
(MOLE™
MICROCONTROLLER
DEVELOPMENT SUPPORT

HPC™ C COMPILER USER'S MANUAL

(

(

(

(

~ National Semiconductor Corporation

Customer Order Number 424410883-001
NSC Publication Number 424410883-001C

October 1988

HPC™ C Compiler
User's Manual

@l 1988 National Semiconductor Corporation
2900 Semiconductor Drive
P.O. Box 58090
Santa Clara. California 95052-8090

CONTENTS

Chapter 1 OVERVIEW

1.1 INTRODUCTION............................. 1-1

1.2 MANUAL ORGANIZATION. .. 1-2

1.3 DOCUMENTATION CONVENTIONS. 1-2
1.3.1 General Conventions .. 1-2
1.3.2 Conventions in Syntax Descriptions 1-2
1.3.3 Example Conventions. .. 1-3
1.3.4 Additional Conventions 1-3

Chapter 2 THE HPC C COMPILER

2.1 INTRODUCTION............................. 2-1

2.2 COMPILER COMMAND SYNTAX 2-1

Chapter 3 BASIC DEFINITIONS

3.1 INTRODUCTION............................. 3-1

3.2 NAMES.................................. 3-1

3.3 CONSTANTS............................... 3-1

3.4 ESCAPE SEQUENCES .. 3-2

3.5 COMMENTS............................... 3-3

3.6 DATA TYPES. .. 3-3

3.7 PREPROCESSOR DIRECTIVES .. 3-4

3.8 PROGRAM ORGANIZATION. .. 3-4

3.9 INITIALIZATION OF VARIABLES 3-4

3.10 OPERATORS .. 3-5

3.11 IN-LINE MICROASSEMBLER CODE 3-5

Chapter 4 IMPLEMENTATION-DEPENDENT CONSIDERATIONS

4.1 INTRODUCTION............................. 4-1

4.2 MEMORy................................. 4-1

4.3 STORAGE CLASSES .. 4-1
4.3.1 Storage Class Modifiers. 4-1

4.4 C STACK FORMAT .. 4-3

4.5 USING IN-LINE MICROASSEMBLER CODE. 4-4

4.6 EFFICIENCY CONSIDERATIONS 4-6
4.6.1 Declaration Syntax .. 4-9

4.7 STATEMENTS AND IMPLEMENTATION 4-10

4.8 RUN-TIME NOTES 4-11

v

Appendix A CCHPC SPECIFICATIONS

Appendix B CONVERTING BETWEEN STANDARD C AND CCHPC

Appendix C INVOCATION LINE SYNTAX

C.l INTRODUCTION............................. C-l

C.2 MS-DOS.................................. C-2

C.3 VAX/VMS•........••................ C-4

C.4 UNIX.................................... C-6

Appendix D COMPILER ERROR MESSAGES

FIGURES

Figure 1-1. HPC Software Development Process ..••................. 1-1

TABLES

Table 3-1. Data Types. .. 3-3

Table 4-1. Storage Class Modifiers .. 4-2

vi

Chapter 1

OVERVIEW

1.1 INTRODUCTION

The HPC (High Performance microController) C Compiler (CCHPC) supports the draft­
proposed ANSI standard C language as defined by the Draft American Notional Standard
for Information Systems - Programming Language C, ANSI Document Number X3Jll/86-
157. CCHPC also supports some nonstandard statement types and the ability to include
assembly code in-line. This manual discusses CCHPC and the nonstandard enhancements
provided to take advantage of the special features of the HPC microcontroller.

Most standard C programs can be compiled by CCHPC. Most programs compileQ by
CCHPC, if they do not use the extensions, can be compiled by standard C compilers.

The HPC C compiler, CCHPC, generates code that is accepted by the HPC cross-assembler,
ASMHPC. ASMHPC translates assembly source files into object modules which contain
instructions in binary machine language. These object modules are linked with the HPC
cross-linker, LNHPC, to generate an absolute object module: the absolute object module can
be loaded into the MOLE Brain/Personality board shared-memory for program debugging
and emulation. The ASMHPC object modules may also be combined into a library by the
HPC cross-librarian, LIBHPC. Figure 1-1 illustrates the development process.

SOURCE

(C)

SOURCE

(ASSEMBLER)

Figure 1-1. HPC Software Development Process

1-1

OBJECT HPC MOLE

MODULE

HN-OI-I-U

1.2 MANUAL ORGANIZATION

Chapter 2 introduces the HPC C compiler and compiler command syntax.

Chapter 3 describes things basic to the compiler such as the character set. identifiers. con­
stants. data types. preprocessor directives. initialization of variables. expression evaluation
and in-line microassembler code.

Chapter 4 covers implementation dependent considerations such as storage classes and
modifiers. declarations. statements. C stack format. using in-line micro assembler code.
efficiency considerations and run-time notes.

Appendix A contains a quick reference of the CCHPC specifications.

Appendix B shows how to convert between standard C and CCHPC.

Appendix C contains the invocation line syntax for the different host operating systems.

AppendixD contains a complete list of compiler error messages.

1.3 DOCUMENTATION CONVENTIONS

The following documentation conventions are used in text. syntax descriptions. and exam­
ples describing commands and parameters.

1.3.1 General Conventions

Nonprinting characters are indicated by enclosing a name for the character in angle brackets
< >. For example. < CR> indicates the RETURN key. < ctrllB> indicates the character
input by simultaneously pressing the control key and the B key.

1.3.2 Conventions in Syntax Descriptions

The following conventions are used in syntax descriptions:

Italics indicate user-supplied items. The italicized word is a generic term for the
actual operand that the user enters.

Spaces or blanks. when present. are significant; they must be entered as shown.
Multiple blanks or horizontal tabs may be used in place of a single blank.

{} Large braces enclose two or more items of which one. and only one. must
be used. The items are separated from each other by a logical OR sign
"I:'

[] Large brackets enclose optional item(s).

" ,

Logical OR sign separates items of which one, and only one. may be used.

Three consecutive periods indicate optional repetition of the preceding
item(s). If a ~roup of items can be repeated, the group is enclosed in large
parentheses .. ~)."

Three consecutive commas indicate optional repetition of the preceding
item. Items must be separated by commas. If a group of items can be
repeated. the group is enclosed in large parentheses "C)."

1-2

() Large parentheses enclose items which need to be grouped together for
optional repetition. If three consecutive commas or periods follow an
item. only that item may be repeated. The parentheses indicate that the
group may be repeated.

I I Indicates a space. I I is only used to indicate a specific number of required
spaces.

All other characters or symbols appearing in the syntax must be entered as
shown. Brackets. parentheses. or braces which must be entered. are smaller than
the symbols used to describe the syntax. (Compare user-entered []. with []
which show optional items.)

1.3.3 Example Conventions

In interactive examples where both user input and system responses are shown. the machine
output is in regular type: user-entered input is in boldface type. Output from the machine
may vary (e.g .• the date) and is indicated in italic type.

1.3.4 Additional Conventions

This document contains keywords that must be entered in lower-case. These keywords are
indicated in boldface type.

1-3

Chapter 2

THE HPC C COMPILER

2.1 INTRODUCTION

The HPC C Compiler (CCHPC) supports the C language with some nonstandard enhance­
ments. The enhancements include the support of two nonstandard statement types Cloop
and switchf discussed in Section 4.7). nonstandard storage class modifiers (discussed in Sec­
tion 4.3.1). and the ability to include assembly code in-line (discussed in Section 4.5). The
compiler supports enumerated types. passing of structures by value. functions returning
structures. function prototyping and argument checking. The HPC cross-assembler
(ASMHPC) accepts source generated by CCHPC.

2.2 COMPILER COMMAND SYNTAX

The CCHPC runs under different host operating systems. Depending on the host system.
the cchpc command line options, ordering of the elements. and their syntax may vary. See
Appendix C for the command line information for your specific host. In all cases, the com­
mand line consists of the command name, options or switches, and the filename to be com­
piled.

