity 
bit of the frame to [DAV] being set is approximately 5 trans­
ceiver clock cycles. 

Of the possible 11-bits in the last location of the FIFO, a-bits 
(data byte) are mapped into {RTR I and the remaining bits 
(if any) are mapped into the Transceiver Status Register 
{TSR [2-0] I. The CPU accesses the data byte by reading 
{RT~ I, and the 5250 address field or 3270 control bits by 
reading {TSR J. When reading the FIFO, it is important to 
note that {TSRI must be read before {RTRI. since reading 
{RTRI advances the FIFO. Once [DAV] has been recog­
nized as set by the CPU, the data can be read by any in­
struction with {RTR] as the source. All instructions with 
{RTRI as the source (except BIT, CMP, JRMK, JMP reg-
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FIGURE 3-8. Timing of Receiver Flags Relative to Incoming Data 

ister, LJMP conditional, and LCALL conditional) wi" result in 
popping the last location of the FIFO, presenting a new 
word (if present) for future CPU access. Data in the FIFO 
wi" propagate from one location to the next in approximate­
ly 10-15 ns, therefore the CPU is easily able to unload the 
FIFO with a set of consecutive instructions. 

If the received bit stream is a multi-byte message, the re­
ceiver wi" continue to process the data and load the FIFO. 
After the third load (if the CPU has not accessed the FIFO), 
the Receive FIFO Fu" flag [RFF] wi" be asserted. The prop­
agation delay from the occurrence of the mid-bit edge of the 
parity bit of the frame to [RFF] being set is approximately 5 
transceiver clock cycles. If there are more than 3 frames in 
the incoming message, the CPU has approximately one 
frame time (sync bit to start of parity bit) to start unloading 
the FIFO. Failure to do so wi" result in an overflow error 
condition and a resulting loss of data (see Receiver Errors). 

If there are no errors detected, the receiver wi" continue to 
process the incoming frames until the end of message is 
detected. The receiver wi" then return to an inactive state, 
clearing [RA] and asserting the Line Turn-Around flag, 
[L TA] indicating that a message was received with no er­
rors. The propagation delay from the occurrence of the 
edge starting the first minicode violation to [RA] cleared and 
[L T A] set is approximately 17 transceiver clock cycles in 
3270, 3299, and 8-bit modes. In 5250 modes, the assertion 
of [L T A] and clearing of [RA] are dependent on how the 
transmission line ends after the transmission of the three 
required fill bits (see 5250 Modes). For the 3270 and 3299 
protocols, [LTA] can be used to initiate an immediate trans­
mitter FIFO load; for the other protocols, an appropriate re­
sponse delay time may be needed. [L T A] is cleared by load­
ing the transmitter's FIFO, writing a one to [L T A] in the Net­
work Command flag register, or by asserting [TRES]. 

Receiver Errors 

If the Receiver Active flag, [RA], is asserted by the receiver 
logic, the selected receiver input source is continuously 
checked for errors, which are reported to the CPU by assert­
ing the Receiver Error flag, [RE], and setting the appropri­
ate receiver. error flag in the Error Code Register {ECR I. If a 
condition occurs which results in multiple errors being creat­
ed, only the first error detected wi" be latched into {ECR I . 
Once an error has been detected and the appropriate error 
flag has been set,· the receiver is disabled, clearing [RA] 
and preventing the Line Turn-Around flag and interrupt 

1-97 

[L TA] from being asserted. The Line Active flag [LA) re­
mains asserted if signal transitions continue to be detected 
on the input. 

5 error flags are provided in {ECR I : 

7 6 5 4' 3 2 0 

I rsv I rsv I rsv 1 OVF 1 PAR. 1 IES 1 LMBT RDIS 

[OVF] Overflow-Asserted when the decoder writes to 
the first location of the FIFO while [RFF] is assert­
ed. The word in the first location wi" be over-writ­
ten; there wi" be no effect on the last two loca­
tions. 

[PAR) Parity Error-Asserted when a received frame 
fails an even (word) parity check. 

[IES] Invalid Ending Sequence-Asserted. during·· an 
expected end sequence when an error occurs in 
the mini code-violation. Not valid in 5250 modes. 

[LMBT] Loss of Mid-Bit Transition-Asserted when the 
expected biphase-encoded mid-bit transition does 
not occur within the expected window. Indicates.a 
loss of receiver synchronization. 

[RDIS] Receiver Disabled While Active-Asserted when 
an active receiver is disabled by the transmitter be­
ing activated. 

To determine which error has occurred, the CPU must read 
{ECR I. This is accomplished by asserting the Select Error 
Codes control bit, [SEC), and reading {RTR!. The {ECR} is 
only 5 bits wide, therefore the upper 3 bits are still the out­
put of the receive FIFO (see Figure 3-6). A" instructions with 
{ECRI as the source (except BIT, CMP, JRMK, JMP regis­
ter, LJMP conditional, and LCALL conditional) wi" clear the 
error condition and return the receiver to idle, allowing the 
receiver to again monitor the incoming data stream for a 
new start sequence. The [SEC] control bit must be de-as­
serted to read the FIFO's data from {RTR!. 

If data is present in the FIFO when the error occurs, the 
Data Available flag [DAV] is de-asserted when the error is 
detected and re-asserted when {ECR I is read. Data pres­
ent in the FIFO before the error occurred is still available to 
the CPU. The flexibility is provided, therefore, to read the 
error type and still recover data loaded into the FIFO before 
the error occurred. The Transceiver Reset, [TRES] can be 
asserted at any time, clearing both Transceiver FIFOs and 
the error flags. 

.. 



3.0 Transceiver (Continued) 

3.2.3 Transceiver Interrupts 

The transceiver has access to 3 CPU interrupt vectors, one 
each for the transmitter and receiver, and a third, the Line 
Turn-Around interrupt, providing a fast turn around capability 
between receiver and transmitter. The receiver interrupt is 
the CPU's highest priority interrupt (excluding NMI), fol­
lowed by the transmitter and Line Turn-Around interrupts, 
respectively. The three interrupt vector addresses and a full 
description of the interrupts are given in Table 3-2. 

The receiver interrupt is user-selectable from 4 possible 
sources (only 3 used at present) by specifying a 2-bit field, 
the Receiver Interrupt Select bits [RIS1-0] in the Interrupt 
Control Register (lCR}. A full description is given in Table 
3-3. 

The RFF + RE interrupt occurs only when the receive FIFO 
is full (or an error is detected). If the number of frames in a 
received message is not exactly divisible by 3, one or two 
words could be left in the FIFO at the end of the message, 
since the CPU would receive no indication of the presence 
of that data, it is recommended that this interrupt be used 
together with the line turn-around interrupt, whose service 
routine can include a test for whether any data is present in 
the receive FIFO. 

For additional information concerning interrupts, refer to 
Sections 2.1.1.3, Interrupt Control Registers, and 2.2.3, In­
terrupts. 

3.2.4 Protocol Modes 

3270/3299 Modes 

As shown in Table 3-1, the transceiver can operate in 4 
different 3270/3299 modes, to accommodate applications 
of the BCP in different positions in the network. The 3270 
mode is designed for use in a device or a controller which is 
not in a multiplexed environment. For a multiplexed network, 
the 3299 multiplexer and controller modes are designed for 
each end of the controller to multiplexer connection, the 
3299 repeater mode being used for an in-line repeater situ­
ated between controller and multiplexer. 

For information on how parallel data loaded into the trans­
mit FIFO and unloaded from the receive FIFO maps into the 
serial bit positions, see Figure 3-9. 

To transmit a frame, (TCR [3-0] I must first be set up with 
the correct control information, after which the data byte 
can be written to (RTR I. The resulting composite 12-bit 
word is loaded into the transmit FIFO where it propagates 
through to the last location to be loaded into the encoder 
and formatted for transmission. 

When formatting a 3270 frame, (TCR [2] I controls whether 
the transmitter is required to format a data frame or a com­
mand frame. If (TCR [2] I is low, the transmitter logic calcu-

TABLE 3-2. Transceiver Interrupts 

Interrupt 

Receiver 

Transmitter 

Line Turn-Around 

Vector Address 

000100 

001000 

001100 

Description 

User selectable from 4 possible sources, see Table 3-3. 

Set when [TFE] asserted, indicating that the transmit FIFO is empty, cleared by 
writing to (RTR}. Note: [TRES] causes [TFE] to be asserted. 

Set when a valid end sequence is detected, cleared by writing to (RTR I, writing 
a one to [L TAl. or asserting [TRES). In 5250 modes, interrupt is set when the 
last fill bit has been received and no further input transitions are detected. Will 
not be set in 5250 or 8-bit non-promiscuous modes unless an address match 
was received. 

The interrupt vector is obtained by concatenating I I I I I I I I 
(lBRI with the vector address as shown: . IBR 

I I I I I I interrupt 
vector address . vector 

Interrupt 

RFF+RE 

DAV+RE 

Not Used 
RA 

RIS1,0 

00 

01 

10 
1 1 

15 8 5 0 

TABLE 3-3. Receiver Interrupts 

Description 

Set when [RFF] or [RE] asserted. If activated by [RFFl, indicating that the 
receive FIFO is full, interrupt is cleared by reading from (RTR I. If activated by 
[RE], indicating that an error has been detected, interrupt is cleared by reading 
from (ECRI. 
Set when [DAV] or [RE] asserted. If activated by [DAV], indicating that valid 
data is present in the receive FIFO, interrupt is cleared by reading from (RTR I. If 
activated by [RE], indicating that an error has been detected, interrupt is cleared 
by reading from (ECR I. 
Reserved for future product enhancement. 
Set when [RA] asserted, indicating the receipt of a valid start sequence, cleared 
by reading (ECR I or (RTR I. 

All receiver interrupts can be cleared by asserting [TRESj. 
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3.0 Transceiver (Continued) 

lates odd parity on the data byte (82-89) and transmits this 
value for 810. If (TCR [211 is high, 810 takes the state of 
(TCR [O]}. Odd Word Parity [OWP] controls the type of 
parity calculated on 81-811 and transmitted as 812, the 
frame delimiter. If [OWP] is high, odd parity is output; other­
wise even parity is transmitted. In this manner the system 
designer is provided with maximum flexibility in defining the 
transmitted 3270 control bits (810-812). 

When data is written to (RTR}, the least significant 4 bits of 
(TCR} are loaded into the FIFO along with the data being 

7 6 5 4 3 2 1 0 

~I~I~I~I~I~I~I~I~I 

T 
transmit 

* Coax transmission 
Sync 07 06 05 04 03 02 

Starting Sequence 

T 
receive 

7 6 5 4 3 2 1 0 

~I~I~I~I~I~I~I~I~I 
* 

written to (RTR}. The same (TCR} contents can therefore 
be used for more than one frame of a multi-frame transmis­
sion, or changed for each frame. 

When a 3270 frame is received and decoded, the decoder 
loads the parallel data into the receive FIFO where it propa­
gates through to the last location and is mapped into I RTR} 
and ITSR}. 8its 82-811 are exactly as received; 8yte Pari­
ty [8P] is odd parity on 82-89, calculated in the decoder. 
Reading I RTR} will advance the receive FIFO, therefore 
ITSR} must be read first if this information is to be utilized. 

5 4 3 1 

lowpi 0 I BIll Il~:t8) 
7 5 4 3 2 1 0 

lowpi I BIll Bl0 Il;:mmand) 

01 00 R C/O Par 

additional end 
frames or sequence 

7 5 4 3 2 1 0 
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(a) 3270 Data and Command Frames 
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(b) 3299 Address Frame 
FIGURE 3-9. 3270/3299 Frame Assembly/Disassembly Procedure 
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3.0 Transceiver (Continued) 

When· formatting a 3299 address frame, the procedure is 
the same as for a 3270 frame, with {RTR [7-2] I defining 
the address to be transmitted. The only bit in {TCR I which 
has any functional, meaning in this mode is [OWP], which 
controls the type of parity required on 81-88. Similarly, 
when. the receiver de-formats a 3299 address frame the 
received address bits are loaded into {RTR [7-2]1; {'RTR 
[1-:0] I and {TSR [2-0] I are undefined. 

The POLL" POLL! ACK and TT / AR flags in. the Network 
Command Flag Register are valid only in 3270 and 3299 
(excluding the 3299 address frame) modes. These flags are 
decodes of their respective coax commands as defined in 
Table 3-4. The Data Error or Message End [DEME] flag 
(also in the {NCF I register) indicates different information 
depending on the selected protocol. In 3270 and 3299, 
[DEME] is set when 810 of the received frame does not 
match the locally generated odd parity on bits 82-89 of the 
received frame. [DEME] is not part of the receiver error 
logic, it functions only as a status flag to the CPU. These 
flags are decoded from the last location in the FIFO and are 
valid only when [DAV] is asserted; they are cleared by read­
ing {RTR I and must be checked before advancing the re­
ceiver FIFO. 

5250 Modes 

The biphase data is inverted in the 5250 protocol relative to 
3270/3299 (see the Protocol section-18M 5250). Depend­
ing on the external line interface circuitry, the transceiver's 
biphase inputs and outputs may need to be inverted by as­
serting the [RIN] (Receiver INvert) and [TIN] (Transmitter 
INvert) control bits in {TMRI. 

For information on how data must be organized in {TCRI 
and {RTR I for input to the transmitter, and how data ex­
tracted from a received frame is organized by the' receiver 
and mapped into {TSRI and {RTR}, see Figure 3-10. 

To transmit a 5250 message, the least significant 4 bits of 
{TCR I must first be set up with the correct address and 
parity control information. The station address field (84-86) 
is defined by {TCR[2-0]}, and [OWP] controls the type of 
parity (even or odd) calculated on 84-815 and transmitted 
as 83. When the 8-bit data byte is written to {RTR I, the 
resulting composite 12-bit word is loaded into the transmit 
FIFO, starting the transmitter. The same {TCRI contents 
can be used for more than one frame of a multi-frame trans­
mission,or changed for each frame. 

The 5250 protocol defines bits 80-82 as fill bits which the 
transmitter automatically appends to the parity bit (83) to 

TABLE 3-4. Decode of 3270 Coax Commands 

B2 
o 
X 
X 

B3 
o 
X 
X 

B4 
o 
X 
X 

B5 
o 
1 
o 

Received Word 

B6 
o 
o 
o 

B7 
o 
o 
o 

B8 
o 
o 
o 

B9 
o 
1 
1 

B10 
0 
X 
X 

Flag Description 

B11 
0 RAR TT / AR (Clean Status) Received 
1 ACK POLL! ACK Command Received 
1 POLL POLL Command Received 

All flags cleared by reading I RTR I. 

7 6 5 4 3 2 1 0 7 '6 5 4 3 2 1 0 
RTR I 871 881 89181018111812181318141 I I I I lowpi 84 I 85 I 86 I TCR 

l~ _________________________ r ________________________ ~J 
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! 
7 6 5 4 3 2 1 0 

RTR 187188189181018111812181318141 

7 6 543 2 1 0 

I I I I I I 84-1 85 I 86 I TCR 

FIGURE 3-10. 5250 Frame Assembly/Disassembly Description 
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3.0 Transceiver (Continued) 

form the 16-bit frame. Additional fill bits may be inserted 
between frames of a multi-frame transmission by loading 
the fill bit register, {FBR I, with the one's complement of the 
number of fill bits to be transmitted. A value of FF (hex), 
corresponds to the addition of no extra fill bits. At the con­
clusion of a message the transmitter will return to the idle 
state after transmitting the 3 fill bits of the last frame (no 
additional fill bits will be transmitted). 

As shown in Table 3-1, the transceiver can operate in 2 
different 5250 modes, designated "promiscuous" and "non­
promiscuous". The transmitter operates in the same man­
ner in both modes. 

In the promiscuous mode, the receiver passes all received 
data to the CPU via the FIFO, regardless of the station ad­
dress. The CPU must determine which station is being ad­
dressed by reading {TSR [2-0] I before reading {RTRJ. 

In the non-promiscuous mode, the station address field 
(B4-B6) of the first frame must match the 3 least significant 
bits of the Auxiliary Transceiver Register, {ATR [2-0] l. be­
fore the receiver will pass the data on to the CPU. If no 
match is detected in the first frame of a message, and if no 
errors were found on that frame, the receiver will reset to 
idle, looking for a valid start sequence. If an address match 
is detected in the first frame of a message, the received 
data is passed on to the CPU. For the remainder of the 
message all received frames are decoded in the same man­
ner as the promiscuous mode. 

To maintain maximum flexibility, the receiver logic does not 
interpret the station address or command fields in determin­
ing the end of a 5250 message. The message typically ends 
with no further line transitions after the third fill bit of the last 
frame. This end of message must be distinguished from a 
loss of synchronization between frames of a multi-byte 
transmission condition by looking for line activity some time 
after the loss of synchronization occurs. When the loss of 
synchronization occurs during fill bit reception, the receiver 
monitors the Line Active flag, [LA], for up to 11 biphase bit 
times (11 p,s at the 1 MHz data rate). If [LA] goes inactive at 
any point during this period, the receiver returns to the idle 
state, de-asserting [RA] and asserting [LTA]. If, however, 
[LA] is still asserted at the end of this window, the receiver 
interprets this as a real loss of synchronization and flags the 
[LMBT] error condition to the CPU. (See Receiver Errors in 
this section.) 

In the 5250 modes, the Data-Error-or-Message-End [DEME] 
flag is a decode of the 111 station address (the end of mes­
sage delimiter) and is valid only when [DAV] is asserted. 
This function allows the CPU to quickly determine when the 
end of message has been received. 

The transmitter has the flexibility of holding TX-ACT active 
at the end of a 5250 message, thus reducing line reflections 
and ringing during this critical time period. The amount of 
hold time is programmable from 0 J-Ls to 15.5 p,s in 500 ns 
increments (assuming TCLK is 8 MHz), and is set by writing 
the selected value to the upper 5-bits of the Auxiliary Trans­
ceiver Register, {ATR [7-3] J. 

General Purpose 8·Blt Modes 

As shown in Table 3-1, the transceiver can operate in 2 
different 8-bit modes, designated "promiscuous" and "non­
promiscuous". In the non-promiscuous mode, the first frame 
data byte (B2-B9) must match the contents of {ATR[7-0] I 
before the receiver will load the FIFO and assert [DAV]. If 
no match is made on the first frame, and if no errors were 
found on that frame, the receiver will go back to idle, looking 
for a valid start sequence. The address comparator logic is 
not enabled in the promiscuous mode, and therefore all re­
ceived frames are passed through the receive FIFO to the 
CPU. The transmitter operates in the same manner in both 
modes. 

The serial bit positions relative to the parallel data loaded 
into the transmit FIFO and presented to the CPU by the 
receiver FIFO are shown in Figure 3-11. To transmit a 
frame, the data byte is written to {RTR I, loading the trans­
mit FIFO where it propagates through to the last location to 
be loaded into the encoder and formatted for transmission. 
Only [OWP] in {TCRI is loaded into the transmitter FIFO in 
both protocol modes; {TCR [2-0] I are don't cares. B10 is 
defined by a parity calculation on B1-B9; odd if [OWP] is 
high and even if [OWP] is low. 

When a frame is received, the decoder loads the processed 
data into the receive FIFO where it propagates through to 
the last location and is mapped into {RTR I. All bits are 
exactly as received. Reading the data is accomplished by 
reading {RTRI. {TSR [2-0]} are undefined in the 8-bit 
modes. 

7 6 5 432 1 0 

rnl~I~I~I~I~IMI~I~1 

f 
transmit and receive 

Coax transmission 
DO 01 02 03 04 05 06 07 Par 

starting Sequence additional end 
frames or sequence 
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FIGURE 3·11. General Purpose 8·Blt Frame Assembly/Disassembly Procedure 
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3.0 Transceiver (Continued) 

3.2.5 Line Interface 

3.2.5.1 3270 Line Interface 

In the 3270 environment, data is transmitted between a con­
trol unit and a device via a single coax cable or twisted pair 
cable. The coax type is RG62AU with a maximum length of 
1 .. 5 kilometers. The twisted pair cable has become more 
prevalent to reduce cabling and routing costs. Typically, a 
24 AWG unshielded twisted pair is used to achieve the cost 
reduction goals. The length of the twisted pair cable is a 
minimum of 100 feet to a maximum of 900 feet. The 3270 
protocol utilizes a transformer to isolate the peripheral from 
the cabling system. 

An effective line interface design must be able to accept 
either coax or twisted pair cabling and compensate for 
noise, jitter and reflections in the cabling system. There 
must be an adequate amount of jitter tolerance to offset the 
effects of filtering and noise. Some filtering is needed to 
reduce ambient noise caused by surrounding hardware. 
Such filtering must not introduce transients that the receiver 
comparator translates into data jitter. 

An effective driver design should also attempt to compen­
sate fofthe filtering effects of the cable. Higher data fre­
quencies become attenuated more than lower frequency 
signals as cable length is increased, yielding greater dispari­
ty in the amplitudes of these signals. This effect generates 
greater jitter at the receiver. The 3270 signal format allows 
for a high voltage (predistorted) magnitude and a low volt­
age (nondistorted) magnitude within each data bit time. In­
creasing the predistorted-to-nondistorted signal level ratio 
counteracts the filtering phenomenon because the lower 
frequency signals contain less predistortion than do· higher 
frequency signals. Thus, the amplitude of the higher fre­
quency signals is "boosted" more than the lower frequency 
signals. Unfortunately, a low signal level is more susceptible 
to reflection-induced errors at short cable length. Proper im­
pedance matching and slower edge rates must be utilized to 
eliminate as much reflection as possible at these lengths. 

Additionally, shielded or balanced operation must be ade­
quately supported. Shielded operation implies the use of 
coax cable, where balanced implies the use of twisted pair 
cable. Proper termination should be employed, and a termi­
nation slightly greater than the characteristic impedance of 
theline may actually provide more desirable waveforms 

Legend 

o To coax/twisted pair front end 

@ To line driver circuitry 

© To BCP comparator 

Includes board capacitance 

than a perfectly matched termination. Board layout should 
make the comparator lines as short as possible. Lines 
should be placed closely together to avoid the introduction 
of differential noise. These lines should not pass near 
"noisy" lines. A ground plane should isolate all "noisy" 
lines. 

BCP Design 

The line interface design for the receiver is shown in Figure 
3-12. An offset of approximately 17 mV separates the com­
parator inputs, making the receiver more immune to ambi~ 
ent noise present on the circuit board. A 2: 1:1 (arranged as 
a 3:1) transformer increases any voltage sensitivity lost by 
introducing the offset: A bandpass filter is employed to re­
duce edge rate to the comparator and eliminate ambient 
noise. The bandwidth (30 kHz to 30 MHz) was chosen to 
provide sufficient attenuation for noise while producing mini­
mum data jitter. 

The driver design, Figure 3-13, incorporates a National 
Semiconductor OS3487 and a resistor network to generate 
the· proper signal levels. The predistorted-to-riondistorted 
ratio was chosen to be about 3 to 1. The coax/twisted pair 
front end, Figure 3-14, includes an AOC brand connector to 
switch between coax and twisted pair cable. The coax inter­
face has the shield capacitively coupled to ground. The 
5100 resistor and the filter loading produce a termination of 
about 950. The twisted pair interface balances both lines 
and possesses an input impedance of about 1000. This 
termination is somewhat higher than the characteristic im­
pedance (about 960) of twisted pair. Terminations of this 
type produce reflections that do not tend to generate mid-bit 
errors. Such terminations have the benefit of creating a larg­
er voltage at the receiver over longer cable lengths. For a 
more detailed explanation of· the 3270 line interface, see 
Application Note "A Combined Coax/Twisted Pair 3270 
Line Interface for the OP8344 Biphase Communications 
Processor'" 

3.2.5.2 5250 Line Interface 

The 5250 environment utilizes twinax in a multi-drop config­
uration, where eight devices can be "daisy-chained" over a 
total distance of 5,000 feet and eleven splices, (each physi­
cal device is considered a splice). Twinax connectors are 
bulky and expensive, but are very sturdy. Twinaxial cable is 
a shielded twisted pair that is nearly % of an inch thick. 

+5V 

+ ALG-IN 

- ALG-IN 

TL/F/9336-G1 

FIGURE 3-12. BCP Receiver Design 

1-102 



3.0 Transceiver (Continued) 
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FIGURE 3·13. BCP Driver Design 
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TL/F/9336-G3 

FIGURE 3·14. BCP Coax/Twisted Pair Front End 

The cable shield must be continuous throughout the trans­
mission system, and be grounded at the system unit and 
each station. Since twinax connectors have exposed metal 
connected to their shield grounds, care must be taken not to 
expose them to noise sources. The polarity of the two inner 
conductors must also be maintained throughout the trans­
mission system. 

The transmission system is implemented in a balanced cur­
rent mode; every receiver/transmitter pair is directly cou­
pled to the twinax at all times. Data is impressed on the 
transmission line by unbalancing the line voltage with the 
driver current. The system requires passive termination at 
both ends of the transmission line. The termination resist­
ance value' is given by: 

Rt = 20/2; where 

Rt: Termination Resistance 

20: Characteristic Impedance 

In practice, termination is accomplished by connecting both 
conductors to the shield via 54.9.0, 1 % resistors; hence the 
characteristic impedance of the twinax cable of 107.0 ± 5% 
at 1.0 MHz. Intermediate stations must not terminate the 
line; each is configured for "pass-through" instead of "ter­
minate" mode. Stations do not have to be powered on to 
pass twinax signals on to other stations; all of the receiver/ 
transmitter pairs are DC coupled. Consequently, devices 
must never output any signals on the twinax line during pow­
er-up or down that could be construed as data, or interfere 
with valid data transmission between other devices. 
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, Driver Circuits for the DP8344B 

The transmitter interface on the DP8344B is sufficiently 
general to allow use in 3270, 5250, and 8·bit transmission 
systems. Because of this generality, some external hard­
ware is needed to adapt the outputs to form the signals 
necessary to drive the twinax line. The chip provides three 
signals: DATA-OUT, OAT A-DL Y and TX-ACT. DATA-OUT is 
biphase serial data (inverted). DATA-DLY is the biphase se­
rial data output (non-inverted) delayed one-quarter bit-time. 
TX-ACT, or transmitter active, signals that serial data is be­
ing transmitted when asserted. DATA-OUT and DATA-DL Y 
can be used to form the A and B phase signals with their 
three levels by the circuit shown in Figure 3-15. TX-ACT is 
used as an external transmitter enable. The, BCP can invert 
the sense of the DATA-OUT and DATA-OLY signals by as­
serting [TIN] {TMR[3] l. This feature allows both 3270 and 
5250 type biphase data to be generated, and/or utilization 
of inverting on non-inverting transmitter stages. 

Drivers for the 5250 environment may not place any signals 
on the transmission system when not activated. The power­
on and off conditions of,' drivers must be prevented from 
causing noise on the system since other devices may be in 
operation. Figure 3-15 shows a"DC power good" signal 
, enabling the driver circuit. This signal will lock out conduc­
tion in the drivers if the supply voltage is out of tolerance. 

Twinax signals can be viewed as consisting of two distinct 
phases, phase A and phase B, each with three levels, off, 
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3.0 Transceiver (Continued) 

high and low. The off level corresponds with 0 mA current 
being driven, the high level is nominally 62.5 mA, + 20% 
-30%, and the low level is nominally 12.5 mA, +20% 
-30%. When these currents are applied to a properly ter-
minated transmission line the resultant voltages impressed 
at the driver are: off level is OV, low level is 0.32V ±20%, 
high level is 1.6V ± 20%. The interface must provide for 
switching of the A and B phases and the three levels. A bi­
modal constant current source for each phase can be built 
that has a TTL level interface for the BCP. 

Receiver Circuits 

The pseudo-differential mode of the twinax signals make 
receiver design requirements somewhat different than the 
coax 3270 world. Hence, the analog receiver on the BCP is 
not well suited to receiving twinax data. The BCP provides 
both analog inputs to an on-board comparator circuit as well 
as a TTL level serial data input, DATA-IN. The sense of this 
serial data can be inverted by the BCP by asserting [RIN], 
ITMR[41l. 

The external receiver circuit must be designed with care to 
ensure reliable decoding of the bit-stream in the worst envi­
ronment. Signals as small as 100 mV must be detected. In 
order to receive the worst case signals, the input level 
switching threshold or hysteresis for the receiver should be 
nominally 29 mV ± 20%. This value allows the steady state, 
worst case signal level of 100 mV ± 66% of its amplitude 
before transitioning. 

DATA-OUT 0---.-----..... -1-......-1 

TX-ACT 

PWR-GOOD ~---f---I 

75112 
11 

Vee- lY 
lA lZ 
19 

lC 
27mA 

D 

2A 
74ALS810 29 2Y 

2C 2Z 
DATA-DLY O----~" 

To achieve this, a differential comparator with complemen­
tary outputs can be applied, such as the National LM361. 
The complementary outputs are useful in setting the hyster­
esis or switching threshold to the appropriate levels. The 
LM361 also provides excellent common mode noise rejec­
tion and a low input offset voltage. Low input leakage cur­
rent allows the design of an extremely sensitive receiver, 
without loading the transmission line excessively. 

In addition to good analog design techniques, a low pass 
filter with a roll-off of approximately 1 MHz should be ap­
plied to both the A and B phases. This filter essentially con­
ducts high frequency noise to the opposite phase, effective­
ly making the noise common mode and easily rejectable. 

Layout considerations for the LM361 include proper bypass­
ing of the ± 12V supplies at the chip itself, with as short as 
possible traces from the pins to 0.1 IlF ceramic capacitors. 
Using surface mount chip capacitors reduces lead induc­
tance and is therefore preferable in this case. Keeping the 
input traces as short and even in length is also important. 
The intent is to minimize inductance effects as well and 
standardize those effects on both inputs. The LM361 should 
have as much ground plane under and around it as possi­
ble. Trace widths for the input signals especially should be 
as wide as possible; 0.1 inch is usually sufficient. Finally, 
keep all associated discrete components nearby with short 
routing and good ground/supply connections. 

For a more detailed explanation of the 5250 line interface, 
see application note "Interfacing the DP8344 to Twinax." 
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FIGURE 3·15. 5250 Line Interface Schematic 
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4.0 Remote Interface and Arbitration System (RIAS) 
INTRODUCTION 

Communication with the BCP is based on the BCP's ability 
to share its data memory. A microprocessor (or any intelli­
gent device) can read and write to any BCP data location 
while the BCP CPU is executing instructions. This capability 
is part of the BCP's Remote Interface and Arbitration Sys­
tem (RIAS). Sharing data memory is possible because 
RIAS's arbitration logic allocates use of the BCP's data and 
address buses. RIAS has been designed so that accesses 
of BCP data memory by another device minimally impact its 
performance as well as the BCP's. In addition to data mem­
ory accesses, RIAS allows another device to control how 
BCP programs are loaded, started and debugged. 

4.1 RIAS ARCHITECTURAL DESCRIPTION 

Interfacing to the BCP is accomplished with the control sig­
nals listed in Table 4-1. Figure 4-1 shows the BCP inter­
faced to Instruction Memory, Data Memory, and an intelli­
gent device, termed the Remote Processor (RP). Instruction 
and Data are separate memory systems with separate ad­
dress buses and data paths. This arrangement allows con­
tinuous instruction fetches without interleaved data access­
es. Instruction Memory (IMEM) is interfaced to the BCP 
through the Instruction (I) and Instruction Address (IA) bus­
es. IMEM is 16 bits wide and can address up to 64k memo­
ry. Data Memory (DMEM) is eight bits wide and can also 
address up to 64k memory. The DMEM address is formed 
by the 8-bit upper byte (A bus) and the a-bit lower byte (AD 
bus). The AD bus must be externally latched because it also 
serves as the path for data between the BCP and DMEM. 
For further information on how AD bus is used, refer to Sec­
tion 2.2.2 CPU Timing. 

The Remote Processor's address and data buses are con­
nected to the BCP's address and data buses through the 

bus control circuitry. The RP's address lines decode a chip 
select for the BCP called Remote Access Enable (RAE). 
Basically, the BCP's Data Memory has been memory 
mapped into the RP's memory. A Remote Access of the 
BCP occurs when REM-RD or REM-WR, along with RAE is 
asserted low. REM-RD and REM-WR can be directly con­
nected to the Remote Processor's read and write lines, or 
for more complicated systems the REM-AD and REM-WR 
signals may be controlled by a combination of address de­
code and the RP's read and write signals. To the RP, an 
access of the BCP will appear as any other memory system 
access. This configuration allows the RP to read and write 

. Data Memory, read and write the BCP's Program Counter, 
and read and write BCP Instruction Memory. These func­
tions are selected by control bits in the Remote Interface 
Configuration register! RIC I. This register can be accessed 
only by the RP and not by the BCP CPU. If the Remote 
Processor executes a remote access with the Command 
input (CMD) high, !RICI is accessed ,through the BCp's AD 
bus. 

In Figure 4-1, the Remote Processor's address lines are 
decoded to form the CMD input. When a remote access 
takes place with CMD low, the memory system designated 
in !RICI is accessed. Figure 4-2 shows the contents of 
!RICI. The two least significant bits are the Memory Select 
bits [MS1-0] which designate the type of reinote access: to 
Data Memory, the Program Counter, or Instruction Memory. 
This register also contains the BCP start bit [STRT], three 
interface select bits [FBW, LR, LW], the Single-Step bit 
[SS], and the Bi-directional Interrupt Status bit [BIS]. Refer 
to the RIAS Reference Section for a more detailed descrip­
tion of the contents of this register and the function of each 
bit. 

IAl========~~AD;D;R --I 
INSTR 

tc===============~DATA RAM 

REMOTE 
PROCESSOR 

ViR 

DE 
1--------.-,~IViR 

J=======:::;;==:::;;::::~ADDR DATA 
RAM 

DATA t:;::::======:::J 

ADDRI=======~ 

FIGURE 4·1. BCP/Remote Processor Interface 
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4.0 Remote Interface and Arbitration System (RIAS) (Continued) 

TABLE 4-1. RIAS Inputs and Outputs 

Signal In/Out Pin 
Reset 

Function 
State 

CMD In 45 X CoMmanD input. When high, remote accesses are directed to the 
Remote Interface Configuration register, (RICI. When low, remote 
accesses are directed to Data Memory, Instruction Memory or the 
Program Counter as determined by (RIC [1,0] I. 

m Out 31 0 loCal. Normally low, goes high when the BCP relinquishes the data 
and address bus to service a remote access. 

'['(5CK In 44 X Asserting this input Low will lOCK out local (BCP) accesses to Data 
Memory. Once the remote processor has been granted the bus, 
lOCK gives it sole access to the bus and BCP accesses are 
"waited". 

'RAE In 46 X Remote Access Enable. Setting this input low allows host access of 
BCP functions and memory. 

REM-RD In 47 X REMote ReaD. When low along with RAE, a remote read cycle is 
requested; serviced by the BCP when the data bus becomes 
available. 

REM-WR In 48 X REMote WRite. When low along with RAE, a remote write cycle is 
requested; serviced by the BCP when the data bus becomes 
available. 

WR·PEND Out 49 1 WRite PENDing. In a system configuration where remote write 
cycles are latched, WR·PEND will go low, indicating that the latches 
contain valid data which have yet to be serviced by the BCP. 

XACK Out 50 1 Transfer ACKnowledge. Normally high, goes low on REM-RD or 
REM-WR going low (if RAE low) returning high when the transfer is 
complete. Normally used as a "wait" signal to a remote processor. 
(In the latched Write mode, XACK will only transition if a second 
remote access begins before the first one completes.) 

WAIT In 54 X Asserting this input low will add wait states to both remote accesses 
and to the BCP instruction cycle. WAIT will extend a remote access 
until it is set high. 

7 6 5 4 3 2 1 0 The two key handshake signals involved in the BCP/RP 

I BIS I SS I FBW I LR I LW I STRT I MS1 I MSO I RIC 
interface are Transfer Acknowledge (XACK) and Local 
(LCL). Internally, two more signals control the access tim· 

BIS -Bidirectional Interrupt Status ing: INT·READ and INT-WRITE. The timing for a generic 

SS -Single-Step 
Remote Access is shown in Figure 4-3. A remote access is 

FBW -Fast Buffered Write mode REHDM~ : : r-
lR -Latched Read mode 

j > 
REt.I-WR 

LW -Latched Write mode XACK 

STRT -BCP CPU start/ stop 
, , 

I: ! 
MS1-0 -Memory Selection 

[C[ , \ , 
1 , 

FIGURE 4-2. Remote Interface Control Register INT- READ or , \ '/ I INT-WRITE , ; , 
4.1.1 Remote Arbitration Phases Arbitration 

, 
Access 

I __ J 

Termination 

The BCP CPU and RIAS share the internal CPU-ClK. This TLIF/9336-20 

clock is derived from the X1 crystal input. It can be divided FIGURE 4-3. Generic Remote Access (RAE = 0) 
by two by setting [CCS] = 1 in (OCR I or run undivided by initiated by the RP asserting REM-RD or REM-WR with RAE 
setting [CCS] = O. The frequency at which the Remote low. There is no set-up/hold time relationship between RAE 
Processor is run need not bear any relationship to the CPU- and REM-RD or REM-WR. These signals are internally gat-
ClK. A remote access is treated as an asynchronous event ed together such that if RAE (REM-RD + REM-WR) is true, 
and data is handshaked between the Remote Processor a remote access will begin. A short delay later, XACK will 
and the SCPo fall. This signal can be fed back to the RP's wait line to 

extend its read or write cycle, if necessary. When the BCP's 
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4.0 Remote Interface and Arbitration System (RIAS) (Continued) 

arbitration logic determines that the BCP is not using data 
memory, lCl rises, relinquishing control of the address and 
data buses to the RP. The remote access can be delayed at 
most one BCP instruction (providing [lOR] is not set high). 
If the CPU is executing a string of data memory accesses, 
RIAS has an opportunity to break in at the completion of 
every instruction. The time period between REM-RD or 
REM-WR being asserted (with RAE low) and [C[ rising is 
called the Arbitration Phase. It is a minimum of one T-state, 
but can be increased if the BCP CPU is accessing Data 
Memory (local access) or if the BCP has set the lock Out 
Remote bit [lOR]. 

The CMD pin is internally latched on the first falling edge of 
the CPU-ClK after a remote access has been initiated by 
asserting RAE low along with asserting REM-RD or 
REM-WR low. If the remote interface is asynchronous, the 
CMD signal must be valid simultaneously or before RAE is 
asserted low along with REM-RD or REM-WR being assert­
ed low. The value of CMD is only sampled once during each 
remote access and will remain in effect for the duration of 
the remote access. 

After the Arbitration Phase has ended, the Access Phase 
begins. Either Data Memory, Instruction Memory, the Pro­
gram Counter, or (RIC! is read or written in this phase. 
Either INT-READ or INT-WRITE will fall one T-state after 
[C[ rises. These two signals provide the timing for the dif­
ferent types of accesses. INT-READ times the transitions on 
the AD bus for Remote Reads and forms the external READ 
line. INT-WRITE clocks data into the PC and (RIC! and 
forms the IWR and WRITE lines. INT-READ and INT-WRITE 
rise with XACK, or shortly after. 
The duration of the Access Phase depends on the type of 
memory being accessed. Data Memory and Instruction 
Memory accesses are subject to any programmed wait 
states and all remote accesses are waited by asserting 
WAIT low. The minimum time in the Access Phase is 2 
T-states. 

The rising edge of XACK indicates the Access Phase has 
ended and the Termination Phase has begun. If the RP was 
doing a read operation, this edge indicates that valid data is 
available to the RP. During the Termination Phase the BCP 
is regaining control of the buses. [C[ falls one T-state after 
XACK and since the RP is no longer being waited, it can 
deassert REM-RD or REM-WR. The duration of this phase 
is a minimum of one T-state, but can be extended depend­
ing on the interface mode chosen in (RIC!. 

4.1.2 Access Types 
There are four types of accesses an RP can make of the 
BCP: 

-Remote Interface Control Register (RIC! 
-Data Memory (DMEM) 
-Program Counter (PC) 
-Instruction Memory (IMEM) 

An access of (RIC! is accomplished by asserting RAE and 
REM-RD or REM-WR with the CMD pin asserted high. The 
Remote Interface Configuration register is accessed 
through the AD bus as shown in Figure 4-4(c). A read or 
write of (RIC! can take place while the BCP CPU is execut­
ing instructions. Timing for this access is shown in Figures 
4-4(a) and (b). Note that in the Remote Read Figure 4-4(a), 
AD does not transition. This is because the contents of 
( RIC! are active on the bus by default. The AD bus is in 
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TRI-STATE during a Remote Write Figure 4-4(b) while [C[ 
is high. The byte being written to (RIC! is latched on the 
rising edge of XACK and can be seen on AD after [C[ falls. 

The Access Phase, in this case, is always two T-states (un­
less WAIT is low) because (RIC! is not subject to any pro­
grammed wait states. 

Arbitration Access Termination 

REt.I-RD ~'--_...I. ____ .....a.. __ -J~ 

WllZ 
XACK ,'---'----......,/ 

LCL ____ ..I/ ''---
AD RIC 

TLIF/9336-BO 

(a) Remote Read Timing (RAE = 0) 

Arbitration Acc.ss Termination 
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XACK 
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(b) Remote Write Timing (RAE = 0) 

(c) RIC to AD Connectivity 

FIGURE 4-4. Generic RIC Access 
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4.0 Remote Interface and Arbitration System (RIAS).(Continued) ~ 
('t) 
co 
D.. 
c' 

Remote Accesses other than ,to {RIC I are. accomplished 
with the CMD pin low in conjunction with asserting RAE low 
along with REM-WR or REM-RD being taken low. The type 
of access performed is defin~d by the Memory Select bits in 
{RICl, as shown in Figure 4-5. 

76543210 

I BIS I,~s I FBW I LRILW 1ST l MS1! MSOJ 

. Memory Select Bits 
00 - Data Memory 
01 - Instru'ction M~mory 
10 - PC low byte 
11 - PC high byte' 

FIGURE 4~5:Merriory' Select Bits in {RIC I 
Re~ds or ~rites of Data Memory (DMEM) are preceded by 
setting the Memory Select bits in {RICI for a DMEM ac­
cess: [MS1,O] = OO."After that, the· RP simply reads or 
writes to BCP Data Memory as many times as it needs to. A 
DMEM access, as well as a (RICI access, can be made 
while the BCP CPLJ: i.s executing instructions. All other ac­
cesses must be executed with' the BCP CPU stopped. 

The timing for a Data Memory read and write are shown in 
Figure 4-6. The access is initiated by asserting RAE and 
REM-RD or REM-WR while CMD is low. The BCP responds 
by bringing its address and data lines into TRI-STATE and 
allowing the RP to control DMEM. READ is asserted in the 
Acces~ Phase of a Remote Read Figure 4-6(a).lt will stay 
low.for a minimum of one T-state, but can be extended by 
adding programmable data waif states or by taking WAIT 
low. WRITE is asserted in the Access Phase with a remote 
write. It too is a minimum of one T-state and can be in­
creased by adding programmable wait states or by taking 
WAIT I.ow. \. . ", 

Figure 4-7(c) shows the data path from the Progra~ Coun­
ter to the AD bus. Both high and. low PC bytes can be writ­
ten or read through AD. The RP has independent control of 
the high. and low bytes' of the Program Counter....:the· byte 
being ac~~ssed is specified in the Memory Select bits. The 
high byte, of the. PC is accessed by setting [MS1-0] = 11. 
Setting [MS1-0] = 10 allolNs access to the low byte of the 
PC"After the Memory Select bits are set by a Remote Write 
to {RIC I; the byte selected can be read or written by the RP 
by executing a Remote Access with CMD low. Remote ac­
cesses t~ both the high and low bytes of the PC;as well as 
the instruction memory access must be executed with the 
BCP CPU· idle.' Four accesses by the RP are ,necessary to 
read or write both the high and low bytes of the PC. Timing 
for a PC access is shown in Figure 4-7(a) and (b). The PC 
becomes valid on a Remote Read (a) one T-state after [C[ 
rises and one T-state befOre XACK rises. AD is in TRI­
STATE whil.e. LC?L ishigh for a Remote Write (b)., Time in the 
Access Phase is two T-states if WAIT is not asserted. 

Instruction memory (IMEM) is accessed through another in­
ternal path: from .AD to the I bus, shown in Figure 4-8(c). 
The memory is accessed first low byte, then high byte. Low 
and high bytes of the 16-bit I bus are alternately accessed 
for Remote Reads. An 8-bit holding register, ILAT, retains 
the low byte until the high byte is written by the Remote 
Processor for the, write to IMEM. The. BCPincrements the 
PC after the high byte has been accessed. 
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(a) Remote Read Timing (RAE = 0) 
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(b) Remote Write Timing (RAE = 0) 

FIGURE 4·6. Generic DMEM Access 

Timing for an IMEM access is shown in Figure 4-8(a) and 
(b). As before, the Memory Select bits are first set to instruc­
tion memory:. [MS1-0] = 01. It is only necessary to set 
[MS1-0] once for repeated IMEM accesses. (Instruction 
Memory is the powf,3r-up Memory Selection state.) A simple 
state machine keeps track of which instruction byte is ex­
pected next-low or high byte.' The state machine powers 
up looking for the low instruction byte and every IMEM ac­
cess causes this state ,machine to switch to the alternate 
byte. Accesses other than to IMEM will not cause the state 
machine to switch to the alternate byte, but writing 01 to the 
.Memory ?electbits in (,RIOUi.e. [MS1-0]'"", 01,pointingto 
IMEM) Will always force the state machine tothe"low,byte 
state". This way the Instruction word boundary can be resElt 
without resetting the 80~; When the BOP is reset the state 
machine will also be forced to the~'low bYte state:" 

Figure 4-8(a) shows a Remote Read of Instruction memory. 
Both the low byte, then the high byte can be seen on back 
to back remote reads: An instruction byte becomes active 
on the AD bus one T-state after [C[ rises and is valid when 
XACK rises. This time period will be a minimum of one 
T-state, but can be extended up to three more T-states by 
instruction wait states. '. 
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FIGURE 4-7. Generic PC Access 
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4.0 Remote Interface and Arbitration System (RIAS) (Continued) 

In addition, WAIT can delay the rising edge of XACK indefi­
nitely. One T-state after XACK rises, I RIC I will once again 
be active on AD. Timing is similar for a Remote Write. AD is 
in TRI-STATE while LCL is high. LCL is asserted for a mini­
mum of three T-states, but can be extended by instruction 
wait states and the WAIT pin. IWR clocks the instruction 
into memory during the write of the high byte. The Instruc­
tion Address (PC) is incremented about one T -state after 
LCL falls on a high byte access for both Remote Reads and 
Writes. 

Soft-loading Instruction Memory is accomplished by first 
setting the BCP Program Counter to the starting address of 
the program to be loaded. The Memory Select bits are then 
set to IMEM. BCP instructions can then be moved from the 
Remote Processor to the BCP-Iow byte, high byte-until 
the entire program is loaded. 

4.1.3 Interface Modes 

The Remote Interface and Arbitration System will support 
TRI-STATE buffers or latches between the Remote Proces­
sor and the BCP. The choice between buffers and latches 
depends on the type of system that is being interfaced to. 
Latches will help prevent the faster system from slowing to 
the speed of the slower system. Buffers can be used if the 
Remote Processor (RP) requires that data be handshaked 
between the systems. 

Figure 4-9 shows the timing of Remote Reads via a buffer 
(a) and a latch (b) (called a Buffered Read and Latched 
Read). The main difference in these modes is in the Termi­
nation Phase. The Buffered Read handshakes the data 
back to the RP. When the BCP deasserts XACK, data is 
valid and the RP can deassert REM-RD. Only after REM-RD 
goes high is LCL removed. In the Latched Read Figure 
4-9(b) XACK rises at the same time, but the Termination 
Phase completes without waiting. for the rising edge of 
REM-RD. One half T-state after XACK rises, INT-READ ris-

XACK / 
ill -----' ~'---

l--
'-------' 

Arbitration Access Termination 

TL/F/9336-91 

(a) Buffered Read 

es and one half T-state later LCL falls. The BCP can use the 
buses one T-state after LCL falls. The minimum time (no 
wait states, no arbitration delay) the BCP CPU could be pre­
vented from using the bus is four T-states in the Latched 
Read Mode. 

A Buffered Read prevents the BCP CPU from using the bus 
during the time RP is allocated the buses. This time period 
begins when LCL rises and ends when REM-RD is re­
moved. If the REM-RD is asserted longer than the minimum 
Buffered Read execution time (four T-states), then the BCP 
may be unnecessarily prevented from using the buses. 
Therefore, if there are no overriding reasons to use the Buff­
ered Read Mode, the Latched Read Mode is preferable. 

There are three Remote Write Modes-two require buffers 
and one requires latches. The timing for the writes utilizing 
buffers is shown in Figure 4-10. The Slow Buffered Write (a) 
is handshaked in· the same manner as the Buffered Read 
and thus has the same timing. The Fast Buffered Write has 
similar timing to the Latched Read. This timing similarity ex­
ists because the BCP terminates the remote access without 
waiting for the RP to deassert REM-WR. 

In both cases, XACK falls a short delay after REM-WR falls 
and LCL rises when the RP is given the buses. One T-state 
after LCL rises, INT-WRITE falls. The termination in the 
Slow Buffered Write mode keys off REM-WR rising, as 
shown in Figure 4-10(a). INT-WRITE rises a prop-delay later 
and LCL falls one T-state later. The Fast Buffered Write, 
shown in Figure 4-10(b), begins the Termination Phase with 
the rising edge of XACK. INT-WRITE rises at the same time 
as XACK, and LCL falls one T-state later. The BCP can 
begin a local access one T-state after LCL transitions. 

A Fast Buffered Write is preferable to the Slow Buffered 
Write if RP's write cycles are slow compared to the mini­
mum Fast Buffered Write execution time. The Fast Buffered 
Write assumes, though, that data is available to the BCP by 
the time INT-WRITE rises. 

~ I 

~------/-----
,'-----

''-__ --1 
Arbitration Access TermInation 
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(b) Latched Read 

FIGURE 4-9. Read from Remote Processor 
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(a) Slow Buffered Write 
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(b) Fast Buffered Write 

FIGURE 4-10. Buffered Write from Remote Processor 

in both Buffered Write Modes, XACK is asserted to wait the 
RP. The Latched Write Mode makes it possible for the RP to 
write to the BCP without getting waited. The timing for the 
Latched Write Mode is shown in Figure 4-11. When the Re­
mote Processor writes to the BCP, its address and data 
buses are externally latched on the rising edge of REM-WR. 
Even though REM-WR has been asserted XACK does not 

XACK 

ill ----1----.1 
I '----1,----

Arbitration Access Phase : Termination 

TL/F/9336-95 

FIGURE 4-11. Latched Write from Remote Processor 
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switch. The BCP only begins remote access execution after 
the trailing edge of REM-WR. Since the RP is not requesting 
data back from the BCP, it can continue execution without 
waiting for the BCP to complete the remote access. After 
REM-WR is deasserted, WR-PEND is taken low to prevent 
overwrite of the latches. A minimum of two T-states later 
LCL switches and AD, A, and the external address latch go 
into TRI-STATE, allowing the latches which contain the re­
mote address and data to become active. If the RP attempts 
to initiate another access before the current write is com­
plete, XACK is taken low to wait the RP and the address 
and the data are safe because WR-PEND prevents the 
latches from opening. The Access Phase ends when 
INT-WRITE rises and the data is written. One T-state later, 
[C[ falls and one T-state after that WR-PEND rises. If an­
other access is pending, it can begin in the next T-state. 
This is indicated by XACK rising when WR-PEND rises. 

A minimum BCP/RP interface utilizes four TRI-STATE buff­
ers or latches. A block diagram of this interface is shown in 
Figure 4-12. The blocks A, B, C, and D indicate the location 
of buffers or latches. Blocks A and B isolate 16 bits of the 
RP's address bus from the BCP's Data Address bus. Two 
more blocks, C and D, bidirectionally isolate 8 bits of the 
RP's data bus from the BCP AD bus. 
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FIGURE 4-12. Minimum BCP/Remote Processor Interface 

The BCP Remote Arbitrator State Machine (RASM) must and [FBW] = 1. designates a Fast Buffered Write. A 
know what hardware interfaces to the RP in order to time Latched Write is accomplished by using latches for blocks 
the remote accesses correctly. To accomplish this, three A, B, and C and setting [LW] = 1. 
Interface Mode bits in (RIC} are used to define the hard­
ware interface. These bits are the Latched Write bit [LWl, 
the Latched Read bit [LR] and the Fast Buffered Write bit 
[FBW]. See Figure 4-13. 
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Interface Mode Bits 

- 0 - - Buffered Read 

- 1 - - Latched Read 

o - 0 - Slow Buffered Write 

1 - 0 - Fast Buffered Write 

X - 1 - Latched Write 

FIGURE 4-13. Interface Mode Bits 

All combinations of Remote Reads or Writes with buffers or 
latches can be configured via the Interface Mode bits. A 
Buffered Read is accomplished by using a buffer for block D 
and setting [LR] ;; o. Conversely, using a latch for block D 
and setting [LR] = 1 configures the RASM for Latched 
Reads. Using buffers for blocks A, B, and C and setting 
[LW] = 0 allows either a Slow or Fast Buffered Write. Set­
ting [FBW] = 0 configures RASM for a Slow Buffered Write 
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4.1.4 Execution Control 

The BCP can be started and stopped in two ways. If the 
BCP is not interfaced to another processor, ilcan be started 
by pulsing RESET low while both REM-RD and AEM-WA 
are low. Execution then begins at location zero. If there is a 
Aemote Processor interfaced to the BCP, a write to (AIC} 
which sets the start bit [STAT] high will begin execution at 
the current PC location. Writing a zero to [STAT] stops exe­
cution after the current instruction is completed. A Single­
Step is accomplished by writing a one to the Single-Step bit 
[SS] in (RIC}. This will execute the instruction at the current 
PC, increment the PC, and then return to idle. [SS] returns 
low after the single-stepped instruction has completed. [SS] 
is a write only bit and will always appear low when (AIC} is 
read. 

Two pins (WAIT and IT5Ci<), and one register bit, [LOR], 
can also affect the BCP CPU or RIASexecution. The WAIT 
pin can be used to add wait states to a remote access. 
When WAIT must be asserted low to add wait states is de­
pendent on which remote access mode is being used. The 
information needed to calculate when WAIT must be assert­
ed to add wait states, is contained within the individual de­
scriptions of the modes in the next section (4.2 RIAS Func­
tional Description). 
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Programmed wait states delay when WAIT must be assert­
ed since programmed wait states are inserted before WAIT 
is tested to see if any more wait states should be added. 
LOCK prevents local accesses of Data Memory. If LOCK is 
asserted a half T-state before T1 of a BCP instruction cycle, 
further local accesses will be prevented by waiting the Tim­
ing Control Unit. The Timing Control Unit (TCU) is the BCP 
CPU sub system responsible for timing each instruction. For 
a more detailed description of the operation of LOCK, refer 
to the CPU Timing section. [LOR] allows the BCP to prevent 
remote accesses. Once [LOR], located in {ACR I, is set 
high, further remote accesses are waited by XACK remain­
ing low. 

Though the BCP CPU runs independently of RIAS there is 
some interaction between the two systems. [LOR] is one 
such interaction. In addition, two bits allow the BCP CPU to 
keep track of remote accesses. These bits are the Remote 
Write bit [RW] and the Remote Read bit [RR], and are lo­
cated in {CCR[6-5]}. Each bit goes high when its respec­
tive remote access to DMEM reaches its Termination 
Phase. Once one of these bits has been set, it will remain 
high until a "1" is written to that bit to reset it low. 

4.2 RIAS FUNCTIONAL DESCRIPTION 
In this section, the operation of the Remote Arbitration State 
Machine (RASM), is described in detail. Discussed, among 
other things, are the sequence of events in a remote ac­
cess, arbitration of the data buses, timing of external sig­
nals, when inputs are sampled, and when wait states are 
added. Each of the five Interface Modes is described in 
functional state machine form. Although each interface 
mode is broken out in a separate flow chart, they are all part 
of a single state machine (RASM). Thus the first state in 
each flow chart is actually the same state. 

The functional state machine form is similar to a flow chart, 
except that transitions to a new state (states are denoted as 
rectangular boxes) can only occur on the rising edge of the 
internal CPU clock (CPU-CLK). CPU-CLK is high during the 
first half of its cycle. A state box can specify several actions, 
and each action is separated by a horizontal line. A signal 
name listed in a state box indicates that that pin will be 
asserted high when RASM has entered that state. Signals 
not listed are assumed low. 
Note: This sometimes necessitates using the inversion of the external pin 

name. 

This same rule applies to the A and AD buses. By default, 
these buses are active. The A bus will have the upper byte 
of the last used data address. The AD bus will display 
{RIC I. When one of these buses appears in a state box, the 
condition specified will be in effect only during that state. 
Decision blocks are shown as diamonds and their meaning 
is the same as in a flow chart. The hexagon box is used to 
denote a conditional state-not synchronous with the clock. 
When the path following a decision block encounters a con­
ditional state, the action specified inside the hexagon box is 
executed immediately. 
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Also provided is a memory arbitration example in the form of 
a timing diagram for each of the five modes. These exam­
ples show back to back local accesses punctuated by a 
remote access. Both the state of RASM and the Timing 
Control Unit are listed for every clock at the top of each 
timing diagram. The RASM states listed correspond to the 
flow charts. The Timing Control Unit states are described in 
Section 2.2.2, Timing portion of the data sheet. 

4.2.1 Buffered Read 

The unique feature of this mode is the extension of the read 
until REM-RD is deasserted high. The complete flow chart 
for the Buffered Read mode is shown in Figure 4-14. Until a 
Remote Read is initiated (RAE·REM-RD true), the state ma­
chine (RASM) loops in state RSA1. If a Remote Read is 
initiated and [LOR] is set high, RASM will move to state 
RSA2. Likewise, if a Remote Read is initiated while the bus­
es have been granted locally (Le., Local Bus Request = 1), 
RASM will move to state RSA2. The state machine will loop 
in state RSA2 as long as [LOR] is set high or the buses are 
granted locally. If the BCP CPU needs to access Data Mem­
ory while in either RSA state (and LOCK is high), it can still 
do so. A local access is requested by the Timing Control 
Unit asserting the Local Bus Request (lCl-BREQ) signal. A 
local bus grant will be given by RASM if the buses are not 
being used (as is the case in the RSA states). 

XACK is taken low as soon as RAPREM-RD is true, re­
gardless of an ongoing local access. If [lOR] is low, RASM 
will move, into RSs on the next clock after RAE·REM-RD is 
true and there is no local bus request. No further local bus 
requests will be granted until the remote access is complete 
and RASM returns to RSA. Half a T·stateafter entering RSs 
the A· bus (and AD bus if the. access is to Data Memory) 
goes into TRI-STATE. 

On the next CPU-ClK, RASM enters RSc and LCL is taken 
high while XACK remains low. The wait state counters, ilW 
and lOW, are loaded in this state from {IW1-0] and [DW2~ 
01; respectively, in {DCRl-The Abus (and AD jf the access 
Is to Data Memory) remains in TRI-STATE and the Access 
Phase begins. 

The state machine can move into one of several states, 
depending on the state of CMD and [MS1-0], on the next 
clock. XACK remains low and LCl remains high in all the 
possible next states. If CMD is high, the access is to {RICI 
and the next state will be RSD1. Since the default state of 
AD is {RIC I, it will not transition in this state. 

The five other next states all have CMD low and depend on 
the Memory Select bits. If [MS1-0] is 10 or 11 the state 
machine will enter either RS02 or RS03 and the low or high 
bytes of the Program Counter, respectively, will be read. 

[MS1-0] = 00 designates a Data Memory access and 
moves RASM into RS04. READ will be asserted in this state 
and A and AD continue to be in TRI-STATE. This allows the 
Remote Processor to drive the Data Memory address for 
the read. Since DMEM is subject to wait states, RS04 is 
looped upon until all the wait states have been inserted. 
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The last possible Memory Selection is Instruction Memory, 
[MS1-0] = 01. The two possible next states for an IMEM 
access depend on if RASM is expecting the low byte or high 
byte. Instruction words are accessed low byte then high 
byte and RASM powers up expecting the low Instruction 
byte. The internal flag that keeps track of the next expected 
Instruction byte is called the High Instruction Byte flag (HI B). 
If HIB is low, the next state is RS05 and the low instruction 
byte is MUXed to the AD bus. If HIB is high, the high instruc­
tion byte is MUXed to AD and RS06 is entered. An IMEM 
access, like a OM EM access, is subject to wait states and 
these states will be looped on until all programmed instruc­
tion memory wait states have been inserted. 
Note: Resetting the SCP will reset HIS (i.e., HIS = 0). Writing 01 to the 

Memory Select bits in IRICI (i.e., [MS1-0] = 01, pointing to IMEM) 
will also force HIB to zero. This way the instruction word boundary 
can be reset without resetting the SCPo 

After all of the programmed wait states are inserted in the 
RSo states, more wait states may be added by asserting 
WAIT Iowa half T-state before the end of the last pro­
grammed wait state. If there are no programmed wait 
states, WAIT must be asserted Iowa half T-state before the 
end of RSo to add wait states. If WAIT remains low, the 
remote access is extended indefinitely. All the RSo states 
move to their corresponding RSE states on the CPU-ClK 
after the programmed wait state conditions are met and 
WAIT is high. The RSE states are looped upon until RAE* 
REM-RD is deasserted. lCl remains high in all RSE states 
and A remains in TRI-STATE. AD will also stay in TRI­
STATE if the access was to DMEM. XACK is taken back 
high to indicate that data is now valid on the read. If XACK is 
connected to a Remote Processor wait pin, it is no longer 
waited and can now terminate its read cycle. This state be­
gins the Termination Phase. The action specified in the con­
ditional box is only executed while RAE*REM-RD is assert­
ed-a clock edge is not necessary. In all RSE states except 
RSE4 (OM EM) lCl will fall a propagation delay after 
RAE*REM-RD is deasserted. In RSE4, lCl remains high 
through the whole state. 

On the CPU-ClK after RAE*REM-RD is deasserted. RASM, 
enters RSF1 from every RSE state except RSE4 (OM EM). In 
RSF1. ICC remains low and A remains in TRI-STATE while 
CPU-ClK is high (Le., for the first half T-state of RSF1). 
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From RSE4, RASM enters RSF2 on the CPU-ClK after 
RAE*REM-RD is deasserted. In RSF2, [C[ remains high 
while both A and AD remain in TRI-STATE. 

From RSF1, the next clock will return the state machine 
back to state RSA1 where it will loop until another Remote 
Access is initiated. If the access was to IMEM, then the last 
action of the remote access before returning to RSA is to 
switch HIB and increment the PC if the high byte was read. 

From RSF2, the next CPU-ClK returns to state RSA3 where 
ICC returns low, but A and AD remain TRI-STATE for the 
first half T-state of RSA3. If no Remote Access is initiated 
the next state will be RSA 1 where it will loop until another 
Remote Access is initiated. 

The example in Figure 4-15 shows the BCP executing the 
first of two consecutive Data Memory reads when REM-RD 
goes low. In response, XACK goes low waiting the remote 
processor. At the end of the first instruction, although the 
BCP begins its second read by taking ALE high, the RASM 
now takes control of the bus and takes lCl high at the end 
of T1. A one T-state delay is built into this transfer to ensure 
that READ has been deasserted before the data bus is 
switched. The Timing Control Unit is now waited, inserting 
remote access wait states, TWr, as RASM takes over. 

The remote address is permitted one T-state to settle on the 
BCP address bus before READ goes low, XACK then re­
turns high one T-state plus the programmed Data Memory 
wait state, T Wd later, having satisfied the memory access 
time. The Remote Processor will respond by deasserting 
REM-RD high to which the BCP in turn responds by deas­
serting READ high. Following READ being deasserted high, 
the BCP waits till the end of the next T-state before taking 
lCl low, again ensuring that the read cycle has concluded 
before the· bus is switched. Control is then returned to the 
Timing Control Unit and the local memory read continues. 

4.2.2 Latched Read 

This mode differs from the Buffered Read mode in the way 
the access is terminated. A latched Read cycle ends after 
the data being read is valid and the termination doesn't wait 
for the trailing edge of REM-RD. Therefore the Arbitration 
and Access Phases of the latched Read mode are the 
same as for the Buffered Read mode. The complete flow 
chart for the latched Read mode is shown in Figure 4-16. 
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Until a Remote Read is initiated (RAE*REM-RD true), the 
state machine (RASM) loops in state RSA1. If a Remote 
Read is initiated and [LOR] is set high, RASM will move to 
state RSA2. Likewise, if a Remote Read is initiated while the 
buses have been granted locally (Le., Local Bus Grant = 1), 
RASM will move to state RSA2. The state machine will loop 
in state RSA2, as long as [LOR] is set high or the buses are 
granted locally. If the BCP CPU needs to access Data Mem­
ory while in either RSA state (and LOCK is high), it can still 
do so. A local access is requested by the Timing Control 
Unit asserting the Local Bus Request (LCL-BREQ) signal. A 
local bus grant will be given by RASM if the buses are not 
being used (as is the case in RSA). 

XACK is taken low as soon as RAE*REM-RD is true, re­
gardless of an ongoing local access. If [LOR] is low, RASM 
will move into RSs on the next clock after RAE*REM-RD is 
asserted and there is no local bus request. No further local 
bus requests will be granted until RASM enters the Termina­
tion Phase. If the BCP CPU initiates a Data Memory access 
after RSA, the Timing Control Unit will be waited and the 
BCP CPU will remain in state T Wr until the remote access 
reaches the Termination Phase. Haifa T-state after entering 
RSs the A bus (and AD bus if the access is to Data Memory) 
goes intoTRI-ST ATE. 

On the next clock, RASM enters RSc and LCL is taken high 
while XACK remains low. The wait state counters, ilW and 
iow, are loaded in this state from [lW1-0] and [DW2-0], 
respectively, in {DCRl. The Abus (and AD if the access is 
to Data Memory) now remains TRI-STATE and the Access 
Phase begins. . . . 

The state machine can move into one of several states, 
depending on the state of CMD and [MS1-01. on the next 
clock. XACK remains low and ill remains high in all the 
possible next states. If CMD is high, the access is to (RIC} 
and the next state will be RS01. Since the default state of 
AD is (RIC l. it will not transition in this state. The five other 
next states all have CMD low and depend on the Memory 
Select bits. If [MS1-0] is 10 or 11 the state machine will 
enter either RS02 or RS03 and the low or high bytes of the 
Program Counter, respectively, will be read. 
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[MS1-0] = 00 designates a Data Memory access and 
moves RASM into RS04. READ will be asserted low in this 
state and A and AD continue to be tri-stated. This allows the 
Remote Processor to drive the Data Memory address for 
the read. Since OM EM is subject to wait states, RS04 is 
looped upon until all the wait states have been inserted. 

The last possible Memory Selection is Instruction Memory, 
[MS1-0] = 01. The two possible next states for the IMEM 
access depend on if RASM is expecting the low byte or high 
byte. Instruction words are accessed low byte then high 
byte and RASM powers up expecting the low Instruction 
byte. The internal flag that keeps track of the next expected 
Instruction byte is called the High Instruction Byte flag (HIB). 
If HIB is low, the next state is RS05 and the low instruction 
byte is MUXed to the AD bus. If HIB is high, the high instruc­
tion byte is MUXed to AD and RS06 is entered. An IMEM 
access, like a DMEM access, is subject to wait states and 
these states will be looped on until all programmed instruc­
tion memory wait states have been inserted. 
Note: Resetting the ecp will reset HIS (i.e., HIS' "" 0). Writing 01 to the 

Memory Select bits in (RICI [I,e" [MS1-0] "" 01, pointing to IMEM) 
will also force HIS to zero. This way the instruction word boundary 
can be reset without resetting the BCP. 

After all of the programmed wait states are inserted in the 
RSo states, more wait states may be added by asserting 
WAIT low a half T -state before the end of the last pro­
grammed wait state. If there are no programmed wait states 
WAIT must be asserted Iowa half T-state before the end of 
RSo to add wait states. If WAIT remains low, the remote 
access is extended indefinitely. All the RSo states move to 
their corresponding RSE states on the CPU-CLK after the 
programmed wait state conditions are met and WAIT is 
high. LCL remains high in all RSE states and A remains in 
TRI-STATE (and AD if the access is to Data Memory). 
XACK returns high in this state, indicating that data is valid 
so that it can be externally latched. The action specific to 
each RSo state remains in effect during the first half of the 
RSE cycle (Le. READ is asserted in the first half of RSE4). 
This half T -state of hold time is provided to guarantee data 
is latched when XACK goes high. This state begins the Ter­
mination Phase. 
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4.0 Remote Interface and Arbitration System (RIAS) ,(Cortinued). :, " " ,: 

On the next clock the state machine will enter RSF and LCL and iow, are loaded in this state from [IW1-0] and [DW2-
will return low. The A bus (and AD bus if the access is to 0], respectively, in IOCR I. The A and AD buses now remain 
data memory) remains in TRI-STATE for the first half in TRI-STATE and the Access Phase begins. If the Remote 
T-state of RSF. After the first half of RSF, the Re- Access is to IMEM and the high instru9tion byte flag is set 
mote Processor is no longer using the buses and the BCP (Le., HIB = 1), then IWR is asserted low in RSc. The state 
CPU will be granted the buses if LCL-BREQ is asserted. If a machine can move into one of several states, depending on 
local bus request is made, a local bus grant will be given to the state of CMDand [MS1-01. on the next clock. XACK 
the Timing Control Unit. If the preceding access was a read remains low and, LCL remains high in' all the possible next 
of IMEM, then HIB is switched and if the access was to the states. If CMD is high, the access is to IRICI and the next 
high byte of IMEM then the PC is incremented. If RAE* state will be RS01' The path from AD to IRICI opens in this 
REM-RD is deasserted at this point, the next clock will bring state. Any remote access mode changes made by this write 
RASM back to RSA where it will loop until another Remote will not take effect until one T-state after the completion of 
Access is initiated. RSG is entered if RAE*REM-RD is still the present write. 
true. RASM will loop in RSG until RAE*REM-RD is no longer The five other next states all have CMD low and depend on 
active at which time the state machine will return to RSA· the Memory Select bits. If [MS1-0] is 10 or 11, the state 
In Figure 4-17, the BCP is executing the first of two Data machine will enter either RS02 or RS03 and the,low or high 
Memory reads when REM-RD goes low. In response, XACK bytes of the Program Counter, respectively. will be written. 
goes low, waiting the Remote Processor. At the end of the [MS1-0] equal to 00 designates a Data~ Memo~ access 
first instruction, although the BCP begins its second write by and moves RASM into RS04. WRITE will be asserted in this 
taking ALE high, the RASM now takes control of the bus state and A and AD continue to be tri-stated. This allows the 
and deasserts [C[ high at the end of T1· A one T-state Remote Processor to drive the Data Memory address and 
delay is built into this transfer to ensure that READ has been data buses for the write. Since DMEM is subject to wait 
deasserted high before the data bus is switched. The Timing states, RS04 is looped upon until all the programmed data 
Control Unit is now waited, inserting' remote access wait memory wait states have been inserted. 
states, T Wr, as RASM takes over. 
The remote address is permitted one T-state to settle on the 
BCP address bus before READ goes low, XACK then re­
turns high one T-state plus the programmed Data Memory 
wait state, T Wd later, having satisfied the memory access 
time. READ returns high a half T-state later, ensuring suffi­
cient hold time, followed by LCL being reasserted low after 
an additional half T-state, transferring bus control back to 
the BCP. The Remote Processor responds to XACK return­
ing high by deasserting REM-RD high, although by this time 
the BCP is well into its own memory read. 

4.2.3 Slow Buffered Write 
The timing for this mode ,is the same as the Buffered Read 
mode. The complete flow chart for the Slow Buffered Write 
mode is shown in Figure 4-18. Until a Remote Write is initiat­
ed (RAE*REM-WR true), the state machine (RASM) loops 
in state RSA1. If a Remote Write is initiated and [LOR] is set 
high, RASM will move to state RSA2. Likewise, if a Remote 
Write is initiated while the buses have been granted locally 
(Le., Local Bus Grant = 1), RASM will move to state RSA2. 
The state machine will loop in state RSA2 as long as [LOR] 
is set high or the buses are granted locally. If the BCP CPU 
needs to access Data Memory while in either RSA state 
(and LOCK is high), it can still do so. A local access is re­
quested by the Timing Control Unit asserting the Local Bus 
Request (LCL-BREQ) signal. A local bus grant will be given 
by RASM if the buses are not being used (as is the case in 
the RSA state). 
XACK is taken low as soon as RAE*REM-WR is true, re­
gardless of an ongoing local access. RASM will move into 
RSs on the next clock after RAE*REM-WR is asserted and 
there is no local" bus request and [LOR] = O. No further 
local bus requests will be granted until the remote access is 
complete and RASM returns to RSA' If the BCP CPU initi­
ates a Data Memory access after RSA, the Timing Control 
Unit will be waited and the BCP CPU will remain in state T Wr 
until completion of the remote access. Haifa T-state after 
entering RSs the A and AD buses go into TRI-STATE. ' 

On the next CPU-CLK, RASM enters RSc and LCL is taken 
high while XACK remains low. The wait state counters, ilW 
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The last possible Memory Selection is Instruction Memory, 
[MS1-0] = 01. The two possible next states for IMEM de­
pend on whether RASM is expecting the low byte or high 
byte. I nstruction words, are accessed low byte, then high 
byte and RASM powers up expecting the low Instruction 
byte. The internal flag that keeps track of the next expected 
Instruction byte is called the High Instruction Byte flag (HIB). 
IfHIB.is low, the next state is RS05 and the low instruction 
byte is written into the holding register, I LAT. If HIB is high, 
the high instruction byte is moved to 115-8 and the value in 
ILAT is moved to 17-0. At the same time, IWR is asserted 

" low, beginning the write to instruction memory. An IMEM 
access, like a OM EM access, is' subject to wait states and 
these states will be looped on until all programmed Instruc­
tion Memory wait states have been inserted. 
Note: Resetting the SCP will reset HIS (i.e .• HIS = 0). Writing 01 to.the 

Memory Select bits in (RIC) v.e.; [MS1-0] = 01. pointing to IMEM) 
will also, force HIS to zero; This way the instruction word boundary 
can be reset with~ui resetting the SCPo 

After all of the programmed wait states are inserted in the 
RSo states, more wait states may be added by asserting 
WAIT Iowa half T-state before the end of the last pro­
grammed wait state. If there are no programmed wait 
states, WAIT must be asserted Iowa half T-state before the 
end of RSo to add wait states. If WAIT remains low, the 
remote access is extended indefinitely. All the RSo states 
move to their corresponding RSE states on the CPU-ClK 
after the programmed wait state conditions are met and 
WAIT is high. The RSE states are looped upon until RAE* 
REM-WR is deasserted. LCL remains high in all RSE states, 
but XACK is taken back high to indicate that the remote 
access can be terminated. If XACK 'is connected to a Re­
mote Processor wait pin, it can now terminate its write cycle. 
This state begins the Termination Phase. The action speci­
fied in the conditional box is only executed while RAE*REM­
WR is asserted-a clock edge is not necessary. 

On the CPU-CLK afte~ RAE*REM-WR i$ deasserted, RASM 
enters RSF. where LCL remains high and the BCP A and AD 
buses are still in TRI-STATE. The next CPU-CLK causes 
RASM to move to RSA3' If the access was to 1M EM, then 
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4.0 Remote Interface and Arbitration System (RIAS) (Continued) 

the last action of the remote access before moving to RSA3 
is to switch HIB and increment the PC if the high byte was 
written. In RSA3, LCL goes low while A and AD remain in 
TRI-STATE for the first half of RSA3. If no new Remote 
access is initiated the next clock brings the state machine 
back to RSA1 where it will loop until a Remote Access is 
initiated. 

In Figure 4-19, the BCP is executing the first of two consec­
utive Slow Buffered Writes to Data Memory when REM-WR 
goes low. In response, XACK goes low, waiting the Remote 
Processor. At the end of the first instruction, although the 
BCP begins its second write by taking ALE high, RASM now 
Takes control of the bus and deasserts LCL high at the end 
of T 1. A one T -state delay is built into this transfer to ensure 
that WRITE has been deasserted high before the data bus 
is switched. The Timing Control Unit is now waited, inserting 
remote access wait states, TWr, as RASM takes over. 

The remote address is permitted one T-state to settle on the 
BCP address bus before WRITE goes low, XACK then re­
turns high one T-state plus the programmed Data Memory 
wait state, T Wd later, having satisfied the memory access 
time. The Remote Processor will respond by deasserting 
REM-WR high to which the BCP in turn responds by deas­
serting WRITE high. Following WRITE being deasserted 
high, the BCP waits till the end of the next T-state before 
asserting LCL low, again ensuring that the write cycle has 
concluded before the bus is switched. Control is then re­
turned to the Timing Control Unit and the local memory write 
continues. 

4.2.4 Fast Buffered Write 

The timing for the Fast Buffered Write mode is very similar 
to the timing of the Latched Read. The major difference is 
the additional half clock that AD is active in the Latched 
Read mode that is not present in the Fast Buffered Write 
mode. The Fast Buffered Write cycle ends after the data is 
written and the termination doesn't wait for the trailing edge 
of REM-WR. Therefore the Arbitration and Access Phases 
of the Fast Buffered Write mode are the same as for the 
Latched Read mode. 

The complete flow chart for the Fast Buffered Write mode is 
shown in Figure 4-20. Until a Remote Write is initiated 
(RAE*REM-WR true), the state machine (RASM) loops in 
state RSA1' If a Remote Write is initiated and [lOR] 
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is set high, RASM will move to state RSA2. Likewise, if a 
Remote Write is initiated while the buses have been granted 
locally (I.e., local Bus Grant = 1), RASM will move to state 
RSA2. The state machine will loop in state RSA2 as long as 
[lOR] is set high or the buses are granted locally. If the 
BCP CPU needs to access Data Memory while in either RSA 
state (and LOCK is high), it can still do so. A local access is 
requested by the Timing Control Unit asserting the Local 
Bus Request (lCl-BREQ) signal. A local bus grant will be 
given by RASM if the buses are not being used (as is the 
case in the RSA states). 

XACK is taken low as soon as RAE*REM-WR is true, re­
gardless of an ongoing local access. If [lOR] is low, RASM 
will move into RSs on the next clock after RAE*REM-WR is 
asserted and there is no local bus request. No further local 
bus requests will be granted until the BCP enters the Termi­
nation Phase. If the BCP CPU initiates a Data Memory ac­
cess after RSA, the Timing Control Unit will be waited and 
the BCP CPU will remain in state T Wr until the remote ac­
cess reaches the Termination Phase. Half a T-state after. 
entering RSs the A and AD buses go into TRI-STATE. 

On the next CPU-ClK, RASM enters RSc and ill is taken 
high while XACK remains low. The wait state counters, ilW 
and iow, are loaded in this state from IIW1-0] and [DW2~< 
0], respectively, in !DCRL The A and AD buses remain in 
TRI-STATE and the Access Phase begins. If the Remote 
Access is to IMEM and the high instruction byte flag is set 
(I.e., HIB =. 1), then IWR is asserted low in RSc. 

The state machine can move into one of several states de­
pending on the state of CMD and [MS1-0] on the next 
clock. XACK and lCL in all the possible next states. If CMD 
is high, the access is to {RIC J and the next state will be 
RS01. The path from AD to {RIC J opens in this state. Any 
remote access mode changes made by this write will not 
take effect until one T-state after the completion of the pres­
ent write. 

The five other next states all have CMD low and depend on 
the Memory Select bits. If [MS1-0] is 10 or 11 the state 
machine will enter either RS02 or RS03 and the low or high 
bytes of the Program Counter, respectively, will be written. 

[MS1-0] = 00 designates a Data Memory access and 
moves RASM into RS04. WRITE will be asserted in this 
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4.0 Remote Interface and Arbitration System (RIAS) (Continued) 

state and A and AD continue to be tri-stated. This allows the On the next clock the state machine will enter RSF and m 
Remote Processor to drive the Data Memory address and will return low. The A and AD buses remain in TRI-STATE 
data buses for the write. Since OM EM is subject to wait for the first half T-state of RSF' After the first half of RSF, 
states, RS04 is looped upon until all the programmed Data the Remote Processor is no longer using the buses and the 
Memory wait states have been inserted. SCP CPU can make an access to Data Memory by asserting 
The last possible Memory Selection is Instruction Memory, lCl-SREQ. If a local bus request is made, a local bus grant 
[MS1-0] = 01. The two possible next states for IMEM de- will be given to the Timing Control Unit. If the preceding 
pend on whether RASM is expecting the low byte or high access was a write of IMEM, then HIS is switched and if the 
byte. Instruction words are accessed low byte then high access was to the high byte of IMEM then the PC is incre-
byte and RASM powers up expecting the low Instruction mented. If RAEoREM-WR is deasserted at this point, the 
byte. The internal flag that keeps track of the next expected next clock will bring RASM back to RSA where it will loop 
Instruction byte is called the High Instruction Syte flag (HIS). until another remote access is initiated. RSG is entered if 
If HIS is low, the next state is RS05 and the low instruction RAE"REM-WR is still true. RASM will loop in RSG until 
byte is written into the holding register, I LAT. If HIS is high, RAE*REM-WR is no longer active at which time the state 
the high instruction byte is moved to 115-8 and ILAT is machine will return to RSA· 
moved to 17-0. At the same time IWR is asserted low, be- In Figure 4-21, the SCP is executing the first of two Data 
ginning the write to instruction memory. An IMEM access, Memory writes when REM-WR goes low. In response, 
like a OM EM access, is subject to wait states and these XACK goes low, waiting the Remote Processor. At the end 
states will be looped on until all programmed instruction of the first instruction, although the SCP begins its second 
memory wait states have been inserted. write by taking ALE high, RASM now takes control of the 
Note: Resetting tM SC? will reset HIS (I.e., HIS" 0). Writing 01 to the bus and de asserts lCl high at the end of T1. A one T-state 

Memory Select bits in (RICI O.e .• [MS1-0] .. 01. pointing to IMEM) delay is built into this transfer to ensure that WRITE has 
wUl also force HIS to zero. This way the instruction word boundary been deasserted high before the data bus is switched. The 
can be reset without resetting the SCPo Timing Control Unit is now waited, inserting remote access 

After all of the programmed wait states are inserted into wait states, TWr, as RASM takes over. 
RSo states, more wait states may be added by asserting The remote access is permitted one T-state to settle on the 
WAIT Iowa half T-state before the end of the last pro- SCP address bus before WRITE goes low, XACK then re-
grammed wait state. If there are no programmed wait states turns high one T-state plus the programmed Data Memory 
WAIT must be asserted Iowa half T-state before the end of wait state, TWd later, having satisfied the memory access 
RSo to add wait states. If WAIT remains low, the remote time. WRITE returns high at the same time, and one T-state 
access is extended indefinitely. All the RSo states converge later LCl returns low, transferring bus control back to the 
to state RSE on the next CPU-ClK after the programmed SCPo The remote processor responds to XACK returning 
wait state conditions are met and WAIT is high. ill remains high by deasserting REM-WR high, although by this time the 
high in all RSE states and A and AD remain in TRI-STATE SCP is well into its own memory write. 
as well. XACK returns high in this state, indicating that the 
data is written and the cycle can be terminated by the RP. 
This state begins the Termination Phase. 

II 
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Register Configuration: 

-One Wait-State Programmed for Data-Memory 
-Zero Wait-States Programmed for Instruction-Memory 
-{RIC} Contents: XX1X0100 
-[LOR] = 0 

Other BCP Control Signals: 

RAE =0 
CMD =0 
REM-RD =1 
LOCK =1 

FIGURE 4-21. Fast Buffered Write to Data Memory by Remote Processor 
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4.0 Remote Interface and Arbitration System (RIAS) (Continued) 

4.2.5 Latched Write 
This mode executes a write without waiting the Remote 
Processor-XACK isn't normally taken low. The complete 
flow chart for the Latched Write mode is shown in Figure 
4-22. Until a Remote Write is initiated (RAE*REM-WR true), 
the state machine (RASM) loops in state RSA. If the BCP 
CPU needs to access Data Memory at this time (and LOCK 
is high), it can still do so. A local access is requested by the 
Timing Control Unit asserting the Local Bus Request 
(LCL-BREQ) signal. A local bus grant will be given by RASM 
if the buses are not being used (as is the case in RSA). 

RASM will move into RSs on the next clock after 
RAE*REM-WR is asserted. XACK is not taken low 
and therefore the RP is not waited. The state machine will 
loop in RSs until the RP terminates its write cycle-until 
RAE*REM-WR is no longer true. The external address and 
data latches are typically latched on the trailing edge of 
REM-WR. A local bus request will still be serviced in this 
state. 

Next, RASM enters RSc and WR-PEND is asserted to pre­
vent overwrite of the external latches. Since the RP has 
completed its write cycle, another write or read can happen 
at any time. Any Remote Read cycle (RAE*REM-RD) or 
Remote Write cycle (RAE*REM-WR) occurring after the 
state machine enters RSc will take XACK low. A local ac­
cess initiated before or during this state must be completed 
before RASM can move to RSo. Once RSo is entered, 
though, no further local bus requests will be granted until 
RASM enters the Termination Phase. If the BCP CPU initi­
ates a Data Memory access after RSc, the Timing Control 
~ni~ will be waited and the BCP CPU will remain in state T Wr 
until the RASM.· enters RSH. Half aT-state after entering 
RSelhe A and AD buses gointo.TRI-STATE. 

On the next clock, the state machine enters RSE and ill is 
taken high. WR-PEND continues to be asserted low in this 
stat~ and the data and instruction wait state counters, iow 
andllW. are loaded from [DW27'O] and [lW1-0]. respective~ 
ly,inlDCRI. The A and AD buses remain in TRI·STATE 
and the Access Phase begins. Any remote accesses now 
occurring will take XACK low and wait the Remote Proces­
sor. If the Remote Access is to IMEM and the high instruc~ 
tion byteflag is set (i.e:, HI8 =1), then TWR is asserted loW 
in RSE. 

The state machine will move into one of several states on 
the next clock, depending on the state of CMD and 
[MS1-0]. WR-PEND remains low and LCL remains high in 
all the possible next states. If CMD is high, the access is to 
(RIC} and the next state will be RSF1. The path from AD to 
(RIC} opens in this state. Any remote access mode chang­
es made by this write will not take effect until one T-state 
after the completion of the present write. 

The five other next states all have CMD low and depend on 
the Memory Select bits. If [MS1-0] is 10 or 11 the state 
machine will enter either RSF2 or RSF3 and the low or high 
bytes of the Program Counter, respectively, will be loaded. 

[MS1-0] = 00 designates a Data Memory access and 
moves RASM into RSF4. WRITE will be aStlerted low in this 
state and A and AD continue to be tri-stated. This allows the 
Remote Processor to drive the Data Memory address and 
data for the write. Since OM EM is subject to wait states 
RSF4 is looped upon until all the programmed Data Memo~ 
wait states have been inserted. 
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The last possible Memory Selection is Instruction Memory, 
[MS1-0] = 01. The two possible next states for IMEM de­
pend on if RASM is expecting the low byte or high byte. 
Instruction words are accessed low byte then high byte and 
RASM powers up expecting the low Instruction byte. The 
internal flag that keeps track of the next expected Instruc­
tion byte is called the High Instruction Byte flag (HI B). If HIB 
is low, the next state is RSF5 and the low instruction byte is 
written into the holding register, ILAT. If HIB is high, the high 
instruction byte is moved to 115-8 and the value in ILAT is 
moved to 17-0. At the same time, IWR is asserted low and 
the write to Instruction Memory is begun. An IMEM access, 
like a OM EM access, is subject to wait states and these 
states will be looped on until all programmed instruction 
memory wait states have been inserted. 
Note: Resetting the SCP will reset HIS (I.e .• HIS .;. 0). Writing 01 to the 

Memory Select bits In (RIC) O.e., [MS1-01 "" 01. pointing to IMEM) 
will also force HIS to zero. This way the instruction word boundary 
can be reset without resetting the BCP. 

All the RSF states converge to a single decision box that 
tests WAIT. If WAIT is low then the state machine loops 
back to RSF, otherwise RASM will move on to RSG. ill 
remains high and WR-PEND remains low in this state but 
the actions specific to the RSF states have ended (I.e. 
WRITE will no longer be asserted low). 

The next CPU-ClK moves RASM into RSH, the last state in 
the state. machine. ill returns .Iow .butWR-PEND is still 
low. The A and AD buses remain in TRI-STATE for the first 
half of RSH' XACK will be. taken low if a Remote Access 
is initiated. If the just completed access was to IMEM, HIB 
will be switched. Also, the PC will be incremented if the high 
byte was written. A local access will be granted if LCL­
BREQ is asserted in this state. 

If another Remote Write is pending, the state machine takes 
the path to RSs where that write will be processed. A pend­
ing Remote Read will return to the RSA in either the Buff­
ered or Latched Read sections (not shown in Figure 4-22) 
of the state machine. And if no Remote Access is pending, 
the machine will loop in RSA until the next access is initiat­
ed. 

In Figure 4-23, the BCP is executing the first of two Data 
Memory writes when REM-WR goes low. The BCP takes no 
action until REM-WR goes back high, latching the data and 
making a remote access request. The SCP responds to this 
by taking WR-PEND low. At the end of the first instruction 
although the BCP begins its second write by taking ALE 
high, RASM now takes control of the bus and deasserts 
LCL high at the end of T 1. A one T -state delay is built into 
this transfer to ensure that WRITE has been deasserted 
high before the data bus is switched. Timing Control Unit is 
now waited, inserting remote access wait states, T Wr, as 
RASM takes over. 

The remote address is permitted one T -state to settle on the 
BCP address bus before WRITE goes low. WRITE then re­
turns high one T-state plus the programmed Data Memory 
wait state, T Wd later, having satisfied the memory access 
time, and one T-state later LCL is reasserted low, transfer­
ring bus control back to the SCPo 

In this example, REM-WR goes low again during the remote 
write cycle which, since WR-PEND is still low, causes XACK 
to go low to wait the Remote Processor. Then LCL goes 
low, allowing the second data byte to be latched on the next 
trailing edge of REM-WR. One T-state later. XACK and 
WR-PEND go back high at the same time. 
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FIGURE 4-22. Flow Chart of Latched Write Mode 
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DATA ( REMOTE DATA) ( REMOTE DATA) 

L-- LOCAL MEMORY WRITE ~ I REMOTE WRITE HOST I L-- LOCAL MEMORY WRITE ~ L BCP INT. OP.--' L BCP INT. OP.-.-...J 

Register Configuration: 

-One Wait-State Programmed for Data-Memory 
-Zero Wait-States Programmed for Instruction-Memory 
-(RIC} Contents: XXXX1100 
-[LOR] = 0 

Other BCP Control Signals: 

RAE =0 
CMD =0 
REM-RD =1 
LOCK =1 

FIGURE 4-23. Latched Write to Data Memory by Remote Processor 
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4.0 Remote Interface and Arbitration System (RIAS) (Continued) 

The BCP is now shown executing a local memory write, with 
remote data still pending in the latch. At the end of this 
instruction, the BCP begins executing a series of internal 
operations which do not require the bus. RASM therefore 
takes over and, without waiting the Timing Control Unit, exe­
cutes the Remote Write. 

4.2.6 Remote Rest Time 

For the BCP to operate properly, remote accesses to the 
BCP must be separated by a minimal amount of time. This 
minimal amount of time has been termed "rest time". 

There are two causes for remote rest time. The first cause is 
implied in the functional state machine forms for remote ac­
cesses and can be explained as follows: At the beginning of 
every T-state the validity of a remote access is sampled for 
that T-state. To guarantee that the BCP recognizes the end 
of a remote cycle, the time between remote accesses must 
be a minimum of one T-state plus set up and hold times. 

In the case of Latched Read and Fast Buffered Write, the 
validity of a remote access is not sampled on the first rising 
edge of the CPU-CLK following XACK rising. However, on 
all subsequent rising edges of the CPU-CLK the validity of 
the remote access is sampled. As a result, if the remote 
processor can terminate its remote access quickly after 
XACK rises (within a T-state), up to a T-state may be added 
to the above equation for Latched Read and Fast Buffered 
Write modes (Le., a second remote access should not begin 
for two T-states plus set up and hold times after XACK rises 
in Latched Read and Fast Buffered Write modes). On the 
other hand, if the remote processor does not terminate its 
remote access within a T-state of XACK rising, the above 
equation (one T-state plus set up and hold times between 
remote accesses) remains valid for Latched Read and Fast 
Buffered Write modes. 

If these specifications are not adhered to, the BCP may 
sample the very end of one valid remote access and one 
T-state later sample the very beginning of a second remote 
access. Thus, the BCP will treat the second access as a 
continuation of the first remote access and will not perform 
the second read/write. The second access will be ignored. 
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(Reference Figure 4-24 for the timing diagrams which dem­
onstrate how two remote accesses can be mistaken as 
one.) 

The second source of remote rest time is due to the manner 
in which the BCP samples the CMD signal. CMD is sampled 
once at the beginning of each remote access. Due to the 
manner in which CMD is sampled, CMD will not be sampled 
again if a second remote access begins within 1.5 T-states 
plus a hold time, after the BCP recognizes the end of the 
first remote access. If this happens, the BCP will use the 
value of CMD from the previous remote access during the 
second remote access. If the value of CMD is the same for 
both accesses, the second access will proceed as intended. 
However, if the value of CMD is different for the two remote 
accesses, the second remote access will read/write the 
wrong location. 

The reader should note that the timing of the second source 
of rest time begins at the same time that the BCP first sam­
ples the end of the previous remote access. Thus when the 
first source of rest time ends, the second source of rest time 
begins. (Reference Figure 4-25 for timing diagrams for rest 
time in all modes except Latched Write mode). 

Latched Write Mode 

Latched Write mode is a special case of rest time and 
needs to be discussed separately from the other modes. 
The first cause of rest time affects every mode including 
Latched Write. In regards to the second source of rest time, 
Latched Write mode was designed to allow a second re­
mote access to start while a write is still pending (Le., 
WR-PEND = 0). Thus, when WR-PEND rises (signaling the 
end of the previous write) the value of CMD is sampled for 
the second remote access. This allows Latched Write to 
avoid the second cause of rest time discussed above. 

However, if a remote access begins within one half a 
T-state after WR-PEND rises, CMD will not be sampled 
again. For this case, if the value of CMD changes just after 
WR-PEND rose and at the same time the remote access 
begins, the BCP will read/write the wrong location. (Refer­
ence Figure 4-26 for timing diagrams of rest time for latched 
write mode.) 

I 
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4.0 Remote Interface and Arbitration System (RIAS) (Continued) 

I ' 1 T-state , I 

c:::: _---,_._---+~-..... ) _: _~:'+-~""'--~-. _____ _ 
TL/F/9336-G5 

(a) This timing diagram shows two remote accesses within one T-state. The first set of arrows 
. shows the BCP s'ampllng a valid remote read. The next time the BCP samples the validity of the 
remote access Is shown by the second set of arrows (1 T-state later). In this case, It will sample 

the second remote access and mistake It as a continuation of the first remote access. 

TLIF/9336-G6 

(b) This timing diagram shows the timing necessary for the BCP to recognize both accesses as 
separate accesses. The first set of arrows shows the BCP sampling a valid remote read. One T-state 

later at the second set of arrows the BCP will sample the end of the first remote access. Another T-state 
later at the third set of arrows the BCP will sample the beginning of the second remote access. 

FIGURE 4·24. Mistaking Two Remote Accesses as Only One 
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4.0 Remote Interface and Arbitration System (RIAS) (Continued) 

CPU-ClK 

CMD 1 st Remote Access's fWA0Wff?>u <Z?????1ZJ 2nd Remote Access's 
CMD Value CMD Value 

TLIF/9336-G7 

(a) This timing diagram shows the second remote access violating rest time. The first set of arrows shows the 
BCP sampling a valid remote write. The second set of arrows (1 T-state later), shows the BCP sampling the end of 
the first remote access. If a second remote access starts before the position of the third set of arrows (another 

1.5 T-states later), the value of CMD will not be sampled. The value of CMD has changed from the first remote 
access, so the BCP will write to the wrong location during the second access. 

CPU-ClK 

CMD 1 st Remote Access's WY//ZWfrMW4?"'Z'12J 2nd Remote Access's 

CMD Value CMD Value 
TLIF/9336-G8 

(b) This timing diagram shows the second remote access violating rest time. The first set of arrows shows the 
BCP sampling a valid remote write. The second set of arrows (1 T-state later), shows the BCP sampling the end of 
the first remote access. If a second remote access starts before the position of the third set of arrows (another 

1.5 T-states later), the value of CMD will not be sampled. The value of CMD does not change from the first remote 
access, so the BCP will write to the intended location during the second remote access. 

TL/F/9336-G9 

(c) This timing diagram shows the timing needed to avoid violating rest time for all modes except 
latched write. The first set of arrows shows the BCP sampling the end of the first remote access. 
The second set of arrows (1.5 T-states later), shows the BCP recognizing no remote access has 
started and the value of CMD will be sampled for the next remote access. The third set of arrows 

shows the BCP sampling the correct value of CMD for the second remote access. 

FIGURE 4-25. Remote Rest Time for All Modes except Latched Write 
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:; 4.0 Remote Interface and Arbitration System (RIAS) (Continued) 
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(a) This timing diagram shows a remote access violating remote rest time. The first set of arrows shows 
the BCP sampling the value of CMD when WR-PEND rises. If a remote access begins after WR-PEND rises 

and before the position of the second set of arrows (0.5 T-states later), the value of CMD will not be 
sampled again. The value of CMD has changed since WR-PEND rose, so the BCP will read the wrong location. 

0.5 
I :-state~ I 

CPU-ClK I I "'--{I) ,.-{)) I I I 

h h RAE I 

h 
I~ REt.I-RD 

h 
REt.I-WR 

WR-PEND t--I 

'+ 
Ct.lD Previous Remote Access's 2nd Remote Access's Ct.4D Value 

Ct.lD Value 
TLIF/9336-H2 

(b) This timing diagram shows a remote access violating remote rest time. The first set of arrows shows 
the BCP sampling the value of CMD when WR-PEND rises. If a remote access begins after WR-PEND rises 

and before the position of the second set of arrows (0.5 T -states later), the value of CMD will not be 
sampled again. The value of CMD has not changed since WR-PEND rose, so the BCP will read the Intended location. 

FIGURE 4-26. Rest Time for Latched Write Mode 
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4.0 Remote Interface and Arbitration System (RIAS) (Continued) 

CPU-ClK 

0.5 

~ 
I 

CR 
set-up time 

--------------~~-­~~+------------------------------------------

Ct.CD Previous Remote Access's 1 .... _'+.....I ____ 2_n_d_R_e_m_ot_e_A_cc_e_ss_'s_C_t.C_D_V_a_lu_e __ _ 
Ct.CD Value 

TlIF/9336-H3 

(c) This timing diagram shows a remote access setting up In time for WR·PEND rising to latch In the proper value of 
CMD. The only set of arrows shows the BCP sampling the second remote access's CMD value when WR·PEND rises. 

The value of CMD will not be sampled again. The BCP will carry out the second remote access as It was Intended. 

0.5 
I ;-state~ I 

CPU-ClK I I rlV ,.--{J) I ,..-{I. I 

~ '-) I- hold time -' 

~ '-) I- hold time -' 

~ 

'-I 

'+ 
Ct.CD Previous Remote Access's Ct.CD Value 

'-) 2nd Remote Access's 
I Ct.CD Value 

TL/F/9336-H4 

(d) This timing diagram shows a remote access starting after a half T·state plus a hold time since WR·PEND 
rose. The first set of arrows shows the BCP sampling the value of CMD when WR·PEND rises. The second set of 

arrows shows the BCP recognizing that no remote access has started and the value of CMD will be sampled 
for the next remote access. The third set of arrows shows the BCP sampling the correct value of CMD for the second 

remote access. The BCP will carry out the second remote access as It was Intended. 

FIGURE 4·26. Rest Time for Latched Write Mode (Continued) 
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5.0 Device Specifications 
Plastic Chip Carrier 

, 11 10 9 8 7 6 5 4 3 2 • 84 83 82 81 80 79 78 77 76 75 

A13- 12 

A12- 13 

All- 14 

Al0- 15 

A9- 16 

A8- 17 

AD7- 18 

AD6- 19 

AD5- 20 

AD4- 21 

Vee - 22 

GND- 23 

AD3- 24 

AD2- 25 

AD1- 26 

ADO - 27 

ALE - 28 

READ - 29 

WRITE- 30 

LCL- 31 

5.1 PIN DESCRIPTIONS 

Signal In/Out Pin 

5.1.1 TIMING/CONTROL SIGNALS 

Reset 
State 

X1 In 33 X 
X2 Out 34 X1 
ClK-OUT Out 35 X1 

X-TClK In 32 X 

WAiT In 54 X 

RESET In 55 0 

5.1.2 INSTRUCTION MEMORY INTERFACE 
Instruction Address Bus: 

IA15 (MSB) Out 58 0 
IA14 Out 59 0 
IA13 Out 60 0 
IA12 Out 61 0 
IA11 Out 62 0 
IA10 Out 63 0 

DP83448 

BCP 

FIGURE 5-1. Top View 

Order Number DP8344B 
See NS Package Number V84A 

Description 

74 ~IAI 

73 ~ IA2 

72 f-IA3 

71 ~1A4 

70 ~ lAS 

69 ~IA6 

68 ~ IA7 

67 f- GND 

66 ~ Vee 

65 ~ IA8 

64 ~IA9 

63 -lAID 

62 -IAll 

61 -IAI2 

60 -IAI3 

59 -IAI4 

58 -IAI5 

57 -GND 

56 -IWR 

55 - RESET 

54 -WAIT 

TLIF/9336-2 

Input and output of the on-chip crystal oscillator amplifier. Connect a crystal 
across these pins, or apply an external clock to X1, with X2 left open. 

Buffered CLocK oscillator OUTput, at the crystal frequency. 

EXternal Transceiver CLocK input. 

CPU WAIT. When active, waits processor and remote interface controller. 

Master RESET. Parallel reset to all sections of the chip. 

16-bit Instruction memory Address bus. 

1-136 



5.0 Device Specifications (Continued) 

Signal In/Out Pin 
Reset 

Description 
State 

5.1.2 INSTRUCTION MEMORY INTERFACE (Continued) 
Instruction Address Bus: (Continued) 

IA9 Out 64 0 16-bit Instruction memory Address bus. 
IA8 Out 65 0 
IA7 Out 68 0 
IA6 Out 69 0 
IA5 Out 70 0 
IA4 Out 71 0 
IA3 Out 72 0 
IA2 Out 73 0 
IA1 Out 74 0 
lAO (lSB) Out 75 0 

Instruction Bus: 

115 (MSB) In/Out 76 In 16-bit Instruction memory data bus. 
114 In/Out 77 In 
113 In/Out 78 In 
112 In/Out 79 In 
111 In/Out 80 In 
110 In/Out 81 In 
19 In/Out 82 In 
18 In/Out 83 In 
17 In/Out 2 In 
16 In/Out 3 In 
15 In/Out 4 In 
14 In/Out 5 In 
13 In/Out 6 In 
12 In/Out 7 In 
11 In/Out 8 In 
10 (lSB) In/Out 9 In 

Timing Control: 

IWR Out 56 1 Instruction WRite. Instruction memory write strobe. 

IClK Out 51 0 Instruction ClocK. Delimits instruction fetch cycles. Rises during the first half of 
T1, signifying the start of an instruction cycle, and falls when the next instruction 
address is valid. 

5.1.3 DATA MEMORY INTERFACE 
Address Bus: 

A15 (MSB) Out 10 X High byte of 16-bit memory Address. 
A14 Out 11 X 
A13 Out 12 X 
A12 Out 13 X 
A11 Out 14 X 
A10 Out 15 X 
A9 Out 16 X 
A8 Out 17 X 

Multiplexed Address/Data Bus: 

AD7 In/Out 18 1 low byte of 16-bit data memory Address, multiplexed with 8-bit Data bus. 
AD6 In/Out 19 0 

I 

AD5 In/Out 20 0 
AD4 In/Out 21 0 
AD3 In/Out 24 0 
AD2 In/Out 25 0 
AD1 In/Out 26 0 

III 
I 

I 

ADO (lSB) In/Out 27 1 
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5.0 Device Specifications (Continued) 

Signal In/Out Pin 
Reset 

Description 
State 

5.1.3 DATA MEMORY INTERFACE (Continued) 
Timing/Control: 

ALE Out 28 0 Address latch Enable. Demultiplexes AD bus. Address should be latched on the 
falling edge. 

READ Out 29 1 Data memory READ strobe. Data is latched on the rising edge. 

WRITE Out 30 1 Data memory WRITE strobe. Data is presented on the rising edge. 

5.1.4 TRANSCEIVER INTERFACE 

DATA-IN In 39 X Logic level serial DATA INput. 

+ALG-IN In 42 X Non-inverting AnaloG INput for biphase serial data. 

-ALG-IN In 41 X Inverting AnaloG INput for biphase serial data. 

DATA-OUT Out 38 1 Biphase serial DATA OUTput (inverted). 

DATA-DLY Out 37 1 Biphase serial DATA output DelaYed by one-quarter bit time. 

TX-ACT Out 36 0 Transmitter ACTive. Normally low, goes high to indicate serial data is being 
transmitted. Used to enable external line drive circuitry. 

5.1.5 REMOTE INTERFACE 

RAE In 46 X Remote Access Enable. A "chip-select" input to allow host access of BCP 
functions and memory. 

CMD In 45 X CoMmanD input. When high, remote accesses are directed to the Remote 
Interface Configuration register (RIC J. When low, remote accesses are directed 
to data-memory, instruction-memory or program counter as determined by 
(RICJ. 

REM-RD In 47 X REMote ReaD. When active along with RAE, a remote read cycle is requested; 
serviced by the BCP when the data bus becomes available. 

REM-WR In 48 X REMote WRite. When active along with RAE, a remote write cycle is requested; 
serviced by the BCP when the data bus becomes available. 

XACK Out 50 1 Transfer ACKnowledge. Normally high, goes low on REM-RD or REM-WR going 
low (if RAE low), returning high when the transfer is complete. Normally used as 
a "wait" signal to a remote processor. 

WR-PEND Out 49 1 WRite PENDing. In a system configuration where remote write cycles are 
latched, indicates when the latches contain valid data which is yet to be serviced 
by the BCP. 

LOCK In 44 X The remote processor uses this input to lOCK out local (BCP) accesses to data-
memory. Once the remote processor has been granted the bus, LOCK gives it 
sole access to the bus and BCP accesses are "waited". 

[C[ Out 31 0 loCaL. Normally low, goes high when the BCP relinquishes the data and 
address bus to service a Remote Access. 

5.1.6 EXTERNAL INTERRUPTS 

BIRQ In/Out 53 In Bi-directionallnterrupt ReQuest. As an input, can be used as an active low 
interrupt input (maskable and level-sensitive). As an output, can be used to 
generate remote system interrupts, reset via (RIC J. 

NMI In 52 X Non-Maskable Interrupt. Negative edge sensitive interrupt input. 

1-138 



5.0 Device Specifications (Continued) 

5.2 ABSOLUTE MAXIMUM RATINGS (Notes 1 & 2) Lead Temperature (Soldering, 10 sec) 

If Military/Aerospace specified devices are required, ESD Tolerance: CZAP = 120 pF, 

please contact the National Semiconductor Sales RZAP = 1500n 

Office/Distributors for availability and specifications. 
5.3 OPERATING CONDITIONS 

Supply Voltage (Vee) -0.5Vto +7.0V Min Max 
DC Input Voltage (VIN) or -0.5V to Vee + 0.5V Supply Voltage (Vee) 4.5 5.5 

DC Input Diode Current ±20mA DC Input or Output Voltage 
DC Output Voltage (VOUT) or -0.5V to Vee + 0.5V (VIN, VOUT) 0.0 Vee 

DC Output Current, per Pin (lOUT) ±20mA Operating Temp. Range (T A) 0 70 
DC Vee or GND Current, per Pin ±50mA Input Rise or Fall Times (tr, tf) 500 
Storage Temperature Range (T STG) - 65'C to + 150'C Oscillator Crystal Rs 20 

Power Dissipation (PD) 500mW Vee Power Up Ramp 6 

DC ELECTRICAL CHARACTERISTICS Vee = 5V ± 10% (unless otherwise specified) 

Symbol Parameter Conditions 
Guaranteed 

Limits 0-70'C 

VIH Minimum High Level Input Voltage 
Xl (Note 3) 3.5 
All Other Inputs Except - ALG·IN. + ALG·IN 2.0 

I' VIL Maximum Low Level Input Voltage 
Xl (Note 3) 1.7 
All Other Inputs Except -ALG·IN, +AlG·IN 0.8 

VIH-VIL Minimum OAT A·IN Hysteresis 0.1 

VSENS Minimum Analog Input IN + • IN- FigureS·8b 
20 

Differential Sensitivity 

VSIAS Common Mode Analog Input User Provided Bias Voltage Min 2.25 
Bias Voltage Max 2.75 

VOH Minimum High Level VIN = VIH or VIL 
Output Voltage IIOUTI = 20/LA Vee - 0.1 
IA,A,AD IIOUTI = 4.0 mA, Vee = 4.5V 3.5 
All Other Outputs IIOUTI = 1.0 mA, Vee = 4.5V 3.5 

VOL Maximum Low Level VIN = VIH or VIL 
Output Voltage IIOUTI = 20/LA 0.1 
IA,A,AD IIOUTI = 4.0 mA, Vee = 4.5V 0.4 
All Other Outputs IIOUTI = 1.0 mA, Vee = 4.5V 0.4 

liN Maximum Input Current VIN = Vee or GND 
-ALG-IN, +ALG·IN ±10 
Xl (Note 3) ±20 
All Others ±10 

loz Maximum TRI·STATE® Output VOUT = Vee or GND 
±10 

Leakage Current 

I·' IcC Maximum Operating VIN = Vee or GND 
Supply Current TCLK = 8MHz, CPU·CLK=16 MHz 
Total to 4 Vee Pins Xcvr and CPU Operating 61 
(Note 4) Xcvr Idle, CPU Waited 29 

· VIN =. Vee or GND 
TCLK = 20 MHz, CPU·CLK = 20 MHz 

· Xcvr and CPU Operating 71 

· 
Xcvr Idle, CPU Waited 31 . 

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur. 
Note 2: Unless otherwise specified, all voltages are referenced to ground. 
Note 3: X2 is an internal node with ESD protection. Do not use other than with crystal oscillator application. 
Note 4: No DC loading, with X1 driven, no crystal. AC load per Test Circuit for Output Tests. 
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5.0 Device Specifications (Continued) 

5.5 SWITCHING CHARACTERISTICS 

The following specifications' apply for Vcc = 4.5V to 5.5V, 
T A = O·C to 70·C. 

5.5.1 Definitions 

The timing specifications for the BCP are provided in the 
following tables and figures. The tables consist of five sec­
tions which are the following: the timing parameter symbol, 
the parameter ID#, the parameter description, the formula 
for the parameter, and the timing specification for the pa­
rameter. Below each table is a figure containing thewave­
forms for the parameters in the table. 

The parameter symbol is composed of the type of timing 
specification and the signal or signals involved. Note that 
the symbols are unique only within a given table. The follow­
ing symbol conventions are used for the type of timing spec­
ification. 

tw - Pulse width specification 
tpD - Propagation delay specification 
tH - Hold time specification 
tsu - Setup time specification 
tZA - High impedance to active delay specification 

(enable time) 
tAz - Active to high impedance delay specification 

(disable time) 
tACC - Access time specification 
tT - Clock period specification 

The parameter ID# is used to cross reference the timing 
parameter to the appropriate timing relationship in the ac­
companying figure. The waveforms in the figures are shown 
with the CPU clock running full speed ([CCS] = 0). For this 
case, CPU-CLK and CLK-OUT are equivalent. If CPU-CLKI 
2 is selected ([CCS] = 1), the effect on the waveforms with 
CLK-OUT is for CLK-OUT to double in frequency. The same 
is true for waveforms with X1. Note that CLK-OUT is always 
running at the crystal frequency and it is the CPU-CLK that 
is changing to half speed. 

The parameter description defines the timing relationship 
being specified. BCP pin references are capitalized in the 
description. 

