National Semiconductor |M P_16

Order No. IMP-16S/102YB

Pub. No. 4?000028 Programming
and
Assembler Manual

Order Number IMP-16S/102YB
Publication Number 42000028

Integrated MicroProcessor-16

IMP-16

PROGRAMMING AND ASSEMBLER MANUAL

November 1973

@ National Semiconductor Corporation
2900 Semiconductor Drive
Santa Clara, California 95051

4200002B

PREFACE

The IMP-16 Programming and Assembler Manual provides tutorial and reference information
for devising user application programs. The manual is written for the benefit of both engi-
neers and programmers for IMP-16 programming indoctrination. Information pertaining to
the IMP-16 microprocessor and microcomputer equipment is not provided in this manual,

nor is other programming information listed in appendix J (References) provided; these
references should be consulted for the appropriate information.

This issue supersedes the preceding issues of 4200002A (formerly titled "IMP-16 Assem-
bler Manual').

Changes to this manual will be provided in the form of change notices or change pages to be
added to or to replace pages. Such changes will be reflected in a List of Effective Pages,
to be provided with each change.

The material in this manual is for information purposes only and is subject to change with-
out notice.

It is suggested that the reader thoroughly review the tables of contents, illustrations, and
tables to familiarize himself with an overview of the organization of the manual before read-
ing the contents. By so doing, the reader may then be prepared to appreciate the extent-
of-coverage; such an appreciation shall likely be useful during the initial reading of this
manual.

Copies of this publication and other National Semiconductor publications may be obtained
from the sales offices listed on the back cover.

ii

4200002B

CONTENTS
Chapter Page

1 INTRODUCTION v v v e e e e e e e e e e e e e e s i1
2 INTRODUCTION TO ASSEMBLER PROGRAMMING.« . . .+ . .2-1
2.1 THE ASSEMBLER LANGUAGE« .« « . + . .21
2.2 THE ASSEMBLER PROGRAM+ .« +« « « « « « « .+ .2-2
2.3 ASSEMBLER PROGRAMMING AIDS. 2-6
2.38.1 Data Representation . 2-6
2.3.2 Binary Fixed-Point Format e e e e e e e e e .. . 2-6
2.3.3 Memory Addressing« « + <2-6
2.3.4 Relocatability 2-7
2.3.5 Linking . 2-7
3 OVERVIEWOFCPU +« « « « &« v v o« o « o « « o381
3.1 OPERATIONAL FEATURES+ .+ « .+« .+ .« . .31

3.2 ARITHMETIC AND LOGIC UNITS REFERENCED BY IMP-16 ASSEMBLER
LANGUAGE AND PROGRAM+« .+ « « « « « . 3-1
3.2.1 Last-In/First-Out Stack (LIFOS) 3-1
3.2.2 Status Register - 1 |
3.2.3 Program Counter (PC)32
3.2.4 Memory Data Register (MDR) and Memory Address Reg1ster (MAR) 3-2
3.2.5 Working Registers 3-2
4 IMP-16 ASSEMBLER LANGUAGE . . 4-1
4.1 IMP-16 ASSEMBLER CODING CONVENTIONS . 4-1
4.1.1 Label Field . 4-1
4.1.2 Operation Field . 4-1
4.1.3 Operand Field . 4-1
4.1.4 Comment Field . 4-1
4.1.5 Identification Sequence F1e1d . 4-3
4.1.6 General Statements48
4.1.7 Example Statement < . . .43
4.1.8 Character Set . ' . 4-3
4.2 IMP-16 ASSEMBLER LANGUAGE STRUCTURE4-3
4.2.1 Label Entry . . . e e e e e e e e e e e . 4-4
4.2.2 Operation Mnemonic Entry . . 4-4
4.2.3 Operand Entry. . 4-4
4.3 DATA REPRESENTATION . 4-9

iii

4200002B

Chapter

CONTENTS (Continued)

ADDRESSING

5.1 REGISTERS .

5.2 MEMORY.

5.3 LOCATION COUNTER .

5.4 METHODS OF ADDRESSING
5.4.1 Immediate Addressing.

5.4.2 Direct Addressing. . . .
5.4.3 Indirect Addressing .
5.4.4 Double-Word Addressing .

IMP-16 ASSEMBLER PROGRAMS

6.1

o

PRI PP SO
GANAG AR WWWW N

wW N

W N =

N

DEFINITION.
PROGRAM RELOCATION .

INPUT AND OUTPUT
Source File (Input). . . .
Program Listing File (Output
Relocatable Load Module (Output)

TYPES OF RLM RECORDS
Title Record
Symbol Records
Data Record
End Record .

LOADING OBJECT PROGRAM INTO IMP-16
Bootstrap Loaders.
Absolute Loaders .
Linking Loader ..

Reformatting RLM Ouput on Other Media or in Other Formats.

INSTRUCTION STATEMENTS

W N

S U WD

INTRODUCTION.

LOAD AND STORE INSTRUCTIONS (Basic Set)
Load Direct (LD)
Load Indirect (LD).
Store Direct (ST)
Store Indirect (ST).

BYTE INSTRUCTIONS (Extended Set)
Load Byte (LDB) .o
Load Left Byte (LLB) .

Load Right Byte (LRB)
Store Byte (STB)

Store Left Byte (SLB) .
Store Right Byte (SRB)

iv

-3 =3 =3 -3 ~3 -3 =3 quqqqqq
| |
(o2 I« R B2 BN, I, B | >

4200002B

CONTENTS (Continued)

Chapter Page
7 INSTRUCTION STATEMENTS (Continued)

7.4 SINGLE-PRECISION ARITHMETIC INSTRUCTIONS (Basic and Extended Sets) . 7-6
7.4.1 Add (ADD). 7-7
7.4.2 Subtract (SUB) 7-7
7.4.3 Multiply (MPY) 7-7
7.4.4 Divide (DIV) . 7-8
7.5 DOUBLE-PRECISION ARITHMETIC INSTRUCTIONS (Extended Set) . 7-8
7.5.1 Double-Precision Add (DADD). 7-9
7.5.2 Double-Precision Subtract (DSUB) 7-9
7.6 LOGICAL INSTRUCTIONS (Basic Set) . e e e e e e e e 7-10
7.6.1 Logical AND (AND) « « « « o « o« . .. 7-10
7.6.2 Logical OR (OR) . 7-10
7.7 REGISTER INSTRUCTIONS (Basic Set) . e e e e e e 7-11
7.7.1 Push onto Stack (PUSH). 7-11
7.7.2 Pull from Stack (PULL). Ce e e e e e e e e 7-12
7.7.3 Exchange Register and Stack (XCHRS) Ce e e e e e e 7-12
7.7.4 Load Immediate (LI). . . . e e e e e e e e e 7-12
7.7.5 Add Immediate, Skip if Zero (AISZ) 7-13
7.7.6 Complement and Add Immediate (CAI) e e e e e e 7-13
7.7.7 Register Add RADD) v o e e e . 7-14
7.7.8 Register Exchange (RXCH). 7-14
7.7.9 Register Copy (RCPY) . e e e e e e e 7-14
7.7.10 Register Exclusive OR (RXOR) 7-15
7.7.11 Register AND (RAND) ... 7-15
7.8 BIT AND STATUS FLAG INSTRUCTIONS (Extended and Basic Sets) . . . T7-15
7.8.1 Push Status Flags onto Stack (PUSHF) 7-17
7.8.2 Pull Status Flags from Stack (PULLF) 7-17
7.8.3 Set Status Flag (SETST). 7-17
7.8.4 Clear Status Flag (CLRST). 7-18
7.8.5 Set Bit (SETBIT). e e e e e e 7-18
7.8.6 Clear Bit (CLRBIT) 7-18
7.8.7 Complement Bit (CMPBIT). 7-18
7.9 TRANSFER-OF-CONTROL INSTRUCTIONS (Basic and Extended Sets) 7-19
7.9.1 Jump Direct (JMP)« e e e e e e e e e e 7-19
7.9.2 Jump Indirect (JMP) Ce e e e e 7-20
7.9.3 Jump Through Pointer (JMPP). 7-20
7.9.4 Jump to Subroutine Direct (JSR) 7-20
7.9.5 Jump to Subroutine Indirect (JSR). D A !
7.9.6 Jump to Subroutine Implied (JSR). 7-21
7.9.7 Jump to Subroutine Through Point JSRP) 7-21
7.9.8 Return from Subroutine RTS)« « .+ .« . . . 7-22
7.9.9 Return from Interrupt RTI)« .« T-22
7.9.10 Branch on Condition (BOC). J T7-22

4200002B

Chapter

CONTENTS (Continued)

INSTRUCTION STATEMENTS (Continued)

.10

.10.1
.10.2
.10.3
.10.4
.10.5
.10.6
.10.7

.11

L11.1
.11.2
11.3
.11.4

.12
.12.1
.12.2

.13

.13.1
.13.2
.13.3
.13.4
.13.5

3 =3 =3 =31 -3 -3 -3 ~3 -3 -3 -3 -] -3 -3 =3 ~3 ~3 =3 -3 ~3 -3 -3

SKIP INSTRUCTIONS (Basic and Extended Sets)
Increment and Skip if Zero (ISZ).
Decrement and Skip if Zero (DSZ)

Skip if Greater (SKG) .

Skip if Not Equal (SKNE) .

Skip if AND is Zero (SKAZ) .
Skip if Status Flag True (SKSTF).
Skip if Bit True (SKBIT)

SHIFT INSTRUCTIONS (Basic Set)

Shift Left (SHL).
Shift Right (SHR)
Rotate Left (ROL) .
Rotate Right (ROR).

INTERRUPT HANDLING INSTRUCTIONS (Extended Set) .

Interrupt Scan (ISCAN).
Jump to Level 0 Interrupt, Indirect (JINT).

INPUT/OUTPUT, HALT, AND CONTROL FLAG INSTRUCTIONS (Basic Set) -

Register IN (RIN)
Register Out (ROUT)
Halt (HALT).

Set Flag (SFLG).
Pulse Flag (PFLG).

ASSIGNMENT STATEMENT .

DIRECTIVE STATEMENTS

9.1

=]
SC.OOQ\‘IGAUI?P-WN

[
—

© W YW W W W ©©w v O W ©
—
o]

oy
w

TITLE DIRECTIVE (. TITLE) .

PROGRAM SECTION DIRECTIVES (. ASECT, .BSECT, .TSECT)

END DIRECTIVE (. END)

LIST DIRECTIVE (. LIST) .
SPACE DIRECTIVE (.SPACE).
PAGE DIRECTIVE (. PAGE)
WORD DIRECTIVE (. WORD)
ASCII DIRECTIVE (. ASCII)
GLOBAL DIRECTIVE (. GLOBL) .
LOCAL DIRECTIVE (. LOCAL)

CONDITIONAL ASSEMBLY DIRECTIVES (.IF, .ELSE, .ENDIF)

FORM DIRECTIVE (. FORM)
EXTENDED INSTRUCTION DIRECTIVE (. EXTD) .

vi

Page

W

N

1 U
DN NN
~

U
[\
1o

-3 -1~ -3-3=3 qqqfnq -3 -3 -3 -3 -3 3 33

| S T | U
W wwNn N
OO o W ©

-3

7-31
7-31

8-1

Chapter

10

CONTENTS (Continued)

IMP-16 RESIDENT ASSEMBLER OPERATING PROCEDURE.

10.1 ASSEMBLER LOADING PROCEDURE .

10.2 ASSEMBLING A PROGRAM .

10.3 CARD READER INPUT« « =« « =« =« =« =
10.4 PAPER TAPE INPUT.

10.5 KEYBOARD INPUT

10.6 KEYBOARD/PAPER TAPE SPECIAL EDITING CHARACTERS
10.7 OBJECT LISTING.

10.8 RELOCATABLE LOAD MODULE (RLM)

APPENDIX — CHARACTER SETS

APPENDIX — STATUS BITS IN ARITHMETIC OPERATIONS.
B.1 ARITHMETIC WITH UNSIGNED DATA WORDS
B.2 MULTIPLICATION AND DIVISION .

APPENDIX — INPUT/OUTPUT PROGRAMMING

.1 PROGRAMMED INPUT/OUTPUT AND INTERRUPT INPUT/ OUTPUT
Programmed Input/Output .

Interrupt Input/Output ..

3 Stack Full Interrupt.

N o=

INPUT/OUTPUT SYSTEM ORGANIZATION e e e e e e e
1 Generalized Call to Input/Output
2 Device Drivers . . g

aaoa aaaa
Popro

APPENDIX — PROGRAMMERS CHECKLIST

APPENDIX — FOLD16 - IMP-16 FORTRAN OBJECT LOADER PROGRAM DESCRIPTION .

.1 GENERAL USAGE INFORMATION .
IMPLEMENTATION .

CALLING CONDITIONS .
RETURNING CONDITIONS
DESCRIPTION OF OPERATION

ENTRY NAME: UNPACK
Purpose
Calling Cond1t1ons
Returning Conditions

DO DO U1 s W N

LW N =

vii

4200002B

Page

10-1
10-1
10-2
10-2
10-2
10-3
10-3
10-3
10-3

1

[
N e

kN

o0 aaoaa Q
L 1

|
wn

g
[
AN

E-1

4200002B

Chapter

CONTENTS (Continued)

APPENDIX — PROGRAM DIAGNOSTIC MESSAGES .
F.1 INTRODUCTION.

F.2 RESIDENT ASSEMBLER ERROR MESSAGES
F.3 CROSS ASSEMBLER ERROR MESSAGES
F.4 OTHER ERROR CONDITIONS .,

APPENDIX — DIRECTIVE STATEMENTS,
APPENDIX — INDEX OF INSTRUCTION STATEMENTS
APPENDIX — CONVERSION TABLES .

APPENDIX — REFERENCES

viii

Page

I-1

J-1

4200002B

ILLUSTRATIONS
Figure Page
2-1 Sample Source Program . 23
2-2 Example of IMP-16 Cross Assembler Listing 24
2-3 Programming Process . 2-5
3-1 Arithmetic and Logic Units Referenced by IMP-16 Assembler 3-2
4-1 Sample Coding Form . 42
6-1 Memory Map.0 ... 82
6-2 RLM File and General Record Formats 6-5
6-3 Title Record Format .. 6-6
6-4 Symbol Record Format e e e e e e e e e e e e e e e e el 6T
6-5 Data Record Format . 6-8
6-6 End Record Format . 69
6-7 Operational Sequence for Preloading and Generating Memory Image Deck for Loading by
CRBOOT« .+ v o v v w v v v v v v v o . .. 611
6-8 Operational Sequence for Preparation of Input for ABSCR or GENIDR. 6-13
7-1 Configuration of Status Register 7-16
9-1 Example of Conditional Assembly Directives 95
10-1 Sample Listing of Resident Assembler 10-4
F-1 Resident Assembler Error Detection, ListingOutput. F-1
F-2 Cross Assembler Error Detection, ListingOutput F-2

ix

4200002B

Number

4-1
5-1
5-2
5-3
5-4
5-5
5-6
7-1
7-2
7-3
7-4
9-1
A-1
A-2
G-1
H-1
H-2
H-3
I-1
1-2
1-3
I-4
I-5

TABLES

Expression Classification Table

Address Operands.

Assembler Execution of Direct Base Page or Program-Counter-Relative Address.
Assembler Execution of Indirect Base Page or Program-Counter-Relative Address
Assembler Execution of Direct Indexed Address.

Assembler Execution of Indirect Indexed Address

Assembler Execution of Direct or Indirect Indexed Address Without Displacement Value.

Notations and Symbols Used in Operational Descriptions
Definitions of IMP-16C/L Flags

Branch On Condition Codes .

Control Flags .

Summary of Assembler Directives .

ANSI Character Set in Hexadecimal Representation .
Legend for Nonprintable Characters

Index of Directive Statements

Index of Basic Instruction Statements .

Index of Extended Instruction Statements .
Definitions of Field Designators

Positive Powers of Two .

Negative Powers of Two .

Hexadecimal and Decimal Integer Conversion Table
Hexadecimal and Decimal Fraction Conversion Table

Integer Conversion Table

Page

7-16
7-23
7-31
9-1
A-1
A-2
G-1
H-1
H-3
H-4
I-1
I-2
I-3

1-4

4200002B

Chapter 1

INTRODUCTION

This manual describes the IMP-16 Assembler Language and Programs. It is intended as a reference man-
ual to assist the IMP-16 user in developing software.

The IMP-16 is a programmable 16-bit parallel microprocessor. The CPU is configured around the
National Semiconductor General-Purpose Controller/Processor MOS/LSI devices. The MOS/LSI devices
consist of one or two CROMs (Control Read Only Memory), and four RALUs (Register and Arithmetic
Logic Units). Each RALU handles 4 bits, and a 16-bit unit is formed by comnecting four RALUs in
parallel. TUp to 65,536 words of semiconductor memory are supported.

The user has the alternative to select between two IMP-16 Assemblers: the IMP-16 Resident Assembler

and the IMP-16 Cross Assembler. Both assemblers are completely compatible in the programs they assem-
ble and vary only in their operating environments. In this manual, references to"the assembler programe"
will be concerned with information common fo both assemblers.

The IMP-16 Resident Assembler runs on an IMP-16 computer with a minimum of 4K words of memory
and a Teletype. The IMP-16 Resident Assembler accepts free format source statements from either the
keyboard, paper tape, or a card reader and produces an unlinked Relocatable Load Module on paper tape
and an object listing on the Teletype printer. The IMP-16 Resident Assembler requires three passes
over the source program; however, if the object listing or Relocatable Load Module is to be suppressed,
only two passes are required.

The information in this publication is based on the assumption that the reader is familiar with electronic
data processing hardware functions, but may or may not have assembler programming experience. Intro-
ductory material is provided for the user with little or no assembler programming experience. Chapter 2
contains a brief introduction to programming. Chapter 4 discusses the IMP-16 Assembler language in de-
tail, and, when necessary, the logical concepts upon which machine instructions are based are defined in
chapter 7. It is recommended that the user with no programming experience study the introductory sections
and read through the entire manual before trying to analyze some of the more-complex features.

All IMP-16 users should read chapter 5 on addressing carefully. The IMP-16 Cross Assembler Program
is discussed in chapter 6, and the machine and assembler statements are discussed in chapters 7 through
9. The IMP-16 Resident Assembler is discussed in chapter 10.

4200002B

Chapter 2

INTRODUCTION TO ASSEMBLER PROGRAMMING

This chapter describes basic programming concepts for the user with no programming background. The
following discussion is based on the assumption that the reader is familiar with electronic data processing
and the binary and hexadecimal numbering systems.

A program is a list of instructions in a specific sequence defined by the programmer to operate on data.
An instruction is a statement that contains two basic parts: an operation code defining the operation to
be performed and one or more operands defining the location of the data or specifying a device to be used.

The sequence of instructions in the program follow performs the following functions:

Establishes working areas (areas to which data is moved for manipulation) in storage.

Specifies constants (values used in arithmetic calculations, symbols used to set switches, and so
forth).

Specifies the appropriate operations to move data, perform appropriate tests and calculations,
handle exceptional conditions, and arrange data in appropriate output formats.

Many programmers find a flowchart assists in coding instruction statements. A process flowchart contains
all of the information that a programmer needs to write a usable program. Usually each step to be coded
in a statement line is represented by one or more symbols. Some of the symbols represent data manipula-
tion activities. Others represent operations that are required by the processor. Housekeeping activities
such as setting counters or clearing output areas are typical examples of processor operations.

2.1 THE ASSEMBLER LANGUAGE

An assembler language is a machine-oriented symbolic programming language that allows the programmer
to specify operations and operands with symbolic notations instead of binary notation. The programmer
specifies alphabetic or alphanumeric symbols in place of memory addresses for data and instructions. In
addition, the assembler language provides mnemonic operations codes.

The following example contrasts writing one instruction in binary and in assembler language.

Assume the programmer wants to terminate a sequence of instructions and start another. In the following
statement, the programmer codes the binary numbers in hexadecimal, one digit per column.
Column 1 2 3 4
2 1 F 5

The assembler language permits the programmer to use symbolic and/or decimal notation. The same instruc-
tion in assembler language looks like this:

JMP LOOP

In the hexadecimal coding, the programmer has the responsibility of counting address locations and deter-
mining if the jump (in this example) would be best made through the base page, or performed as a displace-
ment from an indexed value, or a displacement from the present position in memory. If the address to
which the jump is to be made is labeled LOOP:, the assembler takes care of all housekeeping.

4200002B

The assembler program keeps track of memory addresses for symbolic terms and substitutes these
addresses in place of the symbolic name in the object code instruction that is executed.

In summary, a symbolic language gives the user several important advantages over programming in
binary (hexadecimal)notation: i

Mnemonic operation codes are used to designate an operation.

Addresses of data and instructions may be assigned symbolic names that are used in subsequent
instructions.

The programmer does not have to be concerned where the program will ultimately reside in
memory.

The programmer may specify constant data in alphabetic or decimal format rather than binary
format.

Symbolic programs are easily modified because additional statements may be inserted into an
existing statement sequence.

2.2 THE ASSEMBLER PROGRAM

The statements written in symbolic assembler language must be translated into machine language before
the processor can execute the instructions.

The conversion of the program from its symbolic representation to binary representation is performed by
the assembler program. The assembler program translates the symbolic mnemonics to a machine langu-
age program. This conversion is called the assembly process.

The assembly process starts with the symbolic source program written by the programmer. An example
of a source program is shown in figure 2-1. The statements may be punched on cards or paper tape for
input to the assembler program or the statements may be input via a computer terminal keyboard. The
source program deck or file is the primary input to the assembler program.

The source program contains two basic types of statements: machine instructions and assembly instruc-
tions. The assembler program processes each type differently.

Machine instructions are used to request the processor to perform a sequence of operations during program
execution time. Machine instruction statements are a one-for-one symbolic representation of actual machine
language instructions. The assembler program generates an equivalent machine instruction in the object
program for each machine instruction statement.

Operands of machine instructions usually represent storage locations, registers, immediate data, or con-
stant values. A machine instruction statement may be identified by assigning a name (label) to it. The
value of the label is the address of the assembled machine instruction.

Assembler instructions are used to request the assembler program to perform certain operations during

the assembly process. These operations assist the programmer in data and symbol definition, in checking
and documenting the program, in controlling the assignment of storage addresses, in program sectioning and
linking, in defining data and storage fields, and in controlling the assembler auxiliary functions to be per-
formed by the assembler program. With few exceptions, assembler instructions do not result in the genera-
tion of any machine language code in the object program.

2-2

7/

CODING FORM

4200002B

PROGRAM EXAMPLE PR%RAM PUNCHING GRAPHIC eace | oF 3)
PROGRAMMER o, INSTRUCTIONS] eunc oaTE 8/ 1/23
STATEMENT ’
12 3 LGABSELG 7 8|9 ,OO‘F‘E’EA&“‘O"N‘S 1611718 13 20 21 22 ZOEPZE 25 26 27 28 29 30 3132/33 34 35S 36 37 38 39 40 41424344 45 4647 48 49 SOCSO:‘?ZE?;EG 55 56 57 58 59 60 6162 63 64 65 6667 68 69 70 71 72{73 l7”4E7'§T7lSFI7$A7;l7°9NBD
LTITLE SSd)mLSIMEI_F_idM/ 1/73)’
LGLQRL SSORT 5CAN_REFERENCE ENT
3SEPARATE ASSEMBLY
[SSORT SORTS A VECT@R ¢F SINGLE -WORD CHNSTANTS INT¢ ASCENDING
; BRDER. CALLING SEQUENCE [IS:
ISR SSORT s CALL
JNORD VECTOR {ADDRESS @F VECTOR
: LWORD VECTPR+LENGTH-| - ADDRESS ¢F LAST W _WORD ¢F VECTOR
HE cee i s NORMAL. RETURN
FLAG: LWORD o 5IF NON-ZERG, SWAP MADE DJING PASS
TAR: e=s4] : VECTGR ADDRESS
TAREND! [p 2o+ H Sd>g1 LIMIT
EGS: ez 4y {REGISTER SAVE AREA
SPRT: 8T , REGS $SAVE REGISTERS
T L, REGS +1
T REGS +2
3, REGS. +3
uLL 2 sPBTAIN ADDRESS (F PARAMETER | IST
USH 2 '
LT 0,0
ST 0, FLAG]
u; 3, 1(2) JEND @F VECT¢R

12385678

NN

910 1112 13 14 15 16|17 fB 19 20 21 22 23 24 25 26 27 28 2930 51 52

[7374 75 76 7778 79 80

23 34 35 36 3738 3940 414243 44 45 46 47 48 4950 5152 53 54 55 56 57 58 59 60 6162 63 64 65 6667 63 69 70 77 72

CODING FORM

rocen = XAMPLE PROGRAM PUNCHING | Grapric Pace 2 or R
PROGRAWIER 3, COINE INSTRUCTIONS[(= oare /) /73
STATEMENT o

LABEL
12 3 456 78

OPERATION
9 10 11 1213 14 15 1§

OPERAND
1718 19 20 2122 2324 25 26 27 28 29 30 3132

COMMENTS
33 34 35 36 37 38 39 40 41 42 4344 45 4647 48 49 50 51 52 53 54 55 56 57 58 59 60 6162 63 64 65 6667 68 69 70 71 72

IDENTIFICATION
73 74 7576 77 78 79 80

ST

TA?E ND

SKG

_1(R)

LD 3.(s VECTOR ADDRESS
T 3 TAR
¢op: b (3) $GET A VALUE

SCOMPARE AGAINST NEAT VALUE

JTMP

SVALUES IN @RDER.

LD I, 1(3) ?SWAP VALUE
T L 1(3)
ST INYED) e
LT I, 1 S SET SORT FILG NON-ZERD
ST |, FLAG
TEST - ISZ L 3 INCREMENT °

SKG TAREND JINISHED THIS PASS?
MP LppP ___LNg
D . FLAG 3YES - DID WE MAKE A SWAP?
ISz 0.0 o
IMP e+2 JYES - CONTINUE
TMP pUT 3~as — SGRT DONE
T o) 3INITTALIZE FPR NEXT PASS
ST O FLAG
LD 3. TAR
IMP LHP

UT: LD 0, REGS

D

| REGS+]

;REST@RE REGISTERS

D

REGS+2

1234 5678

S 10 1112 13 12 15 1g]

17 1519 20 21 22 25 24 25 26 27 28 29 20 31 32}33,

34 35 36 37 38 3940 4142 43 44 45 46 47 48 4950 5152 53 54 55 56 57 58 59 60 6162 63 64 65 6667 63 69 70 71 72

[7374 75 76 7778 79 %0

7

CODING FORM

PROGRAM EXA M PLE PROGRAM PUNCHING GRAPHIC pace R o 3
PrOcRAWER T, CODE. 1STRUCTIONS] Puncr oare 971 /73
STATEMENT ’
LABEL OPERATION OPERAND COMMENTS IDENTIFICATION
12 3 4 56 78[9 101112131415 lG17|3|§Z°Z|2223247525272829333'32333‘3536373539404‘4243‘4‘54547454550515253555556575359m5|5253545§56576559707|7Z73747576777
LD 3, REGS+3
END J,

Figure 2-1. Sample Source Program

2-3

4200002B

B

.

29.

bl

L6,
7.

50.

