National Semiconductor | IM P'1 6C

Order No. IMP-16C/921C

Pub. No. 4200021C Application Manual

Integrated MicroProcessor-16C

IMP-16C
APPLICATION MANUAL

January 1974

©National Semiconductor Corporation
2900 Semiconductor Drive
Santa Clara, California 95051

= Order Number IMP-16C/921C
Publication Number 4200021C

PREFACE

The IMP-16C Application Manual provides information required for a user to become familiar with the IMP-16C
microprocessor functional and logic circuits, instruction set, general input/output interfacing, and a general system
verification. With this information, the user may adapt the IMP-16C microprocessor to his particular application(s).

This issue, order number IMP-16C/921C, pertains to the IMP-16C/200 and IMP-16/300 microprocessors. The IMP-16C/
200 is a pin-compatible version of the earlier IMP-16C card, with the layout changed to accommodate a second Control
Read Only Memory (CROM). This second CROM may be supplied with an extended instruction set, or the second
CROM can be customized for special applications. The IMP-16C/200 is supplied with only one CROM (programmed
for the basic instruction set) and with an empty CROM socket. The IMP-16C/300 has two CROMs, the second CROM
programmed for -the extended instruction set and inserted in the second CROM socket. This is the only differerce
between the two cards.

The IMP-16C Interfacing Guide (formerly issued as publication number 4200035A) is presented as Supplement 1 to this
manual.

The material in this manual is for information purposes only and is subject to change without notice.

Copies of this publication and other National Semiconductor publications may be obtained from the sales offices listed
on the back cover.

Chapter

1

CONTENTS

GENERAL INFORMATION .

1.1 IMP-16C CONFIGURATION
1.2 IMP-16C OPERATIONAL FEATURES .
1.3 POWER AND ENVIRONMENTAL REQUIREMENTS

IMP-16C FUNCTIONAL DESCRIPTION .

2.1 FUNCTIONAL UNITS AND DATA FLOW

2.1.1 Input Data . . e e e e e e
2.1.2 Dataand Address Transfers e C e e e e T
2.1.3 Central Processing Unit (CPU) Commumcatlons

2.2 REGISTER AND ARITHMETIC LOGIC UNITS (RALUs)

22.1 Internal Buses . . .

2.2.2 Last-In/First-Out Stack (LIFOS)

223 RALU Flags .

2.24 Program Counter (PC) . R

2.2.5 Memory Data Register (MDR) and Memory Address Reglster (MAR)
22.6 Accumulators ACO, AC1, AC2,and AC3
2.2.7 Arithmetic and Logic Unit (ALU), Shifter, and Complementer

2.2.8 Input/Output Multiplexer . . . e

23 CONTROL AND READ-ONLY MEMORY (CROM)

24 IMP-16C TIMING

2.4.1 Effect of Control Bits

242 Miscellaneous Timing Signals .
2.43 Data Transfer Timing

2,5 IMP-16C OPERATION

2.5.1 Initialization

2.5.2 Instruction Fetch ..
2.5.3 Communications with Memory .
2.5.4 Execution of Instructions .

IMP-16C INSTRUCTION SET
3.1 INTRODUCTION

3.2 ARITHMETIC AND LOGIC UNITS REFERENCED IN IMP-16C INSTRUCTIONS
3.2.1 Last-In/First-Out Stack (LIFOS)

3.2.2 Register and Arithmetic Logic Unit (RALU) Flags

3.2.3 Program Counter (PC) . .o

324 Accumulators 0, 1, 2, and 3 (ACO, ACl AC2 ancl AC3)

3.3 DATA AND INSTRUCTIONS .
3.3.1 Data Representation
3.3.2 Instructions

R

|
— e

NN NN lI\)MNN N

T
AN N

TTTY
=)} =)}

TT
O \O

2-11
2-11

2-11
2-11
2-11
2—-13
2-13

| |
— —

|
[\

W W w wwtl,oww w w
N

|
WWWw wWw

Chapter

CONTENTS (Continued)

34 MEMORY ADDRESSING

3.4.1 Base Page Addressing .

3.42 Program-Counter Relative Addressmg

343 Indexed Addressing .

344 Indirect Addressing .

3.5 NOTATION AND SYMBOLS USED IN IMP-16C INSTRUCTION DESCRIPTIONS

3.6 INSTRUCTION DESCRIPTIONS .

3.6.1 Load and Store Instructions .

3.6.2 Arithmetic Instructions

3.6.3 Logical Instructions .

3.6.4 Skip Instructions . .

3.6.5 Transfer-of-Control Instructlons

3.6.6 Shift Instructions

3.6.7 Register Instructions

3.6.8 Input/Output, Halt, and Flag Instructlons

3.7 EXTENDED INSTRUCTION SET.

3.7.1 . Double-Word Memory Addressing

3.7.2 Double-Word Arithmetic Instructions .

3.7.3 ByteInstructions . .

3.7.4 Bit and Status Flag Instructlons .

3.7.5 Interrupt Handling Instructions .

3.7.6 Transfer-of-Control Instructions .

CIRCUITDESCRIPTIONS

4.1 MASTER CLOCK AND 4-PHASE CLOCK GENERATORS

42 MOS/LSICPULOGIC e e e e e e e e e e e

4.3 CONTROL FLAGS AND CONDITIONAL JUMP MULTIPLEXERLOGIC
4.4 INPUT MULTIPLEXER, DATA BUFFER, AND ADDRESSLATCHES
4.5 READ/WRITE AND READ-ONLYMEMORIES
4.6 INTERRUPT HANDLER

4.7 SYSTEM INITIALIZATION

INPUT/OUTPUT OPERATIONS

5.1
5.2

INPUT/OUTPUT OPERATIONS
DATA TRANSFER TO PERIPHERAL DEVICES

INTERRUPT SYSTEM

6.1
6.2

GENERAL INTERRUPT .
EXAMPLE OF INTERRUPT REQUEST AND SERVICE

&
<

| |
[N N N R RN

wwwwwcln w W W W W w

TrTS |
NN = = 00 N O\ H
O O H—-=O

3-34
3-34
3-35
3-38
3-40
3-43
344

. 41
. 43

4-4
4-4
4-5

.46
.46

Chapter

U 0O w »

S1

CONTENTS (Continued)

6.3 CONTROL PANEL INTERRUPT .
6.4 MULTILEVEL INTERRUPTS .

CONTROL PANEL AND 4K-BY-16 MEMORY

7.1 CONTROL PANEL OPERATION .
7.2 DYNAMIC MEMORY INTERFACE .

SYSTEM VERIFICATION .

8.1 INTRODUCTION

8.2 TIMING AND CLOCKS .

8.3 MOS CPU LOGIC . .o
84 CONTROL FLAGS AND LOGIC .
85 DATA BUSES .

8.6 DIAGNOSTIC PROGRAMS .

8.7 OPERATING PROCEDURES

USER OPTIONS

9.1 EXTERNAL CLOCK HOLD
9.2 INPUT BUS SELECTION
9.3 ADDRESS-BUS DISABLE
94 MEMORY MANAGEMENT .
9.5 MEMORY ACCESS TIME

APPENDIX — SUMMARY OF INSTRUCTIONS .
APPENDIX — FORMAT OF INSTRUCTIONS
APPENDIX — MEMORY ARRANGEMENT .

APPENDIX — IMP-16C NOMENCLATURE

APPENDIX — LIST OF PIN CONNECTIONS AND SIGNALS ON

IMP-16C CARD .

SUPPLEMENT — IMP-16C INTERFACINGGUIDE

Page

. 62

6-3

7-1
7-1

. 7-3

. 81
. 81
. 81
. 8-1
. 83
. 83
. 83

3-10
3-11
3-12
3-13
3-14
3-15
3-16
4-1

4-2

ILLUSTRATIONS

IMP-16C Major Functional Units
IMP-16C CPU Components
IMP-16C Simplified Block Diagram
IMP-16C 16-Bit Arithmetic Section

IMP-16C Control and Read-Only Memory (CROM) and Reglster and Arithmetic Log1c Units

(RALUs) Interrelations .
IMP-16C Timing Control .
IMP-16C Instruction Execution Flowchart

Arithmetic and Logic Units Referenced in IMP-16C Instructions .

Instruction Word for Addressing Memory .

Load and Store Instruction Format

Arithmetic Instruction Format

Logical Instruction Format

Skip Instruction Formats .

Transfer-of-Control Instruction Formats .

Shift Instruction Format

Register Instruction Formats .
Input/Output, Halt, and Flag Instruction Formats .
Configuration of Status Flags

Double-Word Memory Reference Instruction Format .

Double-Precision (Double-Word) Arithmetic Instruction Format .

Bit and Status Flag Instruction Formats

Interrupt and Word Jump Formats .

Jump to Subroutine Through Pointer Instruction Format
IMP-16C Basic Timing Signals

MOS Clocks and Phase Signals

Timing Relations for Clock Hold Function

System Startup Timing . e
Circuit for Powering Up CPU MOS/LSI Devices
IMP-16C Schematic Diagram .

IMP-16C Functional Block Diagram

IMP-16C Card, Component Layout

Input/Output Word Format e
Timing Sequence for RIN and ROUT Instructions .
Use of INTRA Input

Control Panel Example .

Refresh Logic for Dynamic Memory

Memory Timing Waveforms

IMP-16C Clocks .

Microcycle Timing Sequence for JSR Instruction .

Memory Layout .

vi

Page

1-1
1-2
2-3
2-5

2-7
2-8
2-12
3-2
3-3

3-9
3-10
3-12
3-15
3-20
3-25
3-30
3-32
3-35
3-36
3—-40
3-43
345
4-2
4-2
4-5
4-7
4-17
4-9
4-17
4-19
5-1
5-2
6-3
7-2
7-3
7-4
8-2
8-2
C-1

3-3
3-4
3-5

3-7

3-8

3-9

3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18

4-2
A-1
A-2
B-1
B2

E-1

TABLES

ALU Function Bits .

Control Function Bits .

Summary of Addressing Modes .

Notation Used in Instruction Descriptions
Load and Store Instructions .

Arithmetic Instructions

Logical Instructions .

Skip Instructions .

Transfer-of-Control Instructions -

Branch-On Condition Codes .

Shift Instructions

Register Instructions .o
Input/Output, Halt, and Flag Instructions
Status Flags

Control Flag Codes . e
Double-Word Arithmetic Instructions . ..
Byte Instructions e e e
Bit and Status Flag Single-Word Instructions
Interrupt Handling Instructions .
Transfer-of-Control Instructions .

Control Flags Affected by Microprogram
IMP-16C Parts List . e e e e
IMP-16C Basic Instruction Set (Executed by CROM I)

IMP-16C Extended Instruction Set (Executed by CROM II)

Basic Instruction Set with Bit Patterns .
Extended Instruction Set with Bit Patterns

Nomenclature Used in Circuit Schematics and Text

IMP-16C Pin Numbers and Corresponding Signal Names .

vii

Page

2-10
2-10

3-5

3-6

3-8

3-10
3-11
3-14
3-18
3-20
3-24
3-29
3-33
3-34
3-35
3-38
3-41
3-43
3-44
4-4

4-19

A-3
B-2
B4
D-1
E~1

pao) O9I-dWI

SYLOOSN

LOFL 3 29
SHIRELITOINE

i’ B

SPTRELINE

e
P . -
-)
s o0t ios.0808 .. L. L wls LI NS 20 BN R STINE T S I B B S I)

: i ks o F ¥] .

Chapter 1
GENERAL INFORMATION

1.1 IMP-16C CONFIGURATION
The IMP-16C is a 16-bit parallel processor. It is packaged on an 8%-by-11-inch printed wiring card, which is shown on
the facing page. A 144-pin connector is located on the edge of the card for connecting the IMP-16C circuits to inter-

facing units.

The major functional units of the IMP-16C are shown in figure 1—1 and are composed of the following:

® Central Processing Unit (CPU) ® Control Flags
® Clock Generators ® Conditional Jump Multiplexer
e Input Multiplexer ® On-Card Memory
® Data Buffer ® Address Latches
mr——"
| <+ —>»| CONDITIONAL
(I | —» Jump
EDGE ~»| MULTIPLEXER
CONNECTOR
PIN F—="
1 conTROL > |
» FLAGS | |
| |
| |
EDGE CLOCK :
CONNECTOR GENERATORS | T > > I
PINS i -
r— " v | I
ey N ENTRAL
:) INPUT gnocsssme ESE?ER ! |
| MULTIPLEXER fome{ UNIT (CPU) l I
HE |
| |
| |
| |
ADDRESS
LATCHES L |
ON-CARD - =
EDGE
MEMORY o CONNECTOR
PINS

NS00121
Figure 1—-1. IMP-16C Major Functional Units

The CPU is configured around the National Semiconductor GPC/P (General-Purpose Controller/Processor) MOS/LSI
devices, as shown in the simplified block diagram of figure 1—2. The MOS/LSI devices consist of one CROM (Control
Read Only Memory) and four RALUs (Register and Arithmetic Logic Units). Each RALU handles 4 bits, and a 16-bit
unit is formed by connecting four RALUs in parallel. A 4-bit-wide control bus is used by the CROM to communicate
most of the control information to the RALUs. The CPU includes provision for adding a second CROM for an optional
extended instruction set.

4 BITS 4 BITS
> RALU PR
="
| CROM 2 L
{OPTIONAL)
I |
4 BITS 4 BITS
P ‘RALU e mm—
CROM 1
DATA
¢ INPUT/OUTPUT
(16 BITS)
4
CONTROL 4 BITS’ RALU BITS
BUS (4 BITS)
4 BITS 4 BITS
P> RALU —>

NS00122
Figure 1-2. IMP-16C CPU Componenis

The Clock Generator provides the MOS clock drivers and CPU timing signals. The system clock is distributed outside of
the IMP-16C for synchronization of peripheral units with the IMP-16C.

External to the MOS/LSI circuits but still within the IMP-16C are control flags for both the IMP-16C and external
interfacing circuits. These control flags are in addition to the status flags that are internal to the RALUs. The status
flags are discussed in the description of the CPU in chapter 2. The control flags are discussed in chapter 3 under the
control flag instructions. Conditional branches are selected by the Conditional Jump Multiplexer. These branch con-
ditions are discussed in chapter 3 under the Branch-On-Condition (BOC) instruction.

Data from the user’s peripheral devices and add-on memory are received by the Input Multiplexer. Data from the On-
Card Memory are also processed through the Input Multiplexer en route to the Central Processing Unit.

Output data are made available from the 16-bit Data Buffer via the card-edge connector to the user’s peripheral devices
and add-on memory. A 16-bit address bus is also brought out to the card-edge connector for addressing both add-on

memory and peripheral devices.

The memory on the IMP-16C card consists of 256 words of read/write memory and sockets for 512 words of PROM or
ROM. A maximum of 65,536 words may be addressed.

Chapter 2 contains a more-detailed functional description of the IMP-16C. The instruction set is explained in chapter 3.
Chapter 4 presents a circuit-level description.

1.2 IMP-16C OPERATIONAL FEATURES
Word Length 16 bits

Instruction Set 43 in basic instruction set; 17 optional instructions available with extended set (macroinstructions
implemented by CPU-resident microprogram)

Arithmetic Parallel, binary, fixed point, twos complement
1-2

Memory

Addressing

Typical Instruction-

Execution Speeds

Input{Output and
Control

256 16-bit words of semiconductor read/write memory
Sockets for 512 16-bit words of semiconductor read-only memory
Capable of addressing 65,536 16-bit words

Page size of 256 words. For direct and indirect modes:

Absolute

Relative to Program Counter
Relative to Accumulator 2 (indexed)
Relative to Accumulator 3 (indexed)

Register-to-register addition — 4.55 microseconds
Memory-to-register addition — 7.7 microseconds

Register input/output — 10.15 microseconds

16-bit data-input port

16-bit data-output bus

16-bit address bus

6 general-purpose flags

4 general-purpose jump-condition inputs
1 general interrupt input

1 control panel interrupt input

1.3 POWER AND ENVIRONMENTAL REQUIREMENTS

The IMP-16C card contains both standard TTL integrated circuits and MOS/LSI components. These circuits require
+5-volt and -12-volt 5% regulated dc supplies. In addition, the read/write memory on the card requires
supply, which can be developed from the -12-volt source. Typical current requirements are given below for IN®:16C
operation at maximum speed; however, when operating at lower speeds, the requirements on the —12-volt and -9-volt

supplies are a few percent less than indicated below.

Voltage and Current

When the IMP-16C on-card memory is disabled (see appendix C), the -9-volt power supply is not needed.

Temperature

Humidity

+5 volts at 2.25 amperes
~12 volts at 0.5 amperes

-9 volts at 0.6 amperes

NOTE

Refer to 8.7 of this manual for operating procedures; these provide the
prerequisite instructions for proper use of the IMP-16C.

Operating — 0 to 70° C
Storage — -20 to 100° C

Maximum of 90% relative humidity without condensation

1-3/4

Chapter 2
iMP-16C FUNCTIONAL DESCRIPTION

2.1 FUNCTIONAL UNITS AND DATA FLOW

A simplified block diagram showing the data flow among the major functional units of the IMP-16C is given in figure
2—1. The main components of the Central Processing Unit (CPU) and the Input/Output Section are shown. The Clock
Generator and Timing Control, the Control Flags and Conditional Jump Multiplexer, and the Memory are not detailed
at this time; they are discussed in detail in chapter 4.

2.1.1 INPUT DATA

Incoming data from peripheral units and data from memory are received by the Input Multiplexer and made available
directly to the four Register and Arithmetic Logic Units (RALUs) and to the Data Buffer over a 16-bit data bus. A 4-bit
bidirectional bus connects each RALU to the data bus.

21.2 DATA AND ADDRESS TRANSFERS

Both addresses and data are transferred from the Data Buffer over the 16-bit Buffered Data Out (BDO) bus. This bus is
brought out to pins on the card-edge connector for transferring data to peripheral units and off-card memory. The on-
card memory receives data directly from the BDO bus. Addresses are loaded into the Address Latches, from which they
are brought out to another set of pins on the card-edge connector. Addresses are also routed to the on-card memory
directly from the Address Latches.

21.3 CENTRAL PROCESSING UNIT (CPU) COMMUNICATIONS

Communications between the CROM(s) and the RALUs are effected over a 4-bit control bus. Because these units
constitute the main part of the control and data processing capability of the IMP-16C, a comprehensive description of
them follows.

Controlling the operations of the CPU is the Control Read-Only Memory (CROM). The control is effected by routines
that constitute the microprogram stored in the Read-Only Memory of the CROM. The microprogram effects the
implementation of macroinstructions that comprise the IMP-16C instruction set, with an expanded set available in a
second CROM.

Because the actual data processing takes place in the four 4-bit Register and Arithmetic Logic Units (RALUs), they are
described first (2.2) to establish a basis for their control by the Control Read-Only Memory (CROM) and also for the
descriptions of the IMP-16C instruction set described in chapter 3.

2.2 REGISTER AND ARITHMETIC LOGIC UNITS (RALUs)

Four 4-bit RALUs constitute the Arithmetic Section shown in figure 2—2. This section includes the following major
units:

o Input/Output Multiplexer
® Last-In/First-Out Stack (LIFOS)

2--1

® 16 Status Flags, storable and retrievable as a 16-bit register
— Link Flag (L)

Carry Flag (CY)
— Overflow Flag (OV)
— 13 General-Purpose Flags (two of which are directly accessible to user at the edge connector)

Program Counter (PC)

Memory Data Register (MDR)

Memory Address Register (MAR)

4 Accumulat.ors (ACO, AC1, AC2,and AC3)
Arithmetic and Logic Unit (ALU)

Shifter

Buses

The functions of these units are described in the following paragraphs.

2.21 INTERNAL BUSES
Three buses are internal to the RALU: A-bus, B-bus, and R-bus. These buses are described below.

A-Bus (Operand Bus). The contents of all RALU registers may be loaded onto the A-bus; data from the top of the Last-
In/First-Out (LIFO) stack and from the RALU Status Flags (combined as a 16-bit word) may be loaded as operands.
During such loading on the A-bus, the data may be complemented under control of the CROM. The contents of the
A-bus may be gated through the ALU and Shifter to the R-bus or out of the RALU to the IMP-16C data bus through
the Input/Output Multiplexer.

B-Bus (Operand Bus). The contents of all RALU registers may be loaded onto the B-bus. The contents of the B-bus may
be loaded only into the Arithmetic and Logic Unit (ALU).

R-Bus (Result Bus). The R-bus serves to transfer the results of ALU operations to any RALU register, the LIFOS, and
the RALU flags.

222 LAST-IN/FIRST-OUT STACK (LIFOS)

Each RALU has a stack that operates on a last-in/first-out basis. The stack is 16 words high and is accessible through
the top location. The 16-bit-per-word stack of figure 2—2 is contained in the four 4-bit RALUs comprising the Arith-
metic Section. A 16-bit data word is entered via the R-bus and retrieved via the A-bus. As a word is entered into the
top location of the stack, the 16 bits in the top location are pushed down one level, and the entered bits occupy the
top location. The contents of each lower level are replaced by the contents of the next higher location, and the con-
tents of the bottom location are lost. The reverse process occurs when a word is retrieved from the stack; in this case,
zeros are entered into the bottom location.

The stack is used primarily for saving of status during interrupts and for temporary storage of subroutine return
addresses. It may also be used to temporarily store data using the appropriate instructions, described in chapter 3.

2.23 RALU FLAGS

There are 16 RALU status flags. These flags may be pushed onto the stack for temporary storage during interrupt
processing. The flags may be transferred back into their respective flag flip-flops after completion of the interrupt
service. Whenever the status flags are manipulated, the entire complement of flags is configured as a 16-bit register; the
L (link), CY (carry), and OV (overflow) flags are the first, second, and third most significant bits, respectively, and the
remaining general-purpose flags comprise the 13 less significant bits. The CY or the OV flags may be selected for output
on the CYOV line from the RALUs, under control of the SEL control flag. For SEL control flag usage, see 4.3.

2-2

PERIPHERAL

EN NIT (CPU
EDGE CENTRAL PROCESSING UNIT (CPU) JUMP CONDITION
CONNECTOR 'S
r— JUMP CONDITIONS
P < H- >
L __1 CONTROL FLAGS
v _* AND
- 1 JUMP/ELAG ADDRESS (4 BITS) CONDITIONAL
—p| OPTIONAL | P CONTROL JumP CONTROL __
SECOND CROM_I READ-ONLY NINE SELECTED STATUS FLAGS | MULTIPLEXER ELAGS J_ 7 0
— — » }
7 x MEMORY INSTRUCTION BITS o | peRIPHERAL
* - (CROM) | | UNITS
| I
CONTROL BUS (4 BITS) | |
I— ARITHMETIC SECTION _| | |
CLOCK TIMING SIGNALS - * M ¢ | |
GENERATORS | & | TIMING SIGNALS R
AND TIMING 1 * —— 4 . o ’ N N
CONTROL I T T T] | |
\ A 4 F v v_ Y \ 4 | |
I REGISTER REGISTER REGISTER REGISTER | !
[[ARITHMETIC AND | |ARITHMETIC AND ARITHMETIC AND ARITHMETIC AND |
| LOGIC UNIT (RALU)| [LOGIC UNIT (RALU)| [LOGIC UNIT (RALU)| [LOGIC UNIT (RALU) | | |
A A A A | TO
o Jepms fesms fests fesTs | I 1| reripreraL
| | | (UNITS OR
| ADD-ON
INPUT/OUTPUT ADDRESS MEMORY
SECTION ADDRESS y BITS | :
EDGE (16 BITS) ADDRESS | (ADX)
CONNECTOR LATCHES > > |
m— 716 BITS |
| < e > \ 4 | !
| | INPUT x ‘DATA BUS (16 B'TS)& i DATA BUFFERED DATA OUT (BDO) — 16 BITS |
[| 16 BITS MULTIPLEXER | =P BUFrER N:DJ
L_ _ EDGE
CONNECTOR
—
MEMORY
MEMORY DATA OUT (MDO) — 16 BITS (ON-GARD)
768 16-BIT
NOTE: WORDS
THE SYMBOL [__> REPRESENTS A PIN (OR A GROUP OF PINS) ON THE IMP-16C CARD EDGE TERMINAL.
NS00123

Figure 2—1. IMP-16C Simplified Block Diagram

2-3/4

R-BUS

NO.
RALU RALU

4 NO. 3

16-BIT SECTION —————{

NO. 2 NO. 1
RALU | RALU

1514131211109 8l7 6 5 4l3° 2 1 0

DATA BUS

Figure 2—-2. IMP-16C 16-Bit Arithmetic Section

2-5

> INPUT/OUTPUT MULTIPLEXER «—
LAST-IN/FIRST-OUT STACK
—————» ————»
(LIFOS) — 16 WORDS
STATUS FLAGS
—P|LOVCYFFFFFFFFFFEFE[P
EEm—— PROGRAM COUNTER (PC) > >
9 MEMORY DATA REGISTER (MDR) [P .
- »{ MEMORY ADDRESS REGISTER (MAR) [>
e ACCUMULATOR 0 (ACO) >)
————» ACCUMULATOR 1 (AC1) > >
) ACCUMULATOR 2 (AC2) —> q
ACCUMULATOR 3 (AC3) >
B-BUS A-BUS
ARITHMETIC
SHIFTER == AND LOGIC
UNIT (ALU) COMPLEMENTER
CONTROL BIT
FROM CROM

NS00124

224 PROGRAM COUNTER (PC)

The Program Counter (PC) holds the address of the next instruction to be executed. It is incremented by 1 immediately
following the fetching of each instruction during execution of the current instruction. When there is a branch to another
address in the main memory, the branch address is set into the Program Counter. A skip instruction merely increments
the Program Counter by 1, thus causing the one instruction to be skipped.

225 MEMORY DATA REGISTER (MDR) AND MEMORY ADDRESS REGISTER (MAR)

The Memory Data Register (MDR) holds data transferred from the main memory to the processor, or vice versa. When
fetching data, the effective address is placed in the Memory Address Register (MAR), and the fetch instruction causes
the data word to be transferred from the designated main-memory location to the Memory Data Register. Conversely,
when storing data in the main memory, the data word is placed in the Memory Data Register, the effective address is
placed in the Memory Address Register, and the store instruction causes the data word to be transferred to the
designated memory location.

226 ACCUMULATORS ACO, AC1, AC2, AND AC3

The accumulators hold operands for data manipulation during arithmetic and logical operations. Also, the result of an
operation is usually stored temporarily in one of the four accumulators. Data words may be fetched from memory to
the accumulator or stored from the accumulator into memory. The particular accumulator to take part in an operation
is specified by the programmer in the appropriate instruction.

2.27 ARITHMETIC AND LOGIC UNIT (ALU), SHIFTER, AND COMPLEMENTER

The Arithmetic and Logic Unit (ALU) performs both arithmetic and logical operations: binary addition, AND, OR, and
exclusive OR. Arithmetic and logical operations are effected by the microprogram that is part of the CROM. The
IMP-16C performs arithmetic using the twos-complement technique. The contents of the A-bus may be selectively
complemented under control of control bits from the CROM.

The output of the Arithmetic and Logic Unit is transferred to the R-bus through the Shifter and may then be stored in
the stack or any of the RALU registers. The Shifter is capable of performing a single-position shift, either to the left or
to the right, during each basic machine cycle.

228 INPUT/OUTPUT MULTIPLEXER

The Input/Output Multiplexer handles data, address, and instruction transfers into and out of the RALU from or into
the main memory and peripheral devices on a time-multiplexed basis. As shown in figure 2—2, output data (to data
bus) must be received from the A-bus, and input data passes from the Input/Output Multiplexer to the R-bus.

2.3 CONTROL AND READ-ONLY MEMORY (CROM)

Figure 2—3 is a simplified block diagram emphasizing the role of the CROM and four RALUs as part of the IMP-16C.
Data buffers are provided between the CPU MOS/LSI devices and other parts of the equipment that have been imple-
mented with TTL logic. These buffers are TRI-STATE® logic elements that permit bus-connected inputs.

The primary control of the RALU devices is accomplished over the 4-bit control bus. The control bus is time-
multiplexed to transfer four 4-bit words of control information per machine cycle. The functions effected by the
control bits are indicated in figure 2—4.

L—¢

FROM
PERIPHERAL
UNITS

TO
PERIPHERAL
UNITS

Figure 2—3. IMP-16C Control and Read-Only Memory (CROM) and Register and Arithmetic Logic Units (RAL Us) Interrelations

EXTERNAL ‘I
TO IMP-16C
ADD-ON (16) (16) PERIPHERAL
I MEMORY [UNIT INTERFACE l
l1imp-16C (10 Bl
IMP-16C {16)
I ON-CARD (16)
MEMORY ADDRESS REGISTER (AR)
, 16) ¢ o (16) |
l (9) (16)
DATA BUFFER l
%‘Z?/E T T 7 TTaRawopewices L T T — (; 1
i | INPUT/OUTPUT l
l Y | Rl MULTIPLEXER |
L »|ROM ADDRESS | |
] CONTROL
LAST-IN/FIRST-OUT
m | | | stack (16 worns) [P I
| ! : |
| ROM
100 WORDS x 23 BITS | | —»{ STATUS FLAGS e P |
| | (ADDRESS AND CON-
| TENTS PROGRAMMED) | | r-sus |
| (186)
| | REGISTERS (PC, MDR, MAR [=$>] |
| ACO, AC1, AC2, AND AC3)
JUMP | A 4 | I
CONDITIONS CONDITIONAL fgngCROL B-BUS (16) I
g JMUU“f.PTlpLEXEn | I _ ARITHMETIC l
AND LOGIC
4 Al | l—{ SHIFTER |
UNIT (ALU)
BUFFER | |
CONTROL | JUMP/FLAG |
FLAGS ADDRESS (4) CONTROL BUS (4)
CONTROL |)
FLAGS |_ } +{ RALU CONTROL | |
o [|

NOTE: NUMBERS IN PARENTHESES DESIGNATE NUMBER OF LINES.

