
Data Book

Cyrix Corporation Confidential

October 29, 1998 - Revision 2.0

Addenda and other updates for this manual can be obtained from
Cyrix Web site: www.cyrix.com.

�

ii Cyrix Corporation Confidential GXm_db_v2.0

�

©1998 Copyright Cyrix Corporation. All rights reserved.
Printed in the United States of America

Cyrix is a registered trademark of Cyrix Corporation.

Cyrix Trademarks include: Cx5520, Display Compression Technology (DCT), MediaGX, XpressAUDIO,
XpressGRAPHICS, XpressRAM, Virtual System Architecture (VSA)

All other products mentioned herein are trademarks of their respective owners and are hereby recognized as such.
Cyrix is a wholly-owned subsidiary of National Semiconductor® Corp.

Cyrix Corporation
2703 North Central Expressway
Richardson, Texas 75080
United States of America

Cyrix Corporation (Cyrix) reserves the right to make changes in the devices or specification described herein without
notice. Before design-in or order placement, customers are advised to verify that the information on which orders or
design activities are based is current. Cyrix warrants its products to conform to current specifications in accordance
with Cyrix’ standard warranty. Testing is performed to the extent necessary as determined by Cyrix to support this
warranty. Unless explicitly specified by customer order requirements, and agreed to in writing by Cyrix, not all device
characteristics are necessarily tested. Cyrix assumes no liability, unless specifically agreed to in writing, for customer’s
product design or infringement of patents or copyrights of third parties arising from use of Cyrix devices. No license,
either express or implied, to Cyrix patents, copyrights, or other intellectual property rights pertaining to any machine or
combination of Cyrix devices is hereby granted. Cyrix products are not intended for use in any medical, life saving, or
life sustaining systems. Information in this document is subject to change without notice.

GXm_db_v2.0 Cyrix Corporation Confidential Page iii

Introduction

MediaGX™ MMX™-Enhanced Processor
Integrated x86 Solution with MMX Support

�
♦ High Performance

- Processor speeds up to 300MHz
- Write-Back cache
- Memory management with Load Store and

Memory-Read Bypassing
- Six-stage integer pipeline
- XpressRAM™ and XpressGRAPHICS™

♦ MediaGX™ MMX™-Enhanced Processor
- Processor Integrated Functions:

- Graphics Pipeline
- Memory Controller (SDRAM)
- Display Controller
- PCI Controller

- Interfaces with Cx5520 or Cx5530 I/O
Companion chip

- 320 SPGA or 352 BGA package

♦ x86 Instruction Set with MMX Support
- Compatible with MMX Technology
- Runs Windows®95, Windows 3.x, Windows

NT, DOS, UNIX®, OS/2®, Solaris®, and others

The MediaGX™ MMX™-Enhanced Processor, in
combination with the Cx5520 or Cx5530 I/O
Companion chip provides advanced video and
audio functions and permits direct interface to
memory. This high-performance 64-bit processor is
x86 instruction set compatible and supports MMX
technology.

This processor is the latest member of the Cyrix
MediaGX family, offering high performance, fully
accelerated 2D graphics, a synchronous memory
interface and a PCI bus controller, all on a single
chip. As described in separate manuals, the
Cx5520 and Cx5530 I/O Companion chips enable
the full features of the MediaGX processor with
MMX support. These features include full VGA and
VESA video, 16-bit stereo sound, IDE interface,
ISA interface, SMM power management, and AT
compatibility logic. In addition, the newer Cx5530
provides an Ultra DMA/33 interface, MPEG2
assist, and is AC97 Version 2.0 compliant audio.

Internal Block Diagram

Write-Back Floating

Internal Bus Interface Unit

SDRAM Port Cx5520/Cx5530 PCI Bus

Integer

Integrated
Functions

Memory

(CRT/LCD TFT)

X-Bus

Cache Unit Mgmt Unit Unit Point Unit

Pipeline ControllerControllerController
Graphics Memory Display PCI

C-Bus

Page iv Cyrix Corporation Confidential GXm_db_v2.0

�

GXm_db_v2.0 Cyrix Corporation Confidential v

Table of Contents

MediaGX™ MMX™-Enhanced Processor
Integrated x86 Solution with MMX Support

�
Table of Contents

1 Overview 1
1.1 Architecture . .3

1.1.1 Integer Unit .4
1.1.2 Floating Point Unit .4
1.1.3 Write-Back Cache Unit . .4
1.1.4 Memory Management Unit . .5
1.1.5 Internal Bus Interface Unit . .5

1.2 Integrated Functions .5
1.2.1 Graphics Accelerator .5
1.2.2 Display Controller .6
1.2.3 XpressRAM™ Memory Subsystem .6
1.2.4 PCI Controller .6

1.3 System Designs .7

2 Signal Definitions .9
2.1 Pin Assignments . 10
2.2 Signal Descriptions . 21

2.2.1 System Interface Signals . 21
2.2.2 PCI Interface Signals . 24
2.2.3 Memory Controller Interface Signals . 28
2.2.4 Video Interface Signals . 30
2.2.5 Power, Ground, and No Connect Signals . 32
2.2.6 Cyrix Internal Test and Measurement Signals . 33

2.3 Subsystem Signal Connections . 34
2.4 Power Planes . 36

3 Processor Programming . 39
3.1 Core Processor Initialization . 39
3.2 Instruction Set Overview . 41

3.2.1 Lock Prefix . 41

vi Cyrix Corporation Confidential GXm_db_v2.0

� Table of Contents

3.3 Register Sets . 42
3.3.1 Application Register Set . 43
3.3.2 System Register Set . 46
3.3.3 Model Specific Register . 64
3.3.4 Time Stamp Counter . 64

3.4 Address Spaces . 65
3.4.1 I/O Address Space . 65
3.4.2 Memory Address Space . 66

3.5 Offset, Segment, and Paging Mechanisms . 66
3.6 Offset Mechanism . 67
3.7 Descriptors and Segment Mechanisms . 68

3.7.1 Real and Virtual 8086 Mode Segment Mechanisms 68
3.7.2 Segment Mechanism in Protective Mode . 69
3.7.3 GDTR and LDTR Registers . 72
3.7.4 Descriptor Bit Structure . 73
3.7.5 Gate Descriptors . 76

3.8 Multitasking and Task State Segments . 77
3.9 Paging Mechanism . 80
3.10 Interrupts and Exceptions . 82

3.10.1 Interrupts . 82
3.10.2 Exceptions . 83
3.10.3 Interrupt Vectors . 83
3.10.4 Interrupt and Exception Priorities . 85
3.10.5 Exceptions in Real Mode . 86
3.10.6 Error Codes . 86

3.11 System Management Mode . 87
3.11.1 SMM Enhancements . 88
3.11.2 SMM Operation . 88
3.11.3 The SMI# Pin . 89
3.11.4 SMM Configuration Registers . 89
3.11.5 SMM Memory Space Header . 90
3.11.6 SMM Instructions . 92
3.11.7 SMM Memory Space . 93
3.11.8 SMI Generation . 93
3.11.9 SMI Service Routine Execution . 94

3.12 Shutdown and Halt . 97

GXm_db_v2.0 Cyrix Corporation Confidential vii

Table of Contents

3.13 Protection . 97
3.13.1 Privilege Levels . 97
3.13.2 I/O Privilege Levels . 98
3.13.3 Privilege Level Transfers . 98
3.13.4 Initialization and Transition to Protected Mode 99

3.14 Virtual 8086 Mode . 100
3.14.1 Memory Addressing . 100
3.14.2 Protection . 100
3.14.3 Interrupt Handling . 100
3.14.4 Entering and Leaving Virtual 8086 Mode . 100

3.15 Floating Point Unit Operations . 101
3.15.1 FPU (Floating Point Unit) Register Set . 101
3.15.2 FPU Tag Word Register . 101
3.15.3 FPU Status Register . 101
3.15.4 FPU Mode Control Register . 101

4 Integrated Functions . 103
4.1 Integrated Functions Programming Interface . 104

4.1.1 Graphics Control Register . 104
4.1.2 Control Registers . 106
4.1.3 Graphics Memory . 106
4.1.4 L1 Cache Controller . 107
4.1.5 Display Driver Instructions . 110
4.1.6 CPU_READ/CPU_WRITE Instructions . 111

4.2 Internal Bus Interface Unit . 112
4.2.1 FPU Error Support . 112
4.2.2 A20M Support . 112
4.2.3 SMI Generation . 112
4.2.4 640KB to 1MB Region . 112
4.2.5 Internal Bus Interface Unit Registers . 113

4.3 Memory Controller . 116
4.3.1 Memory Array Configuration . 117
4.3.2 Memory Organizations . 118
4.3.3 SDRAM Commands . 119
4.3.4 Memory Controller Register Description . 121
4.3.5 Address Translation . 127
4.3.6 Memory Cycles . 130
4.3.7 SDRAM Interface Clocking . 133

viii Cyrix Corporation Confidential GXm_db_v2.0

� Table of Contents

4.4 Graphics Pipeline . 135
4.4.1 BitBLT/Vector Engine . 135
4.4.2 Master/Slave Registers . 136
4.4.3 Pattern Generation . 136
4.4.4 Source Expansion . 138
4.4.5 Raster Operations . 138
4.4.6 Graphics Pipeline Register Descriptions . 139

4.5 Display Controller . 145
4.5.1 Display FIFO . 146
4.5.2 Compression Technology . 146
4.5.3 Motion Video Acceleration Support . 147
4.5.4 Hardware Cursor . 147
4.5.5 Display Timing Generator . 148
4.5.6 Dither and Frame-Rate Modulation . 148
4.5.7 Display Modes . 148
4.5.8 Graphics Memory Map . 152
4.5.9 Display Controller Registers . 154
4.5.10 Memory Organization Registers . 164
4.5.11 Timing Registers . 167
4.5.12 Cursor Position Registers . 171
4.5.13 Color Registers . 173
4.5.14 Palette Access Registers . 174
4.5.15 Cx5520/Cx5530 Display Controller Interface 176

4.6 PCI Controller . 178
4.6.1 X-Bus PCI Slave . 178
4.6.2 X-Bus PCI Master . 178
4.6.3 PCI Arbiter . 178
4.6.4 Generating Configuration Cycles . 178
4.6.5 Generating Special Cycles . 178
4.6.6 PCI Configuration Space Control Registers . 179
4.6.7 PCI Configuration Space Registers . 180
4.6.8 PCI Cycles . 185

5 Virtual Subsystem Architecture . 189
5.1 Virtual VGA . 190

5.1.1 Traditional VGA Hardware . 190

GXm_db_v2.0 Cyrix Corporation Confidential ix

Table of Contents

5.2 MediaGX™ Virtual VGA . 193
5.2.1 Datapath Elements . 193
5.2.2 Video Refresh . 194
5.2.3 MediaGX VGA Hardware . 195
5.2.4 VGA Video BIOS . 199
5.2.5 Virtual VGA Register Descriptions . 199

6 Power Management . 201
6.1 APM Support . 201
6.2 CPU Suspend Command Registers . 202
6.3 Suspend Modulation . 202
6.4 3-Volt Suspend Mode . 203
6.5 Suspend Mode and Bus Cycles . 204

6.5.1 Initiating Suspend with SUSP# . 204
6.5.2 Initiating Suspend with HALT . 205
6.5.3 Responding to a PCI Access During Suspend Mode 206
6.5.4 Stopping the Input Clock . 207

6.6 MediaGX Processor Serial Bus . 208
6.6.1 Serial Packet Transmission . 208

6.7 Power Management Registers . 209

7 Electrical Specifications . . . 213
7.1 Part Numbers . 213
7.2 Electrical Connections . 213

7.2.1 Power/Ground Connections and Decoupling 213
7.2.2 Power Sequencing the Core and I/O Voltages 213
7.2.3 NC-Designated Pins . 213
7.2.4 Pull-Up and Pull-Down Resistors . 214
7.2.5 Unused Input Pins . 214

7.3 Absolute Maximum Ratings . 215
7.4 Recommended Operating Conditions . 216
7.5 DC Characteristics . 217
7.6 AC Characteristics . 218

8 Package Specifications . 227
8.1 Thermal Characteristics . 227
8.2 Mechanical Package Outlines . 229

x Cyrix Corporation Confidential GXm_db_v2.0

� Table of Contents

9 Instruction Set 233
9.1 General Instruction Set Format . 234

9.1.1 Prefix (Optional) . 235
9.1.2 Opcode . 235
9.1.3 mod and r/m Byte (Memory Addressing) . 237
9.1.4 reg Field . 238
9.1.5 s-i-b Byte (Scale, Indexing, Base) . 239

9.2 CPUID Instruction . 240
9.2.1 Standard CPUID Levels . 241
9.2.2 Extended CPUID Levels . 243

9.3 Processor Core Instruction Set . 245
9.4 FPU Instruction Set . 260
9.5 MMX™ Instruction Set . 266
9.6 Cyrix Extended MMX™ Instruction Set . 272

Appendix A Support Documentation . 275
A.1 Order Information . 275
A.2 Data Book Revision History . 276

GXm_db_v2.0 Cyrix Corporation Confidential xi

List of Figures and Tables

Figure 1-1 Internal Block Diagram . .3

Figure 1-2 System Block Diagram . .7

Figure 1-3 Cx9210 Interface System Diagram . .8

Figure 2-1 Functional Block Diagram .9

Figure 2-2 352 BGA Pin Assignment Diagram . 11

Figure 2-3 320 SPGA Pin Assignment Diagram . 16

Figure 2-4 Subsystem Signal Connections . 34

Figure 2-5 PIXEL Signal Connections . 35

Figure 2-6 BGA Recommended Split Power Plane and Decoupling 36

Figure 2-7 SPGA Recommended Split Power Plane and Decoupling 37

Figure 3-1 CPU Cache Architecture . 61

Figure 3-2 Memory and I/O Address Spaces . 65

Figure 3-3 Offset Address Calculation . 67

Figure 3-4 Real Mode Address Calculation . 68

Figure 3-5 Protected Mode Address Calculation . 69

Figure 3-6 Selector Mechanisms . 70

Figure 3-7 Selector Mechanism Caching . 71

Figure 3-8 Paging Mechanism . 80

Figure 3-9 System Management Memory Address Space . 87

Figure 3-10 SMM Execution Flow . 88

Figure 3-11 SMI Nesting State Machine . 95

Figure 3-12 SMM and Suspend Mode State Diagram . 96

Figure 4-1 Internal Block Diagram . 103

Figure 4-2 MediaGX Processor Memory Space . 105

Figure 4-3 Memory Controller Block Diagram . 116

Figure 4-4 Memory Array Configuration . 117

Figure 4-5 Basic Read Cycle with a CAS Latency of Two . 130

Figure 4-6 Basic Write Cycle . 131

Figure 4-7 Auto Refresh Cycle . 132

Figure 4-8 Read/Write Command to a New Row Address . 132

Figure 4-9 SDCLKIN Clocking . 133

Figure 4-10 Effects of SHFTSDCLK Programming Bits Example 134

Figure 4-11 Graphics Pipeline Block Diagram . 135

Figure 4-12 Example of Monochrome Patterns . 137

Figure 4-13 Example of Dither Patterns . 137

List of Figures

xii Cyrix Corporation Confidential GXm_db_v2.0

� List of Figures and Tables

Figure 4-14 Display Controller Block Diagram . 145

Figure 4-15 Pixel Arrangement Within a DWORD . 152

Figure 4-16 Display Controller Signal Connections . 176

Figure 4-17 Video Port Data Transfer (Cx5520/Cx5530) . 177

Figure 4-18 Basic Read Operation . 185

Figure 4-19 Basic Write Operation . 186

Figure 4-20 Basic Arbitration . 187

Figure 6-1 SUSP#-Initiated Suspend Mode . 204

Figure 6-2 HALT-Initiated Suspend Mode . 205

Figure 6-3 PCI Access During Suspend Mode . 206

Figure 6-4 Stopping SYSCLK During Suspend Mode . 207

Figure 7-1 Drive Level and Measurement Points for Switching Characteristics 218

Figure 7-2 SYSCLK Timing and Measurement Points . 219

Figure 7-3 DCLK Timing and Measurement Points . 220

Figure 7-4 SDCLK, SDCLK[3:0] Timing and Measurement Points 220

Figure 7-5 Output Timing . 221

Figure 7-6 Input Timing . 221

Figure 7-7 Output Valid Timing . 222

Figure 7-8 Setup and Hold Timings - Read Data In . 222

Figure 7-9 Graphics Port Timing . 223

Figure 7-10 Video Port Timing . 224

Figure 7-11 DCLK Timing . 224

Figure 7-12 TCK Timing and Measurement Points . 225

Figure 7-13 JTAG Test Timings . 226

Figure 8-1 352-Terminal BGA Mechanical Package Outline 229

Figure 8-2 320-Pin SPGA Mechanical Package Outline . 230

GXm_db_v2.0 Cyrix Corporation Confidential xiii

List of Figures and Tables

Table 2-1 Pin Type Definitions. . 10

Table 2-2 352 BGA Pin Assignments - Sorted by Pin Number 12

Table 2-3 352 BGA Pin Assignments - Sorted Alphabetically by Signal Name 14

Table 2-4 320 SPGA Pin Assignments - Sorted by Pin Number 17

Table 2-5 320 SPGA Pin Assignments - Sorted Alphabetically by Signal Name 19

Table 3-1 Initialized Core Register Controls . 40

Table 3-2 Application Register Set . 42

Table 3-3 Segment Register Selection Rules . 44

Table 3-4 EFLAGS Register . 45

Table 3-5 System Register Set . 46

Table 3-6 Control Registers Map . 47

Table 3-7 CR4-CR0 Bit Definitions . 48

Table 3-8 Effects of Various Combinations of EM, TS, and MP Bits 49

Table 3-9 Configuration Register Summary . 50

Table 3-10 Configuration Register Map. . 51

Table 3-11 Configuration Registers . 52

Table 3-12 Debug Registers . 57

Table 3-13 DR7 and DR6 Bit Definitions . 58

Table 3-14 Test Registers . 59

Table 3-15 TR7-TR6 Bit Definitions . 60

Table 3-16 TR5-TR3 Bit Definitions. . 62

Table 3-17 Cache Test Operations . 63

Table 3-18 Memory Addressing Modes. . 67

Table 3-19 GDTR, LDTR and IDTR Registers . 72

Table 3-20 Application and System Segment Descriptors . 73

Table 3-21 Application and System Segment Descriptors Bit Definitions 74

Table 3-22 Application and System Segment Descriptors TYPE Bit Definitions 75

Table 3-23 Gate Descriptors . 76

Table 3-24 Gate Descriptors Bit Definitions. . 76

Table 3-25 32-Bit Task State Segment (TSS) Table . 78

Table 3-26 16-Bit Task State Segment (TSS) Table . 79

Table 3-27 Directory Table Entry (DTE) and Page Table Entry (PTE) 81

Table 3-28 Interrupt Vector Assignments . 84

Table 3-29 Interrupt and Exception Priorities . 85

Table 3-30 Exception Changes in Real Mode . 86

List of Tables

xiv Cyrix Corporation Confidential GXm_db_v2.0

� List of Figures and Tables

Table 3-31 Error Codes . 86

Table 3-32 Error Code Bit Definitions . 86

Table 3-33 SMI# and SMINT Recognition Requirements. . 88

Table 3-34 SMM Memory Space Header . 90

Table 3-35 SMM Memory Space Header Description . 91

Table 3-36 SMM Instruction Set . 92

Table 3-37 Descriptor Types Used for Control Transfer . 99

Table 3-38 FPU Registers . 102

Table 4-1 GCR Register . 104

Table 4-2 Display Resolution Skip Counts . 106

Table 4-3 L1 Cache BitBLT Register Summary . 107

Table 4-4 L1 Cache BitBLT Registers . 108

Table 4-5 Scratchpad Organization . 109

Table 4-6 Display Driver Instructions . 110

Table 4-7 CPU-Access Instructions . 111

Table 4-8 Address Map for CPU-Access Registers . 111

Table 4-9 Internal Bus Interface Unit Register Summary . 113

Table 4-10 Internal Bus Interface Unit Registers . 114

Table 4-11 Region-Control-Field Bit Definitions . 115

Table 4-12 Synchronous DRAM Configurations . 118

Table 4-13 Basic Command Truth Table . 119

Table 4-14 Address Line Programming during MRS Cycles . 119

Table 4-15 Memory Controller Register Summary . 121

Table 4-16 Memory Controller Registers . 122

Table 4-17 Auto LOI -- 2 DIMMs, Same Size, 1 DIMM Bank . 128

Table 4-18 Auto LOI -- 2 DIMMs, Same Size, 2 DIMM Banks 128

Table 4-19 Non-Auto LOI -- 1 or 2 DIMMs, Different Sizes, 1 DIMM Bank 129

Table 4-20 Non-Auto LOI -- 1 or 2 DIMMs, Different Sizes, 2 DIMM Banks 129

Table 4-21 Graphics Pipeline Registers . 136

Table 4-22 GP_RASTER_MODE Bit Patterns . 138

Table 4-23 Common Raster Operations . 138

Table 4-24 Graphics Pipeline Configuration Register Summary 139

Table 4-25 Graphics Pipeline Configuration Registers . 141

Table 4-26 TFT Panel Display Modes . 149

Table 4-27 TFT Panel Data Bus Formats. 150

GXm_db_v2.0 Cyrix Corporation Confidential xv

List of Figures and Tables

Table 4-28 CRT RAMDAC Data Bus Formats . 150

Table 4-29 CRT Display Modes. 151

Table 4-30 Display Controller Register Summary . 154

Table 4-31 Display Controller Configuration and Status Registers 157

Table 4-32 Display Controller Memory Organization Registers 165

Table 4-33 Display Controller Timing Registers . 168

Table 4-34 Display Controller Cursor Position Registers . 171

Table 4-35 Display Controller Color Registers . 173

Table 4-36 Display Controller Palette and RAM Diagnostic Registers 174

Table 4-37 Special-Cycle Code to CONFIG_ADDRESS . 178

Table 4-38 PCI Configuration Registers . 179

Table 4-39 Format for Accessing the Internal PCI Configuration Registers 180

Table 4-40 PCI Configuration Space Register Summary . 180

Table 4-41 PCI Configuration Registers . 181

Table 5-1 Standard VGA Modes. 191

Table 5-2 VGA Configuration Registers Summary . 196

Table 5-3 VGA Configuration Registers . 197

Table 5-4 Virtual VGA Register Summary . 199

Table 5-5 Virtual VGA Registers. 200

Table 6-1 Power Management Register Summary . 209

Table 6-2 Power Management Control and Status Registers 210

Table 6-3 Power Management Programmable Address Region Registers 212

Table 7-1 Part Numbers . 213

Table 7-2 Pins with 20-kohm Internal Resistor . 214

Table 7-3 Absolute Maximum Ratings. 215

Table 7-4 Recommended Operating Conditions . 216

Table 7-5 DC Characteristics (at Recommended Operating Conditions) 217

Table 7-6 Drive Level and Measurement Points for Switching Characteristics 218

Table 7-7 Clock Signals . 219

Table 7-8 System Signals . 220

Table 7-9 PCI Interface Signals . 221

Table 7-10 SDRAM Interface Signals. 222

Table 7-11 Video Interface Signals . 223

Table 7-12 JTAG AC Specification . 225

Table 8-1 Case to Ambient Thermal Resistance Examples for 70°C Product. 228

xvi Cyrix Corporation Confidential GXm_db_v2.0

� List of Figures and Tables

Table 8-2 Case to Ambient Thermal Resistance Examples for 85°C Product. 228

Table 8-3 Mechanical Package Outline Legend . 231

Table 9-1 General Instruction Set Format . 234

Table 9-2 Instruction Fields . 234

Table 9-3 Instruction Prefix Summary . 235

Table 9-4 w Field Encoding . 235

Table 9-5 d Field Encoding . 236

Table 9-6 s Field Encoding . 236

Table 9-7 eee Field Encoding . 236

Table 9-8 General Registers Selected by mod r/m Fields and w Field 237

Table 9-9 mod r/m Field Encoding. 237

Table 9-10 General Registers Selected by reg Field . 238

Table 9-11 sreg2 Field Encoding . 238

Table 9-12 sreg3 Field Encoding . 238

Table 9-13 ss Field Encoding . 239

Table 9-14 index Field Encoding . 239

Table 9-15 mod base Field Encoding . 239

Table 9-16 CPUID Levels Summary . 240

Table 9-17 CPUID Data Returned when EAX = 0 . 241

Table 9-18 EAX, EBX, ECX CPUID Data Returned when EAX = 1 241

Table 9-19 EDX CPUID Data Returned when EAX = 1 . 242

Table 9-20 Standard CPUID with EAX = 0000 0002h . 242

Table 9-21 Maximum Extended CPUID Level . 243

Table 9-22 EAX, EBX, ECX CPUID Data Returned when EAX = 8000 0001h 243

Table 9-23 EDX CPUID Data Returned when EAX = 8000 0001h 243

Table 9-24 Official CPU Name . 244

Table 9-25 Standard CPUID with EAX = 8000 0005h . 244

Table 9-26 Processor Core Instruction Set Table Legend . 245

Table 9-27 Processor Core Instruction Set Summary . 246

Table 9-28 FPU Instruction Set Table Legend . 260

Table 9-29 FPU Instruction Set Summary . 261

Table 9-30 MMX Instruction Set Table Legend . 266

Table 9-31 MMX Instruction Set Summary . 267

Table 9-32 Cyrix Extend MMX Instruction Set Table Legend. 272

Table 9-33 Cyrix Extended MMX Instruction Set Summary . 273

GXm_db_v2.0 Cyrix Corporation Confidential Page 1

MediaGX™ MMX™-Enhanced Processor
Integrated x86 Solution with MMX Support

�
1 Overview
The Cyrix MediaGX™ MMX™-Enhanced
Processor is the latest member of the Cyrix
MediaGX processor family. It is an advanced 64-bit
x86 compatible processor offering high perfor-
mance, fully accelerated 2D graphics, a 64-bit
synchronous DRAM controller and a PCI bus
controller, all on a single chip. Plus it is compatible
with MMX™ technology. This latest generation of
the MediaGX processor enables a new class of low
cost, premium performance notebook/desktop
computer designs.

The MediaGX processor core is a proven design
that offers competitive CPU performance. It has
integer and floating point execution units that are
based on sixth-generation technology. The integer
core contains a single, six-stage execution pipeline
and offers advanced features such as operand
forwarding, branch target buffers, and extensive
write buffering. A 16KB write-back L1 cache is
accessed in a unique fashion that eliminates pipe-
line stalls to fetch operands that hit in the cache.

In addition to the advanced CPU features, the
MediaGX processor integrates a host of functions
which are typically implemented with external
components. A full-function graphics accelerator
provides pixel processing and rendering functions.

A separate on-chip video buffer enables >30FPS
MPEG1 video playback when used together with
either the Cx5520™ or Cx5530™ I/O Companion
chip. Graphics and system memory accesses are
supported by a tightly-coupled synchronous DRAM
(SDRAM) memory controller. This tightly coupled
memory subsystem eliminates the need for an
external L2 cache.

The MediaGX processor includes Cyrix’s Virtual
System Architecture™ (VSA™) enabling Xpress-
GRAPHICS™ and XpressAUDIO™ as well as
generic emulation capabilities. Software handler
routines for XpressGRAPHICS and XpressAUDIO
are included in the BIOS and provide compatible
VGA and 16-bit industry standard audio emulation.
XpressAUDIO technology eliminates much of the
hardware traditionally associated with audio func-
tions.

General Features

• Packaged in:
- 352-Terminal Ball Grid Array (BGA) or
- 320-Pin Staggered Pin Grid Array (SPGA)

• 0.35-micron four layer metal CMOS process

• Split rail design (3.3V I/O and 2.9V core)

64-Bit x86 Processor

• Supports the MMX™ instruction set extension
for the acceleration of multimedia applications

• Speeds offered up to 300MHz

• 16KB unified L1 cache

• Integrated Floating Point Unit (FPU)

• Re-entrant System Management Mode (SMM)
enhanced for the Cyrix Virtual System Architec-
ture

�

Page 2 Cyrix Corporation Confidential GXm_db_v2.0

PCI Controller

• Fixed, rotating, hybrid, or ping-pong arbitration

• Supports up to three PCI bus masters

• Synchronous CPU and PCI bus clock frequency

• Supports concurrency between PCI master and
L1 cache

Power Management

• Designed to support Cx5520/Cx5530 power
management architecture

• CPU only Suspend or full 3V Suspend
supported:
- Clocks to CPU core stopped for CPU

Suspend
- All on-chip clocks stopped for 3V Suspend
- Suspend refresh supported for 3V Suspend

Virtual Systems Architecture™

• New architecture allowing OS independent (soft-
ware) virtualization of hardware functions

• Provides compatible high performance legacy
VGA core functionality

Note: GUI (Graphical User Interface) graphics
acceleration is pure hardware.

• Provides Cyrix’s 16-bit XpressAUDIO™

2D Graphics Accelerator

• Graphics pipeline performance significantly
increased over previous generations by pipe-
lining burst reads/writes

• Accelerates BitBLTs, line draw, text

• Supports all 256 raster operations

• Supports transparent BLTs

• Runs at core clock frequency

• Full VGA and VESA mode support

• Special "Driver level” instructions utilize internal
scratchpad for enhanced performance

Display Controller

• Video Generator (VG) improves memory effi-
ciency for display refresh with SDRAM

• Supports a separate MPEG1 video buffer and
data path to enable video acceleration in the
Cx5520

• Supports a separate MPEG2 video buffer and
data path to enable video acceleration in the
Cx5530

• Internal palette RAM for use with the
Cx5520/Cx5530

• Direct interface to Cx5520/Cx5530 for CRT and
TFT flat panel support which eliminates need for
external RAMDAC

• Hardware frame buffer compressor/decom-
pressor

• Hardware cursor

• Supports up to 1280x1024x8 BPP and
1024x768x16 BPP

XpressRAM™ Memory Subsystem

• Memory control/interface directly from CPU

• 64-Bit wide memory bus

• SDRAM bus operating frequency range of 66 to
100MHz

• Support for:
- Two 168-pin unbuffered DIMMs
- Up to 16 open banks simultaneously
- Single or 16-byte reads (burst length of two)

• LVTTL technology compatible

GXm_db_v2.0 Cyrix Corporation Confidential Page 3

Architecture 1
1.1 Architecture
The Cyrix MediaGX MMX-Enhanced Processor
represents a new generation of x86-compatible 64-
bit microprocessors with sixth-generation features.
The decoupled load/store unit (within the memory
management unit) allows multiple instructions in a
single clock cycle. Other features include single-
cycle execution, single-cycle instruction decode,
16KB write-back cache, and clock rates up to
300MHz. These features are made possible by the
use of advanced-process technologies and super-
pipelining.

The MediaGX processor has low power consump-
tion at all clock frequencies. Where additional
power savings are required, designers can make
use of Suspend mode, Stop Clock capability, and
System Management Mode (SMM).

The MediaGX processor is divided into major func-
tional blocks (as shown in Figure 1-1):
• Integer Unit
• Floating Point Unit (FPU)
• Write-Back Cache Unit
• Memory Management Unit (MMU)
• Internal Bus Interface Unit
• Integrated Functions

Instructions are executed in the integer unit and in
the floating point unit. The cache unit stores the
most recently used data and instructions and
provides fast access to this information for the
integer and floating point units.

Figure 1-1 Internal Block Diagram

Write-Back
Unit FPU

Internal Bus Interface Unit

Graphics Memory Display PCI

SDRAM Port Cx5520/Cx5530 PCI Bus

Integer
Cache Unit

Integrated
Functions

MMU

(CRT/LCD TFT)

X-Bus

Pipeline Controller Controller Controller

C-Bus

�

Page 4 Cyrix Corporation Confidential GXm_db_v2.0

Architecture

1.1.1 Integer Unit
The integer unit consists of:
• Instruction Buffer
• Instruction Fetch
• Instruction Decoder and Execution

The superpipelined integer unit fetches, decodes,
and executes x86 instructions through the use of a
six-stage integer pipeline.

The instruction fetch pipeline stage generates,
from the on-chip cache, a continuous high-speed
instruction stream for use by the processor. Up to
128 bits of code are read during a single clock
cycle.

Branch prediction logic within the prefetch unit
generates a predicted target address for uncondi-
tional or conditional branch instructions. When a
branch instruction is detected, the instruction fetch
stage starts loading instructions at the predicted
address within a single clock cycle. Up to 48 bytes
of code are queued prior to the instruction decode
stage.

The instruction decode stage evaluates the code
stream provided by the instruction fetch stage and
determines the number of bytes in each instruction
and the instruction type. Instructions are processed
and decoded at a maximum rate of one instruction
per clock.

The address calculation function is super-pipelined
and contains two stages, AC1 and AC2. If the
instruction refers to a memory operand, AC1 calcu-
lates a linear memory address for the instruction.

The AC2 stage performs any required memory
management functions, cache accesses, and
register file accesses. If a floating point instruction
is detected by AC2, the instruction is sent to the
floating point unit for processing.

The execution stage, under control of microcode,
executes instructions using the operands provided
by the address calculation stage.

Write-back, the last stage of the integer unit,
updates the register file within the integer unit or
writes to the load/store unit within the memory
management unit.

1.1.2 Floating Point Unit
The FPU (Floating Point Unit) interfaces to the
integer unit and the cache unit through a 64-bit
bus. The FPU is x87-instruction-set compatible and
adheres to the IEEE-754 standard. Because
almost all applications that contain FPU instruc-
tions also contain integer instructions, the
MediaGX processor’s FPU achieves high perfor-
mance by completing integer and FPU operations
in parallel.

FPU instructions are dispatched to the pipeline
within the integer unit. The address calculation
stage of the pipeline checks for memory manage-
ment exceptions and accesses memory operands
for use by the FPU. Once the instructions and
operands have been provided to the FPU, the FPU
completes instruction execution independently of
the integer unit.

1.1.3 Write-Back Cache Unit
The 16KB write-back unified cache is a
data/instruction cache and is configured as four-
way set associative. The cache stores up to 16KB
of code and data in 1024 cache lines.

The MediaGX processor provides the ability to allo-
cate a portion of the L1 cache as a scratchpad,
which is used to accelerate the Virtual Systems
Architecture algorithms as well as for some
graphics operations.

GXm_db_v2.0 Cyrix Corporation Confidential Page 5

Integrated Functions 1
1.1.4 Memory Management Unit
The memory management unit (MMU) translates
the linear address supplied by the integer unit into
a physical address to be used by the cache unit
and the internal bus interface unit. Memory
management procedures are x86-compatible,
adhering to standard paging mechanisms.

The MMU also contains a load/store unit that is
responsible for scheduling cache and external
memory accesses. The load/store unit incorpo-
rates two performance-enhancing features:

• Load-store reordering that gives priority to
memory reads required by the integer unit over
writes to external memory.

• Memory-read bypassing that eliminates
unnecessary memory reads by using valid data
from the execution unit.

1.1.5 Internal Bus Interface Unit
The internal bus interface unit provides a bridge
from the MediaGX processor to the integrated
system functions (i.e., memory subsystem, display
controller, graphics pipeline) and the PCI bus inter-
face.

When external memory access is required, the
physical address is calculated by the memory
management unit and then passed to the internal
bus interface unit, which translates the cycle to an
X-Bus cycle (the X-Bus is a Cyrix proprietary
internal bus which provides a common interface for
all of the system modules). The X-Bus memory
cycle now is arbitrated between other pending X-
Bus memory requests to the SDRAM controller
before completing.

In addition, the internal bus interface unit provides
configuration control for up to 20 different regions
within system memory with separate controls for
read access, write access, cacheability, and PCI
access.

1.2 Integrated Functions
The MediaGX processor integrates the following
functions traditionally implemented using external
devices:

• High-performance 2D graphics accelerator

• Separate CRT and TFT data paths from the
display controller

• SDRAM memory controller

• PCI bridge

The processor has also been enhanced to support
Cyrix’s proprietary Virtual System Architecture
(VSA) implementation.

The MediaGX processor implements a Unified
Memory Architecture (UMA). By using Cyrix’s
Display Compression Technology™ (DCT), the
performance degradation inherent in traditional
UMA systems is eliminated.

1.2.1 Graphics Accelerator
The graphics accelerator is a full-featured GUI
(Graphical User Interface) accelerator. The
graphics pipeline implements a bitBLT engine for
frame buffer bitBLTs and rectangular fills. Addi-
tional instructions in the integer unit may be
processed, as the bitBLT engine assists the CPU in
the bitBLT operations that take place between
system memory and the frame buffer. This combi-
nation of hardware and software is used by the
display driver to provide very fast transfers in both
directions between system memory and the frame
buffer. The bitBLT engine also draws randomly-
oriented vectors, and scanlines for polygon fill. All
of the pipeline operations described in the following
list can be applied to any bitBLT operation.

�

Page 6 Cyrix Corporation Confidential GXm_db_v2.0

Integrated Functions

• Pattern Memory. Render with 8x8 dither, 8x8
monochrome, or 8x1 color pattern.

• Color Expansion. Expand monochrome
bitmaps to full-depth 8- or 16-bit colors.

• Transparency. Suppresses drawing of back-
ground pixels for transparent text.

• Raster Operations. Boolean operation
combines source, destination, and pattern
bitmaps.

1.2.2 Display Controller
The display port is a direct interface to the
Cx5520/Cx5530 which drives a TFT flat panel
display, LCD panel, or a CRT display.

The display controller (video generator) retrieves
image data from the frame buffer region of
memory, performs a color-look-up if required,
inserts the cursor overlay into the pixel stream,
generates display timing, and formats the pixel
data for output to a variety of display devices. The
display controller contains Display Compression
Technology (DCT) that allows the MediaGX
processor to refresh the display from a
compressed copy of the frame buffer. DCT typically
decreases the screen-refresh bandwidth require-
ment by a factor of 15 to 20, further minimizing
bandwidth contention.

1.2.3 XpressRAM™ Memory
Subsystem

The memory controller drives a 64-bit SDRAM port
directly. The SDRAM memory array contains both
the main system memory and the graphics frame
buffer. Up to four module banks of SDRAM are
supported. Each module bank will have two or four
component banks depending on the memory size
and organization. The maximum configuration is
four module banks with four component banks
providing a total of 16 open banks. The maximum
memory size is 1GB.

The memory controller handles multiple requests
for memory data from the MediaGX processor, the
graphics accelerator and the display controller. The
memory controller contains extensive buffering
logic that helps minimize contention for memory
bandwidth between graphics and CPU requests.
The memory controller cooperates with the internal
bus controller to determine the cacheability of all
memory references.

1.2.4 PCI Controller
The MediaGX processor incorporates a full-func-
tion PCI interface module that includes the PCI
arbiter. All accesses to external I/O devices are
sent over the PCI bus, although most memory
accesses are serviced by the SDRAM controller.
The Internal Bus Interface Unit contains address
mapping logic that determines if memory accesses
are targeted for the SDRAM or for the PCI bus.

GXm_db_v2.0 Cyrix Corporation Confidential Page 7

System Designs 1
1.3 System Designs
The Cyrix MediaGX™ Integrated Subsystem with
MMX™ support consists of two chips, the
MediaGX MMX-Enhanced Processor and the
Cx5520™ or Cx5530™ I/O Companion. The
subsystem provides high performance using 64-bit
x86 processing. The two chips integrate video,
audio and memory interface functions normally
performed by external hardware.

As described in separate manuals, the Cx5520 and
Cx5530 enable the full features of the MediaGX
processor with MMX support. These features

include full VGA and VESA video, 16-bit stereo
sound, IDE interface, ISA interface, SMM power
management, and AT compatibility logic. In addi-
tion, the newer Cx5530 provides an Ultra DMA/33
interface, MPEG2 assist, and AC97 Version 2.0
compliant audio.

Figure 1-2 shows a basic block system diagram
(refer to Figure 2-4 on page 34 for detailed
subsystem interconnection signals). It includes the
Cyrix Cx9210™ Dual-Scan Flat Panel Display
Controller for designs that need to interface to a
DSTN panel (instead of TFT panel).

Figure 1-2 System Block Diagram

YUV Port
(Video)

RGB Port

PCI Interface

SDRAMMD[63:0]

PCI Bus

Cx55x0™
I/O Companion

Graphics Data

Video Data

Analog RGB

Digital RGB (to TFT or DSTN Panel)

CRT

TFT
Panel

USB
(2 Ports)

AC97
CODEC

Speakers

CD
ROM
Audio

Micro-
phone

GPIO

Port

(Graphics)

MediaGX™
MMX™-Enhanced

Super

ISA Bus

SDRAM

Serial
Packet

Clocks
Processor

I/O BIOS
IDE

Devices14.31818
MHz Crystal

IDE Control

System
Clocks

DC-DC & Battery

Cx9210™
DSTN

Controller

DSTN Panel

Note: Dashed lines denote Cx5520 application.

�

Page 8 Cyrix Corporation Confidential GXm_db_v2.0

System Designs

The Cx9210 converts the digital RGB output of a
Cx5520 or Cx5530 I/O Companion chip to the
digital output suitable for driving a dual-scan color
STN (DSTN) flat panel LCD. It connects to the
digital RGB output of a MediaGX™ processor or
Cx55x0 and drives the graphics data onto a dual-

scan flat panel LCD. It can drive all standard dual-
scan color STN flat panels up to 1024x768 resolu-
tion. Figure 1-3 shows an example of a Cx9210
interface in a typical MediaGX Integrated
Subsystem.

Figure 1-3 Cx9210 Interface System Diagram

DRAM A
13Addr Control

DRAM Data

DRAM Data

Addr Control

16

13

16

256K x 16

DRAM B
256K x 16

LCD Power

3
Control

Clocks

316

Panel Data
DSTN

Pixel Port 23

Control 4

Pixel Data

LCD

18

MediaGX™
Processor

Cx55x0™
I/O

Cx9210™
DSTN

ControllerCompanion

GXm_db_v2.0 Cyrix Corporation Confidential Page 9

MediaGX™ MMX™-Enhanced Processor
Integrated x86 Solution with MMX™ Support

�
2 Signal Definitions
This section describes the external interface of the
MediaGX processor. Figure 2-1 shows the signals

organized by their functional interface groups
(internal test and electrical pins are not shown).

Figure 2-1 Functional Block Diagram

SYSCLK
CLKMODE[2:0]

RESET
INTR

IRQ13
SMI#

SUSP#
SUSPA#

SERIALP

AD[31:0]
C/BE[3:0]#

PAR
FRAME#

IRDY#
TRDY#
STOP#
LOCK#

DEVSEL#
PERR#
SERR#

REQ[2:0]#
GNT[2:0]#

MD[63:0]
MA[12:0]
BA[1:0]
RASA#, RASB#
CASA#, CASB#
CS[3:0]#
WEA#, WEB#
DQM[7:0]
CKEA, CKEB
SDCLK[3:0]
SDCLK_IN
SDCLK_OUT

PCLK
VID_CLK
DCLK
CRT_HSYNC
CRT_VSYNC

FP_VSYNC
FP_HSYNC

ENA_DISP
VID_RDY
VID_VAL
VID_DATA[7:0]
PIXEL[17:0]

Memory
Controller
Interface

Video
Interface
Signals

PCI
Interface

Signals

System
Interface

Signals

Signals

MediaGX™
MMX™-Enhanced

Processor

Page 10 Cyrix Corporation Confidential GXm_db_v2.0

� Pin Assignments

2.1 Pin Assignments
The MediaGX MMX-Enhanced processor is avail-
able in two packages, a 352 BGA package and a
320 SPGA package.

The pin assignment for the 352 BGA is shown in
Figure 2-2. Tables 2-2 and 2-3 are pin assignment
lists for the 352 BGA sorted by pin number and
alphabetically by signal name, respectively.

The 320 SPGA pin assignment is shown in Figure
2-3. Tables 2-4 and 2-5 are pin assignment lists for
the 320 SPGA sorted by pin number and alphabet-
ically by signal name, respectively.

Abbreviations used in Tables 2-4 through 2-5 are
shown in Table 2-1.

Section 2.2 on page 21 describes the signals which
are grouped according their functional group.

Table 2-1 Pin Type Definitions

Mnemonic Definition

I Standard input pin.

I/O Bidirectional pin.

O Totem-pole output.

OD Open-drain output structure that
allows multiple devices to share the
pin in a wired-OR configuration

PU Pull-up resistor

PD Pull-down resistor

s/t/s Sustained tristate, an active-low
tristate signal owned and driven by
one and only one agent at a time.
The agent that drives an s/t/s pin low
must drive it high for at least one
clock before letting it float. A new
agent cannot start driving an s/t/s
signal any sooner than one clock
after the previous owner lets it float.
A pull-up resistor is required to sus-
tain the inactive state until another
agent drives it, and must be pro-
vided by the central resource.

VCC (PWR) Power pin.

VSS (GND) Ground pin

The "#" symbol at the end of a signal
name indicates that the active, or
asserted state occurs when the sig-
nal is at a low voltage level. When
"#" is not present after the signal
name, the signal is asserted when at
a high voltage level.

GXm_db_v2.0 Cyrix Corporation Confidential Page 11

Pin Assignments 2

Figure 2-2 352 BGA Pin Assignment Diagram

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

A

B

C

D

E

F

G

H

J

K

L

M

N

P

R

T

U

V

W

Y

AA

AB

AC

AD

AE

AF

Index Corner

966 966 $'�� $'�� $'�� $'�� 9&&�)5$0� '(96� 9&&� 3(55� $'�� 966 $'�� &%(�� $'� 9&&� $'� $'� 9&&� $'� $'� 7(67� 0'� 966 966

966 966 $'�� $'�� $'�� $'�� 9&&� &%(�� 75'<� 9&&� /2&.� 3$5 $'�� $'�� $'� $'� 9&&� ,175 $'� 9&&� 7(67� 7(67� 0'� 0'�� 966 966

$'�� $'�� $'�� $'�� $'�� $'�� 9&&� $'�� ,5'<� 9&&� 6723� 6(55� &%(�� $'�� $'�� $'� 9&&� $'� 60,� 9&&� 7(67� ,54�� 0'�� 0'�� 0'� 0'��

*17�� 7', 5(4�� 966 &%(�� 966 9&&� 966 966 9&&� 966 966 966 966 966 966 9&&� 966 966 9&&� 966 0'� 966 0'� 0'�� 7'1

*17�� 6863$� 5(4�� $'�� 0'� 7'3 0'� 0'��

7'� *17�� 7(67 966 966 0'�� 0'� 0'��

9&&� 9&&� 9&&� 9&&� 9&&� 9&&� 9&&� 9&&�

706 6863� 5(4�� 966 966 0'� 0'�� 0'�

)396< 7&/. 5(6(7 966 966 0'�� 0'�� 0'��

9&&� 9&&� 9&&� 9&&� 9&&� 9&&� 9&&� 9&&�

&.0�)3+6< 6(5/3 966 966 0'�� 0'�� 0'��

&.0� 9,'9$/ &.0� 966 966 0'�� 0'�� 0'��

966 3,;� 3,;� 966 966 0'�� 0'�� 0'��

9,'&/. 3,;� 3,;� 966 966 0'�� &6� 6<6&/.

3,;� 3,;� 3,;� 966 966 :(%� :($� &$6%�

3,;� 3,;� 3,;� 966 966 '40� '40� '40�

9&&� 9&&� 9&&� 9&&� 9&&� 9&&� 9&&� 9&&�

3,;�� 3,;�� 3,;�� 966 966 '40� &6�� &6��

3,;�� &57+6 3,;�� 966 966 5$6$� 5$6%� 0$�

9&&� 9&&� 9&&� 9&&� 9&&� 9&&� 9&&� 9&&�

3,;�� 3,;�� &5796 966 966 0$� 0$� 0$�

'&/. 3,;�� 9'$7� 9'$7� 0$� 0$� 0$� 0$�

3&/.)/7� 9'$7� 966 92/'(7 966 9&&� 966 966 9&&� 966 966 966 966 966 966 9&&� 966 966 9&&� 966 '40� 966 0$� 0$� 0$��

95'< 9'$7� 9'$7� 9'$7� (',63 0'�� 9&&� 0'�� 0'�� 9&&� 0'�� 0'�� 0'�� 0'�� 0'�� &.(% 9&&� 0'�� 0'�� 9&&� 0'�� '40� &6�� 0$�� %$� %$�

966 966 9'$7� 6&/.� 6&/.� 5:&/. 9&&� 6&.,1 0'�� 9&&� 0'�� 0'�� 0'�� 0'�� 0'�� 0'�� 9&&� 0'�� 0'�� 9&&� 0'�� '40� &6�� 0$�� 966 966

966 966 9'$7� 6&/.� 6&/.� 0'�� 9&&� 6&.287 0'�� 9&&� 0'�� 0'�� 0'�� 966 0'�� 0'�� 9&&� 0'�� 0'�� 9&&� 0'�� 0'�� '40� &.($ 966 966

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

A

B

C

D

E

F

G

H

J

K

L

M

N

P

R

T

U

V

W

Y

AA

AB

AC

AD

AE

AF

MediaGX™

352 BGA - Top View

Note: Signal names have been abbreviated in this figure due to space constraints.

= GND terminal
= PWR terminal (VCC2 = VCC_CORE; VCC3 = VCC_IO)

MMX™-Enhanced
Processor

Page 12 Cyrix Corporation Confidential GXm_db_v2.0

� Pin Assignments

Table 2-2 352 BGA Pin Assignments - Sorted by Pin Number
Pin
No. Signal Name

A1 VSS

A2 VSS

A3 AD27

A4 AD24

A5 AD21

A6 AD16

A7 VCC2

A8 FRAME#

A9 DEVSEL#

A10 VCC3

A11 PERR#

A12 AD15

A13 VSS

A14 AD11

A15 C/BE0#

A16 AD6

A17 VCC2

A18 AD4

A19 AD2

A20 VCC3

A21 AD0

A22 AD1

A23 TEST2

A24 MD2

A25 VSS

A26 VSS

B1 VSS

B2 VSS

B3 AD28

B4 AD25

B5 AD22

B6 AD18

B7 VCC2

B8 C/BE2#

B9 TRDY#

B10 VCC3

B11 LOCK#

B12 PAR

B13 AD14

B14 AD12

B15 AD9

B16 AD7

B17 VCC2

B18 INTR

B19 AD3

B20 VCC3

B21 TEST1

B22 TEST3

B23 MD1

B24 MD33

B25 VSS

B26 VSS

C1 AD29

C2 AD31

C3 AD30

C4 AD26

C5 AD23

C6 AD19

C7 VCC2

C8 AD17

C9 IRDY#

C10 VCC3

C11 STOP#

C12 SERR#

C13 C/BE1#

C14 AD13

C15 AD10

C16 AD8

C17 VCC2

C18 AD5

C19 SMI#

C20 VCC3

C21 TEST0

C22 IRQ13

C23 MD32

C24 MD34

C25 MD3

C26 MD35

D1 GNT0#

D2 TDI

Pin
No. Signal Name

D3 REQ2#

D4 VSS

D5 C/BE3#

D6 VSS

D7 VCC2

D8 VSS

D9 VSS

D10 VCC3

D11 VSS

D12 VSS

D13 VSS

D14 VSS

D15 VSS

D16 VSS

D17 VCC2

D18 VSS

D19 VSS

D20 VCC3

D21 VSS

D22 MD0

D23 VSS

D24 MD4

D25 MD36

D26 TDN

E1 GNT2#

E2 SUSPA#

E3 REQ0#

E4 AD20

E23 MD6

E24 TDP

E25 MD5

E26 MD37

F1 TDO

F2 GNT1#

F3 TEST

F4 VSS

F23 VSS

F24 MD38

F25 MD7

F26 MD39

Pin
No. Signal Name

G1 VCC3

G2 VCC3

G3 VCC3

G4 VCC3

G23 VCC3

G24 VCC3

G25 VCC3

G26 VCC3

H1 TMS

H2 SUSP#

H3 REQ1#

H4 VSS

H23 VSS

H24 MD8

H25 MD40

H26 MD9

J1 FP_VSYNC

J2 TCLK

J3 RESET

J4 VSS

J23 VSS

J24 MD41

J25 MD10

J26 MD42

K1 VCC2

K2 VCC2

K3 VCC2

K4 VCC2

K23 VCC2

K24 VCC2

K25 VCC2

K26 VCC2

L1 CLKMODE1

L2 FP_HSYNC

L3 SERIALP

L4 VSS

L23 VSS

L24 MD11

L25 MD43

L26 MD12

Pin
No. Signal Name

M1 CLKMODE2

M2 VID_VAL

M3 CLKMODE0

M4 VSS

M23 VSS

M24 MD44

M25 MD13

M26 MD45

N1 VSS

N2 PIXEL1

N3 PIXEL0

N4 VSS

N23 VSS

N24 MD14

N25 MD46

N26 MD15

P1 VID_CLK

P2 PIXEL3

P3 PIXEL2

P4 VSS

P23 VSS

P24 MD47

P25 CASA#

P26 SYSCLK

R1 PIXEL4

R2 PIXEL5

R3 PIXEL6

R4 VSS

R23 VSS

R24 WEB#

R25 WEA#

R26 CASB#

T1 PIXEL7

T2 PIXEL8

T3 PIXEL9

T4 VSS

T23 VSS

T24 DQM0

T25 DQM4

T26 DQM1

Pin
No. Signal Name

GXm_db_v2.0 Cyrix Corporation Confidential Page 13

Pin Assignments 2

U1 VCC3

U2 VCC3

U3 VCC3

U4 VCC3

U23 VCC3

U24 VCC3

U25 VCC3

U26 VCC3

V1 PIXEL10

V2 PIXEL11

V3 PIXEL12

V4 VSS

V23 VSS

V24 DQM5

V25 CS2#

V26 CS0#

W1 PIXEL13

W2 CRT_HSYNC

W3 PIXEL14

W4 VSS

W23 VSS

W24 RASA#

W25 RASB#

W26 MA0

Y1 VCC2

Y2 VCC2

Y3 VCC2

Y4 VCC2

Y23 VCC2

Y24 VCC2

Y25 VCC2

Pin
No. Signal Name

Y26 VCC2

AA1 PIXEL15

AA2 PIXEL16

AA3 CRT_VSYNC

AA4 VSS

AA23 VSS

AA24 MA1

AA25 MA2

AA26 MA3

AB1 DCLK

AB2 PIXEL17

AB3 VID_DATA6

AB4 VID_DATA7

AB23 MA4

AB24 MA5

AB25 MA6

AB26 MA7

AC1 PCLK

AC2 FLT#

AC3 VID_DATA4

AC4 VSS

AC5 VOLDET

AC6 VSS

AC7 VCC2

AC8 VSS

AC9 VSS

AC10 VCC3

AC11 VSS

AC12 VSS

AC13 VSS

AC14 VSS

Pin
No. Signal Name

AC15 VSS

AC16 VSS

AC17 VCC2

AC18 VSS

AC19 VSS

AC20 VCC3

AC21 VSS

AC22 DQM6

AC23 VSS

AC24 MA8

AC25 MA9

AC26 MA10

AD1 VID_RDY

AD2 VID_DATA5

AD3 VID_DATA3

AD4 VID_DATA0

AD5 ENA_DISP

AD6 MD63

AD7 VCC2

AD8 MD62

AD9 MD29

AD10 VCC3

AD11 MD59

AD12 MD26

AD13 MD56

AD14 MD55

AD15 MD22

AD16 CKEB

AD17 VCC2

AD18 MD51

AD19 MD18

Pin
No. Signal Name

AD20 VCC3

AD21 MD48

AD22 DQM3

AD23 CS1#

AD24 MA11

AD25 BA0

AD26 BA1

AE1 VSS

AE2 VSS

AE3 VID_DATA2

AE4 SDCLK3

AE5 SDCLK1

AE6 RW_CLK

AE7 VCC2

AE8 SDCLK_IN

AE9 MD61

AE10 VCC3

AE11 MD28

AE12 MD58

AE13 MD25

AE14 MD24

AE15 MD54

AE16 MD21

AE17 VCC2

AE18 MD20

AE19 MD50

AE20 VCC3

AE21 MD17

AE22 DQM7

AE23 CS3#

AE24 MA12

Pin
No. Signal Name

AE25 VSS

AE26 VSS

AF1 VSS

AF2 VSS

AF3 VID_DATA1

AF4 SDCLK0

AF5 SDCLK2

AF6 MD31

AF7 VCC2

AF8 SDCLK_OUT

AF9 MD30

AF10 VCC3

AF11 MD60

AF12 MD27

AF13 MD57

AF14 VSS

AF15 MD23

AF16 MD53

AF17 VCC2

AF18 MD52

AF19 MD19

AF20 VCC3

AF21 MD49

AF22 MD16

AF23 DQM2

AF24 CKEA

AF25 VSS

AF26 VSS

Pin
No. Signal Name

Table 2-2 352 BGA Pin Assignments - Sorted by Pin Number (cont.)

Page 14 Cyrix Corporation Confidential GXm_db_v2.0

� Pin Assignments

Table 2-3 352 BGA Pin Assignments - Sorted Alphabetically by Signal Name
Signal Name Type Pin No.

AD0 I/O A21

AD1 I/O A22

AD2 I/O A19

AD3 I/O B19

AD4 I/O A18

AD5 I/O C18

AD6 I/O A16

AD7 I/O B16

AD8 I/O C16

AD9 I/O B15

AD10 I/O C15

AD11 I/O A14

AD12 I/O B14

AD13 I/O C14

AD14 I/O B13

AD15 I/O A12

AD16 I/O A6

AD17 I/O C8

AD18 I/O B6

AD19 I/O C6

AD20 I/O E4

AD21 I/O A5

AD22 I/O B5

AD23 I/O C5

AD24 I/O A4

AD25 I/O B4

AD26 I/O C4

AD27 I/O A3

AD28 I/O B3

AD29 I/O C1

AD30 I/O C3

AD31 I/O C2

BA0 O AD25

BA1 O AD26

CASA# O P25

CASB# O R26

C/BE0# I/O A15

C/BE1# I/O C13

C/BE2# I/O B8

C/BE3# I/O D5

CKEA O AF24

CKEB O AD16

CLKMODE0 I M3

CLKMODE1 I L1

CLKMODE2 I M1

CRT_HSYNC O W2

CRT_VSYNC O AA3

CS0# O V26

CS1# O AD23

CS2# O V25

CS3# O AE23

DCLK I AB1

DEVSEL# s/t/s A9 (PU)

DQM0 O T24

DQM1 O T26

DQM2 O AF23

DQM3 O AD22

DQM4 O T25

DQM5 O V24

DQM6 O AC22

DQM7 O AE22

ENA_DISP O AD5

FLT# I AC2

FP_HSYNC O L2

FP_VSYNC O J1

FRAME# s/t/s A8 (PU)

GNT0# O D1

GNT1# O F2

GNT2# O E1

INTR I B18

IRDY# s/t/s C9 (PU)

IRQ13 O C22

LOCK# s/t/s B11 (PU)

MA0 O W26

MA1 O AA24

MA2 O AA25

MA3 O AA26

MA4 O AB23

MA5 O AB24

MA6 O AB25

MA7 O AB26

MA8 O AC24

MA9 O AC25

MA10 O AC26

MA11 O AD24

MA12 O AE24

MD0 I/O D22

MD1 I/O B23

MD2 I/O A24

MD3 I/O C25

Signal Name Type Pin No.

MD4 I/O D24

MD5 I/O E25

MD6 I/O E23

MD7 I/O F25

MD8 I/O H24

MD9 I/O H26

MD10 I/O J25

MD11 I/O L24

MD12 I/O L26

MD13 I/O M25

MD14 I/O N24

MD15 I/O N26

MD16 I/O AF22

MD17 I/O AE21

MD18 I/O AD19

MD19 I/O AF19

MD20 I/O AE18

MD21 I/O AE16

MD22 I/O AD15

MD23 I/O AF15

MD24 I/O AE14

MD25 I/O AE13

MD26 I/O AD12

MD27 I/O AF12

MD28 I/O AE11

MD29 I/O AD9

MD30 I/O AF9

MD31 I/O AF6

MD32 I/O C23

MD33 I/O B24

MD34 I/O C24

MD35 I/O C26

MD36 I/O D25

MD37 I/O E26

MD38 I/O F24

MD39 I/O F26

MD40 I/O H25

MD41 I/O J24

MD42 I/O J26

MD43 I/O L25

MD44 I/O M24

MD45 I/O M26

MD46 I/O N25

MD47 I/O P24

MD48 I/O AD21

Signal Name Type Pin No.

MD49 I/O AF21

MD50 I/O AE19

MD51 I/O AD18

MD52 I/O AF18

MD53 I/O AF16

MD54 I/O AE15

MD55 I/O AD14

MD56 I/O AD13

MD57 I/O AF13

MD58 I/O AE12

MD59 I/O AD11

MD60 I/O AF11

MD61 I/O AE9

MD62 I/O AD8

MD63 I/O AD6

PAR I/O B12

PCLK O AC1

PERR# s/t/s A11 (PU)

PIXEL0 O N3

PIXEL1 O N2

PIXEL2 O P3

PIXEL3 O P2

PIXEL4 O R1

PIXEL5 O R2

PIXEL6 O R3

PIXEL7 O T1

PIXEL8 O T2

PIXEL9 O T3

PIXEL10 O V1

PIXEL11 O V2

PIXEL12 O V3

PIXEL13 O W1

PIXEL14 O W3

PIXEL15 O AA1

PIXEL16 O AA2

PIXEL17 O AB2

RASA# O W24

RASB# O W25

REQ0# I E3 (PU)

REQ1# I H3 (PU)

REQ2# I D3 (PU)

RESET I J3

RW_CLK O AE6

SDCLK_IN I AE8

SDCLK_OUT O AF8

Signal Name Type Pin No.

GXm_db_v2.0 Cyrix Corporation Confidential Page 15

Pin Assignments 2

Note: PU/PD indicates pin is
internally connected to
a 20-kohm pull-up/-
down resistor.

SDCLK0 O AF4

SDCLK1 O AE5

SDCLK2 O AF5

SDCLK3 O AE4

SERIALP O L3

SERR# OD C12 (PU)

SMI# I C19

STOP# s/t/s C11 (PU)

SUSP# I H2 (PU)

SUSPA# O E2

SYSCLK I P26

TCLK I J2 (PU)

TDI I D2 (PU)

TDN O D26

TDO O F1

TDP O E24

TEST I F3 (PD)

TEST0 O C21

TEST1 O B21

TEST2 O A23

TEST3 O B22

TMS I H1 (PU)

TRDY# s/t/s B9 (PU)

VCC2 PWR A7

VCC2 PWR A17

VCC2 PWR B7

VCC2 PWR B17

VCC2 PWR C7

VCC2 PWR C17

VCC2 PWR D7

VCC2 PWR D17

VCC2 PWR K1

VCC2 PWR K2

VCC2 PWR K3

VCC2 PWR K4

VCC2 PWR K23

VCC2 PWR K24

VCC2 PWR K25

VCC2 PWR K26

VCC2 PWR Y1

VCC2 PWR Y2

VCC2 PWR Y3

VCC2 PWR Y4

VCC2 PWR Y23

Signal Name Type Pin No.

VCC2 PWR Y24

VCC2 PWR Y25

VCC2 PWR Y26

VCC2 PWR AC7

VCC2 PWR AC17

VCC2 PWR AD7

VCC2 PWR AD17

VCC2 PWR AE7

VCC2 PWR AE17

VCC2 PWR AF7

VCC2 PWR AF17

VCC3 PWR A10

VCC3 PWR A20

VCC3 PWR B10

VCC3 PWR B20

VCC3 PWR C10

VCC3 PWR C20

VCC3 PWR D10

VCC3 PWR D20

VCC3 PWR G1

VCC3 PWR G2

VCC3 PWR G3

VCC3 PWR G4

VCC3 PWR G23

VCC3 PWR G24

VCC3 PWR G25

VCC3 PWR G26

VCC3 PWR U1

VCC3 PWR U2

VCC3 PWR U3

VCC3 PWR U4

VCC3 PWR U23

VCC3 PWR U24

VCC3 PWR U25

VCC3 PWR U26

VCC3 PWR AC10

VCC3 PWR AC20

VCC3 PWR AD10

VCC3 PWR AD20

VCC3 PWR AE10

VCC3 PWR AE20

VCC3 PWR AF10

VCC3 PWR AF20

VID_CLK O P1

Signal Name Type Pin No.

VID_DATA0 O AD4

VID_DATA1 O AF3

VID_DATA2 O AE3

VID_DATA3 O AD3

VID_DATA4 O AC3

VID_DATA5 O AD2

VID_DATA6 O AB3

VID_DATA7 O AB4

VID_RDY I AD1

VID_VAL O M2

VOLDET O AC5

VSS GND A1

VSS GND A2

VSS GND A13

VSS GND A25

VSS GND A26

VSS GND B1

VSS GND B2

VSS GND B25

VSS GND B26

VSS GND D4

VSS GND D6

VSS GND D8

VSS GND D9

VSS GND D11

VSS GND D12

VSS GND D13

VSS GND D14

VSS GND D15

VSS GND D16

VSS GND D18

VSS GND D19

VSS GND D21

VSS GND D23

VSS GND F4

VSS GND F23

VSS GND H4

VSS GND H23

VSS GND J4

VSS GND J23

VSS GND L4

VSS GND L23

VSS GND M4

VSS GND M23

Signal Name Type Pin No.

VSS GND N1

VSS GND N4

VSS GND N23

VSS GND P4

VSS GND P23

VSS GND R4

VSS GND R23

VSS GND T4

VSS GND T23

VSS GND V4

VSS GND V23

VSS GND W4

VSS GND W23

VSS GND AA4

VSS GND AA23

VSS GND AC4

VSS GND AC6

VSS GND AC8

VSS GND AC9

VSS GND AC11

VSS GND AC12

VSS GND AC13

VSS GND AC14

VSS GND AC15

VSS GND AC16

VSS GND AC18

VSS GND AC19

VSS GND AC21

VSS GND AC23

VSS GND AE1

VSS GND AE2

VSS GND AE25

VSS GND AE26

VSS GND AF1

VSS GND AF2

VSS GND AF14

VSS GND AF25

VSS GND AF26

WEA# O R25

WEB# O R24

Signal Name Type Pin No.

Table 2-3 352 BGA Pin Assignments - Sorted Alphabetically by Signal Name (cont.)

Page 16 Cyrix Corporation Confidential GXm_db_v2.0

� Pin Assignments

Figure 2-3 320 SPGA Pin Assignment Diagram

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

A

B

C

D

E

F

G

H

J

K

L

M

N

P

Q

R

S

T

U

V

AA

AB

AC

AD

AE

AF

Index Corner

27 28 29 30 31 32 33 34 35 36 37

AG

AH

AJ

AK

AL

AM

W

Y

X

Z

AN

A

B

C

D

E

F

G

H

J

K

L

M

N

P

Q

R

S

T

U

V

AA

AB

AC

AD

AE

AF

AG

AH

AJ

AK

AL

AM

W

Y

X

Z

AN

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

9&&� $'�� 966 9&&� $'�� 9&&� 6723� 6(55� 966 $'�� $'� 9&&� $'� 9&&� 966 767� 9&&� 966

966 $'�� &%(�� $'�� $'�� &%(�� 75'<� /2&.� &%(�� $'�� $'� $'� $'� 60,� $'� 767� 0'�� 0'�

9&&� $'�� $'�� $'�� 9&&� $'��)5$0(� 966 3$5 9&&� $'�� 966 $'� $'� 9&&� ,54�� 0'� 0'�� 9&&�

$'�� $'�� $'�� $'�� $'�� $'�� ,5'<� 3(55� $'�� $'�� $'� ,175 767� 767� 0'� 0'�� 0'� 0'��

5(4�� 5(4�� $'�� 966 9&&� 9&&� 966 '(96(/� $'�� 966 &%(�� $'� 966 9&&� 9&&� 966 0'� 0'�� 7'1

*17�� 7', 0'� 7'3

966 &/.02'(� 966 966 0'�� 966

*17�� 6863$�

7'2 966 7(67

5(4�� *17��

9&&� 9&&� 9&&�

5(6(7 6863�

9&&� 706 966

)396<1 7&.

6(5,$/3 966 1&

&.0'�)3+6<1

&.0'� 9,'B9$/ 3,;�

3,;� 3,;�

966 9&&� 966

3,;� 9,'B&/.

3,;� 3,;� 3,;�

1& 3,;�

3,;� 966 3,;�

1& 3,;��

9&&� 3,;�� 966

3,;�� 3,;��

9&&� 9&&� 9&&�

&57+6<1 '&/.

3,;�� 966 9&&�

3,;�� 3,;��

966 3,;�� 966

&5796<1 9'$7�

0'� 0'��

9&&� 966 0'�

0'�� 0'�

9&&� 9&&� 9&&�

0'�� 0'�

966 0'�� 9&&�

0'�� 0'��

0'�� 966 0'��

0'�� 0'��

0'�� 0'�� 0'��

0'�� 0'��

966 9&&� 966

6<6&/. 0'��

:($� :(%� &$6$�

'40� &$6%�

'40� 966 '40�

&6�� '40�

966 &6�� 9&&�

5$6%� 5$6$�

9&&� 9&&� 9&&�

9&&� 966 0$�

0$� 0$�

0$� 0$�

966 0$� 966

0$� 0$�0$��

3&/.)/7� 9'$7� 966 9&&� 0'�� 966 0'�� 0'�� 966 0'�� 0'�� 966 9&&� 9&&� 966 %$� 0$� 0$�

95'< 966 9'$7� 6'&/.� 6'&/.� 6'&/.,1 0'�� 0'�� 0'�� 0'�� 0'�� 0'�� 0'�� 0'�� '40� &6�� 966 %$�

9&&� 9'$7� 9'$7� 6'&/.� 9&&� 5:&/. 6'&/.287 966 0'�� 9&&� 0'�� 966 0'�� 0'�� 9&&� '40� &.($ 0$�� 9&&�

9'$7� 9'$7� (1',6 6'&/.� 0'�� 0'�� 0'�� 0'�� 0'�� 0'�� 0'�� 0'�� 0'�� 0'�� '40� '40� 0$�� 92/'(7

966 9&&� 9'$7� 966 9&&� 0'�� 9&&� 0'�� 0'�� 966 0'�� &.(% 9&&� 0'�� 9&&� 966 &6�� 9&&� 966

Note: Signal names have been abbreviated in this figure due to space constraints.

= Denotes GND terminal
= Denotes PWR terminal (VCC2 = VCC_CORE; VCC3 = VCC_IO)

MediaGX™

320 SPGA - Top View

MMX™-Enhanced
Processor

GXm_db_v2.0 Cyrix Corporation Confidential Page 17

Pin Assignments 2
Table 2-4 320 SPGA Pin Assignments - Sorted by Pin Number

Pin
No. Signal Name

A3 VCC3

A5 AD25

A7 VSS

A9 VCC2

A11 AD16

A13 VCC3

A15 STOP#

A17 SERR#

A19 VSS

A21 AD11

A23 AD8

A25 VCC3

A27 AD2

A29 VCC2

A31 VSS

A33 TEST0

A35 VCC3

A37 VSS

B2 VSS

B4 AD27

B6 C/BE3#

B8 AD21

B10 AD19

B12 C/BE2#

B14 TRDY#

B16 LOCK#

B18 C/BE1#

B20 AD13

B22 AD9

B24 AD6

B26 AD3

B28 SMI#

B30 AD1

B32 TEST2

B34 MD33

B36 MD2

C1 VCC3

C3 AD31

C5 AD26

C7 AD23

C9 VCC2

C11 AD18

C13 FRAME#

C15 VSS

C17 PAR

C19 VCC3

C21 AD10

C23 VSS

C25 AD4

C27 AD0

C29 VCC2

C31 IRQ13

C33 MD1

C35 MD34

C37 VCC3

D2 AD30

D4 AD29

D6 AD24

D8 AD22

D10 AD20

D12 AD17

D14 IRDY#

D16 PERR#

D18 AD14

D20 AD12

D22 AD7

D24 INTR

D26 TEST1

D28 TEST3

D30 MD0

D32 MD32

D34 MD3

D36 MD35

E1 REQ0#

E3 REQ2#

E5 AD28

E7 VSS

E9 VCC2

E11 VCC2

E13 VSS

Pin
No. Signal Name

E15 DEVSEL#

E17 AD15

E19 VSS

E21 C/BE0#

E23 AD5

E25 VSS

E27 VCC2

E29 VCC2

E31 VSS

E33 MD4

E35 MD36

E37 TDN

F2 GNT0#

F4 TDI

F34 MD5

F36 TDP

G1 VSS

G3 CLKMODE2

G5 VSS

G33 VSS

G35 MD37

G37 VSS

H2 GNT2#

H4 SUSPA#

H34 MD6

H36 MD38

J1 TDO

J3 VSS

J5 TEST

J33 VCC2

J35 VSS

J37 MD7

K2 REQ1#

K4 GNT1#

K34 MD39

K36 MD8

L1 VCC2

L3 VCC2

L5 VCC2

L33 VCC2

Pin
No. Signal Name

L35 VCC2

L37 VCC2

M2 RESET

M4 SUSP#

M34 MD40

M36 MD9

N1 VCC3

N3 TMS

N5 VSS

N33 VSS

N35 MD41

N37 VCC3

P2 FP_VSYNC

P4 TCLK

P34 MD10

P36 MD42

Q1 SERIALP

Q3 VSS

Q5 NC

Q33 MD11

Q35 VSS

Q37 MD43

R2 CLKMODE1

R4 FP_HSYNC

R34 MD44

R36 MD12

S1 CLKMODE0

S3 VID_VAL

S5 PIXEL0

S33 MD14

S35 MD13

S37 MD45

T2 PIXEL1

T4 PIXEL2

T34 MD15

T36 MD46

U1 VSS

U3 VCC3

U5 VSS

U33 VSS

Pin
No. Signal Name

U35 VCC3

U37 VSS

V2 PIXEL3

V4 VID_CLK

V34 SYSCLK

V36 MD47

W1 PIXEL6

W3 PIXEL5

W5 PIXEL4

W33 WEA#

W35 WEB#

W37 CASA#

X2 NC

X4 PIXEL9

X34 DQM0

X36 CASB#

Y1 PIXEL8

Y3 VSS

Y5 PIXEL7

Y33 DQM1

Y35 VSS

Y37 DQM4

Z2 NC

Z4 PIXEL10

Z34 CS2#

Z36 DQM5

AA1 VCC3

AA3 PIXEL11

AA5 VSS

AA33 VSS

AA35 CS0#

AA37 VCC3

AB2 PIXEL12

AB4 PIXEL13

AB34 RASB#

AB36 RASA#

AC1 VCC2

AC3 VCC2

AC5 VCC2

AC33 VCC2

Pin
No. Signal Name

Page 18 Cyrix Corporation Confidential GXm_db_v2.0

� Pin Assignments

AC35 VCC2

AC37 VCC2

AD2 CRT_HSYNC

AD4 DCLK

AD34 MA2

AD36 MA0

AE1 PIXEL14

AE3 VSS

AE5 VCC2

AE33 VCC2

AE35 VSS

AE37 MA1

AF2 PIXEL15

AF4 PIXEL16

AF34 MA4

AF36 MA3

AG1 VSS

AG3 PIXEL17

AG5 VSS

AG33 VSS

AG35 MA5

AG37 VSS

AH2 CRT_VSYNC

AH4 VID_DATA6

AH32 MA10

AH34 MA8

AH36 MA6

AJ1 PCLK

Pin
No. Signal Name

AJ3 FTL#

AJ5 VID_DATA5

AJ7 VSS

AJ9 VCC2

AJ11 MD31

AJ13 VSS

AJ15 MD60

AJ17 MD57

AJ19 VSS

AJ21 MD22

AJ23 MD52

AJ25 VSS

AJ27 VCC2

AJ29 VCC2

AJ31 VSS

AJ33 BA1

AJ35 MA9

AJ37 MA7

AK2 VID_RDY

AK4 VSS

AK6 VID_DATA0

AK8 SDCLK0

AK10 SDCLK2

AK12 SDCLK_IN

AK14 MD29

AK16 MD27

AK18 MD56

AK20 MD55

Pin
No. Signal Name

AK22 MD21

AK24 MD20

AK26 MD50

AK28 MD16

AK30 DQM3

AK32 CS3#

AK34 VSS

AK36 BA0

AL1 VCC2

AL3 VID_DATA4

AL5 VID_DATA2

AL7 SDCLK1

AL9 VCC2

AL11 RW_CLK

AL13 SDCLK_OUT

AL15 VSS

AL17 MD58

AL19 VCC3

AL21 MD23

AL23 VSS

AL25 MD19

AL27 MD49

AL29 VCC2

AL31 DQM6

AL33 CKEA

AL35 MA11

AL37 VCC3

AM2 VID_DATA7

Pin
No. Signal Name

AM4 VID_DATA3

AM6 ENA_DISP

AM8 SDCLK3

AM10 MD63

AM12 MD30

AM14 MD61

AM16 MD59

AM18 MD25

AM20 MD24

AM22 MD53

AM24 MD51

AM26 MD18

AM28 MD48

AM30 DQM7

AM32 DQM2

AM34 MA12

AM36 VOLDET

AN1 VSS

AN3 VCC2

AN5 VID_DATA1

AN7 VSS

AN9 VCC2

AN11 MD62

AN13 VCC3

AN15 MD28

AN17 MD26

AN19 VSS

AN21 MD54

Pin
No. Signal Name

AN23 CKEB

AN25 VCC3

AN27 MD17

AN29 VCC2

AN31 VSS

AN33 CS1#

AN35 VCC3

AN37 VSS

Pin
No. Signal Name

Table 2-4 320 SPGA Pin Assignments - Sorted by Pin Number (cont.)

GXm_db_v2.0 Cyrix Corporation Confidential Page 19

Pin Assignments 2
Table 2-5 320 SPGA Pin Assignments - Sorted Alphabetically by Signal Name
Signal Name Type Pin. No.

AD0 I/O C27

AD1 I/O B30

AD2 I/O A27

AD3 I/O B26

AD4 I/O C25

AD5 I/O E23

AD6 I/O B24

AD7 I/O D22

AD8 I/O A23

AD9 I/O B22

AD10 I/O C21

AD11 I/O A21

AD12 I/O D20

AD13 I/O B20

AD14 I/O D18

AD15 I/O E17

AD16 I/O A11

AD17 I/O D12

AD18 I/O C11

AD19 I/O B10

AD20 I/O D10

AD21 I/O B8

AD22 I/O D8

AD23 I/O C7

AD24 I/O D6

AD25 I/O A5

AD26 I/O C5

AD27 I/O B4

AD28 I/O E5

AD29 I/O D4

AD30 I/O D2

AD31 I/O C3

BA0 O AK36

BA1 O AJ33

CASA# O W37

CASB# O X36

C/BE0# I/O E21

C/BE1# I/O B18

C/BE2# I/O B12

C/BE3# I/O B6

CKEA O AL33

CKEB O AN23

CLKMODE0 I S1

CLKMODE1 I R2

CLKMODE2 I G3

CRT_HSYNC O AD2

CRT_VSYNC O AH2

CS0# O AA35

CS1# O AN33

CS2# O Z34

CS3# O AK32

DCLK I AD4

DEVSEL# s/t/s E15 (PU)

DQM0 O X34

DQM1 O Y33

DQM2 O AM32

DQM3 O AK30

DQM4 O Y37

DQM5 O Z36

DQM6 O AL31

DQM7 O AM30

ENA_DISP O AM6

FLT# I AJ3

FP_HSYNC O R4

FP_VSYNC O P2

FRAME# s/t/s C13 (PU)

GNT0# O F2

GNT1# O K4

GNT2# O H2

INTR I D24

IRDY# s/t/s D14 (PU)

IRQ13 O C31

LOCK# s/t/s B16 (PU)

MA0 O AD36

MA1 O AE37

MA2 O AD34

MA3 O AF36

MA4 O AF34

MA5 O AG35

MA6 O AH36

MA7 O AJ37

MA8 O AH34

MA9 O AJ35

MA10 O AH32

MA11 O AL35

MA12 O AM34

MD0 I/O D30

MD1 I/O C33

MD2 I/O B36

MD3 I/O D34

Signal Name Type Pin. No.

MD4 I/O E33

MD5 I/O F34

MD6 I/O H34

MD7 I/O J37

MD8 I/O K36

MD9 I/O M36

MD10 I/O P34

MD11 I/O Q33

MD12 I/O R36

MD13 I/O S35

MD14 I/O S33

MD15 I/O T34

MD16 I/O AK28

MD17 I/O AN27

MD18 I/O AM26

MD19 I/O AL25

MD20 I/O AK24

MD21 I/O AK22

MD22 I/O AJ21

MD23 I/O AL21

MD24 I/O AM20

MD25 I/O AM18

MD26 I/O AN17

MD27 I/O AK16

MD28 I/O AN15

MD29 I/O AK14

MD30 I/O AM12

MD31 I/O AJ11

MD32 I/O D32

MD33 I/O B34

MD34 I/O C35

MD35 I/O D36

MD36 I/O E35

MD37 I/O G35

MD38 I/O H36

MD39 I/O K34

MD40 I/O M34

MD41 I/O N35

MD42 I/O P36

MD43 I/O Q37

MD44 I/O R34

MD45 I/O S37

MD46 I/O T36

MD47 I/O V36

MD48 I/O AM28

Signal Name Type Pin. No.

MD49 I/O AL27

MD50 I/O AK26

MD51 I/O AM24

MD52 I/O AJ23

MD53 I/O AM22

MD54 I/O AN21

MD55 I/O AK20

MD56 I/O AK18

MD57 I/O AJ17

MD58 I/O AL17

MD59 I/O AM16

MD60 I/O AJ15

MD61 I/O AM14

MD62 I/O AN11

MD63 I/O AM10

NC Q5

NC X2

NC Z2

PAR I/O C17

PCLK O AJ1

PERR# s/t/s D16 (PU)

PIXEL0 O S5

PIXEL1 O T2

PIXEL2 O T4

PIXEL3 O V2

PIXEL4 O W5

PIXEL5 O W3

PIXEL6 O W1

PIXEL7 O Y5

PIXEL8 O Y1

PIXEL9 O X4

PIXEL10 O Z4

PIXEL11 O AA3

PIXEL12 O AB2

PIXEL13 O AB4

PIXEL14 O AE1

PIXEL15 O AF2

PIXEL16 O AF4

PIXEL17 O AG3

RASA# O AB36

RASB# O AB34

REQ0# I E1 (PU)

REQ1# I K2 (PU)

REQ2# I E3 (PU)

RESET I M2

Signal Name Type Pin. No.

Page 20 Cyrix Corporation Confidential GXm_db_v2.0

� Pin Assignments

Note: PU/PD indicates pin is
internally connected to
a 20-kohm pull-up/
down resistor

RW_CLK O AL11

SDCLK_IN I AK12

SDCLK_OUT O AL13

SDCLK0 O AK8

SDCLK1 O AL7

SDCLK2 O AK10

SDCLK3 O AM8

SERIALP O Q1

SERR# OD A17 (PU)

SMI# I B28

STOP# s/t/s A15 (PU)

SUSP# I M4 (PU)

SUSPA# O H4

SYSCLK I V34

TCLK I P4 (PU)

TDI I F4 (PU)

TDN O E37

TDO O J1

TDP O F36

TEST I J5 (PD)

TEST0 O A33

TEST1 O D26

TEST2 O B32

TEST3 O D28

TMS I N3 (PU)

TRDY# s/t/s B14 (PU)

VCC2 PWR A9

VCC2 PWR A29

VCC2 PWR C9

VCC2 PWR C29

VCC2 PWR E9

VCC2 PWR E11

VCC2 PWR E27

VCC2 PWR E29

VCC2 PWR J33

VCC2 PWR L1

VCC2 PWR L3

VCC2 PWR L5

VCC2 PWR L33

VCC2 PWR L35

VCC2 PWR L37

VCC2 PWR AC1

VCC2 PWR AC3

VCC2 PWR AC5

Signal Name Type Pin. No.