REVISION-F
SSORT

10/02/73

SIMPLE SCRT (08/01/73)

10/22 5:23P1%
PAGE NUMBER 1

10090 CTITLE SSORT, 'SHAPLE SORT (08/01/73)!
2 0000 .GLOCL SSORT ;CAN REFEREIICE ENTRY POINT FROWM
3 0009 ;SEPARATE ASSEMBLY
L 0009 H SSORT SORTS A VECTOR OF SINGLE-YORD CONSTANTS INTO ASCEMDING
5 00090 ; ORDER. CALLING SEQUEMNCE 1S:
5 0900 ;
7 0000 ; JSR SSORT ;CALL
3 0090 ; JAORD VECTOR ;ADDRESS OF VECTOR
9 0000 ; JORD VECTOR+LENGTH-1 ;ADDRESS OF LAST “ORD OF VECTOR
10 0000 ; . s NORFAL RETURN
11 0000 H
12 0000 0000 A FLAG: WORD 0 s |F NON-ZERO, SWAP MADE DURING PASS
13 0001 0002 T TAB: =,+1 ;VECTOR ADDRESS
14 0002 0003 T TABEMND: ,=,+1 ;SORT LIMIT
15 0093 0097 T REGS: Stk sREGISTER SAVE AREA
16 0007 ALFE A SSORT: ST 0,REGS sSAVE REGISTERS
17 9008 ASFR A ST 1,REGS+1
3 N0N9 AQF3 A ST 2,REG3+2
19 000A ADFR A ST 3,REGS+3
20 000R 1500 A PULL 2 ;OBTAIN ADDRESS OF PARAMETER LIST
21 009C L4200 A PUSH 2
22 009D 4C00 A LI 0,0
23 000E AIF1 A ST 0,FLAG
24 000F 2EQL A LD 3,1(2) ;EHD OF VECTOR
25 0010 4BFF A AISZ 3,-1
26 0011 ADFOQ A ST 3, TACEND
27 0012 8EQO A LD 3,(2) ;VECTOR ADDRESS
8 0013 ADED A ST 3,TAB
29 0014 8300 A LOOP: LD 0,(3) ;GET A VALUE
30 0015 E301 A SKG 0,1(3) ;COMPARE AGAINST NEXT VALUE
31 0016 2105 A JiP TEST ;VALUES [N ORDER
32 0017 8701 A LD 1,1(3) ;SUAP VALUES
33 001C A301 A ST 0,1(3)
34 0019 A700 A ST 1,0(3)
35 001A 4DO1 A L! 1,1 ;SET SORT FLG NON-ZERO
36 001B ABEL A ST 1,FLAG
37 001C 4BO1 A TEST: AlS? 3,1 ; IHCREMENT TABLE POINTER
38 001D EDEL A SKG 3, TABEND ;FINISHED THIS PASS?
39 0C1lE 21F5 A JP LOOP Ho)
40 001F S1ED A LD n,FLAG 3JYES - DID VE MAKE A SUAP?
41 0020 4800 A AISZ 0,0
42 0021 2101 A JHP 2 ;YES - CONTINUE SORT
43 0022 2104 A JHP ouT ;MO - SORT DONE
Ly Q023 LCon A LI 0,0 SINITIALIZE FOR NEXT PASS
45 0024 A1DB A ST 0, FLAG
46 0025 8DDB A LD 3,TAB
47 0026 21ED A JMP LooP
3 0027 81DB A OQUT: LD 0,REGS ;RESTORE REGISTERS
49 0023 85DB A LD 1, REGS+1
50 0029 8IDE A LD 2,REGS+2
51 002A 3DDE A LD 3,REGS+3
REVISION=-F 10/02/73 10/22 5:28PM%
SSORT SIMPLE SORT (08/01/73) PAGE NUMBER 2
52 002B 0202 A RTS 2
53 002C .END
*kkkkk 0 EPRORS IN ASSEMBLY #%%%%x
REVISION-F 10/02/73 10/22 5:28PM2
SSORT SIMPLE SORT (08/01/73) PAGE NUMBER 3

FLAG

LOoP

ouT

REGS

SSORT TAB

TABEND TEST

9009 T 0014 T 0027 T 0003 T 0007 T 0001 T 0002 T 001C T

ELCO

on.o,
/0,0,
'.;’o’oo

Figure 2-2. Example of IMP-16 Cross Assembler Listing

2-4

55.
56.

4200002B

Operands of assembler instructions provide the information needed by the assembler program to perform
the designated operation.

Two outputs are generated as a result of running a source program (programmer generated statements)
through the assembler program: (1) an object program consisting of actual machine instructions corres-
ponding to the source program statements, and (2) a program listing showing source statements side by
side with the object code instructions created from the statements. Most programmers work with the
program listing once it is available. A sample cross assembler listing is shown in figure 2-2.

As a source program is assembled, it is analyzed for errors in the use of the assembler language. Any
detected errors are indicdted on the program listing to assist the programmer in debugging.

The flowchart in figure 2-3 shows the relationship of the assembler program to the programming process.

Coding Source

Assembler

Program Processor

Object
Program

Program .
Listing gbject
rogram

Figure 2-3. Programming Process

Some assembler programs, called one-pass a2ssemblers, completely process the symbolic code during one
pass. Others make two passes through the source code. On the first pass, the assembler program
determines how many words of storage are required for each statement and assigns a beginning value for
the first location in every statement line. It generates the machine language program and assembly list-
ing during pass two. The IMP-16 Cross Assembler Program is a two-pass assembler. The IMP-16
Resident Assembler requires three passes, producing a listing on pass-2 and a binary tape on pass-3.

2-5

4200002B

In summary, a program goes through six basic processes: (1) design of flowchart, (2) coding of source
statements, (3) assembly run, (4) debugging, (5) test run, and (6) production run. A Programmers
Checklist is provided in appendix D to assist the programmer in desk checking for problems before the
assembly run.

2.3 ASSEMBLER PROGRAMMING AIDS

2.3.1 Data Representation

Decimal, hexadecimal, or character representation of machine-language binary values may be used in
source statements. Since the byte is the smallest unit of memory storage that can be addressed, the
8-bit code permits arrangement of the bits into 256 different configurations. These 256 unique charac-
ters can then represent all letters of the alphabet, the numbers 0 to 9, punctuation marks, and addi-
tional special symbols and control characters.

2.3.2 Binary Fixed-Point Format

Fixed-point instructions perform binary arithmetic on binary fixed-point formatted operands. Fixed-
point numbers consist of a 1-bit sign followed by a 15-bit integer field.

It is called fixed point because the processor interprets the number as a binary integer; that is, the
point is to the right of the least significant position. The programmer has the responsibility for keep-
ing track of an assumed point within a field.

All fixed-point operands are treated as signed integers. True binary notation with a sign bit of zero is
the representation of positive numbers. Twos-complement notation with a sign bit of one is the repre-
sentation of negative numbers. To obtain the twos complement of a number, the value of each bit is
complemented and a one is added to the low-order hit.

2.3.3 Memory Addressing

During execution of a program, instructions and data are stored in successive memory locations in the
main memory of the processor. It is characteristic of stored-program processors that they may treat
the contents of a particular memory location as an instruction at one time and as data at another time.

It 'has been noted previously that one of the advantages of an assembler language is the use of symbolic
addresses rather than actual addresses.

An "actual address" refers to the number identifying the location in memory that is actually passed by
the processor to memory in order to read or write a particular location at execution time.

A "symbolic address" is assigned by the programmer when writing the source statement and is used to
identify a particular assembler instruction or data word.

During the assembly process the assembler program maintains a 'location counter'" to tell where it is
in the assembly process and to use in assigning numeric values to symbolic addresses. In order to
understand how the assembler keeps track of addresses assigned to symbols, it is necessary to under-
stand the concept of the location counter.

2-6

4200002B

Whenever a symbol appears in the 'label field" of a statement, it is assigned a value that may be considered
to be an address in the object program. This value is called the location counter value. As each machine
instruction or data area is assembled, the location counter is incremented by the length of the assembled
item. Thus, it always points to the location of the next available storage area in memory.

Since the location counter is initialized to a value of zero at the beginning of each section in a program
during the assembly process, the location counter value assigned to the symbolic address is the relative
location word of the field being assembled to the first field that was assembled in the section; that is, its
tiyelative address." Then, when the program is loaded into main memory for execution, the relative ad-
dresses are mapped onto actual addresses (main memory addresses).

The assembler system compiles a table containing all of the symbols that appear in the label field. A speci-
fic memory address for each label is stored in the symbol table. References to symbols cause the Assem-
bler Program to interrogate the symbol table for the address of the field referred to in the statement.

Note that on the first pass, the assembler program determines now many words are required for each
statement and constructs a symbol table containing all symbols used. On the second pass, the operator
and operand fields for all statement lines are constructed. TUsing the values assigned in the symbol table
during the first pass, the location counter value assigned to the symbol can be substituted whenever the
symbol appears as an operand. Likewise, all numeric values are replaced with binary values and the
machine format is constructed.

2.3.4 Relocatability

The object programs produced by the assembler program may be produced in absolute and/or relocatable
formats. Absolute data can only be loaded in memory, for execution, at the exact location for which it
was assembled. Relocatable data may be loaded for execution in any suitable area in memory. The
loading of relocatable data has no relation to where the data were stored when assembled.

2.3.5 Linking
The programmer may define symbols in one program and refer to these symbols in another, thus provid-

ing symbolic linkages between independent programs. This permits reference to data and/or transfer of
control between programs.

2-7

4200002B

Chapter 3

OVERVIEW OF CPU

The IMP-16 is a 16-bit parallel processor containing read/write memory, read-only memory, register and
‘arithmetic logic units, and input/output control. Up to 65, 536 16-bit words of semiconductor memory are
supported.

This section briefly reviews those parts of the IMP-16 with which the programmer is primarily concerned.
Detailed information on the IMP-16 configuration is covered in the appropriate IMP-16 Users Manual.

3.2

OPERATIONAL FEATURES

Word Length 16 bits
Instruction Set 40 in basic set; 21 in extended set (implemented by CPU-resident microprogram)
Arithmetic Parallel, binary, fixed point, twos complement
Addressing Direct and indirect addressing
Absolute
Relative to Program Counter
Indexed
Typical Register-to-Register addition -- 4.9 microseconds
Instruction- Memory-to-Register addition -- 8.4 microseconds
Execution Register input/output -- 10. 5 microseconds

Speeds (IMP-16L)

ARITHMETIC AND LOGIC UNITS REFERENCED BY IMP-16 ASSEMBLER LANGUAGE AND PROGRAM

The units referenced in the discussion of the IMP-16 assembler language and program are discussed below
and are shown in a block diagram in figure 3-1.

3.2.1

Last-In/First-Out Stack (LIFOS)

The IMP-16 has a hardware stack that data may be stored in or retrieved from on a last-in/first-out basis.
The. stack is 16 words deep and is accessible through the top location. As a data word is entered into the
stack, the contents of the top location and each other location are pushed downward to the next lower level;
if the stack is full, the word in the bottom location is lost. Conversely, the contents of the top location
are pulled from the stack during retrieval of a data word; the top location and each lower location are re-
placed by the contents of the next lower location, and zeros are entered into the bottom location.

The stack is used primarily for saving status during interrupts and for saving subroutine return addresses.
It may also be used for temporary storage of data using the PUSH, PULL, and XCHRS instructions.

3.2.2

Status Register

There are 16 RALU status flags. These flags may be pushed onto the stack (saved) or may be loaded
from the stack (restored). During such operations, the flags are configured as a 16-bit word; the I
(Link), CY (Carry), and OV (Overflow) flags are the first, second, and third most significant bits, re-
spectively, and the remaining 13 flags are assigned various functions in the various members of the
IMP-16 family. The specific uses of certain flags are discussed in chapter 6.

3-1

4200002B

3.2.3 Program Counter (PC)

The program counter (PC) holds the address of the next instruction to be executed. It is incremented by 1
immediately following the fetching of each instruction during execution of the current instruction. When there
is a branch to another address in the main memory, the branch address is set into the program counter. A
skip instruction merely increments the program counter by 1, thus causing the one instruction to be skipped.

3.2.4 Memory Data Register (MDR) and Memory Address Register (MAR)

These two registers hold data and addresses, respectively, for instructions being executed.

3.2.5 Working Registers

The 16-bit accumulators, 0, 1, 2, and 3 are used as working registers for data manipulation. Data words
may be fetched from memory to an accumulator or stored from an accumulator into memory. The parti-
cular accumulator to take part in an operation is specified by the programmer in the appropriate instruc-
tion. i

LAST-IN/FIRST- OUT STACK
(LIFOS) - 16 WORDS

STATUS FLAGS
LOVCY FFFFFFFFFFFFF

Nonprogrammable Registers

PROGRAM COUNTER (PC)

MEMORY DATA REGISTER (MDR)
MEMORY ADDRESS REGISTER (MAR)

Programmable Registers

ACCUMULATOR 0 (ACO)
ACCUMULATOR 1 (AC1)

ACCUMULATOR 2 (AC2)
ACCUMULATOR 3 (AC3)

Figure 3-1. Arithmetic and Logic Units Referenced by IMP-16 Assembler

3-2

4200002B

Chapter 4

IMP-16 ASSEMBLER LANGUAGE

4.1 IMP-16 ASSEMBLER CODING CONVENTIONS

Source statements may contain from one to five entries: Label, Operation Mnemonic, Operand(s), Com-
ment, and Identification. The fields must be entered in the above order with one or more blanks sepa-
rating each field. The IMP-16 assembler program accepts free-form statements allowing the programmer
to disregard the boundaries specified on the coding form, if he choses. A sample coding form is shown
in figure 4-1. '

4.1.1 Label Field
The label field is an optional field and may contain a symbol used to identify the statement in other

statements. Each label must be terminated by a colon (:). More than one label may appear in the
label field.

4.1.2 Operation Field

The operation field is a mandatory field that contains a mmnemonic 6peration code defining the assembler
or machine operation.

4.1.3 Operand Field

Entries in the operand field identify and describe the data to be acted upon by the statement. One or
more operand entires may be needed, depending on the operation code.

1. If more than one operand is present, the operand entries must be separated by commas.
2. Operands may not contain embedded blanks unless the entry specifies a data string containing
blanks.

4.1.4 Comment Field

Comments are optional descriptive notes that are printed on the program listing for programmer reference.
Comments should be included throughout the program to explain subroutine linkages, assumptions made, for-
mats of inputs processed, and so forth. A comment may follow a statement or it may be entered on a
separate statement line(s), since it has no effect in the assembled program and is only printed on the listing.

The following conventions apply to comments:

1. A comment must be preceded by a semicolon ().
2. All valid characters, including blanks, may be used in comments.
3. Comments cannot extend beyond column 72, but further comment may be entered on the

following line (preceded by a semicolon).

¢-¥

CODING FORM

PROGRAM PUNCHING GRAPHIC PAGE oF N
PROGRAMMER INSTRUCTIONS. PUNCH .
STATEMENT

LABEL
12 3 4 56 78

OPERATION
S 10 11 1213 14 15 1§

OPERAND
1718 19 20 2122 2324 25 26 27 28 29 30 3132

COMMENT

- S
33 34 35 36 37 38 39 40 41424344 45 4647 48 49 50 51652 53 54 55 56'57 58 59 60 6162 63 64 65 66 67 68 69 70 71 72

IDENTIFICATION
73 74 75 76 77 78 79 80

12 34 5 6 78

S 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

33 34 35 36 37 38 3940 414243 44 45 46 47 48 4950 51 52 53 54 55 56 57 58 59 60 6162 63 64 65 66 67 68 69 70 71 72

[73 74 75 76 7778 79 80

Figure 4-1.

Sample Coding Form

g20000¢7%

4200002B

4.1.5 Identification Sequence Field
The identification sequence field is an optional entry that specifies program identification and/or statement
sequence characters. If the field or a portion of the field is used for program identification, the identi-

fication is punched in the statement cards and is listed on the program listing.

As an aid in keeping source statements in order, the programmer may code a sequence of characters in
ascending order in this field that is checked by an input sequence check instruction.

4.1.6 General Statements
A "title directive statement' may be used to generate headings on each page of the listing, and "page and
space directive statements' should be used to make the listing easier to read. For easier reference, the

subroutines contained in the program may be grouped together in alphabetical order by primary eniry
name. The program must be terminated with an "end directive statement."

4.1.7 Example Statement
The first line in the coding sheet shows the following statement:

Label Opcode rand Comment

LOOP 1D 0, VALUE sGET A VALUE
The label, LOOP, will be used to refer to this statement in later statements, in effect, to loop back to
the statement. The mnemonic operation code, LD, stipulates the type of operation. The operand field

contains two entries separated by a comma, and the comment field contains a note that may be used by
the programmer to quickly identify the action defined by the statement.

4.1.8 Character Set

Statements are written using the following letters, numeric digits, and special characters:

Letters: alphabetic characters A through Z
Numeric Digits: 0 through 9
Special Characters: Lt =¥/ 1&8%@ ()% ="

In addition, any of the printable characters listed in appendix A, ANSI Character Set in Hexadecimal Repre-
sentation, may be specified with the ASCIH Directive Statement. Other nonprintable characters (those with
multiple letters) may be generated by using one or more hexadecimal constants in a 'word directive state-
ment." The directive statements are discussed in chapter 9.

4.2 IMP-16 ASSEMBLER LANGUAGE STRUCTURE

Assembly language programs are structured around statements that consist of a label (optional), a mandatory
operation mnemonic code (opcode), an operand entry (usually required), and a comment (optional). Actual
entries in each field must meet certain specifications, and in many cases the programmer must understand
how the assembler program executes certain types of instructions in order to code legal statements.

4200002B

4.2.1 Label Entry

Labels are symbolic terms (see below) and must conform to their structure. The following rules apply to labels:

1. A label may contain from one to 32 alphanumeric characters and must conclude with a
colon (:), for example, TABEND:.
2. Blanks cannot appear within the label.
3. For nonlocal labels, the first six characters must be unique. For local labels, the first five

characters must be unique.

4.2.2 Operation Mnemonic Entry

Valid operation mnemonics are defined in detail in chapters 7, 8, and 9. Operation mnemonics are classi-
fied as Assignment, Directive, and Instruction codes. Assignment Statements assign a value to a symbol.
Directive Statements control the process of program assembling and may generate data. Instruction State-
ments define the machine operations necessary to execute the program.

4.2.3 Operand Entry
An Operand Entry is composed of one or more terms.

All terms represent a value. The value may be assigned by the assembler program during assembly
(symbols) or it may be inherent in the term itself (self-defining). An arithmetic combination of terms is
reduced to a single value by the assembler program.

The various types of terms are defined below.

Symbolic Terms

Symbols are the most common means of referencing address locations or arbitrary values. Sym-
bols are defined (assigned values) by one of three methods:

1. By appearing in the '"label field'" in a statement.

2. By using an "assignment statement' to assign a specific value to a symbol.

3. By using a ".FORM directive statement" to assign a value to a symbol.

A symbol that is used to reference a location or value (but not a . FORM symbol) may be further
identified as a global symbol permitting other programs to access its value.

The value assigned to the symbol is the address of the instruction, data, or storage location
named by the symbol. If the address of an item changes upon program relocation, the symbol

is considered a '"relocatable term." If the address does not change upon program re-location, the
symbol is an "absolute term."

4200002B

Symbol construction must meet the following restrictions:

1. A symbol may contain one or more alphanumeric characters, the first of which must be either
a letter or a dollar sign ($).

2. Although up to 32 letters may be included, only the first six letters are recognized by the assembler
program. Therefore, the programmer must ensure that a long symbol is unique in the first six
characters.

3. If the first character in the symbol is a dollar sign ($), the symbol is defined as a local
symbol. The .LOCAL operator allows the programmer to specify that local symbols appear-
ing between two .LOCAL directive statements have a certain meaning only within that region
of the program. This enables the programmer to use common mnemonics throughout a pro-
gram without causing a conflict of names. Note: A long local symbol must be unique in its
first five characters.

4. No special characters or embedded blanks may appear within a symbol.
5. Symbol values cannot exceed a positive value of 65,535 or a negative value of 32,768.

Several examples of symbols follow:

Legal Symbols Illegal Symbols
$ABC LONGSYMBOL1
LONGSYMBOL LONGSYMBOL2
$AB2 2AB

$2 #CDE

XYZ XYZ$
$ABCDEF $ABCDE
$ABC2EF $ABCDF

A program assembled on the IMP-16 cross assembler may contain 700 symbols. One assembled on
the resident assembler, in 4K of memory, may contain approximately 25 symbols. A program
assembled on 8K of memory may contain approximately 825 symbols. ’

Self-Defining Terms

A self-defining term is one whose value is inherent in the term. The assembler program does not
assign a value to the term but uses the term itself as the value to be assembled.

Self-defining terms are used to specify immediate data, addresses, registers, and I/0 information
to the assembler program. Three types of self-defining terms are available: decimal, hexadecimal,
and character.

A decimal self-defining term is specified by a nonzero first digit followed by the number of digits
necessary to make the number. The range of decimal numbers is -32768 through 65535. Examples
include: 32671, 10, 5, -600.

A hexadecimal self-defining term is specified in one of two ways. The term may be preceded by X'
or the term can start with a leading zero. The range of hexadecimal numbers is -8000;5 to FFFF,4.
Examples include: X'A2, 0A2, X'1234, 01234, 0, X'0, 0ABCD, X'ABCD, -X'TF.

4200002B

A character self-defining term is specified as a string. A string is a series of characters or a
single character enclosed in single quote marks (for example, '"THIS IS A STRING'). All letters
and special characters may be specified in a string. If a single quote mark is part of the char-
acter string, it should be immediately preceded by another single quote mark, for example,
'DON'"'T DO IT' represents DON'T DO IT. String characters are translated to ASCII code (see
appendix A) in memory with each character occupying 8 bits. If a string contains an odd num-
ber of characters, it will be padded with a trailing blank. An empty string (for example, ')
will cause generation of a word containing two blanks.

EXPRESSIONS

Operand entfries consisting of either a single term or an arithmetic combination of terms are
called expressions. Expressions are either simple or multiterm. Simple expressions are sin-
gle terms such as a symbol or a self-defining term. Multiterm expressions are simple expres-
sions that are combined by arithmetic operators for evaluation by the assembler program.
Multiterm expressions are formed in the same manner as normal arithmetic expressions and
are evaluated by the assembler program in a strict left-to-right order without regard to treat-
ing a particular operator before any other. Parentheses are not permitted.

The following table lists the arithmetic operators available for forming multiterm expressions.

Arithmetic

Operator Function Type
+ Addition Binary
- Subtraction Unary or binary
* Multiplication Binary
/ Division Binary
% Unary Logical NOT
& Binary Logical AND
[Binary Logical OR

A unary operator operates upon one operand and appears in the format "op' opnd." For example,

-9. A binary operator operates upon two operands and appears in the format "opnd; op opndy."
For example, A&B.

In addition to representing a value, all expressions have a mode. Mode reflects the relocation

of the assembled expression in memory at load time. The programmer creates a source program

in sections producing a load module that is absolute, base sector relocatable, or top sector relo-
catable or a combination of the three (see 5.2); the assembler program allocates the assembled program to

main memory in sectors. Therefore, mode may be absolute, base sector relocatable, or top sec-
tor relocatable.

An expression is absolute if its value is unaffected by program relocation. An absolute expres-
sion may be a single term or the result of an arithmetic combination of terms.

An expression with a top or base sector relocatable mode is one whose value would change by n
if the section which it references is relocated n words away from its originally assigned storage
area.

4200002B

Self-defining terms always have an absolute mode. The mode of symbolic terms depends on where
the term was coded in the source program. Whenever a new section is encountered during the
assembly process, the location counter is set to the mode of that section. For example:

1. A symbol used as a label has the mode of the location counter at the time that label was
encountered by the assembler program.

2. A symbol given a value by an assignment statement has the mode of the expression on the
right side of the assignment statement.

3. A global symbol has an external mode, and may not appear in a multiterm expression.

The mode of the resulting value from a multiterm expression is determined by the modes of the
terms within the expression and the arithmetic operators used to combine the terms. (When a
character string is included in an expression, it is treated as though it is two characters long.
If more than two characters are in the string, the lefi-most pair is retained and the excess is
ignored. If there is only one character in the string, it is treated as one character followed by
a blank.)

Table 4-1 lists legal mode and arithmetic operator/term combination. This table is used to
determine the mode assigned by the assembler program to the result of a multiterm expression.

Table 4-1. Expression Classification Table

Multiterm New Expression
Mode Mode
Left Right Operator Operator Operator
Term Term L+R L-R L x R Comments
A A A A A A = Absolute
A B B I I B = Base Sector
A T T 1 I T = Top Sector
B A B B I x =% * /, &
T A T T I or !
B B I A 1 I = Illegal
T T I A I
B T I I I
T B I I I
How to use table 4-1:
1. Read the expression from left to right, a term at a time. Determine the present mode of

the first term. [Initially the L Term refers to the term on the left side of the arithmetic
operator. The resulting evaluation mode when the two terms are combined becomes the
L Term for the next combination. The R Term refers to the term on the right side of
the arithmetic operator.

4-7

4200002B

Find the proper combination of modes (multiterm mode column).

Select the appropriate arithmetic combination of the I. Term and the R Term and follow
that column down to the row selected in Step 2 above. The new expression mode is indi-
cated in that row.

Note: x stands for %, *, /, !, or %.

If a unary operator (- or %) appears at the beginning of an expression, assume an abso-
lute zero appears to the left of the unary operator. In other words, the L Term is abso-
lute and the R Term assumes the mode of the term to the right of the unary operator.
Then consult the table in the normal way.

An external symbol (a global symbol that can be referenced by other programs) is only
valid when used as a simple expression. This means that an external symbol cannot
appear in a multiterm expression.

Given the following terms and related modes, some examples of the use of the Expression Classification

Table follow:

Terms Mode

Al, A2, A3 Absolute

B1, B2 Base Sector Relocatable
T1, T2, T3 Top Sector Relocatable

Al + B2

Al (L Term) is absolute mode and B2 (R Term) is base mode (line 2). Following to
the right, the L + R column indicates a new expression mode of base (B).

T3 +6 - T1

Expressions are evaluated in a strict left-to-right order so T3 + 6 is evaluated first.
T3 (L Term) is top mode and the constant 6 is absolute mode. The combination is
found in line 5. L + R determines that the mode of T3 + 6 is also top.

Since the resulting evaluation is top mode, the L Term for the next evaluation is top.

T3 +6 -~ T1
S —
top top

The mode of T1 (R Term is top). Entering L - R (line 7) gives absolute as the mode
for the expression as a whole.

T2 - A2 + T3 - A3 + Bl

First evaluate T2 - A2, T2 (L Term) is top mode while A2 (R Term) is absolute.
The combination (top, absolute) is found in line 5 under operator L - R. Top is given
as the resulting mode (new L Term).

T2 - A2 + T3 - A3 + Bl
N —

top top

T3, the new R Term is top. Therefore, line 7 is selected. TUnder L + R, the expres-
sion is illegal and will not be processed further.

4-8

4200002B

4.3 DATA REPRESENTATION

Data are represented in the IMP-16 in twos-complement integer notation. In this system, the negative of
a number is formed by complementing each bit in the data word and adding 1 to the complemented number.
The sign is indicated by the most significant bit. In the 16-bit word of the IMP-16, when bit 15 is a

10, " it denotes a positive number; when it is a "1," it denotes a negative number. Maximum number
ranges for this system are 7TFFFq (+3276710) and 80001g (-32768;() for single-precision operations. For
double-precision operations, the first consecutive word addressed in memory contains the high-order part,
and the next consecutive word contains the low-order part of a double-precision number. Bit 15 of the
high-order part is the sign bit.

4-9

4200002B

Chapter 5

ADDRESSING

5.1 REGISTERS

The four working registers (accumulators) are addressed by placing the numeric address (0, 1, 2, or 3) in
the operand field. The addresses and corresponding accumulators are as follows:

0 Accumulator 0 (ACO)
1 Accumulator 1 (AC1)
2 Accumulator 2 (AC2)
3 Accumulator 3 (AC3)
NOTE

The "assignment statement" (chapter 8) may be used to assign
symbolic addresses to the working registers.

Programs are commonly written using the working registers as follows:

ACO0 — primary data-handling register

AC1 — secondary data-handling register
AC2 — base register for indexed addressing
AC3 — base register for indexed addressing

5.2 MEMORY

The addressable memory of the IMP-16 is 0 to 65535. Main memory is divided into two areas. Because the
majority of the operations in the instruction set have an address field of only 8 bits, and therefore, allow
explicit addressing of words 0 to 255 in memory, the "base sector" comprises locations 0 to 255. The

"top sector' comprises the remainder of memory.

