
National
S e m i con due to r TM

COP8™

COP8 Basic Family User's Manual

Literature Number 620895-002
June 1996

REVISION RECORD

REVISION RELEASE DATE SUMMARY OF CHANGE

A 04/87 First Release.
COPSTM COP820C/COP840C
User'S Manual
NSC Publication Number 420410703-001.

B 10/88 Modified the program store memory section,
corrected the hex and binary information for
the load B pointer and the return from sub-
routine, and modified the description of sub-
tract with carry. Incorporated new
documentation standards where applicable.

B1 03/89 Name change. MOLE changed to microcon-
troller development system within text.

C 05/92 Reformatted and updated entire manual.

D 02/95 Updated Appendices A and B.

-001 05/95 Modified to incorporate information on the
COP912C/912CH and the COP840CJI
842CJ/940CJ/942CH micorcontrollers.

-002 06/96 Modified to delete obsoleted parts.

PREFACE

The COP8™ family of 8-bit microcontrollers is ideally suited to embedded control appli­
cations such as keyboard interfaces, electronic cordless telephones, home applications,
and ABS systems. The design of this family takes advantage of National Semiconductor's
M2CMOSTM manufacturing technology, providing a useful combination of high perfor­
mance, low power consumption, and reasonable cost. The rich instruction set and flexible
addressing modes of the COP8 controllers contribute to their high performance and code
efficiency.

This manual describes the features, architecture, instruction set, and usage of the COP8
microcontrollers. The first eight chapters describe the general features found in all fam­
ily members. Later chapters describe the individual family members and their specific
features. The following specific devices are covered:

• COP912/820/840/880

• COP820C/840CJ

Chapter 1, OVERVIEW, provides a general overview ofCOP8 family with specific feature
comparisons.

Chapter 2, ARCHITECTURE, describes the overall architecture of the COP8 microcon­
troller, including the CPU core, registers, memory organization, reset operation, and
clock options.

Chapter 3, INTERRUPTS, describes the device interrupts.

Chapter 4, TIMER, describes the on-chip timer and its various operating modes.

Chapter 5, MICROWIREIPLUS, describes the micro controller's MICROWIREIPLUS se­
rial interface and its operating modes.

Chapter 6, POWER SAVE MODE, describes an operating mode in which the microcon­
troller is halted, reducing power consumption almost to zero while maintaining the pro­
cessor status and all register contents.

Chapter 7, INPUT/OUTPUT, describes the input/output ports of the micro controller and
how they are used.

Chapter 8, INSTRUCTION SET, describes the instruction set of the COP8 micro control­
lers, including detailed descriptions of each instruction.

Chapters 9, and 10 describe the specific features of the COP912/COP820/840/880, and
COP820CJ/COP840CJ respectively.

ii

COP8, MICROWlREIPLUS and MICROWIRE are trademarks of National Semiconductor Corporation.
TRI-STATE is a registered trademark of National Semiconductor Corporation.

Appendix A, APPLICATION HINTS, contains COP8 application information.

Appendix B covers device electrical characterization data.

Additional information on individual COP8 family members is available from their re­
spective data sheets.

The information contained in this manual is for reference only and is subject to change
without notice.

No part of this document may be reproduced in any form or by any means without the
prior written consent of National Semiconductor Corporation.

iii

Chapter 1
1.1
1.2
1.3

Chapter 2
2.1
2.2
2.3

2.4

2.5

2.6
2.7

Chapter 3
3.1
3.2
3.3

3.4

Chapter 4
4.1
4.2
4.3
4.4

CONTENTS

OVERVIEW
INTRODUCTION .. 1-1
BASIC FEATURES .. 1-1
DEVICE SPECIFIC FEATURES 1-2

ARCHITECTURE'
INTRODUCTION .. 2-1
BLOCK DIAGRAM ... 2-1
MEMORY ORGANIZATION 2-2
2.3.1 Program Memory 2-3
2.3.2 Data Memory 2-3
2.3.3 Memory Mapped I/O Registers 2-4
CORE REGISTERS .. 2-6
2.4.1 Accumulator .. 2-6
2.4.2 Program Counter 2-6
2.4.3 Control Registers 2-7
2.4.4 Data Registers 2-8
2.4.5 MICROWIREIPLUS Register 2-9
2.4.6 Timer Registers 2-9
CPU OPERATION ... 2-9
2.5.1 Memory Fetches 2-11
2.5.2 Instruction Decoding and Execution 2-12
2.5.3 Interrupt and Error Handling 2-16
RESET .. 2-17
CLOCK OPTIONS .. 2-18
2.7.1 Crystal Oscillator 2-18
2.7.2 RC Oscillator 2-18
2.7.3 RC Oscillator for the COP840CJ Only 2-19
2.7.4 ExternalOscillator 2-19

INTERRUPTS
INTRODUCTION .. 3-1
INTERRUPT PROCESSING 3-1
MASKABLE INTERRUPTS 3-2
3.3.1 Timer 1 Interrupt 3-3
3.3.2 External Interrupt 3-3
SOFTWARE TRAP ... 3-4

TIMER
INTRODUCTION .. 4-1
TIMER/COUNTER BLOCK 4-1
TIMER CONTROL BITS 4-1
TIMER OPERATING MODES 4-3
4.4.1 PWM Mode ... 4-3
4.4.2 External Event Counter Mode 4-4

CONTENTS v

Chapter 5
5.1
5.2

5.3
5.4

Chapter 6
6.1
6.2
6.3

Chapter 7
7.1
7.2
7.3
7.4
7.5
7.6
7.7

Chapter 8
8.1
8.2
8.3

8.4
8.5

4.4.3 Input Capture Mode 4-5

MICROWIREIPLUS
INTRODUCTION .. 5-1
THEORY OF OPERATION 5-1
5.2.1 Timing .. 5-3
5.2.2 Port G Configuration 5-3
5.2.3 SK Clock Operation 5-3
5.2.4 Busy Flag .. 5-4
MASTER MODE OPERATION EXAMPLE 5-5
SLAVE MODE OPERATION EXAMPLE' 5-6

POWER SAVE MODE
INTRODUCTION .. 6-1
CLOCK-STOPPING METHOD 6-1
PORT G METHOD ... 6-2

INPUT/OUTPUT
INTRODUCTION .. 7-1
PORT C .. 7-2
PORT D .. 7-2
PORT G .. 7-2
PORT I ... 7-3
PORT L .. " 7-3
ALTERNATE PORT FUNCTIONS 7-3

INSTRUCTION SET
INTRODUCTION .. 8-1
FEATURES ... 8-1
ADDRESSING MODES 8-1
8.3.1 Operand Addressing Modes 8-2
8.3.2 Transfer-of-Control Addressing Modes 8-4
INSTRUCTION TYPES 8-6
INSTRUCTION DESCRIPTIONS 8-9
8.5.1 ADC- Add with Carry 8-11
8.5.2 ADD - Add 8-12
8.5.3 AND -And 8-13
8.5.4 CLR - Clear Accumulator 8-14
8.5.5 DCOR - Decimal Correct 8-15
8.5.6 DEC - Decrement Accumulator 8-16
8.5.7 DRSZ REG# - Decrement Register and Skip if

8.5.8
8.5.9
8.5.10
8.5.11
8.5.12
8.5.13
8.5.14

Result is Zero 8-17
IFBIT - Test Memory Bit 8-18
IFBNE # - IfB Pointer Not Equal 8-19
IFC - Test if Carry 8-20
IFEQ - Test if Equal 8-21
IFGT - Test if Greater Than 8-22
IFNC - Test if No Carry 8-23
INC - Increment Accumulator 8-24

vi CONTENTS

8.6

Chapter 9
9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11

8.5.15 INTR - Interrupt (Software Trap) 8-25
8.5.16 JID - Jump Indirect 8-27
8.5.17 JMP - Jump Absolute 8-28
8.5.18 JMPL - Jump Absolute Long 8-29
8.5.19 JP - Jump Relative 8-30
8.5.20 JSR - Jump Subroutine 8-31
8.5.21 JSRL - Jump Subroutine Long 8-32
8.5.22 LAID - Load Accumulator Indirect 8-33
8.5.23 LD - Load Accumulator 8-34
8.5.24 LD - Load B Pointer 8-36
8.5.25 LD - Load Memory 8-37
8.5.26 LD - Load Register 8-38
8.5.27 NOP - No Operation 8-39
8.5.28 OR - Or .. 8-40
8.5.29 RBIT - Reset Memory Bit 8-41
8.5.30 RC - Reset Carry 8-42
8.5.31 RET - Return from Subroutine 8-43
8.5.32 RETI - Return from Interrupt 8-44
8.5.33 RETSK- Return and Skip 8-45
8.5.34 RRC - Rotate Accumulator Right Through Carry 8-46
8.5.35 SBIT - Set Memory Bit 8-47
8.5.36 SC - Set Carry 8-48
8.5.37 SUBC - Subtract with Carry 8-49
8.5.38 SWAP - Swap Nibbles of Accumulator 8-50
8.5.39 X - Exchange Memory with Accumulator 8-51
8.5.40 XOR - Exclusive Or 8-53
INSTRUCTION SET SUMMARY TABLES 8-54
8.6.1 Instruction Operations Summary 8-54
8.6.2 Bytes and Cycles Per Instruction 8-55

COP912C/COP820C/COP840C/COP880C
INTRODUCTION .. 9-1
BLOCK DIAGRAM ... 9-1
DEVICE PINOUTIPACKAGES 9-3
PIN DESCRIPTIONS ... 9-4
INPUT/OUTPUT PORTS 9-4
PROGRAM MEMORY .. 9-6
DATA MEMORY ... 9-6
REGISTER BIT MAPS .. 9-6
MEMORY MAP .. 9-7
RESET ... 9-9
MASK OPTION(S) ... 9-9
9.11.1 COP912 ... 9-9
9.11.2 COP820C/COP840C 9-10
9.11.3 COP880 -....... 9-10

Chapter 10 COP820CJ/COP840CJ
10.1 INTRODUCTION ... 10-1
10.2 BLOCK DIAGRAM .. 10-2

CONTENTS vii

10.3 DEVICE PINOUTIPACKAGES 10-2
10.4 PIN DESCRIPTIONS .. 10-4
10.5 INPUT/OUTPUT PORTS 10-5
10.6 PROGRAM MEMORY 10-6
10.7 DATA MEMORY .. 10-6
10.8 REGISTER BIT MAPS 10-6
10.9 MEMORY MAP ... 10-9
10.10 RESET .. 10-9

10.10.1 Reset Initialization 10-9
10.10.2 Reset Timing Considerations 10-12
10.10.3 Power-On Reset Circuit 10-12
10.1004 WATCHDOG Reset 10-12
10.10.5 Brown Out Reset 10-12
10.10.6 External Reset 10-13
10.10.7 Reset Initialization Routine 10-13

10.11 BROWN OUT PROTECTION 10-13
10.12 WATCHDOG .. 10-14
10.13 MODULATORtrIMER 10-17
10.14 COMPARATOR .. 10-21
10.15 MULTI-INPUT WAKEUP 10-22
10.16 MASK OPTIONS .. 10-25

Appendix A APPLICATION HINTS

A.1 INTRODUCTION A-1
A.2 MICROWIREIPLUS INTERFACE A-1

A.2.1 MICROWIREIPLUS Master/Slave Protocol A-1
A.2.2 MICROWIREIPLUS Continuous Mode A-3
A.2.3 MICROWIREIPLUS Fast Burst Output A-4
A.2A NMC93C06-COP820C Interface A-6

A.3 TIMER APPLICATIONS A-10
A.3.1 Timer Capture Example A-10
A.3.2 Timer PWM Example A-II
A.3.3 External Event Counter Example A-13

AA TRIAC CONTROL A-14
A.5 COP820CJ/COP840CJ APPLICATION HINTS A-18

A.5.1 Analog To Digital Conversion Using On-chip Comparator . . A-18
A.5.2 Application Example: Battery-Powered Weight

Measurement A-21
A.5.3 Zero Cross Detection A-21
A.5A Application Example: Industrial Timer A-23
A.5.5 LED Drive Using the COP820CJ A-23
A.5.6 Application Example: Temperature Control A-29
A.5.7 Phase Control of an AC Load A-29
A.5.8 Application Example: Remote Control Unit A-33

A.6 PROGRAMMING EXAMPLES A-33
A.6.1 Clear RAM A-33
A.6.2 Binary/BCD Arithmetic Operations A-34
A.6.3 Binary Multiplication A-37
A.6A Binary Division A-38

viii CONTENTS

A.7 DAIL-A-HELPER SERVICE A-40
A.B EXTERNAL POWER WAKEUP CIRCUIT A-41
A.9 EXTERNAL WATCHDOG CIRCUIT A-41
A.10 INPUT PROTECTION ON COPB PINS A-45
A.11 ELECTROMAGNETIC INTERFERENCE (EM!)

CONSIDERATIONS ... A-47
A.1l.1 Introduction A-47
A.1l.2 Emission Predictions A-4B
A.1l.3 Board Layout A-49
A.1l.4 Decoupling .. A-49
A.1l.5 Output Series Resistance A-50
A.1l.6 Oscillator Control A-51
A.1l.7 Mechanical Shielding A-51
A.1l.B Conclusion .. A-51

AppendixB

Index

ELECTRICAL CHARACTERIZATION DATA

CONTENTS ix

Figures
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 3-1
Figure 4-1
Figure 4-2
Figure 4-3
Figure 5-1
Figure 5-2
Figure 5-3
Figure 7-1
Figure 9-1
Figure 9-2
Figure 10-1
Figure 10-2
Figure 10-3
Figure 10-4
Figure 10-5
Figure 10-6
Figure 10-7
Figure 10-8
Figure A-I
Figure A-2
Figure A-3
Figure A-4
Figure A-5
Figure A-6
Figure A-7
Figure A-8
Figure A-9
Figure A-10
Figure A-II
Figure A-12
Figure A-13
Figure A-14
Figure A-15
Figure A-16
Figure A-17
Figure A-18
Figure A-19

COP8 Basic Family Block Diagram 2-2
COP8 CPU Interface 2-10
Crystal Oscillator Circuit 2-18
RC Oscillator Circuit 2-18
RC Oscillator Circuit for COP840CJ Only 2-19
External Oscillator Circuit 2-19
Interrupt Block Diagram 3-1
Timer in PWM Mode .. 4-3
Timer in External Event Counter Mode 4-5
Timer in Input Capture Mode 4-6
MICROWIREIPLUS Example 5-2
MICROWIREIPLUS Circuit Block Diagram 5-2
MICROWIREIPLUS Interface Timing 5-3
COP8 Basic Family Port Structure 7-1
COP912/820/840/880 Block Diagram 9-2
Device Package Pinouts 9-3
COP820CJ/840CJBlock Diagram 10-2
Device Package Pinouts 10-3
WATCHDOG Timer Block Diagram 10-15
Modulator Block Diagram/Output Waveform 10-18
Mode 2: 50% Duty Cycle Output 10-19
Mode 3: Variable Duty Cycle Output 10-20
Multi-Input Wakeup Logic 10-23
Battery-Powered Remote Control Unit 10-24
MICROWIREIPLUS Sample Protocol Timing. A-2
MICROWIREIPLUS Fast Burt Timing .. A-5
NMC93C06-COP820C Interface. .. A-6
Timer Capture Application A-10
PWM Timer Application .. A-12
AID Conversion Using COP820CJ Comparator and Timer T1 A-18
Battery-powered Weight Measurement Using COP820CJ A-22
Industrial Timer Application Using The COP823CJ A-24
3-way Multiplexed Led Display With COP820CJ A-25
Temperature Controlled Appliance Using COP820CJ A-30
AC Phase Control Application Using COP820CJ A-32
Power Wakeup Using An NPN Transistor. A-42
Power Wakeup Using Diodes And Resistors A-43
External Watchdog Circuit A .. A-44
External Watchdog Circuit B A-44
Ports UC/G Input Protection (Except G6) .. A-45
Port I Input Protection. .. A-45
Diode Equivalent of Input Protection. .. A-46
External Protection of Inputs .. A-47

x CONTENTS

Tables
Table 1-1
Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 2-5
Table 4-1
Table 4-2
Table 5-1
Table 5-2
Table 8-1
Table 8-2
Table 8-3
Table 8-4
Table 8-5
Table 9-1
Table 9-2
Table 9-3
Table 9-4
Table 10-1
Table 10-2
Table 10-3
Table 10-4
Table 10-5
Table 10-6
Table 10-7
Table 10-8
Table 10-9
Table 10-10
Table 10-11

Table 10-12
Table A-I

Features List .. 1-3
Data Memory Map .. 2-5
I/O Port Configuration 2-6
PSW Register Bits .. 2-7
CNTRL Register Bits .. 2-7
RIC Oscillator Configuration (Part- To- Part Variation) 2-19
Timer Control Bits .. 4-2
Timer Mode Control Bits 4-2
Port G Configuration Register Bits 5-4
Master Mode Clock Select Bits 5-4
Instructions Using A and C 8-55
Transfer of Control Instructions 8-55
Memory Transfer Instructions 8-56
Arithmetic and Logic Instruction 8-56
Opcodes .. 8-57
COP912/820/840/880 Pin Assignments 9-5
PSW Register Bits .. 9-7
CNTRL Register Bits .. 9-7
COP912/820/840/880 Memory Map 9-8
COP820CJ/840CJ Pin Assignments 10-4
WKEDG Register Bits (Address 00C8 Hex) 10-7
WKEN Register Bits (Address 00C9 Hex) 10-7
WKPND Register Bits (Address OOCA Hex) 10-8
WDREG Register Bits (Address OOCD Hex) 10-8
PSW Register Bits (Address OOEF Hex) 10-8
CNTRLI Register Bits (Address OOEE Hex) 10-9
CNTRL2 Register Bits (Address OOCC Hex) 10-9
COP820CJ/840CJ Memory Map 10-10
Reset Initialization .. 10-11
Effect of HALT, Reset and loading WDCNT on WATCHDOG
Registers .. 10-16
Modes ofPWM timer 10-21
Electric Field Calculation Results. .. A-48

CONTENTS xi

xii CONTENTS

Chapter 1

OVERVIEW

1.1 INTRODUCTION

The COP8 Basic Family microcontrollers provide high-performance, low-cost solutions
for embedded control applications. The 8-bit single-chip core architecture fabricated with
National Semiconductor's M2CMOSTM technology has low current drain, low heat
dissipation and a wide operating voltage range. An instruction execution time of one
microsecond for the majority of single-byte instructions allows high throughput; over 70
percent of the instructions are single-byte. Multiple addressing modes and a rich
instruction set further enhance throughput efficiency and reduce program size.
Reconfigurable I/Os, and on-chip peripherals such as multi-mode general purpose timers
and the MICROWIREIPLUSTM serial interface of the COP8 Basic Family microcontroller
offer the flexibility needed to construct single-chip solutions for a variety of applications.

All COP8 Basic Family microcontrollers share the set of features listed in Section 1.2.
Some individual family members also contain additional features. These device specific
features which include special timers, brown out protection, and multi-input wakeup are
listed in Section 1.3.

1.2 BASIC FEATURES

Each member of the COP8 family of micro controllers offers the following features:

• 8-bit core processor.

• CMOS technology which provides low power, fully static operation.

• HALTmode with very low standby power.

• Memory Mapped Architecture - all RAM, I/O Ports, and registers (except A and
PC) are mapped into Data Memory Address space.

• Flexible, reconfigurable I/O.

• On-chip Data and Program Store memory.

• MICROWIREIPLUS (3-Wire Serial Data Communications System) - allows the
micro controller to be programmed for either master or slave configuration.

• Extremely versatile 16-bit timer, with an associated 16-bit autoload/capture reg­
ister, which can operate in any of 3 different modes:

OVERVIEW 1-1

- PWM (Pulse Width Modulation).

- External Event Counter.

- Input Capture, with each capture resulting from an external edge input (pro-
grammable edge polarity).

• 16-bit timer and associated 16-bit autoload/capture register memory mapped as
two 8-bit registers.

• Two memory mapped Control Registers for Timer Mode Select and Control, MI­
CROWIREIPLUS Select and Control, Interrupt Enable and Control, and Carry
and Half Carry flags.

• Three interrupts:

- External Interrupt (maskable).

- Timer Interrupt (maskable).

- Software Trap Error Interrupt (non-maskable).

• Two 8-bit Register Indirect Data Memory Pointers

• 8-bit Stack Pointer (stack in Data Memory RAM)

• Port G. The bidirectional Port G has dual functions defined for most of the pins.
The dual functions include HALT, MICROWIREIPLUS interface, external inter­
rupt input, timer 110, and oscillator output.

• Three different clock modes:

- Crystal Oscillator

- RIC Oscillator

- External Oscillator

1.3 DEVICE SPECIFIC FEATURES

In addition to the core features, non-core features are provided by specific COP8 devices.
These features are:

• Watchdog Timer (COP820CJ/COP840CJ)

• Brown-out Protection (COP820CJ/COP840CJ)

• Comparator (COP820CJ/COP840CJ)

• ModulatorlTimer for High Speed PWM (COP820CJ/COP840CJ)

• Multi-input Wakeup from HALT mode (COP820CJ/COP840CJ)

Table 1-1 lists the available COP8 Basic Family device types and shows the features
present in each device. The device types are listed along the left side, and the features
are listed across the top. Inside the table, the word ''YES'' or a numerical quantity

1-2 OVERVIEW

indicates the presence of a feature; a dash indicates the absence of a feature. Memory
sizes are expressed in bytes.

Table 1-1 Features List

Program Memory Data Memory Brown
Device Type Timers MlWU Comparator Out

ROM RAM Detection

COP912C 768 64 1 - - -

COP820 lK 64 1 - - -

COP840 2K 128 1 - - -

COP820CJ lK 64 3 YES YES YES

COP840CJ 2K 128 3 YES YES YES

COP880 4K 128 1 - - -

OVERVIEW 1-3

1-4 OVERVIEW

Chapter 2

ARCHITECTURE

2.1 INTRODUCTION

The COPS Basic Family micro controller contains all program and data memory
internally. In addition, it contains on-chip configurable 1I0s, an on-chip timer and a built­
in MICROWIREIPLUS interface. The presence of on-chip memory and peripherals
allows the COPS Basic Family micro controller to provide a single-chip solution for many
applications.

The COPS Basic Family memory organization is based on the "Harvard" architecture, in
which the program memory is distinct from the data memory. Each of these two types of
memory has its own physical memory space, and uses its own internal address bus. The
advantage of this type of organization is that accesses to program memory and data
memory can take place concurrently, reducing overall execution time. By contrast, in the
''Von Neumann" architecture, program memory and data memory share the same
address bus, and concurrent accesses cannot occur.

Except for the Accumulator (A) and Program Counter (PC), all registers, 110 ports, and
RAM are memory mapped in the data memory address space. Among these registers are
the B Register, X Register, Stack Pointer (SP), and 110 port registers. All such registers
can be accessed by reading or writing their memory addresses.

The COPS Basic Family architecture provides one enhancement to the Harvard
architecture: An instruction called Load Accumulator Indirect (LAID), which allows
access to data tables stored in program memory. A conventional Harvard architecture
does not allow this.

The COPS Basic Family device communicates with other devices through several
configurable 110 ports or through the MICROWIREIPLUS serial 110 interface. The 110
ports are designated by letter names such as: Port C, Port D, Port G, Port I, and Port L.

A 16-bit general-purpose timer is provided, together with an associated 16-bit autoload!
capture register. The timer can be configured to operate in any of three modes: Pulse
Width Modulation (PWM), external event counter, or input capture mode.

Three different interrupts are available in the device: the maskable external interrupt,
the maskable timer interrupt, and the non-maskable software trap interrupt. All
interrupts cause a branch to a specific address in program memory. The program code at
that address determines the relative priority of the maskable interrupts.

2.2 BLOCK DIAGRAM

A block diagram of the COPS Basic Family architecture is shown in Figure 2-1. All Basic
Family devices contain the elements pictured in the block diagram. These elements
include: the Arithmetic Logic Unit (ALU) , Data Memory, Program Memory, Timer 1,

ARCHITECTURE 2-1

PROGRAM
MEMORY

PROGRAM
COUNTER

CPU
REGISTERS

- R15 -

T

- B -
1--_~ ... AlU

- SP -

- X f-

- R11 t-

• • •
- RO -

- PSW -

- CNTRl-

-1 A I-

INSTRUCTION
DECODER

~ DATA
MEMORY

r-

i
MEMORY
ADDRESS
REGISTER

T
AI"

CKI RESET Vee GND

~ ~ ~
CLOCK

16-BIT

I
TIMER/COUNTER

~
WITH

AUTOlOAD/

HALT CAPTURE
REGISTER

1
TIO

SO
MICROWIRE/PlUS .-I---

.... SK i
SI

PORTG

Figure 2-1 COP8 Basic Family Block Diagram

INTERRUPT
(TIMER & c--- EXTERNAL)

PORT I/Os

TSP-COP820-01

MICROWIREIPLUS, Port 1I0s, and Interrupt Logic. Functional blocks not common to all
Basic Family members are not shown in Figure 2-1. Block diagrams of individual devices
are shown in the device specific chapters of this manual.

2.3 MEMORY ORGANIZATION

The COP8 Basic Family micro controllers are based on a modified Harvard-style
architecture. This type of architecture separates the program memory from the data
memory. Each memory type has its own addressing space, address bus, and data bus. The
following sections describe the COP8 Basic Family memory structure.

2-2 ARCHITECTURE

2.3.1 Program Memory

The COP8 Basic Family program memory is a block of byte wide non-volatile ROM or
EPROM memory, which may hold program instructions or constant data. The program
memory addressing range is 32 Kbytes. A 15-bit Program Counter (PC) is used to address
the program memory, which is subdivided into 4-Kbyte segments with respect to certain
instructions.

The 4-Kbyte segment divisions within the program memory are related to the 2-byte
Jump Absolute (JMP) and Jump Subroutine (JSR) instructions. These economical
instructions cause the lower 12 bits of the PC to be replaced by the value specified in the
instruction while the upper 3-bits remain unchanged. Thus, these instructions branch
only within the currently addressed 4-Kbyte program memory segment.

The indirect instructions, Jump Indirect (JID) and Load Accumulator Indirect (LAID), op­
erate only within a program memory block of256 bytes. This restriction exists because only
the lower 8 bits of the PC (PCL) are replaced during program memory table lookups. The
upper 7 bits of the PC (PCU) remain unchanged. Replacing only the PCL minimizes the
execution time of this instruction. Programmers must ensure that LAID and JID instruc­
tions, and their associated tables do not cross the 256 byte program memory boundaries.

The very economical Jump Relative Short (JP) instruction is completely independent of
all program memory block and memory segment boundaries. This single-byte JP
instruction allows a branch forward of up to 32 locations or backwards of up to 31
locations relative to the current contents of the program counter. A branch forward of 1
is not allowed, since this may be implemented with a NOP.

2.3.2 Data Memory

The COP8 Basic Family data memory consists of several blocks of byte-wide RAM and/or
EEPROM memory. The data memory addressing range is potentially 32 Kbytes. Devices
that contain more than 128 bytes of RAM use a data segment extension register to increase
the data addressing range beyond the first 128 bytes. This is necessary because the
memory address register (MAR) used to access all data memory locations is only 8 bits
wide.

The COP8 Basic Family data memory base segment may be viewed as two separate
sections: a lower address range of 0000 to 006F Hex and an upper address range of 0080
to OOFF Hex. The lower base segment contains the program stack and general-purpose
data memory. The upper address range contains data registers, and the memory-mapped
110 registers, control registers, timers with associated capture registers, MICROWIREI
PLUS shift register, etc.

The data memory is either addressed directly by instructions or indirectly by the B, X
and SP pointers. The COP8 Basic Family instruction set permits any bit in data memory
to be set, reset or tested. All 110, registers, pointers, and counters in the COP8 family
(except for A and PC) are memory mapped in data memory. Therefore, all 110 bits and
register bits can be individually set, reset, and tested.

Sixteen bytes of RAM are memory mapped as "registers" at addresses OOFO to OOFF Hex.
Certain instructions work only with this register memory, while others are more efficient
when used with this register memory rather than other memory. The three pointer

ARCHITECTURE 2-3

registers X, SP and B, are memory mapped into the register memory space at address
locations OOFC to OOFE Hex, respectively. In COP8 Basic Family devices with more than
128 bytes of RAM, the data segment extension register is memory mapped at location
OOFF Hex. See Section 2.4.4 for more information on the COP8 Basic Family data
registers.

The first sixteen locations of data store memory (0000 to OOOF Hex) have special
significance for the load B with immediate data instruction. This instruction is extremely
efficient for loading the B pointer with addresses in this range because it is a single-byte,
single-cycle instruction. Loading B with addresses and/or values greater than OOOF Hex
requires a two-byte, three-cycle instruction.

All RAM, EEPROM, I/O ports, counter, and registers (except A and PC) are mapped into the
data memory address space. Table 2-1 shows a basic memory map for all COP8 Basic Family
devices. Refer to the device specific chapters for complete memory maps of individual devices.

2.3.3 Memory Mapped 110 Registers

The COP8 Basic Family devices have three different types of ports: reconfigurable input/
output, dedicated output, and dedicated input. Each I/O port has specific memory­
mapped I/O registers/addresses associated with it, depending on the port type. The
following sections describe the I/O port register structure for each port type.

NOTE: All port registers and pins are memory-mapped in the data store memory
address space. Therefore, instructions which operate on data memory also
operate on port registers and pins. This includes instructions used to set, re­
set and test individual bits. The I/O register addresses for specific ports are
listed in the memory map shown in Table 2-1.

Reconfigurable Input/Outputs

Reconfigurable input/output ports have two associated port registers: a port
configuration register and a port data register. These two memory-mapped registers
allow the port pins to be individually configured as either inputs or outputs, and to be
individually changed back and forth in software. The configuration register is used to set
up the pins as inputs or outputs. A pin may be configured as an input by writing a '0' or
as an output by writing a "1" to its associated configuration register bit. If a pin is
configured as an output, the associated data register bit represents the state of the pin
(1 = logic high, 0 = logic low). If the pin is configured as an input, the associated data
register bit determines whether the pin is a weak pull-up or Hi-Z input. Table 2-2 details
the port configuration options. The port configuration and data registers are read/write
registers.

A third data memory address is assigned to each I/O port. Reading this memory address
returns the value of the port pins regardless of how the pins are configured.

Dedicated Outputs

Dedicated output ports have one associated port register. This memory-mapped output
data register is used to set the port pins to a logic high or low. A port pin may be

2-4 ARCHITECTURE

individually set or reset by writing a one or zero to its associated data register bit. Port
data registers may be read or written.

Dedicated Inputs

Dedicated input ports have no associated port registers. However, a data memory
address is assigned to the port pins for reading of the port input. Port pin addresses are
read-only memory locations.

Table 2·1 Data Memory Map

Address Contents

0O-6F On-chip RAM Address Space

70-BF On-chip Data Memory Address Space

CO-CF I/O and Register Address Space

DO Port L Data Register
Dl Port L Configuration Register
D2 Port L Input Pins (read only)
D3 Reserved for Port L
D4 Port G Data Register
D5 Port G Configuration Register
D6 Port G Input Pins (read only)
D7 Port I Input Pins (read only)
D8 Port C Data Register
D9 Port C Configuration Register
DA Port C Input Pins (read only)
DB Reserved for Port C
DC Port D Data Register
DE Reserved for Port D
DF Reserved for Port D

EO-E8 On-chip Functions and Registers
E9 MICROWIRE shift register
EA Timer 1 Lower Byte
EB Timer 1 Upper Byte
EC Timer 1 Autoload Register Lower Byte
ED Timer 1 Autoload Register Upper Byte
EE CNTRL Control Register
EF PSW Register

FO to FF On-chip RAM mapped as Registers
FC X Register
FD SP Register
FE B Register
FF S Register or General Purpose Register

ARCHITECTURE 2-5

Table 2-2 I/O Port Configuration

Configuration Bit Data Bit Port Pin Setup

0 0 Hi-Z input (TRI-STATE output)

0 1 Input with weak pull-up

1 0 Push-pull zero output

1 1 Push-pull one output

2.4 CORE REGISTERS

All COP8 Basic Family microcontrollers share a common block of logic referred to as the
COP8 Basic Family micro controller core. This core includes the COP8 Central Processing
Unit (CPU), the Timer 1 Block, and the MICROWIREIPLUS block. The registers
contained within these blocks are the core registers. The CPU registers include: a I5-bit
program counter (PC), an 8-bit accumulator (ACC), a processor status word (PSW), a core
control register (CNTRL), and sixteen 8-bit data memory registers. The Timer 1 registers
include: one I6-bit timer and a I6-bit autoload capture register. The MICROWIREIPLUS
block has one 8-bit shift register. All core registers are memory mapped into the data
memory address space except for the program counter (PC) and accumulator (ACC). The
following sections describe in detail the COP8 Basic Family microcontroller core
registers.

2.4.1 Accumulator

All COP8 family parts have a single 8-bit accumulator. The accumulator is used in all
arithmetic and logical operations, such as ADD and XOR. In addition, it is used with the
exchange, JID and LAID instructions. The arithmetic and logical instructions use the
accumulator as both an operand and result register. A second operand register, if
required, is either the instruction register (IR), which contains immediate data, or a
register in data memory.

2.4.2 Program Counter

The CPU contains a I5-bit program counter used in addressing the byte-wide program
memory. The PC is initialized to zero at reset and is incremented once for each byte of an
instruction opcode. Jumps, jump subroutines, interrupts, and the JID instruction cause
some or all of the PC bits to be replaced. Transfer-of-control instructions that replace only
some of the PC bits have a limited jumping range.

2-6 ARCHITECTURE

2.4.3 Control Registers

The COP8 Basic Family core contains two 8-bit control registers (PSW and CNTRL). The
following paragraphs and tables show the bits contained in each register. The functions
of these bits are described in later chapters.

PSW Register (Address OOEF Hex)

The Processor Status Word (PSW) register contains eight different flag bits. The register
bits are assigned as follows:

GIE
ENI
BUSY
IPND
ENTI
TPND
C
HC

Bit 7

HC

Global interrupt enable (enables interrupts)
External interrupt enable
MICROWIRE busy shifting flag
External interrupt pending
Timer T1 interrupt enable
Timer T1 interrupt pending (timer underflow or capture edge)
Carry Flip/Flop
Half-Carry Flip/Flop

Table 2-3 PSW Register Bits

Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

C TPND ENTI IPND BUSY ENI GIE

CNTRL Register (Address OOEE Hex)

The Timer and MICROWIRE Control (CNTRL) register contains various MICROWIRE/
PLUS, External Interrupt Edge, and Timer Control flags. The MICROWIREIPLUS flags
include SLO and SL1, which select the MICROWIRE PLUS clock division factor, and
MSEL, which selects the G port signals G5 and G4 as the MICROWIREIPLUS signals
SK and SO, respectively. The External Interrupt Edge Control flag selects the External
Interrupt Signal input polarity. The Timer Control flags include TRUN, which is used to
start and stop the timer/counter, and three Timer Mode Control signals.

The timer and MICROWIRE control register bits are:

SL1 & SLO
IEDG
MSEL
TRUN
TC1
TC2
TC3

Bit 7

TC1

Select the MICROWIRE clock divide-by (00=2,01=4,lx=8)
External interrupt edge polarity (0 = rising edge, 1 = falling edge)
Selects G5 and G4 as MICROWIRE signals SK and SO, respectively
Used to start and stop the timer/counter (1 = run, 0 = stop)
Timer T1 Mode Control Bit
Timer T1 Mode Control Bit
Timer T1 Mode Control Bit

Table 2-4 CNTRL Register Bits

Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

TC2 TC3 TRUN MSEL IEDG SL1 SLO

ARCHITECTURE 2-7

2.4.4 Data Registers

The COP8 Basic Family contains sixteen 8-bit data registers located in data memory
from address OOFO to OOFF Hex. Four of these registers, OOFC through OOFF Hex, have
special functions. Locations OOFC and OOFE Hex contain the 8-bit data memory pointers
X and B, respectively. Location OOFD contains the 8-bit stack pointer (SP) for data
memory. Location OOFF is reserved for the data segment extension register, which is used
in some COP8 Basic Family devices to extend data memory beyond 128 bytes. In devices
that contain 128 or fewer bytes of data memory, this register is available for general
usage. The remaining twelve registers, OOFO through OOFB, are always available for
general purpose use.

Certain COP8 Basic Family instructions differentiate data registers from other data
memory locations, such as the DRSZ (decrement register skip if zero) instruction. DRSZ
subtracts one from a specified data register and skips the following instruction if the
result of the decrement is zero. This instruction is extremely useful in constructing code
loops, and makes the data registers ideal choices for loop counters. Other instructions
like the "load memory with immediate data" are more efficient when used with the
register memory than when used with the general data memory.

Stack Pointer

The stack pointer (SP) is memory mapped at data memory location OOFD Hex. The stack
pointer should be initialized before any subroutine calls or interrupts occur. Normally,
the stack pointer is initialized to the top of the base segment of data memory. For the
devices with 64 bytes of RAM, this is memory location 002F Hex. For the devices with
128 bytes of RAM, this is memory location 006F Hex.

Pushing addresses onto the stack causes the stack to grow downward in data memory
toward address zero. Popping addresses off the stack causes the stack to shrink upward.
If the stack pointer is initialized to the top of the base segment of memory, over-popping
the stack causes a Software Trap error interrupt. The lower limit of the stack is address
0000 Hex. Over-pushing the stack causes the stack to wrap around to addresses OOFF
and OOFE Hex (subroutine calls and interrupts cause a double-byte push). This should
be avoided because it interferes with the B pointer, which is memory mapped at location
OOFE Hex.

The user may initialize the stack pointer anywhere in the base segment of memory. The
stack still grows down toward address zero, but the stack no longer has the Software
Trap interrupt over-pop protection. Initializing the stack pointer to one of the upper base
segment data register addresses (OOFO to OOFB Hex) is potentially very hazardous. The
available stack memory is severely limited, and if the stack pushes downward beyond
address location OOFO, interference occurs with the PSW and CNTRL control registers,
which are memory mapped at address locations OOEF and OOEE Hex, respectively.

Data Memory Pointers (Index Registers)

The COP8 Basic Family contains two special registers, X and B, which may be used as
pointers. These registers allow indirect addressing of all locations mapped in the data
memory address space. In addition, these registers may be automatically incremented or
decremented by certain instructions that use register indirect addressing. The auto-

2-8 ARCHITECTURE

incrementing and auto-decrementing features allow the user to easily step through data
memory locations (i.e., tables).

2.4.5 MICROWIREIPLUS Register

The MICROWIREIPLUS three-wire serial communication system contains an S-bit
memory mapped serial shift register (SIOR). The serial data input and output signals to
the SIOR register are supplied by SI and SO, respectively. The shift register is clocked
by signal SK. Data is shifted through the SIOR from the low-order end to the high-order
end on the falling edge of the SK clock signal.

2.4.6 Timer Registers

The COPS Basic Family core contains one timer block. The timer block consists of a 16-
bit timer/counter with an associated 16-bit autoload/capture register. The 16-bit register
and timer are each organized as two S-bit memory mapped registers. The upper and
lower byte addresses for the memory mapped timer and autoload/capture register are
shown in the data memory address map (Table 2-1).

2.5 CPU OPERATION

This section describes the operation of the COPS Central Processing Unit (CPU). A brief
description of the control logic and the Arithmetic Logic Unit, is given at the beginning
of this section. The remainder of this section describes how the microcontroller performs
memory fetches, executes instructions, and handles interrupt and error conditions. A
block diagram of the main elements which interface with the control logic and ALU is
shown in Figure 2-2.

Control Logic

The CPU Control Logic controls virtually all operations within the device. It includes the
program counter, the memory address register, the processor status word register, and
the instruction register for storing information. It also includes logic for directing
memory fetches, instruction decoding and execution, and interrupt/error handling. It
receives inputs from the ALU and on-chip peripherals, including the timer(s) and the
MICROWIREIPLUS interface, and generates control signals for these and other parts of
the device.

Arithmetic Logic Unit (ALU)

The ALU performs all logical and arithmetic operations. Inputs to the ALU are provided
by the accumulator, several hard-wired data constants, the carrylhalf-carry bits and the
memory data register (MDR). The ALU inputs for a given instruction are specified in the
instruction opcode. The accumulator functions as both a source and destination for the
ALU, and is used in all logical and arithmetic instructions. It always contains the result
of the last executed logical, arithmetic, or load/exchange accumulator instruction. The
hard-wired data constants, which include 0000, 0001, and OOFF Hex, are used in
instructions like CLR A, INC A, and DEC A. These instructions have an implicit

ARCHITECTURE 2-9

I
~- R15 00-

- B
MUX

- SP r--

- X --+
- R11

- R10 ~ ARITHMETIC
LOGIC f-

- R9 r-----+ UNIT

- R8

I - R7 -----+ MEMORY DATA
REGISTER 00-

DATA - R6 (MDR) I PSW
MEMORY 01- MUX I-

- R5
FF-

~ - R4 --+
r- - R3

- R2

- R1 '"
-

MEMORY
RO

ADDRESS
REGISTER .I I (MAR) I A I

,. ,. ,.

INTERNAL DATA BUS

CONTROL LOGIC UNIT

CONTROL OUTPUTs.-
1----+ PROGRAM COUNTER

STATUS INPUTS -. II....-_C_N_T_RL _____ I INSTRUCTION
DECODER ~ PROGRAM MEMORY

TSP-COP820-02

Figure 2-2 COP8 CPU Interface

addressing mode. The carry (C) and half-carry (HC) hits are used in instructions like
ADC and SUBC. All arithmetic and logical instructions with two operands use the MDR
as one input to the ALU. The MDR may he loaded with operands from data memory or
the instruction register (immediate data specified in an instruction opcode). Since only
one MDR exists, arithmetic and logical instructions can not he performed directly on two

2-10 ARCHITECTURE

operands from data and/or program memory. Such operations require one operand from
memory to be loaded into the accumulator prior to execution.