The compiler output, in the form of ASMHPC assembler source statements, is put in a file
with the extension ... asm·· replacing the extension of the source file.

The following list describes the options and switches:

Including the C code in the assembly code
If selected. the assembly code output file will contain the C source code
lines as comments. This is very useful if a person reads the file. but it
slows the compilation and the assembly processes.

Invoking the C preprocessor before compilation
Normally, the preprocessor is invoked to handle the #define and #ifdef
type lines and macros. This option allows the preprocessor to be skipped.

Invoke an alternative C preprocessor before compilation
Normally. cpp is invoked to preprocess the C programs. This option allows
an alternative preprocessor to be used.

Setting the execution stack size
This switch takes a numeric argument in the form of a C-style constant. If
the module contains the function main. the compiler uses the number as the
size of the program's execution stack memory section, in words, If the
module does not contain main. the option is ignored. If the module does
contain main and no stack size option is given. a default stack size of 2
Kbytes is allocated.

2-1

Creating 8-bit wide code
The generated code is normally run from 16-bit wide memory. This switch
causes the code to be runable from 8-bit memory by avoiding instructions
(such as JIDW offsets) that require 16-bit width.

Placing string literals in ROM
The language standard calls for string literals. and individual copies for
each usage of the literal. to be stored in RAM. Therefore. the compiler
copies the literal data from ROM to RAM on startup unless this option is
requested. If this option is requested. the strings stay in ROM and are
unmodifiable. This saves startup time. RAM space and ROM space. Note
that this does not affect string variables. whose initialization values are still
copied from ROM into RAM.

Turning off compiler warning messages
This switch turns off all the warning messages generated by the compiler.

Indicating directories for include files
This switch takes a string argument. which is a filesystem directory name
on the host system. The string argument is passed to the C preprocessor.
which uses it as a directory to search for include files. The preprocessor
searches the directory or directories for the include files in the order of
their appearance in the command line. If any of the include files are not
found or this switch is not specified on the command line. the compiler
searches for the include files in the standard location. See Appendix C for
the standard location of the include files for each specific operating system.

Defining symbol names
This switch takes a string argument in one of two forms:

symbolname
symbolname=stringvalue

which is passed to the C preprocessor. If no explicit value is given. symbol­
name is defined as having the value of 1. This switch works as if the fol­
lowing two define statements are at the beginning of the file:

#define symbolname 1
#define symbolname stringvalue

Undefining symbol names
This switch takes a string argument in the form:

symbolname

which is passed to the C preprocessor. It removes any initial definition of
symbolname. defined by the preprocessor itself or previously defined by an
option in the same invocation line. It does not affect any subsequent
definition of symbolname in the program.

2-2

Permitting old-fashioned constructs
Certain anachronisms from Kernighan and Ritchie's The C Programming
Language, such as =+ for += and variable initialization without the = to
indicate the value as in int x 5 for int x = 5. are not permitted in the
draft-proposed ANSI standard C but are accepted by the compiler if this
option is used.

Set chip revision level
This switch is used to enforce the compiler to generate alternative code to
overcome bugs in the specified chip revision (for example. B or C).

2-3

Chapter 3

BASIC DEFINITIONS

3.1 INTRODUCTION

CCHPC and other C compilers may differ syntactically. This chapter summarizes the syn­
tax accepted by CCHPC and notes where differences may exist between CCHPC and other C
compilers. This chapter also discusses data types and their uses.

3.2 NAMES

A name may be arbitrarily long, but only the first 32 characters are significant. Case" dis­
tinctions are respected. The first character must be alphabetic or an ,,_ .. (underscore); the
other characters must be alphabetic, numeric or ., _ " (underscore).

3.3 CONSTANTS

The CCHPC compiler supports the use of decimal, octal, hexadecimal, character and string
constants.

A decimal constant is any string of digits, not beginning with the digit zero (e.g., 12345,
7536).

An octal constant is a string of digits 0 through 7 beginning with the digit zero (e.g., 0123,
0701).

A hexadecimal constant is a string composed of digits and the letters a through f and begin­
ning with Ox. For example, Oxffff, OXfOOO, and OxOOI are hexadecimal constants. Letters
in a hexadecimal constant may be upper-case, lower-case or mixed.

Octal, decimal or hexadecimal constants may be suffixed by 1 or L to indicate that they are
being forced to be of type "long." They may also be suffixed by u or U to indicate that
they are unsigned.

A floating-point constant consists of an integer part followed in succession by a decimal
point, a fractional part, and a possible signed exponent part. Both integer and fractional
parts consist of a string of decimal digits. The exponent part consists of either E or e, fol­
lowed by an optional sign and a string of digits. Either the integer part or the fractional
part, but not both, may be missing. Either the fractional part or the exponent part, but not
both, may be missing. The constant is stored within the compiler as a double-precision
floating-point constant in the format used by the host. Floating-point constants may have a
suffix of f or F appended, to indicate type "float" instead of "double" (which is the
default). Since all floating numbers on the HPC are 32-bit, the distinction is irrelevant.

A character constant consists of a single character enclosed in unescaped single-quotes (e.g.,
, A'). The standard C escape sequences are supported.

3-1

A string constant is a string of characters enclosed in unescaped double-quotes (e.g .• "This is
a string"). The compiler null-terminates a string with a '\0'. The value of a string constant
is the address of the first byte of the string. Two or more adjacent string constants.
separated only by white space (blanks. tabs. newlines. and/or form feeds). are concatenated
into a single string constant. The maximum length of a string constant is 511 characters.

3.4 ESCAPE SEQUENCES

The following standard escape sequences for non-printing characters are supported:

\n
\t
\v
\b
\r
\f
\a
\\
\.

new-line Cline feed)
horizontal tab
vertical tab
back space
carriage return
form feed
alert (audible signal - beep or bell)
backslash

\"
\nnn
\xnnn

single-quote (use inside character constant)
double-quote (use inside string constant)
nnn = 1-3 digit octal number
nnn = 1-3 digit hexidecimal number

These characters may be used as character constants or as part of a string constant. If a
backslash is followed by a new-line character (i.e .• backslash is the last character on the
line). the backslash and new-line characters are ignored. This allows the programmer to
spread a string constant over more than one line. If a backslash is followed by any other
character that is not in the list above. the backslash is ignored.

ANSI "trigraph" escape sequences are supported. To allow the coding of C programs on
systems which do not support the full ASCII character set. the draft-proposed ANSI stan­
dard supports the following trigraph sequences:

Sequence Replaced by

??= #
??([
??/ \
17)]
17'
17<
??!
17>
17-

I
}

These are recognized and replaced everywhere in the source text. including inside strings.
No other trigraph sequences exist. Any sequence of three characters beginning with ?? not
followed by one of the characters shown in the list above is not changed.

3-2

3.5 COMMENTS

Comments begin with a slash and an asterisk (/*) and end with the first asterisk and slash
(*/) that follows on the input stream. Comments cannot be nested.

3.6 DATA TYPES

The HPC C compiler supports the data types shown in Table 3-1.

Table 3-1. Data Types

NAME SIZE IN BITS

char 8
short 16
int 16
enum 8 or 16
long 32
signed char 8
signed short 16
signed int 16
signed long 32
unsigned ch~r 8
unsigned short 16
unsigned int 16
unsigned long 32
float 32
double 32
long double 32
struct sum of component sizes
union maximum of component sizes

The type "char" is treated as signed.

The keywords "const" and "volatile" can be applied to any data type. The use of const
indicates that the symbol refers to a location that may only be read. If the symbol is in
static or global storage. it is assigned to ROM memory. The use of volatile indicates that
optimization must not change or reduce the accesses to the symbol. Thus. unpredictable
locations such as 1/0 registers may be accessed in a predictable manner.

Unsigned operations are the same as signed operations. except for mUltiplication, division,
remainder, right shifts and comparisons. For signed integers. the compiler uses an arith­
metic shift when shifting right. For unsigned integers. the compiler uses a logical shift
when shifting right.