Based on the program section directive statements coded by the user, the IMP-16 assembler program allo-
cates a program to main memory in three sectors or parts: base sector relocatable, top sector relocatable,
and absolute. The portion of the program allocated to the base sector is directly addressable from any loca-
tion in main memory. The portion of the program allocated to the top sector is addressed directly or indi-
rectly. Data assigned an absolute address is placed in either the base sector or top sector. No check is
made to determine whether the data in absolute locations will interfere with the base sector or top sector.

5.3 LOCATION COUNTER

The "location counter' assigns relative addresses to program statements. It is similar to the CPU program
counter, which contains the main memory address of the next instruction to be executed at execution time.
As each machine instruction or data area is assembled, the location counter is incremented by the length of
the assembled item. Thus, it always points to the location of the next available storage location in memory.
If the statement is named by a label, the value assigned to the label is the value of the location counter.

42000028

The IMP-16 assembler program maintains separate location counter addresses for each sector (absolute,
base, and top). The assembler program normally begins assembly of each sector with the corresponding
location counter mode initialized to a value of zero. Source statements in each sector are assigned
addresses from the location counter set for the appropriate sector. If a sector is interspersed through-
out a program, whenever the sector is re-encountered, the location counter is reset to reflect the appro-
priate sector mode and assumes the value that was its last value when assembling in that sector.

The location counter mode is controlled by the "program section directives" (chapter 9), and the "assign-
ment statement (chapter 8) is used to change the value.

5.4 METHODS OF ADDRESSING

Three methods of accessing data by an instruction are available: immediate, direct addressing, and
indirect addressing.

5.4.1 Immediate Addressing

A statement that contains the value of its operand in the operand field itself has an immediate address.
This method is limited to certain operation mnemonics. All immediate operands are absolute since their
value does not change when the program is relocated.

5.4.2 Direct Addressing

A direct-address operand specifies the address of the location in memory whose contents are used during
execution of an instruction. Direct addresses fall into three categories: base page, program counter
relative, and indexed.

Base Page

Base-page addresses refer to the base sector and consequently can only address bytes 0 to 255
in memory. Base page addresses are directly accessible from any location in memory. The
operand specifying the address must have a value in the 0 through 255 range.

NOTE
The assembler program automatically assigns value 0 to the index

register field in the machine instruction format, thus specifying
base page address.

Program Counter Relative Addressing

A program-counter-relative address is formed by adding the current contents of the program
counter (PC) to the value specified in the operand field. The value is treated as a signed num-
ber since its sign bit (bit 7) is propogated to bits 8 through 15. This permits program-counter-
relative addressing -128 and +127 locations from the PC value. Note, however, at the time the
program-counter-relative address is calculated, the program counter has already been incremented
and is pointing to the next memory location. Therefore, the actual addressing range is -127 to
+128 from the current instruction.

NOTE
The assembler program automatically assigns value 01 to the index

register field in the machine instruction format, specifying program-
counter-relative addressing.

4200002B

The programmer cannot explicitly specify program counter relative addressing. If the programmer
specifies a base-sector reference without indexed addressing in the operand field, the assembler
program automatically indicates the base page address mode. If a top-sector reference is indicated,
the assembler program attempts program-counter-relative addressing.

If both modes fail, an addressing error occurs.

Indexed Addressing

Indexed addressing enables the programmer to address any location in the 65K memory by utiliz-
ing a base register addressing scheme. Base-register addressing requires the designation of an
accumulator (containing a base address) and a displacement value for specifying a storage loca-
tion. The assembler adds the contents of the register to the number formed from the displace-
ment value to yield the address. For example, assume that AC2 contains a base address of 300,
and the displacement value is 120. The displacement is added to the base address and the result
is an address of 420.

Only accumulators 2 and 3 may be used as base (index) registers, and a base value must be pre-
viously assigned to the register before it is used in an address.

IMP-16 indexed addressing allows the programmer to address 256 words around the base address;
that is, the base address represents the middle of a floating page. The displacement can be
-128 through +127 from the base.

An indexed address operand contains the displacement immediately followed by the index register
address in parentheses. The register address must be absolute and evaluate to 2 or 3 (accumu-
lator 2 or 3). The displacement number is treated as a signed 8-bit number from -128 to +127.

5.4.3 Indirect Addressing

An indirect address operand specifies the address of a memory location that holds the address of the data
to be used as the effective address by the instruction. Indirect addresses fall into three categories:

base page, program counter relative, and indexed. The address is calculated using the same methods
used for direct addresses with one exception (See JINT, chapter 7). Indirect addressing is limited to
certain operations and is specified by a @ before the displacement value in the operand field.

5.4.4 Double-Word Addressing

Ten of the 60 instructions use a double-word machine instruction format. These instructions utilize direct
and indirect addressing methods exactly as the single-word instruction. The 16-bit displacement field
makes all of memory directly addressable, although indexed addressing may be used if desired. It is
important to note that with program-counter-relative addressing, the program counter contains the ad-
dress of the displacement word (second byte) of the instruction. The instructions are Multiply (MPY),
Divide (DIV), Double Precision Add (DADD), Double Precision Subtract (DSUB), Load Byte (LDB),

Store Byte (STB), Load Left Byte (LLB), Load Right Byte (LRB), Store Left Byte (STB), and Store

Right Byte (SRB).

NOTE

IT IS RECOMMENDED THAT PROGRAM-COUNTER-RELATIVE
ADDRESSING NOT BE USED WITH BYTE INSTRUCTIONS.

5-3

4200002B

The address operand gives the data required to calculate an effective memory address (EA) at execution
time. Operand fields specifying addresses are summarized in the following table.

Table 5-1. Address Operands

Address
Type Operand Field Calculation

Direct Base Page displacement EA = disp

Direct PC-Relative EA =disp + PC
Indirect Base Page @displacement EA = disp

Indirect PC-Relative EA =disp + PC

Direct Indexed displacement (index) EA =disp +xr

Indirect Indexed @displacement (index) EA =disp + xr

EA - effective address specified by the instruction. The contents of the effective

address are used during execution of an instruction.

disp - stands for displacement value and is an 8-bit, signed twos-complement number
except when base page address is specified.

PC - program counter.

xr - index register (AC2 or AC3).

Operator Address Classes

Instruction statement memory-reference operators are separated into seven classes according to
addressing capability. The classes are defined below.

Class 1 ADD, SUB, SKG, SKNE, AND, OR, SKAZ, ISZ, DSZ

a. May directly address all of base sector (0-255).

b. May use indexed addressing with displacement range -128 through 127.

c. If not indexed, assembler program will attempt program-counter-relative
addressing for top sector reference.

Class 2 LD, ST, JMP, JSR

a. May directly address all of base sector (0-255).
b. May use indexed addressing with displacement range -128 through 127.

c. If not indexed, assembler program will attempt program-counter-relative
addressing for top-sector reference.

d. May use indirect addressing to address all of memory.

o
|
KN

42000028

e. For a top-sector reference, if the instruction is not indexed or marked indirect
already, and if it is not possible to use program-counter-relative addressing, the
assembler will force indirect addressing through a base-page pointer. The cross
assembler will generate up to 125 pointers in base sector; the resident assembler
up to 50 pointers. Generation of a base-page pointer may be avoided by marking
the instruction indirect via an explicit top-sector pointer.

Class 3 MPY, DIV, DADD, DSUB (Extended Instruction Set)

a. Instruction length is two words, so instruction may directly address all of
memory.

b. May use indexed addressing to address all of memory.

Class 4 LDB, LLB, LRB, SLB, SRB, STB (Extended Instruction Set)

a. May address the memory range 0 through 7FFFg.

b. May use indexed addressing.

c. Program-counter-relative addressing is not available for these instructions.
Class 5 JINT (Extended Instruction Set)

a. May address all of memory indirectly via a 16-word jump table in locations

b. May not use indexed addressing.

c. Program-counter-relative addressing is not available for this instruction.
Class 6 JSRI

a. May address the memory range FF80;4 through FFFFg.
b. May not use indexed addressing.

c. Program-counter-relative addressing is not available for this instruction.
Class 7 JMPP, JSRP (Extended Instruction Set)

a. May address all of memory directly.
b. May not use indexed addressing.

c. Program-counter-relative addressing is not available for these instructions.

Assembler Program Generation of Instructions Containing Addresses

Tables 5-2 through 5-7 illustrate the various addressing formats and define the type of addressing structure
developed by the assembler program for 1-word memory reference instructions.

5-5

4200002B

In order to use the tables, the address type must be determined and the proper table selected. The
following address types apply:

Direct Base Page or Program-Counter Relative ----- table 5-2
Indirect Base Page or Program Counter Relative ---- table 5-3
Direct Indexed ———==~-=——m—=— e table 5-4
Indirect Indexed ~———————==—=—=—— == table 5-5
Direct Indexed Without Displacement Value-——-~—---- table 5-6
Indirect Indexed Without Displacement Value —-~=-~~- table 5-6

The table is entered in the appropriate expression mode, and the first applicable case listed under
"assembler interpretation" is determined. The following results are given:

1. The action taken by the assembler program
2. The mode of the generated object code

Table 5-2. ASSEMBLER EXECUTION OF DIRECT BASE PAGE OR

PROGRAM-COUNTER-RELATIVE ADDRESS

then, program counter relative addressing is used.

and -128 < location counter +1 - expression < 127,

Example: R1,TABLE
Address Assembler Program Object Code Mode
Expression Mode Interpretation for Instruction
absolute (1) 0 £ expression < 255 absolute
A reference to the base sector is assumed and an absolute
address is generated.
(2) If the expression is the same mode as the location counter absolute

addressing.

and the instruction is forced indirect.

(3) expression > 255 and the instruction will permit indirect

A reference to the top sector is assumed. A pointer to the
address is established in the base sector (in a section
immediately after the top of the base sector section for the
current assembly). A reference to the pointer is made,

base sector
relocatable

(pointer object
code mode is
absolute)

indirect addressing.

ADDRESSING ERROR

(4) expression > 255 and the instruction will not permit

base sector
relocatable

(1) 0 < expression < 255

A relocatable base page reference is assumed.

base sector
relocatable

(2) expression > 255
ADDRESSING ERROR

5-6

Table 5-2. ASSEMBLER EXECUTION OF DIRECT BASE PAGE OR

PROGRAM-COUNTER-RELATIVE ADDRESS (Cont.)

4200002B

Address

Assembler Program

Object Code Mode

Expression Mode Interpretation for Instruction
top sector (1) Location Counter Top Sector Mode
relocatable (a) If -128 < location counter +1 - expression < 127 absolute
then an index through the location counter instruction
addressing mode is generated.
(b) If the expression is outside the above limits and base sector
indirect addressing is allowed, a pointer is estab- relocatable
lished in the base sector. The instruction is . .
. . (pointer object
forced to indirect addressing mode, and a refer- .
. . code mode is top
ence is made to the base sector where the pointer
. sector (relocat-
resides.
able)
(e) If neither of the above conditions exist, there is an
ADDRESSING ERROR
(2) Location Counter Base Sector or Absolute Mode.
Rule (1)(b) above is tried. If the instruction cannot be
made indirect, there is an ADDRESSING ERROR
external The external must be in the base sector unless the instruc- external
tion is LD, ST, JMP, or JSR; in which case it can be
located anywhere in memory.
Table 5-3. ASSEMBLER EXECUTION OF INDIRECT BASE PAGE OR
PROGRAM-COUNTER-RELATIVE ADDRESS
Example: L R1, @ TABLE
Address Assembler Program Object Code Mode
Expression Interpretation for Instruction
any type If the expression is the same mode as the location counter absolute
and (-128 = location counter +1 - expression < 127),
then, location-counter-relative addressing is used.
absolute (1) 0 =< expression =< 255
A reference to the base sector is assumed, and an absolute
absolute reference is generated.
(2) expression > 255
ADDRESSING ERROR
base sector (1) 0 < expression = 255
relocatable A relocatable base page reference is assumed. base sector
relocatable
(2) expression> 255

ADDRESSING ERROR

4200002B

Table 5-3. ASSEMBLER EXECUTION OF INDIRECT BASE PAGE OR
PROGRAM-COUNTER-RELATIVE ADDRESS (Cont.)

Address
Expression Mode

Assembler Program
Interpretation

Object Code Mode
for Instruction

top sector (1) Location counter top sector mode and -128 =<
relocatable location counter +1 - expression < 127
A location-counter-relative instruction addressing absolute
mode is used.
(2) All other cases
ADDRESSING ERROR
external The external symbol must be in the base sector. external

Table 5-4. ASSEMBLER EXECUTION OF DIRECT INDEXED ADDRESS

Example: 1D

R1, LABEL (R3)

First Address
Expression Mode

Assembler Program
Interpretation

Object Code Mode
for Instruction

absolute

(1)

-128 < expression = 127

The value of the expression is placed in the displace-
ment field. It will be added to the value on the specified
index register at execution time.

absolute

(2)

All other cases

ADDRESSING ERROR

base sector
relocatable

@

-128 < expression < 127

The value of the expression is placed in the displace-
ment field. It will be added to the value in the specified
index register at execution time. Because the value is
relocatable by the loader, care must be taken to ensure
that the result is less than 127.

base sector
relocatable

2

All other cases

ADDRESSING ERROR

top sector
relocatable

ADDRESSING ERROR

external

The external must be located in the base sector in loca-
tions 0 through 127.

external

5-8

Table 5-5. ASSEMBLER EXECUTION OF INDIRECT INDEXED ADDRESS

4200002B

Example: LD Rl, @LABEL (R3)

All conditions are the same as the conditions for the direct-indexed-address
address-operand type except the indirect addressing mode has been selected.

Table 5-6. ASSEMBLER EXECUTION OF DIRECT OR INDIRECT INDEXED
ADDRESS WITHOUT DISPLACEMENT VALUE

Example: LD R1, (R3)
ID Rl1, @ (R3)

In this case, the displacement field is set to zero, and the generated instruction
code is absolute. The effective address at execution time is either the contents
of the index register or the contents of the memory location pointed to by the
index register (indirect addressing).

5-9

4200002B

Chapter 6

IMP-16 ASSEMBLER PROGRAMS

6.1 DEFINITION

The IMP-16 "cross assembler program' assembles an object program for a source program on a host computer
for subsequent execution by an IMP-16 microprocessor. The assembler may be used on different host processors
since it is written in FORTRAN IV (USA Standard Language Subset). It requires the following minimum peripheral
hardware complement: processor inputf unit, scratch unit, list output unit, and binary output unit.

The cross assembler accepts free—format source statements and, in two passes, produces an unlinked "relocatable
load module™ (object program) and a program listing.

The IMP-16 "resident assembler' assembles an object program from a source program on an IMP-16 computer
and accepts input for assembly from the card reader, the paper tape reader, or the Teletypewriter keyboard. It
is a three~pass assembler that produces an assembler listing on pass-two and a binary-output paper tape on pass-
three.

Salient features of the IMP-16 assembler program follow.

Relocatable or absolute load module generation

Conditional assembly facilities

Global symbols for communication between independent programs
Local symbols

Wide variety of assembly time operators (+, -, *, /, AND, OR, NOT)
Diagnostic messages that include error position in source line

Refevence 5 describes how to use the IMP-16 cross assembler and the related programs installed on the TYM-
SHARE nation-wide timesharing system.

6.2 PROGRAM RELOCATION

The programmer should have an understanding of the relocation mechanism and the way in which the IMP-16 loader
acts on the unlinked Relocatable Load Module (RLM) before the assembler is used.

Three types of object codes can be generated by the assembler in the RLM: (1) absolute, (2) base sector relocatable,
and (3) top sector relocatable. The type or types of object code that exist in a particular RLM depends on the pro-
grammer's use of the "program section directives" (. ASECT, .BSECT, and . TSECT) that enable the programmer
to create the program in sections, producing a load module that is absolute, base sector relocatable, top sector
relocatable, or a combination of the three. The programmer may control the start of both the base-sector and the
top-sector sections. Absolute sectors are always loaded where they were assembled. Therefore, the programmer
must exercise some care to ensure that an absolute section does not overlay an existing base- or top-sector sec-
tion. Usage of the lower 256 memory locations (base sector) should be minimized because they are used for both
intra- and inter-RLM linkages and other absolute data such as interrupt processing routines, shared data, debug-
ging routines, and other routines. To conserve memory space, one RLM's base sector (or top sector) immed-
iately follows the base or top sector from the previous RLM unless other direction is given.

A memory map showing the locations of an RLM containing all three sectors is shown in figure 6-1.

6-1

4200002B

Sectors contained
in sample RLM

¥voHA

00FF

TOP-SECTOR SECTION

32
T ¢

2.
<

]

=0 g

L

>

Pointers for Inter-Assembly Linkage

255

10

007F

Pointers for Intra-Assembly Linkage

BASE-SECTOR SECTION

127

ABSOLUTE SECTOR

Any external symbols
referenced in indexed
r expressions must be
located here

Figure 6-1. Memory Map

6-2

4200002B

6.3 INPUT AND OUTPUT

The input and output files (data sets) required by the cross assembler are listed below:

FORTRAN Logical
File Name File Record
(DDNAME) Function Format Length
FT05F001 Source File (Input) Sequential 80 bytes
FT06F001 Listing File (Output) Sequential 121 bytes
FTO09F001 Relocatable Load Module (Out) Binary 18 words

6.3.1 Source File (Input)

The source file may be input via punched cards, paper tape, or from the keyboard of a computer terminal.

6.3.2 Program Listing File (Output)

The program listing contains ASA-standard carriage control characters. The format of the program listing
written from this file follows. An example program listing is shown in figure 2-2.

Each line in the cross assembler program listing contains the following sequential columns: line number,
location counter, value, indicator, source statement error message.

Where:
LINE NUMBER — decimal line number of the source input statement. All source statements

not deleted by conditional assembly directives are assigned sequential numbers.

LOCATION COUNTER — current hexadecimal value of the location counter. Any labels in
the source statements are assigned this value.

VALUE — hexadecimal value of the code generated (or assignment made). For Assembler
Statements that do not generate code, this field is blank.

INDICATOR — 1-character symbol that describes the relocation characteristics of the code
generated. The symbols are as follows:

Symbol Interpretation

A Absolute - value will not be changed.

B Base Sector Relocation - base sector relocation constant is added.

T Top Sector Relocation - top sector relocation constant is added.

I Indirect Address Generated - base sector relocation constant is added.

E External - instruction address is linked to a symbol that is external to the assembly.
F Form - word was generated by a . FORM statement.

SOURCE STATEMENT — reproduction of the source statement.

ERROR MESSAGE — will appear on the line(s) following the statement line if an error is detected.
The question mark to the right of the error message designates, as closely as possible, the posi-
tion of the error in the statement.

Error messages are defined in appendix G.

4200002B

At the end of the program listing, a list of generated pointers is provided (if generated anywhere), a symbol table
is produced, a message is printed noting the number of errors discovered by the assembler program, and the
source and object checksums are printed.

6.3.3 Relocatable Load Module (Output)

The relocatable load module (RLM) contains the object code produced from the source statements, the relocation
information, and the external linkage details. The RLM file is written as an unformatted file.

6.4 TYPES OF RLM RECORDS

The RLM file is composed of a series of records each comprising eighteen 16-bit words. The representation of
these records depends on the storage medium. There are four types of RLM records:

Title Record (one per RLM)

Symbol Record (variable number per RLM)
Data Record (variable number per RLM)
End Record (one per RLM)

An RLM record is punched on cards in hexadecimal characters using four columns per word. Thus, 18 words
occupy columns 1 through 72. Each column contains the Hollerith characters for the corresponding hexadecimal
digit.

On paper tape, an RLM record is punched by the IMP~-16 resident assembler as follows:

Start of Text Character X'02

RLM Record (each word occupies two 8-bit frames)
Carriage Return (OD)

Line Feed (OA)

8 Null Frames

The loaders scan for a "start of text character, " then process the record whose length is specified in the first
word (see figure 6-2) and then ignore subsequent frames until a new "start of text character" is encountered.

The records are produced in the sequence illustrated in figure 6-2A. Independent of the record type, the first
two words (figure 6-2B) in each record always have the same interpretation. The first word specifies the rec-
ord type and the length of the record body. The second word contains a checksum for error detection.

6.4.1 Title Record

The title record identifies the RLM by name and, optionally, by a qualifying character string. These two items
are supplied by the last . TITLE directive statement in the source program. If this directive is not included, a
default name (MAINPR) is used. If the default name is assigned, the qualifying character string is empty. Also
included in the title record are two values that specify the amount of storage utilized in the base sector and the
top sector of memory. The method for determining the storage utilization is by keeping track of the maximum
value held by two respective location counters. Figure 6-3 illustrates the format of the title record.

6.4.2 Symbol Records

The symbol records specify values for global symbols that are internal to the current RLM. These symbols can
then be referenced by other RLMs. In addition, global symbols that are external to the RLM are specified with
associated linkage information. Figure 6-4 illustrates the format of the symbol record.

4200002B

TITLE RECORD

SYMBOL RECORD

0 to n Symbol Records

LYY

[£
b)Y
W

SYMBOL RECORD

DATA RECORD

S 0 to m Data Records

L}
(44
b}
U

DATA RECORD

END RECORD

Record View A. RLM File Format

Word
Number

15 14 13 0 Bit Position
2] [S T |

1 RCD LENGTH

2 CHECKSUM

RECORD

L X]
h)
(y

vyl
C

I BODY

17

18

Notes: 1. RCD specifies the type of record
RCD Record Type

0 Title

1 Symbol
2 Data

3 End

2. The CHECKSUM is formed by taking the
arithmetic sum of all the words in the rec-
ord body.

View B. General Record Format

Figure 6-2. RLM File and General Record Formats

6-5

42000028

Record

Word

Number

15 8|7
1 1 1 1] 1 1 1 1

3 BOTTOM SECTOR SIZE
4 TOP SECTOR SIZE
5 C(1) C(2)
6 C(3) C(4)
7 C(5) C(6)
8 5(1) 5(2)
9 S(3) S(4)
. A & A
:]
17 S(19) 5(20)
18 S(21) 5(22)

Notes:

1. C(i) and S(i) are 7-bit ASCII characters.
If there are more than 22 characters in the
qualifying string, only the first 22 are used.

Figure 6-3. Title Record Format

6-6

Bit Position

Program Name

Qualifying
Character
String

Record
Word
Number
15 1413 12 11 10 9 87 ol .
1 1 1 1 1 v 1 7 1 - 1 1 i
3 TYP 1|TYP 2|TYP3 / /{V(I)T USED / /
4 SYM1 (1) SYM1 (2)
5 SYM1 (3) SYML1 (4)
6 SYM1 (5) SYM1 (6)
7 VALUE 1
8 SYM2 (1) SYM2 (2)
9 SYM2 (3) SYM2 (4)
10 SYM2 (5) SYM2 (6)
11 VALUE 2
12 SYM3 (1) SYMS3 (2)
13 SYMS (3) SYM3 (4)
14 SYMS3 (5) SYMS (6)
15 VALUE 3
16 / /
— NOT USED
17
18

Notes: 1. TYP(i) specifies the relocation mode for

symbol i.
TYP (i) Relocation Mode
0 absolute
1 base sector
2 top sector
3 external

2. VALUEI is the absolute address (TYP(i) = 0),
relocatable address (TYP(i) =1 or 2), or
external reference number (TYP(i) = 3).

3. SYMi(j) are 7-bit ANSI characters. If a sym-
bol is less than six characters long, the re-
maining characters are zero.

Figure 6-4. Symbol Record Format

6-7

Bit Position

4200002B

4200002B

6.4.3 Data Record

The data records contain the actual data and the instruction words to be loaded into memory. Each data record
contains the initial load address and the address mode for the first data word in the record. Subsequent data
are loaded sequentially. Also, for each data word, there is a 2-bit field that specifies relocation information.
Any time a location or a discontinuity (that is, change of sector or empty block) exists in the data to be loaded,
the current record is terminated (possibly with fewer than 12 data words) and a new record is initiated. Figure
6-5 illustrates the data record format.

Record
Word
Number
15,14 13 121110 9 8 7 6 5 4 3 2 1 0 Bit Position
1 1 h d /l ,l 1 1 1t 1 1 1 1
3 / /x6visen/ / / ATYP
4 INITIAL LOAD ADDRESS
5 TYP1|TYP 2|TYP 3|TYP4|TYP5|TYP 6|TYP 7|TYP 8
6 TYP 9| TYPI0|TYPIl|TYP1 NOT USED / /
Z Z
7 DATA (1)
8 DATA (2)
9 DATA (3)
10 DATA (4)
[~ ~
17 DATA (11)
18 DATA (12)

Notes: 1. ATYP specifies the address mode for the
INITIAL LOAD ADDRESS.

ATYP Address Mode

0 absolute
1 base sector relocatable
2 top sector relocatable

2. TYP(i) specifies the relocation mode for
DATA().

TYP(i) Relocation Mode

0 absolute

1 base sector
2 top sector
3 external

Figure 6-5. Data Record Format

6-8

4200002B

6.4.4 End Record

The end record marks the end of the RLM file and specifies an entry address for the load module. The end record
format is illustrated in figure 6-6.

The source checksum represents the sum (modulo—ZlG) of all the characters, taken one at a time, in the program
source file. This sum is printed on the program listing following the symbol table printout.

The object checksum represents the modulo—216 sum of all the individual record checksums of the RLM. This
sum is also printed on the program listing following the symbol table.

Record
Word
Number
15 2 1 0 Bit Position
] 1 1 1 1 1 1 1)] 1 1 1 1 1
3 / / / NOT USEly / , ATYP
4 ENTRY ADDRESS
5 SOURCE CHECKSUM
6 OBJECT CHECKSUM
7 -~
- [¥
L]
*
* NOT USED
8. /) /

Note: 1. ATYP specifies the mode of the entry
address.

ATYP Address Mode

absolute
base sector
top sector
external

LONE=O

Figure 6-6. End Record Format

6.5 LOADING OBJECT PROGRAM INTO IMP-16

The relocatable load module output by the IMP-16 cross assembler program must be reformatted before it can
be loaded into IMP-16 memory for execution. The type of reformatting depends on the loading method used.
Three loading methods are available, each of which involves tradeoffs among the complexity of the loading pro-
cess, the amount of work that must be done by the user, and the flexibility available to the user at load time
(vs. assembly time).

Several IMP-16 programs are available for loading reformatted RLMs into memory of the IMP-16 for execution.
In addition ANSI FORTRAN programs are available to reformat the RLM output by the assembler program into
a format suitable for each loader. The loading methods, the loaders available for each method, and the corres-
ponding reformatting programs are defined below. (A detailed description of each loader is discussed in the
appropriate IMP-16 Utilities Reference Manual.)

6-9

4200002B

6.5.1 Bootstrap Loaders

The simplest loading process involves bootstraping the program into memory. Bootstrap loading consists of using
a simple bootstrap loading program (CRBOOT or PTBOOT) to read a program, preconverted to its exact memory
format, into a fixed area of main memory for execution.

Bootstrap loading is very rapid, but only one program can be loaded before execution begins. The bootstrap pro-
gram may be (1) resident in Read Only Memory (ROM), (2) loaded by a hardware function, or (3) loaded by the user
via the control panel.

The preconversion of the program to its exact memory format implies the following:

1. Allocation of the entire program to an absolute fixed memory region prior to assembly. This must
be done by the programmer and reduces flexibility at load time.

2. Use of a utility program that will reformat the RLM into an IMP-16 bootstrap format.
The following are bootstrap loaders:

1. CRBOOT loads the formatted 72 hexadecimal characters from each card into 18 successive IMP-16
memory locations. When loading is completed, execution begins.

2. PTBOOT loads an 8-channel binary paper tape into memory. The paper tape must be preformatted
to contain the initial load address as the first word of the tape, the number of words to be loaded as
the second word, and the start address as the last word of the tape. When loading is completed,
execution begins.

IMPPCRB is an ANSI FORTRAN program that is available for preparing memory images suitable for loading by
CRBOOT. IMPPCRB preloads one or more RLMs into simulated IMP-16 memory (without relocation or inter-
module linking) and punches a hexadecimal memory image onto cards in a format suitable for loading by CRBOOT.
See figure 6-7. .