NS00125

TIME PHASES -
m |12 [13 | 14 | 15 [16 | 17 | T8
.
PH1
PH3
CLOCKS { L=
1P]
PH7
\
- —
CBO
ALU
— —— —T —FUNCTION— | — — -
A-BUS B-BUS R-BUS
crom | CF!
CONTROL <
BITS
cB2
\ CONTROL !
FUNCTION
B3 STACK COMPLEMENT DATA - R-BUS OR
. PUSH/PULL A-BUS ZERO/SIGN SELECT
FLAGS SET RESET
INPUT/OUTPUT -~~~ " [outeut] INPUT
VALID VALID
JUMP CONDITION |
MULTIPLEXER | VALID
INPUT
R-BUS OUT j=— VALID
1 MICROCYCLE (1.4 us)

Figure 2—4. IMP-16C Timing Control

2-8

NS00126

The CROM contains a microprogram that implements the standard instruction set. This microprogram resides in a 100-
by-23-bit ROM. During an instruction fetch, the 9 most significant bits of the instruction word are transferred to the
CROM; these 9 bits comprise the opcode and other pertinent control fields of an instruction word. The instruction bits
are decoded, and then the ROM Address Control in the CROM directs the control sequence to an entry point in the
microprogram. The sequence continues until execution of the fetched instruction is completed. Then, the CROM goes
through another fetch cycle to fetch the next instruction from memory. This process is continuously repeated.

24 IMP-16C TIMING

The basic machine cycle of the IMP-16C consists of the execution of a single microprogram step. This cyclic time
period comprises eight time intervals: T1, T2,...,T8. As indicated in the timing diagram of figure 2—4, clock pulses
(phases 1, 3, 5, and 7) occur in the four clock lines at the respective odd-time periods T1, T3, T5, and T7.

24.1 EFFECT OF CONTROL BITS

NOTE

The effects of the CROM control bits described in 2.4.1 are presented
for completeness to show their relationship to the other signals in figure
2—4. Comprehension of this description is not required to understand
the operation of the IMP-16C and, for this reason, may be deferred for
later reading.

The encoding of the control bits shown in figure 2—4 for the 4-line time-multiplexed control bus (between the CROM
and the RALU) is described below for each of the four time phases. It is during these time phases that control informa-
tion is transferred from the CROM to the RALU. Control bus lines are designated CBO through CB3.

Phase 1 Control Bits

® If the 3-bit A-bus address field is nonzero, the contents of the RALU register designated in the
macroinstruction are gated onto the A-bus.

® If the A-bus address field is zero and the push-pull control bit is “1,” the LIFO Stack is pulled,
and the contents of the top of the stack are gated onto the A-bus.

® If the A-bus address field is zero and the push-pull control bit is ““0,” then a value of zero is gated
onto the A-bus.

NOTE

Pushing data onto the stack is also contingent on the push-pull control
bit and is described under Phase 7 Control Bits, where the operation
occurs.

Phase 3 Control Bits

e If the 3-bit B-bus address field is nonzero, then the contents of the register designated in the
macroinstruction are gated onto the B-bus.

e If the B-bus address field is zero, a value of zero is gated onto the B-bus.

® The Complement A-bus bit causes the A input to the ALU to be complemented.

Phase 5 Control Bits

® The ALU bits designate a function according to table 2—1.

Table 2—1. ALU Function Bits

Code Function

00 AND
01 X0
10 OR
11 ADD

® The Control Function bits designate a function according to table 2—2. The no-op function applies
only to the Control Function field. The expression R < 0/SIGN means that either zeros or the sign
of the less significant byte of the word being transferred to the R-bus is propagated throughout the
more significant byte. (If the fourth control bit CB3 is “1” during phase 7, the sign is propagated;
otherwise, zero is propagated.)

Table 2—-2. Control Function Bits

Code Function

00 No-Op (no operation for control bits only)
01 R < O/SIGN (zero or sign propagation)

10 | LSH (Left Shift)

11 RSH (Right Shift)

Phase 7 Control Bits

e [f the 3-bit R-bus field is nonzero, the contents of the R-bus are gated into the register addressed
by this field.

o [f the Control Function bits transferred during phase 5 do not specify R < 0/SIGN (see table 2—2),
then CB3 specifies the source of the data gated onto the R-bus:

— If CB3 is “0,” the source is the output of the ALU.

— If CB3 is “1,” the data comes from an external source via the Data Multiplexer.

® If R < O/SIGN is specified, then CB3 specifies whether zero or the sign is propagated throughout
the more significant byte.

e If the R-bus address is zero and the push-pull control bit was active (during phase 1), a data word
is pushed onto the LIFO Stack from the R-bus.

2-10

24.2 MISCELLANEOUS TIMING SIGNALS

The control of the Flag Flip-Flops is indicated on the timing diagram (figure 2—4). A unique flag address is established
during each machine cycle; at T2 the flag may be set, and/or at T6 the flag may be reset. It is thus possible to set, reset,
or pulse a flag during a single machine cycle.

The Conditional Jump Multiplexer shares the same address lines as the Flag Flip-Flops. If a conditional jump is being
performed, the condition is tested during T2.

243 DATA TRANSFER TIMING
Data transfers between the RALU and the Data Bus may occur at three times during each microcycle:

® During T4, the data word presently on the A-bus is gated onto the Data Bus. The information that
appears on the Data Bus at this time either is output data destined for memory or an external
device, or is an address value used for loading the Address Register latch (shared by memory and
external devices).

® At T2, the contents of the R-bus (result of preceding microcycle) are gated onto the Data Bus.
Primarily, the data provide inputs to the Conditional Jump Multiplexer to permit testing of the
result of the operation performed on the previous microcycle.

e During T7, data to be transferred to the RALU appear on the Data Bus. The data may then be
gated onto the R-bus by the RALU’s Input/Output Multiplexer and, subsequently, may be stored
in one of the working registers (ACO through AC3).

25 IMP-16C OPERATION

A flowchart of the events that occur during a typical operation of the IMP-16C is given in figure 2—5. The various
events are further elaborated upon in the following paragraphs.

25.1 INITIALIZATION

When power is first applied to the processor, all RALU registers, flags, and the stack are cleared to zero. The micro-
program then enters an initialization sequence, in which the Program Counter (PC) is set to a starting value of FFFE 4
(the next-to-last location in the top page of memory, assuming a maximum of 216 memory locations). The reasons for
choosing this location over location 0000y or any other location can be explained as follows. In most applications, the
first few executable statements in a macroprogram are usually initialize routines and other program segments of a super-
visory nature. By keeping these in the top portion of memory, the supervisor programs can be stored in ROM for non-
volatility. Since the base page is directly accessible from anywhere in memory, it is desirable for it to be implemented
with read/write memory.

25.2 INSTRUCTION FETCH

Following the initialize sequence, control is transferred to the first step in the fetch microroutine. During this first
microcycle of the fetch routine, the contents of the Program Counter (PC) are sent out on the data bus at T4; at the
same time, the Read Memory Flag is set high. This causes the external Address Register to be loaded with the contents
of the PC. The Read Memory Flag actuates a read operation in the system memory. During T7 of the same microcycle,
the 16-bit instruction comes back from memory ready to be decoded. At that time, bits O through 7 are placed in the
RALU Memory Data Register, and bits 7 through 15 are loaded into the CROM. Bits 8 through 15 of the Memory Data
Register are set equal to the value of bit 7.

2-11

<

LINlTlALIZATION

O

v ¥

RALU REGISTERS, FLAGS, AND

LIFOS CLEARED (TO ZERO) PROGRAM COUNTER SET TO FFFEqs

| T\ l
v T\ v
LOAD (PC) ONTO DATA BUS PULSE READ MEMORY FLAG
ENTER (PC) INTO ACTUATE READ
ADDRESS REGISTER OPERATION IN MEMORY

) 4

INSTRUCTION RECEIVED
FROM MEMORY

¥ ¥

BITS 0—7 OF INSTRUCTION WORD 9 SELECTED BITS OF
TO MEMORY DATA REGISTER INSTRUCTION WORD TO CROM

I N |
al

NO CONTROL READS DATA BUS;
PANEL INTERPRETS AS
| INTERRUPT INSTRUCTION
(PC) INCREMENTED BY 1 |
EXECUTE INSTRUCTION
MEMORY VES IN LOCATION 1
REFERENCE
INSTRUCTION

NO TRANSFER DATA FROM MEMORY
TO DESIGNATED REGISTER

EXECUTE INSTRUCTION

©

NS00127
Figure 2—-5. IMP-16C Instruction Execution Flowchart

2-12

In the next microcycle, the Program Counter is incremented to point to the next consecutive memory location.

A decision is made as to whether the instruction just read in needs to make reference to memory. If it does not (for
register-register operations and other nonmemory reference instructions), then the instruction decode circuit steers
control to a microprogram entry point that corresponds to the particular instruction. If the instruction requires a
memory reference, then two additional microprogram steps are required to compute an effective address and to bring
in the new word: first, the memory address is computed, and, second, the data word is transferred from memory to the
register designated by the preceding instruction.

253 COMMUNICATIONS WITH MEMORY

During a memory-read operation, the microprogram sends an address on the data bus at T4; this address is loaded into
the Address Register under control of the Read Memory Flag. Similarly, during a write-memory operation, the address
is loaded under control of the Load Address Flag. These flags are further discussed in chapter 3.

When executing a memory-read operation, the processor sends out an address on the bus at T4 and expects data back
at T7 of the same microcycle. A circuit, described in chapter 4, is included on the IMP-16C card to extend the interval
between T4 and T7 to accommodate memories whose access times are longer than the normal T4-to-T7 interval.

A memory-write operation takes 2 microcycles, because both address and data have to be sent out. The address is sent
out during T4 of the first microcycle and is latched in the address register. The output data destined for memory arrives
during T4 of the next microcycle and can be used directly to write memory. In the IMP-16C, T4 is stretched for two
additional periods to accommodate both the read and write delays necessary to communicate with the system memory.

254 EXECUTION OF INSTRUCTIONS

The CROM in the IMP-16C contains a microprogram that implements the standard instruction set. Each macroinstruc-
tion in a user’s program is brought into the processor under control of the CROM’s microprogram instruction fetch
routine. This instruction is then decoded, and the ROM Address Control in the CROM directs the control sequence to
an entry point in the microprogram. The sequence continues until execution is completed. Then, the CROM goes
through another instruction-fetch cycle to bring in the next macroinstruction. The process is repeated continuously
until directed otherwise by a macroinstruction such as Halt or an interrupt condition.

A test for an interrupt condition is made at the beginning of each instruction fetch. If the interrupt line is high, the
CROM transfers control to a microprogram sequence that determines the type of interrupt that occurred. If a control
panel interrupt is not active, the CROM assumes that a general interrupt is in effect. For a general interrupt, the
contents of the PC are saved on the stack, and then the Interrupt Routine in memory location 1 is executed; otherwise,
the Control Panel Subroutine is executed.

2-13/14

Chapter 3
IMP-16C INSTRUCTION SET

3.1 INTRODUCTION
Eight functional types of instructions comprise the basic IMP-16C instruction set:

Load and Store
Arithmetic

Logical

Skip

Shifts

Transfer of Control

Register

Input/Output and Miscellaneous

The instructions for each functional type are described as a group. For each instruction, the name of the instruction,
its mnemonic, its word format, its operation in the form of an equation, and a succinct explanation of its operation are
given. A tabulated summary of each type of instruction precedes the detailed descriptions. An extended instruction set
(available as an option) is described in 3.7.

Before describing the instructions, brief descriptions of the registers referred to in the instruction descriptions are given.

The IMP-16C instructions and their assembler language opcode mnemonics are summarized in appendix A.

3.2 ARITHMETIC AND LOGIC UNITS REFERENCED IN IMP-16C INSTRUCTIONS

The units referenced in the ensuing description of the IMP-16C instructions are listed below and are shown in block
diagram form in figure 3—1.

Last-In/First-Out Stack (LIFOS)

Register and Arithmetic Logic Unit (RALU) Flags
Program Counter (PC)

Accumulator 0 (ACO)

Accumulator 1 (AC1)

Accumulator 2 (AC2)

Accumulator 3 (AC3)

LAST-IN/FIRST-OUT
STACK (LIFOS})
16 16-BIT WORDS

16 FLAGS: LINK, CARRY,
OVERFLOW, AND 13
GENERAL PURPOSE

PROGRAM COUNTER (PC)

WORKING REGISTERS

| ACCUMULATOR 3 (AC3) I

l ACCUMULATOR 2 (AC2) J

[ACCUMULATOR 1 (AC1)

| AccumuLaTor o (aco) |

NS00128

Figure 3—1. Arithmetic and Logic Units
Referenced in IMP-16C Instructions

3.2.1 LAST-IN/FIRST-OUT STACK (LIFOS)

The IMP-16C has a hardware stack that data may be stored in or retrieved from on a last-in/first-out basis. The stack is
16 words deep and is accessible through the top location. As a data word is entered into the stack, the contents of the
top location and each other location are pushed downward to the next lower level; if the stack is full, the word in the
bottom location is lost. Conversely, the contents of the top location are pulled from the stack during retrieval of a data
word; the top location and each lower location are replaced by the contents of the next lower location, and zeros are
entered into the bottom location.

The stack is used primarily for saving status during interrupts and for saving subroutine return addresses. It may be used
also for temporary storage of data using the PUSH, PULL, XCHRS, PUSHF, and PULLF instructions (described later
in this chapter).

3.2.2 REGISTER AND ARITHMETIC LOGIC UNIT (RALU) FLAGS

There are 16 RALU status flags. These flags may be pushed onto the stack (saved) or may be loaded from the stack
(restored). During such operations, the flags are configured as a 16-bit word: the L (Link), CY (Carry), and OV
(Overflow) flags are the first, second, and third most significant bits, respectively, and the remaining 13 general-purpose
flags comprise the remaining 13 less significant bits (figure 3—11).

Flags 0 and 12 are externally available. The L flag is primarily used in some shifting operations, and the CY and OV
flags are adjuncts for arithmetic operations. The specific uses of the flags are elaborated upon in the appropriate
instruction descriptions.

3-2

3.23 PROGRAM COUNTER (PC)

The Program Counter (PC) holds the address of the next instruction to be executed. When there is a branch to another
address in the main memory, the branch address is set into the Program Counter. A skip instruction merely increments
the Program Counter by 1, thus causing the one instruction to be skipped.

3.24 ACCUMULATORS 0, 1, 2, AND 3 (ACO, AC1, AC2, AND AC3)

The accumulators are used as working registers for data manipulation. Data may be fetched from a location in memory
to an accumulator, and may be stored from an accumulator to a location in memory. The particular accumulator to
take part in an operation is specified by the programmer in the appropriate instruction.

3.3 DATA AND INSTRUCTIONS
3.31 DATA REPRESENTATION

Data are represented in the IMP-16C in twos-complement integer notation. In this system, the negative of a number is
formed by complementing each bit in the data word and adding 1 to the complemented number. The sign is indicated
by the most significant bit. In the 16-bit word of the IMP-16C, when bit 15 is a “0,” it denotes a positive number; when
it is a “1,” it denotes a negative number. Maximum number ranges for this system are 7FFF g (+327671g) and 8000,¢
(-327681g). The carry flag is set to the value of the most significant bit position (bit 15) resulting from an add
operation. The overflow flag is set to “1” if two numbers having like signs are added and the sign of the resulting sum is
different from that of the operands.

33.2 INSTRUCTIONS

There are eight classes of IMP-16C instructions. Each class of instruction and the associated instructions are summa-
rized in a table preceding the descriptions of the instructions. Also, the applicable instruction word formats are defined.

34 MEMORY ADDRESSING

The IMP-16C instruction set provides for direct and indirect memory addressing. For direct addressing, three distinct
modes are available: base page (or absolute), program-counter relative, and indexed. The mode of addressing is specified
by the XR field of the simplified instruction word format shown in figure 3—2.

) 1 { | Jw)ey8}7) |]) 4 1 180

OPERATION CODE FIXET_D DISPLACEMENT FIELD

Figure 3—2. Instruction Word for Addressing Memory

3.4.1 BASE PAGE ADDRESSING

When the XR field is 00, it specifies base page addressing. Base page is directly accessible from any location in the
address space of the memory. In this mode, the effective address is formed by setting bits 8 through 15 to zero and
using the value of the 8-bit displacement field as an absolute address. Up to 256 words (locations 0 through 255) may
be addressed in this way.

3-3

34.2 PROGRAM-COUNTER RELATIVE ADDRESSING

Program-counter relative addressing is specified when the XR field is 01. The displacement is treated as a signed number
such that its sign bit (bit 7) is propagated to bits 8 through 15, and the effective address is formed by adding the con-
tents of the PC to the resulting number. This permits PC-relative addressing =128 and +127 locations from the PC value;
however, at the time of formation of the address, the PC has already been incremented in the microprogram and is
pointing to the next macroinstruction. Because of this, the actual addressing range is from -127 to +128 from the
current instruction.

3.4.3 INDEXED ADDRESSING
Indexed addressing is done with reference to Accumulator 2 or 3 (AC2 or AC3). In this mode, the displacement field is
again interpreted as a signed 8-bit number from -128 to +127 with the sign (bit 7) extended through bits 8 through 15.

The contents of the chosen index register (AC2 when xr =107 and AC3 when xr=11;) are added to the number formed
from the displacement value to yield an effective address that can reach any location in 65,536 words of memory.

Table 3—1. Summary of Addressing Modes

XR Field Addressing Mode Effective Address Range
00 Base EA =disp 0 disp< 255
01 Relative to Program Counter | EA =disp + (PC) -128 < disp < 127
10 Relative to AC2 EA = disp + (AC2) | -128 < disp< 127
11 Relative to AC3 EA =disp + (AC3) | -128disp< 127

34.4 INDIRECT ADDRESSING

Indirect addressing is accomplished by first calculating the effective address (EA) using the same method used for direct
addressing; the memory location at this address contains a number that is then used as the address of the operand. The
following instructions use indirect addressing:

Load Indirect (see table 3—3)
Store Indirect (see table 3—3)
Jump Indirect (see table 3—7)
Jump to Subroutine Indirect (see table 3—7)

35 NOTATION AND SYMBOLS USED IN IMP-16C INSTRUCTION DESCRIPTIONS

Refer to table 3—2 for definitions of the notation and symbols used in the IMP-16C instruction descriptions. The
notations are given first in alphabetical order followed by the symbols. Upper-case mnemonics refer to fields in the
instruction word; lower-case mnemonics refer to the numerical value of the corresponding fields. In cases where both
lower- and upper-case mnemonics are composed of the same letters, only the lower-case mnemonic is given in table 32,
The use of lower-case notation designates variables.

34

Table 3—2. Notation Used in Instruction Descriptions

Notation Meaning

ACr Denotes a specific working register (ACO, AC1, AC2, or AC3), where r is the number of the accumula-
tor referenced in the instruction.

AR Denotes the address register used for addressing memory or peripheral devices.

cc Denotes the 4-bit condition code value for conditional branch instructions.

ctl Denotes the 7-bit control-field value for flag, input/output, and miscellaneous instructions.

CcY Indicates that the Carry flag is set if there is a carry due to the instruction (either an addition or a
subtraction).

disp Stands for displacement value and it represents an operand in a nonmemory reference instruction or an
address field in a memory reference instruction. It is an 8-bit, signed twos-complement number except
when base page is referenced; in the latter case, it is unsigned.

dr Denotes the number of a destination working register that is specified in the instruction-word field.
The working register is limited to one of four: ACO, AC1, AC2, or AC3.

EA Denotes the effective address specified by the instruction directly, indirectly, or by indexing. The
contents of the effective address are used during execution of an instruction. See table 3—1.

fc Denotes the number of the referenced flag (see table 3—13 under 3.6.8, Input/Output, Halt, and Flag
Instructions).

INTEN Denotes the Interrupt Enable control flag.

IOREG Denotes an input/output register in a peripheral device.

L Denotes 1-bit link (L) flag.

ov Indicates that the overflow flag is set if there is an overflow due to the instruction (either an addition
or a subtraction).

PC Denotes the program counter. During address formation, it is incremented by 1 to contain an address
1 greater than that of the instruction being executed.

r Denotes the number of a working register that is specified in the instruction-word field. The working
register is limited to one of four: ACO, AC1, AC2, or AC3.

SEL Denotes the Select control flag. It is used to select the carry or overflow for output on the carry and
overflow (CYOV) line of the CPU, and to include the link bit (L) in shift operations.

st Denotes the number of a source working register that is specified in the instruction-word field. The
working register is limited to one of four: ACO, AC1, AC2, or AC3.

Xr When not zero, this value designates the number of the register to be used in the indexed and relative

memory-addressing modes. See table 3—1.

Table 3-2. Notation Used in Instruction Descriptions (Continued)

Notation Meaning

() Denotes the contents of the item within the parentheses. (ACr) is read as “the contents of ACr.”
(EA) is read as “the contents of EA.”

[1 Denotes “the result of.”

~ Indicates the logical complement (ones complement) of the value on the right-hand side of ~.
- Means “replaces.” -

< Means “is replaced by.”

Appearing in the operand field of an instruction, denotes indirect addressing.

Denotes an AND operation.

Denotes an OR operation.

QIS > ®

Denotes an exclusive OR operation.

3.6 INSTRUCTION DESCRIPTIONS

Each class and subclass of instruction is introduced by a table that lists and summarizes the instructions. The word
format then is illustrated. Detailed descriptions are given, providing the following information:

® Name of instruction followed by operation code mnemonic in parentheses
® Operation Code in word format diagram
® Operation in equation notation

® Description of operation in detail

3.6.1 LOAD AND STORE INSTRUCTIONS

There are four instructions in this group. These are summarized in table 3—3 and then individually described. The word
format is shown in figure 3—3.

Table 3—3. Load and Store Instructions

Instruction OpCode Operation Assembler Format
LOAD 1000 (ACr) < (EA) LD r, disp(xr)
LOAD INDIRECT 1001 (ACr)« ((EA)) | LD r, @disp(xr)
STORE 1010 | (EA)«(ACr) | ST r, disp(xr)
STORE INDIRECT 1011 ((EA)) < (ACr) | ST r, @disp(xr)

3-6

NOTE
For indirect operations, the symbol @ must precede the memory
location designated in the operand field of the assembler instruction.

15 |] j 12| 11| 10 9] 8 7 |] |] | | O

OP CODE r xr disp

Specifies operation. I

Displacement value. Designates direct address if xr value is 00;
otherwise, designates augend for index address calculation.

Indexing designator. When nonzero, designates number of the register
whose contents are the addend for address calculation (table 3—1).

Register designator. Designates number of working register involved in operation.

Figure 3—3. Load and Store Instruction Format

Load (LD)
15 |] | 12 11] 10 91 8 7 | |] | | | | ©
1 0 0 0 r xr disp

Operation: (ACr) < (EA)

Description: The contents of ACr are replaced by the contents of EA. The initial con-
tents of ACr are lost; the contents of EA are unaltered.

Load (LD) Indirect

5] | |r2pmpopey81 7] | | | | | |¢©

1 0 0 1 r xr disp

Operation: (ACr) < ((EA))

Description: The contents of ACr are replaced indirectly by the contents of EA. The
initial contents of ACr are lost; the contents of EA and the location that
designates EA are unaltered.

Store (ST)

15| | |12 11|10 9|8 7| |]]] | |0

1 0 1 (4] r xr disp

Operation: (EA) < (ACr)

Description: The contents of EA are replaced by the contents of ACr. The initial con-
tents of EA are lost; the contents of ACr are unaltered.

Store (ST) Indirect

15] l j 12111 10 91 8 71 | | | 1 | | ©

1 (4] 1 1 r xr disp

Operation: ((EA)) < (ACr)

Description: The contents of EA are replaced indirectly by ACr. The initial contents of
EA are lost; the contents of ACr and the location that designates EA are
unaltered.

3.6.2 ARITHMETIC INSTRUCTIONS

There are two instructions in this group summarized in table 3—4 and then described individually. Either of these

instructions may be carried out with any of the four general-purpose accumulators (ACO, 1, 2, or 3). The word format
is shown in figure 3—4.

Table 3—4. Arithmetic Instructions

Instruction OpCode Operation Assembler Format

ADD (ADD) 1100 | (ACr) < (ACr) + (EA),OV,CY ADD 1, disp(xr)
SUBTRACT (SUB) | 1101 | (ACr)<«(ACr)+~(EA)+1,0V,CY | SUB r, disp(xr)

5] | Jr2pmpopejs8y 7y | | | | | |0

OP CODE r xr disp

Specifies operation. |

Displacement value. Designates direct address if xr value is 00;
otherwise, designates augend for index address calculation
(table 3—1).

Indexing designator. When nonzero, designates number of index register
register whose contents are the addend for address calculation (table 3—1).

Register designator. Designates number of working register (accumulator) involved in
operation.

Figure 3—4. Arithmetic Instruction Format

Add (ADD)
5] | qrymyrop e 8 p 7y 4o) g0
1 1 0 0 r xr disp

Operation: (ACr) < (ACr) + (EA),OV,CY

Description: The contents of ACr are added algebraically to the contents of the effective
memory location EA. The sum is stored in ACr, and the contents of EA
are unaltered. The preceding contents of ACr are lost. The carry and
overflow flags are set according to the result of the operation.

Subtract (SUB)

15 |]] 12] 1M} 10} 91 8 7 1 | | | | | | O

1 1 0 1 r xr disp

Operation: (ACr) < (ACr) + ~ (EA) + 1,0V,CY

Description: The contents of ACr are added to the twos complement of the effective
memory location EA. The result is stored in ACr, and the effective mem-
ory location is unaltered. The carry and overflow flags are set according to
the result of the operation.

3-9

3.6.3 LOGICAL INSTRUCTIONS

There are two instructions in this group, summarized in table 3—5 and then described individually. Either of these
instructions may be carried out with only two of the general-purpose accumulators, ACO or AC1. The word format is
shown in figure 3—5.

Table 3—-5. Logical Instructions

Instruction | OpCode Operation Assembler Format
AND 01100 (ACr) < (ACr) A(EA) | AND 1, disp(xr)
OR 01101 (ACr) < (ACr)V (EA) | OR 1, disp(xr)
L I I 1978171 1 1 1 1 1 169
OP CODE r xr disp

Specifies operation. |

Displacement value. Designates direct address if xr field is 00;
otherwise, designates augend for index address calculation
(table 3—1).

Indexing designator. When nonzero, designates number of the register
whose contents are the addend for address calculations (table 3—1).

Register designator. Designates ACO when ‘0" or AC1 when ’1.”"

Figure 3-5. Logical Instruction Format

And (AND)
5] | 1 Jwjwjeyjs8 7y o111 |
(V] 1 1 0 0 r xr disp

Operation: (ACr) « {(ACr) A (EA)

Description: The contents of ACr (where 1 is either 0 or 1) and the contents of the
effective memory location EA are ANDed, and the result is stored in ACr.
The initial contents of ACr are lost, and the contents of EA are unaltered.

3-10

0 1 1 0 1 r Xxr disp

Operation: (ACr) < (ACr) V (EA)

Description: The contents of ACr (where 1 is either 0 or 1) and the contents of the
effective memory location EA are ORed inclusively, and the result is
stored in ACr. The initial contents of ACr are lost, and the contents of EA
are unaltered.

3.64 SKIP INSTRUCTIONS

Five instructions comprise the skip instructions, summarized in table 3—6. Three word formats are required and shown
in figure 3—6.

Table 3—6. Skip Instructions

Instruction Operation Operation Assembler Format
Code
Memory References
INCREMENT AND SKIP IF ZERO 011110 | (EA)< (EA)+ 1, ISZ disp(xr)
IF (EA)=0,(PC)« (PC)+1
DECREMENT AND SKIP IF ZERO | 011111 | (EA)<(EA)-1; DSZ disp(xr)
IF (EA)=0,(PC) < (PC)+1
Register References
SKIP IF GREATER 1110 IF (ACr)>(EA),(PC) < (PC)+1 | SKG r, disp(xr)
SKIP IF NOT EQUAL 1111 IF (ACr)#(EA),(PC)«< (PC)+1 | SKNE 1, disp(xr)
Limited Register Reference
SKIP IF AND IS ZERO 01110 IF [(ACr) A(EA)] =0, SKAZ 1, disp(xr)
PO« @O +1

3-11

15 |

1

| 10

Memory Reference Skip Instruction

°18r7y 1 1] 1 169

OP CODE

xr disp

Specifies operation.

Displacement value. Designates direct address if xr value is 00;
otherwise, designates augend for the address calculation
(table 3—1).

Indexing designator. When nonzero, designates number of the register
whose contents are the addend for address calculation (table 3—1).

15 |

| | 12

1"

1 10

Register Reference Instruction

sj&8p 74y 1 1 1 1 1 |69

OP CODE

Xr disp

Specifies operation,

Displacement value. Designates direct address if xr value is 00;
otherwise, designates augend for the address calculation
(table 3—1).