Many of the timing specifications are dependent on vari­
ables such as operating frequency and number of pro­
grammed wait states. The formula for the parameter allows 
an accurate timing specification to be calculated for any 
combination of these variables. The formula represents the 
part of the timing specification that is synchronized to the 
internal CPU clock. This value is calculated and then added 

to the value specified under the Min or Max column to cre­
ate the minimum or maximum guaranteed timing specifica­
tion for the parameter. 

The following acronyms are used in the tables: 

DMEM refers to data memory 

IMEM refers to instruction memory 

RIC refers to the Remote Interface Control register 

PC refers to the BCP Program Counter 

TJefers to the CPU clock period in ns 

TH refers to first half pulse width (high tlrne)oftheCPU 
clock in os 

l"L refers to second half pulse width·' (low time) oftha 
CPU clock In ns. 

C refers to the transceiver clock period in ns 

nlW is the number of instruction memory wait states pro­
grammed in DCR 

nDW is the number of data memory wait states pro­
grammed in DCR 

nLW is the number of remote wait states due to a BCP 
local data memory access 

nRW is the number of CPU wait states due to a remote 
access 

MAX(A,B) means take the greater value of A or B 

The following table is an example of the format used for the 
timing specifications. In this example, tW-RD indicates a 
pulse width specification for the output pin READ. The ID# 
for locating the parameter in the timing waveforms is 10. 
The formula for this specification involves data and instruc­
tion memory wait states and the CPU clock period. For the 
case of 3 data memory wait states and 0 instruction memory 
wait states and a CPU clock period of 50 ns, the READ low 
minimum pulse width would be calculated as: 

(MAX(3,0-1)+ 1)T+(-10) = 4T.- 10 = 190 ns 

For the case of 1 data memory wait state and 3 instruction 
memory wait states and a CPU clock period of 50 ns, the 
READ low minimum pulse width would be calculated as: 

(MAX(1,3:-::1)+ 1)T+ (7"10) .=;.3T:-::JO=;.140ns 
)"0 calculate nLW the}oUowingtwoequations are needed: 

OLW(min} = . 0 

"LW (max).'"", MAX(noW,nlw-1)+DataMemoryAccessCy. 
cle 

DataMemory Access Cycle • is normally 3 T -statesJf [4TR] 
'"" 0 and 4 T -states if [4TR] ==1. Keep inmi~~tll~t~oth 
{LOR). and WAIT can extend nLW.'···························· 

Formula 

(MAX(now,niw -1) + 1 )T+ 

1-140 



5.0 Device Specifications (Continued) Test Circuit for Output Tests 

INPUT 

TRUE 
OUTPUT 

INVERTED 
OUTPUT 

PosmVE 
INPUT 

PULSE 

NEGATIVE 
INPUT 
PULSE 

Note 1: 51 = Vee for tpZl. and tpLZ measurements 

51 = GND for tpZH. and tpHZ measurements 

51 = Open for push pull outputs 

Note 2: Rl = 1.1 k for 4 mA outputs 

Rl = 4.4k for 1 mA outputs 

Note 3: CL includes scope and jig capacitance. 

Propagation Delay Waveforms 
Except for Oscillator 

i'-"'----GND 

TL/F/9336-A3 

Input Pulse Width Waveforms 

10% 
GND 

90% 
3.0V 

TLlF/9336-A5 

INPUT 

Xl 

ClK-OUT 

Vee 

DEVICE 
UNDER 
TEST 

RL 
(Not. 2) 

CL I so pF (Not. 3) 

TLlF/9336-A2 

Propagation Delay Waveform 
for Oscillator 

~10." ___ GND 

tPHt ----- ._-_.VOH 
2.SV 

VOL 
TL/F/9336-A4 

Setup and Hold Time Waveforms 

CLOCK OR 90% 3.0V ]
ttr =6ns 

LATCH ENABLE l.SV 
(NOTE 1) _____ 1;.;;ooiL. _____ .. ___ .GND 

POSITIVE 
DATA INPUT 

VOL 

NEGATIVE 
VOH 

DATA INPUT 

TL/F/9336-A6 
Note 1: Waveform for negative edge sensitive circuits will be Inverted. 

TRI·STATE Output Enable and Disable Waveforms 

OUTPUT CONTROL 
(lOW ENABLING) 

OUTPUT 

OUTPUT 

VOL tPZHJc VOH 
1.3V 

-----"". - .. - .VOL 

FIGURE 5-2. Switching Characteristic Measurement Waveforms 
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5.0 Device Specifications (Continued) 

TABLE 5-3. Data Memory Read Timing (Note 1) 
.. 

Symbol 10# Parameter Formula Min Max Units 

, tW-ALE 1, ALE High (nRw+1)T+ -10 12 ns 

tPD-AAD-ALE 2- A. AD (Data Address) Valid to ALE Falling T+ -22 ns 

tpD-ALE-AD .. 3 I ALE Falling to AD (Data Address) Invalid TL+ -2 ns 

: tH-RD-DATA 4 Data Valid after READ Rising 0 ns 

, tAZ-RD-AD 5 ' READ Falling to AD Disabled ([4TR] = 0) 20 ns 

tAZ-AD-RD 6 AD Disabled before READ Falling ([4TR] = 1) TH+ -20 ns 

tSU-RD-DATA 7 READ Falling to AD (Data) Setup ([4TR] = 0) (MAX(nDw,nlw-1) + 1)T + -22 ns 

: tSU-RD-DATA 8 READ Falling to AD (Data) Setup ([4TR] = 1) (MAX(nDw-1,nIW-1)+1)T+TL + -21 ns 

tZA-RD-AD 9 READ Rising to AD Enabled TH+ -2 ns 

, tPD-AAD-RD 10 A, AD (Data Address) Valid before READ Falling T+TL + -27 ns 
([4TR]=O), 

: tPD-AAD-,RD , 11 A, AD (Data Address) Valid before READ Falling 2T+ -27 ns 
([4TRj:=1) 

tW-RD ,.12' READ Low ([4TR] =0) (MAX(nDW,nIW -1) + 1)T + -10 10 ns 

, tW-RD .. 13 READ Low ([4TR] = 1) (MAX(nDW-1,nI'N-1)+1)T+h + -10 10 ns 

, tACC-D 14 Data Memory Read Time ([4 TR)) = 0) (MAX(nDW,nlw-1)+2)T+TL + -40 ns 

, tACC-D 15 
" 

Data Memory Read Time ([4TR)) = 1) (MAX(nDw-1,nIW-1)+3)T+TL + -40 ns 

tSU-AD-DATA 16 AD Disabled to AD (Data) Setup ([4TR] = 0) (MAX(nDW,nIW -1) + 1)T + -33 ns 

tSU-AD-DATA 17 AD Disabled to AD (Data) Setup ([4TR] = 1) (MAX(nDW -1 ,nlW -1) + 2)T + -33 ns 

; tPD-ALE-AAD ,18 ALE Rising to A, AD (Data Address) Valid (nRw)T+ 24 ns 

; tpD-RD-A 19 READ Rising to A Invalid TH+ 0 ns 

Note'1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing 
specification may lead to invalid results. 

~. ' . ,. , 

r----0--
" 

.... ' ALE 1£ k: 

. ". 
®- 1-0-'-0-

AD '/111111111111) ADDR ~ ~~A~ tWl111777l 
, , f-®- ~ }0 

" A 1111111111111), "IIIIIII/. 
0- 0- .. ~ 

READ 1\. 1/ 
I,' . 

~ -@-l----- @I-
14 

TLIF/9336-52 

(a)Ftea~Thl1h19y!ith ([4I~]:=O) 

r----0--
ALE jl 

®- f--0-4v- 0- ' 
AD ,/1111111 I I I I I), ADDR .m~ 

.. I-®-
A IIIIIIIIIIIII/; ~/ 

&1.ill. F®=J 
- ~ J READ 

~ 

&~ 
I -@-

TL/F/9336-H7 

: (~)~eiutIlrijl~9 WI'~,«(4T~1~:1) 

FIGURE S';3.DataMemory Read Timing 
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5.0 Device Specifications (Continued) 

TABLE 5~4. Data Memory Write Timing (Note 1) 

Symbol 10# Parameter Formula Min Max. Units 

tW-ALE 1 ALE High (nRW+1)T+ -10 12 ns 

tpO-MO-ALE 2 A, AD (Data Address) Valid to ALE Falling T+ -22 ns 

tpO-ALE-AO 3 ALE Falling to AD (Data Address) Invalid h+ -2 ns 

tpO-OATA-WR 4 AD (Data) Valid to WRITE Rising (MAX(noW,nIW-1) + 1)T + -20 ns 

tpO-MO-WR 5 A, AD (Data Address) Valid to WRITE Falling 1.5T+ -28 ns 

tpO-WR-DATA 6 WRTfi: Falling to AD (Data) Valid 19 ns 

tpO-WR-OATAz 7 WRTfi: Rising to AD (Data) Invalid TH+ -4 ns 

tW-WR 8 WFii1'E Low (MAX(noW,nIW -1) + 1)T + -10 10 ns 

tpO-ALE-MO 9 ALE Rising to A, AD (Data Address) Valid (nRW)T+ 24 ns 

tpO-WR-A 10 WRITE Rising to A Invalid TH+ -2 ns 

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing 
specification may lead to invalid results. 

ALE [~~-:6- -
AD '/////////////)~ ADDR ) DATA V~ 

1-

A 0"//'/////////)~ ¥ 
-0-0~ 

WRITE [" 

-0--- -0 _ ® f-

-0-
TL/F/9336-53 

FIGURE 5~4. Data Memory Write Timing 
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5.0 Device Specifications (Continued) 

TABLE 5-S:lnstructJoll Memory Read Timing (Note 1) 

Symbol 10# Parameter Formula Min Max Units 

tACC-1 . 1 Instruction Memory Read Time (nlw+1)T+TL + -19 ns 

tH-IA-1 2 IA Invalid to I Invalid 0 ns 

tPD-ICLK-IA 3 IClK Rising to IA Invalid TH+ -13 ns 

tPD-IA-ICLK 4 Next IA Valid before IClK Falling 
h+ 

-12 ns 

tPD-IAz-ICLK IA Invalid before IClK Falling 17 ns 

tSU-I-ICLK 5 I Valid before IClK Rising 20 ns 

tH-I-ICLK 6 I Invalid before IClK Falling TL+ 0 ns 

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing 
specification may lead to invalid results. 

®j 0 k IA 

~ I ~~: 
TL/F/9336-A9 

(a) Instruction Memory Read Timing 

v:-lelK 
~ 

p<- o-.- 0 14-

~0-
IA ) 

0.:i r- ~~ ':L~.0 
I ~ )V///////~ - - TL/F/9336-54 

(b) Instruction lelK Timing 

FIGURE 5·5. Instruction Memory Timing 
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5.0 Device Specifications (Continued) 

TABLE 5·6. Clock Timing (Note 1) 

Symbol 10# Parameter Formula Min Max Units 

tT·Xl X1 Period (Note 2) 50 500 ns 

tPD·Xl·CO 2 X1 to ClK·OUT (Note 2) 37 ns 

tpD·CO·/ClKr 3 ClK·OUT Rising to IClK Rising 15 ns 

tPD.CO·/ClKf 4 ClK·OUT Rising to IClK Falling (Note 3) 15 ns 

tT·XT 5 X·TClK Period (Note 4) 50 500 ns 

tW.X1Hl 6 X1 High and low time Pulse Widths (Note 5) 21 ns 

tW·XTHl 7 XTClK High and low Time Pulse Widths 15 ns 

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing 
specification may lead to invalid results. . 

Note 2: Measurement thresholds at 2.5V. 

Note 3: The falling edge of IClK occurs only after the next IA becomes valid. The CLK·OUT cycle in which this occurs depends on the instruction being executed 
and the number of programmed instruction wait states. 

Note 4: There is no relationship between X1 and X·TClK. X·TCLK is fully asynchronous. 

Note 5: Externalloading.on pin X2 equal to 15 pF. See Figure 5-6b for affect of X210ading in non·crystal applications (i.e., an external oscillator driving XI). 

Xt 

ClK-OUT 

IClK 

X-TClK 

25.0 ,...... 
24.5 III 

..5 24.0 
III 

23.5 :5 
"C 23.0 
~ 22.5 
G) 22.0 III 
:; 21.5 c.. 

~ 
21.0 

0 20.5 
-I 

"C 
20.0 

I: 19.5 co 
.c: 19.0 
.~ 18.5 
:J: 18.0 

x 17.5 
17.0 

10 15 20 25 30 35 

X2 Capacitance (pF) 

FIGURE 5--6. Clock Timing 
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~ 5.0 Device Specifications (Continued) 
co 
~ tABLE 5·7. Transceiver Thnlng (Note 1) 

Symbol 10# Parameter Formula Min Max Units 

tpD-X1-TA 1 X1 Rising to TX-ACT Rising/Falling 10 65 ns 

tpD-XTCLK-TA 2 X-TCLK Rising to TX-ACT Rising/Falling 7 49 ns 

tPD-DODD-TA 3 DAT A-ODT, DAT A-DL Y Valid to TX-ACT Rising C+ 16 ns 

tW-DO-HB 4 DATA-DDT Half Bit Cell Width 4C+ -10 10 ns 

tW-DO-FB 5 DATA-OUT Full Bit Cell Width 8C+ -10 10 ns 

tPD-DO-DD 6 DATA-OUT Falling/Rising to DATA-DLY 
2C+ -10 10 

Rising/Falling (Note 3) 
ns 

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing 
~pecificatio~mayJeadt~ invalid results. 

t4ote2: Wf:len (ATA]'" t.TX~ACTls delayed by.4Candan additional line quiescent is generated resulting in 5% line quiescent pulses after the line interface logic. 
The additional. delay relative to a message with [ATA} =0 is Be (one bit time). 

XlorX-TClK 

TX-ACT 
[ATA] = 0--------------..11 

OAT A-OUT ..,..,~rT7''rT'l~T'7''I''TT''"''I"T'rT7'.,.,.,rT7'm 
[TIN] = 1 """'"""""'''''''''''''''''''''''''''''''''''''''''''''"'"''''''''''''''''''''''''''"'"'''"'"'''"''1~------+-1 

TX-ACT 

[ATA] = 1----------------------4 
OAT A-OUT ..,..,~rT7''rT'l~T'7''I''TT''"''I"T'rT7'.,.,.,rT7'm 

[TIN] = 0 J.I..""""'''''''''''''''''''''''~''''''''"'"'.IJJ.~'"'"'''''''''''''"''1''---------------' 

DATA-DlY .,.,"I""I"l,.,.,."""""""""',.,.,.,.,.""" ...... ,.,.,."I""I"l,.,.,.,...,..,....-------------------l 
[TIN] = a ........ '"'""'"'"'''''''''''''''''''"'"'"'''''''''''''''''''''''''''''"'"'"'''''''''''''"''1 '-----

XlorX-TClK 

L 1,2 t 
lX-ACT --------------t~: --------

::::;~~~:~; -J __ .. ~~~~: .. -_-_-_-_~_ .. ~~~~~,--~t;;;..---6---------_--_--_-~-~---_ --_-~-~-~-~-~-: 
DATA-OUT ~ 

5250, [TIN] = a ""-----... 

DATA-DlY 
5250, [TIN] = 0 -----

--{ATR[7-3)}= 00000 
- - - - - {ATR[7-3]}= 00001 

(blrfa~sri11ssronEndlng TirIllng 
;~I~tJRt? S77~trarisc~lyer Timing 
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5.0 Device Specifications (Continued) 

TABLE 5-8. Analog and DATA-IN Timing (Note 1) 

Symbol 10# Parameter Formula Min Max Units 

tW-OI-hb 1 DATA-IN Data, Half Bit Width 3C+ 12 ns 

5C+ -12 ns 

tW-OI-fb 2 DATA-IN Data, Full Bit Width 7C+ 12 ns 

9C+ -12 ns 

tW-AI-hb 3 Analog Data, Half Bit Width 3C+ 20 ns 
(-ALG-IN or +ALG-IN) 5C+ -20 ns 

tW-AI-fb 4 Analog Data, Full Bit Width 7C+ 20 ns 
(-ALG-IN or +ALG-IN) 9C+ -20 ns 

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing 
specification may lead to invalid results. 

I Manchester ~ I Manchester ~ I Manchester 1 I 

DATA-IN -./,-----,~0=-1....----~t-----=--0-=--=--:f,....-----
(a) DATA-IN Jitter Timing (3270) 

I Manchester ~ I Manchester ~ I Manchester 1 I 
~ 

+ALG-IN ~ ~ __ ---- BOmY / ~ -------.-.==--I--------r-

-ALG-IN" ~ 
~ ~ 

r-0-

- ~ t 
........... ____ BOmY 

t 
r--0-

TL/F 19336-58 

TLlF/9336-59 

(b) Analog Jitter Timing (3270) 

FIGURE 5-8. Analog and DATA-IN Timing 
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~ 5.0 Device Specifications (Continued) 

~TAeLE5"9~lnterrupt TImIng (Note 1) 
c 

Symbol 10# Parameter Formula 

tSU-NMI-CO 1 NMI Falling before ClK-OUT Falling 

tH-NMI-CO 2 NMi Hold after ClK-OUT Falling 

tSU-8Q-CO 3 BIRQ (Input) Falling before ClK-OUT Falling 

tpD-ICLK-8Q 4 IClK Rising to BIRQ (Output) Rising/Falling 

Min Max Units 

12 ns 

8 ns 

13 ns 

24 ns 

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing 
specification may lead to invalid results. 

T2 T1 
(of NOP inst) 1,---

ClK-OUT 

IClK 

-Gr-f,;'\ ------'I r1~I~ ______________________ _ 
tOO ~L-J 

BIRO 
(input) 

IA 

lelK 

1(3)~ 

Next Instruction Address 

(b) BIRQ Output Timing 

FIGUAr: 5~9; h,terrupt Tbritrig 
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5.0 Device Specifications (Continued) 

TABLE 5·10. Control Pin Timing (Note 1) 

Symbol 10# Parameter Formula Min Max Units 

tW-RST 1 RESET low 5T+ 0 ns 

tPO-RST-ICLK 2 RESET Rising to IClK Rising 4T+ 0 ns 

tSU-ALE-WT 3 WAIT low after ALE High to Extend Cycle (MAX(noW,nIW -1) + 1)T + -21 ns 

tH-WT-ALE 4 WAIT Rising after ALE Falling (Note 2) 0 ns 

(MAX(noW,nIW-1)+ 1)T+ -28 ns 

tpO-WT-ROWR 5 WAIT Rising to READ or WRITE Rising T+TL+ -22 ns 

2T+h+ 2 ns 

tSU-RRW-RST 6 REM-RD, REM-WR low to RESET 
15 

Rising for BCP to Start 
ns 

tH-RST-RRW 7 REM-RD, REM-WR low after RESET 
5 

Rising for BCP to Start 
ns 

tSU-LK-ICLK 8 lOCK low before IClK High (Note 3) TL+ 19 ns 

tpO-LK-ALE 9 lOCK High to ALE low T+ -2 ns 

3T+ 20 ns 

tSU-WT-ICLK 10 WAIT low after IClK Rising to Extend Cycle (MAX(now,nIW -1»T + T H + -22 
(Note 4) 

ns 

tH-WT-ICLK 11 WAIT High after IClK Rising (Notes 2,4) (MAX(nOW,nIW -1»T + T H + 2 ns 

(MAX(nOW,nIW -1) + 1)T + T H + -20 ns 

tH-LK-ICLK 12 lOCK Rising after IClK High TH+ 2 ns 

tpO-AO-ALE 13 AD to ALE Falling after lOCK Rising T+ -33 ns 

tSU-WT-ALEf 14 WAIT low before ALE Falling to Extend Cycle 23 ns 

Nole 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing 
specification may lead to invalid results. 
Note 2: The maximum value for this parameter is the lastest WAiT can be removed without adding an additional T-state. The formula assumes a minimum 
externally generated wait of one T-state. 
Note 3: If IsU.LK-ICLK is not met. the maximum time from IT>Ci< low till no more local accesses is (MAX(now. nlw-1)+3)T. 
Note 4: The formula(s) apply to a 2. T·state instruction. For a 3 T-state Instruction. add one T.state; for a 4 T·state Instruction. add two T·states. 
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5.0 Device Specifications (Continued) 

TABLE 5-11. Buffered Read of PC, RIC (Note 1) 

Symbol 10# Parameter Formula Min ,Max' Units 

tSU-RRR-CO 1 RAE, REM-RD Falling before CLK-OUT Rising 22 

tH-RRR-X 2 RAE, REM-RD Rising after XACK Rising (Note 2) 0 ns 

2T+ -34 ns 

tSU-CMD-RRR 3 CMD Valid before RAE, REM-RD Falling 0 ns 

tH-CMD-RRR 4 CMD Invalid after RAE, REM-RD Falling T+ 26 ns 

tpD-RRR-X 5 RAE, REM-RD Falling to XACK Falling 26 ' : ns' 

tpD-X-LCL 6 XACK Falling to ill Rising (nLw+1)T+ -5 ns 

tPD-LCL-X 7 LCL Rising to XACK Rising 2T+ -10 8 ns 

tPD-RRR-LCL 8 RAE, REM-RD Rising to LCL Falling 3 ", ns 

tAZ-A-LCL 9 A Disabled before LCL Rising h+ -18, ,. ' ns 

tZA-LCL-A 10 A Enabled after LCL Falling TH+ 15' ns 

tpD-LCL-PC 11 LCL Rising to AD (PC) Valid T+ . 22 : ns 

tpD_PC-X 12 AD (PC, RIC) Valid before XACK Rising T+ -24 .. - ns' 

tpD-PC-RRR 13 ' RAE, REM-RD Rising to AD (PC) Invalid' 6 ns 

tw-PC 14 AD (PC, RIC) Valid Time T+' -2 ' 'ns' 

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to' create' a new timing ! specification may lead to invalid results. 
Note 2: The maximum value for this parameter is the latest RAE', REM-RD can be removed without adding a T-state to the remote access. 

ClK-OUT ---I . 

- kD - CD l- e 

RAE --,~ J~ 

G2:1 ~ 
~ : 

CMD~ )V/// / // /// / //// // // /// // ///////////////// //~ 

REM-RD ~l- I'- '. 

~ .' 

XACK 3,.- f-

-0 ..:0 -01-
-
LCl "} ['" 

READ -=-10 I- --®---1 
A 

JI 1\" 

~ ®- ~ 
AD RIC J( RIC, PC J RIC i 

'1? III 
TlIF/9336-65 

FIGURE 5-11. Buffered Read of PC, RIC 
I 

1-151 



m 
~ 

5.0 Device Specifications (Continued) ~ 
Cf) 
CO 

TABLES';12; Buffered Read of DMEM(Nofe 1)' a. 
Q 

Symbol 10# Parameter Formula Min Max Units 

tSU-RRR-CO 1 R'Al:, REM-RD Falling before ClK-OUT Rising 22 ns 

tH-RRR-X 2 R'Al:, REM-RD Rising after XACK RiSing (Note 2) 0 ns 

T+ -32 ns 

tSU-CMO-RRR 3 CMD Valid before RAE, REM-RD Falling 0 ns 

tH-CMO-RRR 4 CMD Invalid after RAE, REM-RD Falling T+ 26 ns 

tpO-RRR-X 5 'RAE, REM-RD Falling to XACK Falling 26 ns 

tpO-X-LCL 6 XACK Falling to [C[ Rising (nLW+1)T+ -5 ns 

tpO-LCL-X 7 [C'[ Rising to XACK Rising (nOW+2)T+ -10 8 ns 

tpO-RRR-LCL 8 RAE, REM-RD Rising to ill Falling T+ 3 ns 

tPO-LCL-RO 9 [C[ Rising to READ Falling T+ -5 16 ns 

tpO-RO-X 10 READ Falling to XACK Rising (now+1)T+ -15 ns 

tpO-RRR-RO 11 'RAE, REM-RD Rising to READ Rising 1 28 ns 

tAZ-AAO-LCL 12 A, AD Disabled before ill Rising TL+ -20 ns 

tZA-LCL-AAO 13 A, AD Enabled after [C[ Falling TH+ -10 ns 

tW-RO 14 Read low (nOW+1)T+ -4 ns 

Note 1: All parameters are Individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing 
specification may lead to Invalid results. 
Note 2: The maximum value for this parameter is the latest tiAE:. ~ can be removed without adding a T-state to the remote access. 

ClK-OUT --.-:; 

, - k0 - CD ,l-,. _________ _ 
RAE ~~ jf" 

~~I~~~~~~~ 
CNO ~?j H/I///////////// /1///////////////////////1//////////////////////// /I//. 

f" 

-0-
XACK l ... ~If. 

HV 0 ,8./ 

j 

r---cv -@-- ~ 
lCl ________________ ~, 

)~ j 

r-®- @ 
II A,AO 

_____ 01

1 
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5.0 Device Specifications (Continued) 

TABLE 5-13. Buffered Read of IMEM (Note 1) 

Symbol 10# Parameter Formula Min Max Units 

tSU-RRR-CO 1 RAE, REM-RD Falling before ClK-OUT Rising 22 ns 

tH-RRR-X 2 RAE, REM-RD Rising after XACK Rising (Note 2) 0 ns 

T+ -32 ns 

tSU-CMD-RRR 3 CMD Valid before RAE, REM-RD Falling 0 ns 

tH-CMD-RRR 4 CMD Invalid after RAE, REM-RD Falling T+ 26 ns 

tpD-RRR-X 5 RAE, REM-RD Falling to XACK Falling 26 ns 

tPD-X-LCL 6 XACK Falling to [C[ Rising T+ -5 ns 

tpD-LCL-X 7 lCl Rising to XACK Rising (nIW+2)T+ -10 8 ns 

tpD-RRR-LCL 8 RAE, REM-RD Rising to [C[ Falling 3 ns 

tAZ-LCL-A 9 A Disabled after [C[ Rising h+ -18 ns 

tZA-A-LCL 10 A Enabled before [C[ Falling TH+ 15 ns 

tpD-IMEM-X 11 AD (IMEM) Valid before XACK Rising (nlw+1)T+ -25 ns 

tpD-RRR-IMEM 12 AD (IMEM) Invalid after RAE, REM-RD Rising 10 ns 

tPD-LCL-IMEM 13 [C[ Rising to AD (IMEM) Valid T+ 22 ns 

tW-IMEM 14 (IMEM) Valid (nlw+1)T+ 0 ns 

tPD-LCL-IA 15 [C[ Falling to Next IA Valid (Note 3) TH+ 8 ns 

T+TH+ 44 ns 

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing 
specification may lead to invalid results. 
Note 2: The maximum value for this parameter is the latest RM:, ~ can be removed without adding a T-state to the remote access. 
Note 3: Two remote reads from instruction memory are necessary to read a 16-bit instruction word from IMEM-Iow byte followed by high byte. The timing for the 
two reads are the same except that IA is incremented after the high instruction memory byte is read. 

CLK-OUT 

- 1 - 0---., 
RAE 

cw~ ~ k'/////////////////////////////////////////////////~ -
REt.f-RD~ r-

~ 
XACK \: 

1-0 CD - r-0 
LCL (-

READ 

j-0- r---®--- ·~~I 
If A JI Il 

I --@ 14 

I 

III 
AD RIC It.fEt.f RIC 

I 

~ 
IA X 

TlIF/9336-67 

FIGURE 5~13; Buffered Read of IMEM 
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5.0 Device Specifications (Continued) 

TABL.E S':;14;L.atcheC:f Reacfof PC, RIC (Note 1) 

Symbol 10# Parameter Formula Min Max Units 

tSU-RRR-CO 1 RAE, REM-RD Falling before CLK-OUT Rising 22 ns 

tH-RRR-X 2 RAE, REM-RD Rising after XACK Rising 0 ns 

tSU-CMD-RRR 3 CMD Valid before RAE, REM-RD Falling 0 ns 

tH-CMD-RRR 4 CMD Invalid after RAE, REM-RD Falling T+ 26 ns 

tpD-RRR-X 5 RAE, REM-RD Falling to XACK Falling 26 ns 

tPD-Xf-LCLr 6 XACK Falling to LCL Rising (nLW+1)T+ -5 ns 

tPD-LCL-X 7 LCL Rising to XACK Rising 2T+ -10 8 ns 

tPD-Xr-LCLf 8 XACK Rising to LCL Falling T+ -11 11 ns 

tAZ-A-LCL 9 A Disabled before LCL Rising TL+ -18 ns 

tZA-LCL-A 10 A Enabled after LCL Falling TH+ -12 ns 

tpC-LCL-PC 11 LCL Rising to AD (PC) Valid T+ 20 ns 

tpD-PC-X 12 AD (PC) Valid before XACK Rising T+ -22 ns 

tpD-X-PC 13 XACK Rising to AD (PC) Invalid TH+ 0 ns 

tw-PC 14 AD (PC, RIC) Valid T+TH+ -12 ns 

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing 
specification may lead to invalid results. 

ClK-OUT ---l 

- kD -CD*-
RAE --\ j 

0.:j ~ 
Ct.lD~ ~///////////////////////J7'/7/777///////////~ 

REt.I-RD ~ -l-
~ 

XACK '3k- ~ 

HV 0 -0--
-

~ ~~ lCl 

READ 
-=10 f- - @r: 

A " \I' 

II 1\ 

0j, -@- @f-
AD RIC ~" RIC, PC '( RIC 

'14' 
TL/F/9336-68 

FIGURE 5-14. Latched Read of PC, RIC 
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5.0 Device Specifications (Continued) 

TABLE 5·15. Latched Read of OMEM (Note 1) 

Symbol 10# Parameter Formula Min Max Units 

tSU-RRR-CO 1 RAE. REM-RD Falling before ClK-OUT Rising 22 ns 

tH-RRR-X 2 RAE. REM·RD Rising after XACK Rising 0 ns 

tSU-CMD-RRR 3 CMD Valid before RAE. REM·RD Falling 0 ns 

tH-CMD-RRR 4 CMD Invalid after RAE. REM·RD Falling T+ 26 ns 

tpD-RRR-X 5 RAE:. REM·RD Falling to XACK Falling 26 ns 

t 
tPD-Xf-LCLr 6 XACK Falling to [C[ Rising (nLW+1)T+ -5 ns 

tpD-LCL-X 7 ill Rising to XACK Rising (nDW+2)T+ -10 8 ns 

tPD-Xr-LCLf 8 XACK Rising to ill Falling T+ -11 11 ns 

tpC-LCL-RD 9 ill Rising to READ Falling T+ -5 16 ns 

tpD-RD-X 10 READ Falling before XACK Rising (nDW+1)T+ -15 ns 

tpD-X-RD 11 XACK Rising to READ Rising TH+ -7 12 ns 

tAZ-AAO-LCL 12 A. AD Disabled before [C[ Rising h+ -20 ns 

tZA-LCL-AAD 13 A. AD Enabled after [C[ Falling TH+ -10 ns 

tW-RD 14 READ low (now+1)T+TH+ -12 ns 

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing 
specification may lead to invalid results. 

CLK-OUT 

- 1 - 0f-
- --, 
RAE ~ j 

3 

~///////////////////////////////////////////-Ct.lD 

-~ 
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FIGURE 5-15. Latched Read of OMEM .. 
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5.0 Device Specifications (Continued) 

TABLE 5";1S.LatcheClReaCl of IMEM'(Nole1}' 

Symbol 10# Parameter Formula Min Max . Units 

tSU-RRR-CO 1 ' RAE, REM-RD Falling before CLK-OUT Rising 22 ns 

tH-RRR-X 2 RAE, REM-RD Rising after XACK Rising 0 ns 

tSU-CMD-RRR 3 CMD Valid before RAE, REM-RD Falling 0 ns 

tH-CMD-RRR 4 CMD Invalid after RAE, REM-RD Falling T+ 26 ns 

tpD-RRR-X 5 RAE, REM-RD Falling to XACK Falling , 26 ns, 

tpD-Xf-LCLr 6 XACK Falling to LCL RiSing T+ -5 ns 

tpD-LCL-X 7 LCL Rising to XACK Rising (nIW+2)T+ -10 8 ns 

tPD-Xr-LCLf 8 XACK Rising to LCL Falling T+ -11 11 ns 

tAZ-A-LCL 9 A Disabled before LCL Rising h+ , -18 ns 

tZA-LCL-A 10 A Enabled after LCL Falling TH+ -12 ns 

tPD-LCL-IMEM: 11 LCL Rising to AD (IMEM) Valid T+ 22 ns 

tpD-IMEM-X 12 AD (IMEM) Valid to XACK Rising (nlw+1)T+ -23 ns 

tpD-X-IMEM 13 XACK Rising to AD (IMEM) Invalid TH+ 1 ns 

tpD~LCL-IA 14 LCL Falling to Next IA Valid (Note 2) T+TH+ -19 5 ns 

tW-IMEM 15 IMEMValid (nlW + 1)T + T H + -9 ns 

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing 
specification may lead to invalid results. 
Note 2: Two remote reads from instruction memory are necessary to ~ead a 16-bit instruction word from IMEM-low byte followed by high byte. The timing for the 
two reads are the same except that IA is incremented after the high instruction memory byte is read. 

ClK-OUT .. 

'- I -0f-
RAE ---'\ ' -l-

;"~ -0--1 . 
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-~ 
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XACK 3 
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-0 t7' \.:.J 0-
-
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, 

READ r& r-&I 
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f--® e- @) *- ~ 
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J.;'\ 
~~ 

IA 
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FIGURE 5-16. Latched Read of IMEM 
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5.0 Device Specifications (Continued) 

TABLE 5·17. Slow Buffered Write of PC, RIC (Note 1) 

Symbol 10# Parameter Formula Min Max Units 

tSU-RRW-CO 1 RAE, REM-WR Falling before ClK-OUT Rising 24 ns 

tH-RRW-X 2 RAE, REM-WR Rising after XACK Rising (Note 2) 0 ns 

T+ -37 ns 

tSU-CMD-RRW 3 CMD Valid before RAE, REM-WR Falling 0 ns 

tH-CMD-RRW 4 CMD Invalid after RAE, REM-WR Falling T+ 26 ns 

tpD-RRW-X 5 RAE, REM-WR Falling to XACK Falling 26 ns 

tpD-X-LCL 6 XACK Falling to [C[ Rising (nLW+1)T+ -5 ns 

tpD-LCL-X 7 [C[ Rising to XACK Rising 2T+ -10 8 ns 

tPD-RRW-LCL 8 RAE, REM-WR Rising to [C[ Falling T+ 5 ns 

tAZ-MD-LCL 9 A, AD Disabled before lCl Rising h+ -20 ns 

tZA-LCL-MD 10 A, AD Enabled after lCl Falling TH+ -10 ns 

tSU-RDAT-RRW 11 AD (Data) Valid before RAE, REM-WR Rising 12 ns 

tH-RDAT-RRW 12 AD (Data) Invalid after RAE, REM-WR Rising 10 ns 

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing 
specification may lead to invalid results. 
Note 2: The maximum value for this parameter is the latest RAE:, ~ can be removed without adding a T-state to the remote access. 
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0.,j ~ 
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FIGURE 5-17. Slow Buffered Write of PC, RIC 
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5.0 Device Specifications (Continued) 

r ABLE 5·18. Slow Buffered Write of OMEM (Note 1) 

Symbol 10# Parameter Formula Min Max Units 

tSU-RRW-CO 1 RAE, REM-WR Falling before CLK-OUT Rising 24 ns 

tH-RRW-X 2 RAE, REM-WR Rising after XACK Rising (Note 2) 0 ns 

T+ -34 ns 

tSU-CMO-RRW 3 CMD Valid before RAE, REM-WR Falling 0 ns 

tH-CMO-RRW 4 CMD Invalid after RAE, REM-WR Falling T+ 26 ns 

tpO-RRW-X 5 RAE, REM-WR Falling to XACK Falling 26 ns 

tpO-X-LCL 6 XACK Falling to LCL Rising (nLW+1)T+ -5 ns 

tpO-LCL-X 7 LCL Rising to XACK Rising (now+2)T+ -10 8 ns 

tpO-RRW-LCL 8 RAE, REM-WR to LCL Falling T+ 5 ns 

tpO-LCL-WR 9 LCL Rising to WRITE Falling T+ -5 ns 

tpO-WR-X 10 WRITE Falling to XACK Rising (now+1)T+ -17 ns 

tpO-RRW-WR 11 RAE, REM-WR Rising to WRITE Rising 2 28 ns 

tAZ-AAO-LCL 12 A, AD Disabled before LCL Rising TL+ -20 ns 

tAZ-LCL-AAO 13 A, AD Enabled after LCL Falling TH+ -10 ns 

tW-WR 14 WRITE Low (now+1)T+ -3 ns 

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing 
specification may lead to invalid results. 
Note 2: The maximum value for this parameter is the latest RAE:. RE'fiif-WR can be removed without adding a T-state to the remot~ access. 
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FIGURE 5·18. Slow Buffered Write of DMEM 
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5.0 Device Specifications (Continued) 

TABLE 5-19. Slow Buffered Write of IMEM (Notes 1,2) 

Symbol 10# Parameter Formula Min Max Units 

tSU-RRW-CO 1 RAE, REM-WR Falling before ClK-OUT Rising 24 ns 

tH-RRW-X 2 RAE, REM-WR Rising after XACK Rising (Note 3) 0 ns 

T+ -34 ns 

tSU-CMD-RRW 3 CMD Valid before RAE, REM-WR Falling 0 ns 

tH-CMD-RRW 4 CMD Invalid after RAE, REM-WR Falling T+ 26 ns 

tpD-RRW-X 5 RAE, REM-WR Falling to XACK Falling 26 ns 

tPD-X-LCL 6 XACK Falling to lCL Rising T+ -5 ns 

tpD-LCL-X 7 lCL Rising to XACK Rising (nlw+2)T+ -10 8 ns 

tPD-RRW-LCL 8 RAE, REM-WR to LCL Falling T+ 5 ns 

tAZ-AAD-LCL 9 A, AD Disabled before LCL Rising h+ -20 ns 

tZA-LCL-AAD 10 A, AD Enabled after LCL Falling TH+ -10 ns 

tpD-RDAT-1 11 AD (Data) Valid to I Valid 30 ns 

tH-RDAT-RRW 12 AD (Data) Invalid after RAE, REM-WR Rising 14 ns 

tpD-LCL-IA 13 LCL Falling to next IA Valid T+TH+ -20 3 ns 

tPD-LCL-IWR 14 LCL Rising to IWR Falling -3 ns 

tpD-IWR-X 15 IWR Falling before XACK Rising (nlw+2)T+ -19 ns 

tpD-RRW-IWR 16 RAE, REM-WR Rising to IWR Rising 5 ns 

tZA-IWR-1 17 IWR Falling to I Enabled T+ -2 ns 

tAZ-IWR-1 18 IWR Rising to I Disabled 22 52 ns 

tpD-I-IWR 19 I Valid before IWR Rising (nIW+ 1)T+ -10 ns 

tW-IWR 20 IWR Low (nIW+2)T+ -2 ns 

tPD-I-IA 21 I Disabled to IA Invalid 2T+TH+ -64 ns 

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing 
specification may lead to invalid results. 
Note 2: Two remote writes to instruction memory are necessary to store a 16-bit instruction word to IMEM-Iow by1e followed by high by1e. The timing for the 2nd 
write is shown in the following diagram. The timing of the first write is the same as a write of the PC or RIC. 
Note 3: The maximum value for this parameter is the latest RAl:, REM-WR can be removed without adding a T-state to the remote access. 
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5.0 Device Specifications (Continued) 

TABLE 5-20. Fast Buffered Write of RIC, PC (Note 1) 

Symbol 10# Parameter Formula Min Max ' Units 

tSU-RRW-CO 1 RAE, REM-WR Falling before ClK-OUT Rising 24 ns 

tH-RRW-X 2 RAE, REM-WR Rising after XACK Rising 0 ns 

tSU-CMD-RRW 3 CMD Valid before RAE, REM-WR Falling 0 ns 

tH-CMD-RRW 4 CMD Invalid after RAE, REM-WR Falling T+ 26 ns 

tpD-RRW-X 5 RAE, REM-WR Falling to XACK Falling 26 ns 

tPD-X-LCL 6 XACK Falling to lCL Rising (nLW+1)T+ -5 ns 

tpD-lCl-X 7 [C[ Rising to XACK Rising 2T+ -10 8 ,ns 

tPD-Xr-lCLf 8 XACK Rising to lCl Falling T+ -11 11 ns 

tAZ-AAD-LCL 9 A, AD Disabled before lCl Rising h+ -20 ns 

tZA-LCl-AAD 10 A, AD Enabled after lCl Falling TH+ -10 ns 

tSU-RDAT-X 11 AD (Data) Valid before XACK Rising 26 ns 

tH-RDAT-X 12 AD (Data) Invalid after XACK Rising 3 ,ns 

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing 
specification may lead to invalid results. 
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5.0 Device Specifications (Continued) 

TABLE 5';21: Fast Buffered Write of OMEM (Note 1) 

Symbol 10# Parameter Formula Min Max Units 

tSU-RRW-CO 1 RAE, REM-WR Falling before ClK-OUT Rising 24 ns 

tH-RRW-X 2 RAE, REM-WR Rising after XACK Rising 0 ns 

tSU-CMD-RRW 3 CMD Valid before RAE, REM-WR Falling 0 ns 

tH-CMD-RRW 4 CMD Invalid after RAE, REM-WR Falling T+ 26 ns 

tpD-RRW-X 5 RAE, REM-WR Falling to XACK Falling 26 ns 

tPD-Xf-LCLr 6 XACK Falling to [C[ Rising (nLw+1)T+ -5 ns 

tpD-LCL-X 7 [C[ Rising to XACK Rising (nDW+2)T+ -10 8 ns 

tPD-Xr-LCLf 8 XACK Rising to [C[ Falling T+ -11 11 ns 

tpD-LCL-WR 9 lCl Rising to WRITE Falling T+ -5 ns 

tpD-WR-X 10 WRITE Falling to XACK Rising (nDW+1)T+ -16 ns 

tpD-X-WR 11 XACK Rising to WRITE Rising -4 13 ns 

tAZ-AAD-LCL 12 A, AD Disabled before lCl Rising TL+ -20 ns 

tZA-LCL-AAD 13 A, AD Enabled after lCl Falling TH+ -10 ns 

tW-WR 14 WRITE low (nDW+1)T+ -10 ns 

Note 1: All parameters are Individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing 
specification may lead to invalid results. 
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5.0 Device Specifications (Continued) 

TABLE 5-22. Fast Buffered Write of IMEM (Notes 1, 2) 

Symbol 10# Parameter Formula Min Max Units 

tSU-RRW-CO 1 RAE, REM-WR Falling before ClK-OUT Rising 24 ns 

tH-RRW-X 2 RAE, REM-WR Rising after XACK Rising 0 ns 

tSU-CMD-RRW 3 CMD Valid before RAE, REM-WR Falling 0 ns 

tH-CMD-RRW 4 CMD Invalid after RAE, REM-WR Falling T+ 26 ns 

tpD-RRW-X 5 RAE, REM-WR Falling to XACK Falling 26 ns 

tPD-Xf-LCLr 6 XACK Falling to ill Rising T+ -5 ns 

tpD-LCL-X 7 lCl Rising to XACK Rising (nlw+2)T+ -10 8 ns 

tPD-Xr-LCLf 8 XACK Rising to [C[ Falling T+ -11 11 ns 

tAZ-AAD-LCL 9 A, AD Disabled before [C[ Rising h+ -20 ns 

tZA-LCL-AAD 10 A, AD Enabled after lCl Falling TH+ -10 ns 

tPD-RDAT-1 11 AD (Data) Valid to I Valid 30 ns 

tH-RDAT-X 12 AD (Data) Invalid after XACK Rising 3 ns 

tpD-IWR-X 13 IWR Falling before XACK Rising (nlw+2)T+ -19 ns 

tpD-LCL-IA 14 lCl Falling to next IA Valid T+TH+ -19 5 ns 

tpD-LCL-IWR 15 lCl Rising to IWR Falling -3 ns 

tpD-X-IWR 16 XACK Rising to IWR Rising -2 ns 

tZA-IWR-1 17 IWR Falling to I Enabled T+ -2 ns 

tAZ-IWR-1 18 IWR Rising to I Disabled 22 52 ns 

tPD-I-IWR 19 I Valid before IWR Rising (nlw+1)T+ -18 ns 

tW-IWR 20 IWR low Time (nlw+2)T+ -10 ns 

tpD-I-IA 21 I Disabled to IA Invalid 2T+TH+ -70 ns 

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing 
specification may lead to invalid results. 
Note 2: Two remote writes to instruction memory are necessary to store a 16-bit instruction word to IMEM-Iow byte followed by high byte. The timing of the 2nd 
write is shown in the following diagram. The timing of the first write is the same as a write of the PC or RIC as shown in Figure 5-20. 

.. 
I 
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5.0 Device Specifications (Continued) 

TABLE 5·23. Latched Write of PC, RIC (Note 1) 

Symbol 10# Parameter Formula Min Max Units 

tSU-RRW-CO 1 RAE, REM-WR Falling before ClK-OUT Rising 24 ns 

tH-RRW-CO 2 RAE, REM-WR Rising after ClK-OUT Rising (Note 2) TH+ 6 ns 

T+ -20 ns 

tH-RRW-X 3 RAE, REM-WR Rising after XACK Rising 0 ns 

tSU-CMD-RRW 4 CMD Valid before RAE, REM-WR Falling 0 ns 

tH-CMD-RRW 5 CMD Invalid after RAE, REM-WR Falling T+ 26 ns 

tpD-RRW-X 6 RAE, REM-WR Falling to XACK Falling 26 ns 

tSU-RDAT-LCL 7 AD (Data) Valid after lCl Rising 2T+ -30 ns 

tH-RDAT-LCL 8 AD (Data) Invalid after ICC Rising 2T+ 2 ns 

tAZ-AAD-LCL 9 A, AD Disabled before lCl Rising h+ -20 ns 

tZA-LCL-AAD 10 A, AD Enabled after [C[ Falling TH+ -10 ns 

tpD-RRW-WPND 11 RAE, REM-WR Rising to WR-PEND Falling 5 ns 

T+ 34 ns 

tSU-CMD-WPND 12 CMD Valid before WR-PEND Rising 16 ns 

tH-CMD-WPND 13 CMD Invalid after WR-PEND Rising 4 ns 

tSU-RRWr-CO 14 RAE, REM-WR Rising before ClK-OUT Rising 20 ns 

tpD-X-WPND 15 XACK Rising to WR-PEND Rising 13 ns 

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing 
specification may lead to invalid results. 
Note 2: The maximum value for this parameter is the latest~, ~ can be removed without delaying the remote access by one T-state. 

CLK-OUT ~~ - "' 1l'""""""'\ RAE 
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CMD ///~ V/ /////////////////////////////////. V/~ 

~ --
REM-WR 

-0 :+0 f+-
XACK ~ ~ 

® 
-
LCL ,. ... 

--
WRITE 

:-<Vi 10 .... -~ -jeD 
A. AD 

-® ~@ --~ ---
WR-PEND T .., 

~ 
TL/F/9336-77 

FIGURE 5·23. Latched Write of PC, RIC 
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5.0 Device Specifications (Continued) 

TABLE 5·24~l..atC:;hec:lWrite 6f OMEM (Note 1) 

Symbol 10# Parameter Formula Min Max Units 

tSU-RRW-CO 1 RAE, REM-WR Falling before ClK-OUT Rising 24 ns 

tH-RRW-CO 2 RAE, REM-WR Rising after ClK-OUT Rising (Note 2) TH+ 6 ns 

T+ -20 ns 

tH-RRW-X 3 RAE, REM-WR Rising after XACK Rising 0 ns 

tSU-CMD-RRW 4 CMD Valid before RAE, REM-WR Falling 0 ns 

tH-CMD-RRW 5 CMD Invalid after RAE, REM-WR Falling T+ 26 ns 

tpD-RRW-X 6 RAE, REM-WR Falling to XACK Falling 26 ns 

tpD-LCL-WR 7 [C[ Rising to WRITE Falling T+ -5 ns 

tpD-WR-LCL 8 WRITE Rising to [C[ Falling T+ -11 ns 

tAZ-AAD-LCL 9 A, AD Disabled before lCl Rising TL+ -20 ns 

tZA~LCL-AAD 10 A, AD Enabled after lCl Falling TH+ -10 ns 

tW-WR 11 WRITE low Time (nDW+1)T+ -10 ns 

tPD-RRW-WPND 12 RAE, REM-WR Rising to WR-PEND Falling 5 ns 

T+ 34 ns 

tSU-CMD-WPND 13 CMD Valid before WR-PEND Rising 16 ns 

tH-CMD-WPND 14 CMD Invalid after WR-PEND Rising 4 ns 

tSU-RRWr-CO 15 RAE, REM-WR Rising before ClK-OUT Rising 20 ns 

tPD-X-WPND 16 XACK Rising to WR-PEND Rising 13 ns 

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing 
specification may lead to invalid results. 

Note 2: The maximum value for this parameter is the latest 11A!:. ~ can be removed without delaying the remote access by one T-state. 
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FIGURE 5·24. Latched Write of DMEM 
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5.0 Device Specifications (Continued) 

TABLE 5·25. Latched Write of IMEM (Notes 1,2) 

Symbol 10# Parameter Formula Min Max Units 

tSU-RRW-CO 1 RAE, REM-WR Falling before ClK-OUT Rising 24 ns 

tH-RRW-CO 2 RAE, REM-WR Rising after ClK-OUT Rising (Note 3) , TH+ 6 ns 

'T+ -20 ns 

tH-RRW-X 3 RAE, REM-WR Rising after XACK Rising 0 ns 

tSU-CMD-RRW 4 CMD Valid before RAE, REM-WR Falling 0 ns 

tH-CMD-RRW 5 CMD Invalid after RAE, REM-WR Falling T+ 26 ns 

tpD-RRW-X 6 RAE, REM-WR Falling to XACK Falling 26 ns 

tAZ-AAD-LCL 7 A, AD Disabled before lCl Rising h+ -20 ns 

tZA-LCL-AAD 8 A, AD Enabled after ICC Falling TH+ -10 ns 

tpD-RDAT-1 9 AD (Data) Valid to I Valid 30 ns 

tH-RDAT-IWR 10 AD (Data) Invalid after IWR Rising 0 ns 

tpD-RRW-WPND 11 RAE, REM-WR Rising to WR-PEND Falling 5 

T+ 34 ns 

tPD-LCL-IA 12 lCl Falling to Next IA Valid T+TH+ -19 5 ns 

tZA-IWR-1 13 IWR Falling to I Enabled T+ -2 ns 

tAZ-IWR-1 14 IWR Rising to I Disabled 22 52 ns 

tpD-I-IWR 15 I Valid before IWR Rising (nIW+1)T+ -18 ns 

tPD-LCL-IWR 16 ICC Rising to IWR Falling -3 ns 

tPD-IWR-LCL 17 IWR Rising to ICC Falling T+ -17 ns 

tW-IWR 18 IWR low Time (nIW+2)T+ -12 ns 

tSU-CMD-WPND 19 CMD Valid before WR-PEND Rising 16 ns 

tH-CMD-WPND 20 CMD Invalid after WR-PEND Rising 4 ns 

tpD-I-IA 21 I Disabled to IA Invalid 2T+TH+ -70 ns 

tSU-RRWr-CO 22 RAE, REM-WR Rising before ClK-OUT Rising 20 ns 

tPD-X-WPND 23 XACK Rising to WR-PEND Rising 13 ns 

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing 
specification may lead to invalid results. 
Note 2: Two remote writes to instruction memory are necessary to store a 16-bit instruction word to IMEM-Iow byte followed by high byte. The timing of the 2nd 
write is shown in the following diagram. The first write is the same as a write of the PC or RIC as shown in Figure 5-23. 

Note 3: The maximum value for this parameter is the latest RJU:, REM-WR can be removed without delaying the remote access by one T-state. 

II 
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5.0 Device Specifications (Continued) 

TABLE 5-26. Remote Rest Time (Note 1) 

Symbol 10# Parameter Formula Min Max Units 

tSU-BR-RR-CO 1 REM-RD Rising before ClK-OUT Rising 
19 

(Buffered Read Mode) 
ns 

tH-BR 2 ClK-OUT Rising after REM-RD Rising to REM-RD 
T+TH+ 10 

or REM-WR Falling (Buffered Read Mode) 
ns 

tSU-LR-RR-CO 3 REM-RD Rising before ClK-OUT Rising 
16 

(latched Read Mode) 
ns 

tH-LR 4 ClK-OUT Rising after REM-RD Rising to REM-RD 
T+TH+ 10 

or REM-WR Falling (latched Read Mode) 
ns 

tSU-SBW-RW-CO 5 REM-WR Rising before ClK-OUT Rising 
22 

(Slow Buffered Write Mode) 
ns 

tH-SBW 6 ClK-OUT Rising after REM-WR Rising to REM-RD or 
T+TH+ 10 

REM-WR Falling (Slow Buffered Write Mode) 
ns 

tSU-FBW-RW-CO 7 REM-WR Rising before ClK-OUT Rising 
22 

(Fast Buffered Write Mode) 
ns 

tH-FBW 8 ClK-OUT Rising after REM-WR Rising to REM-RD or 
T+TH+ 10 

REM-WR Falling (Fast Buffered Write Mode) 
ns 

tSU-LW-RW-CO 9 REM-WR Rising before ClK-OUT Rising 
20 

(latched Write Mode) 
ns 

tH-LW 10 ClK-OUT Rising after REM-WR Rising to REM-RD 
10 

or REM-WR Falling (latched Write Mode) 
ns 

tSU-LW-RWR-COa 11 REM-WR orREM-RD Falling to ClK-OUT Falling 
TH+ 7 

(latched Write Mode) (Note 2) 
ns 

tSU-LW-RWR-COb 12 ClK-OUT Rising to REM-WR or REM-RD rising 
8 

(latched Write, Mode) (Note 2) 
ns 

tpD-CO-WP 13 ClK-OUT rising to WR-PEND Rising -1 21 ns 

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing 
specification may lead to invalid results. 

Note 2: Both specifications refer to the elK-OUT falling edge after WR-PrnD rising. See Section 4.2.6, RIAS remote rest time. 
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5.0 Device Specifications (Continued) 
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FIGURE 5-26. Remote Rest Time 
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5.0 Device Specifications (Continued) 
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(f) WR·PEND Rising (Latched Write t.4ode) 

FIGURE 5-26. Remote Rest Time (Continued) 

TABLE 5-27. Remote Interface WAIT Timing (Note 1) 

Symbol 10# Parameter Formula Min Max Units 

tSU-WT-LCL 1 WAIT Falling after La: Rising to Extend Cycle 
(Buffered Read, Latched Read, Slow Buffered Write, T+TH+ -28 ns 
Fast Buffered Write and Latched Write of PC, RIC) 

WAIT Falling after La: Rising to Extend Cycle 
(Buffered Read, Latched Read, Slow Buffered Write, (nOW+ 1)T+TH+ -28 ns 
Fast Buffered Write and Latched Write of DMEM) 

WAIT Falling after La: Rising to Extend Cycle 
(Buffered Read, Latched Read, Slow Buffered Write, (nlw + 1)T + T H + -28 ns 
Fast Buffered Write and Latched Write of IMEM) 

tH-WT-LCL 2 WAIT Rising after La: Rising 
T+TH+ 0 

(Buffered Read, Latched Read, Slow Buffered Write, 
ns 

Fast Buffered Write and Latched Write of PC, RIC) (Note 2) 2T+TH+ -27 ns 

WAIT Rising after La: Rising 
(nOW+ 1)T + TH+ 0 ns 

(Buffered Read, Latched Read, Slow Buffered Write, 
Fast Buffered Write and Latched Write of DMEM) (Note 2) (now+2)T+TH+ -27 ns 

WAIT Rising after La: Rising 
(nlW + 1)T + T H + 0 ns 

(Buffered Read, Latched Read, Slow Buffered Write, 
Fast Buffered Write and Latched Write of IMEM) (Note 2) (nIW+2)T+TH+ -27 ns 

tSU-WT-RO 3 WAIT Falling after READ Falling to Extend Cycle 
(now)T+TH+ -32 

(Buffered Read and Latched Read) 
ns 

tSU-WT-WR 3 WAIT Falling after WRITE Falling to Extend Cycle 
(now)T+TH+ -33 

(Slow Buffered Write, Fast Buffered Write and Latched Write) 
ns 

tSU-WT-IWR 3 WAIT Falling after iWR Falling to Extend Cycle 
(nIW+ 1)T+TH+ -38 

(Slow Buffered Write, Fast Buffered Write and Latched Write) 
ns 

I 

II 
, 
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5.0 Device Specifications (Continued) 

TASLE s.;2i'. Remote InterlaceWMr Tlmlrig (Note 1) (Contlnued) 

Symbol 10#, Parameter Formula Min Max Units 

tH-WT-RO 4 WAIT Rising after READ Falling (nowT+TH+ -4 ns 
(Buffered Read and Latched Read) (Note 2) 

(now+ 1)T+TH+ -30 ns 

tH-WT-WR 4 WAIT Rising after WRITE Falling (Slow Buffered Write, (now)T+TH+ -5 ns 
Fast Buffered Write and Latched Write) (Note 2) 

(now+ 1)T+TH+ -34 ns 

tH-WT-IWR 4 WAIT Rising after lWR Falling (Slow Buffered Write, (tilW + 1)T + T H + -5 ns 
Fast Buffered Write and Latched Write) (Note 2) 

(nIW+2)T+TH+ -38 ns 

tpD-WT-X 5 . WAIT Rising toXACK Rising (Buffered Read, Latched h+ 0 ns 
Read, Slow Buffered Write and Fast Buffered Write) 

T+TL + 24 ns .... ," 

tPD-WT-LCL 6 WAIT Rising to IC[ Falling (Latched Write) T+TL + 1 ns 

2T+TL + 26 ns 

tPD-WT-WR 7 WAIT Rising to WRITE Rising (Latched Write) h+ 2 ns 

T+h+ 28 ns 

tPD-WT-IWR ,7. WAIT Rising to IWR Rising (Latched Write) h+ 4 ns 

T+TL+ 38 ns 

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing 
specification may lead to invalid results.' . .' . 

Note 2: The maximum value for this parameter is the latest WAfT can be removed without adding an additional T-state. The formula assumes a minimum external 
wait of one T-state. 
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FIGURE 5-27. Remote Interface WAIT Timing 
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5.0 Device Specifications (Continued) 

TABLE 5·28. Walt Timing After Remote Access (Note 1) 

Symbol 10# Parameter Formula Min Max Units 

tpD-LCL-AAD 1 ICC Falling to A, AD (Data Address) Valid TH+ 11 ns 

tPD-LCL-AAD-BR ICC Falling to A, AD (Data Address) Valid 
2T+ 29 ns 

for Buffered Read of RIC 

tpD-AAD-ALE 2 A, AD (Data Address) Valid to ALE Falling T+ -16 ns 

tSU-WT-LCL 3 ICC Falling to WAIT Falling to Extend Local Cycle (max(nDw,nIW -1) + 1)T + T H + -29 ns 

tH-WT-LCL 4 WAIT Rising after LCL Falling (max(nDw,nIW -1) + 1)T + T H + -3 ns 

(max(nDW,nIW-1) + 2)T + T H + -28 ns 

tH-WT-LCL-BR WAIT Rising after ICC Falling for Buffered (max(nDW,nIW -1) + 3)T + T H + 
-3 ns 

read of RIC 

tSU-WT-ALEf 5 WAIT Low Before ALE Falling to Extend Cycle 22 ns 

tH-WT-ALE 6 WAIT Rising After ALE Falling 0 ns 

(max(nDW,nIW-1)+ 1)T+ -28 ns 

tSU-WT-AAD 7 A, AD (Data Address) Valid to WAIT Falling T+ -33 ns 
to Extend Load Cycle 

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing 
specification may lead to invalid results. 
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6.0 Reference Section 
6.1 INSTRUCTION SET REFERENCE 

The Instruction Set Reference section contains detailed in­
formation on the syntax and operation of each BCP instruc­
tion. The instructions are arranged in alphabetical order by 
mnemonic for easy access. Although this section is primarily 
intended as a reference for the assembly language pro­
grammer, previous assembly language experience is not a 
prerequisite. The intent of this instruction set reference is to 
include all1he pertinent information regarding each instruc­
tion on the page(s) describing that instruction. The only ex­
ceptions to this rule concern the instruction. addressing , 
modes and the bus timing diagrams. The discussion of the 
instruction addressing modes occurs at the beginning of the 
BCP Instruction Set Overview section and, therefore, will 
not be repeated here. The figures for the' bus timing dia­
grams are located at the end of this introduction rather than 
constantly repeating them under each instruction. The infor­
mation that is contained under each instruction is divided 
into eight categories titled: Syntax, Affected Flags, Descrip­
tion, Exampie, Instruction Format, T-states, Bus timing, and 
Operation. The following paragraphs explain what informa­
tion each category' conveys and any special nomenclature 
that a category may use., 

Syntax 

This category illustrates the assembler syntax for each in­
struction. Multiple lines are used when a given instruction 
supports more than one type of addressing mode, or if it has 
an optional mnemonic. All capital letters, commas (,), math 
symbols (+, -), and brackets a )) are entered into the as­
sembler exactly as shown. Braces (I I) surround an instruc­
tion's optional operands and their associated, syntax. The 
text between the braces may either be entered in with or 
omitted from the instruction. The braces themselves should 
not be entered into the assembler because they are not part 
of the assembler syntax. Lower c'ase characters and oper­
ands that begin with the capital R represent symbols. These 
must be replaced with actual register names, numbers, or 
equated registers and numbers. Table 6-1 lists all the sym­
bols and their associated meanings. 

Affected Flags 

If an instruction sets or clears any of the ALU flags, (Le., 
Negative [N], Zero [Z], Carry [C], and/or Overflow [V)), 
then those flags affected are listed under this category. 

Description 

The Description category contains a verbal discussion 
about the operation of an instruction, the operands it allows, 
and any notes highlighting special considerations the pro­
rammer should keep in mind when using the instruction. 

Example 

Each instruction has one or more coding examples de­
signed to show its typical usage(s). For clarity, register 
name abbreviations are often used instead of the register 
numbers, (Le., RTR is used in place of R4). Each example 
assumes that the" .EQU" assembler directive has been pre­
viously executed to establish these relationships. Informa­
tion relating register abbreviations to register names, num­
bers, and purpose is located in the CPU Registers section. 
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Instruction Format 

This category illustrates the formation of an instruction's 
machine code for each operand variation. Assembly or dis­
assembly of any instruction can be accomplished using 
thes~ figures. 

T-states 

The T-state category lists the number of CPU clock cycles 
required for 'each' instruction, including operand variations 
and conditional considerations. Using this information, actu­
al execution times may be calculated. For example, if the 
conditional relative jump instruction's condition is not met, 
the CPU's clock cycle is 18.867 MHz aCCS] = 0), and no 
instruction wait states are requested ([IW1 - 0] = 00), then 
Jcc's execution time is calculated as shown below: 

texecution = 1 /(CPU clock frequency) x T-states 

= 1/(18.867 X 106 Hz) X 2 

= (53 X 10-9s) x 2 

= 106 ns 

See the section BCP Timing for more information on calcu­
lating instruction execution times. 

Bus Timing 

This category refers the user to the Bus Timing Figures 6-1 
to 6-6 on the following pages. These figures illustrate the 
relationship between software instruction execution and 
some of the BCP's hardware signals. 

Operation 

The operation category illustrates each instruction's opera­
tion in a symbolic coding format. Most of the operand 
names used in this format come directly from each instruc­
tion's syntax. The exceptions to this rule deal with implied 
operands. Instructions that imply the use of the accumula­
tor$ use the name "accumulator" as an operand. Instruc­
tions that manipulate the Program Counter use the symbol 
"PC". Instructions that "push" onto or "pop" off of the inter­
nal Address Stack specify "Address Stack" as an operand. 
Instructions that save or restore the ALU flags and the reg­
ister bank selections use those terms as operands. Two 
specialized operator symbols are used in the symbolic cod­
ing format, the arrow " ~ " and the concatenation operator 
"&". The arrow indicates the movement of data from one 
operand to another. For instance, after the operation 
"Rs ~ Rd" is performed the content of Rd has been re­
placed with the content of Rs. The concatenation operator 
"&" simply indicates that the operands surrounding an "&" 
are attached together forming one new operand. For exam­
ple, "PC & [GIE] & ALU flags & register bank 
selections ~ Address Stack" means that the Program 
Counter, the Global Interrupt Enable bit, the ALU flags and 
the register bank selections are combined into one operand 
and pushed onto the internal Address Stack. Three condi­
tional structures are utilized in the symbolic coding format: 
the "Two Line If" structure, the "Blocked If" structure, and 
the "Blocked Case" structure. In the "Two Line If" struc­
ture, if the condition is met then the operation is performed, 
otherwise the operation is not performed. 

"Two Line If" structure: 

If condition 

then operation 



6.0 Reference Section (Continued) 

In the "Blocked If" structure, if the condition is met then all "Blocked Case" structure: 
the operations between the "If" statement and the "End if" Case operand of 
statement are performed. 0: operation 
"Blocked If" structure: 1: operation 

If condition then 2: etc ... 

operation End case 
operation Two reference tables have been added to the back of the 
etc ... Instruction Set Reference section. The first table, Table 6-2, 

End if lists all the instructions with their associated T-states, Af-

In the "Blocked Case" structure, the operation preceded by fected Flags, and Bus Timing figure numbers in a compact 

the equivalent numeric value of the operand is executed. format. The second table, Table 6-3, lists all the instructions 

For example, if the operand's value is equal to "1" then the in opcode order to facilitate disassembly. 

operation preceded by "1:" is executed. 

TABLE 6-1. Notational Conventions for Instruction Set 

Symbol Represents Meaning Length 

n o to 255 Unsigned Number 8 Bits 
+ 127 to -128 Signed Number 

nn o to 65535 Unsigned Number 16 Bits 

Rs RO-R31 Source Register 

Rd RO-R31 Destination Register 

Rsd RO-R31 Combination Source/Destination Register 

rs RO-R15 Limited Source Register 

rd RO-R15 Limited Destination Register 

rsd RO-R15 Limited Combination Source/Destination Register 

Ir IW,IX,IY,IZ Index Register 

mlr Index Register in One of the Following Address Modes: 
Ir- Post Decrement 
Ir No Change 
Ir+ Post Increment 
+Ir Pre-Increment 

b 0-7 Shift Field 3 Bits 

m 0-7 Mask Field 3 Bits 

p 0-7 Position Field 3 Bits 

s 0-1 State Field 1 Bit 

f 0-7 Flag Reference Field 3 Bits 

cc Condition Code Instruction Extensions 

v 0-63 Vector Field 6 Bits 

g 0-3 Global Interrupt Enable Flag [GIE] Status Control 2 Bits 

g' 0-1 Global Interrupt Enable Flag [GIE] Limited Status Control 1 Bit 

rf 0-1 Register Bank and ALU Flag Status Control 1 Bit 

ba 0-1 Register Bank A Select 1 Bit 

bb 0-1 Register Bank B Select 1 Bit 
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6.0 Reference Section (Continued) 

CPU-ClK 

IClK 

IA PC PC+1 
TLIF/9336-21 

FIGURE 6-1. Instruction-Memory Bus Timing for 2 T-state Instructions 
(No Instruction Walt States [lW1-0] = 00, CPU Running at Full Speed [CCS] = 0) 

CPU-ClK 

IClK 

IA 
TL/F/9336-22 

FIGURE 6-2. Instruction-Memory Bus Timing for 3 T-state Instructions 
(No Instruction Walt States [lW1-0] = 00, CPU Running at Full Speed [CCS] = 0) 
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6.0 Reference Section (Continued) 

I-Tl 'I' T2 'I' Tl 'I' T2--j 
CPU-ClK 

IClK 

IA PC PC +1 nn 

FIGURE 6-3. Instruction-Memory Bus Timing for (2 + 2) T-state Instructions 
(No Instruction Walt States [lW1-0] = 00, CPU Running at Full Speed [CCS] = 0) 

I-T1---*I'" --Tx--'*I'" --Tx--·-tl·'--T2--j 
CPU-ClK 

IClK 

IA 

FIGURE 6-4. Instruction-Memory Bus Timing for 4 T -state Instructions 
(No Instruction Walt States [lW1-0] = 00, CPU Running at Full Speed [CCS] = 0) 
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6.0 Reference Section (Continued) 

I-Tl 
CPU-ClK 

IClK 

IA ----+-' 

ALE 

AD 

READ 
TLlF/9336-25 

F.lG(JRlni~S;lristructtori/OataMeirioryBusTlmirigfor Data Memory Read 
(~§J!'1~t~~c::!Ic)~c)II)Cl!Cl ... enlOI)' VIIalt.~tClt~s, 9PUFlu~n(ngat. Fu USpeed [9CS).= .. 0, [4TFll··';' .•.. 0) 

CPU-ClK 

IClK 

IA 

ALE ----+-... 

AD 
~~--~~.'-------------~ 

READ 

fFIGOR~~+6:tristructtorl!OataMetnory Bus Tlrillrig for Data Memory Reaa 
[(~~]~!~~!I§~C)!J:)Cl~M~tn~ry·Vlltllt~~tetJ;.9P~Runrilrlgatfull.~pe~d.[99~1 ... ·"", .. ··9),J4""R)""'I~) 
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6.0 Reference Section (Continued) 

I-T1- ... • t.-I·- TX--'· It-· -T2----j 

CPU-ClK 

IClK 

IA 

ALE ---........... 

WRITE 
TLIF/9336-26 

FIGURE 6-7.lnstruction/Data Memory Bus Timing for Data Memory Write 
(No Instruction or Data Memory Walt States, CPU Running at Full Speed [CCS] = 0) 

ADCA Add with Carry and Accumulator 
Syntax 

ADCA Rs, Rd 
ADCA Rs, [mlr] 

Affected Flags 
N,Z,C,V 

Description 

-register, register 
-register, indexed 

Adds the source register Rs, the active accumulator, and 
the carry flag together, placing the result into the destination 
specified. The destination may be either a register, Rd, or 
data memory via an index register mode, [mlr]. Note that 
register bank selection determines which accumulator is ac­
tive. 

Example 

Instruction Format 
ADCA Rs, Rd 

1

111111010111 
. Opcode . 

15 9 

ADCA Rs, [mlr] 

1

1 I 0 I 1 I 0 I 0 I 0 I 1 I 
. Opcode . m 

15 8 

~ 

1 

Rd 

6 

00 - post-decrement 
01 - no change 
1 0 - post Increment 
11 - pre-Increment 

4 

Ir 

Rs 

Rs 

~ 
00 -IW 
01 - IX 
10 - IY 
11 - IZ 

o 

o 

Add the constant 109 to the index register IW, (which is 16 
bits wide). 

TL/F/9336-5 

SUBA A, A ;Clear the accumulator 
ADD 109, R12 ;Add 109 to low byte of IW 
ADCA R13, R13 ;Add carry to high byte of IW 
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T-states 
ADCA Rs, Rd 
ADCA Rs, [mlr] 

Bus Timing 
ADCA Rs, Rd 
ADCA Rs, [mlr] 

Operation 
ADCA Rs, Rd 

-2 
-3 

-Figure 6-1 
-Figure 6-6 

Rs + accumulator + carry bit -. Rd 

ADCA Rs, [mlr] 
Rs + accumulator + carry bit -. data memory 



6.0 Reference Section (Continued) 

ADD Add Immediate 
Syntax 

ADD n, rsd 

Affected Flags 
N,Z,C,V 

Description 

-immediate, limited register 

Adds the immediate value n to the register rsd and places 
the result back into the register rsd. Note that only the ac­
tive registers RO-R15 may be specified for rsd. The value of 
n is limited to 8 bits; (unsigned range: 0 to 255, signed 
range: + 127 to -128). 

Example 

Add the constant -3 to register 10. 

ADD -3, R10 ;R10 + (-3) -+ R10 

Instruction Format 

1
0 10 10 10 I 

. Opcode . n rsd 

15 11 3 0 

T-States 
2 

Bus Timing 
Figure 6-1 

Operation 
rsd + n -+ rsd 

ADDA Add with Accumulator 
Syntax 
ADDA Rs, Rd 
ADDA Rs, [mlr] 

Affected Flags 
N,Z,C,V 

Description 

-register, register 
-register, indexed 

Adds the source register Rs to the active accumulator and 
places the result into the destination specified. The de~tina­
tion may be either a register, Rd, or data. memory via an 
index register mode, [mlr]. Note that register bank selection 
determines which accumulator is active. 

Example 

In the first example, the value 4 is placed into the currently 
active accumulator, that accumulator is added to the con­
tents of register 20, and then the result is placed into regis­
ter 21. 

MOVE 4, A ;Place constant into accum 
ADDA R20, R21 ;R20 -+ accum -+ R21 

In the second example, the alternate accumulator of regis­
ter bank B is selected and then added to register 20. The 
result is placed into the data memory pointed to by the index 
register IZ and then the value of IZ is incremented by one. 

EXX 0, 1 ;Select alt accumulator 
ADDA R20, [IZ +] ;R20 + accum -+ datamem 

;and increment data pointer 
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Instruction Format 
ADDA Rs, Rd 

15 9 

ADDA Rs, [mlr] 

1

110111010101°1 
. Opcode . m 

IS 8 , 

I 
Rd 

00 - post-decrement 
01 - no change 
10 - post Increment 
11 - pre-Increment 

4 

Ir 

4 

Rs 

Rs , 
OO-IW 
01 - IX 
10 - IY 
11 - IZ 

o 

o 

TL/F/9336-6 

T-states 
ADDA Rs, Rd 
ADDA Rs, [mlr] 

Bus Timing 

ADDA Rs, Rd 
ADDA Rs, [mlr] 

Operation 
ADDA Rs, Rd 

-2 
-3 

-Figure 6-1 
-Figure 6-6 

Rs + accumulator -+: Rd 
ADDA Rs, [mlr] 
Rs + accumulator -+ data memory 

AND And Immediate 
Syntax 
AND n, rsd 

Affected Flags 
N,Z 

Description 

-immediate, limited register 

Logically ANDs the immediate value n to the register rsd 
and places the result back into the register rsd. Note that 
only the active registers RO-R15 may be specified for rsd. 
The value of n is 8 bits wide. 

Example 

Unmask both the Transmitter and Receiver interrupts via 
the Interrupt Control Register (ICR}, R2. Leave the other 
interrupts unaffected. 

EXX 0,0 ;select main register banks 
AND 11111100B,R2 ;unmask transmitter and 

; receiver interrupts 

Instruction Format 

15 11 

T-states 
2 
Bus Timing 
Figure 6-1 

Operation 
rsd AND n -+ rsd 

I 
n rsd 

3 0 



6.0 Reference Section (Continued) 

ANDA And with Accumulator 
Syntax 

ANDA As, Ad 
ANDA As, [mlr] 

Affected Flags 
N,Z 

Description 

-register, register 
-register, indexed 

Logically ANDs the source register As to the active accumu· 
lator and places the result into the destination specified. 
The destination may be either a register, Ad, or data memo· 
ry via an index register mode, [mlr]. Note that register bank 
selection determines which accumulator is active. 

Example 
This example demonstrates a way to quickly unload all 11 
bits of the three words in the Aeceiver FIFO when the FIFO 
is full. The example assumes that the index register IZ 
points to the location in data memory where the information 
should be stored. 

EXX 1,1 
MOVE 00000111 B, A 

;select alternate banks 
;place the ITSA} mask 
; into the accumulator 

Pop the first word from the receiver FIFO 
ANDA TSA, [IZ+] ;read bits 8,9, & 10 
MOVE ATA, [IZ + ] ;pop bits 0-7 
Pop the second word from the receiver FIFO 
ANDA TSA, [IZ + ] 
MOVE ATA, [IZ + ] 
Pop the third word from the receiver FIFO 
ANDA TSA, [IZ + ] 
MOVE ATA, [IZ+] 

Instruction Format 

ANDA As, Ad 

I 
Ad 

15 9 

ANDA AS,[mlr] 

/

1 I 0 I 1 I 0 11 I 0 I 0 I 
. Opcode . m 

15 8 

~ 
00 - post-decrement 
01 - no change 
10 - post Increment 
11 - pre-Increment 

4 

Ir 

4 

As 

Rs 

t 
00 - IW 
01 - IX 
10 - IY 
11 - IZ 

o 

o 

TLIF/9336-7 

T-states 
ANDA As, Ad 
ANDA As, [mlr] 

Bus Timing 

ANDA As, Ad 
ANDA As, [mlr] 

Operation 

ANDA As, Ad 

-2 
-3 

-Figure 6·1 
-Figure 6·1 

As AND accumulator -. Ad 

ANDA As, [mlr] 
As AND accumulator -. data memory 
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BIT Bit Test 
Syntax 

BIT rs, n -limited register, immediate 

Affected Flags 
N,Z 

Description 

Performs a bit level test by logically ANDing the source reg· 
ister rs to the immediate value n. The affected flags are 
updated, but the result is not saved. Note that only the ac· 
tive registers AO-A15 may be specified for rs. The value n 
is 8 bits wide. 

Example 

Poll the Transmitter FIFO Empty flag [TFE] in the Network 
Command Flag register I NCF}, A1, waiting for the Trans· 
mitter to send the current FIFO data. 

EXX 0,1 ;select main A, alt B 
Poll: BIT NCF,1 OOOOOOOB ;AII data sent yet? 

JZ Poll ; No, poll TFE 
; Yes, send next byte(s) 

Instruction Format 

15 

T-states 
2 

Bus Timing 

Figure 6·1 

Operation 

rs AND n 

11 

n rs 

3 o 



6.0 Reference Section (Continued) 

CALL Unconditional Relative Call 
Syntax 

CALL n 

Affected Flags 

None 

Description 

-immediate 

Pushes the Program Counter, the ALU flags, the Global In­
terrupt Enable bit [GIE], and the current register bank selec­
tions onto the internal Address Stack; then unconditionally 
transfers control to the instruction at the memory address 
calculated by adding the contents of the Program Counter 
to the immediate value n, (sign extended to 16 bits). Since 
the immediate value n is an 8-bit two's complement dis­
placement, the unconditional relative caWs range is from 
+ 127 to -128 relative to the Program Counter. Note that 
the Program Counter initially contains the memory address 
of the next instruction following tha call. 

Example 

Transfer control to the subroutine "Send.it". Note that 
"Send. it" must be within + 127/ -128 words relative to the 
PC. 

CALL Send.it 

Instruction Format 

15 7 

T-states 
3 

Bus Timing 

Figure 6-2 

Operation 

n 

PC & [GIE] & ALU flags & register bank selections 
~ Address Stack 

PC + n(sign extended) ~ PC 

o 
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CMP Compare 
Syntax 

CMP rs, n 

Affected Flags 

N,Z,C,V 

Description 

-limited register, immediate 

Compares the immediate value n with the source register rs 
by subtracting n from rs. The affected flags are updated, but 
the result is not saved. Note that only the active registers 
RO-R15 may be specified for rs. The value of n is limited to 
8 bits; (unsigned range: 0 to 255, signed range: + 127 to 
-128). 

Example 

Compare the data byte in register 11 to the ASCII character 
"A". 

CMP 
JC 
JEO 

R11,"A" 
Less_thanJ 
Equal_toJ 

; If: 
data<"A" 
data="A" 

;else data> "A" 

Compare the contents of register 8 to the value 25. 

CMP R8,25 ;if: 
BIT CCR,00000011 B data> 25 
JZ Greater_than Goto Greater_than 

Comparing of Unsigned Values 

Comparison 

LT «) 
LEO «=) 
EO (=) 
GEO (>=) 
GT (» 

Note: & = logical AND 
I = logical OR 

Instruction Format 

1
0 I 0 I 1 11 I 

. Opcode _ 

15 11 

T-states 
2 

Bus Timing 

Figure 6-1 

Operation 

rs - n 

Flag{s) to Test 

C 
clz 
Z 
C 

C&Z 

n rs 

3 0 



6.0 Reference Section (Continued) 

CPL Complement 
Syntax 

CPL Rsd 

Affected Flags 

N,Z 

Description 

-register 

Logically complements the contents of the register Rsd, 
placing the result back into that register. 

Example 

Load the fiJI-bit count passed from the host into the Trans­
mitter's Fill-Bit Register (FBR I, R3, and then perform the 
required one's complement of the fill-bit count. In this exam­
ple, register 20 contains the fill-bit count. 

EXX 1,1 ;select alternate banks 
MOVE R20, FBR ;Ioad (FBR 1 
CPL FBR ;complement fill-bit count 

Instruction Format 

1

110111011111110101010\ 
. Opcode . 

15 4 
T-states 
2 

Bus Timing 

Figure 6-1 

Operation 

Rsd~Rsd 

I I 
Rsd 

o 
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EXX Exchange Register Banks 
Syntax 

EXX ba, bb (,gl 
Affected Flags 

None 
Description 

Selects which CPU register banks are active by exchanging 
between the main and alternate register sets for each bank. 
Bank A controls RO-R3 and Bank B controls R4~R11. The 
table below shows the four possible register bank configura­
tions. Note that deactivated registers retain their curren~ vClI~ 
ues. The Global interrupt Enable bit [GIE] can be set or 
cleared, if desired. . 

Register Bank Configurations 

ba bb Active Register Banks. 

0 0 Main AMain B 
0 1 Main A, Alternate: B 
1 0 Alternate A, Main B 
1 1 Alternate A, AlternateB . 

Example 
Activate the main register set of Bank A, the alternate regis­
ter set of Bank B, and leave the Global interrupt Enable bit 
[GIE] unchanged. 

EXX 0,1 ;select main A, alt B reg banks 

Instruction Format ,. , , 

11 1 0 1 1 1 ~~~o~~ 1 1 1 0 11 I ~ I ba 1 bb I 0 1 0 1 0 1 

15 6!- 4 3.2 0 

T-states 
2 

Bus Timing 

Figure 6-1 

Operation 
Case ba of 

0: activate main Bank A 
1: activate alternate Bank A 

End case 
Case bb of 

0: activate main Bank B 
1 : activate alternate Bank B 

End case 
Case g of 

OO-'-GIE not affected 
01-reserved 
10-SetGIE 
11-Clear GIE 

0: leave [GIE] unaffected, (default) 
1: (reserved) 
2: set [GIE] 
3: clear [GIE] 

End case 



6.0 Reference Section (Continued) 

JMP Conditional Relative Jump 
Jcc 

Syntax 

-immediate JMP f, s, n 
Jcc n -immediate (optional syntax) 

Affected Flags 
None 

Description 

Conditionally transfers control to the instruction at the mem­
ory address calculated by adding the contents of the Pro­
gram Counter to the immediate value n, (sign extended to 
16 bits), if the state of the flag referenced by f is equal to the 
state of the bit s; or, optionally, if the condition cc is met. 
See the tables below for the flags that f can reference and 
the conditions that cc may specify. Since the immediate val­
ue n is an 8-bit two's complement displacement, the condi­
tional relative jump's range is from + 127 to -128 relative 
to the Program Counter. Note that the Program Counter ini­
tia"y contains the memory address of the next instruction 
following the jump. 

Example 

This example demonstrates both syntaxes of the condition­
al relative jump instruction testing for a non-zero result from 
a previous instruction; (Le., [Z] = 0). If the condition is 
met then control transfers to the instruction labeled 
"LOop. back"; else the next instruction following the jump is 
executed. 

JMP OOOB,O,Loop.back ;jump on not zero 

JNZ Loop.back ;jump on not zero 

Condition SpeCification Table for "cc" 

cc Meaning Condition Tested for 

Z Zero [Z] = 1 
NZ Not Zero [Z] =0 
EO Equal [Z] = 1 
NEO Not Equal [Z] =0 
C Carry [C] = 1 
NC No Carry [C] =0 
V Overflow [V] = 1 
NV No Overflow [V] =0 
N Negative [N] = 1 
P Positive [N] =0 
RA Receiver Active [RA] = 1 
NRA Not Receiver Active [RA] =0 
RE Receiver Error [RE] = 1 
NRE No Receiver Error [RE] =0 
DA Data Available [DAV] = 1 
NDA No Data Available [DAV] =0 
TFF Transmitter FIFO Fu" [TFF] = 1 
NTFF Transmitter FIFO Not Fu" [TFF] =0 
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Instruction Format 

15 11 10 

T-states 

2 if condition is not met 
3 if condition is met 

Bus Timing 

7 

Figure 6-1 if condition is not met 
Figure 6-2 if condition is met 

Operation 

JMP f, s, n 
If flag f is in state s 

n 

then PC + n(sign extended) -+ PC 

Jcc n 
If cc condition is true 

then PC + n(sign extended) -+ PC 

Flag Reference Table for "f" 

f (binary) Flag Reference 

0 (000) [Z] in {CCRI 
1 (001) [C] in {CCRI 
2 (010) [V] in {CCRI 
3 (011) [N] in {CCRI 
4 (100) [RA] in {TSRI 
5 (101) [RE] in {TSRI 
6* (110) [DAV] in {TSRI 
7 (111) [TFF] in {TSRI 

°Note: The value of f for [DAV] differs from the numeric 
value for the position of [DAV] in {TSRI. 

o 



6.0 Reference Section (Continued) 

JMP Unconditional Relative Jump 
Syntax 

JMP n -immediate 
JMP Rs -register 

Affected Flags 
None 

Description 

Unconditionally transfers control to the instruction at the 
memory address calculated by adding the contents of the 
Program Counter to either the immediate value n or the con· 
tents of the source register Rs, (both sign extended to 16 
bits). Since the immediate value n and the contents of Rs 
are 8·bit two's complement displacements, the uncondition· 
al relative jump's range is from + 127 to -128 relative to 
the Program Counter. Note that the Program Counter initial· 
Iy contains the memory address of the next instruction fol· 
lowing the jump. 

Example 

Transfer control to the instruction labeled "I niLXmit", 
which is within + 127/ -128 words relative to the PC. 

JMP IniLXmit ;go initialize Transmitter 

Instruction Format 
JMP n 

15 7 

JMP Rs 

11111010111110111110101 
Opcode 

15 

T-states 

JMP n 
JMP Rs 

Bus Timing 

JMP n 
JMP Rs 

Operation 

JMP n 

-3 
-4 

-Figure 6-2 
-Figure 6-4 

PC + n(sign extended) ----+ PC 

JMP Rs 
PC + Rs(sign extended) ----+ PC 

n 

4 

o 

1 

Rs 

o 

I 

III 
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JRMK Relative Jump with Rotate and 
Mask on Register 

Syntax 
JRMK Rs, b, m 

Affected Flags 
None 

Description 

-register 

Transfers control to the instruction at the memory address 
calculated by adding the contents of the Program Counter 
to a specially formed displacement. The displacement is 
formed by rotating a copy of the source register Rs the val­
ue of b bits to the right, masking (setting to zero) the most 
significant m bits, masking the least significant bit, and then 
sign extending the result to 16 bits. Typically, the JRMK 
instruction transfers control into a jump table. The LSB of 
the displacement is always set to zero so that the jump table 
may contain two word instructions, (e.g., LJMP). The range 
of JRMK is from + 126 to -128 relative to the Program 
Counter. Note that the Program Counter initially contains 
the memory address of the next instruction following JRMK. 
The source register Rs may specify any active CPU register. 
The rotate value b may be from 0 to 7, where 0 causes no 
bit rotation to occur. The mask value m may be from 0 to 7; 
where m = 0 causes only the LSB of the displacement to be 
masked, m = 1 causes the MSB and the LSB to be masked, 
m = 2 causes bits 7-6 and the LSB to be masked, etc ... 

Example 

This example demonstrates the decoding of the address 
frame of the 3299 Terminal Multiplexer protocol. In the ad­
dress frame, only the bits 4-2 contain the address of the 
Logical Unit. 

EXX 
JRMK 
LJMP 
LJMP 
LJMP 

0,1 
RTR,1,4 
AD OR.O 
ADDR.1 
ADDR.2 

;select main A, alt B 
;decode device address 
;jump to device handler #0 
;jump to device handler # 1 
;jump to device handler # 2 

LJMP ADDR.7 ;jump to device handler #7 

Instruction Format 

15 
T-states 
4 
Bus Timing 

Figure 6-4 

Operation 

10 7 

Copy Rs to a temporary register: 
Rs ~ register 

I I 
b 

Rotate the register b bits to the right: 

4 

4 I I I I I I~ I W 

Rs 

o 

reglstor TL/F/9336-8 

Mask the most significant m bits and the LSB: 

A 
register AND 0 ... 0 1 ... 1 0 ~ register 

Modify the Program Counter: 
PC + register(sign extended) ~ PC 
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6.0 Reference Section (Continued) 

LCALL Conditional Long Call 
Syntax 
LCALL Rs, p, s, nn 

Affected Flags 
None 

Description 

-register, absolute 

If the bit in position p of register Rs is equal to the bit s, then 
push the Program Counter, the ALU flags, the Global Inter­
rupt Enable bit [GIE], and the current register bank selec­
tions onto the internal Address Stack. Following the push, 
transfer control to the instruction at the absolute memory 
address nn. The operand Rs may specify any active CPU 
register. The value of p may be from 0 to 7, where 0 corre­
sponds to the LSB of Rs and 7 corresponds to the MSB of 
Rs. The absolute value nn is 16 bits long, (range: 0 to 64k), 
therefore, all of instruction memory can be addressed. 

Example 
Call the "Load.Xmit" subroutine when the Transmitter FIFO 
Empty flag, [TFE], of the Network Command Flag register 
(NCF} is "1". 

EXX 0,0 
LCALL NCF,7,1, Load.Xmit 

Instruction Format 

15 8 7 

1 ~n 
15 

T-states 
(2 + 2) 

Bus Timing 
Figure 6-3 

Operation 
If Rs[p] = s then 

p 

;select main A, alt B 
;If [TFE] = 1 call 

1 
Rs 

4 

1 

PC & [GIE] & ALU flags & register bank selections 
~ Address Stack 

nn~PC 

End if 

o 

o 
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LCALL Unconditional Long Call 
Syntax 
LCALL nn 

Affected Flags 
None 

Description 

-absolute 

Pushes the Program Counter, the ALU flags, the Global In­
terrupt Enable bit [GIE], and the current register bank selec­
tions onto the internal Address Stack; then unconditionally 
transfers control to the instruction at the absolute memory 
address nn. The value of nn is 16 bits long, (range: a to 
64k), therefore, all of instruction memory can be addressed. 

Example 
Transfer control to the subroutine "Send.it.all", which could 
be located anywhere in instruction memory. 

LCALL Send.it.all 

Instruction Format 

111110101111111011101010101010101 
Opcode 

15 

15 
T-states 
(2 + 2) 

Bus Timing 
Figure 6-3 

Operation 

nn 

PC & [GIE] & ALU flags & register bank selections 
~ Address Stack 

nn~PC 

a 

a 

"'C 
Q) 
W 
~ 
~ m 

• 



6.0 Reference Section (Continued) 

LJMP Conditional Long Jump 
Syntax 

LJMP Rs, p, s, nn -register, absolute 

Affected Flags 
None 

Description 

Conditionally transfers control to the instruction at the abso­
lute memory address nn if the bit in position p of register Rs 
is equal to the state of the bit s. The operand Rs may speci­
fy any active CPU register. The value of p may be from 0 to 
7, where o corresponds to the LSB of Rs and 7 corresponds 
to the MSB of Rs. The absolute value nn is 16 bits long, 
(range: 0 to 64k), therefore, all of instruction memory can be 
addressed. 

Example 

Long Jump to one of the receiver error ,handling routines 
based on the contents of the Error Code Register {ECR I. 

EXX 0,1,3 ;select main A, alt B 

. DR 01000000B,TSR 
MOVE ECR, R11 

; and clear [GIE] 
;set [SEC] in {TSR} 
;read {ECRI 

,; Determine error condition 
, LJMP R11, 0, 1, Software_error 

LJMP R11, 1, 1, Loss_of_Midbit 
LJMP R11, 2,1, Invalid_Ending_Seq 
LJMP R11, 3,1, Parity_error 
LJMP R11, 4,1, Software_error 

Instruction Format 

15 8 7 

1 ~n 
15 

T-states 
(2 + 2) 

Bus Timing 

Figure 6-3 

Operation 

If Rs[p] = s 
then nn~ PC 

p 

4 

1 1 
Rs 

1 

1 
o 

o 
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LJMP Unconditional Long Jump 
Syntax 

LJMP nn 
LJMP [lr] 

Affected Flags 
None 

Description 

-absolute 
-indexed 

Unconditionally transfers control to the instruction at the 
memory address specified by the operand. The operand 
may either specify an absolute instruction address nn, (16 
bits long), or an index register Ir, which contains an instruc­
tion address. Long Jump's addressing range is from 0 to 
64k; (Le., all of instruction memory can be addressed). 

Example 

Transfer control to the instruction labeled "Reset.System", 
which may be located anywhere in instruction memory. 

LJMP Reset.System ;go reset the system 

Instruction Format 

LJMP nn 

1
1 1 1 101011 1 1 1 1 1010101,010101010101 

. Opcode . 
15 0 

1 nn 1 
15 o 

LJMP [lr] 

11 I 1 I 0 I ~~~o~~ I 0 I 1 1 0 I ir I 0 1 0 1 0 I 0 I 0 1 

15 6 J.. 4 0 

T-states 

LJMP nn 
LJMP [lr] 

Bus Timing 

LJMP nn 
LJMP [lr] 

Operation 

LJMP nn 
nn~PC 

LJMP [lr] 
Ir~PC 

-(2+ 2) 
-2 

-Figure 6-3 
-Figure 6-1 

OO-IW 
01-IX 
10-IY 
11-12 



6.0 Reference Section (Continued) 

MOVE Move Data Memory 
Syntax 

MOVE [mlr], Rd -indexed, register 
MOVE [lr+ AJ. Rd -register-relative, register 
MOVE [lZ + n], rd -immediate-relative, limited register 

Affected Flags 
None 

DescrIptIon 

Moves a data memory byte into the destination register 
specified. The data memory source operand may specify 
anyone of the index register modes; [mlr], [lr+A], [lZ+n]. 
The index register-relative mode, [lr+ A], forms its data 
memory address by adding the contents of the index regis­
ter Ir to the unsigned 8-bit value contained in the currently 
active accumulator. The immediate-relative mode, [lZ+n], 
forms its data memory address by adding the contents of 
the index register IZ to the unsigned 8-bit immediate value 
n. The destination register operand Rd may specify any ac­
tive CPU register; where as, the destination register operand 
rd is limited to the active registers RO-R15. 

Example 

The first example loads the current accumulator by "pop­
ping" an external data stack, which is pointed to by the 
index register IX. 

MOVE [ + IX], A ;pop accum from ext. stack 

The second example demonstrates the random access of a 
data byte within a logical record contained in memory. The 
index register IY contains the base address of the logical 
record. 

ADDA 
MOVE 

R9, A ;calculate offset into record 
[lY + A], R20 ;get data byte from record 

In the final example, the 4th element of an Error Count table 
is transmitted to a host. The index register IZ points to the 
1 st entry of the table. 

EXX 0,1 ;select main A. alt B 
MOVE [lZ + 3], RTR ;transmit 4th element 
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Instruction Format 

MOVE [mid, Rd 

15 8 6 4 

+ 
00 - post-decrement 
01 - no change 
10 - post Increment 
11 - pre-Increment 

MOVE [lr+A], Rd 

11 I 1 I 0 I ~~~o~~ I 0 I 0 I 0 I Ilr 

15 64- 4 

MOVE [lZ+n], rd 

1

1 I 0 I 0 11 1 I 
. Opcode . n 

15 11 
T·states 
3 [4TR] = 0 
4 [4TR] = 1 
Bus TIming 
Figure 6-5 (4TRJ = 0 
Figure. 6·6 {4TRJ ... ==1 

OperatIon 
MOVE [mid, Rd 
data memory ..... Rd 

MOVE [lr+A], Rd 
data memory ..... Rd 

MOVE [IZ + n], rd 
data memory ..... rd 

OO-IW 
01-IX 
10-IY 
11-IZ 

Rd 

l 
00 - IW 
01 - IX 
10 - IY 
11 - IZ 

o 

TL/F/9336-9 

I I 
Rd 

rd 

o 

III 
I 
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::; 6.0 Reference Section (Continued) 

~ MOVE Move Immediate 
c 

Syntax 
MOVE n, rd 

MOVE n, [lr] 

Affected Flags 
None 

Description 

-immediate, limited register 

-immediate, indexed 

Moves the immediate value n into the destination specified. 
The destination may be either a register, rd, (limited to the 
active registers RO-R15), or data memory via an index reg­
ister, Ir. The value n is 8 bits wide. 

Example 
Load the current accumulator with the value of 4. 

MOVE 4, A ;Load accumulator 

Instruction Format 
MOVE n, rd 

1

1 I 0 I 1 I 1 1 
. Opcode . n 

15 11 

MOVE n, [lr] 

15 9 

T-states 
MOVE n, rd 
MOVE n, [lr] 

Bus Timing 
MOVE n, rd 
MOVE n, [lr] 

Operation 
MOVE n, rd 
n-+ rd 

MOVE n, [lr] 

-2 
-3 

-Figure 6-1 
-Figure 6-7 

n -+ data memory 

I 
rd 

3 

I I 
Ir n[4-0] 

6 J- 4 
OO-IW 
01-IX 
10-IY 
11-IZ 

o 

o 
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6.0 Reference Section (Continued) 

MOVE Move Register 
Syntax 

MOVE Rs, Rd -register, register 

MOVE Rs, [mlrJ -register, indexed 

MOVE Rs, [Ir+ AJ -register, register-relative 

MOVE rs, [lZ + nJ -limited register, immediate-relative 

Affected Flags 
None 

Description 

Moves the contents of the source register into the destina­
tion specified. The source register operand Rs may specify 
any active CPU register; where as the source register oper­
and rs is limited to the active registers RO-R15. The desti­
nation operand may specify either any active CPU register, 
Rd, or data memory via one of the index register modes; 
[mlrl, [lr+AJ, [IZ+n]. The index register-relative mode, 
[lr+ Al. forms its data memory address by adding the con­
tents of the index register Ir to the unsigned 8-bit value con­
tained in the currently active accumulator. The. immediate­
relative mode, [lZ + nJ, forms its data memory address by 
adding the contents of the index register IZ to the unsigned 
8-bit immediate value n. 

Example 

The first example loads the Transmitter FIFO with a data 
byte in register 20. 

EXX 0,1 ;select main A, alt B 
MOVE R20, RTR ;Load the Transmitter FIFO 

The second example "pushes" the current accumulator's 
contents onto an external data stack, which is pointed to by 
the index register IX. 

MOVE A, [IX -J ;push accum to ext. stack 

The third example demonstrates the random access of a 
data byte within a logical record contained in memory. The 
index register IY contains the base address of the logical 
record. 

ADDA R9, A 
MOVE R20, [lY + AJ 

;calculate offset into record 
;update data byte in record 

In the final example, the 4th element of an Error Count table 
is updated with a new value contained in the current accu­
mulator. The index register IZ points to the 1 st entry of the 
table. 

MOVE A, [IZ + 3J ;update 4th element of table 
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Instruction Format 

MOVE Rs, Rd 

15 9 

MOVE Rs, [mlrl 

1

1 11 I 0 I 0 I 0 I 0 I 
. Opcode m 

15 8 

~ 
00 - post-decrement 
01 - no change 
10 - post Increment 
11 - pre-Increment 

Ir 

4 

1 

Rs 

4 0 

I 
Rs 

0 

~ 
00 - IW 
01 - IX 
10 - IY 
11 - IZ 

TlIF/9336-10 

MOVE Rs, [Jr+AJ 

1

111101010111010111 
. Opcode . Ir 

15 6 J, 4 

MOVE rs, [Z + nJ 

OO-IW 
01-IX 
10-IY 
11-IZ 

1

0 1 0 1 0 11 1 1 
. Opcode . n 

15 11 

T-states 

MOVE Rs, Rd 
MOVE Rs, [mlrJ 
MOVE Rs, [Jr+ AJ 
MOVE rs, [JZ + nJ 

Bus Timing 

MOVE Rs, Rd 
MOVE Rs, [mlrJ 
MOVE Rs, [Jr+AJ 
MOVE rs, [JZ + nJ 

Operation 

-2 
-3 
-3 
-3 

-Figure 6-1 
-Figure 6-6 
-Figure 6-6 
-Figure 6-6 

-Rs-+ Rd 

3 

MOVE Rs, Rd 
MOVE Rs, [mlrJ 
MOVE Rs, [Jr+AJ 
MOVE rs, [JZ + nJ 

-Rs -+ data memory 
-Rs -+ data memory 
-rs -+ data memory 

1 1 
Rs 

o 

rs 

o 

C 
"tJ 
co 
W 
0l:Io 
0l:Io 
tD 

II 
I 



6.0 Reference Section (Continued) 

OR OR Immediate 
Syntax 
OR n, rsd -imm~diate, limited register 

Affected Flags 
N,Z 

Description 
Logically ORs the immediate value n to the register rsd and 
places the result back into the register rsd. Note that only 
the active registers RO-R15 may be specified for rsd. The 
value of n is 8 bits wide. 

Example 
Mask both the Transmitter and Receiver interrupts via the 
Interrupt Control Register (lCR}, R2. Leave the other inter­
rupts unaffected. 

EXX 0,0 ;select main reg banks 
OR 000000118, ICR ;mask transmitter and 

Instruction Format 

1

0 11 1 0 11 I 
. Opcode . 

15 11 
T-states 
2 
Bus Timing 
Figure 6-1 

Operation 
rsd OR n ~ rsd 

; receiver interrupts 

n 
3 

rsd 

o 
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ORA OR with Accumulator 
Syntax 
ORA Rs, Rd 

ORA Rs, [mlr) 

Affected Flags 
N,Z 

Description 

-register, register 

-register, indexed 

Logically ORs the source register Rs to the active accumu­
lator and places the result into the destination specified. 
The destination may be either a register, Rd, or data memo­
ry via an index register mode, [mlr). Note that register bank 
selection determines which accumulator is active. 

Example 
Write an 11-bit word to the Transmitter's FIFO. This exam­
ple assumes that the index register IZ points to the location 
of the data in memory. 

TCR.settings: .EQU 001010008 

EXX 
MOVE 
MOVE 
ORA 
MOVE 

1,1 
TCR.settings,A 
[lZ+],R20 
R20,TCR 
[lZ+),RTR 

;select main A, alt 8 
;Ioad accumulator w/mask 
;Ioad bits 8, 9, & 10 
;write bits 8,9, 10 to {TCR} 
;push 11-bit word to FIFO 

Instruction Format 
ORA Rs, Rd 

15 9 
ORA Rs, [mlr) 

11 I 0 I 1 I 0 11 I 0 I 
Opcode 

15 

~ 

1 

Rd 

00 - post-decrement 
01 - no change 
1 0 - post Increment 
11 - pre-Increment 

4 

Ir 

4 

1 1 
Rs 

Rs 

t 
00 - IW 
01 - IX 
10 - IY 
11 - IZ 

o 

TL/F/9336-11 

T-states 
ORA Rs, Rd 
ORA Rs, [mlr) 

Bus Timing 
ORA Rs, Rd 
ORA Rs, [mlr) 

Operation 
ORA Rs, Rd 

-2 
-3 

-Figure 6-1 
-Figure 6-7 

Rs OR accumulator ~ Rd 

ORA Rs, [mlr) 
Rs OR accumulator ~ data memory 



6.0 Reference Section (Continued) 

RETF Conditional Return 
Rcc 
Syntax 

RETF f, s(,(g} (,rf}) 
Rcc (g(,rf}) -(optional syntax) 

Affected Flags 

If rf = 1 then N, Z, C, and V 

Description 
Conditionally returns control to the last instruction address 
pushed onto the internal Address Stack by popping that ad­
dress into the Program Counter, if the state of the flag refer­
enced by f is equal to the state of the bit s; or, optionally, if 
the condition cc is met. See the tables on the following page 
for the flags that f can reference and the conditions that cc 
may specify. The conditional return instruction also has two 
optional operands, g and rf. The value of g determines if the 
Global Interrupt Enable bit [GIE] is left unchanged (g=O), 
restored from the Address Stack (g = 1), set (g = 2), or 
cleared (g = 3). If the g operand is omitted then g = 0 is as­
sumed. The second optional operand, rf, determines if the 
ALU flags and register bank selections are left unchanged 
(rf = 0), or restored from the Address Stack (rf = 1). If the rf 
operand is omitted then rf=O is assumed. 

Example 
This example demonstrates both syntaxes of the condition­
al return instruction testing for a carry result from a previous 
instruction; (Le., [C] = 1). If the condition is met then the 
return occurs, else the next instruction following the return 
is executed. The current environment is left unchanged. 

RETF 001 B, 1 ; If [C] = 1 then return 

RC ; If [C] = 1 then return 

Instruction Format 

15 6 J, 4 3 2 0 

T-states 

2 if condition is not met 

3 if condition is met 

Bus Timing 

Figure 6-1 if condition is not met 
Figure 6-2 if condition is met 

Operation 

If flag f is in state s then 
Case g of 

OO-GIE not affected 
01-Restore GIE 
10-SetGIE 
11-Clear GIE 

0: leave [GIE] unaffected, (default) 
1: restore [GIE] from Address Stack 
2: set [GIE] 
3: clear [GIE] 

End case 
If rf= 1 then 

restore ALU flags from Address Stack 
restore register bank selection from Address Stack 

End if 
Address Stack -. PC 

End if 
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Condition Specification Table for "CC" 

cc Meaning Condition Tested for 

Z Zero [Z] = 1 
NZ Not Zero [Z] =0 

EO Equal [Z] = 1 
NEO Not Equal [Z] =0 

C Carry [C] = 1 
NC No Carry [C] =0 

V Overflow [V] = 1 

NV No Overflow [V] =0 
N Negative [N] = 1 
P Positive [N] =0 
RA Receiver Active [RA] .= 1 

NRA Not Receiver Active [RA] . =0 

RE Receiver Error [RE] = l' 

NRE No Receiver Error [RE] =0 
DA Data Available [DAV] =1 
NDA No Data Available [DAV] =0 
TFF Transmitter FIFO Full [TFF] = 1 

NTFF Transmitter FIFO Not Full [TFF] =0 

Flag Reference Table for lit" 

f (binary) Flag Referenced 

0 (000) [Z] in (CCR) 

1 (001) [C] in (CCA) 

2 (010) [V] in (CCA) 

3 (011) [N] in (CCA) 

4 (100) [RA] in (TSA) 

5 (101) [RE] in (TSA) 

6* (110) [DAV] in (TSA) 

7 (111 ) [TFF] in (TSA) 

"Note: The value of f for [DAV) differs from the numeric 
value for the position of [DAV) in I TSR l. 

I 

I 

II 
I 

I 
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6.0 Reference Section (Continued) 

RET Unconditional Return 
Syntax 

RET Ig I,rfll 

Affected Flags 

If rf= 1 then N, Z, C, and V 

Description 

Unconditionally returns control to the last instruction ad­
dress pushed onto the internal Address Stack by popping 
that address into the Program Counter. The unconditional 
return instruction also has two optional operands, g and rf. 
The value of g determines if the Global Interrupt Enable bit 
[GIE] is left unchanged (g = 0), restored from the Address 
Stack (g = 1), set (g = 2), or cleared (g = 3). If the g operand 
is omitted then g = 0 is assumed. The second optional oper­
and, rf, determines if the ALU flags and register bank selec­
tions are left unchanged (rf = 0), or restored from the Ad­
dress Stack (rf = 1). If the rf operand is omitted then rf = 0 is 
assumed. 

Example 

Return from an interrupt. 

RET 1,1 ;Restore environment & return 

Instruction Format 

15 6! 4 3 0 

T-states 
2 

Bus Timing 

Figure 6-1 

Operation 

Case g of 

OO-GIE not affected 
01-Restore GIE 
10-SetGIE 
11-ClearGIE 

0: leave [GIE] unaffected, (default) 
1: restore [GIE] from Address Stack 
2: set [GIE] 
3: clear [GIE] 

End case 
If rf= 1 then 

restore ALU flags from Address Stack 
restore register bank selection from Address Stack 

End if 
Address Stack ----+ PC 
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ROT Rotate 
Syntax 

ROT Rsd, b 

Affected Flags 
N,Z,C 

Description 

-register 

Rotates the contents of the register Rsd b bits to the right 
and places the result back into that register. The bits that 
are shifted out of the LSB are shifted back into the MSB, 
(and copied into the Carry flag). The value b may specify 
from 0 to 7 bit rotates. 

Example 

Add 3 to the Address Stack Pointer contained in the Internal 
Stack Pointer register liSP}, R30. 

MOVE ISP, RB ;get IISPI 
ROT RB, 4 ;shift [ASP] to low order nibble 
ADD 3, RB ;add 3 to [ASP] 
ROT RB, 4 ;shift [ASP] to high order nibble 
MOVE RB,ISP ;store new liSP} 

Instruction Format 

15 7 
T-states 
2 
Bus Timing 
Figure 6-1 

Operation 

Rsd 

I I 
Rsd 

4 o 

TLlF9336-12 



6.0 Reference Section (Continued) 

SBCA Subtract with Carry and 
Accumulator 

Syntax 

SBCA Rs, Rd 
SBCA Rs, [mlr] 

Affected Flags 
N,Z,C,V 

Description 

-register, register 
-register, indexed 

Subtracts the active accumulator and the carry flag from the 
source register Rs, placing the result into the destination 
specified. The destination may be either a register, Rd, or 
data memory via an index register mode, [mlr]. Negative 
results are represented using the two's complement format. 
Note that register bank selection determines which accumu­
lator is active. 

Example 
Subtract the constant 109 from the index register IW, (which 
is 16 bits wide). 

SUBA A, A ;Clear the accumulator 
SUB 109, R12 ;Iow byte of IW-109 
SBCA R13, R13 ;high byte of IW-borrow 

Instruction Format 

SBCA Rs, Rd 

15 9 

I 
Rd 

SBCA Rs, [mlr] 

1

1 I 0 I 1 I 0 I 0 I 1 I 1 I 
. Opcode . m Ir 

15 8 4 

t 
00 - post-decrement 
01 - no change 
10 - post Increment 
11 - pre-increment 

4 

I 
Rs 

Rs 

l 
00 -IW 
01 - IX 
10 - IY 
11 - IZ 

o 

o 

TL/F9336-13 

T-states 

SBCA Rs, Rd 
SBCA Rs, [mlr] 

Bus Timing 
SBCA Rs, Rd 
SBCA Rs, [mlr] 

Operation 
SBCA Rs, Rd 

-2 
-3 

-Figure 6-1 
-Figure 6-7 

Rs - accumulator - carry bit ~ Rd 
SBCA Rs, [mlr] 
Rs - accumulator - carry bit ~ data memory 
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SHL Shift Left 
Syntax 

SHL Rsd, b -register 

Affected Flags 
N,Z,C 

Description 

Shifts the contents of the register Rsd b bits to the left and 
places the result back into that register. Zeros are shifted in 
from the right, (Le., from the LSB). The value b may specify 
from 0 to 7 bit shifts. The Carry flag contains the last bit 
shifted out. 

Example 
Place a new internal Address Stack Pointer into the Internal 
Stack Pointer register (ISP}, R30. Assume that the new 
[ASP] is located in register 20. 

MOVE ISP,RB ;read liSP} for [DSP] 
AND 00001111 B,RB ;save [DSP] only 
SHL R20,4 ;Ieft justify [ASP] 
ORA R20,ISP ;combine [ASP] + [DSP], 

; then place into liSP} 

Instruction Format 

15 7 
T-states 
2 
Bus Timing 
Figure 6-1 

Operation 

Rsd 

4 

~~ ________ ~~O 
Rsd 

o 

TL/F 19336-14 



6.0 Reference Section (Continued) 

SHR Shift Right 
Syntax 

SHR Rsd, b 

Affected Flags 
N,Z,C 

Description 

-register 

Shifts the contents of the register Rsd b bits to the right and 
places the result back into that register. Zeros are shifted.in 
from the left, (Le., from the MSB). The value b may specify 
from 0 t07 bit shifts. The Carry .flag contains the last bit 
shifted out. 

Example 

Right justify the Address .Stack Pointer from the Internal 
Stack Pointer register {ISP}, R30. 