2.5.1 Memory Fetches

The following two sections describe the manner in which the COPS Basic Family
microcontrollers access data and program memory. Memory access time greatly affects
total instruction execution time, and is therefore an important element in understanding
the COPS CPU timing.

Data Memory Fetches

All data memory accesses are performed using the internal memory address register
(MAR). The contents of the MAR select the location within the data memory address
space to be read/written by the current instruction. It should be noted that Memory
Direct to Memory Direct data transfers and operations are not supported.

The MAR is loaded with the contents of the B pointer during the last instruction cycle of
all instructions. Therefore, instructions that use the Register B Indirect mode of
addressing are extremely efficient. This is because the address of the memory location to
be accessed during an instruction is already present in the MAR at the start of the
instruction. Instructions that use Memory Direct addressing or Register X Indirect
addressing to access data memory require an extra one or two instruction cycles to fetch
and load the desired memory address into the MAR before the actual instruction can be
executed.

Some instructions that use Memory Direct addressing are more efficient when
addressing the data registers located between OOFO and OOFF Hex because in these
instructions, the complete memory address of the register is contained in the first byte of
the instruction opcode. This allows the MAR to be loaded with the new address in the
first instruction cycle of the instruction. Instructions that do not access data memory do
not affect the MAR. During the execution of instructions that use the ALU and an
operand from data memory, the contents of the memory location addressed by the MAR
is loaded into the memory data register (MDR) before being fed into the ALU.

Program Memory Fetches

All program memory accesses are performed using the I5-bit program counter (PC). This
includes accesses to program memory for table lookups. At any given time, the PC
addresses one byte within program memory. This byte is loaded into the instruction
register for decoding, or used as immediate or memory address data. All data/opcode
fetches cause the PC to be incremented automatically, so that the PC typically points to
one program memory location ahead of the current instruction byte being executed. This
allows pre-fetching of opcodes. This is also the reason why table lookup instructions
(LAID, JID) located at the last byte within a 256-byte program memory page cause
fetches from program memory locations in the following 256-byte page. (The JID and
LAID instructions replace the lower S bits of the PC, and rely on the current upper 7 bits
of the PC to form the complete address for table lookups. However, the upper 7 bits of the
PC change when the PC is automatically incremented over a page boundary.)

ARCHITECTURE 2-11

2.5.2 Instruction Decoding and Execution

All instruction decoding is performed by the CPU Control Logic. Single-byte opcodes
require a single memory fetch. Therefore, many single-byte opcodes are single cycle.
Multiple byte opcodes require more than one program memory fetch. The first byte of
these opcodes is decoded to determine the number of program fetches needed to complete
the instruction, and possibly the actual operation to be performed. Only one program
memory fetch can be performed during a single instruction cycle. Therefore, an
instruction always requires at least as many instructions cycles to execute as the number
of opcode bytes.

NOTE: Data and program memory fetches can be performed in the same instruc­
tion cycle due to the Harvard-style architecture of the COPB Family.

The instruction cycle clock (tc) always equals one-tenth the frequency of the clock signal
at the CKI pin. All instructions are executed in multiples of the instruction cycle clock
period.

A pre-fetch of the next instructions first byte is always done during the last cycle of an
instruction. In addition, the PC is always incremented. This means that at the start of
the first cycle of an instruction, the opcode for that instruction is already in the IR and
the PC is pointing to the next instruction byte. In order to generate skips (non-execution
of an instruction), the microcontroller Skip Logic is activated. This prevents the next
instruction (already located in the IR) from being executed by the microcontroller.
Skipped instructions require X number of cycles to be skipped, where X equals the
number of bytes in the skipped instruction's opcode.

The exact number of instruction cycles required for an instruction to execute can be
found in Section B.6.2. As noted previously, memory fetches (and therefore addressing
modes) greatly influence instruction execution time. In order to optimize instruction
execution time, the user should pay special attention to these items when developing
code.

The following sections detail the steps performed by the CPU when executing different
instructions.

One-Cycle Instructions

During the single cycle of these instructions, the following steps are performed by the
CPU:

1. The instruction is decoded and executed. (The instruction opcode is already
in the IR at the start of the instruction cycle due to pre-fetching).

2. The next instruction is fetched from program memory.

3. The PC is incremented.

Two-Cycle Instructions

The COPB Basic Family two-cycle instructions have either one or two byte opcodes. They
fall into one of five instruction categories: logical, arithmetic, conditional, exchange or
load. The CPU steps for the various 2-cycle instructions are given below.

2-12 ARCHITECTURE

The logical, arithmetic and conditional instructions that use the Immediate addressing
mode have the following steps:

Cycle 1: Decode the opcode for the instruction. Fetch the immediate data from pro­
gram memory. Execute the instruction. Activate Skip Logic if necessary. In­
crement the PC. (The logical/arithmetic or conditional instruction is complete
at the end of this instruction cycle.)

Cycle 2: Fetch the first byte of the next instruction. Increment the PC.

Two-cycle load and exchange accumulator instructions, and load memory indirect using
the B pointer have these steps:

Cycle 1: Decode the opcode for the instruction. If necessary, fetch the immediate data
from program memory and increment the PC. Execute the instruction. (The
load or exchange is complete at the end of this instruction cycle.)

Cycle 2: If necessary, increment or decrement the B pointer. Load the contents of the
B pointer into MAR. Fetch the first byte of the next instruction. Increment
the PC.

Three Cycle Instructions

The COPS Basic Family devices have eleven three-cycle load and exchange instructions.
A generic overview of the sequence of steps performed by the CPU in executing these
instructions is given below.

Cycle 1: Decode the opcode for the instruction. If necessary, fetch the memory direct
address from program memory and increment the PC. Load the MAR with
the address of the data memory location to be accessed (either the address
fetched from program memory or the contents of the X pointer, depending on
the instruction). If necessary, increment or decrement the X pointer.

Cycle 2: If necessary, fetch the immediate data from program memory and increment
the PC. Execute the instruction. (The load or exchange is complete at the end
of this instruction cycle.)

Cycle 3: Load the contents of the B pointer into the MAR. Fetch the first byte of the
next instruction. Increment the PC.

The remaining three-cycle instructions are all unique. Therefore, the CPU sequence of
events is given separately for each.

JP Instruction

Cycle 1: At the beginning of this instruction cycle, the PC is one count ahead of the
address of the JP instruction. Decode the instruction opcode. Add the lower
six bits of the contents of the IR (the JP opcode) to the lower byte of the PC.

Cycle 2: If the offset contained in the JP opcode was positive and the add performed
in Cycle 1 had a carry out (overflow), increment the upper byte of the PC. If
the offset was negative and no carry out was produced by the add in Cycle 1
(underflow), decrement the upper byte of the PC.

ARCHITECTURE 2-13

Cycle 3: Fetch the first byte of the next instruction (instruction located at the branch
address). Increment the PC.

JMP Instruction

Cycle 1: Decode the instruction opcode. Fetch the lower byte of the branch address
from program memory. Load the lower byte of the PC with the fetched ad­
dress.

Cycle 2: Load the four least significant bits of the JMP opcode stored in the IR into the
four least significant bits of the upper byte of the PC.

Cycle 3: Fetch the first byte of the next instruction (instruction located at the branch
address). Increment the PC.

LAID Instruction

Cycle 1: Decode the instruction opcode. Exchange the lower byte of the PC with the
contents of the accumulator.

Cycle 2: Fetch the byte from program memory addressed by the PC. Transfer the con­
tents of the accumulator back to the lower byte of the PC. Store the fetched
byte in the accumulator.

Cycle 3: Fetch the first byte of the next instruction. Increment the PC.

JID Instruction

Cycle 1: Decode the instruction opcode. Exchange the lower byte of the PC with the
contents of the accumulator.

Cycle 2: Fetch the byte from program memory addressed by the PC. Transfer the con­
tents of the PC back to the accumulator (restore the contents of the ACC).
Store the fetched byte in the lower byte of the PC.

Cycle 3: Fetch the first byte of the next instruction. Increment the PC.

DRSZ Instruction

Cycle 1: Decode the opcode of the instruction. Load the MAR with the address of the
register being decremented.

Cycle 2: Decrement the contents of the register addressed by the MAR. If the result is
zero, activate the Skip Logic.

Cycle 3: Load the MAR with the contents of the B pointer. Fetch the first byte of the
next instruction. Increment the PC.

2-14 ARCHITECTURE

Four-Cycle Instructions

All 4-cycle instructions except JMPL use the Memory Direct addressing mode. The
following steps outline the general sequence of events performed by the CPU during the
execution of these memory direct instructions.

Cycle 1: Decode the Memory Direct mode opcode prefix (which is already in the IR be­
cause it was fetched during the previous instruction). Fetch the memory di­
rect address from program memory and store it in the MAR. Increment the
PC.

Cycle 2: Fetch the actual opcode from program memory and store it in the IR.

Cycle 3: Execute the instruction. (The bit manipulation, conditional test, or 10gicalJ
arithmetic operation is complete at the end of this instruction cycle.)

Cycle 4: Load the contents of the B pointer into the MAR. Fetch the first byte of the
next instruction. Increment the PC.

A JMPL has the following steps:

Cycle 1: Decode the JMPL opcode. Fetch the second byte of the instruction (the high­
order byte of the branch address) and store it in IR. Increment the PC.

Cycle 2: Fetch the third byte of the instruction (the low-order byte of the branch ad­
dress) and load it into the lower byte of the PC.

Cycle 3: Load the high-order byte of the branch address from the IR into the upper
byte of the PC.

Cycle 4: Fetch the next instruction (located at the branch address). Increment the PC.

Five-Cycle Instructions

The COPS Basic Family devices have only five 5-cycle instructions. These instructions
are JSR, JSRL, RET, RETI and RETSK. All of these instructions force program branches.

The CPU performs the following steps during the JSR and JSRL instructions:

Cycle 1: Decode the opcode for the instruction. Load the MAR with the address of the
first available stack location (the address currently in SP). Decrement the
stack pointer to point to the next available stack location. If JSRL, fetch the
next byte of the instruction and increment the PC.

Cycle 2: Increment the PC. Push the low-order byte of the return address onto the
stack (store at the location addressed by MAR). Fetch the next byte of the in­
struction. Load the low-order byte of the subroutine address (addressed by
the MAR) into the PC.

Cycle 3: Load the MAR with the address of the first available stack location (the ad­
dress currently in SP). Decrement the stack pointer to point to the next avail­
able stack location.

Cycle 4: Push the high-order byte of the return address onto the stack (store at the lo­
cation addressed by MAR). If JSR, load the four bits of the high-order byte of

ARCHITECTURE 2-15

the subroutine address stored in the IR into the PC. If JSRL, load the seven
bits of the high-order byte of the subroutine address stored in the IR into the
PC.

Cycle 5: Load the contents of the B pointer into the MAR. Fetch the first byte of the
next instruction. Increment the PC.

The CPU performs the following steps during the RET, RETSK, and RETI instructions:

Cycle 1: Decode the opcode for the instruction. Increment the stack pointer to point to
the last entry on the stack. Load the MAR with the address of the last entry
in the stack (address in the updated SP).

Cycle 2: Pop the high-byte of the return address off the stack (the contents of the mem­
ory location addressed to by the MAR). Load the upper byte of the PC with
the high byte of the return address.

Cycle 3: Decode the opcode for the instruction. Increment the stack pointer to point to
the last entry on the stack. Load the MAR with the address of the last entry
in the stack (address in the updated SP).

Cycle 4: Pop the low byte of the return address off the stack (the contents of the mem­
ory location addressed to by the MAR). Load the lower byte of the PC with the
low byte of the return address.

Cycle 5: Load the contents of the B pointer into the MAR. If RETI, set the GIE bit. If
RETSK, activate skip logic to skip the instruction at the return address. Fetch
the first byte of the instruction at the return address. Increment the PC.

Seven-Cycle Instructions

The Software Trap is the only instruction which requires seven cycles to execute. Refer
to Section 2.5.3 for information on the execution of this instruction.

2.5.3 Interrupt and Error Handling

The COP8 Basic Family micro controllers have three interrupt sources; External, Timer
1 and Software Trap. All interrupts cause the CPU to force a jump to location OOFF Hex
in program memory. Therefore, all interrupt and error handling routines or branches
should be located at OOFF Hex.

The CPU forces a jump to OOFF Hex by jamming the INTR opcode (00) into the IR upon
detecting an interrupt or error. An interrupt that occurs while an instruction is being
executed is not acknowledged until the end of the current instruction. If the instruction
following the current instruction is to be skipped, the next instruction is skipped before
the pending interrupt is acknowledged. Once an interrupt/error is acknowledged, the
CPU requires seven cycles to perform the jump to location OOFF Hex. The sequence of
cycles is:

Cycle 1: Jam opcode 00 into the IR. If not a Software Trap, reset the GIE bit. Decre­
ment the lower-byte of the PC. (Note: The address of the instruction that was
ready to be executed is the return address to be saved on the stack. However,

2-16 ARCHITECTURE

the PC is one count ahead of the current instruction, and must therefore be
decremented before being saved on the stack.)

Cycle 2: If the decrementing of the lower-byte of the PC caused a borrow, decrement
the upper byte of the PC.

Cycle 3: Load the MAR with the address of the first available stack location (the ad­
dress currently in SP). Increment the stack pointer to point to the next byte
of data on the stack.

Cycle 4: Push the low-order byte of the return address onto the stack (store at the lo­
cation addressed by MAR). Load the low-order byte of the PC with OFF Hex.

Cycle 5: Load the MAR with the address of the first available stack location (the ad­
dress currently in SP). Decrement the stack pointer to point to the next avail­
able stack location.

Cycle 6: Push the high-order byte of the return address onto the stack (store at the lo­
cation addressed by MAR). Load the upper byte of the PC with 00 Hex.

Cycle 7: Load the contents of the B pointer into the MAR. Fetch the first byte of the
instruction located at OOFF Hex. Increment the PC.

Once a branch to location OOFF Hex occurs, the user software must poll the available
pending flags to determine the source of the interrupt. If no pending flags are set, the
software should assume a Software Trap has occurred and should take appropriate
action. Refer to the Interrupt Chapter for more information on interrupts and the
Software Trap.

2.6 RESET

The COP8 Basic Family micro controller enters a reset state immediately upon detecting
a logic low on the RESET pin. When the RESET pin is pulled to a logic high, the device
begins code execution within two instruction cycles. The RESET pin must be held low for
a minimum of one instruction cycle to guarantee a valid reset. During power-up
initialization, the user hardware must ensure that the RESET pin is held low until the
COP8 Basic Family micro controller is within the specified V CC voltage. Additionally, the
user must ensure that the oscillator has had time to stabilize. An RIC circuit on the
RESET pin with a delay 5 times greater than the power supply rise time is
recommended.

All COP8 Basic Family microcontrollers contain logic to initialize their internal circuitry
during the reset state. The following initializations are performed at reset:

• The Program Counter is loaded with 0000 Hex.

• All bits of the PSW and CNTRL registers are reset. This disables all interrupts,
stops Timer 1, and disables MICROWIREIPLUS.

The Accumulator and all data memory and data registers, including the B, X and SP
pointers, are uninitialized at reset.

ARCHITECTURE 2-17

Refer to the device-specific chapters for details on the reset initialization of registers not
found in the COP8 Basic Family micro controller core.

2.7 CLOCK OPTIONS

Most COP8 Basic Family parts support three clock options; crystal oscillator, RC
oscillator, and external oscillator. Depending on the device type, the clock option is either
selected via a mask option or programmed into the device by the user. Selection of a
specific clock option affects the operating frequency, clocking accuracy, and power
consumption of a particular device. Refer to the device specific data sheets to obtain
accurate information on frequency ranges, power consumption, and component values
for the different oscillator circuits.

2.7.1 Crystal Oscillator

The dedicated CKI (clock input) pin and G7 (CKO) on the COP8 Basic Family devices can
be connected to make a crystal controlled oscillator as shown in Figure 2-3. IfG7 is used
as the CKO pin, it is not available for general purpose use.

COP820-09-1

Figure 2-3 Crystal Oscillator Circuit

2.7.2 RC Oscillator

The dedicated CKI pin can be used to construct an RC oscillator as shown in Figure 2-4.
With this option, G7 is available as a general purpose input pin. On the COP840CJ, the
capacitor is on-chip.

2-18 ARCHITECTURE

R
VCC_-I'H'----\

Figure 2-4 RC Oscillator Circuit

COP820-10-F

2.7.3 RC Oscillator for the COP840CJ Only

The COP840CJ RJC option has the capacitor on the chip, where the user only has to
provide the resistor. This is to help reduce EMI and help reduce the cost to the customer.
The COP820CJ does not have the capacitor on the chip,therefore, the user has to supply
both the capacitor and the resistor. Table 2-5 shows variation in the oscillator
frequencyfor the COP840CJ as functions of the component (R) values. The capacitor is
on-chip.

R Capacitor is On-Chip

Vee

Figure 2-5 RC Oscillator Circuit for COP840CJ Only

Table 2-5 RJC Oscillator Configuration (Part- To- Part Variation)

R (kOhm) CKI Freq. (MHz) Instr. Cycle (~sec) Conditions

5.6 3.3 ±10% 3.0 ±10% Vcc = 5 Volts

15 1.3 ±10% 7.7 ±10% Vcc = 5 Volts

27 0.75 ±10% 13.3 ±10% Vcc = 5 Volts

This table contains preliminary data for the COP840CJ only. Please see the datasheet for
complete details.

2.7.4 External Oscillator

The dedicated CKI pin can be driven by an external clock signal that meets specified duty
cycle, rise/fall times, and input levels. With this option, G7 is available as a general
purpose input pin. See Figure 2-6.

I CKI

•
CKol
...

~ General
External Purpose
Clock

COP820-11-F

Figure 2-6 External Oscillator Circuit

ARCHITECTURE 2-19

2-20 ARCHITECTURE

Chapter 3

INTERRUPTS

3.1 INTRODUCTION

All COP8 Basic Family members have three independent interrupt sources: External,
Timer 1 and Software Trap. These interrupts may be divided into two categories,
maskable and non-maskable. The External and Timer 1 interrupts are both software
maskable. The Software Trap is non-maskable because it is used to detect errors in
program execution. The COP8 Basic Family processes all interrupts similarly by halting
normal program execution and forcing a branch to program memory location OOFF Hex.
The user program determines how interrupts are prioritized and serviced. A block
diagram of the interrupt logic found in all COP8 Basic Family members is shown in
Figure 3-1.

SOFTWARE --------------,

TIMER ____ --I

EXTERNAL -[J]
EDGE SELECTOR LOGIC

ENTI

TUDD/I0802-8

Figure 3-1 Interrupt Block Diagram

Maskable interrupts, in addition to the External and Timer 1 interrupts, are available
on some devices. These interrupts are discussed in detail in the appropriate device
specific-chapter near the end of this manual. General information regarding interrupt
processing and maskable interrupts contained in this chapter pertains to all COP8 Basic
Family interrupts.

3.2 INTERRUPT PROCESSING

An interrupt is an asynchronous event which may occur before, during, or after an
instruction cycle. Any interrupt which occurs during the execution of an instruction is
not acknowledged until the start of the next normally executed instruction. If the next
normally executed instruction is to be skipped, the skip is performed before the pending
interrupt is acknowledged. All maskable interrupts set their associated interrupt
pending flags immediately upon occurrence.

INTERRUPTS 3-1

At the start of an interrupt acknowledgment, the CPU control logic halts normal
program execution by jamming a zero opcode (00) into the instruction register. The
micro controller then performs the following actions:

1. If the interrupt is not a software trap, the Global Interrupt Enable bit is reset.
This prevents other MASKABLE interrupts from being acknowledged while
another interrupt is being serviced. The software trap does not reset GIE.
Therefore, the software trap may be interrupted by other interrupts (causing
nested interrupts).

2. The address of the next normally executed instruction is saved on the system
stack. (A software trap error instruction pushes its own address onto the
system stack.)

3. The Program Counter is loaded with OOFF Hex. This forces a jump to the
user's general interrupt service routine, which is always stored at location
OOFF Hex in program memory.

The COPS Basic Family devices require seven instruction cycles to perform the actions
listed above. Maskable interrupts that occur during this time still set their associated
interrupt pending flags. Detailed information about the micro controller's processing of
interrupts is provided in Section 2.5.3, Interrupt and Error Handling.

The interrupt service routine at location OOFF Hex should determine the source(s) of the
interrupt. This is accomplished by reading the interrupt pending flags. If more than one
pending flag is set, the software must determine the relative priority of the interrupts. If
no pending flags are set, the software should assume a software trap has occurred. Once
the source and priority of an interrupt have been determined, the program should branch
to an appropriate service routine. Since all interrupts force a branch to location OOFF
Hex, all necessary context switching (saving of the accumulator, B pointer etc.) may be
performed prior to branching to a specialized service routine. At the end of the service
routine, the software should execute an instruction to return to normal program flow.

3.3 MASKABLE INTERRUPTS

The COPS Basic Family devices allows all maskable interrupts to be individually
enabled and disabled in software. Each maskable interrupt has an associated enable bit
which is used for this purpose. In addition, each interrupt has an associated pending flag.
This pending flag is always set by hardware immediately upon the occurrence of an
interrupt regardless of whether or not the associated enable bit is set. The pending flag
is polled by the user to determine the source of an interrupt. Interrupt enable bits are set
and reset by software. Interrupt pending flags are set by hardware but must be reset by
software. Pending flags may also be set by software to force interrupts. When setting a
maskable interrupt enable bit, it should always be considered whether or not a
previously pending occurrence of the interrupt is to be acknowledged. If previous
occurrences are to be ignored and only new occurrences acknowledged, then the
associated pending bit should be reset before the enable bit is set.

All maskable interrupts which have been individually enabled must be globally enabled!
disabled by setting/resetting the Global Interrupt Enable (GIE) bit located in the-

3-2 INTERRUPTS

Processor Status Word (PSW) register. An interrupt will only be acknowledged if its
associated interrupt enable bit and the GIE bit are set.

The acknowledgment of a maskable interrupt always forces the reset of the GIE bit. This
prevents subsequent maskable interrupts from interrupting a service routine already in
progress. Interrupts that occur during the servicing of a previous interrupt are not lost.
These interrupts set their associated interrupt pending flags, and are acknowledged
after the return from the current interrupt service routine. Resetting of the GIE bit does
not prevent a non-maskable software trap from interrupting the micro controller.

The interrupt service routine should poll all pending flags to determine the source of the
interrupt. The service routine must then reset the pending bit of the interrupt being
processed. This is normally done at the start of the interrupt service routine in order to
avoid missing a fast second occurrence of the same interrupt. (Interrupt pending bits are
NOT reset by hardware.) Maskable interrupts may be nested by setting the GIE bit at
the start of or during the interrupt service routine. This procedure of nesting interrupts
is not recommended except in very special cases. Great caution must be exercised in
using nested interrupts because of the potential for stack overflow, as well as the
possibility of over-writing registers used in the interrupt service routines.

Returning from a maskable interrupt service routine may be accomplished with anyone
of the following instructions; RET, RETSKor RET!. However, it is recommended that the
RETI (return from interrupt) instruction be used. This instruction pops the last saved
entry from the stack and places it in the Program Counter. In addition, it sets the GIE
bit in order to enable further interrupts. The user may choose to set the GIE bit in
software and use the RET (return from subroutine) or RETSK (return and skip)
instruction.

3.3.1 Timer 1 Interrupt

Timerl can be configured to generate an interrupt on one of two conditions. The PWM
and External Event Counter modes of operation allow an interrupt on timer underflow.
The Input Capture mode of operation allows an interrupt on a positive or negative edge
transition on TIO (Pin G3). The same interrupt enable flag (ENT!) and interrupt pending
flag (TPND) are used for both timer interrupts. These flags are located in the PSW
register. Details on setting up the Timerl interrupt are given in Chapter 4.

If the timer is not used, the TIO pin (G3) may function as an additional independent
external interrupt. In order to set. up this second external interrupt, the timer is placed
in the Input Capture Mode. The timer control bit TCl is used to select the edge polarity.
The Timer Interrupt Enable (ENT!) and Timer Interrupt Pending (TPND) bits located in
the PSW register are used as the enable and pending flags.

3.3.2 External Interrupt

The GO pin on all COP8 Basic Family devices may be used as an external interrupt input.
If used as an external interrupt, the pin must be configured as an input as described in
Chapter 2. The edge polarity of the interrupt may be selected by writing to the IEDG
(External Interrupt Edged) bit located in the PSW register. Writing a zero selects a
positive edge. Writing a one selects a negative edge. The interrupt is enabled when both

INTERRUPTS 3-3

the ENI (External Interrupt Enable) bit and the GIE bit are set. The occurrence of an
external interrupt will set the IPND (External Interrupt Pending) flag, also located in
the PSW register.

3.4 SOFTWARE TRAP

The software trap interrupt is used to detect errors in program execution. These errors
result from a variety of conditions including: brownouts, power transients, noise,
runaway programs, over-popping of the stack and accessing program memory locations
which are not physically present in the device.

A software trap occurs when a zero opcode instruction (INTR) is executed as part of the
normal instruction sequence fetched from program memory. Generally, a zero opcode is
only executed to force the acknowledgment of a hardware interrupt. In these cases, this
opcode is not a part of the normal instruction sequence but is jammed into the instruction
register by the interrupt logic. The execution of a zero opcode (INTR) when an interrupt
is not pending is an error, and it is this error which actually results in a software trap.
Such an error may occur when an instruction is fetched from beyond the available
program memory space, when the stack is over-popped, or as a result of some transient
condition. Reading from unavailable program memory always returns zeros (INTR).
Thus, instruction fetches from these locations load zero opcodes into the instruction
register, and thereby create a software trap. Over-popping a stack which has been
initialized to the top of the available data memory space loads the Program Counter with
FFFF Hex. This indirectly forces a software trap by loading the Program Counter with
the address of an unavailable program memory location. If unused program memory is
filled with all zeros, then a software trap will also occur if a runaway program
inadvertently branches to an unused program memory location.

Software traps, like hardware interrupts, force ajump to program memory location OOFF
Hex. However, software traps do not set an interrupt pending flag or reset the GIE bit.
The code located at OOFF Hex can determine whether or not a software trap has occurred
by polling all maskable interrupt pending flags. If no flags are set, it can be assumed that
a software trap has occurred. Since the GIE bit is not reset upon the occurrence of a
software trap, a software trap may be interrupted by another interrupt.

Whenever a software trap occurs, it is recommended that the user re-initialize the stack
pointer and do a recovery procedure. The recovery procedure should be similar to a device
RESET start-up but may not contain all of the same initialization procedures. The user
should never simply execute a RET or RETI instruction to exit from a software trap. This
is because the return address pushed onto the stack by the software trap is the address
of the instruction that produced the error. An infinite loop of software traps is generated
by returning to this instruction. The user may return to the instruction following the trap
instruction by placing an RETSK at the end of the software trap service routine.

3-4 INTERRUPTS

Chapter 4

TIMER

4.1 INTRODUCTION

The COP8 Basic Family devices contain a versatile 16-bit timer/counter that can satisfy
a wide range of application requirements. The timer can be configured to operate in any
of three modes:

• Pulse Width Modulation (PWM) mode: generates pulses of a specified width

• External event counter mode: counts occurrences of an external event

• Input capture mode: measures the elapsed time between occurrences of an exter­
nal event

4.2 TIMER/COUNTER BLOCK

The timer/counter block (the section of the device containing the timer circuitry) consists
of a 16-bit counter/timer register and an associated 16-bit autoload/capture register
(designated RA). The timer and the associated autoload register are each organized as a
pair of 8-bit memory-mapped registers. The timer bytes reside at addresses OOEA and
OOEB, while the associated autoload register bytes reside at addresses OOEC and OOED.

The timer/counter block uses one pin, designated TIO, to support the I/O requirements
of the timer. The TIO feature is an alternate function ofG3 (Port G, bit 3).

The timer can be started or stopped at any time under program control. When running,
the timer counts down (decrements). Depending on the operating mode, the timer counts
either instruction clock pulses (the clock used for executing instructions) or transitions
on the TIO pin. Occurrences of the timer underflow (transition from 0000 to FFFF) can
either generate an interrupt or toggle the TIO pin, also depending on the operating mode.

When timer interrupts are enabled, the source of the interrupt depends on the timer
operating mode: either a timer underflow, or an input signal received on the TIO pin.

4.3 TIMER CONTROL BITS

The timer is controlled by six memory-mapped control bits in the PSW (Processor Status
Word) and CNTRL (Control) registers of the CPU core. These bits control the operation
of the timer by enabling or disabling the timer interrupt, by setting the operating mode,
and by starting and stopping the timer. The control bits operate as described in Tables 4-1
and 4-2.

TIMER 4-1

Table 4-1 Timer Control Bits

RegisterlBit Name Function

PSWIBit 5 TPND Timer interrupt pending flag: 1 = Timer inter-
rupt pending, 0 = Timer interrupt not pending

PSWIBit 4 ENTI Enable timer interrupt: 1 = Timer interrupt
enabled, 0 = Timer interrupt disabled

CNTRLlBit 7 TC1 Timer control bit 3 (see table 4-2)

CNTRLlBit 6 TC2 Timer control bit 2 (see table 4-2)

CNTRLlBit 5 TC3 Timer control bit 1 (see table 4-2)

CNTRLlBit 4 TRUN Timer run: 1 = Start timer, 0 = Stop timer

Table 4-2 Timer Mode Control Bits

CNTRL Operating Mode T Interrupt Timer Counts On Bits 7-6-5

0-0-0 External event counter Timer underflow TIO positive edge
with autoload register

0-0-1 External event counter Timer underflow TIO negative edge
with autoload register

0-1-0 Not Allowed - -

0-1-1 Not Allowed - -

1-0-0 PWM: timer with auto- Timer underflow Instruction clock
load register

1-0-1 PWM: timer with auto- Timer underflow Instruction clock
load register; toggle TIO
out

1-1-0 Timer with input cap- TIO positive edge Instruction clock
ture register

1-1-1 Timer with input cap- TIO negative edge Instruction clock
ture register

4-2 TIMER

4.4 TIMER OPERATING MODES

The timer can be configured to operate in anyone of three modes. Within each mode,
there are options related to the use of the TIO pin.

The Pulse Width Modulation (PWM) mode can be used to generate precise pulses of
known width on the TIO pin (configured as an output). The timer is clocked by the
instruction clock. An underflow causes the timer register to be reloaded with the value
in the RA register, and optionally, causes the TIO output to toggle.

The external event counter mode can be used to count occurrences of an external event.
The timer is clocked by the signal appearing on the TIO pin (configured as an input). An
underflow causes the timer register to be reloaded with the value in the RA register.

The input capture mode can be used to precisely measure the frequency of an external
clock that is slower than the instruction clock, or to measure the elapsed time between
external events. The timer is clocked by the instruction clock. A transition received on
the TIO pin (configured as an input) causes a transfer of the timer contents to the RA
register.

4.4.1 PWM Mode

In the Pulse Width Modulation (PWM) mode, the timer counts down at the instruction
clock rate. When an underflow occurs, the contents of the RA register are transferred into
the timer register, and counting proceeds downward from the loaded value. If the timer
interrupt is enabled, an interrupt occurs with each underflow.

The timer can be configured to toggle the TIO output bit upon underflow. In this case, the
width of pulses on the TIO pin are controlled by the value stored in the RA register.

A block diagram of the timer operating in the PWM mode is shown in Figure 4-1.

TIMER UNDERFLOW
INTERRUPT

G3 DATA

TOGGLE L...-._LA_T_C_H_

Figure 4-1 Timer in PWM Mode

OUTPUTTIO
ON PIN G3

TSP-COP820-03

The following steps can be used to operate the timer in the PWM mode. In this example,
the TIO output pin is toggled with every timer underflow, and the "on" and "off' times for
the TIO output are set to different values. (The TIO output can start out either high or
low; follow the instructions shown in parentheses to start it low.)

TIMER 4-3

1. Configure the TIO pin as an output by setting bit 3 in the Port G configuration
register.

2. Initialize the TIO pin value to 1 (or 0) by setting (or clearing) the bit 3 in the
Port G data register.

3. Load the PWM "on" (or "off') time into the timer register.

4. Load the PWM "off' (or "on") time into the RA register.

5. Set the timer control bits of the CNTRL register to select the PWM mode, and
to toggle the TIO output with every timer underflow (see Table 4-2).

6. Set the TRUN (Timer Run) bit in the CNTRL register to start the timer.

7. Mter the timer underflows, update the RA register by writing the desired val­
ue for the next "on" or "off' time period. Either polling or interrupts can be
used to synchronize loading of the RA register with the operation of the timer.
To use interrupts, you must write the proper value to the PSW register before
starting the timer: clear the TPND (Timer Interrupt Pending) flag, set the
ENTI (Enable Timer Interrupt) bit, and set the GIE (Global Interrupt En­
able) bit.

The selectable range for the PWM "on" and "off' times is 1 to 65,536 clock cycles. For a
10 MHz clock, this corresponds to a time range of 1 microsecond to 65.5 milliseconds. The
pulse period ("on" plus "off' times) can then range from 2 microseconds to 131
milliseconds.

4.4.2 External Event Counter Mode

The external event counter mode is similar to the PWM mode, except that instead of
counting instruction clock pulses, the timer counts transitions received on the TIO pin
(configured as an input). The TIO pin should be connected to an external device that
generates a pulse for each event to be counted.

The timer can be configured to sense either positive-edge or negative-edge transitions on
the TIO pin. The maximum frequency at which transitions can be sensed is one-half the
frequency of the instruction clock.

As with the PWM mode, when an underflow occurs, the contents of the RA register are
transferred into the timer register, and counting proceeds downward from the loaded
value. If the timer interrupt is enabled, an interrupt occurs with each underflow.

A block diagram of the timer operating in the external event counter mode is shown in
Figure 4-2.

The following steps can be used to operate the timer in the external event counter mode.

1. Configure the TIO pin as an input by clearing the bit 3 in the Port G configu­
ration register.

2. Load the initial count into the timer register and also into the RA register.
When this number of external events is detected, the counter will reach zero

4-4 TIMER

TIMER UNDERFLOW
INTERRUPT

Figure 4-2 Timer in External Event Counter Mode

TSP-COP820-04

although it will not overflow until the next event is detected. Therefore, to
count N pulses, the value N -1 should be loaded into the timer and RA registers.

3. Set the timer control bits of the CNTRL register to select the external event
counter mode, and to select the type of transition to be sensed on the TIO pin
(positive-edge or negative-edge; see Table 4-2).

4. Set the TRUN (Timer Run) bit in the CNTRL register to start the timer.

5. The software should take whatever action is required when the timer under­
flows. Underflow can be detected either by polling the timer register or by us­
ing the timer interrupt. To use interrupts, you must write the proper value to
the PSW register before starting the timer: clear the TPND (Timer Interrupt
Pending) flag, set the ENTI (Enable Timer Interrupt) bit, and set the GIE
(Global Interrupt Enable) bit.

4.4.3 Input Capture Mode

In the input capture mode, the timer counts down at the instruction clock rate. A
transition received on the TIO pin (configured as an input) causes a transfer of the timer
contents to the RA register. The values captured in the RA register at different times
reflect the elapsed time between transitions on the TIO pin.

The timer can be configured to sense either positive-edge or negative-edge transitions. If
the timer interrupt is enabled, the· sensed transition on the TIO pin also triggers an
interrupt. Timer underflows have no significance in this mode.

A block diagram of the timer operating in the input capture mode is shown in Figure 4-3.

The following steps can be used to operate the timer in input capture mode.

1. Configure the TIO pin as an input by clearing bit 3 in the Port G configuration
register.

2. Set the timer control bits of the CNTRL to select the input capture mode, and
to select the type of transition to be sensed on the TIO pin (positive-edge or
negative-edge; see Table 4-2).

TIMER 4-5

TSP-COP820-05

Figure 4-3 Timer in Input Capture Mode

3. Set the TRUN (Timer Run) bit in the CNTRL register to start the timer.

4. Each time a transition is sensed on the TIO pin, the contents of the timer reg­
ister are transferred to the RA register, and an interrupt is triggered (if en­
abled). The interrupt service routine can record and compare the RA register
contents to determine the elapsed time between events. To use interrupts,
you must write the proper value to the PSW register before starting the tim­
er: clear the TPND (Timer Interrupt Pending) flag, set the ENTI (Enable
Timer Interrupt) bit, and set the GIE (Global Interrupt Enable) bit.

4-6 TIMER

Chapter 5

MICROWIREIPLUS

5.1 INTRODUCTION

MICROWIREIPLUSTM is a synchronous serial communication system that allows the
COP8 Basic Family micro controller to communicate with any other device that also
supports the MICROWIREIPLUS system. Examples of such devices include AID
converters, comparators, EEPROMs, display drivers, telecommunications devices, and
other processors (e.g., HPC and COP400 processors). The MICROWIREIPLUS serial
interface uses a simple and economica13-wire connection between devices.

Several MICROWIREIPLUS devices can be connected to the same 3-wire system. One of
these devices, operating in what is called the master mode, supplies the synchronous
clock for the serial interface and initiates the data transfer. Another device, operating in
what is called the slave mode, responds by sending (or receiving) the requested data. The
slave device uses the master's clock for serially shifting data out (or in), while the master
device shifts the data in (or out).

On the COP8 Basic Family device, the three interface signals are called SI (Serial Input),
SO (Serial Output), and SK (Serial Clock). To the master, SO and SK are outputs
(connected to slave inputs), and SI is an input (connected to slave outputs).

The COP8 Basic Family microcontroller can operate either as a master or a slave,
depending on how it is configured by the software. Figure 5-1 shows an example of how
several devices can be connected together using the MICROWIREIPLUS system, with
the COP8 Basic Family micro controller (on the left) operating as the master, and other
devices operating as slaves. The protocol for selecting and enabling slave devices is
determined by the system designer.

5.2 THEORY OF OPERATION

Figure 5-2 is a block diagram illustrating the internal operation of the MICROWIREI
PLUS circuit of the COP8 Basic Family micro controller.

An 8-bit shift register, called the SIO (Serial Input/Output) register, is used for both
sending and receiving data. In either type of data transfer, bits are shifted left through
the register. When a data byte is being sent, bits are shifted out through the SO output,
most significant bit first. When a data byte is being received, bits are shifted in through
the SI input, most significant bit first also.

The SIO register is memory-mapped in the microcontroller's data memory space,
allowing the software to write a data byte to be sent, or to read a full data byte that has
been received. The Busy flag in the PSW register indicates whether the SIO register is
ready to be read or written. Instead of polling the Busy flag, you can use a carefully timed

MICROWIREIPLUS 5-1

I/O
LINES

C

CHIP SELECT LINES 5/

~ ~
/

~ ~

8-BIT DIGITAL LCD
NDCON- DISPLAY
VERTER EEPROM PLL DRIVER

COP8 COP43X COP472-3 (MASTER)

DO DI ClK DO DI CLK DI CLK- DI CLK

SI .l. i + i i i
SO 1 1 1 1
SK

Figure 5-1 MICROWIREIPLUS Example

IBuSYl
M-------------~~

D
A
T
A

INSTRUCTION
B CLOCK
U
S

~------------------------~SO

M--------------- SI

SK

I/O
LINES

<=> COP8
(SLAVE)

SO

SI

SK

TSP-COP820-06

TSP-COP820-07

Figure 5-2 MICROWIREIPLUS Circuit Block Diagram

software loop to synchronize the reading or writing of the SIO register to completion of
each 8-bit shift operation.

WARNING

The software should write the SIO register only when the SK clock is low. A data byte is
generally written at the end of an 8-bit shifting cycle, when the SK clock is low anyway,
so this is generally not a problem. If the user inadvertently writes to the register when
SK is high, unknown data may be placed in the register.

5-2 MICROWIREIPLUS

5.2.1 Timing

Timing of the MICROWIREIPLUS interface is shown in Figure 5-3.

BUSY J lJ
SK

SO

SI

COP800-09

Figure 5-3 MICROWIREIPLUS Interface Timing

The SK clock signal is generated by the master device. Read and write operations are
synchronized to this signal. When a data byte is being sent, the output data on SO is
clocked out on the falling edge of the SK clock, as indicated by the solid arrows in the
timing diagram. The first bit, however, becomes valid immediately after the SIO register
is loaded with the data byte to be sent. When a data byte is being received, the input data
on SI is sampled on the rising edge of the SK clock, as indicated by the dashed arrows in
the timing diagram.

5.2.2 Port G Configuration

The three MICROWIREIPLUS signals SO, SK, and SI are alternate functions of Port G
pins G4, G5, and G6, respectively. To enable the use of these pins for the MICROWIREI
PLUS interface, the lVISEL (MICROWIRE Select) bit of the CNTRL register must be set
to 1. (The SLI and SLO bits, also in the CNTRL register, are used to control the SK clock
speed in master mode, as described below.)

Port G must be properly configured for operation of the interface. This is accomplished
by writing certain bit values to the Port G configuration register. Pin G4 (SO) should be
configured as an output for sending data. Pin G5 (SK) should be configured as an output
in master mode, or as an input in slave mode. G6 (S1) serves only as an input, so it need
not be specifically configured as such. The Port G configuration register programming
options are summarized in Table 5-1.

5.2.3 SK Clock Operation

When the COP8 Basic Family micro controller operates in master mode, it generates the
SK clock signal. A divide-by counter lowers the frequency of the instruction clock,
producing an SK clock period that is 2, 4, or 8 times the period of the instruction clock.
The divide-by factor is programmed by writing two bits to the CNTRL register,
designated SLI and SLO (Select 1 and Select 0 bits), as indicated in Table 5-2.