Indexing designator. When nonzero, designates number of index register
whose contents are the addend for address calculation (table 3—1).

Register designator. Specifies number of register whose contents are to be compared
with contents of effective address in determining whether skip operation occurs. May
be ACO, 1,2, or 3.

15 |

L1

L

10

Limited Register Reference Instruction

°181 7y 1 1 1]]]6o

OP CODE

xr disp

Specifies operation.

Displacement value. Designates direct address if xr value is 00;
otherwise, designates augend for the address calculation
(table 3—1).

Indexing designator. When nonzero, designates number of the register
whose contents are the addend for address calculations (table 3—1).

Register designator. Specifies number of register whose contents are compared
with contents of effective address in determining whether skip operation occurs.
May be only ACO or AC1.

Figure 3—6. Skip Instruction Formats

3-12

Increment and Skip If Zero (ISZ)

sy | | | |w©jej8zy | | | 1 1 160
0 1 1 1 0 xr disp

Operation: ~ (EA) < (EA) + 1; if (EA)=0, (PC) <« (PC) + 1

Description: The contents of EA are incremented by 1. The new contents of EA are

tested to determine whether they equal zero. If the new contents of EA
equal zero, the contents of PC are incremented by 1, thus skipping the
memory location designated by the initial contents of PC. The contents of
EA are unaltered.

Decrement and Skip If Zero (DSZ)

15 | | |] 101 9] 81 7] | | l | | | O
0 1 1 1 1 xr disp
Operation: (EA)< (EA) - 1; if (EA)=0, (PC) < (PC)+ 1
Description: The contents of EA are decremented by 1. The new contents of EA are
tested to determine-whether they equal-zero.-If the new-contents-of EA
equal zero, the contents of PC are incremented by 1, thus skipping the
memory location designated by the initial contents of PC.
Skip If Greater (SKG)
15] | |12 11|1O 9]8 7| | |]] | IO
1 1 0 r xr disp
Operation: 1If (ACr) >(EA), (PC) < (PC) + 1
Description: The contents of ACr (when r is ACO, 1, 2, or 3) and the contents of the

effective memory location EA are compared on an algebraic basis with due
regard to the signs of the two operands. If the contents of ACr are greater
than the contents of EA, the contents of PC are incremented by 1, thus
skipping the memory location designated by the initial contents of PC. The
initial contents of PC are lost. The contents of ACr and EA are unaltered.

Skip If Not Equal (SKNE)

15] | 112 11]10 9]8 7l] |] | | |0

1 1 1 1 r xr disp

Operation: If ACr # (EA), (PC) < (PC) + 1

Description: The contents of ACr (where ACr is ACO, 1, 2, or 3) and the contents of the
effective memory location EA are compared. If the contents of ACr and
the effective memory location EA are not equal, the contents of PC are
incremented, thus skipping the memory location designated by the initial
contents of PC. The initial contents of PC are lost. The contents of ACr
and EA are unaltered.

Skip If AND Is Zero (SKAZ)

gy 1} pvyr0y 9837y | 11 3] |60

] 1 1 1 0 r xr disp

Operation: 1f [(ACr) A(EA)] =0, (PC) < (PC) + 1

Description: The contents of ACr (where 1 is either 0 or 1) and the contents of the
effective memory location EA are ANDed. If the result equals zero, the
contents of PC are incremented by 1, thus skipping the instruction desig-
nated by the initial contents of PC. The initial contents of PC are lost. The
contents of ACr and EA are unaltered.

3.6.6 TRANSFER-OF-CONTROL INSTRUCTIONS

There are seven instructions in this group, summarized in table 3—7. Three word formats are required and shown in
figure 3—7.

Table 3—7. Transfer-of-Control Instructions

Instruction Operation Code Operation Assembler Format
Jumps
JUuMP 001000 (PC) < EA JIMP disp(xr)
JUMP INDIRECT 001001 (PC) < (EA) JMP @disp(xr)
JUMP TO SUBROUTINE 001010 (STK) «< (PC); (PC) <« EA JSR disp(xr)
JUMP TO SUBROUTINE INDIRECT 001011 (STK) < (PC); (PC) < (EA) | JSR @disp(xr)
Branch
BRANCH-ON CONDITION 0001 IF CC IS TRUE BOC cc, disp
(PC) < (PC) + disp

Table 3—7. Transfer-of-Control Instructions (Continued)

Instruction Operation Code Operation Assembler Format
Returns
RETURN FROM INTERRUPT 000000010 (PC) < (STK) + ctl; RTI ctl
INTEN FLAG SET
RETURN FROM SUBROUTINE 000000100 (PC) < (STK) + ctl RTS il
JUMP TO SUBROUTINE IMPLIED 000000111 (STK)<(PC); JSRI «ctl
(PC) < FF80y6 + ctl

Jump Instruction

15 | |]] jwjej8tzy1 1 1 11 Y
OP CODE xr disp
Specifies operation. I
Displacement value. Designates direct address if xr value is 00; oth-
erwise, designates augend for the address calculation (table 3—1).
Indexing designator. When nonzero, designates number of the register whose
contents are the addend for address calculation (table 3—1).
Branch Instruction
15 |] j12y1] 18171 |]] |] | ©
OP CODE cc disp

Specifies operation.

Displacement value. Designates immediate value that is added to
the contents of the program counter (PC) to calculate the address
for the next instruction that follows the branch instruction if the

branch condition is true.

Condition code. Specifies branch condition code (listed in table 3—8).

L2 [N TN N N I |

Return Instruction

7161 1 1 1 1 169

OP CODE

ctl

Specifies operation.

Control field. Designates a value added to the return address
when used in return instructions. Designates the control field
transferred to peripheral device in input/output instructions.

The ctl value is an unsigned 7-bit number.

Figure 3—7. Transfer-of-Control Instruction Formats

3-15

Jump(JMP)

] | | | Jwojeysjz| | | |] | Jo

Operation: (PC) < EA

Description: The effective address EA replaces the contents of PC. The next instruction
is fetched from the location designated by the new contents of PC.

Jump (JMP) Indirect

%) 1 1] jwojey8lzy 4 1 1 1 |60

Operation: (PC) < (EA)

Description: The contents of the effective address (EA) replaces the contents of PC.
The next instruction is fetched from the location designated by the new
contents of PC.

Jump to Subroutine (JSR)

sy] 1 | jwojej8p 7y} § J [| 160

1] (4] 1 1] 1 0 xr disp

Operation: (STK) < (PC), (PC) < (EA)

Description: The contents of PC are stored in the top of the stack. The effective address
EA replaces the contents of PC. The next instruction is fetched from the
location designated by the new contents of PC.

3-~16

Jump to Subroutine (JSR) Indirect

%) 1 1 jw)yey 8} 7i 1 i 1 1 | 160
0 0 0 1 1 xr disp
Operation: (STK) < (PC), (PC) < (EA)
Description: The contents of PC are stored in the top of the stack. The contents of the

effective address (EA) replace the contents of PC. The next instruction is
fetched from the location designated by the new contents of PC.

Branch-On Condition (BOC)

15 |

p2pvy) j81 74 11 b 11 10

0

o]

1 cc disp

Operation:

Description:

&)

)

(PC) < (PC) + disp (sign extended from bit 7 through bit 15)

There are 16 possible condition codes (cc). These are listed in table 3—8.
If the condition for branching designated by cc is true, the value of disp
{sign extended from bit 7 through bit 15) is added to the contents of PC,
and the sum is stored in PC. The initial contents of PC are lost. Program
control is transferred to the location specified by the new contents of PC.

NOTE

PC is always incremented by 1 immediately following the fetching
of an instruction, so the contents of PC during execution of an
instruction is 1 greater than the address of that instruction. This
must be considered during execution of the BOC instruction: for
example, if the address of the BOC instruction is 100, then 101 is
added to the value of disp (sign extended).

The disp field is a signed 8-bit number, whose sign is extended
from bit 7 through bit 15 to form a 16-bit number (including
sign). Thus, the range of addressing with a BOC instruction is
-127 to +128 relative to the address of the current instruction.

3-17

Table 3—8. Branch-On Condition Codes

Condition Code Condition Tested Remarks
0000 Interrupt Line = 1 Interrupt need not be tested by
0001 (AC0)=0 macroprogram
0010 (AC0)=0
0011 Bit0 of ACO=1
0100 Bit 1 of ACO=1
0101 (AC0)#0
0110 CONTROL PANEL INTERRUPT LINE =1
0111 CONTROL PANEL START =1
1000 STACK FULL LINE =1
1001 INTERRUPT ENABLE = 1
1010 CARRY/OVERFLOW = 1’ Carry if SEL = 0; overflow if SEL =1
1011 (AC0)K0
1100 User
1101 User
Available for general-purpose use
1110 User
1111 User

NOTE

For both the following instructions (RTI and RTS), the ctl value is an

unsigned 7-bit number.

Return from Interrupt (RTI)

s 1+ 1 1 1 1 j71]6] | | 1 10
0 0 0 0 0 0 0 1 [4] ctl
Operation: Set INT EN (interrupt enable flag)
(PC) < (STK) + ctl
Description: The interrupt enable flag (INT EN) is set. The contents of PC are replaced

by the sum of ctl and the contents of STK. Program control is transferred
to the location specified by the new contents of PC. (RTI is used primarily

to exit from an interrupt routine.)

3-18

Return from Subroutine (RTS)

vy 1 4 141 yryeq 1§ 1§]o

0 0 0 0 0 0 1 0 0 ctl

Operation: (PC) < (STK) + ctl

Description: The contents of PC are replaced by the sum of ctl and the contents of
STK. Program control is transferred to the location specified by the new
contents of PC. (RTS is used primarily to return from subroutines entered
by JSR.)

Jump to Subroutine Implied (JSRI)

L2 I N N N A N N A SN (N NN NN N N

0 o] 0 0 0 0 1 1 1 ctl

Operation: (STK) « (PC), (PC) < FF80y6 + ctl

Description: The contents of PC are pushed onto the stack. The contents of PC are
replaced by the address implied by the sum of the ctl value and the num-
ber FF801¢. This enables a subroutine jump to memory locations FF80;
through FFFF g (0 < ctl < 7F).

3.6.6 SHIFT INSTRUCTIONS

Four instructions comprise this group. All four instructions may be used with the Link (L) bit by setting the SEL flag.
This is accomplished with a Set Flag (SFLG) instruction before executing the shift or rotate instruction. Examples of
shifting with and without SEL set are given in diagram form for each instruction in the descriptions that follow. Note
that the SEL flag also affects the BOC instructions as indicated in table 3—8.

The shift instructions are summarized in table 3—9, and the word format is shown in figure 3—8.

All shift and rotate operations may be carried out with any of the four general-purpose accumulators, ACO, 1, 2, or 3.

3-19

Table 3—-9. Shift Instructions

Operation
Instruction Operation Code Assembler Format
SEL=0 SEL=1

ROTATE LEFT 010110 (ACrg) « (ACry5), (ACrg) < (L), ROL I, m
(disp>0) (ACrp) < (ACrp) (L) < (ACrys),

(ACrp) < (ACrpp)
ROTATE RIGHT 010110 (ACry5) < (ACryp), (ACri5) < (L), ROR r, m
(disp < 0) (ACry) < (ACrps1) | (L)< (ACrp),

(ACrp) < (ACry41)
SHIFT LEFT 010111 (ACry) < (ACrp), | (L)<« (ACrys), SHL r m
(disp > 0) (ACrg) <0 (ACrp) < (ACryy),

(ACrg) <0
SHIFT RIGHT 010111 (ACri5) <0, (ACry5) < (L), SHR r, m
(disp <0) (ACrp) < (ACrp4y) | (D) <0O,

(ACry) < (ACrasy)

NOTE: For all shift and rotate instructions, “m” denotes the number of positions to be shifted or rotated, and
is equal to the absolute value of disp. See example 3 in appendix B.

5] 1 |

|] 10| 9 |

LA I

OP CODE r disp

Specifies Operation. Displacement value. Designates number of positions for shifting

and rotating instructions.

Register designator. Designates number of working register (ACO, 1, 2,
or 3) involved in operation.

3-20

Rotate Left (ROL) (for disp > 0)

) |]] jtoj1e1817] I 1 1 | 160
6 1 o0 1 1 o0 r disp
SEL=0

Operation: (ACrg) < (ACrs), (ACrp) < (ACrp)

Description: The contents of ACr are shifted around to the left disp times. (ACrys)
replaces (ACrg) for each shift.

SEL=1
Operation: (ACrg) < (L), (L)< (ACrs5), (ACrp)<(ACrys)

Description: The contents of ACr are shifted around to the left disp times. (L) replaces
(ACrp), and (ACry5) replaces (L) for each shift.

3-21

Rotate Right (ROR) (for disp <0)

) 1 1 J jwy9e 1817y 4 1 1 1 | o0
0 1] 1 1 0 r disp
SEL=0

Operation: (ACrys) < (ACrg), (ACry) < (ACrp41)

Description: The contents of ACr are shifted around to the right disp times. (ACrg) -
replaces (ACrys) for each shift.

SEL=1
Operation: (ACry5) < (L), (L)< (ACrg), (ACrp) <« (ACrp+1)

Description: The contents of ACr are shifted around to the right disp times. (L)
replaces (ACrys), and (ACrg) replaces (L) for each shift.

S | I I U N N N Y [e O S (Y I

15)]]] 1o} 91817}]]]] 1 | 0
4] 1] 1 11 r disp

|
SEL=0

Operation: (ACrp) < (ACry-1), (ACrg)«0
Description: The contents of ACr are shifted to the left disp times. (ACrys) is lost, and
zero replaces (ACrg) for each shift.

LI I T I N T S Y T A I

LOST - — — - — — 0

3-22

SEL=1

Operation: (L) < (ACry5), (ACry) <« (ACrp.1), (ACrg) <0

Description: The contents of ACr are shifted to the left disp times. (L) is lost.
(ACrys) replaces (L), and zero replaces (ACrg) for each shift.

LS 1 - S I A N S Ny [S I Y A A I

LOST = << e— 0

Shift Right (SHR) (for disp <0)

] 1 1 f jjey8f7y) 1 1 | |]o
o 1 0o 1 1 1 r disp
SEL=0

Operation: (ACr15) <0, (ACr,) < (ACrp+;)

Description: The contents of ACr are shifted to the right disp times. (ACrg) is lost, and
zero replaces (ACrys) for each shift.

L1-31 H IN F O OY

0 —» — LOST

SEL=1

Operation: (ACrys5) < (L), (L)< 0, (ACr,) < (ACry4q)

Description: The contents of ACr are shifted to the right disp times. (ACrg) is lost, (L)
replaces ACrs, and zero replaces (L) for each shift.

[112 (N I A A S I A A I e
oC—» |—> — »» LOST

3-23

3.6.7 REGISTER INSTRUCTIONS

There are eleven instructions in this group, summarized in table 3—10. Three word formats are required and are shown

in figure 3-9.
Table 3—10. Register Instructions
Instruction Operation Code Operation Assembler Format
Register and Stack
PUSH ONTO STACK 010000 (STK) < (ACn) PUSH T
PULL FROM STACK 010001 (ACr) < (STK) PULL r
EXCHANGE REGISTER AND STACK 010101 (STK) < (AC1), (ACr) <« (STK) XCHRS T
Register and Immediate
LOAD IMMEDIATE 010011 (ACr) <« disp (sign extended) LI 1, disp
ADD IMMEDIATE, SKIP IF ZERO 010010 (ACr) < (ACr) + disp (sign extended), | AISZ r, disp
0OV,CY; if (ACr)=0, (PC)«(PC)+1
COMPLEMENT AND ADD IMMEDIATE 010100 (ACr) < ~ (ACr) + disp CAI 1, disp
(sign extended)
Oiyeration Code
Instruction Operation Assembler Format
OP1 | OP2 | OP3
Register to Register
REGISTER ADD 0011 0 00 (ACdr) < (ACsr) + (ACdr), OV,CY RADD sr, dr
REGISTER EXCHANGE 0011 1 00 (ACsr) < (ACdr), (ACdr) < (ACsr) RXCH st, dr
REGISTER COPY 0011 1 01 (ACdr) < (ACsr) RCPY sr, dr
REGISTER EXCLUSIVE-OR 0011 1 10 (ACdr) < (ACsr) V (ACdr) RXOR sr, dr
REGISTER AND 0011 1 11 (ACdr) < (ACsr) A (ACdr) RAND st, dr

3-24

Register and Stack Instructions

s] | | 1 Jw]oe|s8&jz) | | 1 4§ 1 160
OP CODE r NOT USED
Specifies operation.
Not used. These bits are coded to zeros and are
ignored for these instructions.
Register designator. Designates number of working register {ACO, 1, 2,
or 3} involved in operation.
Register and Immediate Instructions
15) | 18] 12] | 0] 9181 7] |] I | | | O
OP CODE r disp
Specifies operation.
Displacement value. Designates immediate value, which is an
operand in those instructions involving an immediate operand.
Register designator. Designates number of working register (ACO, 1. 2,
or 3) involved in operation.
Register-to-Register Instructions
15J | |12 11110 9|8 7 | l B 12 1|0
oP 1 sr dr o4 NOT USED oP 3

Specifies operation with
bits 0,1, and 7.

OpCode 3. Bits 0, 1, and 7
with bits 12 through 15 com-
prise the operation code and
specify the operation.

Not used. These bits are coded to zeros and are
ignored for this class.

OpCode 2. Bits 0, 1, and 7 with bits 12 through 15 comprise the
operation code and specify the operation.

Destination register designator. Designates number of one of the two oper-

and registers involved in an operation. Result is placed in the destination
register, whose original contents are lost.

Source register designator. The number of one of the two operand registers involved

in an operation. its contents are not altered by the operation except during RXCH
(register exchange).

3-25

Figure 3-9. Register Instruction Formats

Push onto Stack (PUSH)

15 |] | | jrwo] o] 8] 7| | | | l | | o
0 1 0 0 0 0 r NOT USED
Operation: (STK) < (ACr)
Description: The stack is pushed by the contents of the register (ACO, 1, 2, or 3)

designated by 1. Thus, the top of the stack then holds the contents of
ACr, and the contents of all other levels in the stack are moved down one
level. If the stack is full before the push occurs, the contents of the lowest
level are lost. The initial contents of ACr are unaltered.

Pull from Stack (PULL)

5] 1 1 | _110] o] 81]7] | I i 1] o
0 1 0 0 0 1 r . NOT USED
Operation: (ACr) < (STK)
Description: The stack is pulled. The contents from the top of the stack replace the

contents of register number r (ACO, 1, 2, or 3). The initial contents of
ACr are lost. The contents of each level of the stack moves up one level.
Zeros enter the bottom of the stack.

Exchange Register and Stack (XCHRS)

w11 1 11'}]9]8]7] | I 0
0 1 0 1 r NOT USED
Operation: (STK) < (ACr), (ACr) < (STK)
Description: The contents of the top of the stack STK and the register designated by
r (ACO, 1, 2, or 3) are exchanged.
Load Immediate (LI)
15 | |] | J10) 9]18]7] |]] 1 | | ©
0 1 0 1 1 r disp
Operation: (ACr) < disp (sign extended)
Description: The value of disp with sign bit 7 extended through bit 15 replaces the

contents of ACr (ACO, 1, 2, or 3). The initial contents of ACr are lost.
The immediate operand range is =128 to +127.

3-26

Add Immediate, Skip If Zero (AISZ)

] | {1 1 fw]ej8jz] | | [| | 1o
0 1 0 1 0 r disp
Operation: (ACr) < (ACr) + disp (sign extended), OV,CY
If new (ACr) =0, (PC)« (PC) +1
Description: The contents of register ACr are replaced by the sum of the contents of

ACr and disp (sign bit 7 extended through bit 15). The initial contents of
ACr are lost. The overflow and carry flags are set according to the result of
the operation. If the new contents of ACr equal zero, the contents of PC
are incremented by 1, thus skipping the next memory location. The imme-
diate operand range is -128 to +127.

Complement and Add Immediate (CAI)

)] | | | jwjsesysjzy] | | | | 1 10
0o 1 0 1 o0 o r disp

Operation: (ACr) <~ (ACr) + disp (sign extended)

Description: The contents of register ACr are complemented and then added to disp
(sign bit extended through bit 15). The result is then stored in ACr. The
initial contents of ACr are lost. The immediate operand range is —128 to
+127. Note that the carry and overflow flags are not affected by this
instruction.

Register Add (RADD)
Operation: (ACdr) < (ACsr) + (ACdr), OV,CY
Description: The contents of the destination register ACdr (ACO, 1, 2, or 3) are replaced

by the sum of the contents of ACdr and the source register ACsr (ACO, 1,
2, or 3). The initial contents of ACdr are lost, and the contents of ACsr are
unaltered. The overflow and carry flags are set according to the result of
the operation.

3-27

Register Exchange (RXCH)

5] | J12p1njwol9o}sl 716l | | |l=2]l110
0 0 1 1 sr dr 1 NOT USED 0 0
Operation: (ACsr) < (ACdr), (ACdr) < (ACsr)

Description:

The contents of ACsr (ACO, 1, 2, or 3) and ACdr (ACO, 1, 2, or 3) are
exchanged.

Register Copy (RCPY)

5] | | 12]11]10] 9] 8 61 | | 21110
0 0 1 1 sr dr NOT USED 0 1
Operation: (ACdr) < (ACsr)
Description: The contents of the destination register ACdr (ACO, 1, 2, or 3) are replaced

by the contents of the source register ACsr (ACO, 1, 2, or 3). The initial
contents of ACdr are lost, and the initial contents of ACsr are unaltered.

Register Exclusive Or (RXOR)

5] | J12jp1}lwo}jeo}lslzle} | |] 2] 1] 0
o o 1t 1 sr dr 1 NOT USED 10
Operation: (ACdr) < (ACdr) V (ACsr)
Description: The contents of the destination register ACdr (ACO, 1, 2, or 3) are replaced

by the result of exclusively ORing the contents of ACdr with the contents
of the source register ACsr (ACO, 1, 2, or 3). The initial contents of ACdr
are lost, and the initial contents of ACsr are unaltered.

Register And (RAND)
151 | J12j1}j10}9]8]l7]161 1| | L2j110
0 0 1 sr dr 1 NOT USED 1 1
Operation: (ACdr) < (ACdr) A (ACsr)
Description: The contents of the destination register ACdr (ACO, 1, 2, or 3) are replaced

by the result of ANDing the contents of ACdr with the contents of the
source register ACsr (ACO, 1, 2, or 3). The initial contents of ACdr are
lost, and the initial contents of ACsr are unaltered.

3-28

3.6.8 INPUT/OUTPUT, HALT, AND FLAG INSTRUCTIONS

Seven instructions comprise this group, summarized in table 3—11. Three word formats are required and are shown in
figure 3—10.

Table 3—11. Input/Output, Halt, and Flag Instructions -

Instruction Operation Code Operation Assembler Format
Input/Output
REGISTER IN : 000001000 (AR) <ctl + (AC3); RIN ctl
(ACO0) < (IOREG)
REGISTER OUT 000001100 (AR) <ctl + (AC3); ROUT ctl
(IOREG) « (AC0)
Halt
HALT 000000000 Processor halts. HALT
Status Flags
PUSH STATUS FLAGS ONTO STACK 000000001 (8TK) < (STATUS FLAGS) PUSHF
PULL STATUS FLAGS FROM STACK 000000101 (STATUS FLAGS) <« (STK) PULLF
Operation Code
Instruction Operation Assembler Format
0oP1 or2
Control Flags
SET FLAG 00001 0 fc set; (AR) «ctl SFLG fc
PULSE FLAG 00001 1 fc pulsed; (AR)<ctl PFLG fc

Input/Output Instructions

)] f 1 1 1 11 Jz7yel 1 1 1 1 leo

OP CODE ctl

Specifies operation.
Control field. The value of ctl represents control data for
input/output operations.

Status Flag and Halt Instructions

LE-30 A O TR AN O 7161 | 1 1 | o

OP CODE NOT USED

Specifies operation.
Not used. These bits are coded to zero and are ignored for these
instructions.

Control Flag Instructions

15 | I l j11]10] |8l 7]|6] | | i I | o

OP CODE — OP 1 fc oP2 ctl

Specified operation
with bit 7. Control field. Designates a control value that is transferred

to AR (address register) for control flag instructions. Bit7
of the particular instruction, a 0 for SFLG and a 1 for
PFLG, is extended through bit 15, and this extended
field is transferred to bits 7 through 15 of AR.

OpCode 2. Bit 7 with bits 11 through 15 comprise the operation
code and specify the operation.

Flag code. Specifies one of eight flags that may be set or pulsed. Flag codes
are listed in table 3—13.

Figure 3—10. Input/Output, Halt, and Flag Instruction Formats

3--30

Register In (RIN)

5] |]] [| l 1 71861 | [] l | O
0 0 0 0 0 1 (V] 0 0 ctl
Operation: (AR) < ctl + (AC3), (ACO)<« (IOREG)
Description: The contents of AR (address register) are replaced by the sum of ctl and
the contents of AC3. The new contents of AR constitute the address of a
peripheral device and a command, both of which are received by the
addressed peripheral device. The peripheral device responds by transferring
the contents of its input/output register (IOREG) to the processor ACO.
Register Out (ROUT)
] 1 1 1 111 (736l 1 1 L I o
0 0 0 0 0 1 1 0 0 ctl
Operation: (AR) < ctl + (AC3), (IOREG) <« (ACO)
Description: The contents of AR (address register) are replaced by the sum of ctl and
the contents of AC3. The new contents of AR constitute the address of
a peripheral device and a command, both of which are received by the
addressed peripheral device. The processor then transfers the contents of
ACO to IOREG in the peripheral device.
Halt (HALT)
1110 N [Y [N NN N N 2 -3 N N A T O A
0 0 0 0 0 0 0 0 NOT USED

Description:

The processor halts and remains halted until the START input makes a
transition from logic “1” to “0.” A switch may be wired to this input such
that a logic “1” is applied momentarily, and then released to a logic “0”
level, thereby providing the necessary transition. The HALT flag is set by
this instruction, and it remains set until the processor comes out of the
halted condition.

3-31

Push Status Flags onto Stack (PUSHF)

15 | |

0 0 0 0 0 0 0 1 NOT USED
Operation: (STK) < (STATUS FLAGS)
Description: The contents of the top of the stack STK are replaced by the contents of

the status flags. See figure 3—11 for the configuration of processor flags on
the stack and table 3—12 for processor flag definitions. The previous
contents of the top of the stack and lower levels are pushed down one

level. The contents of the lowest level of the stack are lost.

Pull Status Flags from Stack (PULLF)

15] |]]]] | | 7161] |] i | 0
o o o o o 1 o0 1 NOT USED
Operation: (STATUS FLAGS) « (STK)
Description: The contents of the status flags are replaced by the contents of the top of

the stack (STK). See figure 3—11 for the configuration of processor flags
on the stack and table 3—12 for processor-flag definitions. The previous
contents of lower levels of the stack are pulled up by one level with zeros
replacing the contents of the lowest level.

15141312 n[10]9]8f7]6|5]ja]3]2]1]0
FLAG FLAG
12 GF GF GF GF GF GF GF GF GF GF GF 0

L OV CY

Figure 3—11. Configuration of Status Flags

NOTE
Status flags 0 and 12 are externally available.

3-32

Bit Positions

Flags

Table 3—12. Status Flags

Bit Position Flag Name Mnemonic Significance
15 Link L Used for double-word shifts
14 Overflow ov Set if an arithmetic overflow occurs
13 Carry CcY Set if a carry occurs (from most signiﬁcant

bit) during an arithmetic operation

12 through 0 | General-Purpose Flags GF Use specified by programmer

Set Flag (SFLG)
] 1 | f(nvjto] |8|7}j6] | | | 1 6o
0 0 0 0 1 fc 0 ctl

Operation: FC set, (AR) < ctl (bit 7 extended through bit 15; that is, bits 8 through
15 set to 0)

Description: The control flag designated by the flag code FC is set. The contents of the
address register AR are replaced by the value of ctl. Flag codes are defined
in table 3—13.

Pulse Flag (PFLG)
15 |] i [n]1w0}] |8]7j6] | i |] o
0 0 0 0 1 fc 1 ctl

Operation: ~ FC pulsed, (AR) < ctl (bit 7 extended through bit 15; that is, bits 8
through 15 set to 1)

Description: The control flag designated by the flag code FC is pulsed (note 2 below).
The contents of the address register AR are replaced by the value of ctl.
Flag codes are defined in table 3—13.

NOTE

(1) SFLG and PFLG r&fer to control flags external to the RALUs.
These flags should not be confused with the RALU-internal flags,
which are referenced by PUSHF and PULLF.

(2) Pulsing a control flag sets the flag at T2 and resets it at T6 during
the same microcycle. The flag remains reset until again set or
pulsed.

(3) The ctl value plus the extended bit 7 through bit 15 are
transferred to the AR (address register). This word in the AR
has no specified use and may be used as desired by the system
programmer.

3-33

Table 3—13. Control Flag Codes

FC Flag Mnemonic Significance
000 F8 User Specified
001 INT EN Interrupt Enable
010 SEL Select
011 F11 User Specified
100 F12 User Specified
101 F13 User Specified
110 F14 User Specified
111 F1§ User Specified

NOTE: The flag designated by the flag code (fc) is set or
pulsed. Only control flags with addresses between 8
and 15 may be accessed with these instructions. (The
flag address is 8, binary 1000, greater than the cor-
responding flag code, FC.) This is done because con-
trol flags with flag addresses O through 7 are used for
various input/output operations controlled by the
processor, and are not usable by the programmer. The
SEL flag selects between CY and OV for output on
the CYOV line; it also selects the LINK bit for
inclusion in shift and rotate operations.