MOVE ISP, R20 ;Load [ASP] from liSP} 
SHR R20,4 ;right justify [ASP] 

Instruction Format 

11 1 1 1 0 ~~101~ 01 0 1 0 1 
15 7 

T-states 
2 
Bus Timing 
Figure 6-1 

Operation 

1 1 
b 

4 

1 

Rsd 

o~~ ________ ~ __ ~ 
Rsd 

o 

TLlF/9336-15 
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SUB Subtract Immediate 
Syntax 
SUB n, rsd -immediate, limited register 

Affected Flags 
N,Z,C,V 

Description 
Subtracts the immediate value n from the register rsd and 
places the result back into the register rsd. Note that only 
the active registers RO-R15 may be specified for rsd. The 
value of n is limited to 8 bits; (signed range: + 127 to 
-128). Negative numbers are represented using the two's 
complement format. 

Example 
Subtract the constant 3 from register 10. 

SUB 3, R10 ; R10 - 3 --+ R10 

Instruction Format 

1

0 1 0 11 10 I 

. Opcode . 
15 11 

T-states 
2 

Bus Timing 
Figure 6-1 

Operation 
rsd - n --+ rsd 

n 
1 

rsd 

3 0 



6.0 Reference Section (Continued) 

SUBA Subtract with Accumulator 
Syntax 
SUBA 
SUBA 

AS,Ad 
As, [mlr] 

Affected Flags 
N,Z,C,V 

Description 

-register, register 
-register, indexed 

Subtracts the active accumulator from the source register 
As and places the result into the destination specified. The 
destination may be either a register, Ad, or data memory via 
an index register mode, [mlr]. Negative numbers are repre­
sented using the two's complement format. Note that regis­
ter bank selection determines which accumulator is active. 

Example 
In the first example, the value 4 is placed into the currently 
active accumulator, that accumulator is subtracted from the 
contents of register 20, and then the result is placed into 
register 21. 

MOVE 4, A ;Place constant into accum 
SUBA A20, A21 ;A20 - accum ~ A21 

In the second example, the alternate accumulator of regis­
ter bank B is selected and then subtracted from register 20. 
The result is placed into the data memory pointed to by the 
index register IZ and then the value of IZ is incremented by 
one. 

EXX 0, 1 ;Select alt accumulator 
SUBA A20, liZ +) ;A20 - accum ~ data mem 

;and increment data pointer 

Instruction Format 

SUBA As, Ad 

15 9 

SUBA As, [mlr] 

I
I I 0 I I I 0 I 0 I 

. Opcode 

15 

+ 

I 
Ad 

00 - post-decrement 
01 - no change 
10 - post Increment 
II - pre-Increment 

4 

Ir 

4 

As 

Rs 

t 
00 - IW 
01 - IX 
10 - IY 
II - IZ 

o 

o 

TlIF/9336-16 

T-states 
SUBA As, Ad 
SUBA As, [mlr) 

Bus Timing 
SUBA As, Ad 
SUBA As, [mlr) 

Operation 
SUBA Rs, Ad 

-2 
-3 

-Figure 6-1 
-Figure 6-7 

As - accumulator ~ Ad 

SUBA As, [mlr] 
As - accumulator ~ data memory 
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TRAP Software Interrupt 
Syntax 
TAAP v I,g'} 

Affected Flags 
None 

Description 
Pushes the Program Counter, the Global Interrupt Enable bit 
[GIE), the ALU flags, and the current register bank selec­
tions onto the internal Address Stack; then unconditionally 
transfers control to the instruction at the memory address 
created by concatenating the contents of the Interrupt Base 
Aegister IIBA} to the value of v extended with zeros to 8 
bits. If the value of g' is equal to "1" then the Global Inter­
rupt Enable bit [GIE) will be cleared. If the g' operand is 
omitted, then g' = 0 is assumed. The vector number v 
points to one of 64 Interrupt Table entries; (range: 0 to 63). 
Since some of the Interrupt Table entries are used by the 
hardware interrupts, the TAAP instruction can simulate 
hardware interrupts. The following table lists the hardware 
interrupts and their associated vector numbers: 

Hardware Interrupt Vector Table 

Interrupt v (Binary) 

NMI 28 (011100) 
AFF/OAlAA 4 (000100) 
TFE 8 (001000) 
LTA 12 (001100) 
BIAQ 16 (010000) 
TO 20 (010100) 

Example 
Simulate the Transmitter FIFO Empty interrupt. 

TAAP 8, 1 ;TFE interrupt simulation 

Instruction Format 

15 6 5 

T-states 
2 

Bus Timing 
Figure 6-1 

Operation 

v 

PC & [GIE) & ALU flags & register bank selections 
~ Address Stack 

if g' = 1 
then clear [GIE) 

o 

Create PC address by concatonating the IIBA} register to 
the vector number v as shown below: 

I I I I I I Lpc 
{IBR} 0 0 ! 

LI-5------~~------~7--~~5----------~0 

TL/F/9336-17 



6.0 Reference Section (Continued) 

XOR Exclusive OR Immediate 
Syntax 
XOA n, rsd -immediate, limited register 

Affected Flags 
N,Z 

Description 
Logically exclusive OAs the immediate value n to the regis­
ter rsd and places the result back into the register rsd. Note 
that only the active registers AO-A15 may be specified for 
rsd. The value of n is 8 bits wide. 

Example 
Encode/decode a data byte in register 15. 

XOA code_pattern, A15 ;encode/decode 

Instruction Format 

1
0 11 1 1 1 0 I 

. Opcode . 
15 11 

T-states 
2 

Bus Timing 
Figure 6-1 

Operation 
rsd XOA n -+ rsd 

n 

3 0 

1-198 

XORA Exclusive OR with Accumulator 
Syntax 
XOAA 
XOAA 

As, Ad 
As, [mlr] 

Affected Flags 
N,Z 

Description 

-register, register 
-register, indexed 

Logically exclusive OAs the source register As to the active 
accumulator and places the result into the destination speci­
fied. The destination may be either a register, Ad, or data 
memory via an index register mode, [mlr]. Note that register 
bank selection determines which accumulator is active. 

Example 
Decode the data byte just received and place it into data 
memory. This example assumes that the accumulator con­
tains the "key" and that the index register IY points to the 
location where the information should be stored. 

EXX 1,1 ;select alternate banks 
XOAA .. ATA, [lY + ] ;decode received byte and 

; save it 

Instruction Format 
XOAA As, Ad 

15 9 

XORA Rs, [mlr] 

1

1 I 0 I 1 I 0 11 I 1 I 0 I 
. Opcode . m 

15 8 

~ 

1 
Ad 

00 - post-decrement 
01 - no change 
10 - post Increment 
11 - pre-increment 

4 

Ir 

4 

Rs 

Rs 

. l 
00 - IW . 
01 - IX 
10 - IY 
11 - IZ 

o 

o 

TL/F 19336-1 B 

T-states 
XORA Rs, Rd -2 
XORA Rs, [mlr] -3 

Bus Timing 
XORA Rs, Rd -Figure 6-1 
XORA Rs, [mlr] -Figure 6-7 . 

Operation 
XORA Rs, Rd 
Rs XOR accumulator -+ Rd 

XORA Rs, [mlr] 
Rs XOR accumulator -+ data memory 



6.0 Reference Section (Continued) 

TABLE 6-2. Instructions Versus T-states, Affected Flags, and Bus Timing 

Instruction T-states 
Affected Timing 

Instruction T-states 
Affected Timing 

Flags Figure Flags Figure 

ADCA Rs, Rd 2 N,Z,C,V 6·1 MOVE Rs, [mlr] 3 6-7 

ADCA Rs, [mlr] 3 N,Z,C,V 6-7 MOVE Rs, [lr + A] 3 6-7 

ADD n, rsd 2 N,Z,C,V 6-1 MOVE rs, [lZ + n] 3 6-7 

ADDA Rs, Rd 2 N,Z,C,V 6-1 MOVE [mlr],Rd 3 [4TR] = 0 6-5 

ADDA Rs, [mlr] 3 N,Z,C,V 6-7 
4 [4TR] =' 1 6-6 

AND n, rsd 2 N,Z 6-1 MOVE [lr + A], Rd 3 [4TR] - 0 6-5 
4 [4TR] = 1 6-6 

ANDA Rs, Rd 2 N,Z 6-1 
[lZ+ n], rd 3 [4TR] = 0 MOVE 6-5 

ANDA Rs, [mlr] 3 N,Z 6-7 4 [4TR]='1 6-6 
-= --"-

BIT rs, n 2 N,Z 6-1 OR n, rsd 2 N,Z 6-1 

CALL n 3 6-2 ORA Rs, Rd 2 N,Z 6-7 

CMP rs, n 2 N;Z,C,V 6-1 ORA Rs, [mlr] 3 N,Z 6-7 

CPL Rsd 2 N,Z 6-1 Ree (g (,rf)) 2 false 6-1 

EXX ba, bb (,g) 2 6-1 3 true N,Z,C,V· 6-2 

Jee n 2 false 6-1 RET (g(,rf)) 2 N,Z,C,V*. 6-1 

3 true 6-2 RETF f, s (,(g) (,rf)) 2 false 6-1 

JMP f, s, n 2 false 6-1 3 true N,Z,C,V* 6-2 

3 true 6-2 ROT Rsd,b 2 N,Z,C 6-1 

JMP n 3 6-2 SBCA RS,Rd 2 N,Z,C,V 6-1 

JMP Rs 4 6-4 SBCA Rs, [mlr] 3 N,Z,C,V 6-7 

JRMK RS,b,m 4 6-4 SHL Rsd,b 2 N,Z,C 6-1 

LCALL nn (2+2) 6-3 SHR Rsd,b 2 N,Z,C 6-1 

LCALL Rs, p, s, nn (2+2) 6-3 SUB n, rsd 2 N,Z,C,V 6-1 

LJMP nn (2+2) 6-3 SUBA Rs, Rd 2 N,Z,C,V 6-1 

LJMP [lr] 2 6-1 SUBA Rs, [mlr] 3 N,Z,C,V 6-7 

LJMP Rs,p,s,nn (2+2) 6-3 TRAP v (,g') 2 6-1 

MOVE n, rd 2 6-1 XOR n, rsd 2 N,Z 6-1 

MOVE n, [lr] 3 6-7 XORA Rs, Rd 2 N,Z 6-1 

MOVE Rs, Rd 2 6-1 XORA Rs, [mlr] 3 N,Z 6-7 

·Note: If rf = 1 then N. Z. C. and V are affected, 

I 

III 
I 

1-199 
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~ 6.0 Reference Section (Continued) 
CO 
Q. 
C TABLE 6-3. Instruction Opcodes 

Hex Opcode 

101010101 1 

I OOOO-OFFF 1 1 1 1 1 1 1 1 
Opcode n rsd 

15 11 3 

10 1 0 10 11 I 1 

I 1000-1 FFF 1 1 1 1 1 1 1 1 
Opcode n rs 

15 11 3 

10 1 0 11 10 I 1 

I 2000-2FFF 1 1 1 1 1 1 1 1 
Opcode n rsd 

15 11 3 

10 I 0 11 I 1 I 1 

I 3000-3FFF I I I I I I I I 
Opcode n rs 

15 11 3 

1011 10101 1 

I 
I I 4000-4FFF I I I I I I 

Opcode n rsd 

15 11 3 

10 11 I 0 11 I I 1 I I I 
I 

I I 5000-5FFF I I 
Opcode n rsd 

15 11 3 

10 11 11 I 0 I 1 1 1 1 

I 
1 1 6000-6FFF I I I 

Opcode n rsd 

15 11 3 

I 0 I 1 I 1 I 1 I 1 

I 7000-7FFF I I I I I I I I 
Opcode n rs 

15 11 3 

11101010101 
I 

1 BOOO-B7FF 1 I 1 1 

I 
1 1 

Opcode rn b Rs 

15 10 7 4 

1-200 

KEY 
Instruction 

rnlr 

I 
1 ADD n, rsd 00 Ir-

01 Ir 
0 10 Ir+ 

11 +Ir 

I 
1 MOVE rs, [lZ + n] Ir 

0 00 IW 
01 IX 

I 
1 SUB n, rsd 

10 IY 
11 IZ 

0 
9 

I 
I CMP rs, n 

0 

00 NCHG 
01 RI 
10 EI 
11 01 

1 

I AND n, rsd 

0 

9' 

1
0 

NCHG I 
1 01 

I 
I OR n, rsd ba/bb 

0 

1 

I XOR n, rsd 

0 000 [Z] 

001 [C] 

I 
I BIT rs, n 

010 [V] 
011 [N] 

100 [RA] 
0 101 [RE] 

I 
I JRMK RS,b,rn 

110 [OAV] 

111 [TFF] 

0 



6.0 Reference Section (Continued) 

TABLE 6-3. Instruction Opcodes (Continued) 

Hex Opcode 

11 1010101 1 10 1 I 1 I 1 I I I BBOO-BBFF I 
1 Opcode n[7-5] . Ir n[4-0] 

15 9 6 4 

.1110101011111011 I I 
1 

1 I I I BCOO-BOFF 
Opcode s p Rs 

15 B 7 4 

OOOO-FFFF 

I 
1 1 1 I I I I I I I I I I I I 

nn 

15 

111010101111111 I 1 BEOO-BFFF I I 
1 

I I I 
. Opcode s p Rs 

15 B 7 4 

OOOO-FFFF 

I 
1 1 1 I I I I I I I I I I I I 

nn 

15 

11 I 0 I 0 I 1 I 1 II 9000-9FFF I I I I I I I I 
Opcode n rd 

15 11 3 

111011101010101 1 1 AOOO-A1FF 
1 

I 
1 

I I I 
Opcode m Ir Rs 

15 8 6 4 

111011101010111 1 1 A200-A3FF 
1 

I 
1 

I I I 
Opcode m Ir Rs 

15 B 6 4 

111011101011101 1 1 A400-A5FF 
1 

I 
1 

I I I 
Opcode m Ir Rs 

15 B 6 4 

1-201 

Instruction 

1 
MOVE n, [lr] 

0 

I 
LJMP Rs, p, s, nn 

0 

I 
0 

I 
LCALL Rs, p, s, nn 

0 

I 
0 

I 
MOVE [lZ+n1. rd 

0 

I 
AOOA Rs, [mlr] 

0 

I 
AOCA Rs, [mlr] 

0 

I 
SUBA Rs, [mlr] 

0 

KEY 
mlr 

00 Ir-
01 Ir 
10 Ir+ 
11 +Ir 

Ir 

00 IW 
01 IX 
10 IY 
11 IZ 

9 

00 NCHG 
01 RI 
10 EI 
11 01 

9' 

~ 1 01 

ba/bb 

000 [Z] 

001 [C] 

010 [V] 
011 [t-:J] 
100 [RA] 
101 [RE] 

110 [OAV] 
111 [TFF] 

C 
.." 
co 
w 
~ 
~ 
OJ 

III 
I 
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~ 6.0 Reference Section (Continued) 
CO 
D.. 
C TABLE 6-3. Instruction Opcodes (Continued) 

Hex Opcode 

111011101011111 1 1 
1 

ASOO-A7FF 
1 

1 

1 

1 1 1 
Opcode m Ir Rs 

15 B S 4 0 

111011101110101 1 1 

1 
ABOO-A9FF 

1 

1 

1 

1 1 1 
Opeode m Ir Rs 

15 B S 4 0 

111011101110111 1 

1 

1 

1 

1 1 1 

1 
AAOO-ABFF 1 

Opeode m Ir Rs 

15 B S 4 0 

111011101111101 1 1 

1 
ACOO-AOFF 

1 

1 

1 

1 1 1 
Opeode m Ir Rs 

15 B S 4 0 

11101110111111101010101 1 

1 
AEOO-AE1F 1 1 1 

Opeode Rs 

15 4 0 

1110111011111110111 1 
1 ba 1 bb 1 0 1 0 1 0 1 AEBO-AEFB 

Opeode 9 
15 S 4 3 2 0 

1110111011111111101 
1 rl 1 s 1 1 

AFOO-AF7F 1 1 1 
Opeode 9 f 

15 S 4 3 2 0 

1110111011111111111 IrllOIOIOlol AFBO-AFFO 1 
Opeode 9 

15 6 4 3 0 

11 1 0 1 1 1 1 1 1 

1 1 
BOOO-BFFF 1 1 1 1 1 1 1 1 1 

Opeode n rd 

15 11 3 0 

1-202 

KEY 
Instruction 

mlr 

SBCA Rs, [mlr] 00 Ir-
01 Ir 
10 Ir+ 
11 +Ir 

ANOA Rs, [mlr] Ir 

00 IW 
01 IX 
10 IY 

ORA Rs, [mlr] 11 IZ 

9 

00 NCHG 
XORA Rs, [mlr] 01 RI 

10 EI 
11 01 

CPL Rsd g' 

10 NCHG 1 
1 01 

EXX ba, bb I.g1 ba/bb 

RETF f,sl.lgll,rlll 
Ree Igl,rlll 

000 [Z] 
001 [C) 
010 [V] 

RET Igl.rlll 011 [N] 
100 [RA] 
101 [RE] 
110 [OAV] 
111 [TFF] 

MOVE n, rd 



6.0 Reference Section (Continued) 

TABLE 6-3. Instruction Opcodes (Continued) 

Hex Opcode 

111110101010101 1 1 COOO-C1FF 
1 

1 

1 

1 1 1 
Opcode m Ir Rd 

15 a 6 4 

111110101010111 1 1 C200-C3FF 
1 

1 

1 

1 1 1 
Opcode m Ir Rs 

15 a 6 4 

1111101010111010101 1 C400-C47F 1 

1 

1 1 1 
Opcode Ir Rd 

15 6 4 

1111101010111010111 1 C4aO-C4FF 1 

1 

1 1 1 
Opcode Ir Rs 

15 6 4 

11111010111010101 
1 

1 1 1 caOO-CaFF 1 1 1 
Opcode b Rsd 

15 7 4 

11111010111010111 
1 

1 1 1 C900-C9FF 1 1 1 
Opcode (a-b) Rsd 

15 7 4 

11111010111011101 1 1 

1 

1 1 1 1 CAOO-CAFF 
Opcode b Rsd 

15 7 4 

11111010111011111 1 1 1 CBOO-CBFF 1 1 1 1 
Opcode n 

15 7 

11111010111110101 1 1 1 CCOO-CCFF 1 1 1 1 
Opcode n 

15 7 

1-203 

Instruction 

1 
MOVE [mlr], Rd 

0 

1 
MOVE Rs, [mlr] 

0 

1 
MOVE [lr+A1. Rd 

0 

1 
MOVE Rs, [lr+A] 

0 

1 
SHR Rsd,b 

0 

1 
SHL Rsd,b 

0 

1 
ROT Rsd,b 

0 

1 
JMP n 

0 

1 
CALL n 

0 

KEY 

mlr 

00 Ir-
01 Ir 
10 Ir+ 
11 +Ir 

Ir 

00 IW 
01 IX 
10 IY 
11 IZ 

9 

00 NCHG 
01 RI 
10 EI 
11 01 

g' 

10 NCHG 1 
1 01 

ba/bb 

000 [Z] 
001 [C) 
010 [V] 
011 [N] 
100 [RA] 
101 [RE] 
110 [OAV] 
111 [TFF] 

C 
"tJ 
Q) 
W 
~ 
~ 
OJ 

I 

III 
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~ 6.0 Reference Section (Continued) 
co 
D-
C TABLE 6-3. Instruction Opcodes (Continued) 

Hex Opcode 

11 I 11 0 I 0 11 I 1 10 I 1 I 01 10101010101 COOO-C060 I 
Opcode Ir 

15 6 4 0 

11111010111110111110101 I 
I 

C080-C09F I I I 
Opcode Rs 

15 4 0 

11 11 10 10 11 11 11 10 I 0 10 10 10 10 10 10 10 I CEOO 
OOOO~FFFF . Opcode 

15 0 

II I I I I I I I I I I I I I I 
I nn 

_ 15 0 

11 11 I 0 10 11 11 11 10 11"10 10 10 10 10 I 0 10 I CE80 
OOOO-FFFF 

Opcode 

15 0 

I 
I .1 I I I I I I I I I I I I I 

I nn 

15 0 

11111010111111111111 I I I 
I 

CF80-CFFF I I 
Opcode g' v 

15 6 5 0 

11 I 1 I 0 I 1-1 I I I 
I 

OOOO-OFFF I I I I I I I I 
f n Opcode S 

15 11 10 7 0 

1-204 

KEY 
Instruction 

mlr 

LJMP [lr] 
00 Ir-
01 Ir 
10 Ir+ 
11 +Ir 

Ir 

JMP Rs 00 IW 
01 IX 
10 IY 
11 IZ 

9 

LJMP nn 00 NCHG 
01 RI 
10 EI 
11 01 

g' 

1
0 

NCHG I 
1 01 

LCALL nn 
ba/bb 

000 [Z] 
001 [C) 
010 [V] 
011 [N] 
100 [RA] 

TRAP v{,g'} 101 [RE] 
110 [DAV] 
111 [TFF] 

JMP f, S, n 
Jcc n 



C 

6.0 Reference Section (Continued) 
""C 
co 
W 
0I:loo 

TABLE 6-3. Instruction Opcodes (Continued) 
0I:loo 
OJ 

KEY 
Hex Opcode Instruction mlr 

1111111010101 1 1 I EOOO-E3FF 1 1 1 

1 

1 1 1 AOOA Rs, Rd 
Opcode Rd Rs 

00 Ir-
01 Ir 

15 9 4 0 10 Ir+ 
11 +Ir 

1111111010111 1 1 
1 

E400-E7FF 1 1 1 

1 

1 1 1 AOCA RS,Rd 
Opcode Rd Rs Ir 

15 9 4 0 00 IW 
01 IX 

1111111011101 1 1 

1 
EBOO-EBFF 1 1 1 

1 

1 1 1 SUBA Rs, Rd Opcode Rd Rs 

10 IY 
11 IZ 

15 9 4 0 
9 

1111111011111 1 1 

1 
ECOO-EFFF 1 1 1 

1 

1 1 1 SBCA Rs, Rd 
Opcode Rd Rs 

15 9 4 0 

00 NCHG 
01 RI 
10 EI 
11 01 

1111111110101 1 1 1 1 

1 

1 1 

1 
FOOO-F3FF 1 1 ANOA Rs, Rd Opcode Rd Rs 

15 9 4 0 

g' 

[]EJ 1 01 

1111111110111 1 1 1 1 1 

1 
F400-F7FF 1 

1 

1 1 ORA RS,Rd 
Opcode Rd Rs 

ba/bb 

15 9 4 0 

1111111111101 1 1 1 

1 
FBOO-FBFF 1 1 1 

1 

1 1 XORA Rs, Rd 
Opcode Rd Rs 

15 9 4 0 000 [Z] 
001 [C) 

1111111111111 1 1 

1 
FCOO-FFFF 1 1 1 

1 

1 1 1 MOVE Rs, Rd 
Opcode Rd Rs 

010 [V] 
011 [N] 
100 [RA] 

15 9 4 0 101 [RE] 
110 [OAV] 
111 [TFF] 

I • I 
1-205 



6.0 Reference Section (Continued) 

6.2 REGISTER SET REFERENCE 

The register set reference contains detailed information on the bit definitions of all special function registers that are address-
able in the CPU. This reference section presents the information in three forms: a bit index, a register description and bit 
definition tables. The bit index is an alphabetical listing of all status/control bits in the CPU-addressable function registers, with a 
brief summary of the function. The register description is a list of all CPU-addressable special function registers in alphabetical 
order.' The 'bit definition tables describe the location and function of all control and status bits in the various CPU-addressable 
special function registers. These tables are arranged by function. 

6.2.1 Bit Index 

An alphabetical listing of all status/control bits in the CPU-addressable special function registers, with a brief summary of 
function. Detailed definitions are provided in Section 6.2.3, Bit Definition Tables. 

Bit Name Location Function 

i}.4IB.·· •.•. · •.. · •. :·.· .•......• ·· .. FourT.Stat~ Bead •..• ····· ...• ···· ••..... ····i····· ..•..• .. .AC8\ (3) ... I imirl999titr()! . .. 
,"oW,,"_ 

poll/ ACKnowledge NCF [1] Receiver Status 
ASP3-0 Address Stack Pointer ISP [7-4] Stacks 
AT7-0 Auxilliary Transceiver control ATR [7-0] Receiver Control 
ATA Advance Transmitter Active TCR [4] Transmitter Control 
BIC Bi-directionallnterrupt Control ACR [4] Interrupt Control 
BIRO Bi-directionallnterrupt ReQuest CCR [4] Interrupt Control 
C Carry CCR [1] Arithmetic Flag 
CCS CPU Clock Select OCR [7] Timing Control 
COD Clock Out Disable ACR [2] Timing Control 
DAV Data AVailable TSR [3] Receiver Status 
DEME Data Error or Message End NCF [3] Receiver Status 
DS7-0 Data Stack OS [7-0] Stacks 
DSP3-0 Data Stack Pointer ISP [3-0] Stacks 
DW2-0 Data memory Wait-state select OCR [2-0] Timing Control 
FB7-0 Fill Bits FBR [7-0] Transmitter Control 
GIE Global Interrupt Enable ACR [0] Interrupt Control 

, IES Invalid Ending Sequence ECR [2] Receiver Error Code 
IM4-0 Interrupt Mask select ICR [4-0] Interrupt Control 
IV15-8 Interrupt Vector IBR [7-0] Interrupt Control 
IW1,0 Instruction memory Wait-state select OCR [4,3] Timing Control 
LA Line Active NCF [5] Receiver Status 
LMBT Loss of Mid Bit Transition ECR [1] Receiver Error Code 
LOR Lock Out Remote ACR [1] Remote Interface 

, LOOP internal LOOP-back TMR [6] Transceiver Control 
LTA Line Turn Around NCF [4] Receiver Status 
N Negative CCR [3] Arithmetic Flag 
OVF receiver OVerFlow ECR [4] Receiver Error Code 
OWP Odd Word Parity TCR [3] Transmitter Control 
PAR' PARity error ECR [3] Receiver Error Code 
POLL POLL NCF [0] Receiver Status 
PS2-0 Protocol Select TMR [2-0] Transceiver Control 
RA Receiver Active TSR [4] Receiver Status 
RAR Received Auto-Response NCF [2] Receiver Status 
RDIS Receiver DISabled while active ECR [0] Receiver Error Code 
RE Receiver Error TSR [5] Receiver Status 
RF10-8 Receive FIFO TSR [2-0] Receiver Control 
RFF Receive FIFO Full NCF [6] Receiver Status 
RIN Receiver INvert TMR [4] Receiver Control 
RIS1,0 Receiver Interrupt Select ICR [7,6] Interrupt Control 
RLO Receive Line Quiesce TCR [7] Receiver Control 
RPEN RePeat ENable TMR [5] Receiver Control 
RR Remote Read CCR [6] Remote Interface 
RTF7-0 Receive/Transmit FIFO RTR [7-0] Transceiver Control 
RW Remote Write CCR [5] Remote Interface 
SEC Select Error Codes TCR [6] Receiver Control 
SLR Select Line Receiver TCR [5] Receiver Control 
TA Transmitter Active TSR [6] Transmitter Status 
TCS1,0 Transceiver Clock Select OCR [6,5] Transceiver Control 
TF10-8 Transmit FIFO TCR [2-0] Transmitter Control 

1·206 



6.0 Reference Section (Continued) 

6.2.1 Bit Index (Continued) 

An alphabetical listing of all status/control bits in the CPU·addressable special function registers, with a brief summary of 
function. Detailed definitions are provided in Section 6.2.3, Bit Definition Tables. 

Bit Name 

TFE Transmit FIFO Empty 
TFF Transmit FIFO Full 
TIN Transmitter INvert 
TLD Timer LoaD 
TM7-0 TiMer 
TM15-8 TiMer 
TMC TiMer Clock select 
TO Time Out flag 
TRES Transceiver RESet 
TST Timer StarT 
V oVerflow 
Z Zero 

6.2.2 Register Description 

A list of all CPU-addressable special function registers, in 
alphabetical order. 

The Remote Interface Configuration register (RICI, which is 
addressable only by the remote system, is not included. See 
Section 6.3, Remote Interface Reference for details of the 
function of this register. 

Each register is listed together with its address, the type of 
access available, and a functional description of each bit. 
Further details on each bit can be found in Section 6.2.3, Bit 
Definition Tables. 

1-207 

Location Function 

NCF [7] Transmitter Status 
TSR [7] Transmitter Status 
TMR [3] Transmitter Control 
ACR [6] Timer 
TRL [7-0] Timer 
TRH [7-0] Timer 
ACR [5] Timer 
CCR [7] Timer 
TMR [7] Transceiver Control 
ACR [7] . Timer 
CCR [2] Arithmetic Flag 
CCR [0] Arithmetic Flag 

ACR AUXILIARY CONTROL REGISTER 
[Main R3; read/write] 

7 6 5 4 321 0 

I TST I TlD I TMC I BIC rsv I COD I LOR I GIE 

rsv ... state is undefined at all times. 

TST - Timer StarT ... When high, the timer is enabled 
and will count down from it's current value. 

When low, timer is disabled. Timer is stopped by 
writing a 0 to [TST]. 

TlD - Timer LoaD ... When high, generates timer load 
pulse. Cleared when load complete. 

TMC - TIMer Clock select ... Selects timer clock fre­
quency. Should not be written when [TST] is 
high. Can be written at same time as [TST] and 
[TlD). 

TMC Timer Clock 

o (CPU-ClK)/16 
1 (CPU-ClK)/2 

BIC - BI-directlonal Interrupt Control ... Controls di-
rection of BIRQ. 

BIC BIRQ 

o Input 
Output 

COD - Clock Out Disable ... When high, ClK-OUT out­
put is at TRI-STATE. 

lOR - Lock Out Remote ... When high, a remote sys­
tem is prevented from accessing the BCP. 

GIE - Global Interrupt Enable ... When low, disables 
all maskable interrupts. When high, works with 
[lM4-0] to enable maskableinterrupts. 

4TR - 4 T -state Read .•• When high, RE'AI5 strobe tim­
ing is changed to allow more time between the 
TRI-STA TE of the AD lines by the BCP and the 
falling of the RE:AD strobe. All data memory reads 
take four T-states when this bit is set. See Sec­
tion.2.2.2 for more information. 



6.0 Reference Section (Continued) 

ATR AUXILIARY TRANSCEIVER REGISTER 
[Alternate R2; read/write] 

7 6 543 2 o 
I AT7 I AT6 I AT5 I AT4 I AT3 AT2 AT1 I ATO I 
AT7 -0 - Auxiliary Transceiver ... In 5250 protocol 

modes, bits 2-0 define the receive station ad­
dress, and bits 7-3 control the amount of time 
TX-ACT stays asserted after the last fill bit. 

In 8-bit protocol modes, bits 7-0 define the re­
ceive station address. 

For further information, see Section 3.0 Trans­
ceiver. 

ATR 7-3 
TX-ACT Hold Time (p.s) 

(if TCLK = 8 MHz) 

00000 0 
00001 0.5 
00010 1.0 
00011 1.5 

! ! 
1 1 1 1 1 15.5 

1-208 

CCR CONDITION CODE REGISTER 
[Main RO; bits 0-3, 5-7 read/write, bit 4 read only] 
76543210 

I TO I RR I RW I BIRO I N I V I C I z 

TO - Time Out flag ... Set high when timer counts to 
zero. Cleared by writing a 1 to this location or by 
stopping timer (by writing a 0 to [TST». 

RR - Remote Read ... Set on the trailing edge of a 
REM-RD pulse, if RAE is asserted and {RIC} is 
pointing to Data Memory. Cleared by writing a 1 
to this location. 

RW - Remote Write ... Set on the trailing edge of a 
REM-WR pulse, if RAE is asserted and {RIC} is 
pointing to Data Memory. Cleared by writing a 1 
to this location. 

BIRO - BI-directional Interrupt ReQuest ... [Read 
only). Reflects the logic level of the Bi-directional 
interrupt pin, BIRO. Updated at the beginning of 
each instruction cycle. 

N - Negative .. . A high level indicates a negative 
result generated by an arithmetic, logical or shift 
instruction. 

V - oVerflow ... A high level indicates an overflow 
condition generated by an arithmetic instruction. 

C - Carry ... A high level indicates a carry or borrow 
generated by an arithmetic instruction. During a 
shift/rotate operation the state of the last bit shift­
ed out appears in this location. 

Z - Zero ... A high level indicates a zero result gen-
erated by an arithmetic, logical or shift instruction. 
Further information: Section 2.2.1 ALU, Section 
2.2.3 Interrupts. 



6.0 Reference Section (Continued) 

DCR DEVICE CONTROL REGISTER 
[Alternate RO; read/write] 

76543210 

I CCS ! TCS1! TCSO !IW1 !IWO ! OW2! OW1 ! OWO I 
CCS - CPU Clock Select . .. Selects CPU clock fre­

quency. OCLK represents the frequency of the 
on-chip oscillator, or the externally applied clock 
on input X1. 

CCS CPUCLK 

o OCLK 
OCLK/2 

TCS1,O - Transceiver Clock Select ... Selects trans­
ceiver clock, TCLK, frequency. 

OCLK represents the frequency of the on-chip 
oscillator, or the externally applied clock on in­
put X1. X-TCLK is the external transceiver 
clock input. 

TCS1,O TCLK 

00 OCLK 
01 OCLK/2 
10 OCLK/4 
11 X-TCLK 

IW1,O - Instruction memory Walt-state select ... 
Selects from 0 to 3 wait states for accessing 
instruction memory. 

OW2-0 - Data memory Walt-state select ... Selects 
from 0 to 7 wait states for accessing data mem­
ory. 

1-209 

DS DATA STACK 
[Main R31; read/write] 

7 6 543 2 0 

I OS7 \ OS6 \ OS5 I OS4 ! OS3 ! OS2\ OS1 I OSO I 
OS7-0 - Data Stack ... Data stack input/output port. 

Stack is 16 bytes deep. Further information: 
Section 2.1.1.8 Stack Registers. 

rsv ... state is undefined at all times. 



6.0 Reference Section (Continued) 

ECR ERROR CODE REGISTER 
[Alternate R4 with [SEC] high; read only] 

7 654 3 2 1 0 

I rsv I rsv I rsv I OVF I PAR liES I LMBT I RDIS I 
OVF - Receiver oVerFlow ... Set when the receiver 

has processed 3 words and another complete 
frame is received before the FIFO is read by the 
CPU. Cleared by reading (ECR) or by asserting 
[TRES]. 

PAR - PARity error ... Set when bad (odd) overall 
word parity is detected in any receive frame. 
Cleared by reading (ECR) or by asserting 
[TRES]. 

IES - Invalid Ending Sequence ... Set when the 
"mini-code violation" is not correct during a 3270, 
3299, or 8-bit ending sequence. Cleared by read­
ing (ECR) or by asserting [TRES]. 

LMBT - Loss of Mid-Bit Transition ... Set when the ex­
pected Manchester Code mid-bit transition does 
not occur within the allowed window. Cleared by 
reading (ECR) or by asserting [TRES]. 

RDIS - Receiver DISabled while active ... Set when 
transmitter is activated while receiver is active, 
without RPEN being asserted. Cleared by reading 
(ECR) or by asserting [TRES]. Further informa­
tion: Section 3.2 Transceiver Functional Descrip­
tion. 
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FBR FILL-BIT REGISTER 
[Alternate R3; read/write] 

7 6 543 2 

I FB7 I FB6 I FB5 I FB4 I FB3 I FB2 I 
o 

FB1 I FBO I 
FB7 -0 - Fill Bits ... 5250 fill-bit control. Further informa­

tion: Section 3.0 Transceiver. 



6.0 Reference Section (Continued) 

IBR INTERRUPT BASE REGISTER 
[Alternate R1; read/write] 

7654321 0 

IIV151IV14!IV13!IV12!IV11 !IV10! IV9 I IV8 I 
IV15-8- Interrupt Vector ... High byte of interrupt and 

trap vectors. Further information: Section 2.2.3, 
Interrupts. 

Interrupt Vector 

I I I IBIR I I I 10 10 I I I I I I 
. . vector address 

15 8 5 o 
The interrupt vector is obtained by concatenating IIBR J 
with the vector address: 

Interrupt Vector Address Priority 

NMI 011100 -
Receiver 000100 1 high 
Transmitter 001000 2 i 
Line Turn Around 001100 3 
Bi-directional 010000 4 ! 
Timer 010100 5 low 
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ICR INTERRUPT CONTROL REGISTER 
[Main R2; read/write] 

7 6 543 2 

I RIS1 I RISO I rsv I IM4 11M3 11M2 

rsv •.. state is undefined at all times 

I 
RIS1,O - Receiver Interrupt Select ... 

source of the Receiver Interrupt. 

RIS1,O Interrupt Source 

00 RFF + RE 
01 DAV + RE 
10 (unused) 
11 RA 

" +" indicates logical "or" 

1 0 

IM1 I IMO I 
Defines the 

Further information: Section 3.2.3 Transceiver In­
terrupts. 

IM4-0 - Interrupt Masks ... Each bit, when set high, 
masks an interrupt. 1M3 functions as an interrupt 
mask only if BIRO is defined as an input. When 
BIRO is defined as an output, 1M3 controls the 
state of BIRO. 

IM4-0 Interrupt 

o 0 0 0 0 No Mask 
X X X X 1 Receiver 
X X X 1 X Transmitter 
X X 1 X X Line Turn-Around 
X 1 X X X Bi-Directional 
1 XXXX Timer 

Further information: Section 2.2.3 Interrupts. 

C 
"'0 
CD 
(,) 
0l:Io 
0l:Io m 



6.0 Reference Section (Continued) 

ISP INTERNAL STACK POINTER 
[Main R30; read/write] 

7654321 0 

IASP3/ASP2/ASP1/ASPO/DSP3/DSP2/DSP1/DSpol 

ASP3-0 - Address Stack Pointer ... Input/output port 
of the address stack pointer. Further informa­
tion: Section 2.1.1.8 Stack Registers. 

DSP3-0- Data Stack Pointer ... Input/output port of the 
data stack pointer. Further information: Section 
2.1.1.8 Stack Registers. 

1-212 

NCF NETWORK COMMAND FLAG REGISTER 
[Main R1; read only] 

76543 210 

I TFE / RFF I LA I LTA I DEME I RAR lACK / POLL I 
TFE 

RFF 

LA 

- Transmit FIFO Empty ... Set high when the 
FIFO is empty. Cleared by writing to {RTR I. 

- Receive FIFO Full ... Set high when the Re­
ceive FIFO contains 3 received words. 
Cleared by reading to {RTR I. 

- Line Active ... Indicates activity on the re­
ceiver input. Set high on any transition; 
cleared after detecting no input transitions for 
16 TCLK periods. 

L T A - Line Turn Around ... Set high when end of 
message is received. Cleared by writing to 
{RTR l. writing a "1" to this location, or by 
asserting [TRES]. 

DEME - Data Error or Message End ... In 3270 & 
3299 modes, asserted when abyte parity er­
ror is detected. In 5250 modes, asserted when 
the [111] station address is decoded and 
[DAV] is asserted. Cleared by reading {RTR I. 
Undefined in 8-bit modes and in the first frame 
of 3299 modes. 

RAR - Received Auto-Response ... Set high when 
a 3270 Auto-Response message is decoded 
and [DAV] is asserted. Cleared by reading 
{RTR I. Undefined in 5250 and 8-bit modes 
and in the first frame of 3299 modes. 

ACK - Poill ACKnowledge ... Set high when a 3270 
poll/ack command is decoded and [DAV] is 
asserted. Cleared by reading {RTR I. Unde­
fined in 5250 and 8-bit modes and in the first 
frame of 3299 modes. 

POLL - POLL ... Set high when a 3270 poll command 
is decoded and [DAV] is asserted. Cleared by 
reading {RTR I. Undefined in 5250 and 8-bit 
modes and in the first frame of 3299 modes. 
Further information: Section 3.0 Transceiver. 



6.0 Reference Section (Continued) 

RTR RECEIVE/TRANSMIT REGISTER 
[Alternate R4; read/write] 

7 S 5 4 3 2 10 

I RTF7' RTFS\ RTF5\ RTF4' RTF3\ RTF2\ RTF1 \ RTFO \ 

RTF7-0 - Receive Transmit FIFO's ... Input/output 
port to the least significant eight bits of receive 
and transmit FIFO's. [OWP], [TF10-8] and 
[RTF7-0] are pushed onto the transmit FIFO 
on moves into (RTRI. [RF10-8] and [RTF7-
0] are popped from receiver FIFO on moves 
out of (RTR I. Further information: Section 3.0 
Transceiver. 
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TCR TRANSCEIVER COMMAND REGISTER 
[Alternate RS; read/write] 

7 S 543210 

I RLQ \ SEC \ SLR \ ATA \ OWP \ TF10 , TF9\ TF8\ 

RLQ 

SEC 

- Receive Line Qulesce ... Selects number of 
line quiesce bits the receiver looks for. 

RLQ Number of 
Qulesces 

o 2 
1 3 

- Select Error Codes ... When high (ECRI is 
switched into (RTR I location. 

SLR - Select Line Receiver ... Selects the receiver 
input source. 

SLR Source 

o DATA-IN 
On-chip analog 
line receiver 

ATA - Advance Transmitter Active ... When high, 
TX-ACT is advanced one half bit time so that 
the transmitter can generate 5.5 line quiesce 
pulses. 

OWP - Odd Word Parity .,. Controls transmitter 
word parity. 

OWP Word Parity 

o Even 
Odd 

TF10-8 - Transmit FIFO ... [OWPl, [TF10-8] and 
[RTF7 -0] are pushed onto transmit FIFO on 
moves into (RTR I. 

Further information: Section 3.0 Transceiver. 



6.0 Reference Section (Continued) 

TMR TRANSCEIVER MODE REGISTER 
[Alternate R7; read/write] 

7 6 543210 

I TRES 1 LOOP 1 RPEN 1 RIN I· TIN 1 PS2 1 PS1 1 PSO I 

TRES - Transceiver RESet .... Resets transceiver 
when high. Transceiver can also be reset by 
RESET, without affecting [TRES]. 

LOOP - Internal LOOP-back ... When high, TX-ACT 
is disabled (held at 0) and transmitter serial 
data is internally directed to the receiver serial 
data input. 

RPEN - RePeat ENable ... When high, the receiver 
can be active at the same time as the trans­
mitter. 

RIN - Receiver INvert ... When high, the receiver 
serial data is inverted. 

TIN - Transmitter INvert ... When high the trans-
mitter serial data outputs are inverted. 

PS2-0 - Protocol Select ... Selects protocol for both 
transmitter and receiver. 

PS2-0 Protocol 

000 3270 
001 3299 multiplexer 
010 3299 controller 
01 1 3299 repeater 
100 5250 
1 01 5250 promiscuous 
110 S-bit 
1 1 1 S-bit promiscuous 

Further information: Section 3.0 Transceiver. 
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TRH TIMER REGISTER - HIGH 
[Main R29; read/write] 

76543210 

ITM151TM141TM131TM121TM111TM10lTM91TMSI 

TM15-S- TiMer ... Input/output port of high byte of timer. 
Further information: Section 2.1.1.4 Timer Reg-
isters. . 



6.0 Reference Section (Continued) 

TRL TIMER REGISTER-LOW 
[Main R2S; read/write] 

7 6 5 4 3 2 1 0 

I TM71 TM61 TM5\ TM4\ TM3\ TM2\ TM1 \ TMO I 
TM7-0- TIMer ... Input/output port of low byte of timer. 

Further information: Section 2.1.1.4 Timer Regis­
ters. 
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TSR TRANSCEIVER STATUS REGISTER. 
[Alternate R5; read only] 

76543 2 0 

I TFF \ TA \ RE \ RA \ DAV \ RF10 \ RF9 RFS 

TFF - Transmit FIFO Fu" ... Set high when the trans-
mit FIFO is full. I RTR 1 must not be written to 
when [TFF] is high. . 

T A - Transmitter Active ... Reflects the state of. TX-
ACT, indicating that data is being transmitted. 
Unlike TX-ACT, however, [TA] is not disabled by 
[LOOP]. 

RE - Receiver Error ... Set high when a receiver er-
ror is detected. Cleared by reading I ECR 1 or by 
asserting [TRES). 

RA - Receiver Active ... Set high when a valid start-
ing sequence is received. Cleared wh~m either 
an end of message or an error is detected. In 
5250 modes; [RA] is cleared at the same time 
as [LA]. 

DAV - Data AVailable ... Set high when valid data is 
available in IRTR 1 and I TSR I. Cleared by read­
ing I RTR I, or when an error is detected. 

RF10-S- Receive FIFO.; ; [RF10-S] and [Frr:F7-0] re­
flect the state of the top word of the. receive 
FIFO. 

Further information: Section 3.0 Transceiver. 
I 



6.0 Reference Section (Continued) 

6.2.3 Bit Definition Tables 

The following tables describe the location and function of all control and status bits in the various BCP addressable special 
function registers. The Remote Interface Configuration register, (RIC I, which is addressable only by a remote processor is not 
included. 

6.2.3.1 Processor 

Bit Name Location Reset State Function 

Timing/ CCS CPU Clock Select OCR [7] 1 Selects CPU clock frequency. 
Control 

CCS CPUCLK 

0 OClK 
1 OClK/2 

Where OClK is the frequency of the on-chip oscillator, or 
the externally applied clock on input X1. 

DW2-0 Data memory OCR [2-0] 111 Selects from 0 to 7 wait states for accessing data memory. 
Wait-state select 

IW1,O Instruction memory OCR [4,3] 11 Selects from 0 to 3 wait states for acceSSing instruction 
Wait-state select memory. 

COD Clock Out Disable ACR [2] 0 When high, ClK·OUT is at TRI·STATE. 

.··.~IB< '4T';'sfiittfFlead'" 'ACR[3] () When high; data memoryreaastakefolJrT~states; 
Remote lORt Lock Out Remote ACR [1] 0 When high, a remote processor is prevented from accessing 
Interface the BCP or its memory. 

RRt Remote Read CCR [6] 0 Set on the trailing edge of a REM·RD pulse, if RAE is 
asserted and (RIC I is pointing to Data Memory. Cleared by 
writing a 1 to [RR]. 

RW· Remote Write CCR [5] 0 Set on the trailing edge of a REM-WR pulse, if RAE is 
asserted and (RIC I is pointing to Data Memory. Cleared by 
writing a 1 to [RW). 

Interrupt BIC Bi·directional ACR [4] 0 Controls the direction of BIRO. 
Control Interrupt Control 

BIC BIRQ 

0 Input 
1 Output 

BIRO Bi·directional CCR [4] X [Read Only]. Reflects the logic level of the BIRO input. 
Interrupt ReQuest Updated at the beginning of each instruction cycle. 

GIE Global Interrupt ACR [0] 0 When low, disables all maskable interrupts. When high, 
Enable works with [lM4-0] to enable maskable interrupts. 

IM4-0 Interrupt Mask ICR [4-0] 11111 Each bit, when set high, masks an interrupt. 
select IM4-0 Interrupt Priority 

00000 No Mask -
XXXX1 Receiver 1 High 
XXX1X Transmitter 2 t 
XX1XX Line Turn-Around 3 
X1XXX Bi·Directional 4 .J, 
1XXXX Timer 5 low 

1M3 functions as an interrupt mask only when BIRO is 
defined as an input. When BIRO is defined as an output,IM3 
controls the state of BIRO. 

·These bits represent the only visibility and control that the processor has Into the operation of the remote interface controller. The Remote Interface Configuration 
register, (RICI, accessible only by a remote processor, provides further control functions. See Remote Interface section for more Information. 
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6.0 Reference Section (Continued) 

6.2.3 Bit Definition Tables (Continued) 

The following tables describe the location and function of all control and status bits in the various SCP addressable special 
function registers. The Remote Interface Configuration register, (RIC l. which is addressable only by a remote processor is not 
included. 

6.2.3.1 Processor (Continued) 

Bit Name Location Reset State Function 

Interrupt IV15-8 Interrupt Vector ISR [7-0] 00000000 High byte of interrupt and trap vectors. 
Control The interrupt vector is obtained by concatenating (ISR) with 
(Continued) the vector address: 

Interrupt Vector Address 

NMI 011100 
Receiver 000100 
Transmitter 001000 
Line Turn Around 00'1100 
Bi-Directional 010000 
Timer 010100 

Interrupt Vector 

I 
I I I I I j I 

10 "0 I I I I I I 

I ISR vector address 

15 8 5 0 

RIS1,O Receiver Interrupt ICR [7,6] 11 Defines the source of the receiver interrupt. 
Select RIS1,O Interrupt Source 

00 RFF + RE 
01 DAV + RE 
10 (unused) 
1 1 RA 

Address ASP3-0 Address Stack ISP [7-4] 0000 Address stack pointer. Writing to this location changes the 
and Pointer value of the pointer. 

Data 
Stacks 

DSP3-0 Data Stack ISP [3-0] 0000 Data stack pointer. Writing to this location changes the value 
Pointer of the pointer. 

DS7-0 Data Stack OS [7-0] XXXXXXXX Data Stack Input/Output port. Stack is 16 bytes deep. 

Arithmetic C Carry CCR [1] 0 A high level indicates a carry or borrow, generated by an 
Flags arithmetic instruction. During a shift/rotate operation the 

state of the last bit shifted out appears in this location. 

N Negative CCR [3] 0 A high level indicates a negative result generated by an 
arithmetic, logical, or shift instruction. 

V oVerflow CCR [2] '0 A high level indicates an overflow condition, generated by an 
arithmetic instruction. 

Z Zero CCR [0] 0 A high level indicates a zero result generated by an 
arithmetic, logical, or shift instruction. 
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6.0 Reference Section (Continued) 

6.2.3. Bit Definition Tables (Continued) 

The following tables describe the location and function of all control and status bits in the various BCP addressable special 
function registers. The Remote Interface Configuration register, I RIC l. which is addressable only by a remote processor is not 
included. 

6.2.3.1 Processor (Continued) 

Bit Name Location Reset State Function 

Timer TLD Timer LoaD ACR [6] 0 Set high to load timer. Cleared automatically when load 
complete. 

TM15-8 TiMer TRH [7-0] XXXXXXXX Input/output port of high byte of timer. 

TM7-0 TiMer TRL [7-0] XXXXXXXX Input/output port of low byte of timer. 

TMC Timer Clock ACR [5] 0 Selects timer clock frequency. Must not be written when 
select [TST] high. Can be written at same time as [TST] and 

[TLD]. 
TMC Timer Clock 

0 CPU-CLK/16 
1 CPU-CLK/2 

TO Time Out flag CCR [7] 0 Set high when timer counts down to zero. Cleared by writing 
a 1 to [TO] or by stopping the timer (by writing a 0 to [TST]). 

TST Timer StarT ACR[7] 0 When high, timer is enabled and will count down from its 
current value. Timer is stopped by writing a 0 to this location. 

6.2.3.2 Transceiver 

Table includes control and status bits only. It does not include definitions of bit fields provided for the formatting (de-formatting) 
of data frames. For further information see the Transceiver section. 

Bit Name Location Reset State Function 

Transceiver LOOP internal TMR [6] 0 When high, TX-ACT is disabled (held at 0) and transmitter 
Control LOOP-back serial data is internally directed to the receiver serial data 

input. 

PS2-0 Protocol Select TMR [2-0] 000 Selects protocol for both transmitter and receiver. 

PS2-0 Protocol 

000 3270 
001 3299 Multiplexer 
010 3299 Controller 
011 3299 Repeater 
100 5250 
1 01 5250 Promiscuous 
110 8-bit 
1 1 1 8-bit Promiscuous 

RTF7-0 Receive/Transmit RTR [7-0] XXXXXXXX Input/output port of the least significant 8 bits of receive and 
FIFOs transmit FIFOs. [OWP], [TF10-8] and [RTF7-0] are pushed 

onto the transmit FIFO on moves to I RTR}. [RF10-8] and 
[RTF7 -0] are popped from receive FIFO on moves from 
IRTR}. 
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6.0 Reference Section (Continued) 

6.2.3 Bit Definition Tables (Continued) 

6.2.3.2 Transceiver (Continued) 

Table includes control and status bits only. It does not include definitions of bit fields provided for the formatting (de-formatting) 
data frames. For further information see the Transceiver section. 

Bit Name Location Reset State Function 

Transceiver TCS1,O Transceiver Clock OCR [6,5] 10 Selects transceiver clock, TCLK, source. 

Control Select TCS1,O TCLK 
(Continued) 

00 OCLK 
01 OCLK/2 
10 OCLK/4 
1 1 X-TCLK 

OCLK is the frequency of the on-chip oscillator, or the 
externally applied clock on input X1. X-TCLK is the external 
transceiver clock input. 

TRES Transceiver RESet TMR [7] 0 Resets transceiver when high. Transceiver can also be reset 
by RESET, without affecting [TRES). 

Transmitter ATA Advance Transmitter TCR [4] 0 When high, TX-ACT is advanced one half bit time so that the 
Control Active transmitter can generate 5.5 line quiesce pulses. 

AT7-3 Auxiliary ATR [7-3] XXXXX In 5250 modes. Controls the time TX-ACT is held after the last 
Transceiver control fill bit. 

AT7-3 
TX-ACT Hold Time (fA-s) 

(If TCLK = 8 MHz) 

00000 0 
00001 0.5 
00010 1 

! ! 
1 1 1 1 1 15.5 

FB7-0 Fill Bit select FBR [7-0] XXXXXXXX The value in this register contains the 1's complement of the 
number of additional 5250 fill bits selected. 

OWP Odd Word Parity TCR [3] 0 Controls transmitter word parity. 

OWP Word Parity 

0 Even 
1 Odd 

TF10-B Transmit FIFO TCR [2-0] 000 [OWP], [TF10-B] and [RTF7 -0] are pushed onto the 
transmit FIFO on moves to (RTR J. 

TIN Transmitter INvert TMR[3] 0 When high, the transmitter serial data outputs are inverted. 

Receiver AT7-0 Auxiliary ATR [7-0] XXXXXXXX In 5250 modes, [AT2-0] contains the station address. In B-bit 
Control Transceiver control modes, [AT7 -0] contains the station address. 

RF10-B Receive FIFO TSR [2-0] XXX Reflects the state of the most significant 3 bits in the top 
location of the receive FIFO. 

RIN Receiver INvert TMR[4] 0 When high, the receiver serial data is inverted. 

RLQ Receive Line TCR [7] 1 Selects number of line quiesce bits the receiver requires 
Quiesce before it will indicate receipt of a valid start sequence. 

RLQ Number of Line Qulesce Pulses 

0 2 
1 3 

RPEN RePeat ENable TMR [5] 0 When high, the receiver can be active at the same time as the 
transmitter. 

SEC Select Error Codes TCR [6] 0 When high, (ECR J is switched into (RTR J location. 
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6.0 Reference Section (Continued) 

6.2.3 Bit Definition Tables (Continued) 

6.2.3.2 Transceiver (Continued) 

Table includes control and status bits only. It does not include definitions of bit fields provided for the formatting (de-formatting) 
data frames. For further information see the Transceiver section. 

Bit Name Location Reset State Function 

Receiver SLR Select Line TCR [5] 0 Selects the receiver input source. 

Control Receiver SLR Source 
(Continued) 

0 DATA-IN 

1 On-Chip Analog 
Line Receiver 

Transmitter TA Transmitter Active TSR [6] 0 Reflects the state of TX-ACT, indicating that data is being 

Status transmitted. Is not disabled by [LOOP]. 

TFE Transmit FIFO NCF[7] 1 Set high when the FIFO is empty. Cleared by writing to 

Empty IRTR). 

TFF Transmit FIFO TSR [7] 0 Set high when the FIFO is full. IRTRI must not be written 

Full when [TFF] is high. 

Receiver ACK polll NCF [1] 0 Set high when a 3270 poll lack command is decoded and 

Status ACKnowledge [DAV] is asserted. Cleared by reading I RTR I. Undefined in 
5250 and a-bit modes and in the first frame of 3299 modes. 

DAV Data AVailable TSR [3] 0 Set high when valid data is available in I RTR I and I TSR I. 
Cleared by reading I RTR I , or when an error is detected. 

DEME Data Error or NCF [3] 0 In 3270 or 3299 modes, asserted when a byte parity error is 

Message End detected. In 5250 modes, asserted when the [111] station 
address is decoded and [DAV] is asserted. Undefined in a-bit 
modes and first frame of 3299 modes. 

LA Line Active NCF[5] 0 Indicates activity on the receiver input. Set high on any 
transition; cleared after no input transitions are detected for 
16 TCLK periods. 

LTA Line Turn Around NCF[4] 0 Set high when an end of message is detected. Cleared by 
writing to I RTR I. writing a "1" to [L T A] or by asserting 
[TRES]. 

POLL POLL NCF[O] 0 Set high when a 3270 Poll command is decoded and [DAV] is 
asserted. Cleared by reading I RTR I. Undefined in 5250 and 
a-bit modes and in the first frame of 3299 modes. 

RA Receiver Active TSR [4] 0 Set high when a valid start sequence is received. Cleared 
when either an end of message or an error is detected. 

RAR Received NCF[2] 0 Set high when a 3270 Auto-Response message is decoded 

Auto-Response and [DAV] is asserted. Cleared by reading I RTR I. Undefined 
in 5250 and a-bit modes and in the first frame of 3299 modes. 

RE Receiver Error TSR [5] 0 Set high when an error is detected. Cleared by reading I ECR I 
or by asserting [TRES]. 

RFF Receive FIFO· NCF [6] 0 Set high when the receive FIFO contains 3 received words. 

Full Cleared by reading I RTR I. 
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6.0 Reference Section (Continued) 

6.2.3 Bit Definition Tables (Continued) 

6.2.3.2 Transceiver (Continued) 

Table includes control and status bits only. It does not include definitions of bit fields provided for the formatting (de-formatting) 
data frames. For further information see the Transceiver section. 

Bit Name Location Reset State 

Receiver IES Invalid Ending 
Sequence 

ECR [2] 
Error Codes 

LMBT Loss of Mid-Bit 
Transition 

ECR [1] 

OVF 

PAR 

RDIS 

receiver OVerFlow ECR [4] 

PARity error ECR [3] 

Receiver DISabled ECR [0] 
while active 

o 

o 

o 

o 

o 

6_3 REMOTE INTERFACE CONFIGURATION REGISTER 

This register can be accessed only by the remote system. 
To do this, CMD and RAE must be asserted and the [LOR] 
bit in the (ACRI register must be low. 

76543210 

I BIS I SS I FW I LR I LW I STRT I MS1 I MSO I RIC 

BIS Bidirectional Interrupt Status ... Mirrors the state 
of 1M3 (( ICR I bit 3), enabling the remote system to 
poll and determine the status of the BIRQ I/O. 
When BIRO is an output, the remote system can 
change the state of this output by writing a one to 
BIS. This can be used as an interrupt acknowl­
edge, whenever BIRO is used as a remote inter­
rupt. For complete information on the relationship 
between BIS, 1M3 and BIRQ, refer to Section 2.2.3 
Interrupts. 

SS Single-Step ... Writing a 1 with STRT low, the BCP 
will single-step by executing the current instruction 
and advancing the PC. On power up/reset this bit 
is low. 

FW Fast Write ... When high, with LW low, selects fast 
write mode for the buffered interface. When low 
selects slow write mode. On power up/reset this 
bit is low (LW will also be low, so buffered write 
mode is selected). 

LR Latched Read ... When high selects latched read 
mode, when low selects buffered read mode. On 
power up/reset this bit is low. (Buffered read mode 
is selected.) 

LW Latched Write ... When high selects latched write 
mode, when low selects buffered write mode. On 
power up/reset this bit is low (FW will also be low, 
so slow buffered write mode is selected). 

STRT STaRT ... The remote system can start and stop 
the BCP using this bit. On power-up/reset this bit is 
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Function 

Set when the first mini-code violation is not correct during a 
3270, 3299 or a-bit ending sequence. Cleared by reading 
(ECR I or asserting [TRES]. 

Set when the expected Manchester Code mid-bit transition 
does not occur within the allowed window. Cleared by reading 
(ECRI or by asserting [TRES]. 

Set when the receiver has processed 3 words and another 
complete frame is received before the FIFO is read by the 
CPU. Cleared by reading (ECR I or asserting [TRES]. 

Set when bad (odd) overall word parity is detected in any 
receive frame. Cleared by reading (ECR I or asserting 
[TRES]. 

Set when transmitter is activated by writing to (RTR I while 
receiver is still active, without [RPEN] first being asserted. 
Cleared by reading (ECR I or asserting [TRES]. 

low (BCP stopped). When set, the BCP begins exe­
cuting at the current Program Counter address. 
When cleared, the BCP finishes executing the cur­
rent instruction, then halts to an idle mode. 

In some applications, where there is no remote 
system, or the remote system is not an intelligent 
device, it may be desirable to have the BCP power­
up/reset running rather than stopped at address 
OOOOH. This can be accomplished by asserting 
REM-RD, REM-WR and RESET, with RAE de-as­
serted. (Refer to Electrical Specification Section 
for the timing information needed to start the BCP 
in stand alone mode.) 

MS1,O Memory Select 1,0 ... These two bits determine 
what the remote system is accessing in the BCP 
system, according to the following table: 

MS1 MSO Selected Function 

a a Data Memory 
a 1 Instruction Memory 
1 a Program Counter (Low Byte) 
1 1 Program Counter (High Byte) 

The BCP must be idle for the remote system to 
read/write Instruction memory or the Program 
Counter. 

All remote accesses are treated the same (inde­
pendent of where the access is directed using MSO 
and MS1), as defined by the configuration bits LW, 
LR, FW. 

If the remote system and the BCP request data 
memory access simultaneously, the BCP will win 
first access. If the locks ([LOR], meR) are not set, 
the remote system and BCP will alternate access 
cycles thereafter. 

On power-up/reset, MS1,O points to instruction 
memory. 

Power-up/Reset state of (RIC[7-0] I is 1000 0001. 
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6.0 Reference Section (Continued) 

6.4 DEVELOPMENT TOOLS 

National Semiconductor provides tools specifically created 
for the development of products that use the DP8344. 
These tools consist of the DP8344 BCP Assembler System, 
the DP8344 BCP Demonstration/Development Kit, and the 
DP8344 BCP Multi-Protocol Adapter (MPA) Design/Evalua­
tion Kit. 

6.4.1 Assembler System 
The Assembler System· is an MS-DOS compatible program 
used to translate the DP8344's instruction set into a directly 
executable machine language. The system contains a mac­
ro cross assembler,. link editor and librarian. The macro 
cross assembler provides nested macro definitions and ex­
pansions, to automate common instruction sequences,· and 
source file inclusion nested conditional assembly, which al­
lows the assembler to make intelligent decisions concerning 
instruction sequence based on user directives. The linker 
allows relocatable object sections to be combined in any 
desired order. It can also generate a load map which details 
each section's contribution to the linked module. The librari­
an allows for the creation of libraries from frequently ac­
cessed object modules, which the linker can automatically 
include to resolve references. 

6.4.2 Demonstration/Development Kit 
The Demonstration/Development kit is a cost effective de­
velopment tool that performs functions similar to an in-cir­
cuit emulator. The kit, developed by Capstone Technology, 
Inc., Fremont, California, consists of a DP8344 based devel­
opment board, a monitor/debugger software package, Na­
tional Semiconductor's DP8344 video training tapes, and all 
required documentation. The development board is a full 
size PC card that contains a 22 square inch area for logic 
prototype wiring. The monitor/debugger program displays 
internal register contents and status information. It also pro­
vides functions such as execution break points and single 
stepping. 

6.4.3 Multi-Protocol Adapter (MPA) 
Design/Evaluation Kit 
The Multi-Protocol Adapter (MPA) is a PC expansion card 
that emulates a 3270 or 5250 display terminal and supports 
industry standard PC emulation software. The MPA comes 
in a design/evaluation kit that includes the hardware, sche­
matics and PAL equations, and software. including all the 
DP8344 source code. This kit was produced to provide a 
blueprint for PC emulation products and a cornerstone for 
all 3270 and 5250 product development using the DP8344. 
The code was developed in a modular fashion so it can be 
adapted to any 3270 or 5250 application. 

6.4.4 DP8344 BCP Inverse Assembler 
The DP8344 BCP Inverse Assembler is a software package 
for use in an HP 1650A or HP1651A Logic Analyzer, or in an 
HP16500A Logic Analysis System with an HP 16510A 
State/Timing Card installed. The inverse Assembler was de­
veloped by National Semiconductor to allow disassembly of 
the DP8344 op-code mnemonics. This allows one to deter­
mine the actual execution flow that occurs in the system 
being developed with the DP8344. 

6.5 THIRD PARTY SUPPLIERS 
The following section is intended to make. the DP8344 Cus­
tomer aware of products, supplied by companies other than 
National Semiconductor, that are available for use in devel­
oping DP8344 systems. While National Semiconductor has 
supported these ventures and has become familiar with 
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many of these products, we do not provide techni.cal sup­
port, or in any way guarantee the functionality of these prod­
ucts. 

6.5.1 Crystal Supplier 

The recommended crystal parameters for operation with the 
DP8344 are given in Section 2.2.4. Any crystal meeting 
these specifications will work correctly with the DP8344. 
NEL Frequency Controls, Inc., Burlington, Wisconsin, has 
developed crystals, the NEL C2570N and NEL C2571 N, 
specifically for the DP8344 which meet these specifications. 
The C2570N and C2571 N are both 18.8696 MHz funda­
mental mode AT cut quartz crystals. The C2571N has a 
hold down pin for case ground and a third mechanical tie 
down. NEL Frequency Controls, Inc. is located at: 

NEL Frequency Controls, Inc. 
357 Beloit Street 
Burlington, Wisconsin 53105 
(414) 763-3591 

6.5.2 System Development Tools 

The DP8344, with its higher level of integration and process­
ing power, has opened the IBM mainframe connectivity mar­
ket to a wider range of product manufacturers, who until 
now found the initial cost and time to market prohibitive. 
This wider base of manufacturers created the opportunity 
fora more extensive line of development tools that dealt not 
only with the use of the DP8344 but also with the implemen­
tation of the 3270 and 5250 protocols: While National Semi­
conductor is dedicated to providing the Customer with the 
proper tools in both areas, we also have aided and encour­
aged a number of third party suppliers to offer additional 
development tools. This has further provided an avenue for 
faster and more reliable product development in this prod­
uct area. The development tools discussed in this section 
are controller emulators and line monitors for the IBM 3270/ 
3299 and 5250 protocols. 

A controller emulator is a device that emulates an IBM 3x74 
cluster controller or a System 3x controller. With the 
DP8344 both of these controllers can be emulated with the 
same piece of hardware. The controller emulator allows the 
designer to issue individual commands or sequences of 
commands to a peripheral. This is very useful in characteriz­
ing existing equipment and testing of products under devel­
opment. Capstone Technology offers such a product. Their 
Extended Interactive Controller, part #CT-109, is a single 
PC expansion card that can emulate both 3270 and 5250 
control devices (the 3x74 and System 3X, respectively). 
Newleaf Technologies, Ltd., Cobham, Surrey, England, and 
Azure Technology, Inc., Franklin, Mass., also supply prod­
ucts in this area. Newleaf Technology offers the COLT52, a 
twinax controller emulator, and Azure Technology offers a 
controller made with their CoaxScope· and TwinaxScope 
line monitors. 

A line monitor is a device that monitors all the activity on the 
coax or twinax cable. The activity includes both the com­
mands from the controller and the responses from the pe­
ripheral. These devices typically decode the commands and 
present them in an easy to read format. The individual trans­
missions are time stamped to provide the designer with re­
sponsetime information. The line monitors are very useful in 
characterizing communications traffic and in determining 
the source of problems during development or in the field. 
Azure Technology offers both a 3270/3299 (Coax) and 
5250 (Twinax) line monitor. Their Coax Scope and Twinax 
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Scope are single PC expansion cards that can record, de­
code and display activity on the 3270 coax and 5250 twinax 
line respectively. These devices also allow the play back of 
the recorded controller information. Capstone Technology 
also supplies a line monitor. The CT1 01 C, Network Analysis 
Monitor (NAM), is a coax line monitor. 

These companies can be contacted at the following loca­
tions: 

Azure Technology, Inc. 
38 Pond Street 
Franklin, Massachusettes 02038 
(508) 520-3800 

Capstone Technology 
853 Brown Rd., Suite 207 
Fremont, California 94539 
(415) 438-3500 

New Leaf Technology, Ltd. 
24A High Street 
Cobham 
Surrey 
KT113EB 
ENGLAND 
(0932) 66466 

For technical assistance in using the DP8344B, contact the 
BCP Hot Line (817) 468-6676. 

TABLE 6-4. DP8344 Application Notes 

App 
Note No. Title 

AN-623 Interfacing Memory to the DP8344B 
AN-624 A Combined Coax-Twisted Pair 3270 Line 

Interface for the DP8344 Biphase 
Communications Processor 

AN-516 Interfacing the DP8344 to Twinax 
AN-504 DP8344 BCP Stand-Alone Soft-Load 

System 
AN-499 "Interrupts"-A Powerful Tool of the Biphase 

Communications Processor 
AN-625 JRMK Speeds Command Decoding 
AN-627 DP8344 Remote Processor Interfacing 
AN-626 DP8344 Timer Application 
AN-641 MPA - A Multi-Protocol Terminal Emulation 

Adapter Using the DP8344 
AN-688 The DP8344 BCP Inverse Assembler 

6.6 DP8344A AND DP8344B COMPATIBILITY GUIDE 

The DP8344B is an enhanced version of the DP8344A, ex­
hibiting improved switching performance and additional 
functionality. The device has been characterized in a num­
ber of applications and found to be a compatible replace­
ment for the DP8344A. Differences between the DP8344A 
and DP8344B are dstailed in this section. 

6.6.1 Timing Changes to the CPU 

Relative to the DP8344A, the DP8344B incorporates a num­
ber of timing changes designed to improve the system inter­
face. These timing changes are improvements in the timing 
specifications and therefore should allow the DP8344B to 
drop into existing DP8344A designs without any hardware 
modifications. 
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The DP8344A exhibits a small amount of contention be­
tween certain bus signals as detailed in the Device Specifi­
cations section of this data sheet. The DP8344B interface 
timing improvements are designed to reduce and/or elimi­
nate this bus contention. 

- 70 ns Data Memory 

At a 20 MHz CPU clock rate, the DP8344B can support 70 
ns static RAM for data memory with no wait states. The 
DP8344A was limited to 55 ns static RAM for data memo­
ry with no wait states. (See Section 5.0 Device Specifica­
tions.) 

• READ 
The timing of the READ strobe has been improved to re­
duce bus contention during a data memory access. There 
is now more time between AD disabled and READ falling 
as well as one~half T-state between READ rising and AD 
enabled. In addition, a new 4 T-state read option has been 
provided to eliminate bus contention. (See Section 5.0 De­
vice Specifications for timing changes, and 4 T-state 
Read later in this document for more information on the 4 
T-state Read option.) 

The user can therefore choose between a fast read mode 
(3 T-states) with a small amount of contention and a slow­
er read mode (4 T-states) with no contention. 

• AI AD Bus Timing 
The timing of the A and AD buses has been changed to 
eliminate bus contention during remote accesses of data 
memory. There is now a one-half T-state TRI-STATE zone 
during the bus transfer from local to remote control and 
vice versa. (See Section 5.0 Device Specifications.) 

-IWR 

The timing of IWR has been changed such that IWR now 
falls one T-state earlier. This eliminates bus contention 
during the start of soft loads. (See Section 5.0 Device 
Specifications.) 

• IA Bus Softload Timing 
The auto-increment of the IA bus address during soft 
loads of instruction memory now occurs one T-state later 
to maintain in-phase data and thereby eliminate bus con­
tention. (See Seection 5.0 Device Specifications.) 

• LCL 
LCL is now removed when REM-RD is taken high on buff­
ered reads of (RIC}, the program counter, and instruction 
memory, to eliminate bus contention in this mode. (See 
Section 5.0 Device Specifications.) 

- RIC 
The hold time on slow buffered writes to (RIC} and the 
program counter has been improved. (See Section 5.0 De­
vice Specifications.) 

- "Kick-start" 

The h.old time on REM-WR and REM-RD to RESET to 
"kick-start" the CPU has been improved. (See Section 5.0 
Device Specifications.) 

6.6.2 Additional Functionality of the DP8344B 

6.6.2.1 4 T -state Read 

To eliminate bus contention during memory accesses, a 
new optional read mode has been created, controlled by 

I 

III 
I 
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[4TR] in (ACR}. When a one is written to this bit, all subse­
quent data memory read operations expand to 4 T-states 
with an extra one-half T-state between the falling edge of 
ALE and the falling edge of READ. This eliminates bus con­
tention on data memory read operations. After a BCP reset, 
or when a zero is written to this bit, the DP8344B data mem­
ory read operations operate in 3 T-states, as in the 
DP8344A, in which this bit was unused. (See Section 2.2.2 
for more information.) 

6.6.2.2 AI AD Reset State 

After a BCP reset, the index registers and the A and AD 
buses will be zero. In the DP8344A, their states were unde­
fined after a reset. 

6.6.2.3 RIC 

Each time instruction memory is selected via (RIC[1,01l 
(Le., (RIC} is set to XXXX XX01 binary), the next read (or 
write) of instruction memory by a remote processor will al­
ways return (or update) the low order 8 bits of the 16 bit 
instruction location pointed to by the program counter. In 
the DP8344A, setting (RIC I had no affect on which instruc­
tion memory byte would next be fetched and an algorithm 
had to be developed to determine this. (See Section 4.1.2 
for more information.) 

6.6.2.4 Transceiver 

When the Transceiver is reset, DATA-OUT now goes into a 
state equal to [TIN] e [ATA], which eliminates coincident 
transitions on DATA-OUT and DATA-DLY with TX-ACT. 
(See Section 3.2 for more information. 

6.7 REPORT BUGS 

6.7.1 History 

The DP8344 Data Sheet Reference, first published 
10/29/87 (rev. 3.6), listed a total of 13 bugs. All these bugs 
were corrected in the DP8344A, released to production April 
1989. Subsequent to this date, an additional bug has been 
reported. This bug is present in all versions of the BCP: 
DP8344, DP8344A and DP8344B. 

For additional information regarding differences in function­
ality between the DP8344B and DP8344A, see Section 6.6. 

6.7.2 LJMP, LCALL Address Decode 

The LJMP and LCALL instructions to the address range 
AfOOh through AF7Fh do not function correctly. Both condi­
tional and unconditional LCALL or LJMP instructions to this 
address range will not decode as LCALL or LJMP instruc­
tions. Instead the address field will be incorrectly decoded 
as the instruction. Thus a LJMP or LCALL to an instruction 
in the address range AFOOh through AF7Fh will be decoded 
as a RETF instruction. 

Example: the instruction LJMP AFOO 
will be decoded as AFOO 
which is RETF 000. 00 

Note that LJMP and LCALL to all other addresses work cor­
rectly. 

The LJMP or LCALL instruction should therefore not be 
used to transfer program control to an instruction in the 
range AFOOh to AF7Fh. 

6.7.2.1 Suggested Work-around 

The simplest work-around is not to place any code neces­
sary for system operation in the affected address range. 
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This can be accomplished by creating a section of "filler" 
code that will occupy the instruction address range AFOOh 
to AF7Fh. As an example, the "filler" section of code could 
be as follows: 

FILLER: • SECT x : Start of ··filler" code section 

.REPEAT 128 ; Repeat the following 

instruction 128 times 

JMP $ ; Jump to self 

.ENDR ; End of repeat block 

.END 

The JMP $ instruction causes an infinite loop at that instruc­
tion. Thus one would be able to determine if the program 
inadvertently entered the "filler" section of code. The re­
peat 128 instruction causes the section to occupy 128 bytes 
of instruction memory which is the size of the affected ad­
dress range. 

Next, by using the Linker in the DP8344 BCP Assembler 
System, one can specify that this "filler" section of code 
must occupy instruction memory starting at address AFOOh 
by using the -L option. For example, the following com­
mands can be entered at the DOS command line to invoke 
the Assembler and Linker (this assumes that the "filler" 
section is located in the file FILLER.BCP): 

NBCPASM FILLER.BCP 
NLINK -LFILLER=AFOO FILLR.BCO 

This will prevent any other section of code from occupying 
the range which the "filler" section of code is located in. 
Hence, one would not have to be concerned about using 
labels to specify the address in LJMP and LCALL instruc­
tion. 

6.8 GLOSSARY 

3270-An IBM communication protocol originally devel­
oped for the 370 class mainframe that implements a star 
topology using a single coax cable per slave device. In this 
master-slave protocol, all communication is initiated by the 
controller (master) and responses are returned by the ter­
minal or other attached device (slave). The data is transmit­
ted using blphase encoding at a bit rate of 2.3587 MHz. 

3299-A communications protocol that is the 3270 proto­
col with an eight bit address frame added to the beginning 
of each controller transmission between the start se­
quence and the first coax word. Currently, IBM only uses 
three bits of the address field which allows up to eight devic­
es to communicate with the controller through a multiplex­
er. 

5250-An IBM communications protocol originally devel­
oped for the Series 3 that became widely used on the Sys­
tem 34/36/38 family of minicomputers and currently the 
AS/400. It uses a multidrop bus topology on twin-ax cable. 
This protocol is a master-slave type. The data is transmitted 
using bl-phase encoding at a bit rate of 1 MHz. 

accumulator-The implied source register of one operand 
for some arithmetic operations. In the BCP, R8 in the cur­
rently enabled bank acts as the accumulator. 

ALU-The Arithmetic Logic Unit, a component of the CPU 
that performs all arithmetic (addition and subtraction), logi­
cal (AND, OR, XOR, compare, bit test, and complement), 
rotational, and shifting operations. 

ALU flags-Bits that indicate the result of certain ALU func­
tions. 
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banked registers-Two or more sets of CPU registers that 
occupy the same register space, but only one of which is 
accessible at a time. 

barrel shifter-Dedicated hardware for shifting and rotat­
ing. 

BCP-An abbreviation for Biphase Communications Proc­
essor, the National Semiconductor DP8344. 

blphase-In this communications signal encoding tech­
nique, the data is divided into discrete bit time intervals de­
noted by a transition in the center of the bit time. This tech­
nique combines the clock and data information into one 
transmission. In 3270 and 3299 protocols, a mid-bit tran­
sition from low to high represents a bi-phase 1, and a mld­
bit transition from high to low represents a bi-phase O. For 
the 5250 protocol, the definition of biphase logic levels is 
reversed. Biphase encoding is also called Manchester II 
encoding. 

BIRQ-The Bidirectional Interrupt ReOuest. Without any 
other notation, BIRO will refer to the BIRO interrupt itself. 
BIRO with a bar on top of it (BIRO) is used where the pin is 
referenced. BIRO in brackets ([BIRO]) is bit 4 in the 
(CCR} register. 

coax-(1) RG-62A1U 930 coaxial cable that is used in 
3270 protocol systems. (2) Sometimes, this term is used to 
refer to the 3270 protocol itself. 

code vlolatlon-A violation of the bl-phase encoding for­
mat that is part of the start sequence. In 3270, 3299, and 
the general purpose 8-blt mode, the code violation is 1 % 
bit times low and then 1 % bit times high. In the 5250 proto­
col, the signal levels are reversed. 

communications protocol-A set of rules which defines 
the physical, electrical, control, and formatting specifica­
tions required to successfully transfer data between two 
systems. 

context swltch-Switching between two theoretically inde­
pendent functions that should not affect each other except 
under specified circumstances. 

controller-The master device that initiates all communica­
tion to the slave device and controls the manner in which 
the slave presents the information. It acts as the interface, 
both physically and logically, between the slave terminals 
and printers and a host processor. 

CPU-CLK-The clock that the operation of the BCP's CPU 
is synchronized to. The period of this clock which defines 
T-state boundaries is either that of OCLK or one-half of 
OCLK depending on the configuration of the BCP. The tim­
er clock is also derived from CPU-ClK. 

CUT-Control Unit Terminal. A mode of the controller 
where attached devices have limited intelligence and are 
perceived to be hardware extensions of the controller. The 
controller directs all printer, screen, and keyboard activity. 

OFT-Distributed Function Terminal. A controller mode 
that supports multiple logical terminals in the same device. 
The controller communicates in higher level commands via 
data placed in the buffer. The slave device has a greater 
amount of intelligence than the CUT mode device and is 
responsible for the terminal operation. 

direct coupled-The connection of the transceiver to the 
transmission cable in a manner that does not isolate it from 
DC voltages. Contrast this with transformer coupled. 
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dual port memory-A memory architecture that allows two 
different processors to access the same memory range. al­
ternately. 
ending sequence-A defined sequence· of bits signifying 
the end of a transmission. In 3270 and 3299, it consists of a 
bl-phase a followed by a low to high transition on the bit 
time boundary and two mini-code violations. 

FIFO-A section of memory or, as in the case of the BCP 
transceiver, a set of registers that are accessed in a First-In 
First-Out method. In other words, the first data placed in the 
FIFO by a write will be the first data removed by a read. 
fill bits-Fill bits are bl-phase O's used only in the .5250 
protocol. A minimum of three fill bits are required between 
each frame of a multi-frame message. This number may 
be increased by the controller to approximately 243 per the 
SetMode command. There are always only three fill bits af­
ter the last frame of the transmission. 

general purpose 8-blt mod~A generic communications 
mode similar to 3270 and 5250 frame formatting using 8-bit 
serial data and bl-phase signal encoding. The BCP sup­
ports both promiscuous and non-promiscuous modes. 

Harvard architecture-A computer architecture where the 
instruction and data memory are organized into two inde­
pendent memory banks, each with their own address and 
data buses. 

hold time-The amount of time the line is driven at the end 
of 5250 transmissions to suppress noise on the cabling sys-
tem. ' 

ICLK-The clock that identifies the start of each instruction 
when it rises and indicates when the next instruction ad­
dress is valid when it falls. 

Immediate addressing, mode-An addressing method 
where one operand, the data for Move instructions and the 
address for Jump instructions, is contained in the instruction 
itself. . " 

Immediate-relative addressing mode-An addressing 
method that adds an unsigned 8-bit immediate number' to 
the index register IZ to form the data memory address of an 
operand. , 
Indexed addressing mode-An addressing method that 
uses the contents of an index register as the data memory 
address for one of the operands in an instruction. , 

Interrupt latency-The time from when, an interrupt first 
occurs until it begins executing at its interrupt vector.: . 

jitter-Timing variations for signals of different harmonic 
content that move the edges of a transmitted signal in time 
causing uncertainty in their decoding. 

jitter tolerance-The total amount of time an edge of a 
transmitted bit may move and still have its data bit decoded 
correctly. 

LlFO-A sequence of registers or memory locations that 
are accessed in a last-In First-Out method; in other words, 
the last data written into the LIFO will be the first to be 
removed by a read. Also known as ,a stack. 

limited register set-In the BCP, the first 16 register ad­
dress locations (RO-R11 in both banks and R12-R15) that 
can be used in all instructions. • I 
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line hold-The act of driving the transmission line during 
5250 transmissions at the end of a message to allow the 
receivers to unsync. This insures that the receivers will not 
see line noise as the start of another frame when the line 
floats. 

line Interface-All the circuity between the BCP and the 
communications cable medium. 

line reflection-Energy from a transmission that is not ab­
sorbed by a load impedance and can cause interference in 
that signal. 

Manchester II encodlng-See bl-phase encoding. 

mask-(1) A mechanism that allows the program to specify 
whether interrupts will be accepted by the CPU. (2) To dis­
able the accepting of an interrupt by the CPU. 

mld-blt-In bl-phase encoding, the transition in the center 
of a bit time. 

mini-code vlolatlon-A violation of the bl-phase encoding 
format that is part of the ending sequence in 3270, 3299, 
and the general purpose S-blt mode. The mini-code viola­
tion has no mid-bit transition being high for the entire bit 
time. There is no mini-code violation in 5250. 

multldrop-A communication method where all the slave 
devices are attached to the same cable and respond to 
controller commands and data only when their own ad­
dress frame precedes the transmitted frame. 

multi-frame message-Several bytes of data together in 
the same uninterrupted message that have only one start 
sequence and one ending sequence. 

multlplexer-A device that receives 3299 protocol trans­
missions from a controller, strips off the address field, and 
determines over which of eight ports to transmit the mes­
sage in 3270 format. The device then directs the response 
from the terminal back to the controller. 

non-promlscuous-A receiver mode that only enables a 
data available interrupt when the address frame of the mes­
sage matches that previously specified. The 5250 and gen­
eral purpose S-blt modes of the BCP support both pro­
miscuous and non-promiscuous modes. 

NRZ-Non Return to Zero. A data format that uses a high 
level to represent a data 1 and a ·Iow level to represent a 
data O. The signal level does not return to a zero level in 
each bit time. See also NRZI. 

NRZI-Non Return to Zero Inverted. A data format similar 
to NRZ but with the signal levels reversed. 

OCLK-The external Oscillator CLocK connected to the 
BCP. This frequency, from a crystal or a clock, cannot be 
changed by the BCP itself. CPU-CLK is derived from OCLK; 
in addition, the transceiver can be configured so that TCLK 
is derived from OCLK. 

parlty-A one bit code, usually following data, that makes 
the total number of 1 's in a data word odd or even, including 
the parity bit itself. It is included as an error checking mech­
anism. 

POLL-A command issued by a controller to determine 
changes in terminal status, such as keyboard activity or key­
lock. 

POLLI ACK (PACK)-A command issued by a controller 
to indicate to the terminal that the controller has recognized 
the non-zero status response of the terminal to its POLL, 
hence its full name poll/acknowledge. 
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pop-To remove data from a stack. 

predistortion-The initial voltage step in a Manchester 
encoded bit used to change frequency components of the 
signal to limit introducing jitter. 

promiscuous-A receiver mode that enables a data avail­
able interrupt regardless of the contents of the transmission 
address frame. The 5250 and general purpose S-blt 
modes of the BCP support both promiscuous and non-pro­
miscuous modes. 

push-To place data onto a stack. 

qulesce pulse-A bl-phase 1 bit that is placed at the be­
ginning of a transmission to charge the cable in preparation 
for the transmission of data. In addition, the quiesce pulses 
are used as part of the identifying start sequence. Typical­
ly, five quiesce pulses are placed there. 

register addressing mode-An addressing method that 
uses only operands contained in registers. 
register-relative addressing mode-An instruction ad­
dressing mode that adds the unsigned 8-bit value in the 
current accumulator to anyone of the index registers form­
ing a data memory address for one of the instruction's oper­
ands. 
remote access-An access to dual port memory by a 
device other than the BCP. 
repeater-A device used to extend the communication dis­
tance between a controller and a slave device by receiving 
the message and re-transmitting it. 

RIAS--The Remote Interface and Arbitration System that 
allows a remote processor and the BCP to share the same 
memory with arbitration of any conflict while the BCP is run­
ning. A remote processor may also stop and start the BCP 
as well as read and write the Program Counter. 

soft-Ioadable-A feature of a processor system that allows 
another processor to provide it with instructions and data. 

stack-See LIFO. 

start sequence-A unique arrangement of bits that begin 
each transmission to ensure proper frame alignment and 
synchronization. Each transmission begins with five bl­
phase encoded 1 's quiesce pulses, a code violation, and 
the sync bit of the first frame. 

station address-The identification number of a 5250 ter­
minal or other slave device that will specify which device on 
a multidrop line a message is sent to. 

sync bit-A bl-phase 1 that is placed as the first bit of a 
frame. 
T-state-The period of CPU-CLK. 

TCLK-The Transceiver CLocK that runs both the transmit­
ter and receiver at a frequency equal to eight times the re­
quired serial data rate. The clock can be obtained from a 
scaled OCLK or from X-TCLK. 

tlme-out-An interrupt that occurs when the timer reaches 
a count of zero. 

transceiver-The TRANSmitter used for sending mes­
sages and the reCEIVER used for reading messages. 
transformer coupled-The isolation of the transceiver 
from the transmission cable through the use of a transform­
er. Contrast this with direct coupled. 

trar>--A BCP instruction that forces a software interrupt. 
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TTl AR-Transmission Turn-around I Auto Response. An 
acknowledgement by the terminal or other slave device that 
a write command has successfully been received or that a 
POLL command status response is all zero. 

twin-ax-(1) The shielded pair cable that is used in a 5250 
communications systems. (2) Sometimes used to refer to 
the IBM 5250 communications protocol itself. 

unmask-Enable the accepting of an interrupt by the CPU. 

wait state-Additional T-states that may be added to a 
memory access to increase the time from address genera­
tion to the beginning of either a memory read or write. The 
BCP may add as many as seven data wait states and three 
instruction wait states. 

X-TCLK-The eXternal Transceiver CLocK. An indepen­
dent clock source that the BCP transceiver operation may 
synchronize to rather than from OCLK. 
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1.0 INTRODUCTION 

About This System User Guide 

The purpose of this document is to provide a complete de­
scription of the Multi-Protocol Adapter II (MPA®-II), a hard­
ware and software design solution for emulating basic 3270 
and 5250 terminal emulation products in an IBM® PC envi­
ronment. This document discusses the system support 
hardware and complete link level firmware required to 
achieve 3270/3299 CUT, DFT, and 5250 emulation with the 
National Semiconductor Biphase Communications Proces­
sor, BCP®. The document is divided into the following chap­
ters and appendices: 

1.0 Introduction: provides a summary of each chapter and 
each appendix along with a checklist of items included in 
the MPA-II Design/Evaluation Kit. This chapter provides an 
MPA-II product description including a list of the new fea­
tures in the MPA-II that were not present in the original MPA 
Evaluation Kit. Finally, a description of the DP8344 Biphase 
Communications Processor, and National Semiconductor's 
VLSI Products, is provided. 

2.0 Operation: describes the system requirements, installa­
tion instructions, and steps for using the MPA-II to achieve 
3270/3299 and 5250 emulation. 

3.0 Development Environment: describes the environ­
ment under which the MPA-II has been developed, the tools 
used by the design team to characterize the products evalu­
ated, and the tools used to test the MPA·II. 

4.0 System Overview: describes the 3270/3299 environ­
ment, 5250 environment, and terminal emulation. This chap­
ter also describes the DCA® and IBM emulator system ar­
chitectures and discusses the MPA-II system organization. 
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5.0 Hardware Architecture: discusses the MPA-II hard­
ware architecture including a description of the BCP core, 
PC interface, Front-end interface, and miscellaneous sup­
port circuitry. 

6.0 Software Architecture: discusses the Kernel, coax 
task, twinax task, and interrupt structure. 

Included in this chapter is an in depth discussion of the 
IRMATM, IBM and Smart Alec™ interfaces. 

7.0 Loader and MPA·IJ Diagnostics: discusses soft-load­
ing the BCP, configuring the MPA-II interface mode, and the 
diagnostics provided for testing the MPA-II hardware. 

Appendix A. Hardware Reference: provides the complete 
MPA-II schematic, assembly drawing, board layout and PAL 
equations. 

Appendix B. Timing Analysis: discusses the timing of the 
MPA-II system. 

Appendix C. Filter Equations for the Combined Coaxl 
Twisted Pair Interface: provides the derivation of the filter 
equations for the combined coax/twisted pair interface. 

Appendix D. References: is a list of reference materials 
and company contacts. 

MPA·IJ Description 

The Multi-Protocol Adapter II (MPA-II) is a complete design 
solution for IBM 3270, 3299, and 5250 connectivity prod­
ucts. The MPA-II system is intended to be a design example 
for customers to use in developing their own products using 
the Biphase Communications Processor, BCP. The BCP is a 
"system on a chip" designed by National Semiconductor to 
specifically address the IBM connectivity market place. Built 
on the tradition of the DP8340/41 3270 receiver/transmitter 
pair, the BCP takes the state of the art in IBM communica­
tions a step further. The MPA-II provides the system support 
hardware and complete link level firmware to achieve 3270/ 
3299 CUT, DFT, and 5250 emulation with the BCP and an 
appropriate PC emulator. The MPA-II Design/Evaluation Kit 
does not include the PC emulation software. Thus, the end 
user must purchase the PC emulation software to bring up a 
live terminal emulation session using the MPA-II. PC emula­
tion software such as DCA's E78 for MPA-II IRMA mode, 
one of IBM's PC 3270 emulation programs for MPA-II IBM 
mode, DCA's EMU for MPA-II ALEC mode, or any of the 
third party vendors which support either the IRMA, IBM or 
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ALEC emulation card interface modes, including SIMPC 
MASTERTM by SIMWARE, RELAY Gold® by RELAY Com­
munications, and CrossTalkTM MK.4 by Digital Communica­
tions Associates, can be used with the MPA-II. 

DP8344BBCP 

The DP8344B BCP is a communications processor de­
signed to efficiently process IBM 3270, 3299 and 5250 com­
munications protocols. A general purpose 8-bit protocol is 
also supported. 

The BCP integrates a 20 MHz, 8-bit, Harvard architecture, 
RISC processor and an intelligent, software-configurable 
transceiver on the same low power microCMOS chip. The 
transceiver is capable of operating without significant proc­
essor interaction, releasing processor power for other tasks. 
Fast, flexible interrupt and subroutine capabilities with on­
chip stacks make the power readily available. 

The transceiver is mapped into the processor's register 
space, communicating with the processor via an asynchro­
nous interface which enables both sections of the chip to 
run from different clock sources. The transmitter and receiv­
er run at the same basic clock frequency although the re­
ceiver extracts a clock from the incoming data stream to 
ensure timing accuracy. 

The BCP is designed to stand alone and is capable of imple­
menting a complete communications interface, using the 
processor's spare power to control the complete system. 
Alternatively, the BCP can be interfaced to another proces­
sor with an on-chip interface controller arbitrating access to 
data memory. Access to program memory is also possible, 
providing the ability to softload BCP code. The MPA-II im­
plements these features. 

A simple line interface connects the BCP to the communica­
tions line. The receiver includes an on-chip analog compar­
ator suitable for use in a transformer-coupled environment, 
although a TTL-level serial input is also provided for applica­
tions where an external comparator is preferred. 

A typical system is shown in Figure 1-1. Both coax and twin­
ax line interfaces are shown, as well as an example of the 
(optional) remote processor interface. 

For a detailed discussion on the BCP refer to the DP8344B 
Biphase Communications Processor data sheet. 
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FIGURE 1-1. Block Diagram of Typical BCP System 

2.0 OPERATION 

System Requirements 

THE MPA-II system implements both 3270 and 5250 termi­
nal emulation using the DCA and IBM industry standard in­
terfaces. Note that the MPA-II system emulates the hard­
ware and link-level firmware portion of the DCA and IBM 
interfaces. This allows the MPA-II system to run with a vari­
ety of emulators. For example, the DCA emulator system for 
the 3270 environment is called IRMA. IRMA consists of a 
full sized PC board along with its link-level firmware, and the 
PC emulator software "E7B.EXE". The MPA-II system re­
places the IRMA PC board and its link-level firmware. 
Therefore, the MPA-II system, when configured correctly, 
appears in every way to the emulator, E7B, to be the actual 
IRMA hardware/link-level firmware portion of the DCA emu­
lator system for the 3270 environment. Thus to operate the 
MPA-II system in a live communication system, a PC emula­
tion program is required; for example DCA's E7B.EXE. In 
DCA interface modes the emulators are: "E7B", for the 
3270 IRMA system; and "EMU", for the 5250 Smart Alec 
system. In the IBM interface mode the emulators are 
"PC3270" for the 3270/3299 CUT environment and 
"PSCPG" for the 3270/3299 OFT environment. Any emula­
tor compatible with one of the emulators listed above can 
be used to achieve terminal emulation using the MPA-II sys­
tem. 

The system requirements for using the MPA-II are depen­
dent upon which interface the MPA-II is emulating. In DCA 
interface modes, a PC interrupt is not used. However, in the 
IBM interface mode, a PC interrupt is required. The PC inter­
rupt level is selected as follows: IRQ2 is selected with jump­
er JP6; IRQ3 by jumper JP4; and IRQ4 by jumper JP5. The 
factory configuration selects the PC interrupt levellRQ2. 
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To support the IBM interface mode, the MPA-II utilizes an Bk 
block of dual-port RAM. This. RAM must be located some­
where in the PC's memory space. The default location in PC 
memory is CEOOO. This location can be relocated by writing 
the upper Bk byte boundary to I/O location 2D7h or by using 
the MPA-II Loader program (LD). 

The I/O space requirements, for any interface mode, are 
the total of the I/O space requirements for the MPA-II. 

This means that the I/O locations 220h-22Fh and 2DOh-
2DFh are required for the MPA-II. 

For execution space, the LD requirements are minimal (less 
than 64k). The amount of free RAM available for a PC emu­
lator depends on the particular emulation package (i.e., E7B, 
EMU, or IBM PC 3270, etc ... ). The MPA-II system does 
not use any resident software of its own accord. 

In summary, the Multi-Protocol Adapter II Design/Evaluation 
Kit contains the hardware, software and the MPA-II System 
User Guide and Technical Reference to aid designers in 
development of peripheral devices and network interfaces 
based on the DPB344. The following items are not included 
in the MPA-II system and therefore MUST be provided by 
the user to use the MPA-II in a live terminal emulation ses-
sion: 

- IBM PC XT/AT or compatible 

- PC-DOS version 3.0 or higher 

- PC emulation software such as DCA's E7B for MPA-II 
IRMA interface mode, one of IBM's PC 3270 emulation 
programs for MPA-II IBM interface mode, DCA's EMU 
for MPA-II ALEC interface mode, or any of the third party 
vendors which support either the IRMA, IBM or ALEC 
emulation card interface modes, including SIMPC MAS­
TER by SIMWARE, RELAY Gold by RELAY Communi­
cations, and CrossTalk MK.4 by DCA. • I 
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- Link to an IBM 370 class mainframe (for example, 
through the IBM 3174/3274 controllers) for 3270/3299 
connectivity; or a link to a System 3X, or AS/400 for 
5250 connectivity. 

Requirements for Design Development 

To create the software design environment for leveraging 
off the MPA-II source code, the following software must be 
purchased: 

- National Semiconductor's DP8344 Assembler System, 
DP8344ASM1.2 

- Microsoft's C 5.1 Optimizing Compiler for the IBM PC 

- Microsoft's Macro Assembler 5.1 for the IBM PC 

The minimum hardware requirements to set up a hardware 
evaluation and design environment for creating virtually any 
end product (terminal, printer, protocol converter, multiplex­
er, gateway, etc.) are an IBM PC/XT, IBM PC/AT or com­
patible and the MPA-II PC board. 

Useful Tools 

The tools listed in this section will greatly assist in the de­
sign process: 

- Azure Technologies Coax Scope (or Twinax Scope) for 
monitoring and analyzing data transmitted on 3270 Coax 
Type "A" media (or on IBM System 3X or AS400 Twinax 
media). 

- Capstone Technology CT-104 BCP Demonstration/De­
velopment Kit. This kit includes a development board 
with a 22 square inch logic prototype area and a· 3 
square inch line interface prototype area. Additionally, 
the kit supplies a Monitor/Debugger which features a 
simple operator interface, single step program execution 
and software break-points. 

- CT-106 Enhanced Interactive Coax-A Controller, EICC, 
(or the CT-103 Interactive Twinax Controller, ITC) by 
Capstone Technology allows issuing specific 3270 (or 
5250) instructions to a Device Under Test in place of the 
traditional mainframe and 3X74 controller operations (or 
the System 3X or AS400 controller operations). 

- Logic Analyzer (National Semiconductor has an Inverse 
Assembler for the BCP which requires one of the follow­
ing Hewlett Packard Logic Analyzer Models: HP1650A, 
HP1651A or an HP16500A with an HP16510 State/Tim­
ing Card). 

See Section 3.0, Development Environment for a descrip­
tion of how these tools were used in developing the MPA-II 
system. 

MPA-liinstallation 

The first step in using the MPA-II is installing the MPA-II 
circuit board in an IBM PC/XT, PC/AT or compatible. The 
MPA-II installs in the usual way: please be sure that the 
power is OFF, that the system unit is unplugged, and that 
proper grounding techniques are used. 

• Remove the cover by following the directions supplied by 
the manufacturer. 

• Remove the end plate from the system unit in the slot 
desired for the MPA-II. 

• Remove the MPA-II from its anti-static bag, and hold it by 
the edges. 
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• If the MPA-II will be used for Twinax operation, determine 
if the MPA-II will operate in pass-through or terminate 
mode. If it is NOT the terminator, remove jumpers JP2 
and JP3. The factory default is terminate . 

• Install the MPA-II in an open PC bus slot. 

• Replace the screw from the end plate previously re­
moved to hold the MPA-II firmly in place. A good electri­
cal connection here is important as it provides shield 
ground for the cables. 

• Close the system unit and replace all screws, etc ... 
according to the manufacturers instructions. 

• For 3270/3299 operation, install any 3270 coax type "A" 
port cable to the rear BNC/Twisted Pair connector. 

• For 3270/3299 twisted pair. operation, solder any 24 
AWG unshielded twisted pair cable to the ADC Twisted 
Pair Plug provided with the MPA-II kit. Then, connect the 
Twisted Pair plug to the rear BNC/Twisted Pair connec­
tor on the MPA-II board. Make sure that the other end of 
the 24 AWG unshielded twisted pair cable is properly 
attached to the controller as a twisted pair cable. 

• For twinax operation, install the Twinax Adapter cable to 
the MPA-II by inserting the 9 Pin D-Sub-miniature con­
nector onto the mating connector on the rear panel, and 
connect the twinax cable(s) to the Tee connector. 

Running Emulation-A Quick Start 

To use the MPA-II immediately, follow these instructions. 
First, select a PC/XT, PC/AT, or compatible and make sure 
that the following I/O addresses, IRO interrupt, and Memory 
addresses are unused in that PC: 

I/O: 0220-022F and 02DO-02DF 
IROs: IR02 
Memory: Segment CEOO 

Next, install the MPA-II hardware into the PC. Then, change 
the default DOS drive to A:, insert the distribution disk la­
beled DISK 1 into drive A:, and type at the DOS prompt: 

SETUP c: 
where c: is the target hard disk drive. This will install the 
MPA-II software onto the PC's hard disk. Next, change the 
default DOS drive to the hard disk and change the default 
DOS directory to \MPA. Execute the following program at 
the'DOS command prompt to verify correct operation of the 
MPA-II hardware within the PC: 

LD -LS 
If the self test passed then the MPA-II board is operational 
within this PC. If it fails, check again for I/O, IRO, or Memory 
address conflicts as each MPA-II is tested before it is 
shipped. 

Now, install onto the hard disk the PC emulation software of 
your choice, such as DCA's E78 for MPA-IIIRMA mode, one 
of IBM's PC 3270 emulation programs for MPA-IIIBM mode, 
DCA's EMU for MPA-II ALEC mode, or any of the third party 
vendors which support either the IRMA, IBM or ALEC emu­
lation card interface modes, such as SIMPC MASTER by 
SIMWARE, RELAY Gold by RELAY Communications, and 
CrossTalk MK.4 by DCA. Note that the PC emulation soft­
ware must be supplied by the end user, it is not included as 
part of the MPA-II Evaluation Kit. 



Finally, load the MPA-II emulation card with the DP8344AV 
microcode using the Loader and then start the PC emulation 
program. To use the listed emulator, or equivalent, type at 
the DOS prompt when in the \MPA directory: 

LD MPA2 -M = IRMA ; to use the DCA IRMA 
emulator ·E78 n or 
equivalent 

LD MPA2 -M = IBM ; to use the IBM emulator 
"PC3270· or equivalent 

LD MPA2 -M = ALEC ; to use the DCA Smart 
Alec emulator "EMU" or 
equivalent 

Then, change to the PC emulation program directory of the 
separately purchased and installed PC emulation software 
(see installation instructions of that PC emulation software 
for the name of that directory. In this example assume the 
directory name is \EMULATOR, and then type the name of 
the PC emulator program: 

CD \EMULATOR 
E78 

Your emulator should now be operational. 

Invoking the Loader program with no arguments will pro­
duce a short help screen. A detailed help for the Loader can 
be accessed using the -h option. Therefore, at the DOS 
command line enter: 

LD -H 
For more information on the Loader program, refer to the 
Loader documentation in Section 7.0. 

3.0 DEVELOPMENT ENVIRONMENT 

The environment used for development of the MPA-II con­
sists of a few readily available, relatively inexpensive tools. 
The hardware was first prototyped with the Capstone Tech­
nology CT-104 BCP Demonstration/Development card. The 
software was developed with the National Semiconductor 
BCP Assembler. It was tested with Capstone's EICC (En­
hanced Integrated Coax Controller), Capstone's ITC (Inte­
gral Twinax Controller), and Azure Technologies' Coax and 
Twinax scope products. Debugging was accomplished with 
BSID, Capstone's debugger/monitor which we modified for 
use with the MPA-II software model and the MPADB.EXE 
debugger included with the MPA-II (see Chapter 6). For par­
ticularly difficult interrupt problems a Hewlett Packard model 
16500A Logic Analysis System with a State/Timing card in­
stalled was used to monitor instruction execution and PC 
accesses. 

The CT-104 board was modified through the wire-wrap area 
to approximate the hardware design. This wire-wrap card 
allowed us to get a working version of the hardware design 
very quickly, since most of the circuitry was already there. In 
some development projects, it is often faster to go directly 
to pcbs as a prototype run. This process has advantages in 
speed when the device is large and complex, but often de­
bugging is quite messy with multi-layer pcbs, not to mention 
expensive. Since the CT-104 has the major functional 
blocks already and the wire wrap area is large, the wire­
wrap time was minimal, thus allowed us to easily debug the 
hardware. 
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A majority of the logic for the DCA and IBM interfaces is 
implemented in Programmable Array Logic. We used the 
abel program from DATA I/O to prepare the JEDEC files for 
programming the devices. 

Software development was done on IBM PCs with the Na­
tional Semiconductor DP8344 Assembler. The assembler 
allows relocatable code, equate files, macros, and many 
other "large CPU" features that make using it a pleasure. 
The modularity of the software design allowed us to use 
multiple coders and a single "system integrator" who linked 
the modules and handled system debugging. The assem­
bler adapts well to large projects like this because of its 
relocation capability. The Microsoft MAKE utility was used 
to provide the system integrator with a automated way of 
keeping up with source modules' dependencies and chang­
es. The BRIEFTM text editor from UnderWare™ was used 
for editing. This editor allowed us to invoke the National 
Semiconductor DP8344 Assembler from within the editor 
and to locate and correct bugs quickly. Finally, an ethernet 
LAN allowed the software development team to share files 
and update each other quickly and efficiently. These tools 
are not all necessary, but are common enough to be useful 
in illustrating a typical environment. 

The BCP's sophistication and advanced development tools 
made the MPA-II development project proceed at a much 
greater rate than is possible with other comparable solu­
tions. 

Characterization of IBM 3270 and 5250 products was per­
formed by using Capstone's EICCIITC to drive the coax/ 
twinax line and the Azure scopes to monitor the results. In 
this way we could stimulate the IBM terminal under con­
trolled conditions, testing most every situation, and then 
stimulate the MPA-II under the same conditions to verify 
correct functionality. 

The debuggers allow a developer to load and run code on 
the target system, set breakpoints, examine and modify in­
struction or data memory. Early configurations were accom­
plished using the standard DOS DEBUG tool, but once the 
MPA-II Loader program (LD) was operational, configuration 
and loading was accomplished through it. 

The HP logic analyzer was attached to the target system to 
monitor the instruction accesses and data bus activity on 
the target card. This information is helpful in finding interrupt 
problems that the debugger cannot. Using ICLK from the 
BCP to sample the BCP instruction address and data bus­
ses allows one to monitor instruction execution. Symbolic 
disassembly can be done with the DP8344 BCP Inverse As­
sembler, which is a software package for use in an 
HP1650A or HP1651A Logic Analyzer, or in an HP 16500A 
Logic Analysis System with an HP 16510A State/Timing 
Card installed. The inverse assembler was developed by 
National Semiconductor to allow disassembly of the 
DP8344 op-code mnemonics. The inverse assembler pro­
vides the real time sequence of events by displaying on the 
HP Logic Analyzer's screen the actual execution flow that 
occurred in the system being developed with the DP8344. 

4.0 SYSTEM OVERVIEW 

The MPA-II addresses a systems market that is driven by 
the large installed base of IBM systems throughout the 
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world. The IBM plug compatible peripheral and terminal em­
ulation markets are growing along with the success of IBM 
in the overall computer market place. The originally proprie­
tary architecture of the IBM peripherals and the subsequent 
vague and confusing ProductAttachme,ntinformation Man­
uals (PAis) have kept the 'attachment technology ~Iusive. 
The IBM communications system in generalis not well un­
derstood. The desire of customers and systems vendors to 
achieve more attachment options, however, is significant, 

IBM 3270 and 5250 Environments 

The study of IBM communications fills many volum'es. The 
intent of this discussion is not to describe ,it fully, but to 
highlight the areas of)BM communications that the BCP 
and MPA-II address. Specifically, these areas'are the con­
troller/peripheral'links that use the 3270/3299 and 5250 
data streams. These links are found in 370 class mainframe 
networks and the smaller, mid-range "systems such as the 
AS/400 and System/3x lines. ' 

The" 3270 commu~ications' sub-system, was developed for 
370 class mainframes as demand for terminal support be­
gan to outstrip batch job entry modes. These systems had 
large scale networking needs, and ofte,:" needed to support 
thousands of terminals and printers. The original systems 
were linked together through dedicated telephony lines us­
ing' Binary Synchronous Communications (BSC) serial pro­
tocol. The 5250 communications system was developed 
originally for the Series 3 and became widely used on the 
System/34. The System/34 wa.'sa small,office environment 
processor with limited networking and terminal support ca­
pabilities.' Typical System/34 installations supported up to 
16 terminals and printers. The System/36 replaced the Sys­
tem/34 in 1984. Next, IBM introduced the System/38, a 
mid-range processor tMt could rival the 4300 series (small 
370 class) mainframes in processing power. The System/36 
and 38 machines now have greatly enhanced networking 
facilities, and can support up to 256 local terminals. In 1988 
IBM released a new, mid-range system line called the Ad­
vanced System 400, or AS/400, to replace the aging Sys­
tem/3x line. The Advanced ,System 400 series is highly 

modular and combines the best features of the System/36 
and System/38 to produce IBM's most popular mid-range 
system to date. In addition, the AS/400 continues to expand 
the role and importance of the 5250 data stream, adding it 
to the definition of IBM's SAA. The 370 class and AS/400 
machines have grown closer together through the advent of 
SNA (Systems Network Architecture). SNA allows both sys­
tems to function together in an integrated network. 

The 3270 and 5250 communications systems evolved at a 
time when hardware design constraints were very different 
than today. Microprocessors and 1 Mb DRAMs were not 
available. Memory in general was very expensive. Telecom­
munications channel sharing between multiple peripherals 
was imperative. Even so, fast screen updates and keystroke 
handling were necessary. The 3270 and 5250 data stream 
architectures were developed to address specific design 
goals within IBM's overall network communications system. 
The controller sub-system where they were implemented 
has proved adaptable to new directions in SNA and the mi­
gration of processor power out into workstations. 

The 3270 and 5250 controller sub-systems split the periph­
eral support tasks into two sections: screen with keyboard, 
and host communications interface. Figure 4-1 shows the 
3270 Communications System, 5250 is similar. The control­
ler architectures can be thought of as having integral screen 
buffers and keyboards for each of their associated terminals 
with the caveat that screens and keyboards must be ac­
cessed through a secondary, high speed serial link. Since 
the controller views the terminal's screen buffer as its own, 
the controller does not maintain a copy of the information 
on that screen. The processing capability of some terminals 
is severely limited; the early terminals were state machines 
designed to handle the specific data stream. With the ad­
vent of SNA and APPC, (Advanced Peer to Peer Communi­
cations) the intelligence in some peripherals has become 
significant. The data streams have essentially remained the 
same, with hierarchically structured protocols built upon 
them. SNA and these higher protocols will be discussed 
later. 
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Separating the screen buffer and keyboard from the intelli­
gence to handle the terminal addressed several design 
goals. Since the terminal needs screen memory to regener­
ate its CRT, the "regen" buffer logically resides in the termi­
nal. The controller need not duplicate expensive memory by 
maintaining another screen copy. The data stream architec­
tures implemented with high speed serial links between the 
controller and terminal allow fast keystroke echoing. It also 
allows fast, single screen updates, giving the appearnace of 
good system performance. The terminal screen mainte­
nance philosophy developed with these architectures lends 
itself well to the batch processing mode that traditionally 
was IBM's strong suit. The terminal system is optimized for 
single screen presentation with highly structured field orient­
ed screens. Data entry applications common in business 
computing are well suited to this. Essentially, the architec­
ture places field attributes and rudimentary error checking in 
the controller, so that most keystrokes can pass from the 
terminal to the controller and back to the screen very quick· 
Iy without host CPU intervention. Only when particular key­
strokes are sent (AID keys) does the controller read the 
contents of the screen fields and present the host with the 
screen data. 