VCC2 PWR AC33

VCC2 PWR AC35

VCC2 PWR AC37

VCC2 PWR AE5

VCC2 PWR AE33

VCC2 PWR AJ9

VCC2 PWR AJ27

VCC2 PWR AJ29

VCC2 PWR AL1

VCC2 PWR AL9

VCC2 PWR AL29

VCC2 PWR AN3

VCC2 PWR AN9

VCC2 PWR AN29

VCC3 PWR A3

VCC3 PWR A13

VCC3 PWR A25

VCC3 PWR A35

VCC3 PWR C1

VCC3 PWR C19

VCC3 PWR C37

VCC3 PWR N1

VCC3 PWR N37

VCC3 PWR U3

VCC3 PWR U35

VCC3 PWR AA1

VCC3 PWR AA37

VCC3 PWR AL19

VCC3 PWR AL37

VCC3 PWR AN13

VCC3 PWR AN25

VCC3 PWR AN35

VID_CLK O V4

VID_DATA0 O AK6

VID_DATA1 O AN5

VID_DATA2 O AL5

VID_DATA3 O AM4

VID_DATA4 O AL3

VID_DATA5 O AJ5

VID_DATA6 O AH4

VID_DATA7 O AM2

VID_RDY I AK2

VID_VAL O S3

VOLDET O AM36

Signal Name Type Pin. No.

VSS GND A7

VSS GND A19

VSS GND A31

VSS GND A37

VSS GND B2

VSS GND C15

VSS GND C23

VSS GND E7

VSS GND E13

VSS GND E19

VSS GND E25

VSS GND E31

VSS GND G1

VSS GND G5

VSS GND G33

VSS GND G37

VSS GND J3

VSS GND J35

VSS GND N5

VSS GND N33

VSS GND Q3

VSS GND Q35

VSS GND U1

VSS GND U5

VSS GND U33

VSS GND U37

VSS GND Y3

VSS GND Y35

VSS GND AA5

VSS GND AA33

VSS GND AE3

VSS GND AE35

VSS GND AG1

VSS GND AG5

VSS GND AG33

VSS GND AG37

VSS GND AJ7

VSS GND AJ13

VSS GND AJ19

VSS GND AJ25

VSS GND AJ31

VSS GND AK4

VSS GND AK34

VSS GND AL15

Signal Name Type Pin. No.

VSS GND AL23

VSS GND AN1

VSS GND AN7

VSS GND AN19

VSS GND AN31

VSS GND AN37

WEA# O W33

WEB# O W35

Signal Name Type Pin. No.

Table 2-5 320 SPGA Pin Assignments - Sorted Alphabetically by Signal Name (cont.)

GXm_db_v2.0 Cyrix Corporation Confidential Page 21

Signal Descriptions 2
2.2 Signal Descriptions

2.2.1 System Interface Signals

Signal Name
BGA

Pin No.
SPGA

Pin No. Type Description

SYSCLK P26 V34 I System Clock

System Clock runs synchronously with the PCI bus. The inter-
nal clock of the MediaGX processor is generated by an internal
PLL which multiplies the SYSCLK input and can run up to eight
times faster. The SYSCLK to core clock multiplier is configured
using the CLKMOD[2:0] inputs.

The SYSCLK input is a fixed frequency which can only be
stopped or varied when the MediaGX processor is in a full 3V
Suspend. (Section 6.4 “3-Volt Suspend Mode” on page 203 for
details regarding this mode.)

CLKMODE[2:0] M1, L1,
M3

G3, R2,
S1

I Clock Mode

These signals are used to set the core clock multiplier. The PCI
clock "SYSCLK" is multiplied by the value programmed by
CLKMODE[2:0] to generate the MediaGX processor’s core
clock. CLKMODE2 is valid only for MediaGX MMX-Enhanced
processor revision 4.0 and up. The value read from DIR1
(Device ID Register 1, refer to page 56) affects the definition of
the CLKMODE pins.

If DIR1 = 30h-33h then CLKMODE[1:0]:
00 = SYSCLK multiplied by 4 (Test mode only)
01 = SYSCLK multiplied by 6
10 = SYSCLK multiplied by 7
11 = SYSCLK multiplied by 5

If DIR1 = 34h-4Fh then CLKMODE[1:0]:
00 = SYSCLK multiplied by 4 (Test mode only)
01 = SYSCLK multiplied by 6
10 = SYSCLK multiplied by 7
11 = SYSCLK multiplied by 8

If DIR1 > or = 50h then CLKMODE[2:0]:
000 = SYSCLK multiplied by 4 (Test mode only)
001 = SYSCLK multiplied by 10
010 = SYSCLK multiplied by 9
011 = SYSCLK multiplied by 5
100 = SYSCLK multiplied by 4
101 = SYSCLK multiplied by 6
110 = SYSCLK multiplied by 7
111 = SYSCLK multiplied by 8

Page 22 Cyrix Corporation Confidential GXm_db_v2.0

� Signal Descriptions

RESET J3 M2 I Reset

RESET aborts all operations in progress and places the
MediaGX processor into a reset state. RESET forces the CPU
and peripheral functions to begin executing at a known state.
All data in the on-chip cache is invalidated.

RESET is an asynchronous input but must meet specified
setup and hold times to guarantee recognition at a particular
clock edge. This input is typically generated during the Power-
On-Reset sequence.

Note: Warm Reset does not require an input on the MediaGX
processor since the function is virtualized using SMM.

INTR B18 D24 I (Maskable) Interrupt Request

INTR is a level-sensitive input that causes the MediaGX pro-
cessor to Suspend execution of the current instruction stream
and begin execution of an interrupt service routine. The INTR
input can be masked through the Flags Register IF bit. (See
Table 3-4 "EFLAGS Register" on page 45 for bit definitions.)

IRQ13 C22 C31 O Interrupt Request Level 13

IRQ13 is asserted if an on-chip floating point error occurs.

When a floating point error occurs, the MediaGX processor
asserts the IRQ13 pin. The floating point interrupt handler then
performs an OUT instruction to I/O address F0h or F1h. The
MediaGX processor accepts either of these cycles and clears
the IRQ13 pin.

Refer to Section 3.4.1 “I/O Address Space” on page 65 for fur-
ther information on IN/OUT instructions.

SMI# C19 B28 I System Management Interrupt

SMI# is a level-sensitive interrupt. SMI# puts the MediaGX pro-
cessor into System Management Mode (SMM).

2.2.1 System Interface Signals (cont.)

Signal Name
BGA

Pin No.
SPGA

Pin No. Type Description

GXm_db_v2.0 Cyrix Corporation Confidential Page 23

Signal Descriptions 2

SUSP# H2
(PU)

M4
(PU)

I Suspend Request

This signal is used to request that the MediaGX processor
enter Suspend mode. After recognition of an active SUSP#
input, the processor completes execution of the current instruc-
tion, any pending decoded instructions and associated bus
cycles. SUSP# is ignored following RESET# and is enabled by
setting the SUSP bit in CCR2. (See Table 3-11 "Configuration
Registers" on page 52 for CCR2 bit definitions.)

Since the MediaGX processor includes system logic functions
as well as the CPU core, there are special modes designed to
support the different power management states associated with
APM, ACPI, and portable designs. The part can be configured
to stop only the CPU core clocks, or all clocks. When all clocks
are stopped, the external clock can also be stopped. (See Sec-
tion 6 “Power Management” on page 201 for more details
regarding power management states.)

This pin is internally connected to a 20-kohm pull-up resistor.
SUSP# is pulled up when not active.

SUSPA# E2 H4 O Suspend Acknowledge

Suspend Acknowledge indicates that the MediaGX processor
has entered low-power Suspend mode as a result of SUSP#
assertion or execution of a HALT instruction. SUSPA# floats fol-
lowing RESET# and is enabled by setting the SUSP bit in
CCR2. (See Table 3-11 "Configuration Registers" on page 52
for CCR2 bit definitions.)

The SYSCLK input may be stopped after SUSPA# has been
asserted to further reduce power consumption if the system is
configured for 3V Suspend mode. (Section 6.4 “3-Volt Suspend
Mode” on page 203 for details regarding this mode.)

SERIALP L3 Q1 O Serial Packet

Serial Packet is the single wire serial-transmission signal to the
Cx5520 chip. The clock used for this interface is the PCI clock
(SYSCLK). This interface carries packets of miscellaneous
information to the chipset to be used by the VSA software han-
dlers.

2.2.1 System Interface Signals (cont.)

Signal Name
BGA

Pin No.
SPGA

Pin No. Type Description

Page 24 Cyrix Corporation Confidential GXm_db_v2.0

� Signal Descriptions

2.2.2 PCI Interface Signals

Signal Name
BGA

Pin No.
SPGA
Pin No Type Description

AD[31:0] Refer
to Table

2-3

Refer
to Table

2-5

I/O Multiplexed Address and Data

Addresses and data are multiplexed on the same PCI pins. A
bus transaction consists of an address phase in the cycle in
which FRAME# is asserted followed by one or more data
phases. During the address phase, AD[31:0] contain a physical
32-bit address. For I/O, this is a byte address, for configuration
and memory it is a DWORD address. During data phases,
AD[7:0] contain the least significant byte (LSB) and AD[31:24]
contain the most significant byte (MSB). Write data is stable
and valid when IRDY# is asserted and read data is stable and
valid when TRDY# is asserted. Data is transferred during those
SYSCLKS where both IRDY# and TRDY# are asserted.

C/BE[3:0]# D5,
B8,

C13,
A15

B6, B12,
B18,
E21

I/O Multiplexed Command and Byte Enables

Bus command and byte enables are multiplexed on the same
PCI pins. During the address phase of a transaction when
FRAME# is active, C/BE[3:0]# define the bus command. During
the data phase C/BE[3:0]# are used as byte enables. The byte
enables are valid for the entire data phase and determine which
byte lanes carry meaningful data. C/BE0# applies to byte 0
(LSB) and C/BE3# applies to byte 3 (MSB).

The command encoding and types are listed below.

0000 = Interrupt Acknowledge
0001 = Special Cycle
0010 = I/O Read
0011 = I/O Write
0100 = Reserved
0101 = Reserved
0110 = Memory Read
0111 = Memory Write
1000 = Reserved
1001 = Reserved
1010 = Configuration Read
1011 = Configuration Write
1100 = Memory Read Multiple
1101 = Dual Address Cycle (Reserved)
1110 = Memory Read Line
1111 = Memory Write and Invalidate

GXm_db_v2.0 Cyrix Corporation Confidential Page 25

Signal Descriptions 2

PAR B12 C17 I/O Parity

Parity generation is required by all PCI agents: the master
drives PAR for address and write-data phases, the target drives
PAR for read-data phases. Parity is even across AD[31:0] and
C/BE[3:0]#.

For address phases, PAR is stable and valid one SYSCLK after
the address phase. It has the same timing as AD[31:0] but
delayed by one SYSCLK.

For data phases, PAR is stable and valid one SYSCLK after
either IRDY# is asserted on a write transaction or after TRDY#
is asserted on a read transaction. Once PAR is valid, it remains
valid until one SYSCLK after the completion of the data phase.
(Also see PERR#.)

FRAME# A8
(PU)

C13
(PU)

s/t/s Frame

Cycle Frame is driven by the current master to indicate the
beginning and duration of an access. FRAME# is asserted to
indicate a bus transaction is beginning. While FRAME# is
asserted, data transfers continue. When FRAME# is deas-
serted, the transaction is in the final data phase.

This pin is internally connected to a 20-kohm pull-up resistor.

IRDY# C9
(PU)

D14
(PU)

s/t/s Initiator Ready

Initiator Ready is asserted to indicate that the bus master is
able to complete the current data phase of the transaction.
IRDY# is used in conjunction with TRDY#. A data phase is
completed on any SYSCLK in which both IRDY# and TRDY#
are sampled asserted. During a write, IRDY# indicates valid
data is present on AD[31:0]. During a read, it indicates the mas-
ter is prepared to accept data. Wait cycles are inserted until
both IRDY# and TRDY# are asserted together.

This pin is internally connected to a 20-kohm pull-up resistor.

TRDY# B9
(PU)

B14
(PU)

s/t/s Target Ready

TRDY# is asserted to indicate that the target agent is able to
complete the current data phase of the transaction. TRDY# is
used in conjunction with IRDY#. A data phase is complete on
any SYSCLK in which both TRDY# and IRDY# are sampled
asserted. During a read, TRDY# indicates that valid data is
present on AD[31:0]. During a write, it indicates the target is
prepared to accept data. Wait cycles are inserted until both
IRDY# and TRDY# are asserted together.

This pin is internally connected to a 20-kohm pull-up resistor.

2.2.2 PCI Interface Signals (cont.)

Signal Name
BGA

Pin No.
SPGA
Pin No Type Description

Page 26 Cyrix Corporation Confidential GXm_db_v2.0

� Signal Descriptions

STOP# C11
(PU)

A15
(PU)

s/t/s Target Stop

STOP# is asserted to indicate that the current target is request-
ing the master to stop the current transaction. This signal is
used with DEVSEL# to indicate retry, disconnect or target
abort. If STOP# is sampled active while a master, FRAME# will
be deasserted and the cycle stopped within three SYSCLK
cycles. As an input, STOP# can be asserted in the following
cases. 1) If a PCI master tries to access memory that has been
locked by another master. This condition is detected if FRAME#
and LOCK# are asserted during an address phase. 2) STOP#
will also be asserted if the PCI write buffers are full or if a previ-
ously buffered cycle has not completed. 3) Finally, STOP# can
be asserted on read cycles that cross cache line boundaries.
This is conditional based upon the programming of bit 1 in PCI
Control Function 2 Register. (See Table 4-38 "PCI Configura-
tion Registers" on page 179 for programming details.)

This pin is internally connected to a 20-kohm pull-up resistor.

LOCK# B11
(PU)

B16
(PU)

s/t/s Lock Operation

LOCK# indicates an atomic operation that may require multiple
transactions to complete. When LOCK# is asserted, nonexclu-
sive transactions may proceed to an address that is not cur-
rently locked (at least 16 bytes must be locked). A grant to start
a transaction on PCI does not guarantee control of LOCK#.
Control of LOCK# is obtained under it own protocol in conjunc-
tion with GNT#. It is possible for different agents to use PCI
while a single master retains ownership of LOCK#. The arbiter
can implement a complete system lock. In this mode, if LOCK#
is active, no other master can gain access to the system until
the LOCK# is deasserted.

This pin is internally connected to a 20-kohm pull-up resistor.

DEVSEL# A9
(PU)

E15
(PU)

s/t/s Device Select

DEVSEL# indicates that the driving device has decoded its
address as the target of the current access. As an input,
DEVSEL# indicates whether any device on the bus has been
selected. DEVSEL# will also be driven by any agent that has
the ability to accept cycles on a subtractive decode basis. As a
master, if no DEVSEL# is detected within and up to the subtrac-
tive decode clock, a master abort cycle will result expect for
special cycles which do not expect a DEVSEL# returned.

This pin is internally connected to a 20-kohm pull-up resistor.

2.2.2 PCI Interface Signals (cont.)

Signal Name
BGA

Pin No.
SPGA
Pin No Type Description

GXm_db_v2.0 Cyrix Corporation Confidential Page 27

Signal Descriptions 2

PERR# A11
(PU)

D16
(PU)

 s/t/s Parity Error

PERR# is used for reporting of data parity errors during all PCI
transactions except a Special Cycle. The PERR# line is driven
two SYSCLKs after the data in which the error was detected.
This is one SYSCLK after the PAR that is attached to the data.
The minimum duration of PERR# is one SYSCLK for each data
phase in which a data parity error is detected. PERR# must be
driven high for one SYSCLK before being tristated. A target
asserts PERR# on write cycles if it has claimed the cycle with
DEVSEL#. The master asserts PERR# on read cycles.

This pin is internally connected to a 20-kohm pull-up resistor.

SERR# C12
(PU)

A17
(PU)

 OD System Error

System Error may be asserted by any agent for reporting errors
other than PCI parity. The intent is to have the PCI central
agent assert NMI to the processor. When the Parity Enable bit
is set in the Memory Controller Configuration register, SERR#
will be asserted upon detecting a parity error on read opera-
tions from DRAM.

REQ[2:0]# D3,
H3,
E3

(PU)

E3,
K2,
E1

(PU)

I Request Lines

Request indicates to the arbiter that an agent desires use of the
bus. Each master has its own REQ# line. REQ# priorities are
based on the arbitration scheme chosen.

Each of these pins are internally connected to a 20-kohm pull-
up resistor.

GNT[2:0]# E1,
F2,
D1

H2,
K4,
F2

O Grant Lines

Grant indicates to the requesting master that it has been
granted access to the bus. Each master has its own GNT# line.
GNT# can be pulled away at any time a higher REQ# is
received or if the master does not begin a cycle within a mini-
mum period of time (16 SYSCLKs).

2.2.2 PCI Interface Signals (cont.)

Signal Name
BGA

Pin No.
SPGA
Pin No Type Description

Page 28 Cyrix Corporation Confidential GXm_db_v2.0

� Signal Descriptions

2.2.3 Memory Controller Interface Signals

Signal Name
BGA

Pin No.
SPGA

Pin No. Type Description

Note: The memory controller interface supports two types of memory configurations: SDRAM modules on the sys-
tem board and JEDEC DIMM connectors. Refer to Section 4.3 “Memory Controller” on page 116 for detailed
information regarding signal connections.

MD[63:0] Refer
to Table

2-3

Refer
to Table

2-5

I/O Memory Data Bus

The data bus lines driven to/from system memory.

MA[12:0] Refer
to Table

2-3

Refer
to Table

2-5

O Memory Address Bus

The multiplexed row/column address lines driven to the system
memory.

Supports 256Mbit SDRAM.

BA[1:0] AD26,
AD25

AJ33,
AK36

O Bank Address Bits

These bits are used to select the component bank within the
SDRAM.

CS[3:0]# AE23,
V25,

AD23,
V26

AK32,
Z34,

AN33,
AA35

O Chip Selects

The chip selects are used to select the module bank within the
system memory. Each chip select corresponds to a specific
module bank.

If CS# is high, the bank(s) do not respond to RAS#, CAS#,
WE# until the bank is selected again.

RASA#,
RASB#

W24,
W25

AB36,
AB34

O Row Address Strobe

RAS#, CAS#, WE# and CKE are encoded to support the differ-
ent SDRAM commands. RASA# is used with CS[1:0]#. RASB#
is used with CS[3:2]#.

CASA#,
CASB#

P25,
R26

W37,
X36

O Column Address Strobe

RAS#, CAS#, WE# and CKE are encoded to support the differ-
ent SDRAM commands. CASA# is used with CS[1:0]#. CASB#
is used with CS[3:2]#.

WEA#,
WEB#

R25,
R24

W33,
W35

O Write Enable

RAS#, CAS#, WE# and CKE are encoded to support the differ-
ent SDRAM commands. WEA# is used with CS[1:0]#. WEB# is
used with CS[3:2]#.

GXm_db_v2.0 Cyrix Corporation Confidential Page 29

Signal Descriptions 2

DQM[7:0] Refer
to Table

2-3

Refer
to Table

2-5

O Data Mask Control Bits

During memory read cycles, these outputs control whether the
SDRAM output buffers are driven on the MD bus or not. All
DQM signals are asserted during read cycles.

During memory write cycles, these outputs control whether or
not MD data will be written into the SDRAM.

DQM[7:0] connect directly to the DQM7-0 pins of each connec-
tor.

CKEA,
CKEB

AF24,
AD16

AL33,
AN23

O Clock Enable

These signals are used to enter Suspend/power-down mode.

When CKE goes low when no read or write cycle is in progress,
the SDRAM enters power-down mode. To ensure that SDRAM
data remains valid, the self-refresh command is executed. To
exit this mode, drive CKE high.

For normal operation, CKE should be held high.

SDCLK[3:0] AE4,
AF5,
AE5,
AF4

AM8,
AK10,
AL7,
AK8

O SDRAM Clocks

The SDRAM samples all the control, address, and data using
these clocks. SDCLK[3:0] should be used with CS[3:0]#,
respectively, for the Suspend mode to function correctly.

SDCLK_IN AE8 AK12 I SDRAM Clock Input

The MediaGX processor samples the memory read data on this
clock. Works in conjunction with the SDCLK_OUT signal.

SDCLK_OUT AF8 AL13 O SDRAM Clock Output

This output is routed back to SDCLK_IN. The board designer
should vary the length of the board trace to control skew
between SDCLK_IN and SDCLK.

2.2.3 Memory Controller Interface Signals (cont.)

Signal Name
BGA

Pin No.
SPGA

Pin No. Type Description

Page 30 Cyrix Corporation Confidential GXm_db_v2.0

� Signal Descriptions

2.2.4 Video Interface Signals

Signal Name
BGA

Pin No
SPGA
Pin No Type Description

PCLK AC1 AJ1 O Pixel Port Clock

Pixel Port Clock represents the pixel dotclock or a 2x multiple of
the dotclock for some 16-bit-per-pixel modes. It determines the
data transfer rate from the MediaGX processor to the
Cx5520/Cx5530.

VID_CLK P1 V4 O Video Clock

Video Clock represents the video port clock to the
Cx5520/Cx5530. This pin is only used if the Video Port is
enabled.

DCLK AB1 AD4 I Dotclock

The DCLK input is driven from the Cx5520/Cx5530 and repre-
sents the pixel dot clock. In some cases, such as when display-
ing 16 BPP data with an eight-bit-graphics pixel port, this clock
will actually be a 2x multiple of the dotclock.

CRT_HSYNC W2 AD2 O CRT Horizontal Sync

CRT Horizontal Sync establishes the line rate and horizontal
retrace interval for an attached CRT. The polarity is program-
mable and depends on the display mode.

CRT_VSYNC AA3 AH2 O CRT Vertical Sync

CRT Vertical Sync establishes the screen refresh rate and verti-
cal retrace interval for an attached CRT. The polarity is pro-
grammable and depends on the display mode.

FP_HSYNC L2 R4 O Flat Panel Horizontal Sync

Flat Panel Horizontal Sync establishes the line rate and hori-
zontal retrace interval for a TFT display. Polarity is programma-
ble and depends on the display mode.

This signal is an input to the Cx5520/Cx5530. The
Cx5520/Cx5530 re-drives this signal to the flat panel.

If no flat panel is used in the system, this signal does not need
to be connected.

FP_VSYNC J1 P2 O Flat Panel Vertical Sync

Flat Panel Vertical Sync establishes the screen refresh rate and
vertical retrace interval for a TFT display. Polarity is program-
mable and depends on the display mode.

This signal is an input to the Cx5520/Cx5530. The
Cx5520/Cx5530 re-drives this signal to the flat panel.

If no flat panel is used in the system, this signal does not need
to be connected.

GXm_db_v2.0 Cyrix Corporation Confidential Page 31

Signal Descriptions 2

ENA_DISP AD5 AM6 O Display Enable

Display Enable indicates the active display portion of a scan
line to the Cx5520/Cx5530.

In a Cx5520/Cx5530-based system, this signal is required to be
connected even if there is no TFT panel in the system.

VID_RDY AD1 AK2 I Video Ready

This input signal indicates that the video FIFO in the
Cx5520/Cx5530 is ready to receive more data.

VID_VAL M2 S3 O Video Valid

VID_VAL qualifies valid video data to the Cx5520/Cx5530.

VID_DATA[7:0] Refer
to Table

2-3

Refer
to Table

2-5

O Video Data Bus

When the Video Port is enabled, this bus drives Video (Y-U-V)
data synchronous to the VID_CLK output.

PIXEL[17:0] Refer
to Table

2-3

Refer
to Table

2-5

O Graphics Pixel Data Bus

This bus drives graphics pixel data synchronous to the PCLK
output.

2.2.4 Video Interface Signals (cont.)

Signal Name
BGA

Pin No
SPGA
Pin No Type Description

Page 32 Cyrix Corporation Confidential GXm_db_v2.0

� Signal Descriptions

2.2.5 Power, Ground, and No Connect Signals

Signal Name
BGA

Pin No.
SPGA

Pin No. Type Description

VOLDET AC5 AM36 O Voltage Detect

In early schematic revisions this pin was identified as VOLDET.
However, in the production version this pin is a "no connect"
and should be left disconnected.

VSS Refer
to Table

2-3
(Total of

71)

Refer
to Table

2-5
(Total of

50)

GND Ground Connection

VCC2 Refer
to Table

2-3
(Total of

32)

Refer
to Table

2-5
(Total of

32)

PWR 2.9V (nominal) Core Power Connection

VCC3 Refer
to Table

2-3
(Total of

32)

Refer
to Table

2-5
(Total of

18)

PWR 3.3V (nominal) I/O Power Connection

NC -- Q5, X2,
Z2

No Connection

A line designated as NC should be left disconnected.

GXm_db_v2.0 Cyrix Corporation Confidential Page 33

Signal Descriptions 2
2.2.6 Cyrix Internal Test and Measurement Signals

Signal Name
BGA

Pin No.
SPGA

Pin No. Type Description

FLT# AC2 AJ3 I Float

Float Outputs forces the MediaGX processor to float all outputs
in the high-impedance state and to enter a power-down state.

RW_CLK AE6 AL11 O Raw Clock

This output is the MediaGX processor clock. This debug signal
can be used to verify clock operation.

TEST[3:0] B22,
A23,
B21,
C21

D28,
B32,
D26,
A33

O SDRAM Test Outputs

These outputs are used for internal debug only.

TCLK J2
(PU)

P4
(PU)

I Test Clock

JTAG test clock.

This pin is internally connected to a 20-kohm pull-up resistor.

TDI D2
(PU)

F4
(PU)

I Test Data Input

JTAG serial test-data input.

This pin is internally connected to a 20-kohm pull-up resistor.

TDO F1 J1 O Test Data Output

JTAG serial test-data output.

TMS H1
(PU)

N3
(PU)

I Test Mode Select

JTAG test-mode select.

This pin is internally connected to a 20-kohm pull-up resistor.

TEST F3
(PD)

J5
(PD)

I Test

Test-mode input.

This pin is internally connected to a 20-kohm pull-down resistor.

TDP E24 F36 O Thermal Diode Positive

TDP is the positive terminal of the thermal diode on the die. The
diode is used to do thermal characterization of the device in a
system. This signal works in conjunction with TDN.

TDN D26 E37 O Thermal Diode Negative

TDN is the negative terminal of the thermal diode on the die.
The diode is used to do thermal characterization of the device
in a system. This signal works in conjunction with TDP.

Page 34 Cyrix Corporation Confidential GXm_db_v2.0

� Subsystem Signal Connections

2.3 Subsystem Signal Connections
As previously stated, the MediaGX Integrated
Subsystem with MMX support consists of two
chips. The MediaGX MMX-Enhanced Processor
and either the Cx5520 or Cx5530 I/O Companion

Chip. Figure 2-4 shows the signal connections
between the processor and the I/O companion
chip.

Figure 2-4 Subsystem Signal Connections

SYSCLK
SERIALP

IRQ13
SMI#

PCLK

CRT_HSYNC
CRT_VSYNC

PIXEL[17:0]

FP_HSYNC
FP_VSYNC
ENA_DISP

VID_VAL
VID_CLK

VID_DATA[7:0]
VID_RDY

INTR

SUSP#
SUSPA#
AD[31:0]

C/BE[3:0]#
PAR

FRAME#
IRDY#

TRDY#
STOP#
LOCK#

DEVSEL#
PERR#
SERR#
REQ0#

GX_CLK
PSERIAL
IRQ13
SMI#
PCLK

HSYNC
VSYNC

PIXEL[23:0]

FP_HSYNC
FP_VSYNC
FP_ENA_DISP
VID_VAL
VID_CLK
VID_DATA[7:0]
VID_RDY
CPU_RST
INTR

SUSP#
SUSPA#
AD[31:0]
C/BE[3:0]#
PAR
FRAME#
IRDY#
TRDY#
STOP#
LOCK#
DEVSEL#
PERR#
SERR#
REQ#
GNT#GNT0#

MediaGX™
MMX™-Enhanced

Cx5520/Cx5530
I/O Companion

Exclusive
Interconnect

Signals
(Do not connect to
any other device)

Nonexclusive
Interconnect

Signals
(May also connect

to other circuitry)

Not needed if
CRT only (no TFT)

(Note)

Note: Refer to Figure 2-5 for interconnection of these lines.

RESET

DCLK DCLK

Processor

GXm_db_v2.0 Cyrix Corporation Confidential Page 35

Subsystem Signal Connections 2

Figure 2-5 PIXEL Signal Connections

PIXEL17

PIXEL16

PIXEL15

PIXEL14

PIXEL13

PIXEL12

PIXEL11

PIXEL10

PIXEL9

PIXEL8

PIXEL7

PIXEL6

PIXEL5

PIXEL4

PIXEL3

PIXEL2

PIXEL1

MediaGX™
MMX™-Enhanced

Cx5520/Cx5530
I/O Companion

PIXEL0

PIXEL23

PIXEL22

PIXEL21

PIXEL20

PIXEL19

PIXEL18

PIXEL17

PIXEL16

PIXEL15

PIXEL14

PIXEL13

PIXEL12

PIXEL11

PIXEL10

PIXEL9

PIXEL8

PIXEL7

PIXEL6

PIXEL5

PIXEL4

PIXEL3

PIXEL2

PIXEL1

PIXEL0

Processor

Page 36 Cyrix Corporation Confidential GXm_db_v2.0

� Power Planes

2.4 Power Planes
Figure 2-6 shows layout recommendations for split-
ting the power plane between 2.9 (VCC2) and 3.3
(VCC3) volts in the BGA package. The illustration

assumes there is one power plane, and no compo-
nents on the back of the board.

Figure 2-6 BGA Recommended Split Power Plane and Decoupling

1 26
A

AF AF

A

261

= High frequency capacitor

= 220µF, low ESR capacitor

= 3.3V connection

= 2.9V connection

MediaGX™

352 BGA - Top View

2.9V Plane
(VCC2)

3.3V Plane
(VCC3)

3.3V Plane
(VCC3)

3.3V Plane
(VCC3)

2.9V Plane
(VCC2)

Legend

MMX™-Enhanced
Processor

GXm_db_v2.0 Cyrix Corporation Confidential Page 37

Power Planes 2
Figure 2-7 shows layout recommendations for split-
ting the power plane between 2.9 (VCC2) and 3.3

(VCC3) volts in the SPGA package.

Figure 2-7 SPGA Recommended Split Power Plane and Decoupling

1 37

A

AN

A

AN

1 37

2.9V Plane
(VCC2)

3.3V Plane
(VCC3)

3.3V Plane
(VCC3)

3.3V Plane
(VCC3)

3.3V Plane
(VCC3)

2.9V Plane
(VCC2)

To 2.9V
Regulator

Note: Where signals cross plane splits, it is recommended to include
AC decoupling between planes with 47pF capacitors.

= High frequency capacitor

= 220µF, low ESR capacitor

= 3.3V connection

= 2.9V connection

Legend

MediaGX™

320 SPGA - Top View

MMX™-Enhanced
Processor

Page 38 Cyrix Corporation Confidential GXm_db_v2.0

� Power Planes

GXm_db_v2.0 Cyrix Corporation Confidential Page 39

MediaGX™ MMX™-Enhanced Processor
Integrated x86 Solution with MMX™ Support

�
3 Processor Programming
This section describes the internal operations of
the MediaGX MMX-Enhanced processor from a
programmer’s point of view. It includes a descrip-
tion of the traditional “core” processing and FPU
operations. The integrated function registers are
described at the end of this chapter.

The primary register sets within the processor core
include:

• Application Register Set
• System Register Set
• Model Specific Register Set
• Floating Point Unit Register Set.

The initialization of the major registers within in
core are shown in Table 3-1 on page 40.

The integrated function sets are located in main
memory space and include:

• Internal Bus Interface Unit Register Set
• Graphics Pipeline Register Set
• Display Controller Register Set
• Memory Controller Register Set
• Power Management Register Set

3.1 Core Processor Initialization
The MediaGX processor is initialized when the
RESET signal is asserted. The processor is placed
in real mode and the registers listed in Table 3-1
are set to their initialized values. RESET invali-
dates and disables the CPU cache, and turns off
paging. When RESET is asserted, the CPU termi-
nates all local bus activity and all internal execu-
tion. During the entire time that RESET is asserted,
the internal pipeline is flushed and no instruction
execution or bus activity occurs.

Approximately 150 to 250 external clock cycles
after RESET is deasserted, the processor begins
executing instructions at the top of physical
memory (address location FFFF FFF0h). The actual
time depends on the clock scaling in use. Also, an
additional 220 clock cycles are needed when self-
test is requested.

Typically, an intersegment jump is placed at FFFF
FFF0h. This instruction will force the processor to
begin execution in the lowest 1MB of address
space.

The following table, Table 3-1, lists the core regis-
ters and illustrates how they are initialized.

�

Page 40 Cyrix Corporation Confidential GXm_db_v2.0

Core Processor Initialization

Table 3-1 Initialized Core Register Controls

Register Register Name Initialized Contents Comments

EAX Accumulator xxxx xxxxh 0000 0000h indicates self-test passed.

EBX Base xxxx xxxxh

ECX Count xxxx xxxxh

EDX Data xxxx 04 [DIR0] DIR0 = Device ID

EBP Base Pointer xxxx xxxxh

ESI Source Index xxxx xxxxh

EDI Destination Index xxxx xxxxh

ESP Stack Pointer xxxx xxxxh

EFLAGS Flags 0000 0002h See Table 3-4 on page 45 for bit definitions.

EIP Instruction Pointer 0000 FFF0h

ES Extra Segment 0000h Base address set to 0000 0000h.
Limit set to FFFFh.

CS Code Segment F000h Base address set to FFFF 0000h.
Limit set to FFFFh.

SS Stack Segment 0000h Base address set to 0000 0000h.
Limit set to FFFFh.

DS Data Segment 0000h Base address set to 0000 0000h.
Limit set to FFFFh.

FS Extra Segment 0000h Base address set to 0000 0000h.
Limit set to FFFFh.

GS Extra Segment 0000h Base address set to 0000 0000h.
Limit set to FFFFh.

IDTR Interrupt Descriptor Table
Register

Base = 0, Limit = 3FFh

GDTR Global Descriptor Table
Register

xxxx xxxxh xxxxh

LDTR Local Descriptor Table Register xxxx xxxxh, xxxxh

TR Task Register xxxxh

CR0 Machine Status Word 6000 0010h See Table 3-7 on page 48 for bit definitions.

CR2 Control Register 2 xxxx xxxxh See Table 3-7 on page 48 for bit definitions.

CR3 Control Register 3 xxxx xxxxh See Table 3-7 on page 48 for bit definitions.

CR4 Control Register 4 0000 0000h See Table 3-7 on page 48 for bit definitions.

CCR1 Configuration Control 1 00h See Table 3-11 on page 52 for bit definitions.

CCR2 Configuration Control 2 00h See Table 3-11 on page 52 for bit definitions.

CCR3 Configuration Control 3 00h See Table 3-11 on page 53 for bit definitions.

CCR7 Configuration Control 7 00h See Table 3-11 on page 54 for bit definitions.

SMAR0 SMM Address 0 00h See Table 3-11 on page 55 for bit definitions.

SMAR1 SMM Address 1 00h See Table 3-11 on page 55 for bit definitions.

SMAR2 SMM Address 2 / SMAR Size 00h See Table 3-11 on page 55 for bit definitions.

DIR0 Device Identification 0 4xh Device ID and reads back initial CPU clock-
speed setting.

See Table 3-11 on page 56 for bit definitions.

DIR1 Device Identification 1 xxh Stepping and Revision ID (RO).

See Table 3-11 on page 56 for bit definitions.

DR7 Debug Register 7 0000 0400h See Table 3-13 on page 58 for bit definitions.

Note: x = Undefined value

GXm_db_v2.0 Cyrix Corporation Confidential Page 41

Instruction Set Overview 3
3.2 Instruction Set Overview
The MediaGX processor instruction set can be
divided into nine types of operations:

• Arithmetic
• Bit Manipulation
• Shift/Rotate
• String Manipulation
• Control Transfer
• Data Transfer
• Floating Point
• High-Level Language Support
• Operating System Support

MediaGX processor instructions operate on as few
as zero operands and as many as three operands.
An NOP instruction (no operation) is an example of
a zero-operand instruction. Two-operand instruc-
tions allow the specification of an explicit source
and destination pair as part of the instruction.
These two-operand instructions can be divided into
ten groups according to operand types:

• Register to Register
• Register to Memory
• Memory to Register
• Memory to Memory
• Register to I/O
• I/O to Register
• Memory to I/O
• I/O to Memory
• Immediate Data to Register
• Immediate Data to Memory

An operand can be held in the instruction itself (as
in the case of an immediate operand), in one of the
processor’s registers or I/O ports, or in memory. An
immediate operand is fetched as part of the
opcode for the instruction.

Operand lengths of 8, 16, 32 or 48 bits are
supported as well as 64 or 80 bits associated with
floating-point instructions. Operand lengths of 8 or
32 bits are generally used when executing code
written for 386- or 486-class (32-bit code) proces-
sors. Operand lengths of 8 or 16 bits are generally
used when executing existing 8086 or 80286 code
(16-bit code). The default length of an operand can
be overridden by placing one or more instruction
prefixes in front of the opcode. For example, the
use of prefixes allows a 32-bit operand to be used
with 16-bit code or a 16-bit operand to be used with
32-bit code.

Section 9.1 “General Instruction Set Format” on
page 234 contains the clock count table that lists
each instruction in the CPU instruction set.
Included in the table are the associated opcodes,
execution clock counts, and effects on the Flags
register.

3.2.1 Lock Prefix
The LOCK prefix may be placed before certain
instructions that read, modify, then write back to
memory. The PCI will not be granted access in the
middle of locked instructions. The LOCK prefix can
be used with the following instructions only when
the result is a write operation to memory.

Bit Test Instructions (BTS, BTR, BTC)
Exchange Instructions (XADD, XCHG,

CMPXCHG)
One-Operand Arithmetic and Logical Instruc-

tions (DEC, INC, NEG, NOT)
Two-Operand Arithmetic and Logical Instruc-

tions (ADC, ADD, AND, OR, SBB, SUB,
XOR).

An invalid opcode exception is generated if the
LOCK prefix is used with any other instruction or
with one of the instructions above when no write
operation to memory occurs (for example, when
the destination is a register).

�

Page 42 Cyrix Corporation Confidential GXm_db_v2.0

Register Sets

3.3 Register Sets
The accessible registers in the processor are
grouped into three sets:

1) The Application Register Set contains the
registers frequently used by application
programmers. Table 3-2 shows the general
purpose registers, segment registers, the
instruction pointer register and the flag register.

2) The System Register Set contains the regis-
ters typically reserved for operating-systems
programmers: control registers, system
address registers, debug registers, configura-
tion registers, and test registers.

3) The Model Specific Register (MSR) Set is
used to monitor the performance of the
processor or a specific component within the
processor. The model specific register set has
one 64-bit register called the Time Stamp
Counter.

Each of these register sets are discussed in detail
in the subsections that follow. Additional registers
to support integrated MediaGX processor
subsystems are described in Section 4.1 “Inte-
grated Functions Programming Interface” of this
manual.

Table 3-2 Application Register Set

31 16 15 8 7 0

AX

General
Purpose
Registers

AH AL
EAX (Extended A Register)

BX
BH BL

EBX (Extended B Register)
CX

CH CL
ECX (Extended C Register)

DX
DH DL

EDX (Extended D Register)
SI (Source Index)

ESI (Extended Source Index)
DI (Destination Index)

EDI (Extended Destination Index)
BP (Base Pointer)

EBP (Extended Base Pointer)
SP (Stack Pointer)

ESP (Extended Stack Pointer)
CS (Code Segment)

Segment
(Selector)
Registers

SS (Stack Segment)
DS (D Data Segment)
ES (E Data Segment)
FS (F Data Segment)
GS (G Data Segment)

EIP (Extended Instruction Pointer Register) Instruction Pointer and
EFLAGS (Extended Flags Register) Flags Register

GXm_db_v2.0 Cyrix Corporation Confidential Page 43

Register Sets 3
3.3.1 Application Register Set
The Application Register Set consists of the regis-
ters most often used by the applications
programmer. These registers are generally acces-
sible, although some bits in the Flags register are
protected.

The General Purpose Register contents are
frequently modified by instructions and typically
contain arithmetic and logical instruction operands.

In real mode, Segment Registers contain the
base address for each segment. In protected
mode, the segment registers contain segment
selectors. The segment selectors provide indexing
for tables (located in memory) that contain the
base address for each segment, as well as other
memory addressing information.

The Instruction Pointer Register points to the
next instruction that the processor will execute.
This register is automatically incremented by the
processor as execution progresses.

The Flags Register contains control bits used to
reflect the status of previously executed instruc-
tions. This register also contains control bits that
affect the operation of some instructions.

3.3.1.1 General Purpose Registers
The General Purpose Registers are divided into
four data registers, two pointer registers, and two
index registers as shown in Table 3-2 on page 42.

The Data Registers are used by the applications
programmer to manipulate data structures and to
hold the results of logical and arithmetic opera-
tions. Different portions of general data registers
can be addressed by using different names.

An “E” prefix identifies the complete 32-bit register.
An “X” suffix without the “E” prefix identifies the
lower 16 bits of the register.

The lower two bytes of a data register are
addressed with an “H” suffix (identifies the upper
byte) or an “L” suffix (identifies the lower byte).
These _L and _H portions of the data registers act
as independent registers. For example, if the AH
register is written to by an instruction, the AL
register bits remain unchanged.

The Pointer and Index Registers are listed below.
SI or ESI Source Index
DI or EDI Destination Index
SP or ESP Stack Pointer
BP or EBP Base Pointer

These registers can be addressed as 16- or 32-bit
registers, with the “E” prefix indicating 32 bits. The
pointer and index registers can be used as general
purpose registers; however, some instructions use
a fixed assignment of these registers. For example,
repeated string operations always use ESI as the
source pointer, EDI as the destination pointer, and
ECX as a counter. The instructions that use fixed
registers include multiply and divide, I/O access,
string operations, stack operations, loop, variable
shift and rotate, and translate instructions.

The MediaGX processor implements a stack using
the ESP register. This stack is accessed during the
PUSH and POP instructions, procedure calls,
procedure returns, interrupts, exceptions, and
interrupt/exception returns. The MediaGX
processor automatically adjusts the value of the
ESP during operations that result from these
instructions.

The EBP register may be used to refer to data
passed on the stack during procedure calls. Local
data may also be placed on the stack and
accessed with BP. This register provides a mecha-
nism to access tack data in high-level languages.

�

Page 44 Cyrix Corporation Confidential GXm_db_v2.0

Register Sets

3.3.1.2 Segment Registers
The 16-bit segment registers, part of the main
memory addressing mechanism, are described in
Section 3.5 “Offset, Segment, and Paging Mecha-
nisms” on page 66. The six segment registers are:

CS - Code Segment
DS - Data Segment
SS - Stack Segment
ES - Extra Segment
FS - Additional Data Segment
GS - Additional Data Segment

The segment registers are used to select
segments in main memory. A segment acts as
private memory for different elements of a program
such as code space, data space and stack space.

There are two segment mechanisms, one for Real
and Virtual 8086 Operating Modes and one for
Protective Mode. Initialization and transition to
protective mode is described in Section 3.13.4
“Initialization and Transition to Protected Mode” on
page 99. The segment mechanisms are described
in Section 3.7 “Descriptors and Segment Mecha-
nisms” on page 68.

The active segment register is selected according
to the rules listed in Table 3-3 and the type of
instruction being currently processed. In general,
the DS register selector is used for data refer-
ences. Stack references use the SS register, and
instruction fetches use the CS register. While some
of these selections may be overridden, instruction
fetches, stack operations, and the destination write
operation of string operations cannot be over-
ridden. Special segment-override instruction
prefixes allow the use of alternate segment regis-
ters. These segment registers include the ES, FS,
and GS registers.

3.3.1.3 Instruction Pointer Register
The Instruction Pointer (EIP) Register contains
the offset into the current code segment of the next
instruction to be executed. The register is normally
incremented by the length of the current instruction
with each instruction execution unless it is implicitly
modified through an interrupt, exception, or an
instruction that changes the sequential execution
flow (for example JMP and CALL).

Table 3-3 illustrates the code segment selection
rules.

Table 3-3 Segment Register Selection Rules

Type of Memory Reference
Implied (Default)

Segment
Segment-Override

Prefix

Code Fetch CS None

Destination of PUSH, PUSHF, INT, CALL, PUSHA instructions SS None

Source of POP, POPA, POPF, IRET, RET instructions SS None

Destination of STOS, MOVS, REP STOS, REP MOVS instructions ES None

Other data references with effective address using base registers of:
 EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP

DS

SS

CS, ES, FS, GS, SS

CS, DS, ES, FS, GS

GXm_db_v2.0 Cyrix Corporation Confidential Page 45

Register Sets 3
3.3.1.4 Flags Register
The Flags Register contains status information and
controls certain operations on the MediaGX
processor. The lower 16 bits of this register are

referred to as the Flags register that is used when
executing 8086 or 80286 code. Table 3-4 gives the
bit formats for the EFLAGS Register.

Table 3-4 EFLAGS Register

Bit Name Flag Type Description

31:22 RSVD -- Reserved — Set to 0.

21 ID System Identification Bit — The ability to set and clear this bit indicates that the CPUID instruction is
supported. The ID can be modified only if the CPUID bit in CCR4 (Index E8h[7]) is set.

20:19 RSVD -- Reserved — Set to 0.

18 AC System Alignment Check Enable — In conjunction with the AM flag in CR0, the AC flag determines
whether or not misaligned accesses to memory cause a fault. If AC is set, alignment faults are
enabled.

17 VM System Virtual 8086 Mode — If set while in protected mode, the processor switches to virtual 8086
operation handling segment loads as the 8086 does, but generating exception 13 faults on
privileged opcodes. The VM bit can be set by the IRET instruction (if current privilege level
is 0) or by task switches at any privilege level.

16 RF Debug Resume Flag — Used in conjunction with debug register breakpoints. RF is checked at
instruction boundaries before breakpoint exception processing. If set, any debug fault is
ignored on the next instruction.

15 RSVD -- Reserved — Set to 0.

14 NT System Nested Task — While executing in protected mode, NT indicates that the execution of the
current task is nested within another task.

13:12 IOPL System I/O Privilege Level — While executing in protected mode, IOPL indicates the maximum cur-
rent privilege level (CPL) permitted to execute I/O instructions without generating an exception
13 fault or consulting the I/O permission bit map. IOPL also indicates the maximum CPL allow-
ing alteration of the IF bit when new values are popped into the EFLAGS register.

11 OF Arithmetic Overflow Flag — Set if the operation resulted in a carry or borrow into the sign bit of the result
but did not result in a carry or borrow out of the high-order bit. Also set if the operation resulted
in a carry or borrow out of the high-order bit but did not result in a carry or borrow into the sign
bit of the result.

10 DF Control Direction Flag — When cleared, DF causes string instructions to auto-increment (default) the
appropriate index registers (ESI and/or EDI). Setting DF causes auto-decrement of the index
registers to occur.

9 IF System Interrupt Enable Flag — When set, maskable interrupts (INTR input pin) are acknowledged
and serviced by the CPU.

8 TF Debug Trap Enable Flag — Once set, a single-step interrupt occurs after the next instruction com-
pletes execution. TF is cleared by the single-step interrupt.

7 SF Arithmetic Sign Flag — Set equal to high-order bit of result (0 indicates positive, 1 indicates negative).

6 ZF Arithmetic Zero Flag — Set if result is zero; cleared otherwise.

5 RSVD -- Reserved — Set to 0.

4 AF Arithmetic Auxiliary Carry Flag — Set when a carry out of (addition) or borrow into (subtraction) bit posi-
tion 3 of the result occurs; cleared otherwise.

3 RSVD -- Reserved — Set to 0.

2 PF Arithmetic Parity Flag — Set when the low-order 8 bits of the result contain an even number of ones;
otherwise PF is cleared.

1 RSVD Reserved — Set to 1.

0 CF Arithmetic Carry Flag — Set when a carry out of (addition) or borrow into (subtraction) the most signifi-
cant bit of the result occurs; cleared otherwise.

�

Page 46 Cyrix Corporation Confidential GXm_db_v2.0

Register Sets

3.3.2 System Register Set
The system register set, shown in Table 3-5,
consists of registers not generally used by applica-
tion programmers. These registers are typically
employed by system level programmers who
generate operating systems and memory manage-
ment programs. Associated with the system
register set are certain tables and segments which
are listed in Table 3-5.

The Control Registers control certain aspects of
the MediaGX processor such as paging, copro-
cessor functions, and segment protection.

The Descriptor Tables hold descriptors that
manage memory segments and tables, interrupts
and task switching. The tables are defined by
corresponding registers.

The two Task State Segments Tables defined by
TSS register are used to save and load the
computer state when switching tasks.

The Configuration Registers are used to define
Cyrix MediaGX CPU setup including cache
management.

The ID registers allow BIOS and other software to
identify the specific CPU and stepping. System
Management Mode (SMM) control information is
stored in the SMM registers.

The Debug Registers provide debugging facilities
for the MediaGX processor and enable the use of
data access breakpoints and code execution
breakpoints.

The Test Registers provide a mechanism to test
the contents of both the on-chip 16KB cache and
the Translation Lookaside Buffer (TLB). The TLB is
used as a cache for the tables that are used in to
translate linear addresses to physical addresses
while paging is enabled.

Table 3-5 lists the system register sets along with
their size and function.

Table 3-5 System Register Set

Group Name Function
Width
(Bits)

Control
Registers

CR0 System Control
Register

32

CR2 Page Fault Linear
Address Register

32

CR3 Page Directory Base Reg-
ister

32

CR4 Time Stamp Counter 32

Descriptor
Tables

GDT General Descriptor Table 32

IDT Interrupt Descriptor Table 32

LDT Local Descriptor Table 16

Descriptor
Table
Registers

GDTR GDT Register 32

IDTR IDT Register 32

LDTR LDT Register 16

Task State
Segment and
Registers

TSS Task State Segment
Tables

16

TR TSS Register Setup 16

Configuration
Registers

CCRn Configuration Control
Registers

8

ID
Registers

DIRn Device Identification
Registers

8

SMM
Registers

SMARn SMM Address Region
Registers

8

SMHRn SMM Header Addresses 8

Performance
Registers

PCR0 Performance Control
Register

8

Debug
Registers

DR0 Linear Breakpoint
Address 0

32

DR1 Linear Breakpoint
Address 1

32

DR2 Linear Breakpoint
Address 2

32

DR3 Linear Breakpoint
Address 3

32

DR6 Breakpoint Status 32

DR7 Breakpoint Control 32

Test
Registers

TR3 Cache Test 32

TR4 Cache Test 32

TR5 Cache Test 32

TR6 TLB Test Control 32

TR7 TLB Test Status 32

GXm_db_v2.0 Cyrix Corporation Confidential Page 47

Register Sets 3
3.3.2.1 Control Registers
A map of the Control Registers (CR0, CR2, CR3,
and CR4) is shown in Table 3-6 and the bit defini-
tions given in Table 3-7. (These registers should not
be confused with the CRRn registers.) The CR0
register contains system control bits which
configure operating modes and indicate the general

state of the CPU. The lower 16 bits of CR0 are
referred to as the Machine Status Word (MSW).

When operating in real mode, any program can read
and write the control registers. In protected mode,
however, only privilege level 0 (most-privileged)
programs can read and write these registers.

Table 3-6 Control Registers Map

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CR4 Register

RSVD T

S
C

RSVD

CR3 Register

PDBR (Page Directory Base Register) RSVD 0 0 RSVD

CR2 Register

PFLA (Page Fault Linear Address)

CR1 Register

RSVD

CR0 Register

P
G

C
D

N
W

RSVD A
M

R
S
V
D

W
P

RSVD N
E

1 T
S

E
M

M
P

P
E

Machine Status Word (MSW)

�

Page 48 Cyrix Corporation Confidential GXm_db_v2.0

Register Sets

Table 3-7 CR4-CR0 Bit Definitions

Bit Name Description

CR4 Register

31:3 RSVD Reserved: Set to 0 (always returns 0 when read).

2 TSC Time Stamp Counter Instruction:
If = 1 RDTSC instruction enabled for CPL = 0 only; reset state.
If = 0 RDTSC instruction enabled for all CPL states.

1:0 RSVD Reserved — Set to 0 (always returns 0 when read).

CR3 Register

31:12 PDBR Page Directory Base Register: Identifies page directory base address on a 4KB page boundary.

11:0 RSVD Reserved: Set to 0.

CR2 Register

31:0 PFLA Page Fault Linear Address: With paging enabled and after a page fault, PFLA contains the linear address of
the address that caused the page fault.

CR0 Register

31 PG Paging Enable Bit: If PG = 1 and protected mode is enabled (PE = 1), paging is enabled. After changing the
state of PG, software must execute an unconditional branch instruction (e.g., JMP, CALL) to have the change
take effect.

30 CD Cache Disable: If CD = 1, no further cache line fills occur. However, data already present in the cache continues
to be used if the requested address hits in the cache. Writes continue to update the cache and cache invalida-
tions due to inquiry cycles occur normally. The cache must also be invalidated to completely disable any cache
activity.

29 NW Not Write-Through: If NW = 1, the on-chip cache operates in write-back mode. In write-back mode, writes are
issued to the external bus only for a cache miss, a line replacement of a modified line, execution of a locked
instruction, or a line eviction as the result of a flush cycle. If NW = 0, the on-chip cache operates in write-through
mode. In write-through mode, all writes (including cache hits) are issued to the external bus. This bit cannot be
changed if LOCK_NW = 1 in CCR2.

18 AM Alignment Check Mask: If AM = 1, the AC bit in the EFLAGS register is unmasked and allowed to enable align-
ment check faults. Setting AM = 0 prevents AC faults from occurring.

16 WP Write Protect: Protects read-only pages from supervisor write access. WP = 0 allows a read-only page to be
written from privilege level 0-2. WP = 1 forces a fault on a write to a read-only page from any privilege level.

5 NE Numerics Exception: NE = 1 to allow FPU exceptions to be handled by interrupt 16. NE = 0 if FPU exceptions
are to be handled by external interrupts.

4 1 Reserved: Do not attempt to modify.

3 TS Task Switched: Set whenever a task switch operation is performed. Execution of a floating point instruction with
TS = 1 causes a DNA fault. If MP = 1 and TS = 1, a WAIT instruction also causes a DNA fault.

2 EM Emulate Processor Extension: If EM = 1, all floating point instructions cause a DNA fault 7.

1 MP Monitor Processor Extension: If MP = 1 and TS = 1, a WAIT instruction causes Device Not Available (DNA)
fault 7. The TS bit is set to 1 on task switches by the CPU. Floating point instructions are not affected by the
state of the MP bit. The MP bit should be set to one during normal operations.

0 PE Protected Mode Enable: Enables the segment based protection mechanism. If PE = 1, protected mode is
enabled. If PE = 0, the CPU operates in real mode and addresses are formed as in an 8086-style CPU. Refer to
Section 3.13 “Protection” on page 97.

GXm_db_v2.0 Cyrix Corporation Confidential Page 49

Register Sets 3
Table 3-8 Effects of Various Combinations of EM, TS, and MP Bits

CR0[3:1] Instruction Type

TS EM MP WAIT ESC

0 0 0 Execute Execute

0 0 1 Execute Execute

1 0 0 Execute Fault 7

1 0 1 Fault 7 Fault 7

0 1 0 Execute Fault 7

0 1 1 Execute Fault 7

1 1 0 Execute Fault 7

1 1 1 Fault 7 Fault 7

�

Page 50 Cyrix Corporation Confidential GXm_db_v2.0

Register Sets

3.3.2.2 Configuration Registers
The configuration registers listed in Table 3-9 are
CPU registers and are selected by register index
numbers. The registers are accessed through I/O
memory locations 22h and 23h. Registers are
selected for access by writing an index number to
I/O Port 22h using an OUT instruction prior to
transferring data through I/O Port 23h.

Each data transfer through I/O Port 23h must be
preceded by a register index selection through I/O

Port 22h; otherwise, subsequent I/O Port 23h oper-
ations are directed off-chip and produce external
I/O cycles.

If MAPEN, bit 4 of CCR3 (Index C3h[4]) = 0,
external I/O cycles will occur if the register index
number is outside the range C0h-CFh, FEh, and
FFh. The MAPEN bit should remain 0 during
normal operation to allow system registers located
at I/O Port 22h to be accessed (see Table 3-11 on
page 53).

Table 3-9 Configuration Register Summary

Index Type Name
Access

Controlled By*
Default
Value

Reference
(Bit Formats)

C1h R/W CCR1 — Configuration Control 1 SMI_LOCK 00h Table 3-11 on page 52

C2h R/W CCR2 — Configuration Control 2 -- 00h Table 3-11 on page 52

C3h R/W CCR3 — Configuration Control 3 SMI_LOCK 00h Table 3-11 on page 53

E8h R/W CCR4 — Configuration Control 4 MAPEN 85h Table 3-11 on page 54

EBh R/W CCR7 — Configuration Control 7 -- 00h Table 3-11 on page 54

20h R/W PCR — Performance Control MAPEN 07h Table 3-11 on page 54

B0h R/W SMHR0 — SMM Header Address 0 MAPEN xxh Table 3-11 on page 55

B1h R/W SMHR1 — SMM Header Address 1 MAPEN xxh Table 3-11 on page 55

B2h R/W SMHR2 — SMM Header Address 2 MAPEN xxh Table 3-11 on page 55

B3h R/W SMHR3 — SMM Header Address 3 MAPEN xxh Table 3-11 on page 55

B8h R/W GCR — Graphics Control Register MAPEN 00h Table 4-1 on page 104

B9h VGACTL — VGA Control Register -- 00h Table 5-5 on page 200

BAh-BDh VGAM0 — VGA Mask Register -- 00h Table 5-5 on page 200

CDh R/W SMAR0 — SMM Address 0 SMI_LOCK 00h Table 3-11 on page 55

CEh R/W SMAR1 — SMM Address 1 SMI_LOCK 00h Table 3-11 on page 55

CFh R/W SMAR2 — SMM Address 2 SMI_LOCK 00h Table 3-11 on page 55

FEh RO DIR0 — Device ID 0 -- 4xh Table 3-11 on page 56

FFh RO DIR1 — Device ID 1 -- xxh Table 3-11 on page 56

*Note: MAPEN = Index C3h[4] (CCR3) and SMI_LOCK = Index C3h[0] (CCR3).

GXm_db_v2.0 Cyrix Corporation Confidential Page 51

Register Sets 3
Table 3-10 Configuration Register Map

Register
(Index) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Control Registers

CCR1 (C1h) RSVD SMAC USE_SMI RSVD

CCR2 (C2h) USE_SUSP RSVD WT1 SUSP_HLT LOCK_NW RSVD

CCR3 (C3h) LSS_34 LSS_23 LSS_12 MAPEN RSVD NMI_EN SMI_LOCK

CCR4 (E8h) CPUID SMI_NEST RSVD DTE_EN MEM_BYP IORT2 IORT1 IORT0

CCR7 (EBh) RSVD NMI RSVD EMMX

PCR (20h) LSSER RSVD

Device ID Registers

DIR0 (FEh) DID3 DID2 DID1 DID0 RSVD CLKMODE1 RSVD CLMODE0

DIR1 (FFh) SID3 SID2 SID1 SID0 RID3 RID2 RID1 RID0

SMM Base Header Address Registers

SMAR0 (CDh) A31 A30 A29 A28 A27 A26 A25 A24

SMAR1 (CEh) A23 A22 A21 A20 A19 A18 A17 A16

SMAR2 (CFh) A15 A14 A13 A12 SIZE3 SIZE2 SIZE1 SIZE0

SMHR0 (B0h) A7 A6 A5 A4 A3 A2 A1 A0

SMHR1 (B1h) A15 A14 A13 A12 A11 A10 A9 A8

SMHR2 (B2h) A23 A22 A21 A20 A19 A18 A17 A16

SMHR3 (B3h) A31 A30 A29 A28 A27 A26 A26 A24

Graphics/VGA Related Registers

GCR (B8h) RSVD Scratchpad Size Base Address Code

VGACTL
(B9h)

RSVD Enable SMI
for VGA
memory

B8000h to
BFFFFh

Enable SMI
for VGA
memory

B0000h to
B7FFFh

Enable SMI
for VGA
memory

A0000h to
AFFFFh

VGAM0 (BAh) VGA Mask Register Bits [7:0]

VGAM1 (BBh) VGA Mask Register Bits [15:8]

VGAM2 (BCh) VGA Mask Register Bits [23:16]

VGAM3 (BDh) VGA Mask Register Bits [31:24]

�

Page 52 Cyrix Corporation Confidential GXm_db_v2.0

Register Sets

Table 3-11 Configuration Registers

Bit Name Description

Index C1h CCR1 — Configuration Control Register 1 (R/W) Default Value = 00h

7:3 RSVD Reserved: Set to 0.

2 SMAC System Management Memory Access:

If = 1: SMINT instruction can be recognized (see Table 3-33 on page 88).
If = 0: SMINT instruction has no affect.

Note: SMI_LOCK (CCR3[0]) must = 0, or the CPU must be in SMI mode, to write this bit.

1 USE_SMI Enable SMM Pins:

If = 1: SMI# input pin is enabled (see Table 3-33 on page 88). SMINT instruction can be recognized.
If = 0: SMI# pin is ignored.

Note: SMI_LOCK (CCR3[0]) must = 0, or the CPU must be in SMI mode, to write this bit.

0 RSVD Reserved — Set to 0.

Note: Bits 1 and 2 are cleared to zero at reset.

Index C2h CCR2 — Configuration Control Register 2 (R/W) Default Value = 00h

7 USE_SUSP Enable Suspend Pins:

If = 1: SUSP# input and SUSPA# output are enabled.
If = 0: SUSP# input is ignored and SUSPA# output floats.

6:5 RSVD Reserved: Set to 0.

4 WT1 Write-Through Region 1 :

If = 1: Forces all writes to the address region between 640KB to 1MB that hit in the on-chip cache to be
issued on the external bus.

3 SUSP_HLT Suspend on HALT:

If = 1: CPU enters suspend mode following execution of a HALT instruction.

2 LOCK_NW Lock NW Bit:

If = 1: Prohibits changing the state of the NW bit (CR0[29]) (refer to Table 3-7 on page 48).
Set to 1 after setting NW.

1:0 RSVD Reserved: Set to 0.

Note: All bits are cleared to zero at reset.

GXm_db_v2.0 Cyrix Corporation Confidential Page 53

Register Sets 3

Index C3h CCR3 — Configuration Control Register 3 (R/W) Default Value = 00h

7 LSS_34 Load/Store Serialize 3 GBytes to 4 GBytes:

If = 1: Strong R/W ordering imposed in address range C000 0000h to FFFF FFFFh:

6 LSS_23 Load/Store Serialize 2 GBytes to 3 GBytes:

If = 1: Strong R/W ordering imposed in address range 8000 0000h to BFFF FFFFh:

5 LSS_12 Load/Store Serialize 1 GByte to 2 GBytes :

If = 1: Strong R/W ordering imposed in address range 4000 0000h to 7FFF FFFFh

4 MAPEN Map Enable:

If = 1: All configuration registers are accessible. All accesses to Port 22h are trapped.
If = 0: Only configuration registers Index C1h through CFh, FEh, FFh (CCRn, SMAR, DIRn) are acces-
sible. Other configuration registers (including PCR, SMHRn, GCR, VGACTL, VGAM0) are not acces-
sible.

3:2 RSVD Reserved: Set to 0.

1 NMI_EN NMI Enable:

If = 1: NMI is enabled during SMM.
If = 0: NMI is not recognized during SMM.

Note: SMI_LOCK (CCR3[0]) must = 0 or the CPU must be in SMI mode to write to this bit.

0 SMI_LOCK SMM Register Lock:

If = 1: SMM Address Region Register (SMAR[31:0]), SMAC (CCR1[2]), USE_SMI (CCR1[1])
cannot be modified unless in SMM routine. Once set, SMI_LOCK can only be cleared by asserting the
RESET pin.

Note: All bits are cleared to zero at reset.

Table 3-11 Configuration Registers (cont.)

Bit Name Description

�

Page 54 Cyrix Corporation Confidential GXm_db_v2.0

Register Sets

Index E8h CCR4 — Configuration Control Register 4 (R/W) Default Value = 85h

7 CPUID Enable CPUID Instruction:

If = 1: The ID bit in the EFLAGS register to be modified and execution of the CPUID instruction occurs
as documented in Table 9-2 "Instruction Fields" on page 234.

If = 0: The ID bit can not be modified and execution of the CPUID instruction causes an invalid opcode
exception.

6 SMI_NEST SMI Nest:

If = 1: SMI interrupts can occur during SMM mode. SMI handlers can optionally set SMI_NEST high to
allow higher-priority SMI interrupts while handling the current event

5 RSVD Reserved — Set to 0.

4 DTE_EN Directory Table Entry Cache:

If = 1: Enables directory table entry to be cached.

Cleared to 0 at reset.

3 MEM_BYP Memory Read Bypassing:

If = 1: Enables memory read bypassing.

Cleared to 0 at reset.

2:0 IORT(2:0) I/O Recovery Time : Specifies the minimum number of bus clocks between I/O accesses:

000 = No clock delay 100 = 16-clock delay
001 = 2-clock delay 101 = 32-clock delay (default value after reset)
010 = 4-clock delay 110 = 64-clock delay
011 = 8-clock delay 111 = 128-clock delay

Cleared to 0 at reset.

Note: MAPEN (CCR3[4]) must = 1 to read or write to this register.

Index EBh CCR7 — Configuration Control Register 7 (R/W) Default Value = 00h

7:3 RSVD Reserved: Set to 0.

2 NMI NMI Enable:

If = 1: Non-maskable Interrupts (NMIs) are acknowledged.

1 RSVD Reserved: Set to 0.

0 EMMX Cyrix Extended MMX Instructions Enable:

If = 1: Cyrix extended MMX instructions are enabled

Index 20h PCR — Performance Control Register (R/W) Default Value = 07h

7 LSSER Load/Store Serialize Enable (Reorder Disable): LSSER should be set to ensure that memory-
mapped I/O devices operating outside of the address range 640K to 1M will operate correctly. For
memory accesses above 1 GByte, refer to CCR3[7:5] (LSS_34, LSS_23, LSS_12.)

If =1: All memory read and write operations will occur in execution order (load/store serializing
enabled, reordering disabled).

If =0: Memory reads and write can be reordered for optimum performance (load/store serializing
disabled, reordering enabled).

Memory accesses in the address range 640K to 1M will always be issued in execution order.

6:0 RSVD Reserved — Set to 0.

Note: MAPEN (CCR3[4]) must = 1 to read or write to this register.

Table 3-11 Configuration Registers (cont.)

Bit Name Description

GXm_db_v2.0 Cyrix Corporation Confidential Page 55

Register Sets 3

Index B0h, B1h, B2h, B3h SMHR — SMI Header Address Register (R/W) Default Value = xxh

Index SMHR Bits SMM Header Address Bits [31:0]: SMHR address bits [31:0] contain the physical base address for
the SMM header space: For example, bits [31:24] correspond with Index B3h
Refer to Section 3.11.4 “SMM Configuration Registers” on page 89 for more information.

B3h
B2h
B1h
B0h

[31:24]
[23:16]
[15:12]

[7:0]

Note: MAPEN (CCR3[4]) must = 1 to read or write to this register.

Index CDh, CEh, CFh SMAR — SMM Address Region/Size Register (R/W) Default Value = 00h

Index SMAR Bits SMM Address Region Bits, (SMAR [A31:A12]) — SMAR address bits [31:12] contain the base
address for the SMM region.
Bits [31:24] correspond with Index CDh
Bits [23:16] correspond with Index CEh
Bits [15:12] correspond with Index CFh[7:4]

Index CFh allows simultaneous access to SMAR address regions bits SMAR[15:12] and size code bits
SIZE[3:0]. During access, the upper 4-bits of Port 23h hold SMAR[15:12].

Refer to Section 3.11.4 “SMM Configuration Registers” on page 89 for more information.

CDh
CEh

CFh[7:4]

[31:24]
[23:16]
[15:12]

CFh[3:0] SIZE[3:0] SMM Region Size Bits, (SIZE [3:0]) — SIZE address bits contain the size code for the SMM region.
During access the lower 4-bits of port 23 hold SIZE[3:0]. Index CFh allows simultaneous access to
SMAR address regions bits SMAR[15:12] (see above) and size code bits SIZE[3:0].

0000 = SMM Disabled 0100 = 32KB 1000 = 512KB 1100 = 8MB
0001 = 4KB 0101 = 64KB 1001 = 1MB 1101 = 16MB
0010 = 8KB 0110 = 128KB 1010 = 2MB 1110 = 32MB
0011 = 16KB 0111 = 256KB 1011 = 4MB 1111 = 4KB (same as 0001)

Note: SMI_LOCK (CCR3[0]) must = 0, or the CPU must be in SMI mode, to write these registers/bits.

Table 3-11 Configuration Registers (cont.)

Bit Name Description

�

Page 56 Cyrix Corporation Confidential GXm_db_v2.0

Register Sets

Index FEh DIR0 — Device Identification Register 0 Default Value = 4xh

7:4 DID[3:0] Device ID (Read Only) — Identifies device as MediaGX MMX-Enhanced processor.

3:0 MULT[3:0] Core Multiplier (Read Only) — Identifies the core multiplier set by the CLKMODE[2:0] pins (see sig-
nal descriptions page 21)

If DIR1 (Index FFh) is 30h-4Fh then MULT[3:0]:
0000 = SYSCLK multiplied by 4 (Test mode only)
0001 = SYSCLK multiplied by 6
0010 = SYSCLK multiplied by 4 (Test mode only)
0011 = SYSCLK multiplied by 6
0100 = SYSCLK multiplied by 7
0101 = SYSCLK multiplied by 8
0110 = SYSCLK multiplied by 7
0111 = SYSCLK multiplied by 5
1xxx = Reserved

If DIR1 (Index FFh) is 50h or greater then MULT[3:0]:
0000 = SYSCLK multiplied by 4 (Test mode only)
0001 = SYSCLK multiplied by 10
0010 = SYSCLK multiplied by 4 (Test mode only)
0011 = SYSCLK multiplied by 6
0100 = SYSCLK multiplied by 9
0101 = SYSCLK multiplied by 5
0110 = SYSCLK multiplied by 7
0111 = SYSCLK multiplied by 8
1xxx = Reserved

Index FFh DIR1 -- Device Identification Register 1 Default Value = xxh

7:0 DIR1 Device Identification Revision (Read Only) — DIR1 indicates device revision number.

If DIR1 is 30h-33h = MediaGX MMX-Enhanced processor revision 1.0-2.3
If DIR1 is 34h-4Fh = MediaGX MMX-Enhanced processor revision 2.4-3.x
If DIR1 is 50h or greater = MediaGX MMX-Enhanced processor revision 4.0 and up.

Table 3-11 Configuration Registers (cont.)

Bit Name Description

GXm_db_v2.0 Cyrix Corporation Confidential Page 57

Register Sets 3
3.3.2.3 Debug Registers
Six debug registers (DR0-DR3, DR6 and DR7)
support debugging on the MediaGX processor.
Memory addresses loaded in the debug registers,
referred to as “breakpoints,” generate a debug
exception when a memory access of the specified
type occurs to the specified address. A breakpoint
can be specified for a particular kind of memory
access such as a read or write operation. Code
and data breakpoints can also be set allowing
debug exceptions to occur whenever a given data
access (read or write operation) or code access
(execute) occurs. The size of the debug target can
be set to 1, 2, or 4 bytes. The debug registers are
accessed through MOV instructions that can be
executed only at privilege level 0 (real mode is
always privilege level 0).

The Debug Address Registers (DR0-DR3) each
contains the linear address for one of four possible
breakpoints. Each breakpoint is further specified by
bits in the Debug Control Register (DR7). For each
breakpoint address in DR0-DR3, there are corre-
sponding fields L, R/W, and LEN in DR7 that
specify the type of memory access associated with
the breakpoint.

The R/W field can be used to specify instruction
execution as well as data access breakpoints.
Instruction execution breakpoints are always taken
before execution of the instruction that matches the
breakpoint. The Debug Registers are mapped in
Table 3-12

Table 3-12 Debug Registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DR7 Register

LEN3 R/W3 LEN2 R/W2 LEN1 R/W1 LEN0 R/W0 0 0 G
D

0 0 1 0 0 G
3

L
3

G
2

L
2

G
1

L
1

G
0

L0

DR6 Register

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B
T

B
S

0 1 1 1 1 1 1 1 1 1 B
3

B
2

B
1

B
0

DR3 Register

Breakpoint 3 Linear Address

DR2 Register

Breakpoint 2 Linear Address

DR1 Register

Breakpoint 1 Linear Address

DR0 Register

Breakpoint 0 Linear Address

Note: All bits marked as 0 or 1 are reserved and should not be modified.

�

Page 58 Cyrix Corporation Confidential GXm_db_v2.0

Register Sets

The Debug Status Register (DR6) reflects condi-
tions that were in effect at the time the debug
exception occurred. The contents of the DR6
register are not automatically cleared by the
processor after a debug exception occurs, and
therefore should be cleared by software at the
appropriate time. Table 3-13 lists the field definitions
for the DR6 and DR7 registers.

Code execution breakpoints may also be gener-
ated by placing the breakpoint instruction (INT3) at
the location where control is to be regained. The
single-step feature may be enabled by setting the
TF flag (bit 8) in the EFLAGS register. This causes
the processor to perform a debug exception after
the execution of every instruction. Debug Registers
6 and 7 are shown in Table 3-13.

Table 3-13 DR7 and DR6 Bit Definitions

Field(s)
Number
of Bits Description

DR7 Register

R/Wn 2 Applies to the DRn breakpoint address register:

00 = Break on instruction execution only
01 = Break on data write operations only
10 = Not used
11 = Break on data reads or write operations.

LENn 2 Applies to the DRn breakpoint address register:

00 = One-byte length
01 = Two-byte length
10 = Not used
11 = Four-byte length.

Gn 1 If = 1: breakpoint in DRn is globally enabled for all tasks and is not cleared by the processor as the
result of a task switch.

Ln 1 If = 1: breakpoint in DRn is locally enabled for the current task and is cleared by the processor as
the result of a task switch.

GD 1 Global disable of debug register access. GD bit is cleared whenever a debug exception occurs.

DR6 Register

Bn 1 Bn is set by the processor if the conditions described by DRn, R/Wn, and LENn occurred when the
debug exception occurred, even if the breakpoint is not enabled via the Gn or Ln bits.

BT 1 BT is set by the processor before entering the debug handler if a task switch has occurred to a task
with the T bit in the TSS set.

BS 1 BS is set by the processor if the debug exception was triggered by the single-step execution mode
(TF flag, bit 8, in EFLAGS set).

Note: n = 0, 1, 2, and 3

GXm_db_v2.0 Cyrix Corporation Confidential Page 59

Register Sets 3
3.3.2.4 Test Registers
The five test registers are used in testing the
CPU’s Translation Lookaside Buffer (TLB) and on-
chip cache. TR6 and TR7 are used for TLB testing,
and TR3-TR5 are used for cache testing. Table 3-14
is a register map for the Test Registers with their bit
definitions given in Tables 3-15 and 3-16.

TLB Test Registers
The CPU TLB is a 32-entry, four-way set associa-
tive memory. Each TLB entry consists of a 24-bit
tag and 20-bit data. The 24-bit tag represents the
high-order 20 bits of the linear address, a valid bit,
and three attribute bits. The 20-bit data portion
represents the upper 20 bits of the physical
address that corresponds to the linear address.

The TLB Test Data Register (TR7) contains the
upper 20 bits of the physical address (TLB data
field), three LRU bits and a control bit. During TLB
write operations, the physical address in TR7 is
written into the TLB entry selected by the contents
of TR6. During TLB lookup operations, the TLB
data selected by the contents of TR6 is loaded into
TR7. Table 3-15 lists the bit definitions for TR7 and
TR6.

The TLB Test Control Register (TR6) contains a
command bit, the upper 20 bits of a linear address,
a valid bit and the attribute bits used in the test
operation. The contents of TR6 are used to create
the 24-bit TLB tag during both write and read (TLB
lookup) test operations. The command bit defines
whether the test operation is a read or a write.

Table 3-14 Test Registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TR7 Register

Physical Address 0 0 TLB LRU 0 0 PL REP 0 0

TR6 Register

Linear Address V D D# U U# R R# 0 0 0 0 C

TR5 Register

RSVD Line Selection Set/
Dword

CTL

TR4 Register

Cache Tag Address 0 V Cache
LRU Bits

Dirty Bits 0 0 0

TR3 Register

Cache Data

�

Page 60 Cyrix Corporation Confidential GXm_db_v2.0

Register Sets

Table 3-15 TR7-TR6 Bit Definitions

Bit Name Description

TR7 Register

31:12 Physical
Address

 Physical Address:

TLB lookup: Data field from the TLB.

TLB write: Data field written into the TLB.

11:10 RSVD Reserved: Set to 0.

9:7 TLB LRU LRU Bits:

TLB lookup: LRU bits associated with the TLB entry before the TLB lookup.

TLB write: Ignored.

4 PL PL Bit:

TLB lookup: If PL = 1, read hit occurred. If PL = 0, read miss occurred.

TLB write: If PL = 1, REP field is used to select the set. If PL = 0, the pseudo-LRU replacement algo-
rithm is used to select the set.

3:2 REP Set Selection:

TLB lookup: If PL = 1, this field indicates the set in which the tag was found. If PL = 0, undefined data.

TLB write: If PL = 1, this field selects one of the four sets for replacement. If PL = 0, ignored.

1:0 RSVD Reserved: Set to 0.

TR6 Register

31:12 Linear
Address

Linear Address:

TLB lookup: The TLB is interrogated per this address. If one and only one match occurs in the TLB,
the rest of the fields in TR6 and TR7 are updated per the matching TLB entry.

TLB write: A TLB entry is allocated to this linear address.

11 V Valid Bit:

TLB write: If V = 1, the TLB entry contains valid data. If V = 0, target entry is invalidated.

10:9
8:7
6:5

D, D#
U, U#
R, R#

Dirty Attribute Bit and its Complement (D, D#)
User/Supervisor Attribute Bit and its Complement (U, U#)
Read/Write Attribute Bit and its Complement (R, R#)

Effect on TLB Lookup Effect on TLB Write

00 = Do not match Undefined
01 = Match if D, U, or R bit is a 0 Clear the bit
10 = Match if D, U, or R bit is a 1 Set the bit
11 = Match if D, U, or R bit is either a 1 or 0 Undefined

4:1 RSVD Reserved: Set to 0.

0 C Command Bit:

If C = 1: TLB lookup.
If C = 0: TLB write.

GXm_db_v2.0 Cyrix Corporation Confidential Page 61

Register Sets 3
Cache Test Registers
The CPU’s 16KB on-chip cache is a four-way set
associative memory that is configured as write-
back cache. Each cache set contains 256 entries.
Each entry consists of a 20-bit tag address, a 16-
byte data field, a valid bit, and four dirty bits.

The 20-bit tag represents the high-order 20 bits of
the physical address. The 16-byte data represents
the 16 bytes of data currently in memory at the
physical address represented by the tag. The valid
bit indicates whether the data bytes in the cache
actually contain valid data. The four dirty bits indi-
cate if the data bytes in the cache have been modi-
fied internally without updating external memory
(write-back configuration). Each dirty bit indicates

the status for one double-word (4 bytes) within the
16-byte data field.

For each line in the cache, there are three LRU bits
that indicate which of the four sets was most
recently accessed. A line is selected using bits
[11:4] of the physical address. Figure 3-2 illustrates
the CPU cache architecture.

The CPU contains three test registers (TR5-TR3)
that allow testing of its internal cache. Bit defini-
tions for the cache test registers are shown in
Table 3-16. Using a 16-byte cache fill buffer and a
16-byte cache flush buffer, cache reads and writes
may be performed.

Figure 3-1 illustrates how the internal cache archi-
tecture works.

Figure 3-1 CPU Cache Architecture

D
E
C
O
D
E

255

254

.

.
0

A11-A4

Line
Address

= Cache Entry (153 bits)
Tag Address (20 bits)
Data (128 bits)
Valid Status (1 bit)
Dirty Status (4 bits)

Set 0 Set 1 Set 2 Set 3 LRU

.

.
.
.

.

.
.
.

.

.

152 --- 0 152 --- 0 152 --- 0 152 --- 0 2 --- 0

�

Page 62 Cyrix Corporation Confidential GXm_db_v2.0

Register Sets

Table 3-16 TR5-TR3 Bit Definitions

Bit Name Description

TR5 Register

11:4 Line Selec-
tion

Line Selection:

Physical address bits 11-4 used to select one of 256 lines.

3:2 Set/DWord
Selection

Set/DWord Selection:

Cache read: Selects which of the four sets in the cache is used as the source for data
transferred to the cache flush buffer.

Cache write: Selects which of the four sets in the cache is used as the destination for data transferred
from the cache fill buffer.

Flush buffer read: Selects which of the four Dword in the flush buffer is
used during a TR3 read.

Fill buffer write: Selects which of the four Dword in the fill buffer is written during a TR3 write.

1:0 Control Bits Control Bits:

If = 00: flush read or fill buffer write.
If = 01: cache write.
If = 10: cache read.
If = 11: cache flush.

TR4 Register

31:12 Upper Tag
Address

Upper Tag Address:

Cache read: Upper 20 bits of tag address of the selected entry.

Cache write: Data written into the upper 20 bits of the tag address of the selected entry.

10 Valid Bit Valid Bit:

Cache read: Valid bit for the selected entry.

Cache write: Data written into the valid bit for the selected entry.

9:7 LRU Bits LRU Bits:

Cache read: The LRU bits for the selected line.
xx1 = Set 0 or Set 1 most recently accessed.
xx0 = Set 2 or Set 3 most recently accessed.
x1x = Most recent access to Set 0 or Set 1 was to Set 0.
x0x = Most recent access to Set 0 or Set 1 was to Set 1.
1xx = Most recent access to Set 2 or Set 3 was to Set 2.
0xx = Most recent access to Set 2 or Set 3 was to Set 3.

Cache write: Ignored.

6:3 Dirty Bits Dirty Bits:

Cache read: The dirty bits for the selected entry (one bit per DWord).

Cache write: Data written into the dirty bits for the selected entry.

2:0 RSVD Reserved: Set to 0.

TR3 Register

31:0 Cache Data Cache Data:

Flush buffer read: Data accessed from the cache flush buffer.

Fill buffer write: Data to be written into the cache fill buffer.