3.7 EXTENDED INSTRUCTION SET

An extended instruction set is available for the IMP-16C in the form of a second CROM. This set comprises 17
instructions divided into 5 categories:

Double-word Arithmetic
Load and Store Byte

Bit Operations
Interrupt Handling Operations

Transfer of Control Operations

The instructions for each functional type are described as a group. For each instruction, the name of the instruction,
its mnemonic, its word format, its operation in the form of an equation, and a succinct explanation of its operation are
given. A tabulated summary of each type of instruction precedes the detailed descriptions.

3.7.1 DOUBLE-WORD MEMORY ADDRESSING

Six of the seventeen instructions use a double-word instruction format. These instructions use direct and indirect
addressing exactly as described in 3.4, although the instruction format is different for these six memory-reference
instructions from that described in 3.4. The six memory-reference instructions are as foliows:

e MULTIPLY (MPY)
e DIVIDE (DIV)

3-34

® DOUBLE PRECISION ADD (DADD)

¢ DOUBLE PRECISION SUBTRACT (DSUB)

e LOAD BYTE (LDB)
® STORE BYTE (STB)

The modified format (shown in figure 3—12) is a double-word instruction format with a 16-bit displacement field.
When using these instructions, all of memory is directly addressable, although all indexing modes may still be used. The
addressing modes are unchanged from those indicated in table 3—1. It is important to note when considering PC relative
addressing, that the PC contains the address of the displacement word of the instruction.

%] |] | |10} 918|7]|6]]4]3] | o
Word n OP CODE 1 m:z:)sx 1 OP CODE 2 NOT USED

15 | l |] | |]]]]] | | | 9
Word n+1 Displacement (disp)

(Consecutive memory locations)

Figure 3—12. Double-Word Memory Reference Instruction Format

3.7.2

DOUBLE-WORD ARITHMETIC INSTRUCTIONS

There are four instructions in this group. These are summarized in table 3—14 and then individually described. The
word format for the two double-precision instructions is shown in figure 3—13. The multiply and divide instructions

have formats as shown in figure 3—13.

Table 3—14. Double-Word Arithmetic Instructions

Openation Code
Instruction Operation Assembler Format
OoP1 OP2
DOUBLE PRECISION ADD 000001 1010 (AC0), (AC1) < (ACO), (AC1) + (EA), (EA+1); | DADD disp(xr)
OV;CY;SEL <0
DOUBLE PRECISION SUBTRACT | 000001 1011 (ACO), (AC1) < (ACO), (AC1) + "V (EA), DSUB disp(xr)
v (EA+1) + 1;0OV;CY;SEL < 0
MULTIPLY (MPY) ((EA) =>0) 000001 1000 (ACO), (AC1) < (AC1)*(EA); SEL < 0; L altered | MPY disp(xr)
DIVIDE (DIV) ((EA) > 0) 000001 1001 (AC0) < INTEGER PART OF DIV disp(xr)
[(ACO), (ACI) + (EA)];
(ACl1) < REMAINDER OF
[(ACO), (AC1) ~ (EA)];
OV; SEL < 0; L altered

3-35

OpCode 1 (OP1). Specifies operation with OpCode 2 (OP2).

Indexing designator. When nonzero, designates index register whose
contents are the addend for address calculation (table 3-2).

OpCode 2 (OP2). Along with OpCode 1, specifies operation.

f Not used. Coded to zeros and ignored
for these instructions.

5] |] [| wj9o|8)7] | |4}3] | o
OP CODE 1 Xr OP CODE 2 [NOT USED
L2 I | N D B | I W B | | 1o
Displacement (disp)

Displacement. Designates direct address if XR field is 00; otherwise, designates augend for index address
calculation (table 3—1). Is a signed 16-bit number.

Figure 3—13. Double-Precision (Double-Word) Arithmetic Instruction Format

DoublePrecision Add (DADD)

15 | | | | w9 |81]°7]] 1 4431] J | o

0o o 0 0 0 1 xr 1 0 1 0 NOT USED

15 |] |]] | | | |] J] | | | O
disp

Operation: (ACO), (AC1) < (ACO), (AC1) + (EA), (EA+1); OV; CY; SEL < 0

Description: The double-precision twoscomplement value in ACO (high order) and
ACI1 (low order) is added to the double-precision twos-complement value
in EA (high order) and EA+1 (low order), and the result is stored in ACO
and AC1. The contents of EA and EA+1 are unchanged. The overflow or
carry flag is set if an overflow or carry occurs, respectively; otherwise,
they are cleared. The select flag is cleared.

3-36

Double-Precision Subtract (DSUB)

15 | |] l 1019 |81 7]] [413 |] | O
0o 0 o0 o0 O 1 xr 10 1 1 NOT USED
15 | | |]] | | | | | |] | | ©
disp
Operation: (AC0), (AC1) <« (AC0), (AC1) + ~ [(EA), (EA+1)] + 1;0V;CY;SEL<« 0
Description: The double-precision twos-complement value in EA (high order) and EA+1
(low order) is subtracted from the double-precision twos-complement
value in ACO (high order) and AC1 (low order). The contents of EA and
EA+1 are unchanged. The overflow or carry flag is set if an overflow or
carry occurs, respectively; otherwise, they are cleared. The select flag is
cleared.
Multiply (MPY)
] | | 1 w9187} | 1433] 169
0 0 0 0 1 xr 1 0 1] 0 NOT USED
15] | L1 L1 i |]] | | | | O
disp
Operation: (ACO0), (AC1) < (AC1) * (EA); SEL < 0; L altered
Description: The unsigned integer in AC1 is multiplied by the positive integer in the

effective memory location EA. The high-order part of the 32-bit result is
stored in ACO and the low-order part is stored in AC1. The previous
contents of ACO and AC1 are lost. The contents of EA are unaffected. The
select flag is cleared. The link flag is left in an arbitrary state.

3-37

Divide (DIV)

15 | | (1w0j9181]°7] | | 413 | | |

0o o0 0 0 0 1 xr 1 0 0 1 NOT USED

L5:3 S N S NN AN NN AN NN NN N S WU N S
disp

Operation: (ACO0), (AC1) < (ACO), (AC1) + (EA); OV; SEL < 0; L altered

Description: The positive 32-bit integer in ACO (high-order part) and AC1 (low-order
: part) is divided by the contents (a positive number) of the effective
memory location EA. The integer quotient is placed in AC1 and the
remainder in ACO. The overflow flag (OV) is set if either of the following
occurs: (1) the high-order part of the dividend (initial contents of ACO) is
greater than or equal to the divisor, or (2) the quotient is negative. The
select flag is cleared. The link flag is left in an arbitrary state. The contents
of EA are unchanged. Division by zero, an illegal operation, falls into
case 1 above.

3.7.3 BYTE INSTRUCTIONS

There are two instructions in this category; both are double-word, memory reference instructions. They are summarized
in table 3—15 and then individually described. Their word format is shown in figure 3—13.

Table 3—15. Byte Instructions

Operation Code
Instruction Operation Assembler Format

OoP1 or2

LOAD BYTE | 000001 | 1100 [(Low-order byte of ACO) < byte from (EA +2); SEL< 0| LDB disp(xr)

STORE BYTE | 000001 | 1101 [Byte of (EA + 2) < (low-order byte of AC0); SEL < 0 STB disp(xr)

3-38

LOAD BYTE (LDB)

15 | |] |]10] 9 | 8 7 | 4 3 | | | O

0 0 0 0 0 1 xr 1 0 NOT USED

wy b1 | | T
disp

Operation: Low-order byte of (ACO) « byte from (EA +2); SEL <0

Description: The low-order byte of ACO is loaded with a byte from (EA + 2). If the
low-order bit of EA is 1, the low-order byte is loaded; otherwise, the
high-order byte is loaded. (Note: EA +2 is the effective address shifted
right one position.) The high-order byte of ACO is set equal to zero. The

select flag is cleared.

STORE BYTE (STB)

15 | } | | |10} 9 | 8 7 | 4 3 | | 1 0

0 0 0 0 0 1 xr 1 1 NOT USED

15] i | L1] | |]] [169
disp

Operation: Byte of (EA + 2) < low-order byte from (AC0); SEL < 0

Description: The low-order byte of ACO is stored into the byte of (EA + 2) specified
by the low-order bit of EA. If the low-order bit is 1, the low-order byte
is specified; otherwise, the high-order byte is specified. (Note: EA + 2 is
the effective address shifted right one position.) The unspecified byte of
EA +2 and the contents of ACO are unaffected. The select flag is cleared.

PROGRAMMING NOTE

The effective address is formed by adding the contents of the index
register to the displacement (EA = XR + DISP). Byte addresses are
formed by shifting this quantity right one bit position (EA + 2 =
[XR + DISP}/2 = XR/2 + DISP/2). Bit O of the EA specifies the left

byte if equal to 1; the right bit if equal to zero.

3-39

3.74 BIT AND STATUS FLAG INSTRUCTIONS

There are seven single-word instructions in this group. They are summarized in table 3—16 and then described
individually. Their word formats are shown in figure 3—14.

Bit and Status Flag Instructions

s | (wjwo) |]] j4q3]

OP CODE 2

Specifies operation.

Bit or flag number. Specifies the

number of flag or bit to be operated
on.

OpCode 2 (OP2). Along with OpCode 1, specifies operation.
OpCode 1 (OP1). Is all zeros for this group of -instructions. Along with OpCode 2, specifies operation.

Pull and Push Status Flag Instructions

)] 1 1 1 1 1 1 l7]6}

OP CODE NOT USED
Specifies operation.

Not used. These bits are coded to zero and are ignored
for these instructions.

1 1 | 169

Figure 3—14. Bit and Status Flag Instruction Formats

3-40

Table 3—16. Bit and Status Flag Single-Word Instructions

Instruction OpCode 2 Operation Assembler Format
SET STATUS FLAG 1110000 | Status Flagn < 1; SEL <0 SETST n
CLEAR STATUS FLAG 1110001 | Status Flagn < Q; SEL <0 CLRST n
SET BIT 1110010 | ACO, < 1; SEL<0 SETBIT n
CLEAR BIT 1110011 | ACO, < 0; SEL<«0 CLRBIT n
COMPLEMENT BIT 1110110 | ACOp < ~ACO,; SEL <0 CMPBIT n
SKIP IF STATUS FLAG TRUE | 1110100 | IF Status Flagn = 1, then (PC) < (PC) + 1; SKSTF n
SEL <0
SKIP IF BIT TRUE 1110101 | IF ACOp = 1, then (PC) < (PC) + 1; SKBIT n
SEL+ 0
SET STATUS FLAG (SETST)
| O

L I |

10 |

Operation:

Description:

Status Flagn < 1; SEL <0

The select flag is cleared. (0< n<15)

CLEAR STATUS FLAG (CLRST)

L I

[11 | 10 |

Bit n of the status flag register is set true. All other bits are unaffected.

0 0 0 0

0 1 1

Operation:

Description:

Status Flagn < 0; SEL <0

The select flag is cleared. (0<n<15)

3--41

Bit n of the status flag register is cleared. All other bits are unaffected.

SET BIT (SETBIT)

3 W U N ML U R VN N N NS (e L Y N B

Operation: ACOp < 1; SEL<0

Description: Bit n of ACO is set true. All other bits are unaffected. The select flag is
cleared. (0<n<15)

CLEAR BIT (CLRBIT)

%) | j qmyptey o o 1143y o1)0

o o o o ol1 1 1 o O 1 1 n

Operation: ACO, < 0; SEL <0

Description: Bit n of ACO is cleared. All other bits are unaffected. The select flag is
cleared. (0<n<15)

COMPLEMENT BIT (CMPBIT)

5] | | ymje}] |} j4)3) 4 J0

Operation: ACOp < ~ACOp; SEL <0

Description: Bit n of ACO is complemented. All other bits are unaffected. The select
flag is cleared. (0<n<15)

SKIP IF STATUS FLAG TRUE (SKSTF)

3N W U NN UL C. D0 N NN (N NN (N U - T B

Operation: IF Status Flagn=1, (PC) < (PC) + 1; SEL <0

Description: If Status Flag n is true, the next memory location is skipped. The contents
of the status flags are unaffected. The select flag is cleared.

3-42

SKIP IF BIT TRUE (SKBIT)

{3 WS N W ML T N I SN I M I | ©

Operation: IF ACO,=1,(PC) < (PC)+ 1; SEL <0

Description: If bit n of ACO is true, the next memory location in sequence is skipped.
The contents of ACO are unaffected. The select flag is cleared.

PROGRAMMING NOTE

Caution should be taken when coding a skip instruction to prevent the
skip condition from jumping into the displacement field of a double-
word instruction.

3.75 INTERRUPT HANDLING INSTRUCTIONS

There are two instructions in this group, listed in table 3—17. Their word format is shown in figure 3—15, and then
described in succeeding paragraphs.

Table 3—17. Interrupt Handling Instructions

Instruction OpCode 2 Operation Assembler Format

INTERRUPT SCAN 1010001 If (AC1) = 0, SEL < 0; ISCAN
If (AC1) # 0, SEL < 0;

AC1 < [shift AC1 right 1]
until 1 shifted out

(AC2) < (AC2) + number of
shifts; (PC) < (PC) +1

JUMP INDIRECT TO LEVEL 0 INTERRUPT 1010010 (STK) < (PC); (PC) < ([1204¢ +disp]) JINT disp
INTEN <0

ISCAN, JINT, and JMPP Instructions

s | | qymyy | 1 1431 10

0 0 0 0 0 OP CODE 2 disp

Displacement or pointer. Except for
Interrupt Scan (when not used), is
added to fixed base to compute
address containing jump location.

OpCode 2 (OP2). Along with OpCode 1, specifies operation.
OpCode 1 (OP1). All zeros for this group of instructions. Specifies operation along with OpCode 2.,

Figure 3—15. Interrupt and Word Jump Formats

3-43

INTERRUPT SCAN (ISCAN)

15 | | | j1njno) | |] | 14]3] | [O
0 0 0 0 0 1 0 1 0 0 0 1 NOT USED
Operation: If AC1=0, SEL < 0;
Else, SEL «0;
(AC1) < (shift AC1 right 1) until 1 shifted out;
(AC2) < (AC2) + number of shifts;
PO« @O +1
Description: If AC1 = 0, the select flag is cleared and the next instruction is executed.

If AC1 # 0, then the select flag is cleared and AC1 is shifted right until a 1
is shifted out of bit 0. The number of shifts which occurred is added to the
contents of AC2. The next memory location is skipped.

JUMP TO LEVEL 0 INTERRUPT, INDIRECT (JINT)

15 | | | |11 |10 |] []] 14]3|] | 0

0 0 0 0 0 1 0 1 0 0 1 0 disp
Operation: (STK) < (PC); (PC) < ([1204¢ + disp]); INTEN <« 0
Description: The contents of the PC are pushed onto the top of the stack. The new

contents of the PC are set equal to the contents of the memory location
whose address is formed by adding disp to 12046. The interrupt enable flag
is cleared.

3.76 TRANSFER-OF-CONTROL INSTRUCTIONS

There are two instructions in this group, summarized in table 3—18. The word formats are depicted in figures 3—15 and
3-16.

Table 3—18. Transfer-of-Control Instructions
Instruction oP2 Operation Assembler Format
JUMP THROUGH POINTER 1010000 | (PC) « (1001 + disp) JMPP disp
JUMP TO. SUBROUTINE THROUGH POINTER | 0110 (STK) « (PC); JSRP disp
(PC) < (disp + 1004¢)

3-44

s) 1 | vty } j7|6} | | | | 10

0 0 0 0 0 OP CODE 2 disp

Specifies operation. I

Displacement value. Added to the contents of 10045 to
compute address containing jump location.
OpCode 2 (OP2). Specifies operation along with OP1.

OpCode 1 (OP1). All zeros for this instruction. Specifies operation along with OP2.

Figure 3—16. Jump to Subroutine Through Pointer Instruction Format

JUMP THROUGH POINTER (JMPP)

vy 1} Juijey 31] 1433 j 109

0 0 0 0 0 1 0 1 0 0 0 0 disp

Operation: (PC) < ([1004) + disp])

Description: The contents of the PC are set equal to the contents of the memory
location addressed by the sum of the contents of location 1004 and disp.
JUMP TO SUBROUTINE THROUGH POINTER (JSRP)

vy 1 gmjy j7iey 3§ | § 189

0 0o 0 0 0 0 1 1 0 disp

Operation: (STK) « (PC), (PC) « ([1001¢) + disp])

Description: The program counter is pushed onto the top of the stack. The new
contents of the PC are set equal to the contents of the memory location
addressed by the sum of the contents of location 10044 and disp.

3-45/46

Chapter 4
CIRCUIT DESCRIPTIONS

This chapter treats each functional block of the IMP-16C at the circuit level, explaining the circuit operation and design
configurations. Functional blocks are considered individually, and, at the end of this chapter, figure 4—6, an overall
schematic diagram of the IMP-16C, is presented on three foldout sheets. These should be referred to during the circuit
descriptions that follow. Each circuit described is shown in a broken-line enclosure having the name of the circuit.

Figure 4-7 is a functional block diagram of the IMP-16C circuits detailed on the schematic diagram of figure 4—6. Most
of the units, the data flow, and the control functions are briefly explained in chapter 2 with reference to figure 2—1.
The clock and timing circuits, refresh logic, system initialization, and jump/flag timing and control logic are further
details added to figure 4—7 so it corresponds to and gives an exact overview of the actual circuits on the IMP-16C
schematic diagram. The sheet number given in each functional block of figure 4—7 refers to the sheet number of figure
4—6 on which the circuit is detailed.

Figure 4—7 is on a foldout sheet located following figure 4—6 so it may be readily referenced from any part of this
chapter or as a quick guide to the schematic diagram of figure 4—6.

A parts list and a component layout of the IMP-16C card are presented in table 4—2 and figure 4—8, respectively.
(Table 4--2 and figure 4—8 are located on page 4—17/18.)

The descriptions that follow mention one CROM in the text; however, all discussions alsc apply to the case of two
CROM:s.

4.1 MASTER CLOCK AND 4-PHASE CLOCK GENERATORS (Sheet 1, figure 4—6)

The 4-phase clocks required for the CPU devices (one CROM and four RALUs) are generated with a shift register and
two MH0026 clock drivers. The master clock signal is generated by a crystal oscillator circuit made from a DM10116
triple line receiver connected as an amplifier and a Schmitt trigger circuit. Two transistors, Q1 and Q2, provide level
shifting to convert from ECL levels to TTL compatible logic signals.

The shift register DM74195 generates four clock signals, each of which lasts for two time periods. These signals are then
logically gated to yield the odd phases that drive the MH0026 clock driver devices. The MH0026 clock drivers are
capable of driving 1000 pf loads with rise and fall times of 20 ns. The typical loading by the CROM and the RALUs is
215 pf (45 pf for each device). The resistors in the output lines of the MOS clock drivers damp out any possible clock
overshoots by compensating for the inductance of the clock lines.

The DM74195 shift register outputs are also used to generate some of the other timing signals required in accordance
with the timing diagrams shown in figure 4—1. These signals are derived by gating the appropriate shift register outputs
with various combinations of the master clock and the shift register input clock.

In figure 4—1, the symbols used to designate clock periods have the following significance: the numbers following the
letter C denote the specific time period for which the signal is valid. For example, C23 refers to a clock that is high
during T2 and T3. Similarly, CLK81 refers to a signal derived from the logical AND of C81 and CLK. The MOS clocks
and phase signals that drive the CPU circuits are shown in figure 4--2.

|T7 |18 |T1|T2| 13| Ta| 15| T6 | T7 |

CLK

%

CLKS1 T
cs123___|
pisTRY____|
JCSTR__ |

R R
ce7 [|
1
I
-

NS00129
Figure 4—1. IMP-16C Basic Timing Signals

l«————1 MICROCYCLE———»
|

T8|T1 T2 T3 T4 T5 76 T7 T8

PH1

IPHJ

L

PHS5;

PH/

—_— e e e — e e — — e —

NS00130
Figure 4-2. MOS Clocks and Phase Signals

4-2

4.2 MOS/LSI CPU LOGIC (Sheet 3, figure 4—6)

The CPU consists of one CROM and four RALU circuits driven by the 4-phase clocks. Control between the CROM and
the RALUs is effected over the NCB (complemented control bus) lines. The DI (Data In) lines to the CROM serve the
purpose of entering the instruction word bits 7 through 15 into the CROM. For sending out a 4-bit address to the
Conditional Jump Multiplexer and the Control Flag latches, the lines JFAO through JFA3 (bidirectional from the
CROM) are used. The jump condition signal (NJCOND) enters the CROM at the same pin as bit 7 of the instruction
word. The CROM has a flag enable signal' (NFLEN) that may be pulsed during T2 to set a particular control flag
and/or may be pulsed at T6 to reset the flag (figure 2—4).

The other signals that go to and come from the CPU indicate various status conditions and also perform certain
auxiliary operations. The following paragraphs explain these functions.

During an instruction fetch, bits 0 through 7 are loaded into the RALU Memory Data Register (figure 2—2), and bit 7
of the instruction word is extended through bit positions 8 through 15 of the Memory Data Register. In this way, the
signed displacement value “disp” discussed in chapter 3 is extended for use in arithmetic operations for forming
memory addresses and for immediate instructions. The SININ signal to the RALUs accomplishes the sign extension.
For the two low-order RALUs (1 and 2), the SININ pins are permanently connected to a logic 0 (=12V). For the two
high-order RALUs (3 and 4), where bits 8 through 15 are located, the SININ pins are connected to the bit 7 output of
the Buffered Data Out lines; this bit 7 is used in the two high-order RALUs (3 and 4) to effect the sign extension of
“disp” of the instruction word.

The STF signal indicates a “stack-full” condition. When the bottom entry of the stack is filled with nonzero data, the
STF line is a “1.” The STF lines of all RALUs are tied together and connected to the Conditional Jump Multiplexer to
allow testing for the stack-full condition. A similar scheme is used to detect a zero-result condition with the NREQQ
signal. The NREQO lines are tied together for all the RALUs; the NREQO signal is a “0” if the R-bus is zero as a result
of the preceding machine cycle.

During T7 and T8, CSH3 and CSHO are used to transfer shift data: for a left shift, the most significant bit is shifted out
over CSH3, and the least significant bit is shifted in by CSHO; for a right shift, the converse is true.

Each RALU has four status flags, which are interfaced to the A- and R-buses. This provides a convenient means of
saving status after an interrupt and for setting the status flags. For all except the most significant RALU (4), the status
flags are general purpose and may be used for a variety of functions, depending on the application requirements. For
the most significant RALU (4), the status flags have the following functions:

LINK Flip-Flop. When the SEL input to the RALU is “1,” the Link Flag (L) is included in shift
operations.

OVERFLOW Flag. When enabled (under control of the CROM), the Overflow Flag (OV) is set if an
arithmetic overflow occurs during an add operation.

CARRY Flag. When enabled (under control of the CROM), the Carry Flag (CY) is set to the value of
the carry bit out of the most significant ALU bit after an add operation (figure 2—2).

FLAG Flip-Flop. This flag is available for general-purpose use.

These status flags may be loaded from the R-bus or stored onto the A-bus under control of the Save/Restore Flag
(SVRST) input; this is used by the CROM to implement the PUSHF and PULLF instructions. The output of the
general-purpose Flag is available at the Flag output pin; Carry and Overflow Flags are available at CYOV. The Select
Flag (SEL) input is used to select the Carry or Overflow for output on CYOV and to determine whether the Link (L)
is included in shift operations (discussed in chapter 3). General-purpose flags 0 and 12 are brought out to terminals on
the IMP-16C edge connector as signals FLAGO and FLAG12. The next section describes the flag logic circuits.

1- The prefix “N” to a signal name denotes logical complementation in the MOS/LSI CROM and RALUs. For signals generated external
to these units, an asterisk (*) suffixed to the signal name denotes complementation.

4-3

4.3 CONTROL FLAGS AND CONDITIONAL JUMP MULTIPLEXER LOGIC (Sheet 2, figure 4—6)

External to the CPU portion of the IMP-16C is the logic required to set and reset the contro! flags and to select one of
16 jump conditions.

The flag addresses sent out by the CROM are latched to keep them stable; this is done with a DM9322 multiplexer
connected as a latch by feeding the outputs back to the second set of inputs. (This particular technique has been chosen
here because the DM9322 has less propagation delay than conventional DM7475 or DM74175 latches.) The CROM sends
out the flag addresses at T1; these are latched in the DM9322 device during the latter half of T1 by the signal CLK81.

The latched addresses are then used to select one of 16 jump conditions in a DM8219 16-to-1 multiplexer. The
complemented flag enable signal (NFLEN), which is low at T2 and then again at T6, enables the selection of a flag in
one of the two DM9334 8-bit addressable latch devices. The data to the addressable latches comes from the signal
8123, which provides a logic “1” when NFLEN is low at T2 and a logic “0” when NFLEN is low again at T6. This

allows setting and resetting of the flags (figure 2—4) under control of NFLEN at T2 and T6, respectively.

The output of the TRI-STATE DM8219 device is tied directly to the jump condition (NJCOND) input of the CROM.
This is the line that is tested during conditional jump operations; the testing is done during T2 (figure 2—4). The START
and JC12 through JC15 inputs are user-supplied signals and could be asynchronously generated. Thus, in order to ensure
that the logic levels for these signals are stable during T2, synchronizing latches are provided.

The various conditions that can be tested are hardwired to the conditional jump multiplexer according to table 3—8 in
chapter 3. Four user-assigned jump conditions and six user-assigned control flag lines are brought out to pins on the
edge connector.

The more significant 8 of the 16 control flags may be set using the SFLG instruction and cleared or pulsed using the
PFLG instruction; the assignments of these flags (F8, INT EN, SEL, and F11 through F15) are listed with their flag

codes (FCs) in table 3—13. The SEL control flag affects shift operations as described in 3.6.6, and also selects CY or OV
for output on the CYOV line (see table 3—8). The less significant 8 flags are affected by the CROM-resident

microprograms. The assignment of these flags is listed in table 4-—1.

Table 4— 1. Control Flags Affected by Microprogram

Flag Number | Signal Name Function
0 RDM Read Memory
1 WRM Write Memory
2 RDP Read Peripheral
3 WRP Write Peripheral
4 CPINP Control Panel Input Flag
5 SVRST Save/Restore Status Flags
6 LDAR Load Address Register
7 HLT Set by HALT Instruction

4.4 INPUT MULTIPLEXER, DATA BUFFER, AND ADDRESS LATCHES (Sheet 3, figure 4—6)
The 16-bit bidirectional data bus from the RALU devices is used to transfer all information between the CPU and

memory and peripheral units. This bus is buffered by passing all output signals through a set of TRI-STATE DM8095
hex-buffer circuits.

4-4

Input data destined for the CPU are passed through a set of input multiplexers such that data from a memory or
peripheral unit may be switched in. The TRI-STATE DM8123 multiplexers are controlled by RDM, the read memory
flag (delayed until T7 because data may be accepted into the CPU only at T7, as shown in figure 2—4).

During T7, the data lines are used for input to the RALU from system memory or peripheral devices. The data receivers
are “zeros catching,” so the data lines must not be allowed to go negative during T7 unless the data input is to be a zero.
Because of this zeros catching feature, the strobe signal for input data (DISTR¥*) is generated such that it occurs during
the latter half of T7; this ensures that the data bits will be strobed in only when it is assured that they are stable.

When the data bus is sending out an address during read and write operations, the address is stored-in a register consisting
of four DM8551 quad-D flip-flops. These address lines are brought out to terminals on the edge connector to be used
for addressing peripheral devices and add-on memory. Data from the RALU are sent out during part of T3 and all of T4
(figure 2—4) and are clocked into the latch if the RDM and the LDAR flag is set. The RDM and LDAR flags are pulsed
(set at T2 and reset at T6) during memory read and write operations. The outputs of the DM8551 devices may be
disabled by logically controlling the ODIS line. If ODIS is taken to a logic “1,” the bus is disabled.

45 READ/WRITE AND READ-ONLY MEMORIES (Sheet 4, figure 4-6)

When executing a memory read operation, the processor sends out an address on the RALU data input/output bus;
this address starts coming up during T3, and it is assured of being valid during T4. In the IMP-16C, the address is
strobed into a latch at T4. If the processor is used with slow memories whose access times are longer than the interval
between T4 and T7, it is necessary to stretch a clock period to allow for the slow access. For this purpose, the circuit
clock phase-4 stretcher (sheet 1, figure 4—6) is used to extend T4 for an additional two periods.

During read and write operations, a clock hold signal (HCLK) is developed during C3. The timing relations are given in
figure 4—3. This signal sets a flip-flop output (HOLD) such that a count-by-four circuit is enabled. After four counts of
the master clock, the HOLD flip-flop is shut off. The delay provided by the counter circuit is used to inhibit phase 4 of
the clock generator circuit.

18	T1	T2	T3] T4	715	76	T7]
		1 1 1				
			1	I		
ROMMWRM			1 .			
;	:	: I '				
[
cal ! 1 I N						
N oy						
]] 1						
CLK				_J_	L	
[' I B						
R I oo						
Heek	1 1 N					
R T T !						
I				i	I	
HOLD I I						
o T						
c45 P 1 P						
EXTENDED I ' { ! L						
1 I						
' I [l '	.					