3270 Data Stream Architecture 

The 3270 communications system, as discussed above, is a 
single logical function separated into two physical pieces of 
hardware connected by a protocol implemented on a high 
speed serial link. The terminal hardware has the screen 
buffers and keyboard, magnetic slot reader, light pen, etc., 
(Le., all the user interface mechanisms). The controller has 
a communications link to the host CPU or network and the 
processing power to administrate the terminal functions. 

Controllers typically support multiple terminals and essen­
tially concentrate the terminal traffic onto the host communi­
cations channel. The controller has a secondary commun­
cations system that implements the 3270 data stream proto­
col over coaxial cable at 2.3587 Mb/s. Each peripheral con­
nected to the controller has its own coax port. The coax 
lengths may be up to 5000 feet. The protocol is controller 
initiated, poll/response type. 

The serial protocol organizes data into discrete groups of 12 
bits, called a frame. Biphase (Manchester II) encoding is 
used to impress the data frames onto the transmission me­
dium. Biphase data have embedded clock information de­
noted as mid-bit transitions. Frames may be concatenated 
to form packets of commands and/or data. All transmis­
sions begin with a line quiesce sequence of five biphase 
one bits followed by a three bit time line violation. The first 
bit of all frames is called the sync bit and is always a logic 
one. The sync bit follows the line violation and precedes all 
successive frames. Each frame includes a parity bit that es­
tablishes even parity over the 12-bit frame. Each transmis­
sion from the controller elicits a response of data or status 
from the device. The response time requirements are such 
that a device must begin its response within 5.5 ms after 
reception of the controller transmission. Simple reception of 
a correct packet is acknowledged by the device with a 
transmission of "DAR", or transmission turn around/auto 
response. The controller initiated, poll/response format pro­
tocol addresses multiple logical devices inside the peripher­
al through a three or four bit command modifier. The differ­
ent logical devices decode the remaining bits as their com­
mand sets. Commands to the base or keyboard are decod­
ed as shown in Table 4-1. 

TABLE 4-1. 3270 Data Stream Command Set 

READ TYPE: 

WRITE TYPE··: 

Command 

TO BASE-Device Address 0 or 1 
POLL 
POLLIACK 
READ STATUS 
READ TERMINAL ID 
READ EXTENDED ID 
READ ADDRESS COUNTER HI 
READADDRESSCOUNTERLO 
READ DATA 
READ MULTIPLE 

TO BASE-Device Address 0 or 1 
RESET 
LOAD CONTROL REGISTER 
LOAD SECONDARY CONTROL 
LOAD MASK 
LOAD ADDRESS COUNTER HI 
LOAD ADDRESS COUNTER LO 
WRITE DATA 
CLEAR 
SEARCH FORWARD 
SEARCH BACKWARD 
INSERT BYTE 
START OPERATION 
DIAGNOSTIC RESET 

"Denotes foreground task 

"All WRITE type commands elicit TTAR upon clean reception. 
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Value 

01h 
11 h 
ODh 
09h 
07h 
05h 
15h 
03h 
OBh 

02h 
OAh 
1Ah 
16h 
04h 
14h 
OCh 
06H 
10h 
12h 
OEh 
08h 
1Ch 

Description 

Respond with Status 
Special Status Acknowledgement Poll 
Respond with Special Status 
Respond with Terminal Type 
Respond with 4 Byte ID (Optional) 
Respond with Address Counter High Byte 
Respond with Address Counter Low Byte 
Respond with Data at Address Counter 
Respond with Up to 4 or 32 Bytes 

POR Device 
Load Control Byte 
Load Additional Control Byte 
Load Mask Used in Searches, CLEAR 
Load Address Counter High Byte 
Load Address Counter Low Byte 
Load Regen Buffer with Data 
Clear Regen Buffer to Nulls 
Search Forward in Buffer until Match 
Search Back in Buffer until Match 
Insert Byte at Address Counter 
Begin Execution of Higher Level Command 
Special DFD Reset 

!II 
I 



The 3299 variant on the 3270 data stream uses an addition­
al eight bit address field to address up to 8 more 3270 de­
vices with the same coax cable. Since coax installations are 
point-to-point between controller and peripheral, cabling 
costs motivated the introduction of 3299 multiplexer/demul­
tiplexers. Using the extended address field, eight devices 
can be connected via one coax cable between the control­
ler and the multiplexer. (The 3299 protocol can support up 
to 32 devices per line if IBM so chooses.) 

attributes is limited by the size of the displayable character 
set. The EAB provides a method to enhance screen control, 
with color for instance, without losing character space. The 
EAB contains both character attributes, that correspond to 
characters in the regen buffer, and field attributes that cor­
respond to attributes in the regen. 

Basic 3270 terminals have a structure as shown in 
Figure 4-2. The EAB (Extended Attribute Buffer) is a shadow 
of the regen buffer; each location in the regen has a corre­
sponding location in the EAB. The EAB is a separately ad­
dressable device with an address modifier of 7h. The EAB 
bytes are used to provide extra screen control information. 
In the 3270 world, the screen and field attributes that the 
controller uses to format and restrict access to fields on the 
screen.take up space in the screen. The attribute characters 
appear as blanks and cannot be used for displayable char­
acters at the same time. Since the number of permutations 
of the a-bit character byte is limited to 256, the number of 

Status developed in the terminal, such as keystrokes or er­
rors, are reported in the poll/response mechanism. A POLL 
command to the base device with keyboard status pending 
elicits a keystroke response in 5.5 J-Ls. The controller then 
sends a POLL! ACK command to acknowledge the key­
board status and thus clear it. The terminal then responds 
with "clean" status, i.e., TT AR. Controllers poll frequently to 
assure that status updates are quick. Outstanding status is 
reported in the poll response and in some cases is handled 
directly by command modifiers in the POLL command. Key­
strokes are the most command status and hence are ac­
knowledged by the POLL! ACK command. Status reported 
in the status register can be read and acknowledged inde­
pendently of the polling mechanism, if desired. 

ADDRESS COUNTER 

(CURSOR HI:) 

~--------------------~ 

EAB 

REGEN 

(CURSOR LO:) ~ ____________________ ~ 

KEYSTROKE BUrfER: ... 1 ____________________ ...... 
3564 (MOD 5) 

CONTROL: 
'----~--~~~~-'-~~~ 

CONT _BLINK ~ BLINK CURSOR 

CONLREV ~ REVERSE IMAGE CURSOR 

'----- CONT _'NHCURSOR ~ TURN Off CURSOR 

'------- CONLBLANK ~ BLANK SCREEN 

L-______ CONLINHSTEP ~ PREVENT I/O STEP 

L-_________ CONLMOD ~ SCREEN MODEL 

7 0 

SECCiNDARY CONTROL: 1 rsv 1-1-1-1-1-1-1 B~ 
SCONLSIG ~ READ BIG MODE 

TERMINAL 10: ... 1 ____ ..,.... ____ ...... __ ..,... __ ...... _0 ~I 

'----- ID_MOD ~ MODEL 

L-________ ID_KEYBD ~ KEYBOARD TYPE 

STALMONO ~ MONO CASE ON 

STALRSVI 

'----- STALAVAIL~NOT BUSY 

'------- STALKEY - SECURITY KEY ON 
L-______ STALRSV2 

L-________ STAT _fERROR N fEATURE ERROR 

'----------- STALOPCOMP~OP COMPLETE 

'------------- STALBLANK N SCREEN BLANKED BY KEY 

MASK: I~ _______________ ...... 

EAS MASK: ... 1 ____________________ ...... 

FIGURE 4·2. 3270 Internal Terminal Architecture 
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The SEARCH, INSERT and CLEAR commands require the 
terminal to process the command in the foreground while 
responding with "BUSY" status to the controller. (The fore­
ground refers to non-interrupt driven routines. Foreground 
routines may be interrupted at any time.) Processing these 
commands requires substantially more time than the others, 
and hence are allowed to proceed without real-time re­
sponse restrictions. 

An interesting feature found in terminals and printers is the 
START OP command. Originally, this command was used 
only by controllers and printers to begin print jobs. Printers 
have specific areas within their buffers that are reserved for 
higher level commands from the controller. These higher 
level protocols started as formatting commands and extra 
printer feature control. With the advent of SNA and Distrib­
uted Function Devices, this concept is now used in termi­
nals to pass SNA command blocks to multiple NAUs (Net­
work Addressable Units) within the terminal. These NAUs 
are complete terminals, or peers, not just simple user inter­
face devices. 

As large mainframe systems proliferated, 50 did the need to 
off-load terminal support from the emerging 370 class main­
frame. The need to "network" both remotely and locally 
was becoming apparent. In addition, the need to separate 
display and printer interface tasks from applications was 
sorely felt. The system developed by IBM eventually be­
came Systems Network Architecture (SNA). The 370 class 
machines use secondary processors, or "front-ends" to 
handle the networking aspect of large scale systems and 
these "front ends" in turn use terminal and printer contro­
lers to interface locally with the user interface devices. The 
controllers handle the device specific tasks associated with 
interfacing to different printers and displays. The front-ends 
handle connecting the routes from terminals or printers to 
applications on the mainframe. A session is a logical entity 
split into two halves; the application half and the terminal 
half, and connected by a virtual circuit. Virtual circuits can 
be set up and torn down by the system between applica­
tions and terminals easily, and the location of the specific 
terminal or printer is not important. NAUs are merely devic­
es that can be addressed directly within the global network. 
Setting up multiple NAUs within a terminal allows all sorts of 
gateway opportunities, multi-display workstations, combina­
tion terminal/printers, and other things. 

DFD devices can support up to five separate NAUs using a 
basic 3270 port. Using 3299 addressing allows eight ses­
sions for each DFD device, or 40 possible NAUs per coax. 
By layering protocols over the basic 3270/3299 data 
stream, the controller can distribute more of the SNA pro­
cessing to intelligent devices that replace terminals. APPC 
will allow more and more functions to be shared by NAUs 
that act as "peers" in the network. 

5250 Data Stream Architecture 

The 5250 data stream architecture has many similarities to 
3270, although they are different in important ways. The 
primary difference is the multi-drop nature of 5250. Up to 
seven devices may be "daisy chained" together on the 
same twinax cable. Twinax is a very bulky, shielded, twisted 
pair as opposed to the RG/62U coax used in 3270. 

The 5250 Bit stream used between the host control units 
and stations on the twinax line consists of three separate 
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parts; a bit synchronization pattern, a frame synchronization 
pattern, and one or more command or data frames. The bit 
sync pattern is typically five one bit cells. This pattern 
serves to charge the distributed capacitance of the trans­
mission line in preparation for data transmission and to syn­
chronize receivers on the line to the bit stream. Following 
the bit sync or line quiesce pattern is the frame sync or line 
violation. This is a violation of the biphase, NRZI data mid­
bit transition rule. A positive going half bit, 1.5 times normal 
duration, followed by a negative going signal, again 1.5 
times normal width, allows the receiving circuitry to estab­
lish frame sync. 

Frames are 16 bits in length and begin with a sync or start 
bit that is always a 1. The next 8 bits comprise the com­
mand or data frame, followed by the station address field of 
three bits, a parity bit establishing even parity over the start, 
data and address fields, and ending with a minimum of three 
fill bits (fill bits are always zero). A message consists of a bit 
sync, frame sync, and any number of frames. A variable 
amount of inter-frame fill bits may be used to control the 
pacing of the data flow. The SET MODE command from the 
host controller sets the number of bytes of zero fill sent by 
attached devices between data frames. 

Message routing is accomplished through the use of the 
three bit address field and some basic protocol rules. There 
is a maximum of eight devices on a given twinax line. One 
device is designated the controller or host, the remaining 
seven are slave devices. All communication on the twinax 
line is host initiated and half duplex. Each of the seven de­
vices is assigned a unique station address from zero to six; 
address seven is used for an End Of Message delimiter, or 
EOM. The first or only frame of a message from controller to 
device must contain the address of the device. Succeeding 
frames do not have to contain the same address for the 
original device to remain selected. The last frame must con­
tain the EOM delimiter. For responses from the device to 
the controller, the responding device places its own address 
in the address field in all frames but the last one. It places 
the EOM delimiter in the address field of the last frame. 
However, if the response to the controller is only one frame, 
the EOM delimiter is used. The controller assumes that the 
responding device was the one addressed in the initiating 
command. 

Responses to the host must begin within 60 ± 20 J.Ls of re­
ceiving the transmission, although some specifications state 
a 45 ± 15 J.Ls response time. In practice, controllers do not 
change their time out values per device type so that any­
where from 30 J.Ls to 80 J.Ls response times are appropriate. 

The 5250 terminal organization is set up such that there are 
multiple logical devices within the terminal as in 3270. 
These devices are addressed through a command modifier 
field in the command frame. The command set for the base 
logical devices is shown in Table 4.2. Note that except for 
POLLs and ACTIVATE commands, all commands are exe­
cuted in the foreground by the terminals, unlike the 3270 
commands. In addition, 5250 terminals only respond after a 
POLL or ACTIVATE READ command. The remaining com­
mands are loaded on a queue for passing to the foreground 
while the terminal responds with "busy" status to the host 
when Polled until all the commands on the queue have 
been processed. See Figure 4-3 for the 5251 terminal archi­
tecture. 
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TABLE 4·2. 5250 Command Set 

Reads 

Read Data (Note 1) 
Read Device 10 (Note 1) 
Read Immediate (Note 1) 
Read Limits (Note 1) 
Read Registers (Note 1) 
Read Line (Notes 1, 2) 

Queueable Commands 

Writes 

Write Control Data 
Write Data and 

Load Cursor 
Write Immediate (Note 1) 
Write Data (Note 1) 

Non·Queueable Commands 

Responders 

Poll 
Activate Read 

Control 

Eoa 
Load ADDR Counter 
Load Cursor Reg. 
Load Ref. Counter 
Reset 
Set Mode 

Acceptors 

Activate Write 

Operators 

Clear 
Insert Char. 
Move Data 
Search 

Note 1: Must be last command loaded onto queue. (EOQ may follow). When Terminal responds to POLL as not busy, then the appropriate ACTIVATE command 
must be sent. 

Note 2: Not a documented command in the IBM PAl. (See MPA·" code for response.) 

5251 MODEL II 

I-- 80 bytes --I 
1 .J LINE 1 

SCREEN BUFFER 
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16 bits 

I ADDRESS COUNTER I 
16 bits 

I REFERENCE COUNTER I 
16 bits 

I CURSOR REGISTER I 
8 bits 

I INDICATOR I 
8 bits 

I CONTROL I 
8 bits 

:~ KEYSTROKE 
QUEUE 
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FIGURE 4-4. MPA-II System Architecture 

Terminal Emulation 

Personal computers are often used to emulate 3270 and 
5250 terminals, and in fact, have hastened the arrival of 
APPC functions in both the 3270 and 5250 arenas. Basic 
CUT (Control Unit Terminal) emulation is often accom­
plished by splitting the terminal functions into real-time 
chores and presentation services. The presentation serv­
ices, such as video refresh and keyboard functions, are han­
dled by the PC, and real-time response generation, etc., by 
an adapter card (see Figure 4-4). This is a somewhat ex­
pensive alternative to a "dumb" terminal. However, since 
PCs are becoming more and more powerful, their use as 
peers in SNA networks, as multiple NAUs, or multiple dis­
play sessions in 5250 is very promising. Although primitive 
in many ways, the 3270 and 5250 communications system's 
fast response times, unique serial protocols and processing 
overhead requirements have traditionally limited the confi­
dence of third party developers in designing attachments. In 
addition, the high cost of many early solutions discouraged 
many would-be developers. 

National Semiconductor opened the 3270 attachment mar­
ket place to many third parties in 1980 with the release of 
the DP8340/41 protocol translation chip set. The chip set 
removed one of the major stumbling blocks to attachment 
designs, although formidable design challenges remained. 
Bit-slice or esoteric microcontrollers were still required to 
meet the fast response times specified by IBM. The difficul­
ties and costs in designing interface circuitry for these solu­
tions remained a problem. So in 1987 National Semiconduc­
tor introduced the DP8344 Biphase Communications Proc­
essor, BCP. By tightly coupling a sophisticated 
3270/3299/5250 transceiver to a high speed RISC based 
CPU, National eliminated the last major stumbling block to 
IBM connectivity. National also made available for the first 
time a single hardware platform capable of supporting the 
3270, 3299 and 5250 data streams. 
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The terminal emulation market opened with Technical Anal­
ysis Corporation's IRMA product in 1982. The 3278179 ter­
minal emulator quickly became the industry standard, even 
as IBM and many others entered the market place. Techni­
cal Analysis Corporation merged with Digital Communica­
tions Associates in 1983. The 3270 emulation market is now 
dominated by DCA and IBM. IBM· produced the first 5250 
terminal emulator in 1984, although it was a severely limited 
product. The market opened up in 1985 with the release of 
products by AST Research, IDE Associates, and DCA. 
DCA's Smart Alec was the first product to provide seven 
session support, address bidding, and a documented open 
architecture for third party interfacing. DCA's IRMA was re­
leased with a technical reference detailing their Decision 
Support Interface. This document along with the source 
code to E78 (their PC emulator software) allowed many 
companies to design micro to mainframe products using the 
DSI as the mainframe interface. IBM provides a technical 
reference for their 3278 Entry Level' Emulator as well, (see 
Appendix C for a complete list of references). 

The proliferation of the IBM and DCA interfaces coupled 
with the availability of detailed technical information about 
them made these interfaces good choices for the MPA-II. 
The MPA-II system was designed to do two major functions: 
one is emulation of the DCA and IBM emulation products; 
the second is to provide a powerful, multi-protocol interface 
that will afford greater utilization of the DP8344A. Specifical­
ly, the MPA-II emulates the hardwarelfirmware resident in 
PC add-in boards for 3270 and 5250 emulation products 
from DCA and IBM. To do this, we have constructed hard­
ware and firmware that mimics the corresponding system 
components of the other emulators. The MPA-II system ap­
pears in every sense to be the board it is emulating, once it 
has been loaded and configured. fII 
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The DCA and IBM system organizations are similar. Each 
system is divided into two major functional groups: presen­
tation services, and terminal emulation. The terminal emula­
tion function resides entirely on the adapter hardware and 
maintains the screen buffers that belong to the host control 
unit. The terminal emulation function includes all real time 
responses and status generation necessary to appear as a 
true 5250 or 3270 device to the host controller. Presenta­
tion services carried out by the PC processor through the 
emulator software include fetching screen data from the 
adapter, translating it into displayable form, and providing 
the data to the PC's display adapter. In addition, the PC side 
presentation services collect keystrokes from the keyboard 
and present them to the adapter. The communication be­
tween the PC presentation handler and adapter emulation 
function consists mainly of status updates, keystrokes, and 
screen data. 

DCA 

The DCA products use an I/O mapped 4 byte mailbox to 
pass information between the PC's processor and the proc­
essor on the emulation card. The information is encoded in 
a <command>, [<argument>], [<argument>], 
[<argument>] and <status>, [response], [response], 
[response] format. Information flow is controlled through a 
Command/ Attention semaphore implemented in hardware. 
Both the Smart Alec (5250) and IRMA (3270) interfaces 
have command sets that include reading and writing the 
screen buffers maintained on the adapter boards, sending 
keystrokes, and passing display information such as cursor 
position and general screen modes. The interfaces are both 
used in a polled manner, although both are capable of gen­
erating interrupts to the PC processor. 

Both Smart Alec and IRMA have Signetics 8X305 proces­
sors that run the terminal emulation functions and interface 
to the PC presentation services. The PC function initiates 
commands and status requests by writing the appropriate 
value into the mailbox and setting the Command sema­
phore. The semaphore is then polled by the PC for a change 
in state that signals completion of the command and signals 
that valid response data is in the mailbox. The PC will poll 
for a specific amount of time before assuming a hardware 
malfunction has occurred. The 8X305 processors have no 
interrupt capabilities and handle all terminal emulation sub­
tasks in a polled manner. The PC interface tasks are the 
lowest priority of all. The 8X305 may initiate information 
transfer to the PC by posting the Attention semaphore, 
and/or setting a PC interrupt, although this is not generally 
done. Both the Smart Alec andlRMA interfaces are imple­
mented with 74LS670 dual-ported register files so that 
reads and writes from each processor are directed into sep­
arate register files. 

DCA interfaces were designed for compatibility at the ex­
pense of interface through-put. The small I/O requirements 
and the fact that interrupts to the PC are not necessary 
allow the interfaces to install easily in most environments. 
The IRMA Decision Support Interface (DSI) utilizes eight I/O 
locations at 220h-227h. Smart Alec resides in I/O locations 
228h-22Fh. All screen data and status information must 
pass through these mailboxes with the semaphore mecha­
nism. This makes repainting the entire screen very slow. 
Both IRMA and Smart Alec utilize different schemes to re­
duce the necessity of reading entire screen buffers often. 
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IRMA maintains a screen image in PC memory that is used 
in conjunction with a complex algorithm to determine which 
lines of the screen to update. Smart Alec maintains a 16 
entry FIFO queue that contains screen modification informa­
tion encoded in start/end addresses. This information is 
processed to decide which screen locations should be up­
dated. 

IBM 

The IBM system organization, in general, is very similar to 
the DCA systems. The major differences lie in the interface 
implementations. The IBM system utilizes RAM dual-ported 
between the PC processor and the adapter board processor 
to transfer screen data from the adapter. In addition, IBM 
does not use an interpreted command/response I/O inter­
face. The IBM interface uses 121/0 locations with individual 
bits defined in each register for direct status availability. The 
status bits consumed by the PC presentation services are 
cleared through a "write under mask" mechanism. Consum­
able bits are read by the PC and, when written to, corre­
sponding status bits are cleared by one bits in the value 
written. Reading a register of consumable bits and writing 
that value back out clears the bits set in that register. The 
interface can operate in a polled manner, although it typical­
ly is operated via interrupts. One register in the interface is 
dedicated to interrupt status (ISR-Interrupt Status Regis­
ter, 2DOh) and when the PC is interrupted, the particular 
status change event is indicated in that register. Buffer mod­
ifications are indicated through a status change in the I/O 
interface which also provides an indication of the block 
modified. The actual screen data is in 8k of dual-port RAM 
and may be read by the PC when the "Buffer-Being-Modi­
fied" flag is cleared. This type of interface affords the IBM 
products great speed advantages, although limits compati­
bility with other add in PC boards. 

Screen Presentation 

Both the IBM and DCA systems present EBCDIC data to the 
PC presentation services for display. The presentation soft­
ware must translate the EBCDIC codes into ASCII for PC 
display adapters. In addition, the screen attribute schemes 
for PCs and mainframe terminals differ greatly. The presen­
tation services must provide the necessary display interface 
to emulate the "look" of the terminal that is being emUlated. 
The PC keyboard scan codes are incompatible with main­
frame scan codes, and must be translated for the keyboard 
type of the terminal being emulated. Both systems provide 
advanced PC functions such as residency, keyboard remap­
ping, and multiple display support. 

MPA-II 

The MPA-II implements emulation of both the DCA and IBM 
interfaces. Therefore, an overall architecture similar to the 
DCA and IBM systems is employed (see Figure 4-5). The 
logical split in functionality between the PC and the adapter 
board processors is roughly analogous; the PC provides 
presentations services and the adapter hardware/firmware 
handles the host terminal emUlation tasks (see Figure 4-6, 
4-7 and 4-8). The BCP on the adapter board is soft-loaded 
by the PC and configured to operate in one of the protocols 
and interface modes. The adapter board then assumes the 
hardware emulation tasks of the physical interfaces of the 
DCA or IBM products. At this time the DCA, IBM (or a 
DCAlIBM compatible) emulation program is executed on 
the PC. To this program the MPA-II appears to be a DCA or 
IBM emulation card. 



The MPA-II hardware consists of a DP8344A running at 
18.89 MHz with 8k x 16 bits zero wait state instruction 
memory, 32k x 8 bits one wait state data RAM, a 
coax/twisted pair 3270/3299 front end, a 5250 twinax front 
end, and a BCP software controlled PC interface that en­
ables the MPA-II to appear as a variety of industry stan­
dards interfaces. The BCP Remote Interface Configuration 
register (RIC) is located in PC I/O space at 2DFh (see Fig­
ure 4-9). This register facilitates downloading of instructions 
and data memory from the PC, starting and stopping the 
processor, and configuring the low level interface mode. 
The MPA-II utilizes the low level fast buffered write/latched 
read interface mode. 

The MPA-II Configuration register (see Figure 4-10) is locat­
ed at I/O location 2DCh and controls which type of high 
level interface the MPA-II board is operating in (Le., IRMA, 
Smart Alec, IBM, coax, etc.). Changing the value of this reg­
ister while the MPA-II is operating will cause the MPA-II to 
change mode, resetting the emulation session in progress. 
In addition, a simple MPA-II command set can be issued 
through the MPA-II Configuration register and the MPA-II 
Parm/Response register (I/O location 2DBh) for use as a 
passive debugging aid. 

When either of the DCA modes are enabled, the I/O block 
220h-22Fh is decoded, split into read and write banks, and 
mapped into the BCP's data memory. For the IBM mode, 
the I/O block from 2DOh-2DAh is decoded and the Write­
Under-Mask function is enabled. In addition, the 8k of dual­
port RAM is defined according to the IBM interface mode. 
For CUT emulation, only the lower 4k of the dual-port RAM 
is used. For OFT mode, the entire 8k block may be utilized. 
Neither DCA mode utilizes dual-port memory, but it is still 
available to the PC so the MPA-II firmware maps screen 
information there. Note that the MPA-II hardware always de­
codes I/O addresses 220h-22Fh and 2DOh-2DFh regard­
less of the PC interface selected. 

The MPA-II interface mimics the DCA and IBM interfaces by 
interrupting the BCP when write accesses occur to the I/O 
space of interest (220h-22Fh, 2DOh-2D6h and 2D8h-
2DEh) while holding off any other PC accesses to the 
MPA-II board, thus "locking out" the PC. The BCP monitors 
these I/O accesses through the use of the "MPA-II Access" 
register contained in a PAL. This register captures the loca­
tion of the last PC I/O access. The BCP's I/O access inter­
rupt routines then get control and emUlate in software 
DCA's or IBM's I/O hardware functions (such as IBM's write 
under mask function). At the end of interrupt processing, the 
software "unlocks" the PC, allowing access once again to 
the MPA-ll's memory and I/O registers by the PC. The ex­
treme speed of interrupt processing by the BCP makes this 
feasible. Accesses of the dual-port RAM by the PC are regu­
lated by the interface only in assuring that simultaneous 
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accesses by the PC and BCP do not occur. The location of 
the dual-port RAM in the PC memory map is determined by 
a value written into the 2D7h I/O location. This "Segment" 
register is the upper 7 bits of the PC address field and is 
compared with the address presented during PC memory 
cycles for decoding. Writing different values to this register 
moves the decoded memory block anywhere within the PC 
memory space to avoid conflicts. The pacing of dual-port 
accesses is handled by provisions in the emulated interface 
definition. 

The PC I/O map for the MPA-II adapter board is as follows: 

TABLE 4-3. MPA-II PC I/O Map 

220h- IRMA Command/Status Register 
221h- IRMA Argument/Response 
222h- IRMA Argument/Response 
223h- IRMA Argument/Response 
224h- Decoded, Unused 
225h- Decoded, Unused 
226h- IRMA Command/Attention 

Semaphore Control 
227h- IRMA Command/Attention Semaphore 
228h- Smart Alec Command/Status Register 
229h- Smart Alec Argument/Response Register 
22Ah- Smart Alec Argument/Response Register 
22Bh- Smart Alec Argument/Response Register 
22Ch- Decoded,Unused 
22Dh- Smart Alec Control Register 
22Eh- Smart Alec Control Register, 

Command/ Attention Semaphore 
22Fh- Smart Alec Strobe 

2DOh- IBM Interrupt Status Register 
2D1h- IBM Visual/Sound 
2D2h- IBM Cursor Address Low 
2D3h- IBM Cursor Address High 
2D4h- IBM Connection Control 
2D5h- IBM Scan Code 
2D6h- IBM Terminal 10 
2D7h- IBM/MPA-II Dual-Port Segment 

Location Register 
2D8h- IBM Page Change Low 
2D9h- IBM Page Change High 
2DAh- IBM 87E Status 

2DBh- MPA-II Parm/Response Register 
2DCh- MPA-II Configuration/Command Register 
2DDh- Decoded, Unused 
2DEh- Decoded,Unused 
2DFh- MPA-II RIC Register 
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FIGURE 4-5. PC Terminal Emulation Architecture 
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FIGURE 4-10. MPA-II Configuration Register 

MPA-II Firmware Organization 

The BCP firmware provides true 5250, 3270, and 3299 emu­
lation support, as well as providing the intelligence behind 
the PC interface. To do this, a software architecture radical­
ly different than the DCA or IBM systems was developed. 
The real power of the BCP lies in its rich instruction set and 
full featured CPU. Taking advantage of that power, the BCP 
firmware is interrupt driven and task oriented. It is not truly 
multi-tasking, although the firmware logically handles mUlti­
ple tasks at once. The firmware basically consists of a round 
robin task scheduler (called the Kernel) with real-time inter­
rupt handlers to drive the system. Events that happen in 
real-time, such as accesses by the PC or host commands, 
schedule tasks to complete background processing. Real­
time status and responses are developed and presented in 
real-time. 

The BCP firmware uses a number of memory constructs 
known as templates to handle its data structures. The pri­
mary construct is the D~P, or Device Control Page. The 
DCP is a 256 byte block that contains all global system 
variables. The DCP contains a map of which SCPs, or Ses­
sion Control Pages are active. Each SCP is 256 bytes and 
contains all variable storage for a particular session; 3270, 
5250, or 3299. Each SCP has a corresponding screen buff­
er, and optionally an EAB buffer (there is no EAB in 5250 
terminals). 

MPA-II Performance 

The BCP is running at 18.8696 MHz with no instruction 
memory wait states and one data memory wait state. This 
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yields an average instruction cycle time of 160 ns, a maxi­
mum instruction cycle time of 212 ns and a maximum inter­
rupt latency of 237 ns (excluding wait states due to PC ac­
cesses). Although such performance may seem excessive, 
remember that the 3270 protocol requires a 5.5 JLs re­
sponse time and that the newer controllers sometimes send 
commands less than 10 JLs apart. These commands must 
be executed in real-time, so for short periods of time, ex­
tremely high performance is required. In the MPA-II, the 
BCP also has other real-time demands on it. For example, 
the MPA-II requires the BCP to perform DCA or IBM 110 
hardware emulation real-time in firmware. Furthermore, both 
the controller and the PC are asychronous events which 
can (and do) occur at the same time. 

Using Hewlet Packard's 16500A Logic Analyzer and 
10390A System Performance Analysis Software, the 
MPA-lI's worse case performance scenario was analyzed. 
This scenario consisted of the MPA-II running 3270 with 
EAB installed while performing IRMA file transfers using 
DCA's FTCMS software. A special NO-OP routine was add­
ed to the MPA-II software in order to achieve 100% utiliza­
tion of the BCP. The breakdown of relative activity is shown 
in Table 4-4. 

TABLE 4-4. MPA-II Performance 

Coax Related Activity 9% 
IRMA Related Activity 10% 

Total Activity 19% 

As is shown in Table 4-4, the BCP still has over 81 % of its 
bandwidth free to do additional tasks. 



Advanced Product Possibilities 

With over 81 % of the BCP's bandwidth unutilized, possibili­
ties for advanced 3270/3299 and 5250 devices with excep­
tional overall system performance, advanced features, and 
compactness become both realizable and practical. For ex­
ample, if a more efficient PC to MPA-II (BCP) interface was 
developed which eliminated the need for the BCP firmware 
to emulate I/O hardware, and additional tasks were off load­
ed to the BCP, such as Regen/EAB buffer to PC Screen 
buffer translation, then the overall system performance of a 
full featured MPA-II CUT mode terminal could rival that of 
the most advanced IBM CUT mode terminals. Yet, the PC 
memory requirements of such an emulator would be less 
than that of the simplest PC emulator on the market today 
because the PC software would only need to process key­
strokes and copy the BCP's translated PC screen buffer 
directly into the PC's screen buffer memory. Furthermore, 
advanced features such as 3299 support could be included 
without additional hardware costs. All this is possible using 
the current MPA-II board without hardware modification be­
cause the MPA-Il emulates DCA and IBM interface hard­
ware using BCP software. Adding this new interface into the 
product requires only software changes. . 

5.0 HARDWARE ARCHITECTURE 

This chapter focuses on the hardware employed to satisfy 
the goals of the MPA-II project. Designed to support both 
the coax (3270/3299) and twinax (5250) protocols, the 
hardware also allows emulation of the PC interfaces out­
lined in Chapter 2. By taking advantage of the BCP's power 
and integrating the extra logic requirements into program-

FRONT END I BCP CORE 
I 

INSTRUCTION 
I 
I 

RAt.I 

I 
I 
I 

mabie logic devices, this level of functionality was provided 
on a single half-height PC XT / AT card. In an effort to con­
vey the reasons behind specific decisions made in the hard­
ware design, the design methodology is presented from a 
"top-down" perspective. 

Architectural Overview 

The MPA-II hardware should be viewed as three conceptual 
modules (see Figure 5-1 ), including: 

1. BCP minimum system core, consisting of the BCP, in­
struction memory, data memory, clock, and reset logic. 

2. PC interface including the PC and BCP memory decode 
and interrupts. 

3. Coax/twisted pair and twinax front-end logic and connec-
tors. 

These module divisions are denoted by the dotted lines 
seen in Figure 5-1. The minimum system core is required, 
with some modifications, for any design using the BCP. The 
type of bus (PC, PS/2™ Micro Channel™, VME, etc.) and 
transfer rate requirements dictate the interface logic, which, 
for the MPA-II design, is optimized for the PC XT/AT I/O 
channel. The front-end logic meets the physical-layer re­
quirements of the 3270 and 5250 protocols. 

Since much of the logic external to the BCP is implemented 
in programmable logic devices (PALs), these conceptual 
partitions overlap at the device level. Although the design 
can be implemented in discrete logic, we chose to use pro­
grammable logic devices to shorten development time, de­
crease board real-estate requirements, and maintain maxi­
mum future adaptability. The schematic and the listings de­
scribing the logic embodied in the PALs are in the Hardware 
Reference in Appendix A. 
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BCP Minimum System Core 

The BCP offers a high level of integration and many func­
tions are provided on-chip; there is, however, a minimal 
amount of external logic required. This core is comprised of 
the BCP and the external logic require to support the clock 
requirements, reset control, Harvard memory architecture, 
and multiplexed AD bus (see Figure 5-2). 

Clock Source 

The coax and twinax protocols operate at substantially dif­
ferent clock frequencies (2.3587 MHz and 1 MHz, respec­
tively), therefore two clock sources are required. The BCP 
has the software-programmable flexibility to drive both the 
CPU and transceiver in the following ways: the clock inde­
pendently divided down to either or both sections, or by two 
separate asynchronous clocks (utilizing the external trans­
ceiver clock input, XTCLK). To provide sufficient waveform 
resolution, the transceiver must be clocked at a frequency 
equal to eight times the required serial bit rate. This means 
that an 18.8696 MHz (8 x 2.3587 MHz) clock source is re­
quired when operating in the 3270 coax environment and an 
8 MHz clock (8 x 1 MHz) is needed for the 5250 twinax 
environment. An 18.8696 MHz clock is also a good choice 
for the BCP's CPU section. 

Therefore, in the coax mode, the transceiver and the BCP's 
CPU share the same clock source. To maximize the avail­
able CPU bandwidth in the twinax mode, the 18.8696 MHz 
clock source drives the CPU while a TIL clock is used to 
drive the BCP's external transceiver clock input. Therefore, 
in the twinax mode, the BCP's CPU and transceiver sections 
operate completely asynchronously. 
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The 18.8696 MHz clock is provided by the BCP's on-chip 
clock circuitry and an external oscillator. This circuit, in con­
junction with external series load capacitors, forms a 
"Pierce" parallel resonance crystal oscillator design. The 
oscillator is physically located as close as possible to the X1 
and X2 pins of the BCP to minimize the effects of trace 
inductances. The traces (0.05") are wider than normal. NEL 
Industries makes a crystal specifically cut for the 
18.8696 MHz frequency and is the recommended source for 
these devices. This crystal requires a 20 pF load capaci­
tance which can be implemented as 40 pF on each lead to 
ground minus the BCP/socket capacitance and the trace 
capacitance. A typical value for the BCP/socket combina­
tion capacitance is 12 pF. The wide short traces contribute 
very little additional capacitance. We therefore chose a 
standard value of 27 pF for the discrete ceramic capacitors 
C24 and C25, placing them as close as possible to the crys­
tal. The 5.60 pull up resistor tied to X1 is designed to im­
prove oscillator start up under unusual power supply ramp 
conditions. This is normally not a problem for PC power sup­
plies so that the resistor could be omitted. The twinax clock 
is provided by a standard 8 MHz TIL monolithic clock oscil­
lator attached to the BCP's external clock input, XTCLK. 

The MPA-II runs the BCP at full speed, 18.8696 MHz 
((DCR[CCSll = 0), with zero instruction (nIW) and one 
data (now) wait states, resulting in a T-state of 53 ns. For a 
system running the BCP at half speed, 9.45 MHz 
((DCR[CCSll = 1), with zero instruction (nIW) and zero 
data (now) wait states, the T-state would be 106 ns. The T­
state can be calculated using the following equation: 

T-state = 1/(CPU Clock Frequency) 
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Reset Control 

Power-up reset for the BCP consists of providing the de­
bounced, active low, minimum pulse width specification of 
ten T-states. Since the BCP powers upin the slowest con­
figuration, a T-state is the period of the oscillator divided by 
two, or 106 ns. The external logic must therefore provide a 
minimum 1.06 JJ.s reset pulse to the BCP. The MPA-II design 
incorporated two reset sources in addition to power-up in­
cluding: the PC I/O channel reset· control signal (active 
high), and an automatic reset if the digital supply voltage 
drops by more than 10%. 

We chose the Texas Instruments TL7705A supply voltage 
supervisor to monitor Vee and provide the minimum pulse 
width requirement. This device will reset the system if the 
digital 5V supply drops by more than 0.5V, and keep the 
reset asserted until the voltage returns to an acceptable 
level. The TL7705A will also assure that the minimum time 
delay is met. The time delay is set by an external capacitor 
and an internal current source. Since this time delay is not 
guaranteed in the data sheet, we chose a 0.1 JJ.F ceramic 
capacitor resulting in a typical 1.3 ms reset pulse width. A 
0.1 JJ.F ceramic capacitor is connected to the REF input of 
the chip to reduce the influence of fast transients in the 
supply voltage. The active high PC reset signal is inverted in 
the MPA-ILAC (MPA-II Auxiliary Control) PAL. The active 
low output of the bipolar TL7705A is the MPA-II system re­
set and is pulled up by a 10k resistor for greater noise immu­
nity. 

Memory Architecture 

The BCP utilizes separate instruction and data memory sec­
tions to overcome the single bus bandwidth bottleneck of­
ten associated with more conventional architectures. In­
struction memory is owned exclusively by the BCP (remote 
processor accesses to this memory occur through the BCP, 
and only when the BCP is stopped); therefore, the entire 
instruction memory/bus bandwidth is available to the BCP. 
This architecture allows the BCP to simultaneously fetch 
instructions and access data memory, thus load/store oper­
ations can be very quick. It is important to note, however, 
that the instruction bus bandwidth does have some depen­
dency on data bus activity. If a remote processor, for in­
stance, is currently the data bus master, execution of an 
instruction accessing data memory will be waited, degrading 
BCP CPU performance. 

The speed of both instruction and data memory accesses is 
limited by memory access time. Since the BCP features pro­
grammable memory wait states, the designer has the flexi­
bility of choosing memories strictly on a cost/performance 
trade-off. No ex1ernal hardware is required to slow the BCP 
memory access down (unless the maximum number of pro­
grammable wait states is insufficient, in which case the' 
WAIT input of the BCP can be utilized). Instruction memory 
access time has the biggest impact on system performance' 
since every instruction executed involves an access of this 
memory. Each added instruction wait state degrades zero­
wait state performance by approximately 40%. Load/store 
operations occur less frequently in normal code execution, 
therefore relatively slower data memory can often be uti­
lized. Each additional data memory wait state degrades the 
performance of a zero-wait state data access by about 
33%. 
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Instruction Memory 

A design goal for the MPA-II project dictated our choice of 
static RAM for instruction memory, since the ability to soft­
load code from the PC was necessary. Furthermore, to max­
imize CPU bandwidth we chose zero wait-state instruction 
memory operation. When the hardware was designed, in­
struction memory requirements were estimated at 4k to 8k 
words, therefore two 8k x 8-bit static RAMs were employed. 

Instruction memory access ti~e requirements can be calcu­
lated using Parameter 1, the Instruction Memory Read Time, 
Table 5-5, Instruction Memory Read Timing, of the Device 
Specifications section of the DP8344B Data Book. 

(nlW + 1.5) T + C-19) ns 

Where: nlW is the number 'Of instruction wait-states, and 
T = 53 ns. Therefore the maximum access time is (0 + 1.5) 
53 - 19 = 60.5 ns. For the MPA-II system running the BCP 
at half speed (T-state = 106 ns), the maximumaccess time 
is (0 + 1.5) 106 - 19 = 140 ns. Comparing both the half 
and full speed maximum instruction memory access tim~ 
requirements, it is apparent that 55 ns RAMs are appropri: 
ate. A complete instruction memory timing analysis is pro~ 
vid~d in Appendix B. . 

Reads of instruction memory by the remote system occur 
through the BCP and look identical in timing to the local 
(BCP) reads on the instruction bus. 

Soft-Load Operation 

The BCP. cannot modify instruction memory itself. Memory 
is only written through the BCP (while the BCP is stopped) 
from the remote system (PC), and is referred to as "soft­
load" operation. Since the BCP has an 8-bit data path and a 
16-bit instruction bus, instructions are read or written by the 
PC in two access cycles; the first cycle accessing the low 
byte of the instruction, the second cycle accessing the high 
byte of the instruction and automatically incrementing the 
Program Counter after the instruction has been accessed. 
See the Remote Interface section of the DP8344B Data 
Book for a complete description of instruction memory ac­
cesses. 

The critical parameter for instruction writes is the minimum 
write strobe pulse width of the RAM, which is about 40 ns 
for most 8k x 8 55 ns static RAMs (55 ns RAM specifica­
tions are compared to the BCP minimum requirements since 
it represents the worst case). The IWR (BCP Instruction 
WRite output, active low) minimum pulse width is calculated 
from Parameter 20 (IWR Low Time) in Table 5-22, Fast Buff­
ered Write of IMEM, of the Device Specifications section of 
the DP8344B Data Book: 

(nlW + 1)T -10ns 

For soft-loads thafoccur after reset, the CPU clock is in the 
POR half-speed state and the number of instruction and 
data memory wait states is a maximum; therefore aT-state 
is 106 ns and nlW equals 3; thus, IWR minimum pulse width 
is (3 + 1) 106 - 10 '= 414 ns. Soft-loads that occur after 
the BCP Device Control Register has been initialized to full 
speed operation with no instruction wait states represent 
the worst case timing of (0 + 1) 53 -.,. .10 = 43 ns, which is 
still greater than the 55 ns RAM requirement of 40 ns. 



Other parameters that must be considered are data setup 
and hold times for the RAM. The BCP must provide valid 
data on the Instruction bus before the minimum setup time 
of the RAM and hold the valid data on the bus at least as 
long as the minimum hold time. For the RAMs we consid­
ered, these times were 25 ns and 0 ns, respectively. Again, 
looking at Table 5-22 (Parameter 19, I valid before IWR ris­
ing), we see that if valid data for the high byte of the instruc­
tion is present on the AD bus in time, the BCP is guaranteed 
to present valid data on the Instruction bus a minimum of 

(nlW + 1) T - 18 ns 

before the rising edge of IWR. The BCP will hold that data 
on the bus for a minimum of 22 ns afterward (see Parameter 
18, IWR rising to I Disabled). To see that the minimum set 
up time is met for both the half speed POR state and the full 
speed operation, note that both (3 + 1) 106 - 18 ns = 

406 ns (half speed) and (nlW + 1) 53 - 18 ns = 35 ns (full 
speed) are greater than the minimum set up time of the 
RAM which was 25 ns. Furthermore, the minimum hold time 
of 22 ns, for both half speed and full speed, is greater than 
the 0 ns required. Thus, successful operation is assured. 
See the MPA-II timing analysis in Appendix B and the PC 
interface section in this chapter for a discussion of AD bus 
timing. 

Data Memory 

A considerable amount of data memory was required for the 
MPA-II design since the system supports multiple sessions 
(see Chapter Six, MPA-II Software Architecture, for more 
information). For this reason we specified 32K of 8-bit data 
memory). 

Data Memory Timing 

Data RAM can be accessed by both the BCP and the re­
mote system, part of the RAM appears to the remote sys­
tem as dual-ported RAM via the Remote Interface logic of 
the BCP. This memory can be both read from and written to 
during BCP code execution. Designing in the data RAM is 
therefore a more complicated procedure than selecting in­
struction memory. Using 53 ns for the MPA-II T-state and 
one for now (number of data wait-states) as defined earlier, 
we can verify the critical memory parameters by comparing 
the results of the calculations against the RAM require­
ments. The 32K x 8, 100 ns static CMOS RAM minimum 
requirements for the critical parameters are compared 
against the BCP's minimum specifications and are listed in 
Table 5-1. For a complete description of the BCP minimum 
specifications, see Appendix B. 

TABLE 5-1. Data Memory Timing 

Parameter RAM BCp· 

Address Setup 0 47.5 
Chip Select to Write End 90 122.5 
Access Time 100 108.5 
Write Strobe Width 60 96 
Data Setup 40 86 
Data Hold 0 31.5 

-All units are In nanoseconds. 

'53 ns T-state with one data wait state. 
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Again, the numbers reveal the validity of the hardware de­
sign for local (BCP) accesses of data memory. Please see 
the PC interface section for timing related to the remote 
access. Also, an MPA-II timing analysis of both 106 ns and 
53 ns T-states is provided in Appendix B. 

Multiplexed AD Bus 

The BCP's 8-bit data bus is multiplexed with the lower 8-bits 
of the data memory address bus to lower pin count require­
ments. This necessitates de-multiplexing the Address/Data 
bus externally. The timing of the ALE (Address Latch En­
able) control signal relative to the AD bus is optimized for 
use with a standard octal latch, therefore a 74ALS573 is 
employed to provide separate Address and Data buses for 
the system. The TRI-STATE buffers of the latch are enabled 
by the BCP output LCL (active low) such that if a remote 
access occurs this device will TRI-STATE. 

PC Interface 

As mentioned earlier, the MPA-II supports the industry-stan­
dard interfaces associated with coax and twinax terminal 
emulation. These include: 

COAX: 
IBM 3270 Emulation Adapter Interface 
DCA Decision Support Interface (IRMA) 

TWINAX: 
DCA Smart Alec Interface 

These interfaces share some common elements, but have 
many differences as well. The IBM adapter employs an in­
terrupt-driven interface, IRMA's PC interface is a polled im­
plementation, and Smart Alec, while operating in a polled 
environment, has the capability of interrupting the PC as 
well. The IBM Emulation Adapter's control registers are 
mapped into the PC's I/O space; the screen buffer is 
mapped into the PC's memory space and is relocatable 
(see Table 5-2). The two DCA interface occupy a contigu­
ous block of PC I/O space only; there screen buffer(s) are 
not directly visible to the PC. These architectures are ex­
plored in much greater detail in Chapter 6 of this manual. 
Note than the MPA-II utilizes some of the IBM reserved reg­
isters for MPA-II usage. These MPA-II registers may be easi­
ly relocated by changing the MPA-II PAL equations. 

TABLE 5-2. PC Mapping of the MPA-II Board 

Description 
Address 

I/O Memory 

IBM Interface: 
Remote Interface 02DF* 

Control (RIC) 
Decoded and Unused 02DD* - 02DE* 
MPA-II Configuration 02DC* 

Register 
MPA-II Parm/Response 2DB* 

Register 
IBM Control Registers 02DO-02DA 

IBM Screen Buffer CEOOO 
(Relocatable) 

DCA DSllnterface: 
IRMA 0220-0227 
Smart Alec 0228-022F 

'Reserved IBM register spaces. 



The MPA-II design had to encompass all of these imple­
mentations. This was accomplished by taking advantage of 
the underlying similarity of the interfaces as well as the 
speed and flexibility of the BCP. We minimized chip count 
and board space requirements through judicious partitioning 
of the PC address decode while emulating in BCP software 
the interface registers in data RAM. Refer to Figure 5-3 for 
an overview of the hardware architecture employed in im­
plementing the BCP/PC interface. 

The PC address decoding is partitioned into sections that 
first check for accesses to the relocatable memory block 
and accesses to the 1/0 register addresses of the different 
interfaces. These addresses are then translated into the 
proper area of the BCP data memory. The BCP data memo­
ry map is divided in half, the lower 32k is contained in the 
single 32k x 8 RAM described earlier, and the upper 32k is 

decoded for several functions (see Table 5-3). The decod­
ing sections feed into a control section that makes the final 
decision on whether (or not) the current PC bus cycle is an 
access of one of the emulated systems. It should be noted 
that the type of emulation is not selectable; the MPA-II 
board will respond to accesses of all of the PC addresses 
detailed in Table 5-2. The MPA-II will not run concurrently 
with any of the boards it emulates, or any other board that 
overlaps with these same addresses. 

The BCP's RIC (Remote Interface Control) register is 
mapped into the PC's 1/0 space. The PC can always find 
this register by reading 1/0 hex address 02DFh. The DCA 
interfaces (IRMA and Smart Alex) occupy PC 1/0 addresses 
220-22Fh. The IBM interface occupies PC 1/0 addresses 
2DO-2DFh for register space, and a relocatable 8k block of 
memory for the screen buffer(s). 

TABLE 5·3. BCP Data Memory Map 

Description BCP Address (A15-0) PC 1/0 Address 

Auxiliary Control Register (mp~data) AOOO-BFFF 
PC Access Register (mp~access) 8000-9FFF 
'IBM API Registers 7FDO-7FDF 2DO-2DF 
DCA API (IRMA and Smart Alec) 220-22F 

PC Writes: 7F20-7F2F 
PC Reads: 7E20-7E2F 

BCP-Owned Memory Area 2000-7E1F 
'Screen Buffer Area 0OOO-1FFF Relocatable 

°Dual-Ported RAM (Visible to Both BCP and PC) 
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FIGURE 5·3. BCP/PC Interfaces 

PC 1/0 and Memory Address Decode 

The BCP CPU and Remote Interface units operate autono­
mously. Since the 1/0 registers are mapped into the BCP's 
data RAM and the CPU has to know which register was 
written to by the PC, external logic is provided that latches 
the low six bits of the address bus during remote accesses. 
The BCP can read this external register to identify which 
emulated register has been modified and take the appropri­
ate action. 

The relocatable memory segment location where the 
screen buffer of the IBM interface is located is decoded in 
discrete hardware consisting of the following components: 
U15, a 74ALS521 magnitude comparator that compares the 
PC memory address accessed against the stored value of 
the relocatable memory segment address and asserts the 
signal MMATCH (active low) when a match occurs; the Seg­
ment Register U16, a 74ALS574 containing the stored 
memory address used to identify the memory segment of 
the screen buffer block. The relocatable block of data mem­
ory defaults to base address CEOOO on the IBM adapter. In 
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the MPA-II System, the base address of the memory seg­
ment must be loaded into the segment register (PC 1/0 ad­
dress 2D7h) before the PC can access the IBM screen buff­
er area in dual-port RAM. This Segment Register is not ac­
cessible by the BCP. It is only accessed by a PC write to 1/0 
location 2D7h. A PC read of the 1/0 address 2D7h access­
es a corresponding RAM location which is written in the 
same manner as all writes to the IBM 1/0 locations 200-
2DAh, as described next. 

Accesses to the 1/0 locations used by the IBM Interface 
(200h-2DFh) and the DCA DSI Interfaces (220-22Fh) are 
decoded as follows: PC address lines A 12-A4 are brought 
into the MPA-II_PD (PC Address Decode) PAL-U9 for de­
code. PC address lines A 14-A 16 and A 17 -A 19 are first 
decoded with three input NOR gates, U5B and U5C, which 
are in a 74ALS27. The outputs of both of these NOR gates 
are then brought into the MPA-II_PD PAL for further de­
code. Note that PC address lines A 13 and AO-A3 are not 
decoded at this point. A preliminary decision is made by the 
MPA-II_PD Pal to indicate if the IBM or DCA interfaces are 
being accessed. The outputs DCA-REG and IBM_REG 



indicate which, if any, emulated interface is being accessed. 
These signals are used in conjunction with MMATCH, the 
PC address lines A 13 and AO-A4, and the read and write 
strobes of the PC in U7, the MPA-II_RD (MPA-II Register 
Decode) PAL to make the final determination on the validity 
of the access. If it is an emulated interface I/O register ac­
cess, IOJCCESS will be asserted back to the MPA-II_PD 
PAL. This PAL will in turn translate the access to the top of 
the BCP data RAM where the I/O register page is located 
(see Table 5-3). Note the differentiation in Table 5-3 be­
tween PC reads and writes for the DCA translation. This is 
required to emulate the dual-ported register files used on 
the DCA boards. 

If the PC access is to the IBM screen buffer, IOJCCESS 
will not be asserted out of the MPA-II_PD PAL. The MPA­
"_PD PAL will, when [C[ goes high on the remote access, 
force A15 low and pass the buffered address lines A12-8 
onto the data RAM. Address lines A 14 and A 13 are imple­
mented through U8, MPA-II_CT (MPA-II Control Timing) 
PAL. PC address lines A7-0 are buffered by U14, a 
74ALS541 and passed onto the BCP data memory address 
lines AD7 -0 when LCL switches high for the remote ac­
cess. The data memory RAM's chip select, DMEM_CS, is 
asserted on any remote access. If the BCP's LCL output 
goes high, DMEM_CS will be asserted low; on,a local ac­
cess, this signal will be asserted if the BCP's A 15 signal is 
low (RAM occupies the lower half of the BCP's memory 
map). 

This scenario for remote accesses works because RAM is 
the only element external to the BCP that is visible to the 
PC. If the PC is accessing the BCP (RIC, the Program Coun­
ter, or Instruction Memory), the BCP's READ/WRITE 
strobes will not be asserted to the data RAM. On a PC ac­
cess of the BCP's RIC register, for example, data RAM will 
be selected and the CMD (CoMmanD) output of the MPA­
"_RD PAL will be asserted to the BCP, selecting the BCP's 
RIC. No bus collision will occur on a read or data inadver­
tently destroyed on a write because the BCP will not assert 
the external strobes on an internal register access. 

The MPA-II_RD PAL also combines the memory and I/O 
read/write strobes to form the REMRD/REMWR strobes to 
the rest of the MPA-II system. Since PC bus cycles can only 
be validated by the assertion of one of these strobes, this 
PAL makes the final decision on the validity of the bus cycle. 
If the PC cycle is a valid access of the BCP system, this PAL 
will assert RAE (Remote Access Enable), the BCP's chip 
select. RIC, the output CMD, and the BCP's READ/WRITE 
strobes will determine which part of the system receives or 
provides data. 

The PC IRQ interrupt for the IBM interface is set and 
cleared by the BCP through U3, the MPA-IIJC (Auxiliary 
Control) PAL. The interrupt is set from the BCP by pointing 
data memory to an address in the range AOOO-BFFF (see 
Table 5-3), and writing to this location with AD7 set high; it is 
likewise cleared by writing with AD7 low, to this location. The 
interrupt powers up low (deasserted) and can be assigned 
to PC interrupts IRQ2, 3, or 4 by setting the appropriate 
jumper (JP4-6). 

Remote accesses of the BCP are arbitrated and handled by 
the Remote Interface and Arbitration System (RIAS) control 
logic. The arbiter sequential state machine internal to the 
BCP shares the same clock with the CPU, but otherwise 
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operates autonomously. This unis is very flexible and offers 
a number of configurations for different external interfaces 
(see the Remote Interface and Arbitration System chapter 
of the BCP data book). We chose to use the Fast Buffered 
Write/Latched Read interface configuration to maximize the 
possible data transfer rate and minimize the BCP perform­
ance degradation by the slower PC bus cycles. Data is buff­
ered between the PC and BCP data buses with U18, a 
74ALS646, giving us a monolithic, bidirectional transceiver 
with latches for PC reads and buffering for PC writes. 

Rest Time Circuit 

To support the newer high performance PC AT compatibles 
entering the market, a rest time circuit is implemented on 
the MPA-II. The purpose of this circuit is to prevent two 
remote accesses made by a high performance PC from be­
ing mistaken as one remote access. (For a detailed descrip~ 
tion of BCP remote rest time, refer to the Remote Interface 
and Arbitration System section of the DP8344A data sheet). 

The rest time circuit is implemented in one PAL 16RA8, 
MPA-II_RI, U4. This rest time circuit implements all modes 
except Latched Write and does not take advantage of the 
increase in speed possible when CMD does not change 
from one access to the next. 

First, how the REM_ENABLE Signal controls remote ac­
cesses will be discussed. Then, a description of the opera­
tion of the rest time state machine in the PAL 16RA8 will be 
given. 

The REM_ENABLE signal is produced in the rest time 
PALRA8 and is low during rest time. After rest time is over 
the REM_ENABLE signal goes high until the end of the 
next access, when it once again goes low during rest time. 
The signal REM_ENABLE is fed back into MPA-II_RD, 
U7. 

Through the rest time circuit, both REMRD and REMWR are 
held high when REM_ENABLE = o. This prevents all re­
mote accesses during rest time. When rest time is over 
REM_ENABLE = 1 and then decodes of MEMW, MEMR, 
lOW, and lOR control REMRD and REMWR respectively. 

To describe the operation of the state machine, a state by 
state description follows. When reading through the states 
one should remember that the state machine can only 
change states on the rising edge of CLK-OUT. 

STATE: IDLE 
This state is entered when a system reset occurs. In this 
state REM_ENABLE = 1, and XACK controls the state of 
PC_RDY. 

The state machine will stay in this state until a valid remote 
access starts (Le. RAE = 0). Then the state machine 
moves to CYCLLSTART. 
NOTE: The Signal ~ is a full decode of a valid access by MPA-U_RD, U7. 

If I1Al: is only an address decode, it alone would not indicate that a 
valid access has started. 

STATE:CYCLE--START 
In this state, REM_ENABLE = 1 and XACK controls the 
state of PC_RDY. The state machine will stay in this state 
until the remote access ends, indicated by RAE = 1. Then 
the state machine moves to WAIT1. 
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STATE: WAIT1 

In this state, REM_ENABLE = 0 and, if a remote access 
starts, the PC_RDY is driven low whenever RAE = O. After 
one ClK-OUT cycle the state machine moves to WAIT2. 

STATE: WAIT2 

In this state, REM_ENABLE = 0 and PC_RDY is driven 
low whenever RAE = O. After another ClK-OUT cycle the 
state machine moves to WAIT3. 

STATE: WAIT3 

In this state, REM_ENABLE = 0 and PC_RDY is driven 
low whenever RAE = O. After another ClK-OUT cycle the 
state machine moves to WAIT4. 

STATE: WAIT4 

In this state, REM_ENABLE = 0 and PC_RDY is driven 
low whenever RAE = O. After another ClK-OUT cycle the 
state machine moves to WAIT5. 

STATE: WAIT5 

In this state, REM_ENABLE = 0 and PC_RDY is driven 
low whenever RAE = O. If the BIRO signal is still active low, 
indicating that BIRO has not been serviced yet by the BCP 
interrupt software, then the state machine will continue to 
loop in this state until BIRO goes inactive high. This will 
prevent the PC from gaining access to the BCP's memory 
(Dual Port or 1/0), thus "locking out" the PC if it attempts 
another access. A write to the MPA Access register, U17, 
which will toggle AREG_ClK -, will cause BIRO to go in­
active high, thus "unlocking" the PC. In this way the MPA-II 
hardware will lock out the PC until the BCP interface soft­
ware has time to gain control and emulate the DCA or IBM 
register hardware. This feature allows the MPA-II to imple­
ment future IBM 1/0 register changes by simply updating 
the BCP software. If BIRO was not active low or when it 
goes inactive high, the next state is WAIT6. 

STATE: WAITS 

In this state, REM_ENABLE = 0 and PC_RDY is driven 
low whenever RAE = O. If a remote access has started (Le., 
RAE = 1) the next state will be RESUME. Otherwise, the 
next state is WAIT? 

STATE: WAIT7 

In this state, REM_ENABLE = 0 and PC_RDY is driven 
low whenever RAE = O. If a remote access has started (Le., 
RAE = 1) the next state will be RESUME. Otherwise, the 
next state is WAITS. 

STATE: WAITS 

In this state, REM_ENABLE = 1 (allowing accesses) and 
PC_RDY is driven low whenever RAE = O. This state was 
included in the state machine to reduce the state machine's 
logic. Otherwise it would have been logical to return to the 
IDLE state from WAIT7 if RAE = 1 (no access in progress). 
If RAE = 0, then the next state will be RESUME. Otherwise, 
the state machine returns to IDLE. 

STATE: RESUME 

In this state, REM_ENABLE = 1 and PC_RDY is driven 
low while RAE = O. When the state machine moves to this 
state, it means that a remote access took place quickly after 
the previous access. The state machine allows the remote 
access to proceed since'the PC-bus has been waited long 
enough by the previous states. However, the PC-bus must 
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be waited until the XACK signal can take over control of 
driving PC_RDY. For the design of the MPA-II, once 
REM_ENABLE = 1, then the XACK signal would take over 
control within two ClK-OUT cycles. So the state machine 
will wait the PC-bus through this state and the next. On the 
next rising edge of ClK-OUT the state machine will move to 
the HOLD state. 

STATE: HOLD 

In this state, REM_ENABLE = 0, and PC_RDY is driven 
low whenever RAE = O. Again, this state is provided to wait 
the PC-bus for a second ClK-OUT cycle while still allowing 
the remote access. The next state is CYCLE_STATE. In 
CYClE~START, XACK will take over control of PC_RDY. 

The BCP BIRQ Interrupt 

The BCP's bi-directional pin, BIRO, is configured as an inter­
rupt into the BCP, and is set on the trailing edge of a PC 
write of the BCP 1/0 register space (excluding RIC and the 
Segment Register, Le., 1/0 addresses 2DFh and 2D7h, re­
spectively). The BCP can identify which 1/0 register has 
been accessed by reading the Access Register, U17, a 
74AlS574, mapped directly above the dual-ported RAM in 
the BCP's data memory map (see Table 5-3). The bits 
AD5-0 are the last 6 bits of the 1/0 register's address. A 
BCP write to this register will clear BIRO, and therefore, the 
BCP interrupt. Timing for the clock enable of U17 is provid­
ed by the MPA-II_CT PAL, US. U17 is clocked only on 
remote writes to the 1/0 register page (denoted· by 
10JCCESS being asserted from the MPA-II_RD PAL) 
and local BCP writes of U17. The BCP uses the BIRO inter­
rupt in order to service the PC in a timely manner since the 
PC is locked out until the BCPsoftware unlocks the PC. 
After an MPA-II reset, or when the BCP writes a zero to AD5 
of the Auxiliary Control Register (address AOOOh), called the 
BIRO_EN line, then the BIRO line is disabled. While 
BIRO_EN is low (inactive) the PAL MPA-II_RI does not 
lock out the PC, nor does it assert the BIRO line. 

Front-End Interface 

The line interface is divided into coaxltwisted pair and twin­
ax sections, each section being comprised of an interface 
connector, receiver, and driver logic. These sections are in­
dependent but are never operated concurrently. The coax 
medium requires a transformer-coupled interface while the 
multi-drop twinax medium is directly coupled to each device. 

The transmitter interface on the DPS344A is. sufficiently 
general to allow use in 3270, 5250, and S-bit transmission 
systems. Because of this generality, some external hard­
ware is needed to adapt the outputs to form the signals 
necessary to drive the twinax line. The chip provides three 
signls. DATA-OUT, DATA-DlY, and TX-ACT. DATA-OUT is 
biphase serial data (inverted). DAT A-Dl Y is the biphase se­
rial data output (non-inverted) delayed one-quarter bit-time. 
TX-ACT, or transmitter active, signals that serial data is be­
ing transmitted when asserted. TX-ACT functions as an ex­
ternal transmitter enable. The BCP can invert the sense of 
the DATA-OUT and DATA-DlY Signals by asserting TIN 
(TMR[3] I. This feature allows both 3270 and 5250 type 
biphase data to be generated, and lor utilization of inverting 
or non-inverting transmitter stages. 

The line drivers are software selectable from the BCP via 
logic embedded in the MPA-IIJC and MPA-II_CT PAls. 



Table 5-3 reveals that the Auxiliary Control Register is 
mapped into the AOOO-BFFF area of the BCP memory map. 
The coax/twisted pair module is selected by pointing to this 
address area and writing a "0" out on the AD6 data line. 
The twinax is selected by writing a "1" on this signal. The 
coax/twisted pair section is selected on power-up. The volt­
age supervisor described earlier in the Reset Control sec­
tion also plays a role here, deactivating the line drivers of 
both sections if the + 5V supply drops more than 10% at 
any time. The receivers are selected on-board the BCP by 
the SLR (Select Line Receiver) control in the Transceiver 
Control Register. Setting !TCR[511 to a "1" selects the on­
chip comparator and thus the coax input; a "0" on this con­
trol selects the TIL-IN receiver input for the twinax input. 

Coax/Twisted Pair Interface 

At this date, the largest installed base of terminals is the 
3270 protocol terminal which primarily utilizes coax cabling. 
Because of phone wire's easy accessibility and lower cost, 
twisted pair cabling has become popular among end users 
for new terminal installations. In the past, baluns have been 
used to augment existing coax interfaces, but their poor per­
formance and cost considerations leave designers seeking 
new solutions. In addition, the integration of coax and twist­
ed pair on the same board has become a market require­
ment, but this is a considerable design challenge. A brief 
summary of the combined coax/twisted pair interface con­
cepts, a discussion of the design, and a description of the 
results follows. 

The concepts which must be addressed by the combined 
coax/twisted pair interface will be discussed at this time. 
These concepts are important to understand why the vari­
ous design decisions are implemented in the interface. 
Coax cable is normally driven on the center conductor with 
the shield grounded. Conversely, unshielded twisted pair ca­
ble is driven on both lines. Because of the way that each is 
driven, coax operation is often called unbalanced and twist­
ed pair operation balanced. 

Transmission line characteristics of coax and twisted pair 
cables can be envisioned as essentially those of a low-pass 
filter with a length-dependent bandwidth. In 3270 systems, 
different data combinations generate dissimilar transmission 
frequencies because of the Manchester format. These two 
factors combine to produce data pulse widths that vary ac­
cording to the data transmitted and the length and type of 
cable used. This pulse-width variation is often described as 
"data jitter". 

In addition to line filtering, noise can cause jitter. Coax cable 
employs a shield to isolate the signal from external noise 
Electromagnetically balanced lines minimize differential 
noise in unshielded twisted pair cable. In other words, the 
twisted pair wires are theoretically equidistant from any 
noise source, and all noise super-imposed on the signal 
should be the common-mode type. Although these methods 
diminish most noise, they are not totally effective, and envi­
ronmental interference from other nearby wiring and circuit­
ry may still cause problems. 

Besides the effects of jitter, reflections can produce undesir­
able signal characteristics that introduce errors. These re­
flections may be caused by cable discontinuities, connec­
tors, or improper driver and receiver matching. Signal edge 
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rates may aggravate reflection problems since faster edges 
tend to produce reflections that may dramatically distort the 
signal. Most reflection difficulties occur over short cable 
(less than 150 ft.) because at these distances reflections 
suffer little attenuation and can significantly distort the sig­
nal. Since the timing of the reflections is a function of cable 
length, it may be possible to operate at some short distance 
and not at some greater length. 

An effective receiver design must address each of the 
above concerns. To counteract the effects of line filtering 
and noise, there must be a large amount of jitter tolerance. 
Some filtering is needed to reduce the effects of environ­
mental noise caused by terminals, computers, and other 
proximate circuitry. At the same time, such filtering must not 
introduce transients that the receiver comparator translates 
into data jitter. 

Like the receiver design, a successful driver design should 
compensate for the filtering effects of the cable. As cable 
length is increased, higher data frequencies become attenu­
ated more than lower frequency signals, yielding greater dis­
parity in the amplitudes of these signals. This effect gener­
ates greater jitter at the receiver. The 3270 signal format 
allows for a high voltage (predistorted) magnitude followed 
by a low voltage (nondistorted) magnitude within each data 
half-bit time. Increasing the predistorted-to-nondistorted sig­
nal level ratio counteracts the filtering phenomenon be­
cause the lower frequency signals contain less predistortion 
than do higher frequency signals. Thus, the amplitude of the 
higher frequency components are greater than the lower 
frequency components at the transmitter. Implementation of 
this compensation technique is limited because nondistort­
ed signal levels are more susceptible to reflection-induced 
errors at short cable lengths. Consequently, proper imped­
ance matching and slower edge rates must be utilized to 
eliminate as much reflection as possible at these lengths. 

Besides improved performance, both unbalanced and bal­
anced operation must be adequately supported. Electro­
magnetic isolation for coaxial cabling can be provided by a 
properly grounded shield. Electrically and geometrically 
symmetric lines must be maintained for twisted pair opera­
tion. For both cable types, proper termination should be em­
ployed, although terminations slightly greater than the char­
acteristic impedance of the line may actually provide a larg­
er received signal with insignificant reflection. In the board 
layout, the comparator traces should be as short as possi­
ble. Lines should be placed closely together along their en­
tire path to avoid the introduction of differential noise. These 
traces should not pass near high frequency lines and should 
be isolated by a ground plane. 

An extensive characterization of the BCP comparator was 
done to facilitate this interface design. The design enhances 
some of the BCP transceiver'S characteristics and incorpo­
rates the aforementioned suggestions. 

The interface design takes into account the common com­
parator attributes of power supply rejection, variable switch­
ing offset, finite voltage sensitivity, and fast edge rate sensi­
tivity. Vee noise can effect the comparator output when the 
inputs are biased to the same voltage. 

This particular type of biasing may render portions of the 
comparator susceptible to supply noise. Variable switching 
offset and finite voltage sensitivity cause the receiver de-



coding circuitry to see a substantial amount of data jitter 
when signal amplitudes approach the sensitivity limits of the 
comparator. At these signal magnitudes, considerable varia­
tion in the output of the comparator is observed. Finally, 
edge sensitivity may allow a fast edge to introduce errors as 
charge is coupled through the inputs during a rapid predis­
torted-to-nondistorted level transition, especially as the non­
distorted level is reduced in magnitude. 

The receiver interface design (Figure 5-4) addresses each 
of the BCP comparator's characteristics. A small offset 
(about 17 mY) separates the inputs to eliminate Vcc-cou­
pled noise. This offset is relatively large compared to possi­
ble fabrication variations, resulting in a more consistent, de­
vice-independent operation. The offset has the added bene­
fit of making the comparator more immune to ambient noise 
that may be present on the circuit board. A 2:1:1 transform­
er (arranged as a 3:1) restores any voltage sensitivity lost by 
introducing the offset. A bandpass filter is employed to re­
duce the. edge rate of the signal at the comparator and to 
eliminate environmental noise. The bandwidth (30 kHz to 
30 MHz) was chosen to provide sufficient noise attenuation 
while producing minimum data jitter. Refer to Appendix C for 
a derivation of the filter equations. 

Like many present 3270 circuits, the driver design 
(Figure 5-5) utilizes a National Semiconductor DS3487 and 
a resistor network to generate the proper signal levels. The 
predistorted-to-nondistorted ratio was chosen to be about 3 
to 1. This ratio was observed to offer good noise immunity 
at short cable lengths (less than 1 00 feet) and error-free 
transmission to an IBM 3174 controller at long cable lengths 
(greater than 5000 feet). 

To allow for two interfaces in the same circuit design, the 
coax/twisted pair front end (Figure 5-6) includes an ADC 
Telecommunications brand TPC connector to switch be­
tween coax and twisted pair cable. This connector allows 
different male connectors for coax and twisted pair cable to 
switch in different interfaces for the particular cable type. 
The coax interface has only the shield capacitively coupled 
to ground. The 510n resistor and the filter loading produce 
a termination of about 95n. The twisted pair interface bal­
ances both lines and possesses an input impedance of 
about 100n. This termination is somewhat higher than the 
characteristic impedance (about 96n) of twisted pair. Termi­
nations of this type produce reflections that do not tend to 
generate mid-bit errors, as well as having the benefit of cre~ 
ating a larger voltage at the receiver over longer cable 
lengths. 
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FIGURE 5-6. BCP Coax/Twisted Pair Front End 
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The performance of the combined coax/twisted pair inter­
face is impressive. Performance of the BCP interface typi­
cally extended over 7000 feet of RG62A1U coax and 1700 
feet of AT&T DIW 4 pair/24 AWG unshielded twisted pair. 
This operation met or exceeded many of the current 3270 
solutions. The performance of other 3270 products was ob­
tained from production stock of competitors' equipment and 
should be taken as typical operation. Although these long 
distances are possible, it is recommended that companies 
specify their products to IBM's PAl specifications of 5000 
feet of coax cable. The extra long distance capability of the 
new interface will assure the designer a comfortable guard­
band of performance. Similarly, 50% margin on the un­
shielded twisted pair capability will approximately match the 
900 foot specification. 

On the MPA-II as much attention has been paid to the lay­
out as to the interface design. The traces from the 
BNC/Twisted Pair ADC connector to the BCP's analog 
comparator were made as wide as possible, placed as close 
together as practical, and kept on the same side of the 
board. The ground plane has been placed directly under 
these traces. All digital lines have been kept as far away as 
practical. Finally, the ground plane has been partially split, 
keeping all the analog interface grounds on one part of the 
ground plane, including the BCP ground pin 43; and all of 
the digital logic ground pins on the other side. See Appendix 
A for the actual layout of the MPA-II. 

Twlnax (5250) Interface 

The 5250 transmission system is implemented in a bal­
anced current mode; every receiver/transmitter pair is di­
rectly coupled to the twinax at all times. Data is impressed 
on the transmission line by unbalancing the line voltage with 
the driver current. The system requires passive termination 

at both ends of the transmission line. The termination resist­
ance value is given by: 

Rt: = Zo/2; where 
Rt: = Termination Resistance 
Zo: = Characteristic Impedance 

In practice, termination is accomplished by connecting both 
conductors to the shield via 54.9n, 1 % resistors; hence the 
characteristic impedance of the twinax cable of 107n ±5% 
at 1.0 MHz. Intermediate stations must not terminate the 
line; each is configured for "pass-through" instead of "ter­
minate" mode. Stations do not have to be powered on to 
pass twinax signals on to other stations; all of the receiv­
er/transmitter pairs are DC coupled. Consequently, devices 
must never output any signals on the twinax line during pow­
er-up or down that could be construed as data, or interfere 
with valid data transmission between other devices. The 
MPA-II board is factory set to "terminate" mode. To effect 
"pass-through" mode, jumpers JP2 and JP3 must be re­
moved. 

The bit rate utilized in the 5250 protocol is 1 MHz ± 2% for 
most terminals, printers and controllers. The IBM 3196 dis­
play station has a bit rate of 1.0368 MHz ± 0.01 %. The data 
are encoded in biphase, NRZI (non-return to zero inverted) 
manner; a "1" bit is represented by a positive to negative 
transition, a "0" is a negative to positive transition in the 
center of a bit cell. This is opposite from the somewhat 
more familiar 3270 coax method. The biphase NRZI data is 
encoded in a pseudo-differential manner; i.e., the signal on 
the "A" conductor is subtracted from the signal on "B" to 
form the waveform shown in Figure 5-7. Signals A and Bare 
not differentially driven; one phase lags the other in time by 
180 degrees. Figures 5-8 and 5-9 show actual signals taken 
at the driver and receiver after 5000 ft. of twinax, respective­
ly. 

o 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 

time (ns) I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
1. A OY 

-0.3Y 

-1.6Y 

2. OV 

3. (B-A) 

NRZI 

-0.3Y 

-1.6Y 

1.6Y 

0.3Y 
OY 

-0.3Y 

-1.6Y 

5V 
OV 

Note 1: The signal on phase A is shown at the initiation of the line quiesce/line violation sequence. 

Note 2: Phase B is shown for that sequence, delay in time by 500 ns. 

Note 3: The NRZI data recovered from the transmission. 

FIGURE 5-7. Twinax Waveforms 
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The Signal shown was taken with channell 01 an oscilloscope connected to 
phase B. channel 2 connected to A. and then channel 2 inverted and added 
to channell. 

FIGURE 5-8. Signal at the Driver 
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5500 6500 7500 8500 9500 10500 
TLlF/l04BB-14 

The Signal shown was viewed in the same manner as Figure 5-8. The severe 
attenuation is due to the liltering affect 01 5000 It. 01 twinax cable. 

FIGURE 5-9. Signal at the Receiver 

The signal on either the A or B phase is a negative going 
pulse with an amplitude of -0.32V ±20% and duration of 
500 ± 20 ns. During the first 250 ± 20 ns, a pre-distortion or 
pre-emphasis pulse is added to the waveform yielding an 
amplitude of -1.6V ± 20%. When a signal on the A phase 
is considered together with its' B phase counterpart, the 
resultant waveform represents a bit cell or bit time, com­
prised of two half-bit times. A bit cell is 1 J.Ls ± 20 ns in 
duraction and must have a mid bit transition. The mid bit 
transition is the synchronizing element of the waveform and 
is key to maintaining transmission integrity throughout the 
system. The maximum length of a twinax line is 5000 ft. and 
the maximum number of splices in the line is eleven. Devic­
es count as splices, so that with eight devices on line, there 
can be three other splices. The signal 5000 ft. and eleven 
splices from the controller has a minimum amplitude of 
100 mV and a slower edge rate. The bit cell transitions have 
a period of 1 J.Ls ± 30 ns. 

The current mode drive method used by native twin ax devic­
es has both distinct advantages and disadvantages. Current 
mode drivers require less power to drive properly terminat­
ed, low-impedance lines than voltage mode drivers. Large 
output current surges associated with voltage mode drivers 
during pulse transition are also avoided. Unwanted current 
surges can contribute to both crosstalk and radiated emis­
sion problems. When data rate is increased, the surge time 
(representing the energy required to charge the distributed 
capacitance of the transmission line) represents a larger 
percentage of the driver's duty cycle and results in in­
creased total power dissipation and performance degrada­
tion. 

A disadvantage of current mode drive is that DC coupling is 
required. This implies that system grounds are tied together 
from station to station. Ground potential differences result in 
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ground currents that can be significant. AC coupling re­
moves the DC component and allows stations to float with 
respect to the host ground potential. AC coupling can also 
be more expensive to implement. 

Twinax signals can be viewed as consisting of two distinct 
phases, phase A and phase B, each with three levels: off, 
high, and low. The off level corresponds with 0 rnA current 
being driven, the high level is nominally 62.5 rnA, + 20% -
30%, and the low level is nominally 12.5 rnA, +20% -
30%. When these currents are applied to a properly termi­
nated transmission line the resultant voltages impressed at 
the driver are: off level is OV, low level is 0.32V ± 20%, high 
level is 1.6V ±20%. The interface must provide for switch­
ing of the A and B phases and the three levels. A bi-modal 
constant current source for each phase can be built that has 
a TTL level interface for the BCP. 

The MPA-lI's twinax line drivers are current mode driver 
parts available from National Semiconductor and Texas In­
struments. The 75110A and 75112 can be combined to pro­
vide both the A and B phases and the bi-modal current drive 
required. The MPA-IIJC PAL adapts the BCP outputs to 
the twinax interface circuit and prevents spurious transmis­
sions during power-up or down. The serial NRZ data is in­
verted prior to being output by the BCP by setting TIN, 
{TMR[3]J. 

The pseudo-differential mode of the twinax signals make 
receiver design requirements somewhat different than that 
of the coax circuit. Hence, the analog receiver on the BCP is 
not used. The BCP provides both analog inputs to an on­
board comparator circuit as well as a TTL level serial data 
input, TTL-IN. The sense of this serial data can be inverted 
in software by asserting RIN, {TMR[4]J. 

The external receiver circuit must be designed with care to 
assure reliable decoding of the bit-stream in the worst envi­
ronments. Signals as small as 100 mV must be detected. In 
order to receive the worst case signals, the input level 
switching threshold or hysteresis for the receiver should be 
nominally 29 mV ± 20%. This value allows the steady state, 
worst case signal level of 100 mV, 66% of its amplitude 
before transitioning. 

To achieve this, the National Semiconductor LM361 was 
chosen, a differential comparator with complementary out­
puts. The complementary outputs are useful in setting the 
hysteresis or switching threshold to the appropriate levels. 
The LM361 also provides excellent common mode noise 
rejection and a low input offset voltage. Low input leakage 
current allows the design of an extremely sensitive receiver 
without loading the transmission line excessively. In addition 
to good analog design techniques, a passive, single-pole, 
low pass filter with a roll-off of approximately 1 MHz was 
applied to both the A and B phases. This filter essentially 
conducts high frequency noise to the opposite phase, effec­
tively making the noise common mode and easily rejectable. 

Design equations for the LM361 in a 5250 application are 
shown here for example. The hysteresis voltage, Vh, can be 
expressed the following way: 

VH = VRIO + ((RIN / (RIN + Rt) • VOH) 

- (RIN / (RIN + Rt) • Vou) 

» 
z . en 
~ ...... 



where: 

VH - Hysteresis Voltage, Volts 

RIN - Series Input Resistance, Ohms 

RF - Feedback Resistance, Ohms 

. , CIN, -Input Capacitance, Farads 

VAIO Receiver Input Offset Voltage, Volts 

VOH - Output Voltage High, Volts 

VOL ~ Output Voltage Low, Volts 

The input filter values can be found through this relation­
ship: 

VCIN = VIN1 - VIN2/1+ jwCIN (RIN1 + RIN2) 
where' RIN1 = RIN2 = RIN: 

where 

"Fr6 = w/2c 

Fro = ,1 /(2c ,. RIN ,. CIN) 

CIN = 1 /(2c ,. RIN ,. Fro) 

VIN1" VIN2 -Phase A and B Signal Voltages, 
-Volts 

VCIN. -Voltage' Across CIN, or the Output 
of the Filter, Volts 

RIN1, RIN2 -":':Input Resistor Values, 
RIN1 = RIN2, Ohm~ 

Fro --':'Roll-Off Frequency, Hz 

w -Frequency, Radians 

The roll-off frequency, Fro, should be set nominally to 1 MHz 
to allow for, transitions at the transmission bit rate. The tran­
sition rate when both phases are taken together is 2 MHz, 
but then both RIN1 and RIN2 must be considered, so: 

or, 

Fro2 = 1/(2c" 2 ,. RIN ,. CIN) 

where Fro2 = 2 ,. Fro, yielding the same results . 

Table 5-4 shows the range of values expected. 

Advanced Features of the BCP 

The BCP has a number of advanced features that give de­
signers flexibility to adapt products to a wide range of IBM 
environments. Besides the basic multi-protocol capability of 
the BCP, the designer may select the inbound and outbound 
serial data polarity, the number of received and transmitted 
line quiesces, and in 5250 modes, a programmable exten­
sion of the TX-ACT signal after transmission. 

The polarity selection on the serial data stream is useful in 
building single products that handle both 3270 and 5250 
protocols. The 3270 biphase data is inverted with respect to 
5250. 

Selecting the number of line quiesces on the inbound serial 
data changes the number of line quiesce bits that the re­
ceiver requires before a line violation to form a valid start 
sequence. This flexibility allows the BCP to operate in ex­
tremely noisy environments, allowing more time for the 
transmission line to charge at the beginning of a transmis­
sion. The selection of the transmitted line quiesce pattern is 
not generally used in the 5250 arena, but has applications in 
3270. Changing the number of line quiesces at the start of a 
line quiesce pattern may be used by some equipment to 
implement additional repeater functions, or for certain inflex­
ible receivers to sync up. 

TABLE 5-4. Twinax Receiver Design Values, 

Value Maximum 
", 

RIN. 4.935E+03 

RF 8.295E+05 

CIN· 4.4556E-11 

VOH 5.250E+OO 

VOL 4.000E-01 

VIN + 1.920E+00 

VIN -1.920E+00 

VAIO 5.000E-03 
R 6.533E-03 

Fro 1.200E+06 

VH 3.368E-02 

,:Xc, 7.4025E+03 

Minimum Nominal 

4.465E+03 4.700E+03 
7.505E+05 7.900E+05 
2.6875E-11 3.3863E-11 
4.750E+OO 5.000E+OO 
2.000E-01 3.000E-01 
1.000E-01 

,1.000E-01 
O.OOOE+OO 1.000E-03 
5.354E:"'-03 5.914E-03 
8.000E+05 1.000E+06 
2.691E-02 2.880E-02 

2.9767E+03 4.7000E+03 
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Units 

Ohms 
Ohms 
Farads 
Volts 
Volts 
Volts 
Volts 
Volts 
Ohms 

Hz 
Volts 
Ohms 

Tolerance 

0.5 
0.5 

0.2 



The most important advanced feature of the BCP for 5250 
applications is the programmable TX-ACT extension. This 
feature allows the designer to vary the length of time that 
the TX-ACT signal from the BCP is active after the end of a 
transmission. This can be used to drive one phase of the 
twinax line in the low state for up to 15.5 p.s. Holding the line 
low is useful in certain environments where ringing and re­
flections are a problem, such as twisted pair applications. 
Driving the line after transmitting assures that receivers see 
no transitions on the twinax line for the specified duration. 
The transmitter circuit can be used to hold either the A or B 
phase by using the serial inversion capability of the BCP in 
addition to swapping the A and B phases. Choosing which 
phase to hold active is up to the designer, 5250 devices use 
both. Some products hold the A phase, which means that 
another transition is added after the last half bit time includ­
ing the high and low states, with the low state held for the 
duration. Alternatively, some products hold the B phase. 
Holding the B phase does not require an extra transition and 
hence is inherently quieter. 

To set the TX-ACT hold feature, the upper five bits of the 
Auxiliary Transceiver Register, !ATR[3-7] I, are loaded with 
one of thirty two possible values. The values loaded select a 
TX-ACT hold time between 0 p.s and 15.5 p's in 500 ns 
increments. 

The connectors called out in the IBM specifications for the 
twinax medium are too bulky to mount directly to a PC 
board, therefore a 9-pin D subminiature connector is provid­
ed. This connector is then attached to a cable assembly 
consisting of a 1 foot section of twin-axial cable with the 
opposite gender 9-pin on one end and a twinax "T" connec­
tor on the other. This is then spliced into the twinax multi­
drop trunk. 

Miscellaneous Support 

The remaining components of the MPA-II will be covered in 
the following section, including the board itself and decou­
piing capacitors. 

The. system is implemented on a four-layer substrate, using 
minimum 8 mil trace widths/spacing for all signals except 
the analog traces in the front-end. Here we specified mini­
mal trace lengths and 55-80 mil trace widths. The traces 
from the BNC/Twisted Pair ADC to the BCP's analog com­
parator were made as wide as possible, placed as close 
together as practical, and kept on the same side of the 
board. The ground plane has been placed directly under 
these traces. All digital lines have been kept as far away as 
practical. Finally, the ground plane has been partially split, 
keeping all the analog interface grounds on one part of the 
ground plane, including the BCP ground pin 43; and all of 
the digital logic ground pins on the other side. See Appendix 
A for the actual layout of the MPA-II. These fairly common 
analog layout techniques are justified due to the complexity 
and power level of the analog waveforms present in the line 
interface. 
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Each device has one 0.1 p.F decoupling capacitor located 
as close as possible to the chip. These are chip capacitors 
(0.3 spacing, DIP configuration) to minimize lead length in­
ductance and facilitate placement. The + 5V supply line has 
two 22 p.F electrolytic capacitors, one at each end of the 
board. The other three supply lines (- 5V, + 12V, -12V) 
drive only the twinax analog circuitry, and are bypassed with 
10 p.F electrolytics where they come on to the board and 
0.1 p.F chip caps at the device(s). The BCP requires addi­
tional decoupling due to the large number of outputs, high 
frequency operation, and CMOS switching characteristics. 
We used a capacitor near each ground of the BCP. These 
decoupling capacitors, together with the ground and power 
planes of the multi-layer board, provide effective supply iso­
lation from the switching noise of the circuitry. 

6.0 MPA·II SOFTWARE ARCHITECTURE 

The primary goal of the MPA-II design was to accommodate 
multiple industry standard interfaces and protocol modes 
within a single, integrated structure (see Figure 6-1). The 
MPA-II software supports 3270,3299,5250, and all the PC 
interfaces in its 8k instruction memory bank, The system is 
configured at load time for the different options, and may be 
reconfigured "on the fly" by simply writing the new configu­
ration byte into the MPA-II configuration I/O register (2DCh). 
New tasks may be added to and old tasks removed from the 
MPA-II system easily. The modular organization of the sys­
tem allows for simple maintenance and enhancement. 

The basic concepts employed in the software design are: 
modularity, comprehensive data structures, and round-robin 
task scheduling. The system has been designed to allow 
modules to be written and integrated into the system by 
different groups. In the case of the National Semiconductor 
team developing the MPA-II, different groups developed the 
3270 and 5250 software modules. Some modules were set 
up in advance of any protocol development and have been 
the basis of the software development. The KERNEL.BCP 
module contains the task switching and scheduling routines. 
The header files MPA.HDR and DATARAM.HDR contain 
the basic global symbolic equates and data structures. 
DATARAM.HDR is organized such that the BCP's data RAM 
may be viewed through a number of templates, or maps. In 
other words, except for specific hardware devices mapped 
into memory, there are no hard coded RAM addresses. The 
8k dual-port block is fixed at the top of RAM, and the PC I/O 
space is mapped into the upper page of installed RAM, but 
the locations of screen buffers and variable storage are all 
determined through the set of templates used. The tem­
plates serve only to cause the assembler to produce relative 
offsets. The software developer chooses which base physi­
cal address to reference the offset to in order to address 
RAM. Usually, a pointer to RAM is set up in the IZ register 
pair, and the data are referenced by the assembler mne­
monics. For example: 

MOVE[lZ + control_reg], rd 

where: control_reg is a symbolic template offset. 

rd is a destination register 

I • 
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FIGURE 6-1. MPA-II Software Architecture 

This scheme allows the actual locations of data structures 
to move based on the system mode and current addressed 
device. This also allows the use of the dual-port RAM to 
change with the interface mode or protocol mode. 

The MPA.HDR module is included (via the .INPUT assem­
bler directive) in every module for use in the MPA-II system, 
regardless of protocol or interface mode. MPA. HDR defines 
specific hardware related constants such as RAM size, 
hardware I/O locations, etc ... MPA.HDR in turn includes: 
MACRO.HDR, which contains commonly used macros; 
BCP.HDR, which defines specific bits and bit fields for BCP 
registers; STDEQU.HDR, which contains BCP and assem­
bler specific declarations (it is included with the BCP As­
sembler System); and DATARAM.HDR, which contains the 
general RAM templates. Equate files for specific functions 
such as twinax, coax, and the different interfaces are includ­
ed where needed. The Kernel module contains the basic 
software structures which support all system activities. Sys­
tem initialization, scheduling tasks, re-configuration and 
halting the system all fall under its jurisdiction. All tasks are 
called from the Kernel and return to it. 

A number of rules have been adhered to during the MPA-II 
software development. These can best be discussed by re­
ferring to the BCP register allocation shown in Figure 6-2. 
The interrupt handlers are all considered background tasks. 
All 3270 "busy" type processing, 5250 command process­
ing, and system functions are foreground tasks. The Main 
and Alternate banks are reserved for foreground and back­
ground functions, respectively. In addition, the index regis­
ters IW and IX are reserved for the background functions. 
The index registers IY and IZ are reserved for the fore­
ground functions. "Reserved" means that the background 
routines promise to save and restore registers reserved for 
the foreground routines and that the foreground routines 
promise not to modify or rely upon registers reserved for the 
background routines. This system of reserving registers al-
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lows for extremely fast context switching since interrupt 
(background) routines only need to save and restore certain 
registers, (usually only IZ). The IZ pointer is generally used 
as the base pointer for all templates used by the tasks and 
interrupts. All foreground tasks are restricted to six levels of 
nesting to prevent the address stack from overflowing. Inter­
rupt handlers are limited to three levels. Interrupts are gen­
erally not interruptable. Some special cases exist, and they 
are detailed later in this document. 

The R20 and R21 registers are permanently reserved for 
the system. R20 is used as the R_CONFIG storage, or the 
current configuration state of the MPA-II (e.g., Coax/IRMA). 
R21 is the R_TASK register as defined by the Kernel. The 
Kernel uses this register as its task list, with scheduled 
tasks signified by their corresponding bits set and un-sched­
uled tasks' bits cleared. 

Kernel 

The major part of the Kernel module is a global routine 
called tasker. Tasker is a round robin task scheduler. Each 
major functional group in the MPA-II system has a corre­
sponding task that is invoked in this way. All tasks run to 
completion, meaning that once a task is given control, the 
task must return to the tasker in order to relinquish control. 
Interrupt handlers are initialized and masked on and off by 
their corresponding tasks, although the tasker maintains ul­
timate control over all activity. 

The Kernel consists of tasker, schedule_task, and desch_ 
task routines. These three combine to allow tasks to be 
added or removed from the active task list, providing orderly 
execution of tasks. All tasks are scheduled by calling sched­
ule_task with the task's identification byte in the selected 
accumulator. Schedule_task then adds the task to the ac­
tive task list. The task list is implemented in R_Task (R21) 
as discussed above. The list of tasks in the MPA-II system is 
shown in Table 6-1. 



TABLE 6-1. MPA Tasks 

Task ID 
Task 

Description 
Name 

0 clL-task Coax Session Processor 
1 tw_task Twinax Session Processor 
2 ibm_task IBM Interface Emulation 
3 irm8-task IRMA Interface Emulation 
4 s8-task Smart Alec Interface Emulation 
7 house_task System Initialization and Control 

System Initialization 

The file MPA2.BCX contains the microcode for the MPA-II 
system operation. The Loader (LD) softloads the BCP, sin­
gle steps the BCP-which allows the BCP to disable GIE if 
any interrupts are pending from previously executing code, 
starts the BCP executing from address zero (OOOOh), and 
then writes the MPA-II Configuration register (2DCh) to es­
tablish the desired mode of operation, e.g., Coax-IRMA, 
Coax-IBM, etc. Note that the MPA-II Configuration register 
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is written after the BCP is started. As discussed in the hard­
ware section, the MPA-II is capable of performing a hard­
ware "lock out" of the PC after the PC writes to the I/O 
locations 220h-22Fh, 2DOh-2D6h, and 2D8h-2DEh, if this 
feature has been enabled by the BCP microcode. This 
means that the next access (reading/writing dual-port mem­
ory as well as I/O memory) by the PC to the MPA-II board 
will be held off until the BCP's microcode signals the MPA-II 
hardware that the next PC access may complete. If the BCP 
is not running, its microcode cannot signal the hardware to 
unlock the PC and, therefore, the PC will stop processing. 
The user will then have to reset the PC in order for the PC's 
processor to regain control. When the MPA-II is reset (via 
the PC's reset bus line) this lock out capability is automati­
cally disabled and the PC hs unlimited access to the MPA-II 
board. But, after the MPA-II has been running, and it is then 
arbitrarily stopped, the PC lock out capability may still be 
enabled. Therefore, never perform I/O writes to the above 
mentioned registers unless the MPA-II board has been re­
set, or until after starting the BCP with microcode that either 
disables the lock out capability or unlocks the PC after an 
access occurs. 
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FIGURE 6-3. MPA-II Configuration Register 

After the Loader has started the BCP executing MPA2.BCX 
microcode, the microcode proceeds by disabling interrupts 
and initializing certain BCP registers to set CPU speed, 
memory access wait states, BIRO direction, etc. The IRO 
PC interrupt line is deasserted, PC I/O write generated 
BIRO interrupts are disabled, the PC lock Out capability is 
disabled, and BCP data memory is cleared. Finally, initializa­
tions for the HOUSEKEEP task are performed and then 
control is permanently passed to the Tasker, which will re­
tain control until the MPA-II is reset. 

After the Tasker performs its own initialization, it begins call­
ing any scheduled tasks. At this pOint, only the HOUSE­
KEEP task is scheduled. When HOUSEKEEP runs, the 
MP~CONFIG register (I/O location 2DCh) is written into 
R20, the R_CONFIG register, and then its contents are 
used to call the appropriate task initialization routines, refer 
to Figure 6-3. These routines set up any variables needed 
for the task, initialize interrupt handlers associated with 
them, and schedule their tasks. For instance, if the MP~ 
CONFIG register has been loaded with 49h, the routine 
would call clL-init to initialize the 3270 coax task, set up the 
appropriate interrupt handlers, and schedule clL-task. Then 
the irm3.-init routine would be called which sets up the in­
terface registers, the BIRO interrupt, etc ... Since the PC 
writes the MP~CONFIG register, HOUSEKEEP must in­
terpret the configuration value based on what it knows are 
valid configurations. In order to provide feedback to the PC, 
HOUSEKEEP builds a valid configuration value based on its 
interpretation. After all the initialization routines have com­
pleted execution and returned control to HOUSEKEEP, 
HOUSEKEEP places its value for the configuration back 
into the MPLCONFIG register with the POR_SYSTEM 
bit of the configuration clear, thus signaling the PC that ini­
tialization has completed and has been interpreted as the 
HOUSEKEEP configuration value shows. The Loader polls 
the MP~CONFIG register after writing it, waiting for the 
POR_SYSTEM bit to clear. When the Loader detects that 
the HOUSEKEEP mode initialization has completed, it com­
pares its value for the configuration with that returned by 
HOUSEKEEP. The Loader then issues warning messages 
to the user if any mismatches are found. When HOUSE­
KEEP passes control back to the tasker, all applicable tasks 
are scheduled and interrupts have been unmasked. 
HOUSEKEEP remains scheduled so that upon subsequent 
executions the RAM value for MAP _CONFIG can be com­
pared with R_CONFIG. If a difference is found or the 
POR_SYSTEM bit is set, then the initialization process 
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takes place again. If no difference is detected, then 
HOUSEKEEP returns directly to the tasker. 

Coax Task 

Basic 3270 emulation is handled by the clL-task and its 
associated routines independent of the interface mode con­
figured. The coax routines are set up to exploit the extreme­
ly quick interrupt latency of the BCP. Even so, the coax 
routines are fairly time critical. The basic structure used is 
divided into two distinct parts: the interrupt handler executes 
all real time tasks in the background and the clL-task rou­
tine handles the four "busy" type commands of the 3270 
protocol. The vast majority of decisions and command exe­
cutions must be carried out "on the fly", or under the aus­
pices of the interrupt handlers. Primarily, the interrupt han­
dlers do the bulk of command execution. See Table 4-1 in 
Chapter 4 for a list of some of the 3270 commands support­
ed. 

The scp_coax template, contained in CX-DATAR.HDR, is 
a reference to the RAM array that locates all. the coax termi­
nal variables, including relative pointers into the screen buff­
ers. Both a Regen buffer and EAB is supported if the 
MP~CONFIG register is set for. EAB. 

The clL-task module, CLTASK.BCP, contains the task 
initialization routine as well as the task itself. ClL-init sets 
up the RA and L T A interrupts and initializes all scp_coax 
variables and inter-task communications, and initializes the 
transceiver. CX-TASK's functions are: processing inter~ 

task mail, updating poll status, processing foreground com­
mands, and resetting the coax terminal. The foregroufld 
commands include SEARCH forward, SEARCH backward, 
INSERT, and CLEAR. 

The Session Control Page, SCP, for coax defines registers 
for each of the 3278 terminal registers, as well as additional 
ones for control of internal functions. Refer to Figure 4-2 in 
Chapter 4 for the internal structure of a 3270 terminal. Ini­
tially, the primary and secondary control registers are 
cleared, [STATJVAIL] is loaded into status_reg, and the 
poll response is set to POR (Power On Reset). GP6 on Al­
ternate Bank B is dedicated as the CoalL-state register. It is 
used to provide fast access to protocol state information 
such as 3299 address, cursor change, and write in progress. 

The MPA-II system uses a number of variables to maintain 
the coax session, including: 

cOa>L.stat -Emulation Mode 

mp3.-mainstat -Main Interface Control Bits, such as 
Clicker and Alarm Status 

I • 
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mp<L-auxstat -Auxiliary Interface Control, such as 
Buffer being Modified and On-Line/Off­
Line Control 

mp<L-control -Poll Status Control, such as POR, Key 
Pending, FERR, Operation Complete 

mp<L-auxcontrol -Additional Poll Status, such as EAB 
Status 

The initial state of the mp<L-mainstat register sets up flags 
to signal that a new cursor position is available and that the 
key buffer is empty. mp<L-control is set up with POR state 
and the status_pending flag set. Status_pending signals 
the poll response routine that POR status is available. In 
addition to flags and registers, there are two mailboxes that 
are used: the sub-task mailbox, and sync_mailbox. The RA, 
or receiver active, interrupt uses the sub-task mailbox to 
communicate to cx-task which, if any, foreground coax 
command needs to be procesed. Initially this is cleared. The 
sync_mailbox is the PC interface routines' communication 
mechanism. Keystroke passing, alarm acknowledgement 
and resetting of the terminal by the PC are communicated 
via sync_mailbox. 

In normal operation, the cx-task routine remains sched­
uled and the normal execution proceeds in the manner sug­
gested in Figure 6-1. The update_poll response routine 
uses the values in mp<L-control and mp<L-auxcontrol to 
determine if the session should adjust its poll status to the 
controller. The new_status routine maintains the sync_ 
mailbox and, therefore, communication with the various PC 
interface tasks. If there is mail, new_status reads and exe­
cutes the PC interfaces' commands. Of chief importance, 
the state of the keystroke buffer is checked here. It is the 
mechanism through which keystrokes may be passed from 
the PC interfaces to the poll response for transmission to 
the host controller. A high MP~MS_KEYEMPTY bit in 
mp<L-mainstat signals that the interface may supply a key­
stroke. If MP~MS_KEYEMPTY is low, the PC interface 
must wait. MP~MS_KEYEMPTY is cleared by new_ 
status when it infers from mp<L-control that the previous 
key has been acknowledged by the coax controller. 

The sub-task communication mailbox is checked by cx­
task next. If the receiver interrupt handler has decoded a 
foreground coax command request from the host controller, 
the mailbox will be non-zero. The value in the mailbox indi­
cates that either a forward or backward SEARCH, an 
INSERT, or CLEAR command, and its associated parame­
ters are ready for execution. The appropriate foreground 
coax command routine is then run to completion. The 
status_reg is now updated, since completion of a fore­
ground coax command requires an Operation Complete 
status to be returned to the host controller. The poll re­
sponse is updated again, if necessary, and then the cx­
task routine relinquishes control to the tasker. 
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Coax Interrupt Handlers 

The coax mode uses two interrupts to support coax activity: 
Receiver Active, RA, and Line Turn Around, LTA. There are 
two possible receiver interrupt handlers which can get con­
trol from the RA interrupt depending on whether 3270 or 
3299 support has been selected in the MP~CONFIG reg­
ister. Two Interrupt Vector tables are used to determine 
which receiver interrupt handler will get control. One inter­
rupt vector table, INT _PAGE, supports 3270 and 5250. The 
other interrupt vector table supports 3299. The active inter­
rupt vector table is determined by the contents of the II BR I 
register. The IIBR I register is set during configuration initial­
ization by a coax initialization routine. HOUSEKEEP deter­
mines which coax initialization routine gets executed based 
on the MP~CONFIG register, cx-init for 3270 and cx-
3299init for 3299. cx-3299init actually calls on cx-init to 
perform most of the initialization, with cx-3299init perform­
ing only 3299 specific initializations. 

The flow of the 3270 receiver interrupt handler is shown, in 
Figure 6-4. The only difference between the 3270 and 3299 
receiver interrupt handler is at the start. The 3299 receiver 
interrupt handler checks the first frame of the 3299 trans­
mission for the terminal address. If the address does not 
match the user specified terminal address (usually specified 
via the Loader), the receiver is reset and that transmission is 
ignored. If the terminal address of the 3299 address frame 
does match, then control is passed to the 3270 interrupt 
handler for command processing and response transmis­
sion back to the coax controller. 

The receiver interrupt handlers are background tasks to the 
Kernel and have been written to conform with the rules for 
all background tasks. These rules include the saving and 
restoring of any register used except those on the alternate 
B bank, IW and IX. Within the receiver interrupt handler, only 
the dedicated background register pair IX is used, IW is free 
for user enhancements. IX is used as the screen and EAB 
buffer pointer, and its is also used as the receiver software 
state machine variable OAT ~ VECTOR. More about the 
OAT~VECTOR will be discussed later. 

When the 3270 receiver interrupt gets control, either directly 
from the RA interrupt vector or indirectly from the 3299 re­
ceiver interrupt handler, it retains control until all the frames 
sent from the controller have been processed by the inter­
rupt handler or a transmission error is detected. We chose 
the Receiver Active interrupt and allowed the receiver inter­
rupt routine to retain control until the transmission is com­
plete because the MPA-II must support two asynchronous 
communications interfaces, the coax line and the PC inter­
face. By using the RA interrupt the receiver interrupt handler 
has more time with which to get control before it must re­
spond to the transmission sent. This extra time is needed 
when the receiver interrupt is held off while other interrupts 
are being processed or while the foreground routines have 
disabled interrupts. Note that care should be taken to insure 
that the receiver interrupt is never held off for more than 
4.5 Il-s or the MPA-II may not be able to respond to coax 
commands with 5.5 Il-s. 
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FIGURE 6-4. 3270 Coax Receiver Handler 
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(0 , Once the receiver interrupt handler gets control, it will check 
Z for Data AVailable, DAV, and receiver errors, handling them 

:<C immediately. If neither condition mentioned above is true, 
which is the case unless the receiver interrupt has been 
held off, the receiver interrupt handler will check for PC in­
terface activity and allow it to be serviced via one of the fast 
BIRO routines, (Le., either the IRMA or IBM PC interface 
fast BIRO routine). As the coax transmission is processed, 
the receiver interrupt handler will check for PC interface ac­
tivity in between the processing of coax data frames, when 
the receiver interrupt handler is idle anyway. Holding off the 
PC and its interface programs (Le., IRMA's E78, IBM's 
PC3270, etc ... ) is possible because they are not as time 
critical as a coax controller in expecting responses from the 
MPA-II. 

When data becomes available the receiver interrupt handler 
checks to see if the terminal is currently processing a coax 
foreground command and therefore "busy". If it is busy, 
then all data and commands are ignored, and the receiver 
interrupt handler enables just the LTA interrupt, allowing it 
to respond with TT / AR as soon as the coax line drops. Note 
that the L T A interrupt may now interrupt the receiver inter­
rupt handler. If the terminal is not busy, then a quick check 
to see if the current data frame is either the POLL or PACK 
command is performed. If this is true, the POLL or PACK 
command is handled immediately. Otherwise, bit 10 of the 
coax data frame is checked. If it is high, the data frame is a 
command from the controller. First the terminal internal de­
vice address is decoded .to determine which internal device 
the command is addressed to; for example EAB. Next, the 
command is decoded, its processing routine' is cqlled, and 
the command is processed. If it is a Read type command 
then the appropriate .response is immediately sent. If the 
coax command processed is a Write type command that 
exp~cts data'f~art;les to follow, either immediately or upon 
the next· transmission, the DATA-VECTOR is loaded with 
the address of the part of the receiver interrupt handler rou­
tine which is responsible for processing the expected data 
frame(s). Next, the L T A interrupt is enabled to allow it to 
respond with TT / AR when the line drops. Again, note that 
the LTA interrupt handler may interrupt the receiver interrupt 
handler from this point on. Finally, control passes to the 
receiver interrupt handler exit routine which terminates write 
mode, if it has been active, checks for PC activity and, if any 
occurred, handles it,and then checks for receiver activity. If 
the receiver is still active or data is available, the receiver 
interrupt handler loops baCk to process the next data frame, 
else the' interrupted foreground routine's state is restored 
and the receiver interrupt handler then exits. 

If bit 10 of the coax data frame is low then the data frame 
contains data for a previously executed command. The 
DAT ~ VECTOR is used to pass control to the appropriate 
section of code which processes that data.' After the expect­
ed data is processed,' or a command is executed which 
does not require following data, or an error is detected, then 
the DA T ~ VECTOR is set to areceiyer interrupt handler 
routine which accepts and trashes unexpected data frames. 
As with commands, after the'datais processed, the LTA 
interrupt is enabled to allow it to respond with TT / AR when 
the line drops. Finally, control returns to the receiver inter­
rupt handler exit routine, but note that write mode is not 
terminated, in most cases. ., . 
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The other interrupt used by the coax mode, L T A, requires a 
very simple interrupt handler since· its only task is to re­
spond with TT / AR (see Figure 6-5). This is because all oth­
er responses are handled by the receiver interrupt handler, 
as stated above. Thanks to the dedicated registers of the 
BCP and the tight coupling of the CPU to the Transceiver, 
the L T A interrupt handler does not have to save or restore 
any registers. This feature allows it to easily interrupt both 
foreground and background tasks, as well as perform in a 
timely manner. 

( LTA INTERRUPT) 

.l 
/ SEND TT/AR / 

.l 
( EXIT ) 
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FIGURE 6-5. 3270 Coax LTA Handler 

Due to the nature of the coax mode, most of the coax com­
mands must be processed during the receiver interrupt. The 
commands can be broken up into three basic groups: Read 
type commands which respond with information requested 
by the controller. Write type commands which write follow­
ing data frames into particular registers or screen buffers, 

. and foreground commands which perform various time con­
suming tasks such as clearing screen buffer memory. Of the 
Read type commands there is a special case called the 
POLL command. This command will be discussed first. 

Poll/Response Mechanism 

The Poll and POLL! ACK commands are handled in the 
C~BASRD.BCP module in rou,tines clL-poll and 
c><-pack, respectively. The basic functions of the cz-poll 
routine are to decide if TT / AR or special status should be 
returned to the coax controller and to handle the POLL 
modifiers in the upper bits of the POLL command. These 
modifiers include the terminal alarm and key click control. 
The determination of which status to send is made after 
checking mp~control for the MPA-STAT_PEND bit. If 
MPA-STAT_PEND is asserted, the poll response vari­
ables have new status to send. If no status is pending, 
TT / AR is sent. Next, the POLL command modifiers are applied 
to the alarm and clicker status bits in mpLmainstat. 

The POLL! ACK routine always responds with TT / AR. Next, 
mp~control is checked to see if the pending status has 
been polled by the coax controller .. If not, the POLL! ACK 
routine exits. Otherwise the pending status is cleared and 
both mp~control and mp~auxcontrol are updated. Then 
the poll response bytes, poliresp_lo and pollresp_hi, are 
cleared. 

Update_poll in the C~TASK.BCP module handles updat­
ing mp~control and mp~auxcontrol to reflect new status 
conditions. This routine' updates the poliresp_lo and hi 
bytes based on the priority of the status in mp~control 
and mp~auxcontrol. POR is the highest priority condition 
and outstanding status from EAB is the lowest. 



Read Commands 

All read type commands to the base are found in the 
CLBASRD.BCP module. Each read type command is de­
coded by the receiver interrupt handler and vectored to the 
appropriate cx-routine. The most basic read type com­
mand is cx-readata. This is invoked upon decoding the 
READ DATA data stream command. The character pointed 
to by the address counter is sent immediately. The ad­
drcounter variable is incremented after the character is 
sent. 