3-3

The architecture of the HPC is strongly oriented toward unsigned arithmetic; therefore,
unsigned variables should be used, except for cases that absolutely require signed arith­
metic.

Because the HPC supports 8-bit operations, CCHPC differs from the usual practice of C
compilers in that it does not automatically promote "char" types to "inC when evaluating
expressions. When generating code for a binary operation, the compiler promotes a "char"
operand to "inC only if the other operand is a 16-bit (or more) value or if the result of the
operation is required to be -a· 16-bit (or more) value. The use of 8-bit operations yields
efficient code without compromising the correctness of the result.

Bit fields must be declared as into signed int or unsigned int. The default for an int bit field
is unsigned. Bit fields may be signed or unsigned. A bit field cannot be inside a char.
Signed bit fields are extended when extracted; however. the compiler can store a bit field in
an int or a char. A bit field has a maximum size of 16-bits. and it is assigned starting aJ the
least significant bit in the byte or word. Bit fields can be set up in structures in either 8- or
16-bit types.

Access to most bit fields is usually expensive. For instance, extracting a bit field involves a
shift and a bitwise AND operation. Storing a value into a bit field is even more expensive
(i.e .. it takes two loads. a store. two AND's, an OR, a shift. a push and a pop). However, if
a bit field is one bit wide. it can be tested or set to constant values efficiently.

3.7 PREPROCESSOR DIRECTIVES

The HPC C compiler uses the standard C preprocessor; therefore, any of the preprocessor
functions, including "#define", "#include" and macros with arguments. can be used.

3.8 PROGRAM ORGANIZATION

A program is a set of intermixed variable and function definitions. A variable must always
be defined before its first use. Functions may be defined in any order.

3.9 INITIALIZATION OF VARIABLES

Variables may be initialized when they are declared. according to the draft-proposed ANSI
standard rules. Automatic variables are initialized as the program is running. External or
static variables are initialized when program execution starts.

3-4

3.10 OPERATORS

The hierarchy of operators. from lowest precedence to highest. is as follows:

+= -= /= *= %= < <= > >= &= 1=
?: (Conditional)
II
&&
1

&
!=

< <= > >=
« »
+ -
/ * %
unary ++ -- - -.. ! & * sizeof (cast)(expr)
-> . function calls subscripting
(expr) name constant

The comparison operators generate a zero if false. or a one if true.

The right shift is a logical shift if the left operand is unsigned; otherwise. it is an arithmetic
shift.

Structure assignment is supported. along with the passing of structures by value as func­
tion arguments and the returning of structures from functions. There are only two other
ways to use a structure or union identifier - take its address or select a member using the
..... operator.

In general. errors such as arithmetic overflow or out-of-bounds addresses go undetected and
have undefined results.

3.11 IN-LINE MICROASSEMBLER CODE

It is possible for the programmer to enter directly into assembly language simply by enter­
ing a slash and a dollar sign (1$). All the data following the /$ is copied to the assembler
output file until the compiler sees a terminating dollar sign and a slash ($/). which ends the
assembler inclusion. This may be done one line at a time. as in:

/$ micro assembler code $/

or over several lines. as in:

/$
assembler code ..
assembler code ..
$/

The information between /$ and $/ is always placed in the same memory as compiler­
generated code. Section 4.5 describes the use of in-line microassembler code.

3-5

Chapter 4

IMPLEMENTATION-DEPENDENT CONSIDERATIONS

4.1 INTRODUCTION

This chapter discusses implementation-dependent considerations. such as memory. storage
classes. C stack format. and using in-line microassembler code.

4.2 MEMORY

Code generated by the compiler is intended to be run from 16-bit wide memory. If the sys­
tem design calls for an 8-bit wide ROM memory bus. then the code should be compiled
with the 8-bit wide code switch. The compiler then generates code. which avoids using the
JIDW instruction for a switch statement.

4.3 STORAGE CLASSES

CCHPC supports the following storage classes:

auto
static
register
typedef
extern

Because the HPC processor has very few registers and because those which,are available are
best used as pointers. the "register" keyword is respected only if the variable is not of
pointer type and only if there is a register available. The first register pointer variable that
is seen is assigned to the HPC B register. The second register pointer variable that is seen is
assigned to the HPC X register. If a register variable is not of pointer type or if there are no
more registers available at the time it is declared. then the variable is treated as "auto"
(unless NOLOCAL is in effect. in which case it is treated as "static").

The default storage class is "static" for global declarations and "auto" for declarations
within functions.

4.3.1 Storage Class Modifiers

To support certain machine-dependent features of the HPC architecture. the compiler sup­
ports the notion of the "storage class modifier." Syntactically. a storage class modifier may
appear with or in place of a storage class. The storage class modifiers supported are shown
in Table 4-1.

4-1

Table 4-1. Storage Class Modifiers

KEYWORD APPliCABLE TO

BASEPAGE variable
ACTIVE function
NOLOCAL function
INTERRUPT 1 function
INTERRUPT2 function
INTERRUPT3 function
INTERRUPT4 function
INTERRUPTS function
INTERRUPT6 function
INTERRUPT7 function

These keywords must be entered in upper-case as shown. Zero or more storage class
modifiers can be supplied with each variable or function declaration. The compiler gen­
erates an error message if it finds a confiicting use of storage class modifiers (such as
INTERRUPT1 ACTIVE).

The effect of each keyword is as follows:

BASEPAGE
The variable is allocated in the BASE (base page) section. Since accessing a base
page variable is more efficient than accessing any other type of variable and since
the amount of the base page storage is limited. great care should be taken when
deciding which variables should have the BASEPAGE modifier.

ACTIVE
The address of the function is placed in one of the entries of the 16-word JSRP
table. Subsequent calls to the function occupy a single byte. instead of two or
three. Any function which is called frequently should be considered for desig­
nation as an ACTIVE function. At most. 16 functions can be designated as
ACTIVE. In order to obtain the full savings of space and time. an ACTIVE
function should be defined before it is used.

NOLOCAL
The function's local variables are not on the run-time stack. Instead. declared
variables are allocated in static storage. If the function is called recursively,
then any new invocation uses the same local variables as the last invocation.
However, access to local variables in a NOLOCAL function is much more
efficient. Furthermore, if the function is defined to have no arguments, then
entry to and exit from the function are much more efficient because there is no
need to adjust the frame pointer on entry and exit.

4-2

INTERRUPTI
INTERRUPT2
INTERRUPT3
INTERRUPT4
INTERRUPTS
INTERRUPT6
INTERRUPT 7

These modifiers can be used to set interrupt vectors (one through seven) to point
to a particular function. A given function may be associated with more than one
interrupt. A given interrupt number may be applied to only one function. Any
function that has an INTERRUPT storage class modifier has a special entry and
exit code generated for it. The entry code pushes all the registers (A. B. X. K.
and PSW) and word at 0 onto the stack before executing the normal function
entry code. The exit code restores the word at 0 and all the registers which 'f'ere
saved and executes a return from interrupt instruction.

4.4 C STACK FORMAT

This information is useful if the user wants to embed HPC assembly language in C or mix
C and assembly modules.

The Stack Pointer (SP) starts at the start address assigned by the linker and moves towards
successively higher locations. The Stack Pointer always points to the next free location at
the top of the stack.

Within a function. the compiler maintains a Frame Pointer (FP). which it uses to access
function arguments and local automatic variables. The highest word location in base page
memory (Oxbe) is reserved by the compiler to hold the Frame Pointer.

To call a function. the compiler pushes arguments onto the stack in reverse order. (the
PUSH instruction increments the SP by 2 each time it is executed). calls the function. then
decrements the Stack Pointer by the number of bytes pushed. For instance. to call a func'­
tion with two one-word arguments. the compiler emits code to do the following:

PUSH arg2
PUSH argl
jump subroutine to function
SUB SPA

(SP += 2)
(SP += 2)

(SP -= 4)

The jump subroutine instruction pushes the current program counter onto the stack.
Because all stack pushes are 16-bit pushes. any 8-bit function argument is automatically
promoted to 16 bits.