GXm_db_v2.0 Cyrix Corporation Confidential Page 63

Register Sets 3
There are five types of test operations that can be
executed:

• Flush buffer read
• Fill buffer write
• Cache write
• Cache read
• Cache flush

Each of these operations is described in detail in
Table 3-17. To fill a cache line with data, the fill

buffer must be written four times. Once the fill
buffer holds a complete cache line of data (16
bytes), a cache write operation transfers the data
from the fill buffer to the cache.

To read the contents of a cache line, cache read
operation transfers the data in the selected cache
line to the flush buffer. Once the flush buffer is
loaded, the programmer accesses the contents of
the flush buffer by executing four flush buffer read
operations.

Table 3-17 Cache Test Operations

Test Operation Code Sequence Action Taken

Flush Buffer Read MOV TR5, 0h

MOV dest,TR3

Set DWORD = 0, control = 00 = flush buffer read.

Flush buffer (31:0) --> dest.

MOV TR5, 4h

MOV dest,TR3

Set DWORD = 1, control = 00 = flush buffer read.

Flush buffer (63:32) --> dest.

MOV TR5, 8h

MOV dest,TR3

Set DWORD = 2, control = 00 = flush buffer read.

Flush buffer (95:64) --> dest.

MOV TR5, Ch

MOV dest,TR3

Set DWORD = 3, control = 00 = flush buffer read.

Flush buffer (127:96) --> dest.

Fill Buffer Write MOV TR5, 0h

MOV TR3, cache_data

Set DWORD = 0, control = 00 = fill buffer write.

Cache_data --> fill buffer (31:0).

MOV TR5, 4h

MOV TR3, cache_data

Set DWORD = 1, control = 00 = fill buffer write.

Cache_data --> fill buffer (63:32).

MOV TR5, 8h

MOV TR3, cache_data

Set DWORD = 2, control = 00 = fill buffer write.

Cache_data --> fill buffer (95:64).

MOV TR5, Ch

MOV TR3, cache_data

Set DWORD = 3, control = 00 = fill buffer write.

Cache_data --> fill buffer (127:96).

Cache Write MOV TR4, cache_tag Cache_tag --> tag address, valid and dirty bits.

MOV TR5, line+set+control=01 Fill buffer (127:0) --> cache line (127:0).

Cache Read MOV TR5, line+set+control=10

MOV dest, TR4

Cache line (127:0) --> flush buffer (127:0).

Cache line tag address, valid/LRU/dirty bits --> dest.

Cache Flush MOV TR5, 3h Control = 11 = cache flush, all cache valid bits = 0.

�

Page 64 Cyrix Corporation Confidential GXm_db_v2.0

Register Sets

3.3.3 Model Specific Register
The model specific register (MSR) set is used to
monitor the performance of the processor or a
specific component within the processor.

A MSR register can be read using the RDMSR
instruction, opcode 0F32h. During a MSR register
read, the contents of the particular MSR register,
specified by the ECX register, is loaded into the
EDX:EAX registers.

A MSR register can be written using the WRMSR
instruction, opcode 0F30h. During a MSR register
write, the contents of EX:EAX are loaded into the
MSR register specified in the ECX register.

The RDMSR and WRMSR instructions are privi-
leged instructions.

The MediaGX MMX-Enhanced processor contains
one 64-bit model specific register (MSR10) the
Time Stamp Counter (TSC).

3.3.4 Time Stamp Counter
The processor contains a model specific register
(MSR) called the Time Stamp Counter (TSC). The
TSC, (MSR[10]), is a 64-bit counter that counts the
internal CPU clock cycles since the last reset. The
TSC uses a continuous CPU core clock and will
continue to count clock cycles even when the
processor is in suspend or shutdown mode.

The TSC is read using a RDMSR instruction,
opcode 0F 32h, with the ECX register set to 10h.
During a TSC read, the contents of the TSC
register is loaded into the EDX:EAX registers.

The TSC is written to using a WRMSR instruction,
opcode 0F 30h with the ECX register set to 10h.
During a TSC write, the contents of EX:EAX are
loaded into the TSC.

The RDMSR and WRMSR instructions are privi-
leged instructions.

In addition, the TSC can be read using the RDTSC
instruction, opcode 0F 31h. The RDTSC instruction
loads the contents of the TSC into EDX:EAX. The
use of the RDTSC instruction is restricted by the
TSC flag (bit 2) in the CR4 register (refer to Tables
3-6 and 3-7 on pages 47 and 48 for CR4 register
information). When the TSC bit = 0, the RDTSC
instruction can be executed at any privilege level.
When the TSC bit = 1, the RDTSC instruction can
only be executed at privilege level 0.

GXm_db_v2.0 Cyrix Corporation Confidential Page 65

Address Spaces 3
3.4 Address Spaces
The MediaGX processor can directly address
either memory or I/O space. Figure 3-2 illustrates
the range of addresses available for memory
address space and I/O address space. For the
CPU, the addresses for physical memory range
between 00000000h and FFFFFFFFh
(4 GBytes). The accessible I/O addresses space
ranges between 00000000h and 0000FFFFh
(64KB). The CPU does not use coprocessor
communication space in upper I/O space between
800000F8h and 800000FFh as do the 386-style
CPUs. The I/O locations 22h and 23h are used for
MediaGX processor configuration register access.

3.4.1 I/O Address Space
The CPU I/O address space is accessed using IN
and OUT instructions to addresses referred to as
“ports.” The accessible I/O address space is 64KB
and can be accessed as 8-bit, 16-bit or 32-bit
ports.

The MediaGX processor configuration registers
reside within the I/O address space at port

addresses 22h and 23h and are accessed using
the standard IN and OUT instructions.

The configuration registers are modified by writing
the index of the configuration register to port 22h,
and then transferring the data through port 23h.
Accesses to the on-chip configuration registers do
not generate external I/O cycles. However, each
operation on port 23h must be preceded by a write
to port 22h with a valid index value. Otherwise,
subsequent port 23h operations will communicate
through the I/O port to produce external I/O cycles
without modifying the on-chip configuration regis-
ters. Write operations to port 22h outside of the
CPU index range (C0h-CFh and FEh-FFh) result in
external I/O cycles and do not affect the on-chip
configuration registers. Reading port 22h gener-
ates external I/O cycles.

I/O accesses to port address range 3B0h through
3DFh can be trapped to SMI by the CPU if this
option is enabled in the BC_XMAP_1 register (see
SMIB, SMIC, and SMID bits in Table 4-9 on page
113). Figure 3-2 illustrates the I/O address space.

Figure 3-2 Memory and I/O Address Spaces

Physical
Memory Space

Accessible
Programmed

I/O Space
FFFF FFFFh

0000 FFFFh

0000 0000h

FFFF FFFFh

0000 0000h

Physical Memory
4GB

Not
Accessible

64KB

CPU General
Configuration
Register I/O
Space

0000 0023h
0000 0022h

�

Page 66 Cyrix Corporation Confidential GXm_db_v2.0

Offset, Segment, and Paging Mechanisms

3.4.2 Memory Address Space
The processor directly addresses up to 4GB of
physical memory even though the memory
controller addresses only 128MB of DRAM. Much
of the other 4GB can be on PCI. Memory address
space is accessed as bytes, words (16 bits) or
DWORDs (32 bits). Words and DWORDs are
stored in consecutive memory bytes with the low-
order byte located in the lowest address. The phys-
ical address of a word or DWORD is the byte
address of the low-order byte.

The processor allows memory to be addressed
using nine different addressing modes. These
addressing modes are used to calculate an offset
address, often referred to as an effective address.
Depending on the operating mode of the CPU, the
offset is then combined, using memory manage-
ment mechanisms, into a physical address that is
applied to the physical memory devices.

Memory management mechanisms consist of
segmentation and paging. Segmentation allows
each program to use several independent,
protected address spaces. Paging translates a
logical address into a physical address using trans-
lation lookup tables. Virtual memory is often imple-
mented using paging. Either or both of these
mechanisms can be used for management of the
MediaGX processor memory address space.

3.5 Offset, Segment, and Paging
Mechanisms

The mapping of address space into a sequence of
memory locations (often cached) is performed by
the offset, segment and paging mechanisms.

In general, the offset, segment and paging mecha-
nisms work in tandem as shown below:

instruction offset ➾ offset mechanism ➾ offset address
offset address ➾ segment mechanism ➾ linear address
linear address ➾ paging mechanism ➾ physical page.

As will be explained, the actual operations depend
on several factors such as the current operating
mode and if paging is enabled. Note: the paging
mechanism uses part of the linear address as an
offset on the physical page.

GXm_db_v2.0 Cyrix Corporation Confidential Page 67

Offset Mechanism 3
3.6 Offset Mechanism
In all operating modes, the offset mechanism
computes an offset (effective) address by adding
together up to three values: a base, an index and a
displacement. The base, if present, is the value in
one of eight general registers at the time of the
execution of the instruction. The index, like the
base, is a value that is contained in one of the
general registers (except the ESP register) when
the instruction is executed. The index differs from
the base in that the index is first multiplied by a
scale factor of 1, 2, 4 or 8 before the summation is
made. The third component added to the memory
address calculation is the displacement that is a
value supplied as part of the instruction. Figure 3-3
illustrates the calculation of the offset address.

Nine valid combinations of the base, index, scale
factor and displacement can be used with the CPU
instruction set. These combinations are listed in
Table 3-18. The base and index both refer to
contents of a register as indicated by [Base] and
[Index].

In real mode operation, the CPU only addresses
the lowest 1MB of memory and the offset contains
16-bits. In protective mode the offset contains 32
bits. Initialization and transition to protective mode
is described in Section 3.13.4 “Initialization and
Transition to Protected Mode” on page 99.

Figure 3-3 Offset Address Calculation

Table 3-18 Memory Addressing Modes

Index

Base Displacement

Scaling
x1, x2, x4, x8

Offset Address
(Effective Address)

+

Addressing Mode Base Index

Scale
Factor

(SF)
Displacement

(DP)
Offset Address (OA)

Calculation

Direct x OA = DP

Register Indirect x OA = [BASE]

Based x x OA = [BASE] + DP

Index x x OA = [INDEX] + DP

Scaled Index x x x OA = ([INDEX] * SF) + DP

Based Index x x OA = [BASE] + [INDEX]

Based Scaled Index x x x OA = [BASE] + ([INDEX] * SF)

Based Index with
Displacement

x x x OA = [BASE] + [INDEX] + DP

Based Scaled Index
with Displacement

x x x x OA = [BASE] + ([INDEX] * SF) + DP

�

Page 68 Cyrix Corporation Confidential GXm_db_v2.0

Descriptors and Segment Mechanisms

3.7 Descriptors and Segment
Mechanisms

Memory is divided into contiguous regions called
“segments.” The segments allow the partitioning of
individual elements of a program. Each segment
provides a zero address-based private memory for
such elements as code, data and stack space.

The segment mechanisms select a segment in
memory. Memory is divided into an arbitrary
number of segments, each containing usually
much less than the 232 byte (4 GByte) maximum.

There are two segment mechanisms, one for Real
and Virtual 8086 Operating Modes, and one for
Protective Mode.

3.7.1 Real and Virtual 8086 Mode
Segment Mechanisms

Real Mode Segment Mechanism
In real mode operation, the CPU addresses only
the lowest 1MB of memory. In this mode a selector

located in a one of the segment registers is used to
locate a segment.

To calculate a physical memory address, the 16-bit
segment base address located in the selected
segment register is multiplied by 16 and then a 16-
bit offset address is added. The resulting 20-bit
address is then extended with twelve zeros in the
upper address bits to crate 32-bit physical address.

The value of the selector (the INDEX field) is multi-
plied by 16 to produce a base address (Figure 3-4.)
The base address is summed with the instruction
offset value to produce a physical address.

Virtual 8086 Mode Segment Mechanism
In Virtual 8086 mode the operation is performed as
in real mode except that a paging mechanism is
added. When paging is enabled, the paging
mechanism translates the linear address into a
physical address using cached look-up tables
(refer to Section 3.9 “Paging Mechanism” on page
80).

Figure 3-4 Real Mode Address Calculation

Offset Mechanism

Selected Segment
Register

Offset Address

000h

X 16
16

12

20

20

16

32 Linear Address
(Physical Address)

Base Address

12 High Order Address Bits

GXm_db_v2.0 Cyrix Corporation Confidential Page 69

Descriptors and Segment Mechanisms 3
3.7.2 Segment Mechanism in

Protective Mode
The segment mechanism in protective mode is
more complex. Basically as in Real and Virtual
8086 modes the offset address is added to the
segment base address to produce a linear address
(Figure 3-5). However, the calculation of the
segment base address is based on the contents of
descriptor tables.

Again, if paging is enabled the linear address is
further processed by the paging mechanism.

A more detailed look at the segment mechanisms
for real, virtual 8086 and protective modes is illus-
trated in Figure 3-6. In protective mode, the
segment selector is cached. This is illustrated in
Figure 3-7 on page 71.

3.7.2.1 Segment Selectors
The segment registers are used to store segment
selectors. In protective mode, the segment

selectors are divided in to three fields: the RPL, TI
and INDEX fields as shown in Figure 3-6.

The segments are assigned permission levels to
prevent application program errors from disrupting
operating programs. The Requested Privilege Level
(RPL) determines the Effective Privilege Level of an
instruction. RPL = 0 indicates the most privileged
level, and RPL = 3 indicates the least privileged level.
Refer to Section 3.13 “Protection” on page 97.

Descriptor tables hold descriptors that allow
management of segments and tables in address
space while in protective mode. The Table Indi-
cator Bit (TI) in the selector selects either the
General Descriptor Table (GDT) or one Local
Descriptor Tables (LDT) tables. If TI = 0, GDT is
selected; if TI =1, LDT is selected. The 13-bit
INDEX field in the segment selector is used to
index a GDT or LDT table.

Figure 3-5 Protected Mode Address Calculation

Offset Mechanism

Selector Mechanism

Offset Address

32

32

32

32Optional
Physical

Segment Base
Address

AddressPaging Mechanism

Linear
Address Memory

�

Page 70 Cyrix Corporation Confidential GXm_db_v2.0

Descriptors and Segment Mechanisms

Figure 3-6 Selector Mechanisms

15 3 2 1 0

INDEX TI INSTRUCTION OFFSET

Segment Selector

Segment Descriptor
B ase

GDT or LDT Descriptor Table Main Memory

Segmentp

p = Paging Mechanism

RPL

+
Linear

Address Address
Physical
Address

15 0

INDEX INSTRUCTION OFFSET

Logical Address

Base

Main Memory

Segmentp

+
Linear

Address Address
Physical
Address

x 16

p= Paging Mechanism for Virtual 8086 Mode only

Real and Virtual 8086 Modes

Address
Logical

Segment Selector

Protective Mode

Logical Address

x 8

GXm_db_v2.0 Cyrix Corporation Confidential Page 71

Descriptors and Segment Mechanisms 3

Figure 3-7 Selector Mechanism Caching

INDEX TI RPL

Selector Load Instruction

15 0
Selector

In Segment
Register

Segment
Descriptor

Segment
Descriptor

Global Descriptor
Table

Local Descriptor
Table

TI = 0

TI = 1

Cached Segment

Segment

Segment

Segment Register
Selected By Decoded

Instruction

Caching

Cached

and Descriptor

Selector
Used If
Available

Base
Address

�

Page 72 Cyrix Corporation Confidential GXm_db_v2.0

Descriptors and Segment Mechanisms

3.7.3 GDTR and LDTR Registers
The GDT, and LDT descriptor tables are defined by
the Global Descriptor Table Register (GDTR) and
the Local Descriptor Table Register (LDTR) respec-
tively. Some texts refer to these registers as GDT,
and LDT descriptors.

The following instructions are used in conjunction
with the GDTR and LDTR registers:

• LGDT - Load memory to GDTR
• LLDT - Load memory to LDTR
• SGDT - Store GDTR to memory
• SLDT - Store LDTR to memory

The GDTR is set up in REAL mode using the
LGDT instruction. This is possible as the LGDT
instructions are one of two instructions that directly
load a linear address (instead of a segment relative
address) in protective mode. (The other instruction
is the Load Interrupt Descriptor Table [LIDT]).

As shown in Table 3-19, the GDTR registers
contain a BASE ADDRESS field and a LIMIT field
to that define the GDT tables. (The IDTR register is
described in Section 3.7.3.2 “Task, Gate and Inter-
rupt Descriptors” on page 73.)

Also shown in Table 3-19, the LDTR is only two
bytes wide as it contains only a SELECTOR field.

The contents of the SELECTOR field points to a
descriptor in the GDT table.

3.7.3.1 Segment Descriptors
There are several types of descriptors. A segment
descriptor defines the base address, limit and
attributes of a memory segment.

The GDT or LDT table can hold several types of
descriptors. In particular, the segment descriptors
are stored in either of two registers, the GDT, or the
LDT as shown in Table 3-19). Either of these tables
can store as many as 8,192 (213) eight-byte selec-
tors taking as much as 64KB of memory.

The first descriptor in the GDT (location 0) is not
used by the CPU and is referred to as the “null
descriptor.”

Types of Segment Descriptors
The type of memory segments are defined as
defined by corresponding types of segment
descriptors:

• Code Segment Descriptors
• Data Segment Descriptors
• Stack Segment Descriptors
• LDT Segment Descriptors

Table 3-19 GDTR, LDTR and IDTR Registers

47 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GDTR Register

BASE LIMIT

IDTR Register

BASE LIMIT

LDTR Register

SELECTOR

GXm_db_v2.0 Cyrix Corporation Confidential Page 73

Descriptors and Segment Mechanisms 3
3.7.3.2 Task, Gate and Interrupt

Descriptors
Besides segment descriptors there are descriptors
used in task switching, switching between tasks
with different priority and those used to control
interrupt functions:

• Task State Segment Table Descriptors
• Gate Table Descriptors
• Interrupt Descriptors.

All descriptors some things in common. They are
all eight bytes in length and have three fields in
(BASE, LIMIT and TYPE). The BASE field defines
the starting location for the table or segment. The
LIMIT field defines the size and the TYPE field
depends on the type of descriptor. One of the main
functions of the TYPE field is to define the access
rights to the associated segment or table.

Interrupt Descriptor Table
The Interrupt Descriptor Table is an array of 256 8-
byte (4-byte for real mode) interrupt descriptors,
each of which is used to point to an interrupt
service routine. Every interrupt that may occur in
the system must have an associated entry in the
IDT. The contents of the IDTR are completely

visible to the programmer through the use of the
SIDT instruction.

The IDT descriptor table is defined by the Interrupt
Descriptor Table Register (IDTR). Some texts refer
to this register as an IDT descriptor.

The following instructions are used in conjunction
with the IDTR registers:

• LIDT - Load memory to IDTR
• SIDT - Store IDTR to memory

The IDTR is set up in REAL mode using the LIDT
instruction. This is possible as the LIDT instruc-
tions is only one of two instructions that directly
load a linear address (instead of a segment relative
address) in protective mode.

As previously shown in Table 3-19, the IDTR
register contains a BASE ADDRESS field and a
LIMIT field that define the IDT tables.

3.7.4 Descriptor Bit Structure
The bit structure for application and system
descriptors is shown in Table 3-20. The explana-
tion of the TYPE field is shown in Table 3-22.

Table 3-20 Application and System Segment Descriptors

31 31 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Memory Offset +4

BASE[31:24] G D 0 A
V
L

LIMIT[19:16] P DPL S TYPE BASE[23:16]

Memory Offset +0

BASE[15:0] LIMIT[15:0]

�

Page 74 Cyrix Corporation Confidential GXm_db_v2.0

Descriptors and Segment Mechanisms

Table 3-21 Application and System Segment Descriptors Bit Definitions

Bit
Memory
Offset Name Description

31:24 +4 BASE Segment Base Address: Three fields which collectively define the base location for the segment
in 4GB physical address space.7:0 +4

31:16 +0

19:16 +4 LIMIT Segment Limit: Two fields that define the size of the segment based on the Segment Limit
Granularity Bit.

If G = 1: Limit value interpreted in units of 4KB.
If G = 0: Limit value is interpreted in bytes.

15:0 +0

23 +4 G Segment Limit Granularity Bit: Defines LIMIT multiplier.

If G = 1: Limit value interpreted in units of 4KB. Segment size ranges from 1 byte to 1MB.
If G = 0: Limit value is interpreted in bytes. Segment size ranges from 4KB to 4GB.

22 +4 D Default Length for Operands and Effective Addresses:

If D = 1: Code segment = 32-bit length for operands and effective addresses
If D = 0: Code segment = 16-bit length for operands and effective addresses
If D = 1: Data segment = Pushes, calls and pop instructions use 32-bit ESP register
If D = 0: Data segment = Stack operations use 16-bit SP register

20 +4 AVL Segment Available: This field is available for use by system software.

15 +4 P Segment Present:

If = 1: Segment is memory segment allocated.

If = 0: The BASE and LIMIT fields become available for use by the system. Also, If = 0, a segment-
not-present exception generated when selector for the descriptor is loaded into a segment register
allowing virtual memory management.

14:13 +4 DPL Descriptor Privilege Level:

If = 00: Highest privilege level
If = 11: Low privilege level

12 +4 S Descriptor Type:

If = 1: Code or data segment
If = 0: System segment

11:8 +4 TYPE Segment Type - Refer to Table 3-22 for TYPE bit definitions.
Bit 11 = Executable
Bit 10 = Conforming if bit 12 = 1
Bit 10 = Expand Down if bit 12 = 0
Bit 9 = Readable, if Bit 12 = 1
Bit 9 = Writable, if Bit 12 = 0
Bit 8 = Accessed

GXm_db_v2.0 Cyrix Corporation Confidential Page 75

Descriptors and Segment Mechanisms 3
Table 3-22 Application and System Segment Descriptors TYPE Bit Definitions

TYPE
Bits [11:8]

System Segment and Gate Types
Bit 12 = 0

Application Segment Types
Bit 12 = 1

Num SEWA TYPE (Data Segments)

0 0000 Reserved Data Read-Only

1 0001 Available 16-Bit TSS Data Read-Only, accessed

2 0010 LDT Data Read/Write

3 0011 Busy 16-Bit TSS Data Read/Write accessed

4 0100 16-Bit Call Gate Data Read-Only, expand down

5 0101 Task Gate Data Read-Only, expand down, accessed

6 0110 16-Bit Interrupt Gate Data Read/Write, expand down

7 0111 16-Bit Trap Gate Data Read/Write, expand down, accessed

Num SCRA TYPE (Code Segments)

8 1000 Reserved Code Execute-Only

9 1001 Available 32-Bit TSS Code Execute-Only, accessed

A 1010 Reserved Code Execute/Read

B 1011 Busy 32-Bit TSS Code Execute/Read, accessed

C 1100 32-Bit Call Gate Code Execute/Read, conforming

D 1101 Reserved Code Execute/Read, conforming, accessed

E 1110 32-Bit Interrupt Gate Code Execute/Read-Only, conforming

F 1111 32-Bit Trap Gate Code Execute/Read-Only, conforming accessed

S = Code Segment (not Data Segment)
E = Expand Down
W = Write Enable

A = Accessed
C = Conforming Code Segment
R = Read Enable

�

Page 76 Cyrix Corporation Confidential GXm_db_v2.0

Descriptors and Segment Mechanisms

3.7.5 Gate Descriptors
Four kinds of gate descriptors are used to provide
protection during control transfers: call gates, trap
gates, interrupt gates and task gates. (For more
information on protection refer to Section 3.13
“Protection” on page 97.)

Call Gate Descriptor (CGD). Call gates are used
to define legal entry points to a procedure with a
higher privilege level. The call gates are used by
CALL and JUMP instructions in much the same
manner as code segment descriptors. When the
CPU decodes an instruction and sees it refers to a
call gate descriptor in the GDT table or a LDT
table, the call gate is used to point to another
descriptor in the table that defines the destination
code segment.

The following privilege levels are tested during the
transfer through the call gate:
• CPL = Current Privilege Level

• RPL = Segment Selector Field
• DPL = Descriptor Privilege Level in the call gate

descriptor.
• DPL = Descriptor Privilege Level in the destina-

tion code segment.

The maximum value of the CPL and RPL must be
equal or less than the gate DPL. For a JMP
instruction the destination DPL equals the CPL.
For a CALL instruction the destination DPL is less
or equals the CPL.

Conforming Code Segments. Transfer to a
procedure with a higher privilege level can also be
accomplished by bypassing the use of call gates, if
the requested procedure is to be executed in a
conforming code segment. Conforming code
segments have the C bit set in the TYPE field in
their descriptor.

The bit structure and definitions for gate descrip-
tors are shown in Tables 3-23 and 3-24.

Table 3-23 Gate Descriptors

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Memory Offset +4

OFFSET[31:16] P DPL 0 TYPE 0 0 0 PARAMETERS

Memory Offset +0

SELECTOR[15:0] OFFSET[15:0]

Table 3-24 Gate Descriptors Bit Definitions

Bit
Memory
Offset Name Description

31:16 +4 OFFSET Offset: Offset used during a call gate to calculate the branch target.

15:0 +0

31:16 +0 SELECTOR Segment Selector

15 +4 P Segment Present

14:13 +4 DPL Descriptor Privilege Level

11:8 +4 TYPE Segment Type:

0100 = 16-bit call gate 1100 = 32-bit call gate
0101 = Task gate 1110 = 32-bit interrupt gate
0110 = 16-bit interrupt gate 1111 = 32-bit trap gate
0111 = 16-bit trap gate

4:0 +4 PARAMETERS Parameters : Number of parameters to copy from the caller’s stack to the called proce-
dure’s stack.

GXm_db_v2.0 Cyrix Corporation Confidential Page 77

Multitasking and Task State Segments 3
3.8 Multitasking and Task State

Segments
The CPU enables rapid task switching using JMP
and CALL instructions that refer to Task State
Segments (TSS). During a switch, the complete
task state of the current task is stored in its TSS,
and the task state of the requested task is loaded
from its TSS. The TSSs are defined through
special segment descriptors and gates.

The Task Register (TR) holds 16-bit descriptors
that contain the base address and segment limit for
each task state segment. The TR is loaded and
stored via the LTR and STR instructions, respec-
tively. The TR can only be accessed only during
protected mode and can be loaded when the privi-
lege level is 0 (most privileged). When the TR is
loaded, the TR selector field indexes a TSS
descriptor that must reside in the Global Descriptor
Table (GDT).

Only the 16-bit selector of a TSS descriptor in the
TR is accessible. The BASE, TSS LIMT and
ACCESS RIGHT fields are program invisible.

During task switching, the processor saves the
current CPU state in the TSS before starting a new
task. The TSS can be either a 386/486-type 32-bit
TSS (see Table 3-25) or a 286-type 16-bit TSS (see
Table 3-26).

Task Gate Descriptors. A task gate descriptor
provides controlled access to the descriptor for a
task switch. The DPL of the task gate is used to
control access. The selector’s RPL and the CPL of
the procedure must be a higher level (numerically
less) than the DPL of the descriptor. The RPL in
the task gate is not used.

The I/O Map Base Address field in the 32-bit TSS
points to an I/O permission bit map that often
follows the TSS at location +68h.

�

Page 78 Cyrix Corporation Confidential GXm_db_v2.0

Multitasking and Task State Segments

Table 3-25 32-Bit Task State Segment (TSS) Table

31 16 15 0

I/O Map Base Address 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 T +64h

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Selector for Task’s LDT +60h

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 GS +5Ch

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FS +58h

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DS +54h

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SS +50h

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CS +4Ch

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ES +48h

EDI +44h

ESI +40h

EBP +3Ch

ESP +38h

EBX +34h

EDX +30h

ECX +2Ch

EAX +28h

EFLAGS +24h

EIP +20h

CR3 +1Ch

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SS for CPL = 2 +18h

ESP for CPL = 2 +14h

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SS for CPL = 1 +10h

ESP for CPL = 1 +Ch

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SS for CPL = 0 +8h

ESP for CPL = 0 +4h

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Back Link (Old TSS Selector) +0h

Note: 0 = Reserved

GXm_db_v2.0 Cyrix Corporation Confidential Page 79

Multitasking and Task State Segments 3
Table 3-26 16-Bit Task State Segment (TSS) Table
15 0

Selector for Task’s LDT +2Ah

DS +28h

SS +26h

CS +24h

ES +22h

DI +20h

SI +1Eh

BP +1Ch

SP +1Ah

BX +18h

DX +16h

CX +14h

AX +12h

FLAGS +10h

IP +Eh

SS for Privilege Level 0 +Ch

SP for Privilege Level 1 +Ah

SS for Privilege Level 1 +8h

SP for Privilege Level 1 +6h

SS for Privilege Level 0 +4h

SP for Privilege Level 0 +2h

Back Link (Old TSS Selector) +0h

�

Page 80 Cyrix Corporation Confidential GXm_db_v2.0

Paging Mechanism

3.9 Paging Mechanism
The paging mechanism either translates a linear
address to its corresponding physical address. If
the required page is not currently present in RAM,
an exception is generated. When the operating
system services the exception, the required page
can be loaded into memory and the instruction
restarted. Pages are either 4KB or 1MB in size.
The CPU defaults to 4KB pages that are aligned to
4KB boundaries.

A page is addressed by using two levels of tables
as illustrated in Figure 3-8. Bits[31:22] of the 32-bit
linear address, the Directory Table Index (DTI) are

used to locate an entry in the page directory table.
The page directory table acts as a 32-bit master
index to up to 1K individual second-level page
tables. The selected entry in the page directory
table, referred to as the directory table entry (DTE),
identifies the starting address of the second-level
page table. The page directory table itself is a page
and is, therefore, aligned to a 4KB boundary. The
physical address of the current page directory table
is stored in the CR3 control register, also referred
to as the Page Directory Base Register (PDBR).

Figure 3-8 Paging Mechanism

Directory Table Index
(DTI)

Page Table Index
(PTI)

Page Frame Offset
(PFO)

31 22 21 12 11 0

Linear
Address

DTE Cache
2-Entry

Fully Associative

Main TLB
32-Entry

4-Way Set
Associative

DTE

0

4KB

PTE

0

4KB Physical Page

4GB

-4KB

-0

0

External Memory

Directory Table Page Table Memory

CR3

Control
Register

1

0

31

0

GXm_db_v2.0 Cyrix Corporation Confidential Page 81

Paging Mechanism 3
Bits [21:12] of the 32-bit linear address, referred to
as the Page Table Index (PTI), locate a 32-bit entry
in the second-level page table. This Page Table
Entry (PTE) contains the base address of the
desired page frame. The second-level page table
addresses up to 1K individual page frames. A
second-level page table is 4KB in size and is itself
a page. Bits [11:0] of the 32-bit linear address, the
Page Frame Offset (PFO), locate the desired phys-
ical data within the page frame.

Since the page directory table can point to 1K page
tables, and each page table can point to 1K page
frames, a total of 1M page frames can be imple-
mented. Since each page frame contains 4KB, up
to 4GB of virtual memory can be addressed by the
CPU with a single page directory table.

Along with the base address of the page table or
the page frame, each directory table entry or page
table entry contains attribute bits and a present bit
as illustrated in Table 3-27.

If the present bit (P) is set in the DTE, the page
table is present and the appropriate page table
entry is read. If P = 1 in the corresponding PTE
(indicating that the page is in memory), the
accessed and dirty bits are updated, if necessary,
and the operand is fetched. Both accessed bits are
set (DTE and PTE), if necessary, to indicate that
the table and the page have been used to translate
a linear address. The dirty bit (D) is set before the first
write is made to a page.

The present bits must be set to validate the
remaining bits in the DTE and PTE. If either of the
present bits are not set, a page fault is generated
when the DTE or PTE is accessed. If P = 0, the
remaining DTE/PTE bits are available for use by
the operating system. For example, the operating
system can use these bits to record where on the
hard disk the pages are located. A page fault is
also generated if the memory reference violates
the page protection attributes.

Table 3-27 Directory Table Entry (DTE) and Page Table Entry (PTE)

Bit Name Description

31:12 BASE
ADDRESS

Base Address: Specifies the base address of the page or page table.

11:9 AVAILABLE Available: Undefined and Available to the Programmer

8:7 RSVD Reserved: Unavailable to programmer

6 D Dirty Bit:

PTE format — If = 1: Indicates that a write access has occurred to the page.
DTE format — Reserved.

5 A Accessed Flag: If set, indicates that a read access or write access has occurred to the page.

4:3 RSVD Reserved: Set to 0.

2 U/S User/Supervisor Attribute:

If = 1: Page is accessible by User at privilege level 3.
If = 0: Page is accessible by Supervisor only when CPL ≤ 2.

1 W/R Write/Read Attribute:

If = 1: Page is writable.
If = 0: Page is read only.

0 P Present Flag:

If = 1: The page is present in RAM and the remaining DTE/PTE bits are validated
If = 0: The page is not present in RAM and the remaining DTE/PTE bits are available for use by the
programmer.

�

Page 82 Cyrix Corporation Confidential GXm_db_v2.0

Interrupts and Exceptions

Translation Look-Aside Buffer
The translation look-aside buffer (TLB) is a cache
for the paging mechanism and replaces the two-
level page table lookup procedure for TLB hits. The
TLB is a four-way set associative 32-entry page
table cache that automatically keeps the most
commonly used page table entries in the
processor. The 32-entry TLB, coupled with a 4K
page size, results in coverage of 128KB of memory
addresses.

The TLB must be flushed when entries in the page
tables are changed. The TLB is flushed whenever
the CR3 register is loaded. An individual entry in
the TLB can be flushed using the INVLPG instruc-
tion.

DTE Cache
The DTE cache caches the two most recent DTEs
so that future TLB misses only require a single
page table read to calculate the physical address.
The DTE cache is disabled following reset and can
be enabled by setting the DTE_EN bit in CCR4[4]
(Index E8h).

3.10 Interrupts and Exceptions
The processing of either an interrupt or an excep-
tion changes the normal sequential flow of a
program by transferring program control to a
selected service routine. Except for SMM inter-
rupts, the location of the selected service routine is
determined by one of the interrupt vectors stored in
the interrupt descriptor table.

True interrupts are hardware interrupts and are
generated by signal sources external to the CPU.
All exceptions (including so-called software interrupts)
are produced internally by the CPU.

3.10.1 Interrupts
External events can interrupt normal program
execution by using one of the three interrupt pins
on the MediaGX processor:

• Non-maskable Interrupt (NMI pin)
• Maskable Interrupt (INTR pin)
• SMM Interrupt (SMI# pin)

For most interrupts, program transfer to the inter-
rupt routine occurs after the current instruction has
been completed. When the execution returns to the
original program, it begins immediately following
the interrupted instruction.

The NMI interrupt cannot be masked by software
and always uses interrupt vector 2 to locate its
service routine. Since the interrupt vector is fixed
and is supplied internally, no interrupt acknowledge
bus cycles are performed. This interrupt is normally
reserved for unusual situations such as parity
errors and has priority over INTR interrupts.

Once NMI processing has started, no additional
NMIs are processed until an IRET instruction is
executed, typically at the end of the NMI service
routine. If NMI is re-asserted before execution of
the IRET instruction, one and only one NMI rising
edge is stored and then processed after execution
of the next IRET.

During the NMI service routine, maskable inter-
rupts may be enabled. If an unmasked INTR
occurs during the NMI service routine, the INTR is
serviced and execution returns to the NMI service
routine following the next IRET. If a HALT instruc-
tion is executed within the NMI service routine, the
CPU restarts execution only in response to
RESET, an unmasked INTR or a System Manage-
ment Mode (SMM) interrupt. NMI does not restart
CPU execution under this condition.

The INTR interrupt is unmasked when the Inter-
rupt Enable Flag (IF, bit 9) in the EFLAGS register
is set to 1. Except for string operations, INTR inter-
rupts are acknowledged between instructions.
Long string operations have interrupt windows

between memory moves that allow INTR interrupts
to be acknowledged.

When an INTR interrupt occurs, the CPU performs
an interrupt-acknowledge bus cycle. During this
cycle, the CPU reads an 8-bit vector that is
supplied by an external interrupt controller. This

GXm_db_v2.0 Cyrix Corporation Confidential Page 83

Interrupts and Exceptions 3
vector selects which of the 256 possible interrupt
handlers will be executed in response to the inter-
rupt.

The SMM interrupt has higher priority than either
INTR or NMI. After SMI# is asserted, program
execution is passed to an SMI service routine that
runs in SMM address space reserved for this
purpose. The remainder of this section does not
apply to the SMM interrupts. SMM interrupts are
described in greater detail later in this section.

3.10.2 Exceptions
Exceptions are generated by an interrupt instruc-
tion or a program error. Exceptions are classified
as traps, faults or aborts depending on the mecha-
nism used to report them and the restartability of
the instruction which first caused the exception.

A Trap exception is reported immediately
following the instruction that generated the trap
exception. Trap exceptions are generated by
execution of a software interrupt instruction (INTO,
INT3, INTn, BOUND), by a single-step operation or
by a data breakpoint.

Software interrupts can be used to simulate hard-
ware interrupts. For example, an INTn instruction
causes the processor to execute the interrupt
service routine pointed to by the nth vector in the
interrupt table. Execution of the interrupt service
routine occurs regardless of the state of the IF flag
(bit 9) in the EFLAGS register.

The one byte INT3, or breakpoint interrupt (vector
3), is a particular case of the INTn instruction. By
inserting this one byte instruction in a program, the
user can set breakpoints in the code that can be
used during debug.

Single-step operation is enabled by setting the TF
bit (bit 8) in the EFLAGS register. When TF is set,
the CPU generates a debug exception (vector 1)
after the execution of every instruction. Data break-
points also generate a debug exception and are
specified by loading the debug registers (DR0-
DR7) with the appropriate values.

A Fault exception is reported before completion of
the instruction that generated the exception. By
reporting the fault before instruction completion,
the CPU is left in a state that allows the instruction
to be restarted and the effects of the faulting
instruction to be nullified. Fault exceptions include
divide-by-zero errors, invalid opcodes, page faults
and coprocessor errors. Debug exceptions (vector
1) are also handled as faults (except for data
breakpoints and single-step operations). After
execution of the fault service routine, the instruc-
tion pointer points to the instruction that caused the
fault.

An Abort exception is a type of fault exception
that is severe enough that the CPU cannot restart
the program at the faulting instruction. The double
fault (vector 8) is the only abort exception that
occurs on the CPU.

3.10.3 Interrupt Vectors
When the CPU services an interrupt or exception,
the current program’s instruction pointer and flags
are pushed onto the stack to allow resumption of
execution of the interrupted program. In protected
mode, the processor also saves an error code for
some exceptions. Program control is then trans-
ferred to the interrupt handler (also called the inter-
rupt service routine). Upon execution of an IRET at
the end of the service routine, program execution
resumes at the instruction pointer address saved
on the stack when the interrupt was serviced.

3.10.3.1 Interrupt Vector Assignments
Each interrupt (except SMI#) and exception is
assigned one of 256 interrupt vector numbers as
shown in Table 3-28. The first 32 interrupt vector
assignments are defined or reserved. INT instruc-
tions acting as software interrupts may use any of
interrupt vectors, 0 through 255.

The non-maskable hardware interrupt (NMI) is
assigned vector 2. Illegal opcodes including faulty
FPU instructions will cause an illegal opcode
exception, interrupt vector 6. NMI interrupts are

�

Page 84 Cyrix Corporation Confidential GXm_db_v2.0

Interrupts and Exceptions

enabled by setting bit 2 of the CCR7 register (Index
EBh[2] = 1, see Table 3-11 on page 54 for register
format).

In response to a maskable hardware interrupt
(INTR), the CPU issues interrupt acknowledge bus
cycles used to read the vector number from external
hardware. These vectors should be in the range 32
to 255 as vectors 0 to 31 are predefined. In PCs,
vectors 8 through 15 are used.

3.10.3.2 Interrupt Descriptor Table
The interrupt vector number is used by the CPU to
locate an entry in the interrupt descriptor table
(IDT). In real mode, each IDT entry consists of a
four-byte far pointer to the beginning of the corre-
sponding interrupt service routine. In protected
mode, each IDT entry is an 8-byte descriptor. The
Interrupt Descriptor Table Register (IDTR) speci-
fies the beginning address and limit of the IDT.
Following reset, the IDTR contains a base address
of 0h with a limit of 3FFh.

The IDT can be located anywhere in physical
memory as determined by the IDTR register. The
IDT may contain different types of descriptors:
interrupt gates, trap gates and task gates. Interrupt
gates are used primarily to enter a hardware inter-
rupt handler. Trap gates are generally used to
enter an exception handler or software interrupt
handler. If an interrupt gate is used, the Interrupt
Enable Flag (IF) in the EFLAGS register is cleared
before the interrupt handler is entered. Task gates
are used to make the transition to a new task.

Table 3-28 Interrupt Vector Assignments

Interrupt
Vector Function

Exception
Type

 0 Divide error Fault

 1 Debug exception Trap/Fault*

 2 NMI interrupt

 3 Breakpoint Trap

 4 Interrupt on overflow Trap

 5 BOUND range exceeded Fault

 6 Invalid opcode Fault

 7 Device not available Fault

 8 Double fault Abort

 9 Reserved

10 Invalid TSS Fault

11 Segment not present Fault

12 Stack fault Fault

13 General protection fault Trap/Fault

14 Page fault Fault

15 Reserved

16 FPU error Fault

17 Alignment check exception Fault

18:31 Reserved

32:55 Maskable hardware interrupts Trap

0:255 Programmed interrupt Trap

Note: *Data breakpoints and single steps are traps. All
other debug exceptions are faults.

Table 3-28 Interrupt Vector Assignments

Interrupt
Vector Function

Exception
Type

GXm_db_v2.0 Cyrix Corporation Confidential Page 85

Interrupts and Exceptions 3
3.10.4 Interrupt and Exception

Priorities
As the CPU executes instructions, it follows a
consistent policy for prioritizing exceptions and
hardware interrupts. The priorities for competing
interrupts and exceptions are listed in Table 3-29.
SMM interrupts always take precedence. Debug
traps for the previous instruction and next instruc-
tions are handled as the next priority. When NMI
and maskable INTR interrupts are both detected at
the same instruction boundary, the MediaGX
processor services the NMI interrupt first.

The CPU checks for exceptions in parallel with
instruction decoding and execution. Several excep-

tions can result from a single instruction. However,
only one exception is generated upon each attempt
to execute the instruction. Each exception service
routine should make the appropriate corrections to
the instruction and then restart the instruction. In
this way, exceptions can be serviced until the
instruction executes properly.

The CPU supports instruction restart after all faults,
except when an instruction causes a task switch to
a task whose task state segment (TSS) is partially
not present. A TSS can be partially not present if
the TSS is not page aligned and one of the pages
where the TSS resides is not currently in memory.

Table 3-29 Interrupt and Exception Priorities

Priority Description Notes

0 Warm Reset. Caused by the assertion of WM_RST.

1 SMM hardware interrupt. SMM interrupts are caused by SMI# asserted and always have
highest priority.

2 Debug traps and faults from previous instruction. Includes single-step trap and data breakpoints specified in the
debug registers.

3 Debug traps for next instruction. Includes instruction execution breakpoints specified in the debug
registers.

4 Non-maskable hardware interrupt. Caused by NMI asserted.

5 Maskable hardware interrupt. Caused by INTR asserted and IF = 1.

6 Faults resulting from fetching the next instruction. Includes segment not present, general protection fault and page
fault.

7 Faults resulting from instruction decoding. Includes illegal opcode, instruction too long, or privilege violation.

8 WAIT instruction and TS = 1 and MP = 1. Device not available exception generated.

9 ESC instruction and EM = 1 or TS = 1. Device not available exception generated.

10 Floating point error exception. Caused by unmasked floating point exception with NE = 1.

11 Segmentation faults (for each memory reference
required by the instruction) that prevent transfer-
ring the entire memory operand.

Includes segment not present, stack fault, and general protection
fault.

12 Page Faults that prevent transferring the entire
memory operand.

13 Alignment check fault.

�

Page 86 Cyrix Corporation Confidential GXm_db_v2.0

Interrupts and Exceptions

3.10.5 Exceptions in Real Mode
Many of the exceptions described in Table 3-28
"Interrupt Vector Assignments" on page 84 are not
applicable in real mode. Exceptions 10, 11, and 14
do not occur in real mode. Other exceptions have
slightly different meanings in real mode as listed in
Table 3-30.

3.10.6 Error Codes
When operating in protected mode, the following
exceptions generate a 16-bit error code:

• Double Fault
• Alignment Check
• Invalid TSS
• Segment Not Present
• Stack Fault
• General Protection Fault
• Page Fault

The error code format and bit definitions are shown
in Table 3-31. Bits [15:3] (selector index) are not
meaningful if the error code was generated as the
result of a page fault. The error code is always zero
for double faults and alignment check exceptions.

Table 3-30 Exception Changes in Real Mode

Vector
Number

Protected Mode
Function

Real Mode
Function

8 Double fault. Interrupt table limit overrun.

10 Invalid TSS. Does not occur.

11 Segment not
present.

Does not occur.

12 Stack fault. SS segment limit overrun.

13 General protection
fault.

CS, DS, ES, FS, GS seg-
ment limit overrun. In pro-
tected mode, an error is
pushed. In real mode, no
error is pushed.

14 Page fault. Does not occur.

Table 3-31 Error Codes

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Selector Index S2 S1 S0

Table 3-32 Error Code Bit Definitions

Fault
Type

Selector Index
(Bits 15:3) S2 (Bit 2) S1 (Bit 1) S0 (Bit 0)

Page
Fault

Reserved. Fault caused by:

0 = Not present page
1 = Page-level protection
 violation

Fault occurred during:

0 = Read access
1 = Write access

Fault occurred during

0 = Supervisor access
1 = User access.

IDT
Fault

Index of faulty IDT
selector.

Reserved 1 If = 1, exception occurred while
trying to invoke exception or
hardware interrupt handler.

Segment
Fault

Index of faulty
selector.

TI bit of faulty selector 0 If =1, exception occurred while
trying to invoke exception or
hardware interrupt handler.

GXm_db_v2.0 Cyrix Corporation Confidential Page 87

System Management Mode 3
3.11 System Management Mode
System Management Mode (SMM) is usually
employed for system power management or soft-
ware-transparent emulation of I/O peripherals.
SMM mode is entered through a hardware signal
“System Management Interrupt” (SMI# pin) that
has a higher priority than any other interrupt,
including NMI. An SMM interrupt can also be trig-
gered from software using an SMINT instruction.
Following an SMM interrupt, portions of the CPU
state are automatically saved, SMM mode is

entered, and program execution begins at the base
of SMM address space (Figure 3-9).

The MediaGX processor extends System Manage-
ment Mode (SMM) to support the virtualization of
many devices, including VGA video. The SMM
mechanism can be triggered not only by I/O
activity, but by access to selected memory regions.
For example, SMM interrupts are generated when
VGA addresses are accessed. As well be
described, other SMM enhancements have
reduced SMM overhead and improved virtualiza-
tion-software performance.

Figure 3-9 System Management Memory Address Space

FFFF FFFFh

0000 0000h

Non-SMM SMM

Potential
SMM Address

Space
Physical

Memory Space

FFFF FFFFh

0000 0000h

4KB to 32MB

Physical Memory

4GB

Defined
SMM

Address
Space

�

Page 88 Cyrix Corporation Confidential GXm_db_v2.0

System Management Mode

3.11.1 SMM Enhancements
Eight SMM instructions have been added to the
x86 instruction set that permit initiating SMM
through software and saving and restoring the total
CPU state when in SMM.

The SMM header now:

• Stores 32-bits memory addresses.

• Stores 32-bit memory data.

• Differentiates memory and I/O accesses.

• Indicates if an SMM interrupt was generated by
access to a VGA region.

The SMM service code is now cacheable. An
SMAR register specifies the SMM region code
base and limit. An SMHR register specifies the
physical address for the SMM header. The
SMI_NEST bit enables the nesting of SMM inter-
rupts.

3.11.2 SMM Operation
SMM execution flow is summarized in Figure 3-10.
Entering SMM requires the assertion of the SMI#
pin for at least two SYSCLK periods or execution of
the SMINT instruction. For the SMI# signal or
SMINT instruction to be recognized, configuration
register bits must be set as shown in Table 3-33.
(The configuration registers are discussed in detail
in Section 3.3.2.2 “Configuration Registers” on
page 50.)

Figure 3-10 SMM Execution Flow

Table 3-33 SMI# and SMINT Recognition
Requirements

Register Bits SMI# SMINT

USE_SMI, CCR1[1] (Index C1h) 1 1

SMAC, CCR1[2] (Index C1h) 0 1

SIZE[3:0], SMAR3[3:0] (Index CFh) >0 >0

SMI# Sampled Active or
SMINT Instruction Executed

CPU State Stored in SMM
Address Space Header

Program Flow Transfers
to SMM Address Space

CPU Enters Real Mode

Execution Begins at SMM
Address Space Base Address

RSM Instruction Restores CPU
State Using Header Information

Normal Execution Resumes

GXm_db_v2.0 Cyrix Corporation Confidential Page 89

System Management Mode 3
After triggering an SMM through the SMI# pin or a
SMINT instruction, selected CPU state information
is automatically saved in the SMM memory space
header located at the top of SMM memory space.
After saving the header, the CPU enters real mode
and begins executing the SMM service routine
starting at the SMM memory region base address.

The SMM service routine is user definable and
may contain system or power management soft-
ware. If the power management software forces
the CPU to power down or if the SMM service
routine modifies more registers than are automati-
cally saved, the complete CPU state information
should be saved.

3.11.3 The SMI# Pin
External chipsets can generate an SMI based on
numerous asynchronous events, including power
management timers, I/O address trapping, external
devices, audio FIFO events, and others. Since
SMI# is edge sensitive, the chipset must generate
an edge for each of the events above, requiring
arbitration and storage of multiple SMM events.
These functions are provided by the Cx5520 /
Cx5530 devices from Cyrix. The processor gener-
ates an SMI when the external pin changes from
high-to-low or when an RSM occurs if SMI# has
not remained low since the initiation of the previous
SMI.

3.11.4 SMM Configuration Registers
The SMAR register specifies the base location of
SMM code region and its size limit. This SMAR
register is identical to many of the Cyrix proces-
sors.

A new configuration control register called SMHR
has been added to specify the 32-bit physical
address of the SMM header. The SMHR address
must be 32-bit aligned as the bottom two bits are
ignored by the microcode. Hardware will detect
write operations to SMHR, and signal the micro-
code to recompute the header address. Access to
these registers is enabled by MAPEN (Index
C3h[4]).

The SMAR register writes to the SMM header
when the SMAR register is changed. For this
reason, changes to the SMAR register should be
completed prior to setting up the SMM header. The
configuration registers bit formats are detailed in
Table 3-11 on page 52.

�

Page 90 Cyrix Corporation Confidential GXm_db_v2.0

System Management Mode

3.11.5 SMM Memory Space Header
Tables 3-34 and 3-35 show the SMM header. A
memory address field has been added to the end
(offset -40h) of the header for the MediaGX
processor. Memory data will be stored overlapping
the I/O data, since these events cannot occur
simultaneously. The I/O address is valid for both IN
and OUT instructions, and I/O data is valid only for
OUT. The memory address is valid for read and
write operations, and memory data is valid only for
write operations.

With every SMI interrupt or SMINT instruction,
selected CPU state information is automatically
saved in the SMM memory space header located
at the top of SMM address space. The header
contains CPU state information that is modified
when servicing an SMM interrupt. Included in this
information are two pointers. The current IP points

to the instruction executing when the SMI was
detected, but it is valid only for an internal I/O SMI.

The Next IP points to the instruction that will be
executed after exiting SMM. The contents of
Debug Register 7 (DR7), the Extended Flags
Register (EFLAGS), and Control Register 0 (CR0)
are also saved. If SMM has been entered due to an
I/O trap for a REP INSx or REP OUTSx instruction,
the Current IP and Next IP fields contain the same
addresses. In addition, the I and P fields contain
valid information.

If entry into SMM is the result of an I/O trap, it is
useful for the programmer to know the port address,
data size and data value associated with that I/O
operation. This information is also saved in the
header and is valid only if SMI# is asserted during an
I/O bus cycle. The I/O trap information is not restored
within the CPU when executing a RSM instruction.

Table 3-34 SMM Memory Space Header

Mem.
Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

-0h DR7

–4h EFLAGS

–8h CR0

–Ch Current IP

–10h Next IP

–14h RSVD CS Selector

–18h CS Descriptor [63:32]

–1Ch CS Descriptor [31:0]

–20h RSVD RSVD N V X M H S P I C

–24h I/O Data Size I/O Address [15:0]

–28h I/O (Memory) Data [31:0]

–2Ch Restored ESI or EDI

–30h I/O or Memory Address [31:0]

GXm_db_v2.0 Cyrix Corporation Confidential Page 91

System Management Mode 3
Table 3-35 SMM Memory Space Header Description

Name Description Size

DR7 Debug Register 7: The contents of Debug Register 7. 4 Bytes

EFLAGS Extended Flags Register: The contents of Extended Flags Register. 4 Bytes

CR0 Control Register 0: The contents of Control Register 0. 4 Bytes

Current IP Current Instruction Pointer: The address of the instruction executed prior to servicing SMM
interrupt.

 4 Bytes

Next IP Next Instruction Pointer: The address of the next instruction that will be executed after exit-
ing SMM.

 4 Bytes

CS Selector Code Segment Selector: Code segment register selector for the current code segment. 2 Bytes

CS Descriptor Code Segment Descriptor: Encoded descriptor bits for the current code segment. 8 Bytes

N Nested SMI Status: Flag that determines whether an SMI occurred during SMM (i.e., nested) 1 Bit

V SoftVGA SMI Status: SMI was generated by an access to VGA region. 1 Bit

X External SMI Status:

If = 1: SMI generated by external SMI# pin
If = 0: SMI internally generated by Internal Bus Interface Unit.

1 Bit

M Memory or I/O Access: 0 = I/O access; 1 = Memory access. 1 Bit

H Halt Status: Indicates that the processor was in a halt or shutdown prior to servicing the SMM
interrupt.

1 Bit

S Software SMM Entry Indicator:

If = 1:Current SMM is the result of an SMINT instruction.
If = 0: Current SMM is not the result of an SMINT instruction.

 1 Bit

P REP INSx/OUTSx Indicator:

If = 1: Current instruction has a REP prefix.
If = 0: Current instruction does not have a REP prefix.

 1 Bit

I IN, INSx, OUT, or OUTSx Indicator:

If = 1: Current instruction performed is an I/O WRITE.
If = 0: Current instruction performed is an I/O READ.

 1 Bit

C CS Writable 1 Bit

I/O Data Size Indicates size of data for the trapped I/O cycle:

01h = byte
03h = word
0Fh = DWORD

 2 Bytes

I/O Address Processor port used for the trapped I/O cycle. 2 Bytes

I/O Write Data Data associated with the trapped I/O write. 4 Bytes

Restored ESI or EDI Restored ESI or EDI Value: Used when it is necessary to repeat a REP OUTSx or REP INSx
instruction when one of the I/O cycles caused an SMI# trap.

 4 Bytes

Memory Address Physical address of the write operation that caused the SMI. 4 Bytes

Note: INSx = INS, INSB, INSW or INSD instruction.
OUTSx = OUTS, OUTSB, OUTSW and OUTSD instruction.

�

Page 92 Cyrix Corporation Confidential GXm_db_v2.0

System Management Mode

3.11.6 SMM Instructions
The MediaGX processor core automatically saves the
minimal amount of CPU state information when
entering an SMM cycle that allows fast SMM
service-routine entry and exit. After entering the
SMM service routine, the MOV, SVDC, SVLDT and
SVTS instructions can be used to save the
complete CPU state information. If the SMM
service routine modifies more state information than
is automatically saved or if it forces the CPU to
power down, the complete CPU state information
must be saved. Since the CPU is a static device, its
internal state is retained when the input clock is
stopped. Therefore, an entire CPU-state save is
not necessary before stopping the input clock.

The SMM instructions, listed in Table 3-36, can be
executed only if all the conditions listed below are
met.

1) USE_SMI = 1.
2) SMAR SIZE > 0.
3) Current Privilege level = 0.
4) SMAC bit is high or the CPU is in an SMI

service routine.

If any one of the conditions above is not met and
an attempt is made to execute an SVDC, RSDC,
SVLDT, RSLDT, SVTS, RSTS, or RSM instruction,
an invalid opcode exception is generated. The
SMM instructions can be executed outside of
defined SMM space provided the conditions above
are met.

Table 3-36 SMM Instruction Set

Instruction Opcode Format Description

SVDC 0F 78h [mod sreg3 r/m] SVDC mem80, sreg3 Save Segment Register and Descriptor
Saves reg (DS, ES, FS, GS, or SS) to mem80.

RSDC 0F 79h [mod sreg3 r/m] RSDC sreg3, mem80 Restore Segment Register and Descriptor
Restores reg (DS, ES, FS, GS, or SS) from mem80. Use
RSM to restore CS.
Note: Processing “RSDC CS, Mem80” will produce an
exception.

SVLDT 0F 7Ah [mod 000 r/m] SVLDT mem80 Save LDTR and Descriptor
Saves Local Descriptor Table (LDTR) to mem80.

RSLDT 0F 7Bh [mod 000 r/m] RSLDT mem80 Restore LDTR and Descriptor
Restores Local Descriptor Table (LDTR) from mem80.

SVTS 0F 7Ch [mod 000 r/m] SVTS mem80 Save TSR and Descriptor
Saves Task State Register (TSR) to mem80.

RSTS 0F 7Dh [mod 000 r/m] RSTS mem80 Restore TSR and Descriptor
Restores Task State Register (TSR) from mem80.

SMINT 0F 38h SMINT Software SMM Entry
CPU enters SMM. CPU state information is saved in SMM
memory space header and execution begins at SMM base
address.

RSM 0F AAh RSM Resume Normal Mode
Exits SMM. The CPU state is restored using the SMM mem-
ory space header and execution resumes at interrupted
point.

Notes: smem80 = 80-bit memory location.

GXm_db_v2.0 Cyrix Corporation Confidential Page 93

System Management Mode 3
The SMINT instruction can be used by software to
enter SMM. The SMINT instruction can only be
used outside an SMM routine if all the conditions
listed below are true.

1) USE_SMI = 1
2) SMAR size > 0
3) Current Privilege Level = 0
4) SMAC = 1

If SMI# is asserted to the CPU during a software
SMI, the hardware SMI# is serviced after the soft-
ware SMI has been exited by execution of the RSM
instruction.

All the SMM instructions (except RSM and SMINT)
save or restore 80 bits of data, allowing the saved
values to include the hidden portion of the register
contents.

3.11.7 SMM Memory Space
SMM memory space is defined by specifying the
base address and size of the SMM memory space
in the SMAR register. The base address must be a
multiple of the SMM memory space size. For
example, a 32KB SMM memory space must be
located at a 32KB address boundary. The memory
space size can range from 4KB to 32MB. Execution
of the interrupt begins at the base of the SMM
memory space.

SMM memory space accesses are always cache-
able, which allows SMM routines to run faster.

3.11.8 SMI Generation
Virtualization software depends on processor-
specific hardware to generate SMI interrupts for
each memory or I/O access to the device being
implemented. The MediaGX processor implements
SMI generation for VGA accesses. Memory write
operations in regions A0000h to AFFFFh, B0000h
to B7FFFh, and B8000h to BFFFFh generate an
SMI.

Memory reads are not trapped by the MediaGX
processor. The MediaGX processor traps I/O
addresses for VGA in the following regions: 3B0h
to 3BFh, 3C0h to 3CFh, and 3D0h to 3DFh.
Memory-write trapping is performed during instruc-
tion decode in the processor core. I/O read and
write trapping is implemented in the Internal Bus
Interface Unit of the MediaGX processor.

The SMI-generation hardware requires two addi-
tional configuration registers to control and mask
SMI interrupts in the VGA memory space:
VGACTL and VGAM. The VGACTL register has a
control bit for each address range shown above.
The VGAM register has 32 bits that can selectively
disable 2KB regions within the VGA memory. The
VGAM applies only to the A0000h-to-AFFFFh
region. If this region is not enabled in VGA_CTL,
then the contents of VGAM is ignored. The
purpose of VGAM is to prevent SMI from occurring
when non-displayed VGA memory is accessed.
This is an enhancement which improves perfor-
mance for double-buffered applications. The
format of each register is shown in Chapter 4 of
this document.

�

Page 94 Cyrix Corporation Confidential GXm_db_v2.0

System Management Mode

3.11.9 SMI Service Routine
Execution

Upon entry into SMM, after the SMM header has
been saved, the CR0, EFLAGS, and DR7 registers
are set to their reset values. The Code Segment
(CS) register is loaded with the base, as defined by
the SMAR register, and a limit of 4 GBytes. The
SMI service routine then begins execution at the
SMM base address in real mode.

The programmer must save the value of any regis-
ters that may be changed by the SMI service
routine. For data accesses immediately after
entering the SMI service routine, the programmer
must use CS as a segment override. I/O port
access is possible during the routine but care must
be taken to save registers modified by the I/O
instructions. Before using a segment register, the
register and the register’s descriptor cache contents
should be saved using the SVDC instruction.

Hardware interrupts, INTRs and NMIs, may be
serviced during an SMI service routine. If interrupts
are to be serviced while executing in the SMM
memory space, the SMM memory space must be
within the address range of 0 to 1MB to guarantee
proper return to the SMI service routine after
handling the interrupt.

INTRs are automatically disabled when entering
SMM since the IF flag (EFLAGS register, bit 9) is
set to its reset value. Once in SMM, the INTR can
be enabled by setting the IF flag. An NMI event in
SMM can be enabled by setting NMI_EN high in
the CCR3 register (Index C3h[1]). If NMI is not
enabled while in SMM, the CPU latches one NMI
event and services the interrupt after NMI has been
enabled or after exiting SMM through the RSM
instruction. The processor is always in real mode in
SMM, but it may exit to either real or protected
mode depending on its state when SMM was initi-
ated. The IDT (Interrupt Descriptor Table) indicates
which state it will exit to.

Within the SMI service routine, protected mode
may be entered and exited as required, and real or
protected mode device drivers may be called.

To exit the SMI service routine, a Resume (RSM)
instruction, rather than an IRET, is executed. The
RSM instruction causes the MediaGX processor
core to restore the CPU state using the SMM
header information and resume execution at the
interrupted point. If the full CPU state was saved by
the programmer, the stored values should be
reloaded before executing the RSM instruction
using the MOV, RSDC, RSLDT and RSTS instruc-
tions.

3.11.9.1 SMI Nesting
The SMI mechanism supports nesting of SMI inter-
rupts through the SMI handler, the SMI_NEST bit
in CCR4[6] (Index E8h), and the Nested SMI
Status bit (bit N in the SMM header, see Table 3-35
"SMM Memory Space Header Description" on
page 91). Nesting is an important capability in
allowing high-priority events, such as audio virtual-
ization, to interrupt lower-priority SMI code for VGA
virtualization or power management. SMI_NEST
controls whether SMI interrupts can occur during
SMM. SMI handlers can optionally set SMI_NEST
high to allow higher-priority SMI interrupts while
handling the current event.

The SMI handler is responsible for managing the
SMI header data for nested SMI interrupts. The
SMI header must be saved before SMI_NEST is
set high, and SMI_NEST must be cleared and its
header information restored before an RSM
instruction is executed.

The Nested SMI Status bit has been added to the
SMM header to show whether the current SMI is
nested. The processor sets Nested SMI Status
high if the processor was in SMM when the SMI
was taken. The processor uses Nested SMI Status
on exit to determine whether the processor should
stay in SMM.

GXm_db_v2.0 Cyrix Corporation Confidential Page 95

System Management Mode 3
When SMI nesting is disabled, the processor holds
off external SMI interrupts until the currently
executing SMM code exits. When SMI nesting is
enabled, the processor can proceed with the SMI.
The SMI handler will guarantee that no internal
SMIs are generated in SMM, so the processor
ignores such events. If the internal and external
SMI signals are received simultaneously, then the
internal SMI is given priority to avoid losing the
event.

The state diagram of the SMI_NEST and Nested
SMI Status bits are shown in Figure 3-11 with each
state is explained next.

A. When the processor is outside of SMM,
Nested SMI Status is always clear and
SMI_NEST is set high.

B. The first-level SMI interrupt is received by the
processor. The microcode clears SMI_NEST,
sets Nested SMI Status high and saves the
previous value of Nested SMI Status (0) in
the SMI header.

C. The first-level SMI handler saves the header
and sets SMI_NEST high to re-enable SMI
interrupts from SMM.

D. A second-level (nested) SMI interrupt is
received by the processor. This SMI is taken
even though the processor is in SMM
because the SMI_NEST bit is set high. The

microcode clears SMI_NEST, sets Nested
SMI Status high and saves the previous value
of Nested SMI Status (1) in the SMI header.

E. The second-level SMI handler saves the
header and sets SMI_NEST to re-enable SMI
interrupts within SMM. Another level of
nesting could occur during this period.

F. The second-level SMI handler clears
SMI_NEST to disable SMI interrupts, then
restores its SMI header.

G. The second-level SMI handler executes an
RSM. The microcode sets SMI_NEST, and
restores the Nested SMI Status (1) based on
the SMI header.

H. The first-level SMI handler clears SMI_NEST
to disable SMI interrupts, then restores its
SMI header.

I. The first-level SMI handler executes an RSM.
The microcode sets SMI_NEST high and
restores the Nested SMI Status (0) based on
the SMI header.

When the processor is outside of SMM, Nested
SMI Status is always clear and SMI_NEST is set
high.

Figure 3-11 SMI Nesting State Machine

SMI_NEST

Nested SMI Status

A B C D E F G H I

�

Page 96 Cyrix Corporation Confidential GXm_db_v2.0

System Management Mode

3.11.9.2 CPU States Related to SMM
and Suspend Mode

The state diagram shown in Figure 3-12 illustrates
the various CPU states associated with SMM and
Suspend mode. While in the SMI service routine,
the MediaGX processor core can enter Suspend
mode either by (1) executing a halt (HLT) instruc-
tion or (2) by asserting the SUSP# input.

During SMM operations and while in SUSP#-initi-
ated Suspend mode, an occurrence of either NMI
or INTR is latched. (In order for INTR to be latched,

the IF flag, EFLAGS register bit 9, must be set.)
The INTR or NMI is serviced after exiting Suspend
mode.

If Suspend mode is entered through a HLT instruc-
tion from the operating system or application soft-
ware, the reception of an SMI# interrupt causes the
CPU to exit Suspend mode and enter SMM. If
Suspend mode is entered through the hardware
(SUSP# = 0) while the operating system or applica-
tion software is active, the CPU latches one occur-
rence of INTR, NMI, and SMI#.

Figure 3-12 SMM and Suspend Mode State Diagram

Suspend Mode
(SUSPA# = 0)

Suspend Mode
(SUSPA# = 0)

Suspend Mode
(SUSPA# = 0)

NMI or INTR

HLT* IRET*

RSM*
SMI# = 0

SMINT*

SUSP# = 1

SUSP# = 0

Interrupt Service
Routine

Interrupt Service
Routine

OS/Application
Software

SMI Service Routine
(SMI# = 0)

NMI or INTR

RESET

SMI# = 0

(INTR, NMI and SMI# latched)

Non-SMM Operations
SMM Operations

Interrupt Service
Routine

Suspend Mode
(SUSPA# = 0)

(INTR and NMI latched)

NMI or INTR IRET*

SUSP# = 0 SUSP# = 1

IRET*

HLT*

NMI or INTR

*Instructions

GXm_db_v2.0 Cyrix Corporation Confidential Page 97

Shutdown and Halt 3
3.12 Shutdown and Halt
The Halt Instruction (HLT) stops program execution
and generates a special Halt bus cycle. The
MediaGX processor core then drives out a special
Stop Grant bus cycle and enters a low-power
Suspend mode if the SUSP_HLT bit in CCR2
(Index C2h[3]) is set. SMI#, NMI, INTR with inter-
rupts enabled (IF bit in EFLAGS = 1), or RESET
forces the CPU out of the halt state. If the halt state
is interrupted, the saved code segment and
instruction pointer specify the instruction following
the HLT.

Shutdown occurs when a severe error is detected
that prevents further processing. The most
common severe error is the triple fault, a fault
event while handling a double fault. Setting the IDT
or the GDT limit to zero will cause a triple fault.

An NMI input or a reset can bring the processor out
of shutdown. An NMI will work if the IDT limit is
large enough, at least 000Fh, to contain the NMI
interrupt vector and if the stack has enough room.
The stack must be large enough to contain the
vector and flag information (the stack pointer must
be greater than 0005h).

3.13 Protection
Segment protection and page protection are safe-
guards built into the MediaGX processor’s
protected-mode architecture that denies unautho-
rized or incorrect access to selected memory
addresses. These safeguards allow multitasking
programs to be isolated from each other and from
the operating system. This section concentrates on
segment protection.

Selectors and descriptors are the key elements in
the segment protection mechanism. The segment
base address, size, and privilege level are estab-
lished by a segment descriptor. Privilege levels
control the use of privileged instructions, I/O
instructions and access to segments and segment
descriptors. Selectors are used to locate segment
descriptors.

Segment accesses are divided into two basic
types, those involving code segments (e.g., control
transfers) and those involving data accesses. The
ability of a task to access a segment depends on
the:

• segment type
• instruction requesting access
• type of descriptor used to define the segment
• associated privilege levels (described next)

Data stored in a segment can be accessed only by
code executing at the same or a more privileged
level. A code segment or procedure can only be
called by a task executing at the same or a less
privileged level.

3.13.1 Privilege Levels
The values for privilege levels range between 0
and 3. Level 0 is the highest privilege level (most
privileged), and level 3 is the lowest privilege level
(least privileged). The privilege level in real mode is
zero.

The Descriptor Privilege Level (DPL) is the privi-
lege level defined for a segment in the segment
descriptor. The DPL field specifies the minimum
privilege level needed to access the memory
segment pointed to by the descriptor.

The Current Privilege Level (CPL) is defined as
the current task’s privilege level. The CPL of an
executing task is stored in the hidden portion of the
code segment register and essentially is the DPL
for the current code segment.

The Requested Privilege Level (RPL) specifies a
selector’s privilege level. RPL is used to distinguish
between the privilege level of a routine actually
accessing memory (the CPL), and the privilege
level of the original requester (the RPL) of the
memory access. If the level requested by RPL is
less than the CPL, the RPL level is accepted and
the Effective Privilege Level (EPL) is changed to
the RPL value. If the level requested by RPL is
greater than CPL, the CPL overrides the requested
RPL and EPL becomes the CPL value.

�

Page 98 Cyrix Corporation Confidential GXm_db_v2.0

Protection

The lesser of the RPL and CPL is called the Effective
Privilege Level (EPL). Therefore, if RPL = 0 in a
segment selector, the EPL is always determined by
the CPL. If RPL = 3, the EPL is always 3 regard-
less of the CPL.

For a memory access to succeed, the EPL must be
at least as privileged as the Descriptor Privilege
Level (EPL ≤ DPL). If the EPL is less privileged
than the DPL (EPL > DPL), a general protection
fault is generated. For example, if a segment has a
DPL = 2, an instruction accessing the segment
only succeeds if executed with an EPL ≤ 2.

3.13.2 I/O Privilege Levels
The I/O Privilege Level (IOPL) allows the operating
system executing at CPL = 0 to define the least
privileged level at which IOPL-sensitive instruc-
tions can unconditionally be used. The IOPL-sensi-
tive instructions include CLI, IN, OUT, INS, OUTS,
REP INS, REP OUTS, and STI. Modification of the
IF bit in the EFLAGS register is also sensitive to the
I/O privilege level.

The IOPL is stored in the EFLAGS register (bits
[31:12]). An I/O permission bit map is available as
defined by the 32-bit Task State Segment (TSS).
Since each task can have its TSS, access to indi-
vidual I/O ports can be granted through separate
I/O permission bit maps.

If CPL ≤ IOPL, IOPL-sensitive operations can be
performed. If CPL > IOPL, a general protection
fault is generated if the current task is associated
with a 16-bit TSS. If the current task is associated
with a 32-bit TSS and CPL > IOPL, the CPU
consults the I/O permission bitmap in the TSS to
determine on a port-by-port basis whether or not I/O
instructions (IN, OUT, INS, OUTS, REP INS, REP
OUTS) are permitted. The remaining IOPL-sensi-
tive operations generate a general protection fault.

3.13.3 Privilege Level Transfers
A task’s CPL can be changed only through inter-
segment control transfers using gates or task
switches to a code segment with a different privilege
level. Control transfers result from exception and
interrupt servicing and from execution of the CALL,
JMP, INT, IRET and RET instructions.

There are five types of control transfers that are
summarized in Table 3-37. Control transfers can be
made only when the operation causing the control
transfer references the correct descriptor type. Any
violation of these descriptor usage rules causes a
general protection fault.

Any control transfer that changes the CPL within a
task results in a change of stack. The initial values
for the stack segment (SS) and stack pointer (ESP)
for privilege levels 0, 1, and 2 are stored in the
TSS. During a JMP or CALL control transfer, the
SS and ESP are loaded with the new stack pointer
and the previous stack pointer is saved on the new
stack. When returning to the original privilege level,
the RET or IRET instruction restores the SS and
ESP of the less-privileged stack.

GXm_db_v2.0 Cyrix Corporation Confidential Page 99

Protection 3

3.13.3.1 Gates
Gate descriptors described in Section 3.7.5 “Gate
Descriptors” on page 76, provide protection for
privilege transfers among executable segments.
Gates are used to transition to routines of the same
or a more privileged level. Call gates, interrupt
gates and trap gates are used for privilege transfers
within a task. Task gates are used to transfer
between tasks.

Gates conform to the standard rules of privilege. In
other words, gates can be accessed by a task if the
effective privilege level (EPL) is the same or more
privileged than the gate descriptor’s privilege level
(DPL).

3.13.4 Initialization and Transition to
Protected Mode

The MediaGX processor core switches to real
mode immediately after RESET. While operating in
real mode, the system tables and registers should
be initialized. The GDTR and IDTR must point to a
valid GDT and IDT, respectively. The size of the IDT
should be at least 256 bytes, and the GDT must
contain descriptors that describe the initial code
and data segments.

The processor can be placed in protected mode by
setting the PE bit (CR0 register bit 0). After
enabling protected mode, the CS register should be
loaded and the instruction decode queue should be
flushed by executing an intersegment JMP. Finally,
all data segment registers should be initialized with
appropriate selector values.

Table 3-37 Descriptor Types Used for Control Transfer

Type of Control Transfer Operation Types
Descriptor
Referenced

Descriptor
Table

Intersegment within the same privilege
level.

JMP, CALL, RET, IRET* Code Segment GDT or LDT

Intersegment to the same or a more
privileged level. Interrupt within task
(could change CPL level).

CALL Gate Call GDT or LDT

Interrupt Instruction, Exception,
External Interrupt

Trap or Interrupt Gate IDT

Intersegment to a less privileged level
(changes task CPL).

RET, IRET* Code Segment GDT or LDT

Task Switch via TSS CALL, JMP Task State Segment GDT

Task Switch via Task Gate CALL, JMP Task Gate GDT or LDT

IRET**, Interrupt Instruction,
Exception, External Interrupt

Task Gate IDT

Note: *NT = 0 (Nested Task bit in EFLAGS, bit 14)
**NT =1 (Nested Task bit in EFLAGS, bit 14)

�

Page 100 Cyrix Corporation Confidential GXm_db_v2.0

Virtual 8086 Mode

3.14 Virtual 8086 Mode
Both real mode and virtual 8086 (V86) modes are
supported by the MediaGX processor, allowing
execution of 8086 application programs and 8086
operating systems. V86 mode allows the execution
of 8086-type applications, yet still permits use of
the paging and protection mechanisms. V86 tasks
run at privilege level 3. Before entry, all segment
limits must be set to FFFFh (64K) as in real mode.

3.14.1 Memory Addressing
While in V86 mode, segment registers are used in
an identical fashion to real mode. The contents of
the Segment register are multiplied by 16 and
added to the offset to form the Segment Base
Linear Address. The MediaGX processor permits
the operating system to select which programs use
the V86 address mechanism and which programs
use protected mode addressing for each task.

The MediaGX processor also permits the use of
paging when operating in V86 mode. Using paging,
the 1MB address space of the V86 task can be
mapped to any region in the 4GB linear address
space.

The paging hardware allows multiple V86 tasks to
run concurrently, and provides protection and oper-
ating system isolation. The paging hardware must
be enabled to run multiple V86 tasks or to relocate
the address space of a V86 task to physical
address space other than 0.

3.14.2 Protection
All V86 tasks operate with the least amount of priv-
ilege (level 3) and are subject to all CPU protected
mode protection checks. As a result, any attempt to
execute a privileged instruction within a V86 task
results in a general protection fault.

In V86 mode, a slightly different set of instructions
are sensitive to the I/O privilege level (IOPL) than
in protected mode. These instructions are: CLI, INT
n, IRET, POPF, PUSHF, and STI. The INT3, INTO

and BOUND variations of the INT instruction are
not IOPL sensitive.

3.14.3 Interrupt Handling
To fully support the emulation of an 8086-type
machine, interrupts in V86 mode are handled as
follows. When an interrupt or exception is serviced
in V86 mode, program execution transfers to the
interrupt service routine at privilege level 0 (i.e.,
transition from V86 to protected mode occurs). The
VM bit in the EFLAGS register (bit 17) is cleared.
The protected mode interrupt service routine then
determines if the interrupt came from a protected
mode or V86 application by examining the VM bit
in the EFLAGS image stored on the stack. The
interrupt service routine may then choose to allow
the 8086 operating system to handle the interrupt
or may emulate the function of the interrupt
handler. Following completion of the interrupt
service routine, an IRET instruction restores the
EFLAGS register (restores VM = 1) and segment
selectors and control returns to the interrupted V86
task.

3.14.4 Entering and Leaving
Virtual 8086 Mode

V86 mode is entered from protected mode by
either executing an IRET instruction at CPL = 0 or
by task switching. If an IRET is used, the stack
must contain an EFLAGS image with VM = 1. If a
task switch is used, the TSS must contain an
EFLAGS image containing a 1 in the VM bit posi-
tion. The POPF instruction cannot be used to enter
V86 mode since the state of the VM bit is not
affected. V86 mode can only be exited as the result
of an interrupt or exception. The transition out must
use a 32-bit trap or interrupt gate that must point to
a non-conforming privilege level 0 segment (DPL =
0), or a 32-bit TSS. These restrictions are required
to permit the trap handler to IRET back to the V86
program.

GXm_db_v2.0 Cyrix Corporation Confidential Page 101

Floating Point Unit Operations 3
3.15 Floating Point Unit Operations
The FPU is x87-instruction-set compatible and
adheres to the IEEE-754 standard. Because most
applications that contain FPU instructions intermix
with integer instructions, the MediaGX processor’s
FPU achieves high performance by completing
integer and FPU operations in parallel.

3.15.1 FPU (Floating Point Unit)
Register Set

In addition to the registers described to this point,
the FPU within the CPU provides the user eight
data registers accessed in a stack-like manner, a
control register, and a status register. The CPU
also provides a data register tag word that
improves context switching and stack performance
by maintaining empty/non-empty status for each of
the eight data registers. In addition, registers
contain pointers to (a) the memory location
containing the current instruction word and (b) the
memory location containing the operand associ-
ated with the current instruction word (if any).

3.15.2 FPU Tag Word Register
The CPU maintains a tag word register that is
divided into eight tag word fields. These fields
assume one of four values depending on the
contents of their associated data registers: Valid
(00), Zero (01), Special (10), and Empty (11). Note:
Denormal, Infinity, QNaN, SNaN and unsupported
formats are tagged as “Special”. Tag values are
maintained transparently by the CPU and are only
available to the programmer indirectly through the
FSTENV and FSAVE instructions. The tag word
with tag fields for each associated physical register,
tag(n), is shown in Table 3-38.

3.15.3 FPU Status Register
The FPU communicates status information and
operation results to the CPU through the status
register. The fields in the FPU status register are
detailed in Table 3-38. These fields include infor-
mation related to exception status, operation
execution status, register status, operand class,
and comparison results. This register is continu-
ously accessible to the CPU regardless of the state
of the Control or Execution Units.

3.15.4 FPU Mode Control Register
The FPU Mode Control Register (MCR) shown in
Table 3-38 is used by the MediaGX processor to
specify the operating mode of the FPU. The MCR
register fields include information related to the
rounding mode selected, the amount of precision
to be used in the calculations, and the exception
conditions which should be reported to the
MediaGX processor using traps. The user controls
precision, rounding, and exception reporting by
setting or clearing appropriate bits in the MCR.

�

Page 102 Cyrix Corporation Confidential GXm_db_v2.0

Floating Point Unit Operations

Table 3-38 FPU Registers

Bit Name Description

FPU Tag Word Register

15:14 TAG7 TAG7: 00 = Valid; 01 = Zero; 10 = Special; 11 = Empty.

13:12 TAG6 TAG6: 00 = Valid; 01 = Zero; 10 = Special; 11 = Empty.

11:10 TAG5 TAG5: 00 = Valid; 01 = Zero; 10 = Special; 11 = Empty.

9:8 TAG4 TAG4: 00 = Valid; 01 = Zero; 10 = Special; 11 = Empty.

7:6 TAG3 TAG3: 00 = Valid; 01 = Zero; 10 = Special; 11 = Empty.

5:4 TAG2 TAG2: 00 = Valid; 01 = Zero; 10 = Special; 11 = Empty.

3:2 TAG1 TAG1: 00 = Valid; 01 = Zero; 10 = Special; 11 = Empty.

1:0 TAG0 TAG0: 00 = Valid; 01 = Zero; 10 = Special; 11 = Empty.

FPU Status Register

15 B Copy of ES bit (bit 7 this register)

14 C3 Condition code bit 3

13:11 S Top-of-Stack: Register number that points to the current TOS.

10:8 C[2:0] Condition code bits [2:0]

7 ES Error indicator: Set to 1 if unmasked exception detected.

6 SF Stack Full: FPU Status Register: or invalid register operation bit.

5 P Precision error exception bit

4 U Underflow error exception bit

3 O Overflow error exception bit

2 Z Divide-by-zero exception bit

1 D Denormalized-operand error exception bit

0 I Invalid operation exception bit

FPU Mode Control Register

15:12 RSVD Reserved: Set to 0.

11:10 RC Rounding Control Bits:
00 = Round to nearest or even
01 = Round towards minus infinity
10 = Round towards plus infinity
11 = Truncate

9:8 PC Precision Control Bits:
00 = 24-bit mantissa
01 = Reserved
10 = 53-bit mantissa
11 = 64-bit mantissa

7:6 RSVD Reserved: Set to 0.

5 P Precision error exception bit

4 U FPU Mode Control Register

3 O Overflow error exception bit

2 Z Divide-by-zero exception bit

1 D Denormalized-operand error exception bit

0 I Invalid-operation exception bit

GXm_db_v2.0 Cyrix Corporation Confidential Page 103

MediaGX™ MMX™-Enhanced Processor
Integrated x86 Solution with MMX™ Support

�
4 Integrated Functions
The Cyrix MediaGX MMX-Enhanced processor
integrates a memory controller, graphics pipeline
and display controller in a Unified Memory Archi-
tecture (UMA). UMA simplifies system designs and
significantly reduces overall system costs associ-
ated with high chip count, small footprint notebook
designs. Performance degradation in traditional
UMA systems is reduced through the use of Cyrix’s
Display Compression Technology™ (DCT™).