NS00131
Figure 4—3. Timing Relations for Clock Hold Function

On-board address decoding for the memory is arranged such that address bit 15 controls the selection of the read-write
and read-only memories. Bits 9 through 14 are ignored. Thus, if bit 15 is a logic “1” the ROMs are selected, and if
bit 15 is a logic “0” the RWM is selected. If it is desired to change this arrangement or to use add-on memory, external
address decoding must be done and appropriate signals supplied to the CSO, CS1, and CS2 pins of the IMP-16C. This
option is explained in chapter 9.

4-5

4.6 INTERRUPT HANDLER (Sheet 1, figure 4—6)

The IMP-16C interrupt facility is handled through the conditional jump multiplexer inputs. Two interrupt inputs are
provided. One is directly wired to the Conditional Jump Multiplexer and responds to a specific interrupt by jumping to
a microprogram subroutine designed for control panel interrupts, as described in chapter 6. The other interrupt is a
general interrupt input (INTRA), which can be wired to the user’s interrupting device. The processing of interrupts is
described in chapter 6.

The flip-flop output (INT-Q1) is set high whenever an external interrupt (INTRA) or a stack-full signal (STFL) is true
simultaneously with the interrupt enable (INTEN) flag. INT-Q1 is wired to the interrupt input of the conditional jump
multiplexer. The interrupt processing microprogram resets the interrupt enable (INTEN) flag to zero to disable any
further interrupts, and control is transferred to the instruction stored in location 1 of main memory. The stack-full line
is also wired to the jump condition multiplexer to permit testing for stack-full interrupts. If STFL causes such an
interrupt, the bottom entry of the hardware stack is lost. In anticipation of this, the user can put a dummy word in the
stack during his program initialization sequences.

See 6.3 for an explanation of the CPINT (Control Panel Interrupt) function.

4.7 SYSTEM INITIALIZATION (Sheet 1, figure 4--6)

During startup, the IMP-16C is initialized so all the sequential logic is conditioned to known logic states. There are two
aspects to initialization: startup of the TTL logic and initialization of the CPU MOS/LSI devices.

The System Initialization circuit shows the startup logic required for the TTL clocks. When power comes on, the output
of flip-flop (INIT#*) is forced to a logic “0” (independent of th~ state of the SYSCLR* input) by the RC timing circuit.
Because this signal goes to the Clear inputs of all the other flip-flops in the clock-generator circuit, the system starts up
in a cleared condition. The system may also be cleared at any other time by grounding the SYSCLR¥* input.

When the System Clear signal (SYSCLR*) goes high, INIT* comes up after a delay of a few hundred milliseconds (time
constant R10C5). At this time, all the system clocks are enabled. For systems that do not have external initialization,
the SYSCLR* input should be left continuously at a logic “1.”

Startup for the MOS parts is achieved by controlling the application of the -12-volt supply. The CPU MOS/LSI
devices receive —12 volts from the SVGG (switched VGG) line. This voltage must be turned on a few milliseconds
before the clocks are started. During turn-off, the clocks are kept on for a few milliseconds after SVGG goes off. Th?
timing relationship between SVGG and the Power-On Condition (POC) signal in the System Initialization circuit is
shown in figure 4—4.

Figure 4-5 is a recommended circuit that may be used to effect system reinitialization to clear the CPU MOS/LSI
devices without shutting down other circuits on the IMP-16 card. This circuit is not on earlier versions of the IMP-16C
card and would have to be user-supplied and connected to the SVGG terminal pin (sheet 2, figure 4—6). All IMP-16C
cards with ihe pari number 5511962 have the iniiialization circuit on board.

If a special reinitialization circuit, such as discussed above, is not supplied, the SVGG pins on the IMP-16C card-edge
connector should be connected to the —12-volt supply. With this latter setup, reinitialization is effected by turning off
power to the IMP-16C for at least 5 seconds and then turning it on again.

4-6

STARTUP RE-INITIALIZATION

L |

SYSCLR*
0

15V

SVGG 0

-12v

ta—Ton—mj — TorF teg—

POC

INIT*

0 | S

Ton = 20 ms (MINIMUM; Togpe = 5 microcycles (MINIMUM)

NS00132
Figure 4-4. System Startup Timing
+5V
5.1K
TO SYSCLR* j"g
+5V 2N2222A OR
EQUIVALENT

- SYSTEM INITIALIZE
! ¢ SWITCH (DEBOUNCED)

NOTE: BY TYING THE SYSCLR* PIN ON THE IMP-16C CARD TO A “SYSTEM INITIALIZE” BUTTON, THE SAME SIGNAL
CAN BE USED TO CONTROL THE SWITCHED -12V (SVGG) FOR THE MOS/LSI DEVICES ON THE IMP-16C CARD.
IN THIS CASE, IT IS REQUIRED THAT SYSCLR* BE LOW WHEN POWER IS APPLIED.

-12v

NS00133
Figure 4-5. Circuit for Powering Up CPU MOS/LSI Devices

4-7/8

RDM RDM -

SHT2-Am >
MEMCYC [T T T Emewe —g-a—z_ a—— - _—l -
Il I 7
A WD L lCLOC E— ol I .y R MEMORY TIMING I;OGI(':'
K —
o T STRETCHER oa A SBe , : Z}1a3g) ™) Me
o wa . +5v - -
- | 3 Q RCLK | HEM : £ I: 939 3
74
| | | Y p
B I lard Q)2 T QR o P Q,s— | | Ll
124 l BA 8A 782 WRP
: 74H13 1413 T4H74 l I
REFRESH LOGIC | e Y HOLD | e
— | FOR DYNAMIC MEMORY OPTION B |
_——— — — — 3 | s P RDM &5
cas -) TUMPER I Kar § Kgg Q P en 8 | LDAR ' 6)4A> 4
C we<a EXHOLD - > 7 b— ! 12 F mo=D ! l |— z
113 EXEC - - ' s CLk R T
SYSTEM INITIALIZATION T ey _| ‘ | PIANG |
O+5BV o I_ (ks 4 _J | e o —
R2G | -, — —_ —— — A A4 f INTERRUPT HANI
c45 I
1 -
D) l » EXEC - Exec
19 I
INITX
[} S 1
—inmzq ;14 i T.' - . FLGCLRX - |
_— 74H14 N cPwT
INIT% | - INIT % - |
1 8 T g INTRA = INTRA
E ey % - - SYSCLRBEX > I
' RDM
_— ?cug A | INTeTL N I
i - - oL - oK
) _I WRP o Y 13 "
_—— = . = T Y LDAR - »2
sirage STE - A sTF o o I STF
S - —
N8 FSRINT . < PiNT
suTz-Be— 2 M - M > _—— — —
srza—E3 - = > >
?uf:ii: LDAR -~ étKKak ~
32<F T2 \ - - - - - - 0 — _— _—___—"_———=
cl 4-PHASE CLOCK GENERATOR - <2z
G +$ 3BUF Ak) > 7%
. | caILD] cels
% G:l INTRA - @ - o cal
| MASTER CLOCK GENERATOR. —— — — | I
A Qe
l 1 Ria | INIT * I ceTx
H 47—-1% 10F I [§ 1%
| 29eF SR2s |5.7143 +5v 9 GR CKeglld
2.2k MHz R RIZ 4 oall® cal
" — 2l2, o® | x as
T I 1A 5| DMT4195 |14 c23
omigiie |, I o TPS
I | WBD
16 [p 2N42SBA I 8123 7 AIE] cas
I | A . 3,
—/ A AAA
c RI3 R14 RIS l N QD 1z cér
| Tt 339 220 1pd :
; CLK % l
-
| CLK I [} —
J |_ _—,— — o e e — —— _JI cas - -
L —

NOTE: INFORMATION ON THIS DIAGRAM IS SUBJECT TO CHANGE WITHOUT NOTICE.
ENGINEERING DIAGRAMS SUPPLIED WITH IMP-16C SHOULD BE REFERENCED.

RDM

MEMCYC - [T TMEMeve e T T — —
- 762\ 8 MEMORY TI Loec ~— T — — —
HLD | 1@hang RDM Y MlNl(j5 LOGIC
e CLOCK_PHASE —4 | > SeN
_] I STRETCHER A e I 12)143 MEMEYC | A
! HLD 1 ‘ 1 B]
o wa +5v < -
| i e 3 HOLK | NRM : 2r5EN 3 I WRMP —
! } T 120
Ll ! WEMP— 12
SHT4-A
w5 | | u l St I ! 4 TB2\6 <& 4 9 |
4 4
14 |
|| et i) o L <2 e N o s e B
BA s% 7A2 WRP ! g ;—Dss
74K 163 144193 74H4
aHp REFRESH LOGIC | - Y wouol I cae '
FOR DYNAMIC MEMORY OPTION TH \ 3 | = 3-33 —
I 3 13 8 ! {us —>3¢
- - - —— JUMPER K ! o E RDM 5
cas I - S22 T CLkz-t Kc‘_géw Pein § | LBAR I j6:4A; 4 | MEMAD® _ oo
> > 4 I i I HOLD ! | L L Y |
o ! L o CLK _—'_—‘_—_———as—_ C
> > > Y
————-—-——————————-———‘ I 5 6 | - FLGCLRY cror
" ey |_ A ! A lunppf - INIT* e
R2G | can S I NN [[INTERRUPT HANDLER — R
e - I | sTFL T 2-D
4 | - EXEC > EXELC - [o D
1 '
R22 RI2] Uglp P 2 8N ! | CPINT ,
CRrRI b 1 o LG CL |
FAROHBY N 23°¢ 7A2 127, — > F-QCLRX - | S5 _ape | conr-q) SHT 2D
74H74 P -
El > S PINT 71 8F -
46 X ” ~ | INIT% 1 . . WIT X > | o EXEC 7415: 3 | starT-a! =SHTZD
Sjungs) 0 1o B - INTRA - INTRA 2 m5Na PEAG 2l]
o i cir fm > SYSCLEDx ! s = sl 1 roma
ce Q - SHT3-T
,L-_.,Qgg_cﬁsv 10K = 15guf| POC })\ l TeTL I RDM RDM 3D CP* ' E
<LK . > 4! }13
Y 1K — - cL - l Sk Le=8 | eww oourer
SYscLRER ' _J WRP 13 A ENT 1 —
-_— > B2\ 11 13
A LOAR - I 2 he z ?c 3 | wreer ST 2-C
> STE - STF |
- < PINT I F
> WRM — e e .
- =) - - SYSCLR®BH _ _ra s
> CLK % _ CLK % —
— > CLK >~ SLK g :g
_IT ' 4-PHASE CLOCK GENERATOR e e c23
+T =a3uF Ad 4 =S] % T HTEA
. * [HToE
can | =1k) L caunz 1 2D o
. ‘ g} cal) Q1 %:.%%
FER CLOCK GENERATOR | v | .
A4 | cQée 9K
1 INIT * L et cal fEV -2y 4 |
I !l \0 ,30?(v
ey o[R ckgglu e |3 | H
QDp— s . PH1
RIZ 4) c8l —\VV - SHT3-A
2 I < 48 N =81 hey |
A 5[oMT4(98 qglid cz3a 2 MH@P 26 ; s ' o
DMIgI16 I o TPS AN & SHT3-A
RI |
| cees i L C? cas B N I PHS
A VWA & SHT3-
AAA 1 3 2 sSB2 R"; ' B
I 7—@ 2 12 ca7 MHPP 26 s l
’° i WA PHY sura-B
CLK % | 3 © 'lz; ' ——
-2V +5v ‘ I
CLK I L] :%ﬁ
—— e o —— — T can - - , | cas ,SHT,,.JJ
R g7
10K |
| I
Y |

)N ON THIS DIAGRAM IS SUBJECT TO CHANGE WITHOUT NOTICE.
|G DIAGRAMS SUPPLIED WITH IMP-16C SHOULD BE REFERENCED.

Figure 4—6. IMP-16C Schematic Diagram
(sheet 1 of 4)

4-9/10

CQI

mNDIﬂONAL JUMP_ MULTIPLEXER AND CONTROL FLAG LOGIC

NOTE:

SHT | -Ge {782\ 3 =)
A SHT 1-G > ce3 I ']3_55’ pe— =oTi-F A
> 2 — — — —
NELEN | i~ 2 Z I CONTROL FLAGS]
SHT3-A» AT 11 \
| TAHBa | 12hues) | i RDM I
JFASS - JEADD |] WRM ToTIA L
| N | | ! WRP 'sm;:-‘;
|] b
B l n’ 18 2.= 2 | — ! |
T4HPB4 g [Jump MULTIPLEXEﬁ_I | 14
ceT | i3 4 | RDM
SHT |-J B &R E
| BT ' AL LIVEN. ¢ 4
| I | 1o | | B a2 ROP ISSTY
SUT I-F » INTRPT -1 a— oMo334 (7 WRP 122
4 : I | E) CPINP
SHT3-J—— MREQ @ I)= S leeop | 7}, ae | 13 [] svRsT >
T A BDO 15 | ?4 she | Boisx | & , oMBz12 ' I -y et 0] LDAR - TG
» Beraa —aq CLR 12 1 =
C SHT3-3 BD ¢¢ ' ? I ! 3 I 1 | -D 2 HLT * > 125 C
I l 3 2 h
SHT3-T o BD @! I | | 4 4 A '5| I 45V
| | reage | 3], 8 ke : |
— - I c k2 R4 —
SHT I-D CPINT - QI : : ' 3e o 1l I | 2K
SHT |-E» START -Q1 ' | | o7 w p2! I | NJCOND T 3A
23 =
D SHT 1-D» STFL | T | 8 | ! I
22 I l
| — 8o
SHT3-J crov | | 21 2 | I
| s | | , | _
I DISTR DISTR ' | l I
E ce? I ———%@6 I c7 ' 2g| | I I E
SUTI-) > | 743, I I l .
lee —ISZ : St gHe ! | —12 I Py LER L3N Ly I Fa
) JCi3 3 15 | I »dE C
— e | O o @ | | 13 | EC B Ag] INTEN {>{:‘f’ —
PP 2l, oma1s |2 24 I aF 3] SEL ‘:ESHT -
. | 2° senc g | I | bMo334 [7] Eil et
197 <3 D LATCH Q 15 —l % ! Flz 36
] 1 Fi3
F SHTI-G » c81z3 l | cBi23 L_ le— I Blo i] Flia g:;‘z F
e FLGCLR % 1 FLGCLR¥ | | i 15] 12 1 Fls
SHT1-C > I Ny I CLR _l — > 132
INTEN — Y
— 10 — — — — —|=[—=]—]—]
| I 2 pi 9 | JUMP/FLAG —l
b Q ADDRESS
G I - DMs':‘S‘M I |LaTCH | G
P>
ce7 9 —©
cQ! | \olaA \e e 3 l I 2 liz |7]a
SHT |-G > —{M4Hgs/ CLR 2135 2C 2B
T J TP4
_—] JFA @@ I |13 | | 3 ——© .
SHT 3-Bo I T T2)
| l I o omezez I v
&
SHT3-Am- JdFA O
H | I | 14 | H
oraAm_ IFA ®2 | | | 3 I
| I I i E 15
| I ! |
SHT3-Am- JFA @3 y =
| | pistr | 1 | DISTR SuT3A
} Lk I CLKBI %] 1 DISTR®] DISTR % :sm's-:r |
SHT I-E®> i A0\ 3 EINNK | U DISTR 57
SHT [-T B cal ! hang qauga | 5
CLK 81 o4

INFORMATION ON THIS DIAGRAM IS SUBJECT TO CHANGE WITHOUT NOTICE.

ENGINEERING DIAGRAMS SUPPLIED WITH IMP-16C SHOULD BE REFERENCED.

Figure 4—6. IMP-16C Schematic Diagram
(sheet 2 of 4)

4-11/12

SHTI-F o SRECLRB ¥ RE“,&?‘”’ ICENTRAL PROCESSING UNIT (CPU) S » —_———3 _ﬁ“ﬁ ——IZ—-EV_L sur Q;E)couo 5“;
FLAG 12 O FLAG ¢ ‘SVGG 7 D g;(7)
NC B () NC B (g) CROMI DI{e) g3
NCB (2) NCB (2) o) e 2
NCB (1) aecB(h) IMP-1@A/ a@ 5
NCRB (3) NC B(3) 521 T3 e L
2]
gu 3 '::' S m@I g}")"@
wn
Suri-1—EH 3 ﬁﬁi z: = i 3 § o1(®)
T cSns T CsSHS

ez SV +5V CRS 4+gy CSH3 ez |2 e

INA4S4 Ouse 272%' 2]21]18 »9{295 T (23] 1 |2 1 IB‘B 26 IN4454 2'223‘1 2 2l‘rs*|ez

204215 14 __CSH3 | Yia CSHE
= zv.:-l! S GE CBHO

caH3 o sel s e T I

RALU 4 = s
RALU A =3 NGB 24
imP-oosy 526" IMP-OON/EZ D IMP-OOA/BL3

iz IS5 IMP-COA/B23 2
(%)
STl ol AN csHol4 sTRL A S5 A\ cmmo ! SlareL A s
BINREQD £ oy _ BluwEa e Olnreag vLL

. % _q
)] SINIM 71475717 224919 ISIHIM TATSTIT 113 19 3 1347 4715717 19 SININ
T

")
uF
C l SEL 13| 7]4]5(17]2d)
5\/56 — e | c—— — — — ———— c— | b e | — e — ——— —— | — __—-—sEL ——— et— e ——— SP——— S T — ———— ——— —

12 <= = NREGO® NREQ® NREQ®
MDO 2 NATT 5l SVRST
MDO &2 MULTIPLEXER i =

SVGG VGG A
MDO 2%
SH‘T‘.F.—Q"I '_]I
ap 2008 3 5]z

STF STFE STF
DATA BUFFER 800 B
Sw 1a
19 6G 4
41 QMoo 2l 3. DMBI23

D 84 =W &I 2] (4 BITS)

Joloi

NJCOND

YR Y

23}1 |2]|21li8|10]2
B ElEIS
: 1E|
JUMP FLAG
ADDRESS
DISTR ¥ BUFFER
DMB@9%

2%0‘5]4

i e B R 3B B B A B S

Fe——————

2
56\3 BDO @1
ooyt

"‘]I’“\agg il 800 2|
1218‘;5\“1 500 ¢3
2.

ined
i

E
swrz-Fe—oet 1 B
SHT4-6 » ?
E 4es MDO 75

SHTAF

DISTR % DISTR %
L 5G\7 : BDO f4

{S6\s BDO @5
ooy

SF\2 BDO &)
iz

@W\n BDO @7

Y

|
1
1
|
:
|
MDO @3 g :
|
1
|
[
|
L

6F1 |12
DM 8123
(4 BITS)

w|w{nje| Ajwi= B

SVRST % LIS

L SF\3 BDO @8

S @
SF\S BDO g9

[_Jeoes :

]
J@II BDO |
qaaﬁlf_'a 8D0 11

CYoVv % LIS crov
> [ol=15)

G sSw_ o8 2
°9¢ <3 MDO 79 eF2 |2

)y 13
87 <l3w g9 4 &Mgl'.rzsa)

Y

—— — e —— —— — . —— —] c— —— —g——— ——— 1+
o0
©
1]

&

Lom
U

~

m

Q

o]

N

\

95 <4 aFd =)
MDO 13 I
77 G 5w s L (D4M§.lrzs§

BD0 13

n
J
u

1]
o
w

BDO 14

— | w—— | — —— C— Ca— T NS . SE— S— S—

1¢8<3
e e

— =

R
U
) —_—— e — = 5
SHT 1-E o ROM-QL = TIBER 9

8p < Beeti o ()63 (574 §RE Pee U= o7 ()27 (Je3 ogs d)se Oss OGI e U5s Ue¢ Yo Ny ! ey
e oS L S R "o #s ¢8 g7 _ge $5 ¢4 $3 P2 @B\ @B, |sT eofs ¥ BDOI12 131415

BDO sDO STF

3 BDO I8

e
-

|
|
I
|
I
—— —— —— — | — —— —-’-— — e e s e e i | e s i e e e e — e e | e ———-I

N -
-
w
L PR

y

NOTE: INFORMATION ON THIS DIAGRAM IS SUBJECT TO CHANGE WITHOUT NOTICE.
ENGINEERING DIAGRAMS SUPPLIED WITH IMP-16C SHOULD BE REFERENCED.

————_—‘—__—————'___—__'_'—_——'?;‘ ﬁﬁ—_-l"—gv—l ST 2-0O SuT2-T

22 I 2 53 yNICOND yoieTR NFLEN
- 2-A
FLAG @ NEG I 1 BDO 15 o ot 2
R3® IK | NCB (@))) 28] CROMI DIEB E JT SHT 2-C
% | I NEB) Bl N en/ 353 s JFA &3
3e3a NCB (D)) 7 1(3) b L TFA G >SN T
Sl A\, g}”"!g ! IEA QI o oTlH
—_— — 1 T - > SHT 2-H
R A ——— S
= VLL 1
] —_— —
+5V | csus |22 [@ é;a | YN Y | = - DM 74564 l@gauﬂ-“cwn -
2 22]23] 1 |2 j21)18{ 18 22731 |2 [21]18]i0)
[z l2nBls o8 A THJ'S i Lel2p 71,/55) i“ollg cond | | —2lulziels | 2 l| = : B
& s o2 GE TE| Bl
RALD 4 = s R CH3 pALUD - '¢5‘V‘;: JUMP FLAG I Z = ail 2 St | deso
" - \GS 24 | ADDRESS -] IMPR-1@a, WITH
14 SlateL sTRL | DMB@9% 800 ed] Slora SHOW
HO cgHo 2 13,
cs % 1) __Blureag A v —CINREQQ® & VLY 1 vy ; | BDO 25 dlhr(e) |
S —l . 37 s | | “ | BDO L) __l
g) 1% Y LY N £ 1 e D L W T S L4) AL (- MR S B Lo £ U e S L 5 | T ke T e O
‘;\R,ER%QT S— NREQ® NREQ®@ ———— —-AD%.)gEEg II ADX @2 SHT4T
NGOG A LA ADX @1 P
= | ris Daoces 700 4E° YSEENS
o—t 1 — mﬁUFF_ER_ TTrTr " - ,——1"5‘5__9' BDO B 1 14 al® | AoX @@ \D 3D HOCSH (22
% l :: Bgo5 [DMBB GS . X = A—DKS) LOCSH (21
1 5-DI& NCB@)
l = Wi ;%\3' 800 B1 l 3 (asreyalt I Ax 81—, D 2%ove NeaES
Ml @ | | : cP I ¢ I 8|E3> NCBED 18
{56\13 BDO 2] | 5 ADX @2 — DIy NCB(3)—17
HL 8¢9 ' | @ | 23 9-{DI) di 16
1|l I " 6 | ADX & 1 10-{DI 315
1 LT _ 25 I IHENCTL o514
I | {7 q%‘-’j T] _— CL&@ 1 L% 27 —>snvand 12— G5HVSS 87113
QoIS N
) I s | ors [] _ |“aoxes iy CROM
| DISTR % - DISTR ¥ i > | S yid ADX B4 ;H::'_I y
I o 14 ul IMP-164/521
' v—crﬁa\v : BDO @4 . | o2 ADX Q4 =25
L [2) BAOS/ | an 1
|l a l [| | =] oMBSS |, | aox gs -] A
i 56\ BDO ¢5|] 1 (4 BITS)aQ) > 28
I | Emg i | Uep I TYP CROMIORIT
)
BDO 6| 12 -~ , ADX de
. e J i > F
! : lz,__5F I 800 47 ! I 1 cu.gle I ADX @7 o
< | % 1L,1S l | loos T ¥2 - I
I l SVRST I | a2t 1 | ADX @8 SHT4-T ‘J;Gs VGG(-I%VJ—24
= —J1 523
+—dSF\3 BDO @8 . R 3 ADX @8 |, 3 ISTRL 67022
! Ir 7‘1@ 1] TG l G 4—{DATA® NCB(@)—21
H = | i3] PMBSSI |4 ADX @9 5| DATACI) NCB(3)-20
T B poo o } + (4 BITS)s o 6-{NREQD NCB(D|-19
L1 2 | 1 deo cLR Y | s 7—{DATAG3) NC B(é)—ls
g 800 1P e S . _ADX | —1 8—GNDVLL DATA@-17
H @u |) i o ug S—ISVRST FLAG 16
| [' 0 _ | " “ 1 10—{SININ CYOV-I5
1 "~ eges {SEye BoO It ! | ale 1' AD ~> 16 11—CSH3 CSHO-14
| | 47 o0 | | T H| 12—¢5vss SELECT|-I3
4 1S 4o0 l
i crov ; _ crov _ ools ' . RALU -4
| | 95 800 12 1 [al2 i ADXIZ i — IMP-004/520
B8P TF2 CLR
) 4J \ I [;3| DM B855I v A
I {SENS BDO 13 \ (4 BITS)g|4] ADx13 g
' »—cj_§¢_3§’ I] Zee | I TYR 5D,6C,eDEGE
l i ::'Ia_if’jm P]l i % afs = AOX M s
H 1 1 |
1 SEN3 BDO IS . | (=] ADX 1S
Z|a¢9%}) = | by 1 1V aox s 16—
4 l_]] I S oDiS, T L t » SHT4-T
1 e e e — : 023
cas MEMAD
670 063 (514 075 Ues 013 ()57 027 ()63 U@s Ose =2 Uen an Uss Uésb TYYVYY ,Aa{, TVYY vYy v o) J
I R4 M 5% M 5 g &s 27 do p5 @a g3 B2 @\ @B | PIREKEKIEERI BDOIZ 31415 g.7i.y SHTI-C NREQD .o
> —_ =55 DO STF 2T »SHT 1-F
crov > SHT2-D
IS SUBJECT TO CHANGE WITHOUT NOTICE.
D WITH IMP-16C SHOULD BE REFERENCED. Figure 4—6. IMP-16C Schematic Diagram