The cx-readmul routine is also found in the 
CLBASRD.BCP module and is vectored to when a READ 
MULTIPLE command is decoded. READ MULTIPLE ex­
pects multiple bytes of screen data to be sent within 5.5 p,s. 
The response is initiated inside cx-rdmul. The routine has 
two modes: 4 byte and 32 byte. The default mode is 4 byte 
and is determined by the state of the LSB in the secondary 
control register. Both modes use the variable addrcounter 
on the SCP to determine both where to find the data to send 
and how many bytes to send, up to the 4 or 32 byte limit. In 
other words, 4 and 32 bytes are the maximum that will be 
sent to the coax controller. The addrcounter is incremented 
after sending each byte and terminates the response when 
the two or five low order bits roll to zero. The transmit FIFO 
on the BCP will hold up to three bytes. The Transmitter 
FIFO Full flag, TFF, indicates when the transmitter's FIFO 
has been loaded with those three bytes. Using this flag, the 
read multiple routine begins by loading the transmitters 
FIFO. Once TFF is true, the read multiple routine then alter­
nates between checking the TFF flag and checking for PC 
activity via the BIRO flag. If PC activity is detected, then the 
appropriate fast BIRO routine is called to handle the PC 
access. When. all the requested bytes have been sent, the 
read multiple routine passes control to the receiver interrupt 
handler exit routine. The remaining read type commands 
are all handled similarly. Cx-rach and cx-racl respond 
with the high and low bytes of the addrcounter variable, 
respectively. Cx-rdid responds with the terminal ID byte. 
Cx-rxid responds with TT / AR since it is not implemented. 
Cx-rdstat responds with the staLreg variable. All these 
commands check for L T A prior to responding. If L TA has 
not occurred, then a protocol error is posted since read type 
commands are required to be the last frame in a message 
from a coax controller. The cx-rdid routine does additional 
processing, however. The status conditions OPERATION 
COMPLETE and FEATURE ERROR are cleared by recep­
tion of the READ ID command. 

Write Commands 

All write type commands to the base are found in the 
CLBASWR.BCP module. Commands are decoded by the 
receiver interrupt handler and vectored to this module at the 
cx-addresses. Each write command has an associated 
dv_stub for handling incoming data. The routines load the 
DATA-VECTOR with the appropriate stub before exiting. 

Cx-write and its data vector stub dv_write are responsible 
for writing data into the screen buffer, setting the MPA-ll's 
Buffer Being Modified semaphore and indicating the screen 
buffer update in the MPA page change word. When the next 
command is decoded, write mode will be terminated, the 
Buffer Being Modified bit will be cleared, and the Buffer 
Modified bit will be set. The dv_write stub is very critical in 
that very large blocks of data may be sent to the device 
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through the routine and cumulative interrupt latency effects 
may become significant. To address this, the dv_write rou­
tine always empties the receiver FIFO. 

Other write type commands found in the CW_BASWR.BCP 
module include the initial stubs for the foreground com­
mands; SEARCH FORWARD, SEARCH BACKWARD, IN­
SERT, and CLEAR. All these commands are initially decod­
ed and vectored here in real-time. When their associated 
parameters are received, the foreground commands are 
scheduled through the sub-task communcation mailbox. All 
the foreground commands cause the terminal to set 
NOTJVAIL status (busy) in the status register. All four 
respond with TT / AR to acknowledge reception of the com­
mand and parameters cleanly. 

All the other write commands load variables on the SCP 
corresponding to registers in the emulated terminal, or 
cause some controlling action in the terminal. These include 
the low and high bytes of the address counter, the mask 
value for CLEAR and INSERT, the control registers and re­
setting the terminal. Cx-reset calls the hosLreset routine 
that re-initializes the SCP variables to the POR state. The 
screen buffers are not cleared. The START OPERATION 
command causes a vector to the cx-start routine and re­
turns TT / AR. 

Foreground Commands 

The foreground routines are all executed by cx-task when 
the sub-task communication mailbox is filled with the appro­
priate value. These are tLinsert, tLclear, tLsforward 
and tLsback. The routines are found in the 
CLCOM.BCP module along with other local support rou­
tines. 

EAB Commands 

The EAB commands are found in the CLEAB.BCP mod­
ule. Read and write type commands addressed to the EAB 
feature are included here. The number of commands for the 
EAB feature are small enough that they are logically 
grouped together in one module, as opposed to the base 
commands. Some of the more complex commands from a 
performance standpoint are addressed to the EAB feature. 
WRITE ALTERNATE, WRITE UNDER MASK, and READ 
MULTIPLE EAB require the most real-time bandwidth of any 
coax function. 

The READ MULTIPLE EAB command is the same as its 
base counterpart except for two features: it functions with 
the EAB exclusively and, if the Inhibit Feature I/O step bit in 
the Control register is set, then this command is ignored. 
WRITE ALTERNATE receives a variable length stream of 
data that is written with screen and EAB data alternately. 
The WRITE UNDER MASK command uses data associated 
with the command, the EAB byte pointed to by the cursor 
register, and the EAB mask to modify the contents of the 
EAB. The algorithm is quite strange and is best described by 
the code. Please refer to eab_wum and dv_wum for spe­
cifics on the command implementation. 

IRMA Interface Overview 

IRMA is a member of a family of micro-to-mainframe links 
produced by Digital Communications Associates. It provides 
the IBM PC, PC XT, or PC AT with a direct link to IBM 3270 
networks via a coaxial cable connection to an IBM3174, 
3274, or integral terminal controllers with type "A" adapters. 
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The IRMA product includes a printed circuit board that fits 
into any available slot in IBM PCs and a software package 
that consists of a 3278179 Terminal Emulator program, 
called E78, and two file transfer utilities for TSO and CMS 
environments. Also included in the software are. BASICA 
subroutines useful in developing other application programs 
for automatic data transfer. 

The 3278179 Terminal Emulator provides the user with all 
the features of a 3278 monochrome or 3279 color terminal. 
The IRMA file transfer program provides all the information 
required for the successful transfer of files under the TSO or 
CMS IBM mainframe software packages. Also included in 
the IRMA software package are many other features such 
as program customization, keyboard reconfiguration, inde­
pendent and concurrent operation, ASYNC. Character Sup­
port, and PC clone support. 

As discussed in the introduction, the IRMA product was a 
forerunner in the 3270 emUlation marketplace and quickly 
gained wide acceptance. DCA made a considerable effort in 
documenting the interface between IRMA and its PC host. 
As a result this interface has become one of the industry 
standards used today. So it is only natural that this interface 
be used on the DP8344 Multi-Protocol Adapter-II to highlight 
the power and versatility of the DP8344A. Biphase Commu­
nications Processor. The MPA-II hardware with the MPA-II 
soft-Ioadable DP8344A microcode is equivalent in function 
to the DCA IRMA board with its associated microcode. Both 
directly interface with the IRMA software that runs on the 
PC (E78, file transfer utilities, etc.) providing all functions 
and features of the IRMA product. The following sections 
describe the hardware interface and the BCP software in 
the Multi-Protocol Adapter II Design/Evaluation kit that is 
used to implement the IRMA interface. All of the following 
information corresponds to Rev 1.42 of the IRMA Applica­
tion software. Later versions of the IRMA PC Application 
Software are downward compatible. 

Hardware Considerations 

The IRMA printed circuit board plugs into any normal expan­
sion slot in the IBM PC System Unit. It provides a back-pan­
el BNC connector for attachment by coaxial cable to a 
3174,3274, or integral controller. IRMA operates in a stand­
alone mode, using an on-board microprocessor (the Signet­
ics 8X305) to handle the 3270 protocol and screen buffer. 
Because of the timing requirements of the 3270 protocol, 
the on-board 8X305 operates independently of the PC mi­
croprocessor. The 8X305 provides the intelligence required 
for decoding the 3270 protocol, managing the coax inter­
face, ·maintaining the screen buffer, and handling the data 
transfer and handshaking to the System Unit (PC microproc­
essor). 

The IRMA card uses National Semiconductor's DP8340 and 
DP8341 3270 coax transmitter and receiver (respectively) to 
interface the 8X305 to the coaxial cable. The DP8340 takes 
data in a parallel format and converts it to a serial form while 
adding all the necessary 3270 protocol information. It then 
transmits the converted data over the coax in .a biphase en-
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coded format. The DP8341 receives the biphase transmis­
sions from the control unit via the coaxial cable. It extracts 
the 3270 protocol specific information and converts the seri­
al data to a parallel format for the 8X305 to read. 

The IRMA card contains 8K of RAM memory for the screen 
buffers and temporary storage. The screen and extended 
attribute buffers use approximately 6K of this memory. The 
remaining memory space is used by the 8X305 for local 
storage. A block diagram of the IRMA hardware is shown in 
Figure 6-6. 

The hardware used in enabling the 8X305 to communicate 
with the PC's 8088 processor is a dual four byte register 
array. The 8X305 writes data into one of the four byte regis­
ter arrays which is read by the 8088. The 8088 writes data 
into the other four byte register array which is in turn read by 
the 8X305. The dual register array is mapped into the PC's 
I/O space at locations (addresses) 220h...:.223h; 

A handshaking process is used between the two processors 
when transferring data. After the 8088 writes data into the 
array for the 8X305, it sets the "Command Request" flag by 
writing to I/O location 226h. The write to this location is 
decoded in hardware and sets a flip-flop whose output is 
read as bit 6 at location 227h. When the 8X305 has read the 
registers and responded with appropriate data for the 8088, 
it clears this flag by resetting the flip-flop. A similar function 
is provided in the same manner for transfers initiated by the 
8X305. Here the flag is called the "Attention Request" flag 
and can be read as bit 7 at location 227h. This flag is 
cleared when the 8088 writes to I/O location 227h. 

The MUlti-Protocol Adapter-II printed circuit board also plugs 
into any expansion slot in the IBM PC System Unit. Like the 
IRMA card, it provides a back panel BNC/Twisted Pair con­
nector for attachment by coaxial cable or unshielded twisted 
pair cable to a 3174, 3274,or integral controller. The MPA-II 
operates in a stand-alone mode, using the DP8344A Bi­
phase Communications Processor to handle the 3270 pro­
tocol and screen buffer. Again, because of the timing re­
quirements of the 3270 protocol, the BCP operates. inde­
pendently of the 8088 microprocessor of the System Unit. 
As with the 8X305, the BCP provides the intelligence re­
quired for decoding the 3270 protocol, managing the coax 
interface, maintaining the screen buffer, and handling the 
data transfer and handshaking to the System Unit. Howev­
er, with the BCP's higher level of integration, it also directly 
interfaces with the coaxial cable. The BCP has an internal 
biphase transmitter and receiver that provides all the func­
tions of the DP8340 and DP8341. However, unlike the 
8X305, the DP8344's CPU can handle the 3270 communi­
cations interface very efficiently. 

The MPA-II card contains a single 32K x 8 RAM memory 
device for the screen buffers and temporary storage. This 
memory size was chosen for the 5250 environment, where 
the BCP can handle up to seven sessions. In the IRMA 
mode, only a little over 4K· of memory is required. The 
MPA-II hardware block is shown in Figure 6-7. 
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FIGURE 6·7. MPA·II Hardware Block Diagram 

The hardware used to enable the BCP to communicate with 
the PC's 8088 processor is steering logic (contained in 
PALs) and the BCP's data memory. In a typical application, 
the BCP communicates with a remote processor by sharing 
its data memory. This is true with the MPA-II, but because 
the MPA-II must run with the IRMA software, steering logic 
has been used to direct the 8088's I/O reads and writes of 
the IRMA dual register array locations (220h-227h) into the 
data memory on the MPA-II card. By using data memory 
instead of a discrete register file the component count has 
been reduced. The IRMA software requires that a "dual" 
register file be used (or in this case emulated). Therefore, 
the writes from the 8088 are directed to memory locations 
7F20h-7F23h and the reads from the 8088 are sourced 
from memory locations 7E20h-7E23h. The MPA-II Register 
Array Implementation is shown in Figure 6-8. 
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FIGURE 6·8. MPA·II Register Array Implementation 
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The handshaking process is still used when the BCP and 
the 8088 are transferring data. When the 8088 goes to set 
the command flag by writing to lID location 226h, it actually 
does a write to 7F26h in the MPA-lI's data memory via the 
steering logic. The steering logic locks out future accesses 
by the PC to the MPA-II and interrupts the BCP telling it that 
a write access has been made to the IRMA lID space. This 
interrupt is signaled through the BIRO lID pin of the 
BCP, which is configured as an input interrupt. The 
MP~CONFIG register determines which BIRO interrupt 
handler will be called. In this case, assume that the OCA 
interface option is selected. Then the dc~int BIRO inter­
rupt handler located in the module OC~INT.BCP is given 
control. The dc~int BIRO interrupt handler determines if 
the PC wrote to 226h by reading the "MPA-II Access" regis­
ter located in a PAL. This access register is located at BCP 
data memory address 8000h and it holds the lower 6 bits of 
the last lID location written to on the MPA-II. If a write oc­
curs to lID location 226h, the BCP sets bit 6in the MPA-II 
memory location that the PC's 8088 will read as its lID loca­
tion 227h. The BIRO Interrupt handler will then write (any 
value) to the MPA-II Access register to unlock the PC. In the 
case of the "Attention Request" flag, the BCP will set this 
flag by simply setting bit 7 in the memory location which the 
8088 reads as lID 227h. The clearing of this flag by the 
8088 is done in a similar fashion as the setting of the "Com­
mand Request" flag. Note that each time the 8088 writes to 
an lID location between 220h and 22Fh the BCP is inter­
rupted. However, specific action is taken only on writes to 
226h or 227h. With all other locations the BCP simply re­
turns from the interrupt service routine once it has deter­
mined the 8088 did not write to lID 226h or 227h. This 
approach to the hardware has been chosen to minimize the 
discrete logic on the MPA-II card by taking advantage of the 
power of the BCP's CPU to handle some tasks in software 
that were typically done. with hardware in the past. Another 
benefit of this "soft" approach is that changes to the IRMA 
interface definition by OCA will most likely only require a 
software change for the MPA-II board, thus protecting your 
hardware investment. 

IRMA Microcode 

The IRMA application software written for the personal 
computer (E78, file transfers, etc.) is designed around a de­
fined interface between IRMA and the System Unit (the 
8088 and its peripheral devices). The hardware portion of 
this interface is discussed above. The software portion of 
this interface is the microcode written for the 8X305 proces­
sor. When the software and hardware are viewed as one 
function, it is referred to as the Oecision Support Interface 
(OSI). All of the IRMA application software has been written 
around this interface. When configured in the IRMA mode 
the MPA-II becomes the OSI. The method of communica­
tion between the OSI and the System Unit will be discussed 
briefly in the next section. A more exhaustive discussion on 
this interface is given in the IRMA Technical Reference. 

The OSI and the System Unit communicate through the dual 
four byte register array just discussed. The System Unit is­
sues commands to the OSI by writing to this array. This 
register array is viewed by the System Unit as four lID loca­
tions (220h-223h). Each lID location corresponds to one 
eight bit word. When the System Unit issues a command, 
the first byte, word 0, is defined as the command number. 
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The next three bytes, word 1 through word 3, are defined as 
arguments for the command. The number of arguments as­
sociated with an individual command varies from zero to 
three. Sixteen commands have been defined for the OSI. 
These commands allow the System Unit program to read 
and write bytes in the screen buffer, send keystrokes, and 
access special features available on the OSI. To begin a 
command the System Unit program sets byte 0 equal to the 
command number and provides any necessary arguments 
in byte 1 through byte 3. It then sets the Command request 
flag. The Command Request flag is continually polled by the 
8X305 processor when it is not busy managing the higher 
priority 3270 communications interface. When it detects the 
setting of this flag by the System Unit, it reads the data from 
the register array and executes the command. Once the 
command has been executed, the 8X305 will place the re­
sulting data into the other side of the register array and clear 
the Command Request Flag (see Figure 6-9). The System 
Unit program has been continually polling this flag and after 
seeing it cleared reads the result from the register array. 
The Command Request flag can only be set by the System 
Unit. This is done by a write to lID location 226h. The Com­
mand Request Flag can only be cleared by the OSI's 8X305. 

8X305 

I/O ADDRESS ~t II 
220 STATUS COMMAND # 
221 (DATA) (ARGUMENT 1) 

222 (DATA) (ARGUMENT 2) 

223 (DATA) (ARGUMENT 3) 

~ II 
SYSTEM UNIT 
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FIGURE 6-9. Command and Response 
Locations in the IRMA Register Array 

The OSI can not issue commands to the System Unit but it 
can inform the System Unit of a status change. If a status 
change occurs in a status bit location when the correspond­
ing attention mask bit is set, the 8X305 will set the Attentiori 
Request flag. This flag can be polled by the System Unit 
and is viewed as bit 7 in the lID register at address 227h. 
The System Unit can clear this flag by executing a write to 
lID location 227h. As is the case with both flags, the action 
of writing to the specific lID location clears or sets the flags, 
the data written during the write have no affect. In typical 
operation the Attention Request flag is not used; however, it 
is implemented on the MPA-II. The current status of both 
flags can be read by both processors. The System Unit 
does this by reading lID location 227h. The resulting eight 
bit number has the Attention flag as bit 7, the MSB, and the 
Command flag as bit 6. The other bits are not used. 

MPA-lIlmplementation 

The IRMA interface on the MPA-II board operates essential­
ly in the same manner as described above. The System Unit 
lID accesses to the IRMA register array space are trans­
ferred to two areas in the BCP's data memory (see 
Figure 6-10). One location is for System Unit reads of the 



array (7E20h-7E23h), the other is for System Unit writes to 
the array (7F20h-7F23h). Different BCP memory locations 
are used because the register array on the IRMA card actu­
ally contains eight byte wide registers (four for System Unit 
reads and four for System Unit writes) in hardware. E78 was 
written to make the best use of this hardware design and in 
doing so it may write a new command and lor arguments 
before it reads the results of the old command. Therefore if 
just four memory locations were used, E78 would read back 
part of a new command it had just written and interpret this 
as data from the DSI from the previous command. 
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IoIEIoIORY ADDRESS 
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7,22 
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FIGURE 6·10. Command and Response 
Locations In the MPA·II Register Array 

The Command Request and Attention Request flags are im­
plemented using 74LS74's on the IRMA card, hence the 
setting and clearing by writing to 226h and 227h (this clocks 
or clears the associated flip-flop). This function is imple­
mented on the MPA-II using an external PAL and the bi-di­
rectional interrupt pin, BIRO. If there is a write to the IRMA 

1/0 space 220h-227h, a PAL issues an interrupt to the BCP 
via the BIRO input. The BCP reads the outputs of another 
PAL to determine which location has been written to. If the 
write is to 1/0 locations 226h or 227h then the appropriate 
bits are set or cleared in the "IRMA read location" (7E27h) 
in the BCP data memory. The BIRO interrupt is generated 
only on System Unit 1/0 writes to 220h-22Fh but this also 
includes writes to the dual register array. If a write to 220h-
223h occurred, the BCP irma BIRO interrupt routine simply 
clears the interrupt and takes no further action. . 

The commands from the System Unit are executed in. the 
irma task routine. This routine is a foreground, scheduled 
task in the MPA-II Kernel. The irma task routine first updates 
both the main and auxiliary status registers as defined by 
the DSI. Next the irma task sets the attention flag, if re­
quired. It then looks at the state of the command request 
flag in memory to determine if there is a command pending 
from the System Unit. If so, it reads the command number 
and the arguments from the BCP's data memory and exe­
cutes the command. The task then places the results back 
in the data memory in the appropriate location (7E20h-
7E23h). After this is complete the task clears the command 
request flag and returns program control to the Kernel. 

There are three separate code modules used to allow the 
MPA-II to emulate the DSI. 

1. Power-Up Initialization Routine 

2. BIRO Interrupt Routine 

3. irma Task Routine 

These three routines will be discussed in the following sec­
tion. For clarity, the term "irma" is capitalized when referring 
to DCA products and lower case when referring to the 
MPA-II software that was written to emulate the IRMA DSI. 
Figure 6-11 gives a graphical representation of where these 
routines fit into the software architecture of the MPA-II. 

TLlF/10486-27 

FIGURE 6·11. MPA·II Software Block Diagram in IRMA DSI Emulation Mode 

2-45 

I • I 



MPA-II Power-Up Initialization Routine 

The irma power up initialization routine is called by the 
housekeeping task if it detects that the DCA irma bit has just 
been set in the MPA·II configuration register (along with the 
5252/3270 bit clear). The irma initialization routine is titled 
irma......por in the MPA·II source code. This routine initializes 
the memory locations and BCP internal registers that are 
used by the irma emulation code. It also unmasks the BIRO 
interrupt and schedules the irma......task in the MPA·II Kernel. 
The first memory location initialized is the Command Re· 
quest and Attention Request flag byte, which is location 
7E27h in the BCP's data memory. The data at location 
7E27h is passed to the System Unit by the steering logic 
when the System Unit reads I/O location 227h. This byte is 
set to zero by the irma......por routine even though only bits 6 
and 7, the command and attention request flags respective· 
Iy, are used. The irma......por routine also initializes the memo 
ory locations that the irma-task routine uses to store the 
trigger variables and the attention mask. 

The irma......por routine also initializes internal BCP registers. 
It does this because other routines, such as the dca......int 
interrupt routine, must access certain stored values very 
quickly to keep execution time short. The execution time in 
these routines is decreased if data needed in the routine are 
kept in internal registers rather than in data memory. For 
example, the value of the high byte of the address page of 
the "IRMA read registers" is stored in register GP14. In the 
BIRO interrupt routine, the IZ index register needs to point 
to that address page. This is done in the routine with a sin· 
gle 2 T-state instruction which moves the contents of GP14 
to the high byte of the IZ index register. If the value of the 
high byte of the address page was in memory, it would take 
a 4 T ·state move to an immediate addressable register fol· 
lowed by a 2 T-state move to the IZ index register. The 
irma......por routine initializes the registers GP14 and GP12 
with the "IRMA-.read register" page memory address. The 
irma......por routine then signals the coax task, via 
sync_mailbox, to bring the MPA·II on line as a live terminal. 
The final function of the irma......por routine is to schedule the 
irma......task routine. This is done by loading the task number 
into the accumulator and calling the schedule_task routine. 
After this, program control is returned to the tasker. 

DCA-INT BIRQ Interrupt Routine 

The second code module required to emulate the IRMA DSI 
is the dca......int BIRO routine. On the IRMA card, the Com· 
mand Request and Attention Request flags are implement­
ed in hardware. This implemention requires a number of dis­
crete components to decode the System Unit I/O address­
es 226h and 227h and to provide the set and clear function 
of these flags. The MPA·II board, on the other hand, uses 
extra CPU bandwidth to reduce the discrete components 
needed to provide the Command Request and Attention Re· 
quest flag function. It does this by letting the CPU decode 
part of the System Unit I/O access address and provide the 
set and clear function of these flags. The BCP code neces· 
sary for this is the BIRO interrupt routine whose source 
module is labeled DCA-.INT.BCP. The BIRO interrupt is 
generated when the System Unit writes to any I/O locations 
from 220h to 22Fh. It would have been more expedient in 
this case to only have interrupts generated on writes to I/O 
locations 226h and 227h. However, the MPA·II hardware 
also supports the DCA Smart Alec emulation program and 
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the IBM emulation programs. The MPA-II implementation for 
the DCA Smart Alec and the IBM interfaces require inter­
rupts to be generated from more System Unit I/O access 
locations, so to reduce external hardware, interrupts are 
generated for a sixteen byte I/O block. This flexibility of 
hardware design further illustrates the usefulness of the ex· 
tra CPU bandwidth of the DP8344A. 

When the BCP detects the BIRO interrupt, it transfers pro­
gram control to the dca......int routine. The function of this 
routine is to set the Command Request flag if the System 
Unit wrote to I/O location 226h or clear the Attention Re­
quest flag if the system unit wrote to I/O location 227h. The 
3270 protocol timing requirements place another time con· 
straint on this routine. Becuase this is an interrupt service 
routine, all other BCP interrupts are disabled upon entering. 
This means the coax interrupts will not be acknowledged 
until they are re·enabled by the program. To meet this crit­
ical timing constraint, the dca......int routine execution time 
must be as short as possible. The routine reads the MPA 
Access Register PAL to acquire the information needed to 
determine which register the System Unit actually wrote to. 
Keep in mind that at this point the PC is "locked out" from 
making any further accesses to the MPA·II. It then deter­
mines which I/O locations the System Unit wrote to by using 
the JRMK instruction and a jump table. If the write was to 
226h then the Command Request flag is set. Next, the rou· 
tine must "unlock" the PC by writing to the MPA Access 
Register. Now the routine only has to restore the environ­
ment (foreground registers used in interrupt routines are 
pushed on the data stack and must be restored before leav· 
ing the interrupt service routine) and return to the fore· 
ground program. If the write was to I/O location 227h, the 
routine clears the Attention Request flag. It then unlocks the 
PC, restores the environment and returns program control 
to the foreground program. If the write was to any other of 
the sixteen locations, the PC is unlocked, the environment is 
restored, and program control is returned to the foreground 
task. 

There is a section of code in the dca......int routine that does 
the same function as that described above, but is called 
from the coax receiver interrupt routine and not by the exter­
nal BIRO interrupt. To increase performance, the transceiv­
er interrupt handlers check the BIRO flag in the CCR regis­
ter before they return to the background task. If the flag is 
asserted (active low), they call the dca......fasLbirq section 
of the dca......int routine. Here the same operations as de­
scribed earlier are performed except for the saving and re­
storing of the environment. The dca......fasLbirq routine 
does not have to provide this function because the coax 
receiver interrupt routine does it. This decreases the num· 
ber of instructions executed, and therefore, improves the 
overall performance. 

MPA-lIlrma Task Routine 

The majority of the DSI emulation takes place in the 
irma......task routine. This routine is run in the foreground as a 
scheduled task. Therefore the decision to execute this rou­
tine is dependent only on the MPA·ll's task scheduler and is 
not impacted by the System Unit. In reality the task is run 
many times between System Unit accesses because the 
code execution speed of the BCP is greater than that of the 
PC. Therefore, the most current information and status is 
always available to the System Unit. The irma task routine, 



appropriately labeled in the source code as "irm~task", 
contains two sections. These sections are the irma status 
update and the command execution routines. 

The irma status update routine, called irm~status_update 
in the source code, gathers and formats the information re­
quired to produce the auxiliary status byte and main status 
byte as defined by the OSI (see Table 6-2). This routine is 
implemented in the irm~task routine as a subroutine. It 
gets the necessary status for the auxiliary status information 
from two predefined memory locations which contain gener­
al coax information placed there by the coax routine. These 
memory locations are labeled MP~MAINSTAT and 
CONT _REG in the source code. The auxiliary status rou­
tine first moves the MP~MAINSTAT byte from data mem­
ory into an internal register. It masks off the unwanted bits 
and combines the register with the contents of the 
CONT _REG memory location, which is also loaded into an 
internal register from data memory. The routine then loads 
the previous value of the auxiliary status byte from data 
memory. This value was saved from the previous time the 
task was executed and is required when determining the 
main status byte. The routine then stores the new value of 
the auxiliary status register in that same data memory loca­
tion. The new auxiliary status byte is maintained in register 
GP6 for the remainder of the irma task. 

The information required to determine the main status is 
gained partly from the pre-defined MP~MAINSTAT byte, 
however, two of the status bits must be generated by this 
routine. These are the· "Aux (auxiliary) Status change has 
occurred" bit and the "trigger. occurred" bit. The "Aux 
Status change has occurred" bit is generated by comparing 
the old and new auxiliary status bytes from the calculation of 
the auxiliary status. If the values are different the bit is set. If 
the values are identical, the bit is left in its previous state. It 
is not cleared because this bit can only be cleared by a OSI 
command from the System Unit. The "trigger occurred" bit 
is set if a trigger data match occurs. The System Unit pro-

gram can define an address location in the screen buffer 
and a corresponding data byte. If the data byte is found at 
that location in the actual screen buffer, the trigger occurs. 
The System Unit program can look for any number of bits in 
the data byte to match by applying a mask value. It can look 
for a change of state in the data byte by specifying a mask 
value of all zeroes. The trigger mask, address location and 
data byte values are stored in the BCP's data memory and 
are set by two of the defined OSI commands. The main 
status routine gets these values from memory and checks 
the screen buffer to see if the trigger bit should be set. Actu­
ally, this function is not used in the IRMA System Unit soft­
ware. The remaining bits are generated by checking the 
MPA-lI's main status byte for its status. As with the "Aux 
status change has occurred" bit, the "key buffer empty", 
"Unit reset by controller", and "buffer modified" bits in the 
main status register must be reset by the System Unit pro­
gram. Therefore, the main status subroutine logically "ORs" 
these bits with their previous value. Two bits defined by the 
OSI in the main status register are always left cleared by the 
main status routine. These are the Fatal IRMA hardware 
error and the command interrupt request bits. After the main 
status byte has been generated, it is kept in register GP5 for 
the remainder of the irma task. The main status routine also 
loads the previous value of the main status from data mem­
ory and stores the new value in that same location. 

The Attention Request flag section of the irm~status_up­
date routine determines if the Attention Request flag should 
be set as defined by the OS!. This section compares the old 
main status value with the new main status value. If it de­
tects that a bit in the old register was a zero and the corre­
sponding bit in the new main status register is a one, it will 
compare this bit position to the attention mask. If the atten­
tion mask also has a "1" in that bit position the Attention 
Request flag will be set in the appropriate location in data 
memory. The attention mask is loaded from the BCP's data 
memory and its value is set by one of the sixteen defined 
OSI commands. 

TABLE 6-2. IRMA Main and Auxiliary Status Byte Definition 

Main Status Byte Auxiliary Status Byte 

Bit Meaning Bit Meaning 

(MSB) 7 Aux Status Change has Occurred(*) (MSB) 7 Unused 
6 Trigger Occurred(*) 6 Unit Polled Since Last Status Read 
5 Key Buffer Empty 5 Sound Alarm 
4 Fatal IRMA Hardware Error( +) 4 Display Inhibited 
3 Unit Reset by Controller 3 Cursor Inhibited 
2 Command Interrupt Request( +) 2 Reverse Cursor Enabled 
1 Buffer Modified(*) 1 Cursor Blink Enabled 
0 Cursor Position Set(*) 0 Keyboard Click Enabled 

(0) Bits which must be cleared by user program. 

(+) Bits which will never be set in MPA implementation. 
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The final section of the irma task is the command execution 
routine which is called "irm8-command_decode" with the 
source code located in module IRM~COM.BCP. This rou­
tine, like the others, is implemented as a subroutine to the 
irma task routine. However, unlike the other routines, it is 
not executed every time the irma task is run. The System 
Unit program must have requested that a command be exe­
cuted or the .irma taskwill skip the command execution rou­
tine and return program control to the task scheduler. The 
irma task determines. this by checking the Command Re­
quest flag in the IRMA status flag register at memory ad­
dress 7E27h. If this bit is set the irma task calls the com­
mand execution routine. 

The command execution routine begins by determining 
which of the sixteen commands is to be executed. This is 
done by moving the command number data byte at memory 
address 7F20h into an internal register. It then uses the 
JRMK instruction and a jump table to transfer program con­
trol to the specific routine that corresponds to that com­
mand number. The individual command routine then loads 
any required command arguments from data memory loca­
tions 7F21 h-7F23h and executes the command. The re­
sulting data is placed in the data memory locations 7E20h-
7E23h with the IRMA main status byte always in the first 
location· (7E20h). The command execution routine then 
clears the Command Request flag in data memory. After 
this, it returns to the main body of the irma task routine. 

The sixteen commands defined by the DSI are thoroughly 
decumented in the IRMA Technical Reference. The imple­
mentation of each command in the command execution 
routine is well documented in the corresponding section of 
BCP source code. For reference, the commands and the 
associated source code routine labels are given in Table 
6-3. 

As mentioned earlier, the MPA-II software uses a synchro­
nous method of passing some status information between 
tasks. This is necessary because the status information can 
be updated on both foreground and interrupt routines. In 
this case the updating of such status information must be 
synchronized between the routines or the data could be cor­
rupted. The synchronizing method is a "mailbox" in memory 
where the location of the status information and the change 
required is placed. The irma task uses the sync..:-.mailbox to 
tell the coax task when to reset the "cursor change", "key 
buffer empty", "unit polled since last status read", and "unit 
reset by controller" status bits. The irma task also uses the 
mailbox to tell the coax routine that the System Unit has 
instructed the MPA-II to execute a Power On Reset se­
quence on the coax. The irma task accumulates the status 
change information in register GP2 throughout the routine 
(more specifically the cursor change reset from the main 
status routine and the others from the command execution 
routine). It then loads the mailbox just before returning to 
the task scheduler. 

TABLE 6-3.IRM,A DSI Commands and the Corresponding MPA-II Source Code Labels 
. 

MAP-II IRMA Command 
IRMA DSI Commands 

Source Labels 

Code Command Definition Source Code Label 

0 Read Buffer Data irm8-com_read_buffer 
1 Write Buffer Data irm8-com_write_buffer 
2 Read Status/Cursor Position irm8-com_status_cursor 
3 Clear Main Status Bits irm8-com_clr_mstatus 
4 Send Keystroke irm8-com_send_keystroke 
5 Light Pen Transmit irm8-com_lpen_transmit 
6 Execute Power-an-Reset irm8-com_por 
7 Load Trigger Data and Mask irm8-com_trig_dat8-mask 
8 Load Trigger Address irm8-com_trig_addr 
9 Load Attention Mask irm8-com_attn_mask 

10 Set Terminal Type irm8-com_seLterm 
11 Enable Auxiliary Relay irm8-com_aux-relay 
12 Read Terminal Information irm8-com_read_term 
13 Noop irm8-com_noop 
14 Return Revision 10 and OEM Number irm8-com_rev_oem 
15 Reserved-Do Not Use irm8-com_reserved 
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FIGURE 6-12. IBM Hardware Implementation 

IBM Interface Overview 

The IBM Personal Computer 3270 Emulation Adapter Ver­
sion A uses sixteen I/O mapped locations, PC interrupt level 
2, and 8K of re-mappable shared RAM to provide the nec­
essary hooks to do 3278179 terminal emulation, 3287 print­
er, and OFT emulation. The PC emulation software reads 
and writes to the I/O locations to determine session status 
and reads the screen buffer maintained in the shared RAM 
when screen updates are made by the coax controller. The 
shared RAM concept and use of a PC interrupt make the 
speed of the terminal emulator very fast and efficient. 

The IBM Adapter card uses a gate array, PALs and various 
logic chips to manage the interface and coax sessions. A 
block diagram of the IBM adapter hardware is shown in Fig­
ure 6-12. The sixteen I/O locations reserved for the inter­
face are physically resident in the gate array located on the 
IBM Emulation Adapter card. The addresses of the sixteen 

I/O locations are 2DOh-2DFh. PC register addresses along 
with their corresponding read and write capabilities are de­
fined in Table 6-4. The PC accesses the registers in four 
different modes of operation which are: 1) read only, 2) write 
only, 3) read/write, and 4) read/write with reset mask. The 
first three modes are self explanatory. The read/write with 
reset mask mode, also knows as "Write Under Mask" or 
WUM mode, means that the PC reads the value of the regis­
ter as a normal I/O read to acquire the information. After 
reading the byte, the PC will write a mask with ones in the 
bit positions that the PC wishes to clear. This "write with 
reset mask" is usually used as. an acknowledgement that 
the byte has been read by an earlier read. The resulting 
contents of the register will be cleared in bit positions that 
were written with corresponding ones. A brief description of 
each register and its function follows. For a detailed discus­
sion on each register. refer to the IBM 3210 Connection 
Technical Reference (see References in Appendix D). 

TABLE 6-4. IBM Emulation PC Register Address Locations and Read/Write Functionality 

Address PC Register PC Read PC Write 

0200 PC Adapter Interrupt Status . Data Reset Mask 
0201 Visual Sound Data Reset Alarm 
0202 Cursor Address Lo Data -
0203 Cursor Address Hi Data -
0204 PC-Adapter Control Data Data 
0205 Scan Code - Data 
0206 Terminal 10 - Data 
0207 Segment - Data 
0208 Page Change LO Data Reset Mask 
0209 Page Change HI Data Reset Mask 
02DA 87E Status Data Reset Mask 

02DB-02DF Reserved 
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PC Adapter Interrupt Status Register (200h) 

The Interrupt Status register contains six interrupt flags and 
two status bits. The interrupts are set based on events oc­
curring on the coax. If the interrupts are enabled in the 
Adapter Control register (2D4h), the PC interrupt level 2 
(IRQ2) is set when one of the six interrupt conditions occur. 
The buffer-being modified status flag is set when the screen 
buffer is being modified by a WRITE DATA, a CLEAR, or 
INSERT command. The interrupt status flag is set whenever 
any interrupt has been set. The register is read/write with 
reset mask by the PC as defined above. To acknowledge an 
interrupt, the PC will write back to the register with a one in 
the corresponding bit location of that interrupt. That clears 
the interrupt. The wum scheme provides a clear handshake 
between the two asynchronous systems. This register is 
used by all three emulation modes (Le., CUT, DFT and Print­
er mode). The definitions of some of the bits change de­
pending on the currently active mode. 

Visual/Sound Register (201h) 

The Visual/Sound register contains control settings for the 
terminal that are affected by the load control register com­
mand, clicker status, and alarm status. This register is a PC 
wum with a different twist. Any value written to this register 
results in the clearing of the alarm bit only. Other bits are not 
affected by the PC write. This register is only used in CUT 
mode. 

Cursor Address Low and High 
Registers (202h and 203h) 

The Cursor Address registers contain the sixteen bit cursor 
value owned by the coax controller. These registers are 
read only by the PC and provide the location of the current 
cursor position. These registers are used in all three modes. 

PC Adapter Control Register (204h) 

The Adapter Control register determines the mode of opera­
tion of the adapter (Le., 3278 terminal, 3287 printer, or DFT 
emulation), controls keystroke passing with a bit used as a 
handshake, and controls the masking of interrupts. The re­
maining bits control various operation situations (Le., en-
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abling/disabling the coax session, keystroke wrap testing 
etc.). This register is read/write by both the PC and the 
adapter. This function makes synchronization of reads and 
writes critical to ensure no data is lost. This register is used 
in all three modes. Some of the bit definitions change de­
pending on the active emulation mode. 

Scan Code Register (205h) 

The Scan Code register, as the name implies, is where key­
board scan codes are written by the PC corresponding to 
the keystrokes struck on the keyboard. This register is PC 
write only and the byte written is the one's complement of 
the scan code to be sent to the host. This register is used in 
CUT mode only. 

Terminal 10 Register (206h) 

The TerminallD register is write only by the PC and should 
not be changed once the terminal has gone on line. The 
value written is the one's complement of the keyboard ID 
and model number of the terminal that will be requested by 
the coax controller when initializing the session. This regis­
ter is used by all three modes. 

Segment Register (207h) 

The Segment register is used for relocation of the dual port 
memory segment at which the adapter recognizes a memo­
ry read or write from the PC. The default value is CEo This 
register is write only by the PC. 

Page Change Low and High Registers 
(208h and 209H) 

The Page Change registers are used to communicate a 
change in the screen buffer. Each bit corresponds to a 256 
byte block of the 4K screen buffer and is set by the adapter 
hardware when any screen modification occurs. The regis­
ter is read/write with reset mask by the PC as described 
earlier. These registers are active for all three modes. 

87E Status Register (20Ah) 

The 87E status register contains status flags relevant to 
3287 printer emulation. Included is a flag for the alarm and 
operation condition of the printer. The register is read/write 
with reset mask by the PC as described earlier. 
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FIGURE 6-13. MPA-lIlmplementation of IBM Emulation Card 

The Multi-Protocol Adapter Solution 

The Multi-Protocol Adapter (MPA-II) card has the ability to 
emulate the IBM Personal Computer 3270 Emulation Adapt­
er allowing the IBM PC emulation programs to run using the 
MPA-II hardware in place of the adapter card while main­
taining the same functionality. To emulate the adapter, the 
MPA-II utilizes the power of the DP8344A BCP to handle the 
coax session and interface maintenance in software. 
Figure 6-13 gives a block diagram of the MPA-II hardware. 

The I/O registers described above are maintained in a 
shared RAM located on the MPA-II board and the BCP soft­
ware must "fake out" the PC software when any register 
update is made, leaving the correct value in the RAM for the 
next access. To emulate the function of the I/O registers, 
the MPA-II hardware sets the bi-directional interrupt pin 
(BIRO) low on any PC write to the IBM I/O locations 2DOh-
2D6h and 2D8h-2DEh. The write to the I/O location is rout­
ed into locations in the shared RAM. The mapping of the 
I/O registers in the shared RAM is shown in Figure 6-14. 
The BCP Code Variable Address column in Figure 6-14 
shows the variables used in the MPA-II source code to form 
the absolute RAM address of the I/O register contents. The 
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PCIO value is a sixteen bit value and is the base pointer into 
the page of memory where the I/O registers reside. The 
variables listed are added to the PCIO base to form the 
absolute address pointer to the specified register in data 
memory. All registers that are cleared by the write under 
mask scheme have duplicate copies that are maintained 
solely under BCP control to allow software implementation 
of the write under mask handshake. 

The BCP software, to handle the interface and coax routine, 
contains interrupt driven routines as well as foreground rou­
tines. A block diagram showing the code arrangement used 
to handle the IBM interface and coax session is shown in 
Figure 6-15. Four blocks run as tasks while the interrupt 
sources are used where immediate attention is required 
(Le., the communication with the controller [receiver inter­
rupt] and the PC interface maintenance [BIRO interrupt». 
The three sections of code that will be discussed below are 
responsible for initializing the I/O registers at power up, 
maintaining the I/O registers, and setting/clearing the PC 
level 2 interrupt. Each routine is described in the paragraphs 
that follow. 
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PC I/o 
Address 

0200 

0201 

0202 

0203 

0204 

0205 

0206 

0207 

0208 

0209 

020A 

Cursor Address Low 

Cursor Address HI 

Adaptor Control 

Scan Code 

Terminal Id 

Segment 

BCP COOE 
Variable Address 

Absolute RAM address = PCIO yalue 

ibm-Isr 
Ibm-lisr 

ibm-ysr 
Ibm-IYsr 

Ibm-cursorlo 

ibm-cursorhi 

Ibm-control 

ibm-scan 

Ibm-Id 

ibm-segment 

ibm-pagelo 
ibm-Ipagelo 

ibm-pagehi 
ibm-Ipagehi 

Ibm-status 
ibm-Istatus 

FIGURE 6-14. IBM I/O Register Mapping 
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ACCESS REGISTER 8000-8FFF 

I/o REGISTERS 7FOO-7FOF 
I---VJ-------1 
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SCREEN BUFFER 

(8K SHAREO) 

FIGURE 6-15. IBM Interface Code Block Diagram 
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IBM_Initialization 

The ibm_init routine initializes the I/O registers to the ex" 
pected state at power up and initializes internal BCP vari­
ables in preparation for a new session. After clearing the 
screen buffer, the program schedules the ibm_task routine 
as a task to the Kernel routine and unmasks the BIRO inter­
rupt to enable the ibm_birct-int routine to run when the PC 
writes to the IBM 1/0 registers. This code is only executed 
when the card initially runs at power on time or when chang­
ing MPA-II modes via the MPA-CONFIG register. Upon 
completion· of this and other initialization routines, the PC 
emulation software can be started to bring the PC emulator 
resident 

IBM_BIRQ Interrupt Routine 

The BIRO routine is unmasked by the ibm_init routine as 
mentioned above. The BIRO input goes low (asserted) 
when the PC writes to the IBM I/O locations 2DOh-2D6h 
and 2D8h-2DEh. BIRO is unaffected by PC reads of the 
I/O locations since no· action is required by the MPA-II 
board. At the same time BIRO is asserted, the MPA-II hard­
ware "locks out" the PC from performing any further memo­
ry or I/O accesses to the MPA-II board until the BCP soft­
ware "unlocks" the PC. When the BIRO interrupt handler, 
ibm_bin~_int, gets control, it first reads the Access register 
(mp~access) to determine which IBM I/O register has 
been written to. If the I/O register written to is a read only or 
write only register then no action is required by the interrupt 
routine so the routine unlocks the PC by writing any value to 
the Access register, and then exits. If the I/O registerwrit-' 
ten to is a WUM type register then the BIRO interrupt rou­
tine comph3ments the value currently in the I/O register lo­
cation (for it is the mask value written by the PC) and ANDs 
it to the local copy of that I/O register. The result is then 
placed into the I/O register location as well as into the local 
copy memory location. The PC is then unlocked by the inter­
rupt . routine and the routine exits.· A write to the Visu­
al/Sound IBM register of any value causes the local copy to 
be retrieved, its alarm bit cleared,and both the I/O register 
and its local copy to be updated. The Interrupt Status IBM 
register will not only have the WUM performed, the interrupt 
routine will also de-assert the IRO. PC interrupt line by writ­
ing a zero in bit position 7 to the Data register (mp~data). 
Bit 7 of the Data register controls the state of the PC's IRO 
interrupt line. The PC interrupt is set in the ibm_task routine 
(IBM_ T ASK.BCP) if interrupts are pending and not dis­
abled. 

There is a simplified version of the ibllL-birq_int BIRO in~ 
terrupt handler called ibllL-fasLbirq. The ibm_fasLbirq 
routine is directly called by the receiver interrupt handler in 
between the processing of coax data frames· in order to 
handle PC activity without impacting the coax command 
5.5 JLs response timing, which is so critical. The ibm_JasL 
birq routine is identical to the ibm_birct-int routine except 
that it does not perform any saving or restoring of BCP reg­
isters since this is handled by the receiver interrupt handler. 

IBM_TASK Foreground Routine 

The ibm_task routine runs in the foreground and is called 
by the Kernel. The ibm_task is enabled to run by the 
ibm_init routine. Once it has been scheduled by the initiali­
zation routine, the ibm_task runs any time it is called by the 
Kernel. 
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The primary purpose of the ibm_task routine is to keep the 
I/O registers current as to the state of the emulated terminal 
session so that the PC software can update the screen in a 
timely manner: The ibm_task routine maintains' communi­
cation with the coax task· routine via· a two byte mailbox in 
data memory. The ibm_task routine monitors coax activity 
through bit settings in the MPA-II status variables 
(mpa.:.....mainstat and mp~auxstat) and updates the 110 In­
terrupt Status register, Visual Sound register, PC Adapter 
Control register, and PC interrupt level, IR02, accordingly: 
The task is non-interrupt driven and uses both main banks 
of the CPU for processing. ' I • 

The ibm""":taskroutine first checks the MPA-II status vari­
ables, mp~mainstat and mp~auxstat, clearing certain 
status bits (such as Buffer Modified) to acknowledge receipt 
of that status. Next, the ibm~task' updates the IBM Page 
Change registers' and the 'IBM Cursor registers since, they 
are common to all three interface modes, (<:;UT, OFT, and 
Printer). The ibm....:.task routine then' determines the current 
interface mode and calr's that· intertace mode's' routine to 
update the remaining IBM registe'r specifip to that mode. 

For CUT mode, ibm_task calls the ibm_3278 routine. This 
routine updates the Visual/Sounq . register (201 hi, the 
Adapter Control register (2D4h), an.d the Interrupt Status 
register (2DOh). Theibm-:-3278 routine will also interrupt 
the PC via its IRO interrupt, line if PC inter~upts ,have not 
been suppressed by the Adapter Control register:' -

For OFT mode,. ibm_task .calls theibm_dft routine, This 
routine updates the Adapter Control. register (2D4h) and the, 
Interrupt Status register (2DOh). As with the ibm_3278 rou­
tine, this routine will also interrupt the PC via its IRO inter-. 
rupt line if PC interrupts have not bee,n suppressed by the 
Adapter Control register. 

The 3287 Printer mode is. not supported in this version of 
the MPA-II microcode, but may easily be added. In fact, Re­
vision B of the IBM Emulation'A.dapter can ii/so be support­
ed through . simple ,microcode enhancements . if the 
MPA-CONFIG . register (2DCh), MP.A-PARM register, 
(2DBh), and.BCP RIC register (2DFh) are relocated,(R~lo­
cating these registers,only requires some, simple PAL equa­
tion changes for the existing hardware.) That .is one of the 
advantage~ of the soft. architecture concept that the BCP 
allows. Not only is your product protected against changes 
on the Coax side. of, the interface, but your product is also 
protected against changes on the PC side of the interface! . 

After the above routines return to the ibm_task'routine, the' 
ibm_task routine sends mail Ilia sync...:..:.mailbox back to the: 
clL-task routine, if anything needs to'becommunicated to' 
the coax side, such as keystrokes. Then' ibm~task returns 
to the kernel. , 

TwlnaxTa~k 
The twinax task tw_task (located, in, : .. module 
TW~ TASK.BCP) is responsible for directing twinax terminal 
emulation. It monitors all seven internal twinax sessions, for 
cLJrrent polling status,for 2 .. second A.uto-PORtime-outs" 
and for 5 second POR OFFLINE timeouts. In addition, tw_ 
task invokes the twinax command processor, tw_session 
(located in module TW_SESS.BCP), for each twinax ses­
sion that requires attention. 



When the MPA-CONFIG register is set (or changed) to 
select twinax emulation, the task housekeep calls tw_init 
(located in module TW_TASK.BCP) to initialize the twinax 
routines, and then calls tw_sunit (located in module 
SA-INIT.BCP) to initialize the smart alec interface routines. 
The routine tw_init initializes the hardware interface for 
twinax, initializes and unmasks the twinax receiver interrupt, 
initializes and unmasks the transmitter interrupt, initializes 
and unmasks the timer interrupt, initializes the twinax de­
pendent Device Control Page (DCP) variables, and initializ­
es all seven Session Control Pages (SCPs) for twinax emu­
lation. The initialization of everything except the SCPs is 
straight forward; the appropriate bits and bytes are simply 
set to their required values. The initialization of the SCPs are 
a bit more complicated, however, with the following steps 
performed for each SCPo First, the SCP is filled with "55" 
hex (as a debugging aid). Second, tw_por (located in mod­
ule TW_CNTL.BCP) is called, which initializes the twinax 
dependent SCP variables, except for these set by the Smart 
Alec interface routines (i.e., Model 10, Keyboard 10, 
etc ... ). Third, tw_init takes each session out of POR 
since a true POR has not been requested yet. (A true POR 
can only be performed on an active session). After the 
SCPs are initialized, tw_init schedules the twinax task 
tw_task to run under the Kernel. It is tw_task's job to di­
rect twinax emulation in the foreground. Tw_init then re­
turns control to house-keep, which in turn calls tw_s8.-init. 
The tw_sunit routine initializes the memory locations 
and internal registers that are used by the Smart Alec emu­
lation code. This is discussed in detail in the Smart Alec 
Interface Overview section later in this chapter. House-keep 
then enables interrupts and returns control to the Kernel's 
tasker with the twinax emulation and interface tasks now 
scheduled to execute. 

The monitoring functions performed by tw_task break 
down into two groups: ONLINE sessions, those sessions 
which are configured by the Smart Alec emulator (attached) 
and seen by the host 3x or AS/400 system; and OFFLINE 
sessions, whose sessions are not configured by the Smart 
Alec emulator (unattached) and therefore not seen by the 
host 3x or AS/400 system. ONLINE (configured) sessions 
are monitored for current pOlling status, Auto-POR time­
outs, and POR OFFLINE time-outs. Current polling status 
simply indicates whether the physical address for a session 
is being polled at least once every 2 seconds. When this is 
false, tw_task clears the line active indicator for that ses­
sion. (The System Available indicator status is monitored by 
the smart alec interface task). An Auto-POR time-out occurs 
when tw_task determines that 2 seconds have elapsed 
since the last poll to a physical address. The task tw_task 
request that the session attached to that physical address 
perform a POR. It then schedules the session in question so 
that the request will be processed. (Scheduling sessions is 
discussed in the following paragraph.) POR OFFLINE time­
outs occur when tw_task determines that 5 seconds have 
elapsed since a given session initiated a POR. It is tw_ 
task's responsibility to bring the session ONLINE by signal­
ing the receiver interrupt handler to start responding to and 
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accepting commands from the host 3x or AS/400 system. 
OFFLINE (non-configured) sessions are only monitored for 
current polling status. 

After every internal session has been checked by the moni­
tor, tw_task invokes the twinax session command proces­
sor, tw_session for each scheduled session. (This action is 
similar to the Kernel's tasker.) Both background and fore­
ground tasks schedule sessions when they require a ses­
sion to perform some sort of action. For example, a session 
is scheduled when a new command is placed onto the inter­
nal command queue, or when another task, such as the 
smart alec interface task, requires a session to POR. The 
task tw_task calls the twinax command processor, tw_ 
seSSion, and passes a pointer to the SCP of the scheduled 
seSSion. 

The command processor then performs the requested ac­
tion and/or executes the command(s) in the internal com­
mand queue. 

When all the sessions have been checked and all the 
scheduled sessions have been processed by the command 
processor once, tw_task returns control to the Kernel's 
tasker. 

Twlnax Interrupt Handlers 

The twinax mode uses four interrupts: DAV, Data Available, 
for handling receiver data; TFE, Transmitter FIFO Empty, for 
all responses; TIMER for handling response window timing 
and as a real time clock for 5250 protocol requirements; and 
BIRO for host interface accesses. All interrupts except 
BIRO are unmasked in the tw_init routine after initialization 
requirements for each have been executed. The BIRO inter­
rupt is unmasked in the s8.-init routine. As with the coax 
interrupt routines, the twinax interrupt routines can use the 
alternate B bank registers without having to save and re­
store them. The twinax DAV and TFE interrupt routines are 
set up as state machines whose current state is stored in 
the "DATA-VECTOR" and "TX-VECTOR" memory loca­
tions. IW and IX are reserved for the TX-VECTOR and 
DATA-VECTOR addresses that point to the appropriate 
state in the TFE interrupt and DAV interrupt routines, re­
spectively. The TFE routine always expects TX-VECTOR 
to be set appropriately upon entry. DAV loads the DATA­
VECTOR from memory upon reception of the first frame of a 
message and uses IX directly for frames 2-n. Also, GP5 on 
alternate B bank has been reserved for DAV, TFE, and TIM­
ER interrupt routine usage. The name of this register is "R_ 
STATE" since it is used primarily by the receiver for station 
address information and protocol control. 

Twlnax Receiver Interrupt Routine 

The DAV interrupt routine is responsible for decoding the 
commands sent by the controller, loading commands on the 
internal processing queue, stuffing data in to the regen buff­
er, "OFFLINE" address activity determination, maintaining 
protocol related real time status bits, and supporting all sev­
en station addresses if necessary. A flow diagram of the 
DAV interrupt routine is shown in Figure 6-16. 
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FIGURE 6-16.Twlnax DAV Interrupt Routine 
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Initialization requirements of the DAV interrupt are: 

1. R_STATE (GP5 on alternate S) set to TW_RSTATL 
INIT; 

2. tw_level_cnt set to TW_LEVELINIT; 

3. tw_busy_cnt set to TW--'.SUSY _MAX. 

The Main A Alternate S bank of registers are first selected 
and IZ is saved so that it can be restored upon exiting the 
interrupt. Since the DAV interrupt source is an "OR" of both 
the reception of a valid data. frame and the flagging of an 
error by the receiver, a check for an error is done first to 
make this destination. (Error handling will be discussed later 
in this section.) 

A key pivotal point in the routine is controlled by a flag set in 
R_STATE called RLMULTI which is set after processing 
the first frame of a multiframe' message. The purpose of 
RLMULTI is to ensure that the received station address is 
only sampled on the first frame of each message from the 
controller and causes the DAV interrupt routine to search 
for the "111" end of message delimiter on all subsequent 
frames received. The station . address saved in R_ 
STATE[2-0] will be used by the receiver for setting the SCP 
pointer on all subsequent frames for setting the SCP pointer 
on all subsequent frames of the multiframe message. When 
the end of message is detected, the flag RLEOM is set in 
R_STATE. If RLEOM is set at exit time, then RLMUL­
TI and RLEOM will be reset along with the transceiver to 
ensure that any errors flagged by the receiver logic of the 
SCP resulting from a noisy line after the transmission of the 
fill bits will be ignored. If RLMULTI is not set, the data' 
received is either the first frame of a multi-frame message or 
a'single frame command. In this condition, the station ad~ 
dress is'placed in R_STATE[2-0] and IZ is set to point to 
the SCP page of memory corresponding to the station ad­
dress. RLEOM will get set here only if the data is a single 
frame command, which is determined by the state of 
RTR[O] (bit 14, see 5250 PAl). The station address received 
is the "physical station address" and should not be con­
fused with the "logical station address" which is used solely 
by Smart Alec for aesthetics. The physical station address is 
loaded into bit 8~10 of the sixteen bit SCP pointer. This 
scheme provides 256 bytes of data memory for emulating 
each station address. 

Once the SCP pointer has been established, the receiver 
interrupt must know if the station address of the data re­
ceived is currently being emulated ("ONLINE") or is not be­
ing emulated ("OFFLINE"). Addresses that are offline have 
to be monitored for activity to inform Smart Alec whether or 
not the address can be attached as an online session in the 
future (see OFFLINE section for line ,activity determination). 

When the session in ONLINE, checks are made upon re­
ception of the first frame of the message to see if the ses­
sion is currently in a reset state or if a line parity error is 
pending. For subsequent frames of the mesasge, no checks 
are made for reset or pending line parity errors, although 
each frame is still parity checked. The reset state is deter­
mined by the RLRESET flag stored in tw_rxtx-status on 
each SCP page. When the reset flag is set,all data is ig­
nored. The line parity error state is needed since once a line 
parity error is detected, only POLL commands are process­
ed by the terminal until the error condition is cleared. The 
error is cleared when a POLL is received with the Reset 
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Line Parity Error bit set in conjunction with the terminal be­
ing in the non-busy state. (See POLL discussion in 5250 
PAl). 

If the terminal is not in a reset condition and no line parity 
error is pending, the DATA-VECTOR is loaded to deter­
mine what state to branch to. The DATA-VECTOR must 
be stored on the SCP page due to the mUlti-session nature 
of twinax. When the first frame of a message is received, 
the IX index register is loaded from the SCP tw_dat~vec­
torhi and tw_dat~vectorlo locations prior to the indexed 
jump to the appropriate processing state. For frames 2-n of 
a message, IX is used in its current state for proceSSing 
speed since it is reserved for the interrupt and is already set 
accordingly. 

Command/Data Processing Routines 

There are basically four states used in the DAV interrupt 
routine: 1) command decode, 2) writes, 3) busy_wait, and 
4) activate wait. Each state is vectored to via an indexed 
jump using the DATA-VECTOR as discussed above. How­
ever, when exceptions are detected by the foreground com­
mand processing routines, the DATA-VECTOR is modi­
fied. 

The command decode state, as the name implies, is where 
the received byte is decoded and pushed onto the 16 byte 
internal processing queue as specified in the 5250 protocol. 

. Commands are decoded first by checking to see if the com­
mand is a POLL. Next, two jump tables are used to further 
decode the command. One table is used for commands ad­
dressed to features (Le., RTR[7] = 1) and only the lower 
four bits of the command are decoded. The other jump table 
processes all commands in base format so the lower five 
bits of the command are decoded. No destinction is made 
as to what internal device is addressed since this is done by 
the foreground tw_session routine when the command is 
unloaded from the queue. The only commands that can 
have duplicate meanings in this scenerio are the END OF 
QUEUE and RESET SASE since they are identical in the 
lower five bits of the commands. They are further processed 
before being loaded onto the queue to handle this overlap. 

Once the command is decoded, it is loaded onto the queue 
by the QUE_LOADER routine which will be discussed later. 
Since commands mayor may not have associated oper­
ands with them, the DAV interrupt modifies DATA-VECTOR 
appropriately for the command just decoded. Single frame 
commands do not change the DATA-VECTOR from com­
mand decode since there are no operands associated with 
them. This is not true for the end of queue command as it 
results in the DAV routine moving into the busy_wait state 
which will be discussed later. Commands that have associ­
ated operands with them, for example LOAD 
ADDRESS COUNTER, set the DAT~VECTOR to the 
rX-operands routine and a frame count value is maintained 
on the SCP (tw_frame_cnt) to control how many addition­
al frames stay in the rX-operands state for processing the 
entire command packet. Some commands require special 
routines to process them. The READ and WRITE IMMEDI­
ATE commands set DATA-VECTOR to rX-imm_operands 
so that it will be set to activate_wait upon completion of the 
commands operands. WRITE CONTROL DATA requires a 
special stub since it can be a + 2 operand command or + 3 
for the .3180 emulation (see 5250 PAl). WRITE DATA AND 
LOAD CURSOR also requires a special routine since the 
number of associated operands expected is embedded in 
the first operand of the command. 



After a complete command packet (Le., the command plus 
any associated operands) has been loaded into the queue, 
the DAV interrupt schedules the twinax command proces­
sor, tw_session, to process the command. The appropriate 
session task is scheduled by moving TW_SESS_SCHED 
into tw_sess_state on the SCP corresponding to this com­
mand's physical address. This scheme provides the com­
munication to the foreground task to tell it which of the sev­
en sessions to process. 

The QULLOADER routine is called upon reception of all 
commands and operands that are queable and handles 
stuffing the command in the queue with some exception 
detection. (Commands that are not queable are POLLS and 
ACTIVATES.) The QULLOADER maintains the position of 
commands on the queue and status of the queue with a 
byte on the SCP called tw_que_ptr. The lower five bits of 
the byte form a pointer to the next available position to stuff 
a byte on the queue. Each time a byte is loaded, the pointer 
is incremented making bit 5 correspond to the queue being 
full (TW_QUE_FULL) since it will be set upon loading the 
sixteenth entry into the queue. Another flag, TW_QUL 
NOT_ROY, in tw_que_ptr is used to tell tw_session if a 
complete command packet (Le., a command and associat­
ed operands) is ready for processing. This flag uses tw_ 
frame_cnt to determine packet boundaries and allows tw_ 
session to process packets as soon as they are available, 
instead of waiting for a complete queue load before pro­
cessing the queue. If QULLOADER detects that the 
queue is full, flag TW_QUE_COMPLETE in tw_que_ptr 
is set and DATA-VECTOR is set to busy_wait for handling 
busy. TW_QULCOMPLETE is used as a handshake be­
tween the background DA V interupt and foreground com­
mand processor to communicate when the terminal can go 
unbusy. Exceptions that are set by QULLOADER are in­
valid command and queue overrun exceptions. When an 
exception is deteted, it will not be set if there is already a 
pending exception. Also, when the exception is detected, 
the DATA-VECTOR is set to busy_wait to ensure that the 
terminal will go unbusy to allow the controller to handle the 
posted exception. The invalid command exception is posted 
by the queue loader and the tw_session command proces­
sor. QUE_LOADER will post an invalid command when a 
command with associated operands is loaded in the last 
queue position but operands are still expected. The queue 
overrun exception is posted when the sixteenth frame re­
ceived completes a queue load but the RLEOM flag is still 
set meaning more frames are still being received. 

The busy_wait state of the DAV interrupt has a number of 
functions. The DATA-VECTOR is set to busy_wait when 
exceptions are detected in both foreground and background 
routines. Also, DATA-VECTOR is set to busy_wait upon 
receiving a complete queue load of sixteen frames or the 
reception of an End Of Queue command. The major role of 
the busy_wait state is to handle the transition of busy (Le., 
having commands on the queue) to unbusy (queue empty 
waiting for more commands). To go unbusy the foreground 
command processor must have finished processing all the 
commands from the prior queue load. Once the last com­
mand of the queue load is received, TW_QUE_ 
COMPLETE is set by DAV in tw_que_ptr to mark the com­
pletion of the queue load. Then, in busy_wait, the DAV 
routine uses the clearing of TW_QULCOMPLETE 
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as an indication to clear the POLL response busy bit. In 
conjunction with TW_QULCOMPLETE, the DAV inter­
rupt maintains a POLL counter called tw_busy_cnt to pro­
vide maximum flexibility in going unbusy. In has been ob­
served that some IBM controllers require that after a com­
plete queue load is received, the terminal must be busy for 
some finite amount of time before being unbusy. To accom­
plish this task, the value of tw_busy_cnt is decremented 
with each POLL received while in the busy_wait state. 
Upon reaching a count of zero with TW_QUL 
COMPLETE low, busy will go low in tw_presp_stat and 
tw_busy_cnt will be reinitialized to TW_BUSY _MAX in 
preparation for the next queue load. The TW_BUSY _MAX 
equate is set up in TWINAX.HDR and should be set accord­
ingly. We recommend that TW_BUSY _MAX be set to one 
since older versions of the 5294 remote controller require at 
least one "busy" POLL response after a queue load. If a 
command other than a POLL is received prior to signaling 
unbusy, the DAV will process the command and set 
DATA-VECTOR to command decode if TW_QUL 
COMPLETE is low. In this case, the tw_busy_cnt value is 
ignored to ensure that commands are not discarded. 

When a preactivate READ or WRITE command packet is 
completely received, the DATA-VECTOR is set to the acti­
vate_wait state. The role of activate_wait is to handle the 
transition of busy to unbusy (as with busy_wait), to flag an 
invalid ACTIVATE exception if the controller sends the 
ACTIVATE before the terminal is unbusy, set up the write_ 
both state for reception of ACTIVATE WRITEs, and sched­
ule the response for an ACTIVATE READ reception. As with 
busy_wait, TW_QULCOMPLETE hass been set high 
before entering this state and the interrupt routine uses both 
TW_QUE_COMPLETE low and tw_busy_cnt equal to 
zero as criteria for going unbusy. Once the terminal is unbu­
sy, a flag stored in tw_nL-acLflags called RLPREAC_ 
WR determines whether or not to look for an ACTIVATE 
WRITE or an ACTIVATE READ command. When an ACTI­
VATE WRITE is received and expected, the busy flag is set 
in tw_presp_stat to ensure that the terminal is busy upon 
completion of the write and the DATA-VECTOR is set to 
write_both since the WRITE IMMEDIATE command and 
WRITE DATA command are similar enough to be handled 
by one state. When an ACTIVATE READ is received or ex­
pected, a response is scheduled by loading a timeout into 
the timer and setting TW_TIMER_RESP in R_STATE. 
Also, busy is set so that at the end of the read the terminal 
is busy, and DATA-VECTOR is set to command decode in 
preparation for the next queue load. Commands other than 
ACTIVATEs are simply discarded in this state. An invalid 
ACTIVATE exception is posted if the expected ACTIVATE 
arrives before the terminal is unbusy. TW_QUE_COM­
PLETE is set in conjunction with TW_QUE_CORRUPT to 
tell tw_session to flush the queue. DATA-VECTOR is set 
to busy wait to handle going unbusy. As with QULLOAD­
ER, the exception is only posted if there is no pending ex­
ception. 

As mentioned above, DATA-VECTOR is set to the 
write_both state to handle stuffing data in the regen buffer 
following reception of the ACTIVATE WRITE command. The 
data is always concatenated with the ACTIVATE WRITE 
command. The write_both state is responsible for detect- .. 
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ing the storage overrun exception when the controller at­
tempts to send data beyond the size of the regen buffer. 
The only difference at this point between the WRITE IMME­
DIATE and WRITE DATA commands is that the address 
counter remains unchanged with the WRITE DATA com­
mand while the address counter is set to one greater than 
the address of the last byte stuffed in the WRITE IMMEDI­
ATE comand. To determine whether a WRITE IMMEDIATE 
or WRITE DATA command is being processed, a flag in 
tW_nL-acLflags called R~WR_DATA is set upon re­
ception of the WRITE DATA command. To minimize time on 
the DAV interrupt, the WRITE DATA or WRITE IMMEDIATE 
command routines set up the starting location of the write in 
tw_acLbeginhi/lo on the appropriate SCPo Tw_acLbe­
ginhi/lo are then used as a pseudo address counter as each 
byte is received, incrementing upon stuffing the byte in the 
regen buffer. Upon completion of the write, which is deter­
mined by reception of an end of message indicator (R~ 
EOM set), the pseudo address counter is placed into tw_ 
acLendhi and 10 locations with the most significant bit of 
tw_acLendhi set to inform tw_session that the write is 
complete. tw_session can then make an action stack entry 
for Smart Alec screen updates. 

POLL 

POLL commands are processed completely by the back­
ground interrupt routines. The POLL command is decoded 
in several states since polls playa part in all states men­
tioned above. The key decisions that are made in the DAV 
interrupt when a POLL is received and the associated sta­
tion address is configured by Smart Alec are, what is the 
state of level and what "type" of POLL response to make. 
The 5250 PAl states that after a Power On Reset, the 5251-
11 will respond with a single frame POLL response that is 
simply a status byte. After the SET MODE command is re­
ceived, the next reception of a POLL! ACK command caus­
es the terminal to respond with a two frame poll response; 
the first frame being the former mentioned status byte and 
the second a keystroke. Also, the PAl states that the first 
two frame response after receiving the SET MODE will be 
from level 1. To function in this manner, a flag called TW_ 
PACK-SM is maintained by the DAV interrupt in location 
tw_level_cnt on the SCPo This bit is set when T~SET_ 
MODLRCVD (a SET MODE command has been process­
ed) located in tw_rxt,,-status is set and a POLL! ACK is 
received. Level is used to indicate to the controller that new 
status is available from the terminal and toggles each time a 
new keystroke is presented. The reception of a POLL! ACK 
after the terminal has been put in the two byte response 
mode results in the POLL response with level toggle from its 
prior state. Each toggle of level also contains a new key­
stroke, if available. The section of code in the DAV routine 
that handles level transition is nL-level_hndlr. 

POLLs to nonconfigured station addresses do not result in a 
response but are used in monitoring activity on station ad­
dresses for Smart Alec address bidding purposes. When a 
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frame to an OFFLINE address (Le., not configured by Smart 
Alec) is received, the OFFLINE activity monitoring routine is 
responsible for setting or clearing bits corresponding to 
each OFFLINE address in tw_line_act on the DCP. Each 
bit in this location corresponds to a physical address on the 
network (therefore bit? is unused), and is set when another 
terminal or printer is active on that particular address. If the 
address is available for attachment, the corresponding bit is 
cleared. Smart Alec monitors this status regularly to com­
municate to the user whether or not he can attach to ad­
dresses via seven locations on the screen. To determine if 
the address is active, the DA V interrupt looks for POLLS on 
all OFFLINE addresses. Once a POLL is received, R~RE­
SPONSLWAIT and TW_ TIMER_RESP flags are set in 
R_COUNT into the timer to set a time limit for a response 
to be received. Also, R_ST ATE is saved at tw_off_save 
addr on the DCP to store the address and response flag. 
The next time the DA V interrupt hits with a frame to this 
address, tw_off_save_addr is fetched to see whether we 
are waiting for a response or not. If we are waiting for a 
response, R~RESPONSLWAIT is checked. If the timer 
interrupt routine has already run, R~RESPONSE_WAIT 
will be cleared which means that a response was not re­
ceived and the saved address is marked inactive. If R~ 
RESPONSE_WAIT is still set, this means that the frame 
just received was a response and the saved address is 
marked active. When an address is marked active, the save 
address and response flag are cleared in preparation for the 
next OFFLINE reception. When an address is marked inac­
tive, the saved address and response flag are cleared only if 
the frame received is not a POLL. A reception of a POLL 
results in the new address being saved with a timeout 
scheduled just as before mentioned. 

Errors detected by the receiver are handled on the DAV 
interrupt and can result in two different actions. All error 
types flagged by the receiver are treated as equal impor­
tance and are logged by maintaining error counters on the 
DCP for each error type. The appropriate error counter is 
fetched and incremented upon reception of an error. Once 
the error is handled, a check to see if the error occurred in 
the frist frame of a message or frames 2 - n is checked. 
First frame errors result in the setting of the line parity error 
detected bit, TW_LP, and TW_BUSY in tw_presp_stat 
on each of the current ONLINE sessions. Also, the TW_ 
QUE_COMPLETE flag is set in tw_que_ptr marking the 
End of Queue load to ensure we can eventually go unbusy. 
The 5250 PAl states that all active addresses will report line 
errors on the first frame since the error could have occurred 
in the address portion of the frame. If the error is encoun­
tered in frames 2 - n of a message, the station's address is 
known so only that station sets TW_LP in tw_presp_stat. 
Also, TW_QUE_COMPLETE and TW_QUE_CORRUPT 
are set since the validity of the queue load is in question. 
The task tw_session will flush the queue in this case, allow­
ing the terminal to go unbusy. This allows the controller to 
handle the line error. 



All receiver states exit through a common exit point. Upon 
exit, if RLEOM has not been set, RX_MULTI is set to 
indicate that a multi-frame is in progress. If RX_EOM is set, 
this means that no more frames are expected and results in 
the transceiver being reset with RLEOM and RX_MUL TI 
being cleared. Many subroutines in the DAV interrupt 
branch directly to rlL-eom_rcvd which results in the reset 
just mentioned. Using the transceiver reset capability of the 
BCP avoids spending unnecessary time on the DAV inter­
rupt processing information of no concern. For example, the 
OFFLINE activity monitoring routine only looks for POLLS 
and flushes any other frames. What this means is that the 
DAV interrupt has to process the first frame of each mes­
sage but by issuing a reset, subsequent frames of a multi­
frame message can be entirely ignored for they will not be 
recognized by the BCP. After the reset, the receiver hard­
ware looks for a starting sequence and will not extract data 
until seeing it. Therefore, the remainder of the message is 
ignored and the next message will be recognized. Before 
returning, the state of BIRO is checked to see if a PC 1/0 
access needs service. If BIRO is low, a call to dC<L-fasL 
birq handles the access and returns control back to the 
DAV interrupt routine. At this point, a check to see if more 
data is ready for processing is done to avoid unnecessary 
overhead of exiting the DAV interrupt only to be interrupted 
again. If no more data is available, IZ, banks and flags are 
restored on the return back to the foreground routine. 

Twinax Transmitter Interrupt Routine 

The TFE interrupt routine is responsible for loading the 
transmit FIFO and making the correct response to the con­
troller. The TFE interrupt is normally masked and is un­
masked by the timer interrupt when a response timeout 
count is encountered. A flow diagram of the TFE interrupt 
routine is shown in Figure 6-17. 

TL/F/l0488-37 

FIGURE 6-17. Twinax TFE Interrupt 
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Upon entering the TFE interrupt, the contents of the IZ 
pOinter are saved and the pointer is loaded with the appro­
priate SCP address. The appropriate SCP address corre­
sponds to the physical address of the session that is re­
sponding to the controller. The address is stored in 
R_STATE bits 2-0 and these bits are loaded into IZHI bits 
2-0 with IZLO cleared forming the pointer to the first location 
of the appropriate SCPo Finally, (FBR) is loaded with the 
value at the tw_mode offset on the SCP to determine the 
number of fill bits to insert between frames. 

Commands that require a response back to the controller 
are POLLs and ACTIVATE READs. All PREACTIVATE 
READ commands are processed in the foreground by vari­
ous command processing routines branched to from tw_ 
session. The various routines do exception checking and 
are responsible for setting up TX_VECTOR to the correct 
address corresponding to the command type decoded. 
When the ACTIVATE READ is received in the DAV interrupt, 
a response is scheduled by setting the TW_TIMER_RESP 
flag in R_ST ATE and loading a response timeout value into 
the timer. When the TIMER interrupt hits and it determines 
that this is a response timeout by checking for 
TW_ TIMER_RESP set, TW_ TIMER_RESP is cleared 
and the TFE interrupt routine is called to make the re­
sponse. 

POLL commands are handled entirely on the background 
interrupts due to the real time nature of the status response 
associated with the command. The DA V interrupt schedules 
the response just as described above for ACTIVATE 
READS and sets TLVECTOR to one of three addresses 
to cover the various POLL responses that can be made. 
The first frame of all responses must be sent to the control­
ler in a 45 ± 15 J-Ls window as defined in the 5250 product 
attachment information. The response timing is controlled 
by loading a timeout value (TW_RESPONSE_CNT) into 
the timer when reception of a POLL or PREACTIVATE 
READ command is processed in the DAV interrupt routine. 
For responses that are less than or equal to four bytes, only 
one entry into the TFE interrupt is required to send the en­
tire frame back to the controller. To load the fourth byte 
successfully, a test of TFF is made prior to loading the 
fourth byte to ensure that the first byte has propagated 
through the transmit FIFO and is being transmitted out the 
serial shift register. When responses are greater than four 
bytes in length, the TX_VECTOR is modified prior to exiting 
so that the next time TFE hits, the correct state will gain 
control to continue or complete the remainder of the mes­
sage. Upon determining that the last frame of the response 
is ready for load, [TCR2-0] are set to 111 for the end of 
message delimiter as required by the protocol. 

Keystroke passing in the 5250 protocol is different than in 
3270. After a POR, 5250 terminals respond with a single 
status response. For the 5251-11, a SET MODE followed by 
a POLL! ACK causes the terminal to go into a two byte poll 
response mode where the second byte is a keystroke. If no 
keystroke is pending, the keystroke value is a null (OOh). 
New keystrokes can only be presented following a POLL! 
ACK from the controller. When a new keystroke is made 
available to the controller, the LEVEL bit in the first frame 
status byte of the response toggles from the prior value to 
inform the controller that new status is now available. The 
DAV routine controls the poll responses by setting the TL 
VECTOR to one of three possible locations for POLL or 



POLL! ACK responses. For single frame status responses 
to polls, TL VECTOR is set to t,,-presp_one. As soon as 
the criteria to go into two frame poll response mode is met, 
the DAV interrupt sets TL VECTOR to either t,,-presp_ 
crnt or t,,-presp_new. In t,,-presp_crnt, the keystroke 
sent back to the controller is the value stored in tw_ 
presp_key_crnt and LEVEL remains unchanged. In tw_ 
presp_key_new, LEVEL is toggled in the first frame status 
byte response, and tw_presp_key_new is cleared after 
moving its value to tw_presp_key_crnt. With this ap­
proach, keystroke passing with the terminal emulation is 
simple since by simply checking to see if tw_presp_key_ 
new = OOh determines whether a new keystroke can be 
loaded for passing back to the controller. In other words, if 
tw_presp_key_new is nonzero, a keystroke is pending 
and the emulation program must wait before loading a new 
keystroke into tw_presp_key_new. 

All TFE "states" exit through a common exit point that han­
dles masking the TFE interrupt if no more frames are to be 
sent, checking to see if a pending BIRO interrupt is present, 
restoring foreground registers and restoring banks and flags 
upon returning. If a BIRO interrupt is pending, DCL 
FAST_BIRO is called to handle the remote access (see 
Smart Alec Interface discussion). When more frames need 
to be sent, all of the above occur except masking the TFE 
interrupt. Also, TL VECTOR may be modified to ensure 
that the correct state is entered upon re-entering TFE when 
it hits again. 

TW·TIMER 

The timer the BCP serves dual purposes in the twinax emu­
lation program: as a real time clock counter and as an inter­
val timer. 

A 5251 terminal will turn off the System Available flag if no 
POLL is received for more than 200 ms. It will initiate an 
automatic power on reset if no POLL is received for more 
than 2 seconds. Furthermore, the terminal will return to ON­
LINE from reset mode in approximately 5 seconds. The em­
u'lation program uses seven a-bit counters (tw_sys~ 
por_cntX, where X is from 0 to 6) to keep track of these 
real time events (one for each session). These counters are 
incremented by one every 21 ms. This 21 ms clock tick is 
generated by the TIMER interrupt. The value of 21 ms gives 
a maximum counting time (around 5.4 second) and a rea­
sonable counting resolution (± 10% for a count of 200 ms). 
The timer of the BCP is configured to use 1/16 CPU clock 
as input clock. 

In addition, the DAV and TFE interrupts utilize the timer to 
provide a 45 J.Ls time-out signal. When the receiver routine 
receives a POLL or ACTIVATE READ command and de­
cides to respond to the host, as per IBM's requirement, it 
has to do it in 45 J.Ls ± 15 J.Ls after the reception of the 
command. The receiver interrupt will setup the timer to gen­
erate a 45 J.Ls time-out signal which in turn activates the 
transmitter routine. The receiver interrupt first stops the 21 
ms counting of the timer, it saves the current counting value, 
it loads the timer to a count of 45 J.Ls (minus some offset to 
compensate for program execution time), it then starts the 
timer and reloads the previous counting value to the timer 
registers. When time-out occurs, the previous counting val­
ue will be loaded into the timer automatically to resume the 
21 ms counting. In addition, the program will set a flag to 
indicate that the timer has counted 45 J.Ls. In this way, the 
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timer is occasionally interrupted from the normal 21 ms 
counting and "borrowed" to provide a 45 J.Ls time-out. Since 
45 J.Ls is much shorter than 21 ms and the interruption is not 
too frequent, the error introduced is negligible. 

When either the 21 ms or 45 J.Ls time-out occurs, program 
execution will be transferred to the timer interrupt service 
routine (tw_timer_int). At the beginning of the routine, the 
timer routine checks the source of the interrupt. If it is due to 
the 45 J.Ls time-out, the program reloads the 21 ms count 
value into the timer registers and calls the TFE interrupt. 
The TFE interrupt will return to the timer routine after the 
response has been started. If the interrupt is due to the 
21 ms time-out, the program increments all real time clock 
counters by one unless the counter has already reached 
"FF". It is necessary to keep these counters from overflow­
ing because the foreground program has no way to distin­
guish counter overflow. In order to keep the execution time 
of the interrupt service routine as short as possible, the tim­
er routine does not perform any other checking to these 
counters. However, the routine still has to check pending 
host accesses and call dc~fasLbirq if needed. The fore­
ground program (tw_session) is responsible for checking 
these counters and invoking real time events at the right 
moment. 

The Command Stubs 

The twinax part of the MPA-II program emulates the IBM's 
5251 model 11 display terminal. The following discussion 
will be based on the commands for 5251 model 11. The 
command set of 5251 model 11 is shown in Table 4-2,5250 
Command Set, located in Chapter 4. The commands are 
divided into two main groups: the queueable commands and 
non-queueable commands. The three non-queueable com­
mands POLL, ACTIVATE READ, and ACTIVATE WRITE are 
not handled by the foreground programs as they are not 
queueable. Instead they are handled in real time by the 
background interrupt service routines as discussed above. 

All other commands are queueable, namely, they are 
pushed into the command queue when received by the re­
ceiver interrupt routine. They are processed by the fore­
ground task, tw_task, when it is invoked by the Kernel. In 
order to divide the program into properly grouped modules 
and make documentation easier, the queueable commands 
are further divided into four groups according to their func­
tions: Reads, Writes, Control and Operators. This grouping 
is not a definition by IBM's PAl document. The commands 
shall be discussed according to this grouping. 

One may observe that in addition to the 5251 model 11 
command set documented in the IBM's PAl, there is an ex­
tra command in Table 4-2 of Chapter 4. The READ LINE 
command is an undocumented read command that is rec­
ognizable by the IBM 5251 emulation card. In addition, the 
READ DATA command has some undocumented varia­
tions. To allow the MPA-II board to work with IBM's System 
Units properly, the BCP program must be able to handle 
these commands. Responses to these commands will be 
discussed under the READS section. 

Commands to the display terminal can be addressed to dif­
ferent logical devices and feature devices. This is specified 
in the modifier/device address field of the command. The 
device address or feature address should not be confused 
with the station address. Station address appears in another 



field and is handled by the receiver and transmitter interrupt 
routines. In the MPA-II twinax emulation program, Base and 
regeneration buffer, Keyboard, Indicators and Model ID are 
implemented. The Magnetic Stripe Reader feature is not im­
plemented and commands to this feature will return a "not 
installed" response. 

As described earlier, tw_session is responsible for decod­
ing the commands and directing the execution of the pro­
gram to the proper command processing routines. There 
are some common practices or "rules" in coding command 
processing routines so that they can interface with the ses­
sion task properly. On entering a command routine, GPO 
contains the command word and IZ contains the current 
SCP pointer, plus Main Bank A & B are selected. On leaving 
from a command routine, IZ and GP7 must not be trashed 
and register bank selection should not be changed. The 
common pOint of exit is to LJMP to tw_cmd_ret (twinax 
command return). For most commands, all 8 bits of the de­
vice address and command fields have been fully decoded 
upon entry and, therefore, require no additional decode in 
the command routine. However, for the RESET, READ 
DEVICE ID and READ DATA commands, the device/fea­
ture address field must be decoded in the command rou­
tines. This is because these three commands can be ad­
dressed to a number of device/features or can be ad­
dressed to uninstalled device/features. A number of com­
mands are associated with one or more data frames. There­
fore, the command routines must pop those frames off the 
command queue with LCALL(s) to tw_que_popper. The 
command routines should check the queue empty flag to 
prevent catastrophic errors when popping frames off the 
command queue. In normal operation, the queue will never 
be empty when it is popped by the command routines. 
Should the empty flag be true after a call to the tw_que_ 
popper, it suggests that a programming error has been en­
countered. At this time a LCALL to tw_bugs is performed 
followed by a graceful error recovery (The tw_bugs routine 
is discussed in the Software Debugging Aid section). Most 
commands require the command routines to check for the 
validity of the operands which are held by the address coun­
ter, reference counter or cursor register prior to, or in the 
course of the operation of the command. If any invalid oper­
and is detected, it must be reported back to the System Unit 
through the exception status. The command processing 
routines should set the exception type, LCALL to tw_ 
posLexception and then pass control back to tw_session 
via tw_cmd_ret if an exception is detected. The 
tw_clear_exception routine should be called if a command 
is going to clear exception status. In addition, command rou­
tines should never flush the command queue directly. 

The 5250-11 regeneration buffer size is 2000 bytes. The 
valid values of the address counter, reference counter and 
cursor register ranges from 0 to 1999. However, within the 
BCP twinax emulation program, these counters contain an 
offset which corresponds to their starting address within the 
BCP's data memory. For example, if the address counter 
sent by the System Unit is 20h and the regen buffer of that 
session starts at the BCP's data memory address of 2048h, 
then the address counter value stored in the SCP is 2068h. 
We refer to the original values of the counters as relative 
addresses and the stored values as absolute addresses. 
The reason for storing these counters in absolute address 
form is that the command processing routines can use them 
directly as data pointers without adding an offset value. This 
can speed up the time-critical interrupt service routines. 
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However, whenever these counter values are passed to or 
from the System Unit via the Smart Alec interface, a conver­
sion procedure is needed. Furthermore, as these values no 
longer start from zero, one has to check whether they are 
less than the lower boundry of the regen buffer address 
when performing the validity check. Another point is that for 
some commands, the final values of the counters may be 
rolled to 2000 if the last affected location is 1999 (in forward 
operation) or 65535 if the last affected location is 0 (in back­
ward operation). Exception status should not be reported in 
these cases. 

As mentioned in Chapter 4, Smart Alec utilizes a 31 entry 
FIFO queue that contains screen modification information. 
The FIFO queue contains starting and ending addresses of 
the screen area that has been modified. In the Smart Alec 
documentation this queue is referred to as the action stack. 
In order to emulate the Smart Alec interface, an action stack 
was implemented on the MPA-II. Every command process­
ing routine that will modify the screen is therefore responsi­
ble for loading the action stack with the proper address val­
ues. In the tw_util module, there is an action stack loader, 
tw_acLldr, and an action stack popper, tw_acLpopper, 
dedicated to maintaining the action stack. The action stack 
is actually a circular FIFO queue with a length of 124 bytes 
located in the SCP of every session. It can· hold up to 31 
entries as defined by the Smart Alec document. To load the 
action stack, the command processing routines must first 
load the appropriate memory locations and registers with 
the starting and ending address of the modified buffer area. 
Second, they must determine the type of modification as 
defined by the Smart Alec interface. Finally, the routines 
should call the action stack loader. 

READC 

All read type commands are grouped in the 
TW_READ.BCP module. The entry names of the command 
routines are shown in Table 6-5. The read command rou­
tines are in general, quite straightforward. This is because 
the actual response of all read commands is controlled by 
the transmitter interrupt routine. The foreground read com­
mand routines are only responsible for setting up the proper 
response routine addresses for the transmitter interrupt and 
for performing some regen buffer address checking, if need­
ed. . 

TABLE 6-5. Entry Names of Module tW...;.read 

Command Name Command Routine 
Entry Name 

READ REGISTER tw_reaLregs_cmd 
READ LINE tw_read_line_cmd 
READ DEVICE ID tw_read_dev_id_cmd 
READ DATA tw_read_dat~cmd 

READ LIMITS te_read_limits_cmd 
READ IMMEDIATE DATA tw_read_iml'lL-cmd 

The tw_read_regs_cnid command routine sets up the 
READ REGISTERS routine tlC-read_registers for the 
transmitter and then jumps back to' tw_cmd_ret. The 
transmitter will in turn respond to the System Unit with six 
bytes containing the values of the address counter, cursor 
register, and reference counter. . 

The READ LINE command is an undocumented command 
the IBM 5250 terminal emulation card responds to. The 
READ LINE command reads the screen buffer starting' at 
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the address counter until it comes to the end of the current 
screen line. The tw_read_line_cmd routine first checks 
whether the address counter value lies within the visual 
screen buffer range. Note that this range is different from 
the other reads. If it does not, then an invalid register value 
exception is posted and the tw_read_line_cmd routine 
returns to tw_session. Otherwise, the starting address of 
the response is placed into tw_acLbeginhi/lo, the ad­
dress counter is modified to point to the end of the screen 
line, and then the t><-read_line vector is set up for the 
transmitter interrupt. The transmitter will in turn respond to 
the System Unit with the contents of the regen buffer line. 

The tw_read_dev_id_cmd command routine first de­
codes the device/feature address by comparing the field to 
all defined logical devices and feature addresses. If there is 
a match, it will jump to the appropriate command routine to 
set up routines to respond with the device or feature ID. 
Otherwise it will jump to the twJead_fid~oLinstall rou­
tine which will direct the transmitter to respond with zero 
data. 

There are three different flavors of the READ DATA com­
mand. The READ DATA command addressed to the Mag­
netic Strip Reader is documented in the 5250 PAl. Since the 
MSR is not installed, the tw_read_dat~cmd command 
routine sets up the t><-read_data routine address for the 
transmitter interrupt and them jumps back to tw_cmd_ret. 
The transmitter will in turn respond to the System Unit with 
sixteen bytes of zero data, per the 5250 PAl. The other two 
flavors of the READ DATA command are undocumented, 
but supported by the IBM 5250 terminal emulation card. The 
READ DATA command 08h directed to the Base device 
simply returns the regen buffer byte that the address coun­
ter currently points to. An invalid register exception is post­
ed if the address counter value lies outside the regen buffer 
area. Then the t><-dat~vector is set to the t><-rd_dat~ 
base 08 routine address for the transmitter interrupt by the 
tw_rd_dat~base08_cmd command routine. The READ 
DATA command 18h is the other undocumented read com­
mand. It is very similar to the read immediate command 
discussed below except that the address counter points to 
the start of the response, the address counter is set to the 
last byte of the response plus one, and that if no attribute is 
found when the end of the regen buffer is reached, then an 
attribute exception is posted. The tw_rd_dat~base18_ 
cmd sets up the t><-rd_dat~base18 routine address for 
the transmitter interrupt, as well as the starting address for 
the response. Note that the tw_rd_dat~base18_cmd 
command routine actually determines the ending address 
and then simply passes a count to the transmitter interrupt 
as to how many bytes of the regen buffer to return. This 
keeps the transmitter interrupt very simple. 

The tw_read_limits_cmd transfers a display field of data 
to the controller. The area of transfer is delimited by the 
address counter and reference counter; therefore, tw_ 
read_limits_cmd first checks whether they lie within the 
regen buffer and whether the reference counter is greater 
than or equal to the address counter. If anyone of these 
tests fail, the program will post an invalid register value ex­
ception and return to the session task. Otherwise, it will 
pass the address counter and the byte count (reference mi­
nus address) to the transmitter interrrupt through four mem­
ory storage locations: tw_acLbeginlo, tw_acLbeginhi, 
tw_acLendlo and tw_acLendhi, and then set up the 
READ LIMITS routino. The transmitter will then fetch the 
data from the regen buffer and send it to the System Unit. 
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Before returning to session task, this command routine will 
update the address counter to the value of reference coun­
ter plus one so that the transmitter interrupt will not have to. 

The tw_read_imm_cmd command pops out the starting 
address from the command queue and determines whether 
it is valid. If it is valid, it will be converted into an absolute 
address, as we discussed in the introduction, and passed it 
to the transmitter. The tw_read_imm command will then 
determine the ending point of the read and pass a count of 
the number of regen bytes to send to the transmitter. Final­
ly, the tw_read_imm stub will be set up for the transmitter 
interrupt. 

WRITE Commands 
All write type commands are grouped in the TW_ 
WRITE.BCP module. The entry names of the command rou­
tines are shown in Table 6-6. The PREACTIVATE WRITE 
command routines, tw_write_imm_cmd and tw_write_ 
dat~cmd, are relatively simple. They just set the beginning 
address of the operation to tw_acLbeginhi and tw_acL 
beginlo. When the receiver interrupt gets an ACTIVATE 
WRITE command, the receiver interrupt will put the data 
into the regen buffer and determine the end of operation. 
Processing of other write commands is done completely in 
the foreground. We shall discuss each command in more 
detail. 

TABLE 6-6. Entry Names of Module tw_write 

Command Name 
Command Routine 

Entry Name 

WRITE CONTROL DATA tw_write_cntl_cmd 
WRITE DATA and 

LOAD CURSOR-base tw_write_datCL.ld_cur_cmd 
WRITE DATA and 

LOAD CURSOR-indicate tw_write_datCL.lo_ind_cmd 
WRITE IMMEDIATE DATA tw_write_imm_cmd 
WRITE DATA tw_write_datCL.c.:md 

The tw_write_cntl_cmd command pops the data byte fol­
lowing the command from the queue and puts it into the 
control register location (tw_ctrI1) in the SCPo It also 
checks the Reset Exception Status bit (bit 12) of the data 
word. If the bit is set; the tw_clear_exception subroutine is 
called. On the 3180-2 model terminal, the command may 
have a second data byte. This routine checks bit 8 of the 
first data byte, if it is set, one more byte will be popped out 
and saved into tw_ctrl2 in the SCPo 

The tw_write_dat~ld_cur_cmd command may also 
have one or more data bytes associated with it. This routine 
checks the first data byte to determine if it is in the range of 
01 to OEh. If the data byte is not in this range, it is the only 
data byte associated with the command and the routine just 
writes it to the location pointed to by the address counter. If 
the data byte is in this range, the routine will take the first 
byte as the byte count and will pop that number of data 
bytes from the queue and write them into the regen buffer. 
During the write operation, the address counter will be incre­
mented and checked for overflow. Storage exception status 
will be posted if an overflow occurs. At the end of the opera­
tion, the program updates the cursor register to the value of 
the address counter and loads up the action stack by calling 
the tw_acLldr routine. 

The tw_write_dat~to_ind.~_cmd command routine han­
dles the WRITE DATA AND LOAD CURSOR command ad-



dressed to the indicators. It simply pops out the data byte 
following the command and saves it in the memory location 
tw_idctr_data in the appropriate SCPo It also notes the 
transition direction of certain indicators and saves this infor­
mation in the memory location tw_s~trans_ident for 
Smart Alec. 

The tw_write_imm_cmd routine first pops the starting ad­
dress from the queue, then checks to see if it is valid. If it is 
valid, it will be converted into absolute form and passed to 
the receiver interrupt. The starting address entry of the ac­
tion stack is also set up. The receiver will then pick up the 
rest of the operation when the ACTIVATE WRITE command 
is received. 

The tw_write_dat<L-cmd routine checks the address 
counter and passes it to the receiver interrupt as the starting 
address of the operation. The subsequent operation is iden­
tical to the WRITE IMMEDIATE command. 

Operators 

The module TW_OPER.BCP contains command routines 
for all operator commands. Entry names of these routines 
are shown in Table 6-7. 

The CLEAR command routine is actually a subroutine that 
returns to its caller. Therefore, the command routine tw_ 
clear_cmd simply calls the actual clear routine, tw_clear_ 
routine, and upon return from that routine, tw_clear_cmd 
LJMP's back to tw_session as required by all command 
routines. The subroutine tw_clear_routine checks the ad­
dress and reference counters to see if they point at valid 
screen addresses and that the address counter is less than 
or equal to the reference counter. If any of these are false 
an invalid register exception is posted and no clearing takes 
place. Otherwise, the bytes starting with the byte pointed to 
by the address counter are zeroed up to and including the 
byte pointed to by the reference counter. Then an action 
stack entry is made to notify the Smart Alec interface of the 
screen update. The address counter and reference coun­
ter's contents are not modified. 

TABLE 6-7. Entry Names of Module tw_oper 

Command Name 
Command Routine 

Entry Name 

INSERT CHARACTER tw_inserLcmd 
CLEAR tw_clear_cmd 
MOVE DATA tw_move_cmd 
SEARCH NEXT ATTRIBUTE tw_search_attr_cmd 
SEARCH NEXT NULL tw_search_null_cmd 

The tw_inserLcmd command routine first examines the 
regen buffer location pointed to by the reference counter. If 
it is not a null, a Null or Attribute error exception will be 
posted and operation terminates. If it is a null, the program 
proceeds to check the address counter and reference coun­
ter to see whether they are valid. If the counter values are 
valid, the insert operation will be carried out. At the end of 
the operation, the address counter and cursor register will 
be updated and the action stack will be loaded by calling the 
tw_acLldr routine. 

Although the operation of the tw_move_cmd command is 
quite complex, the IBM PAl gives a fairly clear description of 
it. This routine checks the address counter, reference coun­
ter and cursor register to determine whether the move is 
forward or backward. The program then carries out the 
move operation as per the description of the PAL The action 
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stack load for the move command consists of two entries or 
four values. The first entry is the starting address and end­
ing address of the destination area of the move. The second 
entry is the starting address of the source area and the 
direction of operation. Details of these entries can be found 
in the Smart Alec user manual. 

The tw_search_attr_cmd command routine first checks 
the address counter to make sure it is within the valid range. 
Next, starting from the current address counter value, the 
routine searches the regen buffer to find an attribute. If an 
attribute is located, the reference counter will be set to the 
address of the attribute minus one. The routine will post a 
null or attribute error exception if no atribute is found when 
the end of buffer is reached. 

At the beginning of the tw_search_nulI_cmd routine, it 
checks both the address counter and reference counter to 
make sure they are within valid range and that the reference 
counter is equal to or greater than the address counter. If 
the checks are successful, the program proceeds to search 
for a null character starting from the current value of the 
address counter. If a null is found, the reference counter will 
be set to the address of the null minus one. Otherwise the 
operation will terminate when the reference counter is 
reached and a null or attribute error exception will be post­
ed. 

Control 
The module TW_CNTL.BCP contains all the routines that 
handle the control commands. The entry names of all rou­
tines are shown in Table 6-8. 

TABLE 6-8. Entry Names of Module tw_cntl 

Command Name Command Routine 
Entry Name 

LOAD ADDRESS COUNTER tw_load_addr_cmd 
LOAD CURSOR REGISTER tw_load_cursor_cmd 
LOAD REFERENCE COUNTER tw_load_ref_cmd 
SET MODE tw_seLmode_cmd 
RESET tw_reseLcmd 
EOQ -

The tw_load_addr_cmd command routine pops the ad­
dress counter value from the command queue and saves it 
on the SCP after changing it to absolute form. However, as 
per IBM's PAl, there is no need to check the validity of the 
value before loading. As a remark to clarify the ambiguity of 
the PAl, the address counter value consists of two bytes, 
the upper byte is the first data byte following the command 
while the lower byte is in the second byte. 

The tw_load_cursor_cmd command routine loads the 
cursor register in the SCP with a new value. The operation is 
similar to tw_load_addr_cmd routine. 

The tw_load_ref_cmd command routine loads the refer­
ence counter in the SCP with a new value. The operation is 
similar to tw_load_addr_cmd routine. 

The tw_seLmode_cmd routine pops the fill bit count 
from the command queue, converts it to the BCP's Fill Bit 
Register format, and saves it on the SCPo Next, the set 
mode received bit is set in the SCPo This signals the back­
ground receiver interrupt that it may start responding to 
polls using the two byte response format, (after a PACK is 
received). Finally, if the current exception state indicates 
POR then the exception state is cleared. 



Like the tw_clear_cmd routine, tw_reseLcmd actually 
calls the subroutine tw_por which performs a POR on the 
current session. The routine tw_por first places the current 
session OFFLINE by signaling to the background receiver 
interrupt (via the RLRESET bit) that it is not to respond to 
the host until further notice for this station address. Once 
this is done, the tw_por routine can begin changing memo­
ry locations normally updated by the background receiver 
interrupt without disabling interrupts because the RLRE­
SET bit effectively disables the receiver interrupt when 
working with this physical session. Next the exception 
status is changed, notifying other tasks that this session is 
in POR. The time count for this session is cleared and a bit 
is set (in th~ tw_por_waited_session byte on the DCP) 
informing the other tasks that the 5 second POR timeout 
has commenced. The tw_task routine will use this time 
count and this session's POR wait bit t6 determine when to 
bring the session back on line. Other tasks use the POR 
wait bit when interpreting the meaning of the time count for 
the current session. The action stack is cleared next, along 
with the· smart alec task handshake bits. Then, the screen 
buffer for this session is cleared via a call to tw_clear_rou­
tine, which issues an action stack entry reflecting the 
cleared screen. (This allows the PC to accurately reflect the 
POR state.) Finally, the remaining SCP variables are set to 
their appropriate values, except for the variables controlled 
by the smart alec task, (Le., Model 10, Keyboard 10, etc ... ), 
which are left unchanged. 

The End Of Queue command does not actually have a com­
mand routine, for at this point in the command decoding 
process of the MPA-II it does not provide any additional 
information. As far as the command processor is con­
cerned, the· queue load complete flag, set by the back­
ground receiver interrupt, indicates the actual end of queue. 
So the act of popping the EOQ command off the queue 
completed this command's execution, no call to a command 
routine is required. 

.The Twinax Session Command Processor 

The twinax session command processor, tw_session, is lo­
cated in module TW_SESS.BCP. Its job is to perform all 
non time-critical functions related to sustaining an active 
twinax session. This includes processing the internal com­
mand queue, error recovery, and performing a POR. In addi­
tion, tW-,-session and. its subordinate routines are responsi­
ble for communicating important events (like screen up­
dates) to the emulation interface routine (i.e., the smart alec 
task), which operates asynchronously to twinax session ac­
tivity. 

The command processor, tw_session, and its subordinate 
routines are written with "reusable" code. That is, all the 
information regarding a given twinax session's state is kept 
in the SCP (the data memory. Session Control Page) at­
tached to that physical session. There is no dependency 
between tw_session and an active session's state from 
one call to the next. At any time, any SCP may be passed to 
tw_session. In other words, the current state of a given 
physical twinax session exists only in its SCP, not in the 
command processor. This gives one set of routines 
(tw_session and its subordinates) the ability to process all 
the· active twinax sessions concurrently. The twinax task 
tw_:.Jask simply passes the pointer of. the scheduled ses­
sion's' SCP (via the IZ register) to tw~session and tw_ 
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session then determines the current state of that session 
and what action(s) need to be performed. 

The program flow of tw_session proceeds as follows. First, 
tw session checks for the ACTIVATE WRITE command 
fo;ihe current session completed in the background. If one 
has occurred, tw_session performs an action stack push, 
which notifies the Smart Alec interface of the screen up­
date. Next, the command processor checks for actions re­
quested by other tasks. Currently, two actions are defined: 
the "forced" POR and the "requested" POR. The "forced" 
POR is usually issued by the smart alec interface task and it 
forces a POR regardless of the current session status. After 
the POR is initiated control returns to the calling routine 
(tw_task). The "requested" POR is usually issued by tw_ 
task when an Auto-POR is desired. A POR is only per­
formed if the current session is not already in the POR ex­
ception state or if an error condition does not exist. Other­
wise, this request is ignored. In this way, the twinax session 
will not unnecessarily POR. Again, after a POR is initiated 
control returns to the calling routine. 

Once all the requested actions from other tasks have been 
handled, the command processor attempts to process the 
internal command queue of the current session. Rather then 
holding off the command processor from processing com­
mands on the queue until a queue load is complete, we 
opted to exploit the power of the BCP by using a parallel 
processing approach where both the background receiver 
interrupt and the foreground command processor have ac­
cess to the command queue simultaneously. This enables 
the command processor to execute commands even while 
the queue is still being loaded by the host. To avoid con­
flicts, the command processor tw_session takes a "snap 
shot" of the current internal command queue and current 
exception status (in the poll response byte). The command 
processor then works from the "snap shot" while the back­
ground receiver task updates in real time. 

The "snap shot" involves the following steps. Interrupts are 
disabled to prevent background tasks from updating the 
command queue. The command queue is then checked to 
see if another task has marked it as "corrupt". When a 
background task determines that the command queue may 
contain invalid data (for example, due to a line parity error or 
the detection of an exception) it marks the queue as corrupt 
and schedules that session. The tw_session routine then 
flushes the queue when it gets control. Flushing the com­
mand queue resets all the queue pointers and flags. This 
marks the command queue as empty. ·It also signals the 
background tasks that tw_ session has acknowledged the 
error and cleaned up the command queue. This handshake 
is required since background tasks are only allowed to push 
onto the internal command queue, never flush it. (At the 
next poll to this session, the background receiver interrupt 
will indicate "not busy" to signal the host that this device 
has completed error recovery.) After the command queue is 
flushed, tw_session will deschedule this twinax session 
and return to the calling routine (tw_task). If the internal 
command queue is not corrupt, tw_session checks to see if 
it is "ready" for processing. The command queue is marked 
as "not ready" while the background receiver interrupt is in 
the middle of pushing a multi-byte command (for example 
the LOAD ADDRESS COUNTER command) onto the 



queue. While the queue is marked as "not ready", 
tw_session will not attempt to process any commands on 
the queue. Instead, tw_session leaves this session sched­
uled and returns to tw_task. This keeps the command 
processor and its subordinate routines from attempting to 
pop incomplete commands off the internal command 
queue. On the next Kernel cycle, tw_ session will once 
again be called upon (by tw_task) to process this session's 
command queue. If the internal command queue is marked 
"ready" for processing then tw_session copies the current 
queue pointer, the current exception status (located in the 
poll response byte), and then deschedules this session. 
This completes the "snap shot". Interrupts are enabled so 
that other tasks may continue to update the command 
queue. 

Now that the "snap shot" of the command queue has been 
taken, tw_session can begin popping commands off the 
queue and decoding them. The command queue is process­
ed based on tw_sessions' current verion of the exception 
status, initially recorded during the "snap shot". This excep­
tion status is checked before the decode of each command 
to determine the current exception state of this session, 
since command decode depends on this state and previous 
command execution may change the state. (Note that this 
copy of the poll response's exception status may not match 
the actual exception status after the "snap shot" has been 
taken. This is simply a consequence of background/fore­
ground parallel processing and is not a problem. The next 
time a queue "snap shot" is taken the tasks are brought 
back into sync.) While in paR exception state, only the SET 
MODE and RESET commands are considered valid. While 
in any other exception state, only the SET MODE, RESET, 
and WRITE CONTROL DATA commands are considered 
valid. In normal mode (no exception state,) all commands 
are considered valid. If an invalid command for the current 
exception state is decoded, the command queue is flushed 
and tw_session will attempt to post an exception. A valid 
command decode causes tw_session to pass control to 
that command's routine (called a command routine) for pro­
cessing. Most of the commands have been fully decoded by 
tw_session before their command routine is executed, but 
a few commands require the command routines to further 
decode the feature address field. Each command routine is 
responsible for popping its associated data off the com­
mand queue. Each command stub is responsible for carry­
ing out complete command execution, including posting ex­
ceptions, making action stack entries, etc ... (Many of 
these tasks are actually carried out by calls to support sub­
routines.) All command routines return to the same entry 
point in tw_session. (See the comments in tw_session, at 
the command decode section, for a complete set of rules 
regarding command stub coding.) 

When all the commands have been popped off the current 
command queue snap shot, the queue load complete flag 
(TW_QULCOMPLETE) is checked. This flag is set by the 
background receiver interrupt when an EOO designator has 
been received. (An EOO deSignator can be an EOO com­
mand, a PREACTIVATE command, or a full command 
queue.) If the queue load complete flag is set then 
tw_session flushes the command queue, clearing this flag 
and resetting the command queue pointer. The clearing of 
the queue load complete flag by tw_session Signals the 
receiver task that it may clear the poll response busy status 
flag at its discretion. This in turn signals the host that the 
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queue load has been completely processed and a new 
queue load may be initiated. 

Finally, tw_session returns control to the calling routine, 
tw_ task, not to be called again for the current session until 
another task schedules this session to perform additional 
work. 

Handling Exceptions 

Exceptions are posted by the subroutine tw_posLexcep­
tion (located in module TW_UTIL.BCP). This is the only 
reliable way for foreground tasks to post exceptions since 
both foreground and background tasks must be made 
aware of the exception. The tw_posLexception routine 
first disables interrupts to hold off background processing. It 
then updates tw_session's exception status. Next, it up­
dates the poll response exception status, but only when no 
exception is currently pending. The tw_posLexception 
routine then places the background receiver interrupt into its 
busy wait state. This prepares the receiver interrupt to re­
spond "not busy" on subsequent polls from the host. Fol­
lowing that, tw_posLexception flushes the command 
queue per the PAL Finally, after a quick check of BIRO, 
interrupts are enabled and tw_posL exception returns to 
the calling command stub. 

Exception status is cleared by tw_clear_exception, locat­
ed in module TW_UTIL.BCP, for the same reason as stat­
ed above. This routine sets both tw_session's exception 
status and the poll response exception status to zero while 
interrupts are disabled. Again, BIRO is checked before inter­
rupts are enabled and then control returns to the calling 
command routine. 

Twinax Software Debugging Aids 

The subroutine tw_bugs, located in the module 
TW_ TASK.BCP, is used for a debugging aid. Routines call 
tw_bugs when they detect invalid states; for example, the 
Smart Alec read command addressed to physical session 7 
(the seven physical sessions are numbered 0-6). During 
initial debug, the SCPs and DCP are usually relocated into 
dual port memory by trading them with screen buffer 3 (sbp 
3). The tw_bugs routine is then set to disable interrupts, 
unlock the PC, and jump to itself so that when called, the 
current state of the MPA-Ii is frozen and can then be viewed 
using the Capstone Technology debugger. After initial de­
bug is complete, tw_bugs is set to simply log the occu­
rence of a bug by incrementing a counter in the DCP and 
return to the caller. The caller should then attempt a grace­
ful recovery. A check of the tw_bugs counter will reveal if 
routines are detecting unexpected conditions when in the 
field. 

Smart Alec Interface Overview 

Smart Alec is a micro-to-System 3x or AS/400 link pro­
duced by Digital Communications Associates. It provides 
the IBM PC, PC XT, or PC AT with a direct link to IBM 
System 34, System 36, System 38, or AS/400 midrange 
computers. The Smart Alec product includes a printed cir­
cuit board that installs in any full length slot in the PC, and a 
software package that consists of a 5250 terminal emula­
tion program, called EMU, and a bi-directional file transfer 
utility. A splice box to facilitate connection to the twinaxial 
cable is also included. 

The terminal emulation program provides the user with all 
the features of 5251 model 2, 5291, or 5292 model 1 termi- EI 
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nal. It also allows a PC printer to emulate the IBM 5256, 
5219, 5224, 5225, and 4214 system printers. The file trans­
fer utility provides bi-directional data transfer between the 
PC and the System 3x. Additional features include the ability 
to support up to seven host sessions, the capability to bid 
for unused addresses, compatibility with software written to 
comply with the IBM Application Program Interface, "hot 
key" access, and 3270 pass through support. 

As mentioned earlier, IBM was the first to enter the market­
place with a 5250 terminal emulator. This was soon fol­
lowed by the release of similar products including DCA's 
Smart Alec. Smart Alec was however, the first product to 
offer seven session support, address bidding, and a docu­
mented architecture for third party interfacing. As with 
IRMA, Smart Alec and its associated interface gained ac­
ceptance in its respective market place. As a result of this 
the Smart Alec interface was chosen for the Multi-Protocol 
Adapter-II to further show the power and versatility of the 
DP8344A Biphase Communications Processor. The MPA-II 
hardware with the MPA-II soft-Ioadable microcode is equiva­
lent in function to the DCA Smart Alec board and its associ­
ated microcode with respect to terminal emulation and file 
transfer capabilities (the printer emulation and non-vol RAM 
configuration storage were not implemented on this version 
of the MPA-II). Both directly interface with the Smart Alec 
terminal emulation software that runs on the PC (EMU, file 
transfer utilities, etc ... ) providing the same terminal emula­
tion functions and features of the Smart Alec product. The 
following sections describe the hardware interface and the 
BCP software in the Multi-Protocol Adapter-II Design and 
Evaluation kit that is used to implement the Smart Alec in­
terface. All of the following information corresponds to Rev 
1.51 of the Smart Alec product. 