In order to convert Assembler output to paper tape format, a 2-step process is required. This process is de-
scribed in 6.5.4.

6.5.2 Absolute Loaders

An absolute loader is used to load one or more programs into preallocated, fixed areas of memory. In order to
use this type of loader, the user must decide, before assembly, the exact memory areas to be occupied by each
of his programs. Also, any linking of one program to another or to common, shared data must be accomplished
at assembly time by assignment of common labels to fixed, absolute addresses in memory. The advantages of
this method are that a small, simple loader may be used and that no commands are required at load time. The
absolute loader may be resident in ROM (Read Only Memory) or may be loaded by a bootstrap loader.

The following are absolute loaders:
1. ABSCR reads one or more RLMs from the card reader, loads them into specified memory locations,
and transfers control to the specified entry point.
2. ABSPT reads one or more RLMs from the paper tape reader, loads them into specified memory

locations, and transfers control to the specified entry point.

IMPPRLM isan ANSI FORTRAN program that transcribes RLMs, as output by the IMP-16 assembly program,
to punched cards in the format required by ABSCR and GENLDR (described next). The sequence of operations
shown in figure 6-8 is necessary to prepare input for these loaders.

4200002B

Source Source
Program Program
4
IMP-16 IMP-16
Assembler Assembler

One or More

i - RLMs
Program
Listing O O O
RLM

File

Program
Listing

IMPPCRB
y
Control Card that
Terminates Memory
Memory Image Deck
Image

Figure 6-7. Operational Sequence for Preloading and Generating Memory
Image Deck for Loading by CRBOOT

6-11

4200002B

Input for ABSPT is prepared with IMPPRLM with one additional step. The cards must be transcribed onto paper
tape. Only the first "n'" columns of an RLM card are represented on paper tape; "n'" is the number of the first
blank column, or 73 if columns 1 through 72 are nonblank. This leaves sequence numbers and trailing blanks off
the tape. On cards, an object word is represented as four hexadecimal characters; on tape a word is repre-
sented by two 8-bit characters. Each paper tape record must be preceded by a STX (Start of Text) character,
X'02.

6.5.3 Linking Loader

The most-complex loading process involves relocation of programs and linking among several programs and their
shared data at load time. Such a program allows the user to assemble each of his programs relative to memory
location zero and will either follow its own method of allocating programs to available memory areas or follow
instructions given by the user as to where each program should be loaded. When using this loader, the user may
also designate, at assembly time, certain labels within or referenced by his programs as global labels, to be
defined or referenced by other programs. At load time, the linking loader connects each reference to a global
label (subroutine or data) to its absolute address in memory. This allows the programmer to make all decisions
about memory allocation at load time and relieves him of the problem of linking shareable subroutines or data.
The disadvantage of this loader is its large size, which precludes usage of a large part of main memory for code
or preset data. The linking loader may be loaded by an absolute loader.

The linking loader is GENLDR, a command-driven IMP-16 program that reads one or more RLMs from either
the card reader or the paper tape reader, resolves intermodule linkages, relocates object code (as directed at

assembly time by . ASECT, .BSECT, or . TSECT directive statements) and transfers control to the specified
entry point.

The reformatting program is IMPPRLM described previously.
6.5.4 Reformatting RLM Output on Other Media or in Other Formats
In general, to convert an assembler output to other media or other formats, a 2-step process is required:

1. The RLMs output by the assembler program must be preloaded into a vector in memory-image
" form.

2. An output routine must be written that will output the generated vector onto the proper media in
the format desired.

An ANSI FORTRAN subroutine, FOLD16, may be called by a user program to perform step 1 above. Appendix E
contains a program description of FOLD16.

6-12

4200002B

Source
Program

IMP-16
Assembler

Program
Listing

IMPPRLM

RLM

Object Deck

'RLM

Figure 6-8. Operational Sequence for Preparation of Input for ABSCR or GENLDR

6-13

4200002B

Chapter 7

INSTRUCTION STATEMENTS

7.1 INTRODUCTION

Instruction statements specify machine instructions. An instruction statement is composed of an instruction
operator and zero, one, or more operands, depending on the particular instruction. It may be preceded by
one or more labels and may be followed by a comment.

There are 61 Instruction Statements. The basic instructions contain 40 instruction statements and the ex-
tended instructions contain 21 instruction statements. The extended instructions cannot be executed unless
the user has the CROM implementing that instruction set. The instruction statements are summarized in
appendix I. Detailed descriptions of the instruction statements are given in this chapter. Instruction state-
ments comprise twelve functional types:

Load and Store Instructions

Byte Instructions

Single-Precision Arithmetic Instructions
Double-Precision Arithmetic Instructions
Logical Instructions

Register Instructions

Bit and Status Flag Instructions
Transfer-of-Control Instructions

Skip Instructions

Shift Instructions

Interrupt Handling Instructions
Input/Output, Halt, and Control Flag Instructions

© 0 =010 Ok W

o
SRS

The following nomenclature is employed in describing the coding structure of the statements.
Capital letters represent literal text that must appear in the coded instructions.

~ Lowercase letters name an exposition. The field designators used follow:

@ indirect addressing

accumulator register field (value = 0 or 1)

address address field

immed immediate operand (-128 through 127)
immed3 positive 3-bit immediate operand (0-7)
immed4 positive 4-bit immediate operand (0-15)
+immed positive immediate operand (0 through 127)
register register field (value 0, 1, 2, or 3)

spaddr special address field

(xr) register field (value =2 or 3)

Brackets around a field indicate that the field is optional.

Refer to table 7-1 for definitions of the notation and symbols used in the operation descriptions of each in-
struction statement.

The machine language for each instruction is described in the appropriate application or users manual; for
example, the IMP~16C Application Manual, the IMP-16L Users Manual, and the IMP-16P Users Manual.
See appendix J.

4200002B

The name of each instruction and its opcode mnemonic (in parentheses) are given as the heading preceding
the description of the instruction.

The address class referenced in the notes in each instruction description are defined in 5.4. 5.

Table 7-1. Notations and Symbols Used in Operational Descriptions

The notations are listed in alphabetical order. The symbols are listed on the following page. Upper-case
mnemonics refer to fields in the instruction word; lower-case mnemonics refer to the numerical value of
the corresponding fields. In cases where both lower- and upper-case mnemonics are composed of the same
letters, only the lower case mnemonic is given in table 7-1. The use of the lower-case notation designates
variables.

Notation Meaning

ACr Denotes a specific working register (AC0, AC1, AC2, or AC3), where r is the number
of the accumulator referenced in the instruction.

AR Denotes the address register used for addressing memory or peripheral devices.

cc Denotes the 4-bit condition code value for conditional branch instructions.

ctl Denotes the 7-bit control-field value for flag, input/output, and miscellaneous instruc-
tions.

CY Indicates that the Carry flag is set if there is a carry due to the instruction (either an

addition or a subtraction).

disp Stands for displacement value and it represents an operand in a nonmemory reference
instruction or an address field in a memory reference instruction. It is a signed twos-
complement number except when base page is referenced; in the latter case, it is
unsigned.

dr Denotes the number of a destination working register that is specified in the instruction-
word field. The working register is limited to one of four: AC0, AC1, AC2, or AC3.

EA Denotes the effective address specified by the instruction directly or by indexing. The
contents of the effective address are used during execution of an instruction.

fe Denotes the number of the referenced flag.

INTEN Denotes the Interrupt Enable control flag.

IOREG Denotes an input/output register in a peripheral device.

L Denotes 1-bit link (L) flag.

ov Indicates that the overflow flag is set if there is an overflow due to the instruction
(either an addition or a subtraction).

PC Denotes the program counter. During address formation, it is incremented by 1 to
contain an address 1 greater than that of the instruction being executed.

r Denotes the number of a working register that is specified in the instruction-word field.
The working register is limited to one of four: AC0, AC1, AC2, or ACS3.

SEL Denotes the Select control flag. It is used to select the carry or overflow for output on
the carry and overflow (CYOV) line of the CPU, and to include the link bit (L) in shift
operations.

sT Denotes the number of a source working register that is specified in the instruction-

word field. The working register is limited to one of four: ACO0, AC1, AC2, or AC3.

STK Denotes the Last-In-First-Out stack in the CPU.

7-2

4200002B

Table 7-1. Notations and Symbols Used in Operational Descriptions (Cont.)

Notation

Meaning

Xr

When not zero, this value designates the number of the register to be used in the indexed
memory-addressing mode.

()

Denotes the contents of the item within the parentheses. (ACr) is read as "the contents
of ACr." (EA) is read as "the contents of EA. "

Denotes an optional field in the assembler instruction format.

Indicates the logical complement (ones complement) of the value on the right-hand side
of ~ .

Means "is replaced by."

Appearing in the operand field of an instruction, denotes indirect addressing.

Denotes an AND operation.

Denotes an OR operation.

<I<>©f

Denotes an exclusive OR operation.

7.2 LOAD AND STORE INSTRUCTIONS (Basic Set)

The instructions that transfer data out of main storage (memory) to a working register (accumulator) for
processing or transfer data into memory from an accumulator are the load and store instructions. The
load instructions load data into an accumulator, and the store instructions store data into memory.

7.2.1 Load Direct (LD) — Basic Instruction Set

The working register is loaded with the contents of the effective address.

Operation: (ACr)-=—(EA)

Coding format: Operation Operand
1D register, address [(XR)]

The operand field contains the address of a working register and an effective
address. The address field contains one of the following:

1. An explicit address for base-sector or top-sector addressing
2. A displacement value immediately followed by the address of the base
register enclosed in parentheses

Notes: 1. The initial contents of the working register are lost.
2. The contents of the addressed memory location are unchanged.
3. Address class 2.

4200002B

7.2.2 Load Indirect (LD) — Basic Instruction Set
The working register is loaded with the contents of the address specified by the effective address.

Operation: (ACr)=— ((EA))

Coding Format: Operation Operand
LD register, @address [(XR)]

The operand field contains the address of a working register and an effective
address. The address field may contain a base-sector, top-sector, or an
indexed address (see 7.2.1).

1. The initial contents of the working register are lost.

2. The contents of the addressed memory location are unchanged.
3. The contents of the index register are unchanged.

4. Address class 2.

Notes:

7.2.3 Store Direct (ST) — Basic Instruction Set
The contents of the working register are stored in the memory location specified by the effective address.
Operation: (EA)<—(ACr)
Coding Format: Operation Operand
ST register,address [(XR)]

The operand field contains the address of a working register and an effective
address. The effective address contains one of the following:

1. Contains an explicit address for base-sector or top-sector addressing.
2. Contains a displacement value immediately followed by the address of the
base register enclosed in parentheses.

1. The initial contents in the addressed memory location are lost.
2. The contents of the working register are unchanged.
3. Address class 2.

Notes:

7.2.4 Store Indirect (ST) — Basic Instruction Set

The contents of the working register are stored in the memory location specified by the contents of the
effective address.

Operation: ((EA))=—(ACr)
Coding Format: Operation Operand
ST @register,address [(XR)]

The operand field contains the address of a working register and an effective
address. The address field may contain a base-sector, top-sector, or
indexed address (see 7.2.4).

Notes: 1. The initial contents in the addressed memory location are lost.
2. The contents of the working register are unchanged.
3. The contents of the index register are unchanged.
4. Address class 2.

4200002B

7.3 BYTE INSTRUCTIONS (Extended Set)

The six byte instructions allow the user to load or store an 8-bit byte as opposed to the 16-bit word loaded or
stored by the load and store instructions. The byte instructions simplify character manipulation.

7.3.1 Load Byte (LDB)— Extended Instruction Set

The load byte instruction loads the low-order byte of ACO with a byte from the EA + 2. If the low-order
bit of the effective address is 1, the low-order byte is loaded; otherwise, the high-order byte is loaded.
The addressing range for this instruction is 0 through TFFFjg,

Operation: Low-order byte of (AC0)~— byte from (EA 3 2); SEL~<—0
Coding Format: Operation Operand

LDB address [(XR)
The operand field specifies the direct address.
Notes: 1. EA =+ 2 is the effective address shifted right one position.
2. The high-order byte of ACO is set equal to zero.
3. The select flag is cleared.
4. Load Byte uses a double-word machine instruction format.
5. Load Byte is an extended instruction.
6. PC-relative addressing is not recommended and is not allowed
by the assembler.
Address class 4.

=

7.3.2 Load Left Byte (LLB) — Extended Instruction Set

The load left byte instruction loads the low-order byte of ACO with the high-order byte of EA -+ 2. The
load left byte instruction forces the low-order bit of EA to 0, ensuring that the high-order byte is loaded.

The operation, coding format, and notes are identical to those for the load byte instruction (7. 3. 1).

7.3.3 Load Right Byte (LRB) — Extended Instruction Set

The load right byte instruction loads the low-order byte of ACO with the low-order byte of EA <+ 2. The
load right byte instruction forces the low-order bit of EA to 1, ensuring that the low-order byte is loaded.

The operation, coding format, and notes are identical to those for the load byte instruction (7. 3. 1).

7-5

4200002B

7.3.4 Store Byte (STB) — Extended Instruction Set
The store byte instruction stores the low-order byte of ACO into the byte of EA =+ 2 as specified by the low-
order bit of the effective address. If the low-order bit is 1, the low-order byte is specified; otherwise, the

high-order byte is specified. The addressing range for this instruction is 0 i;hrough TFFFyg.

Operation: Byte of (EA - 2)<—low-order byte from (AC0); SEL~—0

Coding Format: Operation Operand
STB address [(XR)]

The operand field specifies the direct address.
Notes: 1. EA = 2 is the effective address shifted right one position.
2. The unspecified byte of EA -+ 2 and the contents of ACO are unaffected.
3. The select flag is cleared.
4. STB uses a double-word machine instruction format.
5. STB is an extended instruction.
6. PC-relative addressing is not recommended and is not allowed by

the assembler.

7. Address class 4.

7.3.5 Store Left Byte (SLB) — Extended Instruction Set

The store left byte instruction stores the low-order byte of ACO into the high-order byte of EA = 2. The
store left byte instruction forces the low-order bit of EA to 0, ensuring that the byte is stored in the high
order-byte of EA <+ 2.

The operation, coding format, and notes are identical to those for the store byte instruction (7. 3. 4).

7.3.6 Store Right Byte (SRB)— Extended Instruction Set

The store right byte instruction stores the low-order byte of ACO into the low-order byte of EA - 2, The
store right byte instruction forces the low-order bit of EA to 1, ensuring that the byte is stored in the low-
order byte of EA - 2.

The operation, coding format, and notes are identical to those for the store byte instruction (7. 3.4).

7.4 SINGLE-PRECISION ARITHMETIC INSTRUCTIONS (Basic and Extended Sets)

The four single-precision arithmetic instructions effect algebraic addition, subtraction, multiplication,
and division of 16-bit binary operands. Add and subtract are single-word instructions and multiply and
divide are double-word instructions.

The carry (CY), overflow (OV), and link (L) bits in the status register are automatically set or reset depend-
ing on the result of an arithmetic operation. The OV bit is set whenever an add or subtract operation

causes a carry out of bit 14 different from that out of bit 15; otherwise it is a 0. The CY bit is set whenever
an add or subtract operation causes a carry out of bit 15; otherwise it is a 0. The L bit is used for arith-
metic operations (multiply and divide), and optionally as described later, in shift and rotate operations
(7.11). Therefore, activation is controlled by the SEL control flag. If the SEL flag is set, L is activated.

If the SEL flag is 0, L is deactivated. If the L bit is activated, it is treated as the high~order bit of a

17-bit register, formed by linking the L bit and an accumulator. A detailed explanation of the status bits
usedin arithmetic operations is given in appendix B.

4200002B

7.4.1 Add (ADD) — Basic Instruction Set

The contents of the working register are added algebraically to the contents of the effective address, and the
sum is stored in the working register.

Operation: (ACr) < (ACr) + (EA), OV,CY

Coding Format: Operation Operand

ADD register, address |:(XR):|

The operand field contains the address of the working register and a direct
effective address, specifying the augend.

Notes: 1. The contents of the addressed memory location are unchanged.
2. The initial contents of the working register are lost.
3. The carry and overflow flags are set according to the result of the
operation.
4. Add is a basic instruction.
5. Address class 1.

7.4.2 Subtract (SUB) — Basic Instruction Set

The contents of the working register are added to the twos complement of the contents of the effective address.
The result is stored in the working register.

Operation: (ACr) <—(ACr) +~ (EA) + 1,0V,CY

Coding Format: Operation Operand

SUB register,address [(XR)]

The operand field contains the address of a working register and a direct
effective address, specifying the subtrahend.

Notes: 1. The contents of the addressed memory location are unchanged.
2. The initial contents of the working register are lost.
3. The carry and overflow flags are set according to the result of the (twos complement)
operation.
4. Subtract is a basic instruction.
5. Address class 1.

7.4.3 Multiply (MPY) — Extended Instruction Set

The multiply instruction automatically uses the first (AC0) and second (AC1) working registers. It is the
programmer's responsibility to store data from these registers before coding a multiply instruction.

The unsigned integer is the second working register (AC1) is multiplied by the positive integer in the effec-

tive address. The high-order part of the 32-bit result is stored in ACO and the low-order part is stored in
AC1.

7-7

42000028

Operation: (ACO0), (AC1)=~—(AC1) * (EA); SEL-—0; L altered

Coding Format: Operation Operand
MPY address [(XR)]

The operand field specifies the direct effective address of the memory location
containing the multiplier.

1. The previous contents of ACO and AC1 are lost.

2. The contents of the addressed memory location are unchanged.
3. The select flag is cleared.

4. The link flag is left in an arbitrary state.

5. MPY uses a double-word machine instruction format.

6. MPY is an extended instruction.
7. Address class 3.

7.4.4 Divide (DIV) — Extended Instruction Set
The divide instruction automatically uses the first (AC0) and second (AC1) working registers. It is the pro-

grammer's responsibility to store data from these registers before coding a divide instruction.

The positive 32-bit integer in ACO (high-order part) and in AC1 (low-order part) is divided by the contents
of the effective address. The divisor must be a positive number. The integer quotient is placed in AC1 and
the remainder in ACO.

Operation: (AC0), (AC1)=—(ACO0), (AC1) + (EA); OV; SEL-—0; L altered

Coding Format: Operation Operand
DIV address [(XR)]

The operand field specifies the direct effective address of the memory
location containing the divisor.

Notes: 1. The overflow flag is set if either of the following results occur:

a. The high-order part of the dividend (initial contents of AC0) is
greater than or equal to the divisor.
b. The quotient is negative.

The select flag is cleared.

The link flag is left in an arbitrary state.

The contents of the addressed memory location are unchanged.
Division by zero is illegal and falls into note 1 (above).

DIV uses a double-word machine instruction format.

DIV is an extended instruction.

Address class 3.

PRSP

7.5 DOUBLE~PRECISION ARITHMETIC INSTRUCTIONS (Extended Set)

The two-double-precision arithmetic instructions permit algebraic addition and subtraction of 32-bit operands.
Double-precision add and double-precision subtract are both double-word instructions.

7.5.1

Double-Precision Add (DADD) — Extended Instruction Set

4200002B

The double-precision add instruction automatically uses the first (AC0) and second (AC1) working registers.
It is the programmer's responsibility to store data from or load data into these registers before coding a
DADD instruction.

The double-precision twos-complement value in ACO (high order) and AC1 (low order) is added to the double-
precision twos-complement value in the effective address (high order) and the effective address +1 (low

order).

7.5.2

The result is stored in AC0O and AC1.

Operation: (AC0), (AC1)=~—(ACO0), (AC1) + (EA), (EA+1); OV; CY, SEL~<—0

Coding Format: Operation Operand
DADD address [(XR)]

The operand field specifies the direct effective address containing the high-order
augend.

Notes: 1. The contents of the effective address and effective address +1
are unchanged.

2. The overflow or carry flag is set if an overflow or carry occurs;
otherwise, they are cleared.

3. The select flag is cleared.

4. DADD uses a double-word machine instruction format.

5. DADD is an extended instruction.

6. Address class 3.

Double-Precision Subtract (DSUB) — Extended Instruction Set

The double-precision subtract instruction automatically uses the first (AC0) and second (AC1) working regis-
ters. It is the programmer's responsibility to store data from or load data into these registers before coding
a DSUB instruction.

The double-precision twos-complement value in the effective address (high order) and effective address +1
(low order) is subtracted from the double-precision twos-complement value in ACO (high order) and AC1
(low order). The result is stored in AC0 and AC1.

Operation: (ACO0), (AC1)=—(AC0), (AC1) + ~[(EA), (EA+1) +1; OV; CY; SEL=—0

Coding Format: Operation Operand
DSUB address [(XR)]

The operand field specifies the direct effective address containing the high-order
subtrahend.

Notes: 1. The contents of the effective address and effective address +1

are unchanged.

2. The overflow or carry flag is set if an overflow or carry occurs;
otherwise, they are cleared.

3. The select flag is cleared.

4. DSUB uses a double-word machine instruction format.

5. DSUB is an extended instruction.

6. Address class 3.

4200002B

7.6 LOGICAL INSTRUCTIONS (Basic Set)

Logical instructions are used to manipulate data; for example, setting programmable switches used in branch
decisions. The operands are treated as 16-bit words. The logical instructions manipulate specified bits in
the word. The two instructions, AND or OR, must utilize working registers AC0 or AC1.

7.6.1 Logical AND (AND) — Basic Instruction Set

The logical AND instruction is used to test or set the value of a bit or bits in a word. The working register
contains the word with bits to be tested or set. The effective address specifies the data word containing the
test or set bits.

At execution time, the two operands are ANDed, and the result is placed in the working register. The AND
places a 1 in bit positions in which both operand bits were 1 and places a 0 in bit positions where either
operand was a 0. Therefore, zero bits in the memory word, result in zero bits in the word in
the register after execution. One bits in the memory word result in a 1 only if there is a 1 in that bit in
the register. For example:

Register 0111011011000011
Memory Word 1100110010000001
Register 0100010010000001

Comparison instructions (for example, branch on condition, BOC) are used on the result if data is to be
tested.

Operation: (ACr)=—(ACr) A (EA)

Coding Format: Operation Operand
AND accumulator, address [(XR)]

The operand field specifies both:

1. The working register containing data. Register must equate to
ACO or AC1.
2. The effective address of data word or mask used to test or set bits.

Notes: 1. The initial contents of the working register are lost.
2. The contents of the effective address are unchanged.
3. AND is a basic instruction.
4. Address class-1.

7.6.2 Logical OR (OR) — Basic Instruction Set

The logical OR instruction is used to insert '""1" bits into a word, allowing the programmer to modify part of
a word. The working register contains the word to be modified. The address specifies a data word or mask
with the appropriate bit(s) set to one.

At execution time the two operands are ORed, and the result is placed in the working register. The OR
places a 1 in bit positions in which either operand bit is a 1 and places a 0 where both operand bits are 0's.
For example,

Register 1010101001111110
Memory Word 1001110010000100
Register 1011111011111110

7-10

7.7

Operation: (ACr)=—(ACr) V (EA)
Coding Format: Operation Operand
OR

The operand field specifies:

4200002B

accumulator, address [(XR)]

1. The working register containing the data word. The register must

equate to ACO or ACI.

2. The effective address of the data word of mask used to set bit(s).

Notes: 1.

. The initial contents of the working register are lost.

The contents of the effective address are unchanged.

2
3. OR is a basic instruction.
4. Address class 1.

REGISTER INSTRUCTIONS (Basic Set)

The eleven register instructions allow operations between registers, operations on data in a single register,
or transfer of data between one register and the stack. The following are register instructions.

7.7.1

Push onto Stack ——--

Pull from Stack -

Exchange Register and Stack

Load Immediate

Add Immediate, Skip if Zero

Complement and Add Immediate -

Register Add -—= -

Register Exchange -

Register Copy —- -

Register Exclusive-OR ——---

Register AND

Push onto Stack (PUSH) — Basic Instruction Set.

PUSH
PULL
XCHRS

LI
AISZ
CAI

RADD
RXCH
RCPY
RXOR
RAND

This instruction stores the contents of the specified register at the top of the stack. The contents of all other
levels in the stack are moved down one level. If the stack is full before the push occurs, the contents of the
lowest level are lost.

Operation: (STK)=(ACr)
Coding Format: Operation Operand
PUSH register

The operand field specifies the address of the register whose contents are
pushed to the stack. The register address may equate to ACO, 1, 2, or 3.

Notes: 1.
2. PUSH is a basic instruction.

7-11

The initial contents of the register are unaltered.

42000028

7.7.2 Pull from Stack (PULL) — Basic Instruction Set

This instruction loads the contents from the top of the stack into the selected register. The contents of each
level of the stack move up one level. Zeros enter the bottom of the stack.

Operation: (ACr)=—(STK)

Coding Format: Operation Operand
PULL register

The operand field specifies the address of the register into which the
contents of the top level of the stack are loaded. The register address

must equate to ACO, 1, 2, or 3.

Notes: 1. The initial contents of the register are lost.
2. PULL is a basic instruction.

7.7.3 Exchange Register and Stack (XCHRS) — Basic Instruction Set

This instruction exchanges the contents of the top level of the stack and the selected register.

Operation: (STK)=~—(ACr), (ACr)=—(STK)

Coding Format: Operation Operand
XCHRS register

The operand field specifies the address of the register in the exchange.
The register address must equate to ACO, 1, 2, or 3.

Note: 1. XCHRS is a basic instruction.

7.7.4 Load Immediate (LI) — Basic Instruction Set

In this single register instruction, the value of the immediate operand loaded into the selected register. The
value with the sign bit extended through bit 15 replaces the contents of the register. This instruction is often

used to set up AC2 and AC3 for indexed addressing.

Operation: (ACr)=—disp (sign extended)

Coding Format: Operation Operand
LI register, immed

The operand field specifies the address of the register and contains an
immediate operand. The value of the immediate operand is -128 to +127.

Notes: 1. The initial contents of the register are lost.
2. LIis a basic instruction.

7-12

4200002B

7.7.5 Add Immediate, Skip if Zero (AISZ) — Basic Instruction Set

In this single-register instruction, the contents of the selected register are replaced by the sum of the con-
tents of the register and the immediate value (sign bit 7 extended through bit 15). If the new confents of the
register equal zero, the contents of the PC are incremented by one, thus skipping the next instruction.

Operation: (ACr)=—ACr) + disp (sign extended), OV, CY
If new (ACr) = 0, (PC)~—PC) +1

Coding Format: Operation Operand

AISZ register, immed

The operand field specifies the address of the register used in the instruc-
tion and an immediate operand. The value of the immediate operand is

-128 to +127.

Notes: 1. The initial contents of the register are lost.
2. ' The overflow and carry flags are set according to the result of the

operation.
3. If the condition is met, this instruction will cause a skip of ONE word.

4, AISZ is a basic instruction.

7.7.6 Complement and Add Immediate (CAI) — Basic Instruction Set

In this single-register instruction, the contents of the selected register are complemented and then added to
the value of the immediate operand (sign bit extended through bit 15). The result is then stored in the register.

Operation: (ACr)=— ~ (ACr) + disp (sign extended)

Coding Format: Operation Operand
CAI register, immed

The operand field specifies the address of the register used in the instruc-
tion and an immedidte operand. The value of the immediate operand is

-128 to +127.

Notes: 1. The initial contents of the register are lost.
2. The carry and overflow flags are not affected by this instruction.

3. Specification of an immediate operand of zero (0) results in a ones
complement; an immediate operand of one (1) results in a twos com-

plement.
4. CAI is a basic instruction.

7-13

4200002B

7.7.7 Register Add (RADD) — Basic Instruction Set

This register-to-register instruction replaces the contents of the destination register with the sum of the con-
tents of the destination register (dr) and the source register (sr).

Operation: (ACdr)-— (ACsr) + (ACdr), OV, CY

Coding Format: Operation Operand
RADD source register, destination register

The operand field contains the address of the source register and the address
of the destination register. The register addresses must equate to ACO, 1, 2, or 3.

Notes: 1. The initial contents of the destination register are lost.
The contents of the source register are unaltered.

