
400029

~N~tional
~ SemICOnductor

IBM DATA
COMMUNICATIONS

HANDBOOK

1992 Edition

IBM Data Communications

Application Notes

Physical Dimensions

III ..
•

TRADEMARKS
!

Following is the most current list of National Semiconductor Corporation's trademarks and registered trademarks;

ABiCTM FACTTM MICROWIRE/PLUSTM SCXTM
Abuseable™ FACT Quiet Series™ MOLETM SERIES/800Tt.1
AnadigTM FAIRCADTM MPATM Series 900TM
ANS-R-TRANTM FairtechTM MSTTM Series 3000TM
APPSTM FAST® Naked-8TM Series 32000®
ASPECTTM FASTr™ National® Shelf,....ChekTM
Auto-Chem DeflasherTM 5-Star Service™ National Semiconductor® Simple Switcher™
BCPTM FlashTM National Semiconductor SofChekTM
BI-FETTM GENIXTM Corp.® SONICTM
BI-FET IITM GNXTM NAX800TM SPIRETM
BI-LiNETM GTOTM Nitride PIUS™ Staggered RefreshTM
BIPLANTM HAMRTM Nitride Plus Oxide™ STARTM
BLCTM HandiScan™ NMLTM StarlinkTM
BLXTM HEX3000TM NOBUSTM STARPLEXTM
BMACTM HPCTM NSC800TM ST-NICTM
Brite-Lite™ 13L® NSCISETM SuperATTM
BSITM ICMTM NSX-16TM Super -BlockTM
CDDTM INFOCHEXTM NS-XC-16TM SuperChipTM
CheckTrackTM IntegrallSETM NTERCOMTM SuperScript™
CIMTM I ntelisplayTM NURAMTM SYS32TM
CIMBUSTM ISETM OPALTM TapePak®
CLASICTM ISE/06TM OXISSTM TDSTM
Cloc~ChekTM ISE/08TM p2CMOSTM TeleGate™
COMBO® ISE/16TM . PC MasterTM The National Anthem®
COMBO ITM ISE32TM Perfect WatchTM Time,....ChekTM
COMBO IITM ISOPLANARTM Pharm~ChekTM TINATM
COPSTM microcontrollers ISOPLANAR-ZTM PLANTM TLCTM
CRDTM KeyScanTM PLANARTM T rapezoidal™
DA4TM LERICTM PLAYERTM TRI-CODETM
Datachecker® LMCMOSTM Plus~2TM ' TRI-POLYTM
DENSPAKTM M2CMOSTM ' Polycraft™ TRI-SAFETM
DIBTM Macrobus™ POSilinkTM TRI-STATE®
DISCERNTM Macrocomponent™ POSitalker™ TURBOTRANSCEIVERTM
DISTILLTM MAPLTM Power + Control™ VIPTM
DNR® MAXI-ROM® POWERplanar™ VR32™
DPVMTM Mea~ChekTM QUAD3000™ WATCHDOGTM
E2CMOSTM MenuMaster™ QUIKLOOKTM XMOSTM
ELSTARTM Microbus™ data bus RATTM XPUTM
Embedded System MICRO-DACTM RICTM Z STARTM

Processor™ JLtalker™ RTX16TM 883B/RETSTM
EPTM Microtalker™ SABRTM 883S/RETSTM
E-Z-LlNKTM MICROWIRETM Scrip~ChekTM

abel™ is a trademark of Data 1/0 Corporation.
BRIEFTM and UnderWare™ are trademarks of UnderWare, Inc.
Crosstalk® and DCA® are registered trademarks of Digital Communication Associates, Inc.
Hewlett PackardTM is a trademark of Hewlett Packard Company.
IBM®, MICROCHANNEL®, PC®, and PS/2® are registered trademarks of International Business Machines Corp.
IRMATM and SMART ALECTM are trademarks of Digital Communication Associates, Inc.
Microsoft® and MS-DOS® are registered trademarks of Microsoft Corporation.
PAL® is a registered trademark of and used under license from Advanced Micro Devices, Inc.
RELAY GoldTM is a trademark of RELAY Communications, Inc.
SimPC Master™ is a trademark of Simware Inc.
Xeus™ is a trademark of Fischer International Systems Corporation.

LIFE SUPPORT POLICY
NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR
SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR COR-
PORATION. As used herein:

1. Life support devices or systems are devices or systems 2. A critical component is any component of a life support
which, (a) are intended for surgical implant into the body, device or system whose failure to perform can be reason-
or (b) support or sustain life, and whose failure to per- ably 'expected to cause the failure of the life support de-
form, when properly used in accordance with instructions vice or system, or to affect its safety or effectiveness.
for use provided in the labeling, can be reasonably ex-
pected to result in a significant injury to the user~

NationalSemlconductorCorporatlon 2900 Semiconductor Drive, P.O. Box 58090, Santa Clara, California 95052-80901-800-272-9959
TWX (910) 339-9240
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied, and National reserves the right, at any time
without notice, to change said circuitry or specifications.

~National
D Semiconductor

Introduction to IBM Data Communications

IBM 3270/3299 PROTOCOL

The IBM 3270/3299 serial communications protocol was
developed by IBM for the cluster controller-peripheral link in
370 class mainframe systems. Fortune 1000 corporations
that use these systems have large scale networking needs
and often support thousands of terminals and printers. Al­
though PC-based networks have increased in popularity,
shipments of IBM 3270 peripherals have remained steady
over the last few years due to the huge investments made in
both hardware and software application development.

The 3299 protocol is a variation of the 3270 protocol in that
an 8·bit address byte is asserted between the starting se­
quence and the first word for each out board transmission
from the controller. This was done to allow up to eight 3270
peripherals to be multiplexed and connected to the control­
ler via a single coax cable, thus reducing cabling costs. The
multiplexing and de-multiplexing is done with a 3299 termi­
nal multiplexer.

IBM 5250 PROTOCOL

The 5250 serial communications protocol was developed by
IBM originally for the mid-range System 3x line of comput­
ers. IBM has updated the System 3x series to the AS/400.
The AS/400 line can vary from small office environment
processors to more powerful processors with greatly en­
hanced networking facilities that rival the smaller 370 class
mainframes. They are typically used in hotels, bank branch
offices and hospitals for a variety of tasks.

iii

NATIONAL'S SOLUTION

With over a decade of shipments into the IBM 3270 connec­
tivity market, National is the leading standard product semi­
conductor supplier. The first generation DP8340/41 proto­
col translation chips were used in DCA's industry standard
IRMA cards which were the first 3270 terminal emulation
products available for IBM PC's. Although the DP8340/41
pair solved many design issues regarding IBM 3270 proto­
col, bit slice microcontrollers were still required to meet
the fast response times specified by IBM. To address this
issue National introduced the DP8344 Biphase Communi­
cations Processor in 1987. This product features a
3270/3299/5250 transceiver tightly coupled to a high
speed RISC. CPU. The BCP was the first single hardware
platform capable of supporting the 3270, 3299 and 5250
datastreams. This new product was well received by corpo­
rations such as Memorex Telex, IBM, DEC, Harris Adacom,
Tandberg Data, liS, Apple Computer, and many others.

With a combination of experience in IBM connectivity proto­
cols, mixed signal design capabilities, extensive laboratory
resources, and knowledge of IBM peripherals (terminals,
printers, terminal emulation cards), National will continue to
develop products that meet the semiconductor needs of our
customers. By working in conjunction with third parties, Na­
tional can offer the complete hardware and software solu­
tion to IBM Data Communications.

S" -... o c.
c
(') -o·
:::J -o
iii
3C
c
D) -D)

o o
3
3
c
:::J n·
D) -o·
::s en

Table of Contents
Introduction
Alphanumeric Index .. .

Section 1 IBM Data Communications
DP8340 IBM 3270 Protocol Transmitter/Encoder '•.....•............
DP8341 IBM 3270 Protocol Receiver/Decoder
DP8342 High-Speed 8-Bit Serial Transmitter/Encoder
DP8343 High-Speed 8-Bit Serial Receiver/pecoder
DP8344B Biphase Communications ~rocessor-BCP

Section 2 Application Notes,'
AN-641 MPA-II-A Multi-Protocol Terminal Emulation Adapter Using the DP8344
AN-624 A Combined Coax~Twisted Pair 3270 Line Interface for the, DP8344 Biphase

Communications Processor '
AN-623 Interfacing Memory to the DP8344B•........
AN-504 DP8344 BCP Stand-Alone Soft-Load System
AN-499 "lnterrupts"~A Powerful Tool of the Biphase Communications Processor
AN-625 JRMKSpeeds Command Decoding ' ; ;
AN-627 DP8344 Remote processor Interfacing '" ~ '
AN-626 DP8344 Timer Application " ... ~
AN-516 Interfacing the DP8344 to Twinax
AN-688 The DP8344 BCP Inverse Assembler ;

Section 3 Physical Dimensions
. Physical Dimensions ... ',' .
Bookshelf
Distributors'

iv

iii
v

1-3
1-12
1-23
1-33
1-44

2-3

2':95
2-99

.2-101
2-112
2-117
2-121
2-135
2-152
2-172

3-3

Alpha-Numeric Index
AN-499 "Interrupts"-A Powerful Tool of the Biphase Communications Processor 2-112
AN-504 DP8344 BCP Stand-Alone Soft-Load System .. 2-101
AN-516 Interfacing the DP8344 to Twinax .. 2-152
AN-623 Interfacing Memory to the DP8344B ... 2-99
AN-624 A Combined Coax-Twisted Pair 3270 Line Interface for the DP8344 Biphase Communications

Processor ... 2-95
AN-625 JRMK Speeds Command Decoding .. 2-117
AN-626 DP8344 Timer Application ... 2-135
AN-627 DP8344 Remote Processor Interfacing .. 2-121
AN-641 MPA-II-A Multi-Protocol Terminal Emulation Adapter Using the DP8344 ;.2-3
AN-688 The DP8344 BCP Inverse Assembler ... 2-172
DP8340 IBM 3270 Protocol Transmitter/Encoder ; .. 1-3
DP8341 IBM 3270 Protocol Receiver/Decoder ... 1-12
DP8342 High-Speed 8-Bit Serial Transmitter/Encoder ; 1-23
DP8343 High-Speed 8-Bit Serial Receiver/Decoder ... 1-33
DP8344B Biphase Communications Processor-BCP .. 1-44

v

rn c

~ ~National
~ U Semiconductor
c
rn :::s
E Product Status Definitions
(/) -u
:::s

"C
2
a.. Definition of Terms

This data sheet contains the design specifications for product
development. Specifications may change in any manner without notice.

This data sheet contains preliminary data, and supplementary data will
be published at a later date. National Semiconductor Corporation
reserves the right to make changes at any time without notice in order
to improve design and supply the best possible product.

This data sheet contains final specifications. National Semiconductor
Corporation reserves the right to make changes at any time without
notice in order to improve design and supply the best possible product.

National Semiconductor Corporation reserves the right to make changes without further notice to any products herein to
improve reliability, function or design. National does not assume any liability arising out of the application or use of any product
or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

vi

Section 1

IBM Data
Communications

III

Section 1 Contents
DP8340 IBM 3270 Protocol Transmitter/Encoder. 1-3
DP8341 IBM 3270 Protocol Receiver/Decoder... 1-12
DP8342 High-Speed 8-Bit Serial Transmitter/Encoder. 1-23
DP8343 High-Speed 8-Bit Serial Receiver/Decoder. 1-33
DP8344B Biphase Communications Processor-BCP 1-44

1-2

~National
U Semiconductor

DP8340 IBM 3270 Protocol Transmitter/Encoder

General Description
The DP8340 generates a complete encoding of parallel
data for high speed serial transmission which conforms to
the protocol as defined by the IBM 3270 information display
system standard. The DP8340 converts parallel input data
into a serial data stream. Although the IBM standard covers
biphase serial data transmission over a coax line, the
DP8340 also adapts to general high speed serial data trans­
mission over other than coax lines, at frequencies either
higher or lower than the IBM standard.

The DP8340 and its complementary chip, the DP8341 (re­
ceiver/decoder) have been designed to provide maximum
flexibility in system designs. The separation of the transmit­
ter/receiver functions provides convenient addition of more
receivers at one end of a biphase line without the need of
unused transmitters. This is specifically advantageous in
control units where typical biphase data is multiplexed over
many biphase lines and the number of receivers generally
exceeds the number of transmitters.

Connection Diagram

Features
• Ten bits per data byte transmission
• Single-byte or multi-byte transmission
• Internal parity generation (even or odd)
• Internal crystal controlled oscillator used for the genera­

tion of all required chip timing frequencies

• Clock output directly drives receiver (DP8341) clock in-
put

• Input data holding register
• Automatic clear status response feature
• Line drivers at data outputs provide easy interface to

biphase coax line or general transmission lines
II < 2 ns driver output skew

• Bipolar technology provides TTL input/output compati-
bility

• Data outputs power up/down glitch free
II Internal power up clear and reset

• Single + 5V power supply

Dual·ln·L1ne Package

0111

0110

Dig

DiS

Dl7

016

015

014

013

012

eLK OUT

GNO

Top View

FIGURE 1

Vee

REG LOAD

REG FULL

AUTO RESPONSE

TRANSMITTER ACTIVE

PARITY CRT

EVEN/ODD

DATA OUT

DATA OUT

DATA DELAY

X2

X1

Order Number DP8340N
See NS Package Number N24A

1·3

TLlF/5251-1

Block Diagram

CLOCK
OUTPUT

C~~~I~LI TRANSMITTER EVEN/O~~ REGISTER AUTO·
RESET ACTIVE PARITY LOAD RESPONSE

~ '\N\I-II-t~ X2

EXTERNAL I CRYSTAL
CONTROL LOGIC CRYSTAL c::::J I OSCILLATOR

18.867 MHz -C----I-- Xl
I &....------1 ~------~~------~

REGISTERS
FULL

~AATTAA }
UI\'I\ SERIAL

OUTPUTS

DATA
DELAY

TLlF/5251-2

FIGURE 2. DP8340 Serial BI-Phase Transmitter/Encoder Block Diagram

Functional Description
Figure 2 is a block diagram of the DP8340 biphase Trans­
mitter/Encoder. The transmitter/encoder contains a crsytal
oscillator whose input is a crystal with a frequency eight (8)
times the data rate. A Clock Output is provided to drive the
DP8341 receiver/decoder Clock Input and other system
components at the oscillator frequency. Additionally, the os­
cillator drives the control logic and output shift register/for­
mat logic blocks.

Data is parallel loaded from the sytem data bus to the trans­
mitter/encoder's input holding register. This data is in turn
loaded by the transmitter/encoder to its output shift register
if this register was empty at the time of the load. During this
load, message formatting and parity are generated. The for­
matted message is then shifted out at the bit rate frequency
to the TIL to biphase block which generates the proper
data bit formatting. The three data outputs, DATA, DATA,
and DATA DELAY provide for flexible interface to the coax
line with a minimum of external components.

The Control Logic block interfaces to all blocks to insure
proper chip operation and sequencing. It controls the type
of parity generation through the Even/Odd Parity input. An
additional feature provided by the transmitter/encoder is
generation of odd parity and placement in bit 10 position

1-4

while still maintaining even or odd parity in the bit 12 posi­
tion. This is the format of data word bytes and other com­
mands in the 3270 Standard. The Parity Control input is the
pin which controls when this operation is in effect.

Another feature of the transmitter/encoder is the internal
TI / AR (Transmission Turnaround/Auto Response) capabil­
ity. After each Write type message from the control unit in
the 3270 Standard, the receiving unit must respond with
clean status (bits 2 through 11). With the transmitter/encod­
er, this function is accomplished simply by forcing the Auto­
Response input to the Logic "0" state.

Operation of the transmitter/encoder is automatic. After the
first data byte is loaded, the Transmitter Active output is set
and the transmitte.r/encoder immediately formats the input
data and serially shifts it out its data outputs. If the message
is a multi-byte message, the internal format logic will modify
the message data format for multi byte as long as the next
byte is loaded to the input holding register before the last
data bit of the previous data byte is transferred out of the
internal output shift register. After all data is shifted out of
the transmitter/encoder the Transmitter Active output will
return to the inactive state.

Detailed Pin/Functional Description
Crystal Inputs X 1 and X2

The oscillator is controlled by an external, parallel resonant
crystal connected between the X1 and X2 pins. Normally, a
fundamental mode crystal is used to determine the operat­
ing frequency of the osicllator; however, overtone mode
crystals may be used.

Crystal Specifications (Parallel Resonant)

Type AT-cut crystal

Tolerance

Stability

Resonance

Maximum Series Resistance

Load Capacitance

R C
TO PIN X2 ~L- VCC

PIN (14) ..L r-
CJ CRYSTAL

....
___ T.... SEE (FIG. 16)

TO PIN Xl _
PIN (13)

0.005% at 25°C

0.01 % from O°C to + 70°C

Fundamental (Parallel)

Dependent on Frequency
(For 18.867 MHz, 50n)

15 pF

FREQ R C

10 MHzto 500n
30 pF

20 MHz ±10%

>20 MHz
120n

15 pF
±10%

TL/F/5251-3

FIGURE 3. Connection Diagram

If the DP8340 transmitter is clocked by a system (clock
crystal oscillator not used), pin 13 (X1 input) should be
clocked directly using a Schottky series (74S) circuit. Pin 14
(X2 input) may be left open. The clocking frequency must be
set at eight times the data bit rate. Maximum input frequen­
cy is 28 MHz. For the IBM 3270 Interface, this frequency is
18.867 MHz. At this frequency, the serial bit rate will be
2.358 Mbits/sec.

Clock Output

The Clock Output is a buffered output derived directly from
the crystal oscillator block and clocks at the oscillator fre­
quency. It is designed to directly drvie the DP8341 receiver/
decoder Clock Input as well as other system components.

Registers Full

This output is used as a flag by the external operating sys­
tem. A logic "1" (active state) on this output indicates that
both the internal output shift register and the input holding
register contain active data. No additional data should be
loaded until this output returns to the logic "0" state (inac­
tive state).

Transmitter Active

This output will be in the logic "1" state while the transmit­
ter/encoder is about to transmit or in the process of trans­
mitting data. Otherwise, it will assume the logic "0" state
indicating no data presently in either the input holding or
output shift registers.

Register Load

The Register Load input is used to load data from the Data
Inputs to the input holding register. The loading function

1-5

is edge sensitive, the data present during the logic "0" state
of this input is loaded, and the input data must be valid
before the logic "0" to logic "1" transition. It is after this
transition that the transmitter/encoder begins formatting of
data for serial transmission.

Auto Response (IT/ AR)

This input provides for automatic clear data transmission (all
bits in logic "0") without the need of loading all zero's.
When a logic "0" is forced on this inpiut the transmitter/en­
coder immediately responds with transmission of "clean
status". This function is necessary after the completion of
each write type command and in other functions in the 3270
specification. In the logic "1" state the transmitter/encoder
transmits data entered on the Data Inputs.

Even/Odd Parity

This input sets the internal logic of the DP8340 transmitter/
encoder to generate either even or odd parity for the data
byte in the bit 12 position. When this pin is in the logic "0"
state odd parity is generated. In the logic "1" state even
parity is generated. This feature is useful when the control
unit is performing a loop back check and at the same time
the controller wishes to verify proper data transmission with
its receiver/decoder.

Parity Control/Reset

Depending on the type of message transmitted, it is at times
necessary in the IBM 3270 specification to generate an ad­
ditional parity bit in the bit 10 position. The bit generated is
odd parity on the previous eight (8) bits of data. When the
Parity Control input is in the logic "1" state the data entered
at the Data Bit 10 position is placed in the transmitted word.
With the Parity Control input in the logic "0" state the Data
Bit 10 input is ignored and odd parity on the previous data
bits is placed in the normal bit 10 position while overall word
parity (bit 12) is even or odd (controlled by Even/Odd Parity
input). This eliminates the need for external logic to gener­
ate the parity on the data bits.

Truth Table

Parity Control Input Transmitted Data Bit 10

Logic "1" Data entered on Data Input 10

Logic "0" Odd Parity on 8-bit data byte

When this input is driven to a voltage that exceeds the pow­
er supply level (9V to 13V) the transmitter/ encoder is reset.

Serial Outputs-DATA, DATA, and DATA DELAY

These three output pins provide for convenient application
of data to the biphase Coax line (see Figure 15 for applica­
tion). The Data outputs are a direct bit representation of the
biphase data while the DATA DELAY output provides the
necessary increment to clearly define the four (4) DC levels
of the pulse. The DATA and DATA outputs add flexibility to
the DP8340 transmitter/encoder for use in high speed dif­
ferential line driving applications.

III
I

C) r---,
~

~ Functional Timing Waveforms-Message Format
D-
C Single Byte Transmission

t
TRANSMISSION

START

t
TRANSMISSION
TERMINATION

REG FULL --I1 ____________ ----(~,~

DATA ___

DATA

. DATA DELAY

111 11 11 1 1

\-STARTING SEQUENCE-----~
FIGURE 4. Overall Timing Waveforms for Single Byte

Multi-Byte Transmission

SYNC BIT PARITY
BYTE 2 BYTE X

u ((

TA-----1

TL/F/5251-4

DATA ___ ~~
I I I I

DATA

~~
r-IJ.D~

L1 11 11 1 1 ICODEVIOLATION SY~CI B~T(? B1T IsY1cIB~T B1T I j
BIT 2 12 BIT 2 12

STARTING SEQUENCE -si~8~~~E

DATA DELAY

TL/F/5251-5

FIGURE 5. Overall Timing Waveforms for Multi-Byte

1·6

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, Maximum Power Dissipation @25°C·
please contact the National Semiconductor Sales Dual-In-Line Package 2500mW
Office/Distributors for availability and specifications. 'Derate dual·in·line package 20 mWI'C above 25"C.

Supply Voltage, Vee 7V

Input Voltage 5.5V Operating Conditions,
Output Voltage 5.25V

Min Max Units
Supply Voltage, (Vee) 4.75 5.25 V

Storage Temperature Range - 65°C to + 150°C
Ambient Temperature, T A a +70 °C

lead Temperature (Soldering, 10 sec.) 300°C

Electrical Characteristics (Notes 2 and 3)

Symbol Parameter ConditIons Min Typ Max Units

VIH logic "1" Input Voltage
2.0 V

(All Inputs Except X1 and X2)

VIL logic "a" Input Voltage
0.8 V

(All Inputs Except X1 and X2)

VeLAMP Input Clamp Voltage liN = -12 mA -0.8 -1.2 V
(All Inputs Except X1 and X2)

IIH logic "1" Input Current Vee = 5.25V
0.3 120 ,.,.A

Register load Input VIN = 5.25V

All Others Except X1 and X2 0.1 40 ,.,.A

IlL logic "a" Input Current ,Vee = 5.25V
-15 -300 ,.,.A

Register load Input VIN = 0.5V

All Inputs Except X1 and X2 -5 -100 ,.,.A

VOH1 logic "1" All Outputs Except ClK OUT, 'IOH = -100,.,.A 3.2 3.9 V
DATA, DATA, and DATA DELAY 10H = -1 mA 2.5 3.4 V

VOH2 logic" 1" for CKl OUT, DATA,
10H = -10 mA 2.6 3.0 V

OAT A and DATA DELAY Outputs

VOL1 logic "a" All Outputs Except ClK OUT,
10L = 5 mA 0.35 0.5 V

DATA, OAT A and DATA DELAY Outputs " .

VOL2 logic "a" for ClK OUT, DATA,
IOL = 20 mA 0.4 0.6 V

DATA and DATA DELAY Outputs

IOS1 Short Circuit Current for All Outputs
VOUT = OV

Except ClK OUT, DATA, DATA, and -10 -30 -100 mA
DATA DELAY

(Note 4)

IOS2 Short Circuit Current for DATA, VOUT = OV -50 -140 -350 mA
DATA, and DATA DELAY Outputs (Note 4)

IOS3 Short Circuit Current for ClK OUT (Note 4) -30 -90 -200 mA

lee Power Supply Current Vee = 5.25V 170 250 mA

Timing Characteristics Oscillator Frequency = 18.867 MHz (Notes 2 and 3)

Symbol Parameter Conditions Min Typ Max Units

tpd1 REG LOAD to Transmitter Active (T A) load Circuit 1
60 90

Positive Edge Figure 7
ns

tpd2 REG lOAD to REG Full; Positive Edge Load Circuit 1
45 75

Figure 7
ns

I

tpd3 Register Full to T A; Negative Edge load Circuit 1
40 70

Figure 7
ns III

tpd4 Positive Edge of REG lOAD to load Circuits 1 & 2
50 80

Positive Edge of DATA Figure 9
ns

1-7

Timing Characteristics Oscillator Frequency = 18.867 MHz (Notes 2 and 3) (Continued)

Symbol Parameter Conditions Min Typ Max Units

tpd5 REG LOAD to DATA; Positive Edge Load Circuits 1 & 2
380 475

Figure 9, (Note 6)
ns

tpd6 REG LOAD to DATA DELAY; Positive Edge Load Circuits 1 & 2
160 250

Figure 9, (Note 6)
ns

tpd7 Positive Edge of DATA to Negative Edge Load Circuit 2
100 115

of DATA DELAY Figure 9, (Note 6)
ns

tpd8 Positive Edge of DATA DELAY to Negative Load Circuit 2
110 125

Edge of DATA Figure 9, (Note 6)
ns

tpd9, Skew between OAT A and DATA Load Circuit 2
2 6

tpd10 Figure 9
ns

tpd11 Negative Edge of Auto Response to Load Circuit 1
70 110

Positive Edge of T A Figure 10
ns

tpd12 Maximum Time Delay to Load Second Byte Load Circuit 1
4 X T -50

after Positive Edge of REG FULL Figure 8, (Note 6)
ns

tpd13 X1 to CLK OUT; Positive Edge Load Circuit 2
21 30

Figure 13
ns

tpd14 X1 to CLK OUT; Negative Edge Load Circuit 2
23 33

Figure 13
ns

tpd15 Negative Edge of AR to Positive Load Circuit 1
45 75

Edge of REG FULL Figure 10
ns

tpd16 Skew between TA and REG FULL during Load Circuit 1
50 80

Auto Response Figure 10
ns

tpd17 REG LOAD to REG FULL; Positive Edge Load Circuit 1
45 75

for Second Byte Figure 14
ns

tpw1 REG LOAD Pulse Width Figure 12 40 ns

tpw2 First REG FULL Pulse Width (Note 5) Load Circuit 1
8 x T + 60 8 x T + 100

Figure 7, (Note 6)
ns

tpw3 REG FULL Pulse Width prior to Ending Load Circuit 1 ,
5XB ns

Sequence (Note 5) A'gure 7, (Note 6)

tpw4 Pulse Width for Auto Response Figure 10 40 ns

ts Data Setup Time prior to REG LOAD Figure 12
15 25 ns

Positive Edge, Hold Time (tH) = 0 ns

tr1 Rise Time for DATA, OAT A, and DATA Load Circuit 2
7 13

DELAY Output Waveform Figure 11
ns

tf1 Fall Time for DATA, DATA, and DATA Load Circuit 2
5 11

DELAY Output Waveform Figure 11
ns

tr2 Rise Time for T A and REG FULL Load Circuit 1
20 30

Figure 15
ns

tf2 Fall Time for TA and REG FULL Load Circuit 1
15 25

Figure 15
ns

fMAX Data Rate Frequency (Note 7)
DC 3.5 Mbits/s

(Clock Input must be ax this Frequency)

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device
should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified, min.lmax. limits apply across the O·C to + 70·C temperature range and the 4.7SV to S.2SV power supply range. All typical
values are for T A = 2S·C and Vee = S.OV.
Note 3: All currents into device pins are shown as positive; all currents out of device pins are shown as negative; all voltages are referenced to ground, unless
otherwise specified. All values shown as max. or min. are so classified on absolute basis.
Note 4: Only one output should be shorted at a time. Output should not be shorted for more than one second at a time.
Note 5: T = 1/(Oscillator Frequency), unit for T should be ns. 8 = 8T
Note 6: Oscillator Frequency Dependent.
Note 7: For the IBM 3270 Interface, the data rate frequency is 2.3S8 Mbits/s. 28 MHz clock frequency corresponds to 3.7S% jitter when referenced to Figure 10 of
DP8341 Datasheet.

1-8

Timing Characteristics (Continued)

Load Circuit 1

vee

TL/F/5251-6

Load Circuit 2

Vee

FIGURE 6. Test Load Circuits

Timing Waveforms

~--------~~------------------3V

50%

I~ I ,2 VOH

R~ru:: ------I------Jf.~ .. r J-
50

%-VOL

-tPW2-! ~(--J !-tpw3-

TLlF/5251-7

TLlF/5251-B

FIGURE 7. Timing Waveforms for Single Byte Transfer

REG FULL

~~r.:~

It:' --=it__t~Pd12 VOH

". ~%
_____ oJ. VOL

WINDOW
TO LOAD MULTI-BYTE DATA - .

17'1zxB

3V

TL/F/5251-9

FIGURE 8. Maximum Window to Load Multi-Byte Data

3V

tpd4
DATA \

'----------' VOL

VOH

DATA DELAY

TL/F/5251-10

FIGURE 9. Timing Waveforms for Three Serial Outputs

1-9

C
."
co
w
~
o

•

C) ,--,
~
C")
co
a.
C

Timing Waveforms (Continued)

~, __ ------~~-----------------------3Y
50%

TA

REG FULL

TL/F/5251-11

FIGURE 10. Timing Waveforms for Auto-Response

10%
1'----YoL

TL/F/5251-12

FIGURE 11. Output Waveform for DATA, DATA, DATA DELAY (Load Circuit 2)

i lPW1i
REG LOAO --------,.i 50% llory----- 3Y

I-'s- 1-'H=on5
DATA OR PARITY -------~'V 'V

CONTROL Ii\ 11\ _______ OY

3Y

TLlF/5251-13

FIGURE 12. Register Load Waveform Requirement

Xl

OV

eLK OUT

VOL
TL/F/5251-14

FIGURE 13. Timing Waveforms for Clock Pulse

REG LOAD y
TO ~"l

,-----------------------------3Y

50%
OV

50%

~
OH

REG FULL

-I -lpd2
_lpd17 VOL

Ipd3 -
VoH
50%

VoL

FIGURE 14. Timing Waveforms for Two Byte Transfer

10%
1 ------- VOL

TLlF/5251-16

FIGURE 15. Rise and Fall Time Measurement for TA and REG Full

1-10

TL/F/5251-15

Typical Applications

FIG.J

~VCC

'PARITY CONTROL r--....&.;;;.;...---il..,,;..;;~.,

~I
~ I

AUTO RESPONSE

REG FULL

DATA
AVAILABLE

~I+-----t

~ ... __ ER_R_O_R_-I
t;;
~ OUTPUT CONTROL

OUTPUT ENABLE

I RECEIVER ACTIVE

DP8340
TRANSMITTERI

ENCODER

DP8341
RECEIVERI
DECODER

TRANSMITTER
ACTIVE

RECEIVER
DISABLE

tiN

-IN

BI·PHASE
INPUT

•
1:1:1 PULSE
TRANSFORMER
FIG. 17

FIGURE 16. Typical Applications for IBM 3270 Interface

+5V

__ 1'!..._
I' OS3487 -, Rl

1 A A 150
DATA

DELAY

a:

~ DATA

~
z 90Q COAX c
a: (RG62A/U)
e

&
...
~
~ R6

R5 120
E 150 5.

+IN] I 2
CONNECT TO TRANSMITTER I ACTIVE OPB341

L __ ,*,s_--1 RECEIVER

-IN
6

GND

Note 1: Resistance values are in n, ± 5%, 114 W

TL/F/5251-17

TL/F/5251-18

Note 2: Tl is a 1:1:1 pulse transformer, LMIN = 500 ",H for 18 MHz system clock. Pulse Engineering Part No. 5762/Surface Mount, 5762M/PE·85762. Technitrol
Part No. 11 LHA, Valor Electronics Part No. CT1501 or equivalent transformers.

Note 3: Crystal manufacturer's Midland Ross Corp. NEL Unit Part No. NE·18A (C2560N) @ 18.867 MHz and the Viking Group of San Jose, CA Part No. VXB46NS
@ 18.867 MHz.

FIGURE 17. Translation Logic

1-11

• I
I

.,..
"II:t
Cf)
co
a..
C ~National U Semiconductor

DP8341 IBM 3270 Protocol Receiver/Decoder

General Description
The DP8341 provides complete decoding of data for· high
speed serial data communications. In specific, the DP8341
recognizes serial data that conforms to the IBM 3270 Infor­
mation Display System Standard and converts it into ten
(10) bits of parallel data. Although this standard covers bi­
phase serial data transmission over a coax line, this device
easily adapts to generalized high speed serial. data trans­
mission on other than coax lines atfrequencles either high­
er or lower than the IBM 3270 standard.

The DP8341 receiver and· its complementary chip, the
DP8340 transmitter, are designed to provide maximum flexi­
bility in system designs. The separation of transmitter and
receiver functions allows addition of more receivers at one
end of the biphase line without the necessity of adding un­
used transmitters. This is advantageous specifically in con­
trol units where typically biphase data is multiplexed over
many biphase lines and the number of receivers generally
outnumber the number of transmitters. Tile separation of
transmitter and receiver function provides an additional ad­
vantage in flexibility of data bus. organization. The data bus
outputs of the receiver are TRI-STATE®, thus enabling the
bus configuration to be organized as either a common trans­
mit/receive (bi-directional) bus or as separate transmit and
receive busses for higher speed.

Connection Diagram

Features
_ DP8341 receivers ten (10) bit data bytes and conforms

to the IBM 3270 Interface Display System Standard
_ Separate receiver and transmitter provide maximum

system design flexibility
iii Even parity detection
_ High sensitivity input on receiver easily interfaces to

coax line
II Standard TTL data input on receiver provides general­

ized transmission line interface and also provides
hysteresis

• Data holding register
• Multi-byte or single byte transfers
_0 TRI-STATE receiver data outputs provide flexibility for

common or separated transmit/receive data bus
operation .

_ Data transmission error detection or receiver provides
o for both error detection and error type definition
_ Bi-polar technology provides TTL input/output compati­

bility with excellent drive characteristics
_ Single + 5V power supply operation

Dual-ln-L1ne Package

RECEIVER DISABLE VCC

+AMPlIFIER INPUT 0011

-AMPLIFIER INPUT 0010

DATA (TTL) DOg

DATA CONTROL D08

CLOCK 007

RECEIVER ACTIVE 006

ERROR DOS

REGISTER IIEAII D04

DATA AVAILABLE 003

OUTPUT CONTROL 002

GNO 12 13 OUTPUT ENABLE

Top View

Order Number DP8341N
See NS Package Number N24A

FIGURE 1

1-12

TLlF/5238-2

Block Diagram

CLOCK ---------,

CON~:J~ -------,

AMPLIFIER
(INPUT)

R~fll~t~ ------.... --~I

1-------------. :mJ~EII

IIEOISTEII
mil

DATA
AVAILABLE

OUTPUT
ENABLE

ERROR OUTPUT PARALLEL OUTPUT DATA

TL/F/5238-3

FIGURE 2. DP8341 Serial BI-Phase Receiver/Decoder Block Diagram

Block Diagram Functional Description
Figure 2 is a block diagram of the DP8341. This chip is
essentially a serial in/parallel out shift register. However,
the serial input data must conform to a very specific format
(see Figures 3-5). The message will not be recognized un­
less the format of the starting sequence is. correct. Devia­
tions from the format in the data, sync bit, parity or ending
sequence will cause an error to be detected, terminating the
message.

Data enters the receiver through the differential input ampli­
fier or the TTL Data input. The differential amplifier is a high
sensitivity input which may be used by connecting it directly
to a transformer coupled coax line, or other transmission
medium. The TTL Data input provides 400 mV of hysteresis
and recognizes TTL logic levels. The data then enters the
demodulation block.

The data demodulation block samples the data at eight (8)
times the data rate and provides signals for detecting the
starting sequence, ending sequence, and errors. Detection
of the starting sequence sets the Receiver Active output
high and enables the input shift register.

As the ten bits of data are shifted into the shift register, the
receiver will verify that even parity is maintained on the data
bits and the sync bit. After one complete data byte is re­
ceived, the contents of the input shift register is parallel
loaded to the holding register, assuming the holding register
is empty, and the Data Available output is set. If the holding
register is full, this load will be delayed until that register has
been read. If another data byte is received when the shift

1-13

register and the holding register are full a Data Overflow
Error will be detected, terminating the message. Data is
read from the holding register through the TRI-ST ATE Out­
put Buffers. The Output Enable input is the TRI-STATE con­
trol for these outputs and the Register Read input signals
the receiver that the read has been completed.

When the receiver detects an ending sequence the Receiv­
er Active output will be reset to a logic "a" indicating the
message has been terminated. A message will also termi~
nate when an error is detected. The Receiver Active output
used in conjunction with the Error output allows quick re­
sponse to the transmitting unit when an error free message
has been received.

The Error Detection and Identification block insures that val­
id data reaches the outputs of the receiver. Detection of an
error sets the Error output to a logic "1" and resets the
Receiver Active output to a logic "0" terminating the mes­
sage. The error type may be read from the data bus outputs
by setting the Output Control input to logic "0" and enabling
the TRI-STATE outputs. The data bit outputs have assigned
error definitions (see error code definition table). The Error
output will return to a logic "a" when the next starting se­
quence is received, or when the error is read (Output Con­
trol to logiC "a" and a Register Read performed).

The Receiver Disable input is used to disable both the am­
plifier and TTL Data receiver inputs. It will typically be con­
nected directly to the Transmitter Active output of the
DP8340 transmitter circuit (see Figure 12).

I

II
I

Detailed Functional Pin Description
RECEIVER ~ISABlE

This input is used 'to disable the receiver's data inputs: The
Receiver Disable input will typically be connected to the
Transmitter Active output of the DP8340. However, at the
system controller it is necessary for both the transmitter and
receiver to be active at the same time in the loop-back
check condition. This variation· can be' accomplished with
the addition of minimal external ,logic.

Truth Table

Recelver'Disable Data Inputs

Logic ~~O" Active

Logic "1" Disabled

AMPLIFIER I~~UTS

The receiver i1asa differential input amplifier which may be
directly connected to the transformer coupled coax line. The
amplifier may also be connected, to, a differential type TTL
line. The ampUfier has 20 mV of hysteresis.

DATA INPUT'

This input can be used either as an alternate data input or
as a power-up check input. If the system designer prefers to
use his own amplifier, instead of the one provided on the'
receiver, then this TTL input may be used. Using this pin as
an alternate data input allows self-test of the peripheral sys­
tem without disturbing the transmission line.

DATA CONTROL

This input is the control pin that selects which of 'the inputs
,are used f?r ,data: entry to th~ receiver. '

, 'Truth Table
.

Data Control Oats input To

.' Logic'~O" , Data Input

L09ic"1" Amplifier Inputs

Note:This input is also used for testing, When the input voltage is raised to
7.5V the chip resets.

CLOCK INPUT

The input is the internal clock of the receiver. It must be set
at eight(8) times the line data bit rate. For the IBM 3270
Standard. this frequency is 18.87 MHz or a data bit rate of
2.358 MHz; The crystal-controlled oscillator provided in the

1-14

DP8340 transmitter also operates at this frequency. The
Clock Output of the transmitter is designed to directly drive
the receiver's Clock Input. In addition, the receiver is de­
signed to operate correctly to a data bit rate of 3.5 MHz.

,RECEIVER ACTIVE

l The purpose of this output is to inform the external system
when the DP8341 is in the process of receiving a message.
This output will transition to a logic "1" state after the re­
ceipt of a valid starting sequence and transition to logic "0"
when a valid ending sequence is received or an error is
detected. This output combined with the Error output will
.info~m the operating system of the end of an error free data
transmission.

ERROR

The Error output transitions to a logic "1" when an error is
detected. Detection of an error causes the Receiver Active
and the Data Available outputs to transition to a logic "0".
The Error output returns to a logic "0" after the error regis­
ter has been read or when the next starting sequence is
detected.

REGISTER READ

The Register Read input when driven to the logic "0" state
signals the receiver that data in the holding register is being
read by the external operating system. The data present in
the holding register will continue to remain valid until the
Register Read input returns to the logic "1" condition. At
this time, if an additional byte is present in the input shift
register it will be transferred to the holding register, other­
wise the data will remain valid in the holding register. The
Data Available output will be in the logic "0" state for a
short interval while a new byte is transferred to the holding
register after a register read. ' ,

DATA AVAILABLE

This output indicates the existence of a data byte within the
output holding register; It niay also indicate the presence of
a data byte in both the holding register and the input shift
register. This output will transition to the logic "1" state as
soon as data is available and return to the logic "0" state
after each data byte has been read. However, even after the
last data byte has been read and the Data Available output
has assumed the logic "0" state, the last data byte read
from the holding register will remain until new data has been
received.

Detailed Functional Pin Description (Continued)

OUTPUT CONTROL

The Output Control input determines the type of information
appearing at the data outputs. In the logic "1" state data will
appear, in the logic "0" state error codes are present.

fined in the table below. The Output Control input is the
multiplexer control for the Data/Error bits.

Error Code Definition

Truth Table

Output Control Data Outputs

Logic "0" Error Codes

Logic "1" Data

OUTPUT ENABLE

The Output Enable input controls the state of the
TRI·STATE Data outputs.

Truth Table

Output Enable
TRI-STATE

Data Outputs

Logic "0" Disabled

Logic "1" Active

DATA OUTPUTS

The DP8341 has a ten (10) bit TRI·STATE data bus. Seven
bits are multiplexed with error bits. The error bits are de·

Message Format

Data Bit

002

003

004

005

006

007

008

Single Byte Transmission

t
TRANSMISSION

START

t
TRANSMISSION
TERMINATION

Multi-Byte Transmission

SYNC BIT PARITY
BYTE 2 BYTE X

FIGURE 3. IBM 3270 Message Format

1·15

Error Type

Data Overflow (Byte not
removed from holding register
when it and the input shift
register are both full and new
data is received)

Parity Error (Odd parity detected)

Transmit Check conditions
(existence of errors on any or all
of the following data bits: 003,
005, and 006

An invalid ending sequence

Loss of mid·bit transition
detected at other than normal
ending sequence time

New starting sequence detected
before data byte in holding
register has been read

Receiver disabled during
receiver active mode

TL/F/5238-4

I

III
I

?- r--,
~

~ Message Format (Continued)
a..
C

DATA

RECEIVER ACTIVE __________ ..1

DATA AVAILABLE ______________________ --J

REGISTER -----------------------------• .----
READ U

TLlF/5238-5

FIGURE 4a. Single Byte Message

DATA~~~~~

1
CODE I I I I 1 ENDING 1

LINE QUIESCE VIOLATION r-1S1 BYTE -I--2nd BYTE - ••• r---- LAST BYTE - SEQUENCE

RECEIVER ACTIVE _________ --1

DATA _____________ --InL. ____ r···
AVAILABLE • _ _

REGISTER -------------------U
READ

FIGURE 4b. Multi-Byte Message

DATA

LINE QUIESCE 1 VIOCL~~~ON I-CORRECT DATA BYTE ---..... 1

RECEIVER ACTIVE _________ ---'

DATA AVAILABLE _____________________________ ...J

u

LERROR DETECTED

ERROR --------------------------------_
REGISTER

READ

OUTPUT
CONTROL

u

FIGURE 5. Message with Error

1-16

L

TLlF/5238-6

TLlF/5238-7

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, Maximum Power Dissipation· at 25·C
please contact the National Semiconductor Sales Dual-In-Line Package .2237mW
Office/Distributors for availability and specifications. ·Derate Dual·ln·Une package 17.9 mW/,C above 2SoC.

Supply Voltage, Vee 7V

Input Voltage +5.5V Operating Conditions
Output Voltage 5.25V Min Max Units

Storage Temperature Range - 65°C to + 150·C Supply Voltage, (Vee> 4.75 5.25 V

Lead Temperature (Soldering, 10 seconds) 300·C Ambient Temperature, (T A) a +70 ·c

Electrical Characteristics (Notes 2,3, and 5)

Symbol Parameter Conditions Min Typ Max Units

VIH Input High Level 2.0 V

VIL Input Low Level 0.8 V

VIH-VIL Data Input Hysteresis (TTL, Pin 4) 2.0 0.4 V

VeLAMP Input Clamp Voltage liN = -12 rnA -0.8 -1.2 V

IIH Logic "1" Input Current Vee = 5.25V, VIN = 5.25V 2 40 }-LA

IlL Logic "0" Input Current Vee = 5.25V, VIN = 0.5V -20 -250 }-LA

VOH Logic "1" Output Voltage 10H = -100}-LA 3.2 3.9 V

10H = -1 rnA 2.5 3.2 V

VOL Logic "a" Output Voltage 10L = 5mA 0.35 0.5 V

los Output Short Circuit Current Vee = 5V, Your = OV
-10 ...,;20 -100 rnA

(Note 4)

loz TRI-STATE Output Current Vee = 5.25V, Vo = 2.5V -40 1 +40 }-LA

Vee = 5.25V, Vo = 0.5V -40 -5 +40 }-LA

AHYS Amplifier Input Hysteresis 5 20 30 mV

Icc Power Supply Current Vee = 5.25V 160 250 rnA

Timing Characteristics (Notes 2,6,7, and 8)

Symbol Parameter Conditions Min Typ Max Units

T01 Output Data to Data Available
5 20 40 ns

Positive Edge

T02 Register Read Positive Edge to Data
10 25 45 ns

Available Negative Edge

T03 Error Positive Edge to Data Available
10 30. 50 ns

Negative Edge

T04 Error Positive Edge to Receiver Active
5 20 40 ns

Negative Edge

T05 Register Read Positive Edge to Error
20 45 75 ns

Negative Edge

T06 Delay from Output Control to Error Bits
5 20 50 ns

from Data Bits

T07 Delay from Output Control to Data Bits .
5 20 50 ns

from Error Bits

T08 First Sync Bit Positive Edge to Receiver 3.5 x T
Active Positive Edge +70

ns

..
1-17

Timing Characteristics (Notes 2,6,7, and 8) (Continued)

Symbol Parameter Conditions Min Typ Max Units

T09 Receiver Active Positive Edge to First Data
92 x T ns

Available Positive Edge

T010 Negative Edge of Ending Sequence to 11.5 x T

Receiver Active Negative Edge + 50
ns

tOl1 Data Control Set-Up Multiplexer Time Prior
40 30 ns

to Receiving Data through Selected Input

TpW1 Register Read (Data) Pulse Width 40 30 ns

TpW2 Register Read (Error) Pulse Width 40 30 ns

TpW3 Data Available Logic "0" State between
25 45 ns

Data Bytes

Ts Output Control Set-Up Time Prior to
0 -5 ns

Register Read Negative Edge

TH Output Control Hold Time After the
0 -5 ns

Register Read Positive Edge

TZE Delay from Output Enable to Logic "1" or Load Circuit 2
25 35

Logic "0" from High Impedance State
ns

Tez Delay from Output Enable to High Imped- Load Circuit 2
25 35

ance State from Logic "1" or Logic "0"
ns

FMAX Data Bit Frequency (Clock Input must be (Note 9)
DC 3.5 MBits/s

8 x the Data Bit Frequency)

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device
should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified, min.lmax. limits apply across the O·C to +70·C temperature range and the 4.7SV to S.2SV power supply range. All typical
values are for T A = 2S·C and Vee = S.OV.

Note 3: All currents into device pins are shown as positive; all currents out of device pins are shown as negative; all voltages are referenced to ground, unless
otherwise specified. All values shown as max. or min. are so classified on absolute value basis.

Note 4: Only one output at a time should be shorted.

Note 5: Input characteristics do not apply to amplifier inputs (pins 2 and 3).

Note 6: Unless otherwise specified, all AC measurements are referenced to the 1.SV level of the input to the I.SV level of the output and load circuit 1 is used.

Note 7: AC tests are done with input pulses supplied by generators having the following characteristics: ZOUT = son and Tr ~ S ns, Tf ~ S ns.

Note 8: T = I/(clock input frequency). units for "T" should be ns.

Note 9: 28 MHz clock frequency corresponds to 3.7S% iitter when referenced to Figure 10.

Vee vee

: Rl=2k :~ R1=1k

'"
..

....... -
l'~~'

-

1"., :
1"""'11 ~,. -- -F-

I"" V

R2=2k ~, -- I · -I-
~, ~~ ---::- --= -::- ~ ~

TLlF/523B-B

Load Circuit 1 Load Circuit 2

FIGURE 6. Test Load Circuits

1-18

Timing Waveforms

OUTPUT --"', 5V
ENABLE ~ ~'.5V

~ TEl

Og3T~8~~ ------<
(OUTPUT CONTROL = HI)

I-TOI

DATA _______ ..J)(llr------"""\~~
AVAILABLE 1\

-----------------jlPw11 T02
REGISTER ------------------------------""'\'X Vr --------------------

READ ~

TL/F/5238-9

FIGURE 7. Data Sequence Timing

DATA . \
AVAILABLE

I-TD3~
RECEIVER ~ ACTIVE

-TD4-1

t ERROR t
r-105

-
1

REGISTER \ ;: READ

TS --I ~Tpw2-l-lH-1
OUTPUT \ J CONTROL

~TD6-1 '-TDT-I
D02-DOS DATA BITS X ERROR BITS X DATA BITS

TL/F/5238-10

FIGURE 8. Error Sequence Timing

I 1 I 1 I 1 I VIJ&~~ON I 1 I DATA I 0 I MCV I MCV I
~---r22~--J1J

-I I-TDB I-TD1D1

RECEIVER _____________ ~~2 --------.~ ___ _
ACTIVE • -

I-TD9--1
DATA r-----------

AVAILABLE ----------------------------------i2~
TL/F/5238-11

FIGURE 9. Message Timing II

1-19

.,..
~

~ Timing Waveforms (Continued)
D-
C

T. CLOCK INPU~ FREQUENCY
4T±(T-25nl)-

-------lo3:t:rN. VIN+

-----,I-----Il----I-----I~----,f--- VIN-

____ -40 mV MIN. VIN+
-1.3V MAX.

FIGURE 10. Data Waveform Constraints: Amplifier Inputs

T. CLOCK INPU~ FREQUENCY

Note: ITr - T,l :s: 10 ns

. FIGURE 11. Data Waveform Constraints: Data Input (TTL)

1·20

TLlF/5238-12

TLlF/5238-13

Typical Applications

tARITY CONTROL

AUTO RESPONSE

REG LOAO

REG FULL

DATA
AVAILABLE

~
ERROR

Ii;
OUTPUT CONTROL 1:;

OUTPUT ENABLE

REG READ

I RECEIVER ACTIVE

Note 3: Crystal manufacturers: Midland Ross Corp.

NEl Unit Part No. NE18A (C2560N) @ 18.867 MHz

OP834D
TRANSMITTER!

ENCOOER

TRANSMITTER
ACTIVE

RECEIVER
DISABLE

+IN

DP8341
RECEIVER!
DECODER -IN

The Viking Group Part No. VXB-46NS @ 18,867 MHz. located in San Jose, CA.

I
I
I 01 COAX

1·
G62AIU

I
I
I

1:1:1 PULSE BI·PHASE
TRANSFORMER INPUT FIG.14

FIGURE 12. Typical Application for IBM 3270 Interface

VCC-------o----~~----------o--

1k

VIN+

VIN- ---------01---.....J

TL/F/5238-15

FIGURE 13. Equivalent Circuit for DP8341 Input Amplifier

1-21

TLlF/5238-14

..

Typical Applications (Continued)

IDEAL
WAVEFORM
AT TRANSMITTER
END OF CABLE

DATA
DELAY

TRANSMITIER
ACTIVE

R1
150

R5

DP8341 I

I 2 150 Cll":::J:·
L mam

- - ~ 8" - -1 -IN 6

GND

90Q COAX

~
3 (RG62A/U)

R6
120

TL/F/5238-16

Note 1: Resistance values are in n, ±5%, Y.W
Note 2: T1 is a 1:1:1 pulse transformer, LMIN = 500 p.H for 16 MHz system clock

Pulse Engineering Part No. 5762/Surface Mount, 5762M/PE-65762
Valor Electronics Part No. CT1501
Technitrol Part No. 11 LHA or equivalent transformers

FIGURE 14. Translation Logic

°To maintain loss at 95% of ideal sig­
nal, select transformer inductance
such that:

4MIN) = 10,000
fCLK

EXAMPLE:

fCLK = System Clock
Frequency

(e.g., 16.67 MHz)

L = ~ -+ L(MIN) = 530p.H
16.67 x 106

Note 1: Less inductance will cause greater ampli­
tude attenuation

Note 2: Greater inductance may decrease signal
rise time slightly and increase ringing, but these
effects are generally negligible.

FIGURE 15. Transformer Selection

1-22

TL/F/5238-17

~National
D Semiconductor

DP8342 High-Speed 8-Bit Serial Transmitter/Encoder

General Description
The DP8342 generates a complete encoding of parallel
data for high speed serial transmission. It generates a five
bit starting sequence, three bit code violation, followed by a
syn bit and eight bit per byte of data plus a parity bit. A
three-bit ending code signals the termination of the trans­
mission. The DP8342 adapts to generalized high speed seri­
al data transmission as well as the coax lines at a maximum
data rate of 3.5 MHz.

The DP8342 and its complementary chip, the DP8343 (re­
ceiver/decoder) have been designed to provide maximum
flexibility in system designs. The separation of the transmit­
ter receiver functions provides convenient addition of more
receivers at one end of a biphase line without the need of
unused transmitters. This is specifically advantageous in
control units where typical biphase data is multiplexed over
many biphase lines and the number of receivers generally
exceeds the number of transmitters.

Connection Diagram

Features
III Eight bits per data byte transmission

• Single-byte or multi-byte transmission
• Internal parity generation (even or odd)

• Internal crystal controlled oscillator used for the genera­
tion of all required chip timing frequencies

• Clock output directly drives receiver (DP8343) clock in-
put

• Input data hold register

• Automatic clear status response feature
• Line drivers at data outputs provide easy interface to

bi-phase coax line or general transmission media

• < 2 ns driver output skew
• Bipolar technology provides TTL input/output compati-

bility

• Data outputs power up/down glitch free

• Internal power up clear and reset
• Single + 5V power supply

Dual-In-Line Package

OUTPUT ENABLE 24 VCC

BYTE CLK 23 iiEiITiOOi
BIT 8 22 REG FULL

BIT7 21 AUTO RESPONSE

BITS 20 TRANSMITIER ACTIVE

BIT5 19 RESET

BIU 18 EVEN/ODD

BIT3 17 DATA OUT

BIT 2 16 DATA OUT

BIT 1 15 DATA DELAY

CLKOUT 14 X2

GND 13 Xl

FIGURE 1

Order Number DP8342N
See NS Package Number N24A

1-23

.,' .

',.: I:,

" ,l

TL/F/5236-1

I •

Block Diagram

... '\I\,..,. X2

CLOCK
OUTPUT

EXTERNAL I CRYSTAL
CRYSTAL c::J I OSCILLATOR

-C--4-X1
I -----'

REGISTERS
FULL

TRANSMITIER
ACTIVE

CONTROL LOGIC

1) BITS

BIT 1 TO BIT B
DATA INPUTS

EVEN/ImD
PARITY

BYTE CLOCK

DATA

DATA
DELAY

OUTPUT ENABLE

TL/F/5236-2

FIGURE 2

Functional Description
Figure 2 is a block diagram of the OP8342 Biphase Trans­
mitter/Encoder. The transmitter/encoder contains a crystal
oscillator whose input is a crystal with a frequency eight (8)
times the data rate. A Clock Output is provided to drive the
DPB342 receiver/decoder Clock Input and other system
components at the oscillator frequency. Additionally, the os­
cillator drives the control logic and output shift register/
format logic blocks.

Data is parallel loaded from the system data bus to the
transmitter/encoder's input holding register. This data is in
tum loaded by the transmitter/encoder to its output shift
register if this register was empty at the time of the load.
During this load, message formatting and parity are generat­
ed. The formatted message is then shifted out at the bit rate
frequency to the TIL to Biphase block which generates the
proper data bit formatting. The data outputs, OAT A, OAT A,
and OAT A OELA Y provide for flexible interface to the trans­
mission medium with little or no external components.

The control Logic block interfaces to all blocks to insure
proper chip operation and sequencing. It controls the type
of parity generation through the Even/Odd Parity input. An
additional feature provided by the transmitter/encoder is

1-24

the Reset and Output-TRI-STATE® capability. Another fea­
ture of the OP8342 is the Byte Clock output which keeps
track of the number of bytes transferred.

The transmitter/encoder is also capable of internal TI / AR
(Transmission Turnaround/ Auto Response). When the
Auto-Response (AR) input is forced to the logic "0" state,
the transmitter/encoder responds with clean status (all ze­
ros on data bits).

Operation of the transmitter/encoder is automatic. After the
first data byte is loaded, the Transmitter Active output is set
and the transmitter/encoder immediately formats the input
data and serially shifts it out its data outputs. If the message
is a mutli-byte message, the internal format logic will modify
the message data format for multibyte as long as the next
byte is loaded to the input holding format logic will modify
the message data format for multibyte as long as the next
byte is loaded to the input holding register before the last
data bit of the previous data byte is transferred out of the
internal output shift register. After all data is shifted out of
the transmitter/encoder the Transmitter Active output will
return to the inactive state.

Detailed Pin/Functional Description
CRYSTAL INPUTS Xl AND X2

The oscillator is controlled by an external, parallel resonant
crystal connected between the Xl and X2 pins. Normally, a
fundamental mode crystal is used to determine the operat­
ing frequency of the oscillator; however, over-tone mode
crystals may be used.

CRYSTAL SPECIFICATIONS (PARALLEL RESONANn

Type <20 MHz AT-cut
or> 20 MHz BT-cut

Tolerance

Stability

Resonance

Maximum Series Resistance

0.005% at 25°C

0.01 % from O°C to + 70°C

Fundamental (Parallel)

Dependent on Frequency
(For 20 MHz, 50n) ,

Load Capacitance 15 pF

Connection Diagram

R C

TO PIN 22 --'""'''' I'L-.. Vcc PIN (14) y'n ~

c:::=J CRYSTAL

...
___ .T... (FIG. 18)

TO PIN Xl _
PIN (13)

TL/F/5236-3

Freq R C

10 MHz-20 MHz 500n 30pF

>20 MHz 120n 15 pF

If the DP8342 transmitter is clocked by a system clock
(crystal oscillator not used), pin 13 (Xl input) should be
clock directly using a Schottky series (74S) circuit. Pin 14
(X2 input) may be left open. The clocking frequency must be
set at eight times the data bit rate. Maximum input frequen­
cy is 28 MHz.

CLOCK OUTPUT

The Clock Output is a buffered output derived directly from
the crystal oscillator block and clocks at the oscillator fre­
quency. It is designed to directly drive the DP8343 receiver/
decoder Clock Input as well as other system components.

REGISTERS FULL

This output is used as a flag by the external operating sys­
tem. A logic "1" (active state) on this output indicates that
both the internal output shift register and the input holding
register contain active data. No additional data should be
loaded until this output returns to the logic "0" state (inac-
tive state). '

1-25

TRANSMITTER ACTIVE

This output will be in the logic "1" state while the transmit­
ter/encoder is about to transmit or is in the process of trans­
mitting data. Otherwise, it will assume the logic "0" state
indicating no data presently in ,either the input holding or

, output shift registers. .

REGISTER LOAD

The Register Load input is used to load data from the Data
Inputs to the input holding register. The loading function is
level sensitive, the data present during the logic "0" state of
this input is loaded, and the input data must be valid before
the logic "0" to logic "1" transition. It is after this transition
that the transmitter/encoder begins formatting of data for
serial transmission.

AUTO RESPONSE (TT/AR)

This input provides for automatic clear data transmission (all
bits in logic "0") without the need of loading all zero's.
When a logic "0" is forced on this input the transmitter/en­
coder immediately responds with' transmission ., of" ~'clean
status". When this input is in the logic "1" state the trans­
mitter/encoder transmits data entered on the Data Inputs.

EVEN/ODD PARITY

This input sets the internal logic of the DP8342 transmitter/
encoder to generate either even or odd parity for the data
byte in the bit 10 position. When this pin is in the logic "0"
state odd paritY is generated. In the logic "1" state even
parity is generated. This feature is useful when the control
unit is performing a loop back check and at the same time
the controller wishes to verify proper data transmission with
its receiver/decoder.

SERIAL OUTPUTS-DATA, DATA, AND DATA DELAY

These three output pins provide for convenient application
of data to the Bi-Phase transmission line. The Data outputs
are a direct bit representation of the Biphase data while the
Data Delay output provides the necessary increment to
clearly define the four (4) DC levels of the pulse. The DATA
and DATA outputs add flexibility to the DP8342 transmitter/
encoder for use in high speed differential line driving appli­
cations. The typical DATA to DATA skew is 2 ns.

RESET

When a logic "0" is forced on this input, all outputs except
Clock Output are latched low.

, OUTPUT ENABLE

When a logic "0" is forced on this input the three serial data
outputs are in the high impedence state.

BYTE CLOCK

This pin registers a p~lse at the end of each byte transmis­
sion. The number of pulses registered corresponds to the
number of bytes transmitted.

•

~ r---~
~

~ Message Format
a.
C Single Byte Transmission

t
TRANSMISSION

START

Multi-Byte Transmission

Functional Timing Waveforms

IIEU"t1mI --u

FIGURE 3

t
TRANSMISSION
TERMINATION

SYNC BIT PARITY
BYTE 2 BYTE X

REG FULL --I1---------------r
BYTECLOCK __ -:-I ____________ -..?,

Dm_~1
II

DATA

DATA DELAY
I I

~' I' I' I' I' Ic .. ".LAn~icl·
BIT ,

STARTING SEQUENCE ""---_._--"1-.

FIGURE 4. Overall Timing Waveforms for Single Byte

i2

L

L

~~
I I I I

DATA

I II~~
~~

~
1 I' I' 11 11 I CODE VIOLATION mci Of ,lsi~Ji i lD I J

BIT2?PARITY BlmPARITY ENDING
STARTING SEQUENCE ~ ~ SEQUENCE

DATA DELAY

8 BIT + PARITY 8 BIT + PARITY

FIGURE 5. Overall Timing Waveforms for Multi-Byte

1-26

TL/F/5236-4

TL/F/5236-5

TLlF/5236-6

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, Maximum Power Dissipation· at 25·C
please contact the National Semiconductor Sales Cavity Package 2237mW
Office/Distributors for availability and specifications. Dual·ln-Line package 2500mW

Supply Voltage, Vee 7V °Derate cavity package 14.9 mWrC above 2SoC; derate dual in line pack-

Input Voltage 5.5V
age 20 mW rc above 2SoC.

Output Voltage 5.25V Operating Conditions
Storage Temperature Range - 65·C to + 150·C Min Max Units
lead Temperature (Soldering, 10 sec.) 300·C Supply Voltage, (Vee> 4.75 5.25 V

Ambient Temperature, T A 0 +70 ·C

Electrical Characteristics (Notes 2 and 3)

Symbol Parameter Conditions Min Typ Max Units

VIH logic "1" Input Voltage (A" Inputs Except X1 and X2) Vee = 5V 2.0 V

VIL logic "0" Input Voltage (A" Inputs Except X1 and X2) Vee = 5V 0.8 V

VeLAMP Input Clamp Voltage (A" Inputs Except X1 and X2) liN = -12 rnA -0.8 -1.2 V

IIH logic "1" Register load Input Vee = 5.25V 0.3 120 p.A
Input Current A" Others Except X1 and X2 VIN = 5.25V 0.1 40 p.A

IlL logic "0" Register load Input Vee = 5.25V -15 -300 p.A
Input Current A" Inputs Except X1 and X2 VIN = 0.5V -5 -100 p.A

VOH1 logic "1" A" Outputs Except ClK OUT, 10H = -100 p.A
3.2 3.9 V

DATA, DATA, and DATA DELAY Vee = 4.75V

10H = -1 rnA 2.5 3.4 V

VOH2 logic "1" forClK OUT, DATA, Vee = 4.75V
2.6 3.0 V

DATA, and DATA DELAY Outputs 10H = -10 rnA

VOL1 logic "0" A" Outputs Except ClK OUT, Vee = 4.75V
0.35 0.5 V

DATA, DATA, and DATA DELAY 10L = 5 rnA

VOL2 logic "0" for ClK OUT, DATA Vee = 4.75V
0.4 0.6 V

DATA, and DATA DELAY Outputs 10L = 20 rnA

1051 Output Short Circuit Current for A" Except (Note 5)
ClK OUT, DATA, DATA, and DATA VOUT = OV -10 -30 -100 rnA
DELAY Outputs

1052 Output Short Circuit Current DATA, (Note 5)
-50 -140 -350 rnA

DATA, and DATA DELAY Outputs VOUT = OV

1053 Output Short Circuit Current for ClK OUT (Note 5)
-30 -90 -200 rnA

VOUT = OV

Icc Power Supply Current Vee = 5.25V 170 250 rnA

Timing Characteristics Vee = 5V ± 5%, T A = O·C to 70·C, Oscillator Frequency = 28 MHz (Notes 2 and 3)

Symbol Parameter Conditions Min Typ Max Units

tpd1 REG lOAD to Transmitter Active (TA) load Circuit 1
60 90

Positive Edge Figure 6
ns

tpd2 REG lOAD to Register Fu"; load Circuit 1
45 75

Positive Edge Figure 6
ns

tpd3 T A to Register Fu"; load Circuit 1
40 70

Negative Edge Figure 6
ns

tpd4 Positive Edge of REG lOAD to load Circuit 2
50 80

Positive Edge of DATA Figure 9
ns

tpd5 REG lOAD to DATA; load Circuit 2
280 380

Positive Edge Figure 9
ns • I

tpd6 REG lOAD to DATA DELAY; load Circuit 2
150 240

Positive Edge Figure 9
ns

1-27

Timing Characteristics (Continued)

Vee = 5V ± 5%, T A = O·C to 70·C, Oscillator Frequency = 28 MHz (Notes 2 and 3)

Symbol Parameter Conditions Min Typ Max Units

tpd7 Positive Edge of DATA to Negative Edge load Circuit 2
70 85

of DATA DELAY Figure 9
ns

tpd8 Positive Edge of DATA DELAY to Negative load Circuit 2
80 95

Edge of DATA Figure 9
ns

tpd9. Skew between DATA and DATA load Circuit 2
2 6

tpd10 Figure 9
ns

tpd11 Negative Edge of Auto Response (AR) load Circuit 1
70 100

to Positive Edge of T A Figure 10
ns

tpd12 Maximum Time Delay to load Second Byte load Circuit 1
4xT-50

after Positive Edge of REG FUll Figure 8, (Note 7)
ns

tpd13 X1 to ClK OUT; Positive Edge load Circuit 2
21 30

Figure 11
ns

tpd14 X1 to ClK OUT; Negative Edge load Circuit 2
23 33

Figure 11
ns

tpd15 Negative Edge of AR to Positive Edge of load Circuit 1
45 75

REG FUll Figure 10
ns

tpd16 Skew betWeen TA and REG FUll during load Circuit 1
50 80

Auto Response Figure 10
ns

tpd17 REG lOAD to REG FUll; P~sitive Edge load Circuit 1
45 75

for Second Byte Figure 7
ns

tpd18 REG FULL to BYTE ClK; Negative Edge load Circuit 1
60 90

Figure 7
ns

tpd19 . REG FUll to BYTE ClK; Positive Edge load Circuit 1
145 180

Figure 7
ns

tZH Output Enable to DATA, DATA, or DATA Cl = 50pF
25 45 ns

DELAY outputs: HiZ to High Figures 16, 17

tZL Output Enable to DATA. DATA, or DATA Cl = 50pF
15 30 ns

DELAY Outputs; HiZ to High Figures 16, 17

tHZ Output Enable to DATA, DATA, or DATA Cl = 15 pF
65 100 ns

DELAY Outputs; High to HiZ Figures 16, 17

tLZ Output Enable to DATA. DATA, or DATA Cl = 15 pF
45 70 ns

DELAY Outputs; low to HiZ Figures 16, 17

tpw1 REG lOAD Pulse Width Figure 12 40 ns

tpW2 First REG FUll Pulse Width (Note 6) load Circuit 1
8 x T + 60 8 x T + 100

Figure 7, (Note 7)
ns

tpw3 REG FUll Pulse Width Prior to Ending load Circuit 1
5xB

. Sequence (Note 6) Figure 7
ns

tpw4 ' Pulse Width for Auto Response Figure 10 40 ns

tpu5 Pulse Width for BYTE ClK Load Circuit 1
8 x T + 30 8 x T + 80

Figure 7, (Note 7)
ns

ts Data Setup Time prior to REG lOAD 'Figure 12
15 23 ns

. Positive Edge; Hold Time = 0 ns

trl Rise Time for DATA, DATA, and DATA Load Circuit 2
7 13

DELAY Output Waveform Figure 13
ns

ttl Fall Time for DATA, DATA, and DATA Load Circuit 2
5 11

DELAY Output Waveform Figure 13
ns

tr2 Rise Time f6rTA and REG FUll load Circuit 1
20 30

Figure 14
ns

...

tt2 Fall Time for TA and REG FUll load Circuit 1
15 25

Figure 14
ns

1-28

Timing Characteristics (Continued)

Vee = 5V ± 5%, T A = O·C to 70·C, Oscillator Frequency = 28 MHz (Notes 2 and 3)

Symbol Parameter Conditions Min Typ Max Units

Mbits/s
Data Rate Frequency
(Clock Input must be 8 x this Frequency)

DC 3.5

Input Capacitance-Any Input (Note 4) 5 15 pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to Imply that the device
should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified, minImax limits apply across the O'C to + 70'C temperature range and the 4.7SV to S.2SV power supply range. All typical
values are for TA = 2S'C and Vee = S.OV.

Note 3: All currents Into device pins are shown as positive; all currents out of device pins are shown as negative; all voltages are referenced to ground, unless
otherwise specified. All values shown as max or min are so classified on absolute basis.

Note 4: Input capacitance Is guaranteed by periodic testing. fTEST = 10 kHz at 300 mV, TA = 2S'C.

Note 5: Only one output should be shorted at a time.

Note 6: T = 1/(Oscillator Frequency). Unit for T should be in ns. B = ST.

Note 7: Oscillator Frequency Dependent.

Timing Waveforms (Continued)

--------------~:):~--------~~~:: --50%

~tPd2 ~tPd3~::

RmDlD\ 4 TA f'~'
-l

REG FULL

BYTE CLOCK

- 50%

tpw3 VOL

-~, 1l:$.= =~
TL/F/5236-7

FIGURE 6. Single Byte Transfer

~ ~ } __ t
P_d_1 ____ ~----;....-(?~2·~2 ~~~~~~~~~~~::::~~~~~~~~~~~~~-~~~50~%--~ :

. _I - tpd17 VOL

-I ~tpd2 lr(~ tpd3- -- VoH
REO FULL 1 ,f- 50% ______ , J _ Ipw3 VoL

- -tpw2 tpd18- - JEIPd111

~'f\ -== 50% VoH BYTE ClK

-------------~2~JI.1 VoL
-, ,--lpwS

REG FULL

FIGURE 7. Two-Byte Transfer

3V

~1 \.If~

----/}.:~~ ::
WINDOW

- TO LOAD MUIll·BYTE DATA -
1SVrxa

FIGURE 8. Maximum Window to Load Multi-Byte Data

1·29

TL/F/5236-9

TL/F/5236-8

c
" CD
W
~
N

II
I

I

Functional Timing Waveforms (Continued)

DATA \ '--___ ..J

:----lpd5----.1 r--.....

DATA DELAY

FIGURE 9. Three Serial Outputs

,-----------~~----------------------3V
AR ----------------- 1.5Y

TA __;..--Jr'~"
__ -1 __ ...Jl -",d,,15

I~' 50% YOH

VOL

REG FULL ,.
II ' , - E-'Pd16 YoH

50%

VOL

TL/F/5236-11

FIGURE 10. Auto-Response

10%

3V
1.5V
OV

VOH

VOL

VOL

VOH

VOL
TL/F/5236-10

Xl~-=~~5V

';';=,,' ~ I-=---:L ~ tt -VOH
elK OUT' - 50%

, VOL

TLlF/5236-12

FIGURE' 11. Clock Pulse

, TL/F/5236-14
TL/F/5236-13

FIGURE 12. REG LOAD
FIGURE 13. Output Waveform for DATA, DATA,

DATA DELAY (Load Circuit 2)

10%

TLlF/5236-15

FIGURE 14. Rise and Fall Time Measurement
for TA and REG FULL

1-30

Vee Vee

RL=2k RL=2k

TL/F/5236-16

Load Circuit 1 Load Circuit 2
FIGURE 15. Test Load Circuits

Timing Waveforms (Continued)

OUTPUT ENABLE

DATA OUTPUTS

Typical Applications

I
I
I
I RESET
I • I AUTO RESPONS~

REG LOAD

REG FULL

BYTE CLOCK

en
=>
CD
c..>
~

~ :::
~
~ DATA ~ AVAILABLE

ERROR

I OUTPUT CONTROL

I • I OUTPUT ENABLE
I •
I REG READ
I • I RECEIVER ACTIVE
I
I
I

VCC

4.7K

I CL -=- 2.7K

TL/F/5236-17

FIGURE 16. Load Circuit for Output TRI-STATE Test

} _____ l~5-0-%-----:::
·1 VOH VOH - I-1HZ - -IZl

:.. VOH-O.5V HIGH Z f-VOH-O.5V

VOL
VOL J VOL +O.5V -I

r-VOl+O.5V

-I I-Ill -IZH

FIGURE 17. TRI-STATE Test

DP8342
TRANSMITTERI

ENCODER

~

~

DP8343
RECEIVERI
DECODER

TRANSMITTER
ACTIVE

RECEIVER
DISABLE

OPTIONAL
INTERFACE

lOGIC
FIG. 19

OPTIONAL
INTERFACE

LOGIC

FIGURE 18

1·31

COAX LINE (FIG. 19)

TWISTED PAIR LINES

FIBER·DPTIC
MAGNETIC
INFRARED

RF
ULTRASONIC

AUDIO
CURRENT CARRYING

I DC TO 3.5MHz I

TLiF/5236-1B

TL/F/5236-19

Typical Applications (Continued)

DATA
DELAY

R1
150

90Q COAX
(RG62A/U)

R5
150

+IN

J
5

• ~
3

R6
120

TRANSMITTER
ACTIVE

Note 1: Resistance values are In n, ±5%, y .. W.

I 2

I
L __ ,*S_.J

GNO

CONNECT TO
OP8343
RECEIVER

-IN
6

TLlF/5236-20

Note 2: T1 Is a 1:1:1 pulse transformer, L = 500,...H for 18 MHz to 28 MHz system clock. Pulse Engineering Part No. 5762; Technitrol Part No. 11LHA, Valor
Electronics Part No. CT1501, or equivalent transformer.

Note 3: Crystal manufacturer Midland Ross Corp. NEL Unit Part No. NE-18A at 28 MHz.

FIGURE 19. Interface Logic for a Coax Transmission Line

r----....... (NOTE)
OATA 1. T1

DP8342
TRANSMITTERI

ENCODER

Note: Data rates up to 3.5 Mbits/s at 5000' stili apply.

TA

OE

+IN

J
5

•

CONNECT TO
0P8343
RECEIVER

-IN
6

90QCOAX

~
u:J

4

TL/F/5236-21

FIGURE 20. Direct Interface for a Coax Transmission Line (Non-IBM Voltage Levels)

1-32

~National U Semiconductor

DP8343 High-Speed 8-Bit Serial Receiver/Decoder

General Description
The DP8343 provides complete decoding of data for high
speed serial data communications. In specific, the DP8343
receiver recognizes biphase serial data sent from its com­
plementary chip, the DP8342 transmitter, and converts it
into 8 bits of parallel data. These devices are easily adapted
to generalized high speed serial data transmission systems
that operate at bit rates up to 3.5 MHz.

The DP8343 receiver and the DP8342 transmitter are de­
signed to provide maximum flexibility in system designs. The
separation of transmitter and receiver functions allows addi­
tion of more receivers at one end of the biphase line without
the necessity of adding unused transmitters. This is advan­
tageous in control units where the data is typically multi­
plexed over many lines and the number of receivers gener­
ally exceeds the number of transmitters. The separation of
transmitter and receiver function provides an additional ad­
vantage in flexibility of data bus organization. The data bus
outputs of the receiver are TRI-STATE®, thus enabling the
bus configuration to be organized as either a common trans­
mit/receive (bi-directional) bus or as separate transmit and
receive busses for higher speed.

Connection Diagram

Features
g' DP8343 receives 8-bit data bytes
III Separate receiver and transmitter provide maximum

system design flexibility

• Even parity detection
• High sensitivity input on receiver easily interfaces to

coax line
a Standard TTL data input on receiver provides general­

ized transmission line interface and also provides
hysteresis

II Data holding register
III Multi-byte or single byte transfers
.. TRI-STATE receiver date outputs provide flexibility for

common or separated transmit/receive data bus
operation

II Data transmission error detection on receiver provides
for both error detection and error type definition

• Bipolar technology provides TTL input/output compati­
bility with excellent drive characteristics

II Single + 5V power supply operation

Dual-In-Line Package

RECEIVER DISABLE 24 VCC

+AMPLIFIER INPUT 23 DATA CLOCK

-AMPLIFIER INPUT 22 SERIAL DATA

DATA (TTL) 21 BIT 8

DATA CONTROL 20 BIT7

CLOCK 19 BIT 6

RECEIVER ACTIVE 18 BIT5

ERROR 17 BIT 4

REGISTER READ 16 BIT 3

DATA AVAILABLE 15 BIT 2

OUTPUT CONTROL 14 BIT 1

GNO 12 13 OUTPUT ENABLE

TL/F/5237-1

FIGURE 1
Order Number DP8343N

See NS Package Number N24A

1-33

III
I

Block Diagram

CLOCK ---------,

CONf:~~ ------........

DATA (TTL)

AMPLIFIER
INPUT

1-------------- :mJ~ER

SERIAL DATA

SERIAL DATA CLOCK

DATA
AVAILABLE

OUTPUT
CONTROL

ERROR OUTPUT PARALLEL OUTPUT DATA

TLlF/5237-2

FIGURE 2. DP8343 Blphase Receiver

Functional Description
Figure 2 is a block diagram of the DP8343 receiver. This
chip is essentially a serial in/parallel out shift register. How­
ever, the serial input data must conform to a very specific
format (see Figures 3-6). The message will not be recog­
nized unless the format of the starting sequence is correct.
Deviations from the format in the data, sync bit, parity or
ending sequence will cause an error to be detected, termi­
nating the message.

Data enters the receiver through the differential input ampli­
fier or the TTL Data input. The differential amplifier is a high
sensitivity input which may be used by connecting it directly
to a transformer coupled coax line, or other transmission
medium. The TTL Data input provides 400 mV of hysteresis
and recognizes TTL logic levels. The data then enters the
demodulation block.

The data demodulation block samples the data at eight (8)
times the data rate and provides signals for detecting the
starting sequence, ending sequence, and errors. Detection
of the starting sequence sets the Receiver Active output
high and enables the input shift register.

As the eight bits of data are shifted into the shift register, the
receiver will verify that even parity is maintained on the data
bits and the sync bit. Serial Data and Serial Data Clock, the
inputs to the shift register, are provided for use with external
error detecting schemes. After one complete data byte is
received, the contents of the input shift register is parallel
loaded to the holding register, assuming the holding register
is empty, and the Data Available output is set. If the holding
register is full, this load will be delayed until that register has

1-34

been read or the start of another data byte is received, in
which case a Data Overflow Error will be detected, terminat­
ing the message. Data is read from the holding register
through the TRI-STATE Output Buffers. The Output Enable
input is the TRI-STATE control for these outputs and the
Register Read input signals the receiver that the read has
been completed.

When the receiver detects an ending sequence the Receiv­
er Active output will be reset to a logic "0" indicating the
message has been terminated. A message will also termi­
nate when an error is detected. The Receiver Active output
used in conjunction with the Error output allows quick re­
sponse to the transmitting unit when an error free message
has been received.

The Error Detection and Identification block insures that val­
id data reaches the outputs of the receiver. Detection of an
error sets the Error output to a logic "1" and resets the
Receiver Active output to a logic "0" terminating the mes­
sage. The error type may be read from the data bus outputs
by setting the Output Control input to logic "0" and enabling
the TRI-STATE outputs. The data bit outputs have assigned
error definitions (see error code definition table). The Error
output will return to a logic "0" when the next starting se­
quence is received, or when the error is read (Output Con­
trol to logic "0" and a Register Read performed).

The Receiver Disable input is used to disable both the am­
plifier and TTL Data receiver inputs. It will typically be con­
nected directly to the Transmitter Active output of the
DP8342 transmitter circuit.

Detailed Functional Pin Description
RECEIVER DISABLE

This input is used to disable the receiver's data inputs. The
Receiver Disable input will typically be connected to the
Transmitter Active output of the DP8342. However, at the
system controller it may be necessary for both the transmit­
ter and receiver to be active at the same time. This variation
can be accomplished with the addition of minimal external
logic.

Truth Table

Receiver Disable Data Inputs

Logic "0" Active

Logic "1" Disabled

AMPLIFIER INPUTS

The receiver has a differential input amplifier which may be
directly connected to the transformer coupled coax line. The
amplifier may also be connected to a differential type TTL
line. The amplifier has 20 mV of hysteresis.

DATA INPUT

This input can be used either as an alternate data input or
as a power-up check input. If the system designer prefers to
use his own amplifier, instead of the one provided on the
receiver, then this TTL input may be used. Using this pin as
an alternate data input allows self-test of the peripheral sys­
tem without disturbing the transmission line.

DATA CONTROL

This input is the control pin that selects which of the inputs
are used for data entry to the receiver.

Truth Table

Data Control Data Input To

Logic "0" Data Input

Logic "1" Amplifier Inputs

Note: This input is also used for testing. When the input voltage is raised to
7.5V the chip resets.

CLOCK INPUT

This input is the internal clock of the receiver. It must be set
at eight (8) times the line data bit rate. The crystal-controlled
oscillator provided in the DP8342 transmitter also operates
at this frequency. The Clock Output of the transmitter is
designed to directly drive the receiver's Clock Input. In addi­
tion, the receiver is designed to operate correctly to a data
bit rate of 3.5 MHz.

RECEIVER ACTIVE

The purpose of this output is to inform the external system
when the DP8343 is in the process of receiving a message.
This output will transition to a logic "1" state after a receipt
of a valid starting sequence and transition to logic "0" when
a valid ending sequence is received or an error is detected.
This output combined with the Error output will inform the
operating system of the end of an error free data transmis­
sion.

1-35

ERROR

The Error output transitions to a logic "1" when an error is
detected. Detection of an error causes the Receiver Active
and the Data Available outputs to transition to a logic "0".
The Error output returns to a logic "0" after the error regis­
ter has been read or when the next starting sequence is
detected.

REGISTER READ

The Register Read input when driven to the logic "0" state
signals the receiver that data in the holding register is being
read by the external operating system. The data present in
the holding register will continue to remain valid until the
Register Read input returns to the logic "1" condition. At
this time, if an additional byte is present in the input shift
register it will be transferred to the holding register, other­
wise the data will remain valid in the holding register. The
Data Available output will be in the logic "0" state for a
short interval while a new byte is transferred to the holding
register after a register read.

DATA AVAILABLE

This output indicates the existence of a data byte within the
output holding register. It may also indicate the presence of
a data byte in both the holding register and the input shift
register. This output will transition to the logic "1" state as
soon as data is available and return to the logic "0" state
after each data byte has been read. However, even after the
last data byte has been read and the Data Available output
has assumed the logic "0" state, the last data byte read
from the holding register will remain until new data has been
received.

OUTPUT CONTROL

The Output Control input determines the type of information
appearing at the data outputs. In the logic "1" state data will
appear, in the logic "0" state error codes are present.

Truth Table

Output Control Data Outputs

Logic "0" Error Codes

Logic "1" Data

OUTPUT ENABLE

The Output Enable input controls the state of the
TRI-STATE Data outputs.

Truth Table

Output Enable
TRI-STATE

Data Outputs

Logic "Oil Disabled

Logic "1" Active

DATA OUTPUTS

The DP8343 has an 8-bit TRI-STATE data bus. Seven bits
are multiplexed with error bits. The error bits are defined in
the following table. The Output Control input is the multi­
plexer control for the Data/Error bits. • I

(f)
~

~ Message Format
a.
c

Si~gle Byte Transmission

TRANSMISSION
START SEQUENCE

t
TRANSMISSION

START .'

Multi-Byte Transmission

DATA

LINE QUIESCE

RECEIVER

FIGURE 3

t
TRANSMISSION
TERMINATION

SYNC BIT PARITY
BYTE 2 BYTE X

CODE 1 2 3 4 5 6 7 8 I I I BIT BIT BIT BIT BIT BIT BIT BIT I I ENDING I
VIOLATION. DATA • SEQUENCE

SYNC PARITY

ACTIVE __________ ..1

DMA ~ AVAILABLE ____________________ -"'1 IL. ___ _

REGISTER
READ u

TL/F/5237-3

TL/F/5237-4

FIGURE 4a. Single Byte (8-Blt) Message

DATA~ U1.Jl.J1r rfl ~~
I CODE I . I I I \ ENDING I

LINE QUIESCE. VIOLATION j---11t BYTE-j-2nd BYTE- ••• I-LAST BYTE- SEQUENCE

RECEIVER· ACTIVE _________ --'

DATA ____________ ---InL _______ r···
AVAILABLE • • • u L

REGISTER ----------------U
READ

TL/F/5237-5

FIGURE 4b. Multi-Byte Message

1-36

Message Format (Continued)

Data Bit
DP8343

Bit 1

Bit2

Bit3

Bit4

Bit5

Bit6

Bit7

Error Code Definition

Error Type

Data Overflow (Byte not removed from holding register when it and the input shift register are both full and new
data is received)

Parity Error (Odd parity detected)

Transmit Check conditions (existence of errors on any or all of the following data bits: Bit 2, Bit 4, and Bit 5)

An invalid ending sequence

Loss of mid-bit transition detected at other than normal ending sequence time

New starting sequence detected before data byte in holding register has been read

Receiver disabled during receiver active mode

SERIAL DATA DATA CLOCK

The Serial Data output is the serial data coming into the
input shift register.

The Data Clock output is the clock to the input shift register.

DATA

ICODE~ I LERROR DETECTED

LINE QUIESCE VIOLATION CORRECT DATA BYTE-

RECEIVER
ACTIVE

DATA
AVAILABLE

ERROR

U REGISTER
READ

OUTPUT
CONTROL

TL/F/5237-6

FIGURE 5. Message with Error

DATA

SERIAL
DATA

DATA
CLOCK

TLlF/5237-7

FIGURE 6. Data Clock and Serial Data

1-37

I

III
I

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, Storage Temperature Range - 65°C to + 150°C
please contact the National Semiconductor Sales Lead Temperature (Soldering, 10 sec.) 300°C
Office/Distributors for availability and specifications.

Supply Voltage, (VeC> 7.0V Operating Conditions
Input Voltage 5.5V Min Max Unlt$
Output Voltage 5.25V Supply Voltage, (VeC> 4.75 5.25 V

Ambient Temperature, T A 0 +70 °C

Electrical Characteristics (Notes 2, 3 and 5)

Symbol Parameter Conditions Min Typ Max Units

VIH Input High Level 2.0 V

Vil Input Low Level 0.8 V

VIH"Vll Data Input Hysteresis (TTL, Pin 4) 0.2 0.4 V

VeLAMP Input Clamp Voltage liN = -12 mA -0.8 -1.2 V

IIH Logic "1" Input Current Vee = 5.25V, VIN = 5.25V 2 40 /LA

III Logic "0" Input Current Vee = 5.25V, VIN = 0.5V -20' -250 /LA

VOH Logic "1" Output Voltage IOH = -100/LA 3.2 3.9 V

IOH = -1 mA 2.5 3.2 V

VOL . Logic "0" Output Voltage IOl = 5 mA 0.35 0.5 V

los Output Short Circuit Current Vee = 5V, VOUT = OV -10 -20 -100 mA
(Note 4)

10Z TRI-STATE Output Current Vee = 5.25V, Vo = 2.5V -40 1 +40 /LA

Vee = 5.25V, Vo = 0.5V -40 -5 +40 /LA

AHYS Amplifier Input Hysteresis 5 20 30 mV

Icc Power Supply Current Vee = 5.25V 160 250 mA

Timing Characteristics (Notes 2,6,7, and 8)

Symbol Parameter Conditions Min Typ Max Units

T01 Output Data to Data Available
5 20 40 ns

Positive Edge

T02 Register Read Positive Edge to
10 25 45 ns

Data Available Negative Edge '

T03 Error Positive Edge to
10 30 50 ns

Data Available Negative Edge

T04 Error Positive Edge to
5 20 40 ns

Receiver Active Negative Edge

T05 Register Read Positive Edge to
20 45 75 ns

Error Negative Edge

T06 Delay from Output Control to
5 20 50 ns

Error Bits from Data Bits

TO? Delay from Output Control to
5 20 50 ns

Data Bits from Error Bits

T08 First Sync Bit Positive Edge to 3.5 x T
Receiver Active Positive Edge +70

ns

TOg Receiver Active Positive Edge to
76 x T ns

First Data Available Positive Edge

T010 Negative Edge of Ending Sequence to 11.5 x T
Receiver Active Negative Edge +50

ns

T011 Data Control Set-up Multiplexer Time Prior
40 30 ns

to Receiving Data through Selected Input

T012 Serial Data Set-Up Prior to
3xT ns

Data Clock Positive Edge

1-38

Timing Characteristics (Notes 2,6, 7, and 8) (Continued)

Symbol

TpW1

TpW2

TpW3

T5

TZE

Parameter

Register Read (Data) Pulse Width

Register Read (Error) Pulse Width

Data Available Logic "a" State between
Data Bytes

Output Control Set-Up Time Prior to
Register Read Negative Edge

Output Control Hold Time after the

Register Read Positive Edge

Delay from Output Enable to Logic "1" or

Logic "a" from High Impedance State

Delay from Output Enable to High Imped­

ance State from Logic "1" or Logic "a"

Data Bit Frequency (Clock Input must be
8 x the Data Bit Frequency)

Conditions

Load Circuit 2

Load Circuit 2

Min Typ Max Units

30 40 ns

40 30 ns

25 45 ns

a -5 ns

a -5 ns

25 35 ns

25 35 ns

DC 3.5 MBits/s

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device
should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified, min.lmax. limits apply across the O'C to -+- 70'C temperature range and the 4.75V to 5.25V power supply range. All typical
values are for TA = 25'C and Vec = 5.0V.

Note 3: All currents into device pins are shown as positive; all currents out of device pins are shown as negative; all voltages are referenced to ground, unless
otherwise specified. All values shown as max. or min. are so classified on absolute value basis.

Note 4: Only one output at a time should be shorted.

Note 5: Input characteristics do not apply to amplifier inputs (pins 2 & 3).

Note 6: Unless otherwise specified, all AC measurements are referenced to the 1.5V level of the input to the 1.5V level of the output and load circuit 1 is used.

Note 7: AC tests are done with input pulses supplied by generators having the following characteristics: ZOUT = 50, Tr ~ 5 ns, and Tr ~ 5 ns.

Note 8: T = 1/(clock input frequency). units for "T' should be ns.

Test Load Circuits

Vee Vee

I~ -1 ~,
I> --

1
15PF.: R2=2k~'

.. --
~~

~ ~

- l'~~' --'I 15PF ~, --
~~

-=- ~
TlIF/5237-8

Load Circuit 2
TlIF/5237-9

Load Circuit 1

FIGURE 7

1-39

C
"0
co
W
~
w

II

~ r---~
~

~ Timing Waveforms
a.
c

OUTPUT J-1 SV
ENABLE ~ t

1"--· --
--I TEl

(VOH-O.5IV og3j~U -r-_~(Z~+"':'O.~SIVo:_:__<
(OUTPUT CONTROL = Hil (Z - O.SIV

I-T
Ol

t 1-'--T-0-2-------
,'

PW1

1 REGISTER ---------------"'"\~ V,..------------
REAO "-----..Ii

TL/F/5237-10

FIGURE 8. Data Sequence Timing

DATA \ AVAILABLE

I-T03-\

RECEIVER ~ ACTIVE

-T04-1

'\ ERROR t
r-lD5~

REGISTER \ ;: REAO

Ts-I I-, .. ,-I-'H-l
OUTPUT \ ;(CONTROL

~'''I Lro'-I
BIT1·BIT7 DATA BITS X ERROR BITS X DATA BITS

TL/F/5237-11

FIGURE 9. Error Sequence Timing

1 1 1 1 I 1 I VIOC&~~ON I 1 I DATA I 0 I MCV I MCV I

~---{2l~--JlJ

-I I-TD8 I .. T011

RECEIVER ______________ ...I~(;O---------. .. ____ _
ACTIVE ! .

I-TD9-1
O~A ~-----------

AVAILABLE ------------------f2~
TL/F/5237-12

FIGURE 10. Message Timing

1-40

Timing Waveforms (Continued)

SERIAL DATA ____ -'X'-_______ -'X'-___ _
1- T012-1

_____ 11
,..-----\'----_ DATA CLOCK . _

. TLlF/5237-13

FIGURE 11. Data Clock and Serial Data Timing

.- BT±(T -25nl)- T.
CLOCK INPUT FREOUENCY

4T±(T-25ns)-

------~----~----~----~-----+------~N-

____ -40 mY MIN. VIN+
-1.3Y MAX.

FIGURE 12. Data Waveform Constraints: Amplifier Inputs

-BT±(T-25ns)-

T.. CLOCK INPU~ FREOUENCY
4T±(T-25ns)-

1'--------
Note: ITr - T,I s: 10 ns

FIGURE 13. Data Waveform Constraints: Data Input (TTL)

VCC-----~----~----------~--

1k

VIN+

VIN- ---------f-----~

TL/F/5237-16

FIGURE 14. Equivalent Circuit for DP8343 Input Amplifier

1-41

TL/F/5237-14

TLlF/5237-15

II

(f)
~
(f) Typical Applications co
a..
c

r-o VCC

RESET

I AUTO RESPONSE

REG LOAD DPB342 DPTIONAL
INTERFACE ., TRANSMITTERI LOGIC

REG FULL ENCODER (FIG. 16)

BYTE CLOCK COAX LINE (FIG. 16)

TWISTED PAIR LINES

CI,I FIBER·OPTIC
::> TRANSMITTER III
w ACTIVE MAGNETIC ...
~

:00: ... INFRARED

~
9 ...

RF
! RECEIVER DISABLE ULTRASONIC
CI,I DATA >-
CI,I AVAILABLE AUDIO

ERROR CURRENT CARRYING

I OUTPUT CONTROL DP8343 OPTIONAL
I OUTPUT ENABLE RECEIVERI INTERFACE DC TO 3.5MHz

DECODER LOGIC

I REG READ
I .,
I RECEIVER ACTIVE

TLlF/5237-17

Note 1: Crystal manufacturer Midland Ross Corp., NEL Unit Part No. NE·18A @ 28 MHz

FIGURE 15

1-42

Typical Applications (Continued)

DATA
DELAY

TRANSMITTER
ACTIVE

I 2

I

L--*8-~
GND

R1
150

R5
150 50

+IN

J CDNNECT TD
DP8341
RECEIVER

-IN
6

90Q CDAX
(RG62A/U)

dJ
3

R6
120

TUF/5237-18

IDEAL
WAVEFORM

Note 1: Resistance values are in n, ±5%, V.w.
Note 2: T1 is a 1:1:1 pulse transformer, LMIN = 500 J.LH for 18 MHz system clock.
Pulse Engineering Part No. 5762,
Valor Electronics Part No. CT1501
Technitrol Part No. 11 LHA or equivalent transformers.

FIGURE lS.lnterface Logic for a Coax Transmission Line

AT TRANSMITIER
END OF CABLE

°To maintain loss at 95% of ideal signal, select
transformer inductance such that:

10,000
L(MIN) = fCLK

Example:

fCLK = System Clock
Frequency
(e.g., 18.87 MHz)

L=~- L(MIN) = 530 H
18.87 x 106 po

Note 1: Less inductance will cause greater amplitude
attenuation.

Note 2: Greater inductance may decrease signal rise
time slightly and Incease ringing, but these effects are
generally negligible.

FIGURE 17. Transformer Selection

1·43

TUF/5237-19

TL/F/5237-20

I

III

m
oqo

~ ~National
~ D Semiconductor

DP8344B Biphase Commun\ications Processor-BCP®
General Description
The DP8344B BCP is a communications processor de­
signed to efficiently process IBM® 3270, 3299 and 5250.
communications protocols. A general purpose 8-bit protocol
is also supported.

The BCP integrates a 20 MHZ 8-bit. Harvard architecture
RISC processor, and an intelligent, software-configurable
transceiver on the same low power microCMOS chip. The
transceiver is capable of operating without significant proc­
essor interaction, releasing processor power for other tasks.
Fast and flexible interrupt and subroutine' capabilities with
on-chip stacks make this power readily available.

The transceiver is mapped into the processor's register
space, communicating with the processor via,an asynchro­
nous interface which enables both sections of the chip to
run from different clock sources. The transmitter and receiv­
er run at the same basic clock frequency although the re­
ceiver extracts a clock from the incoming data stream to
ensure timing accuracy.

The BCP is designed to stand alone and is capable of imple­
menting a complete communications interface, using .the
processor's spare power to control the complete system.
Alternatively, the BCP can be interfaced to another proces­
sor with an on-chip interface controller arbitrating access to
data memory. Access to program memory is also possible,
providing the ability to download BCP code.

A simple line intertace connects the Bep to the communica­
tions line. The receiver includes an on-chip analog compar­
ator, suitable for use in a transformer-coupled environment,

Block Diagram

although a TTL-level serial input is also provided for applica­
tions where an external comparator is preferred.

A typical system is shown below. Both coax and twinax line
interfaces are shown, as well as an example of the (option­
al) remote processor interface.

Features
Transceiver
• Software configurable for 3270, 3299, 5250 and general

8-bit protocols
II Fully registered status and control
• On-chip analog line receiver
Processor
• 20 MHz clock (50 ns T-states)
• Max. instruction cycle: 200 ns
• 33 instruction types (50 total opcodes)
• ALU and barrel shifter
• 64k x 8 data memory address range
• 64k x 16 program memory address range

(note: typical system requires <2k program memory)
• Programmable wait states
• Soft-Ioadable program memory
• Interrupt and subroutine capability
• Stand alone or host operation
• Flexible bus interface with on-chip arbitration logic

General
• Low power microCMOS; typo Icc = 25 rnA at 20 MHz
• 84-pin plastic leaded chip carrier (PLCC) package

Typical BCP System

Coax
Line

Program r,;:::::-;;;=-,c~~1ill:I
.. emory

Twin .. ----f..-:.It-+-...
Lint

DP8344B

FIGURE 1
TL/F/9336-S1

1-44

The DP8344B Is an enhanced version of the DP8344A, exhibiting Improved switching performance and additional
functionality. The device has been been characterized In a number of applications and found. to be. a compatible
replacement for the DP8344A. Differences between the DP8344A and DP8344B are noted by shading of the text on the
pages of this data sheel For more Information, refer to Section 6.6.

Note: In this document [XXX] denotes a control or status bit in a register, (YYyJ denotes a register.

Table of Contents
1.0 COMMUNICATIONS PROCESSOR OVERVIEW

1.1 Communications Protocols

1.2 Internal Architecture Overview

1.3 Timing Overview

1.4 Data Flow

1.5 Remote Interface Overview

2.0 CPU DESCRIPTION

2.1 CPU Architectural Description

2.1.1 Register Set

2.1.1.1 Banked Registers

2.1.1.2 Timing Control Registers

2.1.1.3 Interrupt Control Registers

2.1.1.4 Timer Registers

2.1.1.5 Transceiver Registers

2.1.1.6 Condition Code/Remote Handshaking
Register

2.1.1.7 Index Registers

2.1.1.8 Stack Registers

2.1.2 Timer
2.1.2.1 Timer Operation

2.1.3 I nstruction Set

2.1.3.1 Harvard Architecture Implications

2.1.3.2 Addressing Modes

2.1.3.3 Instruction Set Overview

2.2 Functional Description

2.2.1 ALU

2.2.2 Timing

2.2.3 Interrupts

2.2.4 Oscillator

1-45

3.0 TRANSCEIVER

3.1 Transceiver Architectural Description

3.1.1 Protocols

3.1.1.1 IBM 3270

3.1.1.2 IBM 3299

3.1.1.3 IBM 5250

3.1.1.4 General Purpose 8-Bit

3.2 Transceiver Functional Description

3.2.1 Transmitter

3.2.2 Receiver

3.2.3 Transceiver Interrupts

3.2.4 Protocol Modes

3.2.5 Line Interface

3.2.5.1 3270 Line Interface

3.2.5.2 5250 Line Interface

4.0 REMOTE INTERFACE AND ARBITRATION SYSTEM
(RIAS)

4.1 RIAS Architectural Description

4.1.1 Remote Arbitration Phases

4.1.2 Access Types

4.1.3 Interface Modes

4.1.4 Execution Control

4.2 RIAS Functional Description

4.2.1 Buffered Read
·4.2.2 Latched Read

4.2.3 Slow Buffered Write

4.2.4 Fast Buffered Write

4.2.5 Latched Write

4.2.6 Remote Rest Time

• I

,', Table of Contents (Continued)

5.0 DEVICE SPECIFICATIONS

5.1 Pin Description

5.1.1 Timing/Control Signals

5.1.2 Instruction Memory Interface

5.1.3 Data Memory Interface

5.1.4 Transceiver Interface

5.1.5 Remote Interface

5.1.6 Ext~rri~il~terru~ts
5.2 Absolute Maximum Ratings

5.3 Operating Conditions

5.4 Electrical Characteristics

5.5 Switching Characte~istics,

5.5.1 Definitions,

5.5.2 Timing Tables and Figures

6.0 REFERENCE SECTION

6.1 Instruction Set Reference

6.2 Register Set Reference

6.2.1 Bit Index

6.2.2 Register 'bespriPtion

6.2.3 Bit Definition Tables

,6.2:3~f Processor

6.2.3.2 Transceiver

6.3 Remote Interface Reference

6.4 Development Tools

6.4.1 Assembler System

6.4.2 Development Kit

6.4.3 Multi-Protocol Adapter Design/Evaluation Kit

6.4.4 Inverse Assembler

6.5 3rd Party Suppliers

6.5.1 Crystal

6.5.2 System Development Tools

6.6 DP8344A Compatibility Guide

6.6.1 CPU Timing Changes

6.6.2 Additional Functionality

6.6.2.1 4 T-state Read

6.6.2.2 AI AD Reset State

6.6.2.3 RIC

6.6.2.4 Transceiver

6.7 Reported Bugs

6.7.1 History

6.7.2 LJMP, LCALL Address Decode

6.7.2.1 Suggested Work-around

6.8 Glossary

6.9 Physical Dimensions

List of Illustrations

Block Diagram of Typical BCP System .. 1

Biphase Encoding•..•.•...............• 1-1

IBM 3270 Message Format .. 1-2

Simplified Block Diagram ...•.. 1-3

Memory Configuration .. 1-4

Effect of Memory Wait States on Timing•.. 1-5

Register to Register Internal Data Flow•...•....................................•............ 1-6a

Data Memory WRITE Data Flow .. 1-6b

Data Memory READ Data Flow•................•................................. 1-6c

WRITE to Transmitter Data Flow ..•..................... 1-6d

READ from Receiver Data Flow ... 1-6e

Load Immediate Data Data Flow•...............................•.....•..•.....•......... 1-6f

Basic Remote Interface ... 1-7

Register Map .. 2-1

Timer Block Diagram ..•...........................•.... 2-2

Timer Interrupt Diagram ..•.......... 2-3

Index Register Map•....................................•.............................. 2-4

Coding Examples of Equivalent Conditional Jump Instructions ... 2-5

JRMK Instruction Example•.......................•.............................. 2-6

Condition Code Register AlU Flags•..........................•....•................ 2-7

Carry and Overflow Calculations •.. 2-8

Shifts' Effect on Carry•.......................................•............•............... 2-9

Rotates' Effect on Carry ... 2-1 0

Multi-Byte Arithmetic Instruction Sequences .. 2-11

CPU-ClK Synchronization with X1 ...•................ 2-12

Changing from OClK/2 to OClK .. 2-13

Two T-state Instruction ...•.............. 2-14

Three T-state Instruction ..•.....•........ 2-15

Three T-state Data Memory Write Instruction ... 2-16

Three T-state Data Memory Read Instruction•.. 2-17

Four T-state Data Memory Read Instruction .. 2-18

FourT-state Program Control Instruction ... 2-19

Four T-state Two Word Instruction .. 2-20

Data Memory Write with One Wait State ... 2-21

Data Memory Read with One Wait State •............................•... 2-22

Data Memory Read with Two Wait States•................................ 2-23

Two T-state Instruction with Two Wait States ... 2-24

Four T-state Instruction with One Wait State•.......................•........... 2-25

Data Memory Access Wait Timing ... 2-26

Two T-state Instruction WAIT Timing ..•.........•. 2-27

Three T-state Program Control Instruction WAIT Timing•.. 2-28

Four T-state Program Control Instruction WAIT Timing••.................... 2-29

lOCK Timing•................................•... 2-30

lOCK Timing with One Wait State•......................•..................... 2-31

CPU Start-Up Timing .. 2-32

Functional State Diagram of CPU Timing ..•.............. 2-33

Interrupt Timing•.. 2-34

DP8344B Operation with Crystal•.. 2-35

DP8344B Operation with External Clock ..•.•.............. 2-36

1-47

I

II

In
"'I:t'
:; List of Illustrations (Continued)

~ System Block Diagram, Showing Details of Line Interface ... 3·1

C Biphase Encoding .. 3·2

3270/3299 Protocol Framing Format ... 3·3

5250 Protocol Framing Format ... 3·4

General Purpose 8·Bit Protocol Framing Format .. 3·5

Block Diagram of Transceiver, Showing CPU Interface .. 3·6

Transmitter Output ... 3·7

Timing of Receiver Flags Relative to Incoming Data .. 3·8

3270, 3299 Frame Assembly/Disassembly Description .. 3·9

5250 Frame Assembly/Disassembly Description .. 3·10

General Purpose 8·Bit Frame Assembly/Disassembly Description ... 3·11

BCP Receiver Design .. 3·12

BCP Driver Design .. 3·13

BCP Coax/Twisted Pair Front End ...•.......... 3·14

5250 Line Interface Schematic .. 3·15

Remote Interface Processor ... 4·1

Remote Interface Control Register ... 4·2

Generic Remote Access .. 4·3

Generic RIC Access .. ; 4·4

Memory Select Bits in (RIC I ... 4·5

Generic DMEM Access ... 4·6

Generic PC Access ... 4·7

Generic IMEM Access ..•... 4·8

Read from Remote Processor ... 4·9

Buffered Write from Remote Processor "4·10

Latched Write from Remote Processor ..•............... .4·11

Minimum BCP/Remote Processor Interface .. 4·12

Interface Mode Bits ... 4·13

Flow Chart of Buffered Read Mode .. 4·14

Buffered Read of Data Memory by Remote Processor .. .4·15

Flow Chart of Latched Read Mode .. 4·16

Latched Read of Data Memory by Remote Processor4·17

Flow Chart of Slow Buffered Write Mode ... 4·18

Slow Buffered Write to Data Memory by Remote Processor ...•............. 4·19

Flow Chart of Fast Buffered Write Mode .. 4·20

Fast Buffered Write to Data Memory by Remote Processor ... 4·21

Flow Chart of Latched Write Mode .. 4·22

Latched Write to Data Memory by Remote Processor .. 4·23

Mistaking Two Remote Accesses as Only One .. 4·24

Remote Rest Time for All Modes Except Latched Write .. 4·25

Rest Time for Latched Write Mode4·26

DP8344B Top View ... 5·1

Switching Characteristic Measurement Waveforms ... 5·2

Data Memory Read Timing .. 5·3

Data Memory Write Timing .. 5·4

Instruction Memory Timing .. 5·5

Clock Timing .. 5·6

1·48

List of Illustrations (Continued)

Transceiver Timing ... ' ' 5-7

Analog and DATA-IN Timing ... 5-8

Interrupt Timing ... ; 5-9

Control Pin Timing ... '. ' ; 5-10

Buffered Read of PC, RIC .. _ 5-1.1

Buffered Read of DMEM .. ' 5-12

Buffered Read of IMEM .. 5-13

Latched Read of PC, RiC ...• ; 5-14

Latched Read of DMEM ... 5-15

Latched Read of IMEM .. ; .. ' 5-16

Slow Buffered Write of PC, RIC ... 5-17

Slow Buffered Write of DMEM .. 5-18

Slow Buffered Write of IMEM ..•....•................... 5-19

Fast Buffered Write of PC, RIC .. 5-20

Fast Buffered Write of DMEM ... ;.: ; ... 5-21

Fast Buffered Write of IMEM ... 5-22

Latched Write of PC, RiC ' ... ,•...... , 5-23

Latched Write of DMEM ... 5-24

Latched Write of IMEM•... ;' 5-25

Remote Rest Times .. , .. _ 5-26

Remote Interface WAIT Timing .. ~ ; .. ' ... 5-27

WAIT Timing after Remote Access ...•...... ',' 5-28

Instruction Memory Bus Timing for 2 T-state Instructions•.......................... 6-1

Instruction Memory Bus Timing for 3 T-state Instructions .. 6-2

Instruction Memory Bus Timing for (2+2) T-state Instructions .. 6-3

Instruction Memory Bus Timing for 4 T-state Instructions .. :•... 6-4

Instruction/Data Memory Bus Timing for Data Memory Read [4TR] = 0 , .•........... 6-5

Instruction/Data Memory Bus Timing for Data Memory Read [4TR] = 1 .. 6-6

Instruction/Data Memory Bus Timing for Data Memory Write ... 6-7

List of Tables
Register Addressing Mode Notations ., ... ' : 2-1

Immediate Addressing Mode Notations .. , : .2-2

Index Register Addressing Mode Notations ... :.: 2-3

Relative Index Register Mode Notations ... 2-4

Data Movement Notations ... 2-5

Integer Arithmetic Instruction ... ',' .:•............ ',' .2-6

Logic Instructions .. , ,' ... ; ... , , .2-?

Shift and Rotate Instructions ... ',' , " ... , .2-8

Comparison Instructions .. ,' ,' ; .. " . ! ••••••• " •. 2-9

Unconditional Jump Instructions ,'•........... , ... , 2-10

Conditional Relative Jump Instructions .. , 2-11

"f" Flags ..•.. : .. : ', 2~12

"cc" Conditions Tested .. 2-13

Conditional Absolute Jump Instructions .. : : •........... : .2-14

JRMK Instruction ... 2-15

Unconditional CaUlnstructions ... ,2-16

Conditional Call Instructions .. ' 2-17
..

Unconditional Return Instruction .. 2-18

Conditional Return Instruction .. 2-19

TRAP Instruction .. 2-20

EXX Instruction ... 2-21

1-49

m
~

~ List of Tables (Continued)

~ Unsigned Comparison Results•..........•.. 2-22

C Signed Comparison Results .. 2-23

Data Memory Wait States .•...•.........•................•... 2-24

Instruction Memory Wait States•..•......... 2-25

BIRQ Control Summary ... 2-26

IICR I Interrupt Mask Bits and Interrupt Priority ...•.. 2-27

Interrupt Vector Generation ..•....................•.. 2-28

Recommended Crystal Parameters .•...........•.. 2-29

Protocol Mode Definitions•......•..•..........••.. 3-1

Transceiver Interrupts ..•......•........••........•.•.........•........•.. 3-2

Receiver Interrupts•.. 3-3

Decode of 3270 Coax Commands ..•.........................•... 3-4

RIAS Inputs and Outputs•...........•.....•...•..........•............................... ~ 4-1

Note: To match Timing table number with appropriate Timing illustration, Tables 5-1 and 5-2 are purposely omitted.

Data Memory Read Timing•.....•..•.... 5-3

Data Memory Write Timing•...........•.. 5-4

Instruction Memory Timing•.. 5-5

Clock Timing•......................••... 5-6

Transceiver Timing .•..........••... 5-7

Analog and DATA-IN Timing•...........•................•...............•........................... ' 5-8

Interrupt Timing•..................•.........•... 5-9

Control Pin Timing .. 5·1 0

Buffered Read of PC, RIC•.. 5·11

Buffered Read of DMEM : .. 5-12

Buffered Read of IMEM•.........•... 5·13

Latched Read of PC, RiC•....... '•... 5-14

Latched Read of DMEM••............•.........•... 5-15

Latched Read of IMEM•.. 5·16

Slow Buffered Write of PC, RiC •...•.•...•........................ 5·17

Slow Buffered Write of DMEM ..•...•........•..........•... 5-18

Slow Buffered Write of IMEM•.....•.................................•..............................• 5-19

Fast Buffered Write of PC, RIC•...... ' ..•.. 5-20

Fast Buffered Write of DMEM•.........•...•. 5-21

Fast Buffered Write of IMEM•...•........ ; 5-22

Latched Write of PC, RiC '•.................•.. 5-23

Latched Write of DMEM .. 5-24

Latched Write of IMEM ... 5-25

Remote Rest Times•.......•........................•.........•....•............ ' 5-26

Remote Interface WAIT Timing•....•.....•... 5-27

WAIT Timing after Remote Access •............•.••... 5-28

Notational Conventions for I nstruction Set ' ' .. 6-1

Instructions vs T-states, Affected Flags and Bus Timing ..•...... 6-2

Instruction Opcodes " ..•............................. 6-3

DP8344B Application Notes ~ ... 6-4

1-50

1.0 Communications Processor Introduction
The increased demand for computer connectivity has driven
National Semiconductor to develop the next generation of
special purpose microprocessors. The DP8344B is the first
example of a "Communications Processor" for the IBM en­
vironment. It integrates a very fast, full function microproc­
essor with highly specialized transceiver circuitry. The com­
bination of speed, power, and features allows the designer
to easily implement a state-of-the-art communications inter­
face. Typical applications for a communications processor
are terminal emulation boards for PCs, stand-alone termi­
nals, printer interfaces, and cluster controllers.

The transceiver is designed to simplify the handling of spe­
cific communication protocols. This feature makes it possi­
ble to quickly develop interfaces and software with little con­
cern for the "housekeeping" details of the protocol being
used.

1.1 COMMUNICATIONS PROTOCOLS

A communication protocol is a set of rules which defines the
physical, electrical, and software specifications required to
successfully transfer data between two systems.

.The physical specification includes the network architec­
ture, as well as the type of connecting medium, the connec­
tors used, and the maximum distance between connections.
Networks may be configured in "loops," "stars," or "daisy
chains," and they often use standard coaxial or twisted-pair
cable.

The electrical specification includes the polarity and ampli­
tude of the signal, the frequency (bit rate), and encoding
technique. One common method of encoding is called "bi­
phase" or "Manchester II." This technique combines the
clock and data information into one transmission by encod­
ing data as a "mid-bit" transition. Figure 1-1 shows how the
data transition is related to the bit boundary in a typical
transmission. The polarity of the "mid-bit" transition en-

BIT BOUNDARY

ENCODED
SIGNAL

DATA
VALUE "0" "0"

codes the data value, other transitions lie on bit boundaries.
Bit boundaries are not always indicated by transitions, so
techniques employing start sequences and sync bits are
used with bi-phase transmissions to ensure proper frame
alignment and synchronization.

The software specification covers the use of start se­
quences and sync bits, as well as defining the. message
format. Parity bits may be used to ensure data integrity. The
message format is the "language" that is used to exchange
information across the connecting medium. It defines com­
mand and control words, response times, and expected re­
sponses.

The DP8344B Bi-phase Communications Processor sup­
ports both the IBM 3270 and 5250 communication proto­
cols, as well as IBM 3299 and a general purpose 8-bit proto­
col. The specialized transceiver is combined with a micro­
processor whose instruction set is optimized for use in a
communications environment. This makes the DP8344 a
powerful single-chip solution to a wide range of communica­
tion applications.

An example of an IBM 3270 message is shown in Figure
1-2. The transmission begins with a very specific start se­
quence and sync pulse for synchronization. This is followed
by the data, command, and parity bits. Finally, the end se­
quence defines the end of the transmission.

The IBM 3270 and 5250 are two widely used protocols. The
3270 protocol was developed for the 370 class mainframe,
and it employs coaxial cable in a "star" configuration. The
5250 protocol was developed for the System/3x machines,
and it uses a "daisy-chain" of twin-ax cable. A good over­
view of both of these environments may be found in the
"Multi-Protocol Adapter System User Guide" from National
Semiconductor, and in the Transceiver section of this docu­
ment.

"1" "1" "0"

TlIF /9336- 87

FIGURE 1-1. Biphase Encoding

START
SEQUENCE

SYNC DATA COt.Ct.CAND END
& SEQUENCE

~PARITY-+-

1 1 1 1 1 1 1-] ,..-------

TlIF/9336-8B

FIGURE 1-2. IBM 3270 Message Format

1-51

II

m r---~
"'I:t'
~ 1.0 Communications Processor Introduction (Continued)
~ 1.2 INTERNAL ARCHITECTURE INTRODUCTION' (ALU) which performs addition, subtraction, Boolean opera-
C The DP8344B Biphase Communications Processor (BCP) is tions, rotations and shifts. Separate instruction and data

divided into three major functional blocks: the Transceiver, memory systems are supported, each with 16-bit address
the Central Processing Unit (CPU), and the Remote Inter- buses, for a total of 64k address space in each.
face and Arbitration System, RIAS. Figure 1-3 shows how There are 44 internal registers accessible to the CPU.
these blocks are related to each other and to other system These include special configuration and control registers for
components. the transceiver and processor, four 16-bit indices to data
The transceiver consists of an asynchronous transmitter memory,and 20 8-bit general purpose registers. There is
and re'ceiver which can communicate across' a serial data also a 16-bit timer and a 16-byte deep LIFO data stack
path. The transmitter takes parallel data frornthe CPU and which are accessible in the' register address space. For
appends to it the appropriate framing information. The re- more detailed information, see the specific sections on the
suiting message is shifted out and is available as a serial Register set, the Timer, and the ALU.
data stream on two output ,pins. The receiver shifts in serial The BCP can operate independently or with another proces-
messagesi'strips off the framing information, and makes the sor as the host system. If such a system is required, com-
data available in parallel form to the CPU. The framing infor~ munication with the BCP is possible by sharing data memo-
mation supplied by'the BCP provides the proper message ry. The Remote Interface controls bus arbitration and ac-
format for several popular communication protocols. These cess to data memory, as well as program up-loading and
include IBM 3270,' 3299, and 5250, as well as a general execution. For example, it is possible for a host system to
purpose 8-bit mode. .' load the BCP's instruction memory and begin program exe-
The transceiver clock may be derived from the' internal os- cution, then pass data back and forth through data memory
cillator, either directly or through internal divide-down circuit- accesses. The section on the Remote Interface and Arbitra-
ry. There is also an' input for an external transceiverciock, tion System provides all of the necessary timing and control
thus allowing complete flexibility in the choice of data rates. information to implement an interface between a BCP and a
The receiver input can come from three possible sources. remote system.
There is a built-in differential amplifier which is suitable for As shown in Figure 1-4, the BCP uses two entirely separate
most line interfaces; a single-ended digital input for use with memory systems, one for program storage and the other for
an external comparator, and an internal loopbackpath for data storage. This type of memory arrangement is referred
self testing. Refer to the Transceiver section for a detailed to as Harvard architecture. Each system has 16 address
description of all transmitter and receiver functions, and to lines, for a maximum of 64k words in each, and its own set
the application note on coax interfaces for the proper use of of data lines. The instruction (program) memory is two bytes
the differential amplifier. (16 bits) wide, and the data memory' is one byte (8 bits)

, U' ' ' wide. The CP ,Is a general purpose, ,a-bit microprocessor capa-
ble of 20 MHz operation. It has a reduced instruction set In order to reduce the number of pins required for these
which is optimized for transceiver and data handling per- Signals, the address and data lines for data memory are
formance. It also has a full function arithmetic/logic unit multiplexed together. This requires an external latch and the

Address Latch Enable signal (ALE) for de-multiplexing.

TRANSMISSION
INTERFACE' ..-I--

CENTRAL PROCESSING
UNIT .A

~

~I ~ ~ ~ 17
7

.,
REMOTE

TRANSCEIVER INTERFACE .A

~

FIGURE 1-3. Simplified Block Diagram

1-52

\
v

1

")
--y

I

RAM/ROM
MEMORY

II
HOST COMPUTER

(OPTIONAL)

TL/F/9336-B9

1.0 Communications Processor Introduction (Continued)

Simultaneous access to both data and program memory,
and instruction pipelining greatly enhance the speed per­
formance of the BCP, making it well suited for real-time pro­
cessing. The pipeline allows the next instruction to be re­
trieved from program memory while the current instruction is
being executed.

1.3 TIMING INTRODUCTION

The timing of all CPU operations, instruction execution and
memory access is related to the CPU clock. This clock is
usually generated by a crystal and the internal oscillator,
with optional divide by two circuitry. The period of the result­
ing CPU clock is referred to as a T-state; for example, a
20 MHz CPU clock yields a 50 ns T-state. Most CPU func­
tions, such as arithmetic and logical operations, shifts and

A

~

BCP

rotates, and register moves, require only two T-states.
Branching instructions and data memory accesses require
three to four T-states.

Each memory system has a separate, programmable num­
ber of wait states to allow the use of slower memory devic­
es. Instruction memory wait states are inserted into all in­
structions, as shown in Figure 1-5, thus they affect the
overall speed of program execution. Instruction memory
wait states can also apply when the Remote Interface is
loading a program into instruction memory. Data memory
wait states are only inserted into data memory access in­
structions, hence there is less degradation in overall pro­
gram execution. Refer to the Timing section for detailed ex­
amples of all BCP instruction and data memory timing.

ADDRESS I\.

I'

DATA J\ INSTRUCTION

R7W
v MEMORY

64k x 16

READ

WRITE

ADDRESS I\. DATA
I' MEMORY

roNmOl~ 64k x 8
LATCH

A "

INSTRUCTION
BOUNDARY

CPU CLOCK

T-STATE

INSTRUCTION
BOUNDARY

CPU CLOCK

T-STATE

~ ADDRESS/DATA v

FIGURE 1-4. Memory Configuration

TWO T-STATE
INSTRUCTION

WITH NO WAIT STATES

TWO T-STATE
INSTRUCTION

WITH TWO WAIT STATES

FIGURE 1-5. Effect of Memory Wait States on Timing

1-53

TL/F/9336-C1

TLlF/9336-C2

..
I

1.0 Communications Processor Introduction (Continued)

1.4 DATA FLOW

The CPU registers are all dual port, that is, they have sepa­
rate input and output paths. This arrangement allows a sin­
gle register to function as both a source and a destination
within the same instruction.

Figures 1-6a through 1-6f show the internal data flow path
for the BCP. The CPU registers are a central element to this
path. When a register functions as an output, its contents
are placed on the Source bus. When a register is an input,
data from the Destination bus is written into that register.

The other key element in the data path is the ALU. This unit
does all of the arithmetic and data manipulation operations,
but it also has bus multiplexing capabilities. Both the Data
Memory bus and a portion of the Instruction Memory bus
are routed to this unit and serve as alternative sources of
data. Since the data flow is always through this unit, most
data moves may include arithmetic manipulations with no
penalty in execution time.

Figure 1-6a shows the data path for all arithmetic instruc­
tions and register to register moves. The source register
contents are placed on the Source bus, routed through the

DATA
I-.... ~~ MEMORY

ADDRESS

FROM DATA
MEMORY

DATA
MEMORY
ADDRESS

TLIF/9336-C5

TL/F/9336-C3

FIGURE 1·6a. Register to Register
TL/F/9336-C4

FIGURE 1·6b. Data Memory WRITE FIGURE 1·6c. Data Memory READ

TRANSMITTER
nFO

TLIF/9336-C6

FIGURE 1·6d. WRITE to Transmitter

~ ... __ ~~~EIVER

TL/F/9336-C7

FIGURE 1·6e. READ from Receiver

1-54

IMMEDIATE DATA
FROM

INSTRUCTION BUS

TL/F /9336-C8

FIGURE 1·61. Load Immediate Data

1.0 Communications Processor Introduction (Continued) i "

ALU/MUX, and then placed on the destination bus. This
data is then stored into the appropriate destination register.

Figures 1-6b and 1-6c show the data path for data memory
accesses. For a WRITE operation, the source register con­
tents follow the same path through the ALU/MUX, but the
Destination bus is routed to output pins and on to data
memory. For ,a READ operation, incoming data is routed
onto the Destination bus by the ALU/MUX, and then stored
in a register. The address for all data memory accesses is
provided by one of four 16-bit index registers which can
operate in a variety of automatic increment and decrement
modes.

Transfer of the data byte between the CPU and the Trans­
ceiver is accomplished through a register location. This reg­
ister, ! RTR J, appears as a normal CPU register, but writing
to it automatically transfers data' to the transmitter FIFO,
and reading from it retrieves data from the receiver FIFO.
These paths are illustrated in Figures 1-6d and 1-6e.

It is also possible to load immediate data into a CPU regis­
ter. This data is supplied by the program and is usually a
constant such as a pointer or character. As shown in Figure
1-6f, a portion of the Instruction bus is routed through the
ALUlMUX for this purpose.

BCP

1.5 REMOTE INTERFACE AND ARBITRATION SYSTEM
INTRODUCTION

The BCP is designed to serve as a complete, standalone
communications interface. Alternately;ihari be interfaced
with another processor by means of 'the Remdtelnterface
and Arbitration System. Communication' between the BCP
and the remote processor is possible by,sharing data mem­
ory. Harvard architecture allows the remote system' to ac­
cess any BCP data memory location while the BCP' contin~
ues to fetch and execute instructions, thereby' minimizing
performance'degradation.

Figure 1-7 shows a simplified remote processor interface.
This includes tri-state buffers on the address'and data bus­
es of the BCP's Data MemorY, and all of the-control and
handshaking signals required tocomrilunicate' between the
BCP and the host system:

There is an 8-bit control register~ Rem'ote Interf~c'e Control
! RIC J, accessible only to the remote system, which is used
to control a variety of features, including the types'of memo­
ry accesses, interface speeds, single step program execu-'
tion, CPU start/stop, instruction memdry loads, and so forth.
Detailed information on all interface options is provided in
the section on Remote Interface' and,ArbitratiOn' System,
and in the related Reference section:

I:',

ADDRESS
"
y INSTRUCTION

DATA

" MEMORY

R1ii
y

64k x 16

READ

WRITE

ADDRESS
" .

~
DATA

LATCH MEMORY

A DATA
64k x 8

"

" '

~ ~ ;:..
LCL r---

0 ;I ·Il. I! /j

~ ~
.. 7-

BUS CONTROL $
~l

;:.. ~

~
A DATA

REMOTE
~

ADDRESS
PROCESSOR

TLIF/9336-C9

FIGURE 1-7. Basic Remote Interface

1-55

m
3
C")
co
a..
Q

2.0 CPU Description
The CPU Is a general purpose, 8-bit microprocessor capa-
ble of 20 MHz operation. It contains a large register set for
standard CPU operations and control of the transceiver.
The reduced InstructlQn set is optimized for the communica-
tions environment. The following sections are an architec-
tural and functional description of the DP8344B CPU.

2.1 CPU ARCHITECTURAL DESCRIPTION

2.1.1 Register Set

This section describes the BCP's internal CPU registers. It is
a general overview of the register structure and the func-
tions mapped Into the CPU register space. It is not a de-
tailed or exhaustive description of every bit. For such a de-
scription, please refer to Section 6.2, Register Set Refer-
ence. Also, the Remote Interface Configuration register,
(RIC), Is not accessible to the BCP (being accessible only
by the remote system) and is described in Section 6.3, Re-
mote Interface Reference.

The register set of the BCP provides for a compliment of
both special function and general purpose registers. The
special function registers provide access to on-chip periph-
erals (transceiver, timer, Interrupt control, etc.) while the
general purpose registers maximize CPU throughput by min-
Imlzlng accesses to external data memory. The CPU can
address a total of 44 8·bit registers, providing access to:

• 20 general purpose registers

• 8 configuration and control registers

• 4 transceiver access registers

• 2 8-bit accumulators

• 4 16-bit pointers

• 16·blt timer

• 16 byte data stack

• address and data stack pointers

The CPU addresses internal registers with a 5-bit field, ad-
dressing 32 locations generically named RO through R31.
The first twelve locations (RO-R11) are further organized by
function as two groups of banked registers (A and B) as
shown In Figure 2-1. Each group contains both a main and
an alternate bank. Only one bank is active for group A and
one for bank B and thus accessible during program execu-
tion. Switching between the banks is performed by the ex-
change Instruction EXX which selects whether Main A or
Alternate A occupies RO-R3 and whether Main B or Alter-
nate B occupies R4-R11.

1-56

Alternate t.laln

OCR I - CCR RO IBR
A: "ATR Ncr Rl

- ICR R2 rBR - ACR R3

RTR I

- GPO R4
TSR

TcR" GPI R5

- GP2 R6
Tt.lR

B: - GP3 R7
GP4' - GP4 (accumulator) RB
GPS' - GPS R9
GP6'
~ GP6 RIO
GP7' ---- GP7 Rll

W (low byte) R12

W (high byte) R13

x (low byte) R14

Index Registers X (high byte) R1S

(pointers) Y (low byte) R16

Y (high byte) R17

Z (low byte) RIB

Z (high byte) RI9

GPB R20

GP9 R21

GP10 R22

GPII R23

GP12 R24

GP13 R2S

GP14 R26

GP1S R27

TIm" I:~ I R28
R29

rsp
st"k. DS 1'30 R31

TL/F /9336-32

FIGURE 2·1. Register Map

2.0 CPU Description (Continued)

Registers in the RO-R11 address space are allocated in a
manner that minimizes the need to switch banks:

Main A: CPU control and transceiver status

Alternate A: CPU and transceiver configuration

Main B: 8 general purpose

Alternate B: 4 transceiver access, 4 general purpose

Most of the BCP's instructions with register operand(s) can
access all 32 register locations. Only instructions with an
immediate operand are limited to the first sixteen register
locations (RO-R15). These instructions, however, still have
access to all registers required for transceiver operation,
CPU status and control registers, 12 general purpose regis­
ters, and two of the index registers.

The general purpose registers are used for the majority of
BCP operations. There are 8 general purpose registers in
Main Bank B (R4-R11), 4 in Alternate Bank B (R8-R11),
and 8 more (R20-R27) that are always accessible but are
outside the limited register range. Since these registers are
internal to the BCP, they can be accessed without data
memory wait states, speeding up processing time. The in­
dex registers may also be used as general purpose registers
if required.

For those instructions that require two operands, an accu­
mulator (RB, one in each bank) serves as the second oper­
and. The result of such an operation is stored back in the
accumulator only if it is specified as the destination, thus
allowing three operand operations such as R5 +
RB ~ R20. See Section 2.1.3 Instruction Set for further ex­
planation.

Most registers have a predetermined state following a reset
to the BCP. Refer to Section 6.2, Register Set Reference for
a detailed summary.

2.1.1.1 Banked Registers

The CPU register set was designed to optimize CPU per­
formance in an' environment which supports multiple tasks.
Generally the most important and time critical of these tasks
will be maintaining the serial link (servicing the transceiver
section) which often requires real time processing of com­
mands and data. Therefore, all transceiver functions have
been mapped into special function registers which the CPU
can access quickly and easily. Switching between this task
and other tasks has been facilitated by dedicating a register
bank (Alternate B) to transceiver functions. Alternate Bank
B provides access to all transceiver status, control, and
data, in addition to four general purpose registers for proto­
col related storage. Main Bank B contains eight general pur­
pose registers for use by other tasks. Having general pur­
pose registers in both, B banks allows for quick context
switching and also helps eliminate some of the overhead of
saving general purpose registers. The main objective of this
banked register structure is to expedite servicing of the
transceiver as a background (interrupt driven) task allowing
the CPU to efficiently interleave that function with other
background and foreground operations.

To facilitate using the transceiver in a polled fashion (in­
stead of using interrupts), many of the status flags neces­
sary to handshake with the transceiver are built into the
conditional jump instructions, with others available in the
Main A bank (normally active) so that Alternate Bank B does

1'-57

not have to be switched in to poll the transceiver. Timer and
BIRQ tasks may also be run using polling techniques to
Main A bank.

In general, the registers have been f3,rranged within the
banks so as to minimize the need to switch banks. The pow­
er-up state is Alternate bank A, Alternate bank B' allowing
access to configuration registers. Again, the banks switch
by using theEXX instruction which explicitly specifies which
bank is active (Main or Alternate) for each register group (A
and B). The EXX instruction allows selecting any of four
possible bank settings with a single two T-state instruction.
This instruction also has the option of enabling or disabling
the maskable interrupts. '

The cO!1tents of the special function registers can be divid­
ed into several groups for general discl1ssion-timing/con­
trol, interrupt control, the tr<insceiver, the condition codes,
the index registers, the timer, the stacks, and remote inter.
face. "", '

2.1.1.2 Timing/Control Registers

The BCP provides a means to configure its external timing
through setting bits in the Device Control Register, {OCR I,
and the Auxiliary Control Register, {ACR I. One of the first
configuration registers to be initialized on power-up/reset is
{OCR 1 which defines the hardware environment in which
the BCP is functioning. Specifically, {OCR 1 controls' the
clock select logic for both the CPU and transceiver, in addi­
tion to the number of wait states to:be used for instruction
and data memory accesses.

The BCP allows either one clock source operation for the
CPU and the transceiver from the on-chip, oscillator, or an
independent clock source can run the transceiver from the
eXternal Transceiver CLocK input,'X-TCLK.The Transceiv­
er Ciock Select bits, [TCS1 :0], select the clock source for
the transceiver which is either the on-chip Osc'illator CLocK,
OCLK, or X-TCLK. Options for selecting divisions of the on­
chip oscillator frequency are also provided (see the descrip~
tion of' {OCR 1 in Section 6.2, Register Set Reference. The
CPU Clock Select bit, [CCS], allows the CPU to run at the
OCLK frequency or at half that speed. The clock output at
the pinCLK-OUT, however,is never diVided and always re­
flects thEfcrystal frequency OCLK. The frequency selected
for the transceiver (referred to as TCLK) should always be
eight times' the desired serial data rate. The frequency se ..
lected for the CPU defines the length of each T-state (e.g.,
20 MHz implies 50 ns T-states)." ' .

There are two independent fields for defining wait states;
one for instruction memory access (nIW) and one for data
memory access (now). These fields specifY to the BCP how
many wait states to insert to meet the 'access time, require­
ments of both memory systems. The Instruction memory
Wait-state select bits" [lW1 ,0], and the Data memory Wait­
state select bits, [DW2-0], control the number of inserted
wait states for instruction and data memorY, respectively.

After a reset, the maximum number of ~ait states 'are ,set in
{OCR}, nlW = 3 T-states and nOw = 7T-states.', Wait,­
states are discussed in moredetail,in Section 2.2:2, Timing.
For a complete discussion on choos(ng your memory and
determining the number of 'N~it states required, piease r~fer
to the application note Choosing Your RAM lor the 8iphase
Communication Processor. ' , , '

2.0 CPU Description (Continued)

Another control bit in the (ACRI register is the Clock Out
Disable bit, [COD]. When [COD] is asserted, the buffered
clock output at pin CLK-OUT is tri-stated.

2.1.1.3 Interrupt Control Registers

The configuration bank (Alternate Bank A) includes an Inter­
rupt Base Register, (IBR I, which defines the high byte of all
interrupt and trap vector addresses. Thus, the interrupt vec­
tor table can be located in any 256 byte page of the 64k
range of instruction addresses. The interrupt base is nor­
mally initialized once on reset before interrupts are enabled
or any traps are executed. Since NMI is nonmaskable and
may occur before (IBR I is initialized, the power-up/reset
value of (IBR I (OOh) should be used to accommodate iiIMi
during initialization. In other words, if iiIMi is used in the
system, the absolute address 001 Ch (the iiIMi vector)
should contain a jump to an NMi service routine.

The Interrupt Control Register, (ICR I, provides individual
masks [lM4-0] for each of the maskable interrupts. The
Global Interrupt Enable bit, [GIE], located in (ACRI works
in conjunction with these individual masks to control each of
the maskable interrupts.

The external pin called BiRO is a Bidirectional Interrupt
ReOuest. BiRO is defined as an input or an output by the
Bidirectional Interrupt Control bit, [BIC], in (ACR}. [1M3]
functions as BIRO's interrupt mask if BIRQ is an input as
defines by [BIC]. When [BIC] defines BIRO as an output,
[1M3] controls the output state of BiRO.
Section 2.2.3, Interrupts provides a further description of
these registers.

2.1.1.4 Timer Registers

The timer block interfaces with the CPU via two registers,
TimeR Low byte, (TRL}, and TimeR High byte, (TRH},
which form the input/output ports to the timer. Writing to
(TRLI and (TRHI stores the low and high byte, respective­
ly, of a 16-bit time-out value into two holding registers. The
word stored in the holding registers is the value that the
timer will be loaded with via [TLD). Also, the timer will auto­
matically reload this word upon timing out. Reading (TRLI
and (TRH I provides access to the count down status of the
timer.

Control of timer operation is maintained via three bits in the
Auxiliary Control Register (ACR}. Timer STart [TSn, bit 7
in (ACR I, is the start/ stop control bit. Writing a one to
[TST] allows the timer to start counting down from its cur­
rent value. When low, the timer stops and the timer interrupt
is cleared. Timer Load [TLD] , bit 6 in (ACR I, is the load
control of the timer. After writing the desired values into
(TRLI and (TRH I, writing a one to [TLD] will load the 16-bit
word in the holding registers into the timer and initialize the
timer clock to zero in preparation to start counting. Upon
completing the load operation, [TLD] is automatically
cleared. Timer Clock Selection [TCS], bit 5 in (ACR}, deter­
mines the clock frequency of the timer count down. When
low, the timer divides the CPU clock by sixteen to form the
clock for the down counter. When [TCS] is high, the timer
divides the CPU clock by two. The input clock to the timer is
the CPU clock and should not be confused with the oscilla­
tor clock, OCLK. The rate of the CPU clock will be either
equal to OCLK or one-half of OCLK depending on the value
of bit 7 in the Device Control Register, (OCR I.

1-58

When the timer reaches a count of zero, the timer interrupt
is generated, the Time Out flag, [TO], (bit 7 in the Condition
Code Register (CCR I), goes high, and the timer reloads the
16-bit word stored in the holding registers to recycle through
a count down. The timer interrupt and [TO] can be cleared
by either writing a one to [TO] in (CCR I or stopping the
timer by writing a zero to [TST] in (ACR I. Refer to Section
2.1.2, Timer for more information on the timer operation.

2.1.1.5 Transceiver Registers

Two registers in the Alternate A bank initialize transceiver
functions. The Auxiliary Transceiver Register, (ATR I, speci­
fies a station address used by the address recognition logic
within the transceiver when using the non-promiscuous
5250 and 8-bit protocol modes. In 5250 modes, (ATRI also
defines how long the TX-ACT pin stays asserted after the
end of a transmitted message. The Fill Bit Register, (FBR I,
specifies the number of optional fill bits inserted between
frames in a multiframe 5250 message.

(lCR I contains the Receiver Interrupt Select bits, [RIS1,O].
These bits determine the receiver interrupt source selection.
The source may be either Receiver FIFO Full, Data Avail­
able, or Receiver Active.

The Receive/Transmit Register, (RTRI, is the input/output
port to both the transmitter and receiver FIFO's. It appears
to the BCP CPU like any other register. The (RTR I register
provides the least significant eight bits of data in both re-
ceived and transmitted messages. .

The Transceiver Mode Register, (TMR}, contains bits used
to set the configuration of the transceiver. As long as the
Transceiver RESet bit, [TRES], is high, the transceiver re­
mains in reset. Internal LOOP-back operation of the trans­
ceiver can be selected by asserting [LOOP]. The RePeat
ENable bit, [RPEN], allows the receiver to be active at the
same time as the transmitter. When the Receiver INvert bit,
[RIN], is set, all data sent to the receiver is inverted. The
Transmitter INvert bit, [TIN], is analogous to [RIN] except it
is for the transmitter. The protocol that the transceiver is
using is selected with the Protocol Select bits, [PS2-0].

The Transceiver Command Register, (TCRI, controls the
workings of the transmitter. To generate 5.5 line quiesce
pulses at the start of a transmission rather than 5, the Ad­
vance Transmitter Active bit, [ATA], must be set high. Parity
is automatically generated on a transmission and the Odd
Word Parity bit, [OWP], determines whether that parity is
even or odd. Bits 2-0 of (TCR} make up part of the Trans­
mitter FIFO [TF10-8] along with (RTR}. Whenever a write
is made to (RTR}, [TF10-8] are automatically pushed on
the FIFO with the 8 bits written to (RTR}.

Other bits in (TCRI control the operation of the on-Chip
receiver. The number of line quiesce bits the receiver must
detect to recognize a valid message is determined by the
Receive Line Ouiesce bit, [RLO). The BCP has its own inter­
nal analog comparator, but an off-chip one may be connect­
ed to DATA-IN. The receiver source is determined by the
Select Line Receiver bit, [SLR). To view transceiver errors
in the Error Code Register, (ECR I, the Select Error Codes,
[SEC], bit in (TCR} must be set high. When [SEC] is high,
Alternate Bank B R4 is remapped from (RTR} to (ECR} so
that (ECR} can be read. ,

2.0 CPU Description (Continued)

Just as [TF10-8] bits get pushed onto the transmitter FIFO
when a write to I RTR I occurs, the Receiver FIFO bits,
[RF10-8], in the Transceiver Status Register, ITSRI, re­
flect the state of the top word of the receive FIFO. ITSRI
also contains flags that show Transmit FIFO Full, [TFF],
Transmitter Active, [TA], Receiver Error, [RE], Receiver Ac­
tive, [RA], and Data AVailable, [DAVl. These flags may be
polled to determine the state of the transceiver. For in­
stance, during a Receiver Active interrupt, the. BCP can que­
ry the [DAV] bit to determine whether data is ready in the
receiver FIFO yet.

The Error Code Register, I ECR I, contains flags for receiver
errors. As previously stated, the [SEC] bit in ITRCI must be
set high to read this register. Reading I ECR I or resetting
the transceiver with [TRES] will clear all the errors that are
present. The receiver OVerFlow flag, [OVF], is set when the
receiver attempts to add another word to the FIFO when it is
full. If internally checked parity and parity transmitted with a
3270 message conflict, then the PARity error bit, [PAR], is
set high. The Invalid Ending Sequence bit, [lES], is set
when the ending sequence in a 3270, 3299, or 8-bit mes­
sage is incorrect. When the expected mid-bit transition in
the Manchester waveform does not occur, a Loss of Mid-Bit
Transition occurs ([LMBTl). Finally, if the transmitter is acti­
vated while the receiver is active, the Receiver DISabled
while active flag, [RDIS], will be set unless [RPEN] is as­
serted.

The second register in Main A bank is called the Network
Command Flag register, I NCF I, and contains information
about the transceiver which is useful for polling the trans­
ceiver (during other tasks for example) to see if it needs
servicing. These flags include bits to indicate Transmit FIFO
Empty [TFE], Receive FIFO Full [RFF], Line Active [LA],
and a Line Turn Around [L TAl. [L TA] indicates that a mes­
sage has been received without error and a valid ending
sequence has occurred. These flags facilitate polling of the
transceiver section when transceiver interrupts are not
used. Also included in this register is a bit called [DEME]
(Data Error/Message End). In 3270/3299 modes, this bit
indicates a mismatch between received and locally generat­
ed byte parity. In 5250 modes, [DEME] decodes an end of
message indicator (111 in the address field). Three other
bits: Received Auto Response [RAR], Acknowledge [ACK]
and Poll [POLL] are decoded from a received message (at
the output of the receive FIFO) and are valid only in 3270/
3299 modes where response time is critical.

Section 3.0 Transceiver provides comprehensive coverage
of this on-chip peripheral.

2.1.1.6 Condition Codes/Remote Handshaking Register

The ALU condition codes are available in the Condition
Code Register I CCR I. The [Z] bit is set when a zero result
is generated by an arithmetic, logical, or shift instruction.
Similarly, [N] indicates the Negative result of the same op­
erations. An oVerflow condition from an arithmetic instruc­
tion sets the [V] bit in I CCR I. The Carry bit [C] indicates a
carry or borrow result from an arithmetic instruction. See
Section 2.2.2, ALU for more information.

The Condition Code Register, I CCR I, also contains [BIRO],
a status bit which reflects the logic level of the bidirectional
interrupt input pin BIRO. Hence, this pin can be used as a
general purpose input/output port as well as a bidirectional

1-59

interrupt request as defined by bits in I ACR I and I ICR I. If a
remote CPU is present and shares data memory (dual port
memory) with the BCP, handshaking can be accomplished
by using the two status bits in I CCR I called [RR] and [RW],
which indicate Remote Read and Remote Write accesses,
respectively.

In I ACR I, a lock bit, [LOR], is available to lock out all host
accesses. When this bit is set, all host accesses are dis­
abled. Locking out remote accesses is often done during
interrupts to ensure quick response times.