Hardware Considerations 

The Smart Alec printed circuit board plugs into any full size 
expansion slot in the IBM PC System Unit. It provides a 
cable and splice box that allows the bulky twinaxial cable 
from the System 3x or AS/400 to be connected to the back 
panel of the Smart Alec board. The splice box also contains 
termination resistors that can be switched in to terminate 
the line if it is the last device. Smart Alec operates in a 
stand-alone mode, using an on-board microprocessor (the 
Signetics 8X305) to handle the 5250 protocol and multiple 
session screen buffers. Because of the timing requirements 
of the 5250 protocol, the on-board 8X305 operates inde­
pendently of the 8088 or the System Unit. The 8X305 pro­
vides the intelligence required for decoding the 5250 proto­
col, maintaining the multiple screen buffers, and handling 
the data transfer and handshaking to the System Unit. 

The Smart Alec card uses a custom integrated circuit to 
interface the 8X305 to the twinaxial cable. This custom de­
vice is essentially a transmitter and receiver built for the 
5250 environment. It can take parallel data from the 8X305 
and convert it to a serial format while adding the necessary 
5250 protocol information and transmit this to the twinaxial 
cable through additional interface circuitry. It also accepts a 
serial TTL level signal in the 5250 word format and extracts 
the 5250 protocol specific information and converts it to a 
parallel format for the 8X305 to read. 
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The card contains 16K of data memory for the screen buff­
ers and temporary storage. Each session can require up to 
2K of data memory for its associated screen buffer, ac­
counting for a total of 14K. The remaining memory space is 
used by the 8X305 for local storage. 

The hardware used in enabling the 8X305 to communicate 
with the PC's 8088 processor is a dual four byte register 
array. The 8X305 writes into one side of the four byte dual 
register array which is read by the 8088. The 8088 writes 
into the other side of the dual array which is in turn read by 
the 8X305. The dual register array is mapped into the PC's 
110 space at locations (addresses) 228h-22Bh. This inter­
face is identical to that found on the IRMA board except for 
the liD addresses. 

A handshaking process is used between the two processors 
when transferring data. After the 8088 writes data into the 
array for the 8X305, it sets the "Command" flag by toggling 
bit 0 (writing a "1" then writing a "0") in liD location 22Eh. 
This is decoded in hardware and sets a flip-flop whose out­
put is read as bit 7 (the msb) at location 22Eh. When the 
8X305 has read the registers and responded with appropri­
ate data for the 8088, it clears this flag by resetting the flip­
flop. A similar function is provided in like manner for trans­
fers initiated by the 8X305. Here the flag is called the "At­
tention" flag and can be read as bit 6 at location 22Eh. This 
flag is cleared when the 8088 toggles an active low bit in bit 
position 0 at location 22Dh. Even though the attention flag 
function is documented, it is not used on this revision of 
Smart Alec. 

Two additional features not found on rev. 1.42 of the IRMA 
card were implemented on the Smart Alec board. These are 
the ability to softload the 8X305's instruction memory and 
the ability to save configuration information in a non-volatile 
RAM on the board. The control signals needed for these 
tasks are transferred to the Smart Alec Board from the 8088 
in bits 1-5 at location 22Dh and 22Eh, and in bits 6 and 7 at 
liD location 22Fh. When the terminal emulation program, 
EMU, is invoked for the first time after each power up the 
8X305 microcode is downloaded into RAM on the Smart 
Alec board. Information generated through the configuration 
program EMUCON is loaded into a 9306 serial non-vol RAM 
on the Smart Alec board. This is accessed at power up thus 
eliminating the need for the user to configure the board ev­
ery time the PC is turned on. A block diagram of the Smart 
Alec hardware is shown in Figure 6-18. 

The Multi Protocol Adapter-II printed circuit board also plugs 
into any expansion slot in the IBM PC System Unit. Like 
Smart Alec, it provides an adapter to allow the bulky twinaxi­
al cable from the System 3x or AS/400 to be connected to 
the back panel of the card. The MPA-II board contains the 
termination resistors on the PC card and not in a splice box. 
These resistors can be "switched in" via two jumpers. The 
MPA-II operates in a stand-alone mode, using the DP8344A 
Biphase Communications Processor to handle the 5250 
protocol and multiple screen buffers. Again. because of the 
timing requirements of the 5250 protocol, the BCP operates 
independently of the 8088 microprocessor of the System 
Unit. As with the 8X305, the BCP provides the intelligence 
required for decoding the 5250 protocol, maintaining the 
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FIGURE 6·18. Smart Alec Hardware Block Diagram 

multiple screen buffers, and handling the data transfer and BCP DATA MEMORY 
handshaking to the System Unit. However, with the BCP's 
higher level of integration, it also interfaces with the twinaxi-
al cable. The BCP has an internal biphase transmitter and 
receiver that provides functions similar to the custom trans­
ceiver on the Smart Alec board. As is the case in 3270, the 
BCP's CPU can handle the 5250 communications interface 
very efficiently. It also has the extra bandwidth to allow the 
MPA-II to easily handle the multiple sessions. 

The MPA-II card contains a single 32K x 8 RAM memory 
device for the screen buffers and temporary storage. This 
memory size was chosen to handle all seven twinax ses­
sions in a single RAM. 

The hardware used to enable the MPA-ll's BCP to commu­
nicate with the PC's 8088 processor is steering logic (con-
tained in PALs) and the data RAM. In a typical application, 
the BCP communicates with a remote processor by sharing 
its data memory. This is true with the MPA-II, but because 
the MPA-II must run with the Smart Alec software, steering 
logic has been used to direct the 8088's liD reads and 
writes done by the Smart Alec software into data memory 
locations on the MPA-II card. The liD accesses performed 
by the Smart Alec software can be fit into three groups; 
accesses to the dual register array, accesses to the hand­
shaking flags, and accesses to configure the card. All of 
these are directed into the BCP's data memory, however 
each are handled differently by the MPA-II. By using data 
memory and the extra proceSSing power of the BCP's CPU 
instead of discrete components the number of integrated 
circuits on the board was reduced. 

The Smart Alec dual register array is implemented on the 
MPA-II card in the same fashion as the IRMA dual register 
array. The liD accesses from the System Unit are 
"steered" to two different BCP data memory locations de­
pending on if they are reads or writes. The writes from the 
8088 are directed to memory locations 7F28h-7F2Bh, and 
the reads from the 8088 are sourced from memory locations 
7E28h-7E2Bh. The MPA-II Register Array Implementation 
is shown in Figure 6-19. 
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FIGURE 6·19. MPA·II Register Array 
Implementation for Smart Alec 

The handshaking process on the Smart Alec card differs 
from the IRMA implementation. To set the command flag, 
bit a in the register at liD location 22Eh must be toggled (a 
write of a "1 ", followed by a write of a "a"). In the IRMA 
interface, just writing to an liD location would set the com­
mand flag. This is not the case with Smart Alec because the 
additional softload and configuration capabilities of the 
Smart Alec card required that each of the bits in these regis­
ters have different functions. The MPA-II hardware used to 
emulate the handshaking function for Smart Alec is similar 
to its IRMA implementation. When the 8088 goes to set the 
command flag by toggling bit a at liD location 22Eh, it actu­
ally does a write to 7F2Eh in the MPA-lI's data memory via 
the steering logic. The steering logic also interrupts the BCP 
telling it an access has been made to the Smart Alec liD 
space. The BCP then determines if it was a write to the PC 
liD location 22Eh by reading the access register from the 
steering logic. If a write occurs to liD location 22Eh, the 
BCP reads the memory location 7E2Eh and determines if I 

fI 
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the "set command flag" bit has been toggled. It does this by 
checking to see if bit 0 and bit 4 (the non-vol RAM enable 
bits) are low. If this is the case, it then knows the Smart Alec 
software intended to set the command flag. The attention 
flag is not implemented on this version of Smart Alec and is 
therefore not implemented on the MPA-II. However, if one 
chooses to do so it can easily be done in the same manner. 

The System Unit accesses used to configure the Smart Alec 
Board consist of a method to softload the 8X305 and to 
read and write set-up information into a non-vol RAM. Be­
cause the MPA-II uses the DP8344B, there is no need to 
emulate the 8X305 softload function. The DP8344B is itself 
softloaded using the MPA-II Loader before the Smart Alec 
software is invoked. The reading and writing of the non-vol 
RAM is done using additional bits in the control and strobe 
registers at 110 locations 22Dh, 22Eh and 22Fh. In the 
Smart Alec implementation the System Unit must provide all 
the control, data and clock signals to the non-vol RAM via 
the above mentioned 110 locations. The non-vol RAM is not 
implemented on the MPA-II card but because the Smart 
Alec emulator, EMU, reads this information on power-up the 
MPA-II does emulate the non-vol RAM when it is being read. 

This is done in the same manner as the handshaking flags 
and further illustrates the flexibility a designer is given with 
the additional bandwidth of the BCP's CPU. 

Smart Alec Microcode 

The Smart Alec application software written for the personal 
computer (EMU, file transfers, etc ... ) is architected around 
a defined interface between Smart Alec and the System 
Unit (the 8088 and its peripheral devices). The hardware 
portion of this interface was discussed in a previous section. 
The software portion of this interface is the microcode writ­
ten for the 8X305 processor. For the following discussion, 
the software and hardware are viewed as a single interface 
function. All of the Smart Alec application software has 
been written around this interface. When configured in the 
Smart Alec mode the MPA-II becomes this interface. The 
method of communication between Smart Alec and the Sys­
tem Unit will be discussed briefly in the next section. A more 
exhaustive discussion on this interface is given in the Smart 
Alec manual. 

Smart Alec and the System Unit communicate through the 
dual four byte register array. The System Unit issues com­
mands to Smart Alec by writing to this array. This register 
array is viewed by the System Unit as four 110 locations 
(228h-22Bh). Each 110 location corresponds to one eight 
bit word. When the System Unit issues a command, the first 
byte, word 0, is defined as the command number and logical 
device. The next three bytes, word 1 through word 3, are 
defined as arguments for the command. The number of ar­
guments associated with an individual command varies from 
zero to three. Twenty-three commands are used in the com­
munication between the System unit and Smart Alec. The 
upper three bits of each command specify the logical device 
to be referenced by the command. To begin a command the 
System Unit program sets word 0 equal to the logical device 
and the command number. It also provides any necessary 
arguments in word 1 through word 3, and sets the command 
flag. The command flag is continually being polled by the 
8X305 processor when it is not busy managing the higher 
priority 5250 communications interface. When it detects the 
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setting of this flag by the System Unit, it will read the data 
from the register array and execute the command. Once the 
command has been executed, the 8X305 will place the re­
sulting data into the other side of the register array and clear 
the command flag. The System Unit program has been con­
tinually polling this flag and, after seeing it cleared, reads 
the result from the register array. The command flag can 
only be set by the System Unit. This is done by toggling bit 0 
at 110 location 22Eh. The command flag can only be 
cleared by the Smart Alec's 8X305. 

The Smart Alec board was deSigned at DCA after the IRMA 
product. It is obvious from the additional commands that 
steps were taken to improve the performance of the inter­
face with the System Unit. An action stack was generated to 
hold address pairs that denoted where the screen buffer 
had been modified and with what type of modification. Also 
read multiple commands were added to speed up data 
transfer through the interface. While this did improve the 
performance of the interface it still contains the inherent 
limitations of not dual porting data memory. 

MPA-" Implementation 

The smart alec interface on the MPA-II board operates es­
sentially in the same manner as described above. The Sys­
tem Unit 110 accesses to the Smart Alec register array 
space are transferred to two locations in the BCP's data 
memory. One location is for System Unit reads of the array 
(7E28h-7E2Bh), the other is for System Unit writes to the 
array (7F28h-7F2Bh). Different BCP memory locations were 
used because the register array on the Smart Alec card 
actually contains eight byte wide registers (four for System 
Unit and four for System Unit writes) in hardware. 

The command flag is implemented using a 74LS74 on the 
Smart Alec board, hence the setting and clearing by tog­
gling a bit in the control register at 22Eh (this clocks the flip­
flop). This function has been implemented on the MPA-II 
using an external PAL and the bi-directional interrupt pin, 
BIRO. Also, the MPA-II takes advantage of the fact that the 
Smart Alec software accesses the 110 locations in exactly 
the same fashion for each command. This is done because 
the Smart Alec emulation program, EMU, was written in the 
C programming language. It accesses the Smart Alec 110 
registers by calling an assembly language subroutine to per­
form the commandldata and handshaking flag communica­
tions. This assembly routine writes to the 110 locations 228h 
through 22Bh, toggles the command flag, and then reads 
the state of the command flag (bit 7 at location 22Eh) until it 
returns low. If there is a write to the Smart Alec 110 space 
228h-22Fh, then a PAL issues an interrupt to the BCP via 
the BIRO input. The BCP then reads other outputs of that 
PAL to determine to which of those 110 locations the write 
occurred. If it is to 228h-22Bh then the MPA-II will assert the 
bit which tells the System Unit that the command flag is set. 
The MPA-II then waits for a System Unit write to 110 loca­
tion 22Eh with the set command flag bit (bit 0 at 22Eh) low. 
The MPA-II then sets an internal command flag. It is this 
internal command flag that tells the MPA-lI's smart alec task 
routine that an actual command has been issued by the 
System Unit. 

The commands from the System Unit are executed in the 
smart alec task routine. This routine is a foreground sched­
uled task in the MPA-II Kernel. The smart alec task routine 
first checks to see if the non-vol RAM is being read. If so it 



supplies the necessary data in bit position 6 at liD location 
22Fh. If the non-vol RAM is not being read, the smart alec 
task routine then determines if a command is present. If so 
the command is decoded and executed by the appropriate 
command routine. In most cases, the appropriate physical 
device will have to be determined in order to access the 
correct session control page, or SCP, and the correct 
screen buffer for each active session. The SCP contains 
status and control information for each of the seven possi­
ble sessions. During the command execution the required 
status is calculated by calling the status update subroutine. 
The command's result and the calculated status are then 
placed in the appropriate memory locations (7E2Bh-7E2Bh). 
After this is complete, the task clears the command flags 
and returns program control to the Kernel. 

There are three separate code modules used to allow the 
MPA-II to emulate the Smart Alec Interface. 

1) power-up initialization routine 

2) BIRO interrupt routine 

3) smart alec task routine 

These three routines will be discussed in the following sec­
tion. For clarity, the term "smart alec" is capitalized when 
referring to DCA products and lower case when referring to 
the MPA-II software that has been written to emulate the 
interface. Figure 6-20 gives a graphical representation of 
where these routines fit into the software architecture of the 
MPA-II. 

MPA-II Smart Alec Initialization Routine 

The smart alec power up initialization routine is called by the 
housekeeping task if it detects that the smart alec bit has 
just been set in the MPA-II configuration register. The smart 
alec initialization routine is titled sa_-'nit in the MPA-II 
source code. This routine initializes the memory locations 
and BCP internal registers that are used by the smart alec 
emulation code. It also unmasks the BIRO' interrupt and 
schedules the smarLalec_task in the MPA-II Kernel. The 
memory locations that are initialized in this routine are the 
blocks of memory that correspond to the contents of the 
emulated non-vol RAM, the memory locations used to emu­
late the dual register array and the flag registers, the loca­
tions on the seven session control pages that EMU controls, 

and the device control page memory locations that control 
the logical to physical mapping for the multiple sessions. 

The s~init routine also initializes some internal BCP regis­
ters. It does this because other routines, such as the dca 
BIRO interrupt routine, must access certain stored va!ues 
very quickly to keep their execution time quick. The final 
function of the s~init routine is to schedule the' s~task 
routine. This is done by loading the task number into the 
accumulator and calling the schedule_task routine. After 
this, program control is returned to the Kernel. 

MPA-II DCA Interrupt Routine 

The second code module required to emulate the Smart 
Alec Interface is the dca BIRO interrupt routine. The MPA-II 
board uses the extra CPU bandwidth of the BCP to reduce 
the discrete components needed to provide the command 
and flag function. It does this by letting the CPU decode part 
of the System Unit liD access address and by letting itpro­
vide the set function of this flag. The BCP code necessary 
for this is the BIRO interrupt routine whose source module is 
DCA......INT.BCP. The BIRO interrupt is generated when the 
System Unit writes to any liD locations from 220h to 22Fh. 
It would have been more expedient in this case,to only have 
interrupts generated on writes to liD location 22Eh. Howev­
er, the MPA-II hardware also supports the IBM and IRMA 
emulation programs. The MPA-II implementation for the IBM 
interface requires interrupts to be generated from more Sys­
tem Unit liD access locations, so to reduce external hard­
ware, interrupts are generated for a sixteen byte liD block. 
This flexibility of hardware design further illustrates the' use­
fulness of the extra CPU, bandwidth of the DPB344B. 

When the BCP detects the, BIRO interrupt, it transfers pro­
gram control to the dc~int routine. The function of this 
routine is to set the command flag or provide the appropri­
ate serial non-vol RAM data. There is a section of code in 
the dc~int routine that does the same function as that 
described above, but is called from the other routines and 
not by the external BIRO interrupt. To increase perform­
ance, the interrupt routines check the BIRO flag in the 
CCRregister before they return. If the flag is set, it calls the 
dc~fasLbirq ,section of the dc~int routine. Here the 
same operations as described earlier are performed except 
for the saving and restoring of the environment. The 
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FIGURE 6-20. MPA-II Software Block Diagram in Smart Alec Mode 
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dc~fasLbirq routine does not have to provide this func­
tion because the other routines do so. This decreases the 
number of instructions executed and therefore improves the 
overall performance. 

MPA-II Smart Alec Task Routine 

The majority of the Smart Alec emulation takes place in the 
smart alec task routine. This routine is run in the foreground 
as a scheduled task. Therefore the decision to execute this 
routine is dependent only on the MPA-ll's task scheduler 
and is not impacted by the System Unit. In reality, the task is 
run many times between System Unit accesses because 
the code execution speed of the BCP is much greater than 
that of the SOSS. The smart alec task routine, appropriately 
labeled in the source code as "s~task", contains four ma­
jor sections. These sections are the non-vol RAM routine, 
the command execution routines, the physical session de­
termination routine, and the status update routine. 

When the smart alec task is called, it first checks to see if 
EMU has tried to read the non-vol RAM. If so, it determines 
how many times it was read (the non-vol RAM is read serial­
ly) so it can adjust the serial bit stream it is providing to 
EMU. If no accesses have been made to the non-vol RAM, 
the smart alec task checks to see if a command is present. 

If there is· no command present (the internal command flag 
is not set), the task returns to the Kernel. If a command is 
present, the lower five bits of the command word is decod­
ed to determine which of the twenty three commands has 
been issued by the System Unit. Program control is then 
transferred to the specific routine that executes the com­
mand. In most cases, the first thing done in the specific 
command routine is to determine which session the com­
mand was issued to. This is done by decoding the top three 
bits in the command word to determine what logical session 
the command was issued for. After that, the corresponding 
physical session is determined and pointers are set up in 
internal registers to point to the appropriate session control 
page and screen buffer. Both of these functions are per­
formed in the tw_s~spset subroutine. Using this informa­
tion the command is executed and the required status is 
calculated. The status is calculated in the tw_s~all_ 
status routine if full status is required. If only common status 
is required, the tw_s~commorL-status routine is called 
instead. After this, the resulting data is placed in the section 
of memory that is accessed by the System Unit when it 
reads the 110 locations 22Sh-22Bh. The smart alec task 

then clears both the internal and Smart Alec command flags 
and returns program control to the Kernel. 

MPA-II Command Set 

New to the MPA-II is the support of an MPA-II command set. 
The primary purpose of this command set is to allow any 
part of the MPA-II'S data memory to be accessed by the PC 
without having to stop the BCP or depend on the current 
interface mode running, (Le., IRMA, IBM, ALEC). As almost 
always happens, the usefulness of this interface caused the 
MPA-II command set to expand. Another benefit of the 
MPA-II command set is that it demonstrates a better way to 
communicate with the BCP than that of the IRMA, IBM or 
ALEC interfaces. By taking advantage of the fact that the 
BCP directly supports dual port memory, one bit sema­
phores can be used to handshake with the PC and, there­
fore, no BIRQ interrupt routine nor lock out of the PC is 
required. 

The MPA-II commands are listed in Table 6-9. The routine 
housekeep in KERNEL.BCP is responsible for the execution 
of these commands. The commands allow the PC to read 
and write any part of the BCP's data memory (including non­
dual port memory), determine what version of MPA-II code 
is actually executing, and read or clear the receiver's error 
counters. 

The MPA-II commands consist of a command byte written 
to the MPA-II configuration register (2DCh) and an optional 
parm written to the MPA-II parmI response register (2DBh). 
If the command returns a response, it is read by the PC from 
the MPA-II parm/response register (2DBh). 

A command is identified by setting the CF _MP~CMD bit 
to one. This bit is part of the command's value listed in 
Table 6-9. The completion of a command's execution is in­
dicated by the restoration of the current MPA-II configura­
tion in the MPA-II configuration register (which clears the 
CF _MP~CMD bit). 

Use the following steps to issue a command via the PC: 

1) Write the command's parm (if any) into the parm/re­
sponse register (110 location 2DBh). 

2) Write the command into the MPA-II configuration register 
(2DCh). 

3) Read the MPA-II configuration register (2DCh) until the 
CF _MP~CMD bit is cleared. This indicates completion 
of command execution by the MPA-II microcode. (Note, 
the current MPA-II configuration has been restored). 

TABLE 6-9. MPA-II Command Set 

Name (Value) Parm Response Comment 

LACL (10) AC low byte none Load new MPA-II AC, low byte 
LACH (11) AC high byte none Load new MPA-II AC, high byte 
WRITE (12) data byte none WRITE "data byte" into memory at MPA-II AC's location 
LCR (13) control byte none Load "control byte" into MPA-II Control Register 
RACL (1S) none AC low byte Read current MPA-II AC, low byte 
RACH (19) none AChigh byte Read current MPA-II AC, high byte 
READ (1A) none data byte READ "data byte" from memory at MPA-II AC's location 
REV (1B) none rev byte read REVision number of the MPA-II software 
CLRE (30) none none CLear REceiver error counters 
RDIS (31) none error count Read receiver's DISable error count 
RLMBT (32) none error count Read receiver's Loss of Mid-Bit error count 
RIES (33) none error count Read receiver's Invalid Ending Sequence error count 
RPAR (34) none error count Read receiver's PARity error count 
ROVF (35) none error count Read receiver's OVerFlow error count 
RPRO (36) none error count Read PROtocol detected error count 
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4) Read the parmI response register (1/0 location 2DBh) 
for the command's response (if any). 

A PC program called MPADB.EXE has been included with 
the MPA-II which communicates with the MPA-II using this 
interface. MPADB is written in C and has some additional 
debugging capabilities, such as reading blocks of BCP 
memory using one command. After starting MPADB, type 
"help" at the prompt, - >, for information on the com­
mands supported by MPADB. All the source code for 
MPADB is included, see MPADB.C under the directory 
DEBUG. 

The read and write data commands use an internal MPA-II 
register called the MPA-II address counter, AC. This ad­
dress counter works much like the Coax and Twinax ad­
dress counters. The read command returns the byte pointed 
to by the MPA-II address counter. The write command 
places its data at the location pointed to by the MPA-II ad­
dress counter. Whether or not the MPA-II address counter 
auto-increments depends on the contents of the MPA-II 
control register, see Figure 6-21. If the LSB is a one (1) then 
the MPA-II address counter auto-increments, otherwise it 
does not change. 

If 1 THEN POST INCREMENT AC 

L..-L_.l...-.......L_.L.........L ___ RESERVED 
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FIGURE 6-21. MPA-II Control Register 

The Load Address Counter High, Load Address Counter 
Low, Read Address Counter High, and Read Address Coun­
ter Low commands simply provide access to the 16-bit 
MPA-II address counter. The Load Control Register allows 
one to write to the 8-bit MPA-II control register. 

The receiver error counter commands provide an easy, reli· 
able way to read the MPA-II receiver error counters located 
in the MPA-II Device Control Page, DCP. PC software that 
uses these commands does not have to be updated if the 
receiver errors are relocated in BCP data memory because 
the BCP assembler will automatically update all references 
to those error counters when the MPA-II microcode is re-as­
sembled. 

Finally, the Revision Number command allows the PC to 
determine a) if the MPA-II running and b) what version of the 
MPA-II microcode is the MPA-II running. This MPA-II com­
mand is used by the Loader when the Loader performs an 
autoload (·a option). For the PC to read the revision number, 
the REV command must be executed three (3) times. Each 
returned byte's bits are defined as "xxcc dddd", where: 

dddd = a revision digit coded in Binary Coded Decimal, 
BCD 

cc = a count showing the position of the revision digit 

xx = reserved 

For example, if calling REV three times returned (in hex) 20, 
34, and 13, then the revision number is 3.04. 

Last notes, unused commands and invalid parms are ig· 
nored. In addition, commands with values less than 3F(hex) 
are reserved for National Semiconductor. Feel free to define 
commands with values greater than this if compatibility with 
future MPA-II releases is desired. 

7.0 LOADER AND MPA-II DIAGNOSTICS 

The Loader is a PC program designed to load the MPA-II 
with BCP microcode, start the BCP, and configure the 
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MPA-II interface mode. A number of user selectable options 
are available with the Loader which provide maximum flexi­
bility in loading, running, and configuring the MPA-II system. 
The Loader can also be used to run diagnostics by specify­
ing the "selftest" option. This will test the functionality of the 
MPA-II hardware. The Loader syntax is: 

LD [Confi9-options ... ] [Options ... ] <Filename> 

where the following notation applies: 

[ ] Items enclosed in square brackets are optional. 

< > Items enclosed in triangular brackets are re­
quired. 

ALL CAPS Items in all capital letters must be entered exact­
ly as shown. 

lower case Items in lower case letters indicate that desired 
values should be substituted. 

The Loader Options that apply to the "soft-loading" of in­
struction memory will be discussed in the section titled 
"Soft-Loading Instruction Memory". The Loader 
Confi9-options will be discussed in the section titled "Con­
figuring the MPA-II". The Loader options that apply to the 
selftest facility will be discussed in the section titled "MPA-II 
Diagnostics". Examples demonstrating the Loader options 
as well as the Loader defaults will also be provided in this 
chapter. 

The Loader is primarily written in Microsoft "C"5.1. The por­
tion of the Loader code which performs the MPA-II Diagnos­
tics has been written using National Semiconductor's 
DP8344 BCP Assembler System as well as Microsoft's 
Macro Assembler 5.1. All of the source code required for 
the Loader is included on the distribution disks and is well 
documented. For complete details of the implementation of 
the Loader functions described in this section, refer to the 
source code. 

The Loader provides two levels of help. The first level of 
help is provided in a brief, single screen and is accessed by 
typing LD with no options at the DOS system prompt. A 
multi-screened, comprehensive help, is accessed by speci­
fying the -h option of tlie Loader as shown below: 

LD -h 

The Loader provides the following return values which are 
useful when using the Loader in a batch file: 

o PASSED: Loader ran to completion as requested by the 
user. 

8 WARNING: Loader ran to completion, but not exactly as 
requested by the user. 

16 FATAL ERROR: Loader was unable to run to comple-
tion due to a fatal error. 

Before the Loader implements any of its primary func­
tions, the Loader will verify that the MPA-II printed circuit 
board is present in the PC. This is done in two different 
stages (see the Loader flow chart, Figure 7-1). First, the 
Loader performs a non-intrusive test. This test entails 
reading RIC a number of times while checking that the 
value of RIC does not change and that the single step bit 
of RIC is not set. The second test is intrusive, meaning 
that it will affect the current state of operation of the 
MPA-II, if the MPA-II is "alive" (more on this later). This 
test checks for the presence of the MPA·II by writing vari­
ous patterns to RIC, then reading RIC back to check that it 
contains the correct value. For example, when the pattern 
written to RIC has the single-step bit set and the start bit 
cleared, the Loader expects to read back RIC with the 
single-step bit cleared. If either of the instrusive or non-in- • I 
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trusive tests fail,theLoader::indicates the failure and exits 
with an .. errorlevel 01:,16. The failure ' mechanism could be 
either of the following: 'an MPA-II printed circuit board is. not 
present or an I/o' conflict is occurring. 

Soft-Loadinglnstructio,nMemoi'y' '. .' 

The Loader, uses. the' "soft-load" feat~r~' of the 'B'c'P to load 
files in either 'a binary format; referred to as "BCX" format; 

or in a simple ASCII PROM format, referred to, as "FMT" 
format, into instruction memory. Files in these formats can 
be produced with National Semiconductor's DP8344 BCP 
Assembler System. The Loader can be used to load any file 
in one of these formats using the - B option to specify that 
the file format is ~'BCX" or the - F option to specify that the 
file format is. "FMT". These option~are useful when using 
the MPA~II Design/Evaluation kit to develop BCP code. The 

FIGURE 7-1. Loader Flow Chart 
Tl/F/l~488-,45 
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MPA-II system can be soft-loaded immediately upon power­
up, or from any state after power-up. Thus, the system may 
be reloaded without powering down or resetting. 

Dual-port memory must be enabled prior to soft-loading the 
MPA-II because the Loader uses dual port memory to pass 
information, such as the instructions to be loaded, to the 
BCP. The Loader enables dual port memory by writing the 
upper byte of the address for the relocatable memory seg­
ment to the MPA-ll's segment register. The MPA-lI's seg­
ment register is mapped into the PC liD space 2D7h. The 
Loader defaults to map dual port memory to the PC memory 
space CEOOO, But the user can move the location of dual 
port memory using the - U option. 

The soft-load procedure begins by stopping the BCP's CPU. 
The BCP must be stopped when writing to either the pro­
gram counter or instruction memory. The Loader then veri­
fies that the BCP is set to access the low byte of instruction 
memory. This is accomplished in the following manner: the 
program counter is set to OOOOh; RIC is then pointed to 
instruction memory, and a byte is read from instruction 
memory. At this time, the program counter is read to deter­
mine if it incremented. If it did, the BCP is now set to access 
the low byte of instruction memory. If the program counter 
did not increment, then the BCP is set to access the high 
byte of instruction memory, so the Loader reads another 
byte of instruction memory. Next, the Loader initializes the 
program counter to the starting address where instruction 
memory is to be loaded. The starting address of the pro­
gram counter defaults to OOOOh, but it is user selectable with 
either the - N or - R options. The program counter is writ­
ten by pointing (RIC I to the low byte of the program coun­
ter, and then writing the low byte of the Instruction Address 
to dual port data memory. Next, (RICI is set to point to the 
high byte of the program counter, and the high byte of the 
Instruction Address is written to dual port data memory. 

Once the program counter has been initialized, the first in­
struction to be loaded into instruction memory is fetched 
from the BCX or FMT format file specified by the user. The 
instruction is then split into high and low bytes. This is nec­
essary because the instructions are 16 bits wide, but they 
must be latched into instruction memory through the BCP's 
a-bit Data bus. The instructions are then loaded into the 
MPA-ll's instruction memory by pointing RIC to instruction 
memory and writing the low byte of the instruction followed 
by the high byte of the instruction to dual port memory. The 
program counter then auto-increments allowing the next in­
struction to be loaded. At any time, the program counter 
may be modified, followed by instruction loads, to allow ar­
eas of instruction memory to be skipped. The remaining in­
structions are loaded in the same manner. When all the 
instructions have been loaded, the system is started and 
configured as requested by the user. 

Interrupts can occur prior to the execution of the first in­
struction loaded into instruction memory if a BCP program 
has been previously running in the MPA-II system with inter­
rupts enabled. This is because the BCP uses a "dummy" 
instruction to fetch the first instruction in instruction memory 
and this "dummy" instruction does not disable interrupts. 
The following is a scenario that describes this: the MPA-II is 
running with a BCP program that has receiver interrupts en­
abled. The BCP is then stopped by clearing [STRT] in 
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(RICI and instruction memory soft-loaded with a new BCP 
program. Although the BCP's CPU is stopped, the receiver 
is operating independently and, therefore, the receiver still 
monitors the line for activity. If the receiver becomes active, 
it generates an interrupt to the BCP's CPU. When the BCP's 
CPU is started with the intention of running the BCP pro­
gram just loaded, it will instead service the receiver interrupt 
immediately after the "dummy" instruction cycle. This will 
result in problems if the first and second BCP programs do 
not use the same interrupt table location because the new 
interrupt table location will not have been loaded into (IBR I 
yet. Therefore, the BCP will vector to an instruction address 
determined by the current contents of (IBR I, set by the first 
BCP program. Since the second BCP program has already 
been loaded into instruction memory, the interrupt table that 
is vectored to is meaningless and will create unexpected 
results. There are various methods which can be used to 
disable interrupts until the first instruction of the new code 
can be executed; for example, resetting the BCP. Since the 
Loader cannot reset the BCP, we chose to single step the 
BCP immediately after "soft-loading" the BCP's instruction 
memory and prior to starting the system running. This allows 
an interrupt, such as the receiver interrupt generated in the 
previous example, to be serviced during the single step. 
Servicing the interrupt automatically disables the Global In­
terrupt Enable by clearing [GIE]. After single stepping the 
BCP, its program counter must be reset. The BCP may now 
be safely started. 

For convenience the Loader notation is repeated and the 
options which apply to the soft-loading are discussed here: 

LD [Confi9-options ... ] [Options ... ]<Filename> 

Filename: The file specified by the Filename contains the 
BCP microcode to be soft-loaded into the MPA-II system. 
The file format must be either BCX or FMT as described 
earlier in this section. The - Band - F options can be 
used to specify the file format as BCX or FMT, respec­
tively. The file format can also be specified implicitly with 
a file extension of .BCX for BCX format files or .FMT for 
FMT format files. The Loader defaults to BCX format, 
and, if no file extension is entered, the Loader will append 
the appropriate file extension (i.e., either .BCX or .FMT). 
A file with no extension can be loader by ending the file 
name with a".". 

Options: 

- 8- Specifies that the format of the file to be loaded is 
binary or "BCX" format. This option provides the user 
with the flexibility to load a file with an extension other 
than .BCX as a BCX format file. 

- F- Specifies that the format of the file to be loaded is 
ASCII PROM or "FMT" format. This option provides the 
user with the flexibility to load a file with an extension 
other than .FMT as a FMT format file. 

-N[ =] [I_addr]- Soft-loads the file into instruction mem­
ory beginning at the hex address, I_addr, but does not 
start the MPA-II after the load. This feature can be useful 
for debugging code using tools such as Capstone's moni­
tor debugger, BSID. The load address, I_addr, defaults 
to the hex address 0000. 

- R[ =] [addr] [,r_addr]- Soft-loads the file into instruc­
tion memory beginning at the hex address I_addr, then 
sets the program counter to r_addr and starts the BCP. 



The instruction address where the BCP begins running, 
r_addr, defaults to the value of I_addr if r_addr is not 
specified. I_addr defaults to the hex address 0000. 

- U [ = ] [seg_id]- Enables dual port RAM in the PC mem­
ory map to the PC memory segment seg_id, where 
seg_id is the upper byte of the PC memory segment. 
This allows the MPA-II system to avoid PC memory con­
flicts. The Loader defaults to seg_id = CEo The value for 
the seg_id must be on an even 8K boundary. Therefore, 
seg_id = CD is invalid. 

Examples using the file, MPA2.BCX, provided in the MPA-II 
Design/Evaluation Kit are shown below. This file is a BCX 
formatted file. The following examples all load the file 
MPA2.BCX in the same format and demonstrate the - B 
and - F options: 

LD MPA2 Loader defaults to BCX 
format and applies the .BCX 
file extension. 

LD MPA2.BCX Loader determines that 
format is BCX from the file 
extension. 

LD MPA2.BCX -B Loader determines that the 
file format is BCX from 
the -B option. 

The following example demonstrates options which affect 
how the file is soft-loaded: 

LD MPA2 -R=OOOO, 0126 -U=CC 

In this example, the Loader soft-loads code through dual 
port memory mapped at the PC memory address CCOOO, 
from the BCX format file MPA2.BCX, starting at instruction 
memory OOOOh. The Loader then sets the program counter 
to 0126h and starts the BCP. 

Configuring The MPA~II 
The Loader configures the MPA-II terminal emulation inter­
face mode as requested by the user through the Configura­
tion Options. Configuring the MPA-II interface mode enables 
the MPA-II to emulate the standard PC terminal emulation 
interfaces including DCA's IRMA and Smart Alec interface 
modes; and IBM's 3270 CUT and OFT interface modes. In 
addition, the MPA-II extends the DCA and IBM 3270 modes 
to support single session 3299. (Multi-session 3299 support 

o 
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is possible for the BCP, but not for the DCA or IBM interfac­
es.) The terminal emulation interface which the MPA-II emu­
lates is implemented by the MPA-II as described in Chapter 
6. The Loader Configuration Options available to the user 
will be discussed later in this section. 

The Loader configures the MPA-II interface mode by writing 
the configuration to the MPA-ll's Configuration Register. 
Figure 7-2 shows the bit definitions for the MPA-II Configu­
ration Register. The Loader writes to the configuration regis­
ter immediately after starting the BCP's CPU. The MPA-II 
configuration register is located at the PC I/O location 
2DCh. Writing to this register will set the BIRO interrupt, and 
thus, could lock out the PC if this feature has been activated 
by previous BCP microcode. If the BCP's CPU is stopped 
when the configuration register is written, then the next ac­
cess of the BCP's memory (both dual port and I/O) made by 
the PC could be held off indefinitely since the BIRO interrupt 
can not be cleared by the BCP's microcode. Therefore, 
when the Loader Option - N, as described in the previous 
section, is selected, the Loader will not set the configuration 
requested. (The Loader notifies the user that the configura­
tion has not been set.) See Chapter 5 for further information 
regarding BIRO and the PC lock out feature. 

The Loader uses the following handshaking protocol with 
the BCP microcode to verify that the configuration has been 
recognized by the MPA-II system. The Loader sets [PaR] in 
the MPA-II Configuration register when it writes a configura­
tion to the MPA-II Configuration Register. The Loader then 
polls the MPS-II Configuration Register looking for [PaR] to 
be cleared by the BCP microcode. This indicates that the 
BCP microcode has processed the requested configuration. 
The value in the MPA-II Configuration Register now con­
tains the actual MPA-II interface configuration implemented 
by the BCP microcode. If [PaR] is not cleared within a pre­
defined time period, then the Loader reports a failure. If 
[PaR] is cleared within the predefined time limit, the Loader 
then compares the configuration implemented with the con­
figuration requested by the user. If they are not the same, 
the Loader reports the differences. This feature allows the 
BCP microcode to determine valid configurations. 

The Loader Configuration Options are discussed here. 
Where applicable, these options can be combined to create 
a customized configuration for the interface mode. Once 
again, for convenience the ,Loader notation is repeated: 

LD[Config_options ••• ] [Options ••• ] <Filename> 

IL POR SYSTEM (0 INDICATES THAT THE POR IS COMPLETE) 

RESERVED 

3299 MODE 

COAX EAB INSTALLED 

MPA COMMAND (0 INDICATES COMMAND EXECUTION COMPLETE) 

IBM INTERFACE MODE 

DCA INTERFACE MODE 

5250/3270 

FIGURE 7-2. MPA-II Configuration Register 
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Conflg_options: 

-C-The Loader clears the 5250/3270 bit of the MPA-II 
Configuration Register. This selects a 3270 Coax-Twisted 
Pair terminal emulation interface mode for the MPA-II inter­
face. 

-0-The Loader sets the DCA Interface Mode bit of the 
MPA-II Configuration Register. This selects a DCA terminal 
emulation interface mode for the MPA-II interface. The 
5250/3270 bit of the MPA-II Configuration Register is used 
to determine which DCA Interface mode, IRMA or Alec, is 
actually set. 

-E-The Loader sets the EAB bit of the MPA-II Configura­
tion Register. This selects the Coax Extended Attribute Buff­
er. 

-I-The Loader sets the IBM Interface Mode bit of the 
MPA-II Configuration Register. This selects the IBM 3270 
terminal emulation interface mode for the MPA-II interface. 

-T-The Loader set the 5250/3270 bit of the MPA-II Config­
uration Register. This selects a 5250 Twinax terminal emu­
lation interface mode for the MPA-II interface. 

-Xl =] <addr>-The Loader sets the 3299, mux, bit of the 
MPA-II Configuration Register. This selects 3299 coax 
mode for the MPA-II interface. A decimal muX address is 
required, and is passed to the MPA-II through the MPA-II 
parm/response register, 2DBh, which is written prior to the 
configuration being set, but after the BCP's CPU is started. 

-Z-The Loader does not set the MPA-II Configuration Reg­
ister. This option provides the flexibility to use the Loader to 
load microcode other than the MPA-II microcode. 

-M[ =] <mode>-This option allows for automatic configu­
ration of the standard terminal emulation modes, i.e.,: DCA's 
IRMA, DCA's Smart Alec and IBM's interface modes. Valid 
MODE options are IRMA, IBM, and ALEC. These modes set 
the MPA-II Configuration Register as follows: When the 
mode is ALEC, the Loader sets the 5250/3270 bit and the 
DCA Interface Mode bit in the MPA-II Configuration Regis­
ter. For IBM mode, the Loader clears the 5250/3270 bit and 
sets the IBM Interface Mode bit. For IRMA mode, the Load­
er clears the 5250/3270 bit, sets the DCA Interface bit and 
the Coax EAB bit. This option also allows a hex value to be 
entered directly into the MPA-II Configuration Register with 
the < MODE> = CONFIG [ = ] < config > , where config is the 
hex byte value to be loaded into the MPA-II Configuration 
Register. The Loader defaults to configure the MPA-II inter­
face mode for IRMA. 

As an example of how to use the configuration options, lets 
assume that the IRMA interface mode is required along with 
coax 3299 support using the 3299 station address 3. The 
following command lines all perform this task using the Con­
figuration Options discussed above: 

LD MPA2.BCX -M=IRMA -X=3 
LD MPA2.BCX -C -D -E -X=3 

For further flexibility, the Loader also provides an autoload 
option, -a, to configure the MPA-II on the fly. The autoload 
function is actually a "smart hotswitch", allowing the user to 
change the MPA-lI's configuration without necessarily re­
loading BCP microcode. The autoload is "smart" in that the 
Loader verifies that the MPA-II is "alive" before it changes 
configurations. If the MPA-II is not alive (i.e., running with 
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the correct version of microcode), the Loader will automati­
cally load the BCP microcode and configure the MPA-II as 
requested. 

The autoload function is useful when the Loader is used in a 
batch file such as the AUTOEXEC.BAT file. If the PC is re­
booted then the Loader will not destroy an ongoing terminal 
emulation session. In addition, the error levels returned by 
the Loader may be used to skip loading of the PC terminal 
emulator if the MPA-II board is not present. The following is 
an example of how to use the autoload function to imple­
ment the IRMA interface mode in a batch file: 

LD MPA2.BCX -M=IRMA -A 
IF ERRORLEVEL 8 GOTO SKIPIRMA 
E78 /R 
:SKIPIRMA 

MPA-II Diagnostics 

The Loader can run diagnostics to test the functionality of 
the MPA-II hardware. These diagnostics are implemented 
with the Loader and the BCP microcode; MPADIAG.BCX, 
provided in MPA-II Design/Evaluation Kit. Note, the Loader 
expects the file MPADIAG.BCX to be located in the same 
directory as the file LD.EXE. 

Figure 7-3, The MPA-II DiagnostiCS Flow Chart, provides a 
good overview of the extent of testing performed by the 
MPA-II diagnostics. For the actual implementation of these 
tests, refer to the source code, which is well documented. 
The first four diagnostic tests do not require BCP micro­
code. These diagnostics include testing RIC, the BCP's Pro­
gram Counter, dual port memory, and instruction memory. In 
all of these diagnostics, the Loader writes patterns to the 
device under test, and expects to read the pattern back 
from the device under test. 

If all these initial tests pass, then the BCP microcode, 
MPA-DIAG.BCX is soft-loaded into instruction memory and 
the BCP is started. The Loader maintains ultimate control 
over the diagnostics. This is accomplished through a hand­
shaking protocol in which dual port memory is used to pass 
codes to and from the Loader program and the BCP micro­
code program, MPADIAG.BCX. The Loader passes a start 
code through dual port memory. The BCP microcode polls 
dual port memory until it receives the start code. Once the 
BCP microcode recognizes the start code, it executes the 
next test in sequence. Each diagnostic test that the BCP 
microcode executes writes codes into dual port memory to 
indicate both the completion of the test and if the test 
passed or failed. When appropriate, the BCP microcode 
also indicates the failure mechanism. The BCP microcode 
then polls dual port memory for the start code of the next 
test. After the Loader writes a start code to dual port memo­
ry, it polls dual port memory for the code from the BCP 
microcode indicating completion of the test. If the comple­
tion code is not received within a predefined time limit, the 
Loader indicates a failure. If the completion code is re­
ceived, the Loader then checks dual port memory to deter­
mine if the test passed or failed. 

Either of the two Loader Options, -s or -I, cause the Loader 
to implement the MPA-II diagnostics. For convenience the 
Loader notation is repeated and the options which apply to 
the MPA-II diagnostics are discussed here: 

LD[Config_options ••• ] [Options ••• ] <Filename> • I 



Options: 

-S[=][count[,lrq#]]- Selftest option of the Loader. Cy­
cles through the MPA-II Diagnostics count (default 
count= 1) times. The irq# refers to the PC IRQ interrupt 
level to be tested. irq#=2 (default) tests the PC IRQ2 
interrupt (Le., jumper JP6 connected). irq#3 tests the PC 

. IRQ3 interrupt (Le., jumper JP4 connected). irq# =4 tests 
the PC IRQ4 interrupt (Le., jumper JP5 connected). 

-L-In addition to the selftest, the BCP's transceiver is test­
ed by implementing an external Loopback feature. In 
loopback, the BCP's receiver and transmitter are allowed 
to be active at the same time. This allows the BCP to test 
the external transmitter and receiver logic on the 

MPA-II board. This test should not be performed when 
the MPA-II is connected to a controller as it may cause 
the controller to detect line errors. 

The following examples demonstrate using the Loader op­
tions to implement the MPA-II diagnostics: 

LD -S=3, 4 Cycles through the MPA-II diagnostics three 
times (the external loopback test is not per­
formed), the PC IRQ interrupt level 4 is test­
ed. 

LD-L-S Cycles through the MPA-II diagnostics one 
time, the loopback test is performed, and PC 
IRQ interrupt level 2 is tested. 
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FIGURE 7·3. MPA·II Diagnostics Flow Chart 
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APPENDIX A 

HARDWARE REFERENCE 

name: 
description: 

MPAII_AC - U3· V3.02 
auxillary control register 

Provides line interface logic, including the coax and 
twinax TX_ACT signals as well as the ex-or of /DATA_OUT and 
DATA_DLY for the twinax logic. 

AD6 -> COAX (if AD6 10, COAX enabled) 
IRQ output to pc is registered output of AD7 in this pal. If 
the BCP puts a 1 to AD7 during a write to this register, the 
PC interrupt will be asserted. The interrupt is cleared by 
a BCP write with AD7 = O. 

history:VO.1 rosa 12/13/87 create 
VO.2 msa 12/16/87 Abel version 
VO.3 rosa 12/31/87 added IRQ 
VO.4 msa 02/27/88 u9 -> u4 
Vl.O msa 04/07/88 u4 -> aux_ctl 
V3.00 wvm 08/10/88 eliminated manual reset 
V3.01 wvm 09/07/89 make signal names match 

schematic and add test 
V3.02 wvm 09/11/89 add BIRQ_EN function 

vectors 

COPYRIGHT NATIONAL SEMICONDUCTOR, INC. 1987,1988,1989,1990 

module mpaii_aux_ctl 
title 'data register' 

"declarations 

TX_ACT 
DATA_DLY 
DATA_OUT 
ADS 
BCP_RST­
PC_RST 
AD6 
AD7 

COAX_ACT 
TWX_ACT 
act_swtch 
not_used1 
BIRQ_EN 
IRQ 
INTENSE 
IRST-

H,L,C,Z,X 
outputs 
r_outputs 

mpaii_ac 
pin 9; 
pin 8; 
pin 7; 
pin 6; 
pin 5; 
pin 4; 
pin 3; 
pin 2; 

pin 
pin 

pin 
pin 
pin 
pin 
pin 
pin 
pin 
pin 

11; 
1; 

19; 
18; 
17; 
16; 
15; 
14; 
13; 
12; 

device 'P16R4'; 

1,0, .C., .Z., .X.; 
(COAX_ACT,TWX_ACT,INTENSE,IRST-); 
(act_swtch,not_used1,BIRQ_EN,IRQ); 
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equations 
COAX_ACT 
TWX_ACT 
!INTENSE 
IRST-

!act_swtch & TX_ACT & BCP_RST-; 
act_swtch & TX_ACT & BCP_RST-; 
DATA_OUT & !DATA_DLY t !DATA_OUT & DATA_DLY; 
!PC_RST; 

**** registered outputs **** 

enable outputs 
enable r_outputs 

ADS; 
AD6; 
AD7; 

"bllll; 
!OE-; 
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name: 
description: 

history:VO.l 
VO.2 
VO.3 
VO.4 
VO.S 

VO.6 
V1.0 
V1.1 

V3.00 

V3.01 

V3.02 

V3.03 

V3.03 
BCP Data memory Decode, 
PC transceiver control timing 

msa 12/13/87 
msa 12/16/87 
msa 12/17/87 
msa 12/23/87 
msa 02/19/88 

msa 02/27/88 
rosa 04/07/88 
msa 07/07/88 

wvrn 08/10/89 

wvrn 09/7 /89 

tas 10/17/89 

tas 10/25/89 

create 
Abel version 
used all outputs, 1 in free 
more vectors, remote 
moved areg map next to RAM 
areg now cleared by BCP reads, 
Host reads will not affect 
uSa -> u9a 
u9a -> ctl_tim 
fixed DATA_G- bus contention 
(REMRD- -> REMWR-) 

made revisions for MFAII: 
1) eliminated unused chip 

selects 
2) removed bcp_rst, it was an 

unused signal input 
3) moved the pc_rdy signal to 

MFA II_R I 
4) added PRE_BIRO decode 
5) added A13 and A14 decodes 

for remote accesses 
make signal names match 
schematic and add test vectors 
change name of DATA_CBA to 
DATA_CAB and corrected equation 
to use XACK instead of BCP_RD. 
replace IODO with IBM_REG-, 
simplified PRE_BIRO, and modified 
out_A13 and out_A14 to include 
IBM_REG-

COPYRIGHT NATIONAL SEMICONDUCTOR, INC. 1987,1988,1989,1990 

module mpaii_ctl_tim 
title 'PC iface - data control' 

"declarations 
mpaii_ ct device 'P20L10'j 

XACK pin 1; 
REMRD- pin 2; 
REMWR- pin 3; 
IBM_ REG- pin 4; 
RAE- pin 5; 
IO_ACCESS- pin 7; 
BCP - RD- pin 10; 
BCP _WR- pin 11; 
LCL- pin 13; 
AlS,A14,A13 pin 9,6,8; 

TL/F/l0488-50 
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~ r-----------------------------------------------------------------------------------------------, 
~ 
CD 

Z 
< DMEM_CS­

AREG_OC­
AREG_CLK­
out_A13 
DATA_DIR­
DATA_CAB­
DATA_G­
out.;..A14 
DREG_CLK­
PRE_BIRQ 

H,L,Z,X 
a_dec 
outputs 

equations 

pin 
pin 
pin 
pin 
pin 
pin 
pin 
pin 
pin 
pin 

oS: 

14: 
23: 
15; 
16; 
17; 
18; 
19; 
20: 
21; 
22; 

1,0, .Z., .X.: 
[A15 .. A13); 
[DMEM_CS-,AREG..;..OC-,AREG_CLK-:-,DREG_CLK-, 
DATA_DIR-,DATA_CAB-,DATA_G-,PRE_BIRQ); 

[out_A14,out_A13); 

!DMEM_CS- .. LCL- t (!A15 & !LCL-); 
" pc access to set lAREG_CLK- ... lIO_ACCESS-& LCL- & !BCP_WR-: 

!AREG_CLK- !LCL- & !BCP_WR- & (a_dec ~blOO); 

!AREG_OC- c: !BCP_RD- &,lLCL- & (a_dec c: .. ~blOO); 

" bcp access to clear 

out_A13 .. lIO_ACCESS- t lIBM_REG-; 
out_A14 a lIO_ACCESS- t !IBM_REG-; 

lDATA_G­
lDATA_CAB":' 
DATA_DIR-

c: (! REMWR- & oLCL-) t (l RAE- & 1 REMRD-) : 

enable outputs 
enable bcp_oc 

... ! REMRD- & ,! XACK & LCL-; 
- lREMRD- & lRAE-: 

.. ~blllllll11; 
LCL-: 
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name: 
description: 

V3.03 
Upper PC address buffer and I/O decode 

.. This PAL decodes the PC address lines A12-A4,PC_A19_16 ,PC_A16_14 and 

.. IOACCESS-, REMRD- to provide the BCP A1S, A12-8 outputs and the 

.. two partial decodes IBM, DCA indicating which system (IBM, or DCA) 

.. is being accessed. Note that this scheme will not allow the MFAII board 

.. to co-exist w/ any board using these PC I/O addresses. A1S, A12-8 

.. are enabled by LCL- going high, indicating a remote access cycle . 

.. If IOACCESS- and LCL- are as~erted, A12-8 are driven high to translate 

.. the PC I/O access to the top page of the BCP's data RAM (7FFX - unless 
" it is a read of IRMA space, which is translated to 7FEX,) required to 
" emulate the dual-ported registers used on this board . 

.. If the PC accesses the BCP's data memory, LCL- will be asserted but not 
\\ IOACCESS-, in which case no translation will occur, and A12-8 will only 
\\ be buffered onto the BCP's address lines. 

IBM_REG- DCA_REG-
1 1 
1 0 
0 1 
0 0 

history:VO.1 
VO.2 
VO.3· 
VO.4 
VO.5 
VO.6 
VI. 0 
V3.00 

V3.01 

-type of decode-
not 
DCA 
IBM 
not 

msa 
rosa 
tjq 
msa 
rosa 
rosa 
rosa 
wvrn 

wvrn 

an 
10 
10 
an 

MFAII 10 decode 
access (addresses 0022x) 
access (addresses 002dx) 
MFAII 10 decode 

12/13/87 
12/16/87 Abel 
12/17/87 
02/27/88 
03/03/88 
03/12/88 
04/07/88 
08/10/89 

09/07/89 

create 
version 
simulate 
u3 -> u23 
corrected address pin nums 
edits for TN's irma code 
u23 -> pad_ dec 
made revisions for MFAII: 
1) moved REMOTE decode to an 

inverter 
2) moved A13 and A14 decodes 

for remote accesses to 
MFAII_CT 

3) include decode of PC_A14 
through PC_A19 in 1000 
and 1001 

make signal names match 
schematic and add test vectors 
rearrange pins V3.02 

V3.03 
wvrn 
tas 

09/11/89 
10/25/89 renamed 1000 and 1001 to DCA_REG­

and IBM_REG-,respectively. Swapped 
1000/1 pins. Added IBM_REG- to 
A12-A8. 

COPYRIGHT NATIONAL SEMICONDUCTOR, INC. 1987,1988,1989,1990 

module mpaii-pad_dec 
title 'PC iface - i/o decode' 

TlIF/10488-52 
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~ r-----------------------------------------------------------------------------------------------. 
0III::t 
CD 

:Z « "declarations 
mpaii-pddevice 'P20L10'; 

PC_A12,PC_A11,PC A10 
PC_A9,PC_AS,PC_A7 
PC_A6, PC_AS, PC_A4 
PC_A14 - 16 
PC_A17 - 19 

REMRD-
IO_ACCESS-
LCL-

A1S 
A12, All 
A10, A9, AS 

IBM_REG-,DCA_REG-

H, L, X, Z '" 
low 

1,0, .X., .Z.; 
"bll; 

pin 
pin 
pin 
pin 
pin 

pin 
pin 
pin 

pin 
pin 
pin 

pin 

[PC_A12 .. PC_M]; 
[PC_A12 .. PC_AS]; 
[A12 .. AS]; 

pc a 
pc_abuf 
bcp_oc 
bcp_a 
io_dec 

[A12 .. AS]; 
[IBM_REG-,DCA_REG-]; 

equations 
!IBM_REG­
!DCA_REG-

A15 

A12 
All 
AIO 
A9 
AS 

enable iO_dec 
enable bcp_oc 
enable A1S 

L; 

PC_A12 
PC_All 
PC_AI 0 
PC_A9 
PC_AS 

low; 
LCL-; 
LCL-; 

f 
f 
f 
f 
f 

1,3,4; 
S, 6, S; 
9,10,11; 
lS; 
16 ; 

2; 
7; 
13; 

14; 
17,lS; 
19,20,23; 

21,22; 

"h02d) & PC_A14_16 & PC_A17_19; 
"h022) & PC_A14_16 & PC_A17_19; 

!IO_ACCESS- f !IBM_REG-; 
!IO_ACCESS- f !IBM_REG-; 
!IO_ACCESS- f ! IBM_REG-; 
!IO_ACCESS- f !IBM_REG-; 
(! IO_ACCESS- & REMRD-) f ! IBM_REG-; 
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name: 
description: 

MPAII_RD - U7 V3. 04 
PC I/O register decode 

" Decodes the low 4 bits of the PC address lines to determine enables for 
" data memory, RIC, and SREG. All four PC read and write 
" strobes as well as the IBM_REG-/DCA_REG-, PC_A13, PC_AEN, REM_enable and /MMATCH 
" signals are inputs. /RAE, CM /MEM_CS and /REM_RD, /REM_WR, /IOACCESS 
" and /SREG_EN are outputs. 

history:VO.1 
VO.2 
VO.3 
VO.4 
VO.5 
VO.6 
VO.7 
V1.0 
V3.00 

V3.01 

v3.02 
v3.03 

V3.04 

msa 
msa 
rosa 
msa 
msa 
rosa 
msa 
msa 
wvrn 

wvrn 

wvrn 
tas 

tas 

12/13/87 
12/16/87 
12/17/87 
12/17/87 
12/31/87 
02/27/88 
03/12/88 
04/07/88 
08/10/89 

09/7/89 

09/11/89 
10/19/89 

10/25/89 

create 
Abel version 
added pc_clk edit 
to 2018 
added bcp reset input 
u4 -> u8 
edited for tn's irma 
u8 -> reg_dec 
revisions made to MPAII: 
1) eliminate PC_HI_OC and 

PC_LO_OC 
2) remove IO_MAYBE and replace 

it with PC_AEN 
3) input PC_A13 for address 

decodes 
4) input REM_enable to control 

accesses during rest-time 
5) Make RAE- a full decode of 

every access 
make signal names match 
schematic and add test vectors 
rearrange pin assignments 
aaded PC_AEN to SREG_EN to 
eliminate accidental clock of SREG. 
Rename 1000, 1001 to DCA REG-, 
IBM_REG-, repectively.' -
Swap 1000, 1001 pins. Changed 
la_ACCESS to avoid SREG. 

COPYRIGHT NATIONAL SEMICONDUCTOR, INC. 1987,1988,1989,1990 

module mpaii_reg_dec 
title 'PC iface - i/o decode' 

"declarations 
mpaii_ rd 

BCP - RST- pin 
DCA REG- pin 
PC_AEN pin 
IBM REG- pin 
PC A3,PC - A2 pin 
PC -A1,PC - AD pin 
PC _MEMR- pin 
PC_MEMW- pin 
PC - IOR- pin 

device 'P20LB'; 

1; 
2; 
3; 
4; 
5,6; 
7, B; 
9; 
10; 
11; 
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..... 
~ 
CD • Z 
ct 

PC_IOW­
BCP_WR­
PC_A 13 
REM_enable 
MMATCH-

RAE­
REMRD­
REMWR-

CMD 
IO_ACCESS­
SREG_EN-

CMD 

H,L,X,Z c 

pc a 
pc_hi 
pc_lo 
iO_dec 
no_acc 
dca_acc = 
ibm_acc = 
strobes = 
outputs c 

equations 
lRAE-

CMD 

!REMRD- .. 

!REMWR- = 

pin 13; 
pin 14; 
pin 16; 
pin 17; 
pin 23; 

pin 22; 
pin 21; 
pin 20; 
pin 19; 
pin 18; 
pin 15; 

ISTYPE 'feedyin' ; 

1,0, .X., .Z.; 
[PC_A3 .. PC_AD]; 
(pc_a -- "blllO); 
(pc_a -- "bl101); 
[IBM_REG-,DCA_REG-]; 
(io_dec -- "b11): 
(io_dec c= "b10); 
(io_dec == "b01); 
[PC_MEMR-,PC_IOR-,PC_MEMW-,PC_IOW-]; 
[CMD, RAE- , REMWR- , REMRD- , 
IO_ACCESS-,SREG_EN-]; 

«lPC_IOR- f lPC_IOW-) & lno_acc& lPC_AEN& lPC_A13) 
f (!MMATCH- & lPC_AEN & (!PC_MEMW- t !PC_MEMR-)); 

!PC_IOR- & REM enable 
t !PC_MEMR- & REM_enable: 

!PC_IOW- & REM_enable 
f !PC_MEMW- & REM_enable; 

(!PC_IOW-) & (pc_a c= "b0111)&(ibm_acc)&(!PC_A13)&!BCP_WR~ 

&!PC_AEN f !BCP_RST-; 

!IO_ACCESS-= lDCA_REG- & lCMD & lPC_A13 & lPC_AEN & (lPC_IOW- • !PC_IOR~) 

• !IBM_REG- & !CMD & !PC_A13 & !PC_AEN & !PC_IOR-
• !IBM_REG- & !CMD & !PC_A13 & lPC_AEN & !PC_IOW- & 
(!PC_AOf !PC_Al • !PC_A2): 

" IO_ACCESS- is active if: 
1) it's an IRMA register read or write 
2) it's an IBM register read 
3) it's an IBM register write except to xxx7 or xxxF. 

xxx7 = Segment Register (U16) 
xxxF the BCP's RIC register 

enable outputs = "bll1l11 : 
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name: 
description: 

V3.02 
birq register and rest-time circuit 

This PAL sends the BIRO interrupt to the BCP whenever a 
IBM, IRMA or SMART_ALEC I/O access is made. The BIRO 
interrupt is cleared when the BIRO register is read by 
the BCP. 
This PAL also contains all of the rest-time 'state machine 
needed to pevent missed or inproper accesses. The signal 
REM_enable is fed back to MPAII_RD and prevents remote accesses 
during rest-time. The PC_RDY signal to the PC bus is also 
controlled by XACK from the BCP and the rest-time state 
machine. 

history:V3.00 wvm 08/10/89 create 
V3.01 wvm 09/07/89 make signal names match 

schematic 
V3.02 wvm 09/11/89 change BIRO decode 
V3.02 tas 01/03/90 corrected some test vectors 

COPYRIGHT NATIONAL SEMICONDUCTOR, INC. 1989-1990 

module remote_interface-pal 
title 'REST-TIME Compliance State Machine': 

"inputs 

"outputs 

MPAII RI device -

PL-
XACK 
CLK _OUT 
BCP rst--
RAE-
unused_ 1 
BIRO_EN 
AREG_CLK-
PRE _BIRO 
OE-

PC_RDY-
qO 
q1 
q2 
q3 
wait_start 
REM_enable 
BIRO 

"definitions 
x,z,L,H 

'P16RA8': 

pin 1: 
pin 2: 
pin 3: 
pin 4: 
pin 5: 
pin 6; 
pin 7; 
pin 8; 
pin 9: 
pin 11: 

pin 19: 
pin 18: 
pin 17: 
pin 16: 
pin 15: 
pin 14: 
pin 13: 
pin 12: 

.x., . z., 0, 1: 
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,.. 
'III:t 
Cf :i equations 

enable PC_RDY-

PC_RDY- .RE 
PC_RDY-.PR 

REM_enable.RE 
REM_enable .PR 

q3.PR 
q3.C 

!q3 

q2.RE 
q2.C 

!q2 

ql.PR 
q1.C 

!ql 

qO .PR 
qO.C 

!qO 

'" (!RAE-); 

., 1; 

., 1; 

:= (!XACK 
I qO & !RAE-
I !q2 & !RAE­
I q3 & !RAE-); 

= 1; 
., 1; 

:- wait_start 
I RAE- , !q3 & q2 & q1 , !qO; 

'" !BCP_rst-; 
.. CLK_OUT; 

: .. (! qO & ! q2 , ! q3 
I !qO & !ql , !RAE-
I !qO , !q3 , !RAE- & !wait_start 
f !qO , !ql & q2); 

- !BCP_rst-; 
.. CLK_OUT; 

:- (!qO , !ql & !q2 & !q3 
I !ql , q3 & !RAE-
I ql & !q2 , q3 
I qO & !ql , q3); 

"" !BCP_rst-; 
.. CLK_OUT; 

:.. (! qO & ! ql & q3 
I !qO & !q2 & q3 
I qO & q2 & q3 
I !qO & !ql & q2 , RAE-); 

.. !BCP_rst-i 

., CLK_OUT; 

:= (!qO & !ql 
f !qO & !q2 
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wait_start.PR 
wait_start.C 

I BIRQ & ql & !q2 & q3 
I !qO & !q3); 

u q3 & !q2 & !ql & !qO; 
c RAE- & BCP_rst-; 

!q3 & q2 & !ql & !qO; 

BIRQ.RE 
BIRQ.C 

!BCP_rst-; 
'"' AREG_CLK-; 

!BIRQ 

end rernote_interface-pal 
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APPENDIX B 

Timing Analysis 

This section will first discuss the timing analysis used in sel­
eting appropriate data memory and instruction memory for 
use in the MPA-II system. Following this is a description of 
the timing involved in interfacing the MPA-II system with the. 
PC-XT/AT. 
As discussed in Chapter 5-Hardware Architecture, the 
BCP utilizes a Harvard Architecture, where the data memory 
and instruction memory are organized into two independent 
memory banks, each with their own address and data bus­
es. The data memory is dual ported enabling both the BCP 
and the remote processor to have access. The instruction 
memory, on the other hand, is exclusively owned by the 
BCP. Any remote processor accesses to this memory occur 
through the BCP, and only when the BCP is idle. 

The MPA-II system runs with the BCP operating at full' 
speed, 18.8696 MHz ({ OCR [CCS] I = 0), with zero instruc­
tion (nIW) and one data (now) wait state resulting in a 
T-state of 53 ns. For a system running the BCP at half 
speed, 9.45 MHz ({ OCR [CCS] I = 1), with zero instruction 
and zero data wait states, the T-state is 106 ns. The T-state 
is calculated as shown: 

T-state = 1 I(CPU Clock Frequency) 

Interfacing Memory to the DP8344B 

As with most other aspects of a design, choosing memory is 
a cost vs. performance trade off. Maximum performance is 
achieved running no wait-states with fast, expensive memo­
ry. Slower, less expensive memory can be used, but wait­
states must be added, slowing down the BCP. Therefore 
one needs to choose the slowest memory possible while 
still meeting design specifications. While this appendix as­
sumes RAM is used for instruction and data memory, the 
information is relevant to memory devices in general. 

Instruction Memory Timing 

The BCP needs separate data and instruction RAM, each 
with their own requirements. Instruction read time is the ma­
jor constraint when choosing instruction RAM. Instruction 
read time tl, as shown in Figure B-1, is measured from when 
the instruction address becomes valid to when the next in­
struction is latched into the BCP. Instruction read time for 
various clock frequencies and wait states are given in Table 
B-1. Clock frequency and wait state combinations other 
than those given in the table can be calculated using param­
eter 1 in Table 5-5, Instruction Memory Read Timing, of the 
OP8344B data sheet: 

tl = (1.5 + nlW) T - 19 ns 

where tl is the instruction read time (ns), nlW is the number 
of instruction memory wait states, and T is the 7-state time 
(ns). The RAM chosen needs to have a faster access time 
than the read time for the desired combination of clock fre­
quency and wait states. Since the MPA-II system runs at full 
speed (18.8696 MHz) with nlW = 0, the RAM chosen for 
instruction memory must have an access time which is fast-
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er than 60.5 ns (See Table B-1). Note that 55 ns Static 
Rams will work for both full speed and half speed operation 
of the MPA-II. 
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FIGURE B-1. Instruction Memory Read Timing 

TABLE B-1. Instruction Read Times, tl (ns) 

CPU Walt States nlw 
Clock Freq. 

(MHz) 0 1 2 3 

9.43 140 246 352, 458 

18.86 60.5 115.5 166.5 219.5 
20.00 56 106 156 206 

However, instruction read time is not the only timing consid­
eration when choosing instruction RAM. If the BCP is used 
in an application which requires full speed softloading of 
instruction RAM, there are two other timing relationships 
which require evaluation. These are data setup time and 
write pulse width (see Figure B-2). The relevant BCP timing 
parameters are I valid before IWR rising, tos, and IWR low 
time, tiW. The value of these timing parameters depends on 
the Remote Interface mode of operation, which is Fast Buff­
ered Write for the MPA-II system. Using Table 5-22, Fast 
Buffered Write of IMEM, of the OP8344B datasheet, the 
data setup time (parameter 19) is: 

tos = (nlW + 1)T - 18 ns 

and the write pulse width tlW (parameter 20) is: 

tlW = (nlW + 1)T - 10 ns 

Table B-2a and B-2b give various data setup times and write 
pulse widths. Once again, the RAM chosen must have a 
faster RAM data setup time and quicker RAM write strobe 
width than the corresponding desired data setup time and 
write pulse width. Thus, for the MPA-II system, the selected 
Instruction RAM data setup time must be less than 35 ns 
(Table B-2a), and the RAM Write Strobe Width must be less 
than 43 ns (Table B-2b). In a typical application of the BCP, 
softloading occurs after reset with the BCP operating with 
CLK/2 and full wait states. Under these conditions the in­
struction read time value is the critical parameter for choos­
ing the instruction RAM. In the MPA-II system, softloading 
can also occur under the full speed conditions. First, soft­
loading occurs upon a first load of instruction memory into 
the MPA-II on power up. The MPA-II system can then be 
reloaded without powering down. In this situation, the 
MPA-II system is set to full speed. Therefore, the RAM se­
lected must meet all the parameters listed thus far. 
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FIGURE B-2. Data Setup Time and Write Pulse Width for Fast Buffered Write of IMEM 

CPU 

TABLE B-2a. Data Setup Times, 
tos (ns) for Fast Buffered 

Write of Instruction Memory 

Clock Freq. 
Walt States nlw 

(MHz) 

9.43 
18.86 
20.00 

CPU 

0 1 2 

88 194 300 
35 88 141 
32 82 132 

TABLE B-2b. Write Pulse Width, 
tlW (ns) for Fast Buffered 

Write of Instruction Memory 

Clock Freq. 
Walt States nlw 

(MHz) 0 1 2 

9.43 96 202 308 
18.86 43 96 149 
20.00 40 90 140 

3 

406 
194 
182 

3 

414 
202 
190 

The MPA-/I uses two 55 ns 8K x 8 CMOS Static RAMs for 
instruction memory. The output enable is tied low and the 
chip select enables are both enabled. Therefore, the RAMs 
are always selected. The write enable is the instruction write 
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signal (IWR) from the BCP. Table B-3 compares the select­
ed instruction memory RAM parameters with required pa­
rameters for the DP8344B. 

Data Memory Timing 

The MPA-/I system uses a 100 ns 32K x 8 CMOS Static 
RAM to implement the system data memory. 

The selection of data memory RAM requires the evaluation 
of several important timing parameters. The RAM access 
time, strobe width, and data setup times are three of the 
most critical timing parameters and must all be matched to 
equivalent BCP timing parameters. The RAM access time 
should be compared to the data read time of the BCP. 

Data read time, to, (Figure 8-3) is measured from when the 
data address is valid to when data from the RAM is latched 
into the BCP. Table B-4 gives data read times. The equation 
for calculating data read time is similar to the one given for 
instruction read time, and is taken from Table 5-3 (Parame­
ter 14) of the DP8344B data sheet: 

to = (2.5 + MAX (now, nlW - 1»T - 40 

where to is the data read time (ns), now is the number of 
data memory wait states, nlw is the number of instruction 
memory wait states, and T is the T-state time (ns). Since the 
lower address byte (AD) is externally latched, the latch 
propagation delay needs to be subtracted from the available 
read time when determining the required RAM access time. 

I • I 



T- r-----------------------------------------------------------------------------------------~ 

~ 
CD 
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TABLE B-3. Instruction Memory Read and Write Parameters 

Fujitsu RAM 

Parameter (Minimum) 
(55 ns) 

Access Time (tl) 55 
Write Pulse Width (tw) 40 
Data Setup (tos) 25 

Measurements are in ns. 

Full Speed is 53 ns T-state with nlw = 0 and now = 1. 

Half Speed is 106 ns T-state with nlW = 0 and now = O. 

POR is 106 ns T-state with nlW = 3 and now = 7. 

Full 
Speed 

60.5 

T1 TX T2 T1 

CLK-OUT~ 

I ===WWd/////~ 

IA :=:::x x::: 
ALE~ 

AD ij/////////, ADDR )--~ 

A /'/////// / / /. 

READ 

TL/F/104BB-61 

FIGURE B-3. Data Memory Read Timing 

TABLE B-4. Data Read Time, to (n5) 

CPU Wait States 

Clock Freq. Max (now, nlW - 1) 

(MHz) 0 1 2 

9.43 225 331 437 
18.86 92.5 145.5 198.5 
20.00 85 135 185 

An octal latch (74ALS573) is used in the MPA-II system to 
demultiplex and latch the address. There is a delay associ­
ated with latching of the address and it is dependant on the 
latch considered. The latch' enable is the ALE signal from 
the 8CP. While ALE is high, the outputs follow the inputs. 
When ALE falls the address is latched on the outputs. The 
latch has a propagation delay of 20 ns which corresponds to 
the time it takes for the data on the inputs to reach the 
outputs. 

Therefore, for the MPA-II system the RAM access time is: 

tacc = to - 20 ns 

Using Table 8-4, the required RAM access time can be cal-
culated to be: . 

tacc = 145.5 - 20 = 125.5 ns 

for full speed operation with one wait state. 

Another important timing parameter is the RAM strobe 
width. The 8CP READ and WRITE outputs will typically be 
used to strobe data out of and into the RAM. The signal 

DP8344B BCP (Minimum) 

Read Write 

Half Full Half 
Speed 

POR 
Speed Speed 

POR 
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140 458 
43 96 414 
35 88 406 

relationships for a data memory access are shown in Figure 
8-3 for a read and in Figure 8-4 for a write. Table 8-5 con­
tains READ and WRITE pulse width values for various clock 
frequencies and wait state combinations. The equation for 
calculating READ and WRITE pulse widths are taken from 
parameter 8 of Table 5-4 and parameter 12 of Table 5-3 in 
the DP83448 data sheet: 

tR = tw = (1 + MAX (now, nlW - 1»T - 10 

where tw (= tR) is the pulse width (ns), now is the number 
of data memory wait states and nlW is the number of in­
struction memory wait states. The RAM chosen should re­
quire shorter strobe widths than the pulse width listed in 
Table 8-5 for the desired combination of clock frequency 
and wait states. Thus, for the MPA-II system, the RAM 
strobe width must be shorter than 96 ns. 

The last important consideration when choosing the data 
memory RAM is setup times into the 8CP on a read and into 
the RAM on a write. In a typical application, READ is con­
nected to the output enable pin on the RAM. When reading 
from the RAM, the data becomes valid when READ falls 
and activates the RAM outputs. The data must become val­
id fast enough to meet the setup time required by the 8CP. 
This setup time tSR, as shown in Figure 8-3, is listed in 
Table 8-6 for various combinations of clock frequencies and 
wait states. Using Table 5-3 (parameter 7) of the DP83448 
datasheet, tSR can be calculated as follows: 

tSR = (1 + MAX(now, nlW - 1 »T - 22 

where tSR is the maximum time allowed for the data to be­
come valid (ns), now is the number of data memory wait 
states and nlW is the number of instruction memory wait 
states. The data memory RAM used needs to have a faster 
output enable time than the time listed in Table 8-6 for the 
desired combination of clock frequency and wait states. 

When writing to data memory, the data must be valid in time 
to meet the setup time requirement of the RAM. In a typical 
application, this time is measured from the data becoming 
valid out of the 8CP to WRITE going high. Figure 8-4 shows 
this timing relationship, tow, and Table 8-7 contains times 
for various combinations of clock frequencies and wait 
states. The equation for calculating this time is from Table 
5-4 (parameter 4) of the DP83448 datasheet. 

tow = (1 + MAX(now, nlW - 1 »T - 20 

where tow is the minimum data valid time before WRITE 
rising (ns), now is the number of data memory wait states 
and nlW is the number of instruction memory wait states. 
This time should be at least as long as the data setup time 
of the RAM. 



TABLE B·S. READ and WRITE Pulse Width, tR = tw (ns) 

CPU 
Clock Freq. 

(MHz) 

9.43 
18.86 
20.00 

Walt States 
Max (now, nlW - 1) 

o 1 2 

96 202 308 
43 96 149 
40 90 140 

TABLE B·6. Data Read Setup Time, tSR (ns) 

CPU Wait States 

Clock Freq. Max (now, nlw - 1) 
(MHz) 0 1 2 

9.43 84 190 296 
18.86 31 84 137 
20.00 28 78 128 

TABLE B·7. Data Write Valid Time, tow (ns) 

CPU Wait States 

Clock Freq. Max (now, nlw - 1) 
(MHz) 0 1 2 

9.43 86 192 278 
18.86 33 86 139 
20.00 30 80 130 

Instruction RAM has the greatest affect on execution speed. 
Each added instruction memory wait state slows the BCP by 
about 40% as compared to running with no instruction 
memory wait states. Each added data memory wait state 
slows a data access by 33% as compared to running with 
no data memory wait states. RAM costs are coming down, 
but higher speed RAM still carries a price premium. So there 
is the trade-off. 

Table B-8 compares the BCP data memory requirements 
with the selected data RAM. 

PC System 

The MPA-II expansion board is an 8-bit board, which runs in 
a PC-XT, PC-AT or compatible system. The timings of the 
two systems have many differences, but the 8 MHz PC-AT 
bus specifications are more stringent than those of the 
4.77 MHz PC-XT bus. So, this evaluation will cover the 
8 MHz PC-AT. 

The critical timing in this system will be the amount of time 
the MPA-II will have before it must deassert 10-CHRDY low 
in order to extend the access cycle by adding wait states. 
By deasserting 10CHRDY the MPA-II can extend a read or 
write cycle until the correct data is available or written, re­
spectively. 

As stated before, the MPA-II is an 8-bit board so both the 
1/0 and memory cycles will have 8-bit access cycles. In the 
PC-AT, 8-bit 1/0 and memory cycles have the exact same 
timing. There is always one command delay (0.5 T-states) 
from the time ALE falls until the command strobe (lOR, 
lOW, MEMR or MEMW) goes active low. Four programmed 
wait states are inserted, forcing the command strobe to stay 
active low for a minimum of 4.5 T-states. Figure 8-5 shows 
the relationship between ALE, the command strobes and 
the bus cycles T-states. 

For the following calculations the original IBM PC-AT sche­
matic has been used. This schematic can be found in IBM 
Technical Reference Personal Computer AT. 

In the PC-AT, both ALE and all of the command strobes are 
controlled by an 82288 bus controller. The command 
strobes will go active a short delay time after the 82288 
inserts the command delay. (The delay time for an 8 MHz 
82288 is T (delay 82288) = 25 ns.) After leaving the 82288, 
MEMR and MEMW pass through a 74ALS244 before reach­
ing the expansion bus. 

TABLE B·8. Data Memory Read and Write Parameters 

Parameter 

Access Time (tace> 
Write Pulse Width (tw) 
Data Setup (tDW) 
Output Enable (tSA) 

Measurements are in ns. 

Hitachi 
HM62256 

RAM 
(Minimum) 

100 
60 
40 

Full Speed is 53 ns T·state with nlw = 0 and nDW = 1. 

Half Speed is 106 ns T-state with nlw = 0 and nDW = O. 

DP8344B BCP (Minimum) 

Read 

Full Half Full 
Speed Speed Speed 

125.5 205 
96 
86 

84 84 

FIRST SECOND THIRD FOURTH 
STATUS COMMAND PROGRAMMED PROGRAMMED PROGRAMMED PROGRAMMED 

I- STATE ---I- STATE -I- WAIT --I- WAIT --I--- WAIT --I- WAIT--
STATE STATE STATE STATE 

Write 

ALE ~~~--~~--+-~--~ 
CMD 

FIGURE B·S. Relationship of ALE, CMD, and Bus Timing 
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Half 
Speed 

96 
86 

TLlF/l04BB-63 



So, T(delay 82288) + T(delay 74ALS244) is equal to the 
maximum amount of time from the end of the command 
delay until the command strobe reach the MPA-II. 

T(strobes valid) = T(delay 82288) + T(delay 74ALS244) 
= 25 ns + 10 ns 
= 35 ns 

In order to add wait states any expansion board must deas­
sert 10CHRDY low in time for it to propagate through a 
74ALS32, then through a 74F74 (from preset to output), and 
then setup to the 82284 by the end of the third programmed 
wait state (which is also the beginning of the fourth wait 
state). If the 10CHRDY signal also meets the 82284's hold 
requirement, then a fifth wait state will be added. Then 
again, at the end of the fourth wait state if 10CHRDY is still 
deasserted low a sixth wait state will be added. This will 
continue until 10CHRDY is asserted high. On the other 
hand, if 10CHRDY is deasserted too late (Le. after the end 
of the third programmed wait state), then the cycle will end 
without adding any additional wait states. 

The following is a calculation of the minimum amount of 
time before the end of the third wait state that 10CHRDY 
must be deasserted to add wait states: 

T(add wait) = T(delay 74ALS32 H-L) + T(74F74 P-Q) + 
T(setup 82284) 

= 12 ns + 25 ns + 0 ns 

37 ns 

The maximum amount of time an expansion board has be­
fore it must deassert 10CHRDY (to add wait states) from the 
command strobe being valid is: 

T(Max 10CHRDY) = 3.5T - T(st'robes) - T(add wait) 

where, T = 125 ns in a 8 MHz expansion bus. Therefore, 

T(MAX 10CHRDY = 3.5 (125 ns) - 35 ns - 37 ns 
= 365.5 ns 

This means that the MPA-II has 365.5 ns to deassert 
10CHRDY (if wait states are needed) from the time it re­
ceives a valid remote access command strobe. 

On the MPA-II, the command strobes are buffered by a 
20L8B PAL tothe BCP's REM-RD and REM-WR inputs. The 
BCP will respond to a valid remote access by deasserting 
XACK a delay time after receiving a valid remote access 
REM-RD or REM-WR strobe. XACK controls 10CHRDY via 
a 16RA8 PAL. 

The maximum delay from receiving a valid remote access 
command strobe to deasserting 10CHRDY follows: 

T(MPA-IIIOCHRDY) = T(delay 20L8B) + T(XACK) 1 + 
T(delay 16RA8) 

= 15 ns + 26 ns + 35 ns 

= 76 ns 

The MPA-II will deassert 10CHRDY a maximum of 76 ns 
after it receives a valid remote access command strobe. 
One should notice 76 ns is much less than the maximum 
allowable time of 365.5 ns. 
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As a final note, the reader should be aware that most faster 
PC-AT's still run their expansion buses at 8 MHz to remain 
compatible. This means that the timing on these expansion 
buses should remain the same as those on any other PC-AT 
no matter how fast the CPU runs. Thus, the MPA-II will run 
in all PC-AT's with 8 MHz expansion buses that follow the 
original 8 MHz PC-AT's expansion bus design. In fact, as 
can be seen above, the MPA-II will run with bus speeds 
faster than 8 MHz. 

APPENDlXC 

Filter Equations 

Derivation of Filter 
Equations for the Combined 
Coax/Twisted Pair Interface 

The basic operation of the filter can be understood by study­
ing the figure below. The actual circuit includes the effects 
of the terminating resistors, DC isolation capacitors, and the 
transformer; furthermore, a thorough investigation of band­
width and gain characteristics should employ the use of a 
circuit simulator such as SPICE. 

TL/F/10488-64 

Simple loop analysis yields the following transfer function 
for the filter: 

1 

Vo = __ -=-____ 2_R.!:.2C....!2:.....(S_)_~----
2 [ 

R1C1 + C2 (4R2 + 2R1)] 1 Vs s +s +----
2R1R2C1C2 R1 R2C1C2 

If it is assumed R1 > > R2 and C1 > > C2, we can then 
simplify the equation and solve for the poles to obtain the 
following form: 

III ~ ~ ± ~~ -4 (R,R;C,C,) 
41T 

After splitting the above equation to solve each pole and 
using a binomial expansion to simplify each pole's equation, 
we get: 

1 
fl::::: --::::: 20kHz 

1TR1C1 
(vs. 30 kHz from simulation and testing) 

1 
fh::::: ---::::: 40 MHz 

41TR2C2 

(vs. 30 MHz from simulation and testing) 
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A Combined Coax-Twisted 
Pair 3270 Line Interface for 
the DP8344 Biphase 
Communications Processor 

This paper will discuss the design of an improved 3270 
transceiver interface for the National Semiconductor 
DP8344 combining increased error-free performance and 
the ability to communicate over both coax and twisted pair 
transmission lines. At this date, the largest installed base of 
terminals is the 3270 protocol terminal which primarily uti­
lizes coax cabling. Because of phone wire's easy accessibil­
ity and lower cost, twisted pair cabling has become popular 
among end users for new terminal installations. In the past, 
baluns have been used to augment existing coax interfaces, 
but their poor performance and cost considerations leave 
designers seeking new solutions. In addition, the integration 
of coax and twisted pair on the same board has become a 
market requirement, but this is a considerable design chal­
lenge. A brief summary of the interface concepts, a discus­
sion of the proposed design, and a description of the results 
are included in this application note. 

CONCEPTS 

Coax cable is normally driven on the center conductor with 
the shield grounded. Conversely, unshielded twisted pair ca­
ble is driven on both lines. Because of the way that each is 
driven, coax operation is often called unbalanced and twist­
ed pair operation balanced. 

Transmission line characteristics of coax and twisted pair 
cables can be envisioned as essentially those of a low-pass 
filter with a length-dependent bandwidth.1 In 3270 systems, 
different data combinations generate dissimilar transmission 
frequencies because of the Manchester format.2 These two 
factors combine to produce data pulse widths that vary ac­
cording to the data transmitted and the length and type of 
cable used. This pulse-width variation is often described as 
"data jitter."3 

In addition to line filtering, noise can cause jitter. Coax cable 
employs a shield to isolate the signal from external noise. 
Electromagnetically balanced lines minimize differential 
noise in unshielded twisted pair cable. In other words, the 
twisted pair wires are theoretically equidistant from any 
noise source, and all noise superimposed on the signal 
should be the common-mode type. Although these methods 
diminish most noise, they are not totally effective, and envi­
ronmental interference from other nearby wiring and circuit­
ry may still cause problems. 

Besides the effects of jitter, reflections can produce undesir­
able Signal characteristics that introduce errors. These re­
flections may be caused by cable discontinuities, connec­
tors, or improper driver and receiver matching. Signal edge 
rates may aggravate reflection problems since faster edges 
tend to produce reflections that may dramatically distort the 
signal.3 Most reflection difficulties occur over short cable 
(less than 150 ft.) because at these distances reflections 
suffer little attenuation and can significantly distort the sig­
nal. Since the timing of the reflections is a function of cable 
length, it may be possible to operate at some short distance 
and not at some greater length. 

National Semiconductor 
Application Note 624 
Tim Davis and David Weinman 

An effective receiver design must address each of the 
above concerns. To counteract the effects of line filtering 
and noise, there must be a large amount of jitter tolerance. 
Some filtering is needed to reduce the effects of environ­
mental noise caused by terminals, computers, and other 
proximate circuitry. At the same time, such filtering must not 
introduce transients that the receiver comparator translates 
into data jitter. 

Like the receiver design, a successful driver design should 
compensate for the filtering effects of the cable. As cable 
length is increased, higher data frequencies become attenu­
ated more than lower frequency signals, yielding greater dis­
parity in the amplitudes of these signals.4 This effect gener­
ates greater jitter at the receiver. The 3270 signal format 
allows for a high voltage (predistorted) magnitude followed 
by a low voltage (nondistorted) magnitude within each data 
half-bit time.2 Increasing the predistorted-to-nondistorted 
Signal level ratio counteracts the filtering phenomenon be­
cause the lower frequency signals contain less predistortion 
than do higher frequency signals. Thus, the amplitude of the 
higher frequency components are greater than the lower 
frequency components at the transmitter. Implementation of 
this compensation technique is limited because nondistort­
ed signal levels are more susceptible to reflection-induced 
errors at short cable lengths. Consequently, proper imped­
ance matching and slower edge rates must be utilized to 
eliminate as much reflection as possible at these lengths. 

Besides improved performance, both unbalanced and bal­
anced operation must be adequately supported. Electro­
magnetic isolation for coaxial cabling can be provided by a 
properly grounded shield. Electrically and geometrically 
symmetric lines must be maintained for twisted pair opera­
tion. For both cable types, proper termination should be em­
ployed, although terminations slightly greater than the char­
acteristic impedance of the line may actually provide a larg­
er received signal with insignificant reflection.3 In the board 
layout, the comparator traces should be as short as possi­
ble. Lines should be placed close together along their entire 
path to avoid the introduction of differential noise. These 
traces should not pass near high frequency lines and should 
be isolated by a ground plane. 

BCP LINE INTERFACE DESIGN 

An extensive characterization of the BCP comparator was 
done to facilitate this interface design. The proposed design 
enhances some of the BCP transceiver's characteristics 
and incorporates the aforementioned suggestions. 

The interface design takes into account the common com­
parator attributes of power supply rejection, variable switch­
ing offset, finite voltage sensitivity, and fast edge rate sensi­
tivity. Vee noise can affect the comparator output when the 
inputs are biased to the same voltage. This particular type of 
biasing may render portions of the comparator susceptible 
to supply noise. Variable switching offset and finite voltage 
sensitivity cause the receiver decoding circuitry to see a 
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~ substantial amount of data jitter when signal amplitudes ap-. Like many present 3270 circuits, the driver design (Figure 2) 

utilizes a National Semiconductor DS3487 and a resistor 
network to generate the proper signal levels. The predistort­
ed-to-nondistorted ratio was chosen to be about 3 to 1. This 
ratio was observed to offer good noise immunity at short 
cable lengths (less than 150 feet) and error-free transmis­
sion to an IBM 3174 controller at long cable lengths (greater 
than 5000 feet). 

Z proach the sensitivity limits of the comparator. At these sig-
« nal magnitudes, considerable variation in the output of the 

. comparator is observed. Finally, edge sensitivity may allow 
a fast edge to introduce errors as charge is coupled through 
the inputs during a rapid predistorted-to-nondistorted level 
transition, especially as the nondistorted level is reduced in 
magnitude. 

The receiver interface design (Figure 1) addresses each of 
the BCP comparator's characteristics. A small offset (about 
17 ·.mV) separates the inputs to eliminate Vee-coupled 
noise. This offet is relatively large compared to possible fab-

. rication variations;' resulting in a more consistent, device­
independent operation. The offset has the added benefit of 
making the comparator more immune to ambient noise that 
may be present on the circuit board. A 2:1:1 transformer 
(arranged as a 3:1) restores any voltage sensitivity lost by 
introducing the offset. A bandpass filter is employed to re-

. duce the edge rate of the signal at the comparator and to 
eliminate environmental noise. The bandwidth (30 kHz to 
30 MHz) was chosen to provide sufficient noise attenuation 
while producing minimum data jitter. Refer to Appendix 2 for 
a derivation of the filter equations. 

PE 5769 

To allow for two interfaces in the same circuit design, the 
coax/twisted pair front end (Figure 3) includes an ADC Tele­
communications brand TPC connector to switch between 
coax and twisted pair cable. This connector allows different 
male connectors for coax and twisted pair cable to switch in 
different interfaces for the particular cable type. The coax 
interface has only the shield capacitively coupled to ground. 
The 510n resistor and the filter loading produce a termina­
tion of about 95n. The twisted pair interface balances both 
lines and possesses an input impedance of about 1 DOn . 
This termination is somewhat higher than the characteristic 
impedance (about 96!1) of twisted pair. Terminations of this 
type produce reflections that do not tend to generate mid-bit 

. errors, as well as having the benefit of creating a larger 
voltage at the receiver over longer cable lengths. 

+5V 
DP8344 

42 
,-=+.;..........o4J ...... --II--+--JWIr---4~--I +AlG-IN 

Legend 

o To coax/twisted pair front end 

lID To line driver circuitry 

*Includes board capacitance 

. Legend, " . . 

lID To 2:1:1 Transformer _ 

+ 

41 
''--+----4 ...... ---II--.... -'V'V'\t--... ---I -AlG-IN 

TLlF/l044B-l 

FIGURE 1. BCP Receiver Filter Design 

1/2 DS3487 
DP8344 

45.3n 1% 

1--+-_
3
_
8
-1 DATA-OUT 

37 
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FIGURE 2. BCP Driver Design 
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ADC Connector 
0.1 J.lF 

Center -------.. 2;;....--(i~-----Ia-[[r 

Legend 

(A) To 2:1:1 Transformer 

Twisted Pair 1 

Shleld_ J 
....-../. 

GND 

Il'·'PF 

·Connector closes switch for coax and opens switch for twisted pair. 

:: 510n 

..L O.IJ.1F 
"> 510n~ 
" I77T I~-

IIl..!..J 
0.1 J.lF 

TL/F/l044B-3 

FIGURE 3. BCP Coax/Twisted Pair Front End 

RESULTS AND COMPARISONS 

The evaluation involved producing multiple data transfers 
between an IBM 3174-81 R and the device under test during 
a live 3270 session. The preferred method of testing would 
be to transfer extremely large files to the host. Since termi­
nals and muxes cannot transfer files and all devices being 
tested needed to be evaluated under similar conditions, a 
screen-oriented approach was taken for testing. The 
screen-oriented approach involved using common methods 
for forcing the controller to send an entire screen of charac­
ters to the device. Procedural specifics are included in Ap­
pendix 1. 

Performance of the BCP interface typically extended over 
7000 feet of RG62A/U coax and 1700 feet of AT&T DIW 
4 pair/24 AWG unshielded twisted pair. This operation met 
or exceeded many of the current 3270 solutions. The per­
formance of other 3270 products was obtained from pro­
duction stock of competitors' equipment and should be tak­
en as typical operation. Although these long distances are 
possible, it is recommended that companies specify their 
products to IBM's PAI2 specifications of 5000 feet of coax 
cable. The extra long distance capability of the new inter­
face will assure the designer a comfortable guardband of 
performance. Similarly, a 50% margin on the unshielded 
twisted pair capability will give approximately a 900 foot 
specification. 

It should be noted that the BCP receiver detects errors be­
fore the controller does. This is because of comparator 
skew, a mechanism that occurs when the amplitude of the 
signal approaches the sensitivity of the comparator. At 
these small levels, propagation symmetry for high-to-Iow 
and low-to-high transitions is lost. The failure mechanisms 
of competitors include insufficient receiver jitter tolerance, 
filter tranSients, and comparator skew. Operational distance 
may be extended by the utilization of transformers with high­
er turn ratios as long as considerations are taken for imped­
ance matching, driver loading, and component quality toler-
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ances (higher turn ratios may demand circuits with very low 
tolerance percentages). 

There are also economical advantages in using the BCP 
comparator. The number of active and passive components 
required to build the line interface is small compared to 
competing solutions. The proposed design is extremely cost 
competitive with current media solutions. 

CONCLUSION 

An effective and economical 3270 interface solution has 
been demonstrated using only passive components and a 
line driver. Guidelines have also been suggested to facilitate 
the design and layout of such an interface. Criteria concern­
ing board layout and noise suppression must be considered 
to be at least as important as the components themselves; 
for example, adjustments should be made for variations in 
board capacitances and inductances. With only slight modi­
fication of the components given for this design, it is thus 
likely that optimum performance can be obtained for a spe­
cific layout. Implementation of these design principles 
should prove advantageous for the development of an effi­
cient and competitive 3270 line interface. 

REFERENCES 

1. H.P. Neff, Jr., Basic Electromagnetic Fields, New York: 
Harper and Row, 1981, Chapter 13. 

2. IBM 311413214 Control Unit to Device Product Attach­
ment Information, Communication Products Information De­
velopment, International Business Machines Corporation, 
Research Triangle Park, NC, October 1986. 

3. K.M. True, The Interface Handbook: Line Drivers and Re­
ceivers, Semiconductor Components Group, Fairchild Cam­
era and Instrument Corporation, Mountain View, CA, 1975. 
Chapters 3 and 4. 

4. N.S. Nahman, "A Discussion on the Transient Analysis of 
Coaxial Cables Considering High Frequency Losses," IRE 
Trans. Circuit Theory, vol. CT-9, pp. 144-152, June 1962. 

I 

EI 
I 



~ r-----------------------------------------------------------------------------------------~ 

~ APPENDIX 1: 
Z TEST PROCEDURE FOR LONG AND SHORT 
<C DISTANCE TESTING 

1. Enter Test mode on the 3174 controller. 

2. Clear the error counters. 

3. Hit the Clear key rapidly 30 times. This will repaint the 
screen with the test menu very rapidly. This is a quick 
and easy method to cause an entire screen of charac­
ters to be sent to either an emulation card or a terminal 
over the coax. 

4. Exit Test mode. 

5. LOGON to a session on the host. 

S. Issue the FILELIST command. 

7. Hit the Clear key 20 times. After the controller clears 
the screen, it will repaint the FILELIST menu each time. 
This will again cause an entire screen of characters to 
be sent over the coax to the device under test. 

8. XEDIT a 40k file text file. 

9. Page through the entire file forwards once, then back­
wards once. Again, this will cause a varied stream of 
transmissions to be sent to the device under test. 

10. LOGOFF the session. 

11. Enter Test mode again. 

12. Check for errors on the error test screen. 

APPENDIX 2: 
DERIVATION OF FILTER EQUATIONS 

The basic operation of the filter can be understood by study­
ing the figure below. The actual circuit includes the effects 
of the terminating resistors, DC isolation capacitors, and the 
transformer; furthermore, a thorough investigation of band­
width and gain characteristics should employ the use of a 
circuit simulator such as SPICE. 

TLlF/l0448-4 

Simple loop analysis yields the following transfer function 
for the filter: 

1 

Va = __ -=-____ 2_R_2_C_2_(S_)_-=-___ _ 

S2 + S [R1 C1 + C2(4R2 + 2R1)] + 1 Vs 
2 R1 R2 C1 C2 R1 R2 C1 C2 

If it is assumed R1 > > R2 and C1 > > C2, we can then 
simplify the equation and solve for the poles to obtain the 
following form: 

III ~ ~ ± ~~ - 4 (AI A2'e, e2) 
41T 

After splitting the above equation to solve each pole and 
using a binomial expansion to simplify each pole's equation, 
we get: 

1 
f, :::: 'lTR1 C1 :::: 20 kHz 

(vs. 30 kHz from simulation and testing) 

1 
fh :::: 4'IT R2 C2 :::: 40 MHz 

(vs. 30 MHz from simulation and testing) 
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Interfacing Memory to the 
DP83448 

As with most other aspects of a design, choosing memory is 
a cost vs. performance trade off. Maximum performance is 
achieved running no wait-states with fast, expensive memo­
ry. Slower, less expensive memory can be used, but wait­
states must be added, slowing down the BCP. Therefore 
one needs to choose the slowest memory possible while 
still meeting design specifications. While this article as­
sumes RAM is used for instruction and data memory, the 
information is relevant to memory devices in general. 
The BCP needs separate data and instruction RAM, each 
with their own requirements. Instruction read time is the ma­
jor constraint when choosing instruction RAM. Instruction 
read time, tl, as shown in Figure 1, is measured from when 
the instruction address becomes valid to when the next in­
struction is latched into the BCP. Instruction read time for 
various clock frequencies and wait states are given in Table 
I. Clock frequency and wait state combinations other than 
those given in the table can be calculated by the following 
equation: 

h 
tl = 103 (1 + T + nlw)/fcPU - 19 

where tl is the instruction read time (ns), nlW is the number 
of instruction memory wait states, T L is the CPU clock low 
pulse width (ns), T is the CPU clock period (ns), and fcpu is 
the clock frequency (MHz) at which the CPU is running. The 
RAM chosen needs to have a faster access time than the 
read time for the desired combination of clock frequency 
and wait states. However, instruction read time is not the 
only timing consideration when choosing instruction RAM. If 
the BCP is used in an application which requires full speed 
softloading of instruction RAM, there are two other timing 
relationships which require evaluation. These are data setup 
time and write pulse width. The relevant BCP timing param­
eters are I valid before IWR rising, tpo-I-IWR, and IWR ·Iow 
time, tW-IWR. The value of these timing parameters depends 
on the Remote Interface mode of operation. More detailed 
information can be found in the Device Specifications and 
the Remote Interface and Arbitration System sections of the 
BCP data manual. Note that in a typical application of the 
BCP, softloading occurs after reset with the BCP operating 
with CLK/2 and full wait states. Under these conditions the 
instruction read time value is the critical parameter for 
choosing the instruction RAM. 

T1 T2 T1 
CLK-OUT~ 

~"~ lAO-IS 

I, 

TL/F/10447-1 

FIGURE 1. Instruction Read Time 

TABLE I. Instruction Read Times, tl (ns) 

CPU Wait States 
Clock Freq. 

(MHz) 0 1 
(TL/T = 0.5) 

9.43 140 246 

18.86 60 113 

20.00 56 106 

2 

352 

166 

156 
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The selection of data memory RAM requires the evaluation 
of several important timing parameters. The RAM access 
time, strobe width, and data setup times are three of the 
most critical timing parameters and must all be matched to 
equivalent BCP timing parameters. The RAM access time 
should be compared to the data read time of the BCP. The 
following discussion assumes 3 T-state data memory read 
timing ([4TR] = 0). However, the basic approach is applica­
ble to the less critical 4 T-state data memory read timing. 
Detailed information on this mode can be found in the CPU 
Description and the Device Specifications sections of the 
BCP data manual. 
Data read time, to, (Figure 2) is measured from when the 
data address is valid to when data from the RAM is latched 
into the SCPo Table II gives data read times. The equation 
for calculating data read time is similar to the one given for 
instruction read time: 

h 
tp = 103 (2 + T + MAX (now, nlW - 1 »/fCpu - 40 

where to is the data read time (ns), now is the number of 
data memory wait states, nlW is the number of instruction 
memory wait states, T L is the CPU clock low pulse width 
(ns), T is the CPU clock period (ns), and fcpu is the clock 
frequency (MHz) at which the CPU is running. Since the 
lower address byte (AD) is externally latched, the latch 
propagation delay needs to be subtracted from the available 
read time when determining the required RAM access time. 

T1 TX T2 T1 
CLK-OUT~ 

I ::::::::XZVAV?1W~ 

IA:::::::X C 
ALE~ 

TL/F/10447-2 

FIGURE 2. Data Memory Read Timing 

TABLE II. Data Read Time, to (ns) 

CPU Wait States 
Clock Freq. MAX(now, nlw - 1) 

(MHz) 0 1 2 
(TL/T = 0.5) 

9.43 225 331 437 

18.86 92 145 198 

20.00 85 135 185 

Another important timing parameter is the RAM strobe 
width. The BCP READ and WRITE outputs will typically be 
used to strobe data out of and into the RAM. The signal 
relationships for a data memory access are shown in Figure 
2 for a read and in Figure 3 for a write. Table III contains 
READ and WRITE pulse width values for various clock fre­
quencies and wait state combinations. The equation for cal­
culating READ and WRITE pulse width is: 

tw = 103(1 + MAX(now, nlW - 1)/fcpu - 10 
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~ where tw is the pulse width (ns), now is the number of data 
Z memory wait states, nlW is the number of instruction memo-
~ ry wait states, and fcpu is the clock frequency (MHz) at 

which the CPU is running. The RAM chosen should require 
shorter strobe widths than the pulse width listed in Table III 
for the desired combination of clock frequency and wait 
states. 

elK-OUT 

~ ____________ c: 
ALE 

DATA l(Z 

TLIF/10447-3 

FIGURE 3. Data Memory Write Timing 

TABLE III. READ and WRITE Pulse Width, tw (ns) 

CPU Walt States 
Clock Freq. MAX (now, nlW - 1) 

(MHz) 0 1 2 

9.43 96 202 308 

18.86 43 96 149 

20.00 40 90 140 

The last important consideration when choosing the data 
memory RAM is setup times into the BCP on a read and into 
the RAM on a write. In a typical application, READ is con­
nected to the output enable pin on the RAM. When reading 
from the RAM, the data becomes valid when READ falls 
and activates the RAM outputs. The data must become val­
id fast enough to meet the setup time required by the BCP. 
This setup time tSR, as shown in Figure 2, is listed in Table 
IV for various combinations of clock frequencies and wait 
states. It can be calculated from the following equation: 

tSR = 103(1 + MAX(now, nlW - 1 )/fcpu - 22 

where tSR is the maximum time allowed for the data to be­
come valid (ns), now is the number of data memory wait 
states, nlW is the number of instruction memory wait states, 

and fcpu is the clock frequency (MHz) at which the CPU is 
running. The data memory RAM used needs to have a fast­
er output enable time than the time listed in Table IV for the 
desired combination of clock frequency and wait states. 

TABLE IV. Data Read Setup Time, tSR (ns) 

CPU Walt States 
Clock Freq. MAX(now, nlw - 1) 

(MHz) 0 1 2 

9.43 84 190 296 

18.86 31 84 137 

20.00 28 78 128 

When writing to data memory, the data must be valid in time 
to meet the setup time requirement of the RAM. In a typical 
application, this time is measured from the data becoming 
valid out of the BCP to WRITE going high. Figure 3 shows 
this timing relationship, tow, and Table V contains times for 
various combinations of clock frequencies and wait states. 
The equation for calculating this time is: 

tow = 103(1 + MAX(noW,nIW - 1»/fcpu - 20 

where tow is the minimum data valid time before WRITE 
rising (ns), now is the number of data memory wait states, 
nlW is the number of instruction memory wait states, and 
fcpu is the clock frequency (MHz) at which the CPU is run­
ning. This time should be at least as long as the data setup 
time of the RAM. 

TABLE V. Data Write Valid Time, tow (ns) 

CPU Walt States 
Clock Freq. MAX (now, nlW - 1) 

(MHz) 0 1 2 

9.43 94 200 306 

18.86 41 94 147 

20.00 30 80 130 

Instruction RAM has the greatest effect on execution speed. 
Each added instruction memory wait state slows the BCP by 
about 40% as compared to running with no instruction 
memory wait states. Each added data memory wait state 
slows a data access by 33% as compared to running with 
no data memory wait states. RAM costs are coming down, 
but higher speed RAM still carries a price premium. So there 
is the trade-off. 
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DP8344 BCP Stand-Alone 
Soft-Load System 
INTRODUCTION 

The DP8344 Biphase Communications Processor (BCP) is a 
20 MHz Harvard architecture microprocessor with an on­
chip transmitter and receiver. The BCP can be used to im­
plement several biphase communication protocols: 
IBM 3270, IBM 3299, IBM 5250, and National's general pur­
pose 8-bit protocol. This application note shows how 

LINE 
INTERFACE 

BCP 

HOST 
PROCESSOR 

National Semiconductor 
Application Note 504 
Jim Margeson 

DP8344 software can be loaded from EPROM into instruc­
tion RAM. It is particularly valuable in stand-alone systems 
where the BCP is not interfaced to a host processor. Possi­
ble applications include: protocol converters, multiplexers, 
high-speed remote data acquisition systems and remote 
process control systems. 

INSTRUCTION ADDRESS 

16 

INSTRUCTION 

16 

DATA ADDRESS 

8 

MULTIPLEXED 
ADDRESS/DATA 

INSTRUCTION 
MEMORY 

DATA 
MEMORY 

TL/F/9403-1 

FIGURE 1. BCP System with Host Processor 
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FIGURE 2. BCP Stand-Alone System with EPROM Soft Load Circuit 
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FIGURE 3. Schematic 
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FIGURE 3. Schematic (Continued) 
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WHY EPROM 50FT-LOAD? 

In a stand-alone application, the BCP instruction code must 
be kept in non-volatile memory. Instruction memory with 
45 ns access time is required to run the BCP at full speed. 

EPROM at this speed can be quite expensive, much more 
than 45 ns RAM or 350 ns EPROM. RAM with 45 ns access 
time can be used for instruction memory if a scheme is em­
ployed to load the BCP code into the RAM from slow 
(350 ns), inexpensive EPROM, upon power-up. 

In non-stand-alone applications, a host processor would 
communicate with the BCP through the BCP's built-in re­
mote interface (Figure 1). In such a system, BCP code 
would be loaded from the host into the BCP's instruction 
RAM using the remote interface. In a stand-alone system, 
however, the BCP is not interfaced to a host; the program is 
loaded from EPROM through the remote interface. As 
shown in Figure 2 a PAL ® sequencer controls the loading of 
the program, generating handshaking, signals similar to 
those of a typical host processor. When the load is com­
plete, the sequencer tells the BCP to begin execution of the 
program. 

HOW THE 50FT-LOAD CIRCUIT WORKS 

The BCP, as configured in this system,.comes up halted' 
after reset (Figure 3). The program counter is set to zero, 
and the remote interface is configured to receive '16-bit in­
structions in 8-bit pieces and write them into instruction 
memory. The BCP has the feature that it can be configured 

to come up stopped or to begin program execution after a 
reset has occurred. If the following conditions are true when 
reset is de-asserted then the processor will begin running: 
RAE - (Remote Access Enable, active low) = High, 
REMWR - (Remote Write, active low) = low, REMRD­
(Remote Read, active low) = low. Otherwise, it will come up 
halted. 

The PAL sequencer begins the software load by writing the 
low byte of the first instruction to the remote interface. A 
simplified flowchart of the sequence operation is shown in 
Figure 4. 

This byte comes from address OOOOH of the EPROM. The 
corresponding locations of EPROM and RAM are shown in 
Figure 5. The I,east significant address line of the EPROM is 
controlled by the seque~cer; the other address lines are 
driven by the instruction address bus of the BCP. The in­
struction address bus reflects the contents of the BCP's 
program counter (PC), which contains the destination of the 
instruction currently being loaded. After the low byte of the 
first instruction' is' written to the remote interface, the se­
quencer brings the least significant address line of the 
EPROM high. Now location 0001 H of the EPROM is ad­
dressed, and the high byte of the first instruction is written to 
the remote interface. At this point the BCP writes both bytes 
into address OOOOH of instruction RAM, and increments its 

, program counter. 

TL/F/9403-5 

FIGURE 4. Sequencer Operation 
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EPROM Instruction 
Address Memory Address 

0 0 (Low Byte) 
1 0 (High Byte) 
2 1 (Low Byte) 
3 1 (High Byte) 
4 2 (Low Byte) 
5 2 (High Byte) 

• • • 
• • • 
• • • 
• · · 

16382 8190 (Low Byte) 
16383 8191 (High Byte) 

FIGURE 5. EPROM to RAM Address Mapping 

The first 16-bit instruction has been transferred; the second 
is done in a similar manner. The sequencer brings the least 
significant address line of the EPROM low again. The PC 
now contains 0001 H, which is output on the instruction 
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address bus. Location 0002H of the EPROM is addressed, 
and the low byte of the second instruction is written to the 
remote interface. The sequencer then brings the least sig­
nificant address line of the EPROM high (to address loca­
tion 0003H) and the high byte of the second instruction is 
transferred. The BCP writes the second 16·bit instruction to 
location 0001 H of instruction RAM. This process is repeated 
until the last instruction is transferred. 

The sequencer senses that the load is complete when in­
struction address line 13 comes high. This occurs when the 
program counter is incremented to a value of 4000H, indi­
cating that 8K instruction words have been transferred. At 
this point the BCP must be started. To achieve this, the 
sequencer resets the BCP again, while holding RAE - high, 
REMRD- low, and REMWR- low. A reset during these 
conditions brings the processor up running, and also clears 
the program counter. The BCP begins execution at instruc­
tion address OOOOH and the sequencer and EPROM go into 
an inactive state, transparent to the software being execut­
ed. A detailed version of the sequencer flowchart is shown 
in Figure 6. A hardware compiler/minimizer was used to ob­
tain the equations shown in Figure 7. These equations were 
used to program a National PAL16R6B. Typical timing 
waveforms of the soft-load are shown in Figure 8. 
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There are several advantages to using the remote interface 
to load the BCP software. If a scheme like the one in Figure 
9 was used to load the program directly from EPROM to 
instruction RAM, much more hardware would be required 
and the access time of the RAM would need to be shorter. 
Two EPROMs would have to be used instead of one be­
cause the transfer would be 16 bits wide instead of 8 bits. In 
this case the BCP's program counter could not be used to 

increment through the memory locations, thus an external 
13-bit counter would be needed. TRI-ST ATE® buffers would 
isolate the RAM and EPROM from the instruction data and 
instruction address busses during soft-load. These buffers 
would add propagation delays to memory accesses de­
manding that faster RAM be used. Soft-loading through the 
remote interface requires fewer I.Co's and does not degrade 
the performance of the processor. 