MICROWIREIPLUS 5-3

Table 5-1 Port G Configuration Register Bits

Port G Config. MICROWIRE G4Pin G5Pin G6Pin
Reg. Bits G5-G4 Operation Function Function Function

0-0 Slave, data in TRI-STATE SK SIInput
(unused) External

0-1 Slave, data out SO Output SK SIInput
and data in External

1-0 Master, data in TRI-STATE SK SIInput
(unused) Internal

1-1 Master, data out SO Output SK SIInput
and data in Internal

Table 5-2 Master Mode Clock Select Bits

SLI (CNTRL Bit 1) SLO (CNTRL Bit 0) SK Clock Period

0 0 2 times tc

0 1 4 times tc

1 X 8 times tc

The internal divide-by counter is reset when the MICROWIRE Busy flag (described
below) goes to 1. Because of this, the divide-by counter always starts from 0 at the
beginning of an 8-bit shift cycle, ensuring uniform SK clock pulses.

When the COP8 Basic Family micro controller operates in slave mode, the SK clock is
generated by the external master device. In this case, SK is an input, and the SK clock­
generating circuit of the COP8 device is inactive.

5.2.4 . Busy Flag

A flag bit in the PSW (Processor Status Word) register indicates the status of the SIO
shift register. To initiate an 8-bit shifting operation, set this bit to 1. Shifting then starts
and continues automatically at the SK clock rate. With each shift, the high-order bit of
the register is shifted out on SO (if enabled), and simultaneously, the low-order bit of the
register is shifted in from SI.

When the 8-bit shifting operation is finished, the Busy flag is automatically reset to 0 by
hardware. The software can determine whether or not shifting has been completed by
polling this flag. When the flag is found to be 0, the software can write the next byte to
be sent (or read the full byte just received) and then set the Busy flag to initiate transfer
of the next byte.

5-4 MICROWIREIPLUS

The software can control the timing of the transfer by the setting and resetting the Busy
flag. The handshaking protocol between the master and slave should ensure that the
slave device is given enough time to respond after being enabled by the master. An
example of a MICROWIREIPLUS master/slave protocol is provided in the applications
chapter.

The software program can reset the Busy bit directly by writing to the PSWregister. This
stops shifting immediately.

It is possible to eliminate the need for polling the Busy bit, thereby speeding up the
transfer. This is accomplished by writing a software loop that executes in the exact
amount of time necessary to allow an 8-bit shift operation. At the end of the loop, the
software initiates the next 8-bit transfer, without checking the Busy bit. This is called
the MICROWIRE "fast burst" mode. An example of this type of program is presented in
the applications chapter.

Some external devices may require a continuous bit stream, without any pauses between
bytes. This mode, called the MICROWIRE "continuous" mode, is also accomplished by
writing a software loop that executes in a specific number of cycles. The clock divide-by
factor must be 8. An example of this type of program is presented in the applications
chapter.

When the COP8 Basic Family micro controller operates in slave mode, the Busy flag
should be set only when the SK clock signal (an input) is low. This is because the Busy
bit is ANDed internally with the SK signal to produce the clock-shifting signal. If the
Busy flag is set while SK is already high, the current SK pulse is gated in immediately,
resulting in a clock pulse with an unknown width (perhaps very narrow), causing
unreliable shifting.

5.3 MASTER MODE OPERATION EXAMPLE

When the COP8 Basic Family microcontroller operates in master mode, it generates the
SK clock and initiates the transfer. The application software can perform a data transfer
using the numbered steps shown below.

1. Write the proper value to the CNTRL register. To enable use of the Port G
pins, set the MSEL bit. To set the divide-by factor for the SK clock, write the
desired 2-bit value to the SL1 and SLO bits (Table 5-2).

2. Write the proper value to the Port G configuration register, bits G5 and G4,
to make the G5 (SK) pin an output and the G4 (SO) pin either TRI-STATE or
an output, depending whether or not the COP8 Basic Family micro controller
is transmitting (Table 5-1).

3. If necessary, enable the desired slave device.

4. If sending data, write the data byte to the SIO register.

5. Set the Busy flag in the PSW register to initiate the transfer. Shifting pro­
ceeds automatically at the SK clock rate. The Busy flag is automatically reset
upon completion of the 8-bit transfer.

MICROWIREIPLUS 5-5

6. Run in a loop and test the Busy flag for completion of the S-bit transfer.

7. If receiving data, read the data byte in the sro register.

S. Repeat steps 4 through 7 until all data bytes are transferred.

5.4 SLAVE MODE OPERATION EXAMPLE

When the COPS Basic Family micro controller operates in slave mode, the external
master device generates the SK clock and initiates the transfer; SK is an input to the
COP8 Basic Family micro controller. The application software can set up the COPS Basic
Family device to allow a data transfer using the numbered steps shown below.

1. To enable use of the Port G pins, set the MSEL bit of the CNTRL register.

2. Write the proper value to the Port G configuration register to make the G5
(SK) pin an input and the G4 (SO) pin either TRI-STATE or an output, de­
pending on whether or not the COPS Basic Family microcontroller is trans­
mitting (Table 5-1).

3. rf sending data, write the data byte to the sro register.

4. Set the Busy flag in the PSW register to allow the transfer. This should be
done only when the SK signal is low. The handshaking protocol between the
master and slave should ensure that the COPS Basic Family microcontroller
is given enough time to set the Busy flag before the data transfer starts. Once
started, shifting proceeds at the SK clock rate. The Busy flag is automatically
reset upon completion of the S-bit transfer.

5. Run in a loop and test the Busy flag for completion of the 8-bit transfer.

6. If receiving data, read the data byte in the sro register.

7. Repeat steps 3 through 6 until all data bytes are transferred.

5-6 MICROWIREIPLUS

Chapter 6

POWER SAVE MODE

6.1 INTRODUCTION

The COPS Basic Family microcontrollers support a power-save mode of operation called
the HALT mode. In this mode of operation, all internal processor activity stops and power
consumption is reduced to a very low level. The processor can be forced to exit the HALT
mode and resume normal operation at any time.

The fully static architecture of the COPS Basic Family micro controllers allow the state
of the microcontroller to be absolutely frozen. This is accomplished by stopping the
internal clock of the device. In addition to stopping the internal clock, the controller stops
the CKI pin from oscillating during the HALT mode if the RIC or Crystal clock is selected.

During normal operation, typical power consumption is in the range of 1 to 10
milliamperes. The actual power consumption for a device depends heavily on the clock
speed and operating voltage used in an application. In the HALT mode, the device draws
only a small amount of leakage current, plus any current necessary for driving the
outputs. Typically, power consumption is reduced to less than 1 microampere. Since total
power consumption is affected by the amount of current required to drive the outputs, all
IIOs should be configured to draw minimal current, if possible, prior to entering the
HALT mode. In order to reduce power consumption even further, the power supply (Vee)
can be reduced to a very low level during the HALT mode that guarantees the status of
the RAM only. The allowed lower voltage level (Vr) is specified in the device datasheet.

There are two ways to enter the HALT mode. One method is to simply stop the processor
clock (if the hardware implementation allows it). The other method is to set bit 7 of the
Port G data register.

6.2 CLOCK-STOPPING METHOD

The clock-stopping method of entering the HALT mode can be used only if the hardware
implementation of the processor clock allows it. If a crystal or R-C circuit is used, there
is no practical way to stop the clock, and this method cannot be used. However, if the
clock signal is generated externally and supplied to the CKI input, the external clock
circuit can simply stop the clock at any time.

The clock signal at CKI can be stopped in either state (high or low). When the clock stops,
the COPS Basic Family micro controllers stop running but maintains all register and
RAM contents. Power consumption is reduced to a very low level. However, when the
clock starts running again, the processor begins running again from the point at which
it had stopped.

POWER SAVE MODE 6-1

6.3 PORT G METHOD

In the Port G method, the device enters the HALT mode under software control when the
Port G data register bit 7 is set to 1. All processor action stops immediately, and power
consumption is reduced to a very low level.

From this state, there are two ways to exit the HALT mode and resume normal operation.
One method is to supply a low-to-high transition on the G7 input pin. The other method
is to simply reset the device.

Using the G7 input pin is possible only if an external clock signal is supplied to CKI or
an R-C circuit is being used. If a crystal circuit is being used, the G7 fCKO pin is used as
CKO, and is therefore unavailable for use as a HALT/Restart pin. If the G7 pin is
available, a low-to-high transition on the pin takes the processor out of the HALT mode,
and the program execution resumes from the point at which it stopped. In order to ensure
accurate operation upon start-up of the device, the NOP (no-operation) instruction
should follow the enter HALT instruction in the user's program.

A device Reset, which is invoked by a low-level signal on the RESET input pin, takes the
device out of the HALT mode and starts execution from address OOOOH. The initialization
software should determine what special action is needed, if any, upon start-up of the
device. The initialization of all registers following a RESET exit from HALT is discussed
in Section 2.6 and the device specific chapters. .

6-2 POWER SAVE MODE

Chapter 7

INPUT/OUTPUT

7.1 INTRODUCTION

All COPS Basic family devices have four dedicated input pins (RESET, Vee, GND, CKI)
and at least one bidirectional I/O port. Additional bidirectional I/O ports, dedicated input
ports, and dedicated output ports are available on higher pin-count packages for some
devices. (Refer to the device specific chapters for additional information on available
ports, packages, and pinouts.) The RESET, Vee, GND and CKI pins are used for reset,
power supply, ground, and clock input, respectively. The bidirectional I/Os may be
configured in software as Hi-Z input, weak pull-up, or push-pull output. These pins may
be used as general purpose input/output pins or for selected alternate functions. The
dedicated input and dedicated output ports may also be used as general purpose pins or
for selected alternate functions. Individual port descriptions are given in the following
sections of this chapter. Figure 7-1 contains a block diagram of the bidirectional,
dedicated output, and dedicated input port types.

N

T

E

R

N

A

L

B

U

S

BIDIRECTIONAL 1/0 PORT

DATA
REGISTER

CONFIGU RATION
REGISTER

OUTPUT-ONLY PORT

DATA
REGISTER

INPUT-ONLY PORT

PIN

PIN

PIN

TSP-COP820-08

Figure 7-1 COPS Basic Family Port Structure

INPUT/OUTPUT 7-1

7.2 PORTe

Port C is not available on all COP8 Basic Family devices. Ifpresent, Port C is a software
configurable 110 port. All of the Port C pins are available for general purpose use. Three
memory addresses are allocated to Port C. One address is used to read the port pins
directly. The other two addresses are used to access the port configuration register and
the port data register. The configuration and data registers' bits are used to set-up the
individual pins of Port C as described in Section 2.3.3.

Any package which has a Port C with less than 8 pins contains unbonded pins. The user's
software should write a "I" to the missing pins configuration register bits. This
configures unbonded pins as outputs and reduces the leakage current of the part.

7.3 PORTD

Port D is not available on all COP8 Basic Family devices. Ifpresent, Port D is a dedicated
output port with one associated memory address. This address is used to access the port
data register. A Port D pin may be individually configured to a logic high or low by
writing a one or zero, respectively, to the associated data register bit. These pins are all
available for general purpose use.

Port D outputs have high-sink drive capability. Refer to the COP8 Basic Family
datasheets for more information on the electrical specs of Port D.

Port D is preset high when RESET goes low, and the D2 pin is sampled. If D2 is held low
during the reset state, the COP8 Basic Family micro controller enters a special mode of
operation upon exiting the reset state. This special mode is used for testing purposes. In
order to avoid entering this mode, the hardware designer should ensure D2 is not pulled
low during reset.

7.4 PORTG

Port G is an input/output port which is available on all COP8 Basic Family devices. The
number of pins associated with this port varies according to the device and package. The
G6 pin, if available, is always an input pin. The G7 pin is either an input or output
depending on the oscillator mask option selected. With an RC oscillator or external clock,
the pin is available as a general purpose input and HALTlRestart pin (see Chapter 6).
With the crystal oscillator option, the pin is a dedicated clock output (CKO) pin. All other
Port G pins are software configurable bi-directional input/outputs and are available for
general purpose use.

Three memory addresses are assigned to this port. One address is used to read the actual
port pins. The other two addresses are used to access the port data register and the port
configuration register. The port registers' Bits 0-5 are used to individually configure the
port pins GO through G5 as described in Section 2.3.3. Bits 6 and 7 of the Port G
configuration register, and Bit 6 of the Port G data register are reserved. These bits
always read zero, and writing a value to these bits has no effect. Bit 7 of the Port G data
register is used to place the COP8 Basic Family micro controller in HALT mode. (See
Chapter 6.)

7 -2 INPUT/OUTPUT

Most of the Port G pins are assigned optional alternate functions. The functions include
but are not limited to: timer interface control, external interrupt, and MICROWIREI
PLUS interface. Alternate pin functions are listed in Section 7.7, and discussed in more
detail in chapters devoted to specific COPS Basic Family features.

All Port G pins have Schmitt Triggers on their inputs. Any package which has a Port G
with less than S pins contains unbonded pins. The user's software should write a "1" to
the missing pins configuration register bits. This configures unbonded pins as outputs
and reduces the leakage current of the part.

7.5 PORT I

Port I is not available on all COPS Basic Family devices. If present, Port I is a dedicated
input port with one associated memory address. This read only address is used to access
the input directly at the port pins.

All Port I pins are Hi-Z inputs, and must be pulled to a logic high or low externally. If a
device has a Port I with less than S pins, the unavailable pins are unterminated. A read
operation from these unterminated pins returns unpredictable values. The user should
ensure that software takes this into account by either masking out these inputs or
restricting the Port I accesses to bit operations only.

NOTE: Unterminated Port I pins draw power only when addressed (i.e., in short
spikes).

7.6 PORTL

Port L is a bi-directional input/output port. The number of pins associated with this port
varies according to the device and package. All Port L pins are available for general
purpose use. Three memory addresses are allocated to Port L. One address is used to read
the port pins directly. The other two addresses are used to access the port configuration
register and the port data register. The configuration and data registers' bits are used to
set-up the individual pins of Port L as described in Section 2.3.3.

In some COPS Basic Family devices, the Port L pins have been assigned optional
alternate functions. Alternate pin functions, such as multi-input wakeup, are discussed
in more detail in the device specific chapters.

Devices which support multi-input wakeup on the Port L pins have Schmitt Triggers on
all Port L inputs. Some COPS Basic Family devices have high sink capabilities on Port
L. Refer to the specific device's datasheet for more information on the Port L electrical
characteristics.

7.7 ALTERNATE PORT FUNCTIONS

This section lists the alternate functions available on the Port G pins. For information on
the alternate functions of pins in Ports C, D, I and L refer to the device specific chapters.

INPUT/OUTPUT 7-3

Pins assigned alternate functions may be used in a general purpose manner or in their
alternate function capacity.

PORTG

Port G has the following alternate pin functions on all COP8 Basic FamilyCOP8 Basic
Family devices:

GO INTR (External Interrupt Input)

Gl No alternate function

G2 No alternate function

G3 Timer 1 110

G4 SO (MICROWIREIPLUS Serial Data Output)

G5 SK (MICROWIREIPLUS Clock 110)

G6 SI (MICROWIREIPLUS Serial Data Input)

G7* Dedicated CKO (Clock Output) with Crystal Oscillator Mask Option or HALT/
Restart (Exit HALT Mode) with RC or External Oscillator Mask Option

Refer to the Interrupt, Timer, MICROWIREIPLUS and Power Save Mode chapters for
additional information on these pins.

*This pin's alternate function(s) cannot be enabled and disabled in software.

7-4 INPUT/OUTPUT

Chapter 8

INSTRUCTION SET

8.1 INTRODUCTION

This chapter defines the instruction set of the COPS Basic Family members. It contains
information about the instruction set features, addressing modes and types. In addition,
it contains a detailed description of each COPS Basic Family instruction.

8.2 FEATURES

The strength of the COPS Basic Family instruction set is based on the following features:

• Majority of single-byte opcode instructions to minimize program size.

• One instruction cycle for the majority of single-byte instructions to minimize pro­
gram execution time.

• Many single-byte, multiple function instructions such as DRSZ.

• Three memory mapped pointers; two for register indirect addressing, and one for
the software stack.

• Sixteen memory mapped registers which allow an optimized implementation of
certain instructions.

• Ability to set, reset and test any individual bit in data memory address space, in­
cluding the memory mapped I/O ports and registers.

• Register-Indirect LOAD and EXCHANGE instructions with optional automatic
post-incrementing or decrementing of the register pointer. This allows for greater
efficiency (both in cycle time and program code) in loading, walking across and pro­
cessing fields in data memory.

• Unique instructions to optimize program size and throughput efficiency. Some of
these instructions are: DRSZ, IFBNE, DCOR, RETSK and RRC.

8.3 ADDRESSING MODES

The COPS Basic Family instruction set offers a variety of methods for specifying memory
addresses. Each method is called an "addressing mode." These modes are classified into
two categories: "operand" addressing modes and "transfer-of-control" addressing modes.
Operand addressing modes are the various methods of specifying an address for
accessing (reading or writing) data. Transfer-of-control addressing modes are used in
conjunction with "Jump" instructions to control the execution sequence of the software
program.

INSTRUCTION SET 8-1

Operand Addressing Modes

8.3.1 Operand Addressing Modes

The operand of an instruction specifies what memory location is to be affected by that
instruction. Several different operand addressing modes are available, allowing memory
locations to be specified in a variety of ways. An instruction can specify an address
directly by supplying the specific address, or indirectly by specifying a register pointer.
The contents of the register (or in some cases, two registers) point to the desired memory
location. In the "immediate" mode, the data byte to be used is contained in the instruction
itself.

Each addressing mode has its own advantages and disadvantages with respect to
flexibility, execution speed, and program compactness. Not all modes are available with
all instructions. The Load (LD) instruction offers the largest number of addressing
modes.

The available addressing modes are:

• Direct

• Register B or X Indirect

• Register B or X Indirect with Post-IncrementinglDecrementing

• Immediate

• Immediate Short

• Indirect from Program Memory

The addressing modes are described below. Each description includes an example of an
assembly language instruction using the described addressing mode.

Direct. The memory address is specified directly as a byte in the instruction. In
assembly language, the direct address is written as a numerical value (or a label that has
been defined elsewhere in the program as a numerical value).

Example: Load Accumulator Memory Direct

LDA,05

ReglData Memory

Accumulator

Contents Before Contents Mter

Memory Location 0005 Hex

8-2 INSTRUCTION SET

xx Hex

A6Hex

A6Hex

A6Hex

Operand Addressing Modes

Register B or X Indirect. The memory address is specified by the contents of the B
Register or X register (pointer register). In assembly language, the notation [B] or [X]
specifies which register serves as the pointer.

Example: Exchange Memory with Accumulator, B Indirect

XA,[B]

ReglData Memory Contents Before Contents Mter

Accumulator

Memory Location
0005 Hex

B Pointer

01 Hex

87 Hex

05 Hex

87 Hex

01 Hex

05 Hex

Register B or X Indirect with Post-IncrementinglDecrementing. The relevant
memory address is specified by the contents of the B Register or X register (pointer
register). The pointer register is automatically incremented or decremented after
execution, allowing easy manipulation of memory blocks with software loops. In
assembly language, the notation [B+], [B-], [X+], or [X-] specifies which register serves as
the pointer, and whether the pointer is to be incremented or decremented.

Example: Exchange Memory with Accumulator, B Indirect with Post­
Increment

XA,[B+]

ReglData Memory Contents Before Contents Mter

Accumulator 03 Hex 62 Hex

Memory Location
0005 Hex 62 Hex 03 Hex

B Pointer 05 Hex 06 Hex

Immediate. The data for the operation follows the instruction opcode in program
memory. In assembly language, the number sign character (#) indicates an immediate
operand.

Example: Load Accumulator Immediate

LDA,#05

ReglData Memory Contents Before Contents Mter

Accumulator xx Hex 05 Hex

INSTRUCTION SET 8-3

Transfer-of-Control Addressing Modes

Immediate Short. This is a special case of an immediate instruction. In the "Load B
immediate" instruction, the 4-bit immediate value in the instruction is loaded into the
lower nibble of the B register. The upper nibble of the B register is reset to 0000 binary.

Example: Load B Register Immediate Short

LD B,#7

ReglData Memory Contents Before Contents Mter

B Pointer 12 Hex 07 Hex

Indirect from Program Memory. This is a special case of an indirect instruction that
allows access to data tables stored in Program Memory. In the "Load Accumulator
Indirect" (LAID) instruction, the upper and lower bytes of the Program Counter (PCU
and peL) are used temporarily as a pointer to Program Memory. For purposes of
accessing Program Memory, the contents of the Accumulator and PCL are exchanged.
The data pointed to by the Program Counter is loaded into the Accumulator, and
simultaneously, the original contents of peL are restored so that the program can
resume normal execution.

Example: Load Accumulator Indirect

LAID

ReglData Memory Contents Before Contents Mter

PCU

peL

Accumulator

Memory Location
041F Hex

04 Hex

35 Hex

1FHex

25 Hex

8.3.2 Transfer-of-Control Addressing Modes

04 Hex

36 Hex

25 Hex

25 Hex

Program instructions are usually executed in sequential order. However, "Jump"
instructions can be used to change the normal execution sequence. Several transfer-of­
control addressing modes are available to specify jump addresses.

A change in program flow requires a non-incremental change in the Program Counter
contents. The Program Counter consists of two bytes, designated the upper byte (PCU)
and lower byte (PCL). The most significant bit of PCU is not used, leaving 15 bits to
address the program memory.

Different addressing modes are used to specify the new address for the Program Counter.
The choice of addressing mode depends primarily on the distance of the jump. Farther
jumps sometimes require more instruction bytes in order to completely specify the new
Program Counter contents.

8-4 INSTRUCTION SET

Transfer-of-Control Addressing Modes

The available transfer-of-control addressing modes are:

• Jump Relative

• Jump Absolute

• Jump Absolute Long

• Jump Indirect

The transfer-of-control addressing modes are described below. Each description includes
an example of a "Jump" instruction using a particular addressing mode, and the effect on
the Program Counter of executing that instruction.

Jump Relative. In this I-byte instruction, six bits of the instruction opcode specify the
distance of the jump from the current program memory location. The distance of the
jump can range from -31 to +32.

Example: Jump Relative

JPOA·

Reg Contents Before Contents Mter

PCU

PCL

02 Hex

05 Hex

02 Hex

OF Hex

Jump Absolute. In this 2-byte instruction, 12 bits of the instruction opcode specify the
new contents of the Program Counter. The upper three bits of the Program Counter
remain unchanged, restricting the new Program Counter address to the same 4-Kbyte
address space as the current instruction. (This restriction is relevant only -in devices
using more than one 4-Kbyte program memory space.)

Example Jump Absolute

JMP 0125

Reg Contents Before Contents Mter

PCU

PCL

OCHex

77 Hex

01 Hex

25 Hex

Jump Absolute Long. In this 3-byte instruction, 15 bits of the instruction opcode
specify the new contents of the Program Counter.

INSTRUCTION SET 8-5

INSTRUCTION TYPES

Example: Jump Absolute Long

JMP 03625

ReglMemory Contents Before Contents Mter

PCU

PCL

42 Hex

36 Hex

36 Hex

25 Hex

Jump Indirect. In this I-byte instruction, the lower byte of the jump address is
obtained from a table stored in program memory, with the Accumulator serving as the
-low order byte of a pointer into program memory. For purposes of accessing program
memory, the contents of the Accumulator are written to PCL (temporarily). The data
pointed to by the Program Counter (PCHlPCL) is loaded into PCL, while PCH remains
unchanged.

Example: Jump Indirect

JID

ReglMemory Contents Before Contents Mter

PCU 01 Hex 01 Hex

PCL C4Hex 32 Hex

Accumulator 26 Hex 26 Hex

Memory Location
0126 Hex 32 Hex 32 Hex

8.4 INSTRUCTION TYPES

The COP8 Basic Family instruction set contains a fairly wide variety of instructions. The
available instructions are listed below, organized into related groups.

Some instructions test a condition and skip the next instruction if the condition is not
true. Skipped instructions are executed as no-operation (NaP) instructions.

Arithmetic Instructions

The arithmetic instructions perform binary arithmetic such as addition and subtraction,
with or without the Carry bit.

Add (ADD)

Add with Carry (ADC)

8-6 INSTRUCTION SET

Subtract (SUB)

Subtract with Carry (SUBC)

Increment (INC)

Decrement (DEC)

Decimal Correct (DCOR)

Clear Accumulator (CLR)

Set Carry (SC)

Reset Carry (RC)

Transfer-of Control Instructions

INSTRUCTION TYPES

The transfer-of-control instructions change the usual sequential program flow by
altering the contents of the Program Counter. The Jump to Subroutine instructions save
the Program Counter contents on the stack before jumping; the Return instructions pop
the top of the stack back into the Program Counter.

Jump Relative (JP)

Jump Absolute (JMP)

Jump Absolute Long (JMPL)

Jump Indirect (JID)

Jump to Subroutine (JSR)

Jump to Subroutine Long (JSRL)

Return from Subroutine (RET)

Return from Subroutine and Skip (RETSK)

Return from Interrupt (RETI)

Software Trap Interrupt (INTR)

Load and Exchange Instructions

The load and exchange instructions write byte values in registers or memory. The
addressing mode determines the source of the data.

Load (LD)

Load Accumulator Indirect (LAID)

Exchange (X)

INSTRUCTION SET 8-7

INSTRUCTION TYPES

Logical Instructions

The logical instructions perform the basic logical operations AND, OR, and XOR
(Exclusive OR). Other logical operations can be performed by combining these basic
operations. For example, complementing is accomplished by exclusive-ORing the
Accumulator with FF Hex.

Logical AND (AND)

Logical OR (OR)

Exclusive OR (XOR)

Accumulator Bit Manipulation Instructions

The Accumulator bit manipulation instructions allow the user to shift the Accumulator
bits, and to swap its two nibbles.

Rotate Right Through Carry (RRC)

Swap Nibbles of Accumulator (SWAP)

Memory Bit Manipulation Instructions

The memory bit manipulation instructions allow the user to set and reset individuaL bits
in memory.

Set Bit (SBIT)

Reset Bit (RBIT)

Conditional Instructions

The conditional instructions test a condition. If the condition is true, the next instruction
is executed in the normal manner; if the condition is false, the next instruction is skipped.

-If Equal (lFEQ)

If Greater Than (lFGT)

If Carry (lFC)

If Not Carry (lFNC)

If Bit (lFBIT)

If B Pointer Not Equal (IFBNE)

Decrement Register and Skip if Zero (DRSZ)

8-8 INSTRUCTION SET

INSTRUCTION DESCRIPTIONS

No-Operation Instruction

The no-operation instruction does nothing, except to occupy space in the program
memory and time in execution.

No-Operation (NaP)

8.5 INSTRUCTION DESCRIPTIONS

The COP8 Basic Family microcontrollers each contain 49 different instructions. Most of
the arithmetic, comparison, and data transfer (load, exchange) instructions operate with
three different addressing modes (register indirect with B pointer, memory direct, and
immediate). These various addressing modes increase the instruction total to 75. The
detailed instruction descriptions contain the following:

• Opcode mnemonic

• Instruction syntax with operand field descriptor

• Full instruction description

• Register level instruction description

• Number of instruction cycles

• Number of bytes in instruction

• Hexadecimal code for the instruction bytes

The following abbreviations represent the nomenclature used in the detailed instruction
description and the COP8 cross-assembler:

A

B

[B]

[B+]

. [B-]

C

HC

MA

MD

Accumulator.

B Pointer, located in RAM register memory location OOFE.

Contents of RAM data memory location indicated by B pointer.

Same as [B], except that B pointer is post-incremented.

Same as [B], except that B pointer is post-decremented .

Carry flag, located in bit 6 of the PSW register at memory location OOEF
Hex.

Half Carry flag, located in bit 7 of the PSW register at memory location
OOEFHex.

8-bit memory address for RAM data store memory.

Memory Direct, which may be represented by an implicit label (B, X, SP), a
defined label (TEMP, COUNTER, etc.), or a direct memory address (12, OEF,
027, etc., where a leading 0 indicates hexadecimal).

INSTRUCTION SET 8-9

INSTRUCTION DESCRIPTIONS

PC Program Counter (15 bits, with a program memory addressing range of
32768).

PCU Program Counter Upper, which contains the upper 7 bits of PC.

PCL Program Counter Lower, which contains the lower 8 bits of PC.

PSW Processor Status Word Register, found at memory location OOEF.

REG Selected Register (1 of 16) from the RAM data store memory at addresses
OOFO-OOFF.

REG# # of memory register to be used (# = O-F hexadecimal).

symbol is used to indicate an immediate value, with a leading zero (0) in­
dicating hexadecimal.

EXAMPLES:

#045 = immediate value of hexadecimal 45

#45 = immediate value of decimal 45

may also be used to indicate bit position, where # = 0-7

EXAMPLE:

RBIT #, [B]

SP Stack Pointer, located in RAM register memory location OOFD.

X X pointer, located in RAM register memory location OOFC.

[X] Contents of RAM data memory location indicated by the X pointer.

[X+] Same as [X], except that the X pointer is post-incremented.

[X-] Same as [X], except that the X pointer is post-decremented.

8-10 INSTRUCTION SET

ADC- Add with Carry

8.5.1 ADC- Add with Carry

Syntax: a) ADC A,[B]

Description:

Operation:

Instruction

ADCA,[B]

ADCA,#

ADCA,MD

b) ADCA,#

c) ADCA,MD

The contents of

a) the data memory location referenced by the B pointer

b) the immediate value found in the second byte of the instruction

c) the data memory location referenced by the second byte of the in­
struction

are added to the contents of the accumulator, and the result is si­
multaneously incremented if the Carry flag is found previously set.
The result is placed back in the accumulator, and the Carry flag is
either set or reset, depending on the presence or absence of a carry
from the result. Similarly, the Half Carry flag is either set or reset,
depending on the presence or absence of a carry from the low-order
nibble.

A <- A + VALUE + C

C <- CARRY; HC <- HALF CARRY

Addressing Mode Instruction Bytes HexOp Code Cycle

Register Indirect (B Pointer) 1 1 80

Immediate 2 2 90lImm #

Memory Direct 4 3 BD!MAI80

INSTRUCTION SET 8-11

ADD-Add

8.5.2 ADD - Add

Syntax: a) ADD A,[B]

Description:

Operation:

Instruction

ADDA,[B]

ADDA,MD

ADDA,#

b) ADDA,MD

c) ADD A,#

The contents of the data memory location referenced by

a) the B pointer

b) the address in the second byte of the instruction

c) the immediate value found in the second byte of the instruction

are added to the contents of the accumulator, and the result is
placed back in the accumulator. The Carry and Half Carry flags are
not changed.

A<-A+ VALUE

Addressing Mode Instruction Bytes HexOp Code Cycles

Register Indirect (B Pointer) 1 1 84

Memory Direct 4 3 BD!MAI84

Immediate 2 2 94IImm.#

8-12 INSTRUCTION SET

AND-And

8.5.3 AND - And

Syntax: a) AND A,[B]

Description:

Operation:

Instruction

ANDA,[B]

ANDA,#

ANDA,MD

b) ANDA,#

c) ANDA,MD

An AND operation is performed on corresponding bits of the accu­
mulator and

a) the contents of the data memory location referenced by the B
pointer.

b) the immediate value found in the second byte of the instruction.

c) the contents of the data memory location referenced by the ad­
dress in the second byte of the instruction.

The result is placed back in the accumulator.

A <- A AND VALUE

Addressing Mode Instruction Bytes Hex Op Code
Cycles

Register Indirect (B Pointer) 1 1 85

Immediate 2 2 95/Imm.#

Memory Direct 4 3 BD/MA/85

INSTRUCTION SET 8-13

CLR - Clear Accumulator

8.5.4 CLR - Clear Accumulator

Syntax: CLR A

Description: The accumulator is cleared to all zeros.

Operation: A<- 0

Instruction Addressing Mode Instruction Bytes HexOp Code Cycle

CLRA Implicit 1 1 64

8-14 INSTRUCTION SET

DCOR - Decimal Correct

8.5.5 DCOR - Decimal Correct

Syntax: DCOR A

Description:

Operation:

Instruction

DCORA

This instruction when used following an ADC (add with carry) or
SUBC (subtract with carry) instruction will decimal correct the re­
sult from the binary addition or subtraction. Note that the ADC in­
struction must be preceded with an ADD A, #066 (add hexadecimal
66) instruction for the decimal addition correction. This instruction
assumes that the two operands are in BCD (Binary Coded Decimal)
format and produces the result in the same BCD format. The Carry
and Half Carry flags remain unchanged.

A (BCD FORMAT) <- A (BINARY FORMAT)

Addressing Mode Instruction Bytes HexOp Code Cycles

Implicit 1 1 66

INSTRUCTION SET 8-15

DEC - Decrement Accumulator

8.5.6 DEC - Decrement Accumulator

Syntax: DECA

Description: This instruction decrements the contents of the accumulator and
places the result back in the accumulator. The Carry and Half Carry
flags remain unchanged.

Operation: A <-A-1

Instruction Addressing Mode Instruction Bytes HexOpCode Cycles

DECA Implicit 1 1 BB

8-16 INSTRUCTION SET

DRSZ REG# - Decrement Register and Skip if Result is Zero

8.5.7 DRSZ REG# - Decrement Register and Skip if Result is Zero

Syntax: DRSZ REG#

Description:

Operation:

Instruction

DRSZREG#

This instruction decrements the contents of the selected memory
register (selected by #, where # = ° to F) and places the result back
in the same register. If the result is zero, the next instruction is
skipped. This instruction is useful where it is desired to repeat an
instruction sequence a given number of times. The desired number
of times that the instruction sequence is to be executed is placed in
a register, and a DRSZ instruction with that register is coded at the
end of the sequence followed by a JP (Jump Relative) instruction
that branches back to the start of the instruction sequence. The JP
branch-back instruction is executed each time around the instruc­
tion sequence loop until the register count is decremented down to
zero, at which time the JP instruction is skipped as the program
branches (skips) out of the loop.

REG<-REG-1

IF (REG - 1) = 0,

THEN SKIP NEXT INSTRUCTION

Addressing Mode
Instruction

Cycles

Register Direct (Implicit) 3

Bytes HexOp Code

1 C (REG#)

INSTRUCTION SET 8-17

IFBIT - Test Memory Bit

8.5.8 IFBIT - Test Memory Bit

Syntax: a) IFBIT #,[B]

b) IFBIT # ,MD

Description: The selected bit (# = ° to 7, with 7 being high-order) from the data
memory location referenced by the

Operation:

Instruction

IFBIT #,[B]

IFBIT#,MD

a) B pointer is tested.

b) address in the second byte of the instruction is tested.

If the selected bit is high (=1), then the next instruction is executed.
Otherwise, the next instruction is skipped.

IF BIT (#) SELECTED FROM MEMORY

IS EQUAL TO 0,

THEN SKIP NEXT INSTRUCTION

Address Mode
Instruction

Cycle

Register Indirect (B Pointer) 1

Memory Direct 4

Bytes HexOpCode

1 7#

3 BD/MA/7#

8-18 INSTRUCTION SET

IFBNE # - IfB Pointer Not Equal

8.5.9 IFBNE # - If B Pointer Not Equal

Syntax: IFBNE #

Description:

Operation:

Instruction

IFBNE #

If the low-order nibble of the B pointer is not equal to # (where # =
o to F), then the next instruction is executed. Otherwise, the next
instruction is skipped. This instruction is useful where the B point­
er is walked across a data field as part of a closed loop instruction
sequence. The IFBNE instruction is coded at the end of the se­
quence followed by a JP (Jump Relative) instruction that branches
back to the start of the instruction sequence. The # coded with the
IFBNE represents the next address beyond the data field. The B
pointer instruction with post-increment or decrement of the pointer
may be used in walking across the data field in either direction. The
instruction sequence branches back and repeats until the low-order
nibble of the B pointer is found equal to the # (representing the next
address beyond the data field), at which time the JP instruction is
skipped as the program branches (skips) out of the loop.

IF B POINTER LOW-ORDER NIBBLE EQUALS #,

THEN SKIP NEXT INSTRUCTION

Addressing Mode
Instruction Bytes HexOp Code

Cycles

Implicit 1 1 4#

INSTRUCTION SET 8-19

IFC - Test if Carry

8.5.10 IFC - Test if Carry

Syntax:

Description:

Operation:

Instruction

IFC

IFC

The next Instruction is executed if the Carry flag is found set. Oth­
erwise, the next instruction is skipped. The Carry flag is left un­
changed.

IF NO CARRY (C = 0),

THEN SKIP NEXT INSTRUCTION

Addressing Mode
Instruction

Bytes Hex Op Code
Cycles

Implicit 1 1 88

8-20 INSTRUCTION SET

IFEQ - Test if Equal

8.5.11 IFEQ - Test if Equal

Syntax:

Description

Operation:

Instruction

IFEQ A,[B]

IFEQA,#

IFEQA,MD

a) IFEQ A,[B]

b) IFEQA,#

c) IFEQA,MD

a) The contents of the data memory location referenced by the B
pointer are compared for equality with the contents of the accu­
mulator.

b) The immediate value found in the second byte of the instruction
is compared for equality with the contents of the accumulator.

c) The contents of the data memory location referenced by the ad­
dress in the second byte of the instruction are compared for
equality with the contents of the accumulator.

A successful equality comparison results in the execution of the
next instruction. Otherwise, the next instruction is skipped.

IFA*VALUE

THEN SKIP NEXT INSTRUCTION

Addressing Mode Instruction Bytes HexOpCode Cycles

Register Indirect (B Pointer) 1 1 82

Immediate 2 2 92IImm.#

Memory Direct 4 3 BD/MA/82

INSTRUCTION SET 8-21

IFGT - Test if Greater Than

8.5.12 IFGT - Test if Greater Than

Syntax:

Description:

Operation:

Instruction

IFGT A,[B]

IFGT A,#

IFGT A,MD

a) IFGT A,[B]

b) IFGT A,#

c) IFGT A,MD

The contents of the accumulator are tested for being greater than

a) the contents of the data memory location referenced by the B
pointer.

b) the immediate value found in the second byte of the instruction.

c) the contents of the data memory location referenced by the ad­
dress in the second byte of the instruction.

A successful greater than test results in the execution of the next in­
struction. Otherwise, the next instruction is skipped.

IFA~VALUE

THEN SKIP NEXT INSTRUCTION

Addressing Mode Instruction Bytes HexOpCode Cycles

Register Indirect (B Pointer) 1 1 83

Immediate 2 2 93/Imm.#

Memory Direct 4 3 BD!MAI83

8-22 INSTRUCTION SET

IFNC - Test if No Carry

8.5.13 IFNC - Test if No Carry

Syntax:

Description:

Operation:

Instruction

IFNC

IFNC

The next instruction is executed if the Carry flag is found reset. Oth­
erwise, the next instruction is skipped. The Carry flag is left un­
changed.

IF CARRY (C=l),

THEN SKIP NEXT INSTRUCTION

Addressing Mode
Instruction

Bytes Hex Op Code
Cycles

Implicit 1 1 89

INSTRUCTION SET 8-23

INC - Increment Accumulator

8.5.14 INC - Increment Accumulator

Syntax: ·INCA

Description: This instruction increments the contents of the accumulator and
places the result back in the accumulator. The Carry and Half Carry
flags remain unchanged.

Operation: A<-A+ 1

Instruction Addressing Mode Instruction Bytes HexOpCode Cycles

INCA Implicit 1 1 8A

8-24 INSTRUCTION SET

INTR - Interrupt (Software Trap)

8.5.15 INTR - Interrupt (Software Trap)

Syntax:

Description:

INTR

This zero opcode software trap instruction first stores its return ad­
dress in the data memory software stack and then branches to pro­
gram memory location OOFF. This memory location is the common
switching point for all COP8 Basic Family interrupts, both hard­
ware and software. The program starting at memory location OOFF
sorts out the priority of the various interrupts and then vectors to
the correct interrupt service routine.

In order to save the return address, the contents of PCL (Lower 8
bits of PC) are transferred to the data memory location referenced
by SP (Stack Pointer). SP is then decremented, followed by the con­
tents ofPCU (Upper 7 bits of PC) being transferred to the new data
memory location referenced by SP. Then SP is again decremented to
set up the software stack for the next interrupt or subroutine. The
return address has now been saved on the software stack in data
memory RAM.

The INTR instruction is not meant to be programmed explicitly, but
rather to be automatically invoked when certain error conditions oc­
cur. The reading of undefined (non-existent) ROM program memory
produces all zeros, which in turn invokes the INTR instruction. A
similar software trap can be set up if the subroutine Stack Pointer
(SP) is initialized to the data memory location at the top of user
RAM space. Then if the software stack is ever overpopped (more
subroutine or interrupt returns than calls), all ones will be returned
from the undefined (non-existent) RAM. This will cause the pro­
gram to return to the program address FFFF Hex, which in turn
will read all zeros and once again invoke the software trap INTR in­
struction.

'!\vo precautions must be observed when dealing with the software
interrupt and its associated interrupt service routine. First, unlike
the hardware interrupts, the software interrupt does not reset the
GIE (Global Interrupt Enable) flag. Consequently, the COP8 Basic
Family micro controllers can be interrupted by other interrupt
sources while servicing the software interrupt. Second, a RETSK
(return and skip) instruction should be used when returning from
the software interrupt service routine, rather than the normal re­
turn from interrupt (RET!) instruction. The RETI instruction sim­
ply returns to the INTR software instruction itself, resulting in an
infinite program loop.

INSTRUCTION SET 8-25

INTR - Interrupt (Software Trap)

Operation: [SP] <- PCL
[SP - 1] <- PCU
[SP - 2] : SET UP FOR NEXT STACK REFERENCE
PC <- OFF

Instruction Addressing Mode
Instruction Bytes HexOpCode

Cycles

INTR Implicit 7 1 00

8-26 INSTRUCTION SET

JID - Jump Indirect

8.5.16 JID - Jump Indirect

Syntax:

Description:

Operation:

Instruction

JID

JID

The JID instruction uses the contents of the accumulator to point to
an indirect vector table of program addresses. The contents of the
accumulator are transferred to PCL (Lower 8 bits of PC), after
which the data accessed from the program memory location ad­
dressed by PC is transferred to PCL. The program thenjumps to the
program memory location accessed by PC. It should be observed
that PCU (Upper 7 bits of PC) is never changed during the JID in­
struction, so that the Jump Indirect must jump to a location in the
current program memory page of256 addresses. However, if the JID
instruction is located at the last address of the page, the PC counter
will have already incremented over the page boundary, and both ac­
cesses to program memory (vector table and the new instruction)
will be fetched from the next page of 256 bytes.