The Remote Interface Configuration register, IRICI, is not
available to the BCP internally. The Remote Interface Refer­
ence section provides further detail on {RIC I and interfac­
ing a remote processor.

2.1.1.7 Index Registers

Four index registers called IW, IX, IY, and IZ provide 16-bit
addressing for both data memory and instruction memory.
Each of these index registers is actually a pair of 8-bit regis­
ters which are individually addressable just like any other
CPU register. They occupy register addresses R 12 through
R19. Thus, the first two pointers IW and IX (comprising
R12-R15) can be accessed with immediate mode instruc­
tions (which can access only RO to R15). Refer to Section
2.1.3.2, Addressing Modes to see how the index registers
are formed from R12-R19.

Accessing data memory requires the use of one of the four
index registers. All such instructions allow you to specify
which pointer is to be used, except the immediate-relative
moves: MOVE rs, [lZ + n] and MOVE [lZ + n],rd. These in­
structions always use the IZ pointer. Register indirect opera­
tions have options to alter the value of the index register;
the options include pre-increment, post-increment, and
post-decrement. These options facilitate block moves,
searches, etc. Refer to Section 2.1.3, Instruction Set for
more information about data moves.

Since the BCP's ALU is 8 bits wide, all code that manipu­
lates the index registers must act on them eight bits at a
time.

The index registers can also be used in register indirect
jumps (LJMP [lrl), useful in implementing relocatable code.
Anyone of the index registers can be specified to provide
the 16-bit instruction address for the indirect jump.

2.1.1.8 Stack Registers

The last two register addresses (R30,R31) are dedicated to
provide access to the two on-chip stacks-the data stack
and the address stack. The data stack is 8 bits wide and 16
words deep. It is a Last In First Out (LIFO) type and provides
high speed storage for variables, pointers, etc. The address
stack is 23 bits wide and 12 words deep, providing twelve
levels of nesting of subroutines and interrupts. It is also a
LIFO structure and stores processor status as well as return
addresses from CALL instructions, TRAP instructions, and
interrupts. The seven bits of processor status consist of the
four ALU flags, ([C], [N], [V], and [Zl), the current bank
setting (two bits), and [GIEl.

Stack pointers for both the on-chip stacks are provided in
R30, the Internal Stack Pointer register, liSP/' The lower
four bits are the pointer for the data stack and the upper
four bits are the pointer for the address stack. Both internal
stacks are circular. For example if 16 bytes are written to

III

2.0 CPU Description (Continued)

the data stack, the next byte pushed will overwrite the first.
liSP} can be read and written to like any other register, but
after a write, the BCP must execute one instruction before
reading the stack Whose pointer was modified.

The Data Stack register, {DS}, is the input/output port for
the data stack. This port is accessed like any other register,
but a write to it will "push" a byte onto the stack and a read
from it will "pop" a byte .from the stack. The data stack
pOinter is updated when a read or write of {DS} occurs.

Information bits in the instruction address stack are not
mapped into the CPU's register space and, therefore, are
not directly accessible. A remote system running a monitor
program can access this information by forcing the BCP to
single-step through a return instruction and then reading the
program counter. Since the stack pointers are writeable, the
remote system can access any location (return· address) in
the address stack to trace program flow and then restore
the stack pOinter to its original position.

2.1.2 Timer

The BCP has an internal 1S-bit timer that can be used in a
variety of ways. The timer counts independently of the CPU,
eliminating the waste of valuable processor bandwidth. The
timer can be used in a polled or interrupt driven configura­
tion for user software flexibility.

The timer interfaces with the CPU via two registers, TimeR
Low byte, {TRLI. and TimeR High byte, {TRHI. which form
the input/output ports to the timer. Writing to {TRL} and
{TRH} stores the low and high byte, respectively, of a 1S-bit
time-out value into two holding registers. The word stored in
the holding registers is the value that the timer will be load-

CPU

ed with via [TLD]. Also, the timer will automatically reload
this word upon timing out. Reading {TRL} and {TRH} pro­
vides access to the count down status of the timer.

Control of timer operation is maintained via three bits in the
Auxiliary Control Register {ACR}. Timer STart [TST], bit 7
in iACRl, is the start/stop control bit. Writing a' one to
[TST] allows the timer to start counting down from its cur­
rent value. When low, the timer stops and the timer interrupt
is cleared: Timer Load [TLD], bit S in {ACRI. is the load
control of the timer. After writing the desired values into
{TRL} and {TRHI. writing a one to [TLD] will load the 1S-bit
word in the holding registers into the timerand initialize the
timer clock to zero in preparation to start counting .. Upon
completing the toad operation, [TLD] is automatically
cleared. Timer Clock Selection [TCS], bit 5 in {ACR I , deter­
mines the clock frequency of the timer count down. When
low, the timer divides the CPU clock by sixteen to form the
clock for the down counter. When [TCS] is high, the timer
divides the CPU clock by two: The input clock to the timer is
the CPU Clock and should not be confused with the oscilla­
tor clock, OCLK. The rate of the CPU clock will be either
equal to OCLK or one-half of OCLK depending on the value
of bit 7 in the Device Control Register, {DCR}.

When the timer reaches a count of zero, the timer interrupt
is generated, the Time Out flag, [TO], (bit 7 in the Condition
Code Register (CCR}), goes high, and the timer reloads the
1S-bit word stored in the holding registers to recycle through
a count down. The timer interrupt and [TO] can be cleared
by either writing a one to [TO] in {CCR} or stopping the
timer by writing a zero to [TST] in {ACR}. A block diagram
of the timer is shown in Figure 2-2.

TIMER AND CLOCK DIVIDER

CPU Clock·
TL/F/9336-D1

FIGURE 2·2. Timer Block. Diagram

1-S0

2.0 CPU Description (Continued)

2.1.2.1 Timer Operation
After the desired 16-bit time-out value is written into (TRL)
and (TRH), the start, load, and clock selection can be
achieved in a single write to (ACR). A restriction exists on
changing the timer clock frequency in that [TCS] should not
be changed while the timer is running (Le., [TST] is high).
After a write to (ACR) to load and start the timer, the timer
begins counting down at the selected frequency from the
value in (TRL) and (TRH). Upon reaching a count of zero,
the timer interrupt is generated and, the timer reloads the
current word from (TRL) and (TRH) to cycle through a
countdown again. The timing waveforms shown in Figure
2-3 show a write to (ACR) that loads, starts, selects the
CPU clock rate/2 for the countdown rate, and asserts the
Global Interrupt Enable [GIE]. Prior to the write to (ACR),
(TRL) and (TRH) were loaded with OOh and 01h respec­
tively, the timer interrupt was unmasked in the Interrupt
Control Register (ICR) by clearing bit 4, and zero instruc­
tion wait states were selected in (OCR). Since the write to
(ACR) asserted [GIEl. the timer interrupt is enabled and
the CPU will vector to the timer interrupt service routine
address when the timer reaches a count of zero. The timer
interrupt is the lowest priority interrupt and is latched and
maintained until it is cleared in software. (See CPU Inter­
rupts section). For very long time intervals, time-outs can be
accumulated under software control by writing a one to [TO]
in (CCR) allowing the timer to recycle its count down with
no other intervention. For time-outs attainable with one
count down, stopping the timer will clear the interrupt and
[TO]. When the timer interrupt is enabled, the call to the
interrupt service routine occurs at different instruction
boundaries depending on when the timer interrupt occurs in
the instruction cycle. If the timer times out prior to T2, where
T2 is the last T-state of an instruction cycle, the call to the
interrupt service routine will occur in the next instruction.
When the time-out occurs in T2, the call to the interrupt
service routine will not occur in the next instruction. It occurs
in the second instruction following T2.

1-61

The count status of the timer can be monitored by reading
(TRL) and/or (TRH). When the registers are read, the out­
put of the timer, not the value in the input holding registers,
IS presented to the ALU. Some applications might require
monitoring the count status of the timer while it is counting
down. Since the timer can time-out between reads of (TRL)
and (TRH), the software should take this fact into consider­
ation. To read back what was written to (TRL) and (TRH)
the timer must first be loaded via [TLO] without starting th~
timer followed by a one instruction delay before reading
(TRL) and (TRH) to allow the output registers to be updat­
ed from the load operation.

To determine the time-out delay for a given value in (TRL)
and (TRH) other than OOOOh, the following equation can be
used:

TO = (value in (TRH }(TRL) • T • k
where:

k = 2 when [TCS] = 1 or 16 when [TCS] = 0

T = The period of the CPU clock

TO = The amount of time delay after the end of the in­
struction that asserts [TST] in (ACR)

When the value of OOOOh is loaded in the timer, the maxi­
mum time-out is obtained and is calculated as follows:

TO = 65536 • T • k
With the CPU running full speed with an 18.8 MHz crystal,
the maximum single loop time delay attainable would be
55.6 ms ([TCS] = 0). The minimum time delay with the
~ame co~straints is 106 ns ([TCS] = 1). For accumulating
time-out Intervals, the total time delay is simply the number
of loops accumulated multiplied by the calculated time de­
lay. The equations above do not account for any overhead
for processing the timer interrupt. The added overhead of
processing the interrupt may need to be included for preci­
sion timing.

II

-"

m
I\)

CPU CLOCK

1(15:0) =x 5E13 X B009 X BODA X BD19 X BOlA 5',.
Write to (ACR) ~6"'--..I Call to TImer

TIMER LOAD
§ ~~~~

--------{\\.------------.....;.....;----"""'ijj Routine

~ffim~ I ~-

TIMER CLOCK

DP8344B

~

b
o
"'tJ
C
C
C'D en
n ...

-S" ...
0"
~

o o
;a.
:j"
c:
CD
S

COUNT ~ DOrr X oorE X DOro ~.b 0001 ~ oorr - X DOrE E
TIMER

INTERRUPT ------~ss- I
FIGURE 2~3, Timer Interrupt Diagram

TlIF/9336-D2

2.0 CPU Description (Continued)

2.1.3 Instruction Set

The followng paragraphs introduce the BCP's architecture
by discussing addressing modes and briefly discussing the
Instruction Set. For detailed explanations and examples of
each instruction, refer to the Instruction Set Reference Sec­
tion.

2.1.3.1 Harvard Architecture Implications

The BCP utilizes a true Harvard Architecture, where the in­
struction and data memory are organized into two indepen­
dent memory banks, each with their own address and data
buses. Both the Instruction Address Bus and the Instruction
Bus are 16 bits wide with the Instruction Address Bus ad­
dressing memory by words. (A word of memory is 16 bits
long; Le., 1 word = 2 bytes.) Most of the instructions are
one word long. The exceptions are two words long, contain­
ing a word of instruction followed by a word of immediate
data. The combination of word sized instructions and a word
based instruction address bus eliminates the typical instruc­
tion alignment problems faced by many CPU's.

The Data Address Bus is 16 bits wide (with the low order 8
bits multiplexed on the Data Bus), and the Data Bus is 8 bits
wide (Le., one byte wide). The Data Address Bus addresses
memory by bytes. Most of the BCP's instructions operate on
byte-sized operands.

Note that although both instruction addresses and data ad­
dresses are 16 bits long, these addresses are for two differ­
ent buses and, therefore, have two different numerical
meanings, (Le., byte address or word address.) Each in­
struction determines whether the meaning of a 16-bit ad­
dress is that of an instruction word address or a data byte
address. Little confusion exists though because only the
program flow instructions interpret 16-bit addresses as in­
struction addresses.

2.1.3.2 Addressing Modes

An addressing mode is the mechanism by which an instruc­
tion accesses its operand(s). The BCP's architecture sup­
ports five basic addressing modes: register, immediate, in­
dexed, immediate-relative, and register-relative. The first
two allow instructions to execute the fastest because they
require no memory access beyond instruction fetch .. The
remaining three addressing modes point to data or instruc­
tion memory. Typical of a RISC processor, most of the in­
structions only support the first three addressing modes,
with one of the operands always limited to the register ad­
dressing mode.

Register Addressing Modes

There. are two terminologies for the register addressing
modes: Register and Limited Register. Instructions that al­
low Register operands can access all the registers in the
CPU. Note that only 32 of the 44 CPU registers are available
at any given point in time because the lower 12 register
locations (RO-R11) access one of two switchable register
banks each. (See Section 2.1.1.1, Banked Registers for
more information on the CPU register banks.) Instructions
that allow the Limited Register operands can access just
the first 28 registers of the CPU. Again, note that only 16 of
these 28 registers are available at any given point in time.
Table 2-1 shows the notations used for the Register and
Limited Register operands. Some instructions also imply the
use of certain registers, for example the accumulators. This
is noted in the discussions of those instructions.

Immediate Addressing Modes

The two types of the immediate addressing modes available
are: Immediate numbers and Absolute numbers. Immediate
numbers are 8 bits of data, (one data byte), that code direct­
ly into the instruction word. Immediate numbers may repre­
sent data, data address displacements, or relative instruc­
tion addresses. Absolute numbers are 16-bit numbers. They
code into the second word of two word instructions and they
represent absolute instruction addresses. Table 2-2 shows
the notations used for both of these addressing modes.

TABLE 2-1. Register Addressing Mode Notations

Notation Type of Register Operand Registers Allowed

Rs Source Register RO-R31
Rd Destination Register RO-R31
Rsd Register is both a Source & Destination RO-R31

rs Limited Source Register RO-R15
rd Limited Destination Register RO-R15
rsd Limited Register is both a Source & Destination RO-R15

TABLE 2-2. Immediate Addressing Mode Notations

Notation Type of Immediate Operand Size

n Immediate Number 8 Bits
nn Absolute Number 16 Bits

1-63

II

2.0 CPU Description (Continued)

Indexed Addressing Modes

Indexed operands involve one of four possible CPU register
pairs referred to as the index registers. Figure 2-4 illustrates
how the index registers map into the CPU Register Set.
Note that the index registers are 16 bits wide.

Index registers allow for indirect memory addressing and
usually contain data memory addresses, although, the
LJMP instruction can use index registers to hold instruction
memory addresses. Most of the instructions that allow
memory indirect addressing, (Le. the use of index registers),
also allow pre-incrementing, post-incrementing, or post-dec­
rementing of the index register contents during instruction
execution, if desired. Table 2-3.lists the notations used for
the. index register modes. . .
The Index registers are settozero when the SCP's 'R'ESl:i
pin is asserted.

Index CPU Register Pair Forming Index Register
Register (MSB) (LSB)

IW I I I I R;3 I I I I I I R;2 I I I I
15 87 0

I I I I I
IX R15 R14

15 87 0

I I I

I
I I I

IY R17 R16

15 87 0

I I I

I
I I I

IZ R19 R18

15 87 0
FIGURE 2-4. Index Register Map

Immediate-Relative and Register-Relative
Address Modes

The Immediate-Relative mode adds an unsigned 8-bit im­
mediate number to the index register IZ forming a data byte
address. The Register-Relative mode adds the unsigned
8-bit value in the current accumulator, A, to anyone of the
index registers forming a data byte address. Both of these
indirect memory addressing modes are available only on the
MOVE instruction. Table 2-4 shows the notation used for
these two addressing modes.

2.1.3.3 Instruction Set Overview

The BCP's RISC instruction set contains seven categories
of instructions: Data Movement, Integer Arithmetic, Logic,
Shift-Rotate, Comparison, Program Flow, and Miscellane­
ous.

Data Movement Instructions

The MOVE instruction is responsible for all the data transfer
operations that the BCP can perform. Moving one byte at a
time, five different types of transfer are allowed: register to
register, data memory to register, register to data memory,
instruction memory to register, and instruction memory to
data memory. Table 2-5 lists all the variations of the MOVE
instruction.

TABLE 2-3. Index Register Addressing Mode Notations

Notation Meaning

[lr] Index Register, Contents Not Changed
[lr-] Index Register, Contents Post-Decremented
[lr+] Index Register, Contents Post-Incremented
[+Ir] Index Register, Contents Pre-Incremented
[mlr] General Notation Indicating that Any of the Above Modes Is Allowed

Note: [I denotes indirect memory addressing and is part of the instruction syntax.

TABLE 2-4. Relative Index Register Mode Notations

Notation Type of Action Performed to Calculate a Data Memory Address

[IZ + n] IZ + Immediate Number (unsigned) ~ Data Memory Address
[lr + A] Index Register + Current Accumulator (unsigned) ~ Data Memory Address

Note: [I denotes indirect memory addressing and is part of the instruction syntax.

TABLE 2-5. Data Movement Instructions

Syntax Instruction Operation Addressing Modes

MOVE Rs, Rd register ~ register Register, Register
MOVE Rs, [mlr] register ~ data memory Register, Indexed
MOVE [mlr], Rd data memory ~ register Indexed, Register
MOVE Rs, [lr + A] register ~ data memory Register, Register-Relative
MOVE [lr + A], Rd data memory ~ register Register-Relative, Register
MOVE rs, [IZ + n] register ~ data memory Limited Register, Immediate-Relative
MOVE [lZ + n], rd data memory ~ register Immediate-Relative, Limited Register
MOVE n, rd instruction memory ~ register Immediate, Limited Register
MOVE n, [lr] instruction memory ~ data memory Immediate, Indexed

1-64

2.0 CPU Description (Continued)

Integer Arithmetic Instructions Logic Instructions

The integer arithmetic instructions operate on a-bit signed
(two's complement) binary numbers. Two arithmetic func­
tions are supported: Add and Subtract. Three versions of
the Add and Subtract instructions exist: operand ± accumu­
lator, operand ± accumulator ± carry, and immediate oper­
and ± operand. The first two versions support both the reg­
ister and indexed addressing modes for the destination op­
erand. These two versions also allow the specification of a
separate register or data address for the destination oper­
and so that the sources may retain their integrity; (Le., true
three-operand instructions). Note that the currently active
"B" register bank selects which accumulator is used in
these instructions. The third version, immediate operand ±
operand, only supports the register addressing mode for the
destination operand with the register as both a source and
the destination. Table 2-6 lists the integer arithmetic instruc­
tions along with their variations.

The logic instructions operate on a-bit binary data. A full set
of logic functions is supported by the BCP: AND, OR, eXclu­
sive OR, and Complement. All the logic functions except
complement allow either an immediate operand or the cur­
rently active accumulator as an implied operand. Comple­
ment only allows one register operand which is both tile
source and destination. The other logic instructions include
the following addressing modes: register, indexed, and im­
mediate. As with the integer arithmetic instructions, the in­
tegrity of the sources may be maintained by specifying a
destination register which is different from the source. Table
2-7 lists all the logic instructions; .

TABLE 2-6. Integer Arithmetic Instructions

Syntax Instruction Operation Addressing Modes

ADD n, rsd register + n ~ register Immediate, Limited Register
ADDA Rs, Rd Rs + accumulator ~ Rd Register, Register
ADDA Rs, [mlr] Rs + accumulator ~ data memory Register, Indexed
ADCA Rs, Rd Rs + accumulator + carry ~ Rd Register, Register
ADCA Rs, [mlr] Rs + accumulator + carry ~ data memory Register, Indexed
SUB n, rsd register - n ~ register Immediate, Limited Register
SUBA Rs, Rd Rs - accumulator ~ Rd Register, Register
SUBA Rs, [mlr] Rs - accumulator ~ data memory Register, Indexed
SBCA Rs, Rd Rs - accumulator - carry ~ Rd Register, Register
SBCA Rs, [mlr] Rs - accumulator - carry ~ data memory Register, Indexed

TABLE 2-7. Logic Instructions

Syntax Instruction Operation Addressing Modes

AND n, rsd register & n ~ register Immediate, Limited Register
ANDA Rs, Rd Rs & accumulator ~. Rd Register, Register
ANDA Rs, [mlr] Rs & accumulator ~ data memory Register, Indexed
OR n, rsd register I n ~ register Immediate, Limited Register
ORA Rs, Rd Rs I accumulator ~ Rd Register, Register
ORA Rs, [mlr] Rs I accumulator ~ data memory Register, Indexed
XOR n, rsd register Ell n ~ register Immediate, Limited Register
XORA Rs, Rd Rs Ell accumulator ~ Rd Register, Register
XORA Rs, [mlr] Rs Ell accumulator ~ datame~ory Register, Indexed
CPL Rsd register ~ register Register

Note: & = logical AND operation
I = logical OR operation
Ell = logical exclusive OR operation
r = one's complement

.,

1-65

..

2.0 CPU Description (Continued)

Shift and Rotate Instructions

The shift and rotate instructions operate on any of the 8-bit
CPU registers. The BCP supports shift left, shift right, and
rotate operations. Table 2-8 lists the shift and rotate instruc­
tions.

Comparison Instructions

The BCP utilizes two comparison instructions. The CMP in­
struction performs a two's complement subtraction between
a register and immediate data. The BIT instruction tests se­
lected bits in a register by ANDing it with immediate data.
Neither instruction stores its results, only the ALU flags are
affected. Table 2-9 lists both of the comparison instructions.

Program Flow Instructions

The BCP has a wide array of program flow instructions: un­
conditional jumps, calls and returns; conditional jumps,
calls, and returns; relative or absolute instruction addressing
on jumps and calls; a specialized register field decoding

jump; and software interrupt capabilities. These instructions
redirect program flow by changing the Program Counter.

The unconditional jump instructions support both relative in­
struction addressing, the (JuMP instruction), and absolute
instruction addressing, (the Long JuMP instruction), using
the following addressing modes: Immediate, Register, Abso­
lute, and Indexed. Table 2-10 lists the unconditional jump
instructions and their variations.

The conditional jump instructions support both relative in­
struction addressing and absolute instruction addressing us­
ing the Immediate and Absolute addressing modes. The
conditional relative jump instruction tests flags in the Condi­
tion Code Register, I CCR I, and the Transceiver Status
Register, ITSRI. Two possible syntaxes are supported for
the conditional relative jump instruction; see Table 2-11.

Table 2-12 lists the various flags "f" that the conditional
JMP instruction can test and Table 2-13 lists the various
conditions "cc" that the Jcc instruction can test for. Keep in

TABLE 2-8_ Shift and Rotate Instructions

Syntax Instruction Operation Addressing Mode

0+-i i i i i i i i ~o SHL Rsd,b Register 4

Rsd

o~ i i i i i i i J---.E] SHR Rsd,b ~ Register

Rsd

W
i i i i i i i ~ ROT Rsd,b Register

~

Rsd

Note: "b" = the number of bit shifts/rotates to perform.

TABLE 2-9. Comparison Instructions

Syntax Instruction Operation Addressing Mode

CMP rs, n register - n Limited Register
BIT rs, n register & n Limited Register

Note: & = logical AND operation

TABLE 2-10. Unconditional Jump Instructions

Syntax Instruction Operation Operand Range Addressing Mode

JMP n PC + n (sign extended) ~ PC -128, + 127 Immediate
JMP Rs PC + Rs (sign extended) ~ PC -128, + 127 Register
LJMP nn nn~PC O,64k Absolute

LJMP [lr] Ir~PC O,64k Indexed

Note: PC = Program Counter; contents initially points to instruction following jump.

1-66

2.0 CPU Description (Continued)

mind that the Jcc instruction is just an optional syntax for
the conditional JMP instruction.

The example in Figure 2-5 demonstrates two possible ways
to code the conditional relative jump instruction when test­
ing for a false [Z] flag in (CCR}. In the example, assume
that the symbol "z" equals "000" binary, that the symbol
"NS" equals "0" binary, and that the symbol "SKIP. IT"
points to the desired instruction with which to begin execu­
tion if [Z] is false.

On the other hand, the conditional absolute jump instruc­
tion, LJMP, can test any bit in any currently active CPU reg­
ister. Table 2-14 shows the conditional long jump instruction
syntax.

Syntax

JMP f,s,n

Jcc n

JMP Z,NS,SKIP.IT ;If [Z]=O gota SKIP.IT

-or-
JNZ SKIP.IT ;If [Z]=O gota SKIP. IT

FIGURE 2-5. Coding Examples of Equivalent
Conditional Jump Instructions

TABLE 2-11. Conditional Relative Jump Instruction

Instruction Operation

If the flag "f" is in the state "s"
then PC + n (sign extended) ~ PC

If the condition "cc" is met
then PC + n (sign extended) ~ PC

Operand Range Addressing Mode

-128, + 127 Immediate

-128, + 127 Immediate

Note: PC = Program Counter; contents initially points to instruction following jump.

Syntax

LJMP Rs,p,s,nn

Note: PC = Program Counter

"f"(Binary) Flag

000 Z
001 C
010 V
011 N
100 RA
101 RE
110 DAV
111 TFF

TABLE 2-12. "f" Flags

Flag Name

Zero
Carry
Overflow
Negative
Receiver Active
Receiver Error
Data Available
Transmitter FIFO Full

Register
Containing Flag

(CCR)
(CCR)
(CCR)
(CCR)
(TSR)
(TSR)
(TSR)
(TSR)

TABLE 2-13. "cc" Conditions Tested

"cc" Field Condition Tested for Flag "f"'s Condition

Z Zero [Z] = 1
NZ Not Zero [Z] =0
EO Equal [Z] = 1
NEO Not Equal [Z] =0
C Carry [C) = 1
NC No Carry [C) =0
V Overflow [V] = 1
NV No Overflow [V] =0
N Negative [N] = 1
P Positive [N] =0
RA Receiver Active [RA] = 1
NRA Not Receiver Active [RA] =0
RE Receiver Error [RE] = 1
NRE No Receiver Error [RE] =0
DA Data Available [DAV] = 1
NDA No Data Available [DAV] =0
TFF Transmitter FIFO FULL [TFF] = 1
NTFF Transmitter FIFO Not Full [TFF] =0

TABLE 2-14. Conditional Absolute Jump Instruction

Instruction Operation

If the bit of register "Rs" in
position "p" is in the state "s"

then nn ~ PC

1-67

Operand Range

0,64k

Addressing Mode

Register, Absolute

..
I

2.0 CPU Description (Continued)

The BCP also has a specialized relative jump instruction
called relative Jump with Rotate and Mask on source regis­
ter; JRMK. This instruction facilitates' the decoding of regis­
ter fields often involved in communications processing.
JRMK does this by rotating and masking a copy of its regis­
ter op-erand to form a signed program counter displacement
which usually points into a jump table. Table 2-15 shows the
syntax a'nd 'operationof the JRMK instruction.

JRMK's masking, (setting to zero), the least significant bit of
the displacement allows the construction· of a jump table
using either one or two word instructions; for instance, a
table of JMP and/or LJMP instructions, respectively. The
example in Figure 2-6 demonstrates the JRMK instruction
decoding the address frame of the 3299 Terminal Multiplex-

er protocol which is located in the Receive/Transmit Regis­
ter, I RTR[4-2) J.
The BCP has two unconditional call instructions; CALL,
which supports relative instruction addressing and LCALL,
(Long CALL), which supports absolute instruction address­
ing. These instructions push the following information onto
the CPU's internal Address Stack: the address of the next
instruction; the status of the Global Interrupt Enable flag,
[GIE); the status of the ALU flags [Z], [C], [N), and [V); and
the status of which register banks are currently active. Table
2-16 lists the two unconditional call instructions. Note that
the Address Stack is only twelve positions deep; therefore,
the BCP allows twelve levels of nested subroutine invoca­
tions, (this includes both interrupts and calls).

TABLE 2-15. JRMK Instruction

Syntax

JRMK RS,b,m

Instruction Operation

(a) Rotate a copy of register "Rs" "b" bits to the right.
(b) Mask the most significant "m" bits and the least

significant bit of the above result.
(c) PC + resulting displacement (sign extended) ~ PC.

Note: PC = Program Counter; contents initially points to instruction following jump.

Example Code

JRMK RTR.l.4 ;decode terminal address
LJMP ADDR.O ;jump to device handler #0
LJMP ADDR.l ;jump to device handler #1

LJMP ADDR.7 ;jump to device handler #7

Displacement
Range

-128, + 126

Addressing Mode

Register

Instruction Execution JRMK Displacement Register Contents
(a) Copy I RTR 1 into JRMK's displacement register:
(b) Rotate displacement register 1 bit to the right:
(c) AND result with "00001110" binary mask:

x
y
o

x x A2 A1 AO Y y
y
o

x x x A2 A1 AO
o 0 0 A2 A1 AO

(d) Sign extend resulting displacement and add
it to the program counter, (PC).
If the bits A2 A 1 AO equal "0 0 1" binary then
+ 2 is added to the Program Counter;
(Le., PC + 2 ~ PC).

(e) Execute the instruction pointed to by the PC,
which in this example is:

LJMP ADDR.1

o o

FIGURE 2-6. JRMK Instruction Example

o

TABLE 2-16. Unconditional Call Instructions

Syntax Instruction Operation

o o

Operand
Range

o

CALL n PC & [GIE) & ALU flags & reg. bank selection ~ Address Stack -128, + 127
PC + n (sign extended) ~ PC

LCALL nn PC & [GIE) & ALU flags & reg. bank selection ~ Address Stack O,64k
nn ~ PC

t~otc: PC = Program Counter; contents initially pOints to instruction following call.
[GIE] = Global Interrupt Enable bit
& = concatenation operator, combines operands together forming one long operand.

1-68

o

Addressing Mode

Immediate

Absolute

2.0 CPU Description (Continued)

The BCP has one conditional call instruction capable of
testing any bit in any currently active CPU register. This call
only supports absolute instruction addressing. Table 2-17
shows the conditional call instruction syntax and operation.

flags, and the register bank selection. Table 2-18 shows the
syntax and operation of the unconditional return instruction.

The return instruction complements the above call instruc­
tions. Two versions of the return instruction exist, the un­
condtional return and the conditional return. When the un­
conditional return instruction is executed, it pops the last
address on the CPU's Address Stack into the program
counter and it can optionally affect the [GIE] bit, the ALU

The conditional return instruction functions the same as the
unconditional return instruction if a desired condition is met.
As with the conditional jump instruction, the conditional re­
turn instruction has two possible syntaxes. Table 2-19 lists
the syntax for the conditional return. The "f" flags and the
"cc" conditions for the return instruction are the same as
for the conditional jump instruction, therefore refer to Table
2-12 and Table 2-13 for the listing of "f" and "cc", respec­
tively.

Syntax

LCALL Rs,p,s,nn

TABLE 2·17. Conditional Call Instruction

Instruction Operation

If the bit of register "Rs" in position
"p" is in the state "s" then

PC & [GIE] & ALU flags &
reg. bank selection ~ Address Stack
nn ~ PC

End if

Operand Range

0,64k

Note: PC = Program Counter; contents initially points to instruction following call.
[GIE] = Global Interrupt Enable bit
& = concatenation operator, combines operands together forming one long operand.

Syntax

RET [g L rfll

Note: PC = Program Counter

TABLE 2·18. Unconditional Return Instruction

Instruction Operation

Case "g" of
0: leave [GIE] unaffected, (default)
1: restore [GIE] from Address Stack
2: set [GIE]
3: clear [GIE]

End case
If "rf" = 1 then

restore ALU flags from Address Stack
restore register bank selection from Address Stack

Else (the default)
leave the ALU flags and register bank selections unchanged

End if
Address Stack ~ PC

[GIE] = Global Interrupt Enable bit
II = surrounds optional operands that are not part of the instruction syntax.
Optional operands may either be specified or omitted.

TABLE 2·19. Conditional Return Instruction

Syntax Instruction Operand

Addressing Mode

Register, Absolute

RETF f, s L [gl, L rfll
Rcc [gLrfll

If the flag "f" is in the state "s" then perform a RET [g L rfll
If the condition "cc" is met then perform a RET [g [,rfll

Note: See Table XVIII for an explanation of "RET I g I, rill"
II = surrounds optional operands that are not part of the instruction syntax.
Optional operands may either be specified or omitted.

1-69

III
I

2.0 CPU Description (Continued)

Miscellaneous Instructions In addition to the above jump, call and return program flow
instructions, the BCP is capable of generating software in­
terrupts via the TRAP instruction. This instruction generates
a call to anyone of 64 possible interrupt table addresses
based on its vector number operand. This allows both the
simulation of hardware interrupts and the construction of
special software interrupts, if desired. The actual interrupt
table entry address is determined by concatenating the In­
terrupt Base Register, I IBR I, to an 8-bit representation of
the vector number operand in the TRAP instruction. This
instruction may also clear the [GIE) bit, if desired. Table
2-20 shows the syntax and operation of the TRAP instruc­
tion.

As stated in the "CPU Register Set" section, the BCP has
44 registers with 24 of them arranged into four register
banks: Main Bank A, Alternate Bank A, Main Bank B, and
Alternate Bank B. The exchange instruction, EXX, selects
which register banks are currently available to the CPU, for
example either Main Bank A or Alternate Bank A. The dese­
lected register banks retain their current values. The EXX
instruction can also alter the state of [GIE), if desired. Table
2-21 shows the EXX instruction syntax and operation.

TABLE 2-20. TRAP Instruction

Syntax Instruction Operation Operand Range

TRAP v (, g'l PC & [GIE) & ALU flags &
reg. Bank Selection ~ Address Stack

If "g'" = 1 then clear [GIE)
Form PC address as shown below:

I i i i i i i i 10 i 0 I i i i i i
{IBR} v

15 7 5

Note: PC = Program Counter; contents initially points to instruction following call.
[GIE] = Global Interrupt Enable bit
IBR = Interrupt Base Register
& = concatenation operator, combines operands together forming one long operand.
I) = surrounds optional operands that are not part of the instruction syntax.
Optional operands may either be specified or omitted.

TABLE 2-21. EXX Instruction

Syntax Instruction Operation

EXX ba, bb I, gl Case "ba" of
0: activate Main Bank A
1 : activate Alternate Bank A

End case
Case "bb" of

0: activate Main Bank B
1 : activate Alternate Bank B

End case
Case "g" of

~PC
0

0: leave [GIE) unaffected, (default)
1 : (reserved)
2: set [GIE)
3: clear [GIE)

End case

Note: [GIE] = Global Interrupt Enable bit
I I = surrounds optional operands that are not part of the instruction syntax.
Optional operands may either be specified or omitted.

1-70

0,63

2.0 CPU Description (Continued)

2.2 CPU FUNCTIONAL DESCRIPTION

2.2.1 AlU

The BCP provides a full function high speed a-bit Arithmetic
Logic Unit (ALU) with full carry look ahead, signed arithme­
tic, and overflow decision capabilities. The ALU can perform
six arithmetic, nine logic, one rotate and two shift operations
on binary data. Full access is provided to all CPU registers
as both source and destination operands, and using the in­
direct addressing mode, results may be placed directly into
data memorY. All operations which have an internal destina­
tion (register addressing) are completed in two (2) T-states.
External destination operations (indirect addressing to data
memory) complete in three (3) T-states. '

Arithmetic operations include addition with or without carry,
and subtraction with or without borrow (represented by car­
ry). Subtractions are performed using 2's complement addi­
tion to accommodate signed operands .. The subtrahend is
converted to its 2's complement equivalent by the ALU and
then added to the minuend. The result is left in 2's comple­
ment form.

The remaining ALU operations include full logic, shift and
rotate operations. The logic functions include Complement,
AND, OR, Exclusive-OR, Compare and Bit Test. Zero
through seven bit right and left shift operations are provided,
along with a zero through seven bit right rotate operation.
Note that the shift and rotate operations may only be per­
formed on a register, which is both the source and destina­
tion. (See the Instruction Set Overview section for detailed
descriptions of these operations.)

The BCP ALU provides the programmer with four instruction
result status bits for conditional operations. These bits
(known as condition code flags) indicate the status (or con­
dition) of the destination byte produced by certain instruc­
tions. Not all instructions have an affect on every status flag.
(See the Instruction Set Reference section for the specific
details on what status flags a given instruction affects.)
These flags are held in the Condition Code Register,
{CCR), see Figure 2-7.

76543210

I TO I RR I RW I BIRO I N V 'e z

where:

N = Negative

C = Carry

V = Overflow

Z = Zero
FIGURE 2-7. Condition Code Register AlU Flags

If an instruction is documented as affecting a given flag,
then the flags are set (to 1) or cleared (to 0) under the
following conditions:

[N]- The Negative flag is set if the most significant bit
(MSB) of the result is one (1), otherwise it is cleared.
This flag represents the sign of the result if it is inter­
preted as a 2's complement number.

1-71

[C] - The Carry flag is set if:

a) An addition operation generates a carry, see Fig­
ure2-8a.

b) A subtract or compare operation generates a bor­
row, see Figure 2-8b.

c) The last bit shifted out during a shift operation (in
either direction) is a one (1), see Figure 2-9.

d) The last bit rotated by the rotate operation is a one
(1), see Figure 2-10.

In all other conditions [C] is cleared.

[V]-:- Overflow is set whenever the result of an arithmetic or
compare operation on signed operands is not repre­
sentable by the operand size, thereby producing an
incorrect result. For example, the addition of the two
signed negative numbers in Figure 2-8a would set [V]
since the correct representation of the result, both
sign and magnitude, is not possible in a bits. On the
other hand, in Figure 2-8b and 2-8c [V] would be
cleared because the results are correctly represented
in both sign and magnitude. It is important to remem­
ber that Overflow is only meaningful in signed arith­
metic and that it is the programmer's responsibility to
determine if a given operation involves signed or un­
signed values.

[Z]- The Zero flag is set only when an operation produces
an all bits cleared result (Le., a zero). In all. other con­
ditions [Z] is cleared.

11101010 10111010 11011100
+ 10001100 - 11000100 + 01100011

1- 01110110 1- 11110110 1- 00111111

[el = 1 [e] = 1 [e] = 1
[V] = 1 [V] = 0 [V] = 0

(a) (b) (c)

FIGURE 2.8. Carry and Overflow Calculations

&i I I I I I I r- o
Shift Left

0-1 I I I I I

~
Shift Right

TL/F/9336-D3

FIGURE 2·9. Shifts' Effect on Carry

Y III II i Il0
Rotate

TLlF/9336-D4

FIGURE 2·10. Rotate's Effect on Carry

II

2.0 CPU Description (Continued)

Several conditions apply to these flags, independent of their
operation and the way they are calculated. These conditions
are:

1. A flag's previous state is retained when an instruction has
no affect on that flag.

2. Direct reading and writing of all AlU flags is possible via
the (CCR I register.

3. Currrent flag values are saved onto the address stack
during interrupt and call operations, and can be restored
to their original values if a return instruction with the re­
store flags option is executed.

4. Flag status is calculated in parallel with the instruction
result, therefore no time penalty is associated with flag
operation.

When performing single byte arithmetic (Le., the values are
completely represented in one byte) the Add (ADD,ADDA)
and Subtract (SUB,SUBA) instructions should be used, but
when performing multi-byte arithmetic the Add with Carry
(ADCA) and Subtract with Carry (SBCA) instructions should
be used. This is because the carry (in an add operation) or
the borrow (in a subtract operation) must be carried forward
to the higher order bytes. Figure 2-11 demonstrates an in­
struction sequence for a 16-bit add and an instruction se­
quence for a 16-bit subtract.

Assume the 16-bit variable X is represented by the reg­
ister pair R4(MSB), R5(lSB), and that the 16-bit variable
Y is represented by the register pair R6(MSB), R7(lSB).

To perform the assignment Y = X + Y:

MOVE R7,A ;GET LSB OF Y
ADDA R5,R7 ;Y(LSB)=X(LSB)+Y(LSB)
MOVE R6,A ;GET MSB OF Y
ADCA R4,R6 ;Y(MSB)=X(MSB)+Y(MSB)

+ CARRY
To perform the assignment Y = X - Y:

MOVE R7,A ;GET LSB OF Y
SUBA R5,R7 ;Y(LSB)=X(LSB)-Y(LSB)
MOVE R6,A ;GET MSB OF Y
SBCA R4,R6 ;Y(MSB)=X(MSB)-Y(MSB)

-CARRY

FIGURE 2-11. Multi-Byte Arithmetic
Instruction Sequences

When using the AlU to perform comparisons, the program­
mer has two options. If the compare is to a constant value
then the CMP instruction can be used, else one of the sub­
tract instructions must be used. When determining the re­
sults of any compare, the programmer must keep in mind
whether they are comparing signed or unsigned values. Ta­
ble 2-22 lists the Boolean condition that must be met for
unsigned comparisons and Table 2-23 lists the Boolean
condition that must be met for signed comparisons.

1-72

TABLE 2-22

Unsigned Comparison Results

Comparison: x - y

x<y
x~y

x=y
x~y

x>y

Note: & = logical AND

I = logical OR

z = one's complement

Boolean Condition

C
clz
z
C

C&l

TABLE 2-23

Signed Comparison Results

Comparison: x - y

x<y
x~y

x=y
X~y

x>y

Note: & = logical AND

I = logical OR

z = one's complement

2.2.2 Timing

Boolean Condition

(N&V) I (N&V)
z I (N&V) I (N&V)

z
(N&V) I (N&Y)

(N&V&l) I (N&V&l)

Timing on the BCP is controlled by an internal oscillator and
circuitry that generates the internal timing signals. This cir­
cuitry in the CPU is referred to as Timing Control. The inter­
nal timing of the CPU is synchronized to an internal clock
called the CPU clock, CPU-ClK. A period of CPU-ClK is
referred to as a T-state. The clock for the BCP is provided
by a crystal connected between X1 and X2 or from a clock
source connected to X1. This clock will be referred to as the
oscillator clock, OClK. The frequency of OClK is divided in
half when the CPU clock select bit, [CCS] , in the Device
Control Register, (DCR I, is set to a one. Either OClK or
OClK/2 is used by Timing Control to generate CPU-ClK
and other synchronous signals used to control the CPU tim­
ing.

After the BCP is reset, [CCS] is high and CPU-ClK is gener­
ated from OClK/2. Since the output of the divider that cre­
ates OClK/2 can be high or low after reset, CPU-ClK can
also be in a high or low state. Therefore, the exact number
of clock cycles to the start of the first instruction cannot be
determined. Automatic test equipment can synchronize to
the BCP by asserting RESET as shown in Figure 2-12. The
falling edge of RESET generates a clear signal which caus­
es CPU-ClK to fall. The next rising edge of X1 removes the
clear signal from CPU-ClK. The second rising edge of X1
will cause CPU-ClK to rise and the relationship between X1
and CPU-ClK can be determined from this point.

Writing a zero to [CCS] causes CPU-ClK to switch from
OClK/2 to OClK. The transition from OClK to OClK/2
occurs following the end of the instruction that writes to

2.0 CPU Description (Continued)

[CCS) as shown in Figure 2-13. The switch occurs on the
falling edge of X1 when CPU-ClK is low. CPU-ClK can be
changed back to OClK/2 by writing a one to [CCS). The
point at which CPU-ClK changes depends on whether
there has been an odd or even number of T-states since
[CCS) was set low. The change would require a maximum
of two T-states and a minimum of one T-state following the
end of the instruction that writes to [CCS].

The CPU is a RISC processor with a limited number of in­
structions which execute in a short period of time. The maxi­
mum instruction cycle time is four T-states and the minimum
is two T-states. Six types of instruction timing are used in

X1

CPU-ClK

the CPU: two T-state, three T-state program control, three
T-state data memory access, four T-state read data memory
access, four T-state program control, and four T-state two
word program control .. The first T-state of each instruction
is T1 and the last T-state is T2. Intermediate T-states re­
quired to complete the instruction are referred to as TX.

The instruction clock output, IClK, defines the instruction
boundaries. IClK rises at the beginning of each instruction
and falls one-half T -state after the next address is generat­
ed on the instruction address bus, IA. Thus, IClK indicates
the start of each instruction and when the next instruction
address is valid.

TLlF/9336-D5

FIGURE 2-12. CPU-ClK Synchronization with X1 '

:�:=======--Tl--------w-rR-e-to~(OC-R-17-])----T2------~:1
XI

CPU-ClK

Ices]

Tl/F/9336-D6

FIGURE 2-13. Changing from OClK/2 to OClK

1-73

III
I

m r--,
~
~
Cf)
co
a.
Q

2.0 CPU Description (Continued)

Figure 2-14 shows the relationship between CPU-ClK,
IClK, and IA for a two T-state instruction. The rising edge of
CPU-ClK generates IClK at the start of T1. The next falling
edge of CPU-ClK increments the instruction address which
appears on IA. IClK falls one-half T-state later. The instruc­
tion completes during T2 which ends with IClK rising, signi­
fying the beginning of the next instruction.

The three T-state program control instruction is similar and
is shown in Figure 2-15. An additional T-state, TX, is added
between T1 and T2. IClK rises at the beginning of T1 as
before but falls at the end 6f TX. The next instruction ad­
dress is generated one-half T-state before the end of TX
and the instruction ends with T2.

The three T-state data memory access instruction timing is
shown in Figure 2-16. Again, TX is inserted between T1 and
T2. IClK rises at the beginning of the instruction and falls at
the end of T1. The next instruction address appears on IA
one-half clock cycle before IClK falls. The address latch
enable output, ALE, rises halfway through T1 and falls half-

way through TX. The BCP has a 16-bit data memory ad­
dress bus and an a-bit data bus. The data bus is multiplexed
with the lower a bits of the address bus and ALE is used to
latch the lower a bits of the address during a data memory
access. The upper a bits of the address become valid one­
half T-state after the beginning of T1 and go invalid one-half
T-state after the end of T2. The lower a bits of the address
become valid on the address-data bus, AD, when ALE rises
and goes invalid one-half T -state after ALE falls. Figure 2-16
shows a write to data memory in· which case AD switches
from address to data at the beginning of T2. The data is
held valid until one-half T-state after the end of T2. The
write strobe, WRITE, falls at the beginning of T2 and rises at
the end of T2. A read of data memory is shown in Figure
2-17. The read timing is the same as a write except one-half
T-state after ALE falls AD goes into a high impedance state
allowing data to enter the BCP from data memory. AD re­
turns to an active state at the end of T2. The read strobe,
READ, timing is identical to WRITE.

~ T1 -.j.oo,I·- 12 --1

CPU-CLK

ICLK

IA PC PC+ 1

TLIF/9336-D7

FIGURE 2-14. Two T-state Instruction

CPU-CLK

ICLK

IA
TLIF/9336-DB

FIGURE 2-15. Three T-state Program Control Instruction

1-74

2.0 CPU Description (Continued)

f.-- Tl ~I 114-1 - TX -.II 114-1 - T2 --I
.--.....,

CPU-ClK

IClK

IA PC PC+ 1

ALE

AD Address

A

TlIF/9336-D9

FIGURE 2-16. Three T-state Data Memory Write Instruction

f.-- Tl -'~I''''-- TX -~I 1-- T2 --I
.--....

CPU-ClK

IClK

IA· PC PC+ 1

ALE

AD Address

A

READ

TL/F/9336-El

FIGURE2-17.,..hree T-state Da~aMernoryRead Instructl()n [4TR] ,==0

I

II
I

1-75

2.() GPlJ [)e~Cripti()n ... (Continu~d)
V'hen the Four T·state Readmode isselected ([4TR] ':'1);
a second TX state is inserted before T2and the timing of
the read strobe, READ,is changed such that READ falls
one-half T·state after the beginning 'of the secondTX. Fig~
ure 2·18 shows a FourT-state Read of data memory. Th~
extra half T-state before READ falls allciws more time tor the
BC? to TRI-STATE the AD Hnes before the memory circuit
begins driving those lines.

The four T-state program control instruction timing is-shown'
in Figure 2-19. The instruction has two TX states inserted
between T1 and T2. IClK rises at the beginning of T1 and
falls at the end of the second TX. The next instruction ad­
dress becomes valid halfway through the second TX. The
four T-state two word program control instruction timing is
the same as two consecutive two T-state instructions and is
shown in Figure 2-20.

This timing describes the minimum cycle time required by
each type of instruction.:T"he BCP can be slowed down' by

changing the number of wait states selected in the Device
Control Register, I DCR I. The BCP can be programmed for
up to three instruction memory wait states (instruction wait
states) and seven data memory wait states (data wait
states). Instruction wait states affect all instruction types
while data wait states affect only data memory access in­
structions. Bits three and four in I DCR I control the number
of instruction wait states and bits. zero, one and two are
used to select the number of data wait states. The relation­
ships between the control bits and the number of wait states
selected are shown in Table 2-24 and Table 2-25. The BCP
is . configured with . ,three instruction ,.wai.! states, and . seven
data walt states,and. [4TR] seUo zero after reset. A write
to I DCR[4,311 to change the number of instruction wait
states takes effect on the following instruction if that instruc­
tion is a three T-state or four T-state program control in­
struction. For the other instruction types, the new number of
instruction wait states will take effect on the instruction fol-

.,. . . Tx--·*' · --Tx

CPU-ClK

IClK

IA ----+-'

AD

A

. READ
TL/F/9336-H5

1·76

2.0 CPU Description (Continued)

CPU-CLK

ICLK

IA

FIGURE 2-19. Four T-state Program Control Instruction

~ T1 -~./.- T2 -~,/,- T1 - / •-- T2 --I
CPU-CLK

ICLK

IA

FIGURE 2-20. Four T-state Two Word Instruction

TABLE 2-24. Data Memory
Walt States

TABLE 2-25. Instruction Memory
Walt States

TLlF/9336-E2

TLlF/9336-E3

(DCR[2-0]! Data Walt States (DCR[4,3]! Instruction Walt States

000 0 00 0
001 1 01 1
010 2 10 2
011 3 11 3
100 4
101 5
110 6
111 7

1-77

I • I

2.0 CPU Description (Continued)

lowing the instruction after the write to IOCR I. A write to
IDCR[2-011 to change the l1umber of datawait states will
take effect on the next data memory access instruction
even if it immediately follows the. write to {DCRj.
A write to {OCR [2-:;0] I. to phange th~ number of data wait
states or to (ACR [4TR] 1 will take effect on the next data
memory. access instruction even If it·· immediately follows
write to .. {OCR} or' {ACRL Both instruction and data
wait states cause the insertion of additional T-states prior to
T2 and these T-states are. refer~ed to as TW. The purpose
of instruction wait states is to increase the time fro'm instruc­
tion address generation. to the beginning of the ~ext instruc­
tioncycle., Data wait states increase the time from data
memory address generation to the removal.of the strobe at
the end of data memory access instructions. Therefore, in­
struction and data wait states are counted concurrently in a
data memory access instruction and TX of a data memory
access instruction iii cOlirited as one instruction wait state.
The actual number. of wait states added to a data memory
access is calc~lated a~the maximum ,between the

number of data wait states and one less than the number of
instruction wait states. Figure 2-21 shows a write of data
memory with one wait state. This could be accomplished by

, selecting two instruction wait states or one data wait state.
The effect of the wait state is to increase the time the write
strobe is active and the data is valid on AD. The same situa­
tionJorareadoLdata memory is shown in Figure
2-22. Note that if [4TR] Iss'et to one then one data wait
state has no additional affect ana read of data memory and
the timing is the same as shown in Figure 2-18. The affect of
tWo data me'mory wait states and [4TR] set to one is shown
in Figure 2-23 .. A two T-state Instruction with two instruction
wait states is shown in Figure 2-24 and a four T-state in­
struction with, one instruction wait state is shown in Figure
2-25. As stated earlier, instruction wait states are inserted
before T2. Adding wait states to a four T-state two word
instruction causes the wait states to count twice when cal­
culating total instruction cycle time. The wait states are add­
ed to each of the two words of the instruction.

TLIF/9336-E4

FIGURE 2-21. Data Memory Write with One Wait State

2.0 CPU Description (Continued)

I- Tl -I ~ TX -*.11
1--- TW --*1 ~I--- T2-1

~--~ ~--~

CPU-ClK

IClK

IA

ALE

AD

A

WRITE

TL/F/9336-ES

FIGURE 2-22. Data Memory Read with One Walt State and [4TR} = 0

TLIF/9336-H6

FIGURE 2-23. Data Memory Read with Two Wait States and [4TR] = 1
I • I

1-79

2.0 CPU Description (Continued)

f----- T1 ' I· rw -"*,' 1·- rw -"*',1,- T2 ---l
~--~ ~----

CPU-ClK

IClK

IA PC PC+ 1

TLlF/9336-E6

FIGURE 2-24. Two T-state Instruction with Two Walt States

f----- Tl -"*',1,- TX -"*,' 1,- TX -~, 1·- rw -"*,' 1·- T2 ---l
~---

CPU-ClK

IClK

IA PC PC+ 1 + n

TLlF/9336-E7

FIGURE 2-25. FourT-state Instruction with One Walt State

1·80

2.0 CPU Description (Continued)

The WAIT pin can also be used to add wait states to BCP
instruction execution. The CPU will be waited as long as
WAIT is low. To wait a given instruction, WAIT must be as­
serted low one-half T-state prior to the beginning of T2 in
the instruction to be affected. Figure 2-26 shows WAIT as­
serted during a write to data memory. In order to wait this
instruction, WAIT must fall prior to the falling edge of CPU­
ClK in TX. One wait state is added to the access and WAIT
rises prior to the falling edge of CPU-ClK in TW which ai-

lows the access to finish. If WAIT had remained low, the
access would have been held off indefinitely. Programmed
wait states would delay when WAIT must be asserted since
they would delay the beginning of T2. Figures 2-27 through
Figure 2-29 depict the use of WAIT with three other instruc­
tion types. In all three cases, WAIT is asserted one-half
T-state prior to when T2.would normally begin. Also, it is
evident that the effect of WAIT on instruction timing is iden­
tical to adding programmed wait states.

I-- T1 -~. /.- TX -~. /.- TW -~. /.- T2-1

CPU-ClK

(ClK

IA PC PC+ t

ALE

AD Address Data

A Address

Tl/F/9336-EB

FIGURE 2-26. Data Memory Access WAIT Timing

I-- T1 --.I. /1+-, - TW -' /1+-, - T2.-1

CPU-ClK

(ClK

(A

TLIF/9336-E9

FIGURE 2-27. Two T-state Instruction WAIT Timing

1-81

III
I

2.0 CPU Description (Continued)

CPU-ClK

IClK

IA

TL/F/9336-Fl

FIGURE 2-28. Three T-state Program Control Instruction WAIT Timing

--~-- TX --"*,f--- TX --.,J.o-- TW --... ·11-0·-- T2 ---l

CPU-ClK

IClK

IA

TL/F/9336-F2

FIGURE 2-29. Four T -state Program Control Instruction WAIT Timing

IT5CK is another input which affects BCP instruction timing.
IT5CK prevents the BCP from accessing data memory.
When asserted low, ~ will cause the BCP to wait when
it executes a data memory access instruction. The BCP will
be waited until IT5CK is taken high. To prevent a given ac­
cess of data memory, LOa< must be asserted low one-half
T-state prior to the beginning of the instruction accessing
data memory. Figure 2-30 shows '['QCi(being used to wait a
write to data memory. IDCK falls prior to the falling edge of
CPU-ClK before T1. In order to guarantee at least one wait
state, IT5CK is held low until after the falling edge of CPU­
ClK in T1. This causes the insertion of TW into the cycle
prior to TX. ALE remains high and the address is delayed on
AD until IDCK is removed. After '[()'Ci(rises the access
concludes normally with ALE falling halfway through TX and
WRITE occurring during T2. Note that lOCK waits the ac­
cess at a different point in the cycle than programmed wait

1-82

states or WAIT. Additional wait states could occur from
these sources prior to T2. Figure 2-31 shows an example of
lOCK holding off a write to data memory with one pro­
grammed wait state.

With timing similar to lOCK, the BCP will be delayed from
making a data memory access by an access from the re­
mote system. If the remote system is accessing the Remote
Interface Configuration register, (RICI. or data memory, the
BCP will be waited by the Remote Interface and Arbitration
System, RIAS, until the remote access is finished. The
length of time the BCP is waited depends on the speed of
the remote system and the type of remote access. The wait
states are added prior to TX in the same manner as for
lOCK shown in Figure 2-30. A more detailed description of
the operation of RIAS can be found in Section 4.0, Remote
Interface and Arbitration System.

2.0 CPU Description (Continued)

CPU-ClK

lOCK

IClK

IA PC PC+ 1

ALE

AD Address

A Address

WRITE

FIGURE 2-30. LOCK Timing

I--- T2 ---+--- 11 ---.-\4--- TW --0\+--- TX ---.0\+--- TW ---';1+-- 12 ---l
CPU-ClK

lOCK

IClK

IA PC PC+ 1

ALE

AD Address Data

A

WRITE

FIGURE 2-31. LOCK Timing with One Walt State

1-83

TLlF/9336-F3

TLlF/9336-F4

III
I

m r---~
~
~
Cf')
co
D.
C

2.0 CPU Description (Cqntinued)

The CPU will be stopped after RESET is asserted low. The
CPU can be externally controlled by changing the state of
the start bit, [STRT], in (RIC). TheCPU starts executing
instructions from the current address in the program control
register when a one is written to [STRT] and stops when
[STRT] is cleared. The CPU will complete the current in­
struction before stopping. Controlling the CPU from (RIC)
requires a processor to access (RIC). If no external proces­
sor is present, the CPU can be made to start automatically
after reset by holding REM-WR and REM-RD low and RAE
high while RESET is transitioning from low to high. The CPU
"kick-starts" and will begin executing instructions, from ad­
dress zero. The timing for kick-starting the CPU is shown in
Figure 2-32. IClK rises on the rising edge of CPU-ClK one
T-state after RESET is de-asserted. The falling edge of
IClK signifies the beginning of the first instruction fetch.
Three instruction' wait states and T2 precede the first in­
struction.

A functional state diagram describing the timing of the CPU
is shown in Figure 2~33. The fun9tional state diagram is sim­
ilar to a flowchart, except that transitions to a new state
(states are denoted as rectangular boxes) can only occur on
the rising edge of the CPU-ClK. A state box can specify
several actions, and each action is separated by a horizon­
tal line. A signal name listed in a state box indicates that that
pin will be asserted high when Timing Control has entered
that state. When the signal is omitted from a box, it is as­
serted low. (Note: this requires using the inversion of a sig­
nal in some cases.) Decision blocks are shown as diamonds
and their meaning is the same as in a flow chart. The func­
tional state diagram is a generalized approach to determin­
ing instruction flow while allowing for any combination of
wait ,states and control signals. Timing Control always starts
from a reset in the state IDLE. After RESET goes high, Tim­
ing Control remains in IDLE until [STRT] is written high. If
the BCP kick-starts, Timing Control enters TST on the next
rising edge of CP,U-ClK. Timing Control starts with a dummy

instruction cycle in order to fetch the first instruction. IClK
goes high in T1 and the instruction wait state counter is
loaded. IClK falls when either T2 or TW is entered as deter­
mined by the value of ilw and WAIT. The normal instruction
flow begins afte(T2 at B on the diagram. As an example,
consider a three T-state data memory write instruction with

, one data wait state. The instruction cycle path for this in­
struction would begin at T1 following the decision block for
data memory access. In T1, IClK is asserted high, the in­
struction wait state counter is loaded, and a bus request to
RIAS is generated. Also, ALE is asserted high on the falling
edge of CPU-ClK during T1. A branch decision is now made
based on the state of'[()C'K and the response from RIAS to
the bus request. Assuming that '[()C'K is not asserted and a
remote access is not in progress, Timing Control enters TX
on the next rising edge of CPU-ClK. In TX, the data wait
state counter is loaded and the instruction wait state coun­
ter is decremented. In this example, the instruction wait
state counter is at zero and is not counting. The data wait
state counter is loaded with one. ALE goes low on the fail­
ing edge of CPU-ClK during TX. The next decision block
checks for a read of data memory. This example is a write to
data memory so the decision is no and the branch is to the
right. The wait state conditions are evaluated in the follow­
ing decision block. iow is one and Timing Control enters TW
on the next rising edge of CPU-ClK. WRITE is asserted low
when TW is entered and the data wait state counter is dec­
remented to zero. The decision on iow, ilW, and WAIT is
now true and T2 is entered on the next rising edge of CPU­
ClK. WRITE remains low. The CPU will stop execution if
[STRT] is low at B in the diagram. Otherwise, the next in­
struction will be executed beginning at A~ To summarize,
this instruction went through the following states: T1, TX,
TW, and T2. The complete instruction cycle is shown in Fig­
ure 2-21. Any instruction cycle can be analyzed in a similar
manner using this functional state diagram.

!== ' nrst Inst~ctlon fetch +Innlng of first Instruction

TI~TW~TW~TW~T2 n-j
XI

TL/F/9336-FS

FIGURE 2-32. CPU Start-Up Timing

1-84

ex,
01

I V' v. In

FIGURE 2-33. Functional State Diagram of CPU Timing

II

N
(:)

o
" c
c
CD
tn
(")
::::!.

"C -o·
::::J
()
o
~ s·
I::
m

..9:

TUF/9336-F6

8PPE8dC

m r---~
~
~
C")
co
D­
C

2.0 CPU Description (Continued)

2.2.3 Interrupts

The DP8344B has two external and four internal interrupt
sources. The external interrupt sources are the Non-Maska­
ble Interrupt pin, NMI, and the Bi-directional Interrupt Re­
quest pin, BIRO.

External

A non-maskable interrupt is detected by the CPU when a
falling edge is detected at the NMI pin. The interrupt is auto­
matically cleared internally when the CPU recognizes the
interrupt.

BIRO can function as both an interrupt into the DP8344B
and as an output which can be used to interrupt other devic­
es. BIRO is configured as an input or output according to
the state of [BIC] in the Auxiliary Control Register, {ACR}.
BIRO is an input if [BIC] is a zero and an output when [BIC]
is a one. The reset state of [BIC] is a zero, causing BIRO to
be an input after the BCP is reset. [BIRO] in the Condition
Code Register, {CCR}, is a read only bit which mirrors the
state of BIRO regardless of whether BIRO is configured as
an input or output. This bit is updated at the beginning of T1
of each instruction.

When BIRO is configured as an input, an interrupt will occur
if the pin is held low. BIRO must be held low until the inter­
rupt is recognized or the interrupt will not be processed. Due
to the prioritizing of interrupts as described below, BIRO
may not be recognized by the CPU until higher priority inter­
rupts have been serviced. BIRO will be recognized after
higher priority interrupts have been processed. The low
state on BIRO should be removed after the CPU recognizes
the interrupt or the interrupt will be processed multiple
times.

When BIRO is configured as an output, its state is controlled
by [1M3] in the Interrupt Control Register, {ICR}. Changing
the state of this bit will change BIRO at the beginning of T1
of the instruction following the write to [1M3). Note that
[BIRO] in {CCR} is also updated at the beginning of T1.
Therefore, there is a one instruction cycle delay from when
[1M3] changes to when the new value of BIRO is made
available in [BIRO). [BIS] in the Remote Interface Configu­
ration register, {RICI. mirrors the state of [1M3]. When
BIRO is an output, writing a one to [BIS] will change the
state of [IME] thus changing BIRO and allowing a remote
processor to acknowledge an interrupt from the SCPo Note,
If the SCP code operates on [1M3] at the same time that the
remote processor acknowledges the interrupt by writing a
one to [BIS], 'BTRQ will toggle and then assume the state of
{1M3] resulting from the BCP code operation. Therefore, if
the designer chooses to operate on [1M31 while waiting for
the remote processor to acknowledge a BIRQ interrupt, the
designer should ensure that the remote processor is locked
out from accessing [BIS] during the operation' on [1M3].
This can be accomplished by setting [LOR] in {ACR1,·hav~
Ing the SCP perform a data memory access to ensure that
any current remote accesses are complete, operating an
[IM31, and finally clearing [LOR]. BIRO will change state
two T-states after the end of the write to [BIS]. Writing a

. one to [BIS] will have no effect on [1M3] when BIRQ is an
input. Table 2-26 summarizes the relationship between
BIRO and its associated register bits.

TASLE2-26. BIRQControl Summary

(a) BIRQ Is an Input ([BIC] = 0): Remote Processor Controls the State of BIRQ

[1M3] [BIS] BIRQ [BIRQ]

0 [1M3] = 0 Active Interrupt to the BCP: state of Reflects the state of BIRQ
BIRO controlled by the Remote
Processor

1 [1M3] = 1 Masked Interrupt to the BCP: state of Reflects the state of BIRO
BIRO controlled by the Remote
Processor

(b) BIRQ Is an Output ([BIC] = 1): BCP Controls the State of BIRQ

[1M3] [BIS] BIRQ [BIRQ]

0 [1M3] = 0 State of [1M3] = 0 Reflects the state of BIRO = 0

1 [1M3] = 1 State of [1M3] = 1 Reflects the state of BIRO = 1

(c) BIRQ Is an Output ([BIC] = 1): Remote Processor Acknowledges BIRQ

[BIS] [1M3] [BIS] BIRQ [BIRQ]

Remote Processor writes a 1 to [BIS] Toggles [1M3] State of [1M3] Reflects the
state of BIRO

·1-86

2.0 CPU Description (Continued)

Internal

The internal interrupts consist of the Transmitter FIFO Emp­
ty, TFE, interrupt, the Line Turn Around, L TA; interrupt, the
Time Out, TO, interrupt, and a user selectable receiver inter­
rupt source. The receiver interrupt source is selected from
either the Receiver FIFO, Full, RFF, interrupt, the Data
Available, DA, interrupt, or the Receiver Active, RA, inter­
rupt. The receiver interrupt is selected using bits [RIS1] and
[RISO] in the Interrupt Control Register, (ICR}. See the
Section 3.0, Transceiver for a description of these inter­
rupts.

Masking

The BCP uses two levels of interrupt masking: a global inter­
rupt mask which affects all. interrupts except NMland indi­
vidual interrupt mask bits. Global enabling and disabling of
the interrupts is performed. by. changing the state of the
Global Interrupt Enable bit, [GIE], in (ACRJ. The maskable
interrupts are. disabled when [GIE] is a zero and enabled
when [GIE] is a one. [GIE] is a zero after the BCP is reset.
[GIE] is a read/write register bit and may be changed by
using any instruction that can write to (ACR}. In addition,
the RET, RETF, and EXX instructions have Option fields
which can be used to alter the state of [GIE]. The EXX
instruction can set or clear [GIE] as well as leaving it un­
changed. The RET and RETF instructions can restore [GIE]
to the value that was saved on ,the address stack at the time
the interrupt was recognized. These instructions also pro-

vide the options of clearing or setting [GIE] or leaving it
unchanged. [GIE] is set to a zero when anI interrupt is rec­
ognized'by the CPU. It is necessary to set [GIE] tei a one if
interrupts are to be recognized within an interrupt routine. '

The Individual interrupt mask bits" are lci~'ated in (Ic'R J'.
When set to a one, bits [IMO], [IM1],' [1M2], [1M3], and [IM4)
in (lCR} mask the receiver interrupt, TFE interrupt, L TA in­
terrupt, BIRO interrupt, and TO interrupt,: respectively. To
enable an interrupt, its mask bit must be set to a zero. The
interrupts and associated mask bits are; shown' . in
Table 2-27. These bits are set to a one when the' DP8344 is
: reset.

Masking interrupts with [GIE] or the mask bits'in. (ICR} pre~
vents the CPU from acknowledging interrupts but does not
prevent the interrupts from occurring. Therefore, if an inter~
rupt is asserted,it will beprocessep as, soon. as it is un­
masked by changing [GIE] to a one and/or changing the
appropriate mask bit in (ICR} ~o a zero.

,Prlorites
. I

When more than one interrupt is'unmasked'i,md asserted,
the CPU processes the interrupt with the highest priority
first NMlhas'the highest priority followed by the receiver
interrupt, TFE, L T A; BIRO, and TO: Each time the interrup'ts
are sampled, the highest priority interruptis processed first,
regardless of how'long a-Iower' priority interrupt has been
active. Interrupt priority is'summarized in Table 2-27: .

", .:. ~ '. :. • " , ' 1 i : r!' '. ,

TABLE2-27. (ICR} Interrupt Mask Bits
and Interrupt Priority ,

" ,

Interrupt Mask Bit Priority

NMI - tlighe~t:
RFF, DA,RA [IMO]

"
,. ,.

TFE [IM1]
LTA [1M2]
BIRO [1M3]
TO [IM4] Lowest

1-87

--I

2.0 CPU Description (Continued)

A call to the Interrupt address Is generated when an inter­
rupt Is detected by the CPU. The address for each interrupt
Is constructed by concatenating the Interrupt Base Register,
IIBR), contents with the individual interrupt code as shown
In Table 2-28. There Is room between the Interrupt address­
es for a maximum of four Instruction words.

TABLE 2-28. Interrupt Vector Generation

Interrupt Code

mlI 111
RFF, DA, RA 001
TFE 010
LTA 011

mR"O 100
TO 101

Interrupt Vector

IISRI Contents I 0 0 0 I Code I 0 0 I
15 8 5 2 o

Interrupts are sampled by each falling edge of the CPU
clock with the last failing edge prior to the start of the next
Instruction determining whether an Interrupt will be process­
ed. The timing of a typical interrupt event is shown in Figure
2-34. The Interrupt occurs during the current instruction and
Is sampled by the falling edge of the CPU clock. The next
Instruction is not operated on and its address Is stored in the
Internal address stack along with [GIE], the ALU flags, and
the register bank positions. The address stack is twelve
words deep. A two T-state internal call Is now executed in
place of the non-executed Instruction. This call will cause a
branch to the Interrupt address that is generated in the first
half of T-state n. Also, [GIE] Is cleared at the end of the
first half of T-state T1. The internal call to the interrupt ad­
dress Is subject to instruction wait states as configured in
IOCR).

2.2.4 Oscillator

The crystal oscillator is an on-chip amplifier which may be
used with an external crystal to generate accurate CPU and
transceiver clocks. The input to this amplifier is X1, pin 33.
The output of the amplifier is X2, pin 34. When X1 and X2
are connected to a crystal and external capacitors (Figure
2-35), the combined circuit forms a Pierce crystal oscillator
with the crystal operating at parallel resonance. Crystals
that oscillate over the frequency range of 2 MHz to 20 MHz
may be used. The recommended crystal parameters for op­
eration with the oscillator are given in Table 2-29. The exter­
nal capacitor values should be chosen to provide the manu­
facturer's specified load capacitance for the crystal when
combined with the parasitic capacitance of the trace, sock­
et, and package. As an example, a crystal with a specified
load capacitance of 20 pF used in a circuit with 13 pF per
pin parasitic capacitance will require external capacitor val­
ues of 27 pF each. This provides an equivalent capacitance
of 40 pF on each side of the crystal, and has a 20 pF series
equivalent value across the crystal.

As an alternative to the crystal oscillator, an external clock
source may be used. In this case, the external clock source
should be connected to X1 and no external circuitry should
be connected to X2 (Figure 2-36). The DP8344 can supply a
clock source, equal in frequency to the crystal oscillator or
external clock source, to other circuitry via pin 35, the ClK­
OUT output. This output is a buffered version of the Signal at
X1.

TABLE 2-29. Recommended Crystal Parameters

AT Cut, Parallel Resonant
Fundamental Mode
load CapaCitor = 20 pF
Series Resistance < 200
Frequency Tolerance 0.005% at 25°C
Stability 0.01 % 0° -70·C
Drive Level 0.5 mW Typical

r---- Interrupt Call ---~I
~Tl .1, T2-~' Tl--j

,.---
CPU-CLK

IA non-executed Instruc. addr. Interrupt vector address

(GIE)

TL/F/9336-F7

FIGURE 2-34. Interrupt Timing

1-88

2.0 CPU Description (Continued)

DP8344

Xl X2
33 34

TL/F/9336-FB

FIGURE 2-35. DP8344B Operation with Crystal

DP8344

Xl X2
33 34

.... _~I .. No con1nectlon

Clock
Source

50" Duty

TUF/9336-F9

FIGURE 2-36. DP8344B Operation with External Clock

r----------------------,
BCP

3.0 Transceiver
3.1 TRANSCEIVER ARCHITECTURAL DESCRIPTION I

The transceiver section operates as an on-chip, indepen­
dent peripheral, implementing all the necessary formatting
required to support the physical layer of the following serial
communications protocols: "

• IBM 3270 (including 3299)
.. IBM 5250
• NSC general purpose a-bit

The CPU and transceiver are tightly coupled through the
CPU register space, with the transceiver appearing to the
CPU as a group of special function registers and three dedi­
cated interrupts. The transceiver consists of separate trans­
mitter and receiver logic sections, each capable of indepen­
dent operation, communicating with the CPU via· an asyn­
chronous interface~ This interface· is software configurable
for both polled and interrupt-driven interaction, allowing the
system designer to optimize his product for the· specific ap-
plication. ' .

The transceiver connects to the line through an external line
interface circuit which provides the required DC and AC
drive characteristics appropriate to the application. A block
diagram of such an interface is shown in Figure 3-1. An on­
chip differential analog comparator, optimized for use in a
transformer coupled coax interface, is provided at the input
to the receiver. Alternatively, if an external comparator is
necessary, the input signal may be routed to the DATA~IN
pin.

Tran,smltter t----...... -":'DA':":T~A--":'D~LY~-+I

TX-ACT

CPU
+ALG-IN

Receiver -ALG-IN

~----------------------

Optional External
Compara~or

Line Transmission
Interface I==~~(

Circuit medium

TLI~/9336-33

FIGURE 3-1. System Block Diagram, Showing Details of the line Interface

1-89

III
I

3.0 Transceiver (Continued)

The transceiver has several modes of operation. It .can be
configured for single line, half-duplex operation in which the
receiver is disabled while the transmitter is active. Alterna­
tively, both receiver and transmitter can be active at the
same time for multi-channel (such as repeater) or loopback
operation. The transceiver has both internal and external
loopback capabilities, facilitating testing of both the soft­
ware and external hardware. At all times, both transmitter
and receiver operate according to the same protocol defini­
tion.

3.1.1 Protocols

In all protocols, data is transmitted serially in discrete mes­
sages containing one or more frames, each representing a
single word of information. Biphase (Manchester II) encod­
ing is used, in which the data stream is divided into discrete
time intervals (bit-times) denoted by a level transition in the
center of the bit-time. For the IBM 3270, 3299 and NSC
general purpose 8-bit protocols, a mid-bit transition from low
to high represents a biphase "1 ", and a mid-bit transition
from high to low represents a biphase "0". For the 5250
protocol, the definition of biphase logic levels is exactly re­
versed, i.e. a biphase "1" is represented by a high to low
transition. Depending on the bit sequence, there mayor
may not be a transition on the bit-time boundary. The bi­
phase encoding of a simple bit sequence is illustrated in
Figure 3-2(a).

Each transmission begins with a unique start sequence con­
sisting of 5 biphase encoded "1 's", (referred to as "line
quiesce pulses") followed by a 3 bit-time code violation and
the sync bit of the first frame, Figure 3-2(b). The three bit­
time code violation does not conform to the rules of Man­
chester encoding and forms a unique recognition pattern for
bit time synchronization by the receiver logic. The first bit of
any frame is the sync bit, a biphase "1". The frame is then
formatted according to the requirements of the protocol. If a
multi-frame message is being transmitted,· additional frames
are appended to the end of the first frame-except for the
5250 protocol, where there may be an optional number of
"fill bits" (biphase "0") between each frame.

Depending on the protocol, when all data has been trans­
mitted, the end of a message will be indicated either by the
transmission of an ending sequence, or (for 5250) simply by
the cessation of transitions on the differential line. Later
model 5250 equipment has incorporated a "line hold" at the
end of the message. The line hold maintains the final differ­
ential state on the line for several bit times to eliminate
noise or reflections that could be interpreted as a continu­
ance of the message. The ending sequence for all· but 5250
protocols consists of a single biphase "0" followed by a low
to high transition on the bit-time boundary and two bit-times
with no transitions (two mini-code violation), Figure 3-2(c).

The various protocol framing formats are shown in Figures
3-3 through 3-5. The diagrams use a bit pattern drawing
convention which, for clarity, shows the bit-time boundaries
but not the biphase transitions in the center of the bit times.
The timing relationship between the biphase encoded bit
stream and the bit pattern diagrams is consistent with Fig­
ure 3-2.

1-90

bit times 2 3 5

blphase transmission

bit pattern 0 o o
--~~~~~~~-

(a) Blphase Encoding

nne qulesce pulses
bit times 1 2 3 4 5

biphase transmission

bit pattern

(b) Starting Sequence

bit times 2 3

blphase transmission

bit pattern
-'I'-...Ij\o':';';';;;;=:~

(c) Ending Sequence

FIGURE 3-2. Biphase Encoding

3.1.1.1 IBM 3270

TLIF /9336-34

TL/F/9336-36

TLIF/9336-35

The framing format of the IBM 3270 coax protocol is shown
in Figures 3-3(a) and (b), for both single and multi-frame
messages. Each message begins with a starting sequence
and ends with an ending sequence, as shown in Figures
3-2(b) and (c). Each 12-bit frame begins with a sync bit (B1)
followed by an 8-bit data byte (MSB first), a 2-bit control
field, and the frame delimiter bit (B12), representing even
parity on the previous 11 bits. The bit rate on the coax line is
2.3587 MHz.

3.1.1.2 IBM 3299

Adding 3299 multiplexers to the 3270 environment requires
an address to be transmitted along with each message from
the controller to the multiplexer. The IBM 3299 Terminal
Multiplexer protocol provides this capability by defining an
additional 8-bit frame as the first frame of every message
sent from the controller, as shown in Figure 3-3(c). This
frame contains a 6-bit data field along with the normal sync
and word parity bits. The protocol currently utilizes bits B2-
84 as an address field that directs the message through the
multiplexor hardware. Following the address frame, the rest
of the message follows standard 3270 convention. The bit
rate, 2.3587 MHz, is the same as standard 3270.

3.1.1.3 IBM 5250

The framing format of the IBM 5250 twinax protocol is
shown in Figure 3-4, for both single and multi-frame mes­
sages. Each message begins with the starting sequence
shown in Figure 3-2(b), and ends with 3 fill bits (biphase
"0"). A 16-bit frame is employed, conSisting of a sync bit
(B15); an 8-bit data byte (B7-B14) (LSB first); a 3-bit station
address field (B4-B6); and the last bit (B3) representing

3.0 Transceiver (Continued)

Oata byte

06 05 04 03 02 01 00'

Frame
TL/F/9336-37

(a) 3270 Single-Byte Message

Data byte Additional Frames , ~
06 05 04 03 02 01 00 C/O Par Sync Par

B12 Bl B End sequence }-

First Frame t
Sync 07 06 05 04 03 02 01 00 R C/O Par

Additional Frames
TLIF 19336-36

(b) 3270 Multi-Byte Message

Oata byte Additional Frames (if any)

Par Sync' 07 06 05 04 03 02 01 00' R C/O Par s;;;P;"
~ ______ ~\~I~J~-J.~J~-J'~/~~\~I\-J~-J.~J~-JI~J~-" __ '\-~\-J'~J~-J'\-.J~JB~~-d-se-q-U-en-ce~}-

Address Frame Frame

(c) 3299 Controller/Multiplexer Message

FIGURE 3-3. 3270/3299 Protocol Framing Format

Station
Oata byte address

01 02 03 04 05 06 07" AO Al A2 Par' 0

Frame

TL/F/9336-39

Fill bits

o o

TL/F 19336-40

(a) 5250 Single-Byte Message

Station Required Optional
Data byte address fill bits fill bits Last frame

01 02 03 04 05 06 07" AO AI A2 \ Par 00--0'-------" 'Sync 07 I I I Par 0 0 0

~ ______ '\-J~~\-J'\-'I\-J~-'\-J~/~J~-"~~J~~~-'l-J'~J~J~~~

I End of t.lesSllge
Oellmiter

Sync DO 01 02 03 04 05 06 07 AO AI A2 Par o 0

Additional Frames

(b) 5250 Multi-Byte Message

FIGURE 3-4. 5250 Protocol Framing Format

1-91

Fill bits

TL/F/9336-41

3.0 Transceiver (Continued)

even word parity on the previous 12 bits. Following the pari­
ty bit, 3 biphase "0" fill bits (80-82) are transmitted. Follow­
ing these required fill bits, up to 240 additional fill bits can be
inserted between frames before the next sync bit and the
start of the next frame of a multi-byte message. The bit rate
on the twinax line is 1 MHz. ..., . . .

3.1.1.4 General Purpose 8-Bit

The framing format of the general purpose 8-bit protocol is'
shown in Figure 3-5, for both single and multi-frame mes­
sages. It is identical to that used by the National Semicon­
ductor DP8342 transmitter and DP8343 receiver chips.
Each message begins with a starting sequence and ends
with an ending sequence, as shown in Figures 3-2(b) and
(c). A 10-bit frame is employed, consisting of the sync bit
(81); an 8-bit data byte (82-89) (LS8 first); and the last bit
of the frame (810) representing even word parity on the
previous 9 bits. For multiplexed applications, the first frame
can be deSignated as an address frame, with all 8 bits avail­
able for the logical address. (See General Purpose 8-bit
Modes in this section.)

3.2 TRANSCEIVER FUNCTIONAL DESCRIPTION

A block diagram of the transceiver, revealing external inputs .
and outputs and details of the CPU interface, is shown in
Figure 3-6. The transmitter and receiver are largely indepen­
dent of each other, sharing only the clock, reset and proto­
col select Signals. The transceiver is mapped into the CPU
register space, thus the status of the transceiver can always
be polled: In addition, the CPU/Transceiver interface can be
configured for an interrupt-driven environment. (See Trans­
ceiver Interrupts in this section.)

80th transmitter and receiver are reset by a common Trans­
ceiver Reset bit, [TRES], allowing the CPU to independently
reset the transceiver at any time. The Transceiver is also
reset whenever the CPU reset is asserted, including the re-'
quired power-up reset. When [TRES] is asserted, both

transmitter and receiver FIFO's are emptied resulting in the
Transmit FIFO Empty flag [TFE] being asserted and the
Data Available flag [DAV] cleared. Other flags cleared by
[TRES] are Transmit FIFO Full [TFF] and Transmitter Ac­
tive [TA] in the tranSmitter and Line Active [LA], Receiver
Active [RA], Receiver Error [RE], Receive FIFO Full [RFF],
Data Error or Message End [DEME], [POLL], [ACK], and
[RAR],command flags in the receiver. When [TRES] is as­
serted, external pin TX-ACT is cleared, DAT A-DL Y goes to a
state equal to the complement of Transmitter INvert [TIN] in
{TMR I, and DATA-OUT goes into a state equal to the com­
plement of [TIN] exclusiveor'ed with the Advance Transmit­
terActive [ATA] in {TCRI. Inother words, when [TRES]is
asserted, DATA-DLY ;:i: [TIN], and DATA-OUT = [TIN] El'.l

{ATA].When [TRES] is asserted under software control, it
is necessary to wait at least one instruction after asserting
[TRES] before seeing the resulting reset state of the affect­
ed flags in the CPU. The transmitter and receiver are
clocked by a common Transceiver Clock, TCLK, at a fre­
quency equal to eight times the required serial data rate.
TCLK can either be obtained from the on-chip oscillator di­
vided by 1, 2 or 4, or from an external clock applied to the
X-TCLK pin. TCLK selection is controlled by two Transceiv­
erClockSelect bits, [TCS 1-0] located in the Device Con­
trol Register, {DCR I. [TCS 1-0] should only be changed
when the transceiver is inactive.

Since the TCLK source can be asynchronous with respect
to the CPU clock, the CPU/Transceiver interface can be
asynchronous. All flags from the Transceiver are therefore
latched at the start of all instructions, and parallel data is
transferred through 3 word FIFOs in both the transmitter
and receiver.

Protocol selection is controlled by three Protocol Select
bits, [PS2-0] in the Transceiver Mode Register, ITMR}
(see Table 3-1). Enough flexibility is provided for the 8CP to
operate in all required positions in the network. It is not pos-

Data byte

01 02 03 04 05 06 07' Par

Frame
TL/F/9336-42

(a) 8-Bit Single-Byte Message

Data byte ,
01 02 03 04 05 06 07 Par Sync Par

Bl B End sequence r-
First Frame j.

Sync DO 01 02 03 04 05 06 07 Par

Additional Frames
TLlF/9336-43

(b) 8-Bit Multi-Byte Message

FIGURE 3-5. General Purpose 8-Bit Protocol Framing Format

1-92

3.0 Transceiver (Continued)

sible for the transmitter and receiver to operate with differ­
ent protocols at the same time. The protocol mode should
only be changed when both transmitter and receiver are
inactive.

If both transmitter and receiver are connected to the same
line, they should be configured to operate sequentially (half­
duplex). This mode of operation is achieved by clearing the
RePeater ENable control bit [RPEN] in ITMR}. In this
mode, an active transmitter will disable the receiver, pre­
venting simultaneous operation of transmitter and receiver.
If the transmitter FIFO is loaded while the receiver is active­
ly processing an incoming signal, the receiver will be dis­
abled and flag the CPU that a "Receiver Disabled While
Active" error has occurred. (See Receiver Errors in this sec-

tion.) On power-up/reset the transceiver defaults to this
half-duplex mode.

By asserting the Repeat Enable flag [RPEN], the receiver is
not disabled by the transmitter, allowing both transmitter
and receiver to be active at the same time. This feature
provides for the implementation of a repeater function or
loopback for test purposes.

The transmitter output can be connected to the receiver
input, implementing a local (on-chip) loopback, by asserting
[LOOP]. [RPEN] must also be asserted to enable both the
transmitter and receiver at the same time. With [LOOP] as­
serted, the output TX-ACT is disabled, keeping the external
line driver in TRI-STATE. The internal flag [TA] is still en­
abled, as are the serial data outputs.

TABLE 3-1. Protocol Mode Definition

PS2-0 Protocol Mode

000 3270
001 3299 Multiplexer

010 3299 Controller

01 1 3299 Repeater
100 5250

1 01 5250 Promiscuous
1 10 a-Bit

1 1 1 a-Bit Promiscuous

Comments

Standard IBM 3270 protocol.
Receiver expects first frame to be address frame. Transmitter uses standard
3270, no address frame.
Transmitter generates address frame as first frame. Receiver expects standard
3270, no address frame.
Both transmitter and receiver operate with first frame as address frame.
Non-promiscuous mode. [DAV] asserted only when first frame address matches
IATR}.
[DAV] asserted on all valid received data without regard to address field.
General-purpose a-bit protocol with first frame address. Non-promiscuous mode.
[DAV] asserted only when first frame address matches I ATR I.
[DAV] asserted on all valid received frames.

1-93

III
I

m
~

~ 3.0 Transceiver (Continued)
co
Il.
C

DATA-IN

+ALG-IN

-ALG-IN

RTR

TSR

TCR

TMR

CPU registers

TL/F/9336-44

KEY TO REGISTERS

Receive/Transmit Register ATR· Auxiliary Transceiver Register

Transceiver Status Register NCF Network Command Register

Transceiver Command Register FBR Fill-Bit Register

Transceiver Mode Register DCR Device Control Register

FIGURE 3·6. Block Diagram of Transc Iver, Showing CPU Interface

3.0 Transceiver (Continued)

3.2.1 Transmitter

The transmitter accepts parallel data from the CPU, formats
it according to the desired protocol and transmits it as a
serial biphase-encoded bit stream. A block diagram of the
transmitter logic is shown in Figure 3-6. Two biphase out­
puts, DATA-OUT, DATA-DLY, and the external line driver
enable, TX-ACT, provide the data and control signals for the
external line interface circuitry. The two biphase outputs are
valid only when TX-ACT is asserted (high) and provide the
necessary phase relationship to generate the "predistor­
tion" waveform common to all of the transceiver protocols.
See Figure 3-1 for the timing relationships of these outputs
as well as the output of the line driver. For a recommended
3270/3299 coax interface, see Section 3.2.5.1 3270 Line
Interface. For a recommended 5250 twinax interface see
Section 3.2.5.2 5250 Line Interface.

The capability is provided to invert DATA-OUT and DATA­
DL Y via the Transmitter Invert bit, [TIN], located in the
Transceiver Mode Register, (TMR}, In addition, the timing
relationship between TX-ACT and the two biphase outputs
can be modified with the Advance Transmitter Active con­
trol, [ATA]. When [ATA] is cleared low (the power-up condi­
tion), the transmitter generates exactly five line quiesce bits
at the start of each message, as shown in Figure 3-1. If
[ATA] is asserted high, the transmitter generates a sixth line
quiesce bit, adding one biphase bit time to the start se­
quence transmission. The line driver enable, TX-ACT, is as­
serted halfway through this bit time, allowing an additional
half-bit to precede the first full line quiesce of the transmit­
ted waveform. Also, the state of OAT A-DL Y is such that no
predistortion results on the line during this first half line
quiesce. This modified start sequence is depicted in the dot­
ted lines shown in Figure 3-1 and is used to limit the initial
transient voltage amplitude when the message begins.

Data is loaded into the transmitter by writing to the Receivel
Transmit Register (RTR I, causing the first location of the
FIFO to be loaded with a 12-bit word (8 bits from (RTR I and
4 bits from the Transceiver Command Register (TCR}, The
data byte to be transmitted is loaded into (RTR I, and
(TCRI contains additional information required by the pro­
tocol. It is important to note that if (TCRI is to be changed,
it must be loaded before (RTR I. A multi-frame transmission
is accomplished by sequentially loading the FIFO with the
required data, the transmitter taking care of all necessary
frame formatting.

If the FIFO was previously empty, indicated by the Transmit
FIFO Empty flag [TFE] being asserted, the first word loaded
into the FIFO will asynchronously propagate to the last loca­
tion in approximately 40 ns, leaving the first two locations
empty. It is therefore possible to load up the FIFO with three
sequential instructions, at which time the Transmit FIFO Full

1-95

flag [TFF] will be asserted. If (RTR I is written while [TFF] is
high, the first location of the FIFO will be over-written and
that data will be destroyed.

When the first word is loaded into the FIFO, the transmitter
starts up from idle, asserting TX-ACT and the Transmitter
Active flag [T A], and begins generating the start sequence.
After a delay of approximately 16 TCLK cycles (2 biphase
bit times), the word in the last location of the FIFO is loaded
into the encoder and prepared for transmission. If the FIFO
was full, [TFF] will be de-asserted when the encoder is
loaded, allowing an additional word to be loaded into the
FIFO.

When the last word in the FIFO has been loaded into the
encoder, [TFE] goes high, indicating that the FIFO is empty.
To ensure the continuation of a multi-frame message, more
data must then be loaded into the FIFO before the encoder
starts the transmission of the last bit of the current frame
(the frame parity bit for 3270, 3299, and 8-bit modes; the
last of the three mandatory fill bits for 5250). This maximum
load time from [TFE] can be calculated by subtracting two
from the number of bits in each frame of the respective
protocol, and multiplying that result by the bit rate. This
number represents the best case time to load-the worst
case value is dependent on CPU performance. Since the
CPU samples the transceiver flags and interrupts at instruc­
tion boundaries, the CPU clock rate, wait states (from pro­
grammed wait states, asserting the WAIT pin, or remote ac­
cess cycles), and the type of instruction currently being exe­
cuted can affect when the flag or interrupt is first presented
to the CPU. .

If there is no further data to transmit (or if the load window is
missed), the ending sequence (3270/3299/8-bit) is generat­
ed and the transmitter returns to idle, de-asserting TX-ACT
and [TAJ. In 5250 mode, the three required fill bits are sent
and TX-ACT and [T A] are de-asserted at a time dependent
on the value of bits 7 through 3 of the Auxiliary Transceiver
Register (ATR}, If (ATR[7-311 =00000, TX-ACT and [TA]
are de-asserted at the end .of the third required fill bit result­
ing in no additional "line hold" at the end of the message.
Each increment of (ATR[7-3] I results in an additional half
bit time of line hold up to a maximum of 15.5 bit times.

Data should not be loaded into the FIFO after the transmit­
ter is committed to ending the message and before the [T A]
flag is deasserted. If this occurs, the load will be missed by
the transmitter control logic and the word(s) will remain in
the FIFO. This condition exists when [TA] and [TFE] are
both low at the same time, and can be cleared by resetting
the transceiver (asserting [TRES)) or by loading more data
into the FIFO, in which case the first frame(s) transmitted
will contain the word(s) left in the FIFO from the previous
message.

III
I

3.0 Transceiver (Continued)

dotted lines Indicate waveforms
with [ATA] set high

r-----..

DATA- DLY

TRANSMITTED
WAVEFORt.I

I

u I U----
I Ln----

TL/F/9336-45

FIGURE 3·7. Transmitter Output

3.2.2 Receiver

The receiver accepts a serial biphase-encoded bit stream,
strips off the framing information, checks for errors and re­
formats the data for parallel transfer to the CPU. The block
diagram in Figure 3-6 depicts the data flow from the serial
input(s) to the FIFO's parallel outputs. Note that the FIFO
outputs are multiplexed with the Error Code Register {ECR I
outputs.

The receiver and transmitter share the same TCLK, though
in the receiver this clock is used only to establish the sam­
pling rate for the incoming biphase encoded data. All control
timing is derived from a clock signal extracted from this
data. Several status flags and interrupts are made available
to the CPU to handle the asynchronous nature of the incom­
ing data stream. See Figure 3-8 for the timing relationships
of these flags and interrupts relative to the incoming data.

The input source to the decoder can be either the on-chip
analog line receiver, the DATA-IN input or the output of the
transmitter (for on-chip loop back operation). Two bits, the
Select Line Receiver [SLR] and Loopback [LOOP], control
this selection. For interfacing to the on-chip analog line re­
ceiver, see Section 3.2.5.1, 3270 Line Interface. An example
of an external comparator circuit for interfacing to twinax
cable in 5250 environments is contained in Section 3.2.5.2,
5250 Line Interface. The selected serial data input can be
inverted via the Receiver Invert [RIN] control bit.

The receiver continually monitors the line, sampling at a fre­
quency equal to eight times the expected data rate. The
Line Active flag [LA] is asserted whenever an input tran­
sition is detected and will remain asserted as long as anoth­
er input transition is detected within 16 TCLK cycles. If an­
other transition is not detected in this time frame, [LA] will
be de-asserted. The propagation delay from the occurrence
of the edge to [LA] being set is approximately 1 transceiver
clock cycle. This function is independent of the mode of
operation of the transceiver; [LA] will continue to respond to
input Signal transitions, even if the transmitter is activated
and the receiver disabled.

1-96

If the receiver is not disabled by the transmitter or by assert­
ing [TRES], the decoder will adjust its internal timing to the
incoming transitions, attempting to synchronize to valid bi­
phase-encoded data. When synchronization occurs, the bi­
phase clock will be extracted and the serial NRZ (Non-Re­
turn to Zero) data will be analyzed for a valid start se­
quence, see Figure 3-2(b). The minimum number of line
quiesce bits required by the receiver logic is selectable via
the Receiver Line Quiesce [RLQ] control bit. If this bit is set
high (the power-up condition), three line quiesce bits are
required; if set low, only two are needed. Once the start
sequence has been recognized, the receiver asserts the
Receiver Active flag [RA] and enables the error detection
circuitry. The propagation delay from the occurrence of the
mid-bit edge of the sync bit in the starting sequence to [RA]
being set is approximately 3 transceiver clock cycles.

The NRZ serial bit stream is now clocked into a serial to
parallel shift register and analyzed according to the expect­
ed data pattern as defined by the protocol. If no errors are
detected by the word parity bit, the parallel data (up to a
total of 11-bits, depending on the protocol) is passed to the
first location of the FIFO. It then propagates asynchronously
to the last location in approximately 40 ns, at which time the
Data Available flag [DAV] is asserted, indicating to the CPU
that valid data is available in the FIFO. The propagation
d~lay from the occurrence of the mid-bit edge of the parity
bit of the frame to [DAV] being set is approximately 5 trans­
ceiver clock cycles.

Of the possible 11-bits in the last location of the FIFO, a-bits
(data byte) are mapped into {RTR I and the remaining bits
(if any) are mapped into the Transceiver Status Register
{TSR [2-0] I. The CPU accesses the data byte by reading
{RT~ I, and the 5250 address field or 3270 control bits by
reading {TSR J. When reading the FIFO, it is important to
note that {TSRI must be read before {RTRI. since reading
{RTRI advances the FIFO. Once [DAV] has been recog­
nized as set by the CPU, the data can be read by any in­
struction with {RTR] as the source. All instructions with
{RTRI as the source (except BIT, CMP, JRMK, JMP reg-

3.0 Transceiver (Continued)

RA Interrupt

!
DAV Interrupt

!
LTA Interrupt

!
D6 D5 D4 D3 D2 Dl DO

t t LA - Line Active t l t
LA RA - Receiver Active DAV, RA, LA

RA DAV- Data Available Command LTA LTA - Line Turn Around Flags

TL/F/9336-46

FIGURE 3-8. Timing of Receiver Flags Relative to Incoming Data

ister, LJMP conditional, and LCALL conditional) wi" result in
popping the last location of the FIFO, presenting a new
word (if present) for future CPU access. Data in the FIFO
wi" propagate from one location to the next in approximate­
ly 10-15 ns, therefore the CPU is easily able to unload the
FIFO with a set of consecutive instructions.

If the received bit stream is a multi-byte message, the re­
ceiver wi" continue to process the data and load the FIFO.
After the third load (if the CPU has not accessed the FIFO),
the Receive FIFO Fu" flag [RFF] wi" be asserted. The prop­
agation delay from the occurrence of the mid-bit edge of the
parity bit of the frame to [RFF] being set is approximately 5
transceiver clock cycles. If there are more than 3 frames in
the incoming message, the CPU has approximately one
frame time (sync bit to start of parity bit) to start unloading
the FIFO. Failure to do so wi" result in an overflow error
condition and a resulting loss of data (see Receiver Errors).

If there are no errors detected, the receiver wi" continue to
process the incoming frames until the end of message is
detected. The receiver wi" then return to an inactive state,
clearing [RA] and asserting the Line Turn-Around flag,
[L TA] indicating that a message was received with no er­
rors. The propagation delay from the occurrence of the
edge starting the first minicode violation to [RA] cleared and
[L T A] set is approximately 17 transceiver clock cycles in
3270, 3299, and 8-bit modes. In 5250 modes, the assertion
of [L T A] and clearing of [RA] are dependent on how the
transmission line ends after the transmission of the three
required fill bits (see 5250 Modes). For the 3270 and 3299
protocols, [LTA] can be used to initiate an immediate trans­
mitter FIFO load; for the other protocols, an appropriate re­
sponse delay time may be needed. [L T A] is cleared by load­
ing the transmitter's FIFO, writing a one to [L T A] in the Net­
work Command flag register, or by asserting [TRES].

Receiver Errors

If the Receiver Active flag, [RA], is asserted by the receiver
logic, the selected receiver input source is continuously
checked for errors, which are reported to the CPU by assert­
ing the Receiver Error flag, [RE], and setting the appropri­
ate receiver. error flag in the Error Code Register {ECR I. If a
condition occurs which results in multiple errors being creat­
ed, only the first error detected wi" be latched into {ECR I .
Once an error has been detected and the appropriate error
flag has been set,· the receiver is disabled, clearing [RA]
and preventing the Line Turn-Around flag and interrupt

1-97

[L TA] from being asserted. The Line Active flag [LA) re­
mains asserted if signal transitions continue to be detected
on the input.

5 error flags are provided in {ECR I :

7 6 5 4' 3 2 0

I rsv I rsv I rsv 1 OVF 1 PAR. 1 IES 1 LMBT RDIS

[OVF] Overflow-Asserted when the decoder writes to
the first location of the FIFO while [RFF] is assert­
ed. The word in the first location wi" be over-writ­
ten; there wi" be no effect on the last two loca­
tions.

[PAR) Parity Error-Asserted when a received frame
fails an even (word) parity check.

[IES] Invalid Ending Sequence-Asserted. during·· an
expected end sequence when an error occurs in
the mini code-violation. Not valid in 5250 modes.

[LMBT] Loss of Mid-Bit Transition-Asserted when the
expected biphase-encoded mid-bit transition does
not occur within the expected window. Indicates.a
loss of receiver synchronization.

[RDIS] Receiver Disabled While Active-Asserted when
an active receiver is disabled by the transmitter be­
ing activated.

To determine which error has occurred, the CPU must read
{ECR I. This is accomplished by asserting the Select Error
Codes control bit, [SEC), and reading {RTR!. The {ECR} is
only 5 bits wide, therefore the upper 3 bits are still the out­
put of the receive FIFO (see Figure 3-6). A" instructions with
{ECRI as the source (except BIT, CMP, JRMK, JMP regis­
ter, LJMP conditional, and LCALL conditional) wi" clear the
error condition and return the receiver to idle, allowing the
receiver to again monitor the incoming data stream for a
new start sequence. The [SEC] control bit must be de-as­
serted to read the FIFO's data from {RTR!.

If data is present in the FIFO when the error occurs, the
Data Available flag [DAV] is de-asserted when the error is
detected and re-asserted when {ECR I is read. Data pres­
ent in the FIFO before the error occurred is still available to
the CPU. The flexibility is provided, therefore, to read the
error type and still recover data loaded into the FIFO before
the error occurred. The Transceiver Reset, [TRES] can be
asserted at any time, clearing both Transceiver FIFOs and
the error flags.

..

3.0 Transceiver (Continued)

3.2.3 Transceiver Interrupts

The transceiver has access to 3 CPU interrupt vectors, one
each for the transmitter and receiver, and a third, the Line
Turn-Around interrupt, providing a fast turn around capability
between receiver and transmitter. The receiver interrupt is
the CPU's highest priority interrupt (excluding NMI), fol­
lowed by the transmitter and Line Turn-Around interrupts,
respectively. The three interrupt vector addresses and a full
description of the interrupts are given in Table 3-2.

The receiver interrupt is user-selectable from 4 possible
sources (only 3 used at present) by specifying a 2-bit field,
the Receiver Interrupt Select bits [RIS1-0] in the Interrupt
Control Register (lCR}. A full description is given in Table
3-3.

The RFF + RE interrupt occurs only when the receive FIFO
is full (or an error is detected). If the number of frames in a
received message is not exactly divisible by 3, one or two
words could be left in the FIFO at the end of the message,
since the CPU would receive no indication of the presence
of that data, it is recommended that this interrupt be used
together with the line turn-around interrupt, whose service
routine can include a test for whether any data is present in
the receive FIFO.

For additional information concerning interrupts, refer to
Sections 2.1.1.3, Interrupt Control Registers, and 2.2.3, In­
terrupts.

3.2.4 Protocol Modes

3270/3299 Modes

As shown in Table 3-1, the transceiver can operate in 4
different 3270/3299 modes, to accommodate applications
of the BCP in different positions in the network. The 3270
mode is designed for use in a device or a controller which is
not in a multiplexed environment. For a multiplexed network,
the 3299 multiplexer and controller modes are designed for
each end of the controller to multiplexer connection, the
3299 repeater mode being used for an in-line repeater situ­
ated between controller and multiplexer.

For information on how parallel data loaded into the trans­
mit FIFO and unloaded from the receive FIFO maps into the
serial bit positions, see Figure 3-9.

To transmit a frame, (TCR [3-0] I must first be set up with
the correct control information, after which the data byte
can be written to (RTR I. The resulting composite 12-bit
word is loaded into the transmit FIFO where it propagates
through to the last location to be loaded into the encoder
and formatted for transmission.

When formatting a 3270 frame, (TCR [2] I controls whether
the transmitter is required to format a data frame or a com­
mand frame. If (TCR [2] I is low, the transmitter logic calcu-

TABLE 3-2. Transceiver Interrupts

Interrupt

Receiver

Transmitter

Line Turn-Around

Vector Address

000100

001000

001100

Description

User selectable from 4 possible sources, see Table 3-3.

Set when [TFE] asserted, indicating that the transmit FIFO is empty, cleared by
writing to (RTR}. Note: [TRES] causes [TFE] to be asserted.

Set when a valid end sequence is detected, cleared by writing to (RTR I, writing
a one to [L TAl. or asserting [TRES). In 5250 modes, interrupt is set when the
last fill bit has been received and no further input transitions are detected. Will
not be set in 5250 or 8-bit non-promiscuous modes unless an address match
was received.

The interrupt vector is obtained by concatenating I I I I I I I I
(lBRI with the vector address as shown: . IBR

I I I I I I interrupt
vector address . vector

Interrupt

RFF+RE

DAV+RE

Not Used
RA

RIS1,0

00

01

10
1 1

15 8 5 0

TABLE 3-3. Receiver Interrupts

Description

Set when [RFF] or [RE] asserted. If activated by [RFFl, indicating that the
receive FIFO is full, interrupt is cleared by reading from (RTR I. If activated by
[RE], indicating that an error has been detected, interrupt is cleared by reading
from (ECRI.
Set when [DAV] or [RE] asserted. If activated by [DAV], indicating that valid
data is present in the receive FIFO, interrupt is cleared by reading from (RTR I. If
activated by [RE], indicating that an error has been detected, interrupt is cleared
by reading from (ECR I.
Reserved for future product enhancement.
Set when [RA] asserted, indicating the receipt of a valid start sequence, cleared
by reading (ECR I or (RTR I.

All receiver interrupts can be cleared by asserting [TRESj.

1-98

3.0 Transceiver (Continued)

lates odd parity on the data byte (82-89) and transmits this
value for 810. If (TCR [211 is high, 810 takes the state of
(TCR [O]}. Odd Word Parity [OWP] controls the type of
parity calculated on 81-811 and transmitted as 812, the
frame delimiter. If [OWP] is high, odd parity is output; other­
wise even parity is transmitted. In this manner the system
designer is provided with maximum flexibility in defining the
transmitted 3270 control bits (810-812).

When data is written to (RTR}, the least significant 4 bits of
(TCR} are loaded into the FIFO along with the data being

7 6 5 4 3 2 1 0

~I~I~I~I~I~I~I~I~I

T
transmit

* Coax transmission
Sync 07 06 05 04 03 02

Starting Sequence

T
receive

7 6 5 4 3 2 1 0

~I~I~I~I~I~I~I~I~I
*

written to (RTR}. The same (TCR} contents can therefore
be used for more than one frame of a multi-frame transmis­
sion, or changed for each frame.

When a 3270 frame is received and decoded, the decoder
loads the parallel data into the receive FIFO where it propa­
gates through to the last location and is mapped into I RTR}
and ITSR}. 8its 82-811 are exactly as received; 8yte Pari­
ty [8P] is odd parity on 82-89, calculated in the decoder.
Reading I RTR} will advance the receive FIFO, therefore
ITSR} must be read first if this information is to be utilized.

5 4 3 1

lowpi 0 I BIll Il~:t8)
7 5 4 3 2 1 0

lowpi I BIll Bl0 Il;:mmand)

01 00 R C/O Par

additional end
frames or sequence

7 5 4 3 2 1 0

TL/F/9336-47

(a) 3270 Data and Command Frames

7 6 543 2 0

RTR I B2 I B3 I B4 I B5 I B6 I B7 I

f
transmit and receive

--------y---------
Coax transmission

Sync AO Al A2 A3 A4 AS Par

Starting Sequence single/multi-byte message

.... 4~-- address frame ---. ~ message frame{s) -+
TLIF/9336-48

(b) 3299 Address Frame
FIGURE 3-9. 3270/3299 Frame Assembly/Disassembly Procedure

1-99

II'
I

m r---~
"1:1'
"1:1'
C"')
co
D­
C

3.0 Transceiver (Continued)

When· formatting a 3299 address frame, the procedure is
the same as for a 3270 frame, with {RTR [7-2] I defining
the address to be transmitted. The only bit in {TCR I which
has any functional, meaning in this mode is [OWP], which
controls the type of parity required on 81-88. Similarly,
when. the receiver de-formats a 3299 address frame the
received address bits are loaded into {RTR [7-2]1; {'RTR
[1-:0] I and {TSR [2-0] I are undefined.

The POLL" POLL! ACK and TT / AR flags in. the Network
Command Flag Register are valid only in 3270 and 3299
(excluding the 3299 address frame) modes. These flags are
decodes of their respective coax commands as defined in
Table 3-4. The Data Error or Message End [DEME] flag
(also in the {NCF I register) indicates different information
depending on the selected protocol. In 3270 and 3299,
[DEME] is set when 810 of the received frame does not
match the locally generated odd parity on bits 82-89 of the
received frame. [DEME] is not part of the receiver error
logic, it functions only as a status flag to the CPU. These
flags are decoded from the last location in the FIFO and are
valid only when [DAV] is asserted; they are cleared by read­
ing {RTR I and must be checked before advancing the re­
ceiver FIFO.

5250 Modes

The biphase data is inverted in the 5250 protocol relative to
3270/3299 (see the Protocol section-18M 5250). Depend­
ing on the external line interface circuitry, the transceiver's
biphase inputs and outputs may need to be inverted by as­
serting the [RIN] (Receiver INvert) and [TIN] (Transmitter
INvert) control bits in {TMRI.

For information on how data must be organized in {TCRI
and {RTR I for input to the transmitter, and how data ex­
tracted from a received frame is organized by the' receiver
and mapped into {TSRI and {RTR}, see Figure 3-10.

To transmit a 5250 message, the least significant 4 bits of
{TCR I must first be set up with the correct address and
parity control information. The station address field (84-86)
is defined by {TCR[2-0]}, and [OWP] controls the type of
parity (even or odd) calculated on 84-815 and transmitted
as 83. When the 8-bit data byte is written to {RTR I, the
resulting composite 12-bit word is loaded into the transmit
FIFO, starting the transmitter. The same {TCRI contents
can be used for more than one frame of a multi-frame trans­
mission,or changed for each frame.

The 5250 protocol defines bits 80-82 as fill bits which the
transmitter automatically appends to the parity bit (83) to

TABLE 3-4. Decode of 3270 Coax Commands

B2
o
X
X

B3
o
X
X

B4
o
X
X

B5
o
1
o

Received Word

B6
o
o
o

B7
o
o
o

B8
o
o
o

B9
o
1
1

B10
0
X
X

Flag Description

B11
0 RAR TT / AR (Clean Status) Received
1 ACK POLL! ACK Command Received
1 POLL POLL Command Received

All flags cleared by reading I RTR I.

7 6 5 4 3 2 1 0 7 '6 5 4 3 2 1 0
RTR I 871 881 89181018111812181318141 I I I I lowpi 84 I 85 I 86 I TCR

l~ _________________________ r ________________________ ~J

T
transmit

(r--------------~!~---------------,
Twlnax transmission

Sync DO 01 02 03 04 05 06 07 AO A1 A2 Par

l ~--------------__ v---------------~J

T
receive

!
7 6 5 4 3 2 1 0

RTR 187188189181018111812181318141

7 6 543 2 1 0

I I I I I I 84-1 85 I 86 I TCR

FIGURE 3-10. 5250 Frame Assembly/Disassembly Description

1-100

TL/F/9336-49

3.0 Transceiver (Continued)

form the 16-bit frame. Additional fill bits may be inserted
between frames of a multi-frame transmission by loading
the fill bit register, {FBR I, with the one's complement of the
number of fill bits to be transmitted. A value of FF (hex),
corresponds to the addition of no extra fill bits. At the con­
clusion of a message the transmitter will return to the idle
state after transmitting the 3 fill bits of the last frame (no
additional fill bits will be transmitted).

As shown in Table 3-1, the transceiver can operate in 2
different 5250 modes, designated "promiscuous" and "non­
promiscuous". The transmitter operates in the same man­
ner in both modes.

In the promiscuous mode, the receiver passes all received
data to the CPU via the FIFO, regardless of the station ad­
dress. The CPU must determine which station is being ad­
dressed by reading {TSR [2-0] I before reading {RTRJ.

In the non-promiscuous mode, the station address field
(B4-B6) of the first frame must match the 3 least significant
bits of the Auxiliary Transceiver Register, {ATR [2-0] l. be­
fore the receiver will pass the data on to the CPU. If no
match is detected in the first frame of a message, and if no
errors were found on that frame, the receiver will reset to
idle, looking for a valid start sequence. If an address match
is detected in the first frame of a message, the received
data is passed on to the CPU. For the remainder of the
message all received frames are decoded in the same man­
ner as the promiscuous mode.

To maintain maximum flexibility, the receiver logic does not
interpret the station address or command fields in determin­
ing the end of a 5250 message. The message typically ends
with no further line transitions after the third fill bit of the last
frame. This end of message must be distinguished from a
loss of synchronization between frames of a multi-byte
transmission condition by looking for line activity some time
after the loss of synchronization occurs. When the loss of
synchronization occurs during fill bit reception, the receiver
monitors the Line Active flag, [LA], for up to 11 biphase bit
times (11 p,s at the 1 MHz data rate). If [LA] goes inactive at
any point during this period, the receiver returns to the idle
state, de-asserting [RA] and asserting [LTA]. If, however,
[LA] is still asserted at the end of this window, the receiver
interprets this as a real loss of synchronization and flags the
[LMBT] error condition to the CPU. (See Receiver Errors in
this section.)

In the 5250 modes, the Data-Error-or-Message-End [DEME]
flag is a decode of the 111 station address (the end of mes­
sage delimiter) and is valid only when [DAV] is asserted.
This function allows the CPU to quickly determine when the
end of message has been received.

The transmitter has the flexibility of holding TX-ACT active
at the end of a 5250 message, thus reducing line reflections
and ringing during this critical time period. The amount of
hold time is programmable from 0 J-Ls to 15.5 p,s in 500 ns
increments (assuming TCLK is 8 MHz), and is set by writing
the selected value to the upper 5-bits of the Auxiliary Trans­
ceiver Register, {ATR [7-3] J.

General Purpose 8·Blt Modes

As shown in Table 3-1, the transceiver can operate in 2
different 8-bit modes, designated "promiscuous" and "non­
promiscuous". In the non-promiscuous mode, the first frame
data byte (B2-B9) must match the contents of {ATR[7-0] I
before the receiver will load the FIFO and assert [DAV]. If
no match is made on the first frame, and if no errors were
found on that frame, the receiver will go back to idle, looking
for a valid start sequence. The address comparator logic is
not enabled in the promiscuous mode, and therefore all re­
ceived frames are passed through the receive FIFO to the
CPU. The transmitter operates in the same manner in both
modes.

The serial bit positions relative to the parallel data loaded
into the transmit FIFO and presented to the CPU by the
receiver FIFO are shown in Figure 3-11. To transmit a
frame, the data byte is written to {RTR I, loading the trans­
mit FIFO where it propagates through to the last location to
be loaded into the encoder and formatted for transmission.
Only [OWP] in {TCRI is loaded into the transmitter FIFO in
both protocol modes; {TCR [2-0] I are don't cares. B10 is
defined by a parity calculation on B1-B9; odd if [OWP] is
high and even if [OWP] is low.

When a frame is received, the decoder loads the processed
data into the receive FIFO where it propagates through to
the last location and is mapped into {RTR I. All bits are
exactly as received. Reading the data is accomplished by
reading {RTRI. {TSR [2-0]} are undefined in the 8-bit
modes.

7 6 5 432 1 0

rnl~I~I~I~I~IMI~I~1

f
transmit and receive

Coax transmission
DO 01 02 03 04 05 06 07 Par

starting Sequence additional end
frames or sequence

TLIF/9336-50

FIGURE 3·11. General Purpose 8·Blt Frame Assembly/Disassembly Procedure

1-101

II

3.0 Transceiver (Continued)

3.2.5 Line Interface

3.2.5.1 3270 Line Interface

In the 3270 environment, data is transmitted between a con­
trol unit and a device via a single coax cable or twisted pair
cable. The coax type is RG62AU with a maximum length of
1 .. 5 kilometers. The twisted pair cable has become more
prevalent to reduce cabling and routing costs. Typically, a
24 AWG unshielded twisted pair is used to achieve the cost
reduction goals. The length of the twisted pair cable is a
minimum of 100 feet to a maximum of 900 feet. The 3270
protocol utilizes a transformer to isolate the peripheral from
the cabling system.

An effective line interface design must be able to accept
either coax or twisted pair cabling and compensate for
noise, jitter and reflections in the cabling system. There
must be an adequate amount of jitter tolerance to offset the
effects of filtering and noise. Some filtering is needed to
reduce ambient noise caused by surrounding hardware.
Such filtering must not introduce transients that the receiver
comparator translates into data jitter.

An effective driver design should also attempt to compen­
sate fofthe filtering effects of the cable. Higher data fre­
quencies become attenuated more than lower frequency
signals as cable length is increased, yielding greater dispari­
ty in the amplitudes of these signals. This effect generates
greater jitter at the receiver. The 3270 signal format allows
for a high voltage (predistorted) magnitude and a low volt­
age (nondistorted) magnitude within each data bit time. In­
creasing the predistorted-to-nondistorted signal level ratio
counteracts the filtering phenomenon because the lower
frequency signals contain less predistortion than do· higher
frequency signals. Thus, the amplitude of the higher fre­
quency signals is "boosted" more than the lower frequency
signals. Unfortunately, a low signal level is more susceptible
to reflection-induced errors at short cable length. Proper im­
pedance matching and slower edge rates must be utilized to
eliminate as much reflection as possible at these lengths.

Additionally, shielded or balanced operation must be ade­
quately supported. Shielded operation implies the use of
coax cable, where balanced implies the use of twisted pair
cable. Proper termination should be employed, and a termi­
nation slightly greater than the characteristic impedance of
theline may actually provide more desirable waveforms

Legend

o To coax/twisted pair front end

@ To line driver circuitry

© To BCP comparator

Includes board capacitance

than a perfectly matched termination. Board layout should
make the comparator lines as short as possible. Lines
should be placed closely together to avoid the introduction
of differential noise. These lines should not pass near
"noisy" lines. A ground plane should isolate all "noisy"
lines.

BCP Design

The line interface design for the receiver is shown in Figure
3-12. An offset of approximately 17 mV separates the com­
parator inputs, making the receiver more immune to ambi~
ent noise present on the circuit board. A 2: 1:1 (arranged as
a 3:1) transformer increases any voltage sensitivity lost by
introducing the offset: A bandpass filter is employed to re­
duce edge rate to the comparator and eliminate ambient
noise. The bandwidth (30 kHz to 30 MHz) was chosen to
provide sufficient attenuation for noise while producing mini­
mum data jitter.

The driver design, Figure 3-13, incorporates a National
Semiconductor OS3487 and a resistor network to generate
the· proper signal levels. The predistorted-to-riondistorted
ratio was chosen to be about 3 to 1. The coax/twisted pair
front end, Figure 3-14, includes an AOC brand connector to
switch between coax and twisted pair cable. The coax inter­
face has the shield capacitively coupled to ground. The
5100 resistor and the filter loading produce a termination of
about 950. The twisted pair interface balances both lines
and possesses an input impedance of about 1000. This
termination is somewhat higher than the characteristic im­
pedance (about 960) of twisted pair. Terminations of this
type produce reflections that do not tend to generate mid-bit
errors. Such terminations have the benefit of creating a larg­
er voltage at the receiver over longer cable lengths. For a
more detailed explanation of· the 3270 line interface, see
Application Note "A Combined Coax/Twisted Pair 3270
Line Interface for the OP8344 Biphase Communications
Processor'"

3.2.5.2 5250 Line Interface

The 5250 environment utilizes twinax in a multi-drop config­
uration, where eight devices can be "daisy-chained" over a
total distance of 5,000 feet and eleven splices, (each physi­
cal device is considered a splice). Twinax connectors are
bulky and expensive, but are very sturdy. Twinaxial cable is
a shielded twisted pair that is nearly % of an inch thick.

+5V

+ ALG-IN

- ALG-IN

TL/F/9336-G1

FIGURE 3-12. BCP Receiver Design

1-102

3.0 Transceiver (Continued)

Legend

@ To 2:1:1 Transformer

@. From DP8344 Outputs

+

'1/2 053487
45.3n 1%

loon 1%

TL/F/9336-G2

FIGURE 3·13. BCP Driver Design

,ADC Connector
0.1 IJF +,

Center -------t---+-----1HIl
Twisted Pair -----:"--4~t_...,

Legend

o To 2:1:1 Transformer

Switch Open - Twisted Pair

Switch Closed - Coax

Shield

~O.IIJF

TL/F/9336-G3

FIGURE 3·14. BCP Coax/Twisted Pair Front End

The cable shield must be continuous throughout the trans­
mission system, and be grounded at the system unit and
each station. Since twinax connectors have exposed metal
connected to their shield grounds, care must be taken not to
expose them to noise sources. The polarity of the two inner
conductors must also be maintained throughout the trans­
mission system.

The transmission system is implemented in a balanced cur­
rent mode; every receiver/transmitter pair is directly cou­
pled to the twinax at all times. Data is impressed on the
transmission line by unbalancing the line voltage with the
driver current. The system requires passive termination at
both ends of the transmission line. The termination resist­
ance value' is given by:

Rt = 20/2; where

Rt: Termination Resistance

20: Characteristic Impedance

In practice, termination is accomplished by connecting both
conductors to the shield via 54.9.0, 1 % resistors; hence the
characteristic impedance of the twinax cable of 107.0 ± 5%
at 1.0 MHz. Intermediate stations must not terminate the
line; each is configured for "pass-through" instead of "ter­
minate" mode. Stations do not have to be powered on to
pass twinax signals on to other stations; all of the receiver/
transmitter pairs are DC coupled. Consequently, devices
must never output any signals on the twinax line during pow­
er-up or down that could be construed as data, or interfere
with valid data transmission between other devices.

1-103

, Driver Circuits for the DP8344B

The transmitter interface on the DP8344B is sufficiently
general to allow use in 3270, 5250, and 8·bit transmission
systems. Because of this generality, some external hard­
ware is needed to adapt the outputs to form the signals
necessary to drive the twinax line. The chip provides three
signals: DATA-OUT, OAT A-DL Y and TX-ACT. DATA-OUT is
biphase serial data (inverted). DATA-DLY is the biphase se­
rial data output (non-inverted) delayed one-quarter bit-time.
TX-ACT, or transmitter active, signals that serial data is be­
ing transmitted when asserted. DATA-OUT and DATA-DL Y
can be used to form the A and B phase signals with their
three levels by the circuit shown in Figure 3-15. TX-ACT is
used as an external transmitter enable. The, BCP can invert
the sense of the DATA-OUT and DATA-OLY signals by as­
serting [TIN] {TMR[3] l. This feature allows both 3270 and
5250 type biphase data to be generated, and/or utilization
of inverting on non-inverting transmitter stages.

Drivers for the 5250 environment may not place any signals
on the transmission system when not activated. The power­
on and off conditions of,' drivers must be prevented from
causing noise on the system since other devices may be in
operation. Figure 3-15 shows a"DC power good" signal
, enabling the driver circuit. This signal will lock out conduc­
tion in the drivers if the supply voltage is out of tolerance.

Twinax signals can be viewed as consisting of two distinct
phases, phase A and phase B, each with three levels, off,

II
I

3.0 Transceiver (Continued)

high and low. The off level corresponds with 0 mA current
being driven, the high level is nominally 62.5 mA, + 20%
-30%, and the low level is nominally 12.5 mA, +20%
-30%. When these currents are applied to a properly ter-
minated transmission line the resultant voltages impressed
at the driver are: off level is OV, low level is 0.32V ±20%,
high level is 1.6V ± 20%. The interface must provide for
switching of the A and B phases and the three levels. A bi­
modal constant current source for each phase can be built
that has a TTL level interface for the BCP.

Receiver Circuits

The pseudo-differential mode of the twinax signals make
receiver design requirements somewhat different than the
coax 3270 world. Hence, the analog receiver on the BCP is
not well suited to receiving twinax data. The BCP provides
both analog inputs to an on-board comparator circuit as well
as a TTL level serial data input, DATA-IN. The sense of this
serial data can be inverted by the BCP by asserting [RIN],
ITMR[41l.

The external receiver circuit must be designed with care to
ensure reliable decoding of the bit-stream in the worst envi­
ronment. Signals as small as 100 mV must be detected. In
order to receive the worst case signals, the input level
switching threshold or hysteresis for the receiver should be
nominally 29 mV ± 20%. This value allows the steady state,
worst case signal level of 100 mV ± 66% of its amplitude
before transitioning.

DATA-OUT 0---.-----..... -1-......-1

TX-ACT

PWR-GOOD ~---f---I

75112
11

Vee- lY
lA lZ
19

lC
27mA

D

2A
74ALS810 29 2Y

2C 2Z
DATA-DLY O----~"

To achieve this, a differential comparator with complemen­
tary outputs can be applied, such as the National LM361.
The complementary outputs are useful in setting the hyster­
esis or switching threshold to the appropriate levels. The
LM361 also provides excellent common mode noise rejec­
tion and a low input offset voltage. Low input leakage cur­
rent allows the design of an extremely sensitive receiver,
without loading the transmission line excessively.

In addition to good analog design techniques, a low pass
filter with a roll-off of approximately 1 MHz should be ap­
plied to both the A and B phases. This filter essentially con­
ducts high frequency noise to the opposite phase, effective­
ly making the noise common mode and easily rejectable.

Layout considerations for the LM361 include proper bypass­
ing of the ± 12V supplies at the chip itself, with as short as
possible traces from the pins to 0.1 IlF ceramic capacitors.
Using surface mount chip capacitors reduces lead induc­
tance and is therefore preferable in this case. Keeping the
input traces as short and even in length is also important.
The intent is to minimize inductance effects as well and
standardize those effects on both inputs. The LM361 should
have as much ground plane under and around it as possi­
ble. Trace widths for the input signals especially should be
as wide as possible; 0.1 inch is usually sufficient. Finally,
keep all associated discrete components nearby with short
routing and good ground/supply connections.

For a more detailed explanation of the 5250 line interface,
see application note "Interfacing the DP8344 to Twinax."

PHASE-A ----------+ ------r--> PHASE-9
DPDT
~ PASS THRU

If
:

~, -----' TERMINATE

5UD. 54.9D.
1% 1%

4.7k

33pF'

4.7k

SHIELD GND

10k 10k 10k
820k

11

D-..... - => DATA-IN

MINUS-12
820k

TL/F/9336-G4

FIGURE 3·15. 5250 Line Interface Schematic

1-104

4.0 Remote Interface and Arbitration System (RIAS)
INTRODUCTION

Communication with the BCP is based on the BCP's ability
to share its data memory. A microprocessor (or any intelli­
gent device) can read and write to any BCP data location
while the BCP CPU is executing instructions. This capability
is part of the BCP's Remote Interface and Arbitration Sys­
tem (RIAS). Sharing data memory is possible because
RIAS's arbitration logic allocates use of the BCP's data and
address buses. RIAS has been designed so that accesses
of BCP data memory by another device minimally impact its
performance as well as the BCP's. In addition to data mem­
ory accesses, RIAS allows another device to control how
BCP programs are loaded, started and debugged.

4.1 RIAS ARCHITECTURAL DESCRIPTION

Interfacing to the BCP is accomplished with the control sig­
nals listed in Table 4-1. Figure 4-1 shows the BCP inter­
faced to Instruction Memory, Data Memory, and an intelli­
gent device, termed the Remote Processor (RP). Instruction
and Data are separate memory systems with separate ad­
dress buses and data paths. This arrangement allows con­
tinuous instruction fetches without interleaved data access­
es. Instruction Memory (IMEM) is interfaced to the BCP
through the Instruction (I) and Instruction Address (IA) bus­
es. IMEM is 16 bits wide and can address up to 64k memo­
ry. Data Memory (DMEM) is eight bits wide and can also
address up to 64k memory. The DMEM address is formed
by the 8-bit upper byte (A bus) and the a-bit lower byte (AD
bus). The AD bus must be externally latched because it also
serves as the path for data between the BCP and DMEM.
For further information on how AD bus is used, refer to Sec­
tion 2.2.2 CPU Timing.

The Remote Processor's address and data buses are con­
nected to the BCP's address and data buses through the

bus control circuitry. The RP's address lines decode a chip
select for the BCP called Remote Access Enable (RAE).
Basically, the BCP's Data Memory has been memory
mapped into the RP's memory. A Remote Access of the
BCP occurs when REM-RD or REM-WR, along with RAE is
asserted low. REM-RD and REM-WR can be directly con­
nected to the Remote Processor's read and write lines, or
for more complicated systems the REM-AD and REM-WR
signals may be controlled by a combination of address de­
code and the RP's read and write signals. To the RP, an
access of the BCP will appear as any other memory system
access. This configuration allows the RP to read and write

. Data Memory, read and write the BCP's Program Counter,
and read and write BCP Instruction Memory. These func­
tions are selected by control bits in the Remote Interface
Configuration register! RIC I. This register can be accessed
only by the RP and not by the BCP CPU. If the Remote
Processor executes a remote access with the Command
input (CMD) high, !RICI is accessed ,through the BCp's AD
bus.

In Figure 4-1, the Remote Processor's address lines are
decoded to form the CMD input. When a remote access
takes place with CMD low, the memory system designated
in !RICI is accessed. Figure 4-2 shows the contents of
!RICI. The two least significant bits are the Memory Select
bits [MS1-0] which designate the type of reinote access: to
Data Memory, the Program Counter, or Instruction Memory.
This register also contains the BCP start bit [STRT], three
interface select bits [FBW, LR, LW], the Single-Step bit
[SS], and the Bi-directional Interrupt Status bit [BIS]. Refer
to the RIAS Reference Section for a more detailed descrip­
tion of the contents of this register and the function of each
bit.

IAl========~~AD;D;R --I
INSTR

tc===============~DATA RAM

REMOTE
PROCESSOR

ViR

DE
1--------.-,~IViR

J=======:::;;==:::;;::::~ADDR DATA
RAM

DATA t:;::::======:::J

ADDRI=======~

FIGURE 4·1. BCP/Remote Processor Interface

1-105

TLIF/9336-19

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

TABLE 4-1. RIAS Inputs and Outputs

Signal In/Out Pin
Reset

Function
State

CMD In 45 X CoMmanD input. When high, remote accesses are directed to the
Remote Interface Configuration register, (RICI. When low, remote
accesses are directed to Data Memory, Instruction Memory or the
Program Counter as determined by (RIC [1,0] I.

m Out 31 0 loCal. Normally low, goes high when the BCP relinquishes the data
and address bus to service a remote access.

'['(5CK In 44 X Asserting this input Low will lOCK out local (BCP) accesses to Data
Memory. Once the remote processor has been granted the bus,
lOCK gives it sole access to the bus and BCP accesses are
"waited".

'RAE In 46 X Remote Access Enable. Setting this input low allows host access of
BCP functions and memory.

REM-RD In 47 X REMote ReaD. When low along with RAE, a remote read cycle is
requested; serviced by the BCP when the data bus becomes
available.

REM-WR In 48 X REMote WRite. When low along with RAE, a remote write cycle is
requested; serviced by the BCP when the data bus becomes
available.

WR·PEND Out 49 1 WRite PENDing. In a system configuration where remote write
cycles are latched, WR·PEND will go low, indicating that the latches
contain valid data which have yet to be serviced by the BCP.

XACK Out 50 1 Transfer ACKnowledge. Normally high, goes low on REM-RD or
REM-WR going low (if RAE low) returning high when the transfer is
complete. Normally used as a "wait" signal to a remote processor.
(In the latched Write mode, XACK will only transition if a second
remote access begins before the first one completes.)

WAIT In 54 X Asserting this input low will add wait states to both remote accesses
and to the BCP instruction cycle. WAIT will extend a remote access
until it is set high.

7 6 5 4 3 2 1 0 The two key handshake signals involved in the BCP/RP

I BIS I SS I FBW I LR I LW I STRT I MS1 I MSO I RIC
interface are Transfer Acknowledge (XACK) and Local
(LCL). Internally, two more signals control the access tim·

BIS -Bidirectional Interrupt Status ing: INT·READ and INT-WRITE. The timing for a generic

SS -Single-Step
Remote Access is shown in Figure 4-3. A remote access is

FBW -Fast Buffered Write mode REHDM~ : : r-
lR -Latched Read mode

j >
REt.I-WR

LW -Latched Write mode XACK

STRT -BCP CPU start/ stop
, ,

I: !
MS1-0 -Memory Selection

[C[, \ ,
1 ,

FIGURE 4-2. Remote Interface Control Register INT- READ or , \ '/ I INT-WRITE , ; ,
4.1.1 Remote Arbitration Phases Arbitration

,
Access

I __ J

Termination

The BCP CPU and RIAS share the internal CPU-ClK. This TLIF/9336-20

clock is derived from the X1 crystal input. It can be divided FIGURE 4-3. Generic Remote Access (RAE = 0)
by two by setting [CCS] = 1 in (OCR I or run undivided by initiated by the RP asserting REM-RD or REM-WR with RAE
setting [CCS] = O. The frequency at which the Remote low. There is no set-up/hold time relationship between RAE
Processor is run need not bear any relationship to the CPU- and REM-RD or REM-WR. These signals are internally gat-
ClK. A remote access is treated as an asynchronous event ed together such that if RAE (REM-RD + REM-WR) is true,
and data is handshaked between the Remote Processor a remote access will begin. A short delay later, XACK will
and the SCPo fall. This signal can be fed back to the RP's wait line to

extend its read or write cycle, if necessary. When the BCP's

1·106

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

arbitration logic determines that the BCP is not using data
memory, lCl rises, relinquishing control of the address and
data buses to the RP. The remote access can be delayed at
most one BCP instruction (providing [lOR] is not set high).
If the CPU is executing a string of data memory accesses,
RIAS has an opportunity to break in at the completion of
every instruction. The time period between REM-RD or
REM-WR being asserted (with RAE low) and [C[rising is
called the Arbitration Phase. It is a minimum of one T-state,
but can be increased if the BCP CPU is accessing Data
Memory (local access) or if the BCP has set the lock Out
Remote bit [lOR].

The CMD pin is internally latched on the first falling edge of
the CPU-ClK after a remote access has been initiated by
asserting RAE low along with asserting REM-RD or
REM-WR low. If the remote interface is asynchronous, the
CMD signal must be valid simultaneously or before RAE is
asserted low along with REM-RD or REM-WR being assert­
ed low. The value of CMD is only sampled once during each
remote access and will remain in effect for the duration of
the remote access.

After the Arbitration Phase has ended, the Access Phase
begins. Either Data Memory, Instruction Memory, the Pro­
gram Counter, or (RIC! is read or written in this phase.
Either INT-READ or INT-WRITE will fall one T-state after
[C[rises. These two signals provide the timing for the dif­
ferent types of accesses. INT-READ times the transitions on
the AD bus for Remote Reads and forms the external READ
line. INT-WRITE clocks data into the PC and (RIC! and
forms the IWR and WRITE lines. INT-READ and INT-WRITE
rise with XACK, or shortly after.
The duration of the Access Phase depends on the type of
memory being accessed. Data Memory and Instruction
Memory accesses are subject to any programmed wait
states and all remote accesses are waited by asserting
WAIT low. The minimum time in the Access Phase is 2
T-states.

The rising edge of XACK indicates the Access Phase has
ended and the Termination Phase has begun. If the RP was
doing a read operation, this edge indicates that valid data is
available to the RP. During the Termination Phase the BCP
is regaining control of the buses. [C[falls one T-state after
XACK and since the RP is no longer being waited, it can
deassert REM-RD or REM-WR. The duration of this phase
is a minimum of one T-state, but can be extended depend­
ing on the interface mode chosen in (RIC!.

4.1.2 Access Types
There are four types of accesses an RP can make of the
BCP:

-Remote Interface Control Register (RIC!
-Data Memory (DMEM)
-Program Counter (PC)
-Instruction Memory (IMEM)

An access of (RIC! is accomplished by asserting RAE and
REM-RD or REM-WR with the CMD pin asserted high. The
Remote Interface Configuration register is accessed
through the AD bus as shown in Figure 4-4(c). A read or
write of (RIC! can take place while the BCP CPU is execut­
ing instructions. Timing for this access is shown in Figures
4-4(a) and (b). Note that in the Remote Read Figure 4-4(a),
AD does not transition. This is because the contents of
(RIC! are active on the bus by default. The AD bus is in

1-107

TRI-STATE during a Remote Write Figure 4-4(b) while [C[
is high. The byte being written to (RIC! is latched on the
rising edge of XACK and can be seen on AD after [C[falls.

The Access Phase, in this case, is always two T-states (un­
less WAIT is low) because (RIC! is not subject to any pro­
grammed wait states.

Arbitration Access Termination

REt.I-RD ~'--_...I. ____a.. __ -J~

WllZ
XACK ,'---'----......,/

LCL ____ ..I/ ''---
AD RIC

TLIF/9336-BO

(a) Remote Read Timing (RAE = 0)

Arbitration Acc.ss Termination

R[t.I-WR~~ __ +-_______ ~ ____ ...I~

Ct.lD7lZllI WllZ
XACK

LCL

AD

,
'--+-----~/
I ''---

RIC) (New RIC

TLIF/9336-B1

(b) Remote Write Timing (RAE = 0)

(c) RIC to AD Connectivity

FIGURE 4-4. Generic RIC Access

TL/F/9336-B2

I

II

,~'r---~

4.0 Remote Interface and Arbitration System (RIAS).(Continued) ~
('t)
co
D..
c'

Remote Accesses other than ,to {RIC I are. accomplished
with the CMD pin low in conjunction with asserting RAE low
along with REM-WR or REM-RD being taken low. The type
of access performed is defin~d by the Memory Select bits in
{RICl, as shown in Figure 4-5.

76543210

I BIS I,~s I FBW I LRILW 1ST l MS1! MSOJ

. Memory Select Bits
00 - Data Memory
01 - Instru'ction M~mory
10 - PC low byte
11 - PC high byte'

FIGURE 4~5:Merriory' Select Bits in {RIC I
Re~ds or ~rites of Data Memory (DMEM) are preceded by
setting the Memory Select bits in {RICI for a DMEM ac­
cess: [MS1,O] = OO."After that, the· RP simply reads or
writes to BCP Data Memory as many times as it needs to. A
DMEM access, as well as a (RICI access, can be made
while the BCP CPLJ: i.s executing instructions. All other ac­
cesses must be executed with' the BCP CPU stopped.

The timing for a Data Memory read and write are shown in
Figure 4-6. The access is initiated by asserting RAE and
REM-RD or REM-WR while CMD is low. The BCP responds
by bringing its address and data lines into TRI-STATE and
allowing the RP to control DMEM. READ is asserted in the
Acces~ Phase of a Remote Read Figure 4-6(a).lt will stay
low.for a minimum of one T-state, but can be extended by
adding programmable data waif states or by taking WAIT
low. WRITE is asserted in the Access Phase with a remote
write. It too is a minimum of one T-state and can be in­
creased by adding programmable wait states or by taking
WAIT I.ow. \. . ",

Figure 4-7(c) shows the data path from the Progra~ Coun­
ter to the AD bus. Both high and. low PC bytes can be writ­
ten or read through AD. The RP has independent control of
the high. and low bytes' of the Program Counter....:the· byte
being ac~~ssed is specified in the Memory Select bits. The
high byte, of the. PC is accessed by setting [MS1-0] = 11.
Setting [MS1-0] = 10 allolNs access to the low byte of the
PC"After the Memory Select bits are set by a Remote Write
to {RIC I; the byte selected can be read or written by the RP
by executing a Remote Access with CMD low. Remote ac­
cesses t~ both the high and low bytes of the PC;as well as
the instruction memory access must be executed with the
BCP CPU· idle.' Four accesses by the RP are ,necessary to
read or write both the high and low bytes of the PC. Timing
for a PC access is shown in Figure 4-7(a) and (b). The PC
becomes valid on a Remote Read (a) one T-state after [C[
rises and one T-state befOre XACK rises. AD is in TRI­
STATE whil.e. LC?L ishigh for a Remote Write (b)., Time in the
Access Phase is two T-states if WAIT is not asserted.

Instruction memory (IMEM) is accessed through another in­
ternal path: from .AD to the I bus, shown in Figure 4-8(c).
The memory is accessed first low byte, then high byte. Low
and high bytes of the 16-bit I bus are alternately accessed
for Remote Reads. An 8-bit holding register, ILAT, retains
the low byte until the high byte is written by the Remote
Processor for the, write to IMEM. The. BCPincrements the
PC after the high byte has been accessed.

1-108

Arbitration Access Tennlnlltlon

REM~RD~~ __ ~ __________ ~ __ ~~

:.CMD ~""'--......i-_~ __ .l..-__ RllZZ
XACK

.LcL

READ

AD

1 ,:
I
1

" '"",,--'1 ,
1
1

RIC). (RIC

TL/F/9336-63

(a) Remote Read Timing (RAE = 0)

Arbitration Access Tennlnlltlon

REM-WR ~,-' __ ~ __________ ...;-__ ~r-,

, CMD ~""'--......i---:""---';' __ -I-__ lllllZ
XACK ,: :t

"'. i-.------~i
1

LcL ________ J~r--~---~~\~ __ _

WRITE

AD·

i
1 '---~1
1

RiC) RIC

TL/F /9336-64

(b) Remote Write Timing (RAE = 0)

FIGURE 4·6. Generic DMEM Access

Timing for an IMEM access is shown in Figure 4-8(a) and
(b). As before, the Memory Select bits are first set to instruc­
tion memory:. [MS1-0] = 01. It is only necessary to set
[MS1-0] once for repeated IMEM accesses. (Instruction
Memory is the powf,3r-up Memory Selection state.) A simple
state machine keeps track of which instruction byte is ex­
pected next-low or high byte.' The state machine powers
up looking for the low instruction byte and every IMEM ac­
cess causes this state ,machine to switch to the alternate
byte. Accesses other than to IMEM will not cause the state
machine to switch to the alternate byte, but writing 01 to the
.Memory ?electbits in (,RIOUi.e. [MS1-0]'"", 01,pointingto
IMEM) Will always force the state machine tothe"low,byte
state". This way the Instruction word boundary can be resElt
without resetting the 80~; When the BOP is reset the state
machine will also be forced to the~'low bYte state:"

Figure 4-8(a) shows a Remote Read of Instruction memory.
Both the low byte, then the high byte can be seen on back
to back remote reads: An instruction byte becomes active
on the AD bus one T-state after [C[rises and is valid when
XACK rises. This time period will be a minimum of one
T-state, but can be extended up to three more T-states by
instruction wait states. '.

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

Arbitration ACCI.,

REM-RD~~ __ ~ ____________ ~ ____ _

CMDD.,~_.:..-____:.. __

XACK \1

ffi ____J~

AD ___ R_IC ________ -JX~ ______ __
(a) Remote Read Timing (RAE = 0)

Arbitration Acc"s T.rmlnatlon

REM-WR~ r-
CMDD., IlllE

1

XACK \ (I
1

ffi

" \
1

AD RIC >: (RIC

(b) Remote Write Timing (RAE = 0)

1-,..-.. ~tlIA15- 8

......... -tl 1A7-0

(c) IA to AD Connectivity

FIGURE 4-7. Generic PC Access

1·109

TLlF/9336-66

TL/F/9336-67

•

m
"'11:1' :> 4.0 Remote Interface and Arbitration System (RIAS) (Continued)
CO
a.. c Arbitration

REIA-RD~

CIAO"

XACK~

ill

IA PC

AD RIC

Arbitration

REIA-WR~

CIAO"

XACK \
ill

IA PC

iWR

AD RIC

Access

'i:,>- t.,

I:

X

Access

'/

~
I

Termination Arbitration I

/. .. \ . I

I •.

!(Iii J}71iJA ,I

I

:/ \
I I

\);

It.tEIA 10 X' RIC

(a) Remote Read Timing (RAE ~ 0)

Termination Arbitration

.1 1 .\. I
I I
I

'{@J.i.ii~
I ..

. I

I

(\:
I

\
I '.y,

I;,

-'-I

I
I

(RIC ~
I

(b) Remote Wr~te Ti l1llng (RAE = 0)

(c) I to AD Connectivity

FIGURE 4-8. Generic IMEM Access

1-110

Access

V
I

X It.tEIA hi I X

Access

I

V
I

I
I

'-'-----1

TL/F/9336-90

Termination

r-
IlllE

\
X PC+1

TL/F 19336-88

Termination

r-
IlllE

\

XEl

(RIC

TL/F/9336-89

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

In addition, WAIT can delay the rising edge of XACK indefi­
nitely. One T-state after XACK rises, I RIC I will once again
be active on AD. Timing is similar for a Remote Write. AD is
in TRI-STATE while LCL is high. LCL is asserted for a mini­
mum of three T-states, but can be extended by instruction
wait states and the WAIT pin. IWR clocks the instruction
into memory during the write of the high byte. The Instruc­
tion Address (PC) is incremented about one T -state after
LCL falls on a high byte access for both Remote Reads and
Writes.

Soft-loading Instruction Memory is accomplished by first
setting the BCP Program Counter to the starting address of
the program to be loaded. The Memory Select bits are then
set to IMEM. BCP instructions can then be moved from the
Remote Processor to the BCP-Iow byte, high byte-until
the entire program is loaded.

4.1.3 Interface Modes

The Remote Interface and Arbitration System will support
TRI-STATE buffers or latches between the Remote Proces­
sor and the BCP. The choice between buffers and latches
depends on the type of system that is being interfaced to.
Latches will help prevent the faster system from slowing to
the speed of the slower system. Buffers can be used if the
Remote Processor (RP) requires that data be handshaked
between the systems.

Figure 4-9 shows the timing of Remote Reads via a buffer
(a) and a latch (b) (called a Buffered Read and Latched
Read). The main difference in these modes is in the Termi­
nation Phase. The Buffered Read handshakes the data
back to the RP. When the BCP deasserts XACK, data is
valid and the RP can deassert REM-RD. Only after REM-RD
goes high is LCL removed. In the Latched Read Figure
4-9(b) XACK rises at the same time, but the Termination
Phase completes without waiting. for the rising edge of
REM-RD. One half T-state after XACK rises, INT-READ ris-

XACK /
ill -----' ~'---

l--
'-------'

Arbitration Access Termination

TL/F/9336-91

(a) Buffered Read

es and one half T-state later LCL falls. The BCP can use the
buses one T-state after LCL falls. The minimum time (no
wait states, no arbitration delay) the BCP CPU could be pre­
vented from using the bus is four T-states in the Latched
Read Mode.