2.
3. The overflow and carry flags are set according to the result of the operation.
4. RADD is a basic instruction.

7.7.8 Register Exchange (RXCH) — Basic Instruction Set

This register-to-register instruction exchanges the contents of the source register (sr) and the destination
register (dr).

Operation: (ACsr)—=—(ACdr), (ACdr)~— (ACsr)

Coding Format: Operation Operand
RXCH source register, destination register

The operand field contains the address of the source register and the address

of the destination register. The register addresses must equate to ACO, 1, 2,
or 3.

7.7.9 Register Copy (RCPY) — Basic Instruction Set

This register-to-register instruction replaces the contents of the destination register (dr) with the contents
of the source register (sr).

Operation: (ACdr)~— (ACsr)

Coding Format: Operation Operand
RCPY source register, destination register

The operand field contains the address of the source register and the address

of the destination register. The register addresses must equate to ACO, 1,
2, or 3.

Notes: 1. The initial contents of the destination register are lost.
2. The initial contents of the source register are unchanged.
3. RCPY is a basic instruction.

7-14

4200002B

7.7.10 Register Exclusive OR (RXOR) — Basic Instruction Set

This register-to-register instruction replaces the contents of the destination register (dr) by exclusively
ORing the contents of the destination register with the contents of the source register (sr). The exclusive-
OR operation excludes the condition in which both operands have a 1 bit; that is, a 1 bit in the first or sec-
ond operand, but not both, yields a 1 bit in the result. Exclusive-OR is frequently used to test for status or
to zero an accumulator by exclusive ORing the accumulator with itself.

Operation: (ACdr)—— (ACdr) ¥ (ACsr)

Coding Format: Operation Operand

RXOR source register, destination register

The operand field contains the address of the source register and the address
of the destination register. The register addresses must equate to ACO, 1, 2,
or 3. For example,

Source Register 1010101011111100
Destination Register 1001110010000100
Destination Register 0011011001111000

Notes: 1. The initial contents of the destination register are lost.
2. The initial contents of the source register are unchanged.
3. RXOR is a basic instruction.

7.7.11 Register AND (RAND) — Basic Instruction Set

This register-to-register instruction replaces the contents of the destination register (dr) by ANDing the
contents of the destination register with the contents of the source register (sr).

Operation: (ACdr)-— (ACdr) A (ACsr)

Coding Format: Operation Operand

RAND source register, destination register

The operand field contains the address of the source register and the address
of the destination register. The register addresses must equate to ACO, 1,
2, or 3. For example,

Source Register 0111011011000011
Destination Register 1100110010000001
Destination Register 0100010010000001

Notes: 1. The initial contents of the destination register are lost.
2. The initial contents of the source register are unchanged.
3. RAND is a basic instruction.

7.8 BIT AND STATUS FLAG INSTRUCTIONS (Extended and Basic Sets)

The seven bit and status flag instructions are used to program status flags in the status register or bits in
a working register (AC0). The status register is a 16-bit register where the 3 high-order bits automat-
ically reflect the status of arithmetic operations, and the 13 remaining bits, General Purpose flags (GF),
are specified and used by the programmer. See figure 7-1 for the arrangement of status flags in the status

register.

7-15

4200002B

1514 13121110 9 8 7 6 5 4 3 2 1 0 Bit Position
t 1 11] 1 | BN SN S SN RN 2] 1 1

flag flag
I OVCY12 GF GF GF GFGFGFGFGFGFGFGF 0

Flags

Figure 7-1. Configuration of Status Register

The definitions for the status flags of two IMP-16 microprocessors, the IMP-16C and IMP-16L, are given in
table 7-2. .

Table 7-2. Definitions of IMP-16C/L Flags

IMP-16C IMP-16L
Bit Flag Flag
Position Name of Flag Mnemonic Mnemonic Name of Flag
15 Link L L Link
14 Overflow ov ov Overflow
13 Carry CY CY Carry
12 General Purpose Flag GF IEN3 Interrupt Enable Flag
Level 3
11 General Purpose Flag GF GF General Purpose Flag
10 General Purpose Flag GF GF General Purpose Flag
9 General Purpose Flag GF GF General Purpose Flag
8 General Purpose Flag GF IEN2 Interrupt Enable Flag
Level 2
7 General Purpose Flag GF GF General Purpose Flag
6 General Purpose Flag GF GF General Purpose Flag
5 General Purpose Flag GF GF General Purpose Flag
4 General Purpose Flag GF IEN1 Interrupt Enable Flag
Level 1
3 General Purpose Flag GF GF General Purpose Flag
2 General Purpose Flag GF CF Reserved for use by
control panel
1 General Purpose Flag GF CP Reserved for use by
control panel
0 General Purpose Flag GF IENO Interrupt Enable Flag
Level 0

The CY, OV and L bits are automatically set or reset depending on the result of register operations. The
thirteen general purpose bits are set or reset by program instruction.

Apart from automatic setting/resetting of the CY, OV,and L bits, testing and resetting of status bits may
take place directly in the status register (SETST or CLRST) or in a working register. Testing or setting of
bits must take place in a'working register. If the operation takes place in a working register, the normal
sequence of operations follows:

7-16

4200002B

1. Transfer status or data to register
2, Test/set/reset bits
3. Return accumulator contents to status register or data word

Note that all transfers between the status register and the working registers are via the stack.

In much the same way that the status of the link bit determines whether or not an accumulator is incre-
mented during multiplication, the general-purpose flags may be used to store condition results and control
subsequent program branching.

7.8.1 Push Status Flags onto Stack (PUSHF) — Basic Instruction Set

The contents of the top of the stack are replaced by the contents of the status flags in the status register. The
previous contents of the top of the stack and lower levels are pushed down one level. The contents of the low-
est level of the stack are lost.

Operation: (STK)~— (STATUS FLAGS)

Coding Format: Operation Operand

PUSHF not used

Note: PUSHF is a basic instruction.

7.8.2 Pull Status Flags from Stack (PULLF) — Basic Instruction Set

The contents of the Status Register are replaced by the contents of the top of the stack. The previous contents
of lower levels of the stack are pulled up by one level with zeros filling the contents of the lowest level.

Operation: (STATUS FLAGS)~— (STK)
Coding Format: Operation Operand
PULLF not used

Note: PULLF is a basic instruction.

7.8.3 Set Status Flag (SETST) — Extended Instruction Set
Bit n of the Status Register is set (to a "1'" bit). All other bits are unaffected.
Operation: Status Flagn<—1; SEL—=—0

Coding Format: Operation Operand

SETST immed4
The operand field contains a single numeric (0 < n < 15) that identifies the bit set.

Notes: 1. The select flag is cleared.
2. SETST is an extended instruction.

7-17

4200002B

7.8.4 Clear Status Flag (CLRST) — Extended Instruction Set
Bit n of the Status Register is cleared (to a "0" bit). All other bits are unaffected.
Operation: Status Flag n<—0; SEL-—20

Coding Format: Operation Operand

CLRST immed4
The operand field contains a single numeric (0 < n < 15) that identifies the bit cleared.

Notes: 1. The select flag is cleared.
2. CLRST is an extended instruction.

7.8.5 Set Bit (SETBIT) — Extended Instruction Set
Bit n of ACO is set (1). All other bits are inaffected.
Operation: ACOH<— 1, SEL-—0

Coding Format: Operation Operand

SETBIT immed4
The operand field contains a single numeric (0 < n < 15) that identifies the bit set.

Notes: 1. The select flag is cleared.
2. SETBIT is an extended instruction.

7.8.6 Clear Bit (CLRBIT) — Extended Instruction Set
Bit n of ACO is cleared (to a "0" bit). All other bits are unaffected.
Operation: ~ ACO_~—0; SEL~—0
Coding Format: Operation Operand
CLRBIT immed4
The operand field contains a single numeric (0 < n < 15) that identifies the bit cleared.

Notes: 1. The select flag is cleared.
2. CLRBIT is an extended instruction.

7.8.7 Complement Bit (CMPBIT) — Extended Instruction Set
Bit n of ACO is complemented. All other bits are unaffected.
Operation: ACOn<—— ~ ACOn; SEL =0

Coding Format: Operation Operand

CMPBIT immed4
The operand field contains a single numeric (0 < n < 15) that identifies the bit complemented.

Notes: 1. The select flag is cleared.
2. CMPBIT is an extended instruction.

7-18

7.9

4200002B

TRANSFER-OF-CONTROL INSTRUCTIONS

Instructions are normally executed in sequential order according to the memory locations in which they are
stored. The program counter (PC) holds the address of the next instruction to be executed. It is incremented
by one, immediately following the fetching of each instruction, during execution of the current instruction.

The programmer uses a transfer-of-control instruction to break the normal sequential execution. When trans-
fer-of-control occurs, the address specified by the instruction replaces the current address in the PC.

There are four types of transfers:

Unconditional Jump - This transfer simply causes program execution to continue at the address
specified by the instruction. Jump instructions specify addresses in either direction; for example,
before the jump instruction or after the jump instruction in the execution sequence. There are
three unconditional jump instructions: Jump (JMP), Jump Indirect (JMP), and Jump Through
Pointer (JMPP).

Subroutine Jump - Any frequently used set of instructions may be coded once and used as a sub~
routine. Subroutines are executed using jump-to-subroutine instructions and the Return-from-
Subroutine (RTS) instruction.

Interrupt Jump - Program execution may be interrupted unexpectedly (for example, an incoming
instrument reading). Upon sensing an interrupt, the microprocessor hardware forces a jump-to-
interrupt-service routine. The Return from Interrupt (RTI) instruction allows execution to return
from the interrupt to the point in the main program where the interrupt occurred.

Branch-on-Condition - If a specified condition is true, program execution is transferred to another
location; otherwise, the next instruction in consecutive order is executed.

There are ten Transfer-of-Control Instructions:

7.9.1

Jump Direct---- -—-- -JMP
Jump Indirect --- - -JMP
Jump Through Pointer---------—===-=-- JMPP
Jump to Subroutine Direct ——----------- JSR
Jump to Subroutine Indirect --—--------- JSR
Jump to Subroutine Implied ------------ JSRI
Jump to Subroutine Through Pointer ----JSRP
Return from Subroutine RTS
Return from Interrupt - RTI
Branch on Condition -— BOC

Jump Direct (JMP) — Basic Instruction Set

The effective address replaces the contents of the PC. The next instruction is fetched from the location des-
ignated by the new contents of the PC.

Operation: (PC)=—EA

Coding Format: Operation Operand

JMP address [(XR)]
The operand field contains a base-page or PC-relative address.
Notes: 1. The initial contents of the PC are lost.

2. JMP is a basic instruction.
3. Address class 2.

7-19

4200002B

7.9.2 , Jump Indirect (JMP) — Basic Instruction Set

The contents of the effective address replace the contents of the PC. The next instruction is fetched from the
location designated by the new contents of the PC. The @ symbql must be placed in the operand field, not in
the operation field.

Operation: (PC)=—(EA)

Coding Format: Operation Operand
JMP @address [(XR)]

The operand field contains a base-page or PC-relative address or a displacement to be
added (sign-extended) to the contents of the index register (XR).

Notes: 1. The initial contents of the PC are lost.
2. JMP indirect is a basic instruction.
3. Address class 2.

7.9.3 Jump Through Pointer (JMPP) — Extended Instruction Set

The contents of the PC are set equal to the contents of the memory location addressed by the sum of the con-
tents of memory location 10016 and the immediate value. The next instruction is fetched from the location

designated by the new contents of the PC.

This instruction is faster than JMP when the new instruction is some distance from the jump instructian. It
also is useful for accessing jump tables containing up to 16 words from one address.

Operation: (PC) (1004 6)+ disp)

Coding Format: Operation Operand
JMPP immed4

The operand field contains an immediate value that is added to the contents of
memory location 10016'

Notes: 1. The initial contents of the PC are lost.

2. JMPP is an extended instruction.
3. Address class 7.

7.9.4 Jump to Subroutine Direct (JSR) — Basic Instruction Set

The contents of the PC are stored in the top of the stack. The effective address replaces the contents of the
PC. The next instruction is fetched from the location designated by the new contents of the PC.

Operation: (STK) <—(PC), (PC)=—EA

Coding Format: Operation Operand
JSR address [(XR)]

The operand field contains a base page or PC-relative address or a displacement to be
added (sign-extended) to the contents of the index register (XR).

Notes: 1. A Return from Subroutine instruction or a Return from Interrupt
instruction may be used to return to execution of the instruction
directly following the subroutine jump in the main program.

2. JSR is a basic instruction,
3. Address class 2.

7-20

4200002B

7.9.5 Jump to Subroutine Indirect (JSR) — Basic Instruction Set

The contents of the PC are stored in the top of the stack. The contents of the effective address replace the
contents of the PC. The next instruction is fetched from the location designated by the new contents of the PC.

Operation: (STK)=—(PC), (PC)~—EA)

Coding Format: Operation Operand

JSR @address [(XR)]
The operand field contains a base page or PC-relative address.
Notes: 1. A Return from Subroutine instruction or a Return from Interrupt
instruction may be used to return to execution of the instruction
directly following the subroutine jump in the main program.

2. JSR is a basic instruction.
3. Address class 2.

7.9.6 Jump to Subroutine Implied (JSRI) — Basic Instruction Set
The Jump to Subroutine Implied instruction enables a simplified subroutine jump to memory locations FF80,
through FFFF1 . The contents of the PC are pushed onto the stack. The contents of the PC are then re-
placed by the ac?dress implied by the sum of the displacement and the number FF801 6

Operation: ~ (STK)~—(PC), (PC)~—FF80, . +ctl

Coding Format: Operation Operand

JSRI address
The operand field contains an address that is in the range FF80_, through
FFFF, .. The assembler will create the proper displacement for the

machine instruction.

Notes: 1. JSRI is a basic instruction.
2. Address class 6.

7.9.7 Jump to Subroutine Through Pointer (JSRP) — Extended Instruction Set

The contents of the PC are stored in the top of the stack. The new contents of the PC are set equal to the con-
tents of the memory location addressed by the sum of the contents of memory location 100, , and the immed-
iate value. The next instruction is fetched from the location designated by the new contents of the PC.

Operation: (STK)=— (PC), (PC)~—((100;¢) *+ disp)

Coding Format: Operation Operand

JSRP +immed

The operand field contains a positive immediate value that is added to the
contents of memory location 100 16

Notes: 1. JSRP is an Extended Instruction.
2. Address class 7.

7-21

4200002B

7.9.8 Return from Subroutine (RTS) — Basic Instruction Set

The Return from Subroutine instruction is used primarily to return from subroutines entered by a jump to
subroutine instruction. The contents of the PC are replaced by the sum of the immediate value and the con-
tents of the top level of the stack. (The immediate value permits the user to skip around subroutine para-
meters, utilize different subroutine exits, etc.) Program control is transferred to the location specified by
the new contents of the PC.

Operation: (PC)=<—(STK) + immed

Coding Format: Operation Operand

RTS [+immed]

The operand field may contain an immediate value that is added to the con-
tents of the top level of the stack.

Notes: 1. The initial contents of the PC are lost.
2. RTS is a basic instruction.

7.9.9 Return from Interrupt (RTI) — Basic Instruction Set
The Return from Interrupt instruction is used primarily to exit from an interrupt routine. It behaves in

exactly the same way as the RTS instruction except the RTI enables interrupts that are inhibited when an in-
terrupt occurs. See appendix C.

The contents of the PC are replaced by the sum of the immediate value and the contents of the top level of the
stack. Program control is transferred to the location specified by the new contents of the PC.

Operation: (PC)~—(STK) + immed; INTEN FLAG SET

Coding Format: Operation Operand

RTI +immed

The operand field may contain an immediate value that is added to the con-
tents of the top level of the stack.

Notes: 1. The Interrupt Enable flag (INTEN) is set.
2. The initial contents of the PC are lost.
3. RTI is a basic instruction.

7.9.10 Branch on Condition (BOC) — Basic Instruction Set

Several instructions set a condition code to indicate something about the result of the instruction's execution;
for example, the carry and overflow flags are set after an add or subtract instruction. There are 16 pos-
sible condition codes (cc). The codes are listed in table 7-3 for both the IMP-16C and the IMP-16L.

At any time after the condition code has been set, it may be tested by using a Branch-on-Condition instruction.
The four bits that identify the condition code are used as a jump condition multiplexer address to check for
that condition. If the condition code is true, the value of the special address is added to the contents of the
PC, and the sum is stored in the PC. Program control is transferred to the location specified by the new
contents of the PC. If the condition is false, the next consecutive instruction is executed.

4200002B

Operation; (PC)~—(PC) + disp (sign extended from bit 7 through bit 15)

Coding Format: Operation Operand

BOC immed4, spaddr

The operand field contains the number or a symbol that identifies the condi-
tion code and a special address with a value in the -127 to +128 range.

Notes: 1. The initial contents of the PC are lost.

2. PC is always incremented by 1 immediately following the fetching of an
instruction, so the contents of PC during execution of an instruction is 1
greater than the address of that instruction. This must be considered
during execution of the BOC instruction; for example, if the address of
the BOC instruction is 100, then 101 is added to the special address.

3. The special address field is a signed 8-bit number whose sign is extended
from bit 7 through bit 15 to form a 16-bit number (including sign). Thus,
the range of addressing with a BOC instruction is -127 to +128 relative to
the address of the current instruction.

4. BOC is a basic instruction.

Table 7-3. Branch On Condition Codes

Condition
Code
IMP-16C (cc) IMP-16L
Interrupt Line = 1 0 Interrupt Line =1
(AC0)=0 1 (AC0) =0
(AC0)= 0 2 (ACO)= 0
Bit 0 of ACO=1 3 Bit 0 of ACO=1
Bit 1 0f ACO=1 4 Bit1 of ACO=1
(ACO) # 0 5 (ACO0) # 0
CONTROL PANEL INTERRUPT 6 CONTROL PANEL INTERRUPT
LINE =1 LINE =1
CONTROL PANEL START =1 7 CONTROL PANEL START =1
STACK FULL LINE =1 8 STACK FULL LINE =1
INTERRUPT ENABLE =1 9 INTERRUPT ENABLE =1
CARRY/OVERFLOW =1 10 CARRY/OVERFLOW = 1*
(AC0) <0 11 (ACO) <0
User 12 POA
User 13 SEL
User 14 User
User 15 User

*If the Select Flag (SEL) is set, overflow is tested. Otherwise, carry is tésted.

7.10 SKIP INSTRUCTIONS (Basic and Extended Sets)

The seven skip instructions skip the next instruction if the specified condition is met. Skip instructions are
commonly used for logical comparisons, table indexing, and test for zero. There are three types of skip
instructions: memory, register, and bit and status flag. The skip instructions are:

1. Memory References 3. Bit and Status Flag
Increment and Skip if Zero ISz Skip if Status Flag True SKSTF
Decrement and Skip if Zero DSZ Skip if Bit True SKBIT
2. Register References
Skip if Greater SKG
Skip if Not Equal SKNE
Skip if AND is Zero SKAZ

Caution should be taken when coding a skip instruction to prevent the skip condition from jumping into the dis-

placement field of a double-word instruction (that is, the instructi i ip_ins i

single-word instruction).

7-23

4200002B

7.10.1 Increment and Skip if Zero (ISZ) — Basic Instruction Set
The Increment and Skip if Zero instruction tests the contents of a word in memory. The contents of the effec-
tive address are incremented by 1. The new contents of the effective address are tested to determine if they
equal zero. If the new contents of the effective address equal zero, the contents of the PC are incremented
by 1, thus skipping the instruction designated by the initial contents of the PC.

Operation: (EA)~— (EA) + 1; if (EA) = 0, (PC)~—(PC) +1

Coding Format: Operation Operand

ISZ address [(XR)]

The operand field specifies the direct effective address of the memory
location to be tested.

Notes: 1. ISZ is a basic instruction.
2. Address class 1.

7.10.2 Decrement and Skip if Zero (DSZ) — Basic Instruction Set *
The Decrement and Skip if Zero instruction tests the word in memory. The contents of the effective address
are decremented by 1. The new contents of the effective address are tested to determine whether they equal
zero. If the new contents of the effective address equal zero, the contents of the PC are incremented by 1,
thus skipping the instruction designated by the initial contents of the PC.

Operation: (EA)~—(EA) - 1; if (EA) = 0, (PC)=—(PC) + 1

Coding Format: Operation Operand

DSZ address I:(XR)]

The operand field specifies the direct effective address of the memory
location to be tested.

Notes: 1. DSZ is a basic instruction.
2. Address class 1.

7.10.3 Skip if Greater (SKG) — Basic Instruction Set

The Skip if Greater instruction compares the contents of a register and the contents of the effective address.
The contents are compared on an algebraic basis with due regard to the signs of the two operands. If the
contents of the register are greater than the contents of the effective address, the contents of the PC are
incremented by 1, thus skipping the instruction designated by the initial contents of the PC.

Operation: If (ACr)> (EA), (PC)~—(PC) + 1
Coding Format: Operation Operand
SKG register, address [(XR)]

The operand field contains the address of the working register and the
direct effective address of the memory location to be compared.

Notes: 1. The initial contents of the PC are lost.
2. The contents of the register and the effective address are unaltered.
3. SKG is a basic instruction.
4. Address class 1.

4200002B

7.10.4 Skip if Not Equal (SKNE) — Basic Instruction Set
The Skip if Not Equal instruction compares the contents of the working register and the contents of the effec-
tive address. If the contents are not equal, the contents of the PC are incremented, thus skipping the in-
struction designated by the initial contents of the PC.

Operation: If ACr # (EA), (PC)=~—(PC) +1

Coding Format: Operation Operand

SKNE register, address [(XR}]

The operand field contains the address of the working register and the
direct effective address of the memory location to be compared.

Notes: 1. The initial contents of the PC are lost.
The contents of the register and the effective address are unaltered.

2.
3. SKNE is a basic instruction.
4. Address class 1.

7.10.5 Skip if AND Is Zero (SKAZ) — Basic Instruction Set
The Skip if AND Is Zero instruction causes the contents of the register and the effective address to be ANDed.
If the result equals zero, the contents of the PC are incremented by 1, thus skipping the instruction designated
by the initial contents of the PC.

Operation: If [(ACr).A(EA)] =0, (PC)=—(PC) +1

Coding Format: Operation Operand

SKAZ accumulator, address [(XR)]

The operand field contains the address of working register 0 or 1, and the
direct effective address of the memory location to be ANDed.

Notes: 1. The initial contents of the PC are lost.
The contents of the register and the effective address are unaltered.

2.
3. SKAZ is a basic instruction.
4. Address class 1.

7.10.6 Skip if Status Flag True (SKSTF) — Extended Instruction Set

The Skip if Status Flag True instruction tests a status flag. If the specified status flag is true, the contents
of the PC are incremented by 1, thus skipping the instruction designated by the initial contents of the PC.

Operation: If Status Flagn =1, (PC)~—(PC) + 1; SEL-=—0

Coding Format: Operation Operand

SKSTF immed4

The operand field contains the numeric or symbol that identifies the status
flag.

Notes: 1. The contents of the status register are unaffected.
2. The select flag is cleared.
3. SKSTF is an extended instruction.

4200002B

7.10.7 Skip if Bit True (SKBIT) — Extended Instruction Set

The Skip if Bit True instruction tests a bit in register AC0. If the designated bit is true, the contents of the
PC are incremented by 1, thus skipping the instruction designated by the initial contents of the PC.

Operation: ~ If ACO_ =1, (PC)=—(PC) + 1; SEL~—0

Coding Format: Operation Operand

SKBIT immed4

The operand field contains the number or symbol that identifies the status
flag.

Notes: 1. The contents of the register are wnaffected.
2. The select flag is cleared.
3. SKBIT is an extended instruction.

7.11 SHIFT INSTRUCTIONS (Basic Set)

The shift instructions permit the programmer to shift data bits within a register. Four instructions comprise
this group. All four instructions may be used with the Link (L) bit by setting the SEL flag. If the L bit is
used, the SEL flag must be set with a Set Flag (SFLG) instruction before executing the shift or rotate in-
struction. All shift and rotate operations may be carried out with any of the four working registers, ACO,

1, 2, or 3. In shifting, sign bits are treated like any other bit.

7.11.1 Shift Left (SHL) — Basic Instruction Set

The Shift Left instruction is commonly used as a means of multiplying the contents of a register by a power
of 2,

Shiftinga word left 1 bit is equivalent to multiplying by 2. The SEL flag must be set so the carry (high-order
bit) appears in the L bit. For example, the multiplication, X'21 * X'53 = X'ABC may be effected by shifting
X'53 left eight times, adding the result to a register each time the next bit of X'21 is 1, and tracking the

L bit in another register.

The number in the working register is shifted left the number of bit positions specified by the immediate
operand.

If the SEL flag is not set, the most significant bit is lost and a zero is shifted into the least significant bit
for each shift.

If the SEL flag is set, the most significant bit is shifted into the L bit, the original content of L is lost, and
a zero is shifted into the least significant bit for each shift.

Operation: SEL =0 (ACrn)<— (ACr (ACrO)f— 0

n—l)’

SEL=1 (L)=—(ACr (ACrl;)<—(ACrn_1), (ACr)~—0

15
Coding Format: Operation Operand

SHL register, immed

The operand field specifies the address of the register containing the word
to be shifted and an immediate value specifying the number of shifts.

7-26

4200002B

7.11.2 Shift Right (SHR) — Basic Instruction Set

The Shift Right instruction is commonly used as a means of dividing the contents of a register by 2 or to mani-
pulate status indicators by testing consecutive bits and branching on bit 0 or bit 1.

The number in the working register is shifted right the number of bit positions specified by the immediate
operand.

If the SEL flag is not set, the least significant bit is lost, and a zero replaces the most significant bit for
each shift.

If the SEL flag is set, the least significant bit is lost and the contents of the L bit is shifted into the most
significant bit. In this case, a zero is shifted into the L bit.

Operation: SEL =0 (ACr15)<— 0, (ACrn)<— (ACrIl +1)

SEL=1 (L)=—0, (ACr)=<—(L), (ACr)=—(ACr)

Coding Format: Operation Operand

SHR register, immed
The operand field specifies the address of the register containing the

word to be shifted and an immediate value specifying the number of
shifts.

7.11.3 Rotate Left (ROL) — Basic Instruction Set
The Rotate Left instruction is commonly used for multiprecision arithmetic and manipulating flags.

The contents of the register are shifted around to the left the number of bit positions specified by the
immediate operand.

If the SEL flag is not set, the most significant bit is shifted into the least significant bit. In other words,
bit 15 replaces bit 0, bit 0 replaces bit 1, and so on for each shift.

If the SEL flag is set, the most significant bit is shifted into the L bit and the former contents of the L bit
is shifted into the least significant bit for each shift.

Operation: SEL=0 (ACr 0) -—(ACr 15), (ACrn)-— (ACrn_ 1)
SEL=1 (ACrO)<—- (L), (L)=— (ACrls), (ACrn)<— (ACrn_l)
Coding Format: Operation Operand
ROL register,immed

The operand field specifies the address of the register containing the word to be rotated and
an immediate value specifying the number of rotations.

7-27

4200002B

7.11.4 Rotate Right (ROR) — Basic Instruction Set
The Rotate Right instruction is commonly used for multiprecision arithmetic and manipulating flags.

The contents of the register are shifted around to the right the number of bit positions specified by the dis-
placement.

If the SEL flag is not set, the least significant bit is shifted into the most significant bit for each rotation.

If the SEL flag is set, the least significant bit is shifted into the L bit and the former content of the L bit
is shifted into the most significant bit for each rotation.

Operation: SEL =0 (ACr)-—(ACrg), (ACr)=—(ACr)
SEL=1 (ACr)=—(L), (L)=~—(ACr(), (ACr)=—(ACr)
Coding Format: Operation Operand
ROR register,immed

The operand field specifies the address of the register containing the word
to be rotated and an immediate value specifying the number of rotations.

7.12 INTERRUPT HANDLING INSTRUCTIONS (Extended Set)

The Interrupt Handling Instructions enable the user to control input in interrupt routines.