Figure 4-1 shows the major functional blocks of the
MediaGX processor and how the Internal Bus
Interface Unit operates as the interface between
the processor’s core units and the integrated func-
tions.

This section details how the integrated functions
and Internal Bus Interface Unit operate and their
respective registers.

Figure 4-1 Internal Block Diagram

Write-Back
Unit FPU

Internal Bus Interface Unit

Graphics Memory Display PCI

SDRAM Port Cx5520/Cx5530 PCI Bus

Integer
Cache Unit

Integrated
Functions

MMU

(CRT/LCD TFT)

X-Bus

Pipeline Controller Controller Controller

C-Bus

Page 104 Cyrix Corporation Confidential GXm_db_v2.0

� Integrated Functions Programming Interface

4.1 Integrated Functions
Programming Interface

The MediaGX processor performs mapping for the
dedicated cache, graphics pipeline, display
controller, memory controller, and graphics
memory, including the frame buffer. It maps these
to high memory addresses or MediaGX processor
memory space. The base address for these is
controlled by the Graphics Configuration Register
(GCR, Index B8h), which specifies address bits
[31:30] in physical memory.

Figure 4-2 shows the address map for the
MediaGX processor. When accessing the
MediaGX processor memory space, address bits
[29:24] must be zero. This allows the MediaGX
processor a linear address space with a total of
16MB. Address bit 23 divides this space into 8MB
for control (bit 23 = 0) and 8MB for graphics
memory (bit 23 = 1). In control space, bits [22:16]
are not decoded, so the programmer should set
them to zero. Address bit 15 divides the remaining
64KB address space into scratchpad RAM and PCI
access (bit 15 = 0) and control registers (bit 15 =
1).

Device drivers must be responsible for performing
physical-to-virtual memory-address translation,
including allocation of selectors that point to the
MediaGX processor. The processor may be
accessed in protected mode by creating a selector
with the physical address shown in Table 4-1, and
a limit of 16MB. A selector with a 64KB limit is large
enough to access all of the MediaGX processor’s
registers and scratchpad RAM.

4.1.1 Graphics Control Register
The MediaGX processor incorporates graphics
functions that require registers to implement and
control them. Most of these registers are memory
mapped and physically located in the logical units
they control. The mapping of these units is
controlled by this configuration register. The
Graphics Control Register (GCR, Index B8h) is I/O-
mapped because it must be accessed before
memory mapping can be enabled. Refer to Section
3.3.2.2 “Configuration Registers” on page 50 for
information on how to access this register.

Table 4-1 GCR Register

Bit Name Description

Index B8h GCR Register (R/W) Default Value = 00h

7:4 RSVD Reserved: Set to 0.

3:2 SP Scratchpad Size: Specifies the size of the scratchpad cache.

00 = 0KB
01 = 2KB
10 = 3KB
11 = 4KB

1:0 GX MediaGX Base Address: Specifies the physical address for the base (GX_BASE) of the scratchpad
RAM, the graphics memory (frame buffer, compression buffer, etc.) and the other memory mapped regis-
ters.

00 = Scratchpad RAM, Graphics Subsystem, and memory-mapped configuration registers are disabled.
01 = Scratchpad RAM and control registers start at GX_BASE = 40000000h.
10 = Scratchpad RAM and control registers start at GX_BASE = 80000000h.
11 = Scratchpad RAM and control registers start at GX_BASE = C0000000h.

GXm_db_v2.0 Cyrix Corporation Confidential Page 105

Integrated Functions Programming Interface 4

Figure 4-2 MediaGX Processor Memory Space

Conventional Memory

UMBs and Expansion ROMs

Video BIOS

System BIOS

Extended Memory

PCI Access

Scratchpad

VGA/MDA
Frame Buffers

(Soft VGA and/or PCA/ISA)

In terna l B us IF U nit R eg isters

Graphics Pipeline Registers

SMM System Code

(Frame Buffer, etc.)

PCI Access

ROM Access
(256KB)

0h

A0000h (640KB)

C0000h

E0000h

100000h (1MB)

E8000h

GX_BASE+8000h

GX_BASE+9000h
GX_BASE+400000h

GX_BASE+800000h

GX_BASE+1000000h

FFFC0000h

FFFFFFFFh (4GB)

Extended Memory

Graphics Memory
(Frame Buffer, etc.)

0h

A0000h (640KB)

C0000h

E0000h

100000h (1MB)

E8000h
Shadowed Video BIOS

Shadowed System BIOS

SMM System Code

Physical Address Map

DRAM Map

MAX

*GBADD or Top of DRAM *Top of DRAM

PCI Access

PCI Access

Display Controller Registers

Memory Controller Registers

Graphics Memory

* See BC_DRAM_TOP Table 4-10 on page 114 or MC_GBASE_ADD Table 4-16 on page 122.

(See Table 4-30 on page 154)

(See Table 4-24 on page 139)

(See Table 4-9 on page 113)

GX_BASE (See Table
4-1 on page 104)

FFFF FFFFh
MAX

Conventional Memory

UMBs and
Expansion ROMs

GX_BASE+8500h

GX_BASE+8400h
(See Table 4-15 on page 121)

GX_BASE+8300h

GX_BASE+8100h

(See Table 4-5 on page 109)

GX_BASE+1000h

Power Management Registers
(See Table 6-1 on page 209)

Page 106 Cyrix Corporation Confidential GXm_db_v2.0

� Integrated Functions Programming Interface

4.1.2 Control Registers
The control registers for the MediaGX processor
use 32KB of the memory map, starting at
GX_BASE+8000h (see Figure 4-2). This area is
divided into Internal Bus Interface Unit, Graphics
Pipeline, Display Controller, Memory Controller,
and Power Management sections:

• The Internal Bus Interface Unit maps 100h loca-
tions starting at GX_BASE+8000h.

• The Graphics Pipeline maps 200h locations
starting at GX_BASE+8100h.

• The Display Controller maps 100h locations
starting at GX_BASE+8300h.

• The Memory Controller maps 100h locations
starting at GX_BASE+8400h

• GX_BASE+8500h-8FFFh is dedicated to power
management registers for the serial packet
transmission control, the user-defined power
management address space, Suspend Refresh,
and SMI status for Suspend/Resume.

The register descriptions are contained in the indi-
vidual subsections of this chapter. Accesses to
undefined registers in the MediaGX processor
control register space will not cause a hardware
error.

4.1.3 Graphics Memory
The MediaGX processor’s graphics memory is
mapped into 8MB starting at GX_BASE+800000h.
This area includes the frame buffer memory and
storage for internal display controller state. The
frame buffer is a linear map whose size depends
on the current resolution setup in the memory
controller. Frame buffer scan lines are not contig-
uous in many resolutions, so software that renders
to the frame buffer must use a skip count to
advance between scan lines. The display controller
uses the graphics memory that lies between scan
lines for internal state. For this reason, accessing
graphics memory between the end of a scan line

and the start of another can cause display prob-
lems. The skip count for all supported resolutions is
shown in Table 4-2.

Graphics memory is allocated from system DRAM
by the system BIOS. The graphics memory size is
programmed by setting the graphics memory base
address in the memory controller. Display drivers
communicate with system BIOS about resolution
changes, to ensure that the correct amount of
graphics memory is allocated. When a graphics
resolution change requires an increased amount of
graphics memory, the system must be rebooted!
The reason for this restriction is that no mechanism
exists to recover system DRAM from the operating
system without rebooting.

Table 4-2 Display Resolution Skip Counts

Screen
Resolution

Pixel
Depth

Skip
Count

640x480 8 bits 1024

640x480 16 bits 2048

800x600 8 bits 1024

800x600 16 bits 2048

1024x768 8 bits 1024

1024x768 16 bits 2048

GXm_db_v2.0 Cyrix Corporation Confidential Page 107

Integrated Functions Programming Interface 4
4.1.4 L1 Cache Controller
The MediaGX processor contains an on-board
16KB unified data/instruction L1 cache. It operates
in write-back mode. Since the memory controller is
also on-board, the L1 cache requires no external
logic to maintain coherency. All DMA cycles auto-
matically snoop the L1 cache. For improved
graphics performance, part of the L1 cache oper-
ates as a scratchpad RAM to be used by the
graphics pipeline as a BLT Buffer.

The CD bit (Cache Disable, bit 30) in CR0 globally
controls the operating mode of the L1 cache. LCD
and LWT, Local Cache Disable and Local Write-
through bits in the Translation Lookaside Buffer,
control the mode on a page-by-page basis. Addi-
tionally, memory configuration control can specify
certain memory regions as non-cacheable.

Write-back caching improves performance by
relieving congestion on slower external buses.
With four dirty bits, the cache marks dirty locations
on a double-word basis. This further reduces the
number of double-word bus write operations
needed during a replacement or flush operation.

The MediaGX processor will cache SMM regions.
This speeds up system management overhead to
allow for hardware emulation such as VGA.

The cache of the MediaGX processor provides the
ability to redefine 2KB, 3KB, or 4KB of the L1
cache to be scratchpad memory. The scratchpad
area is memory mapped to the upper memory
region defined by the GCR register (Index B8h).
The valid bits for the scratchpad RAM will always
be true and the scratchpad RAM locations will
never be flushed to memory. The scratchpad RAM
serves as a general purpose high speed RAM and
as a BLT buffer for the graphics pipeline. Incre-
menting BLT buffer address registers have been
added to enable the graphics pipeline to access
this memory as a BLT buffer. A 16-byte line buffer
dedicated to the graphics pipeline accesses has
been added to minimize graphics interference with
normal CPU operation.

Table 4-3 summarizes the registers contained in
the L1 cache. These registers do not have default
values and must be initialized before use. Table 4-4
gives the register/bit formats.

Note: For information on accessing these registers, refer to Section 4.1.6 “CPU_READ/CPU_WRITE Instructions”
on page 111.

Table 4-3 L1 Cache BitBLT Register Summary

Mnemonic Name Function

L1_BB0_BASE
L1 Cache BitBLT 0 Base Address

Contains the address offset to the first byte of BLT Buffer 0 in the
scratchpad memory.

L1_BB0_POINTER
L1 Cache BitBLT 0 Pointer

Contains the address offset to the current line of BLT Buffer 0 in the
scratchpad memory.

L1_BB1_BASE
L1 Cache BitBLT 1 Base Address

Contains the offset to the first byte of BLT Buffer 1 in the scratchpad
memory.

L1_BB1_POINTER
L1 Cache BitBLT 1 Pointer

Contains the address offset to the current line of BLT Buffer 1 in the
scratchpad memory.

Page 108 Cyrix Corporation Confidential GXm_db_v2.0

� Integrated Functions Programming Interface

Table 4-4 L1 Cache BitBLT Registers

Bit Name Description

L1_BB0_BASE Register (R/W) Default Value = None

15:12 RSVD Reserved: Set to 0.

11:4 INDEX BitBLT 0 Base Index: The index to the starting line of BLT Buffer 0.

3:0 BYTE BitBLT 0 Starting Byte: Determines which byte of the starting line is the beginning of BLT Buffer 0.

L1_BB0_POINTER Register (R/W) Default Value = None

15:12 RSVD Reserved: Set to 0.

11:4 INDEX BitBLT 0 Pointer Index: The index to the current line of BLT Buffer 0.

3:0 RSVD Reserved: Set to 0.

L1_BB1_Base Register (R/W) Default Value = None

15:12 RSVD Reserved: Set to 0.

11:4 INDEX BitBLT 1 Base Index: The index to the starting line of BLT Buffer 1.

3:0 BYTE BitBLT 1 Starting Byte: Determines which byte of the starting line is the beginning of BLT Buffer 1.

L1_BB1_POINTER Register (R/W) Default Value = None

15:12 RSVD Reserved: Set to 0.

11:4 INDEX BitBLT 1 Pointer Index: The index to the current line of BLT Buffer 1.

3:0 RSVD Reserved: Set to 0.

GXm_db_v2.0 Cyrix Corporation Confidential Page 109

Integrated Functions Programming Interface 4
4.1.4.1 Scratchpad Memory
The scratchpad RAM is a dedicated high-speed
memory cache that contains BLT buffers, SMM
header, and a scratchpad area for display drivers.
It provides both L1 cache performance and a dedi-
cated resource that cannot be thrown out by other
system activity. The configuration of the scratchpad
is based on graphics resolution and is described in
Table 4-5.

The scratchpad memory is part of the on-chip L1
cache memory. The memory size is controlled by
bits in the GCR register (Index B8h). The
scratchpad memory can be disabled, or sized to
2KB, 3KB, or 4KB. The remaining L1 cache size is
16KB minus the scratchpad size, and all of the
scratchpad area is subtracted from a single way.

The scratchpad memory is used by display drivers
and virtualization software. Because this resource
must be tightly controlled to avoid conflicts, appli-
cation software and third-party drivers should avoid
accesses to the scratchpad area.

The display driver creates and manages two BLT
buffers from within the scratchpad area. These BLT
buffers are used to transfer source data from

system memory into the frame buffer, or for desti-
nation data from system memory or the frame
buffer. The graphics pipeline accesses the BLT
buffers for many common operations, including
BitBLT transfers, output primitives, and raster text.
Display drivers also use a small portion of the
scratchpad as an extended register file, since
scratchpad read and write accesses are very fast
compared to normal memory operations.

The virtualization software uses the scratchpad
area to store critical SMM information, including
the SMI header and SMM system state. No SMM
code currently resides in the scratchpad area,
although this is an option for future products.

When the BLT buffer pointer is used (refer to Table
4-8) addresses outside the scratchpad range will
wrap around back into the scratchpad RAM. Table
4-5 shows the allocation of scratchpad memory for
the 2KB and 3KB configurations of the scratchpad.
The 2KB configuration uses GX_BASE+0800h to
GX_BASE+1000h. The 3KB configuration uses
GX_BASE+0400h to GX_BASE+1000h. These
configurations are fixed by the system BIOS during
boot and cannot be changed without rebooting the
system.

Table 4-5 Scratchpad Organization

2KB Configuration 3KB Configuration

DescriptionOffset Size Offset Size

GX_BASE + 0EE0h 288 bytes GX_BASE + 0EE0h 288 bytes SMM scratchpad

GX_BASE + 0E60h 128 bytes GX_BASE + 0E60h 128 bytes Driver scratchpad

GX_BASE + 0B30h 816 bytes GX_BASE + 0930h 1328 bytes BLT Buffer 0

GX_BASE + 0800h 816 bytes GX_BASE + 0400h 1328 bytes BLT Buffer 1

Page 110 Cyrix Corporation Confidential GXm_db_v2.0

� Integrated Functions Programming Interface

4.1.5 Display Driver Instructions
The MediaGX processor has four instructions to
access processor core registers. Table 4-6 shows
these instructions.

Adding CPU instructions does not create a
compatibility problem for applications that may
depend on receiving illegal opcode traps. The solu-
tion is to make these instructions generate an
illegal opcode trap unless a compatibility bit is
explicitly set. The MediaGX processor uses the

scratchpad size field (bits [3:2] in GCR, Index B8h)
to enable or disable all of the graphics instructions.
If the scratchpad size bits are zero, meaning that
none of the cache is defined as scratchpad, then
hardware will assume that the graphics controller is
not being used and the graphics instructions will be
disabled. Any other scratchpad size will enable all
of the new instructions. Note that the base address
of the memory map in the GCR register can still be
set up to allow access to the memory controller
registers.

Table 4-6 Display Driver Instructions

Syntax Opcode Description

BB0_RESET 0F3A Reset the BLT Buffer 0 pointer to the base.

BB1_RESET 0F3B Reset the BLT Buffer 1 pointer to the base.

CPU_WRITE 0F3C Write data to CPU internal register.

CPU_READ 0F3D Read data from CPU internal register.

GXm_db_v2.0 Cyrix Corporation Confidential Page 111

Integrated Functions Programming Interface 4
4.1.6 CPU_READ/CPU_WRITE

Instructions
The MediaGX processor has several internal regis-
ters that control the BLT buffer and power manage-
ment circuitry in the dedicated cache subsystem.
To avoid adding additional instructions to read and
write these registers, the MediaGX processor has
a general mechanism to access internal CPU
registers with reasonable performance. The
MediaGX processor has two special instructions to
read and write CPU registers: CPU_READ and
CPU_WRITE. Both instructions fetch a 32-bit
register address from EBX as shown in Table 4-7
and Table 4-8. CPU_WRITE uses EAX for the

source data, and CPU_READ uses EAX as the
destination. Both instructions always transfer 32
bits of data.

These instructions work by initiating a special I/O
transaction where the high address bit is set. This
provides a very large address space for internal
CPU registers.

The BLT buffer base registers define the starting
physical addresses of the BLT buffers located
within the dedicated L1 cache. The dedicated
cache can be configured for up to 4KB, so 12
address bits are required for each base address.

Table 4-7 CPU-Access Instructions

Syntax Opcode Registers Length

CPU_WRITE 0F3Ch EBX = 32-bit address, EAX = Source 2 bytes

CPU_READ 0F3Dh EBX = 32-bit address, EAX = Destination 2 bytes

Table 4-8 Address Map for CPU-Access Registers

Register EBX Address Description

L1_BB0_BASE FFFF FF0Ch BLT Buffer 0 base address (see Table 4-4 on page 108).

L1_BB1_BASE FFFF FF1Ch BLT Buffer 1 base address (see Table 4-4 on page 108).

L1_BB0_POINTER FFFF FF2Ch BLT Buffer 0 pointer address (see Table 4-4 on page 108).

L1_BB1_POINTER FFFF FF3Ch BLT Buffer 1 pointer address (see Table 4-4 on page 108).

PM_BASE FFFF FF6Ch Power management base address (see Table 6-3 on page 212).

PM_MASK FFFF FF7Ch Power management address mask (see Table 6-3 on page 212).

Page 112 Cyrix Corporation Confidential GXm_db_v2.0

� Internal Bus Interface Unit

4.2 Internal Bus Interface Unit
The MediaGX processor’s Internal Bus Interface
Unit provides control and interface functions to the
internal C-Bus (processor core, FPU, graphics
pipeline, and L1 cache) and X-Bus (PCI controller,
display controller, memory controller, and graphics
accelerator) paths, provides control for several
sections of memory, and plays an important part in
the Virtual VGA function.

The Internal Bus Interface Unit performs, without
loss of compatibility, the functions that previously
required the external pins IGNNE# and A20M#.

The Internal Bus Interface Unit provides configura-
tion control for up to 20 different regions within
system memory. It provides 19 configurable
memory regions in the address space between
640KB and 1MB, with separate control for read
access, write access, cacheability, and PCI
access.

The memory configuration control includes a top-
of-memory register and hardware support for VGA
emulation plus, the capability to program 20
regions of the memory map for different ROM
configurations, and to locate memory-mapped I/O.

4.2.1 FPU Error Support
The FERR# (floating point error) and IGNNE#
(ignore numeric error) pins of the 486 micropro-
cessor have been replaced with an IRQ13 (inter-
rupt request 13) pin. In DOS systems, FPU errors
are reported by the external vector 13. This mode
of operation is specified by clearing the NE bit (bit
5) in the CR0 register. If the NE bit is active, the
IRQ13 output of the MediaGX processor is always
driven inactive. If the NE bit is cleared, the
MediaGX processor drives IRQ13 active when the
ES bit (bit 7) in the FPU Status Register is set high.
Software must respond to this interrupt with an
OUT instruction of an 8-bit operand to F0h or F1h.
When the OUT cycle occurs, the IRQ13 pin is
driven inactive and the FPU starts ignoring numeric
errors. When the ES bit is cleared, the FPU
resumes monitoring numeric errors.

4.2.2 A20M Support
The MediaGX processor provides an A20M bit in
the BC_XMAP_1 Register (GX_BASE+ 8004h[21])
to replace the A20M# pin on the 486 micropro-
cessor. When the A20M bit is set high, all non-SMI
accesses will have address bit 20 forced to zero.
External hardware must do an SMI trap on I/O
locations that toggle the A20M# pin. The SMI soft-
ware can then change the A20M bit as desired.

This will maintain compatibility with software that
depends on wrapping the address at bit 20.

4.2.3 SMI Generation
The Internal Bus Interface Unit can generate SMI
interrupts whenever an I/O cycle in the VGA
address range is 3B0h-3BFh and 3C0h-3CFh. An
I/O cycle to 3D0h-3DFh can be trapped. In case an
external VGA card is present, the Internal Bus
Interface Unit default values will not generate an
interrupt on VGA accesses. (Refer to Section
5.2.3.1 “SMI Generation” on page 195 for instruc-
tions on how to configure the registers to generate
the SMI interrupt.)

4.2.4 640KB to 1MB Region
There are 19 configurable memory regions located
between 640KB and 1MB. Three of the regions are
A0000h-AFFFFh, B0000h-B7FFFh, and B8000h-
BFFFFh. The area between C0000h and FFFFFh
is divided into 16KB segments to form the
remaining 16 regions. Each of these regions has
four control bits to allow any combination of read-
access, write-access, cache, and PCI-access
capabilities (Table 4-11 on page 115).

In addition, each of the three regions defined in the
A0000h-BFFFh area of memory has a VGA control
bit that can cause the graphics pipeline to handle
accesses to that section of memory (see Table 5-3
on page 197).

GXm_db_v2.0 Cyrix Corporation Confidential Page 113

Internal Bus Interface Unit 4
4.2.5 Internal Bus Interface Unit

Registers
The Internal Bus Interface Unit maps 100h loca-
tions starting at GX_BASE+8000h. Refer to
Section 4.1.2 “Control Registers” on page 106 for
instructions on accessing these registers.

Table 4-9 summarizes the four 32-bit registers
contained in the Internal Bus Interface Unit and
Table 4-10 gives the register/bit formats.

Table 4-9 Internal Bus Interface Unit Register Summary

GX_BASE+
Memory Offset Type Name/Function

Default
Value

8000h-8003h R/W BC_DRAM_TOP

Top of DRAM — Contains the highest available address of system memory not
including the memory that is set aside for graphics memory, which corresponds
to 1 GByte of memory. The largest possible value for the register is
3FFFFFFFh.

3FFFFFFFh

8004h-8007h R/W BC_XMAP_1

Memory X-Bus Map Register 1 (A and B Region Control) — Contains the region
control of the A and B regions and the SMI controls required for VGA emulation.
PCI access to internal registers and the A20M function are also controlled by
this register.

00000000h

8008h-800Bh R/W BC_XMAP_2

Memory X-Bus Map Register 2 (C and D Region Control) — Contains region
control fields for eight regions in the address range C0h through DCh.

00000000h

800Ch-800Fh R/W BC_XMAP_3

Memory X-Bus Map Register 3 (E and F Region Control) — Contains the region
control fields for memory regions in the address range E0h through FCh.

00000000h

Page 114 Cyrix Corporation Confidential GXm_db_v2.0

� Internal Bus Interface Unit

Table 4-10 Internal Bus Interface Unit Registers

Bit Name Description

GX_BASE+8000h-8003h BC_DRAM_TOP Register (R/W) Default Value = 3FFFFFFFh

31:30 RSVD Reserved: Set to 0.

29:17 TOP OF
DRAM

Top of DRAM: Maximum value is FFFh.

16:0 1FFFF Granularity: Must be set to 1FFFFh (128KB).

GX_BASE+8004h-8007h BC_XMAP_1 Register (R/W) Default Value = 00000000h

31:29 RSVD Reserved: Set to 0.

28 GEB8 Graphics Enable for B8 Region — Allow memory R/W operations for address range B8000h-
BFFFFh be directed to the graphics pipeline: 0 = Disable; 1 = Enable.

(Used for VGA emulation.)

27:24 B8 B8 Region: Region control field for address range B8000h-BFFFFh.

Note: Refer to Table 4-11 for decode.

23 RSVD Reserved: Set to 0.

22 PRAE PCI Register Access Enable: Allow PCI Slave to access internal registers on the X-Bus:
0 = Disable; 1 = Enable.

21 A20M Address Bit 20 Mask: Address bit 20 is always forced to a zero except for SMI accesses:
0 = Disable; 1 = Enable.

20 GEB0 Graphics Enable for B0 Region: Allow memory R/W operations for address range B0000h-B7FFFh
be directed to the graphics pipeline: 0 = Disable; 1 = Enable.

(Used for VGA emulation.)

19:16 B0 B0 Region: Region control field for address range B0000h-B7FFFh.

Note: Refer to Table 4-11 for decode.

15 SMID SMID: All I/O accesses for address range 3D0h-3DFh generate an SMI: 0 = Disable; 1 = Enable.

(Used for VGA virtualization.)

14 SMIC SMIC: All I/O accesses for address range 3C0h-3CFh generate an SMI: 0 = Disable; 1 = Enable.

(Used for VGA virtualization.)

13 SMIB SMIC: All I/O accesses for address range 3C0h-3CFh generate an SMI: 0 = Disable; 1 = Enable

(Used for VGA virtualization.)

12:8 RSVD Reserved — Set to 0.

7 XPD X-Bus Pipeline Disable: When cleared, the address for the next cycle can be driven on the internal
X-Bus before the completion of the data phase of the current cycle.

6 GNWS X-Bus Graphics Pipe No Wait State: Data driven on X-Bus from graphics pipeline:
0 = 1 full clock before X_DSX is asserted
1 = On the same clock in which X_RDY is asserted

5 XNWS X-Bus No Wait State: — Data driven on X-Bus from Internal Bus Interface Unit:
0 = 1 full clock before X_DSX is asserted
1 = On the same clock in which X_RDY is asserted

4 GEA Graphics Enable for A Region: Memory R/W operations for address range A0000h-AFFFFh are
directed to the graphics pipeline: 0 = Disable; 1 = Enable.

(Used for VGA emulation.)

3:0 A0 A0 Region: Region control field for address range A0000h-AFFFFh.

Note: Refer to Table 4-11 for decode.

GXm_db_v2.0 Cyrix Corporation Confidential Page 115

Internal Bus Interface Unit 4

GX_BASE+8008h-800Bh BC_XMAP_2 Register (R/W) Default Value = 00000000h

31:28 DC DC Region: Region control field for address range DC000h to DFFFFh.

27:24 D8 D8 Region: Region control field for address range D8000h to DBFFFh.

23:20 D4 D4 Region: Region control field for address range D4000h to D7FFFh.

19:16 D0 D0 Region: Region control field for address range D0000h to D3FFFh.

15:12 CC CC Region: Region control field for address range CC000h to CFFFFh.

11:8 C8 C8 Region: Region control field for address range C8000h to CBFFF.

7:4 C4 C4 Region: Region control field for address range C4000h to C7FFFh.

3:0 C0 C0 Region: Region control field for address range C0000h to C3FFFh.

Note: Refer to Table 4-11 for decode.

GX_BASE+800Ch-800Fh BC_XMAP_3 Register (R/W) Default Value = 00000000h

31:28 FC FC Region: Region control field for address range FC000h to FFFFFh.

27:24 F8 F8 Region: Region control field for address range F8000h to FBFFFh.

23:20 F4 F4 Region: Region control field for address range F4000h to F7FFFh.

19:16 F0 F0 Region: Region control field for address range F0000h to F3FFFh.

15:12 EC EC Region: Region control field for address range EC000h to EFFFFh.

11:8 E8 E8 Region: Region control field for address range E8000h to EBFFFh.

7:4 E4 E4 Region: Region control field for address range E4000h to E7FFFh.

3:0 E0 E0 Region: Region control field for address range E0000h to E3FFFh.

Note: Refer to Table 4-11 for decode.

Table 4-10 Internal Bus Interface Unit Registers

Bit Name Description

Table 4-11 Region-Control-Field Bit Definitions

Bit
Position Function

3 PCI Accessible: — The PCI slave can access this memory if this bit is set high and if the appropriate Read or Write
Enable bit is also set high.

2 Cache Enable: Caching this region of memory is inhibited if this bit is cleared.

1 Write Enable: Write operations to this region of memory are allowed if this bit is set high. If this bit is cleared, then
write operations in this region are directed to the PCI master.

0 Read Enable: Read operations to this region of memory are allowed if this bit is set high. If this bit is cleared then read
operations in this region are directed to the PCI master.

�

Page 116 Cyrix Corporation Confidential GXm_db_v2.0

Memory Controller

4.3 Memory Controller
The memory controller operates with the Processor
Interface (X-Bus), Display Controller Interface,
Graphics Pipeline Interface, and the SDRAM Inter-
face.

The MediaGX processor supports LVTTL (low
voltage TTL) technology. LVTTL technology allows
the SDRAM interface of the memory controller to
run at frequencies up to 125MHz.

The SDRAM clock is a function of the core clock.
The SDRAM bus can be run at speeds that range
between 66MHz and 100MHz. The core clock can
be divided down by 2, 2.5, 3, 3.5, or 4 to generate
the SDRAM clock.

A basic block diagram of the memory controller is
shown in Figure 4-3.

Figure 4-3 Memory Controller Block Diagram

Address

Processor/PCI

Display Controller

Graphics Pipeline

Processor/PCI Address

Processor I/F

Display Controller I/F

Graphics Pipeline I/F

Arbiter
SDRAM

RASA#,RASB#

CKEA#, CKEB#

WEA#/WEB#

Configuration

MA[12:0]

BA[1:0]
Display Controller Address

Graphics Pipeline Address

Processor/PCI Data

Display Controller Data

Graphics Pipeline Data

Processor/PCI

Display Controller

MD[63:0]

Read Buffer
(16 Bytes)

Sequence
Controller

Timing
Controller

Registers

Control/MUX

Write Buffer (16 Bytes)

Write Buffer (16 Bytes)

Graphics Controller
Write Buffer (16 Bytes)

Control

Control

Control

DQM[7:0]

CASA#,CASB#

CS[3:0]#

REF

Clock Divider
2, 2.5, 3, 3.5, 4 SDCLK[3:0]Core Clock (ph2)

GXm_db_v2.0 Cyrix Corporation Confidential Page 117

Memory Controller 4
4.3.1 Memory Array Configuration
The memory controller supports up to two 64-bit,
168-pin unbuffered SDRAM modules (DIMM).
Each DIMM receives a unique set of RAS, CAS,
WE, and CKE lines. Each DIMM can have one or
two 64-bit DIMM banks. Each DIMM bank is
selected by a unique chip select (CS). There are
four chip select signals to choose between a total
of four DIMM banks. Each DIMM bank also
receives a unique SDCLK. Each DIMM bank can
have two or four component banks. Component
bank selection is done through the bank address
(BA) lines.

For example, 16Mb SDRAMS have two component
banks and 64Mb SDRAMs have two or four
component banks. For single DIMM bank modules,
the memory controller can support two DIMMS with
a maximum of eight component banks. For dual
DIMM bank modules, the memory controller can
support two DIMMs with a maximum of 16 compo-
nent banks. Up to 16 banks can be open at the
same time.

Figure 4-4 Memory Array Configuration

MediaGX™
MMX™-Enhanced
Processor

MA[12:0]
BA[1:0]

MD[63:0]
DQM[7:0]

RASA#
CASA#
WEA#

CS1#
CS0#

CKEA
SDCLK0
SDCLK1

RASB#
CASB#
WEB#

CS3#
CS2#

CKEB
SDCLK2
SDCLK3

A[12:0]
BA[1:0]
MD[63:0]
DQM[7:0]
RAS#
CAS#
WE#
S0#, S2#

CKE0
CK0, CK2

A[12:0]
BA[1:0]
MD[63:0]
DQM[7:0]
RAS#
CAS#
WE#

S1#, S3#
CKE1

CK1, CK3

Bank 0 Bank 1

A[12:0]
BA[1:0]
MD[63:0]
DQM[7:0]
RAS#
CAS#
WE#
S0#, S2#

CKE0
CK0, CK2

A[12:0]
BA[1:0]
MD[63:0]
DQM[7:0]
RAS#
CAS#
WE#

S1#, S3#
CKE1

CK1, CK3

Bank 0 Bank 1

DIMM 1

DIMM 0

�

Page 118 Cyrix Corporation Confidential GXm_db_v2.0

Memory Controller

4.3.2 Memory Organizations
The memory controller supports JEDEC standard
synchronous DRAMs in 16Mb and 64Mb configura-

tions. Supported configurations are shown in Table
4-12.

Table 4-12 Synchronous DRAM Configurations

Depth Organization
Row

Address
Column
Address

Bank
Address

Total # of
Address bits

1 1Mx16 A10-A0 A7-A0 BA0 20

2 2Mx8 A10-A0 A8-A0 BA0 21

2Mx32 A10-A0 A7-A0 BA1-BA0 21

2Mx32 A10-A0 A8-A0 BA0 21

2Mx32 A11-A0 A6-A0 BA1-BA0 21

2Mx32 A12-A0 A6-A0 BA0 21

4 4Mx4 A10-A0 A9-A0 BA0 22

4Mx16 A11-A0 A7-A0 BA1-BA0 22

4Mx16 A12-A0 A7-A0 BA0 22

4Mx16 A10-A0 A9-A0 BA0 22

8 8Mx8 A11-A0 A8-A0 BA1-BA0 23

8Mx8 A12-A0 A8-A0 BA0 23

8Mx32 A11-A0 A8-A0 BA1-BA0 23

8Mx32 A12-A0 A7-A0 BA1-BA0 23

16 16Mx4 A11-A0 A9-A0 BA1-BA0 24

16Mx4 A12-A0 A9-A0 BA0 24

16Mx16 A12-A0 A8-A0 BA1-BA0 24

16Mx16 A11-A0 A9-A0 BA1-BA0 24

32 32Mx8 A12-A0 A9-A0 BA1-BA0 25

64 64Mx4 A12-A0 A9-A0,A11 BA1-BA0 26

GXm_db_v2.0 Cyrix Corporation Confidential Page 119

Memory Controller 4
4.3.3 SDRAM Commands
This subsection discusses the SDRAM commands
supported by the memory controller. Table 4-13
summarizes these commands followed by detailed
operational information regarding each command.

Note: *This command is CBR (CAS-before-RAS) refresh
when CKE is high and self refresh when CKE is low.

MRS — The Mode Register command defines the
specific mode of operation of the SDRAM. This
definition includes the selection of burst length,
burst type, and CAS latency. CAS latency is the
delay, in clock cycles, between the registration of a
read command and the availability of the first piece
of output data.

The burst length is programmed by address bits
MA[2:0], the burst type by address bit MA3 and the
CAS latency by address bits MA[6:4].

The memory controller only supports a burst length
of two and burst type of interleave.

The field value on MA[12:0] and BA[1:0] during the
MRS cycle are as shown in Table 4-14.

PRE — The precharge command is used to deacti-
vate the open row in a particular bank or the open
row in both component banks. Address pin MA10
determines whether one or both banks are to be
precharged. In the case where only one compo-
nent bank is to be precharged, BA[1:0] selects
which bank. Once a bank has been precharged, it
is in the Idle state and must be activated prior to
any read or write commands.

Table 4-13 Basic Command Truth Table

Name Command CS RAS CAS WE

MRS Mode Register Set L L L L

PRE Bank Precharge L L H L

ACT Bank activate/row-
address entry

L L H H

WRT Column address
entry/Write operation

L H L L

READ Column address
entry/Read operation

L H L H

DESL Control input inhibit/
No operation

H X X X

REFR* CBR Refresh or Auto
Refresh

L L L H

Table 4-14 Address Line Programming during MRS Cycles

BA[1:0] MA[12:7] MA[6:4] MA3 MA2 MA1 MA0

00 000000 CAS Latency:

000 = Reserved
010 = 2 CLK
100 = 4 CLK
110 = 6 CLK
001 = 1 CLK
011 = 3 CLK
101 = 5 CLK
111 = 7 CLK

1 0 0 1

�

Page 120 Cyrix Corporation Confidential GXm_db_v2.0

Memory Controller

ACT — The activate command is used to open a
row in a particular bank for a subsequent access.
The value on the BA lines selects the bank, and the
address on the MA lines selects the row. This row
remains open for accesses until a precharge
command is issued to that bank. A precharge
command must be issued before opening a
different row in the same bank.

READ — The read command is used to initiate a
burst read access to an active row. The value on
the BA lines select the component bank, and the
address provided by the MA lines select the
starting column location. The memory controller
does not perform auto precharge during read oper-
ations. Valid data-out from the starting column
address is available following the CAS latency after
the read command. The DQM signals are asserted
low during read operations.

WRT — The write command is used to initiate a
burst write access to an active row. The value on
the BA liens select the component bank, and the
address provided by the MA lines select the
starting column location. The memory controller
does not perform auto precharge during write oper-
ations. This leaves the page open for subsequent
accesses. Data appearing on the MD lines is
written to the DQM logic level appearing coincident
with the data. If the DQM signal is registered low,
the corresponding data will be written to memory. If
the DQM is driven high, the corresponding data will
be ignored, and a write will not be executed to that
location.

REF — Auto refresh is used during normal opera-
tion and is analogous to the CAS-before-RAS
(CBR) refresh in conventional DRAMs.During auto
refresh the address bits are "don’t care". The
memory controller precharges all banks prior to an
auto refresh cycle. Auto refresh cycles are issued
approximately 15µs apart.

The self refresh command is used to retain data in
the SDRAMs even when the rest of the system is
powered down. The self refresh command is
similar to an auto refresh command except CKE is
disabled (low). The memory controller issues a self
refresh command during 3V Suspend mode when
all the internal clocks are stopped.

4.3.3.1 SDRAM Initialization Sequence
After the clocks have started and stabilized, the
memory controller SDRAM initialization sequence
begins:

1) Precharge all component banks,
2) perform eight refresh cycles,
3) followed by an MRS cycle,
4) followed by eight refresh cycles.

This sequence is compatible with the majority of
SDRAMs available from the various vendors.

GXm_db_v2.0 Cyrix Corporation Confidential Page 121

Memory Controller 4
4.3.4 Memory Controller Register

Description
The Memory Controller maps 100h locations
starting at GX_BASE+8400h. Refer to Section
4.1.2 “Control Registers” on page 106 for instruc-
tions on accessing these registers.

Table 4-15 summarizes the 32-bit registers
contained in the memory controller. Table 4-16
gives detailed register/bit formats.

Table 4-15 Memory Controller Register Summary

GX_BASE+
Memory Offset Type Name/Function Default Value

 8400h-8403h R/W MC_MEM_CNTRL1

Memory Controller Control Register 1 — Memory controller configuration infor-
mation e.g., refresh interval, SDCLK ratio, etc.

248C0040h

 8404h-8407h R/W MC_MEM_CNTRL2

Memory Controller Control Register 2 — Memory controller configuration infor-
mation to control SDCLK.

00000801h

 8408h-840Bh R/W MC_BANK_CFG

Memory Controller Bank Configuration — Contains the configuration informa-
tion for the each of the two DIMMs in the memory array. BIOS programs this
register during boot by running an autosizing routine on the memory.

41104110h

 840Ch-840Fh R/W MC_SYNC_TIM1

Memory Controller Synchronous Timing Register 1 — SDRAM memory timing
information - This register controls the memory timing of all four banks of
DRAM. BIOS programs this register based on the processor frequency and the
SDCLK divide ratio.

2A733225h

 8414h-8417h R/W MC_GBASE_ADD

Memory Controller Graphics Base Address Register — This register sets the
graphics memory base address, which is programmable on 512KB boundaries.
The display controller and the graphics pipeline generate a 20-bit DWORD off-
set that is added to the graphics memory base address to form the physical
memory address. Typically, the graphics memory region is located at the top of
physical memory.

00000000h

 8418h-841Bh R/W MC_DR_ADD

Memory Controller Dirty RAM Address Register — This register is used to set
the Dirty RAM address index for processor diagnostic access. This register
should be initialized before accessing the MC_DR_ACC register

00000000h

 841Ch-841Fh R/W MC_DR_ACC

Memory Controller Dirty RAM Access Register — This register is used to
access the Dirty RAM. A read/write to this register will access the Dirty RAM at
the address specified in the MC_DR_ADD register.

0000000xh

�

Page 122 Cyrix Corporation Confidential GXm_db_v2.0

Memory Controller

Table 4-16 Memory Controller Registers

Bit Name Description

GX_BAS+ 8400h-8403h MC_MEM_CNTRL1 (R/W) Default Value = 248C0040h

31:29 MDHDCTL MD High Drive Control: Controls the high drive and slew rate of the memory data bus (MD[63:0]):

000 = Tristate
001 = Smallest drive strength
010-110 = Represents gradual drive strength increase
111 = Highest drive strength

28:26 MABAHDCTL MA/BA High Drive Control: Controls the high drive and slew rate of the memory address bus
including the memory bank address bus (MA[12:0] and BA[1:0]):

000 = Tristate
001 = Smallest drive strength
010-110 = Represents gradual drive strength increase
111 = Highest drive strength

25:23 MEMHDCTL Control High Drive/Slew Control: Controls the high drive and slew rate of the memory control sig-
nals (CASA#, CASB#, RASA#, RASB#, CKEA, CKEB, WEA#, WEA#, DQM[7:0], and CS[3:0]#):

000 = Tristate
001 = Smallest drive strength
010-110 = Represents gradual drive strength increase
111 = Highest drive strength

22 RSVD Reserved: Set to 0.

21 RSVD Reserved: Must be set to 0. Wait state on the X-Bus x_data during read cycles - for debug only.

20:18 SDCLKRATE SDRAM Clock Ratio: Selects SDRAM clock ratio:

000 = Reserved 100 = ÷ 3.5
001 = ÷ 2 101 = ÷ 4
010 = ÷ 2.5 110 = ÷ 4.5
011 = ÷ 3 (Default) 111 = ÷ 5

Ratio does not take effect until the SDCLKSTRT bit (bit 17 of this register) transitions from 0 to 1.

17 SDCLKSTRT Start SDCLK: Start operating SDCLK using the new ratio and shift value (selected in bits [20:18] of
this register): 0 = Clear; 1 = Enable.

This bit should be cleared every time before a one is written to it in order to start SDCLK or to
change the shift value.

16:8 RFSHRATE Refresh Interval: This field determines the number of processor core clocks multiplied by 64
between refresh cycles to the DRAM. By default, the Refresh Interval is 00h. This implies that
refresh is turned off by default.

7:6 RFSHSTAG Refresh Staggering: This field determines number of clocks between REF commands to different
banks during refresh cycles:

00 = 0 SDRAM clocks 10 = 2 SDRAM clocks
01 = 1 SDRAM clocks (Default) 11 = 4 SDRAM clocks

Staggering is used to help reduce power spikes during refresh. When only DIMM0 is installed and it
has only one DIMM bank, then this field must be set to 00.

5 2CLKADDR Two Clock Address Setup: Assert memory address for one extra clock before CS# is asserted:
0 = Disable; 1 = Enable.

This can be used to compensate for address setup at high frequencies.

4 RFSHTST Test Refresh: This bit, when set high, generates a refresh request. This bit is only used for testing
purposes.

GXm_db_v2.0 Cyrix Corporation Confidential Page 123

Memory Controller 4

3 XBUSARB X-Bus Round Robin: When enabled, processor requests are arbitrated at the same priority level
than graphics pipeline requests and non-critical display controller requests. When disabled, proces-
sor requests are arbitrated at a higher priority level. High priority display controller requests always
have the highest arbitration priority: 0 = Enable; 1 = Disable.

2 VGAWRP VGA Wrap Enable: Allow memory wrapping into the VGA memory address space from A0000h to
BFFFFh: 0 = Disable; 1 = Enable.

1 RSVD Reserved: Set to 0.

0 SDRAMPRG Program SDRAM: When this bit is set the memory controller will program the SDRAM MRS register
using LTMODE in MC_SYNC_TIM1.

This bit should be cleared every time before a one is written to it in order to program the SDRAM.

GX_BASE+8404h-8407h MC_MEM_CNTRL2 (R/W) Default Value = 00000801h

31:18 RSVD Reserved: Set to 0.

17:16 SDCLKRISE SDCLK Rising Delay: Controls the delay between the core clock and the rising edge of SDCLK dur-
ing all modes. (Set by BIOS.)

15:14 SDCLKFALL SDCLK Falling Delay: Controls the delay between the core clock and the falling edge of SDCLK
during 2.5 and 3.5 clock modes. (Set by BIOS.)

13:11 SDCLKHDCTL SDCLK High Drive/Slew Control: Controls the high drive and slew rate of SDCLK[3:0] and
SDCLK_OUT.

000 = Highest drive strength. (No braking applied in the pads)
001 = Smallest drive strength
010-110 = Represent gradual drive strength increase
111 = Highest drive strength

10 SDCLKOMSK Mask SDCLK_OUT: 0 = Not masked; 1 = Mask.

9 SDCLK3MSK Mask SDCLK3: 0 = Not masked; 1 = Mask.

8 SDCLK2MSK Mask SDCLK2: 0 = Not masked; 1 = Mask

7 SDCLK1MSK Mask SDCLK1: 0 = Not masked; 1 = Mask.

6 SDCLK0MSK Mask SDCLK0: 0 = Not masked; 1 = Mask

5:3 SHFTSDCLK Shift SDCLK: This function allows shifting SDCLK to meet SDRAM setup and hold time require-
ments. The shift function will not take effect until the SDCLKSTRT bit (bit 17 of MC_MEM_CNTRL1)
transitions from 0 to 1:

000 = No shift 100 = Shift 2 core clocks
001 = Shift 0.5 core clock 101 = Shift 2.5 core clocks
010 = Shift 1 core clock 110 = Shift 3 core clocks
011 = Shift 1.5 core clock 111 = Reserved

Note: Refer to Figure 4-10 for an example of SDCLK shifting.

2 RSVD Reserved: Set to 0.

1 RD Read Data Phase: Selects if read data is latched one or two core clock after the rising edge of
SDCLK: 0 = 1 core clock; 1 = 2 core clocks.

0 FSTRDMSK Fast Read Mask: Do not allow core reads to bypass the request FIFO: 0 = Disable; 1 = Enable.

Table 4-16 Memory Controller Registers (cont.)

Bit Name Description

�

Page 124 Cyrix Corporation Confidential GXm_db_v2.0

Memory Controller

GX_BASE+8408h-840Bh MC_BANK_CFG (R/W) Default Value = 41104110h

31 RSVD Reserved: Set to 0.

30 DIMM1_
MOD_BNK

DIMM1 Module Banks: Selects the number of module banks per DIMM for DIMM1:

0 = 1 Module bank
1 = 2 Module banks

29 RSVD Reserved: Set to 0.

28 DIMM1_
COMP_BNK

DIMM1 Component Banks: Selects the number of component banks per module bank for DIMM1:

0 = 2 Component banks
1 = 4 Component banks

27 RSVD Reserved: Set to 0.

26:24 DIMM1_SZ DIMM1 Size: Selects the size of DIMM1:

000 = 4MB 010 = 16MB 100 = 64MB 110 = 256MB
001 = 8MB 011 = 32MB 101 = 128MB 111 = 512MB

23 RSVD Reserved: Set to 0.

22:20 DIMM1_PG_SZ DIMM1 Page Size — Selects the page size of DIMM1:

000 = 1KB 010 = 4KB 1xx = 16KB
001 = 2KB 011 = 8KB 111 = DIMM1 not installed

When DIMM1 is not installed, program all other DIMM1 fields to 0.

19:15 RSVD Reserved: Set to 0.

14 DIMM0_
MOD_BNK

DIMM0 Module Banks: Selects number of module banks per DIMM for DIMM0:

0 = 1 Module bank
1 = 2 Module banks

13 RSVD Reserved — Set to 0.

12 DIMM0_
COMP_BNK

DIMM0 Component Banks: Selects the number of component banks per module bank for DIMM0:

0 = 2 Component banks
1 = 4 Component banks

11 RSVD Reserved: Set to 0.

10:8 DIMM0_SZ DIMM0 Size: Selects the size of DIMM1:

000 = 4MB 010 = 16MB 100 = 64MB 110 = 256MB
001 = 8MB 011 = 32MB 101 = 128MB 111 = 512MB

7 RSVD Reserved: Set to 0.

6:4 DIMM0_PG_SZ DIMM0 Page Size: Selects the page size of DIMM0:

000 = 1KB 010 = 4KB 1xx = 16KB
001 = 2KB 011 = 8KB 111 = DIMM0 not installed

When DIMM0 is not installed, program all other DIMM0 fields to 0.

3:0 RSVD Reserved: Set to 0.

Table 4-16 Memory Controller Registers (cont.)

Bit Name Description

GXm_db_v2.0 Cyrix Corporation Confidential Page 125

Memory Controller 4

GX_BASE+840Ch-840Fh MC_SYNC_TIM1 (R/W) Default Value = 2A733225h

31 RSVD Reserved: Set to 0.

30:28 LTMODE CAS Latency (LTMODE): CAS latency is the delay, in clock cycles, between the registration of a
read command and the availability of the first piece of output data (BIOS interrogates EEPROM
across the I2C interface to determine this value):

000 = Reserved 010 = 2 CLK 100 = 4 CLK 110 = 6 CLK
001 = 1 CLK 011 = 3 CLK 101 = 5 CLK 111 = 7 CLK

This field will not take effect until SDRAMPRG (bit 0 of MC_MEM_CNTRL1) transitions from 0 to 1.

ERRATA: CAS Latency of 1 CLK is not currently supported.

27:24 RC REF to REF/ACT Command Period (tRC): Minimum number of SDRAM clock between REF and
REF/ACT commands:

0000 = Reserved 0100 = 5 CLK 1000 = 9 CLK 1100 = 13 CLK
0001 = 2 CLK 0101 = 6 CLK 1001 = 10 CLK 1101 = 14 CLK
0010 = 3 CLK 0110 = 7 CLK 1010 = 11 CLK 1110 = 15 CLK
0011 = 4 CLK 0111 = 8 CLK 1011 = 12 CLK 1111 = 16 CLK

23:20 RAS ACT to PRE Command Period (tRAS): Minimum number of SDRAM clocks between ACT and
PRE commands:

0000 = Reserved 0100 = 5 CLK 1000 = 9 CLK 1100 = 13 CLK
0001 = 2 CLK 0101 = 6 CLK 1001 = 10 CLK 1101 = 14 CLK
0010 = 3 CLK 0110 = 7 CLK 1010 = 11 CLK 1110 = 15 CLK
0011 = 4 CLK 0111 = 8 CLK 1011 = 12 CLK 1111 = 16 CLK

19 RSVD Reserved — Set to 0.

18:16 RP PRE to ACT Command Period (tRP): Minimum number of SDRAM clocks between PRE and ACT
commands:

000 = Reserved 010 = 2 CLK 100 = 4 CLK 110 = 6 CLK
001 = 1 CLK 011 = 3 CLK 101 = 5 CLK 111 = 7 CLK

15 RSVD Reserved — Set to 0.

14:12 RCD Delay Time ACT to READ/WRITE Command (tRCD): Minimum number of SDRAM clock between
ACT and READ/WRITE commands:

000 = Reserved 010 = 2 CLK 100 = 4 CLK 110 = 6 CLK
001 = 1 CLK 011 = 3 CLK 101 = 5 CLK 111 = 7 CLK

11 RSVD Reserved: Set to 0.

10:8 RRD ACT(0) to ACT(1) Command Period (tRRD): Minimum number of SDRAM clocks between ACT
and ACT command to two different component banks within the same module bank. The memory
controller does not perform back-to-back Activate commands to two different component banks with-
out a READ or WIRTE command between them. Hence, this field should be set to 001.

7 RSVD Reserved: Set to 0.

6:4 DPL Data-in to PRE command period (tDPL): Minimum number of SDRAM clocks from the time the
last write datum is sampled till the bank is precharged:

000 = Reserved 010 = 2 CLK 100 = 4 CLK 110 = 6 CLK
001 = 1 CLK 011 = 3 CLK 101 = 5 CLK 111 = 7 CLK

3:0 RSVD Reserved: Set to 0 or leave unchanged.

Table 4-16 Memory Controller Registers (cont.)

Bit Name Description

�

Page 126 Cyrix Corporation Confidential GXm_db_v2.0

Memory Controller

GX_BASE+8414h-8417h MC_GBASE_ADD (R/W) Default Value = 00000000h

31:18 RSVD Reserved: Set to 0.

17 TE Test Enable TEST[3:0]:
0 = TEST[3:0] are driven low
1 = TEST[3:0] pins are used to output test information

16 TECTL Test Enable Shared Control Pins:
0 = RASB#, CASB#, CKEB, WEB# are driven low
1 = RASB#, CASB#, CKEB, WEB# are used to output test information

15:12 SEL Select: This field is used for debug purposes only.

11 RSVD Reserved: Set to 0.

10:0 GBADD Graphics Base Address: This field indicates the graphics memory base address, which is pro-
grammable on 512KB boundaries. This field corresponds to address bits [29:19].

Note that BC_DRAM_TOP must be set to a value lower than the Graphics Base Address.

GX_BASE+8418h-841Bh MC_DR_ADD (R/W) Default Value = 00000000h

31:10 RSVD Reserved: Set to 0.

9:0 DRADD Dirty RAM Address: This field is the address index that is used to access the Dirty RAM with the
MC_DR_ACC register. This field does not auto increment.

GX_BASE+841Ch-841Fh MC_DR_ACC (R/W) Default Value = 0000000xh

31:2 RSVD Reserved: Set to 0.

1 D Dirty Bit: This bit is read/write accessible.

0 V Valid Bit: This bit is read/write accessible.

Table 4-16 Memory Controller Registers (cont.)

Bit Name Description

GXm_db_v2.0 Cyrix Corporation Confidential Page 127

Memory Controller 4
4.3.5 Address Translation
The memory controller supports two address trans-
lations depending on the method used to interleave
pages.

4.3.5.1 High Order Interleaving
High Order Interleaving (HOI) uses the most signif-
icant address bits to select which bank the page is
located in. This has the affect of allowing any
mixture of DIMM types. However, it spreads the
pages over wide address ranges. For example, two
8MB DIMMs contain a total of four component
pages. Two pages are together in one DIMM sepa-
rated from the other two pages by 8MB.

4.3.5.2 Low Order Interleaving
Low Order Interleaving (LOI) uses the least signifi-
cant bits after the page bits to select which bank
the page is located in. This requires that memory is
a power of 2, that the number of banks is a power
of 2, and that the page sizes are the same. In other
words, the DIMMs have to be of the same type.
However, LOI does give a good benefit by
providing a moving page throughout memory.
Using the same example as above, two banks
would be on one DIMM and the next two banks
would be on the second DIMM, but they would be
linear in address space. For an eight bank system

that has 1KB address (8KB data) pages, there
would be an effective moving page of 64KB of
data.

4.3.5.3 Physical Address to DRAM
Address Conversion

Auto LOI is in effect whenever the two DIMMs have
the same number of DIMM banks, component
banks, module sizes and page sizes.

Tables 4-17 and 4-18 give Auto LOI address
conversion examples when two DIMMs of the
same size are used in a system. Table 4-17 shows
a one DIMM bank conversion example, while Table
4-18 shows a two DIMM bank example.

Tables 4-19 and 4-20 give Non-Auto LOI address
conversion examples when either one or two
DIMMs of different sizes are used in a system.
Table 4-19 shows a one DIMM bank address
conversion example, while Table 4-20 shows a two
DIMM bank example. The addresses are
computed on a per DIMM basis.

Since the DRAM interface is 64 bits wide, the lower
three bits of the physical address get mapped onto
the DQM[7:0] lines. Thus, the address conversion
tables (Tables 4-17 through 4-20) show the phys-
ical address starting from A3.

�

Page 128 Cyrix Corporation Confidential GXm_db_v2.0

Memory Controller

Table 4-17 Auto LOI -- 2 DIMMs, Same Size, 1 DIMM Bank

1K Page Size 2K Page Size 4K Page Size 1K Page Size 2K Page Size 4K Page Size

Row Col Row Col Row Col Row Col Row Col Row Col

Address 2 Component Banks 4 Component Banks

MA12 A24 -- A25 -- A26 A25 -- A26 -- A27

MA11 A23 -- A24 -- A25 A24 -- A25 -- A26

MA10 A22 -- A23 -- A24 A23 -- A24 -- A25

MA9 A21 -- A22 -- A23 A22 A9 A23 -- A24

MA8 A20 -- A21 -- A22 A11 A21 A8 A22 -- A23 A11

MA7 A19 -- A20 A10 A21 A10 A20 A7 A21 A10 A22 A10

MA6 A18 A9 A19 A9 A20 A9 A19 A6 A20 A9 A21 A9

MA5 A17 A8 A18 A8 A19 A8 A18 A5 A19 A8 A20 A8

MA4 A16 A7 A17 A7 A18 A7 A17 A4 A18 A7 A19 A7

MA3 A15 A6 A16 A6 A17 A6 A16 A3 A17 A6 A18 A6

MA2 A14 A5 A15 A5 A16 A5 A15 A8 A16 A5 A17 A5

MA1 A13 A4 A14 A4 A15 A4 A14 A7 A15 A4 A16 A4

MA0 A12 A3 A13 A3 A14 A3 A13 A6 A14 A3 A15 A3

CS0/CS1 A11 A12 A13 A12 A13 A14

CS2/CS3 -- -- -- -- -- --

BA0/BA1 A10 A11 A12 A11/A10 A12/A11 A13/A12

Table 4-18 Auto LOI -- 2 DIMMs, Same Size, 2 DIMM Banks

1K Page Size 2K Page Size 4K Page Size 1K Page Size 2K Page Size 4K Page Size

Row Col Row Col Row Col Row Col Row Col Row Col

Address 2 Component Banks 4 Component Banks

MA12 A25 -- A26 -- A27 A26 -- A27 -- A28 --

MA11 A24 -- A25 -- A26 A25 -- A26 -- A27 --

MA10 A23 -- A24 -- A25 A24 -- A25 -- A26 --

MA9 A22 -- A23 -- A24 A23 -- A24 -- A25 --

MA8 A21 -- A22 -- A23 A11 A22 -- A23 -- A24 A11

MA7 A20 -- A21 A10 A22 A10 A21 -- A22 A10 A23 A10

MA6 A19 A9 A20 A9 A21 A9 A20 A9 A21 A9 A22 A9

MA5 A18 A8 A19 A8 A20 A8 A19 A8 A20 A8 A21 A8

MA4 A17 A7 A18 A7 A19 A7 A18 A7 A19 A7 A20 A7

MA3 A16 A6 A17 A6 A18 A6 A17 A6 A18 A6 A19 A6

MA2 A15 A5 A16 A5 A17 A5 A16 A5 A17 A5 A18 A5

MA1 A14 A4 A15 A4 A16 A4 A15 A4 A16 A4 A17 A4

MA0 A13 A3 A14 A3 A15 A3 A14 A3 A15 A3 A16 A3

CS0/CS1 A12 A13 A14 A13 A14 A15

CS2/CS3 A11 A12 A13 A12 A13 A14

BA0/BA1 A10 A11 A12 A11/A10 A12/A11 A13/A12

GXm_db_v2.0 Cyrix Corporation Confidential Page 129

Memory Controller 4
Table 4-19 Non-Auto LOI -- 1 or 2 DIMMs, Different Sizes, 1 DIMM Bank

1K Page Size 2K Page Size 4K Page Size 1K Page Size 2K Page Size 4K Page Size

Row Col Row Col Row Col Row Col Row Col Row Col

Address 2 Component Banks 4 Component Banks

MA12 A23 -- A24 -- A25 -- A24 -- A25 -- A26

MA11 A22 -- A23 -- A24 -- A23 -- A24 -- A25

MA10 A21 -- A22 -- A23 -- A22 -- A23 -- A24

MA9 A20 -- A21 -- A22 -- A21 -- A22 -- A23

MA8 A19 -- A20 -- A21 A11 A20 -- A21 -- A22 A11

MA7 A18 -- A19 A10 A20 A10 A19 -- A20 A10 A21 A10

MA6 A17 A9 A18 A9 A19 A9 A18 A9 A19 A9 A20 A9

MA5 A16 A8 A17 A8 A18 A8 A17 A8 A18 A8 A19 A8

MA4 A15 A7 A16 A7 A17 A7 A16 A7 A17 A7 A18 A7

MA3 A14 A6 A15 A6 A16 A6 A15 A6 A16 A6 A17 A6

MA2 A13 A5 A14 A5 A15 A5 A14 A5 A15 A5 A16 A5

MA1 A12 A4 A13 A4 A14 A4 A13 A4 A14 A4 A15 A4

MA0 A11 A3 A12 A3 A13 A3 A12 A3 A13 A3 A14 A3

CS0/CS1 -- -- -- -- -- --

CS2/CS3 -- -- -- -- -- --

BA0/BA1 A10 A11 A12 A11/A10 A12/A11 A13/A12

Table 4-20 Non-Auto LOI -- 1 or 2 DIMMs, Different Sizes, 2 DIMM Banks

1K Page Size 2K Page Size 4K Page Size 1K Page Size 2K Page Size 4K Page Size

Row Col Row Col Row Col Row Col Row Col Row Col

Address 2 Component Banks 4 Component Banks

MA12 A24 -- A25 -- A26 -- A25 -- A26 -- A27 --

MA11 A23 -- A24 -- A25 -- A24 -- A25 -- A26 --

MA10 A22 -- A23 -- A24 -- A23 -- A24 -- A25 --

MA9 A21 -- A22 -- A23 -- A22 -- A23 -- A24 --

MA8 A20 -- A21 -- A22 A11 A21 -- A22 -- A23 A11

MA7 A19 -- A20 A10 A21 A10 A20 -- A21 A10 A22 A10

MA6 A18 A9 A19 A9 A20 A9 A19 A9 A20 A9 A21 A9

MA5 A17 A8 A18 A8 A19 A8 A18 A8 A19 A8 A20 A8

MA4 A16 A7 A17 A7 A18 A7 A17 A7 A18 A7 A19 A7

MA3 A15 A6 A16 A6 A17 A6 A16 A6 A17 A6 A18 A6

MA2 A14 A5 A15 A5 A16 A5 A15 A5 A16 A5 A17 A5

MA1 A13 A4 A14 A4 A15 A4 A14 A4 A15 A4 A16 A4

MA0 A12 A3 A13 A3 A14 A3 A13 A3 A14 A3 A15 A3

CS0/CS1 A11 A12 A13 A12 A13 A14

CS2/CS3 -- --

BA0/BA1 A10 A11 A12 A11/A10 A12/A11 A13/A12

�

Page 130 Cyrix Corporation Confidential GXm_db_v2.0

Memory Controller

4.3.6 Memory Cycles
Figures 4-5 through 4-8 illustrate various memory
cycles that the memory controller supports. The
following subsections describe some of the
supported cycles.

SDRAM Read Cycle
Figure 4-5 shows a SDRAM read cycle. The figure
assumes that a previous Activate command has
presented the row address for the read operation.
Note that the burst length for the READ command
is always two.

Figure 4-5 Basic Read Cycle with a CAS Latency of Two

SDCLK

CS#

RAS#

CAS#

WE#

DQM

MD

MA COL n

n n+1

GXm_db_v2.0 Cyrix Corporation Confidential Page 131

Memory Controller 4
SDRAM Write Cycle
Figure 4-6 shows a SDRAM write cycle. The burst length for the WRITE command is 2.

Figure 4-6 Basic Write Cycle

SDCLK

CS#

RAS#

CAS#

WE#

MA COL n

n n+1MD

n n+1DQM

�

Page 132 Cyrix Corporation Confidential GXm_db_v2.0

Memory Controller

SDRAM Refresh Cycle
Figure 4-7 shows a SDRAM auto refresh cycle.
The memory controller always precedes the
refresh cycle with a Precharge command to all
banks.

Page Miss
Figure 4-8 shows a Read/Write command after a
page miss cycle. In order to program the new row
address, a Precharge command must be issued
followed by an Activate command.

Figure 4-7 Auto Refresh Cycle

Figure 4-8 Read/Write Command to a New Row Address

SDCLK

CS#

RAS#

CAS#

WE#

MA[10]

SDCLK

COMMAND

ADDRESS

tRP tRCD

PRE NOP NOP ACT NOP NOP R/W NOP

ROW COLBA

GXm_db_v2.0 Cyrix Corporation Confidential Page 133

Memory Controller 4
4.3.7 SDRAM Interface Clocking
The MediaGX processor drives the SDCLK to the
SDRAMs; one for each DIMM bank. All the control,
data, and address signals driven by the memory
controller are sampled by the SDRAM at the rising
edge of SDCLK. SDCLKOUT is a reference signal
used to generate SDCLKIN. Read data is sampled
by the memory controller at the rising edge of
SDCLKIN.

The delay for SDCLKIN must be designed so that it
lags the SDCLKs at the DRAM by approximately
2ns. The delay should also include the SDCLK
transmission line delay. The SDCLK traces on the
board need to be laid out so there is no skew
between each of the four sinks. These guidelines
allow the memory interface to be closer to the
DRAM specifications. They improve performance
by running the SDCLK up to frequencies of
100MHz and a CAS latency of two.

Figure 4-9 SDCLKIN Clocking

DIMM
0

DIMM
1

SDCLK[3:0]

Delay

SDCLKOUT

SDCLKIN

MediaGX™
MMX™-Enhanced

SDCLK0

SDCLK1

SDCLK2

SDCLK3

Processor

�

Page 134 Cyrix Corporation Confidential GXm_db_v2.0

Memory Controller

The SDRAM interface timings are programmable.
The SHFTSDCLK bits in the MC_MEM_CNTRL2
register can be used to change the relationship
between SDCLK and the control/address/data
signals. To meet setup and hold time requirements
for SDRAM across different board layouts, the
SHFTSDCLK bits are used. SHFTSDCLK bit
values are selected based upon the SDRAM
signals loads and the core frequency (refer to Table
7-10 in Section 7.6 “AC Characteristics”).

Figure 4-10 shows an example of how the SHFTS-
DCLK bits setting effects SDCLK. The PCI clock is
the input clock to the MediaGX processor. The core
clock is the internal processor clock that is multi-

plied up. The memory controller runs off this
processor clock. The memory clock is generated
by dividing down the processor clock. SDCLK is
generated from the memory clock. In the example
diagram, the processor clock is running 6X times
the PCI clock and the memory clock is running in
divide by 3 mode.

The SDRAM control, address, and data signals are
driven off edge "x" of the memory clock to be setup
before edge "y". With no shift applied, the control
signals could end up being latched on edge "x". A
shift value of two or three could be used so that
SDCLK at the SDRAM is centered around when
the control signals change.

Figure 4-10 Effects of SHFTSDCLK Programming Bits Example

0 1 2 3 4 5 6

PCI Clock

Core Clock

Memory
Clock

(Internal)

(Internal)

CNTRL

SDCLK

SDCLK

(Note)

(Note)

Note: The first SDCLK shows how SDCLK operates with the SHFTSDCLK bits = 000, no shift.
The second SDCLK shows how SDCLK operates with the SHFTSDCLK bits = 001, shift 0.5 core clock.
(See MC_MEMCNTRL2 bits [5:3], Table 4-16 on page 123, for remaining decode values.)

1 0234Shift =

Valid

x y

x y

GXm_db_v2.0 Cyrix Corporation Confidential Page 135

Graphics Pipeline 4
4.4 Graphics Pipeline
The graphics pipeline of the MediaGX MMX-
Enhanced processor includes a BitBLT/vector
engine which has been optimized for Microsoft®
Windows®. The hardware supports pattern genera-
tion, source expansion, pattern/source transpar-
ency, and 256 ternary raster operations. The block
diagram of the graphics pipeline is shown in Figure
4-11.

4.4.1 BitBLT/Vector Engine
BLTs are initiated by writing to the GP_BLT_MODE
register, which specifies the type of source data
(none, frame buffer, or BLT buffer), the type of the
destination data (none, frame buffer, or BLT buffer),
and a source expansion flag.

Figure 4-11 Graphics Pipeline Block Diagram

Pattern
Hardware

Raster Operation

Output Aligner

BE PAT SRC DSTBE

Internal Bus
Interface Unit

Graphics

Scratchpad RAM

BitBLT Buffers
 and

Memory

X-Bus

C-Bus

Pipeline

BE = Byte Enable
PAT = Pattern Data
SRC = Source Data
DST = Destination Data

Output Aligner

Source
Expansion

Control Logic

DRAM Interface Register Access

Controller

Key:

Page 136 Cyrix Corporation Confidential GXm_db_v2.0

� Graphics Pipeline

The BLT buffers in the dedicated cache temporarily
store source and destination data, typically on a
scan line basis. The hardware automatically loads
frame-buffer data (source or destination) into the
BLT buffers for each scan line. The software is
responsible to make sure that this does not over-
flow the memory allocated for the BLT buffers.
When the source data is a bitmap, the data is
loaded directly into the BLT buffer before starting
the BLT.

Vectors are initiated by writing to the
GP_VECTOR_MODE register
(GX_BASE+8204h), which specifies the direction
of the vector and a “read destination data” flag. If
the flag is set, the hardware will read destination
data along the vector and store it temporarily in
BLT Buffer 0.

4.4.2 Master/Slave Registers
When starting a BitBLT or vector operation, the
graphics pipeline registers are latched from the
master registers to the slave registers. A second
BitBLT or vector operation can then be loaded into
the master registers while the first operation is
rendered. If a second BLT is pending in the master

registers, any write operations to the graphics pipe-
line registers will corrupt the values of the pending
BLT. Software must prevent this from happening by
checking the “BLT Pending” bit in the
GP_BLT_STATUS register (GX_BASE+820Ch[2].

Most of the graphics pipeline registers are latched
directly from the master registers to the slave regis-
ters when starting a new BitBLT or vector opera-
tion. Some registers, however, use the updated
slave values if the master registers have not been
written, which allows software to render successive
primitives without loading some of the registers as
outlined in Table 4-21.

4.4.3 Pattern Generation
The graphics pipeline contains hardware support
for 8x8 monochrome patterns (expanded to two
colors), 8x8 dither patterns (expanded to four
colors), and 8x1 color patterns. The pattern hard-
ware, however, does not maintain a pattern origin,
so the pattern data must be justified before it is
loaded into the MediaGX processor’s registers. For
solid primitives, the pattern hardware is disabled
and the pattern color is always sourced from the
GP_PAT_COLOR_0 register (GX_BASE+8110h).

Table 4-21 Graphics Pipeline Registers

Master Function

GP_DST_XCOOR Next X position along vector.

Master register if written, otherwise:
Unchanged slave if BLT, source mode = bitmap.
Slave + width if BLT, source mode = text glyph

GP_DST_YCOOR Next Y position along vector.

Master register if written, otherwise:
Slave +/- height if BLT, source mode = bitmap.
Unchanged slave if BLT, source mode = text glyph.

GP_INIT_ERROR Master register if written, otherwise:
Initial error for the next pixel along the vector.

GP_SRC_YCOOR Master register if written, otherwise:
Slave +/- height if BLT, source mode = bitmap.

GXm_db_v2.0 Cyrix Corporation Confidential Page 137

Graphics Pipeline 4
4.4.3.1 Monochrome Patterns
Monochrome patterns are selected by setting the
pattern mode to 01b in the GP_RASTER_MODE
register (GX_BASE+ 8200h). Those pixels corre-
sponding to a clear bit (0) in the pattern are
rendered using the color specified in the
GP_PAT_COLOR_0 register, and those pixels
corresponding to a set bit (1) in the pattern are
rendered using the color specified in the
GP_PAT_COLOR_1 register (GX_BASE+8112h).

If the pattern transparency bit is set high in the
GP_RASTER_MODE register, those pixels corre-
sponding to a clear bit in the pattern data are not
drawn.

Monochrome patterns use bits [63:0] of the pattern
data. Bits [7:0] correspond to the first row of the
pattern, and bit 7 corresponds to the leftmost pixel
on the screen. This is illustrated Figure 4-12.

Figure 4-12 Example of Monochrome Patterns

4.4.3.2 Dither Patterns
Dither patterns are selected by setting the pattern
mode to 10b in the GP_RASTER_MODE register
(Table 4-25). Two bits of pattern data are used for
each pixel, allowing color expansion to four colors.
The colors are specified in the GP_PAT_COLOR_0
through GP_PAT_COLOR_3 registers (Table 4-
25).

Dither patterns use all 128 bits of pattern data. Bits
[15:0] correspond to the first row of the pattern (the
lower byte contains the LSB of the pattern color
and the upper byte contains the MSB of the pattern
color). This is illustrated in Figure 4-13.

Figure 4-13 Example of Dither Patterns

GP_PAT_DATA_0 = 0x80412214

GP_PAT_DATA_1 = 0x08142241

14

22

41

80

41

22

14

08

00AA

4411

00AA

1155

00AA

4411

00AA

1155

GP_PAT_DATA_0 = 0x441100AA

GP_PAT_DATA_1 = 0x115500AA

GP_PAT_DATA_2 = 0x441100AA

GP_PAT_DATA_3 = 0x115500AA

Page 138 Cyrix Corporation Confidential GXm_db_v2.0

� Graphics Pipeline

4.4.3.3 Color Patterns
Color patterns are selected by setting the pattern
mode to 11b in the GP_RASTER_MODE register.
Bits [63:0] are used to hold a row of pattern data for
an 8-BPP pattern, with bits [7:0] corresponding to
the leftmost pixel of the row. Likewise, bits [127:0]
are used for a 16-BPP color pattern, with bits [15:0]
corresponding to the leftmost pixel of the row.

To support an 8x8 color pattern, software must load
the pattern data for each row.

4.4.4 Source Expansion
The graphics pipeline contains hardware support
for color expansion of source data (primarily used
for text). Those pixels corresponding to a clear bit
(0) in the source data are rendered using the color
specified in the GP_SRC_COLOR_0 register
(GX_BASE+810Ch), and those pixels corre-
sponding to a set bit (1) in the source data are
rendered using the color specified in the
GP_SRC_COLOR_1 register (GX_BASE+810Eh).

If the source transparency bit is set in the
GP_RASTER_MODE register, those pixels corre-
sponding to a clear bit (0) in the source data are
not drawn.

4.4.5 Raster Operations
The GP_RASTER_MODE register specifies how
the pattern data, source data (color-expanded if
necessary), and destination data are combined to
produce the output from the graphics pipeline. The
definition of the ROP value matches that of the
Microsoft® API. This allows Windows® display
drivers to load the raster operation directly into
hardware. Table 4-22 illustrates this definition.

Some common raster operations are described in
Table 4-23.

Table 4-22 GP_RASTER_MODE Bit Patterns

Pattern
(bit)

Source
(bit)

Destination
(bit)

Output
(bit)

0 0 0 ROP[0]

0 0 1 ROP[1]

0 1 0 ROP[2]

0 1 1 ROP[3]

1 0 0 ROP[4]

1 0 1 ROP[5]

1 1 0 ROP[6]

1 1 1 ROP[7]

Table 4-23 Common Raster Operations

ROP Description

F0h Output = Pattern

CCh Output = source

5Ah Output = Pattern xor destination

66h Output = Source xor destination

55h Output = ~Destination

GXm_db_v2.0 Cyrix Corporation Confidential Page 139

Graphics Pipeline 4
4.4.6 Graphics Pipeline Register

Descriptions
The graphics pipeline maps 200h locations starting
at GX_BASE+8100h. Refer to Section 4.1.2

“Control Registers” on page 106 for instructions on
accessing these registers.

Table 4-24 summarizes the graphics pipeline regis-
ters and Table 4-25 gives detailed register/bit

Table 4-24 Graphics Pipeline Configuration Register Summary

GX_BASE+
Memory Offset Type Name / Function Default Value

8100h-8103h R/W GP_DST/START_Y/XCOOR

Destination/Starting Y and X Coordinates Register — In BLT mode this register
specifies the destination Y and X positions for a BLT operation. In Vector mode
it specifies the starting Y and X positions in a vector.

00000000h

8104-8107h R/W GP_WIDTH/HEIGHT and GP_VECTOR_LENGTH/INIT_ERROR

Width/Height or Vector Length/Initial Error Register — In BLT mode this register
specifies the BLT width and height in pixels. In Vector mode it specifies the vec-
tor initial error and pixel length.

00000000h

8108h-810Bh R/W GP_SRC_X/YCOOR and GP_AXIAL/DIAG_ERROR

Source X/Y Coordinate Axial/Diagonal Error Register — In BLT mode this regis-
ter specifies the BLT X and Y source. In Vector mode it specifies the axial and
diagonal error for rendering a vector.

00000000h

810Ch-810Fh R/W GP_SRC_COLOR

Source Color Register — Determines the colors used when expanding mono-
chrome source data in either the 8-BPP mode or the 16-BPP mode.

00000000h

8110h-8113h R/W GP_PAT_COLOR_A (8110h) and GP_PAT_COLOR_B (8114h)

Pattern Color A and B Registers — These two registers determine the colors
used when expanding pattern data.

00000000h

8114h-8117h R/W 00000000h

8120h-8123h R/W GP_PAT_DATA 0 through 3

Graphics Pipeline Pattern Data Registers 0 through 3 — Together these regis-
ters contain 128 bits of pattern data.

GP_PAT_DATA_0 corresponds to bits [31:0] of the pattern data.

GP_PAT_DATA_1 corresponds to bits [63:32] of the pattern data.

GP_PAT_DATA_2 corresponds to bits [95:64] of the pattern data.

GP_PAT_DATA_3 corresponds to bits [127:96] of the pattern data.

00000000h

8124h-8127h R/W 00000000h

8128h-812Bh R/W 00000000h

812Ch-812Fh R/W 00000000h

8140h-8143h
(Note)

R/W GP_VGA_WRITE

Graphics Pipeline VGA Write Patch Control Register — Controls the VGA
memory write path in the graphics pipeline.

xxxxxxxxh

8144h-8147h
(Note)

R/W GP_VGA_READ

Graphics Pipeline VGA Read Patch Control Register — Controls the VGA
memory read path in the graphics pipeline.

00000000h

8200h-8203h R/W GP_RASTER_MODE

Graphics Pipeline Raster Mode Register — This register controls the manipula-
tion of the pixel data through the graphics pipeline. Refer to Section 4.4.5 “Ras-
ter Operations” on page 138.

00000000h

Note: The registers at GX_BASE+8140, 8144h, 8210h, and 8217h are located in the area designated for the graphics pipeline but
are used for VGA emulation purposes. Refer to Table 5-5 on page 200 for these register’s bit formats.

Page 140 Cyrix Corporation Confidential GXm_db_v2.0

� Graphics Pipeline

8204h-8207h R/W GP_VECTOR_MODE

Graphics Pipeline Vector Mode Register — Writing to this register initiates the
rendering of a vector.

00000000h

8208h-820Bh R/W GP_BLT_MODE

Graphics Pipeline BLT Mode Register — Writing to this initiates a BLT opera-
tion.

00000000h

820Ch-820Fh R/W GP_BLT_STATUS

Graphics Pipeline BLT Status Register — Contains configuration and status
information for the BLT engine. The status bits are contained in the lower byte
of the register.

00000000h

8210h-8213h
(Note)

R/W GP_VGA_BASE

Graphics Pipeline VGA Memory Base Address Register — Specifies the offset
of the VGA memory, starting from the base of graphics memory.

xxxxxxxxh

8214h-8217h
(Note)

R/W GP_VGA_LATCH

Graphics Pipeline VGA Display Latch Register — Provides a memory mapped
way to read or write the VGA display latch.

xxxxxxxxh

Table 4-24 Graphics Pipeline Configuration Register Summary (cont.)

GX_BASE+
Memory Offset Type Name / Function Default Value

Note: The registers at GX_BASE+8140, 8144h, 8210h, and 8217h are located in the area designated for the graphics pipeline but
are used for VGA emulation purposes. Refer to Table 5-5 on page 200 for these register’s bit formats.

GXm_db_v2.0 Cyrix Corporation Confidential Page 141

Graphics Pipeline 4
Table 4-25 Graphics Pipeline Configuration Registers

Bit Name Description

GX_BASE+8100h-8103h GP_DST/START_X/YCOOR Register (R/W) Default Value = 00000000h

31:16 DESTINATION/STARTING Y POSITION (SIGNED):

BLT Mode — Specifies the destination Y position for a BLT operation.

Vector Mode — Specifies the starting Y position in a vector.

15:0 DESTINATION/STARTING X POSITION (SIGNED):

BLT Mode — Specifies the destination X position for a BLT operation.

Vector Mode — Specifies the starting X position in a vector.

GX_BASE+8104h-8107h GP_WIDTH/HEIGHT and Default Value = 00000000h
GP_VECTOR_LENGTH/INIT_ERROR Register (R/W)

31:16 PIXEL_WIDTH or VECTOR_LENGTH (UNSIGNED):

BLT Mode — Specifies the width, in pixels, of a BLT operation. No pixels are rendered for a width of zero.

Vector Mode — Bits [31:30] are reserved in this mode allowing this 14-bit field to specify the length, in pixels, of a vector.
No pixels are rendered for a length of zero. This field is limited to 14 bits due to a lack of precision in the registers used to
hold the error terms.

15:0 PIXEL_HEIGHT or VECTOR_INITIAL_ERROR (UNSIGNED):

BLT Mode — Specifies the height, in pixels, of a BLT operation. No pixels are rendered for a height of zero.

Vector Mode — Specifies the initial error for renderng a vector.

GX_BASE+8108h-810Bh GP_SCR_X/YCOOR and GP_AXIAL/DIAG_ERROR Register (R/W) Default Value = 00000000h

31:16 SRC_X_POS or VECTOR_AXIAL_ERROR (SIGNED):

BLT Mode — Specifies the source X position for a BLT operation.

Vector Mode — Specifies the axial error for rendering a vector.

15:0 SRC_Y_POS or VECTOR_DIAG_ERROR (SIGNED):

Source Y Position (Signed) — Specifies the source Y position for a BLT operation.

Vector Mode — Specifies the diagonal error for rendering a vector.

GX_BASE+810Ch-810Fh GP_SRC_COLOR Register (R/W) Default Value = 00000000h

8-BPP Mode

31:24 GP_SRC_COLOR_0:

8-BPP Color Index — The color index must be duplicated in the upper byte of GP_SRC_COLOR_0 when rendering 8-
BPP data.

23:16

15:8 GP_SRC_COLOR_1:

8-BPP Color Index — The color index must be duplicated in the upper byte of GP_SRC_COLOR_1 when rendering 8-
BPP data.

7:0

16-BPP Mode

31:16 GP_SRC_COLOR_0: 16-BPP Color (RGB)

15:0 GP_SRC_COLOR_1: 16-BPP Color (RGB)

Note: The Graphics Pipeline Source Color Register specifies the colors used when expanding monochrome source data in either
the 8-BPP mode or the 16-BPP mode. Those pixels corresponding to clear bits (0) in the source data are rendered using
GP_SRC_COLOR_0 and those pixels corresponding to set bits (1) in the source data are rendered using
GP_SRC_COLOR_1.

Page 142 Cyrix Corporation Confidential GXm_db_v2.0

� Graphics Pipeline

GX_BASE+8110h-8113h GP_PAT_COLOR_A Register (R/W) Default Value = 00000000h

8-BPP Mode

31:24 GP_PAT_COLOR_0:

8-BPP Color Index — The color index must be duplicated in the upper byte of GP_PAT_COLOR_0 when rendering 8-
BPP data.

23:16

15:8 GP_PAT_COLOR_1:

8-BPP Color Index — The color index must be duplicated in the upper byte of GP_PAT_COLOR_1 when rendering 8-
BPP data.

7:0

16-BPP Mode

31:16 GP_PAT_COLOR_0: 16-BPP Color (RGB)

15:0 GP_PAT_COLOR_1: 16-BPP Color (RGB)

Note: The Graphics Pipeline Pattern Color A and B Registers specify the colors used when expanding pattern data.