Upon function entry. the compiler creates new stack and frame pointers by computing:

PUSH FP
FP=SP
SP = SP + Jramesize;

where Jramesize is the space required for all local automatic variables. If the frame size is

4-3

odd, the compiler always rounds it up to the next even number, in order to avoid a Stack
Pointer with an odd address. If there are two arguments and two local variables, then the
frame size is 4 and the stack looks like this:

second argument
first argument
return address
old FP
first local variable
second local variable

FP-8
FP-6
FP-4
FP-2
FP+O
FP+2
FP+4 next free stack location (same as SP)

If a function argument is defined to be an 8-bit type, then only the lower eight bits of the
value pushed by the caller are referred to inside the called function.

Upon function exit. the compiler restores the SP and FP to their original value by executing
the following:

SP=FP
POP FP
RET

The return instruction (RET) sets the new program counter by popping the saved program
counter off the stack.

4.5 USING IN-LINE MICROASSEMBLER CODE

Assembler code should be entered in the body of a function beginning with a slash and a
dollar sign (1$) and ending with a dollar sign and a slash ($/). When this is done, the pro­
grammer needs to be able to relate the code to variables previously declared.

Any of the currently active variables can be accessed by entering:

@name

where name is the variable name.

For example, an included assembler line to move any variable "alpha" to any variable
"beta" looks like this:

/$

$/

LD A,@alpha
ST A,@beta

If these variables are not an argument or if they do not have automatic storage class, then
the variable move could be written as:

/$
LD@beta,@alpha

$/

4-4

The @name is replaced by one of the following assembler expressions for representing the
value of the variable.

STORAGE CLASS @NAME REPLACED BY

extern name -
global - name
static Vn.t
argument offset[FP].t
automatic off set[FP].t

The _name is the original source name prefixed with an underscore (_), t is either B (if the
type is 8-bit) or W (if the type is 16-bit), Vn is a name generated by the compiler (and "n"

is a decimal number), and "offset" is a hexadecimal offset into the current stack frame.
Section 4.4 describes the stack format and explains the significance of the Frame Pointer
(FP).

When a variable's storage class is static, "@variable" can be used in any context where a
"direct address" is permitted by the assembler. When a variable is a function argument or
has automatic storage class, only "@variable" can be used in a context where an "indexed"
operand address is permitted.

To get the address of a variable in assembler, use:

@Aname

This is replaced according to the storage class as follows:

STORAGE CLASS @~AME REPLACED BY

extern name -
global - name
static Vn
argument offset
automatic offset

The _name is the original source name prefixed with an underscore (_), Vn is a name gen­
erated by the compiler (and "n" is a decimal number) and "offset" is a hexadecimal offset
into the current stack frame.

If the storage class is static, the address in the A register can be set using:

LD A,@Aname

If the storage class is automatic or has an argument, then the following must be used:

LD
ADD

A.FP
A,@Aname

On entry to an in-line assembler code section, the compiler guarantees that it will not have
any acti,:,e registers.

4-5

The A and K registers can be used at any time. The X register can be used if one or no
register variable is active at that time. The B register can be used if no register variable is
active at that time. The word at address 0 is available as a temporary scratch location. The
compiler and library use it but never to retain a value across commands. The user may use
it similarly.

If the FP must be adjusted, then it must be restored before exiting. However, if a
compiler-declared variable "name" is being referenced using @name, then the FP must not
be modified in any way.

Because the compiler handles all storage allocation, any storage required by in-line assem­
bler 'code must be declared in C code, then referred to using the conventions previously
described.

4.6 EFFICIENCY CONSIDERATIONS

The best way to reduce code size is to use indirection through a register pointer variable.
The second choice is to use BASEPAGE variables that have 8-bit direct addresses and can be
indirected through the BASEPAGE variables. The third choice is to use a static variable,
that uses a 16-bit direct address. The least efficient variable to access is an automatic vari­
able on the stack, which uses an indirection through an 8-bit address indexed by an 8- or
16-bit offset. To maximize the use of 8-bit offsets in automatic variable accesses, make sure
to declare smaller objects (characters and integers) before larger objects (arrays and struc­
tures).

In order to get the smallest code size possible, try to make the maximum use of registers.
Since, the compiler allows a maximum of two register variables to be active at anyone
time, it can be very easy to run out of registers. There are two ways to alleviate this prob­
lem: declare registers in inner scopes and/or cast a "general purpose" register pointer to the
correct type as required.

What is meant by declaring registers in inner scopes? Instead of declaring the registers at
the beginning of a function, they should be declared inside the compound statement for
which they are required. The programmer may want to include a compound statement
where none is required. For instance, suppose there is a function whose register usage looks
like the following:

testO
{

register unsigned int *p, *q;
register unsigned char *r;

code using p and q

code using p and r

4-6

In order to have all three pointers in the registers when they are needed. use the following
form:

testO
{

Register unsigned int *p;

register unsigned int *q;

code using p and q

register unsigned char *r;

code using p and r

There may be cases where the problem cannot be partitioned as easily as the previous one.
Since there is such a major payoff in decreased code size when using register indirection
instead of direct addressing. the programmer may want to use one or two ·'generic"
pointers and cast them to the desired pointer type as the situation requires. This is possible
if the programmer is willing to use a slightly non-portable construct. The draft-proposed
ANSI standard states that a cast expression may not have an lvalue. This means that state­
ments like the following:

int *p;

(unsigned char *) p = 2;
«(struct fred *) p)++)->a = 4;

are not permitted. The reasoning behind this restriction seems to be that some machines
may have different representations of pointers for different types of objects. On such
machines. the above constructs are extremely difficult to implement. However. because
many machines in general (and the HPC in particular) have only one representation for a
pointer. many C compilers. including this one. allow this particular form of casting.

When the programmer finally runs out of registers. a good second choice is to use the
BASEPAGE storage class modifier. instead of ··register:· In general. BASEPAGE variables
can be used by the hardware exactly like register variables. The main advantage is that
hardware addressing modes allow the programmer to indirect through a BASEP AGE vari­
able or register with equal ease. To indirect through any other type of variable requires
first loading the variable into a register. then indirecting through the register. A second
advantage is that the direct address of either is encoded. into an instruction; it takes up 8
bits. rather than 16 bits. The main advantage of registers over BASEPAGE variables is that
instruction encodings using indirection take up less space for registers and there are special
indirect and post-increment or post-decrement addressing modes which can be used only for
registers. These special modes are further restricted in that they can only be used for loads

4-7

and stores using pointers to words or to bytes (not to long words or to structures). How­
ever. the compiler tries to use them whenever it can.

A particular advantage of the B register is that the hardware supports very efficient encod­
ings for testing. clearing. or setting bits indirectly through the B register. The compiler gen­
erates such encodings for operations on bit fields that consist of a single bit and for opera­
tions of the following form:

if(*p&BIT) ... /* bit test */
p &= -BIT; / bit clear */
p 1= BIT; / bit set */

where p is a register variable that has been assigned to the B register and "BIT" is a con­
stant value with one bit ON (e.g .. Ox1. Ox80). Also. it is better if the bit is in the lower
half of a word or in a character variable.

A disadvantage of having a register variable in the X register is that the X register is used
by the hardware for unsigned multiply. for unsigned divide. for unsigned remainder. for
indirect loads and stores of long or float values. and for structure assignments. If one of
these operations appears when the X register is assigned to a register variable. then the com­
piler must generate additional code to save and restore the register. A disadvantage of hav­
ing a register variable in the B register is that the B register is also used by the compiler for
structure assignments. If the B register is allocated to a register variable when a structure
assignment occurs. then the compiler must save and restore the B register.

To save space and time. avoid the use of long integers and floats. except where absolutely
necessary.