PCL<-A

PCL <- ROM (PCU,A)

Addressing Mode Instruction Bytes Hex Op Code Cycles

Indirect 3 1 A5

INSTRUCTION SET 8-27

JMP - Jump Absolute

8.5.17 JMP - Jump Absolute

Syntax:

Description:

Operation:

Instruction

JMPADDR

JMPADDR

This instruction jumps to the programmed memory address. The
value found in the lower nibble (4 bits) of the first byte of the in­
struction is transferred to the lower nibble ofPCU (Upper 7 bits of
PC), and then the value found in the second byte of the instruction
is transferred to PCL (Lower 8 bits of PC). The program then jumps
to the program memory location accessed by PC.

lt should be noted that the upper 3 bits of PC (12-14) are not
changed, so the Jump Absolute instruction must jump to an address
located in the current 4-Kbyte program memory segment. However,
if a JMP instruction is programmed in the last address of the mem­
ory segment, the PC counter will have already incremented over the
memory segment boundary; therefore, the jump is to a memory lo­
cation in the following 4-Kbyte memory segment.

PCll-8 <- HIADDR (LOW NIBBLE OF FIRST BYTE OF INSTRUCTION)

PC7-0 <- LOADDR (SECOND BYTE OF INSTRUCTION)

Addressing Instruction Bytes HexOpCode Mode Cycles

Absolute 3 2 2HIADDRILOADDR

8-28 INSTRUCTION SET

JMPL - Jump Absolute Long

8.5.18 JMPL - Jump Absolute Long

Syntax:

Description:

Operation:

Instruction

JMPLADDR

JMPLADDR

The JMPL instruction allows branching to anywhere in the 32-
Kbyte program memory space. The values found in the second and
third bytes of the instruction are transferred to PCU (Upper 7 bits
of PC) and PCL (Lower 8 bits of PC) respectively. The program then
jumps to the program memory location accessed by PC.

PC14-8 <- HIADDR (SECOND BYTE OF INSTRUCTION)

PC7 -0 <- LOADDR (THIRD BYTE OF INSTRUCTION)

Addressing Mode
Instruction Bytes HexOpCode

Cycles

Absolute 4 3 ACIHIADDRILOADDR

INSTRUCTION SET 8-29

JP - Jump Relative

8.5.19 JP - Jump Relative

Syntax:

Description:

Operation:

Instruction

JP DISP

JP DISP

The relative displacement value found in the instruction opcode (all
8 bits) is added to the Program Counter (PC). The normal PC incre­
mentation is also performed. The displacement value allows a
branch back from 0 to 31 places (with the 0 representing an infinite
closed loop branch to itself) and a branch forward from 2 to 32 plac­
es. A branch forward of 1 is not allowed, since this zero opcode con­
flicts with the INTR software trap instruction.

PC <- PC + DISP + 1 (DISP 0)

Addressing Mode
Instruction

Bytes HexOpCode
Cycles

Relative 3 1 0, 1, E, F + DISP #

8-30 INSTRUCTION SET

JSR - Jump Subroutine

8.5.20 JSR - Jump Subroutine

Syntax:

Description:

Operation:

Instruction

JSRADDR

JSRADDR

This instruction pushes the return address onto the software stack
in data memory and then jumps to the subroutine address. The con­
tents ofPCL (Lower 8 bits of PC) are transferred to the data mem­
ory location referenced by SP (Stack Pointer). SP is then
decremented, followed by the contents of PCU (Upper 7 bits of PC)
being transferred to the new data memory location referenced by
SF. The return address has now been saved on the software stack in
data memory RAM. Then SP is again decremented to set up the
software stack reference for the next subroutine.

Next, the value found in the lower nibble (4 bits of the first byte of
the instruction) is transferred to the lower nibble of PCU, and the
value found in the second byte of the instruction is transferred to
PCL. The program then jumps to the memory location accessed by
PC. It should be noted that the upper 3 bits of PC (12-14) are not
changed, so the subroutine must be located in the current 4-Kbyte
program memory segment. If a JSR instruction is programmed in
the last address of the memory segment, however, the PC counter
will have already incremented over the memory segment boundary;
therefore, the subroutine must be located in the next memory seg­
ment.

[SP] <- PCL
[SP - 1] <- PCU
[SP - 2]: SET UP FOR NEXT STACK REFERENCE
PC11-8 <- HIADDR (LOW NIBBLE OF FIRST BYTE OF INSTRUCTION)
PC7 -0 <- LOADDR (SECOND BYTE OF INSTRUCTION)

Addressing Mode Instruction Bytes HexOp Code
Cycles

Absolute 5 2 3HIADDRILOADDR

INSTRUCTION SET 8-31

JSRL - Jump Subroutine Long

8.5.21 JSRL - Jump Subroutine Long

Syntax:

Description:

Operation:

Instruction

JSRLADDR

JSRLADDR

The JSRL instruction allows the subroutine to be located anywhere
in the 32-Kbyte program memory space. The instruction pushes the
return address onto the software stack in data memory and then
jumps to the subroutine address.

The contents ofPCL (Lower 8 bits of PC) are transferred to the data
memory location referenced by SP (Stack Pointer). SP is then decre­
mented, followed by the contents of PCU (Upper 7 bits of PC) being
transferred to the new data memory location referenced by SF. The
return address is now saved on the software stack in data memory
RAM. Then SP is again decremented to set up the software stack
reference for the next subroutine.

N ext, the values found in the second and third bytes of the instruc­
tion are transferred to PCU and PCL respectively. The program
then jumps to the program memory location accessed by PC.

ESP] <- PCL

ESP - 1] <- PCU

ESP - 2]: SET UP FOR NEXT STACK REFERENCE

PC14-8 <- HIADDR (SECOND BYTE OF INSTRUCTION)

PC7 -0 <- LOADDR (THIRD BYTE OF INSTRUCTION)

Addressing Mode
Instruction

Bytes HexOpCode
Cycles

Absolute 5 3 ADIHIADDRILOADDR

8-32 INSTRUCTION SET

LAID - Load Accumulator Indirect

8.5.22 LAID - Load Accumulator Indirect

Address Mode:

Description:

Operation:

Instruction

LAID

INDIRECT

The LAID instruction uses the contents of the accumulator to point
to a fixed data table stored in program memory. The data table usu­
ally represents a translation matrix, such as the input from a key­
board or the output to a display.

The contents of the accumulator are exchanged with the contents of
PCL (Lower 8 bits of PC). The data accessed from the program
memory location addressed by PC is then transferred to the accu­
mulator. Simultaneously, the original contents of PCL are trans­
ferred back to PCL from the accumulator. It should be observed that
PCU (Upper 7 bits of PC) is not changed during the LAID instruc­
tion, so that the load accumulator indirect along with the associated
fixed data table must both be located in the current memory page of
256 bytes. However, if the LAID instruction is located at the last ad­
dress of the page, the PC counter will have already incremented
over the page boundary resulting in the operand being fetched from
the next page. Consequently, in this instance, the fixed data table
must reside in the next page of256 bytes in the program memory.

A <- ROM (PCU, A)

Addressing Mode
Instruction

Bytes HexOp Code
Cycles

Indirect 3 1 A4

INSTRUCTION SET 8-33

LD - Load Accumulator

8.5.23 LD - Load Accumulator

Syntax:

Description:

a) LD A,[B]

b) LD A,[B+]

c) LD A,[B-]

d) LD A,#

e) LDA,MD

f) LD A,[X]

g) LD A,[X+]

h) LD A,[X-]

a) The contents of the data memory location referenced by the B
pointer are loaded into the accumulator.

b) The contents of the data memory location referenced by the B
pointer are loaded into the accumulator, and then the B pointer
is post-incremented.

c) The contents of the data memory location referenced by the B
pointer are loaded into the accumulator, and then the B pointer
is post-decremented.

d) The immediate value found in the second byte of the instruction
is loaded into the accumulator.

e) The contents of the data memory location referenced by the ad­
dress in the second byte of the instruction are loaded into the ac­
cumulator.

f) The contents of the data memory location referenced by the X
pointer are loaded into the accumulator.

g) The contents of the data memory location referenced by the X
pointer are loaded into the accumulator, and then the X pointer
is post-incremented.

h) The contents of the data memory location referenced by the X
pointer are loaded into the accumulator, and then the X pointer
is post-decremented.

8-34 INSTRUCTION SET

LD - Load Accumulator

Operation: A<- VALUE

Instruction Addressing Mode Instruction Bytes HexOp Code
Cycles

LD A,[B] Register Indirect (B Pointer) 1 1 AE

LD A,[B+] Register Indirect With Post- 2 1 AA
Incrementing B Pointer

LD A,[B-] Register Indirect With Post- 2 1 AB
Decrementing B Pointer

LDA,# Immediate 2 2 98/Imm.#

LDA,MD Memory Direct 3 2 9DIMA

LD A,[X] Register Indirect (X Pointer) 3 1 BE

LD A,[X+] Register Indirect With Post- 3 1 BA
Incrementing X Pointer

LD A,[X-] Register Indirect With Post- 3 1 BB
Decrementing X Pointer

INSTRUCTION SET 8-35

LD - Load B Pointer

8.5.24 LD - Load B Pointer

Syntax:

Description:

Operation:

Instruction

LDB,#

LD B,# (# < 16)

The one's complement of the value found in the lower nibble (4 bits)
of the instruction is transferred to the lower-nibble position of the B
pointer register, with the upper-nibble position being cleared to all
zeros.

B3-0 <- (15 - #) (l's complement of #)

B7-4 <- 0

Addressing Mode Instruction
Cycles

Short Immediate 1

Bytes HexOpCode

1 5(15-#)

8-36 INSTRUCTION SET

LD - Load Memory

8.5.25 LD - Load Memory

Syntax:

Description:

Operation:

Instruction

LD [B],#

LD [B+],#

LD [B-],#

LDMD,#

a) LD [B],#

b) LD [B+],#

c) LD [B-],#

d) LD MD,#

a) The immediate value found in the second byte of the instruction
is loaded into the data memory location referenced by the B
pointer.

b) The immediate value found in the second byte of the instruction
is loaded into the data memory location referenced by the B
pointer, and then the B pointer is post-incremented.

c) The immediate value found in the second byte of the instruction
is loaded into the data memory location referenced by the B
pointer, and then the B pointer is post-decremented.

d) The immediate value found in the third byte of the instruction is
loaded into the data memory location referenced by the address
in the second byte of the instruction.

a) [B] <- #

b) [B] <- #; B <- B + 1

c) [B] <- #; B <- B-1

d) MD <- #

Addressing Mode Instruction Bytes HexOpCode Cycles

Register IndirectlImmediate 2 2 9ElImm.#

Register Indirect With Post- 2 2 9A1Imm.#
IncrementinglImmediate

Register Indirect With Post- 2 2 9BlImm.#
DecrementinglImmediate

Memory DirectlImmediate 3 3 BClMAlImm.#

INSTRUCTION SET 8-37

LD - Load Register

8.5.26 LD - Load Register

Syntax: LDREG,#

Description: The immediate value found in the second byte of the instruction is
loaded into the data memory register referenced by the low-order
nibble of the first byte of the instruction.

Operation: REG <- #

Instruction Addressing Mode Instruction Bytes HexOpCode Cycles

LDREG,# ImplicitlImmediate 3 2 D(REG#)lImm.#

8-38 INSTRUCTION SET

NOP - No Operation

8.5.27 NOP - No Operation

Syntax:

Description:

Operation:

Instruction

NOP

NOP

No operation is performed by this instruction, so the net result is a
delay of one instruction cycle time.

NO OPERATION

Addressing Mode Instruction Bytes Hex Op Code Cycles

Implicit 1 1 B8

INSTRUCTION SET 8-39

OR-Or

8.5.28 OR - Or

Syntax:

Description:

Operation:

Instruction

ORA,[B]

ORA,#

ORA,MD

a) ORA,[B]

b) ORA,#

c) ORA,MD

An OR operation is performed on corresponding bits of the accumu­
lator with

a) the contents of the data memory location referenced by the B
pointer.

b) the immediate value found in the second byte of the instruction.

c) the contents of the data memory location referenced by the ad­
dress in the second byte of the instruction.

The result is placed back in the accumulator.

A <- A OR VALUE

Addressing Mode Instruction Bytes HexOpCode
Cycles

Register Indirect (B Pointer) 1 1 87

Immediate 2 2 97IImm.#

Memory Direct 4 3 BD/MA/87

8-40 INSTRUCTION SET

RBIT - Reset Memory Bit

8.5.29 RBIT - Reset Memory Bit

Syntax:

Description:

Operation:

Instruction

RBIT #,[B]

RBIT#,MD

a) RBIT #,[B]

b) RBIT #,MD

The selected bit (# = 0 to 7, with 7 being high-order) of the data
memory location referenced by the

a) B pointer is reset to O.

b) address in the second byte of the instruction is reset to O.

[Address:#] <- 0

Addressing Mode
Instruction Bytes HexOpCode

Cycles

Register Indirect (B Pointer) 1 1 6(S + #)

Memory Direct 4 3 BD!MAI6(S+#)

INSTRUCTION SET 8-41

RC - Reset Carry

8.5.30 RC - Reset Carry

Syntax: RC

Description: Both the Carry and Half Carry flags are reset to O.

Operation:

Instruction

RC

C <- 0

HC <-0

Addressing Mode

Implicit

8-42 INSTRUCTION SET

Instruction Bytes Cycles

1 1

HexOpCode

AO

RET - Return from Subroutine

8.5.31 RET - Return from Subroutine

Syntax:

Description:

Operation:

Instruction

RET

RET

The Stack Pointer (SP) is first incremented. The contents of the
data memory location referenced by SP are then transferred to PCU
(Upper 7 bits of PC), after which SP is again incremented. Next, the
contents of the data memory location referenced by SP are trans­
ferred to PCL (Lower 8 bits of PC). The return address has now been
retrieved from the software stack in data memory RAM. The pro­
gram now jumps to the program memory location accessed by PC.

PCU <- [SP + 1]

PCL <- [SP + 2]

[SP + 2] : SET UP FOR NEXT STACK REFERENCE

Addressing Mode
Instruction Bytes HexOpCode

Cycles

Implicit 5 1 8E

INSTRUCTION SET 8-43

RETI - Return from Interrupt

8.5.32 RETI - Return from Interrupt

Syntax:

Description:

Operation:

Instruction

RETI

RETI

The Stack Pointer (SP) is first incremented. The contents of the
data memory location referenced by SP are then transferred to PCU
(Upper 7 bits of PC), and SP is again incremented. Next, the con­
tents of the data memory location referenced by SP are transferred
to PCL (Lower 8 bits of PC). The return address has now been re­
trieved from the software stack in data memory RAM. The program
now jumps to the program memory location accessed by PC. The
Global Interrupt Enable flag (GIE) is set to 1.

PCU <- ESP + 1]

PCL <- ESP + 2]

ESP + 2] : SET UP FOR NEXT STACK REFERENCE

GIE <- 1

Addressing Mode Instruction
Bytes HexOpCode Cycles

Implicit 5 1 8F

8-44 INSTRUCTION SET

RETSK - Return and Skip

8.5.33 RETSK - Return and Skip

Syntax:

Description:

Operation:

Instruction

RETSK

RETSK

The Stack Pointer (SP) is first incremented. The contents of the
data memory location referenced by SP are then transferred to PCU
(Upper 7 bits of PC), and SP is again incremented. Next, the con­
tents of the data memory location referenced by SP are transferred
to PCL (Lower 8 bits of PC). The return address has now been re­
trieved from the software stack in data memory RAM. The program
now jumps to and then skips the instruction in the program memory
location accessed by PC.

PCU <- [SP + 1]

PCL <- [SP + 2]

[SP + 2] : SET UP FOR NEXT STACK REFERENCE

SKIP NEXT INSTRUCTION

Addressing Mode
Instruction

Bytes HexOpCode Cycles

Implicit 5 1 8D

INSTRUCTION SET 8-45

RRC - Rotate Accumulator Right Through Carry

8.5.34 RRC - Rotate Accumulator Right Through Carry

Address Mode:

Description:

Operation:

Instruction

RRCA

RRCA

The contents of the accumulator and Carry flag are rotated right
one bit position, with the Carry flag serving as a ninth bit position
linking the ends of the 8-bit accumulator. The previous carry is
transferred to the high-order bit position of the accumulator. The
low-order accumulator bit (AO) is transferred to both the Carry flag
and the Half Carry flag.

C -> A 7 -> A6 -> A5 -> A4 -> A3 -> A2 -> Al -> AO -> C

AO -> HC

Addressing Mode Instruction Bytes HexOpCode
Cycles

Implicit I I BO

8-46 INSTRUCTION SET

SBIT - Set Memory Bit

8.5.35 SBIT - Set Memory Bit

Syntax:

Description:

Operation:

Instruction

SBIT #,[B]

SBIT#,MD

a) SBIT #,[B]

b) SBIT #,MD

The selected bit (# = 0 to 7, with 7 being high-order) of the data
memory location referenced by the

a) B pointer is set to 1.

b) address in the second byte of the instruction is set to 1.

[Address:#] <- 1

Addressing Mode Instruction Bytes HexOp Code Cycles

Register Indirect (B Pointer) 1 1 7(8 + #)

Memory Direct 4 3 BD!MAI7(8+#)

INSTRUCTION SET 8-47

SC - Set Carry

8.5.36 SC - Set Carry

Syntax: SC

Description: Both the Carry and Half Carry flags are set to 1.

Operation:

Instruction

se

C <-1

HC <-1

Addressing Mode

Implicit

8-48 INSTRUCTION SET

Instruction Bytes Cycles

1 1

HexOp Code

Al

SUBC - Subtract with Carry

8.5.37 SUBC - Subtract with Carry

Syntax:

Description:

Operation:

Instruction

SUBCA,[B]

SUBCA,#

SUBCA,MD

a) SUBC A,[B]

b) SUBCA,#

c) SUBCA,MD

a) The contents of the data memory location referenced by the B
pointer are subtracted from the contents of the accumulator, and
the result is simultaneously decremented if the Carry flag is
found previously reset.

b) The immediate value found in the second byte of the instruction
is subtracted from the contents of the accumulator, and the result
is simultaneously decremented if the Carry flag is found previ­
ously reset.

c) The contents of the data memory location referenced by the ad­
dress in the second byte of the instruction are subtracted from
the contents of the accumulator, and the result is simultaneously
decremented if the Carry flag is found previously reset.

The result is placed back in the accumulator, and the Carry flag is
either reset or set, depending on the presence or absence of a borrow
from the result. Similarly, the Half Carry flag is either reset or set,
depending on the presence or absence of a borrow from the low­
order nibble.

This instruction is implemented by adding the one's complement of
the subtrahend to the accumulator and then incrementing the re­
sult. Consequently, the borrow is the equivalent of the absence of
carry and vice versa. Similarly, the half carry is the equivalent of
the absence of half borrow and vice versa. A previous borrow (ab­
sence of previous carry) will inhibit the incrementation of the result.

A<-A- VALUE - C

C <- ABSENCE OF BYTE BORROW

HC <- ABSENCE OF LOW NIBBLE HALF BORROW

Addressing Mode Instruction Bytes HexOp Code Cycles

Register Indirect (B Pointer) 1 1 81

Immediate 2 2 91IImm.#

Memory Direct 4 3 BD/MA/81

INSTRUCTION SET 8-49

SWAP - Swap Nibbles of Accumulator

8.5.38 SWAP - Swap Nibbles of Accumulator

Syntax: SWAP A

Description: The upper and lower nibbles of the accumulator are exchanged.

Operation: A(7 -4) <--> A(3 - 0)

Instruction Addressing Mode Instruction Bytes HexOpCode Cycles

SWAP A Implicit 1 1 65

8-50 INSTRUCTION SET

x - Exchange Memory with Accumulator

8.5.39 X - Exchange Memory with Accumulator

Syntax:

Description:

Operation:

a) XA,[B]

b) XA,[B+]

c) XA,[B-]

d) XA,MD

e) XA,[X]

£) XA,[X+]

g) X A, [X-]

a) The contents of the data memory location referenced by the B
pointer are exchanged with the contents of the accumulator.

b) The contents of the data memory location referenced by the B
pointer are exchanged with the contents of the accumulator, and
then the B pointer is post-incremented.

c) The contents of the data memory location referenced by the B
pointer are exchanged with the contents of the accumulator, and
then the B pointer is post-decremented.

d) The contents of the data memory location referenced by the ad­
dress in the second byte of the instruction are exchanged with the
contents of the accumulator.

e) The contents of the data memory location referenced by the X
pointer are exchanged with the contents of the accumulator.

£) The contents of the data memory location referenced by the X
pointer are exchanged with the contents of the accumulator, and
then the X pointer is post-incremented.

g) The contents of the data memory location referenced by the X
pointer are exchanged with the contents of the accumulator, and
then the X pointer is post-decremented.

a) A <-> [B]

b) A <-> B; B <- B + 1

c) A <-> B; B <- B-1

d) A<->MD

e) A <-> X;

INSTRUCTION SET 8-51

x - Exchange Memory with Accumulator

f) A <-> X; X <--X + 1

g) A <-> X; X <- X-I

Instruction Addressing Mode Instruction Bytes HexOpCode Cycles

XA,[B] Register Indirect (B Pointer) 1 1 A6

XA,[B+] Register Indirect With Post- 2 1 A2
Incrementing B Pointer

XA,[B-] Register Indirect With Post- 2 1 A3
Decrementing B Pointer

XA,MD Memory Direct 3 2 9CIMA

X A, [X] Register Indirect (X Pointer) 3 1 B6

XA,[X+] Register Indirect With Post- 3 1 B2
Incrementing X Pointer

XA,[X-] Register Indirect With Post- 3 1 B3
Decrementing X Pointer

8-52 INSTRUCTION SET

XOR - Exclusive Or

8.5.40 XOR - Exclusive Or

Syntax:

Description:

Operation:

Instruction

XORA,[B]

XORA,#

XORA,MD

a) XORA,[B]

b) XORA,#

c) XORA,MD

An XOR (Exclusive OR) operation is performed on corresponding
bits of the accumulator with

a) the contents of the data memory location referenced by the B
pointer.

b) the immediate value found in the second byte of the instruction.

c) the contents of the data memory location referenced by the ad­
dress in the second byte of the instruction.

The result is placed back in the accumulator.

A <- A XOR VALUE

Addressing Mode Instruction Bytes HexOpCode
Cycles

Register Indirect (B Pointer) 1 1 86

Immediate 2 2 96/Imm.#

Memory Direct 4 3 BDIMAI86

INSTRUCTION SET 8-53

INSTRUCTION SET SUMMARY TABLES

8.6 INSTRUCTION SET SUMMARY TABLES

8.6.1 Instruction Operations Summary

INSTR FUNCTION REGISTER OPERATION

ADD A,MemI Add A<-A+MemI
ADC A,MemI Add with carry A <- A + MemI + C, C <- Carry
SUBC A,MemI Subtract with carry A <- A - MemI + C, C <- Carry
AND A,MemI Logical AND A <- A and MemI
OR A,MemI Logical OR A<-AorMemI
XOR A,MemI Logical Exclusive-OR A <- A xor MemI
IFEQ A,MemI IF equal Compare A and MemI, Do next if A = MemI
IFGT A,MemI IF greater than Compare A and MemI, Do next if A > MemI
IFBNE # IF B not equal Do next if lower 4 bits of B not = Imm
DRSZ Reg Decrement Reg, skip if zero Reg <- Reg - 1, skip if Reg goes to zero
SBIT #,Mem Set bit 1 to Mem.bit (bit = 0 to 7 immediate)
RBIT #,Mem Reset bit o to Mem.bit (bit = 0 to 7 immediate)
IFBIT #,Mem If bit If Mem.bit is true, do next instruction

X A,Mem Exchange A with memory A<->Mem
LD A,MemI Load A with memory A<- MemI
LD Mem,Imm Load Direct memory Immed. Mem<-Imm
LD Reg,Imm Load Register memory immed. Reg<- Imm

X A,[B±1 Exchange A with memory [B] A <-> [B] (B <- B ± 1)
X A, [x±1 Exchange A with memory [X] A <-> [X] (X <- X ±1)
LD A,[B±1 Load A with memory [B] A <- [B] (B <- B ±1)
LD A, [x±1 Load A with memory [X] A<- [X] (X<-X±I)
LD [B±1,Imm Load memory immediate [B] <- Imm (B <- B ±1)

CLRA Clear A A<-O
INC A IncrementA A<- A+ 1
DEC A Decrement A A <- A- 1
LAID Load A indirect from ROM A <- ROM(PU, A)
DCOR A Decimal correct A A <- BCD correction (follows ADC, SUBC)
RRC A Rotate right through carry C -> A 7 -> -> AO -> C
SWAP A Swap nibbles of A A7 ... A4 <-> A3 ... AO
SC SetC C <-1
RC Reset C C <- 0
IFC IfC If C is true, do next instruction
IFNC If Not C If C is not true, do next instruction

JMPL Addr. Jump absolute long PC <- ii (ii = 15 bits, 0 to 32K)
JMP Addr. Jump absolute PCll ... PCO <- i (i = 12 bits)

PCI5 ... PCI2 remain unchanged
JP Disp. Jump relative short PC <- PC + r (r is -31 to +32, not 1)
JSRL Addr. Jump subroutine long [SP] <- PL, [SP - 1] <- PU, SP - 2, PC <- ii
JSR Addr. Jump subroutine [SP] <- PL, [SP - 1] <- PU, SP - 2,

PCll .. PCO <- ii
JID Jump indirect PL <- ROM(PU, A)
RET Return from subroutine SP + 2, PL <- [SP], PU <- [SP - 1]
RETSK Return and skip SP + 2, PL <- [SP], PU <- [SP - 1],

Skip next instr.
RETI Return from interrupt SP + 2, PL <- [SP], PU <- [SP - 1], GIE <- 1
INTR Generate an interrupt [SP] <- PL, [SP - 1] <- PU, SP - 2, PC <- OFF
NOP No operation PC <- PC + 1

8-54 INSTRUCTION SET

Bytes and Cycles Per Instruction

8.6.2 Bytes and Cycles Per Instruction

Table 8-1 Instructions Using A and C

INSTR
BYTESI
CYCLES

CLRA 111
INCA 111
DECA 111
LAID 1/3
DCOR 111
RRCA III
SWAPA III
SC III
RC III
IFC 111
IFNC 111

Table 8-2 Transfer of Control Instructions

INSTR
BYTESI
CYCLES

JMPL 3/4
JMP 2/3
JP 113
JSRL 3/5
JSR 2/5
JID 1/3
RET 115
RETSK 115
RETI 115
INTR 117
NOP III

INSTRUCTION SET 8-55

Bytes and Cycles Per Instruction

Table 8-3 Memory Transfer Instructions

REGISTER REGISTER INDIRECT

INSTR INDIRECT DIREC IMMEDI- AUTO INCR & DECR
T ATE

[B] [X] [B+, B-] [X+, X-]

XA,a 111 1/3 2/3 1/2 113
LDA,a III 113 2/3 2/2 1/2 1/3
LDB,lmm 111b

LDB,lmm 2/3c

LDMem,lmm 2/2 3/3 2/2
LDReg,lmm 2/3

a. Memory location addressed by B or X or directly
b. IF B < 16
c. IF B > 15

Table 8-4 Arithmetic and Logic Instruction

INST [B DIREC IMMEDI-
R] T ATE

ADD III 3/4 2/2
ADC III 3/4 2/2
SUBC III 3/4 2/2
AND III 3/4 2/2
OR III 3/4 2/2
XOR III 3/4 2/2
IFEQ III 3/4 2/2
IFGT III 3/4 2/2
IFBNE III
DRSZ III 113

SBIT III 3/4
RBIT III 3/4
IFBIT III 3/4

8-56 INSTRUCTION SET

Z
rn
t-3

~
o
t-3
~

o
Z
rn
t?=j
t-3

ex>
&t
-l

ttl
~
CD
m
~
::s
0..
o
a
r0-
m
~
CD
t-;
~

::s
m

a-
n n-o·
::s

F

JP-15

JP-14

JP-13

JP-12

JP-ll

JP-IO

JP-9

JP-B

JP-7

JP-6

JP-5

JP-4

JP-3

JP-2

JP-l

JP-O

E D C

JP-31 LD OFO,#I DRSZOFO

JP-30 LD OFl,#I DRSZOFI

JP-29 LD OF2,#I DRSZOF2

JP-2B LD OF3,#I DRSZOF3

JP-27 LD OF4,#I DRSZOF4

JP-26 LD OF5,#I DRSZOF5

JP-25 LD OF6,#I DRSZOF6

JP-24 LD OF7,#I DRSZ OF7

JP-23 LD OFB,#I DRSZOFB

JP-22 LD OF9,#I DRSZOF9

JP-21 LDOFA,#I DRSZ OFA

JP-20 LD OFB,#I DRSZOFB

JP-19 LD OFC,#I DRSZOFC

JP-IB LD OFD,#I DRSZOFD

JP-17 LD OFE,#I DRSZOFE

JP-16 LD OFF,#I DRSZOFF

/

Table 8·5 Opcodes

UPPER NIBBLE

B A 9 8 7 6 5 4 3 2 1 ° RRCA RC ADCA,#I ADCA,[B] IFBITO,[B] * LDB,#OF IFBNE ° JSR JMP JP+17 INTR °
xOOO-xOFF xOOO-xOFF

* SC SUBCA,#I SUBCA,[B] IFBIT 1,[B] * LD B,#OE IFBNE 1 JSR JMP JP+IB JP+2 1
xlOO-xlFF xlOO-xlFF

XA,[X+] XA,[B+] IFEQA,#I IFEQA,[B] IFBIT2,[B] * LDB,#OD IFBNE 2 JSR JMP JP+19 JP+3 2
x200-x2FF x200-x2FF

XA,[X-] XA,[B-] IFGT A,#I IFGTA,[B] IFBIT3,[B] * LD B,#OC IFBNE 3 JSR JMP JP+20 JP+4 3
x300-x3FF x300-x3FF

* LAID ADDA,#I ADDA,[B] IFBIT4,[B] CLRA LDB,#OB IFBNE 4 JSR JMP JP+21 JP+5 4
x400-x4FF x400-x4FF

* JID ANDA,#I ANDA,[B] IFBIT 5,[B] SWAPA LDB,#OA IFBNE 5 JSR JMP JP+22 JP+6 5
x500-x5FF x500-x5FF L

X A, [X] XA,[B] XORA,#I XORA,[B] IFBIT 6,[B] DCORA LD B,#09 IFBNE 6 JSR JMP JP+23 JP+7 6 0
x600-x6FF x600-x6FF IW

E
* * ORA,#I ORA,[B] IFBIT7,[B] * LD B,#OB IFBNE 7 JSR JMP JP+24 JP+B 7 R

x700-x7FF x700-x7FF

NOP * LDA,#I IFC SBITO,[B] RBITO,[B] LD B,#07 IFBNE B JSR JMP JP+25 JP+9 B N
x800-xBFF x800-x8FF I

B
* * * IFNC SBIT 1,[B] RBIT 1,[B] LD B,#06 IFBNE 9 JSR JMP JP+26 JP+IO 9 B

x900-x9FF x900-x9FF L
LDA,[X+] LDA,[B+] LD [B+],#I INCA SBIT 2,[B] RBIT 2,[B] LD B,#05 IFBNE OA JSR JMP JP+27 JP+ll A E

xAOO-xAFF xAOO-xAFF

LDA,[X-] LDA,[B-] LD [B-1,#I DECA SBIT 3,[B] RBIT3,[B] LD B,#04 IFBNE OB JSR JMP JP+2B JP+12 B
xBOO-xBFF xBOO-xBFF

LDMd,#I JMPL XA,Md * SBIT4,[B] RBIT4,[B] LD B,#03 IFBNE OC JSR JMP JP+29 JP+13 C
xCOO-xCFF xCOO-xCFF

DIR JSRL LDA,Md RETSK SBIT 5,[B] RBIT5,[B] LD B,#02 IFBNE OD JSR JMP JP+30 JP+14 D
xDOO-xDFF xDOO-xDFF

LDA,[X] LDA,[B] LD [B],#I RET SBIT6,[B] RBIT6,[B] LD B,#Ol IFBNE OE JSR JMP JP+31 JP+15 E
xEOO-xEFF xEOO-xEFF

* * * RETI SBIT 7,[B] RBIT7,[B] LD B,#OO IFBNE OF JSR JMP JP+32 JP+16 F
xFOO-xFFF xFOO-xFFF

where: I is the immediate data - Md is a directly addressed memory location -* is an unused opcode

8-58 INSTRUCTION SET

Chapter 9

COP912C/COP820C/COP840C/COP880C

9.1 INTRODUCTION

The COP912C/COP820C/COP840C/COP880C are members of the COPS microcontroller
family. They are fully static parts, fabricated using double-metal silicon gate micro CMOS
technology. These low cost micro controllers are each a complete microcomputer
containing all system timing, interrupt logic, ROM, RAM and I/O necessary to
implement dedicated control functions in a variety of applications. Features include an
8-bit memory-mapped architecture, MICROWIREIPLUS serial I/O, a 16-bit timer/
counter with capture/reload register and a multi-sourced interrupt. Each I/O pin has
software selectable options to adapt the device to specific applications. Several versions
of the part are available that operate over different voltage and temperature ranges.
Refer to the datasheet for more specific information. High throughput is achieved with
an efficient instruction set operating at a rate of 1 microsecond (COP912C a minimum of
2 microseconds) per instruction cycle.

This chapter discusses the device specifics of the COP912C/COP820C/COP840C/
COP880C microcontrollers. Information relevant to all COP8 Basic Family members is
not covered in this chapter, but may be found in the first eight chapters of this manual.
In this chapter, the term "COP880" refers to all COP880C packages, including the
COP881C. "COP840" refers to all COP840C packages, including the COP842C.
"COP820" refers to all COP820C packages, including the COP822C. "COP912" refers to
all COP912C packages, including COP912CH.

9.2 BLOCK DIAGRAM

The diagram in Figure 9-1 shows the basic functional blocks associated with the devices.
These blocks include the Arithmetic Logic Unit (ALU), Timer, MICROWIREIPLUS, I/O
ports, and on-chip memory.

COP912C/COP820C/COP840C/COP880C 9-1

CLOCK
HALT

RESET

16 BIT TIMER I BROWN OUT I COUNTER WITH
. . CAPTURE/RELOADED

INTERRUPT

INSTR
DECODE

LOGIC

ILLEGAL
COND

DETECT

COP912

REGISTER

MICRO
WIRE/
PLUS

COP820, COP8620 (64 Bytes RAM, 64 Bytes EE)
COP840, COP8640 (64 Bytes RAM, 64 Bytes EE)
COP880
Not Available on COP912

D*

WATCHDOG
TIMER

MODULATOR
TIMER

7681

1K2/2~
4K4

ROM

Figure 9-1 COP912/820/840/880 Block Diagram

9-2 COP912C/COP820C/COP840C/COP880C

L

COMPARATOR

64.2/1283,4

BYTES
RAM

MULTI
INPUT

WAKEUP

COP800-12

9.3 DEVICE PINOUTIPACKAGES

The eOP912 is available in 20-pin DIP and 20-pin SO packages. The eOP820 and
eOP840 are available in 20-pin DIP, 20-pin SO, 28-pin DIP, and 28-pin SO packages. The
eOP880 is available in 28-pin DIP, 28-pin SO, 40-pin DIP and 44-pin PLee packages.
Figure 9-2 shows the eOP912/820/840/880 device package pinouts.

~_~O 0
C2 40 C1 () CJ) CJ) CJ) t
C3 2 39 CO

;:::::<Di:O~C')C\J oC')C\J
(9 (9(9(9()()()()(9(9(9

G4/S0 3 3B G3fT10

G5/SK 4 37 G2
G6/SI 5 36 G1

CKI GO/INT

35 Vee B 3B RESET
G7/CKO 6 GO/INT 10 9 37 GND

CKI 7 34 RESET 11 10 36 D7
Vee B 40-PIN 33 GND 12 11 1tt~ 35 D6

10 DIP 32 D7 13 12 34 D5 9 (COPBBO (COPBBO ONLY)
11 10 ONLY) 31 D6 14 13 33 D4

12 11 30 D5 15 14 32 D3

13 12 29 D4 16 15 31 D2

14 13 2B D3
17 16 30 D1
LO DO

15 14 27 D2
16 15 26 D1
17 16 25 DO C\J(V')()()()()~LOc.ot--
LO- 17 24 L7 -I-I-IZZZZ-I-I-I-I

L1- 1B 23 L6
L2- 19 22 L5
L3 20 21 L4

G4/S0 2B G31TIO

G5/SK 2 27 G2

G6/SI 3 26 G1

G7/CKO 4 25 GO/INT
G4/S0 20 G3fT10 CKI 5 24 RESET
G5/SK 2 19 G2

Vee 6 23 GND
G6/SI 3 1B G1

G7/CKO 4 17 GO/INT 10 7 2B-PIN 22 03 DIP/SO

CKI 5
20-PIN 16 RESET 11 B 21 D2
DIP/SO

Vee 6 (COP912 & 15 GND 12 9 20 D1

LO
COPB22/B42

14 L7 7 only) 13 10 19 DO
L1 8 13 L6

LO 11 18 L7
L2 9 12 L5

L1 12 17 L6
L3 10 11 L4

L2 13 16 L5

L3 14 15 L4

COP800-13

Figure 9-2 Device Package Pinouts

COP912C/COP820C/COP840C/COP880C 9-3

Refer to the COP912, COP820/840 and COP880 datasheets for more information on the
device packages.

9.4 PIN DESCRIPTIONS

The COP912/820/840/880 have four dedicated function pins: Vee, GND, CKI and RESET.
All other pins are available as general purpose inputs/outputs or as defined by their
alternate functions. Vee and GND function as the power supply pins. RESET is used as
the master reset input, and CKI is used as a dedicated clock input. Table 9-1 lists the pin
name, type, number and function of all COP912/820/840/880 signals.

9.5 INPUT/OUTPUT PORTS

The number of I/O ports available on the COP912/820/840/880 devices depends on
package type. The COP912/820/840 20-pin packages have only a Port L and Port G. The
28-pin COP820/840/880 parts have a Port L, Port G, Port I and Port D. The 40- and 44-
pin COP880 packages have a Port C in addition to the ports available on the 28-pin
packages. All common COP8 ports are described in Chapter 7 of this manual. However,
a brief description of each port is included in this section.

Port C, where available (40 pin DIP and 44 pin PLCC packages), is a 4-bit reconfigurable
I/O port. The port is configured by writing to the Port C configuration and data registers
as described in Section 2.5.3. Reading bits 4 - 7 of the Port C registers and input pins
returns undefined data. It is the user's responsibility to mask out the upper four bits
when reading Port C. This is accomplished by simply ANDing the Port C data with the
value OOOF Hex. This will ensure that the upper four bits of the Port C data are cleared.
The Port C pins have not been assigned alternate functions.

Port D, where available, is a 4-bit (28 pin DIP/SO) or 8-bit (40 pin DIP and 44 pin PLCC)
output only port. When writing an 8-bit quantity to devices which only have a 4-bit D
Port, only the lower four bits are used. The Port D pins have no alternate functions.

Port G is an 8-bit reconfigurable I/O port. Pins 0 - 5 of the port are configured by writing
to the Port G configuration and data registers as described in Section 2.5.3. Pin G6 is a
dedicated input pin. Pin G7 is either an input or output, depending on the oscillator mask
option selected. The Port G pins have the following alternate functions:

GO INTR (External Interrupt Input)

Gl No alternate function

G2 No alternate function

G3 Timer 1 I/O

G4 SO (MICROWIREIPLUS Serial Data Output)

G5 SK (MICROWIREIPLUS Clock I/O)

G6 SI (MICROWIREIPLUS Serial Data Input)

9-4 COP912C/COP820C/COP840C/COP880C

Table 9-1 COP912/820/840/880 Pin Assignments

PORT TYPE ALTERNATE 20 PIN 28 PIN 40 PIN 44 PIN
FUNCTION DIP/SO DIP/SO DIP PLCC

LO I/O 7 11 17 17
Ll 110 8 12 18 18
L2 I/O 9 13 19 19
L3 I/O 10 14 20 20
L4 I/O 11 15 21 25
L5 I/O 12 16 22 26
L6 I/O 13 17 23 27
L7 I/O 14 18 24 28

GO I/O INTERRUPT 17 25 35 39
Gl I/O 18 26 36 40
G2 110 19 27 37 41
G3 I/O TIO 20 28 38 42
G4 I/O SO 1 1 3 3
G5 I/O SK 2 2 4 4
G6 I SI 3 3 5 5
G7 IICKO HALT RESTART 4 4 6 6

DO 0 19 25 29
Dl 0 20 26 30
D2 0 21 27 31
D3 0 22 28 32

10 I 7 9 9
11 I 8 10 10
12 I 9 11 11
13 I 10 12 12

14 I 13 13
15 I 14 14
16 I 15 15
17 I 16 16

D4 0 29 33
D5 0 30 34
D6 0 31 35
D7 0 32 36

CO I/O 39 43
Cl I/O 40 44
C2 I/O 1 1
C3 I/O 2 2

VCC 6 6 8 8
GND 15 23 33 37
CKI 5 5 7 7

RESET 16 24 34 38

COP912C/COP820C/COP840C/COP880C 9-5

G7 Dedicated CKO (Clock Output) with Crystal Oscillator Mask Option or HALT/
Restart (Exit HALT Mode) with RC or External Oscillator Mask Option

Port I, where available, is a 4-bit (28 pin DIP/SO) or 8-bit (40 pin DIP and 44 pin PLCC)
input-only port. All Port I pins are Hi-Z inputs. On the devices which only have a 4-bit
Port I, reading bits 4 - 7 of Port I will return undefined data. The user should mask out
the upper four bits on these devices. No alternate functions have been assigned to the
Port I pins.