GX_BASE+8114h-8117h GP_PAT_COLOR_B Register (R/W) Default Value = 00000000h

8-BPP Mode

31:24 GP_PAT_COLOR_2:

8-BPP Color Index — The color index must be duplicated in the upper byte of GP_PAT_COLOR_2 when rendering 8-
BPP data.

23:16

15:8 GP_PAT_COLOR_3:

8-BPP Color Index — The color index must be duplicated in the upper byte of GP_PAT_COLOR_3 when rendering 8-
BPP data.

7:0

16-BPP Mode

31:16 GP_PAT_COLOR_2: 16-BPP Color (RGB)

15:0 GP_PAT_COLOR_3: 16-BPP Color (RGB)

Note: The Graphics Pipeline Pattern Color A and B Registers specify the colors used when expanding pattern data.

GX_BASE+8120h-8123h GP_PAT_DATA_0 Register (R/W) Default Value = 00000000h

31:0 GP Pattern Data Register 0: The Graphics Pipeline Pattern Data Registers 0 through 3 together contain 128 bits of pat-
tern data. The GP_PAT_DATA_0 register corresponds to bits [31:0] of the pattern data.

GX_BASE+8124h-8127h GP_PAT_DATA_1 Register (R/W) Default Value = 00000000h

31:0 GP Pattern Data Register 1: The Graphics Pipeline Pattern Data Registers 0 through 3 together contain 128 bits of pat-
tern data. The GP_PAT_DATA_1 register corresponds to bits [63:32] of the pattern data.

GX_BASE+8128h-812Bh GP_PAT_DATA_2 Register (R/W) Default Value = 00000000h

31:0 GP Pattern Data Register 2: The Graphics Pipeline Pattern Data Registers 0 through 3 together contain 128 bits of pat-
tern data. The GP_PAT_DATA_2 register corresponds to bits [95:64] of the pattern data.

GX_BASE+812Ch-812Fh GP_PAT_DATA_3 Register (R/W) Default Value = 00000000h

31:0 GP Pattern Data Register 3: The Graphics Pipeline Pattern Data Registers 0 through 3 together contain 128 bits of pat-
tern data. The GP_PAT_DATA_3 register corresponds to bits [127:96] of the pattern data.

Table 4-25 Graphics Pipeline Configuration Registers (cont.)

Bit Name Description

GXm_db_v2.0 Cyrix Corporation Confidential Page 143

Graphics Pipeline 4

GX_BASE+8140h-8143h GP_VGA_WRITE Register (R/W) Default Value = xxxxxxxxh

Note that the registers at GX_BASE+82140h and 8144h are located in the area designated for the graphics pipeline but are used
for VGA emulation purposes. Refer to Table 5-5 on page 200 for these register’s bit formats.

GX_BASE+8144h-8147h GP_VGA_READ Register (R/W) Default Value = 00000000h

Note that the registers at GX_BASE+82140h and 8144h are located in the area designated for the graphics pipeline but are used
for VGA emulation purposes. Refer to Table 5-5 on page 200 for these register’s bit formats.

GX_BASE+8200h-8203h GP_RASTER_MODE Register (R/W) Default Value = 00000000h

31:13 RSVD Reserved: Set to 0.

12 TB Transparent BLIT: When set, this bit enables transparent BLIT. The source color data will be compared to
a color key and if it matches, that pixel will not be drawn. The color key value is stored in the BLIT buffer as
destination data. The raster operation must be set to C6h, and the pattern registers must be all F’s for this
mode to work properly.

11 ST Source Transparency: Enables transparency for monochrome source data. Those pixels corresponding
to clear bits in the source data are not drawn.

10 PT Pattern Transparency: Enables transparency for monochrome pattern data. Those pixels corresponding
to clear bits in the pattern data are not drawn.

9:8 PM Pattern Mode: Specifies the format of the pattern data.

00 = Indicates a solid pattern. The pattern data is always sourced from the GP_PAT_COLOR_0 register.

01 = Indicates a monochrome pattern. The pattern data is sourced from the GP_PAT_COLOR_0 and
GP_PAT_COLOR_1 registers.

10 = Indicates a dither pattern. All four pattern color registers are used.

11 =Indicates a color pattern. The pattern data is sourced directly from the pattern data registers.

7:0 ROP Raster Operation: Specifies the raster operation for pattern, source, and destination data.

GX_BASE+8204h-8207h GP_VECTOR_MODE Register (R/W) Default Value = 00000000h

31:4 RSVD Reserved: Set to 0.

3 DEST Read Destination Data: Indicates that frame-buffer destination data is required.

2 DMIN Minor Direction: Indicates a positive minor axis step.

1 DMAJ Major Direction: Indicates a positive major axis step.

0 YMAJ Major Direction: Indicates a Y Major vector.

GX_BASE+8208h-820Bh GP_BLT_MODE Register (R/W) Default Value = 00000000h

31:9 RSVD Reserved: Set to 0.

8 Y Reverse Y Direction: Indicates a negative increment for the Y position. This bit is used to control the
direction of screen to screen BLTs to prevent data corruption in overlapping windows.

7:6 SM Source Mode: Specifies the format of the source data.

00 = Source is a color bitmap.

01 = Source is a monochrome bitmap (use source color expansion).

10 = Unused.

11 = Source is a text glyph (use source color expansion). This differs from a monochrome bitmap in that
the X position is adjusted by the width of the BLT and the Y position remains the same.

Table 4-25 Graphics Pipeline Configuration Registers (cont.)

Bit Name Description

Page 144 Cyrix Corporation Confidential GXm_db_v2.0

� Graphics Pipeline

5 RSVD Reserved: Set to 0.

4:2 RD Destination Data: Specifies the destination data location.

000 = No destination data is required. The destination data into the raster operation unit is all ones.

010 = Read destination data from BLT Buffer 0.

011 = Read destination data from BLT Buffer 1.

100 = Read destination data from the frame buffer (store temporarily in BLT Buffer 0).

101 = Read destination data from the frame buffer (store temporarily in BLT Buffer 1).

1:0 RS Source Data: Specifies the source data location.

00 = No source data is required. The source data into the raster operation unit is all ones.

01 = Read source data from the frame buffer (temporarily stored in BLT Buffer 0).

10 = Read source data from BLT Buffer 0.

11 = Read source data from BLT Buffer 1.

GX_BASE+820Ch-820Fh GP_BLT_STATUS Register (R/W) Default Value = 00000000h

31:10 RSVD Reserved: Set to 0.

9 W Screen Width: Selects a frame-buffer width of 2048 bytes (default is 1024 bytes).

8 M 16-BPP Mode: Selects a pixel data format of 16 BPP (default is 8 BPP).

7:3 RSVD Reserved: Set to 0.

2 BP (RO) BLT Pending (Read Only): Indicates that a BLT operation is pending in the master registers.

The “BLT Pending” bit must be clear before loading any of the graphics pipeline registers. Loading regis-
ters when this bit is set high will destroy the values for the pending BLT.

1 PB (RO) Pipeline Busy (Read Only): Indicates that the graphics pipeline is processing data.

The “Pipeline Busy” bit differs from the “BLT Busy” bit in that the former only indicates that the graphics
pipeline is processing data. The “BLT Busy” bit also indicates that the memory controller has not yet pro-
cessed all of the requests for the current operation.

The “Pipeline Busy” bit must be clear before loading a BLT buffer if the previous BLT operation used the
same BLT buffer.

0 BB (RO) BLT Busy (Read Only): Indicates that a BLT / vector operation is in progress.

The “BLT Busy” bit must be clear before accessing the frame buffer directly.

GX_BASE+8210h-8213h GGP_VGA_BASE (R/W) Default Value = xxxxxxxxh

Note that the registers at GX_BASE+8210h and 8214h are located in the area designated for the graphics pipeline but are used for
VGA emulation purposes. Refer to Table 5-5 on page 200 for these register’s bit formats.

GX_BASE+8214h-8217h GP_VGA_LATCH Register (R/W) Default Value = xxxxxxxxh

Note that the registers at GX_BASE+8210h and 8214h are located in the area designated for the graphics pipeline but are used for
VGA emulation purposes. Refer to Table 5-5 on page 200 for these register’s bit formats.

Table 4-25 Graphics Pipeline Configuration Registers (cont.)

Bit Name Description

GXm_db_v2.0 Cyrix Corporation Confidential Page 145

Display Controller 4
4.5 Display Controller
The MediaGX MMX-Enhanced processor incorpo-
rates a display controller that retrieves display data
from the memory controller and formats it for
output on a variety of display devices. The
MediaGX processor can directly connect to an
active matrix TFT LCD flat panel or to an external
RAMDAC for CRT display or both. The display
controller includes a display FIFO, compres-

sion/decompression (CODEC) hardware, hard-
ware cursor, a 256-entry-by-18-bit palette RAM
(plus three extension colors), display timing gener-
ator, dither and frame-rate-modulation circuitry for
TFT panels, and flexible output formatting logic. A
diagram of the display controller subsystem is
shown in Figure 4-14.

Figure 4-14 Display Controller Block Diagram

Memory
Data

Compressed

Codec

Cursor

Palette
Extensions

Palette

Dither
Output

RAMDAC

Panel

Control Registers TimingMemoryMemory
Address

Output
Control

Pseudo/True
Color Mux

32

64

Line Buffer
(64x32 bit)

Display
FIFO

(64x64 bit)

Latch

8

2

32

RAM
(264x18

9

16

18

Palette Data

and
FRM

Format

8

18

18

Addr.
Logic

Generatorand
Control Logic

Address
Generator

20

9

18

bit)

Page 146 Cyrix Corporation Confidential GXm_db_v2.0

� Display Controller

4.5.1 Display FIFO
The display controller contains a large (64x64 bit)
FIFO for queuing up display data from the memory
controller as it is required for output to the screen.
The memory controller must arbitrate between the
display controller requests and other requests for
memory access from the microprocessor core, L1
cache controller, and the graphics pipeline.

Since display data is required in real time, this data
is the highest priority in the system. Without effi-
cient memory management, system performance
would suffer dramatically due to the constant
display-refresh requests from the display controller.
The large size of the display FIFO is desirable so
that the FIFO may primarily be loaded during times
when there is no other request pending to the
DRAM controller and so that the memory controller
can stay in page mode for a long period of time
when servicing the display FIFO. When a priority
request from the cache or graphics pipeline occurs,
if the display FIFO has enough data queued up,
the DRAM controller can immediately service the
request without concern that the display FIFO will
underflow. If the display FIFO is below a program-
mable threshold, a high-priority request will be sent
to the DRAM controller, which will take precedence
over any other requests that are pending.

The display FIFO is 64 bits wide to accommodate
high-speed burst read operations from the DRAM
controller at maximum memory bandwidth. In addi-
tion to the normal pixel data stream, the display
FIFO also queues up cursor patterns.

4.5.2 Compression Technology
To reduce the system memory contention caused
by the display refresh, the display controller
contains compression and decompression logic for
compressing the frame buffer image in real time as
it is sent to the display. It combines this
compressed display buffer into the extra off-screen
memory within the graphics memory aperture.
Coherency of the compressed display buffer is
maintained by use of dirty and valid bits for each
line. The dirty and valid RAM is contained on-chip
for maximum efficiency. Whenever a line has been
validly compressed, it will be retrieved from the
compressed display buffer for all future accesses
until the line becomes dirty again. Dirty lines will be
retrieved from the normal uncompressed frame
buffer.

The compression logic has the ability to insert a
programmable number of "static" frames, during
which time dirty bits are ignored and the valid bits
are read to determine whether a line should be
retrieved from the frame buffer or compressed
display buffer. The less frequently the dirty bits are
sampled, the more frequently lines will be retrieved
from the compressed display buffer. This allows a
programmable screen image update rate (as
opposed to refresh rate). Generally, an update rate
of 30 frames per second is adequate for displaying
most types of data, including real- time video.
However, if a flat panel display is used that has a
slow response time, such as 100ms, the image
need not be updated faster than ten frames per
second, since the panel could not display changes
beyond that rate.

GXm_db_v2.0 Cyrix Corporation Confidential Page 147

Display Controller 4
The compression algorithm used in the MediaGX
processor commonly achieves compression ratios
between 10:1 and 20:1, depending on the nature of
the display data. This high level of compression
provides higher system performance by reducing
typical latency for normal system memory access,
higher graphics performance by increasing avail-
able drawing bandwidth to the DRAM array, and
much lower power consumption by significantly
reducing the number of off-chip DRAM accesses
required for refreshing the display. These advan-
tages become even more pronounced as display
resolution, color depth, and refresh rate are
increased and as the size of the installed DRAM
increases.

As uncompressed lines are fed to the display, they
will be compressed and stored in an on-chip
compressed line buffer (64x32 bits). Lines will not
be written back to the compressed display buffer in
the DRAM unless a valid compression has
resulted, so there is no penalty for pathological
frame buffer images where the compression algo-
rithm breaks down.

4.5.3 Motion Video Acceleration
Support

The display controller of the MediaGX processor
supports the Cx5520 hardware motion video accel-
eration by reading the off-screen video buffer and
serializing the video data onto the RAMDAC port.
The display controller supplies video data to the
Cx5520 in either interleaved YUV4:2:2 format or
RGB5:6:5 format. The Cx5520 can then scale and
filter the data, apply color space conversion to YUV
data, and mix the video data with graphics data,
also supplied by the display controller.

4.5.4 Hardware Cursor
The display controller contains hardware cursor
logic to allow overlay of the cursor image onto the
pixel data stream. Overhead for updating this
image on the screen is kept to a minimum by
requiring that only the X and Y position be
changed. This eliminates "submarining" effects
commonly associated with software cursors. The
cursor, 32x32 pixels with two bits per pixel, is
loaded into off-screen memory within the graphics
memory aperture. The two-bit code selects color 0,
color 1, transparent, or background-color inversion
for each pixel in the cursor (see Table 4-31 on
page 165). The two cursor colors will be stored as
extensions to the normal 256-entry palette at loca-
tions 100h and 101h. These palette extensions will
be used when driving a flat panel or a RAMDAC
operating in 16 BPP (bits per pixel) mode. For 8
BPP operation using an external RAMDAC, the
DC_CURSOR_COLOR register
(GX_BASE+8360h) should be programmed to set
the indices for the cursor colors. To avoid corrup-
tion of the cursor colors by an application program
that modifies the external palette, care should be
taken to program the cursor color indices to one of
the static color indices. Since Microsoft®
Windows® typically uses only black and white
cursor colors and these are static colors, this kind
of problem should rarely occur.

Page 148 Cyrix Corporation Confidential GXm_db_v2.0

� Display Controller

4.5.5 Display Timing Generator
The display controller features a fully program-
mable timing generator for generating all timing
control signals for the display. The timing control
signals include horizontal and vertical sync and
blank signals in addition to timing for active and
overscan regions of the display. The timing gener-
ator is similar in function to the CRTC of the orig-
inal VGA, although programming is more
straightforward. Programming of the timing regis-
ters will generally happen via a BIOS INT10 call
during a mode set. When programming the timing
registers directly, extreme care should be taken to
ensure that all timing is compatible with the display
device.

The timing generator supports overscan to main-
tain full backward compatibility with the VGA. This
feature is supported primarily for CRT display
devices since flat panel displays have fixed resolu-
tions and do not provide for overscan. However,
the MediaGX processor supports a mechanism to
center the display when a display mode is selected
having a lower resolution than the panel resolution.
The border region is effectively stretched to fill the
remainder of the screen. The border color is at
palette extension 104h. For 8 BPP operation with
an external RAMDAC, the DC_BORDER_COLOR
register (GX_BASE+8368h) should also be
programmed.

4.5.6 Dither and Frame-Rate
Modulation

The display controller supports 2x2 dither and two-
level frame-rate modulation (FRM) to increase the
apparent number of colors displayed on 9-bit or 12-
bit TFT panels. Dither and FRM are individually
programmable. With dithering and FRM enabled,
185,193 colors are possible on a 9-bit TFT panel,
and 226,981 colors are possible on a 12-bit TFT
panel.

4.5.7 Display Modes
The MediaGX processor has two graphics output
ports: one primarily designed for interfacing to
Thin-Film-Transistor (TFT) flat-panel displays and
the other primarily designed for interfacing to a
RAMDAC that drives a CRT display. By having two
separate ports, systems that contain both a TFT
panel and a CRT port can be designed with a
minimum of external devices. In addition, simulta-
neous display configurations can be supported with
optimum display quality on both display devices.
The RAMDAC bus can be driven with 8 BPP
indexed data to the palette in the RAMDAC while
the TFT is driven with the appropriate true-color
data that has already been frame-rate modulated
and dithered if necessary. Display modes for the
TFT port are supported and shown in Table 4-26.
The PANEL data bus may also serve as a
secondary RAMDAC output port for desktop
systems that incorporate a 16-bit-pixel-port
RAMDAC. The MediaGX processor supports
multiple output data formats for interfacing to
various TFT displays and RAMDACs in various
display modes. The output formats supported are
shown in Table 4-27 and Table 4-28.

The MediaGX processor supports 640x480,
800x600, and 1024x768 display resolutions at both
8 and 16 bits per pixel. In addition, 1280x1024
resolution is supported at 8 bits per pixel only. Two
16-bit display formats are supported: RGB 5-6-5
and RGB 5-5-5. Simultaneous display is supported
for TFT panels and CRTs at 640x480 and 800x600
resolution. All CRT modes use VESA-compatible
timing. Table 4-29 gives the supported CRT display
modes.

The PANEL output port and RAMDAC output port
can be individually configured to allow independent
operation. It is possible to run the RAMDAC inter-
face with 8 BPP indexed data while driving true-
color data to the panel. It is also possible to run the
RAMDAC interface in a clock-doubled fashion
while operating the PANEL data bus in a single-
clocked fashion.

GXm_db_v2.0 Cyrix Corporation Confidential Page 149

Display Controller 4
The MediaGX processor supports both 8- and 16-
bit RAMDAC configurations, and a direct connec-
tion to a TFT. For systems that utilize a direct
connection to a TFT display and RAMDAC, only
eight bits of data are provided to the RAMDAC

port. RAMDACS with 8-bit pixel ports will be able to
support 16 BPP displays only up to 800x600 reso-
lution. For configurations that utilize a 16-bit
RAMDAC with no TFT attached, resolutions up to
1024x768 can be supported at 16 BPP.

Table 4-26 TFT Panel Display Modes

Resolution
Simultaneous

Colors

Refresh
Rate
(Hz)

DOTCLK
Rate

(MHz)
PCLK
(MHz)

Panel
Type

Maximum Displayed
Colors (Note 1)

640x480
(Note 2)

8 BPP
256 colors out of a
palette of 256

60 25.175 25.175 9-bit 573 = 185,193

12-bit 613 = 226,981

18-bit 43 = 262,144

16 BPP
64K colors
5-6-5

60 25.175 25.175 9-bit 29x57x29 = 47,937

12-bit 31x61x31 = 58,621

18-bit 32x64x32 = 65,535

800x600
(Note 2)

8 BPP
256 colors out of a
palette of 256

60 40.0 40.0 9-bit 573 = 185,193

12-bit 613 = 226,981

18-bit 643 = 262,144

16 BPP
64K Colors
5-6-5

60 40.0 40.0 9-bit 29x57x29 = 47,937

12-bit 31x61x31 = 58,621

18-bit 32x64x32 = 65,535

1024x768 8 BPP
256 colors out of a
palette of 256

60 65 32.5 9-bit/18-I/F 573 = 185,193

16 BPP
64K colors
5-6-5

60 65 32.5 9-bit/18-I/F 29x57x29 = 47,937

Notes: 1) 9-bit and 12-bit panels use FRM and dither to increase displayed colors. (See Section 4.5.6 “Dither and
Frame-Rate Modulation” on page 148.)

2) All 640x480 and 800x600 modes can be run in simultaneous display with CRT.

Page 150 Cyrix Corporation Confidential GXm_db_v2.0

� Display Controller

Table 4-27 TFT Panel Data Bus Formats

Panel
Data Bus

Bit
18-Bit
TFT

12-Bit
TFT

9-Bit TFT 16-Bit RAMDAC

640x480 1024x768
16 BPP,

Upper Half of Pixel
1280x1024x8 BPP,

2nd Pixel

17 R5 R5 R5 R5 Even R5 P7

16 R4 R4 R4 R4 R4 P6

15 R3 R3 R3 R3 R3 P5

14 R2 R2 R5 Odd R2 P4

13 R1 R4 R1 P3

12 R0 R3

11 G5 G5 G5 G5 Even G5 P2

10 G4 G4 G4 G4 G4 P1

9 G3 G3 G3 G3 G3 P0

8 G2 G2 G5 Odd

7 G1 G4

6 G0 G3

5 B5 B5 B5 B5 Even

4 B4 B4 B4 B4

3 B3 B3 B3 B3

2 B2 B2 B5 Odd

1 B1 B4

0 B0 B3

Table 4-28 CRT RAMDAC Data Bus Formats

RAMDAC
Data
Bus

8- or 16-Bit
RAMDAC,

8 BPP
Indexed Output

16-Bit
RAMDAC,

1280x1024x8 BPP,
First Pixel

8-Bit RAMDAC
16 BPP

16-Bit RAMDAC
16 BPP

Video*
First

Transfer
Second
Transfer

Lower Half
Of Pixel

7 P7 P7 G2 R5 G2 V7

6 P6 P6 G1 R4 G1 V6

5 P5 P5 G0 R3 G0 V5

4 P4 P4 B5 R2 B5 V4

3 P3 P3 B4 R1 B4 V3

2 P2 P2 B3 G5 B3 V2

1 P1 P1 B2 G4 B2 V1

0 P0 P0 B1 G3 B1 V0

Note: *Refer to the Cx5520 or Cx5530 Data Book for details on YUV ordering.

GXm_db_v2.0 Cyrix Corporation Confidential Page 151

Display Controller 4
Table 4-29 CRT Display Modes

Resolution Colors
Refresh Rate

(Hz)
DOTCLK Rate

(MHz)
PCLK
(MHz)

Graphics Port
Width (Bits)

640x480 8 BPP
256 colors out of a
palette of 256

60 25.175 25.175 8

72 31.5 31.5 8

75 31.5 31.5 8

16 BPP
64 K colors
RGB 5-6-5

60 25.175 50.35 8

25.175 16

72 31.5 63.0 8

31.5 16

75 31.5 63.0 8

31.5 16

800x600 8 BPP
256 colors out of a
palette of 256

60 40.0 40.0 8

72 50.0 50.0 8

75 49.5 49.5 8

16 BPP
64 K colors
RGB 5-6-5

60 40.0 80.0 8

40.0 16

72 50.0 100 8

50.0 16

75 49.5 99 8

49.5 16

1024x768 8 BPP
256 colors out of a
palette of 256

60 65.0 65.0 8

70 75.0 75.0 8

75 78.5 78.5 8

16 BPP
64 K colors
RGB 5-6-5

60 65.0 65.0 16

70 75.0 75.0 16

75 78.5 78.5 16

1280x1024 8 BPP
256 colors out of a
palette of 256

60 108.0 108.0 8

54.0 16

75 135.0 67.5 16

Page 152 Cyrix Corporation Confidential GXm_db_v2.0

� Display Controller

4.5.8 Graphics Memory Map
The MediaGX processor supports a maximum of
4MB of graphics memory and will map it to an
address space (see Figure 4-2 on page 105)
higher than the maximum amount of installed
RAM. The graphics memory aperture physically
resides at the top of the installed system RAM. The
start address and size of the graphics memory
aperture are programmable on 128KB boundaries.
Typically, the system BIOS sets the size and start
address of the graphics memory aperture during
the boot process based on the amount of installed
RAM, user defined CMOS settings, and display
resolution. The graphics pipeline and display
controller address the graphics memory with a 20-
bit offset (address bits [21:2]) and four byte
enables into the graphics memory aperture. The
graphics memory stores several buffers that are
used to generate the display: the frame buffer,
compressed display buffer, VGA memory, and
cursor pattern(s). Any remaining off-screen
memory within the graphics aperture may be used
by the display driver as desired or not at all.

4.5.8.1 DC Memory Organization
Registers

The display controller contains a number of regis-
ters that allow full programmability of the graphics
memory organization. This includes starting offsets
for each of the buffer regions described above, line
delta parameters for the frame buffer and compres-
sion buffer, as well as compressed line-buffer size
information. The starting offsets for the various
buffers are programmable for a high degree of flex-
ibility in memory organization.

4.5.8.2 Frame Buffer and
Compression Buffer
Organization

The MediaGX processor supports primary display
modes 640x480, 800x600, and 1024x768 at both 8
BPP and 16 BPP, and 1280x1024 at 8 BPP. Pixels
will be packed into DWORDs as shown in Figure 4-
15.

Figure 4-15 Pixel Arrangement Within a DWORD

Bit Position 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Address 3h 2h 1h 0h

Pixel Org - 8 BPP (3,0) (2,0) (1,0) (0,0)

Pixel Org - 16 BPP (1,0) (0,0)

(1023,0)

(1023, 1023)

(0, 0)

(0, 1023)

DWORD 0

GXm_db_v2.0 Cyrix Corporation Confidential Page 153

Display Controller 4
In order to simplify address calculations by the
rendering hardware, the frame buffer is organized
in an XY fashion where the offset is simply a
concatenation of the X and Y pixel addresses. All 8
BPP display modes with the exception of
1280x1024 resolution will use a 1024-byte line
delta between the starting offsets of adjacent lines.
All 16 BPP display modes and 1280x1024x8 BPP
display modes will use a 2048-byte line delta
between the starting offsets of adjacent lines. If
there is room, the space between the end of a line
and the start of the next line will be filled with the
compressed display data for that line, thus allowing
efficient memory utilization. For 1024x768 display
modes, the frame-buffer line size is the same as
the line delta, so no room is left for the compressed
display data between lines. In this case, the
compressed display buffer begins at the end of the
frame buffer region and is linearly mapped.

4.5.8.3 VGA Display Support
The graphics pipeline contains full hardware
support for the VGA front end. The VGA data is
stored in a 256KB buffer located in graphics
memory. The main task for SoftVGA is converting
the data in the VGA buffer to an 8 BPP frame buffer
that can be displayed by the MediaGX processor’s
hardware.

For some modes, the display controller can display
the VGA data directly and the data conversion is
not necessary. This includes standard VGA mode
13h and the variations of that mode used in several
games; the display controller can also directly
display VGA planar graphics modes D, E, F, 10, 11,
and 12. Likewise, the hardware can directly display
all of the higher-resolution VESA modes. Since the
frame buffer data is written directly to memory
instead of travelling across an external bus, the
MediaGX processor outperforms typical VGA
cards for these modes.

The display controller, however, does not directly
support text modes. SoftVGA must then convert
the characters and attributes in the VGA buffer to
an 8 BPP frame buffer the hardware uses for
display refresh. See Section 4 “Virtual Subsystem
Architecture” for SoftVGA details.

4.5.8.4 Cursor Pattern Memory
Organization

The cursor overlay patterns are loaded to indepen-
dent memory locations, usually mapped above the
frame buffer and compressed display buffer (off-
screen). The cursor buffer must start on a 16-byte
aligned boundary. It is linearly mapped, and is
always 256 bytes in size. If there is enough room
(256 bytes) after the compression-buffer line but
before the next frame-buffer line starts, the cursor
pattern may be loaded into this area to make effi-
cient use of the graphics memory.

Each pattern is a 32x32-pixel array of 2-bit codes.
The codes are a combination of AND mask and
XOR mask for a particular pixel. Each line of an
overlay pattern is stored as two DWORDs, with
each DWORD containing the AND masks for 16
pixels in the upper word and the XOR masks for 16
pixels in the lower word. DWORDs are arranged
with the leftmost pixel block being least significant
and the rightmost pixel block being most signifi-
cant. Pixels within words are arranged with the left-
most pixels being most significant and the
rightmost pixels being least significant.

Multiple cursor patterns may be loaded into the off-
screen memory. An application may simply change
the cursor start offset to select a new cursor
pattern. The new cursor pattern will be used at the
start of the next frame scan.

Page 154 Cyrix Corporation Confidential GXm_db_v2.0

� Display Controller

4.5.9 Display Controller Registers
The Display Controller maps 100h locations
starting at GX_BASE+8300h. Refer to Section
4.1.2 “Control Registers” on page 106 for instruc-
tions on accessing these registers.

The Display Controller Registers are divided into
six categories:
• Configuration and Status Registers

• Memory Organization Registers
• Timing Registers
• Cursor and Line Compare Registers
• Color Registers
• Palette and RAM Diagnostic Registers

Table 4-30 summarizes these registers and loca-
tions and the following subsections give detailed
register/bit formats.

Table 4-30 Display Controller Register Summary

GX_BASE+
Memory Offset Type Name/Function

Default
Value

Configuration and Status Registers

8300h-8303h R/W DC_UNLOCK

Display Controller Unlock — This register is provided to lock the most critical memory-
mapped display controller registers to prevent unwanted modification (write operations).
Read operations are always allowed.

00000000h

8304h-8307h R/W DC_GENERAL_CFG

Display Controller General Configuration — General control bits for the display controller.

00000000h

8308h-830Bh R/W DC_TIMING_CFG

Display Controller Timing Configuration — Status and control bits for various display
timing functions.

xx000000h

830Ch-830Fh R/W DC_OUTPUT_CFG

Display Controller Output Configuration — Status and control bits for pixel output
formatting functions.

xx000000h

Memory Organization Registers

8310h-8313h R/W DC_FB_ST_OFFSET

Display Controller Frame Buffer Start Address — Specifies offset at which the frame
buffer starts.

xxxxxxxxh

8314h-8317h R/W DC_CB_ST_OFFSET

Display Controller Compression Buffer Start Address — Specifies offset at which the
compressed display buffer starts.

xxxxxxxxh

8318h-831Bh R/W DC_CURS_ST_OFFSET

Display Controller Cursor Buffer Start Address — Specifies offset at which the cursor
memory buffer starts.

xxxxxxxxh

831Ch-831Fh -- Reserved 00000000h

8320h-8323h R/W DC_VID_ST_OFFSET

Display Controller Video Start Address — Specifies offset at which the video buffer starts.

xxxxxxxxh

8324h-8327h R/W DC_LINE_DELTA

Display Controller Line Delta — Stores line delta for the graphics display buffers.

xxxxxxxxh

8328h-832Bh R/W DC_BUF_SIZE

Display Controller Buffer Size — Specifies the number of bytes to transfer for a line of
frame buffer data and the size of the compressed line buffer.

xxxxxxxxh

832Ch-832Fh -- Reserved 00000000h

GXm_db_v2.0 Cyrix Corporation Confidential Page 155

Display Controller 4

Timing Registers

8330h-8333h R/W DC_H_TIMING_1

Display Controller Horizontal and Total Timing — Horizontal active and total timing
information.

xxxxxxxxh

8334h-8337h R/W DC_H_TIMING_2

Display Controller CRT Horizontal Blanking Timing — CRT horizontal blank timing
information.

xxxxxxxxh

8338h-833Bh R/W DC_H_TIMING_3

Display Controller CRT Sync Timing — CRT horizontal sync timing information.

xxxxxxxxh

833Ch-833Fh R/W DC_FP_H_TIMING

Display Controller Flat Panel Horizontal Sync Timing: Horizontal sync timing information
for an attached flat panel display.

xxxxxxxxh

8340h-8343h R/W DC_V_TIMING_1

Display Controller Vertical and Total Timing — Vertical active and total timing information.
The parameters pertain to both CRT and flat panel display.

xxxxxxxxh

8344h-8247h R/W DC_V_TIMING_2

Display Controller CRT Vertical Blank Timing — Vertical blank timing information.

xxxxxxxxh

8348h-834Bh R/W DC_V_TIMING_3

Display Controller CRT Vertical Sync Timing — CRT vertical sync timing information.

xxxxxxxxh

834Ch-834Fh R/W DC_FP_V_TIMING

Display Controller Flat Panel Vertical Sync Timing — Flat panel vertical sync timing
information.

xxxxxxxxh

Cursor and Line Compare Registers

8350h-8353h R/W DC_CURSOR_X

Display Controller Cursor X Position — X position information of the hardware cursor.

xxxxxxxxh

8354h-8357h RO DC_V_LINE_CNT

Display Controller Vertical Line Count — This read only register provides the current
scanline for the display. It is used by software to time update of the frame buffer to avoid
tearing artifacts.

xxxxxxxxh

8358h-835Bh R/W DC_CURSOR_Y

Display Controller Cursor Y Position — Y position information of the hardware cursor.

xxxxxxxxh

835Ch-835Fh R/W DC_SS_LINE_CMP

Display Controller Split-Screen Line Compare — Contains the line count at which the
lower screen begins in a VGA split-screen mode.

xxxxxxxxh

Color Registers

8360h-8363h R/W DC_CURSOR_COLOR

Display Controller Cursor Color — Contains the 8-bit indices for the cursor colors.

xxxxxxxxh

8364h-8367h -- Reserved 00000000h

8368h-836Bh R/W DC_BORDER_COLOR

Display Controller Border Color — Contains the 8-bit index for the border or overscan
color.

xxxxxxxxh

836Ch-836Fh -- Reserved 00000000h

Table 4-30 Display Controller Register Summary (cont.)

GX_BASE+
Memory Offset Type Name/Function

Default
Value

Page 156 Cyrix Corporation Confidential GXm_db_v2.0

� Display Controller

Palette and RAM Diagnostic Registers

8370h-8373h R/W DC_PAL_ADDRESS

Display Controller Palette Address — This register should be written with the address
(index) location to be used for the next access to the DC_PAL_DATA register.

xxxxxxxxh

8374h-8377h R/W DC_PAL_DATA

Display Controller Palette Data — Contains the data for a palette access cycle.

xxxxxxxxh

8378h-837Bh R/W DC_DFIFO_DIAG

Display Controller Display FIFO Diagnostic — This register is provided to enable testabil-
ity of the Display FIFO RAM.

xxxxxxxxh

837Ch-837Fh R/W DC_CFIFO_DIAG

Display Controller Compression FIFO Diagnostic — This register is provided to enable
testability of the Compressed Line Buffer (FIFO) RAM.

xxxxxxxxh

Table 4-30 Display Controller Register Summary (cont.)

GX_BASE+
Memory Offset Type Name/Function

Default
Value

GXm_db_v2.0 Cyrix Corporation Confidential Page 157

Display Controller 4
4.5.9.1 Configuration and Status

Registers
The Configuration and Status Registers group
consists of four 32-bit registers located at
GX_BASE+8300h-830Ch. These registers are
described below and Table 4-31 gives their bit
formats.

• Display Controller Unlock (DC_UNLOCK)
- This register is provided to lock the most crit-

ical memory-mapped display controller regis-
ters to prevent unwanted modification (write
operations). Read operations are always
allowed.

• Display Controller General Configuration
(DC_GENERAL_CFG)
- General control bits for the display controller.

• Display Controller Timing Configuration
(DC_TIMING_CFG)
- Status and control bits for various display

timing functions.

• Display Controller Output Configuration
(DC_OUTPUT_CFG)
- Status and control bits for pixel output format-

ting functions.

Table 4-31 Display Controller Configuration and Status Registers

Bit Name Description

GX_BASE+8300h-8303h DC_UNLOCK Register (R/W) Default Value = 00000000h

31:16 RSVD Reserved: Set to 0.

15:0 UNLOCK_
CODE

Unlock Code: This register must be written with the value 4758h in order to write to the protected regis-
ters. The following registers are protected by the locking mechanism.

DC_GENERAL_CFG DC_CB_ST_OFFSET,
DC_BUF_SIZE, DC_V_TIMING_2
DC_TIMING_CFG, DC_CURS_ST_OFFSET,
DC_H_TIMING_1, DC_V_TIMING_3
DC_OUTPUT_CFG, DC_H_TIMNG_2,
DC_FP_H_TIMING DC_FB_ST_OFFSET,
DC_LINE_DELTA, DC_FP_V_TIMING

GX_BASE+8304h-8307h DC_GENERAL_CFG (R/W) Default Value = 00000000h

31 DDCK Divide Dot Clock: Divide internal DOTCLK by two relative to PCLK (pertains only to 16 BPP display
modes utilizing an eight-bit RAMDAC): 0 = Disable; 1 = Enable.

30 DPCK Divide Pixel Clock: Divide PCLK by two relative to internal DOTCLK (pertains only to display modes
that pack two pixels together such as 1280x1024 on an external CRT only): 0 = Disable; 1 = Enable.

29 VRDY Video Ready Protocol: 0 = Low speed video port, use with V2.3 and older.
1 = High speed video port, use with V2.4 and newer.

28 VIDE Video Enable: Motion video port: 0 = Disable; 1 = Enable.

27 SSLC Split-screen Line Compare: VGA line compare function: 0 = Disable; 1 = Enable.

When enabled, the internal line counter will be compared to the value programmed in the DC_SS
_LINE_CMP register. If it matches, the frame buffer address will be reset to zero. This enables a split
screen function.

26 CH4S Chain 4 Skip: Allow display controller to read every 4th DWORD from the frame buffer for compatibility
with the VGA: 0 = Disable; 1 = Enable.

25 DIAG FIFO Diagnostic Mode: This bit allows testability of the on-chip Display FIFO and Compressed Line
Buffer via the diagnostic access registers. A low-to-high transition will reset the Display FIFO’s R/W
pointers and the Compressed Line Buffer’s read pointer. 0 = Normal operation; 1 = Enable.

Page 158 Cyrix Corporation Confidential GXm_db_v2.0

� Display Controller

24 LDBL Line Double: Allow line doubling for emulated VGA modes: 0 = Disable; 1 = Enable.

If enabled, this will cause each odd line to be replicated from the previous line as the data is sent to the
display. Timing parameters should be programmed as if no pixel doubling is used, however, the frame
buffer should be loaded with half the normal number of lines.

23 CKWR Clock Write: This bit will be output directly to an external clock chip or SYNDAC. The bit should be
pulsed high and low by the software to strobe data into the chip.

Note that this bit can be used in conjunction with the DACRS[2:0] pins.

22:20 DAC_RS[2:0] RAMDAC Register Selects: This 3-bit field sets the register select inputs to the external RAMDAC for
the next cycle. It is used to allow access to the extended register set of the RAMDAC. Alternatively,
these bits may be used in selecting the frequency for an external clock chip or SYNDAC. If more than
eight frequency selections are required, the RAMDAC extended register programming sequence must
be used or the additional select bit must be provided by some other means.

19 RTPM Real-Time Performance Monitoring: Allows real-time monitoring of a variety of internal MediaGX
processor signals by multiplexing the signals onto the CLKWR and DACRS[2:0] pins:
0 = Disable (Normal operation); 1 = Enable.

The CLKWR pin should not be fed to a clock chip or SYNDAC when this mode of operation is used, a
different programming scheme should be used for the clock chip using the DACRS[2:0] signals and
RAMDACRD# and RAMDACWR# signals. The selection of output signals is made using bits [27:16] of
the DC_BUF_SIZE register. The lower 12 bits of this field will select one of eight outputs for each pin.

18 FDTY Frame Dirty Mode: Allow entire frame to be flagged as dirty whenever a pixel write occurs to the frame
buffer (this is provided for modes that use a linearly mapped frame buffer for which the line delta is not
equal to 1024 or 2048 bytes): 0 = Disable; 1 = Enable.

When disabled, dirty bits are set according to the Y address of the pixel write.

17 RSVD Reserved: Set to 0.

16 CMPI Compressor Insert Mode: Insert one static frame between update frames: 0 = Disable; 1 = Enable.

An update frame is referred to as a frame in which dirty lines will be allowed to be updated. Conversely,
a static frame is referred to as a frame in which dirty lines will not be updated (although the image may
not be static, since lines that are not compressed successfully must be retrieved from the uncompressed
frame buffer).

15:12 DFIFO
HI-PRI END

LVL

Display FIFO High Priority End Level: This field specifies the depth of the display FIFO (in 64-bit
entries x 4) at which a high-priority request previously issued to the memory controller will end. The
value is dependent upon display mode.

This register should always be non-zero and should be larger than the start level.

11:8 DFIFO
HI-PRI

START LVL

Display FIFO High Priority Start Level: This field specifies the depth of the display FIFO (in 64-bit
entries x 4) at which a high-priority request will be sent to the memory controller to fill up the FIFO. The
value is dependent upon display mode.

This register should always be nonzero and should be less than the high-priority end level.

7:6 DCLK_
MUL

DCLK Multiplier: This 2-bit field specifies the clock multiplier for the input DCLK pin. After the input
clock is optionally multiplied, the internal DOTCLK, PCLK, and FPCLK may be divided as necessary.

00 = Forced Low
01 = 1 x DCLK
10 = 2 x DCLK
11 = 4 x DCLK

5 DECE Decompression Enable: Allow operation of internal decompression hardware:
0 = Disable; 1 = Enable.

4 CMPE Compression Enable: Allow operation of internal compression hardware: 0 = Disable; 1 = Enable

Table 4-31 Display Controller Configuration and Status Registers (cont.)

Bit Name Description

GXm_db_v2.0 Cyrix Corporation Confidential Page 159

Display Controller 4

3 PPC Pixel Panning Compatibility: This bit has the same function as that found in the VGA.

Allow pixel alignment to change when crossing a split-screen boundary - it will force the pixel alignment
to be 16-byte aligned: 0 = Disable; 1 = Enable.

If disabled, the previous alignment will be preserved when crossing a split-screen boundary.

2 DVCK Divide Video Clock: Selects frequency of VID_CLK pin:

0 = VID_CLK pin frequency is equal to one-half (½) the frequency of the core clock.
1 = VID_CLK pin frequency is equal to one-fourth (¼) the frequency of the core clock.

Note: Bit 28 (VIDE) must be set to 1 for this bit to be valid.

1 CURE Cursor Enable: Allow operation of internal hardware cursor: 0 = Disable; 1 = Enable.

0 DFLE Display FIFO Load Enable: Allow the display FIFO to be loaded from memory:
0 = Disable; 1 = Enable.

If disabled, no write or read operations will occur to the display FIFO.

If enabled, a flat panel should be powered down prior to setting this bit low. Similarly, if active, a CRT
should be blanked prior to setting this bit low.

GX_BASE+8308h-830Bh DC_TIMING_CFG Register (R/W) Default Value = xxx00000h

31 VINT
(RO)

Vertical Interrupt (Read Only): Is a vertical interrupt pending? 0 = No; 1 = Yes.

This bit is provided to maintain backward compatibility with the VGA. It corresponds to VGA port 3C2h
bit 7.

30 VNA
(RO)

Vertical Not Active (Read Only): Is the active part of a vertical scan is in progress (i.e. retrace, blank-
ing, or border)? 0 = Yes; 1 = No.

This bit is provided to maintain backward compatibility with the VGA. It corresponds to VGA port
3BA/3DA bit 3.

29 DNA
(RO)

Display Not Active (Read Only): Is the active part of a line is being displayed (i.e. retrace, blanking, or
border)? 0 = Yes; 1 = No.

This bit is provided to maintain backward compatibility with the VGA. It corresponds to VGA port
3BA/3DA bit 0.

28 SENS
(RO)

Monitor Sense (Read Only): This bit returns the result of the voltage comparator test of the RGB lines
from the external RAMDAC. The value will be a low level if one or more of the comparators exceed the
340 mV level indicating an unloaded line.

This bit can be tested repeatedly to determine the loading on the red, green, and blue lines by loading
the palette with various values. The BIOS can then determine whether a color, monochrome, or no mon-
itor is attached. If no RAMDAC is attached, the BIOS should assume that a color panel is attached and
operate in color mode. For VGA emulation, read operations to port 3C2 bit 4 are redirected here.

27 DDCI
(RO)

DDC Input (Read Only): This bit returns the value from the DDCIN pin that should reflect the value from
pin 12 of the VGA connector. It is used to provide support for the VESA Display Data Channel standard
level DDC1.

26:20 RSVD Reserved: Set to 0.

19:17 PWR_SEQ
DELAY

Power Sequence Delay: This 3-bit field sets the delay between edges for the power sequencing control
logic. The actual delay is this value multiplied by one frame period (typically 16ms).

Note that a value of zero will result in a delay of only one DOTCLK period.

Table 4-31 Display Controller Configuration and Status Registers (cont.)

Bit Name Description

Page 160 Cyrix Corporation Confidential GXm_db_v2.0

� Display Controller

16 BKRT Blink Rate:

0 = Cursor blinks on every 16 frames for a duration of 8 frames (approximately 4 times per second) and
VGA text characters will blink on every 32 frames for a duration of 16 frames (approximately 2 times per
second).

1 = Cursor blinks on every 32 frames for a duration of 16 frames (approximately 2 times per second) and
VGA text characters blink on every 64 frames for a duration of 32 frames (approximately 1 time per sec-
ond).

15 PXDB Pixel Double: Allow pixel doubling to stretch the displayed image in the horizontal dimension:
0 = Disable; 1 = Enable.

If bit 15 is enabled, timing parameters should be programmed as if no pixel doubling is used, however,
the frame buffer should be loaded with half the normal pixels per line. Also, the FB_LINE_SIZE parame-
ter in DC_BUF_SIZE should be set for the number of bytes to be transferred for the line rather than the
number displayed.

14 INTL Interlace Scan: Allow interlaced scan mode:

0 = Disable (non-interlaced scanning is supported)

1 = Enable (If a flat panel is attached, it should be powered down before setting this bit.)

13 PLNR VGA Planar Mode: This bit must be set high for all VGA planar display modes.

12 FCEN Flat Panel Center: Allows the border and active portions of a scan line to be qualified as “active” to a flat
panel display via the ENADISP signal. This allows the use of a large border region for centering the flat
panel display. 0 = Disable; 1 = Enable.

When disabled, only the normal active portion of the scan line will be qualified as active.

11 FVSP Flat Panel Vertical Sync Polarity:

0 = Causes TFT vertical sync signal to be normally low, generating a high pulse during sync interval.

1 = Causes TFT vertical sync signal to be normally high, generating a low pulse during sync interval.

10 FHSP Flat Panel Horizontal Sync Polarity:

0 = Causes TFT horizontal sync signal to be normally low, generating a high pulse during sync interval.

1 = Causes TFT horizontal sync signal to be normally high, generating a low pulse during sync interval.

9 CVSP CRT Vertical Sync Polarity:

0 = Causes CRT VSYNC signal to be normally low, generating a high pulse during the retrace interval.

1 = Cause CRT VSYNC signal to be normally high, generating a low pulse during the retrace interval.

8 CHSP CRT Horizontal Sync Polarity:

0 = Causes CRT HSYNC signal to be normally low, generating a high pulse during the retrace interval.

1 = Causes CRT HSYNC signal to be normally high, generating a low pulse during the retrace interval.

7 BLNK Blink Enable: Blink circuitry: 0 = Disable; 1 = Enable.

If enabled, the hardware cursor will blink as well as any pixels. This is provided to maintain compatibility
with VGA text modes. The blink rate is determined by the bit 16 (BKRT).

6 VIEN Vertical Interrupt Enable: Generate a vertical interrupt on the occurrence of the next vertical sync
pulse:

0 = Disable, vertical interrupt is cleared;
1 = Enable.

This bit is provided to maintain backward compatibility with the VGA.

5 TGEN Timing Generator Enable: Allow timing generator to generate the timing control signals for the display.

0 = Disable, the Timing Registers may be reprogrammed, and all circuitry operating on the DOTCLK will
be reset.

1 = Enable, no write operations are permitted to the Timing Registers.

Table 4-31 Display Controller Configuration and Status Registers (cont.)

Bit Name Description

GXm_db_v2.0 Cyrix Corporation Confidential Page 161

Display Controller 4

4 DDCK DDC Clock: This bit is used to provide the serial clock for reading the DDC data pin. This bit is multi-
plexed onto the CRTVSYNC pin, but in order for it to have an effect, the VSYE bit must be set low to dis-
able the normal vertical sync. Software should then pulse this bit high and low to clock data into the
MediaGX processor.

This feature is provided to allow support for the VESA Display Data Channel standard level DDC1.

3 BLKE Blank Enable: Allow generation of the composite blank signal to the display device:
0 = Disable; 1 = Enable.

When disabled, the BLANK# output will be a static low level. This allows VESA DPMS compliance.

2 VSYE Horizontal Sync Enable: Allow generation of the horizontal sync signal to a CRT display device:
0 = Disable; 1 = Enable.

When disabled, the HSYNC output will be a static low level. This allows VESA DPMS compliance.

Note that this bit only applies to the CRT; the flat panel HSYNC is controlled by the automatic power
sequencing logic.

1 HSYE Vertical Sync Enable: Allow generation of the vertical sync signal to a CRT display device:
0 = Disable; 1 = Enable.

When disabled, the VSYNC output will be a static low level. This allows VESA DPMS compliance.

Note that this bit only applies to the CRT; the flat panel VSYNC is controlled by the automatic power
sequencing logic.

0 FPPE Flat Panel Power Enable: On a low-to-high transition this bit will enable the flat panel power-up
sequence to begin. This will first turn on VDD to the panel, then start the clocks, syncs, and pixel bus,
then turn on the LCD bias voltage, and finally the backlight.

On a high-to-low transition, this bit will disable the outputs in the reverse order.

GX_BASE+830Ch-830Fh DC_OUTPUT_CFG Register (R/W) Default Value = xxx00000h

31:16 RSVD Reserved: Set to 0.

15 DIAG Compressed Line Buffer Diagnostic Mode: This bit will allow testability of the Compressed Line
Buffer via the diagnostic access registers. A low-to-high transition will reset the Compressed Line Buffer
write pointer. 0 = Disable (Normal operation); 1 = Enable.

14 CFRW Compressed Line Buffer Read/Write Select: Enables the read/write address to the Compressed Line
Buffer for use in diagnostic testing of the RAM.

0 = Write address enabled

1 = Read address enabled

13 PDEH Panel Data Enable High:

0 = The PANEL[17:9] data bus to be driven to a logic low level to effectively blank an attached flat panel
display or disable the upper pixel data bus for 16-bit pixel port RAMDACs.

1 = If no flat panel is attached, the PANEL[17:9] data bus will be driven with active pixel data. If a flat
panel is attached, setting this bit high will have no effect − the upper panel bus will be driven based upon
the power sequencing logic.

12 PDEL Panel Data Enable Low:

0 = This bit will cause the PANEL[8:0] data bus to be driven to a logic low level to effectively blank an
attached flat panel display or disable the lower panel data bus if it is not required.

1= If no flat panel is attached, the PANEL[8:0] data bus will be driven with active pixel data. If a flat panel
is attached, setting this bit high will have no effect − the lower panel bus will be driven based upon the
power sequencing logic.

Table 4-31 Display Controller Configuration and Status Registers (cont.)

Bit Name Description

Page 162 Cyrix Corporation Confidential GXm_db_v2.0

� Display Controller

11 PRMP Palette Re-map:

0 = The modified codes are sent to the RAMDAC and the external palette should uses the modified
mapping.

1 = Bits [8:1] of the palette output register are routed to the RAMDAC data bus. The MediaGX processor
internal palette RAM may be loaded with 8-bit VGA indices to translate the modified codes stored in dis-
play memory so that the RAMDAC data bus will contain the expected indices. The modified codes are
used to achieve character blinking in VGA text modes. This mode should be set high set high only for
desktop systems with no flat panel attached. It should only be necessary when 8514/A or VESA stan-
dard feature connector support is required.

10 CKSL Clock Select: Selects output used to clock PANEL[17:0], FPHSYNC, FPVSYNC, and ENADISP output
pins.

1 = PCLK

0 = FPCLK (based upon the power sequencing logic)

This bit should be high when using a 16-bit RAMDAC.

9 FRMS Frame Rate Modulation Select:

0 = Enables FRM circuitry to change the pattern displayed every frame.

1 = Enables FRM circuitry to change the pattern displayed every two frames (to allow for slower
response time liquid crystal materials).

8 3/4ADD 3- or 4-bit Add:

0 = Enables dither and FRM circuitry to operate on the 3 most significant bits of each color component
for 9-bit TFT panels.

1 = Enables the dither and FRM circuitry to operate on the 4 most significant bits of each color compo-
nent for 12-bit TFT panels.

7 2IND 2 Index Enable: Allow two 8-bit pixel indices to be output each PCLK to a 16-bit wide external RAM-
DAC. This mode is provided to support the 1280x1024x8 BPP display mode. In this mode, the PCLK fre-
quency is one-half the screen DOTCLK frequency. 0 = Disable; 1 = Enable.

6 2XCK 2 X Pixel Clock: Double the pixel clock on the 8-bit RAMDAC port so that a single 16-bit pixel can be
output in two clocks:

0 = Disable (single pixel will be output on each clock);
1 = Enable.

5 2PXE 2 Pixel Enable: If a TFT panel that supports two pixels per clock is attached and active, this bit will
cause the output mux to combine two pixels and cause the FPCLK to be divided by two:
0 = Disable (one pixel per clock will be output);
1 = Enable.

4 DITE Dither Enable: Allow a 2x2 spatial dither on the 3-bit or 4-bit color value. Note that dither will not be sup-
ported for 12-bit TFT panels when FRM is enabled. 0 = Disable; 1 = Enable.

3 FRME Frame-Rate Modulation Enable: Allow FRM to be performed on the 3-bit or 4-bit color value using the
next most significant bit after the least significant bit sent to the panel.

0 = Disable (no FRM performed);
1 = Enable.

2 PCKE PCLK Enable:

0 = PCLK is disabled and a low logic level is driven off-chip. Also, the RAMDAC data bus is driven low.
1 = Enable PCLK to be driven off-chip.

This clock operates the RAMDAC interface.

Table 4-31 Display Controller Configuration and Status Registers (cont.)

Bit Name Description

GXm_db_v2.0 Cyrix Corporation Confidential Page 163

Display Controller 4

1 16FMT 16 BPP Format: Selects RGB display mode:

0 = RGB 5-6-5 mode
1 = RGB 5-5-5 display mode

This bit is only significant if 8 BPP is low, indicating 16 BPP mode.

0 8BPP 8 BPP / 16 BPP Select:

0 = 16-bit per pixel display mode is selected. (Bit 1 of OUTPUT_CONFIG will indicate the format of the
16 bit data.)

1 = 8-bit-per-pixel display mode is selected. This is the also the mode used in VGA emulation.

Table 4-31 Display Controller Configuration and Status Registers (cont.)

Bit Name Description

Page 164 Cyrix Corporation Confidential GXm_db_v2.0

� Display Controller

4.5.10 Memory Organization
Registers

The MediaGX processor utilizes a graphics
memory aperture that is up to 4MB in size. The
base address of the graphics memory aperture is
stored in the DRAM controller. The graphics
memory is made up of the normal uncompressed
frame buffer, compressed display buffer, and
cursor buffer. Each buffer begins at a program-
mable offset within the graphics memory aperture.

The various memory buffers are arranged so as to
efficiently pack the data within the graphics
memory aperture. This requires flexibility in the
way that the buffers are arranged when different
display modes are in use. The cursor buffer is a
linear block so addressing is straightforward. The
frame buffer and compressed display buffer are
arranged based upon scan lines. Each scan line
has a maximum number of valid or active
DWORDs and a delta that, when added to the
previous line offset, points to the next line. In this
way, the buffers may be stored as linear blocks or
as logical blocks as may be desired.

The Memory Organization Registers group
consists of six 32-bit registers located at
GX_BASE+8310h-8328h. These registers are
described below and Table 4-32 gives their bit
formats.

• Display Controller Frame Buffer Start Address
(DC_FB_ST_OFFSET)
- Specifies the offset at which the frame buffer

starts.

• Display Controller Compression Buffer Start
Address (DC_CB_ST_OFFSET)
- Specifies the offset at which the compressed

display buffer starts.

• Display Controller Cursor Buffer Start Address
(DC_CURS_ST_OFFSET)
- Specifies the offset at which the cursor

memory buffer starts.

• Display Controller Video Start Address
(DC_VID_ST_OFFSET)
- Specifies the offset at which the video buffer

starts.

• Display Controller Line Delta (DC_LINE_DELTA)
- Stores the line delta for the graphics display

buffers.

• Display Controller Buffer Size (DC_BUF_SIZE)
- Specifies the number of bytes to transfer for a

line of frame buffer data and the size of the
compressed line buffer. (The compressed line
buffer will be invalidated if it exceeds the
CB_LINE_SIZE, bits [15:9].)

GXm_db_v2.0 Cyrix Corporation Confidential Page 165

Display Controller 4
Table 4-32 Display Controller Memory Organization Registers

Bit Name Description

GX_BASE+8310h-8313h DC_FB_ST_OFFSET Register (R/W) Default Value = xxxxxxxxh

31:22 RSVD Reserved: Set to 0.

21:0 FB_START
_OFFSET

Frame Buffer Start Offset: This value represents the byte offset of the starting location of the dis-
played frame buffer. This value may be changed to achieve panning across a virtual desktop or to
allow multiple buffering.

When this register is programmed to a nonzero value, the compression logic should be disabled. The
memory address defined by bits [21:4] will take effect at the start of the next frame scan. The pixel off-
set defined by bits [3:0] will take effect immediately (in general, it should only change during vertical
blanking).

GX_BASE+8314h-8317h DC_CB_ST_OFFSET Register (R/W) Default Value = xxxxxxxxh

31:22 RSVD Reserved: Set to 0.

21:0 CB_START
_OFFSET

Compressed Display Buffer Start Offset: This value represents the byte offset of the starting loca-
tion of the compressed display buffer. Bits [3:0] should always be programmed to zero so that the start
offset is aligned to a 16-byte boundary. This value should change only when a new display mode is set
due to a change in size of the frame buffer.

GX_BASE+8318h-831Bh DC_CUR_ST_OFFSET Register (R/W) Default Value = xxxxxxxxh

31:22 RSVD Reserved: Set to 0.

21:0 CUR_START
_OFFSET

Cursor Start Offset: This value represents the byte offset of the starting location of the cursor display
pattern. Bits [1:0] should always be programmed to zero so that the start offset is DWORD aligned.
The cursor data will be stored as a linear block of data. The active cursor will always be 32x32x2 bits
in size. Multiple cursor patterns may be loaded into off-screen memory. The start offset is loaded at the
start of a frame. Each cursor pattern will be exactly 256 bytes in size. Note that if there is a Y offset for
the cursor pattern, the cursor start offset should be set to point to the first displayed line of the cursor
pattern. The cursor code for a given pixel is determined by an AND mask and an XOR mask. Each line
of a cursor will be stored as two DWORDs, with each DWORD containing the AND masks for 16 pixels
in the upper word and the XOR masks for 16 pixels in the lower word. DWORDs will be arranged with
the leftmost block of 16 pixels being least significant and the rightmost block being most significant.
Pixels within words will be arranged with the leftmost pixels being most significant and the rightmost
pixels being least significant. The 2-bit cursor codes are as follows.

AND XOR Displayed

0 0 Cursor Color 0
0 1 Cursor Color 1
1 0 Transparent − Background Pixel
1 1 Inverted − Bit-wise Inversion of Background Pixel

GX_BASE+831Ch-831Fh Reserved Default Value = 00000000h

GX_BASE+8320h-8323h DC_VID_ST_OFFSET Register (R/W) Default Value = xxxxxxxxh

31:21 RSVD Reserved: Set to 0.

20:0 VID_START
_OFFSET

Video Buffer Start Offset Value: This is the value for the Video Buffer Start Offset. It represents the
starting location for Video Buffer. Bits [3:0] should always be programmed as zero so that the start off-
set is aligned to a 16 byte boundary.

Page 166 Cyrix Corporation Confidential GXm_db_v2.0

� Display Controller

GX_BASE+8324h-8327h DC_LINE_DELTA Register (R/W) Default Value = xxxxxxxxh

31:22 RSVD Reserved: Set to 0.

21:12 CB_LINE_
DELTA

Compressed Display Buffer Line Delta: This value represents number of DWORDs that, when
added to the starting offset of the previous line, will point to the start of the next compressed line in
memory. It is used to always maintain a pointer to the starting offset for the compressed display buffer
line being loaded into the display FIFO.

11:10 RSVD Reserved: Set to 0.

9:0 FB_LINE_
DELTA

Frame Buffer Line Delta: This value represents number of DWORDs that, when added to the starting
offset of the previous line, will point to the start of the next frame buffer line in memory. It is used to
always maintain a pointer to the starting offset for the frame buffer line being loaded into the display
FIFO.

GX_BASE+8328h-832Bh DC_BUF_SIZE Register (R/W) Default Value = xxxxxxxxh

31:30 RSVD Reserved: Set to 0.

29:16 VID_BUF_
SIZE

Video Buffer Size: These bits set the video buffer size, in 64-byte segments. The maximum size is
1MB.

15:9 CB_LINE_
SIZE

Compressed Display Buffer Line Size: This value represents the number of DWORDs for a valid
compressed line plus 1. It is used to detect an overflow of the compressed data FIFO. It should never
be larger than 41h or 65Dh since the maximum size of the compressed data FIFO is 64 DWORDs.

8:0 FB_LINE_
SIZE

Frame Buffer Line Size: This value specifies the number of QWORDS (8-byte segments) to transfer
for each display line from the frame buffer.

If panning is enabled, this value can generally be programmed to the displayed number of QWORDS
+ 2 so that enough data is transferred to handle any possible alignment. Extra pixel data in the FIFO at
the end of a line will automatically be discarded.

GX_BASE+832Ch-832Fh Reserved Default Value = 00000000h

Table 4-32 Display Controller Memory Organization Registers (cont.)

Bit Name Description

GXm_db_v2.0 Cyrix Corporation Confidential Page 167

Display Controller 4
4.5.11 Timing Registers
The MediaGX processor timing registers control
the generation of sync, blanking, and active display
regions. They provide complete flexibility in inter-
facing to both CRT and flat panel displays. These
registers will generally be programmed by the
BIOS from an INT 10h call or by the extended
mode driver from a display timing file. Note that the
horizontal timing parameters are specified in char-
acter clocks, which actually means pixels divided
by 8, since all characters are bit mapped. For inter-
laced display the vertical counter will be incre-
mented twice during each display line, so vertical
timing parameters should be programmed with
reference to the total frame rather than a single
field.

The Timing Registers group consists of six 32-bit
registers located at GX_BASE+8330h-834Ch.
These registers are described below and Table 4-
33 gives their bit formats.

• Display Controller Horizontal and Total Timing
(DC_H_TIMING_1)
- Contains horizontal active and total timing

information.

• Display Controller CRT Horizontal Blanking
Timing (DC_H_TIMING_2 Register)
- Contains CRT horizontal blank timing infor-

mation.

• Display Controller CRT Sync Timing
(DC_H_TIMING_3)
- Contains CRT horizontal sync timing informa-

tion. Note, however, that this register should
also be programmed appropriately for flat
panel only display since the horizontal sync
transition determines when to advance the
vertical counter.

• Display Controller Flat Panel Horizontal Sync
Timing (DC_FP_H_TIMING)
- Contains horizontal sync timing information

for an attached flat panel display.

• Display Controller Vertical and Total Timing
(DC_V_TIMING_1)
- Contains vertical active and total timing infor-

mation. The parameters pertain to both CRT
and flat panel display.

• Display Controller CRT Vertical Blank Timing
(DC_V_TIMING_2)
- Contains vertical blank timing information.

• Display Controller CRT Vertical Sync Timing
(DC_V_TIMING_3)
- Contains CRT vertical sync timing informa-

tion.

• Display Controller Flat Panel Vertical Sync
Timing (DC_FP_V_TIMING)
- Contains flat panel vertical sync timing infor-

mation.

Page 168 Cyrix Corporation Confidential GXm_db_v2.0

� Display Controller

Table 4-33 Display Controller Timing Registers

Bit Name Description

GX_BASE+8330h-8333h DC_H_TIMING_1 Register (R/W) Default Value = xxxxxxxxh

31:27 RSVD Reserved: Set to 0.

26:19 H_TOTAL Horizontal Total: This field represents the total number of character clocks for a given scan line
minus 1. Note that the value is necessarily greater than the H_ACTIVE field because it includes
border pixels and blanked pixels. For flat panels, this value will never change. The field [26:16]
may be programmed with the pixel count minus 1, although bits [18:16] are ignored. The horizon-
tal total is programmable on 8-pixel boundaries only.

18:16 RSVD Reserved: These bits are readable and writable but have no effect.

15:11 RSVD Reserved: Set to 0.

10:3 H_ACTIVE Horizontal Active: This field represents the total number of character clocks for the displayed
portion of a scan line minus 1. The field [10:0] may be programmed with the pixel count minus 1,
although bits [2:0] are ignored. The active count is programmable on 8-pixel boundaries only. Note
that for flat panels, if this value is less than the panel active horizontal resolution (H_PANEL), the
parameters H_BLANK_START, H_BLANK_END, H_SYNC_START, and H_SYNC_END should
be reduced by the value of H_ADJUST (or the value of H_PANEL - H_ACTIVE / 2)to achieve hor-
izontal centering.

2:0 RSVD Reserved: These bits are readable and writable but have no effect.

Note: Note also that for simultaneous CRT and flat panel display the H_ACTIVE and H_TOTAL parameters pertain to both.

GX_BASE+8334h-8337h DC_H_TIMING_2 Register (R/W) Default Value = xxxxxxxxh

31:27 RSVD Reserved: Set to 0.

26:19 H_BLK_END Horizontal Blank End: This field represents the character clock count at which the horizontal
blanking signal becomes inactive minus 1. The field [26:16] may be programmed with the pixel
count minus 1, although bits [18:16] are ignored. The blank end position is programmable on 8-
pixel boundaries only.

18:16 RSVD Reserved: These bits are readable and writable but have no effect.

15:11 RSVD Reserved: Set to 0.

10:3 H_BLK_START Horizontal Blank Start: This field represents the character clock count at which the horizontal
blanking signal becomes active minus 1. The field [10:0] may be programmed with the pixel count
minus 1, although bits [2:0] are ignored. The blank start position is programmable on 8-pixel
boundaries only.

2:0 RSVD Reserved: These bits are readable and writable but have no effect.

Note: A minimum of four character clocks is required for the horizontal blanking portion of a line in order for the timing generator
to function correctly.

GXm_db_v2.0 Cyrix Corporation Confidential Page 169

Display Controller 4

GX_BASE+8338h-833Bh DC_H_TIMING_3 Register (R/W) Default Value = xxxxxxxxh

31:27 RSVD Reserved: Set to 0.

26:19 H_SYNC_END Horizontal Sync End: This field represents the character clock count at which the CRT horizontal
sync signal becomes inactive minus 1. The field [26:16] may be programmed with the pixel count
minus 1, although bits [18:16] are ignored. The sync end position is programmable on 8-pixel
boundaries only.

18:16 RSVD Reserved: These bits are readable and writable but have no effect.

15:11 RSVD Reserved: Set to 0.

10:3 H_SYNC_START Horizontal Sync Start: This field represents the character clock count at which the CRT horizon-
tal sync signal becomes active minus 1. The field [10:0] may be programmed with the pixel count
minus 1, although bits [2:0] are ignored. The sync start position is programmable on 8-pixel
boundaries only.

2:0 RSVD Reserved: These bits are readable and writable but have no effect.

Note: This register should also be programmed appropriately for flat panel only display since the horizontal sync transition deter-
mines when to advance the vertical counter.

GX_BASE+833Ch-833Fh C_FP_H_TIMING Register (R/W) Default Value = xxxxxxxxh

31:27 RSVD Reserved: Set to 0.

26:16 FP_H_SYNC
_END

Flat Panel Horizontal Sync End: This field represents the pixel count at which the flat panel hor-
izontal sync signal becomes inactive minus 1.

15:11 RSVD Reserved: Set to 0.

10:0 FP_H_SYNC
_START

Flat Panel Horizontal Sync Start: This field represents the pixel count at which the flat panel hor-
izontal sync signal becomes active minus 1.

Note: All values are specified in pixels rather than character clocks to allow precise control over sync position. Note, however, that
for flat panels which combine two pixels per panel clock, these values should be odd numbers (even pixel boundary) to
guarantee that the sync signal will meet proper setup and hold times.

GX_BASE+8340h-8343h DC_V_TIMING_1 Register (R/W) Default Value = xxxxxxxxh

31:27 RSVD Reserved: Set to 0.

26:16 V_TOTAL Vertical Total: This field represents the total number of lines for a given frame scan minus 1. Note
that the value is necessarily greater than the V_ACTIVE field because it includes border lines and
blanked lines. If the display is interlaced, the total number of lines must be odd, so this value
should be an even number.

15:11 RSVD Reserved: Set to 0.

10:0 V_ACTIVE Vertical Active: This field represents the total number of lines for the displayed portion of a frame
scan minus 1. Note that for flat panels, if this value is less than the panel active vertical resolution
(V_PANEL), the parameters V_BLANK_START, V_BLANK_END, V_SYNC_START, and
V_SYNC_END should be reduced by the following value (V_ADJUST) to achieve vertical center-
ing: V_ADJUST = (V_PANEL - V_ACTIVE) / 2

If the display is interlaced, the number of active lines should be even, so this value should be an
odd number.

Note: All values are specified in lines.

Table 4-33 Display Controller Timing Registers (cont.)

Bit Name Description

Page 170 Cyrix Corporation Confidential GXm_db_v2.0

� Display Controller

GX_BASE+8344h-8347h DC_V_TIMING_2 Register (R/W) Default Value = xxxxxxxxh

31:27 RSVD Reserved: Set to 0.

26:16 V_BLANK_END Vertical Blank End: This field represents the line at which the vertical blanking signal becomes
inactive minus 1. If the display is interlaced, no border is supported, so this value should be identi-
cal to V_TOTAL.

15:11 RSVD Reserved: Set to 0.

10:0 V_BLANK_
START

Vertical Blank Start: This field represents the line at which the vertical blanking signal becomes
active minus 1. If the display is interlaced, this value should be programmed to V_ACTIVE plus 1.

Note: All values are specified in lines. For interlaced display, no border is supported, so blank timing is implied by the total/active
timing.

GX_BASE+8348h-834Bh DC_V_TIMING_3 Register (R/W) Default Value = xxxxxxxxh

31:27 RSVD Reserved: Set to 0.

26:16 V_SYNC_END Vertical Sync End: This field represents the line at which the CRT vertical sync signal becomes
inactive minus 1.

15:11 RSVD Reserved: Set to 0.

10:0 V_SYNC_START Vertical Sync Start: This field represents the line at which the CRT vertical sync signal becomes
active minus 1. For interlaced display, note that the vertical counter is incremented twice during
each line and since there are an odd number of lines, the vertical sync pulse will trigger in the mid-
dle of a line for one field and at the end of a line for the subsequent field.

Note: All values are specified in lines.

GX_BASE+834Ch-834Fh DC_FP_V_TIMING Register (R/W) Default Value = xxxxxxxxh

31:27 RSVD Reserved: Set to 0.

26:16 FP_V_SYNC
_END

Flat Panel Vertical Sync End: This field represents the line at which the flat panel vertical sync
signal becomes inactive minus 2. Note that the internal flat panel vertical sync is latched by the flat
panel horizontal sync prior to being output to the panel.

15:11 RSVD Reserved: Set to 0.

10:0 FP_VSYNC
_START

Flat Panel Vertical Sync Start: This field represents the line at which the internal flat panel verti-
cal sync signal becomes active minus 2. Note that the internal flat panel vertical sync is latched by
the flat panel horizontal sync prior to being output to the panel.

Note: All values are specified in lines.

Table 4-33 Display Controller Timing Registers (cont.)

Bit Name Description

GXm_db_v2.0 Cyrix Corporation Confidential Page 171

Display Controller 4
4.5.12 Cursor Position Registers
The Cursor Position Registers contain pixel coordi-
nate information for the cursor. These values are
not latched by the timing generator until the start of
the frame to avoid tearing artifacts when moving
the cursor.

The Cursor Position group consists of four 32-bit
registers located at to GX_BASE+8350h-835Ch.
These registers are described below and Table 4-
34 gives their bit formats.

• Display Controller Cursor X Position
(DC_CURSOR_X)
- Contains the X position information of the

hardware cursor.

• Display Controller Vertical Line Count
(DC_V_LINE_CNT)
- This register is read only. It provides the

current scanline for the display. It is used by
software to time update of the frame buffer to
avoid tearing artifacts.

• Display Controller Cursor Y Position
(DC_CURSOR_Y)
- Contains the Y position information of the

hardware cursor.

• Display Controller Split-Screen Line Compare
(DC_SS_LINE_CMP)
- Contains the line count at which the lower

screen begins in a VGA split-screen mode.

Table 4-34 Display Controller Cursor Position Registers

Bit Name Description

GX_BASE+8350h-8353h DC_CURSOR_X Register (R/W) Default Value = xxxxxxxxh

31:16 RSVD Reserved: Set to 0.

15:11 X_OFFSET X Offset: This field represents the X pixel offset within the 32x32 cursor pattern at which the displayed
portion of the cursor is to begin. Normally, this value is set to zero to display the entire cursor pattern,
but for cursors for which the "hot spot" is not at the left edge of the pattern, it may be necessary to dis-
play the rightmost pixels of the cursor only as the cursor moves close to the left edge of the display.

10:0 CURSOR_X Cursor X: This field represents the X coordinate of the pixel at which the upper left corner of the cur-
sor is to be displayed. This value is referenced to the screen origin (0,0) which is the pixel in the upper
left corner of the screen.

GX_BASE+8354h-8357h DC_V_LINE_CNT Register (RO) Default Value = xxxxxxxxh

31:11 RSVD Reserved (Read Only)

10:0 V_LINE_CNT
(RO)

Vertical Line Count (Read Only): This value is the current scanline of the display.

Note: The value in this register is driven directly off of the DOTCLK, and consequently it is not synchronized with the CPU clock.
Software should read this register twice and compare the result to ensure that the value is not transitioning.

Page 172 Cyrix Corporation Confidential GXm_db_v2.0

� Display Controller

GX_BASE+8358h-835Bh DC_CURSOR_Y Register (R/W) Default Value = xxxxxxxxh

31:16 RSVD Reserved: Set to 0.

15:11 Y_OFFSET Y Offset: This field represents the Y line offset within the 32x32 cursor pattern at which the displayed
portion of the cursor is to begin. Normally, this value is set to zero to display the entire cursor pattern,
but for cursors for which the "hot spot" is not at the top edge of the pattern, it may be necessary to dis-
play the bottommost lines of the cursor only as the cursor moves close to the top edge of the display.
Note that if this value is nonzero, the CUR_START_OFFSET must be set to point to the first cursor
line to be displayed.

10 RSVD Reserved: Set to 0.

9:0 CURSOR_Y Cursor Y: This field represents the Y coordinate of the line at which the upper left corner of the cursor
is to be displayed. This value is referenced to the screen origin (0,0) which is the pixel in the upper left
corner of the screen.

This field is alternately used as the line-compare value for a newly-programmed frame buffer start off-
set. This is necessary for VGA programs that change the start offset in the middle of a frame. In order
to use this function, the hardware cursor function should be disabled.

GX_BASE+835Ch-835Fh DC_SS_LINE_CMP Register (R/W) Default Value = xxxxxxxxh

31:11 RSVD Reserved: Set to 0.

10:0 SS_LINE_C
MP

Split-Screen Line Compare: This is the line count at which the lower screen begins in a VGA split-
screen mode.

Note: When the internal line counter hits this value, the frame buffer address is reset to 0. This function is enabled with the SSLC
bit in the DC_GENERAL_CFG register.

Table 4-34 Display Controller Cursor Position Registers (cont.)

Bit Name Description

GXm_db_v2.0 Cyrix Corporation Confidential Page 173

Display Controller 4
4.5.13 Color Registers
These registers are used in 8 BPP display mode
with an external RAMDAC for passing cursor and
border color indices to the palette in the RAMDAC.
For the flat panel color translation, the cursor and
border color data is loaded into palette extensions
as described in the Palette Access Registers
section.

The Color Registers group consists of two 32-bit
registers located at GX_BASE+8360h-8368h.

These registers are described below and Table 4-
35 gives their bit formats.

• Display Controller Cursor Color
(DC_CURSOR_COLOR)
- Contains the 8-bit indices for the cursor

colors.

• Display Controller Border Color
(DC_BORDER_COLOR)
- Contains the 8-bit index for the border or

overscan color.

Table 4-35 Display Controller Color Registers

Bit Name Description

GX_BASE+8360h-8363h DC_CURSOR_COLOR Register (R/W) Default Value = xxxxxxxxh

31:16 RSVD Reserved: Set to 0.

15:8 CURS_CLR_1 Cursor Color 1: This is the 8-bit index to the external palette for the cursor color 1. It should point
to a reserved or static color.

7:0 CURS_CLR_0 Cursor Color 0: This is the 8-bit index to the external palette for the cursor color 0. It should point
to a reserved or static color.

GX_BASE+8364h-8367h Reserved Default Value = 00000000h

GX_BASE+8368h-836Bh DC_BORDER_COLOR Register (RO) Default Value = xxxxxxxxh

31:8 RSVD Reserved: Set to 0.

7:0 BORDER_CLR Border Color: This is the 8-bit index to the external palette for the border color. It should point to a
reserved or static color.

GX_BASE+836Ch-836Fh Reserved Default Value = 00000000h

Page 174 Cyrix Corporation Confidential GXm_db_v2.0

� Display Controller

4.5.14 Palette Access Registers
These registers are used for accessing the internal
palette RAM and extensions. In addition to the
standard 256 entries for 8 BPP color translation,
the MediaGX processor palette has extensions for
cursor colors and overscan (border) color.

The Palette Access Register group consists of four
32-bit registers located at GX_BASE+8370h-
837Ch. These registers are described below and
Table 4-36 gives their bit formats.

• Display Controller Palette Address
(DC_PAL_ADDRESS)
- This register should be written with the

address (index) location to be used for the
next access to the DC_PAL_DATA register.

• Display Controller Palette Data (DC_PAL_DATA)
- Contains the data for a palette access cycle.

• Display Controller Display FIFO Diagnostic
(DC_DFIFO_DIAG)
- This register is provided to enable testability

of the Display FIFO RAM.

• Display Controller Compression FIFO Diag-
nostic (DC_CFIFO_DIAG)
- This register is provided to enable testability

of the Compressed Line Buffer (FIFO) RAM.

Table 4-36 Display Controller Palette and RAM Diagnostic Registers

Bit Name Description

GX_BASE+8370h-8373h DC_PAL_ADDRESS Register (R/W) Default Value = xxxxxxxxh

31:9 RSVD Reserved: Set to 0.

8:0 PALETTE_ADDR Palette Address: This 9-bit field specifies the address to be used for the next access to the
DC_PAL_DATA register. Each access to the data register will automatically increment the palette
address register. If non-sequential access is made to the palette, the address register must be
loaded between each non-sequential data block. The address ranges are as follows.

Address Color
0h - FFh Standard Palette Colors
100h Cursor Color 0
101h Cursor Color 1
102h Reserved
103h Reserved
104h Overscan Color
105h - 1FFh Not Valid

Note that in general, 18-bit values will be loaded for all color extensions. However, if a 16 BPP
mode is active, only the appropriate most significant bits will be used (5-5-5 or 5-6-5). If an 8 BPP
display mode is active and an external RAMDAC is used, the cursor index will be obtained from
the DC_CURSOR_COLOR register. The border index will be obtained from the
DC_BORDER_COLOR register.

GX_BASE+8374h-8377h DC_PAL_DATA Register (R/W) Default Value = xxxxxxxxh

31:18 RSVD Reserved: Set to 0.

17:0 PALETTE_DATA Palette Data: This 18-bit field contains the read or write data for a palette access.

Note: When a read or write to the palette RAM occurs, the previous output value will be held for one additional DOTCLK period.
This effect should go unnoticed and will provide for sparkle-free update. Prior to a read or write to this register, the
DC_PAL_ADDRESS register should be loaded with the appropriate address. The address automatically increments after
each access to this register, so for sequential access, the address register need only be loaded once

GXm_db_v2.0 Cyrix Corporation Confidential Page 175

Display Controller 4

GX_BASE+8378h-837Bh DC_DFIFO_DIAG Register (R/W) Default Value = xxxxxxxxh

31:0 DISPLAY FIFO
DIAGNOSTIC

DATA

Display FIFO Diagnostic Read or Write Data: Before this register is accessed, the DIAG bit in
DC_GENERAL_CFG register should be set high and the DFLE bit should be set low. Since, each
FIFO entry is 64 bits, an even number of write operations should be performed. Each pair of write
operations will cause the FIFO write pointer to increment automatically. After all write operations
have been performed, a single read of don't care data should be performed to load data into the
output latch. Each subsequent read will contain the appropriate data which was previously written.
Each pair of read operations will cause the FIFO read pointer to increment automatically. A pause
of at least four core clocks should be allowed between subsequent read operations to allow ade-
quate time for the shift to take place.

GX_BASE+837Ch-837Fh DC_CFIFO_DIAG Register (R/W) Default Value = xxxxxxxxh

31:0 COMPRESSED
FIFO DIAGNOS-

TIC DATA

Compressed Data FIFO Diagnostic Read or Write Data: Before this register is accessed, the
DIAG bit in DC_GENERAL_CFG register should be set high and the DFLE bit should be set low.
Also, the DIAG bit in DC_OUTPUT_CFG should be set high and the CFRW bit in
DC_OUTPUT_CFG should be set low. After each write, the FIFO write pointer will automatically
increment. After all write operations have been performed, the CFRW bit of DC_OUTPUT_CFG
should be set high to enable read addresses to the FIFO and a single read of don't care data
should be performed to load data into the output latch. Each subsequent read will contain the
appropriate data which was previously written. After each read, the FIFO read pointer will auto-
matically increment.

Table 4-36 Display Controller Palette and RAM Diagnostic Registers (cont.)

Bit Name Description

Page 176 Cyrix Corporation Confidential GXm_db_v2.0

� Display Controller

4.5.15 Cx5520/Cx5530 Display
Controller Interface

As previously stated in Section 1.3 “System
Designs” on page 7, the MediaGX processor can
interface with either the Cx5520 or Cx5530 I/O
Companion chip. This section will discuss the
specifics on signal connections between the two
devices with regards to the display controller.

When the MediaGX processor is used in a system
with the Cx5520/Cx5530, the need for an external

RAMDAC is eliminated. The Cx5520/Cx5530
contains the DACs, a video accelerator engine,
and the TFT interface.

A MediaGX processor and Cx5520/Cx5530-based
system supports both portable and desktop config-
urations. Figure 4-16 shows the signal connections
for both types of systems.

Figure 4-16 Display Controller Signal Connections

DCLK

PCLK

FP_HSYNC
FP_VSYNC
ENA_DISP

VID_RDY

VID_CLK

VID_DATA[7:0]
PIXEL[17:12]

PIXEL[11:6]

HSYNC
VSYNC

R[5:0]
G[5:0]
B[5:0]

CLK

VDD
12VBKL

Pin 13
Pin 14

Pin 3
Pin 2
Pin 1

MediaGX
Processor

Power
Control

TFT

ENAB

VGA
Pin 15
Pin 12

Flat

Cx5520/Cx5530
I/O Companion

DCLK

PCLK

FP_HSYNC
FP_VSYNC
FP_DISP_ENA
VID_RDY

VID_CLK

VID_DATA[7:0]
PIXEL[23:18]*
PIXEL[15:10]*

PIXEL[5:0]
VID_VAL

CRT_HSYNC
CRT_VSYNC

PIXEL[7:2]*
VID_VAL
HSYNC
VSYNC

FP_ENA_VDD
FP_ENA_BKL

FP_DISP_ENA_OUT

FP_HSYNC
FP_VSYNC

FP_CLK

FP_DATA[17:12]
FP_DATA[11:16]

FP_DATA[5:0]

Logic

HSYNC_OUT
VSYNC_OUT

IOUTR
IOUTG
IOUTB

DDC_SCL
DDC_SDA

Note: *Connect PIXEL[17:16] PIXEL[9:8], and PIXEL[1:0] on the Cx5520 to ground.