Because the architecture of the HPC is strongly oriented toward unsigned arithmetic. the
programmer should use unsigned variables except for cases that absolutely require signed
arithmetic.

Unsigned comparisons for" >=" or .. <=" are more efficient than for" > ... or "< .. com­
parisons. Signed comparisons are less efficient than any unsigned comparisons.

Since the compiler neither attempts to identify common subexpressions nor specifies that
they be computed only once. it should be done by the programmer. For example. if a pro­
gram contains the following roots of a quadratic equation:

if((B*B - 4*A*C) > 0)
{

else
{

printf("Real roots %f and %f\n".
(-B - sqrt(B*B - 4*A*C)) / (2*A).
(-B + sqrt(B*B - 4*A*C)) / (2*A));

printf("Imaginary: (%f,%f i) and (%f,%f O\n".
-B / (2*A). - sqrt(-(B*B - 4*A*C)) / (2*A).
-B / (2*A). + sqrt(-(B*B - 4*A*C)) / (2*A));

4-8

the compiler will not recognize the multiple uses of "B*B - 4*A*C" or "2*A" as common
subexpressions. For each occurrence. the compiler will generate code resulting in 5 and 6
computations of these values.

To localize the calculation to one place and one time for each equation, the programmer
might want to declare a local variable. evaluate the common expression into it, and then use
the local variable in place of the expression thereafter. For example. the previous equations
can be coded as follows:

discr = B*B - 4*A*C;
denom = 2*A;
if(discr > 0)
{

else
{

discr = sqrt(discr);
printf("Real roots %f and %f\n",

(-B - discr) / denom,
(-B + discr) / denom);

discr = sqrt(-discr);
printf("Imaginary: (%f. %fi) and (%f. %f O\n" ,

-B / denom. - discr / denom,
-B / denom. + discr / denom);

4.6.1 DeClaration Syntax

CCHPC supports the draft-proposed ANSI standard syntax for declarations by allowing the
programmer to define pointers to arrays or functions.

Be aware that the way a data structure is defined affects the efficiency of the compiled pro­
gram. In the case of array subscripting. C syntax requires that the subscript be multiplied
by the size of the object before being added to the pointer of the array of objects. If the size
of the object is not one. then the compiler will have to generate a multiplication. If the size
of the object is a power of 2, then the multiplication may be converted to a shift.

This means that it may be expensive to use an array of an array. a structure. or a union.

For instance, with the following program:

struct{
int x;
int y;
int z;

} points[lO];

4-9

the compiler converts the array of structure reference from

points[i].y = 2;

to

*(&points + (i*6) + 2) = 2;

This conversion requires a multiplication. On the other hand. suppose the program is:

int xpts[lO];
int ypts[10];
int zpts[10]:

Then the programmer codes

xpts[i] = 2;

which the compiler converts to

*(&xpts + i*2) = 2;

Since the multiplication by two is converted to a i-bit shift by the compiler. no multiplica­
tion is required.

4.7 STATEMENTS AND IMPLEMENT A TION

S. S1. S2. Sn are statements. The keywords described in this section must be entered in
lower-case. In the following statements. these keywords are indicated in boldface type and
the punctuation required is shown:

expression;
if (expression) S
if (expression) Sl else S2
while (expression) S
do S while (expression);
for (el; e2; e3) S
break;
goto label;
continue;
return;
return expression;
case const-expr:
default:
switch (expression) S
switchf (expression) S
loop (expression) S
{ Sl S2 ... Sn }

The switch statement generates a jump table for a set of cases if the maximum case minus
the minimum case plus one divided by the number of cases is less than 1.25. Otherwise. it
simply arranges to emit code which tests for each possible value. in the order in which they
appeared. The jump table type of switch is most efficient in both space and time.

4-10

The switchf statement is a faster form of the switch statement except that if a jump table
is generated, the compiler does not generate code to check the bounds of the jumped-on
value. It assumes that the value of the switchf expression will invariably select one of the
cases and that the default will never be selected. It is, therefore. the programmer's respon­
sibility to ensure or enforce that the switched-on value is in range.

The loop statement is a simpler. more efficient "for looping statement" introduced to allow
the programmer to save code space in tight loops by using the HPC's DECSZ (decrement and
skip if zero) instruction to control looping. The loop statement executes the statement S the
number of times given by the expression. The result of the expression is treated as an
unsigned integer. Because the loop counter is decremented before being tested. an expression
with a value of zero causes the loop to be repeated 65536 times. If a count larger than
65635 is given. the actual count executed will be the given count modulo 65636.

A continue statement inside a loop statement behaves the same way as if the last statement
in the loop had just been executed. That is. it decrements and tests the count: then it either
branches to the top of the loop if the result of the test indicates looping should continue. or
it exits the loop.

A break statement inside a loop statement causes an immediate exit from the loop.

A loop statement may be nested.

4.8 RUN-TIlVIE NOTES

During evaluation of complex expressions. the compiler uses the stack to store intermediate
values.

All HPC C programs begin by calling the function "main" with no arguments.

Before calling "main." run-time start-up code initializes RAM memory. The initial values
of static or global variables with initialization are stored in ROM and copied to the
appropriate locations in RAM. Static or global variables which are not initialized are
cleared to zero.

When "main" returns to the run-time start-up routine. it executes the HALT macro. As
provided. the HALT macro contains "JP." which puts the chip in an infinite loop.

Since the run-time stack is of fixed size and there is no check for stack overflow. it is the
programmer·s responsibility to ensure that the stack is large enough so stack overflow does
not occur.

NOTE: Memory location zero is used by the compiler and library as a scratch
pad.

4-11

Appendix A

CCHPC SPECIFICATIONS
This is a quick reference of the CCHPC specifications. The enhancements are indicated in
boldface type.

Name length
Numbers

Integer.

Floating.
Preprocessor

include
#if
#else

Declarations
auto
static
ACTIVE
short
float
bit field
type cast

Statements

Signed and Unsigned
Short and Long
Single and Double

#define
#ifdef
#elif

register

#defineO
#ifndef
#endif

const

32 letters, 2 cases

16 bits
16 bits and 32 bits
32 bits and 32 bits

#undef
#if defined

volatile
static global static function NOLOCAL
extern extern global extern function
int long signed
double void struct
enum pointer to array of
typedef initialization

BASEPAGE
INTERRUPTn
char
unsigned
union
function returning

{ ... } expression;
while 0 ; do ... whileO;

assignment:
for(;;;) ... ;
case: ... ;
break;

structure assignments;
looP() .. .;

ifO ... else ... ; switch 0 ... ;
return;

default: ... ;
switchfO .. .;
goto ... ;

continue;

Operators
primary:
unary:
arithmetic:
relational:
boolean:
assignment:

functionO array[] struct_union struct_pointer->
* & + - ! -- ++ -- sizeof (typecast)
*/ % + - « »
< > <= >= == !=
& ~ 1 &&"

+= -= *= / = %= > > = < < = &= 1=
misc.: ?: .

Functions
arguments: Numbers. Pointers. Structures
return values: Numbers. Pointers. Structures
forward reference (argument checking)

Library Definition Limited-Freestanding environment
Embedded Assembly Code

A-I

Appendix B

CONVERTING BETWEEN STANDARD C AND CCHPC

A programmer may want to compile a C program using the standard C compiler and run it
under a UNIX@) operating system.

This appendix explains how to set up a C program that gives the programmer the flexibility
of compiling with either the HPC C compiler (CCHPC) or the standard C compiler.

To be able to easily switch between compiling a program with the standard C compiler and
the CCHPC, set up the follOWing at the beginning of the program:

#if def REGULARC
#define switchf switch
#define loop(x) f or(iiii=O;iiii < x;++iiii)
short iiii;
#define BASEPAGE
#define NOLOCAL
#defi.ne ACTIVE
#define INTERRUPTI
#define INTERRUPT2
#define INTERRUPT3
#define INTERRUPT4
#define INTERRUPTS
#define INTERRUPT6
#define INTERRUPT7
#endif

To compile a program using a non-HPC C compiler, use the command line option to define
the 'symbol REGULARC.