Port L is an 8-bit reconfigurable I/O port. The port is configured by writing to the Port L
configuration and data registers as described in Section 2.5.3. The Port L pins have no
alternate functions.

9.6 PROGRAM MEMORY

The COP912C, COP820C, COP840C and COP880C contain 768 bytes, 1K bytes, 2K bytes
and 4K bytes of program memory, respectively. The program memory may contain either
instructions or data constants, and is addressed by the 15-bit program counter (PC). The
program memory can be indirectly read by the LAID (Load Accumulator Indirect)
instruction for table lookup of constant data. All program memory for the COP912/820/
840/880 devices is mask-programmed ROM.

9.7 DATA MEMORY

The COP912/820 has 64 bytes of RAM data memory. These 64 bytes are memory mapped
into two different locations. The first 48 bytes are resident from address 0000 to 002F
Hex, while the remaining 16 bytes (containing the register memory) are located from
address OOFO to OOFF Hex.

The COP840 and COP880 have 128 bytes of RAM data memory. These 128 bytes are
memory mapped into two different locations. The first 112 bytes are resident from
address 0000 to 006F Hex, while the remaining 16 bytes are located from address OOFO
to OOFF Hex.

Refer to Chapter 2 for details on the data memory architecture.

9.8 REGISTER BIT MAPS

The COP912/820/840/880 devices have two registers that contain hardware control flags
and bits. These registers, CNTRL and PSW, are located in the COP8 core and are
described in the CORE REGISTERS section of this manual. The bit maps for these
registers are shown below.

The PSW register bits are:

GIE Global interrupt enable (enables interrupts)

ENI External interrupt enable

9-6 COP912C/COP820C/COP840C/COP880C

BUSY

IPND

ENTI

TPND

C

HC

Bit 7

HC

MICROWIREIPLUS busy shifting flag

External interrupt pending

Timer 1 interrupt enable

Timer 1 interrupt pending (timer underflow or capture edge)

Carry FliplFlop

Half-Carry FliplFlop

Table 9-2 PSW Register Bits

Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

C TPND ENTI IPND BUSY ENI

Bit 0

GIE

The timer and MICROWIREIPLUS control register bits are:

SL1 & SLO Selects the MICROWIREIPLUS clock divide-by (00=2,01=4,lx=8)

IEDG

MSEL

TRUN

TC1

TC2

TC3

Bit 7

TC1

External interrupt edge polarity (0 = rising edge, 1 = falling edge)

Selects G5 and G4 as MICROWIREIPLUS signals SK and SO

Used to start and stop the timer/counter (1 = run, 0 = stop)

Timer 1 Mode Control Bit

Timer 1 Mode Control Bit

Timer 1 Mode Control Bit

Table 9-3 CNTRL Register Bits

Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

TC2 TC3 TRUN MSEL IEDG SL1 SLO

9.9 MEMORY MAP

The COP912/820/840/880 is based on a memory-mapped architecture. All data memory,
I/O ports, port registers and function registers are mapped into the data memory address
space. Table 9-4 shows the organization of the data memory address space and the
mapping of specific addresses. Read-only memory locations are noted in the table.

COP912C/COP820C/COP840C/COP880C 9-7

Table 9-4 COP912/820/840/880 Memory Map

ADDRESS CONTENTS

00 to 2F On-chip RAM bytes (48 bytes) (COP912 and COP820 only)
30 to 7F Unused RAM address space (reads all as l's) (COP912 and COP820

only)
00 to 6F On-chip RAM bytes (112 bytes) (COP840/880 only)
70 to 7F Unused RAM address space (reads as alII's)

80 to BF Expansion space for on-chip EERAM (reads undefined data) (COP912
only), reserved for other devices

CO to CF Expansion space for 110 and registers (COP912 only), reserved for
other devices

DO to DF On-chip 110 and registers
DO Port L data register
Dl Port L configuration register
D2 Port L input pins (read only)
D3 Reserved
D4 Port G data register
D5 Port G configuration register
D6 Port G input pins (read only)
D7 Port I input pins (read only) (COP912 reserved)
D8 Port C data register (COP880 only), reserved for other devices
D9 Port C configuration register (COP880 only), reserved for other devices
DA Port C input pins (read only) (COP880 only), reserved for other devices
DB Reserved
DC Port D data register (COP912 reserved)

DD to DF Reserved

EO to EF On-chip functions and registers
EO to E8 Reserved

E9 MICROWIREIPLUS shift register (SIOR)
EA Timer lower byte
EB Timer upper byte
EC Timer autoload register lower byte
ED Timer autoload register upper byte
EE CNTRL control register
EF PSW register

FO to FF 16 on-chip RAM bytes mapped as registers
FC X register
FD SP register
FE B register

9-8 COP912C/COP820C/COP840C/COP880C

9.10 RESET

The following initializations are performed by the COP912/820/840/880 at reset:

PORTC:

PORTD:

PORTG:

PORTL:

PC:

PSW and CNTRL:

B,X,SP:

TRI-STATE (4-bit 40-pin DIP and 44-pin PLCe packages)

LOGIC HIGH (4-bit 28-pin DIP/SO & 8-bit 40-pin DIP, 44-pin
PLCC package)

TRI-STATE

TRI-STATE

CLEARED

CLEARED

UNKNOWN at power-on reset

UNCHANGED at external reset

RAM: UNKNOWN at power-on reset

UNCHANGED at external reset

ACC and TIMER 1: UNKNOWN at power-on reset

UNKNOWN at external reset with Crystal oscillator clock op­
tion selected

UNCHANGED at external reset with RIC or External oscilla­
tor clock options

9.11 MASK OPTION(S)

The COP912, COP820/840 and COP880 mask-selectable options are listed below. The
options are programmed at the same time as the ROM pattern to provide the user with
hardware flexibility.

9.11.1 COP912

Option 1: COP912C CKI Input

=1 Normal Mode Crystal (CKIl10); CKO for crystal configuration

=2 N/A

=3 RIC (CKIl10); CKO available as G7 input

COP912C/COP820C/COP840C/COP880C 9-9

Option 2: COP912C Bonding

=1 N/A

=2 N/A

=3 20-pin DIP

=4 20-pin SO

=5 N/A

9.11.2 COP820C/COP840C

Option 1: COP820C/COP822C/COP840C/COP842C CKI Input

=1 Normal Mode Crystal (CKIl10); CKO for crystal configuration

=2 Normal Mode External (CKIl10); CKO available as G7 input

=3 RIC (CKIl10); CKO available as G7 input

Option 2: COP820C/COP822C/COP840C/COP842C Bonding

=1 28-pin DIP

=2 N/A

=3 20-pin DIP

=4 20-pin SO

=5 28-pin SO

9.11.3 COP880

Option 1: COP880C/COP881C CKI Input

=1 Normal Mode Crystal (CKIl10); CKO for crystal configuration

=2 Normal Mode External (CKIl10); CKO available as G7 input

=3 RIC (CKIl10); CKO available as G7 input

Option 2: COP880C/COP881C Bonding

=1 44-pin PLCC

=2 40-pin DIP

=3 28-pin SO

=4 28-pin DIP

9-10 COP912C/COP820C/COP840C/COP880C

Chapter 10

COP820CJ/COP840CJ

10.1 INTRODUCTION

The COP820CJ/840CJ devices are members of the COPS 8-bit micro controller family. It
is a fully static micro controller, fabricated using double-metal silicon gate microCMOS
technology. This low-cost micro controller is a complete microcomputer containing all
system timing, interrupt logic, ROM, RAM, and I/O necessary to implement dedicated
control functions in a variety of applications. Features include an 8-bit memory-mapped
architecture, MICROWIREIPLUS serial I/O, a 16-bit timer/counter with capture/reload
register, and a multi-sourced interrupt. Each I/O pin has software selectable options to
adapt the COP820CJ/840CJ microcontrollers to specific applications. Several versions of
the part are available that operate over different voltage and temperature ranges. Refer
to the datasheet for more specific information. High throughput is achieved with an
efficient instruction set operating at a rate of 1 microsecond per instruction cycle.

On the COP840CJ, low radiated emissions are achieved by gradual turn on output
drivers, and internal ICC filters.

The COP820CJ/840CJ devices have the following special features:

• Schmitt trigger inputs on Port L

• High current sink on pins L4 to L 7 and DO to D3

• Selectable Brown Out protection

• WATCHDOG Timer

• ModulatorlTimer

• Comparator

• Multi-Input Wakeup on Port L

• 16-pin version in SO package (COP820CJ only)

This chapter discusses the device specifics of the COP820CJ/840CJ microcontrollers.
Information relevant to all COP8 Basic Family members is not covered in this chapter
but may be found in the first eight chapters of this manual. In this chapter, the term
"COP820CJ" refers to all COP820CJ packages, including the COP822CJ and COP823CJ.
"COP840CJ" refers to all COP840CJ packages, including the COP842CJ, COP940CJ,
and COP942CJ.

COP820CJ/COP840CJ 10-1

10.2 BLOCK DIAGRAM

The diagram in Figure 10-1 shows the basic functional blocks associated with the
COP820CJ/840CJ devices. These blocks include the Arithmetic Logic Unit (ALU), Timer,
MICROWIREIPLUS, I/O ports, comparator, WATCHDOG, modulator timer, Multi-Input
Wakeup, Brown-Out circuit, and on-chip memory.

CLOCK
HALT

RESET

I BROWN OUT I 16 BIT
TIMER

MICRO
WIREI

1/0
WATCHDOG

TIMER
COMPARATOR

l INTERRUPT J T1 PLUS
G ~ L D r

8-BITS 8-BITS 4-BITS 4-BITS

~

~ ,.
INSTR

,.....

DECODE _f0-

lOGIC

ILLEGAL
COND

DETECT

COP820CJ

2 COP840CJ

f0-

fo-

r-
'--

l
1
A -
B -
X -

SP -
PSW -

CNTRl -

! 1 1 1
~ ~

MODULATOR 1K1/2K2
TIMER ROM

:::,
:;;

J AlU <Lt-

~ .. 0
;S:

:}
V ~ REG

Figure 10-1 COP820CJ/840CJBlock Diagram

10.3 DEVICE PINOUTIPACKAGES

!
~ 1

641/1282 MULTI
BYTES INPUT
RAM WAKEUP

~

TUD D/11208-1

The COP820CJ is available in 16-pin SO, 20-pin DIP, 20-pin SO, 28-pin DIP, and 28-pin
SO packages. The COP840CJ is available in 20-pin DIP, 20-pin SO, 28-pin DIP, and 28-
pin SO packages. Figure 10-2 shows the COP820CJ/840CJ device package pinouts.

Refer to the COP820CJ/840CJ datasheets for more information on the device packages.

10-2 COP820CJ/COP840CJ

G4/S0 28 G3IT10
G5/SK 2 27 G2

G6/S1 3 26 G1

G7/CKO 4 25 GO/INT

CKI 5 24 RESET

Vee 6 23 GND

10 7 28-PIN 22 D3

11 8 DIP/SO 21 D2

12 9 20 D1

13 10 19 DO

10/CMPOUT 11 18 L7/MODOUT
L 1/CMPIN- 12 17 L6

L2/CMPIN+ 13 16 L5

L3 14 15 L4
TUD D/11208-3

(COP820CJ only)

G4/S0 1 20 - G3/T10

G5/SK 2 19 - G2
G6/S1 1 16 G5/SK

G7/CKO 3 18 -G1 G7/CKO 2 15 G3/T10

G6/S1 4 17 - GO/INT CKI 3 14 RESET

CKI 5 20-PIN 16 - RESET Vee 4 16-PIN 13 GND

Vee 6
DIP/SO 15 - GND LO/CMPOUT 5 SO 12 L7/MODOUT

LO/CMPOUT 7 14 - L7/MODOUT L1/CMPIN- 6 11 L6

L1/CMPIN- 8 13 - L6 L2/CMPIN+ 7 10 L5

L2/CMPIN+ 9 12 - L5 L3 8 9 L4

L3 10 11 - L4

TUDD/11208-5
TUDD/11208-4

Figure 10-2 Device Package Pinouts

COP820CJ/COP840CJ 10-3

10.4 PIN DESCRIPTIONS

The COP820CJ/840CJ devices have four dedicated function pins: Vec, GND, CKI and
RESET. All other pins are available as general purpose inputs/outputs or as defined by
their alternate functions. V ce and GND function as the power supply pins. RESET is
used as the master reset input, and CKI is used as a dedicated clock input. Table 10-1
lists the pin name, type, number and function of all COP820CJ/840CJ signals.

Table 10-1 COP820CJ/840CJ Pin Assignments

PORT TYPE ALTERNATE 16 PIN* 20 PIN 28 PIN
FUNCTION SO DIP/SO DIP/SO

LO I/O MIWU/CMPOUT 5 7 11
Ll I/O MIWU/CMPIN- 6 8 12
L2 I/O MIWU/CMPIN+ 7 9 13
L3 I/O MIWU 8 10 14
L4 I/O MIWU 9 11 15
L5 I/O MIWU 10 12 16
L6 I/O MIWU 11 13 17
L7 I/O MIWU/MOD- 12 14 18

OUT

GO I/O INTERRUPT 17 25
Gl I/O 18 26
G2 I/O 19 27
G3 I/O TIO 15 20 28
G4 I/O SO 1 1
G5 I/O SK 16 2 2
G6 I SI 1 3 3
G7 I/CKO HALT RESTART 2 4 4

DO 0 19
Dl 0 20
D2 0 21
D3 0 22

10 I 7
II I 8
12 I 9
13 I 10

Vec 4 6 6
GND 13 15 23
CKI 3 5 5

RESET 14 16 24

* COP820CJ only.

10-4 COP820CJ/COP840CJ

10.5 INPUT/OUTPUT PORTS

The number of 110 ports available on the COP820CJ/840CJ device depends on package
type. The 16- and 20-pin packages have only a Port L and Port G. The 28-pin packages
have a Port L, Port G, Port I and Port D. All common COP8 Basic Family ports are
described in Chapter 7 of this manual. However, a brief description of each port is
included in this section.

Port D, where available, is a 4-bit output-only port with moderately high sink current
capability. The Port D pins have no alternate functions.

Port G is an 8-bit reconfigurable 110 port. Pins 0 - 5 of the port are configured by writing
to the Port G configuration and data registers as described in Section 2.3.3. Pin G6 is a
dedicated TRI-STATE input pin. Pin G7 is either an input or output, depending on the
oscillator mask option selected. All Port G pins have Schmitt triggers on their inputs. The
MICROWIREIPLUS serial interface is implemented through pins G4, G5, and G6. Pin
G4 is not available in the 16 pin package, limiting the 16-pin implementation to slave
mode or just as a serial-shift input register. The Port G pins have the following alternate
functions:

GO INTR (External Interrupt Input)

Gl No alternate function

G2 No alternate function

G3 Timer 1 110

G4 SO (MICROWIREIPLUS Serial Data Output)

G5 SK (MICROWIREIPLUS Clock 110)

G6 SI (MICROWIREIPLUS Serial Data Input)

G7 Dedicated CKO (Clock Output) with Crystal Oscillator Mask Option or HALT/
Restart (Exit HALT mode) with RIC or External Oscillator Mask Option

Port I, where available, is a 4-bit input-only port. All Port I pins are Hi-Z inputs. No
alternate functions have been assigned to the Port I pins.

Port L is an 8-bit reconfigurable 110 port. The port is configured by writing to the Port L
configuration and data registers as described in Section 2.3.3. Pins L4 to L 7 have high
sink current capability. Refer to the COP820CJ/840CJ datasheet for specific Port L
electrical characteristics. The Port L pins have the following alternate functions.

LO MlWU or CMPOUT

Ll MlWU or CMPIN-

L2 MlWU or CMPIN+

L3 MlWU

L4 MlWU (high sink current capability)

L5 MlWU (high sink current capability)

COP820CJ/COP840CJ 10-5

L6 MlWU (high sink current capability)

L7 MlWU or MODOUT (high sink current capability)

The selection of alternate Port L functions is performed using registers WKEN (address
00C9 Hex) to enable MlWU, and CNTRL2 (address OOCC Hex) to enable the comparator
and modulator. The programmer must always ensure that the Port L data and
configuration registers are set to the correct values when using the alternate functions. For
example, when using the comparator, the user must program the Port L pins used for the
non-inverting and inverting terminals as inputs. Pin LO must be programmed as an output
if the output of the comparator is required on the pin. However, if there is an RIC network
on the inverting terminal which needs to be discharged as is the case in AID conversion (see
Chapter 12), pin L1 can be temporarily configured as an output set to logic 0 to discharge
the capacitor, without having to change the entire comparator set-up.

Port L pins have Schmitt Triggers on their inputs. This reduces the noise sensitivity of
the inputs, which is useful in applications working in electrically noisy environments
such as industrial timers, appliances connected to the power line, and automotive
applications.

10.6 PROGRAM MEMORY

The COP820CJ and COP840CJ devices contain 1K bytes and 2K bytes of program
memory, respectively. All program memory for the COP820CJ/840CJ devices is mask­
programmed ROM. Refer to Chapter 2 for detailed information on the program memory.

10.7 DATA MEMORY

The COP820CJ and COP840CJ devices have 64 bytes and 128 bytes of RAM data
memory, respectively. These 64 bytes are memory mapped into two different locations.
The first 48 bytes are resident from address 0000 to 002F Hex, while the remaining 16
bytes (containing the register memory) are located from address OOFO to OOFF Hex. Refer
to Chapter 2 for information on the data memory architecture.

10.8 REGISTER BIT MAPS

The COP820CJ/840CJ devices have five bit-mapped registers in addition to the PSW and
CNTRL1 registers described in Section 2.4.3. The bit maps for these additional registers
are shown below. PSW and CNTRL1 are also included for reference.

The WKEDG Register Bits are:

LOEDG

L1EDG

L2EDG

L3EDG

Pin LO Wakeup Edge Select Bit

Pin L1 Wakeup Edge Select Bit

Pin L2 Wakeup Edge Select Bit

Pin L3 Wakeup Edge Select Bit

10-6 COP820CJ/COP840CJ

L4EDG

L5EDG

L6EDG

L7EDG

Pin L4 Wakeup Edge Select Bit

Pin L5 Wakeup Edge Select Bit

Pin L6 Wakeup Edge Select Bit

Pin L 7 Wakeup Edge Select Bit

Table 10·2 WKEDG Register Bits (Address OOC8 Hex)

Bit 7 Bit 6 Bit 5 Bit 4

L7EDG L6EDG L5EDG L4EDG

The WKEN Register Bits are:

LOEN

LIEN

L2EN

L3EN

L4EN

L5EN

L6EN

L7EN

Pin LO Wakeup Enable Bit

Pin LI Wakeup Enable Bit

Pin L2 Wakeup Enable Bit

Pin L3 Wakeup Enable Bit

Pin L4 Wakeup Enable Bit

Pin L5 Wakeup Enable Bit

Pin L6 Wakeup Enable Bit

Pin L7 Wakeup Enable Bit

Bit 3 Bit 2 Bit 1

L3EDG L2EDG LIEDG

Table 10·3 WKEN Register Bits (Address OOC9 Hex)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

L7EN L6EN L5EN L4EN L3EN L2EN LIEN

The WKPND Register Bits are:

LOPND Pin LO Wakeup Pending Bit

LIPND Pin LI Wakeup Pending Bit

L2PND Pin L2 Wakeup Pending Bit

L3PND Pin L3 Wakeup Pending Bit

L4PND Pin L4 Wakeup Pending Bit

L5PND Pin L5 Wakeup Pending Bit

L6PND Pin L6 Wakeup Pending Bit

L7PND Pin L 7 Wakeup Pending Bit

Bit 0

LOEDG

Bit 0

LOEN

COP820CJ/COP840CJ 10-7

Table 10-4 WKPND Register Bits (Address OOCA Hex)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

L7PND L6PND L5PND L4PND L3PND L2PND L1PND

The WDREG Register Bit is:

WDREN

Bit 7

WATCHDOG Reset enable bit (write ones only COP840CJ)

Table 10-5 WDREG Register Bits (Address OOCD Hex)

Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED

The PSW Register Bits are:

GIE

ENI

BUSY

IPND

ENTI

TPND

C

HC

Bit 7

He

Global interrupt enable (enables interrupts)

External interrupt enable

MICROWIREIPLUS busy shifting flag

External interrupt pending

Timer 1 interrupt enable

Timer 1 interrupt pending (timer underflow or capture edge)

Carry FliplFlop

Half-Carry FliplFlop

Table 10-6 PSW Register Bits (Address OOEF Hex)

Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

C TPND ENTI IPND BUSY ENI

The timer and MICROWIREIPLUS control register bits are:

Bit 0

LOPND

Bit 0

WDREN

Bit 0

GIE

SLl & SLO Select the MICROWIREIPLUS clock divide-by (00=2,01=4,lx=8)

IEDG

MSEL

TRUN

TC1

TC2

TC3

External interrupt edge polarity (0 = rising edge, 1 = falling edge)

Selects G5 and G4 as MICROWIREIPLUS signals SK and SO

Used to start and stop the timer/counter (1 = run, 0 = stop)

Timer 1 Mode Control Bit

Timer 1 Mode Control Bit

Timer 1 Mode Control Bit

10-8 COP820CJ/COP840CJ

Table 10-7 CNTRL1 Register Bits (Address OOEE Hex)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2

TC1 TC2 TC3 TRUN MSEL IEDG

The CNTRL2 Register Bits are:

MC3

MC2

MC1

CMPEN

CMPRD

CMPOE

WDUDF

ModulatorlTimer Control Bit

ModulatorlTimer Control Bit

ModulatorlTimer Control Bit

Comparator Enable Bit

Comparator Read Bit (read only COP840CJ)

Comparator Output Enable Bit

WATCHDOG Timer Underflow Bit (Read Only)

Bit 1

SL1

Table 10-8 CNTRL2 Register Bits (Address OOCC Hex)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

MC3 MC2 MC1 CMPEN CMPRD CMPOE WDUDF

10.9 MEMORY MAP

Bit 0

SLO

Bit 0

UNUSED

The COP820CJ/840CJ devices are based on a memory mapped architecture. All data
memory, I/O ports, port registers and function registers are mapped into the data
memory address space. Table 10-9 shows the organization of the data memory address
space and the mapping of specific addresses. Read-only memory locations are also noted.

10.10 RESET

The COP820CJ/840CJ devices have three types of reset: External Reset, WATCHDOG
Reset, and Brown Out Reset. The following sections describe in detail the conditions
required to generate these resets and the effect of each type of reset on these devices.

10.10.1 Reset Initialization

Table 10-10 shows the initialization performed by the COP820CJ/840CJ devices during
the External, WATCHDOG, and Brown Out resets. The effect of this initialization is to
disable all interrupts, Timer 1, the ModulatorlTimer, the Multi-Input Wakeup, the
MICROWIREIPLUS, and the WATCHDOG; to set all Port G and L pins to inputs; and to
set Port D high.

COP820CJ/COP840CJ 10-9

Table 10-9 COP820CJ/840CJ Memory Map

ADDRESS CONTENTS

00 to 2F OR On-chip RAM bytes (COP820CJ)
00 to 6F On-chip RAM bytes (48 bytes) (COP840CJ)
30 to 7F OR Unused RAM address space (reads as aUI's)

(COP820CJ only)
70 to 7F Unused RAM address space (reads as aUI's)

(COP840CJ only)

80 to BF Reserved (Reads Undefined Data)

CO to C7 Reserved
C8 MlWU Edge Select Register (WKEDG)
C9 MlWU Enable Register (WKEN)
CA MlWU Pending Register (WKPND)
CB Reserved
CC Control2 Register(CNTRL2)
CD WATCHDOG Register(WDREG) (write once only

COP840CJ)
CE WATCHDOG Counter (WDCNT)
CF Modulator Reload (MODRL)

DO to DF On-chip I/O and registers
DO Port L data register
DI Port L configuration register
D2 Port L input pins (read only)
D3 Reserved
D4 Port G data register
D5 Port G configuration register
D6 Port G input pins (read only)
D7 Port I input pins (read only); upper 4 bits undefined
D8 to DB Reserved for Port C
DC Port D Data Register
DD to DF Reserved for Port D

EO to EF On-chip functions and registers
EO to E8 Reserved
E9 MICROWIREIPLUS shift register (SIOR)
EA Timer lower byte
EB Timer upper byte
EC Timerl autoload register lower byte
ED Timerl autoload register upper byte
EE CNTRLI control register
EF PSW register

FO to FF 16 on-chip RAM bytes mapped as registers
FC X register
FD SP register
FE B register

10-10 COP820CJ/COP840CJ

Table 10-10 Reset Initialization

Contents after
Contents after

Contents after
RegisterlPort External Reset

WATCHDOG Brown Out Reset
Reset

PortD LOGIC HIGH LOGIC HIGH LOGIC HIGH

PortG TRI-STATE TRI-STATE TRI-STATE

PortL TRI-STATE TRI-STATE TRI-STATE

PC CLEARED CLEARED CLEARED

RAM including UNKNOWN at power-on UNCHANGED UNKNOWN
SP, B and X UNAFFECTED with

power already applied

Timer 1 and UNKNOWN at power-on UNKNOWN UNKNOWN
Accumulator UNKNOWN with power

already applied (Crystal
Oscillator option selected)
UNAFFECTED with
power already applied (RIC
or External Oscillator
option selected)

PSW CLEARED CLEARED CLEARED
CNTRLl CLEARED CLEARED CLEARED

CNTRL2 CLEARED CLEARED CLEARED except Bitl
(Bitl is unaffected)

WKEDG CLEARED CLEARED CLEARED
WKEN CLEARED CLEARED CLEARED
WKPND UNKNOWN UNKNOWN UNKNOWN

WDREG CLEARED CLEARED CLEARED except BitO
(BitO is unaffected)

WATCHDOG FF Hex normally FFHex FFHex
Prescaler ALTERED at external

reset exit from HALT

WATCHDOG FF Hex normally FFHex FFHex
Counter ALTERED at external

reset exit from HALT

NOTES: 1. Whenever V cc is greater than the Brown Out voltage, the external reset
has priority over the Brown Out reset. The external reset always has prior-
ity over the WATCHDOG reset.

2. During a Brown Out or External reset, the WDREN and WDUDF hits are
cleared. However, if a WATCHDOG underflow caused the reset, the values
of the WDREN and WDUDF hits are preserved, so that the initialization
routine can detect whether a WATCHDOG underflow has occurred.

COP820CJ/COP840CJ 10-11

10.10.2 Reset Timing Considerations

For applications using the crystal or resonator clock option, a reset condition occurring
during HALT mode automatically introduces a delay of 256 clock cycles immediately
after the rising edge of an external RESET or the recovery of Vee above the Brown Out
voltage. This ensures that the crystal or resonator has had enough time to oscillate in a
stable manner. The program starts execution at address 0000 Hex within 2 additional
instruction cycles.

For all other external reset conditions, the program starts execution 2 cycles after the
rising edge of the reset pulse.

The Brown Out reset initialization is started once Vee has exceeded the Brown Out
voltage. If an external reset takes place during this initialization, the external reset has
priority over the Brown Out reset. The external reset always has priority over the
WATCHDOG reset.

10.10.3 Power-On Reset Circuit

The external power-on reset circuit must normally meet the requirements for the COP8
Basic Family reset circuit as described in Section 2.6. However, if the Brown Out
protection option is used and the power supply rise time is greater than 50us, the
standard power-on reset circuit should be omitted, saving three components. In this case,
the RESET pin must be connected to Vee. Power-on reset is then automatically
performed by the Brown Out protection circuit.

10.10.4 WATCHDOG Reset

With WATCHDOG enabled, the WATCHDOG logic internally resets the device if the user
program does not service the WATCHDOG timer within the selected service window. The
WATCHDOG reset does not disable the WATCHDOG. Upon WATCHDOG reset, the
WATCHDOG Prescaler/Counter are each initialized with OOFF Hex. The WATCHDOG
reset does not have priority over any other COP820CJ/840CJ resets. Refer to the
WATCHDOG section of this chapter for more information on the WATCHDOG circuit.

10.10.5 Brown Out Reset

The on-board Brown Out protection circuit resets the device when the operating voltage
(Vee) goes below the Brown Out voltage. The device is held in reset when Vee stays
below the Brown Out voltage. The device comes out of reset as Vee rises from a voltage
lower than the Brown Out voltage and reaches the Brown Out voltage. If a two-pin
crystal/resonator clock option is selected, the Brown Out reset will trigger a 256 tc delay.
This delay allows the oscillator to stabilize before the device exits the reset state. The
delay is not used if the clock option is either RIC or external clock. The contents of data
registers and RAM are unknown following a Brown Out reset. The external reset takes
priority over Brown Out Reset and will deactivate the 256 tc cycles delay if in progress.
The Brown Out reset takes priority over the WATCHDOG reset.

10-12 COP820CJ/COP840CJ

10.10.6 External Reset

A COP820CJ/840CJ master reset is generated by holding the external RESET pin low.
This type of reset is common to all COP8 Basic Family devices, and is described in
Section 2.6. This reset takes priority over the Brown Out reset if V cc is greater than
Brown Out voltage.

10.10.7 Reset Initialization Routine

The reset initialization routine cannot distinguish between an external reset and a
Brown Out reset. Therefore, if the Brown Out detection option is used, the reset
initialization routine must initialize the processor into a safe state, when used in safety­
critical applications such as appliances connected to the power line. A WATCHDOG
underflow can be detected in the following way:

.=000
LD SP, #02F
IFBIT WDUDF,CNTRL2
JMP WDERR

10.11 BROWN OUT PROTECTION

; Initialize the stack pointer
; Test whether reset is a WATCHDOG reset
; Execute the WATCHDOG error routine
; Normal initialization routine follows

The COP820CJ/840CJ devices have an on-board Brown Out protection circuit for use in
applications where temporary drops in the supply voltage (V cc) could create potentially
hazardous situations. For example, household appliances connected to the AC power line
are subject to glitches or longer term drop-outs on the power supply, temporarily driving
the micro controller below its minimum operating voltage. Under such conditions, the
program counter, stack and RAM contents are not guaranteed to be preserved. If this
occurs, the program behavior is unpredictable and a potentially dangerous event may
happen even when the power supply returns to its normal level.

The Brown Out protection circuit is permanently enabled or disabled via a mask option.
If enabled, the Brown Out protection circuit monitors V cc and compares it with the
Brown Out voltage. If V cc falls below the Brown Out voltage, the COP820CJ/840CJ
devices are held in reset. When V cc rises above the Brown Out voltage, Brown Out
initialization is generated as described in Section 10.8, ensuring that the program is
restored to a defined state.

If Brown Out protection is disabled, the minimum operating voltage for the COP820CJI
840CJ devices is 2.5V. If Brown Out protection is enabled, the minimum operating
voltage is the Brown Out voltage, as long as the maximum operating frequency for the
device at the Brown Out voltage is not exceeded. Refer to the datasheet for the
dependency of minimum operating voltage on the maximum permissible operating
frequency. The Brown Out voltage tracks the minimum operating voltage, so that devices
with lower Brown Out voltages are guaranteed to operate at lower V cc than devices with
higher Brown Out voltages. Therefore, if Brown Out protection is enabled, the device is
guaranteed to operate down to the Brown Out voltage even if this voltage is below 2.5V.
For a temperature range of O°C to 70°C the Brown Out voltage is expected to be between

COP820CJ/COP840CJ 10-13

1.9V and 3.9y' Over the full automotive temperature range, this extends from 1.8V to
4.2Y.

If the device is intended to operate at a voltage lower than the maximum Brown Out
voltage (VBO max), the Brown Out circuit should be disabled via the Brown Out mask
option.

The Brown Out Circuit is active in HALT mode. This increases the HALT mode current
by up to 100uA.

10.12 WATCHDOG

The COP820CJ/840CJ devices have an on board 8-bit WATCHDOG timer. The timer
contains an 8-bit READIWRITE down counter clocked by an 8-bit prescaler. The timer
can be programmed to operate in either of two modes: WATCHDOG timer or a general­
purpose counter. Figure 10-3 shows the WATCHDOG timer block diagram. The
WATCHDOG counter is decremented every 256 tc cycles.

Mode 1: WATCHDOG Timer

The WATCHDOG timer is intended for use in applications where glitches or other
sources of external interference could corrupt the program counter or the stack contents.
This can result in the program behavior being unpredictable and potentially dangerous.
For example, the electrically noisy environment in which an automotive application is
used could cause the application software to be stuck in an infinite loop or to execute look­
up table data, thus causing unpredictable behavior. The programmer can already protect
against execution of unused code by ensuring that these areas are filled with the value
00 Hex (software trap opcode), and by properly handling the software trap condition in
the interrupt routine.

The WATCHDOG can be enabled or disabled only once after a Brown Out reset or
External reset. On power-up, the WATCHDOG is disabled. If the WATCHDOG timer is
enabled, the user program should write periodically into the 8-bit WDCNT counter,
location OOCE Hex, before the counter underflows. The counter is loaded with N -1 to get
N counts. The counter underflow causes a WATCHDOG reset as described in Section
10.8. Loading the 8-bit counter initializes the prescaler with FF Hex and starts the
prescaler and the counter. Both the pres caler and the counter are stopped when the
counter underflows. They are each loaded with FF Hex when the device goes into the
HALT mode. The prescaler is used for crystal or resonator start-up when the device exits
the HALT mode through Multi-Input Wakeup. In this case, the prescaler/counter
contents are changed.

The programmer can adjust the required response time for a WATCHDOG failure by
loading different values in the counter. If a very low value is loaded in WDCNT, the
response time will be fast, but the counter must be updated more regularly. If a fast
response time is not required, then a larger counter value will be sufficient.

10-14 COP820CJ/COP840CJ

HALT Restart

HALT

Brown Out
Reset

WAKE-UP
~+---1 S Q

LOAD
WD-Counter

External Reset

Brown Out Reset

R

INTERNAL DATA BUS

StarV Preset
Stop
PRESCALER

+256
WDTEN ~I-C_lo_c_k __

c

CNTRL2

WD Reset

Preset

WD - Counter
8BIT

Underflow

COP800-16

Figure 10-3 WATCHDOG Timer Block Diagram

Mode 2: Timer

In this mode, the prescaler/counter is used as a timer by keeping the WDREN
(WATCHDOG reset enable) bit at zero. The counter underflow sets the WDUDF bit, but
the underflow does not reset the device. Loading the 8-bit counter (load N-1 for N counts)
sets the WATCHDOG Timer Enable (WDTEN) signal to "I", loads the prescaler with FF,
and starts the timer. The counter underflow stops the timer.

The WDTEN signal serves as a start signal for the WATCHDOG timer. This signal is set
to "I" when the 8-bit counter is loaded by the user program, either because of a
WATCHDOG service or because of a write to the counter. The signal is set to "0" by a reset
and is transparent to the user program.

COP820CJ/COP840CJ 10-15

Control and Status Bits

WDUDF: WATCHDOG Timer Underflow Bit

This bit resides in the CNTRL2 Register. The bit is set when the WATCHDOG timer
underflows. The underflow resets the device if the WATCHDOG reset enable bit is set
(WDREN=l). Otherwise, WDUDF can be used as the timer underflow flag. The bit is cleared
upon Brown-Out reset, an External reset, a load to the 8-bit counter, or going into the HALT
mode. It is a read-only bit.

WDREN: WATCHDOG Reset Enable Bit

This bit resides in Bit 0 of the WDREG register. This bit enables the WATCHDOG timer to
generate a reset on a WATCHDOG timer underflow. The bit is cleared upon Brown Out reset
or External reset. The bit is under software control but can be written to only once following
a reset. Mter that, the hardware does not allow the bit to be changed during program
execution. IfWDREN= 1, WATCHDOG reset is enabled, otherwise it is disabled.

WDCNT: WATCHDOG Counter

This 8-bit read/write register contains the contents of the WATCHDOG timer. The contents
can be read by the program at any time. The contents can be written at any time to update
the WATCHDOG timer.

Initialization Example

The following code shows how to initialize the WATCHDOG:

.=000

LD WDCNT,#020

SBIT WDREN,WDREG

LD WDCNT,#020

; Reset initialization

; Load and start the timer

; Enable the WATCHDOG reset

; Application code

; Regularly update the WATCHDOG

Table 10-11 shows the effect of Brown Out Reset, WATCHDOG Reset, and External Reset
on the Control/Status bits.

Table 10-11 Effect of HALT, Reset and loading WDCNT on WATCHDOG Registers.

Parameter HALT WATCHDOG External or Load
Reset Brown Out Reset Counter

8-bit Prescaler FFHex FFHex FFHex FFHex

8-bit WD Counter FFHex FFHex FFHex User Value

WDRENbit Unchanged Unchanged 0 Unchanged

WDUDFbit 0 Unchanged 0 0

WDTEN Signal Unchanged 0 0 1

10-16 COP820CJ/COP840CJ

10.13 MODULATORtrIMER

The ModulatorlTimer contains an 8-bit counter which is not memory mapped, and an 8-
bit autoreload register, MODRL (address OOCF Hex). The ModulatorlTimer has three
modes of operation selected by the ModulatorlTimer Control bits. These bits, MC1, MC2
and MC3 reside in the CNTRL2 Register.

Mode 1: MODULATOR

The Modulator mode is used to generate bursts of between 1 and 256 pulses at a
frequency of either CKI or CKIl10. Figure 10-4 illustrates the timer configuration and
the waveform generated by this mode. This type of waveform is used in remote control
applications, such as electronic keys in the automotive area or remote control units for
consumer appliances. Refer to the COP820CJ/840CJ datasheets for the specification on
the maximum permissible CKI frequency for the Modulator output.

The Modulator mode is selected by setting MC3 = 1. MC2 selects the modulator input
clock. IfMC2 = 1, the modulator input clock is set to CKI. IfMC2 = 0, the modulator input
clock is set to tc. MC1 is used as the start bit for the modulator. The high frequency
pulses are generated on the modulator output pin L 7, which should be configured as an
output, by setting bit 7 of register PORTLC. The number of pulses is determined by the
8-bit autoreload register MODRL, which is loaded with N-1 to get N pulses. Loading
MODRL with FF Hex gives the maximum number of counts, 256. The user loads MODRL
with the desired number of counts and sets MC1 to start the counter. MODRL is then
loaded into the counter, and pulses at the modulator input frequency are routed to pin
L7 until the counter underflows. On underflow, the hardware resets MC1 and stops the
counter. The L 7 pin goes low and stays low until the counter is restarted by the user
program. Unless the number of counts is changed, the user program does not have to load
MODRL each time the counter is started. The counter can be started simply by setting
the MC1 bit. Setting MC1 by software will load the counter with the value of the
autoreload register. The software can reset MC1 to stop the counter.

Example: Produce 10 pulses at a frequency of 2 MHz onL7

Use a 2 MHz crystal oscillator.

RBIT 7,PORTLD
SBIT 7,PORTLC
SBIT MC3,CNTRL2
SBIT MC2,CNTRL2
LD MODRL,#9
SBIT MC1,CNTRL2

; Pin L7 output logic 0
,
; Choose modulator mode
; Choose CKI clocking
; Load with 9 to get 10 pulses
; Start the modulator

Mode 2: PWM TIMER, 50% duty cycle

The 50% duty cycle mode is used to generate a square wave without processor
intervention. Applications include household appliances such as irons and coffee-makers
that require a simple buzzer function. Timer 1 is then available for AID conversions.
Figure 10-5 illustrates the timer configuration and the waveform generated by this
mode.

COP820CJ/COP840CJ 10-17

INTERNAL DATA BUS

MODRL
Register

8-BIT

I" "I

Underflow

CKI

tC
MUX

Triggered by Software

Figure 10-4 Modulator Block Diagram/Output Waveform

10-18 COP820CJ/COP840CJ

CNTRL2
Register

COP800-17

MODRl
Register

tc

INTERNAL DATA BUS

ClK DOWN-COUNTERI-----* ______ -+-_I l7 DATA
START/STC5P a-BIT Underflow LATCH

Figure 10-5 Mode 2: 50% Duty Cycle Output

CNTRl2
Register

l7 Pin

eOP800-1E

Ifboth MC2 and MC3 are 0, a 50% duty cycle signal is generated on pin L7. This pin must
be configured as an output pin. In this mode, the 8-bit counter is clocked by te. The user
loads MODRL with the desired number of counts. Loading MODRL with N-l will give an
output "on" time of N x te or a frequency of 1/(2N x te). Setting the MCI control bit by
software loads the counter with the value of the autoreload register and starts the
counter. The counter underflow toggles the L 7 output pin, thereby generating a
waveform with a 50% duty cycle. The software can reset MC 1 to stop the counter.

Example: Production of a 2KHz tone on L7

U sing a 2 MHz crystal, te is 5us. The period of a 2 kHz tone is 500us. The "on" time is
half of this, which is 250us. The value 250/5 = 50 should be loaded in MODRL.

RBIT 7,PORTLD
SBIT 7,PORTLC
RBIT MC2,CNTRL2
RBIT MC3,CNTRL2
LD MODRL,#49
SBIT MC1,CNTRL2

; Pin L 7 output logic 0

; Choose 50% duty cycle mode

; Load with 49 to get 50 tC = 250 us period
; Start the tone

COP820CJ/COP840CJ 10-19

Mode 3: PWM TIMER, variable duty cycle

The variable duty cycle mode is used to generate two distinct types of waveforms without
processor intervention. Figure 10-6 illustrates the timer configuration and the waveform
generated by this mode. The waveform "on" time is determined by MODRL and the
period is determined by the Timer 1 underflow. If the Timer 1 underflow occurs every 256
tc cycles, an 8-bit PWM signal is generated, suitable for conversion into an analog signal.
This type of signal is useful in DC motor control. If the underflow occurs every 512,1024,
2048 etc. tc cycles, 8-bit resolution over a voltage range of 0-0.5V cc' 0-0.25V cc' 0-
0.125V cc, etc. is possible. Delayed pulse generation is also possible with this mode. In
this case, the Timer 1 register is loaded with the delay time and MODRL with the pulse
width. This technique is useful for the phase control of AC-driven loads in electric drills,
food mixers, washing machines and vacuum cleaners.