A Buffered Read prevents the BCP CPU from using the bus
during the time RP is allocated the buses. This time period
begins when LCL rises and ends when REM-RD is re­
moved. If the REM-RD is asserted longer than the minimum
Buffered Read execution time (four T-states), then the BCP
may be unnecessarily prevented from using the buses.
Therefore, if there are no overriding reasons to use the Buff­
ered Read Mode, the Latched Read Mode is preferable.

There are three Remote Write Modes-two require buffers
and one requires latches. The timing for the writes utilizing
buffers is shown in Figure 4-10. The Slow Buffered Write (a)
is handshaked in· the same manner as the Buffered Read
and thus has the same timing. The Fast Buffered Write has
similar timing to the Latched Read. This timing similarity ex­
ists because the BCP terminates the remote access without
waiting for the RP to deassert REM-WR.

In both cases, XACK falls a short delay after REM-WR falls
and LCL rises when the RP is given the buses. One T-state
after LCL rises, INT-WRITE falls. The termination in the
Slow Buffered Write mode keys off REM-WR rising, as
shown in Figure 4-10(a). INT-WRITE rises a prop-delay later
and LCL falls one T-state later. The Fast Buffered Write,
shown in Figure 4-10(b), begins the Termination Phase with
the rising edge of XACK. INT-WRITE rises at the same time
as XACK, and LCL falls one T-state later. The BCP can
begin a local access one T-state after LCL transitions.

A Fast Buffered Write is preferable to the Slow Buffered
Write if RP's write cycles are slow compared to the mini­
mum Fast Buffered Write execution time. The Fast Buffered
Write assumes, though, that data is available to the BCP by
the time INT-WRITE rises.

~ I

~------/-----
,'-----

''-__ --1
Arbitration Access TermInation

TL/F/9336-92

(b) Latched Read

FIGURE 4-9. Read from Remote Processor

1-111

III

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

XACK

LCL ----
Arbitration Access Termination

TL/F/9336-93

(a) Slow Buffered Write

REM - WR

~
I

XACK I
LCL I \

INT- WRITE \ I
Arbitration Access Termination

TL/F/9336-94

(b) Fast Buffered Write

FIGURE 4-10. Buffered Write from Remote Processor

in both Buffered Write Modes, XACK is asserted to wait the
RP. The Latched Write Mode makes it possible for the RP to
write to the BCP without getting waited. The timing for the
Latched Write Mode is shown in Figure 4-11. When the Re­
mote Processor writes to the BCP, its address and data
buses are externally latched on the rising edge of REM-WR.
Even though REM-WR has been asserted XACK does not

XACK

ill ----1----.1
I '----1,----

Arbitration Access Phase : Termination

TL/F/9336-95

FIGURE 4-11. Latched Write from Remote Processor

1-112

switch. The BCP only begins remote access execution after
the trailing edge of REM-WR. Since the RP is not requesting
data back from the BCP, it can continue execution without
waiting for the BCP to complete the remote access. After
REM-WR is deasserted, WR-PEND is taken low to prevent
overwrite of the latches. A minimum of two T-states later
LCL switches and AD, A, and the external address latch go
into TRI-STATE, allowing the latches which contain the re­
mote address and data to become active. If the RP attempts
to initiate another access before the current write is com­
plete, XACK is taken low to wait the RP and the address
and the data are safe because WR-PEND prevents the
latches from opening. The Access Phase ends when
INT-WRITE rises and the data is written. One T-state later,
[C[falls and one T-state after that WR-PEND rises. If an­
other access is pending, it can begin in the next T-state.
This is indicated by XACK rising when WR-PEND rises.

A minimum BCP/RP interface utilizes four TRI-STATE buff­
ers or latches. A block diagram of this interface is shown in
Figure 4-12. The blocks A, B, C, and D indicate the location
of buffers or latches. Blocks A and B isolate 16 bits of the
RP's address bus from the BCP's Data Address bus. Two
more blocks, C and D, bidirectionally isolate 8 bits of the
RP's data bus from the BCP AD bus.

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

~~----------------------------~I
It.4Et.4

Bep At-r_~r--'"":>C""'""-----..,j

Dt.4Et.4

AD

REt.40TE
PROCESSOR

ADDR ~ ______________ --I

DATA I'\r-------."----------------J

TL/F/9336-96

FIGURE 4-12. Minimum BCP/Remote Processor Interface

The BCP Remote Arbitrator State Machine (RASM) must and [FBW] = 1. designates a Fast Buffered Write. A
know what hardware interfaces to the RP in order to time Latched Write is accomplished by using latches for blocks
the remote accesses correctly. To accomplish this, three A, B, and C and setting [LW] = 1.
Interface Mode bits in (RIC} are used to define the hard­
ware interface. These bits are the Latched Write bit [LWl,
the Latched Read bit [LR] and the Fast Buffered Write bit
[FBW]. See Figure 4-13.

765432 0

1 BIS 1 SS I, FBW 1 LR 1 LW J ST 1 MS1 1 MSO I
T

Interface Mode Bits

- 0 - - Buffered Read

- 1 - - Latched Read

o - 0 - Slow Buffered Write

1 - 0 - Fast Buffered Write

X - 1 - Latched Write

FIGURE 4-13. Interface Mode Bits

All combinations of Remote Reads or Writes with buffers or
latches can be configured via the Interface Mode bits. A
Buffered Read is accomplished by using a buffer for block D
and setting [LR] ;; o. Conversely, using a latch for block D
and setting [LR] = 1 configures the RASM for Latched
Reads. Using buffers for blocks A, B, and C and setting
[LW] = 0 allows either a Slow or Fast Buffered Write. Set­
ting [FBW] = 0 configures RASM for a Slow Buffered Write

1-113

4.1.4 Execution Control

The BCP can be started and stopped in two ways. If the
BCP is not interfaced to another processor, ilcan be started
by pulsing RESET low while both REM-RD and AEM-WA
are low. Execution then begins at location zero. If there is a
Aemote Processor interfaced to the BCP, a write to (AIC}
which sets the start bit [STAT] high will begin execution at
the current PC location. Writing a zero to [STAT] stops exe­
cution after the current instruction is completed. A Single­
Step is accomplished by writing a one to the Single-Step bit
[SS] in (RIC}. This will execute the instruction at the current
PC, increment the PC, and then return to idle. [SS] returns
low after the single-stepped instruction has completed. [SS]
is a write only bit and will always appear low when (AIC} is
read.

Two pins (WAIT and IT5Ci<), and one register bit, [LOR],
can also affect the BCP CPU or RIASexecution. The WAIT
pin can be used to add wait states to a remote access.
When WAIT must be asserted low to add wait states is de­
pendent on which remote access mode is being used. The
information needed to calculate when WAIT must be assert­
ed to add wait states, is contained within the individual de­
scriptions of the modes in the next section (4.2 RIAS Func­
tional Description).

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

Programmed wait states delay when WAIT must be assert­
ed since programmed wait states are inserted before WAIT
is tested to see if any more wait states should be added.
LOCK prevents local accesses of Data Memory. If LOCK is
asserted a half T-state before T1 of a BCP instruction cycle,
further local accesses will be prevented by waiting the Tim­
ing Control Unit. The Timing Control Unit (TCU) is the BCP
CPU sub system responsible for timing each instruction. For
a more detailed description of the operation of LOCK, refer
to the CPU Timing section. [LOR] allows the BCP to prevent
remote accesses. Once [LOR], located in {ACR I, is set
high, further remote accesses are waited by XACK remain­
ing low.

Though the BCP CPU runs independently of RIAS there is
some interaction between the two systems. [LOR] is one
such interaction. In addition, two bits allow the BCP CPU to
keep track of remote accesses. These bits are the Remote
Write bit [RW] and the Remote Read bit [RR], and are lo­
cated in {CCR[6-5]}. Each bit goes high when its respec­
tive remote access to DMEM reaches its Termination
Phase. Once one of these bits has been set, it will remain
high until a "1" is written to that bit to reset it low.

4.2 RIAS FUNCTIONAL DESCRIPTION
In this section, the operation of the Remote Arbitration State
Machine (RASM), is described in detail. Discussed, among
other things, are the sequence of events in a remote ac­
cess, arbitration of the data buses, timing of external sig­
nals, when inputs are sampled, and when wait states are
added. Each of the five Interface Modes is described in
functional state machine form. Although each interface
mode is broken out in a separate flow chart, they are all part
of a single state machine (RASM). Thus the first state in
each flow chart is actually the same state.

The functional state machine form is similar to a flow chart,
except that transitions to a new state (states are denoted as
rectangular boxes) can only occur on the rising edge of the
internal CPU clock (CPU-CLK). CPU-CLK is high during the
first half of its cycle. A state box can specify several actions,
and each action is separated by a horizontal line. A signal
name listed in a state box indicates that that pin will be
asserted high when RASM has entered that state. Signals
not listed are assumed low.
Note: This sometimes necessitates using the inversion of the external pin

name.

This same rule applies to the A and AD buses. By default,
these buses are active. The A bus will have the upper byte
of the last used data address. The AD bus will display
{RIC I. When one of these buses appears in a state box, the
condition specified will be in effect only during that state.
Decision blocks are shown as diamonds and their meaning
is the same as in a flow chart. The hexagon box is used to
denote a conditional state-not synchronous with the clock.
When the path following a decision block encounters a con­
ditional state, the action specified inside the hexagon box is
executed immediately.

1-114

Also provided is a memory arbitration example in the form of
a timing diagram for each of the five modes. These exam­
ples show back to back local accesses punctuated by a
remote access. Both the state of RASM and the Timing
Control Unit are listed for every clock at the top of each
timing diagram. The RASM states listed correspond to the
flow charts. The Timing Control Unit states are described in
Section 2.2.2, Timing portion of the data sheet.

4.2.1 Buffered Read

The unique feature of this mode is the extension of the read
until REM-RD is deasserted high. The complete flow chart
for the Buffered Read mode is shown in Figure 4-14. Until a
Remote Read is initiated (RAE·REM-RD true), the state ma­
chine (RASM) loops in state RSA1. If a Remote Read is
initiated and [LOR] is set high, RASM will move to state
RSA2. Likewise, if a Remote Read is initiated while the bus­
es have been granted locally (Le., Local Bus Request = 1),
RASM will move to state RSA2. The state machine will loop
in state RSA2 as long as [LOR] is set high or the buses are
granted locally. If the BCP CPU needs to access Data Mem­
ory while in either RSA state (and LOCK is high), it can still
do so. A local access is requested by the Timing Control
Unit asserting the Local Bus Request (lCl-BREQ) signal. A
local bus grant will be given by RASM if the buses are not
being used (as is the case in the RSA states).

XACK is taken low as soon as RAPREM-RD is true, re­
gardless of an ongoing local access. If [lOR] is low, RASM
will move, into RSs on the next clock after RAE·REM-RD is
true and there is no local bus request. No further local bus
requests will be granted until the remote access is complete
and RASM returns to RSA. Half a T·stateafter entering RSs
the A· bus (and AD bus if the. access is to Data Memory)
goes into TRI-STATE.

On the next CPU-ClK, RASM enters RSc and LCL is taken
high while XACK remains low. The wait state counters, ilW
and lOW, are loaded in this state from {IW1-0] and [DW2~
01; respectively, in {DCRl-The Abus (and AD jf the access
Is to Data Memory) remains in TRI-STATE and the Access
Phase begins.

The state machine can move into one of several states,
depending on the state of CMD and [MS1-0], on the next
clock. XACK remains low and LCl remains high in all the
possible next states. If CMD is high, the access is to {RICI
and the next state will be RSD1. Since the default state of
AD is {RIC I, it will not transition in this state.

The five other next states all have CMD low and depend on
the Memory Select bits. If [MS1-0] is 10 or 11 the state
machine will enter either RS02 or RS03 and the low or high
bytes of the Program Counter, respectively, will be read.

[MS1-0] = 00 designates a Data Memory access and
moves RASM into RS04. READ will be asserted in this state
and A and AD continue to be in TRI-STATE. This allows the
Remote Processor to drive the Data Memory address for
the read. Since DMEM is subject to wait states, RS04 is
looped upon until all the wait states have been inserted.

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

~

1-115

....
en

RAS~ state

TCU state

CLK-OUT

REiHffi

LCL

XACK

READ

ALE

RSA

Tl

RSA

Tx

RSA

TWd

RSA

T2

ADDR/DATA IIIIIIXLOCALADDRX
(0-7) LOCAL DATA

ADDRESS 11111 IX
(0-15)

LOCAL ADDRESS

ADDRESS

DATA

L- LOCAL ~E~ORY READ ~

RS8

Tl

RSC

TWr

RSD

TWr

RSD RSE

_ TWr . TWr

RSE

I
RSE

TWr _ TWr

BCP BUS

RWOTE DATA

RE~OTE ADDRESS

REt.lOTE BUS

RE~OTE ADDRESS

RSE

TWr

RE~OTE DATA

RSr

TWr

RSA

TWr

L..-__________ RE~OTE READ __________ ---l

RSA

Tx

RSA

TWd

RSA

T2

L LOCAL ~E~ORY READ ~

Register Configuration: Other BCP Control Signals:

-One Wait-State Programmed for Data-Memory
-Zero Wait-States Programmed for Instruction-Memory
-{RIC} Contents: XXXOX100
-[LOR] = 0

RAE =0
CMD =0
REM-WR =1
LOCK =1

FIGURE 4-15. Buffered Read of Data Memory by Remote Processor

RSA

Tl

DP8344B

~
(:)

~
(I)

3
o ...
(I)

::J ...
(I)
S»
n
(I)

S»
::J
Q.

l> ...
C"
::; ...
S» ... o·
::J
en
'< o ...
(I)

3 -~ » en -o o
~ s·
c: m
oS

TUF/9336-27

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

The last possible Memory Selection is Instruction Memory,
[MS1-0] = 01. The two possible next states for an IMEM
access depend on if RASM is expecting the low byte or high
byte. Instruction words are accessed low byte then high
byte and RASM powers up expecting the low Instruction
byte. The internal flag that keeps track of the next expected
Instruction byte is called the High Instruction Byte flag (HI B).
If HIB is low, the next state is RS05 and the low instruction
byte is MUXed to the AD bus. If HIB is high, the high instruc­
tion byte is MUXed to AD and RS06 is entered. An IMEM
access, like a OM EM access, is subject to wait states and
these states will be looped on until all programmed instruc­
tion memory wait states have been inserted.
Note: Resetting the SCP will reset HIS (i.e., HIS = 0). Writing 01 to the

Memory Select bits in IRICI (i.e., [MS1-0] = 01, pointing to IMEM)
will also force HIB to zero. This way the instruction word boundary
can be reset without resetting the SCPo

After all of the programmed wait states are inserted in the
RSo states, more wait states may be added by asserting
WAIT Iowa half T-state before the end of the last pro­
grammed wait state. If there are no programmed wait
states, WAIT must be asserted Iowa half T-state before the
end of RSo to add wait states. If WAIT remains low, the
remote access is extended indefinitely. All the RSo states
move to their corresponding RSE states on the CPU-ClK
after the programmed wait state conditions are met and
WAIT is high. The RSE states are looped upon until RAE*
REM-RD is deasserted. lCl remains high in all RSE states
and A remains in TRI-STATE. AD will also stay in TRI­
STATE if the access was to DMEM. XACK is taken back
high to indicate that data is now valid on the read. If XACK is
connected to a Remote Processor wait pin, it is no longer
waited and can now terminate its read cycle. This state be­
gins the Termination Phase. The action specified in the con­
ditional box is only executed while RAE*REM-RD is assert­
ed-a clock edge is not necessary. In all RSE states except
RSE4 (OM EM) lCl will fall a propagation delay after
RAE*REM-RD is deasserted. In RSE4, lCl remains high
through the whole state.

On the CPU-ClK after RAE*REM-RD is deasserted. RASM,
enters RSF1 from every RSE state except RSE4 (OM EM). In
RSF1. ICC remains low and A remains in TRI-STATE while
CPU-ClK is high (Le., for the first half T-state of RSF1).

1-117

From RSE4, RASM enters RSF2 on the CPU-ClK after
RAE*REM-RD is deasserted. In RSF2, [C[remains high
while both A and AD remain in TRI-STATE.

From RSF1, the next clock will return the state machine
back to state RSA1 where it will loop until another Remote
Access is initiated. If the access was to IMEM, then the last
action of the remote access before returning to RSA is to
switch HIB and increment the PC if the high byte was read.

From RSF2, the next CPU-ClK returns to state RSA3 where
ICC returns low, but A and AD remain TRI-STATE for the
first half T-state of RSA3. If no Remote Access is initiated
the next state will be RSA 1 where it will loop until another
Remote Access is initiated.

The example in Figure 4-15 shows the BCP executing the
first of two consecutive Data Memory reads when REM-RD
goes low. In response, XACK goes low waiting the remote
processor. At the end of the first instruction, although the
BCP begins its second read by taking ALE high, the RASM
now takes control of the bus and takes lCl high at the end
of T1. A one T-state delay is built into this transfer to ensure
that READ has been deasserted before the data bus is
switched. The Timing Control Unit is now waited, inserting
remote access wait states, TWr, as RASM takes over.

The remote address is permitted one T-state to settle on the
BCP address bus before READ goes low, XACK then re­
turns high one T-state plus the programmed Data Memory
wait state, T Wd later, having satisfied the memory access
time. The Remote Processor will respond by deasserting
REM-RD high to which the BCP in turn responds by deas­
serting READ high. Following READ being deasserted high,
the BCP waits till the end of the next T-state before taking
lCl low, again ensuring that the read cycle has concluded
before the· bus is switched. Control is then returned to the
Timing Control Unit and the local memory read continues.

4.2.2 Latched Read

This mode differs from the Buffered Read mode in the way
the access is terminated. A latched Read cycle ends after
the data being read is valid and the termination doesn't wait
for the trailing edge of REM-RD. Therefore the Arbitration
and Access Phases of the latched Read mode are the
same as for the Buffered Read mode. The complete flow
chart for the latched Read mode is shown in Figure 4-16.

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

Until a Remote Read is initiated (RAE*REM-RD true), the
state machine (RASM) loops in state RSA1. If a Remote
Read is initiated and [LOR] is set high, RASM will move to
state RSA2. Likewise, if a Remote Read is initiated while the
buses have been granted locally (Le., Local Bus Grant = 1),
RASM will move to state RSA2. The state machine will loop
in state RSA2, as long as [LOR] is set high or the buses are
granted locally. If the BCP CPU needs to access Data Mem­
ory while in either RSA state (and LOCK is high), it can still
do so. A local access is requested by the Timing Control
Unit asserting the Local Bus Request (LCL-BREQ) signal. A
local bus grant will be given by RASM if the buses are not
being used (as is the case in RSA).

XACK is taken low as soon as RAE*REM-RD is true, re­
gardless of an ongoing local access. If [LOR] is low, RASM
will move into RSs on the next clock after RAE*REM-RD is
asserted and there is no local bus request. No further local
bus requests will be granted until RASM enters the Termina­
tion Phase. If the BCP CPU initiates a Data Memory access
after RSA, the Timing Control Unit will be waited and the
BCP CPU will remain in state T Wr until the remote access
reaches the Termination Phase. Haifa T-state after entering
RSs the A bus (and AD bus if the access is to Data Memory)
goes intoTRI-ST ATE.

On the next clock, RASM enters RSc and LCL is taken high
while XACK remains low. The wait state counters, ilW and
iow, are loaded in this state from [lW1-0] and [DW2-0],
respectively, in {DCRl. The Abus (and AD if the access is
to Data Memory) now remains TRI-STATE and the Access
Phase begins. . . .

The state machine can move into one of several states,
depending on the state of CMD and [MS1-01. on the next
clock. XACK remains low and ill remains high in all the
possible next states. If CMD is high, the access is to (RIC}
and the next state will be RS01. Since the default state of
AD is (RIC l. it will not transition in this state. The five other
next states all have CMD low and depend on the Memory
Select bits. If [MS1-0] is 10 or 11 the state machine will
enter either RS02 or RS03 and the low or high bytes of the
Program Counter, respectively, will be read.

1-118

[MS1-0] = 00 designates a Data Memory access and
moves RASM into RS04. READ will be asserted low in this
state and A and AD continue to be tri-stated. This allows the
Remote Processor to drive the Data Memory address for
the read. Since OM EM is subject to wait states, RS04 is
looped upon until all the wait states have been inserted.

The last possible Memory Selection is Instruction Memory,
[MS1-0] = 01. The two possible next states for the IMEM
access depend on if RASM is expecting the low byte or high
byte. Instruction words are accessed low byte then high
byte and RASM powers up expecting the low Instruction
byte. The internal flag that keeps track of the next expected
Instruction byte is called the High Instruction Byte flag (HIB).
If HIB is low, the next state is RS05 and the low instruction
byte is MUXed to the AD bus. If HIB is high, the high instruc­
tion byte is MUXed to AD and RS06 is entered. An IMEM
access, like a DMEM access, is subject to wait states and
these states will be looped on until all programmed instruc­
tion memory wait states have been inserted.
Note: Resetting the ecp will reset HIS (i.e., HIS' "" 0). Writing 01 to the

Memory Select bits in (RICI [I,e" [MS1-0] "" 01, pointing to IMEM)
will also force HIS to zero. This way the instruction word boundary
can be reset without resetting the BCP.

After all of the programmed wait states are inserted in the
RSo states, more wait states may be added by asserting
WAIT low a half T -state before the end of the last pro­
grammed wait state. If there are no programmed wait states
WAIT must be asserted Iowa half T-state before the end of
RSo to add wait states. If WAIT remains low, the remote
access is extended indefinitely. All the RSo states move to
their corresponding RSE states on the CPU-CLK after the
programmed wait state conditions are met and WAIT is
high. LCL remains high in all RSE states and A remains in
TRI-STATE (and AD if the access is to Data Memory).
XACK returns high in this state, indicating that data is valid
so that it can be externally latched. The action specific to
each RSo state remains in effect during the first half of the
RSE cycle (Le. READ is asserted in the first half of RSE4).
This half T -state of hold time is provided to guarantee data
is latched when XACK goes high. This state begins the Ter­
mination Phase.

co

t.-:....

FIGURE 4-.16. Flow Chart of ~tched Read Mode
TUF/9336-98

~

b
lJ
(1)

3
o ...
(1)

::::s ...
(1)
'""I
-to
D)
n
(1)

D)
::::s
a.
l>
'""I
C"
::;:
'""I
D) ... o·
::::s
en
'< en ...
(1)

3
'ij
l>
en -'0 o
~ :i"
c::
<t>
.9:

8tt&SdO

HAS .. stat.

I
RSA

I
RSA

I
RSA

I
RSA

I
RSB

I
RSc

I
RSD

I
RSo

I
RSE

I
RSr

I
RSo

I
RSo

I
RSA

I TCU stat. Tl TX TWd T2 Tl TWr T_ T_ TWr TWr TX TWd T2
-. -. -. -. -. -. -. -. -. -. -. -. -.

ClK-ouT

REhl-RD

LCl

XACK

READ

ALE

......
ADDR/DATA I\J

0 (0-7)

A(~~) 141UIIX LOCAL ADDRESS IXIIIIIX REMOTE ADDRESS

r-

RafOTE BUS

OATA ~zzzzzzzzzzzzz>zzzzzzzzzzzzzzzzzzzx
_ru * ~ R~ott ~ ~+ ..

LOCAL MEMORY READ II REMOTE READ II BCP INT. OP.

Register Configuration: Other BCP Control Signals:

-One Wait-State Programmed for Data-Memory RAE =0
-Zero Wait-States Programmed for Instruction-Memory CMD =0
-(RIC) Contents: XXX1X100 REM-WR =1
-[LOR] = 0 LOCK =1

FIGURE 4-17. Latched Read of Data Memory by Remote Processor

RSA

Tl
-.

RSA

T2

DP83448

~
(:)
:II
CD
3 o ...
CD

:i ...
CD
D)
n
CD
D)
:::s
Q.

~ ..
tr
::; ..
D) ...
o
:::s
en
'<
tn ...
CD
3 -::D
i> en -'0 o

TVF/9336-30

a :r
c:
CD .s

4.0 Remote Interface and Arbitration System (RIAS) ,(Cortinued). :, " " ,:

On the next clock the state machine will enter RSF and LCL and iow, are loaded in this state from [IW1-0] and [DW2-
will return low. The A bus (and AD bus if the access is to 0], respectively, in IOCR I. The A and AD buses now remain
data memory) remains in TRI-STATE for the first half in TRI-STATE and the Access Phase begins. If the Remote
T-state of RSF. After the first half of RSF, the Re- Access is to IMEM and the high instru9tion byte flag is set
mote Processor is no longer using the buses and the BCP (Le., HIB = 1), then IWR is asserted low in RSc. The state
CPU will be granted the buses if LCL-BREQ is asserted. If a machine can move into one of several states, depending on
local bus request is made, a local bus grant will be given to the state of CMDand [MS1-01. on the next clock. XACK
the Timing Control Unit. If the preceding access was a read remains low and, LCL remains high in' all the possible next
of IMEM, then HIB is switched and if the access was to the states. If CMD is high, the access is to IRICI and the next
high byte of IMEM then the PC is incremented. If RAE* state will be RS01' The path from AD to IRICI opens in this
REM-RD is deasserted at this point, the next clock will bring state. Any remote access mode changes made by this write
RASM back to RSA where it will loop until another Remote will not take effect until one T-state after the completion of
Access is initiated. RSG is entered if RAE*REM-RD is still the present write.
true. RASM will loop in RSG until RAE*REM-RD is no longer The five other next states all have CMD low and depend on
active at which time the state machine will return to RSA· the Memory Select bits. If [MS1-0] is 10 or 11, the state
In Figure 4-17, the BCP is executing the first of two Data machine will enter either RS02 or RS03 and the,low or high
Memory reads when REM-RD goes low. In response, XACK bytes of the Program Counter, respectively. will be written.
goes low, waiting the Remote Processor. At the end of the [MS1-0] equal to 00 designates a Data~ Memo~ access
first instruction, although the BCP begins its second write by and moves RASM into RS04. WRITE will be asserted in this
taking ALE high, the RASM now takes control of the bus state and A and AD continue to be tri-stated. This allows the
and deasserts [C[high at the end of T1· A one T-state Remote Processor to drive the Data Memory address and
delay is built into this transfer to ensure that READ has been data buses for the write. Since DMEM is subject to wait
deasserted high before the data bus is switched. The Timing states, RS04 is looped upon until all the programmed data
Control Unit is now waited, inserting' remote access wait memory wait states have been inserted.
states, T Wr, as RASM takes over.
The remote address is permitted one T-state to settle on the
BCP address bus before READ goes low, XACK then re­
turns high one T-state plus the programmed Data Memory
wait state, T Wd later, having satisfied the memory access
time. READ returns high a half T-state later, ensuring suffi­
cient hold time, followed by LCL being reasserted low after
an additional half T-state, transferring bus control back to
the BCP. The Remote Processor responds to XACK return­
ing high by deasserting REM-RD high, although by this time
the BCP is well into its own memory read.

4.2.3 Slow Buffered Write
The timing for this mode ,is the same as the Buffered Read
mode. The complete flow chart for the Slow Buffered Write
mode is shown in Figure 4-18. Until a Remote Write is initiat­
ed (RAE*REM-WR true), the state machine (RASM) loops
in state RSA1. If a Remote Write is initiated and [LOR] is set
high, RASM will move to state RSA2. Likewise, if a Remote
Write is initiated while the buses have been granted locally
(Le., Local Bus Grant = 1), RASM will move to state RSA2.
The state machine will loop in state RSA2 as long as [LOR]
is set high or the buses are granted locally. If the BCP CPU
needs to access Data Memory while in either RSA state
(and LOCK is high), it can still do so. A local access is re­
quested by the Timing Control Unit asserting the Local Bus
Request (LCL-BREQ) signal. A local bus grant will be given
by RASM if the buses are not being used (as is the case in
the RSA state).
XACK is taken low as soon as RAE*REM-WR is true, re­
gardless of an ongoing local access. RASM will move into
RSs on the next clock after RAE*REM-WR is asserted and
there is no local" bus request and [LOR] = O. No further
local bus requests will be granted until the remote access is
complete and RASM returns to RSA' If the BCP CPU initi­
ates a Data Memory access after RSA, the Timing Control
Unit will be waited and the BCP CPU will remain in state T Wr
until completion of the remote access. Haifa T-state after
entering RSs the A and AD buses go into TRI-STATE. '

On the next CPU-CLK, RASM enters RSc and LCL is taken
high while XACK remains low. The wait state counters, ilW

1-121

The last possible Memory Selection is Instruction Memory,
[MS1-0] = 01. The two possible next states for IMEM de­
pend on whether RASM is expecting the low byte or high
byte. I nstruction words, are accessed low byte, then high
byte and RASM powers up expecting the low Instruction
byte. The internal flag that keeps track of the next expected
Instruction byte is called the High Instruction Byte flag (HIB).
IfHIB.is low, the next state is RS05 and the low instruction
byte is written into the holding register, I LAT. If HIB is high,
the high instruction byte is moved to 115-8 and the value in
ILAT is moved to 17-0. At the same time, IWR is asserted

" low, beginning the write to instruction memory. An IMEM
access, like a OM EM access, is' subject to wait states and
these states will be looped on until all programmed Instruc­
tion Memory wait states have been inserted.
Note: Resetting the SCP will reset HIS (i.e .• HIS = 0). Writing 01 to.the

Memory Select bits in (RIC) v.e.; [MS1-0] = 01. pointing to IMEM)
will also, force HIS to zero; This way the instruction word boundary
can be reset with~ui resetting the SCPo

After all of the programmed wait states are inserted in the
RSo states, more wait states may be added by asserting
WAIT Iowa half T-state before the end of the last pro­
grammed wait state. If there are no programmed wait
states, WAIT must be asserted Iowa half T-state before the
end of RSo to add wait states. If WAIT remains low, the
remote access is extended indefinitely. All the RSo states
move to their corresponding RSE states on the CPU-ClK
after the programmed wait state conditions are met and
WAIT is high. The RSE states are looped upon until RAE*
REM-WR is deasserted. LCL remains high in all RSE states,
but XACK is taken back high to indicate that the remote
access can be terminated. If XACK 'is connected to a Re­
mote Processor wait pin, it can now terminate its write cycle.
This state begins the Termination Phase. The action speci­
fied in the conditional box is only executed while RAE*REM­
WR is asserted-a clock edge is not necessary.

On the CPU-CLK afte~ RAE*REM-WR i$ deasserted, RASM
enters RSF. where LCL remains high and the BCP A and AD
buses are still in TRI-STATE. The next CPU-CLK causes
RASM to move to RSA3' If the access was to 1M EM, then

-"

I\)
I\)

'RS,u

fIGUFtE'ft~~· FJ§W··~taiil't§f.~IC)W.~~ff~fed Wr!te'Mode

iCl
TRI-STAfE AtAD'RSot

TRt-STAJE At AD I RSo2

"'U-~I.I'I.'L .I'I.,.I'I.U'R%1

DP8344B

TL/F /9336-99

~

b
:rJ
CD
3
o ...
CD

::J ...
CD
::::.
m
()
CD
m
::J
c.
» ...
C'"
:;:; ... m ... o·
::J
en
'< tn ...
CD
3 -:rJ
l> en -()
o
~ :;­
c:
CD .s

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

the last action of the remote access before moving to RSA3
is to switch HIB and increment the PC if the high byte was
written. In RSA3, LCL goes low while A and AD remain in
TRI-STATE for the first half of RSA3. If no new Remote
access is initiated the next clock brings the state machine
back to RSA1 where it will loop until a Remote Access is
initiated.

In Figure 4-19, the BCP is executing the first of two consec­
utive Slow Buffered Writes to Data Memory when REM-WR
goes low. In response, XACK goes low, waiting the Remote
Processor. At the end of the first instruction, although the
BCP begins its second write by taking ALE high, RASM now
Takes control of the bus and deasserts LCL high at the end
of T 1. A one T -state delay is built into this transfer to ensure
that WRITE has been deasserted high before the data bus
is switched. The Timing Control Unit is now waited, inserting
remote access wait states, TWr, as RASM takes over.

The remote address is permitted one T-state to settle on the
BCP address bus before WRITE goes low, XACK then re­
turns high one T-state plus the programmed Data Memory
wait state, T Wd later, having satisfied the memory access
time. The Remote Processor will respond by deasserting
REM-WR high to which the BCP in turn responds by deas­
serting WRITE high. Following WRITE being deasserted
high, the BCP waits till the end of the next T-state before
asserting LCL low, again ensuring that the write cycle has
concluded before the bus is switched. Control is then re­
turned to the Timing Control Unit and the local memory write
continues.

4.2.4 Fast Buffered Write

The timing for the Fast Buffered Write mode is very similar
to the timing of the Latched Read. The major difference is
the additional half clock that AD is active in the Latched
Read mode that is not present in the Fast Buffered Write
mode. The Fast Buffered Write cycle ends after the data is
written and the termination doesn't wait for the trailing edge
of REM-WR. Therefore the Arbitration and Access Phases
of the Fast Buffered Write mode are the same as for the
Latched Read mode.

The complete flow chart for the Fast Buffered Write mode is
shown in Figure 4-20. Until a Remote Write is initiated
(RAE*REM-WR true), the state machine (RASM) loops in
state RSA1' If a Remote Write is initiated and [lOR]

1-123

is set high, RASM will move to state RSA2. Likewise, if a
Remote Write is initiated while the buses have been granted
locally (I.e., local Bus Grant = 1), RASM will move to state
RSA2. The state machine will loop in state RSA2 as long as
[lOR] is set high or the buses are granted locally. If the
BCP CPU needs to access Data Memory while in either RSA
state (and LOCK is high), it can still do so. A local access is
requested by the Timing Control Unit asserting the Local
Bus Request (lCl-BREQ) signal. A local bus grant will be
given by RASM if the buses are not being used (as is the
case in the RSA states).

XACK is taken low as soon as RAE*REM-WR is true, re­
gardless of an ongoing local access. If [lOR] is low, RASM
will move into RSs on the next clock after RAE*REM-WR is
asserted and there is no local bus request. No further local
bus requests will be granted until the BCP enters the Termi­
nation Phase. If the BCP CPU initiates a Data Memory ac­
cess after RSA, the Timing Control Unit will be waited and
the BCP CPU will remain in state T Wr until the remote ac­
cess reaches the Termination Phase. Half a T-state after.
entering RSs the A and AD buses go into TRI-STATE.

On the next CPU-ClK, RASM enters RSc and ill is taken
high while XACK remains low. The wait state counters, ilW
and iow, are loaded in this state from IIW1-0] and [DW2~<
0], respectively, in !DCRL The A and AD buses remain in
TRI-STATE and the Access Phase begins. If the Remote
Access is to IMEM and the high instruction byte flag is set
(I.e., HIB =. 1), then IWR is asserted low in RSc.

The state machine can move into one of several states de­
pending on the state of CMD and [MS1-0] on the next
clock. XACK and lCL in all the possible next states. If CMD
is high, the access is to {RIC J and the next state will be
RS01. The path from AD to {RIC J opens in this state. Any
remote access mode changes made by this write will not
take effect until one T-state after the completion of the pres­
ent write.

The five other next states all have CMD low and depend on
the Memory Select bits. If [MS1-0] is 10 or 11 the state
machine will enter either RS02 or RS03 and the low or high
bytes of the Program Counter, respectively, will be written.

[MS1-0] = 00 designates a Data Memory access and
moves RASM into RS04. WRITE will be asserted in this

~I

RSr RSA

TWr TWr

RASM state

I

RSA

I

RSA

I

RSA

I

RSA

I

RS
B

I
RSc IRSO

I

RSO

I

RS[
I RS[

I

RS[

I

RS[

TCU state Tl TX TWd T2 Tl TWr TWr TWr TWr . TWr TWr TWr

- - - - - - - - - - -CLK-OUT

REM-WR

LCL

XACK

WRITE

ALE

AD DR/DATA I A I I I I XLOCAL ADDRX
(O-7)

LOCAL DATA I X I X REMOTE DATA

'~~~ (fllX LOCAL ADDRESS

I~
REMOTE ADDRESS

REMOTE BUS

'OOR~ ~ t t R~OITADM~S

OATA;JJ/JJ/JJ/JJJJ/=/JJ>/JJJJJJJJJJJJJJJJ/JJ/~",TE OAlA

LOCAL MEMORY WRITE
L...... __________ REMOTE WRITE __________ --l

Register Configuration: Other BCP Control Signals:

-One Wait-State Programmed for Data-Memory
-Zero Wait-States Programmed for Instruction-Memory
-(RIC} Contents: XXOX0100
-[LOR] = 0

RAE =0
CMD =0
REM-RD =1
LOCK =1

FIGURE 4·19. Slow Buffered Write to Data Memory by Remote Processor

DP83448

~

b
RSA RSA RSA RSA :IJ

TX TWd T2 Tl (I)

3
0 ...
(I)

::::J ...
(I)
Q)
(')
(I)

Q)
::::J
Co
l> ...
tT
::;: ...
Q) ... o·
::::J
en
'<
til ...
(I)

3 -:IJ
l>
en -'0
0
~
:i"
c
(l)

.e,
TLlF/9336-28

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

state and A and AD continue to be tri-stated. This allows the On the next clock the state machine will enter RSF and m
Remote Processor to drive the Data Memory address and will return low. The A and AD buses remain in TRI-STATE
data buses for the write. Since OM EM is subject to wait for the first half T-state of RSF' After the first half of RSF,
states, RS04 is looped upon until all the programmed Data the Remote Processor is no longer using the buses and the
Memory wait states have been inserted. SCP CPU can make an access to Data Memory by asserting
The last possible Memory Selection is Instruction Memory, lCl-SREQ. If a local bus request is made, a local bus grant
[MS1-0] = 01. The two possible next states for IMEM de- will be given to the Timing Control Unit. If the preceding
pend on whether RASM is expecting the low byte or high access was a write of IMEM, then HIS is switched and if the
byte. Instruction words are accessed low byte then high access was to the high byte of IMEM then the PC is incre-
byte and RASM powers up expecting the low Instruction mented. If RAEoREM-WR is deasserted at this point, the
byte. The internal flag that keeps track of the next expected next clock will bring RASM back to RSA where it will loop
Instruction byte is called the High Instruction Syte flag (HIS). until another remote access is initiated. RSG is entered if
If HIS is low, the next state is RS05 and the low instruction RAE"REM-WR is still true. RASM will loop in RSG until
byte is written into the holding register, I LAT. If HIS is high, RAE*REM-WR is no longer active at which time the state
the high instruction byte is moved to 115-8 and ILAT is machine will return to RSA·
moved to 17-0. At the same time IWR is asserted low, be- In Figure 4-21, the SCP is executing the first of two Data
ginning the write to instruction memory. An IMEM access, Memory writes when REM-WR goes low. In response,
like a OM EM access, is subject to wait states and these XACK goes low, waiting the Remote Processor. At the end
states will be looped on until all programmed instruction of the first instruction, although the SCP begins its second
memory wait states have been inserted. write by taking ALE high, RASM now takes control of the
Note: Resetting tM SC? will reset HIS (I.e., HIS" 0). Writing 01 to the bus and de asserts lCl high at the end of T1. A one T-state

Memory Select bits in (RICI O.e .• [MS1-0] .. 01. pointing to IMEM) delay is built into this transfer to ensure that WRITE has
wUl also force HIS to zero. This way the instruction word boundary been deasserted high before the data bus is switched. The
can be reset without resetting the SCPo Timing Control Unit is now waited, inserting remote access

After all of the programmed wait states are inserted into wait states, TWr, as RASM takes over.
RSo states, more wait states may be added by asserting The remote access is permitted one T-state to settle on the
WAIT Iowa half T-state before the end of the last pro- SCP address bus before WRITE goes low, XACK then re-
grammed wait state. If there are no programmed wait states turns high one T-state plus the programmed Data Memory
WAIT must be asserted Iowa half T-state before the end of wait state, TWd later, having satisfied the memory access
RSo to add wait states. If WAIT remains low, the remote time. WRITE returns high at the same time, and one T-state
access is extended indefinitely. All the RSo states converge later LCl returns low, transferring bus control back to the
to state RSE on the next CPU-ClK after the programmed SCPo The remote processor responds to XACK returning
wait state conditions are met and WAIT is high. ill remains high by deasserting REM-WR high, although by this time the
high in all RSE states and A and AD remain in TRI-STATE SCP is well into its own memory write.
as well. XACK returns high in this state, indicating that the
data is written and the cycle can be terminated by the RP.
This state begins the Termination Phase.

II

1-125

o·

I\)
C»

lOW-I-low

TRI-ST\TE A,ADI RSo.

FtG9RE.f2Q~ •. ~oW.·.~~art ott=ast .. f)Uff~red:Wrlt~.·Mode
TUF/9336-AO

DP8344B

~
(:)
lJ
CD
3
o
~

CD

::s
~

CD
D)
n

-CD
D)
::s
Co
» ...
tT
::; ...
D)
~ o·
::s
en
'< en
~

CD
3 -lJ » en -n
o
3-:]"
c
CD
.e,

......
I\)
"'-I

RASt.l state

TCU state

CLK-OUT

REt.l-WR

LCL

XACK

WRITE

ALE

ADDR/DATA
(0-7)

ADDRESS
(0-15)

ADDRESS

DATA

RSA

Tl

RSA

Tx

RSA

TWd

RSA

T2

LOCAL DATA

RSe
Tl

RSC

TWr

RSO

TWr

RSO

TWr

REMOTE BUS

REt.lOTE ADDRESS

REt.lOTE DATA

RSE

TWr

RSr

TWr

RSG

TWx

RSH

TWd

RSA

T2

RSA

Tl

RSA

T2

~
(:)
lJ
(I)

3
o ...
(I)

:J ...
(I)
D)
n
(I)

D)
:J
Co
:t>
C"
;::;:
D) ... O·
:J
en
'< en ...
(I)

3
~
:t> en -()
o
3-
5·
c
CD
S

L..-___ LOCAL t.l[t.lORY WRITE ----' L..-____ REt.lOTE WRITE L- LOCAL IAEt.lORY WRITE ~ L BCP INT. OP. --1

11

Register Configuration:

-One Wait-State Programmed for Data-Memory
-Zero Wait-States Programmed for Instruction-Memory
-{RIC} Contents: XX1X0100
-[LOR] = 0

Other BCP Control Signals:

RAE =0
CMD =0
REM-RD =1
LOCK =1

FIGURE 4-21. Fast Buffered Write to Data Memory by Remote Processor

TUF/9336-29

8l7l7eSdC

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

4.2.5 Latched Write
This mode executes a write without waiting the Remote
Processor-XACK isn't normally taken low. The complete
flow chart for the Latched Write mode is shown in Figure
4-22. Until a Remote Write is initiated (RAE*REM-WR true),
the state machine (RASM) loops in state RSA. If the BCP
CPU needs to access Data Memory at this time (and LOCK
is high), it can still do so. A local access is requested by the
Timing Control Unit asserting the Local Bus Request
(LCL-BREQ) signal. A local bus grant will be given by RASM
if the buses are not being used (as is the case in RSA).

RASM will move into RSs on the next clock after
RAE*REM-WR is asserted. XACK is not taken low
and therefore the RP is not waited. The state machine will
loop in RSs until the RP terminates its write cycle-until
RAE*REM-WR is no longer true. The external address and
data latches are typically latched on the trailing edge of
REM-WR. A local bus request will still be serviced in this
state.

Next, RASM enters RSc and WR-PEND is asserted to pre­
vent overwrite of the external latches. Since the RP has
completed its write cycle, another write or read can happen
at any time. Any Remote Read cycle (RAE*REM-RD) or
Remote Write cycle (RAE*REM-WR) occurring after the
state machine enters RSc will take XACK low. A local ac­
cess initiated before or during this state must be completed
before RASM can move to RSo. Once RSo is entered,
though, no further local bus requests will be granted until
RASM enters the Termination Phase. If the BCP CPU initi­
ates a Data Memory access after RSc, the Timing Control
~ni~ will be waited and the BCP CPU will remain in state T Wr
until the RASM.· enters RSH. Half aT-state after entering
RSelhe A and AD buses gointo.TRI-STATE.

On the next clock, the state machine enters RSE and ill is
taken high. WR-PEND continues to be asserted low in this
stat~ and the data and instruction wait state counters, iow
andllW. are loaded from [DW27'O] and [lW1-0]. respective~
ly,inlDCRI. The A and AD buses remain in TRI·STATE
and the Access Phase begins. Any remote accesses now
occurring will take XACK low and wait the Remote Proces­
sor. If the Remote Access is to IMEM and the high instruc~
tion byteflag is set (i.e:, HI8 =1), then TWR is asserted loW
in RSE.

The state machine will move into one of several states on
the next clock, depending on the state of CMD and
[MS1-0]. WR-PEND remains low and LCL remains high in
all the possible next states. If CMD is high, the access is to
(RIC} and the next state will be RSF1. The path from AD to
(RIC} opens in this state. Any remote access mode chang­
es made by this write will not take effect until one T-state
after the completion of the present write.

The five other next states all have CMD low and depend on
the Memory Select bits. If [MS1-0] is 10 or 11 the state
machine will enter either RSF2 or RSF3 and the low or high
bytes of the Program Counter, respectively, will be loaded.

[MS1-0] = 00 designates a Data Memory access and
moves RASM into RSF4. WRITE will be aStlerted low in this
state and A and AD continue to be tri-stated. This allows the
Remote Processor to drive the Data Memory address and
data for the write. Since OM EM is subject to wait states
RSF4 is looped upon until all the programmed Data Memo~
wait states have been inserted.

1-128

The last possible Memory Selection is Instruction Memory,
[MS1-0] = 01. The two possible next states for IMEM de­
pend on if RASM is expecting the low byte or high byte.
Instruction words are accessed low byte then high byte and
RASM powers up expecting the low Instruction byte. The
internal flag that keeps track of the next expected Instruc­
tion byte is called the High Instruction Byte flag (HI B). If HIB
is low, the next state is RSF5 and the low instruction byte is
written into the holding register, ILAT. If HIB is high, the high
instruction byte is moved to 115-8 and the value in ILAT is
moved to 17-0. At the same time, IWR is asserted low and
the write to Instruction Memory is begun. An IMEM access,
like a OM EM access, is subject to wait states and these
states will be looped on until all programmed instruction
memory wait states have been inserted.
Note: Resetting the SCP will reset HIS (I.e .• HIS .;. 0). Writing 01 to the

Memory Select bits In (RIC) O.e., [MS1-01 "" 01. pointing to IMEM)
will also force HIS to zero. This way the instruction word boundary
can be reset without resetting the BCP.

All the RSF states converge to a single decision box that
tests WAIT. If WAIT is low then the state machine loops
back to RSF, otherwise RASM will move on to RSG. ill
remains high and WR-PEND remains low in this state but
the actions specific to the RSF states have ended (I.e.
WRITE will no longer be asserted low).

The next CPU-ClK moves RASM into RSH, the last state in
the state. machine. ill returns .Iow .butWR-PEND is still
low. The A and AD buses remain in TRI-STATE for the first
half of RSH' XACK will be. taken low if a Remote Access
is initiated. If the just completed access was to IMEM, HIB
will be switched. Also, the PC will be incremented if the high
byte was written. A local access will be granted if LCL­
BREQ is asserted in this state.

If another Remote Write is pending, the state machine takes
the path to RSs where that write will be processed. A pend­
ing Remote Read will return to the RSA in either the Buff­
ered or Latched Read sections (not shown in Figure 4-22)
of the state machine. And if no Remote Access is pending,
the machine will loop in RSA until the next access is initiat­
ed.

In Figure 4-23, the BCP is executing the first of two Data
Memory writes when REM-WR goes low. The BCP takes no
action until REM-WR goes back high, latching the data and
making a remote access request. The SCP responds to this
by taking WR-PEND low. At the end of the first instruction
although the BCP begins its second write by taking ALE
high, RASM now takes control of the bus and deasserts
LCL high at the end of T 1. A one T -state delay is built into
this transfer to ensure that WRITE has been deasserted
high before the data bus is switched. Timing Control Unit is
now waited, inserting remote access wait states, T Wr, as
RASM takes over.

The remote address is permitted one T -state to settle on the
BCP address bus before WRITE goes low. WRITE then re­
turns high one T-state plus the programmed Data Memory
wait state, T Wd later, having satisfied the memory access
time, and one T-state later LCL is reasserted low, transfer­
ring bus control back to the SCPo

In this example, REM-WR goes low again during the remote
write cycle which, since WR-PEND is still low, causes XACK
to go low to wait the Remote Processor. Then LCL goes
low, allowing the second data byte to be latched on the next
trailing edge of REM-WR. One T-state later. XACK and
WR-PEND go back high at the same time.

~

b
Jl
(D

3
0 ...
(D

::::J ...
(D ..,
D)
(")
(D

D)
::::J
Co
l> ..,
C"
::+ ..,
D) ...
ci"
::::J

~I ~~t)'--1 .ft~ .ft~<XACK>y ~ :=r- en
'< en ...
(D

3 -Jl
l> en -0
0
;:?
:r
c:
CD
B

TUF/9336-Al

FIGURE 4-22. Flow Chart of Latched Write Mode

8~~&8da

II

.....
(.oJ
a

DP8344B

RASII state

TCU state

ClK-OUT

ROI-WR

WR-PEND

m

XACK

WRITE

ALE

RSA

T1

RSB

TX

RSB

TWd

RSC

T2

RSO

T1

-+ __________________ -+ ____ J

RSE

TWr

RSr

TWr

RSr
TWr

~I~I~I~I
~ ~ ~ ~

BCP BUS

RSC

T2

RSD

T1

RSE

T2

RSE

T1

RSG

T2

RSH

T1

RSA

T2

ADDR~~~~~ /~ LOCAL DATA XZllX REIIOTE DATA X LOCAL ADDRESS X LOCAL DATA XlllX REMOTE DATA X/OVZWl
I I I

A(~~~~) m///X~---L-OC-AL-A-DD-RE-S-S --.....;.,.X REMOTE ADDRESS X LOCAL ADDRESS X REMOTE ADDRESS X///////a

I I I REMOTE BUS

ADDRESS REMOTE ADDRESS Xr-----R-EM-OTE-A-D-DR-ES-S ------------~X7///////////////0///0//0/

I I I
DATA (REMOTE DATA) (REMOTE DATA)

L-- LOCAL MEMORY WRITE ~ I REMOTE WRITE HOST I L-- LOCAL MEMORY WRITE ~ L BCP INT. OP.--' L BCP INT. OP.-.-...J

Register Configuration:

-One Wait-State Programmed for Data-Memory
-Zero Wait-States Programmed for Instruction-Memory
-(RIC} Contents: XXXX1100
-[LOR] = 0

Other BCP Control Signals:

RAE =0
CMD =0
REM-RD =1
LOCK =1

FIGURE 4-23. Latched Write to Data Memory by Remote Processor

TL/F/9336-31

~
(:)

:D
(I)

3
o ..
(I)

:::l ..
(I)
D)
n
(I)

D)
:::l
C.
l> ...
C"
;:; ...
D) ..
S·
:::l
en
'<
t/) ..
(I)

3 -:D
l> en -o o
::!.
5·
c:
CD
S:

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

The BCP is now shown executing a local memory write, with
remote data still pending in the latch. At the end of this
instruction, the BCP begins executing a series of internal
operations which do not require the bus. RASM therefore
takes over and, without waiting the Timing Control Unit, exe­
cutes the Remote Write.

4.2.6 Remote Rest Time

For the BCP to operate properly, remote accesses to the
BCP must be separated by a minimal amount of time. This
minimal amount of time has been termed "rest time".

There are two causes for remote rest time. The first cause is
implied in the functional state machine forms for remote ac­
cesses and can be explained as follows: At the beginning of
every T-state the validity of a remote access is sampled for
that T-state. To guarantee that the BCP recognizes the end
of a remote cycle, the time between remote accesses must
be a minimum of one T-state plus set up and hold times.

In the case of Latched Read and Fast Buffered Write, the
validity of a remote access is not sampled on the first rising
edge of the CPU-CLK following XACK rising. However, on
all subsequent rising edges of the CPU-CLK the validity of
the remote access is sampled. As a result, if the remote
processor can terminate its remote access quickly after
XACK rises (within a T-state), up to a T-state may be added
to the above equation for Latched Read and Fast Buffered
Write modes (Le., a second remote access should not begin
for two T-states plus set up and hold times after XACK rises
in Latched Read and Fast Buffered Write modes). On the
other hand, if the remote processor does not terminate its
remote access within a T-state of XACK rising, the above
equation (one T-state plus set up and hold times between
remote accesses) remains valid for Latched Read and Fast
Buffered Write modes.

If these specifications are not adhered to, the BCP may
sample the very end of one valid remote access and one
T-state later sample the very beginning of a second remote
access. Thus, the BCP will treat the second access as a
continuation of the first remote access and will not perform
the second read/write. The second access will be ignored.

1-131

(Reference Figure 4-24 for the timing diagrams which dem­
onstrate how two remote accesses can be mistaken as
one.)

The second source of remote rest time is due to the manner
in which the BCP samples the CMD signal. CMD is sampled
once at the beginning of each remote access. Due to the
manner in which CMD is sampled, CMD will not be sampled
again if a second remote access begins within 1.5 T-states
plus a hold time, after the BCP recognizes the end of the
first remote access. If this happens, the BCP will use the
value of CMD from the previous remote access during the
second remote access. If the value of CMD is the same for
both accesses, the second access will proceed as intended.
However, if the value of CMD is different for the two remote
accesses, the second remote access will read/write the
wrong location.

The reader should note that the timing of the second source
of rest time begins at the same time that the BCP first sam­
ples the end of the previous remote access. Thus when the
first source of rest time ends, the second source of rest time
begins. (Reference Figure 4-25 for timing diagrams for rest
time in all modes except Latched Write mode).

Latched Write Mode

Latched Write mode is a special case of rest time and
needs to be discussed separately from the other modes.
The first cause of rest time affects every mode including
Latched Write. In regards to the second source of rest time,
Latched Write mode was designed to allow a second re­
mote access to start while a write is still pending (Le.,
WR-PEND = 0). Thus, when WR-PEND rises (signaling the
end of the previous write) the value of CMD is sampled for
the second remote access. This allows Latched Write to
avoid the second cause of rest time discussed above.

However, if a remote access begins within one half a
T-state after WR-PEND rises, CMD will not be sampled
again. For this case, if the value of CMD changes just after
WR-PEND rose and at the same time the remote access
begins, the BCP will read/write the wrong location. (Refer­
ence Figure 4-26 for timing diagrams of rest time for latched
write mode.)

I

II
I

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

I ' 1 T-state , I

c:::: _---,_._---+~-.....) _: _~:'+-~""'--~-. _____ _
TL/F/9336-G5

(a) This timing diagram shows two remote accesses within one T-state. The first set of arrows
. shows the BCP s'ampllng a valid remote read. The next time the BCP samples the validity of the
remote access Is shown by the second set of arrows (1 T-state later). In this case, It will sample

the second remote access and mistake It as a continuation of the first remote access.

TLIF/9336-G6

(b) This timing diagram shows the timing necessary for the BCP to recognize both accesses as
separate accesses. The first set of arrows shows the BCP sampling a valid remote read. One T-state

later at the second set of arrows the BCP will sample the end of the first remote access. Another T-state
later at the third set of arrows the BCP will sample the beginning of the second remote access.

FIGURE 4·24. Mistaking Two Remote Accesses as Only One

1-132

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

CPU-ClK

CMD 1 st Remote Access's fWA0Wff?>u <Z?????1ZJ 2nd Remote Access's
CMD Value CMD Value

TLIF/9336-G7

(a) This timing diagram shows the second remote access violating rest time. The first set of arrows shows the
BCP sampling a valid remote write. The second set of arrows (1 T-state later), shows the BCP sampling the end of
the first remote access. If a second remote access starts before the position of the third set of arrows (another

1.5 T-states later), the value of CMD will not be sampled. The value of CMD has changed from the first remote
access, so the BCP will write to the wrong location during the second access.

CPU-ClK

CMD 1 st Remote Access's WY//ZWfrMW4?"'Z'12J 2nd Remote Access's

CMD Value CMD Value
TLIF/9336-G8

(b) This timing diagram shows the second remote access violating rest time. The first set of arrows shows the
BCP sampling a valid remote write. The second set of arrows (1 T-state later), shows the BCP sampling the end of
the first remote access. If a second remote access starts before the position of the third set of arrows (another

1.5 T-states later), the value of CMD will not be sampled. The value of CMD does not change from the first remote
access, so the BCP will write to the intended location during the second remote access.

TL/F/9336-G9

(c) This timing diagram shows the timing needed to avoid violating rest time for all modes except
latched write. The first set of arrows shows the BCP sampling the end of the first remote access.
The second set of arrows (1.5 T-states later), shows the BCP recognizing no remote access has
started and the value of CMD will be sampled for the next remote access. The third set of arrows

shows the BCP sampling the correct value of CMD for the second remote access.

FIGURE 4-25. Remote Rest Time for All Modes except Latched Write

1-133

II

ED
"'I:t
:; 4.0 Remote Interface and Arbitration System (RIAS) (Continued)
co
D.
C

TL/F/9336-Hl

(a) This timing diagram shows a remote access violating remote rest time. The first set of arrows shows
the BCP sampling the value of CMD when WR-PEND rises. If a remote access begins after WR-PEND rises

and before the position of the second set of arrows (0.5 T-states later), the value of CMD will not be
sampled again. The value of CMD has changed since WR-PEND rose, so the BCP will read the wrong location.

0.5
I :-state~ I

CPU-ClK I I "'--{I) ,.-{)) I I I

h h RAE I

h
I~ REt.I-RD

h
REt.I-WR

WR-PEND t--I

'+
Ct.lD Previous Remote Access's 2nd Remote Access's Ct.4D Value

Ct.lD Value
TLIF/9336-H2

(b) This timing diagram shows a remote access violating remote rest time. The first set of arrows shows
the BCP sampling the value of CMD when WR-PEND rises. If a remote access begins after WR-PEND rises

and before the position of the second set of arrows (0.5 T -states later), the value of CMD will not be
sampled again. The value of CMD has not changed since WR-PEND rose, so the BCP will read the Intended location.

FIGURE 4-26. Rest Time for Latched Write Mode

1-134

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

CPU-ClK

0.5

~
I

CR
set-up time

--------------~~-­~~+--

Ct.CD Previous Remote Access's 1 _'+.....I ____ 2_n_d_R_e_m_ot_e_A_cc_e_ss_'s_C_t.C_D_V_a_lu_e __ _
Ct.CD Value

TlIF/9336-H3

(c) This timing diagram shows a remote access setting up In time for WR·PEND rising to latch In the proper value of
CMD. The only set of arrows shows the BCP sampling the second remote access's CMD value when WR·PEND rises.

The value of CMD will not be sampled again. The BCP will carry out the second remote access as It was Intended.

0.5
I ;-state~ I

CPU-ClK I I rlV ,.--{J) I ,..-{I. I

~ '-) I- hold time -'

~ '-) I- hold time -'

~

'-I

'+
Ct.CD Previous Remote Access's Ct.CD Value

'-) 2nd Remote Access's
I Ct.CD Value

TL/F/9336-H4

(d) This timing diagram shows a remote access starting after a half T·state plus a hold time since WR·PEND
rose. The first set of arrows shows the BCP sampling the value of CMD when WR·PEND rises. The second set of

arrows shows the BCP recognizing that no remote access has started and the value of CMD will be sampled
for the next remote access. The third set of arrows shows the BCP sampling the correct value of CMD for the second

remote access. The BCP will carry out the second remote access as It was Intended.

FIGURE 4·26. Rest Time for Latched Write Mode (Continued)

1·135

II

5.0 Device Specifications
Plastic Chip Carrier

, 11 10 9 8 7 6 5 4 3 2 • 84 83 82 81 80 79 78 77 76 75

A13- 12

A12- 13

All- 14

Al0- 15

A9- 16

A8- 17

AD7- 18

AD6- 19

AD5- 20

AD4- 21

Vee - 22

GND- 23

AD3- 24

AD2- 25

AD1- 26

ADO - 27

ALE - 28

READ - 29

WRITE- 30

LCL- 31

5.1 PIN DESCRIPTIONS

Signal In/Out Pin

5.1.1 TIMING/CONTROL SIGNALS

Reset
State

X1 In 33 X
X2 Out 34 X1
ClK-OUT Out 35 X1

X-TClK In 32 X

WAiT In 54 X

RESET In 55 0

5.1.2 INSTRUCTION MEMORY INTERFACE
Instruction Address Bus:

IA15 (MSB) Out 58 0
IA14 Out 59 0
IA13 Out 60 0
IA12 Out 61 0
IA11 Out 62 0
IA10 Out 63 0

DP83448

BCP

FIGURE 5-1. Top View

Order Number DP8344B
See NS Package Number V84A

Description

74 ~IAI

73 ~ IA2

72 f-IA3

71 ~1A4

70 ~ lAS

69 ~IA6

68 ~ IA7

67 f- GND

66 ~ Vee

65 ~ IA8

64 ~IA9

63 -lAID

62 -IAll

61 -IAI2

60 -IAI3

59 -IAI4

58 -IAI5

57 -GND

56 -IWR

55 - RESET

54 -WAIT

TLIF/9336-2

Input and output of the on-chip crystal oscillator amplifier. Connect a crystal
across these pins, or apply an external clock to X1, with X2 left open.

Buffered CLocK oscillator OUTput, at the crystal frequency.

EXternal Transceiver CLocK input.

CPU WAIT. When active, waits processor and remote interface controller.

Master RESET. Parallel reset to all sections of the chip.

16-bit Instruction memory Address bus.

1-136

5.0 Device Specifications (Continued)

Signal In/Out Pin
Reset

Description
State

5.1.2 INSTRUCTION MEMORY INTERFACE (Continued)
Instruction Address Bus: (Continued)

IA9 Out 64 0 16-bit Instruction memory Address bus.
IA8 Out 65 0
IA7 Out 68 0
IA6 Out 69 0
IA5 Out 70 0
IA4 Out 71 0
IA3 Out 72 0
IA2 Out 73 0
IA1 Out 74 0
lAO (lSB) Out 75 0

Instruction Bus:

115 (MSB) In/Out 76 In 16-bit Instruction memory data bus.
114 In/Out 77 In
113 In/Out 78 In
112 In/Out 79 In
111 In/Out 80 In
110 In/Out 81 In
19 In/Out 82 In
18 In/Out 83 In
17 In/Out 2 In
16 In/Out 3 In
15 In/Out 4 In
14 In/Out 5 In
13 In/Out 6 In
12 In/Out 7 In
11 In/Out 8 In
10 (lSB) In/Out 9 In

Timing Control:

IWR Out 56 1 Instruction WRite. Instruction memory write strobe.

IClK Out 51 0 Instruction ClocK. Delimits instruction fetch cycles. Rises during the first half of
T1, signifying the start of an instruction cycle, and falls when the next instruction
address is valid.

5.1.3 DATA MEMORY INTERFACE
Address Bus:

A15 (MSB) Out 10 X High byte of 16-bit memory Address.
A14 Out 11 X
A13 Out 12 X
A12 Out 13 X
A11 Out 14 X
A10 Out 15 X
A9 Out 16 X
A8 Out 17 X

Multiplexed Address/Data Bus:

AD7 In/Out 18 1 low byte of 16-bit data memory Address, multiplexed with 8-bit Data bus.
AD6 In/Out 19 0

I

AD5 In/Out 20 0
AD4 In/Out 21 0
AD3 In/Out 24 0
AD2 In/Out 25 0
AD1 In/Out 26 0

III
I

I

ADO (lSB) In/Out 27 1

1-137

5.0 Device Specifications (Continued)

Signal In/Out Pin
Reset

Description
State

5.1.3 DATA MEMORY INTERFACE (Continued)
Timing/Control:

ALE Out 28 0 Address latch Enable. Demultiplexes AD bus. Address should be latched on the
falling edge.

READ Out 29 1 Data memory READ strobe. Data is latched on the rising edge.

WRITE Out 30 1 Data memory WRITE strobe. Data is presented on the rising edge.

5.1.4 TRANSCEIVER INTERFACE

DATA-IN In 39 X Logic level serial DATA INput.

+ALG-IN In 42 X Non-inverting AnaloG INput for biphase serial data.

-ALG-IN In 41 X Inverting AnaloG INput for biphase serial data.

DATA-OUT Out 38 1 Biphase serial DATA OUTput (inverted).

DATA-DLY Out 37 1 Biphase serial DATA output DelaYed by one-quarter bit time.

TX-ACT Out 36 0 Transmitter ACTive. Normally low, goes high to indicate serial data is being
transmitted. Used to enable external line drive circuitry.

5.1.5 REMOTE INTERFACE

RAE In 46 X Remote Access Enable. A "chip-select" input to allow host access of BCP
functions and memory.

CMD In 45 X CoMmanD input. When high, remote accesses are directed to the Remote
Interface Configuration register (RIC J. When low, remote accesses are directed
to data-memory, instruction-memory or program counter as determined by
(RICJ.

REM-RD In 47 X REMote ReaD. When active along with RAE, a remote read cycle is requested;
serviced by the BCP when the data bus becomes available.

REM-WR In 48 X REMote WRite. When active along with RAE, a remote write cycle is requested;
serviced by the BCP when the data bus becomes available.

XACK Out 50 1 Transfer ACKnowledge. Normally high, goes low on REM-RD or REM-WR going
low (if RAE low), returning high when the transfer is complete. Normally used as
a "wait" signal to a remote processor.

WR-PEND Out 49 1 WRite PENDing. In a system configuration where remote write cycles are
latched, indicates when the latches contain valid data which is yet to be serviced
by the BCP.

LOCK In 44 X The remote processor uses this input to lOCK out local (BCP) accesses to data-
memory. Once the remote processor has been granted the bus, LOCK gives it
sole access to the bus and BCP accesses are "waited".

[C[Out 31 0 loCaL. Normally low, goes high when the BCP relinquishes the data and
address bus to service a Remote Access.

5.1.6 EXTERNAL INTERRUPTS

BIRQ In/Out 53 In Bi-directionallnterrupt ReQuest. As an input, can be used as an active low
interrupt input (maskable and level-sensitive). As an output, can be used to
generate remote system interrupts, reset via (RIC J.

NMI In 52 X Non-Maskable Interrupt. Negative edge sensitive interrupt input.

1-138

5.0 Device Specifications (Continued)

5.2 ABSOLUTE MAXIMUM RATINGS (Notes 1 & 2) Lead Temperature (Soldering, 10 sec)

If Military/Aerospace specified devices are required, ESD Tolerance: CZAP = 120 pF,

please contact the National Semiconductor Sales RZAP = 1500n

Office/Distributors for availability and specifications.
5.3 OPERATING CONDITIONS

Supply Voltage (Vee) -0.5Vto +7.0V Min Max
DC Input Voltage (VIN) or -0.5V to Vee + 0.5V Supply Voltage (Vee) 4.5 5.5

DC Input Diode Current ±20mA DC Input or Output Voltage
DC Output Voltage (VOUT) or -0.5V to Vee + 0.5V (VIN, VOUT) 0.0 Vee

DC Output Current, per Pin (lOUT) ±20mA Operating Temp. Range (T A) 0 70
DC Vee or GND Current, per Pin ±50mA Input Rise or Fall Times (tr, tf) 500
Storage Temperature Range (T STG) - 65'C to + 150'C Oscillator Crystal Rs 20

Power Dissipation (PD) 500mW Vee Power Up Ramp 6

DC ELECTRICAL CHARACTERISTICS Vee = 5V ± 10% (unless otherwise specified)

Symbol Parameter Conditions
Guaranteed

Limits 0-70'C

VIH Minimum High Level Input Voltage
Xl (Note 3) 3.5
All Other Inputs Except - ALG·IN. + ALG·IN 2.0

I' VIL Maximum Low Level Input Voltage
Xl (Note 3) 1.7
All Other Inputs Except -ALG·IN, +AlG·IN 0.8

VIH-VIL Minimum OAT A·IN Hysteresis 0.1

VSENS Minimum Analog Input IN + • IN- FigureS·8b
20

Differential Sensitivity

VSIAS Common Mode Analog Input User Provided Bias Voltage Min 2.25
Bias Voltage Max 2.75

VOH Minimum High Level VIN = VIH or VIL
Output Voltage IIOUTI = 20/LA Vee - 0.1
IA,A,AD IIOUTI = 4.0 mA, Vee = 4.5V 3.5
All Other Outputs IIOUTI = 1.0 mA, Vee = 4.5V 3.5

VOL Maximum Low Level VIN = VIH or VIL
Output Voltage IIOUTI = 20/LA 0.1
IA,A,AD IIOUTI = 4.0 mA, Vee = 4.5V 0.4
All Other Outputs IIOUTI = 1.0 mA, Vee = 4.5V 0.4

liN Maximum Input Current VIN = Vee or GND
-ALG-IN, +ALG·IN ±10
Xl (Note 3) ±20
All Others ±10

loz Maximum TRI·STATE® Output VOUT = Vee or GND
±10

Leakage Current

I·' IcC Maximum Operating VIN = Vee or GND
Supply Current TCLK = 8MHz, CPU·CLK=16 MHz
Total to 4 Vee Pins Xcvr and CPU Operating 61
(Note 4) Xcvr Idle, CPU Waited 29

· VIN =. Vee or GND
TCLK = 20 MHz, CPU·CLK = 20 MHz

· Xcvr and CPU Operating 71

·
Xcvr Idle, CPU Waited 31 .

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.
Note 2: Unless otherwise specified, all voltages are referenced to ground.
Note 3: X2 is an internal node with ESD protection. Do not use other than with crystal oscillator application.
Note 4: No DC loading, with X1 driven, no crystal. AC load per Test Circuit for Output Tests.

1·139

260'C

2.0 kV

Units
V

V
'C
ns
n
ms

Units

V
V

V

V

V

mV

V
V

V
V
V

V

V
V

/LA
/LA
/LA

/LA

mA
mA

mA
mA

.'

.'.

'.

;. ,
'. .

••••

I

II
I

I

I

m r---,
"I:t
"I:t
C")
co c.. c

5.0 Device Specifications (Continued)

5.5 SWITCHING CHARACTERISTICS

The following specifications' apply for Vcc = 4.5V to 5.5V,
T A = O·C to 70·C.

5.5.1 Definitions

The timing specifications for the BCP are provided in the
following tables and figures. The tables consist of five sec­
tions which are the following: the timing parameter symbol,
the parameter ID#, the parameter description, the formula
for the parameter, and the timing specification for the pa­
rameter. Below each table is a figure containing thewave­
forms for the parameters in the table.

The parameter symbol is composed of the type of timing
specification and the signal or signals involved. Note that
the symbols are unique only within a given table. The follow­
ing symbol conventions are used for the type of timing spec­
ification.

tw - Pulse width specification
tpD - Propagation delay specification
tH - Hold time specification
tsu - Setup time specification
tZA - High impedance to active delay specification

(enable time)
tAz - Active to high impedance delay specification

(disable time)
tACC - Access time specification
tT - Clock period specification

The parameter ID# is used to cross reference the timing
parameter to the appropriate timing relationship in the ac­
companying figure. The waveforms in the figures are shown
with the CPU clock running full speed ([CCS] = 0). For this
case, CPU-CLK and CLK-OUT are equivalent. If CPU-CLKI
2 is selected ([CCS] = 1), the effect on the waveforms with
CLK-OUT is for CLK-OUT to double in frequency. The same
is true for waveforms with X1. Note that CLK-OUT is always
running at the crystal frequency and it is the CPU-CLK that
is changing to half speed.

The parameter description defines the timing relationship
being specified. BCP pin references are capitalized in the
description.

Many of the timing specifications are dependent on vari­
ables such as operating frequency and number of pro­
grammed wait states. The formula for the parameter allows
an accurate timing specification to be calculated for any
combination of these variables. The formula represents the
part of the timing specification that is synchronized to the
internal CPU clock. This value is calculated and then added

to the value specified under the Min or Max column to cre­
ate the minimum or maximum guaranteed timing specifica­
tion for the parameter.

The following acronyms are used in the tables:

DMEM refers to data memory

IMEM refers to instruction memory

RIC refers to the Remote Interface Control register

PC refers to the BCP Program Counter

TJefers to the CPU clock period in ns

TH refers to first half pulse width (high tlrne)oftheCPU
clock in os

l"L refers to second half pulse width·' (low time) oftha
CPU clock In ns.

C refers to the transceiver clock period in ns

nlW is the number of instruction memory wait states pro­
grammed in DCR

nDW is the number of data memory wait states pro­
grammed in DCR

nLW is the number of remote wait states due to a BCP
local data memory access

nRW is the number of CPU wait states due to a remote
access

MAX(A,B) means take the greater value of A or B

The following table is an example of the format used for the
timing specifications. In this example, tW-RD indicates a
pulse width specification for the output pin READ. The ID#
for locating the parameter in the timing waveforms is 10.
The formula for this specification involves data and instruc­
tion memory wait states and the CPU clock period. For the
case of 3 data memory wait states and 0 instruction memory
wait states and a CPU clock period of 50 ns, the READ low
minimum pulse width would be calculated as:

(MAX(3,0-1)+ 1)T+(-10) = 4T.- 10 = 190 ns

For the case of 1 data memory wait state and 3 instruction
memory wait states and a CPU clock period of 50 ns, the
READ low minimum pulse width would be calculated as:

(MAX(1,3:-::1)+ 1)T+ (7"10) .=;.3T:-::JO=;.140ns
)"0 calculate nLW the}oUowingtwoequations are needed:

OLW(min} = . 0

"LW (max).'"", MAX(noW,nlw-1)+DataMemoryAccessCy.
cle

DataMemory Access Cycle • is normally 3 T -statesJf [4TR]
'"" 0 and 4 T -states if [4TR] ==1. Keep inmi~~tll~t~oth
{LOR). and WAIT can extend nLW.'····························

Formula

(MAX(now,niw -1) + 1)T+

1-140

5.0 Device Specifications (Continued) Test Circuit for Output Tests

INPUT

TRUE
OUTPUT

INVERTED
OUTPUT

PosmVE
INPUT

PULSE

NEGATIVE
INPUT
PULSE

Note 1: 51 = Vee for tpZl. and tpLZ measurements

51 = GND for tpZH. and tpHZ measurements

51 = Open for push pull outputs

Note 2: Rl = 1.1 k for 4 mA outputs

Rl = 4.4k for 1 mA outputs

Note 3: CL includes scope and jig capacitance.

Propagation Delay Waveforms
Except for Oscillator

i'-"'----GND

TL/F/9336-A3

Input Pulse Width Waveforms

10%
GND

90%
3.0V

TLlF/9336-A5

INPUT

Xl

ClK-OUT

Vee

DEVICE
UNDER
TEST

RL
(Not. 2)

CL I so pF (Not. 3)

TLlF/9336-A2

Propagation Delay Waveform
for Oscillator

~10." ___ GND

tPHt ----- ._-_.VOH
2.SV

VOL
TL/F/9336-A4

Setup and Hold Time Waveforms

CLOCK OR 90% 3.0V]
ttr =6ns

LATCH ENABLE l.SV
(NOTE 1) _____ 1;.;;ooiL. _____ .. ___ .GND

POSITIVE
DATA INPUT

VOL

NEGATIVE
VOH

DATA INPUT

TL/F/9336-A6
Note 1: Waveform for negative edge sensitive circuits will be Inverted.

TRI·STATE Output Enable and Disable Waveforms

OUTPUT CONTROL
(lOW ENABLING)

OUTPUT

OUTPUT

VOL tPZHJc VOH
1.3V

-----"". - .. - .VOL

FIGURE 5-2. Switching Characteristic Measurement Waveforms

1-141

TL/F/9336-A7

III
I

5.0 Device Specifications (Continued)

TABLE 5-3. Data Memory Read Timing (Note 1)
..

Symbol 10# Parameter Formula Min Max Units

, tW-ALE 1, ALE High (nRw+1)T+ -10 12 ns

tPD-AAD-ALE 2- A. AD (Data Address) Valid to ALE Falling T+ -22 ns

tpD-ALE-AD .. 3 I ALE Falling to AD (Data Address) Invalid TL+ -2 ns

: tH-RD-DATA 4 Data Valid after READ Rising 0 ns

, tAZ-RD-AD 5 ' READ Falling to AD Disabled ([4TR] = 0) 20 ns

tAZ-AD-RD 6 AD Disabled before READ Falling ([4TR] = 1) TH+ -20 ns

tSU-RD-DATA 7 READ Falling to AD (Data) Setup ([4TR] = 0) (MAX(nDw,nlw-1) + 1)T + -22 ns

: tSU-RD-DATA 8 READ Falling to AD (Data) Setup ([4TR] = 1) (MAX(nDw-1,nIW-1)+1)T+TL + -21 ns

tZA-RD-AD 9 READ Rising to AD Enabled TH+ -2 ns

, tPD-AAD-RD 10 A, AD (Data Address) Valid before READ Falling T+TL + -27 ns
([4TR]=O),

: tPD-AAD-,RD , 11 A, AD (Data Address) Valid before READ Falling 2T+ -27 ns
([4TRj:=1)

tW-RD ,.12' READ Low ([4TR] =0) (MAX(nDW,nIW -1) + 1)T + -10 10 ns

, tW-RD .. 13 READ Low ([4TR] = 1) (MAX(nDW-1,nI'N-1)+1)T+h + -10 10 ns

, tACC-D 14 Data Memory Read Time ([4 TR)) = 0) (MAX(nDW,nlw-1)+2)T+TL + -40 ns

, tACC-D 15
"

Data Memory Read Time ([4TR)) = 1) (MAX(nDw-1,nIW-1)+3)T+TL + -40 ns

tSU-AD-DATA 16 AD Disabled to AD (Data) Setup ([4TR] = 0) (MAX(nDW,nIW -1) + 1)T + -33 ns

tSU-AD-DATA 17 AD Disabled to AD (Data) Setup ([4TR] = 1) (MAX(nDW -1 ,nlW -1) + 2)T + -33 ns

; tPD-ALE-AAD ,18 ALE Rising to A, AD (Data Address) Valid (nRw)T+ 24 ns

; tpD-RD-A 19 READ Rising to A Invalid TH+ 0 ns

Note'1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing
specification may lead to invalid results.

~. ' . ,. ,

r----0--
"

.... ' ALE 1£ k:

. ".
®- 1-0-'-0-

AD '/111111111111) ADDR ~ ~~A~ tWl111777l
, , f-®- ~ }0

" A 1111111111111), "IIIIIII/.
0- 0- .. ~

READ 1\. 1/
I,' .

~ -@-l----- @I-
14

TLIF/9336-52

(a)Ftea~Thl1h19y!ith ([4I~]:=O)

r----0--
ALE jl

®- f--0-4v- 0- '
AD ,/1111111 I I I I I), ADDR .m~

.. I-®-
A IIIIIIIIIIIII/; ~/

&1.ill. F®=J
- ~ J READ

~

&~
I -@-

TL/F/9336-H7

: (~)~eiutIlrijl~9 WI'~,«(4T~1~:1)

FIGURE S';3.DataMemory Read Timing

1·142

5.0 Device Specifications (Continued)

TABLE 5~4. Data Memory Write Timing (Note 1)

Symbol 10# Parameter Formula Min Max. Units

tW-ALE 1 ALE High (nRW+1)T+ -10 12 ns

tpO-MO-ALE 2 A, AD (Data Address) Valid to ALE Falling T+ -22 ns

tpO-ALE-AO 3 ALE Falling to AD (Data Address) Invalid h+ -2 ns

tpO-OATA-WR 4 AD (Data) Valid to WRITE Rising (MAX(noW,nIW-1) + 1)T + -20 ns

tpO-MO-WR 5 A, AD (Data Address) Valid to WRITE Falling 1.5T+ -28 ns

tpO-WR-DATA 6 WRTfi: Falling to AD (Data) Valid 19 ns

tpO-WR-OATAz 7 WRTfi: Rising to AD (Data) Invalid TH+ -4 ns

tW-WR 8 WFii1'E Low (MAX(noW,nIW -1) + 1)T + -10 10 ns

tpO-ALE-MO 9 ALE Rising to A, AD (Data Address) Valid (nRW)T+ 24 ns

tpO-WR-A 10 WRITE Rising to A Invalid TH+ -2 ns

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing
specification may lead to invalid results.

ALE [~~-:6- -
AD '/////////////)~ ADDR) DATA V~

1-

A 0"//'/////////)~ ¥
-0-0~

WRITE ["

-0--- -0 _ ® f-

-0-
TL/F/9336-53

FIGURE 5~4. Data Memory Write Timing

1-143

5.0 Device Specifications (Continued)

TABLE 5-S:lnstructJoll Memory Read Timing (Note 1)

Symbol 10# Parameter Formula Min Max Units

tACC-1 . 1 Instruction Memory Read Time (nlw+1)T+TL + -19 ns

tH-IA-1 2 IA Invalid to I Invalid 0 ns

tPD-ICLK-IA 3 IClK Rising to IA Invalid TH+ -13 ns

tPD-IA-ICLK 4 Next IA Valid before IClK Falling
h+

-12 ns

tPD-IAz-ICLK IA Invalid before IClK Falling 17 ns

tSU-I-ICLK 5 I Valid before IClK Rising 20 ns

tH-I-ICLK 6 I Invalid before IClK Falling TL+ 0 ns

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing
specification may lead to invalid results.

®j 0 k IA

~ I ~~:
TL/F/9336-A9

(a) Instruction Memory Read Timing

v:-lelK
~

p<- o-.- 0 14-

~0-
IA)

0.:i r- ~~ ':L~.0
I ~)V///////~ - - TL/F/9336-54

(b) Instruction lelK Timing

FIGURE 5·5. Instruction Memory Timing

1-144

5.0 Device Specifications (Continued)

TABLE 5·6. Clock Timing (Note 1)

Symbol 10# Parameter Formula Min Max Units

tT·Xl X1 Period (Note 2) 50 500 ns

tPD·Xl·CO 2 X1 to ClK·OUT (Note 2) 37 ns

tpD·CO·/ClKr 3 ClK·OUT Rising to IClK Rising 15 ns

tPD.CO·/ClKf 4 ClK·OUT Rising to IClK Falling (Note 3) 15 ns

tT·XT 5 X·TClK Period (Note 4) 50 500 ns

tW.X1Hl 6 X1 High and low time Pulse Widths (Note 5) 21 ns

tW·XTHl 7 XTClK High and low Time Pulse Widths 15 ns

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing
specification may lead to invalid results. .

Note 2: Measurement thresholds at 2.5V.

Note 3: The falling edge of IClK occurs only after the next IA becomes valid. The CLK·OUT cycle in which this occurs depends on the instruction being executed
and the number of programmed instruction wait states.

Note 4: There is no relationship between X1 and X·TClK. X·TCLK is fully asynchronous.

Note 5: Externalloading.on pin X2 equal to 15 pF. See Figure 5-6b for affect of X210ading in non·crystal applications (i.e., an external oscillator driving XI).

Xt

ClK-OUT

IClK

X-TClK

25.0 ,......
24.5 III

..5 24.0
III

23.5 :5
"C 23.0
~ 22.5
G) 22.0 III
:; 21.5 c..

~
21.0

0 20.5
-I

"C
20.0

I: 19.5 co
.c: 19.0
.~ 18.5
:J: 18.0

x 17.5
17.0

10 15 20 25 30 35

X2 Capacitance (pF)

FIGURE 5--6. Clock Timing

1·145

TL/F/9336-55

40 45

TLIF/9336-HB

C
-a co
w
0l:Io
0l:Io
m

m
00:1'
~ 5.0 Device Specifications (Continued)
co
~ tABLE 5·7. Transceiver Thnlng (Note 1)

Symbol 10# Parameter Formula Min Max Units

tpD-X1-TA 1 X1 Rising to TX-ACT Rising/Falling 10 65 ns

tpD-XTCLK-TA 2 X-TCLK Rising to TX-ACT Rising/Falling 7 49 ns

tPD-DODD-TA 3 DAT A-ODT, DAT A-DL Y Valid to TX-ACT Rising C+ 16 ns

tW-DO-HB 4 DATA-DDT Half Bit Cell Width 4C+ -10 10 ns

tW-DO-FB 5 DATA-OUT Full Bit Cell Width 8C+ -10 10 ns

tPD-DO-DD 6 DATA-OUT Falling/Rising to DATA-DLY
2C+ -10 10

Rising/Falling (Note 3)
ns

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing
~pecificatio~mayJeadt~ invalid results.

t4ote2: Wf:len (ATA]'" t.TX~ACTls delayed by.4Candan additional line quiescent is generated resulting in 5% line quiescent pulses after the line interface logic.
The additional. delay relative to a message with [ATA} =0 is Be (one bit time).

XlorX-TClK

TX-ACT
[ATA] = 0--------------..11

OAT A-OUT ..,..,~rT7''rT'l~T'7''I''TT''"''I"T'rT7'.,.,.,rT7'm
[TIN] = 1 """'"""""'''"'"''''''''''''''''''''''''''"'"'''"'"'''"''1~------+-1

TX-ACT

[ATA] = 1----------------------4
OAT A-OUT ..,..,~rT7''rT'l~T'7''I''TT''"''I"T'rT7'.,.,.,rT7'm

[TIN] = 0 J.I..""""'''''''''''''''''''''''~''''''''"'"'.IJJ.~'"'"'''''''''''''"''1''---------------'

DATA-DlY .,.,"I""I"l,.,.,."""""""""',.,.,.,.,.""" ,.,.,."I""I"l,.,.,.,...,..,....-------------------l
[TIN] = a '"'""'"'"'''''''''''''''''''"'"'"'''''''''''''''''''''''''''''"'"'"'''''''''''''"''1 '-----

XlorX-TClK

L 1,2 t
lX-ACT --------------t~: --------

::::;~~~:~; -J __ .. ~~~~: .. -_-_-_-_~_ .. ~~~~~,--~t;;;..---6---------_--_--_-~-~---_ --_-~-~-~-~-~-:
DATA-OUT ~

5250, [TIN] = a ""-----...

DATA-DlY
5250, [TIN] = 0 -----

--{ATR[7-3)}= 00000
- - - - - {ATR[7-3]}= 00001

(blrfa~sri11ssronEndlng TirIllng
;~I~tJRt? S77~trarisc~lyer Timing

1-146

TL/F/9336-56

TLIF /9336-57

5.0 Device Specifications (Continued)

TABLE 5-8. Analog and DATA-IN Timing (Note 1)

Symbol 10# Parameter Formula Min Max Units

tW-OI-hb 1 DATA-IN Data, Half Bit Width 3C+ 12 ns

5C+ -12 ns

tW-OI-fb 2 DATA-IN Data, Full Bit Width 7C+ 12 ns

9C+ -12 ns

tW-AI-hb 3 Analog Data, Half Bit Width 3C+ 20 ns
(-ALG-IN or +ALG-IN) 5C+ -20 ns

tW-AI-fb 4 Analog Data, Full Bit Width 7C+ 20 ns
(-ALG-IN or +ALG-IN) 9C+ -20 ns

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing
specification may lead to invalid results.

I Manchester ~ I Manchester ~ I Manchester 1 I

DATA-IN -./,-----,~0=-1....----~t-----=--0-=--=--:f,....-----
(a) DATA-IN Jitter Timing (3270)

I Manchester ~ I Manchester ~ I Manchester 1 I
~

+ALG-IN ~ ~ __ ---- BOmY / ~ -------.-.==--I--------r-

-ALG-IN" ~
~ ~

r-0-

- ~ t
........... ____ BOmY

t
r--0-

TL/F 19336-58

TLlF/9336-59

(b) Analog Jitter Timing (3270)

FIGURE 5-8. Analog and DATA-IN Timing

1-147

c
"'tJ
Q)
w
0l:Io.
0l:Io.
m

III
-.:t
~ 5.0 Device Specifications (Continued)

~TAeLE5"9~lnterrupt TImIng (Note 1)
c

Symbol 10# Parameter Formula

tSU-NMI-CO 1 NMI Falling before ClK-OUT Falling

tH-NMI-CO 2 NMi Hold after ClK-OUT Falling

tSU-8Q-CO 3 BIRQ (Input) Falling before ClK-OUT Falling

tpD-ICLK-8Q 4 IClK Rising to BIRQ (Output) Rising/Falling

Min Max Units

12 ns

8 ns

13 ns

24 ns

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing
specification may lead to invalid results.

T2 T1
(of NOP inst) 1,---

ClK-OUT

IClK

-Gr-f,;'\ ------'I r1~I~ ______________________ _
tOO ~L-J

BIRO
(input)

IA

lelK

1(3)~

Next Instruction Address

(b) BIRQ Output Timing

FIGUAr: 5~9; h,terrupt Tbritrig

1-148

Interrupt Vector
Address

TL/F/9336-60

TLlF/9336-61

5.0 Device Specifications (Continued)

TABLE 5·10. Control Pin Timing (Note 1)

Symbol 10# Parameter Formula Min Max Units

tW-RST 1 RESET low 5T+ 0 ns

tPO-RST-ICLK 2 RESET Rising to IClK Rising 4T+ 0 ns

tSU-ALE-WT 3 WAIT low after ALE High to Extend Cycle (MAX(noW,nIW -1) + 1)T + -21 ns

tH-WT-ALE 4 WAIT Rising after ALE Falling (Note 2) 0 ns

(MAX(noW,nIW-1)+ 1)T+ -28 ns

tpO-WT-ROWR 5 WAIT Rising to READ or WRITE Rising T+TL+ -22 ns

2T+h+ 2 ns

tSU-RRW-RST 6 REM-RD, REM-WR low to RESET
15

Rising for BCP to Start
ns

tH-RST-RRW 7 REM-RD, REM-WR low after RESET
5

Rising for BCP to Start
ns

tSU-LK-ICLK 8 lOCK low before IClK High (Note 3) TL+ 19 ns

tpO-LK-ALE 9 lOCK High to ALE low T+ -2 ns

3T+ 20 ns

tSU-WT-ICLK 10 WAIT low after IClK Rising to Extend Cycle (MAX(now,nIW -1»T + T H + -22
(Note 4)

ns

tH-WT-ICLK 11 WAIT High after IClK Rising (Notes 2,4) (MAX(nOW,nIW -1»T + T H + 2 ns

(MAX(nOW,nIW -1) + 1)T + T H + -20 ns

tH-LK-ICLK 12 lOCK Rising after IClK High TH+ 2 ns

tpO-AO-ALE 13 AD to ALE Falling after lOCK Rising T+ -33 ns

tSU-WT-ALEf 14 WAIT low before ALE Falling to Extend Cycle 23 ns

Nole 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing
specification may lead to invalid results.
Note 2: The maximum value for this parameter is the lastest WAiT can be removed without adding an additional T-state. The formula assumes a minimum
externally generated wait of one T-state.
Note 3: If IsU.LK-ICLK is not met. the maximum time from IT>Ci< low till no more local accesses is (MAX(now. nlw-1)+3)T.
Note 4: The formula(s) apply to a 2. T·state instruction. For a 3 T-state Instruction. add one T.state; for a 4 T·state Instruction. add two T·states.

1-149

In
~

C') 5.0 Device Specifications (Continued)
CO
D.
C

leLK

(a) Reset Timing

WAIT ------.1

ALE
---"'I

READ or
WRITE ---------

lelK --------'1
ALE ____________ J

Aw;1llfflffpijllh7Plffffhr)X ___________ _
(C) LOCK Timing

I n I rn n I n I

~:~ =,---~~~ __ ~_I __ '--­
~@d

(d) Instruction WAIT Timing

FIGUFl~s-:10.CoritrotPlriTlrillrig'

1-150

TL/F 19336-62

TLlF/9336-63

Tl/F/9336-64

TLlF/9336-AB

5.0 Device Specifications (Continued)

TABLE 5-11. Buffered Read of PC, RIC (Note 1)

Symbol 10# Parameter Formula Min ,Max' Units

tSU-RRR-CO 1 RAE, REM-RD Falling before CLK-OUT Rising 22

tH-RRR-X 2 RAE, REM-RD Rising after XACK Rising (Note 2) 0 ns

2T+ -34 ns

tSU-CMD-RRR 3 CMD Valid before RAE, REM-RD Falling 0 ns

tH-CMD-RRR 4 CMD Invalid after RAE, REM-RD Falling T+ 26 ns

tpD-RRR-X 5 RAE, REM-RD Falling to XACK Falling 26 ' : ns'

tpD-X-LCL 6 XACK Falling to ill Rising (nLw+1)T+ -5 ns

tPD-LCL-X 7 LCL Rising to XACK Rising 2T+ -10 8 ns

tPD-RRR-LCL 8 RAE, REM-RD Rising to LCL Falling 3 ", ns

tAZ-A-LCL 9 A Disabled before LCL Rising h+ -18, ,. ' ns

tZA-LCL-A 10 A Enabled after LCL Falling TH+ 15' ns

tpD-LCL-PC 11 LCL Rising to AD (PC) Valid T+ . 22 : ns

tpD_PC-X 12 AD (PC, RIC) Valid before XACK Rising T+ -24 .. - ns'

tpD-PC-RRR 13 ' RAE, REM-RD Rising to AD (PC) Invalid' 6 ns

tw-PC 14 AD (PC, RIC) Valid Time T+' -2 ' 'ns'

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to' create' a new timing ! specification may lead to invalid results.
Note 2: The maximum value for this parameter is the latest RAE', REM-RD can be removed without adding a T-state to the remote access.

ClK-OUT ---I .

- kD - CD l- e

RAE --,~ J~

G2:1 ~
~ :

CMD~)V/// / // /// / //// // // /// // ///////////////// //~

REM-RD ~l- I'- '.

~ .'

XACK 3,.- f-

-0 ..:0 -01-
-
LCl "} ['"

READ -=-10 I- --®---1
A

JI 1\"

~ ®- ~
AD RIC J(RIC, PC J RIC i

'1? III
TlIF/9336-65

FIGURE 5-11. Buffered Read of PC, RIC
I

1-151

m
~

5.0 Device Specifications (Continued) ~
Cf)
CO

TABLES';12; Buffered Read of DMEM(Nofe 1)' a.
Q

Symbol 10# Parameter Formula Min Max Units

tSU-RRR-CO 1 R'Al:, REM-RD Falling before ClK-OUT Rising 22 ns

tH-RRR-X 2 R'Al:, REM-RD Rising after XACK RiSing (Note 2) 0 ns

T+ -32 ns

tSU-CMO-RRR 3 CMD Valid before RAE, REM-RD Falling 0 ns

tH-CMO-RRR 4 CMD Invalid after RAE, REM-RD Falling T+ 26 ns

tpO-RRR-X 5 'RAE, REM-RD Falling to XACK Falling 26 ns

tpO-X-LCL 6 XACK Falling to [C[Rising (nLW+1)T+ -5 ns

tpO-LCL-X 7 [C'[Rising to XACK Rising (nOW+2)T+ -10 8 ns

tpO-RRR-LCL 8 RAE, REM-RD Rising to ill Falling T+ 3 ns

tPO-LCL-RO 9 [C[Rising to READ Falling T+ -5 16 ns

tpO-RO-X 10 READ Falling to XACK Rising (now+1)T+ -15 ns

tpO-RRR-RO 11 'RAE, REM-RD Rising to READ Rising 1 28 ns

tAZ-AAO-LCL 12 A, AD Disabled before ill Rising TL+ -20 ns

tZA-LCL-AAO 13 A, AD Enabled after [C[Falling TH+ -10 ns

tW-RO 14 Read low (nOW+1)T+ -4 ns

Note 1: All parameters are Individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing
specification may lead to Invalid results.
Note 2: The maximum value for this parameter is the latest tiAE:. ~ can be removed without adding a T-state to the remote access.

ClK-OUT --.-:;

, - k0 - CD ,l-,. _________ _
RAE ~~ jf"

~~I~~~~~~~
CNO ~?j H/I///////////// /1///////////////////////1//////////////////////// /I//.

f"

-0-
XACK l ... ~If.

HV 0 ,8./

j

r---cv -@-- ~
lCl ________________ ~,

)~ j

r-®- @
II A,AO

_____ 01

1

TL/F/9336-66

1-152

5.0 Device Specifications (Continued)

TABLE 5-13. Buffered Read of IMEM (Note 1)

Symbol 10# Parameter Formula Min Max Units

tSU-RRR-CO 1 RAE, REM-RD Falling before ClK-OUT Rising 22 ns

tH-RRR-X 2 RAE, REM-RD Rising after XACK Rising (Note 2) 0 ns

T+ -32 ns

tSU-CMD-RRR 3 CMD Valid before RAE, REM-RD Falling 0 ns

tH-CMD-RRR 4 CMD Invalid after RAE, REM-RD Falling T+ 26 ns

tpD-RRR-X 5 RAE, REM-RD Falling to XACK Falling 26 ns

tPD-X-LCL 6 XACK Falling to [C[Rising T+ -5 ns

tpD-LCL-X 7 lCl Rising to XACK Rising (nIW+2)T+ -10 8 ns

tpD-RRR-LCL 8 RAE, REM-RD Rising to [C[Falling 3 ns

tAZ-LCL-A 9 A Disabled after [C[Rising h+ -18 ns

tZA-A-LCL 10 A Enabled before [C[Falling TH+ 15 ns

tpD-IMEM-X 11 AD (IMEM) Valid before XACK Rising (nlw+1)T+ -25 ns

tpD-RRR-IMEM 12 AD (IMEM) Invalid after RAE, REM-RD Rising 10 ns

tPD-LCL-IMEM 13 [C[Rising to AD (IMEM) Valid T+ 22 ns

tW-IMEM 14 (IMEM) Valid (nlw+1)T+ 0 ns

tPD-LCL-IA 15 [C[Falling to Next IA Valid (Note 3) TH+ 8 ns

T+TH+ 44 ns

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing
specification may lead to invalid results.
Note 2: The maximum value for this parameter is the latest RM:, ~ can be removed without adding a T-state to the remote access.
Note 3: Two remote reads from instruction memory are necessary to read a 16-bit instruction word from IMEM-Iow byte followed by high byte. The timing for the
two reads are the same except that IA is incremented after the high instruction memory byte is read.

CLK-OUT

- 1 - 0---.,
RAE

cw~ ~ k'///~ -
REt.f-RD~ r-

~
XACK \:

1-0 CD - r-0
LCL (-

READ

j-0- r---®--- ·~~I
If A JI Il

I --@ 14

I

III
AD RIC It.fEt.f RIC

I

~
IA X

TlIF/9336-67

FIGURE 5~13; Buffered Read of IMEM

1-153

5.0 Device Specifications (Continued)

TABL.E S':;14;L.atcheC:f Reacfof PC, RIC (Note 1)

Symbol 10# Parameter Formula Min Max Units

tSU-RRR-CO 1 RAE, REM-RD Falling before CLK-OUT Rising 22 ns

tH-RRR-X 2 RAE, REM-RD Rising after XACK Rising 0 ns

tSU-CMD-RRR 3 CMD Valid before RAE, REM-RD Falling 0 ns

tH-CMD-RRR 4 CMD Invalid after RAE, REM-RD Falling T+ 26 ns

tpD-RRR-X 5 RAE, REM-RD Falling to XACK Falling 26 ns

tPD-Xf-LCLr 6 XACK Falling to LCL Rising (nLW+1)T+ -5 ns

tPD-LCL-X 7 LCL Rising to XACK Rising 2T+ -10 8 ns

tPD-Xr-LCLf 8 XACK Rising to LCL Falling T+ -11 11 ns

tAZ-A-LCL 9 A Disabled before LCL Rising TL+ -18 ns

tZA-LCL-A 10 A Enabled after LCL Falling TH+ -12 ns

tpC-LCL-PC 11 LCL Rising to AD (PC) Valid T+ 20 ns

tpD-PC-X 12 AD (PC) Valid before XACK Rising T+ -22 ns

tpD-X-PC 13 XACK Rising to AD (PC) Invalid TH+ 0 ns

tw-PC 14 AD (PC, RIC) Valid T+TH+ -12 ns

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing
specification may lead to invalid results.

ClK-OUT ---l

- kD -CD*-
RAE --\ j

0.:j ~
Ct.lD~ ~///////////////////////J7'/7/777///////////~

REt.I-RD ~ -l-
~

XACK '3k- ~

HV 0 -0--
-

~ ~~ lCl

READ
-=10 f- - @r:

A " \I'

II 1\

0j, -@- @f-
AD RIC ~" RIC, PC '(RIC

'14'
TL/F/9336-68

FIGURE 5-14. Latched Read of PC, RIC

1-154

5.0 Device Specifications (Continued)

TABLE 5·15. Latched Read of OMEM (Note 1)

Symbol 10# Parameter Formula Min Max Units

tSU-RRR-CO 1 RAE. REM-RD Falling before ClK-OUT Rising 22 ns

tH-RRR-X 2 RAE. REM·RD Rising after XACK Rising 0 ns

tSU-CMD-RRR 3 CMD Valid before RAE. REM·RD Falling 0 ns

tH-CMD-RRR 4 CMD Invalid after RAE. REM·RD Falling T+ 26 ns

tpD-RRR-X 5 RAE:. REM·RD Falling to XACK Falling 26 ns

t
tPD-Xf-LCLr 6 XACK Falling to [C[Rising (nLW+1)T+ -5 ns

tpD-LCL-X 7 ill Rising to XACK Rising (nDW+2)T+ -10 8 ns

tPD-Xr-LCLf 8 XACK Rising to ill Falling T+ -11 11 ns

tpC-LCL-RD 9 ill Rising to READ Falling T+ -5 16 ns

tpD-RD-X 10 READ Falling before XACK Rising (nDW+1)T+ -15 ns

tpD-X-RD 11 XACK Rising to READ Rising TH+ -7 12 ns

tAZ-AAO-LCL 12 A. AD Disabled before [C[Rising h+ -20 ns

tZA-LCL-AAD 13 A. AD Enabled after [C[Falling TH+ -10 ns

tW-RD 14 READ low (now+1)T+TH+ -12 ns

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing
specification may lead to invalid results.

CLK-OUT

- 1 - 0f-
- --,
RAE ~ j

3

~///-Ct.lD

-~
REJ.t-RD r ~~

kD-
XACK r- Il-

HV 0 0-
-

~ ~t\ LCL

~ -®- @f-
-
READ 1\ ~~

-j@1- ~ ~
A. AD II 1\

TLIF/9336-69

FIGURE 5-15. Latched Read of OMEM ..
I

1-155

5.0 Device Specifications (Continued)

TABLE 5";1S.LatcheClReaCl of IMEM'(Nole1}'

Symbol 10# Parameter Formula Min Max . Units

tSU-RRR-CO 1 ' RAE, REM-RD Falling before CLK-OUT Rising 22 ns

tH-RRR-X 2 RAE, REM-RD Rising after XACK Rising 0 ns

tSU-CMD-RRR 3 CMD Valid before RAE, REM-RD Falling 0 ns

tH-CMD-RRR 4 CMD Invalid after RAE, REM-RD Falling T+ 26 ns

tpD-RRR-X 5 RAE, REM-RD Falling to XACK Falling , 26 ns,

tpD-Xf-LCLr 6 XACK Falling to LCL RiSing T+ -5 ns

tpD-LCL-X 7 LCL Rising to XACK Rising (nIW+2)T+ -10 8 ns

tPD-Xr-LCLf 8 XACK Rising to LCL Falling T+ -11 11 ns

tAZ-A-LCL 9 A Disabled before LCL Rising h+ , -18 ns

tZA-LCL-A 10 A Enabled after LCL Falling TH+ -12 ns

tPD-LCL-IMEM: 11 LCL Rising to AD (IMEM) Valid T+ 22 ns

tpD-IMEM-X 12 AD (IMEM) Valid to XACK Rising (nlw+1)T+ -23 ns

tpD-X-IMEM 13 XACK Rising to AD (IMEM) Invalid TH+ 1 ns

tpD~LCL-IA 14 LCL Falling to Next IA Valid (Note 2) T+TH+ -19 5 ns

tW-IMEM 15 IMEMValid (nlW + 1)T + T H + -9 ns

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing
specification may lead to invalid results.
Note 2: Two remote reads from instruction memory are necessary to ~ead a 16-bit instruction word from IMEM-low byte followed by high byte. The timing for the
two reads are the same except that IA is incremented after the high instruction memory byte is read.

ClK-OUT ..

'- I -0f-
RAE ---'\ ' -l-

;"~ -0--1 .
1I11111111111111111111111111111i ,/llllllllllllllllllllllllllllllt

-~
REt.4-RD 1\ f

~'

XACK 3
J~

-0 t7' \.:.J 0-
-
lCL }

,

READ r& r-&I
A 11

I. "-
f--® e- @) *- ~

AD RIC It.4Et.4 RIC
J.;'\
~~

IA

TL/F /9336-70

FIGURE 5-16. Latched Read of IMEM

1-156

5.0 Device Specifications (Continued)

TABLE 5·17. Slow Buffered Write of PC, RIC (Note 1)

Symbol 10# Parameter Formula Min Max Units

tSU-RRW-CO 1 RAE, REM-WR Falling before ClK-OUT Rising 24 ns

tH-RRW-X 2 RAE, REM-WR Rising after XACK Rising (Note 2) 0 ns

T+ -37 ns

tSU-CMD-RRW 3 CMD Valid before RAE, REM-WR Falling 0 ns

tH-CMD-RRW 4 CMD Invalid after RAE, REM-WR Falling T+ 26 ns

tpD-RRW-X 5 RAE, REM-WR Falling to XACK Falling 26 ns

tpD-X-LCL 6 XACK Falling to [C[Rising (nLW+1)T+ -5 ns

tpD-LCL-X 7 [C[Rising to XACK Rising 2T+ -10 8 ns

tPD-RRW-LCL 8 RAE, REM-WR Rising to [C[Falling T+ 5 ns

tAZ-MD-LCL 9 A, AD Disabled before lCl Rising h+ -20 ns

tZA-LCL-MD 10 A, AD Enabled after lCl Falling TH+ -10 ns

tSU-RDAT-RRW 11 AD (Data) Valid before RAE, REM-WR Rising 12 ns

tH-RDAT-RRW 12 AD (Data) Invalid after RAE, REM-WR Rising 10 ns

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing
specification may lead to invalid results.
Note 2: The maximum value for this parameter is the latest RAE:, ~ can be removed without adding a T-state to the remote access.

CLK-OUT

- 1 - CD -- ----,
RAE 1\ .,

0.,j ~
CUD 'fl)(XlIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII/- ifill/-If I I I I I I I I I I I I I I 11// I I I I I I I I I II

REU-WR ~t" It-

-0-
XACK 1<-

J

~ -0 \:../ ~
-LCL

-- -@ WRITE

lit H9-t-r-0- --
A,AD \I'

II -
TL/F/9336-71

FIGURE 5-17. Slow Buffered Write of PC, RIC

I

II
I

I

1-157

5.0 Device Specifications (Continued)

r ABLE 5·18. Slow Buffered Write of OMEM (Note 1)

Symbol 10# Parameter Formula Min Max Units

tSU-RRW-CO 1 RAE, REM-WR Falling before CLK-OUT Rising 24 ns

tH-RRW-X 2 RAE, REM-WR Rising after XACK Rising (Note 2) 0 ns

T+ -34 ns

tSU-CMO-RRW 3 CMD Valid before RAE, REM-WR Falling 0 ns

tH-CMO-RRW 4 CMD Invalid after RAE, REM-WR Falling T+ 26 ns

tpO-RRW-X 5 RAE, REM-WR Falling to XACK Falling 26 ns

tpO-X-LCL 6 XACK Falling to LCL Rising (nLW+1)T+ -5 ns

tpO-LCL-X 7 LCL Rising to XACK Rising (now+2)T+ -10 8 ns

tpO-RRW-LCL 8 RAE, REM-WR to LCL Falling T+ 5 ns

tpO-LCL-WR 9 LCL Rising to WRITE Falling T+ -5 ns

tpO-WR-X 10 WRITE Falling to XACK Rising (now+1)T+ -17 ns

tpO-RRW-WR 11 RAE, REM-WR Rising to WRITE Rising 2 28 ns

tAZ-AAO-LCL 12 A, AD Disabled before LCL Rising TL+ -20 ns

tAZ-LCL-AAO 13 A, AD Enabled after LCL Falling TH+ -10 ns

tW-WR 14 WRITE Low (now+1)T+ -3 ns

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing
specification may lead to invalid results.
Note 2: The maximum value for this parameter is the latest RAE:. RE'fiif-WR can be removed without adding a T-state to the remot~ access.

ClK-OUT -----l

- r-G -0 -
RAE~~ .,

3 ~
CMD HIIIIIIIIIIIIIIIIIIIIIIIIIII I I I I I I I I I!J 7J77l7llllllll111//////if/f////L

REM-WR ~ ~

Hi>-
XACK r-

HV 0 \.8.1
- - ~r lCl

~ -@-- HiD-
-- ~r -~ WRITE

r@+ 14' ~ A,AD II

TL/F/9336-72

FIGURE 5·18. Slow Buffered Write of DMEM

1-.158

5.0 Device Specifications (Continued)

TABLE 5-19. Slow Buffered Write of IMEM (Notes 1,2)

Symbol 10# Parameter Formula Min Max Units

tSU-RRW-CO 1 RAE, REM-WR Falling before ClK-OUT Rising 24 ns

tH-RRW-X 2 RAE, REM-WR Rising after XACK Rising (Note 3) 0 ns

T+ -34 ns

tSU-CMD-RRW 3 CMD Valid before RAE, REM-WR Falling 0 ns

tH-CMD-RRW 4 CMD Invalid after RAE, REM-WR Falling T+ 26 ns

tpD-RRW-X 5 RAE, REM-WR Falling to XACK Falling 26 ns

tPD-X-LCL 6 XACK Falling to lCL Rising T+ -5 ns

tpD-LCL-X 7 lCL Rising to XACK Rising (nlw+2)T+ -10 8 ns

tPD-RRW-LCL 8 RAE, REM-WR to LCL Falling T+ 5 ns

tAZ-AAD-LCL 9 A, AD Disabled before LCL Rising h+ -20 ns

tZA-LCL-AAD 10 A, AD Enabled after LCL Falling TH+ -10 ns

tpD-RDAT-1 11 AD (Data) Valid to I Valid 30 ns

tH-RDAT-RRW 12 AD (Data) Invalid after RAE, REM-WR Rising 14 ns

tpD-LCL-IA 13 LCL Falling to next IA Valid T+TH+ -20 3 ns

tPD-LCL-IWR 14 LCL Rising to IWR Falling -3 ns

tpD-IWR-X 15 IWR Falling before XACK Rising (nlw+2)T+ -19 ns

tpD-RRW-IWR 16 RAE, REM-WR Rising to IWR Rising 5 ns

tZA-IWR-1 17 IWR Falling to I Enabled T+ -2 ns

tAZ-IWR-1 18 IWR Rising to I Disabled 22 52 ns

tpD-I-IWR 19 I Valid before IWR Rising (nIW+ 1)T+ -10 ns

tW-IWR 20 IWR Low (nIW+2)T+ -2 ns

tPD-I-IA 21 I Disabled to IA Invalid 2T+TH+ -64 ns

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing
specification may lead to invalid results.
Note 2: Two remote writes to instruction memory are necessary to store a 16-bit instruction word to IMEM-Iow by1e followed by high by1e. The timing for the 2nd
write is shown in the following diagram. The timing of the first write is the same as a write of the PC or RIC.
Note 3: The maximum value for this parameter is the latest RAl:, REM-WR can be removed without adding a T-state to the remote access.

I

II
I

1-159

....
en
o

I. (20) 01

FIGURE 5~19.SJow Buffered WriteofiMEM

DP8344B

U1
C
c
CD
< a"
CD
en
"a
CD
n :::;;
a"
Q) -

TUF/9336-73

0"
::J en
a o a.
:r
c:
CD .s

5.0 Device Specifications (Continued)

TABLE 5-20. Fast Buffered Write of RIC, PC (Note 1)

Symbol 10# Parameter Formula Min Max ' Units

tSU-RRW-CO 1 RAE, REM-WR Falling before ClK-OUT Rising 24 ns

tH-RRW-X 2 RAE, REM-WR Rising after XACK Rising 0 ns

tSU-CMD-RRW 3 CMD Valid before RAE, REM-WR Falling 0 ns

tH-CMD-RRW 4 CMD Invalid after RAE, REM-WR Falling T+ 26 ns

tpD-RRW-X 5 RAE, REM-WR Falling to XACK Falling 26 ns

tPD-X-LCL 6 XACK Falling to lCL Rising (nLW+1)T+ -5 ns

tpD-lCl-X 7 [C[Rising to XACK Rising 2T+ -10 8 ,ns

tPD-Xr-lCLf 8 XACK Rising to lCl Falling T+ -11 11 ns

tAZ-AAD-LCL 9 A, AD Disabled before lCl Rising h+ -20 ns

tZA-LCl-AAD 10 A, AD Enabled after lCl Falling TH+ -10 ns

tSU-RDAT-X 11 AD (Data) Valid before XACK Rising 26 ns

tH-RDAT-X 12 AD (Data) Invalid after XACK Rising 3 ,ns

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing
specification may lead to invalid results.

"

ClK-OUT

- 1 - 0-
-
RAE ~ j

--=10 ~
Ct.lD 1f!lX '¥I//h

-- ... f REt.4-WR

~
XACK .- r-

-0 17'.
\:J -0--

- " .-LCl

--
WRITE ~@~

~ r-0- 11

A,AD 'Ill. " " '"
TlIF/9336-74

FIGURE 5-20. Fast Buffered Write of RIC, PC

I

II
I

1-161

5.0 Device Specifications (Continued)

TABLE 5';21: Fast Buffered Write of OMEM (Note 1)

Symbol 10# Parameter Formula Min Max Units

tSU-RRW-CO 1 RAE, REM-WR Falling before ClK-OUT Rising 24 ns

tH-RRW-X 2 RAE, REM-WR Rising after XACK Rising 0 ns

tSU-CMD-RRW 3 CMD Valid before RAE, REM-WR Falling 0 ns

tH-CMD-RRW 4 CMD Invalid after RAE, REM-WR Falling T+ 26 ns

tpD-RRW-X 5 RAE, REM-WR Falling to XACK Falling 26 ns

tPD-Xf-LCLr 6 XACK Falling to [C[Rising (nLw+1)T+ -5 ns

tpD-LCL-X 7 [C[Rising to XACK Rising (nDW+2)T+ -10 8 ns

tPD-Xr-LCLf 8 XACK Rising to [C[Falling T+ -11 11 ns

tpD-LCL-WR 9 lCl Rising to WRITE Falling T+ -5 ns

tpD-WR-X 10 WRITE Falling to XACK Rising (nDW+1)T+ -16 ns

tpD-X-WR 11 XACK Rising to WRITE Rising -4 13 ns

tAZ-AAD-LCL 12 A, AD Disabled before lCl Rising TL+ -20 ns

tZA-LCL-AAD 13 A, AD Enabled after lCl Falling TH+ -10 ns

tW-WR 14 WRITE low (nDW+1)T+ -10 ns

Note 1: All parameters are Individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing
specification may lead to invalid results.

eLK-OUT

- 1 - G)f-
-
RAE rt ..,~

3 ~
CMD HI II '/1111 'IIIIIIIIIIII/IIIII!J

--
REM-WR r- ~

8D--
XACK l..- J'f..

-0 t.:j'\
\:..J 0--

-
~ l(LCL

--0 -@-- r-®
--

l~ WRITE

t-@- ~ ~
A,AD JI

TL/F/9336-75

FIGURE 5-21. Fast Buffered Write of OM EM

1-162

5.0 Device Specifications (Continued)

TABLE 5-22. Fast Buffered Write of IMEM (Notes 1, 2)

Symbol 10# Parameter Formula Min Max Units

tSU-RRW-CO 1 RAE, REM-WR Falling before ClK-OUT Rising 24 ns

tH-RRW-X 2 RAE, REM-WR Rising after XACK Rising 0 ns

tSU-CMD-RRW 3 CMD Valid before RAE, REM-WR Falling 0 ns

tH-CMD-RRW 4 CMD Invalid after RAE, REM-WR Falling T+ 26 ns

tpD-RRW-X 5 RAE, REM-WR Falling to XACK Falling 26 ns

tPD-Xf-LCLr 6 XACK Falling to ill Rising T+ -5 ns

tpD-LCL-X 7 lCl Rising to XACK Rising (nlw+2)T+ -10 8 ns

tPD-Xr-LCLf 8 XACK Rising to [C[Falling T+ -11 11 ns

tAZ-AAD-LCL 9 A, AD Disabled before [C[Rising h+ -20 ns

tZA-LCL-AAD 10 A, AD Enabled after lCl Falling TH+ -10 ns

tPD-RDAT-1 11 AD (Data) Valid to I Valid 30 ns

tH-RDAT-X 12 AD (Data) Invalid after XACK Rising 3 ns

tpD-IWR-X 13 IWR Falling before XACK Rising (nlw+2)T+ -19 ns

tpD-LCL-IA 14 lCl Falling to next IA Valid T+TH+ -19 5 ns

tpD-LCL-IWR 15 lCl Rising to IWR Falling -3 ns

tpD-X-IWR 16 XACK Rising to IWR Rising -2 ns

tZA-IWR-1 17 IWR Falling to I Enabled T+ -2 ns

tAZ-IWR-1 18 IWR Rising to I Disabled 22 52 ns

tPD-I-IWR 19 I Valid before IWR Rising (nlw+1)T+ -18 ns

tW-IWR 20 IWR low Time (nlw+2)T+ -10 ns

tpD-I-IA 21 I Disabled to IA Invalid 2T+TH+ -70 ns

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing
specification may lead to invalid results.
Note 2: Two remote writes to instruction memory are necessary to store a 16-bit instruction word to IMEM-Iow byte followed by high byte. The timing of the 2nd
write is shown in the following diagram. The timing of the first write is the same as a write of the PC or RIC as shown in Figure 5-20.

..
I

1-163

m
"'11:1'
:; 5.0 Device Specifications (Continued)
CO
Q.

C
ClK-OUT

RAE

CMD

XACK

lCl ----------"1

A,AD ------'1

IA __________ ~----~~----~-------------'I~

TL/F 19336-76

FIGURE 5-22. Fast Buffered Write of IMEM

1-164

5.0 Device Specifications (Continued)

TABLE 5·23. Latched Write of PC, RIC (Note 1)

Symbol 10# Parameter Formula Min Max Units

tSU-RRW-CO 1 RAE, REM-WR Falling before ClK-OUT Rising 24 ns

tH-RRW-CO 2 RAE, REM-WR Rising after ClK-OUT Rising (Note 2) TH+ 6 ns

T+ -20 ns

tH-RRW-X 3 RAE, REM-WR Rising after XACK Rising 0 ns

tSU-CMD-RRW 4 CMD Valid before RAE, REM-WR Falling 0 ns

tH-CMD-RRW 5 CMD Invalid after RAE, REM-WR Falling T+ 26 ns

tpD-RRW-X 6 RAE, REM-WR Falling to XACK Falling 26 ns

tSU-RDAT-LCL 7 AD (Data) Valid after lCl Rising 2T+ -30 ns

tH-RDAT-LCL 8 AD (Data) Invalid after ICC Rising 2T+ 2 ns

tAZ-AAD-LCL 9 A, AD Disabled before lCl Rising h+ -20 ns

tZA-LCL-AAD 10 A, AD Enabled after [C[Falling TH+ -10 ns

tpD-RRW-WPND 11 RAE, REM-WR Rising to WR-PEND Falling 5 ns

T+ 34 ns

tSU-CMD-WPND 12 CMD Valid before WR-PEND Rising 16 ns

tH-CMD-WPND 13 CMD Invalid after WR-PEND Rising 4 ns

tSU-RRWr-CO 14 RAE, REM-WR Rising before ClK-OUT Rising 20 ns

tpD-X-WPND 15 XACK Rising to WR-PEND Rising 13 ns

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing
specification may lead to invalid results.
Note 2: The maximum value for this parameter is the latest~, ~ can be removed without delaying the remote access by one T-state.

CLK-OUT ~~ - "' 1l'""""""'\ RAE

~ -®----1
CMD ///~ V/ /////////////////////////////////. V/~

~ --
REM-WR

-0 :+0 f+-
XACK ~ ~

®
-
LCL ,. ...

--
WRITE

:-<Vi 10 -~ -jeD
A. AD

-® ~@ --~ ---
WR-PEND T ..,

~
TL/F/9336-77

FIGURE 5·23. Latched Write of PC, RIC

1-165

II
I

5.0 Device Specifications (Continued)

TABLE 5·24~l..atC:;hec:lWrite 6f OMEM (Note 1)

Symbol 10# Parameter Formula Min Max Units

tSU-RRW-CO 1 RAE, REM-WR Falling before ClK-OUT Rising 24 ns

tH-RRW-CO 2 RAE, REM-WR Rising after ClK-OUT Rising (Note 2) TH+ 6 ns

T+ -20 ns

tH-RRW-X 3 RAE, REM-WR Rising after XACK Rising 0 ns

tSU-CMD-RRW 4 CMD Valid before RAE, REM-WR Falling 0 ns

tH-CMD-RRW 5 CMD Invalid after RAE, REM-WR Falling T+ 26 ns

tpD-RRW-X 6 RAE, REM-WR Falling to XACK Falling 26 ns

tpD-LCL-WR 7 [C[Rising to WRITE Falling T+ -5 ns

tpD-WR-LCL 8 WRITE Rising to [C[Falling T+ -11 ns

tAZ-AAD-LCL 9 A, AD Disabled before lCl Rising TL+ -20 ns

tZA~LCL-AAD 10 A, AD Enabled after lCl Falling TH+ -10 ns

tW-WR 11 WRITE low Time (nDW+1)T+ -10 ns

tPD-RRW-WPND 12 RAE, REM-WR Rising to WR-PEND Falling 5 ns

T+ 34 ns

tSU-CMD-WPND 13 CMD Valid before WR-PEND Rising 16 ns

tH-CMD-WPND 14 CMD Invalid after WR-PEND Rising 4 ns

tSU-RRWr-CO 15 RAE, REM-WR Rising before ClK-OUT Rising 20 ns

tPD-X-WPND 16 XACK Rising to WR-PEND Rising 13 ns

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing
specification may lead to invalid results.

Note 2: The maximum value for this parameter is the latest 11A!:. ~ can be removed without delaying the remote access by one T-state.

elK-OUT ~~
RAE ~ ~

.. ~ I-®-h
~ CMD IL/// / / / / / / / / / / / / / / /7777/'T//7777//77/.

REM-WR ~

-0 :+0 ~
XACK .3k

~f-

- ~ lCl

~ r-®-
-- " WRITE

I--&-
10 ;+t+ ~ -!@I-

A, AD

.... @ ... @I::f®-
--- .3k-WR-PEND 'f-~

11

TLlF/9336-78

FIGURE 5·24. Latched Write of DMEM

1-166

5.0 Device Specifications (Continued)

TABLE 5·25. Latched Write of IMEM (Notes 1,2)

Symbol 10# Parameter Formula Min Max Units

tSU-RRW-CO 1 RAE, REM-WR Falling before ClK-OUT Rising 24 ns

tH-RRW-CO 2 RAE, REM-WR Rising after ClK-OUT Rising (Note 3) , TH+ 6 ns

'T+ -20 ns

tH-RRW-X 3 RAE, REM-WR Rising after XACK Rising 0 ns

tSU-CMD-RRW 4 CMD Valid before RAE, REM-WR Falling 0 ns

tH-CMD-RRW 5 CMD Invalid after RAE, REM-WR Falling T+ 26 ns

tpD-RRW-X 6 RAE, REM-WR Falling to XACK Falling 26 ns

tAZ-AAD-LCL 7 A, AD Disabled before lCl Rising h+ -20 ns

tZA-LCL-AAD 8 A, AD Enabled after ICC Falling TH+ -10 ns

tpD-RDAT-1 9 AD (Data) Valid to I Valid 30 ns

tH-RDAT-IWR 10 AD (Data) Invalid after IWR Rising 0 ns

tpD-RRW-WPND 11 RAE, REM-WR Rising to WR-PEND Falling 5

T+ 34 ns

tPD-LCL-IA 12 lCl Falling to Next IA Valid T+TH+ -19 5 ns

tZA-IWR-1 13 IWR Falling to I Enabled T+ -2 ns

tAZ-IWR-1 14 IWR Rising to I Disabled 22 52 ns

tpD-I-IWR 15 I Valid before IWR Rising (nIW+1)T+ -18 ns

tPD-LCL-IWR 16 ICC Rising to IWR Falling -3 ns

tPD-IWR-LCL 17 IWR Rising to ICC Falling T+ -17 ns

tW-IWR 18 IWR low Time (nIW+2)T+ -12 ns

tSU-CMD-WPND 19 CMD Valid before WR-PEND Rising 16 ns

tH-CMD-WPND 20 CMD Invalid after WR-PEND Rising 4 ns

tpD-I-IA 21 I Disabled to IA Invalid 2T+TH+ -70 ns

tSU-RRWr-CO 22 RAE, REM-WR Rising before ClK-OUT Rising 20 ns

tPD-X-WPND 23 XACK Rising to WR-PEND Rising 13 ns

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing
specification may lead to invalid results.
Note 2: Two remote writes to instruction memory are necessary to store a 16-bit instruction word to IMEM-Iow byte followed by high byte. The timing of the 2nd
write is shown in the following diagram. The first write is the same as a write of the PC or RIC as shown in Figure 5-23.

Note 3: The maximum value for this parameter is the latest RJU:, REM-WR can be removed without delaying the remote access by one T-state.

II

1-167

m
"'I:!'
:; 5.0 Device Specifications (Continued)
CO
D.
C

ClK-OUT

RAE

Ct.4D

REt.4-WR

XACK

lCL

WRITE

A,AD

WR-PEND

IA

FIGURES';2S.Lidched Write of IMEM

1-168

TL/F/9336-79

5.0 Device Specifications (Continued)

TABLE 5-26. Remote Rest Time (Note 1)

Symbol 10# Parameter Formula Min Max Units

tSU-BR-RR-CO 1 REM-RD Rising before ClK-OUT Rising
19

(Buffered Read Mode)
ns

tH-BR 2 ClK-OUT Rising after REM-RD Rising to REM-RD
T+TH+ 10

or REM-WR Falling (Buffered Read Mode)
ns

tSU-LR-RR-CO 3 REM-RD Rising before ClK-OUT Rising
16

(latched Read Mode)
ns

tH-LR 4 ClK-OUT Rising after REM-RD Rising to REM-RD
T+TH+ 10

or REM-WR Falling (latched Read Mode)
ns

tSU-SBW-RW-CO 5 REM-WR Rising before ClK-OUT Rising
22

(Slow Buffered Write Mode)
ns

tH-SBW 6 ClK-OUT Rising after REM-WR Rising to REM-RD or
T+TH+ 10

REM-WR Falling (Slow Buffered Write Mode)
ns

tSU-FBW-RW-CO 7 REM-WR Rising before ClK-OUT Rising
22

(Fast Buffered Write Mode)
ns

tH-FBW 8 ClK-OUT Rising after REM-WR Rising to REM-RD or
T+TH+ 10

REM-WR Falling (Fast Buffered Write Mode)
ns

tSU-LW-RW-CO 9 REM-WR Rising before ClK-OUT Rising
20

(latched Write Mode)
ns

tH-LW 10 ClK-OUT Rising after REM-WR Rising to REM-RD
10

or REM-WR Falling (latched Write Mode)
ns

tSU-LW-RWR-COa 11 REM-WR orREM-RD Falling to ClK-OUT Falling
TH+ 7

(latched Write Mode) (Note 2)
ns

tSU-LW-RWR-COb 12 ClK-OUT Rising to REM-WR or REM-RD rising
8

(latched Write, Mode) (Note 2)
ns

tpD-CO-WP 13 ClK-OUT rising to WR-PEND Rising -1 21 ns

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing
specification may lead to invalid results.

Note 2: Both specifications refer to the elK-OUT falling edge after WR-PrnD rising. See Section 4.2.6, RIAS remote rest time.

1-169

5.0 Device Specifications (Continued)

CLK-OUT~<D
REN-RD ______ ---J _

2

XACK ____ JI ''''''-----, _____ r_
TLIF 19336- BO

(a) REM-RD Rest Time (Buffered Read Mode)

CLK-OUT~0
REN-RD ______ --' _

4

XACK ____ ..II ' _----
LCL

,~ ______ ~r_
TLlF/9336-B1

(b) REM-RD Rest Time (Latched Read Mode)

CLK-DUT~® ~
REN-WR ______ ---' _

6

XACK ____ ..II ''''''-----
LCL ,'-____ .Jr-

TL/F/9336-B2

(c) REM-WR Rest Time (Slow Buffered Write Mode)

CLK-OUT~<D
REN-WR ______ ---J _

8

XACK ____ JI ,'------
LCL '~ ______ ~r_

TLlF/9336-B3

(d) 'REM-WR Rest Time (Fast Buffered Write Mode)

m ___________________________ ~1

WR-PEHD

''''''------------------ TL/F/9336-B4

(e) REM-WR Rest Time (Latched Write Mode)

FIGURE 5-26. Remote Rest Time

1-170

5.0 Device Specifications (Continued)

ClK-OUTF"--.J~
t:-: -'~ __ ~{

REIo4-WR \.
--

or REIo4-RD

\. 1---
XACK ~

-
LCL

@--y

WR-PEND

TLlF/9336-H9

(f) WR·PEND Rising (Latched Write t.4ode)

FIGURE 5-26. Remote Rest Time (Continued)

TABLE 5-27. Remote Interface WAIT Timing (Note 1)

Symbol 10# Parameter Formula Min Max Units

tSU-WT-LCL 1 WAIT Falling after La: Rising to Extend Cycle
(Buffered Read, Latched Read, Slow Buffered Write, T+TH+ -28 ns
Fast Buffered Write and Latched Write of PC, RIC)

WAIT Falling after La: Rising to Extend Cycle
(Buffered Read, Latched Read, Slow Buffered Write, (nOW+ 1)T+TH+ -28 ns
Fast Buffered Write and Latched Write of DMEM)

WAIT Falling after La: Rising to Extend Cycle
(Buffered Read, Latched Read, Slow Buffered Write, (nlw + 1)T + T H + -28 ns
Fast Buffered Write and Latched Write of IMEM)

tH-WT-LCL 2 WAIT Rising after La: Rising
T+TH+ 0

(Buffered Read, Latched Read, Slow Buffered Write,
ns

Fast Buffered Write and Latched Write of PC, RIC) (Note 2) 2T+TH+ -27 ns

WAIT Rising after La: Rising
(nOW+ 1)T + TH+ 0 ns

(Buffered Read, Latched Read, Slow Buffered Write,
Fast Buffered Write and Latched Write of DMEM) (Note 2) (now+2)T+TH+ -27 ns

WAIT Rising after La: Rising
(nlW + 1)T + T H + 0 ns

(Buffered Read, Latched Read, Slow Buffered Write,
Fast Buffered Write and Latched Write of IMEM) (Note 2) (nIW+2)T+TH+ -27 ns

tSU-WT-RO 3 WAIT Falling after READ Falling to Extend Cycle
(now)T+TH+ -32

(Buffered Read and Latched Read)
ns

tSU-WT-WR 3 WAIT Falling after WRITE Falling to Extend Cycle
(now)T+TH+ -33

(Slow Buffered Write, Fast Buffered Write and Latched Write)
ns

tSU-WT-IWR 3 WAIT Falling after iWR Falling to Extend Cycle
(nIW+ 1)T+TH+ -38

(Slow Buffered Write, Fast Buffered Write and Latched Write)
ns

I

II
,

1-171

5.0 Device Specifications (Continued)

TASLE s.;2i'. Remote InterlaceWMr Tlmlrig (Note 1) (Contlnued)

Symbol 10#, Parameter Formula Min Max Units

tH-WT-RO 4 WAIT Rising after READ Falling (nowT+TH+ -4 ns
(Buffered Read and Latched Read) (Note 2)

(now+ 1)T+TH+ -30 ns

tH-WT-WR 4 WAIT Rising after WRITE Falling (Slow Buffered Write, (now)T+TH+ -5 ns
Fast Buffered Write and Latched Write) (Note 2)

(now+ 1)T+TH+ -34 ns

tH-WT-IWR 4 WAIT Rising after lWR Falling (Slow Buffered Write, (tilW + 1)T + T H + -5 ns
Fast Buffered Write and Latched Write) (Note 2)

(nIW+2)T+TH+ -38 ns

tpD-WT-X 5 . WAIT Rising toXACK Rising (Buffered Read, Latched h+ 0 ns
Read, Slow Buffered Write and Fast Buffered Write)

T+TL + 24 ns ,"

tPD-WT-LCL 6 WAIT Rising to IC[Falling (Latched Write) T+TL + 1 ns

2T+TL + 26 ns

tPD-WT-WR 7 WAIT Rising to WRITE Rising (Latched Write) h+ 2 ns

T+h+ 28 ns

tPD-WT-IWR ,7. WAIT Rising to IWR Rising (Latched Write) h+ 4 ns

T+TL+ 38 ns

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing
specification may lead to invalid results.' . .' .

Note 2: The maximum value for this parameter is the latest WAfT can be removed without adding an additional T-state. The formula assumes a minimum external
wait of one T-state.

WAIT 3 If

-Gr- t=r-XACK

~
-
LCL----J

@I+-
<D---READ, I

WRITE, \:
or IWR

TLlF/9336-B5

(a) Buffered Read, Latched Read, Slow Buffered
Write and Fast Buffered Write

" WAIT 3 }'€

'-CD-
®-

LCL.---I
J@~ f+®

i
WR~ ~ "

IWR

-0
TL/F/9336-B6

(b) Latched Write

FIGURE 5-27. Remote Interface WAIT Timing

1,-172

5.0 Device Specifications (Continued)

TABLE 5·28. Walt Timing After Remote Access (Note 1)

Symbol 10# Parameter Formula Min Max Units

tpD-LCL-AAD 1 ICC Falling to A, AD (Data Address) Valid TH+ 11 ns

tPD-LCL-AAD-BR ICC Falling to A, AD (Data Address) Valid
2T+ 29 ns

for Buffered Read of RIC

tpD-AAD-ALE 2 A, AD (Data Address) Valid to ALE Falling T+ -16 ns

tSU-WT-LCL 3 ICC Falling to WAIT Falling to Extend Local Cycle (max(nDw,nIW -1) + 1)T + T H + -29 ns

tH-WT-LCL 4 WAIT Rising after LCL Falling (max(nDw,nIW -1) + 1)T + T H + -3 ns

(max(nDW,nIW-1) + 2)T + T H + -28 ns

tH-WT-LCL-BR WAIT Rising after ICC Falling for Buffered (max(nDW,nIW -1) + 3)T + T H +
-3 ns

read of RIC

tSU-WT-ALEf 5 WAIT Low Before ALE Falling to Extend Cycle 22 ns

tH-WT-ALE 6 WAIT Rising After ALE Falling 0 ns

(max(nDW,nIW-1)+ 1)T+ -28 ns

tSU-WT-AAD 7 A, AD (Data Address) Valid to WAIT Falling T+ -33 ns
to Extend Load Cycle

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing
specification may lead to invalid results.

ClK-OUT

ALE "'~

rr-10k!r - -®~
LCl I\.

I<D- -<D--
-
WAIT J

r--<z>-.
AD

A

TL/F/9336-IO

f I9URi; 5.2~.V'laltTIn1JIl9AfterRer1'l~~eAc:cess:

• I
I

1-173

6.0 Reference Section
6.1 INSTRUCTION SET REFERENCE

The Instruction Set Reference section contains detailed in­
formation on the syntax and operation of each BCP instruc­
tion. The instructions are arranged in alphabetical order by
mnemonic for easy access. Although this section is primarily
intended as a reference for the assembly language pro­
grammer, previous assembly language experience is not a
prerequisite. The intent of this instruction set reference is to
include all1he pertinent information regarding each instruc­
tion on the page(s) describing that instruction. The only ex­
ceptions to this rule concern the instruction. addressing ,
modes and the bus timing diagrams. The discussion of the
instruction addressing modes occurs at the beginning of the
BCP Instruction Set Overview section and, therefore, will
not be repeated here. The figures for the' bus timing dia­
grams are located at the end of this introduction rather than
constantly repeating them under each instruction. The infor­
mation that is contained under each instruction is divided
into eight categories titled: Syntax, Affected Flags, Descrip­
tion, Exampie, Instruction Format, T-states, Bus timing, and
Operation. The following paragraphs explain what informa­
tion each category' conveys and any special nomenclature
that a category may use.,

Syntax

This category illustrates the assembler syntax for each in­
struction. Multiple lines are used when a given instruction
supports more than one type of addressing mode, or if it has
an optional mnemonic. All capital letters, commas (,), math
symbols (+, -), and brackets a)) are entered into the as­
sembler exactly as shown. Braces (I I) surround an instruc­
tion's optional operands and their associated, syntax. The
text between the braces may either be entered in with or
omitted from the instruction. The braces themselves should
not be entered into the assembler because they are not part
of the assembler syntax. Lower c'ase characters and oper­
ands that begin with the capital R represent symbols. These
must be replaced with actual register names, numbers, or
equated registers and numbers. Table 6-1 lists all the sym­
bols and their associated meanings.

Affected Flags

If an instruction sets or clears any of the ALU flags, (Le.,
Negative [N], Zero [Z], Carry [C], and/or Overflow [V)),
then those flags affected are listed under this category.

Description

The Description category contains a verbal discussion
about the operation of an instruction, the operands it allows,
and any notes highlighting special considerations the pro­
rammer should keep in mind when using the instruction.

Example

Each instruction has one or more coding examples de­
signed to show its typical usage(s). For clarity, register
name abbreviations are often used instead of the register
numbers, (Le., RTR is used in place of R4). Each example
assumes that the" .EQU" assembler directive has been pre­
viously executed to establish these relationships. Informa­
tion relating register abbreviations to register names, num­
bers, and purpose is located in the CPU Registers section.

1-174

Instruction Format

This category illustrates the formation of an instruction's
machine code for each operand variation. Assembly or dis­
assembly of any instruction can be accomplished using
thes~ figures.

T-states

The T-state category lists the number of CPU clock cycles
required for 'each' instruction, including operand variations
and conditional considerations. Using this information, actu­
al execution times may be calculated. For example, if the
conditional relative jump instruction's condition is not met,
the CPU's clock cycle is 18.867 MHz aCCS] = 0), and no
instruction wait states are requested ([IW1 - 0] = 00), then
Jcc's execution time is calculated as shown below:

texecution = 1 /(CPU clock frequency) x T-states

= 1/(18.867 X 106 Hz) X 2

= (53 X 10-9s) x 2

= 106 ns

See the section BCP Timing for more information on calcu­
lating instruction execution times.

Bus Timing

This category refers the user to the Bus Timing Figures 6-1
to 6-6 on the following pages. These figures illustrate the
relationship between software instruction execution and
some of the BCP's hardware signals.

Operation

The operation category illustrates each instruction's opera­
tion in a symbolic coding format. Most of the operand
names used in this format come directly from each instruc­
tion's syntax. The exceptions to this rule deal with implied
operands. Instructions that imply the use of the accumula­
tor$ use the name "accumulator" as an operand. Instruc­
tions that manipulate the Program Counter use the symbol
"PC". Instructions that "push" onto or "pop" off of the inter­
nal Address Stack specify "Address Stack" as an operand.
Instructions that save or restore the ALU flags and the reg­
ister bank selections use those terms as operands. Two
specialized operator symbols are used in the symbolic cod­
ing format, the arrow " ~ " and the concatenation operator
"&". The arrow indicates the movement of data from one
operand to another. For instance, after the operation
"Rs ~ Rd" is performed the content of Rd has been re­
placed with the content of Rs. The concatenation operator
"&" simply indicates that the operands surrounding an "&"
are attached together forming one new operand. For exam­
ple, "PC & [GIE] & ALU flags & register bank
selections ~ Address Stack" means that the Program
Counter, the Global Interrupt Enable bit, the ALU flags and
the register bank selections are combined into one operand
and pushed onto the internal Address Stack. Three condi­
tional structures are utilized in the symbolic coding format:
the "Two Line If" structure, the "Blocked If" structure, and
the "Blocked Case" structure. In the "Two Line If" struc­
ture, if the condition is met then the operation is performed,
otherwise the operation is not performed.

"Two Line If" structure:

If condition

then operation

6.0 Reference Section (Continued)

In the "Blocked If" structure, if the condition is met then all "Blocked Case" structure:
the operations between the "If" statement and the "End if" Case operand of
statement are performed. 0: operation
"Blocked If" structure: 1: operation

If condition then 2: etc ...

operation End case
operation Two reference tables have been added to the back of the
etc ... Instruction Set Reference section. The first table, Table 6-2,

End if lists all the instructions with their associated T-states, Af-

In the "Blocked Case" structure, the operation preceded by fected Flags, and Bus Timing figure numbers in a compact

the equivalent numeric value of the operand is executed. format. The second table, Table 6-3, lists all the instructions

For example, if the operand's value is equal to "1" then the in opcode order to facilitate disassembly.

operation preceded by "1:" is executed.

TABLE 6-1. Notational Conventions for Instruction Set

Symbol Represents Meaning Length

n o to 255 Unsigned Number 8 Bits
+ 127 to -128 Signed Number

nn o to 65535 Unsigned Number 16 Bits

Rs RO-R31 Source Register

Rd RO-R31 Destination Register

Rsd RO-R31 Combination Source/Destination Register

rs RO-R15 Limited Source Register

rd RO-R15 Limited Destination Register

rsd RO-R15 Limited Combination Source/Destination Register

Ir IW,IX,IY,IZ Index Register

mlr Index Register in One of the Following Address Modes:
Ir- Post Decrement
Ir No Change
Ir+ Post Increment
+Ir Pre-Increment

b 0-7 Shift Field 3 Bits

m 0-7 Mask Field 3 Bits

p 0-7 Position Field 3 Bits

s 0-1 State Field 1 Bit

f 0-7 Flag Reference Field 3 Bits

cc Condition Code Instruction Extensions

v 0-63 Vector Field 6 Bits

g 0-3 Global Interrupt Enable Flag [GIE] Status Control 2 Bits

g' 0-1 Global Interrupt Enable Flag [GIE] Limited Status Control 1 Bit

rf 0-1 Register Bank and ALU Flag Status Control 1 Bit

ba 0-1 Register Bank A Select 1 Bit

bb 0-1 Register Bank B Select 1 Bit

1-175

6.0 Reference Section (Continued)

CPU-ClK

IClK

IA PC PC+1
TLIF/9336-21

FIGURE 6-1. Instruction-Memory Bus Timing for 2 T-state Instructions
(No Instruction Walt States [lW1-0] = 00, CPU Running at Full Speed [CCS] = 0)

CPU-ClK

IClK

IA
TL/F/9336-22

FIGURE 6-2. Instruction-Memory Bus Timing for 3 T-state Instructions
(No Instruction Walt States [lW1-0] = 00, CPU Running at Full Speed [CCS] = 0)

1-176

6.0 Reference Section (Continued)

I-Tl 'I' T2 'I' Tl 'I' T2--j
CPU-ClK

IClK

IA PC PC +1 nn

FIGURE 6-3. Instruction-Memory Bus Timing for (2 + 2) T-state Instructions
(No Instruction Walt States [lW1-0] = 00, CPU Running at Full Speed [CCS] = 0)

I-T1---*I'" --Tx--'*I'" --Tx--·-tl·'--T2--j
CPU-ClK

IClK

IA

FIGURE 6-4. Instruction-Memory Bus Timing for 4 T -state Instructions
(No Instruction Walt States [lW1-0] = 00, CPU Running at Full Speed [CCS] = 0)

1·177

TL/F/9336-23

TL/F/9336-24

6.0 Reference Section (Continued)

I-Tl
CPU-ClK

IClK

IA ----+-'

ALE

AD

READ
TLlF/9336-25

F.lG(JRlni~S;lristructtori/OataMeirioryBusTlmirigfor Data Memory Read
(~§J!'1~t~~c::!Ic)~c)II)Cl!Cl ... enlOI)' VIIalt.~tClt~s, 9PUFlu~n(ngat. Fu USpeed [9CS).= .. 0, [4TFll··';' .•.. 0)

CPU-ClK

IClK

IA

ALE ----+-...

AD
~~--~~.'-------------~

READ

fFIGOR~~+6:tristructtorl!OataMetnory Bus Tlrillrig for Data Memory Reaa
[(~~]~!~~!I§~C)!J:)Cl~M~tn~ry·Vlltllt~~tetJ;.9P~Runrilrlgatfull.~pe~d.[99~1 ... ·"", .. ··9),J4""R)""'I~)

1-178

TL/F/9336-ll

6.0 Reference Section (Continued)

I-T1- ... • t.-I·- TX--'· It-· -T2----j

CPU-ClK

IClK

IA

ALE ---...........

WRITE
TLIF/9336-26

FIGURE 6-7.lnstruction/Data Memory Bus Timing for Data Memory Write
(No Instruction or Data Memory Walt States, CPU Running at Full Speed [CCS] = 0)

ADCA Add with Carry and Accumulator
Syntax

ADCA Rs, Rd
ADCA Rs, [mlr]

Affected Flags
N,Z,C,V

Description

-register, register
-register, indexed

Adds the source register Rs, the active accumulator, and
the carry flag together, placing the result into the destination
specified. The destination may be either a register, Rd, or
data memory via an index register mode, [mlr]. Note that
register bank selection determines which accumulator is ac­
tive.