(sheet 3 of 4}

4-13/14

csl B4 |
cs2 1 11
: 3’;’G <52 ‘ T |
A (1 Y \) | | A
_ WRMP (1 WRMP (4) SR
e ' <%2 c) : : yalals -y . * s Ty |
5 e 5 1 -2 -12v
— 1800 ¢5 12 s el ADX BDO 11 12 7 ADX®® —
T 1(;2 SAT "””‘;ﬁ‘z N2 ;u; CS?\A;W ' | CE vu.cgb o CEVLL sz 1o :
35 AD \ 9 ADX
oo g5 3lumiigial A2 ADXA3) (M08 11 13uiniig A ST X@AQ;\ L 4c % 4D % |
8 : e e ARSI L e wisagy | 8
a3 ADX GG) ORrR
vssmvoo:‘;.}_wg\ |1 aoxas 3 IMMP212 |4 wpops ‘ aoxdp 3 |MMBLIZ 14 onge |
I | ETATE SOXCE Spla B |0 B8 Pl EN g {3 MDOBE]
15y o rev [514] | | (Aoxé 201y, 821> MD0 9 ADKBL o T 5o| 5 M0 3 |
| ZEOF [(ADXIZ ()]s 53| © MDO10) (ADKIZ | 12 e m0id) |
| 'r,s fic | ADXE3 21 O g4l 7 MDO 1) AR ZI pa 7 MO0 11
C BDO P4 12/ =W CSM'Z_A% \BDO & 12 ‘ | I 'ADX 63 zg' AS ps8 Moo 2 ADRIE 20, AS gs| 8 MDA 12 | C
11 1EL Al f"ﬁ%’; 5 AL I ADXES (9. Ac B9 MDO I3 ADKgS 191 2 MBO13Y |
1MDO 34 13| MMIBIAI AZj —m s LI MDO (F 13|MMIIBIAL A“J—Qz\,, | /~,66_,’Amtxa' A7 g7 @ MD0 14 | ADMe 1] gyl 1@ MO0 14
(2peers BI%e A % BuBel & ADXP4 | | [A0%67 17| g gg|1 L MDOTS) ADROT T] ol ag oy |
— | BITs) L1 ADX@AS \ BITS) olel ADXPS I | \ | -]
¥ > ADX Abe 3 ADX PO 254-BY- |
: 55 VD WDATfe2 '\Dﬁ Y5 V0vpo ATleZ ADXOT) 1] (e-g'm (Qg’fg%:) |
D +5V°_IS [als wzgp +5V°_‘]S lale WEME. WRME I |
' vs i =EZ s fie ==2 I |
3 | 3 vss_#c VSS K :
= 80015 Is00 ¢3 22w S hslel ADXA0 \EDO #9 12 \BD0 15 2~ caslel 20XES | ! Z[Z[R]is S I
(~sooia] |! 2F - Mlee Agxlé'i" A 1ot 3C %5 aoxgz | ! o |1
NEEEN | IMDO #3 i3jMmiigial ﬁf Il ADX@3 _MDO ¢9 13IMMmIBIAI g‘——\n ADX | Imbo 15 3 mMigiA L A4 ADR B3 | +5v ey
50612 I (50BY4 ra|w@ ADX (05aBY pqlqS ADX (21508 palee ADXOA) i |
E A BITS) AS ADX@S BITS) polel ADX BT g ADXDS | |
=200 4 1 Aila2 ADXEE e ADXOE) hela3 ADXE6) | !
,ggg:ﬁg g VSS VD yop AT a2 ADXBT) V55 VD vop A7laZ ADXE7) 155 YD VDD A7|g 2 ADXGT I i !
e |5 |4 lg 5148 8
—suT37 BDOYE J l +5v]g%p* -t-SVo——J 144 WED +5V 514 | L L l
BDOF7T /4 || 5 fiE ‘5 = (=5 1] % i I s 0
i |
»BD0de 2 ADX I
B g) I1BDO B2 2 pw <= g ;’6 Ang? |BDO #8 21 pw—cshg l‘l AD? 5? ~ 300 14 12 I I |
F > B00 | R NS ADXEZ 101 Alef AR ST c M | I I
*_&./BDO = o g2 13 Mmu¢|uﬁ T ADaS L MDO ¢8 13jmmigiar J21%T 5 Sx a2 MDO 14 13[MMIBIA 2; 1 cse
(eeceys ‘ol56 ADRGA (156871 pglee ADXDA (2sRH | |
BDO g2 l Birs) 1T ADX BiTS) Ad 1 BITS) 4 i
|| || s st i ¥ == 2| |
k: BDO @& J vssvomﬁ.lz ADXPT VSS VD YpDAT b 2 ARXBT VS ¥DvDD A7) | | (a3 |-V f[ufi3 T-2v | |
|+5v |s]4]8 +SV S 4.|8 - +5v |5 (48 — | | CE VL’IDQ; 16 CE VLLVA:?JIQ |
G | s fe oo ' = T Ly 4e % qF % !
- 5
| 1800 ¢ 2iSble 7 anxgs B0 &7 2 reha 7 ADXg® BDO 12 R eaipte? ADKES I ‘ |
n 7 N“.lg ADX%\ S = % Ca [z ADxg! " (er M EBADIGL | MP\AE?.(B MMS2¢3 |
_— ADYX 9_ADX p2le ADXDZ —
LI MD0 @1 13|MmifiaL MR aeas MDO @7 |3 MMI1¢IAIA1‘ T ADXBS MD4 13 13]MMIfLIAl T ADXDS i MMBZ12 MMB21% |
[(¢seen e Ay (25581 palae ADXO3 (t5e2 [[36 ADXGa | b e A aro(r BIESEE] |
A XP5 R el ADXGS L n2 B2 | AKEL 2l p2 7 o
ASfe A
H I s ADXEE) PV BEYTV e ADX06) | [ADK2 1,3 g3f@ MOOGZ/ (Aoxge Lly, gle MO | H
I V35 VDUpp AT Z A o= \ VS5 OVDD Agle 2 ADXET esWuop A7faZ ADXET) | :gxmuz!, A pa7_MD083 / 3:»@4 —-:"D:g:g VIR PR
4.8 S|14]8 514]8 26, 18 MDO@S /
|+ng_!5|_;ng PRSIV LD - N— +svo—Jsla[8 : | [lhe gg%.ma X0 [CT Y
— ' iis C— = A vy IR NN Ly MDo 66 (ADxfoig |y gploMiode s | —
ADX GG 1800 80 127 r:gial \BDO ¢& |2 BDO 12 12 w5 ok I’:g:g‘@ [U ADXE7 17,148 pall L MBOOT) ARBTI7 L e pglli MDORT |
SHTED | 1Pl lea anxes o It A% Aoxgz < (25c-e- P |
| swrac \JmDo 6 13|umigial 2T A DXBS) _MD0 @& |3|MMIdIAI | (LMDO 12 13]mmigiai 22T ABXGS 1l &BiTS) &
SHT2-C I (Bemet plee AOXGS (2508¥4 gl (15e8v1 halee ADx@da Y ||\ | &BTs) I
SWraC BT ofel ADXES BT el BITS) el ADX@S Y || W3) | [JUMPER |
SHTS-E ';" 3 ADXdG Allg2 ADX rcla3 ADXGH)
—— suT3-E N ¥SS ¥D VP AThe 2. \ssvwwm.Z_AQm\ VSSYOVDD A7le 2 ADX%‘T'\\ | | VSS MC VSS Mg | —
SHTE-E i+5vo—-ls 4] iy Om v5v o IS8 | EERs .., It G
SHTZ-E Y,
VDD (Hi#v) £ T | e S J
kSe I [- ¥ TH B
i ADXIS S N | =) --ie 2 DEVICE NSTSLPPLIED Wi CARD
S d T ADXES SOCKETS ON BOARD, J
NOTE: INFORMATION ON THIS DIAGRAM IS SUBJECT TO CHANGE WITHOUT NOTICE.
ENGINEERING DIAGRAMS SUPPLIED WITH IMP-16C SHOULD BE REFERENCED. Figure 4—6. IMP-16C Schematic Diagram

(sheet 4 of 4)

4-15/16

G MEMORY REFRESH REQUEST

y

@MP CONDITIONS

REFRESH LOGIC
(SHEET 1)

SYSTEM
CLEAR SYSTEM CLOCK CLOCK PHASE 4 HOLD JUMP CONDITION TIMING
SYSCLA] INITIALIZATION STRETCHER AND INPUT/OUTPUT
(SHEET 1) (SHEET 1) TIMING (SHEET 1)
[3
INITIALIZE
INITIALIZE HOLD ®
(INIT) JUMP CONDITION
« JFA 0-3 :
MASTER CLOCK < BITS 711~ $| CONTROL READ ©—p{ CONDITIONAL JUMP >
GENERATOR — BITS 12—-15 L CONTROL MULTIPLEXER AND *——>
(SHEET 1) ONLY MEMORY BUS (4 BITS) CONDITIONAL JumP
PH1, 3,5, AND 7 (CROM) (SHEET 2) FLAG ENABLE CONTROL FLAG 4 MULTIPLEXER
;) LOGIC (SHEET 1) * o] (SHEET 1)
>
4-PHASE CLOCK REGISTER, ARITH- |guemg) JUMP/FLAG
L)1 GENERATOR - P! METIC, AND LOGIC QEES E§,s JUMP/FLAG
(SHEET 1) UNIT (RALU) NO. 1 | JUMP/FLAG ADDRESS - —
(SHEET 2) BUFFER (SHEET 2) gﬂ%’é?f) LATCH) 4 >
1 STATUS BITS 7-11 P ey A
REGISTER, ARITH- |qeumg) FLAG > (SHEET 1)
METIC, AND LOGIC
PERIPHERAL Y UNIT (RALU) NO. 2 Py STATUS FLAGS R
DATA (16 BITS) (SHEET 2)
MEMORY DATA INPUT DATA BUS (16 BITS) BUFFERED DATA OUT (BDO) — 16 BITS
DATA BUFFER
(16 BITS) MULTIPLEXER > (SHEET 2} ——
(SHEET 2)
. REGISTER, ARITH. ADDRESS (16 BITS)
@—p——mmm>| \IETIC, AND LOGIC BITS 1215
TIMING @ @mmp| UNIT (RALU) NO. 3 .
(SHEET 2) ADDRESS LATCHES |
(SHEET 2)
REGISTER, ARITH- |l
P METIC. AND LOGIC l TIMING
M UNIT (RALU) NO. 4 MEMORY TIMING
(SHEET 2) HOLD HOLD _ ! LOGIC (SHEET 1)

INSTRUCTION BITS 12—-15

INSTRUCTION BITS 7—11

MEMORY DATA OUT (MDO) — 16 BITS

REFRESH LOGIC
(SHEET 1)

MEMORY REQUEST INITIATE

MEMORY CYCLE INITIATE

${] JUMPER
CONNECTABLE

»{] SIGNALS

CLOCK CLOCK PHASE 4 HOLD JUMP CONDITION TIMING
ATION STRETCHER AND INPUT/OUTPUT
(SHEET 1) TIMING (SHEET 1)
CLOCK AND OTHER TIMING SIGNALS
INITIALIZE
HOLD °
JUMP CONDITION
< JFA 0-3 > Jump
BITS 7-11- CONDITION
3LOCK ©——p| CONDITIONAL JUMP
OR (— BITS 1215 ﬁ PR v CONTROL MULTIPLEXER AND > conpiTionaL Jume
FLAG ENABLE CONTROL FLAG —» MULTIPLEXER
PH1, 3, 5, AND 7 {CROM) (SHEET 2) »| LoGIC (SHEET 1) i LT T
P>
LOCK REGISTER, ARITH- |dumag) i%“S’ZESL? ¢
OR L 4" METIC, AND LOGIC (JFAO—3) JUMP/FLAG
' — UNIT (RALU} NO. 1 4 JUMP/FLAG ADDRESS =) ADDRESS LATCH —
(SHEET 2) BUFFER (SHEET 2) (SHEET 1) | g
A » CONTROL FLAGS CONTROL FLAGS
STATUS BITS 7—11 (SHEET 1)
REGISTER, ARITH- |uumg) FLAG >
v | ¢~ METIC, AND LOGIC STATUS FLAGS R BUFFERED DATA OUT (BDO) — 16 BITS
@ @—————pp| UNIT (RALU) NO. 2 *
{SHEET 2)
ExXER DATA BUS (16 BITS) o[DATA BUFFER BUFFERED DATA OUT (BDO) — 16 BITS i N
2) {SHEET 2) ¢ MEMORY MEMORY DATA OUT (MDO) — 16 BITS
REGISTER, ARITH- ADDRESS (16 BITS) s (SHEET 3)
1| METIC, AND LOGIC BITS 12-15 2
“IMING Q@G UNIT (RALU) NO. 3
(SHEET 2) ! ADDRESS LATCHES & ADDRESS LINES (ADX) — 16 BITS
(SHEET 2)
| REGISTER, ARITH- e MEMORY
METIC, AND LOGIC TIMING CONTROL
ey UNIT (RALU) NO. 4 MEMORY TIMING SIGNALS
(SHEET 2) HOLD HOLD | LOGIC (SHEET 1)

INSTRUCTION BITS 12-15

Y

INSTRUCTION BITS 7—11

MEMORY DATA OUT (MDO) — 16 BITS

YARVARVLY

NOTE: SHEET NUMBER IN BOX REFERS TO
SHEET OF FIGURE 4-6 ON WHICH SUBJECT
UNIT IS DETAILED.

NS00137

Figure 4—7. IMP-16C Functional Block Diagram

4-17/18

Table 4—2. IMP-16C/200/300 Parts List

Item Description Reference Designation Part Number Quantity
Capacitors
1 Capacitor, 33uf, 20V Ci,C2,C11,C12 4
2 Capacitor, 300 pf, 300V C3,C4,C6 3
3 Capacitor, 0.01pf, SOV C5,C43 2
4 Capacitor, 0.1uf, SO0V C7,C10,C13-C42, 49
C44—C60
S Capacitor, 27 pf, 500V Cc8 1
6 Capacitor, 150 uf, 20V Cc9 1
Crystal
7 Crystal, 5.7142 MHz Y1 1
Diodes
8 Diode CR1 IN645 1
9 Diode CR2-CRS 1N4454 4
Resistors
10 Resistor, 15 ohms, 5%, 1/4W R1-R4 4
11 Resistor, 10K, +5%, 1/4W R5—R8, R23 5
12 Resistor, 5.1K, 5%, 1/4W R9-RI11,R27 4
13 Resistor, 1K, 5%, 1/4W R12, R20, R28—R30, 6
R26
14 Resistor, 330 ohms, £5%, 1/4W R13,R18 2
15 Resistor, 220 ohms, 5%, 1/4W R14, R19, R31 3
16 Resistor, 100 ohms, 5%, 1/4W R15,R17 2
17 Resistor, 39 ohms, 5%, 1/4W R16 1
18 Resistor, 300 ohms, 5%, 1/4W R21 i
19 Resistor, 120 ohms, +5%, 1/4W R22 1
20 Resistor, 2K, £5%, 1/4W R24 1
21 Resistor, 2.2K, 5%, 1/4W R25 1
Transistors
22 Transistor Q1,Q2 2N4258A 2
23 Transistor Q3,4 2N4275 2
24 Transistor Qs 2N2222A 1
25 Transistor Q6 2N3638 1
Integrated Circuits
26 MOS/LSI Register, Arithmetic, and Logic Unit (RALU) 5D, 6C, 6D, 6E IMP-16A/520 4
27 MOS/LSI Control Read-Only Memory (CROM) 7D IMP-16A/521 1
28 MOS/LSI Control Read-Only Memory (CROM) — Optional 7C IMP-16A/522 1
29 256-Bit Static Random Access Memory 1C1, 1C2, 2C, 3C, MMI101A1 16
1D1, 1D2, 2D, 3D,
2E, 3E, 1E1, 1E2,
2F, 3F, 1F1, 1F2
30 Electrically Programmable 2048-Bit Read-Only Memory (PROM) — Optional 4C, 4D, 4E, 4F MMS5203 4
31 TRISTATE®16-Line to 1-Line Multiplexer 8E DM8219 1
32 Schottky — Clamped Transistor-Transistor Logic AND-OR-INVERT 7B1 DM74S64 1
33 Schottky — Clamped Transistor-Transistor Logic Dual D Flip-Flop 3B DM74874 1
34 Schottky — Clamped Transistor-Transistor Logic Quad NAND Gate 1H DM74S00 1
35 TRI-STATE®Quad D Flip-Flop 3G, 4G, 7G, 7F2 DM8551 4
36 Quad Latch 8F,9G DM7475 1
37 Quad 2-Input Multiplexer TE2 DM9322 1
38 Dual D Edge-Triggered Flip-Flop 7A2 DM74H74 1
39 4-Bit Parallel-Access Shift Register 4B DM74195 1
40 & Bit Addressable Latch 8G, 9F DM9334 2
41 Dual JK Edge-Triggered Flip-Flop 8A SNH103 1
42 Quad 2-Input NAND Gate 7A1,9H DM74H00 2
43 Quad 2-Input OR Gate 6A,9C DM7432 2
44 Quad 2-Input NOR Gate 4A DM7402 1
45 Quad 2-Input AND Gate 3A,5A,7B2, 8D, DM74H08 6
9B, 9D
46 Hex Inverter 8C DM74H04 1
47 Hex Buffer SE, 5F, 5G, 7E1 DMB8095 4
48 TRI-STATE ® Quad 2-Input Multiplexer 6G, 6F1, 6F2, 7F1 DM8123 4
49 Triple Differential Line Receiver 1A DM10116 1
50 5 MHz 2-Phase MOS Clock Driver 5B1, 5B2 MHO0026CN 2

WliEJ MHO026CN (5B1 AND 5B2}

o o—R20-0
TP1 m
A T BA P Az | S 7AT | 3 6A £
? C57 8 8 C6 C5
c59 wsoR31é [SN74H103| ' IDM74H74N|O [DM74HO0 $Lomras2 || €6 CS
o © oTP2
=10 TP5 z ? " o'c53-09
] oTPa g C546- R11-0 C52| 5B2
RN 782 o f bo-RI0-0 &
B8 =|wa DM74HO8N S o
s g °
0 6C o—
N IMP-164/520 | O~
© 41 4 X6C ‘
2 | ovraaz | lonrarioanl® xic ¢ R3,
C c39|_DM7432 |3 |DM74H04N c42 i
&
c-R23-6
6-R22-0 F4
2 77 o2 T o e o o F
2| Ry [® & CcRs | IMP-16A/521 IMP-16A/520 [R5
&% S X7D X60D |
D ? 5l 44 "
c7 o
6 &8 CR4
o-R24-©
z 4 z 6E ®
E o § 8 /
DM8219N oo o3 IMP-16A/520
~s ™~ = X6E
a [eC
? T o 3
c22 c23 c24 C25 C26 c27
bR26 é & L w7
=g g
F b N m ~
P4
] — <] @ ™
> w5 o~ 8 T oo -
e 3 S RE [RE &2 & @
=} a =} o 0
|
G & Y cho 0?9 ’e L
é DM7475N iy 4 L DM8S51N DMBIZIN |9
23
H (=]
Q 9H
~\| DM74H00
FrTrrrrertrerrrrrrre i rrrerd
9 8 7 6
NOTES: (1} FOR DEVICES THAT ARE REMOVABLE, A LARGE DOT INDICATES THE LOCATION O

(2)
(3)
4)
(5)

ODD-NUMBERED PINS ARE LOCATED ON COMPONENT SIDE.
EVEN-NUMBERED PINS ARE LOCATED ON SOLDER SIDE.

PREFIX X DENOTES SOCKET.

LOCATIONS X4C, X4D, X4E, X4F AND X7C HAVE SOCKETS ONLY;
THESE COMPONENTS TO BE INSERTED BY CUSTOMER.

Table 4-2. IMP-16C/200/300 Parts List

Description Reference Designation Part Number Quantity
9 8 7 6 5 4 3 2 1
i 1
33uf, 20V C1,C2,Cl1,C12 4 W6 MHOG26CN (581 AND 5B82) we o0
300 pf, 300V C3,C4,C6 3 o o—R20-e @ 0-R17-0
0.014f, S0V C5.C43 2 TP1 5A an SA lcag O-R14—0¢5cg oTP3
Py ’ DM74HO8N #| bmM7402N | om74HO8N |, b
0.14f, 50V 7, €10, C13-C42, 49 9 ? ° ® s lcso
- $ 8A 72 | S[a1 | ea vy Ca9 9 Y
C44—C60 A 9 C58] c57 S 8 R7 | R304 é R18 A
27 pf, 500V c8 1 cs9 wsoR316 |SN74H103| 4" DM74H74NO | DM74HOO | G| DM7432 C6 C5 C3 ¢4 L l) R13 Y1 DM10116N ®
150 uf, 20V o 1. I I - ° ‘%, T2 . oa s d 021 4B 3B R25 b 037
) = 5 Z -0 7 6—R15-¢
5 oTP4 5 Cs4o RiTo 82| 582 | 581 T i DM74195N | |DM74S74N R19-6 °
8 8 Io 782 5 2 b o-R10-0 & R28T o-CR2-6 o-R16-o
S DM74HOSN s o—Rl1—o &Rzg ! = = = _ B
142 MHz Y1 1 = = 6C ®|o—R2— 4 TR27 < < < <
9 IMP-16A/520 o—R4 o R12L o5 o5 & Z",(55 —_—
J—'Y ° X6C Toq—RG—o .A, S I B = I R
o€ 1 b) s = s s
X7C
C ciol DM7432 | S [DM74HOaN c42 R3 Cas Xac oLz (L= S C
CRI IN645 1 [J, ® C44 C45
CR2-CRS 1N4454 4 2__2;223__2 > S ? ®) ?
) ca6
2?9 |a g 7 7D ° 6D o .09 crR3[Z z z z | —
8 ® F| crs | IMP-16A/521 IMP-16A/520 |ps |3 2 3 e |2 < < <
o I| CR1R21 - X IR9 23 as 85 5 S
D - A 3 | XD X6D | R x40 =l N2 |22 BE D
; ohms, £5%, 1/4W RI-R4 4 @ = ? 2 2 2 g
K, £5%, 1/4W R5—R8, R23 5 C37 38 q —=
IK, 5%, 1/4W R9-RI1, R27 4 CR4 c36° X Cx ?
{, £5%, 1/4W R12, R20, R28—R30, 6 o-R24 - I A c33
w3 E B 27 LB e @ z 2 3 (g g % E
I [Ted >
10 ohums, £5%, 1/4W R13, R18 2 DMB8219N o o -2 IMP-16A/520 - L N < < o & _Z
‘0 ohms, £5%, 1/4W R14, R19,R31 3 ~ UE’ ~ g X6E O ® X4E o 2 w =4 w o W ot
10 ohms, +5%, 1/4W RIS, R17 2 L 2 2 ©C100 z S = = S
'ohms, 5%, 1/4W R16 1 ¢ ° 3 q s s s s
0 ohms, £5%, 1/4W R21 i c22 ¢25 o o
0 ohms, 5%, 1/4W R22 1 $R26 823 é: 2; W7e® 26 £27 0,028'0 eC29 cC30 Q
L £5%, 1/4W R24 1 F 5 P — c31 c32 F
XK, £5%, 1/4W R25 1 z z = z = z ®
0 — % « & [re) Y Z = =z =z
" g = ~ ~ 3 - N o ﬁ -~ W 8 = - — -
] s X] I o] Lo 5 & X4F g g ~ - Z
R s b3 s b = s L o L o w o L O
fa) (=] o [=) o = N = - = - =
__‘ = s s s
Q1,Q2 IN4258A 2 0 s = s s
3, IN4275 2 °
e G c21 3G ? Y76 G 2 5G 2 G 1R [36 P ? G
Qs 2N2222A 1 c20 clg s - — ci5 Cia
Q6 2N3638) é DM7475N iy DM8551N DM8123N | | DM8095N O | DMBSSIN [& | DM8S5IN p ® ?
b é 6 c13
o~ W3-g
it
g3
H z H
:gister, Arithmetic, and Logic Unit (RALU) 5D, 6C, 6D, 6E IMP-16A/520 4 © © o w1 - 1H
»trol Read-Only Memory (CROM) 7D IMP-16A/521 1 o W2 - LDM74500N
ntrol Read-Only Memory (CROM) — Optional 7C IMP-16A/522 1 % 9H : 6CB00
ic Random Access Memory 1C1, 1€2, 2, 3¢, MM1101Al 16 DM74H0Q 0 >
1D1, 1D2, 2D, 3D,
2E, 3E, 1E1, 1E2,
2F, 3F, IF1, 1F2
?rogrammable 2048-Bit Read-Only Memory (PROM) — Optional 4C, 4D, 4E, 4F MM5203 4
: | L
Clamped Transistor-Transistor Logic AND-OR-INVERT 7B1 DM74S64 1
Clamped Transistor-Transistor Logic Dual D Flip-Flop 3B DM74S74 1 Frrrrrrrrrrrrrrd rTrTrirrrrrnrernl FTeyrrtirrirTi FTrrrTri
gamped Transistor-Transistor Logic Quad NAND Gate 1H DM74S00 1
Quad D Flip-Flop 3G, 4G, 7G, TF2 DM8551 4
8F, 9G DM7475 1 9 8 7 6 5 4 3 2 1
t Multiplexer 7TE2 DM9322 1
-Triggered Flip-Flop 7A2 DM74H74 1
cgess Shift Register o oF Rt ! NOTES: (1) FOR DEVICES THAT ARE REMOVABLE, A LARGE DOT INDICATES THE LOCATION OF PIN 1. INFORMATION ON THIS DIAGRAM IS
e-Triggered Flip-Flop 8A SNH103 1 (2) ODD-NUMBERED PINS ARE LOCATED ON COMPONENT SIDE. SUBJECT TO CHANGE WITHOUT
t NAND Gate 7A1,9H DM74H00 2 (3) EVEN-NUMBERED PINS ARE LOCATED ON SOLDER SIDE. NOTICE. ENGINEERING DIAGRAMS
t OR Gate 6A,9C DM7432 2 (4) PREFIX X DENOTES SOCKET.
t NOR Gate 4A DM7402 1 (5) LOCATIONS X4C, X4D, X4E, X4F AND X7C HAVE SOCKETS ONLY:; SUPPLIED WITH IMP-16C SHOULD
t AND Gate 3A,5A, 7B2, 8D, DM74H08 6 THESE COMPONENTS TO BE INSERTED BY CUSTOMER. BE REFERENCED.
9B, 9D
8C DM74H04 1
SE, 5F, 5G, 7E1 DM8095 4
® Quad 2-Input Multiplexer 6G, 6F1, 6F2, 7F1 DM8123 4
ential Line Receiver 1A DMI10116 1 .
se MOS Clock Driver SBI, 5B2 MHO0026CN 2 Figure 4-8. IMP-16C Card, Component Layout

4-19/20

Chapterb
INPUT/OUTPUT OPERATIONS

5.1 INPUT/OUTPUT INSTRUCTIONS

Input/output operations are carried out with the RIN (Register In) and ROUT (Register Out) macroinstructions. Func-
tionally, they are similar to the LOAD and STORE instructions in that they address a particular device and initiate data
exchanges. The effective address of an input/output device is determined by the sum of the contents of Accumulator 3
(AC3) and the 7-bit control field of the RIN or ROUT instruction. Timing for these instructions is shown in figure 5—2.

w)] 11 1] 1) 176 |]13]12] |o
DEVICE
oP
TIONAL ADDRESS FIELD ADDRESS ORDER
N~ o

-~
Control field (ctl)

Figure 5—1. Input/Output Word Format

Sixteen bits are available for address and command codes. Although a number of schemes are possible, the one described
here has proved useful for many applications. The low-order 3 bits may be used to define an input/output “order,” and
bits 3 to 6 are the device addresses (figure 5—1). Each peripheral device decodes the address field of the input/output
instruction command, and if the Read Peripheral or the Write Peripheral flag is active, the device will respond. The 3
“order” bits permit eight possible auxiliary operations for each input/output class; for example, these orders may be
read data, read status, reset device, rewind tape, backspace, write data, and so on. The assignment of the various orders
is left to the systems programmer.

The 4 bits of the device address field permit direct addressing of 16 devices; however, by loading Accumulator 3 (which
is added to bits O to 6 of the instruction) with a 16-bit value before executing a RIN or ROUT instruction, up to
65,536 addresses may be specified.

5.2 DATA TRANSFER TO PERIPHERAL DEVICES

Peripheral device data may be accessed by the Read Peripheral and Write Peripheral control flags in conjunction with
the peripheral device address. Actual transfer of data is effected by the RIN and ROUT instructions during T7 (input)
and T4 (output), respectively (figure 2—4). Peripheral device control may be carried out.by using the order field of the
instruction (figure 5—1) or by dedicating a general-purpose control flag to a peripheral device control function, which
can then be controlled by use of the SFLG and PFLG instructions. Similarly, peripheral device status can be sensed by
issuing an order to read status over the data bus, or by dedicating one of the general-purpose user jump conditions to
this function and using the BOC instruction. (The control flags and jump condition inputs can actually be used to
implement a very low-cost serial-data interface without using the data bus at all.)

The functions performed as a result of an input/output command vary. For example, a read peripheral order to a
magnetic disc typically initiates a block transfer of information. In contrast, a similar order to a Teletype typically
executes the transfer of a single character.

The use of input/output instructions is best illustrated by an example. Consider the case of reading in characters from a
serial Teletype unit and transmitting them back immediately (echoing). The following program segment will do this
effectively. The first few comment lines define the input/output orders for the Teletype unit. It is assumed that the
Teletype is sending data serially over the line corresponding to bit 15.

Instruction Comment

; DEFINE 1/O ORDERS.

> 5 = RESET

; 2 = READ DATA

; 4 = ENABLE TTY PAPER TAPE READER
; 3 = WRITE DATA

TTYAD = TTY ADDRESS IN BIT 3-6
C1 = 1 (BRANCH IF ACO = 0)

START: LI 3, TTYAD LOAD AC3 WITH ADDRESS OF TTY.
ROUT 5§; RESET TELETYPE (ORDER FIELD = 5).
112, 8 SET COUNT FOR 8 BITS.
READ: ROUT 4; ENABLE TTY READER
RIN 2; READ IN TTY DATA
BOC C2, +2; TEST FOR START BIT; C2 REFERS TO AC0 = 0.
JUMP READ; READ DATA AGAIN (UNTIL START BIT FOUND).
JSR DELAY; START BIT FOUND; DELAY FOR PROPER TIMING.
INPUT: ROUT 3; SEND BIT TO PRINTER.
JSR DELAY; DELAY ROUTINE TO TIME OUT 1 BIT
RIN 2; READ TTY DATA.
SHR 0, 1; SHIFT DATA ONE POSITION.
AISZ 2, -1; TEST TO SEE IF DONE
JMP INPUT; NOT DONE; READ MORE DATA.
DELAY: . START OF DELAY SUBROUTINE
START OF INSTRUCTION START OF
NEXT INSTRUCTION
FETCH | I I |
g‘,%?_gs 1 I 2 I s 1T 4 | s | 6 | 7
RDM —I |
LDAR J L

ADX _>1<_ ________________________ L—

INSTRUCTION ADDRESS PERIPHERAL
DEVICE ADDRESS

RDP (FOR RIN)

or WRP (FOR ROUT) | l_

FOR ROUT, (ACO)—BDO AT T4 —————]
(NOT TO SCALE) FOR RIN, SW—(ACO) AT T7 -

Figure 5—-2. Timing Sequence for RIN and ROUT Instructions

5-2

Chapter 6
INTERRUPT SYSTEM

The IMP-16C system recognizes one level of interrupt in its present configuration. A general interrupt request is initiated
by the Interrupt Request Signal (INTRA) to the Interrupt Handler (sheet 1, figure 4—6). Also provided is a control
panel interrupt input (CPINT). The workings of both types are described below.

6.1 GENERAL INTERRUPT

A peripheral device (or any external condition) may send an interrupt request to the IMP-16C over the INTRA line. If
the Interrupt Enable Flag is set (that is, no other interrupt currently being serviced), then the interrupt request is latched
in a flip-flop and awaits service. During the next instruction fetch cycle, the processor resets the Interrupt Enable Flag
(INTEN) and transfers control to location 1 in main memory. At the same time, the PC value is saved on the stack.

The instruction in location 1 of main memory typically would be the start of an interrupt service routine or a jump toa
service routine. In the IMP-16C, the stack overflow condition causes an interrupt on the same line. The interrupt service
routine can detect this type of interrupt by using a Branch-On Condition (BOC) instruction with cc = 8 (stack full).
The interrupt sequence is best illustrated by an example.