When MC3 = 0 and MC2 = 1, a variable duty cycle PWM signal is generated on the L7
pin, which should be configured as an output. The counter is clocked by tc. In this mode,
the 16-bit Timer 1, along with the 8-bit down counter, are used to generate a variable

l MODR
Regist er

tc

Underflow limerTl !
J

\4

I

INTERNAL DATA BUS

7 6 5

AUTO RELOAD I I MC31 MC21MC1
8-BIT =0 =1 RQ

ClK __ DOWN-COUNTER! Underflow
START/STOP 8-BIT I

I
8-Bit Counter
Underflow

I
.\

256 tc (max.)

\4
Controlled by T1

.\

Figure 10-6 Mode 3: Variable Duty Cycle Output

10-20 COP820CJ/COP840CJ

0

I I

.. Ti

CNTRl2
Register

merT1
derflow Un

l7 Pin

L

COP800-19

duty cycle PWM signal. The programmer resets the Timer 1 start bit (bit 4 of CNTRL)
during initialization. Then, the Timer 1 register is loaded with the required delay value
in tc cycles, the Timer 1 reload register is loaded with the desired repetition rate, and
MODRL is loaded with the desired pulse width. In each case, loading the register with
N-1 will give a time of N. Timer 1 must be configured in "PWM ModefIbggle TIO Out"
(CNTRL Bits 7,6,5 = 101). Setting bit 4 of CNTRL starts the sequence.

Each time Timer 1 underflow sets MC1, it loads the down counter with MODRL, starts
the 8-bit counter, and sets L7 high. When the counter underflows, the MC1 control bit is
reset and the L 7 output goes low until the next timer Timer 1 underflow.

Table 10-12 shows the different operation modes for the ModulatorfI'imer.

Table 10-12 Modes ofPWM timer

Control bits in
CNTRL2 Operation Mode

L7 Function
MC3 MC2 MC1

0 0 0 Normal I/O

0 0 1 50% duty cycle mode (clocked by t c)

0 1 X Variable duty cycle mode (clocked by
t c) using Timer 1 underflow

1 0 X Modulator mode (clocked by t c)

1 1 X Modulator mode (clocked by CKI)

NOTE: MC1, MC2 and MC3 control bits are cleared
upon reset.

10.14 COMPARATOR

The COP820CJ/840CJ devices have one differential comparator. Consumer appliances
that must measure temperature or pressure can use this comparator to perform analog
to digital conversion. Automotive applications that drive motors need to determine
whether the starter motor is turning, because this reduces the battery voltage so much
that the electric motor may stall. The comparator can test for this condition.

Pins LO, L1 and L2 are used for the comparator. The output of the comparator can be
connected to the LO pin, read by software, or both. The pins are assigned as follows:

LO
L1
L2

Comparator output
Comparator inverting input
Comparator non-inverting input

COP820CJ/COP840CJ 10-21

Comparator Control and Status Bits

These bits reside in register CNTRL2 (Address OOCC Hex):

CMPEN
CMPRD
CMPOE

Enables comparator ("1" = enable, "0" = disable)
Reads comparator output internally (CMPEN = 1, CMPOE = X)
Enables comparator output to pin LO ("1" = enable, "0" = disable)

To enable the comparator, the programmer should set up L1 and L2 as high impedance
inputs using PORTLD and PORTLC, and set the CMPEN bit. The comparator output can
be viewed by reading the CMPRD bit. To enable the comparator output, set up LO as an
output using PORTLC, and set the CMPOE bit. If CMPOE is cleared, CMPEN is set and
pin LO is configured as an output, pin LO will be set to Ov.

The comparator Select/Control bits are cleared after a reset, disabling the comparator. To
save power, the program should disable the comparator before the device enters HALT
mode.

The comparator rise and fall times are symmetrical. Refer to the COP820CJ/840CJ
datasheets for information on the DC and AC characteristics of the comparator.

A programming example for the comparator is given in the Applications chapter showing
an AID conversion with the COP820CJ device.

10.15 MULTI-INPUT WAKEUP

The Multi-Input Wakeup feature is used to wake up the device from the HALT mode by
means of a transition on one or more of the Port L pins. This feature is useful when the
micro controller has to exit the HALT mode from more than one external wakeup
condition. For example, a remote control unit with fifty keys must exit HALT mode as
soon as anyone of the many keys is pressed. This can be implemented on the COP820CJI
840CJ devices by arranging the keys in a matrix and using Multi-Input Wakeup on the
key matrix inputs.

Figure 10-7 shows the block diagram for the Multi-Input Wakeup feature. This feature
can also be used for latching high-to-Iow or low-to-high transitions occurring on the
selected Port L pins. This does not require the use of HALT mode.

Multi-Input Wakeup Registers

WKEN

WKEDG

WKPND

Contains bits to enable Multi-Input Wakeup for individual Port L pins
("1" = enabled)

Contains bits to select the type of transition sensed on individual Port L
pins ("1" = negative edge)

Contains Wakeup Pending flags for individual Port L pins ("1" = pend­
ing)

When using this feature, the programmer must configure the Port L pins intended for
use as Wakeup signals as inputs and clear the WKPND register. The programmer should
program the corresponding bits of the WKEDG register. To enable Wakeup on a rising

10-22 COP820CJ/COP840CJ

INTERNAL DATA BUS

La [ill [TI I----f----l

L7 [ill [JJI-----~

WKEDG WKPND

CHIP CLOCK 4-------!

S

G7 HALT
DATA BIT

R

CKI

CKO

Q

STOP/START

COP800-20

Figure 10-7 Multi-Input Wakeup Logic

edge for a particular pin, the programmer should reset the associated WKEDG bit to O.
To enable Wakeup on a falling edge for a particular pin, the programmer should set the
associated WKEDG bit to 1. Finally, the programmer should select which particular Port
L bit or combination of Port L bits will be configured as Multi-Input Wakeup pins, by
setting the respective bits in WKEN.

As soon as anyone or more of the WKEN bits have been set, the occurrence of anyone or
more of the selected trigger conditions on the relevant Port L pins causes the associated
bits in WKPND to be set to 1. If any bit of the WKPND register is set while the
COP820CJ/840CJ device is in HALT mode, the part will exit the HALT mode within two
tc cycles if the External or RIC clock options have been used, or after an additional delay
of 256 tc cycles if the CrystallResonator option has been used. This 256 tc delay is
generated by using the WATCHDOG prescaler. If the program attempts to enter HALT
mode while any bit is still set in the WKPND register and its associated bit in the WKEN
register is also set, the device will not enter HALT mode. It is the responsibility of the
programmer to ensure that the WKPND register is cleared before attempting to enter
HALT mode.

COP820CJ/COP840CJ 10-23

An Application Example Using Multi-Input Wakeup

Figure 10-8 shows the circuit diagram for a battery-powered remote control unit. The
function of the unit is to transmit a specific code, whenever a particular key is pressed,
using an infra-red LED driven from the modulator output L7. The additional LED
connected to pin G3 is turned on by the software whenever a key is pressed to indicate to
the user that the unit is functioning correctly. In order to conserve battery power, the unit
is held in HALT mode until a key is pressed. The COP820CJ/840CJ device should come
out of HALT mode whenever any key is pressed. The key is then decoded, the relevant
code transmitted, and the part set back into HALT mode.

-- lkt-
I -..;;-

GNO Vee 4; ~
DO RES I-

~ I D1 L7
02
03
GO 1<
G1 -'-

G2
G4
G5
LO v L 1 G3 v

.. ' v v L2
L3
L4 v v L5 ~

L6 ~

v
CKI CKO

'rvvv-
Keyboard matrix y I~ COP820CJ

Figure 10-8 Battery-Powered Remote Control Unit

The Multi-Input Wakeup feature may be used to meet these requirements. Mter the end
of the previous transmission, the keyboard is initialized by using the following
procedure. The program sets up pins LO-L6 as inputs with weak pull-up resistors and
Port D to logic O. Pins GO, G 1, G2, G4 and G5 are set by the software to output logic O.
The program sets bits 0-6 of the WKEDG register to one, indicating that the COP820CJI
840CJ device will wake up after a high-to-Iow transition on these pins. The WKPND
register is cleared and then WKEN is loaded with 07F hex by the program, enabling
Wakeup on pins LO-L6 and disabling Wakeup on pin L7. Finally, the program is put in
HALT mode.

As soon as anyone of the keys is pressed, the Port L pin in the same row as the key is
driven down from its weak pull-up high state to zero, causing a high-to-Iow transition.
This generates a Wakeup signal. Because the crystal oscillator option has been selected,
the COP820CJ/840CJ device waits for 256 tc cycles before proceeding.

10-24 COP820CJ/COP840CJ

The program now interrogates the WKPND register to determine the row of the key that
has been pressed, and continues with keyboard scanning, debouncing, decoding, and
transmission routines.

Example of Keyboard Initialization Routine

LD WKEN,#OOO ; Suspend Wakeup feature during setup
LD PORTLD,#07F ; Pins LO-L6 weak pull-ups, pin L7 output logic low
LD PORTLC,#080
LD PORTD,#OOO ; Pins DO-D31ogic low
LD PORTGD,#OOO ; Pins GO-G5 outputs logic low
LD PORTGC,#03F ,
LD WKEDG,#07F
LD WKPND,#OOO

; LO-L6 active on high-to-Iow transition
; Clear Wakeup pending flags

LD WKEN,#07F ; Enable Wakeup on LO-L6
SBIT 7,PORTGD ; Enter HALT mode
NOP
NOP

; Mter HALT exited, WKPND scanned to identify row

10.16 MASK OPTIONS

The COP820CJCOP822CJ/COP823CJ/COP840CJ/COP842CJ mask-selectable options
are listed below. The options are programmed at the same time as the ROM pattern to
provide the user with hardware flexibility.

Option 1: CKI Input

=1 Normal Mode Crystal (CKIlI0); CKO for crystal configuration

=2 Normal Mode External (CKIlI0); CKO available as G7 input

=3 RIC (CKIlI0); CKO available as G7 input

Option 2: Brown Out

=1 Enable Brown Out Protection (increased HALT current)

=2 Disable Brown Out Protection

Option 3: Bonding

=1 28-pin DIP (also COP840CJ 28-pin SO)

=2 20-pin DIP/SO

=3 16-pin SO (COP820CJ only)

=4 28-pin SO (COP820CJ only)

COP820CJ/COP840CJ 10-25

10-26 COP820CJ/COP840CJ

Appendix A

APPLICATION HINTS

A.l INTRODUCTION

This chapter describes several application examples using the COPS Basic Family of
microcontrollers. Design examples often include block diagrams and/or assembly code.
Certain hardware design considerations are also presented.

Topics covered in this chapter include the following:

• MICROWIREIPLUS implementation examples

• Timer application examples

• Triac control example

• COP820CJ/COP840CJ design examples

• Programming examples (clear RAM, binary arithmetic)

• External power wakeup circuit

• External watchdog circuit

• Input protection on pins

• Electromagnetic interference (EMI) considerations

A.2 MICROWIREIPLUS INTERFACE

A whole family of off-the-shelf devices is directly compatible with the MICROWIRE/
PLUS interface. This allows direct interface of the COP8 Basic Family micro controllers
with a large number of peripheral devices. The following sections provide examples of the
MICROWIREIPLUS interface. These examples include a master/slave mode protocol,
code for a continuous mode of operation, code for a fast burst mode of operation, and a
COP820 to an NMC93C06 interface.

A.2.1 MICROWIREIPLUS Master/Slave Protocol

This section gives a sample MICROWIREIPLUS master/slave protocol, the slave mode
operating procedure for the sample protocol, and a timing illustration of the sample
protocol.

1. CS from the master device is connected to GO of the slave device. An active-low lev­
el on the CS line causes the slave to interrupt.

2. From the high-to-Iow transition on the CS line, there is no data transfer on the MI­
CROWIREIPLUS interface until the setup time T has elapsed (see Figure A-I).

APPLICATION HINTS A-l

3. The master initiates data transfer on the M1CROW1REIPLUS interface by turn­
ing on the SK clock.

4. A series of data transfers takes place between the master and slave devices.

5. The master pulls the CS line high to end the M1CROW1REIPLUS operation. The
slave device returns to normal mode of operation.

Slave Mode Operating Procedure (for the previous protocol):

1. Set the MSEL bit in the CNTRL register to enable M1CROW1RE; GO and G5 are
configured as inputs and G4 as an output.

2. Normal mode of operation until interrupted by CS going low.

3. Set the BUSY flag and load S10R register with the data to be sent out on SO. (The
shift register shifts eight bits of data from SO at the high-order end of the shift reg­
ister. Concurrently, eight new bits of data from S1 are loaded into the low-order
end of the shift register.)

4. Wait for the BUSY flag to be reset. (The BUSY flag automatically resets after 8 bits
of data have been shifted.)

5. If data is being read in, the contents of the S10 register are saved.

6. The prearranged set of data transfers are performed.

7. Repeat steps 3 through 6. The user must ensure step 3 is performed within t-time
(refer to Figure A-I) as agreed upon in the protocol.

SK _JdKSiJCL~S-U-C~KSiJCL~S-U-C~KSiJ--C~KSi_
-+ t.-

BUSY~ u u u u u L
COP800-41

Figure A-I M1CROW1REIPLUS Sample Protocol Timing

A-2 APPLICATION HINTS

A.2.2 MICROWIREIPLUS Continuous Mode

The MICROWIREIPLUS interface can be used in continuous clock mode with the master
mode divide-by-eight clock division factor selected. The maximum data transfer rate for
this MICROWIREIPLUS continuous clock mode is 64 microseconds per byte (equivalent
to 125 KHz) for parts operating with a 11lsec instruction cycle.

The continuous clock mode is achieved by resetting the BUSY bit under program control
just before it would automatically be reset with the hardware, and then immediately
setting the BUSY bit with the next instruction. The SIO MICROWIREIPLUS shift
register is then loaded (or read) with the following instruction. This loading ofSIO occurs
before the SK clock goes high, even though the previous set BUSY bit instruction has
started the divide-by-eight (3-stage) counter. The B pointer must be already set up to
point at the PSW register where the MICROWIREIPLUS BUSY bit is located. This
three-instruction sequence is programmed as follows:

Instruction

RBIT BUSY, [B]

SBIT BUSY, [B]

x A, SIOR

Bytes/Cycles

111

111

2/3

This three-instruction sequence must be embedded in an instruction program loop that
is exactly 64 instruction cycles (tc cycles) in length. This yields a 125-KHz (64
microseconds per byte) data transfer rate at the maximum instruction cycle rate of
1 MHz.

The following program demonstrates the use of the MICROWIREIPLUS continuous
clock mode. The program continually outputs the 256 bytes of the current program
memory block on the MICROWIREIPLUS SO output pin (G4). The low-order bit (GO) of
Port G is set to cover the transition period of the three-instruction sequence outlined
previously, where the SIO register is loaded with a new byte.

APPLICATION HINTS A-3

PORTGD OD4
PORTGC ODS
SIOR OE9
CNTRL OEE
PSW OEF
MWTEMP OFO
MWCNT OF1

MARK 0
BUSY = 2

CYCLES
MWCONT: LD PORTGC, #031

LD PORTGD, #0
LD CNTRL, #OB
LD B, #PSW
LD MWCNT, #0

MWLOOP: LD A, MWCNT
INC A 3
X A, MWCNT 1
LAID 3
SBIT MARK, PORTGD 3
RBIT BUSY, [B] 4
SBIT BUSY, [B] 1
X A, SIOR 1
RBIT MARK, PORTGD 3
LD MWTEMP, #6 4

MWLUP: DRSW MWTEMP
3 } 3 JP MWLUP x6-2= 34

NOP 3 1
JP MWLOOP 3

TOTAL CYCLES IN MWLOOP = 64

A.2.3 MICROWIREIPLUS Fast Burst Output

The maximum COP8 MICROWIREIPLUS master mode burst clock rate (using the
divide-by-two clock division factor) is 500 KHz. This assumes that the COP8 Basic
Family micro controller is running at the maximum instruction cycle frequency of 1 MHz.
The equivalent time of one extra master mode SK clock cycle is necessary to set up the
next byte (and/or read the previous byte) in SIOR when using the burst mode SK
frequency. This yields an equivalent minimum data transfer time of 18 microseconds per
byte.

The following program demonstrates the use of the MICROWIREIPLUS burst clock
mode at the maximum data transfer rate (with the divide-by-two master mode clock
option selected). The X pointer is initialized to the TOP of a RAM table, where SIZE
represents the size of the table. This subroutine outputs the contents of the RAM table
on the MICROWIREIPLUS SO output pin (G4).

A-4 APPLICATION HINTS

Register Definitions

SIOR OE9
CNTRL OEE
psw OEF
MWCNT OFO

BUSY =2

MWBRST: LD
LD
LD
LD

MWLOOP: LD
X
SBIT
NOP*
NOP*
LAID*
DRSZ
JP
RET

CNTRL, #8
B, #PSW
MWCNT, #SIZE
X, #TOP
A, [X-]
A, SIOR
BUSY, [B)

MWCNT
MWLOOP

INSTRUCTION CYCLE NUMBER
CYCLES IN Figure A-2

3
3
1
1
1
3
3
3

13,14,15
16,17,18

1
2
3

4,5,6
7,8,9
10,11,12

TOTAL CYCLES IN MWLOOP = 18
* Time Delay

The MICROWIREIPLUS BUSY bit is allowed to reset automatically with the hardware
following the eighth SK clock. The transfer of new data into the SIO register and the
transfer of the new input data from SIO to A occurs at the end of the second cycle of the
three-cycle "exchange A with SIO" instruction. This exchange instruction is immediately
followed by the "set BUSY bit" instruction to initiate another MICROWIREIPLUS serial
byte transfer. The associated timing for this 18-instruction cycle MICROWIREIPLUS
loop is shown in Figure A-2.

BUSY --------------,U LJ
SK

2 3 4JmFULJ 2345678

2 3 4 5 6 7 8 910111213141516171812 34 56 78 910111213141516171812

COP800-42

Figure A-2 MICROWIREIPLUS Fast Burt Timing

APPLICATION HINTS A-5

A.2.4 NMC93C06-COP820C Interface

This example shows the COP820 interface to a NMC93C06, a 256-bit E2PROM, using the
MICROWIREIPLUS interface. The pin connection involved in interfacing a NMC93C06
with the COP820C micro controller is shown in Figure A-3. Some notes on the
NMC93C06 interface requirements are:

1. The SK clock frequency should be less than 250 KHz.

2. CS low period following an EraselWrite instruction must not exceed 30 ms maxi­
mum. It should be set at typical or minimum specification of 10 ms.

3. The start bit on DI must be set by a "0" to "I" transition following a CS enable ("0"
to "I") when executing any instruction. One CS enable transition can execute only
one instruction.

4. In the read mode, following an instruction and data train, the DI is a "don't care"
while the data is being output for the next 17 bits or clocks. The same is true for
other instructions after the instruction and data has been fed in.

5. The data out train starts with a dummy bit 0 and is terminated by chip deselect.
Any extra SK cycle after 16 bits is not essential. IfCS is held on after all 16 of the
data bits have been output, the DO will output the state ofDI until another CS low
to high transition starts a new instruction cycle.

6. After a read cycle, the CS must be brought low for one SK clock cycle before anoth­
er instruction cycle starts.

I:CC

5
CKI

8
4 1 3 .()

AAA CKO SO 01 vvv
Vee

2 4 00 NMC93C06

4HD~ COP820C SI

SK
3 2 SK

CS 5

GO
25 \1

,. GNO
231 GNO

eOP800-32

Figure A-3 NMC93C06-COP820C Interface

A-6 APPLICATION HINTS

The following table describes the instruction set of the NMC93C06. In the table
A3A2A1AO corresponds to one of the sixteen 16-bit registers.

Commands Start Bit Opcode Address Comments

READ 1 0000 A3A2A1AO Read Register 0-15

WRITE 1 1000 A3A2A1AO Write Register 0-15

ERASE 1 0100 A3A2A1AO Erase Register 0-15

EWEN 1 1100 0001 WritelErase Enable

EWDS 1 1100 0010 WritelErase Disable

WRAL 1 1100 0100 Write All Registers

ERAL 1 1100 0101 Erase All Registers

All commands, data in, and data out are shifted in/out on the rising edge of the SK clock.
All instructions are initiated by a low-to-high transition on CS followed by a low-to-high
transition on DI.

A detailed explanation of the NMC93C06 E2PROM timing, instruction set, and other
considerations can be found in the datasheet. A source listing of the software to interface
the NMC93C06 with the COP820C is provided below .

. 1NCLD COP820.1NC

iThis program provides in the form of subroutines, the ability to erase,
ienable, disable, read and write to the NMC93C06 EEPROM.

SNDBUF = OiContains the command byte to be written to NMC93C06
RDATL liLower byte of the NMC93C06 register data read
RDATH = 2iUpper byte of the NMC93C06 register data read
WDATL = 3iLower byte of the data to be written to NMC93C06

iregister
ADRESS = 5iThe lower 4-bits of this location contain the

iaddress of the NMC93C06 register to read/write
FLAGS = 6iUsed for setting up flags

iFlag valueAction
iOOErase, enable, disable, erase all
i01Read contents of NMC93C06 register
i03Write to NMC93C06 register
iOthers1llegal combination

DLYH OFO
DLYL = OFl

iThe interface between the COP820C and the NMC93C06 (256-bit EEPROM) consists of
ifour lines: The GO (chip select line), G4 (serial out SO), G5 (serial clock SK), and
iG6 (serial in S1) .

APPLICATION HINTS A-7

Initialization

LD

LD
LD
LD
LD

PORTGC,#03
1
PORTGD,#OO
CNTROL,#08
B,#PSW
X,#SIOR

iSetup GO, G4, G5 as outputs

iInitialize G data reg to zero
iEnable MSEL, select MW rate of 2tc

iThis routine erases the memory location pointed to by the address contained in the
ilocation "ADRESS." The lower nibble of "ADRESS" contains the NMC93C06 register
iaddress and the upper nibble should be set to zero.

ERASE: LD
OR
X
LD
JSR
RET

A,ADRESS
A,#OCO
A,SNDBUF
FLAGS, #0
INIT

iThis routine enables programming of the NMC93C06. Programming must be preceded once
iby a programming enable (EWEN).

EWEN:

This

EWDS:

iThis

ERAL:

LD
LD
JSR
RET

routine

LD
LD
JSR
RET

routine

LD
LD
JSR
RET

SNDBUF,#030
FLAGS, #0
INIT

disables programming

SNDBUF,#O
FLAGS, #0
INIT

erases all registers

SNDBUF,#020
FLAGS, #0
INIT

of the NMC93C06

of the NMC93C06

iThis routine reads the contents of the NMC93C06 register. The NMC93C06 address is
ispecified in the lower nibble of location "ADRESS." The upper nibble should be set
ito zero. The 16-bit contents of the NMC93C06 register are stored in RDATL and RDATH.

READ: LD
OR

A,ADRESS
A,#080

X A,SNDBUF
LD FLAGS, #1
JSR INIT
RET

iThis routine writes a 16-bit value stored in WDATL and WDATH to the NMC93C06 register
iwhose address is contained in the lower nibble of the location "ADRESS." The upper
inibble of address location should be set to zero.

WRITE: LD
OR

A,ADRESS
A,#040

A-8 APPLICATION HINTS

X A,SNDBUF
LD FLAGS, #3
JSR INIT
RET

iThis routine sends out the start bit and the command byte. It also deciphers the
icontents of the flag location and takes a decision regarding write, read or return
ito the calling routine.

INIT: SBIT O,PORTGD
LD SIOR,#OOl
SBIT BUSY, [B]

PUNT1: IFBIT BUSY, [B]
JP PUNT 1
LD A, SNDBUF
X A, [X]
SBIT BUSY, [B]

PUNT2: IFBIT BUSY, [B]
JP PUNT 2
IFBIT O,FLAGS
JP NOT DON
RBIT O,PORTGD
RET

NOTDON: IFBIT 1,FLAGS
JP WR494
LD SIOR,#OOO
SBIT BUSY,PSW
RBIT BUSY, [B]
SBIT BUSY, [B]

PUNT3: IFBIT BUSY, [B]
JP PUNT 3
X A, [X]
SBIT BUSY, [B]
X A,RDATH

PUNT4: IFBIT BUSY, [B]
JP PUNT 4
LD A, [X]
X A,RDATL
RBIT O,PORTGD
RET

WR494: LD A,WDATH
X A, [X]
SBIT BUSY, [B]

PUNT5: IFBIT BUSY, [B]
JP PUNT 5
LD A,WDATL
X A, [X]
SBIT BUSY, [B]

PUNT6: IFBIT BUSY, [B]
JP PUNT 6
RBIT O,PORTGD
JSR TOUT
RET

iSet chip select high
iLoad SIOR with start bit
iSend out the start bit

iLoad SIOR with command
iSend out command byte

iAny further processing?
iYes
iNo, reset CS and return

iRead or write?
iJump to write routine
iNo, read NMC93C06

byte

iDummy clock to read zero

APPLICATION HINTS A-9

;Routine to generate delay for write

TOUT: LD DLYH,#OOA
WAIT: LD DLYL,#OFF
WAIT1: DRSZ DLYL

JP WAITl
DRSZ DLYH
JP WAIT
RET
. END

A.3 TIMER APPLICATIONS

This section describes some applications using the on-chip timer: speed measurement
using the Input Capture mode, a simple DIA converter using the PWM mode, and an
external event counter using the External Event Counter mode.

A.3.1 Timer Capture Example

The Timer Input Capture Mode can be used to measure the time between events. The
simple block diagram in Figure A-4 shows how the COP912/820/840 can be used to
measure motor speed based on the time required for one revolution of the wheel. A
magnetic sensor is used to produce a pulse for each revolution of the wheel.

JU1JL
TIO COP912 MICROWIRE/PLUS

'-----------1 COP820/840 COP472 1-----1

TIMER
CAPTURE

INPUT

Figure A-4 Timer Capture Application

DISPLAY

COP800-33

In the capture mode of operation, the timer counts down at the instruction cycle rate. In
this application, the timer is set up to generate an interrupt on a TIO positive edge
transition. The timer is initialized to OFFFF Hex and begins counting down. An edge
transition on the TIO input pin of the timer causes the current timer value to be copied
into the RA register. In addition, it sets the timer interrupt pending flag, which causes a

A-IO APPLICATION HINTS

program branch to memory location OFF Hex. The interrupt service routine for the timer
is stored at that program memory location. The interrupt service routine resets the timer
interrupt pending flag. It then reads the contents of RA and stores it in RAM for later
processing. An RETI instruction is used to return to normal program execution and re­
enable subsequent interrupts (by setting the GIE bit).

On the next rising edge transition on TIO, the program returns to the interrupt service
routine. The value in RA is read again, and compared with the previously read value. The
difference between the two captured values, multiplied by the instruction cycle time,
gives the time for one revolution. This can be easily converted to a frequency. The
frequency may be displayed on an LCD using the COP MICROWIREIPLUS interface and
a COP472-3 LCD Driver.

An example of the code that can be used for this application is provided below.

PSW OEF
CNTRL OEE
TPND S
TRUN 4
PORTGC ODS
PORTGD OD4

LD PORTGC,#OO
LD PORTGD,#08
LD CNTRL,#OCO
LD PSW, #011
LD TMRLO,#OFF
LD TMRHI,#OFF
LD TRALO,#OFF
LD TRAHI,#OFF
SBIT TRUN,CNTRL

SELF: JP SELF

iTimer interrupt handling routine

.=OFF
IFBIT TPND,PSW
JP TIMSERV
JP Error

iTimer service routine

TIMSERV: RBIT TPND,PSW

RETI
. END

A.3.2 Timer PWM Example

iConfigure G3/TIO as input
iWeak pull-up on G3
iTimer as capture mode, positive edge
iEnable timer and global interrupts
iTimer lower byte
iTimer upper byte
iAuto-reload lower byte
iAuto-reload upper byte
iStart timer
iWait for capture

iIs it timer interrupt?
iYes
iNo go to error routine

iReset pending flag
i (Process Timer Capture)

iReturn from interrupt

Figure A-5 shows how a minimal-component DIA converter can be built out of the timer
register pair in the auto-reload mode. The timer is placed in PWM mode and initialized
with the ON time, and register RA (the auto-reload register) is initialized to the OFF

APPLICATION HINTS A-ll

time. TIO/G3 is configured as an output and preset to logic high. By setting the TRUN
bit in the CNTRL register, the timer starts and counts down at the instruction cycle rate
when an underflow of the timer occurs, the TIO output pin is toggled, the contents of the
RA register (OFF time) are copied into the timer, and the TPND bit in PSW register is
set. A timer underflow also generates a timer interrupt, where program control vectors
to program memory address OFF Hex. The interrupt service routine at that address
resets the timer interrupt pending flag and alternately replaces the value in the RA
register with either the OFF time or the ON time after each timer underflow. A PWM
signal appears on the TIO output pin.

COP912

COP820/840

TON

/ VOUTt~ "
I r-_____ V

OUT

C

T
A simple D-A converter using the timer to generate a PWM output.

Figure A-5 PWM Timer Application

COP800-34

With the ON time set equal to the OFF timer (50% duty cycle), the capacitor charges and
discharges slightly in each cycle, and the output remains at a fairly constant level. With
the duty cycle set larger or smaller than 50%, the capacitor gains or loses charge, and the
output voltage rises or falls.

An example of the code that can be used for this application is provided below.

;Operating the timer in PWM mode
iCONSTANT DECLARE
FLAG 05
ONFLG 0
ONTMHI 07
ONTMLO OFF
OFTMHI OF
OFTMLO OFF

iTimer auto-reload mode running off internal clock.
i1nterrupts are used.
iThe output is a duty cycle output on G3.
iTimer logic automatically toggles G3.

PWMI:
LD FLAG, #00 iClear ONFLG i.e., start with off time

A-12 APPLICATION HINTS

SLEEP:

LD
LD
LD
LD
LD
LD
LD
SBIT
LD

JP

CNTRL1,#OAO
PORTGD,#OO
PORTGC,#08
TMRLO,#OFTMLO
TMRHI,#OFTMLO
TAUHI,#ONTMHI
TAULO,#ONTMLO
TRUN,CNTRL
PSW, #011

SLEEP

iTimer stopped, G3 enabled, AR mode
iSBIT G3 low
iSBIT G3 as an output/TIO
ilnitialize timer lower byte
iTimer upper byte
iAuto-reload register upper byte
iAuto-reg. lower byte with on time
iStart timer
iEnable timer interrupts

iWait for timer underflow

iThe interrupt routine below handles timer interrupts
.= X'OOFF

TINTR:

SOFT:

SONT:

RBIT
IFBIT
JP

LD
LD
SBIT
RETI

LD
LD

TPND,PSW
FLAG,ONFLG
SONT

T1RALO,#OFTMLO
T1RAHI,#OFTMHI
FLAG,ONFLG

T1RALO,#ONTMLO
T1RAHI,#ONTMHI

iGot it, RBIT for future
iOn time?
iNeed to set bit up for on time

iOff time

iOn time

RBIT FLAG,ONFLG
RETI
. END

A.3.3 External Event Counter Example

This mode of operation is very similar to the PWM Mode of operation. The only difference
is that the timer is clocked from an external source. This mode provides the ability to
perform control of a system based on counting a predetermined number of external
events, such as searching for the nth sector on a disk or testing every nth part on an
assembly line. The code for this example is provided below.

Operating the
PSW
CNTRL
TPND
TRUN
PORTGC
PORTGD

RBIT
RBIT
LD
LD
LD
LD
LD
LD

timer in External Event Counter Mode
OEF
OEE
5
4
OD5
OD4

3,PORTGC
3,PORTGD
CNTRL,#OO
PSW, #011
TMRLO,#COUNTO
TMRHI,#COUNTl
TRALO,#CountO
TRAHI,#Countl

iConfigure G3/TIO as Hi-z input

iSelect timer as external event counter
iEnable timer and global interrupts
iTimer lower byte
iTimer upper byte
iAuto-reload lower byte
iAuto-reload upper byte

APPLICATION HINTS A-13

SBIT TRUN,CNTRL
SELF: JP SELF

iTimer interrupt handling routine

.=OFF
IFBIT
JP
JP

iTimer service

TIMSERV: RBIT
RBIT

. END

SBIT
RETI

TPND,PSW
TIMSERV
ERROR

routine

TPND,PSW
TRUN,PSW

TRUN,PSW

A.4 TRIAC CONTROL

iStart timer
iWait for the n-th count

iIs it timer interrupt?
iYes
iNo go to error routine

iReset pending flag
iStop timer
{Process timer}

jStart timer
jReturn from interrupt

The COPS Basic Family devices provide computational ability and speed which is
suitable for intelligently managing power control. In order to intelligently control a triac
on a cyclic basis, an accurate time base must be established. This may be in the form of
an AC 60Hz sync pulse generated by a zero voltage detection circuit or a simple real-time
clock. The COPS Basic Family is suited to accommodate either of these time base
schemes while accomplishing other tasks.

Zero voltage detection is the most useful scheme in AC power control because it affords
a real-time clock base as well as a reference point in the AC waveform. With this
information it is possible to minimize RFI by initiating power-on operations near the AC
line voltage zero crossing. It is also possible to fire the triac only a portion of the cycle,
thus utilizing conduction angle manipulation. This is useful in both motor control and
light-intensity control.

COPS software is capable of compensating for noisy or semi-accurate zero voltage
detection circuits. This can be accomplished by using delays and deb ounce algorithms in
the software. With a given reference point in the AC waveform, it becomes easy to divide
the waveform to efficiently allocate processing time.

These techniques are demonstrated in the code listing below. This application example
is based on the half cycle approach of AC power for triac light intensity control. The code
will intensify and deintensify the lamp under program control.

This program example is not intended to be a final functional program. It is a general­
purpose light intensifying/deintensifying routine which can be modified for a light
dimmer application. The delay routines are based on a 10 MHz crystal clock (1 s
instruction cycle). The COPS20C's 16-bit timer can be used for timing the half cycle of an
AC power line, and the timer can be started or stopped under software control. Timer T1
is a read/write memory mapped counter with an associated 16-bit auto-reload register.

A-14 APPLICATION HINTS

Zero crossings of the 60 Hz line are detected and software debounced to initiate each half
cycle, so the triac is serviced on every half cycle of the power line. This program divides
the half cycle of a 60 Hz AC power line into 16 levels. Intensity is varied by increasing or
decreasing the conduction angle by firing the triac at various levels. Each level is a fixed
time which is loaded into the timer. Once a true zero cross is detected, the timer starts
and triac is serviced.

A level/sublevel approach is utilized to vary the conduction angle and to provide a
prolonged intensifying period. The maximum intensity reached is at the maximum
conduction angle (level), and the time required to get to that level is loaded into the timer
in increments. Once a level has been specified, the remaining time in the half cycle is
then divided into sublevels. The sublevels are increased in steps to the maximum level
and the triac is fired 16 times per sublevel, thus creating the intensity time base. For
deintensifying, the sublevels are decremented.

APPLICATION HINTS A-15

NATIONAL SEMICONDUCTOR CORPORATION
COP800 CROSS ASSEMBLER, REV:E,22 JUN 90
TIMER

THIS IS A GENERAL PURPOSE LIGHT DIMMER PROGRAM
USING COP8 TIMER WRITTEN BY FARID NOORY JULY 1990
IT USES A 10 MHZ CLOCK (1 us INSTRUCTION CYCLE TIME)

.INCLD COP820.INC

.TITLE TIMER, 'TIMER APPLICATION
jINITIALIZATIONS

EXAMPLE'

TEMP OFO
LEVEL OF1
FIN OF2
REG1 OF3
LD FIN,#OOO
LD LEVEL, #040
LD PORTGC,#OOO
LD PORTGD,#004
LD CNTRL,#080
LD PSW,#OOO
LD TMRLO,#07D
LD TMRHI,#OOO
LD TAULO,#OEB
LD TAUHI,#003

jFIRE #

,
jSUBLEVEL
jMAKE G PORT AS INPUT
iWITH WEAK PULL-UP
jTIMER AS AUTORELOAD
,
jTIMER AND AUTORELOAD REG
jINITIALIZED TO .5ms DELAY
jEACH

POWER UP SYNCHRONIZATION OR RESET SYNCH.
j

BEG: IFBIT 2,PORTGP jIF BIT G2 =1
JP HI
JP BEG iTO SYNC. UP 60HZ

HI: IFBIT 2,PORTGP iIS IT STILL ONE
JP HI jYES WAIT TILL ITS ZERO

,---
iTEST FOR TRUE ZERO CROSS (Valid Transition)

,---
jHERE WE PROVIDE DEBOUNCE FOR ZERO CROSS DETECTION

JSR
IFBIT
JP

R DOlT: JMP
LO: IFBIT

JP
JP

D1: JSR
IFBIT
JP
JP

DELAY
2,PORTGP
BEG
INIT
2,PORTGP
D1
LO
DELAY
2,PORTGP
DOlT
LO

jSTART OF DEBOUNCE DELAY
jIF BIT G2 = 0
iTEMPORARY DELAY
iWAS IT FALLS?
iYES :FALLS ALARM
iNO : START!
iDEBOUNCE 0 TO 1
iIF 1 GO TO DELAY
iIF NOT WAIT FOR A 1
iWE HAVE A CLEAN TRANSITION
iIS IT STILL 1?

iYES GO TO MAIN ROUTINE
iNO KEEP DELAY GOING NOISE ,

i*** **

MAIN ROUTINE FOR INTENSIFY/DE-INTENSIFY
, THE PROGRAM GETS HERE WHEN A TRUE ZERO IS DETECTED
j*** **
INIT:

BEGG:

JSR
LD
IFEQ
JP
INC

TIMER
A,FIN
A,#015
THER
A

A-16 APPLICATION HINTS

iDELAY FOR 1ms TO GET TO MAX
iCONTAINS FIR NUMBER
iARE WE AT 15?

iNO

CYCLE TIME
i2/5
i2/3
i2/2
i1/3
i111

THER:

LP2:

LP3:

x
JP
LD
LD
DEC
X
LD
IFEQ
JP
JP
LD
JP
IFBIT
JSR
JSR
NOP
NOP

A,FIN
FIRE
FIN,#OOO
A, LEVEL
A
A, LEVEL
A, LEVEL
A,#OOO
LP2
LP3
LEVEL, #040
FIRE
5, LEVEL
ADD
SUB

iINC. THE FIRE #
iKEEP FIRING

iYES NEXT LEVEL

iRESTORE LEVEL
iGET BACK A
iIF MAX LEEL #HAS REACHED

iSET LEVEL
iEXIT
iTEST WHICH LEVEL?
iIF MAX NOT YET REACHED ADD
iIF IT HAS SUBSTRACT DELAY

i*** **
, SUBROUTINES *
i*** **
FIRE: LD

X
CLR

LP6: INC
IFEQ
JP
JP

LP5: CLR
LD

TWO: X
HI1: IFBIT

JMP
JMP

DELAY: LD
LOOP: DRSZ

JP
RET

iDECREMENT THE
,
SUB: LD

SUBC
X
LD
SUBC
RC
X
RET

iINCREMENT THE

ADD:

TIMER:

LP1:

LP4:

LD
ADC
X
LD
ADC
RC
X
RETSK

SBIT
IFBIT
JP
JP
RBIT
RBIT
RET
. END

PORTD,#OFF
A, TEMP
A
A
A, #03
LP5
LP6
A
PORTD,#OO
A, TEMP
2,PORTGP
HI
LO

REG1,#00F
REG1
LOOP

TIMER BY THE

A, TAULO
A,#07D
A,TAULO
A,TAUHI
A,#OOO

A,TAUHI

iPULL UP D PORT FOR
i32U SEC

iPULL D PORT LO
iRESTORE A
iTEST FOR WHICH DEBOUNCE
iNEEDED

iFOR DEBOUNCING
DESIRED DELAY

TIMER VALUE BY THE DESIRED DELAY

A, TAULO
A, #07D
A,TAULO
A,TAUHI
A,#OOO

A,TAUHI

TRUN,CNTRL
TPND,PSW
LP4
LP1
TRUN,CNTRL
TPND,PSW

iSTART THE TIMER
iCHECK FOR TIMER UNDERFLOW

iSTOP THE TIMER
iRESET THE UNDERFLOW FLAG

i2/3
i1/3
i3/3
i2/2
i1/1
i2/3

i2/2

i2/2

DELAY

i 3/3
i2/3
i1/1
i1/1
i1/2
i 1/3
i1/3
i 1/1
i3/3
i2/3
i1/1
i2/3
i2/3

1/1
1/1
1/3
1/5

APPLICATION HINTS A-17

A.5 COP820CJ/COP840CJ APPLICATION HINTS

This section gives suggestions on how and where the COP820CJ/COP840CJ special
features may be used. Examples of how to use these features to implement system
functions are given, followed by an example of an application which uses the feature.

A.5.1 Analog To Digital Conversion Using On-chip Comparator

Some micro controller applications require a low-cost, but effective way of performing
analog to digital conversion. A number of techniques for doing this are described in COP
NOTE 1: "Analog to Digital Conversion Techniques with COPS Family Microcontrollers"
and in Application Note 607: "Pulse Width Modulation AID Conversion Techniques with
COP8 Basic Family Microcontrollers". This section explains how the COP820CJI
COP840CJ comparator can be integrated into two of the solutions described in these
notes: the single slope AID conversion technique and the pulse width modulation AID
technique.

Figure A-6 shows the hardware connections for either type of AID conversion technique.
The voltage to be measured, VIN, is connected to the inverting terminal of the
comparator, pin Ll. The non-inverting terminal, pin L2, is connected to an RC network
via a current-limiting resistor. For the single slope technique, the comparator output on
pin LO is connected to the Timer TI input pin G3. This is not required for the pulse width
modulation technique.