Example

Instruction Format
ADCA Rs, Rd

1

111111010111
. Opcode .

15 9

ADCA Rs, [mlr]

1

1 I 0 I 1 I 0 I 0 I 0 I 1 I
. Opcode . m

15 8

~

1

Rd

6

00 - post-decrement
01 - no change
1 0 - post Increment
11 - pre-Increment

4

Ir

Rs

Rs

~
00 -IW
01 - IX
10 - IY
11 - IZ

o

o

Add the constant 109 to the index register IW, (which is 16
bits wide).

TL/F/9336-5

SUBA A, A ;Clear the accumulator
ADD 109, R12 ;Add 109 to low byte of IW
ADCA R13, R13 ;Add carry to high byte of IW

1-179

T-states
ADCA Rs, Rd
ADCA Rs, [mlr]

Bus Timing
ADCA Rs, Rd
ADCA Rs, [mlr]

Operation
ADCA Rs, Rd

-2
-3

-Figure 6-1
-Figure 6-6

Rs + accumulator + carry bit -. Rd

ADCA Rs, [mlr]
Rs + accumulator + carry bit -. data memory

6.0 Reference Section (Continued)

ADD Add Immediate
Syntax

ADD n, rsd

Affected Flags
N,Z,C,V

Description

-immediate, limited register

Adds the immediate value n to the register rsd and places
the result back into the register rsd. Note that only the ac­
tive registers RO-R15 may be specified for rsd. The value of
n is limited to 8 bits; (unsigned range: 0 to 255, signed
range: + 127 to -128).

Example

Add the constant -3 to register 10.

ADD -3, R10 ;R10 + (-3) -+ R10

Instruction Format

1
0 10 10 10 I

. Opcode . n rsd

15 11 3 0

T-States
2

Bus Timing
Figure 6-1

Operation
rsd + n -+ rsd

ADDA Add with Accumulator
Syntax
ADDA Rs, Rd
ADDA Rs, [mlr]

Affected Flags
N,Z,C,V

Description

-register, register
-register, indexed

Adds the source register Rs to the active accumulator and
places the result into the destination specified. The de~tina­
tion may be either a register, Rd, or data. memory via an
index register mode, [mlr]. Note that register bank selection
determines which accumulator is active.

Example

In the first example, the value 4 is placed into the currently
active accumulator, that accumulator is added to the con­
tents of register 20, and then the result is placed into regis­
ter 21.

MOVE 4, A ;Place constant into accum
ADDA R20, R21 ;R20 -+ accum -+ R21

In the second example, the alternate accumulator of regis­
ter bank B is selected and then added to register 20. The
result is placed into the data memory pointed to by the index
register IZ and then the value of IZ is incremented by one.

EXX 0, 1 ;Select alt accumulator
ADDA R20, [IZ +] ;R20 + accum -+ datamem

;and increment data pointer

1-180

Instruction Format
ADDA Rs, Rd

15 9

ADDA Rs, [mlr]

1

110111010101°1
. Opcode . m

IS 8 ,

I
Rd

00 - post-decrement
01 - no change
10 - post Increment
11 - pre-Increment

4

Ir

4

Rs

Rs ,
OO-IW
01 - IX
10 - IY
11 - IZ

o

o

TL/F/9336-6

T-states
ADDA Rs, Rd
ADDA Rs, [mlr]

Bus Timing

ADDA Rs, Rd
ADDA Rs, [mlr]

Operation
ADDA Rs, Rd

-2
-3

-Figure 6-1
-Figure 6-6

Rs + accumulator -+: Rd
ADDA Rs, [mlr]
Rs + accumulator -+ data memory

AND And Immediate
Syntax
AND n, rsd

Affected Flags
N,Z

Description

-immediate, limited register

Logically ANDs the immediate value n to the register rsd
and places the result back into the register rsd. Note that
only the active registers RO-R15 may be specified for rsd.
The value of n is 8 bits wide.

Example

Unmask both the Transmitter and Receiver interrupts via
the Interrupt Control Register (ICR}, R2. Leave the other
interrupts unaffected.

EXX 0,0 ;select main register banks
AND 11111100B,R2 ;unmask transmitter and

; receiver interrupts

Instruction Format

15 11

T-states
2
Bus Timing
Figure 6-1

Operation
rsd AND n -+ rsd

I
n rsd

3 0

6.0 Reference Section (Continued)

ANDA And with Accumulator
Syntax

ANDA As, Ad
ANDA As, [mlr]

Affected Flags
N,Z

Description

-register, register
-register, indexed

Logically ANDs the source register As to the active accumu·
lator and places the result into the destination specified.
The destination may be either a register, Ad, or data memo·
ry via an index register mode, [mlr]. Note that register bank
selection determines which accumulator is active.

Example
This example demonstrates a way to quickly unload all 11
bits of the three words in the Aeceiver FIFO when the FIFO
is full. The example assumes that the index register IZ
points to the location in data memory where the information
should be stored.

EXX 1,1
MOVE 00000111 B, A

;select alternate banks
;place the ITSA} mask
; into the accumulator

Pop the first word from the receiver FIFO
ANDA TSA, [IZ+] ;read bits 8,9, & 10
MOVE ATA, [IZ +] ;pop bits 0-7
Pop the second word from the receiver FIFO
ANDA TSA, [IZ +]
MOVE ATA, [IZ +]
Pop the third word from the receiver FIFO
ANDA TSA, [IZ +]
MOVE ATA, [IZ+]

Instruction Format

ANDA As, Ad

I
Ad

15 9

ANDA AS,[mlr]

/

1 I 0 I 1 I 0 11 I 0 I 0 I
. Opcode . m

15 8

~
00 - post-decrement
01 - no change
10 - post Increment
11 - pre-Increment

4

Ir

4

As

Rs

t
00 - IW
01 - IX
10 - IY
11 - IZ

o

o

TLIF/9336-7

T-states
ANDA As, Ad
ANDA As, [mlr]

Bus Timing

ANDA As, Ad
ANDA As, [mlr]

Operation

ANDA As, Ad

-2
-3

-Figure 6·1
-Figure 6·1

As AND accumulator -. Ad

ANDA As, [mlr]
As AND accumulator -. data memory

1·181

BIT Bit Test
Syntax

BIT rs, n -limited register, immediate

Affected Flags
N,Z

Description

Performs a bit level test by logically ANDing the source reg·
ister rs to the immediate value n. The affected flags are
updated, but the result is not saved. Note that only the ac·
tive registers AO-A15 may be specified for rs. The value n
is 8 bits wide.

Example

Poll the Transmitter FIFO Empty flag [TFE] in the Network
Command Flag register I NCF}, A1, waiting for the Trans·
mitter to send the current FIFO data.

EXX 0,1 ;select main A, alt B
Poll: BIT NCF,1 OOOOOOOB ;AII data sent yet?

JZ Poll ; No, poll TFE
; Yes, send next byte(s)

Instruction Format

15

T-states
2

Bus Timing

Figure 6·1

Operation

rs AND n

11

n rs

3 o

6.0 Reference Section (Continued)

CALL Unconditional Relative Call
Syntax

CALL n

Affected Flags

None

Description

-immediate

Pushes the Program Counter, the ALU flags, the Global In­
terrupt Enable bit [GIE], and the current register bank selec­
tions onto the internal Address Stack; then unconditionally
transfers control to the instruction at the memory address
calculated by adding the contents of the Program Counter
to the immediate value n, (sign extended to 16 bits). Since
the immediate value n is an 8-bit two's complement dis­
placement, the unconditional relative caWs range is from
+ 127 to -128 relative to the Program Counter. Note that
the Program Counter initially contains the memory address
of the next instruction following tha call.

Example

Transfer control to the subroutine "Send.it". Note that
"Send. it" must be within + 127/ -128 words relative to the
PC.

CALL Send.it

Instruction Format

15 7

T-states
3

Bus Timing

Figure 6-2

Operation

n

PC & [GIE] & ALU flags & register bank selections
~ Address Stack

PC + n(sign extended) ~ PC

o

1-182

CMP Compare
Syntax

CMP rs, n

Affected Flags

N,Z,C,V

Description

-limited register, immediate

Compares the immediate value n with the source register rs
by subtracting n from rs. The affected flags are updated, but
the result is not saved. Note that only the active registers
RO-R15 may be specified for rs. The value of n is limited to
8 bits; (unsigned range: 0 to 255, signed range: + 127 to
-128).

Example

Compare the data byte in register 11 to the ASCII character
"A".

CMP
JC
JEO

R11,"A"
Less_thanJ
Equal_toJ

; If:
data<"A"
data="A"

;else data> "A"

Compare the contents of register 8 to the value 25.

CMP R8,25 ;if:
BIT CCR,00000011 B data> 25
JZ Greater_than Goto Greater_than

Comparing of Unsigned Values

Comparison

LT «)
LEO «=)
EO (=)
GEO (>=)
GT (»

Note: & = logical AND
I = logical OR

Instruction Format

1
0 I 0 I 1 11 I

. Opcode _

15 11

T-states
2

Bus Timing

Figure 6-1

Operation

rs - n

Flag{s) to Test

C
clz
Z
C

C&Z

n rs

3 0

6.0 Reference Section (Continued)

CPL Complement
Syntax

CPL Rsd

Affected Flags

N,Z

Description

-register

Logically complements the contents of the register Rsd,
placing the result back into that register.

Example

Load the fiJI-bit count passed from the host into the Trans­
mitter's Fill-Bit Register (FBR I, R3, and then perform the
required one's complement of the fill-bit count. In this exam­
ple, register 20 contains the fill-bit count.

EXX 1,1 ;select alternate banks
MOVE R20, FBR ;Ioad (FBR 1
CPL FBR ;complement fill-bit count

Instruction Format

1

110111011111110101010\
. Opcode .

15 4
T-states
2

Bus Timing

Figure 6-1

Operation

Rsd~Rsd

I I
Rsd

o

1-183

EXX Exchange Register Banks
Syntax

EXX ba, bb (,gl
Affected Flags

None
Description

Selects which CPU register banks are active by exchanging
between the main and alternate register sets for each bank.
Bank A controls RO-R3 and Bank B controls R4~R11. The
table below shows the four possible register bank configura­
tions. Note that deactivated registers retain their curren~ vClI~
ues. The Global interrupt Enable bit [GIE] can be set or
cleared, if desired. .

Register Bank Configurations

ba bb Active Register Banks.

0 0 Main AMain B
0 1 Main A, Alternate: B
1 0 Alternate A, Main B
1 1 Alternate A, AlternateB .

Example
Activate the main register set of Bank A, the alternate regis­
ter set of Bank B, and leave the Global interrupt Enable bit
[GIE] unchanged.

EXX 0,1 ;select main A, alt B reg banks

Instruction Format ,. , ,

11 1 0 1 1 1 ~~~o~~ 1 1 1 0 11 I ~ I ba 1 bb I 0 1 0 1 0 1

15 6!- 4 3.2 0

T-states
2

Bus Timing

Figure 6-1

Operation
Case ba of

0: activate main Bank A
1: activate alternate Bank A

End case
Case bb of

0: activate main Bank B
1 : activate alternate Bank B

End case
Case g of

OO-'-GIE not affected
01-reserved
10-SetGIE
11-Clear GIE

0: leave [GIE] unaffected, (default)
1: (reserved)
2: set [GIE]
3: clear [GIE]

End case

6.0 Reference Section (Continued)

JMP Conditional Relative Jump
Jcc

Syntax

-immediate JMP f, s, n
Jcc n -immediate (optional syntax)

Affected Flags
None

Description

Conditionally transfers control to the instruction at the mem­
ory address calculated by adding the contents of the Pro­
gram Counter to the immediate value n, (sign extended to
16 bits), if the state of the flag referenced by f is equal to the
state of the bit s; or, optionally, if the condition cc is met.
See the tables below for the flags that f can reference and
the conditions that cc may specify. Since the immediate val­
ue n is an 8-bit two's complement displacement, the condi­
tional relative jump's range is from + 127 to -128 relative
to the Program Counter. Note that the Program Counter ini­
tia"y contains the memory address of the next instruction
following the jump.

Example

This example demonstrates both syntaxes of the condition­
al relative jump instruction testing for a non-zero result from
a previous instruction; (Le., [Z] = 0). If the condition is
met then control transfers to the instruction labeled
"LOop. back"; else the next instruction following the jump is
executed.

JMP OOOB,O,Loop.back ;jump on not zero

JNZ Loop.back ;jump on not zero

Condition SpeCification Table for "cc"

cc Meaning Condition Tested for

Z Zero [Z] = 1
NZ Not Zero [Z] =0
EO Equal [Z] = 1
NEO Not Equal [Z] =0
C Carry [C] = 1
NC No Carry [C] =0
V Overflow [V] = 1
NV No Overflow [V] =0
N Negative [N] = 1
P Positive [N] =0
RA Receiver Active [RA] = 1
NRA Not Receiver Active [RA] =0
RE Receiver Error [RE] = 1
NRE No Receiver Error [RE] =0
DA Data Available [DAV] = 1
NDA No Data Available [DAV] =0
TFF Transmitter FIFO Fu" [TFF] = 1
NTFF Transmitter FIFO Not Fu" [TFF] =0

1-184

Instruction Format

15 11 10

T-states

2 if condition is not met
3 if condition is met

Bus Timing

7

Figure 6-1 if condition is not met
Figure 6-2 if condition is met

Operation

JMP f, s, n
If flag f is in state s

n

then PC + n(sign extended) -+ PC

Jcc n
If cc condition is true

then PC + n(sign extended) -+ PC

Flag Reference Table for "f"

f (binary) Flag Reference

0 (000) [Z] in {CCRI
1 (001) [C] in {CCRI
2 (010) [V] in {CCRI
3 (011) [N] in {CCRI
4 (100) [RA] in {TSRI
5 (101) [RE] in {TSRI
6* (110) [DAV] in {TSRI
7 (111) [TFF] in {TSRI

°Note: The value of f for [DAV] differs from the numeric
value for the position of [DAV] in {TSRI.

o

6.0 Reference Section (Continued)

JMP Unconditional Relative Jump
Syntax

JMP n -immediate
JMP Rs -register

Affected Flags
None

Description

Unconditionally transfers control to the instruction at the
memory address calculated by adding the contents of the
Program Counter to either the immediate value n or the con·
tents of the source register Rs, (both sign extended to 16
bits). Since the immediate value n and the contents of Rs
are 8·bit two's complement displacements, the uncondition·
al relative jump's range is from + 127 to -128 relative to
the Program Counter. Note that the Program Counter initial·
Iy contains the memory address of the next instruction fol·
lowing the jump.

Example

Transfer control to the instruction labeled "I niLXmit",
which is within + 127/ -128 words relative to the PC.

JMP IniLXmit ;go initialize Transmitter

Instruction Format
JMP n

15 7

JMP Rs

11111010111110111110101
Opcode

15

T-states

JMP n
JMP Rs

Bus Timing

JMP n
JMP Rs

Operation

JMP n

-3
-4

-Figure 6-2
-Figure 6-4

PC + n(sign extended) ----+ PC

JMP Rs
PC + Rs(sign extended) ----+ PC

n

4

o

1

Rs

o

I

III

1-185

6.0 Reference Section (Continued)

JRMK Relative Jump with Rotate and
Mask on Register

Syntax
JRMK Rs, b, m

Affected Flags
None

Description

-register

Transfers control to the instruction at the memory address
calculated by adding the contents of the Program Counter
to a specially formed displacement. The displacement is
formed by rotating a copy of the source register Rs the val­
ue of b bits to the right, masking (setting to zero) the most
significant m bits, masking the least significant bit, and then
sign extending the result to 16 bits. Typically, the JRMK
instruction transfers control into a jump table. The LSB of
the displacement is always set to zero so that the jump table
may contain two word instructions, (e.g., LJMP). The range
of JRMK is from + 126 to -128 relative to the Program
Counter. Note that the Program Counter initially contains
the memory address of the next instruction following JRMK.
The source register Rs may specify any active CPU register.
The rotate value b may be from 0 to 7, where 0 causes no
bit rotation to occur. The mask value m may be from 0 to 7;
where m = 0 causes only the LSB of the displacement to be
masked, m = 1 causes the MSB and the LSB to be masked,
m = 2 causes bits 7-6 and the LSB to be masked, etc ...

Example

This example demonstrates the decoding of the address
frame of the 3299 Terminal Multiplexer protocol. In the ad­
dress frame, only the bits 4-2 contain the address of the
Logical Unit.

EXX
JRMK
LJMP
LJMP
LJMP

0,1
RTR,1,4
AD OR.O
ADDR.1
ADDR.2

;select main A, alt B
;decode device address
;jump to device handler #0
;jump to device handler # 1
;jump to device handler # 2

LJMP ADDR.7 ;jump to device handler #7

Instruction Format

15
T-states
4
Bus Timing

Figure 6-4

Operation

10 7

Copy Rs to a temporary register:
Rs ~ register

I I
b

Rotate the register b bits to the right:

4

4 I I I I I I~ I W

Rs

o

reglstor TL/F/9336-8

Mask the most significant m bits and the LSB:

A
register AND 0 ... 0 1 ... 1 0 ~ register

Modify the Program Counter:
PC + register(sign extended) ~ PC

1-186

~--~c

6.0 Reference Section (Continued)

LCALL Conditional Long Call
Syntax
LCALL Rs, p, s, nn

Affected Flags
None

Description

-register, absolute

If the bit in position p of register Rs is equal to the bit s, then
push the Program Counter, the ALU flags, the Global Inter­
rupt Enable bit [GIE], and the current register bank selec­
tions onto the internal Address Stack. Following the push,
transfer control to the instruction at the absolute memory
address nn. The operand Rs may specify any active CPU
register. The value of p may be from 0 to 7, where 0 corre­
sponds to the LSB of Rs and 7 corresponds to the MSB of
Rs. The absolute value nn is 16 bits long, (range: 0 to 64k),
therefore, all of instruction memory can be addressed.

Example
Call the "Load.Xmit" subroutine when the Transmitter FIFO
Empty flag, [TFE], of the Network Command Flag register
(NCF} is "1".

EXX 0,0
LCALL NCF,7,1, Load.Xmit

Instruction Format

15 8 7

1 ~n
15

T-states
(2 + 2)

Bus Timing
Figure 6-3

Operation
If Rs[p] = s then

p

;select main A, alt B
;If [TFE] = 1 call

1
Rs

4

1

PC & [GIE] & ALU flags & register bank selections
~ Address Stack

nn~PC

End if

o

o

1-187

LCALL Unconditional Long Call
Syntax
LCALL nn

Affected Flags
None

Description

-absolute

Pushes the Program Counter, the ALU flags, the Global In­
terrupt Enable bit [GIE], and the current register bank selec­
tions onto the internal Address Stack; then unconditionally
transfers control to the instruction at the absolute memory
address nn. The value of nn is 16 bits long, (range: a to
64k), therefore, all of instruction memory can be addressed.

Example
Transfer control to the subroutine "Send.it.all", which could
be located anywhere in instruction memory.

LCALL Send.it.all

Instruction Format

111110101111111011101010101010101
Opcode

15

15
T-states
(2 + 2)

Bus Timing
Figure 6-3

Operation

nn

PC & [GIE] & ALU flags & register bank selections
~ Address Stack

nn~PC

a

a

"'C
Q)
W
~
~ m

•

6.0 Reference Section (Continued)

LJMP Conditional Long Jump
Syntax

LJMP Rs, p, s, nn -register, absolute

Affected Flags
None

Description

Conditionally transfers control to the instruction at the abso­
lute memory address nn if the bit in position p of register Rs
is equal to the state of the bit s. The operand Rs may speci­
fy any active CPU register. The value of p may be from 0 to
7, where o corresponds to the LSB of Rs and 7 corresponds
to the MSB of Rs. The absolute value nn is 16 bits long,
(range: 0 to 64k), therefore, all of instruction memory can be
addressed.

Example

Long Jump to one of the receiver error ,handling routines
based on the contents of the Error Code Register {ECR I.

EXX 0,1,3 ;select main A, alt B

. DR 01000000B,TSR
MOVE ECR, R11

; and clear [GIE]
;set [SEC] in {TSR}
;read {ECRI

,; Determine error condition
, LJMP R11, 0, 1, Software_error

LJMP R11, 1, 1, Loss_of_Midbit
LJMP R11, 2,1, Invalid_Ending_Seq
LJMP R11, 3,1, Parity_error
LJMP R11, 4,1, Software_error

Instruction Format

15 8 7

1 ~n
15

T-states
(2 + 2)

Bus Timing

Figure 6-3

Operation

If Rs[p] = s
then nn~ PC

p

4

1 1
Rs

1

1
o

o

1-188

LJMP Unconditional Long Jump
Syntax

LJMP nn
LJMP [lr]

Affected Flags
None

Description

-absolute
-indexed

Unconditionally transfers control to the instruction at the
memory address specified by the operand. The operand
may either specify an absolute instruction address nn, (16
bits long), or an index register Ir, which contains an instruc­
tion address. Long Jump's addressing range is from 0 to
64k; (Le., all of instruction memory can be addressed).

Example

Transfer control to the instruction labeled "Reset.System",
which may be located anywhere in instruction memory.

LJMP Reset.System ;go reset the system

Instruction Format

LJMP nn

1
1 1 1 101011 1 1 1 1 1010101,010101010101

. Opcode .
15 0

1 nn 1
15 o

LJMP [lr]

11 I 1 I 0 I ~~~o~~ I 0 I 1 1 0 I ir I 0 1 0 1 0 I 0 I 0 1

15 6 J.. 4 0

T-states

LJMP nn
LJMP [lr]

Bus Timing

LJMP nn
LJMP [lr]

Operation

LJMP nn
nn~PC

LJMP [lr]
Ir~PC

-(2+ 2)
-2

-Figure 6-3
-Figure 6-1

OO-IW
01-IX
10-IY
11-12

6.0 Reference Section (Continued)

MOVE Move Data Memory
Syntax

MOVE [mlr], Rd -indexed, register
MOVE [lr+ AJ. Rd -register-relative, register
MOVE [lZ + n], rd -immediate-relative, limited register

Affected Flags
None

DescrIptIon

Moves a data memory byte into the destination register
specified. The data memory source operand may specify
anyone of the index register modes; [mlr], [lr+A], [lZ+n].
The index register-relative mode, [lr+ A], forms its data
memory address by adding the contents of the index regis­
ter Ir to the unsigned 8-bit value contained in the currently
active accumulator. The immediate-relative mode, [lZ+n],
forms its data memory address by adding the contents of
the index register IZ to the unsigned 8-bit immediate value
n. The destination register operand Rd may specify any ac­
tive CPU register; where as, the destination register operand
rd is limited to the active registers RO-R15.

Example

The first example loads the current accumulator by "pop­
ping" an external data stack, which is pointed to by the
index register IX.

MOVE [+ IX], A ;pop accum from ext. stack

The second example demonstrates the random access of a
data byte within a logical record contained in memory. The
index register IY contains the base address of the logical
record.

ADDA
MOVE

R9, A ;calculate offset into record
[lY + A], R20 ;get data byte from record

In the final example, the 4th element of an Error Count table
is transmitted to a host. The index register IZ points to the
1 st entry of the table.

EXX 0,1 ;select main A. alt B
MOVE [lZ + 3], RTR ;transmit 4th element

1-189

Instruction Format

MOVE [mid, Rd

15 8 6 4

+
00 - post-decrement
01 - no change
10 - post Increment
11 - pre-Increment

MOVE [lr+A], Rd

11 I 1 I 0 I ~~~o~~ I 0 I 0 I 0 I Ilr

15 64- 4

MOVE [lZ+n], rd

1

1 I 0 I 0 11 1 I
. Opcode . n

15 11
T·states
3 [4TR] = 0
4 [4TR] = 1
Bus TIming
Figure 6-5 (4TRJ = 0
Figure. 6·6 {4TRJ ... ==1

OperatIon
MOVE [mid, Rd
data memory Rd

MOVE [lr+A], Rd
data memory Rd

MOVE [IZ + n], rd
data memory rd

OO-IW
01-IX
10-IY
11-IZ

Rd

l
00 - IW
01 - IX
10 - IY
11 - IZ

o

TL/F/9336-9

I I
Rd

rd

o

III
I

In
~

::; 6.0 Reference Section (Continued)

~ MOVE Move Immediate
c

Syntax
MOVE n, rd

MOVE n, [lr]

Affected Flags
None

Description

-immediate, limited register

-immediate, indexed

Moves the immediate value n into the destination specified.
The destination may be either a register, rd, (limited to the
active registers RO-R15), or data memory via an index reg­
ister, Ir. The value n is 8 bits wide.

Example
Load the current accumulator with the value of 4.

MOVE 4, A ;Load accumulator

Instruction Format
MOVE n, rd

1

1 I 0 I 1 I 1 1
. Opcode . n

15 11

MOVE n, [lr]

15 9

T-states
MOVE n, rd
MOVE n, [lr]

Bus Timing
MOVE n, rd
MOVE n, [lr]

Operation
MOVE n, rd
n-+ rd

MOVE n, [lr]

-2
-3

-Figure 6-1
-Figure 6-7

n -+ data memory

I
rd

3

I I
Ir n[4-0]

6 J- 4
OO-IW
01-IX
10-IY
11-IZ

o

o

1-190

6.0 Reference Section (Continued)

MOVE Move Register
Syntax

MOVE Rs, Rd -register, register

MOVE Rs, [mlrJ -register, indexed

MOVE Rs, [Ir+ AJ -register, register-relative

MOVE rs, [lZ + nJ -limited register, immediate-relative

Affected Flags
None

Description

Moves the contents of the source register into the destina­
tion specified. The source register operand Rs may specify
any active CPU register; where as the source register oper­
and rs is limited to the active registers RO-R15. The desti­
nation operand may specify either any active CPU register,
Rd, or data memory via one of the index register modes;
[mlrl, [lr+AJ, [IZ+n]. The index register-relative mode,
[lr+ Al. forms its data memory address by adding the con­
tents of the index register Ir to the unsigned 8-bit value con­
tained in the currently active accumulator. The. immediate­
relative mode, [lZ + nJ, forms its data memory address by
adding the contents of the index register IZ to the unsigned
8-bit immediate value n.

Example

The first example loads the Transmitter FIFO with a data
byte in register 20.

EXX 0,1 ;select main A, alt B
MOVE R20, RTR ;Load the Transmitter FIFO

The second example "pushes" the current accumulator's
contents onto an external data stack, which is pointed to by
the index register IX.

MOVE A, [IX -J ;push accum to ext. stack

The third example demonstrates the random access of a
data byte within a logical record contained in memory. The
index register IY contains the base address of the logical
record.

ADDA R9, A
MOVE R20, [lY + AJ

;calculate offset into record
;update data byte in record

In the final example, the 4th element of an Error Count table
is updated with a new value contained in the current accu­
mulator. The index register IZ points to the 1 st entry of the
table.

MOVE A, [IZ + 3J ;update 4th element of table

1-191

Instruction Format

MOVE Rs, Rd

15 9

MOVE Rs, [mlrl

1

1 11 I 0 I 0 I 0 I 0 I
. Opcode m

15 8

~
00 - post-decrement
01 - no change
10 - post Increment
11 - pre-Increment

Ir

4

1

Rs

4 0

I
Rs

0

~
00 - IW
01 - IX
10 - IY
11 - IZ

TlIF/9336-10

MOVE Rs, [Jr+AJ

1

111101010111010111
. Opcode . Ir

15 6 J, 4

MOVE rs, [Z + nJ

OO-IW
01-IX
10-IY
11-IZ

1

0 1 0 1 0 11 1 1
. Opcode . n

15 11

T-states

MOVE Rs, Rd
MOVE Rs, [mlrJ
MOVE Rs, [Jr+ AJ
MOVE rs, [JZ + nJ

Bus Timing

MOVE Rs, Rd
MOVE Rs, [mlrJ
MOVE Rs, [Jr+AJ
MOVE rs, [JZ + nJ

Operation

-2
-3
-3
-3

-Figure 6-1
-Figure 6-6
-Figure 6-6
-Figure 6-6

-Rs-+ Rd

3

MOVE Rs, Rd
MOVE Rs, [mlrJ
MOVE Rs, [Jr+AJ
MOVE rs, [JZ + nJ

-Rs -+ data memory
-Rs -+ data memory
-rs -+ data memory

1 1
Rs

o

rs

o

C
"tJ
co
W
0l:Io
0l:Io
tD

II
I

6.0 Reference Section (Continued)

OR OR Immediate
Syntax
OR n, rsd -imm~diate, limited register

Affected Flags
N,Z

Description
Logically ORs the immediate value n to the register rsd and
places the result back into the register rsd. Note that only
the active registers RO-R15 may be specified for rsd. The
value of n is 8 bits wide.

Example
Mask both the Transmitter and Receiver interrupts via the
Interrupt Control Register (lCR}, R2. Leave the other inter­
rupts unaffected.

EXX 0,0 ;select main reg banks
OR 000000118, ICR ;mask transmitter and

Instruction Format

1

0 11 1 0 11 I
. Opcode .

15 11
T-states
2
Bus Timing
Figure 6-1

Operation
rsd OR n ~ rsd

; receiver interrupts

n
3

rsd

o

1-192

ORA OR with Accumulator
Syntax
ORA Rs, Rd

ORA Rs, [mlr)

Affected Flags
N,Z

Description

-register, register

-register, indexed

Logically ORs the source register Rs to the active accumu­
lator and places the result into the destination specified.
The destination may be either a register, Rd, or data memo­
ry via an index register mode, [mlr). Note that register bank
selection determines which accumulator is active.

Example
Write an 11-bit word to the Transmitter's FIFO. This exam­
ple assumes that the index register IZ points to the location
of the data in memory.

TCR.settings: .EQU 001010008

EXX
MOVE
MOVE
ORA
MOVE

1,1
TCR.settings,A
[lZ+],R20
R20,TCR
[lZ+),RTR

;select main A, alt 8
;Ioad accumulator w/mask
;Ioad bits 8, 9, & 10
;write bits 8,9, 10 to {TCR}
;push 11-bit word to FIFO

Instruction Format
ORA Rs, Rd

15 9
ORA Rs, [mlr)

11 I 0 I 1 I 0 11 I 0 I
Opcode

15

~

1

Rd

00 - post-decrement
01 - no change
1 0 - post Increment
11 - pre-Increment

4

Ir

4

1 1
Rs

Rs

t
00 - IW
01 - IX
10 - IY
11 - IZ

o

TL/F/9336-11

T-states
ORA Rs, Rd
ORA Rs, [mlr)

Bus Timing
ORA Rs, Rd
ORA Rs, [mlr)

Operation
ORA Rs, Rd

-2
-3

-Figure 6-1
-Figure 6-7

Rs OR accumulator ~ Rd

ORA Rs, [mlr)
Rs OR accumulator ~ data memory

6.0 Reference Section (Continued)

RETF Conditional Return
Rcc
Syntax

RETF f, s(,(g} (,rf})
Rcc (g(,rf}) -(optional syntax)

Affected Flags

If rf = 1 then N, Z, C, and V

Description
Conditionally returns control to the last instruction address
pushed onto the internal Address Stack by popping that ad­
dress into the Program Counter, if the state of the flag refer­
enced by f is equal to the state of the bit s; or, optionally, if
the condition cc is met. See the tables on the following page
for the flags that f can reference and the conditions that cc
may specify. The conditional return instruction also has two
optional operands, g and rf. The value of g determines if the
Global Interrupt Enable bit [GIE] is left unchanged (g=O),
restored from the Address Stack (g = 1), set (g = 2), or
cleared (g = 3). If the g operand is omitted then g = 0 is as­
sumed. The second optional operand, rf, determines if the
ALU flags and register bank selections are left unchanged
(rf = 0), or restored from the Address Stack (rf = 1). If the rf
operand is omitted then rf=O is assumed.

Example
This example demonstrates both syntaxes of the condition­
al return instruction testing for a carry result from a previous
instruction; (Le., [C] = 1). If the condition is met then the
return occurs, else the next instruction following the return
is executed. The current environment is left unchanged.

RETF 001 B, 1 ; If [C] = 1 then return

RC ; If [C] = 1 then return

Instruction Format

15 6 J, 4 3 2 0

T-states

2 if condition is not met

3 if condition is met

Bus Timing

Figure 6-1 if condition is not met
Figure 6-2 if condition is met

Operation

If flag f is in state s then
Case g of

OO-GIE not affected
01-Restore GIE
10-SetGIE
11-Clear GIE

0: leave [GIE] unaffected, (default)
1: restore [GIE] from Address Stack
2: set [GIE]
3: clear [GIE]

End case
If rf= 1 then

restore ALU flags from Address Stack
restore register bank selection from Address Stack

End if
Address Stack -. PC

End if

1-193

Condition Specification Table for "CC"

cc Meaning Condition Tested for

Z Zero [Z] = 1
NZ Not Zero [Z] =0

EO Equal [Z] = 1
NEO Not Equal [Z] =0

C Carry [C] = 1
NC No Carry [C] =0

V Overflow [V] = 1

NV No Overflow [V] =0
N Negative [N] = 1
P Positive [N] =0
RA Receiver Active [RA] .= 1

NRA Not Receiver Active [RA] . =0

RE Receiver Error [RE] = l'

NRE No Receiver Error [RE] =0
DA Data Available [DAV] =1
NDA No Data Available [DAV] =0
TFF Transmitter FIFO Full [TFF] = 1

NTFF Transmitter FIFO Not Full [TFF] =0

Flag Reference Table for lit"

f (binary) Flag Referenced

0 (000) [Z] in (CCR)

1 (001) [C] in (CCA)

2 (010) [V] in (CCA)

3 (011) [N] in (CCA)

4 (100) [RA] in (TSA)

5 (101) [RE] in (TSA)

6* (110) [DAV] in (TSA)

7 (111) [TFF] in (TSA)

"Note: The value of f for [DAV) differs from the numeric
value for the position of [DAV) in I TSR l.

I

I

II
I

I

m r---~
~
~
Cf)
co
Q.
C

6.0 Reference Section (Continued)

RET Unconditional Return
Syntax

RET Ig I,rfll

Affected Flags

If rf= 1 then N, Z, C, and V

Description

Unconditionally returns control to the last instruction ad­
dress pushed onto the internal Address Stack by popping
that address into the Program Counter. The unconditional
return instruction also has two optional operands, g and rf.
The value of g determines if the Global Interrupt Enable bit
[GIE] is left unchanged (g = 0), restored from the Address
Stack (g = 1), set (g = 2), or cleared (g = 3). If the g operand
is omitted then g = 0 is assumed. The second optional oper­
and, rf, determines if the ALU flags and register bank selec­
tions are left unchanged (rf = 0), or restored from the Ad­
dress Stack (rf = 1). If the rf operand is omitted then rf = 0 is
assumed.

Example

Return from an interrupt.

RET 1,1 ;Restore environment & return

Instruction Format

15 6! 4 3 0

T-states
2

Bus Timing

Figure 6-1

Operation

Case g of

OO-GIE not affected
01-Restore GIE
10-SetGIE
11-ClearGIE

0: leave [GIE] unaffected, (default)
1: restore [GIE] from Address Stack
2: set [GIE]
3: clear [GIE]

End case
If rf= 1 then

restore ALU flags from Address Stack
restore register bank selection from Address Stack

End if
Address Stack ----+ PC

1-194

ROT Rotate
Syntax

ROT Rsd, b

Affected Flags
N,Z,C

Description

-register

Rotates the contents of the register Rsd b bits to the right
and places the result back into that register. The bits that
are shifted out of the LSB are shifted back into the MSB,
(and copied into the Carry flag). The value b may specify
from 0 to 7 bit rotates.

Example

Add 3 to the Address Stack Pointer contained in the Internal
Stack Pointer register liSP}, R30.

MOVE ISP, RB ;get IISPI
ROT RB, 4 ;shift [ASP] to low order nibble
ADD 3, RB ;add 3 to [ASP]
ROT RB, 4 ;shift [ASP] to high order nibble
MOVE RB,ISP ;store new liSP}

Instruction Format

15 7
T-states
2
Bus Timing
Figure 6-1

Operation

Rsd

I I
Rsd

4 o

TLlF9336-12

6.0 Reference Section (Continued)

SBCA Subtract with Carry and
Accumulator

Syntax

SBCA Rs, Rd
SBCA Rs, [mlr]

Affected Flags
N,Z,C,V

Description

-register, register
-register, indexed

Subtracts the active accumulator and the carry flag from the
source register Rs, placing the result into the destination
specified. The destination may be either a register, Rd, or
data memory via an index register mode, [mlr]. Negative
results are represented using the two's complement format.
Note that register bank selection determines which accumu­
lator is active.

Example
Subtract the constant 109 from the index register IW, (which
is 16 bits wide).

SUBA A, A ;Clear the accumulator
SUB 109, R12 ;Iow byte of IW-109
SBCA R13, R13 ;high byte of IW-borrow

Instruction Format

SBCA Rs, Rd

15 9

I
Rd

SBCA Rs, [mlr]

1

1 I 0 I 1 I 0 I 0 I 1 I 1 I
. Opcode . m Ir

15 8 4

t
00 - post-decrement
01 - no change
10 - post Increment
11 - pre-increment

4

I
Rs

Rs

l
00 -IW
01 - IX
10 - IY
11 - IZ

o

o

TL/F9336-13

T-states

SBCA Rs, Rd
SBCA Rs, [mlr]

Bus Timing
SBCA Rs, Rd
SBCA Rs, [mlr]

Operation
SBCA Rs, Rd

-2
-3

-Figure 6-1
-Figure 6-7

Rs - accumulator - carry bit ~ Rd
SBCA Rs, [mlr]
Rs - accumulator - carry bit ~ data memory

1-195

SHL Shift Left
Syntax

SHL Rsd, b -register

Affected Flags
N,Z,C

Description

Shifts the contents of the register Rsd b bits to the left and
places the result back into that register. Zeros are shifted in
from the right, (Le., from the LSB). The value b may specify
from 0 to 7 bit shifts. The Carry flag contains the last bit
shifted out.

Example
Place a new internal Address Stack Pointer into the Internal
Stack Pointer register (ISP}, R30. Assume that the new
[ASP] is located in register 20.

MOVE ISP,RB ;read liSP} for [DSP]
AND 00001111 B,RB ;save [DSP] only
SHL R20,4 ;Ieft justify [ASP]
ORA R20,ISP ;combine [ASP] + [DSP],

; then place into liSP}

Instruction Format

15 7
T-states
2
Bus Timing
Figure 6-1

Operation

Rsd

4

~~ ________ ~~O
Rsd

o

TL/F 19336-14

6.0 Reference Section (Continued)

SHR Shift Right
Syntax

SHR Rsd, b

Affected Flags
N,Z,C

Description

-register

Shifts the contents of the register Rsd b bits to the right and
places the result back into that register. Zeros are shifted.in
from the left, (Le., from the MSB). The value b may specify
from 0 t07 bit shifts. The Carry .flag contains the last bit
shifted out.

Example

Right justify the Address .Stack Pointer from the Internal
Stack Pointer register {ISP}, R30.

MOVE ISP, R20 ;Load [ASP] from liSP}
SHR R20,4 ;right justify [ASP]

Instruction Format

11 1 1 1 0 ~~101~ 01 0 1 0 1
15 7

T-states
2
Bus Timing
Figure 6-1

Operation

1 1
b

4

1

Rsd

o~~ ________ ~ __ ~
Rsd

o

TLlF/9336-15

1-196

SUB Subtract Immediate
Syntax
SUB n, rsd -immediate, limited register

Affected Flags
N,Z,C,V

Description
Subtracts the immediate value n from the register rsd and
places the result back into the register rsd. Note that only
the active registers RO-R15 may be specified for rsd. The
value of n is limited to 8 bits; (signed range: + 127 to
-128). Negative numbers are represented using the two's
complement format.

Example
Subtract the constant 3 from register 10.

SUB 3, R10 ; R10 - 3 --+ R10

Instruction Format

1

0 1 0 11 10 I

. Opcode .
15 11

T-states
2

Bus Timing
Figure 6-1

Operation
rsd - n --+ rsd

n
1

rsd

3 0

6.0 Reference Section (Continued)

SUBA Subtract with Accumulator
Syntax
SUBA
SUBA

AS,Ad
As, [mlr]

Affected Flags
N,Z,C,V

Description

-register, register
-register, indexed

Subtracts the active accumulator from the source register
As and places the result into the destination specified. The
destination may be either a register, Ad, or data memory via
an index register mode, [mlr]. Negative numbers are repre­
sented using the two's complement format. Note that regis­
ter bank selection determines which accumulator is active.

Example
In the first example, the value 4 is placed into the currently
active accumulator, that accumulator is subtracted from the
contents of register 20, and then the result is placed into
register 21.

MOVE 4, A ;Place constant into accum
SUBA A20, A21 ;A20 - accum ~ A21

In the second example, the alternate accumulator of regis­
ter bank B is selected and then subtracted from register 20.
The result is placed into the data memory pointed to by the
index register IZ and then the value of IZ is incremented by
one.

EXX 0, 1 ;Select alt accumulator
SUBA A20, liZ +) ;A20 - accum ~ data mem

;and increment data pointer

Instruction Format

SUBA As, Ad

15 9

SUBA As, [mlr]

I
I I 0 I I I 0 I 0 I

. Opcode

15

+

I
Ad

00 - post-decrement
01 - no change
10 - post Increment
II - pre-Increment

4

Ir

4

As

Rs

t
00 - IW
01 - IX
10 - IY
II - IZ

o

o

TlIF/9336-16

T-states
SUBA As, Ad
SUBA As, [mlr)

Bus Timing
SUBA As, Ad
SUBA As, [mlr)

Operation
SUBA Rs, Ad

-2
-3

-Figure 6-1
-Figure 6-7

As - accumulator ~ Ad

SUBA As, [mlr]
As - accumulator ~ data memory

1-197

TRAP Software Interrupt
Syntax
TAAP v I,g'}

Affected Flags
None

Description
Pushes the Program Counter, the Global Interrupt Enable bit
[GIE), the ALU flags, and the current register bank selec­
tions onto the internal Address Stack; then unconditionally
transfers control to the instruction at the memory address
created by concatenating the contents of the Interrupt Base
Aegister IIBA} to the value of v extended with zeros to 8
bits. If the value of g' is equal to "1" then the Global Inter­
rupt Enable bit [GIE) will be cleared. If the g' operand is
omitted, then g' = 0 is assumed. The vector number v
points to one of 64 Interrupt Table entries; (range: 0 to 63).
Since some of the Interrupt Table entries are used by the
hardware interrupts, the TAAP instruction can simulate
hardware interrupts. The following table lists the hardware
interrupts and their associated vector numbers:

Hardware Interrupt Vector Table

Interrupt v (Binary)

NMI 28 (011100)
AFF/OAlAA 4 (000100)
TFE 8 (001000)
LTA 12 (001100)
BIAQ 16 (010000)
TO 20 (010100)

Example
Simulate the Transmitter FIFO Empty interrupt.

TAAP 8, 1 ;TFE interrupt simulation

Instruction Format

15 6 5

T-states
2

Bus Timing
Figure 6-1

Operation

v

PC & [GIE) & ALU flags & register bank selections
~ Address Stack

if g' = 1
then clear [GIE)

o

Create PC address by concatonating the IIBA} register to
the vector number v as shown below:

I I I I I I Lpc
{IBR} 0 0 !

LI-5------~~------~7--~~5----------~0

TL/F/9336-17

6.0 Reference Section (Continued)

XOR Exclusive OR Immediate
Syntax
XOA n, rsd -immediate, limited register

Affected Flags
N,Z

Description
Logically exclusive OAs the immediate value n to the regis­
ter rsd and places the result back into the register rsd. Note
that only the active registers AO-A15 may be specified for
rsd. The value of n is 8 bits wide.

Example
Encode/decode a data byte in register 15.

XOA code_pattern, A15 ;encode/decode

Instruction Format

1
0 11 1 1 1 0 I

. Opcode .
15 11

T-states
2

Bus Timing
Figure 6-1

Operation
rsd XOA n -+ rsd

n

3 0

1-198

XORA Exclusive OR with Accumulator
Syntax
XOAA
XOAA

As, Ad
As, [mlr]

Affected Flags
N,Z

Description

-register, register
-register, indexed

Logically exclusive OAs the source register As to the active
accumulator and places the result into the destination speci­
fied. The destination may be either a register, Ad, or data
memory via an index register mode, [mlr]. Note that register
bank selection determines which accumulator is active.

Example
Decode the data byte just received and place it into data
memory. This example assumes that the accumulator con­
tains the "key" and that the index register IY points to the
location where the information should be stored.

EXX 1,1 ;select alternate banks
XOAA .. ATA, [lY +] ;decode received byte and

; save it

Instruction Format
XOAA As, Ad

15 9

XORA Rs, [mlr]

1

1 I 0 I 1 I 0 11 I 1 I 0 I
. Opcode . m

15 8

~

1
Ad

00 - post-decrement
01 - no change
10 - post Increment
11 - pre-increment

4

Ir

4

Rs

Rs

. l
00 - IW .
01 - IX
10 - IY
11 - IZ

o

o

TL/F 19336-1 B

T-states
XORA Rs, Rd -2
XORA Rs, [mlr] -3

Bus Timing
XORA Rs, Rd -Figure 6-1
XORA Rs, [mlr] -Figure 6-7 .

Operation
XORA Rs, Rd
Rs XOR accumulator -+ Rd

XORA Rs, [mlr]
Rs XOR accumulator -+ data memory

6.0 Reference Section (Continued)

TABLE 6-2. Instructions Versus T-states, Affected Flags, and Bus Timing

Instruction T-states
Affected Timing

Instruction T-states
Affected Timing

Flags Figure Flags Figure

ADCA Rs, Rd 2 N,Z,C,V 6·1 MOVE Rs, [mlr] 3 6-7

ADCA Rs, [mlr] 3 N,Z,C,V 6-7 MOVE Rs, [lr + A] 3 6-7

ADD n, rsd 2 N,Z,C,V 6-1 MOVE rs, [lZ + n] 3 6-7

ADDA Rs, Rd 2 N,Z,C,V 6-1 MOVE [mlr],Rd 3 [4TR] = 0 6-5

ADDA Rs, [mlr] 3 N,Z,C,V 6-7
4 [4TR] =' 1 6-6

AND n, rsd 2 N,Z 6-1 MOVE [lr + A], Rd 3 [4TR] - 0 6-5
4 [4TR] = 1 6-6

ANDA Rs, Rd 2 N,Z 6-1
[lZ+ n], rd 3 [4TR] = 0 MOVE 6-5

ANDA Rs, [mlr] 3 N,Z 6-7 4 [4TR]='1 6-6
-= --"-

BIT rs, n 2 N,Z 6-1 OR n, rsd 2 N,Z 6-1

CALL n 3 6-2 ORA Rs, Rd 2 N,Z 6-7

CMP rs, n 2 N;Z,C,V 6-1 ORA Rs, [mlr] 3 N,Z 6-7

CPL Rsd 2 N,Z 6-1 Ree (g (,rf)) 2 false 6-1

EXX ba, bb (,g) 2 6-1 3 true N,Z,C,V· 6-2

Jee n 2 false 6-1 RET (g(,rf)) 2 N,Z,C,V*. 6-1

3 true 6-2 RETF f, s (,(g) (,rf)) 2 false 6-1

JMP f, s, n 2 false 6-1 3 true N,Z,C,V* 6-2

3 true 6-2 ROT Rsd,b 2 N,Z,C 6-1

JMP n 3 6-2 SBCA RS,Rd 2 N,Z,C,V 6-1

JMP Rs 4 6-4 SBCA Rs, [mlr] 3 N,Z,C,V 6-7

JRMK RS,b,m 4 6-4 SHL Rsd,b 2 N,Z,C 6-1

LCALL nn (2+2) 6-3 SHR Rsd,b 2 N,Z,C 6-1

LCALL Rs, p, s, nn (2+2) 6-3 SUB n, rsd 2 N,Z,C,V 6-1

LJMP nn (2+2) 6-3 SUBA Rs, Rd 2 N,Z,C,V 6-1

LJMP [lr] 2 6-1 SUBA Rs, [mlr] 3 N,Z,C,V 6-7

LJMP Rs,p,s,nn (2+2) 6-3 TRAP v (,g') 2 6-1

MOVE n, rd 2 6-1 XOR n, rsd 2 N,Z 6-1

MOVE n, [lr] 3 6-7 XORA Rs, Rd 2 N,Z 6-1

MOVE Rs, Rd 2 6-1 XORA Rs, [mlr] 3 N,Z 6-7

·Note: If rf = 1 then N. Z. C. and V are affected,

I

III
I

1-199

m
~

~ 6.0 Reference Section (Continued)
CO
Q.
C TABLE 6-3. Instruction Opcodes

Hex Opcode

101010101 1

I OOOO-OFFF 1 1 1 1 1 1 1 1
Opcode n rsd

15 11 3

10 1 0 10 11 I 1

I 1000-1 FFF 1 1 1 1 1 1 1 1
Opcode n rs

15 11 3

10 1 0 11 10 I 1

I 2000-2FFF 1 1 1 1 1 1 1 1
Opcode n rsd

15 11 3

10 I 0 11 I 1 I 1

I 3000-3FFF I I I I I I I I
Opcode n rs

15 11 3

1011 10101 1

I
I I 4000-4FFF I I I I I I

Opcode n rsd

15 11 3

10 11 I 0 11 I I 1 I I I
I

I I 5000-5FFF I I
Opcode n rsd

15 11 3

10 11 11 I 0 I 1 1 1 1

I
1 1 6000-6FFF I I I

Opcode n rsd

15 11 3

I 0 I 1 I 1 I 1 I 1

I 7000-7FFF I I I I I I I I
Opcode n rs

15 11 3

11101010101
I

1 BOOO-B7FF 1 I 1 1

I
1 1

Opcode rn b Rs

15 10 7 4

1-200

KEY
Instruction

rnlr

I
1 ADD n, rsd 00 Ir-

01 Ir
0 10 Ir+

11 +Ir

I
1 MOVE rs, [lZ + n] Ir

0 00 IW
01 IX

I
1 SUB n, rsd

10 IY
11 IZ

0
9

I
I CMP rs, n

0

00 NCHG
01 RI
10 EI
11 01

1

I AND n, rsd

0

9'

1
0

NCHG I
1 01

I
I OR n, rsd ba/bb

0

1

I XOR n, rsd

0 000 [Z]

001 [C]

I
I BIT rs, n

010 [V]
011 [N]

100 [RA]
0 101 [RE]

I
I JRMK RS,b,rn

110 [OAV]

111 [TFF]

0

6.0 Reference Section (Continued)

TABLE 6-3. Instruction Opcodes (Continued)

Hex Opcode

11 1010101 1 10 1 I 1 I 1 I I I BBOO-BBFF I
1 Opcode n[7-5] . Ir n[4-0]

15 9 6 4

.1110101011111011 I I
1

1 I I I BCOO-BOFF
Opcode s p Rs

15 B 7 4

OOOO-FFFF

I
1 1 1 I I I I I I I I I I I I

nn

15

111010101111111 I 1 BEOO-BFFF I I
1

I I I
. Opcode s p Rs

15 B 7 4

OOOO-FFFF

I
1 1 1 I I I I I I I I I I I I

nn

15

11 I 0 I 0 I 1 I 1 II 9000-9FFF I I I I I I I I
Opcode n rd

15 11 3

111011101010101 1 1 AOOO-A1FF
1

I
1

I I I
Opcode m Ir Rs

15 8 6 4

111011101010111 1 1 A200-A3FF
1

I
1

I I I
Opcode m Ir Rs

15 B 6 4

111011101011101 1 1 A400-A5FF
1

I
1

I I I
Opcode m Ir Rs

15 B 6 4

1-201

Instruction

1
MOVE n, [lr]

0

I
LJMP Rs, p, s, nn

0

I
0

I
LCALL Rs, p, s, nn

0

I
0

I
MOVE [lZ+n1. rd

0

I
AOOA Rs, [mlr]

0

I
AOCA Rs, [mlr]

0

I
SUBA Rs, [mlr]

0

KEY
mlr

00 Ir-
01 Ir
10 Ir+
11 +Ir

Ir

00 IW
01 IX
10 IY
11 IZ

9

00 NCHG
01 RI
10 EI
11 01

9'

~ 1 01

ba/bb

000 [Z]

001 [C]

010 [V]
011 [t-:J]
100 [RA]
101 [RE]

110 [OAV]
111 [TFF]

C
.."
co
w
~
~
OJ

III
I

m
~

~ 6.0 Reference Section (Continued)
CO
D..
C TABLE 6-3. Instruction Opcodes (Continued)

Hex Opcode

111011101011111 1 1
1

ASOO-A7FF
1

1

1

1 1 1
Opcode m Ir Rs

15 B S 4 0

111011101110101 1 1

1
ABOO-A9FF

1

1

1

1 1 1
Opeode m Ir Rs

15 B S 4 0

111011101110111 1

1

1

1

1 1 1

1
AAOO-ABFF 1

Opeode m Ir Rs

15 B S 4 0

111011101111101 1 1

1
ACOO-AOFF

1

1

1

1 1 1
Opeode m Ir Rs

15 B S 4 0

11101110111111101010101 1

1
AEOO-AE1F 1 1 1

Opeode Rs

15 4 0

1110111011111110111 1
1 ba 1 bb 1 0 1 0 1 0 1 AEBO-AEFB

Opeode 9
15 S 4 3 2 0

1110111011111111101
1 rl 1 s 1 1

AFOO-AF7F 1 1 1
Opeode 9 f

15 S 4 3 2 0

1110111011111111111 IrllOIOIOlol AFBO-AFFO 1
Opeode 9

15 6 4 3 0

11 1 0 1 1 1 1 1 1

1 1
BOOO-BFFF 1 1 1 1 1 1 1 1 1

Opeode n rd

15 11 3 0

1-202

KEY
Instruction

mlr

SBCA Rs, [mlr] 00 Ir-
01 Ir
10 Ir+
11 +Ir

ANOA Rs, [mlr] Ir

00 IW
01 IX
10 IY

ORA Rs, [mlr] 11 IZ

9

00 NCHG
XORA Rs, [mlr] 01 RI

10 EI
11 01

CPL Rsd g'

10 NCHG 1
1 01

EXX ba, bb I.g1 ba/bb

RETF f,sl.lgll,rlll
Ree Igl,rlll

000 [Z]
001 [C)
010 [V]

RET Igl.rlll 011 [N]
100 [RA]
101 [RE]
110 [OAV]
111 [TFF]

MOVE n, rd

6.0 Reference Section (Continued)

TABLE 6-3. Instruction Opcodes (Continued)

Hex Opcode

111110101010101 1 1 COOO-C1FF
1

1

1

1 1 1
Opcode m Ir Rd

15 a 6 4

111110101010111 1 1 C200-C3FF
1

1

1

1 1 1
Opcode m Ir Rs

15 a 6 4

1111101010111010101 1 C400-C47F 1

1

1 1 1
Opcode Ir Rd

15 6 4

1111101010111010111 1 C4aO-C4FF 1

1

1 1 1
Opcode Ir Rs

15 6 4

11111010111010101
1

1 1 1 caOO-CaFF 1 1 1
Opcode b Rsd

15 7 4

11111010111010111
1

1 1 1 C900-C9FF 1 1 1
Opcode (a-b) Rsd

15 7 4

11111010111011101 1 1

1

1 1 1 1 CAOO-CAFF
Opcode b Rsd

15 7 4

11111010111011111 1 1 1 CBOO-CBFF 1 1 1 1
Opcode n

15 7

11111010111110101 1 1 1 CCOO-CCFF 1 1 1 1
Opcode n

15 7

1-203

Instruction

1
MOVE [mlr], Rd

0

1
MOVE Rs, [mlr]

0

1
MOVE [lr+A1. Rd

0

1
MOVE Rs, [lr+A]

0

1
SHR Rsd,b

0

1
SHL Rsd,b

0

1
ROT Rsd,b

0

1
JMP n

0

1
CALL n

0

KEY

mlr

00 Ir-
01 Ir
10 Ir+
11 +Ir

Ir

00 IW
01 IX
10 IY
11 IZ

9

00 NCHG
01 RI
10 EI
11 01

g'

10 NCHG 1
1 01

ba/bb

000 [Z]
001 [C)
010 [V]
011 [N]
100 [RA]
101 [RE]
110 [OAV]
111 [TFF]

C
"tJ
Q)
W
~
~
OJ

I

III

m
~

~ 6.0 Reference Section (Continued)
co
D-
C TABLE 6-3. Instruction Opcodes (Continued)

Hex Opcode

11 I 11 0 I 0 11 I 1 10 I 1 I 01 10101010101 COOO-C060 I
Opcode Ir

15 6 4 0

11111010111110111110101 I
I

C080-C09F I I I
Opcode Rs

15 4 0

11 11 10 10 11 11 11 10 I 0 10 10 10 10 10 10 10 I CEOO
OOOO~FFFF . Opcode

15 0

II I I I I I I I I I I I I I I
I nn

_ 15 0

11 11 I 0 10 11 11 11 10 11"10 10 10 10 10 I 0 10 I CE80
OOOO-FFFF

Opcode

15 0

I
I .1 I I I I I I I I I I I I I

I nn

15 0

11111010111111111111 I I I
I

CF80-CFFF I I
Opcode g' v

15 6 5 0

11 I 1 I 0 I 1-1 I I I
I

OOOO-OFFF I I I I I I I I
f n Opcode S

15 11 10 7 0

1-204

KEY
Instruction

mlr

LJMP [lr]
00 Ir-
01 Ir
10 Ir+
11 +Ir

Ir

JMP Rs 00 IW
01 IX
10 IY
11 IZ

9

LJMP nn 00 NCHG
01 RI
10 EI
11 01

g'

1
0

NCHG I
1 01

LCALL nn
ba/bb

000 [Z]
001 [C)
010 [V]
011 [N]
100 [RA]

TRAP v{,g'} 101 [RE]
110 [DAV]
111 [TFF]

JMP f, S, n
Jcc n

C

6.0 Reference Section (Continued)
""C
co
W
0I:loo

TABLE 6-3. Instruction Opcodes (Continued)
0I:loo
OJ

KEY
Hex Opcode Instruction mlr

1111111010101 1 1 I EOOO-E3FF 1 1 1

1

1 1 1 AOOA Rs, Rd
Opcode Rd Rs

00 Ir-
01 Ir

15 9 4 0 10 Ir+
11 +Ir

1111111010111 1 1
1

E400-E7FF 1 1 1

1

1 1 1 AOCA RS,Rd
Opcode Rd Rs Ir

15 9 4 0 00 IW
01 IX

1111111011101 1 1

1
EBOO-EBFF 1 1 1

1

1 1 1 SUBA Rs, Rd Opcode Rd Rs

10 IY
11 IZ

15 9 4 0
9

1111111011111 1 1

1
ECOO-EFFF 1 1 1

1

1 1 1 SBCA Rs, Rd
Opcode Rd Rs

15 9 4 0

00 NCHG
01 RI
10 EI
11 01

1111111110101 1 1 1 1

1

1 1

1
FOOO-F3FF 1 1 ANOA Rs, Rd Opcode Rd Rs

15 9 4 0

g'

[]EJ 1 01

1111111110111 1 1 1 1 1

1
F400-F7FF 1

1

1 1 ORA RS,Rd
Opcode Rd Rs

ba/bb

15 9 4 0

1111111111101 1 1 1

1
FBOO-FBFF 1 1 1

1

1 1 XORA Rs, Rd
Opcode Rd Rs

15 9 4 0 000 [Z]
001 [C)

1111111111111 1 1

1
FCOO-FFFF 1 1 1

1

1 1 1 MOVE Rs, Rd
Opcode Rd Rs

010 [V]
011 [N]
100 [RA]

15 9 4 0 101 [RE]
110 [OAV]
111 [TFF]

I • I
1-205

6.0 Reference Section (Continued)

6.2 REGISTER SET REFERENCE

The register set reference contains detailed information on the bit definitions of all special function registers that are address-
able in the CPU. This reference section presents the information in three forms: a bit index, a register description and bit
definition tables. The bit index is an alphabetical listing of all status/control bits in the CPU-addressable function registers, with a
brief summary of the function. The register description is a list of all CPU-addressable special function registers in alphabetical
order.' The 'bit definition tables describe the location and function of all control and status bits in the various CPU-addressable
special function registers. These tables are arranged by function.

6.2.1 Bit Index

An alphabetical listing of all status/control bits in the CPU-addressable special function registers, with a brief summary of
function. Detailed definitions are provided in Section 6.2.3, Bit Definition Tables.

Bit Name Location Function

i}.4IB.·· •.•. · •.. · •. :·.· .•......• ·· .. FourT.Stat~ Bead •..• ····· ...• ···· ••..... ····i····· ..•..• .. .AC8\ (3) ... I imirl999titr()! . ..
,"oW,,"_

poll/ ACKnowledge NCF [1] Receiver Status
ASP3-0 Address Stack Pointer ISP [7-4] Stacks
AT7-0 Auxilliary Transceiver control ATR [7-0] Receiver Control
ATA Advance Transmitter Active TCR [4] Transmitter Control
BIC Bi-directionallnterrupt Control ACR [4] Interrupt Control
BIRO Bi-directionallnterrupt ReQuest CCR [4] Interrupt Control
C Carry CCR [1] Arithmetic Flag
CCS CPU Clock Select OCR [7] Timing Control
COD Clock Out Disable ACR [2] Timing Control
DAV Data AVailable TSR [3] Receiver Status
DEME Data Error or Message End NCF [3] Receiver Status
DS7-0 Data Stack OS [7-0] Stacks
DSP3-0 Data Stack Pointer ISP [3-0] Stacks
DW2-0 Data memory Wait-state select OCR [2-0] Timing Control
FB7-0 Fill Bits FBR [7-0] Transmitter Control
GIE Global Interrupt Enable ACR [0] Interrupt Control

, IES Invalid Ending Sequence ECR [2] Receiver Error Code
IM4-0 Interrupt Mask select ICR [4-0] Interrupt Control
IV15-8 Interrupt Vector IBR [7-0] Interrupt Control
IW1,0 Instruction memory Wait-state select OCR [4,3] Timing Control
LA Line Active NCF [5] Receiver Status
LMBT Loss of Mid Bit Transition ECR [1] Receiver Error Code
LOR Lock Out Remote ACR [1] Remote Interface

, LOOP internal LOOP-back TMR [6] Transceiver Control
LTA Line Turn Around NCF [4] Receiver Status
N Negative CCR [3] Arithmetic Flag
OVF receiver OVerFlow ECR [4] Receiver Error Code
OWP Odd Word Parity TCR [3] Transmitter Control
PAR' PARity error ECR [3] Receiver Error Code
POLL POLL NCF [0] Receiver Status
PS2-0 Protocol Select TMR [2-0] Transceiver Control
RA Receiver Active TSR [4] Receiver Status
RAR Received Auto-Response NCF [2] Receiver Status
RDIS Receiver DISabled while active ECR [0] Receiver Error Code
RE Receiver Error TSR [5] Receiver Status
RF10-8 Receive FIFO TSR [2-0] Receiver Control
RFF Receive FIFO Full NCF [6] Receiver Status
RIN Receiver INvert TMR [4] Receiver Control
RIS1,0 Receiver Interrupt Select ICR [7,6] Interrupt Control
RLO Receive Line Quiesce TCR [7] Receiver Control
RPEN RePeat ENable TMR [5] Receiver Control
RR Remote Read CCR [6] Remote Interface
RTF7-0 Receive/Transmit FIFO RTR [7-0] Transceiver Control
RW Remote Write CCR [5] Remote Interface
SEC Select Error Codes TCR [6] Receiver Control
SLR Select Line Receiver TCR [5] Receiver Control
TA Transmitter Active TSR [6] Transmitter Status
TCS1,0 Transceiver Clock Select OCR [6,5] Transceiver Control
TF10-8 Transmit FIFO TCR [2-0] Transmitter Control

1·206

6.0 Reference Section (Continued)

6.2.1 Bit Index (Continued)

An alphabetical listing of all status/control bits in the CPU·addressable special function registers, with a brief summary of
function. Detailed definitions are provided in Section 6.2.3, Bit Definition Tables.

Bit Name

TFE Transmit FIFO Empty
TFF Transmit FIFO Full
TIN Transmitter INvert
TLD Timer LoaD
TM7-0 TiMer
TM15-8 TiMer
TMC TiMer Clock select
TO Time Out flag
TRES Transceiver RESet
TST Timer StarT
V oVerflow
Z Zero

6.2.2 Register Description

A list of all CPU-addressable special function registers, in
alphabetical order.

The Remote Interface Configuration register (RICI, which is
addressable only by the remote system, is not included. See
Section 6.3, Remote Interface Reference for details of the
function of this register.

Each register is listed together with its address, the type of
access available, and a functional description of each bit.
Further details on each bit can be found in Section 6.2.3, Bit
Definition Tables.

1-207

Location Function

NCF [7] Transmitter Status
TSR [7] Transmitter Status
TMR [3] Transmitter Control
ACR [6] Timer
TRL [7-0] Timer
TRH [7-0] Timer
ACR [5] Timer
CCR [7] Timer
TMR [7] Transceiver Control
ACR [7] . Timer
CCR [2] Arithmetic Flag
CCR [0] Arithmetic Flag

ACR AUXILIARY CONTROL REGISTER
[Main R3; read/write]

7 6 5 4 321 0

I TST I TlD I TMC I BIC rsv I COD I LOR I GIE

rsv ... state is undefined at all times.

TST - Timer StarT ... When high, the timer is enabled
and will count down from it's current value.

When low, timer is disabled. Timer is stopped by
writing a 0 to [TST].

TlD - Timer LoaD ... When high, generates timer load
pulse. Cleared when load complete.

TMC - TIMer Clock select ... Selects timer clock fre­
quency. Should not be written when [TST] is
high. Can be written at same time as [TST] and
[TlD).

TMC Timer Clock

o (CPU-ClK)/16
1 (CPU-ClK)/2

BIC - BI-directlonal Interrupt Control ... Controls di-
rection of BIRQ.

BIC BIRQ

o Input
Output

COD - Clock Out Disable ... When high, ClK-OUT out­
put is at TRI-STATE.

lOR - Lock Out Remote ... When high, a remote sys­
tem is prevented from accessing the BCP.

GIE - Global Interrupt Enable ... When low, disables
all maskable interrupts. When high, works with
[lM4-0] to enable maskableinterrupts.

4TR - 4 T -state Read .•• When high, RE'AI5 strobe tim­
ing is changed to allow more time between the
TRI-STA TE of the AD lines by the BCP and the
falling of the RE:AD strobe. All data memory reads
take four T-states when this bit is set. See Sec­
tion.2.2.2 for more information.

6.0 Reference Section (Continued)

ATR AUXILIARY TRANSCEIVER REGISTER
[Alternate R2; read/write]

7 6 543 2 o
I AT7 I AT6 I AT5 I AT4 I AT3 AT2 AT1 I ATO I
AT7 -0 - Auxiliary Transceiver ... In 5250 protocol

modes, bits 2-0 define the receive station ad­
dress, and bits 7-3 control the amount of time
TX-ACT stays asserted after the last fill bit.

In 8-bit protocol modes, bits 7-0 define the re­
ceive station address.

For further information, see Section 3.0 Trans­
ceiver.

ATR 7-3
TX-ACT Hold Time (p.s)

(if TCLK = 8 MHz)

00000 0
00001 0.5
00010 1.0
00011 1.5

! !
1 1 1 1 1 15.5

1-208

CCR CONDITION CODE REGISTER
[Main RO; bits 0-3, 5-7 read/write, bit 4 read only]
76543210

I TO I RR I RW I BIRO I N I V I C I z

TO - Time Out flag ... Set high when timer counts to
zero. Cleared by writing a 1 to this location or by
stopping timer (by writing a 0 to [TST».

RR - Remote Read ... Set on the trailing edge of a
REM-RD pulse, if RAE is asserted and {RIC} is
pointing to Data Memory. Cleared by writing a 1
to this location.

RW - Remote Write ... Set on the trailing edge of a
REM-WR pulse, if RAE is asserted and {RIC} is
pointing to Data Memory. Cleared by writing a 1
to this location.

BIRO - BI-directional Interrupt ReQuest ... [Read
only). Reflects the logic level of the Bi-directional
interrupt pin, BIRO. Updated at the beginning of
each instruction cycle.

N - Negative .. . A high level indicates a negative
result generated by an arithmetic, logical or shift
instruction.

V - oVerflow ... A high level indicates an overflow
condition generated by an arithmetic instruction.

C - Carry ... A high level indicates a carry or borrow
generated by an arithmetic instruction. During a
shift/rotate operation the state of the last bit shift­
ed out appears in this location.

Z - Zero ... A high level indicates a zero result gen-
erated by an arithmetic, logical or shift instruction.
Further information: Section 2.2.1 ALU, Section
2.2.3 Interrupts.

6.0 Reference Section (Continued)

DCR DEVICE CONTROL REGISTER
[Alternate RO; read/write]

76543210

I CCS ! TCS1! TCSO !IW1 !IWO ! OW2! OW1 ! OWO I
CCS - CPU Clock Select . .. Selects CPU clock fre­

quency. OCLK represents the frequency of the
on-chip oscillator, or the externally applied clock
on input X1.

CCS CPUCLK

o OCLK
OCLK/2

TCS1,O - Transceiver Clock Select ... Selects trans­
ceiver clock, TCLK, frequency.

OCLK represents the frequency of the on-chip
oscillator, or the externally applied clock on in­
put X1. X-TCLK is the external transceiver
clock input.

TCS1,O TCLK

00 OCLK
01 OCLK/2
10 OCLK/4
11 X-TCLK

IW1,O - Instruction memory Walt-state select ...
Selects from 0 to 3 wait states for accessing
instruction memory.

OW2-0 - Data memory Walt-state select ... Selects
from 0 to 7 wait states for accessing data mem­
ory.

1-209

DS DATA STACK
[Main R31; read/write]

7 6 543 2 0

I OS7 \ OS6 \ OS5 I OS4 ! OS3 ! OS2\ OS1 I OSO I
OS7-0 - Data Stack ... Data stack input/output port.

Stack is 16 bytes deep. Further information:
Section 2.1.1.8 Stack Registers.

rsv ... state is undefined at all times.

6.0 Reference Section (Continued)

ECR ERROR CODE REGISTER
[Alternate R4 with [SEC] high; read only]

7 654 3 2 1 0

I rsv I rsv I rsv I OVF I PAR liES I LMBT I RDIS I
OVF - Receiver oVerFlow ... Set when the receiver

has processed 3 words and another complete
frame is received before the FIFO is read by the
CPU. Cleared by reading (ECR) or by asserting
[TRES].

PAR - PARity error ... Set when bad (odd) overall
word parity is detected in any receive frame.
Cleared by reading (ECR) or by asserting
[TRES].

IES - Invalid Ending Sequence ... Set when the
"mini-code violation" is not correct during a 3270,
3299, or 8-bit ending sequence. Cleared by read­
ing (ECR) or by asserting [TRES].

LMBT - Loss of Mid-Bit Transition ... Set when the ex­
pected Manchester Code mid-bit transition does
not occur within the allowed window. Cleared by
reading (ECR) or by asserting [TRES].

RDIS - Receiver DISabled while active ... Set when
transmitter is activated while receiver is active,
without RPEN being asserted. Cleared by reading
(ECR) or by asserting [TRES]. Further informa­
tion: Section 3.2 Transceiver Functional Descrip­
tion.

1-210

FBR FILL-BIT REGISTER
[Alternate R3; read/write]

7 6 543 2

I FB7 I FB6 I FB5 I FB4 I FB3 I FB2 I
o

FB1 I FBO I
FB7 -0 - Fill Bits ... 5250 fill-bit control. Further informa­

tion: Section 3.0 Transceiver.

6.0 Reference Section (Continued)

IBR INTERRUPT BASE REGISTER
[Alternate R1; read/write]

7654321 0

IIV151IV14!IV13!IV12!IV11 !IV10! IV9 I IV8 I
IV15-8- Interrupt Vector ... High byte of interrupt and

trap vectors. Further information: Section 2.2.3,
Interrupts.

Interrupt Vector

I I I IBIR I I I 10 10 I I I I I I
. . vector address

15 8 5 o
The interrupt vector is obtained by concatenating IIBR J
with the vector address:

Interrupt Vector Address Priority

NMI 011100 -
Receiver 000100 1 high
Transmitter 001000 2 i
Line Turn Around 001100 3
Bi-directional 010000 4 !
Timer 010100 5 low

1-211

ICR INTERRUPT CONTROL REGISTER
[Main R2; read/write]

7 6 543 2

I RIS1 I RISO I rsv I IM4 11M3 11M2

rsv •.. state is undefined at all times

I
RIS1,O - Receiver Interrupt Select ...

source of the Receiver Interrupt.

RIS1,O Interrupt Source

00 RFF + RE
01 DAV + RE
10 (unused)
11 RA

" +" indicates logical "or"

1 0

IM1 I IMO I
Defines the

Further information: Section 3.2.3 Transceiver In­
terrupts.

IM4-0 - Interrupt Masks ... Each bit, when set high,
masks an interrupt. 1M3 functions as an interrupt
mask only if BIRO is defined as an input. When
BIRO is defined as an output, 1M3 controls the
state of BIRO.

IM4-0 Interrupt

o 0 0 0 0 No Mask
X X X X 1 Receiver
X X X 1 X Transmitter
X X 1 X X Line Turn-Around
X 1 X X X Bi-Directional
1 XXXX Timer

Further information: Section 2.2.3 Interrupts.

C
"'0
CD
(,)
0l:Io
0l:Io m

6.0 Reference Section (Continued)

ISP INTERNAL STACK POINTER
[Main R30; read/write]

7654321 0

IASP3/ASP2/ASP1/ASPO/DSP3/DSP2/DSP1/DSpol

ASP3-0 - Address Stack Pointer ... Input/output port
of the address stack pointer. Further informa­
tion: Section 2.1.1.8 Stack Registers.

DSP3-0- Data Stack Pointer ... Input/output port of the
data stack pointer. Further information: Section
2.1.1.8 Stack Registers.

1-212

NCF NETWORK COMMAND FLAG REGISTER
[Main R1; read only]

76543 210

I TFE / RFF I LA I LTA I DEME I RAR lACK / POLL I
TFE

RFF

LA

- Transmit FIFO Empty ... Set high when the
FIFO is empty. Cleared by writing to {RTR I.

- Receive FIFO Full ... Set high when the Re­
ceive FIFO contains 3 received words.
Cleared by reading to {RTR I.

- Line Active ... Indicates activity on the re­
ceiver input. Set high on any transition;
cleared after detecting no input transitions for
16 TCLK periods.

L T A - Line Turn Around ... Set high when end of
message is received. Cleared by writing to
{RTR l. writing a "1" to this location, or by
asserting [TRES].

DEME - Data Error or Message End ... In 3270 &
3299 modes, asserted when abyte parity er­
ror is detected. In 5250 modes, asserted when
the [111] station address is decoded and
[DAV] is asserted. Cleared by reading {RTR I.
Undefined in 8-bit modes and in the first frame
of 3299 modes.

RAR - Received Auto-Response ... Set high when
a 3270 Auto-Response message is decoded
and [DAV] is asserted. Cleared by reading
{RTR I. Undefined in 5250 and 8-bit modes
and in the first frame of 3299 modes.

ACK - Poill ACKnowledge ... Set high when a 3270
poll/ack command is decoded and [DAV] is
asserted. Cleared by reading {RTR I. Unde­
fined in 5250 and 8-bit modes and in the first
frame of 3299 modes.

POLL - POLL ... Set high when a 3270 poll command
is decoded and [DAV] is asserted. Cleared by
reading {RTR I. Undefined in 5250 and 8-bit
modes and in the first frame of 3299 modes.
Further information: Section 3.0 Transceiver.

6.0 Reference Section (Continued)

RTR RECEIVE/TRANSMIT REGISTER
[Alternate R4; read/write]

7 S 5 4 3 2 10

I RTF7' RTFS\ RTF5\ RTF4' RTF3\ RTF2\ RTF1 \ RTFO \

RTF7-0 - Receive Transmit FIFO's ... Input/output
port to the least significant eight bits of receive
and transmit FIFO's. [OWP], [TF10-8] and
[RTF7-0] are pushed onto the transmit FIFO
on moves into (RTRI. [RF10-8] and [RTF7-
0] are popped from receiver FIFO on moves
out of (RTR I. Further information: Section 3.0
Transceiver.

1-213

TCR TRANSCEIVER COMMAND REGISTER
[Alternate RS; read/write]

7 S 543210

I RLQ \ SEC \ SLR \ ATA \ OWP \ TF10 , TF9\ TF8\

RLQ

SEC

- Receive Line Qulesce ... Selects number of
line quiesce bits the receiver looks for.

RLQ Number of
Qulesces

o 2
1 3

- Select Error Codes ... When high (ECRI is
switched into (RTR I location.

SLR - Select Line Receiver ... Selects the receiver
input source.

SLR Source

o DATA-IN
On-chip analog
line receiver

ATA - Advance Transmitter Active ... When high,
TX-ACT is advanced one half bit time so that
the transmitter can generate 5.5 line quiesce
pulses.

OWP - Odd Word Parity .,. Controls transmitter
word parity.

OWP Word Parity

o Even
Odd

TF10-8 - Transmit FIFO ... [OWPl, [TF10-8] and
[RTF7 -0] are pushed onto transmit FIFO on
moves into (RTR I.

Further information: Section 3.0 Transceiver.

6.0 Reference Section (Continued)

TMR TRANSCEIVER MODE REGISTER
[Alternate R7; read/write]

7 6 543210

I TRES 1 LOOP 1 RPEN 1 RIN I· TIN 1 PS2 1 PS1 1 PSO I

TRES - Transceiver RESet Resets transceiver
when high. Transceiver can also be reset by
RESET, without affecting [TRES].

LOOP - Internal LOOP-back ... When high, TX-ACT
is disabled (held at 0) and transmitter serial
data is internally directed to the receiver serial
data input.

RPEN - RePeat ENable ... When high, the receiver
can be active at the same time as the trans­
mitter.

RIN - Receiver INvert ... When high, the receiver
serial data is inverted.

TIN - Transmitter INvert ... When high the trans-
mitter serial data outputs are inverted.

PS2-0 - Protocol Select ... Selects protocol for both
transmitter and receiver.

PS2-0 Protocol

000 3270
001 3299 multiplexer
010 3299 controller
01 1 3299 repeater
100 5250
1 01 5250 promiscuous
110 S-bit
1 1 1 S-bit promiscuous

Further information: Section 3.0 Transceiver.

1-214

TRH TIMER REGISTER - HIGH
[Main R29; read/write]

76543210

ITM151TM141TM131TM121TM111TM10lTM91TMSI

TM15-S- TiMer ... Input/output port of high byte of timer.
Further information: Section 2.1.1.4 Timer Reg-
isters. .

6.0 Reference Section (Continued)

TRL TIMER REGISTER-LOW
[Main R2S; read/write]

7 6 5 4 3 2 1 0

I TM71 TM61 TM5\ TM4\ TM3\ TM2\ TM1 \ TMO I
TM7-0- TIMer ... Input/output port of low byte of timer.

Further information: Section 2.1.1.4 Timer Regis­
ters.

1-215

TSR TRANSCEIVER STATUS REGISTER.
[Alternate R5; read only]

76543 2 0

I TFF \ TA \ RE \ RA \ DAV \ RF10 \ RF9 RFS

TFF - Transmit FIFO Fu" ... Set high when the trans-
mit FIFO is full. I RTR 1 must not be written to
when [TFF] is high. .

T A - Transmitter Active ... Reflects the state of. TX-
ACT, indicating that data is being transmitted.
Unlike TX-ACT, however, [TA] is not disabled by
[LOOP].

RE - Receiver Error ... Set high when a receiver er-
ror is detected. Cleared by reading I ECR 1 or by
asserting [TRES).

RA - Receiver Active ... Set high when a valid start-
ing sequence is received. Cleared wh~m either
an end of message or an error is detected. In
5250 modes; [RA] is cleared at the same time
as [LA].

DAV - Data AVailable ... Set high when valid data is
available in IRTR 1 and I TSR I. Cleared by read­
ing I RTR I, or when an error is detected.

RF10-S- Receive FIFO.; ; [RF10-S] and [Frr:F7-0] re­
flect the state of the top word of the. receive
FIFO.

Further information: Section 3.0 Transceiver.
I

6.0 Reference Section (Continued)

6.2.3 Bit Definition Tables

The following tables describe the location and function of all control and status bits in the various BCP addressable special
function registers. The Remote Interface Configuration register, (RIC I, which is addressable only by a remote processor is not
included.

6.2.3.1 Processor

Bit Name Location Reset State Function

Timing/ CCS CPU Clock Select OCR [7] 1 Selects CPU clock frequency.
Control

CCS CPUCLK

0 OClK
1 OClK/2

Where OClK is the frequency of the on-chip oscillator, or
the externally applied clock on input X1.

DW2-0 Data memory OCR [2-0] 111 Selects from 0 to 7 wait states for accessing data memory.
Wait-state select

IW1,O Instruction memory OCR [4,3] 11 Selects from 0 to 3 wait states for acceSSing instruction
Wait-state select memory.

COD Clock Out Disable ACR [2] 0 When high, ClK·OUT is at TRI·STATE.

.··.~IB< '4T';'sfiittfFlead'" 'ACR[3] () When high; data memoryreaastakefolJrT~states;
Remote lORt Lock Out Remote ACR [1] 0 When high, a remote processor is prevented from accessing
Interface the BCP or its memory.

RRt Remote Read CCR [6] 0 Set on the trailing edge of a REM·RD pulse, if RAE is
asserted and (RIC I is pointing to Data Memory. Cleared by
writing a 1 to [RR].

RW· Remote Write CCR [5] 0 Set on the trailing edge of a REM-WR pulse, if RAE is
asserted and (RIC I is pointing to Data Memory. Cleared by
writing a 1 to [RW).

Interrupt BIC Bi·directional ACR [4] 0 Controls the direction of BIRO.
Control Interrupt Control

BIC BIRQ

0 Input
1 Output

BIRO Bi·directional CCR [4] X [Read Only]. Reflects the logic level of the BIRO input.
Interrupt ReQuest Updated at the beginning of each instruction cycle.

GIE Global Interrupt ACR [0] 0 When low, disables all maskable interrupts. When high,
Enable works with [lM4-0] to enable maskable interrupts.

IM4-0 Interrupt Mask ICR [4-0] 11111 Each bit, when set high, masks an interrupt.
select IM4-0 Interrupt Priority

00000 No Mask -
XXXX1 Receiver 1 High
XXX1X Transmitter 2 t
XX1XX Line Turn-Around 3
X1XXX Bi·Directional 4 .J,
1XXXX Timer 5 low

1M3 functions as an interrupt mask only when BIRO is
defined as an input. When BIRO is defined as an output,IM3
controls the state of BIRO.

·These bits represent the only visibility and control that the processor has Into the operation of the remote interface controller. The Remote Interface Configuration
register, (RICI, accessible only by a remote processor, provides further control functions. See Remote Interface section for more Information.

1-216

6.0 Reference Section (Continued)

6.2.3 Bit Definition Tables (Continued)

The following tables describe the location and function of all control and status bits in the various SCP addressable special
function registers. The Remote Interface Configuration register, (RIC l. which is addressable only by a remote processor is not
included.

6.2.3.1 Processor (Continued)

Bit Name Location Reset State Function

Interrupt IV15-8 Interrupt Vector ISR [7-0] 00000000 High byte of interrupt and trap vectors.
Control The interrupt vector is obtained by concatenating (ISR) with
(Continued) the vector address:

Interrupt Vector Address

NMI 011100
Receiver 000100
Transmitter 001000
Line Turn Around 00'1100
Bi-Directional 010000
Timer 010100

Interrupt Vector

I
I I I I I j I

10 "0 I I I I I I

I ISR vector address

15 8 5 0

RIS1,O Receiver Interrupt ICR [7,6] 11 Defines the source of the receiver interrupt.
Select RIS1,O Interrupt Source

00 RFF + RE
01 DAV + RE
10 (unused)
1 1 RA

Address ASP3-0 Address Stack ISP [7-4] 0000 Address stack pointer. Writing to this location changes the
and Pointer value of the pointer.

Data
Stacks

DSP3-0 Data Stack ISP [3-0] 0000 Data stack pointer. Writing to this location changes the value
Pointer of the pointer.

DS7-0 Data Stack OS [7-0] XXXXXXXX Data Stack Input/Output port. Stack is 16 bytes deep.

Arithmetic C Carry CCR [1] 0 A high level indicates a carry or borrow, generated by an
Flags arithmetic instruction. During a shift/rotate operation the

state of the last bit shifted out appears in this location.

N Negative CCR [3] 0 A high level indicates a negative result generated by an
arithmetic, logical, or shift instruction.

V oVerflow CCR [2] '0 A high level indicates an overflow condition, generated by an
arithmetic instruction.

Z Zero CCR [0] 0 A high level indicates a zero result generated by an
arithmetic, logical, or shift instruction.

1-217

6.0 Reference Section (Continued)

6.2.3. Bit Definition Tables (Continued)

The following tables describe the location and function of all control and status bits in the various BCP addressable special
function registers. The Remote Interface Configuration register, I RIC l. which is addressable only by a remote processor is not
included.

6.2.3.1 Processor (Continued)

Bit Name Location Reset State Function

Timer TLD Timer LoaD ACR [6] 0 Set high to load timer. Cleared automatically when load
complete.

TM15-8 TiMer TRH [7-0] XXXXXXXX Input/output port of high byte of timer.

TM7-0 TiMer TRL [7-0] XXXXXXXX Input/output port of low byte of timer.

TMC Timer Clock ACR [5] 0 Selects timer clock frequency. Must not be written when
select [TST] high. Can be written at same time as [TST] and

[TLD].
TMC Timer Clock

0 CPU-CLK/16
1 CPU-CLK/2

TO Time Out flag CCR [7] 0 Set high when timer counts down to zero. Cleared by writing
a 1 to [TO] or by stopping the timer (by writing a 0 to [TST]).

TST Timer StarT ACR[7] 0 When high, timer is enabled and will count down from its
current value. Timer is stopped by writing a 0 to this location.

6.2.3.2 Transceiver

Table includes control and status bits only. It does not include definitions of bit fields provided for the formatting (de-formatting)
of data frames. For further information see the Transceiver section.

Bit Name Location Reset State Function

Transceiver LOOP internal TMR [6] 0 When high, TX-ACT is disabled (held at 0) and transmitter
Control LOOP-back serial data is internally directed to the receiver serial data

input.

PS2-0 Protocol Select TMR [2-0] 000 Selects protocol for both transmitter and receiver.

PS2-0 Protocol

000 3270
001 3299 Multiplexer
010 3299 Controller
011 3299 Repeater
100 5250
1 01 5250 Promiscuous
110 8-bit
1 1 1 8-bit Promiscuous

RTF7-0 Receive/Transmit RTR [7-0] XXXXXXXX Input/output port of the least significant 8 bits of receive and
FIFOs transmit FIFOs. [OWP], [TF10-8] and [RTF7-0] are pushed

onto the transmit FIFO on moves to I RTR}. [RF10-8] and
[RTF7 -0] are popped from receive FIFO on moves from
IRTR}.

1-218

6.0 Reference Section (Continued)

6.2.3 Bit Definition Tables (Continued)

6.2.3.2 Transceiver (Continued)

Table includes control and status bits only. It does not include definitions of bit fields provided for the formatting (de-formatting)
data frames. For further information see the Transceiver section.

Bit Name Location Reset State Function

Transceiver TCS1,O Transceiver Clock OCR [6,5] 10 Selects transceiver clock, TCLK, source.

Control Select TCS1,O TCLK
(Continued)

00 OCLK
01 OCLK/2
10 OCLK/4
1 1 X-TCLK

OCLK is the frequency of the on-chip oscillator, or the
externally applied clock on input X1. X-TCLK is the external
transceiver clock input.

TRES Transceiver RESet TMR [7] 0 Resets transceiver when high. Transceiver can also be reset
by RESET, without affecting [TRES).

Transmitter ATA Advance Transmitter TCR [4] 0 When high, TX-ACT is advanced one half bit time so that the
Control Active transmitter can generate 5.5 line quiesce pulses.

AT7-3 Auxiliary ATR [7-3] XXXXX In 5250 modes. Controls the time TX-ACT is held after the last
Transceiver control fill bit.

AT7-3
TX-ACT Hold Time (fA-s)

(If TCLK = 8 MHz)

00000 0
00001 0.5
00010 1

! !
1 1 1 1 1 15.5

FB7-0 Fill Bit select FBR [7-0] XXXXXXXX The value in this register contains the 1's complement of the
number of additional 5250 fill bits selected.

OWP Odd Word Parity TCR [3] 0 Controls transmitter word parity.

OWP Word Parity

0 Even
1 Odd

TF10-B Transmit FIFO TCR [2-0] 000 [OWP], [TF10-B] and [RTF7 -0] are pushed onto the
transmit FIFO on moves to (RTR J.

TIN Transmitter INvert TMR[3] 0 When high, the transmitter serial data outputs are inverted.

Receiver AT7-0 Auxiliary ATR [7-0] XXXXXXXX In 5250 modes, [AT2-0] contains the station address. In B-bit
Control Transceiver control modes, [AT7 -0] contains the station address.

RF10-B Receive FIFO TSR [2-0] XXX Reflects the state of the most significant 3 bits in the top
location of the receive FIFO.

RIN Receiver INvert TMR[4] 0 When high, the receiver serial data is inverted.

RLQ Receive Line TCR [7] 1 Selects number of line quiesce bits the receiver requires
Quiesce before it will indicate receipt of a valid start sequence.

RLQ Number of Line Qulesce Pulses

0 2
1 3

RPEN RePeat ENable TMR [5] 0 When high, the receiver can be active at the same time as the
transmitter.

SEC Select Error Codes TCR [6] 0 When high, (ECR J is switched into (RTR J location.

1-219

6.0 Reference Section (Continued)

6.2.3 Bit Definition Tables (Continued)

6.2.3.2 Transceiver (Continued)

Table includes control and status bits only. It does not include definitions of bit fields provided for the formatting (de-formatting)
data frames. For further information see the Transceiver section.

Bit Name Location Reset State Function

Receiver SLR Select Line TCR [5] 0 Selects the receiver input source.

Control Receiver SLR Source
(Continued)

0 DATA-IN

1 On-Chip Analog
Line Receiver

Transmitter TA Transmitter Active TSR [6] 0 Reflects the state of TX-ACT, indicating that data is being

Status transmitted. Is not disabled by [LOOP].

TFE Transmit FIFO NCF[7] 1 Set high when the FIFO is empty. Cleared by writing to

Empty IRTR).

TFF Transmit FIFO TSR [7] 0 Set high when the FIFO is full. IRTRI must not be written

Full when [TFF] is high.

Receiver ACK polll NCF [1] 0 Set high when a 3270 poll lack command is decoded and

Status ACKnowledge [DAV] is asserted. Cleared by reading I RTR I. Undefined in
5250 and a-bit modes and in the first frame of 3299 modes.

DAV Data AVailable TSR [3] 0 Set high when valid data is available in I RTR I and I TSR I.
Cleared by reading I RTR I , or when an error is detected.

DEME Data Error or NCF [3] 0 In 3270 or 3299 modes, asserted when a byte parity error is

Message End detected. In 5250 modes, asserted when the [111] station
address is decoded and [DAV] is asserted. Undefined in a-bit
modes and first frame of 3299 modes.

LA Line Active NCF[5] 0 Indicates activity on the receiver input. Set high on any
transition; cleared after no input transitions are detected for
16 TCLK periods.

LTA Line Turn Around NCF[4] 0 Set high when an end of message is detected. Cleared by
writing to I RTR I. writing a "1" to [L T A] or by asserting
[TRES].

POLL POLL NCF[O] 0 Set high when a 3270 Poll command is decoded and [DAV] is
asserted. Cleared by reading I RTR I. Undefined in 5250 and
a-bit modes and in the first frame of 3299 modes.

RA Receiver Active TSR [4] 0 Set high when a valid start sequence is received. Cleared
when either an end of message or an error is detected.

RAR Received NCF[2] 0 Set high when a 3270 Auto-Response message is decoded

Auto-Response and [DAV] is asserted. Cleared by reading I RTR I. Undefined
in 5250 and a-bit modes and in the first frame of 3299 modes.

RE Receiver Error TSR [5] 0 Set high when an error is detected. Cleared by reading I ECR I
or by asserting [TRES].

RFF Receive FIFO· NCF [6] 0 Set high when the receive FIFO contains 3 received words.

Full Cleared by reading I RTR I.

1-220

6.0 Reference Section (Continued)

6.2.3 Bit Definition Tables (Continued)

6.2.3.2 Transceiver (Continued)

Table includes control and status bits only. It does not include definitions of bit fields provided for the formatting (de-formatting)
data frames. For further information see the Transceiver section.

Bit Name Location Reset State

Receiver IES Invalid Ending
Sequence

ECR [2]
Error Codes

LMBT Loss of Mid-Bit
Transition

ECR [1]

OVF

PAR

RDIS

receiver OVerFlow ECR [4]

PARity error ECR [3]

Receiver DISabled ECR [0]
while active

o

o

o

o

o

6_3 REMOTE INTERFACE CONFIGURATION REGISTER

This register can be accessed only by the remote system.
To do this, CMD and RAE must be asserted and the [LOR]
bit in the (ACRI register must be low.

76543210

I BIS I SS I FW I LR I LW I STRT I MS1 I MSO I RIC

BIS Bidirectional Interrupt Status ... Mirrors the state
of 1M3 ((ICR I bit 3), enabling the remote system to
poll and determine the status of the BIRQ I/O.
When BIRO is an output, the remote system can
change the state of this output by writing a one to
BIS. This can be used as an interrupt acknowl­
edge, whenever BIRO is used as a remote inter­
rupt. For complete information on the relationship
between BIS, 1M3 and BIRQ, refer to Section 2.2.3
Interrupts.

SS Single-Step ... Writing a 1 with STRT low, the BCP
will single-step by executing the current instruction
and advancing the PC. On power up/reset this bit
is low.

FW Fast Write ... When high, with LW low, selects fast
write mode for the buffered interface. When low
selects slow write mode. On power up/reset this
bit is low (LW will also be low, so buffered write
mode is selected).

LR Latched Read ... When high selects latched read
mode, when low selects buffered read mode. On
power up/reset this bit is low. (Buffered read mode
is selected.)

LW Latched Write ... When high selects latched write
mode, when low selects buffered write mode. On
power up/reset this bit is low (FW will also be low,
so slow buffered write mode is selected).

STRT STaRT ... The remote system can start and stop
the BCP using this bit. On power-up/reset this bit is

1-221

Function

Set when the first mini-code violation is not correct during a
3270, 3299 or a-bit ending sequence. Cleared by reading
(ECR I or asserting [TRES].

Set when the expected Manchester Code mid-bit transition
does not occur within the allowed window. Cleared by reading
(ECRI or by asserting [TRES].

Set when the receiver has processed 3 words and another
complete frame is received before the FIFO is read by the
CPU. Cleared by reading (ECR I or asserting [TRES].

Set when bad (odd) overall word parity is detected in any
receive frame. Cleared by reading (ECR I or asserting
[TRES].

Set when transmitter is activated by writing to (RTR I while
receiver is still active, without [RPEN] first being asserted.
Cleared by reading (ECR I or asserting [TRES].

low (BCP stopped). When set, the BCP begins exe­
cuting at the current Program Counter address.
When cleared, the BCP finishes executing the cur­
rent instruction, then halts to an idle mode.

In some applications, where there is no remote
system, or the remote system is not an intelligent
device, it may be desirable to have the BCP power­
up/reset running rather than stopped at address
OOOOH. This can be accomplished by asserting
REM-RD, REM-WR and RESET, with RAE de-as­
serted. (Refer to Electrical Specification Section
for the timing information needed to start the BCP
in stand alone mode.)

MS1,O Memory Select 1,0 ... These two bits determine
what the remote system is accessing in the BCP
system, according to the following table:

MS1 MSO Selected Function

a a Data Memory
a 1 Instruction Memory
1 a Program Counter (Low Byte)
1 1 Program Counter (High Byte)

The BCP must be idle for the remote system to
read/write Instruction memory or the Program
Counter.

All remote accesses are treated the same (inde­
pendent of where the access is directed using MSO
and MS1), as defined by the configuration bits LW,
LR, FW.

If the remote system and the BCP request data
memory access simultaneously, the BCP will win
first access. If the locks ([LOR], meR) are not set,
the remote system and BCP will alternate access
cycles thereafter.

On power-up/reset, MS1,O points to instruction
memory.

Power-up/Reset state of (RIC[7-0] I is 1000 0001.

I •

6.0 Reference Section (Continued)

6.4 DEVELOPMENT TOOLS

National Semiconductor provides tools specifically created
for the development of products that use the DP8344.
These tools consist of the DP8344 BCP Assembler System,
the DP8344 BCP Demonstration/Development Kit, and the
DP8344 BCP Multi-Protocol Adapter (MPA) Design/Evalua­
tion Kit.

6.4.1 Assembler System
The Assembler System· is an MS-DOS compatible program
used to translate the DP8344's instruction set into a directly
executable machine language. The system contains a mac­
ro cross assembler,. link editor and librarian. The macro
cross assembler provides nested macro definitions and ex­
pansions, to automate common instruction sequences,· and
source file inclusion nested conditional assembly, which al­
lows the assembler to make intelligent decisions concerning
instruction sequence based on user directives. The linker
allows relocatable object sections to be combined in any
desired order. It can also generate a load map which details
each section's contribution to the linked module. The librari­
an allows for the creation of libraries from frequently ac­
cessed object modules, which the linker can automatically
include to resolve references.

6.4.2 Demonstration/Development Kit
The Demonstration/Development kit is a cost effective de­
velopment tool that performs functions similar to an in-cir­
cuit emulator. The kit, developed by Capstone Technology,
Inc., Fremont, California, consists of a DP8344 based devel­
opment board, a monitor/debugger software package, Na­
tional Semiconductor's DP8344 video training tapes, and all
required documentation. The development board is a full
size PC card that contains a 22 square inch area for logic
prototype wiring. The monitor/debugger program displays
internal register contents and status information. It also pro­
vides functions such as execution break points and single
stepping.

6.4.3 Multi-Protocol Adapter (MPA)
Design/Evaluation Kit
The Multi-Protocol Adapter (MPA) is a PC expansion card
that emulates a 3270 or 5250 display terminal and supports
industry standard PC emulation software. The MPA comes
in a design/evaluation kit that includes the hardware, sche­
matics and PAL equations, and software. including all the
DP8344 source code. This kit was produced to provide a
blueprint for PC emulation products and a cornerstone for
all 3270 and 5250 product development using the DP8344.
The code was developed in a modular fashion so it can be
adapted to any 3270 or 5250 application.

6.4.4 DP8344 BCP Inverse Assembler
The DP8344 BCP Inverse Assembler is a software package
for use in an HP 1650A or HP1651A Logic Analyzer, or in an
HP16500A Logic Analysis System with an HP 16510A
State/Timing Card installed. The inverse Assembler was de­
veloped by National Semiconductor to allow disassembly of
the DP8344 op-code mnemonics. This allows one to deter­
mine the actual execution flow that occurs in the system
being developed with the DP8344.

6.5 THIRD PARTY SUPPLIERS
The following section is intended to make. the DP8344 Cus­
tomer aware of products, supplied by companies other than
National Semiconductor, that are available for use in devel­
oping DP8344 systems. While National Semiconductor has
supported these ventures and has become familiar with

1-222

many of these products, we do not provide techni.cal sup­
port, or in any way guarantee the functionality of these prod­
ucts.

6.5.1 Crystal Supplier

The recommended crystal parameters for operation with the
DP8344 are given in Section 2.2.4. Any crystal meeting
these specifications will work correctly with the DP8344.
NEL Frequency Controls, Inc., Burlington, Wisconsin, has
developed crystals, the NEL C2570N and NEL C2571 N,
specifically for the DP8344 which meet these specifications.
The C2570N and C2571 N are both 18.8696 MHz funda­
mental mode AT cut quartz crystals. The C2571N has a
hold down pin for case ground and a third mechanical tie
down. NEL Frequency Controls, Inc. is located at:

NEL Frequency Controls, Inc.
357 Beloit Street
Burlington, Wisconsin 53105
(414) 763-3591

6.5.2 System Development Tools

The DP8344, with its higher level of integration and process­
ing power, has opened the IBM mainframe connectivity mar­
ket to a wider range of product manufacturers, who until
now found the initial cost and time to market prohibitive.
This wider base of manufacturers created the opportunity
fora more extensive line of development tools that dealt not
only with the use of the DP8344 but also with the implemen­
tation of the 3270 and 5250 protocols: While National Semi­
conductor is dedicated to providing the Customer with the
proper tools in both areas, we also have aided and encour­
aged a number of third party suppliers to offer additional
development tools. This has further provided an avenue for
faster and more reliable product development in this prod­
uct area. The development tools discussed in this section
are controller emulators and line monitors for the IBM 3270/
3299 and 5250 protocols.

A controller emulator is a device that emulates an IBM 3x74
cluster controller or a System 3x controller. With the
DP8344 both of these controllers can be emulated with the
same piece of hardware. The controller emulator allows the
designer to issue individual commands or sequences of
commands to a peripheral. This is very useful in characteriz­
ing existing equipment and testing of products under devel­
opment. Capstone Technology offers such a product. Their
Extended Interactive Controller, part #CT-109, is a single
PC expansion card that can emulate both 3270 and 5250
control devices (the 3x74 and System 3X, respectively).
Newleaf Technologies, Ltd., Cobham, Surrey, England, and
Azure Technology, Inc., Franklin, Mass., also supply prod­
ucts in this area. Newleaf Technology offers the COLT52, a
twinax controller emulator, and Azure Technology offers a
controller made with their CoaxScope· and TwinaxScope
line monitors.

A line monitor is a device that monitors all the activity on the
coax or twinax cable. The activity includes both the com­
mands from the controller and the responses from the pe­
ripheral. These devices typically decode the commands and
present them in an easy to read format. The individual trans­
missions are time stamped to provide the designer with re­
sponsetime information. The line monitors are very useful in
characterizing communications traffic and in determining
the source of problems during development or in the field.
Azure Technology offers both a 3270/3299 (Coax) and
5250 (Twinax) line monitor. Their Coax Scope and Twinax

6.0 Reference Section (Continued)

Scope are single PC expansion cards that can record, de­
code and display activity on the 3270 coax and 5250 twinax
line respectively. These devices also allow the play back of
the recorded controller information. Capstone Technology
also supplies a line monitor. The CT1 01 C, Network Analysis
Monitor (NAM), is a coax line monitor.

These companies can be contacted at the following loca­
tions:

Azure Technology, Inc.
38 Pond Street
Franklin, Massachusettes 02038
(508) 520-3800

Capstone Technology
853 Brown Rd., Suite 207
Fremont, California 94539
(415) 438-3500

New Leaf Technology, Ltd.
24A High Street
Cobham
Surrey
KT113EB
ENGLAND
(0932) 66466

For technical assistance in using the DP8344B, contact the
BCP Hot Line (817) 468-6676.

TABLE 6-4. DP8344 Application Notes

App
Note No. Title

AN-623 Interfacing Memory to the DP8344B
AN-624 A Combined Coax-Twisted Pair 3270 Line

Interface for the DP8344 Biphase
Communications Processor

AN-516 Interfacing the DP8344 to Twinax
AN-504 DP8344 BCP Stand-Alone Soft-Load

System
AN-499 "Interrupts"-A Powerful Tool of the Biphase

Communications Processor
AN-625 JRMK Speeds Command Decoding
AN-627 DP8344 Remote Processor Interfacing
AN-626 DP8344 Timer Application
AN-641 MPA - A Multi-Protocol Terminal Emulation

Adapter Using the DP8344
AN-688 The DP8344 BCP Inverse Assembler

6.6 DP8344A AND DP8344B COMPATIBILITY GUIDE

The DP8344B is an enhanced version of the DP8344A, ex­
hibiting improved switching performance and additional
functionality. The device has been characterized in a num­
ber of applications and found to be a compatible replace­
ment for the DP8344A. Differences between the DP8344A
and DP8344B are dstailed in this section.

6.6.1 Timing Changes to the CPU

Relative to the DP8344A, the DP8344B incorporates a num­
ber of timing changes designed to improve the system inter­
face. These timing changes are improvements in the timing
specifications and therefore should allow the DP8344B to
drop into existing DP8344A designs without any hardware
modifications.

1-223

The DP8344A exhibits a small amount of contention be­
tween certain bus signals as detailed in the Device Specifi­
cations section of this data sheet. The DP8344B interface
timing improvements are designed to reduce and/or elimi­
nate this bus contention.

- 70 ns Data Memory

At a 20 MHz CPU clock rate, the DP8344B can support 70
ns static RAM for data memory with no wait states. The
DP8344A was limited to 55 ns static RAM for data memo­
ry with no wait states. (See Section 5.0 Device Specifica­
tions.)

• READ
The timing of the READ strobe has been improved to re­
duce bus contention during a data memory access. There
is now more time between AD disabled and READ falling
as well as one~half T-state between READ rising and AD
enabled. In addition, a new 4 T-state read option has been
provided to eliminate bus contention. (See Section 5.0 De­
vice Specifications for timing changes, and 4 T-state
Read later in this document for more information on the 4
T-state Read option.)

The user can therefore choose between a fast read mode
(3 T-states) with a small amount of contention and a slow­
er read mode (4 T-states) with no contention.

• AI AD Bus Timing
The timing of the A and AD buses has been changed to
eliminate bus contention during remote accesses of data
memory. There is now a one-half T-state TRI-STATE zone
during the bus transfer from local to remote control and
vice versa. (See Section 5.0 Device Specifications.)

-IWR

The timing of IWR has been changed such that IWR now
falls one T-state earlier. This eliminates bus contention
during the start of soft loads. (See Section 5.0 Device
Specifications.)

• IA Bus Softload Timing
The auto-increment of the IA bus address during soft
loads of instruction memory now occurs one T-state later
to maintain in-phase data and thereby eliminate bus con­
tention. (See Seection 5.0 Device Specifications.)

• LCL
LCL is now removed when REM-RD is taken high on buff­
ered reads of (RIC}, the program counter, and instruction
memory, to eliminate bus contention in this mode. (See
Section 5.0 Device Specifications.)

- RIC
The hold time on slow buffered writes to (RIC} and the
program counter has been improved. (See Section 5.0 De­
vice Specifications.)

- "Kick-start"

The h.old time on REM-WR and REM-RD to RESET to
"kick-start" the CPU has been improved. (See Section 5.0
Device Specifications.)

6.6.2 Additional Functionality of the DP8344B

6.6.2.1 4 T -state Read

To eliminate bus contention during memory accesses, a
new optional read mode has been created, controlled by

I

III
I

6.0 Reference Section (Continued)

[4TR] in (ACR}. When a one is written to this bit, all subse­
quent data memory read operations expand to 4 T-states
with an extra one-half T-state between the falling edge of
ALE and the falling edge of READ. This eliminates bus con­
tention on data memory read operations. After a BCP reset,
or when a zero is written to this bit, the DP8344B data mem­
ory read operations operate in 3 T-states, as in the
DP8344A, in which this bit was unused. (See Section 2.2.2
for more information.)

6.6.2.2 AI AD Reset State

After a BCP reset, the index registers and the A and AD
buses will be zero. In the DP8344A, their states were unde­
fined after a reset.

6.6.2.3 RIC

Each time instruction memory is selected via (RIC[1,01l
(Le., (RIC} is set to XXXX XX01 binary), the next read (or
write) of instruction memory by a remote processor will al­
ways return (or update) the low order 8 bits of the 16 bit
instruction location pointed to by the program counter. In
the DP8344A, setting (RIC I had no affect on which instruc­
tion memory byte would next be fetched and an algorithm
had to be developed to determine this. (See Section 4.1.2
for more information.)

6.6.2.4 Transceiver

When the Transceiver is reset, DATA-OUT now goes into a
state equal to [TIN] e [ATA], which eliminates coincident
transitions on DATA-OUT and DATA-DLY with TX-ACT.
(See Section 3.2 for more information.

6.7 REPORT BUGS

6.7.1 History

The DP8344 Data Sheet Reference, first published
10/29/87 (rev. 3.6), listed a total of 13 bugs. All these bugs
were corrected in the DP8344A, released to production April
1989. Subsequent to this date, an additional bug has been
reported. This bug is present in all versions of the BCP:
DP8344, DP8344A and DP8344B.

For additional information regarding differences in function­
ality between the DP8344B and DP8344A, see Section 6.6.

6.7.2 LJMP, LCALL Address Decode

The LJMP and LCALL instructions to the address range
AfOOh through AF7Fh do not function correctly. Both condi­
tional and unconditional LCALL or LJMP instructions to this
address range will not decode as LCALL or LJMP instruc­
tions. Instead the address field will be incorrectly decoded
as the instruction. Thus a LJMP or LCALL to an instruction
in the address range AFOOh through AF7Fh will be decoded
as a RETF instruction.

Example: the instruction LJMP AFOO
will be decoded as AFOO
which is RETF 000. 00

Note that LJMP and LCALL to all other addresses work cor­
rectly.

The LJMP or LCALL instruction should therefore not be
used to transfer program control to an instruction in the
range AFOOh to AF7Fh.

6.7.2.1 Suggested Work-around

The simplest work-around is not to place any code neces­
sary for system operation in the affected address range.

1-224

This can be accomplished by creating a section of "filler"
code that will occupy the instruction address range AFOOh
to AF7Fh. As an example, the "filler" section of code could
be as follows:

FILLER: • SECT x : Start of ··filler" code section

.REPEAT 128 ; Repeat the following

instruction 128 times

JMP $; Jump to self

.ENDR ; End of repeat block

.END

The JMP $ instruction causes an infinite loop at that instruc­
tion. Thus one would be able to determine if the program
inadvertently entered the "filler" section of code. The re­
peat 128 instruction causes the section to occupy 128 bytes
of instruction memory which is the size of the affected ad­
dress range.

Next, by using the Linker in the DP8344 BCP Assembler
System, one can specify that this "filler" section of code
must occupy instruction memory starting at address AFOOh
by using the -L option. For example, the following com­
mands can be entered at the DOS command line to invoke
the Assembler and Linker (this assumes that the "filler"
section is located in the file FILLER.BCP):

NBCPASM FILLER.BCP
NLINK -LFILLER=AFOO FILLR.BCO

This will prevent any other section of code from occupying
the range which the "filler" section of code is located in.
Hence, one would not have to be concerned about using
labels to specify the address in LJMP and LCALL instruc­
tion.

6.8 GLOSSARY

3270-An IBM communication protocol originally devel­
oped for the 370 class mainframe that implements a star
topology using a single coax cable per slave device. In this
master-slave protocol, all communication is initiated by the
controller (master) and responses are returned by the ter­
minal or other attached device (slave). The data is transmit­
ted using blphase encoding at a bit rate of 2.3587 MHz.

3299-A communications protocol that is the 3270 proto­
col with an eight bit address frame added to the beginning
of each controller transmission between the start se­
quence and the first coax word. Currently, IBM only uses
three bits of the address field which allows up to eight devic­
es to communicate with the controller through a multiplex­
er.

5250-An IBM communications protocol originally devel­
oped for the Series 3 that became widely used on the Sys­
tem 34/36/38 family of minicomputers and currently the
AS/400. It uses a multidrop bus topology on twin-ax cable.
This protocol is a master-slave type. The data is transmitted
using bl-phase encoding at a bit rate of 1 MHz.

accumulator-The implied source register of one operand
for some arithmetic operations. In the BCP, R8 in the cur­
rently enabled bank acts as the accumulator.

ALU-The Arithmetic Logic Unit, a component of the CPU
that performs all arithmetic (addition and subtraction), logi­
cal (AND, OR, XOR, compare, bit test, and complement),
rotational, and shifting operations.

ALU flags-Bits that indicate the result of certain ALU func­
tions.

6.0 Reference Section (Continued)

banked registers-Two or more sets of CPU registers that
occupy the same register space, but only one of which is
accessible at a time.

barrel shifter-Dedicated hardware for shifting and rotat­
ing.

BCP-An abbreviation for Biphase Communications Proc­
essor, the National Semiconductor DP8344.

blphase-In this communications signal encoding tech­
nique, the data is divided into discrete bit time intervals de­
noted by a transition in the center of the bit time. This tech­
nique combines the clock and data information into one
transmission. In 3270 and 3299 protocols, a mid-bit tran­
sition from low to high represents a bi-phase 1, and a mld­
bit transition from high to low represents a bi-phase O. For
the 5250 protocol, the definition of biphase logic levels is
reversed. Biphase encoding is also called Manchester II
encoding.

BIRQ-The Bidirectional Interrupt ReOuest. Without any
other notation, BIRO will refer to the BIRO interrupt itself.
BIRO with a bar on top of it (BIRO) is used where the pin is
referenced. BIRO in brackets ([BIRO]) is bit 4 in the
(CCR} register.

coax-(1) RG-62A1U 930 coaxial cable that is used in
3270 protocol systems. (2) Sometimes, this term is used to
refer to the 3270 protocol itself.

code vlolatlon-A violation of the bl-phase encoding for­
mat that is part of the start sequence. In 3270, 3299, and
the general purpose 8-blt mode, the code violation is 1 %
bit times low and then 1 % bit times high. In the 5250 proto­
col, the signal levels are reversed.

communications protocol-A set of rules which defines
the physical, electrical, control, and formatting specifica­
tions required to successfully transfer data between two
systems.

context swltch-Switching between two theoretically inde­
pendent functions that should not affect each other except
under specified circumstances.

controller-The master device that initiates all communica­
tion to the slave device and controls the manner in which
the slave presents the information. It acts as the interface,
both physically and logically, between the slave terminals
and printers and a host processor.

CPU-CLK-The clock that the operation of the BCP's CPU
is synchronized to. The period of this clock which defines
T-state boundaries is either that of OCLK or one-half of
OCLK depending on the configuration of the BCP. The tim­
er clock is also derived from CPU-ClK.

CUT-Control Unit Terminal. A mode of the controller
where attached devices have limited intelligence and are
perceived to be hardware extensions of the controller. The
controller directs all printer, screen, and keyboard activity.

OFT-Distributed Function Terminal. A controller mode
that supports multiple logical terminals in the same device.
The controller communicates in higher level commands via
data placed in the buffer. The slave device has a greater
amount of intelligence than the CUT mode device and is
responsible for the terminal operation.

direct coupled-The connection of the transceiver to the
transmission cable in a manner that does not isolate it from
DC voltages. Contrast this with transformer coupled.

1-225

dual port memory-A memory architecture that allows two
different processors to access the same memory range. al­
ternately.
ending sequence-A defined sequence· of bits signifying
the end of a transmission. In 3270 and 3299, it consists of a
bl-phase a followed by a low to high transition on the bit
time boundary and two mini-code violations.

FIFO-A section of memory or, as in the case of the BCP
transceiver, a set of registers that are accessed in a First-In
First-Out method. In other words, the first data placed in the
FIFO by a write will be the first data removed by a read.
fill bits-Fill bits are bl-phase O's used only in the .5250
protocol. A minimum of three fill bits are required between
each frame of a multi-frame message. This number may
be increased by the controller to approximately 243 per the
SetMode command. There are always only three fill bits af­
ter the last frame of the transmission.

general purpose 8-blt mod~A generic communications
mode similar to 3270 and 5250 frame formatting using 8-bit
serial data and bl-phase signal encoding. The BCP sup­
ports both promiscuous and non-promiscuous modes.

Harvard architecture-A computer architecture where the
instruction and data memory are organized into two inde­
pendent memory banks, each with their own address and
data buses.

hold time-The amount of time the line is driven at the end
of 5250 transmissions to suppress noise on the cabling sys-
tem. '

ICLK-The clock that identifies the start of each instruction
when it rises and indicates when the next instruction ad­
dress is valid when it falls.

Immediate addressing, mode-An addressing method
where one operand, the data for Move instructions and the
address for Jump instructions, is contained in the instruction
itself. . "

Immediate-relative addressing mode-An addressing
method that adds an unsigned 8-bit immediate number' to
the index register IZ to form the data memory address of an
operand. ,
Indexed addressing mode-An addressing method that
uses the contents of an index register as the data memory
address for one of the operands in an instruction. ,

Interrupt latency-The time from when, an interrupt first
occurs until it begins executing at its interrupt vector.: .

jitter-Timing variations for signals of different harmonic
content that move the edges of a transmitted signal in time
causing uncertainty in their decoding.

jitter tolerance-The total amount of time an edge of a
transmitted bit may move and still have its data bit decoded
correctly.

LlFO-A sequence of registers or memory locations that
are accessed in a last-In First-Out method; in other words,
the last data written into the LIFO will be the first to be
removed by a read. Also known as ,a stack.

limited register set-In the BCP, the first 16 register ad­
dress locations (RO-R11 in both banks and R12-R15) that
can be used in all instructions. • I

6.0 Reference Section (Continued)

line hold-The act of driving the transmission line during
5250 transmissions at the end of a message to allow the
receivers to unsync. This insures that the receivers will not
see line noise as the start of another frame when the line
floats.

line Interface-All the circuity between the BCP and the
communications cable medium.

line reflection-Energy from a transmission that is not ab­
sorbed by a load impedance and can cause interference in
that signal.

Manchester II encodlng-See bl-phase encoding.

mask-(1) A mechanism that allows the program to specify
whether interrupts will be accepted by the CPU. (2) To dis­
able the accepting of an interrupt by the CPU.

mld-blt-In bl-phase encoding, the transition in the center
of a bit time.

mini-code vlolatlon-A violation of the bl-phase encoding
format that is part of the ending sequence in 3270, 3299,
and the general purpose S-blt mode. The mini-code viola­
tion has no mid-bit transition being high for the entire bit
time. There is no mini-code violation in 5250.

multldrop-A communication method where all the slave
devices are attached to the same cable and respond to
controller commands and data only when their own ad­
dress frame precedes the transmitted frame.

multi-frame message-Several bytes of data together in
the same uninterrupted message that have only one start
sequence and one ending sequence.

multlplexer-A device that receives 3299 protocol trans­
missions from a controller, strips off the address field, and
determines over which of eight ports to transmit the mes­
sage in 3270 format. The device then directs the response
from the terminal back to the controller.

non-promlscuous-A receiver mode that only enables a
data available interrupt when the address frame of the mes­
sage matches that previously specified. The 5250 and gen­
eral purpose S-blt modes of the BCP support both pro­
miscuous and non-promiscuous modes.

NRZ-Non Return to Zero. A data format that uses a high
level to represent a data 1 and a ·Iow level to represent a
data O. The signal level does not return to a zero level in
each bit time. See also NRZI.

NRZI-Non Return to Zero Inverted. A data format similar
to NRZ but with the signal levels reversed.

OCLK-The external Oscillator CLocK connected to the
BCP. This frequency, from a crystal or a clock, cannot be
changed by the BCP itself. CPU-CLK is derived from OCLK;
in addition, the transceiver can be configured so that TCLK
is derived from OCLK.

parlty-A one bit code, usually following data, that makes
the total number of 1 's in a data word odd or even, including
the parity bit itself. It is included as an error checking mech­
anism.

POLL-A command issued by a controller to determine
changes in terminal status, such as keyboard activity or key­
lock.

POLLI ACK (PACK)-A command issued by a controller
to indicate to the terminal that the controller has recognized
the non-zero status response of the terminal to its POLL,
hence its full name poll/acknowledge.

1-226

pop-To remove data from a stack.

predistortion-The initial voltage step in a Manchester
encoded bit used to change frequency components of the
signal to limit introducing jitter.

promiscuous-A receiver mode that enables a data avail­
able interrupt regardless of the contents of the transmission
address frame. The 5250 and general purpose S-blt
modes of the BCP support both promiscuous and non-pro­
miscuous modes.

push-To place data onto a stack.

qulesce pulse-A bl-phase 1 bit that is placed at the be­
ginning of a transmission to charge the cable in preparation
for the transmission of data. In addition, the quiesce pulses
are used as part of the identifying start sequence. Typical­
ly, five quiesce pulses are placed there.

register addressing mode-An addressing method that
uses only operands contained in registers.
register-relative addressing mode-An instruction ad­
dressing mode that adds the unsigned 8-bit value in the
current accumulator to anyone of the index registers form­
ing a data memory address for one of the instruction's oper­
ands.
remote access-An access to dual port memory by a
device other than the BCP.
repeater-A device used to extend the communication dis­
tance between a controller and a slave device by receiving
the message and re-transmitting it.

RIAS--The Remote Interface and Arbitration System that
allows a remote processor and the BCP to share the same
memory with arbitration of any conflict while the BCP is run­
ning. A remote processor may also stop and start the BCP
as well as read and write the Program Counter.

soft-Ioadable-A feature of a processor system that allows
another processor to provide it with instructions and data.

stack-See LIFO.

start sequence-A unique arrangement of bits that begin
each transmission to ensure proper frame alignment and
synchronization. Each transmission begins with five bl­
phase encoded 1 's quiesce pulses, a code violation, and
the sync bit of the first frame.

station address-The identification number of a 5250 ter­
minal or other slave device that will specify which device on
a multidrop line a message is sent to.

sync bit-A bl-phase 1 that is placed as the first bit of a
frame.
T-state-The period of CPU-CLK.

TCLK-The Transceiver CLocK that runs both the transmit­
ter and receiver at a frequency equal to eight times the re­
quired serial data rate. The clock can be obtained from a
scaled OCLK or from X-TCLK.

tlme-out-An interrupt that occurs when the timer reaches
a count of zero.

transceiver-The TRANSmitter used for sending mes­
sages and the reCEIVER used for reading messages.
transformer coupled-The isolation of the transceiver
from the transmission cable through the use of a transform­
er. Contrast this with direct coupled.

trar>--A BCP instruction that forces a software interrupt.

6.0 Reference Section (Continued)

TTl AR-Transmission Turn-around I Auto Response. An
acknowledgement by the terminal or other slave device that
a write command has successfully been received or that a
POLL command status response is all zero.

twin-ax-(1) The shielded pair cable that is used in a 5250
communications systems. (2) Sometimes used to refer to
the IBM 5250 communications protocol itself.

unmask-Enable the accepting of an interrupt by the CPU.

wait state-Additional T-states that may be added to a
memory access to increase the time from address genera­
tion to the beginning of either a memory read or write. The
BCP may add as many as seven data wait states and three
instruction wait states.

X-TCLK-The eXternal Transceiver CLocK. An indepen­
dent clock source that the BCP transceiver operation may
synchronize to rather than from OCLK.

1-227

Section 2
Application Notes

Section 2 Contents
AN-641 MPA-II-A Multi-Protocol Terminal Emulation Adapter Using the DP8344
AN-624 A Combined Coax-Twisted Pair 3270 Line Interface for the DP8344 Biphase

Communications Processor
AN-623 Interfacing Memory to the DP8344B .. .
AN-504 DP8344 BCP Stand-Alone Soft-Load System
AN-499 "Interrupts"-A Powerful Tool of the Biphase Communications Processor
AN-625 JRMK Speeds Command Decoding .. .
AN-627 DP8344 Remote Processor Interfacing .. .
AN-626 DP8344 Timer Application ... '.' .. .
AN-516 Interfacing the DP8344 to Twinax .: .. .
AN-688 The DP8344 BCP Inverse Assembler

2-2

2-3

2-95
2-99,

2-101
2-112
2-117
2-121
2-135
2-152
2-172

r--.>

~~ MPA-II-A Multi-Protocol
Terminal Emulation
Adapter Using the DP8344

Table of Contents

1.0 INTRODUCTION
About This System User Guide
Contents of the MPA-II Design/Evaluation Kit
MPA-II Description
DP8344B BCP

2.0 OPERATION
System Requirements
Requirements for Design Development
Useful Tools
MPA-II Installation
Running Emulation: A Quick Start

3.0 DEVELOPMENT ENVIRONMENT

4.0 SOFTWARE OVERVIEW
IBM 3270 and 5250 Environments
3270 Data Stream Architecture·
5250 Data Stream Architecture
Terminal Emulation
DCA
IBM
Screen Presentation
MPA-II

5.0 HARDWARE ARCHITECTURE
Architectural Overview
BCP Minimum System Core
PC Interface
Front End Interfaces
Miscellaneous Support

6.0 SOFTWARE ARCHITECTURE
Kernel
System Initialization
Coax Task
Coax Interrupt Handlers
IRMA Interface
IBM Interface
Twinax Task
Twinax Interrupt Handlers
Smart Alec Interface

7.0 LOADER AND MPA-II DIAGNOSTICS
Soft-Loading Instruction Memory
Configuring the MPA-II
MPA-II Diagnostics

2-3

National Semiconductor
Application Note 641
Thomas Norcross
Paul J. Patchen
Thomas J. Quigley
Tim Short
Debra Worsley
Laura Johnson

APPENDIX A HARDWARE REFERENCE
MPA-II Schematic
MPA-II Layout
MPA-II Assembly Drawing
PAL Equations

APPENDIX B TIMING ANALYSIS

APPENDIX C FILTER EQUATIONS

APPENDIX D REFERENCES

1.0 INTRODUCTION

About This System User Guide

The purpose of this document is to provide a complete de­
scription of the Multi-Protocol Adapter II (MPA®-II), a hard­
ware and software design solution for emulating basic 3270
and 5250 terminal emulation products in an IBM® PC envi­
ronment. This document discusses the system support
hardware and complete link level firmware required to
achieve 3270/3299 CUT, DFT, and 5250 emulation with the
National Semiconductor Biphase Communications Proces­
sor, BCP®. The document is divided into the following chap­
ters and appendices:

1.0 Introduction: provides a summary of each chapter and
each appendix along with a checklist of items included in
the MPA-II Design/Evaluation Kit. This chapter provides an
MPA-II product description including a list of the new fea­
tures in the MPA-II that were not present in the original MPA
Evaluation Kit. Finally, a description of the DP8344 Biphase
Communications Processor, and National Semiconductor's
VLSI Products, is provided.

2.0 Operation: describes the system requirements, installa­
tion instructions, and steps for using the MPA-II to achieve
3270/3299 and 5250 emulation.

3.0 Development Environment: describes the environ­
ment under which the MPA-II has been developed, the tools
used by the design team to characterize the products evalu­
ated, and the tools used to test the MPA·II.

4.0 System Overview: describes the 3270/3299 environ­
ment, 5250 environment, and terminal emulation. This chap­
ter also describes the DCA® and IBM emulator system ar­
chitectures and discusses the MPA-II system organization.

I

fII
I

5.0 Hardware Architecture: discusses the MPA-II hard­
ware architecture including a description of the BCP core,
PC interface, Front-end interface, and miscellaneous sup­
port circuitry.

6.0 Software Architecture: discusses the Kernel, coax
task, twinax task, and interrupt structure.

Included in this chapter is an in depth discussion of the
IRMATM, IBM and Smart Alec™ interfaces.

7.0 Loader and MPA·IJ Diagnostics: discusses soft-load­
ing the BCP, configuring the MPA-II interface mode, and the
diagnostics provided for testing the MPA-II hardware.

Appendix A. Hardware Reference: provides the complete
MPA-II schematic, assembly drawing, board layout and PAL
equations.

Appendix B. Timing Analysis: discusses the timing of the
MPA-II system.

Appendix C. Filter Equations for the Combined Coaxl
Twisted Pair Interface: provides the derivation of the filter
equations for the combined coax/twisted pair interface.

Appendix D. References: is a list of reference materials
and company contacts.

MPA·IJ Description

The Multi-Protocol Adapter II (MPA-II) is a complete design
solution for IBM 3270, 3299, and 5250 connectivity prod­
ucts. The MPA-II system is intended to be a design example
for customers to use in developing their own products using
the Biphase Communications Processor, BCP. The BCP is a
"system on a chip" designed by National Semiconductor to
specifically address the IBM connectivity market place. Built
on the tradition of the DP8340/41 3270 receiver/transmitter
pair, the BCP takes the state of the art in IBM communica­
tions a step further. The MPA-II provides the system support
hardware and complete link level firmware to achieve 3270/
3299 CUT, DFT, and 5250 emulation with the BCP and an
appropriate PC emulator. The MPA-II Design/Evaluation Kit
does not include the PC emulation software. Thus, the end
user must purchase the PC emulation software to bring up a
live terminal emulation session using the MPA-II. PC emula­
tion software such as DCA's E78 for MPA-II IRMA mode,
one of IBM's PC 3270 emulation programs for MPA-II IBM
mode, DCA's EMU for MPA-II ALEC mode, or any of the
third party vendors which support either the IRMA, IBM or

2-4

ALEC emulation card interface modes, including SIMPC
MASTERTM by SIMWARE, RELAY Gold® by RELAY Com­
munications, and CrossTalkTM MK.4 by Digital Communica­
tions Associates, can be used with the MPA-II.

DP8344BBCP

The DP8344B BCP is a communications processor de­
signed to efficiently process IBM 3270, 3299 and 5250 com­
munications protocols. A general purpose 8-bit protocol is
also supported.

The BCP integrates a 20 MHz, 8-bit, Harvard architecture,
RISC processor and an intelligent, software-configurable
transceiver on the same low power microCMOS chip. The
transceiver is capable of operating without significant proc­
essor interaction, releasing processor power for other tasks.
Fast, flexible interrupt and subroutine capabilities with on­
chip stacks make the power readily available.

The transceiver is mapped into the processor's register
space, communicating with the processor via an asynchro­
nous interface which enables both sections of the chip to
run from different clock sources. The transmitter and receiv­
er run at the same basic clock frequency although the re­
ceiver extracts a clock from the incoming data stream to
ensure timing accuracy.

The BCP is designed to stand alone and is capable of imple­
menting a complete communications interface, using the
processor's spare power to control the complete system.
Alternatively, the BCP can be interfaced to another proces­
sor with an on-chip interface controller arbitrating access to
data memory. Access to program memory is also possible,
providing the ability to softload BCP code. The MPA-II im­
plements these features.

A simple line interface connects the BCP to the communica­
tions line. The receiver includes an on-chip analog compar­
ator suitable for use in a transformer-coupled environment,
although a TTL-level serial input is also provided for applica­
tions where an external comparator is preferred.

A typical system is shown in Figure 1-1. Both coax and twin­
ax line interfaces are shown, as well as an example of the
(optional) remote processor interface.

For a detailed discussion on the BCP refer to the DP8344B
Biphase Communications Processor data sheet.

r PROGRAIA - - - - - - - - -16 - ~ ADDRESS
: IAEIAORY RAIA OR
, PROIA
, 64K X 16
: (IAAX) 1/".......,'--'----.. ,. ,
~----------------. , ,

C~~~ -!L.--ft3~
: COAX
, INTERfACE ,
._------------ ____ 4

r-----------------~3 , , ,
TWINAX -i-',~--+ ..

LINE -,--\::r-'" , , ,
~--~--------------!

NOTE: A TYPICAL SYSTEIA WILL
REQUIRE < 2K PROGRAIA IAEIAORY

r--------------AOOR~S~ ,. ,
, 8

OPTIONAL REIAOTE
PROCESSOR INTERFACE

TLlF/l0488-1

FIGURE 1-1. Block Diagram of Typical BCP System

2.0 OPERATION

System Requirements

THE MPA-II system implements both 3270 and 5250 termi­
nal emulation using the DCA and IBM industry standard in­
terfaces. Note that the MPA-II system emulates the hard­
ware and link-level firmware portion of the DCA and IBM
interfaces. This allows the MPA-II system to run with a vari­
ety of emulators. For example, the DCA emulator system for
the 3270 environment is called IRMA. IRMA consists of a
full sized PC board along with its link-level firmware, and the
PC emulator software "E7B.EXE". The MPA-II system re­
places the IRMA PC board and its link-level firmware.
Therefore, the MPA-II system, when configured correctly,
appears in every way to the emulator, E7B, to be the actual
IRMA hardware/link-level firmware portion of the DCA emu­
lator system for the 3270 environment. Thus to operate the
MPA-II system in a live communication system, a PC emula­
tion program is required; for example DCA's E7B.EXE. In
DCA interface modes the emulators are: "E7B", for the
3270 IRMA system; and "EMU", for the 5250 Smart Alec
system. In the IBM interface mode the emulators are
"PC3270" for the 3270/3299 CUT environment and
"PSCPG" for the 3270/3299 OFT environment. Any emula­
tor compatible with one of the emulators listed above can
be used to achieve terminal emulation using the MPA-II sys­
tem.

The system requirements for using the MPA-II are depen­
dent upon which interface the MPA-II is emulating. In DCA
interface modes, a PC interrupt is not used. However, in the
IBM interface mode, a PC interrupt is required. The PC inter­
rupt level is selected as follows: IRQ2 is selected with jump­
er JP6; IRQ3 by jumper JP4; and IRQ4 by jumper JP5. The
factory configuration selects the PC interrupt levellRQ2.

2-5

To support the IBM interface mode, the MPA-II utilizes an Bk
block of dual-port RAM. This. RAM must be located some­
where in the PC's memory space. The default location in PC
memory is CEOOO. This location can be relocated by writing
the upper Bk byte boundary to I/O location 2D7h or by using
the MPA-II Loader program (LD).

The I/O space requirements, for any interface mode, are
the total of the I/O space requirements for the MPA-II.

This means that the I/O locations 220h-22Fh and 2DOh-
2DFh are required for the MPA-II.

For execution space, the LD requirements are minimal (less
than 64k). The amount of free RAM available for a PC emu­
lator depends on the particular emulation package (i.e., E7B,
EMU, or IBM PC 3270, etc ...). The MPA-II system does
not use any resident software of its own accord.

In summary, the Multi-Protocol Adapter II Design/Evaluation
Kit contains the hardware, software and the MPA-II System
User Guide and Technical Reference to aid designers in
development of peripheral devices and network interfaces
based on the DPB344. The following items are not included
in the MPA-II system and therefore MUST be provided by
the user to use the MPA-II in a live terminal emulation ses-
sion:

- IBM PC XT/AT or compatible

- PC-DOS version 3.0 or higher

- PC emulation software such as DCA's E7B for MPA-II
IRMA interface mode, one of IBM's PC 3270 emulation
programs for MPA-II IBM interface mode, DCA's EMU
for MPA-II ALEC interface mode, or any of the third party
vendors which support either the IRMA, IBM or ALEC
emulation card interface modes, including SIMPC MAS­
TER by SIMWARE, RELAY Gold by RELAY Communi­
cations, and CrossTalk MK.4 by DCA. • I

~ r---,
"III:t'
CD

Z
c(

- Link to an IBM 370 class mainframe (for example,
through the IBM 3174/3274 controllers) for 3270/3299
connectivity; or a link to a System 3X, or AS/400 for
5250 connectivity.

Requirements for Design Development

To create the software design environment for leveraging
off the MPA-II source code, the following software must be
purchased:

- National Semiconductor's DP8344 Assembler System,
DP8344ASM1.2

- Microsoft's C 5.1 Optimizing Compiler for the IBM PC

- Microsoft's Macro Assembler 5.1 for the IBM PC

The minimum hardware requirements to set up a hardware
evaluation and design environment for creating virtually any
end product (terminal, printer, protocol converter, multiplex­
er, gateway, etc.) are an IBM PC/XT, IBM PC/AT or com­
patible and the MPA-II PC board.

Useful Tools

The tools listed in this section will greatly assist in the de­
sign process:

- Azure Technologies Coax Scope (or Twinax Scope) for
monitoring and analyzing data transmitted on 3270 Coax
Type "A" media (or on IBM System 3X or AS400 Twinax
media).

- Capstone Technology CT-104 BCP Demonstration/De­
velopment Kit. This kit includes a development board
with a 22 square inch logic prototype area and a· 3
square inch line interface prototype area. Additionally,
the kit supplies a Monitor/Debugger which features a
simple operator interface, single step program execution
and software break-points.

- CT-106 Enhanced Interactive Coax-A Controller, EICC,
(or the CT-103 Interactive Twinax Controller, ITC) by
Capstone Technology allows issuing specific 3270 (or
5250) instructions to a Device Under Test in place of the
traditional mainframe and 3X74 controller operations (or
the System 3X or AS400 controller operations).

- Logic Analyzer (National Semiconductor has an Inverse
Assembler for the BCP which requires one of the follow­
ing Hewlett Packard Logic Analyzer Models: HP1650A,
HP1651A or an HP16500A with an HP16510 State/Tim­
ing Card).

See Section 3.0, Development Environment for a descrip­
tion of how these tools were used in developing the MPA-II
system.

MPA-liinstallation

The first step in using the MPA-II is installing the MPA-II
circuit board in an IBM PC/XT, PC/AT or compatible. The
MPA-II installs in the usual way: please be sure that the
power is OFF, that the system unit is unplugged, and that
proper grounding techniques are used.

• Remove the cover by following the directions supplied by
the manufacturer.

• Remove the end plate from the system unit in the slot
desired for the MPA-II.

• Remove the MPA-II from its anti-static bag, and hold it by
the edges.

2-6

• If the MPA-II will be used for Twinax operation, determine
if the MPA-II will operate in pass-through or terminate
mode. If it is NOT the terminator, remove jumpers JP2
and JP3. The factory default is terminate .

• Install the MPA-II in an open PC bus slot.

• Replace the screw from the end plate previously re­
moved to hold the MPA-II firmly in place. A good electri­
cal connection here is important as it provides shield
ground for the cables.

• Close the system unit and replace all screws, etc ...
according to the manufacturers instructions.

• For 3270/3299 operation, install any 3270 coax type "A"
port cable to the rear BNC/Twisted Pair connector.

• For 3270/3299 twisted pair. operation, solder any 24
AWG unshielded twisted pair cable to the ADC Twisted
Pair Plug provided with the MPA-II kit. Then, connect the
Twisted Pair plug to the rear BNC/Twisted Pair connec­
tor on the MPA-II board. Make sure that the other end of
the 24 AWG unshielded twisted pair cable is properly
attached to the controller as a twisted pair cable.

• For twinax operation, install the Twinax Adapter cable to
the MPA-II by inserting the 9 Pin D-Sub-miniature con­
nector onto the mating connector on the rear panel, and
connect the twinax cable(s) to the Tee connector.

Running Emulation-A Quick Start

To use the MPA-II immediately, follow these instructions.
First, select a PC/XT, PC/AT, or compatible and make sure
that the following I/O addresses, IRO interrupt, and Memory
addresses are unused in that PC:

I/O: 0220-022F and 02DO-02DF
IROs: IR02
Memory: Segment CEOO

Next, install the MPA-II hardware into the PC. Then, change
the default DOS drive to A:, insert the distribution disk la­
beled DISK 1 into drive A:, and type at the DOS prompt:

SETUP c:
where c: is the target hard disk drive. This will install the
MPA-II software onto the PC's hard disk. Next, change the
default DOS drive to the hard disk and change the default
DOS directory to \MPA. Execute the following program at
the'DOS command prompt to verify correct operation of the
MPA-II hardware within the PC:

LD -LS
If the self test passed then the MPA-II board is operational
within this PC. If it fails, check again for I/O, IRO, or Memory
address conflicts as each MPA-II is tested before it is
shipped.

Now, install onto the hard disk the PC emulation software of
your choice, such as DCA's E78 for MPA-IIIRMA mode, one
of IBM's PC 3270 emulation programs for MPA-IIIBM mode,
DCA's EMU for MPA-II ALEC mode, or any of the third party
vendors which support either the IRMA, IBM or ALEC emu­
lation card interface modes, such as SIMPC MASTER by
SIMWARE, RELAY Gold by RELAY Communications, and
CrossTalk MK.4 by DCA. Note that the PC emulation soft­
ware must be supplied by the end user, it is not included as
part of the MPA-II Evaluation Kit.

Finally, load the MPA-II emulation card with the DP8344AV
microcode using the Loader and then start the PC emulation
program. To use the listed emulator, or equivalent, type at
the DOS prompt when in the \MPA directory:

LD MPA2 -M = IRMA ; to use the DCA IRMA
emulator ·E78 n or
equivalent

LD MPA2 -M = IBM ; to use the IBM emulator
"PC3270· or equivalent

LD MPA2 -M = ALEC ; to use the DCA Smart
Alec emulator "EMU" or
equivalent

Then, change to the PC emulation program directory of the
separately purchased and installed PC emulation software
(see installation instructions of that PC emulation software
for the name of that directory. In this example assume the
directory name is \EMULATOR, and then type the name of
the PC emulator program:

CD \EMULATOR
E78

Your emulator should now be operational.

Invoking the Loader program with no arguments will pro­
duce a short help screen. A detailed help for the Loader can
be accessed using the -h option. Therefore, at the DOS
command line enter:

LD -H
For more information on the Loader program, refer to the
Loader documentation in Section 7.0.

3.0 DEVELOPMENT ENVIRONMENT

The environment used for development of the MPA-II con­
sists of a few readily available, relatively inexpensive tools.
The hardware was first prototyped with the Capstone Tech­
nology CT-104 BCP Demonstration/Development card. The
software was developed with the National Semiconductor
BCP Assembler. It was tested with Capstone's EICC (En­
hanced Integrated Coax Controller), Capstone's ITC (Inte­
gral Twinax Controller), and Azure Technologies' Coax and
Twinax scope products. Debugging was accomplished with
BSID, Capstone's debugger/monitor which we modified for
use with the MPA-II software model and the MPADB.EXE
debugger included with the MPA-II (see Chapter 6). For par­
ticularly difficult interrupt problems a Hewlett Packard model
16500A Logic Analysis System with a State/Timing card in­
stalled was used to monitor instruction execution and PC
accesses.

The CT-104 board was modified through the wire-wrap area
to approximate the hardware design. This wire-wrap card
allowed us to get a working version of the hardware design
very quickly, since most of the circuitry was already there. In
some development projects, it is often faster to go directly
to pcbs as a prototype run. This process has advantages in
speed when the device is large and complex, but often de­
bugging is quite messy with multi-layer pcbs, not to mention
expensive. Since the CT-104 has the major functional
blocks already and the wire wrap area is large, the wire­
wrap time was minimal, thus allowed us to easily debug the
hardware.

2-7

A majority of the logic for the DCA and IBM interfaces is
implemented in Programmable Array Logic. We used the
abel program from DATA I/O to prepare the JEDEC files for
programming the devices.

Software development was done on IBM PCs with the Na­
tional Semiconductor DP8344 Assembler. The assembler
allows relocatable code, equate files, macros, and many
other "large CPU" features that make using it a pleasure.
The modularity of the software design allowed us to use
multiple coders and a single "system integrator" who linked
the modules and handled system debugging. The assem­
bler adapts well to large projects like this because of its
relocation capability. The Microsoft MAKE utility was used
to provide the system integrator with a automated way of
keeping up with source modules' dependencies and chang­
es. The BRIEFTM text editor from UnderWare™ was used
for editing. This editor allowed us to invoke the National
Semiconductor DP8344 Assembler from within the editor
and to locate and correct bugs quickly. Finally, an ethernet
LAN allowed the software development team to share files
and update each other quickly and efficiently. These tools
are not all necessary, but are common enough to be useful
in illustrating a typical environment.

The BCP's sophistication and advanced development tools
made the MPA-II development project proceed at a much
greater rate than is possible with other comparable solu­
tions.

Characterization of IBM 3270 and 5250 products was per­
formed by using Capstone's EICCIITC to drive the coax/
twinax line and the Azure scopes to monitor the results. In
this way we could stimulate the IBM terminal under con­
trolled conditions, testing most every situation, and then
stimulate the MPA-II under the same conditions to verify
correct functionality.

The debuggers allow a developer to load and run code on
the target system, set breakpoints, examine and modify in­
struction or data memory. Early configurations were accom­
plished using the standard DOS DEBUG tool, but once the
MPA-II Loader program (LD) was operational, configuration
and loading was accomplished through it.

The HP logic analyzer was attached to the target system to
monitor the instruction accesses and data bus activity on
the target card. This information is helpful in finding interrupt
problems that the debugger cannot. Using ICLK from the
BCP to sample the BCP instruction address and data bus­
ses allows one to monitor instruction execution. Symbolic
disassembly can be done with the DP8344 BCP Inverse As­
sembler, which is a software package for use in an
HP1650A or HP1651A Logic Analyzer, or in an HP 16500A
Logic Analysis System with an HP 16510A State/Timing
Card installed. The inverse assembler was developed by
National Semiconductor to allow disassembly of the
DP8344 op-code mnemonics. The inverse assembler pro­
vides the real time sequence of events by displaying on the
HP Logic Analyzer's screen the actual execution flow that
occurred in the system being developed with the DP8344.