Panel

Port

Portable
Configuration

GXm_db_v2.0 Cyrix Corporation Confidential Page 177

Display Controller 4
4.5.15.1 Cx5520/Cx5530 Video Port

Data Transfer
VID_VAL indicates that the MediaGX processor
has placed valid data on VID_DATA[7:0]. VID_RDY
indicates that the Cx5520/Cx5530 is ready to
accept the next byte of video data.

VID_DATA[7:0] is advanced when both VID_VAL
and VID_RDY are asserted. VID_RDY is driven
one clock early to the MediaGX processor while
VID_VAL is driven coincident with VID_DATA[7:0].
A sample interface functional timing diagram is
shown in Figure 4-17.

Figure 4-17 Video Port Data Transfer (Cx5520/Cx5530)

VID_CLK

VID_VAL 8 CLKs 8 + 3 CLKs

VID_RDY 3 CLKs

4 CLKs
VID_DATA

8 CLKs 1 2
CLK CLKs

1
CLK

2
CLKs

2
CLKs

4 CLKs

Note: VID_CLK = CORE_CLK/2

[7:0]

Page 178 Cyrix Corporation Confidential GXm_db_v2.0

� PCI Controller

4.6 PCI Controller
The MediaGX processor includes an integrated
PCI controller with the following features.

4.6.1 X-Bus PCI Slave
• 16-byte PCI write buffer
• 16-byte PCI read buffer from X-bus
• Supports cache line bursting
• Write/Inv line support
• Pacing of data for read or write operations with

X-bus
• No active byte enable transfers supported

4.6.2 X-Bus PCI Master
• 16 byte X-bus to PCI write buffer
• Configuration read/write Support
• Int Acknowledge support
• Lock conversion
• Support fast back-to-back cycles as slave

4.6.3 PCI Arbiter
• Fixed, rotating, hybrid, or ping-pong arbitration

(programmable)
• Support four masters, three on PCI
• Internal REQ for CPU
• Master retry mask counter
• Master dead timer
• Resource or total system lock support

4.6.4 Generating Configuration
Cycles

Configuration space is a physical address space
unique to PCI. Configuration Mechanism #1 must
be used by software to generate configuration
cycles. Two DWORD I/O locations are used in this
mechanism. The first DWORD location (CF8h)
references a read/write register that is named
CONFIG_ADDRESS. The second DWORD
address (CFCh) references a register named
CONFIG_DATA. The general method for accessing
configuration space is to write a value into
CONFIG_ADDRESS that specifies the PCI bus,
device on that bus, and configuration register in
that device being accessed. A read or write to
CONFIG_DATA will then cause the bridge to trans-
late that CONFIG_ADDRESS value to the
requested configuration cycle on the PCI bus.

4.6.5 Generating Special Cycles
A special cycle is a broadcast message to the PCI
bus. Two hardcoded special cycle messages are
defined in the command encode: HALT and SHUT-
DOWN. Software can also generate special cycles
by using special cycle generation for configuration
mechanism #1 as described in the PCI Specifica-
tion 3.6.4.1.2 and briefly described here. To initiate
a special cycle from software, the host must write a
value to CONFIG_ADDRESS encoded as shown
in Table 4-37.

The next value written to CONFIG_DATA is the
encoded special cycle. Type 0 or Type 1 conver-
sion will be based on the Bus Bridge number
matching the MediaGX processor’s bus number of
00h.

Table 4-37 Special-Cycle Code to CONFIG_ADDRESS

31 30 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 0 0 0 0 Bus No. = Bridge 1 1 1 1 1 1 1 1 0 0 0 0 0 0

CONFIG_EN RSVD BUS NUMBER DEVICE NUMBER FUNCTION
NUMBER

REGISTER NUMBER TRANS
LATION
TYPE

GXm_db_v2.0 Cyrix Corporation Confidential Page 179

PCI Controller 4
4.6.6 PCI Configuration Space

Control Registers
There are two registers in this category:
CONFIG_ADDRESS and CONFIG_DATA.

The CONFIG_ADDRESS register contains the
address information for the next configuration
space access to CONFIG_DATA. Only DWORD

accesses are permitted to this register all others
will be forwarded as normal I/O cycles to the PCI
bus.

The CONFIG_DATA register contains the data that
is sent or received during a PCI configuration
space access.

Table 4-38 gives the bit formats for these two regis-
ters.

Table 4-38 PCI Configuration Registers

Bit Name Description

I/O Offset 0CF8h-0CFBh CONFIG_ADDRESS Register (R/W) Default Value = 00000000h

31 GFC_EN CONFIG ENABLE: Determines when accesses should be translated to configuration cycles on
the PCI bus, or treated as a normal I/O operation. This register will be updated only on full
DWORD I/O operations to the CONFIG_ADDRESS. Any other accesses are treated as normal I/O
cycles in order to allow I/O devices to use BYTE or WORD registers at the same address an
remain unaffected. Once bit 31 is set high, subsequent accesses to CONFIG_DATA are then
translated to configuration cycles.

30:24 RSVD Reserved: Set to 0.

23:16 BUS Bus: Specifies a PCI bus number in the hierarchy of 1 to 256 buses.

15:11 DEVICE Device: Selects a device on a specified bus. A device value of 00h will select the MediaGX pro-
cessor if the bus number is also 00h. DEVICE values of 01h to 15h will be mapped to AD[31:11],
so only 21 of the 32 possible devices are supported. A DEVICE value of 00001b will map to
AD[11] while a device of 10101b will map to AD[31].

10:8 FUNCTION Function: Selects a function in a multi-function device.

7:2 REGISTER Register: Chooses a configuration space register in the selected device.

1:0 TT Translation Type Bits: These bits indicate if the configuration access is local or one that requires
translation through other bridges to another PCI bus. When an access occurs to the
CONFIG_DATA address and the specified bus number matches the MediaGX processor’s bus
number (00h), then a Type 0 translation takes place.

For a Type 0 translation, the CONFIG_ADDRESS register values are translated to AD lines on the
PCI bus. Note that bits 10:2 are passed unchanged. The DEVICE value is mapped to one of 21
AD lines. The translation type bits are set to 00 to indicate a transaction on the local PCI bus.

When an access occurs to the CONFIG_DATA address and the specified bus number is not 00h
(Type 1), the MediaGX processor passes this cycle to the PCI bus by copying the contents of the
CONFIG_ADDRESS register onto the AD lines during the address phase of the cycle while driving
the translation type bits AD[1:0] to 01. Note that the MediaGX processor and Cx5520 system does
not support Type 1 transfers.

I/O Offset 0CFCh-0CFFh CONFIG_DATA (R/W) Default Value = 00000000h

31:0 CONFIG_DATA Configuration Data Register: Contains the data that is sent or received during a PCI configura-
tion space access. The register accessed is determined by the value in the CONFIG_ADDRESS
register. The CONFIG_DATA register supports BYTE, WORD, or DWORD accesses. To access
this register, bit 31 of the CONFIG_ADDRESS register must be set to 0 and a full DWORD I/O
access must be done. Configuration cycles are performed when bit 31 of the CONFIG_ADDRESS
register is set to 1

Page 180 Cyrix Corporation Confidential GXm_db_v2.0

� PCI Controller

4.6.7 PCI Configuration Space
Registers

To access the internal PCI configuration registers
of the MediaGX processor, the Configuration
Address Register (CONFIG_ADDRESS) must be
written as a DWORD using the format shown in
Table 4-39. Any other size will be interpreted as an

I/O write to Port 0CF8h. Also, when entering the
Configuration Index, only the six most significant
bits of the offset are used, and the two least signifi-
cant bits must be 00b.

Table 4-40 summarizes the registers located within
the Configuration Space. The tables that follow,
give detailed register/bit formats.

Table 4-39 Format for Accessing the Internal PCI Configuration Registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 RESERVED 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Configuration Index 0 0

Table 4-40 PCI Configuration Space Register Summary

Index Type Name Default Value

00h-01h RO Vendor Identification 1078h

02h-03h RO Device Identification 0001h

04h-05h R/W PCI Command 0007h

06h-07h R/W Device Status 0280h

08h RO Revision Identification 00h

09h-0Bh RO Class Code 060000h

0Ch RO Cache Line Size 00h

0Dh R/W Latency Timer 0Dh

0Eh-3Fh -- Reserved 00h

40h R/W PCI Control Function 1 00h

41h R/W PCI Control Function 2 96h

42h -- Reserved 00h

43h R/W PCI Arbitration Control 1 80h

44h R/W PCI Arbitration Control 2 00h

45h-FFh -- Reserved 00h

GXm_db_v2.0 Cyrix Corporation Confidential Page 181

PCI Controller 4
Table 4-41 PCI Configuration Registers

Bit Name Description

Index 00h-01h Vendor Identification Register (RO) Default Value = 1078h

31:0 VID (RO) Vendor Identification Register (Read Only): The combination of this value and the device ID
uniquely identifies any PCI device. The Vendor ID is the ID given to Cyrix Corporation by the PCI SIG.

Index 02h-03h Device Identification Register (RO) Default Value = 0001h

31:0 DID (RO) Device Identification Register (Read Only): This value along with the vendor ID uniquely identifies
any PCI device.

Index 04h-05h PCI Command Register (R/W) Default Value = 0007h

15:10 RSVD Reserved: Set to 0.

9 FBE Fast Back-to-Back Enable: As a master, the MediaGX processor does not support this function.

This bit returns 0.

8 SERR SERR# Enable: This is used as an output enable gate for the SERR# driver.

7 WAT Wait Cycle Control: MediaGX processor does not do address/ data stepping.

This bit is always set to 0.

6 PE Parity Error Response:
0 = MediaGX processor ignores parity errors on the PCI bus.
1 = MediaGX processor checks for parity errors.

5 VPS VGA Palette Snoop: MediaGX processor does not support this function.

This bit is always set to 0.

4 MS Memory Write and Invalidate Enable: As a master, the MediaGX processor does not support this
function.

This bit is always set to 0.

3 SPC Special Cycles: MediaGX processor does not respond to special cycles on the PCI bus.

This bit is always set to 0.

2 BM Bus Master:
0 = MediaGX processor does not perform master cycles on the PCI.
1 = MediaGX processor can act as a bus master on the PCI.

1 MS Memory Space: MediaGX processor will always respond to memory cycles on the PCI.

This bit is always set to 1.

0 IOS I/O Space: MediaGX processor will not respond to I/O accesses from the PCI.

This bit is always set to 1.

Index 06h-07h PCI Device Status Register (RO, R/W Clear) Default Value = 0280h

15 DPE Detected Parity Error: When a parity error is detected, this bit is set to 1.

This bit can be cleared to 0 by writing a 1 to it.

14 SSE Signaled System Error: This bit is set whenever SERR# is driven active.

13 RMA Received Master Abort: This bit is set whenever a master abort cycle occurs. A master abort will
occur whenever a PCI cycle is not claimed except for special cycles.

This bit can be cleared to 0 by writing a 1 to it.

12 RTA Received Target Abort: This bit is set whenever a target abort is received while the MediaGX proces-
sor is master of the cycle.

This bit can be cleared to 0 by writing a 1 to it.

Page 182 Cyrix Corporation Confidential GXm_db_v2.0

� PCI Controller

11 STA Signaled Target Abort: This bit is set whenever the MediaGX processor signals a target abort. A tar-
get abort is signaled when an address parity occurs for an address that hits in the MediaGX proces-
sor’s address space.

This bit can be cleared to 0 by writing a 1 to it.

10:9 DT Devise Timing:

00 = Fast
01 = Medium
10 = Slow
11 = Reserved

The MediaGX processor performs medium DEVSEL# active for addresses that hit into the MediaGX
processor address space. These two bits are always set to 01.

8 DPD Data Parity Detected: This bit is set when three conditions are met.
1) MediaGX processor asserted PERR# or observed PERR# asserted;
2) MediaGX processor is the master for the cycle in which the PERR# occurred; and
3) PE (bit 6 of Command Register) is enabled.

This bit can be cleared to 0 by writing a 1 to it.

7 FBS Fast Back-to-Back Capable: As a target, the processor is capable of accepting Fast Back-to-Back
transactions.

This bit is always set to 1.

6:0 RSVD Reserved: Set to 0.

Index 08h Revision Identification Register (RO) Default Value = 00h

7:0 RID (RO) Revision ID (Read Only): This register contains the revision number of the MediaGX design.

Index 09h-0Bh Class Code Register (RO) Default Value = 060000h

23:16 CLASS Class Code: The class code register is used to identify the generic function of the device. The
MediaGX processor is classified as a host bridge device (06).

15:0 RSVD (RO) Reserved (Read Only)

Index 0Ch Cache Line Size Register (RO) Default Value = 00h

7:0 CACHELINE Cache Line Size (Read Only): The cache line size register specifies the system cacheline size in
units of 32-bit words. This function is not supported in the MediaGX Processor.

Index 0Dh Latency Timer Register (R/W) Default Value = 00h

7:5 RSVD Reserved: Set to 0.

4:0 LAT_TIMER Latency Timer: The latency timer as used in this implementation will prevent a system lockup result-
ing from a slave the does not responded to the master. If the register value is set to 00h, the timer is
disabled. Otherwise, Timer represents the 5 MSBs of an 8-bit counter. The counter will reset on each
valid data transfer. If the counter expires before the next TRDY# is received active, then the slave is
considered to be incapable of responding, and the master will stop the transaction with a master abort
and flag an SERR# active. This would also keep the master from being retried forever by a slave
device that continues to issue retries. In these cases, the master will also stop the cycle with a master
abort.

Index 0Eh-3Fh Reserved Default Value = 00h

Table 4-41 PCI Configuration Registers (cont.)

Bit Name Description

GXm_db_v2.0 Cyrix Corporation Confidential Page 183

PCI Controller 4

Index 40h PCI Control Function 1 Register (R/W) Default Value = 00h

7 RSVD Reserved: Set to 0.

6 SW Single Write Mode: PCI slave supports:

0 = Multiple PCI write cycles

1 = Single cycle write transfers on the PCI bus. The slave will perform a target disconnect with the first
data transferred.

5 SR Single Read Mode: PCI slave supports:

0 = Multiple PCI read cycles.

1 = Single cycle read transfers on the PCI bus. The slave will perform a target disconnect with the first
data transferred.

4 RXBNE Force Retry when X-Bus Buffers are Not Empty:

0 = PCI slave accepts the PCI cycle with data in the PCI master write buffers. The data in the PCI
master write buffers will not be affected or corrupted. The PCI master holds request active indicating
the need to access the PCI bus.

1 = PCI slave retries cycles if the PCI master X-bus write buffers contain buffered data.

3 SWBE PCI Slave Write Buffer Enable: PCI slave write buffers: 0 = Disable; 1 = Enable.

2 CLRE PCI Cache Line Read Enable: Read operations from the PCI into the MediaGX processor:

0 = Single cycle unless a read multiple or memory read line command is used.
1 = Cause a cache line read to occur.

1 XBE X-Bus Burst Enable: PCI slave acting as a master performs burst cycles on the X-bus on write-back
invalidate cycles from the PCI. 0 = Disable; 1 = Enable.

(This bit does not control read bursting; bit 2 does.)

0 RSVD Reserved — Should return a value of 0.

Index 41h PCI Control Function 2 Register (R/W) Default Value = 96h

7 RSVD Reserved: Set to 0.

6 RW_CLK RAW Clock: A debug signal used to view internal clock operation. 0 = Disable; 1 = Enable.

5 PFS PERR# forces SERR#: PCI master drives an active SERR# anytime it also drives or receives an
active PERR#: 0 = Disable; 1 = Enable.

4 XWB X-Bus to PCI Write Buffer: Enable MediaGX processor PCI master’s X-Bus write buffers (non-locked
memory cycles are buffered, I/O cycles and lock cycles are not buffered): 0 = Disable; 1 = Enable.

3:2 SDB Slave Disconnect Boundary: PCI slave issues a disconnect with data when it crosses line boundary:

00 = 128 bytes
01 = 256 bytes
10 = 512 bytes
11 = 1024 bytes

Works in conjunction with bit 1.

1 SDBE Slave Disconnect Boundary Enable:
0 = PCI slave disconnects on boundaries set by bits [3:2].
1 = PCI disconnects on cache line boundary which is 16 bytes.

0 XWS X-Bus Wait State Enable: The PCI slave acting as a master on the X-bus will insert wait states on
write cycles for data setup time. 0 = Disable; 1 = Enable.

Table 4-41 PCI Configuration Registers (cont.)

Bit Name Description

Page 184 Cyrix Corporation Confidential GXm_db_v2.0

� PCI Controller

Index 43h PCI Arbitration Control 1 Register (R/W) Default Value = 80h

7 BG Bus Grant:
0 = Grants bus regardless of X-bus buffers.
1 = Grants bus only if X-bus buffers are empty.

6 RSVD Reserved: Set to 1.

5 RME2 REQ2# Retry Mask Enable: Arbiter allows the REQ2# to be masked based on the master retry mask
in bits [2:1]: 0 = Disable; 1 = Enable.

4 RME1 REQ1# Retry Mask Enable: Arbiter allows the REQ1# to be masked based on the master retry mask
in bits [2:1]: 0 = Disable; 1 = Enable.

3 RME0 REQ0# Retry Mask Enable: Arbiter allows the REQ0# to be masked based on the master retry mask
in bits [2:1]: 0 = Disable; 1 = Enable.

2:1 MRM Master Retry Mask: When a target issues a retry to a master, the arbiter can mask the request from
the retried master in order to allow other lower order masters to gain access to the PCI bus:

00 = No retry mask
01 = Mask for 16 PCI clocks
10 = Mask for 32 PCI clocks
11 = Mask for 64 PCI clocks

0 HXR Hold X-bus on Retries: Arbiter holds the X-Bus X_HOLD for 2 additional clocks to see if the retried
master will request the bus again: 0 = Disable; 1 = Enable

(This may prevent retry thrashing in some cases.)

Index 44h PCI Arbitration Control 2 Register (R/W) Default Value = 00h

7 PP Ping-Pong:
0 = Arbiter grants the processor bus per the setting of bits [2:0].
1 = Arbiter grants the processor bus ownership of the PCI bus every other arbitration cycle.

6:4 FAC Fixed Arbitration Controls: These bits control the priority under fixed arbitration. The priority table is
as follows (priority listed highest to lowest):

000 = REQ0#, REQ1#, REQ2#
001 = REQ1#, REQ0#, REQ2#
010 = REQ0#, REQ2#,REQ1#
011 = Reserved
100 = REQ1#, REQ2#, REQ0#
101 = Reserved
110 = REQ2#, REQ1#, REQ0#
111 = REQ2#, REQ0#, REQ1#

Note: The rotation arbitration bits [2:0] must be set to 000 for full fixed arbitration. If rotation bits are
not set to 000, then hybrid arbitration will occur. If Ping-Pong is enabled (bit 7 = 1), the proces-
sor will have priority every other arbitration. In this mode, the arbiter grants the PCI bus to a
master and ignores all other requests. When the master finishes, the processor will be guaran-
teed access. At this point PCI requests will again be recognized. This will switch arbitration
from CPU-to-PCI to CPU-to-PCI, etc.

3 RSVD Reserved: Set to 0.

2:0 RAC Rotating Arbitration Controls: These bits control the priority under Rotating arbitration.

000 = Fixed arbitration will occur.
111 = Full rotating arbitration will occur.

When these bits are set to other values, hybrid arbitration will occur.

Table 4-41 PCI Configuration Registers (cont.)

Bit Name Description

GXm_db_v2.0 Cyrix Corporation Confidential Page 185

PCI Controller 4
4.6.8 PCI Cycles
The following sections and diagrams provide the
functional relationships for PCI cycles.

4.6.8.1 PCI Read Transaction
A PCI read transaction consists of an address
phase and one or more data phases. Data phases
may consist of wait cycles and a data transfer.
Figure 4-18 illustrates a PCI read transaction. In
this example, there are three data phases.

The address phase begins on clock 2 when
FRAME# is asserted. During the address phase,
AD[31:0] contains a valid address and C/BE[3:0]#

contains a valid bus command. The first data
phase begins on clock 3. During the data phase,
AD[31:0] contains data and C/BE[3:0]# indicate
which byte lanes of AD[31:0] carry valid data. The
first data phase completes with zero delay cycles.
However, the second phase is delayed one cycle
because the target was not ready so it deasserted
TRDY# on clock 5. The last data phase is delayed
one cycle because the master deasserted IRDY#
on clock 7.

For additional information refer to Chapter 3.3.1,
Read Transaction, of the PCI Local Bus Specifica-
tion, Revision 2.1.

Figure 4-18 Basic Read Operation

CLK

FRAME#

AD

C/BE#

DATA-1 DATA-2 DATA-3 ADDR

BUS CMD BE#s

IRDY#

TRDY#

DEVSEL#

BUS TRANSACTION

ADDR
PHASE

DATA
PHASE

DATA
PHASE

DATA
PHASE

D
A

TA
 T

R
A

N
S

F
E

R

W
A

IT

W
A

IT

D
A

TA
 T

R
A

N
S

F
E

R

W
A

IT

D
A

TA
 T

R
A

N
S

F
E

R

Page 186 Cyrix Corporation Confidential GXm_db_v2.0

� PCI Controller

4.6.8.2 PCI Write Transaction
A PCI write transaction is similar to a PCI read
transaction, consisting of an address phase and
one or more data phases. Since the master
provides both address and data, no turnaround
cycle is required following the address phase. The
data phases work the same for both read and write
transactions. Figure 4-19 illustrates a write transac-
tion.

The address phase begins on clock 2 when
FRAME# is asserted. The first and second data
phases complete without delays. During data
phase 3, the target inserts three wait cycles by
deasserting TRDY#.

For additional information refer to Chapter 3.3.2,
Write Transaction, of the PCI Local Bus Specifica-
tion, Revision 2.1.

Figure 4-19 Basic Write Operation

CLK

FRAME#

AD

C/BE#

DATA-2 DATA-3 ADDR

IRDY#

TRDY#

DEVSEL#

BUS TRANSACTION

ADDR
PHASE

DATA
PHASE

DATA
PHASE

DATA
PHASE

D
A

T
A

 T
R

A
N

S
F

E
R

W
A

IT

W
A

IT

W
A

IT

D
A

T
A

 T
R

A
N

S
F

E
R

DATA-1

BE#’s-2 BE#’s-3 BUS CMD BE#’s-1

D
A

T
A

 T
R

A
N

S
F

E
R

GXm_db_v2.0 Cyrix Corporation Confidential Page 187

PCI Controller 4
4.6.8.3 PCI Arbitration
An agent requests the bus by asserting its REQ#.
Based on the arbitration scheme set in the PCI
Arbitration Control 2 Register (Index 44h), the GX
PCI arbiter will grant the request by asserting
GNT#. Figure 4-20 illustrates basic arbitration.

REQ#-a is asserted at clock 1. The PCI MediaGX
processor arbiter grants access to Agent A by
asserting GNT#-a on clock 2. Agent A must begin
a transaction by asserting FRAME# within 16
clocks, or the GX PCI arbiter will remove GNT#.
Also, it is possible for Agent A to lose bus owner-
ship sooner if another agent with higher priority
requests the bus. However, in this example, Agent
A starts the transaction on clock 3 by asserting
FRAME# and completes its transaction. Since

Agent A requests another transaction, REQ#-a
remains asserted. When FRAME# is asserted on
clock 3, the MediaGX processor’s PCI arbiter
determines Agent B should go next, asserts GNT#-
b and deasserts GNT#-a on clock 4. Agent B
requires only a single transaction. It completes the
transaction, then deasserts FRAME# and REQ#-b
on clock 6. The MediaGX processor’s PCI arbiter
can then grant access to agent A, and does so on
clock 7. Note that all buffers must flush before a
grant is given to a new agent.

For additional information refer to Chapter 3.4.1,
Arbitration Signaling Protocol, of the PCI Local Bus
Specification, Revision 2.1.

Figure 4-20 Basic Arbitration

CLK

REQ#-a

REQ#-b

GNT#-a

GNT#-b

FRAME#

AD
DATA ADDR DATA ADDR

access-a access-b

Page 188 Cyrix Corporation Confidential GXm_db_v2.0

� PCI Controller

4.6.8.4 PCI Halt Command
Halt is a broadcast message from the processor
indicating it has executed a halt instruction. The
PCI Special Cycle command is used to broadcast
the message to all agents on the bus segment.
During the address phase of the Halt Special cycle,
C/BE[3:0]# = 0001 and AD[31:0] are driven to
random values. During the data phase, C/BE[3:0]#
= 1100 indicating bytes 1 and 0 are valid and
AD[15:0] = 0001h.

For additional information, refer to Chapter 3.7.2,
Special Cycle, and Appendix A, Special Cycle
Messages, of the PCI Local Bus Specification,
Revision 2.1.

GXm_db_v2.0 Cyrix Corporation Confidential Page 189

MediaGX™ MMX™-Enhanced Processor
Integrated x86 Solution with MMX™ Support

�
5 Virtual Subsystem Architecture
This section describes the Cyrix Virtual Subsystem
Architecture™ (VSA™) as implemented with the
MediaGX processor(s) and Cyrix VSA enhanced
I/O Companion device(s). VSA provides a frame-
work to enable software implementation of tradi-
tionally hardware-only components. VSA software
executes in System Management Mode (SMM),
enabling it to execute transparently to the oper-
ating system, drivers and applications.

The VSA design is based upon a simple model for
replacing hardware components with software.
Hardware to be virtualized is merely replaced with
simple access detection circuitry which asserts the
processor’s SMI# (System Management Interrupt)
pin when hardware accesses are detected. The
current execution stream is immediately
preempted, and the processor enters SMM. The
SMM system software then saves the processor
state, initializes the VSA execution environment,
decodes the SMI source and dispatches handler
routines which have registered requests to service
the decoded SMI source. Once all handler routines
have completed, the processor state is restored
and normal execution resumes. In this manner,
hardware accesses are transparently replaced with
the execution of SMM handler software.

Historically, SMM software was used primarily for
the single purpose of facilitating active power
management for notebook designs. That soft-
ware’s only function was to manage the power up
and down of devices to save power. With high
performance processors now available, it is
feasible to implement, primarily in SMM software,
PC capabilities traditionally provided by hardware.
In contrast to power management code, this virtu-
alization software generally has strict performance
requirements to prevent application performance
from being significantly impacted.

Several functions can be virtualized in a MediaGX
processor based design using the VSA environ-
ment. The VSA enhanced chipsets provide
programmable resources to trap both memory and
I/O accesses. However, specific hardware is
included to support the virtualization of VGA core
compatibility and audio functionality in the system.

The hardware support for VGA emulation resides
completely inside the MediaGX processor. Legacy
VGA accesses do not generate off-chip bus cycles.
However, the VSA support hardware for
XpressAUDIO™ resides in the I/O Companion
device (i.e., Cx5520 and Cx5530) and is described
in their respective specification(s).

Page 190 Cyrix Corporation Confidential GXm_db_v2.0

� Virtual VGA

5.1 Virtual VGA
The MediaGX processor reduces the burden of
PC- legacy hardware by using a balanced mix of
hardware and software to provide the same func-
tionality. The graphics pipeline contains full hard-
ware support for the VGA “front-end”, the logic that
controls read and write operations to the VGA
frame buffer (located in graphics memory). For
some modes, the hardware can also provide direct
display of the data in the VGA buffer. Virtual VGA
traps frame buffer accesses only when necessary,
but it must trap all VGA I/O accesses to maintain
the VGA state and properly program the graphics
pipeline and display controller.

VGA functionality with the MediaGX processor
includes the standard VGA modes (VGA, EGA,
CGA, and MDA) as well as the higher-resolution
VESA modes. The CGA and MDA modes (modes
0 through 7) require that Virtual VGA convert the
data in the VGA buffer to a separate 8-BPP frame
buffer that the hardware can use for display
refresh.

The remaining modes, VGA, EGA, and VESA, can
be displayed directly by the hardware, with no data
conversion required. For these modes, Virtual VGA
outperforms typical VGA cards because the frame
buffer data does not travel across an external bus.

Display drivers for popular GUI (graphical user
interface) based operating systems are provided
by Cyrix which enable a full featured 2D hardware
accelerator to be used instead of the emulated
VGA core.

5.1.1 Traditional VGA Hardware
A VGA card consists of display memory and
control registers. The VGA display memory shows
up in system memory between addresses A0000h
and BFFFFh. It is possible to map this memory to
three different ranges within this 128KB block.

The first range is
- A0000h to B0000h for EGA and VGA modes,

the second range is
- B0000h to B7FFFh for MDA modes,

and the third range is
- B8000h to BFFFFh for CGA modes.

The VGA control registers are mapped to the I/O
address range from 3B0h to 3DFh. The VGA regis-
ters are accessed with an indexing scheme that
provides more registers than would normally fit into
this range. Some registers are mapped at two loca-
tions, one for monochrome, and another for color.

The VGA hardware can be accessed by calling
BIOS routines or by directly writing to VGA memory
and control registers. DOS always calls BIOS to
set up the display mode and render characters.
Many other applications access the VGA memory
and control registers directly. The VGA card can be
set up to a virtually unlimited number of modes.
However, many applications use one of the
predefined modes specified by the BIOS routine
which sets up the display mode. The predefined
modes are translated into specific VGA control
register setups by the BIOS. The standard modes
supported by VGA cards are shown in Table 5-1.

GXm_db_v2.0 Cyrix Corporation Confidential Page 191

Virtual VGA 5

A VGA is made up of several functional units.

• The frame buffer is 256KB of memory that
provides data for the video display. It is orga-
nized as 64K 32-bit DWORDs.

• The sequencer decomposes word and DWORD
CPU accesses into byte operations for the
graphics controller. It also controls a number of
miscellaneous functions, including reset and
some clocking controls.

• The graphics controller provides most of the
interface between CPU data and the frame
buffer. It allows the programmer to read and
write frame buffer data in different formats. Plus
provides ROP (raster operation) and masking
functions.

• The CRT controller provides video timing
signals and address generation for video
refresh. It also provides a text cursor.

• The attribute controller contains the video
refresh datapath, including text rasterization and
palette lookup.

• The general registers provide status informa-
tion for the programmer as well as control over
VGA-host address mapping and clock selection.
This is all handled in hardware by the graphics
pipeline.

It is important to understand that a VGA is
constructed of numerous independent functions.
Most of the register fields correspond to controls
that were originally built out of discrete logic or
were part of a dedicated controller such as the
6845. The notion of a VGA “mode” is a higher-level
convention to denote a particular set of values for
the registers. Many popular programs do not use
standard modes, preferring instead to produce
their own VGA setups that are optimal for their
purposes.

Table 5-1 Standard VGA Modes

Category Mode
Text or

Graphics Resolution Format Type

Software 0,1 Text 40x25 Characters CGA

2,3 Text 80x25 Characters CGA

4,5 Graphics 320x200 2 BPP CGA

6 Graphics 640x200 1 BPP CGA

7 Text 80x25 Characters MDA

Hardware 0Dh Graphics 320x200 4 BPP EGA

0Eh Graphics 640x200 4 BPP EGA

0Fh Graphics 640x350 1 BPP EGA

10h Graphics 640x350 4 BPP EGA

11h Graphics 640x480 1 BPP VGA

12h Graphics 640x480 4 BPP VGA

13h Graphics 320x200 8 BPP VGA

Page 192 Cyrix Corporation Confidential GXm_db_v2.0

� Virtual VGA

5.1.1.1 VGA Memory Organization
The VGA memory is organized as 64K 32-bit
DWORDs. This organization is usually presented
as four 64KB “planes”. A plane consists of one byte
out of every DWORD. Thus, plane 0 refers to the
least significant byte from every one of the 64K
DWORDs. The addressing granularity of this
memory is a DWORD, not a byte; that is, consecu-
tive addresses refer to consecutive DWORDs. The
only provision for byte-granularity addressing is the
four-byte enable signals used for writes. In C
parlance,

single_plane_byte = (dword_fb[address] >>
(plane * 8)) & 0xFF;

When dealing with VGA, it is important to recog-
nize the distinction between host addresses, frame
buffer addresses, and the refresh address pipe. A
VGA controller contains lots of hardware to trans-
late between these address spaces in different
ways, and understanding these translations is crit-
ical to understanding the entire device. In standard
four-plane graphics modes, a frame-buffer
DWORD provides eight 4-bit pixels. The left-most
pixel comes from bit 7 of each plane, with plane 3
providing the most significant bit.

pixel[i].bit[j] = dword_fb[address].bit[j*8 + (7-i)]

5.1.1.2 VGA Front End
The VGA front end consists of address and data
translations between the CPU and the frame
buffer. This functionality is contained within the
graphics controller and sequencer components.
Most of the front end functionality is implemented
in the VGA read and write hardware of the
MediaGX processor. An important axiom of the
VGA is that the front end and back end are
controlled independently. There are no register
fields that control the behavior of both pieces.
Terms like “VGA odd/even mode” are therefore
somewhat misleading; there are two different
controls for odd/even functionality in the front end,
and two separate controls in the refresh path to
cause “sensible” refresh behavior for frame buffer

contents written in odd/even mode. Normally, all
these fields would be set up together, but they
don’t have to be. This sort of orthogonal behavior
gives rise to the enormous number of possible
VGA “modes”. The CPU end of the read and write
pipes is one byte wide. Word and DWORD
accesses from the CPU to VGA memory are
broken down into multiple byte accesses by the
sequencer. For example, a word write to A0000h
(in a VGA graphics mode) is processed as if it were
two-byte write operations to A0000h and A0001h.

5.1.1.3 Address Mapping
When a VGA card sees an address on the host
bus, bits [31:15] determine whether the transaction
is for the VGA. Depending on the mode, addresses
000AXXXX, 000B{0XXX}XXX, or
000B{1XXX}XXXX can decode into VGA space. If
the access is for the VGA, bits [15:0] provide the
DWORD address into the frame buffer (however,
see odd/even and Chain 4 modes, below). Thus,
each byte address on the host bus addresses a
DWORD in VGA memory.

On a write transaction, the byte enables are
normally driven from the sequencer’s MapMask
register. The VGA has two other write address
mappings that modify this behavior. In odd/even
(Chain 2) write mode, bit 0 of the address is used
to enable bytes 0 and 2 (if zero) or bytes 1 and 3 (if
one). In addition, the address presented to the
frame buffer has bit 0 replaced with the PageBit
field of the Miscellaneous Output register. Chain 4
write mode is similar; only one of the four byte
enables is asserted, based on bits [1:0] of the
address, and bits [1:0] of the frame buffer address
are set to zero. In each of these modes, the
MapMask enables are logically ANDed into the
enables that result from the address.

GXm_db_v2.0 Cyrix Corporation Confidential Page 193

MediaGX™ Virtual VGA 5
5.2 MediaGX™ Virtual VGA
The MediaGX processor provides VGA compati-
bility through a mixture of hardware and software.
The processor core contains SMI generation hard-
ware for VGA memory write operations. The bus
controller contains SMI generation hardware for
VGA I/O read and write operations. The graphics
pipeline contains hardware to detect and process
reads and writes to VGA memory. VGA memory is
partitioned from system memory.

5.2.1 Datapath Elements
The graphics controller contains several elements
that convert between host data and frame buffer
data.

The rotator simply rotates the byte written from the
host by 0 to 7 bits to the right, based on the Rotate-
Count field of the DataRotate register. It has no
effect in the read path.

The display latch is a 32-bit register that is loaded
on every read access to the frame buffer. All 32 bits
of the frame buffer DWORDs are loaded into the
latch.

The write-mode unit converts a byte from the host
into a 32-bit value. A VGA has four write modes:

• Write Mode 0:
- Bit n of byte b comes from one of two places,

depending on bit b of the EnableSetReset
register. If that bit is zero, it comes from bit n
of the host data. If that bit is one, it comes
from bit b of the SetReset register. This mode
allows the programmer to set some planes
from the host data and the others from
SetReset.

• Write Mode 1:
- All 32 bits come directly out of the display

latch; the host data is ignored. This mode is
used for screen-to-screen copies.

• Write Mode 2:
- Bit n of byte b comes from bit b of the host

data; that is, the four LSBs of the host data
are each replicated through a byte of the
result. In conjunction with the BitMask
register, this mode allows the programmer to
directly write a 4-bit color to one or more
pixels.

• Write Mode 3:
- Bit n of byte b comes from bit b of the

SetReset register. The host data is ANDed
with the BitMask register to provide the bit
mask for the write (see below).

The read mode unit converts a 32-bit value from
the frame buffer into a byte. A VGA has two read
modes:

• Read Mode 0:
- One of the four bytes from the frame buffer is

returned, based on the value of the Read-
MapSelect register. In Chain 4 mode, bits
[1:0] of the read address select a plane. In
odd/even read mode, bit 0 of the read
address replaces bit 0 of ReadMapSelect.

• Read Mode 1:
- Bit n of the result is set to 1 if bit n in every

byte b matches bit b of the ColorCompare
register; otherwise it is set to 0. There is a
ColorDon’tCare register that can exclude
planes from this comparison. In four-plane
graphics modes, this provides a conversion
from 4 BPP to 1 BPP.

The ALU is a simple two-operand ROP unit that
operates on writes. Its operating modes are COPY,
AND, OR, and XOR. The 32-bit inputs are:

1) the output of the write-mode unit and

2) the display latch (not necessarily the value at
the frame buffer address of the write).

Page 194 Cyrix Corporation Confidential GXm_db_v2.0

� MediaGX™ Virtual VGA

An application that wishes to performs ROPs on
the source and destination must first byte read the
address (to load the latch) and then immediately
write a byte to the same address. The ALU has no
effect in Write Mode 1.

The bit mask unit does not provide a true bit mask.
Instead, it selects between the ALU output and the
display latch. The mask is an 8-bit value, and bit n
of the mask makes the selection for bit n of all four
bytes of the result (a zero selects the latch). No bit
masking occurs in Write Mode 1.

The VGA hardware of the MediaGX processor
does not implement Write Mode 1 directly, but it
can be indirectly implemented by setting the
BitMask to zero and the ALU mode to COPY.

5.2.2 Video Refresh
VGA refresh is controlled by two units: the CRT
controller (CRTC) and the attribute controller
(ATTR). The CRTC provides refresh addresses
and video control; the ATTR provides the refresh
datapath, including pixel formatting and internal
palette lookup.

The VGA back end contains two basic clocks: the
dot clock (or pixel clock) and the character clock.
The ClockSelect field of the Miscellaneous Output
register selects a “master clock” of either 25MHz or
28MHz. This master clock, optionally divided by
two, drives the dot clock. The character clock is
simply the dot clock divided by eight or nine.

The VGA supports four basic pixel formats. Using
text format, the VGA interprets frame buffer values
as ASCII characters, foreground/background
attributes, and font data. The other three formats
are all “graphics modes”, known as APA (All Points
Addressable) modes. These formats could be
called CGA-compatible (odd/even four bits/pixel),
EGA-compatible (4-plane four bits/pixel), and VGA-
compatible (pixel-per-byte eight bits/pixel). The
format is chosen by the ShiftRegister field of the
Graphics Controller Mode register.

The refresh address pipe is an integral part of the
CRTC, and has many configuration options.
Refresh can begin at any frame buffer address.
The display width and the frame buffer pitch (scan-
line delta) are set separately. Multiple scan lines
can be refreshed from the same frame buffer
addresses. The LineCompare register causes the
refresh address to be reset to zero at a particular
scan line, providing support for vertical split-
screen.

Within the context of a single scan line, the refresh
address increments by one on every character
clock. Before being presented to the frame buffer,
refresh addresses can be shifted by 0, 1, or 2 bits
to the left. These options are often mis-named
Byte, Word, and Doubleword modes. Using this
shifter, the refresh unit can be programmed to skip
one out of two or three out of four DWORDs of
refresh data. As an example of the utility of this
function, consider Chain 4 mode, described earlier.
Pixels written in Chain 4 mode occupy one out of
every four DWORDs in the frame buffer. If the
refresh path is put into “Doubleword” mode, the
refresh will come only from those DWORDs writ-
able in Chain 4. This is how VGA mode 13h works.

In text mode, the ATTR has a lot of work to do. At
each character clock, it pulls a DWORD of data out
of the frame buffer. In that DWORD, plane 0
contains the ASCII character code, and plane 1
contains an attribute byte. The ATTR uses plane 0
to generate a font lookup address and read
another DWORD. In plane 2, this DWORD
contains a bit-per-pixel representation of one scan
line in the appropriate character glyph. The ATTR
transforms these bits into eight pixels, obtaining
foreground and background colors from the
attribute byte. The CRTC must refresh from the
same memory addresses for all scan lines that
make up a character row; within that row, the ATTR
must fetch successive scan lines from the glyph
table so as to draw proper characters. Graphics
modes are somewhat simpler. In CGA-compatible
mode, a DWORD provides eight pixels. The first
four pixels come from planes 0 and 2; each 4-bit
pixel gets bits [3:2] from plane 2, and bits [1:0] from

GXm_db_v2.0 Cyrix Corporation Confidential Page 195

MediaGX™ Virtual VGA 5
plane 0. The remaining four pixels come from
planes 1 and 3. The EGA-compatible mode also
gets eight pixels from a DWORD, but each pixel
gets one bit from each plane, with plane 3
providing bit 3. Finally, VGA-compatible mode gets
four pixels from each DWORD; plane 0 provides
the first pixel, plane 1 the next, and so on. The 8
BPP mode uses an option to provide every pixel for
two dot clocks, thus allowing the refresh pipe to
keep up (it only increments on character clocks)
and meaning that the 320-pixel-wide mode 13h
really has 640 visible pixels per line. The VGA
color model is unusual. The ATTR contains a 16-
entry color palette with 6 bits per entry. Except for 8
BPP modes, all VGA configurations drive four bits
of pixel data into the palette, which produces a 6-bit
result. Based on various control registers, this
value is then combined with other register contents
to produce an 8-bit index into the DAC. There is a
ColorPlaneEnable register to mask bits out of the
pixel data before it goes to the palette; this is used
to emulate four-color CGA modes by ignoring the
top two bits of each pixel. In 8 BPP modes, the
palette is bypassed and the pixel data goes directly
to the DAC

5.2.3 MediaGX VGA Hardware
The MediaGX processor core contains hardware to
detect VGA accesses and generate SMI interrupts.
The graphics pipeline contains hardware to detect
and process reads and writes to VGA memory. The
VGA memory on the MediaGX processor is parti-
tioned from system memory. The MediaGX
processor has the following hardware components
to assist the VGA emulation software.

• SMI Generation
• VGA Range Detection
• VGA Sequencer
• VGA Write/Read Path
• VGA Address Generator
• VGA Memory

5.2.3.1 SMI Generation
VGA emulation software is notified of VGA memory
accesses by an SMI generated in dedicated
circuitry in the processor core that detects and
traps memory accesses. The SMI generation hard-
ware for VGA memory addresses is in the second
stage of instruction decoding on the processor
core. This is the earliest stage of instruction
decode where virtual addresses have been trans-
lated to physical addresses. Trapping after the
execution stage is impractical, because memory
write buffering will allow subsequent instructions to
execute.

The VGA emulation code requires the SMI to be
generated immediately when a VGA access
occurs. The SMI generation hardware can option-
ally exclude areas of VGA memory, based on a 32-
bit register which has a control bit for each 2KB
region of the VGA memory window. The control bit
determines whether or not an SMI interrupt is
generated for the corresponding region. The
purpose of this hardware is to allow the VGA
emulation software to disable SMI interrupts in
VGA memory regions that are not currently
displayed.

For direct display modes (8 BPP or 16 BPP) in the
display controller, Virtual VGA can operate without
SMI generation.

The SMI generation circuit on the MediaGX
processor has configuration registers to control
and mask SMI interrupts in the VGA memory
space.

Page 196 Cyrix Corporation Confidential GXm_db_v2.0

� MediaGX™ Virtual VGA

5.2.3.2 VGA Memory Addresses
SMI generation can be configured to trap VGA
memory accesses in one of the following ranges:

A0000h to AFFFFh (EGA,VGA),
B0000h to B7FFFh (MDA),
or B8000h to BFFFFh (CGA).

Range selection is accomplished through program-
mable bits in the VGACTL register (Index B9h).
Fine control can be exercised within the range
selected to allow off-screen accesses to occur
without generating SMIs.

SMI generation can also separately control the
following I/O ranges: 3B0h to 3BFh, 3C0h to 3CFh,
and 3D0h to 3DFh. The BC_XMAP_1 register
(GX_BASE+8004h) in the Internal Bus Interface
Unit has an enable/disable bit for each of the
address ranges above.

5.2.3.3 VGA Configuration Registers
Table 5-2 summarizes the VGA Configuration
Registers. Detailed register/bit formats are given in
Table 5-3.

5.2.3.4 VGA Control Register
The VGA control register (VGACTL) provides
control for SMI generation through an enable bit for
memory address ranges A0000h to BFFFFh. Each
bit controls whether or not SMI is generated for
accesses to the corresponding address range. The
default value of this register is zero so that VGA
accesses will not be trapped on systems with an
external VGA card.

5.2.3.5 VGA Mask Registers
The VGA Mask register (VGAM) has 32 bits that
can selectively mask 2KB regions within the VGA
memory region A0000h to AFFFFh. If none of the
three regions is enabled in VGACTL, then the
contents of VGAM are ignored. VGAM can be used
to prevent the occurrence of SMI when non-
displayed VGA memory is accessed. This is an
enhancement that improves performance for
double-buffered applications only.

Table 5-2 VGA Configuration Registers Summary

Index Name Description Default

B9h VGACTL VGA Control Register 00h (SMI generation disabled)

BAh-BDh VGAM VGA Mask Register Don’t Care

GXm_db_v2.0 Cyrix Corporation Confidential Page 197

MediaGX™ Virtual VGA 5
Table 5-3 VGA Configuration Registers

Bit Description

Index B9h VGACTL Register (R/W) Default Value = 00h

7:3 Reserved: Set to 0.

2 SMI generation for VGA memory range B8000h to BFFFFh: 0 = Disable; 1 = Enable

1 SMI generation for VGA memory range B0000h to B7FFFh: 0 = Disable; 1 = Enable.

0 SMI generation for VGA memory range A0000h to AFFFFh: 0 = Disable; 1 = Enable

Index BAh-BDh VGAM Register (R/W) Default Value = xxxxxxxxh

31 SMI generation for address range AF800h to AFFFFh: 0 = Disable; 1 = Enable.

30 SMI generation for address range AF000h to AF7FFh: 0 = Disable; 1 = Enable.

29 SMI generation for address range AE800h to AEFFFh: 0 = Disable; 1 = Enable.

28 SMI generation for address range AE000h to AE7FFh: 0 = Disable; 1 = Enable.

27 SMI generation for address range AD800h to ADFFFh: 0 = Disable; 1 = Enable.

26 SMI generation for address range AD000h to AD7FFh: 0 = Disable; 1 = Enable.

25 SMI generation for address range AC800h to ACFFFh: 0 = Disable; 1 = Enable.

24 SMI generation for address range AC000h to AC7FFh: 0 = Disable; 1 = Enable.

23 SMI generation for address range AB800h to ABFFFh: 0 = Disable; 1 = Enable.

22 SMI generation for address range AB000h to AB7FFh: 0 = Disable; 1 = Enable.

21 SMI generation for address range AA800h to AAFFFh: 0 = Disable; 1 = Enable.

20 SMI generation for address range AA000h to AA7FFh: 0 = Disable; 1 = Enable.

19 SMI generation for address range A9800h to A9FFFh: 0 = Disable; 1 = Enable.

18 SMI generation for address range A9000h to A97FFh: 0 = Disable; 1 = Enable.

17 SMI generation for address range A8800h to A8FFFh: 0 = Disable; 1 = Enable.

16 SMI generation for address range A8000h to A87FFh: 0 = Disable; 1 = Enable.

15 SMI generation for address range A7800h to A7FFFh: 0 = Disable; 1 = Enable.

14 SMI generation for address range A7000h to A77FFh: 0 = Disable; 1 = Enable.

13 SMI generation for address range A6800h to A6FFFh: 0 = Disable; 1 = Enable.

12 SMI generation for address range A6000h to A67FFh: 0 = Disable; 1 = Enable.

11 SMI generation for address range A5800h to A5FFFh: 0 = Disable; 1 = Enable.

10 SMI generation for address range A5000h to A57FFh: 0 = Disable; 1 = Enable.

9 SMI generation for address range A4800h to A4FFFh: 0 = Disable; 1 = Enable.

8 SMI generation for address range A4000h to A47FFh: 0 = Disable; 1 = Enable.

7 SMI generation for address range A3800h to A3FFFh: 0 = Disable; 1 = Enable.

6 SMI generation for address range A3000h to A37FFh: 0 = Disable; 1 = Enable.

5 SMI generation for address range A2800h to A2FFFh: 0 = Disable; 1 = Enable.

4 SMI generation for address range A2000h to A27FFh: 0 = Disable; 1 = Enable.

3 SMI generation for address range A1800h to A1FFFh: 0 = Disable; 1 = Enable.

2 SMI generation for address range A1000h to A17FFh: 0 = Disable; 1 = Enable.

1 SMI generation for address range A0800h to A0FFFh: 0 = Disable; 1 = Enable.

0 SMI generation for address range A0000h to A07FFh: 0 = Disable; 1 = Enable.

Page 198 Cyrix Corporation Confidential GXm_db_v2.0

� MediaGX™ Virtual VGA

5.2.3.6 VGA Range Detection
The VGA range detection circuit is similar to the
SMI generation hardware, however, it resides in
the bus controller address mapping unit. The
purpose of this hardware is to notify the graphics
pipeline when accesses to the VGA memory range
A0000h to BFFFFh are detected. The graphics
pipeline has VGA read and write path hardware to
process VGA memory accesses. The VGA range
detection can be configured to trap VGA memory
accesses in one or more of the following ranges:
A0000h to AFFFFh (EGA,VGA), B0000h to
B7FFFh (MDA), or B8000h to BFFFFh (CGA).

5.2.3.7 VGA Sequencer
The VGA sequencer is located at the front end of
the graphics pipeline. The purpose of the VGA
sequencer is to divide up multiple-byte read and
write operations into a sequence of single-byte
read and write operations. 16-bit or 32-bit X-bus
write operations to VGA memory are divided into 8-
bit write operations and sent to the VGA write path.
16-bit or 32-bit X-bus read operations from VGA
memory are accumulated from 8-bit read opera-
tions over the VGA read path. The sequencer
generates the lower two bits of the address.

5.2.3.8 VGA Write/Read Path
The VGA write path implements standard VGA
write operations into VGA memory. No SMI is
generated for write path operations when the VGA
access is not displayed. When the VGA access is
displayed, an SMI is generated so that the SMI
emulation can update the frame buffer. The VGA
write path converts 8-bit write operations from the
sequencer into 32-bit VGA memory write opera-
tions. The operations performed by the VGA write
path include data rotation, raster operation (ALU),
bit masking, plane select, plane enable, and write
modes.

The VGA read path implements standard VGA
read operations from VGA memory. No SMI is
needed for read-path operations. The VGA read
path converts 32-bit read operations from VGA
memory to 8-bit data back to the sequencer. The
basic operations performed by the VGA read path
include color compare, plane-read select, and read
modes.

5.2.3.9 VGA Address Generator
The VGA address generator translates VGA
memory addresses up to address where the VGA
memory resides on the MediaGX processor. The
VGA address generator requires the address from
the VGA access (A0000h to BFFFFh), the base of
the VGA memory on the MediaGX processor, and
various control bits. The control bits are necessary
because addressing is complicated by odd/even
and Chain 4 addressing modes.

5.2.3.10 VGA Memory
The VGA memory requires 256KB of memory
organized as 64KB by 32 bits. The VGA memory is
implemented as part of system memory. The
MediaGX processor partitions system memory into
two areas, normal system memory and graphics
memory. System memory is mapped to the normal
physical address of the DRAM, starting at zero and
ending at memory size. Graphics memory is
mapped into high physical memory, contiguous to
the registers and dedicated cache of the MediaGX
processor. The graphics memory includes the
frame buffer, compression buffer, cursor memory,
and VGA memory. The VGA memory is mapped on
a 256KB boundary to simplify the address genera-
tion.

GXm_db_v2.0 Cyrix Corporation Confidential Page 199

MediaGX™ Virtual VGA 5
5.2.4 VGA Video BIOS
The video BIOS supports the VESA BIOS Exten-
sions (VBE) Version 1.2 and 2.0, as well as all
standard VGA BIOS calls. It interacts with Virtual
VGA through the use of several extended VGA
registers. These are virtual registers contained in
the VSA code for Virtual VGA. (These registers are
defined in a separate document.)

5.2.5 Virtual VGA Register
Descriptions

This section describes the registers contained in
the graphics pipeline used for VGA emulation. The
graphics pipeline maps 200h locations starting at
GX_BASE+8100h. Refer to Section 4.1.2 “Control
Registers” on page 106 for instructions on
accessing these registers.

The registers are summarized in Table 5-4,
followed by detailed bit formats in Table 5-5.

Table 5-4 Virtual VGA Register Summary

GX_BASE+
Memory Offset Type Function Default Value

8210h-8213h R/W GP_VGA_BASE VGA

Graphics Pipeline VGA Memory Base Address Register — Specifies the offset
of the VGA memory, starting from the base of graphics memory.

xxxxxxxxh

8214h-8217h R/W GP_VGA_LATCH

Graphics Pipeline VGA Display Latch Register — Provides a memory mapped
way to read or write the VGA display latch.

xxxxxxxxh

8140h-8143h R/W GP_VGA_WRITE

Graphics Pipeline VGA Write Patch Control Register — Controls the VGA
memory write path in the graphics pipeline.

xxxxxxxxh

8144h-8147h R/W GP_VGA_READ

Graphics Pipeline VGA Read Patch Control Register — Controls the VGA
memory read path in the graphics pipeline.

00000000h

Page 200 Cyrix Corporation Confidential GXm_db_v2.0

� MediaGX™ Virtual VGA

Table 5-5 Virtual VGA Registers

Bit Name Description

GX_BASE+8210h-8213h GP_VGA_BASE (R/W) Default Value = xxxxxxxxh

31:14 RSVD Reserved: Set to 0.

13:8 VGA_BASE
(RO)

Base Address (Read Only): The VGA base address is added to the graphics memory base to
specify where VGA memory starts. The VGA base address provides longword address bits 19:14
when mapping VGA accesses into graphics memory. This allows the VGA base address to start
on any 64KB boundary within the 4MB of graphics memory.

7:6 RSVD Reserved: Set to 0.

5:0 VGA_BASE
(WO)

Base Address (Write Only): The VGA base address is added to the graphics memory base to
specify where VGA memory starts. The VGA base address provides longword address bits 19:14
when mapping VGA accesses into graphics memory. This allows the VGA base address to start
on any 64KB boundary within the 4MB of graphics memory.

GX_BASE+8214h-8217h GP_VGA_LATCH Register (R/W) Default Value = xxxxxxxxh

31:0 LATCH Display Latch: Specifies the value in the VGA display latch. VGA read operations cause VGA
frame-buffer data to be latched in the display latch. VGA write operations can use the display latch
as a source of data for VGA frame-buffer write operations.

GX_BASE+8140h-8143h GP_VGA_WRITE Register (R/W) Default Value = xxxxxxxxh

31:28 RSVD Reserved: Set to 0.

27:24 MAP_MASK Map Mask: Enables planes 3 through 0 for writing. Combined with chain control to determine the
final enables.

23:21 RSVD Reserved: Set to 0.

20 W3 Write Mode 3: Selects write mode 3 by using the bit mask with the rotated data.

19 W2 Write Mode 2: Selects write mode 2 by controlling set/reset.

18:16 RC Rotate Count: Controls the eight bit rotator.

15:12 SRE Set/Reset Enable: Enables the set/reset value for each plane.

11:8 SR Set/Reset: Selects 1 or 0 for each plane if enabled.

7:0 BIT_MASK Bit Mask: Selects data from the data latches (last read data).

GX_BASE+8144h-8147h GP_VGA_READ Register (R/W) Default Value = 00000000h

31:18 RSVD Reserved: Set to 0.

17:16 RMS Read Map Select: Selects which plane to read in read mode 0 (Chain 2 and Chain 4 inactive).

15 F15 Force Address Bit 15: Forces address bit 15 to 0.

14 PC4 Packed Chain 4: — Provides 64KB of packed pixel addressing when used with Chain 4 mode.
This bit causes the VGA addresses to be shifted right by 2 bits.

13 C4 Chain 4 Mode: Selects Chain 4 mode for both read operations and write operations.

12 PB Page Bit: Becomes LSB of address if COE is set high.

11 COE Chain Odd/Even: Selects PB rather than A0 for least-significant VGA address bit.

10 W2 Write Chain 2 Mode: Selects Chain 2 mode for write operations.

9 R2 Read Chain 2 Mode: Selects Chain 2 mode for read operations.

8 RM Read Mode: Selects between read mode 0 (normal) and read mode 1 (color compare).

7:4 CCM Color Compare Mask: Selects planes to include in the color comparison (read mode 1).

3:0 CC Color Compare: Specifies value of each plane for color comparison (read mode 1).

GXm_db_v2.0 Cyrix Corporation Confidential Page 201

MediaGX™ MMX™-Enhanced Processor
Integrated x86 Solution with MMX™ Support

�
6 Power Management
The power management resources provided by a
combined MediaGX processor and
Cx5520/Cx5530-based system have been
designed to support a full-featured notebook imple-
mentation. The extent to which these resources
are employed depends on the application and the
discretion of the system designer.

The three greatest power consumers in a notebook
system are the display, the hard drive and the
CPU. Managing power for the first two is relatively
straightforward and is discussed in the I/O
Companion (Cx5520/Cx5530) specification(s).
Managing CPU power can be more difficult since
detecting inactive (Idle) states by monitoring
external activity is imperfect as well as inefficient.

The MediaGX processor and Cx5520/Cx5530 I/O
Companion chip contain the most advanced power
management features for reducing the power
consumption of the processor in the system while
delivering the highest performance in any mobile
processor. The MediaGX processor supports the
following CPU power management features:

• APM Support
• CPU Suspend Command Registers

(Cx5520/Cx5530)
• Suspend Modulation
• 3 Volt Suspend
• MediaGX Integrated Processor Serial Bus

6.1 APM Support
Many notebook computers rely solely on the APM
(Advanced Power Management) driver for DOS™,
Windows® 3.1 and Windows 95 operating systems
to manage power to the CPU. APM provides
several services that enhance the system power
management by determining when the CPU is idle.
For the CPU, APM is theoretically the best
approach but there are some drawbacks.

1. APM is an OS-specific driver which may not be
available for some operating systems.

2. Application support is inconsistent. Some
applications in foreground may prevent idle
calls.

The components for APM support are:

• Software CPU Suspend control via the
Cx5520/Cx5530 CPU Suspend Command
Register (ACh).

• Software SMI entry via the Software SMI
Register (D0h). This allows the APM BIOS to be
part of the SMI handler.

Page 202 Cyrix Corporation Confidential GXm_db_v2.0

� CPU Suspend Command Registers

6.2 CPU Suspend Command
Registers

Power management system software can invoke
the SUSP#/SUSPA# protocol with the “CPU
Suspend Command” and the “Suspend Notebook
Command” registers in the Cx5520/Cx5530. If the
SUSP#/SUSPA# protocol is invoked, all pending
SMIs are serviced and SMI# is deasserted. Then
SUSP# is asserted by the Cx5520/Cx5530 and,
subsequently, SUSPA# is returned by the
MediaGX processor. When a condition that ends
the “Suspend” state exists, SMI# is re-asserted. At
this point, if the PLL in the MediaGX processor has
not been stopped, then SUSP# is deasserted.
SUSP# is never deasserted until SUSPA# has
been sampled active (low).

Note: The SMI# pin is a unidirectional line from
the Cx5520/Cx5530 to the MediaGX pro-
cessor. It is active low. When SMI is initi-
ated from a normal mode, the SMI# pin is
asserted low and is held low until the SMI
source is cleared. At that time, SMI# is de-
asserted.

6.3 Suspend Modulation
The hardware provided to support the MediaGX
processor’s power management works by
assuming that the MediaGX processor is Idle and
reducing power until activity is detected. Most
power management schemes in the industry run
the system at full speed until a period of inactivity is
detected. Cyrix’s more aggressive approach yields
lower power consumption. When activity is
detected, the MediaGX processor is instantly
converted to full speed for a programmed duration.
This is called Suspend Modulation.

Suspend Modulation acts as backup for cases
where APM doesn’t correctly detect an Idle condi-
tion in the system. As long as it is enabled, it will
only become active in the background. The
“Suspend Modulation Enable Register” in the
Cx5520/Cx5530 enables the Suspend Modulation
feature.

The “Suspend Modulation ON Count Register”
(Cx5520/Cx5530) is an 8-bit counter that repre-
sents the number of 32 µs intervals that the SUSP#
pin will be asserted to the MediaGX processor.
This counter, together with the “Suspend Modula-
tion OFF Count Register” and the IRQ/Video
Speedup Registers, performs the Suspend Modu-
lation function for MediaGX processor’s power
management. The ratio of the on count to the off
count sets up an effective (emulated) clock
frequency, allowing the power manager in the
system to reduce the MediaGX processor’s power
consumption.

GXm_db_v2.0 Cyrix Corporation Confidential Page 203

3-Volt Suspend Mode 6
6.4 3-Volt Suspend Mode
The MediaGX processor and Cx5520/Cx5530
support stopping the processor and system clocks
using the 3-Volt Suspend Mode. If configured (refer
Cx5520 or Cx5530 specification), the
Cx5520/Cx5530 asserts the SUSP_3V pin after the
SUSP#/SUSPA# handshake. SUSP_3V is
intended to be connected to the output enable of a
clock synthesizer or buffer chip so that the clocks
to the MediaGX processor (SYSCLK), the
Cx5520/Cx5530 (PCI_CLK), and other system
devices are stopped. The SUSP_3V pin is
asserted on any write to the Cx5520/Cx5530’s
“CPU Suspend Command Register” or “Suspend
Notebook Command Register” with bit 0 of the
“Clock Stop Control Register” set.

The MediaGX processor has two low-power
Suspend modes. The mode implemented is deter-
mined by bit 0 in the PM Clock Stop Control
Register. One mode (bit 0 clear) turns off the
internal clocks to everything except the internal
display and memory controllers, thereby keeping
the display active. The second mode, which is
lower power, turns off all internal clocks generated
from SYSCLK. This mode is selected by setting bit
0 in the PM Clock Stop Control Register. If you are
using DRAMs without self refresh, you must supply
a 32 kHz clock to the CLK32KHZ bit to keep the
refresh circuitry active when using the lower-power
Suspend mode.

While also in 3-Volt Suspend Mode, the
Cx5520/Cx5530 continues to decrement all of its
device timers, and it responds to external SMI
interrupts using the 32 kHz clock input
(CLK32KHz) pin. Any SMI event, timer or pin,
causes the Cx5520/Cx5530 to deassert the
SUSP_3V pin, starting the system clocks. The
Cx5520/Cx5530 holds SUSP# active for a pre-
programmed period that varies from 0 to 16 ms,
which allows the clocks to settle. After this period
expires, the Cx5520/Cx5530 deasserts SUSP#.
SMI# is held active for the entire period, so that the
MediaGX processor status registers are updated.

The SUSP_3V pin can be active either high or low.
The pin is an input during POR, and is sampled to
determine its inactive state. This allows a designer
to match the active state of SUSP_3V to the inac-
tive state for a clock driver output enable with a
pull-up or pull-down resistor.

Page 204 Cyrix Corporation Confidential GXm_db_v2.0

� Suspend Mode and Bus Cycles

6.5 Suspend Mode and Bus Cycles
The following subsections describe the bus cycles
when the Suspend mode is implemented.

6.5.1 Initiating Suspend with SUSP#
The MediaGX processor has two low-power
Suspend modes. The mode is selected by bit 0 in
the PM Clock Stop Control Register. One mode (bit
0 cleared) turns off the internal clocks to everything
but the internal Display and Memory Controllers,
keeping the display active. A lower-power mode
turns off all internal clocks generated from
SYSCLK. This mode is selected by setting bit 0 in
the PM Clock Stop Control Register. If the bit is set
and DRAMS without self-refresh are used, a 32
KHz clock must be supplied to the CLK32KHZ
input to keep the refresh circuit active.

The MediaGX processor enters the Suspend mode
in response to SUSP# input assertion only when
certain conditions are met. First, the USE_SUSP
bit must be set in CCR2 (Index C2h[7]). In addition,

execution of the current instructions and any
pending decoded instructions and associated bus
cycles must be completed. SUSP# is sampled on
the rising edge of SYSCLK, and must meet speci-
fied setup and hold times to be recognized at a
particular SYSCLK edge.

When all conditions are met, the SUSPA# output is
asserted. The time from assertion of SUSP# to the
activation of SUSPA# depends on which instruc-
tions were decoded prior to assertion of SUSP#.
Normally, once SUSP# has been sampled inactive
the SUSPA# output will be deactivated within two
clocks. However, the deactivation of SUSPA# may
be delayed until the end of an active refresh cycle.

If the CPU is already in a Suspend mode initiated
by SUSP#, one occurrence of NMI, INTR and SMI#
is stored for execution after Suspend mode is
exited. The CPU also allows PCI accesses during
a SUSP#-initiated Suspend mode (see Figure 6-1).
If the CPU is in the middle of a PCI access when
SUSP# is asserted, the assertion of SUSPA# will
be delayed until the PCI access is completed.

Figure 6-1 SUSP#-Initiated Suspend Mode

SYSCLK

SUSP#

SUSPA#

GXm_db_v2.0 Cyrix Corporation Confidential Page 205

Suspend Mode and Bus Cycles 6
6.5.2 Initiating Suspend with HALT
The CPU also enters Suspend mode as a result of
executing a HALT instruction if the SUSP_HALT bit
in CCR2 (Index C2h[3]) is set. Suspend mode is
then exited upon recognition of an NMI, an
unmasked INTR, or an SMI#. Normally SUSPA# is
deactivated within six SYSCLKS from the detection
of an active interrupt. However, the deactivation of

SUSPA# may be delayed until the end of an active
refresh cycle.

The CPU also allows PCI accesses during a HALT-
initiated Suspend mode. If the CPU is in the middle
of a PCI access when the Halt instruction is
executed, the assertion of SUSPA# will be delayed
until the PCI access is completed.

Figure 6-2 HALT-Initiated Suspend Mode

SYSCLK

FRAME#

C/BE[3:0]#

AD[15:0]

IRDY#

INTR, NMI,

SUSPA#

O XI

I XX

SMI#

HALT

Page 206 Cyrix Corporation Confidential GXm_db_v2.0

� Suspend Mode and Bus Cycles

6.5.3 Responding to a PCI Access
During Suspend Mode

The MediaGX processor can temporarily exit
Suspend mode to handle PCI accesses. If an
unmasked REQx# is asserted, the MediaGX
processor will deassert SUSPA# and exit the
Suspend mode to respond to the PCI access. A
PCI access is completed when FRAME# is inactive
and TRDY# or STOP# are active. If SUSP# is

asserted when the PCI access is completed, the
MediaGX processor will assert SUSPA# and return
to a SUSP#-initiated Suspend mode. If it was a
HALT-initiated Suspend mode and no active inter-
rupts have been recognized, the CPU will assert
SUSPA# and return to a HALT-initiated Suspend
mode.

Figure 6-3 PCI Access During Suspend Mode

SYSCLK

REQx#

TRDY#

SUSP#

SUSPA#

FRAME#

GXm_db_v2.0 Cyrix Corporation Confidential Page 207

Suspend Mode and Bus Cycles 6
6.5.4 Stopping the Input Clock
Because the MediaGX processor is a static device,
the input clock (SYSCLK) can be stopped and
restarted without any loss of internal CPU data. If
DRAMS are used that do not have self-refresh, bit
0 of the PM Clock Stop Control Register must be
set to a one and the CLK32KHZ input must be
continuously applied to keep the refresh circuitry
running. The SYSCLK input can be stopped at
either a logic high or logic low state. The required
sequence for stopping SYSCLK is to initiate CPU
Suspend mode, wait for the assertion of SUSPA#
by the processor, and then stop the input clock.

The CPU remains suspended until SYSCLK is
restarted and the Suspend mode is exited as
described earlier. While SYSCLK is stopped, the
processor can no longer sample and respond to
any input stimulus including REQx#, NMI, SMI#,
INTR, and RESET inputs.

Figure 6-4 illustrates the recommended sequence
for stopping the SYSCLK using SUSP# to initiate
Suspend mode. SYSCLK may be started prior to or
following negation of the SUSP# input. The figure
includes the SUSP_3V pin from the
Cx5520/Cx5530 which is used to stop the external
clocks.

Figure 6-4 Stopping SYSCLK During Suspend Mode

SYSCLK

SUSP#

SUSP_3V

SMI Event, Timer or Pin

SUSPA#

(Cx5520/Cx5530)

Page 208 Cyrix Corporation Confidential GXm_db_v2.0

� MediaGX Processor Serial Bus

6.6 MediaGX Processor Serial Bus
The power management logic of the MediaGX
processor provides the Cx5520/Cx5530 with infor-
mation regarding the MediaGX processor produc-
tivity. If the MediaGX processor is determined to be
relatively inactive, the MediaGX processor power
consumption can be greatly reduced by entering
the Suspend Modulation mode.

Although the majority of the system power
management logic is implemented in the
Cx5520/Cx5530, a small amount of logic is
required within the MediaGX processor to provide
information from the graphics controller that is not
externally visible otherwise. The MediaGX
processor implements a simple serial communica-
tions mechanism to transmit the CPU status to the
Cx5520/Cx5530. The MediaGX processor accu-
mulates CPU events in a 8-bit register, “PM Serial
Packet Register” (GX_BASE+850Ch, see Table 6-
2), which is serially transmitted out of the MediaGX
processor every 1 to 10 µs. The transmission
frequency is set with the “PM Serial Packet Control
Register” (GX_BASE+8504h, see Table 6-2).

6.6.1 Serial Packet Transmission
The MediaGX processor transmits the contents of
the “PM Serial Packet Register” on the SERIALP
output pin to the PSERIAL input pin of the
Cx5520/Cx5530. The MediaGX processor holds
SERIALP low until the transmission interval
counter (GX_BASE+8504h[4:3]) has elapsed.
Once the counter has elapsed, PSERIAL is held
high for two SYSCLKs to indicated the start of
packet transmission. The contents of the packet
register are then shifted out starting from bit 7
down to bit 0. PSERIAL is held high for one
SYSCLK to indicate the end of packet transmission
and then remains low until the next transmission
interval. After the packet transmission has
completed, the packet contents are cleared.

GXm_db_v2.0 Cyrix Corporation Confidential Page 209

Power Management Registers 6
6.7 Power Management Registers
The MediaGX processor contains the power
management registers for the serial packet trans-
mission control, the user-defined power manage-
ment address space, Suspend Refresh, and SMI
status for Suspend/Resume. These registers are
memory mapped (GX_BASE+8500h-8FFFh) in the
address space of the MediaGX processor and are
described in the following sections. Refer to
Section 4.1.2 “Control Registers” on page 106 for
instructions on accessing these registers.

Note, however, the PM_BASE and PM_MASK
registers are accessed with the CPU_READ and
CPU_WRITE instructions. Refer to Section 4.1.6
“CPU_READ/CPU_WRITE Instructions” on page
111 for more information regarding these instruc-
tions.

Table 6-1 summarizes the above mentioned regis-
ters. Tables 6-2 and 6-3 give these register’s bit
formats.

Table 6-1 Power Management Register Summary

GX_BASE+
Memory Offset Type Name/Function

Default
Value

Control and Status Registers

8500h-8503h R/W PM_STAT_SMI

PM SMI Status Register — Contains System Management Mode (SMM) status
information used by SoftVGA.

xxxxxx00h

8504h-8507h R/W PM_CNTRL_TEN

PM Serial Packet Control Register — Sets the serial packet transmission fre-
quency and enables specific CPU events to be recorded in the serial packet.

xxxxxx00h

8508h-850Bh R/W PM_CNTRL_CSTP

PM Clock Stop Control Register — Enables the 3-V Suspend Mode for the Medi-
aGX processor.

xxxxxx00h

850Ch-850Fh R/W PM_SER_PACK

PM Serial Packet Register — Transmits the contents of the serial packet.

xxxxxx00h

Index Type Name/Function
Default
Value

Programmable Address Region Registers

FFFF FF6Ch R/W PM_BASE

PM Base Register — Contains the base address for the programmable memory
range decode. This register, in combination with the PM_MASK register, is used
to generate a memory range decode which sets bit 1 in the serial transmission
packet.

00000000h

FFFF FF7Ch R/W PM_MASK

PM Mask Register — The address mask for the PM_BASE register

00000000h

Page 210 Cyrix Corporation Confidential GXm_db_v2.0

� Power Management Registers

Table 6-2 Power Management Control and Status Registers

Bit Name Description

GX_BASE+8500h-8503h PM_STAT_SMI Register (R/W) Default Value = xxxxxx00h

31:8 RSVD Reserved — These bits are not used. Do not write to these bits.

7:3 RSVD Reserved — Set to 0.

2 SMI_MEM SMI VGA Emulation Memory — This bit is set high if a SMI was generated for VGA emulation in
response to a VGA memory access. An SMI can be generated on a memory access to one of
three regions in the A0000h-to-BFFFFh range as specified in the BC_XMAP_1 register.

1 SMI_IO SMI VGA Emulation I/O — This bit is set high if a SMI was generated for VGA emulation in
response to an I/O access. An SMI can be generated on a I/O access to one of three regions in
the 3B0h-to-3DFh range as specified in the BC_XMAP_1 register.

0 SMI_PIN SMI Pin — When set high, this bit indicates that the SMI# input pin has been asserted to the
MediaGX processor.

Note: These bits are “sticky” bits and can only be cleared with a write of ‘1’ to the respective bit.

GX_BASE+8504h-8507h PM_CNTRL_TEN Register (R/W) Default Value = xxxxxx00h

31:8 RSVD Reserved — These bits are not used. Do not write to these bits.

7:6 RSVD Reserved — Set to 0.

5 X_TEST (WO) Transmission Test (Write Only) — Setting this bit causes the MediaGX Processor to immedi-
ately transmit the current contents of the serial packet. This bit is write only and is used primarily
for test. This bit returns 0 on a read.

4:3 X_FREQ Transmission Frequency — This field indicates the time between serial packet transmissions.
Serial packet transmissions occur at the selected interval only if at least one of the packet bits is
set high: 00 = Disable transmitter; 01 = 1 ms; 10 = 5 ms; 11 = 10 ms.

2 CPU_RD CPU Activity Read Enable — Setting this bit high enables reporting of CPU Level-1 cache read
misses that are not a result of an instruction fetch. This bit is a don’t-care if the CMEN bit is not set
high

1 CPU_EN CPU Activity Master Enable — Setting this bit high enables reporting of CPU Level-1 cache
misses in bit 6 of the serial transmission packet. When enabled, the CPU Level-1 cache miss
activity is reported on any read (assuming the CREN is set high) or write access excluding misses
that resulted from an instruction fetch.

0 VID_EN Video Event Enable — Setting this bit high enables video decode events to be reported in bit 0 of
the serial transmission packet. CPU or graphics-pipeline accesses to the graphics memory and
display-controller-register accesses are also reported.

GX_BASE+8508h-850Bh PM_CNTRL_CSTP Register (R/W) Default Value = xxxxxx00h

31:8 RSVD Reserved — These bits are not used. Do not write to these bits.

7:1 RSVD Reserved — Set to 0.

0 CLK_STP Clock Stop — This bit configures the MediaGX processor for Suspend Refresh Mode or 3-Volt
Suspend Mode:

0 = Suspend Refresh Mode. The clocks to the memory and display controller are active.
1 = 3-Volt Suspend Mode. All internal clocks are stopped.

Note: When this register is set high and the Suspend input pin (SUSP#) is asserted, the MediaGX processor stops all it’s internal
clocks, and asserts the Suspend Acknowledge output pin (SUSPA#). Once SUSPA# is asserted the MediaGX processor’s
SYSCLK input can be stopped. If this register is cleared, the internal memory-controller and display-controller clocks are
not stopped on the SUSP#/SUSPA# sequence, and the SYSCLK input can not be stopped.

GXm_db_v2.0 Cyrix Corporation Confidential Page 211

Power Management Registers 6

GX_BASE+850Ch-850Fh PM_SER_PACK Register (R/W) Default Value = xxxxxx00h

31:8 RSVD Reserved — These bits are not used. Do not write to these bits.

7 VID_IRQ Video IRQ — This bit indicates the occurrence of a video vertical sync pulse. This bit is set at the
same timer that the VINT (Vertical Interrupt) bit is set in the DC_TIMING_CFG register. The VINT
bit has a corresponding enable bit (VIEN) in the DC_TIM_CFG register.

6 CPU_ACT CPU Activity — This bit indicates the occurrence of a level 1 cache miss that was not a result of
an instruction fetch. This bit has a corresponding enable bit in the PM_CNTL_TEN register.

5:2 RSVD Reserved — Set to 0.

1 USR_DEF Programmable Address Decode — This bit indicates the occurrence of a programmable mem-
ory address decode. This bit is set based on the values of the PM_BASE register and the
PM_MASK register. The PM_BASE register can be initialized to any address in the full 128MB
address range.

0 VID_DEC Video Decode — This bit indicates that the CPU has accessed either the Display Controller regis-
ters or the graphics memory region. This bit has a corresponding enable bit in the
PM_CNTRL_TEN.

Note: The MediaGX processor transmits the contents of the serial packet only when a bit in the packet register is set and the
interval counter has elapsed. The Cx5520/Cx5530 decodes the serial packet after each transmission. Once a bit in the
packet is set, it will remain set until the completion of the next packet transmission. Successive events of the same type that
occur between packet transmissions are ignored. Multiple unique events between packets transmissions will accumulate in
this register.

Table 6-2 Power Management Control and Status Registers (cont.)

Bit Name Description

Page 212 Cyrix Corporation Confidential GXm_db_v2.0

� Power Management Registers

Table 6-3 Power Management Programmable Address Region Registers

Bit Name Description

Index FFFF FF6Ch PM_BASE Register (R/W) Default Value = 0000000h

31:28 RSVD Reserved — Set to 0.

27:2 BASE_ADDR Base Address — This is the word-aligned base address for the programmable memory range
compare. The actual address range is determined with this field and the PM_MASK register value.

1:0 RSVD Reserved — Set to 0.

Index FFFF FF7Ch PM_MASK Register (R/W) Default Value = 0000000h

31:28 RSVD Reserved — Set to 0.

27:2 ADR_MASK Address Mask — This field is the address mask for the BASE_ADDR field in the PM_BASE reg-
ister. If a bit in the ADR_MASK field is cleared the corresponding bit in the BASE_ADDR field must
match the processor address. If a bit in the mask field is set high, the corresponding bit in the
BASE_ADDR field always compares. If the processor cycle type matches the values of the WE
and RE bits, and all bits in the BADD field match the processor address based on the ADR_MASK
field, bit 1 will be set high in the serial transmission packet.

1 WE Write Enable — Compare memory write cycles with BASE_ADDR and ADR_MASK:
0 = Disable; 1 = Enable.

0 RE Read Enable — Compare memory read cycles with BASE_ADDR and ADR_MASK:
0 = Disable; 1 = Enable

GXm_db_v2.0 Cyrix Corporation Confidential Page 213

MediaGX™ MMX™-Enhanced Processor
Integrated x86 Solution with MMX™ Support

�
7 Electrical Specifications
This section provides information on electrical
connections, absolute maximum ratings, recom-
mended operating conditions, DC characteristics,
and AC characteristics. All voltage values in the
Electrical Specifications are with respect to VSS
unless otherwise noted. For detailed information on
the PCI bus electrical specification refer to Chapter
4 of the PCI Bus Specification, Revision 2.1.

7.1 Part Numbers
The following part numbers designate the various
speeds available. For all speeds, the VCC2 voltage
is 2.9V nominal and the VCC3 voltage is 3.3V
nominal.

Note: BP = BGA Package
GP = SPGA Package

7.2 Electrical Connections

7.2.1 Power/Ground Connections
and Decoupling

Testing and operating the MediaGX processor
requires the use of standard high frequency tech-
niques to reduce parasitic effects. These effects
can be minimized by filtering the DC power leads
with low-inductance decoupling capacitors, using
low-impedance wiring, and by utilizing all of the
VCC2, VCC3, and VSS pins.

7.2.2 Power Sequencing
the Core and I/O Voltages

With two voltages connected to the MediaGX
processor, it is important that the voltages come up
in the correct order. VCC2 should come up at or
before VCC3. There are no additional timing
requirements related to this sequence.

7.2.3 NC-Designated Pins
Pins designated NC (No Connection) should be left
disconnected. Connecting an NC pin to a pull-up/-
down resistor, or an active signal could cause
unexpected results and possible circuit malfunc-
tions.

Table 7-1 Part Numbers

CPU
Speed

Bus Speed (MHz)
& Multiplier Part Number

200MHz 33.3MHz x 6 MediaGX-200BP 2.9V
MediaGX-200GP 2.9V

233MHz 33.3MHz x 7 MediaGX-233BP 2.9V
MediaGX-233GP 2.9V

266MHz 33.3MHz x 8 MediaGX-266BP 2.9V
MediaGX-266GP 2.9V

300MHz 33.3MHz x 9 MediaGX-300BP 2.9V
MediaGX-300GP 2.9V

Page 214 Cyrix Corporation Confidential GXm_db_v2.0

� Electrical Connections

7.2.4 Pull-Up and Pull-Down
Resistors

Table 7-2 lists the input pins that are internally
connected to a 20-kohm pull-up/-down resistor.
When unused, these inputs do not require connec-
tion to an external pull-up/-down resistor.

Note: *SUSP# is pulled up when not active.

7.2.5 Unused Input Pins
All inputs not used by the system designer and not
listed in Table 7-2 should be kept at either ground
or VCC3. To prevent possible spurious operation,
connect active-high inputs to ground through a 20-
kohm (±10%) pull-down resistor and active-low
inputs to VCC3 through a 20-kohm (±10%) pull-up
resistor.

Table 7-2 Pins with 20-kohm Internal Resistor

Signal Name
BGA

Ball No.
SPGA

Pin No. PU/PD

SUSP* H2 M4 Pull-up

FRAME# A8 C13 Pull-up

IRDY# C9 D14 Pull-up

TRDY# B9 B14 Pull-up

STOP# C11 A15 Pull-up

LOCK# B11 B16 Pull-up

DEVSEL# A9 E15 Pull-up

PERR# A11 D16 Pull-up

SERR# C12 A17 Pull-up

REQ[2:0]# D3,
H3,
E3

E3,
K2,
E1

Pull-up

TCLK J2 P4 Pull-up

TMS H1 N3 Pull-up

TDI D2 F4 Pull-up

TEST F3 J5 Pull-down

GXm_db_v2.0 Cyrix Corporation Confidential Page 215

Absolute Maximum Ratings 7
7.3 Absolute Maximum Ratings
Table 7-3 lists absolute maximum ratings for the
MediaGX processor. Stresses beyond the listed
ratings may cause permanent damage to the device.
Exposure to conditions beyond these limits may (1)
reduce device reliability and (2) result in premature
failure even when there is no immediately apparent
sign of failure. Prolonged exposure to conditions at

or near the absolute maximum ratings may also
result in reduced useful life and reliability. These
are stress ratings only and do not imply that opera-
tion under any conditions other than those listed
under Table 7-4 is possible.