If using nested loop statements, it is necessary to set up a more elaborate way of redefining
loop(x). If there are at most 3 levels of nesting, define the following:

#ifdef REGULARC
short iii_l, iiL2, iii_3;
#define 100pl(x) forCiiLI=O;iii_1 <x;++iiLl)
#define 100p2(x) for(iiL2=O;iii_2<x;++iii_2)
#define 100p3(x) for(iiL3=O:iii_3 <x:++iii_3)
#else
#define 100pl(x) loop(x)
#define 100p2(x) loop(x)
#define 100p3(x) loop(x)
#endif

and use "loopl:' "100p2," or "100p3" as required instead of "loop."

NOTE: In general, the programmer will NOT be able to convert code that uses
in-line assembly code.

B-1

Appendix C

INVOCATION LINE SYNTAX

C.I INTRODUCTION

This appendix contains the invocation line syntax for the MS-DOSTM, VAX™/VMSTM and
UNIX operating systems.

C-I

MS-DOS

C.2 MS-DOS

The MS-DOS operating system's invocation line has the following syntax:

cchpc [options] filename.c [options]

The compiler options may be entered before or after the filename. The default filename
extension is ".c". The compiler output. in the form of assembler source statements. will be
in filename.asm. where the ".c" extension is replaced with ".asm".

The following are the compiler options:

ICSource
Include the C code in the assembly code.

IPreprocess
Do NOT invoke the C preprocessor before compilation.

l(]?pnaDle=program
Call the C preprocessor with program.

ISTack=numher
Set the execution stack size to number.

18bit_code
Create 8-bit wide code.

IRoDlstrings
Place string literals in ROM.

IWarnings
Turn off compiler warning messages.

Iinciude directory
Indicate directory to search for include files. If any of the include files are
not found or if this switch is not specified. the C preprocessor searches the
standard location. The standard location of the include files is the directory
specified by the environment variable CCHPC. If the environment variable
CCHPC does not exist. then the standard location is the directory specified
by the environment variable HPC. If neither of the environment variables
CCHPC or HPC exist. then the standard location is \hpc.

lDeftne symbol
lDefine symbol=val

Define symbol names.

IUndeftne symbol
Undefine symbol names.

IOld_fashioned
Permit old-fashioned constructs.

ICHiprev=revision
Set the chip revision level.

The required input for an option is indicated by the upper-case letter of the option name. If
the entire option name is entered. it must be spelled correctly. It may be entered in upper­
or lower-case. Do not pass an argument containing an equal sign through a batch file. the
equal sign is interpreted as a space.

C-2

MS-DOS (Cont)

On the invocation line. @filename reads the named file and uses the contents as if it is part
of the invocation line. The default extension is ".cmd" and there is no white space between
the "@" and the filename. The contents of filename may be on mUltiple lines. and each new
line is equivalent to a space on the invocation line. The files may not be nested.

C-3

VAX/VMS

C.3 VAX/VMS

The VAX/VMS operating system's invocation line has the following syntax:

cchpc [options] filename.c [options]

The compiler options may be entered before or after the filename. The default filename
extension is ... c". The compiler output. in the form of assembler source statements. is in
filename.asm. where the" .c" extension is replaced with ".asm".

The following are the compiler options:

/CSOURCE
Include the C code in the assembly code.

/NOCSOURCE
Do NOT include the C code in the assembly code (default).

/PREPROCESS
Invoke the C preprocessor before compilation (default).

/NOPREPROCESS
Do NOT invoke the C preprocessor before compilation.

/CPPNAME=program
Call the C preprocessor with program.

/STACK.=number
Set the execution stack size to number.

/SBIT_CODE
Create 8-bit wide code.

/NOSBIT_CODE
Do NOT create 8-bit wide code (default).

/ROMSTRINGS
Place string literals in ROM.

/NOROMSTRINGS
Do NOT place string literals in ROM (default).

/WARNINGS
Print compiler warning messages (default).

/NOW ARNINGS
Do NOT print compiler warning messages.

/INC1llJl)E=directory
Indicate directory to search for include files. If any of the include files are
not found or if this switch is not specified. the C preprocessor searches the
standard location. The standard location is the directory specified by the
logical name CCHPC$. If the logical name CCHPC$ does not exist. then the
standard location is the directory specified by the logical name HPC$. If
neither of the logical names CCHPC$ or HPC$ exist. then the standard loca­
tion of the include files is located by the logical name, SYSHPC$.

/DEFINE=symbol
/DEFINE=symbol=val

Define symbol names.

C-4

V AXlVMS (Cont)

/UNDEFINE=symbol
Undefine symbol names.

/OLD_FASmONED
Permit old-fashioned constructs.

/NOOLD_FASmONED
Do NOT permit old-fashioned constructs (default).

/ClllPREV =revision
Set the chip revision leveL

The parsing of the command is handled by the DEC™ command line interpreter according
to its rules. An option name can be abbreviated with four letters (or less if unique.) If the
entire option name is entered. it must be spelled out correctly. If the option is a negated
switch. beginning with NO. the count does not include the NO. It may be entered in upper­
or lower-case. Note that a single IDEFINE or IUNDEFINE must be used to define or
undefine multiple symbols. For example:

/DEFINE=(symbol [=value])
IUNDEFINE=Csymbol.symbol •. ..)

A single IINCLUDE must be used to specify multiple directories. For example:

/~~1JI)I9=Cdirectory.directory •...)

The invocation line accepts the @filename for substitution from a file. This is processed by
the DEC command line interpreter. For details. refer to the VAX/VMS Guide to Using DeL
and Command Procedures.

C-5

UNIX

C.4 UNIX

The UNIX operating system's invocation line has the following syntax:

cchpc [options] filename.c

The compiler options must be entered before the filename. There is no default filename
extension. The" .c", or whatever extension is used, must be given. The compiler output, in
the form of assembler source statements, is in filename.asm, where the extension Cif any) is
replaced with ".asm".

The following are the compiler options:

-c Include the C code in the assembly code.

-p Do NOT invoke the C preprocessor before compilation,

-b Special name to use to call C preprocessor,

-s number
Set the execution stack size to number.

-8 Create 8-bit wide code.

-r Place string literals in ROM.

-w Turn off compiler warning messages.

-I directory

-D symbol

Indicate directory to search for include files. If any of the include files are
not found or if this switch is not specified. the C preprocessor searches the
standard location. The standard location is the directory specified by the
environment variable CCHPC. If the environment variable CCHPC does
not exist. then the standard location is the directory specified by environ­
ment variable HPC. If neither of the environment variables CCHPC or
HPC exist. then the standard location is Ihpc.

-D symbol=val
Define symbol names.

-U symbol
Undefine symbol names.

-0 Permit old-fashioned constructs.

-C revision
Set the chip revision level.

The UNIX command conforms to the System V interface definition. Only a single letter is
used and must be the indicated case. separated from any argument by white space.

The feature. file substitution. can be handled by use of the shell's command substitution
capability. Refer to the System V User's Guide, Shell Tutorial.