DMPAL16R6B; SOFTLOAD 
CK LCL XACK IA13 RESET NC6 NC7 NC8 IWR GND 
10E IBRESET IREMWR IEPAO ICS IST2 ISTl IREMRD ILCLINV VCC 
IREMRD .- RESET* IREMRD* CS*/EPAO*/REMWR 

ISTl 

IST2 

ICS 

*/EPAO 

+ RESET* IREMRD* ST2* CS* IREMWR 
+ RESET* IREMRD* ST1* CS* IREMWR 
+ RESET*IA13* REMRD*/ST1*/ST2*/CS*/EPAO* REMWR 

._ RESET* 
+ RESET* 

REMRD*/ST1* ST2*/CS 
REMRD* ST1*/ST2*/CS 

+ RESET* IREMRD* ST1*/ST2* CS* 
+ RESET* IREMRD*/ST1* ST2* CS* 
+ RESET*/XACK*REMRD* IST2*/CS* 

._ RESET* REMRD* ST2*/CS 
+ RESET*/XACK*REMRD*/ST1* ICS* 
+ RESET* IREMRD* ST2* CS* 

IREMWR 
IREMWR 
IREMWR 

IREMWR 
IREMWR 

+ RESET* 
+ RESET* 

._ RESET* 
+ RESET* 
+ RESET* 
+ RESET* 
+ RESET* 

IREMRD*/STl* 
REMRD* ST1*/ST2* CS* 

CS* EPAO*/REMWR 
EPAO* REMWR 

IREMWR REMRD* ICS* 
REMRD* ST1* ICS 
REMRD* ICS* EPAO 
REMRD* ST2*/CS 
REMRD* ST1* ST2* EPAO* REMWR 

+ RESET*/IA13*REMRD* ICS 
:= RESET* REMRD* ST2*/CS*/EPAO 
+ RESET*/XACK*REMRD* ICS*/EPAO 
+ RESET* REMRD* ICS*/EPAO* REMWR 
+ RESET* REMRD* ST1* ICS*/EPAO 
+ RESET* IREMRD* ST1* CS*/EPAO*/REMWR 
+ RESET* IREMRD* ST2* CS*/EPAO*/REMWR 
+ RESET*XACK* REMRD*/ST1*/ST2*/CS*EPAO*/REMWR 
+ RESET* REMRD* ST1* ST2* CS*EPAO* REMWR 

IREMWR .- RESET* IREMRD* ST2*/CS* IREMWR 
+ RESET* REMRD* ST1* ICS* IREMWR 
+ RESET* IREMRD* CS*/EPAO*/REMWR 
+ RESET* IREMRD* ST2* CS* IREMWR 
+ RESET* REMRD*/ST1*/ST2*/CS* REMWR 
+ RESET* IREMRD* ST1* CS* IREMWR 
+ RESET*/XACK*REMRD* ICS* IREMWR 

IBRESET = IRE SET + IREMRD*/ST1* CS * IEPAO * IREMWR 
ILCLINV = LCL 

FIGURE 7 
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Timing at End of Instruction Load 

BRESET-------------------------------,.LJ. 
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.u. .~r _______________________ __ 
. ___ f _1 
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TL/F/9403-9 

FIGURE 8. Example of Timing Waveforms 
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FIGURE 9. Another Method of Soft-Loading (A Non-Ideal Solution) 

MODIFYING THE SOFT-LOAD SYSTEM 
FOR LARGER MEMORY 

The soft-load system as documented loads 8K x 16 bits of 
instruction memory. Large programs may require more 
memory; smaller, lower cost systems may use less. The 
soft-load system can easily be altered to load larger or 
smaller instruction memory by changing one connection. 

Connecting a different instruction address line to pin 4 of 
the PAL changes how much instruction memory is loaded: 
These connections are shown in Figure 10 

Instruction Memory Size: Connect Pin 4 of PAL to: 

32kx 16 IA15 
16k x 16 IA14 
8kx 16 IA13 
4kx 16 IA12 
2kx 16 IAll 

FIGURE 10. Connections for Altering 
Instruction Memory Size 

USING THE CAPSTONE CT-104 DEVELOPMENT BOARD 
TO EVALUATE THE SOFT-LOAD APPLICATION 

A DP8344 biphase Communications Process development 
board is available from Capstone Technology Inc., of Fre­
mont, California. The board is designed to reside in an IBM® 
PC. A breadboard area is provided on the board so that 
custom circuitry can be added. It can be converted into a 
stand-alone soft-load system by wire-wrapping three addi-
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tional I.C.'s into the breadboard area. A diagram of the 
CT-l04 board with the additional components is shown in 
Figure 11. Note that most of the prototyping area remains 
available, enabling the addition of other circuitry specific to 
the application being developed. A parts list is shown in 
Figure 12. The PAL16R6 is programmed with the equations 
shown in Figure 7. U22 and U23 must be removed from the 
CT-l04 board and be replaced with specially wired 20-pin 
headers. The wiring on these headers, shown in Figure 13, 
provides access to the RESET - signal and disables the 
unused interface circuitry on the board. Pin 11 of the header 
that replaces U23 must be wired to pin 13 of the 74LS14. A 
wiring list is shown in Figure 14. Power supply connections 
must be added because the board can no longer reside in 
the PC. Development of a stand-alone soft·load application 
can be done easily and quickly by using the CT-l04 board 
because minimal circuit construction is required. 

SUMMARY 

The soft-load circuit uses the BCP's remote interface to 
load BCP code from slow EPROM to fast RAM, with a mini­
mum of extra hardware. This method is useful in systems 
where there is no host processor directly interfaced to the 
BCP and the full processing speed of the BCP is needed. 

The circuit can easily be modified to load different sizes of 
memory. The Capstone Technology, Inc. CT-l04 develop­
ment board can easily be converted to a stand-alone soft­
load system for evaluation of the application. I • 
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FIGURE 11. CT· 1 04 Development Board with Soft·Load Circuitry 

NMC27CP128 350 ns access time or faster 

PAL16R6B 

DM74LS14N 

28-pin wire-wrap socket 

20-pin wire-wrap socket 

14-pin wire-wrap socket 

3 Bypass capacitors, 0.1 J.LF 

2 50-pin wire-wrap strips, 2 pins wide 

2 20-pin headers 
FIGURE 12. Parts List for Conversion of CT-104 Board 

20 11 

Y 
0 0 y y 0 0 0 0 0 

Pin 13 of U102 

0 0 0 0 0 0 0 0 0 0 
Replaces U23 10 

20 11 

Y 
0 0 0 r y 

~ U 
0 0 0 0 0 0 0 0 

Replaces U23 10 

FIGURE 13. Header Wiring for Conversion of CT-104 Board 
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Pin Unit to Pin Unit Pin Unit to Pin Unit U, 

0 
U100 vee 28 U100 vee ~ 

2 U100 12 W1 U101 17 W2 
3 U100 7 W1 2 U101 11 W2 
4 U100 6 W1 3 U101 7 W2 
5 U100 5 W1 4 U101 14 W1 
6 U100 4 W1 5 U101 10 U102 
7 U100 3 W1 6 U101 GND 
8 U100 2 W1 7 U101 GND 
9 U100 W1 8 U101 GND 
10 U100 14 U101 9 U101 50 W1 
11 U100 33 W1 10 U101 GND 
12 U100 34 W1 11 U101 49 W2 
13 U100 35 W1 12 U101 8 W2 
14 U100 GND 13 U101 48 W2 
15 U100 36 W1 15 U101 46 W2 
16 U100 37 W1 18 U101 47 W2 
17 U100 38 W1 20 U101 vee 
18 U100 39 W1 1 U102 GND 
19 U100 40 W1 3 U102 GND 
20 U100 46 W2 5 U102 GND 
21 U100 10 W1 7 U102 GND 
22 U100 19 U101 9 U102 GND 
23 U100 11 W1 11 U102 12 U102 
24 U100 9 W1 13 U102 11 U23 HEADER 
25 U100 8 W1 14 U102 vee 
26 U100 13 W1 45 W2 GND 
27 U100 vee 

FIGURE 14. Wiring List for Conversion of CT-104 Board 
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"Interrupts"-A Powerful 
Tool of the Biphase 
Communications Processor 

When you have only 5.5 ,.,.s to respond you have to act fast. 
This is the amount of time specified in the IBM 3270 Product 
Attachment Information document as the maximum time al­
lowed to respond to a message in a 3270 environment. This 
5.5 ,.,.s is why the DP8344 interrupts are specifically tailored 
for the task of managing a communications line and feature 
very short latency times. This article contains information 
that will help the user to take better advantage of the exten­
sive interrupt capability found in the DP8344. 

The DP8344 has two external and four internal interrupt 
sources. The external interrupt sources are the Non-Maska­
ble Interrupt pin, (NMI), and the Bi-directional Interrupt Re­
Quest pin (BIRQ). A Non-Maskable Interrupt is detected by 
the CPU when NMI receives a falling edge. The falling edge 
is captured internally and the interrupt is processed when it 
is detected by the CPU as described later. BIRQ can func­
tion as both an interrupt into the DP8344 and as an output 
which can be used to interrupt other devices. When BIRO is 
configured as an input an interrupt will occur if the pin is 
held low. Note that BIRQ is not edge sensitive and if the pin 
is taken back high before the interrupt is processed by the 
CPU then no interrupt will occur. 

The internal interrupts cO[lsist of the Transmitter FIFO Emp­
ty (TFE) interrupt, the Line Turn Around (L T A) interrupt, the 
Time Out (TO) interrupt, and a user selectable receiver in­
terrupt source. 

The receiver interrupt source is selected from either the Re­
ceiver FIFO Full (RFF) interrupt, the Data Available (DA) 
interrupt, or the Receiver Active (RA) interrupt. The RFF 
interrupt occurs when the receive FIFO is full or if the re­
ceiver detects an error condition. This interrupt enables the 
user to handle packets of data as opposed to handling ev­
ery data word individually. It also allows the program to 
spend additional time performing other tasks. However, 
since the RFF interrupt is only asserted when the receive 
FIFO is full, the LTA interrupt should be used in conjunction 
with RFF to allow the program to check the FIFO for addi­
tional words at the end of a message. The DA interrupt 
indicates valid data is present in the receive FIFO and also 
occurs if the receiver detects an error condition. It should be 
used when it is desirable to handle each data word individu­
ally. The DA interrupt also allows the program to utilize the 
time between receiving each data word for performing other 
tasks. The RA interrupt is asserted when the receiver de­
tects a valid start sequence. It provides the user with an 
early indication of data coming into the receiver. This allows 
the program time to perform any necessary overhead activi­
ty before handling the receiver data. The RA interrupt is 
asserted approximately 90 transceiver clock cycles prior to 
data becoming available in the receive FIFO when using 
3270 mode. Consequently, if the transceiver and CPU are 
operating at the same clock frequency, approximately 90 
clock cycles (T-states) are available for interrupt latency 
and taking care of overhead prior to handling the received 
data. 

A TFE interrupt occurs when the last word in the transmit 
FIFO is loaded into the encoder. This interrupt allows a pro-
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gram to continue working on another task while the trans­
mitter is sending data. It is especially useful when sending a 
long message. When the transmit FIFO becomes empty the 
program is alerted by the TFE interrupt and may continue 
the message by loading additional words into the FIFO. This 
approach frees up a significant amount of processing time. 
For example, after the transmit FIFO is loaded it takes the 
transmitter approximately 264 transceiver clock cycles to 
send the starting sequence and two data words in 3270 
mode. With the CPU operating at the transceiver clock fre­
quency, the program has approximately 264 T-states avail­
able before the TFE interrupt will occur. 

Once the TFE interrupt occurs the CPU has approximately 
80 transceiver clock cycles to load the transmit FIFO in or­
der to continue a multiframe message in 3270 mode. If the 
CPU is operating at the transceiver clock frequency, the 
program has approximately 80 T-states to accomplish the 
load operation. Since the load to the Receive/Transmit 
Register, (RTR I, only takes 2 T -states, 78 T ~states are 
available for interrupt latency and processing overhead after 
the interrupt occurs. 

The LTA interrupt provides an easy means for determining 
the end of a message. This allows a program to quickly 
begin transmitting after the end of a reception. The L TA 
interrupt indicates that the receiver detected a valid end se­
quence in 3270 mode of operation. In 5250 operating mode, 
the L T A interrupt occurs when the last fill bit has been re­
ceived and no further input transitions are detected by the 
receiver. However, aLTA interrupt does not occur in 5250 
or 8-bit non-promiscuous modes of operation unless an ad­
dress match was decoded by the receiver. 

The TO interrupt occurs when the CPU timer counts down 
to zero. The timer provides a flexible means for timing 
events. It is a sixteen bit counter which can be loaded by 
accessing CPU registers (TRHI and (TRLI and is con­
trolled by the [TCS], [TLD] and [TST] bits in the Auxiliary 
Control Register, (ACR}. 

After an interrupt occurs the event that generated it must be 
handled in order to clear the interrupt. The exception to this 
is NMI. Since it is falling edge triggered, it is cleared internal­
ly when the CPU processes the interrupt. The actions nec­
essary to clear the interrupts are listed in Table I. 

In the case where BIRO is asserted, the response will be 
dependent on the system design. Ordinarily, this response 
would involve some hardware handshaking such as reading 
or writing a specific data memory location. When internal 
interrupts become asserted there are specific actions which 
must be taken by a program to clear these interrupts. The 
RFF interrupt is cleared when the receive FIFO is no longer 
full and any errors detected by the receiver are cleared. 
Data is read from the receive FIFO by reading (RTR}. 
Reading the Error Code Register, (ECR I, clears any errors 
detected by the receiver. The DA interrupt is cleared when 
the receive FIFO is empty and any errors detected by the 
receiver are cleared. The RA interrupt is cleared by reading 
( RTR I or (ECR I. All three receiver interrupts are cleared 
when the transceiver is reset. In many cases, resetting the 
transceiver is the preferable response to an error detected 
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TABLE I. Clearing Interrupts 

Interrupt How to Clear Interrupt 

NMI internally Cleared When Recognized by the CPU. 

RFF Read I RTR I When Receive FIFO is Full. 
Read I ECR I When an Error Occurs. 
Read I ECR I and I RTR I When an Error Occurs 

and Receive FIFO is Full. 
Reset the Transceiver. 
Reset the DP8344. 

DA Read I RTR I When Receive FIFO is Not Empty. 
Read I ECR I When an Error Occurs. 
Read I ECR I and I RTR I When an Error Occurs 

and Receive FIFO is Not Empty. 
Reset the Transceiver. 
Reset the DP8344. 

RA Read IRTRI or IECRI. 
Reset the Transceiver. 
Reset the DP8344. 

TFE Write to I RTR I. 

LTA Write to I RTR I. 
Reset the Transceiver. 
Reset the DP8344. 
Write a One to I NCFI Bit 4. 

BIRO System Dependent. 

TO Write a One to I CCR I Bit 7. 
Stop the Timer. 
Reset the DP8344. 

by the receiver. The TFE interrupt is cleared by writing to 
I RTR I. Unlike the receiver interrupts, the TFE interrupt is 
asserted when the transceiver is reset. The L TA interrupt is 
also cleared by writing to I RTR I or resetting the transceiv­
er. In addition, it may be cleared by writing a one to bit 4 of 
the Network Command Flags register, I NCFI. The last in­
ternal interrupt is TO. It is cleared by writing a one to bit 7 in 
the Condition-Code Register, I CCR I or by stopping the tim­
er. Note that the timer reloads itself and continues to count 
after the interrupt has been generated regardless of wheth­
er a one is written to bit 7 in I CCR I. 

With the exception of NMI, all of the interrupts are disabled 
when the DP8344 is reset. in order to make use of the inter­
rupts they must be enabled in software. Software enabling 
and disabling of the interrupts is performed by changing the 
state of the Global Interrupt Enable, [GIE], bit in I ACR I and 
the state of the individual interrupt mask bits in the Interrupt 
Control Register, IICR I. 

[GIE] is a read/write register bit and so may be changed by 
using any instruction that can write to IACRI. In addition, 
the RET, RETF, and EXX instructions have option fields 
which can be used to alter the state of [GIE]. RET and 
RETF are the return instructions in the DP8344 and EXX is 
used to exchange register banks. The EXX instruction can 
set or clear [GIE] as well as leaving it unchanged. The RET 
and RETF instructions can restore [GIE] to the value that 
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was saved on the address stack at the time the interrupt 
was recognized. They also provide the options of clearing or 
setting [GIE] or leaving it unchanged. [GIE] is cleared when 
an interrupt is recognized by the CPU in order to prevent 
other interrupts from occurring during an interrupt service 
routine. The [GIE] options described above facilitate en­
abling and disabling interrupts when returning from an inter­
rupt service routine. The restore option is especially useful 
with the NMI. Since a Non-Maskable Interrupt can occur 
whether [GIE] is set or cleared, the restore [GIE] option can 
be used in the return instruction to put [GIE] back to its 
state prior to the interrupt occurring. 

As the name implies, [GIE] affects all the maskable inter­
rupts. However, in order to use any of these interrupts they 
must be unmasked by changing the state of their associated 
mask bit in IICRI. When set high, bits [lMO], [lM1], [1M2], 
[1M3], and [IM4] in IICR I mask the receiver interrupt, TFE 
interrupt, LTA interrupt, BIRO interrupt, and TO interrupt re­
spectively. To enable an interrupt, its mask bit must be set 
low. The interrupts and associated mask bits are shown in 
Table II. These bits are set high when the DP8344 is reset. 
Bits [RIS1] and [RISO] in IICRI are used to select the 
source of the receiver interrupt as shown in Table III. Note 
that only one of these interrupts can be active as the source 
of the receiver interrupt. 
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TABLE n. ! ICR} Interrupt Mask Bits 
and Interrupt Priority 

Interrupt Mask Bit Priority 

NMI - Highest 
RFF, DA, RA IMO 
TFE IM1 
LTA 1M2 
BIRO 1M3 
TO IM4 Lowest 

TABLE III. IICR} Receiver Interrupt Select Bits 

RIS1 RISO 
Receiver Interrupt 

Source 

0 0 RFF 
0 1 DA 
1 0 Reserved 
1 1 RA 

As stated earlier, [GIE] is cleared when an interrupt is rec­
ognized by the CPU. This prevents other interrupts from oc­
curring in the interrupt service routine. In cases where it is 
desirable to allow nesting of interrupts, [GIE] should be set 
high within the interrupt routine. An example of nesting inter­
rupts is using the RA interrupt in the main program and 
switching to the RFF or DA interrupt in the RA interrupt 
routine. Note that the internal address stack is twelve words 
deep and there is no recovery from a stack overflow. There­
fore, care should be taken when nesting interrupts. 

When more than one interrupt is unmasked and asserted, 
the CPU processes the interrupt with the highest priority 
first. NMI has the highest priority followed by the receiver 
interrupt, TFE, LTA, BIRO, and TO. Therefore, if DA and 
BIRO were both active, DA would be processed first fol­
lowed by BIRO. However, if a higher priority interrupt oc­
curred while the DA interrupt was being handled then it 
would be processed before BIRO. Each time the interrupts 
are sampled, the highest priority interrupt is processed first, 
regardless of how long a lower priority interrupt has been 
active. Interrupt priority is summarized in Table II. 

A call to the interrupt address is generated when an inter­
rupt is detected by the CPU. The address for each interrupt 
is constructed by concatenating the Interrupt Base Register, 
! IBR}, contents with the individual interrupt code as shown 
in Table IV. There is room between the interrupt addresses 
for a maximum of four instruction words. Normally, at each 
interrupt address there would be a jump instruction to an 
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interrupt service routine. The return instruction at the end of 
the interrupt service routine would then return to the ad­
dress at which the interrupt occurred. By changing! IBR} it 
is possible to locate the interrupt jump table in memory 
wherever it is convenient or for one program to use more 
than one interrupt jump table. 

TABLE IV. Interrupt Vector Generation 

Interrupt Code 

NMI 111 
RFF, DA, RA 001 
TFE 010 
LTA 011 
BIRO 100 
TO 101 

Interrupt Vector 

IIBR} Contents I 0 0 0 I Code I 0 0 I 
15 8 4 2 o 

As mentioned previously, the interrupts are sampled in the 
CPU prior to the start of each instruction. To be precise, 
they are sampled by each falling edge of the CPU clock with 
the last falling edge prior to the start of the next instruction 
determining whether an interrupt will be processed. The tim­
ing of a typical interrupt event is shown in Figure 1. The 
interrupt occurs during the current instruction and is sam­
pled by the falling edge of the CPU clock. The next instruc­
tion is not operated on and its address is stored in the inter­
nal address stack. In addition, the current state of [GIE] and 
the states of the ALU flags and bank positions are stored in 
the internal address stack. A 2 T-state call is now executed 
in place of the non-executed instruction. This call will cause 
a branch to the interrupt address that is generated in the 
first half of T-state T1. [GIE] is then cleared during the first 
half of T-state T2. From this description it is evident that the 
shortest interrupt latency is 2.5 T-states. This assumes that 
an interrupt occurs during the first half of T2 and is sampled 
by the next falling edge of the CPU clock. However, a num­
ber of factors can increase the interrupt latency. If the inter­
rupt misses the setup time to the falling edge of the last 
CPU clock the response time will increase by a minimum of 
2 T-states. This increase is caused by the execution of one 
additional instruction. Of course, if the additional instruction 
takes more than 2 T-states to execute the interrupt latency 
will be greater. 
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Running the DPB344 with wait states will also increase inter­
rupt latency. Instruction memory wait states increase laten­
cy by increasing the length of each instruction. including the 
call to the interrupt service routine. Data memory wait states 
will increase interrupt latency if an interrupt must wait for an 
instruction which accesses data memory to execute before 
it can be processed. A less obvious factor that can increase 
Interrupt latency is data memory accesses by the remote 
system. If the DPB344 is attempting a data memory access 
and the remote system already has control of the data 
memory bus. the CPU will be waited. If an interrupt occurs at 
this time it will not be processed until the DPB344 is able to 
complete the instruction which is accessing data memory. 
This implies that a system with a lot of data memory arbitra­
tion occurring between the DP8344 and the remote system 
may have a longer average interrupt latency. The worst 
case interrupt latency will occur when the external 
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IT5CK or WAIT pins are asserted. Clearly. if the CPU is 
stopped by the assertion of the WAIT pin any interrupts 
ocurring will not be processed until the CPU is released 
from the wait state. Asserting the LOCK pin would have the 
same affect if the DP8344 attempts to make a data memory 
access. Note that interrupts are not disabled or cleared 
when the CPU is stopped by the remote system deasserting 
[STRT] in the Remote Interface Configuration. (RICI. regis­
ter. When the CPU is restarted any asserted interrupts will 
be processed. From the above discussion it is evident that 
calculating the interrupt latency is not trivial and will be de­
pendent on the program and the system. 

The interrupts on the DPB344 are powerful tools for control­
ling events in a time critical environment. They are one of 
the many reasons why the DP8344 Bi-phase Communica­
tions Processor provides a superior solution to managing 
communications interfaces.· 



JRMK Speeds Command 
Decoding 

The Biphase Communications Processor (BCP) has several 
features that make it ideal to use in a high speed communi­
cations environment. The relative Jump with Rotate and 
MasK on register command, JRMK, is designed to allow 
quick and efficient decoding of register fields. Fast decoding 
of command, data, and address fields allows the BCP to 
spend most of an interrupt handler's code and time on the 
protocol's actual instruction execution, instead of on decod­
ing it. This helps meet the stringent 5.5 J1-s tur'n around times 
demanded in 3270 communications. ' 

JRMK rotates and masks a copy of its source register to 
form a signed program counter offset which is often used to 
point to a jump table. The JRMK instruction first makes a 
copy of the source register. All actions will be performed on 
this copy, not on the original. The register then is rotated to 
the right zero to seven places. Next, JRMK masks (zeros 
out) the LSB in addition to as many bits as the mask field 
indicates, starting at the MSB. Finally, JRMK adds this result 
to the Program Counter (PC), providing a relative range of 
+ 128, -126 instruction words. In practice, relative jumps 
(JMP) and long jumps (LJMP) are usually placed in the ta­
ble, but there are no restrictions on which instructions may 
fit in. Each entry has a minimum space of two instruction 
words allowing LJMP's to fit. Figure 1 demonstrates the 
BCP's internal execution of a JRMK instruction. 

Example Code 

JRMK RTR,3,3 ;decode feature address 

Instruction Execution 

(a) Copy IRTRI into JRMK's displacement register 

(b) Rotate displacement register 3 bits right 

(c) AND result with "00011110" 

(d) Sign extend resulting displacement and add it to the pro­
gram counter, (PC). If the bits F4-F1 equal "0001" then 
+ 2 is added to the PC. 

JRMK Displacement Register Contents 

(a) F4 F3 F2 F1 x x x x 
(b) x x x F4 F3 F2 ' F1 x 
(c) a a a F4 F3 F2 F1 a 

FIGURE 1. JRMK Instruction Example 

The JRMK instruction contains four (4) fields that control its 
operation-a source register field, a rotate field, a mask 
field, and the opcode itself. The source register may be any 
register in the BCP that is always available or is currently 
bank switched in. The source register is not modified by the 
operation of the JRMK instruction. Even in the case of the 
I RTR I register, the receiver FIFO is not changed and the 
same byte remains at the top of the FIFO after executing 
JRMK. The rotation field directs the BCP to rotate the 
source register to the right by 0-7 bits. The mask field indi­
cates how many bits to mask from the source register start­
ing at the MSB after the rotation is complete. Up to 7 bits 
may be masked off in addition to the LSB. If the mask field 
equals zero (a), only the LSB will be masked. If the mask 
field equals one (1), the MSB will be masked as well as the 
LSB. Similarly, if the mask field equals two (2), bits 7,6 and 
the LSB will be masked. Figure 2 shows the construction of 
the JRMK instruction opcode. 
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Opcode 

m-Mask Field 
b-Sit Places to Rotate 
Rs-Source Register 

FIGURE 2. JRMK Opcode Construction 

JRMK can be set up to provide more than two instruction 
words per table entry, if tne source register data format is 
known. If the rotation causes a zero bit to always appear in 
bit 1 of the rotated register, then each table entry will have 
four instruction words. 

The JRMK instruction executes in 4 T-states if there are ,no 
instruction wait states. If the BCP's CpU clock is running at 
a speed of 20 MHz, a T ~state is 50 ns in duration. In this 
case, each JRMK instruction will complete in 200 ns. ' 

AN EXAMPLE 

A good example of how to use the JRMK instruction is 
found in the Multi-Protocol Adaptor (MPA). The MPA is a 
design/ evaluation kit available from National Semiconduc­
tor. It provides complete link level source code, hardware, 
and development notes for creating a 3270 or 5250 PC ter­
minal emulator card. 

This example comes from actual MPA code in the Data 
Available interrupt handler for 3270 terminal emulation. All 
overhead such as bank switching, register saving, and index 
register setting have been previously executed, and the 
3270 command is at the top of the receiver FIFO. The actu­
al implementation of executing each 3270 instruction, as 
well as the decode tables for devices other than the base, is 
not shown. Additionally, the code for handling data is not 
presented. These are all included with the MPA source 
code. ' 

When a 3270 message is available in the receiver FIFO, a 
determination is made whether that message is a command 
or data at the rxcxJasl label as shown in Figure 3. If the 
receiver contains data, the BCP vectors to a location held in 
the index register equated to DAT~VECTOR. If the mes­
sage is a command, the BCP will jump to the label 
cx_comm to check for common commands. The Network 
Control Flag (NCF) register contains bits for hardware de­
coded commands, POLL, POLL/ ACK, and IT / AR. POLL 
and POLL! ACK will jump to their respective command han­
dlers. Since a IT / AR shold not be received by a terminal, its 
decode will jump to the cx-perr error handler. A no-opera­
tion, NOOP, is inserted after the first jump because the 
JRMK instruction is set in this case to jump to every other 

'address. The NOOP ,takes up an instruction location to en-
sure that the table conforms to this specification. A NOOP is 
a macro that stands for MOVE ACC,ACC. If the command is 
not one of these three, then the address of the command 
must be checked. 
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At the label addr _dec, the BCP will vector to different com· 
mand handlers based on the feature address of the reo 
ceived command. All unimplemented features jump. to the 
ex_dee_err error handler. The JRMK instruction is used 

to look at bits 4-7 of I RTR I which point to the 3270 feature 
that the command is for. Based on these bits, the different 
feature command decoders will be jumped to as shown in 
Figure 4. 

setup code here 

rxex_fast: 
Ijmp TSR,l,S,ex_eomm 

Ijmp [DATA_VECTOR] 

check for quick command decodes 

ex_immed: 
jmp 
HOOP 
Ijmp 
Ijmp 
Ijmp 

NCF,7,4 

ex_poll 
ex_pack 
ex_perr 

command or data? 
jump if command 
data, jump to appropriate 
handler 

jump on immediate decode prior to 
advancing FIFO 

not an immediate decode command 

poll command decoded 
pack 
should not get here (TT/AR) 

FIGURE 3. JRMK Fast Command Determination 

find out which feature that the command is addressed to 

RTR,3,3 

; address parse table 

ex_addr: 
jmp base_dec 
NOOP 
jmp base_dec 
NOOP 
Ijmp ex_dee_err 
Ijmp ex_dee_err 
Ijmp ex_dee_err 
Ijmp ex_dee_err 
Ijmp ex_dee_err 
Ijmp eab_dee 
Ijmp ex_dee_err 
Ijmp ex_dee_err 
Ijmp ex_dee_err 
Ijmp ex_dee_err 
Ijmp ex_dee_err 
Ijmp ex_dee_err 
Ijmp ex_dee_err 
Ijmp ex_dee_err 

jump based on 4 bit address field 

o decode base/keyboard command 

1 decode base/keyboard 

2 light pen 
3 reserved 
4 magnetic stripe reader 
5 PC adapter 
6 3180 advanced 
7 EAB 
8 reserved 
9 reser~ed 
A reserved 
B convergence 
C reserved 
D reserved 
E reserved 
F reserved 

FIGURE 4. JRMK Feature Determination 
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At the base feature decoder base_dec, the actual com­
mand is decoded and jumps are taken to the different ad­
dresses to handle each one. Figure 5 details this operation. 

base command parse table 

base_dec: 
jrmk RTR,7,2 decode base command 

cx_base: 
Ijmp cx_ignore 00 should not get here 
Ijmp cx_poll 01 poll command 
Ijmp cx_reset 02 reset device 
Ijmp cx_readata 03 read data 
Ijmp cx_lach 04 load address counter 
Ijmp cx_rach 05 read address counter 
Ijmp cx_clear 06 clear 

high 
high 

Ijmp cx_rdex 07 read extended terminal ID 
Ijmp cx_start 08 start operation 
Ijmp cx_rdid 09 read terminal ID 
Ijmp cx_lcont OA load control register 
Ijmp cx_rdmul OB read multiple 
Ijmp cx_write OC write data 
Ijmp cx_rdstat OD read status 
Ijmp cx_insert OE insert byte 
Ijmp cx_ignore OF reserved 
Ijmp cx_sforward 10 search forward 
Ijmp cx_pack 11 poll with acknowledge set 
Ijmp cx_sback 12 search backward 
ljmp cx_ignore 13 reserved 
Ijmp cx_lacl 14 load address counter low 
Ijmp cx_racl 15 read address counter low 
Ijmp cx_mask 16 load mask 
Ijmp cx_ignore 17 reserved 
ljmp cx_ignore 18 reserved 
ljmp cx_ignore 19 reserved 
ljmp cx_lscont lA load secondary control 
ljmp cx_ignore lB reserved 
Ijmp cx_diagreset lC diagnostic reset 
Ijmp cx_ignore lD reserved 
Ijmp ex_ignore IE reserved 
ljmp ex_ignore IF reserved 

FIGURE 5. JRMK Decoding of 3270 Instructions 
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~ If our command was a Load Control Register command 
:Z (00001010), the JRMK instruction at label cx_comm would 
<C send us to a jump to addr _dec to decode which feature the 

command is directed to. At that label, JRMK would send us 
to the jump to base_dec since our address is "0000". 
Since the command is "01010", the JRMK relative jump will 
move to the instruction Ijmp cx..Jcont which jumps to the 
appropriate code to handle that instruction. 

From rxcx..Jastto the proper command to the base feature, 
there are 24 T-states of time used. At 20 MHz with no wait, 
states, this translates to 1.2 JJ-s. With a maximum interrupt 
latency of 225 ns, this leaves at least 4.075 JJ-s to handle all 
other aspects of each command to the base. Commands to 
other features will probably take 1 T-state longer for the 
long jump to the command decode'table (also using JRMK) 
for that feature, whereas the base feature used a relative 
jump. 

The JRMK instruction is one example of how the BCP is. 
optimized for high speed communications. 
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DP8344 Remote Processor 
Interfacing 

This application note is provided to help the reader under­
stand the information given in Table 26: Remote Rest Time 
of the DP8344BV 6.0 datasheet.· 

For the BCP to operate properly, remote accesses to the 
BCP must be separated by a minimum amount of time. This 
minimum amount of time has been termed 'rest time'. 

To give the reader a better understanding of rest time, the 
following items will be discussed in this application note: 

1. The causes of remote rest time. 

2. The way to interpret Table 26 and the worst case rest 
time. 

3. The desirable features of a rest time circuit. 

4. A design example of a rest time circuit for the CT -104 
board. 

Before proceeding any further, it must be stated that the 
design of DP8344BV did not introduce remote rest time. 
Remote rest time exists on all versions of the BCP. 
·AII specifications used in this application note are from the DP8344BV 6.0 
datasheet. Please refer to the latest datasheet available for the most cur­
rent specifications. 

CAUSES OF REMOTE REST TIME 

There are two causes for remote rest time. The first cause is 
implied in the state diagrams for remote accesses and can 
be explained as follows: 

At the beginning of every T-state the validity of a remote 
access is sampled for that T-state. To guarantee that the 
BCP recognizes the end of a remote cycle, the time be­
tween remote accesses must be a minimum of one T-state 
plus setup and hold times. This worst case rest time for the 
DP8344BV is: 

rest time = 1 T + t (setup time) + t (hold time) 

= 1T + 22 ns + 10 ns 

= 1T + 32 ns 

In the case of latched Read and Fast Buffered Write, the 
validity of a remote access is not sampled on the first rising 
edge of the CPU-ClK following XACK rising. However, on 
all subsequent rising edges of the CPU-ClK, the validity of 
the remote access is sampled. As a result, if the remote 
processor can terminate its remote access quickly after 
XACK rises (within a T-state), up to a T-state may be added 
to the above equation for latched Read and Fast Buffered 
Write modes. On the other hand, if the remote processor 
does not terminate its remote access within a T-state of 
XACK rising, the above equation remains valid for latched 
Read and Fast Buffered Write modes. 

If this specification is not adhered to, the BCP may sample 
the very end of one valid remote access and one T -state 
later sample the very beginning of a second valid remote 
access. Thus, the BCP will treat the second access as a 
continuation of the first remote access and will not perform 
the second read/write. The second access will be ignored. 
(Reference Figure 1 for timing diagrams which demonstrate 
how two remote accesses can be mistaken as one.) 

National Semiconductor 
Application Note 627 
William V_ Miller 

The second source of remote rest time is due to the manner 
in which the BCP samples the CMD signal. (Please note that 
when CMD is high all remote accesses are to the Remote 
Interface Control register IRICI. When CMD is low all re­
mote accesses are to where RIC's Memory Select Bits 
point.) CMD is sampled once at the beginning of each re­
mote access. Due to the manner in which CMD is sampled, 
CMD will not be sampled again if a second remote access 
begins within 1.5(T-states) plus a hold time, after the BCP 
recognizes the end of the first remote access. If this hap­
pens, the BCP will use the value of CMD from the previous 
remote access during the second remote access. If the val­
ue of CMD is the same for both accesses, the second ac­
cess will proceed as intended. However, if the value of CMD 
is different for the two remote accesses, the second remote 
access would read/write the wrong location. 

The reader should note that the timing of the second source 
of rest time begins at the same time that the BCP first sam­
ples the end of the previous remote access. Thus, when the 
first source of rest time ends, the second source of rest time 
begins. (Reference Figure 2 for timing diagrams for rest time 
in all modes except latched write.) 

LATCHED WRITE MODE 

latched write mode is a special case of rest timo and noods 
to be discussed separately from the other modos. Tho first 
cause of rest time affects every mode including latchod 
write. In regards to the second source of rest time, latchod 
write mode was designed to allow a second remote access 
to start while a write is still pending (Le., WR-PEND = 0). 
Thus, when WR-PEND rises (signaling the end of the previ­
ous write) the value of CMD is sampled for the seccond 
remote access. This will result in sampling the correct value 
of CMD for the second access. This allows latched write to 
avoid the second cause of rest time mentioned above. 

However, if a remote access begins within half aT-state 
after WR-PEND rises, CMD will not be sampled again. For 
this case, if the value of CMD changed just after WR-PEND 
rose and at the same time the remote access began, the 
BCP would read/write the wrong location. (Reference Fig­
ure 3 for timing diagrams of rest time for latched write 
mode.) 

HOW TO INTERPRET TABLE 26 
AND WORST CASE REST TIMES 

At this time it is desirable to review how to interpret Table 26 
and to review what the actual worst case rest time is. To 
interpret the specifications in Table 26, the reader must un­
derstand the differences between running the BCP at full 
speed (Le., [CCS] = 0) and half speed (Le., [CCS] = 1). At 
full speed both the CPU-ClK and ClK-OUT operate at the 
same frequency as OClK. When the BCP runs at half 
speed, ClK-OUT remains at the same frequency as OClK, 
but the CPU-ClK operates at half the frequency of OClK. In 
the data sheet, one T-state is defined as one CPU-ClK cy-
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BCP's CPU ClK 
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REt.lWR 

(a) This timing diagram shows two remote accesses within one T-state. The first set of arrows shows the BCP sampling a valid 
remote read. The next time the BCP samples the validity of the remote access is shown by the second set of arrows (1 T-state later). 

In this case, it will sample the second remote access and mistake it as a continuation of the first remote access. 

L -, 1 T-state ,-
BCP's CPU CLK -----, 4> 1 r<I> L ..<I> 1 

~ 

RAE 11 1 '1 
~22 ns minimum '"' mi~~~~m -.f 

1 REt.lRD 11 . I 

REt.lWR 

(b) This timing diagram shows the timing necessary for the BCP to recognize both accesses as separate accesses. The first set of arrows 
shows the BCP sampling a valid remote r~ad. One T-state later at the second set of arrows, the BCP will sample the erid of the first 

remote access. Another T-state later at the third set of arrows,the BCP will sample the beginning of the second remote access~ 

FIGURE 1. Mistaking Two Remote Accesses as Only One 
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BCP's CPU CLK 

RAE 

REt.lRD 

REt.lWR 

Ct.lD 1st Remota Access's 2nd Remole Access's 
CIAO Value CIAO Value 

(a) This timing diagram shows the second remote access violating rest time. The first set of arrows shows the BCP sampling a valid 
remote write. The second set of arrows (1 T-state later), shows the BCP sampling the end of the first remote access. If a second 

remote access starts before the position of the third set of arrows (another 1.5 T-states later), the value of CMD will not be sampled. 
The value of CMD has changed from the first remote access, so the BCP will write to the wrong location during the second access. 

BCP's CPU CLK 

RAE +-1 ______ -+..!.-.... 

REt.lRD 

REt.lWR +-1 _______ ......I~ .... 

CMD I 1st Remote Access'. 
CIAO Value 

1------- 1.5 T-stat •• ------.j 

2nd Remote Access's 

CWO Value 

TL/F/l04S1-3 

TL/F/l04S1-4 

(b) This timing diagram shows the second remote access violating rest time. The first set of arrows shows the BCP sampling a valid remote write. 

III 

The second set of arrows (1 T-state later), shows the BCP sampling the end of the first remote access. If a second remote access starts 
before the position of the third set of arrows (another 1.5 T-states later), the value of CMD will not be sampled. The value of CMD 
does not change from the first remote access, so the BCP will write to the intended location during the second remote access. 

FIGURE 2. Remote Rest Time for All Modes except Latched Write 
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BCP's CPU CLK r--l I I 4> I I ~b I ~ ......, 

RAE I 
h 

I h 
I-22 minlmum- f.. ~ IOns minimumj..-

REt.lRD 

REt.lWR I I n 
j.--22 minimum- .... IOns minimumj..- ') 

Ct.lD lst Remote Acce.s's I" "" " ""1/11 " " "" 'II '"'''' U U U ,.. .. ...... ,'"'''''''''''''''''''''''''''''' I 2nd Remote Acces.'s 
CWD Value CWD Value 

TUF/l0451-5 

(C) This timing diagram shows the timing needed to avoid rest time for all modes except latched write. The first set of arrows shows the BCP sampling the end 
of the first remote access. The second set of arrows (1.5 T-states later), shows the BCP recognizing no remote access has started and the value of CMD will 

be sampled for the next remote access. The third set of arrows shows the BCP sampling the correct value of CMD for the second remote access. 

FIGURE 2. Remote Rest Time for All Modes except Latched Write (Continued) 

r 0.5 T-states -l 
BCP's CPU CLK ~ I I r<P 4> I I 

r1 
') I RAE 

! ! I REt.lRD 

! 
REt.lWR 

WR-PEND H 
'1 

Ct.lD Previous Remote Acce.s's CWO Value I 2nd Remote Access's CWO 'Value 

TUF/l0451-6 

(a) This timing diagram shows a remote access violating remote rest time. The first set of arrows shows the BCP sampling the value of CMD 
when WR-PEND rises. If a remote access begins after WR-PEND rises and before the position of the second set of arrows (0.5 T-states later), 

the value of CMD will not be sampled again. The value of CMD has changed since WR-PEND rose, so the BCP will read the wrong location. 

FIGURE 3. Rest Time for Latched Write Mode 
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(b) This timing diagram shows a remote access violating remote rest time. The first set of arrows shows the BCP sampling the value of CMD when 
VIR-PEND rises. If a remote access begins after WR-PEND rises and before the position of the second set of arrows (0.5 T-stateslater), 

the value of CMD will not be sampled again. The value of CMD has not changed since WR-PEND rose, so the BCP will read the intended location. 

r 0.5 r-states-j 

BCP's CPU ClK II I I r<~ I I I i 7 ns minimium I+-
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WR-PEND t-+ 

Ct.!D Previous Remote Access·s CIoID Value III II 111111 II ul2nd Remot~ Access·, CliO Value 

TLlF/l0451-6 

(c) This timing diagram shows a remote access setting up in time for WR~PEND rising to latch in the proper value of CMD. The only set of arrows shows the BCP sampling the 
second remote access's CMD value when WR-PEND rises. The value of CMD will not be sampled again. The BCP will carry out the second remote access as it was intended. 

FIGURE 3. Rest Time for Latched Write Mode (Continued) 
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(d) This timing diagram shows a remote access starting after a half T-state plus a hold time since WR-PEND rose. The first set of arrows 
shows the BCP sampling the value of CMD when WR-PEND rises. The second set of arrows shows the BCP recognizing that no remote 
access has started and the value of CMD will be sampled for the next remote access. The third set of arrows shows the BCP sampling 

the correct value of CMD for the second remote access. The BCP will carry out the second remote access as it was intended. 

FIGURE 3. Rest Time for Latched Write Mode (Continued) 
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(b) BCP Running at Half Speed 

FIGURE 4. Relationship between the BCP's CPU-Clock and ClK-OUT 



cle. As a result, at full speed one T -state equals one 
ClK-OUT cycle, but at half speed one T -state equals two 
ClK-OUT cycles. (Reference Figure 4 to see the relation­
ship between the BCP's CPU-ClK and ClK-OUT at full 
speed and half speed.) The specifications in Table 26 are all 
measured with the BCP running at full speed. All of the rest 
time specifications are dependent on the CPU-ClK and not 
on ClK-OUT. At full speed, the CPU-ClK and ClK-OUT are 
the same, and this fact allows specifications to ClK-OUT in 
place of the CPU-ClK. On the other hand, at half speed the 
specifications to ClK-OUT are no longer valid because one 
cannot tell if a rising edge of ClK-OUT is a rising or falling 
edge of the CPU-ClK. 

Earlier the worst case rest time for the BCP mistaking two 
fast back to back accesses as only one was given as: 

rest time = H + t (setup time) + t (hold time) 
(mistaking two accesses as one) 

The real time worst case for the BCP mistaking two access­
es as one, happens when the BCP runs at half speed. So for 
the BCP running at half speed and OClK = 18.8696 MHz, 
the worst case rest time for mistaking two accesses as one 
is: 

rest time = 2(ClK-OUT cycles) + tsu + th 
(mistaking two accesses as one) 

rest time = 2(53 ns) + 22 ns + 10 ns 
(mistaking two accesses as one) 

rest time = 135 ns 
(mistaking two accesses as one) 

Up to a full T-state (or two ClK-OUT cycles) may be added 
to the above equation if one is using latched Read or Fast 
Buffered Write modes. As explained in the CAUSES of Re­
mote Rest Time section, this extra T-state is only added if 
the remote processor can terminate the remote access 
quickly after XACK rises (within a T-state). Otherwise, the 
above equation remains valid as written. The reader should 
note that this extra T-state is not mentioned or included in 
the following calculations because it takes place coinciden­
tally with that cause of rest time. 

As mentioned previously, the absolute worst case rest time 
for all modes, except latched write mode, may be calculated 
by adding the above case of rest time to the second source 
of rest time caused by fast back to back accesses with dif­
ferent values for CMD. This rest time can be calculated as 
follows: 

rest time = first source + second source 
(CMD changes) 

resttime = [H + t (setup time) + t (hold time)] 
(CMD changes) + [1.5T + t (hold time)] 

Note: The first hold time is during the second source's 1.5 T-states, so in 
the following formula it disappears. 

rest time = 2.5T + t (setup time) + t (hold time) 
(CMD changes) 

For the BCP running at half speed and OClK 
18.8696 MHz, the absolute worst case rest time is: 

rest time = 5(ClK-OUT cycles) + tsu + th 
(CMD changes) 

rest time = 5(53 ns) + 22 ns + 10 ns 
(CMD changes) 

rest time = 297 ns 
(CMD changes) 
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For latched write mode the remote rest time starts when 
WR-PEND rises. The rest time for this case can be calculat­
ed as follows: 

rest time = 0.5T + t (hold time) 
(CMD changes) 

The real time worst case for rest time in latched write mode 
is with the BCP running at half speed. The following is a 
calculation of this rest time with the BCP running at half 
speed and OClK = 18.8196 MHz. 

rest time = 1 (ClK-OUT cycle) + t (hold time) 
(CMD changes) 

rest time = 53 ns + 7 ns = 60 ns 
(CMD changes) 

Please refer to the latest datasheet for more information 
and the most current specifications. 

DESIRABLE FEATURES OF A REST TIME CIRCUIT 

In regards to designing with the rest time specifications, the 
first suggestion is to determine if rest time is an issue in 
one's design(s). If one's present or future design(s) is for 
systems which can never violate the rest time specification, 
the whole issue of rest time is a moot point. 

On the other hand, designs such as terminal emulation 
boards, which may be placed in faster and faster PC buses, 
must address rest time. In slower PCs one's product may 
never violate rest time, but in faster PCs rest time may be­
come an issue. 

All remote accesses are susceptible to having two fast back 
to back accesses recognized as only one. The worst case 
rest time for this was determined earlier as: 

rest time = 135 ns 
(mistaking two accesses as one) 

(where OClK = 18.8696 MHz and the BCP runs at half 
speed, [CCS] = 1) 

All designs with the BCP must guarantee this minimum 
amount of time between every access. 

The second issue of remote rest time involves fast back to 
back accesses that have different values for CMD. The 
worst case for this was also calculated earlier as: 

rest time = 297 ns 
(CMD changes) 
(where OClK = 18.8696 MHz and [CCS] = 1) 

Two ways to handle this rest time issue are: 

1. Prevent all remote accesses to the BCP for at least 
297 ns after the end of every remote access. 

2. Hold off remote accesses that change the value of CMD 
for a minimum of 297 ns after the last remote access. 
However, allow remote accesses that do not change the 
value of CMD to occur a minimum of 135 ns after the last 
access. (When the value of CMD does not change from 
one access to the next, this will allow accesses up to 
162 ns sooner than option 1). 

When designing with rest time one must decide if the in­
crease in speed of option 2) is worth the extra logic. Howev­
er, as is demonstrated by the design example for the 
CT-104 (Next section), the increase in logic between option 
1) and option 2) may be minimal. 
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~ Again, latched write mode is addressed separately. Unlike 
::2: the other modes, latched write's rest time starts when 
c( WR-PEND rises. Two possible design options are: 

1. Hold off all remote accesses for at least 60 ns (If 
OClK = 18.8696 MHz) after WR-PEND rises. However, 
doing ,this will result in slowing every remote access to 
the BCP. Furthermore, it should be noted that WR-PEND 
Will, not rise until a minimum of three T-states after the 
previous access has ended. If no accesses are allowed 
until after WR-PEND rises, then the second access will 
never be mistaken as a continuation of the previous ac­
cess. 

2. Similar to the previous options, allow accesses after 136 
ns if CMD has not changed between accesses. Then hold 
off access for at least 60 ns after WR-PEND rises when 
CMD changes between accesses. 

The last design issue that must be addressed is how to wait 
the host processor while preventing remote accesses to the 
,BCP. Normally the wait signal of a remote processor is driv­
en by the XACK signal out of the BCP. (Please note that the 
XACK signal can be active low, only when a remote access 
to the BCP is in progress.) During rest time, the rest time 
circuit prevents remote accesses to the BCP, so the XACK 
signal will not wait the remote processor. PC buses specify 
the maximum amount of time before the bus must be waited 
(i~ it is going to be waited). It is possible that not allowing 
remote accesses to the BCP (during rest time) may delay 
the XACK signal long enough to violate this bus specifica­
tion. To prevent this, designs which wait a PC bus, must use 
logic to waitthe bus whenever a remote access begins dur­
ing rest time. Furthermore, the logic that starts waiting the 
bus before remote access is allowed to the BCP, must con­
tinue to wait the bus until XACK takes over waiting the bus. 

DESIGN EXAMPLE FOR THE CT-104 

The four major goals in designing a rest time circuit for the 
CT -104 were: 

1. Keep the component count to a minimum. 

2. Keep the impact to the original CT-104 design to a mini-
mum. 

3. Allow the CT-104 to operate in every mode. 

4. Take advantage of the faster accesses allowed when 
CMD does not change from one access to the next. 

The rest time circuit is implemented on one PAL 16R4B and 
one 74AlS74. Only a single signal (REM_enable) is fed 
back into the original CT-104 design. In addition, the XACK 
signal from the BCP is now fed into the rest time PAL 16R4B 
and the IO_CHRDY signal to the PC bus is controlled by 
this PAl®. This rest time circuit implements all modes and 
takes advantage of the increase in speed possible when 
CMD does not change from one access to the next. 

First, how the REM_enable signal controls remote access­
es will be discussed. Then, the functions implemented by 
the two positive-edge-triggered D flip-flops in the 74AlS74 
will be discussed. Finally, a description of the operation of 
the rest time state machine, in the PAL 16R4B, will be given. 
Figure 5 is the schematic for the CT-104's rest time circuit. 

The REM_enable (Figure 5) signal is produced in the rest 
time PAL 16R4B and is low during rest time. After rest time is 
over the REM_enable signal goes high until the end of the 
next access, when it once again goes low during rest time. 

The signal REM_enable is fed back into U22 (a PAL16l8) 
on the CT-104. (Note that this PAL had one unused pin so 
the design of this PAL was only slightly altered.) 
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On the original CT-104, the REMRD and REMWR outputs of 
U22 were buffered signals of MEMR and MEMW respec­
tively. With the new rest time circuit both REMRD and 
REMWR are held high when REM_enable = O. This pre­
vents all remote accesses during rest time. When rest time 
is over REM_enable = 1 and once again, MEMR and 
MEMW control REMRD and REMWR respectively. 

One of the D flip-flops in the 74AlS74 stores the value of 
the previous access's CMD (LCMD). This value (LCMD) 
was'latched at the beginning of the previous valid remote 
access. With this value stored in a flip-flop, the rest time 
state machine can determine if the present value of CMD 
has changed since the last remote access. 

The other D flip-flop acts as a part of the rest time circuit's 
state machine. When RAE rises (signaling the end of that 
access) a one (1) is latched into this flip"flop. This signal 
(WAIT_START) forces the state machine to move through 
the next three states in sequence. If this latch is not used, 
the rest time state machine may also miss the ending of an 
access if back to back accesses occur within one ClK-OUT 
cycle plus the setup time for a PAL 16R4B's register input. If 
OClK = 18.8696 MHz this time will be: 

time = 1 (ClK-OUT cycle) + t (setup time for PAL 16R4B) 

time = 53 ns + 20 ns 

= 73 ns 

This in effect, trades a rest time of 136 ns for one of 73 ns. 
However, while the output of this latch (WAIT_START, Fig­
ure 5) equals one, REM_enable will be low and the state 
machine will be forced to' start the rest time states. In the 
third rest time state the WAIT_START latch is, cleared by 
the ClR_ST ART (Figure 5) signal going low. 
ClR_ST ART is produced in the rest time PAL 16R4B and 
ClR_ST ART equals zero (0) only when in the third rest 
time state. In this way the WAIT_START signal guarantees 
the minimal rest time of 136 ns by keeping REM_enable 
equal to zero through at least three ClK-OUT cycles (Le., 
3[53 ns] = ,159 ns if OClK = 18.8696 MHz). 

To describe the operation of the state machine, a state by 
state description follows. When reading through the states 
one should remember that the state machine can only 
change states on the rising edge of ClK-OUT. A flow chart 
of this state machine is provided as Figure 6. Figure 7 is a 
PAL program (written in the ABEL program language) for 
the PAL 16R4, rest time PAL. Figure 8 shows the reduced 
equations that result for the PAL program given in Figure 7. 

STATE: IDLE 

This state is entered when a system reset occurs. In this 
state REM_enable = 1, CMD_clk = 0, and XACK con­
trols the state of IO_CHRDY. 

The state machine will stay in this state until a valid remote 
access starts (Le., RAE = 0). Then the state machine 
moves to CYCLE_START. 
Note: On the CT-104, the Signal RAE is a full decode of a valid access. This 

means that it decodes a valid address and a valid MEMR or MEMW. If 
RAE is only an address decode, it alone would not indicate that a 
valid access had started. 

STATE:CYCLE--START 

In this state REM_enable = 1, CMD_clk = 1 as long as 
RAE = 0, ClR_ST ART = 1, and XACK controls the state 
of IO_CHRDY. Note, when CMD_clkrises it latches in the 
present value of CMD. The state machine will stay in this 
state until the remote access ends, indicated by either 
RAE = 1 or WAIT_START = 1. Then the state machine 
moves to WAIT1. 
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REt.4_enable = 0 
Ct.4D_clk = 0 
CLR_START = 0 

REt.4_enable = 0 
Ct.4D_CLK=O 
CLR_START = 1 

REt.4_enable = 1 
Ct.4D_CLK= 1 
CLR_START = 1 

yes 

REt.4_enable = 0 
Ct.4D_clk =0 
CLR_START = 1 

REt.4_enable = 0 
Ct.4D_clk =0 
CLR_START = 1 

REt.4_enable = 0 
Ct.4D_clk =0 
<CLR_START> = 1 

REt.4_enable = 1 
Ct.4D_clk = 1 
CLR_START = 1 
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FIGURE 6. State Diagram of Rest Time Circuit 

STATE: WAin 

In this state REM_enable = 0, CMD_clk = 0, ClR_ 
START = 1, and if a remote access starts, IO_CHRDY is 
driven low whenever RAE = 0. While in this state WAIT_ 
START remains equal to one because it has not been 
cleared yet. Thus, after one ClK-OUT cycle the state ma­
chine moves to WAIT2. 

STATE: WAIT2 

In this state REM_enable = 0, CMD_clk = 0, ClR_ 
START = 1, and IO_CHRDY is driven low whenever 
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RAE = 0. Again WAIT_START = 1 and after another 
ClK-OUT cycle the state machine moves to WAIT3. 

STATE: WAIT3 

In this state REM_enable = 0, CMD_clk = 0, ClR_ 
START = 0 which clears WAIT_START, and IO_CHRDY 
is driven low whenever RAE = 0. Since WAIT_START is 
cleared, on the next rising edge of ClK-OUT the state ma­
chine will make a decision: 



IF LCMD equals CMD (indicating no change in the value 
of CMD between cycles) and a valid remote access has 
started (Le., RAE = 0), then the state machine will move to 
the RESUME state. (The RESUME state is covered after 
the WAITS state.) However, if those conditions are not met 
then the state machine moves to WAIT 4. 

STATE: WAIT4 

In this state REM_enable = 0, CMD_clk 0, ClR_ 
START = 1, and IO_CHRDY is driven low whenever 
RAE = O. If LCMD equals CMD and RAE = 0, then on 
the next rising edge of ClK-OUT the state machine will 
move to the RESUME state. Otherwise the state machine 
moves to state WAIT5. 

STATE: WAITS 

In this state REM_enable = 0, CMD_clk = 0, ClR_ 
START = 1, and IO_CHRDY is driven low whenever 
RAE = O. IF LCMD equals CMD and RAE = 0 then the 
next state will be RESUME. 

As long as the above condition is not met and WR-PEND = 
0, the state machine will remain in this state. WR-PEND = 0 
indicates that the previous access was a write with the BCP 
in latched write mode. Holding the state machine at WAIT5 
prevents remote accesses, that changes the value of CMD, 
for the required latched write rest time. 

If both of the above conditions are false then the next state 
will be WAIT6. 

STATE: WAITS 

In this state REM_enable = 0, CMD_clk = 0, ClR_ 
START = 1, and IO_CHRDY is driven low whenever 
RAE = O. If LCMD equals CMD and RAE = 0, then on 
the next rising edge of ClK-OUT the state machine will 
move to the RESUME state. Otherwise the state machine 
moves to state WAIT7. 

STATE: WAIT7 

In this state REM_enable = 0, CMD_clk = 0, ClR_ 
START = 1, and IO_CHRDY is driven low whenever 
RAE = O. Any remote access that has changed the value of 
CMD will be prevented until the end of this state. That would 
be a minimum of seven ClK-OUT cycles between accesses 
or 371 ns if OClK = 1S.S696 MHz. 

Also, all remote accesses which follow a latched write and 
change the value of CMD have been prevented at least two 
ClK-OUT cycles or 106 ns, if OClK = 1S.S696 MHz. Thus 
after one ClK-OUT cycle, if RAE = 0 the next state will be 
RESUME. Otherwise," it will be WAITS. 

STATE: WAITS 

In this state REM_enable = 1, (allows accesses), CMD_ " 
clk = 0, CLEAR_START = 1, and IO_CHRDY is driven low 
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module rescpal flag '-r3' 
title 'REST-TIME Compliance State Machine'; 

"inputs: 
c1ock,enab 
!sys_reset 
!rae 
waicstart 
!wr_pend 
xack 
L cmd 
cmd 

pin I,ll; 
pin 2; 
pin 3; 
pin 4; 
pin 6; 
pin 7; 
pin 8; 
pin 9; 

pin 12; 
pin 13; 

'p16r4'; 

"outputs: 
rem_enable 
c1cstart 
q3,q2,ql,qO 

cmd_clk 
I03hrdy 

pin 14,15,16,17; 
pin 18; 
pin 19; 

sreg' = [q3,q2,ql,qO]; 
outputs = rem_enable; 

"definitions: 
ck,x,z,L,H = .C., .X., .Z.,O,l; 

access = rae; 
st = [q3,q2,ql,qO]; 

"State Values ... 

idle = "bOlOO; " 4h 
start = "bOllO; " 6h 
waitl = "blllO; "Eh 
wait2 = "bll 11; "Fh 
wait3 = "bllOl; "Dh 
wait4 = "blool; " 9h 
wait5 = "blOll; " Bh 
wait6 = "blOlO; " Ah 
wait7 = "bl000; " 8h 
wait8 = "blloo; "Ch 
resume = "bOOOO; "Oh 
hold = "boolO; " 2h 
notusedl = "bOll 1; "7h 
notused2 = "booll; " 3h 
notused3 = "bOlOl; " 5h 
notused4 = "bOOOl; " lh 
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FIGURE 7. PAL Program File 
(Written In the ABEL Program Language) 
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~ r---------------------------------------------------------------------------------~ 
N 
CD 

Z 
< 

equations 

enable outputs = 1; 

enable IO_chrdy = access; 

!I03hrdy = ( q3 * access) # (!q2 * access) # ( qO * access) 
# (!xack) # (waicstart * access ); 

!clcstart = «q3) * (q2) * (!q1) * (qO» 
# (sys_reset); 

cmd3lk = (access * !q3 * !q2 * !qO * !waicstart) 
#(access * !q3 * q1 * !qO * !waicstart) 
# (access * cmd_clk * !waicstart); 

!rem_enable = (!q2 * q3) # qO # (q 1 * q3) # waiutart; 

state_diagram sreg; 

State idle: " Remain in idle while sys_reset is active. 
IF (sys_reset) TIffiN idle; 
ELSE IF (access) TIffiN start; 

ELSE idle; 

State start: " Begin normal access. 
IF (sys_reset) TIffiN idle; 
ELSE IF (!access # waicstart) TIlEN wait1; 
ELSE start; 

State wait1: "First wait cycle. 
IF (sys_reset) TIffiN idle; 
ELSE IF (access & L3md & cmd & !waiutart) TIffiN resume; 
ELSE IF (access & !L3md & !cmd & !waiUtart) TIlEN resume; 
ELSE wait2; . 

State wait2: 
IF (sys_reset) TIffiN idle; 
ELSE IF (access & L_cmd & cmd & !waicstart) TIIEN resume; 
ELSE IF (access & !L_cmd & !cmd & !waiUtart) TIlEN resume; 
ELSE wait3; 

State wait3: 
IF (sys_reset) TIffiN idle; 
ELSE IF (access & L_cmd & cmd & !waicstart) TIffiN resume; 
ELSE IF (access & !L_cmd & !cmd & !waiUtart) TIffiN resume; 
ELSEwait4; 
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FIGURE 7. PAL Program File (Written In the ABEL Program Language) (Continued) 

whenever RAE = O. This state was included in the state 
machine to reduce the state machine's logic. Otherwise it 
would have been logical to return to the IDLE state from 
WAIT? if RAE = 1 (no access in progress). If RAE = 0, 
then the next state will be RESUME. Otherwise the state 
machine returns to IDLE. 

STATE: RESUME 

In this state REM_enable = 1, CMD_clk = 1 (rising edge 
of CMD_clk latches in the present value of CMD), CLR_ 
START = 1, and 10_CHRDY is driven low while RAE = O. 
When the state machine moves to this state, it means that a 
remote access took place quickly after the previous access. 
The state machine has allowed the remote access to pro­
ceed. However, the state machine must have waited the 
PC-bus for some period of time before entering this 

state. As a result, the PC-bus should be waited until the 
XACK signal can take over control of driving 10_CHRDY. 
For the design of the CT-104, it was determined that once 
REM_enable = 1, the XACK signal would take over con­
trol within two ClK-OUT cycles. So the state machine will 
wait the PC-bus through this state and the next. On the next 
rising edge of ClK-OUT the state machine will move to the 
HOLD state. 

STATE: HOLD 

In this state REM_enable = 1, CMD_clk = 1, CLR_ 
START = 1, and 10_CHRDY is driven low while RAE = O. 
Again, this state is provided to wait the PC-bus for a second 
ClK-OUT cycle while still allowing remote access. The next 
state is CYClLSTART. In CYCLE_START, XACK will 
take over control of 10_CHRDY. 
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end 

State wait4: 
IF (sys_reset) TIffiN idle;' 
ELSE IF (access & L_cmd & cmd & !waiutart) THEN resume; 
ELSE IF (access & !L_cmd & !cmd & !waicstart) TIffiN resume; 
ELSE waitS; 

State waitS: 
IF (sys_reset) TIffiN idle; 
ELSE IF (access & L_cmd & cmd & !waicstart) THEN resume; 
ELSE IF (access & !L_cmd & !cmd & !waicstart) THEN resume; 
ELSE IF (wcpend) THEN waitS; 
ELSE wait6; 

State wait6: 
IF (sys_reset) TIffiN idle; 
ELSE IF (access & L_cmd & cmd & !waicstart) TIffiN resume; 
ELSE IF (access & !L_cmd & !cmd & !waicstart) THEN resume; 
ELSE wait7; 

State wait7: 
IF (sys_reset) TIffiN idle; 
ELSE IF (access) TIffiN resume; 
ELSE wait8; 

State wait8: 
IF (sys_reset) TIffiN idle; 
ELSE IF (access) TIffiN resume; 
ELSE idle; 

State resume: 
IF (sys_reset) TIffiN idle; 
ELSE hold; 

State hold: 
IF (sys_reset) TIffiN idle; 
ELSE start; 

State notusedl: 
IF (sys_reset) THEN idle; 
ELSE wait2; 

State notused2: 
IF (sys_reset) TIffiN idle; 
ELSEwait2; 

State notused3: 
IF (sys_reset) THEN idle; 
ELSE wait2; 

State notused4: 
IF (sys_reset) THEN idle; 
ELSE wait2; 
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FIGURE 7. PAL Program File (Written in the ABEL Program Language) (Continued) 
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REST-TIME Compliance State Machine 
Equations for Module rescpal 

Device REST_PAL 

Reduced Equations: 

enable rem_enable = (l); 

enable IO_chrdy = (!-rae); 

!I03hrdy = (!-rae & waiutart 
# !xack 
#qO& I-rae 
# !q2 & I-rae 
# q3 & I-rae); 

!elcstart = (!-sysJeset # qO & !q 1 & q2 & (3); 

!cmd_clk = (waicstart 
# !cmd_elk & qO 
# !cmd_elk & !q 1 & q2 
# !cmd_elk & q3 
#-rae); 

!rem_enable = (waiUtart # q 1 & q3 # qO # !q2 & (3); 

!q3 := (!qO & !q2 & !q3 
# !qO& !ql & I-rae 
# !L_cmd & !cmd & q3 & I-rae & !waiutart 
#L_cmd &cmd&q3 & I-me & !waiutart 
# !qO & !q3 & I-rae & !wait_start 
# !-sys_reset 
# !qO & !ql & q2); 

!q2:= (!qO & !ql & !q2 & !q3 & -sys_rcset 
# !ql & q3 & I-rae & -sys_reset 
# q 1 & !q2 & q3 & -sys_reset 
# qO & !q 1 & q3 & -sys_reset 
# !L_cmd & !cmd & q3 & I-rae & -sysJeset & !wait_start 
# L_cmd & cmd & q3 & I-rae & -sys_reset & !waicstart); 

!ql := (!qO & Iql & q3 
# !qO& !q2 &q3 
#qO&q2&q3 
# !L_cmd & !cmd & q3 & I-rae & !wait_start 
# L_cmd & cmd & q3 & I-rae & !wait_start 
# !qO & !q 1 & q2 & -rae 

REST-TIME Compliance State Machine 
Equations for Module rescpal 

Device REST_PAL 

!qO := (!qO & !ql 
# !qO& !q2 
# q 1 & !q2 & q3 & -wr_pend 
# !L3md & !cmd & q3 & I-rae & !waiUtart 
# L_cmd & cmd & q3 & ! -rae & ! waiUtart 
# !-sys_reset 
# !qO& !q3); 
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# !-sys_reset); 
TLlF/10451-17 

FIGURE 8. Reduced Equations for Rest Time State Machine PAL 
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DP8344 Timer Application 

INTRODUCTION 

The DP8344 is a communications processor which handles 
IBM 3270, 3299 and 5250 protocols along with NSC general 
8-bit protocol. In order to reduce the impact on the 
DP8344's CPU the timer was designed to stand-alone and 
count independently of the CPU. 

The timer's circuitry includes a unique holding register. This 
holding register can be loaded with a sixteen-bit countdown­
value, which will remain unchanged until a new value is 
loaded or the DP8344 is reset. 

When the timer counts to zero it takes two actions: 1) it sets 
both the timer interrupt and the Time Out flag [TO], and 2) 
the timer reloads the sixteen-bit countdown-value stored in 
the holding register and continues the countdown cycle. 
This demonstrates a significant advantage of the DP8344's 
timer; the timer continues keeping accurate time while noti­
fying the CPU that the timer has completed a cycle. The 
timer does not wait for the CPU to service it, instead the 
timer notifies the CPU of the completion of a cycle and al­
lows the CPU to take the desired action when it has the 
time. 

With the use of the holding register, a multiple number of 
timer cycles of the exact same duration can be performed 
consecutively. The other major advantage of the holding 
register is that it allows the interleaving of any number of 
countdown-values. Loading the holding register with a new 
countdown-value does not affect the countdown-value pres­
ently in the timer's countdown circuitry. In this way a count­
down-value (call it A) can be counting down and the holding 
register can be loaded with a new countdown-value (call it 
B). When the value A reaches zero, both the timer interrupt 
and Time Out flag [TO] are set, and the value B is loaded 
into the countdown circuitry and starts its countdown. Then 
the value A can be loaded back into the holding register 
when the CPU has the time. This demonstrates how count­
down-values with different durations can be interleaved and 
once again how the timer does not have to wait to be serv­
iced by the CPU, making both the timer and CPU more effi­
cient. 

The CPU can load the upper and lower bytes of the holding 
register by writing the desired value to the CPU registers 
{TAHI and {TALI respectively. 

Control of the timer's countdown circuitry is maintained via 
three bits in the Auxiliary Control Aegister {ACA I. 

Timer STart [TST] (bit 7 of (ACAI) is the start/stop control 
bit for the timer. Writing a one to [TST] starts the timer 
counting down from the present value in the countdown cir­
cuitry. When [TST] is zero the timer stops and the timer 
interrupt is cleared. 

The second control bit is Timer LoaD [TLD] (bit 6 of 
(AAC I). This bit allows the CPU to immediately load the 
timer's countdown circuitry with the value in the timer's 
holding register. This capability is required after the DP8344 
is reset; the value in the timer's countdown circuitry will be 
the reset value and not the desired value. CPU controlled 
loading can also be used to load higher priority countdown­
values before a lower priority countdown is completed. The 
5250 Protocol application implements the timer in this man­
ner. 

National Semiconductor 
Application Note 626 
William V. Miller 

Writing a one to [TLD] will load the timers countdown cir­
cuitry with the value in the timer's holding register and initial­
izes the timer clock in preparation to start counting down. 
Upon completing the load operation [TLD) is cleared by in­
ternal hardware. 

When the timer is loaded by writing a one to [TLD], the 
timer is re-initialized to prevent the timer's circuitry from dec­
rementing the newly loaded countdown-value prematurely. 
By initializing the countdown circuitry after a CPU load, the 
newly loaded countdown-value's duration will be accurately 
measured. The reader should note that there is no way to 
precisely measure the total elapse time of two or more 
countdown-values if the CPU loads them (using [TLD)) into 
the countdown circuitry. However, the error due to CPU 
loading will be a maximum of one period of the timer for 
each CPU load and can often be ignored if the countdown 
values are large. 

EXAMPLE: countdown-value = 1 000 

maximum count error = 1 

maximum error = 0.1 % 

The last control bit is TiMer Clock select (bit 5 of (ACAI). 
This bit determines the rate at which the countdown-value 
will be decremented. When [TMC] is low, the timer decre­
ments the countdown-value at one-sixteenth the CPU's 
clock frequency. When [TMC] is high the rate is one-half the 
CPU's clock frequency. The reader should note that the tim­
er's decrement rate is based on the CPU's clock frequency, 
which is controlled by CPU Clock Select [CCS] (bit 7 of 
(DCA I). When [CCS] is low the CPU's clock frequency 
equals the oscillator's clock frequency, and when [CCS] is 
high the CPU's clock frequency equals one-half the oscilla­
tor's clock frequency. 

The last portion of the timer's circuitry is a sixteen-bit output 
register. This output register is loaded with the present val­
ue of the countdown-value in the countdown circuitry, at the 
end of every execution cycle. This register is loaded even if 
the timer is stopped. 

The CPU can read the upper and lower bytes of this output 
register by reading the CPU registers {TAHI and {TALI 
respectively. 

The reader should note that when the CPU reads and writes 
to the registers {TAHI and {TALI the timer's circuitry ac­
cesses different registers. All writes will load the timer's 
holding register and all reads will read the timer's output 
register. 

The count status of the timer can be monitored by reading 
{TAL I and/or {TAH I. When the registers are read, the val­
ue in the timer's output register is presented to the CPU and 
not the value in the input holding register. To read back 
what was written to {TALI and {TAHI, the timer must be 
loaded first, followed by a one instruction delay before read­
ing {TALI and {TAHI to allow the output register to be 
updated after the load operation. Figure 1 is a block diagram 
of the Timer-CPU interface. 
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FIGURE 1. Block Diagram of Timer-CPU Interface 

TIMER OPERATION 

This section of the application note reviews the general op­
eration of the timer. Constraints and suggestions for soft­
ware are included as well as a short review of the timing 
equations. 

After the desired sixteen bit time-out value is written into the 
timer's holding register via {TRLI and {TRHI, the start, 
load and clock selection can be achieved in one write to 
{ACRI. A glitch, which will cause a loss of timer accuracy, 
may occur if the timer's clock frequency is changed while 
the timer is running. To prevent this, a restriction exists on 
changing the timer's clock frequency in that [TMC] should 
not be changed while the timer is running (Le., [TST] is 
high). After the write to. {ACR I, the timer starts counting 
down af the selected frequency starting with the loaded val­
ue from the'timer's holding register. Upon reaching a count 
of zero the. timer reloads the current word in its holding reg­
ister and recycles through the count. 

'The ti~ing waveforms shown in Figure 2 show a write to 
{ACR J that loads, starts and selects the divide by two of the 
CPU clock rate. The timer interrupt has also been selected. 
Prior to the write to {ACR I, the holding register in the timer 
was loaded with 0002 (Hex) by writing 02 (Hex) and 00 
(Hex) to {TRLI and {TRHI respectively. The timer interrupt 
has also been selected. . 

Tl T2 Tl T2 

CPU CLOCK 

IBUS 

Tl 

The timer can be selected. as an interrupt source by un­
masking it in the Interrupt Control Register {leR I. This is 
achieved by writing a zero to bit 4 of {ICR I . and asserting 
the Global Interrupt Enable [GIE] (bit 0 of (ARC!). The tim­
er interrupt is the lowest priority interrupt and is latched and 
maintained until it is cleared in software. If the timer times 
out prior to T2 of an instruction, the call .to the interrupt 

. service routine will occur in the next instruction. When the 
time out occurs in T2, the call will occur in the instruction 
after the next instruction. 

The timer may also be used in a polled configuration. This is 
achieved by masking the timer interrupt bit (Le., writing a 
one to bit 4 of (ICR I) and writing software which will poll the 
[TO] flag (bit 7 of (CCR I). Both [TO] and the timer interrupt 
are set high when the timer counts to zero. 

Then the timer reloads the current word in its holding regis­
ter and recycles through the count. This means. that the 
timer continues to keep track of time while leaving the task 
of handling the timer interrupt and/or the [TO] poll to be 
performed by the CPU. To operate correctly in the polled 
configuration, software must be written that will guarantee 
that [TO] is polled and cleared at a rate that prevents [TO] 
being set twice before it is polled again. 

The interface between the CPU and the timer allows ~nly 
one byte of information to be transferred at a time. This 

T2 Tl T2 Tl T2 Tl 

nrst Interrupt 
Instruction 

TIMER LOAD ~~ ______________________________ ~~ __ ~ ________ ~ __ 

TIMER CLOCK ~ u u u 
COUNT ~ __ ~ ______ ~~~O_OO_I ______ ~~O_OO_2 __ -JX~_OO_OI __ ' _____ ~ 

TIMER INTERRUPT -----------------------------~/ TL(F/l0450-2 

FIGURE 2. Timing Waveforms of Timer Operation 
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prevents the CPU from accessing both ITALI and ITAHI in 
the same instruction. Since the timer's output register is up­
dated after every instruction cycle, two consecutive reads of 
ITALI and ITAHI will not correspond to the same count 
status in the timer. This error will be slight except when one 
of the output register values rolls over or when the count in 
the timer reaches zero and the timer reloads between in­
structions. 

The suggested software for this situation is to read I TAH I, 
then read ITALI and then read ITAHI again. If the values 
for both reads of ITAHI are the same, then the output reg­
ister values did not roll over and the timer did not reload. 
This eliminates the error due to rolling over or reloading, but 
increases the amount of software. 

The reader must be aware that stopping the timer (Le., writ­
ing a zero to [TST)) will clear both the [TO] flag and the 
timer interrupt. For the case where the timer counts down to 
zero just prior to or during a stop timer instruction, the [TO] 
flag and timer interrupt will be cleared before the software 
can take the desired action. Thus, the information that the 
timer counted to zero will also be lost. The software to han­
dle this situation should check the [TO] flag one instruction 
before the stop instruction and then check the value in the 
timer's output register one instruction after the stop instruc­
tion. Checking the [TO] flag before the stop instruction will 
insure that any previous count to zero will be verified. On the 
other hand, if the [TO] flag was low and the value in the 
output register is the same as the value stored in the holding 
register, then the timer counted to zero and reloaded just 
prior to or during the stop instruction. 

For any value except 0000 (Hex) loaded into the timer's 
holding register, the following equations can be used to de­
termine the time out delay for that value: 

With the CPU running with a 18.8 MHz crystal, the maximum 
single loop time out attainable would be 55.6 ms 
([TMC] = 0). The minimum time out with the same con­
straints is 106 ns ([TMC] = 1). For accumulating time out 
intervals, the total time out is simply the number of loops 
accumulated multiplied by the calculated Timeout. The 
equations above do not account for any overhead for pro­
cessing the timer interrupt and for preciSion timing this may 
need to be included. 

INTRODUCTION TO APPLICATIONS 

In a communications environment a timer may be needed to 
determine the appropriate response time, the polling rate of 
a device or the length of a signal. 

The first two applications discussed are for the communica­
tions environment. 

In the first application the response time for the BCP operat­
ing in the 5250 protocol mode is controlled by the timer. 

In the second application, the serial input from a keyboard is 
connected to the DP8344's BIAQ pin and the timer deter­
mines at what rate the input is sampled to read in the valid 
keystroke serial data. 

To further demonstrate the timer's versatility the last two 
applications discuss how to implement basic timer uses not 
restricted to the communications environment; namely 
blinking the terminal's cursor and a real time clock. 

All four applications implement the timer as an interrupt 
source, none poll the [TO] flag. Using the interrupt reduces 
the amount of software needed and it also results in the 
fastest responses to a time out. However, the reader should 
note that the [TO] flag may be read even during other inter­
rupt routines while the timer's interrupt is masked off. This 
may be important if the other interrupt routines are long and 
could delay the service of the timer interrupt longer than the 

Timeout = (value in the holding register) x Tcpu x 
2' [TMC] = 1 

16; [TMC] = 0 
where: 

Tcpu = The period of the CPU clock 
CPU clock = oscillator clock rate 
CPU clock = % oscillator clock rate 

Timeout = The amount of time after the end of the 
instruction that asserts [TST] 

[CCS] = 0 
[CCS] = 1 

When the value of 0000 (Hex) is loaded into the timer, the maximum time out 
is obtained and is calculated as follows: 

Timeout = 65536 x Tcpu x 
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2; [TMC] = 1 

16; [TMC] = 0 
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time out length. Thus the [TO] flag can be used to guaran­
tee the timer is serviced' even during anothers interrupts 
serVice routine. 

5250 'PROTOCOL 

Introduction 

The DP8344 Biphase Communication Processor (BCP) .is 
capable of responding to received data within 5.5 ,...,S. This is 
a stringent requirement for the IBM 3270 protocol. However, 
the IBM 5250 protocol requires a response time of 45 ,...,s 
± 15 ,...,S. Obviously the powerful BCP will respond too rapid­
ly if it is not programmed to wait at least ,30 ,...,S before re­
sponding. 

Also while operating in the IBM 5250 protocol mode, the 
BCP often expects to be polled at some minimum rate. In 
this discussion the BCP expects to be polled within every 
two seconds. If the BCP is not polled within this time it is 
assumed that a problem exists and the BCP is programmed 
to reset. ' 

In this application the timer and some DP8344 software are 
used to guarantee the proper response time, and to deter-
mine how long it has been since the last poll. . 

General Description 

For the majority of time, the timer will be used to keep track 
of the real-time which has transpired since the BCP was last 
polled. However, once a receiver interrupt is set, the timer 
loads and counts down a 45 ,...,s delay value. This count 
down is used to delay the BCP's response so that it will lie 
between 30 ,...,S and 60 ,...,S. After the 45 ,...,S delay value is 
handled, the timer returns to keeping track of the two sec­
onds of real-time. 

Resetting the BCP, after two seconds have passed since it 
was last polled, is not a stringent requirement. Thus the 
45 ,...,S delays are not included in the two seconds. In effect a 
receiver interrupt 1) stops the timer, 2) records the present 
value of the two second count down value, 3) loads and 
counts down the 45 ,...,S delay value, and 4) reloads and 
continues the two second count down from the value re­
corded after the receiver interrupt stopped the timer. 

Detailed Description 

After a reset the timer must be programmed to operate in ' 
the desired configuration before the BCP can start its opera­
tion in the 5250 protocol mode. For this application the timer 
is pre-configured to divide the CPU clock by sixteen (CPU 
clock = % oscillator clock, OCLK = 18.8696 MHz). All 
interrupts are unmasked and enabled. The. time out value 
60BE (Hex) is then loaded into the timer's holding register 
via [TRLI and ITRHl. 

After the timer is programmed properly the timer is loaded 
and started with one write to [ACR l. The reader will note 
that the count down value of 60BE (Hex) corresponds to 
21 ms not two seconds. As shown earlier in this application 
note (OPERATION section), the maximum single loop time 
out attainable for this mode is 55.6 ms. Since it is impossible 
to load the timer with a countdown-value of two seconds, 
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software is written to record the number of times the 21 ms 
count down value reaches zero. Still more software is re­
sponsible for resetting the BCP if one hundred time outs 
occur before the BCP is polled again. 'The use of 21 ms time 
outs instead of 20 ms time outs will guarantee that a mini­
mum of two seconds has passed, even if there are small 
timing errors by either the controller or the BCP's oscillator 
clock. 

The timer will continue to count down the 21 ms time outs 
until a receiver interrupt is set. The BCP's software then 
calls a receiver interrupt service routine. (Refer to Figure 3 
for the BCP code for this service routine.) The timer is 
stopped. The present value of the 21 ms count down is 
stored in a temporary memory location. The time out value 
0011 (Hex) which corresponds to 28 ,...,s is loaded into the 
timer's holding register via ITRLI and [TRH}. (Adding the 
delay due to setting up and responding to the timer together 
with the 28 ,...,S time out, results in a total elapse time delay 
which guarantees the response between 30 ,...,s and 60 ,...,s.) 
The timer is loaded and restarted. Then the partially com­
pleted 21 mS.countdown-value stored in a temporary mem­
ory location is loaded into the timer's holding register via 
ITRLI and ITRHI. Once the 28,...,s time out counts to zero, 
the partially completed 21 ms time out is resumed as the 
timer is loaded with the value in the holding register and 
continues the 21 ms count down. 

Every time the timer counts down to zero, it sets the timer 
interrupt and the DP8344 is programmed to call a timer in­
terrupt service routine. In order to operate correctly the 
service routine must first determine if a 21 ms or a 28 ,...,S 
time out has occured. If a 28 ,...,s time out has taken place, 
the timer is stopped. The value in the timer's holding regis­
ter will not be the 21 ms count down value; it will be the 
value which was in the timer when the receiver interrupt 
stopped the timer. So the 21 ms countdown-value 60BE 
(Hex) is loaded into the timer's holding register via [TRLI 
and [TRH l. Then the timer is started. If a 21 ms timer inter­
rupt is pending it will be serviced, otherwise the software will 
return with all interrupts unmasked and enabled. 

In the case of a 21 ms timer interrupt, the number of 21 ms 
time outs is recorded for all seven sessions in data memory. 
For every 21 ms timer interrupt a one is added to the value 
stored in data memory for each session. An exception is 
made when FF (Hex) is the value stored in data memory. 
Adding a one would result in the value 00 (Hex) replacing FF 
(Hex) in memory. This would falsely indicate that less than 
21 ms has passed since the BCP was last polled. As a result 
if FF (Hex) is the number in memory nothing is added to it. 
As before the software returns with all interrupts unmasked 
and enabled. 

The software which 1) clears the number of 21 ms time outs 
recorded when the BCP is polled and 2) resets the BCP 
after two seconds have passed without the BCP being 
polled, is not discussed in this application note because it 
does not effect the normal operation of the timer. 

This application describes the use of the timer in the 5250 
protocol mode as it is implemented in the Multi-Protocol 
Adapter (MPA). 



description: The timer interrupt service routine is responsible 
for: 
I) Maintains a real time clock counter for each session: 

- Increments a real time clock counter which controls 
System Available flag, auto reset and reset 

complete; 
- Prevents counter roll over by keeping a max count 

ofFFh; 
2) Provides 45us time out signal for poll response 

- If interrupt is due to 45us poll response, unmasks 
Tx int to 
allow for response. 

note : The timer interrupt service routine lock out host 
access and 
other interrupts except TFE interrupt. 

scope: global 

entry: timer interrupt hits, ie. timer reaches a count of zero. 
the timer is pre-configured to use 1/16 cpu clock with a 
count value of 305Fh which corresponds to 2lms. 

inputs: I) tw_sysa_por3nt(O-6) 

exit: 

real time clock counters, reset to 0 by receiver when 
Poll received, and 
by session task when going to do a POR. 

2) tw_sysa_resp_flag (in RSTATE) 
- TW _ TIMER_RESP 

timer response flag, set by receiver for 45us poll 1 
response. 

- TW_TO_PEND 
timer interrupt pending flag, set by receiver if it sees 

a pending 
timer interrupt. 

outputs: I) tw_sysa_poccnt(O-6) 
for all sessions, counters are incremented by l. 

Counters will remain in 'FF without roll over. 
2) tw_sysa_resp_flag (in RSTATE) 

- TW 3IMER_RESP 
reset if interrupt is due to 45us poll response. 

-TW30]END 
reset if there is a pending timer interrupt. 

FIGURE 3 
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;{ 

;} 

} 

( 

COPYRIGHT NATIONAL SEMICONDUCTOR. INC. 1987.1988 

pseudo code 

lock out remote access 
reset time-out flag by setting [TO] to 1; 
if (time-out of 4Sus) 

stop timer; 
reload timer input register; 
start timer; 

allow poll response by unmasking transmitter interrupt; 
reset poll response flag; 

if NOT (timer interrupt pending) 
( 

call check birq; 
enable interrupt; 

return with flags and reg banks restored; 
} 

enable interrupt; 

push regs being used in following section; 
for all 7 sessions do 

{ 

if tw_sysa_por_cnt = Ssec next session 
else 

increment tw_sysa_por_cnt; 
next session; 

restore registers; 
set interrupt mask to enable all interrupts; 

call check birq; 
return with flags and reg banks restored; 

," -_ ... ---- --- -----_ .. -------------- .. ---------- - ... -- -- ... -_ .. _ ... -------_ ..... --_ .. 

FIGURE 3 (Continued) 
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lW _ TIMER.BCP: .SECf X 

exx MA,AB ; switch reg bank 
PUSHP IZ ; save IZ 
or CCR_TO,CCR ; clear time out of timer 
UMPBP RSTATE,lW _ TIMER_RESP,NS,tm_relti_c1k 

;jump to real time clock counter 

timer poll/activate read response timeout and offline response 
timing 

and -ACR_TST,ACR 
move TM_2IMS_HI,ACC 

move 
move 

ACC,lRH 
TM_2IMS_LO,ACC 

stop timer 
prepare timer input 

upper byte 
; move, to TRH 
; prepare timer input 

lower byte 
m 0 v e ACC,1RL ; move to TRL 
or ACR_TST,ACR ; start timer 
UMPBP RSTATE,RX_RESPONSE_ WAIT,S,tm_skip_tfe 

and 

tm_skip_tfe: 

; if offline response 
timeout, skip tfe call 

; unmask Tx interrupt 
since interrupt expects 

to be unmasked 
; go handle response 

via TFE interrupt 

UMPBP RSTATE,lW _TO_PEND,S,tm_relti_c1k_1 

and 

; jump to real time clock 
if interrupt pending 

-(lW _ TIMER_RESPIRX_RESPONSE_ WAIT),RSTA TE; 
; reset poll response flag 

; go check birq, do birq 
if needed [V0.51 

; real timer e10ck counter 

tm_relli_clk_l: 
and -(lW _ TlMER_RESPIRX_RESPONSE_ W Am 

lW _ TO]END),RSTA TE 

tm_relli_e1k: 
move 
move 
move 
move 

move 
cmp 
jz 

reset poll response, response 
wait, and int pending FLAGS 

DCPHI,IZHI ; setup IZHI 
LOW(tw_sysa_por_cntO-I),ACC ; setup IZLO 

ACc,mn 
I,ACC 

[+IZ1,GP7 
GP7,TM_5SEC 

tm_nexCI 

; set a 'I' for 
later use 

; get counter 
; equal to 5.4sec? 

; yes, goto next session 
without counter + I 

adda GP7,[IZ] ; increment counter 

FIGURE 3 (Continued) 
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CD 
N 
CD 

Z « 
tm_nexc1 : 

move [+IZ),GP7 
cmp GP7,TM_5SEC 
jz tm_nexc2 

adda GP7,[IZ) 
tm_next_2: 

move [+IZ),GP7 
cmp GP7,TM_5SEC 
jz tm_nexC3 

adda GP7,[IZ) 
tm_next_3: 

move [+IZ),GP7 
cmp GP7,TM_5SEC 
jz tm_next_4 

adda GP7,[IZ) 
tm_next_4: 

move [+IZ),GP7 
cmp GP7,TM_5SEC 
jz tm_nexc5 

adda GP7,[IZ) 
tm_nexc5: 

move [+IZ),GP7 
cmp GP7,TM_5SEC 
jz tm_next_6 

adda GP7,[IZ) 
tm_nexc6: 

move [+IZ),GP7 
cmp GP7,TM_5SEC 
jz tm_next_end 

adda GP7,[IZ) 

tm_nex t_end: 
tm_check_birq: 

Ijmp CCR,BIRQ,S,tm_no_birq 

IcaH dca_fasCbirq 
tm_no_birq: 

POPP IZ 

UNl1XX 
ret RI,RFB 

.end 

; get counter 
; equal to 5.4sec? 

; yes, goto next session 
without counter + 1 

; increment counter 

; get counter 
; equal to 5.4sec? 
; yes, goto next session 

without counter + 1 
; increment counter 

; get counter 
; equal to 5.4sec? 

; yes, go to next session 
without counter +1 

; increment counter 

; get counter 
; equal to 5.4sec? 
; yes, goto next session 

without counter + 1 
; increment counter 

; get counter 
; equal to 5.4sec? 
; yes, goto next session 

without counter + 1 
; increment counter 

; get counter 
; equal to 5.4sec? 
; yes, goto next session 
without counter + I 
; increment counter 

; following codes added 
in [VO.5) 
; check pending 
birq 

; yes, go do it 

; restore Z 

; unlock remote 
; return with OlE, ALU flags 

and reg bank restored 

FIGURE 3 (Continued) 
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DP8344 AS A SERIAL INPUT FROM A KEYBOARD from a serial keyboard. The timer in this application is used 
to read the serial keystroke dataword at the proper baud 
rate. (Refer to Figure 4 for the actual BCP code used for this 
application.) 

Introduction 

To keep the cost of terminals low, the 3270 protocol was 
designed to place all of the intelligence of the system in the 
cluster controller while all of the memory remained in the 
terminal. In this protocol the terminal is responsible for re­
cording all keystrokes until the cluster controller can poll the 
terminal and process the keystroke data. 

With that in mind this application uses the timer along with 
the BIRO interrupt pin as a serial port to read in keystrokes 
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Description 

The specifications for the serial dataword produced by the 
serial keyboard and read by the DP8344 are as follows: it is 
1) asynchronous, 2) ten bits long (1 startbit, 8 databit with 
the most significant bit first, and 1 stopbit), and 3) transmit­
ted at 1200 baud. When no serial data is being transmitted 



the serial data line will be held high. The start bit will be a 
zero to indicate the beginning of the serial bit string. 

As mentioned in the introduction, the serial data line from 
the keyboard is connected to the BIRO interrupt pin (Pin 53 
on the OP8344). The BIRO interrupt pin acts as the serial 
port through which the serial keystroke dataword is read 
into the OP8344. 

First, BCP software programs the timer to determine the 
baud rate at which the OP8344 will read the serial dataword 
presented at the BIRO pin. The timer is pre-configured to 
divide the CPU clock by two (Le., [TMC] = 1) with the CPU 
clock set equal to the oscillator clock at 18.8696 MHz (Le., 
[CCS] = 0). The time out value of 0307 (Hex) is loaded into 
the timer's holding register via (TRLI and (TRH I. The time 
out value of 0307 (Hex) corresponds to 0.104188748 ms or 
approximately one eighth of 0.833333 ... ms, which is the 
period of one bit at 1200 baud. After the holding register is 
loaded, the timer is loaded but not started. Both the timer 
and BIRO interrupts are unmasked and enabled. Now the 
OP8344 is ready to read an asynchronous, ten bit long serial 
keystroke dataword at 1200 baud via its BIRO interrupt pin. 

After the timer is configured the OP8344's software can per­
form other operations until a zero on the serial data line 
activates the BIRO interrupt (Note: the BIRO interrupt is ac­
tive low). The software then jumps to a BIRO interrupt serv­
ice routine. The service routine will mask off the BIRO inter­
rupt and start the timer and then return to perform other 
operations. After four consecutive timer interrupts the mid­
dle of the startbit should be present at the BIRO pin. To 
ensure that a glitch or noise did not produce a zero momen­
tarily and that the zero is actually a startbit, the BIRO inter­
rupt is unmasked. If the value at the BIRO pin is a one 
instead of a startbit zero, the timer is stopped and reloaded 
with the countdown-value 0307 (Hex). The BIRO interrupt 
will remain unmasked waiting for the next zero. However, if 
the value at the BIRO pin is a zero (indicating a valid start­
bit), the software jumps to the BIRO interrupt service rou­
tine. The BIRO interrupt is masked off and the timer contin­
ues to run and the software returns to perform other opera­
tions. 

For the case of a true startbit the OP8344 needs to read in 
the value of the serial keystroke dataword. The value of 
each data bit must be read one at a time. After each value is 
read, it is added to a temporary value stored in a register. 
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Once the value of the keystroke dataword has been calcu­
lated it is transferred to data memory and the temporary 
register is cleared so that the next keystroke value may be 
calculated there. The following is a more detailed descrip­
tion of this process, starting in the middle of the start bit. 

After eight more timer interrupts the middle of the first and 
most significant data bit is present at the BIRO pin. So the 
software unmasks the BIRO interrupt. If a zero is present at 
the BIRO pin, the software calls the BIRO interrupt service 
routine. The BIRO interrupt is masked off and nothing is 
added to the value in the temporary register. After masking 
off the BIRO interrupt the software returns to perform other 
operations. On the other hand, if the value at the BIRO pin 
is a one, the BIRO interrupt is masked off and the value 80 
(Hex) (Most Significant Bit) is added to the value (initially 00 
(Hex)) in the temporary register. 

Likewise, after eight more timer interrupts the middle of the 
second serial databit is present at the BIRO pin. So the 
BIRO interrupt is unmasked and goes through the same 
procedure as above to decide if 40 (Hex) should be added 
to the value in the temporary register. Similarly this method 
will continue for the next six data bits. After the least signifi­
cant bit has been evaluated, the value in the temporary reg­
ister is moved to data memory. The reader should realize 
that this value can also be stored in another register if de­
sired. Then the temporary register is cleared so that the 
next keystroke value can be recorded there. 

The software continues to mask off the BIRO interrupt until 
the end of the stopbit. At the end of the stopbit the timer is 
stopped and the time out value 0307 (Hex) is loaded into 
the timer. The BIRO interrupt is unmasked to wait for the 
next start bit zero. 

This application has demonstrated how the timer and the 
BIRO input/output pin can be used as a serial input. Howev­
er there should be a note of warning that a production pro­
gram should sample the serial input signal more than once 
every bit-time to guarantee valid data at a given baud rate. 
Furthermore, the software for the OP8344 must guarantee 
that the timer and/or BIRO interrupts are not masked off by 
higher priority interrupts for too great a time; this could delay 
the sampling of the serial input signal for more than a bit­
time, resulting in invalid data being read. 



~ ~------------------------------------------------------------------~ 
C\I 
~ . 
z 
< 

;-----------------------------------------------------------------------

". This program will receive serial data using the BIRQ pin as 
a serial. input pin. 

The timer will be used to detennine when the middle of a bit 
is present at the BIRQ pin. Then the value of the bit is sampled 
with the use of the BIRQ interrupt along with software to decide 
if the bit is a one or a zero. Then the software takes the 
appropriate action for each case. 

In this program all keystoke values are stored in consecutive 
memory locations. 

****** National Semiconductor Copyrightl988 ***** 
-----------------------------------------------------------------------, 

.input II stdequ.hdr" 

CODE: .sect x 
initialization: 

exx AA,AB,DI 
move SFh,DCR ;set CPU -CLK equal to OCLK 
move 02h,IBR ;set up interrupts 
exx MA,MB,DI 
move OE7h,ICR ;unmask timer and BIR interrupts 
move lO,IWLO ;clearIW 
move OO,IWHI 
move O,IX ;clearIX 
move O,GPO ;clear temporary registers 
move O,GPl 
move O,GP2 
move O,GP3 
move O,GP4 
move O,GPS 
move GPS,IZLO ;load IZ with 
move l,GP6 ;base address in data memory 
move GP5,IZHI ;for bit constant values 
move 80h,GP7 ;storing constants for 
move GP7,[IZ+2] ; the most significant bit 
move 40h,GP7 
move GP7,[lZ+3] ; bit6 
move 20h,GP7 
move GP7,[IZ+4] ; bit S 
move lOh,GP7 
move GP7,[IZ+S] ; bit4 
move 08h,GP7 
move GP7,[IZ+6] ; bit 3 
move 04h,GP7 
move GP7,[IZ+7] ; bit 2 
move 02h,GP7 
move GP7,[IZ+8] ; bit 1 
move Olh,GP7 
move GP7,[IZ+9] ; the least significant bit 
move OD7h,GP7 
move GP7,TRL ;load timer's holding register 
move 03h,GP7 ;with count down value 

FIGURE 4 
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» z 
move GP7,TRH a, 

61h,ACR ;load timer 
N 

move 0) 

;END of initialization 
back: 

cmp GPO,O 
jz back ;waiting for BIRQ interrupt 
cmp GPO,O 
jz back ;protection 
cmp GPl,O ;Is this a true start bit? 
jnz nexcl 
move O,GP2 ;NO, then clear GP2 
jmp nexc2 

nexcl: 
move OEFh,ICR ;mask off the BIRQ interrupt 
move GPl,GP4 
move [IZ+AJ,GP4 ;load value of present bit 
adda GP5,GP5 ;add value of present bit 
cmp GPl,9 ;Is this bit O? 
jnz next 2 
move GP5~[IW+J ; YES, store byte of imfonnation 
move O,GP5 ;clear temporary registers 
move O,GP6 

nexc2: 
move O,GPO 
Ijmp back 

;Timer Interrupt Service Routine 
.******************************* , 

tm: 
or 80h,CCR ;clear [TO] flag 
cmp GP6,O ;Is GP6 = O? 
jnz nexclO 
add l,GP3 ;loop until the stop 
cmp GP3,14h ; bit has passed 
jnz nexcll 
move 60h,ACR ;stop and load timer 
move O,GPI ;clearGPl 
move O,GP2 ;clearGP2 
move O,GP3 ;clearGP3 
move l,GP6 ;set GP6 = 1 
move OE7h,ICR ;unmask the BIRQ interrupt 

nexcll: 
ret RI 

nexcl0: 
cmp GPl,O ;Is this the start bit? 
jnz nexc12 
add l,GP3 ;YES, add one to GP3 
cmp GP3,4 ;Is it the middle of the 
jnz nexc13 ;start bit? 
move l,GPO ; YES, set GPO = 1 
move O,GP3 ;clearGP3 
move OE7h,ICR ;unmask BIRQ interrupt 

nexc13: 
ret RI 

TL/F/10450-8 
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N 
<D 

:Z nexcl2: 
« add I,GP3 

cmp GP3,08h ;Is it the middle of a 
jnz nexc14 ;data bit? 
move 1,GPO ;YES, set GPO = 1 
add 1,GP1 ;update which bit it is 
move O,GP3 ;clearGP3 
move OE7h,ICR ;unmask the BIRQ interrupt 

nexcl4: 
ret RI 

;BIRQ Interrupt Service Routine 
.****************************** , 

bq: 
move OEFh,ICR ;mask off the BIRQ interrupt 
move O,GPO ;clearGPO 
cmp GP1,O ;ls this the start bit? 
jnz nexC20 
cmp GP2,O ;YES, is this the fIrst 
jnz nexc21 ;indication? 
move OAOh,ACR ;YES, start the timer 
move 1,GP2 ;set GP2 =1 
ret RI 

nexc21: 
move 1,GP1 ;set GPI = 1 

nexc20: 
cmp GP1,9 
jnz nexc22 
move GP5,[IW+] 
move O,GP5 
move O,GP6 

nexc22: 
ret RI 

CODE: .sect ax 
.org 210h 
ljmp bq 
.org 214h 
ljmp un 

.END 
TL/F/10450-9 
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FIGURE 5. A Flow Chart of the Basic Application of the DP8344 as a Serial Input Keyboard 
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~ r-------------------------------------------------------------------~ 
N 
CD 

Z « 
;-----------------------------------------------------------------_ .. ----

This is the very simple cursor program for the BCP. 
The timer along with the software toggles the state of the 

cursor every 200msec. The state of the cursor is stored in data 
memory. 

;-----------------------------------------------------------------------
.input 

CODE: 
initialization: 

"stdequ.hdr" 

.sect x 

exx AA,AB,DI 
move 5Fh,DCR 
move Ol,IBR 
exx MA,MB,DI 
move OEFh,ICR 
move O,GPO 
move O,GPI 
move O,GP2 
move GP2,IZLO 
move GP2,IZHI 
move GP2,[IZ+0] 
move 5Ch,GP2 
move GP2,TRH 
move 23h,GP2 
move GP2,TRL 
move OClh,ACR 

;set CPU-CLK equal to OCLK 
;set up interrupt 

;unmasktimer interrupt 
;clear temperary register 
;clear temperary register 
;clear temperary register 
;clearIZ 

;clear data memory location 

;Ioad high bit of the timer 

;load low bit of the timer 
;Ioad and start timer 

;END of initialization 
loop: 

jmp loop ;wait for timer interrupt 

;Timer Interrupt Service Routine 
;******************************* 

dest: 
or 80h,CCR ;clear [TO] flag 
add 1 ,GPO 
cmp GPO,OAh ;Has 200msec passed? 
mz R ;NO, return with interrupts on 
move O,GPO ;YES, 
cmp GPl,O ;Toggle 
jnz next the 
move 1,GPl value 
jmp send of 

next 
move O,GPI the 

send: 
move GPl,[IZ+0] ; cursor 
ret RI ;retum with interrupts enabled 

CODE: .sect ax 
.org 114h 
Ijmp dest 

.END 

FIGURE 6 
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BLINK THE CURSOR 

Introduction 

Blinking the cursor is performed on virtually all computers. 
With its powerful CPU and programmable timer, the DP8344 
can easily implement this basic function without any addi­
tional components. 

The following is one of many ways to perform the blinking 
cursor operation. 

In this application the timer along with a small amount of 
software will turn the cursor on and off at a periodic rate. 
The following is a description of the way the timer is pro­
grammed and the DP8344's softwaro usod to implement 
this function. (Refer to A'gure 6 for the actual BCP code for 
this application.) 
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First, timer must be programmed to operate in the desired 
configuration. For this application the timer is pre-configured 
to divide the CPU clock by sixteen with the CPU clock set 
equal to the oscillator clock at 18.8696 MHz (Le., [CCS] = 

0). The timer interrupt is unmasked and enabled. The time 
out value of 5C23 (Hex) is loaded into the timer's holding 
register via !TRLJ and !TRHI. 

After the timer is programmed properly, the timer is loaded 
and started by writing to ! ACR J. Once the timer is loaded 



and started, it will continually cycle through the time out 
value of 5C23 (Hex), which corresponds to 20 ms. When the 
timer counts down to zero, it will set the timer interrupt and 
the BCP's software is programmed to call a timer interrupt 
service routine. The timer interrupt service routine updates 
and stores the state of the cursor in data memory. 

State of Cursor: 0 ~ Cursor is OFF 
1 ~ Cursor is ON 

After ten timer interrupts, the service routine will toggle the 
state of the cursor. Thus, the cursor will blink 2.5 times a 
second. 

Blinking the cursor every 200 ms is not a stringent require­
ment. As a result the 5250 protocol's 45 J-ts delays may be 
interleaved with the 20 ms time outs. This once again dem­
onstrates that the flexibility of the timer can enhance the 
performance of two functions at the same time. 

REAL-TIME CLOCK 

Introduction 
An added feature on most personal computers is a real-time 
clock. The clock is used to provide the time, the day, the 
month and the year. With the BCP's programmable timer 
and powerful CPU, this clock function can be performed by 
the DP8344 without any additional components. 

In this application the timer along with a small amount of 
DP8344 software keeps track of the time. Software also 
allows the user to set the initial time, then the DP8344's 
timer and software takes over and accurately keeps track of 
the time. The following is a description of the way the timer 
is programmed and the DP8344's software used to imple­
ment a real-time clock. (Refer to Figure 7 for the actual BCP 
code for this application.) 

Description 
The following describes one basic way to implement a real­
time clock using the BCP. 

First, the timer must be programmed to operate in the de­
sired configuration. For this application the timer is pre-con­
figured to divide the CPU clock by sixteen with the CPU 
clock set equal to the oscillator clock at 18.8696 MHz (Le., 
rCCS] = 0). The timer interrupt is unmasked and enabled. 
The countdown-value of 5C23 (Hex) is loaded into the tim­
er's holding register via ITRLI and ITRHJ. 

After the timer is programmed properly the timer is loaded 
and started by writing to I ACR J. Once the timer is loaded 
and started, it should remain on and continually cycle 
through the time out value of 5C23 (Hex), which corre­
sponds to 20 ms exactly. When the timer counts down to 

2-149 

zero, it sets the timer interrupt and the CPU is programmed 
to call a timer interrupt service routine. 

The timer interrupt service routine is very basic. The number 
of seconds, minutes, hours, days and years are all recorded 
in separate data memory locations. The service routine will 
add one to the seconds value after fifty timer interrupts. 
After sixty seconds, the seconds value is reset to zero and a 
one is added to the minutes value. After sixty minutes, the 
minutes value is reset to zero and a one is added to the 
hours value. Likewise the number of hours, days and years 
are recorded in a similar manner.· . . 

As mentioned in the introduction, in order to set the present 
date and time after powering up requires software which 
allows the user to define the present time and date. This 
software would be remote processor software, not DP8344 
software. This remote processor's software should allow 
the user to enter the present time and date, then this soft­
ware must transform the entered time and data into· data 
which can be transferred to the real-time clock's data mem­
ory locations. This starts the clock at the entered time, and 
the timer and DP8344 software will be responsible for up­
dating the clock accurately. 

The reader may desire a clock which records time in incre­
ments as small as a hundredth of a second. In this case the 
timer should be programmed to count down 10 ms time 
outs, and another data memory location must be used to 
record the number of these hundredths of a second. 

For the application of a real-time clock, the. timer cannot 
interleave two timing values as in the 5250 Protocol applica­
tion. The timer must be pre-configured and allowed to run 
without interruption. Otherwise, timing errors will occur and 
the clock will not record time accurately. 

However, the reader may notice that the BLINK THE CUR­
SOR application uses the same time out value {Le., 5C23 
(Hex» as the real-time clock. This demonstrates how the 
BCP can be programmed to use one countdown-value to 
implement two desirable functions without effecting the per­
formance of either operation. 

A final warning to the reader. The oscillator clock must be 
extremely accurate for this application. For the program pro­
vided, and error of 0.0002 MHz in the oscillator clock (OCLK 
= 18.8696 MHz) will result in an error of 0.916 seconds a 
day or 5 minutes 34 seconds per year. The best way to 
prevent timing problems is to accurately measure the oscil­
lator clock frequency first, then calculate and implement all 
time out values based on that measurement. 

» z . 
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This is the third version of the real-time clock. 
This version like the second uses the timer interrupt to make 

service calls, instead of polling the TO flag (bit 7 of CCR) 
to see when the timer has counted to zero. The timer is pre­
configured to use CPU-CLK/16 and the CPU-CLK is set equal to 
OCLK (oscillation clock, in this case 18.8696 MHz). The countdown 
value is 5C23 Hex, which corresponds to 20 ms. 

The IW register is incremented every 20 ms interrupt until 
it contains 32(Hex) or 50(Dec), which corresponds to every second 
exactly. Then the IX register is incremented. 

Unlike version 2 this version uses data memory to store and 
record the time that has elapsed. The following table gives 
the memory locations of the stored time values. 

value 1 memory location (HEX) 
------------------1-------------------------
seconds 1 00 40 
minutes 1 00 30 
hours 1 00 20 
days 1 00 10 
years 1 00 00 (not implimented in program) 

-----------------------------------------------------------------------
.input "stdequ.hdr" 

CODE: . sect x 
initialization: 

exx AA,AB,DI 
move 5Fh,DCR ;set CPU-CLK equal to OCLK 
move 01,IBR ;set up interrupt 
exx MA,MB,DI 
move OEFh,ICR ;unmask timer interrrupt 
move O,IW ;c1earIW 
move O,IX ;clearIX 
move 0,OP5 
move GP5,IYLO ;c1earIY 
move GP5,IYHI 
move GP5,IZLO ;c1earIZ 
move GP5,IZHI 
move GP5,[lZ+0] ;c1earyear 
move GP5,[IZ+I0h] ;cleardays 
move GP5,[IZ+20h] ;c1ear hours 
move GP5,[lZ+30h] ;clear minutes 
move GP5,[IZ+40h] ;clear seconds 
move I,GP6 
move 5Ch,OP5 
move GP5,TRH ;load high byte of the time out value 
move 21h,GP5 
move GP5,TRL ;load low byte of the time out value 
move 40h,ACR ;load timer from the holding reg. 
move 81h,ACR ;start timer 

;END of initialization 
loop: 

FIGURE 7 
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jmp loop 0) 
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;Timer interrupt selVice routine 
.******************************* , 

dest: 
or 80h,CCR ;c1ear [TO] flag 
add 1,IWLO ;increment IW 
cmp IWLO,32h ;does IW = 50 decimal 
rnz RI ;NO, then return with interrupt on 
move O,IWLO ;c1earIW 
move [IZ+40h] ,IXLO 
add 1,IXLO ;YES, then increment IX 
cmp IXLO,3Ch ;does seconds = 60 
jnz nexcl 
move O,IXLO ; YES, then clear seconds 

nexcl: move IXLO,[lZ+40h] ;move seconds to data memory 
rnz RI 
move [IZ+30h],IXLO 
add 1,IXLO ;increment minutes 
cmp IXLO,3Ch ;does minutes = 60 
jnz nexc2 
move O,IXLO ; YES, then clear minutes 

nexC2: move IXLO,[IZ+30h] ;move minutes to data memory 
move O,IXLO 
rnz RI 
move [IZ+20h],IXLO 
add 1,IXLO ;increment hours 
cmp IXLO,18h ;does hours = 24 

jnz nexc3 
move O,IXLO ;YES, then clear hours 

nexc3: move IXLO,[lZ+20h] ;move hours to data memory 
move O,IXLO 
rnz RI 
move [IZ+ 1 Oh],IXLO 
add 1,IXLO ;increment days 
move IXLO,[IZ+ 10h] 
move O,IXLO 
ret RI 

CODE: .sect ax 
.org 114h 
Ijmp dest 

.END 
TL/F/10450-13 
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Interfacing the DP8344 
to Twinax 

OVERVIEW 

The DP8344, or Biphase Communications Processor 
from National Semiconductor's Advanced Peripherals group 
brings a new level of system integration and simplicity to the 
IBM® connectivity world. Combining a 20 MHz RISC archi­
tecture CPU with a flexible multi-protocol transceiver and 
remote interface, the BCP is well suited for IBM 3270, 3299 
and 5250 protocol interfaces. This Application Note will 
show how to interface the BCP to twinax, as well as provide 
some basics about the IBM 5250 environment. 