4.0 SYSTEM OVERVIEW

The MPA-II addresses a systems market that is driven by
the large installed base of IBM systems throughout the

l>
z

I en
~

fI
I

....
~
CD .
z «

world. The IBM plug compatible peripheral and terminal em­
ulation markets are growing along with the success of IBM
in the overall computer market place. The originally proprie­
tary architecture of the IBM peripherals and the subsequent
vague and confusing ProductAttachme,ntinformation Man­
uals (PAis) have kept the 'attachment technology ~Iusive.
The IBM communications system in generalis not well un­
derstood. The desire of customers and systems vendors to
achieve more attachment options, however, is significant,

IBM 3270 and 5250 Environments

The study of IBM communications fills many volum'es. The
intent of this discussion is not to describe ,it fully, but to
highlight the areas of)BM communications that the BCP
and MPA-II address. Specifically, these areas'are the con­
troller/peripheral'links that use the 3270/3299 and 5250
data streams. These links are found in 370 class mainframe
networks and the smaller, mid-range "systems such as the
AS/400 and System/3x lines. '

The" 3270 commu~ications' sub-system, was developed for
370 class mainframes as demand for terminal support be­
gan to outstrip batch job entry modes. These systems had
large scale networking needs, and ofte,:" needed to support
thousands of terminals and printers. The original systems
were linked together through dedicated telephony lines us­
ing' Binary Synchronous Communications (BSC) serial pro­
tocol. The 5250 communications system was developed
originally for the Series 3 and became widely used on the
System/34. The System/34 wa.'sa small,office environment
processor with limited networking and terminal support ca­
pabilities.' Typical System/34 installations supported up to
16 terminals and printers. The System/36 replaced the Sys­
tem/34 in 1984. Next, IBM introduced the System/38, a
mid-range processor tMt could rival the 4300 series (small
370 class) mainframes in processing power. The System/36
and 38 machines now have greatly enhanced networking
facilities, and can support up to 256 local terminals. In 1988
IBM released a new, mid-range system line called the Ad­
vanced System 400, or AS/400, to replace the aging Sys­
tem/3x line. The Advanced ,System 400 series is highly

modular and combines the best features of the System/36
and System/38 to produce IBM's most popular mid-range
system to date. In addition, the AS/400 continues to expand
the role and importance of the 5250 data stream, adding it
to the definition of IBM's SAA. The 370 class and AS/400
machines have grown closer together through the advent of
SNA (Systems Network Architecture). SNA allows both sys­
tems to function together in an integrated network.

The 3270 and 5250 communications systems evolved at a
time when hardware design constraints were very different
than today. Microprocessors and 1 Mb DRAMs were not
available. Memory in general was very expensive. Telecom­
munications channel sharing between multiple peripherals
was imperative. Even so, fast screen updates and keystroke
handling were necessary. The 3270 and 5250 data stream
architectures were developed to address specific design
goals within IBM's overall network communications system.
The controller sub-system where they were implemented
has proved adaptable to new directions in SNA and the mi­
gration of processor power out into workstations.

The 3270 and 5250 controller sub-systems split the periph­
eral support tasks into two sections: screen with keyboard,
and host communications interface. Figure 4-1 shows the
3270 Communications System, 5250 is similar. The control­
ler architectures can be thought of as having integral screen
buffers and keyboards for each of their associated terminals
with the caveat that screens and keyboards must be ac­
cessed through a secondary, high speed serial link. Since
the controller views the terminal's screen buffer as its own,
the controller does not maintain a copy of the information
on that screen. The processing capability of some terminals
is severely limited; the early terminals were state machines
designed to handle the specific data stream. With the ad­
vent of SNA and APPC, (Advanced Peer to Peer Communi­
cations) the intelligence in some peripherals has become
significant. The data streams have essentially remained the
same, with hierarchically structured protocols built upon
them. SNA and these higher protocols will be discussed
later.

I ,KEYSTROKE I
(DDDDDDDDDDDDD)

oOOOOOOOODOOO
DOOOOOOocoooc
OOC::==::=:=:=:::OD

CURSOR

CONTROL

SEC. CONTROL

STATUS

LIGHT PEN I

~

10

STRIPE

, TL/F/l0488-2

FIGURE 4-1.3270 Communications System

2-8

Separating the screen buffer and keyboard from the intelli­
gence to handle the terminal addressed several design
goals. Since the terminal needs screen memory to regener­
ate its CRT, the "regen" buffer logically resides in the termi­
nal. The controller need not duplicate expensive memory by
maintaining another screen copy. The data stream architec­
tures implemented with high speed serial links between the
controller and terminal allow fast keystroke echoing. It also
allows fast, single screen updates, giving the appearnace of
good system performance. The terminal screen mainte­
nance philosophy developed with these architectures lends
itself well to the batch processing mode that traditionally
was IBM's strong suit. The terminal system is optimized for
single screen presentation with highly structured field orient­
ed screens. Data entry applications common in business
computing are well suited to this. Essentially, the architec­
ture places field attributes and rudimentary error checking in
the controller, so that most keystrokes can pass from the
terminal to the controller and back to the screen very quick·
Iy without host CPU intervention. Only when particular key­
strokes are sent (AID keys) does the controller read the
contents of the screen fields and present the host with the
screen data.

3270 Data Stream Architecture

The 3270 communications system, as discussed above, is a
single logical function separated into two physical pieces of
hardware connected by a protocol implemented on a high
speed serial link. The terminal hardware has the screen
buffers and keyboard, magnetic slot reader, light pen, etc.,
(Le., all the user interface mechanisms). The controller has
a communications link to the host CPU or network and the
processing power to administrate the terminal functions.

Controllers typically support multiple terminals and essen­
tially concentrate the terminal traffic onto the host communi­
cations channel. The controller has a secondary commun­
cations system that implements the 3270 data stream proto­
col over coaxial cable at 2.3587 Mb/s. Each peripheral con­
nected to the controller has its own coax port. The coax
lengths may be up to 5000 feet. The protocol is controller
initiated, poll/response type.

The serial protocol organizes data into discrete groups of 12
bits, called a frame. Biphase (Manchester II) encoding is
used to impress the data frames onto the transmission me­
dium. Biphase data have embedded clock information de­
noted as mid-bit transitions. Frames may be concatenated
to form packets of commands and/or data. All transmis­
sions begin with a line quiesce sequence of five biphase
one bits followed by a three bit time line violation. The first
bit of all frames is called the sync bit and is always a logic
one. The sync bit follows the line violation and precedes all
successive frames. Each frame includes a parity bit that es­
tablishes even parity over the 12-bit frame. Each transmis­
sion from the controller elicits a response of data or status
from the device. The response time requirements are such
that a device must begin its response within 5.5 ms after
reception of the controller transmission. Simple reception of
a correct packet is acknowledged by the device with a
transmission of "DAR", or transmission turn around/auto
response. The controller initiated, poll/response format pro­
tocol addresses multiple logical devices inside the peripher­
al through a three or four bit command modifier. The differ­
ent logical devices decode the remaining bits as their com­
mand sets. Commands to the base or keyboard are decod­
ed as shown in Table 4-1.

TABLE 4-1. 3270 Data Stream Command Set

READ TYPE:

WRITE TYPE··:

Command

TO BASE-Device Address 0 or 1
POLL
POLLIACK
READ STATUS
READ TERMINAL ID
READ EXTENDED ID
READ ADDRESS COUNTER HI
READADDRESSCOUNTERLO
READ DATA
READ MULTIPLE

TO BASE-Device Address 0 or 1
RESET
LOAD CONTROL REGISTER
LOAD SECONDARY CONTROL
LOAD MASK
LOAD ADDRESS COUNTER HI
LOAD ADDRESS COUNTER LO
WRITE DATA
CLEAR
SEARCH FORWARD
SEARCH BACKWARD
INSERT BYTE
START OPERATION
DIAGNOSTIC RESET

"Denotes foreground task

"All WRITE type commands elicit TTAR upon clean reception.

2-9

Value

01h
11 h
ODh
09h
07h
05h
15h
03h
OBh

02h
OAh
1Ah
16h
04h
14h
OCh
06H
10h
12h
OEh
08h
1Ch

Description

Respond with Status
Special Status Acknowledgement Poll
Respond with Special Status
Respond with Terminal Type
Respond with 4 Byte ID (Optional)
Respond with Address Counter High Byte
Respond with Address Counter Low Byte
Respond with Data at Address Counter
Respond with Up to 4 or 32 Bytes

POR Device
Load Control Byte
Load Additional Control Byte
Load Mask Used in Searches, CLEAR
Load Address Counter High Byte
Load Address Counter Low Byte
Load Regen Buffer with Data
Clear Regen Buffer to Nulls
Search Forward in Buffer until Match
Search Back in Buffer until Match
Insert Byte at Address Counter
Begin Execution of Higher Level Command
Special DFD Reset

!II
I

The 3299 variant on the 3270 data stream uses an addition­
al eight bit address field to address up to 8 more 3270 de­
vices with the same coax cable. Since coax installations are
point-to-point between controller and peripheral, cabling
costs motivated the introduction of 3299 multiplexer/demul­
tiplexers. Using the extended address field, eight devices
can be connected via one coax cable between the control­
ler and the multiplexer. (The 3299 protocol can support up
to 32 devices per line if IBM so chooses.)

attributes is limited by the size of the displayable character
set. The EAB provides a method to enhance screen control,
with color for instance, without losing character space. The
EAB contains both character attributes, that correspond to
characters in the regen buffer, and field attributes that cor­
respond to attributes in the regen.

Basic 3270 terminals have a structure as shown in
Figure 4-2. The EAB (Extended Attribute Buffer) is a shadow
of the regen buffer; each location in the regen has a corre­
sponding location in the EAB. The EAB is a separately ad­
dressable device with an address modifier of 7h. The EAB
bytes are used to provide extra screen control information.
In the 3270 world, the screen and field attributes that the
controller uses to format and restrict access to fields on the
screen.take up space in the screen. The attribute characters
appear as blanks and cannot be used for displayable char­
acters at the same time. Since the number of permutations
of the a-bit character byte is limited to 256, the number of

Status developed in the terminal, such as keystrokes or er­
rors, are reported in the poll/response mechanism. A POLL
command to the base device with keyboard status pending
elicits a keystroke response in 5.5 J-Ls. The controller then
sends a POLL! ACK command to acknowledge the key­
board status and thus clear it. The terminal then responds
with "clean" status, i.e., TT AR. Controllers poll frequently to
assure that status updates are quick. Outstanding status is
reported in the poll response and in some cases is handled
directly by command modifiers in the POLL command. Key­
strokes are the most command status and hence are ac­
knowledged by the POLL! ACK command. Status reported
in the status register can be read and acknowledged inde­
pendently of the polling mechanism, if desired.

ADDRESS COUNTER

(CURSOR HI:)

~--------------------~

EAB

REGEN

(CURSOR LO:) ~ ____________________ ~

KEYSTROKE BUrfER: ... 1 ____________________
3564 (MOD 5)

CONTROL:
'----~--~~~~-'-~~~

CONT _BLINK ~ BLINK CURSOR

CONLREV ~ REVERSE IMAGE CURSOR

'----- CONT _'NHCURSOR ~ TURN Off CURSOR

'------- CONLBLANK ~ BLANK SCREEN

L-______ CONLINHSTEP ~ PREVENT I/O STEP

L-_________ CONLMOD ~ SCREEN MODEL

7 0

SECCiNDARY CONTROL: 1 rsv 1-1-1-1-1-1-1 B~
SCONLSIG ~ READ BIG MODE

TERMINAL 10: ... 1 ____ ..,.... ____ __ ..,... __ _0 ~I

'----- ID_MOD ~ MODEL

L-________ ID_KEYBD ~ KEYBOARD TYPE

STALMONO ~ MONO CASE ON

STALRSVI

'----- STALAVAIL~NOT BUSY

'------- STALKEY - SECURITY KEY ON
L-______ STALRSV2

L-________ STAT _fERROR N fEATURE ERROR

'----------- STALOPCOMP~OP COMPLETE

'------------- STALBLANK N SCREEN BLANKED BY KEY

MASK: I~ _______________

EAS MASK: ... 1 ____________________

FIGURE 4·2. 3270 Internal Terminal Architecture

2-10

TLlF/l0466-3

The SEARCH, INSERT and CLEAR commands require the
terminal to process the command in the foreground while
responding with "BUSY" status to the controller. (The fore­
ground refers to non-interrupt driven routines. Foreground
routines may be interrupted at any time.) Processing these
commands requires substantially more time than the others,
and hence are allowed to proceed without real-time re­
sponse restrictions.

An interesting feature found in terminals and printers is the
START OP command. Originally, this command was used
only by controllers and printers to begin print jobs. Printers
have specific areas within their buffers that are reserved for
higher level commands from the controller. These higher
level protocols started as formatting commands and extra
printer feature control. With the advent of SNA and Distrib­
uted Function Devices, this concept is now used in termi­
nals to pass SNA command blocks to multiple NAUs (Net­
work Addressable Units) within the terminal. These NAUs
are complete terminals, or peers, not just simple user inter­
face devices.

As large mainframe systems proliferated, 50 did the need to
off-load terminal support from the emerging 370 class main­
frame. The need to "network" both remotely and locally
was becoming apparent. In addition, the need to separate
display and printer interface tasks from applications was
sorely felt. The system developed by IBM eventually be­
came Systems Network Architecture (SNA). The 370 class
machines use secondary processors, or "front-ends" to
handle the networking aspect of large scale systems and
these "front ends" in turn use terminal and printer contro­
lers to interface locally with the user interface devices. The
controllers handle the device specific tasks associated with
interfacing to different printers and displays. The front-ends
handle connecting the routes from terminals or printers to
applications on the mainframe. A session is a logical entity
split into two halves; the application half and the terminal
half, and connected by a virtual circuit. Virtual circuits can
be set up and torn down by the system between applica­
tions and terminals easily, and the location of the specific
terminal or printer is not important. NAUs are merely devic­
es that can be addressed directly within the global network.
Setting up multiple NAUs within a terminal allows all sorts of
gateway opportunities, multi-display workstations, combina­
tion terminal/printers, and other things.

DFD devices can support up to five separate NAUs using a
basic 3270 port. Using 3299 addressing allows eight ses­
sions for each DFD device, or 40 possible NAUs per coax.
By layering protocols over the basic 3270/3299 data
stream, the controller can distribute more of the SNA pro­
cessing to intelligent devices that replace terminals. APPC
will allow more and more functions to be shared by NAUs
that act as "peers" in the network.

5250 Data Stream Architecture

The 5250 data stream architecture has many similarities to
3270, although they are different in important ways. The
primary difference is the multi-drop nature of 5250. Up to
seven devices may be "daisy chained" together on the
same twinax cable. Twinax is a very bulky, shielded, twisted
pair as opposed to the RG/62U coax used in 3270.

The 5250 Bit stream used between the host control units
and stations on the twinax line consists of three separate

2-11

parts; a bit synchronization pattern, a frame synchronization
pattern, and one or more command or data frames. The bit
sync pattern is typically five one bit cells. This pattern
serves to charge the distributed capacitance of the trans­
mission line in preparation for data transmission and to syn­
chronize receivers on the line to the bit stream. Following
the bit sync or line quiesce pattern is the frame sync or line
violation. This is a violation of the biphase, NRZI data mid­
bit transition rule. A positive going half bit, 1.5 times normal
duration, followed by a negative going signal, again 1.5
times normal width, allows the receiving circuitry to estab­
lish frame sync.

Frames are 16 bits in length and begin with a sync or start
bit that is always a 1. The next 8 bits comprise the com­
mand or data frame, followed by the station address field of
three bits, a parity bit establishing even parity over the start,
data and address fields, and ending with a minimum of three
fill bits (fill bits are always zero). A message consists of a bit
sync, frame sync, and any number of frames. A variable
amount of inter-frame fill bits may be used to control the
pacing of the data flow. The SET MODE command from the
host controller sets the number of bytes of zero fill sent by
attached devices between data frames.

Message routing is accomplished through the use of the
three bit address field and some basic protocol rules. There
is a maximum of eight devices on a given twinax line. One
device is designated the controller or host, the remaining
seven are slave devices. All communication on the twinax
line is host initiated and half duplex. Each of the seven de­
vices is assigned a unique station address from zero to six;
address seven is used for an End Of Message delimiter, or
EOM. The first or only frame of a message from controller to
device must contain the address of the device. Succeeding
frames do not have to contain the same address for the
original device to remain selected. The last frame must con­
tain the EOM delimiter. For responses from the device to
the controller, the responding device places its own address
in the address field in all frames but the last one. It places
the EOM delimiter in the address field of the last frame.
However, if the response to the controller is only one frame,
the EOM delimiter is used. The controller assumes that the
responding device was the one addressed in the initiating
command.

Responses to the host must begin within 60 ± 20 J.Ls of re­
ceiving the transmission, although some specifications state
a 45 ± 15 J.Ls response time. In practice, controllers do not
change their time out values per device type so that any­
where from 30 J.Ls to 80 J.Ls response times are appropriate.

The 5250 terminal organization is set up such that there are
multiple logical devices within the terminal as in 3270.
These devices are addressed through a command modifier
field in the command frame. The command set for the base
logical devices is shown in Table 4.2. Note that except for
POLLs and ACTIVATE commands, all commands are exe­
cuted in the foreground by the terminals, unlike the 3270
commands. In addition, 5250 terminals only respond after a
POLL or ACTIVATE READ command. The remaining com­
mands are loaded on a queue for passing to the foreground
while the terminal responds with "busy" status to the host
when Polled until all the commands on the queue have
been processed. See Figure 4-3 for the 5251 terminal archi­
tecture.

.,...
'O::t'
(,0

I

Z
<

TABLE 4·2. 5250 Command Set

Reads

Read Data (Note 1)
Read Device 10 (Note 1)
Read Immediate (Note 1)
Read Limits (Note 1)
Read Registers (Note 1)
Read Line (Notes 1, 2)

Queueable Commands

Writes

Write Control Data
Write Data and

Load Cursor
Write Immediate (Note 1)
Write Data (Note 1)

Non·Queueable Commands

Responders

Poll
Activate Read

Control

Eoa
Load ADDR Counter
Load Cursor Reg.
Load Ref. Counter
Reset
Set Mode

Acceptors

Activate Write

Operators

Clear
Insert Char.
Move Data
Search

Note 1: Must be last command loaded onto queue. (EOQ may follow). When Terminal responds to POLL as not busy, then the appropriate ACTIVATE command
must be sent.

Note 2: Not a documented command in the IBM PAl. (See MPA·" code for response.)

5251 MODEL II

I-- 80 bytes --I
1 .J LINE 1

SCREEN BUFFER

2·12

16 bits

I ADDRESS COUNTER I
16 bits

I REFERENCE COUNTER I
16 bits

I CURSOR REGISTER I
8 bits

I INDICATOR I
8 bits

I CONTROL I
8 bits

:~ KEYSTROKE
QUEUE

TL/F/10488-4

PC I.IPA

I EAB 0

DCA I+- REGEN

1 E78 SCREEN
BUFFER -0

COAX ~ 3270 -.

PROCESS ..- 3299 -.

3RD IBI.I I EAB 1 3278/79 PARTY ~ I+-
APPS CUT,DFT

REGEN 3287 4 CHAI.IELEON
~

SCREEN

I INTERFACE BUFFER
l........+ IBI.I 1 I--

DCA
Smart IRI.IA

Smart Alec • Alec •

TWINAX
PROCESS ~ 5250 -.

5250 • I
I I EABn

NSC
LOAD/ I

CONFIGURE I REGEN
SOFT- I SCREEN

LOADER I BUrFER -I n
I
I
I

PC CHANNEL

TL/F/l0488-5

FIGURE 4-4. MPA-II System Architecture

Terminal Emulation

Personal computers are often used to emulate 3270 and
5250 terminals, and in fact, have hastened the arrival of
APPC functions in both the 3270 and 5250 arenas. Basic
CUT (Control Unit Terminal) emulation is often accom­
plished by splitting the terminal functions into real-time
chores and presentation services. The presentation serv­
ices, such as video refresh and keyboard functions, are han­
dled by the PC, and real-time response generation, etc., by
an adapter card (see Figure 4-4). This is a somewhat ex­
pensive alternative to a "dumb" terminal. However, since
PCs are becoming more and more powerful, their use as
peers in SNA networks, as multiple NAUs, or multiple dis­
play sessions in 5250 is very promising. Although primitive
in many ways, the 3270 and 5250 communications system's
fast response times, unique serial protocols and processing
overhead requirements have traditionally limited the confi­
dence of third party developers in designing attachments. In
addition, the high cost of many early solutions discouraged
many would-be developers.

National Semiconductor opened the 3270 attachment mar­
ket place to many third parties in 1980 with the release of
the DP8340/41 protocol translation chip set. The chip set
removed one of the major stumbling blocks to attachment
designs, although formidable design challenges remained.
Bit-slice or esoteric microcontrollers were still required to
meet the fast response times specified by IBM. The difficul­
ties and costs in designing interface circuitry for these solu­
tions remained a problem. So in 1987 National Semiconduc­
tor introduced the DP8344 Biphase Communications Proc­
essor, BCP. By tightly coupling a sophisticated
3270/3299/5250 transceiver to a high speed RISC based
CPU, National eliminated the last major stumbling block to
IBM connectivity. National also made available for the first
time a single hardware platform capable of supporting the
3270, 3299 and 5250 data streams.

2-13

The terminal emulation market opened with Technical Anal­
ysis Corporation's IRMA product in 1982. The 3278179 ter­
minal emulator quickly became the industry standard, even
as IBM and many others entered the market place. Techni­
cal Analysis Corporation merged with Digital Communica­
tions Associates in 1983. The 3270 emulation market is now
dominated by DCA and IBM. IBM· produced the first 5250
terminal emulator in 1984, although it was a severely limited
product. The market opened up in 1985 with the release of
products by AST Research, IDE Associates, and DCA.
DCA's Smart Alec was the first product to provide seven
session support, address bidding, and a documented open
architecture for third party interfacing. DCA's IRMA was re­
leased with a technical reference detailing their Decision
Support Interface. This document along with the source
code to E78 (their PC emulator software) allowed many
companies to design micro to mainframe products using the
DSI as the mainframe interface. IBM provides a technical
reference for their 3278 Entry Level' Emulator as well, (see
Appendix C for a complete list of references).

The proliferation of the IBM and DCA interfaces coupled
with the availability of detailed technical information about
them made these interfaces good choices for the MPA-II.
The MPA-II system was designed to do two major functions:
one is emulation of the DCA and IBM emulation products;
the second is to provide a powerful, multi-protocol interface
that will afford greater utilization of the DP8344A. Specifical­
ly, the MPA-II emulates the hardwarelfirmware resident in
PC add-in boards for 3270 and 5250 emulation products
from DCA and IBM. To do this, we have constructed hard­
ware and firmware that mimics the corresponding system
components of the other emulators. The MPA-II system ap­
pears in every sense to be the board it is emulating, once it
has been loaded and configured. fII

,...
~
CD .
Z
c(

The DCA and IBM system organizations are similar. Each
system is divided into two major functional groups: presen­
tation services, and terminal emulation. The terminal emula­
tion function resides entirely on the adapter hardware and
maintains the screen buffers that belong to the host control
unit. The terminal emulation function includes all real time
responses and status generation necessary to appear as a
true 5250 or 3270 device to the host controller. Presenta­
tion services carried out by the PC processor through the
emulator software include fetching screen data from the
adapter, translating it into displayable form, and providing
the data to the PC's display adapter. In addition, the PC side
presentation services collect keystrokes from the keyboard
and present them to the adapter. The communication be­
tween the PC presentation handler and adapter emulation
function consists mainly of status updates, keystrokes, and
screen data.

DCA

The DCA products use an I/O mapped 4 byte mailbox to
pass information between the PC's processor and the proc­
essor on the emulation card. The information is encoded in
a <command>, [<argument>], [<argument>],
[<argument>] and <status>, [response], [response],
[response] format. Information flow is controlled through a
Command/ Attention semaphore implemented in hardware.
Both the Smart Alec (5250) and IRMA (3270) interfaces
have command sets that include reading and writing the
screen buffers maintained on the adapter boards, sending
keystrokes, and passing display information such as cursor
position and general screen modes. The interfaces are both
used in a polled manner, although both are capable of gen­
erating interrupts to the PC processor.

Both Smart Alec and IRMA have Signetics 8X305 proces­
sors that run the terminal emulation functions and interface
to the PC presentation services. The PC function initiates
commands and status requests by writing the appropriate
value into the mailbox and setting the Command sema­
phore. The semaphore is then polled by the PC for a change
in state that signals completion of the command and signals
that valid response data is in the mailbox. The PC will poll
for a specific amount of time before assuming a hardware
malfunction has occurred. The 8X305 processors have no
interrupt capabilities and handle all terminal emulation sub­
tasks in a polled manner. The PC interface tasks are the
lowest priority of all. The 8X305 may initiate information
transfer to the PC by posting the Attention semaphore,
and/or setting a PC interrupt, although this is not generally
done. Both the Smart Alec andlRMA interfaces are imple­
mented with 74LS670 dual-ported register files so that
reads and writes from each processor are directed into sep­
arate register files.

DCA interfaces were designed for compatibility at the ex­
pense of interface through-put. The small I/O requirements
and the fact that interrupts to the PC are not necessary
allow the interfaces to install easily in most environments.
The IRMA Decision Support Interface (DSI) utilizes eight I/O
locations at 220h-227h. Smart Alec resides in I/O locations
228h-22Fh. All screen data and status information must
pass through these mailboxes with the semaphore mecha­
nism. This makes repainting the entire screen very slow.
Both IRMA and Smart Alec utilize different schemes to re­
duce the necessity of reading entire screen buffers often.

2-14

IRMA maintains a screen image in PC memory that is used
in conjunction with a complex algorithm to determine which
lines of the screen to update. Smart Alec maintains a 16
entry FIFO queue that contains screen modification informa­
tion encoded in start/end addresses. This information is
processed to decide which screen locations should be up­
dated.

IBM

The IBM system organization, in general, is very similar to
the DCA systems. The major differences lie in the interface
implementations. The IBM system utilizes RAM dual-ported
between the PC processor and the adapter board processor
to transfer screen data from the adapter. In addition, IBM
does not use an interpreted command/response I/O inter­
face. The IBM interface uses 121/0 locations with individual
bits defined in each register for direct status availability. The
status bits consumed by the PC presentation services are
cleared through a "write under mask" mechanism. Consum­
able bits are read by the PC and, when written to, corre­
sponding status bits are cleared by one bits in the value
written. Reading a register of consumable bits and writing
that value back out clears the bits set in that register. The
interface can operate in a polled manner, although it typical­
ly is operated via interrupts. One register in the interface is
dedicated to interrupt status (ISR-Interrupt Status Regis­
ter, 2DOh) and when the PC is interrupted, the particular
status change event is indicated in that register. Buffer mod­
ifications are indicated through a status change in the I/O
interface which also provides an indication of the block
modified. The actual screen data is in 8k of dual-port RAM
and may be read by the PC when the "Buffer-Being-Modi­
fied" flag is cleared. This type of interface affords the IBM
products great speed advantages, although limits compati­
bility with other add in PC boards.

Screen Presentation

Both the IBM and DCA systems present EBCDIC data to the
PC presentation services for display. The presentation soft­
ware must translate the EBCDIC codes into ASCII for PC
display adapters. In addition, the screen attribute schemes
for PCs and mainframe terminals differ greatly. The presen­
tation services must provide the necessary display interface
to emulate the "look" of the terminal that is being emUlated.
The PC keyboard scan codes are incompatible with main­
frame scan codes, and must be translated for the keyboard
type of the terminal being emulated. Both systems provide
advanced PC functions such as residency, keyboard remap­
ping, and multiple display support.

MPA-II

The MPA-II implements emulation of both the DCA and IBM
interfaces. Therefore, an overall architecture similar to the
DCA and IBM systems is employed (see Figure 4-5). The
logical split in functionality between the PC and the adapter
board processors is roughly analogous; the PC provides
presentations services and the adapter hardware/firmware
handles the host terminal emUlation tasks (see Figure 4-6,
4-7 and 4-8). The BCP on the adapter board is soft-loaded
by the PC and configured to operate in one of the protocols
and interface modes. The adapter board then assumes the
hardware emulation tasks of the physical interfaces of the
DCA or IBM products. At this time the DCA, IBM (or a
DCAlIBM compatible) emulation program is executed on
the PC. To this program the MPA-II appears to be a DCA or
IBM emulation card.

The MPA-II hardware consists of a DP8344A running at
18.89 MHz with 8k x 16 bits zero wait state instruction
memory, 32k x 8 bits one wait state data RAM, a
coax/twisted pair 3270/3299 front end, a 5250 twinax front
end, and a BCP software controlled PC interface that en­
ables the MPA-II to appear as a variety of industry stan­
dards interfaces. The BCP Remote Interface Configuration
register (RIC) is located in PC I/O space at 2DFh (see Fig­
ure 4-9). This register facilitates downloading of instructions
and data memory from the PC, starting and stopping the
processor, and configuring the low level interface mode.
The MPA-II utilizes the low level fast buffered write/latched
read interface mode.

The MPA-II Configuration register (see Figure 4-10) is locat­
ed at I/O location 2DCh and controls which type of high
level interface the MPA-II board is operating in (Le., IRMA,
Smart Alec, IBM, coax, etc.). Changing the value of this reg­
ister while the MPA-II is operating will cause the MPA-II to
change mode, resetting the emulation session in progress.
In addition, a simple MPA-II command set can be issued
through the MPA-II Configuration register and the MPA-II
Parm/Response register (I/O location 2DBh) for use as a
passive debugging aid.

When either of the DCA modes are enabled, the I/O block
220h-22Fh is decoded, split into read and write banks, and
mapped into the BCP's data memory. For the IBM mode,
the I/O block from 2DOh-2DAh is decoded and the Write­
Under-Mask function is enabled. In addition, the 8k of dual­
port RAM is defined according to the IBM interface mode.
For CUT emulation, only the lower 4k of the dual-port RAM
is used. For OFT mode, the entire 8k block may be utilized.
Neither DCA mode utilizes dual-port memory, but it is still
available to the PC so the MPA-II firmware maps screen
information there. Note that the MPA-II hardware always de­
codes I/O addresses 220h-22Fh and 2DOh-2DFh regard­
less of the PC interface selected.

The MPA-II interface mimics the DCA and IBM interfaces by
interrupting the BCP when write accesses occur to the I/O
space of interest (220h-22Fh, 2DOh-2D6h and 2D8h-
2DEh) while holding off any other PC accesses to the
MPA-II board, thus "locking out" the PC. The BCP monitors
these I/O accesses through the use of the "MPA-II Access"
register contained in a PAL. This register captures the loca­
tion of the last PC I/O access. The BCP's I/O access inter­
rupt routines then get control and emUlate in software
DCA's or IBM's I/O hardware functions (such as IBM's write
under mask function). At the end of interrupt processing, the
software "unlocks" the PC, allowing access once again to
the MPA-ll's memory and I/O registers by the PC. The ex­
treme speed of interrupt processing by the BCP makes this
feasible. Accesses of the dual-port RAM by the PC are regu­
lated by the interface only in assuring that simultaneous

2-15

accesses by the PC and BCP do not occur. The location of
the dual-port RAM in the PC memory map is determined by
a value written into the 2D7h I/O location. This "Segment"
register is the upper 7 bits of the PC address field and is
compared with the address presented during PC memory
cycles for decoding. Writing different values to this register
moves the decoded memory block anywhere within the PC
memory space to avoid conflicts. The pacing of dual-port
accesses is handled by provisions in the emulated interface
definition.

The PC I/O map for the MPA-II adapter board is as follows:

TABLE 4-3. MPA-II PC I/O Map

220h- IRMA Command/Status Register
221h- IRMA Argument/Response
222h- IRMA Argument/Response
223h- IRMA Argument/Response
224h- Decoded, Unused
225h- Decoded, Unused
226h- IRMA Command/Attention

Semaphore Control
227h- IRMA Command/Attention Semaphore
228h- Smart Alec Command/Status Register
229h- Smart Alec Argument/Response Register
22Ah- Smart Alec Argument/Response Register
22Bh- Smart Alec Argument/Response Register
22Ch- Decoded,Unused
22Dh- Smart Alec Control Register
22Eh- Smart Alec Control Register,

Command/ Attention Semaphore
22Fh- Smart Alec Strobe

2DOh- IBM Interrupt Status Register
2D1h- IBM Visual/Sound
2D2h- IBM Cursor Address Low
2D3h- IBM Cursor Address High
2D4h- IBM Connection Control
2D5h- IBM Scan Code
2D6h- IBM Terminal 10
2D7h- IBM/MPA-II Dual-Port Segment

Location Register
2D8h- IBM Page Change Low
2D9h- IBM Page Change High
2DAh- IBM 87E Status

2DBh- MPA-II Parm/Response Register
2DCh- MPA-II Configuration/Command Register
2DDh- Decoded, Unused
2DEh- Decoded,Unused
2DFh- MPA-II RIC Register

» z .
0)
~

• I

.,...
~
CD • z «

THIRD PARTY
APPLICATIONS

PC

IBM
3278/79
CUT, Drr

IRt.tA
(DCA)

3278/79

ALEC
(DCA)
5250

THIRD PARTY
'----fill APPLICATIONS

SIt.CPC

RELAY GOLD

CROSS TALK

DUAL PORT
t.tEt.tORY

8k - 6~k

EMULATION CARD
(MPA-II)

INTERRUPT
HANDLERS

RECEIVER

TRANSMITTER

TIMER

BIRQ (INTERrACE)

TL/F/l04BB-15

FIGURE 4-5. PC Terminal Emulation Architecture

PC

IBM
3278/79
CUT, Drr

IRt.tA
(DCA)

3278/79

THIRD PARTY
APPLICATIONS

ALEC ,.
(DCA)
5250

THIRD PARTY
APPLICATIONS

SIt.lPC

I RELAY GOLD

I CROSS TALK

~

~

~

-

~
~~

PC SOFTWARE

- REFORMATS AND TRANSLATES REGEN
BUFFER TO ASCII FOR PC SCREEN'

-ACCEPTS KEY STROKES FROM USER

- PERFORMS FILE AND DATA TRANSFER

- THIS COULD BE DONE IN THE BCP MICROCODE

FIGURE 4-6. PC Software

2-16

TLlF/l04BB-9

PC INTERFACE

• ALLOWS PC TO COMMUNICATE
WITH THE TERMINAL EMULATOR
CARD.

• IBM
-STATUS QUERY METHOD

• IRMA/ALEC
-COMMAND/RESPONSE

METHOD

FIGURE 4-7. PC Interface

EMULATION CARD

• PROVIDES PHYSICAL AND ELECTRICAL
CONNECTION

• PROCESSES ALL DATA LINK COMMANDS

• ISSUES ALL DATA LINK RESPONSES

• OPERATES INDEPENDENT OF PC CPU
-REBOOTING PC HAS NO EFFECT ON

ACTIVE SESSIONS

FIGURE 4-8. Emulation Card

2-17

DUAL PORT
1.4Et.lORY

6k - 64k

EMULATION CARD
(MPA-II)

TLlF/10488-10

IBM
HOST SYSTEM

OR
CONTROLLER

TLlF/l0466-11
I

FII

I I I I I I I I I

~ MSO: MEMORY SELECT: DATA, INSTRUCTION

MS1: MEMORY SELECT: DATA, INSTRUCTION

STRT: BCP START/STOP

LW: LATCHED WRITE INTERrACE MODE

LR: LATCHED READ MODE

RW: r AST WRITE MODE

SS: SINGLE STEP THE BCP

BIS: BIRO STATUS
TL/F/l04BB-B

FIGURE 4-9. BCP Remote Interface Configuration Register

[I J I I I I I I

I
L POR INTERrACE (0 INDICATES THAT POR IS COMPLETE)

RESERVED

3299 MODE

COAX EAB INSTALLED

MPA COMMAND (0 INDICATES COMMAND EXECUTION COMPLETE)

IBM INTERrACE MODE

DCA INTERrACE MODE

5250/3270
TLlF/l04BB-7

FIGURE 4-10. MPA-II Configuration Register

MPA-II Firmware Organization

The BCP firmware provides true 5250, 3270, and 3299 emu­
lation support, as well as providing the intelligence behind
the PC interface. To do this, a software architecture radical­
ly different than the DCA or IBM systems was developed.
The real power of the BCP lies in its rich instruction set and
full featured CPU. Taking advantage of that power, the BCP
firmware is interrupt driven and task oriented. It is not truly
multi-tasking, although the firmware logically handles mUlti­
ple tasks at once. The firmware basically consists of a round
robin task scheduler (called the Kernel) with real-time inter­
rupt handlers to drive the system. Events that happen in
real-time, such as accesses by the PC or host commands,
schedule tasks to complete background processing. Real­
time status and responses are developed and presented in
real-time.

The BCP firmware uses a number of memory constructs
known as templates to handle its data structures. The pri­
mary construct is the D~P, or Device Control Page. The
DCP is a 256 byte block that contains all global system
variables. The DCP contains a map of which SCPs, or Ses­
sion Control Pages are active. Each SCP is 256 bytes and
contains all variable storage for a particular session; 3270,
5250, or 3299. Each SCP has a corresponding screen buff­
er, and optionally an EAB buffer (there is no EAB in 5250
terminals).

MPA-II Performance

The BCP is running at 18.8696 MHz with no instruction
memory wait states and one data memory wait state. This

2-18

yields an average instruction cycle time of 160 ns, a maxi­
mum instruction cycle time of 212 ns and a maximum inter­
rupt latency of 237 ns (excluding wait states due to PC ac­
cesses). Although such performance may seem excessive,
remember that the 3270 protocol requires a 5.5 JLs re­
sponse time and that the newer controllers sometimes send
commands less than 10 JLs apart. These commands must
be executed in real-time, so for short periods of time, ex­
tremely high performance is required. In the MPA-II, the
BCP also has other real-time demands on it. For example,
the MPA-II requires the BCP to perform DCA or IBM 110
hardware emulation real-time in firmware. Furthermore, both
the controller and the PC are asychronous events which
can (and do) occur at the same time.

Using Hewlet Packard's 16500A Logic Analyzer and
10390A System Performance Analysis Software, the
MPA-lI's worse case performance scenario was analyzed.
This scenario consisted of the MPA-II running 3270 with
EAB installed while performing IRMA file transfers using
DCA's FTCMS software. A special NO-OP routine was add­
ed to the MPA-II software in order to achieve 100% utiliza­
tion of the BCP. The breakdown of relative activity is shown
in Table 4-4.

TABLE 4-4. MPA-II Performance

Coax Related Activity 9%
IRMA Related Activity 10%

Total Activity 19%

As is shown in Table 4-4, the BCP still has over 81 % of its
bandwidth free to do additional tasks.

Advanced Product Possibilities

With over 81 % of the BCP's bandwidth unutilized, possibili­
ties for advanced 3270/3299 and 5250 devices with excep­
tional overall system performance, advanced features, and
compactness become both realizable and practical. For ex­
ample, if a more efficient PC to MPA-II (BCP) interface was
developed which eliminated the need for the BCP firmware
to emulate I/O hardware, and additional tasks were off load­
ed to the BCP, such as Regen/EAB buffer to PC Screen
buffer translation, then the overall system performance of a
full featured MPA-II CUT mode terminal could rival that of
the most advanced IBM CUT mode terminals. Yet, the PC
memory requirements of such an emulator would be less
than that of the simplest PC emulator on the market today
because the PC software would only need to process key­
strokes and copy the BCP's translated PC screen buffer
directly into the PC's screen buffer memory. Furthermore,
advanced features such as 3299 support could be included
without additional hardware costs. All this is possible using
the current MPA-II board without hardware modification be­
cause the MPA-Il emulates DCA and IBM interface hard­
ware using BCP software. Adding this new interface into the
product requires only software changes. .

5.0 HARDWARE ARCHITECTURE

This chapter focuses on the hardware employed to satisfy
the goals of the MPA-II project. Designed to support both
the coax (3270/3299) and twinax (5250) protocols, the
hardware also allows emulation of the PC interfaces out­
lined in Chapter 2. By taking advantage of the BCP's power
and integrating the extra logic requirements into program-

FRONT END I BCP CORE
I

INSTRUCTION
I
I

RAt.I

I
I
I

mabie logic devices, this level of functionality was provided
on a single half-height PC XT / AT card. In an effort to con­
vey the reasons behind specific decisions made in the hard­
ware design, the design methodology is presented from a
"top-down" perspective.

Architectural Overview

The MPA-II hardware should be viewed as three conceptual
modules (see Figure 5-1), including:

1. BCP minimum system core, consisting of the BCP, in­
struction memory, data memory, clock, and reset logic.

2. PC interface including the PC and BCP memory decode
and interrupts.

3. Coax/twisted pair and twinax front-end logic and connec-
tors.

These module divisions are denoted by the dotted lines
seen in Figure 5-1. The minimum system core is required,
with some modifications, for any design using the BCP. The
type of bus (PC, PS/2™ Micro Channel™, VME, etc.) and
transfer rate requirements dictate the interface logic, which,
for the MPA-II design, is optimized for the PC XT/AT I/O
channel. The front-end logic meets the physical-layer re­
quirements of the 3270 and 5250 protocols.

Since much of the logic external to the BCP is implemented
in programmable logic devices (PALs), these conceptual
partitions overlap at the device level. Although the design
can be implemented in discrete logic, we chose to use pro­
grammable logic devices to shorten development time, de­
crease board real-estate requirements, and maintain maxi­
mum future adaptability. The schematic and the listings de­
scribing the logic embodied in the PALs are in the Hardware
Reference in Appendix A.

PC INTERFACE

I
Bk x 16 32k x B DATA RAt.I I

I t t
0

~ DUAL PORT
COAX/ I MEMORY

TWISTED

~
BK I

PAIR BCP
~

I
FRONT DPB344 I

END ~ I

I+i- 18.86" .", j
I

DCA READ I
TWINAX

Inb ~ FRONT REGISTERS
END DCA WRITE· INTERFACE

B MHz REGISTERS UNIT:

IBt.I REGISTERS
I

DUAL PORT ""RY ~ I
MPA-II REGISTERS

32K I/O REGISTERS
I

PC ACCESS REGISTER PC IRQ INTERRUPT
(MPA_ACCESS)

Lr AUXILIARY CONTROL
REGISTER (t.4PA DATA)

I
I

64K I

FIGURE 5·1. MPA·II Hardware Architecture

2-19

IRMA
MAILBOX

SMART ALEC
MAILBOX

IBt.I
REGISTERS,
DUAL PORT
. MEt.lORY

MPA-II
COMMAND
INTERFACE

I/o 220-227h

I/o 22B-22Fh

I/o 2DO-2DFh
t.lEt.lORY BKi
MOVEABLE
DEFAULT:
CEOO: 0000

I/o 20B-2DCh
2DFh

TLlF/l04BB-B •

BCP Minimum System Core

The BCP offers a high level of integration and many func­
tions are provided on-chip; there is, however, a minimal
amount of external logic required. This core is comprised of
the BCP and the external logic require to support the clock
requirements, reset control, Harvard memory architecture,
and multiplexed AD bus (see Figure 5-2).

Clock Source

The coax and twinax protocols operate at substantially dif­
ferent clock frequencies (2.3587 MHz and 1 MHz, respec­
tively), therefore two clock sources are required. The BCP
has the software-programmable flexibility to drive both the
CPU and transceiver in the following ways: the clock inde­
pendently divided down to either or both sections, or by two
separate asynchronous clocks (utilizing the external trans­
ceiver clock input, XTCLK). To provide sufficient waveform
resolution, the transceiver must be clocked at a frequency
equal to eight times the required serial bit rate. This means
that an 18.8696 MHz (8 x 2.3587 MHz) clock source is re­
quired when operating in the 3270 coax environment and an
8 MHz clock (8 x 1 MHz) is needed for the 5250 twinax
environment. An 18.8696 MHz clock is also a good choice
for the BCP's CPU section.

Therefore, in the coax mode, the transceiver and the BCP's
CPU share the same clock source. To maximize the avail­
able CPU bandwidth in the twinax mode, the 18.8696 MHz
clock source drives the CPU while a TIL clock is used to
drive the BCP's external transceiver clock input. Therefore,
in the twinax mode, the BCP's CPU and transceiver sections
operate completely asynchronously.

IA

I

RESET I -

CI"!"RY J IWR
RESET

READ TL7705A BCP
WRITE

A

..1

'I

/

/
'8

The 18.8696 MHz clock is provided by the BCP's on-chip
clock circuitry and an external oscillator. This circuit, in con­
junction with external series load capacitors, forms a
"Pierce" parallel resonance crystal oscillator design. The
oscillator is physically located as close as possible to the X1
and X2 pins of the BCP to minimize the effects of trace
inductances. The traces (0.05") are wider than normal. NEL
Industries makes a crystal specifically cut for the
18.8696 MHz frequency and is the recommended source for
these devices. This crystal requires a 20 pF load capaci­
tance which can be implemented as 40 pF on each lead to
ground minus the BCP/socket capacitance and the trace
capacitance. A typical value for the BCP/socket combina­
tion capacitance is 12 pF. The wide short traces contribute
very little additional capacitance. We therefore chose a
standard value of 27 pF for the discrete ceramic capacitors
C24 and C25, placing them as close as possible to the crys­
tal. The 5.60 pull up resistor tied to X1 is designed to im­
prove oscillator start up under unusual power supply ramp
conditions. This is normally not a problem for PC power sup­
plies so that the resistor could be omitted. The twinax clock
is provided by a standard 8 MHz TIL monolithic clock oscil­
lator attached to the BCP's external clock input, XTCLK.

The MPA-II runs the BCP at full speed, 18.8696 MHz
((DCR[CCSll = 0), with zero instruction (nIW) and one
data (now) wait states, resulting in a T-state of 53 ns. For a
system running the BCP at half speed, 9.45 MHz
((DCR[CCSll = 1), with zero instruction (nIW) and zero
data (now) wait states, the T-state would be 106 ns. The T­
state can be calculated using the following equation:

T-state = 1/(CPU Clock Frequency)

ADDRESS
/

/
INSTRUCTION , 16 r'

DATA
/

MEMORY

/
/16 V (2) 8k x 8

R7W
6264

READ

WRITE

ADDRESS
/

/ DATA

~8 '16 r' MEMORY

CONTROL
.1 LATCH I 32k x 8 ALE 8 !.1Hz X-TCLK "I 74ALS573

osc.
A L 5[1\

XI X2 AD ~
'I' 8 ADDRESS/DATA r' 62256

b.~:;i
!.1Hz

TL/F/10488-16

FIGURE 5·2. BCP Core

2-20

Reset Control

Power-up reset for the BCP consists of providing the de­
bounced, active low, minimum pulse width specification of
ten T-states. Since the BCP powers upin the slowest con­
figuration, a T-state is the period of the oscillator divided by
two, or 106 ns. The external logic must therefore provide a
minimum 1.06 JJ.s reset pulse to the BCP. The MPA-II design
incorporated two reset sources in addition to power-up in­
cluding: the PC I/O channel reset· control signal (active
high), and an automatic reset if the digital supply voltage
drops by more than 10%.

We chose the Texas Instruments TL7705A supply voltage
supervisor to monitor Vee and provide the minimum pulse
width requirement. This device will reset the system if the
digital 5V supply drops by more than 0.5V, and keep the
reset asserted until the voltage returns to an acceptable
level. The TL7705A will also assure that the minimum time
delay is met. The time delay is set by an external capacitor
and an internal current source. Since this time delay is not
guaranteed in the data sheet, we chose a 0.1 JJ.F ceramic
capacitor resulting in a typical 1.3 ms reset pulse width. A
0.1 JJ.F ceramic capacitor is connected to the REF input of
the chip to reduce the influence of fast transients in the
supply voltage. The active high PC reset signal is inverted in
the MPA-ILAC (MPA-II Auxiliary Control) PAL. The active
low output of the bipolar TL7705A is the MPA-II system re­
set and is pulled up by a 10k resistor for greater noise immu­
nity.

Memory Architecture

The BCP utilizes separate instruction and data memory sec­
tions to overcome the single bus bandwidth bottleneck of­
ten associated with more conventional architectures. In­
struction memory is owned exclusively by the BCP (remote
processor accesses to this memory occur through the BCP,
and only when the BCP is stopped); therefore, the entire
instruction memory/bus bandwidth is available to the BCP.
This architecture allows the BCP to simultaneously fetch
instructions and access data memory, thus load/store oper­
ations can be very quick. It is important to note, however,
that the instruction bus bandwidth does have some depen­
dency on data bus activity. If a remote processor, for in­
stance, is currently the data bus master, execution of an
instruction accessing data memory will be waited, degrading
BCP CPU performance.

The speed of both instruction and data memory accesses is
limited by memory access time. Since the BCP features pro­
grammable memory wait states, the designer has the flexi­
bility of choosing memories strictly on a cost/performance
trade-off. No ex1ernal hardware is required to slow the BCP
memory access down (unless the maximum number of pro­
grammable wait states is insufficient, in which case the'
WAIT input of the BCP can be utilized). Instruction memory
access time has the biggest impact on system performance'
since every instruction executed involves an access of this
memory. Each added instruction wait state degrades zero­
wait state performance by approximately 40%. Load/store
operations occur less frequently in normal code execution,
therefore relatively slower data memory can often be uti­
lized. Each additional data memory wait state degrades the
performance of a zero-wait state data access by about
33%.

2-21

Instruction Memory

A design goal for the MPA-II project dictated our choice of
static RAM for instruction memory, since the ability to soft­
load code from the PC was necessary. Furthermore, to max­
imize CPU bandwidth we chose zero wait-state instruction
memory operation. When the hardware was designed, in­
struction memory requirements were estimated at 4k to 8k
words, therefore two 8k x 8-bit static RAMs were employed.

Instruction memory access ti~e requirements can be calcu­
lated using Parameter 1, the Instruction Memory Read Time,
Table 5-5, Instruction Memory Read Timing, of the Device
Specifications section of the DP8344B Data Book.

(nlW + 1.5) T + C-19) ns

Where: nlW is the number 'Of instruction wait-states, and
T = 53 ns. Therefore the maximum access time is (0 + 1.5)
53 - 19 = 60.5 ns. For the MPA-II system running the BCP
at half speed (T-state = 106 ns), the maximumaccess time
is (0 + 1.5) 106 - 19 = 140 ns. Comparing both the half
and full speed maximum instruction memory access tim~
requirements, it is apparent that 55 ns RAMs are appropri:
ate. A complete instruction memory timing analysis is pro~
vid~d in Appendix B. .

Reads of instruction memory by the remote system occur
through the BCP and look identical in timing to the local
(BCP) reads on the instruction bus.

Soft-Load Operation

The BCP. cannot modify instruction memory itself. Memory
is only written through the BCP (while the BCP is stopped)
from the remote system (PC), and is referred to as "soft­
load" operation. Since the BCP has an 8-bit data path and a
16-bit instruction bus, instructions are read or written by the
PC in two access cycles; the first cycle accessing the low
byte of the instruction, the second cycle accessing the high
byte of the instruction and automatically incrementing the
Program Counter after the instruction has been accessed.
See the Remote Interface section of the DP8344B Data
Book for a complete description of instruction memory ac­
cesses.

The critical parameter for instruction writes is the minimum
write strobe pulse width of the RAM, which is about 40 ns
for most 8k x 8 55 ns static RAMs (55 ns RAM specifica­
tions are compared to the BCP minimum requirements since
it represents the worst case). The IWR (BCP Instruction
WRite output, active low) minimum pulse width is calculated
from Parameter 20 (IWR Low Time) in Table 5-22, Fast Buff­
ered Write of IMEM, of the Device Specifications section of
the DP8344B Data Book:

(nlW + 1)T -10ns

For soft-loads thafoccur after reset, the CPU clock is in the
POR half-speed state and the number of instruction and
data memory wait states is a maximum; therefore aT-state
is 106 ns and nlW equals 3; thus, IWR minimum pulse width
is (3 + 1) 106 - 10 '= 414 ns. Soft-loads that occur after
the BCP Device Control Register has been initialized to full
speed operation with no instruction wait states represent
the worst case timing of (0 + 1) 53 -.,. .10 = 43 ns, which is
still greater than the 55 ns RAM requirement of 40 ns.

Other parameters that must be considered are data setup
and hold times for the RAM. The BCP must provide valid
data on the Instruction bus before the minimum setup time
of the RAM and hold the valid data on the bus at least as
long as the minimum hold time. For the RAMs we consid­
ered, these times were 25 ns and 0 ns, respectively. Again,
looking at Table 5-22 (Parameter 19, I valid before IWR ris­
ing), we see that if valid data for the high byte of the instruc­
tion is present on the AD bus in time, the BCP is guaranteed
to present valid data on the Instruction bus a minimum of

(nlW + 1) T - 18 ns

before the rising edge of IWR. The BCP will hold that data
on the bus for a minimum of 22 ns afterward (see Parameter
18, IWR rising to I Disabled). To see that the minimum set
up time is met for both the half speed POR state and the full
speed operation, note that both (3 + 1) 106 - 18 ns =

406 ns (half speed) and (nlW + 1) 53 - 18 ns = 35 ns (full
speed) are greater than the minimum set up time of the
RAM which was 25 ns. Furthermore, the minimum hold time
of 22 ns, for both half speed and full speed, is greater than
the 0 ns required. Thus, successful operation is assured.
See the MPA-II timing analysis in Appendix B and the PC
interface section in this chapter for a discussion of AD bus
timing.

Data Memory

A considerable amount of data memory was required for the
MPA-II design since the system supports multiple sessions
(see Chapter Six, MPA-II Software Architecture, for more
information). For this reason we specified 32K of 8-bit data
memory).

Data Memory Timing

Data RAM can be accessed by both the BCP and the re­
mote system, part of the RAM appears to the remote sys­
tem as dual-ported RAM via the Remote Interface logic of
the BCP. This memory can be both read from and written to
during BCP code execution. Designing in the data RAM is
therefore a more complicated procedure than selecting in­
struction memory. Using 53 ns for the MPA-II T-state and
one for now (number of data wait-states) as defined earlier,
we can verify the critical memory parameters by comparing
the results of the calculations against the RAM require­
ments. The 32K x 8, 100 ns static CMOS RAM minimum
requirements for the critical parameters are compared
against the BCP's minimum specifications and are listed in
Table 5-1. For a complete description of the BCP minimum
specifications, see Appendix B.

TABLE 5-1. Data Memory Timing

Parameter RAM BCp·

Address Setup 0 47.5
Chip Select to Write End 90 122.5
Access Time 100 108.5
Write Strobe Width 60 96
Data Setup 40 86
Data Hold 0 31.5

-All units are In nanoseconds.

'53 ns T-state with one data wait state.

2-22

Again, the numbers reveal the validity of the hardware de­
sign for local (BCP) accesses of data memory. Please see
the PC interface section for timing related to the remote
access. Also, an MPA-II timing analysis of both 106 ns and
53 ns T-states is provided in Appendix B.

Multiplexed AD Bus

The BCP's 8-bit data bus is multiplexed with the lower 8-bits
of the data memory address bus to lower pin count require­
ments. This necessitates de-multiplexing the Address/Data
bus externally. The timing of the ALE (Address Latch En­
able) control signal relative to the AD bus is optimized for
use with a standard octal latch, therefore a 74ALS573 is
employed to provide separate Address and Data buses for
the system. The TRI-STATE buffers of the latch are enabled
by the BCP output LCL (active low) such that if a remote
access occurs this device will TRI-STATE.

PC Interface

As mentioned earlier, the MPA-II supports the industry-stan­
dard interfaces associated with coax and twinax terminal
emulation. These include:

COAX:
IBM 3270 Emulation Adapter Interface
DCA Decision Support Interface (IRMA)

TWINAX:
DCA Smart Alec Interface

These interfaces share some common elements, but have
many differences as well. The IBM adapter employs an in­
terrupt-driven interface, IRMA's PC interface is a polled im­
plementation, and Smart Alec, while operating in a polled
environment, has the capability of interrupting the PC as
well. The IBM Emulation Adapter's control registers are
mapped into the PC's I/O space; the screen buffer is
mapped into the PC's memory space and is relocatable
(see Table 5-2). The two DCA interface occupy a contigu­
ous block of PC I/O space only; there screen buffer(s) are
not directly visible to the PC. These architectures are ex­
plored in much greater detail in Chapter 6 of this manual.
Note than the MPA-II utilizes some of the IBM reserved reg­
isters for MPA-II usage. These MPA-II registers may be easi­
ly relocated by changing the MPA-II PAL equations.

TABLE 5-2. PC Mapping of the MPA-II Board

Description
Address

I/O Memory

IBM Interface:
Remote Interface 02DF*

Control (RIC)
Decoded and Unused 02DD* - 02DE*
MPA-II Configuration 02DC*

Register
MPA-II Parm/Response 2DB*

Register
IBM Control Registers 02DO-02DA

IBM Screen Buffer CEOOO
(Relocatable)

DCA DSllnterface:
IRMA 0220-0227
Smart Alec 0228-022F

'Reserved IBM register spaces.

The MPA-II design had to encompass all of these imple­
mentations. This was accomplished by taking advantage of
the underlying similarity of the interfaces as well as the
speed and flexibility of the BCP. We minimized chip count
and board space requirements through judicious partitioning
of the PC address decode while emulating in BCP software
the interface registers in data RAM. Refer to Figure 5-3 for
an overview of the hardware architecture employed in im­
plementing the BCP/PC interface.

The PC address decoding is partitioned into sections that
first check for accesses to the relocatable memory block
and accesses to the 1/0 register addresses of the different
interfaces. These addresses are then translated into the
proper area of the BCP data memory. The BCP data memo­
ry map is divided in half, the lower 32k is contained in the
single 32k x 8 RAM described earlier, and the upper 32k is

decoded for several functions (see Table 5-3). The decod­
ing sections feed into a control section that makes the final
decision on whether (or not) the current PC bus cycle is an
access of one of the emulated systems. It should be noted
that the type of emulation is not selectable; the MPA-II
board will respond to accesses of all of the PC addresses
detailed in Table 5-2. The MPA-II will not run concurrently
with any of the boards it emulates, or any other board that
overlaps with these same addresses.

The BCP's RIC (Remote Interface Control) register is
mapped into the PC's 1/0 space. The PC can always find
this register by reading 1/0 hex address 02DFh. The DCA
interfaces (IRMA and Smart Alex) occupy PC 1/0 addresses
220-22Fh. The IBM interface occupies PC 1/0 addresses
2DO-2DFh for register space, and a relocatable 8k block of
memory for the screen buffer(s).

TABLE 5·3. BCP Data Memory Map

Description BCP Address (A15-0) PC 1/0 Address

Auxiliary Control Register (mp~data) AOOO-BFFF
PC Access Register (mp~access) 8000-9FFF
'IBM API Registers 7FDO-7FDF 2DO-2DF
DCA API (IRMA and Smart Alec) 220-22F

PC Writes: 7F20-7F2F
PC Reads: 7E20-7E2F

BCP-Owned Memory Area 2000-7E1F
'Screen Buffer Area 0OOO-1FFF Relocatable

°Dual-Ported RAM (Visible to Both BCP and PC)

2-23

» z . en
~
~

~ r---~
'OI:t
CD

Z
cs:

-
READ OE
-- ViR WRITE

....
A ADDR

~ ...t. ~"
DATA
RAM

BCP ALE ~ LATCH I 32k ,x '8
" 74ALS573

.A ~'}. -1\
AD DATA 62256

". -V ...t. ~ -
LCL

XACK -
WR-PEND -

REM-RD REM-WR CMD RAE
, ,

.... ;r

PC I/o AND MEMORY
BUS ADDRESS DECODE
CONTROL

4Y ...
t- t- ~ ~ ..tt.

...t. ~ ~

lOW lOR MEMR MEMW 10CHRDY ~
DATA

'4

PC
ADDR

TL/F/10488-19

FIGURE 5·3. BCP/PC Interfaces

PC 1/0 and Memory Address Decode

The BCP CPU and Remote Interface units operate autono­
mously. Since the 1/0 registers are mapped into the BCP's
data RAM and the CPU has to know which register was
written to by the PC, external logic is provided that latches
the low six bits of the address bus during remote accesses.
The BCP can read this external register to identify which
emulated register has been modified and take the appropri­
ate action.

The relocatable memory segment location where the
screen buffer of the IBM interface is located is decoded in
discrete hardware consisting of the following components:
U15, a 74ALS521 magnitude comparator that compares the
PC memory address accessed against the stored value of
the relocatable memory segment address and asserts the
signal MMATCH (active low) when a match occurs; the Seg­
ment Register U16, a 74ALS574 containing the stored
memory address used to identify the memory segment of
the screen buffer block. The relocatable block of data mem­
ory defaults to base address CEOOO on the IBM adapter. In

2-24

the MPA-II System, the base address of the memory seg­
ment must be loaded into the segment register (PC 1/0 ad­
dress 2D7h) before the PC can access the IBM screen buff­
er area in dual-port RAM. This Segment Register is not ac­
cessible by the BCP. It is only accessed by a PC write to 1/0
location 2D7h. A PC read of the 1/0 address 2D7h access­
es a corresponding RAM location which is written in the
same manner as all writes to the IBM 1/0 locations 200-
2DAh, as described next.

Accesses to the 1/0 locations used by the IBM Interface
(200h-2DFh) and the DCA DSI Interfaces (220-22Fh) are
decoded as follows: PC address lines A 12-A4 are brought
into the MPA-II_PD (PC Address Decode) PAL-U9 for de­
code. PC address lines A 14-A 16 and A 17 -A 19 are first
decoded with three input NOR gates, U5B and U5C, which
are in a 74ALS27. The outputs of both of these NOR gates
are then brought into the MPA-II_PD PAL for further de­
code. Note that PC address lines A 13 and AO-A3 are not
decoded at this point. A preliminary decision is made by the
MPA-II_PD Pal to indicate if the IBM or DCA interfaces are
being accessed. The outputs DCA-REG and IBM_REG

indicate which, if any, emulated interface is being accessed.
These signals are used in conjunction with MMATCH, the
PC address lines A 13 and AO-A4, and the read and write
strobes of the PC in U7, the MPA-II_RD (MPA-II Register
Decode) PAL to make the final determination on the validity
of the access. If it is an emulated interface I/O register ac­
cess, IOJCCESS will be asserted back to the MPA-II_PD
PAL. This PAL will in turn translate the access to the top of
the BCP data RAM where the I/O register page is located
(see Table 5-3). Note the differentiation in Table 5-3 be­
tween PC reads and writes for the DCA translation. This is
required to emulate the dual-ported register files used on
the DCA boards.

If the PC access is to the IBM screen buffer, IOJCCESS
will not be asserted out of the MPA-II_PD PAL. The MPA­
"_PD PAL will, when [C[goes high on the remote access,
force A15 low and pass the buffered address lines A12-8
onto the data RAM. Address lines A 14 and A 13 are imple­
mented through U8, MPA-II_CT (MPA-II Control Timing)
PAL. PC address lines A7-0 are buffered by U14, a
74ALS541 and passed onto the BCP data memory address
lines AD7 -0 when LCL switches high for the remote ac­
cess. The data memory RAM's chip select, DMEM_CS, is
asserted on any remote access. If the BCP's LCL output
goes high, DMEM_CS will be asserted low; on,a local ac­
cess, this signal will be asserted if the BCP's A 15 signal is
low (RAM occupies the lower half of the BCP's memory
map).

This scenario for remote accesses works because RAM is
the only element external to the BCP that is visible to the
PC. If the PC is accessing the BCP (RIC, the Program Coun­
ter, or Instruction Memory), the BCP's READ/WRITE
strobes will not be asserted to the data RAM. On a PC ac­
cess of the BCP's RIC register, for example, data RAM will
be selected and the CMD (CoMmanD) output of the MPA­
"_RD PAL will be asserted to the BCP, selecting the BCP's
RIC. No bus collision will occur on a read or data inadver­
tently destroyed on a write because the BCP will not assert
the external strobes on an internal register access.

The MPA-II_RD PAL also combines the memory and I/O
read/write strobes to form the REMRD/REMWR strobes to
the rest of the MPA-II system. Since PC bus cycles can only
be validated by the assertion of one of these strobes, this
PAL makes the final decision on the validity of the bus cycle.
If the PC cycle is a valid access of the BCP system, this PAL
will assert RAE (Remote Access Enable), the BCP's chip
select. RIC, the output CMD, and the BCP's READ/WRITE
strobes will determine which part of the system receives or
provides data.

The PC IRQ interrupt for the IBM interface is set and
cleared by the BCP through U3, the MPA-IIJC (Auxiliary
Control) PAL. The interrupt is set from the BCP by pointing
data memory to an address in the range AOOO-BFFF (see
Table 5-3), and writing to this location with AD7 set high; it is
likewise cleared by writing with AD7 low, to this location. The
interrupt powers up low (deasserted) and can be assigned
to PC interrupts IRQ2, 3, or 4 by setting the appropriate
jumper (JP4-6).

Remote accesses of the BCP are arbitrated and handled by
the Remote Interface and Arbitration System (RIAS) control
logic. The arbiter sequential state machine internal to the
BCP shares the same clock with the CPU, but otherwise

2-25

operates autonomously. This unis is very flexible and offers
a number of configurations for different external interfaces
(see the Remote Interface and Arbitration System chapter
of the BCP data book). We chose to use the Fast Buffered
Write/Latched Read interface configuration to maximize the
possible data transfer rate and minimize the BCP perform­
ance degradation by the slower PC bus cycles. Data is buff­
ered between the PC and BCP data buses with U18, a
74ALS646, giving us a monolithic, bidirectional transceiver
with latches for PC reads and buffering for PC writes.

Rest Time Circuit

To support the newer high performance PC AT compatibles
entering the market, a rest time circuit is implemented on
the MPA-II. The purpose of this circuit is to prevent two
remote accesses made by a high performance PC from be­
ing mistaken as one remote access. (For a detailed descrip~
tion of BCP remote rest time, refer to the Remote Interface
and Arbitration System section of the DP8344A data sheet).

The rest time circuit is implemented in one PAL 16RA8,
MPA-II_RI, U4. This rest time circuit implements all modes
except Latched Write and does not take advantage of the
increase in speed possible when CMD does not change
from one access to the next.

First, how the REM_ENABLE Signal controls remote ac­
cesses will be discussed. Then, a description of the opera­
tion of the rest time state machine in the PAL 16RA8 will be
given.

The REM_ENABLE signal is produced in the rest time
PALRA8 and is low during rest time. After rest time is over
the REM_ENABLE signal goes high until the end of the
next access, when it once again goes low during rest time.
The signal REM_ENABLE is fed back into MPA-II_RD,
U7.

Through the rest time circuit, both REMRD and REMWR are
held high when REM_ENABLE = o. This prevents all re­
mote accesses during rest time. When rest time is over
REM_ENABLE = 1 and then decodes of MEMW, MEMR,
lOW, and lOR control REMRD and REMWR respectively.

To describe the operation of the state machine, a state by
state description follows. When reading through the states
one should remember that the state machine can only
change states on the rising edge of CLK-OUT.

STATE: IDLE
This state is entered when a system reset occurs. In this
state REM_ENABLE = 1, and XACK controls the state of
PC_RDY.

The state machine will stay in this state until a valid remote
access starts (Le. RAE = 0). Then the state machine
moves to CYCLLSTART.
NOTE: The Signal ~ is a full decode of a valid access by MPA-U_RD, U7.

If I1Al: is only an address decode, it alone would not indicate that a
valid access has started.

STATE:CYCLE--START
In this state, REM_ENABLE = 1 and XACK controls the
state of PC_RDY. The state machine will stay in this state
until the remote access ends, indicated by RAE = 1. Then
the state machine moves to WAIT1.

,...
~
CD

:Z
<C

STATE: WAIT1

In this state, REM_ENABLE = 0 and, if a remote access
starts, the PC_RDY is driven low whenever RAE = O. After
one ClK-OUT cycle the state machine moves to WAIT2.

STATE: WAIT2

In this state, REM_ENABLE = 0 and PC_RDY is driven
low whenever RAE = O. After another ClK-OUT cycle the
state machine moves to WAIT3.

STATE: WAIT3

In this state, REM_ENABLE = 0 and PC_RDY is driven
low whenever RAE = O. After another ClK-OUT cycle the
state machine moves to WAIT4.

STATE: WAIT4

In this state, REM_ENABLE = 0 and PC_RDY is driven
low whenever RAE = O. After another ClK-OUT cycle the
state machine moves to WAIT5.

STATE: WAIT5

In this state, REM_ENABLE = 0 and PC_RDY is driven
low whenever RAE = O. If the BIRO signal is still active low,
indicating that BIRO has not been serviced yet by the BCP
interrupt software, then the state machine will continue to
loop in this state until BIRO goes inactive high. This will
prevent the PC from gaining access to the BCP's memory
(Dual Port or 1/0), thus "locking out" the PC if it attempts
another access. A write to the MPA Access register, U17,
which will toggle AREG_ClK -, will cause BIRO to go in­
active high, thus "unlocking" the PC. In this way the MPA-II
hardware will lock out the PC until the BCP interface soft­
ware has time to gain control and emulate the DCA or IBM
register hardware. This feature allows the MPA-II to imple­
ment future IBM 1/0 register changes by simply updating
the BCP software. If BIRO was not active low or when it
goes inactive high, the next state is WAIT6.

STATE: WAITS

In this state, REM_ENABLE = 0 and PC_RDY is driven
low whenever RAE = O. If a remote access has started (Le.,
RAE = 1) the next state will be RESUME. Otherwise, the
next state is WAIT?

STATE: WAIT7

In this state, REM_ENABLE = 0 and PC_RDY is driven
low whenever RAE = O. If a remote access has started (Le.,
RAE = 1) the next state will be RESUME. Otherwise, the
next state is WAITS.

STATE: WAITS

In this state, REM_ENABLE = 1 (allowing accesses) and
PC_RDY is driven low whenever RAE = O. This state was
included in the state machine to reduce the state machine's
logic. Otherwise it would have been logical to return to the
IDLE state from WAIT7 if RAE = 1 (no access in progress).
If RAE = 0, then the next state will be RESUME. Otherwise,
the state machine returns to IDLE.

STATE: RESUME

In this state, REM_ENABLE = 1 and PC_RDY is driven
low while RAE = O. When the state machine moves to this
state, it means that a remote access took place quickly after
the previous access. The state machine allows the remote
access to proceed since'the PC-bus has been waited long
enough by the previous states. However, the PC-bus must

2-26

be waited until the XACK signal can take over control of
driving PC_RDY. For the design of the MPA-II, once
REM_ENABLE = 1, then the XACK signal would take over
control within two ClK-OUT cycles. So the state machine
will wait the PC-bus through this state and the next. On the
next rising edge of ClK-OUT the state machine will move to
the HOLD state.

STATE: HOLD

In this state, REM_ENABLE = 0, and PC_RDY is driven
low whenever RAE = O. Again, this state is provided to wait
the PC-bus for a second ClK-OUT cycle while still allowing
the remote access. The next state is CYCLE_STATE. In
CYClE~START, XACK will take over control of PC_RDY.

The BCP BIRQ Interrupt

The BCP's bi-directional pin, BIRO, is configured as an inter­
rupt into the BCP, and is set on the trailing edge of a PC
write of the BCP 1/0 register space (excluding RIC and the
Segment Register, Le., 1/0 addresses 2DFh and 2D7h, re­
spectively). The BCP can identify which 1/0 register has
been accessed by reading the Access Register, U17, a
74AlS574, mapped directly above the dual-ported RAM in
the BCP's data memory map (see Table 5-3). The bits
AD5-0 are the last 6 bits of the 1/0 register's address. A
BCP write to this register will clear BIRO, and therefore, the
BCP interrupt. Timing for the clock enable of U17 is provid­
ed by the MPA-II_CT PAL, US. U17 is clocked only on
remote writes to the 1/0 register page (denoted· by
10JCCESS being asserted from the MPA-II_RD PAL)
and local BCP writes of U17. The BCP uses the BIRO inter­
rupt in order to service the PC in a timely manner since the
PC is locked out until the BCPsoftware unlocks the PC.
After an MPA-II reset, or when the BCP writes a zero to AD5
of the Auxiliary Control Register (address AOOOh), called the
BIRO_EN line, then the BIRO line is disabled. While
BIRO_EN is low (inactive) the PAL MPA-II_RI does not
lock out the PC, nor does it assert the BIRO line.

Front-End Interface

The line interface is divided into coaxltwisted pair and twin­
ax sections, each section being comprised of an interface
connector, receiver, and driver logic. These sections are in­
dependent but are never operated concurrently. The coax
medium requires a transformer-coupled interface while the
multi-drop twinax medium is directly coupled to each device.

The transmitter interface on the DPS344A is. sufficiently
general to allow use in 3270, 5250, and S-bit transmission
systems. Because of this generality, some external hard­
ware is needed to adapt the outputs to form the signals
necessary to drive the twinax line. The chip provides three
signls. DATA-OUT, DATA-DlY, and TX-ACT. DATA-OUT is
biphase serial data (inverted). DAT A-Dl Y is the biphase se­
rial data output (non-inverted) delayed one-quarter bit-time.
TX-ACT, or transmitter active, signals that serial data is be­
ing transmitted when asserted. TX-ACT functions as an ex­
ternal transmitter enable. The BCP can invert the sense of
the DATA-OUT and DATA-DlY Signals by asserting TIN
(TMR[3] I. This feature allows both 3270 and 5250 type
biphase data to be generated, and lor utilization of inverting
or non-inverting transmitter stages.

The line drivers are software selectable from the BCP via
logic embedded in the MPA-IIJC and MPA-II_CT PAls.

Table 5-3 reveals that the Auxiliary Control Register is
mapped into the AOOO-BFFF area of the BCP memory map.
The coax/twisted pair module is selected by pointing to this
address area and writing a "0" out on the AD6 data line.
The twinax is selected by writing a "1" on this signal. The
coax/twisted pair section is selected on power-up. The volt­
age supervisor described earlier in the Reset Control sec­
tion also plays a role here, deactivating the line drivers of
both sections if the + 5V supply drops more than 10% at
any time. The receivers are selected on-board the BCP by
the SLR (Select Line Receiver) control in the Transceiver
Control Register. Setting !TCR[511 to a "1" selects the on­
chip comparator and thus the coax input; a "0" on this con­
trol selects the TIL-IN receiver input for the twinax input.

Coax/Twisted Pair Interface

At this date, the largest installed base of terminals is the
3270 protocol terminal which primarily utilizes coax cabling.
Because of phone wire's easy accessibility and lower cost,
twisted pair cabling has become popular among end users
for new terminal installations. In the past, baluns have been
used to augment existing coax interfaces, but their poor per­
formance and cost considerations leave designers seeking
new solutions. In addition, the integration of coax and twist­
ed pair on the same board has become a market require­
ment, but this is a considerable design challenge. A brief
summary of the combined coax/twisted pair interface con­
cepts, a discussion of the design, and a description of the
results follows.

The concepts which must be addressed by the combined
coax/twisted pair interface will be discussed at this time.
These concepts are important to understand why the vari­
ous design decisions are implemented in the interface.
Coax cable is normally driven on the center conductor with
the shield grounded. Conversely, unshielded twisted pair ca­
ble is driven on both lines. Because of the way that each is
driven, coax operation is often called unbalanced and twist­
ed pair operation balanced.

Transmission line characteristics of coax and twisted pair
cables can be envisioned as essentially those of a low-pass
filter with a length-dependent bandwidth. In 3270 systems,
different data combinations generate dissimilar transmission
frequencies because of the Manchester format. These two
factors combine to produce data pulse widths that vary ac­
cording to the data transmitted and the length and type of
cable used. This pulse-width variation is often described as
"data jitter".

In addition to line filtering, noise can cause jitter. Coax cable
employs a shield to isolate the signal from external noise
Electromagnetically balanced lines minimize differential
noise in unshielded twisted pair cable. In other words, the
twisted pair wires are theoretically equidistant from any
noise source, and all noise super-imposed on the signal
should be the common-mode type. Although these methods
diminish most noise, they are not totally effective, and envi­
ronmental interference from other nearby wiring and circuit­
ry may still cause problems.

Besides the effects of jitter, reflections can produce undesir­
able signal characteristics that introduce errors. These re­
flections may be caused by cable discontinuities, connec­
tors, or improper driver and receiver matching. Signal edge

2-27

rates may aggravate reflection problems since faster edges
tend to produce reflections that may dramatically distort the
signal. Most reflection difficulties occur over short cable
(less than 150 ft.) because at these distances reflections
suffer little attenuation and can significantly distort the sig­
nal. Since the timing of the reflections is a function of cable
length, it may be possible to operate at some short distance
and not at some greater length.

An effective receiver design must address each of the
above concerns. To counteract the effects of line filtering
and noise, there must be a large amount of jitter tolerance.
Some filtering is needed to reduce the effects of environ­
mental noise caused by terminals, computers, and other
proximate circuitry. At the same time, such filtering must not
introduce transients that the receiver comparator translates
into data jitter.

Like the receiver design, a successful driver design should
compensate for the filtering effects of the cable. As cable
length is increased, higher data frequencies become attenu­
ated more than lower frequency signals, yielding greater dis­
parity in the amplitudes of these signals. This effect gener­
ates greater jitter at the receiver. The 3270 signal format
allows for a high voltage (predistorted) magnitude followed
by a low voltage (nondistorted) magnitude within each data
half-bit time. Increasing the predistorted-to-nondistorted sig­
nal level ratio counteracts the filtering phenomenon be­
cause the lower frequency signals contain less predistortion
than do higher frequency signals. Thus, the amplitude of the
higher frequency components are greater than the lower
frequency components at the transmitter. Implementation of
this compensation technique is limited because nondistort­
ed signal levels are more susceptible to reflection-induced
errors at short cable lengths. Consequently, proper imped­
ance matching and slower edge rates must be utilized to
eliminate as much reflection as possible at these lengths.

Besides improved performance, both unbalanced and bal­
anced operation must be adequately supported. Electro­
magnetic isolation for coaxial cabling can be provided by a
properly grounded shield. Electrically and geometrically
symmetric lines must be maintained for twisted pair opera­
tion. For both cable types, proper termination should be em­
ployed, although terminations slightly greater than the char­
acteristic impedance of the line may actually provide a larg­
er received signal with insignificant reflection. In the board
layout, the comparator traces should be as short as possi­
ble. Lines should be placed closely together along their en­
tire path to avoid the introduction of differential noise. These
traces should not pass near high frequency lines and should
be isolated by a ground plane.

An extensive characterization of the BCP comparator was
done to facilitate this interface design. The design enhances
some of the BCP transceiver'S characteristics and incorpo­
rates the aforementioned suggestions.

The interface design takes into account the common com­
parator attributes of power supply rejection, variable switch­
ing offset, finite voltage sensitivity, and fast edge rate sensi­
tivity. Vee noise can effect the comparator output when the
inputs are biased to the same voltage.

This particular type of biasing may render portions of the
comparator susceptible to supply noise. Variable switching
offset and finite voltage sensitivity cause the receiver de-

coding circuitry to see a substantial amount of data jitter
when signal amplitudes approach the sensitivity limits of the
comparator. At these signal magnitudes, considerable varia­
tion in the output of the comparator is observed. Finally,
edge sensitivity may allow a fast edge to introduce errors as
charge is coupled through the inputs during a rapid predis­
torted-to-nondistorted level transition, especially as the non­
distorted level is reduced in magnitude.

The receiver interface design (Figure 5-4) addresses each
of the BCP comparator's characteristics. A small offset
(about 17 mY) separates the inputs to eliminate Vcc-cou­
pled noise. This offset is relatively large compared to possi­
ble fabrication variations, resulting in a more consistent, de­
vice-independent operation. The offset has the added bene­
fit of making the comparator more immune to ambient noise
that may be present on the circuit board. A 2:1:1 transform­
er (arranged as a 3:1) restores any voltage sensitivity lost by
introducing the offset. A bandpass filter is employed to re­
duce the. edge rate of the signal at the comparator and to
eliminate environmental noise. The bandwidth (30 kHz to
30 MHz) was chosen to provide sufficient noise attenuation
while producing minimum data jitter. Refer to Appendix C for
a derivation of the filter equations.

Like many present 3270 circuits, the driver design
(Figure 5-5) utilizes a National Semiconductor DS3487 and
a resistor network to generate the proper signal levels. The
predistorted-to-nondistorted ratio was chosen to be about 3
to 1. This ratio was observed to offer good noise immunity
at short cable lengths (less than 1 00 feet) and error-free
transmission to an IBM 3174 controller at long cable lengths
(greater than 5000 feet).

To allow for two interfaces in the same circuit design, the
coax/twisted pair front end (Figure 5-6) includes an ADC
Telecommunications brand TPC connector to switch be­
tween coax and twisted pair cable. This connector allows
different male connectors for coax and twisted pair cable to
switch in different interfaces for the particular cable type.
The coax interface has only the shield capacitively coupled
to ground. The 510n resistor and the filter loading produce
a termination of about 95n. The twisted pair interface bal­
ances both lines and possesses an input impedance of
about 100n. This termination is somewhat higher than the
characteristic impedance (about 96n) of twisted pair. Termi­
nations of this type produce reflections that do not tend to
generate mid-bit errors, as well as having the benefit of cre~
ating a larger voltage at the receiver over longer cable
lengths.

+5V

DP8344

42 _-i---... --It--"'-'V\/'v--... ---t +ALG-IN

41
'---+--4 --II-.... -~M~-+----1-ALG-IN

LEGEND

o TO COAX/TWISTED PAIR fRONT END

[!] TO LINE DRIVER CIRCUITRY

INCLUDES BOARD CAPACITANCE

FIGURE 5-4. BCP Receiver Interface Design

2-28

TLlF/l0488-20

DP8344
1/2 DS3487

45.3n. 1%

1--+-_3
_

8
-1 OAT A -OUT

45.3n. 1%

lOOn. 1%

1--+-_3
_

7
-1 DATA-DLY

lOOn. 1%

LEGEND

m TO 2: 1 : 1 TRANSFORMER

TLlF/l0488-21

FIGURE 5-5. BCP Driver Design

ADC CONNECTOR
2 O.I}lF -------+---... ------IJ---E]+ CENTER

TWISTED PAIR -----... --11-.....,

SHIELD

0.1 }IF

LEGEND

[!] TO 2: 1: 1 TRANSFORMER

CONNECTOR CLOSES SWITCH FOR
COAX AND OPENS SWITCH FOR
TWISTED PAIR.

FIGURE 5-6. BCP Coax/Twisted Pair Front End

2-29

TL/F/l0488-32

•
I

The performance of the combined coax/twisted pair inter­
face is impressive. Performance of the BCP interface typi­
cally extended over 7000 feet of RG62A1U coax and 1700
feet of AT&T DIW 4 pair/24 AWG unshielded twisted pair.
This operation met or exceeded many of the current 3270
solutions. The performance of other 3270 products was ob­
tained from production stock of competitors' equipment and
should be taken as typical operation. Although these long
distances are possible, it is recommended that companies
specify their products to IBM's PAl specifications of 5000
feet of coax cable. The extra long distance capability of the
new interface will assure the designer a comfortable guard­
band of performance. Similarly, 50% margin on the un­
shielded twisted pair capability will approximately match the
900 foot specification.

On the MPA-II as much attention has been paid to the lay­
out as to the interface design. The traces from the
BNC/Twisted Pair ADC connector to the BCP's analog
comparator were made as wide as possible, placed as close
together as practical, and kept on the same side of the
board. The ground plane has been placed directly under
these traces. All digital lines have been kept as far away as
practical. Finally, the ground plane has been partially split,
keeping all the analog interface grounds on one part of the
ground plane, including the BCP ground pin 43; and all of
the digital logic ground pins on the other side. See Appendix
A for the actual layout of the MPA-II.

Twlnax (5250) Interface

The 5250 transmission system is implemented in a bal­
anced current mode; every receiver/transmitter pair is di­
rectly coupled to the twinax at all times. Data is impressed
on the transmission line by unbalancing the line voltage with
the driver current. The system requires passive termination

at both ends of the transmission line. The termination resist­
ance value is given by:

Rt: = Zo/2; where
Rt: = Termination Resistance
Zo: = Characteristic Impedance

In practice, termination is accomplished by connecting both
conductors to the shield via 54.9n, 1 % resistors; hence the
characteristic impedance of the twinax cable of 107n ±5%
at 1.0 MHz. Intermediate stations must not terminate the
line; each is configured for "pass-through" instead of "ter­
minate" mode. Stations do not have to be powered on to
pass twinax signals on to other stations; all of the receiv­
er/transmitter pairs are DC coupled. Consequently, devices
must never output any signals on the twinax line during pow­
er-up or down that could be construed as data, or interfere
with valid data transmission between other devices. The
MPA-II board is factory set to "terminate" mode. To effect
"pass-through" mode, jumpers JP2 and JP3 must be re­
moved.

The bit rate utilized in the 5250 protocol is 1 MHz ± 2% for
most terminals, printers and controllers. The IBM 3196 dis­
play station has a bit rate of 1.0368 MHz ± 0.01 %. The data
are encoded in biphase, NRZI (non-return to zero inverted)
manner; a "1" bit is represented by a positive to negative
transition, a "0" is a negative to positive transition in the
center of a bit cell. This is opposite from the somewhat
more familiar 3270 coax method. The biphase NRZI data is
encoded in a pseudo-differential manner; i.e., the signal on
the "A" conductor is subtracted from the signal on "B" to
form the waveform shown in Figure 5-7. Signals A and Bare
not differentially driven; one phase lags the other in time by
180 degrees. Figures 5-8 and 5-9 show actual signals taken
at the driver and receiver after 5000 ft. of twinax, respective­
ly.

o 500 1000 2000 3000 4000 5000 6000 7000 8000 9000

time (ns) I
1. A OY

-0.3Y

-1.6Y

2. OV

3. (B-A)

NRZI

-0.3Y

-1.6Y

1.6Y

0.3Y
OY

-0.3Y

-1.6Y

5V
OV

Note 1: The signal on phase A is shown at the initiation of the line quiesce/line violation sequence.

Note 2: Phase B is shown for that sequence, delay in time by 500 ns.

Note 3: The NRZI data recovered from the transmission.

FIGURE 5-7. Twinax Waveforms

2-30

TLlF/l0488-12

2V

1V

OV

-IV

-2V
'-t--t--i-+--t--!--+-f-4- time (ns)

2000 4000 6000 8000 o
TL/F/l04BB-13

The Signal shown was taken with channell 01 an oscilloscope connected to
phase B. channel 2 connected to A. and then channel 2 inverted and added
to channell.

FIGURE 5-8. Signal at the Driver

OmV

200mV !
-200 mV L+-j.-jl-l-i-+-+--l--I--l-~- time (ns)

5500 6500 7500 8500 9500 10500
TLlF/l04BB-14

The Signal shown was viewed in the same manner as Figure 5-8. The severe
attenuation is due to the liltering affect 01 5000 It. 01 twinax cable.

FIGURE 5-9. Signal at the Receiver

The signal on either the A or B phase is a negative going
pulse with an amplitude of -0.32V ±20% and duration of
500 ± 20 ns. During the first 250 ± 20 ns, a pre-distortion or
pre-emphasis pulse is added to the waveform yielding an
amplitude of -1.6V ± 20%. When a signal on the A phase
is considered together with its' B phase counterpart, the
resultant waveform represents a bit cell or bit time, com­
prised of two half-bit times. A bit cell is 1 J.Ls ± 20 ns in
duraction and must have a mid bit transition. The mid bit
transition is the synchronizing element of the waveform and
is key to maintaining transmission integrity throughout the
system. The maximum length of a twinax line is 5000 ft. and
the maximum number of splices in the line is eleven. Devic­
es count as splices, so that with eight devices on line, there
can be three other splices. The signal 5000 ft. and eleven
splices from the controller has a minimum amplitude of
100 mV and a slower edge rate. The bit cell transitions have
a period of 1 J.Ls ± 30 ns.

The current mode drive method used by native twin ax devic­
es has both distinct advantages and disadvantages. Current
mode drivers require less power to drive properly terminat­
ed, low-impedance lines than voltage mode drivers. Large
output current surges associated with voltage mode drivers
during pulse transition are also avoided. Unwanted current
surges can contribute to both crosstalk and radiated emis­
sion problems. When data rate is increased, the surge time
(representing the energy required to charge the distributed
capacitance of the transmission line) represents a larger
percentage of the driver's duty cycle and results in in­
creased total power dissipation and performance degrada­
tion.

A disadvantage of current mode drive is that DC coupling is
required. This implies that system grounds are tied together
from station to station. Ground potential differences result in

2-31

ground currents that can be significant. AC coupling re­
moves the DC component and allows stations to float with
respect to the host ground potential. AC coupling can also
be more expensive to implement.

Twinax signals can be viewed as consisting of two distinct
phases, phase A and phase B, each with three levels: off,
high, and low. The off level corresponds with 0 rnA current
being driven, the high level is nominally 62.5 rnA, + 20% -
30%, and the low level is nominally 12.5 rnA, +20% -
30%. When these currents are applied to a properly termi­
nated transmission line the resultant voltages impressed at
the driver are: off level is OV, low level is 0.32V ± 20%, high
level is 1.6V ±20%. The interface must provide for switch­
ing of the A and B phases and the three levels. A bi-modal
constant current source for each phase can be built that has
a TTL level interface for the BCP.

The MPA-lI's twinax line drivers are current mode driver
parts available from National Semiconductor and Texas In­
struments. The 75110A and 75112 can be combined to pro­
vide both the A and B phases and the bi-modal current drive
required. The MPA-IIJC PAL adapts the BCP outputs to
the twinax interface circuit and prevents spurious transmis­
sions during power-up or down. The serial NRZ data is in­
verted prior to being output by the BCP by setting TIN,
{TMR[3]J.

The pseudo-differential mode of the twinax signals make
receiver design requirements somewhat different than that
of the coax circuit. Hence, the analog receiver on the BCP is
not used. The BCP provides both analog inputs to an on­
board comparator circuit as well as a TTL level serial data
input, TTL-IN. The sense of this serial data can be inverted
in software by asserting RIN, {TMR[4]J.

The external receiver circuit must be designed with care to
assure reliable decoding of the bit-stream in the worst envi­
ronments. Signals as small as 100 mV must be detected. In
order to receive the worst case signals, the input level
switching threshold or hysteresis for the receiver should be
nominally 29 mV ± 20%. This value allows the steady state,
worst case signal level of 100 mV, 66% of its amplitude
before transitioning.

To achieve this, the National Semiconductor LM361 was
chosen, a differential comparator with complementary out­
puts. The complementary outputs are useful in setting the
hysteresis or switching threshold to the appropriate levels.
The LM361 also provides excellent common mode noise
rejection and a low input offset voltage. Low input leakage
current allows the design of an extremely sensitive receiver
without loading the transmission line excessively. In addition
to good analog design techniques, a passive, single-pole,
low pass filter with a roll-off of approximately 1 MHz was
applied to both the A and B phases. This filter essentially
conducts high frequency noise to the opposite phase, effec­
tively making the noise common mode and easily rejectable.

Design equations for the LM361 in a 5250 application are
shown here for example. The hysteresis voltage, Vh, can be
expressed the following way:

VH = VRIO + ((RIN / (RIN + Rt) • VOH)

- (RIN / (RIN + Rt) • Vou)

»
z . en
~

where:

VH - Hysteresis Voltage, Volts

RIN - Series Input Resistance, Ohms

RF - Feedback Resistance, Ohms

. , CIN, -Input Capacitance, Farads

VAIO Receiver Input Offset Voltage, Volts

VOH - Output Voltage High, Volts

VOL ~ Output Voltage Low, Volts

The input filter values can be found through this relation­
ship:

VCIN = VIN1 - VIN2/1+ jwCIN (RIN1 + RIN2)
where' RIN1 = RIN2 = RIN:

where

"Fr6 = w/2c

Fro = ,1 /(2c ,. RIN ,. CIN)

CIN = 1 /(2c ,. RIN ,. Fro)

VIN1" VIN2 -Phase A and B Signal Voltages,
-Volts

VCIN. -Voltage' Across CIN, or the Output
of the Filter, Volts

RIN1, RIN2 -":':Input Resistor Values,
RIN1 = RIN2, Ohm~

Fro --':'Roll-Off Frequency, Hz

w -Frequency, Radians

The roll-off frequency, Fro, should be set nominally to 1 MHz
to allow for, transitions at the transmission bit rate. The tran­
sition rate when both phases are taken together is 2 MHz,
but then both RIN1 and RIN2 must be considered, so:

or,

Fro2 = 1/(2c" 2 ,. RIN ,. CIN)

where Fro2 = 2 ,. Fro, yielding the same results .

Table 5-4 shows the range of values expected.

Advanced Features of the BCP

The BCP has a number of advanced features that give de­
signers flexibility to adapt products to a wide range of IBM
environments. Besides the basic multi-protocol capability of
the BCP, the designer may select the inbound and outbound
serial data polarity, the number of received and transmitted
line quiesces, and in 5250 modes, a programmable exten­
sion of the TX-ACT signal after transmission.

The polarity selection on the serial data stream is useful in
building single products that handle both 3270 and 5250
protocols. The 3270 biphase data is inverted with respect to
5250.

Selecting the number of line quiesces on the inbound serial
data changes the number of line quiesce bits that the re­
ceiver requires before a line violation to form a valid start
sequence. This flexibility allows the BCP to operate in ex­
tremely noisy environments, allowing more time for the
transmission line to charge at the beginning of a transmis­
sion. The selection of the transmitted line quiesce pattern is
not generally used in the 5250 arena, but has applications in
3270. Changing the number of line quiesces at the start of a
line quiesce pattern may be used by some equipment to
implement additional repeater functions, or for certain inflex­
ible receivers to sync up.

TABLE 5-4. Twinax Receiver Design Values,

Value Maximum
",

RIN. 4.935E+03

RF 8.295E+05

CIN· 4.4556E-11

VOH 5.250E+OO

VOL 4.000E-01

VIN + 1.920E+00

VIN -1.920E+00

VAIO 5.000E-03
R 6.533E-03

Fro 1.200E+06

VH 3.368E-02

,:Xc, 7.4025E+03

Minimum Nominal

4.465E+03 4.700E+03
7.505E+05 7.900E+05
2.6875E-11 3.3863E-11
4.750E+OO 5.000E+OO
2.000E-01 3.000E-01
1.000E-01

,1.000E-01
O.OOOE+OO 1.000E-03
5.354E:"'-03 5.914E-03
8.000E+05 1.000E+06
2.691E-02 2.880E-02

2.9767E+03 4.7000E+03

2-32

Units

Ohms
Ohms
Farads
Volts
Volts
Volts
Volts
Volts
Ohms

Hz
Volts
Ohms

Tolerance

0.5
0.5

0.2

The most important advanced feature of the BCP for 5250
applications is the programmable TX-ACT extension. This
feature allows the designer to vary the length of time that
the TX-ACT signal from the BCP is active after the end of a
transmission. This can be used to drive one phase of the
twinax line in the low state for up to 15.5 p.s. Holding the line
low is useful in certain environments where ringing and re­
flections are a problem, such as twisted pair applications.
Driving the line after transmitting assures that receivers see
no transitions on the twinax line for the specified duration.
The transmitter circuit can be used to hold either the A or B
phase by using the serial inversion capability of the BCP in
addition to swapping the A and B phases. Choosing which
phase to hold active is up to the designer, 5250 devices use
both. Some products hold the A phase, which means that
another transition is added after the last half bit time includ­
ing the high and low states, with the low state held for the
duration. Alternatively, some products hold the B phase.
Holding the B phase does not require an extra transition and
hence is inherently quieter.

To set the TX-ACT hold feature, the upper five bits of the
Auxiliary Transceiver Register, !ATR[3-7] I, are loaded with
one of thirty two possible values. The values loaded select a
TX-ACT hold time between 0 p.s and 15.5 p's in 500 ns
increments.

The connectors called out in the IBM specifications for the
twinax medium are too bulky to mount directly to a PC
board, therefore a 9-pin D subminiature connector is provid­
ed. This connector is then attached to a cable assembly
consisting of a 1 foot section of twin-axial cable with the
opposite gender 9-pin on one end and a twinax "T" connec­
tor on the other. This is then spliced into the twinax multi­
drop trunk.

Miscellaneous Support

The remaining components of the MPA-II will be covered in
the following section, including the board itself and decou­
piing capacitors.

The. system is implemented on a four-layer substrate, using
minimum 8 mil trace widths/spacing for all signals except
the analog traces in the front-end. Here we specified mini­
mal trace lengths and 55-80 mil trace widths. The traces
from the BNC/Twisted Pair ADC to the BCP's analog com­
parator were made as wide as possible, placed as close
together as practical, and kept on the same side of the
board. The ground plane has been placed directly under
these traces. All digital lines have been kept as far away as
practical. Finally, the ground plane has been partially split,
keeping all the analog interface grounds on one part of the
ground plane, including the BCP ground pin 43; and all of
the digital logic ground pins on the other side. See Appendix
A for the actual layout of the MPA-II. These fairly common
analog layout techniques are justified due to the complexity
and power level of the analog waveforms present in the line
interface.

2-33

Each device has one 0.1 p.F decoupling capacitor located
as close as possible to the chip. These are chip capacitors
(0.3 spacing, DIP configuration) to minimize lead length in­
ductance and facilitate placement. The + 5V supply line has
two 22 p.F electrolytic capacitors, one at each end of the
board. The other three supply lines (- 5V, + 12V, -12V)
drive only the twinax analog circuitry, and are bypassed with
10 p.F electrolytics where they come on to the board and
0.1 p.F chip caps at the device(s). The BCP requires addi­
tional decoupling due to the large number of outputs, high
frequency operation, and CMOS switching characteristics.
We used a capacitor near each ground of the BCP. These
decoupling capacitors, together with the ground and power
planes of the multi-layer board, provide effective supply iso­
lation from the switching noise of the circuitry.

6.0 MPA·II SOFTWARE ARCHITECTURE

The primary goal of the MPA-II design was to accommodate
multiple industry standard interfaces and protocol modes
within a single, integrated structure (see Figure 6-1). The
MPA-II software supports 3270,3299,5250, and all the PC
interfaces in its 8k instruction memory bank, The system is
configured at load time for the different options, and may be
reconfigured "on the fly" by simply writing the new configu­
ration byte into the MPA-II configuration I/O register (2DCh).
New tasks may be added to and old tasks removed from the
MPA-II system easily. The modular organization of the sys­
tem allows for simple maintenance and enhancement.

The basic concepts employed in the software design are:
modularity, comprehensive data structures, and round-robin
task scheduling. The system has been designed to allow
modules to be written and integrated into the system by
different groups. In the case of the National Semiconductor
team developing the MPA-II, different groups developed the
3270 and 5250 software modules. Some modules were set
up in advance of any protocol development and have been
the basis of the software development. The KERNEL.BCP
module contains the task switching and scheduling routines.
The header files MPA.HDR and DATARAM.HDR contain
the basic global symbolic equates and data structures.
DATARAM.HDR is organized such that the BCP's data RAM
may be viewed through a number of templates, or maps. In
other words, except for specific hardware devices mapped
into memory, there are no hard coded RAM addresses. The
8k dual-port block is fixed at the top of RAM, and the PC I/O
space is mapped into the upper page of installed RAM, but
the locations of screen buffers and variable storage are all
determined through the set of templates used. The tem­
plates serve only to cause the assembler to produce relative
offsets. The software developer chooses which base physi­
cal address to reference the offset to in order to address
RAM. Usually, a pointer to RAM is set up in the IZ register
pair, and the data are referenced by the assembler mne­
monics. For example:

MOVE[lZ + control_reg], rd

where: control_reg is a symbolic template offset.

rd is a destination register

I •

y- r---~

~
CD

:Z
<

BCP DATA MEMORY
o

SB-O

• •
8K •

SB-n

SCP-O

• • •
SCP-n

DCP

DCA
IBM

MPA-II
32K

SCREEN BUFFERS

SESSION
CONTROL PAGES

DEVICE CONTROL
PAGE

INTERRUPT
HANDLERS

RA - RECEIVER INTERRUPT

LTA - TRANSMITTER

TFE - TRANSMITTER

TMR - REAL TIME CLOCK

BIRQ - PC INTERFACE

TLIF/10488-17

FIGURE 6-1. MPA-II Software Architecture

This scheme allows the actual locations of data structures
to move based on the system mode and current addressed
device. This also allows the use of the dual-port RAM to
change with the interface mode or protocol mode.

The MPA.HDR module is included (via the .INPUT assem­
bler directive) in every module for use in the MPA-II system,
regardless of protocol or interface mode. MPA. HDR defines
specific hardware related constants such as RAM size,
hardware I/O locations, etc ... MPA.HDR in turn includes:
MACRO.HDR, which contains commonly used macros;
BCP.HDR, which defines specific bits and bit fields for BCP
registers; STDEQU.HDR, which contains BCP and assem­
bler specific declarations (it is included with the BCP As­
sembler System); and DATARAM.HDR, which contains the
general RAM templates. Equate files for specific functions
such as twinax, coax, and the different interfaces are includ­
ed where needed. The Kernel module contains the basic
software structures which support all system activities. Sys­
tem initialization, scheduling tasks, re-configuration and
halting the system all fall under its jurisdiction. All tasks are
called from the Kernel and return to it.

A number of rules have been adhered to during the MPA-II
software development. These can best be discussed by re­
ferring to the BCP register allocation shown in Figure 6-2.
The interrupt handlers are all considered background tasks.
All 3270 "busy" type processing, 5250 command process­
ing, and system functions are foreground tasks. The Main
and Alternate banks are reserved for foreground and back­
ground functions, respectively. In addition, the index regis­
ters IW and IX are reserved for the background functions.
The index registers IY and IZ are reserved for the fore­
ground functions. "Reserved" means that the background
routines promise to save and restore registers reserved for
the foreground routines and that the foreground routines
promise not to modify or rely upon registers reserved for the
background routines. This system of reserving registers al-

2-34

lows for extremely fast context switching since interrupt
(background) routines only need to save and restore certain
registers, (usually only IZ). The IZ pointer is generally used
as the base pointer for all templates used by the tasks and
interrupts. All foreground tasks are restricted to six levels of
nesting to prevent the address stack from overflowing. Inter­
rupt handlers are limited to three levels. Interrupts are gen­
erally not interruptable. Some special cases exist, and they
are detailed later in this document.

The R20 and R21 registers are permanently reserved for
the system. R20 is used as the R_CONFIG storage, or the
current configuration state of the MPA-II (e.g., Coax/IRMA).
R21 is the R_TASK register as defined by the Kernel. The
Kernel uses this register as its task list, with scheduled
tasks signified by their corresponding bits set and un-sched­
uled tasks' bits cleared.

Kernel

The major part of the Kernel module is a global routine
called tasker. Tasker is a round robin task scheduler. Each
major functional group in the MPA-II system has a corre­
sponding task that is invoked in this way. All tasks run to
completion, meaning that once a task is given control, the
task must return to the tasker in order to relinquish control.
Interrupt handlers are initialized and masked on and off by
their corresponding tasks, although the tasker maintains ul­
timate control over all activity.

The Kernel consists of tasker, schedule_task, and desch_
task routines. These three combine to allow tasks to be
added or removed from the active task list, providing orderly
execution of tasks. All tasks are scheduled by calling sched­
ule_task with the task's identification byte in the selected
accumulator. Schedule_task then adds the task to the ac­
tive task list. The task list is implemented in R_Task (R21)
as discussed above. The list of tasks in the MPA-II system is
shown in Table 6-1.

TABLE 6-1. MPA Tasks

Task ID
Task

Description
Name

0 clL-task Coax Session Processor
1 tw_task Twinax Session Processor
2 ibm_task IBM Interface Emulation
3 irm8-task IRMA Interface Emulation
4 s8-task Smart Alec Interface Emulation
7 house_task System Initialization and Control

System Initialization

The file MPA2.BCX contains the microcode for the MPA-II
system operation. The Loader (LD) softloads the BCP, sin­
gle steps the BCP-which allows the BCP to disable GIE if
any interrupts are pending from previously executing code,
starts the BCP executing from address zero (OOOOh), and
then writes the MPA-II Configuration register (2DCh) to es­
tablish the desired mode of operation, e.g., Coax-IRMA,
Coax-IBM, etc. Note that the MPA-II Configuration register

2-35

is written after the BCP is started. As discussed in the hard­
ware section, the MPA-II is capable of performing a hard­
ware "lock out" of the PC after the PC writes to the I/O
locations 220h-22Fh, 2DOh-2D6h, and 2D8h-2DEh, if this
feature has been enabled by the BCP microcode. This
means that the next access (reading/writing dual-port mem­
ory as well as I/O memory) by the PC to the MPA-II board
will be held off until the BCP's microcode signals the MPA-II
hardware that the next PC access may complete. If the BCP
is not running, its microcode cannot signal the hardware to
unlock the PC and, therefore, the PC will stop processing.
The user will then have to reset the PC in order for the PC's
processor to regain control. When the MPA-II is reset (via
the PC's reset bus line) this lock out capability is automati­
cally disabled and the PC hs unlimited access to the MPA-II
board. But, after the MPA-II has been running, and it is then
arbitrarily stopped, the PC lock out capability may still be
enabled. Therefore, never perform I/O writes to the above
mentioned registers unless the MPA-II board has been re­
set, or until after starting the BCP with microcode that either
disables the lock out capability or unlocks the PC after an
access occurs.

I

II

DEVICE OCR

BASE IBR

ADDRESS ATR

FILL FBR

DATA RTR

STATUS TSR

COMMAND TCR

MODE TMR

ACC~

GP5'

GP6'

GP7'

RESERVED FOR

CCS I

TFF

RLO

ALTERNATE
BANK A

TCS I IW I
1 0 1 0 2

IV15-8

HOLD I 2

FILL

BANK B

DATA

TA ERR RA DA 10

SEC SLR ATA OWP 10

TRES LOOP RPEN RIN TIN

DW
1 0

1 0

RF
9

TF
9

PS 0 1

CCR TO RR RW

NCF TFE RFF LA

ICR RISI RISO RSV

ACR TST TLD TMC

GPO

GP2

GP3

GP4

GP5

GP6

GP7

MAIN
BANK A

BIRO N V

LTA DEMI RAR

4 3 1M
2

BIC RSV COD

BANK B

C Z

ACK POLL

1 0

LOR GIE

CONDITION
(FLAG)
NETWORK
FLAGS

INT

AUX

RESERVED FOR

RO

Rl

R2

R3

R4

R5

R6

R7

R8

R9

RIO

Rll

(LOW)

/
FOREGROUND

ROUTINES
R13,12

R15,14

R17,16

BACKGROUND (HIGH)

(INTERRUPT)
W ROUTINES

X

Y

LCONFIG

R_TASK
}-- ,y,,,"

GP8

GP9

GP10 GLOBAL CONSTANT

GPll GLOBAL CONSTANT

GP12 GLOBAL CONSTANT

GP13 GLOBAL CONSTANT

GP14 GLOBAL CONSTANT

GP15 GLOBAL CONSTANT

(TR HIGH) (TR LOW)

INTERFACE
DEPENDENT

TIMER .. I ______ R2_9 ___________ R_2_8 _____ ...

ASD
2 1 ISP 3

I
013

DSP
2 1 o

DS

® 1988, 1990 National Semiconductor Corporation

FIGURE 6·2. DP8344 MPA·II Register Map@

2·36

R19,18

R20

R21

R22

R23

R24

R25

R26

R27

R29,28

R30

R31

TL/F/104B8-1B

o

I I I I I I I I I
I L POR SYSTEt.4 (0 INDICATES THAT THE POR IS COt.4PLETE)

RESERVED

'------ 3299 t.40DE

..... ------ COAX EA8 INSTALLED

..... ------- t.4PA COt.4t.4AND (0 INDICATES COt.4t.4AND EXECUTION COt.4PLETE)

'---------- 18t.4 INTERFACE t.40DE

..... ---------- DCA INTERFACE t.40DE

'--------------5250/3270
TL/F/l0488-33

FIGURE 6-3. MPA-II Configuration Register

After the Loader has started the BCP executing MPA2.BCX
microcode, the microcode proceeds by disabling interrupts
and initializing certain BCP registers to set CPU speed,
memory access wait states, BIRO direction, etc. The IRO
PC interrupt line is deasserted, PC I/O write generated
BIRO interrupts are disabled, the PC lock Out capability is
disabled, and BCP data memory is cleared. Finally, initializa­
tions for the HOUSEKEEP task are performed and then
control is permanently passed to the Tasker, which will re­
tain control until the MPA-II is reset.

After the Tasker performs its own initialization, it begins call­
ing any scheduled tasks. At this pOint, only the HOUSE­
KEEP task is scheduled. When HOUSEKEEP runs, the
MP~CONFIG register (I/O location 2DCh) is written into
R20, the R_CONFIG register, and then its contents are
used to call the appropriate task initialization routines, refer
to Figure 6-3. These routines set up any variables needed
for the task, initialize interrupt handlers associated with
them, and schedule their tasks. For instance, if the MP~
CONFIG register has been loaded with 49h, the routine
would call clL-init to initialize the 3270 coax task, set up the
appropriate interrupt handlers, and schedule clL-task. Then
the irm3.-init routine would be called which sets up the in­
terface registers, the BIRO interrupt, etc ... Since the PC
writes the MP~CONFIG register, HOUSEKEEP must in­
terpret the configuration value based on what it knows are
valid configurations. In order to provide feedback to the PC,
HOUSEKEEP builds a valid configuration value based on its
interpretation. After all the initialization routines have com­
pleted execution and returned control to HOUSEKEEP,
HOUSEKEEP places its value for the configuration back
into the MPLCONFIG register with the POR_SYSTEM
bit of the configuration clear, thus signaling the PC that ini­
tialization has completed and has been interpreted as the
HOUSEKEEP configuration value shows. The Loader polls
the MP~CONFIG register after writing it, waiting for the
POR_SYSTEM bit to clear. When the Loader detects that
the HOUSEKEEP mode initialization has completed, it com­
pares its value for the configuration with that returned by
HOUSEKEEP. The Loader then issues warning messages
to the user if any mismatches are found. When HOUSE­
KEEP passes control back to the tasker, all applicable tasks
are scheduled and interrupts have been unmasked.
HOUSEKEEP remains scheduled so that upon subsequent
executions the RAM value for MAP _CONFIG can be com­
pared with R_CONFIG. If a difference is found or the
POR_SYSTEM bit is set, then the initialization process

2-37

takes place again. If no difference is detected, then
HOUSEKEEP returns directly to the tasker.

Coax Task

Basic 3270 emulation is handled by the clL-task and its
associated routines independent of the interface mode con­
figured. The coax routines are set up to exploit the extreme­
ly quick interrupt latency of the BCP. Even so, the coax
routines are fairly time critical. The basic structure used is
divided into two distinct parts: the interrupt handler executes
all real time tasks in the background and the clL-task rou­
tine handles the four "busy" type commands of the 3270
protocol. The vast majority of decisions and command exe­
cutions must be carried out "on the fly", or under the aus­
pices of the interrupt handlers. Primarily, the interrupt han­
dlers do the bulk of command execution. See Table 4-1 in
Chapter 4 for a list of some of the 3270 commands support­
ed.

The scp_coax template, contained in CX-DATAR.HDR, is
a reference to the RAM array that locates all. the coax termi­
nal variables, including relative pointers into the screen buff­
ers. Both a Regen buffer and EAB is supported if the
MP~CONFIG register is set for. EAB.

The clL-task module, CLTASK.BCP, contains the task
initialization routine as well as the task itself. ClL-init sets
up the RA and L T A interrupts and initializes all scp_coax
variables and inter-task communications, and initializes the
transceiver. CX-TASK's functions are: processing inter~

task mail, updating poll status, processing foreground com­
mands, and resetting the coax terminal. The foregroufld
commands include SEARCH forward, SEARCH backward,
INSERT, and CLEAR.

The Session Control Page, SCP, for coax defines registers
for each of the 3278 terminal registers, as well as additional
ones for control of internal functions. Refer to Figure 4-2 in
Chapter 4 for the internal structure of a 3270 terminal. Ini­
tially, the primary and secondary control registers are
cleared, [STATJVAIL] is loaded into status_reg, and the
poll response is set to POR (Power On Reset). GP6 on Al­
ternate Bank B is dedicated as the CoalL-state register. It is
used to provide fast access to protocol state information
such as 3299 address, cursor change, and write in progress.

The MPA-II system uses a number of variables to maintain
the coax session, including:

cOa>L.stat -Emulation Mode

mp3.-mainstat -Main Interface Control Bits, such as
Clicker and Alarm Status

I •

~ r---~
~
CD

Z
ca:

mp<L-auxstat -Auxiliary Interface Control, such as
Buffer being Modified and On-Line/Off­
Line Control

mp<L-control -Poll Status Control, such as POR, Key
Pending, FERR, Operation Complete

mp<L-auxcontrol -Additional Poll Status, such as EAB
Status

The initial state of the mp<L-mainstat register sets up flags
to signal that a new cursor position is available and that the
key buffer is empty. mp<L-control is set up with POR state
and the status_pending flag set. Status_pending signals
the poll response routine that POR status is available. In
addition to flags and registers, there are two mailboxes that
are used: the sub-task mailbox, and sync_mailbox. The RA,
or receiver active, interrupt uses the sub-task mailbox to
communicate to cx-task which, if any, foreground coax
command needs to be procesed. Initially this is cleared. The
sync_mailbox is the PC interface routines' communication
mechanism. Keystroke passing, alarm acknowledgement
and resetting of the terminal by the PC are communicated
via sync_mailbox.

In normal operation, the cx-task routine remains sched­
uled and the normal execution proceeds in the manner sug­
gested in Figure 6-1. The update_poll response routine
uses the values in mp<L-control and mp<L-auxcontrol to
determine if the session should adjust its poll status to the
controller. The new_status routine maintains the sync_
mailbox and, therefore, communication with the various PC
interface tasks. If there is mail, new_status reads and exe­
cutes the PC interfaces' commands. Of chief importance,
the state of the keystroke buffer is checked here. It is the
mechanism through which keystrokes may be passed from
the PC interfaces to the poll response for transmission to
the host controller. A high MP~MS_KEYEMPTY bit in
mp<L-mainstat signals that the interface may supply a key­
stroke. If MP~MS_KEYEMPTY is low, the PC interface
must wait. MP~MS_KEYEMPTY is cleared by new_
status when it infers from mp<L-control that the previous
key has been acknowledged by the coax controller.

The sub-task communication mailbox is checked by cx­
task next. If the receiver interrupt handler has decoded a
foreground coax command request from the host controller,
the mailbox will be non-zero. The value in the mailbox indi­
cates that either a forward or backward SEARCH, an
INSERT, or CLEAR command, and its associated parame­
ters are ready for execution. The appropriate foreground
coax command routine is then run to completion. The
status_reg is now updated, since completion of a fore­
ground coax command requires an Operation Complete
status to be returned to the host controller. The poll re­
sponse is updated again, if necessary, and then the cx­
task routine relinquishes control to the tasker.

2-38

Coax Interrupt Handlers

The coax mode uses two interrupts to support coax activity:
Receiver Active, RA, and Line Turn Around, LTA. There are
two possible receiver interrupt handlers which can get con­
trol from the RA interrupt depending on whether 3270 or
3299 support has been selected in the MP~CONFIG reg­
ister. Two Interrupt Vector tables are used to determine
which receiver interrupt handler will get control. One inter­
rupt vector table, INT _PAGE, supports 3270 and 5250. The
other interrupt vector table supports 3299. The active inter­
rupt vector table is determined by the contents of the II BR I
register. The IIBR I register is set during configuration initial­
ization by a coax initialization routine. HOUSEKEEP deter­
mines which coax initialization routine gets executed based
on the MP~CONFIG register, cx-init for 3270 and cx-
3299init for 3299. cx-3299init actually calls on cx-init to
perform most of the initialization, with cx-3299init perform­
ing only 3299 specific initializations.

The flow of the 3270 receiver interrupt handler is shown, in
Figure 6-4. The only difference between the 3270 and 3299
receiver interrupt handler is at the start. The 3299 receiver
interrupt handler checks the first frame of the 3299 trans­
mission for the terminal address. If the address does not
match the user specified terminal address (usually specified
via the Loader), the receiver is reset and that transmission is
ignored. If the terminal address of the 3299 address frame
does match, then control is passed to the 3270 interrupt
handler for command processing and response transmis­
sion back to the coax controller.

The receiver interrupt handlers are background tasks to the
Kernel and have been written to conform with the rules for
all background tasks. These rules include the saving and
restoring of any register used except those on the alternate
B bank, IW and IX. Within the receiver interrupt handler, only
the dedicated background register pair IX is used, IW is free
for user enhancements. IX is used as the screen and EAB
buffer pointer, and its is also used as the receiver software
state machine variable OAT ~ VECTOR. More about the
OAT~VECTOR will be discussed later.

When the 3270 receiver interrupt gets control, either directly
from the RA interrupt vector or indirectly from the 3299 re­
ceiver interrupt handler, it retains control until all the frames
sent from the controller have been processed by the inter­
rupt handler or a transmission error is detected. We chose
the Receiver Active interrupt and allowed the receiver inter­
rupt routine to retain control until the transmission is com­
plete because the MPA-II must support two asynchronous
communications interfaces, the coax line and the PC inter­
face. By using the RA interrupt the receiver interrupt handler
has more time with which to get control before it must re­
spond to the transmission sent. This extra time is needed
when the receiver interrupt is held off while other interrupts
are being processed or while the foreground routines have
disabled interrupts. Note that care should be taken to insure
that the receiver interrupt is never held off for more than
4.5 Il-s or the MPA-II may not be able to respond to coax
commands with 5.5 Il-s.

TLlF/10488-42

TLlF/l0488-41

FIGURE 6-4. 3270 Coax Receiver Handler

2-39

» z .
0)

"""

I

Ell
I

.....

..::t
(0 , Once the receiver interrupt handler gets control, it will check
Z for Data AVailable, DAV, and receiver errors, handling them

:<C immediately. If neither condition mentioned above is true,
which is the case unless the receiver interrupt has been
held off, the receiver interrupt handler will check for PC in­
terface activity and allow it to be serviced via one of the fast
BIRO routines, (Le., either the IRMA or IBM PC interface
fast BIRO routine). As the coax transmission is processed,
the receiver interrupt handler will check for PC interface ac­
tivity in between the processing of coax data frames, when
the receiver interrupt handler is idle anyway. Holding off the
PC and its interface programs (Le., IRMA's E78, IBM's
PC3270, etc ...) is possible because they are not as time
critical as a coax controller in expecting responses from the
MPA-II.

When data becomes available the receiver interrupt handler
checks to see if the terminal is currently processing a coax
foreground command and therefore "busy". If it is busy,
then all data and commands are ignored, and the receiver
interrupt handler enables just the LTA interrupt, allowing it
to respond with TT / AR as soon as the coax line drops. Note
that the L T A interrupt may now interrupt the receiver inter­
rupt handler. If the terminal is not busy, then a quick check
to see if the current data frame is either the POLL or PACK
command is performed. If this is true, the POLL or PACK
command is handled immediately. Otherwise, bit 10 of the
coax data frame is checked. If it is high, the data frame is a
command from the controller. First the terminal internal de­
vice address is decoded .to determine which internal device
the command is addressed to; for example EAB. Next, the
command is decoded, its processing routine' is cqlled, and
the command is processed. If it is a Read type command
then the appropriate .response is immediately sent. If the
coax command processed is a Write type command that
exp~cts data'f~art;les to follow, either immediately or upon
the next· transmission, the DATA-VECTOR is loaded with
the address of the part of the receiver interrupt handler rou­
tine which is responsible for processing the expected data
frame(s). Next, the L T A interrupt is enabled to allow it to
respond with TT / AR when the line drops. Again, note that
the LTA interrupt handler may interrupt the receiver interrupt
handler from this point on. Finally, control passes to the
receiver interrupt handler exit routine which terminates write
mode, if it has been active, checks for PC activity and, if any
occurred, handles it,and then checks for receiver activity. If
the receiver is still active or data is available, the receiver
interrupt handler loops baCk to process the next data frame,
else the' interrupted foreground routine's state is restored
and the receiver interrupt handler then exits.

If bit 10 of the coax data frame is low then the data frame
contains data for a previously executed command. The
DAT ~ VECTOR is used to pass control to the appropriate
section of code which processes that data.' After the expect­
ed data is processed,' or a command is executed which
does not require following data, or an error is detected, then
the DA T ~ VECTOR is set to areceiyer interrupt handler
routine which accepts and trashes unexpected data frames.
As with commands, after the'datais processed, the LTA
interrupt is enabled to allow it to respond with TT / AR when
the line drops. Finally, control returns to the receiver inter­
rupt handler exit routine, but note that write mode is not
terminated, in most cases. ., .

2-40

The other interrupt used by the coax mode, L T A, requires a
very simple interrupt handler since· its only task is to re­
spond with TT / AR (see Figure 6-5). This is because all oth­
er responses are handled by the receiver interrupt handler,
as stated above. Thanks to the dedicated registers of the
BCP and the tight coupling of the CPU to the Transceiver,
the L T A interrupt handler does not have to save or restore
any registers. This feature allows it to easily interrupt both
foreground and background tasks, as well as perform in a
timely manner.

(LTA INTERRUPT)

.l
/ SEND TT/AR /

.l
(EXIT)

TL/F/104BB-43

FIGURE 6-5. 3270 Coax LTA Handler

Due to the nature of the coax mode, most of the coax com­
mands must be processed during the receiver interrupt. The
commands can be broken up into three basic groups: Read
type commands which respond with information requested
by the controller. Write type commands which write follow­
ing data frames into particular registers or screen buffers,

. and foreground commands which perform various time con­
suming tasks such as clearing screen buffer memory. Of the
Read type commands there is a special case called the
POLL command. This command will be discussed first.

Poll/Response Mechanism

The Poll and POLL! ACK commands are handled in the
C~BASRD.BCP module in rou,tines clL-poll and
c><-pack, respectively. The basic functions of the cz-poll
routine are to decide if TT / AR or special status should be
returned to the coax controller and to handle the POLL
modifiers in the upper bits of the POLL command. These
modifiers include the terminal alarm and key click control.
The determination of which status to send is made after
checking mp~control for the MPA-STAT_PEND bit. If
MPA-STAT_PEND is asserted, the poll response vari­
ables have new status to send. If no status is pending,
TT / AR is sent. Next, the POLL command modifiers are applied
to the alarm and clicker status bits in mpLmainstat.

The POLL! ACK routine always responds with TT / AR. Next,
mp~control is checked to see if the pending status has
been polled by the coax controller .. If not, the POLL! ACK
routine exits. Otherwise the pending status is cleared and
both mp~control and mp~auxcontrol are updated. Then
the poll response bytes, poliresp_lo and pollresp_hi, are
cleared.

Update_poll in the C~TASK.BCP module handles updat­
ing mp~control and mp~auxcontrol to reflect new status
conditions. This routine' updates the poliresp_lo and hi
bytes based on the priority of the status in mp~control
and mp~auxcontrol. POR is the highest priority condition
and outstanding status from EAB is the lowest.

Read Commands

All read type commands to the base are found in the
CLBASRD.BCP module. Each read type command is de­
coded by the receiver interrupt handler and vectored to the
appropriate cx-routine. The most basic read type com­
mand is cx-readata. This is invoked upon decoding the
READ DATA data stream command. The character pointed
to by the address counter is sent immediately. The ad­
drcounter variable is incremented after the character is
sent.

The cx-readmul routine is also found in the
CLBASRD.BCP module and is vectored to when a READ
MULTIPLE command is decoded. READ MULTIPLE ex­
pects multiple bytes of screen data to be sent within 5.5 p,s.
The response is initiated inside cx-rdmul. The routine has
two modes: 4 byte and 32 byte. The default mode is 4 byte
and is determined by the state of the LSB in the secondary
control register. Both modes use the variable addrcounter
on the SCP to determine both where to find the data to send
and how many bytes to send, up to the 4 or 32 byte limit. In
other words, 4 and 32 bytes are the maximum that will be
sent to the coax controller. The addrcounter is incremented
after sending each byte and terminates the response when
the two or five low order bits roll to zero. The transmit FIFO
on the BCP will hold up to three bytes. The Transmitter
FIFO Full flag, TFF, indicates when the transmitter's FIFO
has been loaded with those three bytes. Using this flag, the
read multiple routine begins by loading the transmitters
FIFO. Once TFF is true, the read multiple routine then alter­
nates between checking the TFF flag and checking for PC
activity via the BIRO flag. If PC activity is detected, then the
appropriate fast BIRO routine is called to handle the PC
access. When. all the requested bytes have been sent, the
read multiple routine passes control to the receiver interrupt
handler exit routine. The remaining read type commands
are all handled similarly. Cx-rach and cx-racl respond
with the high and low bytes of the addrcounter variable,
respectively. Cx-rdid responds with the terminal ID byte.
Cx-rxid responds with TT / AR since it is not implemented.
Cx-rdstat responds with the staLreg variable. All these
commands check for L T A prior to responding. If L TA has
not occurred, then a protocol error is posted since read type
commands are required to be the last frame in a message
from a coax controller. The cx-rdid routine does additional
processing, however. The status conditions OPERATION
COMPLETE and FEATURE ERROR are cleared by recep­
tion of the READ ID command.

Write Commands

All write type commands to the base are found in the
CLBASWR.BCP module. Commands are decoded by the
receiver interrupt handler and vectored to this module at the
cx-addresses. Each write command has an associated
dv_stub for handling incoming data. The routines load the
DATA-VECTOR with the appropriate stub before exiting.

Cx-write and its data vector stub dv_write are responsible
for writing data into the screen buffer, setting the MPA-ll's
Buffer Being Modified semaphore and indicating the screen
buffer update in the MPA page change word. When the next
command is decoded, write mode will be terminated, the
Buffer Being Modified bit will be cleared, and the Buffer
Modified bit will be set. The dv_write stub is very critical in
that very large blocks of data may be sent to the device

2-41

through the routine and cumulative interrupt latency effects
may become significant. To address this, the dv_write rou­
tine always empties the receiver FIFO.

Other write type commands found in the CW_BASWR.BCP
module include the initial stubs for the foreground com­
mands; SEARCH FORWARD, SEARCH BACKWARD, IN­
SERT, and CLEAR. All these commands are initially decod­
ed and vectored here in real-time. When their associated
parameters are received, the foreground commands are
scheduled through the sub-task communcation mailbox. All
the foreground commands cause the terminal to set
NOTJVAIL status (busy) in the status register. All four
respond with TT / AR to acknowledge reception of the com­
mand and parameters cleanly.

All the other write commands load variables on the SCP
corresponding to registers in the emulated terminal, or
cause some controlling action in the terminal. These include
the low and high bytes of the address counter, the mask
value for CLEAR and INSERT, the control registers and re­
setting the terminal. Cx-reset calls the hosLreset routine
that re-initializes the SCP variables to the POR state. The
screen buffers are not cleared. The START OPERATION
command causes a vector to the cx-start routine and re­
turns TT / AR.

Foreground Commands

The foreground routines are all executed by cx-task when
the sub-task communication mailbox is filled with the appro­
priate value. These are tLinsert, tLclear, tLsforward
and tLsback. The routines are found in the
CLCOM.BCP module along with other local support rou­
tines.

EAB Commands

The EAB commands are found in the CLEAB.BCP mod­
ule. Read and write type commands addressed to the EAB
feature are included here. The number of commands for the
EAB feature are small enough that they are logically
grouped together in one module, as opposed to the base
commands. Some of the more complex commands from a
performance standpoint are addressed to the EAB feature.
WRITE ALTERNATE, WRITE UNDER MASK, and READ
MULTIPLE EAB require the most real-time bandwidth of any
coax function.

The READ MULTIPLE EAB command is the same as its
base counterpart except for two features: it functions with
the EAB exclusively and, if the Inhibit Feature I/O step bit in
the Control register is set, then this command is ignored.
WRITE ALTERNATE receives a variable length stream of
data that is written with screen and EAB data alternately.
The WRITE UNDER MASK command uses data associated
with the command, the EAB byte pointed to by the cursor
register, and the EAB mask to modify the contents of the
EAB. The algorithm is quite strange and is best described by
the code. Please refer to eab_wum and dv_wum for spe­
cifics on the command implementation.

IRMA Interface Overview

IRMA is a member of a family of micro-to-mainframe links
produced by Digital Communications Associates. It provides
the IBM PC, PC XT, or PC AT with a direct link to IBM 3270
networks via a coaxial cable connection to an IBM3174,
3274, or integral terminal controllers with type "A" adapters.

I

II
I

.....
~
CD

Z
<C

The IRMA product includes a printed circuit board that fits
into any available slot in IBM PCs and a software package
that consists of a 3278179 Terminal Emulator program,
called E78, and two file transfer utilities for TSO and CMS
environments. Also included in the software are. BASICA
subroutines useful in developing other application programs
for automatic data transfer.

The 3278179 Terminal Emulator provides the user with all
the features of a 3278 monochrome or 3279 color terminal.
The IRMA file transfer program provides all the information
required for the successful transfer of files under the TSO or
CMS IBM mainframe software packages. Also included in
the IRMA software package are many other features such
as program customization, keyboard reconfiguration, inde­
pendent and concurrent operation, ASYNC. Character Sup­
port, and PC clone support.

As discussed in the introduction, the IRMA product was a
forerunner in the 3270 emUlation marketplace and quickly
gained wide acceptance. DCA made a considerable effort in
documenting the interface between IRMA and its PC host.
As a result this interface has become one of the industry
standards used today. So it is only natural that this interface
be used on the DP8344 Multi-Protocol Adapter-II to highlight
the power and versatility of the DP8344A. Biphase Commu­
nications Processor. The MPA-II hardware with the MPA-II
soft-Ioadable DP8344A microcode is equivalent in function
to the DCA IRMA board with its associated microcode. Both
directly interface with the IRMA software that runs on the
PC (E78, file transfer utilities, etc.) providing all functions
and features of the IRMA product. The following sections
describe the hardware interface and the BCP software in
the Multi-Protocol Adapter II Design/Evaluation kit that is
used to implement the IRMA interface. All of the following
information corresponds to Rev 1.42 of the IRMA Applica­
tion software. Later versions of the IRMA PC Application
Software are downward compatible.

Hardware Considerations

The IRMA printed circuit board plugs into any normal expan­
sion slot in the IBM PC System Unit. It provides a back-pan­
el BNC connector for attachment by coaxial cable to a
3174,3274, or integral controller. IRMA operates in a stand­
alone mode, using an on-board microprocessor (the Signet­
ics 8X305) to handle the 3270 protocol and screen buffer.
Because of the timing requirements of the 3270 protocol,
the on-board 8X305 operates independently of the PC mi­
croprocessor. The 8X305 provides the intelligence required
for decoding the 3270 protocol, managing the coax inter­
face, ·maintaining the screen buffer, and handling the data
transfer and handshaking to the System Unit (PC microproc­
essor).

The IRMA card uses National Semiconductor's DP8340 and
DP8341 3270 coax transmitter and receiver (respectively) to
interface the 8X305 to the coaxial cable. The DP8340 takes
data in a parallel format and converts it to a serial form while
adding all the necessary 3270 protocol information. It then
transmits the converted data over the coax in .a biphase en-

2-42

coded format. The DP8341 receives the biphase transmis­
sions from the control unit via the coaxial cable. It extracts
the 3270 protocol specific information and converts the seri­
al data to a parallel format for the 8X305 to read.

The IRMA card contains 8K of RAM memory for the screen
buffers and temporary storage. The screen and extended
attribute buffers use approximately 6K of this memory. The
remaining memory space is used by the 8X305 for local
storage. A block diagram of the IRMA hardware is shown in
Figure 6-6.

The hardware used in enabling the 8X305 to communicate
with the PC's 8088 processor is a dual four byte register
array. The 8X305 writes data into one of the four byte regis­
ter arrays which is read by the 8088. The 8088 writes data
into the other four byte register array which is in turn read by
the 8X305. The dual register array is mapped into the PC's
I/O space at locations (addresses) 220h...:.223h;

A handshaking process is used between the two processors
when transferring data. After the 8088 writes data into the
array for the 8X305, it sets the "Command Request" flag by
writing to I/O location 226h. The write to this location is
decoded in hardware and sets a flip-flop whose output is
read as bit 6 at location 227h. When the 8X305 has read the
registers and responded with appropriate data for the 8088,
it clears this flag by resetting the flip-flop. A similar function
is provided in the same manner for transfers initiated by the
8X305. Here the flag is called the "Attention Request" flag
and can be read as bit 7 at location 227h. This flag is
cleared when the 8088 writes to I/O location 227h.

The MUlti-Protocol Adapter-II printed circuit board also plugs
into any expansion slot in the IBM PC System Unit. Like the
IRMA card, it provides a back panel BNC/Twisted Pair con­
nector for attachment by coaxial cable or unshielded twisted
pair cable to a 3174, 3274,or integral controller. The MPA-II
operates in a stand-alone mode, using the DP8344A Bi­
phase Communications Processor to handle the 3270 pro­
tocol and screen buffer. Again, because of the timing re­
quirements of the 3270 protocol, the BCP operates. inde­
pendently of the 8088 microprocessor of the System Unit.
As with the 8X305, the BCP provides the intelligence re­
quired for decoding the 3270 protocol, managing the coax
interface, maintaining the screen buffer, and handling the
data transfer and handshaking to the System Unit. Howev­
er, with the BCP's higher level of integration, it also directly
interfaces with the coaxial cable. The BCP has an internal
biphase transmitter and receiver that provides all the func­
tions of the DP8340 and DP8341. However, unlike the
8X305, the DP8344's CPU can handle the 3270 communi­
cations interface very efficiently.

The MPA-II card contains a single 32K x 8 RAM memory
device for the screen buffers and temporary storage. This
memory size was chosen for the 5250 environment, where
the BCP can handle up to seven sessions. In the IRMA
mode, only a little over 4K· of memory is required. The
MPA-II hardware block is shown in Figure 6-7.

r- COAX

1
I J

I DP8340 I I DP8341 J
Jt l Jfl

8X305 4 ~

l~ntr
DUAL

REGISTER
FILE

I+Utl
PC BUS

FIGURE 6·6. IRMA Hardware Block Diagram

COAX

BCP

PC BUS

FIGURE 6·7. MPA·II Hardware Block Diagram

The hardware used to enable the BCP to communicate with
the PC's 8088 processor is steering logic (contained in
PALs) and the BCP's data memory. In a typical application,
the BCP communicates with a remote processor by sharing
its data memory. This is true with the MPA-II, but because
the MPA-II must run with the IRMA software, steering logic
has been used to direct the 8088's I/O reads and writes of
the IRMA dual register array locations (220h-227h) into the
data memory on the MPA-II card. By using data memory
instead of a discrete register file the component count has
been reduced. The IRMA software requires that a "dual"
register file be used (or in this case emulated). Therefore,
the writes from the 8088 are directed to memory locations
7F20h-7F23h and the reads from the 8088 are sourced
from memory locations 7E20h-7E23h. The MPA-II Register
Array Implementation is shown in Figure 6-8.

PC I/O BUS

RAt.!

TL/F/l0466-22

TL/F/l0466-23

STEERING
LOGIC

BCP DATA MEMORY

TLlF/l0466-24

FIGURE 6·8. MPA·II Register Array Implementation

2-43

The handshaking process is still used when the BCP and
the 8088 are transferring data. When the 8088 goes to set
the command flag by writing to lID location 226h, it actually
does a write to 7F26h in the MPA-lI's data memory via the
steering logic. The steering logic locks out future accesses
by the PC to the MPA-II and interrupts the BCP telling it that
a write access has been made to the IRMA lID space. This
interrupt is signaled through the BIRO lID pin of the
BCP, which is configured as an input interrupt. The
MP~CONFIG register determines which BIRO interrupt
handler will be called. In this case, assume that the OCA
interface option is selected. Then the dc~int BIRO inter­
rupt handler located in the module OC~INT.BCP is given
control. The dc~int BIRO interrupt handler determines if
the PC wrote to 226h by reading the "MPA-II Access" regis­
ter located in a PAL. This access register is located at BCP
data memory address 8000h and it holds the lower 6 bits of
the last lID location written to on the MPA-II. If a write oc­
curs to lID location 226h, the BCP sets bit 6in the MPA-II
memory location that the PC's 8088 will read as its lID loca­
tion 227h. The BIRO Interrupt handler will then write (any
value) to the MPA-II Access register to unlock the PC. In the
case of the "Attention Request" flag, the BCP will set this
flag by simply setting bit 7 in the memory location which the
8088 reads as lID 227h. The clearing of this flag by the
8088 is done in a similar fashion as the setting of the "Com­
mand Request" flag. Note that each time the 8088 writes to
an lID location between 220h and 22Fh the BCP is inter­
rupted. However, specific action is taken only on writes to
226h or 227h. With all other locations the BCP simply re­
turns from the interrupt service routine once it has deter­
mined the 8088 did not write to lID 226h or 227h. This
approach to the hardware has been chosen to minimize the
discrete logic on the MPA-II card by taking advantage of the
power of the BCP's CPU to handle some tasks in software
that were typically done. with hardware in the past. Another
benefit of this "soft" approach is that changes to the IRMA
interface definition by OCA will most likely only require a
software change for the MPA-II board, thus protecting your
hardware investment.

IRMA Microcode

The IRMA application software written for the personal
computer (E78, file transfers, etc.) is designed around a de­
fined interface between IRMA and the System Unit (the
8088 and its peripheral devices). The hardware portion of
this interface is discussed above. The software portion of
this interface is the microcode written for the 8X305 proces­
sor. When the software and hardware are viewed as one
function, it is referred to as the Oecision Support Interface
(OSI). All of the IRMA application software has been written
around this interface. When configured in the IRMA mode
the MPA-II becomes the OSI. The method of communica­
tion between the OSI and the System Unit will be discussed
briefly in the next section. A more exhaustive discussion on
this interface is given in the IRMA Technical Reference.

The OSI and the System Unit communicate through the dual
four byte register array just discussed. The System Unit is­
sues commands to the OSI by writing to this array. This
register array is viewed by the System Unit as four lID loca­
tions (220h-223h). Each lID location corresponds to one
eight bit word. When the System Unit issues a command,
the first byte, word 0, is defined as the command number.

2-44

The next three bytes, word 1 through word 3, are defined as
arguments for the command. The number of arguments as­
sociated with an individual command varies from zero to
three. Sixteen commands have been defined for the OSI.
These commands allow the System Unit program to read
and write bytes in the screen buffer, send keystrokes, and
access special features available on the OSI. To begin a
command the System Unit program sets byte 0 equal to the
command number and provides any necessary arguments
in byte 1 through byte 3. It then sets the Command request
flag. The Command Request flag is continually polled by the
8X305 processor when it is not busy managing the higher
priority 3270 communications interface. When it detects the
setting of this flag by the System Unit, it reads the data from
the register array and executes the command. Once the
command has been executed, the 8X305 will place the re­
sulting data into the other side of the register array and clear
the Command Request Flag (see Figure 6-9). The System
Unit program has been continually polling this flag and after
seeing it cleared reads the result from the register array.
The Command Request flag can only be set by the System
Unit. This is done by a write to lID location 226h. The Com­
mand Request Flag can only be cleared by the OSI's 8X305.

8X305

I/O ADDRESS ~t II
220 STATUS COMMAND #
221 (DATA) (ARGUMENT 1)

222 (DATA) (ARGUMENT 2)

223 (DATA) (ARGUMENT 3)

~ II
SYSTEM UNIT

TLlF/l0488-25

FIGURE 6-9. Command and Response
Locations in the IRMA Register Array

The OSI can not issue commands to the System Unit but it
can inform the System Unit of a status change. If a status
change occurs in a status bit location when the correspond­
ing attention mask bit is set, the 8X305 will set the Attentiori
Request flag. This flag can be polled by the System Unit
and is viewed as bit 7 in the lID register at address 227h.
The System Unit can clear this flag by executing a write to
lID location 227h. As is the case with both flags, the action
of writing to the specific lID location clears or sets the flags,
the data written during the write have no affect. In typical
operation the Attention Request flag is not used; however, it
is implemented on the MPA-II. The current status of both
flags can be read by both processors. The System Unit
does this by reading lID location 227h. The resulting eight
bit number has the Attention flag as bit 7, the MSB, and the
Command flag as bit 6. The other bits are not used.

MPA-lIlmplementation

The IRMA interface on the MPA-II board operates essential­
ly in the same manner as described above. The System Unit
lID accesses to the IRMA register array space are trans­
ferred to two areas in the BCP's data memory (see
Figure 6-10). One location is for System Unit reads of the

array (7E20h-7E23h), the other is for System Unit writes to
the array (7F20h-7F23h). Different BCP memory locations
are used because the register array on the IRMA card actu­
ally contains eight byte wide registers (four for System Unit
reads and four for System Unit writes) in hardware. E78 was
written to make the best use of this hardware design and in
doing so it may write a new command and lor arguments
before it reads the results of the old command. Therefore if
just four memory locations were used, E78 would read back
part of a new command it had just written and interpret this
as data from the DSI from the previous command.

BCP DATA IoIEIoIORY

IoIEIoIORY ADDRESS

7E20

7E21

7E22

7E23

7,20

7F21

7,22

7,23

TLlF/10486-26

FIGURE 6·10. Command and Response
Locations In the MPA·II Register Array

The Command Request and Attention Request flags are im­
plemented using 74LS74's on the IRMA card, hence the
setting and clearing by writing to 226h and 227h (this clocks
or clears the associated flip-flop). This function is imple­
mented on the MPA-II using an external PAL and the bi-di­
rectional interrupt pin, BIRO. If there is a write to the IRMA

1/0 space 220h-227h, a PAL issues an interrupt to the BCP
via the BIRO input. The BCP reads the outputs of another
PAL to determine which location has been written to. If the
write is to 1/0 locations 226h or 227h then the appropriate
bits are set or cleared in the "IRMA read location" (7E27h)
in the BCP data memory. The BIRO interrupt is generated
only on System Unit 1/0 writes to 220h-22Fh but this also
includes writes to the dual register array. If a write to 220h-
223h occurred, the BCP irma BIRO interrupt routine simply
clears the interrupt and takes no further action. .

The commands from the System Unit are executed in. the
irma task routine. This routine is a foreground, scheduled
task in the MPA-II Kernel. The irma task routine first updates
both the main and auxiliary status registers as defined by
the DSI. Next the irma task sets the attention flag, if re­
quired. It then looks at the state of the command request
flag in memory to determine if there is a command pending
from the System Unit. If so, it reads the command number
and the arguments from the BCP's data memory and exe­
cutes the command. The task then places the results back
in the data memory in the appropriate location (7E20h-
7E23h). After this is complete the task clears the command
request flag and returns program control to the Kernel.

There are three separate code modules used to allow the
MPA-II to emulate the DSI.

1. Power-Up Initialization Routine

2. BIRO Interrupt Routine

3. irma Task Routine

These three routines will be discussed in the following sec­
tion. For clarity, the term "irma" is capitalized when referring
to DCA products and lower case when referring to the
MPA-II software that was written to emulate the IRMA DSI.
Figure 6-11 gives a graphical representation of where these
routines fit into the software architecture of the MPA-II.

TLlF/10486-27

FIGURE 6·11. MPA·II Software Block Diagram in IRMA DSI Emulation Mode

2-45

I • I

MPA-II Power-Up Initialization Routine

The irma power up initialization routine is called by the
housekeeping task if it detects that the DCA irma bit has just
been set in the MPA·II configuration register (along with the
5252/3270 bit clear). The irma initialization routine is titled
irma......por in the MPA·II source code. This routine initializes
the memory locations and BCP internal registers that are
used by the irma emulation code. It also unmasks the BIRO
interrupt and schedules the irma......task in the MPA·II Kernel.
The first memory location initialized is the Command Re·
quest and Attention Request flag byte, which is location
7E27h in the BCP's data memory. The data at location
7E27h is passed to the System Unit by the steering logic
when the System Unit reads I/O location 227h. This byte is
set to zero by the irma......por routine even though only bits 6
and 7, the command and attention request flags respective·
Iy, are used. The irma......por routine also initializes the memo
ory locations that the irma-task routine uses to store the
trigger variables and the attention mask.

The irma......por routine also initializes internal BCP registers.
It does this because other routines, such as the dca......int
interrupt routine, must access certain stored values very
quickly to keep execution time short. The execution time in
these routines is decreased if data needed in the routine are
kept in internal registers rather than in data memory. For
example, the value of the high byte of the address page of
the "IRMA read registers" is stored in register GP14. In the
BIRO interrupt routine, the IZ index register needs to point
to that address page. This is done in the routine with a sin·
gle 2 T-state instruction which moves the contents of GP14
to the high byte of the IZ index register. If the value of the
high byte of the address page was in memory, it would take
a 4 T ·state move to an immediate addressable register fol·
lowed by a 2 T-state move to the IZ index register. The
irma......por routine initializes the registers GP14 and GP12
with the "IRMA-.read register" page memory address. The
irma......por routine then signals the coax task, via
sync_mailbox, to bring the MPA·II on line as a live terminal.
The final function of the irma......por routine is to schedule the
irma......task routine. This is done by loading the task number
into the accumulator and calling the schedule_task routine.
After this, program control is returned to the tasker.

DCA-INT BIRQ Interrupt Routine

The second code module required to emulate the IRMA DSI
is the dca......int BIRO routine. On the IRMA card, the Com·
mand Request and Attention Request flags are implement­
ed in hardware. This implemention requires a number of dis­
crete components to decode the System Unit I/O address­
es 226h and 227h and to provide the set and clear function
of these flags. The MPA·II board, on the other hand, uses
extra CPU bandwidth to reduce the discrete components
needed to provide the Command Request and Attention Re·
quest flag function. It does this by letting the CPU decode
part of the System Unit I/O access address and provide the
set and clear function of these flags. The BCP code neces·
sary for this is the BIRO interrupt routine whose source
module is labeled DCA-.INT.BCP. The BIRO interrupt is
generated when the System Unit writes to any I/O locations
from 220h to 22Fh. It would have been more expedient in
this case to only have interrupts generated on writes to I/O
locations 226h and 227h. However, the MPA·II hardware
also supports the DCA Smart Alec emulation program and

2-46

the IBM emulation programs. The MPA-II implementation for
the DCA Smart Alec and the IBM interfaces require inter­
rupts to be generated from more System Unit I/O access
locations, so to reduce external hardware, interrupts are
generated for a sixteen byte I/O block. This flexibility of
hardware design further illustrates the usefulness of the ex·
tra CPU bandwidth of the DP8344A.