C-6

AppendixD

COMPILER ERROR MESSAGES

name is not a label
name is not a member of a structure
name is not an argument
name is repeated in the argument list
name undefined
Arguments of name redefined
Array size must be an integer constant
Assignment of different structures
Assignment of pointer to non-pointer is not allowed
Auto variables treated as static in NOLOCAL function
BASEP AGE not applicable to function definition
Bit field type must be "inC. "signed iniC. or "unsigned inC
Bit field won't fit!
Can't take address of a bit field
Can't take address of register variable
Cannot call NOLOCAL function recursively
Cannot get space for temp entry
Cannot have "declaration-list" with "parameter-type-lisC
Cannot have function initializer
Cannot initialize name here
Cannot initialize automatic aggregate
Cannot initialize global registers
Cannot initialize typedef!!
Cannot modify "canst" storage
Cannot open filename
Cannot take address of built-in
Cannot take address of register variable
Cannot take size of function
Cannot use 'void' here - 'int' substituted
Case constant must have integral type
Cast expression must have scalar type
Cast type must be scalar type
Character constant too long
Character string too long (> number characters)
Compound statement required
Constant expression required
Constant for shift or rotate < 0 or > constant
Constant word address is not even
Declaration of void variable ignored
Default not in switch
Division by zero
Duplicate case (number) in switch
EOF reading character constant
EOF reading string or character constant
Error in format of floating point constant
Expected ')'

D-l

Expected ',' or ')'
Expected',' or ';'
Expected',' or ';' - skipping to next';' or 'name'
Expected',' or '}' - '}'
Expected ':'
Expected ':' after label
Expected ' <'
Expected '>'
Expected T
Expected "while"
Expected constant expression
Expected constant expression after ':'
Expected identifier
Expected label name
Expected name
Expected name following @

Expression syntax error
External name redefined
Floating point constant must be decimal
Function name redefined
Function may not return array or function
INTERRUPTn conflicts with ACTIVE
Identifier list must be empty
Illegal assignment
Illegal break
Illegal character number (hex)
Illegal context for label name
Illegal context for type name name
Illegal continue
Illegal indirection
Illegal pointer combination
Illegal pointer operation
Illegal storage class for argument
Illegal struct/union argument
Illegal structure usage
Illegal use of built-in name
Interrupt function may not have arguments
Label name redefined
Left operand of '-' must have arithmetic type
Left operand of '-' must have scalar type
Left operand of '-' must have integral type
Left operand of bitwise op must have integral type
Left operand of bitwise op= must have integral type
Left operand of shift must have integral type
Left operand of shift= must have integral type
Local functions not allowed
MallocO denied space for string
Maximum frame size (constant) exceeded
Member name required here
Missing closing brace
Missing enum definition
Missing structure definition

D-2

Missing union definition
Multiple defaults
No function arguments allowed here
No more registers available for assignment - B reused
No name given for argument # number
No operations defined for void type
Not a function
Not enough function arguments
Not in switch
Null character constant
Only "register"" storage class permitted here
Operands of 'character' have incompatible types
Operation has incompatible operands
Redeclaration of name
Remainder of division by zero
Right operand of bitwise op must have integral type
Right operand of bitwise op= must have integral type
Right operand of shift must have integral type
Right operand of shift= must have integral type
Sorry. name is not allowed
Sorry. bit field operations not supported
Sorry. but no procedure arguments allowed here
Sorry. floats are not supported - treated as long
Sorry. static/external initialization is not supported
Statement syntax error
Storage class modifier name is not allowed here
Storage class modifier of name redefined
Struct/union not allowed here
Structured statements nested too deeply
Switch expression must have integral type
Syntax error in type specifier
Too many arguments
Too many cases in switch
Too many function arguments
Too many initializers
Too many storage class keywords in declaration
Too many work files
Type attributes of name redefined
Type cannot be both signed and unsigned
Type of name redefined
Unexpected eof inside /$ """ $/
Unknown size
Unknown tag
Variable name undefined
Warning: & before array or function name ignored
Warning: Ambiguous assignment - '&=' assumed
Warning: Ambiguous assignment - '*=' assumed
Warning: Ambiguous assignment - '+=' assumed
Warning: Ambiguous assignment - '-=' assumed
Warning: Array has zero size
Warning: Auto variables treated as static in NOLOCAL function
Warning: Constant address may not fit into 8 bits

0-3

Warning: Constant truncated
Warning: Declaration of %s hides argument of same name
Warning: Different pointer types in conditional
Warning: Division by zero is undefined
Warning: Found - assuming" wanted
Warning: GaTOs in to or out of LOOP statements give undefined results
Warning: Hex character constant truncated
Warning: INTERRUPT function is not intended to be called directly
Warning: Improper combination of pointer and arithmetic type
Warning: Improper combination of pointer and integer op string
Warning: Improper member use: name
Warning: Improper pointer combination
Warning: Incompatible pointer combination
Warning: Negative array size - forced positive
Warning: Octal constant truncated
Warning: Old-fashioned initialization
Warning: Statement not reached.
Warning: Stack=number processed only if main defined
Warning: Struct or union pointer wanted
Warning: Struct or union wanted
Warning: Switchf will never select default case
Warning: Unescaped new-line in string or character constant
Warning: Unknown size
Warning: Zero array size - set to 1
Warning: ··const'· variable name should be initialized
You must declare global registers before any functions
Zero length named bit field?
\"Lvalue\" required here
....... must be the last entry in the argument list

D-4

INDEX

-8

18bit_code
18BIT_CODE

ACTIVE

B

A

ANSI trigraph character
assembler source statements
auto
Automatic, storage class is
Automatic variables, initialization of

-b
BASEPAGE
Bit fields
break statement

-C
-c
C Stack format
char
Character constant
Chip revision
ICHiprev
ICHIPREV
Code size, reduction of
Command line consists of
Command syntax
Comments
Comparison operators
Compiler error messages
Compiler output
Compiler supports
const
Constant is stored
Constants

character
decimal
floating-point
hexadecimal
octal

B

c

C-6

C-2
C-4

4-2
3-2
2-1
4-1
4-5
3-4

C-6
4-2
3-4

4-11

C-6
C-6
4-3
3-3
3-1
2-3
C-2
C-5
4-6
2-1
2-1
3-3
3-5
D-l

2-1, C-2, C-4
2-1,3-1

3-3
3-1
3-1
3-1
3-1
3-1
3-1
3-1

continue statement 4-11
Converting between standard C and CCHPC 8-1
cpp 2-1
ICPpname C-2
ICPPNAME C-4
Creating 8-bit wide code 2-2

ICSource
ICSOURCE

-D
Data types, list of
Decimal constant

D

Declaration syntax
Declarations within functions
default storage class
IDefine
IDEFINE
Defining symbol names
Definitions
Dependent considerations
Development process, diagram of
Documen ta tion con ven tions

Efficiency considerations
Enhancements include
Enter assembly language
Escape sequences
Expression evaluation
extern

E

External variables, initialization of

Float type, to indicate
Floating-point constant
Fractional part consist of
Frame pointer CFP)

F

G

Generating code for binary operation
Global declarations

Hexadecimal constant
Hierarchy of operators
HPC C compiler
HPC C compiler overview

IND-l

H

C-2
C-4

C-6
3-3
3-1
4-9

,4-1
4-1
C-2
C-4
2-2
3-1
4-1
1-1
1-2

4-6
2-1
3-5
3-2
3-5
4-1
3-4

3-1
3-1
3-1
4-3

3-4
4-1

3-1
3-5
2-1
1-1

-I
IInclude
IINCLUDE

I

Including C code in assembly code
Indicating directories for include files
Initialization of variables
In-line micro assembler code
In-line micro assembler code, using
Integer parts consist of
Invocation

MS-DOS
UNIX
VAX/VMS

Invocation line syntax
Invoke an alternative C preprocessor
Invoking the C preprocessor

Jump subroutine function

Keywords
ACTIVE
BASEPAGE
const
NOLOCAL
register
volatile

loop statement
loop type

J

K

L

M

Manual organization
Memory
MS-DOS HPC C compiler options

Names
/N08BIT _CODE
INOCSOURCE
NOLOCAL
Non-printing characters
INOOLD_FASHIONED
INOPREPROCESS
INOROMSTRINGS
INOW ARNINGS