7.12.1 Interrupt Scan (ISCAN) — Extended Instruction Set

The Interrupt Scan instruction is used in servicing input/output devices that respond to the Interrupt Select
Status order code described in the IMP-161L Users Manual. Before the Interrupt Scan instruction can be
executed AC1 should be loaded with the Interrupt Select Status word, and AC2 should be loaded with the
base address of a pointer table for the interrupt service routines. (The base address is 1 less than the
address of the first pointer.)

If AC1 =0, the select flag (SEL) is cleared, and the next instruction is executed. If AC1 # 0, then the
select flag is cleared and AC1 is shifted right until a 1 is shifted out of bit zero. The number of shifts that
occurred is added to the contents of AC2. The next memory location is skipped.

Operation: If (AC1) =0, SEL-<0;
If (AC1) #0, SEL~—0;

AC1 =—[shift AC1 right 1] until 1 shifted out (AC2) <— (AC2) +
number shifts; (PC)-—(PC) +1

Coding Format: Operation Operand

ISCAN not used

Notes: 1. ISCAN is an extended instruction.

7-28

4200002B

7.12.2 Jump to Level 0 Interrupt, Indirect (JINT) — Extended Instruction Set

The Jump to Level 0 Interrupt, Indirect instruction is used in servicing input/output devices on interrupt re-
quest level 0 as described in the IMP-16L Users Manual.

The contents of the PC are pushed onto the top of the stack. The new contents of the PC are set equal to the
contents of the memory location whose effective address is formed by adding the special address field to 1201 6

Operation: (STK) =—(PC); (PC)=— (12016 + disp); INTEN-<—20

Coding Format: Operation Operand
JINT spaddr

The operand field contains a special address whose value is added to 120 16
to form an effective address.

Notes: 1. The interrupt enable flag is cleared.
2. JINT is an extended instruction.
3. The special address operand must have a value between 0 and X'F.
4. Address class 5.

7.13 INPUT/OUTPUT, HALT, AND CONTROL FLAG INSTRUCTIONS (Basic Set)

The five Input/Output, Halt, and Control Flag instructions are used to control input/output operations and
control flags external to the RALUs. Appendix C discusses input/output programming in detail.

INPUT/OUTPUT INSTRUCTIONS

Input/output operations are carried out with the Register In and Register Out instructions. Functionally, these
instructions are similar to the Load and Store instructions in that they address particular device locations
and initiate data exchanges.

The effective address of an input/output device is determined by the sum of the contents of AC3 and the 7-bit
control field of the RIN or ROUT instruction. Although a number of schemes are possible, the one des-
cribed below as an example, has proved useful for most applications. The low-order three bits are used to
define an input/output "order™ and bits 3 to 6 are the device address. (Device addresses are installation
specific and are not assigned by the programmer.) Each peripheral device decodes the address field of

the input/output instruction, and, if the Read Peripheral or Write Peripheral flag is active, the appropriate
device will respond.

The 4 bits of the device address field permit direct addressing of 16 devices; however, by loading AC3 with
a 16-bit value before executing a RIN or ROUT instruction, many more devices may be accessed.

The three "order" bits permit eight possible auxiliary operations for each input/output class; for example,
read data, read status, reset device, rewind tape, backspace, write data, and so forth. The assignment
of the various orders is the responsibility of the systems programmer at the macro level. These auxiliary
operations are fundamental to direct-memory-access (DMA) type operations.

7-29

4200002B

7.13.1 Register IN (RIN) — Basic Instruction Set

The Register In instruction is used to replace the contents of the address register with the sum of the
immediate value and the contents of AC3. The new contents of the address register constitute the address
of a peripheral device and a command, both of which are received by the peripheral device. The peripheral
device responds by transferring the contents of its input/output register to ACO.

Operation: (AR)~—ctl + (AC3), (ACO0)=— (IOREG)

Coding Format: Operation Operand
RIN +immed

The operand field contains an immediate value that is added to the contents
of AC3 to form the address of a peripheral device.

7.13.2 Register Out (ROUT) — Basic Instruction Set
The Register Out instruction is used to replace the contents of the address register with the sum of the
immediate value and the contents of AC3. The new contents of the address register constitute the address
of a peripheral device and a command, both of which are received by the addressed peripheral device. The
processor then transfer the contents of ACO to the input/output register in the peripheral device.

Operation: (AR)=—ctl + (AC3), (IOREG)=— (ACO)

Coding Format: Operation Operand

ROUT +immed

The operand field contains an immediate value that is added to the contents
of AC3 to form the address of a peripheral device.

7.13.3 Halt (HALT) — Basic Instruction Set

The Halt instruction causes the microprocessor to halt and remain halted until restarted.

Coding Format: Operation Operand
HALT not used

CONTROL FLAG INSTRUCTIONS

The control flag instructions refer to control flags external to the RALUs. These flags should not be con-
fused with RALU internal flags, which are referenced by PUSHF and PULLF.

Sixteen flag codes are provided. However, only control flags with addresses between 8 and 15 may be ac-
cessed with the control flag instructions. The flag address is 8 (binary 1000) greater than the correspond-
ing flag code. This is done because control flags with flag addresses 0 through 7 are used for various input/
output operations controlled by the microprocessor and are not useable by the programmer.

The control flag instructions set or pulse a control flag and transfer the control value (sign-extended from
bit 7 through 15) to the address register. This word in the address register has no specified use and may

be used as desired by the system programmer.

Flag codes are defined in table 7-4.

7-30

4200002B

Table 7-4. Control Flags

FC Flag Mnemonic IMP-16L IMP-16C

0 F8 User Specified User Specified

1 INT EN Interrupt Enable Interrupt Enable
2 SEL Select (SEL) Select (SEL)

3 Fi1 User Specified User Specified
4 F12 User Specified User Specified

5 F13 SCPIE User Specified
6 F14 User Specified User Specified

7 F15 ﬁser Specified User Specified

Flag code 1 is assigned to the Interrupt Enable flag. Interrupts are enabled when the flag is set.

Flag code 2 is assigned to the Select (SEL) flag that controls whether or not the Link (L) status bit is acti-
vated during multiply, divide, shift and/or rotate execution.

Flag code 5 is assigned to the Special Control Panel Interrupt Enable (SCPIE - see IMP-16L Users Manual).
The remaining flag codes are available to the user. Pins may be wired for these flags as described in the

appropriate IMP-16 users manual. Typically, these flags are used to transmit control signals to or receive
control signals from external devices.

7.13.4 Set Flag (SFLG) — Basic Instruction Set

The Set Flag instruction sets the control flag designated by the flag code and replaces the contents of the
address register with the value of the immediate operand. Bit 7, (containing a 0) is extended through bit 15.

Operation: FC set, (AR)~—ctl (bit 7 extended through bit 15; that is, bits 8 through 15
set to 0)

Coding Format: Operation Operand

SFLG immeds, [ﬁmmed_-_]

The operand field specifies the flag code which may be followed by an
immediate operand that replaces the contents of the address register.

7.13.5 Pulse Flag (PFLG)— Basic Instruction Set

The Pulse Flag instruction pulses the control flag designated by the flag code and replaces the contents of
the address register with the value of the immediate operand. Bit 7, (containinga 1) is extended through
bit 15. Pulsing a control flag sets the flag at T2 and resets it at T6 during the same microcycle. The flag
remains reset until again set or pulsed.

Operation: FC pulsed, (AR)=—ctl (bit 7 extended through bit 15; that is, bits 8 through 15
set to 1)

Coding Format: Operation Operand

PFLG immed3, [+immed]

The operand field specifies the flag code which may be followed with an
immediate operand that replaces the contents of the address register.

7-31

4200002B

Chapter 8
ASSIGNMENT STATEMENT
The assignment statement assigns a value to a symbol. It replaces a number of directives (EQU, ORG, SET,

and so forth) found in other assemblers. The assignment statement may be preceded by a series of labels
and followed by a comment.

Coding Format: Label Operation Operand
label: Symbol = expression

The effect of an assignment statement is to take the value of the expression and its mode on the right side of
the equal sign and give it to the symbol or symbols on the left. For example: RETURN =OD ;SYMBOL
HAS CARRIAGE RETURN CODE.

The assignment statement provides the ability to set the location counter or to refer to the current value of
the location counter in an expression. The special symbol, " . " is used to specify the location counter. A
location counter reference in an assignment statement designates the location counter value for the sector in
which the reference appears. The location counter symbol may appear on either side of the equal sign. If it
appears on the left, it is assigned the value on the right side of the equal sign. The programmer may refer
to the current setting of the location counter by inserting the " . " immediately after the equal sign. The
period represents the location of the first word of currently available storage. Assignment statements using
the location counter symbol are coded as free-form statements. For example:

.=20 SSET LOCATION COUNTER TO 20
(Note: location counter must be in absolute mode)
TABLE: .=.+10 ;sRESERVE 10 LOCATIONS FOR TABLE
When the " . " appears on the left of the equal sign, the mode of the expression on the right must be the same

as the current mode of the location counter.

NOTE

The only way to change the mode of the location counter is
through "section directive statements."

In addition, if the " . " appears on the left or if the symbol on the left is a global symbol, the expression on
the right must be defined during the first pass so label assignments may be made.

If the symbol on the left is not " ." or a global symbol, then the expression to the right need not have a value
during the first pass, but it must have a value during the second pass. This permits only one level of forward
referencing. An example of more than one level of forward referencing follows:

A =B+2 ; }-Li expressions undefined during pass 1
B=C-1; expression undefined during pass 2

C=25

4200002B

Chapter 9

DIRECTIVE STATEMENTS

The directive statements control the assembly process and may generate data in the object program.

The directive operator may be preceded by one label or more, and may be followed by a comment. It
occupies the operator field and is followed by no operand, one operand, or more operands depending on the
particular operator.

Assembler directive operators and their functions are summarized in table 9-1. Note that all directive

operators begin with a period for easy visual differentiation from the instruction operator mnemonics in
the output listing. Each directive operator is described in more detail on the following pages.

Table 9-1. Summary of Assembler Directives

Directive

Name Function

.TITLE Names a load module

.ASECT Specifies the start of an absolute section

.BSECT Specifies the start of a base sector relocatable section
.TSECT Specifies the start of a top sector relocatable section
.END Physical end of source program

. LIST Listing output control

.SPACE Space ™' lines in output listing

.PAGE Output listing to top-of-form

.WORD 16-bit word data generation

.ASCII Data generation for character strings

.GLOBL Identifies global symbols '

.LOCAL Establishes a new local symbol region

JIF Conditional assembly directives

.ELSE Conditional assembly directives

. ENDIF Conditional assembly directives

.FORM Field specification

.EXTD Allows extended instruction set to be used in an assembly

9-1

4200002B

9.1 TITLE DIRECTIVE (. TITLE)

The . TITLE directive identifies the relocatable load module in which it appears with a symbolic name and an
optional definitive title. If a . TITLE directive does not appear in the program, the load module is given the
name, "MAINPR." If more than one . TITLE directive is coded, the last one encountered is the directive
used.

Coding Format: Operation Operand
.TITLE symbol l:, string]

The symbolic name and the string must meet the symbol and string con-
struction restrictions (chapter 4).

9.2 PROGRAM SECTION DIRECTIVES (. ASECT, .BSECT, .TSECT)

.ASECT — Absolute Sector
.BSECT — Base Sector
.TSECT — Top Sector

The three program section directives enable the user to create a program in sections, producing a load
module that is absolute, base-sector-relative, top-sector-relative, or a combination of the three.

Execution of a program section directive during the assembly process causes the location counter to be set
to the new mode and to assume a value that was its last value in that mode. Initially, the location counter
of the assembler is in the T mode (top-sector-relocatable), and the current value for each mode is zero.

A program section directive is in effect until a program section directive to the contrary is encountered.

All labels and the symbol " . " for the location counter assume the mode of the current program section
directive.

Coding Format: Operation Operand

.ASECT not used
Operation Operand
.BSECT not used
Operation Operand
.TSECT not used

9.3 END DIRECTIVE (. END)

The .END directive signifies the physical end of the source program. The optional address in the operand
field may be used to indicate an execution address to the loader. In other words, it causes a branch to the
address of the first instruction to be executed (entry point as opposed to load point) after the load is complete.

Coding Format: Operation Operand
.END [:addr es s]

4200002B

9.4 LIST DIRECTIVE (. LIST)

The . LIST directive is used to suppress and reinstate the output listing. Initially, the assembler is in the
list mode. When a . LIST directive is encountered, the assembler suppresses the output listing if the value
of the immediate operand in the operand field is less than or equal to zero. Otherwise it reinstates the out-
put listing.

Coding Format: Operation Operand
. LIST immed

9.5 SPACE DIRECTIVE (.SPACE)

The .SPACE directive causes a skip forward the specified number of lines on the output listing.

Coding Format: Operation Operand
.SPACE immed

The value of the immediate operand specifies the number of lines to
be spaced forward.

9.6 PAGE DIRECTIVE (. PAGE)

The . PAGE directive is used to space forward to the top of the next page. The optional string is used as the
current page title and is printed on each page until another Page Directive is encountered with a new string
to replace the old title. No action takes place {(except for a new page title) if the . PAGE directive is issued
immediately after an assembler generates top-of-page request.

Coding Format: Operation Operand

.PAGE [string]

9.7 WORD DIRECTIVE (. WORD)

The . WORD directive generates 16-bit data words in success,;ive memory locations. Each expression in a
.WORD directive is evaluated, and its value is placed in the next availabe memory location.

If a label appears in the label field of a . WORD directive statement, it refers to the address of the memory
location of the first value.

In all expressions appearing in a single . WORD directive statement, the special symbol " . " will have the
value of the location counter that corresponds to the initial expression.

Coding Format: Operation Operand

.WORD expression |:, expression, ... expression]

4200002B

9.8 ASCII DIRECTIVE (. ASCII)

The . ASCII directive generates data in successive memory locations by translating the characters in the
string(s) into their 7-bit ANSI equivalent code (see appendix A). The characters in the string must be en-
closed in single quote marks (').

The first character in each string is placed in the high-order byte of the next available memory location. The
second character is placed in the low-order byte. The third character is placed in the high-order byte of the
next word, and so on. If there is an odd number of characters in a string, the last low-order byte is filled
with a blank code (2016).

Coding Format: Operation Operand
. ASCII string [, string,...... string]

9.9 GLOBAL DIRECTIVE (. GLOBL)

The . GLOBL directive lists a set of symbols as being global to all load modules that are linked and loaded
together. This is the mechanism by which individually assembled programs can communicate with one an-
other.

Each symbol in the operand field is marked by the assembler as a global symbol. If the symbol is within the
current assembly it may be referred to by other load modules. If the symbol is not within the current assem-
bly, it is assumed to be defined in another assembly, and references to this symbol will be established at load
time.

Any number of . GLOBL directive statements may occur within a single assembly. They are treated as a sin-
gle . GLOBL directive statement with a large number of symbol operands.

Coding Format: Operation Operand
.GLOBL symbol [, symbol, symbol. . . symbol |

9.10 LOCAL DIRECTIVE (. LOCAL)

The . LOCAL directive establishes a new program region for local symbols (symbols beginning with a dollar
sign). Designated symbols between two . LOCAL directive statements have the meaning assigned to them
only within that particular region of the program. Note: A local . LOCAL directive is assumed at the be-
ginning and end of a program, thus, one . LOCAL directive in the module splits the program into two
regions.

If the first character of a symbol is a dollar sign ($), the assembler attaches a unique character to the end
of the symbol. Initially, this character is the exclamation point (!). The value of the added character is
advanced by one with the letter "Z" being the last legal value. Therefore, up to 58 local symbols can
appear in one section (See appendix A).

Coding Format: Operation Operand
. LOCAL not used

4200002B

9.11 CONDITIONAL ASSEMBLY DIRECTIVES (.IF, .ELSE, .ENDIF)

The conditional assembly directives selectively assemble portions of a source program based on the value of
the expression in the .IF directive statement.

Coding Format: Operation Operand
JOF expression

Operation Operand

.ELSE not used

Operation Operand

.ENDIF not used

All source statements between an .IF directive and its associated . ENDIF directive are defined as an .IF-
.ENDIF block. These blocks can be nested to a depth of ten. The . ELSE directive can be optionally included
in an .IF-, ENDIF block. It segments the block into two parts. The first part of the source statements is
assembled if the .IF expression is greater than zero; otherwise, the second part is assembled. When an
.ELSE directive is not included in a block, the block will be assembled only if the expression is greater than
zero. The example in figure 9-1 illustrates how the conditional assembly directives operate.

IF
e

1
°
° } this is assembled if e > 0
°

Bam3

.ELSE

this is assembled if e; <0

o0 0
N

H®H

2
®
] } this is assembled if e, < 0and ey 0

HgW3

o
° } this is assembled if 61< 0

Figure 9-1. Example of Conditional Assembly Directives

4200002B

9.12 FORM DIRECTIVE (. FORM)
The . FORM directive specifies a field format for a 16-bit word and optionally presets bits of the word to an
initial value. The . FORM directive may be used for such purposes as generating special instructions not

recognized by the assembler.

Coding Format: Operation Operand

.FORM symbol, exp I:(exp):l , [exp [(expﬂ]

The symbol operand is the name of the word format and can be used to invoke the format by placing it in the
operation field of a statement. Note: symbols assigned values by a . FORM directive cannot be used in ex-
pressions or as global symbols.

The expression(s) following the symbol specify field lengths within the word and optionally, values for the
specified field lengths starting at the most significant bit. If a value is specified for a field it must be en-
closed in parentheses and immediately follow the length attribute. For example,

.FORM CK, 4, 8, 4(X'A)

divides the word into three fields: one 4-bit field, one 8-bit field, and one 4-bit field with the preset value,
X'A. Note: fields with preset values cannot be changed when the format is evoked.

The following examples illustrate the use of the . FORM directive.

1. To generate a BCD constant

v v only these fields can be changed
.FORM BCD,4,4,4(X'F), 4

When the BCD form is invoked by
BCD X'C, X'A, X'E
it causes the 16-bit CAFE1 6 to be generated.

2. To generate I/O instructions:
TTY =1
READ =2
WRITE =17
L]

.FORM RDCHAR, 8(04), 1(0), 4(TTY), 3(READ)
.FORM WRCHAR, 8(06), 1(0), 4(TTY), 3(WRITE)

WRCHAR
The instructions generated would be X'040A (RIN) and X'060F (ROUT); these

instructions would read a character from TTY (with a parallel interface) and
write a character to TTY.

9-6

4200002B

3. To generate conditional branch instructions:

ZRO =1

NZRO =5

.FORM BZ, 4(1), 4(ZRO), 8
.FORM BNZ, 4(1), 4(NZRO), 8

BZ LABEL-.-1

L]
BNZ LAB2-.-1
The object code generated would be:

BZ: BOC REQO,LABEL
BNZ: BOC NREQO,LAB2

9.13 EXTENDED INSTRUCTION DIRECTIVE (. EXTD)
In order to avoid inadvertent use of the extended instruction set by a user who does not have a second CROM
installed, the assembler will normally flag any occurrance of an extended instruction with a diagnostic mes-

sage. The instruction will, however, be assembled correctly if it is structured correctly.

Execution of the . EXTD instruction directive causes the printing of the error message to be suppressed.

Coding Format: Operation Operand
.EXTD not used

9-7

4200002B

Chapter 10

IMP-16 RESIDENT ASSEMBLER OPERATING PROCEDURE

The IMP-16 resident assembler is a 3-pass assembler that may be run on an IMP-16L or IMP-16P microcom-
puter and must read the same program for each pass, as follows.

Pass 1: During pass 1 the assembler assigns locations to the labels.

Pass 2: Pass 2 is optional and exists if and only if a listing is requested (which is the normal mode).

Pass 3: Pass 3 is an optional pass and exists if and only if an object module is to be punched on paper
tape. (OM option specified on control statement)

10.1 ASSEMBLER LOADING PROCEDURE

The assembler is loaded in the normal manner by the absolute card reader loader (ABSCR) or the paper tape
absolute loader (see IMP-16 Utilities Reference Manual). Upon completion of loading the assembler will type
out

NSC IMP-16 ASSEMBLER
MEMORY =

to which the user must respond with his memory configuration (in units of K words, where 1K = 1024 words).
The possible responses are as follows

a:b, c:d memory configured in two disjointed regions
azb memory configured in one continuous region
RET default memory configuration 0 to 4K

where a, b, ¢, and d are integers 0 to 64 that indicate the memory configuration to be

aK to bK-1
and

cK to dK-1

For example,

0:4, 60:64
will indicate a memory configuration of 0 to 4095 and 61440 (60K) to 65535 (64K-1).

The assembler uses this memory configuration information so that all memory that is not occupied by the
assembler itself will be used for its symbol table. These numbers may vary depending upon the latest assem-
bler release and the length of the user's symbols. Three words of symbol table are required for each symbol
which contains four or less characters. Four words of symbol table are required for symbols contfaining
more than four characters.

10-1

4200002B

10.2 ASSEMBLING A PROGRAM

At the beginning of each assembly, the assembler will initialize to all of the default modes and will prompt
with ". ASM" to which the user must respond with his control options. The control options are defined below
and are separated by commas and terminated by a carriage return. If an erroneous control message is
typed in, then the assembler will reinitialize and reprompt.

KB Indicates keyboard input (this is the default mode).

PT Indicates paper tape input.

CR Indicates card reader input.

oM Indicates object module request. The default mode is no object module and, therefore,
there is no pass 3.

EL . Indicates error listing. During pass 2, only the lines with errors will be printed.

NL Indicates no listing. The default mode assumes a listing. If there is no listing,
pass 2 will be eliminated.

X Indicates extended instructions are legal. The default mode is extended instructions
illegal.

NC Indicates no comments to be printed which will speed up the listing pass. The default

mode is for comments to be printed.

The default mode (keyboard input, full listing, no extended instructions, and no object module) is always
initialized at the beginning of each new assembly.

At the end of each pass, the source program must be reloaded for the next pass, and the assembly automat-

ically begins the subsequent pass. At the beginning of the third pass, the assembly halts for the operator to
turn the paper tape punch on. After the operator turns the paper tape on, he presses the run button to con-

tinue. At the completion of pass 3, the assembler again halts for the operator to turn the paper tape punch

off and to press the run button to complete the assembly process. After assembling a program, the assem-
bler reinitializes and prompts with "". ASM" for the next assembly.

The resident assembler also permits the user to specify the above assembly controls in his source program.
This is done by using the . ASM directive with the above control options. If the . ASM directive appears in
the source program, it is usually the first record. However, it may appear anywhere in his program: for
example, to change the source device. Other than to change the source device, it is not recommended that
the . ASM directive appear anywhere in the program except at the first record. The following is an example
of a . ASM directive:

.ASM X, OM, NC

10.3 CARD READER INPUT
A source program from the card reader contains one statement per card. Columns 1 to 72 contain the
statement and columns 73-80 may contain identification information which is ignored by the assembler. A

carriage return character causes immediate termination of the source statement. Otherwise, the source
statement is terminated after column 72.

10.4 PAPER TAPE INPUT

A source program from paper tape contains one statement per record. Carriage return characters
must terminate each record, and the record may not contain more than 72 characters.

10-2

4200002B

10.5 KEYBOARD INPUT

A source program entered from the keyboard should be formatted one statement per record. Carriage return
characters must terminate each record and the record may not contain more than 72 characters.

The assembler prompts for each statement from the keyboard with a statement number followed by an
asterisk (*).

10.6 KEYBOARD/PAPER TAPE SPECIAL EDITING CHARACTERS

Assembler input from the keyboard or paper tape allows the following editing characters:

NULL (00) Ignored

RUBOUT (FF) Ignored

LINE FEED (0A) Ignored

+— (5F) Delete previous character (backspace)
ALT (7D) Delete source line

CR (0D) Terminates each source line

The above editing characters are processed as such, even if they appear with a character string.

10.7 OBJECT LISTING

Figure 10-1 illustrates typical object listings from the IMP-16 resident assembler. Only the first 53 col-
umns of each source statement are listed, although the entire source statement is processed.

If the "no comment" (NC) mode of listing output has been specified, one of the two following conditions will
hold:

1. If the comment begins in column 1 of the card, the card is completely ignored by the resident
assembler and no actions are taken.

2. If the comment begins in other than column 1, the line is numbered and listed up to, but not
including, the comment field.

10.8 RELOCATABLE LOAD MODULE (RLM)
Each object module record is punched on paper tape in the following format:

8 null frames
Start of Text Character (02)

Object Module Record (see Chapter 6 (6.3.3), Relocatable Load Module
(Output))

Carriage Return (0D)
Line Feed (04)

The first record is preceded by 8 additional null frames and the last record is followed by 64 null frames.

10-3

VALUE
SYMBOL

4200002B

N=l IMF-16 ASSEMBLER
MEMURY = =

NEXT ASSEMBLY

ASM =

END FASS 1 SUURCE CE. =CSBE

MEMORY CONFIGURATION
IS DEFAULTED TO 0-4K

ASSEMBLY CONTROL
OPTION

SOURCE LINE NUMBER
MEMORY LOCATION
VALUE
RELOCATION CHARACTER :
A ABSOLUTE
. A L % X EXTERNAL
- A% an, s B BASE
: .TITLE SAMPLE, “LISTING SAMFLE T Top
4 0000 . TSECT I INDIRECT
5 . GLOBL ALFHA
& . LOCAL
7 0000 RO=0
5 0001 Ri=1
k] Q0L RZ=2 SOURCE
10 0003 ¥V | Ra=3 PROGRAM
11 00O 4F14 A | START: LI R3, 20
1Z 0001 H801 X LD RZ, ALPHA
13 000X 4LFF A LI RO, —1
14 0003 C200 A | $LOUP: ADD RO, U(RZ)
15 0004 4A01 A AISZ R, 1
16 0005 4BFF A AISZ 3, -1
17 0006 ZIFC A JMP $LOUF
15 0007 O0LOO A HALT
19 0000 END
ALFHA o001 X
RO cOOO A
K1 0001 A%
MAP { Rz 000Z A - SECTION:
K3 0003 A G GLOBAL INTERNAL
START 0000 T B BASE SECTION
sLUDF Qooz T

NOERROR LINES
ENL FASS Z SUURCE K. =CSBE
TURN FT PUNCH ON, FRESS RUN

Figure 10-1.

10-4

T TOP SECTION
X GLOBAL EXTERNAL
A ABSOLUTE

*indicates symbol not used.

Sample Listing of Resident Assembler

4200002B

Appendix A
CHARACTER SETS
Table A-1 contains the 7-bit hexadecimal code for each character in the ANSI character set. The printable
characters in this set may be set-up as program data by use of the . ASCII directive (see chapter 9). The re-

maining characters may be set up in hexadecimal constants with a . WORD directive (see chapter 9). Table
A-2 contains the legend for nonprintable characters.

Table A-1. ANSI Character Set in Hexadecimal Representation

7-Bit 7-Bit 7-Bit
Hexadecimal Hexadecimal Hexadecimal
Character Number Character Number Character Number

NUL 00 ! 21 A 41
SOH 01 " 22 B 42
STX 02 # 23 C 43
ETX 03 $ 24 D 44
EOT 04 % 25 E 45
ENQ 05 & 26 F 46
ACK 06 ! 27 G 47
BEL 07 (28 H 48
BS 08) 29 I 49
HT 09 * 2A J 4A
LF 0A + 2B K 4B
VT 0B , 2C L 4C
FF 0C - 2D M 4D
CR 0D . 2E N 4E
SO OE / 2F (0] 4F
SI OF 0 30 P 50
DLE 10 1 31 Q 51
DC1 11 2 32 R 52
DC2 12 3 33 S 53
DC3 13 4 34 T 54
DC4 14 5 35 U 55
NAK 15 6 36 A\ 56
SYN 16 7 37 w 57
ETB 17 8 38 X 58
CAN 18 9 39 Y 59
EM 19 : 3A Z 5A
SUB 1A 5 3B C 5B
ESC 1B < 3C \ 5C
FS 1C = 3D 1 5D
GS 1D > 3E } 5E
RS 1E ? 3F -~ 5F
UsS 1F @ 40 N 60
SP 20

4200002B

Table A-1. ANSI Character Set in Hexadecimal Representation (Cont.)