When the BCP detects the BIRO interrupt, it transfers pro­
gram control to the dca......int routine. The function of this
routine is to set the Command Request flag if the System
Unit wrote to I/O location 226h or clear the Attention Re­
quest flag if the system unit wrote to I/O location 227h. The
3270 protocol timing requirements place another time con·
straint on this routine. Becuase this is an interrupt service
routine, all other BCP interrupts are disabled upon entering.
This means the coax interrupts will not be acknowledged
until they are re·enabled by the program. To meet this crit­
ical timing constraint, the dca......int routine execution time
must be as short as possible. The routine reads the MPA
Access Register PAL to acquire the information needed to
determine which register the System Unit actually wrote to.
Keep in mind that at this point the PC is "locked out" from
making any further accesses to the MPA·II. It then deter­
mines which I/O locations the System Unit wrote to by using
the JRMK instruction and a jump table. If the write was to
226h then the Command Request flag is set. Next, the rou·
tine must "unlock" the PC by writing to the MPA Access
Register. Now the routine only has to restore the environ­
ment (foreground registers used in interrupt routines are
pushed on the data stack and must be restored before leav·
ing the interrupt service routine) and return to the fore·
ground program. If the write was to I/O location 227h, the
routine clears the Attention Request flag. It then unlocks the
PC, restores the environment and returns program control
to the foreground program. If the write was to any other of
the sixteen locations, the PC is unlocked, the environment is
restored, and program control is returned to the foreground
task.

There is a section of code in the dca......int routine that does
the same function as that described above, but is called
from the coax receiver interrupt routine and not by the exter­
nal BIRO interrupt. To increase performance, the transceiv­
er interrupt handlers check the BIRO flag in the CCR regis­
ter before they return to the background task. If the flag is
asserted (active low), they call the dca......fasLbirq section
of the dca......int routine. Here the same operations as de­
scribed earlier are performed except for the saving and re­
storing of the environment. The dca......fasLbirq routine
does not have to provide this function because the coax
receiver interrupt routine does it. This decreases the num·
ber of instructions executed, and therefore, improves the
overall performance.

MPA-lIlrma Task Routine

The majority of the DSI emulation takes place in the
irma......task routine. This routine is run in the foreground as a
scheduled task. Therefore the decision to execute this rou­
tine is dependent only on the MPA·ll's task scheduler and is
not impacted by the System Unit. In reality the task is run
many times between System Unit accesses because the
code execution speed of the BCP is greater than that of the
PC. Therefore, the most current information and status is
always available to the System Unit. The irma task routine,

appropriately labeled in the source code as "irm~task",
contains two sections. These sections are the irma status
update and the command execution routines.

The irma status update routine, called irm~status_update
in the source code, gathers and formats the information re­
quired to produce the auxiliary status byte and main status
byte as defined by the OSI (see Table 6-2). This routine is
implemented in the irm~task routine as a subroutine. It
gets the necessary status for the auxiliary status information
from two predefined memory locations which contain gener­
al coax information placed there by the coax routine. These
memory locations are labeled MP~MAINSTAT and
CONT _REG in the source code. The auxiliary status rou­
tine first moves the MP~MAINSTAT byte from data mem­
ory into an internal register. It masks off the unwanted bits
and combines the register with the contents of the
CONT _REG memory location, which is also loaded into an
internal register from data memory. The routine then loads
the previous value of the auxiliary status byte from data
memory. This value was saved from the previous time the
task was executed and is required when determining the
main status byte. The routine then stores the new value of
the auxiliary status register in that same data memory loca­
tion. The new auxiliary status byte is maintained in register
GP6 for the remainder of the irma task.

The information required to determine the main status is
gained partly from the pre-defined MP~MAINSTAT byte,
however, two of the status bits must be generated by this
routine. These are the· "Aux (auxiliary) Status change has
occurred" bit and the "trigger. occurred" bit. The "Aux
Status change has occurred" bit is generated by comparing
the old and new auxiliary status bytes from the calculation of
the auxiliary status. If the values are different the bit is set. If
the values are identical, the bit is left in its previous state. It
is not cleared because this bit can only be cleared by a OSI
command from the System Unit. The "trigger occurred" bit
is set if a trigger data match occurs. The System Unit pro-

gram can define an address location in the screen buffer
and a corresponding data byte. If the data byte is found at
that location in the actual screen buffer, the trigger occurs.
The System Unit program can look for any number of bits in
the data byte to match by applying a mask value. It can look
for a change of state in the data byte by specifying a mask
value of all zeroes. The trigger mask, address location and
data byte values are stored in the BCP's data memory and
are set by two of the defined OSI commands. The main
status routine gets these values from memory and checks
the screen buffer to see if the trigger bit should be set. Actu­
ally, this function is not used in the IRMA System Unit soft­
ware. The remaining bits are generated by checking the
MPA-lI's main status byte for its status. As with the "Aux
status change has occurred" bit, the "key buffer empty",
"Unit reset by controller", and "buffer modified" bits in the
main status register must be reset by the System Unit pro­
gram. Therefore, the main status subroutine logically "ORs"
these bits with their previous value. Two bits defined by the
OSI in the main status register are always left cleared by the
main status routine. These are the Fatal IRMA hardware
error and the command interrupt request bits. After the main
status byte has been generated, it is kept in register GP5 for
the remainder of the irma task. The main status routine also
loads the previous value of the main status from data mem­
ory and stores the new value in that same location.

The Attention Request flag section of the irm~status_up­
date routine determines if the Attention Request flag should
be set as defined by the OS!. This section compares the old
main status value with the new main status value. If it de­
tects that a bit in the old register was a zero and the corre­
sponding bit in the new main status register is a one, it will
compare this bit position to the attention mask. If the atten­
tion mask also has a "1" in that bit position the Attention
Request flag will be set in the appropriate location in data
memory. The attention mask is loaded from the BCP's data
memory and its value is set by one of the sixteen defined
OSI commands.

TABLE 6-2. IRMA Main and Auxiliary Status Byte Definition

Main Status Byte Auxiliary Status Byte

Bit Meaning Bit Meaning

(MSB) 7 Aux Status Change has Occurred(*) (MSB) 7 Unused
6 Trigger Occurred(*) 6 Unit Polled Since Last Status Read
5 Key Buffer Empty 5 Sound Alarm
4 Fatal IRMA Hardware Error(+) 4 Display Inhibited
3 Unit Reset by Controller 3 Cursor Inhibited
2 Command Interrupt Request(+) 2 Reverse Cursor Enabled
1 Buffer Modified(*) 1 Cursor Blink Enabled
0 Cursor Position Set(*) 0 Keyboard Click Enabled

(0) Bits which must be cleared by user program.

(+) Bits which will never be set in MPA implementation.

2-47

I

I •

.....
~
CD • Z
c(

The final section of the irma task is the command execution
routine which is called "irm8-command_decode" with the
source code located in module IRM~COM.BCP. This rou­
tine, like the others, is implemented as a subroutine to the
irma task routine. However, unlike the other routines, it is
not executed every time the irma task is run. The System
Unit program must have requested that a command be exe­
cuted or the .irma taskwill skip the command execution rou­
tine and return program control to the task scheduler. The
irma task determines. this by checking the Command Re­
quest flag in the IRMA status flag register at memory ad­
dress 7E27h. If this bit is set the irma task calls the com­
mand execution routine.

The command execution routine begins by determining
which of the sixteen commands is to be executed. This is
done by moving the command number data byte at memory
address 7F20h into an internal register. It then uses the
JRMK instruction and a jump table to transfer program con­
trol to the specific routine that corresponds to that com­
mand number. The individual command routine then loads
any required command arguments from data memory loca­
tions 7F21 h-7F23h and executes the command. The re­
sulting data is placed in the data memory locations 7E20h-
7E23h with the IRMA main status byte always in the first
location· (7E20h). The command execution routine then
clears the Command Request flag in data memory. After
this, it returns to the main body of the irma task routine.

The sixteen commands defined by the DSI are thoroughly
decumented in the IRMA Technical Reference. The imple­
mentation of each command in the command execution
routine is well documented in the corresponding section of
BCP source code. For reference, the commands and the
associated source code routine labels are given in Table
6-3.

As mentioned earlier, the MPA-II software uses a synchro­
nous method of passing some status information between
tasks. This is necessary because the status information can
be updated on both foreground and interrupt routines. In
this case the updating of such status information must be
synchronized between the routines or the data could be cor­
rupted. The synchronizing method is a "mailbox" in memory
where the location of the status information and the change
required is placed. The irma task uses the sync..:-.mailbox to
tell the coax task when to reset the "cursor change", "key
buffer empty", "unit polled since last status read", and "unit
reset by controller" status bits. The irma task also uses the
mailbox to tell the coax routine that the System Unit has
instructed the MPA-II to execute a Power On Reset se­
quence on the coax. The irma task accumulates the status
change information in register GP2 throughout the routine
(more specifically the cursor change reset from the main
status routine and the others from the command execution
routine). It then loads the mailbox just before returning to
the task scheduler.

TABLE 6-3.IRM,A DSI Commands and the Corresponding MPA-II Source Code Labels
.

MAP-II IRMA Command
IRMA DSI Commands

Source Labels

Code Command Definition Source Code Label

0 Read Buffer Data irm8-com_read_buffer
1 Write Buffer Data irm8-com_write_buffer
2 Read Status/Cursor Position irm8-com_status_cursor
3 Clear Main Status Bits irm8-com_clr_mstatus
4 Send Keystroke irm8-com_send_keystroke
5 Light Pen Transmit irm8-com_lpen_transmit
6 Execute Power-an-Reset irm8-com_por
7 Load Trigger Data and Mask irm8-com_trig_dat8-mask
8 Load Trigger Address irm8-com_trig_addr
9 Load Attention Mask irm8-com_attn_mask

10 Set Terminal Type irm8-com_seLterm
11 Enable Auxiliary Relay irm8-com_aux-relay
12 Read Terminal Information irm8-com_read_term
13 Noop irm8-com_noop
14 Return Revision 10 and OEM Number irm8-com_rev_oem
15 Reserved-Do Not Use irm8-com_reserved

2-48

BNC
CONNECTOR '"' L

COAX
TRANSCEIVER

&
INTERFACE

A ~

\f Y

.&.
VI

~
0:: c
c
<

r

A DATA ~

'I V

100 PIN
ADDRESS ~ BK X 8

GATE ARRAY SHARED

CONTROL ~ RAM

)
--V

;::.. .&. ;::.. .&. ~
...J

~
0

f=
c :z

0
u

".7
PC BUS I

TL/F/10488-28

FIGURE 6-12. IBM Hardware Implementation

IBM Interface Overview

The IBM Personal Computer 3270 Emulation Adapter Ver­
sion A uses sixteen I/O mapped locations, PC interrupt level
2, and 8K of re-mappable shared RAM to provide the nec­
essary hooks to do 3278179 terminal emulation, 3287 print­
er, and OFT emulation. The PC emulation software reads
and writes to the I/O locations to determine session status
and reads the screen buffer maintained in the shared RAM
when screen updates are made by the coax controller. The
shared RAM concept and use of a PC interrupt make the
speed of the terminal emulator very fast and efficient.

The IBM Adapter card uses a gate array, PALs and various
logic chips to manage the interface and coax sessions. A
block diagram of the IBM adapter hardware is shown in Fig­
ure 6-12. The sixteen I/O locations reserved for the inter­
face are physically resident in the gate array located on the
IBM Emulation Adapter card. The addresses of the sixteen

I/O locations are 2DOh-2DFh. PC register addresses along
with their corresponding read and write capabilities are de­
fined in Table 6-4. The PC accesses the registers in four
different modes of operation which are: 1) read only, 2) write
only, 3) read/write, and 4) read/write with reset mask. The
first three modes are self explanatory. The read/write with
reset mask mode, also knows as "Write Under Mask" or
WUM mode, means that the PC reads the value of the regis­
ter as a normal I/O read to acquire the information. After
reading the byte, the PC will write a mask with ones in the
bit positions that the PC wishes to clear. This "write with
reset mask" is usually used as. an acknowledgement that
the byte has been read by an earlier read. The resulting
contents of the register will be cleared in bit positions that
were written with corresponding ones. A brief description of
each register and its function follows. For a detailed discus­
sion on each register. refer to the IBM 3210 Connection
Technical Reference (see References in Appendix D).

TABLE 6-4. IBM Emulation PC Register Address Locations and Read/Write Functionality

Address PC Register PC Read PC Write

0200 PC Adapter Interrupt Status . Data Reset Mask
0201 Visual Sound Data Reset Alarm
0202 Cursor Address Lo Data -
0203 Cursor Address Hi Data -
0204 PC-Adapter Control Data Data
0205 Scan Code - Data
0206 Terminal 10 - Data
0207 Segment - Data
0208 Page Change LO Data Reset Mask
0209 Page Change HI Data Reset Mask
02DA 87E Status Data Reset Mask

02DB-02DF Reserved

2-49

,...
v
CD

:Z
<

PC Adapter Interrupt Status Register (200h)

The Interrupt Status register contains six interrupt flags and
two status bits. The interrupts are set based on events oc­
curring on the coax. If the interrupts are enabled in the
Adapter Control register (2D4h), the PC interrupt level 2
(IRQ2) is set when one of the six interrupt conditions occur.
The buffer-being modified status flag is set when the screen
buffer is being modified by a WRITE DATA, a CLEAR, or
INSERT command. The interrupt status flag is set whenever
any interrupt has been set. The register is read/write with
reset mask by the PC as defined above. To acknowledge an
interrupt, the PC will write back to the register with a one in
the corresponding bit location of that interrupt. That clears
the interrupt. The wum scheme provides a clear handshake
between the two asynchronous systems. This register is
used by all three emulation modes (Le., CUT, DFT and Print­
er mode). The definitions of some of the bits change de­
pending on the currently active mode.

Visual/Sound Register (201h)

The Visual/Sound register contains control settings for the
terminal that are affected by the load control register com­
mand, clicker status, and alarm status. This register is a PC
wum with a different twist. Any value written to this register
results in the clearing of the alarm bit only. Other bits are not
affected by the PC write. This register is only used in CUT
mode.

Cursor Address Low and High
Registers (202h and 203h)

The Cursor Address registers contain the sixteen bit cursor
value owned by the coax controller. These registers are
read only by the PC and provide the location of the current
cursor position. These registers are used in all three modes.

PC Adapter Control Register (204h)

The Adapter Control register determines the mode of opera­
tion of the adapter (Le., 3278 terminal, 3287 printer, or DFT
emulation), controls keystroke passing with a bit used as a
handshake, and controls the masking of interrupts. The re­
maining bits control various operation situations (Le., en-

2-50

abling/disabling the coax session, keystroke wrap testing
etc.). This register is read/write by both the PC and the
adapter. This function makes synchronization of reads and
writes critical to ensure no data is lost. This register is used
in all three modes. Some of the bit definitions change de­
pending on the active emulation mode.

Scan Code Register (205h)

The Scan Code register, as the name implies, is where key­
board scan codes are written by the PC corresponding to
the keystrokes struck on the keyboard. This register is PC
write only and the byte written is the one's complement of
the scan code to be sent to the host. This register is used in
CUT mode only.

Terminal 10 Register (206h)

The TerminallD register is write only by the PC and should
not be changed once the terminal has gone on line. The
value written is the one's complement of the keyboard ID
and model number of the terminal that will be requested by
the coax controller when initializing the session. This regis­
ter is used by all three modes.

Segment Register (207h)

The Segment register is used for relocation of the dual port
memory segment at which the adapter recognizes a memo­
ry read or write from the PC. The default value is CEo This
register is write only by the PC.

Page Change Low and High Registers
(208h and 209H)

The Page Change registers are used to communicate a
change in the screen buffer. Each bit corresponds to a 256
byte block of the 4K screen buffer and is set by the adapter
hardware when any screen modification occurs. The regis­
ter is read/write with reset mask by the PC as described
earlier. These registers are active for all three modes.

87E Status Register (20Ah)

The 87E status register contains status flags relevant to
3287 printer emulation. Included is a flag for the alarm and
operation condition of the printer. The register is read/write
with reset mask by the PC as described earlier.

BNC/TPC
CONNECTOR --f4~-I

COMBINED
COAX/

TWISTED
PAIR

INTERFACE

-'

~
z
o
u

DP8344B
BCP

CONTROL

32K X 8
1--------1'\1 SHARED

RAI.I

PC BUS

TLIF/10488-29

FIGURE 6-13. MPA-lIlmplementation of IBM Emulation Card

The Multi-Protocol Adapter Solution

The Multi-Protocol Adapter (MPA-II) card has the ability to
emulate the IBM Personal Computer 3270 Emulation Adapt­
er allowing the IBM PC emulation programs to run using the
MPA-II hardware in place of the adapter card while main­
taining the same functionality. To emulate the adapter, the
MPA-II utilizes the power of the DP8344A BCP to handle the
coax session and interface maintenance in software.
Figure 6-13 gives a block diagram of the MPA-II hardware.

The I/O registers described above are maintained in a
shared RAM located on the MPA-II board and the BCP soft­
ware must "fake out" the PC software when any register
update is made, leaving the correct value in the RAM for the
next access. To emulate the function of the I/O registers,
the MPA-II hardware sets the bi-directional interrupt pin
(BIRO) low on any PC write to the IBM I/O locations 2DOh-
2D6h and 2D8h-2DEh. The write to the I/O location is rout­
ed into locations in the shared RAM. The mapping of the
I/O registers in the shared RAM is shown in Figure 6-14.
The BCP Code Variable Address column in Figure 6-14
shows the variables used in the MPA-II source code to form
the absolute RAM address of the I/O register contents. The

2-51

PCIO value is a sixteen bit value and is the base pointer into
the page of memory where the I/O registers reside. The
variables listed are added to the PCIO base to form the
absolute address pointer to the specified register in data
memory. All registers that are cleared by the write under
mask scheme have duplicate copies that are maintained
solely under BCP control to allow software implementation
of the write under mask handshake.

The BCP software, to handle the interface and coax routine,
contains interrupt driven routines as well as foreground rou­
tines. A block diagram showing the code arrangement used
to handle the IBM interface and coax session is shown in
Figure 6-15. Four blocks run as tasks while the interrupt
sources are used where immediate attention is required
(Le., the communication with the controller [receiver inter­
rupt] and the PC interface maintenance [BIRO interrupt».
The three sections of code that will be discussed below are
responsible for initializing the I/O registers at power up,
maintaining the I/O registers, and setting/clearing the PC
level 2 interrupt. Each routine is described in the paragraphs
that follow.

» z .
0')
~

•

PC I/o
Address

0200

0201

0202

0203

0204

0205

0206

0207

0208

0209

020A

Cursor Address Low

Cursor Address HI

Adaptor Control

Scan Code

Terminal Id

Segment

BCP COOE
Variable Address

Absolute RAM address = PCIO yalue

ibm-Isr
Ibm-lisr

ibm-ysr
Ibm-IYsr

Ibm-cursorlo

ibm-cursorhi

Ibm-control

ibm-scan

Ibm-Id

ibm-segment

ibm-pagelo
ibm-Ipagelo

ibm-pagehi
ibm-Ipagehi

Ibm-status
ibm-Istatus

FIGURE 6-14. IBM I/O Register Mapping

OATA REGISTER AOOO-BFFF

ACCESS REGISTER 8000-8FFF

I/o REGISTERS 7FOO-7FOF
I---VJ-------1

REMAPPABLE
SCREEN BUFFER

(8K SHAREO)

FIGURE 6-15. IBM Interface Code Block Diagram

2·52

TL/F/l04BB-30

TL/F/l04BB-31

IBM_Initialization

The ibm_init routine initializes the I/O registers to the ex"
pected state at power up and initializes internal BCP vari­
ables in preparation for a new session. After clearing the
screen buffer, the program schedules the ibm_task routine
as a task to the Kernel routine and unmasks the BIRO inter­
rupt to enable the ibm_birct-int routine to run when the PC
writes to the IBM 1/0 registers. This code is only executed
when the card initially runs at power on time or when chang­
ing MPA-II modes via the MPA-CONFIG register. Upon
completion· of this and other initialization routines, the PC
emulation software can be started to bring the PC emulator
resident

IBM_BIRQ Interrupt Routine

The BIRO routine is unmasked by the ibm_init routine as
mentioned above. The BIRO input goes low (asserted)
when the PC writes to the IBM I/O locations 2DOh-2D6h
and 2D8h-2DEh. BIRO is unaffected by PC reads of the
I/O locations since no· action is required by the MPA-II
board. At the same time BIRO is asserted, the MPA-II hard­
ware "locks out" the PC from performing any further memo­
ry or I/O accesses to the MPA-II board until the BCP soft­
ware "unlocks" the PC. When the BIRO interrupt handler,
ibm_bin~_int, gets control, it first reads the Access register
(mp~access) to determine which IBM I/O register has
been written to. If the I/O register written to is a read only or
write only register then no action is required by the interrupt
routine so the routine unlocks the PC by writing any value to
the Access register, and then exits. If the I/O registerwrit-'
ten to is a WUM type register then the BIRO interrupt rou­
tine comph3ments the value currently in the I/O register lo­
cation (for it is the mask value written by the PC) and ANDs
it to the local copy of that I/O register. The result is then
placed into the I/O register location as well as into the local
copy memory location. The PC is then unlocked by the inter­
rupt . routine and the routine exits.· A write to the Visu­
al/Sound IBM register of any value causes the local copy to
be retrieved, its alarm bit cleared,and both the I/O register
and its local copy to be updated. The Interrupt Status IBM
register will not only have the WUM performed, the interrupt
routine will also de-assert the IRO. PC interrupt line by writ­
ing a zero in bit position 7 to the Data register (mp~data).
Bit 7 of the Data register controls the state of the PC's IRO
interrupt line. The PC interrupt is set in the ibm_task routine
(IBM_ T ASK.BCP) if interrupts are pending and not dis­
abled.

There is a simplified version of the ibllL-birq_int BIRO in~
terrupt handler called ibllL-fasLbirq. The ibm_fasLbirq
routine is directly called by the receiver interrupt handler in
between the processing of coax data frames· in order to
handle PC activity without impacting the coax command
5.5 JLs response timing, which is so critical. The ibm_JasL
birq routine is identical to the ibm_birct-int routine except
that it does not perform any saving or restoring of BCP reg­
isters since this is handled by the receiver interrupt handler.

IBM_TASK Foreground Routine

The ibm_task routine runs in the foreground and is called
by the Kernel. The ibm_task is enabled to run by the
ibm_init routine. Once it has been scheduled by the initiali­
zation routine, the ibm_task runs any time it is called by the
Kernel.

2-53

The primary purpose of the ibm_task routine is to keep the
I/O registers current as to the state of the emulated terminal
session so that the PC software can update the screen in a
timely manner: The ibm_task routine maintains' communi­
cation with the coax task· routine via· a two byte mailbox in
data memory. The ibm_task routine monitors coax activity
through bit settings in the MPA-II status variables
(mpa.:.....mainstat and mp~auxstat) and updates the 110 In­
terrupt Status register, Visual Sound register, PC Adapter
Control register, and PC interrupt level, IR02, accordingly:
The task is non-interrupt driven and uses both main banks
of the CPU for processing. ' I •

The ibm""":taskroutine first checks the MPA-II status vari­
ables, mp~mainstat and mp~auxstat, clearing certain
status bits (such as Buffer Modified) to acknowledge receipt
of that status. Next, the ibm~task' updates the IBM Page
Change registers' and the 'IBM Cursor registers since, they
are common to all three interface modes, (<:;UT, OFT, and
Printer). The ibm....:.task routine then' determines the current
interface mode and calr's that· intertace mode's' routine to
update the remaining IBM registe'r specifip to that mode.

For CUT mode, ibm_task calls the ibm_3278 routine. This
routine updates the Visual/Sounq . register (201 hi, the
Adapter Control register (2D4h), an.d the Interrupt Status
register (2DOh). Theibm-:-3278 routine will also interrupt
the PC via its IRO interrupt, line if PC inter~upts ,have not
been suppressed by the Adapter Control register:' -

For OFT mode,. ibm_task .calls theibm_dft routine, This
routine updates the Adapter Control. register (2D4h) and the,
Interrupt Status register (2DOh). As with the ibm_3278 rou­
tine, this routine will also interrupt the PC via its IRO inter-.
rupt line if PC interrupts have not bee,n suppressed by the
Adapter Control register.

The 3287 Printer mode is. not supported in this version of
the MPA-II microcode, but may easily be added. In fact, Re­
vision B of the IBM Emulation'A.dapter can ii/so be support­
ed through . simple ,microcode enhancements . if the
MPA-CONFIG . register (2DCh), MP.A-PARM register,
(2DBh), and.BCP RIC register (2DFh) are relocated,(R~lo­
cating these registers,only requires some, simple PAL equa­
tion changes for the existing hardware.) That .is one of the
advantage~ of the soft. architecture concept that the BCP
allows. Not only is your product protected against changes
on the Coax side. of, the interface, but your product is also
protected against changes on the PC side of the interface! .

After the above routines return to the ibm_task'routine, the'
ibm_task routine sends mail Ilia sync...:..:.mailbox back to the:
clL-task routine, if anything needs to'becommunicated to'
the coax side, such as keystrokes. Then' ibm~task returns
to the kernel. ,

TwlnaxTa~k
The twinax task tw_task (located, in, : .. module
TW~ TASK.BCP) is responsible for directing twinax terminal
emulation. It monitors all seven internal twinax sessions, for
cLJrrent polling status,for 2 .. second A.uto-PORtime-outs"
and for 5 second POR OFFLINE timeouts. In addition, tw_
task invokes the twinax command processor, tw_session
(located in module TW_SESS.BCP), for each twinax ses­
sion that requires attention.

When the MPA-CONFIG register is set (or changed) to
select twinax emulation, the task housekeep calls tw_init
(located in module TW_TASK.BCP) to initialize the twinax
routines, and then calls tw_sunit (located in module
SA-INIT.BCP) to initialize the smart alec interface routines.
The routine tw_init initializes the hardware interface for
twinax, initializes and unmasks the twinax receiver interrupt,
initializes and unmasks the transmitter interrupt, initializes
and unmasks the timer interrupt, initializes the twinax de­
pendent Device Control Page (DCP) variables, and initializ­
es all seven Session Control Pages (SCPs) for twinax emu­
lation. The initialization of everything except the SCPs is
straight forward; the appropriate bits and bytes are simply
set to their required values. The initialization of the SCPs are
a bit more complicated, however, with the following steps
performed for each SCPo First, the SCP is filled with "55"
hex (as a debugging aid). Second, tw_por (located in mod­
ule TW_CNTL.BCP) is called, which initializes the twinax
dependent SCP variables, except for these set by the Smart
Alec interface routines (i.e., Model 10, Keyboard 10,
etc ...). Third, tw_init takes each session out of POR
since a true POR has not been requested yet. (A true POR
can only be performed on an active session). After the
SCPs are initialized, tw_init schedules the twinax task
tw_task to run under the Kernel. It is tw_task's job to di­
rect twinax emulation in the foreground. Tw_init then re­
turns control to house-keep, which in turn calls tw_s8.-init.
The tw_sunit routine initializes the memory locations
and internal registers that are used by the Smart Alec emu­
lation code. This is discussed in detail in the Smart Alec
Interface Overview section later in this chapter. House-keep
then enables interrupts and returns control to the Kernel's
tasker with the twinax emulation and interface tasks now
scheduled to execute.

The monitoring functions performed by tw_task break
down into two groups: ONLINE sessions, those sessions
which are configured by the Smart Alec emulator (attached)
and seen by the host 3x or AS/400 system; and OFFLINE
sessions, whose sessions are not configured by the Smart
Alec emulator (unattached) and therefore not seen by the
host 3x or AS/400 system. ONLINE (configured) sessions
are monitored for current pOlling status, Auto-POR time­
outs, and POR OFFLINE time-outs. Current polling status
simply indicates whether the physical address for a session
is being polled at least once every 2 seconds. When this is
false, tw_task clears the line active indicator for that ses­
sion. (The System Available indicator status is monitored by
the smart alec interface task). An Auto-POR time-out occurs
when tw_task determines that 2 seconds have elapsed
since the last poll to a physical address. The task tw_task
request that the session attached to that physical address
perform a POR. It then schedules the session in question so
that the request will be processed. (Scheduling sessions is
discussed in the following paragraph.) POR OFFLINE time­
outs occur when tw_task determines that 5 seconds have
elapsed since a given session initiated a POR. It is tw_
task's responsibility to bring the session ONLINE by signal­
ing the receiver interrupt handler to start responding to and

2-54

accepting commands from the host 3x or AS/400 system.
OFFLINE (non-configured) sessions are only monitored for
current polling status.

After every internal session has been checked by the moni­
tor, tw_task invokes the twinax session command proces­
sor, tw_session for each scheduled session. (This action is
similar to the Kernel's tasker.) Both background and fore­
ground tasks schedule sessions when they require a ses­
sion to perform some sort of action. For example, a session
is scheduled when a new command is placed onto the inter­
nal command queue, or when another task, such as the
smart alec interface task, requires a session to POR. The
task tw_task calls the twinax command processor, tw_
seSSion, and passes a pointer to the SCP of the scheduled
seSSion.

The command processor then performs the requested ac­
tion and/or executes the command(s) in the internal com­
mand queue.

When all the sessions have been checked and all the
scheduled sessions have been processed by the command
processor once, tw_task returns control to the Kernel's
tasker.

Twlnax Interrupt Handlers

The twinax mode uses four interrupts: DAV, Data Available,
for handling receiver data; TFE, Transmitter FIFO Empty, for
all responses; TIMER for handling response window timing
and as a real time clock for 5250 protocol requirements; and
BIRO for host interface accesses. All interrupts except
BIRO are unmasked in the tw_init routine after initialization
requirements for each have been executed. The BIRO inter­
rupt is unmasked in the s8.-init routine. As with the coax
interrupt routines, the twinax interrupt routines can use the
alternate B bank registers without having to save and re­
store them. The twinax DAV and TFE interrupt routines are
set up as state machines whose current state is stored in
the "DATA-VECTOR" and "TX-VECTOR" memory loca­
tions. IW and IX are reserved for the TX-VECTOR and
DATA-VECTOR addresses that point to the appropriate
state in the TFE interrupt and DAV interrupt routines, re­
spectively. The TFE routine always expects TX-VECTOR
to be set appropriately upon entry. DAV loads the DATA­
VECTOR from memory upon reception of the first frame of a
message and uses IX directly for frames 2-n. Also, GP5 on
alternate B bank has been reserved for DAV, TFE, and TIM­
ER interrupt routine usage. The name of this register is "R_
STATE" since it is used primarily by the receiver for station
address information and protocol control.

Twlnax Receiver Interrupt Routine

The DAV interrupt routine is responsible for decoding the
commands sent by the controller, loading commands on the
internal processing queue, stuffing data in to the regen buff­
er, "OFFLINE" address activity determination, maintaining
protocol related real time status bits, and supporting all sev­
en station addresses if necessary. A flow diagram of the
DAV interrupt routine is shown in Figure 6-16.

TLlF/l04BB-44

FIGURE 6-16.Twlnax DAV Interrupt Routine

2-55

TLlF/l04BB-34

PREVIOUS SAVED ADDR = ACTIVE
ClEAR RESPONSE WArr rUG

TLlF/l04BB-35

I • I

Initialization requirements of the DAV interrupt are:

1. R_STATE (GP5 on alternate S) set to TW_RSTATL
INIT;

2. tw_level_cnt set to TW_LEVELINIT;

3. tw_busy_cnt set to TW--'.SUSY _MAX.

The Main A Alternate S bank of registers are first selected
and IZ is saved so that it can be restored upon exiting the
interrupt. Since the DAV interrupt source is an "OR" of both
the reception of a valid data. frame and the flagging of an
error by the receiver, a check for an error is done first to
make this destination. (Error handling will be discussed later
in this section.)

A key pivotal point in the routine is controlled by a flag set in
R_STATE called RLMULTI which is set after processing
the first frame of a multiframe' message. The purpose of
RLMULTI is to ensure that the received station address is
only sampled on the first frame of each message from the
controller and causes the DAV interrupt routine to search
for the "111" end of message delimiter on all subsequent
frames received. The station . address saved in R_
STATE[2-0] will be used by the receiver for setting the SCP
pointer on all subsequent frames for setting the SCP pointer
on all subsequent frames of the multiframe message. When
the end of message is detected, the flag RLEOM is set in
R_STATE. If RLEOM is set at exit time, then RLMUL­
TI and RLEOM will be reset along with the transceiver to
ensure that any errors flagged by the receiver logic of the
SCP resulting from a noisy line after the transmission of the
fill bits will be ignored. If RLMULTI is not set, the data'
received is either the first frame of a multi-frame message or
a'single frame command. In this condition, the station ad~
dress is'placed in R_STATE[2-0] and IZ is set to point to
the SCP page of memory corresponding to the station ad­
dress. RLEOM will get set here only if the data is a single
frame command, which is determined by the state of
RTR[O] (bit 14, see 5250 PAl). The station address received
is the "physical station address" and should not be con­
fused with the "logical station address" which is used solely
by Smart Alec for aesthetics. The physical station address is
loaded into bit 8~10 of the sixteen bit SCP pointer. This
scheme provides 256 bytes of data memory for emulating
each station address.

Once the SCP pointer has been established, the receiver
interrupt must know if the station address of the data re­
ceived is currently being emulated ("ONLINE") or is not be­
ing emulated ("OFFLINE"). Addresses that are offline have
to be monitored for activity to inform Smart Alec whether or
not the address can be attached as an online session in the
future (see OFFLINE section for line ,activity determination).

When the session in ONLINE, checks are made upon re­
ception of the first frame of the message to see if the ses­
sion is currently in a reset state or if a line parity error is
pending. For subsequent frames of the mesasge, no checks
are made for reset or pending line parity errors, although
each frame is still parity checked. The reset state is deter­
mined by the RLRESET flag stored in tw_rxtx-status on
each SCP page. When the reset flag is set,all data is ig­
nored. The line parity error state is needed since once a line
parity error is detected, only POLL commands are process­
ed by the terminal until the error condition is cleared. The
error is cleared when a POLL is received with the Reset

2-56

Line Parity Error bit set in conjunction with the terminal be­
ing in the non-busy state. (See POLL discussion in 5250
PAl).

If the terminal is not in a reset condition and no line parity
error is pending, the DATA-VECTOR is loaded to deter­
mine what state to branch to. The DATA-VECTOR must
be stored on the SCP page due to the mUlti-session nature
of twinax. When the first frame of a message is received,
the IX index register is loaded from the SCP tw_dat~vec­
torhi and tw_dat~vectorlo locations prior to the indexed
jump to the appropriate processing state. For frames 2-n of
a message, IX is used in its current state for proceSSing
speed since it is reserved for the interrupt and is already set
accordingly.

Command/Data Processing Routines

There are basically four states used in the DAV interrupt
routine: 1) command decode, 2) writes, 3) busy_wait, and
4) activate wait. Each state is vectored to via an indexed
jump using the DATA-VECTOR as discussed above. How­
ever, when exceptions are detected by the foreground com­
mand processing routines, the DATA-VECTOR is modi­
fied.

The command decode state, as the name implies, is where
the received byte is decoded and pushed onto the 16 byte
internal processing queue as specified in the 5250 protocol.

. Commands are decoded first by checking to see if the com­
mand is a POLL. Next, two jump tables are used to further
decode the command. One table is used for commands ad­
dressed to features (Le., RTR[7] = 1) and only the lower
four bits of the command are decoded. The other jump table
processes all commands in base format so the lower five
bits of the command are decoded. No destinction is made
as to what internal device is addressed since this is done by
the foreground tw_session routine when the command is
unloaded from the queue. The only commands that can
have duplicate meanings in this scenerio are the END OF
QUEUE and RESET SASE since they are identical in the
lower five bits of the commands. They are further processed
before being loaded onto the queue to handle this overlap.

Once the command is decoded, it is loaded onto the queue
by the QUE_LOADER routine which will be discussed later.
Since commands mayor may not have associated oper­
ands with them, the DAV interrupt modifies DATA-VECTOR
appropriately for the command just decoded. Single frame
commands do not change the DATA-VECTOR from com­
mand decode since there are no operands associated with
them. This is not true for the end of queue command as it
results in the DAV routine moving into the busy_wait state
which will be discussed later. Commands that have associ­
ated operands with them, for example LOAD
ADDRESS COUNTER, set the DAT~VECTOR to the
rX-operands routine and a frame count value is maintained
on the SCP (tw_frame_cnt) to control how many addition­
al frames stay in the rX-operands state for processing the
entire command packet. Some commands require special
routines to process them. The READ and WRITE IMMEDI­
ATE commands set DATA-VECTOR to rX-imm_operands
so that it will be set to activate_wait upon completion of the
commands operands. WRITE CONTROL DATA requires a
special stub since it can be a + 2 operand command or + 3
for the .3180 emulation (see 5250 PAl). WRITE DATA AND
LOAD CURSOR also requires a special routine since the
number of associated operands expected is embedded in
the first operand of the command.

After a complete command packet (Le., the command plus
any associated operands) has been loaded into the queue,
the DAV interrupt schedules the twinax command proces­
sor, tw_session, to process the command. The appropriate
session task is scheduled by moving TW_SESS_SCHED
into tw_sess_state on the SCP corresponding to this com­
mand's physical address. This scheme provides the com­
munication to the foreground task to tell it which of the sev­
en sessions to process.

The QULLOADER routine is called upon reception of all
commands and operands that are queable and handles
stuffing the command in the queue with some exception
detection. (Commands that are not queable are POLLS and
ACTIVATES.) The QULLOADER maintains the position of
commands on the queue and status of the queue with a
byte on the SCP called tw_que_ptr. The lower five bits of
the byte form a pointer to the next available position to stuff
a byte on the queue. Each time a byte is loaded, the pointer
is incremented making bit 5 correspond to the queue being
full (TW_QUE_FULL) since it will be set upon loading the
sixteenth entry into the queue. Another flag, TW_QUL
NOT_ROY, in tw_que_ptr is used to tell tw_session if a
complete command packet (Le., a command and associat­
ed operands) is ready for processing. This flag uses tw_
frame_cnt to determine packet boundaries and allows tw_
session to process packets as soon as they are available,
instead of waiting for a complete queue load before pro­
cessing the queue. If QULLOADER detects that the
queue is full, flag TW_QUE_COMPLETE in tw_que_ptr
is set and DATA-VECTOR is set to busy_wait for handling
busy. TW_QULCOMPLETE is used as a handshake be­
tween the background DA V interupt and foreground com­
mand processor to communicate when the terminal can go
unbusy. Exceptions that are set by QULLOADER are in­
valid command and queue overrun exceptions. When an
exception is deteted, it will not be set if there is already a
pending exception. Also, when the exception is detected,
the DATA-VECTOR is set to busy_wait to ensure that the
terminal will go unbusy to allow the controller to handle the
posted exception. The invalid command exception is posted
by the queue loader and the tw_session command proces­
sor. QUE_LOADER will post an invalid command when a
command with associated operands is loaded in the last
queue position but operands are still expected. The queue
overrun exception is posted when the sixteenth frame re­
ceived completes a queue load but the RLEOM flag is still
set meaning more frames are still being received.

The busy_wait state of the DAV interrupt has a number of
functions. The DATA-VECTOR is set to busy_wait when
exceptions are detected in both foreground and background
routines. Also, DATA-VECTOR is set to busy_wait upon
receiving a complete queue load of sixteen frames or the
reception of an End Of Queue command. The major role of
the busy_wait state is to handle the transition of busy (Le.,
having commands on the queue) to unbusy (queue empty
waiting for more commands). To go unbusy the foreground
command processor must have finished processing all the
commands from the prior queue load. Once the last com­
mand of the queue load is received, TW_QUE_
COMPLETE is set by DAV in tw_que_ptr to mark the com­
pletion of the queue load. Then, in busy_wait, the DAV
routine uses the clearing of TW_QULCOMPLETE

2-57

as an indication to clear the POLL response busy bit. In
conjunction with TW_QULCOMPLETE, the DAV inter­
rupt maintains a POLL counter called tw_busy_cnt to pro­
vide maximum flexibility in going unbusy. In has been ob­
served that some IBM controllers require that after a com­
plete queue load is received, the terminal must be busy for
some finite amount of time before being unbusy. To accom­
plish this task, the value of tw_busy_cnt is decremented
with each POLL received while in the busy_wait state.
Upon reaching a count of zero with TW_QUL
COMPLETE low, busy will go low in tw_presp_stat and
tw_busy_cnt will be reinitialized to TW_BUSY _MAX in
preparation for the next queue load. The TW_BUSY _MAX
equate is set up in TWINAX.HDR and should be set accord­
ingly. We recommend that TW_BUSY _MAX be set to one
since older versions of the 5294 remote controller require at
least one "busy" POLL response after a queue load. If a
command other than a POLL is received prior to signaling
unbusy, the DAV will process the command and set
DATA-VECTOR to command decode if TW_QUL
COMPLETE is low. In this case, the tw_busy_cnt value is
ignored to ensure that commands are not discarded.

When a preactivate READ or WRITE command packet is
completely received, the DATA-VECTOR is set to the acti­
vate_wait state. The role of activate_wait is to handle the
transition of busy to unbusy (as with busy_wait), to flag an
invalid ACTIVATE exception if the controller sends the
ACTIVATE before the terminal is unbusy, set up the write_
both state for reception of ACTIVATE WRITEs, and sched­
ule the response for an ACTIVATE READ reception. As with
busy_wait, TW_QULCOMPLETE hass been set high
before entering this state and the interrupt routine uses both
TW_QUE_COMPLETE low and tw_busy_cnt equal to
zero as criteria for going unbusy. Once the terminal is unbu­
sy, a flag stored in tw_nL-acLflags called RLPREAC_
WR determines whether or not to look for an ACTIVATE
WRITE or an ACTIVATE READ command. When an ACTI­
VATE WRITE is received and expected, the busy flag is set
in tw_presp_stat to ensure that the terminal is busy upon
completion of the write and the DATA-VECTOR is set to
write_both since the WRITE IMMEDIATE command and
WRITE DATA command are similar enough to be handled
by one state. When an ACTIVATE READ is received or ex­
pected, a response is scheduled by loading a timeout into
the timer and setting TW_TIMER_RESP in R_STATE.
Also, busy is set so that at the end of the read the terminal
is busy, and DATA-VECTOR is set to command decode in
preparation for the next queue load. Commands other than
ACTIVATEs are simply discarded in this state. An invalid
ACTIVATE exception is posted if the expected ACTIVATE
arrives before the terminal is unbusy. TW_QUE_COM­
PLETE is set in conjunction with TW_QUE_CORRUPT to
tell tw_session to flush the queue. DATA-VECTOR is set
to busy wait to handle going unbusy. As with QULLOAD­
ER, the exception is only posted if there is no pending ex­
ception.

As mentioned above, DATA-VECTOR is set to the
write_both state to handle stuffing data in the regen buffer
following reception of the ACTIVATE WRITE command. The
data is always concatenated with the ACTIVATE WRITE
command. The write_both state is responsible for detect- ..

I

ing the storage overrun exception when the controller at­
tempts to send data beyond the size of the regen buffer.
The only difference at this point between the WRITE IMME­
DIATE and WRITE DATA commands is that the address
counter remains unchanged with the WRITE DATA com­
mand while the address counter is set to one greater than
the address of the last byte stuffed in the WRITE IMMEDI­
ATE comand. To determine whether a WRITE IMMEDIATE
or WRITE DATA command is being processed, a flag in
tW_nL-acLflags called R~WR_DATA is set upon re­
ception of the WRITE DATA command. To minimize time on
the DAV interrupt, the WRITE DATA or WRITE IMMEDIATE
command routines set up the starting location of the write in
tw_acLbeginhi/lo on the appropriate SCPo Tw_acLbe­
ginhi/lo are then used as a pseudo address counter as each
byte is received, incrementing upon stuffing the byte in the
regen buffer. Upon completion of the write, which is deter­
mined by reception of an end of message indicator (R~
EOM set), the pseudo address counter is placed into tw_
acLendhi and 10 locations with the most significant bit of
tw_acLendhi set to inform tw_session that the write is
complete. tw_session can then make an action stack entry
for Smart Alec screen updates.

POLL

POLL commands are processed completely by the back­
ground interrupt routines. The POLL command is decoded
in several states since polls playa part in all states men­
tioned above. The key decisions that are made in the DAV
interrupt when a POLL is received and the associated sta­
tion address is configured by Smart Alec are, what is the
state of level and what "type" of POLL response to make.
The 5250 PAl states that after a Power On Reset, the 5251-
11 will respond with a single frame POLL response that is
simply a status byte. After the SET MODE command is re­
ceived, the next reception of a POLL! ACK command caus­
es the terminal to respond with a two frame poll response;
the first frame being the former mentioned status byte and
the second a keystroke. Also, the PAl states that the first
two frame response after receiving the SET MODE will be
from level 1. To function in this manner, a flag called TW_
PACK-SM is maintained by the DAV interrupt in location
tw_level_cnt on the SCPo This bit is set when T~SET_
MODLRCVD (a SET MODE command has been process­
ed) located in tw_rxt,,-status is set and a POLL! ACK is
received. Level is used to indicate to the controller that new
status is available from the terminal and toggles each time a
new keystroke is presented. The reception of a POLL! ACK
after the terminal has been put in the two byte response
mode results in the POLL response with level toggle from its
prior state. Each toggle of level also contains a new key­
stroke, if available. The section of code in the DAV routine
that handles level transition is nL-level_hndlr.

POLLs to nonconfigured station addresses do not result in a
response but are used in monitoring activity on station ad­
dresses for Smart Alec address bidding purposes. When a

2-58

frame to an OFFLINE address (Le., not configured by Smart
Alec) is received, the OFFLINE activity monitoring routine is
responsible for setting or clearing bits corresponding to
each OFFLINE address in tw_line_act on the DCP. Each
bit in this location corresponds to a physical address on the
network (therefore bit? is unused), and is set when another
terminal or printer is active on that particular address. If the
address is available for attachment, the corresponding bit is
cleared. Smart Alec monitors this status regularly to com­
municate to the user whether or not he can attach to ad­
dresses via seven locations on the screen. To determine if
the address is active, the DA V interrupt looks for POLLS on
all OFFLINE addresses. Once a POLL is received, R~RE­
SPONSLWAIT and TW_ TIMER_RESP flags are set in
R_COUNT into the timer to set a time limit for a response
to be received. Also, R_ST ATE is saved at tw_off_save
addr on the DCP to store the address and response flag.
The next time the DA V interrupt hits with a frame to this
address, tw_off_save_addr is fetched to see whether we
are waiting for a response or not. If we are waiting for a
response, R~RESPONSLWAIT is checked. If the timer
interrupt routine has already run, R~RESPONSE_WAIT
will be cleared which means that a response was not re­
ceived and the saved address is marked inactive. If R~
RESPONSE_WAIT is still set, this means that the frame
just received was a response and the saved address is
marked active. When an address is marked active, the save
address and response flag are cleared in preparation for the
next OFFLINE reception. When an address is marked inac­
tive, the saved address and response flag are cleared only if
the frame received is not a POLL. A reception of a POLL
results in the new address being saved with a timeout
scheduled just as before mentioned.

Errors detected by the receiver are handled on the DAV
interrupt and can result in two different actions. All error
types flagged by the receiver are treated as equal impor­
tance and are logged by maintaining error counters on the
DCP for each error type. The appropriate error counter is
fetched and incremented upon reception of an error. Once
the error is handled, a check to see if the error occurred in
the frist frame of a message or frames 2 - n is checked.
First frame errors result in the setting of the line parity error
detected bit, TW_LP, and TW_BUSY in tw_presp_stat
on each of the current ONLINE sessions. Also, the TW_
QUE_COMPLETE flag is set in tw_que_ptr marking the
End of Queue load to ensure we can eventually go unbusy.
The 5250 PAl states that all active addresses will report line
errors on the first frame since the error could have occurred
in the address portion of the frame. If the error is encoun­
tered in frames 2 - n of a message, the station's address is
known so only that station sets TW_LP in tw_presp_stat.
Also, TW_QUE_COMPLETE and TW_QUE_CORRUPT
are set since the validity of the queue load is in question.
The task tw_session will flush the queue in this case, allow­
ing the terminal to go unbusy. This allows the controller to
handle the line error.

All receiver states exit through a common exit point. Upon
exit, if RLEOM has not been set, RX_MULTI is set to
indicate that a multi-frame is in progress. If RX_EOM is set,
this means that no more frames are expected and results in
the transceiver being reset with RLEOM and RX_MUL TI
being cleared. Many subroutines in the DAV interrupt
branch directly to rlL-eom_rcvd which results in the reset
just mentioned. Using the transceiver reset capability of the
BCP avoids spending unnecessary time on the DAV inter­
rupt processing information of no concern. For example, the
OFFLINE activity monitoring routine only looks for POLLS
and flushes any other frames. What this means is that the
DAV interrupt has to process the first frame of each mes­
sage but by issuing a reset, subsequent frames of a multi­
frame message can be entirely ignored for they will not be
recognized by the BCP. After the reset, the receiver hard­
ware looks for a starting sequence and will not extract data
until seeing it. Therefore, the remainder of the message is
ignored and the next message will be recognized. Before
returning, the state of BIRO is checked to see if a PC 1/0
access needs service. If BIRO is low, a call to dC<L-fasL
birq handles the access and returns control back to the
DAV interrupt routine. At this point, a check to see if more
data is ready for processing is done to avoid unnecessary
overhead of exiting the DAV interrupt only to be interrupted
again. If no more data is available, IZ, banks and flags are
restored on the return back to the foreground routine.

Twinax Transmitter Interrupt Routine

The TFE interrupt routine is responsible for loading the
transmit FIFO and making the correct response to the con­
troller. The TFE interrupt is normally masked and is un­
masked by the timer interrupt when a response timeout
count is encountered. A flow diagram of the TFE interrupt
routine is shown in Figure 6-17.

TL/F/l0488-37

FIGURE 6-17. Twinax TFE Interrupt

2-59

Upon entering the TFE interrupt, the contents of the IZ
pOinter are saved and the pointer is loaded with the appro­
priate SCP address. The appropriate SCP address corre­
sponds to the physical address of the session that is re­
sponding to the controller. The address is stored in
R_STATE bits 2-0 and these bits are loaded into IZHI bits
2-0 with IZLO cleared forming the pointer to the first location
of the appropriate SCPo Finally, (FBR) is loaded with the
value at the tw_mode offset on the SCP to determine the
number of fill bits to insert between frames.

Commands that require a response back to the controller
are POLLs and ACTIVATE READs. All PREACTIVATE
READ commands are processed in the foreground by vari­
ous command processing routines branched to from tw_
session. The various routines do exception checking and
are responsible for setting up TX_VECTOR to the correct
address corresponding to the command type decoded.
When the ACTIVATE READ is received in the DAV interrupt,
a response is scheduled by setting the TW_TIMER_RESP
flag in R_ST ATE and loading a response timeout value into
the timer. When the TIMER interrupt hits and it determines
that this is a response timeout by checking for
TW_ TIMER_RESP set, TW_ TIMER_RESP is cleared
and the TFE interrupt routine is called to make the re­
sponse.

POLL commands are handled entirely on the background
interrupts due to the real time nature of the status response
associated with the command. The DA V interrupt schedules
the response just as described above for ACTIVATE
READS and sets TLVECTOR to one of three addresses
to cover the various POLL responses that can be made.
The first frame of all responses must be sent to the control­
ler in a 45 ± 15 J-Ls window as defined in the 5250 product
attachment information. The response timing is controlled
by loading a timeout value (TW_RESPONSE_CNT) into
the timer when reception of a POLL or PREACTIVATE
READ command is processed in the DAV interrupt routine.
For responses that are less than or equal to four bytes, only
one entry into the TFE interrupt is required to send the en­
tire frame back to the controller. To load the fourth byte
successfully, a test of TFF is made prior to loading the
fourth byte to ensure that the first byte has propagated
through the transmit FIFO and is being transmitted out the
serial shift register. When responses are greater than four
bytes in length, the TX_VECTOR is modified prior to exiting
so that the next time TFE hits, the correct state will gain
control to continue or complete the remainder of the mes­
sage. Upon determining that the last frame of the response
is ready for load, [TCR2-0] are set to 111 for the end of
message delimiter as required by the protocol.

Keystroke passing in the 5250 protocol is different than in
3270. After a POR, 5250 terminals respond with a single
status response. For the 5251-11, a SET MODE followed by
a POLL! ACK causes the terminal to go into a two byte poll
response mode where the second byte is a keystroke. If no
keystroke is pending, the keystroke value is a null (OOh).
New keystrokes can only be presented following a POLL!
ACK from the controller. When a new keystroke is made
available to the controller, the LEVEL bit in the first frame
status byte of the response toggles from the prior value to
inform the controller that new status is now available. The
DAV routine controls the poll responses by setting the TL
VECTOR to one of three possible locations for POLL or

POLL! ACK responses. For single frame status responses
to polls, TL VECTOR is set to t,,-presp_one. As soon as
the criteria to go into two frame poll response mode is met,
the DAV interrupt sets TL VECTOR to either t,,-presp_
crnt or t,,-presp_new. In t,,-presp_crnt, the keystroke
sent back to the controller is the value stored in tw_
presp_key_crnt and LEVEL remains unchanged. In tw_
presp_key_new, LEVEL is toggled in the first frame status
byte response, and tw_presp_key_new is cleared after
moving its value to tw_presp_key_crnt. With this ap­
proach, keystroke passing with the terminal emulation is
simple since by simply checking to see if tw_presp_key_
new = OOh determines whether a new keystroke can be
loaded for passing back to the controller. In other words, if
tw_presp_key_new is nonzero, a keystroke is pending
and the emulation program must wait before loading a new
keystroke into tw_presp_key_new.

All TFE "states" exit through a common exit point that han­
dles masking the TFE interrupt if no more frames are to be
sent, checking to see if a pending BIRO interrupt is present,
restoring foreground registers and restoring banks and flags
upon returning. If a BIRO interrupt is pending, DCL
FAST_BIRO is called to handle the remote access (see
Smart Alec Interface discussion). When more frames need
to be sent, all of the above occur except masking the TFE
interrupt. Also, TL VECTOR may be modified to ensure
that the correct state is entered upon re-entering TFE when
it hits again.

TW·TIMER

The timer the BCP serves dual purposes in the twinax emu­
lation program: as a real time clock counter and as an inter­
val timer.

A 5251 terminal will turn off the System Available flag if no
POLL is received for more than 200 ms. It will initiate an
automatic power on reset if no POLL is received for more
than 2 seconds. Furthermore, the terminal will return to ON­
LINE from reset mode in approximately 5 seconds. The em­
u'lation program uses seven a-bit counters (tw_sys~
por_cntX, where X is from 0 to 6) to keep track of these
real time events (one for each session). These counters are
incremented by one every 21 ms. This 21 ms clock tick is
generated by the TIMER interrupt. The value of 21 ms gives
a maximum counting time (around 5.4 second) and a rea­
sonable counting resolution (± 10% for a count of 200 ms).
The timer of the BCP is configured to use 1/16 CPU clock
as input clock.

In addition, the DAV and TFE interrupts utilize the timer to
provide a 45 J.Ls time-out signal. When the receiver routine
receives a POLL or ACTIVATE READ command and de­
cides to respond to the host, as per IBM's requirement, it
has to do it in 45 J.Ls ± 15 J.Ls after the reception of the
command. The receiver interrupt will setup the timer to gen­
erate a 45 J.Ls time-out signal which in turn activates the
transmitter routine. The receiver interrupt first stops the 21
ms counting of the timer, it saves the current counting value,
it loads the timer to a count of 45 J.Ls (minus some offset to
compensate for program execution time), it then starts the
timer and reloads the previous counting value to the timer
registers. When time-out occurs, the previous counting val­
ue will be loaded into the timer automatically to resume the
21 ms counting. In addition, the program will set a flag to
indicate that the timer has counted 45 J.Ls. In this way, the

2-60

timer is occasionally interrupted from the normal 21 ms
counting and "borrowed" to provide a 45 J.Ls time-out. Since
45 J.Ls is much shorter than 21 ms and the interruption is not
too frequent, the error introduced is negligible.

When either the 21 ms or 45 J.Ls time-out occurs, program
execution will be transferred to the timer interrupt service
routine (tw_timer_int). At the beginning of the routine, the
timer routine checks the source of the interrupt. If it is due to
the 45 J.Ls time-out, the program reloads the 21 ms count
value into the timer registers and calls the TFE interrupt.
The TFE interrupt will return to the timer routine after the
response has been started. If the interrupt is due to the
21 ms time-out, the program increments all real time clock
counters by one unless the counter has already reached
"FF". It is necessary to keep these counters from overflow­
ing because the foreground program has no way to distin­
guish counter overflow. In order to keep the execution time
of the interrupt service routine as short as possible, the tim­
er routine does not perform any other checking to these
counters. However, the routine still has to check pending
host accesses and call dc~fasLbirq if needed. The fore­
ground program (tw_session) is responsible for checking
these counters and invoking real time events at the right
moment.

The Command Stubs

The twinax part of the MPA-II program emulates the IBM's
5251 model 11 display terminal. The following discussion
will be based on the commands for 5251 model 11. The
command set of 5251 model 11 is shown in Table 4-2,5250
Command Set, located in Chapter 4. The commands are
divided into two main groups: the queueable commands and
non-queueable commands. The three non-queueable com­
mands POLL, ACTIVATE READ, and ACTIVATE WRITE are
not handled by the foreground programs as they are not
queueable. Instead they are handled in real time by the
background interrupt service routines as discussed above.

All other commands are queueable, namely, they are
pushed into the command queue when received by the re­
ceiver interrupt routine. They are processed by the fore­
ground task, tw_task, when it is invoked by the Kernel. In
order to divide the program into properly grouped modules
and make documentation easier, the queueable commands
are further divided into four groups according to their func­
tions: Reads, Writes, Control and Operators. This grouping
is not a definition by IBM's PAl document. The commands
shall be discussed according to this grouping.

One may observe that in addition to the 5251 model 11
command set documented in the IBM's PAl, there is an ex­
tra command in Table 4-2 of Chapter 4. The READ LINE
command is an undocumented read command that is rec­
ognizable by the IBM 5251 emulation card. In addition, the
READ DATA command has some undocumented varia­
tions. To allow the MPA-II board to work with IBM's System
Units properly, the BCP program must be able to handle
these commands. Responses to these commands will be
discussed under the READS section.

Commands to the display terminal can be addressed to dif­
ferent logical devices and feature devices. This is specified
in the modifier/device address field of the command. The
device address or feature address should not be confused
with the station address. Station address appears in another

field and is handled by the receiver and transmitter interrupt
routines. In the MPA-II twinax emulation program, Base and
regeneration buffer, Keyboard, Indicators and Model ID are
implemented. The Magnetic Stripe Reader feature is not im­
plemented and commands to this feature will return a "not
installed" response.

As described earlier, tw_session is responsible for decod­
ing the commands and directing the execution of the pro­
gram to the proper command processing routines. There
are some common practices or "rules" in coding command
processing routines so that they can interface with the ses­
sion task properly. On entering a command routine, GPO
contains the command word and IZ contains the current
SCP pointer, plus Main Bank A & B are selected. On leaving
from a command routine, IZ and GP7 must not be trashed
and register bank selection should not be changed. The
common pOint of exit is to LJMP to tw_cmd_ret (twinax
command return). For most commands, all 8 bits of the de­
vice address and command fields have been fully decoded
upon entry and, therefore, require no additional decode in
the command routine. However, for the RESET, READ
DEVICE ID and READ DATA commands, the device/fea­
ture address field must be decoded in the command rou­
tines. This is because these three commands can be ad­
dressed to a number of device/features or can be ad­
dressed to uninstalled device/features. A number of com­
mands are associated with one or more data frames. There­
fore, the command routines must pop those frames off the
command queue with LCALL(s) to tw_que_popper. The
command routines should check the queue empty flag to
prevent catastrophic errors when popping frames off the
command queue. In normal operation, the queue will never
be empty when it is popped by the command routines.
Should the empty flag be true after a call to the tw_que_
popper, it suggests that a programming error has been en­
countered. At this time a LCALL to tw_bugs is performed
followed by a graceful error recovery (The tw_bugs routine
is discussed in the Software Debugging Aid section). Most
commands require the command routines to check for the
validity of the operands which are held by the address coun­
ter, reference counter or cursor register prior to, or in the
course of the operation of the command. If any invalid oper­
and is detected, it must be reported back to the System Unit
through the exception status. The command processing
routines should set the exception type, LCALL to tw_
posLexception and then pass control back to tw_session
via tw_cmd_ret if an exception is detected. The
tw_clear_exception routine should be called if a command
is going to clear exception status. In addition, command rou­
tines should never flush the command queue directly.

The 5250-11 regeneration buffer size is 2000 bytes. The
valid values of the address counter, reference counter and
cursor register ranges from 0 to 1999. However, within the
BCP twinax emulation program, these counters contain an
offset which corresponds to their starting address within the
BCP's data memory. For example, if the address counter
sent by the System Unit is 20h and the regen buffer of that
session starts at the BCP's data memory address of 2048h,
then the address counter value stored in the SCP is 2068h.
We refer to the original values of the counters as relative
addresses and the stored values as absolute addresses.
The reason for storing these counters in absolute address
form is that the command processing routines can use them
directly as data pointers without adding an offset value. This
can speed up the time-critical interrupt service routines.

2-61

However, whenever these counter values are passed to or
from the System Unit via the Smart Alec interface, a conver­
sion procedure is needed. Furthermore, as these values no
longer start from zero, one has to check whether they are
less than the lower boundry of the regen buffer address
when performing the validity check. Another point is that for
some commands, the final values of the counters may be
rolled to 2000 if the last affected location is 1999 (in forward
operation) or 65535 if the last affected location is 0 (in back­
ward operation). Exception status should not be reported in
these cases.

As mentioned in Chapter 4, Smart Alec utilizes a 31 entry
FIFO queue that contains screen modification information.
The FIFO queue contains starting and ending addresses of
the screen area that has been modified. In the Smart Alec
documentation this queue is referred to as the action stack.
In order to emulate the Smart Alec interface, an action stack
was implemented on the MPA-II. Every command process­
ing routine that will modify the screen is therefore responsi­
ble for loading the action stack with the proper address val­
ues. In the tw_util module, there is an action stack loader,
tw_acLldr, and an action stack popper, tw_acLpopper,
dedicated to maintaining the action stack. The action stack
is actually a circular FIFO queue with a length of 124 bytes
located in the SCP of every session. It can· hold up to 31
entries as defined by the Smart Alec document. To load the
action stack, the command processing routines must first
load the appropriate memory locations and registers with
the starting and ending address of the modified buffer area.
Second, they must determine the type of modification as
defined by the Smart Alec interface. Finally, the routines
should call the action stack loader.

READC

All read type commands are grouped in the
TW_READ.BCP module. The entry names of the command
routines are shown in Table 6-5. The read command rou­
tines are in general, quite straightforward. This is because
the actual response of all read commands is controlled by
the transmitter interrupt routine. The foreground read com­
mand routines are only responsible for setting up the proper
response routine addresses for the transmitter interrupt and
for performing some regen buffer address checking, if need­
ed. .

TABLE 6-5. Entry Names of Module tW...;.read

Command Name Command Routine
Entry Name

READ REGISTER tw_reaLregs_cmd
READ LINE tw_read_line_cmd
READ DEVICE ID tw_read_dev_id_cmd
READ DATA tw_read_dat~cmd

READ LIMITS te_read_limits_cmd
READ IMMEDIATE DATA tw_read_iml'lL-cmd

The tw_read_regs_cnid command routine sets up the
READ REGISTERS routine tlC-read_registers for the
transmitter and then jumps back to' tw_cmd_ret. The
transmitter will in turn respond to the System Unit with six
bytes containing the values of the address counter, cursor
register, and reference counter. .

The READ LINE command is an undocumented command
the IBM 5250 terminal emulation card responds to. The
READ LINE command reads the screen buffer starting' at

I

fJI
I

?- r---~

"'I::t
CD

Z
<I:

the address counter until it comes to the end of the current
screen line. The tw_read_line_cmd routine first checks
whether the address counter value lies within the visual
screen buffer range. Note that this range is different from
the other reads. If it does not, then an invalid register value
exception is posted and the tw_read_line_cmd routine
returns to tw_session. Otherwise, the starting address of
the response is placed into tw_acLbeginhi/lo, the ad­
dress counter is modified to point to the end of the screen
line, and then the t><-read_line vector is set up for the
transmitter interrupt. The transmitter will in turn respond to
the System Unit with the contents of the regen buffer line.

The tw_read_dev_id_cmd command routine first de­
codes the device/feature address by comparing the field to
all defined logical devices and feature addresses. If there is
a match, it will jump to the appropriate command routine to
set up routines to respond with the device or feature ID.
Otherwise it will jump to the twJead_fid~oLinstall rou­
tine which will direct the transmitter to respond with zero
data.

There are three different flavors of the READ DATA com­
mand. The READ DATA command addressed to the Mag­
netic Strip Reader is documented in the 5250 PAl. Since the
MSR is not installed, the tw_read_dat~cmd command
routine sets up the t><-read_data routine address for the
transmitter interrupt and them jumps back to tw_cmd_ret.
The transmitter will in turn respond to the System Unit with
sixteen bytes of zero data, per the 5250 PAl. The other two
flavors of the READ DATA command are undocumented,
but supported by the IBM 5250 terminal emulation card. The
READ DATA command 08h directed to the Base device
simply returns the regen buffer byte that the address coun­
ter currently points to. An invalid register exception is post­
ed if the address counter value lies outside the regen buffer
area. Then the t><-dat~vector is set to the t><-rd_dat~
base 08 routine address for the transmitter interrupt by the
tw_rd_dat~base08_cmd command routine. The READ
DATA command 18h is the other undocumented read com­
mand. It is very similar to the read immediate command
discussed below except that the address counter points to
the start of the response, the address counter is set to the
last byte of the response plus one, and that if no attribute is
found when the end of the regen buffer is reached, then an
attribute exception is posted. The tw_rd_dat~base18_
cmd sets up the t><-rd_dat~base18 routine address for
the transmitter interrupt, as well as the starting address for
the response. Note that the tw_rd_dat~base18_cmd
command routine actually determines the ending address
and then simply passes a count to the transmitter interrupt
as to how many bytes of the regen buffer to return. This
keeps the transmitter interrupt very simple.

The tw_read_limits_cmd transfers a display field of data
to the controller. The area of transfer is delimited by the
address counter and reference counter; therefore, tw_
read_limits_cmd first checks whether they lie within the
regen buffer and whether the reference counter is greater
than or equal to the address counter. If anyone of these
tests fail, the program will post an invalid register value ex­
ception and return to the session task. Otherwise, it will
pass the address counter and the byte count (reference mi­
nus address) to the transmitter interrrupt through four mem­
ory storage locations: tw_acLbeginlo, tw_acLbeginhi,
tw_acLendlo and tw_acLendhi, and then set up the
READ LIMITS routino. The transmitter will then fetch the
data from the regen buffer and send it to the System Unit.

2-62

Before returning to session task, this command routine will
update the address counter to the value of reference coun­
ter plus one so that the transmitter interrupt will not have to.

The tw_read_imm_cmd command pops out the starting
address from the command queue and determines whether
it is valid. If it is valid, it will be converted into an absolute
address, as we discussed in the introduction, and passed it
to the transmitter. The tw_read_imm command will then
determine the ending point of the read and pass a count of
the number of regen bytes to send to the transmitter. Final­
ly, the tw_read_imm stub will be set up for the transmitter
interrupt.

WRITE Commands
All write type commands are grouped in the TW_
WRITE.BCP module. The entry names of the command rou­
tines are shown in Table 6-6. The PREACTIVATE WRITE
command routines, tw_write_imm_cmd and tw_write_
dat~cmd, are relatively simple. They just set the beginning
address of the operation to tw_acLbeginhi and tw_acL
beginlo. When the receiver interrupt gets an ACTIVATE
WRITE command, the receiver interrupt will put the data
into the regen buffer and determine the end of operation.
Processing of other write commands is done completely in
the foreground. We shall discuss each command in more
detail.

TABLE 6-6. Entry Names of Module tw_write

Command Name
Command Routine

Entry Name

WRITE CONTROL DATA tw_write_cntl_cmd
WRITE DATA and

LOAD CURSOR-base tw_write_datCL.ld_cur_cmd
WRITE DATA and

LOAD CURSOR-indicate tw_write_datCL.lo_ind_cmd
WRITE IMMEDIATE DATA tw_write_imm_cmd
WRITE DATA tw_write_datCL.c.:md

The tw_write_cntl_cmd command pops the data byte fol­
lowing the command from the queue and puts it into the
control register location (tw_ctrI1) in the SCPo It also
checks the Reset Exception Status bit (bit 12) of the data
word. If the bit is set; the tw_clear_exception subroutine is
called. On the 3180-2 model terminal, the command may
have a second data byte. This routine checks bit 8 of the
first data byte, if it is set, one more byte will be popped out
and saved into tw_ctrl2 in the SCPo

The tw_write_dat~ld_cur_cmd command may also
have one or more data bytes associated with it. This routine
checks the first data byte to determine if it is in the range of
01 to OEh. If the data byte is not in this range, it is the only
data byte associated with the command and the routine just
writes it to the location pointed to by the address counter. If
the data byte is in this range, the routine will take the first
byte as the byte count and will pop that number of data
bytes from the queue and write them into the regen buffer.
During the write operation, the address counter will be incre­
mented and checked for overflow. Storage exception status
will be posted if an overflow occurs. At the end of the opera­
tion, the program updates the cursor register to the value of
the address counter and loads up the action stack by calling
the tw_acLldr routine.

The tw_write_dat~to_ind.~_cmd command routine han­
dles the WRITE DATA AND LOAD CURSOR command ad-

dressed to the indicators. It simply pops out the data byte
following the command and saves it in the memory location
tw_idctr_data in the appropriate SCPo It also notes the
transition direction of certain indicators and saves this infor­
mation in the memory location tw_s~trans_ident for
Smart Alec.

The tw_write_imm_cmd routine first pops the starting ad­
dress from the queue, then checks to see if it is valid. If it is
valid, it will be converted into absolute form and passed to
the receiver interrupt. The starting address entry of the ac­
tion stack is also set up. The receiver will then pick up the
rest of the operation when the ACTIVATE WRITE command
is received.

The tw_write_dat<L-cmd routine checks the address
counter and passes it to the receiver interrupt as the starting
address of the operation. The subsequent operation is iden­
tical to the WRITE IMMEDIATE command.

Operators

The module TW_OPER.BCP contains command routines
for all operator commands. Entry names of these routines
are shown in Table 6-7.

The CLEAR command routine is actually a subroutine that
returns to its caller. Therefore, the command routine tw_
clear_cmd simply calls the actual clear routine, tw_clear_
routine, and upon return from that routine, tw_clear_cmd
LJMP's back to tw_session as required by all command
routines. The subroutine tw_clear_routine checks the ad­
dress and reference counters to see if they point at valid
screen addresses and that the address counter is less than
or equal to the reference counter. If any of these are false
an invalid register exception is posted and no clearing takes
place. Otherwise, the bytes starting with the byte pointed to
by the address counter are zeroed up to and including the
byte pointed to by the reference counter. Then an action
stack entry is made to notify the Smart Alec interface of the
screen update. The address counter and reference coun­
ter's contents are not modified.

TABLE 6-7. Entry Names of Module tw_oper

Command Name
Command Routine

Entry Name

INSERT CHARACTER tw_inserLcmd
CLEAR tw_clear_cmd
MOVE DATA tw_move_cmd
SEARCH NEXT ATTRIBUTE tw_search_attr_cmd
SEARCH NEXT NULL tw_search_null_cmd

The tw_inserLcmd command routine first examines the
regen buffer location pointed to by the reference counter. If
it is not a null, a Null or Attribute error exception will be
posted and operation terminates. If it is a null, the program
proceeds to check the address counter and reference coun­
ter to see whether they are valid. If the counter values are
valid, the insert operation will be carried out. At the end of
the operation, the address counter and cursor register will
be updated and the action stack will be loaded by calling the
tw_acLldr routine.

Although the operation of the tw_move_cmd command is
quite complex, the IBM PAl gives a fairly clear description of
it. This routine checks the address counter, reference coun­
ter and cursor register to determine whether the move is
forward or backward. The program then carries out the
move operation as per the description of the PAL The action

2-63

stack load for the move command consists of two entries or
four values. The first entry is the starting address and end­
ing address of the destination area of the move. The second
entry is the starting address of the source area and the
direction of operation. Details of these entries can be found
in the Smart Alec user manual.

The tw_search_attr_cmd command routine first checks
the address counter to make sure it is within the valid range.
Next, starting from the current address counter value, the
routine searches the regen buffer to find an attribute. If an
attribute is located, the reference counter will be set to the
address of the attribute minus one. The routine will post a
null or attribute error exception if no atribute is found when
the end of buffer is reached.

At the beginning of the tw_search_nulI_cmd routine, it
checks both the address counter and reference counter to
make sure they are within valid range and that the reference
counter is equal to or greater than the address counter. If
the checks are successful, the program proceeds to search
for a null character starting from the current value of the
address counter. If a null is found, the reference counter will
be set to the address of the null minus one. Otherwise the
operation will terminate when the reference counter is
reached and a null or attribute error exception will be post­
ed.

Control
The module TW_CNTL.BCP contains all the routines that
handle the control commands. The entry names of all rou­
tines are shown in Table 6-8.

TABLE 6-8. Entry Names of Module tw_cntl

Command Name Command Routine
Entry Name

LOAD ADDRESS COUNTER tw_load_addr_cmd
LOAD CURSOR REGISTER tw_load_cursor_cmd
LOAD REFERENCE COUNTER tw_load_ref_cmd
SET MODE tw_seLmode_cmd
RESET tw_reseLcmd
EOQ -

The tw_load_addr_cmd command routine pops the ad­
dress counter value from the command queue and saves it
on the SCP after changing it to absolute form. However, as
per IBM's PAl, there is no need to check the validity of the
value before loading. As a remark to clarify the ambiguity of
the PAl, the address counter value consists of two bytes,
the upper byte is the first data byte following the command
while the lower byte is in the second byte.

The tw_load_cursor_cmd command routine loads the
cursor register in the SCP with a new value. The operation is
similar to tw_load_addr_cmd routine.

The tw_load_ref_cmd command routine loads the refer­
ence counter in the SCP with a new value. The operation is
similar to tw_load_addr_cmd routine.

The tw_seLmode_cmd routine pops the fill bit count
from the command queue, converts it to the BCP's Fill Bit
Register format, and saves it on the SCPo Next, the set
mode received bit is set in the SCPo This signals the back­
ground receiver interrupt that it may start responding to
polls using the two byte response format, (after a PACK is
received). Finally, if the current exception state indicates
POR then the exception state is cleared.

Like the tw_clear_cmd routine, tw_reseLcmd actually
calls the subroutine tw_por which performs a POR on the
current session. The routine tw_por first places the current
session OFFLINE by signaling to the background receiver
interrupt (via the RLRESET bit) that it is not to respond to
the host until further notice for this station address. Once
this is done, the tw_por routine can begin changing memo­
ry locations normally updated by the background receiver
interrupt without disabling interrupts because the RLRE­
SET bit effectively disables the receiver interrupt when
working with this physical session. Next the exception
status is changed, notifying other tasks that this session is
in POR. The time count for this session is cleared and a bit
is set (in th~ tw_por_waited_session byte on the DCP)
informing the other tasks that the 5 second POR timeout
has commenced. The tw_task routine will use this time
count and this session's POR wait bit t6 determine when to
bring the session back on line. Other tasks use the POR
wait bit when interpreting the meaning of the time count for
the current session. The action stack is cleared next, along
with the· smart alec task handshake bits. Then, the screen
buffer for this session is cleared via a call to tw_clear_rou­
tine, which issues an action stack entry reflecting the
cleared screen. (This allows the PC to accurately reflect the
POR state.) Finally, the remaining SCP variables are set to
their appropriate values, except for the variables controlled
by the smart alec task, (Le., Model 10, Keyboard 10, etc ...),
which are left unchanged.

The End Of Queue command does not actually have a com­
mand routine, for at this point in the command decoding
process of the MPA-II it does not provide any additional
information. As far as the command processor is con­
cerned, the· queue load complete flag, set by the back­
ground receiver interrupt, indicates the actual end of queue.
So the act of popping the EOQ command off the queue
completed this command's execution, no call to a command
routine is required.

.The Twinax Session Command Processor

The twinax session command processor, tw_session, is lo­
cated in module TW_SESS.BCP. Its job is to perform all
non time-critical functions related to sustaining an active
twinax session. This includes processing the internal com­
mand queue, error recovery, and performing a POR. In addi­
tion, tW-,-session and. its subordinate routines are responsi­
ble for communicating important events (like screen up­
dates) to the emulation interface routine (i.e., the smart alec
task), which operates asynchronously to twinax session ac­
tivity.

The command processor, tw_session, and its subordinate
routines are written with "reusable" code. That is, all the
information regarding a given twinax session's state is kept
in the SCP (the data memory. Session Control Page) at­
tached to that physical session. There is no dependency
between tw_session and an active session's state from
one call to the next. At any time, any SCP may be passed to
tw_session. In other words, the current state of a given
physical twinax session exists only in its SCP, not in the
command processor. This gives one set of routines
(tw_session and its subordinates) the ability to process all
the· active twinax sessions concurrently. The twinax task
tw_:.Jask simply passes the pointer of. the scheduled ses­
sion's' SCP (via the IZ register) to tw~session and tw_

2-64

session then determines the current state of that session
and what action(s) need to be performed.

The program flow of tw_session proceeds as follows. First,
tw session checks for the ACTIVATE WRITE command
fo;ihe current session completed in the background. If one
has occurred, tw_session performs an action stack push,
which notifies the Smart Alec interface of the screen up­
date. Next, the command processor checks for actions re­
quested by other tasks. Currently, two actions are defined:
the "forced" POR and the "requested" POR. The "forced"
POR is usually issued by the smart alec interface task and it
forces a POR regardless of the current session status. After
the POR is initiated control returns to the calling routine
(tw_task). The "requested" POR is usually issued by tw_
task when an Auto-POR is desired. A POR is only per­
formed if the current session is not already in the POR ex­
ception state or if an error condition does not exist. Other­
wise, this request is ignored. In this way, the twinax session
will not unnecessarily POR. Again, after a POR is initiated
control returns to the calling routine.

Once all the requested actions from other tasks have been
handled, the command processor attempts to process the
internal command queue of the current session. Rather then
holding off the command processor from processing com­
mands on the queue until a queue load is complete, we
opted to exploit the power of the BCP by using a parallel
processing approach where both the background receiver
interrupt and the foreground command processor have ac­
cess to the command queue simultaneously. This enables
the command processor to execute commands even while
the queue is still being loaded by the host. To avoid con­
flicts, the command processor tw_session takes a "snap
shot" of the current internal command queue and current
exception status (in the poll response byte). The command
processor then works from the "snap shot" while the back­
ground receiver task updates in real time.

The "snap shot" involves the following steps. Interrupts are
disabled to prevent background tasks from updating the
command queue. The command queue is then checked to
see if another task has marked it as "corrupt". When a
background task determines that the command queue may
contain invalid data (for example, due to a line parity error or
the detection of an exception) it marks the queue as corrupt
and schedules that session. The tw_session routine then
flushes the queue when it gets control. Flushing the com­
mand queue resets all the queue pointers and flags. This
marks the command queue as empty. ·It also signals the
background tasks that tw_ session has acknowledged the
error and cleaned up the command queue. This handshake
is required since background tasks are only allowed to push
onto the internal command queue, never flush it. (At the
next poll to this session, the background receiver interrupt
will indicate "not busy" to signal the host that this device
has completed error recovery.) After the command queue is
flushed, tw_session will deschedule this twinax session
and return to the calling routine (tw_task). If the internal
command queue is not corrupt, tw_session checks to see if
it is "ready" for processing. The command queue is marked
as "not ready" while the background receiver interrupt is in
the middle of pushing a multi-byte command (for example
the LOAD ADDRESS COUNTER command) onto the

queue. While the queue is marked as "not ready",
tw_session will not attempt to process any commands on
the queue. Instead, tw_session leaves this session sched­
uled and returns to tw_task. This keeps the command
processor and its subordinate routines from attempting to
pop incomplete commands off the internal command
queue. On the next Kernel cycle, tw_ session will once
again be called upon (by tw_task) to process this session's
command queue. If the internal command queue is marked
"ready" for processing then tw_session copies the current
queue pointer, the current exception status (located in the
poll response byte), and then deschedules this session.
This completes the "snap shot". Interrupts are enabled so
that other tasks may continue to update the command
queue.

Now that the "snap shot" of the command queue has been
taken, tw_session can begin popping commands off the
queue and decoding them. The command queue is process­
ed based on tw_sessions' current verion of the exception
status, initially recorded during the "snap shot". This excep­
tion status is checked before the decode of each command
to determine the current exception state of this session,
since command decode depends on this state and previous
command execution may change the state. (Note that this
copy of the poll response's exception status may not match
the actual exception status after the "snap shot" has been
taken. This is simply a consequence of background/fore­
ground parallel processing and is not a problem. The next
time a queue "snap shot" is taken the tasks are brought
back into sync.) While in paR exception state, only the SET
MODE and RESET commands are considered valid. While
in any other exception state, only the SET MODE, RESET,
and WRITE CONTROL DATA commands are considered
valid. In normal mode (no exception state,) all commands
are considered valid. If an invalid command for the current
exception state is decoded, the command queue is flushed
and tw_session will attempt to post an exception. A valid
command decode causes tw_session to pass control to
that command's routine (called a command routine) for pro­
cessing. Most of the commands have been fully decoded by
tw_session before their command routine is executed, but
a few commands require the command routines to further
decode the feature address field. Each command routine is
responsible for popping its associated data off the com­
mand queue. Each command stub is responsible for carry­
ing out complete command execution, including posting ex­
ceptions, making action stack entries, etc ... (Many of
these tasks are actually carried out by calls to support sub­
routines.) All command routines return to the same entry
point in tw_session. (See the comments in tw_session, at
the command decode section, for a complete set of rules
regarding command stub coding.)

When all the commands have been popped off the current
command queue snap shot, the queue load complete flag
(TW_QULCOMPLETE) is checked. This flag is set by the
background receiver interrupt when an EOO designator has
been received. (An EOO deSignator can be an EOO com­
mand, a PREACTIVATE command, or a full command
queue.) If the queue load complete flag is set then
tw_session flushes the command queue, clearing this flag
and resetting the command queue pointer. The clearing of
the queue load complete flag by tw_session Signals the
receiver task that it may clear the poll response busy status
flag at its discretion. This in turn signals the host that the

2-65

queue load has been completely processed and a new
queue load may be initiated.

Finally, tw_session returns control to the calling routine,
tw_ task, not to be called again for the current session until
another task schedules this session to perform additional
work.

Handling Exceptions

Exceptions are posted by the subroutine tw_posLexcep­
tion (located in module TW_UTIL.BCP). This is the only
reliable way for foreground tasks to post exceptions since
both foreground and background tasks must be made
aware of the exception. The tw_posLexception routine
first disables interrupts to hold off background processing. It
then updates tw_session's exception status. Next, it up­
dates the poll response exception status, but only when no
exception is currently pending. The tw_posLexception
routine then places the background receiver interrupt into its
busy wait state. This prepares the receiver interrupt to re­
spond "not busy" on subsequent polls from the host. Fol­
lowing that, tw_posLexception flushes the command
queue per the PAL Finally, after a quick check of BIRO,
interrupts are enabled and tw_posL exception returns to
the calling command stub.

Exception status is cleared by tw_clear_exception, locat­
ed in module TW_UTIL.BCP, for the same reason as stat­
ed above. This routine sets both tw_session's exception
status and the poll response exception status to zero while
interrupts are disabled. Again, BIRO is checked before inter­
rupts are enabled and then control returns to the calling
command routine.

Twinax Software Debugging Aids

The subroutine tw_bugs, located in the module
TW_ TASK.BCP, is used for a debugging aid. Routines call
tw_bugs when they detect invalid states; for example, the
Smart Alec read command addressed to physical session 7
(the seven physical sessions are numbered 0-6). During
initial debug, the SCPs and DCP are usually relocated into
dual port memory by trading them with screen buffer 3 (sbp
3). The tw_bugs routine is then set to disable interrupts,
unlock the PC, and jump to itself so that when called, the
current state of the MPA-Ii is frozen and can then be viewed
using the Capstone Technology debugger. After initial de­
bug is complete, tw_bugs is set to simply log the occu­
rence of a bug by incrementing a counter in the DCP and
return to the caller. The caller should then attempt a grace­
ful recovery. A check of the tw_bugs counter will reveal if
routines are detecting unexpected conditions when in the
field.

Smart Alec Interface Overview

Smart Alec is a micro-to-System 3x or AS/400 link pro­
duced by Digital Communications Associates. It provides
the IBM PC, PC XT, or PC AT with a direct link to IBM
System 34, System 36, System 38, or AS/400 midrange
computers. The Smart Alec product includes a printed cir­
cuit board that installs in any full length slot in the PC, and a
software package that consists of a 5250 terminal emula­
tion program, called EMU, and a bi-directional file transfer
utility. A splice box to facilitate connection to the twinaxial
cable is also included.

The terminal emulation program provides the user with all
the features of 5251 model 2, 5291, or 5292 model 1 termi- EI

I

nal. It also allows a PC printer to emulate the IBM 5256,
5219, 5224, 5225, and 4214 system printers. The file trans­
fer utility provides bi-directional data transfer between the
PC and the System 3x. Additional features include the ability
to support up to seven host sessions, the capability to bid
for unused addresses, compatibility with software written to
comply with the IBM Application Program Interface, "hot
key" access, and 3270 pass through support.

As mentioned earlier, IBM was the first to enter the market­
place with a 5250 terminal emulator. This was soon fol­
lowed by the release of similar products including DCA's
Smart Alec. Smart Alec was however, the first product to
offer seven session support, address bidding, and a docu­
mented architecture for third party interfacing. As with
IRMA, Smart Alec and its associated interface gained ac­
ceptance in its respective market place. As a result of this
the Smart Alec interface was chosen for the Multi-Protocol
Adapter-II to further show the power and versatility of the
DP8344A Biphase Communications Processor. The MPA-II
hardware with the MPA-II soft-Ioadable microcode is equiva­
lent in function to the DCA Smart Alec board and its associ­
ated microcode with respect to terminal emulation and file
transfer capabilities (the printer emulation and non-vol RAM
configuration storage were not implemented on this version
of the MPA-II). Both directly interface with the Smart Alec
terminal emulation software that runs on the PC (EMU, file
transfer utilities, etc ...) providing the same terminal emula­
tion functions and features of the Smart Alec product. The
following sections describe the hardware interface and the
BCP software in the Multi-Protocol Adapter-II Design and
Evaluation kit that is used to implement the Smart Alec in­
terface. All of the following information corresponds to Rev
1.51 of the Smart Alec product.

Hardware Considerations

The Smart Alec printed circuit board plugs into any full size
expansion slot in the IBM PC System Unit. It provides a
cable and splice box that allows the bulky twinaxial cable
from the System 3x or AS/400 to be connected to the back
panel of the Smart Alec board. The splice box also contains
termination resistors that can be switched in to terminate
the line if it is the last device. Smart Alec operates in a
stand-alone mode, using an on-board microprocessor (the
Signetics 8X305) to handle the 5250 protocol and multiple
session screen buffers. Because of the timing requirements
of the 5250 protocol, the on-board 8X305 operates inde­
pendently of the 8088 or the System Unit. The 8X305 pro­
vides the intelligence required for decoding the 5250 proto­
col, maintaining the multiple screen buffers, and handling
the data transfer and handshaking to the System Unit.

The Smart Alec card uses a custom integrated circuit to
interface the 8X305 to the twinaxial cable. This custom de­
vice is essentially a transmitter and receiver built for the
5250 environment. It can take parallel data from the 8X305
and convert it to a serial format while adding the necessary
5250 protocol information and transmit this to the twinaxial
cable through additional interface circuitry. It also accepts a
serial TTL level signal in the 5250 word format and extracts
the 5250 protocol specific information and converts it to a
parallel format for the 8X305 to read.

2-66

The card contains 16K of data memory for the screen buff­
ers and temporary storage. Each session can require up to
2K of data memory for its associated screen buffer, ac­
counting for a total of 14K. The remaining memory space is
used by the 8X305 for local storage.

The hardware used in enabling the 8X305 to communicate
with the PC's 8088 processor is a dual four byte register
array. The 8X305 writes into one side of the four byte dual
register array which is read by the 8088. The 8088 writes
into the other side of the dual array which is in turn read by
the 8X305. The dual register array is mapped into the PC's
110 space at locations (addresses) 228h-22Bh. This inter­
face is identical to that found on the IRMA board except for
the liD addresses.

A handshaking process is used between the two processors
when transferring data. After the 8088 writes data into the
array for the 8X305, it sets the "Command" flag by toggling
bit 0 (writing a "1" then writing a "0") in liD location 22Eh.
This is decoded in hardware and sets a flip-flop whose out­
put is read as bit 7 (the msb) at location 22Eh. When the
8X305 has read the registers and responded with appropri­
ate data for the 8088, it clears this flag by resetting the flip­
flop. A similar function is provided in like manner for trans­
fers initiated by the 8X305. Here the flag is called the "At­
tention" flag and can be read as bit 6 at location 22Eh. This
flag is cleared when the 8088 toggles an active low bit in bit
position 0 at location 22Dh. Even though the attention flag
function is documented, it is not used on this revision of
Smart Alec.

Two additional features not found on rev. 1.42 of the IRMA
card were implemented on the Smart Alec board. These are
the ability to softload the 8X305's instruction memory and
the ability to save configuration information in a non-volatile
RAM on the board. The control signals needed for these
tasks are transferred to the Smart Alec Board from the 8088
in bits 1-5 at location 22Dh and 22Eh, and in bits 6 and 7 at
liD location 22Fh. When the terminal emulation program,
EMU, is invoked for the first time after each power up the
8X305 microcode is downloaded into RAM on the Smart
Alec board. Information generated through the configuration
program EMUCON is loaded into a 9306 serial non-vol RAM
on the Smart Alec board. This is accessed at power up thus
eliminating the need for the user to configure the board ev­
ery time the PC is turned on. A block diagram of the Smart
Alec hardware is shown in Figure 6-18.

The Multi Protocol Adapter-II printed circuit board also plugs
into any expansion slot in the IBM PC System Unit. Like
Smart Alec, it provides an adapter to allow the bulky twinaxi­
al cable from the System 3x or AS/400 to be connected to
the back panel of the card. The MPA-II board contains the
termination resistors on the PC card and not in a splice box.
These resistors can be "switched in" via two jumpers. The
MPA-II operates in a stand-alone mode, using the DP8344A
Biphase Communications Processor to handle the 5250
protocol and multiple screen buffers. Again. because of the
timing requirements of the 5250 protocol, the BCP operates
independently of the 8088 microprocessor of the System
Unit. As with the 8X305, the BCP provides the intelligence
required for decoding the 5250 protocol, maintaining the

8X305 RAM

DUAL
REGISTER t--.... -

filE - ---1

PC BUS
TLIF 110488-38

FIGURE 6·18. Smart Alec Hardware Block Diagram

multiple screen buffers, and handling the data transfer and BCP DATA MEMORY
handshaking to the System Unit. However, with the BCP's
higher level of integration, it also interfaces with the twinaxi-
al cable. The BCP has an internal biphase transmitter and
receiver that provides functions similar to the custom trans­
ceiver on the Smart Alec board. As is the case in 3270, the
BCP's CPU can handle the 5250 communications interface
very efficiently. It also has the extra bandwidth to allow the
MPA-II to easily handle the multiple sessions.

The MPA-II card contains a single 32K x 8 RAM memory
device for the screen buffers and temporary storage. This
memory size was chosen to handle all seven twinax ses­
sions in a single RAM.

The hardware used to enable the MPA-ll's BCP to commu­
nicate with the PC's 8088 processor is steering logic (con-
tained in PALs) and the data RAM. In a typical application,
the BCP communicates with a remote processor by sharing
its data memory. This is true with the MPA-II, but because
the MPA-II must run with the Smart Alec software, steering
logic has been used to direct the 8088's liD reads and
writes done by the Smart Alec software into data memory
locations on the MPA-II card. The liD accesses performed
by the Smart Alec software can be fit into three groups;
accesses to the dual register array, accesses to the hand­
shaking flags, and accesses to configure the card. All of
these are directed into the BCP's data memory, however
each are handled differently by the MPA-II. By using data
memory and the extra proceSSing power of the BCP's CPU
instead of discrete components the number of integrated
circuits on the board was reduced.

The Smart Alec dual register array is implemented on the
MPA-II card in the same fashion as the IRMA dual register
array. The liD accesses from the System Unit are
"steered" to two different BCP data memory locations de­
pending on if they are reads or writes. The writes from the
8088 are directed to memory locations 7F28h-7F2Bh, and
the reads from the 8088 are sourced from memory locations
7E28h-7E2Bh. The MPA-II Register Array Implementation
is shown in Figure 6-19.

2-67

PC I/O BUS

STEERING
lOGIC

TLlF/10488-39

FIGURE 6·19. MPA·II Register Array
Implementation for Smart Alec

The handshaking process on the Smart Alec card differs
from the IRMA implementation. To set the command flag,
bit a in the register at liD location 22Eh must be toggled (a
write of a "1 ", followed by a write of a "a"). In the IRMA
interface, just writing to an liD location would set the com­
mand flag. This is not the case with Smart Alec because the
additional softload and configuration capabilities of the
Smart Alec card required that each of the bits in these regis­
ters have different functions. The MPA-II hardware used to
emulate the handshaking function for Smart Alec is similar
to its IRMA implementation. When the 8088 goes to set the
command flag by toggling bit a at liD location 22Eh, it actu­
ally does a write to 7F2Eh in the MPA-lI's data memory via
the steering logic. The steering logic also interrupts the BCP
telling it an access has been made to the Smart Alec liD
space. The BCP then determines if it was a write to the PC
liD location 22Eh by reading the access register from the
steering logic. If a write occurs to liD location 22Eh, the
BCP reads the memory location 7E2Eh and determines if I

fI
I

the "set command flag" bit has been toggled. It does this by
checking to see if bit 0 and bit 4 (the non-vol RAM enable
bits) are low. If this is the case, it then knows the Smart Alec
software intended to set the command flag. The attention
flag is not implemented on this version of Smart Alec and is
therefore not implemented on the MPA-II. However, if one
chooses to do so it can easily be done in the same manner.

The System Unit accesses used to configure the Smart Alec
Board consist of a method to softload the 8X305 and to
read and write set-up information into a non-vol RAM. Be­
cause the MPA-II uses the DP8344B, there is no need to
emulate the 8X305 softload function. The DP8344B is itself
softloaded using the MPA-II Loader before the Smart Alec
software is invoked. The reading and writing of the non-vol
RAM is done using additional bits in the control and strobe
registers at 110 locations 22Dh, 22Eh and 22Fh. In the
Smart Alec implementation the System Unit must provide all
the control, data and clock signals to the non-vol RAM via
the above mentioned 110 locations. The non-vol RAM is not
implemented on the MPA-II card but because the Smart
Alec emulator, EMU, reads this information on power-up the
MPA-II does emulate the non-vol RAM when it is being read.

This is done in the same manner as the handshaking flags
and further illustrates the flexibility a designer is given with
the additional bandwidth of the BCP's CPU.

Smart Alec Microcode

The Smart Alec application software written for the personal
computer (EMU, file transfers, etc ...) is architected around
a defined interface between Smart Alec and the System
Unit (the 8088 and its peripheral devices). The hardware
portion of this interface was discussed in a previous section.
The software portion of this interface is the microcode writ­
ten for the 8X305 processor. For the following discussion,
the software and hardware are viewed as a single interface
function. All of the Smart Alec application software has
been written around this interface. When configured in the
Smart Alec mode the MPA-II becomes this interface. The
method of communication between Smart Alec and the Sys­
tem Unit will be discussed briefly in the next section. A more
exhaustive discussion on this interface is given in the Smart
Alec manual.

Smart Alec and the System Unit communicate through the
dual four byte register array. The System Unit issues com­
mands to Smart Alec by writing to this array. This register
array is viewed by the System Unit as four 110 locations
(228h-22Bh). Each 110 location corresponds to one eight
bit word. When the System Unit issues a command, the first
byte, word 0, is defined as the command number and logical
device. The next three bytes, word 1 through word 3, are
defined as arguments for the command. The number of ar­
guments associated with an individual command varies from
zero to three. Twenty-three commands are used in the com­
munication between the System unit and Smart Alec. The
upper three bits of each command specify the logical device
to be referenced by the command. To begin a command the
System Unit program sets word 0 equal to the logical device
and the command number. It also provides any necessary
arguments in word 1 through word 3, and sets the command
flag. The command flag is continually being polled by the
8X305 processor when it is not busy managing the higher
priority 5250 communications interface. When it detects the

2-68

setting of this flag by the System Unit, it will read the data
from the register array and execute the command. Once the
command has been executed, the 8X305 will place the re­
sulting data into the other side of the register array and clear
the command flag. The System Unit program has been con­
tinually polling this flag and, after seeing it cleared, reads
the result from the register array. The command flag can
only be set by the System Unit. This is done by toggling bit 0
at 110 location 22Eh. The command flag can only be
cleared by the Smart Alec's 8X305.

The Smart Alec board was deSigned at DCA after the IRMA
product. It is obvious from the additional commands that
steps were taken to improve the performance of the inter­
face with the System Unit. An action stack was generated to
hold address pairs that denoted where the screen buffer
had been modified and with what type of modification. Also
read multiple commands were added to speed up data
transfer through the interface. While this did improve the
performance of the interface it still contains the inherent
limitations of not dual porting data memory.

MPA-" Implementation

The smart alec interface on the MPA-II board operates es­
sentially in the same manner as described above. The Sys­
tem Unit 110 accesses to the Smart Alec register array
space are transferred to two locations in the BCP's data
memory. One location is for System Unit reads of the array
(7E28h-7E2Bh), the other is for System Unit writes to the
array (7F28h-7F2Bh). Different BCP memory locations were
used because the register array on the Smart Alec card
actually contains eight byte wide registers (four for System
Unit and four for System Unit writes) in hardware.

The command flag is implemented using a 74LS74 on the
Smart Alec board, hence the setting and clearing by tog­
gling a bit in the control register at 22Eh (this clocks the flip­
flop). This function has been implemented on the MPA-II
using an external PAL and the bi-directional interrupt pin,
BIRO. Also, the MPA-II takes advantage of the fact that the
Smart Alec software accesses the 110 locations in exactly
the same fashion for each command. This is done because
the Smart Alec emulation program, EMU, was written in the
C programming language. It accesses the Smart Alec 110
registers by calling an assembly language subroutine to per­
form the commandldata and handshaking flag communica­
tions. This assembly routine writes to the 110 locations 228h
through 22Bh, toggles the command flag, and then reads
the state of the command flag (bit 7 at location 22Eh) until it
returns low. If there is a write to the Smart Alec 110 space
228h-22Fh, then a PAL issues an interrupt to the BCP via
the BIRO input. The BCP then reads other outputs of that
PAL to determine to which of those 110 locations the write
occurred. If it is to 228h-22Bh then the MPA-II will assert the
bit which tells the System Unit that the command flag is set.
The MPA-II then waits for a System Unit write to 110 loca­
tion 22Eh with the set command flag bit (bit 0 at 22Eh) low.
The MPA-II then sets an internal command flag. It is this
internal command flag that tells the MPA-lI's smart alec task
routine that an actual command has been issued by the
System Unit.

The commands from the System Unit are executed in the
smart alec task routine. This routine is a foreground sched­
uled task in the MPA-II Kernel. The smart alec task routine
first checks to see if the non-vol RAM is being read. If so it

supplies the necessary data in bit position 6 at liD location
22Fh. If the non-vol RAM is not being read, the smart alec
task routine then determines if a command is present. If so
the command is decoded and executed by the appropriate
command routine. In most cases, the appropriate physical
device will have to be determined in order to access the
correct session control page, or SCP, and the correct
screen buffer for each active session. The SCP contains
status and control information for each of the seven possi­
ble sessions. During the command execution the required
status is calculated by calling the status update subroutine.
The command's result and the calculated status are then
placed in the appropriate memory locations (7E2Bh-7E2Bh).
After this is complete, the task clears the command flags
and returns program control to the Kernel.

There are three separate code modules used to allow the
MPA-II to emulate the Smart Alec Interface.

1) power-up initialization routine

2) BIRO interrupt routine

3) smart alec task routine

These three routines will be discussed in the following sec­
tion. For clarity, the term "smart alec" is capitalized when
referring to DCA products and lower case when referring to
the MPA-II software that has been written to emulate the
interface. Figure 6-20 gives a graphical representation of
where these routines fit into the software architecture of the
MPA-II.

MPA-II Smart Alec Initialization Routine

The smart alec power up initialization routine is called by the
housekeeping task if it detects that the smart alec bit has
just been set in the MPA-II configuration register. The smart
alec initialization routine is titled sa_-'nit in the MPA-II
source code. This routine initializes the memory locations
and BCP internal registers that are used by the smart alec
emulation code. It also unmasks the BIRO' interrupt and
schedules the smarLalec_task in the MPA-II Kernel. The
memory locations that are initialized in this routine are the
blocks of memory that correspond to the contents of the
emulated non-vol RAM, the memory locations used to emu­
late the dual register array and the flag registers, the loca­
tions on the seven session control pages that EMU controls,

and the device control page memory locations that control
the logical to physical mapping for the multiple sessions.

The s~init routine also initializes some internal BCP regis­
ters. It does this because other routines, such as the dca
BIRO interrupt routine, must access certain stored va!ues
very quickly to keep their execution time quick. The final
function of the s~init routine is to schedule the' s~task
routine. This is done by loading the task number into the
accumulator and calling the schedule_task routine. After
this, program control is returned to the Kernel.

MPA-II DCA Interrupt Routine

The second code module required to emulate the Smart
Alec Interface is the dca BIRO interrupt routine. The MPA-II
board uses the extra CPU bandwidth of the BCP to reduce
the discrete components needed to provide the command
and flag function. It does this by letting the CPU decode part
of the System Unit liD access address and by letting itpro­
vide the set function of this flag. The BCP code necessary
for this is the BIRO interrupt routine whose source module is
DCA......INT.BCP. The BIRO interrupt is generated when the
System Unit writes to any liD locations from 220h to 22Fh.
It would have been more expedient in this case,to only have
interrupts generated on writes to liD location 22Eh. Howev­
er, the MPA-II hardware also supports the IBM and IRMA
emulation programs. The MPA-II implementation for the IBM
interface requires interrupts to be generated from more Sys­
tem Unit liD access locations, so to reduce external hard­
ware, interrupts are generated for a sixteen byte liD block.
This flexibility of hardware design further illustrates the' use­
fulness of the extra CPU, bandwidth of the DPB344B.

When the BCP detects the, BIRO interrupt, it transfers pro­
gram control to the dc~int routine. The function of this
routine is to set the command flag or provide the appropri­
ate serial non-vol RAM data. There is a section of code in
the dc~int routine that does the same function as that
described above, but is called from the other routines and
not by the external BIRO interrupt. To increase perform­
ance, the interrupt routines check the BIRO flag in the
CCRregister before they return. If the flag is set, it calls the
dc~fasLbirq ,section of the dc~int routine. Here the
same operations as described earlier are performed except
for the saving and restoring of the environment. The

TLIF/10488-40

FIGURE 6-20. MPA-II Software Block Diagram in Smart Alec Mode

2-69

Ell
I

.,...
'OI:t
CD

:2:
<C

dc~fasLbirq routine does not have to provide this func­
tion because the other routines do so. This decreases the
number of instructions executed and therefore improves the
overall performance.

MPA-II Smart Alec Task Routine

The majority of the Smart Alec emulation takes place in the
smart alec task routine. This routine is run in the foreground
as a scheduled task. Therefore the decision to execute this
routine is dependent only on the MPA-ll's task scheduler
and is not impacted by the System Unit. In reality, the task is
run many times between System Unit accesses because
the code execution speed of the BCP is much greater than
that of the SOSS. The smart alec task routine, appropriately
labeled in the source code as "s~task", contains four ma­
jor sections. These sections are the non-vol RAM routine,
the command execution routines, the physical session de­
termination routine, and the status update routine.

When the smart alec task is called, it first checks to see if
EMU has tried to read the non-vol RAM. If so, it determines
how many times it was read (the non-vol RAM is read serial­
ly) so it can adjust the serial bit stream it is providing to
EMU. If no accesses have been made to the non-vol RAM,
the smart alec task checks to see if a command is present.

If there is· no command present (the internal command flag
is not set), the task returns to the Kernel. If a command is
present, the lower five bits of the command word is decod­
ed to determine which of the twenty three commands has
been issued by the System Unit. Program control is then
transferred to the specific routine that executes the com­
mand. In most cases, the first thing done in the specific
command routine is to determine which session the com­
mand was issued to. This is done by decoding the top three
bits in the command word to determine what logical session
the command was issued for. After that, the corresponding
physical session is determined and pointers are set up in
internal registers to point to the appropriate session control
page and screen buffer. Both of these functions are per­
formed in the tw_s~spset subroutine. Using this informa­
tion the command is executed and the required status is
calculated. The status is calculated in the tw_s~all_
status routine if full status is required. If only common status
is required, the tw_s~commorL-status routine is called
instead. After this, the resulting data is placed in the section
of memory that is accessed by the System Unit when it
reads the 110 locations 22Sh-22Bh. The smart alec task

then clears both the internal and Smart Alec command flags
and returns program control to the Kernel.

MPA-II Command Set

New to the MPA-II is the support of an MPA-II command set.
The primary purpose of this command set is to allow any
part of the MPA-II'S data memory to be accessed by the PC
without having to stop the BCP or depend on the current
interface mode running, (Le., IRMA, IBM, ALEC). As almost
always happens, the usefulness of this interface caused the
MPA-II command set to expand. Another benefit of the
MPA-II command set is that it demonstrates a better way to
communicate with the BCP than that of the IRMA, IBM or
ALEC interfaces. By taking advantage of the fact that the
BCP directly supports dual port memory, one bit sema­
phores can be used to handshake with the PC and, there­
fore, no BIRQ interrupt routine nor lock out of the PC is
required.

The MPA-II commands are listed in Table 6-9. The routine
housekeep in KERNEL.BCP is responsible for the execution
of these commands. The commands allow the PC to read
and write any part of the BCP's data memory (including non­
dual port memory), determine what version of MPA-II code
is actually executing, and read or clear the receiver's error
counters.

The MPA-II commands consist of a command byte written
to the MPA-II configuration register (2DCh) and an optional
parm written to the MPA-II parmI response register (2DBh).
If the command returns a response, it is read by the PC from
the MPA-II parm/response register (2DBh).

A command is identified by setting the CF _MP~CMD bit
to one. This bit is part of the command's value listed in
Table 6-9. The completion of a command's execution is in­
dicated by the restoration of the current MPA-II configura­
tion in the MPA-II configuration register (which clears the
CF _MP~CMD bit).

Use the following steps to issue a command via the PC:

1) Write the command's parm (if any) into the parm/re­
sponse register (110 location 2DBh).

2) Write the command into the MPA-II configuration register
(2DCh).

3) Read the MPA-II configuration register (2DCh) until the
CF _MP~CMD bit is cleared. This indicates completion
of command execution by the MPA-II microcode. (Note,
the current MPA-II configuration has been restored).

TABLE 6-9. MPA-II Command Set

Name (Value) Parm Response Comment

LACL (10) AC low byte none Load new MPA-II AC, low byte
LACH (11) AC high byte none Load new MPA-II AC, high byte
WRITE (12) data byte none WRITE "data byte" into memory at MPA-II AC's location
LCR (13) control byte none Load "control byte" into MPA-II Control Register
RACL (1S) none AC low byte Read current MPA-II AC, low byte
RACH (19) none AChigh byte Read current MPA-II AC, high byte
READ (1A) none data byte READ "data byte" from memory at MPA-II AC's location
REV (1B) none rev byte read REVision number of the MPA-II software
CLRE (30) none none CLear REceiver error counters
RDIS (31) none error count Read receiver's DISable error count
RLMBT (32) none error count Read receiver's Loss of Mid-Bit error count
RIES (33) none error count Read receiver's Invalid Ending Sequence error count
RPAR (34) none error count Read receiver's PARity error count
ROVF (35) none error count Read receiver's OVerFlow error count
RPRO (36) none error count Read PROtocol detected error count

2-70

4) Read the parmI response register (1/0 location 2DBh)
for the command's response (if any).

A PC program called MPADB.EXE has been included with
the MPA-II which communicates with the MPA-II using this
interface. MPADB is written in C and has some additional
debugging capabilities, such as reading blocks of BCP
memory using one command. After starting MPADB, type
"help" at the prompt, - >, for information on the com­
mands supported by MPADB. All the source code for
MPADB is included, see MPADB.C under the directory
DEBUG.

The read and write data commands use an internal MPA-II
register called the MPA-II address counter, AC. This ad­
dress counter works much like the Coax and Twinax ad­
dress counters. The read command returns the byte pointed
to by the MPA-II address counter. The write command
places its data at the location pointed to by the MPA-II ad­
dress counter. Whether or not the MPA-II address counter
auto-increments depends on the contents of the MPA-II
control register, see Figure 6-21. If the LSB is a one (1) then
the MPA-II address counter auto-increments, otherwise it
does not change.

If 1 THEN POST INCREMENT AC

L..-L_.l...-.......L_.L.........L ___ RESERVED

TL/F/10488-65

FIGURE 6-21. MPA-II Control Register

The Load Address Counter High, Load Address Counter
Low, Read Address Counter High, and Read Address Coun­
ter Low commands simply provide access to the 16-bit
MPA-II address counter. The Load Control Register allows
one to write to the 8-bit MPA-II control register.

The receiver error counter commands provide an easy, reli·
able way to read the MPA-II receiver error counters located
in the MPA-II Device Control Page, DCP. PC software that
uses these commands does not have to be updated if the
receiver errors are relocated in BCP data memory because
the BCP assembler will automatically update all references
to those error counters when the MPA-II microcode is re-as­
sembled.

Finally, the Revision Number command allows the PC to
determine a) if the MPA-II running and b) what version of the
MPA-II microcode is the MPA-II running. This MPA-II com­
mand is used by the Loader when the Loader performs an
autoload (·a option). For the PC to read the revision number,
the REV command must be executed three (3) times. Each
returned byte's bits are defined as "xxcc dddd", where:

dddd = a revision digit coded in Binary Coded Decimal,
BCD

cc = a count showing the position of the revision digit

xx = reserved

For example, if calling REV three times returned (in hex) 20,
34, and 13, then the revision number is 3.04.

Last notes, unused commands and invalid parms are ig·
nored. In addition, commands with values less than 3F(hex)
are reserved for National Semiconductor. Feel free to define
commands with values greater than this if compatibility with
future MPA-II releases is desired.

7.0 LOADER AND MPA-II DIAGNOSTICS

The Loader is a PC program designed to load the MPA-II
with BCP microcode, start the BCP, and configure the

2-71

MPA-II interface mode. A number of user selectable options
are available with the Loader which provide maximum flexi­
bility in loading, running, and configuring the MPA-II system.
The Loader can also be used to run diagnostics by specify­
ing the "selftest" option. This will test the functionality of the
MPA-II hardware. The Loader syntax is:

LD [Confi9-options ...] [Options ...] <Filename>

where the following notation applies:

[] Items enclosed in square brackets are optional.

< > Items enclosed in triangular brackets are re­
quired.

ALL CAPS Items in all capital letters must be entered exact­
ly as shown.

lower case Items in lower case letters indicate that desired
values should be substituted.

The Loader Options that apply to the "soft-loading" of in­
struction memory will be discussed in the section titled
"Soft-Loading Instruction Memory". The Loader
Confi9-options will be discussed in the section titled "Con­
figuring the MPA-II". The Loader options that apply to the
selftest facility will be discussed in the section titled "MPA-II
Diagnostics". Examples demonstrating the Loader options
as well as the Loader defaults will also be provided in this
chapter.

The Loader is primarily written in Microsoft "C"5.1. The por­
tion of the Loader code which performs the MPA-II Diagnos­
tics has been written using National Semiconductor's
DP8344 BCP Assembler System as well as Microsoft's
Macro Assembler 5.1. All of the source code required for
the Loader is included on the distribution disks and is well
documented. For complete details of the implementation of
the Loader functions described in this section, refer to the
source code.

The Loader provides two levels of help. The first level of
help is provided in a brief, single screen and is accessed by
typing LD with no options at the DOS system prompt. A
multi-screened, comprehensive help, is accessed by speci­
fying the -h option of tlie Loader as shown below:

LD -h

The Loader provides the following return values which are
useful when using the Loader in a batch file:

o PASSED: Loader ran to completion as requested by the
user.

8 WARNING: Loader ran to completion, but not exactly as
requested by the user.

16 FATAL ERROR: Loader was unable to run to comple-
tion due to a fatal error.

Before the Loader implements any of its primary func­
tions, the Loader will verify that the MPA-II printed circuit
board is present in the PC. This is done in two different
stages (see the Loader flow chart, Figure 7-1). First, the
Loader performs a non-intrusive test. This test entails
reading RIC a number of times while checking that the
value of RIC does not change and that the single step bit
of RIC is not set. The second test is intrusive, meaning
that it will affect the current state of operation of the
MPA-II, if the MPA-II is "alive" (more on this later). This
test checks for the presence of the MPA·II by writing vari­
ous patterns to RIC, then reading RIC back to check that it
contains the correct value. For example, when the pattern
written to RIC has the single-step bit set and the start bit
cleared, the Loader expects to read back RIC with the
single-step bit cleared. If either of the instrusive or non-in- • I

,...
~:
CD .
Z
<t

trusive tests fail,theLoader::indicates the failure and exits
with an .. errorlevel 01:,16. The failure ' mechanism could be
either of the following: 'an MPA-II printed circuit board is. not
present or an I/o' conflict is occurring.

Soft-Loadinglnstructio,nMemoi'y' '. .'

The Loader, uses. the' "soft-load" feat~r~' of the 'B'c'P to load
files in either 'a binary format; referred to as "BCX" format;

or in a simple ASCII PROM format, referred to, as "FMT"
format, into instruction memory. Files in these formats can
be produced with National Semiconductor's DP8344 BCP
Assembler System. The Loader can be used to load any file
in one of these formats using the - B option to specify that
the file format is ~'BCX" or the - F option to specify that the
file format is. "FMT". These option~are useful when using
the MPA~II Design/Evaluation kit to develop BCP code. The

FIGURE 7-1. Loader Flow Chart
Tl/F/l~488-,45

2-72

MPA-II system can be soft-loaded immediately upon power­
up, or from any state after power-up. Thus, the system may
be reloaded without powering down or resetting.

Dual-port memory must be enabled prior to soft-loading the
MPA-II because the Loader uses dual port memory to pass
information, such as the instructions to be loaded, to the
BCP. The Loader enables dual port memory by writing the
upper byte of the address for the relocatable memory seg­
ment to the MPA-ll's segment register. The MPA-lI's seg­
ment register is mapped into the PC liD space 2D7h. The
Loader defaults to map dual port memory to the PC memory
space CEOOO, But the user can move the location of dual
port memory using the - U option.

The soft-load procedure begins by stopping the BCP's CPU.
The BCP must be stopped when writing to either the pro­
gram counter or instruction memory. The Loader then veri­
fies that the BCP is set to access the low byte of instruction
memory. This is accomplished in the following manner: the
program counter is set to OOOOh; RIC is then pointed to
instruction memory, and a byte is read from instruction
memory. At this time, the program counter is read to deter­
mine if it incremented. If it did, the BCP is now set to access
the low byte of instruction memory. If the program counter
did not increment, then the BCP is set to access the high
byte of instruction memory, so the Loader reads another
byte of instruction memory. Next, the Loader initializes the
program counter to the starting address where instruction
memory is to be loaded. The starting address of the pro­
gram counter defaults to OOOOh, but it is user selectable with
either the - N or - R options. The program counter is writ­
ten by pointing (RIC I to the low byte of the program coun­
ter, and then writing the low byte of the Instruction Address
to dual port data memory. Next, (RICI is set to point to the
high byte of the program counter, and the high byte of the
Instruction Address is written to dual port data memory.

Once the program counter has been initialized, the first in­
struction to be loaded into instruction memory is fetched
from the BCX or FMT format file specified by the user. The
instruction is then split into high and low bytes. This is nec­
essary because the instructions are 16 bits wide, but they
must be latched into instruction memory through the BCP's
a-bit Data bus. The instructions are then loaded into the
MPA-ll's instruction memory by pointing RIC to instruction
memory and writing the low byte of the instruction followed
by the high byte of the instruction to dual port memory. The
program counter then auto-increments allowing the next in­
struction to be loaded. At any time, the program counter
may be modified, followed by instruction loads, to allow ar­
eas of instruction memory to be skipped. The remaining in­
structions are loaded in the same manner. When all the
instructions have been loaded, the system is started and
configured as requested by the user.

Interrupts can occur prior to the execution of the first in­
struction loaded into instruction memory if a BCP program
has been previously running in the MPA-II system with inter­
rupts enabled. This is because the BCP uses a "dummy"
instruction to fetch the first instruction in instruction memory
and this "dummy" instruction does not disable interrupts.
The following is a scenario that describes this: the MPA-II is
running with a BCP program that has receiver interrupts en­
abled. The BCP is then stopped by clearing [STRT] in

2-73

(RICI and instruction memory soft-loaded with a new BCP
program. Although the BCP's CPU is stopped, the receiver
is operating independently and, therefore, the receiver still
monitors the line for activity. If the receiver becomes active,
it generates an interrupt to the BCP's CPU. When the BCP's
CPU is started with the intention of running the BCP pro­
gram just loaded, it will instead service the receiver interrupt
immediately after the "dummy" instruction cycle. This will
result in problems if the first and second BCP programs do
not use the same interrupt table location because the new
interrupt table location will not have been loaded into (IBR I
yet. Therefore, the BCP will vector to an instruction address
determined by the current contents of (IBR I, set by the first
BCP program. Since the second BCP program has already
been loaded into instruction memory, the interrupt table that
is vectored to is meaningless and will create unexpected
results. There are various methods which can be used to
disable interrupts until the first instruction of the new code
can be executed; for example, resetting the BCP. Since the
Loader cannot reset the BCP, we chose to single step the
BCP immediately after "soft-loading" the BCP's instruction
memory and prior to starting the system running. This allows
an interrupt, such as the receiver interrupt generated in the
previous example, to be serviced during the single step.
Servicing the interrupt automatically disables the Global In­
terrupt Enable by clearing [GIE]. After single stepping the
BCP, its program counter must be reset. The BCP may now
be safely started.

For convenience the Loader notation is repeated and the
options which apply to the soft-loading are discussed here:

LD [Confi9-options ...] [Options ...]<Filename>

Filename: The file specified by the Filename contains the
BCP microcode to be soft-loaded into the MPA-II system.
The file format must be either BCX or FMT as described
earlier in this section. The - Band - F options can be
used to specify the file format as BCX or FMT, respec­
tively. The file format can also be specified implicitly with
a file extension of .BCX for BCX format files or .FMT for
FMT format files. The Loader defaults to BCX format,
and, if no file extension is entered, the Loader will append
the appropriate file extension (i.e., either .BCX or .FMT).
A file with no extension can be loader by ending the file
name with a".".

Options:

- 8- Specifies that the format of the file to be loaded is
binary or "BCX" format. This option provides the user
with the flexibility to load a file with an extension other
than .BCX as a BCX format file.

- F- Specifies that the format of the file to be loaded is
ASCII PROM or "FMT" format. This option provides the
user with the flexibility to load a file with an extension
other than .FMT as a FMT format file.

-N[=] [I_addr]- Soft-loads the file into instruction mem­
ory beginning at the hex address, I_addr, but does not
start the MPA-II after the load. This feature can be useful
for debugging code using tools such as Capstone's moni­
tor debugger, BSID. The load address, I_addr, defaults
to the hex address 0000.

- R[=] [addr] [,r_addr]- Soft-loads the file into instruc­
tion memory beginning at the hex address I_addr, then
sets the program counter to r_addr and starts the BCP.

The instruction address where the BCP begins running,
r_addr, defaults to the value of I_addr if r_addr is not
specified. I_addr defaults to the hex address 0000.

- U [=] [seg_id]- Enables dual port RAM in the PC mem­
ory map to the PC memory segment seg_id, where
seg_id is the upper byte of the PC memory segment.
This allows the MPA-II system to avoid PC memory con­
flicts. The Loader defaults to seg_id = CEo The value for
the seg_id must be on an even 8K boundary. Therefore,
seg_id = CD is invalid.

Examples using the file, MPA2.BCX, provided in the MPA-II
Design/Evaluation Kit are shown below. This file is a BCX
formatted file. The following examples all load the file
MPA2.BCX in the same format and demonstrate the - B
and - F options:

LD MPA2 Loader defaults to BCX
format and applies the .BCX
file extension.

LD MPA2.BCX Loader determines that
format is BCX from the file
extension.

LD MPA2.BCX -B Loader determines that the
file format is BCX from
the -B option.

The following example demonstrates options which affect
how the file is soft-loaded:

LD MPA2 -R=OOOO, 0126 -U=CC

In this example, the Loader soft-loads code through dual
port memory mapped at the PC memory address CCOOO,
from the BCX format file MPA2.BCX, starting at instruction
memory OOOOh. The Loader then sets the program counter
to 0126h and starts the BCP.

Configuring The MPA~II
The Loader configures the MPA-II terminal emulation inter­
face mode as requested by the user through the Configura­
tion Options. Configuring the MPA-II interface mode enables
the MPA-II to emulate the standard PC terminal emulation
interfaces including DCA's IRMA and Smart Alec interface
modes; and IBM's 3270 CUT and OFT interface modes. In
addition, the MPA-II extends the DCA and IBM 3270 modes
to support single session 3299. (Multi-session 3299 support

o

I I I I I I I I I'

is possible for the BCP, but not for the DCA or IBM interfac­
es.) The terminal emulation interface which the MPA-II emu­
lates is implemented by the MPA-II as described in Chapter
6. The Loader Configuration Options available to the user
will be discussed later in this section.

The Loader configures the MPA-II interface mode by writing
the configuration to the MPA-ll's Configuration Register.
Figure 7-2 shows the bit definitions for the MPA-II Configu­
ration Register. The Loader writes to the configuration regis­
ter immediately after starting the BCP's CPU. The MPA-II
configuration register is located at the PC I/O location
2DCh. Writing to this register will set the BIRO interrupt, and
thus, could lock out the PC if this feature has been activated
by previous BCP microcode. If the BCP's CPU is stopped
when the configuration register is written, then the next ac­
cess of the BCP's memory (both dual port and I/O) made by
the PC could be held off indefinitely since the BIRO interrupt
can not be cleared by the BCP's microcode. Therefore,
when the Loader Option - N, as described in the previous
section, is selected, the Loader will not set the configuration
requested. (The Loader notifies the user that the configura­
tion has not been set.) See Chapter 5 for further information
regarding BIRO and the PC lock out feature.

The Loader uses the following handshaking protocol with
the BCP microcode to verify that the configuration has been
recognized by the MPA-II system. The Loader sets [PaR] in
the MPA-II Configuration register when it writes a configura­
tion to the MPA-II Configuration Register. The Loader then
polls the MPS-II Configuration Register looking for [PaR] to
be cleared by the BCP microcode. This indicates that the
BCP microcode has processed the requested configuration.
The value in the MPA-II Configuration Register now con­
tains the actual MPA-II interface configuration implemented
by the BCP microcode. If [PaR] is not cleared within a pre­
defined time period, then the Loader reports a failure. If
[PaR] is cleared within the predefined time limit, the Loader
then compares the configuration implemented with the con­
figuration requested by the user. If they are not the same,
the Loader reports the differences. This feature allows the
BCP microcode to determine valid configurations.

The Loader Configuration Options are discussed here.
Where applicable, these options can be combined to create
a customized configuration for the interface mode. Once
again, for convenience the ,Loader notation is repeated:

LD[Config_options •••] [Options •••] <Filename>

IL POR SYSTEM (0 INDICATES THAT THE POR IS COMPLETE)

RESERVED

3299 MODE

COAX EAB INSTALLED

MPA COMMAND (0 INDICATES COMMAND EXECUTION COMPLETE)

IBM INTERFACE MODE

DCA INTERFACE MODE

5250/3270

FIGURE 7-2. MPA-II Configuration Register

2-74

TL/F/10488-46

Conflg_options:

-C-The Loader clears the 5250/3270 bit of the MPA-II
Configuration Register. This selects a 3270 Coax-Twisted
Pair terminal emulation interface mode for the MPA-II inter­
face.

-0-The Loader sets the DCA Interface Mode bit of the
MPA-II Configuration Register. This selects a DCA terminal
emulation interface mode for the MPA-II interface. The
5250/3270 bit of the MPA-II Configuration Register is used
to determine which DCA Interface mode, IRMA or Alec, is
actually set.

-E-The Loader sets the EAB bit of the MPA-II Configura­
tion Register. This selects the Coax Extended Attribute Buff­
er.

-I-The Loader sets the IBM Interface Mode bit of the
MPA-II Configuration Register. This selects the IBM 3270
terminal emulation interface mode for the MPA-II interface.

-T-The Loader set the 5250/3270 bit of the MPA-II Config­
uration Register. This selects a 5250 Twinax terminal emu­
lation interface mode for the MPA-II interface.

-Xl =] <addr>-The Loader sets the 3299, mux, bit of the
MPA-II Configuration Register. This selects 3299 coax
mode for the MPA-II interface. A decimal muX address is
required, and is passed to the MPA-II through the MPA-II
parm/response register, 2DBh, which is written prior to the
configuration being set, but after the BCP's CPU is started.

-Z-The Loader does not set the MPA-II Configuration Reg­
ister. This option provides the flexibility to use the Loader to
load microcode other than the MPA-II microcode.

-M[=] <mode>-This option allows for automatic configu­
ration of the standard terminal emulation modes, i.e.,: DCA's
IRMA, DCA's Smart Alec and IBM's interface modes. Valid
MODE options are IRMA, IBM, and ALEC. These modes set
the MPA-II Configuration Register as follows: When the
mode is ALEC, the Loader sets the 5250/3270 bit and the
DCA Interface Mode bit in the MPA-II Configuration Regis­
ter. For IBM mode, the Loader clears the 5250/3270 bit and
sets the IBM Interface Mode bit. For IRMA mode, the Load­
er clears the 5250/3270 bit, sets the DCA Interface bit and
the Coax EAB bit. This option also allows a hex value to be
entered directly into the MPA-II Configuration Register with
the < MODE> = CONFIG [=] < config > , where config is the
hex byte value to be loaded into the MPA-II Configuration
Register. The Loader defaults to configure the MPA-II inter­
face mode for IRMA.

As an example of how to use the configuration options, lets
assume that the IRMA interface mode is required along with
coax 3299 support using the 3299 station address 3. The
following command lines all perform this task using the Con­
figuration Options discussed above:

LD MPA2.BCX -M=IRMA -X=3
LD MPA2.BCX -C -D -E -X=3

For further flexibility, the Loader also provides an autoload
option, -a, to configure the MPA-II on the fly. The autoload
function is actually a "smart hotswitch", allowing the user to
change the MPA-lI's configuration without necessarily re­
loading BCP microcode. The autoload is "smart" in that the
Loader verifies that the MPA-II is "alive" before it changes
configurations. If the MPA-II is not alive (i.e., running with

2-75

the correct version of microcode), the Loader will automati­
cally load the BCP microcode and configure the MPA-II as
requested.

The autoload function is useful when the Loader is used in a
batch file such as the AUTOEXEC.BAT file. If the PC is re­
booted then the Loader will not destroy an ongoing terminal
emulation session. In addition, the error levels returned by
the Loader may be used to skip loading of the PC terminal
emulator if the MPA-II board is not present. The following is
an example of how to use the autoload function to imple­
ment the IRMA interface mode in a batch file:

LD MPA2.BCX -M=IRMA -A
IF ERRORLEVEL 8 GOTO SKIPIRMA
E78 /R
:SKIPIRMA

MPA-II Diagnostics

The Loader can run diagnostics to test the functionality of
the MPA-II hardware. These diagnostics are implemented
with the Loader and the BCP microcode; MPADIAG.BCX,
provided in MPA-II Design/Evaluation Kit. Note, the Loader
expects the file MPADIAG.BCX to be located in the same
directory as the file LD.EXE.

Figure 7-3, The MPA-II DiagnostiCS Flow Chart, provides a
good overview of the extent of testing performed by the
MPA-II diagnostics. For the actual implementation of these
tests, refer to the source code, which is well documented.
The first four diagnostic tests do not require BCP micro­
code. These diagnostics include testing RIC, the BCP's Pro­
gram Counter, dual port memory, and instruction memory. In
all of these diagnostics, the Loader writes patterns to the
device under test, and expects to read the pattern back
from the device under test.

If all these initial tests pass, then the BCP microcode,
MPA-DIAG.BCX is soft-loaded into instruction memory and
the BCP is started. The Loader maintains ultimate control
over the diagnostics. This is accomplished through a hand­
shaking protocol in which dual port memory is used to pass
codes to and from the Loader program and the BCP micro­
code program, MPADIAG.BCX. The Loader passes a start
code through dual port memory. The BCP microcode polls
dual port memory until it receives the start code. Once the
BCP microcode recognizes the start code, it executes the
next test in sequence. Each diagnostic test that the BCP
microcode executes writes codes into dual port memory to
indicate both the completion of the test and if the test
passed or failed. When appropriate, the BCP microcode
also indicates the failure mechanism. The BCP microcode
then polls dual port memory for the start code of the next
test. After the Loader writes a start code to dual port memo­
ry, it polls dual port memory for the code from the BCP
microcode indicating completion of the test. If the comple­
tion code is not received within a predefined time limit, the
Loader indicates a failure. If the completion code is re­
ceived, the Loader then checks dual port memory to deter­
mine if the test passed or failed.

Either of the two Loader Options, -s or -I, cause the Loader
to implement the MPA-II diagnostics. For convenience the
Loader notation is repeated and the options which apply to
the MPA-II diagnostics are discussed here:

LD[Config_options •••] [Options •••] <Filename> • I

Options:

-S[=][count[,lrq#]]- Selftest option of the Loader. Cy­
cles through the MPA-II Diagnostics count (default
count= 1) times. The irq# refers to the PC IRQ interrupt
level to be tested. irq#=2 (default) tests the PC IRQ2
interrupt (Le., jumper JP6 connected). irq#3 tests the PC

. IRQ3 interrupt (Le., jumper JP4 connected). irq# =4 tests
the PC IRQ4 interrupt (Le., jumper JP5 connected).

-L-In addition to the selftest, the BCP's transceiver is test­
ed by implementing an external Loopback feature. In
loopback, the BCP's receiver and transmitter are allowed
to be active at the same time. This allows the BCP to test
the external transmitter and receiver logic on the

MPA-II board. This test should not be performed when
the MPA-II is connected to a controller as it may cause
the controller to detect line errors.

The following examples demonstrate using the Loader op­
tions to implement the MPA-II diagnostics:

LD -S=3, 4 Cycles through the MPA-II diagnostics three
times (the external loopback test is not per­
formed), the PC IRQ interrupt level 4 is test­
ed.

LD-L-S Cycles through the MPA-II diagnostics one
time, the loopback test is performed, and PC
IRQ interrupt level 2 is tested.

TLlF/10488-47

FIGURE 7·3. MPA·II Diagnostics Flow Chart

2-76

APPENDIX A

HARDWARE REFERENCE

name:
description:

MPAII_AC - U3· V3.02
auxillary control register

Provides line interface logic, including the coax and
twinax TX_ACT signals as well as the ex-or of /DATA_OUT and
DATA_DLY for the twinax logic.

AD6 -> COAX (if AD6 10, COAX enabled)
IRQ output to pc is registered output of AD7 in this pal. If
the BCP puts a 1 to AD7 during a write to this register, the
PC interrupt will be asserted. The interrupt is cleared by
a BCP write with AD7 = O.

history:VO.1 rosa 12/13/87 create
VO.2 msa 12/16/87 Abel version
VO.3 rosa 12/31/87 added IRQ
VO.4 msa 02/27/88 u9 -> u4
Vl.O msa 04/07/88 u4 -> aux_ctl
V3.00 wvm 08/10/88 eliminated manual reset
V3.01 wvm 09/07/89 make signal names match

schematic and add test
V3.02 wvm 09/11/89 add BIRQ_EN function

vectors

COPYRIGHT NATIONAL SEMICONDUCTOR, INC. 1987,1988,1989,1990

module mpaii_aux_ctl
title 'data register'

"declarations

TX_ACT
DATA_DLY
DATA_OUT
ADS
BCP_RST­
PC_RST
AD6
AD7

COAX_ACT
TWX_ACT
act_swtch
not_used1
BIRQ_EN
IRQ
INTENSE
IRST-

H,L,C,Z,X
outputs
r_outputs

mpaii_ac
pin 9;
pin 8;
pin 7;
pin 6;
pin 5;
pin 4;
pin 3;
pin 2;

pin
pin

pin
pin
pin
pin
pin
pin
pin
pin

11;
1;

19;
18;
17;
16;
15;
14;
13;
12;

device 'P16R4';

1,0, .C., .Z., .X.;
(COAX_ACT,TWX_ACT,INTENSE,IRST-);
(act_swtch,not_used1,BIRQ_EN,IRQ);

2-77

TL/F/l0488-48

~
Z .
0')
~

I

II
I

,...
~
CD

I

Z
<C

equations
COAX_ACT
TWX_ACT
!INTENSE
IRST-

!act_swtch & TX_ACT & BCP_RST-;
act_swtch & TX_ACT & BCP_RST-;
DATA_OUT & !DATA_DLY t !DATA_OUT & DATA_DLY;
!PC_RST;

**** registered outputs ****

enable outputs
enable r_outputs

ADS;
AD6;
AD7;

"bllll;
!OE-;

2-78

TL/F/104BB-49

name:
description:

history:VO.l
VO.2
VO.3
VO.4
VO.S

VO.6
V1.0
V1.1

V3.00

V3.01

V3.02

V3.03

V3.03
BCP Data memory Decode,
PC transceiver control timing

msa 12/13/87
msa 12/16/87
msa 12/17/87
msa 12/23/87
msa 02/19/88

msa 02/27/88
rosa 04/07/88
msa 07/07/88

wvrn 08/10/89

wvrn 09/7 /89

tas 10/17/89

tas 10/25/89

create
Abel version
used all outputs, 1 in free
more vectors, remote
moved areg map next to RAM
areg now cleared by BCP reads,
Host reads will not affect
uSa -> u9a
u9a -> ctl_tim
fixed DATA_G- bus contention
(REMRD- -> REMWR-)

made revisions for MFAII:
1) eliminated unused chip

selects
2) removed bcp_rst, it was an

unused signal input
3) moved the pc_rdy signal to

MFA II_R I
4) added PRE_BIRO decode
5) added A13 and A14 decodes

for remote accesses
make signal names match
schematic and add test vectors
change name of DATA_CBA to
DATA_CAB and corrected equation
to use XACK instead of BCP_RD.
replace IODO with IBM_REG-,
simplified PRE_BIRO, and modified
out_A13 and out_A14 to include
IBM_REG-

COPYRIGHT NATIONAL SEMICONDUCTOR, INC. 1987,1988,1989,1990

module mpaii_ctl_tim
title 'PC iface - data control'

"declarations
mpaii_ ct device 'P20L10'j

XACK pin 1;
REMRD- pin 2;
REMWR- pin 3;
IBM_ REG- pin 4;
RAE- pin 5;
IO_ACCESS- pin 7;
BCP - RD- pin 10;
BCP _WR- pin 11;
LCL- pin 13;
AlS,A14,A13 pin 9,6,8;

TL/F/l0488-50

2-79

I •

~ r---,
~
CD

Z
< DMEM_CS­

AREG_OC­
AREG_CLK­
out_A13
DATA_DIR­
DATA_CAB­
DATA_G­
out.;..A14
DREG_CLK­
PRE_BIRQ

H,L,Z,X
a_dec
outputs

equations

pin
pin
pin
pin
pin
pin
pin
pin
pin
pin

oS:

14:
23:
15;
16;
17;
18;
19;
20:
21;
22;

1,0, .Z., .X.:
[A15 .. A13);
[DMEM_CS-,AREG..;..OC-,AREG_CLK-:-,DREG_CLK-,
DATA_DIR-,DATA_CAB-,DATA_G-,PRE_BIRQ);

[out_A14,out_A13);

!DMEM_CS- .. LCL- t (!A15 & !LCL-);
" pc access to set lAREG_CLK- ... lIO_ACCESS-& LCL- & !BCP_WR-:

!AREG_CLK- !LCL- & !BCP_WR- & (a_dec ~blOO);

!AREG_OC- c: !BCP_RD- &,lLCL- & (a_dec c: .. ~blOO);

" bcp access to clear

out_A13 .. lIO_ACCESS- t lIBM_REG-;
out_A14 a lIO_ACCESS- t !IBM_REG-;

lDATA_G­
lDATA_CAB":'
DATA_DIR-

c: (! REMWR- & oLCL-) t (l RAE- & 1 REMRD-) :

enable outputs
enable bcp_oc

... ! REMRD- & ,! XACK & LCL-;
- lREMRD- & lRAE-:

.. ~blllllll11;
LCL-:

2-80

"Abus -> Bbus if rem_read cycle

TL/F/10488-51

name:
description:

V3.03
Upper PC address buffer and I/O decode

.. This PAL decodes the PC address lines A12-A4,PC_A19_16 ,PC_A16_14 and

.. IOACCESS-, REMRD- to provide the BCP A1S, A12-8 outputs and the

.. two partial decodes IBM, DCA indicating which system (IBM, or DCA)

.. is being accessed. Note that this scheme will not allow the MFAII board

.. to co-exist w/ any board using these PC I/O addresses. A1S, A12-8

.. are enabled by LCL- going high, indicating a remote access cycle .

.. If IOACCESS- and LCL- are as~erted, A12-8 are driven high to translate

.. the PC I/O access to the top page of the BCP's data RAM (7FFX - unless
" it is a read of IRMA space, which is translated to 7FEX,) required to
" emulate the dual-ported registers used on this board .

.. If the PC accesses the BCP's data memory, LCL- will be asserted but not
\\ IOACCESS-, in which case no translation will occur, and A12-8 will only
\\ be buffered onto the BCP's address lines.

IBM_REG- DCA_REG-
1 1
1 0
0 1
0 0

history:VO.1
VO.2
VO.3·
VO.4
VO.5
VO.6
VI. 0
V3.00

V3.01

-type of decode-
not
DCA
IBM
not

msa
rosa
tjq
msa
rosa
rosa
rosa
wvrn

wvrn

an
10
10
an

MFAII 10 decode
access (addresses 0022x)
access (addresses 002dx)
MFAII 10 decode

12/13/87
12/16/87 Abel
12/17/87
02/27/88
03/03/88
03/12/88
04/07/88
08/10/89

09/07/89

create
version
simulate
u3 -> u23
corrected address pin nums
edits for TN's irma code
u23 -> pad_ dec
made revisions for MFAII:
1) moved REMOTE decode to an

inverter
2) moved A13 and A14 decodes

for remote accesses to
MFAII_CT

3) include decode of PC_A14
through PC_A19 in 1000
and 1001

make signal names match
schematic and add test vectors
rearrange pins V3.02

V3.03
wvrn
tas

09/11/89
10/25/89 renamed 1000 and 1001 to DCA_REG­

and IBM_REG-,respectively. Swapped
1000/1 pins. Added IBM_REG- to
A12-A8.

COPYRIGHT NATIONAL SEMICONDUCTOR, INC. 1987,1988,1989,1990

module mpaii-pad_dec
title 'PC iface - i/o decode'

TlIF/10488-52

2-81

~ r---.
0III::t
CD

:Z « "declarations
mpaii-pddevice 'P20L10';

PC_A12,PC_A11,PC A10
PC_A9,PC_AS,PC_A7
PC_A6, PC_AS, PC_A4
PC_A14 - 16
PC_A17 - 19

REMRD-
IO_ACCESS-
LCL-

A1S
A12, All
A10, A9, AS

IBM_REG-,DCA_REG-

H, L, X, Z '"
low

1,0, .X., .Z.;
"bll;

pin
pin
pin
pin
pin

pin
pin
pin

pin
pin
pin

pin

[PC_A12 .. PC_M];
[PC_A12 .. PC_AS];
[A12 .. AS];

pc a
pc_abuf
bcp_oc
bcp_a
io_dec

[A12 .. AS];
[IBM_REG-,DCA_REG-];

equations
!IBM_REG­
!DCA_REG-

A15

A12
All
AIO
A9
AS

enable iO_dec
enable bcp_oc
enable A1S

L;

PC_A12
PC_All
PC_AI 0
PC_A9
PC_AS

low;
LCL-;
LCL-;

f
f
f
f
f

1,3,4;
S, 6, S;
9,10,11;
lS;
16 ;

2;
7;
13;

14;
17,lS;
19,20,23;

21,22;

"h02d) & PC_A14_16 & PC_A17_19;
"h022) & PC_A14_16 & PC_A17_19;

!IO_ACCESS- f !IBM_REG-;
!IO_ACCESS- f !IBM_REG-;
!IO_ACCESS- f ! IBM_REG-;
!IO_ACCESS- f !IBM_REG-;
(! IO_ACCESS- & REMRD-) f ! IBM_REG-;

2-82

TLlF/l0488-53

name:
description:

MPAII_RD - U7 V3. 04
PC I/O register decode

" Decodes the low 4 bits of the PC address lines to determine enables for
" data memory, RIC, and SREG. All four PC read and write
" strobes as well as the IBM_REG-/DCA_REG-, PC_A13, PC_AEN, REM_enable and /MMATCH
" signals are inputs. /RAE, CM /MEM_CS and /REM_RD, /REM_WR, /IOACCESS
" and /SREG_EN are outputs.

history:VO.1
VO.2
VO.3
VO.4
VO.5
VO.6
VO.7
V1.0
V3.00

V3.01

v3.02
v3.03

V3.04

msa
msa
rosa
msa
msa
rosa
msa
msa
wvrn

wvrn

wvrn
tas

tas

12/13/87
12/16/87
12/17/87
12/17/87
12/31/87
02/27/88
03/12/88
04/07/88
08/10/89

09/7/89

09/11/89
10/19/89

10/25/89

create
Abel version
added pc_clk edit
to 2018
added bcp reset input
u4 -> u8
edited for tn's irma
u8 -> reg_dec
revisions made to MPAII:
1) eliminate PC_HI_OC and

PC_LO_OC
2) remove IO_MAYBE and replace

it with PC_AEN
3) input PC_A13 for address

decodes
4) input REM_enable to control

accesses during rest-time
5) Make RAE- a full decode of

every access
make signal names match
schematic and add test vectors
rearrange pin assignments
aaded PC_AEN to SREG_EN to
eliminate accidental clock of SREG.
Rename 1000, 1001 to DCA REG-,
IBM_REG-, repectively.' -
Swap 1000, 1001 pins. Changed
la_ACCESS to avoid SREG.

COPYRIGHT NATIONAL SEMICONDUCTOR, INC. 1987,1988,1989,1990

module mpaii_reg_dec
title 'PC iface - i/o decode'

"declarations
mpaii_ rd

BCP - RST- pin
DCA REG- pin
PC_AEN pin
IBM REG- pin
PC A3,PC - A2 pin
PC -A1,PC - AD pin
PC _MEMR- pin
PC_MEMW- pin
PC - IOR- pin

device 'P20LB';

1;
2;
3;
4;
5,6;
7, B;
9;
10;
11;

2-83

TL/F/10466-54

l>
z

I
0')
~

•

.....
~
CD • Z
ct

PC_IOW­
BCP_WR­
PC_A 13
REM_enable
MMATCH-

RAE­
REMRD­
REMWR-

CMD
IO_ACCESS­
SREG_EN-

CMD

H,L,X,Z c

pc a
pc_hi
pc_lo
iO_dec
no_acc
dca_acc =
ibm_acc =
strobes =
outputs c

equations
lRAE-

CMD

!REMRD- ..