N

C-6
C-2
C-4
2-1
2-2
3-4
3-5
4-4
3-1

C-2
C-6
C-4
C-l
2-1
2-1

4-3

4-2
4-2
4-2
3-3
4-2
4-1
3-3

4-11, B-1
2-1

1-2
4-1
C-2

3-1
C-4
C-4
4-2
3-2
C-5
C-4
C-4
C-4

-0

Octal constant
100d_fashioned
IOLD _FASHIONED

o

Old-fashioned constructs, permitting
Operators, hierarchy of

p

-p
Placing string literals in ROM
IPreprocess
IPREPROCESS
Preprocessor directives
Preprocessor searches
Program organization
PUSH instruction

-r
register
register keyword
Return instruction (RET)
Right shift
IRomstrings
IROMSTRINGS
Run-time notes
Run-time stack

-s
Set chip revision level

R

s

Setting the execution stack size
Signed comparisons
Signed integers
Signed operations
ISTack
ISTACK
Stack pointer (SP)
Statements and implementation
static
Static, storage class is
Static variables, initialization of
Storage class modifiers

list of
Storage classes

auto
extern
register
static
typedef

String constant
String constant, maximum length
switch statement
switchf statement
switchf type
Syntax, accepted by cchpc

IND-2

C-6
3-1
C-2
C-5
2-3
3-5

C-6
2-2
C-2
C-4
3-4
2-2
3-4
4-3

C-6
4-1
4-1
4-4
3-5
C-2
C-4

4-11
4-11

C-6
2-3
2-1
4-8
3-3
3-3
C-2
C-4
4-3

4-10
4-1
4-5
3-4
4-1
4-2
4-1
4-1
4-1
4-1
4-1
4-1
3-2
3-2

4-10
4-11

2-1
3-1

T

Trigraph escape sequences
Turning off compiler warning messages
Type long. force to
typedef
Types

char
loop
switchf

-U
/Undefine
/UNDEFINE

u

Undefining symbol names
UNIX HPC C compiler options
Unsigned comparisons
Unsigned integers
Unsigned operations
Unsigned variables

Variable address
Variable initialization

v

V AX/VMS HPC C compiler options
volatile

-w
/Warnings
/WARNINGS

w

3-2
2-2
3-1
4-1

3-3
2-1
2-1

C-6
C-2
C-5
2-2
C-6
4-8
3-3
3-3
4-8

4-5
3-4
C-4
3-3

C-6
C-2
C-4

IND-3

National
Semiconductor

READER'S COMMENT FORM

MICROCOMPUTER
SYSTEMS GROUP

In the interest of improving our documentation, National Semiconductor invites your com­
ments on this manual.

Please restrict your comments to the documentation. Technical Support may be contacted
at:

(800) 538-1866 - U.S. non CA
(800) 672-1811 - CA only
(800) 223-3248 - Canada only
((0)8141) 103-330 - Germany only

Please rate this document according to the following categories. Include your comments
below.

EXCELLENT GOOD ADEQUATE FAIR POOR

Readability (style) 0 0 0 0 0

Technical Accuracy 0 0 0 0 0

Fulfills Needs 0 0 0 0 0

Organization 0 0 0 0 0

Presentation (format) 0 0 0 0 0

Depth of Coverage 0 0 0 0 0

Overall Quality 0 0 0 0 0

NAME DATE

TITLE

COMPANY NAME/DEPARTMENT

ADDRESS

CITY STATE ZIP

Do you require a response? 0 Yes ONo PHONE

Comments:

HPC™ C Compiler User·s Manual

FOLD, STAPLE, AND MAIL 424410883-001C

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 409 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

II National Semiconductor Corporation
Microcomputer Systems Division
Technical Publications Dept., MIS 7C261
2900 Semiconductor Drive
P.O. Box 58090
Santa Clara, CA 95052 - 9968

11.1 ••• 1.1.11 •••• 1.1 ••• 1.11.1 •• 1.1 ••• 11 •• 1 •• 1.1 ••• 11

NO POSTAGE
NECESSARY

IFMAILED
IN THE

UNITED STATES

National Semiconductor Corporation
Microcomputer Systems Division

National Semiconductor Corporation
2900 Semiconductor Drive
Santa Clara, California 95051
Tel: (408) 721-5000
TWX: (910) 339-9240

National Semiconductor
5955 Airport Road
Suite 206
Mississauga, Ontario
L4V1R9 Canada
Tel: (416) 678-2920
TWX: 610-492-8863

Electronica NSC de Mexico SA
Hegel No. 153-204
Mexico 5 D.F. Mexico
Tel: (905) 531-1689, 531-0569,

531-8204
Telex: 017-73550

NS Electronics Do Brasil
Avda Brigadeiro Faria Lima 830
8 Andar
01452 Sao Paulo, Brasil
Telex: 1121008 CABINE SAO PAULO

113193 INSBR BR

Customer Order No. 424410883-001
NSC Publication No. 424410883-OO1C

National Semiconductor GmbH
FurstenriederstraBe Nr. 5
D-8000 Munchen 21
West Germany
Tel.: (089) 5 60 12-0
Telex: 522772

National Semiconductor (UK), Ltd.
301 Harpur Centre
Horne Lane
Bedford MK40 1TR
United Kingdom
Tel: 0234-47147
Telex: 826 209

National Semiconductor Benelux
Ave. Charles Quint 545
B-1080 Bruxelles
Belgium
Tel: (02) 4661807
Telex: 61007

National Semiconductor (UK), Ltd.
1, Bianco Lunos Aile
DK-1868 Copenhagen V
Denmark
Tel: (01) 213211
Telex: 15179

National Semiconductor
Expansion 10000
28, Rue de la Redoute
F-92 260 Fontenay-aux-Roses
France
Tel: (01) 660-8140
Telex: 250956

National Semiconductor S.p.A.
Via Solferino 19
20121 Milano
Italy
Tel: (02) 345-2046171819
Telex: 332835

National Semiconductor AB
Box 2016
Stensatravagen 4111 TR
S-12702 Skarholmen
Sweden
Tel: (08) 970190
Telex: 10731

National Semiconductor
Calle Nunez Morgado 9
(Esc. Dcha. 1-A)
E-Madrid 16
Spain
Tel: (01) 733-29541733-2958
Telex: 46133

National Semiconductor Switzerland
Alte Winterthurerstrasse 53
Postfach 567
CH-8304 Wallisellen-Zurich
Tel: (01) 830-2727
Telex: 59000

National Semiconductor
Pasilanraitio 6C
SF-00240 Helsinki 24
Finland
Tel: (90) 14 03 44
Telex: 124854

NS Japan K.K.
POB 4152 Shinjuku Center Building
1-25-1 Nishishinjuku, Shinjuku-ku
Tokyo 160, Japan
Tel: (03) 349-0811
TWX: 232-2015 NSCJ-J

National Semiconductor Hong Kong, Ltd.
1st Floor,
Cheung Kong Electronic Bldg.
4 Hing Yip Street
Kwun Tong
Kowloon, Hong Kong
Tel: 3-899235
Telex: 43866 NSEHK HX
Cable: NATSEMI HX

NS Electronics Pty. Ltd.
Cnr. Stud Rd. & Mtn. Highway
Bayswater, Victoria 3153
Australia
Tel: 03-729-6333
Telex: AA32096

National Semiconductor PTE, Ltd.
10th Floor
Pub Building, Devonshire Wing
Somerset Road
Singapore 0923
Tel: 652 700047
Telex: NATSEMI RS 21402

National Semiconductor Far East, Ltd.
Taiwan Branch
P.O. Box 68-332 Taipei
3rd Floor, Apollo Bldg.
No. 218-7 Chung Hsiao E. Rd.
Sec. 4 Taipei Taiwan R.O.C.
Tel: 7310393-4, 7310465-6
Telex: 22837 NSTW
Cable: NSTW TAIPEI

National Semiconductor (HK) Ltd.
Korea Liaison Office
6th Floor, Kunwon Bldg.
No.2, 1-GA Mookjung-Dong
Choong-Ku, Seoul, Korea
C.P.O. Box 7941 Seoul
Tel: 267-9473
Telex: K24942

©1988 National Semiconductor Corporation/Printed In U.S.A.