Table 7-3 Absolute Maximum Ratings

Parameter Min Max Units Notes

Operating Case Temperature –65 110 °C Power Applied

Storage Temperature –65 150 °C No Bias

Supply Voltage 3.6 V

Voltage On Any Pin –0.5 6.0 V

Input Clamp Current, IIK –0.5 10 mA Power Applied

Output Clamp Current, IOK 25 mA Power Applied

Page 216 Cyrix Corporation Confidential GXm_db_v2.0

� Recommended Operating Conditions

7.4 Recommended Operating Conditions
Table 7-4 lists the recommended operating conditions for the MediaGX processor.

Table 7-4 Recommended Operating Conditions

Symbol Parameter Min Max Units Notes

TC Operating Case Temperature 0 70 °C For Desktop Applications

TC Operating Case Temperature 0 85 °C For Notebook Applications

VCC2 Supply Voltage (2.9V nominal) 2.75 3.05 V

VCC3 Supply Voltage (3.3V nominal) 3.14 3.46 V

VIH High-Level Input Voltage:

All input and I/O pins except
SDRAM Interface and SYSCLK

2.0 5.5 V Note 1

SDRAM Interface 2.0 VCC3+0.5 V Note 2

SYSCLK 2.7 5.5 V Note 1

VIL Low-Level Input Voltage:

All except PCI bus and SYSCLK –0.5 0.8 V

PCI bus –0.5 0.3*VCC3 V

SYSCLK –0.5 0.4 V

IOH High-Level Output Current –2 mA VO = VOH (Min)

IOL Low-Level Output Current 5 mA VO = VOL (Max)

Notes: 1) This parameter indicates that these pins are tolerant to the PCI 5 Volt Signaling Environment DC
specification.

2) SDRAM Interface Pins: BA[1:0], CAS[A:B]#, CKE[A:B], CS[3:0]#, DQM[7:0], MA[12:0], MD[63:0],
RASA#, RASB#, SDCLK_IN, SDCLK_OUT, SDCLK[3:0], TEST[3:0], WE[A:B]#

GXm_db_v2.0 Cyrix Corporation Confidential Page 217

DC Characteristics 7
7.5 DC Characteristics

Table 7-5 DC Characteristics (at Recommended Operating Conditions)

Symbol Parameter Min Typ Max Units Notes

VOL Output Low Voltage 0.4 V IOL = 5 mA

VOH Output High Voltage 2.4 V IOH = –2 mA

II Input Leakage Current for all input pins except
those with internal PU/PDs

±10 µA 0 < VIN < VCC3,
See Table 7-2

IIH Input Leakage Current for all pins with
internal PDs.

200 µA VIH = 2.4 V,
See Table 7-2

IIL Input Leakage Current for all pins with
internal PUs.

–400 µA VIL = 0.35 V,
See Table 7-2

ICC Active ICC:

Core ICC2 at fCLK = 200MHz
I/O ICC3 at fCLK = 200MHz

1.45
0.30

2.55
0.34

A Note 1

Core ICC2 at fCLK = 233MHz
I/O ICC3 at fCLK = 233MHz

1.55
0.32

2.85
0.35

Core ICC2 at fCLK = 266MHz
I/O ICC3 at fCLK = 266MHz

1.65
0.33

3.10
0.36

Core ICC2 at fCLK = 300MHz
I/O ICC3 at fCLK = 300MHz

1.75
0.34

3.35
0.37

ICCSM Suspend Mode ICC:

Core ICC2 at fCLK = 200MHz
I/O ICC3 at fCLK = 200MHz

285
240

360
300

mA Notes 1 and 4

Core ICC2 at fCLK = 233MHz
I/O ICC3 at fCLK = 233MHz

530
250

600
310

Core ICC2 at fCLK = 266MHz
I/O ICC3 at fCLK = 266MHz

650
260

750
330

Core ICC2 at fCLK = 300MHz
I/O ICC3 at fCLK = 300MHz

770
270

900
350

ICCSS Standby ICC (Suspend and CLK Stopped):

Core ICC2 at fCLK = 0MHz
I/O ICC3 at fCLK = 0MHz

10
7

60
10

mA Notes 1 and 3

CIN Input Capacitance 16 pF f = 1MHz, Note 2

COUT Output or I/O Capacitance 16 pF f = 1MHz, Note 2

CCLK CLK Capacitance 12 pF f = 1MHz, Note 2

Notes: 1. fCLK ratings refer to internal clock frequency.

2. Not 100% tested.

3. All inputs are at 0.2 V or VCC3 – 0.2 (CMOS levels). All inputs are held static and all outputs are unloaded
(static IOUT = 0 mA).

4. All inputs are at 0.2 V or VCC3 – 0.2 (CMOS levels). All inputs except clock are held static and all outputs are unloaded
(static IOUT = 0 mA).

Page 218 Cyrix Corporation Confidential GXm_db_v2.0

� AC Characteristics

7.6 AC Characteristics
The following tables list the AC characteristics
including output delays, input setup requirements,
input hold requirements and output float delays.
The rising-clock-edge reference level VREF, and
other reference levels are shown in Table 7-6.
Input or output signals must cross these levels during
testing.

Input setup and hold times are specified minimums
that define the smallest acceptable sampling
window for which a synchronous input signal must
be stable for correct operation.

All AC tests are at VCC2 = 2.75V to 3.05V (2.9V
nominal), TC = 0oC to 70oC or 85o, CL = 50 pF
unless otherwise specified.

Figure 7-1 Drive Level and Measurement Points for Switching Characteristics

Table 7-6 Drive Level and Measurement
Points for Switching Characteristics

Symbol Voltage (V)

VREF 1.5

VIHD 2.4

VILD 0.4

CLK

OUTPUTS

INPUTS

VIHD

VILD

VREF

Valid Input

Valid Output n+1Valid Output n

VREF

VREF

VILD

VIHD

Min

Max

Legend: A = Maximum Output Delay Specification
B = Minimum Output Delay Specification
C = Minimum Input Setup Specification
D = Minimum Input Hold Specification

TX

B
A

C D

GXm_db_v2.0 Cyrix Corporation Confidential Page 219

AC Characteristics 7
Table 7-7 Clock Signals

Figure 7-2 SYSCLK Timing and Measurement Points

Symbol Parameter

200MHz (6x)
(Note)

233MHz (7x)
(Note)

266MHz (8x)
(Note)

300MHz (9x)
(Note)

UnitsMin Max Min Max Min Max Min Max

t1 SYSCLK Period 30.0 30.0 30.0 30.0 ns

t2 SYSCLK Period Stability ±250 ±250 ±250 ±250 ps

t3 SYSCLK High Time 10 10 10 10 ns

t4 SYSCLK Low Time 10 10 10 10 ns

t5 SYSCLK Fall Time 0.15 2.0 0.15 2.0 0.15 2.0 0.15 2.0 ns

t6 SYSCLK Rise Time 0.15 2.0 0.15 2.0 0.15 2.0 0.15 2.0 ns

t7 DCLK Period 9.3 9.3 9.3 9.3 ns

t8 DCLK Rise/Fall Time 3.0 3.0 3.0 3.0 ns

t9 SDCLK_OUT,
SDCLK[3:0] Period

13 17 11 16 10 13 9 11 ns

t10 SDCLK_OUT,
SDCLK[3:0] High Time

6.5 5.5 5 4.5 ns

t11 SDCLK_OUT,
SDCLK[3:0] Low Time

6.5 5.5 5 4.5 ns

t12 SDCLK_OUT,
SDCLK[3:0] Fall Time

0.15 2.0 0.15 2.0 0.15 2.0 0.15 2.0 ns

t13 SDCLK_OUT,
SDCLK[3:0] Rise Time

0.15 2.0 0.15 2.0 0.15 2.0 0.15 2.0 ns

Note: SDCLK timings (t9-t13) assume an SDCLK that is a "divide by 3" from the internal core clock. Hence:
200MHz (6x) = 66.7MHz SDCLK
233MHz (7x) = 77.7MHz SDCLK
266MHz (8x) = 88.7MHz SDCLK
300MHz (9x) = 100MHz SDCLK

SYSCLK

1.5V

VIH (Min)

VIL (Max)

t3

t1

t6 t5t4

Page 220 Cyrix Corporation Confidential GXm_db_v2.0

� AC Characteristics

Figure 7-3 DCLK Timing and Measurement Points

Figure 7-4 SDCLK, SDCLK[3:0] Timing and Measurement Points

Table 7-8 System Signals

DCLK

t8

t7

SDCLK,

1.5V

VIH (Min)

VIL (Max)

t10

t9

t13 t12t11
SDCLK[3:0]

Parameter Min Max Unit Notes

Setup Time for RESET, INTR 5 ns Note

Hold Time for RESET, INTR 2 ns Note

Setup Time for SMI#, SUSP#, FLT# 5 ns

Hold Time for SMI#, SUSP#, FLT# 2 ns

Valid Delay for IRQ13, SUSPA# 2 15 ns

Valid Delay for SERIALP 2 15 ns

Note: The system signals may be asynchronous. The setup/hold times are required for determining static
behavior.

GXm_db_v2.0 Cyrix Corporation Confidential Page 221

AC Characteristics 7
Table 7-9 PCI Interface Signals

Figure 7-5 Output Timing

Figure 7-6 Input Timing

Symbol Parameter Min Max Unit Notes

tVAL1 Delay Time, SYSCLK to Signal Valid for Bused
Signals

2 11 ns

tVAL2 Delay Time, SYSCLK to Signal Valid for GNT# 2 12 ns Note

tON Delay Time, Float to Active 2 ns

tOFF Delay Time, Active to Float 28 ns

tSU1 Input Setup Time for Bused Signals 7 ns

tSU2 Input Setup Time for REQ# 12 ns Note

tH Input Hold Time to SYSCLK 0 ns

Note: GNT# and REQ# are point-to-point signals. All other PCI interface signals are bused.
Refer to Chapter 4 of PCI Local Bus Specification, Revision 2.1, for more detailed information.

SYSCLK

TRISTATE

OUTPUT

OUTPUT

tVAL1,2

tOFF

tON

SYSCLK

INPUT

tHtSU1,2

Page 222 Cyrix Corporation Confidential GXm_db_v2.0

� AC Characteristics

Table 7-10 SDRAM Interface Signals

Figure 7-7 Output Valid Timing

Figure 7-8 Setup and Hold Timings - Read Data In

Symbol Parameter Min Max Unit

t1 CNTRL* Output Valid from
SDCLK[3:0]

Equation Number =
–1.5 (see below)

Equation Number =
–1.0 (see below)

ns

t2 MA[12:0], BA[1:0] Output Valid from
SDCLK[3:0]

Equation Number =
–1.7 (see below)

Equation Number =
–1.2 (see below)

ns

t3 MD[63:0] Output Valid from
SDCLK[3:0]

Equation Number =
–1.6 (see below)

Equation Number =
–0.3 (see below)

ns

t4 MD[63:0] Read Data in Setup to
SDCLKIN

0 ns

t5 MD[63:0] Read Data Hold to SDCLKIN 2.0 ns

*CNTRL = RASA#, RASB# CASA#, CASB#, WEA#, WEB#, CKEA, CKEB, DQM[7:0], CS[3:0]#.
Load = 50pF, Core Vcc = 2.9, I/O Vcc = 3.3V, 25°C.

Output Valid Equation: Use Min or Max number in equation: Min# or Max# + (x * y)
Where: x = shift value applied to SHFTSDCLK field and y = (core clock period) ÷ 2
Note that SHFTSDCLK field = GX_BASE+8404h[5:3], see page 123.

Equation Example:
A 200MHz MediaGX processor running a 66MHz SDRAM bus, with a shift value of 2:

t1 Min = –1.5 + (2 * (5 ÷ 2)) = 3.5 ns
t1 Max = –1.0 + (2 * (5 ÷ 2)) = 4.0 ns

SDCLK[3:0]

CNTRL, MA[12:0],
BA[1:0], MD[63:0]

t1, t2, t3

Valid

SDCLKIN

MD[63:0]
Read Data In

t4
t5

t6
t7

Data Valid Data Valid

GXm_db_v2.0 Cyrix Corporation Confidential Page 223

AC Characteristics 7
Table 7-11 Video Interface Signals

Figure 7-9 Graphics Port Timing

Symbol Parameter Min Max Unit Notes

t1 PCLK Period 7.4 40 ns

t2 PCLK High Time 3 ns

t3 PCLK Low Time 3 ns

t4 PIXEL[17:0], CRT_HSYNC, CRT_VSYNC,
FP_HSYNC, FP_VSYNC, ENA_DISP Valid Delay
from PCLK Rising Edge

2 5 ns

t5 VID_CLK Period 8.5 ns

t6 VID_RDY Setup to VID_CLK Rising Edge 5 ns

t7 VID_RDY Hold to VID_CLK Rising Edge 2 ns

t8 VID_VAL, VID_DATA[7:0] Valid Delay from
VID_CLK Rising Edge

2 5 ns

t9 DCLK Period 7.4 ns

t10 DCLK Rise/Fall Time 3 ns

tcyc DCLK Duty Cycle 40 60 %

t1

t2 t3

t4

PCLK

PIXEL[17:0],
CRT_HSYNC, CRT_VSYNC,

FP_HSYNC, FP_VSYNC,
ENA_DISP

Page 224 Cyrix Corporation Confidential GXm_db_v2.0

� AC Characteristics

Figure 7-10 Video Port Timing

Figure 7-11 DCLK Timing

t5

t8

VID_VAL

VID_CLK

VID_DATA[7:0]

t6

t7

VID_RDY

DCLK

t10t9

GXm_db_v2.0 Cyrix Corporation Confidential Page 225

AC Characteristics 7
Table 7-12 JTAG AC Specification

Figure 7-12 TCK Timing and Measurement Points

Symbol Parameter Min Max Unit Notes

TCK Frequency (MHz) 25 MHz

t1 TCK Period 40 ns

t2 TCK High Time 10 ns

t3 TCK Low Time 10 ns

t4 TCK Rise Time 4 ns

t5 TCK Fall Time 4 ns

t6 TDO Valid Delay 3 25 ns

t7 Non-test Outputs Valid Delay 3 25 ns

t8 TDO Float Delay 30 ns

t9 Non-test Outputs Float Delay 36 ns

t10 TDI, TMS Setup Time 8 ns

t11 Non-test Inputs Setup Time 8 ns

t12 TDI, TMS Hold Time 7 ns

t13 Non-test Inputs Hold Time 7 ns

TCK

1.5 V

VIH(Min)

VIL(Max)

t2

t1

t4 t5

t3

Page 226 Cyrix Corporation Confidential GXm_db_v2.0

� AC Characteristics

Figure 7-13 JTAG Test Timings

TCK

TDI,

TMS

1.5 V

t10

t8

t12

t6

t7 t9

t11 t13

TDO

Output

Signals

Input

Signals

GXm_db_v2.0 Cyrix Corporation Confidential Page 227

MediaGX™ MMX™-Enhanced Processor
Integrated x86 Solution with MMX™ Support

�
8 Package Specifications
The thermal characteristics and mechanical dimen-
sions are provided on the following pages.

8.1 Thermal Characteristics
The MediaGX processor is designed to operate
when the case temperature at the top center of the
package is between 0°C and 70 or 85°C. The
maximum die (junction) temperature and the
maximum ambient temperature can be calculated
by substituting thermal resistance and maximum
values for case or junction temperature and power
dissipation in the following equations:

TJ = Tc + (P * θJC)

TJ = TA + (P * θJA)

where:
TA = Ambient temperature (°C)

TJ = Average junction temperature (°C)

TC = Case temperature at top center of package
(°C)

P = Power dissipation (W)

θJC = Junction-to-case thermal resistance
(°C/W)

θJA = Junction-to-ambient thermal resistance
(°C/W).

θCA = Case-to-ambient thermal resistance
(°C/W).

Therefore, this equation can be used to calculate
the maximum θCA value for the different ambient
temperatures shown in Table 8-1 below:

The calculated θCA value (examples shown in the
Tables 8-1 and 8-2) represents the maximum spec-
ification for the cooling solution chosen which is
required to maintain the 70 or 85°C case tempera-
ture for the application in which the device is used.

θCA

TC TA–

P
--------------------=

Page 228 Cyrix Corporation Confidential GXm_db_v2.0

� Thermal Characteristics

Table 8-1 Case to Ambient Thermal Resistance Examples for 70°C Product

Part Number
Frequency

(MHz)
Maximum
Power (W)

θCA for Different Ambient Temperatures (°C/W)

20°C 25°C 30°C 35°C 40°C

Case Temperature = 70°C

GM200 200 8.95 5.59 5.03 4.47 3.91 3.35

GM233 233 9.87 5.07 4.56 4.05 3.55 3.04

GM266 266 10.70 4.67 4.21 3.74 3.27 2.80

GM300 300 11.27 4.44 3.99 3.55 3.11 2.66

Table 8-2 Case to Ambient Thermal Resistance Examples for 85°C Product

Part Number
Frequency

(MHz)
Maximum
Power (W)

θCA for Different Ambient Temperatures (°C/W)

20°C 25°C 30°C 35°C 40°C

Case Temperature = 85°C

GM200 200 8.95 7.26 6.70 6.15 5.59 5.03

GM233 233 9.87 6.59 6.08 5.57 5.07 4.56

GM266 266 10.70 6.08 5.61 5.14 4.67 4.21

GM300 300 11.27 5.77 5.32 4.88 4.44 3.99

GXm_db_v2.0 Cyrix Corporation Confidential Page 229

Mechanical Package Outlines 8
8.2 Mechanical Package Outlines
Dimensions for the BGA package are shown in
Figure 8-1. Figure 8-2 shows the SPGA dimen-

sions. Table 8-3 gives the legend for the symbols
used in both package outlines.

Figure 8-1 352-Terminal BGA Mechanical Package Outline

Sym

Millimeters Inches

Min Max Min Max

A 1.45 2.23 0.057 0.088

A1 0.50 0.70 0.020 0.028

A2 0.43 0.83 0.017 0.033

aaa 0.20 0.008

B 0.60 0.90 0.024 0.035

D 34.80 35.20 1.370 1.386

D1 31.55 31.95 1.242 1.258

D2 32.80 35.20 1.291 1.386

E1 1.12 1.42 0.044 0.056

F 0.35 0.014

S1 1.42 1.82 0.056 0.072

F

D2

A01 Index Chamfer
1.5 mm on a side
45 Degree Angle

CU Heat
Spreader

.889
REF.

S1D1

D

D

1.5

1.5

E1

B

A1
A2

A

Seating
Plane

aaa Z

Z

Page 230 Cyrix Corporation Confidential GXm_db_v2.0

� Mechanical Package Outlines

Figure 8-2 320-Pin SPGA Mechanical Package Outline

F

D

A01 index mark
.030" blank circle
inside .060" filled
circle to form donut

45 CHAMFER

Pin C3

2.29
1.52 REF. (INDEX CORNER)

1.65
REF.

S1
D1

D

D

o

Sym

Millimeters Inches

Min Max Min Max

A 2.51 3.07 0.099 0.121

B 0.43 0.51 0.017 0.020

D 49.28 49.91 1.940 1.965

D1 45.47 45.97 1.790 1.810

E1 2.41 2.67 0.095 0.105

E2 1.14 1.40 0.045 0.055

F -- 0.127
Diag

-- 0.005
Diag

L 2.97 3.38 0.117 0.133

S1 1.65 2.16 0.065 0.085

SEATING
PLANE

L

E2
E1

B

A

GXm_db_v2.0 Cyrix Corporation Confidential Page 231

Mechanical Package Outlines 8
Table 8-3 Mechanical Package Outline Legend

Symbol Meaning

A Distance from seating plane datum to highest point of body

A1 Solder ball height

A2 Laminate thickness (excluding heat spreader)

aaa Coplanarity

B Pin or solder ball diameter

D Largest overall package outline dimension

D1 Length from outer pin center to outer pin center

D2 Heat spreader outline dimension

E1 BGA: Solder ball pitch
SPGA: Linear spacing between true pin position centerlines

E2 Diagonal spacing between true pin position centerlines

F Flatness

L Distance from seating plane to tip of pin

S1 Length from outer pin/ball center to edge of laminate

Page 232 Cyrix Corporation Confidential GXm_db_v2.0

� Mechanical Package Outlines

GXm_db_v2.0 Cyrix Corporation Confidential Page 233

MediaGX™ MMX™-Enhanced Processor
Integrated x86 Solution with MMX™ Support

�
9 Instruction Set
This section summarizes the MediaGX processor
instruction set and provides detailed information on
the instruction encodings. The instruction set is
broken into four categories:

• Processor Core Instruction Set - listed in Table
9-27 on page 246

• FPU Instruction Set - listed in Table 9-29 on
page 261

• MMX™ Instruction Set - listed in Table 9-31 on
page 267

• Cyrix Extended MMX Instruction Set - listed in
Table 9-33 on page 273

These tables provide information on the instruction
encoding, and the instruction clock counts for each
instruction. The clock count values for these tables
are based on the assumptions following assumptions

1. All clock counts refer to the internal micropro-
cessor core internal clock frequency. For
example, clock doubled MediaGX processor
cores will reference a clock frequency that is
twice the bus frequency.

2. The instruction has been prefetched, decoded
and is ready for execution.

3. Bus cycles do not require wait states.

4. There are no local bus HOLD requests
delaying processor access to the bus.

5. No exceptions are detected during instruction
execution.

6. If an effective address is calculated, it does not
use two general register components. One
register, scaling and displacement can be used
within the clock count shown. However, if the
effective address calculation uses two general
register components, add one clock to the
clock count shown.

7. All clock counts assume aligned 32-bit
memory/IO operands.

8. If instructions access a 32-bit operand on odd
addresses, add one clock for read or write and
add two clocks for read and write.

9. For non-cached memory accesses, add two
clocks (clock doubled MediaGX processor
cores) or four clocks (clock tripled MediaGX
processor cores), assuming zero wait state
memory accesses.

10. Locked cycles are not cacheable. Therefore,
using the LOCK prefix with an instruction adds
additional clocks as specified in item 9 above.

Page 234 Cyrix Corporation Confidential GXm_db_v2.0

� General Instruction Set Format

9.1 General Instruction Set Format
Depending on the instruction, the MediaGX
processor core instructions follow the general
instruction format shown in Table 9-1.

These instructions vary in length and can start at
any byte address. An instruction consists of one or
more bytes that can include prefix bytes, at least
one opcode byte, a mod r/m byte, an s-i-b byte,

address displacement, and immediate data. An
instruction can be as short as one byte and as long
as 15 bytes. If there are more than 15 bytes in the
instruction, a general protection fault (error code 0)
is generated.

The fields in the general instruction format at the
byte level are summarized in Table 9-2 and
detailed in the following subsections.

Table 9-1 General Instruction Set Format

Prefix (optional) Opcode

Register and Address Mode Specifier

Address
Displacement

Immediate
 Data

mod r/m Byte s-i-b Byte

mod reg r/m ss index base

0 or More Bytes 1 or 2 Bytes 7:6 5:3 2:0 7:6 5:3 2:0 0, 8, 16, or 32 Bits 0, 8, 16, or 32 Bits

Table 9-2 Instruction Fields

Field Name Description

Prefix (optional) Prefix Field(s): One or more optional fields that are used to specify segment register override,
address and operand size, repeat elements in string instruction, LOCK# assertion.

Opcode Opcode Field: Identifies instruction operation.

mod Address Mode Specifier: Used with r/m field to select addressing mode.

reg General Register Specifier: Uses reg, sreg3 or sreg2 encoding depending on opcode field.

r/m Address Mode Specifier: Used with mod field to select addressing mode.

ss Scale factor: Determines scaled-index address mode.

index Index: Determines general register to be used as index register.

base Base: Determines general register to be used as base register.

Address Displacement Displacement: Determines address displacement.

Immediate Data Immediate Data: Immediate-data operand used by instruction.

GXm_db_v2.0 Cyrix Corporation Confidential Page 235

General Instruction Set Format 9
9.1.1 Prefix (Optional)
Prefix bytes can be placed in front of any instruc-
tion to modify the operation of that instruction.
When more than one prefix is used, the order is not
important. There are five types of prefixes that can
be used:

1. Segment Override explicitly specifies which
segment register the instruction will use for
effective address calculation.

2. Address Size switches between 16-bit and 32-
bit addressing by selecting the non-default
address size.

3. Operand Size switches between 16-bit and 32-
bit operand size by selecting the non-default
operand size.

4. Repeat is used with a string instruction to
cause the instruction to be repeated for each
element of the string.

5. Lock is used to assert the hardware LOCK#
signal during execution of the instruction.

Table 9-3 lists the encoding for different types of
prefix bytes.

9.1.2 Opcode
The opcode field specifies the operation to be
performed by the instruction. The opcode field is
either one or two bytes in length and may be
further defined by additional bits in the mod r/m
byte. Some operations have more than one
opcode, each specifying a different form of the
operation. Certain opcodes name instruction
groups. For example, opcode 80h names a group
of operations that have an immediate operand and
a register or memory operand. The reg field may
appear in the second opcode byte or in the mod
r/m byte.

The opcode may contain w, d, s and eee opcode
fields as shown in the Processor Core Instruction
Set Summary (Table 9-27).

9.1.2.1 w Field (Operand Size)
When used, the 1-bit w field selects the operand
size during 16-bit and 32-bit data operations. See
Table 9-4.

Table 9-3 Instruction Prefix Summary

Prefix Encoding Description

ES: 26h Override segment default, use
ES for memory operand.

CS: 2Eh Override segment default, use
CS for memory operand.

SS: 36h Override segment default, use
SS for memory operand.

DS: 3Eh Override segment default, use
DS for memory operand.

FS: 64h Override segment default, use
FS for memory operand.

GS: 65h Override segment default, use
GS for memory operand.

Operand
Size

66h Make operand size attribute the
inverse of the default.

Address
Size

67h Make address size attribute the
inverse of the default.

LOCK F0h Assert LOCK# hardware signal.

REPNE F2h Repeat the following string
instruction.

REP/REPE F3h Repeat the following string
instruction.

Table 9-4 w Field Encoding

w
Field

Operand Size

16-Bit Data
Operations

32-Bit Data
Operations

0 8 bits 8 bits

1 16 bits 32 bits

Page 236 Cyrix Corporation Confidential GXm_db_v2.0

� General Instruction Set Format

9.1.2.2 d Field (Operand Direction)
When used, the d field (bit 1) determines which
operand is taken as the source operand and which
operand is taken as the destination. See Table 9-5.

9.1.2.3 s Field (Immediate Data Field
Size)

When used, the s field (bit 1) determines the size of
the immediate data field. If the s bit is set, the
immediate field of the opcode is 8 bits wide and is
sign-extended to match the operand size of the
opcode. See Table 9-6.

9.1.2.4 eee Field (MOV-Instruction
Register Selection)

The eee field (bits [5:3]) is used to select the
control, debug and test registers in the MOV
instructions. The type of register and base regis-
ters selected by the eee field are listed in Table 9-7.
The values shown in Table 9-7 are the only valid
encodings for the eee bits.

Table 9-5 d Field Encoding

d
Field

Direction of
Operation

Source
Operand

Destination
Operand

0 Register-to-Register
or
Register-to-Memory

reg mod r/m
or
mod ss-index-
base

1 Register-to-Register
or
Memory-to-Register

mod r/m
or
mod ss-index-
base

reg

Table 9-6 s Field Encoding

s
Field

Immediate Field Size

8-Bit
Operand Size

16-Bit
Operand Size

32-Bit
Operand Size

0 (or not
present)

8 bits 16 bits 32 bits

 1 8 bits 8 bits
(sign-extended)

8 bits
(sign-extended)

Table 9-7 eee Field Encoding

eee Field Register Type Base Register

000 Control Register CR0

010 Control Register CR2

011 Control Register CR3

100 Control Register CR4

000 Debug Register DR0

001 Debug Register DR1

010 Debug Register DR2

011 Debug Register DR3

110 Debug Register DR6

111 Debug Register DR7

011 Test Register TR3

100 Test Register TR4

101 Test Register TR5

110 Test Register TR6

111 Test Register TR7

GXm_db_v2.0 Cyrix Corporation Confidential Page 237

General Instruction Set Format 9
9.1.3 mod and r/m Byte

(Memory Addressing)
The mod and r/m fields within the mod r/m byte,
select the type of memory addressing to be used.
Some instructions use a fixed addressing mode
(e.g., PUSH or POP) and therefore, these fields are
not present. Table 9-9 lists the addressing method
when 16-bit addressing is used and a mod r/m byte
is present. Some mod r/m field encodings are
dependent on the w field and are shown in Table 9-
8.

Note: Note: d8 refers to 8-bit displacement, and d16 refers to
16-bit displacement.

Table 9-8 General Registers Selected by mod
r/m Fields and w Field

mod r/m

16-Bit
Operation

32-Bit
Operation

w = 0 w = 1 w = 0 w = 1

11 000 AL AX AL EAX

11 001 CL CX CL ECX

11 010 DL DX DL EDX

11 011 BL BX BL EBX

11 100 AH SP AH ESP

11 101 CH BP CH EBP

11 110 DH SI DH ESI

11 111 BH DI BH EDI

Table 9-9 mod r/m Field Encoding

mod
Field

r/m
Field

16-Bit Address
Mode with

mod r/m Byte

32-Bit Address
Mode with mod r/m
Byte and No s-i-b

Byte Present

00 000 DS:[BX+SI] DS:[EAX]

00 001 DS:[BX+DI] DS:[ECX]

00 010 SS:[BP+SI] DS:[EDX]

00 011 SS:[BP+DI] DS:[EBX]

00 100 DS:[SI] s-i-b is present
(See Table 9-15)

00 101 DS:[DI] DS:[d32]

00 110 DS:[d16] DS:[ESI]

00 111 DS:[BX] DS:[EDI]

01 000 DS:[BX+SI+d8] DS:[EAX+d8]

01 001 DS:[BX+DI+d8] DS:[ECX+d8]

01 010 SS:[BP+SI+d8] DS:[EDX+d8]

01 011 SS:[BP+DI+d8] DS:[EBX+d8]

01 100 DS:[SI+d8] s-i-b is present
(See Table 9-15)

01 101 DS:[DI+d8] SS:[EBP+d8]

01 110 SS:[BP+d8] DS:[ESI+d8]

01 111 DS:[BX+d8] DS:[EDI+d8]

10 000 DS:[BX+SI+d16] DS:[EAX+d32]

10 001 DS:[BX+DI+d16] DS:[ECX+d32]

10 010 SS:[BP+SI+d16] DS:[EDX+d32]

10 011 SS:[BP+DI+d16] DS:[EBX+d32]

10 100 DS:[SI+d16] s-i-b is present
(See Table 9-15)

10 101 DS:[DI+d16] SS:[EBP+d32]

10 110 SS:[BP+d16] DS:[ESI+d32]

10 111 DS:[BX+d16] DS:[EDI+d32]

11 xxx See Table 9-8. See Table 9-8

Page 238 Cyrix Corporation Confidential GXm_db_v2.0

� General Instruction Set Format

9.1.4 reg Field
The reg field (Table 9-10) determines which
general registers are to be used. The selected
register is dependent on whether a 16- or 32-bit
operation is current and on the status of the w bit.

9.1.4.1 sreg2 Field (ES, CS, SS, DS
Register Selection)

The sreg2 field (Table 9-11) is a 2-bit field that
allows one of the four 286-type segment registers
to be specified.

9.1.4.2 sreg3 Field (FS and GS
Segment Register Selection)

The sreg3 field (Table 9-12) is 3-bit field that is
similar to the sreg2 field, but allows use of the FS
and GS segment registers.

Table 9-10 General Registers Selected by reg
Field

reg

16-Bit Operation 32-Bit Operation

w = 0 w = 1 w = 0 w = 1

000 AL AX AL EAX

001 CL CX CL ECX

010 DL DX DL EDX

011 BL BX BL EBX

100 AH SP AH ESP

101 CH BP CH EBP

110 DH SI DH ESI

111 BH DI BH EDI

Table 9-11 sreg2 Field Encoding

sreg2 Field Segment Register Selected

00 ES

01 CS

10 SS

11 DS

Table 9-12 sreg3 Field Encoding

sreg3 Field Segment Register Selected

000 ES

001 CS

010 SS

011 DS

100 FS

101 GS

110 Undefined

111 Undefined

GXm_db_v2.0 Cyrix Corporation Confidential Page 239

General Instruction Set Format 9
9.1.5 s-i-b Byte (Scale, Indexing,

Base)
The s-i-b fields provide scale factor, indexing and a
base field for address selection. The ss, index and
base fields described next.

9.1.5.1 ss Field (Scale Selection)
The ss field (Table 9-13) specifies the scale factor
used in the offset mechanism for address calcula-
tion. The scale factor multiplies the index value to
provide one of the components used to calculate
the offset address.

9.1.5.2 index Field (Index Selection)
The index field (Table 9-14) specifies the index
register used by the offset mechanism for offset
address calculation. When no index register is
used (index field = 100), the ss value must be 00 or
the effective address is undefined.

9.1.5.3 Base Field (s-i-b Present)
In Table 9-9, the note “s-i-b present” for certain
entries forces the use of the mod and base field as
listed in Table 9-15. The first two digits in the first
column of Table 9-15 identifies the mod bits in the
mod r/m byte. The last three digits in the first
column of this table identifies the base fields in the
s-i-b byte.

Table 9-13 ss Field Encoding

ss Field Scale Factor

00 x1

01 x2

01 x4

11 x8

Table 9-14 index Field Encoding

Index Field Index Register

000 EAX

001 ECX

010 EDX

011 EBX

100 none

101 EBP

110 ESI

111 EDI

Table 9-15 mod base Field Encoding

mod Field
within

mode/rm
Byte

(bits 7:6)

base Field
within
s-i-b
Byte

(bits 2:0)

32-Bit Address Mode
with mod r/m and s-i-b

Bytes Present

00 000 DS:[EAX+(scaled index)]

00 001 DS:[ECX+(scaled index)]

00 010 DS:[EDX+(scaled index)]

00 011 DS:[EBX+(scaled index)]

00 100 SS:[ESP+(scaled index)]

00 101 DS:[d32+(scaled index)]

00 110 DS:[ESI+(scaled index)]

00 111 DS:[EDI+(scaled index)]

01 000 DS:[EAX+(scaled index)+d8]

01 001 DS:[ECX+(scaled index)+d8]

01 010 DS:[EDX+(scaled index)+d8]

01 011 DS:[EBX+(scaled index)+d8]

01 100 SS:[ESP+(scaled index)+d8]

01 101 SS:[EBP+(scaled index)+d8]

01 110 DS:[ESI+(scaled index)+d8]

01 111 DS:[EDI+(scaled index)+d8]

10 000 DS:[EAX+(scaled index)+d32]

10 001 DS:[ECX+(scaled index)+d32]

10 010 DS:[EDX+(scaled index)+d32]

10 011 DS:[EBX+(scaled index)+d32]

10 100 SS:[ESP+(scaled index)+d32]

10 101 SS:[EBP+(scaled index)+d32]

10 110 DS:[ESI+(scaled index)+d32]

10 111 DS:[EDI+(scaled index)+d32]

Page 240 Cyrix Corporation Confidential GXm_db_v2.0

� CPUID Instruction

9.2 CPUID Instruction
The CPUID instruction (opcode 0FA2) allows the
software to make processor inquiries as to the
vendor, family, model, stepping, features and also
provides cache information. The MediaGX with
MMX supports both the standard and Cyrix
extended CPUID levels.

The presence of the CPUID instruction is indicated
by ability to change the value of the ID Flag, bit 21
in the EFLAGS register.

The CPUID level allows the CPUID instruction to
return different information in EAX, EBX, ECX,
EDX, registers. The level is determined by the
initialized value of the EAX register before the
instruction is executed. A summary of the CPUID
levels is shown in Table 9-16.

Table 9-16 CPUID Levels Summary

CPUID
Type

Initialized
EAX

Register
Returned Data in EAX, EBX,

ECX, EDX Registers

Standard 0000 0000h Maximum standard levels, CPU
vendor string

Standard 0000 0001h Model, family, type and features

Standard 0000 0002h TLB and cache information

Extended 8000 0000h Maximum extended levels

Extended 8000 0001h Extended model, family, type and
features

Extended 8000 0002h CPU marketing name string

Extended 8000 0003h

Extended 8000 0004h

Extended 8000 0005h TLB and L1 cache description

GXm_db_v2.0 Cyrix Corporation Confidential Page 241

CPUID Instruction 9
9.2.1 Standard CPUID Levels
The standard CPUID levels are part of the stan-
dard x86 instruction set.

9.2.1.1 CPUID Instruction with
EAX = 0000 0000h

Standard function 0h (EAX = 0) of the CPUID
instruction returns the maximum standard CPUID
levels as well as the processor vendor string.

After the instruction is executed, the EAX register
contains the maximum standard CPUID levels
supported. The maximum standard CPUID level is
the highest acceptable value for the EAX register
input. This does not include the extended CPUID
levels.

The EBX through EDX registers contain the vendor
string of the processor as shown in Table 9-17.

9.2.1.2 CPUID Instruction with
EAX = 0000 0001h

Standard function 01h (EAX = 1) of the CPUID
instruction returns the processor type, family,
model, and stepping information of the current
processor in the EAX register (see Table 9-18).
The EBX and ECX registers are reserved.

The standard feature flags supported are returned
in the EDX register as shown in Table 9-19. Each
flag refers to a specific feature and indicates if that
feature is present on the processor. Some of these
features have protection control in CR4. Before
using any of these features on the processor, the
software should check the corresponding feature
flag. Attempting to execute an unavailable feature
can cause exceptions and unexpected behavior.
For example, software must check bit 4 before
attempting to use the Time Stamp Counter instruc-
tion.

Table 9-17 CPUID Data Returned when EAX = 0

Register
(Note) Returned Contents Description

EAX 2 Maximum Standard
Level

EBX 69 72 79 43 (iryC) Vendor ID String 1

EDX 73 6E 49 78 (snlx) Vendor ID String 2

ECX 64 61 65 74 (daet) Vendor ID String 3

Note: The register column is intentionally out of order.

Table 9-18 EAX, EBX, ECX CPUID Data
Returned when EAX = 1

Register
Returned
Contents Description

EAX[3:0] xx Stepping ID

EAX[7:4] 4 Model

EAX[11:8] 5 Family

EAX[15:12] 0 Type

EAX[31:16] - Reserved

EBX - Reserved

ECX - Reserved

Page 242 Cyrix Corporation Confidential GXm_db_v2.0

� CPUID Instruction

9.2.1.3 CPUID Instruction with
EAX = 0000 0002h

Standard function 02h (EAX = 02h) of the CPUID
instruction returns information that is specific to the
Cyrix family of processors. Information about the
TLB is returned in EAX as shown in Table 9-20.
Information about the L1 cache is returned in EDX.

Table 9-19 EDX CPUID Data
Returned when EAX = 1

EDX
Returned
Contents* Feature Flag

CR4
Bit

EDX[0] 1 FPU On-Chip -

EDX[1] 0 Virtual Mode Extension 0,1

EDX[2] 0 Debug Extensions 3

EDX[3] 0 Page Size Extensions 4

EDX[4] 1 Time Stamp Counter 2

EDX[5] 1 RDMSR / WRMSR
Instructions

8

EDX[6] 0 Physical Address
Extensions

5

EDX[7] 0 Machine Check Exception 6

EDX[8] 1 CMPXCHG8B Instruction -

EDX[9] 0 On-Chip APIC Hardware -

EDX[10] 0 Reserved -

EDX[11] 0 SYSENTER / SYSEXIT
Instructions

-

EDX[12] 0 Memory Type Range
Registers

-

EDX[13] 0 Page Global Enable 7

EDX[14] 0 Machine Check
Architecture

-

EDX[15] 1 Conditional Move
Instructions

-

EDX[16] 0 Page Attribute Table -

EDX[22:17] 0 Reserved -

EDX[23] 1 MMX™ Instructions -

EDX[24] 0 Fast FPU Save and
Restore

-

EDX[31:25] 0 Reserved -

Note: *0 = Not supported

Table 9-20 Standard CPUID with
EAX = 0000 0002h

Register
Returned
Contents Description

EAX xx xx 70 xxh TLB is 32 Entry, 4-way set asso-
ciative, and has 4 KByte Pages

EAX xx xx xx 01h The CPUID instruction needs to
be executed only once with an
input value of 02h to retrieve
complete information about the
cache and TLB

EBX Reserved

ECX Reserved

EDX xx xx xx 80h L1 cache is 16 KBytes, 4-way
set associated, and has 16 bytes
per line.

GXm_db_v2.0 Cyrix Corporation Confidential Page 243

CPUID Instruction 9
9.2.2 Extended CPUID Levels
Testing for extended CPUID instruction support
can be accomplished by executing a CPUID
instruction with the EAX register initialized to
8000 0000h. If a value greater than or equal to
8000 0000h is returned to the EAX register by the
CPUID instruction, the processor supports
extended CPUID levels.

9.2.2.1 CPUID Instruction with
EAX = 8000 0000h

Extended function 8000 0000h (EAX =
8000 0000h) of the CPUID instruction returns the
maximum extended CPUID levels supported by the
current processor in EAX (Table 9-21). The EBX,
ECX, and EDX registers are currently reserved.

9.2.2.2 CPUID Instruction with
EAX = 8000 0001h

Extended function 8000 0001h (EAX =
8000 0001h) of the CPUID instruction returns the
processor type, family, model, and stepping
information of the current processor in EAX. The
EBX and ECX registers are reserved.

The extended feature flags supported are returned
in the EDX register as shown in Table 9-23. Each
flag refers to a specific feature and indicates if that
feature is present on the processor. Some of these
features have protection control in CR4. Before
using any of these features on the processor, the
software should check the corresponding feature
flag.

Table 9-21 Maximum Extended CPUID Level

Register
Returned
Contents Description

EAX 8000 0005h Maximum Extended CPUID
Level (six levels)

EBX - Reserved

ECX - Reserved

EDX - Reserved

Table 9-22 EAX, EBX, ECX CPUID Data
Returned when EAX = 8000 0001h

Register
Returned
Contents Description

EAX[3:0] xx Stepping ID

EAX[7:4] 4 Model

EAX[11:8] 5 Family

EAX[15:12] 0 Processor Type

EAX[31:16] - Reserved

EBX - Reserved

ECX - Reserved

Table 9-23 EDX CPUID Data Returned
when EAX = 8000 0001h

EDX
Returned
Contents* Feature Flag

CR4
Bit

EDX[0] 1 FPU On-Chip --

EDX[1] 0 Virtual Mode Extension 0,1

EDX[2] 0 Debugging Extension 3

EDX[3] 0 Page Size Extension
(4MB)

4

EDX[4] 1 Time Stamp Counter 2

EDX[5] 1 Cyrix Model-Specific Reg-
isters (via RDMSR /
WRMSR Instructions)

8

EDX[6] 0 Reserved 5

EDX[7] 0 Machine Check Exception 6

EDX[8] 1 CMPXCHG8B Instruction --

EDX[9] 0 Reserved --

EDX[10] 0 Reserved --

EDX[11] 0 SYSCALL / SYSRET
Instruction

--

EDX[12] 0 Reserved --

EDX[13] 0 Page Global Enable 7

EDX[14] 0 Reserved --

EDX[15] 1 Integer Conditional Move
Instruction

--

EDX[16] 0 FPU Conditional Move
Instruction

--

EDX[22:17] 0 Reserved --

EDX[23] 1 MMX™ --

EDX[24] 1 6x86MX Multimedia
Extensions

--

Note: 0 = Not supported

Page 244 Cyrix Corporation Confidential GXm_db_v2.0

� CPUID Instruction

9.2.2.3 CPUID Instruction with
EAX = 8000 0002h, 8000 0003h,
8000 0004h

Extended functions 8000 0002h through 8000
0004h (EAX = 8000 0002h, EAX = 8000 0003h,
EAX = 8000 0004h) of the CPUID instruction
returns an ASCII string containing the name of the
current processor. These functions eliminate the
need to look up the processor name in a lookup
table. Software can simply call these functions to
obtain the name of the processor. The string may
be 48 ASCII characters long, and is returned in
little endian format. If the name is shorter than 48
characters long, the remaining bytes will be filled
with ASCII NUL character (00h).

9.2.2.4 CPUID Instruction with
EAX = 8000 0005h

Extended function 8000 0005h (EAX = 8000
0005h) of the CPUID instruction returns informa-
tion about the TLB and L1 cache to be looked up in
a lookup table. Refer to Table 9-25.

Table 9-24 Official CPU Name

8000 0002h 8000 0003h 8000 0004h

EAX CPU
Name 1

EAX CPU
Name 5

EAX CPU
Name 9

EBX CPU
Name 2

EBX CPU
Name 6

EBX CPU
Name 10

ECX CPU
Name 3

ECX CPU
Name 7

ECX CPU
Name 11

EDX CPU
Name 4

EDX CPU
Name 8

EDX CPU
Name 12

Table 9-25 Standard CPUID with
EAX = 8000 0005h

Register
Returned
Contents Description

EAX -- Reserved

EBX xx xx 70 xxh TLB is 32 Entry, 4-way set
associative, and has 4 KByte
Pages

EBX xx xx xx 01h The CPUID instruction needs
to be executed only once with
an input value of 02h to
retrieve complete information
about the cache and TLB

ECX xx xx xx 80h L1 cache is 16 KBytes, 4-way
set associated, and has 16
bytes per line.

EDX -- Reserved

GXm_db_v2.0 Cyrix Corporation Confidential Page 245

Processor Core Instruction Set 9
9.3 Processor Core Instruction Set
The instruction set for the MediaGX processor core
is summarized in Table 9-27. The table uses
several symbols and abbreviations that are
described next and listed in Table 9-26.

Opcodes
Opcodes are given as hex values except when
they appear within brackets as binary values.

Clock Counts
The clock counts listed in the instruction set
summary table are grouped by operating mode
(Real and Protected) and whether there is a
register/cache hit or a cache miss. In some cases,
more than one clock count is shown in a column for
a given instruction, or a variable is used in the
clock count.

Flags
There are nine flags that are affected by the execu-
tion of instructions. The flag names have been abbrevi-
ated and various conventions used to indicate what
effect the instruction has on the particular flag.

Table 9-26 Processor Core Instruction Set
Table Legend

Symbol or
Abbreviation Description

Opcode

Immediate 8-bit data

Immediate 16-bit data

Full immediate 32-bit data (8, 16, 32 bits)

+ 8-bit signed displacement

+++ Full signed displacement (16, 32 bits)

Clock Count

/ Register operand/memory operand.

n Number of times operation is repeated.

L Level of the stack frame.

| Conditional jump taken | Conditional jump not
taken.
(e.g. “4|1” = 4 clocks if jump taken, 1 clock if
jump not taken)

\ CPL ≤ IOPL \ CPL > IOPL
(where CPL = Current Privilege Level, IOPL
= I/O Privilege Level)

Flags

OF Overflow Flag

DF Direction Flag

IF Interrupt Enable Flag

TF Trap Flag

SF Sign Flag

ZF Zero Flag

AF Auxiliary Flag

PF Parity Flag

CF Carry Flag

x Flag is modified by the instruction.

- Flag is not changed by the instruction.

0 Flag is reset to “0”.

1 Flag is set to “1”.

u Flag is undefined following execution the
instruction.

Page 246 Cyrix Corporation Confidential GXm_db_v2.0

� Processor Core Instruction Set

Table 9-27 Processor Core Instruction Set Summary

Instruction Opcode

Flags
Real
Mode

Prot’d
Mode

Real
Mode

Prot’d
Mode

O D I T S Z A P C
F F F F F F F F F

Clock Count
(Reg/Cache Hit) Notes

AAA ASCII Adjust AL after Add 37 u - - - u u x u x 3 3

AAD ASCII Adjust AX before Divide D5 0A u - - - x x u x u 7 7

AAM ASCII Adjust AX after Multiply D4 0A u - - - x x u x u 19 19

AAS ASCII Adjust AL after Subtract 3F u - - - u u x u x 3 3

ADC Add with Carry

Register to Register 1 [00dw] [11 reg r/m] x - - - x x x x x 1 1 b h

Register to Memory 1 [000w] [mod reg r/m] 1 1

Memory to Register 1 [001w] [mod reg r/m] 1 1

Immediate to Register/Memory 8 [00sw] [mod 010 r/m]### 1 1

Immediate to Accumulator 1 [010w] ### 1 1

ADD Integer Add

Register to Register 0 [00dw] [11 reg r/m] x - - - x x x x x 1 1 b h

Register to Memory 0 [000w] [mod reg r/m] 1 1

Memory to Register 0 [001w] [mod reg r/m] 1 1

Immediate to Register/Memory 8 [00sw] [mod 000 r/m]### 1 1

Immediate to Accumulator 0 [010w] ### 1 1

AND Boolean AND

Register to Register 2 [00dw] [11 reg r/m] 0 - - - x x u x 0 1 1 b h

Register to Memory 2 [000w] [mod reg r/m] 1 1

Memory to Register 2 [001w] [mod reg r/m] 1 1

Immediate to Register/Memory 8 [00sw] [mod 100 r/m]### 1 1

Immediate to Accumulator 2 [010w] ### 1 1

ARPL Adjust Requested Privilege Level

From Register/Memory 63 [mod reg r/m] - - - - - x - - - 9 a h

BB0_Reset Set BLT Buffer 0 Pointer to the Base 0F 3A 2 2

BB1_Reset Set BLT Buffer 1 Pointer to the Base 0F 3B 2 2

BOUND Check Array Boundaries

If Out of Range (Int 5) 62 [mod reg r/m] - - - - - - - - - 8+INT 8+INT b, e g,h,j,k,r

If In Range 7 7

BSF Scan Bit Forward

Register, Register/Memory 0F BC [mod reg r/m] - - - - - x - - - 4/9+n 4/9+n b h

BSR Scan Bit Reverse

Register, Register/Memory 0F BD [mod reg r/m] - - - - - x - - - 4/11+n 4/11+n b h

BSWAP Byte Swap 0F C[1 reg] - - - - - - - - - 6 6

BT Test Bit

Register/Memory, Immediate 0F BA [mod 100 r/m]# - - - - - - - - x 1 1 b h

Register/Memory, Register 0F A3 [mod reg r/m] 1/7 1/7

GXm_db_v2.0 Cyrix Corporation Confidential Page 247

Processor Core Instruction Set 9

BTC Test Bit and Complement

Register/Memory, Immediate 0F BA [mod 111 r/m]# - - - - - - - - x 2 2 b h

Register/Memory, Register 0F BB [mod reg r/m] 2/8 2/8

BTR Test Bit and Reset

Register/Memory, Immediate 0F BA [mod 110 r/m]# - - - - - - - - x 2 2 b h

Register/Memory, Register 0F B3 [mod reg r/m 2/8 2/8

BTS Test Bit and Set

Register/Memory 0F BA [mod 101 r/m] - - - - - - - - x 2 2 b h

Register (short form) 0F AB [mod reg r/m] 2/8 2/8

CALL Subroutine Call

Direct Within Segment E8 +++ - - - - - - - - - 3 3 b h,j,k,r

Register/Memory Indirect Within Segment FF [mod 010 r/m] 3/4 3/4

Direct Intersegment
-Call Gate to Same Privilege
-Call Gate to Different Privilege No Par’s
-Call Gate to Different Privilege m Par’s
-16-bit Task to 16-bit TSS
-16-bit Task to 32-bit TSS
-16-bit Task to V86 Task
-32-bit Task to 16-bit TSS
-32-bit Task to 32-bit TSS
-32-bit Task to V86 Task

9A [unsigned full offset,
selector]

9 14
24
45

51+2m
183
189
123
186
192
126

Indirect Intersegment
-Call Gate to Same Privilege
-Call Gate to Different Privilege No Par’s
-Call Gate to Different Privilege m Par’s
-16-bit Task to 16-bit TSS
-16-bit Task to 32-bit TSS
-16-bit Task to V86 Task
-32-bit Task to 16-bit TSS
-32-bit Task to 32-bit TSS
-32-bit Task to V86 Task

FF [mod 011 r/m] 11 15
25
46

52+2m
184
190
124
187
193
127

CBW Convert Byte to Word 98 - - - - - - - - - 3 3

CDQ Convert Doubleword to Quadword 99 - - - - - - - - - 2 2

CLC Clear Carry Flag F8 - - - - - - - - 0 1 1

CLD Clear Direction Flag FC - 0 - - - - - - - 4 4

CLI Clear Interrupt Flag FA - - 0 - - - - - - 6 6 m

CLTS Clear Task Switched Flag 0F 06 - - - - - - - - - 7 7 c l

CMC Complement the Carry Flag F5 - - - - - - - - x 3 3

CMOVA/CMOVNBE Move if Above/Not Below or Equal

Register, Register/Memory 0F 47 [mod reg r/m] - - - - - - - - - 1 1 r

CMOVBE/CMOVNA Move if Below or Equal/Not Above

Register, Register/Memory 0F 46 [mod reg r/m] - - - - - - - - - 1 1 r

CMOVAE/CMOVNB/CMOVNC Move if Above or Equal/Not Below/Not Carry

Register, Register/Memory 0F 43 [mod reg r/m] - - - - - - - - - 1 1 r

Table 9-27 Processor Core Instruction Set Summary (cont.)

Instruction Opcode

Flags
Real
Mode

Prot’d
Mode

Real
Mode

Prot’d
Mode

O D I T S Z A P C
F F F F F F F F F

Clock Count
(Reg/Cache Hit) Notes

Page 248 Cyrix Corporation Confidential GXm_db_v2.0

� Processor Core Instruction Set

CMOVB/CMOVC/CMOVNAE Move if Below/Carry/Not Above or Equal

Register, Register/Memory 0F 42 [mod reg r/m] - - - - - - - - - 1 1 r

CMOVE/CMOVZ Move if Equal/Zero

Register, Register/Memory 0F 44 [mod reg r/m] - - - - - - - - - 1 1 r

CMOVNE/CMOVNZ Move if Not Equal/Not Zero

Register, Register/Memory 0F 45 [mod reg r/m] - - - - - - - - - 1 1 r

CMOVG/CMOVNLE Move if Greater/Not Less or Equal

Register, Register/Memory 0F 4F [mod reg r/m] - - - - - - - - - 1 1 r

CMOVLE/CMOVNG Move if Less or Equal/Not Greater

Register, Register/Memory 0F 4E [mod reg r/m] - - - - - - - - - 1 1 r

CMOVL/CMOVNGE Move if Less/Not Greater or Equal

Register, Register/Memory 0F 4C [mod reg r/m] - - - - - - - - - 1 1 r

CMOVGE/CMOVNL Move if Greater or Equal/Not Less

Register, Register/Memory 0F 4D [mod reg r/m] - - - - - - - - - 1 1 r

CMOVO Move if Overflow

Register, Register/Memory 0F 40 [mod reg r/m] - - - - - - - - - 1 1 r

CMOVNO Move if No Overflow

Register, Register/Memory 0F 41 [mod reg r/m] - - - - - - - - - 1 1 r

CMOVP/CMOVPE Move if Parity/Parity Even

Register, Register/Memory 0F 4A [mod reg r/m] - - - - - - - - - 1 1 r

CMOVNP/CMOVPO Move if Not Parity/Parity Odd

Register, Register/Memory 0F 4B [mod reg r/m] - - - - - - - - - 1 1 r

CMOVS Move if Sign

Register, Register/Memory 0F 48 [mod reg r/m] - - - - - - - - - 1 1 r

CMOVNS Move if Not Sign

Register, Register/Memory 0F 49 [mod reg r/m] - - - - - - - - - 1 1 r

CMP Compare Integers

Register to Register 3 [10dw] [11 reg r/m] x - - - x x x x x 1 1 b h

Register to Memory 3 [101w] [mod reg r/m] 1 1

Memory to Register 3 [100w] [mod reg r/m] 1 1

Immediate to Register/Memory 8 [00sw] [mod 111 r/m] ### 1 1

Immediate to Accumulator 3 [110w] ### 1 1

CMPS Compare String A [011w] x - - - x x x x x 6 6 b h

CMPXCHG Compare and Exchange

Register1, Register2 0F B [000w] [11 reg2 reg1] x - - - x x x x x 6 6

Memory, Register 0F B [000w] [mod reg r/m] 6 6

CMPXCHG8B Compare and Exchange 8 Bytes 0F C7 [mod 001 r/m] - - - - - - - - -

CPUID CPU Identification 0F A2 - - - - - - - - - 12 12

CPU_READ Read Special CPU Register 0F 3C 1 1

CPU_WRITE Write Special CPU Register 0F 3D 1 1

Table 9-27 Processor Core Instruction Set Summary (cont.)

Instruction Opcode

Flags
Real
Mode

Prot’d
Mode

Real
Mode

Prot’d
Mode

O D I T S Z A P C
F F F F F F F F F

Clock Count
(Reg/Cache Hit) Notes

GXm_db_v2.0 Cyrix Corporation Confidential Page 249

Processor Core Instruction Set 9

CWD Convert Word to Doubleword 99 - - - - - - - - - 2 2

CWDE Convert Word to Doubleword Extended 98 - - - - - - - - - 3 3

DAA Decimal Adjust AL after Add 27 - - - - x x x x x 2 2

DAS Decimal Adjust AL after Subtract 2F - - - - x x x x x 2 2

DEC Decrement by 1

Register/Memory F [111w] [mod 001 r/m] x - - - x x x x - 1 1 b h

Register (short form) 4 [1 reg] 1 1

DIV Unsigned Divide

Accumulator by Register/Memory
Divisor: Byte

Word
Doubleword

F [011w] [mod 110 r/m] - - - - x x u u -
20
29
45

20
29
45

b,e e,h

ENTER Enter New Stack Frame

Level = 0 C8 ##,# - - - - - - - - - 13 13 b h

Level = 1 17 17

Level (L) > 1 17+2*L 17+2*L

HLT Halt F4 - - - - - - - - - 10 10 l

IDIV Integer (Signed) Divide

Accumulator by Register/Memory
Divisor: Byte

Word
Doubleword

F [011w] [mod 111 r/m] - - - - x x u u -
20
29
45

20
29
45

b,e e,h

IMUL Integer (Signed) Multiply

Accumulator by Register/Memory
Multiplier: Byte

Word
Doubleword

F [011w] [mod 101 r/m] x - - - x x u u x
4
5
15

4
5
15

b h

Register with Register/Memory
Multiplier: Word

Doubleword

0F AF [mod reg r/m]
5
15

5
15

Register/Memory with Immediate to Register2
Multiplier: Word

Doubleword

6 [10s1] [mod reg r/m] ###
6
16

6
16

IN Input from I/O Port

Fixed Port E [010w] # - - - - - - - - - 8 8/22 m

Variable Port E [110w] 8 8/22

INS Input String from I/O Port 6 [110w] - - - - - - - - - 11 11/25 b h,m

INC Increment by 1

Register/Memory F [111w] [mod 000 r/m] x - - - x x x x - 1 1 b h

Register (short form) 4 [0 reg] 1 1

Table 9-27 Processor Core Instruction Set Summary (cont.)

Instruction Opcode

Flags
Real
Mode

Prot’d
Mode

Real
Mode

Prot’d
Mode

O D I T S Z A P C
F F F F F F F F F

Clock Count
(Reg/Cache Hit) Notes

Page 250 Cyrix Corporation Confidential GXm_db_v2.0

� Processor Core Instruction Set

INT Software Interrupt

INT i CD # - - x 0 - - - - - 19 b,e g,j,k,r

Protected Mode:
-Interrupt or Trap to Same Privilege
-Interrupt or Trap to Different Privilege
-16-bit Task to 16-bit TSS by Task Gate
-16-bit Task to 32-bit TSS by Task Gate
-16-bit Task to V86 by Task Gate
-16-bit Task to 16-bit TSS by Task Gate
-32-bit Task to 32-bit TSS by Task Gate
-32-bit Task to V86 by Task Gate
-V86 to 16-bit TSS by Task Gate
-V86 to 32-bit TSS by Task Gate
-V86 to Privilege 0 by Trap Gate/Int Gate

33
55

184
190
124
187
193
127
187
193
64

INT 3 CC INT INT

INTO
If OF==0
If OF==1 (INT 4)

CE
4

INT
4

INT

INVD Invalidate Cache 0F 08 - - - - - - - - - 20 20 t t

INVLPG Invalidate TLB Entry 0F 01 [mod 111 r/m] - - - - - - - - - 15 15

IRET Interrupt Return

Real Mode CF x x x x x x x x x 13 g,h,j,k,r

Protected Mode:
-Within Task to Same Privilege
-Within Task to Different Privilege
-16-bit Task to 16-bit Task
-16-bit Task to 32-bit TSS
-16-bit Task to V86 Task
-32-bit Task to 16-bit TSS
-32-bit Task to 32-bit TSS
-32-bit Task to V86 Task

20
39

169
175
109
172
178
112

JB/JNAE/JC Jump on Below/Not Above or Equal/Carry

8-bit Displacement 72 + - - - - - - - - - 1 1 r

Full Displacement 0F 82 +++ 1 1

JBE/JNA Jump on Below or Equal/Not Above

8-bit Displacement 76 + - - - - - - - - 1 1 r

Full Displacement 0F 86 +++ 1 1

JCXZ/JECXZ Jump on CX/ECX Zero E3 + - - - - - - - - - 2 2 r

JE/JZ Jump on Equal/Zero

8-bit Displacement 74 + - - - - - - - - 1 1 r

Full Displacement 0F 84 +++ 1 1

JL/JNGE Jump on Less/Not Greater or Equal

8-bit Displacement 7C + - - - - - - - - 1 1 r

Full Displacement 0F 8C +++ 1 1

JLE/JNG Jump on Less or Equal/Not Greater

8-bit Displacement 7E + - - - - - - - - 1 1 r

Full Displacement 0F 8E +++ 1 1

Table 9-27 Processor Core Instruction Set Summary (cont.)

Instruction Opcode

Flags
Real
Mode

Prot’d
Mode

Real
Mode

Prot’d
Mode

O D I T S Z A P C
F F F F F F F F F

Clock Count
(Reg/Cache Hit) Notes

GXm_db_v2.0 Cyrix Corporation Confidential Page 251

Processor Core Instruction Set 9

JMP Unconditional Jump

8-bit Displacement EB + - - - - - - - - 1 1 b h,j,k,r

Full Displacement E9 +++ 1 1

Register/Memory Indirect Within Segment FF [mod 100 r/m] 1/3 1/3

Direct Intersegment
-Call Gate Same Privilege Level
-16-bit Task to 16-bit TSS
-16-bit Task to 32-bit TSS
-16-bit Task to V86 Task
-32-bit Task to 16-bit TSS
-32-bit Task to 32-bit TSS
-32-bit Task to V86 Task

EA [unsigned full offset,
selector]

8 12
22

186
192
126
189
195
129

Indirect Intersegment
-Call Gate Same Privilege Level
-16-bit Task to 16-bit TSS
-16-bit Task to 32-bit TSS
-16-bit Task to V86 Task
-32-bit Task to 16-bit TSS
-32-bit Task to 32-bit TSS
-32-bit Task to V86 Task

FF [mod 101 r/m] 10 13
23

187
193
127
190
196
130

JNB/JAE/JNC Jump on Not Below/Above or Equal/Not Carry

8-bit Displacement 73 + - - - - - - - - 1 1 r

Full Displacement 0F 83 +++ 1 1

JNBE/JA Jump on Not Below or Equal/Above

8-bit Displacement 77 + - - - - - - - - 1 1 r

Full Displacement 0F 87 +++ 1 1

JNE/JNZ Jump on Not Equal/Not Zero

8-bit Displacement 75 + - - - - - - - - 1 1 r

Full Displacement 0F 85 +++ 1 1

JNL/JGE Jump on Not Less/Greater or Equal

8-bit Displacement 7D + - - - - - - - - 1 1 r

Full Displacement 0F 8D +++ 1 1

JNLE/JG Jump on Not Less or Equal/Greater

8-bit Displacement 7F + - - - - - - - - 1 1 r

Full Displacement 0F 8F +++ 1 1

JNO Jump on Not Overflow

8-bit Displacement 71 + - - - - - - - - 1 1 r

Full Displacement 0F 81 +++ 1 1

JNP/JPO Jump on Not Parity/Parity Odd

8-bit Displacement 7B + - - - - - - - - 1 1 r

Full Displacement 0F 8B +++ 1 1

JNS Jump on Not Sign

8-bit Displacement 79 + - - - - - - - - 1 1 r

Full Displacement 0F 89 +++ 1 1

JO Jump on Overflow

8-bit Displacement 70 + - - - - - - - - 1 1 r

Full Displacement 0F 80 +++ 1 1

Table 9-27 Processor Core Instruction Set Summary (cont.)

Instruction Opcode

Flags
Real
Mode

Prot’d
Mode

Real
Mode

Prot’d
Mode

O D I T S Z A P C
F F F F F F F F F

Clock Count
(Reg/Cache Hit) Notes

Page 252 Cyrix Corporation Confidential GXm_db_v2.0

� Processor Core Instruction Set

JP/JPE Jump on Parity/Parity Even

8-bit Displacement 7A + - - - - - - - - 1 1 r

Full Displacement 0F 8A +++ 1 1

JS Jump on Sign

8-bit Displacement 78 + - - - - - - - - 1 1 r

Full Displacement 0F 88 +++ 1 1

LAHF Load AH with Flags 9F - - - - - - - - - 2 2

LAR Load Access Rights

From Register/Memory 0F 02 [mod reg r/m] - - - - - x - - - 9 a g,h,j,p

LDS Load Pointer to DS C5 [mod reg r/m] - - - - - - - - - 4 9 b h,i,j

LEA Load Effective Address

No Index Register 8D [mod reg r/m] - - - - - - - - - 1 1

With Index Register 1 1

LES Load Pointer to ES C4 [mod reg r/m] - - - - - - - - - 4 9 b h,i,j

LFS Load Pointer to FS 0F B4 [mod reg r/m] - - - - - - - - - 4 9 b h,i,j

LGDT Load GDT Register 0F 01 [mod 010 r/m] - - - - - - - - - 10 10 b,c h,l

LGS Load Pointer to GS 0F B5 [mod reg r/m] - - - - - - - - - 4 9 b h,i,j

LIDT Load IDT Register 0F 01 [mod 011 r/m] - - - - - - - - - 10 10 b,c h,l

LLDT Load LDT Register

From Register/Memory 0F 00 [mod 010 r/m] - - - - - - - - - 8 a g,h,j,l

LMSW Load Machine Status Word

From Register/Memory 0F 01 [mod 110 r/m] - - - - - - - - - 11 11 b,c h,l

LODS Load String A [110 w] - - - - - - - - - 3 3 b h

LSL Load Segment Limit

From Register/Memory 0F 03 [mod reg r/m] - - - - - x - - - 9 a g,h,j,p

LSS Load Pointer to SS 0F B2 [mod reg r/m] - - - - - - - - - 4 10 a h,i,j

LTR Load Task Register

From Register/Memory 0F 00 [mod 011 r/m] - - - - - - - - - 9 a g,h,j,l

LEAVE Leave Current Stack Frame C9 - - - - - - - - - 4 4 b h

LOOP Offset Loop/No Loop E2 + - - - - - - - - - 2 2 r

LOOPNZ/LOOPNE Offset E0 + - - - - - - - - - 2 2 r

LOOPZ/LOOPE Offset E1 + - - - - - - - - - 2 2 r

Table 9-27 Processor Core Instruction Set Summary (cont.)

Instruction Opcode

Flags
Real
Mode

Prot’d
Mode

Real
Mode

Prot’d
Mode

O D I T S Z A P C
F F F F F F F F F

Clock Count
(Reg/Cache Hit) Notes

GXm_db_v2.0 Cyrix Corporation Confidential Page 253

Processor Core Instruction Set 9

MOV Move Data

Register to Register 8 [10dw] [11 reg r/m] - - - - - - - - - 1 1 b h,i,j

Register to Memory 8 [100w] [mod reg r/m] 1 1

Register/Memory to Register 8 [101w] [mod reg r/m] 1 1

Immediate to Register/Memory C [011w] [mod 000 r/m] ### 1 1

Immediate to Register (short form) B [w reg] ### 1 1

Memory to Accumulator (short form) A [000w] +++ 1 1

Accumulator to Memory (short form) A [001w] +++ 1 1

Register/Memory to Segment Register 8E [mod sreg3 r/m] 1 6

Segment Register to Register/Memory 8C [mod sreg3 r/m] 1 1

MOV Move to/from Control/Debug/Test Regs

Register to CR0/CR2/CR3/CR4 0F 22 [11 eee reg] - - - - - - - - - 20/5/5 18/5/6 l

CR0/CR2/CR3/CR4 to Register 0F 20 [11 eee reg] 6 6

Register to DR0-DR3 0F 23 [11 eee reg] 10 10

DR0-DR3 to Register 0F 21 [11 eee reg] 9 9

Register to DR6-DR7 0F 23 [11 eee reg] 10 10

DR6-DR7 to Register 0F 21 [11 eee reg] 9 9

Register to TR3-5 0F 26 [11 eee reg] 16 16

TR3-5 to Register 0F 24 [11 eee reg] 8 8

Register to TR6-TR7 0F 26 [11 eee reg] 11 11

TR6-TR7 to Register 0F 24 [11 eee reg] 3 3

MOVS Move String A [010w] - - - - - - - - - 6 6 b h

MOVSX Move with Sign Extension

Register from Register/Memory 0F B[111w] [mod reg r/m] - - - - - - - - - 1 1 b h

MOVZX Move with Zero Extension

Register from Register/Memory 0F B[011w] [mod reg r/m] - - - - - - - - - 1 1 b h

MUL Unsigned Multiply

Accumulator with Register/Memory
Multiplier: Byte

Word
Doubleword

F [011w] [mod 100 r/m] x - - - x x u u x
4
5
15

4
5
15

b h

NEG Negate Integer F [011w] [mod 011 r/m] x - - - x x x x x 1 1 b h

NOP No Operation 90 - - - - - - - - - 1 1

NOT Boolean Complement F [011w] [mod 010 r/m] - - - - - - - - - 1 1 b h

OIO Official Invalid Opcode 0F FF - - x 0 - - - - - 1 8-125

Table 9-27 Processor Core Instruction Set Summary (cont.)

Instruction Opcode

Flags
Real
Mode

Prot’d
Mode

Real
Mode

Prot’d
Mode

O D I T S Z A P C
F F F F F F F F F

Clock Count
(Reg/Cache Hit) Notes

Page 254 Cyrix Corporation Confidential GXm_db_v2.0

� Processor Core Instruction Set

OR Boolean OR

Register to Register 0 [10dw] [11 reg r/m] 0 - - - x x u x 0 1 1 b h

Register to Memory 0 [100w] [mod reg r/m] 1 1

Memory to Register 0 [101w] [mod reg r/m] 1 1

Immediate to Register/Memory 8 [00sw] [mod 001 r/m] ### 1 1

Immediate to Accumulator 0 [110w] ### 1 1

OUT Output to Port

Fixed Port E [011w] # - - - - - - - - - 14 14/28 m

Variable Port E [111w] 14 14/28

OUTS Output String 6 [111w] - - - - - - - - - 15 15/29 b h,m

POP Pop Value off Stack

Register/Memory 8F [mod 000 r/m] - - - - - - - - - 1/4 1/4 b h,i,j

Register (short form) 5 [1 reg] 1 1

Segment Register (ES, SS, DS) [000 sreg2 111] 1 6

Segment Register (FS, GS) 0F [10 sreg3 001] 1 6

POPA Pop All General Registers 61 - - - - - - - - - 9 9 b h

POPF Pop Stack into FLAGS 9D x x x x x x x x x 8 8 b h,n

PREFIX BYTES

Assert Hardware LOCK Prefix F0 - - - - - - - - - m

Address Size Prefix 67

Operand Size Prefix 66

Segment Override Prefix
-CS
-DS
-ES
-FS
-GS
-SS

2E
3E
26
64
65
36

PUSH Push Value onto Stack

Register/Memory FF [mod 110 r/m] - - - - - - - - - 1/3 1/3 b h

Register (short form) 5 [0 reg] 1 1

Segment Register (ES, CS, SS, DS) [000 sreg2 110] 1 1

Segment Register (FS, GS) 0F [10 sreg3 000] 1 1

Immediate 6 [10s0] ### 1 1

PUSHA Push All General Registers 60 - - - - - - - - - 11 11 b h

PUSHF Push FLAGS Register 9C - - - - - - - - - 2 2 b h

RCL Rotate Through Carry Left

Register/Memory by 1 D [000w] [mod 010 r/m] x - - - - - - - x 3 3 b h

Register/Memory by CL D [001w] [mod 010 r/m] u - - - - - - - x 8 8

Register/Memory by Immediate C [000w] [mod 010 r/m] # u - - - - - - - x 8 8

Table 9-27 Processor Core Instruction Set Summary (cont.)

Instruction Opcode

Flags
Real
Mode

Prot’d
Mode

Real
Mode

Prot’d
Mode

O D I T S Z A P C
F F F F F F F F F

Clock Count
(Reg/Cache Hit) Notes

GXm_db_v2.0 Cyrix Corporation Confidential Page 255

Processor Core Instruction Set 9

RCR Rotate Through Carry Right

Register/Memory by 1 D [000w] [mod 011 r/m] x - - - - - - - x 4 4 b h

Register/Memory by CL D [001w] [mod 011 r/m] u - - - - - - - x 8 8

Register/Memory by Immediate C [000w] [mod 011 r/m] # u - - - - - - - x 8 8

RDMSR Read Tmodel Specific Register 0F 32 - - - - - - - - -

RDTSC Read Time Stamp Counter 0F 31 - - - - - - - - -

REP INS Input String F3 6[110w] - - - - - - - - - 17+4n 17+4n\
32+4n

b h,m

REP LODS Load String F3 A[110w] - - - - - - - - - 9+2n 9+2n b h

REP MOVS Move String F3 A[010w] - - - - - - - - - 12+2n 12+2n b h

REP OUTS Output String F3 6[111w] - - - - - - - - - 24+4n 24+4n\
39+4n

b h,m

REP STOS Store String F3 A[101w] - - - - - - - - - 9+2n 9+2n b h

REPE CMPS Compare String

Find non-match F3 A[011w] x - - - x x x x x 11+4n 11+4n b h

REPE SCAS Scan String

Find non-AL/AX/EAX F3 A[111w] x - - - x x x x x 9+3n 9+3n b h

REPNE CMPS Compare String

Find match F2 A[011w] x - - - x x x x x 11+4n 11+4n b h

REPNE SCAS Scan String

Find AL/AX/EAX F2 A[111w] x - - - x x x x x 9+3n 9+3n b h

RET Return from Subroutine

Within Segment C3 - - - - - - - - - 3 3 b g,h,j,k,r

Within Segment Adding Immediate to SP C2 ## 3 3

Intersegment CB 10 13

Intersegment Adding Immediate to SP CA ## 10 13

Protected Mode: Different Privilege Level
-Intersegment
-Intersegment Adding Immediate to SP

35
35

ROL Rotate Left

Register/Memory by 1 D[000w] [mod 000 r/m] x - - - - - - - x 2 2 b h

Register/Memory by CL D[001w] [mod 000 r/m] u - - - - - - - x 2 2

Register/Memory by Immediate C[000w] [mod 000 r/m] # u - - - - - - - x 2 2

ROR Rotate Right

Register/Memory by 1 D[000w] [mod 001 r/m] x - - - - - - - x 2 2 b h

Register/Memory by CL D[001w] [mod 001 r/m] u - - - - - - - x 2 2

Register/Memory by Immediate C[000w] [mod 001 r/m] # u - - - - - - - x 2 2

RSDC Restore Segment Register and Descriptor 0F 79 [mod sreg3 r/m] - - - - - - - - - 11 11 s s

RSLDT Restore LDTR and Descriptor 0F 7B [mod 000 r/m] - - - - - - - - - 11 11 s s

RSTS Restore TSR and Descriptor 0F 7D [mod 000 r/m] - - - - - - - - - 11 11 s s

Table 9-27 Processor Core Instruction Set Summary (cont.)

Instruction Opcode

Flags
Real
Mode

Prot’d
Mode

Real
Mode

Prot’d
Mode

O D I T S Z A P C
F F F F F F F F F

Clock Count
(Reg/Cache Hit) Notes

Page 256 Cyrix Corporation Confidential GXm_db_v2.0

� Processor Core Instruction Set

RSM Resume from SMM Mode 0F AA x x x x x x x x x 57 57 s s

SAHF Store AH in FLAGS 9E - - - - x x x x x 1 1

SAL Shift Left Arithmetic

Register/Memory by 1 D[000w] [mod 100 r/m] x - - - x x u x x 1 1 b h

Register/Memory by CL D[001w] [mod 100 r/m] u - - - x x u x x 2 2

Register/Memory by Immediate C[000w] [mod 100 r/m] # u - - - x x u x x 1 1

SAR Shift Right Arithmetic

Register/Memory by 1 D[000w] [mod 111 r/m] x - - - x x u x x 2 2 b h

Register/Memory by CL D[001w] [mod 111 r/m] u - - - x x u x x 2 2

Register/Memory by Immediate C[000w] [mod 111 r/m] # u - - - x x u x x 2 2

SBB Integer Subtract with Borrow

Register to Register 1[10dw] [11 reg r/m] x - - - x x x x x 1 1 b h

Register to Memory 1[100w] [mod reg r/m] 1 1

Memory to Register 1[101w] [mod reg r/m] 1 1

Immediate to Register/Memory 8[00sw] [mod 011 r/m] ### 1 1

Immediate to Accumulator (short form) 1[110w] ### 1 1

SCAS Scan String A [111w] x - - - x x x x x 2 2 b h

SETB/SETNAE/SETC Set Byte on Below/Not Above or Equal/Carry

To Register/Memory 0F 92 [mod 000 r/m] - - - - - - - - - 1 1 h

SETBE/SETNA Set Byte on Below or Equal/Not Above

To Register/Memory 0F 96 [mod 000 r/m] - - - - - - - - - 1 1 h

SETE/SETZ Set Byte on Equal/Zero

To Register/Memory 0F 94 [mod 000 r/m] - - - - - - - - - 1 1 h

SETL/SETNGE Set Byte on Less/Not Greater or Equal

To Register/Memory 0F 9C [mod 000 r/m] - - - - - - - - - 1 1 h

SETLE/SETNG Set Byte on Less or Equal/Not Greater

To Register/Memory 0F 9E [mod 000 r/m] - - - - - - - - - 1 1 h

SETNB/SETAE/SETNC Set Byte on Not Below/Above or Equal/Not Carry

To Register/Memory 0F 93 [mod 000 r/m] - - - - - - - - - 1 1 h

SETNBE/SETA Set Byte on Not Below or Equal/Above

To Register/Memory 0F 97 [mod 000 r/m] - - - - - - - - - 1 1 h

SETNE/SETNZ Set Byte on Not Equal/Not Zero

To Register/Memory 0F 95 [mod 000 r/m] - - - - - - - - - 1 1 h

SETNL/SETGE Set Byte on Not Less/Greater or Equal

To Register/Memory 0F 9D [mod 000 r/m] - - - - - - - - - 1 1 h

SETNLE/SETG Set Byte on Not Less or Equal/Greater

To Register/Memory 0F 9F [mod 000 r/m] - - - - - - - - - 1 1 h

SETNO Set Byte on Not Overflow

To Register/Memory 0F 91 [mod 000 r/m] - - - - - - - - - 1 1 h

Table 9-27 Processor Core Instruction Set Summary (cont.)

Instruction Opcode

Flags
Real
Mode

Prot’d
Mode

Real
Mode

Prot’d
Mode

O D I T S Z A P C
F F F F F F F F F

Clock Count
(Reg/Cache Hit) Notes

GXm_db_v2.0 Cyrix Corporation Confidential Page 257

Processor Core Instruction Set 9

SETNP/SETPO Set Byte on Not Parity/Parity Odd

To Register/Memory 0F 9B [mod 000 r/m] - - - - - - - - - 1 1 h

SETNS Set Byte on Not Sign

To Register/Memory 0F 99 [mod 000 r/m] - - - - - - - - - 1 1 h

SETO Set Byte on Overflow

To Register/Memory 0F 90 [mod 000 r/m] - - - - - - - - - 1 1 h

SETP/SETPE Set Byte on Parity/Parity Even

To Register/Memory 0F 9A [mod 000 r/m] - - - - - - - - - 1 1 h

SETS Set Byte on Sign

To Register/Memory 0F 98 [mod 000 r/m] - - - - - - - - - 1 1 h

SGDT Store GDT Register

To Register/Memory 0F 01 [mod 000 r/m] - - - - - - - - - 6 6 b,c h

SIDT Store IDT Register

To Register/Memory 0F 01 [mod 001 r/m] - - - - - - - - - 6 6 b,c h

SLDT Store LDT Register

To Register/Memory 0F 00 [mod 000 r/m] - - - - - - - - - 1 a h

STR Store Task Register

To Register/Memory 0F 00 [mod 001 r/m] - - - - - - - - - 3 a h

SMSW Store Machine Status Word 0F 01 [mod 100 r/m] - - - - - - - - - 4 4 b,c h

STOS Store String A [101w] - - - - - - - - - 2 2 b h

SHL Shift Left Logical

Register/Memory by 1 D [000w] [mod 100 r/m] x - - - x x u x x 1 1 b h

Register/Memory by CL D [001w] [mod 100 r/m] u - - - x x u x x 2 2

Register/Memory by Immediate C [000w] [mod 100 r/m] # u - - - x x u x x 1 1

SHLD Shift Left Double

Register/Memory by Immediate 0F A4 [mod reg r/m] # u - - - x x u x x 3 3 b h

Register/Memory by CL 0F A5 [mod reg r/m] 6 6

SHR Shift Right Logical

Register/Memory by 1 D [000w] [mod 101 r/m] x - - - x x u x x 2 2 b h

Register/Memory by CL D [001w] [mod 101 r/m] u - - - x x u x x 2 2

Register/Memory by Immediate C [000w] [mod 101 r/m] # u - - - x x u x x 2 2

SHRD Shift Right Double

Register/Memory by Immediate 0F AC [mod reg r/m] # u - - - x x u x x 3 3 b h

Register/Memory by CL 0F AD [mod reg r/m] 6 6

SMINT Software SMM Entry 0F 38 - - - - - - - - - 84 84 s s

STC Set Carry Flag F9 - - - - - - - - 1 1 1

STD Set Direction Flag FD - 1 - - - - - - - 4 4

STI Set Interrupt Flag FB - - 1 - - - - - - 6 6 m

Table 9-27 Processor Core Instruction Set Summary (cont.)