The principle of the single slope conversion technique is to measure the time it takes for
the RC network to charge up to the voltage level on the inverting terminal, by using
Timer TI in the input capture mode. The cycle count obtained in Timer T1 can be

G3
TIMER T1

LO

Vin L1

Vee

L2 COP820CJ
Rref Rlim

Cre! I
COP800-24

Figure A·6 AID Conversion Using COP820CJ Comparator and Timer T1

A-IS APPLICATION HINTS

converted into real time ifit is scaled by the COP8 clock frequency. If the COP8 is clocked
by a crystal, this parameter is known very accurately. Applications connected to the
power line using an RC clock can use the line frequency as a reference with which to
measure the RC clock. The time measurement is then converted into the voltage, either
by direct calculation or by using a suitable approximation.

This very low cost technique is ideally suited to cost-sensitive applications which do not
require high accuracy. The pulse width modulation AID conversion technique will
improve the accuracy at the cost of a higher conversion time. Application Note 607
describes this technique in detail.

The accuracy can be improved further by using a low-cost MM74HC4016 to multiplex the
analog input voltage with an accurate voltage reference used for calibration. Replacing
the resistor in the RC network with a current source will linearize the charging curve,
offering better resolution.

The user must ensure that the input voltage supplied to the comparator lies within its
input common mode range, which is shown in the characterization curves in the
datasheet. This data shows that the input common mode range goes down to OV if Vee
exceeds 4V and the magnitude of the offset voltage specification is relaxed to 25m V. The
user must ensure that VIN does not exceed the maximum input common mode range
voltage during measurement.

Before the start of conversion, the capacitor must be discharged. The program must
reconfigure pin L2 as an output logic low to perform the discharge. Timer Tl must be
stopped and configured into input capture mode on a low-to-high transition. The Tl timer
register must be cleared and pin G3 set up as a Hi-Z input. The comparator initialization
described in Chapter 11 must also be performed. The conversion is started by starting
timer Tl and then converting pin L2 back to an input.

The initial value of the comparator is zero. A capture event will occur when the RC
voltage rises above the input voltage. If desired, the Timer Tl interrupt can be enabled
to produce an interrupt on this capture event. The capture time can then be read and
converted into voltage. This measurement technique has a resolution of8 bits if the value
of the timer is scaled to contain 1000 (or more) counts after five RC periods. The accuracy
is primarily dependent on the accuracy of the user's estimation of the RC time constant,
the offset voltage, and the user's approximation routine.

The following code example demonstrates how this is achieved in assembly code. In this
example, polling the Timer Tl pending flag is used instead of interrupts. The 16-bit timer
value is stored in REFHI:REFLO.

APPLICATION HINTS A-19

START:

Discharge the capacitor by setting pin L2 to logic low and waiting.

LD PORTLC,#004i Pin L2 is set to an output, logic low
LD PORTLD,#OOOi to discharge the capacitor

DELAY:
LD RO,#020i Delay depending on current limiting

DRO: DRSZ ROi resistor
JP DRO

Set up the comparator.

LD PORTLC,#OOli Pin LO is an output, pins Ll and L2 are
i inputs
LD PORTLD,#OOO
SBIT CMPEN,CNTRL2
SBIT CMPOE,CNTRL2

Set up Port G as a Hi-z input port

LD PORTGD,#OOO
LD PORTGC,#OOO

Port G is an 8 bit input port
with the weak pull-ups disabled

Pre-load the timer with FFFF hex

LD B,#TMRLOi Save bytes by using register B
LD [B+],#OFFi Pre-load the timer with FFFF hex
LD [B],#OFF

Charge up the capacitor through pin L5 and start the timer

LD B,#CNTRLli Save bytes by using register B
LD [B+],#ODO i Rising edge input capture, start Timer 1
i B now points to PSW
RBIT TPND, [B] i Ensure that the pending flag is zero

Wait until the first capture and save the captured value in REFHI:REFLO

WAITC1: IFBIT TPND, [B] i Wait until the first capture
JP STOREl
JP WAITCl

STORE1: RBIT TPND, [B] i Reset the pending flag
LD X,#TAULO; Save bytes by using register X
LD A, [X+] i

X A,REFLOi Store TAULO in REFLO
LD A, [X-]
X A,REFHli Store TAULO in REFHI

End of example

A-20 APPLICATION HINTS

A.5.2 Application Example: Battery-Powered Weight Measurement

Figure A-7 shows the block diagram of a simple weight scale application. The pressure
sensor circuit is based on a buffered Wheatstone bridge arrangement. A current source
and a capacitor generate the linear ramp for the AID conversion. A crystal oscillator is
required for an accurate time base. The modulator is used in 50% duty cycle mode to
generate an audible tone. A 24-segment LCD display indicates the weight to the user.
Four inputs are used for configuring the scale.

The COP820CJ/COP840CJ is held in HALT mode when the appliance is not in use. As
soon as a weight is applied to the system, the switch closes, waking up the COP using the
Multi-Input Wakeup feature. The same port pin is then reconfigured as an output to
power up the sensor circuit, even when the switch is open. Measurement and display are
then performed. Finally, the device reconfigures the sensor power pin as a pulled-up
Wakeup pin, disconnecting the power from the sensor circuit, and then enters HALT
mode.

The 16-bit timer is used to generate the interrupts required to refresh the LCD display.
A power-on reset circuit (not shown) is required in this application, as the Brown Out
should be disabled to keep the HALT mode current as low as possible. With Brown Out
disabled, the HALT mode current is typically less than luA. The Watchdog circuit is not
essential in this application, but could be used to improve system reliability.

A.5.3 Zero Cross Detection

Zero cross detection is often used in appliances connected to the power line. The line
frequency is a useful time base for applications such as industrial timers or an iron which
switches offifit has not been used for five minutes. Phase-controlled applications require
a consistent timing reference in phase with the line voltage.

The devoce requires a square wave, magnitude Vee, at the same frequency as the power
line voltage, connected to a input port pin for a simple time base. For a phase-control time
base, this waveform should preferably be in phase with the line voltage, although control
is still possible if there is a predictable, constant phase lag, less than the phase lag
introduced by the load. The choice of zero cross detection circuit depends on factors such
as cost, the type of power supply used in the appliance, and the expected interference.

The zero cross detection input can either be polled by software or can be connected to the
GO interrupt line. Polling the pin by software is the simplest technique and saves the
interrupt for another function, but has the disadvantage that the polling procedure can
be interrupted, causing inaccuracies in synchronization. Disabling the interrupt during
the polling is not always possible, as the interrupt may be required for the
implementation of other features.

Connecting the zero cross detection input to the external interrupt pin guarantees
synchronization. It has the additional advantage that a regular interrupt is generated,
which could interrupt the processor out of a fault condition. The interrupt routine only
needs to test the integrity of the stack to determine whether such a fault has occurred.

The following software example shows how software polling of the zero cross line is
implemented. The application example in Section A.5.6 shows how interrupt-driven zero

APPLICATION HINTS A-21

I

R

Cref

I
-=- Vee

USER SWITCHES

CRYSTAL OSCILLATOR

T T

MULTI-INPUT
WAKEUP

16-BIT TIMER I
GENERAL
PURPOSE

110's

SOFTWARE
TRAP

MODITIMER

12

Vee Vee

24 SEGMENT LCD DISPLAY
WITH 2-WAY MULTIPLEXING

BUZZER

eOP800-25

Figure A·7 Battery-powered Weight Measurement Using COP820CJ

A-22 APPLICATION HINTS

cross detection can be used as a time base for phase control of appliances connected to
the line.

ZCD:
LD B,#STATUSi Save bytes using the B pointer
IFBIT SYNCHRO, [B]i If SYNCHRO is 1, wait for a rising edge
JP WLOHli otherwise wait for a falling edge.

WHILO: IFBIT 3,PORTLPi Wait for falling edge
JP WHILO
SBIT SYNCHRO, [B] i SYNCHRO = 1, so wait for rising edge
JP ENDZCDi next time.

WLOHI: IFBIT 3,PORTLPi Wait for a rising edge
JP RSYNC
JP WLOHI

RSYNC:RBIT SYNCHRO, [B] SYNCHRO 0, so wait for a falling edge
i next time.

ENDZCD:i End of example

A.5.4 Application Example: Industrial Timer

Figure A-8 shows the block diagram for an industrial timer. The user turns the
potentiometer to set the required delay time. When the delay time has elapsed, a load is
switched on or off, as selected by the input switches. The time base is derived from the
power line using a simple zero cross detection circuit, thereby allowing the use of an
inexpensive RC clock instead of a crystal oscillator. There are two indicator diodes and a
buzzer driven by the ModulatorlTimer.

The AID conversion routine used by this industrial timer is based on the single slope
technique defined in Section A.5.1, but it has an important difference. Instead of
connecting the variable resistor into a voltage divider circuit and measuring the voltage
using the single slope technique, the variable resistor forms part of the RC network. The
time that the variable RC circuit takes to exceed the fixed reference voltage is directly
proportional to the value of the resistor, simplifying the conversion from time into
resistance. The circuit as shown can be used to program a time proportional to the angle
of the potentiometer setting. The potentiometer can be replaced by a rotary switch
connected to a series of resistors, so that each position of the switch generates a different
resistance. Here the COP820CJ can identify the switch positions if the difference in each
resistance for each position is greater than the inaccuracy in measuring the absolute
resistance.

A.5.5 LED Drive Using the COP820CJ

The COP820CJ has four outputs, L4 to L 7, which are individually capable of sinking high
currents. They are suitable for use in multiplexed, high-efficiency LED displays.
Figure A-9 shows the structure for a three-way multiplexed LED display. Pins LO to L3
and DO to D3 drive the LEDs. All the current for the first eight segments is sunk through
L4. The current for the second and third set of eight segments is sunk by L5 and L6,
respectively. The eight identical resistors connected to the ports and the eight identical

APPLICATION HINTS A-23

ZERO CROSS DETECTION

110V / 60Hz
240V / 50Hz

TIMING CONTROL

Vee

I

RC OSCILLATOR

Vee

Vee

I

Vee

Vee

INTERRUPT

TIMER T1

WATCHDOG

HIGH SINK
OUTPUTS

BROWN OUT I
SOFTWARE I

TRAP .

MODITIMER

TWO INDICATOR LEDS

Vee Vee

HIGH-SIDE RELAY DRIVER

Vrelay

BUZZER

Figure A-8 Industrial Timer Application Using The COP823CJ

A-24 APPLICATION HINTS

COP800·26

DIGIT 0

DIGIT 1

DIGIT 2

LO

L1

L2

L3

DO

01

02

03 COP820CJ

L4 LS L6

COP800-27

Figure A-9 3-way Multiplexed Led Display With COP820CJ

APPLICATION HINTS A-25

resistors connected to the Vee line limit the current. The values of the Vee resistors and
the port resistors set the current flow into the LED. The ratio of the port resistor value
to the Vee resistor value should be sufficiently low so that when the port outputs are
switched low, the LED segments are never illuminated.

The multiplexing is performed in the following way. The COP820CJ generates a regular
interrupt at a rate known as the multiplex rate. If this rate is too high, the COP will be
overloaded. If it is too low, LED flicker will occur. The programmer should set the update
rate as required by the application. After the first interrupt, or underflow of the timer if
polling the TPND flag is chosen instead, the appropriate bit pattern for the first digit is
written to LO-L3 and DO-D3. Pin L4 is set low to enable current to flow through the diodes
in the first digit. Pins L5 and L6 are set high to stop current flowing in the second and
third digits. The processor waits for the next interrupt or timer underflow, writes the bit
pattern of the second digit to the relevant Land D port pins, and sets pin L510w. L6 and
L4 are set high. The third digit is displayed in a similar way, this time setting L6 low and
setting L4 and L5 high. The procedure is then repeated.

The following software example demonstrates this procedure. The number in
COUNTHI:COUNTLO is initialized to 268 decimal and is displayed on the LEDs. The
variable DIGIT is a pointer to the digits.

A-26 APPLICATION HINTS

.INCLD COP820CJ.INC

i Variables

DIGIT = 0
COUNTLO 1
COUNTHI 2
TEMP = 3

i Start of code

INIT: LD SP,#02F i Initialize stack
LD PORTLC,#OFF i Port L as output
LD COUNTLO,#068 i Shown number digit 0 & 1
LD COUNTHI,#002i Shown number digit 2
LD DIGIT,#Oi Digit counter
LD TMRLO,#02F i First timer value
LD TMRHI, # 0 i

LD TAULO,#O iTimer auto reload 10 byte
LD TAUHI,#OlO Timer auto reload hi byte
LD CNTRL,#090 i Start timer, auto reload mode

WAIT: IFBIT TPND,PSW i Timer underflow?
JP OUT i Yes -> OUTPUT
JP WAIT i No -> WAIT

OUT:RBIT TPND,PSWi Reset timer underflow bit
LD A,#3i
IFEQ A,DIGITi Last digit?
LD DIGIT,#Oi Yes -> reset digit counter

DIGXOUT: JSR DIGOUTi Output current digit
LD A,DIGIT i Increment and mask digit counter
INC A i

AND A,#03
X A,DIGIT
JP WAIT i

APPLICATION HINTS A-27

.=0100

DIGOUT:LD A,DIGIT ; Choose the correct subroutine depending on
ADD A,#L(TABLE); DIGIT
JID

TABLE:; actual digit table:
.ADDR DIGO
.ADDR DIG1
.ADDR DIG2

DIGO: LD A,COUNTLO; Least significant nibble
JSR DATA; Prepare data lines
RBIT 4,PORTLD; Switch on digit 0
RET

DIG1: LD A,COUNTLO ; Output middle nibble
SWAP A ; It's the higher nibble of COUNTLO
JSR DATA ; Prepare data
RBIT 5,PORTLD ; Switch on digit 1
RET

DIG2: LD A,COUNTHI ; Output most significant nibble
JSR DATA ; Prepare data
RBIT 6,PORTLD ; Switch on digit 2
RET

DATA:
JSR BCD27 ; Conversion BCD to 7 segment code
X A,TEMP ; Save to temporary variable
LD A,TEMP; and restore A
OR A,#OFO; Switch off all digits
X A,PORTLD ; and write L Port value
LD A,TEMP ; Get actual BCD value
AND A,#OFO ; Clear the lower nibble
X A,TEMP; Save value
LD A,PORTD Read D Port value
SWAP A ;
AND A,#OOF
OR A,TEMP
SWAP A ;
X A,PORTD
RET

Clear the higher nibble
Combine with prepared TEMP

and write it back

A-28 APPLICATION HINTS

BCDTAB: ; Example of a BCD to 7 segment table
. BYTE 03F ; 0
.BYTE 006; 1
. BYTE 05B; 2
. BYTE 04F 3
. BYTE 066 4
. BYTE 06D 5
. BYTE 07D 6
. BYTE 007 7
. BYTE 07F 8
. BYTE 06F; 9
. BYTE 077; A
. BYTE 07C ; B
. BYTE 058 ; C
. BYTE 05E; D
. BYTE 079; E
. BYTE 071; F

BCD27:; BCD to 7 segment conversion routine
AND A,#OOF; Mask out upper nibble of A
ADD A,#L(BCDTAB); Look up value in table.
LAID
RET

. END

A.5.6 Application Example: Temperature Control

Figure A-10 shows the block diagram for a household appliance with temperature control
such as a coffee maker. The appliance measures the temperature using a thermistor
which is linearized with a parallel resistor and connected to the COP820CJ comparator.
This configuration performs single slope AID conversion. The zero cross detection circuit
provides the time-base for the system used for calibration of the AID converter and for
the generation of the time display. A high efficiency, low power 24 segment LED display
is connected to the COP820CJ to indicate elapsed time and the operating mode to the
user. The heater switch is connected to a high-side driver to ensure additional safety. If
the relay primary winding is disconnected or shorted to ground, the heater will not
operate. Four switches for user input have been provided.

The safety of the system is enhanced by using the Brown Out option, the Watchdog timer
and the software interrupt. All unused code areas should be filled with 00 hex, the opcode
for the INTR instruction. The Watchdog Timer is used to prevent the program from being
caught in an infinite loop. The Brown Out detection protects against transients on the
power supply.

A.5.7 Phase Control of an AC Load

The variable duty cycle mode of the ModulatorlTimer, in conjunction with a zero cross
detection interrupt routine is ideally suited to phase control of single-phase AC loads.
The program example below shows how a triac is triggered 6.65 ms after the zero-cross
on each half-cycle of the power line. The crystal frequency is assumed to be 10 MHz,
resulting in a resolution of 1 Jls on Timer Tl.

APPLICATION HINTS A-29

ZERO CROSS DETECTION

110V/60Hz
240V 150Hz

TEMPERATURE SENSOR

Vee

Rp Rref

Cre! I

Vee

RC OSCILLATOR

I

Rlim

Vee

INTERRUPT

TIMER T1

WATCHDOG

HIGH SINK
OUTPUTS

BROWNOUT I
SOFTWARE I

TRAP .

MODITIMER

24 SEGMENT LED DISPLAY
(LOW CURRENT, HIGH EFFICIENCY)

HIGH-SIDE RELAY DRIVER

Vee

BUZZER

COP800-28

Figure A·I0 Temperature Controlled Appliance Using COP820CJ

A-3D APPLICATION HINTS

After each interrupt, Timer TI is loaded with the desired angle of6.655 ms or OIAOO hex
and MODRL is loaded with 25 to give a triac gate pulse width of 26 us. The variable duty
cycle mode is initialized and Timer TI is started.

This example is suitable for the phase control in light dimmer or in motor control
applications. Figure A-II shows a schematic of such an application, using blocks already
encountered in the previous examples. Here, the power is directly controlled by the value
of the variable resistor. The AID conversion routine cannot use Timer TI to generate
interrupts in this example. However, Timer TI can still be read as a time-base within any
particular half cycle.

.INCLD

ANGLEL
ANGLEH

START:

WAIT:

COP820CJ.INC

000
001

LD SP,#02F
RBIT 7,PORTLD
SBIT 7,PORTLC
RBIT 3,PORTGD
RBIT 3,PORTGC
RBIT O,PORTGD
RBIT O,PORTGC
LD B, #TAULO
LD [B+] ,#OFF
LD [B+] ,#OFF

LD [B+],#OA7

LD [B],#002

LD B,#ANGLEL
LD [B+] ,#000
LD [B+], #OlA

SBIT GIE,PSW

JP WAIT

; Interrupt handler

.=OFF

IHDL:

FAIL:

ZCD:

IFBIT IPND,PSW
JP ZCD

JP FAIL

RBIT TRUN,CNTRL1

Initialize the stack
Pin L7 is an output, logic low for TRIAC

Pin G3 is a Hi-z input

Pin GO is a Hi-Z input for ZCD

Maximum possible value in the
auto-reload register

B now points to CNTRL
Auto-reload, toggle, stop timer, rising
interrupt edge

B now points to PSW
External ZCD interrupts enabled,
pending flags cleared

Set the firing angle to 1AOO hex

Enable ZCD interrupts

Wait for interrupt

An external interrupt indicates a zero
cross event.

A software interrupt will have
caused this event.

Stop Timer T1

APPLICATION HINTS A-3!

ZERO CROSS DETECTION

110V / 60Hz
240V / 50Hz

TIMING CONTROL

Vee

I
USER SWITCHES

CRYSTAL OSCILLATOR

Vee

Vee

T T

Vee

INTERRUPT

WATCHDOG

MODULATOR/
TIMER

BROWN OUT

SOFTWARE
TRAP

CORE

NOTE: Either Vee or GND must be connected to one
of the power terminals for this to function.

Figure A-11 AC Phase Control Application Using COP820CJ

A-32 APPLICATION HINTS

COP800-29

EDGESW:

REDG:

ENDINT:

LD B,#ANGLEL
LD X,#TMRLO
LD A, [B+]
X A, [X+]
LD A, [B+]
X A, [X+]

LD MODRL,#25

LD CNTRL2,#040

RBIT 7,PORTLD

SBIT TRUN,CNTRLl

LD B,#CNTRLl

IFBIT IEDG, [B]
JP REDG
SBIT IEDG, [B
JP ENDINT
RBIT IEDG, [B]

RBIT IPND,PSW
RETI

End of the example

Load Timer Tl with the desired angle value

Set the TRIAC firing pulse width to 26us

Set up modulator timer into variable
duty cycle mode

Set up pin L7 to output logic 0

Start the timer.

Toggle the interrupt routine edge so
that both +ve and -ve half cycles are
used.

A.5.S Application Example: Remote Control Unit

A battery-powered remote control unit application using the COP820CJCOP840CJ is
presented in Chapter 10. The unit transmits a specific code using an infrared LED each
time a particular key is pressed. For details, see Chapter 10.

A.6 PROGRAMMING EXAMPLES

This section is intended to be an overview of programming examples. For more detailed
and varied programming examples, refer to the Microcontroller Databook or call the
Customer Response Center at 1-800-272-9959 (also see Section A.7).

A.6.1 Clear RAM

The following program clears all RAM locations except for the stack pointer. The value of
the argument to IFBNE may need to be adjusted, depending on the size of RAM in
specific family members.

APPLICATION HINTS A-33

COPS PROGRAM TO CLEAR ALL RAM EXCEPT SP

addr:
0000:
0002:
0003:
0005:
0006:
0007:
0009:
OOOB:
OOOC:
OOOD:

LD
LD
LD
DRSZ
JP
LD
LD
IFBNE
JP
LD

OFC,#070
B,#O
[B+], #0
OFC
0003
B,#OFO
[B+], #0
#OD
009
B,#O

iDefine X-pointer as counter
:Initialize B pointer
iLoad mem with 0 and incr B pointer
iDecrement counter
iSkip if lower half RAM is cleared
iPoint B to upper half of RAM
iLoad upper RAM half with 0
iuntil B points to OFD (=SP)
iSkip if B=OFD
iInitialize B to 0

A.6.2 BinarylBCD Arithmetic Operations

The arithmetic instructions include the Add (ADD), Add with Carry (ADC), Subtract
with Carry (SUBC), Increment (INC), Decrement (DEC), Decimal Correct (DCOR), Clear
Accumulator (CLR), Set Carry (SC), and Reset Carry (RC). The shift and rotate
instructions, which include the Rotate Right through Carry (RRC), and the Swap
accumulator nibbles (SWAP), may also be considered arithmetic instruction variations.
The RRC instruction is instrumental in writing a fast multiply routine.

In subtraction, a borrow is represented by the absence of a Carry and vice versa.
Consequently, the Carry flag needs to be set (no borrow) before a subtraction, just as the
Carry flag is reset (no carry) before an addition. The ADD instruction does not use the
Carry flag as an input. It should also be noted that both the Carry and Half Carry flags
(Bits 6 and 7, respectively, of the PSW control register) are cleared with RESET and
remain unchanged with the ADD, INC, DEC, DCOR, CLR, and SWAP instructions. The
DCOR instruction uses both the Carry and Half Carry flags. The SC instruction sets both
the Carry and Half Carry flags, while the RC instruction resets both these flags.

The following program examples illustrate additions and subtractions of 4-byte data
fields in both binary and BCD (Binary Coded Decimal). The four bytes from data memory
locations 24 through 27 are added to or subtracted from the four bytes in data memory
locations 16 through 19. The results replace the data in memory locations 24 through 27.

These operations are performed both in binary and BCD. It should be noted that the BCD
preconditioning of adding (ADD) the hexadecimal value 66 is necessary only with the
BCD addition, not with the BCD subtraction. The binary coded decimal DCOR (Decimal
Correct) instruction uses both the Cary and Half Carry flags as inputs but does not
change the Carry and Half Carry flags. Also note that the #12 with the IFBNE
instruction represents 28 minus 16, since the IFBNE operand is modulo 16 (remainder
when divided by 16).

A-34 APPLICATION HINTS

BINARY ADDITION:

LD X,#16 iNO LEADING ZERO
LD B,#24 iINDICATES DECIMAL
RC

LOOP: LD A, [X+]
ADC A, [B]
X A, [B+]
IFBNE #12
JP LOOP
IFC
JP OVFLOW iOVERLFOW IF C

BINARY SUBTRACTION:

LD X,#OlO iLEADING ZERO
LD B,#018 iINDICATES HEX
SC

LOOP: LD A, [X+]
SUBC A, [B]
X A, [B+]
IFBNE #12
JP LOOP
IFNC
JP NEGRSLT iNEG. RESULT IF NO C

(NO C = BORROW)

BCD ADDITION:

LD X,#010 iLEADING ZERO
LD B,#018 iINDICATES HEX
RC

LOOP: LD A, [X+]
ADD A, #066 iADD HEX 66
ADC A, [B]
DCOR A iDECIMAL CORRECT
X A, [B+]
IFBNE #12
JP LOOP
IFC
JP OVFLOW iOVERFLOW IF C

BCD SUBTRACTION:

LD X,#16 iNO LEADING ZERO
LD B,#24 iINDICATES DECIMAL
SC

LOOP: LD A, [X+]
SUBC A, [B]
DCOR A iDECIMAL CORRECT
X A, [B+]
IFBNE #12
JP LOOP
IFNC
JP NEGRSLT iNEG. RESULT IF NO C

(NO C = BORROW)

APPLICATION HINTS A-35

Note that the previous additions and subtractions are not "adding machine" type
arithmetic operations in that the result replaces the second operand rather that the first.
The following program examples illustrate "adding machine" type operations where the
result replaces the first operand. With subtraction, this entails the result replacing the
minuend rather that the subtrahend.

BINARY ADDITION:

LD B,#16
LD X,#24
RC

LOOP: LD A, [X+]
ADC A, [B]
x A, [B+]
IFBNE #4
JP LOOP
IFC
JP OVFLOW jOVERLFOW IF C

BINARY SUBTRACTION:

LD B,#OlO
LD X,#018
SC

LOOP: LD A, [X+]
x A, [B]
SUBC A, [B]
x A, [B+]
IFBNE #4
JP LOOP
IFNC
JP NEGRSLT jNEG. RESULT IF NO C

(NO C = BORROW)

BCD ADDITION:

LD B,#OlO
LD X,#018
RC

LOOP: LD A, [X+]
ADD A,#066
ADC A, [B]
DC OR A
X A, [B+]
IFBNE #4
JP LOOP
IFC
JP OVFLOW jOVERFLOW IF C

BCD SUBTRACTION:

LD B, #16
LD X, #24
SC

LOOP: LD A, [X+]
x A, [B]
SUBC A, [B]
DC OR A
X A, [B+]
IFBNE #4
JP LOOP
IFNC
JP NEGRSLT jNEG. RESULT IF NO C

(NO C = BORROW)

A-36 APPLICATION HINTS

The following hybrid arithmetic example adds five successive bytes of a data table in
ROM program memory to a two-byte SUM, and then subtracts the SUM from a two-byte
total TOT. Assume that the ROM table is located starting a program memory address
0401, while SUM and TOT are at RAM data memory locations 1,0 and 3,2, respectively,
and that the program is encoded as a subroutine.

ROM TABLE:
.=0401
. BYTE
. BYTE
. BYTE
. BYTE
. BYTE

102
41
31
26
5

TABLE: TOP DOWN
ARTHMETIC: BOTTOM UP

SUMLO 0
SUMHI 1
TOTLO 2
TOTHI 3

ARITH1: LD X, #5

LOOP:

LUP:

LD B, #0
RC
LD
LAID
ADC
X
CLR
ADC
X
DRSZ
JP
SC
LD
LD
X
SUBC
X
IFBNE
JP
RET

A,X

A, [B]
A, [B+]
A
A, [B]
A, [B-]
X
LOOP

B, #2
A, [X+]
A, [B]
A, [B]
A, [B+]
#4
LUP

iSET UP ROM TABLE PTR
iSET UP SUM POINTER

iLOAD ROM PTR INTO ACC
iREAD VALUE FROM ROM
iADD SUMLO TO ROM VALUE
iPUT RSLT BACK IN SUMLO
iCLR ACC
jADD SUMHI TO ACC
iPUT RSLT BACK IN SUMHI
jDECR. & TEST ROM PTR
iREPEAT LOOP IF PTR NOT 0

jLOAD SUBTRAHEND FIRST
jREVERSE OPERANDS FOR SUBTRACTION

iINCR. MINUEND POINTER
jREPEAT LOOP IF B PTR NOT EQUAL TO 4

A.6.3 Binary Multiplication

The following program listing shows the program for a 16-by-16-bit binary multiply
subroutine. The multiplier starts in the lower 16 bits of the 32-bit result location. As the
multiplier is shifted out of the low end of the result location with the RRC instruction,
each multiplier bit is tested in the Carry flag. The multiplicand is conditionally added
(depending on the multiplier bit) into the high end of the result location, after which the
partial product is shifted down one bit position following the multiplier. Note that one
additional terminal shift cycle is necessary to align the result.

APPLICATION HINTS A-37

COP8

MULT:

MLOOP:

TEST:

MULTIPLY (16X16) SUBROUTINE
MULTIPLICAND IN [1,0] MULTIPLIER IN [3,2]
PRODUCT IN [5, 4, 3, 2]

CNTR = OFO
LD CNTR,#17
LD B,#4
LD [B+l],#O
LD [B], #0
LD X,#O
RC
LD A, [B]
RRC A
X A, [B-]
LD A, [B]
RRC A
X A, [B-]
LD A, [B]
RRC A
X A, [B-]
LD A, [B]
RRC A
X A, [B]
LD B,#5
IFNC
JP TEST
RC
LD B, #4
LD A, [X+]
ADC A, [B]
X A, [B+]
LD A, [X-]
ADC A, [B]
X A, [B]
DRSZ CNTR
JP MLOOP
RET

A.6.4 Binary Division

The following program shows a subroutine for a 16-by-16-bit binary division. A 16-bit
quotient is generated along with a 16-bit remainder. The dividend is left shifted up into
an initially-cleared 16-bit test window where the divisor is test-subtracted. If the test
subtraction generates no high-order borrow, then the real subtraction is performed with
the result stored back in the test window. At the same time, a quotient bit (equal to 1) is
inserted into the low end of the dividend window to record that a real subtraction has
taken place. The entire dividend and test window is then shifted up (left shifted) one hit
position with the quotient following the dividend.

A-3S APPLICATION HINTS

Note that the four left shifts (LD, ADC, X) in the LSHFT section of the program are
repeated as straight-line code rather than a loop in order to optimize throughput time.

cOPS DIVIDE (16X16) SUBROUTINE
DIVIDEND IN [3,2]

DIV:

LSHFT:

TSUBT:

SUBT:

TEST:

DIVISOR IN [1,0]
QUOTIENT IN [3,2]
REMAINDER IN [5,4]

CNTR = OFO

LD CNTR, #16
LD B,#5
LD [B-],#O
LD [B), #0
LD X, #4
RC
LD B,#2
LD A, [B)
ADC A, [B)
X A, [B+]
LD A, [B)
ADC A, [B)
X A, [B+]
LD A, [B)
ADC A, [B)
X A, [B+]
LD A, [B)
ADC A, [B)
X A, [B+]
SC
LD B,#O
LD A, [X+]
SUBC A, [B)
LD B,#l
LD A, [X-]
SUBC A, [B)
IFNC
JP TEST
LD B,#O
LD A, [X]
SUBC A, [B)
X A, [X+]
LD B,#l
LD A, [X]
SUBC A, [B)
X A, [X-]
LD B, #2
SBIT 0, [B)
DRSZ CNTR
JMP LSHIFT
RET

With a division where the dividend is larger than the divisor (relative to the number of
bytes), an additional test step must be added. This test determines whether a high-order
carry is generated from the left shift of the dividend through the test window. When this
carry occurs, the program branches directly to the SUBT subtract routine. This carry can
occur only if the divisor contains a high-order bit. Moreover, the divisor must also be
larger than the shifted dividend when the shift has placed a high-order bit in the test
window. When this case occurs, the TSUBT test subtract shows the divisor to be larger
than the shifted dividend and no real subtraction occurs. Consequently, the high-order
bit of the shifted dividend is again left shifted and results in a high-order carry. This test
is illustrated in the following program for a 24-by-8-bit binary division.

APPLICATION HINTS A-39

Note that the four left shifts (LD, ADC, X) in the LSHFT section of the program are
repeated with the JP jump to LUP instruction in order to minimize program size.

COP8 DIVIDE (24X8) SUBROUTINE
DIVIDEND IN [2,1,0]
DIVISOR IN [4]

DIV:

LSHFT:

LUP:

TSUBT:

SUBT:

TEST:

QUOTIENT IN [2,1,0]
REMAINDER IN [3]

CNTR = OFO

LD CNTR,#24
LD B,#3
LD [B], #0
RC
LD B,#O
LD A, [B]
ADC A, [B]
x A, [B+]
IFBNE #4
JP LUP
IFC
JP SUBT
SC
LD B,#3
LD A, [B+]
SUBC A, [B]
IFNC
JP TEST
LD A, [B-]
X A, [B]
SUBC A, [B]
x A, [B]
LD B,#O
SBIT 0, [B]
DRSZ CNTR

A. 7 DAIL-A-HELPER SERVICE

The Dial-A-Helper is a service provided by the Microcontroller Applications group. The
Dial-A-Helper is an Electronic Information System that may be accessed as a Bulletin
Board System (BBS) via data modem, as an FTP site on the Internet via standard FTP
client application or as an FTP site on the Internet using a standard Internet browser
such as N etscape or Mosaic.

The Dial-A-Helper system provides access to an automated information storage and
retrieval system. The system capabilities include a MESSAGE SECTION (electronic
mail, when accessed as a BBS) for communications to and from the Microcontroller
Applications Group and a FILE SECTION which consists of several file areas where
valuable application software and utilities could be found.

A-40 APPLICATION HINTS

DIAL-A-HELPER BBS via a Standard Modem

Voice: (800) 272-9959
Modem: CANADA! (800) NSC-MICRO

U.S.: (800) 672-6427

EUROPE:
Baud:
Set-Up:

Operation:

(+49) 0-8141-351332
14.4k
Length:
Parity:
Stop Bit:

8-Bit
None
1

24 Hours, 7 Days

DIAL-A-HELPER via FTP

ftp nscmicro.nsc.com
user:
password:

anonymous
username@yourhost.yoursite.yourdomain

DIAL-A-HELPER via a WorldWide Web Browser

ftp://nscmicro.nsc.com

A.8 EXTERNAL POWER WAKEUP CIRCUIT

Power-on wakeup is a technique used in battery powered applications such as electronic
keys or digital scales to save battery power. Instead of using the HALT mode when the
application is not in use, the COP device is powered off. If there is only one input switch
in the application, the implementation is simple. This switch is put in series with the
battery, providing power to the circuit when the switch is closed.

If there is more than one switch, power-on wakeup can be achieved by using an NPN
transistor and one resistor per switch as shown in Figure A-12. Here, the circuit ground
is connected to the battery negative terminal via the NPN transistor. If the base is
floating, it will not conduct. If the base is pulled to Vee via a current-limiting resistor, it
will conduct, powering up the circuit.

An alternative technique is shown in Figure A-7. Here the positive terminal of the
battery is connected to the Vee line via a switch, a diode and two resistors per line. If a
switch is pressed, power is applied to the Vee line. The pull-down resistors pull any ports
connected to open switches to ground. If the switch is closed, the voltage on the switch
will be Vee plus the diode voltage drop. If this potential were directly applied to the L
port pin, the COP device would be driven outside the operating specification. Therefore,
series protection resistors are used on all Port L pins connected to the switches.

A.9 EXTERNAL WATCHDOG CIRCUIT

In the following application examples, the COPS device sends a continuous square wave
to an external Watchdog circuit. If the user program gets stuck in a software loop and the

APPLICATION HINTS A-41

Vee Vee Vee

Vee

~---- CKI RESET ----~~--

I I
COP8

Vee

LO

L1

L2
Vee

L3

~

- I -

COP800-30

Figure A-12 Power Wakeup Using An NPN Transistor

A-42 APPLICATION HINTS

I
I

Vee

Vee

~----I CKI RESET I---~~---"

I

LO

L1

L2

L3

I
COPB

COP800-31

Figure A-13 Power Wakeup Using Diodes And Resistors

APPLICATION HINTS A-43

square wave is not generated, the external circuit will provide a high transition (Circuit
A) or a low transition (Circuit B). The output of the Watchdog circuit may be connected
to the COP RESET pin or the system reset in order to generate a reset on a Watchdog
error.

-130 Hz

COP OUTPUT

Figure A-I4 External Watchdog Circuit A

Vee

-130 Hz
.22 ~F

COP OUTPUT
• I

Figure A-I5 External Watchdog Circuit B

A-44 APPLICATION HINTS

r
OUTPUT

GOES HIGH

eOP800-35

1
OUTPUT

GOES LOW

eOP800-36

A.IO INPUT PROTECTION ON COPS PINS

The COP8 Basic Family input pins have internal circuitry for protection from ESD. The
internal circuitry is shown in Figures A-16 and A-17.

--.-- vee --r--- vee

p

N

COP800-37

Figure A-I6 Ports L/C/G Input Protection (Except G6)

--e----e-- vee

p

N

eOP800-38

Figure A-I7 Port I Input Protection

APPLICATION HINTS A-45

The input protection circuitry is implemented with the P _channel transistors. The
equivalent diode circuit is shown in Figure A-lB.

---.----- vee

eOP800-39

Figure A-IS Diode Equivalent of Input Protection

When the inputs are tri-stated and the input voltage on the pin is between GND and V CC,
the input protection diodes are off. The only current drawn into or out of the pin is
leakage current. If the input is expected to be below GND and/or above V cc' an external
series resistor must be used to limit the input current below the maximum allowable
current.

In addition to limiting the input current to below the maximum latchup spec (specified
in the datasheet), the user should also consider the fact that drawing excessive
continuous current into the pin, even though below the maximum latchup current, may
cause overstress.

A typical example of drawing continuous current is in an automotive application where
the ignition signal (battery) is connected to an input pin through a series resistor.
Assuming a lOOK series resistor with a tolerance of ±10%, the worst case resistor value
is 90K. The battery voltage is assumed to be 12V for normal operation and 24V for a
"jump start." The high voltage applied to the pin causes the on-chip protection diode to
be forward biased, resulting in current into the associated V cc metal trace. Based on a
diode threshold voltage of 0.6V, the voltage at the pin will be V cc + 0.6Y. Based on a V cc
value of 5V, the input current can be calculated as follows:

Normal Operation:

Input current = [12 - (5 + 0.6)] = 711lA
90K

Jump Start:

Input current = [24 + (5 + 0.6)] = 2041lA
90K

A study of the internal circuitry indicates that the input pin can draw about 200 JlA
without causing any damage or reliability problem.

A-46 APPLICATION HINTS

Another approach is to use appropriate external circuitry that prevents the input
protection diodes from being biased. An example is shown in Figure A-19.

Vee

±12V r-J\I\I\~----~.-------~INPUT

COP8

COP800-40

Figure A-19 External Protection of Inputs

The resistors are required to drop the + 12V and the diode prevents the -12V from being
applied to the pin.

For VI = 12V ±5% and Vee = 5V ± 5%, the resistor values are calculated to be:

Rl = 47K+5%

R2 = 82K±5%

This analysis does not apply to G6, RESET, and CKI which do not have the protection
diodes. Implementation of the above circuit will result in a VIH that is between O. 7 Vee
and Vee, and a VIL that is between V ss (OV) and 0.2 Vee.

A.II ELECTROMAGNETIC INTERFERENCE (EM!) CONSIDERATIONS

A.II.I Introduction

CMOS has become the technology of choice for the processors used in many embedded
systems due to its capability for low standby power consumption. However, CMOS is
prone to high current transients on the power supply as the internal logic switches.
These transients can easily be the source of high-frequency emissions from the system.
The system designer should anticipate and minimize unwanted electromagnetic
interference (EM!).

APPLICATION HINTS A-47

A.I1.2 Emission Predictions

"EMI in a typical electronic circuit is generated by a current flowing in a loop configured
within the circuit. These paths can be either V cc-to-GND loops or output-to-GND loops.
EMI generation is a function of several factors. Transmitted signal frequency, duty cycle

i edge rates, and output voltage swings are the major factors of the resultant EMI levels."

The formula for predicting the Electric Field emissions from such a loop is as follows:

where:

• IE I MAX is the maximum E-field in the plane of the loop in JlV/m

• I is the current amplitude in milliamps

• A is the loop area in square cm

• A is the wavelength at the frequency of interest in meters

• D is the observation distance in meters

• Freq is the frequency in MHz

• and the perimeter of the loop P « A.

Applying this equation to a single standard output for a National Semiconductor
Microcontroller, and performing a Fourier analysis of the output switching at a frequency
of 20 MHz, yields the results shown in Table A-I. These calculations assume a trace
length of 5 inches, a board thickness of 0.062 inches and a full ground plane. The load
capacitance is 100 pf

Table A-I Electric Field Calculation Results

Harmonic Current IEI Max IEI Max
(MHz) (rnA) (~V/M) (dB~V/M)

20 37.56 8.3 18.4

40 3.66 0.3 -10.2

60 26.13 44.2 33.0

80 4.44 0.6 -4.4

100 16.82 80.2 38.1

120 4.71 2.0 6.0

140 11.21 104.0 40.4

160 4.86 5.8 15.2

180 7.82 127.4 42.1

1. "FACTTM Advanced CMOS Logic Databook", National Semiconductor, 1989

A-48 APPLICATION HINTS

Note that the assumption is made that the output is switching at 20 MHz, which is rarely
the case for a port output. There is noise, however, on the output at these frequencies due
to switching within the device. This is the noise which is coupled to the output through
V cc and GND. Another point to keep in mind is that rarely does one single output switch,
but usually several at one time, thus adding the effective magnetic fields from all the
outputs which are switching.

Accurate analysis requires characterization of the noise present at the output due to V CC
or GND noise which is dependent on many factors, including internal peripherals in use,
execution code, and address of memory locations in use.

A.l1.3 Board Layout

There are two primary techniques of reducing emissions from within the application.
This can be done either by reducing the noise or by controlling the antenna. Control of
the antenna is accomplished through careful PC board layout.

General

Standard good PC layout practices will go a long way toward reducing emissions. Traces
carrying large AC currents (such as signals with fast transition times, that drive large
loads) should be kept as short as possible. Traces that are sensitive to noise should be
surrounded by ground to the greatest extent possible. Ground and V cc traces should be
kept as short and wide as possible to reduce the supply impedance.