7-Bit 7-Bit 7-Bit
Hexadecimal Hexadecimal Hexadecimal
Character Number Character Number Character Number
a 61 k 6B u 75
b 62 1 6C v 76
c 63 m 6D w 77
d 64 n 6E X 78
e 65 o 6F y 79
f 66 p 70 z 7A
g 67 q 71 7B
h 68 T 72 7C
i 69 s 73 ALT ™
j 6A t 74 ESC 7E
DEL, RUBOIUT TF
Table A-2. Legend for Nonprintable Characters
Character Definition Character Definition
NUL NULL SO SHIFT OUT
SOH START OF HEADING;ALSO SI SHIFT IN
START OF MESSAGE DLE DATA LINK ESCAPE
STX START OF TEXT; ALSO EOA, DC1 DEVICE CONTROL 1
END OF ADDRESS DC2 DEVICE CONTROL 2
ETX END OF TEXT; ALSO EOM, DC3 DEVICE CONTROL 3
END OF MESSAGE DC4 DEVICE CONTROL 4
EOT END OF TRANSMISSION (END) NAK NEGATIVE ACKNOWLEDGE
ENQ ENQUIRY (ENQRY); ALSO WRU SYN SYNCHRONOUS IDLE (SYNC)
ACK ACKNOWLEDGE. ALSO RU ETB END OF TRANSMISSION
BEL RINGS THE BELL BLOCK
BS BACKSPACE CAN CANCEL (CANCL)
HT HORIZONTAL TAB EM END OF MEDIUM
LF LINE FEED OR LINE SPACE SUB SUBSTITUTE
(NEW LINE): ADVANCES ESC ESCAPE. PREFIX
PAPER TO NEXT LINE FS FILE SEPARATOR
BEGINNING OF LINE GS GROUP SEPARATOR
VT VERTICAL TAB (VTAB) RS RECORD SEPARATOR
FF FORM FEED TO TOP OF Us UNIT SEPARATOR
NEXT PAGE (PAGE) Sp SPACE
CR CARRIAGE RETURN TO

4200002B

Appendix B
STATUS BITS IN ARITHMETIC OPERATIONS
This section describes how status bits are used in arithmetic operations. Key programming aspects of status
bit use are explained, but complete mathematical algorithms are not provided.
Arithmetic operations may be signed or unsigned. Consider first one word. Unsigned, its numbering range is:

from OlO(X'OOOO) 0000 000000000000
t06553510(X'FFFF) =11111111 11111111

Signed, the high-order bit is 0 for + (plus), 1 for - (minus), and the numbering range is:

+3276710 =011111111111 1111

010 =0000 0000 0000 0000
- 110 =111111111111 1111
—3276810 =1000 0000 0000 0000

B.1 ARITHMETIC WITH UNSIGNED DATA WORDS
Unsigned arithmetic uses the carry bit, but not the overflow bit. For example:
+ X'2E00 = 0010111000000000

X'5200 0101001000000000
= X'8000 1000000000000000 CY=0, nocarry.

+ X'AE00 = 1010111000000000
X'5200 0101001000000000
= X'10000 0000000000000000 CY=1

Consider subtraction using twos-complement arithmetic:
X'AE00 -~ X'5200 = X'AE00 + X'ADFF + X'0001 = X'5000

+ X'AE00 = 1010111000000000
+ X'ADFF 1010110111111111
X'0001 0000000000000001
= X'sC00 0101110000000000 CY=1 answer positive

Il

X'5200 - X'AE00 = X'5200 + X'51FF + X'0001 = X'A400 = - X'5C00

X'5200 0101001000000000

X'5100 =0101000111111111

X'0001 0000000000000001

X'A400 1010010000000000 CY =0 answer negative
Ones complement 0101101111111111 so take twos complement
Twos complement 0101110000000000
X'5C00

o

4200002B

Rules for addition and subtraction using unsigned data words are as follows:

1. Ignore the OV bit.
In addition, if CY is set, add 1 to the next high order digit.
3. In subtraction, if CY is set, the answer is positive. If CY is reset, the answer is negative and is

present in its twos-complement form.

N

Inmultiword arithmetic the above three rules apply to the leftmost (terminal or high-order) word. Between
lower order words, the CY bit is always treated as a carry into the low-order bit of the next word:

00010011010101001110011100000101
00100100110000110011010110001001
00111000000110000001110010001110

+ X'1354E705
X'24C33589

Cy=1
Carry into next word

4200002B

B.2. MULTIPLICATION AND DIVISION
Consider multiplication and division of unsigned multibyte numbers. Two techniques are possible:

1. Repetitive addition/subtraction
2. Use of the shift instruction

Repetitive addition provides the simplest but slowest form of multiplication; for example, (X'2E) * (X'74)
may be generated by adding (X'74) X'2E times. Likewise, repetitive subtraction provides the simplest but
slowest form of division. For example, to divide (X'82) by (X'21), subtract (X'21) from (X'82) repetitively
until the answer is negative and c¢ount the number of subtractions that leave a positive answer.

Using shift instructions provides faster multiplication and division. Consider (X'21) * (X'53).

X121 * X'5300 = X'AB300
Recall that shifting a word left 1 bit is equivalent to multiplying by 2. A carry will appear in the L bit. The
above multiplication may be effected by shifting X'5300 left eight times, adding the result to an accumulator

each time the next bit of X'21 is 1, and tracking the L bit in another accumulator:

EXAMPLE OF MULTIPLICATION ROUTINE

ACO AC1 AC2 AC3
Link Answer

X'21 X'5300 Accumulator Accumulator
Start: ---- 00100001 0101001100000000 0000000000000000 0000000000000000
Step 1 0101001100000000 0000000000000000 0101001100000000
Step 2 - 1010011000000000 0000000000000000 0101001100000000
Step 3 ——- ~-= 0100110000000000 0000000000000001 01010601100000000
Step 4 ~————-—-—-—-———- 1001100000000000 0000000000000010 0101001100000000
Step 5 ———--—————=———- 0011000000000000 0000000000000101 0101001100000000
Step 6 ———-———————~—-= 0110000000000000 0000000000001010 1011001100000000

Step 1: Test ACO 0-bit; it is 1, so add AC1 to AC3.

Step 2: Shift AC1 and AC2 left one bit. L bit is 0, no action. Test ACO 1-bit; it is 0,
S0 no action.

Step 3: Shift AC1 and AC2 left one bit.
it is 0, so no action.

Step 4: Shift AC1 and AC2 left one bit.
so no action.

Step 5: Shift AC1 and AC2 left one bit.
it is 0, so no action.

Step 6: Shift AC1 and AC2 left one bit. L bit is 0, no action. Test ACO 5-bit; it is 1,
so add AC1 to AC3. If Carry, add 1 to high-order answer. Add Link Accumulator
to high-order answer.

L bit is 1, so increment AC2. Test ACO 2-bit;
L bit is 0, no action. Test ACO 3-bit; it is 0,

L bit is 1, so increment AC2. Test ACO 4-bit;

All remaining bits of AC1 are 0, so terminate AC2 and AC3 provide the answer, X'0AB3.

Since the multiplication routine described above uses a number of important programming techniques, a sam-
ple program is given below, with program comments.

A divide routine would follow virtually the same logic, but would use a left shift rather than a right shift on
AC1.

4200002B

EXAMPLE OF MULTIPLICATION ROUTINE

; one word * one word multiplication with 2-word answer.
; clear AC2 to hold link accumulation (becomes high-order portion of answer)

P10: RXOR AC2,AC2
RXOR AC3,AC3 ; Clear AC3 to hold L O answer
ST AC3,EXTND ; Clear high-order answer

; Load multiplier into scratch word.

; Load AC1 with multiplicand. To make the multiplication routines general

; purpose, both numbers are loaded indirect, via addresses stored in Page 0.

; Therefore before executing this multiplication routine, the addresses of the

; multiplier and multiplicand words must be loaded at MUL1 and MULZ2 on page 0.

LD AC1,@MUL1 ; Load multiplicand

LD AC0,@MUL2 ; Load multiplier

ST ACO0,SCR ; Save ACO contents in scratch word
LI ACO,1 ; Initialize the bit counter by setting
ST ACO0, BCNT ; the LO bit to 1 and all other bits to 0.
SKAZ ACO0,SCR

JMP .2 ; Bit set

JMP $M20 ; Bit not set

; Addition step for 1 bit multiplier begins here.

$M10: RADD AC1,AC3 ; Add AC1 to ACS3.
PFLG SEL ; Test Carry Bit
BOC CYOV,.+2
JMP $M15
ISZ EXTND ; Add Carry to high-order answer
$M15: D ACO0, EXTND ; Form high-order portion of answer.
RADD AC2,ACO
ST ACO0,EXTND
$M20: SFLG SEL ; Set SEL to activate LNK on shift.
SHL AC2,1 ; Shift AC2 left one bit.
SHL AC1,1 ; Shift AC1 left one bit.
PUSHF ; Shift status to ACO
PULL ACO ; Test link bit
BOC PZRO, $M30
AISZ AC2,1 ; Add bit in Link to Link Accumulator
$M30: LD ACO0, BCNT ; Restore bit count
SHL ACO,1 ; Shift bit count left
ST ACO0, BCNT
SKAZ ACO0,SCR ; Bit set in Multiplier
JMP $M10 ; Yes. Perform Next Step.
AISZ ACO0,0 ; No. Any more bits to test?
JMP $M20 ; Yes. Return for next shift.
LD AC2,EXTND ; No. Fetch high-order portion of answer.
RTS ; Terminate multiplication.
SCR: =L ; Multiplier stored here.
BCNT1: e ; Bit counter.
EXTND: .WORD 0 ; High-order answer.

B-4

4200002B

Appendix C
INPUT/OUTPUT PROGRAMMING
The programming of data transfers between read/write memory and peripheral devices is generally classified
as input/output programming. Depending on how significant input/output operations are in the overall program,
different approaches to input/output program implementation are recommended, as described in the following
sections. First, it is necessary to clearly understand the differences between programmed input/output and

interrupt input/output, as explained in C.1; next, section 2 describes generally accepted programming tech-
niques that make input/output programming fast and efficient.

C.1 PROGRAMMED INPUT/OUTPUT AND INTERRUPT INPUT/OUTPUT

C.1.1 Programmed Input/Output
A programmed input/output operation is initiated by, and executed under control of the program:

Program Input/Output portion of Program

v

Executing program Continued

The actual program steps required to enable programmed input/output depend on the design of the device con-
troller.

C.1.2 Interrupt Input/Output

An interrupt input/output operation must be initiated by a peripheral device which transmits an interrupt to
the CPU, causing the executing program to be interrupted for the duration of the input/output operation:

Interrupt

Program Executing / Continue Program Execution

Return from
Interrupt

Program I/0O

Interrupt input/output requires a definite and specific sequence of events, irrespective of what peripheral
device is to be serviced; the sequence is as follows:

4200002B

In order for an interrupt to be accepted by the CPU, the master interrupt enable flag (INEN) must
be enabled (set to 1), and for the IMP-16L, the particular interrupt level corresponding to the
device (IENO through IEN3) must be enabled also . If either flag is disabled (set to 0), interrupt
signals from peripheral devices will be rejected. The master interrupt enable may be enabled
by the instruction

LABEL: SFLG INEN
and disabled by the instruction
LABEL: PFLG INEN
The interrupt level flags may be manipulated via the following sequence of instructions:

PUSHF
PULL ACO

Code to modify flags

PUSH ACO
PULLF

Once an interrupt has been received and accepted by the CPU, the following steps occur auto-
matically, and under control of the CPU.

a. The instruction currently being executed is completed, and the memory address of the next
instruction is pushed onto the stack.

b. Interrupts are disabled (INEN is set to 0). Therefore no further interrupts will be accepted
q by the CPU until interrupts are re-enabled.

¢c. The instruction located at memory address X'0001 is executed.

The instruction at memory location X'0001 should be a jump to an interrupt service routine,
which must perform a number of housekeeping tasks before the required input/output operation
can proceed. Tasks, in order of normal execction follow.

a. Save the contents of accumulators and status register so that they can be restored just
prior to returning from the interrupt. Accumulator and status register contents can be
saved on the stack, but since the stack has just 16 words, more commonly a data area in
memory is set aside for temporary data storage.

b. Determine the source of the interrupt. How this is done will depend on the design of the
peripheral device controllers, but usually controllers are designed to follow the interrupt
request signal by transmitting a data bit (or word) which identifies the source of the inter-
rupt.

c. Once the interrupt has been identified, jump to the routine that services the identified device.
This input/output service routine is written using programmed input/output as described in
section 1.a.

Execute the selected device's input/output service routine.

Restore to the accumulator and status register contents that were saved in step 3a.

Return from the interrupt by executing an RTI instruction_. This re-enables interrupts by set-
ting flag INEN to 1 and pulls the return address (saved in %he stack by step 2a) into the program
counter, so execution continues at the program instruction following the interrupt.

C.1.3 Stack Full Interrupt

The Stack Full Condition (STKFUL) may optionally be connected to the interrupt enable; in this case, as soon
as the bottom stack register (STK 15) is filled, the STKFUL condition is set and an interrupt is generated.

C-2

4200002B

Processing following a "stack full" interrupt (level 0) requires essentially the same sequence of steps as out-
lined previously. The "stack full” interrupt must be identified by testing the "stack full" condition:

STKFUL = 8
LABEL: BOC STKFUL, HERE
If the "'stack full" condition exists, execution will continue at HERE.
NOTE
Occurrence of a "stack full" interrupt may cause loss of data since
it will result in the PC being pushed onto the stack. If a control

panel interrupt immediately follows a "stack full” interrupt, the
result may be a loss of two data words.

4200002B

C.2 INPUT/OUTPUT SYSTEM ORGANIZATION

Depending on the intended application for the IMP-16, the type of input/output programming described in sec-
tion C. 1.1 may or may not be adequate.

In a dedicated application where the IMP-16 is used as a controller, or will rarely be subject to extensive
reprogramming, it is efficient to incorporate input/output programming steps into the body of the program.

When the IMP-16 is to be constantly programmed, and particularly when peripheral devices are subject to
change, it is more efficient fo introduce the "logical unit" concept into input/output programming. Using
this concept, programs are written to access peripheral devices functionally, rather than physically. For
example,

Logical Unit 0 may be the operator interface device.
Logical Unit 1 may be the bulk output device.
Logical Unit 2 may be the bulk storage device.
Logical Unit 3 may be the data entry device.

Logical Units 4-7 may be data transmitting devices.

The operator interface device may be a Teletypewriter keyboard, or a (cathode ray tube) CRT terminal. The
bulk output device may be a line printer or a Teletypewriter printer, or a paper tape punch.

The bulk storage device may be a magnetic disc, a magnetic tape, or a cassette unit.

The data entry device may be a Teletypewriter keyboard, the Teletypewriter paper tape reader or a high-
speed paper tape reader.

The data transmitting devices may be analog-to-digital converters, intermediate magnetic storage devices,
or specially wired external signal lines.

Input/output programming now has three parts:
a. A generalized, logical unit oriented program to process requests for input/output.

b. A set of device drivers that link the logical unit requested in "a" above with the required
physical unit.

c. Programs that actually enable the input/output operation.

C.2.1 Generalized Call to Input/Output

One subroutine will initiate all input/output operations with the exception of those operations that can only be
initiated by an external interrupt. Let us call this subroutine I10S.

The execution of any input/output operation requested by a program will start with one common subroutine
call

LABEL JSR @108
.DWORD LIST

where I0S provides, on the base page, the starting address of the input/output initiation subroutine, and LIST
provides the memory address where the required input/output operation is defined. At LIST, the following
information must be provided, using any convenient hexadecimal code:

1. The input/output operation to be performed should include:
a. Read

b. Write
c. Open (Initialize flags, counters or other conditions, if needed).

4.

4200002B

Close (Provide device use termination processing, if needed).
Position to specified record and file.

Backspace (or forward space) a set number of records and/or files.
Return device status.

@ oA

Input/output operation variables, including:

a. ASCII or binary for data transfers.

b. Echo or no echo for teletype.

c. Formatted or unformatied for printed output.

Base address and length of memory buffer for read and write operations.

Record and file number for position and backspace/forward space.

The IOS subroutine will interpret the information provided at LIST, then call the device driver for the physi-
cal unit corresponding to the requested logical unit. IOS will contain a physical unit assignment table to link
physical units to logical units. For example, if there are eight logical units and six physical units, the table
may take the form:

PUTBLE: -WORD X'0000 ;LU0 = PUO
.WORD X'0100 ;LUL = PUO
-WORD X'0201 ;LU2 = PU1
-WORD X'0302 s LU3 = PU2
.-WORD X'0404 ;LU4 = PU4
.WORD X'0503 ;s LUS = PU3
.WORD X'0605 ;LU6 = PUS
.WORD X'0705 ; LUT - PUS
.WORD X'0806 ;LU8 = PUG6

C.2.2 Device Drivers

The principal purpose of a device driver is to keep track of the status of peripheral devices during and be-
tween input/output calls. The device driver will maintain a device control block which is a data area dedi-
cated to each peripheral device (one data area per device), where the following information is stored.

1.

6.

Busy/not busy. This serves two purposes.

a. To selectively disable/enable individual peripheral devices

b. To selectively disable other peripheral devices during certain phases of this device's opera-
tion

Record and file to which device was last positioned. The Open Call to IOS will reposition to

this record and file, thus allowing reinitiation of discrete portions of input/output operations in

the event of error conditions (bulk storage devices only).

Current record and file (bulk storage devices only).

Requested record and file (bulk storage devices only).

Selected parameters, coefficients, scale or conversion factors required or used by the device.

Condition of last operation: Successful, doubtful or error.

The device driver will now call the subroutine which executes the actual input/output operation.

4200002B

Appendix D

PROGRAMMERS CHECKLIST

The following list of items is suggested for desk-checking a program prior to assembly.

1.

2.

10.

11.

Is the source program terminated by an . END Directive?

Is each label in the program terminated by a colon (:)?

Is each comment in the program preceded by a semi-colon (;)?

Is each string constant in the program set off on both ends by a prime "?

Is each Skip Instruction in the program followed by a single-word instruction?
Are all external symbols listed in .GLOBL Statements?

If using the Extended Instruction Set, has an . EXTD Directive been included ?
Are all hexadecimal constants preceded by either X' or 0 (zero)?

For each .IF Directive in the program, is there a corresponding . ENDIF ?
Are any global symbols defined by férward references? This is illegal.

Are any symbols defined by two-level forward references? This is illegal.

4200002B

Appendix E

FOLD16 - IMP-16 FORTRAN OBJECT LOADER PROGRAM DESCRIPTION

FOLD16 is a FORTRAN subroutine that may be called by another FORTRAN program to input an IMP-16
Relocatable Load Module (RLM), convert it to core-image format, and place each portion (base sector, top
sector, and so forth) in a vector representing the IMP-16 main memory in its proper location so that the
program may be output to paper tape, cards, or other media for later loading into the IMP-16, or for pro-
ducing PROMs of the program.

FOLD16 loads each element of the memory vector with one 16-bit word exactly as it is output from the
IMP-16 assembler.

FOLD16 is written in ANSI FORTRAN to be executed on the system being employed for assembling IMP-16
programs. The only input/output performed by the subroutine consists of a series of reads of one or more
IMP-16 relocatable load modules (output from the IMP-16 assembler).

E.1 GENERAL USAGE INFORMATION

One of the input parameters provided to FOLD16 by the user (see CALLING CONDITIONS) is a vector repre-
senting IMP~-16 main memory and large enough to contain the modules that are to be loaded. A vector of "n"
words will be assumed to represent IMP-16 main memory, addresses 0 through n-1. Since unless otherwise
directed, the IMP-16 assembler generates absolute, base-sector, and top-sector code relative to address 0,
the user must preallocate each portion of his code so that there will be no conflicts in memory. An example
of how to do this follows.

.TITLE MYPROG
.ASECT

. code

.BSECT
.=.+100

. code

.TSECT
.=.+1000

[)
. code

L4
.END START

If more than one program is to be loaded, care must also be taken to avoid conflicts between programs. The
user’s attention is directed to the fact that even if he generates no actual base sector code, the IMP-16
assembler may, in resolving addresses, generate indirect address references through pointers which are
actually allocated to base sector.

After the memory vector has been loaded as desired, the contents may be output to paper tape, for example,
for leading into the IMP-16. The required format for an IMP-16 8-bit binary tape is described in the
IMP-16 Utilities Manual (publication number 420003B) and the IMP-16L Utilities Manual (publication num-~
ber 4200025A).

4200002B

E.2 IMPLEMENTATION

The main subroutine entry point is FOLD16. The main subroutine calls one internal subroutine, UNPACK,
which unpacks an IMP-16 word, 1 bit at a time, into 16 computer words.

The primary input data for FOLD16 is an IMP-16 RLM, the format of which is described in 6. 4.

E.3 CALLING CONDITIONS
The calling sequence for FOLD16 is:

CALL FOLD16 (BIN,NEW,VECTOR)

where
BIN is the FORTRAN logical unit number of the input/output device containing the input
RLM.
NEW The core-image vector into which the RLM specified by the user is loaded. This
core-image vector is 4096 words long and represents IMP-16 memory, addresses 0
through 4095. When loaded, an element of this vector will contain an integer "n"
in the range 0 < n < 65535.
VECTOR A T-word vector in which FOLD16 returns loading statistics to the user.
Word Value
1 Base sector initial address
2 Base sector final address
3 Top sector initial address
4 Top sector final address
5 Lowest memory address
6 Highest memory address
7 Module entry point

If more than one module is loaded, the first six elements of VECTOR will be updated
as each module is completed. Element 7 will contain the entry point of the last RLM
loaded.

Other tables used by FOLD16 are:

REC A 16-word table into which FOLD16 reads an RLM record when processing it.
ARY A 16-word table into which UNPACK unpacks computer words, one bit per element.

Care should be taken that the first set of records encountered by FOLD16 on the specified input/output device
be a complete, well defined RLM (see 6.4).

Upon entry to FOLD16 for loading of the first RLM, the first six elements of VECTOR should be initialized to
6553510, 0, 6553510, 0, 6553510, and 0. If a series of modules are to be loaded, the user may leave VEC-
TOR unchanged until after the last RLM is loaded. He will then have cumulative statistics on the state of
memory.

4200002B

E.4 RETURNING CONDITIONS

Upon return to the caller, one RLM has been loaded from the unit specified in BIN, and the elements of VEC-
TOR have been updated appropriately.

FOLD16 terminates its operation when it encounters an "END" record in the RLM. If an EOF condition occurs

on the input device before an "END" record is found, the operating system terminates the program without
returning control to the user program.

E.5 DESCRIPTION OF OPERATION
FOLD16 reads the RLM, record by record, and searches for "Data” records. When one is found, FOLD16
examines the record type and updates the corresponding set of loading statistics. It then strips out the data

and stores it into the address specified in the record (and into locations following).

When the subroutine discovers an "END" record, it saves the entry point, updates the contents of VECTOR,
and returns to its caller.

E.6 ENTRY NAME: UNPACK

E.6.1 Purpose

This subroutine unpacks a 16-bit integer into a 16-element array, one bit per element. The purpose is to
facilitate bit manipulation in the FORTRAN calling program.

E.6.2 Calling Conditions
'The calling sequence for UNPACK is

CALL UNPACK(VALU, ARY, BLOCK, LENG)

where

VALU is the word to be unpacked.

ARY is the 16-word array into which VALU is to be unpacked.
BLOCK is the starting bit number for unpacking.

LENG is the number of bits to be unpacked.

E.6.3 Returning Conditions

UNPACK returns to its caller when its task has been completed. The bit of VALU indicated by BLOCK* has
been unpacked into ARY(1).

No error conditions are tested.

*Only the least significant 16 bits of VALU are considered, that is, the least significant bit is bit 16.

4200002B

Appendix F

PROGRAM DIAGNOSTIC MESSAGES

F.1 INTRODUCTION

When a source program error is encountered by either the cross assembler or resident assembler, an appro-
priate error message, together with a pointer, is printed in the output (object listing). The pointer consists
of an "@'" or ""?" character, depending upon the assembler program.

F.2 RESIDENT ASSEMBLER ERROR MESSAGES

The resident assembler only detects the first eight errors found in each statement. The error is diagnosed
and marked in the listing, in the following line, by an error message (described below) and an @ character
under the probable error field. An example of a resident assembler error detection is shown in figure F-1.

8 0003 0000 A SH L RO, 1
ERROR UNDEFINED @

Figure F-1. Resident Assembler Error Detection, Listing Output

The following are the error messages:

1. ERROR MISSING ARG. This error indicates more arguments are required.

2. ERROR VALUE This error indicates value out of range or exceeds field
size.

3. ERROR ADDRESS This error indicates address out of range.

4. ERROR USAGE This error indicates a number of possibilities including:

a. An IF nesting error

b. A local symbol in a global statement

c. Symbol not previously defined which would affect location
counter

-d. .=wrong section

e. Illegal expression, for example, external+5

5. ERROR SYNTAX Indicates an illegal character or improper statement con-
struction.

6. ERROR EXCESS ARG. Indicates the existence of unprocessed arguments.

7. ERROR TBL OVERFLOW a. If nesting level exceeds 10
b. Pointer table exceeds 50 pointers
c. Number of local regions exceeds 64
d. Symbol table overflow

8. ERROR UNDEFINED Used to indicate either an undefined symbol or undefined
instruction/directive.

9. ERROR DUP. DEF. Duplicate definition of the symbol.

10. ERROR EXTD. INST. Extended instruction illegally used although properly assembled.

F-1

4200002B

F.3 CROSS ASSEMBLER ERROR MESSAGES

Each error is diagnosed and marked with a ""?" character in the following line of the output listing. The ""?"
is placed under the probable error field. The error is also marked on the listing with an asterisk (*) in

column 1.

Figure F-2 shows an example of cross assembler error detection.

26 0000 0000 A M = c+l
* ?
EXTERNAL CAN NOT APPEAR IN EXPRESSION
27 0000 0000 A D = B
* ?

Figure F-2. Cross Assembler Error Detection, Listing Output

ATTEMPT TO REDEFINE VALUE OF SYMBOL

Symbol, assigned a value in assignment statement, is already
defined or a symbol changed value from pass 1 to pass 2.

CONDITIONAL ASSEMBLY ERROR
The conditional assembly directives do not balance. They
must appear in sets of either .IF-. ENDIF or .IF-. ELSE-
. ENDIF.

EXPRESSION VALUE EXCEEDS BOUNDS
The value of an expression is either illegal (for example,
register value of 2 or 3 for SKAZ), or too large for field
(for example, index register value of 4 or greater).

EXTERNAL CANNOT APPEAR IN EXPRESSION

A symbol defined in a separate assembly cannot appear in
an expression.

EXTERNAL IN ASSIGNMENT

A symbol defined in a separate assembly cannot appear on
the right side of an assignment statement.

GLOBAL UNDEFINED DURING PASS 1

An attempt was made to define a global symbol by a state-
ment containing a forward reference.

ILLEGAL DIRECTIVE NAME
The directive flagged is not one recognized by the assembler.
ILLEGAL EXPRESSION

During evaluation of an expression, an illegal operator/
operand combination was discovered.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

4200002B

ILLEGAL EXPRESSION MODE

Relocatable expression in register, flag, or jump-condition
field, or value being assigned to location counter with mode
different from location counter.

ILLEGAL FORM SYMBOL

The specified symbol is not recognizable as a legal operator
or a defined . FORM symbol, or there was an error in the
corresponding . FORM declaration.

ILLEGAL INDIRECT ADDRESSING
Indirect addressing is not legal in the specified instruction.
ILLEGAL INSTRUCTION

The instruction flagged is in the extended instruction set and
a . EXTD directive has not been found in the program.

ILLEGAL SYNTAX

Instruction has incorrect structure (for example, operator
not followed immediately by operand in an expression,

. ASCII directive not followed by a 'string' , illegal
character in an expression).