!REMWR- =

pin 13;
pin 14;
pin 16;
pin 17;
pin 23;

pin 22;
pin 21;
pin 20;
pin 19;
pin 18;
pin 15;

ISTYPE 'feedyin' ;

1,0, .X., .Z.;
[PC_A3 .. PC_AD];
(pc_a -- "blllO);
(pc_a -- "bl101);
[IBM_REG-,DCA_REG-];
(io_dec -- "b11):
(io_dec c= "b10);
(io_dec == "b01);
[PC_MEMR-,PC_IOR-,PC_MEMW-,PC_IOW-];
[CMD, RAE- , REMWR- , REMRD- ,
IO_ACCESS-,SREG_EN-];

«lPC_IOR- f lPC_IOW-) & lno_acc& lPC_AEN& lPC_A13)
f (!MMATCH- & lPC_AEN & (!PC_MEMW- t !PC_MEMR-));

!PC_IOR- & REM enable
t !PC_MEMR- & REM_enable:

!PC_IOW- & REM_enable
f !PC_MEMW- & REM_enable;

(!PC_IOW-) & (pc_a c= "b0111)&(ibm_acc)&(!PC_A13)&!BCP_WR~

&!PC_AEN f !BCP_RST-;

!IO_ACCESS-= lDCA_REG- & lCMD & lPC_A13 & lPC_AEN & (lPC_IOW- • !PC_IOR~)

• !IBM_REG- & !CMD & !PC_A13 & !PC_AEN & !PC_IOR-
• !IBM_REG- & !CMD & !PC_A13 & lPC_AEN & !PC_IOW- &
(!PC_AOf !PC_Al • !PC_A2):

" IO_ACCESS- is active if:
1) it's an IRMA register read or write
2) it's an IBM register read
3) it's an IBM register write except to xxx7 or xxxF.

xxx7 = Segment Register (U16)
xxxF the BCP's RIC register

enable outputs = "bll1l11 :

2-84

TL/F/l0488-55

name:
description:

V3.02
birq register and rest-time circuit

This PAL sends the BIRO interrupt to the BCP whenever a
IBM, IRMA or SMART_ALEC I/O access is made. The BIRO
interrupt is cleared when the BIRO register is read by
the BCP.
This PAL also contains all of the rest-time 'state machine
needed to pevent missed or inproper accesses. The signal
REM_enable is fed back to MPAII_RD and prevents remote accesses
during rest-time. The PC_RDY signal to the PC bus is also
controlled by XACK from the BCP and the rest-time state
machine.

history:V3.00 wvm 08/10/89 create
V3.01 wvm 09/07/89 make signal names match

schematic
V3.02 wvm 09/11/89 change BIRO decode
V3.02 tas 01/03/90 corrected some test vectors

COPYRIGHT NATIONAL SEMICONDUCTOR, INC. 1989-1990

module remote_interface-pal
title 'REST-TIME Compliance State Machine':

"inputs

"outputs

MPAII RI device -

PL-
XACK
CLK _OUT
BCP rst--
RAE-
unused_ 1
BIRO_EN
AREG_CLK-
PRE _BIRO
OE-

PC_RDY-
qO
q1
q2
q3
wait_start
REM_enable
BIRO

"definitions
x,z,L,H

'P16RA8':

pin 1:
pin 2:
pin 3:
pin 4:
pin 5:
pin 6;
pin 7;
pin 8;
pin 9:
pin 11:

pin 19:
pin 18:
pin 17:
pin 16:
pin 15:
pin 14:
pin 13:
pin 12:

.x., . z., 0, 1:

2-85

TL/F/l0488-56 • I

,..
'III:t
Cf :i equations

enable PC_RDY-

PC_RDY- .RE
PC_RDY-.PR

REM_enable.RE
REM_enable .PR

q3.PR
q3.C

!q3

q2.RE
q2.C

!q2

ql.PR
q1.C

!ql

qO .PR
qO.C

!qO

'" (!RAE-);

., 1;

., 1;

:= (!XACK
I qO & !RAE-
I !q2 & !RAE­
I q3 & !RAE-);

= 1;
., 1;

:- wait_start
I RAE- , !q3 & q2 & q1 , !qO;

'" !BCP_rst-;
.. CLK_OUT;

: .. (! qO & ! q2 , ! q3
I !qO & !ql , !RAE-
I !qO , !q3 , !RAE- & !wait_start
f !qO , !ql & q2);

- !BCP_rst-;
.. CLK_OUT;

:- (!qO , !ql & !q2 & !q3
I !ql , q3 & !RAE-
I ql & !q2 , q3
I qO & !ql , q3);

"" !BCP_rst-;
.. CLK_OUT;

:.. (! qO & ! ql & q3
I !qO & !q2 & q3
I qO & q2 & q3
I !qO & !ql & q2 , RAE-);

.. !BCP_rst-i

., CLK_OUT;

:= (!qO & !ql
f !qO & !q2

2-86

TL/F/10488-S7

wait_start.PR
wait_start.C

I BIRQ & ql & !q2 & q3
I !qO & !q3);

u q3 & !q2 & !ql & !qO;
c RAE- & BCP_rst-;

!q3 & q2 & !ql & !qO;

BIRQ.RE
BIRQ.C

!BCP_rst-;
'"' AREG_CLK-;

!BIRQ

end rernote_interface-pal

2-87

TL/F/l0468-56

APPENDIX B

Timing Analysis

This section will first discuss the timing analysis used in sel­
eting appropriate data memory and instruction memory for
use in the MPA-II system. Following this is a description of
the timing involved in interfacing the MPA-II system with the.
PC-XT/AT.
As discussed in Chapter 5-Hardware Architecture, the
BCP utilizes a Harvard Architecture, where the data memory
and instruction memory are organized into two independent
memory banks, each with their own address and data bus­
es. The data memory is dual ported enabling both the BCP
and the remote processor to have access. The instruction
memory, on the other hand, is exclusively owned by the
BCP. Any remote processor accesses to this memory occur
through the BCP, and only when the BCP is idle.

The MPA-II system runs with the BCP operating at full'
speed, 18.8696 MHz ({ OCR [CCS] I = 0), with zero instruc­
tion (nIW) and one data (now) wait state resulting in a
T-state of 53 ns. For a system running the BCP at half
speed, 9.45 MHz ({ OCR [CCS] I = 1), with zero instruction
and zero data wait states, the T-state is 106 ns. The T-state
is calculated as shown:

T-state = 1 I(CPU Clock Frequency)

Interfacing Memory to the DP8344B

As with most other aspects of a design, choosing memory is
a cost vs. performance trade off. Maximum performance is
achieved running no wait-states with fast, expensive memo­
ry. Slower, less expensive memory can be used, but wait­
states must be added, slowing down the BCP. Therefore
one needs to choose the slowest memory possible while
still meeting design specifications. While this appendix as­
sumes RAM is used for instruction and data memory, the
information is relevant to memory devices in general.

Instruction Memory Timing

The BCP needs separate data and instruction RAM, each
with their own requirements. Instruction read time is the ma­
jor constraint when choosing instruction RAM. Instruction
read time tl, as shown in Figure B-1, is measured from when
the instruction address becomes valid to when the next in­
struction is latched into the BCP. Instruction read time for
various clock frequencies and wait states are given in Table
B-1. Clock frequency and wait state combinations other
than those given in the table can be calculated using param­
eter 1 in Table 5-5, Instruction Memory Read Timing, of the
OP8344B data sheet:

tl = (1.5 + nlW) T - 19 ns

where tl is the instruction read time (ns), nlW is the number
of instruction memory wait states, and T is the 7-state time
(ns). The RAM chosen needs to have a faster access time
than the read time for the desired combination of clock fre­
quency and wait states. Since the MPA-II system runs at full
speed (18.8696 MHz) with nlW = 0, the RAM chosen for
instruction memory must have an access time which is fast-

2-88

er than 60.5 ns (See Table B-1). Note that 55 ns Static
Rams will work for both full speed and half speed operation
of the MPA-II.

TL/F/10488-59

FIGURE B-1. Instruction Memory Read Timing

TABLE B-1. Instruction Read Times, tl (ns)

CPU Walt States nlw
Clock Freq.

(MHz) 0 1 2 3

9.43 140 246 352, 458

18.86 60.5 115.5 166.5 219.5
20.00 56 106 156 206

However, instruction read time is not the only timing consid­
eration when choosing instruction RAM. If the BCP is used
in an application which requires full speed softloading of
instruction RAM, there are two other timing relationships
which require evaluation. These are data setup time and
write pulse width (see Figure B-2). The relevant BCP timing
parameters are I valid before IWR rising, tos, and IWR low
time, tiW. The value of these timing parameters depends on
the Remote Interface mode of operation, which is Fast Buff­
ered Write for the MPA-II system. Using Table 5-22, Fast
Buffered Write of IMEM, of the OP8344B datasheet, the
data setup time (parameter 19) is:

tos = (nlW + 1)T - 18 ns

and the write pulse width tlW (parameter 20) is:

tlW = (nlW + 1)T - 10 ns

Table B-2a and B-2b give various data setup times and write
pulse widths. Once again, the RAM chosen must have a
faster RAM data setup time and quicker RAM write strobe
width than the corresponding desired data setup time and
write pulse width. Thus, for the MPA-II system, the selected
Instruction RAM data setup time must be less than 35 ns
(Table B-2a), and the RAM Write Strobe Width must be less
than 43 ns (Table B-2b). In a typical application of the BCP,
softloading occurs after reset with the BCP operating with
CLK/2 and full wait states. Under these conditions the in­
struction read time value is the critical parameter for choos­
ing the instruction RAM. In the MPA-II system, softloading
can also occur under the full speed conditions. First, soft­
loading occurs upon a first load of instruction memory into
the MPA-II on power up. The MPA-II system can then be
reloaded without powering down. In this situation, the
MPA-II system is set to full speed. Therefore, the RAM se­
lected must meet all the parameters listed thus far.

~ ________________________________ --JI

v///~/I////li///////////////i///4
~ __________________________________ -JI

~----------------------------~I
I \'----------

) < } <
_______________________________________ c:=:

IWR

TL/F/10466-60

FIGURE B-2. Data Setup Time and Write Pulse Width for Fast Buffered Write of IMEM

CPU

TABLE B-2a. Data Setup Times,
tos (ns) for Fast Buffered

Write of Instruction Memory

Clock Freq.
Walt States nlw

(MHz)

9.43
18.86
20.00

CPU

0 1 2

88 194 300
35 88 141
32 82 132

TABLE B-2b. Write Pulse Width,
tlW (ns) for Fast Buffered

Write of Instruction Memory

Clock Freq.
Walt States nlw

(MHz) 0 1 2

9.43 96 202 308
18.86 43 96 149
20.00 40 90 140

3

406
194
182

3

414
202
190

The MPA-/I uses two 55 ns 8K x 8 CMOS Static RAMs for
instruction memory. The output enable is tied low and the
chip select enables are both enabled. Therefore, the RAMs
are always selected. The write enable is the instruction write

2-89

signal (IWR) from the BCP. Table B-3 compares the select­
ed instruction memory RAM parameters with required pa­
rameters for the DP8344B.

Data Memory Timing

The MPA-/I system uses a 100 ns 32K x 8 CMOS Static
RAM to implement the system data memory.

The selection of data memory RAM requires the evaluation
of several important timing parameters. The RAM access
time, strobe width, and data setup times are three of the
most critical timing parameters and must all be matched to
equivalent BCP timing parameters. The RAM access time
should be compared to the data read time of the BCP.

Data read time, to, (Figure 8-3) is measured from when the
data address is valid to when data from the RAM is latched
into the BCP. Table B-4 gives data read times. The equation
for calculating data read time is similar to the one given for
instruction read time, and is taken from Table 5-3 (Parame­
ter 14) of the DP8344B data sheet:

to = (2.5 + MAX (now, nlW - 1»T - 40

where to is the data read time (ns), now is the number of
data memory wait states, nlw is the number of instruction
memory wait states, and T is the T-state time (ns). Since the
lower address byte (AD) is externally latched, the latch
propagation delay needs to be subtracted from the available
read time when determining the required RAM access time.

I • I

T- r---~

~
CD

Z «
TABLE B-3. Instruction Memory Read and Write Parameters

Fujitsu RAM

Parameter (Minimum)
(55 ns)

Access Time (tl) 55
Write Pulse Width (tw) 40
Data Setup (tos) 25

Measurements are in ns.

Full Speed is 53 ns T-state with nlw = 0 and now = 1.

Half Speed is 106 ns T-state with nlW = 0 and now = O.

POR is 106 ns T-state with nlW = 3 and now = 7.

Full
Speed

60.5

T1 TX T2 T1

CLK-OUT~

I ===WWd/////~

IA :=:::x x:::
ALE~

AD ij/////////, ADDR)--~

A /'/////// / / /.

READ

TL/F/104BB-61

FIGURE B-3. Data Memory Read Timing

TABLE B-4. Data Read Time, to (n5)

CPU Wait States

Clock Freq. Max (now, nlW - 1)

(MHz) 0 1 2

9.43 225 331 437
18.86 92.5 145.5 198.5
20.00 85 135 185

An octal latch (74ALS573) is used in the MPA-II system to
demultiplex and latch the address. There is a delay associ­
ated with latching of the address and it is dependant on the
latch considered. The latch' enable is the ALE signal from
the 8CP. While ALE is high, the outputs follow the inputs.
When ALE falls the address is latched on the outputs. The
latch has a propagation delay of 20 ns which corresponds to
the time it takes for the data on the inputs to reach the
outputs.

Therefore, for the MPA-II system the RAM access time is:

tacc = to - 20 ns

Using Table 8-4, the required RAM access time can be cal-
culated to be: .

tacc = 145.5 - 20 = 125.5 ns

for full speed operation with one wait state.

Another important timing parameter is the RAM strobe
width. The 8CP READ and WRITE outputs will typically be
used to strobe data out of and into the RAM. The signal

DP8344B BCP (Minimum)

Read Write

Half Full Half
Speed

POR
Speed Speed

POR

2-90

140 458
43 96 414
35 88 406

relationships for a data memory access are shown in Figure
8-3 for a read and in Figure 8-4 for a write. Table 8-5 con­
tains READ and WRITE pulse width values for various clock
frequencies and wait state combinations. The equation for
calculating READ and WRITE pulse widths are taken from
parameter 8 of Table 5-4 and parameter 12 of Table 5-3 in
the DP83448 data sheet:

tR = tw = (1 + MAX (now, nlW - 1»T - 10

where tw (= tR) is the pulse width (ns), now is the number
of data memory wait states and nlW is the number of in­
struction memory wait states. The RAM chosen should re­
quire shorter strobe widths than the pulse width listed in
Table 8-5 for the desired combination of clock frequency
and wait states. Thus, for the MPA-II system, the RAM
strobe width must be shorter than 96 ns.

The last important consideration when choosing the data
memory RAM is setup times into the 8CP on a read and into
the RAM on a write. In a typical application, READ is con­
nected to the output enable pin on the RAM. When reading
from the RAM, the data becomes valid when READ falls
and activates the RAM outputs. The data must become val­
id fast enough to meet the setup time required by the 8CP.
This setup time tSR, as shown in Figure 8-3, is listed in
Table 8-6 for various combinations of clock frequencies and
wait states. Using Table 5-3 (parameter 7) of the DP83448
datasheet, tSR can be calculated as follows:

tSR = (1 + MAX(now, nlW - 1 »T - 22

where tSR is the maximum time allowed for the data to be­
come valid (ns), now is the number of data memory wait
states and nlW is the number of instruction memory wait
states. The data memory RAM used needs to have a faster
output enable time than the time listed in Table 8-6 for the
desired combination of clock frequency and wait states.

When writing to data memory, the data must be valid in time
to meet the setup time requirement of the RAM. In a typical
application, this time is measured from the data becoming
valid out of the 8CP to WRITE going high. Figure 8-4 shows
this timing relationship, tow, and Table 8-7 contains times
for various combinations of clock frequencies and wait
states. The equation for calculating this time is from Table
5-4 (parameter 4) of the DP83448 datasheet.

tow = (1 + MAX(now, nlW - 1 »T - 20

where tow is the minimum data valid time before WRITE
rising (ns), now is the number of data memory wait states
and nlW is the number of instruction memory wait states.
This time should be at least as long as the data setup time
of the RAM.

TABLE B·S. READ and WRITE Pulse Width, tR = tw (ns)

CPU
Clock Freq.

(MHz)

9.43
18.86
20.00

Walt States
Max (now, nlW - 1)

o 1 2

96 202 308
43 96 149
40 90 140

TABLE B·6. Data Read Setup Time, tSR (ns)

CPU Wait States

Clock Freq. Max (now, nlw - 1)
(MHz) 0 1 2

9.43 84 190 296
18.86 31 84 137
20.00 28 78 128

TABLE B·7. Data Write Valid Time, tow (ns)

CPU Wait States

Clock Freq. Max (now, nlw - 1)
(MHz) 0 1 2

9.43 86 192 278
18.86 33 86 139
20.00 30 80 130

Instruction RAM has the greatest affect on execution speed.
Each added instruction memory wait state slows the BCP by
about 40% as compared to running with no instruction
memory wait states. Each added data memory wait state
slows a data access by 33% as compared to running with
no data memory wait states. RAM costs are coming down,
but higher speed RAM still carries a price premium. So there
is the trade-off.

Table B-8 compares the BCP data memory requirements
with the selected data RAM.

PC System

The MPA-II expansion board is an 8-bit board, which runs in
a PC-XT, PC-AT or compatible system. The timings of the
two systems have many differences, but the 8 MHz PC-AT
bus specifications are more stringent than those of the
4.77 MHz PC-XT bus. So, this evaluation will cover the
8 MHz PC-AT.

The critical timing in this system will be the amount of time
the MPA-II will have before it must deassert 10-CHRDY low
in order to extend the access cycle by adding wait states.
By deasserting 10CHRDY the MPA-II can extend a read or
write cycle until the correct data is available or written, re­
spectively.

As stated before, the MPA-II is an 8-bit board so both the
1/0 and memory cycles will have 8-bit access cycles. In the
PC-AT, 8-bit 1/0 and memory cycles have the exact same
timing. There is always one command delay (0.5 T-states)
from the time ALE falls until the command strobe (lOR,
lOW, MEMR or MEMW) goes active low. Four programmed
wait states are inserted, forcing the command strobe to stay
active low for a minimum of 4.5 T-states. Figure 8-5 shows
the relationship between ALE, the command strobes and
the bus cycles T-states.

For the following calculations the original IBM PC-AT sche­
matic has been used. This schematic can be found in IBM
Technical Reference Personal Computer AT.

In the PC-AT, both ALE and all of the command strobes are
controlled by an 82288 bus controller. The command
strobes will go active a short delay time after the 82288
inserts the command delay. (The delay time for an 8 MHz
82288 is T (delay 82288) = 25 ns.) After leaving the 82288,
MEMR and MEMW pass through a 74ALS244 before reach­
ing the expansion bus.

TABLE B·8. Data Memory Read and Write Parameters

Parameter

Access Time (tace>
Write Pulse Width (tw)
Data Setup (tDW)
Output Enable (tSA)

Measurements are in ns.

Hitachi
HM62256

RAM
(Minimum)

100
60
40

Full Speed is 53 ns T·state with nlw = 0 and nDW = 1.

Half Speed is 106 ns T-state with nlw = 0 and nDW = O.

DP8344B BCP (Minimum)

Read

Full Half Full
Speed Speed Speed

125.5 205
96
86

84 84

FIRST SECOND THIRD FOURTH
STATUS COMMAND PROGRAMMED PROGRAMMED PROGRAMMED PROGRAMMED

I- STATE ---I- STATE -I- WAIT --I- WAIT --I--- WAIT --I- WAIT--
STATE STATE STATE STATE

Write

ALE ~~~--~~--+-~--~
CMD

FIGURE B·S. Relationship of ALE, CMD, and Bus Timing

2-91

Half
Speed

96
86

TLlF/l04BB-63

So, T(delay 82288) + T(delay 74ALS244) is equal to the
maximum amount of time from the end of the command
delay until the command strobe reach the MPA-II.

T(strobes valid) = T(delay 82288) + T(delay 74ALS244)
= 25 ns + 10 ns
= 35 ns

In order to add wait states any expansion board must deas­
sert 10CHRDY low in time for it to propagate through a
74ALS32, then through a 74F74 (from preset to output), and
then setup to the 82284 by the end of the third programmed
wait state (which is also the beginning of the fourth wait
state). If the 10CHRDY signal also meets the 82284's hold
requirement, then a fifth wait state will be added. Then
again, at the end of the fourth wait state if 10CHRDY is still
deasserted low a sixth wait state will be added. This will
continue until 10CHRDY is asserted high. On the other
hand, if 10CHRDY is deasserted too late (Le. after the end
of the third programmed wait state), then the cycle will end
without adding any additional wait states.

The following is a calculation of the minimum amount of
time before the end of the third wait state that 10CHRDY
must be deasserted to add wait states:

T(add wait) = T(delay 74ALS32 H-L) + T(74F74 P-Q) +
T(setup 82284)

= 12 ns + 25 ns + 0 ns

37 ns

The maximum amount of time an expansion board has be­
fore it must deassert 10CHRDY (to add wait states) from the
command strobe being valid is:

T(Max 10CHRDY) = 3.5T - T(st'robes) - T(add wait)

where, T = 125 ns in a 8 MHz expansion bus. Therefore,

T(MAX 10CHRDY = 3.5 (125 ns) - 35 ns - 37 ns
= 365.5 ns

This means that the MPA-II has 365.5 ns to deassert
10CHRDY (if wait states are needed) from the time it re­
ceives a valid remote access command strobe.

On the MPA-II, the command strobes are buffered by a
20L8B PAL tothe BCP's REM-RD and REM-WR inputs. The
BCP will respond to a valid remote access by deasserting
XACK a delay time after receiving a valid remote access
REM-RD or REM-WR strobe. XACK controls 10CHRDY via
a 16RA8 PAL.

The maximum delay from receiving a valid remote access
command strobe to deasserting 10CHRDY follows:

T(MPA-IIIOCHRDY) = T(delay 20L8B) + T(XACK) 1 +
T(delay 16RA8)

= 15 ns + 26 ns + 35 ns

= 76 ns

The MPA-II will deassert 10CHRDY a maximum of 76 ns
after it receives a valid remote access command strobe.
One should notice 76 ns is much less than the maximum
allowable time of 365.5 ns.

2-92

As a final note, the reader should be aware that most faster
PC-AT's still run their expansion buses at 8 MHz to remain
compatible. This means that the timing on these expansion
buses should remain the same as those on any other PC-AT
no matter how fast the CPU runs. Thus, the MPA-II will run
in all PC-AT's with 8 MHz expansion buses that follow the
original 8 MHz PC-AT's expansion bus design. In fact, as
can be seen above, the MPA-II will run with bus speeds
faster than 8 MHz.

APPENDlXC

Filter Equations

Derivation of Filter
Equations for the Combined
Coax/Twisted Pair Interface

The basic operation of the filter can be understood by study­
ing the figure below. The actual circuit includes the effects
of the terminating resistors, DC isolation capacitors, and the
transformer; furthermore, a thorough investigation of band­
width and gain characteristics should employ the use of a
circuit simulator such as SPICE.

TL/F/10488-64

Simple loop analysis yields the following transfer function
for the filter:

1

Vo = __ -=-____ 2_R.!:.2C....!2:.....(S_)_~----
2 [

R1C1 + C2 (4R2 + 2R1)] 1 Vs s +s +----
2R1R2C1C2 R1 R2C1C2

If it is assumed R1 > > R2 and C1 > > C2, we can then
simplify the equation and solve for the poles to obtain the
following form:

III ~ ~ ± ~~ -4 (R,R;C,C,)
41T

After splitting the above equation to solve each pole and
using a binomial expansion to simplify each pole's equation,
we get:

1
fl::::: --::::: 20kHz

1TR1C1
(vs. 30 kHz from simulation and testing)

1
fh::::: ---::::: 40 MHz

41TR2C2

(vs. 30 MHz from simulation and testing)

APPENDIX D

References

DP8344B Biphase Communcations Processor Data Sheet,
National Semiconductor, 2900 Semiconductor Drive, P.O.
Box 58090, M/S 16·197, Santa Clara, CA 95052·8090, Ver·
sion 4.2.

DP8344 Biphase Communcations Processor Assembler
User Manual (DP8344BSM·M5) National Semiconductor,
2900 Semiconductor Drive, P.O. Box 58090, Santa Clara,
CA 95052·8090, February 1988.

DP8344 Biphase Communications Processor Application
Notes, National Semiconductor, 2900 Semiconductor Drive,
P.O. Box 58090, Santa Clara, CA. 95052·8090.

IBM PC 3270 Emulation Program Entry Level Version 1.10
(84X0280), International Business Machines Corporation,
Department 52Q, Neighborhood Read, Kingston, NY 12401,
1981.

IRMATM User's Manual (40·97910·001), Digital Communica·
tions Associates, Inc., 1000 Alderman Drive, Alpharetta, GA,
30201.

Smart Alec™ User's Guide (40·98100·007), Digital Com·
muncations Associates, Inc., 1000 Alderman Drive, Alphar·
etta, GA 30201.

Guide to Operations Personal Computer AT (1502241), In·
ternational Business Machines Corporation, P.O. Box
1328·C, Boca Raton, FL 33432, 1984.

Guide to Operations Personal Computer XT (6936810), In·
ternational Business Machines Corporation, P.O. Box
1328·C, Boca Raton, FL 33432, 1983.

IBM 3270 Connection Technical Reference (GA23·0339·
02), Information Development, Department 802, P.O. Box
12195, Research Triangle Park, NC 27709, 1988.

IBM 3174/3274 Control Unit to Device Product Attachment
Information, International Business Machines Corporation,
Armonk, NY 10504, October 1986.

IBM 3274 Control Unit to Distributed Function Device Prod·
uct Attachment Information, International Business Ma·
chines Corporation, Armonk, NY 10504, June 1985.

5250 Information Display System to System/36, System/
38, and Applications System/400, System Units Pr~duct At·
tachment Information, International Business Machines Cor·
poration, Armonk, NY 10504, October 1988.

Technical Reference Personal Computer A T (502243), In·
ternational Business Machines Corporation, P.O. Box
1328·C, Boca Raton, FL 33432, 1984.

Technical Reference Personal Computer XT (6936808), In·
ternational Business Machines Corporation, P.O. Box
1328·C, Boca Raton, FL 33432, 1983.

abe/TM(880004), Data I/O Corporation, 10525 Willows Road
NE, P.O. Box 97046, Redmond, WA 93073·9746,1988.

BRIEFTM User's Guide, Underware, Inc., 84 Gainborough
St., Suite 103W, Boston, MA 02115, June 1987.

BSID, Capstone Technology, 47354 Fremont Blvd., Fre·
mont, CA 94538.

DP8344 BCP Demonstration/Development Kit, Capstone
Technology, 47354 Fremont Blvd., Fremont, CA 94538.

2·93

Microsystem Components Handbook-Volume I (230843·
002), Intel Corporation, Literature Department, 3065.Bowers
Avenue, Santa Clara, CA 95051.

8088 Microprocessor Data Sheet
8288 Bus Controller Data Sheet
80286 Microprocessor Data Sheet
82288 Bus Controller Data Sheet
8284 Clock Generator and Driver Data ,Sheet

iAPX 86/88, 186/188 User's Manual Hardware Reference
1985 (210912·001), Intel Corporation, Literatur~ Distribu·
tion, Mail Stop SC6·714, 3065 Bowers Avenue, Santa Clara,
CA 95051.

iAPX286 Hardware Reference Manual 1983 (210760·001),
Intel Corporation, Literature Department, 3065 Bowers Ave·
nue, Santa Clara, CA 95051.

S/LS/TTI Logic Data Book (1985-400050), National Semi·
conductor, 2900 Semiconductor Drive, Santa Clara, CA
95051.

Contacts

For further information on the MPA·II or the DP8344 BCP
contact:

BCP Product Marketing
National Semiconductor
2900 Semiconductor Drive
Mail Stop: D3800
Santa Clara, CA 95052·8090
Phone: (408) 721·5000

For Technical Information on the MPA·II or the DP8344 BCP
contact:

DATACOM Applications Support
National Semiconductor
1111 W. Bardin Road
Mail Stop: A2190
Arlington, TX 76017
Phone: (817) 468·6676
Fax: (817) 468·1468

For requesting IBM Product Attachment Information manu·
als (PAl's) contact:

Industry Relations Dept.
IBM
2000 Purchase Street
Purchase, New York 10577
Phone: (914) 697·7227

For ordering IBM manuals other than PAl's contact your
local IBM Sales Office.

For ordering products from Azure Technologies contact:

Azure Technologies, Inc.
38 Pond Street
Franklin Massachusetts 02038
Phone: (508) 520·3800
Fax: (508) 528·4518

For ordering products from Capstone Technology contact:

Richard L. Drolet
Capstone Technology
47354 Fremont Blvd.
Fremont, CA 94538
Phone: (510) 438·3500

II
I

~ r---~

~
CD

Z «
For ordering products from Hewlett Packard contact your
local Hewlett Packard Sales Office:

For ordering products from DCA contact:

Digital Communications Associates, Inc.
1 000 Alderman Drive
Alpharetta, Georgia 30201
Phone: (404) 740-0300

For ordering products from Simware, such as SimPC Mas­
ter, contact:

Simware, Inc.
20 Colonnade Road
Ottawa, Ontario
Canada K2E 7M6
Phone: (613) 727-1779
Fax: (613) 727-9409

For ordering products from Relay Communications, such as
Relay Gold, contact:

Relay Communications, Inc.
41 Kenosia Avenue
Danbury, CT 06810
Phone: (800) 222-8672

For ordering products from Fischer International Systems,
such as Xeus, contact:

Fischer International Systems Corp.
P.O. Box 9107
4073 Merchantile Avenue
Naples, Florida 33942
Phone: (813) 643-1500

2-94

A Combined Coax-Twisted
Pair 3270 Line Interface for
the DP8344 Biphase
Communications Processor

This paper will discuss the design of an improved 3270
transceiver interface for the National Semiconductor
DP8344 combining increased error-free performance and
the ability to communicate over both coax and twisted pair
transmission lines. At this date, the largest installed base of
terminals is the 3270 protocol terminal which primarily uti­
lizes coax cabling. Because of phone wire's easy accessibil­
ity and lower cost, twisted pair cabling has become popular
among end users for new terminal installations. In the past,
baluns have been used to augment existing coax interfaces,
but their poor performance and cost considerations leave
designers seeking new solutions. In addition, the integration
of coax and twisted pair on the same board has become a
market requirement, but this is a considerable design chal­
lenge. A brief summary of the interface concepts, a discus­
sion of the proposed design, and a description of the results
are included in this application note.

CONCEPTS

Coax cable is normally driven on the center conductor with
the shield grounded. Conversely, unshielded twisted pair ca­
ble is driven on both lines. Because of the way that each is
driven, coax operation is often called unbalanced and twist­
ed pair operation balanced.

Transmission line characteristics of coax and twisted pair
cables can be envisioned as essentially those of a low-pass
filter with a length-dependent bandwidth.1 In 3270 systems,
different data combinations generate dissimilar transmission
frequencies because of the Manchester format.2 These two
factors combine to produce data pulse widths that vary ac­
cording to the data transmitted and the length and type of
cable used. This pulse-width variation is often described as
"data jitter."3

In addition to line filtering, noise can cause jitter. Coax cable
employs a shield to isolate the signal from external noise.
Electromagnetically balanced lines minimize differential
noise in unshielded twisted pair cable. In other words, the
twisted pair wires are theoretically equidistant from any
noise source, and all noise superimposed on the signal
should be the common-mode type. Although these methods
diminish most noise, they are not totally effective, and envi­
ronmental interference from other nearby wiring and circuit­
ry may still cause problems.

Besides the effects of jitter, reflections can produce undesir­
able Signal characteristics that introduce errors. These re­
flections may be caused by cable discontinuities, connec­
tors, or improper driver and receiver matching. Signal edge
rates may aggravate reflection problems since faster edges
tend to produce reflections that may dramatically distort the
signal.3 Most reflection difficulties occur over short cable
(less than 150 ft.) because at these distances reflections
suffer little attenuation and can significantly distort the sig­
nal. Since the timing of the reflections is a function of cable
length, it may be possible to operate at some short distance
and not at some greater length.

National Semiconductor
Application Note 624
Tim Davis and David Weinman

An effective receiver design must address each of the
above concerns. To counteract the effects of line filtering
and noise, there must be a large amount of jitter tolerance.
Some filtering is needed to reduce the effects of environ­
mental noise caused by terminals, computers, and other
proximate circuitry. At the same time, such filtering must not
introduce transients that the receiver comparator translates
into data jitter.

Like the receiver design, a successful driver design should
compensate for the filtering effects of the cable. As cable
length is increased, higher data frequencies become attenu­
ated more than lower frequency signals, yielding greater dis­
parity in the amplitudes of these signals.4 This effect gener­
ates greater jitter at the receiver. The 3270 signal format
allows for a high voltage (predistorted) magnitude followed
by a low voltage (nondistorted) magnitude within each data
half-bit time.2 Increasing the predistorted-to-nondistorted
Signal level ratio counteracts the filtering phenomenon be­
cause the lower frequency signals contain less predistortion
than do higher frequency signals. Thus, the amplitude of the
higher frequency components are greater than the lower
frequency components at the transmitter. Implementation of
this compensation technique is limited because nondistort­
ed signal levels are more susceptible to reflection-induced
errors at short cable lengths. Consequently, proper imped­
ance matching and slower edge rates must be utilized to
eliminate as much reflection as possible at these lengths.

Besides improved performance, both unbalanced and bal­
anced operation must be adequately supported. Electro­
magnetic isolation for coaxial cabling can be provided by a
properly grounded shield. Electrically and geometrically
symmetric lines must be maintained for twisted pair opera­
tion. For both cable types, proper termination should be em­
ployed, although terminations slightly greater than the char­
acteristic impedance of the line may actually provide a larg­
er received signal with insignificant reflection.3 In the board
layout, the comparator traces should be as short as possi­
ble. Lines should be placed close together along their entire
path to avoid the introduction of differential noise. These
traces should not pass near high frequency lines and should
be isolated by a ground plane.

BCP LINE INTERFACE DESIGN

An extensive characterization of the BCP comparator was
done to facilitate this interface design. The proposed design
enhances some of the BCP transceiver's characteristics
and incorporates the aforementioned suggestions.

The interface design takes into account the common com­
parator attributes of power supply rejection, variable switch­
ing offset, finite voltage sensitivity, and fast edge rate sensi­
tivity. Vee noise can affect the comparator output when the
inputs are biased to the same voltage. This particular type of
biasing may render portions of the comparator susceptible
to supply noise. Variable switching offset and finite voltage
sensitivity cause the receiver decoding circuitry to see a

2-95

I

II
I

-.:r
~ substantial amount of data jitter when signal amplitudes ap-. Like many present 3270 circuits, the driver design (Figure 2)

utilizes a National Semiconductor DS3487 and a resistor
network to generate the proper signal levels. The predistort­
ed-to-nondistorted ratio was chosen to be about 3 to 1. This
ratio was observed to offer good noise immunity at short
cable lengths (less than 150 feet) and error-free transmis­
sion to an IBM 3174 controller at long cable lengths (greater
than 5000 feet).

Z proach the sensitivity limits of the comparator. At these sig-
« nal magnitudes, considerable variation in the output of the

. comparator is observed. Finally, edge sensitivity may allow
a fast edge to introduce errors as charge is coupled through
the inputs during a rapid predistorted-to-nondistorted level
transition, especially as the nondistorted level is reduced in
magnitude.

The receiver interface design (Figure 1) addresses each of
the BCP comparator's characteristics. A small offset (about
17 ·.mV) separates the inputs to eliminate Vee-coupled
noise. This offet is relatively large compared to possible fab-

. rication variations;' resulting in a more consistent, device­
independent operation. The offset has the added benefit of
making the comparator more immune to ambient noise that
may be present on the circuit board. A 2:1:1 transformer
(arranged as a 3:1) restores any voltage sensitivity lost by
introducing the offset. A bandpass filter is employed to re-

. duce the edge rate of the signal at the comparator and to
eliminate environmental noise. The bandwidth (30 kHz to
30 MHz) was chosen to provide sufficient noise attenuation
while producing minimum data jitter. Refer to Appendix 2 for
a derivation of the filter equations.

PE 5769

To allow for two interfaces in the same circuit design, the
coax/twisted pair front end (Figure 3) includes an ADC Tele­
communications brand TPC connector to switch between
coax and twisted pair cable. This connector allows different
male connectors for coax and twisted pair cable to switch in
different interfaces for the particular cable type. The coax
interface has only the shield capacitively coupled to ground.
The 510n resistor and the filter loading produce a termina­
tion of about 95n. The twisted pair interface balances both
lines and possesses an input impedance of about 1 DOn .
This termination is somewhat higher than the characteristic
impedance (about 96!1) of twisted pair. Terminations of this
type produce reflections that do not tend to generate mid-bit

. errors, as well as having the benefit of creating a larger
voltage at the receiver over longer cable lengths.

+5V
DP8344

42
,-=+.;..........o4J --II--+--JWIr---4~--I +AlG-IN

Legend

o To coax/twisted pair front end

lID To line driver circuitry

*Includes board capacitance

. Legend, " . .

lID To 2:1:1 Transformer _

+

41
''--+----4 ---II--.... -'V'V'\t--... ---I -AlG-IN

TLlF/l044B-l

FIGURE 1. BCP Receiver Filter Design

1/2 DS3487
DP8344

45.3n 1%

1--+-_
3
_
8
-1 DATA-OUT

37
1--+---1 DATA-DlY

loon 1%

TLlF/l044B-2

FIGURE 2. BCP Driver Design

2-96

ADC Connector
0.1 J.lF

Center -------.. 2;;....--(i~-----Ia-[[r

Legend

(A) To 2:1:1 Transformer

Twisted Pair 1

Shleld_ J
....-../.

GND

Il'·'PF

·Connector closes switch for coax and opens switch for twisted pair.

:: 510n

..L O.IJ.1F
"> 510n~
" I77T I~-

IIl..!..J
0.1 J.lF

TL/F/l044B-3

FIGURE 3. BCP Coax/Twisted Pair Front End

RESULTS AND COMPARISONS

The evaluation involved producing multiple data transfers
between an IBM 3174-81 R and the device under test during
a live 3270 session. The preferred method of testing would
be to transfer extremely large files to the host. Since termi­
nals and muxes cannot transfer files and all devices being
tested needed to be evaluated under similar conditions, a
screen-oriented approach was taken for testing. The
screen-oriented approach involved using common methods
for forcing the controller to send an entire screen of charac­
ters to the device. Procedural specifics are included in Ap­
pendix 1.

Performance of the BCP interface typically extended over
7000 feet of RG62A/U coax and 1700 feet of AT&T DIW
4 pair/24 AWG unshielded twisted pair. This operation met
or exceeded many of the current 3270 solutions. The per­
formance of other 3270 products was obtained from pro­
duction stock of competitors' equipment and should be tak­
en as typical operation. Although these long distances are
possible, it is recommended that companies specify their
products to IBM's PAI2 specifications of 5000 feet of coax
cable. The extra long distance capability of the new inter­
face will assure the designer a comfortable guardband of
performance. Similarly, a 50% margin on the unshielded
twisted pair capability will give approximately a 900 foot
specification.

It should be noted that the BCP receiver detects errors be­
fore the controller does. This is because of comparator
skew, a mechanism that occurs when the amplitude of the
signal approaches the sensitivity of the comparator. At
these small levels, propagation symmetry for high-to-Iow
and low-to-high transitions is lost. The failure mechanisms
of competitors include insufficient receiver jitter tolerance,
filter tranSients, and comparator skew. Operational distance
may be extended by the utilization of transformers with high­
er turn ratios as long as considerations are taken for imped­
ance matching, driver loading, and component quality toler-

2-97

ances (higher turn ratios may demand circuits with very low
tolerance percentages).

There are also economical advantages in using the BCP
comparator. The number of active and passive components
required to build the line interface is small compared to
competing solutions. The proposed design is extremely cost
competitive with current media solutions.

CONCLUSION

An effective and economical 3270 interface solution has
been demonstrated using only passive components and a
line driver. Guidelines have also been suggested to facilitate
the design and layout of such an interface. Criteria concern­
ing board layout and noise suppression must be considered
to be at least as important as the components themselves;
for example, adjustments should be made for variations in
board capacitances and inductances. With only slight modi­
fication of the components given for this design, it is thus
likely that optimum performance can be obtained for a spe­
cific layout. Implementation of these design principles
should prove advantageous for the development of an effi­
cient and competitive 3270 line interface.

REFERENCES

1. H.P. Neff, Jr., Basic Electromagnetic Fields, New York:
Harper and Row, 1981, Chapter 13.

2. IBM 311413214 Control Unit to Device Product Attach­
ment Information, Communication Products Information De­
velopment, International Business Machines Corporation,
Research Triangle Park, NC, October 1986.

3. K.M. True, The Interface Handbook: Line Drivers and Re­
ceivers, Semiconductor Components Group, Fairchild Cam­
era and Instrument Corporation, Mountain View, CA, 1975.
Chapters 3 and 4.

4. N.S. Nahman, "A Discussion on the Transient Analysis of
Coaxial Cables Considering High Frequency Losses," IRE
Trans. Circuit Theory, vol. CT-9, pp. 144-152, June 1962.

I

EI
I

~ r---~

~ APPENDIX 1:
Z TEST PROCEDURE FOR LONG AND SHORT
<C DISTANCE TESTING

1. Enter Test mode on the 3174 controller.

2. Clear the error counters.

3. Hit the Clear key rapidly 30 times. This will repaint the
screen with the test menu very rapidly. This is a quick
and easy method to cause an entire screen of charac­
ters to be sent to either an emulation card or a terminal
over the coax.

4. Exit Test mode.

5. LOGON to a session on the host.

S. Issue the FILELIST command.

7. Hit the Clear key 20 times. After the controller clears
the screen, it will repaint the FILELIST menu each time.
This will again cause an entire screen of characters to
be sent over the coax to the device under test.

8. XEDIT a 40k file text file.

9. Page through the entire file forwards once, then back­
wards once. Again, this will cause a varied stream of
transmissions to be sent to the device under test.

10. LOGOFF the session.

11. Enter Test mode again.

12. Check for errors on the error test screen.

APPENDIX 2:
DERIVATION OF FILTER EQUATIONS

The basic operation of the filter can be understood by study­
ing the figure below. The actual circuit includes the effects
of the terminating resistors, DC isolation capacitors, and the
transformer; furthermore, a thorough investigation of band­
width and gain characteristics should employ the use of a
circuit simulator such as SPICE.

TLlF/l0448-4

Simple loop analysis yields the following transfer function
for the filter:

1

Va = __ -=-____ 2_R_2_C_2_(S_)_-=-___ _

S2 + S [R1 C1 + C2(4R2 + 2R1)] + 1 Vs
2 R1 R2 C1 C2 R1 R2 C1 C2

If it is assumed R1 > > R2 and C1 > > C2, we can then
simplify the equation and solve for the poles to obtain the
following form:

III ~ ~ ± ~~ - 4 (AI A2'e, e2)
41T

After splitting the above equation to solve each pole and
using a binomial expansion to simplify each pole's equation,
we get:

1
f, :::: 'lTR1 C1 :::: 20 kHz

(vs. 30 kHz from simulation and testing)

1
fh :::: 4'IT R2 C2 :::: 40 MHz

(vs. 30 MHz from simulation and testing)

2-98

Interfacing Memory to the
DP83448

As with most other aspects of a design, choosing memory is
a cost vs. performance trade off. Maximum performance is
achieved running no wait-states with fast, expensive memo­
ry. Slower, less expensive memory can be used, but wait­
states must be added, slowing down the BCP. Therefore
one needs to choose the slowest memory possible while
still meeting design specifications. While this article as­
sumes RAM is used for instruction and data memory, the
information is relevant to memory devices in general.
The BCP needs separate data and instruction RAM, each
with their own requirements. Instruction read time is the ma­
jor constraint when choosing instruction RAM. Instruction
read time, tl, as shown in Figure 1, is measured from when
the instruction address becomes valid to when the next in­
struction is latched into the BCP. Instruction read time for
various clock frequencies and wait states are given in Table
I. Clock frequency and wait state combinations other than
those given in the table can be calculated by the following
equation:

h
tl = 103 (1 + T + nlw)/fcPU - 19

where tl is the instruction read time (ns), nlW is the number
of instruction memory wait states, T L is the CPU clock low
pulse width (ns), T is the CPU clock period (ns), and fcpu is
the clock frequency (MHz) at which the CPU is running. The
RAM chosen needs to have a faster access time than the
read time for the desired combination of clock frequency
and wait states. However, instruction read time is not the
only timing consideration when choosing instruction RAM. If
the BCP is used in an application which requires full speed
softloading of instruction RAM, there are two other timing
relationships which require evaluation. These are data setup
time and write pulse width. The relevant BCP timing param­
eters are I valid before IWR rising, tpo-I-IWR, and IWR ·Iow
time, tW-IWR. The value of these timing parameters depends
on the Remote Interface mode of operation. More detailed
information can be found in the Device Specifications and
the Remote Interface and Arbitration System sections of the
BCP data manual. Note that in a typical application of the
BCP, softloading occurs after reset with the BCP operating
with CLK/2 and full wait states. Under these conditions the
instruction read time value is the critical parameter for
choosing the instruction RAM.

T1 T2 T1
CLK-OUT~

~"~ lAO-IS

I,

TL/F/10447-1

FIGURE 1. Instruction Read Time

TABLE I. Instruction Read Times, tl (ns)

CPU Wait States
Clock Freq.

(MHz) 0 1
(TL/T = 0.5)

9.43 140 246

18.86 60 113

20.00 56 106

2

352

166

156

National Semiconductor
Application Note 623
Bill Fisher,
Mark Koether

The selection of data memory RAM requires the evaluation
of several important timing parameters. The RAM access
time, strobe width, and data setup times are three of the
most critical timing parameters and must all be matched to
equivalent BCP timing parameters. The RAM access time
should be compared to the data read time of the BCP. The
following discussion assumes 3 T-state data memory read
timing ([4TR] = 0). However, the basic approach is applica­
ble to the less critical 4 T-state data memory read timing.
Detailed information on this mode can be found in the CPU
Description and the Device Specifications sections of the
BCP data manual.
Data read time, to, (Figure 2) is measured from when the
data address is valid to when data from the RAM is latched
into the SCPo Table II gives data read times. The equation
for calculating data read time is similar to the one given for
instruction read time:

h
tp = 103 (2 + T + MAX (now, nlW - 1 »/fCpu - 40

where to is the data read time (ns), now is the number of
data memory wait states, nlW is the number of instruction
memory wait states, T L is the CPU clock low pulse width
(ns), T is the CPU clock period (ns), and fcpu is the clock
frequency (MHz) at which the CPU is running. Since the
lower address byte (AD) is externally latched, the latch
propagation delay needs to be subtracted from the available
read time when determining the required RAM access time.

T1 TX T2 T1
CLK-OUT~

I ::::::::XZVAV?1W~

IA:::::::X C
ALE~

TL/F/10447-2

FIGURE 2. Data Memory Read Timing

TABLE II. Data Read Time, to (ns)

CPU Wait States
Clock Freq. MAX(now, nlw - 1)

(MHz) 0 1 2
(TL/T = 0.5)

9.43 225 331 437

18.86 92 145 198

20.00 85 135 185

Another important timing parameter is the RAM strobe
width. The BCP READ and WRITE outputs will typically be
used to strobe data out of and into the RAM. The signal
relationships for a data memory access are shown in Figure
2 for a read and in Figure 3 for a write. Table III contains
READ and WRITE pulse width values for various clock fre­
quencies and wait state combinations. The equation for cal­
culating READ and WRITE pulse width is:

tw = 103(1 + MAX(now, nlW - 1)/fcpu - 10

2-99

• I

~ ,---,
~ where tw is the pulse width (ns), now is the number of data
Z memory wait states, nlW is the number of instruction memo-
~ ry wait states, and fcpu is the clock frequency (MHz) at

which the CPU is running. The RAM chosen should require
shorter strobe widths than the pulse width listed in Table III
for the desired combination of clock frequency and wait
states.

elK-OUT

~ ____________ c:
ALE

DATA l(Z

TLIF/10447-3

FIGURE 3. Data Memory Write Timing

TABLE III. READ and WRITE Pulse Width, tw (ns)

CPU Walt States
Clock Freq. MAX (now, nlW - 1)

(MHz) 0 1 2

9.43 96 202 308

18.86 43 96 149

20.00 40 90 140

The last important consideration when choosing the data
memory RAM is setup times into the BCP on a read and into
the RAM on a write. In a typical application, READ is con­
nected to the output enable pin on the RAM. When reading
from the RAM, the data becomes valid when READ falls
and activates the RAM outputs. The data must become val­
id fast enough to meet the setup time required by the BCP.
This setup time tSR, as shown in Figure 2, is listed in Table
IV for various combinations of clock frequencies and wait
states. It can be calculated from the following equation:

tSR = 103(1 + MAX(now, nlW - 1)/fcpu - 22

where tSR is the maximum time allowed for the data to be­
come valid (ns), now is the number of data memory wait
states, nlW is the number of instruction memory wait states,

and fcpu is the clock frequency (MHz) at which the CPU is
running. The data memory RAM used needs to have a fast­
er output enable time than the time listed in Table IV for the
desired combination of clock frequency and wait states.

TABLE IV. Data Read Setup Time, tSR (ns)

CPU Walt States
Clock Freq. MAX(now, nlw - 1)

(MHz) 0 1 2

9.43 84 190 296

18.86 31 84 137

20.00 28 78 128

When writing to data memory, the data must be valid in time
to meet the setup time requirement of the RAM. In a typical
application, this time is measured from the data becoming
valid out of the BCP to WRITE going high. Figure 3 shows
this timing relationship, tow, and Table V contains times for
various combinations of clock frequencies and wait states.
The equation for calculating this time is:

tow = 103(1 + MAX(noW,nIW - 1»/fcpu - 20

where tow is the minimum data valid time before WRITE
rising (ns), now is the number of data memory wait states,
nlW is the number of instruction memory wait states, and
fcpu is the clock frequency (MHz) at which the CPU is run­
ning. This time should be at least as long as the data setup
time of the RAM.

TABLE V. Data Write Valid Time, tow (ns)

CPU Walt States
Clock Freq. MAX (now, nlW - 1)

(MHz) 0 1 2

9.43 94 200 306

18.86 41 94 147

20.00 30 80 130

Instruction RAM has the greatest effect on execution speed.
Each added instruction memory wait state slows the BCP by
about 40% as compared to running with no instruction
memory wait states. Each added data memory wait state
slows a data access by 33% as compared to running with
no data memory wait states. RAM costs are coming down,
but higher speed RAM still carries a price premium. So there
is the trade-off.

2-100

DP8344 BCP Stand-Alone
Soft-Load System
INTRODUCTION

The DP8344 Biphase Communications Processor (BCP) is a
20 MHz Harvard architecture microprocessor with an on­
chip transmitter and receiver. The BCP can be used to im­
plement several biphase communication protocols:
IBM 3270, IBM 3299, IBM 5250, and National's general pur­
pose 8-bit protocol. This application note shows how

LINE
INTERFACE

BCP

HOST
PROCESSOR

National Semiconductor
Application Note 504
Jim Margeson

DP8344 software can be loaded from EPROM into instruc­
tion RAM. It is particularly valuable in stand-alone systems
where the BCP is not interfaced to a host processor. Possi­
ble applications include: protocol converters, multiplexers,
high-speed remote data acquisition systems and remote
process control systems.

INSTRUCTION ADDRESS

16

INSTRUCTION

16

DATA ADDRESS

8

MULTIPLEXED
ADDRESS/DATA

INSTRUCTION
MEMORY

DATA
MEMORY

TL/F/9403-1

FIGURE 1. BCP System with Host Processor

INSTRUcnON ADDRESS
1 '16

LINE A " INSTRUCTION
INTERFACE INSTRUcnON RAM 45n5

"I v
'16

BCP DATA ADDRESS
1 1-

'$~6 LATCH DATA
MEMORY

I

'8 ' 8
IoIULTlPLEXED

ADDRESS/DATA

Jr" INTERFACE
,8 -+ CONTROL

LINES
,

PERIPHERALS:
DIGITAL I/o

~
16K X 8

+-
ANALOG I/o

PAL EPROM AND/OR
16R6B

3~O ns UARTS
CONTROL ~

i-. LINES
TlIF/9403-2

FIGURE 2. BCP Stand-Alone System with EPROM Soft Load Circuit

2-101

l>
Z

I
U1
o
~

ClK-OUT A. N.C. it ICU<
V XTAll - CLK-OUT

citr' ~ u X2 ~
1J118.8696 MHZ 34

39p' It :~TClK
WAiT

T iiiiI
10K 3 ffi-IN

BIRQ
Rl

LINE
INTERFACE J ____ ...I

DATA-OEL
DATA-OUT
TX-ACT
IN-PLUS
IN-MINUS

It!

BCP

OP8344V

13

~
10 10
20 20
30 30
40 4Q
SO SO
60 SO
70 70
80 SO
C
OC
----i

IWR

INSTRUCTION AOORESS

~O:IS) INSTRUCTION BUS

REAo-

A(8:1S)

t.(O:7

AO(O:7

tAc

~i=
~~
r I--<

tt:::::

T" CH.~ ill

r~e A ~ ~K ~ .. I: i lC ... l_'-I-...Jr,---ti-!F=j]t::=================
74ALS14 :MCK 11 - lu. iKt.lW ~~u 4,..!ill- :~ ~g~!I..l.!~LillQ.~~:t:=:----t-l

4~ V f jJ ... mt 6
.11W1 RAE. ' ___ +-__ ...1

1

EPAO

TLIF/9403-3

FIGURE 3. Schematic

2-102

iA(O:IS) INSTRUCTION AOORESS INSTRUCTION WEWORY

T28 T28

~
vee

hI ~
vee

hT 11.11 3 1.12 WE 1.12 WE
All Or ~ All Or 22

Eli
1A10 1 2

1A9 4 1.10 ffi

~
AID CSi 6

lAB 5 1.9 CS2 lAB 2 Ai CS2
AS , I:: :a 1.8

~ 1.7 RAW 07 ~ 1.7 RAW 07 19 17

P.P 1.6 8KX8 D6 r---#.--4 1.6 8KX8 D6 i:~ :; 1A5 AS 45nS 05 ~ i ~~ ~ AS 45nS 05
1A4 6 1.4 04 16 11 1.4 04 ~ ~ ~~ ~ A3 03 ~ ~ 1.3 03 m!= A2 02 ~ IA2 8 1.2 02 3 I

Pd AI 01 ~ ! I~~ 1~ AI 01 1 11
lAO I

1.0 GIlD DO rU--L- AD GIlD DO rll--L-
~4 WB81 C78A-45 }i4 WB81 C78A-45

INSTRUCTION BUS PKG FT-28PW02 ~0:15) PKG FT-28PW02

READ
WRITE

1.(8:15) ADDRESS (HIGH)

1.0:7 ADDRESS LOW

A 0:7 DATA WULTIPLEXED

DATA WEWORY
~8

! ~~~ 2~
VCe.... 27 1.12 WE

~ All Or
~ AID ffi
t-#-¥. Ai CS2
~ 1.8 Ii 1.07 1.7 3 1.7 RAW 07

A6 4 1.6 8KX8 D6 18 1.06
AS 5 AS 45nS 05 17 ADS
1.4 6 1.4 04 16 AD4
1.3 7 1.3 03 15 AD3
A 8 A2 02 13 AD
AI 9 1 ADI
AO 10 AI 01 11 ADO "b! NWC27CP128 1.0 DO

1 VPP AI4~,
GIlD

VCC ~4 WB81 C78A-45

iUl' 20 EE 1.13 12
PKG FT-28PW02

OE 1.12
EPROW All
16KX8 Ai~

A 7
350nS 1.8

07 1.7
06 1.6
05 AS
04 1.4
03 A3
02 A2
01 AI

~l
IAU

00 GNO AD

I ~4

FIGURE 3. Schematic (Continued)

2-103

I
PERIPHERALS

(UARTS.
DIGITAl I/O.
AND/OR
ANAlOG I/O)

TL/F/9403-4

» z
I en
o
~

I

II
I

~
o
Ll)

I

Z «,
WHY EPROM 50FT-LOAD?

In a stand-alone application, the BCP instruction code must
be kept in non-volatile memory. Instruction memory with
45 ns access time is required to run the BCP at full speed.

EPROM at this speed can be quite expensive, much more
than 45 ns RAM or 350 ns EPROM. RAM with 45 ns access
time can be used for instruction memory if a scheme is em­
ployed to load the BCP code into the RAM from slow
(350 ns), inexpensive EPROM, upon power-up.

In non-stand-alone applications, a host processor would
communicate with the BCP through the BCP's built-in re­
mote interface (Figure 1). In such a system, BCP code
would be loaded from the host into the BCP's instruction
RAM using the remote interface. In a stand-alone system,
however, the BCP is not interfaced to a host; the program is
loaded from EPROM through the remote interface. As
shown in Figure 2 a PAL ® sequencer controls the loading of
the program, generating handshaking, signals similar to
those of a typical host processor. When the load is com­
plete, the sequencer tells the BCP to begin execution of the
program.

HOW THE 50FT-LOAD CIRCUIT WORKS

The BCP, as configured in this system,.comes up halted'
after reset (Figure 3). The program counter is set to zero,
and the remote interface is configured to receive '16-bit in­
structions in 8-bit pieces and write them into instruction
memory. The BCP has the feature that it can be configured

to come up stopped or to begin program execution after a
reset has occurred. If the following conditions are true when
reset is de-asserted then the processor will begin running:
RAE - (Remote Access Enable, active low) = High,
REMWR - (Remote Write, active low) = low, REMRD­
(Remote Read, active low) = low. Otherwise, it will come up
halted.

The PAL sequencer begins the software load by writing the
low byte of the first instruction to the remote interface. A
simplified flowchart of the sequence operation is shown in
Figure 4.

This byte comes from address OOOOH of the EPROM. The
corresponding locations of EPROM and RAM are shown in
Figure 5. The I,east significant address line of the EPROM is
controlled by the seque~cer; the other address lines are
driven by the instruction address bus of the BCP. The in­
struction address bus reflects the contents of the BCP's
program counter (PC), which contains the destination of the
instruction currently being loaded. After the low byte of the
first instruction' is' written to the remote interface, the se­
quencer brings the least significant address line of the
EPROM high. Now location 0001 H of the EPROM is ad­
dressed, and the high byte of the first instruction is written to
the remote interface. At this point the BCP writes both bytes
into address OOOOH of instruction RAM, and increments its

, program counter.

TL/F/9403-5

FIGURE 4. Sequencer Operation

2-104

EPROM Instruction
Address Memory Address

0 0 (Low Byte)
1 0 (High Byte)
2 1 (Low Byte)
3 1 (High Byte)
4 2 (Low Byte)
5 2 (High Byte)

• • •
• • •
• • •
• · ·

16382 8190 (Low Byte)
16383 8191 (High Byte)

FIGURE 5. EPROM to RAM Address Mapping

The first 16-bit instruction has been transferred; the second
is done in a similar manner. The sequencer brings the least
significant address line of the EPROM low again. The PC
now contains 0001 H, which is output on the instruction

2-105

address bus. Location 0002H of the EPROM is addressed,
and the low byte of the second instruction is written to the
remote interface. The sequencer then brings the least sig­
nificant address line of the EPROM high (to address loca­
tion 0003H) and the high byte of the second instruction is
transferred. The BCP writes the second 16·bit instruction to
location 0001 H of instruction RAM. This process is repeated
until the last instruction is transferred.

The sequencer senses that the load is complete when in­
struction address line 13 comes high. This occurs when the
program counter is incremented to a value of 4000H, indi­
cating that 8K instruction words have been transferred. At
this point the BCP must be started. To achieve this, the
sequencer resets the BCP again, while holding RAE - high,
REMRD- low, and REMWR- low. A reset during these
conditions brings the processor up running, and also clears
the program counter. The BCP begins execution at instruc­
tion address OOOOH and the sequencer and EPROM go into
an inactive state, transparent to the software being execut­
ed. A detailed version of the sequencer flowchart is shown
in Figure 6. A hardware compiler/minimizer was used to ob­
tain the equations shown in Figure 7. These equations were
used to program a National PAL16R6B. Typical timing
waveforms of the soft-load are shown in Figure 8.

-.:to
o
Lt) .
z «

REt.4RD
STI
ST2
CS
EPAO
REt.4WR

XXXXXX
I I I I I I I I I I

--- I I II
---- I I I

I I
------ I

WRITE LOW BYTE
or INSTRUCTION

FIGURE 6. Sequencer Flowchart

2-106

TLIF/9403-8

There are several advantages to using the remote interface
to load the BCP software. If a scheme like the one in Figure
9 was used to load the program directly from EPROM to
instruction RAM, much more hardware would be required
and the access time of the RAM would need to be shorter.
Two EPROMs would have to be used instead of one be­
cause the transfer would be 16 bits wide instead of 8 bits. In
this case the BCP's program counter could not be used to

increment through the memory locations, thus an external
13-bit counter would be needed. TRI-ST ATE® buffers would
isolate the RAM and EPROM from the instruction data and
instruction address busses during soft-load. These buffers
would add propagation delays to memory accesses de­
manding that faster RAM be used. Soft-loading through the
remote interface requires fewer I.Co's and does not degrade
the performance of the processor.

DMPAL16R6B; SOFTLOAD
CK LCL XACK IA13 RESET NC6 NC7 NC8 IWR GND
10E IBRESET IREMWR IEPAO ICS IST2 ISTl IREMRD ILCLINV VCC
IREMRD .- RESET* IREMRD* CS*/EPAO*/REMWR

ISTl

IST2

ICS

*/EPAO

+ RESET* IREMRD* ST2* CS* IREMWR
+ RESET* IREMRD* ST1* CS* IREMWR
+ RESET*IA13* REMRD*/ST1*/ST2*/CS*/EPAO* REMWR

._ RESET*
+ RESET*

REMRD*/ST1* ST2*/CS
REMRD* ST1*/ST2*/CS

+ RESET* IREMRD* ST1*/ST2* CS*
+ RESET* IREMRD*/ST1* ST2* CS*
+ RESET*/XACK*REMRD* IST2*/CS*

._ RESET* REMRD* ST2*/CS
+ RESET*/XACK*REMRD*/ST1* ICS*
+ RESET* IREMRD* ST2* CS*

IREMWR
IREMWR
IREMWR

IREMWR
IREMWR

+ RESET*
+ RESET*

._ RESET*
+ RESET*
+ RESET*
+ RESET*
+ RESET*

IREMRD*/STl*
REMRD* ST1*/ST2* CS*

CS* EPAO*/REMWR
EPAO* REMWR

IREMWR REMRD* ICS*
REMRD* ST1* ICS
REMRD* ICS* EPAO
REMRD* ST2*/CS
REMRD* ST1* ST2* EPAO* REMWR

+ RESET*/IA13*REMRD* ICS
:= RESET* REMRD* ST2*/CS*/EPAO
+ RESET*/XACK*REMRD* ICS*/EPAO
+ RESET* REMRD* ICS*/EPAO* REMWR
+ RESET* REMRD* ST1* ICS*/EPAO
+ RESET* IREMRD* ST1* CS*/EPAO*/REMWR
+ RESET* IREMRD* ST2* CS*/EPAO*/REMWR
+ RESET*XACK* REMRD*/ST1*/ST2*/CS*EPAO*/REMWR
+ RESET* REMRD* ST1* ST2* CS*EPAO* REMWR

IREMWR .- RESET* IREMRD* ST2*/CS* IREMWR
+ RESET* REMRD* ST1* ICS* IREMWR
+ RESET* IREMRD* CS*/EPAO*/REMWR
+ RESET* IREMRD* ST2* CS* IREMWR
+ RESET* REMRD*/ST1*/ST2*/CS* REMWR
+ RESET* IREMRD* ST1* CS* IREMWR
+ RESET*/XACK*REMRD* ICS* IREMWR

IBRESET = IRE SET + IREMRD*/ST1* CS * IEPAO * IREMWR
ILCLINV = LCL

FIGURE 7

2-107

» z .
U1
o
~

~
0
It) .
z :riming at Beginning of Instruction Load
«

RESET ~.
BRESET ~.

RAE ~.

REMRD

REMWR .~r __ ~fl~· __ ~·t.l~ __ ~fl~· __ ~·~
XACK ~ __ ~'[l~' __ ~'[l~'_' __ ~I.l~' ____ '~

LCL ____ ~.I. ~ . . u U .. L
IWR .r '--........ I . ,-I' ---ilL.

ICLK

TLIF/9403-6

Timing at End of Instruction Load

BRESET-------------------------------,.LJ.

RAE _. ___________ 1.

...... 1·--1·1.
REMWR la-.: __ n · _______ n ·_ ·1.

XACK la-: __ ·n ___ ·1.

.u. .~r _______________________ __
. ___ f _1

ICLK _______________________ n --......I·n · _. fLJ. 1-..1 --......If
TL/F/9403-9

FIGURE 8. Example of Timing Waveforms

2·108

r r --I PAL

T
I 13 - BIT

COUNTER

INSTRUCTION
ADDRESS r--

I , B
'16

-,..
U '16 4

LINE A '" r INSTRUCTION ROM

INTERFACE INSTRUCTION r RAM
300ns

~ V I E , <45ns

I 16 R '16 '-

BCP DATA ADDRESS , , " $ 'II
LATCH DATA

MEMORY'
~ , I

's 's
MULTIPLEXED
ADDRESS/DATA

-+
PERIPHERALS:

DIGITAL I/O
. ANALOG I/o

AND/OR

~
UARTS

TL/F/9403-7

FIGURE 9. Another Method of Soft-Loading (A Non-Ideal Solution)

MODIFYING THE SOFT-LOAD SYSTEM
FOR LARGER MEMORY

The soft-load system as documented loads 8K x 16 bits of
instruction memory. Large programs may require more
memory; smaller, lower cost systems may use less. The
soft-load system can easily be altered to load larger or
smaller instruction memory by changing one connection.

Connecting a different instruction address line to pin 4 of
the PAL changes how much instruction memory is loaded:
These connections are shown in Figure 10

Instruction Memory Size: Connect Pin 4 of PAL to:

32kx 16 IA15
16k x 16 IA14
8kx 16 IA13
4kx 16 IA12
2kx 16 IAll

FIGURE 10. Connections for Altering
Instruction Memory Size

USING THE CAPSTONE CT-104 DEVELOPMENT BOARD
TO EVALUATE THE SOFT-LOAD APPLICATION

A DP8344 biphase Communications Process development
board is available from Capstone Technology Inc., of Fre­
mont, California. The board is designed to reside in an IBM®
PC. A breadboard area is provided on the board so that
custom circuitry can be added. It can be converted into a
stand-alone soft-load system by wire-wrapping three addi-

2-109

tional I.C.'s into the breadboard area. A diagram of the
CT-l04 board with the additional components is shown in
Figure 11. Note that most of the prototyping area remains
available, enabling the addition of other circuitry specific to
the application being developed. A parts list is shown in
Figure 12. The PAL16R6 is programmed with the equations
shown in Figure 7. U22 and U23 must be removed from the
CT-l04 board and be replaced with specially wired 20-pin
headers. The wiring on these headers, shown in Figure 13,
provides access to the RESET - signal and disables the
unused interface circuitry on the board. Pin 11 of the header
that replaces U23 must be wired to pin 13 of the 74LS14. A
wiring list is shown in Figure 14. Power supply connections
must be added because the board can no longer reside in
the PC. Development of a stand-alone soft·load application
can be done easily and quickly by using the CT-l04 board
because minimal circuit construction is required.

SUMMARY

The soft-load circuit uses the BCP's remote interface to
load BCP code from slow EPROM to fast RAM, with a mini­
mum of extra hardware. This method is useful in systems
where there is no host processor directly interfaced to the
BCP and the full processing speed of the BCP is needed.

The circuit can easily be modified to load different sizes of
memory. The Capstone Technology, Inc. CT-l04 develop­
ment board can easily be converted to a stand-alone soft­
load system for evaluation of the application. I •

~
o
Ln .
z
<C

GENERAL PROTOTYPING AR~
NMC27CP128 EPROM

BYPASS CAPACITORS

7ml.----O 0
PAL16R6

BCP PINS
AND

PC BUS
SIGNALS

rOR
PROTO­
TYPING

UP TO 6.K
INSTRUCTION

MEI.lORY

UP TO 6.K
DATA

MEMORY

I CRYSTAL I
DP83 ••

ADDRESS J BCP
LATCH

PC BUS

INTERrACE

I

FIGURE 11. CT· 1 04 Development Board with Soft·Load Circuitry

NMC27CP128 350 ns access time or faster

PAL16R6B

DM74LS14N

28-pin wire-wrap socket

20-pin wire-wrap socket

14-pin wire-wrap socket

3 Bypass capacitors, 0.1 J.LF

2 50-pin wire-wrap strips, 2 pins wide

2 20-pin headers
FIGURE 12. Parts List for Conversion of CT-104 Board

20 11

Y
0 0 y y 0 0 0 0 0

Pin 13 of U102

0 0 0 0 0 0 0 0 0 0
Replaces U23 10

20 11

Y
0 0 0 r y

~ U
0 0 0 0 0 0 0 0

Replaces U23 10

FIGURE 13. Header Wiring for Conversion of CT-104 Board

2-110

-
COAX
LINE

INTERrACE

CUSTOM COAX BNC
LINE OR
INTERrACE TWINAX
PROTOTYPING CONNECTOR

TL/F 19403-10

TLlF/9403-11

» z
Pin Unit to Pin Unit Pin Unit to Pin Unit U,

0
U100 vee 28 U100 vee ~

2 U100 12 W1 U101 17 W2
3 U100 7 W1 2 U101 11 W2
4 U100 6 W1 3 U101 7 W2
5 U100 5 W1 4 U101 14 W1
6 U100 4 W1 5 U101 10 U102
7 U100 3 W1 6 U101 GND
8 U100 2 W1 7 U101 GND
9 U100 W1 8 U101 GND
10 U100 14 U101 9 U101 50 W1
11 U100 33 W1 10 U101 GND
12 U100 34 W1 11 U101 49 W2
13 U100 35 W1 12 U101 8 W2
14 U100 GND 13 U101 48 W2
15 U100 36 W1 15 U101 46 W2
16 U100 37 W1 18 U101 47 W2
17 U100 38 W1 20 U101 vee
18 U100 39 W1 1 U102 GND
19 U100 40 W1 3 U102 GND
20 U100 46 W2 5 U102 GND
21 U100 10 W1 7 U102 GND
22 U100 19 U101 9 U102 GND
23 U100 11 W1 11 U102 12 U102
24 U100 9 W1 13 U102 11 U23 HEADER
25 U100 8 W1 14 U102 vee
26 U100 13 W1 45 W2 GND
27 U100 vee

FIGURE 14. Wiring List for Conversion of CT-104 Board

2-111

CD r---~
CD
~

Z
<C

"Interrupts"-A Powerful
Tool of the Biphase
Communications Processor

When you have only 5.5 ,.,.s to respond you have to act fast.
This is the amount of time specified in the IBM 3270 Product
Attachment Information document as the maximum time al­
lowed to respond to a message in a 3270 environment. This
5.5 ,.,.s is why the DP8344 interrupts are specifically tailored
for the task of managing a communications line and feature
very short latency times. This article contains information
that will help the user to take better advantage of the exten­
sive interrupt capability found in the DP8344.

The DP8344 has two external and four internal interrupt
sources. The external interrupt sources are the Non-Maska­
ble Interrupt pin, (NMI), and the Bi-directional Interrupt Re­
Quest pin (BIRQ). A Non-Maskable Interrupt is detected by
the CPU when NMI receives a falling edge. The falling edge
is captured internally and the interrupt is processed when it
is detected by the CPU as described later. BIRQ can func­
tion as both an interrupt into the DP8344 and as an output
which can be used to interrupt other devices. When BIRO is
configured as an input an interrupt will occur if the pin is
held low. Note that BIRQ is not edge sensitive and if the pin
is taken back high before the interrupt is processed by the
CPU then no interrupt will occur.

The internal interrupts cO[lsist of the Transmitter FIFO Emp­
ty (TFE) interrupt, the Line Turn Around (L T A) interrupt, the
Time Out (TO) interrupt, and a user selectable receiver in­
terrupt source.

The receiver interrupt source is selected from either the Re­
ceiver FIFO Full (RFF) interrupt, the Data Available (DA)
interrupt, or the Receiver Active (RA) interrupt. The RFF
interrupt occurs when the receive FIFO is full or if the re­
ceiver detects an error condition. This interrupt enables the
user to handle packets of data as opposed to handling ev­
ery data word individually. It also allows the program to
spend additional time performing other tasks. However,
since the RFF interrupt is only asserted when the receive
FIFO is full, the LTA interrupt should be used in conjunction
with RFF to allow the program to check the FIFO for addi­
tional words at the end of a message. The DA interrupt
indicates valid data is present in the receive FIFO and also
occurs if the receiver detects an error condition. It should be
used when it is desirable to handle each data word individu­
ally. The DA interrupt also allows the program to utilize the
time between receiving each data word for performing other
tasks. The RA interrupt is asserted when the receiver de­
tects a valid start sequence. It provides the user with an
early indication of data coming into the receiver. This allows
the program time to perform any necessary overhead activi­
ty before handling the receiver data. The RA interrupt is
asserted approximately 90 transceiver clock cycles prior to
data becoming available in the receive FIFO when using
3270 mode. Consequently, if the transceiver and CPU are
operating at the same clock frequency, approximately 90
clock cycles (T-states) are available for interrupt latency
and taking care of overhead prior to handling the received
data.

A TFE interrupt occurs when the last word in the transmit
FIFO is loaded into the encoder. This interrupt allows a pro-

National Semiconductor
Application Note 499
Mark Koether

gram to continue working on another task while the trans­
mitter is sending data. It is especially useful when sending a
long message. When the transmit FIFO becomes empty the
program is alerted by the TFE interrupt and may continue
the message by loading additional words into the FIFO. This
approach frees up a significant amount of processing time.
For example, after the transmit FIFO is loaded it takes the
transmitter approximately 264 transceiver clock cycles to
send the starting sequence and two data words in 3270
mode. With the CPU operating at the transceiver clock fre­
quency, the program has approximately 264 T-states avail­
able before the TFE interrupt will occur.

Once the TFE interrupt occurs the CPU has approximately
80 transceiver clock cycles to load the transmit FIFO in or­
der to continue a multiframe message in 3270 mode. If the
CPU is operating at the transceiver clock frequency, the
program has approximately 80 T-states to accomplish the
load operation. Since the load to the Receive/Transmit
Register, (RTR I, only takes 2 T -states, 78 T ~states are
available for interrupt latency and processing overhead after
the interrupt occurs.

The LTA interrupt provides an easy means for determining
the end of a message. This allows a program to quickly
begin transmitting after the end of a reception. The L TA
interrupt indicates that the receiver detected a valid end se­
quence in 3270 mode of operation. In 5250 operating mode,
the L T A interrupt occurs when the last fill bit has been re­
ceived and no further input transitions are detected by the
receiver. However, aLTA interrupt does not occur in 5250
or 8-bit non-promiscuous modes of operation unless an ad­
dress match was decoded by the receiver.

The TO interrupt occurs when the CPU timer counts down
to zero. The timer provides a flexible means for timing
events. It is a sixteen bit counter which can be loaded by
accessing CPU registers (TRHI and (TRLI and is con­
trolled by the [TCS], [TLD] and [TST] bits in the Auxiliary
Control Register, (ACR}.

After an interrupt occurs the event that generated it must be
handled in order to clear the interrupt. The exception to this
is NMI. Since it is falling edge triggered, it is cleared internal­
ly when the CPU processes the interrupt. The actions nec­
essary to clear the interrupts are listed in Table I.

In the case where BIRO is asserted, the response will be
dependent on the system design. Ordinarily, this response
would involve some hardware handshaking such as reading
or writing a specific data memory location. When internal
interrupts become asserted there are specific actions which
must be taken by a program to clear these interrupts. The
RFF interrupt is cleared when the receive FIFO is no longer
full and any errors detected by the receiver are cleared.
Data is read from the receive FIFO by reading (RTR}.
Reading the Error Code Register, (ECR I, clears any errors
detected by the receiver. The DA interrupt is cleared when
the receive FIFO is empty and any errors detected by the
receiver are cleared. The RA interrupt is cleared by reading
(RTR I or (ECR I. All three receiver interrupts are cleared
when the transceiver is reset. In many cases, resetting the
transceiver is the preferable response to an error detected

2-112

TABLE I. Clearing Interrupts

Interrupt How to Clear Interrupt

NMI internally Cleared When Recognized by the CPU.

RFF Read I RTR I When Receive FIFO is Full.
Read I ECR I When an Error Occurs.
Read I ECR I and I RTR I When an Error Occurs

and Receive FIFO is Full.
Reset the Transceiver.
Reset the DP8344.

DA Read I RTR I When Receive FIFO is Not Empty.
Read I ECR I When an Error Occurs.
Read I ECR I and I RTR I When an Error Occurs

and Receive FIFO is Not Empty.
Reset the Transceiver.
Reset the DP8344.

RA Read IRTRI or IECRI.
Reset the Transceiver.
Reset the DP8344.

TFE Write to I RTR I.

LTA Write to I RTR I.
Reset the Transceiver.
Reset the DP8344.
Write a One to I NCFI Bit 4.

BIRO System Dependent.

TO Write a One to I CCR I Bit 7.
Stop the Timer.
Reset the DP8344.

by the receiver. The TFE interrupt is cleared by writing to
I RTR I. Unlike the receiver interrupts, the TFE interrupt is
asserted when the transceiver is reset. The L TA interrupt is
also cleared by writing to I RTR I or resetting the transceiv­
er. In addition, it may be cleared by writing a one to bit 4 of
the Network Command Flags register, I NCFI. The last in­
ternal interrupt is TO. It is cleared by writing a one to bit 7 in
the Condition-Code Register, I CCR I or by stopping the tim­
er. Note that the timer reloads itself and continues to count
after the interrupt has been generated regardless of wheth­
er a one is written to bit 7 in I CCR I.

With the exception of NMI, all of the interrupts are disabled
when the DP8344 is reset. in order to make use of the inter­
rupts they must be enabled in software. Software enabling
and disabling of the interrupts is performed by changing the
state of the Global Interrupt Enable, [GIE], bit in I ACR I and
the state of the individual interrupt mask bits in the Interrupt
Control Register, IICR I.

[GIE] is a read/write register bit and so may be changed by
using any instruction that can write to IACRI. In addition,
the RET, RETF, and EXX instructions have option fields
which can be used to alter the state of [GIE]. RET and
RETF are the return instructions in the DP8344 and EXX is
used to exchange register banks. The EXX instruction can
set or clear [GIE] as well as leaving it unchanged. The RET
and RETF instructions can restore [GIE] to the value that

2-113

was saved on the address stack at the time the interrupt
was recognized. They also provide the options of clearing or
setting [GIE] or leaving it unchanged. [GIE] is cleared when
an interrupt is recognized by the CPU in order to prevent
other interrupts from occurring during an interrupt service
routine. The [GIE] options described above facilitate en­
abling and disabling interrupts when returning from an inter­
rupt service routine. The restore option is especially useful
with the NMI. Since a Non-Maskable Interrupt can occur
whether [GIE] is set or cleared, the restore [GIE] option can
be used in the return instruction to put [GIE] back to its
state prior to the interrupt occurring.

As the name implies, [GIE] affects all the maskable inter­
rupts. However, in order to use any of these interrupts they
must be unmasked by changing the state of their associated
mask bit in IICRI. When set high, bits [lMO], [lM1], [1M2],
[1M3], and [IM4] in IICR I mask the receiver interrupt, TFE
interrupt, LTA interrupt, BIRO interrupt, and TO interrupt re­
spectively. To enable an interrupt, its mask bit must be set
low. The interrupts and associated mask bits are shown in
Table II. These bits are set high when the DP8344 is reset.
Bits [RIS1] and [RISO] in IICRI are used to select the
source of the receiver interrupt as shown in Table III. Note
that only one of these interrupts can be active as the source
of the receiver interrupt.

»
z
A.
CD
CD

I

I

II

en .---,
en
"'I:t

:Z
<

TABLE n. ! ICR} Interrupt Mask Bits
and Interrupt Priority

Interrupt Mask Bit Priority

NMI - Highest
RFF, DA, RA IMO
TFE IM1
LTA 1M2
BIRO 1M3
TO IM4 Lowest

TABLE III. IICR} Receiver Interrupt Select Bits

RIS1 RISO
Receiver Interrupt

Source

0 0 RFF
0 1 DA
1 0 Reserved
1 1 RA

As stated earlier, [GIE] is cleared when an interrupt is rec­
ognized by the CPU. This prevents other interrupts from oc­
curring in the interrupt service routine. In cases where it is
desirable to allow nesting of interrupts, [GIE] should be set
high within the interrupt routine. An example of nesting inter­
rupts is using the RA interrupt in the main program and
switching to the RFF or DA interrupt in the RA interrupt
routine. Note that the internal address stack is twelve words
deep and there is no recovery from a stack overflow. There­
fore, care should be taken when nesting interrupts.

When more than one interrupt is unmasked and asserted,
the CPU processes the interrupt with the highest priority
first. NMI has the highest priority followed by the receiver
interrupt, TFE, LTA, BIRO, and TO. Therefore, if DA and
BIRO were both active, DA would be processed first fol­
lowed by BIRO. However, if a higher priority interrupt oc­
curred while the DA interrupt was being handled then it
would be processed before BIRO. Each time the interrupts
are sampled, the highest priority interrupt is processed first,
regardless of how long a lower priority interrupt has been
active. Interrupt priority is summarized in Table II.

A call to the interrupt address is generated when an inter­
rupt is detected by the CPU. The address for each interrupt
is constructed by concatenating the Interrupt Base Register,
! IBR}, contents with the individual interrupt code as shown
in Table IV. There is room between the interrupt addresses
for a maximum of four instruction words. Normally, at each
interrupt address there would be a jump instruction to an

2-114

interrupt service routine. The return instruction at the end of
the interrupt service routine would then return to the ad­
dress at which the interrupt occurred. By changing! IBR} it
is possible to locate the interrupt jump table in memory
wherever it is convenient or for one program to use more
than one interrupt jump table.

TABLE IV. Interrupt Vector Generation

Interrupt Code

NMI 111
RFF, DA, RA 001
TFE 010
LTA 011
BIRO 100
TO 101

Interrupt Vector

IIBR} Contents I 0 0 0 I Code I 0 0 I
15 8 4 2 o

As mentioned previously, the interrupts are sampled in the
CPU prior to the start of each instruction. To be precise,
they are sampled by each falling edge of the CPU clock with
the last falling edge prior to the start of the next instruction
determining whether an interrupt will be processed. The tim­
ing of a typical interrupt event is shown in Figure 1. The
interrupt occurs during the current instruction and is sam­
pled by the falling edge of the CPU clock. The next instruc­
tion is not operated on and its address is stored in the inter­
nal address stack. In addition, the current state of [GIE] and
the states of the ALU flags and bank positions are stored in
the internal address stack. A 2 T-state call is now executed
in place of the non-executed instruction. This call will cause
a branch to the interrupt address that is generated in the
first half of T-state T1. [GIE] is then cleared during the first
half of T-state T2. From this description it is evident that the
shortest interrupt latency is 2.5 T-states. This assumes that
an interrupt occurs during the first half of T2 and is sampled
by the next falling edge of the CPU clock. However, a num­
ber of factors can increase the interrupt latency. If the inter­
rupt misses the setup time to the falling edge of the last
CPU clock the response time will increase by a minimum of
2 T-states. This increase is caused by the execution of one
additional instruction. Of course, if the additional instruction
takes more than 2 T-states to execute the interrupt latency
will be greater.

~
......
01

II

CPU elK

Interrupt

Instruction
Address Bus

Instruction
Bus

[GIE]

T1

\

X

~ m'.'m,m ','.rru,' ~""'Y ~ (.... 125ns @ 20t.lHz)

n I T1 I n T1 T2

r----\ r----\ I

Non-executed X Interrupt Vector
Instruction Address Address

Non-executed instruction First interrupt instruction

\------- TLlF/9361-1

FIGURE 1. Minimum Interrupt Timing

66t-N\f

Running the DPB344 with wait states will also increase inter­
rupt latency. Instruction memory wait states increase laten­
cy by increasing the length of each instruction. including the
call to the interrupt service routine. Data memory wait states
will increase interrupt latency if an interrupt must wait for an
instruction which accesses data memory to execute before
it can be processed. A less obvious factor that can increase
Interrupt latency is data memory accesses by the remote
system. If the DPB344 is attempting a data memory access
and the remote system already has control of the data
memory bus. the CPU will be waited. If an interrupt occurs at
this time it will not be processed until the DPB344 is able to
complete the instruction which is accessing data memory.
This implies that a system with a lot of data memory arbitra­
tion occurring between the DP8344 and the remote system
may have a longer average interrupt latency. The worst
case interrupt latency will occur when the external

2-116

IT5CK or WAIT pins are asserted. Clearly. if the CPU is
stopped by the assertion of the WAIT pin any interrupts
ocurring will not be processed until the CPU is released
from the wait state. Asserting the LOCK pin would have the
same affect if the DP8344 attempts to make a data memory
access. Note that interrupts are not disabled or cleared
when the CPU is stopped by the remote system deasserting
[STRT] in the Remote Interface Configuration. (RICI. regis­
ter. When the CPU is restarted any asserted interrupts will
be processed. From the above discussion it is evident that
calculating the interrupt latency is not trivial and will be de­
pendent on the program and the system.

The interrupts on the DPB344 are powerful tools for control­
ling events in a time critical environment. They are one of
the many reasons why the DP8344 Bi-phase Communica­
tions Processor provides a superior solution to managing
communications interfaces.·

JRMK Speeds Command
Decoding

The Biphase Communications Processor (BCP) has several
features that make it ideal to use in a high speed communi­
cations environment. The relative Jump with Rotate and
MasK on register command, JRMK, is designed to allow
quick and efficient decoding of register fields. Fast decoding
of command, data, and address fields allows the BCP to
spend most of an interrupt handler's code and time on the
protocol's actual instruction execution, instead of on decod­
ing it. This helps meet the stringent 5.5 J1-s tur'n around times
demanded in 3270 communications. '

JRMK rotates and masks a copy of its source register to
form a signed program counter offset which is often used to
point to a jump table. The JRMK instruction first makes a
copy of the source register. All actions will be performed on
this copy, not on the original. The register then is rotated to
the right zero to seven places. Next, JRMK masks (zeros
out) the LSB in addition to as many bits as the mask field
indicates, starting at the MSB. Finally, JRMK adds this result
to the Program Counter (PC), providing a relative range of
+ 128, -126 instruction words. In practice, relative jumps
(JMP) and long jumps (LJMP) are usually placed in the ta­
ble, but there are no restrictions on which instructions may
fit in. Each entry has a minimum space of two instruction
words allowing LJMP's to fit. Figure 1 demonstrates the
BCP's internal execution of a JRMK instruction.

Example Code

JRMK RTR,3,3 ;decode feature address

Instruction Execution

(a) Copy IRTRI into JRMK's displacement register

(b) Rotate displacement register 3 bits right

(c) AND result with "00011110"

(d) Sign extend resulting displacement and add it to the pro­
gram counter, (PC). If the bits F4-F1 equal "0001" then
+ 2 is added to the PC.

JRMK Displacement Register Contents

(a) F4 F3 F2 F1 x x x x
(b) x x x F4 F3 F2 ' F1 x
(c) a a a F4 F3 F2 F1 a

FIGURE 1. JRMK Instruction Example

The JRMK instruction contains four (4) fields that control its
operation-a source register field, a rotate field, a mask
field, and the opcode itself. The source register may be any
register in the BCP that is always available or is currently
bank switched in. The source register is not modified by the
operation of the JRMK instruction. Even in the case of the
I RTR I register, the receiver FIFO is not changed and the
same byte remains at the top of the FIFO after executing
JRMK. The rotation field directs the BCP to rotate the
source register to the right by 0-7 bits. The mask field indi­
cates how many bits to mask from the source register start­
ing at the MSB after the rotation is complete. Up to 7 bits
may be masked off in addition to the LSB. If the mask field
equals zero (a), only the LSB will be masked. If the mask
field equals one (1), the MSB will be masked as well as the
LSB. Similarly, if the mask field equals two (2), bits 7,6 and
the LSB will be masked. Figure 2 shows the construction of
the JRMK instruction opcode.

National Semiconductor
Application Note 625
David Weinman

Opcode

m-Mask Field
b-Sit Places to Rotate
Rs-Source Register

FIGURE 2. JRMK Opcode Construction

JRMK can be set up to provide more than two instruction
words per table entry, if tne source register data format is
known. If the rotation causes a zero bit to always appear in
bit 1 of the rotated register, then each table entry will have
four instruction words.

The JRMK instruction executes in 4 T-states if there are ,no
instruction wait states. If the BCP's CpU clock is running at
a speed of 20 MHz, a T ~state is 50 ns in duration. In this
case, each JRMK instruction will complete in 200 ns. '

AN EXAMPLE

A good example of how to use the JRMK instruction is
found in the Multi-Protocol Adaptor (MPA). The MPA is a
design/ evaluation kit available from National Semiconduc­
tor. It provides complete link level source code, hardware,
and development notes for creating a 3270 or 5250 PC ter­
minal emulator card.

This example comes from actual MPA code in the Data
Available interrupt handler for 3270 terminal emulation. All
overhead such as bank switching, register saving, and index
register setting have been previously executed, and the
3270 command is at the top of the receiver FIFO. The actu­
al implementation of executing each 3270 instruction, as
well as the decode tables for devices other than the base, is
not shown. Additionally, the code for handling data is not
presented. These are all included with the MPA source
code. '

When a 3270 message is available in the receiver FIFO, a
determination is made whether that message is a command
or data at the rxcxJasl label as shown in Figure 3. If the
receiver contains data, the BCP vectors to a location held in
the index register equated to DAT~VECTOR. If the mes­
sage is a command, the BCP will jump to the label
cx_comm to check for common commands. The Network
Control Flag (NCF) register contains bits for hardware de­
coded commands, POLL, POLL/ ACK, and IT / AR. POLL
and POLL! ACK will jump to their respective command han­
dlers. Since a IT / AR shold not be received by a terminal, its
decode will jump to the cx-perr error handler. A no-opera­
tion, NOOP, is inserted after the first jump because the
JRMK instruction is set in this case to jump to every other

'address. The NOOP ,takes up an instruction location to en-
sure that the table conforms to this specification. A NOOP is
a macro that stands for MOVE ACC,ACC. If the command is
not one of these three, then the address of the command
must be checked.

2-117

» z m
N
U1

II
I

&I)
N
CD .
z
<C

At the label addr _dec, the BCP will vector to different com·
mand handlers based on the feature address of the reo
ceived command. All unimplemented features jump. to the
ex_dee_err error handler. The JRMK instruction is used

to look at bits 4-7 of I RTR I which point to the 3270 feature
that the command is for. Based on these bits, the different
feature command decoders will be jumped to as shown in
Figure 4.

setup code here

rxex_fast:
Ijmp TSR,l,S,ex_eomm

Ijmp [DATA_VECTOR]

check for quick command decodes

ex_immed:
jmp
HOOP
Ijmp
Ijmp
Ijmp

NCF,7,4

ex_poll
ex_pack
ex_perr

command or data?
jump if command
data, jump to appropriate
handler

jump on immediate decode prior to
advancing FIFO

not an immediate decode command

poll command decoded
pack
should not get here (TT/AR)

FIGURE 3. JRMK Fast Command Determination

find out which feature that the command is addressed to

RTR,3,3

; address parse table

ex_addr:
jmp base_dec
NOOP
jmp base_dec
NOOP
Ijmp ex_dee_err
Ijmp ex_dee_err
Ijmp ex_dee_err
Ijmp ex_dee_err
Ijmp ex_dee_err
Ijmp eab_dee
Ijmp ex_dee_err
Ijmp ex_dee_err
Ijmp ex_dee_err
Ijmp ex_dee_err
Ijmp ex_dee_err
Ijmp ex_dee_err
Ijmp ex_dee_err
Ijmp ex_dee_err

jump based on 4 bit address field

o decode base/keyboard command

1 decode base/keyboard

2 light pen
3 reserved
4 magnetic stripe reader
5 PC adapter
6 3180 advanced
7 EAB
8 reserved
9 reser~ed
A reserved
B convergence
C reserved
D reserved
E reserved
F reserved

FIGURE 4. JRMK Feature Determination

2·118

At the base feature decoder base_dec, the actual com­
mand is decoded and jumps are taken to the different ad­
dresses to handle each one. Figure 5 details this operation.

base command parse table

base_dec:
jrmk RTR,7,2 decode base command

cx_base:
Ijmp cx_ignore 00 should not get here
Ijmp cx_poll 01 poll command
Ijmp cx_reset 02 reset device
Ijmp cx_readata 03 read data
Ijmp cx_lach 04 load address counter
Ijmp cx_rach 05 read address counter
Ijmp cx_clear 06 clear

high
high

Ijmp cx_rdex 07 read extended terminal ID
Ijmp cx_start 08 start operation
Ijmp cx_rdid 09 read terminal ID
Ijmp cx_lcont OA load control register
Ijmp cx_rdmul OB read multiple
Ijmp cx_write OC write data
Ijmp cx_rdstat OD read status
Ijmp cx_insert OE insert byte
Ijmp cx_ignore OF reserved
Ijmp cx_sforward 10 search forward
Ijmp cx_pack 11 poll with acknowledge set
Ijmp cx_sback 12 search backward
ljmp cx_ignore 13 reserved
Ijmp cx_lacl 14 load address counter low
Ijmp cx_racl 15 read address counter low
Ijmp cx_mask 16 load mask
Ijmp cx_ignore 17 reserved
ljmp cx_ignore 18 reserved
ljmp cx_ignore 19 reserved
ljmp cx_lscont lA load secondary control
ljmp cx_ignore lB reserved
Ijmp cx_diagreset lC diagnostic reset
Ijmp cx_ignore lD reserved
Ijmp ex_ignore IE reserved
ljmp ex_ignore IF reserved

FIGURE 5. JRMK Decoding of 3270 Instructions

2-119

»
z
~
N
U1

Ell
I

it)

~ If our command was a Load Control Register command
:Z (00001010), the JRMK instruction at label cx_comm would
<C send us to a jump to addr _dec to decode which feature the

command is directed to. At that label, JRMK would send us
to the jump to base_dec since our address is "0000".
Since the command is "01010", the JRMK relative jump will
move to the instruction Ijmp cx..Jcont which jumps to the
appropriate code to handle that instruction.

From rxcx..Jastto the proper command to the base feature,
there are 24 T-states of time used. At 20 MHz with no wait,
states, this translates to 1.2 JJ-s. With a maximum interrupt
latency of 225 ns, this leaves at least 4.075 JJ-s to handle all
other aspects of each command to the base. Commands to
other features will probably take 1 T-state longer for the
long jump to the command decode'table (also using JRMK)
for that feature, whereas the base feature used a relative
jump.

The JRMK instruction is one example of how the BCP is.
optimized for high speed communications.

2-120

DP8344 Remote Processor
Interfacing

This application note is provided to help the reader under­
stand the information given in Table 26: Remote Rest Time
of the DP8344BV 6.0 datasheet.·

For the BCP to operate properly, remote accesses to the
BCP must be separated by a minimum amount of time. This
minimum amount of time has been termed 'rest time'.

To give the reader a better understanding of rest time, the
following items will be discussed in this application note:

1. The causes of remote rest time.

2. The way to interpret Table 26 and the worst case rest
time.

3. The desirable features of a rest time circuit.

4. A design example of a rest time circuit for the CT -104
board.

Before proceeding any further, it must be stated that the
design of DP8344BV did not introduce remote rest time.
Remote rest time exists on all versions of the BCP.
·AII specifications used in this application note are from the DP8344BV 6.0
datasheet. Please refer to the latest datasheet available for the most cur­
rent specifications.

CAUSES OF REMOTE REST TIME

There are two causes for remote rest time. The first cause is
implied in the state diagrams for remote accesses and can
be explained as follows:

At the beginning of every T-state the validity of a remote
access is sampled for that T-state. To guarantee that the
BCP recognizes the end of a remote cycle, the time be­
tween remote accesses must be a minimum of one T-state
plus setup and hold times. This worst case rest time for the
DP8344BV is:

rest time = 1 T + t (setup time) + t (hold time)

= 1T + 22 ns + 10 ns

= 1T + 32 ns

In the case of latched Read and Fast Buffered Write, the
validity of a remote access is not sampled on the first rising
edge of the CPU-ClK following XACK rising. However, on
all subsequent rising edges of the CPU-ClK, the validity of
the remote access is sampled. As a result, if the remote
processor can terminate its remote access quickly after
XACK rises (within a T-state), up to a T-state may be added
to the above equation for latched Read and Fast Buffered
Write modes. On the other hand, if the remote processor
does not terminate its remote access within a T-state of
XACK rising, the above equation remains valid for latched
Read and Fast Buffered Write modes.

If this specification is not adhered to, the BCP may sample
the very end of one valid remote access and one T -state
later sample the very beginning of a second valid remote
access. Thus, the BCP will treat the second access as a
continuation of the first remote access and will not perform
the second read/write. The second access will be ignored.
(Reference Figure 1 for timing diagrams which demonstrate
how two remote accesses can be mistaken as one.)

National Semiconductor
Application Note 627
William V_ Miller

The second source of remote rest time is due to the manner
in which the BCP samples the CMD signal. (Please note that
when CMD is high all remote accesses are to the Remote
Interface Control register IRICI. When CMD is low all re­
mote accesses are to where RIC's Memory Select Bits
point.) CMD is sampled once at the beginning of each re­
mote access. Due to the manner in which CMD is sampled,
CMD will not be sampled again if a second remote access
begins within 1.5(T-states) plus a hold time, after the BCP
recognizes the end of the first remote access. If this hap­
pens, the BCP will use the value of CMD from the previous
remote access during the second remote access. If the val­
ue of CMD is the same for both accesses, the second ac­
cess will proceed as intended. However, if the value of CMD
is different for the two remote accesses, the second remote
access would read/write the wrong location.

The reader should note that the timing of the second source
of rest time begins at the same time that the BCP first sam­
ples the end of the previous remote access. Thus, when the
first source of rest time ends, the second source of rest time
begins. (Reference Figure 2 for timing diagrams for rest time
in all modes except latched write.)

LATCHED WRITE MODE

latched write mode is a special case of rest timo and noods
to be discussed separately from the other modos. Tho first
cause of rest time affects every mode including latchod
write. In regards to the second source of rest time, latchod
write mode was designed to allow a second remote access
to start while a write is still pending (Le., WR-PEND = 0).
Thus, when WR-PEND rises (signaling the end of the previ­
ous write) the value of CMD is sampled for the seccond
remote access. This will result in sampling the correct value
of CMD for the second access. This allows latched write to
avoid the second cause of rest time mentioned above.

However, if a remote access begins within half aT-state
after WR-PEND rises, CMD will not be sampled again. For
this case, if the value of CMD changed just after WR-PEND
rose and at the same time the remote access began, the
BCP would read/write the wrong location. (Reference Fig­
ure 3 for timing diagrams of rest time for latched write
mode.)

HOW TO INTERPRET TABLE 26
AND WORST CASE REST TIMES

At this time it is desirable to review how to interpret Table 26
and to review what the actual worst case rest time is. To
interpret the specifications in Table 26, the reader must un­
derstand the differences between running the BCP at full
speed (Le., [CCS] = 0) and half speed (Le., [CCS] = 1). At
full speed both the CPU-ClK and ClK-OUT operate at the
same frequency as OClK. When the BCP runs at half
speed, ClK-OUT remains at the same frequency as OClK,
but the CPU-ClK operates at half the frequency of OClK. In
the data sheet, one T-state is defined as one CPU-ClK cy-

2-121

~
N
N

BCP's CPU ClK

RAE

REt.lRD

REt.lWR

(a) This timing diagram shows two remote accesses within one T-state. The first set of arrows shows the BCP sampling a valid
remote read. The next time the BCP samples the validity of the remote access is shown by the second set of arrows (1 T-state later).

In this case, it will sample the second remote access and mistake it as a continuation of the first remote access.

L -, 1 T-state ,-
BCP's CPU CLK -----, 4> 1 r<I> L ..<I> 1

~

RAE 11 1 '1
~22 ns minimum '"' mi~~~~m -.f

1 REt.lRD 11 . I

REt.lWR

(b) This timing diagram shows the timing necessary for the BCP to recognize both accesses as separate accesses. The first set of arrows
shows the BCP sampling a valid remote r~ad. One T-state later at the second set of arrows, the BCP will sample the erid of the first

remote access. Another T-state later at the third set of arrows,the BCP will sample the beginning of the second remote access~

FIGURE 1. Mistaking Two Remote Accesses as Only One

AN-627

TLlF/l04S1-1

TLlF/l04S1-2

~
I\:)
w

I d 1.5 T-states-------i

BCP's CPU CLK

RAE

REt.lRD

REt.lWR

Ct.lD 1st Remota Access's 2nd Remole Access's
CIAO Value CIAO Value

(a) This timing diagram shows the second remote access violating rest time. The first set of arrows shows the BCP sampling a valid
remote write. The second set of arrows (1 T-state later), shows the BCP sampling the end of the first remote access. If a second

remote access starts before the position of the third set of arrows (another 1.5 T-states later), the value of CMD will not be sampled.
The value of CMD has changed from the first remote access, so the BCP will write to the wrong location during the second access.

BCP's CPU CLK

RAE +-1 ______ -+..!.-....

REt.lRD

REt.lWR +-1 _______I~

CMD I 1st Remote Access'.
CIAO Value

1------- 1.5 T-stat •• ------.j

2nd Remote Access's

CWO Value

TL/F/l04S1-3

TL/F/l04S1-4

(b) This timing diagram shows the second remote access violating rest time. The first set of arrows shows the BCP sampling a valid remote write.

III

The second set of arrows (1 T-state later), shows the BCP sampling the end of the first remote access. If a second remote access starts
before the position of the third set of arrows (another 1.5 T-states later), the value of CMD will not be sampled. The value of CMD
does not change from the first remote access, so the BCP will write to the intended location during the second remote access.

FIGURE 2. Remote Rest Time for All Modes except Latched Write

L~9·N\f

~
I\)
~

AN-627

1+------- 1.5 r-.tat •• ------.j

BCP's CPU CLK r--l I I 4> I I ~b I ~,

RAE I
h

I h
I-22 minlmum- f.. ~ IOns minimumj..-

REt.lRD

REt.lWR I I n
j.--22 minimum- IOns minimumj..- ')

Ct.lD lst Remote Acce.s's I" "" " ""1/11 " " "" 'II '"'''' U U U ,.. ,'"'''''''''''''''''''''''''''''' I 2nd Remote Acces.'s
CWD Value CWD Value

TUF/l0451-5

(C) This timing diagram shows the timing needed to avoid rest time for all modes except latched write. The first set of arrows shows the BCP sampling the end
of the first remote access. The second set of arrows (1.5 T-states later), shows the BCP recognizing no remote access has started and the value of CMD will

be sampled for the next remote access. The third set of arrows shows the BCP sampling the correct value of CMD for the second remote access.

FIGURE 2. Remote Rest Time for All Modes except Latched Write (Continued)

r 0.5 T-states -l
BCP's CPU CLK ~ I I r<P 4> I I

r1
') I RAE

! ! I REt.lRD

!
REt.lWR

WR-PEND H
'1

Ct.lD Previous Remote Acce.s's CWO Value I 2nd Remote Access's CWO 'Value

TUF/l0451-6

(a) This timing diagram shows a remote access violating remote rest time. The first set of arrows shows the BCP sampling the value of CMD
when WR-PEND rises. If a remote access begins after WR-PEND rises and before the position of the second set of arrows (0.5 T-states later),

the value of CMD will not be sampled again. The value of CMD has changed since WR-PEND rose, so the BCP will read the wrong location.

FIGURE 3. Rest Time for Latched Write Mode

~
I\J
c.n

r- 0.5 T';'statas -I
BCP's CPU ClK II I I r¢ 4 I I

h
h I RAE

h
~ I REMRD

h
REMWR

WR-PEND H

l
CMD Previous Remota Access's CMD Value 2nd Remote Access's CMD'Value

TL/F/l0451-7

(b) This timing diagram shows a remote access violating remote rest time. The first set of arrows shows the BCP sampling the value of CMD when
VIR-PEND rises. If a remote access begins after WR-PEND rises and before the position of the second set of arrows (0.5 T-stateslater),

the value of CMD will not be sampled again. The value of CMD has not changed since WR-PEND rose, so the BCP will read the intended location.

r 0.5 r-states-j

BCP's CPU ClK II I I r<~ I I I i 7 ns minimium I+-
RAE

-17 ns minim'urn l-

REt.!RD I

REt.!WR

WR-PEND t-+

Ct.!D Previous Remote Access·s CIoID Value III II 111111 II ul2nd Remot~ Access·, CliO Value

TLlF/l0451-6

(c) This timing diagram shows a remote access setting up in time for WR~PEND rising to latch in the proper value of CMD. The only set of arrows shows the BCP sampling the
second remote access's CMD value when WR-PEND rises. The value of CMD will not be sampled again. The BCP will carry out the second remote access as it was intended.

FIGURE 3. Rest Time for Latched Write Mode (Continued)

a;g-N'I

iii

~
I\)
0>

AN·627

r D.5 r-ltatll-1

CPU-CLK I I --<I> r<D I --<I>
11

11 8ns .J

r1
~ 8n.-I

'1

RAE

REt.lRO

REt.lWR

WR-PENO H

'1 ~ 2nd Remot. Acc ... ••

I CWD Value Ct.lO
TLlF/l0451-13

(d) This timing diagram shows a remote access starting after a half T-state plus a hold time since WR-PEND rose. The first set of arrows
shows the BCP sampling the value of CMD when WR-PEND rises. The second set of arrows shows the BCP recognizing that no remote
access has started and the value of CMD will be sampled for the next remote access. The third set of arrows shows the BCP sampling

the correct value of CMD for the second remote access. The BCP will carry out the second remote access as it was intended.

FIGURE 3. Rest Time for Latched Write Mode (Continued)

1-1 r-stat.--l

CPU CLOCK

ClK-OUT

TLlF/l0451-9

(a) BCP Running at Full Speed

CPU ClOCK I----- ,.-..... I

ClK-OU'
TLlF/l0451-10

(b) BCP Running at Half Speed

FIGURE 4. Relationship between the BCP's CPU-Clock and ClK-OUT

cle. As a result, at full speed one T -state equals one
ClK-OUT cycle, but at half speed one T -state equals two
ClK-OUT cycles. (Reference Figure 4 to see the relation­
ship between the BCP's CPU-ClK and ClK-OUT at full
speed and half speed.) The specifications in Table 26 are all
measured with the BCP running at full speed. All of the rest
time specifications are dependent on the CPU-ClK and not
on ClK-OUT. At full speed, the CPU-ClK and ClK-OUT are
the same, and this fact allows specifications to ClK-OUT in
place of the CPU-ClK. On the other hand, at half speed the
specifications to ClK-OUT are no longer valid because one
cannot tell if a rising edge of ClK-OUT is a rising or falling
edge of the CPU-ClK.

Earlier the worst case rest time for the BCP mistaking two
fast back to back accesses as only one was given as:

rest time = H + t (setup time) + t (hold time)
(mistaking two accesses as one)

The real time worst case for the BCP mistaking two access­
es as one, happens when the BCP runs at half speed. So for
the BCP running at half speed and OClK = 18.8696 MHz,
the worst case rest time for mistaking two accesses as one
is:

rest time = 2(ClK-OUT cycles) + tsu + th
(mistaking two accesses as one)

rest time = 2(53 ns) + 22 ns + 10 ns
(mistaking two accesses as one)

rest time = 135 ns
(mistaking two accesses as one)

Up to a full T-state (or two ClK-OUT cycles) may be added
to the above equation if one is using latched Read or Fast
Buffered Write modes. As explained in the CAUSES of Re­
mote Rest Time section, this extra T-state is only added if
the remote processor can terminate the remote access
quickly after XACK rises (within a T-state). Otherwise, the
above equation remains valid as written. The reader should
note that this extra T-state is not mentioned or included in
the following calculations because it takes place coinciden­
tally with that cause of rest time.

As mentioned previously, the absolute worst case rest time
for all modes, except latched write mode, may be calculated
by adding the above case of rest time to the second source
of rest time caused by fast back to back accesses with dif­
ferent values for CMD. This rest time can be calculated as
follows:

rest time = first source + second source
(CMD changes)

resttime = [H + t (setup time) + t (hold time)]
(CMD changes) + [1.5T + t (hold time)]

Note: The first hold time is during the second source's 1.5 T-states, so in
the following formula it disappears.

rest time = 2.5T + t (setup time) + t (hold time)
(CMD changes)

For the BCP running at half speed and OClK
18.8696 MHz, the absolute worst case rest time is:

rest time = 5(ClK-OUT cycles) + tsu + th
(CMD changes)

rest time = 5(53 ns) + 22 ns + 10 ns
(CMD changes)

rest time = 297 ns
(CMD changes)

2-127

For latched write mode the remote rest time starts when
WR-PEND rises. The rest time for this case can be calculat­
ed as follows:

rest time = 0.5T + t (hold time)
(CMD changes)

The real time worst case for rest time in latched write mode
is with the BCP running at half speed. The following is a
calculation of this rest time with the BCP running at half
speed and OClK = 18.8196 MHz.

rest time = 1 (ClK-OUT cycle) + t (hold time)
(CMD changes)

rest time = 53 ns + 7 ns = 60 ns
(CMD changes)

Please refer to the latest datasheet for more information
and the most current specifications.

DESIRABLE FEATURES OF A REST TIME CIRCUIT

In regards to designing with the rest time specifications, the
first suggestion is to determine if rest time is an issue in
one's design(s). If one's present or future design(s) is for
systems which can never violate the rest time specification,
the whole issue of rest time is a moot point.

On the other hand, designs such as terminal emulation
boards, which may be placed in faster and faster PC buses,
must address rest time. In slower PCs one's product may
never violate rest time, but in faster PCs rest time may be­
come an issue.

All remote accesses are susceptible to having two fast back
to back accesses recognized as only one. The worst case
rest time for this was determined earlier as:

rest time = 135 ns
(mistaking two accesses as one)

(where OClK = 18.8696 MHz and the BCP runs at half
speed, [CCS] = 1)

All designs with the BCP must guarantee this minimum
amount of time between every access.

The second issue of remote rest time involves fast back to
back accesses that have different values for CMD. The
worst case for this was also calculated earlier as:

rest time = 297 ns
(CMD changes)
(where OClK = 18.8696 MHz and [CCS] = 1)

Two ways to handle this rest time issue are:

1. Prevent all remote accesses to the BCP for at least
297 ns after the end of every remote access.

2. Hold off remote accesses that change the value of CMD
for a minimum of 297 ns after the last remote access.
However, allow remote accesses that do not change the
value of CMD to occur a minimum of 135 ns after the last
access. (When the value of CMD does not change from
one access to the next, this will allow accesses up to
162 ns sooner than option 1).

When designing with rest time one must decide if the in­
crease in speed of option 2) is worth the extra logic. Howev­
er, as is demonstrated by the design example for the
CT-104 (Next section), the increase in logic between option
1) and option 2) may be minimal.

......
~ Again, latched write mode is addressed separately. Unlike
::2: the other modes, latched write's rest time starts when
c(WR-PEND rises. Two possible design options are:

1. Hold off all remote accesses for at least 60 ns (If
OClK = 18.8696 MHz) after WR-PEND rises. However,
doing ,this will result in slowing every remote access to
the BCP. Furthermore, it should be noted that WR-PEND
Will, not rise until a minimum of three T-states after the
previous access has ended. If no accesses are allowed
until after WR-PEND rises, then the second access will
never be mistaken as a continuation of the previous ac­
cess.

2. Similar to the previous options, allow accesses after 136
ns if CMD has not changed between accesses. Then hold
off access for at least 60 ns after WR-PEND rises when
CMD changes between accesses.

The last design issue that must be addressed is how to wait
the host processor while preventing remote accesses to the
,BCP. Normally the wait signal of a remote processor is driv­
en by the XACK signal out of the BCP. (Please note that the
XACK signal can be active low, only when a remote access
to the BCP is in progress.) During rest time, the rest time
circuit prevents remote accesses to the BCP, so the XACK
signal will not wait the remote processor. PC buses specify
the maximum amount of time before the bus must be waited
(i~ it is going to be waited). It is possible that not allowing
remote accesses to the BCP (during rest time) may delay
the XACK signal long enough to violate this bus specifica­
tion. To prevent this, designs which wait a PC bus, must use
logic to waitthe bus whenever a remote access begins dur­
ing rest time. Furthermore, the logic that starts waiting the
bus before remote access is allowed to the BCP, must con­
tinue to wait the bus until XACK takes over waiting the bus.

DESIGN EXAMPLE FOR THE CT-104

The four major goals in designing a rest time circuit for the
CT -104 were:

1. Keep the component count to a minimum.

2. Keep the impact to the original CT-104 design to a mini-
mum.

3. Allow the CT-104 to operate in every mode.

4. Take advantage of the faster accesses allowed when
CMD does not change from one access to the next.

The rest time circuit is implemented on one PAL 16R4B and
one 74AlS74. Only a single signal (REM_enable) is fed
back into the original CT-104 design. In addition, the XACK
signal from the BCP is now fed into the rest time PAL 16R4B
and the IO_CHRDY signal to the PC bus is controlled by
this PAl®. This rest time circuit implements all modes and
takes advantage of the increase in speed possible when
CMD does not change from one access to the next.

First, how the REM_enable signal controls remote access­
es will be discussed. Then, the functions implemented by
the two positive-edge-triggered D flip-flops in the 74AlS74
will be discussed. Finally, a description of the operation of
the rest time state machine, in the PAL 16R4B, will be given.
Figure 5 is the schematic for the CT-104's rest time circuit.

The REM_enable (Figure 5) signal is produced in the rest
time PAL 16R4B and is low during rest time. After rest time is
over the REM_enable signal goes high until the end of the
next access, when it once again goes low during rest time.

The signal REM_enable is fed back into U22 (a PAL16l8)
on the CT-104. (Note that this PAL had one unused pin so
the design of this PAL was only slightly altered.)

2-128

On the original CT-104, the REMRD and REMWR outputs of
U22 were buffered signals of MEMR and MEMW respec­
tively. With the new rest time circuit both REMRD and
REMWR are held high when REM_enable = O. This pre­
vents all remote accesses during rest time. When rest time
is over REM_enable = 1 and once again, MEMR and
MEMW control REMRD and REMWR respectively.

One of the D flip-flops in the 74AlS74 stores the value of
the previous access's CMD (LCMD). This value (LCMD)
was'latched at the beginning of the previous valid remote
access. With this value stored in a flip-flop, the rest time
state machine can determine if the present value of CMD
has changed since the last remote access.

The other D flip-flop acts as a part of the rest time circuit's
state machine. When RAE rises (signaling the end of that
access) a one (1) is latched into this flip"flop. This signal
(WAIT_START) forces the state machine to move through
the next three states in sequence. If this latch is not used,
the rest time state machine may also miss the ending of an
access if back to back accesses occur within one ClK-OUT
cycle plus the setup time for a PAL 16R4B's register input. If
OClK = 18.8696 MHz this time will be:

time = 1 (ClK-OUT cycle) + t (setup time for PAL 16R4B)

time = 53 ns + 20 ns

= 73 ns

This in effect, trades a rest time of 136 ns for one of 73 ns.
However, while the output of this latch (WAIT_START, Fig­
ure 5) equals one, REM_enable will be low and the state
machine will be forced to' start the rest time states. In the
third rest time state the WAIT_START latch is, cleared by
the ClR_ST ART (Figure 5) signal going low.
ClR_ST ART is produced in the rest time PAL 16R4B and
ClR_ST ART equals zero (0) only when in the third rest
time state. In this way the WAIT_START signal guarantees
the minimal rest time of 136 ns by keeping REM_enable
equal to zero through at least three ClK-OUT cycles (Le.,
3[53 ns] = ,159 ns if OClK = 18.8696 MHz).

To describe the operation of the state machine, a state by
state description follows. When reading through the states
one should remember that the state machine can only
change states on the rising edge of ClK-OUT. A flow chart
of this state machine is provided as Figure 6. Figure 7 is a
PAL program (written in the ABEL program language) for
the PAL 16R4, rest time PAL. Figure 8 shows the reduced
equations that result for the PAL program given in Figure 7.

STATE: IDLE

This state is entered when a system reset occurs. In this
state REM_enable = 1, CMD_clk = 0, and XACK con­
trols the state of IO_CHRDY.

The state machine will stay in this state until a valid remote
access starts (Le., RAE = 0). Then the state machine
moves to CYCLE_START.
Note: On the CT-104, the Signal RAE is a full decode of a valid access. This

means that it decodes a valid address and a valid MEMR or MEMW. If
RAE is only an address decode, it alone would not indicate that a
valid access had started.

STATE:CYCLE--START

In this state REM_enable = 1, CMD_clk = 1 as long as
RAE = 0, ClR_ST ART = 1, and XACK controls the state
of IO_CHRDY. Note, when CMD_clkrises it latches in the
present value of CMD. The state machine will stay in this
state until the remote access ends, indicated by either
RAE = 1 or WAIT_START = 1. Then the state machine
moves to WAIT1.

~
I\)
co

SYS_RESET

.....-

'C..ADDR

PC_CTL

I:I..ILOUT

~D
.....-

~ I-.

Ii

L 74lS74

o PR 0 ???? START

~CK 0

T
CULSTART

74lS74

~ D PR 0 LCUD

CU~CK 0
CLR

.II ~ UODE

+ I
I

....
RESLPAL
PAL16R4

CLILOUT 1
CK

SYS RESET 2
10

RAE 3
11

WAfT START 4
12

5
13

WR PEND 6
14

XACK 7
15

LCUD 8
16

CUD 9
17

-=- t m

....

FIGURES

CL10,LU22
PAL16L8

UODE 1 110
REJ.IWR

A19 2 19 08 12 REUWR

A19 3 18 B7 13 SYS RESET ~D

A17 4 17 B6 14 REURD I-.

A16 5 16 B5 15 HST PD PCH HS~P ---
---C-H

A15 6 15 B4 16 HST PO PCL

I HS~P
AD 7 14 B3 17 RAE ---

---CL

AEN 8 13 B2 18 REJ.I ENABLE

UEUR 9 12 01 19 CUD ~-
UEUW 11 11

~-.

00 19 10 CHRDY IO~D ---01 18 CUD_CLK

02 13 CLR_START

03 12 REU ENABLE

00 17 00

01 16 01

02 15 02

03 14 03

TLlF/l0451-11

L~9·N"

REt.4_enable = 0
Ct.4D_clk = 0
CLR_START = 0

REt.4_enable = 0
Ct.4D_CLK=O
CLR_START = 1

REt.4_enable = 1
Ct.4D_CLK= 1
CLR_START = 1

yes

REt.4_enable = 0
Ct.4D_clk =0
CLR_START = 1

REt.4_enable = 0
Ct.4D_clk =0
CLR_START = 1

REt.4_enable = 0
Ct.4D_clk =0
<CLR_START> = 1

REt.4_enable = 1
Ct.4D_clk = 1
CLR_START = 1

TL/F/10451-12

FIGURE 6. State Diagram of Rest Time Circuit

STATE: WAin

In this state REM_enable = 0, CMD_clk = 0, ClR_
START = 1, and if a remote access starts, IO_CHRDY is
driven low whenever RAE = 0. While in this state WAIT_
START remains equal to one because it has not been
cleared yet. Thus, after one ClK-OUT cycle the state ma­
chine moves to WAIT2.

STATE: WAIT2

In this state REM_enable = 0, CMD_clk = 0, ClR_
START = 1, and IO_CHRDY is driven low whenever

2-130

RAE = 0. Again WAIT_START = 1 and after another
ClK-OUT cycle the state machine moves to WAIT3.

STATE: WAIT3

In this state REM_enable = 0, CMD_clk = 0, ClR_
START = 0 which clears WAIT_START, and IO_CHRDY
is driven low whenever RAE = 0. Since WAIT_START is
cleared, on the next rising edge of ClK-OUT the state ma­
chine will make a decision:

IF LCMD equals CMD (indicating no change in the value
of CMD between cycles) and a valid remote access has
started (Le., RAE = 0), then the state machine will move to
the RESUME state. (The RESUME state is covered after
the WAITS state.) However, if those conditions are not met
then the state machine moves to WAIT 4.

STATE: WAIT4

In this state REM_enable = 0, CMD_clk 0, ClR_
START = 1, and IO_CHRDY is driven low whenever
RAE = O. If LCMD equals CMD and RAE = 0, then on
the next rising edge of ClK-OUT the state machine will
move to the RESUME state. Otherwise the state machine
moves to state WAIT5.

STATE: WAITS

In this state REM_enable = 0, CMD_clk = 0, ClR_
START = 1, and IO_CHRDY is driven low whenever
RAE = O. IF LCMD equals CMD and RAE = 0 then the
next state will be RESUME.

As long as the above condition is not met and WR-PEND =
0, the state machine will remain in this state. WR-PEND = 0
indicates that the previous access was a write with the BCP
in latched write mode. Holding the state machine at WAIT5
prevents remote accesses, that changes the value of CMD,
for the required latched write rest time.

If both of the above conditions are false then the next state
will be WAIT6.

STATE: WAITS

In this state REM_enable = 0, CMD_clk = 0, ClR_
START = 1, and IO_CHRDY is driven low whenever
RAE = O. If LCMD equals CMD and RAE = 0, then on
the next rising edge of ClK-OUT the state machine will
move to the RESUME state. Otherwise the state machine
moves to state WAIT7.

STATE: WAIT7

In this state REM_enable = 0, CMD_clk = 0, ClR_
START = 1, and IO_CHRDY is driven low whenever
RAE = O. Any remote access that has changed the value of
CMD will be prevented until the end of this state. That would
be a minimum of seven ClK-OUT cycles between accesses
or 371 ns if OClK = 1S.S696 MHz.

Also, all remote accesses which follow a latched write and
change the value of CMD have been prevented at least two
ClK-OUT cycles or 106 ns, if OClK = 1S.S696 MHz. Thus
after one ClK-OUT cycle, if RAE = 0 the next state will be
RESUME. Otherwise," it will be WAITS.

STATE: WAITS

In this state REM_enable = 1, (allows accesses), CMD_ "
clk = 0, CLEAR_START = 1, and IO_CHRDY is driven low

2-131

module rescpal flag '-r3'
title 'REST-TIME Compliance State Machine';

"inputs:
c1ock,enab
!sys_reset
!rae
waicstart
!wr_pend
xack
L cmd
cmd

pin I,ll;
pin 2;
pin 3;
pin 4;
pin 6;
pin 7;
pin 8;
pin 9;

pin 12;
pin 13;

'p16r4';

"outputs:
rem_enable
c1cstart
q3,q2,ql,qO

cmd_clk
I03hrdy

pin 14,15,16,17;
pin 18;
pin 19;

sreg' = [q3,q2,ql,qO];
outputs = rem_enable;

"definitions:
ck,x,z,L,H = .C., .X., .Z.,O,l;

access = rae;
st = [q3,q2,ql,qO];

"State Values ...

idle = "bOlOO; " 4h
start = "bOllO; " 6h
waitl = "blllO; "Eh
wait2 = "bll 11; "Fh
wait3 = "bllOl; "Dh
wait4 = "blool; " 9h
wait5 = "blOll; " Bh
wait6 = "blOlO; " Ah
wait7 = "bl000; " 8h
wait8 = "blloo; "Ch
resume = "bOOOO; "Oh
hold = "boolO; " 2h
notusedl = "bOll 1; "7h
notused2 = "booll; " 3h
notused3 = "bOlOl; " 5h
notused4 = "bOOOl; " lh

TLlF/l0451-14 .

FIGURE 7. PAL Program File
(Written In the ABEL Program Language)

» z .
Q)
N
~

~ r---~
N
CD

Z
<

equations

enable outputs = 1;

enable IO_chrdy = access;

!I03hrdy = (q3 * access) # (!q2 * access) # (qO * access)
(!xack) # (waicstart * access);

!clcstart = «q3) * (q2) * (!q1) * (qO»
(sys_reset);

cmd3lk = (access * !q3 * !q2 * !qO * !waicstart)
#(access * !q3 * q1 * !qO * !waicstart)
(access * cmd_clk * !waicstart);

!rem_enable = (!q2 * q3) # qO # (q 1 * q3) # waiutart;

state_diagram sreg;

State idle: " Remain in idle while sys_reset is active.
IF (sys_reset) TIffiN idle;
ELSE IF (access) TIffiN start;

ELSE idle;

State start: " Begin normal access.
IF (sys_reset) TIffiN idle;
ELSE IF (!access # waicstart) TIlEN wait1;
ELSE start;

State wait1: "First wait cycle.
IF (sys_reset) TIffiN idle;
ELSE IF (access & L3md & cmd & !waiutart) TIffiN resume;
ELSE IF (access & !L3md & !cmd & !waiUtart) TIlEN resume;
ELSE wait2; .

State wait2:
IF (sys_reset) TIffiN idle;
ELSE IF (access & L_cmd & cmd & !waicstart) TIIEN resume;
ELSE IF (access & !L_cmd & !cmd & !waiUtart) TIlEN resume;
ELSE wait3;

State wait3:
IF (sys_reset) TIffiN idle;
ELSE IF (access & L_cmd & cmd & !waicstart) TIffiN resume;
ELSE IF (access & !L_cmd & !cmd & !waiUtart) TIffiN resume;
ELSEwait4;

TL/F/10451-15

FIGURE 7. PAL Program File (Written In the ABEL Program Language) (Continued)

whenever RAE = O. This state was included in the state
machine to reduce the state machine's logic. Otherwise it
would have been logical to return to the IDLE state from
WAIT? if RAE = 1 (no access in progress). If RAE = 0,
then the next state will be RESUME. Otherwise the state
machine returns to IDLE.

STATE: RESUME

In this state REM_enable = 1, CMD_clk = 1 (rising edge
of CMD_clk latches in the present value of CMD), CLR_
START = 1, and 10_CHRDY is driven low while RAE = O.
When the state machine moves to this state, it means that a
remote access took place quickly after the previous access.
The state machine has allowed the remote access to pro­
ceed. However, the state machine must have waited the
PC-bus for some period of time before entering this

state. As a result, the PC-bus should be waited until the
XACK signal can take over control of driving 10_CHRDY.
For the design of the CT-104, it was determined that once
REM_enable = 1, the XACK signal would take over con­
trol within two ClK-OUT cycles. So the state machine will
wait the PC-bus through this state and the next. On the next
rising edge of ClK-OUT the state machine will move to the
HOLD state.

STATE: HOLD

In this state REM_enable = 1, CMD_clk = 1, CLR_
START = 1, and 10_CHRDY is driven low while RAE = O.
Again, this state is provided to wait the PC-bus for a second
ClK-OUT cycle while still allowing remote access. The next
state is CYClLSTART. In CYCLE_START, XACK will
take over control of 10_CHRDY.

2-132

end

State wait4:
IF (sys_reset) TIffiN idle;'
ELSE IF (access & L_cmd & cmd & !waiutart) THEN resume;
ELSE IF (access & !L_cmd & !cmd & !waicstart) TIffiN resume;
ELSE waitS;

State waitS:
IF (sys_reset) TIffiN idle;
ELSE IF (access & L_cmd & cmd & !waicstart) THEN resume;
ELSE IF (access & !L_cmd & !cmd & !waicstart) THEN resume;
ELSE IF (wcpend) THEN waitS;
ELSE wait6;

State wait6:
IF (sys_reset) TIffiN idle;
ELSE IF (access & L_cmd & cmd & !waicstart) TIffiN resume;
ELSE IF (access & !L_cmd & !cmd & !waicstart) THEN resume;
ELSE wait7;

State wait7:
IF (sys_reset) TIffiN idle;
ELSE IF (access) TIffiN resume;
ELSE wait8;

State wait8:
IF (sys_reset) TIffiN idle;
ELSE IF (access) TIffiN resume;
ELSE idle;

State resume:
IF (sys_reset) TIffiN idle;
ELSE hold;

State hold:
IF (sys_reset) TIffiN idle;
ELSE start;

State notusedl:
IF (sys_reset) THEN idle;
ELSE wait2;

State notused2:
IF (sys_reset) TIffiN idle;
ELSEwait2;

State notused3:
IF (sys_reset) THEN idle;
ELSE wait2;

State notused4:
IF (sys_reset) THEN idle;
ELSE wait2;

TL/F/10451-16

FIGURE 7. PAL Program File (Written in the ABEL Program Language) (Continued)

2·133

I •

REST-TIME Compliance State Machine
Equations for Module rescpal

Device REST_PAL

Reduced Equations:

enable rem_enable = (l);

enable IO_chrdy = (!-rae);

!I03hrdy = (!-rae & waiutart
!xack
#qO& I-rae
!q2 & I-rae
q3 & I-rae);

!elcstart = (!-sysJeset # qO & !q 1 & q2 & (3);

!cmd_clk = (waicstart
!cmd_elk & qO
!cmd_elk & !q 1 & q2
!cmd_elk & q3
#-rae);

!rem_enable = (waiUtart # q 1 & q3 # qO # !q2 & (3);

!q3 := (!qO & !q2 & !q3
!qO& !ql & I-rae
!L_cmd & !cmd & q3 & I-rae & !waiutart
#L_cmd &cmd&q3 & I-me & !waiutart
!qO & !q3 & I-rae & !wait_start
!-sys_reset
!qO & !ql & q2);

!q2:= (!qO & !ql & !q2 & !q3 & -sys_rcset
!ql & q3 & I-rae & -sys_reset
q 1 & !q2 & q3 & -sys_reset
qO & !q 1 & q3 & -sys_reset
!L_cmd & !cmd & q3 & I-rae & -sysJeset & !wait_start
L_cmd & cmd & q3 & I-rae & -sys_reset & !waicstart);

!ql := (!qO & Iql & q3
!qO& !q2 &q3
#qO&q2&q3
!L_cmd & !cmd & q3 & I-rae & !wait_start
L_cmd & cmd & q3 & I-rae & !wait_start
!qO & !q 1 & q2 & -rae

REST-TIME Compliance State Machine
Equations for Module rescpal

Device REST_PAL

!qO := (!qO & !ql
!qO& !q2
q 1 & !q2 & q3 & -wr_pend
!L3md & !cmd & q3 & I-rae & !waiUtart
L_cmd & cmd & q3 & ! -rae & ! waiUtart
!-sys_reset
!qO& !q3);

TL/F/10451-18

!-sys_reset);
TLlF/10451-17

FIGURE 8. Reduced Equations for Rest Time State Machine PAL

2-134

DP8344 Timer Application

INTRODUCTION

The DP8344 is a communications processor which handles
IBM 3270, 3299 and 5250 protocols along with NSC general
8-bit protocol. In order to reduce the impact on the
DP8344's CPU the timer was designed to stand-alone and
count independently of the CPU.

The timer's circuitry includes a unique holding register. This
holding register can be loaded with a sixteen-bit countdown­
value, which will remain unchanged until a new value is
loaded or the DP8344 is reset.

When the timer counts to zero it takes two actions: 1) it sets
both the timer interrupt and the Time Out flag [TO], and 2)
the timer reloads the sixteen-bit countdown-value stored in
the holding register and continues the countdown cycle.
This demonstrates a significant advantage of the DP8344's
timer; the timer continues keeping accurate time while noti­
fying the CPU that the timer has completed a cycle. The
timer does not wait for the CPU to service it, instead the
timer notifies the CPU of the completion of a cycle and al­
lows the CPU to take the desired action when it has the
time.

With the use of the holding register, a multiple number of
timer cycles of the exact same duration can be performed
consecutively. The other major advantage of the holding
register is that it allows the interleaving of any number of
countdown-values. Loading the holding register with a new
countdown-value does not affect the countdown-value pres­
ently in the timer's countdown circuitry. In this way a count­
down-value (call it A) can be counting down and the holding
register can be loaded with a new countdown-value (call it
B). When the value A reaches zero, both the timer interrupt
and Time Out flag [TO] are set, and the value B is loaded
into the countdown circuitry and starts its countdown. Then
the value A can be loaded back into the holding register
when the CPU has the time. This demonstrates how count­
down-values with different durations can be interleaved and
once again how the timer does not have to wait to be serv­
iced by the CPU, making both the timer and CPU more effi­
cient.

The CPU can load the upper and lower bytes of the holding
register by writing the desired value to the CPU registers
{TAHI and {TALI respectively.

Control of the timer's countdown circuitry is maintained via
three bits in the Auxiliary Control Aegister {ACA I.

Timer STart [TST] (bit 7 of (ACAI) is the start/stop control
bit for the timer. Writing a one to [TST] starts the timer
counting down from the present value in the countdown cir­
cuitry. When [TST] is zero the timer stops and the timer
interrupt is cleared.

The second control bit is Timer LoaD [TLD] (bit 6 of
(AAC I). This bit allows the CPU to immediately load the
timer's countdown circuitry with the value in the timer's
holding register. This capability is required after the DP8344
is reset; the value in the timer's countdown circuitry will be
the reset value and not the desired value. CPU controlled
loading can also be used to load higher priority countdown­
values before a lower priority countdown is completed. The
5250 Protocol application implements the timer in this man­
ner.

National Semiconductor
Application Note 626
William V. Miller

Writing a one to [TLD] will load the timers countdown cir­
cuitry with the value in the timer's holding register and initial­
izes the timer clock in preparation to start counting down.
Upon completing the load operation [TLD) is cleared by in­
ternal hardware.

When the timer is loaded by writing a one to [TLD], the
timer is re-initialized to prevent the timer's circuitry from dec­
rementing the newly loaded countdown-value prematurely.
By initializing the countdown circuitry after a CPU load, the
newly loaded countdown-value's duration will be accurately
measured. The reader should note that there is no way to
precisely measure the total elapse time of two or more
countdown-values if the CPU loads them (using [TLD)) into
the countdown circuitry. However, the error due to CPU
loading will be a maximum of one period of the timer for
each CPU load and can often be ignored if the countdown
values are large.

EXAMPLE: countdown-value = 1 000

maximum count error = 1

maximum error = 0.1 %

The last control bit is TiMer Clock select (bit 5 of (ACAI).
This bit determines the rate at which the countdown-value
will be decremented. When [TMC] is low, the timer decre­
ments the countdown-value at one-sixteenth the CPU's
clock frequency. When [TMC] is high the rate is one-half the
CPU's clock frequency. The reader should note that the tim­
er's decrement rate is based on the CPU's clock frequency,
which is controlled by CPU Clock Select [CCS] (bit 7 of
(DCA I). When [CCS] is low the CPU's clock frequency
equals the oscillator's clock frequency, and when [CCS] is
high the CPU's clock frequency equals one-half the oscilla­
tor's clock frequency.

The last portion of the timer's circuitry is a sixteen-bit output
register. This output register is loaded with the present val­
ue of the countdown-value in the countdown circuitry, at the
end of every execution cycle. This register is loaded even if
the timer is stopped.

The CPU can read the upper and lower bytes of this output
register by reading the CPU registers {TAHI and {TALI
respectively.

The reader should note that when the CPU reads and writes
to the registers {TAHI and {TALI the timer's circuitry ac­
cesses different registers. All writes will load the timer's
holding register and all reads will read the timer's output
register.

The count status of the timer can be monitored by reading
{TAL I and/or {TAH I. When the registers are read, the val­
ue in the timer's output register is presented to the CPU and
not the value in the input holding register. To read back
what was written to {TALI and {TAHI, the timer must be
loaded first, followed by a one instruction delay before read­
ing {TALI and {TAHI to allow the output register to be
updated after the load operation. Figure 1 is a block diagram
of the Timer-CPU interface.

2-135

» z
I

0)
I\)
0)

Ell
I

~ r-------~---
N
~

:2:
<I:

CPU

TIMER AND CLOCK DIVIDER

CPU Clock
TLIF/10450-1

FIGURE 1. Block Diagram of Timer-CPU Interface

TIMER OPERATION

This section of the application note reviews the general op­
eration of the timer. Constraints and suggestions for soft­
ware are included as well as a short review of the timing
equations.

After the desired sixteen bit time-out value is written into the
timer's holding register via {TRLI and {TRHI, the start,
load and clock selection can be achieved in one write to
{ACRI. A glitch, which will cause a loss of timer accuracy,
may occur if the timer's clock frequency is changed while
the timer is running. To prevent this, a restriction exists on
changing the timer's clock frequency in that [TMC] should
not be changed while the timer is running (Le., [TST] is
high). After the write to. {ACR I, the timer starts counting
down af the selected frequency starting with the loaded val­
ue from the'timer's holding register. Upon reaching a count
of zero the. timer reloads the current word in its holding reg­
ister and recycles through the count.

'The ti~ing waveforms shown in Figure 2 show a write to
{ACR J that loads, starts and selects the divide by two of the
CPU clock rate. The timer interrupt has also been selected.
Prior to the write to {ACR I, the holding register in the timer
was loaded with 0002 (Hex) by writing 02 (Hex) and 00
(Hex) to {TRLI and {TRHI respectively. The timer interrupt
has also been selected. .

Tl T2 Tl T2

CPU CLOCK

IBUS

Tl

The timer can be selected. as an interrupt source by un­
masking it in the Interrupt Control Register {leR I. This is
achieved by writing a zero to bit 4 of {ICR I . and asserting
the Global Interrupt Enable [GIE] (bit 0 of (ARC!). The tim­
er interrupt is the lowest priority interrupt and is latched and
maintained until it is cleared in software. If the timer times
out prior to T2 of an instruction, the call .to the interrupt

. service routine will occur in the next instruction. When the
time out occurs in T2, the call will occur in the instruction
after the next instruction.

The timer may also be used in a polled configuration. This is
achieved by masking the timer interrupt bit (Le., writing a
one to bit 4 of (ICR I) and writing software which will poll the
[TO] flag (bit 7 of (CCR I). Both [TO] and the timer interrupt
are set high when the timer counts to zero.

Then the timer reloads the current word in its holding regis­
ter and recycles through the count. This means. that the
timer continues to keep track of time while leaving the task
of handling the timer interrupt and/or the [TO] poll to be
performed by the CPU. To operate correctly in the polled
configuration, software must be written that will guarantee
that [TO] is polled and cleared at a rate that prevents [TO]
being set twice before it is polled again.

The interface between the CPU and the timer allows ~nly
one byte of information to be transferred at a time. This

T2 Tl T2 Tl T2 Tl

nrst Interrupt
Instruction

TIMER LOAD ~~ ______________________________ ~~ __ ~ ________ ~ __

TIMER CLOCK ~ u u u
COUNT ~ __ ~ ______ ~~~O_OO_I ______ ~~O_OO_2 __ -JX~_OO_OI __ ' _____ ~

TIMER INTERRUPT -----------------------------~/ TL(F/l0450-2

FIGURE 2. Timing Waveforms of Timer Operation

2-136

prevents the CPU from accessing both ITALI and ITAHI in
the same instruction. Since the timer's output register is up­
dated after every instruction cycle, two consecutive reads of
ITALI and ITAHI will not correspond to the same count
status in the timer. This error will be slight except when one
of the output register values rolls over or when the count in
the timer reaches zero and the timer reloads between in­
structions.

The suggested software for this situation is to read I TAH I,
then read ITALI and then read ITAHI again. If the values
for both reads of ITAHI are the same, then the output reg­
ister values did not roll over and the timer did not reload.
This eliminates the error due to rolling over or reloading, but
increases the amount of software.

The reader must be aware that stopping the timer (Le., writ­
ing a zero to [TST)) will clear both the [TO] flag and the
timer interrupt. For the case where the timer counts down to
zero just prior to or during a stop timer instruction, the [TO]
flag and timer interrupt will be cleared before the software
can take the desired action. Thus, the information that the
timer counted to zero will also be lost. The software to han­
dle this situation should check the [TO] flag one instruction
before the stop instruction and then check the value in the
timer's output register one instruction after the stop instruc­
tion. Checking the [TO] flag before the stop instruction will
insure that any previous count to zero will be verified. On the
other hand, if the [TO] flag was low and the value in the
output register is the same as the value stored in the holding
register, then the timer counted to zero and reloaded just
prior to or during the stop instruction.

For any value except 0000 (Hex) loaded into the timer's
holding register, the following equations can be used to de­
termine the time out delay for that value:

With the CPU running with a 18.8 MHz crystal, the maximum
single loop time out attainable would be 55.6 ms
([TMC] = 0). The minimum time out with the same con­
straints is 106 ns ([TMC] = 1). For accumulating time out
intervals, the total time out is simply the number of loops
accumulated multiplied by the calculated Timeout. The
equations above do not account for any overhead for pro­
cessing the timer interrupt and for preciSion timing this may
need to be included.

INTRODUCTION TO APPLICATIONS

In a communications environment a timer may be needed to
determine the appropriate response time, the polling rate of
a device or the length of a signal.

The first two applications discussed are for the communica­
tions environment.

In the first application the response time for the BCP operat­
ing in the 5250 protocol mode is controlled by the timer.

In the second application, the serial input from a keyboard is
connected to the DP8344's BIAQ pin and the timer deter­
mines at what rate the input is sampled to read in the valid
keystroke serial data.

To further demonstrate the timer's versatility the last two
applications discuss how to implement basic timer uses not
restricted to the communications environment; namely
blinking the terminal's cursor and a real time clock.

All four applications implement the timer as an interrupt
source, none poll the [TO] flag. Using the interrupt reduces
the amount of software needed and it also results in the
fastest responses to a time out. However, the reader should
note that the [TO] flag may be read even during other inter­
rupt routines while the timer's interrupt is masked off. This
may be important if the other interrupt routines are long and
could delay the service of the timer interrupt longer than the

Timeout = (value in the holding register) x Tcpu x
2' [TMC] = 1

16; [TMC] = 0
where:

Tcpu = The period of the CPU clock
CPU clock = oscillator clock rate
CPU clock = % oscillator clock rate

Timeout = The amount of time after the end of the
instruction that asserts [TST]

[CCS] = 0
[CCS] = 1

When the value of 0000 (Hex) is loaded into the timer, the maximum time out
is obtained and is calculated as follows:

Timeout = 65536 x Tcpu x

2-137

2; [TMC] = 1

16; [TMC] = 0

Ell
I

U) r---,
N
U)

:2:
~

time out length. Thus the [TO] flag can be used to guaran­
tee the timer is serviced' even during anothers interrupts
serVice routine.

5250 'PROTOCOL

Introduction

The DP8344 Biphase Communication Processor (BCP) .is
capable of responding to received data within 5.5 ,...,S. This is
a stringent requirement for the IBM 3270 protocol. However,
the IBM 5250 protocol requires a response time of 45 ,...,s
± 15 ,...,S. Obviously the powerful BCP will respond too rapid­
ly if it is not programmed to wait at least ,30 ,...,S before re­
sponding.

Also while operating in the IBM 5250 protocol mode, the
BCP often expects to be polled at some minimum rate. In
this discussion the BCP expects to be polled within every
two seconds. If the BCP is not polled within this time it is
assumed that a problem exists and the BCP is programmed
to reset. '

In this application the timer and some DP8344 software are
used to guarantee the proper response time, and to deter-
mine how long it has been since the last poll. .

General Description

For the majority of time, the timer will be used to keep track
of the real-time which has transpired since the BCP was last
polled. However, once a receiver interrupt is set, the timer
loads and counts down a 45 ,...,s delay value. This count
down is used to delay the BCP's response so that it will lie
between 30 ,...,S and 60 ,...,S. After the 45 ,...,S delay value is
handled, the timer returns to keeping track of the two sec­
onds of real-time.

Resetting the BCP, after two seconds have passed since it
was last polled, is not a stringent requirement. Thus the
45 ,...,S delays are not included in the two seconds. In effect a
receiver interrupt 1) stops the timer, 2) records the present
value of the two second count down value, 3) loads and
counts down the 45 ,...,S delay value, and 4) reloads and
continues the two second count down from the value re­
corded after the receiver interrupt stopped the timer.

Detailed Description

After a reset the timer must be programmed to operate in '
the desired configuration before the BCP can start its opera­
tion in the 5250 protocol mode. For this application the timer
is pre-configured to divide the CPU clock by sixteen (CPU
clock = % oscillator clock, OCLK = 18.8696 MHz). All
interrupts are unmasked and enabled. The. time out value
60BE (Hex) is then loaded into the timer's holding register
via [TRLI and ITRHl.

After the timer is programmed properly the timer is loaded
and started with one write to [ACR l. The reader will note
that the count down value of 60BE (Hex) corresponds to
21 ms not two seconds. As shown earlier in this application
note (OPERATION section), the maximum single loop time
out attainable for this mode is 55.6 ms. Since it is impossible
to load the timer with a countdown-value of two seconds,

2-138

software is written to record the number of times the 21 ms
count down value reaches zero. Still more software is re­
sponsible for resetting the BCP if one hundred time outs
occur before the BCP is polled again. 'The use of 21 ms time
outs instead of 20 ms time outs will guarantee that a mini­
mum of two seconds has passed, even if there are small
timing errors by either the controller or the BCP's oscillator
clock.