5250 ENVIRONMENT 

The IBM 5250 environment encompasses a family of devic­
es that attach to the IBM System/34, 36 and 38 mid-size 
computer systems. System unit model numbers include the 
5360, 5362, 5364, 5381, and 5382, and remote controller 
models 5294 and 5251 model 12. The system units have 
integral work station controllers and some may support up 
to 256 native mode twinax devices locally. Native mode 
twinax devices are ones that connect to one of these host 
computers or their remote control units via a multi-drop, high 
speed serial link utilizing the 5250 data stream. This serial 
link is primarily implemented with twinaxial cable but may be 
also found using telephone grade twisted pair. Native mode 
5250 devices include mono-chrome, color and graphics ter­
minals, as well as a wide range of printers and personal 
computer emulation devices. 

TWINAX AS A TRANSMISSION MEDIA 

The 5250 environment utilizes twinax in a multi-drop config­
uration, where eight devices can be "daisy-chained" over a 
total distance of 5000 ft. and eleven splices, (each physical 
device is considered a splice) see Figure 1. Twinax can be 
routed in plenums or conduits, and can be hung from poles 
between buildings (lightning arrestors are recommended for 
this). Twinax connectors are bulky and expensive, but are 
very sturdy. Different sorts may be purchased from IBM or a 
variety of third party vendors, including Amphenol. Twinax 
should not be spliced; to connect cables together both ca­
bles should be equipped with male connectors and a quick­
disconnect adapter should be used to join them (Amphenol 
#82-5588). 

National Semiconductor 
Application Note 516 
Thomas J. Quigley 

Twinaxial cable is a shielded twisted pair that is nearly % of 
an inch thick. This hefty cable can be either vinyl or teflon 
jacketed and has two internal conductors encased in a stiff 
polethylene core. The cable is available from BELDEN (type 
# 9307) and other vendors, and is significantly more expen­
sive than coax. 

The cable shield must be continuous throughout the trans­
mission system, and be grounded at the system unit and 
each station. Since twinax connectors have exposed metal 
connected to their shield grounds, care must be taken not to 
expose them to noise sources. The polarity of the two inner 
conductors must also be maintained throughout the trans­
mission system. 

The transmission system is implemented in a balanced cur­
rent mode; every receiver/transmitter pair is directly cou­
pled to the twinax at all times. Data is impressed on the 
transmission line by unbalancing the line voltage with the 
driver current. The system requires passive termination at 
both ends of the transmission line. The termination resist­
ance value is given by: 

Rt = ZO/2; where 

Rt: Termination Resistance 

Zo: Characteristic Impedance 

In practice, termination is accomplished by connecting both 
conductors to the shield via 54.90, 1 % resistors; hence the 
characteristic impedance of the twinax cable of 1070 ±5% 
at 1.0 MHz. Intermediate stations must not terminate the 
line; each is configured for "pass-through" instead of "ter­
minate" mode. Stations do not have to be powered on to 
pass twinax signals on to other stations; all of the receiver/ 
transmitter pairs are DC coupled. Consequently, devices 
must never output any signals on the twinax line during pow­
er-up or down that could be construed as data, or interfere 
with valid data transmission between other devices. 

WAVEFORMS 

The bit rate utilized in the 5250 protocol is 1 MHz ± 2% for 
most terminals, printers and controllers. The IBM 3196 dis-

r--------------- --------------- ---------------. 

STATION '0' 

• • • • • • • • • • • • 
• • !!!: 

2. 

• • • -= • . _-------------- --------------_. 
STATION '1' STATION 7' 
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FIGURE 1. Multi-Drop Transminion Lines 
The eight stations shown include the host device as a station. The first and last stations are terminated while intermediate stations are not. 
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play station has a bit rate of 1.0368 MHz ± 0.01 %. The data 
are encoded in biphase, NRZI (non-return to zero inverted) 
manner; a "1" bit is represented by a positive to negative 
transition, a "a" is a negative to positive transition in the 
center of a bit cell. This is opposite from the somewhat 
more familiar 3270 coax method. The biphase NRZI data is 
encoded in a pseudo-differential manner; i.e. the signal on 
the "A" conductor is subtracted from the signal on "8" to 
fotm the waveform shown in Figure 2. Signals A and 8 are 
not differentially driven; one phase lags the other in time by 
180·. Figures 3 and 4 show actual signals taken at the driver 
and receiver after 5000 ft. of twinax, respectively. 

500 1000 2000 3000 
time (ns) I I 

A OV 

-0.3V 

-loGV 

OV 

-0.3V 

-lo6V 

loGV 

0.3V 

(B-A) OV 

-0.3V 

-l.GV 

NRZI 5V 

OV 

"'000 

The signal on either the A or 8 phase is a negative going 
pulse with an amplitude of - 0.32V ± 20% and duration of 
500 ± 20 ns. During the first 250 ± 20 ns, a predistortion or 
pre-emphasis pulse is added to the waveform yielding an 
amplitude of -1.6V ± 20%. When a signal on the A phase 
is considered together with its 8 phase counterpart, the re­
sultant waveform represents a bit cell or bit time, comprised 
of two half-bit times. A bit cell is 1 J-ts ± 20 ns in duration 
and must have a mid bit transition. The mid bit transition is 
the synchronizing element of the waveform and is key to 
maintaining transmission integrity throughout the system. 

5000 6000 7000 8000 9000 
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FIGURE 2. Twinax Waveforms 
The signal on phase A is shown at the initiation of the line quiesce/line violation sequence. 

Phase 8 is shown for that sequence, delayed in time by 500 ns. 

The NRZI data recovered from the transmission. 

TLIF/9635-3 

FIGURE 3. Signal at the Driver 
The signal shown was taken with channel 1 of an oscilloscope connected to 
phase B, channel 2 connected to A, and then channel 2 inverted and added 
to channel 1. 
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FIGURE 4. Signal at the Receiver 
The signal shown was viewed in the same manner as Figure 3. The severe 
attenuation is due to the filtering effects of 5000 ft. of twinax cable. • I 
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As previously mentioned, the maximum length of a twinax 
line is 5000 ft. and the maximum number of splices in the 
line is eleven. Devices count as splices, so that with eight 
devices on line, there can be four other splices. The signal 
5000 ft. and eleven splices from the controller has a mini­
mum amplitude of 100 mV and a slower edge rate. The bit 
cell transitions have a period of 1 IJ-s ± 30 ns. 

5250 BIT STREAM 

The 5250 Bit stream used between the host control units 
and stations on the twinax line consists of three separate 
parts; a bit synchronization pattern, a frame synchronization 
pattern, and one or more command or data frames. The bit 
sync pattern is typically five one bit cells. This pattern 
serves to charge the distributed capacitance of the trans­
mission line in preparation for data transmission and to syn­
chronize receivers on the line to the bit stream. Following 
the bit sync or line quiesce pattern is the frame sync or line 
violation. This is a violation of the biphase, NRZI data mid 
bit transition rule. A positive going half bit, 1.5 times normal 
duration, followed by a negative going signal, again 1.5 
times normal width, allows the receiving circuitry to estab­
lish frame sync. 

Frames are 16 bits in length and begin with a sync or start 
bit that is always a 1. The next 8 bits comprise the com­
mand or data frame, followed by the station address field of 
three bits, a parity bit establishing even parity over the start, 
data and address fields, and ending with a minimum of three 
fill bits (fill bits are always zero). A message consists of a bit 
sync, frame sync, and some number of frames up to 256 in 
total. A variable amount of inter-frame fill bits may be used 
to control the pacing of the data flow. The SET MODE com­
mand from the host controller sets the number of bytes of 
zero fill sent by attached devices between data frames. The 
zero fill count is usually set to zero. The number of zero fill 
bits injected between frames by the BCP is set by theFiII Bit 
select register (FBR I. This register contains the one's com­
plement of the number of BITS sent, not bytes. 

Message routing is accomplished through use of the three­
bit address field and some basic protocol rules. As men­
tioned above, there is a maximum of eight devices on a 
given twinax line. One device is designated the controller or 

~-~~~~---~~~~ 
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, PWR-COOD 

host and the remaining seven are slave devices. All commu­
nication on the twinax line is host initiated and half duplex. 
Each of the seven devices is assigned a unique station ad­
dress from zero to six. Address seven is used for an End Of 
Message delimiter, or EOM. The first or only frame of a 
message from controller to device must contain the address 
of the device. Succeeding frames do not have to contain the 
same address for the original device to remain selected, 
although they usually do. 

The last frame in a sequence must contain the EOMdelimi­
ter. For responses from the device to the controller, the 
responding device places its own address in the address 
field in frames 1 to (n - 1 ),where n ~ 256, and places the 
EOM delimiter in the address field of frame n. However, if 
the response to the controller is only one frame, the EOM 
delimiter is used. The controller assumes that the respond­
ing devices was the one addressed in the initiating com­
mand. 

Responses to the host must begin in 60 ± 20 IJ-s, although 
some specifications state a 45 ± 15 IJ-s response time. In 
practice, controllers do not change their time out values per 
device type so that anywhere from 30 IJ-s to 80 IJ-s response 
times are appropriate. 

DRIVER CIRCUITS FOR THE DP8344 

The transmitter interface on the DP8344 is sufficiently gen­
eral to allow use in 3270, 5250, and 8-bit transmission sys­
tems. Because of this generality, some external hardware is 
needed to adapt the outputs to form the signals necessary 
to drive the twinax line. The chip provides three signals: 
DATA-OUT, DATA-DLY, and TX-ACT. DATA-OUT is bi­
phase serial data (inverted). DATA-DLY is the biphase serial 
data output (non-inverted) delayed one-quarter bit-time. TX­
ACT, or transmitter active, signals that serial data is being 
transmitted when asserted. DATA-OUT and DAT A-DL Y can 
be used to form the A and B phase signals with their three 
levels by the circuit shown in Figure 5. TX-ACT is used as an 
external transmitter enable. The BCP can invert the sense 
of the DATA-OUT and DATA-DLY signals by asserting TIN 
(TMR[3] l. This feature allows both 3270 and 5250 type 
biphase data to be generated, and/or utilization of inverting 
or non-inverting transmitter stages. 
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FIGURE 5_ Schematic 
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The current mode drive method used by native twinax devic­
es has both distinct advantages and disadvantages. Current 
mode drivers require less power to drive properly terminat­
ed, low-impedance lines than voltage mode drivers. Large 
output current surges associated with voltage mode drivers 
during pulse transition are also avoided. Unwanted current 
surges can contribute to both crosstalk and radiated emis­
sion problems. When data rate is increased, the surge time 
(representing the energy required to charge the distributed 
capacitance of the transmission line) represents a larger 
percentage of the driver's duty cycle and results in in­
creased total power dissipation and performance degrada­
tion. 

A disadvantage of current mode drive is that DC coupling is 
required. This implies that system grounds are tied together 
from station to station. Ground potential differences result in 
ground currents that can be significant. AC coupling re­
moves the DC component and allows stations to float with 
respect to the host ground potential. AC coupling can also 
be more expensive to implement. 

Drivers for the 5250 environment may not place any signals 
on the transmission system when not activated. The power­
on and off conditions of drivers must be prevented from 
causing noise on the system since other devices may be in 
operation. Figure 5 shows a "DC power good" signal en­
abling the driver circuit. This Signal will lock out conduction 
in the drivers if the supply voltage is out of tolerance. 

Twinax signals can be viewed as consisting of two distinct 
phases, phase A and phase B, each with three levels, off, 
high and low. The off level corresponds with 0 mA current 
being driven, the high level is nominally 62.5 mA, 
+20%-30%, and the low level is nominally 12.5 mA, 
+20%-30%. When these currents are applied to a proper­
ly terminated transmission line the resultant voltages im­
pressed at the driver are: off level is OV, low level is 0.32V 
± 20%, high level is 1.6V ± 20%. The interface must pro­
vide for switching of the A and B phases and the three 
levels. A bi-modal constant current source for each phase 
can be built that has a TTL level interface for the BCP. 

An integrated solution can be constructed with a few current 
mode driver parts available from National and Texas Instru­
ments; The 7511 OA and 75112 can be combined to provide 
both the A and B phases and the bi-modal current drive 
required as in Figure 5. The external logic used adapts the 
coax oriented BCP outputs to the twinax interface circuit, 
and prevents spurious transmissions during power-up or 
down. The serial NRZ data is inverted prior to being output 
by the BCP by setting TIN, {TMR[3] J. 

RECEIVER CIRCUITS 

The pseudo-differential mode of the twinax signals make 
receiver design requirements somewhat different than the 
coax 3270 world. Hence, the analog receiver on the BCP is 
not well suited to receiving twinax data. The BCP provides 
both analog inputs to an on-board comparator circuit as well 
as a TTL level serial data input, TTL-IN. The sense of this 
serial data can be inverted by the BCP by asserting RIN, 
{TMR[4]J. 

The external receiver circuit must be designed with care to 
ensure reliable decoding of the bit-stream in the worst envi­
ronments. Signals as small as 100 mV must be detected. In 
order to receive the worst case signals, the input level 
switching threshold or hysteresis for the receiver should be 
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nominally 29 mV ± 20%. This value allows the steady state, 
worst case signal level of 100 mV 66% of its amplitude 
before transitioning. 

To achieve this, a differential comparator with complemen­
tary outputs can be applied, such as the National LM361. 
The complementary outputs are useful in setting the hyster­
esis or switching threshold to the appropriate levels. The 
LM361 also provides excellent common mode noise rejec­
tion and a low input offset voltage. Low input leakage cur­
rent allows the design of an extremely sensitive receiver, 
without loading the transmission line excessively. 

In addition to good analog design techniques, a low pass 
filter with a roll-off of approximately 1 MHz should be ap­
plied to both the A and B phases. This filter essentially con­
ducts high frequency noise to the opposite phase, effective­
ly making the noise common mode and easily rejectable. 

Layout considerations for the LM361 include proper bypass­
ing of the ± 12V supplies at the chip itself, with as short as 
possible traces from the pins to 0.1 J.LF ceramic capacitors. 
USing surface mount chip capacitors reduces lead induc­
tance and is therefore preferable in this case. Keeping the 
input traces as short and even in length is also important. 
The intent is to minimize inductance effects as well as stan­
dardize those effects on both inputs. The LM361 should 
have as much ground plane under and around it as possi­
ble. Trace widths for the input Signals especially should be 
as wide as possible; 0.1 inch is usually sufficient. Finally, 
keep all associated discrete components nearby with short 
routing and good ground/supply connections. ' 

Design equations for the LM361 in a 5250 application are 
shown here for example. The hysteresis voltage, Vh, can be 
expressed the following way: 

Vh = Vrio + ((Rin/(Rin + RI) x Vol) 
- (Rin/(Rin + RI) x Vol)) 

where 

Vh - Hysteresis Voltages, Volts 

Rin - Series Input Resistance, Ohms 

RI - Feedback Resistance, Ohms 

Cin - Input Capacitance, Farads 

Vrio- Receiver Input Offset Voltage, Volts 

Voh- Output Voltage High, Volts 

Vol - Output Voltage Low, Volts 

The input filter values can be found through this relation­
ship: 

Vcin = Vin1 - Vin2/1 + jwCin (Rin1 + Rin2) 

where Rin1 = Rin2 = Rin: 
Fro = W/21T 

Fro = 1/(21T X Rin X Cin) 

Cin = 1/(21T X Rin X Fro) 

where 

Vin1, Vin2- Phase A and B signal voltages, Volts 

Vcin - Voltage across Cjn, or the output of the filter, 
Volts 

Rin1, Rin2- lnput resistor values, Rin1 = Rin2, Ohms 

Fro - Roll-Off Frequency, Hz 

W - Frequency, Radians 
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The roll-off frequency, Fro, should be set nominally to Fr02 = 1/(21T X (Rin1 + Rin2) X Cin) 
1 MHz to allow for transitions at the transmission bit rate. or, 
The transition rate when both phases are taken together is 

Fr02 = 1/(21T X 2 X Rin X Cin) 
2 MHz, but then Rin1 and Rin2 must be considered, so: 

where Fr02 = 2 X Fro, yielding the same results. 

The following table shows the range of values expected: 

TABLE I 

Value Maximum Minimum Nominal Units Tolerance 

RIN 4.935E+03 4.465E+03 4.700E+03 n 0.05 

RF 8.295E+05 7.505E+05 7.900E+05 n 0.05 

CIN 4.4556E-11 2.6875E-11 3.3863E-11 F 

VOH 5.250E+00 4.750E+00 5.000E+00 V 

VOL 4.000E-01 2.000E-01 3.000E-01 V 

VIN+ 1.920E+00 1.000E-01 V 

VIN- 1.920E+00 1.000E-01 V 

VRIO 5.000E-03 O.OOOE+OO 1.000E-03 V 

R 6.533E-03 5.354E-03 5.914E-03 n 
Fro 1.200E+06 8.000E+05 1.000E+06 Hz 0.2 

VH 3.368E-02 2.691E-02 2.880E-02 V 

Xc 7.4025E+03 2.9767E+03 4.7000E+03 n 

The BCP has a number of advanced features that give de~ sequence. This flexibility allows the BCP to operate in ex-
signers much flexibility to adapt products to a wide range of tremely noisy environments, allowing more time for the 
IBM environments. Besides the basic multi-protocol capabil- transmission line to charge at the beginning of a transmis-
ity of the BCP, the designer may select the inbound and sion. The selection of the transmitted line quiesce pattern is 
outbound serial data polarity, the number of received and not generally used in the 5250 arena, but has applications in 
transmitted line quiesces, and in 5250 modes, a program- 3270. Changing the number of line quiesces at the start of a 
mabie extension of the TX-ACT signal after transmission. line quiesce pattern may be used by some equipment to 

The polarity selection on the serial data stream is useful in implement additional repeater functions, or for certain inflex-

building single products that handle both 3270 and 5250 ible receivers to sync up. 

protocols. The 3270 biphase data is inverted with respect to The most important advanced feature of the BCP for 5250 
5250. applications is the programmable TX-ACT extension. This 

Selecting the number of line quiesces on the inbound serial feature allows the designer to vary the length of time that 
data changes the number of line quiesce bits that the re- the TX-ACT signal from the BCP is active after the end of a 

ceiver requires before a line violation to form a valid start transmission. This can be used to drive one phase of the 
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twinax line in the low state for up to 15.5 !-,-s. Holding the line 
low is useful in certain environments where ringing and re­
flections are a problem, such as twisted pair applications. 
Driving the line after transmitting assures that receivers see 
no transitions on the twinax line for the specified duration. 
The transmitter circuit shown in Figure 5 can be used to 
hold either the A or B phase by using the serial inversion 
capability of the BCP in addition to swapping the A and B 
phases. Choosing which phase to hold active is up to the 
designer; 5250 devices use both. Some products hold the A 
phase, which means that another transition is added after 
the last half bit time including the high and low states, with 
the low state he If for the duration, see Figure 6. Alternative­
ly, some products hold the B phase. Holding the B phase 
does not require an extra transition and hence is inherently 
quieter. 

TLlF/9635-6 

FIGURE 6. Line Hold Options 
The signal was viewed in the same manner as Figures 3 and 4. The lefthand 
portion of the signal is a transmitting device utilizing line hold on phase A. 
The right hand side shows the IBM style (phase B) line hold. 

To set the TX-ACT hold feature, the upper five bits of the 
Auxilliary Transceiver Register, IATR [3-7]1. are loaded 
with one of thirty-two possible values. The values loaded 
select a TX-ACT hold time between 0 !-,-S and 15.5 !-,-S in 500 
ns increments. 

SOFTWARE INTERFACE 

The BCP was designed to simplify designing IBM communi­
cations interfaces by providing the specific hardware neces­
sary in a highly integrated fashion. The power and flexibility 
of the BCP, though, is most evident in the software that is 
written for it. Software design for the BCP deserves careful 
attention. 

When designing a software architecture for 5250 terminal 
emulation, for example, one concern the designer faces is 
how to assure timely responses to the controller's com­
mands. The BCP offers two general schemes for handling 
the real time response requirements of the 5250 data 
stream: interrupt driven transceiver interface mode, and 
polled transceiver interface mode. Both modes have 
strengths that make them desirable. The excellent interrupt 
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response and latency times of the BCP make interrupts very 
useful in most 5250 applications. 

Although factors such as data and instruction memory wait 
states and remote processors waiting BCP data memory 
accesses can degrade interrupt response times, the mini­
mum latency is 2.5 T -states. The BCP samples all interrupt 
sources by the falling edge of the CPU clock; the last falling 
edge prior to the start of the next instruction determines 
whether an interrupt will be processed. When an interrupt is 
recognized, the next instruction in the present stream is not 
executed, but its address is pushed on the address stack. A 
two T-state call to the vector generated by the interrupt type 
and the contents of {lBR} is executed and [GIE] (Global 
Interrupt Enable) is cleared. If the clock edge is missed by 
the interrupt request or if the current instruction is longer 
than 2 bytes, the interrupt latency is extended. 

Running in an interrupt driven environment can be complex 
when multiple sessions are maintained by the same piece of 
code. The software has the added overhead of determining 
the appropriate thread or session and handling the interrupt 
accordingly. For a multi-session 5250 product, the trans­
ceiver interrupt service routines must determine which ses­
sion is currently selected through protocol inferences and 
internal semaphores to keep the threads separate and in­
tact. 

In a polled environment, the biggest difficulty in designing 
software is maintaining appropriate polling intervals. Polling 
too often wastes CPU bandwidth, not polling frequently 
enough loses data and jeopardizes communication integrity. 
Standard practice in servicing polled devices is to count 
CPU clock cycles in the program flow to keep track of when 
to poll. A program change can result in lengthy recalcula­
tions of polling intervals and requalifications of program 
functionality. Using the programmable timer on board the 
BCP to set the polling interval alleviates the need to count 
instructions when code is changed or added. In both polled 
or interrupt environments, the latency effects of remote 
processors waiting memory accesses must be limited to a 
known length of time and figured into both polling intervals 
and worst case interrupt latency calculations. Using the pro­
grammable timer on the BCP makes both writing and main­
taining polled software easier. 

SOFTWARE ARCHITECTURE FOR 5250 EMULATION 

The 5250 data rate is much lower than that of the 3270 data 
stream, hence it is possible for the BCP to emulate all seven 
5250 sessions with a CPU frequency of 8 MHz. Choosing a 
16 MHz crystal allows the transceiver to share the CPU 
clock at OCLK/2, eliminating an extra oscillator circuit. The 
8 MHz rate yields a 125 ns T -state, or 250 ns for most 
instructions. Interrupt latency is typically one instruction (as­
suming no wait states or remote accesses) which is suitable 
for 5250 operation. If more speed is desired, the CPU could 
be switched to 16 MHz operation. 

A MUL TI·MODE TRANSCEIVER 

The BCP provides two 5250 protocol modes, promiscuous 
and non-promiscuous. These two modes afford the design­
er a real option only when the end product will attach to one 
5250 address at a time. The non-promiscuous mode is con­
figured with an address in the {ATR} register and only re-
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ceives messages whose first frame address matches that 
address, or an error occurs in the first frame of the mes­
sage. Filtering out unwanted transmissions to other ad­
dresses leaves more CPU time for other non-protocol relat­
ed tasks, but limits the device to one address at a time. The 
promiscuous mode allows messages to any and all address­
es· to be received. Resetting the transceiver during a mes­
sage destined to another device forces the transceiver to 
begin looking for a start sequence again, effectively discard­
ing the entire unwanted message. Because of its flexibility, 
the promiscuous mode is used in this illustration. 

REAL TIME CONSIDERATIONS 

Choosing a scheme for servicing the transceiver is basic to 
the design of any emulation device. The BCP provides both 
polled and interrupt driven modes to handle the real time 
demands of the chosen protocol. In this example, the inter­
rupt driven approach is used. This implies the extra over­
head of setting up interrupt vectors and initializing the inter­
rupt masks appropriately. This approach eliminates the 
need to figure pOlling intervals within the context of other 
CPU tasks. 

5250 CONFIGURATION 

Configuring a complex device like the BCP can be difficult 
until a level of familiarity with the device is reached. To help 
the 5250 product designer through an initial configuration, a 
register by register description follows, along with the rea­
sons for each configuration choice. Certainly, most applica­
tions will use different configurations than the one shown 
here. The purpose is to illustrate one possible setup for a 
5250 emulation device. 

There are two major divisions in the BCP's configuration 
registers: CPUspecifici and transceiver specific ones. 

CPU SPECIFIC CONFIGURATION REGISTERS: 

IOCR I -Device Control Register-This register controls 
the clocks and wait states for instruction and data memory. 
Using a value of H # AO sets the CPU clock to the OCLK/2 
rate, the transceiver to OCLK/2, and no wait states for ei­
ther ,memory bank. As described above, the choice of a 
16 MHz crystal and configuring this way allows 8 MHz oper­
ation now, with a simple software change for straight 16 
MHz operation in the future. . 

IACRI~Auxlllary Control Register-Loading this register 
with H#20 sets the timer clock source to CPU-CLK/2, sets 
[BIC], the Bidirectional Interrupt Control to configure BIRO 
as an input, allows remote accesses with [LOR] cleared, 
and disables all maskable interrupts through [GIE] low. 
When interrupts are unmasked in IICRI, [GIE] must be set 
high to allow interrupts to operate. [GIE] can be set and 
cleared by writing to it, or through a number of instructions 
including RET and EXX. 

!lBRI-lnterrupt Base Register-This register must be 
set to the appropriate base of the interrupt vector table lo­
cated in data RAM. The DP8344 development card and 
monitor software expect [IBR] to be at H#1F, making the 
table begin at H # 1 FOO. The monitor software can be used 
without the interrupt table at H # 1 FOO, but doing so is sim­
plest for this illustration. 

!lCRI-lnterrupt Control Register-This register con­
tains both CPU and transceiver specific controls. From the 
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CPU point of view, the interrupt masks are located here. In 
this illustration, the system requires receiver, transmitter, 
BIRO, and timer interrupts, so that in operation those inter­
rupt bits should be unmasked. For initialization purposes, 
though, interrupts should be masked until their vectors are 
installed and the interrupt task is ready to be started. There­
fore, loading [lCR] with H#7F is prudent. This also sets the 
receiver interrupt source, but that will be discussed in the 
next section. 

TRANSCEIVER CONFIGURATION REGISTERS: 

I TMR ) -Transceiver Mode Register-This register con­
trols the protocol selection, transceiver reset, loopback, and 
bit stream inversion. Loading this register with H#OD sets 
up the receiver in 5250 promiscuous mode, inverts serial 
data out, does not invert incoming serial data, does not al­
low the transmitter and receiver to be active at the same 
time, disables loopback, and does not reset the transceiver. 
Choosing to set [RIN] low assumes that serial data will be 
presented to the chip in NRZI form. Not allowing the receiv­
er and transmitter to operate concurrently is not an issue in 
5250 emulation, since there is no defined repeater function 
in the protocol as in 3270 (3299). Bits [B5, 6], [RPEN] and 
[LOOP] are primarily useful in self testing, where, [LOOP] 
routes the transmitted data stream into the receiver and 
simultaneous operation is desirable. Please note that for 
loopback operation, [RIN] must equal [TIN]. [TRES] is used 
regularly in operation, but should be left off when not specif­
ically needed. 

I TCR I -Transceiver Command Register-This register 
has both configuration and operation orientated bits, includ­
ing the transmitted address and parity bits. For this configu­
ration, the register should be set to H # 00 and the specific 
address needed summed into the three LSBs, as appropri­
ate. The [SEC] or Select Error Codes bit is used to enable 
the {ECR) register through the {RTR I transceiver FIFO 
port, and should be asserted only when an error has been 
detected and needs to be read. [SLR], or Select Line Re­
ceiver is set low to enable the TTL-IN pin as the serial data 
in source. The BCP's on chip comparator is best suited to 
transformer coupled environments,' and National's LM361 
high speed differential comparator works very well for the 
twinax line interface. [AT A], or Advance Transmitter Active 
is normally used in the 3270 modes to change the form of 
the first line quiesce bit for transmission. Some twinax prod­
ucts use a long first line quiesce bit, although it is not neces­
sary. The lower four bits in ITCR) are used to form the 
frame transmitted when data is written into I RTR), the 
transceiver FI FO port. Writing into I RTR) starts the trans­
mitter and/or loads the transmit FIFO. The least significant 
three bits in I TCR) form the address field in that transmitted 
frame, and B3, [OWP] controls the type of parity that is 
calculated and sent with that frame. [OWP] set to zero cal­
culates even parity over the eight data bits, address and 
sync bit as defined in the IBM 5250 PAL 

I ATR I -Auxllliary Transceiver Register-Since this ap­
plication is configured for promiscuous mode, the IATRI 
register serves only to set the line hold function time. In non­
promiscuous mode" the three least significant bits of this 
register are the selected address. Setting this register to 
H # 50 allows a 5 Ils hold time and clears the address field 
to 0, since promiscuous mode is used. 



I FBR I';"FIII Bit Register-This register controls the num­
ber of biphase zeros inserted between concatenated 
frames when transmitting. This register should be set upon 
reception of the SET MODE instruction from the host. 
I FBR I contains the one's complement of the number of 
inter-frame fill bits so that H # FF sends no extra fill bits. 

IICRI-Interrupt Control Register-As discussed in the 
CPU configuration section, this register sets [RIS] or Re­
ceiver Interrupt Select as well as the interrupt mask. Setting 
the register to H#7F selects [DA + ERR], Data Available 
or transceiver ERRor, as the interrupt source. This interrupt 
is asserted when either a valid frame has been clocked into 
the receive FIFO or an error has occurred. Other interrupt 
options are available including: [RA], Receiver Active; and 
[RFF + ERR], Receive FIFO Full or transceiver ERRor. For 
5250 protocols the [DA + ERR] is most efficient. The [RFF 
+ ERR] interrupt will not assert until the FIFO is full ... 
regardless of whether the incoming message is single or 
multi-frame. [RA] provides plenty of notice that a frame is 
incoming, but due to the speed of the BCP, this advanced 
warning is not generally needed. [DA + ERR] provides a 
notification just after the parity bit has been decoded from 
the incoming frame which is almost 3 J-Ls prior to the end of 
the frame. With the CPU running at 8 MHz, that allows typi­
cally nine instructions ([(4 * 3) - 3)]) for interrupt latency, 
trap and bank switch after interrupting. 

MULTI-SESSION POWER 

Handling multiple sessions in software is not trivial, and 
making the receiver service routines interrupt driven compli­
cates the task further. The BCP is so fast, that at 8 MHz 
handling a multi-frame message by interrupting on the first 
frame and polling for succeeding frames is very inefficient. 
To maximize bandwidth for non-protocol related tasks, the 
CPU should handle each frame separately on interrupt and 
exit. To do this, a number of global state variables must be 
maintained. Since the alternate B register bank is primarily 
used for transceiver functions anyway, dedicating the other 
registers in that bank permanently as state variables is ac­
ceptable in most cases; doing so speeds and simplifies ac­
cess to them. Defining the following registers as: 

o 

enables the software to keep track of the various states the 
protocol must handle. 

The active address bits in GP5' allow individual addresses 
to be active, or any combination of addresses. When inter­
rupted by a message to a non-selected address, [TRES] is 
toggled to reset the receiver until the beginning of the next 
message is detected. [B7] is used to determine if any partic­
ular address is "selected" and in the process of receiving 
data. The selected flag is set and cleared according to spe­
cific protocol rules set up in the IBM PAl. 

Register GP6' contains the selected address storage 
[BO-2], where the address of the device expecting at least 
one other frame is stored when exiting the interrupt service 
routine, so that upon interruption caused by the reception of 
that frame, the address is still available. The 
received_EOM flag, [83] is set when a message is decod­
ed that contains 8 # 111 or EOM delimiter. It is stored in this 
global status register to allow the protocol to determine the 
end of a transmission. In most multi-byte transmissions, the 
number of data frames expected is dictated by the protocol. 
However, ACTIVATE WRITE commands to printers can 
have any number of data frames associated with them up to 
256. In this situation, the activated flag, [84] is set to signal 
a variable length stream. Certain host devices also concate­
nate commands within messages, obscuring the determina­
tion of end of message. This scheme allows the software to 
keep track during such scenarios. The multi-count bits, 
[86-7] are used in addition to the EOM delimiter to deter­
mine the end of a transmission. The number of additional 
frames expected in a given multi-byte command is written 
into these bits (note that a maximum of three bytes can be 
planned for in this way). When the count is terminated and 
no EOM delimiter is present, the algorithm then assumes a 
multi-command message is in progress. [85] is unused. 

Register GP7' is used to store the received data or error 
code for passage to other routines. The data can be passed 
on the stack, but dedicating a register to this function simpli­
fies transactions in this case. Keeping track of received data 
is of utmost importance to communications devices. 

Active Address and Select Register 

address 0 select 

GP6' 

'----- address 1 select 
'------ address 2 select 

'-------- address 3 select 
'--------- address 4 select 

L-_________ address 5 select 
L... __________ address 6 select 

L... ___________ device selected flag 

o 
Global Status Register 

selected address BO 
'----- selected address B1 

'------ selected address B2 
L..-_____ received_Eot.l flag 

L..-_______ activated flag 
L-_________ unused 

L-__________ multi-count BO 
L... ___________ multi-count B1 

GP7'-Bits [0-7] Received Data or Error Register 
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RECEIVER INTERRUPT 

The receiver interrupt algorithm handles any or all seven 
addresses possible on the twinax line. The same code is 
used for each address by utilizing a page oriented memory 
scheme. Session specific variables are stored in memory 
pages of 256 bytes each. All session control pages, or 
SCPs are on 256-byte even boundaries. By setting the high 
order byte of a BCP index register to point to a particular 
page or SCP, the low order byte then references an offset 
within that page. Setting up data memory in such a way that 
the first SCP begins at an address of B # xxxx xOOO 0000 
0000 further enhances the usefulness of this construct. In 
this scheme, the high byte of the SCP base pointer can be 
used to set the particular SCP merely by summing the re­
ceived or selected address into the lower three bits of the 
base register. . 

NORMAL OPERATION 

In normal operation, the configuration described thus far is 
used in the following manner: After initializing the registers, 
data structures .are initialized, and interrupt routines should 
be activated. This application utilizes the receiver, transmit­
ter, timer, and bi-directiorial interrupts. Since (lBRlis set to 
H#1F, the interrupt table is located at H#1FOO. A LJMP to 
the receiver interrupt routine should be installed at location 
H # 1 F1 04, the transmitter interrupt vector at H # 1 FOS, the 
BIRO interrupt vector at H#1F10, and the Timer interrupt 
vector at H # 1 F14. Un-masking the receiver interrupt and 
BIRO at start up allows the device to come on-line. 

When interrupt by the receiver, the receiver interrupt service 
routine first checks the [ERR] flag in ! TSR [B5] I. If no er­
rors have been flagged, the received_EOM flag is either 
set or cleared. This is accomplished by comparing ! TSR 
[BO-2]1 with the B # 111 EOM delimiter. A test of the se­
lected flag, ! GP5' [B7] I determines if any of the active ad­
dresses are selected. Assuming that the system is just com­
ing on line, none of the devices would be selected. ·U the 
frame is addressed to an active device, the SCP for that 
device is set, and the command is parsed. Parsing the com­
mand sets the appropriate state flags, so that upon exiting, 
the interrupt routine will be prepared for the next frame. 
Once parsed, the command can be further decoded and 
handled. If the command is queue-able, the command is 
pushed on the internal command queue, and the receiver 
interrupt routine exits. If the command requires an immedi­
ate response, then the response is formulated, the timer 
interrupt is setup, and the routine is exited. 

The timer interrupt is used in responding to the host by wait­
ing an appropriate time to invoke the transmit routine. The 
typical response delay is 45 ± 15 p,s after the last valid fill 
bit received in the command frame. Some printers and ter­
minals are allowed a full 60 ± 20 p,s to respond. In either 
case, simply looping is very inefficient. The immediate re­
sponse routine simply sets the timer for the appropriate de­
lay and unmasks the timer. 

In the transmit routine, the data to be sent is referenced by 
a pointer and an associated count. The routine loads the 
appropriate address in the three LSBs of !TCRI. and writes 
the data to be sent into! RTR I. This starts the transmitter. If 
the data count is greater than the transmit FIFO depth 
(three bytes), the Transmit FIFO Empty interrupt [TFE] is 
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setup. This vectors to code that refills the FIFO and re-en­
abies that interrupt again, if needed. This operation must be 
carried out before the transmitter is finished the last frame in 
the FIFO or the message will end prematurely. 

The last frame transmitted must contain the EOM delimiter. 
It can be loaded into !TCRI and data into !RTRI while the 
transmitter is running without affecting the current frame. In 
other words, the transmit FIFO is 12 bits wide, including 
address and parity with data; the address field is clocked 
along with the data field. In this way, multi-byte response 
may be made in efficient manner. 

ERROR HANDLING 

In 5250 environments, the time immediately after the end of 
message is most susceptible to transmission errors. The 
BCP's receiver does not detect an error after the end of a 
message unless transitions on the line continue for a com­
plete frame time or resemble a valid sync bit of a multi­
frame transmission. If the twinax line is still active at the end 
of what could be an error frame, the receiver posts the 
LMBT error. For example, if noise on the twinax line contin­
ues for up to 11 p,s after the three required fill bits, the 
receiver will reset without flagging an error. If noise resem­
bles a start bit, the receiver now expects a new frame and 
will post an error if a loss of synchronization occurs. If the 
noisy environment is such that transitions on the receiver's 
input continue for 11 p,s, or the receiver really has lost sync 
on a real frame, the error is posted. 

Basically, the receiver samples [LA] in addition to the loss 
of synchronization indication to determine when to reset or 
to post an error. After a loss of synchronization in the fill bit 
portion of a frame, if the [LA] flag's time-out of 2 p,s is 
reached prior to the end of what could be the next frame, 
the receiver will reset. If the transitions prevent [LA] from 
timing out for an entire 11 p,s frame time, a LMBT error is 
posted. This method for resetting the receiver is superior in 
that not only are the spurious loss of mid bit errors eliminat­
ed, the receiver performs better in noisy environments than 
other designs. 

SUMMARY 

The IBM 5250 twinax environment is less understood and in 
some ways more complex than the 3270 environment to 
many developers. This application note has attempted to 
explain some basics about twinax as a transmission medi­
um, the hardware necessary to interface the DPS344 to that 
medium, and some of the features of the BCP that make 
that task easier. Schematics are included in this document 
to illustrate possible designs. Details of the twinax wave­
forms were discussed and figures included to illustrate 
some of the more relevant features. Also, some different 
software approaches to handling the transceiver interface 
were discussed. 
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APPENDIX A: EXAMPLE CODE 

The following code was assembled with the HILEVEL assembler. Table II shows the correlation between HILEVEL mnemonics 
and the mnemonics used in National data sheets for the DP8344V. 

TABLE II 

HILEVEL National Semiconductor 

MOVE Rs,Rd t10VE Rs,Rd 
LD F't r , Rd { , Md e} MOVE EmIr J , Rd 
ST Rs,F'tr{,Mde} MOVE Rs, EmIr J 
LDAX F'tr,Rd MOVE Elr + AJ ,Rd 
STAX Rs,F'tr MOVE Rs,Elr + AJ 
LDNZ n,Rd MOVE EIZ + nJ ,rd 
STNZ Rs,n MOVE rs,EIZ + nJ 
LDl n,Rd MOVE n,rd 
STl n,F'tr MOVE n,ElrJ 

ADD Rs,Rd ADDA Rs,Rd 
ADDRI Rs,F'tr{,Mde} ADD A Rs, EmIr J 
ADDl n,Rsd ADD n,rsd 

ADC Rs,Rd ADCA Rs,Rd 
ADCRI Rs,F'tr(,Mde} ADCA Rs, EmIr] 

SUBT Rs,Rd SUBA Rs,Rd 
SUBRI Rs, F'tr (, Mde} SUBA Rs,EmIrJ 
SUBl n,Rsd SUB n ,r-sd 

SBC Rs,Rd SBCA Rs,Rd 
SBCRI Rs,F'tr{,Mde} SBCA Rs, EmIr] 

AND Rs,Rd ANDA Rs,Rd 
ANDRI Rs,F'tr(,Mde} ANDA Rs, EmIr] 
ANDI n,Rsd AND n,rsd 

OR Rs,Rd ORA Rs,Rd 
ORRI Rs,Ptr{,Mde} ORA Rs, EmIr] 
ORI n,Rsd OR n,rsd 

XOR Rs,Rd XORA Rs,Rd 
XORRI Rs,F'tr(,Mde} XORA Rs, emIr J 
XORI n,Rsd XOR n,rsd 

CMF' Rs,n CMF' rs,n 

CPL Rsd CF'L Rsd 

BIT Rs,n BIT rs,n 

SRL Rsd,n SHR Rsd,b 
SLA Rsd,n SHL Rsd,b 
ROT Rsd,n ROT Rsd,b 
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Addr 

JMP n 
LJMP n 
JMPR Rs 
JMPI Ptr 
JRMK Rs,n,m 
Jt1PB Rs,s,p,n 
JMPF s,f,n 

n 
nn 
F~s 

UrJ 
Rs,b,m 
Rs,p,s,nn 
f,s,n 

JMP 
LJMP 
JMP 
LJMP 
JRM.< 
LJMP 
JMP 
Jcc n - opt. syntax for JMP f-

CALL n 
LCALL n 
CALLB Rs,s,p,n 

RET {g{,rf}} 
RETF s,f{,g{,rf}} 

CALL r, 
LCALL 
LCALL 

nn 
Rs,p,s,nn 

F~ET 

RETF 
Rcc 

{g {,rf}} 
f,s,{,{g} 
{g o[,rf}} 

{,r-f}} 

-: opt. !.;ynta:·: -

EXX a,b{,g} EXX ba,bb,{,g} 

TRAP no[, g} TRAP n {,gU} 

Line 

1 
2 
3 
4 
5 
6 
7 
9 
9 

10 
11 
12 
13 
14 
15 
16 
17 
19 
19 
20 
21 
22 
23 
24 
25 
26 
27 
29 

Tab l~:l 2. 

.REL 
TAB B 
WIDTH 132 
LIST S,F 
TITLE RXlNT 
; ---------------------------------------------------------------------

; 
;boal 
jbyte 
jbyte 
jbaol 
j 

;rxinto 
jbyte 
;baol 
jbaal 
j{ 

RUNT· 9/21/87 

pseudo tode 

selected; 
seladdrj 
luItitount; 
activated; 

data; 
rx.eolll; 
Ita; 

if (errarl 

else { 

if (lagerrar () == true I return; 
) 

if (TSR == ED"I rx.eal = true; 
else rx.eoll = false; 

if (!selectedl { 
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'* station is selected 
1* address af selected station 
'*nulber af frales in this luI ti 
It tOlland has been activated 

1* data star age 
It recei ved EDI! 
If line turn araund flag 

1* recei ver errors 

It set received EO" flag 
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29 
30 
31 
32 
33 
34 
35 
36 
37 
3B 
39 
40 
41 
42 

--43 
44 
45 
46 
47 
49 
49 
50 
51 
52 
53 
54 
55 

Addr Li ne RUNT 

56 
57 
5B 
59 
60 
61 
62 
63 
64 
65 
66 
67 
6B 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 

if Cacti vel { 
if (!rx_eoll 

seladdr : !TSR f EO~); 

I l = (SCPBASE + seladdrl; /f set SCP to appropriate session -/ 
data: rtr; 

else { 

else { 

else { 
proto_error (); I' should not get here 
reset_xcvr (I; 
return I I; 
) 

reset_xcvr I I; 
return II; 

/f not of interest 

} 

if (lIuHifralle) ( If adivate llrite, etc ... 
lulticount = parseldata)j /f set nUlber of frales 1/ 
seleded = truej /f ani y lIay to select f/ 
queue Idata) ; 
) 

else { / f not luI ti 
, if ((var = single_decodeldata)) == queable) 

queue (datal; 
else if (var == illedl illediate Idatal j 

'f selected " 
1Z = (SCPBASE + seladdr I; 

data = rtr 
if (acti vatedl { 

act_data(datal; 
if (rx_eol) { 

,. in the liddle of translission 

'f end of lessage 
selected = false; 
activated = false; 
} 

return () ; 
} 

if Clulticount > 0) 
queue(data) ; 

else { 

if (luI ticount-= 0) 
if (n_eol) selected = fal se; 
) 

if (luHifrue) ( 

else { 

luHicount = parse Idata); 
queue (data); 
) 

if ((var = singleJecodeldatall == queablel 
queue(datal; 
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~ r----------------------------------------------------------------------------------..... 
Lt') 

:2: 
c:r:: 

79 
BO 
Bl 
B2 
83 
84 
B5 
86 
B7 
BB 
89 
90 
91 
T2 
93 
94 
95 
96 
97 
9B 
99 

100 
101 
102 
103 
104 
105 
lOb 
107 
lOB 
109 
110 

. , 
II 

return I); 

; logerror () 
j( 

; boal resul tj 
s"itch lerror _typel 
case RDIS: 

result = errJdisl)j 
break; 

case 1MBT: 
result = err )Ibt II; 
break; 

case PARR: 
result = err _parr II ; 
break; 

case OVF: 
result = err _ovf () j 
break; 

defaul t: 
result = err _unknolln (); 
break; 

return Iresul t) j 

else if ('/ar == i.led) imllediateldata); 
if Irx_eolll) selected = false; 
} 

'If receiver diabled while active 

/f loss of midbi terror 

/f pari ty error 

/f recei ver FIFO overrun 

/* strange error handler 

Addr Line RUNT 

111 
112 
113 
114 
115 
116 
117 
11B 
119 
120 
121 
122 
123 
124 
125 
126 
127 
12B 

jerr )lbtO 
j { 

if I!DA &Ie !selected 1I~ !delayllAIl returnlfalselj /* delay of 6 usee 
else { 

log (); 
return (true) j 

1* bump error counters 
/f adlli t defeat 

; ---------------------------------------------------------------------
nale: RXlNi 
descri ption: recei ver interrupt handler 

recei ved datu. is sent to other routines thru gp7' 
SCP is set appropriately in lZ 
SP5P - active addresses: bits 0-6 

. selected flag: bit 7 
6P6P - lultieount: bit 7-6 

unused: bi t 5 
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129 acti vated: bi t 4 
130 rx_eoll flag: bi t 3 
131 seladdr: bi ts 2-0 
132 6P7P - received data 
133 
134 entry: Oil interrupt, GP5', GP6' 
135 exit: ACC' ,SP7' ARE DESTROYED 
136 hi story: tjq 9/16/87 create 
137 ---------------------------------------------------------------------
138 PUBLIC RCVRINT 
139 
140 EXTRN PARSE, QUEUE, I ~~EDECODE, RESXCVR 
141 EHRN I'll DERRL, I'll DERRH, OVFERRL, OVFERRH, PARERRL, PARERRH 
142 EXTRN RXERRL ,RXERRH ,R5PCTL ,RSPCTH ,8flSE5CP, IESERRL, IESERRH 
143 
144 
145 5ELERR: EQU 8101000000 ; sel ect the error regi ster 
146 RXEDI'I: EQU BI0000I000 j rxeoll flag 
147 EOI'I: EQU BIOOOOOlll i EOM deliileter 
148 MULTI: EQU 8111000000 ; multi count 
149 SELECT: EQU 8110000000 ; selected flag 
150 LTA: EQU ell01 j 

151 CFLAS: EQU 8100000010 ; CARRY FLAG 
152 

00000 IC:"'I .N RCVRINT: 
154 EXX /'\A,AB,DI ; 5ET APPROPRIATE BANK 

00000 AEE8 154 
00001 D500 155 JI'IPF NS, RERR, NOERROR 
00002 CCOO 156 CALL RXERROR ; ERROR IN FRAME 
00003 D900 157 JI'IPF 5, C, EXIT ; ABORT 
00004 D900 158 NOERROR: 
00004 B078 159 LDI EOH,ACC ; LOAD MASK 

160 AND TSR,SP7 ; FORM ADDRESS 
00005 FI6S 160 

161 CMP GP7, EO 1'1 ; TEST 
00006 307B 161 
00007 DODO 162 JI'IPF NS,Z,CIRXINT i IF NOT EQUAL, JUMP 

Addr Line RXINT 

00008 50BA 163 ORI RIEOI'I, GP6 ; ELSE SET EOI'I FLAG 
00009 cavo 164 JHP C2RXINT 
OOOOA C800 165 CIRXINT: 
OOOOA 4F7A 101: ANDI RXEOM* ,6Pb ; CLEAR IT 

167 ; 
168 ; DECIDE IF WE'RE ALREADY SElECTED 
169 ; 

OOOOB 170 C2RXINT: 
171 JI'IPB 6P5,S,B7,DEVSELECT ; IF ALREADY SELECTED 

00008 8DE9 171 
OOOOC 0000 171 

172 ; 
173 ; NOT SELECTED ... DECIDE IF ADDRESS IS ACTIVE, IE; VALID FOR US 

TLIF/9635-13 
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CD .... 
it) 

174 . ; z 00000 175 DEVTABLE: ; ELSE, SEE IF ACTIVE <C 
116 JRMK TSR,ROT6,MSK3 ; JUMP BASED ON THE ADDRESS FIELDf4 

OOOOD B3C5 176 
177 JMPB SP5,NS,BO,RSTRX ; ADOR 0 - IF NOT ACTIVE, RESET RX 

OOOOE BC09 177 
OOOOF 0000 177 

17B LJMP LOADSCP ; ACTIVE DEVICE, SET Scp 
00010 CEOO 17B 
00011 0000 17B 

179 JMPB 6P5,NS,Bl,RSTRX ; ADDR 1 - IF NOT ACTIVE, RESET RX 
00012 BC29 179 
00013 0000 179 

lBO LJMP LOADSCP ; ACTIVE DEVICE, SET scp 
00014 CEOO lBO 
00015 0000 lBO 

lBl JMPB 6PS,NS,B2,RSTRX ; ADDR 2 - IF NOT ACTIVE, RESET RX 
00016 BC49 lBl 
00017 0000 lBl 

lB2 LJMP LOADSCP ; ACTIVE DEVICE, 
00018 CEOO lB2 
00019 0000 lB2 

lB3 JMPB SP5,NS,B3,RSTRX ; AD DR 3 - IF NOT ACTIVE, 
000lA 8C69 183 
0001B 0000 lB3 

lB4 LJMP LOADSCP ; ACTIVE DEVICE, 
000lC CEOO 184 
0001D 0000 lB4 

185 JMPB SP5,NS,B4,RSTRX ; ADDR 4 - IF NOT ACTIVE, 
ooOlE 8CB9 185 
0001F 0000 lB5 

lB6 LJMP LDADSCP ; ACTIVE DEVICE, 
00020 CEOO lB6 
00021 0000 lB.6 

lB7 JMPB GP5,NS,B5,RSTRX ; ADDR 5 - IF NOT ACTIVE, 
00022 BCA9 lB7 
00023 0000 lB7 

dMP lBB LOADSCP ; ACTIVE DEVICE, 
00024 CEOO lBB 
00025 0000 lBB 

lB9 JMPB SP5,NS,B6,RSTRX ; ADDR 6 - IF NOT ACTIVE, 
00026 8CC9 189 

Addr Line RXlNT 

00027 0000 lB9 
190 LJMP LDADSCP ; ACTIVE DEVICE, 

0002B CEOO 190 
00029 0000 190 

191 LCALL RESXCVR ; ADDR 7 - RECEIVED EOI1 ... WE'RE NOT INTERESTED 
0002A CEBO 191 
00028 0000 191 
0002C CBOO 192 JMP EXIT ; QUIT 

TLIF/9635-14 
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» 
193 ; 

Z 
en 

194 ; LOAD THE SCP POINTER, II .... 
Q) 

195 i 
00020 196 LOADSCP: 

197 lOR ACC,ACC ; CLEAR 
00020 F90B 197 

19B 110VE ACC ,ILO i LOll BYTE 
0002E FE4B 19B 
0002F BOOB 199 LOI BASESCP, ACC ; SET UP UPPER BYTE OF SCP POINTER 

200 "DVE ACC,ZHI 
00030 FE6B 200 
00031 B07B 201 LDI EOI1,ACC ; EOI1 I1ASK 

202 AND TSR,ACC i LEAVE IN ACC 
00032 Fl05 202 

203 ADD ZHI,2HI ; ADD INTO I POINTER 
00033 E273 203 

204 ; 
205 ; DECODE THE COI1I1AND FRAIIE 
206 ; 

00034 207 DECODE: 
20B 110VE RTR,SP7 ; SET RX DATA 

00034 FD64 200 
209 JI1PB GP7,S,BO,I1ULTIFRl1j IF I1ULTIFRAI1E 

00035 ODOB 209 
00036 0000 209 

210 LCALL IIIIIEDECODE ; ELSE, IIIIIEDIATE ACTION REQUIRED 
00037 CEBO 210 
00038 0000 210 
00039 CBOO 211 J"P EXIT 
0003A CBOO 212 IIULTIFRII: 

213 LCALL PARSE ; SET "UL TI COUNT 
0003A CEBO 213 
00038 0000 213 
0003C 5B09 214 ORI HIBO,SP5 ; SELECTED = TRUE 
0003D 4FBA 215 ANDI EO"t,GP6 ; CLEAR SELECTED ADDRESS 
0003E B07B 216 LDI EO",ACC ; "ASK ADDRESS 

217 AND TSR,ACC ; LEAVE IN ACC 
0003F Fl05 217 

21B OR GP6,SP6 ; SET NEil ADDRESS 
00040 F54A 210 

219 LCALL I1UEUE ; PLACE ON QUEUE 
00041 CEeo 219 
00042 0000 219 
00043 CBOO 220 JI1P EXIT 

221 ; 
222 ; THIS CODE IS BRANCHED TO IF THE DEVICE IS SELECTED 
223 FIRST, SET SCP BASED ON SELECTED AODRESS 

Addr Line RXINT 

224 ; 
00044 225 DEVSELECT: 

226 lOR ACC,ACC ; CLEAR ACC 
TL/F/9635-15 
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Addr Line RUNT 

265 
OOOSE BCOB 265 
0005F 0000 265 

266 
00060 CEeJ 266 
00061 ~OOO 266 

267 
00062 CEBO 267 
00063 0000 267 
00064 CBOO 26B 

269 
270 
271 

00065 272 
273 

00065 CEBO 273 
00066 0000 273 

274 
00067 BC6A 274 
0006B 0000 274 
00069 47F9 275 
0006A 47F9 276 

277 
0006A CEBO 277 
0006B 0000 277 
0006C 0000 27B 
0006C AFBO 279 

290 
2Bl 
2B2 
2B3 
2B4 
2B5 
2B6 
2B7 
2BB 
2B9 
290 
291 

0006D 292 
0006D 5406 293 

294 
0006E FD64 294 
0006F 4BF 6 295 

296 
00070 BD2D 296 
00071 0000 296 

297 
00072 BD6D 297 
00073 0000 297 

299 

JIIPB SP7,NS,BO,SINGLE; IF NEW COIIIIAND IS NOT IIULTI, 

LCALL PARSE ; IS IIUL TI, SET COUNT 

LCALL QUEUE ; PUSH ON QUEUE 

JIIP EXIT ; QUIT, TIL NEXT FRAIIE 
; 
; NEil COIIIIAND IS SINGLE ANDIOR NEEDS IIIIIEDIATE RESPONSE 
; 
SINGLE: 

LCALL IIIIIEDECODE ; SINGLE ••• SO DO IT 

JIIPB 6P6,NS,B3,EXIT ; IF NOT EOII ••• 

ANDI SELECT f ,6PS ; CLEAR SELECTED BIT 
RSTRX: 

LCALL RESXCYR j RESET, CLEAR DATA OUT 

EXIT: 
RET RI,RF ; RETURN GRACEFULLY 

; ---------------------------------------------------------------------
nne: 
description: 

entry: 
exi t: 
hi story: 

RXERROR 
recei ver ERROR handl er 

DA + ERR interrupt, SPS', GP6' 
ACC' ,GP7' ARE DESTROYED 
tjq 9/16/B7 create 

; ---------------------------------------------------------------------
j 

j RECEIVER ERROR HANDLER 
; 
RXERROR: 

ORI 
110YE 

SELERR, TeR 
RTR,SP7 

; SET ECR BIT 
j SET ERROR TYPE 

ANDI SELERRt, TCR ; RESET TCR 
JIIPD GP7,S, 81 ,LIIBTERRj LOSS OF IIID8IT 

JI1PB GP7,S,B3,PARERR; PARITY 

JI1PB SP7, S, 84, OYFERR ; OYER FLOW 
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CD ,.... 
I.t) 00074 BDBB 29B 
Z 00075 0000 29B 
c( 

00076 0000 299 ILLEGAL: 
00076 BOOB 300 LDI ILLEGAL, ACC ; WHAT ERROR IS THIS? 

Addr Line RUNT 

00077 CBOO 301 JI!P BUI!PERR ; SHOULD NOT GET HERE!! 
0007B CBOO 302 LI!BTERR: 
00078 DEOO 303 JI!PF S,DA,CLEARC ; if DA, THEN NO ERROR 

304 JI!PB GP5,S,B7,LOSIT ; IF SELECTED, POST 
00079 BDE9 304 
0007A 0000 304 
0007B ceoo 305 CALL SOLY ; DELAY FOR 6 USEe 

306 JI1PB NCF,NS,B5,CLEARC; IF NOT ACTIVE - DISCARD, ELSE POST 
0007C BCAI 306 
00070 0000 306 
oo07E 0000 307 LOGIT: 
0007E BOOB 30B LDI I!IOERRL,ACC ; LOSS OF I!IDBIT 
0007F CBOO 309 JI1P BUI1PERR i INCREMENT CoUtlTER 
OOOBO CBOO. 310 PARERR: 
OOOBO BOOB 311 LDI PARERRL ,ACC j PARITY 
OOOBI CBOO 312 JI!P BUI1PERR 
00082 CBOO 313 OVFERR: 
000B2 B008 314 LDI OVFERRL, ACC ; OVERFLOW ... VERY BAD! 
00083 B008 315 BUI1PERR: 

316 ADD ZLO, YLO ; FORI! NEW POINTER 
000B3 E212 316 
000B4 BOIB 317 LDI HIOl,ACC j INCREIIENT 

31B LD PTRY,GP6 ; FETCH OLD COUNT 
00085 COCA 31B 

319 ADORI GP6,PTRY,POSTD i ilRITE OUT NEil 
000B6 A04A 319 
000B7 0100 320 JI!PF NS,C,RXEIIT ; 6ET OUT 

321 LD PTRY,GP6 ; FETCH UPPER BYTE 
OOOBB COCA 321 

322 ADDRI 6P6,PTRY 
000B9 AOCA 322 
OOOBA 5020 323 ORl CFLA6,CCR i SET CARRY 
OOOBB 5020 324 RIEXIT: 
OOOBD AFBO 325 RET ; DO NOT restore flags 
oooac AFBO 326 CLEARC: 
OOOBC 4FDO 327 ANDl CFLAGf,CCR ; CLEAR CARRY 
OOOaD CBOO 32B JI1P RXEXIT 

329 ; ---------------------------------------------------------------------
330 nale: SDLY 
331 description: delay routine, I!ULTIPLES OF 4.Busec, 
332 1.4 usee OVERHEAD, IIAI OF 410usec 
333 entry: delay count on stack 
334 exi t: acc destroyed 
335 WARNING: DDNT CALL THIS WITH COUNT = O! 
336 history: tjq 9/16/B7 create 
337 --------------------------------------------------------------------

TL/F /9635-18 
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:r> 
338 Z 

OOOBE 339 SDLV: en ..... 
340 EXX IIA,IIB,NAI j BANK, ALLOW INTERRUPTS Q) 

OC08E AESO 340 
341 1I0VE DS,Ace j SET COUNT 

0008F FD1F 341 
342 !lOVE SP7,DS j PUSH 6P7 RESISTERS USED 

00090 FFEB 342 
343 IIOVE SP6,DS 

Addr Line RUNT 

00091 FFEA 343 
344 1I0VE ACC,6P7 ; USE 6P7 FOR COUNT ALSO 

00092 FD6S 344 
00093 FD6S 345 SDLVLPI : 
00093 S03A 346 LOI HI03,6P6 j LOAD FOR 4.8usec COUNTS 
00094 B03A 347 SDLVLP2: 
00094 201A 348 SUBI HI01,6P6 j DECREIIENT COUNT 
00095 0000 349 JIIPF NS, Z ,SDLYLP2 ; CONTINUE UNTIL EXHAUSTED 
00096 201B 350 SUBI HI01,6P7 ; DECREMENT OUTER COUNT 
00097 0000 351 JIIPF NS, Z ,SDLVLPI j CONTINUE IF NOT ZERO 

352 !'lOVE DS,6P6 j POP RE6 
00098 FD5F 352 

353 !lOVE DS,6P7 
00099 FD7F 353 
0009A AFBO 354 RET RI,RF j RETURN, RESTORE FLASS 

355 
356 
357 END 

Asselbl y Phase co.plete. 
o error (51 detected. 
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The DP8344 BCp® Inverse 
Assembler 

OVERVIEW 

The DP8344 BCP Inverse Assembler is a software package 
for use in a Hewlett Packard Logic Analyzer. It was devel­
oped by National Semiconductor's Arlington Design Center 
to allow disassembly of the DP8344 op-code mnemonics. 

When developing systems using a RISC processor such as 
the DP8344, the need often arises to know the sequence of 
events that occurred in real time in the system. The actual 
execution flow that occurred in the system can be deter­
mined by monitoring the states on the Instruction memory 
Address bus and the Instruction memory bus of the DP8344 
with a Hewlett Packard Logic Analyzer. The DP8344 BCP 
Inverse Assembler enhances this development tool by dis­
playing the BCP instruction op-code mnemonics on the log­
ic analyzer's screen. This Application Note lists the equip­
ment needed as well as the necessary information to set up, 
use, and obtain the DP8344 BCP Inverse Assembler. Addi­
tionally, the source code flow chart for the DP8344 BCP 
Inverse Assembler is provided in Appendix A of this Applica­
tion Note. 

EQUIPMENT REQUIRED 

The following equipment is required to use the DP8344 BCP 
Inverse Assembler: 

1. DP8344 BCP Inverse Assembler; Available from National 
Semiconductor. 

2. HP1650A or HP1651A Logic Analyzer, or HP16500A Log­
ic Analysis System with an HP16510A State/Timing Card 
installed. 

3. DP8344 Biphase Communications Processor in a Sys-
tem. 

It is assumed that the reader is familiar with the operation of 
the HP Logic Analyzer. For further information refer to the 
Operation Reference Manual provided with the HP1650A or 
1651 A Logic Analyzers, or with the HP1651 OA Logic Analyz­
er Module. Information pertaining to the operation of the 
logic analyzer in a state mode will be useful. 

SYSTEM SETUP 

A block diagram of the setup of the system for using the 
DP8344 BCP Inverse Assembler is shown in Figure 1. The 
target system refers to a system containing a BCP which is 
running. The DP8344 BCP Inverse Assembler is software 
which has been loaded into the HP Logic Analyzer. The 
target system is interfaced to the DP8344 BCP Inverse As­
sembler through the HP Logic Analyzer's channels. 

An example of a target system is a Multi-Protocol Adapter 
(MPATM) installed in a personal computer. The MPA 

I 

National Semiconductor 
Application Note 688 
Laura Johnson 

Design/Evaluation Kit includes both the hardware and soft­
ware that allows the MPA to emulate a 3270 or 5250 display 
terminal and to support industry standard PC emulation soft­
ware. The MPA Design/evaluation Kit is available from Na­
tional Semiconductor (Part No. D88344MPA-EB). All the ex­
amples in this document were generated using an MPA 
board and it's associated software for the target system. 

Additional equipment which one may find useful includes an 
extender card and an 84-pin PLCC Adapter. The extender 
card brings a PC board out of the PC chasis, allowing easier 
access to the BCP. An 84-pin PLCC Adapter allows one to 
directly connect the channels of the logic analyzer to the 
pins on the BCP. Emulation Technology, Inc., makes an 
84-pin PLCC Adapter which it calls a BUG KATCHER. (It is 
Part No. BC-4-084-PCC5-00000). 

The sample target system described above includes the fol­
lowing equipment: 

1. IBM® Personal Computer or compatible 

2. MPA Development Kit 

3. Extender Card (optional) 

4. 84-Pin PLCC Adapter 

The DP8344 BCP Inverse Assembler requires information 
from both the Instruction memory Address bus and the In­
struction memory data bus of the BCP in the target system. 
Thus, these pins must be connected to the logic analyzer. 
The 84-pin PLCC Adapter allows one to directly connect the 
logic analyzer channels to the BCP. Figure 2 provides a 
detailed view of the pin connections from the DP8344 to the 
logic analyzer. The pins can be connected to any of the 
pods as long as the channel and label definitions are de­
fined accordingly in the FORMAT Menu as described later 
in this Application Note. 

STARTING THE DP8344 BCP INVERSE ASSEMBLER 

Once the system hardware has been set up, the DP8344 
BCP Inverse Assembler software needs to be installed in 
the HP Logic Analyzer. The 3% inch diskette provided in the 
DP8344 BCP Inverse Assembler Package contains the soft­
ware for the HP Logic Analyzer. Load the DP8344 BCP In­
verse Assembler Software into the HP Logic Analyzer by 
selecting either LOAD ALL from file BCP, or LOAD State/ 
Timing E, from File BCP.E as in Figure 3. This automatically 
loads the DP8344 BCP Inverse Assembler as well as the 
stored State/Timing configuration into the HP Logic Analyz­
er. 

J I Target 
System I Channels from the HP Logic 

Analyzer to the BCP I 
IHP Logic I 
Analyzer 

TL/F/10B14-1 
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CONFIGURING THE HP LOGIC ANALYZER 

The DP8344 Inverse Assembler software contains a Statel 
Timing configuration which one may use without any chang­
es. The designer can change this default configuration, or 
define an entirely new configuration to meet their own sys­
tems needs. However, certain parameters must exist in the 
configuration for the DP8344 Inverse Assembler to work. 
These parameters will be described using the default con­
figuration as an example. 

Internal communication variables are set as the logic ana­
lyzer collects data from the target system. Therefore, the 

Label DATA: 
Channels 0-7 

{~------~~'------~ 

AD7 
18 

AD6 
19 

ADS DP8344A 
20 

AD4 

Vee 
21 BCP 
22 

logic analyzer's configuration must follow the setup de­
scribed here. Figures 4-6 show the configuration provided 
on the DP8344 BCP Inverse Assemblerdiskette. One may 
create their own configuration by adding more labels and 
connecting more channels to the target system than shown 
in the examples in this document. This will allow one to 
monitor the system activity according to their needs. How­
ever, the logic analyzers system configuration must include 
the following: 

In the Configuration Menu, as in Figure 4, one must: 

1. Define the Analyzer Type to be a State Analyzer. 

2. Assign at least two pods to the State Analyzer. 

Label DATA: ,,' 
Channels 8-15 Label DATA: 

~eIO ... 

Label ADDR: 
Channels 1-7 

Label STAT GND 84-pin PLCC 
Channel 0 

23 
AD3 

24 

25 

26 

(top viow) 

Connect to clock channel 
of any Pod and define 
this as the clock in the 

Format Menu 

FIGURE 2. Pins Connected to Logic Analyzer Pods 
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( 

'-_";"-__ "') ( Front Disc) 

) All 

File Type 

inverse_assem 
16530A-config 
16510A-config 
16500A-config 

'-_";"-__ "') ( Front DISC) 

'-____ ...J) State/TImlng E 

Filename 

BCP 
BCP_D 
BCP_E 
BCP_ 

File Type 

inverse_assem 
16530A-config 
16510A-config 
16500A-config 

(a) 

) 

(b) 

from file BCP 

( Execute 

File Description 

DP8344 BCP INVERSE ASSEMBLER 
DP8344 BCP INVERSE ASSEMBLER 
DP8344 BCP INVERSE ASSEMBLER 
DP8344 BCP INVERSE ASSEMBLER 

( Cancel 

from file ( BCP_E ) 

Execute ) 

File Description 

DP8344 BCP INVERSE ASSEMBLER 
DP8344 BCP INVERSE ASSEMBLER 
DP8344 BCP INVERSE ASSEMBLER 
DP8344 BCP INVERSE ASSEMBLER 

FIGURE 3. Two Methods to Load DP8344 BCP Inverse 
Assembler Software from the Front Disk Menu 

state/TImlng E ) ( Configuration ) ( cancel ) ( Run 

Analyzer 1 Analyzer 2 

Name: ( MACHINE 1 

Type: State Type: Off 

Unassigned Pods 

Pod 1 I I Pod 5 
. __________ ----_:- __ ---'J 11--.-----------------------------__ -_-1 ( ---------~~~~--------- ) 

Pod 2 I 
----. ___ -----___________ J 

Pod 3 I _____________________ . I 

FIGURE 4. Configuration Menu on Logic Analyzer 
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In the Format Menu, see Figure 5, define the labels and 
assign the channels in the following manner: 

1. Create labels ADDR, DATA, and STAT. 

2. Assign the channels connected to the labels as follows: 

i. label ADDR refers the channels connected to the In­
struction memory Address Bus on the DP8344. From 
Figure 2, these are pins 75 through 68, and pins 65 
through 58. To use the default configuration the pins 
from the Instruction memory Address bus must be 
connected to channel 0 through 15 of Pod E1. 

ii. The DATA label refers to the channels connected to 
the Instruction memory data bus on the DP8344. From 
Figure 2, these are pins 9-2, and pins 83-76. To use 
the default configuration the pins from the Instruction 
memory Data bus must be connected to channels 0 
through 15 of Pod E2. 

State/TIming E ) ( Format 1 

) (
Clock 

,-~~ __ ~~Jt~ ______ -J 

Pod E3 

! m 

Clock 

iii. For the label STAT it is not necessary to actually con­
nect any of the defined channels to the BCP. However, 
it is recommended that one does connect all defined 
channels to a pin such as ground. This is because the 
BCP does not use a STATUS bus. The STAT label 
must be defined in the Format Menu. In the example 
shown in Figure 5, the channel assigned to the STAT 
label corresponds to a ground pin on the BCP connect­
ed to channel 0 of Pod E3. 

3. Define the Clock to be the channel which corresponds to 
the connection from the pod clock connection to pin 51, 
IClK, on the DP8344. In the example shown in Figure 5, 
the J clock means that IClK is connected to the clock 
channel of pod E1. Set the clock to trigger on the rising 
edge of IClK. 

Cancel ) ( Run 

( SymbolS) 

Pod E2 Pod E1 

m m 

Clock Clock II II 
I~I Pol -1-5-~~-.--87-~~-~:-O 15 ••• 87 .... 0 1-5-~~-.--87- •• -: :-0 

I 
~~~: ~+~.:::::::::: ~~~ ....... " .. ,,: ~~~ .. """""". 
STAT +. . . . . . . . . .• ........... . ......... . 

DATA + ......•.. " •••••••••• . .•...••.•• 

Off 

Off 

Off 

Off 
TL/F/l0814-6 

FIGURE 5. Format Menu on Logic Analyzer 

St t /TI . ae Imlng ) ( race Run ) 

Sequence Levels 

~ 
While storing "any state" 

TRIGGER on "a" 1 times ( Branches ) Off 
Store "any state" ( Count ) TIm. 

( Prestor. ) Off 

Label> ( AD DR ) (DATA ) (STAT ) (DATA ) 
Base> ( Hex ) ( Invasm ) ( Hex ) ( Hex ) 

0 
( 0000 ) ( X ) ( XXXX ) 
( XXX X ) ( X ) ( XXX X ) 
( XXXX ) ( X ) ( XXXX ) 
( XXXX ) ( X ) ( XXXX ) 

TL/F/l0814-7 

FIGURE 6. Trace Menu on Logic Analyzer 
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The trigger may be defined in. the Trace Menu according to 
the ,information desired. For example, in Figure 6, the trace 
is set to, trigger, when the BCP executes the program, Le., 
the Instruction ,memory Address bus is 0 hex. 

Once the system configuration has been developed,'it must 
be linked with,'the inverse assembler software. First; load 
the DP8344 BCP Inverse Assembler Software by either 
method showhin Figure 3; Second, create a configuration 
by either: . 

Lmodifying'theconfiguration file which was loaded into the 
HPLogic AnalyZerwith the DP8344' BCP Inverse Assem­
bler, or' 

iL by loading another State/Timing Configuration 'which has 
been stored "on diskette. 

State/TImlng E ) ( Listing 1 ) 

Third, verify that the three labels: ADDR, DATA and STAT 
exist in the Format Menu. Fourth, in the State Listing Dis­
play, shown in Figure 7, select the base field below the label 
DATA. This will generate seven pop-outs. Select the "In­
vasm" pop-out to allow the mnemonics to be displayed. Fi­
nally, store the new configuration to the DP8344 BCP In­
verse Assembler using one of the two methods shown in 
Figure 8. Whenever this configuration file' is loaded, the in­
verse assembler will automatically load. Note that storing 
the configuration to the Inverse Assembler will write over 
any previously stored configurations. Therefore, it is recom­
mended that one back up all of the stored configurations by 
copying them to a backup diskette. 

The system is now set to capture the BCPop-codes from 
your system and display them as mnemonics. 

( Invasm ) ~ ( Run 

~====:II DATA I~I ====DP=8=34=4=B=C=P=~=NE=M=O=NI=C==~1 ~I ===n=m=e=~ 
L..-"':':':::;""'..,JII Hex II Hex 1 1-1 __ R~e:::la:::;tI~ve~---I 

TL/F/l0S14-S 

FIGURE 7~ State LIsting Display 
The Data Label with base Hex will display the op-codes in Hex Format. The DP8344 BCP MNEMONIC Label is generated by selecting the base type for the Label 
DATA to be "Invasm". .. 

( 

( 

( 

(. 

System ) ( 

, Store' 1'," 
file description: 

Filename 

BCP 
BCP_D 
BCP_E 
BCP_ 

System' ) 

"" ' : Stofe ' ) 
file description: 

" Filliname 

BCP 
BCP_D 
BCP_E 
BCP_ 

( 

( 

( 

( 
( 

Front Disc ) 

All to file ( BCP ) 

DP8344 BCP INVERSE ASSEMBLER ) ( Execute ) 

File Type 

inverse_assem 
16530A...:..ccinfig 
16510A...:..config 
16500A...:..config 

Front Disc' ) 

State/TImlng E 

(a) 

) 

File Description 

DP8344 BCP INVERSE ASSEMBLER 
DP8344 BCP INVERSE ASSEMBLER 
DP8344 BCP INVERSE ASSEMBLER 
DP8344 BCP INVERSE ASSEMBLER 

to file ( BCP_E ) 

DP8344 BCP INVERSE ASSEMBLER ) ( Execute ) 

File Type 

inverse_assem 
16530A...:..config 
16510A...:..config 

, J 6500A...:..config 
(b) 

File Description 

DP8344 BCP INVERSE ASSEMBLER 
DP8344 BCP INVERSE ASSEMBLER 
DP8344 BCP INVERSE ASSEMBLER 
DP8344 BCP INVERSE ASSEMBLER 

FIGURE 8. Two Methods to Store Configurations to the 
DP8344 BCP Inverse Assembler Software 
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DP8344 BCP INVERSE ASSEMBLER OPERATION 

An inverse assembler converts instructions captured by the 
logic analyzer in binary form into mnemonics. Thus it makes 
it much easier to follow the program's execution flow. Fur­
thermore, one can still use the logic analyzer to view other 
useful information by specifying the trace conditions, labels 
and channel connections in the logic analyzer's configura­
tion file. 

One needs to be aware of how the captured information is 
actually diassembled. The inverse assembler begins disas­
sembling at the event which was triggered upon. Hence, any 
information captured prior to the trigger may not be correctly 
disassembled. To ensure valid disassembly of states cap­
tured prior to the trigger, one must scroll the display so the 
first instruction one wants disassembled is the first line on 

the display. Then select the "Invasm" pop-up on the top line 
of the State Listing Display. This causes the inverse assem­
bler to disassemble the code from the first line on the dis­
play. For an example, refer to Figures 9 through 12. The 
inverse assembler was set to trigger when the Instruction 
Address Bus was 80 hex, as in Figures 9 and 10. The two 
byte instructions captured prior to the trigger were not cor­
rectly disassembled. Referring to Figure 11, one observes 
that line -10 is disassembled as an ADD Instruction rather 
than as the second byte of the LJMP instruction from line 
-11. To correct this, one must select "Invasm" from the 
top line of the State Listing Menu. The inverse assembler 
immediately disassembles the code from the first line on the 
screen. The correctly disassembled code is shown in Figure 
12. 

State/TIming E ) ( Trace 1 

Sequence Levels 

While storing "anystate" 

TRIGGER on "a" 1 times 

Store "anystate" 

Label> ( ADDR ) (DATA ) ( STAT ) (DATA) 
~=~ 

Base> ( Hex ) ( Invasm ) ( Hex ) ( Hex) 

0 
( 0080 ) ( X 

( XXXX ) ( X 

( XXXX ) ( X 

( XXXX ) ( X 

~=~ 
) ( XXX X ) 

~=~ 
) ( XXXX ) 

~=:::: 
) ( XXXX ) 

~=~ 
"""---__ ) ( XXXX ) 

FIGURE 9. Triggering Event 

State/TIming E ) [ Listing 1 Invasm 

[]QQ[J~I DP8344 BCP I.tNEI.tONIC 

~~I Hex 

-7 005C 0001 JMP AE, S, 005EH 
-6 0050 0501 JMP AE, NS, 005FH 
-5 005F CF40 ILLEGAL OPCOOE 
-4 0060 CFOO ILLEGAL OPCOOE 
-3 0061 4FE2 ANO FEH, ICA/ATA 
-2 0062 C50B ILLEGAL OPCOOE 
-1 0063 CC1C CALL0080H 

0 0080 AE80 EXX MA, MS, NCHG 

0081 C343 MOVE ACA/FSA, [IV + 1 
0082 AE90 EXX AA, MS, NCHG 
0083 AEC8 EXX MA, AS, EI 
0084 C343 MOVE ACA/FSA, [IV + 1 
0085 AEEO EXX MA, BM, 01 
0104 AFFO AETOI, AFB 
0085 AEEO EXX MA, MB, 01 
0086 C343 MOVE ACA/FBA, [IV + 1 

Run 

( Branches J 
Off 

( Count ) TIme 

( Prestore ) Off 

Run 

II TIme 

II Relative 

120 ns 
80 ns 
160 ns 
120 ns 
120 ns 
80 ns 
120 ns 

160 ns 

80 ns 
160 ns 
120 ns 
120 ns 
160 ns 
80 ns 
120 ns 
120 ns 

FIGURE 10. Triggered Event as Shown In the State Listing 
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( StateL!!mln~ E ) [ Listing 1 ) Invasm ~ [ Run ) 

( t.4arkers ) Off 

ADDR II DATA II DP8344 BCP t.4NEt.40NIC II Time 

Hex II Hex II Hex II Relative 
TLlF/l0814-13 

-19 0050 0051 ADD 05H, NCF/18R 120ns 
-18 0051 4009 AND OOH, GP5/GP5' 80ns 
-17 0052 C340 MOVE CCR/OCR, [IV + ] 120 ns 
-16 0053 C089 JMP GP5/GP5' 160 ns 
-15 0054 8000 MOVE OOH, IWHI 200 ns 
-14 0055 857C MOVE 57H, IWLO 120 ns 
-13 0056 COOO LJMP [lW] 120 ns 

-12 0057 8009 JRMK GP5/GP5', OH, OH 80ns 

-11 0058 8009 LJMP GP5/GP5', OH, S, 0058H 200ns 
-10 0059 0058 ADD 05H, GP4/GP4' 120ns 
-9 005A 8C09 LJMP GP5/GP5', OH, NS, 005CH 120ns 
-8 0058 005C ADD 05H, IWLO 80 ns 
-7 005C 0001 JMP RE, S, 005EH 120 ns 
-6 0050 0501 JMP RE, NS, 005FH 120 ns 
-5 005F CF40 ILLEGAL OPCOOE 160 ns 
-4 0060 CFOO ILLEGAL OPCOOE 80 ns 

FIGURE 11. Incorrectly Disassembled Instructions Prior to Triggered Event 

( StateL!!mln~ E ) [ Listing 1 Invasm ~ Run 

( t.4arkers ) Off 

ADDR II DATA II DP8344 BCP t.4NEt.40NIC II Time 

Hex II Hex II Hex II Relative 
TLlF/l0814-14 

-19 0050 0051 ADD 05H, NCFII8R 120 ns 
-18 0051 4009 AND OOH, GP5/GP5' 80 ns 
-17 0052 C340 MOVE CCR/OCR, [IV + ] 120 ns 
-16 0053 C089 JMP GP5/GP5' 160 ns 
-15 0054 8000 MOVE OOH, IWHI 200 ns 
-14 0055 857C MOVE 57H, IWLO 120 ns 
-13 0056 COOO LJMP [lW] 120 ns 

-12 0057 8009 JRMK GP5/GP5', OH, OH 80ns 

-11 0058 8009 LJMP GP5/GP5', OH, S, 0058H 200ns 
-10 0059 0058 120ns 
-9 005A 8C09 LJMP GP5/GP5', OH, NS, 005CH 120ns 
-8 0058 005C 80ns 
-7 005C OD01 JMP RE, S, 005EH 120 ns 
-6 0050 0501 JMP RE, NS, 005FH 120 ns 
-5 005F CF40 ILLEGAL OPCOOE 160 ns 
-4 0060 CFOO ILLEGAL OPCOOE 80ns 

FIGURE 12. Instructions Prior to Triggered Event, Correctly Disassembled after Choosing the "Invasm" Pop-Out 

2-178 



This same technique must be applied if one jumps ahead in 
the display and then scrolls backwards to view a certain 
state; in other words, you do not scroll forward through ev­
ery line to reach the desired state. For example, if one man­
ually selected the line number -12 in Figure 12 and 
entered line 226, the screen would display lines 219 through 
234. Now if one rolls the screen backwards to display lines 
199 through 214 as in Figure 13, the two byte instruction, 
LJMP, is once again not correctly disassembled. Therefore, 
select the "Invasm" pop-out and the display is'correctly dis­
assembled as shown in Figure 14. 

One of the features of the BCP is that it uses register banks. 
However, there is no external indication of the bank's state. 
The name of a register therefore depends upon which bank 
one is in, as in Figure 15. Due to the manner in which the 
inverse assembler disassembles the captured data, keeping 
track of the correct register name meant that one would 
constantly have to scroll the screen back to the last EXX 
statement and hit the "Invasm" pop-out to ensure that the 
displayed register names are correct. Hence, to avoid this 
inconvenience, the register names for both banks are dis­
played at all times. Refer to line 45 of Figure 16 for an 
example. The op-code decodes to MOVE where the source 
register is RO. Therefore, the register names for RO in both 
banks: Main Bank A -: CCR, and Alternate Bank A - DCR, 
are displayed. 

( State/T!mlng E ) ( Listing 1 

To view the op-code in both mnemonic form and hex form, 
as in Figure 16, define the, DATA label twice in the Format 
Menu, as in Figure 4. Then, select the base label to be 
"Hex" for one and "Invasm" for the other in the State list­
ing. 

OBTAINING THE DP8344 BCP INVERSE ASSEMBLER 

The DP8344 BCP Inverse Assembler package for use in a 
Hewlett Packard Logic Analyzer can be obtained from Na­
tional Semiconductor. Included in the Inverse Assembler 
Package is the DP8344 BCP Inverse Assembler software, 
including configuration files as described in this application 
note. These will be on a 3%" diskette formatted for use in 
the HP Logic Analyzer. Additionally, a 5%" diskette format­
ted for use on an IBM personal computer or compatible, 
containing the DP8344 Inverse Assembler source code can 
be obtained upon a request from National Semiconductor. 

If one owns the HP 10391A Inverse Assembler Develop­
ment Package, the source code can be modified to make 
any improvements one wishes to make to the DP8344 BCP 
Inverse Assembler. Note that it is not necessary to have the 
HP 10391A Inverse Assembler Development Package to 
use the DP8344 BCP Inverse Assembler., 

( Invasm ~ ( Run 

ADDR II DATA II DP8344 BCP t.lNEt.40NIC II TIme 

Hex II Hex II Hex II Relative 
TL/F/10814-15 

199 006A FD08 MOVE GP4/GP4', GP4/GP4' 120 ns 
200 0068 CEOa LJMPOa6AH 80 ns 
201 006C 006A ADD 06H, GP6/GP6' 120ns 
202 006A FD08 MOVE GP4/GP4', GP4/GP4' 120ns 
203 0068 CEOO LJMP006AH 80ns 
204 006C 006A ADD 06H, GP6/GP6' 120 ns 
205 006A FD08 MOVE GP4/GP4', GP4/GP4' 80 ns 

206 0068 CEOO LJMP006AH 120 ns 

207 006C 006A ADD a6H, GP6/GP6' 120ns 
208 006A FD08 MOVE GP4/GP4', GP4/GP4' 80ns 
209 0068 CEOO LJMP006AH 120 ns 
210 006C 006A ADD 06H, GP6/GP6' 120 ns 
211 006A FD08 MOVE GP4/GP4', GP4/GP4' 80 ns 
212 0068 CEOO LJMP006AH 120ns 
213 006C 006A ADD 06H, GP6/GP6' 120ns 
214 006A FD08 MOVE GP4/GP4', GP4/GP4' 80ns 

FIGURE 13. Incorrectly Disassembled Instructions Produced 
by Jumping Ahead In Display 

2-179 



co r---------------------------------------------------------------------------------------, 
co 
CD . 
z 
<I: 

Alternate Main 

( State/TImlng E ) ( LIsting 1 Invasm G;D ( Run) DCR CCR RO 

Rl 

R2 

R3 

199 
200 
201 
202 
203 
204 
205 

206 

207 
208 
209 
210 
211 
212 
213 
214 

A 

ADDR " DATA ':=' ===D=P=83=4=4=BC=P=t.l=N=Et.l=O=N=IC==~II:====n=m=e===: 
Hex " Hex " Hex "L-......;R.;.;e.;.;la;.;;tlv.;.;e __ ---' 

006A FD08 MOVE GP4/GP4', GP4/GP4' 120 ns 
0068 CEOO LJMP006AH 80 ns 
006C 006A 120ns 

8 

006A FD08 MOVE GP4/GP4', GP4/GP4' 120ns 
0068 CEOO WMP006AH 80 ns 
006C 006A 120 ns 
006A FD08 MOVE GP4/GP4', GP4/GP4' 80 ns 

0068 CEOO LJMP006AH 120n5 

006C 006A 120 ns 
006A FD08 MOVE GP4/GP4', GP4/GP4' 80 ns 
0068 CEOO WMP006AH 120 ns 
006C 006A 120ns 
006A FD08 MOVE GP4/GP4', GP4/GP4' 80ns 
0068 CEOO WMP006AH 120ns 

-
18R 
:-

ATR 
r--
F8R 
'---

RTR -
TSR -
TCR -
TMR 

:r----
GP4' ---GP5' -
GP6' -
GP7' -

NCF 

ICR 

ACR 

GPO 

GPl 

GP2 

GP3 

GP4 (accumulator) 

GP5 

GP6 

GP7 

R4 

R5 

R6 

R7 

R8 

R9 

Rl0 

Rll 

I-W...;..(IO_W_b..;.yt_e;...) ----i R12 

W (high byte) R13 
~::::::::===~ 
I-X...:(_lo_w_byt;..e..;;) __ ---I R14 

006C 006A 
006A FD08 MOVE GP4/GP4', GP4/GP4' 

120 ns 
80 ns 

Index Registers 
(pointers) 

X (high byte) R15 

~=====~ 

FIGURE 14. Instructions from Figure 13 Correctly Disassembled 
l-y...:(;...IO_w_byt;....;;e) __ ---I R16 

y (high byte) R17 

~=====~ after Choosing the "Invasm" Pop-Out 
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Timer 

I-Z....;(_IOw_byt:....e....;.) __ ___t R18 

LZ_(:..h.;:.ig_h ...:byt:..e..;,) __ ---' R19 

GP8 

GP9 

GP10 

GP11 

GP12 

GP13 

GP14 

GP15 

R20 

R21 

R22 

R23 

R24 

R25 

R26 

R27 

~!-R-L-------tl R28 
.TRH . R29 
~======~ 

Stacks 1-1 ~-S:-------ll ::~ 
FIGURE 15. Register Map 



:t> 
Z 

( StateL!!mln2 E ) ( Listing 1 ) ( Invasm ) ~ ( Run ) en 
Q) 
Q) 

( t.4arkers ) Off 

ADDR II DATA II DP8344 BCP t.4NEt.40NIC II TIme 

Hex II Hex II Hex II Relative 
TLIF/10814-17 

45 002B C340 MOVE CCR/DCR, [IV + ) 160ns 
46 002C E96S SUBA GP4/GP4', GP7/GP7' 160 ns 
47 0020 C340 MOVE CCR/DCR, [IV + ) 120 ns' 
48 002E A52B SUBA GP7 /GP7', [IX + ) 160 ns 
49 002F C340 MOVE CCR/DCR, [IX + ) 160ns 
50 0030 207B SUB 07H, GP7/GP7' 160 ns 
51 0031 C340 MOVE CCR/DCR [IV + ) 80 ns 

52 0032 ED6B SBCA GP7/GP7', GP7/GP7' 160 ns~ 

53 0033 C340 MOVE CCR/DCR [IV + ) 120ns 
54 0034 A72B SBCA GP7/GP7' [IX + ) 160 ns 
55 0035 C340 MOVE CCR/DCR [IV + ) 160 ns 
56 0036 A92B ANDA GP7/GP7', [lX+) 160 ns 
57 0037 C340 MOVE CCR/DCR, [IV + ) 160ns 
58 0038 F573 ORA IZHI, GP7/GP7' 160 ns, 
59 0039 C340 MOVE CCR/DCR, [IV + ) 80 ns 
60 003A AB2B ORA GP7IGP7', [lX+) 160 ns 

FIGURE 16. listing of Inverse Assembler on Logic Analyzer 
Demonstrating the Display of Both Register Bank Names 

I 

EI 
I 
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APPENDIX A 

Flow Chart of DP8344 Inverse Assembler Source Code 

TL/F/10814-18 
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LINEAR APPLICATIONS HANDBOOK-1991 
The purpose of this handbook is to provide a fully indexed and cross-referenced collection of linear integrated circuit 
applications using both monolithic and hybrid circuits from National Semiconductor. . 

Individual application notes are normally written to explain the operation and use of one particular device or to detail various 
methods of accomplishing a given function. The organization of this haridbook takes advantage of this innate coherence by 
keeping each application note intact, arranging them in numerical order, and providing a detailed Subject Index. , . , 

LOCAL AREA NETWORK DATABOOK-1992 
Integrated Ethernet Network Interface Controller Products. Ethernet Physical layer Transceivers 
Ethernet Repeater Interface Controller Products. Hardware and Software Support Products. FOOl Products. Glossary 

LS/S/TTL DATABOO~-1989 
Contains former Fairchild Products 
Introduction to Bipolar logic • low Power Schottky • Schottky • TTL • TTL-low Power 

MASS STORAGE HANDBOOK-1989 
Rigid Disk Pulse Detectors • Rigid Disk Data Separators/Synchronizers and ENDECs 
Rigid Disk Data Controller • SCSI Bus Interface Circuits • Floppy Disk Controllers • Disk Drive Interface Circuits 
Rigid Disk Preamplifiers and Servo Control Circuits. Rigid Disk Microcontroller Circuits. Disk Interface Design Guide 

MEMORY DATABOOK-199Q 
PROMs, EPROMs, EEPROMs • TTL I/O SRAMs • ECl I/O'SRAMs 

MICROCONTROLLER DATABOOK-1989 
COP400 Family. COP800 Family • COPS Applications • HPC Family • HPC Applications 
MICROWIRE and MICROWIRE/PlUS Peripherals. Microcontroller Development Tools 

MICROPROCESSOR DATABOOK-1989 
Series 32000 Overview. Central Processing Units • Slave Processors • Peripherals 
Development Systems and Software Tools. Application Notes. NSC800 Family 



PROGRAMMABLE LOGIC DATABOOK & DESIGN MANUAL-1990 
Product Line Overview. Datasheets • Designing with PLDs • PLD Design Methodology. PLD Design Development Tools 
Fabrication of Programmable Logic • Application Examples 

REAL TIME CLOCK HANDBOOK-1991 
Real Time Clocks and Timer Clock Peripherals • Application Notes 

RELIABILITY HANDBOOK-1986 
Reliability and the Die • Internal Construction. Finished Package. MIL-STD-883. MIL-M-38510 
The Specification Development Process • Reliability and the Hybrid Device • VLSIIVHSIC Devices 
Radiation Environment • Electrostatic Discharge. Discrete Device • Standardization 
Quality Assurance and Reliability Engineering • Reliability and Documentation • Commercial Grade Device 
European Reliability Programs • Reliability and the Cost of Semiconductor Ownership 
Reliability Testing at National Semiconductor. The Total Militaryl Aerospace Standardization Program 
883B/RETSTM Products. MILS/RETSTM Products. 883/RETSTM Hybrids. MIL-M-38510 Class B Products 
Radiation Hardened Technology • Wafer Fabrication • Semiconductor Assembly and Packaging 
Semiconductor Packages. Glossary of Terms. Key Government Agencies. ANI Numbers and Acronyms 
Bibliography. MIL-M-38510 and DESC Drawing Cross Listing 

SPECIAL PURPOSE LINEAR DEVICES DATABOOK-1989 
Audio Circuits • Radio Circuits • Video Circuits • Motion Control Circuits • Special Function Circuits 
Surface Mount 

TELECOMMUNICATIONS-1990 
Line Card Components • Integrated Services Digital Network Components • Analog Telephone Components 
Application Notes 





NATIONAL SEMICONDUCTOR CORPORATION DISTRIBUTORS' 
ALABAMA San Jose Lake Mary MARYLAND 

Huntsville Anthem Electronics Arrow Electronics Columbia 
Arrow Electronics (408) 453·1200 (407) 333·9300 Anthem Electronics 
(205) 837·6955 Arrow Electronics Orlando (301) 995·6840 ' 
Bell Industries (408) 441·9700 Chip Supply Arrow Electronics 
(205) 837·1074 Pioneer Technology (407) 298·7100 (301) 995·6002 
Hamilton! Avnet (408) 954·9100 Time Electronics Hamilton! Avnet 
(205) 837·7210 Zeus Components (407) 841·6565 (301) 995·3500 
Pioneer Technology (408) 629-4789 SI. Petersburg Time Electronics 
(205) 837·9300 Sunnyvale Hamilton! Avnet (301) 964·3090 
Time Electronics Bell Industries (813) 572·4329 Zeus Components 
(205) 721·1133 (408) 734·8570 Winter Park (301)997·1118 

ARIZONA Hamilton! Avnet Hamilton! Avnet Gaithersburg 

Chandler (408) 743·3300 (407) 657·3300 Pioneer Technology 

Hamilton! Avnet Time Electronics GEORGIA (301) 921·0660 

(602) 961·1211 (408) 734·9888 Duluth MASSACHUSETTS 
Phoenix Torrance Arrow Electronics Andover 

Arrow Electronics Time Electronics (404) 497·1300 Bell Industries 
(602) 437·0750 (213) 320-0880 Hamilton! Avnet (508) 474·8880 

Tempe Tustin (404) 446·0611 Beverly 
Anthem Electronics Arrow Electronics Pioneer Technology Sertech Laboratories ' 
(602) 966·6600 (714) 838·5422 (404) 623·1003 (508) 927·5820 
Bell Industries Time Electronics Norcross Lexington 
(602) 966·7800 (714) 937·0911 Bell Industries Pioneer Standard 
Time Electronics Woodland Hills (404) 662·0923 (617) 861·9200 
(602) 967·2000 Hamilton! Avnet Time Electronics Norwood 

CALIFORNIA 
(818) 594·0404 (404) 368·0969 Gerber Electronics 

YorbaUnda (617) 769·6000 Agora Hills Zeus Components ILLINOIS 
Bell Industries (714) 921·9000 Addison Peabody 

(818) 706·2608 Pioneer Electronics Hamilton! Avnet 

Time Electronics COLORADO (708) 495·9680 (508) 531·7430 

(818) 707·2890 Aurora Bensenville Time Electronics 

Zeus Components Arrow Electronics Hamilton! Avnet (508) 532·9900 

(818) 889·3838 (303) 373·5616 (708) 860·7700 Tyngsboro 

Burbank Englewood Elk Grove Village Port Electronics 

Elmo Semiconductor Anthem ElectroniCS Bell Industries (508) 649·4880 

(818) 768·7400 (303) 790·4500 (708) 640·1910 Wakefield 

Calabasas Hamilton! Avnet Itasca Zeus Components 

F!X Electronics (303) 799·7800 Arrow Electronics (617) 246·8200 

(818) 592·0120 Time Electronics (708) 250·0500 Wilmington 

Chatsworth (303) 721·8882 Schaumburg Anthem Electronics 

Anthem Electronics Wheatridge Anthem Electronics (508) 657·5170 

(818) 700·1000 Bell Industries (708) 884·0200 Arrow Electronics 

Arrow Electronics (303) 424·1985 Time Electronics (508) 658·0900 

(818) 701·7500 CONNECTICUT (708) 303·3000 MICHIGAN 
Time Electronics Danbury INDIANA Grand Rapids 
(818) 998·7200 Hamilton! Avnet Carmel Arrow Electronics 

Costa Mesa (203) 743·6077 Hamilton! Avnet (616) 243·0912 
Avnet Electronics Shelton (317) 844·9333 Pioneer Standard " 
(714) 754·6050 Pioneer Standard Fort Wayne (616) 698·1800 
Hamilton Electro Sales (203) 929·5600 Bell Industries Grandville 
(714) 641·4100 Wallingford (219) 423·3422 Hamilton! Avnet 

Cypress Arrow Electronics Indianapolis (616) 243·8805, 
Bell Industries (203) 265·7741 Advent Electronics Inc, Livonia 
(714) 895·7801 Waterbury (317) 872·4910 Arrow Electronics 

Gardena Anthem ElectroniCS Arrow Electronics (313) 665·4100 
Hamilton! Avnet (203) 575·1575 (317) 299·2071 Pioneer Standard 
(213) 516·8600 FLORIDA Bell Industries (313) 525·1800 

Irvine Altamonte Springs, (317) 875·8200 Novi 
Anthem Electronics Bell Industries Pioneer Standard Hamilton! Avnet 
(714) 768·4444 (407) 339·0078 (317) 573·0880 (313) 347·4720 

Rocklin Pioneer Technology IOWA 
Wyoming 

Anthem Electronics (407) 834·9090 Cedar Rapids 
R. M, Electronics, Iryc. 

(916) 624·9744 Zeus Components Advent Electronics 
(616) 531·9300 

Bell Industries (407) 788·9100 (319) 363·0221 MINNESOTA 
(916) 652·0414 Clearwater Arrow Electronics Eden Prairie 

Roseville Pioneer Technology (319) 395·7230 Anthem Electronics 
Hamilton! Avnet (813) 536·0445 Hamilton! Avnet (612) 944·5454 
(916) 925·2216 Deerfield Beach (319) 362·4757 Arrow Electronics 

San Diego Arrow Electronics (612) 828·7140 
Anthem Electronics (305) 429·8200 KANSAS Pioneer Standard 
(619) 453·9005 Bell Industries Lenexa (612) 944·3355 
Arrow Electronics (305) 421·1997 Arrow Electronics Edina 
(619) 565-4800 Pioneer Technology (913) 541·9542 Arrow Electronics 
Hamilton! Avnet (305) 428·8877 Hamilton! Avnet (612) 830·1800 
(619) 571·1900 Fort Lauderdale (913) 888·8900 Time Electronics 
Time Electronics Hamilton!Avnet (612) 943·2433 
(619) 586·1331 (305) 767·6377 Minnetonka 
Zeus Components Time Electronics Hamilton! Avnet 
(619) 277·9681 (305) 484·7778 (612) 932·0600 



NATIONAL SEMICONDUCTOR CORPORATION DISTRIBUTORS (Continued) 

MISSOURI Westbury PENNSYLVANIA WISCONSIN 
Chesterfield Hamilton! Avnet Export Div. Horsham Brookfield 

Hamilton! Avnet (516) 997·6868 Anthem Electronics Arrow Electronics 
(314) 537·1600 Woodbury (215) 443·5150 (414) 792·0150 

SI. Louis Pioneer Electronics Pioneer Technology Pioneer Electronics 
Arrow Electronics (516) 921·8700 (215) 674·4000 (414) 784·3480 
(314) 567·6888 NORTH CAROLINA Mars Mequon 
Time Electronics Charlotte Hamilton! Avnet Taylor Electric 
(314) 391·6444 Hamilton! Avnet (412) 281·4150 (414) 241-4321 

NEW JERSEY (704) 527·2485 Pittsburgh Waukesha 

Cherry Hill Pioneer Technology Pioneer Bell Industries 

Hamilton! Avnet (704) 527·8188 (412) 782·2300 (414) 547·8879 

(609) 424·0100 Durham TEXAS Hamilton! Avnet 

Fairfield Pioneer Technology Austin (414) 784·8205 

Hamilton! Avnet (919) 544·5400 Arrow Electronics CANADA 
(201) 575·3390 Raleigh (512) 835·4180 WESTERN PROVINCES 
Pioneer Standard Arrow Electronics Hamilton! Avnet Burnaby 
(201) 575·3510 (919) 876-3132 (512) 837·8911 Hamilton! Avnet 

Marlton Hamilton! Avnet Minco Technology Labs. (604) 420-4101 
Arrow Electronics (919) 878·0810 (512) 834·2022 Semad Electronics 
(609) 596-8000 Time Electronics Pioneer Standard (604) 420·9889 
Time Electronics (919) 874·9650 (512) 835-4000 Calgary 
(609) 596-6700 OHIO Time Electronics Electro Sonic Inc. 

Parsippany Centerville (512) 399·3051 (403) 255·9550 
Arrow Electronics Arrow Electronics Carrollton Semad Electronics 
(201) 538·0900 (513) 435·5563 Arrow Electronics (403) 252·5664 

Pine Brook Cleveland (214) 380·6464 Zentronics 
Anthem Electronics Pioneer Dallas (403) 295·8838 
(201) 227·7960 (216) 587·3600 Hamilton! Avnet Edmonton 

Wayne Columbus (214) 308·8111 Zentronics 
Time Electronics Time Electronics Pioneer Standard (403) 468·9306 
(201) 758·8250 (614) 794·3301 (214) 386·7300 Markham 

NEW MEXICO Dayton Houston Semad Electronics Ltd. 

Albuquerque Bell Industries Arrow Electronics (416) 475·3922 

Alliance Electronics Inc. (513) 435·8660 (713) 530-4700 Richmond 

(505) 292·3360 Belllndustries·Military Hamilton! Avnet Electro Sonic Inc. 

Bell Industries (513) 434·8231 (713) 240·7733 (604) 273·2911 

(505) 292·2700 Hamilton! Avnet Pioneer Standard Zentronics 

Hamilton! Avnet (513) 439·6700 (713) 495·4700 (604) 273·5575 

(505) 345·0001 Pioneer Standard Richardson Saskatoon 

NEW YORK (513) 236·9900 Anthem Electronics Zentronics 

Binghamton Zeus Components (214) 238·7100 (306) 955·2207 

Pioneer (513) 937·7400 Time Electronics Winnipeg 

(607) 722·9300 Solon (214) 644·4644 Zentronics 

Buffalo Arrow Electronics Zeus Components (204) 694·1957 

Summit Electronics (216) 248·3990 (214) 783·7010 EASTERN PROVINCES 

(716) 887·2800 Hamilton! Avnet UTAH Mississauga 

Commack (216) 349·5100 Midvale Hamilton! Avnet 

Anthem Electronics Westerville Bell Industries (416) 795·3825 

(516) 864·6600 Hamilton! Avnet (801) 255·9611 Time Electronics 

Fairport (614) 882·7004 Salt Lake City (416) 672·5300 

Pioneer Standard OKLAHOMA Anthem Electronics Zentronics 

(716) 381·7070 Tulsa (801) 973·8555 (416) 564·9600 

Hauppauge Arrow Electronics Arrow Electronics Nepean 

Arrow Electronics (918) 252·7537 (801) 973·6913 Hamilton! Avnet 

(516) 231·1000 Hamilton! Avnet Hamilton! Avnet (613) 226·1700 

Hamilton! Avnet (918) 664·0444 (801) 972·2800 Zentronics 

(516) 231·9444 Pioneer Standard West Valley (613) 226·8840 

Time Electronics (918) 492·7840 Time Electronics Ottawa 

(516) 273·0100 Radio Inc. (801) 973·8494 Electro SoniC Inc. 

Port Chester (918) 587·9123 WASHINGTON (613) 728·8333 

Zeus Components OREGON Bellevue Semad Electronics 

(914) 937·7400 Beaverton Arrow Electronics (613) 727·8325 

Rochester Anthem Electronics (206) 643·4800 Pointe Claire 

Arrow Electronics (503) 643·1114 Bothell Semad Electronics 

(716) 427·0300 Arrow Electronics Anthem Electronics (514) 694-0860 

Hamilton! Avnet (503) 626·7667 (206) 483·1700 51. Laurent 

(716) 292·0730 Hamilton! Avnet Kirkland Hamilton! Avnet 

Summit Electronics (503) 627·0201 Time Electronics (514) 335·1000 

(716) 334·8110 Lake Oswego (206) 820·1525 Zentronics 

Ronkonkoma Bell Industries Redmond (514) 737·9700 

Zeus Components (503) 635·6500 Bell Industries Willowdale 

(516) 737·4500 Portland (206) 867·5410 ElectroSonic Inc. 

Syracuse Time Electronics Hamilton! Avnet (416) 494·1666 

Hamilton! Avnet (503) 684·3780 (206) 241·8555 Winnipeg 

(315) 437·2641 Electro Sonic Inc. 

Time Electronics (204) 783·3105 

(315) 432·0355 
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National Semiconductor Corporation 
2900 Semiconductor Drive 
PO. Box 58090 
Santa Clara, CA 95052-8090 
Tel: 1-800-272-9959 
TWX: (910) 339-9240 

SALES OFFICES (Continued) 

INTERNATIONAL 
OFFICES 

Electronlca NSC de Mexico SA 
Juvenllno Rosas No 1 , 8-2 
Col Guadalupe Inn 
MexIco, 01020 OF MexIco 
Tel 52·5·524·9402 
Fax 52·5·524·9342 

National Semicondutores 
00 Brasil Ltda. 
Av Bng Faria Lima. 1409 

60 Andar 
Cep 01451 J. Paullstano 
Sao Paulo. SP, Brasil 
Tel (55/11) 212-5066 

Telex: 3911131931 

Fax (55/11)212·1181 NSBRBR 

National Semiconductor GmbH 
Eschborner Lans!r 130-132 
0-6000 Frankfurt 90 
Germany 
Tel: 1069) 78 9109·0 
Fax 1069) 7 89 43 83 

National Semiconductor GmbH 
Industnestrasse 10 
0-B080 F urstenfeldbruck 
Germany 
Tel 10·81·41) 103·0 
Telex: 527-649 
Fax (08141) 103554 

National Semiconductor GmbH 
Misburger Slrasse 81 0 
03000 Hannover 6' 
Germany 
Tel 10511) 560040 
Fax. 10511) 561740 

National Semiconductor GmbH 
Untere Waldplatze 37 
D· 7000 Stuttgarl 80 
Germany 
Tel711686511 
Fax: 71 16865260 

National Semiconductor (UK) Ltd. 
The Maple. Kembrey Park 
SWlndon. Wiltshire SN2 6UT 
United Kingdom 
Tel (07·93)61·41·41 
Telex 444·674 
Fax (07·93) 69·75-22 

National Semiconductor Benelux 
Vorstlaan 100 
B·1170 Brussels 
Belgium 
Tel 102) 6-61-06·80 
Telex: 61007 
Fax: 102) 6·60·23·95 

National Semiconductor (UK) Ltd. 
Rlngager 4A. 3 
DK·2605 Brandy 
Denmark 
Tel 102) 43·32·11 
Telex: 15- 179 
Fax. 102) 43·31-11 

National Semiconductor S.A. 
Centre d·Affalres·La Boursldlere 
Batlment Champagne. BP 90 
Route Natlonale 186 
F·92357 Le PlessIs Robinson 
Pans. France 
Telln 40·94·88·88 
Telex: 631065 
Fax· (1) 40·94-88-1 I 

National Semiconductor (UK) Ltd. 
Unit 2A 
Clonskeagh Square 
Clonskeagh Road 
Dublin 14 
Ireland 
Tel 101 ) 269·55·89 
Telex 91047 
Fax 101) 2830650 

National Semiconductor S.p.A. 
Strada 7. Palazzo R/3 

1·20089 Rozzano 
Mllanoflon 
Italy 
Tel: (02) 57 50 03 00 
Twx. 352647 
Fax 102) 57 500400 

National Semiconductor S.p .A. 
Via del Cararagglo, 107 
1·00147 Rome 
Italy 
Tel: 106) 5·13·48-80 
Fax 106) 5·13·79·47 

National Semiconductor (UK) Ltd. 
Isvelen 45 
Postboks 57 
N·13930stenstad 
J\Jorway 
Tel 12) 796500 
Fax 12) 796040 

National Semiconductor AB 
p.o. Box 1009 
Grosshandlarvaegen 7 
S·121 23 Johanneshov 
Sweden 
Tel 46-8· 7228050 
Fax 46·8-7229095 
Telex 10731 NSCS 

National Semiconductor GmbH 
Calle Agustin de Foxa. 27 (9'0) 
E·28036 Madrid 
Spain 
Tel 101) 733·2958 
Telex: 46133 
Fax 101) 733-8018 

National Semiconductor 
Switzerland 
Alte Wlnterthurerstrasse 53 
Postfach 567 
Ch-8304 Walllsellen·Zunch 
SWitzerland 
Tel 101) 830-2727 
Telex 828·444 
Fax 101) 830·1900 

National Semiconductor 
Kauppakartanonkatu 7 A22 
SF·00930 HelSinki 
Finland 
Tel 190) 33-80-33 
Telex 126116 
Fax 190) 33·81·30 

National Semiconductor 
Postbus 90 
NL 1380 AB Weesp 
The Netherlands 
Tel 10·29·40) 3·04·48 
Telex 10·956 
Fax 10·29·40) 3·04·30 

National Semiconductor Japan 
Ltd. 
Sanseldo Bldg. 5F 
4-15-3 Nishi Shln)uku 

ShlnJuku·ku 
Tokyo 160 Japan 
Tel (03) 3299·7001 
Fax 103) 3299·7000 
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National Semiconductor 
Hong Kong Ltd, 
13th Floor. Straight Block 
Ocean Centre 
5 Canton Road, TSlmshatsul East. 
Kowloon. Hong Kong 
Tel 1852) 737·1600 
Telex 51292 NSHKL 
Fax. 1852) 736-9960 

National Semiconductor 
(Australia) PTY, Ltd, 
Bldg 16. Business Park Dr 
Melbourne. 3168 
Vlctofla, Australia 
Tel 103) 558·9999 
Fax 61-3·558·9998 

National Semiconductor (PTE), 
Ltd. 
200 Cantonment Road 13·02 
South pOint 200 
Singapore 0208 
Tel 2252229 
Telex: RS 50808 
Fax 165)225· 7080 

National Semiconductor (Far East) 
Ltd. 
Taiwan Branch 
9th Floor. No , 8 
Sec 1. Chang An East Road 
Taipei. Taiwan R.OC 
Tel 186) 521·3288 
Telex: 22837 NSTW 
Fax 02561·3054 

National Semiconductor (Far East) 
Ltd. 
Korea Branch 
13th Floor. Dal Han Life Insurance 
63 Building. 
60. YOldo·dong. Youngdeungpo·ku. 
Seoul. Korea 150· 763 
Tel 102)784·8051 
Telex: 24942 NSPKLO 
Fax (02) 784·8054 