6.2 EXAMPLE OF INTERRUPT REQUEST AND SERVICE

The case considered here is that of a real-time clock that provides interval timing by sending timed interrupts to the
processor. The hardware for this feature would consist of a presettable counter that raises a status signal after it has
counted through its sequence. This signal can be used as an interrupt request.

As an example of the use of this timer, consider an application where it is desired to sample a waveform at regular
intervals. The real-time clock can be used to generate interrupts at these intervals, and a processing subroutine can read
the contents of an analog-to-digital converter driven by the waveform under test. The following program segment shows
how this can be done. The clock is assumed to use bit O on the data bus to signal its status. This signal is also wired to
the general interrupt request line. The interrupt status of the clock is read over bit O of the data bus by issuing a READ
STATUS order. (Note that other devices could use other bits of the data bus to respond to this order simultaneously.
The data bits may then be tested to determine devices that are requesting interrupt service.)

The first few lines of the program are comments that describe the various order codes and addresses assigned to the
real-time clock and the A/D converter. The remaining lines of the program segment perform operations according to the
requirements above; the comments serve to annotate the program.

Label Instruction Comment

H INTERRUPT SEQUENCE FOR REAL-TIME
H CLOCK AND WAVEFORM SAMPLER

5 RTC = ADDRESS OF REAL-TIME CLOCK
H ADC = ADDRESS OF A/D CONVERTER

H 2 = START CLOCK (I/O ORDER)
5 1 = READ DATA ORDER
H 0 = READ INTERRUPT STATUS ORDER

C3 = 3; CC FOR BIT 0 OF ACO = 1
H CLOCK INTERRUPT STATUS HAS BEEN ASSIGNED BIT 0 ON BUS

LOC1: IMP INTR: THIS INSTRUCTION IS IN LOCATION X'0001
; MAIN PROGRAM FOLLOWS:
SFLG 1; ENABLE INTERRUPT SYSTEM
LI 3, RTC; LOAD AC3 WITH CLOCK ADDRESS
ROUT 2; START TIMER ON CLOCK

.

; SERVICE ROUTINE FOLLOWS:

INTR: LI 3, 0; CLEAR AC3 BEFORE EXECUTING RIN
RIN 0; READ DATA BUS TO CHECK INTERRUPTING DEVICE.

BOC C3, CLKINT; BRANCH TO CLOCK SERVICE IF BIT 0 = 1.

; CLOCK SERVICE ROUTINE FOLLOWS:

CLKINT: L1 3, RTC; LOAD AC3 WITH CLOCK ADDRESS
ROUT 2; RESTART TIMER
LI 3, ADC; LOAD ADDRESS OF A/D CONVERTER
RIN 1; READ ADC DATA.
JSR SAMPLE; GO TO DATA SAMPLE PROCESSING SUBROUTINE.

RTI H RETURN FROM INTERRUPT.
; CONTINUE PROCESSING OF OTHER INTERRUPTS.

SAMPLE: 3 START OF ROUTINE TO PROCESS DATA FROM A/D CONVERTER.

6.3 CONTROL PANEL INTERRUPT

The IMP-16C microprogram allows a high-priority interrupt to be indicated on the CPINT line. Since this interrupt is
useful for implementing a “program-controlled” control panel, it is called the Control Panel Interrupt; it may, of
course, be used for other purposes. If CPINT is active, the processor pulses flag CPINP, reads the data bus at T7 of
the same microcycle, and responds as if the data were an instruction. The CPINT input, therefore, can be used to force
a jump to some reserved location by “jamming” an instruction on the data lines. This may be used to cause a branch to
a control panel service routine or to provide vectored interrupts. By forcing the bus to send in all zeros, the CPINT
feature may be used to incorporate a single-step feature, by causing the CPU to halt after the execution of one
instruction.

6-—-2

6.4 MULTILEVEL INTERRUPTS

It is possible to use the IMP-16C for multilevel interrupt service by use of the RALU general-purpose status flags. Two
of these (FLAGO and FLAG12) are available at the card-edge connectors for this purpose (or other applications where
it is desirable to save status). These flags may be used as interrupt enable flags for two individual levels; they can be
modified through use of the PUSHF, PULLF, PULL, and PUSH instructions. A typical arrangement that makes use
of the available INTRA input is shown in figure 6—1. (The general-purpose control flags could also be used for this
purpose, but their state cannot readily be preserved on the stack as can the status flags.)

EXTERNAL LOGIC IMP-16C
INTREQ 1 INTEN 1
- > | <g—Fee
LEVEL 1

TO INT FLIP-FLOP

e |)

INTREQ 2
LEVEL 2 INTEN 2

>

< }——FLAG 12

NS00139

Figure 6—-1. Use of INTRA Input

The processor responds to inputs on the interrupt request lines that are labeled INTREQ1 and INTREQ?2 in figure 6—1.
Several devices may be “wire-ORed” to each of these interrupt request lines. If any device generates an interrupt
request, the line will go high and interrupt the processor if that level of interrupt is enabled. There is a separate interrupt
enable flag for each of the two interrupt levels (labeled INTEN1 and INTEN2) and a master interrupt enable (labeled
INTEN) for all levels plus the stack overflow interrupt. The interrupt enable flags for each individual level are part of
the CPU status flags, and, as mentioned above, they can be modified by use of the PUSHF, PULLF, PULL, and PUSH
instructions. The INTEN flag is one of the IMP-16C control flags. It is modified by use of the Set Flag (SFLG) and the
Pulse Flag (PFLG) instructions.

The availability of several different interrupt levels provides a convenient means of controlling interrupts for devices of
different priority in a system with a number of peripherals. When only one interrupt request line is used, the interrupt
service program must issue an order to each device of lower priority than the one being serviced to reset the lower
priority interrupt enable flags on the peripheral controllers. This could be very time consuming in a system with many
peripherals. In a system with several interrupt levels, all devices of like priority are tied to the same interrupt request
line. For all devices on an individual level that have a common interrupt enable flag at the processor, the interrupt
enable flag can disable all devices on that level simultaneously. When an interrupt occurs, lower priority levels are
therefore disabled in a minimum amount of time.

The interrupt handling process is summarized by the following. When the processor responds to an interrupt request,
it performs the following tasks in order to transfer program control to the interrupt service routine:

® Checks the type of interrupt; if caused by CPINT, jumps to CPINT service routine.
® Transfers the contents of the Program Counter (PC) to the top of the stack.
® Places the address of memory location 1 into the PC.

6-3

e Disables (clears) the processor’s Interrupt Enable (INTEN) flag to prevent further interrupt.

e Fetches and executes the next instruction from memory location 1, thus initiating the interrupt
service routine.

The CPINT service routine does the following:

® Pulses the CPINP flag, thereby indicating that a control panel interrupt is active.

® Reads the data bus and treats the incoming data as an instruction to be executed.

6—4

Chapter?7
CONTROL PANEL AND 4K-BY-16 MEMORY

The IMP-16C is self-contained for controller applications. However, for some general-purpose applications, a control
panel may be needed or convenient to have for debugging, verifying operation, troubleshooting, and other operator-
controlled uses. Also, additional memory capacity may be required, and this is available in the National Semiconductor
4K-by-16 random access memory modules.

7.1 CONTROL PANEL OPERATION

The simplest control panel for use with the IMP-16C is one that is serviced by software and has a minimum of extra
components. Such a panel would consist of a set of 16 data switches, 16 indicator lights, and a few active function
switches. These are represented schematically in figure 7—1. The Light-Emitting Diode (LED) devices are driven by a set
of DM7475 latches that are strobed by a WRITE PERIPHERAL flag pulse; in this mode, the lights are considered to
be an output device.

The spare jump condition multiplexer inputs on the IMP-16C may be tied to active switches on the control panel. These
switches may be used for controlling operations such as Load Address, Load Data, Execute, Display Data, and others.

A software service routine that resides in main memory can scan these switches using the Branch-On Condition (BOC)
instruction. If any switch is active, an appropriate service action may be initiated. The following program segment is an
example of such a routine. It assumes that jump conditions 12, 13, and 7 are wired to switches that cause Load
Address, Load Data, and Execute operations to occur. This simple example assumes that there is no peripheral address
decoding; all input/output operations are activated by READ PERIPHERAL and WRITE PERIPHERAL control
flags as commanded by RIN and ROUT instructions.

C12 = 12 ; LOAD ADDRESS CONDITION.

C13 = 13 ; LOAD DATA CONDITION.

C7 =7 3 EXECUTE

=X"FFFE 3 ASSEMBLER DIRECTIVE TO PLACE NEXT INSTRUCTION
- ; AT LOCATION X’FFFE.

JMP BEGIN

Program continues on page 7—3.

T+5V

i P P l// # l// v l// 2N l// Wil

h 4 ¥ 16 LEDS

-
¢ *~—e
~——¢
4———0’" S > >
*-—9 300 300 §300 300 %300 300 §300 §300 ;300 §300 €300 §300 $300 §300 €300 §30!O
’ < < < < < < < < < <
*—é
—9¢
*—9
¢ —e
16 4———0/’ {
DATA *—
LINES 4_./’ LATCHES
*—9 DM7475
; *~—g¢ § —)
4——-0/‘ Q —
*—9 9 <_
'1—0/’ Q¢ ¢
4—0) ']
*—=9 6 ‘____..
Q—Q/r Ie] —
*—e¢ '6 ‘—-——
¢ _® ' o 2 16 DATA
o— "'__—I (LINES
k -
= a —
) Lo} —
a ¢
0 ¢ [
DM7404 |
TE a —
TO JC7 4———EXECU 9
o ——
DM7404 3 ¢)
Ed
— <

LOAD DM7404 WRITE
DATA PERIPHERAL
TO JC 13 ¢———— LOAD ADDRESS (AT T4)
= » TO JCc12 -

Figure 7—1. Control Panel Example ’ NS00140

BEGIN:

LA:

OUT:

The program above is an example of how the jump condition inputs can be used to scan external conditions and/or

requests.

BOC
BOC
BOC
JMP
BOC

RCPY
ROUT
IMP
BOC
RIN
ST
ROUT

JMP
HALT

RCPY
JMP

C12, LA ;
C13, LD ;
C7, EX ;
BEGIN ;
C12, LA ;

BEGIN ;
Ci13, LD ;

0, (2) ;

2,1 ;
BEGIN ;

C7, EX ;

0,2 ;
)] ;

7.2 DYNAMIC MEMORY INTERFACE

A circuit has been provided on the IMP-16C card to enable interfacing with the National Semiconductor 4K-by-16
dynamic memory modules. This circuit consists of logic that can receive memory refresh request and send out appro-
priate refresh orders and read/write cycle initiate signals. The refresh logic appears on the IMP-16C schematic diagram

(figure 4—6) but is repeated in simplified form in figure 7—2.

FROM CLOCK HOLD
CIRCUIT

|
Y HLD 1

WAIT LOOP TO
SCAN PANEL
FUNCTION SWITCHES.

SWITCH “DEBOUNCER”.
READ SWITCHES.

SAVE ADDRESS IN AC2.
DISPLAY ADDRESS.
RETURN TO WAIT LOOP.

READ SWITCHES.

STORE DATA IN ADDRESSED LOCATION.
DISPLAY DATA.

INCREMENT ADDRESS.

RETURN TO WAIT LOOP.

END OF ADDRESS RANGE.

READ SWITCHES.

JUMP TO STARTING ADDRESS.

{>o_

74H04

w4

RDM
WRM 7432
RFREQ

C45

|

74H08

Figure 7-2. Refresh Logic

7-3

TO
> ADD-ON
MEMORY
74H08 RFSH
W5
7/
NS00141

for Dynamic Memory

Publication Number 4200021C

The 4K-by-16 memory requires a refresh cycle of 1 us duration every 60 ps. The IMP-16C makes a memory reference
during every fetch operation and a few other times in-between, depending on the instruction being executed. If the
processor is busy during a read or write operation, the memory waits for a refresh cycle until the processor is free. The
refresh request signal (RFREQ) is gated into the circuitry at T4. If, at this time, a memory read/write is not requested,
an RFSH signal is sent to the memory; otherwise, a Memory Cycle Initiate (CI) signal is sent to memory. Timing for
memory read and write operations is given in figure 7—3.

The memory option is provided in the form of a jumper-connectable circuit. If used, jumper pads W4 and W5 may be
connected to any two of the unused pins on the edge connector of the IMP-16C.

If add-on memory is attached to the IMP-16C, the user must be aware that the added capacitive loading will low down

the memory access time. Typically, if more than 8K of additional memory is used, the clock periods must be stretched
to provide extra time. This may be done using the external hold input which is described in chapter 9.

T | T21 T3 | T4 lTa+1lta+2d s fte lT7 | T8 I TV | T2 | 13 |

RDM —[]

[X
ADX VR M

i tacces

DATA FROM
MEMORY

DISTR*
L

{a) READ CYCLE TIMING

Ti T2 |73 | T4 |15 |76 | T7 | T8|T1 | T2 T3] T4 |Ta+1|T4+2] 75 | T6 | T7 |

LDAR ——J —I

WRM I I._.__

I 4
ADX | e

DATA TO | |

MEMORY

Cl J I

(b) WRITE CYCLE TIMING

Figure 7—-3. Memory Timing Waveforms
74

Chapter8
SYSTEM VERIFICATION

8.1 INTRODUCTION

The IMP-16C is a large-scale integrated (LSI) processor consisting of several components from different logic families
and types. As such, the proper functioning of the IMP-16C is dependent on the interfacing and timing between the
various components. In order to facilitate hardware debugging, a brief system verification procedure is described in this
chapter to aid users in the understanding of the system.

For system verification, the IMP-16C may be divided into four distinct partitions:

® Timing and Clocks
MOS CPU Logic
Control Flags and Logic
® Data Buses

8.2 TIMING AND CLOCKS

When the system is started with the initialization sequence described in chapter 4, the system initialize signal (INIT*)
enables all the timing signals. The clocks start with phase 1 and generate all the other auxiliary timing signals. Figure
8—1 shows all the clock signals and their timing relationships. After it has been verified that the MOS clocks are being
generated properly, the MOS CPU logic can be checked out.

8.3 MOS CPU LOGIC

If the system is functioning properly, the CPU executes instructions stored in external memory or executes an instruc-
tion(s) from a switch register. In either case, if instructions are being executed, the CROM cycles through repeated
FETCH operations. By monitoring the CROM ENCTL line (see sheet 2, figure 4—6), this fact can be verified. The
ENCTL line is high between T2 and T7 of every cycle immediately preceding a fetch (except for multiple shift/rotate
operations). If the number of microcycles between successive ENCTL pulses is counted for each instruction and checked
against table A—1 in appendix A, then it can be assumed that at least most of the CROM circuits are functioning (see
figure 8-2).

If the system is being used with some form of control panel (as, for example, the one described in chapter 7), then the
RALU can be checked out by outputting register values to a set of display lights.

84 CONTROL FLAGS AND LOGIC

Another convenient test point for system verification is the Read Memory (RDM) flag. This flag is pulsed between T2
and T6 during every fetch operation. If operation of the CROM has been verified, then this flag should come up
properly (figure 8-2).

TMEPERIODS | T8 | T1 | T2 | T3 | T4 | Ta+1 | Ta+2| 15 | Te | T7 | T8 | T1 |

T
EXTENDED FOR

MEMORY ACCESS

R N | . — [1 [
can L I | 1 — L
s 1 1 L
c23 I I~
cas | |
c67 1
c3 N
cksr — 1 LT 1 LI L
sestR | L [
DISTR* | L
HCLK 11
HOLD g |
RDM/WRM 1 |
WRP3 1
NS00142

Figure 8—1. IMP-16C Clocks

+4

ENCTL

RDM I l | I
0
+5 , , — , , »
0
PH7
-12

Figure 8-2. Microcycle Timing Sequence for JSR Instruction

NS00143

8-2

8.5 DATA BUSES
The data buses can be checked out by the following:

® Reading in some switch values and seeing if they appear on the bus data output lines.

® Checking the address register to see if the data bus value is being latched during T4 when the RDM
flag is up.

8.6 DIAGNOSTIC PROGRAMS

The IMP-16C card may be checked out functionally with the use of special diagnostic programs stored in four electrically
programmable ROMs (or PROMs). They may be used for system verification by inserting them in the read-only memory
sockets in the card and observing the various status indications provided by the program. The diagnostic routines are
designed to exercise all parts of the CPU for proper operation. These programs are available as an option (IMP-16F/501).

8.7 OPERATING PROCEDURES
For the proper functioning of the IMP-16C in a system environment, the following points should be observed carefully.

(1) If any of the following signal lines to the IMP-16C is not used, it should be tied to a logic
“0” (ground) level:

(a) Any unused jump conditions (JC12 through JC15; EXEC)
(b) General interrupt line (INTRA)
{c) Control Panel interrupt line (CPINT)
(2) If the output-disable feature of the address bus is not used, the ODIS line should be tied to a
logic “0” (ground) level.

(3) An interrupt control input (INTCTL) is provided for externally enabling the interrupt system.
For normal operation, this line should be tied to the interrupt enable (INTEN) provided by the
CPU. If the system environment is such that the interrupt system is not used at all, the INTCTL
input should be tied to a logic “0.” '

(4) If slow memories are used (access times in excess of 850 ns), additional clock stretching must be
provided by the user (see chapter 9).

(5) On the IMP-16C/200 and 300 cards, the circuit that supplies the switched —12 volts (SVGG) is
part of the card itself; therefore, no external —12-volt SVGG should be connected to pins 11
and 12 of the card.

8-3/4

Chapter 9
USER OPTIONS

Several user-defined options are available on the basic IMP-16C card. These options pertain to system timing, bus
selection, and memory management; these are implemented by removable jumper connections on the IMP-16C/200 and
IMP-16C/300 cards.

9.1 EXTERNAL CLOCK HOLD

An external input (EXHOLD) is provided so the user may supply his own clock hold signal. If this input is used, jumper
W6 should be removed. When using this feature, care must be taken to synchronize the external signal with the timing
of the processor. This is done by making sure that the generated hold signal comes up in the middle of the time slot
preceding the phase being stretched. Similarly, at the end of the hold period, the signal must be released at least 50 ns
before the start of the next time slot. See figure 8—1 for this type of timing relationship.

9.2 INPUT BUS SELECTION

The input bus structure of the IMP-16C is arranged such that memory data and peripheral data are multiplexed under
control of the delayed read-memory flag (RDM—Q1). It is possible to change this multiplexing operation by disabling
the RDM—QI signal (removing jumper W7) and supplying an externally generated signal on the DSLCT input. The user
may wish to do this in case his system requirements call for a common input bus for peripheral devices and any add-on
memory.

9.3 ADDRESS-BUS DISABLE

The address bus on the IMP-16C (ADXO00 through ADX15) may be placed in a TRI-STATE mode by taking the ODIS"
input to a logic “1” level. This feature allows the forcing of external addresses on the bus without CPU intervention.
During normal operation, the ODIS line is at a logic “0” level.

94 MEMORY MANAGEMENT

As mentioned in chapter 4 (section 4.5), the on-board memory is controlled by address bit 15. If it is desired to change
this method of decoding or to add on additional memory, the user may remove jumpers W1, W2, and W3 and supply
externally generated decoding via input lines CS0, CS1, and CS2. To illustrate this, two examples are given below.

Example 1: If it is desired to add on more read-write memory to make a total of 4K words in the
address space 0—4K, then remove jumper W1 and provide a signal at CSO that is a logic “0” when
(and only when) ADX08—ADX15 are all logic “0.” This will enable the first 256-word block of
memory that is on the IMP-16C card.

Example 2: If, for example, 36K of memory were required, then remove W1, W2, and W3. CSO would
be generated exactly as in example 1. CS1 would have to be a logic “0” when ADX09—ADX15 are all
logic “1” with ADXO08 a logic “0,” and CS2 would have to be a logic “0” when ADX08—ADX15 are
all logic ““1.”

9-1

95 MEMORY ACCESS TIME

The addition of extra memory to the IMP-16C will increase the capacitive loading on the system, so appropriate
allowances must be made for access time degradation. The clock-hold circuit on the IMP-16C is designed to permit
access times up to 850 ns. For longer access times, the external clock-hold option should be used (see 9.1).

Appendix A
SUMMARY OF INSTRUCTIONS

Table A—1. IMP-16C Basic Instruction Set (Executed by CROM I)

Memory | Memory
Instruction Mnemonic Execution Cycles Read Write
Cycles Cycles
Memory Reference Instructions
Load LD 5 2 -
Load Indirect’ LD 5 3 -
Store ST 6 1 1
Store Indirect! ST 8 2 1
Add ADD 5 2 —
Subtract SUB 5 2 -
Jump JMP 3 1 —
Jump Indirect! IMP 5 2 -
Jump to Subroutine JSR 4 1 —
Jump to Subroutine Indirect! JSR 6 2 -
Increment and Skip if Zero ISZ 7,8 if SKIP 2 1
Decrement and Skip if Zero DSz 8,9 if SKIP 2 1
Skip if AND is Zero SKAZ 6,7 if SKIP 2 —
Skip if Greater SKG Like Signs: 8,9 if SKIP 2 —
Unlike Signs: 9,10 if SKIP
Skip if Not Equal SKNE 6 2 -
And AND 5 2 -
Or OR 5 2 —
Register Reference Instructions
Push on to Stack Register PUSH 3 1 —
Pull from Stack PULL 3 1 -
Add Immediate, Skip if Zero AISZ 4,5 if SKIP 1 -
Load Immediate LI 3 1 -
Complement and Add Immediate CAI 3 1 —
Register Copy RCPY 6 1 -
Exchange Register and Top of Stack XCHRS 5 1 —
Exchange Registers RXCH 8 1 -
Register And RAND 6 1 —
Register Exclusive Or RXOR 6 1 —
Register Add RADD 3 1 —
Shift Left SHL 4+ 3K 1 -
Shift Right SHR 4+ 3K l —
Rotate Left ROL 4+3K 1 -
Rotate Right ROR 4+ 3K 1 -

1- The symbol @ must precede the designation of the memory location whose contents become the effective address by

indirection.

A-1

Table A—1. IMP-16C Basic Instruction Set (Continued)

Memory | Memory
Instruction Mnemonic | Execution Cycles Read Write
Cycles Cycles
Input/Output, Flag, and Halt Instructions
Set Flag SFLG 4 1 -
Pulse Flag PFLG 4 1 -
Push Flags on Stack PUSHF 4 1 -
Pull Flags from Stack PULLF 5 i —
Register In RIN 7 1 —
Register Qut ROUT 7 1 -
Halt HALT — — —
Transfer of Control Instructions
Branch-On Condition BOC 4,5 if branch 1 —
Return from Subroutine RTS 4 1 —
Return from Interrupt RTI 5 1 -
Jump to Subroutine Implied JSRI 4 1 -

Execution Time = (E + 0.25R + 025W) T

where
E = number of execution cycles
R = number of memory read cycles
W = number of memory write cycles
T = time for one microcycle

The 0.25 factor for the read and write cycles is included because the main clocks are stopped for two periods during
read and write operations with memory. If the clock-stop feature is not used, then there is no overhead for the read/
write operations; hence 0.25 may be replaced by 0. For the shift and rotate instructions, K refers to the number of
positions shifted or rotated.

As an example of the use of the formula,let T =1.4 microseconds; then, a load-instruction execution would take
(5 + 050) 1.4 = 7.7 microseconds
A store-instruction execution wouid take

(6 + 025 + 0.25) 1.4 = 9.09 microseconds

Table A—2. IMP-16C Extended Instruction Set (Executed by CROM II)

Memory Memory
Instruction Mnemonic Execution Cycles Read Write
Cycles Cycles

Multiply MPY 106 to 122 3 —
Divide DIV 125t0 159 3 -
Double Precision Add DADD 12 4 -
Double Precision Subtract DSUB 12 4 -
Load Byte LDB 20 (left)

12 (right) 4 -
Store Byte STB 24 (left)

17 (right) 4 1
Set Status Flag SETST 17 to 36 1 —
Clear Status Flag CLRST 17 to 36 1 -
Skip If Status Flag True SKSTF 19 to 39 1 -
Set Bit SETBIT 1510 34 1 -
Clear Bit CLRBIT 15 to 34 1 —
Complement Bit CMPBIT 15t034 1 —
Skip If Bit True SKBIT 19 to 39 1 —
Interrupt Scan ISCAN 9 to 80 1 -
Jump Indirect to Level Zero Interrupt JINT 7 2 —
Jump Through Pointer JMPP 7 3 -
Jump to Subroutine Through Pointer JSRP 8 3 -

A-3/4

SUPPLEMENT 1 TO PUB. NO. 4200021C

Integrated MicroProcessor-16C

IMP-16C

INTERFACING GUIDE

January 1974

@ National Semiconductor Corporation
2900 Semiconductor Drive
Santa Clara, California 95051

SUPPLEMENT 1

PREFACE

This application note supplements the IMP-16C Application Manual and supplies infor-
mation pertaining to the implementation of peripheral interfacing for the IMP-16C.
The user should be familiar with the contents of the IMP-16C Application Manual,
particularly with respect to the macroinstruction and timing-signal mnemonics.

The material supplied in this application note is for information purposes only and is

subject to change without notice. This applies particularly to the circuit diagrams
and the computer program listings.

ii

Chapter
1

SUPPLEMENT 1

CONTENTS

GENERAL INFORMATION .

1.1
1.2
1.3

IMP-16C INTERFACE CONSIDERATIONS.
IMP-16C CONTROL PANEL.
INTERFACE METHODS AND PROGRAMS.

CONTROL PANEL OPERATIONS .

2.1
2.2

DO
Bt
® N e g s W N

R I I I R R R R

SERIAL

w

w W W W
B~w W W
w

GENERAL INFORMATION
OPERATING PROCEDURES .
Loading Main Memory

Altering Memory Locations .
Examining Memory Locations
Loading the Accumulators .
Displaying Accumulator Values .
HALT and Continue Operations .
Executing a Program .
Initialization.

CONTROL PANEL SERVICE ROUTINE
CONTROL PANEL WIRE LIST .

TELETYPE INTERFACES

GENERAL INFORMATION

PROGRAM-CONTROLLED INTERFACE USING FLAGS
Teletype Transmit Character Routine .

Teletype Receive Character Routine

PROGRAM-CONTROLLED INTERFACE USING DEVICE
ADDRESSES.

Teletype Transmit Character Routine .
Teletype Receive Character Routine
Teletype Get Character and Echo Routine
TELETYPE TIMING PARAMETERS

iii

Page

3-3
3-6
3-7
3-8
3-8

SUPPLEMENT 1

CONTENTS (Continued)

Chapter Page
4 CARD READER INTERFACE. 41
4.1 GENERAL INFORMATION 4-1

4.2 PROGRAM CONTROLLED INTERFACE USING CONTROL
FLAGS. . . v v v v v v v v v v e e e 41

4.3 PROGRAM CONTROLLED INTERFACE USING DEVICE

ADDRESSES « « « « « o« o« o . . 43
5 LOADER ROUTINES +« +« « « « « « « . 51
5.1 GENERAL INFORMATION. 51
5.2 ABSOLUTE LOADER (ABSIDR) 5-1
5.3 PAPER TAPE BOOTSTRAP LOADER (PTBOOT). . . . 5-2
5.4 CARD READER LOADER (CRLM) 573
6 APPLICATION PROGRAMS +« « . . . 6-1
6.1 GENERAL INFORMATION. 6-1
6.2 PROM TAPE GENERATOR 6-1
6.3 PAPER TAPE PUNCH PROGRAM 6-2
7 INTERRUPT HANDLING« .« .+ « « =« . 7-1
7.1 GENERAL INFORMATION 71
7.2 INTERRUPT RESPONSE 11
7.3 INTERRUPT GENERATION AND PROCESSING 7-2
7.3.1 General Imterrupt+ .+ .+ . 7-2
7.83.2 Stack Overflow Interrupt 7-4
7.4 SAMPLE PROGRAM FOR INTERRUPT PROCESSING . . 7-4

A APPENDIX - ASSEMBLY LISTING. =« A-1

iv

SUPPLEMENT 1

ILL.USTRATIONS
Figure Page
1-1 IMP-16C Bus Interface Structure. 1-0
1-2 IMP-16C Timing Chart. 1-2
1-3 Timing Sequence for RIN and ROUT Instructions. 1-3
2-1 Control Panel Simplified Schematic Diagram 2-0
2-2 Contr01 Panel ArrangementA .. 2-3
3-1 Serial Teletype Interface, Flag Controlled e e e e e 3-0
3-2 Teletype Data Word Format 3-4
3-3 Serial Teletype Interface, Device Address-Controlled 3-5
4-1 Standard Interface Timing for Documation M Card Readers . . 4-0
4-2 IMP-16C and Control Panel Interface, Block Diagram. 4-1
4-3 Card Reader Interface, Flag-Controlled 4-2
4-4 Card Reader Interface, Device Address-Controlled. 4-5
7-1 Interrupt Response External Circuits 7-1
TABLES
Number Page
2-1 Wire List. 2-7
3-1 Serial Teletype Order Codes 3-6
7-1 Typical Interrupt Select Status 1 Bit Assignments 7-3

0-1

DATA
FROM
MEMORY

DATA
FROM
PERIPHERALS

MDO

sw

MOSs
CENTRAL PROCESSING UNIT
(cpu)

F 3

RDM-Q1

“1" SELECTS MDO

"0 SELECTS Sw

DATA

b 4

OUTPUT
» DATA

INPUT
MULTIPLEXER

ENABLED
BY DISTR*

INTERNAL DATA BUS

Figure 1-1.