Instruction Opcode

Flags
Real
Mode

Prot’d
Mode

Real
Mode

Prot’d
Mode

O D I T S Z A P C
F F F F F F F F F

Clock Count
(Reg/Cache Hit) Notes

Page 258 Cyrix Corporation Confidential GXm_db_v2.0

� Processor Core Instruction Set

SUB Integer Subtract

Register to Register 2 [10dw] [11 reg r/m] x - - - x x x x x 1 1 b h

Register to Memory 2 [100w] [mod reg r/m] 1 1

Memory to Register 2 [101w] [mod reg r/m] 1 1

Immediate to Register/Memory 8 [00sw] [mod 101 r/m] ### 1 1

Immediate to Accumulator (short form) 2 [110w] ### 1 1

SVDC Save Segment Register and Descriptor 0F 78 [mod sreg3 r/m] - - - - - - - - - 20 20 s s

SVLDT Save LDTR and Descriptor 0F 7A [mod 000 r/m] - - - - - - - - - 20 20 s s

SVTS Save TSR and Descriptor 0F 7C [mod 000 r/m] - - - - - - - - - 21 21 s s

TEST Test Bits

Register/Memory and Register 8 [010w] [mod reg r/m] 0 - - - x x u x 0 1 1 b h

Immediate Data and Register/Memory F [011w] [mod 000 r/m] ### 1 1

Immediate Data and Accumulator A [100w] ### 1 1

VERR Verify Read Access

To Register/Memory 0F 00 [mod 100 r/m] - - - - - x - - - 8 a g,h,j,p

VERW Verify Write Access

To Register/Memory 0F 00 [mod 101 r/m] - - - - - x - - - 8 a g,h,j,p

WAIT Wait Until FPU Not Busy 9B - - - - - - - - - 1 1

WBINVD Write-Back and Invalidate Cache 0F 09 - - - - - - - - - 23 23 t t

WRMSR Write to Model Specific Register 0F 30 - - - - - - - - -

XADD Exchange and Add

Register1, Register2 0F C[000w] [11 reg2 reg1] x - - - x x x x x 2 2

Memory, Register 0F C[000w] [mod reg r/m] 2 2

XCHG Exchange

Register/Memory with Register 8[011w] [mod reg r/m] - - - - - - - - - 2 2 b,f f,h

Register with Accumulator 9[0 reg] 2 2

XLAT Translate Byte D7 - - - - - - - - - 5 5 h

XOR Boolean Exclusive OR

Register to Register 3 [00dw] [11 reg r/m] 0 - - - x x u x 0 1 1 b h

Register to Memory 3 [000w] [mod reg r/m] 1 1

Memory to Register 3 [001w] [mod reg r/m] 1 1

Immediate to Register/Memory 8 [00sw] [mod 110 r/m] ### 1 1

Immediate to Accumulator (short form) 3 [010w] ### 1 1

Table 9-27 Processor Core Instruction Set Summary (cont.)

Instruction Opcode

Flags
Real
Mode

Prot’d
Mode

Real
Mode

Prot’d
Mode

O D I T S Z A P C
F F F F F F F F F

Clock Count
(Reg/Cache Hit) Notes

GXm_db_v2.0 Cyrix Corporation Confidential Page 259

Processor Core Instruction Set 9
Instruction Notes for Instruction Set Summary

Notes a through c apply to Real Address Mode only:
a. This is a Protected Mode instruction. Attempted execution in

Real Mode will result in exception 6 (invalid opcode).

b. Exception 13 fault (general protection) will occur in Real
Mode if an operand reference is made that partially or fully
extends beyond the maximum CS, DS, ES, FS, or GS seg-
ment limit (FFFFH). Exception 12 fault (stack segment limit
violation or not present) will occur in Real Mode if an operand
reference is made that partially or fully extends beyond the
maximum SS limit.

c. This instruction may be executed in Real Mode. In Real
Mode, its purpose is primarily to initialize the CPU for Pro-
tected Mode.

d. -

Notes e through g apply to Real Address Mode and Protect-
ed Virtual Address Mode:
e. An exception may occur, depending on the value of the

operand.

f. LOCK# is automatically asserted, regardless of the pres-
ence or absence of the LOCK prefix.

g. LOCK# is asserted during descriptor table accesses.

Notes h through r apply to Protected Virtual Address Mode
only:
h. Exception 13 fault will occur if the memory operand in CS,

DS, ES, FS, or GS cannot be used due to either a segment
limit violation or an access rights violation. If a stack limit is
violated, an exception 12 occurs.

i. For segment load operations, the CPL, RPL, and DPL must
agree with the privilege rules to avoid an exception 13 fault.
The segment’s descriptor must indicate “present” or excep-
tion 11 (CS, DS, ES, FS, GS not present). If the SS register
is loaded and a stack segment not present is detected, an
exception 12 occurs.

j. All segment descriptor accesses in the GDT or LDT made by
this instruction will automatically assert LOCK# to maintain
descriptor integrity in multiprocessor systems.

k. JMP, CALL, INT, RET, and IRET instructions referring to
another code segment will cause an exception 13, if an
applicable privilege rule is violated.

l. An exception 13 fault occurs if CPL is greater than 0 (0 is the
most privileged level).

m. An exception 13 fault occurs if CPL is greater than IOPL.

n. The IF bit of the flag register is not updated if CPL is greater
than IOPL. The IOPL and VM fields of the flag register are
updated only if CPL = 0.

o. The PE bit of the MSW (CR0) cannot be reset by this
instruction. Use MOV into CRO if desiring to reset the PE bit.

p. Any violation of privilege rules as apply to the selector oper-
and does not cause a Protection exception, rather, the zero
flag is cleared.

q. If the coprocessor’s memory operand violates a segment
limit or segment access rights, an exception 13 fault will
occur before the ESC instruction is executed. An exception
12 fault will occur if the stack limit is violated by the oper-
and’s starting address.

r. The destination of a JMP, CALL, INT, RET, or IRET must be
in the defined limit of a code segment or an exception 13
fault will occur.

Note s applies to Cyrix-specific SMM instructions:
s. All memory accesses to SMM space are non-cacheable. An

invalid opcode exception 6 occurs unless SMI is enabled
and SMAR size > 0, and CPL = 0 and [SMAC is set or if in
an SMI handler].

Note t applies to cache invalidation instruction with the
cache operating in write-back mode:
t. The total clock count is the clock count shown plus the num-

ber of clocks required to write all “modified” cache lines to
external memory.

Page 260 Cyrix Corporation Confidential GXm_db_v2.0

� FPU Instruction Set

9.4 FPU Instruction Set
The processor core is functionally divided into the
FPU, and the integer unit. The FPU processes
floating point instructions only and does so in
parallel with the integer unit.

For example, when the integer unit detects a
floating point instruction without memory operands,
after two clock cycles the instruction passes to the
FPU for execution. The integer unit continues to
execute instructions while the FPU executes the
floating point instruction. If another FPU instruction
is encountered, the second FPU instruction is
placed in the FPU queue. Up to four FPU instruc-
tions can be queued. In the event of an FPU
exception, while other FPU instructions are
queued, the state of the CPU is saved to ensure
recovery.

The instruction set for the FPU is summarized in
Table 9-29. The table uses abbreviations that are
described Table 9-28.

Table 9-28 FPU Instruction Set Table Legend

Abbr. Description

n Stack register number

TOS Top of stack register pointed to by SSS in
the status register.

ST(1) FPU register next to TOS

ST(n) A specific FPU register, relative to TOS

M.WI 16-bit integer operand from memory

M.SI 32-bit integer operand from memory

M.LI 64-bit integer operand from memory

M.SR 32-bit real operand from memory

M.DR 64-bit real operand from memory

M.XR 80-bit real operand from memory

M.BCD 18-digit BCD integer operand from memory

CC FPU condition code

Env Regs Status, Mode Control and Tag Registers,
Instruction Pointer and Operand Pointer

GXm_db_v2.0 Cyrix Corporation Confidential Page 261

FPU Instruction Set 9
Table 9-29 FPU Instruction Set Summary

FPU Instruction Opcode Operation
Clock
Count Notes

F2XM1 Function Evaluation 2x-1 D9 F0 TOS <--- 2TOS-1 92 - 108 2

FABS Floating Absolute Value D9 E1 TOS <--- | TOS | 2 2

FADD Floating Point Add

Top of Stack DC [1100 0 n] ST(n) <--- ST(n) + TOS 4 - 9

80-bit Register D8 [1100 0 n] TOS <--- TOS + ST(n) 4 - 9

64-bit Real DC [mod 000 r/m] TOS <--- TOS + M.DR 4 - 9

32-bit Real D8 [mod 000 r/m] TOS <--- TOS + M.SR 4 - 9

FADDP Floating Point Add, Pop DE [1100 0 n] ST(n) <--- ST(n) + TOS; then pop TOS

FIADD Floating Point Integer Add

32-bit integer DA [mod 000 r/m] TOS <--- TOS + M.SI 8 - 14

16-bit integer DE [mod 000 r/m] TOS <--- TOS + M.WI 8 - 14

FCHS Floating Change Sign D9 E0 TOS <--- - TOS 2

FCLEX Clear Exceptions (9B) DB E2 Wait then Clear Exceptions 5

FNCLEX Clear Exceptions DB E2 Clear Exceptions 3

FCMOVB Floating Point Conditional Move if
Below

DA [1100 0 n] If (CF=1) ST(0) <--- ST(n) 4

FCMOVE Floating Point Conditional Move if
Equal

DA [1100 1 n] If (ZF=1) ST(0) <--- ST(n) 4

FCMOVBE Floating Point Conditional Move if
 Below or Equal

DA [1101 0 n] If (CF=1 or ZF=1) ST(0) <--- ST(n) 4

FCMOVU Floating Point Conditional Move if
Unordered

DA [1101 1 n] If (PF=1) ST(0) <--- ST(n) 4

FCMOVNB Floating Point Conditional Move if
Not Below

DB [1100 0 n] If (CF=0) ST(0) <--- ST(n) 4

FCMOVNE Floating Point Conditional Move if
Not Equal

DB [1100 1 n] If (ZF=0) ST(0) <--- ST(n) 4

FCMOVNBE Floating Point Conditional Move if
Not Below or Equal

DB [1101 0 n] If (CF=0 and ZF=0) ST(0) <--- ST(n) 4

FCMOVNU Floating Point Conditional Move if
Not Unordered

DB [1101 1 n] If (DF=0) ST(0) <--- ST(n) 4

FCOM Floating Point Compare

80-bit Register D8 [1101 0 n] CC set by TOS - ST(n) 4

64-bit Real DC [mod 010 r/m] CC set by TOS - M.DR 4

32-bit Real D8 [mod 010 r/m] CC set by TOS - M.SR 4

FCOMP Floating Point Compare, Pop

80-bit Register D8 [1101 1 n] CC set by TOS - ST(n); then pop TOS 4

64-bit Real DC [mod 011 r/m] CC set by TOS - M.DR; then pop TOS 4

32-bit Real D8 [mod 011 r/m] CC set by TOS - M.SR; then pop TOS 4

FCOMPP Floating Point Compare, Pop
Two Stack Elements

DE D9 CC set by TOS - ST(1); then pop TOS and
ST(1)

4

Page 262 Cyrix Corporation Confidential GXm_db_v2.0

� FPU Instruction Set

FCOMI Floating Point Compare Real and Set EFLAGS

80-bit Register DB [1111 0 n] EFLAG set by TOS - ST(n) 4

FCOMIP Floating Point Compare Real and Set EFLAGS, Pop

80-bit Register DF [1111 0 n] EFLAG set by TOS - ST(n); then pop TOS 4

FUCOMI Floating Point Unordered Compare Real and Set EFLAGS

80-bit Integer DB [1110 1 n] EFLAG set by TOS - ST(n) 9 - 10

FUCOMIP Floating Point Unordered Compare Real and Set EFLAGS, Pop

80-bit Integer DF [1110 1 n] EFLAG set by TOS - ST(n); then pop TOS 9 - 10

FICOM Floating Point Integer Compare

32-bit integer DA [mod 010 r/m] CC set by TOS - M.WI 9 - 10

16-bit integer DE [mod 010 r/m] CC set by TOS - M.SI 9 - 10

FICOMP Floating Point Integer Compare, Pop

32-bit integer DA [mod 011 r/m] CC set by TOS - M.WI; then pop TOS 9 - 10

16-bit integer DE [mod 011 r/m CC set by TOS - M.SI; then pop TOS 9 - 10

FCOS Function Evaluation: Cos(x) D9 FF TOS <--- COS(TOS) 92 - 141 1

FDECSTP Decrement Stack pointer D9 F6 Decrement top of stack pointer 4

FDIV Floating Point Divide

Top of Stack DC [1111 1 n] ST(n) <--- ST(n) / TOS 24 - 34

80-bit Register D8 [1111 0 n] TOS <--- TOS / ST(n) 24 - 34

64-bit Real DC [mod 110 r/m] TOS <--- TOS / M.DR 24 - 34

32-bit Real D8 [mod 110 r/m] TOS <--- TOS / M.SR 24 - 34

FDIVP Floating Point Divide, Pop DE [1111 1 n] ST(n) <--- ST(n) / TOS; then pop TOS 24 - 34

FDIVR Floating Point Divide Reversed

Top of Stack DC [1111 0 n] TOS <--- ST(n) / TOS 24 - 34

80-bit Register D8 [1111 1 n] ST(n) <--- TOS / ST(n) 24 - 34

64-bit Real DC [mod 111 r/m] TOS <--- M.DR / TOS 24 - 34

32-bit Real D8 [mod 111 r/m] TOS <--- M.SR / TOS 24 - 34

FDIVRP Floating Point Divide Reversed, Pop DE [1111 0 n] ST(n) <--- TOS / ST(n); then pop TOS 24 - 34

FIDIV Floating Point Integer Divide

32-bit Integer DA [mod 110 r/m] TOS <--- TOS / M.SI 34 - 38

16-bit Integer DE [mod 110 r/m] TOS <--- TOS / M.WI 34 - 38

FIDIVR Floating Point Integer Divide Reversed

32-bit Integer DA [mod 111 r/m] TOS <--- M.SI / TOS 34 - 38

16-bit Integer DE [mod 111 r/m] TOS <--- M.WI / TOS 34 - 38

FFREE Free Floating Point Register DD [1100 0 n] TAG(n) <--- Empty 4

FINCSTP Increment Stack Pointer D9 F7 Increment top-of-stack pointer 2

FINIT Initialize FPU (9B)DB E3 Wait, then initialize 8

FNINIT Initialize FPU DB E3 Initialize 6

Table 9-29 FPU Instruction Set Summary (cont.)

FPU Instruction Opcode Operation
Clock
Count Notes

GXm_db_v2.0 Cyrix Corporation Confidential Page 263

FPU Instruction Set 9

FLD Load Data to FPU Register

Top of Stack D9 [1100 0 n] Push ST(n) onto stack 2

64-bit Real DD [mod 000 r/m] Push M.DR onto stack 2

32-bit Real D9 [mod 000 r/m] Push M.SR onto stack 2

FBLD Load Packed BCD Data to FPU Register DF [mod 100 r/m] Push M.BCD onto stack 41 - 45

FILD Load Integer Data to FPU Register

64-bit Integer DF [mod 101 r/m] Push M.LI onto stack 4 - 8

32-bit Integer DB [mod 000 r/m] Push M.SI onto stack 4 - 6

16-bit Integer DF [mod 000 r/m] Push M.WI onto stack 3 - 6

FLD1 Load Floating Const.= 1.0 D9 E8 Push 1.0 onto stack 4

FLDCW Load FPU Mode Control Register D9 [mod 101 r/m] Ctl Word <--- Memory 4

FLDENV Load FPU Environment D9 [mod 100 r/m] Env Regs <--- Memory 30

FLDL2E Load Floating Const.= Log2(e) D9 EA Push Log2(e) onto stack 4

FLDL2T Load Floating Const.= Log2(10) D9 E9 Push Log2(10) onto stack 4

FLDLG2 Load Floating Const.= Log10(2) D9 EC Push Log10(2) onto stack 4

FLDLN2 Load Floating Const.= Ln(2) D9 ED Push Loge(2) onto stack 4

FLDPI Load Floating Const.= π D9 EB Push π onto stack 4

FLDZ Load Floating Const.= 0.0 D9 EE Push 0.0 onto stack 4

FMUL Floating Point Multiply

Top of Stack DC [1100 1 n] ST(n) <--- ST(n) × TOS 4 - 9

80-bit Register D8 [1100 1 n] TOS <--- TOS × ST(n) 4 - 9

64-bit Real DC [mod 001 r/m] TOS <--- TOS × M.DR 4 - 8

32-bit Real D8 [mod 001 r/m] TOS <--- TOS × M.SR 4 - 6

FMULP Floating Point Multiply & Pop DE [1100 1 n] ST(n) <--- ST(n) × TOS; then pop TOS 4 - 9

FIMUL Floating Point Integer Multiply

32-bit Integer DA [mod 001 r/m] TOS <--- TOS × M.SI 9 - 11

16-bit Integer DE [mod 001 r/m] TOS <--- TOS × M.WI 8 - 10

FNOP No Operation D9 D0 No Operation 2

FPATAN Function Eval: Tan-1(y/x) D9 F3 ST(1) <--- ATAN[ST(1) / TOS]; then pop TOS 97 - 161 3

FPREM Floating Point Remainder D9 F8 TOS <--- Rem[TOS / ST(1)] 82 - 91

FPREM1 Floating Point Remainder IEEE D9 F5 TOS <--- Rem[TOS / ST(1)] 82 - 91

FPTAN Function Eval: Tan(x) D9 F2 TOS <--- TAN(TOS); then push 1.0 onto stack 117 - 129 1

FRNDINT Round to Integer D9 FC TOS <--- Round(TOS) 10 - 20

FRSTOR Load FPU Environment and Register DD [mod 100 r/m] Restore state 56 - 72

FSAVE Save FPU Environment and Register (9B)DD [mod 110 r/m] Wait, then save state 57 - 67

FNSAVE Save FPU Environment and Register DD [mod 110 r/m] Save state 55 - 65

FSCALE Floating Multiply by 2n D9 FD TOS <--- TOS × 2(ST(1)) 7 - 14

FSIN Function Evaluation: Sin(x) D9 FE TOS <--- SIN(TOS) 76 - 140 1

Table 9-29 FPU Instruction Set Summary (cont.)

FPU Instruction Opcode Operation
Clock
Count Notes

Page 264 Cyrix Corporation Confidential GXm_db_v2.0

� FPU Instruction Set

FSINCOS Function Eval.: Sin(x)& Cos(x) D9 FB temp <--- TOS;
TOS <--- SIN(temp); then
push COS(temp) onto stack

145 - 161 1

FSQRT Floating Point Square Root D9 FA TOS <--- Square Root of TOS 59 - 60

FST Store FPU Register

Top of Stack DD [1101 0 n] ST(n) <--- TOS 2

64-bit Real DD [mod 010 r/m] M.DR <--- TOS 2

32-bit Real D9 [mod 010 r/m] M.SR <--- TOS 2

FSTP Store FPU Register, Pop

Top of Stack DB [1101 1 n] ST(n) <--- TOS; then pop TOS 2

80-bit Real DB [mod 111 r/m] M.XR <--- TOS; then pop TOS 2

64-bit Real DD [mod 011 r/m] M.DR <--- TOS; then pop TOS 2

32-bit Real D9 [mod 011 r/m] M.SR <--- TOS; then pop TOS 2

FBSTP Store BCD Data, Pop DF [mod 110 r/m] M.BCD <--- TOS; then pop TOS 57 - 63

FIST Store Integer FPU Register

32-bit Integer DB [mod 010 r/m] M.SI <--- TOS 8 - 13

16-bit Integer DF [mod 010 r/m] M.WI <--- TOS 7 - 10

FISTP Store Integer FPU Register, Pop

64-bit Integer DF [mod 111 r/m] M.LI <--- TOS; then pop TOS 10 - 13

32-bit Integer DB [mod 011 r/m] M.SI <--- TOS; then pop TOS 8 - 13

16-bit Integer DF [mod 011 r/m] M.WI <--- TOS; then pop TOS 7 - 10

FSTCW Store FPU Mode Control Register (9B)D9 [mod 111 r/m] Wait Memory <--- Control Mode Register 5

FNSTCW Store FPU Mode Control Register D9 [mod 111 r/m] Memory <--- Control Mode Register 3

FSTENV Store FPU Environment (9B)D9 [mod 110 r/m] Wait Memory <--- Env. Registers 14 - 24

FNSTENV Store FPU Environment D9 [mod 110 r/m] Memory <--- Env. Registers 12 - 22

FSTSW Store FPU Status Register (9B)DD [mod 111 r/m] Wait Memory <--- Status Register 6

FNSTSW Store FPU Status Register DD [mod 111 r/m] Memory <--- Status Register 4

FSTSW AX Store FPU Status Register to AX (9B)DF E0 Wait AX <--- Status Register 4

FNSTSW AX Store FPU Status Register to AX DF E0 AX <--- Status Register 2

FSUB Floating Point Subtract

Top of Stack DC [1110 1 n] ST(n) <--- ST(n) - TOS 4 - 9

80-bit Register D8 [1110 0 n] TOS <--- TOS - ST(n 4 - 9

64-bit Real DC [mod 100 r/m] TOS <--- TOS - M.DR 4 - 9

32-bit Real D8 [mod 100 r/m] TOS <--- TOS - M.SR 4 - 9

FSUBP Floating Point Subtract, Pop DE [1110 1 n] ST(n) <--- ST(n) - TOS; then pop TOS 4 - 9

FSUBR Floating Point Subtract Reverse

Top of Stack DC [1110 0 n] TOS <--- ST(n) - TOS 4 - 9

80-bit Register D8 [1110 1 n] ST(n) <--- TOS - ST(n) 4 - 9

64-bit Real DC [mod 101 r/m] TOS <--- M.DR - TOS 4 - 9

32-bit Real D8 [mod 101 r/m] TOS <--- M.SR - TOS 4 - 9

Table 9-29 FPU Instruction Set Summary (cont.)

FPU Instruction Opcode Operation
Clock
Count Notes

GXm_db_v2.0 Cyrix Corporation Confidential Page 265

FPU Instruction Set 9

FPU Instruction Summary Notes

All references to TOS and ST(n) refer to stack layout prior to
execution.

Values popped off the stack are discarded.

A pop from the stack increments the top of stack pointer.

A push to the stack decrements the top of stack pointer.

Notes:
1. For FCOS, FSIN, FSINCOS and FPTAN, time shown is for

absolute value of TOS < 3p/4. Add 90 clock counts for argu-
ment reduction if outside this range.

For FCOS, clock count is 141 if TOS < π/4 and clock count is
92 if π/4 < TOS > π/2.

For FSIN, clock count is 81 to 82 if absolute value of TOS <
π/4.

2. For F2XM1, clock count is 92 if absolute value of TOS < 0.5.

3. For FPATAN, clock count is 97 if ST(1)/TOS < π/32.

4. For FYL2XP1, clock count is 170 if TOS is out of range and
regular FYL2X is called.

5. The following opcodes are reserved by Cyrix:
D9D7, D9E2, D9E7, DDFC, DED8, DEDA, DEDC, DEDD,
DEDE, DFFC.

If a reserved opcode is executed, and unpredictable results
may occur (exceptions are not generated).

FSUBRP Floating Point Subtract Reverse, Pop DE [1110 0 n] ST(n) <--- TOS - ST(n); then pop TOS 4 - 9

FISUB Floating Point Integer Subtract

32-bit Integer DA [mod 100 r/m] TOS <--- TOS - M.SI 14 - 29

16-bit Integer DE [mod 100 r/m] TOS <--- TOS - M.WI 14 - 27

FISUBR Floating Point Integer Subtract Reverse

32-bit Integer Reversed DA [mod 101 r/m] TOS <--- M.SI - TOS 14 - 29

16-bit Integer Reversed DE [mod 101 r/m] TOS <--- M.WI - TOS 14 - 27

FTST Test Top of Stack D9 E4 CC set by TOS - 0.0 4

FUCOM Unordered Compare DD [1110 0 n] CC set by TOS - ST(n) 4

FUCOMP Unordered Compare, Pop DD [1110 1 n] CC set by TOS - ST(n); then pop TOS 4

FUCOMPP Unordered Compare, Pop two
elements

DA E9 CC set by TOS - ST(I); then pop TOS and
ST(1)

4

FWAIT Wait 9B Wait for FPU not busy 2

FXAM Report Class of Operand D9 E5 CC <--- Class of TOS 4

FXCH Exchange Register with TOS D9 [1100 1 n] TOS <--> ST(n) Exchange 3

FXTRACT Extract Exponent D9 F4 temp <--- TOS;
TOS <--- exponent (temp); then
push significant (temp) onto stack

11 - 16

FLY2X Function Eval. y × Log2(x) D9 F1 ST(1) <--- ST(1) × Log2(TOS); then pop TOS 145 - 154

FLY2XP1 Function Eval. y × Log2(x+1) D9 F9 ST(1) <--- ST(1) × Log2(1+TOS); then pop
TOS

131 - 133 4

Table 9-29 FPU Instruction Set Summary (cont.)

FPU Instruction Opcode Operation
Clock
Count Notes

Page 266 Cyrix Corporation Confidential GXm_db_v2.0

� MMX™ Instruction Set

9.5 MMX™ Instruction Set
The CPU is functionally divided into the FPU unit,
and the integer unit. The FPU has been extended
to processes both MMX™ instructions and floating
point instructions in parallel with the integer unit.

For example, when the integer unit detects a MMX
instruction, the instruction passes to the FPU unit
for execution. The integer unit continues to execute
instructions while the FPU unit executes the MMX
instruction. If another MMX instruction is encoun-
tered, the second MMX instruction is placed in the
MMX queue. Up to four MMX instructions can be
queued.

MMX instruction set is summarized in Table 9-31.
The abbreviations used in the table are listed Table
9-30.

Table 9-30 MMX Instruction Set Table Legend

Abbreviation Description

<---- Result written

[11 mm reg] Binary or binary groups of digits

mm One of eight 64-bit MMX registers

reg A general purpose register

<--sat-- If required, the resultant data is saturated
to remain in the associated data range

<--move-- Source data is moved to result location

[byte] Eight 8-bit bytes are processed in parallel

[word] Four 16-bit word are processed in parallel

[dword] Two 32-bit double words are processed in
parallel

[qword] One 64-bit quad word is processed

[sign xxx] The byte, word, double word or quad
word most significant bit is a sign bit

mm1, mm2 MMX Register 1, MMX Register 2

mod r/m Mod and r/m byte encoding (page 6-6 of
this manual)

pack Source data is truncated or saturated to
next smaller data size, then concate-
nated.

packdw Pack two double words from source and
two double words from destination into
four words in destination register.

packwb Pack four words from source and four
words from destination into eight bytes in
destination register.

GXm_db_v2.0 Cyrix Corporation Confidential Page 267

MMX™ Instruction Set 9
Table 9-31 MMX Instruction Set Summary

MMX Instructions Opcode Operation and Clock Count (Latency/Throughput)

EMMS Empty MMX State 0F77 Tag Word <--- FFFFh (empties the floating point tag word) 1/1

MOVD Move Doubleword

Register to MMX Register 0F6E [11 mm reg] MMX reg [qword] <--move, zero extend-- reg [dword] 1/1

MMX Register to Register 0F7E [11 mm reg] reg [qword] <--move-- MMX reg [low dword] 5/1

Memory to MMX Register 0F6E [mod mm r/m] MMX regr[qword] <--move, zero extend-- memory[dword] 1/1

MMX Register to Memory 0F7E [mod mm r/m] Memory [dword] <--move-- MMX reg [low dword] 1/1

MOVQ Move Quardword

MMX Register 2 to MMX Register 1 0F6F [11 mm1 mm2] MMX reg 1 [qword] <--move-- MMX reg 2 [qword] 1/1

MMX Register 1 to MMX Register 2 0F7F [11 mm1 mm2] MMX reg 2 [qword] <--move-- MMX reg 1 [qword] 1/1

Memory to MMX Register 0F6F [mod mm r/m] MMX reg [qword] <--move-- memory[qword] 1/1

MMX Register to Memory 0F7F [mod mm r/m] Memory [qword] <--move-- MMX reg [qword] 1/1

PACKSSDW Pack Dword with Signed Saturation

MMX Register 2 to MMX Register 1 0F6B [11 mm1 mm2] MMX reg 1 [qword] <--packdw, signed sat-- MMX reg 2, MMX reg 1 1/1

Memory to MMX Register 0F6B [mod mm r/m] MMX reg [qword] <--packdw, signed sat-- memory, MMX reg 1/1

PACKSSWB Pack Word with Signed Saturation

MMX Register 2 to MMX Register 1 0F63 [11 mm1 mm2] MMX reg 1 [qword] <--packwb, signed sat-- MMX reg 2, MMX reg 1 1/1

Memory to MMX Register 0F63 [mod mm r/m] MMX reg [qword] <--packwb, signed sat-- memory, MMX reg 1/1

PACKUSWB Pack Word with Unsigned Saturation

MMX Register 2 to MMX Register 1 0F67 [11 mm1 mm2] MMX reg 1 [qword] <--packwb, unsigned sat-- MMX reg 2, MMX reg 1 1/1

Memory to MMX Register 0F67 [mod mm r/m] MMX reg [qword] <--packwb, unsigned sat-- memory, MMX reg 1/1

PADDB Packed Add Byte with Wrap-Around

MMX Register 2 to MMX Register 1 0FFC [11 mm1 mm2] MMX reg 1 [byte] <---- MMX reg 1 [byte] + MMX reg 2 [byte] 1/1

Memory to MMX Register 0FFC [mod mm r/m] MMX reg[byte] <---- memory [byte] + MMX reg [byte] 1/1

PADDD Packed Add Dword with Wrap-Around

MMX Register 2 to MMX Register 1 0FFE [11 mm1 mm2] MMX reg 1 [sign dword] <---- MMX reg 1 [sign dword] + MMX reg 2 [sign
dword]

1/1

Memory to MMX Register 0FFE [mod mm r/m] MMX reg [sign dword] <---- memory [sign dword] + MMX reg [sign dword] 1/1

PADDSB Packed Add Signed Byte with Saturation

MMX Register 2 to MMX Register 1 0FEC [11 mm1 mm2] MMX reg 1 [sign byte] <--sat-- MMX reg 1 [sign byte] + MMX reg 2 [sign byte] 1/1

Memory to Register 0FEC [mod mm r/m] MMX reg [sign byte] <--sat-- memory [sign byte] + MMX reg [sign byte] 1/1

PADDSW Packed Add Signed Word with Saturation

MMX Register 2 to MMX Register 1 0FED [11 mm1 mm2] MMX reg 1 [sign word] <--sat-- MMX reg 1 [sign word] + MMX reg 2 [sign
word]

1/1

Memory to Register 0FED [mod mm r/m] MMX reg [sign word] <--sat-- memory [sign word] + MMX reg [sign word] 1/1

PADDUSB Add Unsigned Byte with Saturation

MMX Register 2 to MMX Register 1 0FDC [11 mm1 mm2] MMX reg 1 [byte] <--sat-- MMX reg 1 [byte] + MMX reg 2 [byte] 1/1

Memory to Register 0FDC [mod mm r/m] MMX reg [byte] <--sat-- memory [byte] + MMX reg [byte] 1/1

Page 268 Cyrix Corporation Confidential GXm_db_v2.0

� MMX™ Instruction Set

PADDUSW Add Unsigned Word with Saturation

MMX Register 2 to MMX Register 1 0FDD [11 mm1 mm2] MMX reg 1 [word] <--sat-- MMX reg 1 [word] + MMX reg 2 [word] 1/1

Memory to Register 0FDD [mod mm r/m] MMX reg [word] <--sat-- memory [word] + MMX reg [word] 1/1

PADDW Packed Add Word with Wrap-Around

MMX Register 2 to MMX Register 1 0FFD [11 mm1 mm2] MMX reg 1 [word] <---- MMX reg 1 [word] + MMX reg 2 [word] 1/1

Memory to MMX Register 0FFD [mod mm r/m] MMX reg [word] <---- memory [word] + MMX reg [word] 1/1

PAND Bitwise Logical AND

MMX Register 2 to MMX Register 1 0FDB [11 mm1 mm2] MMX reg 1 [qword] <--logic AND-- MMX reg 1 [qword], MMX reg 2 [qword] 1/1

Memory to MMX Register 0FDB [mod mm r/m] MMX reg [qword] <--logic AND-- memory [qword], MMX reg [qword]

PANDN Bitwise Logical AND NOT

MMX Register 2 to MMX Register 1 0FDF [11 mm1 mm2] MMX reg 1 [qword] <--logic AND -- NOT MMX reg 1 [qword], MMX reg 2
[qword]

1/1

Memory to MMX Register 0FDF [mod mm r/m] MMX reg [qword] <--logic AND-- NOT MMX reg [qword], Memory [qword] 1/1

PCMPEQB Packed Byte Compare for Equality

MMX Register 2 with MMX Register
1

0F74 [11 mm1 mm2] MMX reg 1 [byte] <--FFh-- if MMX reg 1 [byte] = MMX reg 2 [byte]
MMX reg 1 [byte]<--00h-- if MMX reg 1 [byte] NOT = MMX reg 2 [byte]

1/1

Memory with MMX Register 0F74 [mod mm r/m] MMX reg [byte] <--FFh-- if memory[byte] = MMX reg [byte]
MMX reg [byte] <--00h-- if memory[byte] NOT = MMX reg [byte]

1/1

PCMPEQD Packed Dword Compare for Equality

MMX Register 2 with MMX Register
1

0F76 [11 mm1 mm2] MMX reg 1 [dword] <--FFFF FFFFh-- if MMX reg 1 [dword] = MMX reg 2
[dword]
MMX reg 1 [dword]<--0000 0000h--if MMX reg 1[dword] NOT = MMX reg 2
[dword]

1/1

Memory with MMX Register 0F76 [mod mm r/m] MMX reg [dword] <--FFFF FFFFh-- if memory[dword] = MMX reg [dword]
MMX reg [dword] <--0000 0000h-- if memory[dword] NOT = MMX reg [dword]

1/1

PCMPEQW Packed Word Compare for Equality

MMX Register 2 with MMX Register
1

0F75 [11 mm1 mm2] MMX reg 1 [word] <--FFFFh-- if MMX reg 1 [word] = MMX reg 2 [word]
MMX reg 1 [word]<--0000h-- if MMX reg 1 [word] NOT = MMX reg 2 [word]

1/1

Memory with MMX Register 0F75 [mod mm r/m] MMX reg [word] <--FFFFh-- if memory[word] = MMX reg [word]
MMX reg [word] <--0000h-- if memory[word] NOT = MMX reg [word]

1/1

PCMPGTB Pack Compare Greater Than Byte

MMX Register 2 to MMX Register 1 0F64 [11 mm1 mm2] MMX reg 1 [byte] <--FFh-- if MMX reg 1 [byte] > MMX reg 2 [byte]
MMX reg 1 [byte]<--00h-- if MMX reg 1 [byte] NOT > MMX reg 2 [byte]

1/1

Memory with MMX Register 0F64 [mod mm r/m] MMX reg [byte] <--FFh-- if memory[byte] > MMX reg [byte]
MMX reg [byte] <--00h-- if memory[byte] NOT > MMX reg [byte]

1/1

PCMPGTD Pack Compare Greater Than Dword

MMX Register 2 to MMX Register 1 0F66 [11 mm1 mm2] MMX reg 1 [dword] <--FFFF FFFFh-- if MMX reg 1 [dword] > MMX reg 2
[dword]
MMX reg 1 [dword]<--0000 0000h--if MMX reg 1 [dword]NOT > MMX reg 2
[dword]

1/1

Memory with MMX Register 0F66 [mod mm r/m] MMX reg [dword] <--FFFF FFFFh-- if memory[dword] > MMX reg [dword]
MMX reg [dword] <--0000 0000h-- if memory[dword] NOT > MMX reg [dword]

1/1

Table 9-31 MMX Instruction Set Summary (cont.)

MMX Instructions Opcode Operation and Clock Count (Latency/Throughput)

GXm_db_v2.0 Cyrix Corporation Confidential Page 269

MMX™ Instruction Set 9

PCMPGTW Pack Compare Greater Than Word

MMX Register 2 to MMX Register 1 0F65 [11 mm1 mm2] MMX reg 1 [word] <--FFFFh-- if MMX reg 1 [word] > MMX reg 2 [word]
MMX reg 1 [word]<--0000h-- if MMX reg 1 [word] NOT > MMX reg 2 [word]

1/1

Memory with MMX Register 0F65 [mod mm r/m] MMX reg [word] <--FFFFh-- if memory[word] > MMX reg [word]
MMX reg [word] <--0000h-- if memory[word] NOT > MMX reg [word]

1/1

PMADDWD Packed Multiply and Add

MMX Register 2 to MMX Register 1 0FF5 [11 mm1 mm2] MMX reg 1 [dword] <--add-- [dword]<---- MMX reg 1 [sign word]*MMX reg
2[sign word]

2/1

Memory to MMX Register 0FF5 [mod mm r/m] MMX reg 1 [dword] <--add-- [dword] <---- memory [sign word] * Memory [sign
word]

2/1

PMULHW Packed Multiply High

MMX Register 2 to MMX Register 1 0FE5 [11 mm1 mm2] MMX reg 1 [word] <--upper bits-- MMX reg 1 [sign word] * MMX reg 2 [sign
word]

2/1

Memory to MMX Register 0FE5 [mod mm r/m] MMX reg 1 [word] <--upper bits-- memory [sign word] * Memory [sign word] 2/1

PMULLW Packed Multiply Low

MMX Register 2 to MMX Register 1 0FD5 [11 mm1 mm2] MMX reg 1 [word] <--lower bits-- MMX reg 1 [sign word] * MMX reg 2 [sign
word]

2/1

Memory to MMX Register 0FD5 [mod mm r/m] MMX reg 1 [word] <--lower bits-- memory [sign word] * Memory [sign word] 2/1

POR Bitwise OR

MMX Register 2 to MMX Register 1 0FEB [11 mm1 mm2] MMX reg 1 [qword] <--logic OR-- MMX reg 1 [qword], MMX reg 2 [qword] 1/1

Memory to MMX Register 0FEB [mod mm r/m] MMX reg [qword] <--logic OR-- MMX reg [qword], memory[qword] 1/1

PSLLD Packed Shift Left Logical Dword

MMX Register 1 by MMX Register 2 0FF2 [11 mm1 mm2] MMX reg 1 [dword] <--shift left, shifting in zeroes by MMX reg 2 [dword]-- 1/1

MMX Register by Memory 0FF2 [mod mm r/m] MMX reg [dword] <--shift left, shifting in zeroes by memory[dword]-- 1/1

MMX Register by Immediate 0F72 [11 110 mm] # MMX reg [dword] <--shift left, shifting in zeroes by [im byte]-- 1/1

PSLLQ Packed Shift Left Logical Qword

MMX Register 1 by MMX Register 2 0FF3 [11 mm1 mm2] MMX reg 1 [qword] <--shift left, shifting in zeroes by MMX reg 2 [qword]-- 1/1

MMX Register by Memory 0FF3 [mod mm r/m] MMX reg [qword] <--shift left, shifting in zeroes by [qword]-- 1/1

MMX Register by Immediate 0F73 [11 110 mm] # MMX reg [qword] <--shift left, shifting in zeroes by [im byte]-- 1/1

PSLLW Packed Shift Left Logical Word

MMX Register 1 by MMX Register 2 0FF1 [11 mm1 mm2] MMX reg 1 [word] <--shift left, shifting in zeroes by MMX reg 2 [word]-- 1/1

MMX Register by Memory 0FF1 [mod mm r/m] MMX reg [word] <--shift left, shifting in zeroes by memory[word]-- 1/1

MMX Register by Immediate 0F71 [11 110mm] # MMX reg [word] <--shift left, shifting in zeroes by [im byte]-- 1/1

PSRAD Packed Shift Right Arithmetic Dword

MMX Register 1 by MMX Register 2 0FE2 [11 mm1 mm2] MMX reg 1 [dword] <--arith shift right, shifting in zeroes by MMX reg 2 [dword-
-]

1/1

MMX Register by Memory 0FE2 [mod mm r/m] MMX reg [dword] <--arith shift right, shifting in zeroes by memory[dword]-- 1/1

MMX Register by Immediate 0F72 [11 100 mm] # MMX reg [dword] <--arith shift right, shifting in zeroes by [im byte]-- 1/1

Table 9-31 MMX Instruction Set Summary (cont.)

MMX Instructions Opcode Operation and Clock Count (Latency/Throughput)

Page 270 Cyrix Corporation Confidential GXm_db_v2.0

� MMX™ Instruction Set

PSRAW Packed Shift Right Arithmetic Word

MMX Register 1 by MMX Register 2 0FE1 [11 mm1 mm2] MMX reg 1 [word] <--arith shift right, shifting in zeroes by MMX reg 2 [word]-- 1/1

MMX Register by Memory 0FE1 [mod mm r/m] MMX reg [word] <--arith shift right, shifting in zeroes by memory[word--] 1/1

MMX Register by Immediate 0F71 [11 100 mm] # MMX reg [word] <--arith shift right, shifting in zeroes by [im byte]-- 1/1

PSRLD Packed Shift Right Logical Dword

MMX Register 1 by MMX Register 2 0FD2 [11 mm1 mm2] MMX reg 1 [dword] <--shift right, shifting in zeroes by MMX reg 2 [dword]-- 1/1

MMX Register by Memory 0FD2 [mod mm r/m] MMX reg [dword] <--shift right, shifting in zeroes by memory[dword]-- 1/1

MMX Register by Immediate 0F72 [11 010 mm] # MMX reg [dword] <--shift right, shifting in zeroes by [im byte]-- 1/1

PSRLQ Packed Shift Right Logical Qword

MMX Register 1 by MMX Register 2 0FD3 [11 mm1 mm2] MMX reg 1 [qword] <--shift right, shifting in zeroes by MMX reg 2 [qword] 1/1

MMX Register by Memory 0FD3 [mod mm r/m] MMX reg [qword] <--shift right, shifting in zeroes by memory[qword] 1/1

MMX Register by Immediate 0F73 [11 010 mm] # MMX reg [qword] <--shift right, shifting in zeroes by [im byte] 1/1

PSRLW Packed Shift Right Logical Word

MMX Register 1 by MMX Register 2 0FD1 [11 mm1 mm2] MMX reg 1 [word] <--shift right, shifting in zeroes by MMX reg 2 [word] 1/1

MMX Register by Memory 0FD1 [mod mm r/m] MMX reg [word] <--shift right, shifting in zeroes by memory[word] 1/1

MMX Register by Immediate 0F71 [11 010 mm] # MMX reg [word] <--shift right, shifting in zeroes by imm[word] 1/1

PSUBB Subtract Byte With Wrap-Around

MMX Register 2 to MMX Register 1 0FF8 [11 mm1 mm2] MMX reg 1 [byte] <---- MMX reg 1 [byte] subtract MMX reg 2 [byte] 1/1

Memory to MMX Register 0FF8 [mod mm r/m] MMX reg [byte] <---- MMX reg [byte] subtract memory [byte] 1/1

PSUBD Subtract Dword With Wrap-Around

MMX Register 2 to MMX Register 1 0FFA [11 mm1 mm2] MMX reg 1 [dword] <---- MMX reg 1 [dword] subtract MMX reg 2 [dword] 1/1

Memory to MMX Register 0FFA [mod mm r/m] MMX reg [dword] <---- MMX reg [dword] subtract memory [dword] 1/1

PSUBSB Subtract Byte Signed With Saturation

MMX Register 2 to MMX Register 1 0FE8 [11 mm1 mm2] MMX reg 1 [sign byte] <--sat-- MMX reg 1 [sign byte] subtract MMX reg 2 [sign
byte]

1/1

Memory to MMX Register 0FE8 [mod mm r/m] MMX reg [sign byte] <--sat-- MMX reg [sign byte] subtract memory [sign byte] 1/1

PSUBSW Subtract Word Signed With Saturation

MMX Register 2 to MMX Register 1 0FE9 [11 mm1 mm2] MMX reg 1 [sign word] <--sat-- MMX reg 1 [sign word] subtract MMX reg 2
[sign word]

1/1

Memory to MMX Register 0FE9 [mod mm r/m] MMX reg [sign word] <--sat-- MMX reg [sign word] subtract memory [sign
word]

1/1

PSUBUSB Subtract Byte Unsigned With Saturation

MMX Register 2 to MMX Register 1 0FD8 [11 mm1 mm2] MMX reg 1 [byte] <--sat-- MMX reg 1 [byte] subtract MMX reg 2 [byte] 1/1

Memory to MMX Register 0FD8 [11 mm reg] MMX reg [byte] <--sat-- MMX reg [byte] subtract memory [byte] 1/1

PSUBUSW Subtract Word Unsigned With Saturation

MMX Register 2 to MMX Register 1 0FD9 [11 mm1 mm2] MMX reg 1 [word] <--sat-- MMX reg 1 [word] subtract MMX reg 2 [word] 1/1

Memory to MMX Register 0FD9 [11 mm reg] MMX reg [word] <--sat-- MMX reg [word] subtract memory [word] 1/1

Table 9-31 MMX Instruction Set Summary (cont.)

MMX Instructions Opcode Operation and Clock Count (Latency/Throughput)

GXm_db_v2.0 Cyrix Corporation Confidential Page 271

MMX™ Instruction Set 9

PSUBW Subtract Word With Wrap-Around

MMX Register 2 to MMX Register 1 0FF9 [11 mm1 mm2] MMX reg 1 [word] <---- MMX reg 1 [word] subtract MMX reg 2 [word] 1/1

Memory to MMX Register 0FF9 [mod mm r/m] MMX reg [word] <---- MMX reg [word] subtract memory [word] 1/1

PUNPCKHBW Unpack High Packed Byte, Data to Packed Words

MMX Register 2 to MMX Register 1 0F68 [11 mm1 mm2] MMX reg 1 [byte] <--interleave-- MMX reg 1 [up byte], MMX reg 2 [up byte] 1/1

Memory to MMX Register 0F68 [11 mm reg] MMX reg [byte] <--interleave-- memory [up byte], MMX reg [up byte] 1/1

PUNPCKHDQ Unpack High Packed Dword, Data to Qword

MMX Register 2 to MMX Register 1 0F6A [11 mm1 mm2] MMX reg 1 [dword] <--interleave-- MMX reg 1 [up dword], MMX reg 2 [up
dword]

1/1

Memory to MMX Register 0F6A [11 mm reg] MMX reg [dword] <--interleave-- memory [up dword], MMX reg [up dword] 1/1

PUNPCKHWD Unpack High Packed Word, Data to Packed Dwords

MMX Register 2 to MMX Register 1 0F69 [11 mm1 mm2] MMX reg 1 [word] <--interleave-- MMX reg 1 [up word], MMX reg 2 [up word] 1/1

Memory to MMX Register 0F69 [11 mm reg] MMX reg [word] <--interleave-- memory [up word], MMX reg [up word] 1/1

PUNPCKLBW Unpack Low Packed Byte, Data to Packed Words

MMX Register 2 to MMX Register 1 0F60 [11 mm1 mm2] MMX reg 1 [word] <--interleave-- MMX reg 1 [low byte], MMX reg 2 [low byte] 1/1

Memory to MMX Register 0F60 [11 mm reg] MMX reg [word] <--interleave-- memory [low byte], MMX reg [low byte] 1/1

PUNPCKLDQ Unpack Low Packed Dword, Data to Qword

MMX Register 2 to MMX Register 1 0F62 [11 mm1 mm2] MMX reg 1 [word] <--interleave-- MMX reg 1 [low dword], MMX reg 2 [low
dword]

1/1

Memory to MMX Register 0F62 [11 mm reg] MMX reg [word] <--interleave-- memory [low dword], MMX reg [low dword] 1/1

PUNPCKLWD Unpack Low Packed Word, Data to Packed Dwords

MMX Register 2 to MMX Register 1 0F61 [11 mm1 mm2] MMX reg 1 [word] <--interleave-- MMX reg 1 [low word], MMX reg 2 [low word] 1/1

Memory to MMX Register 0F61 [11 mm reg] MMX reg [word] <--interleave-- memory [low word], MMX reg [low word] 1/1

PXOR Bitwise XOR

MMX Register 2 to MMX Register 1 0FEF [11 mm1 mm2] MMX reg 1 [qword] <--logic exclusive OR-- MMX reg 1 [qword], MMX reg 2
[qword]

1/1

Memory to MMX Register 0FEF [11 mm reg] MMX reg [qword] <--logic exclusive OR-- memory[qword], MMX reg [qword] 1/1

Table 9-31 MMX Instruction Set Summary (cont.)

MMX Instructions Opcode Operation and Clock Count (Latency/Throughput)

Page 272 Cyrix Corporation Confidential GXm_db_v2.0

� Cyrix Extended MMX™ Instruction Set

9.6 Cyrix Extended MMX™
Instruction Set

Cyrix has added instructions to its implementation
of the Intel® MMX™ Architecture in order to facili-
tate writing of multimedia applications. In general,
these instructions allow more efficient implementa-
tion of multimedia algorithms, or more precision in
computation than can be achieved using the basic
set of MMX instructions. All of the added instruc-
tions follow the SIMD (single instruction, multiple
data) format. Many of the instructions add flexibility
to the MMX architecture by allowing both source
operands of an instruction to be preserved, while
the result goes to a separate register that is
derived from the input.

Table 9-33 summarizes the Cyrix Extended MMX
Instructions. The abbreviations used in the table
are listed in Table 9-32.

Configuration control register CCR7(0) at location
EBh must be set to allow the execution of the Cyrix
Extended MMX instructions.

Table 9-32 Cyrix Extend MMX Instruction Set
Table Legend

Abbreviation Description

<---- Result written

[11 mm reg] Binary or binary groups of digits

mm One of eight 64-bit MMX registers

reg A general purpose register

<--sat-- If required, the resultant data is saturated
to remain in the associated data range

<--move-- Source data is moved to result location

[byte] Eight 8-bit bytes are processed in parallel

[word] Four 16-bit word are processed in parallel

[dword] Two 32-bit double words are processed in
parallel

[qword] One 64-bit quad word is processed

[sign xxx] The byte, word, double word or quad
word most significant bit is a sign bit

mm1, mm2 MMX Register 1, MMX Register 2

mod r/m Mod and r/m byte encoding (page 6-6 of
this manual)

pack Source data is truncated or saturated to
next smaller data size, then concate-
nated.

packdw Pack two double words from source and
two double words from destination into
four words in destination register.

packwb Pack four words from source and four
words from destination into eight bytes in
destination
register.

GXm_db_v2.0 Cyrix Corporation Confidential Page 273

Cyrix Extended MMX™ Instruction Set 9
Table 9-33 Cyrix Extended MMX Instruction Set Summary

MMX Instructions Opcode Operation and Clock Count

PADDSIW Packed Add Signed Word with Saturation Using Implied Destination

MMX Register plus MMX Register to Implied Register 0F51 [11 mm1 mm2] Sum signed packed word from MMX register/memory --->
signed packed word in MMX register, saturate, and write
result ---> implied register

1

Memory plus MMX Register to Implied Register 0F51 [mod mm r/m] 1

PAVEB Packed Average Byte

MMX Register 2 with MMX Register 1 0F50 [11 mm1 mm2] Average packed byte from the MMX register/memory with
packed byte in the MMX register. Result is placed in the MMX
register.

1

Memory with MMX Register 0F50 [mod mm r/m] 1

PDISTIB Packed Distance and Accumulate with Implied Register

Memory, MMX Register to Implied Register 0F54 [mod mm r/m] Find absolute value of difference between packed byte in
memory and packed byte in the MMX register. Using
unsigned saturation, accumulate with value in implied desti-
nation register.

2

PMACHRIW Packed Multiply and Accumulate with Rounding

Memory to MMX Register 0F5E[mod mm r/m] Multiply the packed word in the MMX register by the packed
word in memory. Sum the 32-bit results pairwise. Accumulate
the result with the packed signed word in the implied destina-
tion register.

2

PMAGW Packed Magnitude

MMX Register 2 to MMX Register 1 0F52 [11 mm1 mm2] Set the destination equal ---> the packed word with the largest
magnitude, between the packed word in the MMX regis-
ter/memory and the MMX register.

2

Memory to MMX Register 0F52 [mod mm r/m] 2

PMULHRIW Packed Multiply High with Rounding, Implied Destination

MMX Register 2 to MMX Register1 0F5D [11 mm1 mm2] Packed multiply high with rounding and store bits 30 - 15 in
implied register.

2

Memory to MMX Register 0F5D [mod mm r/m] 2

PMULHRW Packed Multiply High with Rounding

MMX Register 2 to MMX Register 1 0F59 [11 mm1 mm2] Multiply the signed packed word in the MMX register/memory
with the signed packed word in the MMX register. Round with
1/2 bit 15, and store bits 30 - 15 of result in the MMX register.

2

Memory to MMX Register 0F59 [mod mm r/m] 2

PMVGEZB Packed Conditional Move If Greater Than or Equal to Zero

Memory to MMX Register 0F5C [mod mm r/m] Conditionally move packed byte from memory ---> packed
byte in the MMX register if packed byte in implied MMX regis-
ter is greater than or equal ---> zero.

1

PMVLZB Packed Conditional Move If Less Than Zero

Memory to MMX Register 0F5B [mod mm r/m] Conditionally move packed byte from memory ---> packed
byte in the MMX register if packed byte in implied MMX regis-
ter is less than zero.

1

PMVNZB Packed Conditional Move If Not Zero

Memory to MMX Register 0F5A [mod mm r/m] Conditionally move packed byte from memory ---> packed
byte in the MMX register if packed byte in implied MMX regis-
ter is not zero.

1

PMVZB Packed Conditional Move If Zero

Memory to MMX Register 0F58 [mod mm r/m] Conditionally move packed byte from memory ---> packed
byte in the MMX register if packed byte in implied the MMX
register is zero.

1

PSUBSIW Packed Subtracted with Saturation Using Implied Destination

MMX Register 2 to MMX Register 1 0F55 [11 mm1 mm2] Subtract signed packed word in the MMX register/memory
from signed packed word in the MMX register, saturate, and
write result ---> implied register.

1

Memory to MMX Register 0F55 [mod mm r/m] 1

Page 274 Cyrix Corporation Confidential GXm_db_v2.0

� Cyrix Extended MMX™ Instruction Set

GXm_db_v2.0 Cyrix Corporation Confidential Page 275

MediaGX™ MMX™-Enhanced Processor
Integrated x86 Solution with MMX™ Support

�
Appendix A Support Documentation

A.1 Order Information

Cyrix
Part Number

National Part
Number (NSID)

Core
Frequency (MHz)

Temperature
(Degree C) Package

GM200P 30040-23 200 70 PGA

GM200P-85 30041-23 200 85 PGA

GM200B-85 30141-23 200 85 BGA

GM233P 30050-33 233 70 PGA

GM233P-85 30054-33 233 85 PGA

GM233B-85 30151-33 233 85 BGA

GM266P 30070-53 266 70 PGA

GM266P-85 30071-53 266 85 PGA

GM266B-85 30171-53 266 85 BGA

GM300P 30080-63 300 70 PGA

GM300P-85 30081-63 300 85 PGA

GM300B-85 TBA 300 85 BGA

Page 276 Cyrix Corporation Confidential GXm_db_v2.0

�
A.2 Data Book Revision History
This document is a report of the revision/creation
process of the data book for the MediaGX MMX™-
Enhanced Processor. Any revisions (i.e., additions,

deletions, parameter corrections, etc.) are
recorded in the tables below.

Table A-1 Revision History

Revision #
(PDF Date) Revisions / Comments

0.0 (2/5/98) Creation phase

0.1 (2/25/98) Creation phase continues - added functional description.

0.2 (3/24/98) Creation phase continues - added 233MHz parameters.

0.3 (4/22/98) Creation phase continues - added 266MHz numbers.

1.0 (8/13/98) All sections complete - added 300MHz numbers, added Index.

2.0 (10/29/98) Major change is new values for 352 BGA Mechanical. See Table A-2 for complete edits.

Table A-2 Edits to Current Revision

Section Description

Introduction • Changed 266MHz reference to 300MHz, page iii.

1.0 - Overview • Changed 266MHz references to 300MHz, pages 1 and 3.

2.0 - Signal
Definitions

• Changed GXm reference in CLMODE[2:0] signal description to MediaGX MMX-Enhanced
processor.

• SDCLK0 was incorrectly called out as AE4 in "BGA Pin No." column on page 29.
Changed to AF4.

3.0 - Processor
Programming

• In Table 3-7 "CR4-CR0 Bit Definitions", CR4 bit 2 was incorrectly called out at TSD. Changed
to TSC.

• Corrected all SMI_LOCK and MAPEN index/register cross-references in Table 3-11 "Configu-
ration Registers".

• Changed GXm references in Table 3-11 "Configuration Registers" to MediaGX MMX-
Enhanced processor.

• In Table 3-16 "TR5-TR3 Bit Definitions", TR4 Register was not showing RSVD bits [2:0].
Added to table.

GXm_db_v2.0 Cyrix Corporation Confidential Page 277

A

4.0 - Integrated
Functions

• In Table 4-6 "Display Driver Instructions" corrected Opcode for BB0_RESET from 0F72 to
0F3A and BB1_RESET from 0F73 to 0F3B.

• Changed text — Section 4.3.3 “SDRAM Commands” on page 119, third paragraph under
"MRS". Was — The memory controller only supports a burst length of two and burst type of
sequential. Now — The memory controller only supports a burst length of two and burst type
of interleave.

• Changed MA3 parameter in Table 4-14 "Address Line Programming during MRS Cycles"
from ’0’ to ’1’.

• Modified Index 41h[1] decode for a setting of 1 in Table 4-41 "PCI Configuration Registers".
Replaced the words "set by CFG Index 0Ch[7:0]" with "which is 16 bytes."

8.0 - Package
Specifications

• New 352 BGA - modified dimensions and callouts in Figure 8-1 "352-Terminal BGA Mechan-
ical Package Outline". Now also includes coplanarity value.

• Removed legend from inside Figure 8-2 "320-Pin SPGA Mechanical Package Outline" and
created new table - Table 8-3 "Mechanical Package Outline Legend".

Table A-2 Edits to Current Revision (cont.)

Section Description

Page 278 Cyrix Corporation Confidential GXm_db_v2.0

�

GXm_db_v2.0 Cyrix Corporation Confidential 279

Index

A
Absolute Maximum Ratings 215
AC Characteristics 218
Accessing 180
Address Spaces 65

Directory Table Entry (DTE) 81
DTE Cache 82
I/O Address Space 65
Memory Address Space 65, 66
Memory Addressing Modes 67
Offset Mechanism 66
Page Frame Offset (PFO) 81
Page Table Entry (PTE) 81
Paging Mechanism 80
Translation Look-Aside Buffer 82

Address Translation 127
Application Register Set 42

B
BGA Ball Assignments by Ball Number 12
BGA Ball Assignments by Pin Name 14
BGA Ball Assignments Diagram 11

C
Cache

BB0_BASE 107
BB0_POINTER 107
BB1_BASE 107
BB1_POINTER 107
GCR register (Index B8h) 107
L1 cache 107
scratchpad memory 107
Write-back caching 107

Cache Controller 107
Cache Disable, bit 30 107
Cache Test Operations 63
call gate 76

Current Privilege Level 76
Descriptor Privilege Level 76
Descriptor Privilege Level in Destination 76
Descriptors Bit Definitions 76
Segment Selector Field 76

CCR1
Enable SMM Pins 52
System Management Memory Access 52

CCR1 Configuration Control Register 1 Index C1h 52
CCR2

Enable Suspend Pins 52
Lock NW Bit 52
Suspend on HALT 52
Write-Through Region 1 52

CCR2 Configuration Control Register 2 Index C2h 52
CCR3

Load/Store Serialize 1 GByte to 2 GBytes 53
Load/Store Serialize 2 GBytes to 3 GBytes 53
Load/Store Serialize 3 GBytes to 4 GBytes 53

Map Enable 53
NMI Enable 53
SMM Register Lock 53

CCR3 Configuration Control Register 3 Index C3h 53
CCR4

Directory Table Entry Cache 54
Enable CPUID Instruction 54
I/O Recovery Time 54
Memory Read Bypassing 54
SMI Nest 54

CCR4 Configuration Control Register 4 Index E8h 54
CCR7

Cyrix Extended MMX Instructions Enable 54
NMI Enabl 54

CCR7 Configuration Control Register 7 Index EBh 54
CKE 29
Clock Enable Suspend 29
Clock Mode 21
Configuration Register Map 51

Control Registers 51
Device ID Registers 51
Graphics/VGA Related Registers 51
SMM Base Header Address Registers 51

Configuration Register Summary 50
Conforming Code Segments 76
Control Transfer 99
CPU_READ 111
CPU_READ/WRITE

EAX instructions 111
EBX instructions 111

CPU_WRITE 111
CPUID Instruction 240

EAX = 0000 0000h 241
EAX = 0000 0001h 241
EAX = 0000 0002h 242
EAX = 8000 0000h 243
EAX = 8000 0001h 243
EAX = 8000 0002h 244
EAX = 8000 0003h 244
EAX = 8000 0004h 244
EAX = 8000 0005h 244

CPUID Levels 240
CPUID Levels, Extended 243
CR0 Register 48

Alignment Check Mask 48
Cache Disable 48
Emulate Processor Extension 48
Monitor Processor Extension 48
Not Write-Through 48
Numerics Exception 48
Paging Enable Bit 48
Protected Mode Enable 48
Task Switched 48
Write Protect 48

CR2 Register 48
Page Fault Linear Address 48

280 Cyrix Corporation Confidential GXm_db_v2.0

Index�
CR3 Register 48

Page Directory Base Register 48
CR4 Register 48

Time Stamp Counter Instruction 48

D
DC Characteristics 217
Descriptor Bit Structure 73
Descriptor Types 99
Descriptors

Gate 73
gate 76
Interrupt 73
Task 73

Device Select 26
DEVSEL 26
DIMM 127
DIR0

Device ID 56
DIR0 Device Identification Register 0 Index FEh 56
DIR1

Device Identification Revision 56
DIR1 Device Identification Register 1 Index FFh 56
Directory Table Entry 81
Display Controller 145–177

Buffer Organization 152
CODEC hardware 145
Compression Logic 146
Compression Technology 146
CRT Display Modes 151
CRT RAMDAC Data Bus Formats 150
Cursor Pattern Memory 153
DC Memory Organization 152
DC_CURSOR_COLOR Register

(BX_BASE+8360h) 147
Display FIFO 146
Display Modes 148
Display Timing 148
Dither/Frame-Rate Modulation (FRM) 148
Graphics Memory Map 152
Hardware Cursor 147
Memory Management 146
Motion Video Acceleration Support 147
Output Ports 148
Pixel Arrangement Within a DWORD 152
RAMDAC 145
TFT 148
TFT LCD flat panel 145
TFT Panel Data Bus Formats 150
TFT Panel Display Modes 149
VESA-compatible 148
VGA Display Support 153

Display Controller Block Diagram 145
Display Controller Registers 154

Configuration and Status Registers 157
DC_BORDER_COLOR (8368h-836Bh) 155

DC_BUF_SIZE (8328h-832Bh) 154
DC_CB_ST_OFFSET (8314h-8317h) 154
DC_CFIFO_DIAG (837Ch-837Fh) 156
DC_CURS_ST_OFFSET (8318h-831Bh) 154
DC_CURSOR_COLOR (83680h-8363h) 155
DC_CURSOR_X (8350h-8353h) 155
DC_CURSOR_Y (8358h-835Bh) 155
DC_DFIFO_DIAG (8378h-837Bh) 156
DC_FB_ST_OFFSET (8310h-8313h) 154
DC_FP_H_TIMING (833Ch-833Fh) 155
DC_FP_V_TIMING (834Ch-834Fh) 155
DC_GENERAL_CFG (8304h-8307h) 154
DC_H_TIMING_1 (8330h-8333h) 155
DC_H_TIMING_2 (8334h-8337h) 155
DC_H_TIMING_3 (8338h-833Bh) 155
DC_LINE_DELTA (8324h-8327h) 154
DC_OUTPUT_CFG (830Ch-830Fh) 154
DC_PAL_ADDRESS (8370h-8373h) 156
DC_PAL_DATA (8374h-8377h) 156
DC_SS_LINE_CMP (835Ch-835Fh) 155
DC_TIMING_CFG (8308h-830Bh) 154
DC_UNLOCK (8300h-8303h) 154
DC_V_LINE_CNT (8354h-8357h) 155
DC_V_TIMING_1 (8340h-8343h) 155
DC_V_TIMING_2 (8344h-8247h) 155
DC_V_TIMING_3 (8348h-834Bh) 155
DC_VID_ST_OFFSET (8320h-8323h) 154
Memory Organization Registers 164

Display Driver
BB0_RESET 110
BB1_RESET 110
CPU_READ 110
CPU_WRITE 110
Scratchpad 110

Display Driver Instructions 110
DR6 Register 58

Bn 58
BS 58
BT 58

DR7 and DR6 Bit Definitions 58
DR7 Register 58

GD 58
Gn 58
LENn 58
Ln 58
R/Wn 58

DRAM Address Conversion 127

E
EBP register 43
EFLAGS Register 45

Alignment Check Enable (AM) 45
Auxiliary Carry Flag 45
Carry Flag 45
CPUID instruction 45
Direction Flag (DF) 45

GXm_db_v2.0 Cyrix Corporation Confidential 281

Index

I/O Privilege Level (IOPL) 45
Identification Bit 45
Interrupt Enable 45
Nested Task (NT) 45
Resume Flag (RF) 45
Sign Flag 45
Trap Enable Flag 45
Virtual 8086 Mode (VM) 45

EFLAGS register, bit 9 94
EGA 190
Electrical Connections 213

NC-Designated Pins 213
Power/Ground Connections 213
Pull-Up/Pull-Down Resisters 214
Unused Input Pins 214

Electrical Specifications 213
Absolute Maximum Ratings 215
AC Characteristics 218
Clock Signals 219
DC Characteristics Table 217
DCLK Timing 224
Graphics Port Timing 223
JTAG AC Specification 225
JTAG Test Timings 226
Output Valid Timing 222
Part Numbers 213
PCI Interface Signals 221
Recommended Operating Conditions 216
SDRAM Interface Signals 222
Setup and Hold Timings 222
SYSCLK Timing 219
System Signals 220
TCK Timing and Measurement Points 225
Video Interface Signals 223
Video Port Timing 224

Exceptions 83
Abort 83
Fault 83
Trap 83

Extended MMX Instruction Set 272
Extended MMX™ Instruction Set

Configuration Control Rregister 272
Legend 272

F
Fields - index 239
Fields - mod and r/m 237
Fields - sreg3 238
Fields - ss 239
floating point error 22
FPU

Mode Control Register 101
Register Set 101
Status Register 101

Tag Word Register 101
FPU Instruction Set 260

Summary Notes 265
FPU Mode Control Register 102

Denormalized-operand error exception bit 102
Divide-by-zero exception bit 102
Invalid-operation exception bit 102
Overflow error exception bit 102
Precision Control Bits 102
Precision error exception bit 102
Rounding Control Bits 102

FPU Operations 101
FPU Registers 102
FPU Status Register 102

Condition code bit 3 102
Condition code bits 102
Copy of ES bit 102
Denormalized-operand error exception bit 102
Divide-by-zero exception bit 102
Error indicator 102
Invalid operation exception bit 102
Overflow error exception bit 102
Precision error exception bit 102
Stack Full 102
Top-of-Stack 102
Underflow error exception bit 102

FPU Tag Word Register (TAG7:0] 102
frame buffer 106

G
Gates 99
General Purpose Registers 43
Global Descriptor Table Register (GDTR) 72
Grant Lines 27
Graphics Memory (GX_BASE+800000h) 106
Graphics Pipeline 135–144

BitBLT/vector engine 135
Color Patterns 138
Diagonal Error Register (108h-810Bh) 139
Dither Patterns 137
Error Register (8104-8107h) 139
GP_BLT_MODE 135
GP_BLT_MODE (8208h-820Bh) 140
GP_BLT_STATUS (820Ch-820Fh) 140
GP_DST/START_Y/XCOOR (8100h-8103h) 139
GP_DST_XCOOR 136
GP_DST_YCOOR 136
GP_INIT_ERROR 136
GP_PAT_COLOR_0 register 137
GP_PAT_COLOR_1 (GX_BASE+8112h) 137
GP_PAT_COLOR_A (8110h) 139
GP_PAT_COLOR_B (8114h) 139
GP_PAT_DATA (8120h-812Fh) 139
GP_RASTER_MODE (8200h-8203h) 139

282 Cyrix Corporation Confidential GXm_db_v2.0

Index�
GP_RASTER_MODE (GX_BASE+ 8200h) 137
GP_RASTER_MODE Bit Patterns 138
GP_SRC_COLOR (810Ch-810Fh) 139
GP_SRC_COLOR_0 (GX_BASE+810Ch) 138
GP_SRC_YCOOR 136
GP_VECTOR_MODE (8204h-8207h) 140
GP_VGA_BASE (8210h-8213h) 140
GP_VGA_LATCH (8214h-8217h) 140
GP_VGA_READ (8200h-8203h) 139
GP_VGA_WRITE (8140h-8143h) 139
Master/Slave Registers 136
Monochrome Patterns 137
Pattern Generation 136

graphics pipeline 190, 191
Graphics Pipeline Block Diagram 135

H
HALT 23
High Order Interleaving 127

I
I/O Address Space 65
Initialization 39
Initialization, CPU 39
Initiator Ready

IRDY 25
TRDY 25

Instruction Fields 234
Instruction Set 41

eee Field Encoding 236
Index Field 239
Memory Addressing 237
mod base Field Encoding table 239
mod r/m Field Encoding 237
Opcode 235
prefix bytes 235
reg Field 238
s-i-b Byte 239
s-i-b present 239
sreg2 field 238
sreg3 238
ss Field 239
w Field Operand Size 235

instruction set 233
Instruction Set Format Table 234
Instruction Set Formats 233
Instruction Set Overview 41
Instructions

Bit Test Instructions 41
Exchange Instructions 41
One-operand Arithmetic and Logical 41
Two-operand Arithmetic and Logical 41

Instuction Prefix Summary 235
Integrated Functions 103
Integrated Functions Programming Interface 104

Interleaving 127
Internal Bus Interface 112–115
Internal Bus Interface Unit

640KB to 1MB 112
C-Bus 112
FPU Error Support 112
Graphics 112
IRQ13 112
L1 cache 112
Processor Core 112
Region Control Field Bit Definitions 115
Registers (GX_BASE+8000h) 113
SMI Interrupts 112
VGA Access 112
X-Bus 112

Internal Bus Interface Unit Diagram 103
Internal Bus Interface Unit Registers

BC_DRAM_TOP (8000h-8003h) 113
BC_XMAP_1 (8004h-8007h) 113
BC_XMAP_2 (8008h-800Bh) 113
BC_XMAP_3 (800Ch-800Fh) 113

Internal Test Signals
Ifloat 33
Raw Clock 33
SDRAM Test Outputs 33
Test 33
Test Clock 33
Test Data Input 33
Test Data Output 33
Thermal Diode Negative (TDN) 33
Thermal Diode Positive (TDP) 33

Interrupt
Interrupt and Exception Priorities 85

Interrupt Descriptor Table 84
Interrupt Request Level 13 22
Interrupts 82

INTR 83
NMI 82
Real Mode Error Codes 86
Real Mode, Exceptions 86
SMM 83
Vector A 83

INTR 45, 82, 85, 94, 96, 97
invalid opcode 41
IRET instruction 45

L
Legacy VGA 189
Local Descriptor Table Register (LDTR) 72
LOCK 26
Lock Prefix 41
Low Order Interleaving 127

M
MediaGX™ Virtual VGA 193

GXm_db_v2.0 Cyrix Corporation Confidential 283

Index

Memory Address Space 66
Memory Addressing

Paging Mechanism 80
Memory Addressing Modes 67
Memory Controller 116–134

Auto LOI 127
1 DIMM Bank 128
2 DIMM Banks 128

Block Diagram 116
DRAM Address Conversion 127
DRAM Configuration 118
Graphics Pipeline 116
Memory Array Configuration 117
Memory Cycles 130
Memory Organization 118
Non-Auto LOI

1 DIMM Bank 129
2 DIMM Banks 129

Page Miss 132
Processor Interface 116
SDRAM 117
SDRAM Commands 119

ACT 120
MRS 119
PRE 119
READ 120
WRT 120

SDRAM Initialization Sequence 120
SDRAM Interface 116
SDRAM Interface Clocking 133

CAS latency 133
SDRAM Read Cycle 130
SDRAM Refresh Cycle 132

Precharge Command 132
SDRAM Write Cycle 131
SHFTSDCLK 134
X-Bus 116

Memory Controller Interface Signals
Bank Address Bits 28
Chip Selects 28
Clock Enable 29
Column Address Strobe 28
Data Mask Control Bits 29
Memory Address Bus 28
Row Address Strobe 28
SDRAM Clocks 29
Write Enable 28

Memory Controller Register 121
MC_BANK_CFG (8408h-840Bh) 121
MC_DR_ACC (841Ch-841Fh) 121
MC_DR_ADD (8418h-841Bh) 121
MC_GBASE_ADD (8414h-8417h) 121
MC_MEM_CNTRL1 (8400h-8403h) 121
MC_MEM_CNTRL2 (8404h-8407h) 121
MC_SYNC_TIM1 (840Ch-840Fh) 121

Memory Data Bus 28

MMX Instruction Set 266
Multiplexed Address

PCI pins 24
Multiplexed Command

Configuration Read 24
Configuration Write 24
Dual Address Cycle 24
Memory Read Line 24
Memory Read Multiple 24
Memory Write and Invalidate 24
Special Cycle 24

Multiplexed Command and Byte Enables
Interrupt Acknowledge 24

Multitasking 77

N
NMI 53, 82, 84, 85, 87, 94, 96, 97
notebook computers 201

O
Overflow Flag 45

P
Package Outlines 229
Package Specifications 227
Page Table Entry 81
palette lookup 191
PCI Arbitration 187
PCI Configuration Registers

Access Format 180
Bus 179
Cache Line Size (0Ch) 180
Class Code (09h-0Bh) 180
CONFIG ENABLE 179
CONFIG_DATA 0CFCh-0CFFh 179
Device 179
Device Identification (02h-03h) 180
Device Status (06h-07h) 180
Latency Timer (0Dh) 180
PCI Arbitration Control 1 (43h) 180
PCI Arbitration Control 2 (44h) 180
PCI Command (04h-05h) 180
PCI Control Function 1 (40h) 180
PCI Control Function 2 (41h) 180
Register 179
Revision Identification (08h) 180
Translation Type Bits [1:0] 179
Vendor Identification (00h-01h) 180

PCI Configuration Registers 0CF8h-0CFBh 179
PCI Controller 178

CONFIG_ADDRESS 178
Configuration Cycles 178
PCI Arbiter 178
Space Control Registers 179
Special Cycles 178
X-Bus PCI Master 178

284 Cyrix Corporation Confidential GXm_db_v2.0

Index�
X-Bus PCI Slave 178

PCI Cycles 185
PCI Halt Command 188
PCI Interface Signals

Frame 25
Initiator Ready 25
Lock Operation 26
Multiplexed Address and Data 24
Multiplexed Command and Byte Enables 24
Parity 25
Parity Error 27
Request Lines 27
Target Ready 25
Target Stop 26

PCI Local Bus Specification 185
PCI Read Transactions 185
PCI Special Cycle Command 188
PCI Write Transactions 186
PCR Performance Control Register Index 20h 54
PERR 27
Pixel Arrangement Within a DWORD 152
Pointer and Index Registers

ECX Counter 43
EDI Destination Pointer 43
ESI Source Pointer 43
ESP Register 43
PUSH and POP Instructions 43

Power and Ground Connections and Decoupling 213
Power Management 201

3-Volt Suspend Mode 203
Advanced Power Management (APM) 201
CPU Suspend Command Registers 202
Initiating Suspend with HALT 205
Initiating Suspend with SUSP 204
Processor Serial Bus 208
Responding to a PCI Access During Suspend Mode 206
Serial Packet Transmission 208
Stopping the Input Clock 207
Suspend Mode and Bus Cycles 204
Suspend Modulation 202

Power Management Registers 209
PM_BASE (FFFF FF6Ch) 209
PM_CNTRL_CSTP (8508h-850Bh) 209
PM_CNTRL_TEN (8504h-8507h) 209
PM_MASK (FFFF FF7Ch) 209
PM_SER_PACK (850Ch-850Fh) 209
PM_STAT_SMI (8500h-8503h) 209

Power Planes 36–37
Power, Ground, No Connect

Ground (VSS) 32
Power, Ground, No Connect Signals

Ground (VSS) 32
No Connect (NC) 32
Power Connect (VCC2) 32
Power Connect (VCC3) 32

Voltage Detect(VOLDET) 32
Privilege Level Transfers 98
Privilege Levels (CPL, DPL and RPL) 97
Privilege Levels (I/O) 98
Processor Core Instruction Set 245

Clock Counts 245
Flags 245
Legend 245
Opcodes 245

Processor Initialization 39
Programming Interface 39
Protected Mode, Initialization and Transition 99
Protection 97

Current Privilege Level (CPL) 97
Descriptor Privilege Level (DPL) 97
Requested Privilege Level (RPL) 97

Protection - V86 Mode 100

R
Recommended Operating Conditions 216
Register Controls 40
Register Sets 42

Application
Flags Register 43
General Purpose Register 43
Instruction Pointer Register 43
Segment Registers 43

Flags Register 45
General Purpose 43

Data Registers 43
Pointer and Index Registers 43

Instruction Pointer 44
Selection Rules 44

Model Specific Register 42
System Register Set 42, 46

Registers
Application Register 43
Model Specific Register 64

REQ 27
RESET 39
ROP (raster operation) 191
Row Address Strobe

CAS 28
CKE 28
RAS 28
RASA 28
RASB 28
WE 28

S
Scratchpad

2KB configurations 109
3KB configurations 109
SMM information 109

Scratchpad RAM 109
SDRAM Clocks

GXm_db_v2.0 Cyrix Corporation Confidential 285

Index

SDCLK_IN 29
SDCLK_OUT 29

Segment Register Selection Rules 44
Segment Registers 44
Serial Packet

CX5520 23
VSA 23

Shutdown and Halt 97
Signal Definitions 9–20
Signal Descriptions 21

Cyrix Internal Test and Measurement Signals 33
Memory Controller Interface Signals 28–29
PCI Interface Signals 24–27
Power, Ground and No Connect Signals 32
System Interface Signals 21–23
Video Interface Signals 30–31

Signals - INTR 83
Signals - NMI 82
Signals - SMM 83
SIZE

SMM Region Size Bits 55
Skip Counts 106
SMAR

SMM Address Region Bits 55
SMAR SMM Address Region Register

Indices CDh, CEH, CFh 55
SMHR

SMM Header Address 55
SMHR SMI Header Address Indices B0h, B1h, B2h, B3h 55
SMI

Configuration Registers 89
Generation 93

SMI# pin 82, 84, 87, 89, 202
SMM 87

CPU States 96
Instructions 92
Memory Space 93
Memory Space Header 90
Operation 88
SMI Enhancements 88
SMI Events 89
SMI Nested States 95
SMI Nesting 94
SMI Service Routine Execution 94
SMI# Pin 89
Suspend Mode 96
Suspend Mode CPU States 96

SMM Memory Space Header Description 91
SPGA Pin Assignments by Pin Number 17
SPGA Pin Assignments by Signal Name 19
SPGA Pin Assignments Diagram 16
STOP 26
Subsystem Signal Connections 34–35
Suspend 64, 96, 97
Suspend Mode 23
System Error 27

NMI 27
System Interface Signals

Interrupt Request 22
Reset 22
Serial Packet 23
Suspend Acknowledge 23
Suspend Request 23
System Clock 21
System Management Interrupt 22

System Management Interrupt (SMI#) 189
System Register Set 46
System Register Sets

Cache Test Registers 61
Configuration Registers 50
Debug Registers 50
Gate Descriptors 76
Task Register 76, 77

System Registers 46–63
Configuration Registers 50
Control Registers 47
Debug Registers 57
Model Specific Register (MSR) 64
Segment Descriptor Table Registers 72
Test Registers 59

T
Task Gate Descriptors 77
Task Register (TR) 77
Task State Segments 77
Thermal Characteristics 227
TR3 Register 62

Cache Data 62
TR4 Register 62

Dirty Bits 62
LRU Bits 62
Upper Tag Address 62
Valid Bit 62

TR5 Register 62
Control Bits 62
Line Selection 62

TR6 Register 60
Command Bit 60
Dirty Attribute Bit 60
Linear Address 60
Valid Bit 60

TR7 Register 60
LRU Bits 60
Physical Address 60
PL Bit 60
Set Selection 60

Translation Lookaside Buffer 107

V
V86 Mode

Entering and Leaving 100
Interrupt Handling 100

286 Cyrix Corporation Confidential GXm_db_v2.0

Index�
Memory Addressing 100

VESA 190
VGA Address Mapping 192

MapMask register 192
Miscellaneous Output register 192

VGA Configuration Registers 196
VGA Control Register (B9h) 196
VGA Mask Register (BAh-BDh) 196

VGA Front End 192
VGA function

attribute controller 191
CRT controller 191
frame buffer 191
general registers 191
graphics controller 191
sequencer 191

VGA Hardware 190, 195
SMI Generation 195
VGA Address Generator 195
VGA Memory 195
VGA Range Detection 195
VGA Sequencer 195
VGA Write/Read Path 195

VGA Memory 198
frame buffer address 192
host address 192
refresh address 192

VGA Memory Addresses 196
VGA Memory Organization 192
VGA Range Detection 198
VGA Sequencer 198
VGA Video BIOS 199
VGA Video Refresh 194

All Points Addressable mode (APA) 194
attribute controller (ATTR) 194
CGA mode 194, 195
Chain 4 mode 194
ClockSelect field 194
ColorPlaneEnable register 195
CRT controller (CRTC) 194
LineCompare register 194
Miscellaneous Output register 194
ShiftRegister field 194

VGA Write/Read Path 198
Video Data Bus

VID_CLK 31
Video Interface Signals

CRT Horizontal Sync 30
CRT Vertical Sync 30
Display Enable 31
Dotclock 30
Flat Panel Horizontal Sync 30
Flat Panel Vertical Sync 30
Graphics Pixel Data Bus 31
Pixel Port Clock 30
Video Clock 30

Video Data Bus 31
Video Ready 31
Video Valid 31

video refresh 191
Virtual 8086 Mode (V86) 100
Virtual Subsystem Architecture (VSA) 189
Virtual VGA 190

ColorCompare register 193
ColorDon’tCare register 193
Datapath Elements 193

read mode unit 193
write-mode unit 193

DataRotate register 193
ReadMapSelect register 193
SetReset register 193
SMI Generation 195

Virtual VGA Register Descriptions 199
VIrtual VGA Registers

GP_VGA_WRITE (8140h-8143h) 199
Virtual VGA Registers

GP_VGA_BASE VGA (8210h-8213h) 199
GP_VGA_LATCH (8214h-8217h) 199
GP_VGA_READ (8144h-8147h) 199

X
XpressAUDIO 189

�
Cyrix Corporation
P.O. Box 850118
Richardson, TX 75085-0118

www.cyrix.com

MediaGX™ MMX™-Enhanced Processor Data Book, Rev 2.0,
Oct. 1998 © Cyrix Corporation. Cyrix is a registered trademark
of Cyrix Corporation. All other brand or product names are
trademarks or registered trademarks of their respective holders.
Cyrix is a wholly-owned subsidiary of National Semiconductor®
Corporation.