Ground Plane

One of the most effective ways to control emissions through board layout is with a ground
plane. The use of a plane can help by providing a return path for fast switching signals,
thus reducing loop size for both power and signals.

Multilayer Board

The best way to provide a ground plane is through the use of a multilayer printed circuit
board. The large area and the proximity of the V cc and GND planes provide additional
decoupling for the power, and provide effective return paths for both power and signals.

The problem with the use of a multilayer board, particularly in consumer related
industries, is cost. Due to the volumes involved, an addition of several dollars to the cost
of an item may be prohibitive.

A.l1.4 Decoupling

Control of the emitted noise can be accomplished by several techniques, including
decoupling, reduced power supplies, and limitation of signal strength by the addition of
series resistance.

It is important to take the time to properly design the decoupling for CMOS processors.
Two decoupling techniques can and should be used to minimize both voltage and current
switching noise in the system.

APPLICATION HINTS A-49

Capacitive Decoupling

Capacitive decoupling is commonly used to control voltage noise on the Vee and GND
lints of the board, but if the decoupling is properly designed and is kept as Close as
possible to the power pins of the device, it can also reduce the effective loop area and thus
the antenna efficiency. Capacitive decoupling can prevent high-frequency current
transients from being seen by the power supply.

One factor of capacitive decoupling which is often overlooked is the frequency response
of the capacitors. Each capacitor, dependent on value, lead length, and dielectric
material, possesses a series resonant frequency beyond which the device has inductive
characteristics. This inductance inhibits the capacitor from responding quickly to the
current needs of the processor and forces the current to use the longer path back to the
main power supply.

These inductive characteristics can be countered by the addition of extra capacitors of
different values in parallel with the original device. As the value of the capacitor
decreases (for capacitors of similar manufacture), the resonant frequency increases.

Placing multiple decoupling capacitors across the power pins of the processor can
effectively improve the high frequency performance of the decoupling network.
Capacitance values are normally selected which are separated by a decade. However, it
is best to check the specifications of the capacitors which are used.

Inductive Decoupling

Another very effective method of decoupling which is rarely used is inductive decoupling.
The proper placement of ferrite beads between the decoupling capacitors and the
processor can significantly reduce the current noise on the power pins.

The use of inductive decoupling, which will increase the series impedance of the power
supply, appears to be contradictory to the effect of capacitive decoupling. However, the
purpose of inductive decoupling is to force nodes internal to the processor, which are not
switching, into providing the charge for the nodes which are switching.

Ferrite beads are very effective for this type of decoupling due to their lossy nature.
Rather than storing the energy and returning it to the circuit later, ferrites will dissipate
the energy as a resistor.

One should be aware of potential repercussions from the use of any type of series
isolation from the power supply. Due to the reduced Vee which may be present during
switching transients, interfacing to other devices in the system may be a problem. Since
the Vee should only be reduced for the duration of the switching transient, this should
only be a problem if the other devices have especially sensitive and fast-responding
inputs.

A.I1.5 Output Series Resistance

The addition of resistance in series with outputs can have a significant effect on the
emissions caused by the switching of the outputs.

A-50 APPLICATION HINTS

Outputs that drive large capacitive loads can have a lot of current flowing when they
switch. While the series resistance may slow the switching speed of the node and thus
affect the propagation delay, it can also have a large effect on emissions by reducing the
amplitude of the current spike that charges or discharges the load.

A.l1.6 Oscillator Control

One very definite source of emissions is the system clock. The some oscillator is intended
to switch at high speed and therefore will emit some noise. Keeping the circuit loop of the
oscillator as small as possible will help considerably.

Ceramic resonators are available with the capacitive load included in a single three
terminal package. The use of these devices and placing them right next to the processor
can reduce emissions as much as 10 dB.

RC oscillators are particularly troublesome for emissions due to the high transient
current when the processor turns on the N-channel device that discharges the capacitor.
The transistor is meant to be large and to turn on strongly in order to discharge the
capacitor as quickly as possible. This allows simple control over the frequency of
oscillation but causes difficulty for the designer of systems for EMI-sensitive
applications.

A.II. 7 Mechanical Shielding

A last resort for controlling emissions is the addition of mechanical shielding. While
shielding can be effective and can be easier from an electrical design standpoint, the
implementation and installation of a proper electromagnetic shield can be excessively
costly and time consuming.

It is much better to design the system with the control of emissions in mind from the start
rather than to apply bandages when it is time to begin production.

A.II.S Conclusion

While electromagnetic emissions can be a problem for the designer of any electronic
system, it is particularly troublesome in the design of high speed CMOS systems. With
knowledge of the primary sources of noise, and the ways to combat that noise, it is
possible to design and build systems which are electromagnetically quiet.

Very few references to specific values of capacitance, resistance, or inductance have been
made in this document. The reason for this is that a value which works well in one
application may not be effective in another. The best way to determine the values which
will work well for a particular application is by experimentation.

APPLICATION HINTS A-51

A-52 APPLICATION HINTS

AppendixB

ELECTRICAL CHARACTERIZATION DATA

This appendix presents characterization data for the COP8 Basic Family members. All
graphs in this appendix apply to the entire COPS Basic Family unless otherwise noted.

Characterization data is information gained from testing a wide range of sample of parts.
Most tests are performed over the full temperature and operating voltage range of the
COP8 devices. All information provided in the graphs represents typical values. Most
parts will meet these typical values. However, National Semiconductor does not
guarantee these values on all parts. Guaranteed numbers are provided in the AC and DC
Electrical Characteristics tables found in every datasheet. Guaranteed numbers are
tested on all COP8 devices shipped to our customers.

1

1

1

COP800 Dynamie-Idd vs Vee (Crystal Cloek Option)

___ ~ ________ L ___ ~ ________ l ___ ~
1

1

1 1 1 /
1 1 1 1 1 lOMHz 1 / /

---T---~----r---'----r---T---~-7~
1 1 1 1 1 1 1///
1 1 1 1 1 1 / (/
1 1 1 1 1 1 / (

-- -+- - --1- - -- t- -- - -- - -1--- - +-/~.,... 'j---
1 1 1 1 1 1 / / 1
1 1 1 1 ,/ -r / / 1
1 1 1 1 I,/'/}- 1

___ l __ _____ L ___ J ___ J~~~~l---J---
1 1 1 14MHz ~ ~ J-,/ 1 1
1 1 1 1 ~ ~ 1 1 1
1 1 1 _--I:~~ 1 1 1
1 1 _--r-_--I 1 1 1

---+---~-~-~~~--~----~---+---~---
_-+- - - _1- - - 1 1 1 1 1

- - _ -+ - - - 11MHz 1 1 1 1 1
-- 1 1 1 1 1 1 1

O~--~----~----~----~----L---~----~----~
2 2.5 3.5 4 4.5 5.5

Vee (Volts)

This graph is valid for all COP8 Basic Family members except the COP820CJ.

ELECTRICAL CHARACTERIZATION DATA B-1

~
2
'tl

::l

COP820CJ Dynamie-Idd vs Vee (Crystal Clock Option)
5.5 .--------.--------.---------.--------.--------.-------~

/

1 1 1 1 1 ///
- - - - -1- - - - - 1- - - - -I - - - - - T - - - - - T:: ~ - - -

1 1 1 1 , , 1
4.5

- - - __ 1 _____ _l _____ J _____ -1 __-' __ L ___ _
1 1 1 10MHz 1 / / 1
1 1 1 /1 1

- - - - -1- - - - - -j - - - - - ---t - - --::: -L - -t - - - - - t- - - - -

3.5

1 1 1 ,'1 1 /
1 1 ' (1 1 //

-- -- -1- - - - - -1- - ::7'~-1- - - - - T -- - - -I ~--7-
1 1,/' 1 1 ,1'

- - - - -1- - -;:-- -,,-::::l- - - - - -I- - - - - - -+- -- - 7"~ -k -- --
_-1- - 1 1 1 //

1 1 1 1 / 1
-----1- ----,-----1- --- -....--f-- --1----

1 1 1'''''- 1 1
2.5

1 1 1 ' , 1 1 - - - - -1- - - - - -1- 4MHz::: ~ 1- - - - - 1 - - - - -1- - - -
1 1....-""- 1 1 1

1.5 _____ 1_ - --:: --= ~ --I-c::::' - - - - - - - - - + - - - - - +- - - - -
- - - - -I - - 1 1 1 1

1 1 1 1 1
-----I-----T-----i----

1MHz 1 1 1 1
0.5 ~------~--------~--------~------~--------~------~

3

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
2

3.5 4.5
Vee (Volts)

COP800 Halt-Idd vs Vee

1

1

5.5

1 1 1 1 1 1 1
---T---~----I---I----r---T---I---

1 1 1 1 1 1 1 //
1 1 1 1 1 1 1//
1 1 1 1 1 I, , 1

---T---~----I---I----~---T~7-~---

1 1 1 1 1+85 C-1' 1
1 1 1 1 1....-""-""- 1 1

___ -l ___ ~ ____ L ___ J ___ ~~---l----l---
1 1 1 I' 1 1 1
1 1 1 , 1 1 1 1
1 1 1....-""- 1 1 1

---+-- --1-- /---<"t:="- ---+----1- ---+ - ----j---
1 1 ,....- 1 1 1 1
1 , , 1 1 1 1
1....- ' 1 1 1 1 1

- -7""""-1 - - - -1- - - - -1- - - -1- - - - i - - -,- --
....-""- 1 1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1 1

---T--------I---I----~---T---~---

1 1 1 1 1 1
1 1 1 1 1 1

2.5 3.5 4 4.5 5.5
Vee (Volts)

This graph is valid for all COP8 Basic Family members except the COP820CJ with
Brown Out enabled.

B-2 ELECTRICAL CHARACTERIZATION DATA

COP820CJ with Brown Out Enabled Halt-Idd vs Vee
50 .----.----.-----.----,-----r----~--~r_--_r----,_--~

45

40

35

30

25

20

I
I

I I I I I I I I I
--I---i--I---i--I---i--I---G -I--

I I I I I I I I I
I I I I I I I I I
I I I I I I I I // --1---1--1---1--1---1- l---I--J 7 -

I I I I I I I / I
I I I I I I I I / I

__ J ___ L __ J ___ L _____ L __ J __ ~L __ J __
I I I I I I 1// I I
I I I 0 C I I /-1 I I
I I I I I 1// I I I

--4---~-- ---~--4---~--4---~--4--
I I I I I / / I I I I
I I I 1 / I I I I
I I I I ~ 1+70 C I I I I
--i--I-/~--I---I--I---I--I--

I ~ r--...... I I I I I I
I 1 ~ ~ I I I I I I I

-~~~~~~--i---~--i---~--i---~--i--
I I I I I I I I I
I I I I I I I I I

15 ~ __ ~ ____ ~ ____ ~ __ ~ ____ ~ ____ ~ __ ~~ __ _L ____ ~ __ ~

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8
Vee (Volts)

COP800 Standard Port L/C/G Push-Pull Source Current

I I
I __ I I I I

- -- - -1--- - :::::"'i:::;:: --- - -t -- -- -+ ----- t- ----
I I I I I
I I', I I I

- - - - -1- - - - - -j - - - - - 'i,,- - - - - T - - - - - t- - - --
I I I "" I I
I I I" VCd6.0V I

- - - - -1- - - - -1- - - - -1- - -"-,,- -r - - - - - r- - - --
I I I ' I I
I I I I' , I

-----r~---I-----I-----T-\---T----

I ------ __ I I I I
I I' I I \ I

-----1- -- - -1-'-'--::.--1---- -T---\,-,----

I I' " I I " I
I I 'I VCC=4.5V I "I

- - - - -1- - - - - -1- - - - -1~,,- - - - T - - - - - r - - --
I I I" I 1\
I I I" I I \

- - - - -1- - - - - -1- - - - -1- - - "- - T - - - - -1-'- - -
I I ' J I \

_____ 1 ____ VC.9=~.~V ___ J. _____ -.1,- ____ ~ __ ~_
I I I \ I \
I I I \ I \ o ~ ______ ~ ________ L_ ______ ~ ________ L_ ______ ~ ______ __J

o 3
Voh (Volts)

This graph is valid for all COPB Basic Family members.

ELECTRICAL CHARACTERIZATION DATA B-3

COP800 Standard Port L/C/G Push-Pull Sink Current
18 ,_------,_------,_------,-------,-------,-------,_-----,

16

14

12

10

o ~------~------~------~------~------~------~----~
o 0.5 1.5 2 2.5 3.5

Vol (Volts)

COP820CJ Pins L4-L7 Sink Current
35 r-----.-----,-----~-----r----_.----_,----_,,_----,_----.

I
I

I I I I I I I __ +-
30 ~-- -1----1-----,---1- --,---T-..::-=-r-==- --,---

I I I I VCC=6. OV ~ ~I - I I
I I I I I ~ ~ I I I
I I I I /f I I I

25 ~ - - -:- - - -:- - - -: - - - :(-/-"--1---i ---: ---i ---
I I I' I I I I I

20 - - - -1- - - -1- - - .-J --' -..:-: _ --1 ___ ...L ___ -l ___ 1- ___ L - - _
I I I' I I I _ 1 ____ 1 ___ _
I I / I I VCC=4 . ~ - - - T - - I I
I I / I ~I- - - I I I I

15 - - - -1- - - -I-.L - -1- -"':"-1- - - -+ - -- + - - - + - - - +- - --
I J/ /-1"/ I I I I I
I / I / I I I I I I
I 1// I I I I I I

10 - - - -1- ---'- -,0-1- - -1- - -4- - - , - - - T - - - i - - -,- - -
1/ / / / I I I I I I I
II' I I I I I I I

5 - -7~~---:---~---~---1---+- --+ ---f----
1/ I I I I VCC=2. 5f I I I
//~ I I I I I I I
~ I I I I I I I I o ~ ____ L-____ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ ~~ ____ ~ __ ~

o 0.5 1.5 2 2.5 3.5 4.5
Vol (Volts)

B-4 ELECTRICAL CHARACTERIZATION DATA

COP800 Standard Port L/C/G Weak Pull-up Source Current
120

I I
MAX --t---__ I

I -- ~ 1 I I I
100

______ 1 _____ -.J ~ ~ ___ -.1 _____ .1 _____ .L ____ _
I I' I I I

-1 I ',I I I
MIN I - - - - ~ L I' , I I

80

~
p. 60
;:I .e

40

20

I I ~ I' ,I I
- - - - - -1- - - - - -, - - - -'-, --r - - -"' - T - - - - -1- - - --

I I I" I I
I I I " '~VCC=6. ov I

MAX -r--__ I I ,I , I
- - - ---1-- ::~---.-J--- -- -+- --- -'*-~- --+-- ----

I 1 ~ , I I" I
I I I I " , I

MIN - 1" - - - __ __ I ' , I VCC-4 5V I ",,' I
______ 1 _____ 3:: ~ ~ __ ~ __ -_. _ _ l _ __ ~,,_ L ____ _

I I', I" I "I,
I I 'I, ", I I,'
I I I '" I I "
I I I" 'I I '\

--~-~~J~_~--i-----i---~~t-----i-~~~-
I ,~VCC=2 . 5V I I ~ I '\\
I 1 ~ ~ I I \., I \\

o~------~I------~I------~I------~I------~I----~
o 3

Voh (Volts)

COP800 Port D Source Current
25 r--------,--------,---------,--------,---------.--------,

I I
I I

----L I
I ~ I I I I

20 - - - ---1----- j~,- --- J _____ ~ _ - ___ L ____ _
I I', I I I
I I', I I I
I I 1'" I I
I I I I I
I I I' ,I I

15 - - - ---1- ---- -1-----1-- --'-::1 - - -- -1- - ---

I I I { I
r- -- __ I I I ' VCC=6. ov I
I ~ ~ ~ I I I "" I
I I' , I I, I

10 - - ----1---- - -,- -~--I-- -- -1-- -,- -1- - ---
I I ", I I " I
I I 't, VCC=4. 5V I ,I
I I I I I'
I I I, I I'

5 - - - ---1---- ----l- ---- --+ -- -->.--+ ---- - +--'- ---
I I I ' I I \

~ I '\ 1\
I VCC=2 . 5V I I , I \
I I I I' I \

o L-______ JI ________ L-I _______ L-I ______ JI ___ ' _____ L-I ______ ~

o 3
Voh (Volts)

This graph is valid for all COP8 Basic Family members except the COP820, COP820CJ
and COP840.

ELECTRICAL CHARACTERIZATION DATA B-5

COP820C/840C/820CJ Port D Source Current

I

- I I I I I
7~---~~~=-=-~-----~-----~-----L-----

I - -I I I I
I 1- - __ I I I
I I', I VCC=6.0V I I

6 - - - - - -1- - - - - -1- - - - ----""-.:c - - - - - T - - - - -1- - - - -
I I 1'- I I
I I I I I

5 c- - - - - -1- - - - - -j- - - - - ---t - - -'-,- -t - - - - - t- - - - --
I I I ' I I

- I I I 1'" I
4-----~~=-~~~-----4-----+-~---~-----

I -I, I I" I··
I I ',I I" '\ I

3 - --- - -1---- _ ~ ___ ~_J _____ -.1 ___ ~_L ____ _
I I , I I \ I

I I ""VCC=4.5VI '"
I I I ' I I \

2 --- ---1- --- -1-----1- --->.~-- T-- ---,-'\----
I I I I I '\

1 ---~~~~.~V-~----'-"+:::-,,----t--~\-
: ~ I I" I \

o~------~I------~I------~I------~I--_'--_~I----~
a 3

Voh (Volts)

COP800 Port D Sink Current
45 .-----~----~----~-----.----~----_,------._----r_--__,

I

40
I I I I I I I _ +

- - -:- - - -:- - - i - - - i - - - i -~ :: -1 .7~i ~CC=6. P-v - -

35
I I I I / ~I - I I I

- - -1- - - -1- - - -j- - - -t -7 - ---t - - -T - - - T- - -,--
I I I ..1'/ I I I I
I I I // I I I I I

---r--~---I-T-'---I---T---r---r--30

I I J' I I I I I
I I / I I I I VCC=4. tv I

- - -1- - - -1- - -r 1- - --,- --=---=--:r-=---=-T - - - T - - - r --
I I / I _ t - I I I I
I 1/ I ~ - I I I I I

- - -1- - - 71- - - /l- - - -,- - -1- - - T - - - T - - - r - -

25

20

I II ~/ I I I I I I
I I 1/ I I I I I I

- - -1- ---;1- -1- - - -1- - -1- - -I - - - T - - - T - - -I--
I I ,I I I I I I I I

15

II / I I I I I I I
--~~~-~---l---I---I---T---T---f--10

I) I VCp=2 . 5V I I I I
I __ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ l ___ L __

I I I I I I I
I I I I I I I

a ~ ____ ~ ____ ~ ____ ~ ____ -L ____ ~ ____ ~ ____ ~~ ____ L-__ ~

a 0.5 1.5 2 2.5 3.5 4.5
Vol (Volts)

B-6 ELECTRICAL CHARACTERIZATION DATA

Ul
.w
M
o
~

COPB20CJ Brown Out Voltage vs. Temperature

1 1 1 1 1 1
4.2 . - - - - + - - - - -1- - - - - +- - - - - -+ - - - - -f- - - - - +-

---_ 1 1 1 1 1 1
- - - - ""+ .::.. - ::- - -1- ..l1ax_ - +- - - - - -+ - - - - - f- - - - - + -

1 - - 1- - - _ -1 _ 1 1 1
3. B - - - - + - - - - -1- - - - - +- -..::. - -::- -t - - - - - f- - - - - +-

1 1 1 -1-__ 1 1
3.6 - - - - + - - - - -1- - - - - +- -- - --t - - -~""-k - - - - +-

1 1 1 1 1 - - - _ 1
3.4 :: "-""""" - + - - - - -1- - - - - +- - - - - -l - - - - - I- - - - - ~ :::::

-""-1 - _ 1 1 1 1 1
- -- - +- -:... "'-_1-~- - +-- - - - -1- - - - -I- - - - -+-

1 1- - - - - + - _ 1 1 1
3.2

-- - - _+ - - - --1- - - --.1_- -.:...::.....\ =- -- -I- - - - -_+-

2. B

1 1 1 1 ---_I 1
----_+----~-----.l_----_I----_C..::.-=--+-

1 1 1 1 1 - i -
2.6

-- _1 _____ 1_ - - __ .1_ ____ _1 _____ L_ ___ -_1-

1 1 1 1 1
2.4

~_..l1~ __ L ____ _l _____ L_ ____ _1_

1 1 1
2.2

_l _____ L_ ____ _1_

1 1

L ____ .1_
1 1

1.B ~------~------~--------~------~------~--------~~
-40 -20 20 40 60 BO

Temperature C)

ELECTRICAL CHARACTERIZATION DATA B-7

B-8 ELECTRICAL CHARACTERIZATION DATA

A (see Accumulator)
AC power control A-14
Accumulator 2-6, 8-9
Add (ADD) 8-12
Add with carry (ADC) 8-11
Addressing modes

Direct 8-2
Immediate 8-3
Immediate Short 8-4

A

Indirect from Program Memory 8-4
Jump Absolute 8-5
Jump Absolute Long 8-5
Jump Indirect 8-6
Jump Relative 8-5
Register B or X Indirect 8-3
Register B or X Indirect with Post-Incrementing!

Decrementing 8-3
Analog to digital conversion A-18
And (AND) 8-13
Arithmetic Logic Unit (ALU) 2-9

B
B register 8-9
Battery-powered weight measurement A-21
Bidirectional I/O 7-1
Binary division A-38
Binary multiplication A-37
BinarylBCD arithmetic operations A-34
Block diagram

COP820C 9-1
COP820CJ 10-2
COP840C 9-1
COP880C 9-1

Board layout A-49
Brown Out 10-13
Busy flag 5-4

c
C (Carry) 8-9
Characterization data

COP800 Dynamic Idd B-1
COP800 Halt-Idd B-3
COP800 Port D source current B-7
COP800 push-pull sink current B-5
COP800 push-pull source current B-4
COP820C/84C/820CJ Port D source current B-7
COP820CJ Brown Out voltage B-8
COP820CJ Dynamic-Idd B-2
COP820CJ Halt-Idd B-3
COP8780 Dynamic-Idd B-2
COP8780 push-pull source current B-4
COP8780 weak pull-up source current B-6

CKO (Clock Output) 7-4
Clear accumulator (CLR) 8-14
Clear RAM A-33
Clock Output 7-4
Clock-stopping method 6-1
CNTRL register 2-7

Comparator 10-21
inverting input 10-21
non-inverting input 10-21
output 10-21

INDEX

Comparator control and status bits 10-22
CMPEN 10-22
CMPOE 10-22
CMPRD 10-22
enables comparator 10-22
enables comparator output 10-22
reads comparator output 10-22

COP800 port structure 7-1
COP820C

block diagram 9-1
data memory 9-6
input/output ports 9-4
mask options 9-9, 9-10
memory map 9-7
pin descriptions 9-4
pinout/packages 9-3
program memory 9-6
register bit maps 9-6
reset 9-9

COP820CJ 10-1
block diagram 10-2
Brown Out 10-13
CMPIN-10-5
CMPIN+ 10-5
CMPOUT 10-5
comparator 10-21
data memory 10-6
device pinout/packages 10-2
exit HALT mode 10-22
high sink capability 10-5
input/output ports 10-5
mask options 10-25
memory map 10-9
MIWU 10-5
MODOUT 10-6
multi-input wake up 10-22
multi-input wakeup logic 10-23
pin descriptions 10-4
power-on reset 10-12
program memory 10-6
register bit maps 10-6
reset 10-9

COP840C
block diagram 9-1
data memory 9-6
input/output ports 9-4
mask options 9-9, 9-10
memory map 9-7
pin descriptions 9-4
pinout/packages 9-3
program memory 9-6
register bit maps 9-6
reset 9-9

COP880C
block diagram 9-1

INDEX 9

data memory 9-6
input/output ports 9-4
mask options 9-9, 9-10
memory map 9-7
pin descriptions 9-4
pinout/packages 9-3
program memory 9-6
register bit maps 9-6
reset 9-9

Data memory 2-3
COP820C 9-6
COP820CJ 10-6
COP840C 9-6
COP880C 9-6

D

Data memory fetches 2-11
Data memory map 2-5
Decimal correct 8-15
Decimal correct (DC OR) 8-15
Decoupling A-49
Decrement accumulator (DEC) 8-16
Decrement register and skip if zero (DRSZ) 8-17
Dedicated input 7-1
Dedicated output 7-1
Device pinout/packages

COP820C 9-3
COP820CJ 10-2
COP840C 9-3
COP880C 9-3

DRSZ2-14

E
Electric Field emissions A-48
Exchange memory with accumulator (X) 8-51
Exclusive or (XOR) 8-53
Exit HALT mode 7-4, 10-22
External event counter mode 4-4

example A-13
External Interrupt Input 7-4

G
GIE (Global Interrupt Enable) 3-2

H
HALT mode 6-1

exit 6-2
HALT/ Restart (Exit HALT Mode) 7-4
Harvard architecture 2-1
HC (Half Carry) 8-9
High-sink drive 7-2
Hi-Z input 7-1

I
IfB pointer not equal (IFBNE) 8-19
Increment accumulator (INC) 8-24
Index registers 2-8
Industrial timer A-23
Input capture mode 4-5
Input protection A-45
Input/output ports 7-2

COP820C 9-4

10 INDEX

COP820CJ 10-5
COP840C 9-4
COP880C 9-4

Instruction decoding and execution 2-12
Instructions

ADC 8-11
ADD 8-12
AND 8-13
CLR 8-14
DCOR 8-15
DEC 8-16
DRSZ 8-17
IFBIT 8-18
IFBNE 8-19
IFC 8-20
IFEQ 8-21
IFGT 8-22
IFNC 8-23
INC 8-24
INTR8-25
JID 8-27
JMP 8-28
JMPL8-29
JP 8-30
JSR 8-31
JSRL8-32
LAID 8-33
LD 8-34, 8-36, 8-37, 8-38
NOP8-39
OR 8-40
RBIT8-41
RC 8-42
RET 8-43
RETI8-44
RETSK8-45
RRC 8-46
SBIT 8-47
SC 8-48
SUBC 8-49
SWAP 8-50
X 8-51
XOR8-53

Interrupt (lNTR) 8-25
INTR (External Interrupt Input) 7-4, 8-30

JID 2-14
JMP 2-14
JP 2-13
Jump absolute (JMP) 8-28

J

Jump absolute long (JMPL) 8-29
Jump indirect (JID) 8-27
Jump relative (JP) 8-30
Jump subroutine (JSR) 8-31
Jump subroutine long (JSRL) 8-32

LAID 2-14
LED drive A-23

L

Load accumulator (LD) 8-34
Load accumulator indirect (LAID) 8-33

Load B pointer (LD) 8-36
Load memory (LD) 8-37
Load register (LD) 8-38

MA (Memory Address) 8-9
Mask options

COP820C 9-9, 9-10
COP820CJ 10-25
COP840C 9-9, 9-10
COP880C 9-9, 9-10

Master mode 5-1, 5-5
MD (Memory Direct) 8-9
Mechanical shielding A-51
Memory map

COP820C 9-7
COP820CJ 10-9
COP840C 9-7
COP880C 9-7

M

MICROWIRE Select 5-3
MICROWIREIPLUS 5-1

circuit block diagram 5-2
clock I/O 7-4
continuous mode A-3
control register bits 10-8
fast burst output A-4
interface timing 5-3
master mode 5-1, 5-5
master/slave protocol A-I
serial data input 7-4
serial data output 7-4
slave mode 5-1, 5-6
timing 5-3

ModulatorrI'imer
modulator block diagram/output waveform 10-18

MSEL (MICROWIRE Select) 5-3
Multi-input wake up

COP820CJ 10-22
Multi-input wakeup logic 10-23
Multi-Input wakeup registers

Wakeup enable 10-22
Wakeup Pending flags 10-22
Wakeup transition select 10-22
WKEDG 10-22
WKEN 10-22
WKPND 10-22

N
NMC93C06 Instruction Set A-7
NMC93C06-COP820C interface A-6
No operation (NOP) 8-39

o
OR 8-40
Oscillator circuits 2-18, 2-19

p
PC (see Program counter)
PCL (see Program counter)
PCU (see Program counter)
Phase control of an A.C. load A-29
Pin descriptions

COP820C 9-4
COP820CJ 10-4

COP840C 9-4
COP880C 9-4

Port C 7-2
Port D 7-2
Port G 7-2

alternate functions 7-3
Port I 7-3
Port L 7-3
Power wakeup circuit A-41
Power-on reset 10-12
Program counter 2-6,8-10
Program memory 2-3

COP820C 9-6
COP820CJ 10-6
COP840C 9-6
COP880C 9-6

Program memory fetches 2-11
Programming examples A-33
PSW register 2-7,8-10
Pulse width modulation AID A-18
Push-pull output 7-1
PWMmode4-3

REG 8-10
Register bit maps

BUSY 10-8
C 10-8
CMPEN 10-9
CMPOE 10-9
CMPRD 10-9
CNTRL210-9
COP820C 9-6
COP820CJ 10-6
COP840C 9-6
COP880C 9-6
ENI10-8
ENTI10-8
GIE 10-8
HC 10-8
IEDG 10-8
IPND 10-8
LOEDG 10-6
LOEN 10-7
LOPND 10-7
L1EDG 10-6
LIEN 10-7
L1PND 10-7
L2EDG 10-6
L2EN 10-7
L2PND 10-7
L3EDG 10-6
L3EN 10-7
L3PND 10-7
L4EDG 10-7
L4EN 10-7
L4PND 10-7
L5EDG 10-7
L5EN 10-7
L5PND 10-7
L6EDG 10-7
L6EN 10-7
L6PND 10-7
L7EDG 10-7

R

INDEX 11

L7EN 10-7
L7PND 10-7
MCII0-9
MC210-9
MC310-9
MICROWIREIPLUS 10-8
MSEL 10-8
PSW 10-8
SLII0-8
SLO 10-8
TCII0-8
TC210-8
TC310-8
TPND 10-8
TRUN 10-8
WDREG 10-8
WDREN 10-8
WDUDF 10-9
WKEDG 10-6
WKEN 10-7
WKPND 10-7

Reset
COP820C 9-9
COP820CJ 10-9
COP840C 9-9
COP880C 9-9

Reset carry (RC) 8-42
Reset memory bit (RBIT) 8-41
Reset timing 10-12
Return and skip (RETSK) 8-45
Return from interrupt (RETI) 8-44
Return from subroutine (RET) 8-43
Rotate accumulator right through carry (RRC) 8-46

s
SO (MICROWIREIPLUS Serial Data Output) 7-4
Schmitt Triggers 7-3
Serial clock 5-1
Serial communication 5-1
Serial input 5-1
Serial input/output 5-1
Serial interface 5-1
Serial output 5-1
Set carry (SC) 8-48
Set memory bit (SBIT) 8-47
SI (MICROWIREIPLUS Serial Data Input) 7-4
SI (Serial Input) 5-1
Single slope AID conversion A-18
SIO (Serial Input/Output) 5-1
SK (MICROWIREIPLUS Clock I/O) 7-4
SK (Serial Clock) 5-1
SLO bit 5-3
SLI bit 5-3
Slave mode 5-1, 5-6
SO (Serial Output), 5-1
Software trap 3-4, 8-25
SP (see Stack pointer)
Stack pointer 2-8,8-10
Subtract with carry (SUBC) 8-49
Swap nibbles of accumulator (SWAP) 8-50

12 INDEX

Temperature control A-29
Test if carry (IFC) 8-20
Test if equal (IFEQ) 8-21

T

Test if greater than (IFGT) 8-22
Test if no carry (IFNC) 8-23
Test memory bit (IFBIT) 8-18
Timer 1 I/O 7-4
Timer capture example A-I0
Timer control bits 4-2
Timer PWM example A-ll
Timing 5-3
Triac control A-14

Watchdog circuit A-41
Weak pull-up 7-1

X register 8-10

Zero cross detection A-21

w

x

z

til National Semiconductor

WORLDWIDE SALES OFFICES

AUSTRALIA
National Semiconductor
(Australia) pty. Ltd.
l3ldg. 16 Business Park Dr.
Monash Business Park
Nottinghill Melbourne
Victoria 3168 Australia
Tel: (39) 558-9999
Fax: (39) 558-9998

BRAZIL
National Semiconductores
Do Brazil Ltda.
Rue Deputado Lacorda
Franco 120-3A
Sao Paulo-SP Bf'.lzil 05418-000
Tel: (55-11) 212-5066
Fax: (55-11) 212-1181

CANADA
National Semiconductor
(Canada)
5925 Airport Road, Suite 615
Mississauga, Ontario L4v 1 WI
Tel: (416) 678-2920
Fax: (416) 678-2837

National Semiconductor
(Canada)
39 Robertson Road, Suite 101
Nepean, Ontario K2H 8R2
Tel: (613) 596-0411
Fax: (613) 596-1613

National Semiconductor
(Canada)
1870 Boul Des Sources,
Suite 101
Pointe Claire, Quebec H2R 5N4
Tel: (514) 426-2992
Fax: (514) 426-2710

CHINA
National Semiconductor
Beijing China Liaison
Office
Room 613 and 614
No.A2 FuxingmenwaiAve.
Beijing 100046, PRC
China
Tel: 86-10-8568601
Fax: 86-10-8')68606

National Semiconductor
Shanghai China
B702, Universal Mansion
No. 172 Yuyuan Road.
Shanghai200040,PRC
China
Tel: 86-21-2496062
Fax: H6-21-2·196063

FINlAND
National Semiconductor
(U.K.) Ltd.
Mekaanikonkatu 13
SF-0081O Helsinki, Finland
Tel: (0) 759-1855
Fax: (0) 759-1393

FRANCE
National Semiconductor SA.
Parc d'Affaires Technopolis
3,Avenue Du Canada
Bat. ZETA - L.P. 821 Les Ulis
F - 91974 Courtaboeuf
Cedex, France
Tel: (1) 69 183700
Fax: (1) 69 183769

GERMANY
National Semiconductor
GmbH
Livry-Gargan-Strasse.10
D-82256 Fiirstenfeldbruck
Germany
Tel (0-81-41) 35-0
Fax: (0-81-41) 35-15-06

HONG KONG
National Semiconductor
Hong Kong Ltd.
13th Floor, Straight Block
Ocean Centre-5 Canton Road
Tsimshatsui, Kowloon
Hong Kong
Tel: (852) 2737-1600
Fax: (852) 2736-9960

INDIA
National Semiconductor
India Liaison Office
1109, 11 th Floor, West Wing
Raheja Towers, M.G. Road
Bangalore 560001 India
Tel: 91-80-559-9467
Fax: 91-80-559-9468

ISRAEL
National Semiconductor Ltd.
Maskit Street
PO Box 3007
Herzlia B. 46104 Israel
Tel: (09) 59 42 55
Fax: (09) 55 83 22

ITALY
National Semiconductor
S.p.A.
Strada 7, Palazzo R/3
1-20089 Rozzano - Milanofiori
Italy
Tel: (02) 5,7 50 03 00
Fax: (02) 57 50 04 00

JAPAN
National Semiconductor
Japan Ltd.
Sumitomo Chemical
Engineering Center l3ldg. 7F
1-7-1, Nakase, Mihama-Ku
Chiba-City,
Chiba Prefecture 261
Japan
Tel: (043) 299-2300
Fax: (043) 299-2500

KOREA
National Semiconductor
(Far East) Ltd.
13th Floor, Dai Han
Life Insurance 63 Building
60 Yoido-Dong
Youngdeungpo-KU
Seoul Korea 150-763
Tel: (02) 784-8051/3

(02) 785-0696/8
Fax: (02) 784-8054

MALAYSIA
National Semiconductor
SdnBhd
Bayan Lepas Free Trade Zone
11900 Penang Malaysia
Tel: 011-644-9061
Fax: 011-644-9073

MEXICO
Electronica NSC de
Mexico SA
Juventino Rosas No.118-2
Col Guadalupe Inn
Mexico, 01020 D.E. Mexico
Tel: (525) 661-7155
Fax: (525) 661-6905

PUERTO RICO
National Semiconductor
(Puerto Rico)
La Electronica Bldg.
Suite 312,R.D.#1 KM 14.5
Rio Piedias
Puerto Rico 00927
Tel: (809) 758-9211
Fax: (809) 763-6959

SINGAPORE
National Semiconductor
Asia Pacific Pte. Ltd.
200 Cantonment Road
#13-01
Southpoint Singapore 0208
Tel: (65) 225-2226
Fax: (65) 225-7080

SPAIN
National Semiconductor
GmbH
CalleAImendralejos,4
28140 Fuente el Saz delJarama
Madrid, Spain
Tel: (01) 620 1425-
Fax: (01) 620 06 12-

SWEDEN
National Semiconductor
An
P.O. Box 1009
Grosshandlarvagen 7
S-12123 Johanneshov,
Sweden
Tel: (08) 7 22 80 50
Fax: (08) 7 22 90 95

SWITZERlAND
National Semiconductor
(U.K.) Ltd.
AIte Winterthurerstrasse 53
CH-8304 Wallisellen-Ziirich
Switzerland
Tel: (01) 8-30-27-27
Fax: (01) 8-30-19-00

TAIWAN
National Semiconductor
(Far East) Ltd.
9/F, No. 44 Section 2
Chungshan North Road
Taipei,Taiwan, R.O.C.
Tel: (02) 521-3288
Fax: (02) 561-3054

U.K. AND IRElAND
National Semiconductor
(U.K.) Ltd.
1st Floor Milford House
Milford Street
Swindon,Wiltshire SNI 1DW
United Kingdom
Tel: (07-93) 61 41 41
Fax: (07-93) 52 21 80
Telex: 444674

UNITED STATES
National Semiconductor
Corporation
1111 West Bardin Road
Arlington,TX 76017
Tel: (800) 272-9959
Fax: (800) 737-7018

I I
I

tfI National Semiconductor

READER'S COMMENT FORM
In the interest of improving our documentation, National Semiconductor invites your
comments on this manual.

Please restrict your comments to the documentation. Technical Support may be contact­
ed at:

U.S. and Canada (800) 272-9959 S. E. Asia

Europe Deutsch +49 (0) 180-530 85 85 Beijing (+86) 10-856-8601

English +49 (0) 180-532 78 32 Shanghai (+86) 21-6249-6062

Francais +49 (0) 180-532 93 58 Hong Kong (+852) 2737-1600

Italian +49 (0) 180-534 1680 Korea (+82) 2-3771-6909

Japan +81-043-299-2309 Malaysia 011-644-9061

Australia (+61) 3-9558-9999 Singapore (+65) 255-2226

India (+91) 80-559-9467 Taiwan +886-2-521-3288

Please rate this document according to the following categories. Include your comments
below.

EXCELLENT GOOD ADEQUATE FAIR POOR
Readability (style) D D D D D

Technical Accuracy D D D D D

Fulfills Needs D D D D D

Organization D D D D D

Presentation (format) D D D D D

Depth of Coverage D D D D D

Overall Quality D D D D D

NAME DATE

TITLE

COMPANY NAMEIDEPARTMENT

ADDRESS

CITY STATE ZIP

Do you require a response? DYes DNo PHONE

Comments:

COP8 Basic Family User's Manual

FOLD, STAPLE, AND MAlL Literature Number 620895-002

Please return this to:

In U.S.A.
(Including Canada and South America):

National Semiconductor Corporation
2900 Semiconductor Drive
p. O. Box 58090
Santa Clara, CA 95052-8090
Attn: Technical Publications, MIS E215

In South East Asia
(Including Australia, New Zealand and India):

National Semiconductor H.K. Ltd.
15th Floor, Straight Block
Ocean Centre
5 Canton Road
Tsim Sha Tsui East
Kowloon, Hong Kong
Attn: Business Center Marketing

In Europe
(Including Israel):

National Semiconductor GmbH
Livry-Garge-Stra. #10
D-82256 Fuerstenfeldbruck
Germany
Attn: Business Center Marketing

In Japan

National Semiconductor Japan Ltd.
Sumitomo Chemical Engineering Building, 7F
1-7-1, Naskase, Mihama-Ku
Chiba-City, Ciba Prefecture 261
Japan
Attn: Business Center Marketing

(fold) I

---~-.

til National Semiconductor

Place
Stamp
Here

National Semiconductor supplies a comprehensive set of service and support capabilities.
Complete product information and design support is available from National's customer
support centers.

To receive sales literature and technical assistance, contact the National support center in your area.

Americas Tel: 1-800-272-9959
Fax: 1-800-737-7018

Email: support@tevm2.nsc.com

Europe Fax: (+49) 0-180-530 8586
Email: cnjwge@tevm2.nsc.com

Deutsch Tel: (+49) 0-180-530 8585
English Tel: (+49) 0-180-532 78 32
Franc;;ais Tel: (+49) 0-180-53293 58
Italiano Tel: (+49) 0-180-5341680

Japan Tel: 81-043-299-2309
Fax: 81-043-299-2408

See us on the . Worldwide Web at: http://www.natsemi.com

For support in the following countries, please contact the offices listed below:

Australia Hong Kong Malaysia

Tel: (39) 558-9999 Tel: (852) 2737-1600 Tel: 011-644-9061
Fax: (39) 558-9998 Fax: (852) 2736-9960 Fax: 011-644-9073

China - Beijing India Singapore
Tel: 86-10-8568601 Tel: 91-80-559-9467 Tel: (65) 225-2226
Fax: 86-10-8568606 Fax: 91-80-559-9468 Fax: (65) 225-7080

China - Shanghai Korea Taiwan

Tel: 86-21-2496062 Tel: (02) 784-805113 Tel: (02) 521-3288

Fax: 86-21-2496063 (02) 785-0696/8 Fax: (02) 561-3054
Fax: (02) 784-8054

For a complete listing of worldwide sales offices, see inside back page.

© 1996 National Semiconductor Lit"" 620895-002