INTEGER EXCEEDS LIMITS

A decimal integer with a value less than -32768 or greater
than 65535 or a hexadecimal value of more than four charac-
ters has been encountered.

LOCATION COUNTER OUTSIDE OF RANGE

Value of location counter in base sector exceeded FF_ , or,

in top or absolute sector, exceeded FFFF 16° 16

MULTIPLE DEFINITION

A symbol which appears in a . GLOBL statement or a . FORM
statement or as a label is already defined.

OUT OF STORAGE

The maximum number of . FORM statements has been
exceeded.

POINTER REGION OUT OF STORAGE
Assembler attempted to generate an indirect pointer in
base sector and base sector was full, or maximum number
of pointers has been exceeded.

SYMBOL XXXXXX UNDEFINED DUE TO SYMBOL TABLE OVERFLOW (Pass 1 Message)

Maximum number of symbols has been exceeded.

4200002B

20.

21.

22.

23.

TOO MANY LOCAL DIRECTIVES
The maximum number of local directives has been exceeded.
TOO MANY OPERANDS

More operands appear in a . FORM call than appear in the
corresponding declaration.

UNABLE TO GENERATE ADDRESS

Memory reference instruction violates addressing limita~
tions. See 5.4.

UNDEFINED SYMBOL

The symbol flagged is not defined in this program and does
not appear in a . GLOBL statement.

F.4 OTHER ERROR CONDITIONS

If the assembly process is aborted by the operating system and a message is printed which indicates that an
end-of-file condition was detected on the input file, the cause is probably omission of the . END directive at
the end of the source program.

Appendix G

DIRECTIVE STATEMENTS

4200002B

Table G-1. Index of Directive Statements
Operator
Statement Mnemonic Operand Field

ASCII Directive .ASCI string [, string, ... string]
Program Section Directive .ASECT not used
Program Section Directive .BSECT not used
End Directive .END [address]
Extended Instruction Directive .EXTD not used
Form Directive .FORM symbol, exp [(exp)] [, exp [(exp}]]
Global Directive .GLOBAL symbol[, symbol, symbol. . . symbol]
Conditional IF expression

.ELSE not used

. ENDIF not used
List Directive . LIST immediate
Local Directive .LOCAL not used
Page Directive .PAGE [string]
Space Directive .SPACE immediate
Title Directive .TITLE symbol [, string]
Program Section Directive .TSECT not used
Word Directive .WORD expression[, expression,... exp] ‘

Appendix H

INDEX OF INSTRUCTION STATEMENTS

4200002B

Table H-1. Index of Basic Instruction Statements
Operation Address Word
Type Instruction Mnemonic First Field Second Field Class Length
3 Add ADD reg addr [(XR)] 1 1
9 Add Immediate AISZ reg immed 1
Skip if Zero
5 Logical AND AND accumulator | addr [(XR)] 1 1
8 Branch on BOC immed4 spaddr 1
Condition
6 Complement and | CAI reg immed 1
Add Immediate
9 Decrement, DSZ addr [(XR)] 1 1
Skip if Zero
12 Halt HALT 1
9 Increment, ISZ addr [(XR)] 1 1
Skip if Zero
8 Jump JMP [@) adar [(xr)] 2 1
8 Jump to JSR (@] adar[(xRr)] 2 1
Subroutine
8 Jump to Sub- JSRI addr 6 1
routine Implied
1 Load LD [@] reg [(xR)]| addr 2 1
6 Load Immediate | LI reg immed 1
No Operation NOP 1
5 Logical OR OR accumulator addr [(XRﬂ 1 1
12 Pulse Flag PFLG immed3 [+immed] 1
6 Pull PULL reg 1
7 Pull Status Flag |" PULLF 1
6 Push PUSH reg 1
7 Push Status PUSHF 1
Flag
6 Register Add RADD reg reg 1
6 Register AND RAND reg reg 1
6 Register Copy RCPY reg reg 1
12 Register Input RIN +immed 1

4200002B

Table H-1. Index of Basic Instruction Statements (Cont.)

Operation Address Word
Type Instruction Mnemonic First Field Second Field Class Length

10 Rotate Left ROL reg immed 1

10 Rotate Right ROR reg immed 1

12 Register Output| ROUT +immed 1

8 Return from RTI [+immed] 1
Interrupt

8 Return from RTS [+immed] 1
Subroutine

6 Register RXCH reg reg 1
Exchange

6 Register RXOR reg reg 1
Exclusive OR

12 | Set Flag SFLG immed3 [+immed] 1

10 Shift Left SHL reg immed 1

10 Shift Right SHR reg immed 1

9 Skip If AND SKAZ accumulator | addr [(XR)] 1 1
Is Zero

9 Skip Greater SKG reg addr [(XR}] 1 1
Than Zero

9 Skip Not Equal | SKNE reg addr [(XR)] 1 1

1 Store ST reg [@]adar [(xr)] 2 1

3 Subtract SUB reg addr [(XR)] 1 1

6 Exchange Reg. XCHRS reg 1
and Stack

Table H-2. Index of Extended Instruction Statements

4200002B

Operation Address Word
Type Instruction Mnemonic First Field Second Field Class Length
7 Clear Bit CLRBIT immed4 1
7 Clear Status CLRST immed4 1
Flag
7 Complement CMPBIT immed4 1
) Bit
4 Double-Preci- | DADD addr [(XR)] 3 2
ion Add
Divide DIV addr [(XR)] 3 2
4 Double-Preci- DSUB addr [(XR)] 3 2
sion Subtract
11 Interrupt Scan ISCAN 1
8 Jump to Level 0 | JINT immed4 5 1
Interrupt Indi-
rect
8 Jump through JMPP immed4 7 1
Pointer
8 Jump to Subrou- | JSRP +immed 7 1
tine Pointer
2 Load Byte LDB addr [(XR)] 4 2
2 Load Left Byte | LLB addr [(XR)] 4 2
2 Load Right LRB addr [(XR)] 4 2
Byte
3 Multiply MPY addr [(XR}] 3 2
7 Set Bit SETBIT immed4 1
7 Set Status Flag SETST immed4 1
9 Skip if Bit SKBIT immed4 1
True
9 Skip if Status SKSTF immed4 1
Flag True
2 Store Left Byte SLB addr E(XR):I 2
2 Store Right SRB addr [(XR)] 2
Byte
2 Store Byte STB addr [(XR)] 4 2

42000028

Table H-3. Definitions of Field Designators

Field
Designator

Definition

@
accumulator
addr

immed
immed3
immed4
+immed

reg

spaddr

(xr)

indirect addressing

register field (value = 0 or 1)
address field

immediate operand

positive 3-bit immediate operand
positive 4-bit immediate operand
positive immediate operand
register field

special address field

register field (value = 2 or 3)

CONVERSION TABLES

POSITIVE POWERS OF TWO

Appendix I

TABLE I-1

4200002B

n 2n n 2n

1 2 51 22517 99813 68524 8

2 4 52 45035 99627 37049 6

3 8 53 90071 99254 74099 2

4 16 54 18014 39850 94819 84

5 32 55 36028 79701 89639 68

6 64 56 72057 59403 79279 36

7 128 57 14411 51880 75855 872

8 256 58 28823 03761 51711 744

9 512 59 57646 07523 03423 488

10 1024 60 11529 21504 60684 6976

11 2048 61 23058 43009 21369 3952

12 4096 62 46116 86018 42738 7904

13 8192 63 92233 72036 85477 5808

14 16384 64 18446 74407 37095 51616

15 32768 65 36803 48814 74191 03232

16 65536 66 73786 97629 48382 06464

17 13107 2 67 14757 39525 89676 41292 8

18 26214 4 68 20514 79051 79352 82585 6

19 52428 8 69 59029 58103 58705 65171 2
20 10485 76 70 11805 91620 71741 13034 24
21 20071 52 71 23611 83241 43482 26068 48
22 41943 04 72 47223 66482 86964 52136 96
23 83886 08 73 04447 32965 73929 04273 92
24 16777 216 74 18889 46593 14785 80854 784
25 33554 432 75 37778 93186 29571 61709 568
26 67108 864 76 75557 86372 59143 23419 136
27 13421 7728 77 15111 57274 51828 64683 8272
28 26843 5456 78 30223 14549 03657 20367 6544
29 53687 0912 79 60446 29098 07314 58735 3088
30 10737 41824 80 12089 25819 61462 91747 06176
31 21474 83648 81 24178 51639 22925 83494 12352
32 42949 67296 82 48357 03278 45851 66988 24704
33 85899 34592 83 96714 06556 91703 33976 49408
34 17179 86918 4 84 19342 81311 38340 66795 29881 6
35 34359 73836 8 85 38685 62622 76681 33590 59763 2
36 68719 47673 6 86 77371 25245 53362 67181 19526 4
37 13743 89534 72 87 15474 25049 10672 53436 23905 28
38 27487 79069 44 88 30948 50098 21345 06872 47810 56
39 54975 58138 88 89 61807 00196 42690 13744 95621 12
40 10995 11627 776 90 12379 40039 28538 02748 99124 224
41 21990 23255 552 91 24758 80078 57076 05497 98248 448
42 43980 46511 104 92 49517 60157 14152 10995 96496 896
43 87960 93022 208 93 99035 20314 28304 21991 92993 792
44 17592 18604 4416 94 19807 04062 85660 84398 38598 7584
45 35184 37208 8832 95 39614 08125 71321 68796 77197 5168
46 70368 74417 7664 96 79228 16251 42643 37593 54395 0336
47 14073 74883 55328 97 15845 63250 28528 67518 70879 00672
48 28147 49767 10656 08 31691 26500 57057 35037 41758 01344
49 56294 99534 21312 99 63382 53001 14114 70074 83516 02688
50 11258 99906 84262 4 [/100 12676 50600 22822 94014 96703 20537 6

101 25353 01200 45645 88029 93406 41075 2

4200002B

TABLE I-2

NEGATIVE POWERS OF TWO

n 2-n
0 1.0
1 0.5
2 0.25
3 0.125
4 0.0625
5 0.03125
6 0.01562 5
7 0.00781 25
8 0.00390 625
9 0.00195 3125
10 0.00097 65625
11 0.00048 82812 5
12 0.00024 41406 25
13 0.00012 20703 125
14 0.00006 10351 5625
15 0.00003 05175 78125
16 0.00001 52587 89062 5
17 0.00000 76293 94531 25
18 0.00000 38146 97265 625
19 0.00000 19073 48632 8125
20 0.00000 09536 74316 40625
21 0.00000 04768 37158 20312 5
22 0.00000 02384 18579 10156 25
23 0.00000 01192 09289 55078 125
24 0.00000 00596 04644 77539 0625
25 0.00000 00298 02322 38769 53125
26 0.00000 00149 01161 19384 76562 5
27 0.00000 00074 50580 59692 38281 25
28 0.00000 00037 25290 29846 19140 625
29 0.00000 00018 62645 14923 09570 3125
30 0.00000 00009 31322 57461 54785 15625
31 0.00000 00004 65661 28730 77392 57812 5
32 0.00000 00002 32830 64365 38696 28906 25
33 0.00000 00001 16415 32182 69348 14453 125
34 0.00000 00000 58207 66091 34674 07226 5625
35 0.00000 00000 29103 83045 67337 03613 28125
36 0.00000 00000 14551 91522 83668 51806 64062 5
37 0.00000 00000 07275 95761 41834 25903 32031 25
38 0.00000 00000 03637 97880 70917 12951 66015 625
39 0.00000 00000 01818 98940 35458 56475 83007 8125
40 0.00000 00000 00909 49470 17729 28237 91503 90625
41 0.00000 00000 00454 74735 08864 64118 95751 95312 5
42 0.00000 00000 00227 37367 54432 32059 47875 97656 25
43 0.00000 00000 00113 68683 77216 16029 73937 98828 125
44 0.00000 00000 00056 84341 88608 08014 86968 99414 0625
45 0.00000 00000 00028 42170 94304 04007 43484 49707 03125
46 0.00000 00000 00014 21085 47152 02003 71742 24853 51562 5
47 0.00000 00000 00007 10542 73576 01001 85871 12426 75781 25
48 0.00000 00000 00003 55271 36788 00500 92935 56213 37890 625
49 8 .00000 00000 00001 77635 68394 00250 46467 78106 68945 3125

.00000 00000 00000 88817 84197 00125 23233 89053 34472 65625

1-2

TABLE I-3

HEXADECIMAL AND DECIMAL INTEGER CONVERSION TABLE

4200002B

8 7 6 5 4 3 2 1
Hex Decimal Hex Decimal | Hex | Decimal | Hex | Decimal |Hex | Decimal | Hex | Decimal [Hex | Decimal | Hex | Decimal

0 0] 0 of 0 0] 0 0] 0 0 0 0 0 0 0 0
i 268.435.456 | 1 16,777,216 | 1,048,576 | 1 65,536 | |1 4,096 i 256 1 16 1 I
2 536.870912| 2 33.554.432| 2 2.097.1521 2 131072 | 2 8.192 2 512 2 32 2 2
3 805.306,368 | 3 50.331.648| 3 3145728 | 3 196,608 | 3 12.288° | 3 768 3 48 3 3
4 11073741824 4 67.108.864 | 4 4194304 4 | 262,144 | 4 16.384 4 1.024 4 64 4 4
5 11342177280 5 $3.886,080| S 5,242.880| 5 | 327.680 | S 20.480 5 1.280 5 80 5 5
6 [1,610612,736] 6 |[100.663.296| 6 6.291.456 | 6 | 393216 | © 24,576 6 1.536 6 96 6 6
7 11.879.048.192] 7 [117.440512] 17 7340032 7 | 458752 | 7 28,672 7 1.792 7 112 7 7
8 2,147.483.648(8 [134.217.728| 8 8388608 | 8 | 524288 | 8 32,768 8 2.048 8 128 8 8
9 {2.415919.104] 9 [150.994944| 9 9.437.184| 9 | 589824 | 9 36.864 9 2.304 9 144 9 9
A 12684354560 A [167.772.160| A 104857601 A] 655360 | A 40960 | A 2.560 A 160 A 10
B {2,952,790.016| B |184.549.376| B 11,534,336 B | 720896 { B | 45.056 B 2816 B 176 B 1
C 13221225472 C 1201326592 C [12,582912 C | 786432 | C 49152 cC 3.072 C 192 C 12
D |3.489,660,928) D |218,103808| D [13.631488) D | 851968 | D | 53.248 D 3.328 D 208 D 13
E |3.758.096.384| E |234.881,024 E |14.680064| E | 917504 | E 57344 E 3.584 E 224 E 14
F 14.026,531.840{ F |[251,658.240| F |15.728.,640| F | 983,040 (F 61,440 F 3.840 F 240 F 15

8 7 6 5 4 3 2 |

TO CONVERT HEXADECIMAL TO DECIMAL

1.

Locate the column of decimal numbers
corresponding to the left-most digit or
letter of the hexadecimal: select from this
column and record the number that cor-
responds to the position of the hexa-
decimal digit or letter.

. Repeat step 1 for the next (second from

the left) position.

. Repeat step 1 for the units (third from

the left) position.

. Add the numbers selected from the table

to form the decimal number.

To convert integer numbers greater than
the capacity of table, use the techniques
below:

HEXADECIMAL TO DECIMAL

Successive cumulative multiplication
from left to right, adding units position.

Example: D34, = 33809
D = 13
x 16
=2 EXAMPLE
208
3= 43 Conversion of
211 Hexadecimal
x 16 Value D34
3376
4= 44 1. D 3328
3380 2.3 48
3.4 4
4. Decimal 3380

TO CONVERT DECIMAL TO HEXADECIMAL

1.

(a) Select from the table the highest deci-
mal number that is equal to or less than
the number to be converted.

(b) Record the hexadecimal of the col-
umn containing the selected number.

(c) Subtract the selected decimal from
the number to be converted.

. Using the remainder from step 1(c) repeat

all of step 1 to develop the second posi-
tion of the hexadecimal (and a re-
mainder).

. Using the remainder from step 2 repeat

all of step | to develop the units posi-
tion of the hexadecimal.

. Combine terms to form the hexadecimal

number.

DECIMAL TO HEXADECIMAL

Divide and collect the remainder in
reverse order.

Example: 33800 =
16 | 3380\remainder
16 |2I1 \4

16 [13 3
D 1. D

D346

Decimal
Value

3.4

4. Hexa-

decimal

EXAMPLE

Conversion of

3380

-3328
52

D34

4200002B

TABLE I-4

HEXADECIMAL AND DECIMAL FRACTION CONVERSION TABLE

1 2 3 4
Hex | Decimal Hex | Decimal Hex Decimal Hex Decimal Equivalent

0 .0000 00 T 0000 0000 | .000 [.0000 0000 0000 | .0000 | .0000 0000 0000 0000
1 0625 .01 0039 0625 | .001 .0002 4414 0625 | .0001 0000 1525 8789 0625
2 1250 .02 0078 1250 | .002 .0004 8828 1250 | .0002 .0000 3051 7578 1250
3 .1875 .03 Ol17 1875 | .003 .0007 3242 1875 | .0003 0000 4577 6367 1875
4 .2500 .04 0156 2500 | .004 0009 7656 2500 | .0004 0000 6103 5156 2500
5 3125 .05 0195 3125 | .005 0012 2070 3125 | .0005 0000 7629 3945 3125
6 3750 .06 .0234 3750 .006 0014 6484 3750 .0006 0000 9155 2734 3750
7 4375 .07 0273 4375 | .007 0017 0898 4375 | .0007 0001 068l 1523 4375
.8 .5000 .08 0312 5000 | .008 0019 5312 5000 | .0008 0001 2207 0312 5000
-9 .5625 .09 0351 5625 | .009 0021 9726 5625 | .0009 .0001 3732 9101 5625
A 6250 .0A 0390 6250 | .00A | .0024 4140 6250 | .000A | .0001 5258 7890 6250
.B 6875 .0B .0429 6875 | .00B 0026 8554 6875 | .000B 0001 6784 6679 6875
.C .7500 .0C 0468 7500 | .00C 0029 2968 7500 | .000C .0001 8310 5468 7500
.D 8125 0D | 0507 8125 | .00D}| .0031 7382 8125 | .000D| .0001 9836 4257 8125
.E 8750 .OE 0546 8750 | .00E .0034 1796 8750 | .000E .0002 1362 3046 8750
.F 9375 .OF 0585 9375 | .00F 0036 6210 9375 | .000F .0002 2888 1835 9375

1 2 3 4

TO CONVERT .ABC HEXADECIMAL TO DECIMAL

Find .A

in position 1

Find .0B in position 2
Find .00C in position 3
-ABC Hex is equal to

INTEGER CONVERSION TABLE

POWERS OF 16 TABLE

6250
.0429

6875

.0029 2968 7500
.6708 9843 7500

TABLE I-5

Example: 268,435,456 19 = (2.68435456 x 108)10 = 1000 0000, = (]07),6

16"

n

1 |o

16 |1

256 |2

409 |3

65 536 |4

1048 576 |5

16 777 216 |6

268 435 456 |7

4 294 967 296 |8

68 719 476 736 |9
1 099 511 627 776 |10 = A
17 592 186 044 416 [Il = B
281 474 976 710 656 |12 = C
4 503 599 627 370 496 /I3 = D
72 057 594 037 927 936 |14 = E
J 152 921 504 606 846 976 |I5, = F

. Y
Decimal Values

4200002B

NEGATIVE HEXADECIMAL NUMBERS

The IMP-16 maintains negative numbers in twos-complement form.. . To convert a number in hexadecimal nota-
tion to its twos-complement equivalent, subtract the number from 2 expressed in hexadecimal form. The
number "n" is the number of binary bits in the computer word. For example, if the computer uses a 16-bit
word, the number "n" is equal to 16. Thus, the negative of 1245_ is derived as follows:

16
10000 1 0000 0000 0000 0000
-1245 - 0001 0010 0100 0101
EDBB 1110 1101 1011 1011

Note that a hexadecimal number will be negative in the IMP-16 computer if the left most digit is 8, 9, A, B,
C, D, E, or F. Thus, FACE is equal to 1111 1010 1100 1110; the twos complement is:

10000 1 0000 0000 0000 0000
-FACE 1111 1010 1100 1110
+ 532 - 0000 0101 0011 0010

4200002B

Appendix J

REFERENCES

IMP-16L Users Manual (IMP-161/928)
Describes the IMP-161, microcomputer equipment and instruction set.

IMP-16C Application Manual (IMP-16/925)
Describes the IMP-16C microprocessor equipment and instruction set.

IMP-16 Utilities Reference Manual (IMP-16/925)

Describes (1) the debugging and loading programs applicable to the IMP-16L and IMP-16P microcom-
puter, and (2) operating procedures for these programs based on use of the IMP-16L and IMP-16P
control panel.

Tymshare Users Manual (IMP-00S/118Y)
Describes the use of the TYMSHARE (nation-wide) timesharing system for implementing the IMP-16
Assembler and its related programs.

IMP-16P Users Manual (IMP-16P/937)
Describes the IMP-16P microcomputer system.

J-1

NN

National Semiconductor GmbH
D 808 Fuerstenfeldbruck
Industriestrasse 10

West Germany

Telephone: (08141) 1371
Telex: 27649

(408) 732-5000
TWX: 910-339-9240

National Semiconductor Corporation
2900 Semiconductor Drive
Santa Clara, California 95051

Batu Berendam
Free Trade Zone

Malacca, Malaysia

Telephone: 5171

National Semiconductor Electronics SDNBHD

Telex: NSELECT 519 MALACCA (c/o Kuala Lumpur)

National Semiconductor (UK) Ltd.
Larkfield Industrial Estates
Greenock, Scotland

Telephone: (0475) 33251

Telex: 778 632

REGIONAL AND DISTRICT SALES OFFICES

ALABAMA .

DiXIE DISTRICT OFFICE

3322 Memorial Pkway, S.W. #67
Huntsville, Alabama 35802

(205) 881-0622

TWX: 810-726-2207

ARIZONA

.*ROCKY MOUNTAIN REGIONAL OFFICE
3313 North 68th Street, No. 114
Scottsdale, Arizona 85251
(602) 945-8473

CALIFORNIA
*NORTH-WEST REGIONAL OFFICE

2680 Bayshore Frontage Road, Suite 112
Mountain View, California 94043

(415) 961-4740

TWX: 910-379-6432

*SOUTH-WEST REGIONAL OFFICE
Valley Freeway Center Building
15300 Ventura Boulevard, Suite 305
Sherman Oaks, Califofnia 91403
(213) 783-8272
TWX: 910-495-1773

DISTRICT SALES OFFICE
17452 Irvine Boulevard, Suite M
Tustin, California 92680

{714) 832-8113

TWX: 910-595-1523

CONNECTICUT

AREA OFFICE

Commerce Park

Danbury, Connecticut 06810
(203) 744-2350

*DISTRICT SALES OFFICE
25 Sylvan Road South
Westport, Connecticut 06880
(203) 226-6833

INTERNATIONAL SALES OFFICES

AUSTRALIA

*NATIONAL SEMICONDUCTOR
ELECTRONICS PTY, LTD.

Cnr. Stud Road & Mountain Highway
Bayswater, Victoria 3153

Australia

Telephone: 729-0733

Telex: 32096

CANADA
*NATIONAL SEMICONDUCTOR CORP.
1111 Finch Avenue West
Downsview, Ontario, Canada
(416) 635-9880
TWX: 610-492-2510

DENMARK

NATIONAL SEMICONDUCTOR
SCANDINAVIA

Vordingborggade 22

2100 Copenhagen

Denmark

Telephone: (01) 92-OBRO-5610
Telex: DK 6827 MAGNA

*Micropr System Specialist Availabl

FLORIDA
*AREA SALES OFFICE

2721 South Bayshore Drive, Suite 121
Miami, Florida 33133

(305) 446-8309

TWX: 810-848-9725

CARIBBEAN REGIONAL SALES OFFICE

P.O. Box 6335
Clearwater, Florida 33518
(813) 441-3504

fLLINOIS
NORTH-CENTRAL REGIONAL OFFICE

800 E. Northwest Highway, Suite 1060
Palatine, lllinois 60067

(312) 693-2660

TWX: 910-693-4805

INDIANA
DISTRICT SALES OFFICE

P.O. Box 40073
Indianapolis, Indiana 46240
(317) 255-5822

KANSAS
DISTRICT SALES OFFICE

13201 West 82nd Street
Lenexa, Kansas 66215
(816) 358-8102

MARYLAND
CAPITAL REGIONAL SALES OFFICE

300 Hospital Drive, No. 232
Glen Burnie, Maryland 21061
(301) 760-5220

TWX: 710-861-0519

MASSACHUSETTS

*NORTH-EAST REGIONAL OFFICE

No. 3 New England, Exec. Office Park
Burlington, Massachusetts 01803
(617) 273-1350

TWX: 710-332-0166

ENGLAND

NATIONAL SEMICONDUCTOR (UK) LTD.

The Precinct

Broxbourne, Hertfordshire
England .
Telephone: 69571

Telex: 267-204

FRANCE . :
NATIONAL SEMICCNDUCTOR
FRANCE S.A.R.L.

28, Rue de la Redoute
92260-Fontenay-Aux-Roses
Telephone: 660-81-40

TWX: NSF 25956F

HONG KONG

*NATIONAL SEMICONDUCTOR
HONG KONG LTD.

9 Lai Yip Street
Kwun Tung, Kowloon
Hong Kong
Telephone: 3-458888
Telex: HX3866

©1974 NATIONAL SEMICONDUCTOR CORP. PRINTED IN U.S.A.

National Semiconductor (Pte.) Lid.
No. 1100 Lower Delta Rd.
Singapore 3

Telephone: 630011

Telex: 21402

MICHIGAN
*DISTRICT SALES OFFICE

23629 Liberty Street
. Farmington, Michigan 48024
(313) 477-0400

MINNESOTA

DISTRICT SALES OFFICE

9701 Penn Avenue S., Suite 109
Minneapolis, Minnesota 55431
(612) 888-4666

TWX: 910-576-3415

NEW JERSEY/NEW YORK CITY
MID-ATLANTIC REGIONAL OFFICE
301 Sylvan Avenue

Englewood Cliffs, New Jersey 07632
(201) 871-4410

TWX: 710-991-9734

NEW YORK (UPSTATE)

CAN-AM REGIONAL SALES OFFICE
104 Pickard Drive

Syracuse, New York 13211

(315) 455-5858 '

OHIO/PENNSYLVANIA/

W. VIRGINIA/KENTUCKY
EAST-CENTRAL REGIONAL OFFICE
Financial South Building

5335 Far Hills, Suite 214 °

Dayton, Ohio 45429 ' .
(513) 434-0097

TEXAS
*SOUTH-CENTRAL REGIONAL OFFICE
5925 Forest Lane, Suite 205

Dallas, Texas 75230 _

(214) 233-6801

TWX: 910-860-5091

WASHINGTON

DISTRICT OFFICE

300 120th Avenue N.E.
Building 2, Suite 205
Bellevue, Washington 98005
(206) 454-4600

JAPAN L
*NATIONAL SEMICONDUCTOR JAPAN

Nakazawa Building

1-19 Yotsuya, Shinjuku-Ku

Tokyo, Japan 160

Telephone: 03-359-4571

Telex: J 28592

SWEDEN

NATIONAL SEMICONDUCTOR SWEDEN

Sikvagen 17

13500 Tyreso

Stockholm

Sweden

Telephone: (08) 712-04-80

WEST GERMANY

*NATIONAL SEMICONDUCTOR GMBH

8000 Munchen 81
Cosimstrasse 4
Telephone: (0811) 915-027

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	01-01
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	03-01
	03-02
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	08-01
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	10-01
	10-02
	10-03
	10-04
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	C-03
	C-04
	C-05
	D-01
	E-01
	E-02
	E-03
	F-01
	F-02
	F-03
	F-04
	G-01
	H-01
	H-02
	H-03
	H-04
	I-01
	I-02
	I-03
	I-04
	I-05
	J-01
	xBack