The timer will continue to count down the 21 ms time outs
until a receiver interrupt is set. The BCP's software then
calls a receiver interrupt service routine. (Refer to Figure 3
for the BCP code for this service routine.) The timer is
stopped. The present value of the 21 ms count down is
stored in a temporary memory location. The time out value
0011 (Hex) which corresponds to 28 ,...,s is loaded into the
timer's holding register via ITRLI and [TRH}. (Adding the
delay due to setting up and responding to the timer together
with the 28 ,...,S time out, results in a total elapse time delay
which guarantees the response between 30 ,...,s and 60 ,...,s.)
The timer is loaded and restarted. Then the partially com­
pleted 21 mS.countdown-value stored in a temporary mem­
ory location is loaded into the timer's holding register via
ITRLI and ITRHI. Once the 28,...,s time out counts to zero,
the partially completed 21 ms time out is resumed as the
timer is loaded with the value in the holding register and
continues the 21 ms count down.

Every time the timer counts down to zero, it sets the timer
interrupt and the DP8344 is programmed to call a timer in­
terrupt service routine. In order to operate correctly the
service routine must first determine if a 21 ms or a 28 ,...,S
time out has occured. If a 28 ,...,s time out has taken place,
the timer is stopped. The value in the timer's holding regis­
ter will not be the 21 ms count down value; it will be the
value which was in the timer when the receiver interrupt
stopped the timer. So the 21 ms countdown-value 60BE
(Hex) is loaded into the timer's holding register via [TRLI
and [TRH l. Then the timer is started. If a 21 ms timer inter­
rupt is pending it will be serviced, otherwise the software will
return with all interrupts unmasked and enabled.

In the case of a 21 ms timer interrupt, the number of 21 ms
time outs is recorded for all seven sessions in data memory.
For every 21 ms timer interrupt a one is added to the value
stored in data memory for each session. An exception is
made when FF (Hex) is the value stored in data memory.
Adding a one would result in the value 00 (Hex) replacing FF
(Hex) in memory. This would falsely indicate that less than
21 ms has passed since the BCP was last polled. As a result
if FF (Hex) is the number in memory nothing is added to it.
As before the software returns with all interrupts unmasked
and enabled.

The software which 1) clears the number of 21 ms time outs
recorded when the BCP is polled and 2) resets the BCP
after two seconds have passed without the BCP being
polled, is not discussed in this application note because it
does not effect the normal operation of the timer.

This application describes the use of the timer in the 5250
protocol mode as it is implemented in the Multi-Protocol
Adapter (MPA).

description: The timer interrupt service routine is responsible
for:
I) Maintains a real time clock counter for each session:

- Increments a real time clock counter which controls
System Available flag, auto reset and reset

complete;
- Prevents counter roll over by keeping a max count

ofFFh;
2) Provides 45us time out signal for poll response

- If interrupt is due to 45us poll response, unmasks
Tx int to
allow for response.

note : The timer interrupt service routine lock out host
access and
other interrupts except TFE interrupt.

scope: global

entry: timer interrupt hits, ie. timer reaches a count of zero.
the timer is pre-configured to use 1/16 cpu clock with a
count value of 305Fh which corresponds to 2lms.

inputs: I) tw_sysa_por3nt(O-6)

exit:

real time clock counters, reset to 0 by receiver when
Poll received, and
by session task when going to do a POR.

2) tw_sysa_resp_flag (in RSTATE)
- TW _ TIMER_RESP

timer response flag, set by receiver for 45us poll 1
response.

- TW_TO_PEND
timer interrupt pending flag, set by receiver if it sees

a pending
timer interrupt.

outputs: I) tw_sysa_poccnt(O-6)
for all sessions, counters are incremented by l.

Counters will remain in 'FF without roll over.
2) tw_sysa_resp_flag (in RSTATE)

- TW 3IMER_RESP
reset if interrupt is due to 45us poll response.

-TW30]END
reset if there is a pending timer interrupt.

FIGURE 3

2-139

TL/F/l0450-3

;{

;}

}

(

COPYRIGHT NATIONAL SEMICONDUCTOR. INC. 1987.1988

pseudo code

lock out remote access
reset time-out flag by setting [TO] to 1;
if (time-out of 4Sus)

stop timer;
reload timer input register;
start timer;

allow poll response by unmasking transmitter interrupt;
reset poll response flag;

if NOT (timer interrupt pending)
(

call check birq;
enable interrupt;

return with flags and reg banks restored;
}

enable interrupt;

push regs being used in following section;
for all 7 sessions do

{

if tw_sysa_por_cnt = Ssec next session
else

increment tw_sysa_por_cnt;
next session;

restore registers;
set interrupt mask to enable all interrupts;

call check birq;
return with flags and reg banks restored;

," -_ ... ---- --- -----_ .. -------------- .. ---------- - ... -- -- ... -_ .. _ ... -------_ --_ ..

FIGURE 3 (Continued)

2-140

TLIF/10450-4

lW _ TIMER.BCP: .SECf X

exx MA,AB ; switch reg bank
PUSHP IZ ; save IZ
or CCR_TO,CCR ; clear time out of timer
UMPBP RSTATE,lW _ TIMER_RESP,NS,tm_relti_c1k

;jump to real time clock counter

timer poll/activate read response timeout and offline response
timing

and -ACR_TST,ACR
move TM_2IMS_HI,ACC

move
move

ACC,lRH
TM_2IMS_LO,ACC

stop timer
prepare timer input

upper byte
; move, to TRH
; prepare timer input

lower byte
m 0 v e ACC,1RL ; move to TRL
or ACR_TST,ACR ; start timer
UMPBP RSTATE,RX_RESPONSE_ WAIT,S,tm_skip_tfe

and

tm_skip_tfe:

; if offline response
timeout, skip tfe call

; unmask Tx interrupt
since interrupt expects

to be unmasked
; go handle response

via TFE interrupt

UMPBP RSTATE,lW _TO_PEND,S,tm_relti_c1k_1

and

; jump to real time clock
if interrupt pending

-(lW _ TIMER_RESPIRX_RESPONSE_ WAIT),RSTA TE;
; reset poll response flag

; go check birq, do birq
if needed [V0.51

; real timer e10ck counter

tm_relli_clk_l:
and -(lW _ TlMER_RESPIRX_RESPONSE_ W Am

lW _ TO]END),RSTA TE

tm_relli_e1k:
move
move
move
move

move
cmp
jz

reset poll response, response
wait, and int pending FLAGS

DCPHI,IZHI ; setup IZHI
LOW(tw_sysa_por_cntO-I),ACC ; setup IZLO

ACc,mn
I,ACC

[+IZ1,GP7
GP7,TM_5SEC

tm_nexCI

; set a 'I' for
later use

; get counter
; equal to 5.4sec?

; yes, goto next session
without counter + I

adda GP7,[IZ] ; increment counter

FIGURE 3 (Continued)

2-141

TL/F/104S0-S

l> z
0,
I\)
0')

I .,
I

CD
N
CD

Z «
tm_nexc1 :

move [+IZ),GP7
cmp GP7,TM_5SEC
jz tm_nexc2

adda GP7,[IZ)
tm_next_2:

move [+IZ),GP7
cmp GP7,TM_5SEC
jz tm_nexC3

adda GP7,[IZ)
tm_next_3:

move [+IZ),GP7
cmp GP7,TM_5SEC
jz tm_next_4

adda GP7,[IZ)
tm_next_4:

move [+IZ),GP7
cmp GP7,TM_5SEC
jz tm_nexc5

adda GP7,[IZ)
tm_nexc5:

move [+IZ),GP7
cmp GP7,TM_5SEC
jz tm_next_6

adda GP7,[IZ)
tm_nexc6:

move [+IZ),GP7
cmp GP7,TM_5SEC
jz tm_next_end

adda GP7,[IZ)

tm_nex t_end:
tm_check_birq:

Ijmp CCR,BIRQ,S,tm_no_birq

IcaH dca_fasCbirq
tm_no_birq:

POPP IZ

UNl1XX
ret RI,RFB

.end

; get counter
; equal to 5.4sec?

; yes, goto next session
without counter + 1

; increment counter

; get counter
; equal to 5.4sec?
; yes, goto next session

without counter + 1
; increment counter

; get counter
; equal to 5.4sec?

; yes, go to next session
without counter +1

; increment counter

; get counter
; equal to 5.4sec?
; yes, goto next session

without counter + 1
; increment counter

; get counter
; equal to 5.4sec?
; yes, goto next session

without counter + 1
; increment counter

; get counter
; equal to 5.4sec?
; yes, goto next session
without counter + I
; increment counter

; following codes added
in [VO.5)
; check pending
birq

; yes, go do it

; restore Z

; unlock remote
; return with OlE, ALU flags

and reg bank restored

FIGURE 3 (Continued)
TL/F/l0450-6

DP8344 AS A SERIAL INPUT FROM A KEYBOARD from a serial keyboard. The timer in this application is used
to read the serial keystroke dataword at the proper baud
rate. (Refer to Figure 4 for the actual BCP code used for this
application.)

Introduction

To keep the cost of terminals low, the 3270 protocol was
designed to place all of the intelligence of the system in the
cluster controller while all of the memory remained in the
terminal. In this protocol the terminal is responsible for re­
cording all keystrokes until the cluster controller can poll the
terminal and process the keystroke data.

With that in mind this application uses the timer along with
the BIRO interrupt pin as a serial port to read in keystrokes

2-142

Description

The specifications for the serial dataword produced by the
serial keyboard and read by the DP8344 are as follows: it is
1) asynchronous, 2) ten bits long (1 startbit, 8 databit with
the most significant bit first, and 1 stopbit), and 3) transmit­
ted at 1200 baud. When no serial data is being transmitted

the serial data line will be held high. The start bit will be a
zero to indicate the beginning of the serial bit string.

As mentioned in the introduction, the serial data line from
the keyboard is connected to the BIRO interrupt pin (Pin 53
on the OP8344). The BIRO interrupt pin acts as the serial
port through which the serial keystroke dataword is read
into the OP8344.

First, BCP software programs the timer to determine the
baud rate at which the OP8344 will read the serial dataword
presented at the BIRO pin. The timer is pre-configured to
divide the CPU clock by two (Le., [TMC] = 1) with the CPU
clock set equal to the oscillator clock at 18.8696 MHz (Le.,
[CCS] = 0). The time out value of 0307 (Hex) is loaded into
the timer's holding register via (TRLI and (TRH I. The time
out value of 0307 (Hex) corresponds to 0.104188748 ms or
approximately one eighth of 0.833333 ... ms, which is the
period of one bit at 1200 baud. After the holding register is
loaded, the timer is loaded but not started. Both the timer
and BIRO interrupts are unmasked and enabled. Now the
OP8344 is ready to read an asynchronous, ten bit long serial
keystroke dataword at 1200 baud via its BIRO interrupt pin.

After the timer is configured the OP8344's software can per­
form other operations until a zero on the serial data line
activates the BIRO interrupt (Note: the BIRO interrupt is ac­
tive low). The software then jumps to a BIRO interrupt serv­
ice routine. The service routine will mask off the BIRO inter­
rupt and start the timer and then return to perform other
operations. After four consecutive timer interrupts the mid­
dle of the startbit should be present at the BIRO pin. To
ensure that a glitch or noise did not produce a zero momen­
tarily and that the zero is actually a startbit, the BIRO inter­
rupt is unmasked. If the value at the BIRO pin is a one
instead of a startbit zero, the timer is stopped and reloaded
with the countdown-value 0307 (Hex). The BIRO interrupt
will remain unmasked waiting for the next zero. However, if
the value at the BIRO pin is a zero (indicating a valid start­
bit), the software jumps to the BIRO interrupt service rou­
tine. The BIRO interrupt is masked off and the timer contin­
ues to run and the software returns to perform other opera­
tions.

For the case of a true startbit the OP8344 needs to read in
the value of the serial keystroke dataword. The value of
each data bit must be read one at a time. After each value is
read, it is added to a temporary value stored in a register.

2-143

Once the value of the keystroke dataword has been calcu­
lated it is transferred to data memory and the temporary
register is cleared so that the next keystroke value may be
calculated there. The following is a more detailed descrip­
tion of this process, starting in the middle of the start bit.

After eight more timer interrupts the middle of the first and
most significant data bit is present at the BIRO pin. So the
software unmasks the BIRO interrupt. If a zero is present at
the BIRO pin, the software calls the BIRO interrupt service
routine. The BIRO interrupt is masked off and nothing is
added to the value in the temporary register. After masking
off the BIRO interrupt the software returns to perform other
operations. On the other hand, if the value at the BIRO pin
is a one, the BIRO interrupt is masked off and the value 80
(Hex) (Most Significant Bit) is added to the value (initially 00
(Hex)) in the temporary register.

Likewise, after eight more timer interrupts the middle of the
second serial databit is present at the BIRO pin. So the
BIRO interrupt is unmasked and goes through the same
procedure as above to decide if 40 (Hex) should be added
to the value in the temporary register. Similarly this method
will continue for the next six data bits. After the least signifi­
cant bit has been evaluated, the value in the temporary reg­
ister is moved to data memory. The reader should realize
that this value can also be stored in another register if de­
sired. Then the temporary register is cleared so that the
next keystroke value can be recorded there.

The software continues to mask off the BIRO interrupt until
the end of the stopbit. At the end of the stopbit the timer is
stopped and the time out value 0307 (Hex) is loaded into
the timer. The BIRO interrupt is unmasked to wait for the
next start bit zero.

This application has demonstrated how the timer and the
BIRO input/output pin can be used as a serial input. Howev­
er there should be a note of warning that a production pro­
gram should sample the serial input signal more than once
every bit-time to guarantee valid data at a given baud rate.
Furthermore, the software for the OP8344 must guarantee
that the timer and/or BIRO interrupts are not masked off by
higher priority interrupts for too great a time; this could delay
the sampling of the serial input signal for more than a bit­
time, resulting in invalid data being read.

~ ~--~
C\I
~ .
z
<

;---

". This program will receive serial data using the BIRQ pin as
a serial. input pin.

The timer will be used to detennine when the middle of a bit
is present at the BIRQ pin. Then the value of the bit is sampled
with the use of the BIRQ interrupt along with software to decide
if the bit is a one or a zero. Then the software takes the
appropriate action for each case.

In this program all keystoke values are stored in consecutive
memory locations.

****** National Semiconductor Copyrightl988 *****
---,

.input II stdequ.hdr"

CODE: .sect x
initialization:

exx AA,AB,DI
move SFh,DCR ;set CPU -CLK equal to OCLK
move 02h,IBR ;set up interrupts
exx MA,MB,DI
move OE7h,ICR ;unmask timer and BIR interrupts
move lO,IWLO ;clearIW
move OO,IWHI
move O,IX ;clearIX
move O,GPO ;clear temporary registers
move O,GPl
move O,GP2
move O,GP3
move O,GP4
move O,GPS
move GPS,IZLO ;load IZ with
move l,GP6 ;base address in data memory
move GP5,IZHI ;for bit constant values
move 80h,GP7 ;storing constants for
move GP7,[IZ+2] ; the most significant bit
move 40h,GP7
move GP7,[lZ+3] ; bit6
move 20h,GP7
move GP7,[IZ+4] ; bit S
move lOh,GP7
move GP7,[IZ+S] ; bit4
move 08h,GP7
move GP7,[IZ+6] ; bit 3
move 04h,GP7
move GP7,[IZ+7] ; bit 2
move 02h,GP7
move GP7,[IZ+8] ; bit 1
move Olh,GP7
move GP7,[IZ+9] ; the least significant bit
move OD7h,GP7
move GP7,TRL ;load timer's holding register
move 03h,GP7 ;with count down value

FIGURE 4

2-144

TL/F/10450-7

» z
move GP7,TRH a,

61h,ACR ;load timer
N

move 0)

;END of initialization
back:

cmp GPO,O
jz back ;waiting for BIRQ interrupt
cmp GPO,O
jz back ;protection
cmp GPl,O ;Is this a true start bit?
jnz nexcl
move O,GP2 ;NO, then clear GP2
jmp nexc2

nexcl:
move OEFh,ICR ;mask off the BIRQ interrupt
move GPl,GP4
move [IZ+AJ,GP4 ;load value of present bit
adda GP5,GP5 ;add value of present bit
cmp GPl,9 ;Is this bit O?
jnz next 2
move GP5~[IW+J ; YES, store byte of imfonnation
move O,GP5 ;clear temporary registers
move O,GP6

nexc2:
move O,GPO
Ijmp back

;Timer Interrupt Service Routine
.******************************* ,

tm:
or 80h,CCR ;clear [TO] flag
cmp GP6,O ;Is GP6 = O?
jnz nexclO
add l,GP3 ;loop until the stop
cmp GP3,14h ; bit has passed
jnz nexcll
move 60h,ACR ;stop and load timer
move O,GPI ;clearGPl
move O,GP2 ;clearGP2
move O,GP3 ;clearGP3
move l,GP6 ;set GP6 = 1
move OE7h,ICR ;unmask the BIRQ interrupt

nexcll:
ret RI

nexcl0:
cmp GPl,O ;Is this the start bit?
jnz nexc12
add l,GP3 ;YES, add one to GP3
cmp GP3,4 ;Is it the middle of the
jnz nexc13 ;start bit?
move l,GPO ; YES, set GPO = 1
move O,GP3 ;clearGP3
move OE7h,ICR ;unmask BIRQ interrupt

nexc13:
ret RI

TL/F/10450-8

FIGURE 4 (Continued)

2-145

<D
N
<D

:Z nexcl2:
« add I,GP3

cmp GP3,08h ;Is it the middle of a
jnz nexc14 ;data bit?
move 1,GPO ;YES, set GPO = 1
add 1,GP1 ;update which bit it is
move O,GP3 ;clearGP3
move OE7h,ICR ;unmask the BIRQ interrupt

nexcl4:
ret RI

;BIRQ Interrupt Service Routine
.****************************** ,

bq:
move OEFh,ICR ;mask off the BIRQ interrupt
move O,GPO ;clearGPO
cmp GP1,O ;ls this the start bit?
jnz nexC20
cmp GP2,O ;YES, is this the fIrst
jnz nexc21 ;indication?
move OAOh,ACR ;YES, start the timer
move 1,GP2 ;set GP2 =1
ret RI

nexc21:
move 1,GP1 ;set GPI = 1

nexc20:
cmp GP1,9
jnz nexc22
move GP5,[IW+]
move O,GP5
move O,GP6

nexc22:
ret RI

CODE: .sect ax
.org 210h
ljmp bq
.org 214h
ljmp un

.END
TL/F/10450-9

FIGURE 4 (Continued)

2·146

TLIF/10450-10

FIGURE 5. A Flow Chart of the Basic Application of the DP8344 as a Serial Input Keyboard

2-147

~ r---~
N
CD

Z «
;---_ .. ----

This is the very simple cursor program for the BCP.
The timer along with the software toggles the state of the

cursor every 200msec. The state of the cursor is stored in data
memory.

;---
.input

CODE:
initialization:

"stdequ.hdr"

.sect x

exx AA,AB,DI
move 5Fh,DCR
move Ol,IBR
exx MA,MB,DI
move OEFh,ICR
move O,GPO
move O,GPI
move O,GP2
move GP2,IZLO
move GP2,IZHI
move GP2,[IZ+0]
move 5Ch,GP2
move GP2,TRH
move 23h,GP2
move GP2,TRL
move OClh,ACR

;set CPU-CLK equal to OCLK
;set up interrupt

;unmasktimer interrupt
;clear temperary register
;clear temperary register
;clear temperary register
;clearIZ

;clear data memory location

;Ioad high bit of the timer

;load low bit of the timer
;Ioad and start timer

;END of initialization
loop:

jmp loop ;wait for timer interrupt

;Timer Interrupt Service Routine
;*******************************

dest:
or 80h,CCR ;clear [TO] flag
add 1 ,GPO
cmp GPO,OAh ;Has 200msec passed?
mz R ;NO, return with interrupts on
move O,GPO ;YES,
cmp GPl,O ;Toggle
jnz next the
move 1,GPl value
jmp send of

next
move O,GPI the

send:
move GPl,[IZ+0] ; cursor
ret RI ;retum with interrupts enabled

CODE: .sect ax
.org 114h
Ijmp dest

.END

FIGURE 6

Description

TLlF/10450-11

BLINK THE CURSOR

Introduction

Blinking the cursor is performed on virtually all computers.
With its powerful CPU and programmable timer, the DP8344
can easily implement this basic function without any addi­
tional components.

The following is one of many ways to perform the blinking
cursor operation.

In this application the timer along with a small amount of
software will turn the cursor on and off at a periodic rate.
The following is a description of the way the timer is pro­
grammed and the DP8344's softwaro usod to implement
this function. (Refer to A'gure 6 for the actual BCP code for
this application.)

2-148

First, timer must be programmed to operate in the desired
configuration. For this application the timer is pre-configured
to divide the CPU clock by sixteen with the CPU clock set
equal to the oscillator clock at 18.8696 MHz (Le., [CCS] =

0). The timer interrupt is unmasked and enabled. The time
out value of 5C23 (Hex) is loaded into the timer's holding
register via !TRLJ and !TRHI.

After the timer is programmed properly, the timer is loaded
and started by writing to ! ACR J. Once the timer is loaded

and started, it will continually cycle through the time out
value of 5C23 (Hex), which corresponds to 20 ms. When the
timer counts down to zero, it will set the timer interrupt and
the BCP's software is programmed to call a timer interrupt
service routine. The timer interrupt service routine updates
and stores the state of the cursor in data memory.

State of Cursor: 0 ~ Cursor is OFF
1 ~ Cursor is ON

After ten timer interrupts, the service routine will toggle the
state of the cursor. Thus, the cursor will blink 2.5 times a
second.

Blinking the cursor every 200 ms is not a stringent require­
ment. As a result the 5250 protocol's 45 J-ts delays may be
interleaved with the 20 ms time outs. This once again dem­
onstrates that the flexibility of the timer can enhance the
performance of two functions at the same time.

REAL-TIME CLOCK

Introduction
An added feature on most personal computers is a real-time
clock. The clock is used to provide the time, the day, the
month and the year. With the BCP's programmable timer
and powerful CPU, this clock function can be performed by
the DP8344 without any additional components.

In this application the timer along with a small amount of
DP8344 software keeps track of the time. Software also
allows the user to set the initial time, then the DP8344's
timer and software takes over and accurately keeps track of
the time. The following is a description of the way the timer
is programmed and the DP8344's software used to imple­
ment a real-time clock. (Refer to Figure 7 for the actual BCP
code for this application.)

Description
The following describes one basic way to implement a real­
time clock using the BCP.

First, the timer must be programmed to operate in the de­
sired configuration. For this application the timer is pre-con­
figured to divide the CPU clock by sixteen with the CPU
clock set equal to the oscillator clock at 18.8696 MHz (Le.,
rCCS] = 0). The timer interrupt is unmasked and enabled.
The countdown-value of 5C23 (Hex) is loaded into the tim­
er's holding register via ITRLI and ITRHJ.

After the timer is programmed properly the timer is loaded
and started by writing to I ACR J. Once the timer is loaded
and started, it should remain on and continually cycle
through the time out value of 5C23 (Hex), which corre­
sponds to 20 ms exactly. When the timer counts down to

2-149

zero, it sets the timer interrupt and the CPU is programmed
to call a timer interrupt service routine.

The timer interrupt service routine is very basic. The number
of seconds, minutes, hours, days and years are all recorded
in separate data memory locations. The service routine will
add one to the seconds value after fifty timer interrupts.
After sixty seconds, the seconds value is reset to zero and a
one is added to the minutes value. After sixty minutes, the
minutes value is reset to zero and a one is added to the
hours value. Likewise the number of hours, days and years
are recorded in a similar manner.· . .

As mentioned in the introduction, in order to set the present
date and time after powering up requires software which
allows the user to define the present time and date. This
software would be remote processor software, not DP8344
software. This remote processor's software should allow
the user to enter the present time and date, then this soft­
ware must transform the entered time and data into· data
which can be transferred to the real-time clock's data mem­
ory locations. This starts the clock at the entered time, and
the timer and DP8344 software will be responsible for up­
dating the clock accurately.

The reader may desire a clock which records time in incre­
ments as small as a hundredth of a second. In this case the
timer should be programmed to count down 10 ms time
outs, and another data memory location must be used to
record the number of these hundredths of a second.

For the application of a real-time clock, the. timer cannot
interleave two timing values as in the 5250 Protocol applica­
tion. The timer must be pre-configured and allowed to run
without interruption. Otherwise, timing errors will occur and
the clock will not record time accurately.

However, the reader may notice that the BLINK THE CUR­
SOR application uses the same time out value {Le., 5C23
(Hex» as the real-time clock. This demonstrates how the
BCP can be programmed to use one countdown-value to
implement two desirable functions without effecting the per­
formance of either operation.

A final warning to the reader. The oscillator clock must be
extremely accurate for this application. For the program pro­
vided, and error of 0.0002 MHz in the oscillator clock (OCLK
= 18.8696 MHz) will result in an error of 0.916 seconds a
day or 5 minutes 34 seconds per year. The best way to
prevent timing problems is to accurately measure the oscil­
lator clock frequency first, then calculate and implement all
time out values based on that measurement.

» z .
(j)
I\)
(j)

~ .---~
N
~

:Z ; ---
«

;

This is the third version of the real-time clock.
This version like the second uses the timer interrupt to make

service calls, instead of polling the TO flag (bit 7 of CCR)
to see when the timer has counted to zero. The timer is pre­
configured to use CPU-CLK/16 and the CPU-CLK is set equal to
OCLK (oscillation clock, in this case 18.8696 MHz). The countdown
value is 5C23 Hex, which corresponds to 20 ms.

The IW register is incremented every 20 ms interrupt until
it contains 32(Hex) or 50(Dec), which corresponds to every second
exactly. Then the IX register is incremented.

Unlike version 2 this version uses data memory to store and
record the time that has elapsed. The following table gives
the memory locations of the stored time values.

value 1 memory location (HEX)
------------------1-------------------------
seconds 1 00 40
minutes 1 00 30
hours 1 00 20
days 1 00 10
years 1 00 00 (not implimented in program)

.input "stdequ.hdr"

CODE: . sect x
initialization:

exx AA,AB,DI
move 5Fh,DCR ;set CPU-CLK equal to OCLK
move 01,IBR ;set up interrupt
exx MA,MB,DI
move OEFh,ICR ;unmask timer interrrupt
move O,IW ;c1earIW
move O,IX ;clearIX
move 0,OP5
move GP5,IYLO ;c1earIY
move GP5,IYHI
move GP5,IZLO ;c1earIZ
move GP5,IZHI
move GP5,[lZ+0] ;c1earyear
move GP5,[IZ+I0h] ;cleardays
move GP5,[IZ+20h] ;c1ear hours
move GP5,[lZ+30h] ;clear minutes
move GP5,[IZ+40h] ;clear seconds
move I,GP6
move 5Ch,OP5
move GP5,TRH ;load high byte of the time out value
move 21h,GP5
move GP5,TRL ;load low byte of the time out value
move 40h,ACR ;load timer from the holding reg.
move 81h,ACR ;start timer

;END of initialization
loop:

FIGURE 7

2-150

TL/F/104S0-12

> z .
jmp loop 0)

N
0)

;Timer interrupt selVice routine
.******************************* ,

dest:
or 80h,CCR ;c1ear [TO] flag
add 1,IWLO ;increment IW
cmp IWLO,32h ;does IW = 50 decimal
rnz RI ;NO, then return with interrupt on
move O,IWLO ;c1earIW
move [IZ+40h] ,IXLO
add 1,IXLO ;YES, then increment IX
cmp IXLO,3Ch ;does seconds = 60
jnz nexcl
move O,IXLO ; YES, then clear seconds

nexcl: move IXLO,[lZ+40h] ;move seconds to data memory
rnz RI
move [IZ+30h],IXLO
add 1,IXLO ;increment minutes
cmp IXLO,3Ch ;does minutes = 60
jnz nexc2
move O,IXLO ; YES, then clear minutes

nexC2: move IXLO,[IZ+30h] ;move minutes to data memory
move O,IXLO
rnz RI
move [IZ+20h],IXLO
add 1,IXLO ;increment hours
cmp IXLO,18h ;does hours = 24

jnz nexc3
move O,IXLO ;YES, then clear hours

nexc3: move IXLO,[lZ+20h] ;move hours to data memory
move O,IXLO
rnz RI
move [IZ+ 1 Oh],IXLO
add 1,IXLO ;increment days
move IXLO,[IZ+ 10h]
move O,IXLO
ret RI

CODE: .sect ax
.org 114h
Ijmp dest

.END
TL/F/10450-13

FIGURE 7 (Continued)

I

II
I

2·151

U) r---~ ,....
Lt) .
Z
<C

Interfacing the DP8344
to Twinax

OVERVIEW

The DP8344, or Biphase Communications Processor
from National Semiconductor's Advanced Peripherals group
brings a new level of system integration and simplicity to the
IBM® connectivity world. Combining a 20 MHz RISC archi­
tecture CPU with a flexible multi-protocol transceiver and
remote interface, the BCP is well suited for IBM 3270, 3299
and 5250 protocol interfaces. This Application Note will
show how to interface the BCP to twinax, as well as provide
some basics about the IBM 5250 environment.

5250 ENVIRONMENT

The IBM 5250 environment encompasses a family of devic­
es that attach to the IBM System/34, 36 and 38 mid-size
computer systems. System unit model numbers include the
5360, 5362, 5364, 5381, and 5382, and remote controller
models 5294 and 5251 model 12. The system units have
integral work station controllers and some may support up
to 256 native mode twinax devices locally. Native mode
twinax devices are ones that connect to one of these host
computers or their remote control units via a multi-drop, high
speed serial link utilizing the 5250 data stream. This serial
link is primarily implemented with twinaxial cable but may be
also found using telephone grade twisted pair. Native mode
5250 devices include mono-chrome, color and graphics ter­
minals, as well as a wide range of printers and personal
computer emulation devices.

TWINAX AS A TRANSMISSION MEDIA

The 5250 environment utilizes twinax in a multi-drop config­
uration, where eight devices can be "daisy-chained" over a
total distance of 5000 ft. and eleven splices, (each physical
device is considered a splice) see Figure 1. Twinax can be
routed in plenums or conduits, and can be hung from poles
between buildings (lightning arrestors are recommended for
this). Twinax connectors are bulky and expensive, but are
very sturdy. Different sorts may be purchased from IBM or a
variety of third party vendors, including Amphenol. Twinax
should not be spliced; to connect cables together both ca­
bles should be equipped with male connectors and a quick­
disconnect adapter should be used to join them (Amphenol
#82-5588).

National Semiconductor
Application Note 516
Thomas J. Quigley

Twinaxial cable is a shielded twisted pair that is nearly % of
an inch thick. This hefty cable can be either vinyl or teflon
jacketed and has two internal conductors encased in a stiff
polethylene core. The cable is available from BELDEN (type
9307) and other vendors, and is significantly more expen­
sive than coax.

The cable shield must be continuous throughout the trans­
mission system, and be grounded at the system unit and
each station. Since twinax connectors have exposed metal
connected to their shield grounds, care must be taken not to
expose them to noise sources. The polarity of the two inner
conductors must also be maintained throughout the trans­
mission system.

The transmission system is implemented in a balanced cur­
rent mode; every receiver/transmitter pair is directly cou­
pled to the twinax at all times. Data is impressed on the
transmission line by unbalancing the line voltage with the
driver current. The system requires passive termination at
both ends of the transmission line. The termination resist­
ance value is given by:

Rt = ZO/2; where

Rt: Termination Resistance

Zo: Characteristic Impedance

In practice, termination is accomplished by connecting both
conductors to the shield via 54.90, 1 % resistors; hence the
characteristic impedance of the twinax cable of 1070 ±5%
at 1.0 MHz. Intermediate stations must not terminate the
line; each is configured for "pass-through" instead of "ter­
minate" mode. Stations do not have to be powered on to
pass twinax signals on to other stations; all of the receiver/
transmitter pairs are DC coupled. Consequently, devices
must never output any signals on the twinax line during pow­
er-up or down that could be construed as data, or interfere
with valid data transmission between other devices.

WAVEFORMS

The bit rate utilized in the 5250 protocol is 1 MHz ± 2% for
most terminals, printers and controllers. The IBM 3196 dis-

r--------------- --------------- ---------------.

STATION '0'

• • • • • • • • • • • •
• • !!!:

2.

• • • -= • . _-------------- --------------_.
STATION '1' STATION 7'

TLIF/9635-1

FIGURE 1. Multi-Drop Transminion Lines
The eight stations shown include the host device as a station. The first and last stations are terminated while intermediate stations are not.

2-152

play station has a bit rate of 1.0368 MHz ± 0.01 %. The data
are encoded in biphase, NRZI (non-return to zero inverted)
manner; a "1" bit is represented by a positive to negative
transition, a "a" is a negative to positive transition in the
center of a bit cell. This is opposite from the somewhat
more familiar 3270 coax method. The biphase NRZI data is
encoded in a pseudo-differential manner; i.e. the signal on
the "A" conductor is subtracted from the signal on "8" to
fotm the waveform shown in Figure 2. Signals A and 8 are
not differentially driven; one phase lags the other in time by
180·. Figures 3 and 4 show actual signals taken at the driver
and receiver after 5000 ft. of twinax, respectively.

500 1000 2000 3000
time (ns) I I

A OV

-0.3V

-loGV

OV

-0.3V

-lo6V

loGV

0.3V

(B-A) OV

-0.3V

-l.GV

NRZI 5V

OV

"'000

The signal on either the A or 8 phase is a negative going
pulse with an amplitude of - 0.32V ± 20% and duration of
500 ± 20 ns. During the first 250 ± 20 ns, a predistortion or
pre-emphasis pulse is added to the waveform yielding an
amplitude of -1.6V ± 20%. When a signal on the A phase
is considered together with its 8 phase counterpart, the re­
sultant waveform represents a bit cell or bit time, comprised
of two half-bit times. A bit cell is 1 J-ts ± 20 ns in duration
and must have a mid bit transition. The mid bit transition is
the synchronizing element of the waveform and is key to
maintaining transmission integrity throughout the system.

5000 6000 7000 8000 9000

TL/F/9635-2

FIGURE 2. Twinax Waveforms
The signal on phase A is shown at the initiation of the line quiesce/line violation sequence.

Phase 8 is shown for that sequence, delayed in time by 500 ns.

The NRZI data recovered from the transmission.

TLIF/9635-3

FIGURE 3. Signal at the Driver
The signal shown was taken with channel 1 of an oscilloscope connected to
phase B, channel 2 connected to A, and then channel 2 inverted and added
to channel 1.

2-153

TL/F/9635-4

FIGURE 4. Signal at the Receiver
The signal shown was viewed in the same manner as Figure 3. The severe
attenuation is due to the filtering effects of 5000 ft. of twinax cable. • I

CD ,....
Ln • Z
<C

As previously mentioned, the maximum length of a twinax
line is 5000 ft. and the maximum number of splices in the
line is eleven. Devices count as splices, so that with eight
devices on line, there can be four other splices. The signal
5000 ft. and eleven splices from the controller has a mini­
mum amplitude of 100 mV and a slower edge rate. The bit
cell transitions have a period of 1 IJ-s ± 30 ns.

5250 BIT STREAM

The 5250 Bit stream used between the host control units
and stations on the twinax line consists of three separate
parts; a bit synchronization pattern, a frame synchronization
pattern, and one or more command or data frames. The bit
sync pattern is typically five one bit cells. This pattern
serves to charge the distributed capacitance of the trans­
mission line in preparation for data transmission and to syn­
chronize receivers on the line to the bit stream. Following
the bit sync or line quiesce pattern is the frame sync or line
violation. This is a violation of the biphase, NRZI data mid
bit transition rule. A positive going half bit, 1.5 times normal
duration, followed by a negative going signal, again 1.5
times normal width, allows the receiving circuitry to estab­
lish frame sync.

Frames are 16 bits in length and begin with a sync or start
bit that is always a 1. The next 8 bits comprise the com­
mand or data frame, followed by the station address field of
three bits, a parity bit establishing even parity over the start,
data and address fields, and ending with a minimum of three
fill bits (fill bits are always zero). A message consists of a bit
sync, frame sync, and some number of frames up to 256 in
total. A variable amount of inter-frame fill bits may be used
to control the pacing of the data flow. The SET MODE com­
mand from the host controller sets the number of bytes of
zero fill sent by attached devices between data frames. The
zero fill count is usually set to zero. The number of zero fill
bits injected between frames by the BCP is set by theFiII Bit
select register (FBR I. This register contains the one's com­
plement of the number of BITS sent, not bytes.

Message routing is accomplished through use of the three­
bit address field and some basic protocol rules. As men­
tioned above, there is a maximum of eight devices on a
given twinax line. One device is designated the controller or

~-~~~~---~~~~
~-ACT

, PWR-COOD

host and the remaining seven are slave devices. All commu­
nication on the twinax line is host initiated and half duplex.
Each of the seven devices is assigned a unique station ad­
dress from zero to six. Address seven is used for an End Of
Message delimiter, or EOM. The first or only frame of a
message from controller to device must contain the address
of the device. Succeeding frames do not have to contain the
same address for the original device to remain selected,
although they usually do.

The last frame in a sequence must contain the EOMdelimi­
ter. For responses from the device to the controller, the
responding device places its own address in the address
field in frames 1 to (n - 1),where n ~ 256, and places the
EOM delimiter in the address field of frame n. However, if
the response to the controller is only one frame, the EOM
delimiter is used. The controller assumes that the respond­
ing devices was the one addressed in the initiating com­
mand.

Responses to the host must begin in 60 ± 20 IJ-s, although
some specifications state a 45 ± 15 IJ-s response time. In
practice, controllers do not change their time out values per
device type so that anywhere from 30 IJ-s to 80 IJ-s response
times are appropriate.

DRIVER CIRCUITS FOR THE DP8344

The transmitter interface on the DP8344 is sufficiently gen­
eral to allow use in 3270, 5250, and 8-bit transmission sys­
tems. Because of this generality, some external hardware is
needed to adapt the outputs to form the signals necessary
to drive the twinax line. The chip provides three signals:
DATA-OUT, DATA-DLY, and TX-ACT. DATA-OUT is bi­
phase serial data (inverted). DATA-DLY is the biphase serial
data output (non-inverted) delayed one-quarter bit-time. TX­
ACT, or transmitter active, signals that serial data is being
transmitted when asserted. DATA-OUT and DAT A-DL Y can
be used to form the A and B phase signals with their three
levels by the circuit shown in Figure 5. TX-ACT is used as an
external transmitter enable. The BCP can invert the sense
of the DATA-OUT and DATA-DLY signals by asserting TIN
(TMR[3] l. This feature allows both 3270 and 5250 type
biphase data to be generated, and/or utilization of inverting
or non-inverting transmitter stages.

.--------...... ------<=> PHASE-A .--------+ ------c:::::::>PHASE-B
SHIELD eND

if
: .

-0.

TERMINATE

5Ull 54.911
1:; 1:; 10K 10 10K

820K

UK

33pF

10"-9 "1' L> NRZI-DAT

TLIF/9635-5

FIGURE 5_ Schematic

2-154

The current mode drive method used by native twinax devic­
es has both distinct advantages and disadvantages. Current
mode drivers require less power to drive properly terminat­
ed, low-impedance lines than voltage mode drivers. Large
output current surges associated with voltage mode drivers
during pulse transition are also avoided. Unwanted current
surges can contribute to both crosstalk and radiated emis­
sion problems. When data rate is increased, the surge time
(representing the energy required to charge the distributed
capacitance of the transmission line) represents a larger
percentage of the driver's duty cycle and results in in­
creased total power dissipation and performance degrada­
tion.

A disadvantage of current mode drive is that DC coupling is
required. This implies that system grounds are tied together
from station to station. Ground potential differences result in
ground currents that can be significant. AC coupling re­
moves the DC component and allows stations to float with
respect to the host ground potential. AC coupling can also
be more expensive to implement.

Drivers for the 5250 environment may not place any signals
on the transmission system when not activated. The power­
on and off conditions of drivers must be prevented from
causing noise on the system since other devices may be in
operation. Figure 5 shows a "DC power good" signal en­
abling the driver circuit. This Signal will lock out conduction
in the drivers if the supply voltage is out of tolerance.

Twinax signals can be viewed as consisting of two distinct
phases, phase A and phase B, each with three levels, off,
high and low. The off level corresponds with 0 mA current
being driven, the high level is nominally 62.5 mA,
+20%-30%, and the low level is nominally 12.5 mA,
+20%-30%. When these currents are applied to a proper­
ly terminated transmission line the resultant voltages im­
pressed at the driver are: off level is OV, low level is 0.32V
± 20%, high level is 1.6V ± 20%. The interface must pro­
vide for switching of the A and B phases and the three
levels. A bi-modal constant current source for each phase
can be built that has a TTL level interface for the BCP.

An integrated solution can be constructed with a few current
mode driver parts available from National and Texas Instru­
ments; The 7511 OA and 75112 can be combined to provide
both the A and B phases and the bi-modal current drive
required as in Figure 5. The external logic used adapts the
coax oriented BCP outputs to the twinax interface circuit,
and prevents spurious transmissions during power-up or
down. The serial NRZ data is inverted prior to being output
by the BCP by setting TIN, {TMR[3] J.

RECEIVER CIRCUITS

The pseudo-differential mode of the twinax signals make
receiver design requirements somewhat different than the
coax 3270 world. Hence, the analog receiver on the BCP is
not well suited to receiving twinax data. The BCP provides
both analog inputs to an on-board comparator circuit as well
as a TTL level serial data input, TTL-IN. The sense of this
serial data can be inverted by the BCP by asserting RIN,
{TMR[4]J.

The external receiver circuit must be designed with care to
ensure reliable decoding of the bit-stream in the worst envi­
ronments. Signals as small as 100 mV must be detected. In
order to receive the worst case signals, the input level
switching threshold or hysteresis for the receiver should be

2-155

nominally 29 mV ± 20%. This value allows the steady state,
worst case signal level of 100 mV 66% of its amplitude
before transitioning.

To achieve this, a differential comparator with complemen­
tary outputs can be applied, such as the National LM361.
The complementary outputs are useful in setting the hyster­
esis or switching threshold to the appropriate levels. The
LM361 also provides excellent common mode noise rejec­
tion and a low input offset voltage. Low input leakage cur­
rent allows the design of an extremely sensitive receiver,
without loading the transmission line excessively.

In addition to good analog design techniques, a low pass
filter with a roll-off of approximately 1 MHz should be ap­
plied to both the A and B phases. This filter essentially con­
ducts high frequency noise to the opposite phase, effective­
ly making the noise common mode and easily rejectable.

Layout considerations for the LM361 include proper bypass­
ing of the ± 12V supplies at the chip itself, with as short as
possible traces from the pins to 0.1 J.LF ceramic capacitors.
USing surface mount chip capacitors reduces lead induc­
tance and is therefore preferable in this case. Keeping the
input traces as short and even in length is also important.
The intent is to minimize inductance effects as well as stan­
dardize those effects on both inputs. The LM361 should
have as much ground plane under and around it as possi­
ble. Trace widths for the input Signals especially should be
as wide as possible; 0.1 inch is usually sufficient. Finally,
keep all associated discrete components nearby with short
routing and good ground/supply connections. '

Design equations for the LM361 in a 5250 application are
shown here for example. The hysteresis voltage, Vh, can be
expressed the following way:

Vh = Vrio + ((Rin/(Rin + RI) x Vol)
- (Rin/(Rin + RI) x Vol))

where

Vh - Hysteresis Voltages, Volts

Rin - Series Input Resistance, Ohms

RI - Feedback Resistance, Ohms

Cin - Input Capacitance, Farads

Vrio- Receiver Input Offset Voltage, Volts

Voh- Output Voltage High, Volts

Vol - Output Voltage Low, Volts

The input filter values can be found through this relation­
ship:

Vcin = Vin1 - Vin2/1 + jwCin (Rin1 + Rin2)

where Rin1 = Rin2 = Rin:
Fro = W/21T

Fro = 1/(21T X Rin X Cin)

Cin = 1/(21T X Rin X Fro)

where

Vin1, Vin2- Phase A and B signal voltages, Volts

Vcin - Voltage across Cjn, or the output of the filter,
Volts

Rin1, Rin2- lnput resistor values, Rin1 = Rin2, Ohms

Fro - Roll-Off Frequency, Hz

W - Frequency, Radians

» z
I

U1
-" m

CD
or-
LI)

:2:
<C

The roll-off frequency, Fro, should be set nominally to Fr02 = 1/(21T X (Rin1 + Rin2) X Cin)
1 MHz to allow for transitions at the transmission bit rate. or,
The transition rate when both phases are taken together is

Fr02 = 1/(21T X 2 X Rin X Cin)
2 MHz, but then Rin1 and Rin2 must be considered, so:

where Fr02 = 2 X Fro, yielding the same results.

The following table shows the range of values expected:

TABLE I

Value Maximum Minimum Nominal Units Tolerance

RIN 4.935E+03 4.465E+03 4.700E+03 n 0.05

RF 8.295E+05 7.505E+05 7.900E+05 n 0.05

CIN 4.4556E-11 2.6875E-11 3.3863E-11 F

VOH 5.250E+00 4.750E+00 5.000E+00 V

VOL 4.000E-01 2.000E-01 3.000E-01 V

VIN+ 1.920E+00 1.000E-01 V

VIN- 1.920E+00 1.000E-01 V

VRIO 5.000E-03 O.OOOE+OO 1.000E-03 V

R 6.533E-03 5.354E-03 5.914E-03 n
Fro 1.200E+06 8.000E+05 1.000E+06 Hz 0.2

VH 3.368E-02 2.691E-02 2.880E-02 V

Xc 7.4025E+03 2.9767E+03 4.7000E+03 n

The BCP has a number of advanced features that give de~ sequence. This flexibility allows the BCP to operate in ex-
signers much flexibility to adapt products to a wide range of tremely noisy environments, allowing more time for the
IBM environments. Besides the basic multi-protocol capabil- transmission line to charge at the beginning of a transmis-
ity of the BCP, the designer may select the inbound and sion. The selection of the transmitted line quiesce pattern is
outbound serial data polarity, the number of received and not generally used in the 5250 arena, but has applications in
transmitted line quiesces, and in 5250 modes, a program- 3270. Changing the number of line quiesces at the start of a
mabie extension of the TX-ACT signal after transmission. line quiesce pattern may be used by some equipment to

The polarity selection on the serial data stream is useful in implement additional repeater functions, or for certain inflex-

building single products that handle both 3270 and 5250 ible receivers to sync up.

protocols. The 3270 biphase data is inverted with respect to The most important advanced feature of the BCP for 5250
5250. applications is the programmable TX-ACT extension. This

Selecting the number of line quiesces on the inbound serial feature allows the designer to vary the length of time that
data changes the number of line quiesce bits that the re- the TX-ACT signal from the BCP is active after the end of a

ceiver requires before a line violation to form a valid start transmission. This can be used to drive one phase of the

2-156

twinax line in the low state for up to 15.5 !-,-s. Holding the line
low is useful in certain environments where ringing and re­
flections are a problem, such as twisted pair applications.
Driving the line after transmitting assures that receivers see
no transitions on the twinax line for the specified duration.
The transmitter circuit shown in Figure 5 can be used to
hold either the A or B phase by using the serial inversion
capability of the BCP in addition to swapping the A and B
phases. Choosing which phase to hold active is up to the
designer; 5250 devices use both. Some products hold the A
phase, which means that another transition is added after
the last half bit time including the high and low states, with
the low state he If for the duration, see Figure 6. Alternative­
ly, some products hold the B phase. Holding the B phase
does not require an extra transition and hence is inherently
quieter.

TLlF/9635-6

FIGURE 6. Line Hold Options
The signal was viewed in the same manner as Figures 3 and 4. The lefthand
portion of the signal is a transmitting device utilizing line hold on phase A.
The right hand side shows the IBM style (phase B) line hold.

To set the TX-ACT hold feature, the upper five bits of the
Auxilliary Transceiver Register, IATR [3-7]1. are loaded
with one of thirty-two possible values. The values loaded
select a TX-ACT hold time between 0 !-,-S and 15.5 !-,-S in 500
ns increments.

SOFTWARE INTERFACE

The BCP was designed to simplify designing IBM communi­
cations interfaces by providing the specific hardware neces­
sary in a highly integrated fashion. The power and flexibility
of the BCP, though, is most evident in the software that is
written for it. Software design for the BCP deserves careful
attention.

When designing a software architecture for 5250 terminal
emulation, for example, one concern the designer faces is
how to assure timely responses to the controller's com­
mands. The BCP offers two general schemes for handling
the real time response requirements of the 5250 data
stream: interrupt driven transceiver interface mode, and
polled transceiver interface mode. Both modes have
strengths that make them desirable. The excellent interrupt

2-157

response and latency times of the BCP make interrupts very
useful in most 5250 applications.

Although factors such as data and instruction memory wait
states and remote processors waiting BCP data memory
accesses can degrade interrupt response times, the mini­
mum latency is 2.5 T -states. The BCP samples all interrupt
sources by the falling edge of the CPU clock; the last falling
edge prior to the start of the next instruction determines
whether an interrupt will be processed. When an interrupt is
recognized, the next instruction in the present stream is not
executed, but its address is pushed on the address stack. A
two T-state call to the vector generated by the interrupt type
and the contents of {lBR} is executed and [GIE] (Global
Interrupt Enable) is cleared. If the clock edge is missed by
the interrupt request or if the current instruction is longer
than 2 bytes, the interrupt latency is extended.

Running in an interrupt driven environment can be complex
when multiple sessions are maintained by the same piece of
code. The software has the added overhead of determining
the appropriate thread or session and handling the interrupt
accordingly. For a multi-session 5250 product, the trans­
ceiver interrupt service routines must determine which ses­
sion is currently selected through protocol inferences and
internal semaphores to keep the threads separate and in­
tact.

In a polled environment, the biggest difficulty in designing
software is maintaining appropriate polling intervals. Polling
too often wastes CPU bandwidth, not polling frequently
enough loses data and jeopardizes communication integrity.
Standard practice in servicing polled devices is to count
CPU clock cycles in the program flow to keep track of when
to poll. A program change can result in lengthy recalcula­
tions of polling intervals and requalifications of program
functionality. Using the programmable timer on board the
BCP to set the polling interval alleviates the need to count
instructions when code is changed or added. In both polled
or interrupt environments, the latency effects of remote
processors waiting memory accesses must be limited to a
known length of time and figured into both polling intervals
and worst case interrupt latency calculations. Using the pro­
grammable timer on the BCP makes both writing and main­
taining polled software easier.

SOFTWARE ARCHITECTURE FOR 5250 EMULATION

The 5250 data rate is much lower than that of the 3270 data
stream, hence it is possible for the BCP to emulate all seven
5250 sessions with a CPU frequency of 8 MHz. Choosing a
16 MHz crystal allows the transceiver to share the CPU
clock at OCLK/2, eliminating an extra oscillator circuit. The
8 MHz rate yields a 125 ns T -state, or 250 ns for most
instructions. Interrupt latency is typically one instruction (as­
suming no wait states or remote accesses) which is suitable
for 5250 operation. If more speed is desired, the CPU could
be switched to 16 MHz operation.

A MUL TI·MODE TRANSCEIVER

The BCP provides two 5250 protocol modes, promiscuous
and non-promiscuous. These two modes afford the design­
er a real option only when the end product will attach to one
5250 address at a time. The non-promiscuous mode is con­
figured with an address in the {ATR} register and only re-

» z
I

c.n
0')

• I

<D
II) .
z
ct·

ceives messages whose first frame address matches that
address, or an error occurs in the first frame of the mes­
sage. Filtering out unwanted transmissions to other ad­
dresses leaves more CPU time for other non-protocol relat­
ed tasks, but limits the device to one address at a time. The
promiscuous mode allows messages to any and all address­
es· to be received. Resetting the transceiver during a mes­
sage destined to another device forces the transceiver to
begin looking for a start sequence again, effectively discard­
ing the entire unwanted message. Because of its flexibility,
the promiscuous mode is used in this illustration.

REAL TIME CONSIDERATIONS

Choosing a scheme for servicing the transceiver is basic to
the design of any emulation device. The BCP provides both
polled and interrupt driven modes to handle the real time
demands of the chosen protocol. In this example, the inter­
rupt driven approach is used. This implies the extra over­
head of setting up interrupt vectors and initializing the inter­
rupt masks appropriately. This approach eliminates the
need to figure pOlling intervals within the context of other
CPU tasks.

5250 CONFIGURATION

Configuring a complex device like the BCP can be difficult
until a level of familiarity with the device is reached. To help
the 5250 product designer through an initial configuration, a
register by register description follows, along with the rea­
sons for each configuration choice. Certainly, most applica­
tions will use different configurations than the one shown
here. The purpose is to illustrate one possible setup for a
5250 emulation device.

There are two major divisions in the BCP's configuration
registers: CPUspecifici and transceiver specific ones.

CPU SPECIFIC CONFIGURATION REGISTERS:

IOCR I -Device Control Register-This register controls
the clocks and wait states for instruction and data memory.
Using a value of H # AO sets the CPU clock to the OCLK/2
rate, the transceiver to OCLK/2, and no wait states for ei­
ther ,memory bank. As described above, the choice of a
16 MHz crystal and configuring this way allows 8 MHz oper­
ation now, with a simple software change for straight 16
MHz operation in the future. .

IACRI~Auxlllary Control Register-Loading this register
with H#20 sets the timer clock source to CPU-CLK/2, sets
[BIC], the Bidirectional Interrupt Control to configure BIRO
as an input, allows remote accesses with [LOR] cleared,
and disables all maskable interrupts through [GIE] low.
When interrupts are unmasked in IICRI, [GIE] must be set
high to allow interrupts to operate. [GIE] can be set and
cleared by writing to it, or through a number of instructions
including RET and EXX.

!lBRI-lnterrupt Base Register-This register must be
set to the appropriate base of the interrupt vector table lo­
cated in data RAM. The DP8344 development card and
monitor software expect [IBR] to be at H#1F, making the
table begin at H # 1 FOO. The monitor software can be used
without the interrupt table at H # 1 FOO, but doing so is sim­
plest for this illustration.

!lCRI-lnterrupt Control Register-This register con­
tains both CPU and transceiver specific controls. From the

2-158

CPU point of view, the interrupt masks are located here. In
this illustration, the system requires receiver, transmitter,
BIRO, and timer interrupts, so that in operation those inter­
rupt bits should be unmasked. For initialization purposes,
though, interrupts should be masked until their vectors are
installed and the interrupt task is ready to be started. There­
fore, loading [lCR] with H#7F is prudent. This also sets the
receiver interrupt source, but that will be discussed in the
next section.

TRANSCEIVER CONFIGURATION REGISTERS:

I TMR) -Transceiver Mode Register-This register con­
trols the protocol selection, transceiver reset, loopback, and
bit stream inversion. Loading this register with H#OD sets
up the receiver in 5250 promiscuous mode, inverts serial
data out, does not invert incoming serial data, does not al­
low the transmitter and receiver to be active at the same
time, disables loopback, and does not reset the transceiver.
Choosing to set [RIN] low assumes that serial data will be
presented to the chip in NRZI form. Not allowing the receiv­
er and transmitter to operate concurrently is not an issue in
5250 emulation, since there is no defined repeater function
in the protocol as in 3270 (3299). Bits [B5, 6], [RPEN] and
[LOOP] are primarily useful in self testing, where, [LOOP]
routes the transmitted data stream into the receiver and
simultaneous operation is desirable. Please note that for
loopback operation, [RIN] must equal [TIN]. [TRES] is used
regularly in operation, but should be left off when not specif­
ically needed.

I TCR I -Transceiver Command Register-This register
has both configuration and operation orientated bits, includ­
ing the transmitted address and parity bits. For this configu­
ration, the register should be set to H # 00 and the specific
address needed summed into the three LSBs, as appropri­
ate. The [SEC] or Select Error Codes bit is used to enable
the {ECR) register through the {RTR I transceiver FIFO
port, and should be asserted only when an error has been
detected and needs to be read. [SLR], or Select Line Re­
ceiver is set low to enable the TTL-IN pin as the serial data
in source. The BCP's on chip comparator is best suited to
transformer coupled environments,' and National's LM361
high speed differential comparator works very well for the
twinax line interface. [AT A], or Advance Transmitter Active
is normally used in the 3270 modes to change the form of
the first line quiesce bit for transmission. Some twinax prod­
ucts use a long first line quiesce bit, although it is not neces­
sary. The lower four bits in ITCR) are used to form the
frame transmitted when data is written into I RTR), the
transceiver FI FO port. Writing into I RTR) starts the trans­
mitter and/or loads the transmit FIFO. The least significant
three bits in I TCR) form the address field in that transmitted
frame, and B3, [OWP] controls the type of parity that is
calculated and sent with that frame. [OWP] set to zero cal­
culates even parity over the eight data bits, address and
sync bit as defined in the IBM 5250 PAL

I ATR I -Auxllliary Transceiver Register-Since this ap­
plication is configured for promiscuous mode, the IATRI
register serves only to set the line hold function time. In non­
promiscuous mode" the three least significant bits of this
register are the selected address. Setting this register to
H # 50 allows a 5 Ils hold time and clears the address field
to 0, since promiscuous mode is used.

I FBR I';"FIII Bit Register-This register controls the num­
ber of biphase zeros inserted between concatenated
frames when transmitting. This register should be set upon
reception of the SET MODE instruction from the host.
I FBR I contains the one's complement of the number of
inter-frame fill bits so that H # FF sends no extra fill bits.

IICRI-Interrupt Control Register-As discussed in the
CPU configuration section, this register sets [RIS] or Re­
ceiver Interrupt Select as well as the interrupt mask. Setting
the register to H#7F selects [DA + ERR], Data Available
or transceiver ERRor, as the interrupt source. This interrupt
is asserted when either a valid frame has been clocked into
the receive FIFO or an error has occurred. Other interrupt
options are available including: [RA], Receiver Active; and
[RFF + ERR], Receive FIFO Full or transceiver ERRor. For
5250 protocols the [DA + ERR] is most efficient. The [RFF
+ ERR] interrupt will not assert until the FIFO is full ...
regardless of whether the incoming message is single or
multi-frame. [RA] provides plenty of notice that a frame is
incoming, but due to the speed of the BCP, this advanced
warning is not generally needed. [DA + ERR] provides a
notification just after the parity bit has been decoded from
the incoming frame which is almost 3 J-Ls prior to the end of
the frame. With the CPU running at 8 MHz, that allows typi­
cally nine instructions ([(4 * 3) - 3)]) for interrupt latency,
trap and bank switch after interrupting.

MULTI-SESSION POWER

Handling multiple sessions in software is not trivial, and
making the receiver service routines interrupt driven compli­
cates the task further. The BCP is so fast, that at 8 MHz
handling a multi-frame message by interrupting on the first
frame and polling for succeeding frames is very inefficient.
To maximize bandwidth for non-protocol related tasks, the
CPU should handle each frame separately on interrupt and
exit. To do this, a number of global state variables must be
maintained. Since the alternate B register bank is primarily
used for transceiver functions anyway, dedicating the other
registers in that bank permanently as state variables is ac­
ceptable in most cases; doing so speeds and simplifies ac­
cess to them. Defining the following registers as:

o

enables the software to keep track of the various states the
protocol must handle.

The active address bits in GP5' allow individual addresses
to be active, or any combination of addresses. When inter­
rupted by a message to a non-selected address, [TRES] is
toggled to reset the receiver until the beginning of the next
message is detected. [B7] is used to determine if any partic­
ular address is "selected" and in the process of receiving
data. The selected flag is set and cleared according to spe­
cific protocol rules set up in the IBM PAl.

Register GP6' contains the selected address storage
[BO-2], where the address of the device expecting at least
one other frame is stored when exiting the interrupt service
routine, so that upon interruption caused by the reception of
that frame, the address is still available. The
received_EOM flag, [83] is set when a message is decod­
ed that contains 8 # 111 or EOM delimiter. It is stored in this
global status register to allow the protocol to determine the
end of a transmission. In most multi-byte transmissions, the
number of data frames expected is dictated by the protocol.
However, ACTIVATE WRITE commands to printers can
have any number of data frames associated with them up to
256. In this situation, the activated flag, [84] is set to signal
a variable length stream. Certain host devices also concate­
nate commands within messages, obscuring the determina­
tion of end of message. This scheme allows the software to
keep track during such scenarios. The multi-count bits,
[86-7] are used in addition to the EOM delimiter to deter­
mine the end of a transmission. The number of additional
frames expected in a given multi-byte command is written
into these bits (note that a maximum of three bytes can be
planned for in this way). When the count is terminated and
no EOM delimiter is present, the algorithm then assumes a
multi-command message is in progress. [85] is unused.

Register GP7' is used to store the received data or error
code for passage to other routines. The data can be passed
on the stack, but dedicating a register to this function simpli­
fies transactions in this case. Keeping track of received data
is of utmost importance to communications devices.

Active Address and Select Register

address 0 select

GP6'

'----- address 1 select
'------ address 2 select

'-------- address 3 select
'--------- address 4 select

L-_________ address 5 select
L... __________ address 6 select

L... ___________ device selected flag

o
Global Status Register

selected address BO
'----- selected address B1

'------ selected address B2
L..-_____ received_Eot.l flag

L..-_______ activated flag
L-_________ unused

L-__________ multi-count BO
L... ___________ multi-count B1

GP7'-Bits [0-7] Received Data or Error Register

2-159

TL/F/9635-7

TLIF/9635-8

:r>
z .
U1
en

CD
'9'-
Lt)
• z

<
RECEIVER INTERRUPT

The receiver interrupt algorithm handles any or all seven
addresses possible on the twinax line. The same code is
used for each address by utilizing a page oriented memory
scheme. Session specific variables are stored in memory
pages of 256 bytes each. All session control pages, or
SCPs are on 256-byte even boundaries. By setting the high
order byte of a BCP index register to point to a particular
page or SCP, the low order byte then references an offset
within that page. Setting up data memory in such a way that
the first SCP begins at an address of B # xxxx xOOO 0000
0000 further enhances the usefulness of this construct. In
this scheme, the high byte of the SCP base pointer can be
used to set the particular SCP merely by summing the re­
ceived or selected address into the lower three bits of the
base register. .

NORMAL OPERATION

In normal operation, the configuration described thus far is
used in the following manner: After initializing the registers,
data structures .are initialized, and interrupt routines should
be activated. This application utilizes the receiver, transmit­
ter, timer, and bi-directiorial interrupts. Since (lBRlis set to
H#1F, the interrupt table is located at H#1FOO. A LJMP to
the receiver interrupt routine should be installed at location
H # 1 F1 04, the transmitter interrupt vector at H # 1 FOS, the
BIRO interrupt vector at H#1F10, and the Timer interrupt
vector at H # 1 F14. Un-masking the receiver interrupt and
BIRO at start up allows the device to come on-line.

When interrupt by the receiver, the receiver interrupt service
routine first checks the [ERR] flag in ! TSR [B5] I. If no er­
rors have been flagged, the received_EOM flag is either
set or cleared. This is accomplished by comparing ! TSR
[BO-2]1 with the B # 111 EOM delimiter. A test of the se­
lected flag, ! GP5' [B7] I determines if any of the active ad­
dresses are selected. Assuming that the system is just com­
ing on line, none of the devices would be selected. ·U the
frame is addressed to an active device, the SCP for that
device is set, and the command is parsed. Parsing the com­
mand sets the appropriate state flags, so that upon exiting,
the interrupt routine will be prepared for the next frame.
Once parsed, the command can be further decoded and
handled. If the command is queue-able, the command is
pushed on the internal command queue, and the receiver
interrupt routine exits. If the command requires an immedi­
ate response, then the response is formulated, the timer
interrupt is setup, and the routine is exited.

The timer interrupt is used in responding to the host by wait­
ing an appropriate time to invoke the transmit routine. The
typical response delay is 45 ± 15 p,s after the last valid fill
bit received in the command frame. Some printers and ter­
minals are allowed a full 60 ± 20 p,s to respond. In either
case, simply looping is very inefficient. The immediate re­
sponse routine simply sets the timer for the appropriate de­
lay and unmasks the timer.

In the transmit routine, the data to be sent is referenced by
a pointer and an associated count. The routine loads the
appropriate address in the three LSBs of !TCRI. and writes
the data to be sent into! RTR I. This starts the transmitter. If
the data count is greater than the transmit FIFO depth
(three bytes), the Transmit FIFO Empty interrupt [TFE] is

2-160

setup. This vectors to code that refills the FIFO and re-en­
abies that interrupt again, if needed. This operation must be
carried out before the transmitter is finished the last frame in
the FIFO or the message will end prematurely.

The last frame transmitted must contain the EOM delimiter.
It can be loaded into !TCRI and data into !RTRI while the
transmitter is running without affecting the current frame. In
other words, the transmit FIFO is 12 bits wide, including
address and parity with data; the address field is clocked
along with the data field. In this way, multi-byte response
may be made in efficient manner.

ERROR HANDLING

In 5250 environments, the time immediately after the end of
message is most susceptible to transmission errors. The
BCP's receiver does not detect an error after the end of a
message unless transitions on the line continue for a com­
plete frame time or resemble a valid sync bit of a multi­
frame transmission. If the twinax line is still active at the end
of what could be an error frame, the receiver posts the
LMBT error. For example, if noise on the twinax line contin­
ues for up to 11 p,s after the three required fill bits, the
receiver will reset without flagging an error. If noise resem­
bles a start bit, the receiver now expects a new frame and
will post an error if a loss of synchronization occurs. If the
noisy environment is such that transitions on the receiver's
input continue for 11 p,s, or the receiver really has lost sync
on a real frame, the error is posted.

Basically, the receiver samples [LA] in addition to the loss
of synchronization indication to determine when to reset or
to post an error. After a loss of synchronization in the fill bit
portion of a frame, if the [LA] flag's time-out of 2 p,s is
reached prior to the end of what could be the next frame,
the receiver will reset. If the transitions prevent [LA] from
timing out for an entire 11 p,s frame time, a LMBT error is
posted. This method for resetting the receiver is superior in
that not only are the spurious loss of mid bit errors eliminat­
ed, the receiver performs better in noisy environments than
other designs.

SUMMARY

The IBM 5250 twinax environment is less understood and in
some ways more complex than the 3270 environment to
many developers. This application note has attempted to
explain some basics about twinax as a transmission medi­
um, the hardware necessary to interface the DPS344 to that
medium, and some of the features of the BCP that make
that task easier. Schematics are included in this document
to illustrate possible designs. Details of the twinax wave­
forms were discussed and figures included to illustrate
some of the more relevant features. Also, some different
software approaches to handling the transceiver interface
were discussed.

REFERENCES

5250 Information Display to Systeml36. and Systeml38
System Units Product Attachment Information, IBM, Novem­
ber 19S6.

Transmission Line Characteristics, Bill Fowler, National
Semiconductor Application Note AN-10S.

Basic Electromagnetic Theory, D.T. Paris, F.K. Hurd
McGraw-Hili Inc., 1969.

APPENDIX A: EXAMPLE CODE

The following code was assembled with the HILEVEL assembler. Table II shows the correlation between HILEVEL mnemonics
and the mnemonics used in National data sheets for the DP8344V.

TABLE II

HILEVEL National Semiconductor

MOVE Rs,Rd t10VE Rs,Rd
LD F't r , Rd { , Md e} MOVE EmIr J , Rd
ST Rs,F'tr{,Mde} MOVE Rs, EmIr J
LDAX F'tr,Rd MOVE Elr + AJ ,Rd
STAX Rs,F'tr MOVE Rs,Elr + AJ
LDNZ n,Rd MOVE EIZ + nJ ,rd
STNZ Rs,n MOVE rs,EIZ + nJ
LDl n,Rd MOVE n,rd
STl n,F'tr MOVE n,ElrJ

ADD Rs,Rd ADDA Rs,Rd
ADDRI Rs,F'tr{,Mde} ADD A Rs, EmIr J
ADDl n,Rsd ADD n,rsd

ADC Rs,Rd ADCA Rs,Rd
ADCRI Rs,F'tr(,Mde} ADCA Rs, EmIr]

SUBT Rs,Rd SUBA Rs,Rd
SUBRI Rs, F'tr (, Mde} SUBA Rs,EmIrJ
SUBl n,Rsd SUB n ,r-sd

SBC Rs,Rd SBCA Rs,Rd
SBCRI Rs,F'tr{,Mde} SBCA Rs, EmIr]

AND Rs,Rd ANDA Rs,Rd
ANDRI Rs,F'tr(,Mde} ANDA Rs, EmIr]
ANDI n,Rsd AND n,rsd

OR Rs,Rd ORA Rs,Rd
ORRI Rs,Ptr{,Mde} ORA Rs, EmIr]
ORI n,Rsd OR n,rsd

XOR Rs,Rd XORA Rs,Rd
XORRI Rs,F'tr(,Mde} XORA Rs, emIr J
XORI n,Rsd XOR n,rsd

CMF' Rs,n CMF' rs,n

CPL Rsd CF'L Rsd

BIT Rs,n BIT rs,n

SRL Rsd,n SHR Rsd,b
SLA Rsd,n SHL Rsd,b
ROT Rsd,n ROT Rsd,b

TLIF/9635-9

2-161

» z
I

U1
~

Q)

I

II

U) r--.
a.n .
Z
c(

Addr

JMP n
LJMP n
JMPR Rs
JMPI Ptr
JRMK Rs,n,m
Jt1PB Rs,s,p,n
JMPF s,f,n

n
nn
F~s

UrJ
Rs,b,m
Rs,p,s,nn
f,s,n

JMP
LJMP
JMP
LJMP
JRM.<
LJMP
JMP
Jcc n - opt. syntax for JMP f-

CALL n
LCALL n
CALLB Rs,s,p,n

RET {g{,rf}}
RETF s,f{,g{,rf}}

CALL r,
LCALL
LCALL

nn
Rs,p,s,nn

F~ET

RETF
Rcc

{g {,rf}}
f,s,{,{g}
{g o[,rf}}

{,r-f}}

-: opt. !.;ynta:·: -

EXX a,b{,g} EXX ba,bb,{,g}

TRAP no[, g} TRAP n {,gU}

Line

1
2
3
4
5
6
7
9
9

10
11
12
13
14
15
16
17
19
19
20
21
22
23
24
25
26
27
29

Tab l~:l 2.

.REL
TAB B
WIDTH 132
LIST S,F
TITLE RXlNT
; ---

;
;boal
jbyte
jbyte
jbaol
j

;rxinto
jbyte
;baol
jbaal
j{

RUNT· 9/21/87

pseudo tode

selected;
seladdrj
luItitount;
activated;

data;
rx.eolll;
Ita;

if (errarl

else {

if (lagerrar () == true I return;
)

if (TSR == ED"I rx.eal = true;
else rx.eoll = false;

if (!selectedl {

2·162

'* station is selected
1* address af selected station
'*nulber af frales in this luI ti
It tOlland has been activated

1* data star age
It recei ved EDI!
If line turn araund flag

1* recei ver errors

It set received EO" flag

TLIF/9635-10

29
30
31
32
33
34
35
36
37
3B
39
40
41
42

--43
44
45
46
47
49
49
50
51
52
53
54
55

Addr Li ne RUNT

56
57
5B
59
60
61
62
63
64
65
66
67
6B
69
70
71
72
73
74
75
76
77
78

if Cacti vel {
if (!rx_eoll

seladdr : !TSR f EO~);

I l = (SCPBASE + seladdrl; /f set SCP to appropriate session -/
data: rtr;

else {

else {

else {
proto_error (); I' should not get here
reset_xcvr (I;
return I I;
)

reset_xcvr I I;
return II;

/f not of interest

}

if (lIuHifralle) (If adivate llrite, etc ...
lulticount = parseldata)j /f set nUlber of frales 1/
seleded = truej /f ani y lIay to select f/
queue Idata) ;
)

else { / f not luI ti
, if ((var = single_decodeldata)) == queable)

queue (datal;
else if (var == illedl illediate Idatal j

'f selected "
1Z = (SCPBASE + seladdr I;

data = rtr
if (acti vatedl {

act_data(datal;
if (rx_eol) {

,. in the liddle of translission

'f end of lessage
selected = false;
activated = false;
}

return () ;
}

if Clulticount > 0)
queue(data) ;

else {

if (luI ticount-= 0)
if (n_eol) selected = fal se;
)

if (luHifrue) (

else {

luHicount = parse Idata);
queue (data);
)

if ((var = singleJecodeldatall == queablel
queue(datal;

2-163

TL/F/9635-11

»
z .
U1
-I.
0)

~ r--.....
Lt')

:2:
c:r::

79
BO
Bl
B2
83
84
B5
86
B7
BB
89
90
91
T2
93
94
95
96
97
9B
99

100
101
102
103
104
105
lOb
107
lOB
109
110

. ,
II

return I);

; logerror ()
j(

; boal resul tj
s"itch lerror _typel
case RDIS:

result = errJdisl)j
break;

case 1MBT:
result = err)Ibt II;
break;

case PARR:
result = err _parr II ;
break;

case OVF:
result = err _ovf () j
break;

defaul t:
result = err _unknolln ();
break;

return Iresul t) j

else if ('/ar == i.led) imllediateldata);
if Irx_eolll) selected = false;
}

'If receiver diabled while active

/f loss of midbi terror

/f pari ty error

/f recei ver FIFO overrun

/* strange error handler

Addr Line RUNT

111
112
113
114
115
116
117
11B
119
120
121
122
123
124
125
126
127
12B

jerr)lbtO
j {

if I!DA &Ie !selected 1I~ !delayllAIl returnlfalselj /* delay of 6 usee
else {

log ();
return (true) j

1* bump error counters
/f adlli t defeat

; ---
nale: RXlNi
descri ption: recei ver interrupt handler

recei ved datu. is sent to other routines thru gp7'
SCP is set appropriately in lZ
SP5P - active addresses: bits 0-6

. selected flag: bit 7
6P6P - lultieount: bit 7-6

unused: bi t 5

2-164

TlIF/9635-12

129 acti vated: bi t 4
130 rx_eoll flag: bi t 3
131 seladdr: bi ts 2-0
132 6P7P - received data
133
134 entry: Oil interrupt, GP5', GP6'
135 exit: ACC' ,SP7' ARE DESTROYED
136 hi story: tjq 9/16/87 create
137 ---
138 PUBLIC RCVRINT
139
140 EXTRN PARSE, QUEUE, I ~~EDECODE, RESXCVR
141 EHRN I'll DERRL, I'll DERRH, OVFERRL, OVFERRH, PARERRL, PARERRH
142 EXTRN RXERRL ,RXERRH ,R5PCTL ,RSPCTH ,8flSE5CP, IESERRL, IESERRH
143
144
145 5ELERR: EQU 8101000000 ; sel ect the error regi ster
146 RXEDI'I: EQU BI0000I000 j rxeoll flag
147 EOI'I: EQU BIOOOOOlll i EOM deliileter
148 MULTI: EQU 8111000000 ; multi count
149 SELECT: EQU 8110000000 ; selected flag
150 LTA: EQU ell01 j

151 CFLAS: EQU 8100000010 ; CARRY FLAG
152

00000 IC:"'I .N RCVRINT:
154 EXX /'\A,AB,DI ; 5ET APPROPRIATE BANK

00000 AEE8 154
00001 D500 155 JI'IPF NS, RERR, NOERROR
00002 CCOO 156 CALL RXERROR ; ERROR IN FRAME
00003 D900 157 JI'IPF 5, C, EXIT ; ABORT
00004 D900 158 NOERROR:
00004 B078 159 LDI EOH,ACC ; LOAD MASK

160 AND TSR,SP7 ; FORM ADDRESS
00005 FI6S 160

161 CMP GP7, EO 1'1 ; TEST
00006 307B 161
00007 DODO 162 JI'IPF NS,Z,CIRXINT i IF NOT EQUAL, JUMP

Addr Line RXINT

00008 50BA 163 ORI RIEOI'I, GP6 ; ELSE SET EOI'I FLAG
00009 cavo 164 JHP C2RXINT
OOOOA C800 165 CIRXINT:
OOOOA 4F7A 101: ANDI RXEOM* ,6Pb ; CLEAR IT

167 ;
168 ; DECIDE IF WE'RE ALREADY SElECTED
169 ;

OOOOB 170 C2RXINT:
171 JI'IPB 6P5,S,B7,DEVSELECT ; IF ALREADY SELECTED

00008 8DE9 171
OOOOC 0000 171

172 ;
173 ; NOT SELECTED ... DECIDE IF ADDRESS IS ACTIVE, IE; VALID FOR US

TLIF/9635-13

2-165

CD
it)

174 . ; z 00000 175 DEVTABLE: ; ELSE, SEE IF ACTIVE <C
116 JRMK TSR,ROT6,MSK3 ; JUMP BASED ON THE ADDRESS FIELDf4

OOOOD B3C5 176
177 JMPB SP5,NS,BO,RSTRX ; ADOR 0 - IF NOT ACTIVE, RESET RX

OOOOE BC09 177
OOOOF 0000 177

17B LJMP LOADSCP ; ACTIVE DEVICE, SET Scp
00010 CEOO 17B
00011 0000 17B

179 JMPB 6P5,NS,Bl,RSTRX ; ADDR 1 - IF NOT ACTIVE, RESET RX
00012 BC29 179
00013 0000 179

lBO LJMP LOADSCP ; ACTIVE DEVICE, SET scp
00014 CEOO lBO
00015 0000 lBO

lBl JMPB 6PS,NS,B2,RSTRX ; ADDR 2 - IF NOT ACTIVE, RESET RX
00016 BC49 lBl
00017 0000 lBl

lB2 LJMP LOADSCP ; ACTIVE DEVICE,
00018 CEOO lB2
00019 0000 lB2

lB3 JMPB SP5,NS,B3,RSTRX ; AD DR 3 - IF NOT ACTIVE,
000lA 8C69 183
0001B 0000 lB3

lB4 LJMP LOADSCP ; ACTIVE DEVICE,
000lC CEOO 184
0001D 0000 lB4

185 JMPB SP5,NS,B4,RSTRX ; ADDR 4 - IF NOT ACTIVE,
ooOlE 8CB9 185
0001F 0000 lB5

lB6 LJMP LDADSCP ; ACTIVE DEVICE,
00020 CEOO lB6
00021 0000 lB.6

lB7 JMPB GP5,NS,B5,RSTRX ; ADDR 5 - IF NOT ACTIVE,
00022 BCA9 lB7
00023 0000 lB7

dMP lBB LOADSCP ; ACTIVE DEVICE,
00024 CEOO lBB
00025 0000 lBB

lB9 JMPB SP5,NS,B6,RSTRX ; ADDR 6 - IF NOT ACTIVE,
00026 8CC9 189

Addr Line RXlNT

00027 0000 lB9
190 LJMP LDADSCP ; ACTIVE DEVICE,

0002B CEOO 190
00029 0000 190

191 LCALL RESXCVR ; ADDR 7 - RECEIVED EOI1 ... WE'RE NOT INTERESTED
0002A CEBO 191
00028 0000 191
0002C CBOO 192 JMP EXIT ; QUIT

TLIF/9635-14

2·166

»
193 ;

Z
en

194 ; LOAD THE SCP POINTER, II
Q)

195 i
00020 196 LOADSCP:

197 lOR ACC,ACC ; CLEAR
00020 F90B 197

19B 110VE ACC ,ILO i LOll BYTE
0002E FE4B 19B
0002F BOOB 199 LOI BASESCP, ACC ; SET UP UPPER BYTE OF SCP POINTER

200 "DVE ACC,ZHI
00030 FE6B 200
00031 B07B 201 LDI EOI1,ACC ; EOI1 I1ASK

202 AND TSR,ACC i LEAVE IN ACC
00032 Fl05 202

203 ADD ZHI,2HI ; ADD INTO I POINTER
00033 E273 203

204 ;
205 ; DECODE THE COI1I1AND FRAIIE
206 ;

00034 207 DECODE:
20B 110VE RTR,SP7 ; SET RX DATA

00034 FD64 200
209 JI1PB GP7,S,BO,I1ULTIFRl1j IF I1ULTIFRAI1E

00035 ODOB 209
00036 0000 209

210 LCALL IIIIIEDECODE ; ELSE, IIIIIEDIATE ACTION REQUIRED
00037 CEBO 210
00038 0000 210
00039 CBOO 211 J"P EXIT
0003A CBOO 212 IIULTIFRII:

213 LCALL PARSE ; SET "UL TI COUNT
0003A CEBO 213
00038 0000 213
0003C 5B09 214 ORI HIBO,SP5 ; SELECTED = TRUE
0003D 4FBA 215 ANDI EO"t,GP6 ; CLEAR SELECTED ADDRESS
0003E B07B 216 LDI EO",ACC ; "ASK ADDRESS

217 AND TSR,ACC ; LEAVE IN ACC
0003F Fl05 217

21B OR GP6,SP6 ; SET NEil ADDRESS
00040 F54A 210

219 LCALL I1UEUE ; PLACE ON QUEUE
00041 CEeo 219
00042 0000 219
00043 CBOO 220 JI1P EXIT

221 ;
222 ; THIS CODE IS BRANCHED TO IF THE DEVICE IS SELECTED
223 FIRST, SET SCP BASED ON SELECTED AODRESS

Addr Line RXINT

224 ;
00044 225 DEVSELECT:

226 lOR ACC,ACC ; CLEAR ACC
TL/F/9635-15

,.
I

2-167

2-168

Addr Line RUNT

265
OOOSE BCOB 265
0005F 0000 265

266
00060 CEeJ 266
00061 ~OOO 266

267
00062 CEBO 267
00063 0000 267
00064 CBOO 26B

269
270
271

00065 272
273

00065 CEBO 273
00066 0000 273

274
00067 BC6A 274
0006B 0000 274
00069 47F9 275
0006A 47F9 276

277
0006A CEBO 277
0006B 0000 277
0006C 0000 27B
0006C AFBO 279

290
2Bl
2B2
2B3
2B4
2B5
2B6
2B7
2BB
2B9
290
291

0006D 292
0006D 5406 293

294
0006E FD64 294
0006F 4BF 6 295

296
00070 BD2D 296
00071 0000 296

297
00072 BD6D 297
00073 0000 297

299

JIIPB SP7,NS,BO,SINGLE; IF NEW COIIIIAND IS NOT IIULTI,

LCALL PARSE ; IS IIUL TI, SET COUNT

LCALL QUEUE ; PUSH ON QUEUE

JIIP EXIT ; QUIT, TIL NEXT FRAIIE
;
; NEil COIIIIAND IS SINGLE ANDIOR NEEDS IIIIIEDIATE RESPONSE
;
SINGLE:

LCALL IIIIIEDECODE ; SINGLE ••• SO DO IT

JIIPB 6P6,NS,B3,EXIT ; IF NOT EOII •••

ANDI SELECT f ,6PS ; CLEAR SELECTED BIT
RSTRX:

LCALL RESXCYR j RESET, CLEAR DATA OUT

EXIT:
RET RI,RF ; RETURN GRACEFULLY

; ---
nne:
description:

entry:
exi t:
hi story:

RXERROR
recei ver ERROR handl er

DA + ERR interrupt, SPS', GP6'
ACC' ,GP7' ARE DESTROYED
tjq 9/16/B7 create

; ---
j

j RECEIVER ERROR HANDLER
;
RXERROR:

ORI
110YE

SELERR, TeR
RTR,SP7

; SET ECR BIT
j SET ERROR TYPE

ANDI SELERRt, TCR ; RESET TCR
JIIPD GP7,S, 81 ,LIIBTERRj LOSS OF IIID8IT

JI1PB GP7,S,B3,PARERR; PARITY

JI1PB SP7, S, 84, OYFERR ; OYER FLOW

2-169

TLIF/9635-17

>
Z

I
U1
Q)

I • I

CD ,....
I.t) 00074 BDBB 29B
Z 00075 0000 29B
c(

00076 0000 299 ILLEGAL:
00076 BOOB 300 LDI ILLEGAL, ACC ; WHAT ERROR IS THIS?

Addr Line RUNT

00077 CBOO 301 JI!P BUI!PERR ; SHOULD NOT GET HERE!!
0007B CBOO 302 LI!BTERR:
00078 DEOO 303 JI!PF S,DA,CLEARC ; if DA, THEN NO ERROR

304 JI!PB GP5,S,B7,LOSIT ; IF SELECTED, POST
00079 BDE9 304
0007A 0000 304
0007B ceoo 305 CALL SOLY ; DELAY FOR 6 USEe

306 JI1PB NCF,NS,B5,CLEARC; IF NOT ACTIVE - DISCARD, ELSE POST
0007C BCAI 306
00070 0000 306
oo07E 0000 307 LOGIT:
0007E BOOB 30B LDI I!IOERRL,ACC ; LOSS OF I!IDBIT
0007F CBOO 309 JI1P BUI1PERR i INCREMENT CoUtlTER
OOOBO CBOO. 310 PARERR:
OOOBO BOOB 311 LDI PARERRL ,ACC j PARITY
OOOBI CBOO 312 JI!P BUI1PERR
00082 CBOO 313 OVFERR:
000B2 B008 314 LDI OVFERRL, ACC ; OVERFLOW ... VERY BAD!
00083 B008 315 BUI1PERR:

316 ADD ZLO, YLO ; FORI! NEW POINTER
000B3 E212 316
000B4 BOIB 317 LDI HIOl,ACC j INCREIIENT

31B LD PTRY,GP6 ; FETCH OLD COUNT
00085 COCA 31B

319 ADORI GP6,PTRY,POSTD i ilRITE OUT NEil
000B6 A04A 319
000B7 0100 320 JI!PF NS,C,RXEIIT ; 6ET OUT

321 LD PTRY,GP6 ; FETCH UPPER BYTE
OOOBB COCA 321

322 ADDRI 6P6,PTRY
000B9 AOCA 322
OOOBA 5020 323 ORl CFLA6,CCR i SET CARRY
OOOBB 5020 324 RIEXIT:
OOOBD AFBO 325 RET ; DO NOT restore flags
oooac AFBO 326 CLEARC:
OOOBC 4FDO 327 ANDl CFLAGf,CCR ; CLEAR CARRY
OOOaD CBOO 32B JI1P RXEXIT

329 ; ---
330 nale: SDLY
331 description: delay routine, I!ULTIPLES OF 4.Busec,
332 1.4 usee OVERHEAD, IIAI OF 410usec
333 entry: delay count on stack
334 exi t: acc destroyed
335 WARNING: DDNT CALL THIS WITH COUNT = O!
336 history: tjq 9/16/B7 create
337 --

TL/F /9635-18

2·170

:r>
338 Z

OOOBE 339 SDLV: en
340 EXX IIA,IIB,NAI j BANK, ALLOW INTERRUPTS Q)

OC08E AESO 340
341 1I0VE DS,Ace j SET COUNT

0008F FD1F 341
342 !lOVE SP7,DS j PUSH 6P7 RESISTERS USED

00090 FFEB 342
343 IIOVE SP6,DS

Addr Line RUNT

00091 FFEA 343
344 1I0VE ACC,6P7 ; USE 6P7 FOR COUNT ALSO

00092 FD6S 344
00093 FD6S 345 SDLVLPI :
00093 S03A 346 LOI HI03,6P6 j LOAD FOR 4.8usec COUNTS
00094 B03A 347 SDLVLP2:
00094 201A 348 SUBI HI01,6P6 j DECREIIENT COUNT
00095 0000 349 JIIPF NS, Z ,SDLYLP2 ; CONTINUE UNTIL EXHAUSTED
00096 201B 350 SUBI HI01,6P7 ; DECREMENT OUTER COUNT
00097 0000 351 JIIPF NS, Z ,SDLVLPI j CONTINUE IF NOT ZERO

352 !'lOVE DS,6P6 j POP RE6
00098 FD5F 352

353 !lOVE DS,6P7
00099 FD7F 353
0009A AFBO 354 RET RI,RF j RETURN, RESTORE FLASS

355
356
357 END

Asselbl y Phase co.plete.
o error (51 detected.

TLlF/9635-19

II
I

2-171

00 r---~
00
CD

:Z
cc

The DP8344 BCp® Inverse
Assembler

OVERVIEW

The DP8344 BCP Inverse Assembler is a software package
for use in a Hewlett Packard Logic Analyzer. It was devel­
oped by National Semiconductor's Arlington Design Center
to allow disassembly of the DP8344 op-code mnemonics.

When developing systems using a RISC processor such as
the DP8344, the need often arises to know the sequence of
events that occurred in real time in the system. The actual
execution flow that occurred in the system can be deter­
mined by monitoring the states on the Instruction memory
Address bus and the Instruction memory bus of the DP8344
with a Hewlett Packard Logic Analyzer. The DP8344 BCP
Inverse Assembler enhances this development tool by dis­
playing the BCP instruction op-code mnemonics on the log­
ic analyzer's screen. This Application Note lists the equip­
ment needed as well as the necessary information to set up,
use, and obtain the DP8344 BCP Inverse Assembler. Addi­
tionally, the source code flow chart for the DP8344 BCP
Inverse Assembler is provided in Appendix A of this Applica­
tion Note.

EQUIPMENT REQUIRED

The following equipment is required to use the DP8344 BCP
Inverse Assembler:

1. DP8344 BCP Inverse Assembler; Available from National
Semiconductor.

2. HP1650A or HP1651A Logic Analyzer, or HP16500A Log­
ic Analysis System with an HP16510A State/Timing Card
installed.

3. DP8344 Biphase Communications Processor in a Sys-
tem.

It is assumed that the reader is familiar with the operation of
the HP Logic Analyzer. For further information refer to the
Operation Reference Manual provided with the HP1650A or
1651 A Logic Analyzers, or with the HP1651 OA Logic Analyz­
er Module. Information pertaining to the operation of the
logic analyzer in a state mode will be useful.

SYSTEM SETUP

A block diagram of the setup of the system for using the
DP8344 BCP Inverse Assembler is shown in Figure 1. The
target system refers to a system containing a BCP which is
running. The DP8344 BCP Inverse Assembler is software
which has been loaded into the HP Logic Analyzer. The
target system is interfaced to the DP8344 BCP Inverse As­
sembler through the HP Logic Analyzer's channels.

An example of a target system is a Multi-Protocol Adapter
(MPATM) installed in a personal computer. The MPA

I

National Semiconductor
Application Note 688
Laura Johnson

Design/Evaluation Kit includes both the hardware and soft­
ware that allows the MPA to emulate a 3270 or 5250 display
terminal and to support industry standard PC emulation soft­
ware. The MPA Design/evaluation Kit is available from Na­
tional Semiconductor (Part No. D88344MPA-EB). All the ex­
amples in this document were generated using an MPA
board and it's associated software for the target system.

Additional equipment which one may find useful includes an
extender card and an 84-pin PLCC Adapter. The extender
card brings a PC board out of the PC chasis, allowing easier
access to the BCP. An 84-pin PLCC Adapter allows one to
directly connect the channels of the logic analyzer to the
pins on the BCP. Emulation Technology, Inc., makes an
84-pin PLCC Adapter which it calls a BUG KATCHER. (It is
Part No. BC-4-084-PCC5-00000).

The sample target system described above includes the fol­
lowing equipment:

1. IBM® Personal Computer or compatible

2. MPA Development Kit

3. Extender Card (optional)

4. 84-Pin PLCC Adapter

The DP8344 BCP Inverse Assembler requires information
from both the Instruction memory Address bus and the In­
struction memory data bus of the BCP in the target system.
Thus, these pins must be connected to the logic analyzer.
The 84-pin PLCC Adapter allows one to directly connect the
logic analyzer channels to the BCP. Figure 2 provides a
detailed view of the pin connections from the DP8344 to the
logic analyzer. The pins can be connected to any of the
pods as long as the channel and label definitions are de­
fined accordingly in the FORMAT Menu as described later
in this Application Note.

STARTING THE DP8344 BCP INVERSE ASSEMBLER

Once the system hardware has been set up, the DP8344
BCP Inverse Assembler software needs to be installed in
the HP Logic Analyzer. The 3% inch diskette provided in the
DP8344 BCP Inverse Assembler Package contains the soft­
ware for the HP Logic Analyzer. Load the DP8344 BCP In­
verse Assembler Software into the HP Logic Analyzer by
selecting either LOAD ALL from file BCP, or LOAD State/
Timing E, from File BCP.E as in Figure 3. This automatically
loads the DP8344 BCP Inverse Assembler as well as the
stored State/Timing configuration into the HP Logic Analyz­
er.

J I Target
System I Channels from the HP Logic

Analyzer to the BCP I
IHP Logic I
Analyzer

TL/F/10B14-1

FIGURE 1. Block Diagram of the System Set Up

)

2-172

CONFIGURING THE HP LOGIC ANALYZER

The DP8344 Inverse Assembler software contains a Statel
Timing configuration which one may use without any chang­
es. The designer can change this default configuration, or
define an entirely new configuration to meet their own sys­
tems needs. However, certain parameters must exist in the
configuration for the DP8344 Inverse Assembler to work.
These parameters will be described using the default con­
figuration as an example.

Internal communication variables are set as the logic ana­
lyzer collects data from the target system. Therefore, the

Label DATA:
Channels 0-7

{~------~~'------~

AD7
18

AD6
19

ADS DP8344A
20

AD4

Vee
21 BCP
22

logic analyzer's configuration must follow the setup de­
scribed here. Figures 4-6 show the configuration provided
on the DP8344 BCP Inverse Assemblerdiskette. One may
create their own configuration by adding more labels and
connecting more channels to the target system than shown
in the examples in this document. This will allow one to
monitor the system activity according to their needs. How­
ever, the logic analyzers system configuration must include
the following:

In the Configuration Menu, as in Figure 4, one must:

1. Define the Analyzer Type to be a State Analyzer.

2. Assign at least two pods to the State Analyzer.

Label DATA: ,,'
Channels 8-15 Label DATA:

~eIO ...

Label ADDR:
Channels 1-7

Label STAT GND 84-pin PLCC
Channel 0

23
AD3

24

25

26

(top viow)

Connect to clock channel
of any Pod and define
this as the clock in the

Format Menu

FIGURE 2. Pins Connected to Logic Analyzer Pods

2-173

Label ADDR:
Channels 8-15

TLIF/10814-2

» z
m
CD
CD

fII
I

(

'-_";"-__ "') (Front Disc)

) All

File Type

inverse_assem
16530A-config
16510A-config
16500A-config

'-_";"-__ "') (Front DISC)

'-____ ...J) State/TImlng E

Filename

BCP
BCP_D
BCP_E
BCP_

File Type

inverse_assem
16530A-config
16510A-config
16500A-config

(a)

)

(b)

from file BCP

(Execute

File Description

DP8344 BCP INVERSE ASSEMBLER
DP8344 BCP INVERSE ASSEMBLER
DP8344 BCP INVERSE ASSEMBLER
DP8344 BCP INVERSE ASSEMBLER

(Cancel

from file (BCP_E)

Execute)

File Description

DP8344 BCP INVERSE ASSEMBLER
DP8344 BCP INVERSE ASSEMBLER
DP8344 BCP INVERSE ASSEMBLER
DP8344 BCP INVERSE ASSEMBLER

FIGURE 3. Two Methods to Load DP8344 BCP Inverse
Assembler Software from the Front Disk Menu

state/TImlng E) (Configuration) (cancel) (Run

Analyzer 1 Analyzer 2

Name: (MACHINE 1

Type: State Type: Off

Unassigned Pods

Pod 1 I I Pod 5
. __________ ----_:- __ ---'J 11--.-----------------------------__ -_-1 (---------~~~~---------)

Pod 2 I
----. ___ -----___________ J

Pod 3 I _____________________ . I

FIGURE 4. Configuration Menu on Logic Analyzer

2-174

TL/F/l0614-3

TL/F/l0814-4

)

TL/F/l0814-5

In the Format Menu, see Figure 5, define the labels and
assign the channels in the following manner:

1. Create labels ADDR, DATA, and STAT.

2. Assign the channels connected to the labels as follows:

i. label ADDR refers the channels connected to the In­
struction memory Address Bus on the DP8344. From
Figure 2, these are pins 75 through 68, and pins 65
through 58. To use the default configuration the pins
from the Instruction memory Address bus must be
connected to channel 0 through 15 of Pod E1.

ii. The DATA label refers to the channels connected to
the Instruction memory data bus on the DP8344. From
Figure 2, these are pins 9-2, and pins 83-76. To use
the default configuration the pins from the Instruction
memory Data bus must be connected to channels 0
through 15 of Pod E2.

State/TIming E) (Format 1

) (
Clock

,-~~ __ ~~Jt~ ______ -J

Pod E3

! m

Clock

iii. For the label STAT it is not necessary to actually con­
nect any of the defined channels to the BCP. However,
it is recommended that one does connect all defined
channels to a pin such as ground. This is because the
BCP does not use a STATUS bus. The STAT label
must be defined in the Format Menu. In the example
shown in Figure 5, the channel assigned to the STAT
label corresponds to a ground pin on the BCP connect­
ed to channel 0 of Pod E3.

3. Define the Clock to be the channel which corresponds to
the connection from the pod clock connection to pin 51,
IClK, on the DP8344. In the example shown in Figure 5,
the J clock means that IClK is connected to the clock
channel of pod E1. Set the clock to trigger on the rising
edge of IClK.

Cancel) (Run

(SymbolS)

Pod E2 Pod E1

m m

Clock Clock II II
I~I Pol -1-5-~~-.--87-~~-~:-O 15 ••• 87 0 1-5-~~-.--87- •• -: :-0

I
~~~: ~+~.:::::::::: ~~~ ....... " .. ,,: ~~~ .. """""". 
STAT +. . . . . . . . . .• ........... . ......... . 

DATA + ......•.. " •••••••••• . .•...••.•• 

Off 

Off 

Off 

Off 
TL/F/l0814-6 

FIGURE 5. Format Menu on Logic Analyzer 

St t /TI . ae Imlng ) ( race Run ) 

Sequence Levels 

~ 
While storing "any state" 

TRIGGER on "a" 1 times ( Branches ) Off 
Store "any state" ( Count ) TIm. 

( Prestor. ) Off 

Label> ( AD DR ) (DATA ) (STAT ) (DATA ) 
Base> ( Hex ) ( Invasm ) ( Hex ) ( Hex ) 

0 
( 0000 ) ( X ) ( XXXX ) 
( XXX X ) ( X ) ( XXX X ) 
( XXXX ) ( X ) ( XXXX ) 
( XXXX ) ( X ) ( XXXX ) 

TL/F/l0814-7 

FIGURE 6. Trace Menu on Logic Analyzer 

2-175 

l> 
z • en 
Q) 
Q) 

• I 



00 r-----------------------------------------------------------------------------------------------
00 
CD 

:Z 
< 

The trigger may be defined in. the Trace Menu according to 
the ,information desired. For example, in Figure 6, the trace 
is set to, trigger, when the BCP executes the program, Le., 
the Instruction ,memory Address bus is 0 hex. 

Once the system configuration has been developed,'it must 
be linked with,'the inverse assembler software. First; load 
the DP8344 BCP Inverse Assembler Software by either 
method showhin Figure 3; Second, create a configuration 
by either: . 

Lmodifying'theconfiguration file which was loaded into the 
HPLogic AnalyZerwith the DP8344' BCP Inverse Assem­
bler, or' 

iL by loading another State/Timing Configuration 'which has 
been stored "on diskette. 

State/TImlng E ) ( Listing 1 ) 

Third, verify that the three labels: ADDR, DATA and STAT 
exist in the Format Menu. Fourth, in the State Listing Dis­
play, shown in Figure 7, select the base field below the label 
DATA. This will generate seven pop-outs. Select the "In­
vasm" pop-out to allow the mnemonics to be displayed. Fi­
nally, store the new configuration to the DP8344 BCP In­
verse Assembler using one of the two methods shown in 
Figure 8. Whenever this configuration file' is loaded, the in­
verse assembler will automatically load. Note that storing 
the configuration to the Inverse Assembler will write over 
any previously stored configurations. Therefore, it is recom­
mended that one back up all of the stored configurations by 
copying them to a backup diskette. 

The system is now set to capture the BCPop-codes from 
your system and display them as mnemonics. 

( Invasm ) ~ ( Run 

~====:II DATA I~I ====DP=8=34=4=B=C=P=~=NE=M=O=NI=C==~1 ~I ===n=m=e=~ 
L..-"':':':::;""'..,JII Hex II Hex 1 1-1 __ R~e:::la:::;tI~ve~---I 

TL/F/l0S14-S 

FIGURE 7~ State LIsting Display 
The Data Label with base Hex will display the op-codes in Hex Format. The DP8344 BCP MNEMONIC Label is generated by selecting the base type for the Label 
DATA to be "Invasm". .. 

( 

( 

( 

(. 

System ) ( 

, Store' 1'," 
file description: 

Filename 

BCP 
BCP_D 
BCP_E 
BCP_ 

System' ) 

"" ' : Stofe ' ) 
file description: 

" Filliname 

BCP 
BCP_D 
BCP_E 
BCP_ 

( 

( 

( 

( 
( 

Front Disc ) 

All to file ( BCP ) 

DP8344 BCP INVERSE ASSEMBLER ) ( Execute ) 

File Type 

inverse_assem 
16530A...:..ccinfig 
16510A...:..config 
16500A...:..config 

Front Disc' ) 

State/TImlng E 

(a) 

) 

File Description 

DP8344 BCP INVERSE ASSEMBLER 
DP8344 BCP INVERSE ASSEMBLER 
DP8344 BCP INVERSE ASSEMBLER 
DP8344 BCP INVERSE ASSEMBLER 

to file ( BCP_E ) 

DP8344 BCP INVERSE ASSEMBLER ) ( Execute ) 

File Type 

inverse_assem 
16530A...:..config 
16510A...:..config 

, J 6500A...:..config 
(b) 

File Description 

DP8344 BCP INVERSE ASSEMBLER 
DP8344 BCP INVERSE ASSEMBLER 
DP8344 BCP INVERSE ASSEMBLER 
DP8344 BCP INVERSE ASSEMBLER 

FIGURE 8. Two Methods to Store Configurations to the 
DP8344 BCP Inverse Assembler Software 

2-176 

TL/F/l0S14-9 

TL/F/l0S14-10 



DP8344 BCP INVERSE ASSEMBLER OPERATION 

An inverse assembler converts instructions captured by the 
logic analyzer in binary form into mnemonics. Thus it makes 
it much easier to follow the program's execution flow. Fur­
thermore, one can still use the logic analyzer to view other 
useful information by specifying the trace conditions, labels 
and channel connections in the logic analyzer's configura­
tion file. 

One needs to be aware of how the captured information is 
actually diassembled. The inverse assembler begins disas­
sembling at the event which was triggered upon. Hence, any 
information captured prior to the trigger may not be correctly 
disassembled. To ensure valid disassembly of states cap­
tured prior to the trigger, one must scroll the display so the 
first instruction one wants disassembled is the first line on 

the display. Then select the "Invasm" pop-up on the top line 
of the State Listing Display. This causes the inverse assem­
bler to disassemble the code from the first line on the dis­
play. For an example, refer to Figures 9 through 12. The 
inverse assembler was set to trigger when the Instruction 
Address Bus was 80 hex, as in Figures 9 and 10. The two 
byte instructions captured prior to the trigger were not cor­
rectly disassembled. Referring to Figure 11, one observes 
that line -10 is disassembled as an ADD Instruction rather 
than as the second byte of the LJMP instruction from line 
-11. To correct this, one must select "Invasm" from the 
top line of the State Listing Menu. The inverse assembler 
immediately disassembles the code from the first line on the 
screen. The correctly disassembled code is shown in Figure 
12. 

State/TIming E ) ( Trace 1 

Sequence Levels 

While storing "anystate" 

TRIGGER on "a" 1 times 

Store "anystate" 

Label> ( ADDR ) (DATA ) ( STAT ) (DATA) 
~=~ 

Base> ( Hex ) ( Invasm ) ( Hex ) ( Hex) 

0 
( 0080 ) ( X 

( XXXX ) ( X 

( XXXX ) ( X 

( XXXX ) ( X 

~=~ 
) ( XXX X ) 

~=~ 
) ( XXXX ) 

~=:::: 
) ( XXXX ) 

~=~ 
"""---__ ) ( XXXX ) 

FIGURE 9. Triggering Event 

State/TIming E ) [ Listing 1 Invasm 

[]QQ[J~I DP8344 BCP I.tNEI.tONIC 

~~I Hex 

-7 005C 0001 JMP AE, S, 005EH 
-6 0050 0501 JMP AE, NS, 005FH 
-5 005F CF40 ILLEGAL OPCOOE 
-4 0060 CFOO ILLEGAL OPCOOE 
-3 0061 4FE2 ANO FEH, ICA/ATA 
-2 0062 C50B ILLEGAL OPCOOE 
-1 0063 CC1C CALL0080H 

0 0080 AE80 EXX MA, MS, NCHG 

0081 C343 MOVE ACA/FSA, [IV + 1 
0082 AE90 EXX AA, MS, NCHG 
0083 AEC8 EXX MA, AS, EI 
0084 C343 MOVE ACA/FSA, [IV + 1 
0085 AEEO EXX MA, BM, 01 
0104 AFFO AETOI, AFB 
0085 AEEO EXX MA, MB, 01 
0086 C343 MOVE ACA/FBA, [IV + 1 

Run 

( Branches J 
Off 

( Count ) TIme 

( Prestore ) Off 

Run 

II TIme 

II Relative 

120 ns 
80 ns 
160 ns 
120 ns 
120 ns 
80 ns 
120 ns 

160 ns 

80 ns 
160 ns 
120 ns 
120 ns 
160 ns 
80 ns 
120 ns 
120 ns 

FIGURE 10. Triggered Event as Shown In the State Listing 

2-177 

TL/F/l0B14-11 

TLlF/l0B14-12 

I 

Ell 



co 
co 
CD . 
Z 
< 

( StateL!!mln~ E ) [ Listing 1 ) Invasm ~ [ Run ) 

( t.4arkers ) Off 

ADDR II DATA II DP8344 BCP t.4NEt.40NIC II Time 

Hex II Hex II Hex II Relative 
TLlF/l0814-13 

-19 0050 0051 ADD 05H, NCF/18R 120ns 
-18 0051 4009 AND OOH, GP5/GP5' 80ns 
-17 0052 C340 MOVE CCR/OCR, [IV + ] 120 ns 
-16 0053 C089 JMP GP5/GP5' 160 ns 
-15 0054 8000 MOVE OOH, IWHI 200 ns 
-14 0055 857C MOVE 57H, IWLO 120 ns 
-13 0056 COOO LJMP [lW] 120 ns 

-12 0057 8009 JRMK GP5/GP5', OH, OH 80ns 

-11 0058 8009 LJMP GP5/GP5', OH, S, 0058H 200ns 
-10 0059 0058 ADD 05H, GP4/GP4' 120ns 
-9 005A 8C09 LJMP GP5/GP5', OH, NS, 005CH 120ns 
-8 0058 005C ADD 05H, IWLO 80 ns 
-7 005C 0001 JMP RE, S, 005EH 120 ns 
-6 0050 0501 JMP RE, NS, 005FH 120 ns 
-5 005F CF40 ILLEGAL OPCOOE 160 ns 
-4 0060 CFOO ILLEGAL OPCOOE 80 ns 

FIGURE 11. Incorrectly Disassembled Instructions Prior to Triggered Event 

( StateL!!mln~ E ) [ Listing 1 Invasm ~ Run 

( t.4arkers ) Off 

ADDR II DATA II DP8344 BCP t.4NEt.40NIC II Time 

Hex II Hex II Hex II Relative 
TLlF/l0814-14 

-19 0050 0051 ADD 05H, NCFII8R 120 ns 
-18 0051 4009 AND OOH, GP5/GP5' 80 ns 
-17 0052 C340 MOVE CCR/OCR, [IV + ] 120 ns 
-16 0053 C089 JMP GP5/GP5' 160 ns 
-15 0054 8000 MOVE OOH, IWHI 200 ns 
-14 0055 857C MOVE 57H, IWLO 120 ns 
-13 0056 COOO LJMP [lW] 120 ns 

-12 0057 8009 JRMK GP5/GP5', OH, OH 80ns 

-11 0058 8009 LJMP GP5/GP5', OH, S, 0058H 200ns 
-10 0059 0058 120ns 
-9 005A 8C09 LJMP GP5/GP5', OH, NS, 005CH 120ns 
-8 0058 005C 80ns 
-7 005C OD01 JMP RE, S, 005EH 120 ns 
-6 0050 0501 JMP RE, NS, 005FH 120 ns 
-5 005F CF40 ILLEGAL OPCOOE 160 ns 
-4 0060 CFOO ILLEGAL OPCOOE 80ns 

FIGURE 12. Instructions Prior to Triggered Event, Correctly Disassembled after Choosing the "Invasm" Pop-Out 

2-178 



This same technique must be applied if one jumps ahead in 
the display and then scrolls backwards to view a certain 
state; in other words, you do not scroll forward through ev­
ery line to reach the desired state. For example, if one man­
ually selected the line number -12 in Figure 12 and 
entered line 226, the screen would display lines 219 through 
234. Now if one rolls the screen backwards to display lines 
199 through 214 as in Figure 13, the two byte instruction, 
LJMP, is once again not correctly disassembled. Therefore, 
select the "Invasm" pop-out and the display is'correctly dis­
assembled as shown in Figure 14. 

One of the features of the BCP is that it uses register banks. 
However, there is no external indication of the bank's state. 
The name of a register therefore depends upon which bank 
one is in, as in Figure 15. Due to the manner in which the 
inverse assembler disassembles the captured data, keeping 
track of the correct register name meant that one would 
constantly have to scroll the screen back to the last EXX 
statement and hit the "Invasm" pop-out to ensure that the 
displayed register names are correct. Hence, to avoid this 
inconvenience, the register names for both banks are dis­
played at all times. Refer to line 45 of Figure 16 for an 
example. The op-code decodes to MOVE where the source 
register is RO. Therefore, the register names for RO in both 
banks: Main Bank A -: CCR, and Alternate Bank A - DCR, 
are displayed. 

( State/T!mlng E ) ( Listing 1 

To view the op-code in both mnemonic form and hex form, 
as in Figure 16, define the, DATA label twice in the Format 
Menu, as in Figure 4. Then, select the base label to be 
"Hex" for one and "Invasm" for the other in the State list­
ing. 

OBTAINING THE DP8344 BCP INVERSE ASSEMBLER 

The DP8344 BCP Inverse Assembler package for use in a 
Hewlett Packard Logic Analyzer can be obtained from Na­
tional Semiconductor. Included in the Inverse Assembler 
Package is the DP8344 BCP Inverse Assembler software, 
including configuration files as described in this application 
note. These will be on a 3%" diskette formatted for use in 
the HP Logic Analyzer. Additionally, a 5%" diskette format­
ted for use on an IBM personal computer or compatible, 
containing the DP8344 Inverse Assembler source code can 
be obtained upon a request from National Semiconductor. 

If one owns the HP 10391A Inverse Assembler Develop­
ment Package, the source code can be modified to make 
any improvements one wishes to make to the DP8344 BCP 
Inverse Assembler. Note that it is not necessary to have the 
HP 10391A Inverse Assembler Development Package to 
use the DP8344 BCP Inverse Assembler., 

( Invasm ~ ( Run 

ADDR II DATA II DP8344 BCP t.lNEt.40NIC II TIme 

Hex II Hex II Hex II Relative 
TL/F/10814-15 

199 006A FD08 MOVE GP4/GP4', GP4/GP4' 120 ns 
200 0068 CEOa LJMPOa6AH 80 ns 
201 006C 006A ADD 06H, GP6/GP6' 120ns 
202 006A FD08 MOVE GP4/GP4', GP4/GP4' 120ns 
203 0068 CEOO LJMP006AH 80ns 
204 006C 006A ADD 06H, GP6/GP6' 120 ns 
205 006A FD08 MOVE GP4/GP4', GP4/GP4' 80 ns 

206 0068 CEOO LJMP006AH 120 ns 

207 006C 006A ADD a6H, GP6/GP6' 120ns 
208 006A FD08 MOVE GP4/GP4', GP4/GP4' 80ns 
209 0068 CEOO LJMP006AH 120 ns 
210 006C 006A ADD 06H, GP6/GP6' 120 ns 
211 006A FD08 MOVE GP4/GP4', GP4/GP4' 80 ns 
212 0068 CEOO LJMP006AH 120ns 
213 006C 006A ADD 06H, GP6/GP6' 120ns 
214 006A FD08 MOVE GP4/GP4', GP4/GP4' 80ns 

FIGURE 13. Incorrectly Disassembled Instructions Produced 
by Jumping Ahead In Display 

2-179 



co r---------------------------------------------------------------------------------------, 
co 
CD . 
z 
<I: 

Alternate Main 

( State/TImlng E ) ( LIsting 1 Invasm G;D ( Run) DCR CCR RO 

Rl 

R2 

R3 

199 
200 
201 
202 
203 
204 
205 

206 

207 
208 
209 
210 
211 
212 
213 
214 

A 

ADDR " DATA ':=' ===D=P=83=4=4=BC=P=t.l=N=Et.l=O=N=IC==~II:====n=m=e===: 
Hex " Hex " Hex "L-......;R.;.;e.;.;la;.;;tlv.;.;e __ ---' 

006A FD08 MOVE GP4/GP4', GP4/GP4' 120 ns 
0068 CEOO LJMP006AH 80 ns 
006C 006A 120ns 

8 

006A FD08 MOVE GP4/GP4', GP4/GP4' 120ns 
0068 CEOO WMP006AH 80 ns 
006C 006A 120 ns 
006A FD08 MOVE GP4/GP4', GP4/GP4' 80 ns 

0068 CEOO LJMP006AH 120n5 

006C 006A 120 ns 
006A FD08 MOVE GP4/GP4', GP4/GP4' 80 ns 
0068 CEOO WMP006AH 120 ns 
006C 006A 120ns 
006A FD08 MOVE GP4/GP4', GP4/GP4' 80ns 
0068 CEOO WMP006AH 120ns 

-
18R 
:-

ATR 
r--
F8R 
'---

RTR -
TSR -
TCR -
TMR 

:r----
GP4' ---GP5' -
GP6' -
GP7' -

NCF 

ICR 

ACR 

GPO 

GPl 

GP2 

GP3 

GP4 (accumulator) 

GP5 

GP6 

GP7 

R4 

R5 

R6 

R7 

R8 

R9 

Rl0 

Rll 

I-W...;..(IO_W_b..;.yt_e;...) ----i R12 

W (high byte) R13 
~::::::::===~ 
I-X...:(_lo_w_byt;..e..;;) __ ---I R14 

006C 006A 
006A FD08 MOVE GP4/GP4', GP4/GP4' 

120 ns 
80 ns 

Index Registers 
(pointers) 

X (high byte) R15 

~=====~ 

FIGURE 14. Instructions from Figure 13 Correctly Disassembled 
l-y...:(;...IO_w_byt;....;;e) __ ---I R16 

y (high byte) R17 

~=====~ after Choosing the "Invasm" Pop-Out 

2-180 

Timer 

I-Z....;(_IOw_byt:....e....;.) __ ___t R18 

LZ_(:..h.;:.ig_h ...:byt:..e..;,) __ ---' R19 

GP8 

GP9 

GP10 

GP11 

GP12 

GP13 

GP14 

GP15 

R20 

R21 

R22 

R23 

R24 

R25 

R26 

R27 

~!-R-L-------tl R28 
.TRH . R29 
~======~ 

Stacks 1-1 ~-S:-------ll ::~ 
FIGURE 15. Register Map 



:t> 
Z 

( StateL!!mln2 E ) ( Listing 1 ) ( Invasm ) ~ ( Run ) en 
Q) 
Q) 

( t.4arkers ) Off 

ADDR II DATA II DP8344 BCP t.4NEt.40NIC II TIme 

Hex II Hex II Hex II Relative 
TLIF/10814-17 

45 002B C340 MOVE CCR/DCR, [IV + ) 160ns 
46 002C E96S SUBA GP4/GP4', GP7/GP7' 160 ns 
47 0020 C340 MOVE CCR/DCR, [IV + ) 120 ns' 
48 002E A52B SUBA GP7 /GP7', [IX + ) 160 ns 
49 002F C340 MOVE CCR/DCR, [IX + ) 160ns 
50 0030 207B SUB 07H, GP7/GP7' 160 ns 
51 0031 C340 MOVE CCR/DCR [IV + ) 80 ns 

52 0032 ED6B SBCA GP7/GP7', GP7/GP7' 160 ns~ 

53 0033 C340 MOVE CCR/DCR [IV + ) 120ns 
54 0034 A72B SBCA GP7/GP7' [IX + ) 160 ns 
55 0035 C340 MOVE CCR/DCR [IV + ) 160 ns 
56 0036 A92B ANDA GP7/GP7', [lX+) 160 ns 
57 0037 C340 MOVE CCR/DCR, [IV + ) 160ns 
58 0038 F573 ORA IZHI, GP7/GP7' 160 ns, 
59 0039 C340 MOVE CCR/DCR, [IV + ) 80 ns 
60 003A AB2B ORA GP7IGP7', [lX+) 160 ns 

FIGURE 16. listing of Inverse Assembler on Logic Analyzer 
Demonstrating the Display of Both Register Bank Names 

I 

EI 
I 

2-181 



co 
co 
to 
:Z 
< 

APPENDIX A 

Flow Chart of DP8344 Inverse Assembler Source Code 

TL/F/10814-18 

2·182 



Section 3 
Physical Dimensions 

I 

Ell 



Section 3 Contents 
Physical Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 
Bookshelf 
Distributors 

3-2 



~National 
" ::r 
~ 
(;' 

U Semiconductor All dimensions are in inches (millimeters) e. 
c 

24 Lead Molded Dual-In-Line Package (N) 
NS Package Number N24A 

1.243-1.270 
1--------(31.57_32.261--------1 

0.062 

(1.5751 
RAO 

PIN NO. llDENT 

114.731 0.030 

z 
oonEO OUTLINES 

REFLECT ALTERNATE 

MIN -(0.-76-21 0.075 
0.16010.005 r:

~~ MOLDED BODY CONFIGURATION 

0.600-0.620 MAX 11.9051 

[r,115.24-15.7481 Ll"I""r----+-+------;..;.;...-H---,n--J:-----------L 

95°±5° 

I _ 0.625 ~:~~~ 
r--(15875 +11.635) ---l 

. -(1.381 

84 Lead Plastic Chip Carrier (V) 
NS Package Number V84A 

32L DDH-D.OS31 (1:m-l.3461-' 
REf 

20 SPACES AT 

(~:~:~=~::l---~~ 
sa ~ 

1.12010.010 

~ 

3·3 

TYP 0.015 ~ t t 

~ ~~ 0.018±0.0. (0381' 
---- 0.125-0.140 • I 

0.10010.010 (0.457 ±0.0761 (3.175-3.5561 MIN 

(2.54010.2541 . 

0.005-0,015 

-~ 

N2'AIREVEl 

1{j
::~:1 
NDM 

UAIINO.IID£HT 
0.080 
(1.IUI 

DIA 

~ 
.!!!!.':!:ill.. 

VIEW A-A 

3' 
(I) 
:s 
tn 
0' 
:s 
en 

til 
I 



NOTES 



NOTES 



NOTES 



NOTES 



NOTES 



NOTES 



NOTES 



~National 
~ Semiconductor 
Bookshelf of Technical Support Information 
National Semiconductor Corporation recognizes the need to keep you informed about the availability of current technical 
literature. 

This bookshelf is a compilation of books that are currently available. The listing that follows shows the publication year and 
section contents for each book. 

Please contact your local National sales office for possible complimentary copies. A listing of sales offices follows this 
bookshelf. 

We are interested in your comments on our technical literature and your suggestions for improvement. 

Please send them to: 

Technical Communications Dept. MIS 16-300 
2900 Semiconductor Drive 
P.O. Box 58090 
Santa Clara, CA 95052-8090 

AlS/AS lOGIC DATABOOK-1990 
Introduction to Advanced Bipolar logic • Advanced low Power Schottky. Advanced Schottky 

ASIC DESIGN MANUAL/GATE ARRAYS & STANDARD CEllS-1987 
SSIIMSI Functions • Peripheral Functions • lSllVlSI Functions • Design Guidelines • Packaging 

CMOS lOGIC DATABOOK-1988 
CMOS AC Switching Test Circuits and Timing Waveforms. CMOS Application Notes • MM54HC/MM74HC 
MM54HCT/MM74HCT. CD4XXX. MM54CXXX/MM74CXXX. Surface Mount 

DATA ACQUISITION liNEAR DEVICES-1989 
Active Filters • Analog Switches/Multiplexers • Analog-to-Digital Converters • Digital-to-Analog Converters 
Sample and Hold • Temperature Sensors • Voltage Regulators • Surface Mount 

DISCRETE SEMICONDUCTOR PRODUCTS DATABOOK-1989 
Selection Guide and Cross Reference Guides • Diodes • Bipolar NPN Transistors 
Bipolar PNP Transistors • JFET Transistors • Surface Mount Products • Pro-Electron Series 
Consumer Series • Power Components • Transistor Datasheets • Process Characteristics 

DRAM MANAGEMENT HANDBOOK-1991 
Dynamic Memory Control • Error Detection and Correction • Microprocessor Applications for the 
DP8408A109A117/18/19/28/29· Microprocessor Applications for the DP8420Al21A122A 
Microprocessor Applications for the NS32CG821 

EMBEDDED SYSTEM PROCESSOR DATABOOK-1989 
Embedded System Processor Overview • Central Processing Units • Slave Processors • Peripherals 
Development Systems and Software Tools 

FDDI DATABOOK-1991 
FOOl Overview. DP83200 FOOl Chip Set • Development Support. Application Notes and System Briefs 

F100K ECl lOGIC DATABOOK & DESIGN GUIDE-1990 
Family Overview • 300 Series (low-Power) Datasheets • 100 Series Datasheets • 11 C Datasheets 
ECl BiCMOS SRAM, ECl PAL, and ECl ASIC Datasheets. Design Guide. Circuit Basics. logic Design 
Transmission Line Concepts • System Considerations • Power Distribution and Thermal Considerations 
Testing Techniques • Quality Assurance and Reliability. Application Notes 



FACTTM ADVANCED CMOS LOGIC DATABOOK-1990 
Description and Family Characteristics • Ratings, Specifications and Waveforms 
Design Considerations • 54AC17 4ACXXX • 54ACT 17 4ACTXXX • Quiet Series: 54ACQ17 4ACQXXX 
Quiet Series: 54ACTQ17 4ACTQXXX • 54FCT 17 4 FCTXXX • FCT A: 54FCTXXXA17 4FCTXXXA 

FAST® ADVANCED SCHOTTKY TTL LOGIC DATABOOK-1990 
Circuit Characteristics. Ratings, Specifications and Waveforms. Design Considerations. 54F174FXXX 

FAST® APPLICATIONS HANDBOOK-1990 
Reprint of 1987 Fairchild FAST Applications Handbook 
Contains application information on the FAST family: Introduction • Multiplexers • Decoders. Encoders 
Operators. FIFOs. Counters. TTL Small Scale Integration. Line Driving and System Design 
FAST Characteristics and Testing. Packaging Characteristics 

GENERAL PURPOSE LINEAR DEVICES DATABOOK-1989 
Continuous Voltage Regulators. Switching Voltage Regulators • Operational Amplifiers • Buffers • Voltage Comparators 
Instrumentation Amplifiers • Surface Mount 

GRAPHICS HANDBOOK-1989 
Advanced Graphics Chipset • DP8500 Development Tools • Application Notes 

IBM DATA COMMUNICATIONS HANDBOOK-1992 
IBM Data Communications. Application Notes 

INTERFACE DATABOOK-1990 
Transmission Line Drivers/Receivers • Bus Transceivers • Peripheral Power Drivers • Display Drivers 
Memory Support • Microprocessor Support • level Translators and Buffers • Frequency Synthesis • Hi-Rei Interface 

LINEAR APPLICATIONS HANDBOOK-1991 
The purpose of this handbook is to provide a fully indexed and cross-referenced collection of linear integrated circuit 
applications using both monolithic and hybrid circuits from National Semiconductor. . 

Individual application notes are normally written to explain the operation and use of one particular device or to detail various 
methods of accomplishing a given function. The organization of this haridbook takes advantage of this innate coherence by 
keeping each application note intact, arranging them in numerical order, and providing a detailed Subject Index. , . , 

LOCAL AREA NETWORK DATABOOK-1992 
Integrated Ethernet Network Interface Controller Products. Ethernet Physical layer Transceivers 
Ethernet Repeater Interface Controller Products. Hardware and Software Support Products. FOOl Products. Glossary 

LS/S/TTL DATABOO~-1989 
Contains former Fairchild Products 
Introduction to Bipolar logic • low Power Schottky • Schottky • TTL • TTL-low Power 

MASS STORAGE HANDBOOK-1989 
Rigid Disk Pulse Detectors • Rigid Disk Data Separators/Synchronizers and ENDECs 
Rigid Disk Data Controller • SCSI Bus Interface Circuits • Floppy Disk Controllers • Disk Drive Interface Circuits 
Rigid Disk Preamplifiers and Servo Control Circuits. Rigid Disk Microcontroller Circuits. Disk Interface Design Guide 

MEMORY DATABOOK-199Q 
PROMs, EPROMs, EEPROMs • TTL I/O SRAMs • ECl I/O'SRAMs 

MICROCONTROLLER DATABOOK-1989 
COP400 Family. COP800 Family • COPS Applications • HPC Family • HPC Applications 
MICROWIRE and MICROWIRE/PlUS Peripherals. Microcontroller Development Tools 

MICROPROCESSOR DATABOOK-1989 
Series 32000 Overview. Central Processing Units • Slave Processors • Peripherals 
Development Systems and Software Tools. Application Notes. NSC800 Family 



PROGRAMMABLE LOGIC DATABOOK & DESIGN MANUAL-1990 
Product Line Overview. Datasheets • Designing with PLDs • PLD Design Methodology. PLD Design Development Tools 
Fabrication of Programmable Logic • Application Examples 

REAL TIME CLOCK HANDBOOK-1991 
Real Time Clocks and Timer Clock Peripherals • Application Notes 

RELIABILITY HANDBOOK-1986 
Reliability and the Die • Internal Construction. Finished Package. MIL-STD-883. MIL-M-38510 
The Specification Development Process • Reliability and the Hybrid Device • VLSIIVHSIC Devices 
Radiation Environment • Electrostatic Discharge. Discrete Device • Standardization 
Quality Assurance and Reliability Engineering • Reliability and Documentation • Commercial Grade Device 
European Reliability Programs • Reliability and the Cost of Semiconductor Ownership 
Reliability Testing at National Semiconductor. The Total Militaryl Aerospace Standardization Program 
883B/RETSTM Products. MILS/RETSTM Products. 883/RETSTM Hybrids. MIL-M-38510 Class B Products 
Radiation Hardened Technology • Wafer Fabrication • Semiconductor Assembly and Packaging 
Semiconductor Packages. Glossary of Terms. Key Government Agencies. ANI Numbers and Acronyms 
Bibliography. MIL-M-38510 and DESC Drawing Cross Listing 

SPECIAL PURPOSE LINEAR DEVICES DATABOOK-1989 
Audio Circuits • Radio Circuits • Video Circuits • Motion Control Circuits • Special Function Circuits 
Surface Mount 

TELECOMMUNICATIONS-1990 
Line Card Components • Integrated Services Digital Network Components • Analog Telephone Components 
Application Notes 





NATIONAL SEMICONDUCTOR CORPORATION DISTRIBUTORS' 
ALABAMA San Jose Lake Mary MARYLAND 

Huntsville Anthem Electronics Arrow Electronics Columbia 
Arrow Electronics (408) 453·1200 (407) 333·9300 Anthem Electronics 
(205) 837·6955 Arrow Electronics Orlando (301) 995·6840 ' 
Bell Industries (408) 441·9700 Chip Supply Arrow Electronics 
(205) 837·1074 Pioneer Technology (407) 298·7100 (301) 995·6002 
Hamilton! Avnet (408) 954·9100 Time Electronics Hamilton! Avnet 
(205) 837·7210 Zeus Components (407) 841·6565 (301) 995·3500 
Pioneer Technology (408) 629-4789 SI. Petersburg Time Electronics 
(205) 837·9300 Sunnyvale Hamilton! Avnet (301) 964·3090 
Time Electronics Bell Industries (813) 572·4329 Zeus Components 
(205) 721·1133 (408) 734·8570 Winter Park (301)997·1118 

ARIZONA Hamilton! Avnet Hamilton! Avnet Gaithersburg 

Chandler (408) 743·3300 (407) 657·3300 Pioneer Technology 

Hamilton! Avnet Time Electronics GEORGIA (301) 921·0660 

(602) 961·1211 (408) 734·9888 Duluth MASSACHUSETTS 
Phoenix Torrance Arrow Electronics Andover 

Arrow Electronics Time Electronics (404) 497·1300 Bell Industries 
(602) 437·0750 (213) 320-0880 Hamilton! Avnet (508) 474·8880 

Tempe Tustin (404) 446·0611 Beverly 
Anthem Electronics Arrow Electronics Pioneer Technology Sertech Laboratories ' 
(602) 966·6600 (714) 838·5422 (404) 623·1003 (508) 927·5820 
Bell Industries Time Electronics Norcross Lexington 
(602) 966·7800 (714) 937·0911 Bell Industries Pioneer Standard 
Time Electronics Woodland Hills (404) 662·0923 (617) 861·9200 
(602) 967·2000 Hamilton! Avnet Time Electronics Norwood 

CALIFORNIA 
(818) 594·0404 (404) 368·0969 Gerber Electronics 

YorbaUnda (617) 769·6000 Agora Hills Zeus Components ILLINOIS 
Bell Industries (714) 921·9000 Addison Peabody 

(818) 706·2608 Pioneer Electronics Hamilton! Avnet 

Time Electronics COLORADO (708) 495·9680 (508) 531·7430 

(818) 707·2890 Aurora Bensenville Time Electronics 

Zeus Components Arrow Electronics Hamilton! Avnet (508) 532·9900 

(818) 889·3838 (303) 373·5616 (708) 860·7700 Tyngsboro 

Burbank Englewood Elk Grove Village Port Electronics 

Elmo Semiconductor Anthem ElectroniCS Bell Industries (508) 649·4880 

(818) 768·7400 (303) 790·4500 (708) 640·1910 Wakefield 

Calabasas Hamilton! Avnet Itasca Zeus Components 

F!X Electronics (303) 799·7800 Arrow Electronics (617) 246·8200 

(818) 592·0120 Time Electronics (708) 250·0500 Wilmington 

Chatsworth (303) 721·8882 Schaumburg Anthem Electronics 

Anthem Electronics Wheatridge Anthem Electronics (508) 657·5170 

(818) 700·1000 Bell Industries (708) 884·0200 Arrow Electronics 

Arrow Electronics (303) 424·1985 Time Electronics (508) 658·0900 

(818) 701·7500 CONNECTICUT (708) 303·3000 MICHIGAN 
Time Electronics Danbury INDIANA Grand Rapids 
(818) 998·7200 Hamilton! Avnet Carmel Arrow Electronics 

Costa Mesa (203) 743·6077 Hamilton! Avnet (616) 243·0912 
Avnet Electronics Shelton (317) 844·9333 Pioneer Standard " 
(714) 754·6050 Pioneer Standard Fort Wayne (616) 698·1800 
Hamilton Electro Sales (203) 929·5600 Bell Industries Grandville 
(714) 641·4100 Wallingford (219) 423·3422 Hamilton! Avnet 

Cypress Arrow Electronics Indianapolis (616) 243·8805, 
Bell Industries (203) 265·7741 Advent Electronics Inc, Livonia 
(714) 895·7801 Waterbury (317) 872·4910 Arrow Electronics 

Gardena Anthem ElectroniCS Arrow Electronics (313) 665·4100 
Hamilton! Avnet (203) 575·1575 (317) 299·2071 Pioneer Standard 
(213) 516·8600 FLORIDA Bell Industries (313) 525·1800 

Irvine Altamonte Springs, (317) 875·8200 Novi 
Anthem Electronics Bell Industries Pioneer Standard Hamilton! Avnet 
(714) 768·4444 (407) 339·0078 (317) 573·0880 (313) 347·4720 

Rocklin Pioneer Technology IOWA 
Wyoming 

Anthem Electronics (407) 834·9090 Cedar Rapids 
R. M, Electronics, Iryc. 

(916) 624·9744 Zeus Components Advent Electronics 
(616) 531·9300 

Bell Industries (407) 788·9100 (319) 363·0221 MINNESOTA 
(916) 652·0414 Clearwater Arrow Electronics Eden Prairie 

Roseville Pioneer Technology (319) 395·7230 Anthem Electronics 
Hamilton! Avnet (813) 536·0445 Hamilton! Avnet (612) 944·5454 
(916) 925·2216 Deerfield Beach (319) 362·4757 Arrow Electronics 

San Diego Arrow Electronics (612) 828·7140 
Anthem Electronics (305) 429·8200 KANSAS Pioneer Standard 
(619) 453·9005 Bell Industries Lenexa (612) 944·3355 
Arrow Electronics (305) 421·1997 Arrow Electronics Edina 
(619) 565-4800 Pioneer Technology (913) 541·9542 Arrow Electronics 
Hamilton! Avnet (305) 428·8877 Hamilton! Avnet (612) 830·1800 
(619) 571·1900 Fort Lauderdale (913) 888·8900 Time Electronics 
Time Electronics Hamilton!Avnet (612) 943·2433 
(619) 586·1331 (305) 767·6377 Minnetonka 
Zeus Components Time Electronics Hamilton! Avnet 
(619) 277·9681 (305) 484·7778 (612) 932·0600 



NATIONAL SEMICONDUCTOR CORPORATION DISTRIBUTORS (Continued) 

MISSOURI Westbury PENNSYLVANIA WISCONSIN 
Chesterfield Hamilton! Avnet Export Div. Horsham Brookfield 

Hamilton! Avnet (516) 997·6868 Anthem Electronics Arrow Electronics 
(314) 537·1600 Woodbury (215) 443·5150 (414) 792·0150 

SI. Louis Pioneer Electronics Pioneer Technology Pioneer Electronics 
Arrow Electronics (516) 921·8700 (215) 674·4000 (414) 784·3480 
(314) 567·6888 NORTH CAROLINA Mars Mequon 
Time Electronics Charlotte Hamilton! Avnet Taylor Electric 
(314) 391·6444 Hamilton! Avnet (412) 281·4150 (414) 241-4321 

NEW JERSEY (704) 527·2485 Pittsburgh Waukesha 

Cherry Hill Pioneer Technology Pioneer Bell Industries 

Hamilton! Avnet (704) 527·8188 (412) 782·2300 (414) 547·8879 

(609) 424·0100 Durham TEXAS Hamilton! Avnet 

Fairfield Pioneer Technology Austin (414) 784·8205 

Hamilton! Avnet (919) 544·5400 Arrow Electronics CANADA 
(201) 575·3390 Raleigh (512) 835·4180 WESTERN PROVINCES 
Pioneer Standard Arrow Electronics Hamilton! Avnet Burnaby 
(201) 575·3510 (919) 876-3132 (512) 837·8911 Hamilton! Avnet 

Marlton Hamilton! Avnet Minco Technology Labs. (604) 420-4101 
Arrow Electronics (919) 878·0810 (512) 834·2022 Semad Electronics 
(609) 596-8000 Time Electronics Pioneer Standard (604) 420·9889 
Time Electronics (919) 874·9650 (512) 835-4000 Calgary 
(609) 596-6700 OHIO Time Electronics Electro Sonic Inc. 

Parsippany Centerville (512) 399·3051 (403) 255·9550 
Arrow Electronics Arrow Electronics Carrollton Semad Electronics 
(201) 538·0900 (513) 435·5563 Arrow Electronics (403) 252·5664 

Pine Brook Cleveland (214) 380·6464 Zentronics 
Anthem Electronics Pioneer Dallas (403) 295·8838 
(201) 227·7960 (216) 587·3600 Hamilton! Avnet Edmonton 

Wayne Columbus (214) 308·8111 Zentronics 
Time Electronics Time Electronics Pioneer Standard (403) 468·9306 
(201) 758·8250 (614) 794·3301 (214) 386·7300 Markham 

NEW MEXICO Dayton Houston Semad Electronics Ltd. 

Albuquerque Bell Industries Arrow Electronics (416) 475·3922 

Alliance Electronics Inc. (513) 435·8660 (713) 530-4700 Richmond 

(505) 292·3360 Belllndustries·Military Hamilton! Avnet Electro Sonic Inc. 

Bell Industries (513) 434·8231 (713) 240·7733 (604) 273·2911 

(505) 292·2700 Hamilton! Avnet Pioneer Standard Zentronics 

Hamilton! Avnet (513) 439·6700 (713) 495·4700 (604) 273·5575 

(505) 345·0001 Pioneer Standard Richardson Saskatoon 

NEW YORK (513) 236·9900 Anthem Electronics Zentronics 

Binghamton Zeus Components (214) 238·7100 (306) 955·2207 

Pioneer (513) 937·7400 Time Electronics Winnipeg 

(607) 722·9300 Solon (214) 644·4644 Zentronics 

Buffalo Arrow Electronics Zeus Components (204) 694·1957 

Summit Electronics (216) 248·3990 (214) 783·7010 EASTERN PROVINCES 

(716) 887·2800 Hamilton! Avnet UTAH Mississauga 

Commack (216) 349·5100 Midvale Hamilton! Avnet 

Anthem Electronics Westerville Bell Industries (416) 795·3825 

(516) 864·6600 Hamilton! Avnet (801) 255·9611 Time Electronics 

Fairport (614) 882·7004 Salt Lake City (416) 672·5300 

Pioneer Standard OKLAHOMA Anthem Electronics Zentronics 

(716) 381·7070 Tulsa (801) 973·8555 (416) 564·9600 

Hauppauge Arrow Electronics Arrow Electronics Nepean 

Arrow Electronics (918) 252·7537 (801) 973·6913 Hamilton! Avnet 

(516) 231·1000 Hamilton! Avnet Hamilton! Avnet (613) 226·1700 

Hamilton! Avnet (918) 664·0444 (801) 972·2800 Zentronics 

(516) 231·9444 Pioneer Standard West Valley (613) 226·8840 

Time Electronics (918) 492·7840 Time Electronics Ottawa 

(516) 273·0100 Radio Inc. (801) 973·8494 Electro SoniC Inc. 

Port Chester (918) 587·9123 WASHINGTON (613) 728·8333 

Zeus Components OREGON Bellevue Semad Electronics 

(914) 937·7400 Beaverton Arrow Electronics (613) 727·8325 

Rochester Anthem Electronics (206) 643·4800 Pointe Claire 

Arrow Electronics (503) 643·1114 Bothell Semad Electronics 

(716) 427·0300 Arrow Electronics Anthem Electronics (514) 694-0860 

Hamilton! Avnet (503) 626·7667 (206) 483·1700 51. Laurent 

(716) 292·0730 Hamilton! Avnet Kirkland Hamilton! Avnet 

Summit Electronics (503) 627·0201 Time Electronics (514) 335·1000 

(716) 334·8110 Lake Oswego (206) 820·1525 Zentronics 

Ronkonkoma Bell Industries Redmond (514) 737·9700 

Zeus Components (503) 635·6500 Bell Industries Willowdale 

(516) 737·4500 Portland (206) 867·5410 ElectroSonic Inc. 

Syracuse Time Electronics Hamilton! Avnet (416) 494·1666 

Hamilton! Avnet (503) 684·3780 (206) 241·8555 Winnipeg 

(315) 437·2641 Electro Sonic Inc. 

Time Electronics (204) 783·3105 

(315) 432·0355 



~National 
~ Semiconductor 

National Semiconductor Corporation 
2900 Semiconductor Drive 
PO. Box 58090 
Santa Clara, CA 95052-8090 
Tel: 1-800-272-9959 
TWX: (910) 339-9240 

SALES OFFICES (Continued) 

INTERNATIONAL 
OFFICES 

Electronlca NSC de Mexico SA 
Juvenllno Rosas No 1 , 8-2 
Col Guadalupe Inn 
MexIco, 01020 OF MexIco 
Tel 52·5·524·9402 
Fax 52·5·524·9342 

National Semicondutores 
00 Brasil Ltda. 
Av Bng Faria Lima. 1409 

60 Andar 
Cep 01451 J. Paullstano 
Sao Paulo. SP, Brasil 
Tel (55/11) 212-5066 

Telex: 3911131931 

Fax (55/11)212·1181 NSBRBR 

National Semiconductor GmbH 
Eschborner Lans!r 130-132 
0-6000 Frankfurt 90 
Germany 
Tel: 1069) 78 9109·0 
Fax 1069) 7 89 43 83 

National Semiconductor GmbH 
Industnestrasse 10 
0-B080 F urstenfeldbruck 
Germany 
Tel 10·81·41) 103·0 
Telex: 527-649 
Fax (08141) 103554 

National Semiconductor GmbH 
Misburger Slrasse 81 0 
03000 Hannover 6' 
Germany 
Tel 10511) 560040 
Fax. 10511) 561740 

National Semiconductor GmbH 
Untere Waldplatze 37 
D· 7000 Stuttgarl 80 
Germany 
Tel711686511 
Fax: 71 16865260 

National Semiconductor (UK) Ltd. 
The Maple. Kembrey Park 
SWlndon. Wiltshire SN2 6UT 
United Kingdom 
Tel (07·93)61·41·41 
Telex 444·674 
Fax (07·93) 69·75-22 

National Semiconductor Benelux 
Vorstlaan 100 
B·1170 Brussels 
Belgium 
Tel 102) 6-61-06·80 
Telex: 61007 
Fax: 102) 6·60·23·95 

National Semiconductor (UK) Ltd. 
Rlngager 4A. 3 
DK·2605 Brandy 
Denmark 
Tel 102) 43·32·11 
Telex: 15- 179 
Fax. 102) 43·31-11 

National Semiconductor S.A. 
Centre d·Affalres·La Boursldlere 
Batlment Champagne. BP 90 
Route Natlonale 186 
F·92357 Le PlessIs Robinson 
Pans. France 
Telln 40·94·88·88 
Telex: 631065 
Fax· (1) 40·94-88-1 I 

National Semiconductor (UK) Ltd. 
Unit 2A 
Clonskeagh Square 
Clonskeagh Road 
Dublin 14 
Ireland 
Tel 101 ) 269·55·89 
Telex 91047 
Fax 101) 2830650 

National Semiconductor S.p.A. 
Strada 7. Palazzo R/3 

1·20089 Rozzano 
Mllanoflon 
Italy 
Tel: (02) 57 50 03 00 
Twx. 352647 
Fax 102) 57 500400 

National Semiconductor S.p .A. 
Via del Cararagglo, 107 
1·00147 Rome 
Italy 
Tel: 106) 5·13·48-80 
Fax 106) 5·13·79·47 

National Semiconductor (UK) Ltd. 
Isvelen 45 
Postboks 57 
N·13930stenstad 
J\Jorway 
Tel 12) 796500 
Fax 12) 796040 

National Semiconductor AB 
p.o. Box 1009 
Grosshandlarvaegen 7 
S·121 23 Johanneshov 
Sweden 
Tel 46-8· 7228050 
Fax 46·8-7229095 
Telex 10731 NSCS 

National Semiconductor GmbH 
Calle Agustin de Foxa. 27 (9'0) 
E·28036 Madrid 
Spain 
Tel 101) 733·2958 
Telex: 46133 
Fax 101) 733-8018 

National Semiconductor 
Switzerland 
Alte Wlnterthurerstrasse 53 
Postfach 567 
Ch-8304 Walllsellen·Zunch 
SWitzerland 
Tel 101) 830-2727 
Telex 828·444 
Fax 101) 830·1900 

National Semiconductor 
Kauppakartanonkatu 7 A22 
SF·00930 HelSinki 
Finland 
Tel 190) 33-80-33 
Telex 126116 
Fax 190) 33·81·30 

National Semiconductor 
Postbus 90 
NL 1380 AB Weesp 
The Netherlands 
Tel 10·29·40) 3·04·48 
Telex 10·956 
Fax 10·29·40) 3·04·30 

National Semiconductor Japan 
Ltd. 
Sanseldo Bldg. 5F 
4-15-3 Nishi Shln)uku 

ShlnJuku·ku 
Tokyo 160 Japan 
Tel (03) 3299·7001 
Fax 103) 3299·7000 

( 1991 National Semiconductor TL3564 RRDIRRD1 OM121/Pnnted In USA 

National Semiconductor 
Hong Kong Ltd, 
13th Floor. Straight Block 
Ocean Centre 
5 Canton Road, TSlmshatsul East. 
Kowloon. Hong Kong 
Tel 1852) 737·1600 
Telex 51292 NSHKL 
Fax. 1852) 736-9960 

National Semiconductor 
(Australia) PTY, Ltd, 
Bldg 16. Business Park Dr 
Melbourne. 3168 
Vlctofla, Australia 
Tel 103) 558·9999 
Fax 61-3·558·9998 

National Semiconductor (PTE), 
Ltd. 
200 Cantonment Road 13·02 
South pOint 200 
Singapore 0208 
Tel 2252229 
Telex: RS 50808 
Fax 165)225· 7080 

National Semiconductor (Far East) 
Ltd. 
Taiwan Branch 
9th Floor. No , 8 
Sec 1. Chang An East Road 
Taipei. Taiwan R.OC 
Tel 186) 521·3288 
Telex: 22837 NSTW 
Fax 02561·3054 

National Semiconductor (Far East) 
Ltd. 
Korea Branch 
13th Floor. Dal Han Life Insurance 
63 Building. 
60. YOldo·dong. Youngdeungpo·ku. 
Seoul. Korea 150· 763 
Tel 102)784·8051 
Telex: 24942 NSPKLO 
Fax (02) 784·8054 