BUFFER

ENABLED BY

RDM OR LDAR

ADDRESS

Y

IMP-16C Bus Interface Structure

LATCHES

BDO

ADX

ADDRESS
LINES TO

————% MEMORY

AND
PERIPHERALS

OUTPUT DATA LINES
—» TO MEMORY AND

PERIPHERALS

NS00146

T INHINHITddAS

SUPPLEMENT 1

CHAPTER 1

GENERAL INFORMATION

This chapter discusses IMP-16C interface considerations, advisability of having a
control panel for use with the IMP-16C, and interface methods and programs. More-
detailed information on these subjects is presented in the remaining chapters.

1.1 IMP-16C INTERFACE CONSIDERATIONS

Peripheral devices communicate with the IMP-16C processor via the SW input bus and
the BDO data out bus. A number of user control flags are available to control various
I/0O operations. In this application note, emphasis is placed on program-controlled
operations to illustrate the simplicity of the interface requirements.

When designing a peripheral device interface, a wide range of possibilities exist
between a single-purpose (economical) interface and a multi-purpose (expensive) inter-
face. The single-purpose interface must rely on processor control to generate the
necessary timing sequences, while the multi-purpose interface requires only a minimal
amount of processor control. The trade-off between expense and hardware volume can
only be determined by the user's needs. There is nothing inherent in the design of
the IMP-16C bus system or the processor that requires a complex interface.

The teletype interface using control flags (described in chapter 3 of this note) is an
example of a relatively simple peripheral interface that is flexible enough for all
operations but requires a large degree of program control. This is acceptable for
most applications where the processor is not doing other functions during teletype
operations.

Figure 1-1 is a simplified block diagram of the I/O bus structure of the IMP-16C
microprocessor. The timing of the various signals and data lines is given in
figure 1-2. Data bits presented on the SW bus are accepted during T7 as deter-
mined by the DISTR* pulse. Output data is valid during T4. Input jump conditions
and output control flags are valid at the start of T2. Control flags are reset at the
beginning of T6. Addresses on the ADX bus start coming up during T3 and are
valid at the start of T4.

When interfacing external devices with the IMP-16C, peripheral device addresses may
be distinguished from memory addresses by the presence of the RDP or WRP flags
that are pulsed during RIN and ROUT instructions, respectively.

Timing for RIN and ROUT instructions is shown in figure 1-3. [Each of these instruc-
tions takes seven microcycles to execute. During the first microcycle (FETCH), the
RDM flag enables the establishment of a memory address on the ADX lines to permit
the fetching of the instruction. The next six microcycles effect the execution of the

1-1

SUPPLEMENT 1

T l T2 | T3 | T4 t 5 T6 T7 i T8

DISTR*

1 INPUT DATA VALID

OUTPUT DATA VALID

FLAGS ———I

JUMP CONDITION VALID;
MUST NOT CHANGE DURING T2.

JUMP I

CONDITION

ADX LINES

NS00147

(NOT TO SCALE)

Figure 1-2. IMP-16C Timing Chart

instruction. In the sixth microcycle, the LDAR flag is pulsed, thus enabling the
latching of the peripheral address on the ADX lines. These latched addresses are
valid through the next microcycle, at which time the RDP or WRP flag is pulsed and
the actual data transfer takes place.

During a ROUT instruction, the data present on the BDO lines at T4 of the seventh
microcycle is the output data from ACO. During a RIN instruction, the data present
on the SW lines at T7 of the seventh microcycle is the input data accepted by the
processor and loaded into ACO.

1.2 IMP-16C CONTROL PANEL

The IMP-16C is self-contained for control operations; however, for some general-
purpose applications a control panel may be needed or convenient to have for debug-
ging programs, entering or retrieving data from the IMP-16C, verifying system
operation, troubleshooting, and other operator-controlled purposes.

The control panel described here is one that is relatively uncomplicated and has a
minimum number of components. A software service routine, resident in main
memory, scans the panel switches and implements appropriate service actions
according to switch positions. This control panel and its operations are described
in chapter 2.

1-2

SUPPLEMENT 1

START OF
START OF INSTRUCTION NEXT INSTRUCTION

FETCH | | | l l |

cveles 1 ! e | » « s 6 l 7

RDM —_I

LDAR

-F-- ——— e e o]
\ 7
ADX \ //
R e e e e e e e e e e e -

INSTRUCTION ADDRESS PERIPHERAL
DEVICE ADDRESS

RDP (FOR RIN)
or WRP (FOR ROUT)

FOR ROUT, (ACO) —BDO AT T4]

FOR RIN, SW— {ACO) AT T7 I
(NOT TO SCALE)

NS00148

Figure 1-3. Timing Sequence for RIN and ROUT Instructions

1.3 INTERFACE METHODS AND PROGRAMS

Chapters 3 through 7 of this note present several interface methods and related
programming considerations as well as a description of interrupt handling. Included
are various sample programs that facilitate generating and loading program tapes.

A complete firmware package is available as a PROM and may be run on the IMP-16C
(interfaced to a control panel). The listing of this package is given in appendix A.

0-2

i*EV

AN

100
16 DATA
SWITCHES gy 1

-

AV AV AV Ay AV AV AV AV VAV AV,
h 4 p 4 ¥y h 4

> > >
300 2 300 2300 é 300 2300 2300 2300 300 2300 2300 2300 3 300 :: 300 2300 2300 é 300
< < < < < > < < < P < <

¥ 16 LEDS

T

TO SW
INPUTS
OF
IMP- LATCHES
e DM7475
s =]
Q
a [
Q ¢
1
) [—
a [——
! & je—
2, le—
16 DATA
L) LINES
e 6 4__
SW16 = a < FROM THE
s < BDO OF THE
5 IMP-16C
c &
DM7404 — 1
& |e—
TO JC7 9 |4
2 =
G ¢ J
4
A
To Jc 13 LOAD ADDRESS +5V (AT T4)
SW17 v
DM7404
DM7404 INITIALIZE 0 SYSCLR* 51K
DISPLAY
T0 JC15 g('::v SVGG BUS
TO INTRA IMP-16C
2N2222A
Note: Switches SW17 — SW22 are momentary contact switches.
—12v
NS00149

Figure 2-1. Control Panel

Simplified Schematic Diagram

T INIWNATdAAS

SUPPLEMENT 1

CHAPTER 2

CONTROL PANEL OPERATIONS

2.1 GENERAL INFORMATION

The control panel described here is a very simple means of entering and retrieving
information from the IMP-16C card. It does not decode any device addresses; it
works off the RDP and WRP flags pulsed by the RIN and ROUT instructions. The
schematic diagram in figure 2-1 depicts the arrangement of the panel logic. With
this panel, six momentary contact switches may be serviced by a software routine.
The routine provided with this control panel assumes the following assignments.

SWITCH CONNECTED TO FUNCTION
SW21 | JUMP CONDITION 7 EXECUTE(START)|
SW19 JUMP CONDITION 13 LOAD DATA
SW18 JUMP CONDITION 15 DISPLAY
SW17 JUMP CONDITION 12 LOAD ADDRESS
SW22 INTRA HALT (interrupt
serviced)
Provides SW20 SYSCLR* INITIALIZE
overriding
initialization
of CPU

The physical location of the various switches on the control panel board is shown in
figure 2-2; the next few paragraphs describe operating procedures for this panel when
it is used with the service program.

Figure 2-1 is a simplified version of the actual control panel logic schematic diagram
(provided as part of the control panel kit IMP-16C/882, formerly CTLPLKIT). The
switch numbers in the table above refer to switch positions called out on the original
diagram.

2.2 OPERATING PROCEDURES

The following paragraphs provide the procedures for performing the various operations
at the control panel.

2.2.1 Loading Main Memory
1. Set the Data Switches to the address of the desired starting location.

(Note: locations 0 through 6 in memory are reserved for control pro-
gram usage.)

2-1

SUPPLEMENT 1

Press LOAD ADDRESS. The selected address will be displayed on the
Bit Display Lights.

Set the Data Switches to the data value to be loaded.

Press LOAD DATA. The value will be displayed, and the memory-
location address will be incremented automatically.

Subsequent memory locations may be loaded in consecutive order by
setting the desired bit pattern of the value to be loaded and pressing
LOAD DATA after each setting.

2.2.2 Altering Meinory Locations

1.

Set the address of the location whose contents are to be altered on the
Data Switches, and press LOAD ADDRESS.

Set the new value of the data on the Data Switches, and press LOAD
DATA.

2.2.3 Examining Memory Locations

1.

Set the address of the location whose contents are to be displayed on the
Data Switches, and press LOAD ADDRESS. The selected address will be
displayed on the Bit Display Lights.

Press DISPLAY. The contents of the selected location will be displayed,
and the memory-location address will be incremented automatically.

Subsequent memory locations may be displayed in consecutive order by
repeatedly pressing DISPLAY.

2.2.4 Loading The Accumulators

1.

2.

3.

Set the Data Switches to the number of the accumulator to be loaded
(X'0000 for ACO, X'0001 for AC1, and so on), and press LOAD ADDRESS.

Repeat steps 1 and 2 for each accumulator to be loaded.

2.2.5 Displaying Accumulator Values

1.

Set the Data Switches to the number of the accumulator whose contents
are to be displayed (similar to step 1 above), and press LOAD ADDRESS.

Press DISPLAY.

Repeat steps 1 and 2 for each accumulator whose contents are to be

displayed.
2-2

SUPPLEMENT 1

2.2.6 HALT and Continue Operations

The panel HALT switch interrupts the processor and sets it in a HALT mode. If the
Data Switches are set to X'0000 and EXECUTE is pressed, then the processor returns
control to the control panel routine. Otherwise, an EXECUTE command causes the
program to resume where it left off at the time of the HALT.

At the time of a HALT, the return address of the interrupted program is displayed on
the Bit Display Lights. This can be noted and used as a resumption address if the
normal return from interrupt is not used.

2.2.7 Executing A Program
1. Select the starting address of the program on the Data Switches.
2. Press EXECUTE.

After a program has been run, its results may be observed (looking at register values
and examining specific memory locations) by coding a JMP X'00 instruction at the last
executable instruction; that is, after entering a program, code X'2000 as the final
instruction. This returns control to the control panel routine without altering the
status of the registers. If register values need not be saved, the same effect can be
achieved by pressing INIT.

2.2.8 Initialization

The function of the INIT switch is to clear the CPU and return control to the starting
sequence. Main memory is not affected by this operation because it has separate power
lines. Therefore, a program once loaded into the read/write memory remains
unaltered until it is overwritten or power to the entire unit is shut off.

OOO000O000O0OOOOOOO

o»o0or
PO MDBDOOD
<>Provnu—o

or»or
P»->»0
-z -

@ PWR HALT

~r»x

OO0

NS00150

m=-coOomxm

Figure 2-2. Control Panel Arrangement

2-3

SUPPLEMENT 1

2.3 CONTROL PANEL SERVICE ROUTINE

The program that effects the operations detailed in 2.2.1 through 2.2.7 works on a
continuous scan of the front panel active switches. When the processor is powered up,
it begins to execute instructions at memory location FF]’FE16 (located in top page in a
PROM/ROM). These instructions direct the processor into a 5-cycle wait loop that
awaits a front panel command.

The front panel HALT function interrupts normal operation of the processor and sends
control to an interrupt service routine. Program listings for the control panel service
routine and the interrupt service routine are given on the following pages. It must be
noted that this simple control panel by itself is not intended to be a software debug
aid, but rather it is a means of manual entry of information into the IMP-16C. As
such, when using any of the routines described in this application note, the directions
supplied must be followed closely.

NOTE

All numbers that represent data are written in
hexadecimal format. The notation for this for-
mat is either the subscript 16 following the num-
ber or the prefix X' preceding the number.
Example: 4A0816 means the same as X"'4A08.

’F:::gg .PAGE ‘CONTROL PANEL SERVICE ROUTINE’
FF86 ; VERSION 2, APRIL 25, 1973
FF86 FFADA =X'FFAD

FFAD21B4 A JSTRT: .WORD X'21B4
FFAE 21ED A JINTR: .WORD X'21ED
FFAF 0005 A FIVE: WORD 5
FFBO 0001 A ONE: WORD 1
FFB1 8DFC A BEGIN: LD 3,JINTR

FFB2 ACO1 A ST 3,X'01; LOAD LOCATION 1 WITH JUMP TO INTERRUPT
FFB3 8DF9 A LD 3,JSTRT

FFB4 ACO0 A ST 3,X'00; LOAD LOCATION O WITH JUMP TO CONTROL PANEL
FFB5 2929 A START: JSR SAVE ; SAVE ACCUMULATORS.

FFB6 0900 A SET: SFLG 1 ; ENABLE INTERRUPT SYSTEM.

FFB7 0600 A ROUT: ROUT O

FFB8 1C04 A WAIT: BOCC12,LA ; ‘LOAD ADDRESS’' SWITCH.

FFB9 1DOA A BOCC13,LD ; °‘LOAD DATA’'SWITCH.

FFBA 1710 A BOC C7 EX ; ‘EXECUTE’ SWITCH.

FFBB 1F1F A BOC C15, DISP ; 'DISPLAY’ SWITCH.

FFBC 21FB A JMP .4 ; RETURN TO WAIT LOOP.

FFBD 1CFF A LA: BOCC12,LA ; CHECK RELEASE.

FFBE 0400 A RIN O ; READ SWR.

FFBF 3281 A RCPY 0,2 ; SAVE ADDRESS IN AC2.

FFCO 3381 A RCPY 0,3

FFC1 E1ED A SKG O,FIVE; PREVENTS LOADING OF RESERVED LOCATIONS
FFC2 1200 A BOC C2, RSRVE

FFC3 21F3 A JMP ROUT

FFC4 1DFF A LD: BOCC13,LD; CHECK RELEASE FOR LOAD DATA SWITCH
FFC5 0400 A RIN O; READ SWITCHES

FFC6 F938 A SKNE 2,LAST6; PREVENTS LOADING LOCATION 6.

FFC7 21F0 A JMP WAIT

FFC8 A200 A ST 0,(2) ; LOAD MEMORY

FFC9 COE6
FFCA 21EC
FFCB 17FF
FFCC 0400
FFCD 4000
FFCE 2918
FFCF 0200
FFDO 0600
FFD1 1D05
FFD2 1FO1
FFD3 21FD
FFD4 1FFF
FFD5 8302
FFD6 21E0
FFD7 1DFF
FFD8 0400
FFD9 A202
FFDA21DC
FFDB 1FFF
FFDC 8300
FFDD CDD2
FFDE 21D8
FFDF

FFDF A002
FFEO A403
FFE1 A804
FFE2 ACO5
FFE3 0080
FFE4 4500
FFES A406
FFE6 0200
FFE?

FFE7 8406
FFES 4100
FFE9 0280
FFEA 8002
FFEB 8403
FFEC 8804
FFED 8C05
FFEE 0200
FFEF

FFEF

FFEF 180B
. FFFO 29EE
FFF1 4400
FFF2 4000
FFF3 0600
FFF4 0000
FFF5 0400
FFF6 1102
FFF7 29EF
FFF8 0100
FFFQ

FFF9 4400
FFFA 21BB
FFFB 4CFF
FFFC 0600
FFFD 0000
FFFE 2182
FFFF 0006
000

P>Pr>>>> PPPPPP>P> PPLLDPPLDLLLIPILEPIDDPDD

PP PP> PPBPPD>PLRD>P

SUPPLEMENT 1

ADD 2,0NE; INCREMENT ADDRESS

JMP ROUT
EX: BOC C7,EX ; CHECK RELEASE
RINO
PUSH 0 ; SAVE JUMP ADDRESS IN STACK.
JSR RSTOR
RTSO ; FAKING AN INDIRECT JUMP.

RSRVE: ROUT 0
BOC C13, LDAC

BOC C15,DISPAC

JMP -2 :

DISPAC: BOC C15,DISPAC; DISPLAY ACCUMULATOR ROUTINE
LD 0,2(3)

JMP ROUT

LDAC: BOC C13,LDAC

RINO

ST0,2(2)

JMP ROUT

DISP: BOC C15,DISP

LD 0,(3) A

ADD 3,0NE; INCREMENT ADDRESS

JMP ROUT

SAVE: ST0,X'02 ; SAVE ACO - AC3IN LOCATIONS X'02 - X'05.
ST 1,X'03

ST 2,X°04

ST 3,X'05

PUSHF

PULL 1

ST 1,X'06; SAVE FLAGS IN LOCATION 6.

RTSO

RSTOR: LD 1,X'06

PUSH 1

PULLF

LD 0,X'02; RESTORE ACCUMULATORS.
LD 1,X'03

LD 2,X'04

LD 3,X'05

RTSO -

PAGE 'INTERRUPT SERVICE ROUTINE FOR HALT AND STACKFULL’

INTR: BOC C8,STFL
JSRSAVE; SAVE ACCUMULATORS IN LOCATIONS 2,3.4 AND 5.

PULL O

PUSH O

ROUT 0; INTERRUPT ADDRESS IS DISPLAYED.
HALT

RIN O; READ SWITCHES

BOC C1,.43; IF SWITCHES ARE SET TO ALL ZEROS, ‘EXECUTE’ CAUSES
JSRRSTOR; A RETURN TO THE CONTROL PANEL ROUTINE.

RTI ; IF SWITCHES ARE SET TO ANY NON-ZERO NUMBER, ‘EXECUTE
; CAUSES A NORMAL RETURN FROM INTERRUPT.
PULLO
JMP SET; RETURN TO CONTROL PANEL ROUTINE.
STFL: LTO,1
ROUT 0 ; NON RECOVERABLE SITUATION; “INITIALIZE” RETURNS
HALT ; CONTROL TO PANEL.
JMP BEGIN
LAST 6: WORD®6
.END

SUPPLEMENT 1

2.4 CONTROL PANEL WIRE LIST

The wire list for the connections between the control panel card and the IMP-16C is
provided in table 2-1.

Note that the switches from the control panel are brought out directly to terminals.
When these lines are connected to the IMP-16C, no other lines may be connected to
the same bus. Therefore, if it is desired to hook up other equipment on the input
data bus, the switch lines from the control panel must be passed through buffers with
tri-state outputs that may be disabled.

2-6

L-g

Table 2-1. Wire List

SIGNAL FROM TO SIGNAL FROM TO SIGNAL FROM TO

Control Control Control

Panel IMP-16C Panel IMP-16C Panel IMP-16C
Ground E1 1-4, 141-144 BDO 05 E17 56 BDO 13 E33 74
+5v E2 5-8, 137-140 BDO 06 E18 65 BDO 15 E34 70
SW 00 E3 79 BDO 07 E19 63 BDO 14 E35 69
SW 01 E4 84 SW 08 E20 90 WRPB E36 53
BDO 00 E5 60 SW 09 E21 92 EXEC E37 123
BDO 01 E6 58 SW 11 E22 93 INTRA (1) E38 15
SW 02 E7 81 SW 10 E23 91 LpM (2) E39 119
BDO 02 E8 64 BDO 09 E24 67 HLT* (3) E40 125
BDO 03 E9 61 BDO 08 E25 27 LDA (4) E41 129
SW 03 E10 86 BDO 10 E26 73 ' SYSCLR (5) | E42 -
SW 04 E11 98 BDO 11 E27 68 SYSCLR* E43 126
SW 05 E12 103 SW 12 E28 95 c 45 (6) E44 -99
SW 07 E13 105 SW 13 E29 96 DIsp (7) E45 107
SW 06 E14 100 SW 15 E30 106 -12v E46 31, 32
WRPA E15 66 SW 14 E31 97 GROUND E47 1-4, 141-144
BDO 04 E16 59 BDO 12 E32 75 -12v E48 11,12

SWITCHED
NOTES: (1) INTERRUPT; WIRED TO CONTROL PANEL HALT (5 UNUSED
(2) WIRED TO JC13 ON IMP-16C (6) C45 TIMING SIGNAL
(3) HALT INDICATOR FLAG (7) WIRED TO JC15 ON IMP-16C

(4)

WIRED TO JC12 ON IMP-16C

T INHNHTIddNS

SUPPLEMENT 1

+5V
IN3604
IN3604
270
1/2W DM7475
.
D Q »— JC14
TTY
TRANSMITTER L Jusnmed IN3604
c
<4 C45
510
/2w
+12v 45V
IN3604
+
120 14,25V
+ ;
IN3604
TTY 1.0
RECEIVER %
- . “ F12
DM74H04
+5v
2 Ei 470
DRr74H04
" o<}
2N2907 A <4 F11
. A
———
READER
RELAY _l_
IN3604 0.01¢
68
2w
—-12v
NS00151
Figure 3-1. Serial Teletype Interface, Flag Controlled

3-0

> IMP-16C

SUPPLEMENT 1

CHAPTER 3

SERIAL TELETYPE INTERFACES

3.1 GENERAL INFORMATION

Two program-controlled teletype interfaces are presented in this chapter. The first
is a simple, economical interface that employs control flags. The second interface
requires more hardware since it employs device address decoding, but this interface
has the advantage of being completely software-supported and does not tie up user
flags. Each of these, along with sample programs, is described in the following
paragraphs.

3.2 PROGRAM-CONTROLLED INTERFACE USING FLAGS

A very simple teletype interface can be built using two thirds of a DM7404 package
and a few discrete elements. This interface permits communication with the IMP-16C
via a user jump condition and two user control flags. This approach eliminates the
need for device address decoding and,consequently, turns out to be a very economical
implementation. Since the address fields of the RIN and ROUT instructions are not
used, AC3 is not tied up any more and can be used freely by the programmer. The
circuit schematic is given in figure 3-1.

The listings provided under paragraphs 3.2.1 and 3.2.2 describe a character-read
routine (RECV) and a character-transmit routine (SEND) that receives/sends bit-serial
information between the TTY and the IMP-16C. User jump condition 14 (JC14) is
used for data-in and flag 12 (F12) is used for data-out. An additional flag (F11) is
used as a reader-enable control signal.

NOTE

1. Infigure 8-1, an optional 7475 is used to synchronize
the jump condition input into the IMP-16C to assure
that the signal is stable between successive T4 times
of any microcycle sequence. This is recommended to
prevent the rare (but possible) occurrence of the jump
condition input making a transition during the leading
edge of phase 2. On the IMP-16C/200, C/300 this
circuit is already provided.

2. The mnemonic TTY is used frequently to denote
"teletype. "

3.2.1 Teletype Transmit Character Routine

This routine takes one character (right justified in AC0) and sends it to the TTY.
Since this is written as a subroutine, accumulators 0, 1, and 2 are saved on the
stack before being used in the routine as temporary storage areas.

3-1

SUPPLEMENT 1

.PAGE 'TRANSMIT CHARACTER ROUTINE'

XMIT = & ; TELETYPE TRANSMIT FLAG
SEND: PUSH 2 ; SAVE ACCUMULATORS.

PUSH 1

SFLG MIT SEND START BIT.

JSR DELAY DELAY INTO FIRST DATA BIT.

LI 2,8 SET BIT COUNT.

PUT: PFLG XMIT CLEAR TRANSMIT FLAG.

BOC 3,3XX

Ne N2 Ne Ne Ne Ne

SFLG XMIT SEND DATA BIT.
$XX¢ JSR DELAY
SHR 0,1
Al1sz 2,-1 ; TEST TO SEE IF DONE.
JMP PUT
PFLG XMIT ; SEND TWO STOP BITS.
JSR DELAY
JSR DELAY
PULL 1
PULL 2
RTS

The DELAY subroutine below is used in the routine above and in the RECV routine fo
provide the required delay between the teletype bits that are being processed serially.

DELAY: LD 1,v2 ; LOAD TIMING PARAMETER
AlSZ 1,-1
JMP .~1
RTS

V1: WORD 01B1

V2: WORD 035E

3.2.2 Teletype Receive Character Routine

This routine takes one character from the TTY and loads it into ACO (right justified).
A loader that reads IMP-16 Assembler-generated load modul
memory is described in chapter 5. The programs described i
used in conjunction with the control panel described in chapter 2.

MY Ma
\rviaais
se

ction 3.2 may be

(]
w

=]

3-2

SUPPLEMENT 1

.PAGE 'TELETYPE GET CHARACTER ROUTINE'

JC1h = 14 ; INPUT JUMP CONDITION.
READR = 3 ; READER ENABLE FLAG.
c1 =1
c2 = 2

RECV: PUSH 1 ; SAVE ACCUMULATORS.
PUSH 2
PFLG 2 ; DISABLE LINK.
LI 2,8 ; SET COUNT FOR 8 BITS.
SFLG READR
BOC JC1k, .+2 ; TEST FOR START BIT.
JMP -1 ; LOOP UNTIL FOUND.
LD 1,V1 ; LOAD TIMING PARAMETER.
JSR DELAY+1 ; DELAY HALF BIT TIME.
PFLG READR
BOC JC1L, .+2 ; TEST FOR DATA BIT.
JMP RECV+2

REP: JSR DELAY
SHR 0,1
BOC JC1h, .+2
OR 0,H8000
AlISZ 2,-1 ; DECREMENT COUNT.
JMP REP
JSR DELAY .
SHR 0,8
PULL 2
PULL 1
RTS

H8000: .WORD 08000 MASK WORD

Ne

3.3 PROGRAM-CONTROLLED INTERFACE USING DEVICE ADDRESSES

A more-conventional (in terms of minicomputer type of usage) TTY interface uses a
peripheral device address decoder. This approach obviously requires more hardware,
but it has the advantage of being software-supported because IMP-16L TTY routines
may be used directly and does not tie up any user flags.

This teletype interface is a full-duplex, bit-serial communication path that allows the
processor to send or receive serial bit streams to and from the teletype. The for-
matting and timing of the bit stream must be controlled by the processor. All com-
munication between the processor and the interface is over the system data bus.

Figure 3-3 shows the hardware required for this type of interface. The driver circuits
are the same as described in 3.2. The 8-bit device address and 3-bit order field are
decoded by DM7430 gate and a DM74155 3-to-8-line decoder.

The data received by the teletype may be read over the system data bus in bit posi-
tion 15 by use of the RIN instruction. The data format is shown in figure 3-2.

Bits 0 through 14 are undefined and should be masked by the program. The bits
comprising the character will be input serially, least significant bit first.

3-3

SUPPLEMENT 1

15 14]13'12]11]10'918l7‘6l5[4|312I1L0

DATA
BIT UNDEFINED BITS

NS00152

Figure 3-2. Teletype Data Word Format

The teletype transmit circuits may be instructed to transmit a 1 or a 0 by use of the
ROUT instruction. Once set to a value, the circuits continue to transmit that value
until instructed to transmit another value or cleared with a RESET order. The
transmit value is set from bit 15 of the data bus. Bits 0 through 14 are not used
and may be any value. The bits comprising the character should be transmitted
serially, least significant bit first.

The paper tape reader control may be used for teletypes that have a paper tape
reader control circuit. This optional feature allows program control of the tape
reader; this is especially desirable for applications where the data are processed as
they are read as the reader may be stopped during data processing. Six order codes
are acknowledged by the teletype interface. These are listed in table 3-1. The effect
of each order is explained below. Those orders marked with an asterisk are not used
in the program examples given here.

RIN Code 2 - Bit 15 of the data bus is set equal to the output of the teletype.
The processor, in turn, will transfer the data bus to AC0. A binary 1 repre-
sents a teletype mark, and a binary 0 represents a teletype space. Bits 0
through 14 are undefined.

RIN Code 4 - The paper tape reader is turned on.
RIN Code 5 - The interrupt request and interrupt enable flags are turned off.
The teletype output is set to the idle (marking) state. The paper tape reader

enable is turned off.

*RIN Code 6 - The teletype responds to the "Interrupt Select Status 1" order by
setting data bit 7 equal to the state of the interrupt request flag.

*ROUT Code 1 - The interrupt enable flag is turned on.

ROUT Code 3

The. teletype transmit circuit is set to the value of data bit 15.

ROUT Code 4

The paper tape reader is turned on.

ROUT Code 5 - The interrupt request and interrupt enable flags are turned off.
The teletype output is set to idle (marking) state. The paper tape reader
enable is turned off.

3-4

G-¢

] IMP-16C
__TIYNTERFACE LOGIC e — — —
OPTIONAL |
HI—SPEED
INPUT |
+6V | TTY DATA |
7400 AN
+ . . . 8003 | —» sw15
TTY J_ RDP-Q1* — I
XMITTER ™ 270
- IN3604 aw |
< BDO15
IN3604 |
510 <
+5V 12w | < ADX 00
N3eod —4 ADX 01
+H2v
thaeos l < ADX 02
+6V |
} ADX 03
DM74155 |
S 120 N ADX 04
3 1, 26V P oRDo*_| N l oo
+ * Q D ORD1*_}|
| ORD2? B |
1062 7474 ADX 06
Ty IN3604 DMm7404 ORD3* 1c
RCVR |
c ORD4* ” ADX 07
* - CLR - ORD5* o 7430 |
@)
+5V oRD6*_| 16 o< ADX 08
ORD7*_| 26 |
WRP-Q1* ADX 09
—p— |
“an Py Q< ADX 10
75 ‘L . |
vz 3 470 DM7404
1 D
7474 I |
3%0 wre-o1_| C* | « wap
2N2807 b——— W\ T ¢ D <
" CLR 7402 |
7474
. WRP-Q1* |
a c |
READER p g P
RELAY RESET* 2408 1
- IN3604 — |
01y |
68
. RDP-Q1 P |
- a b l < RDP
- 7474
RDP-Q1* |
4+—a c <4 C45
cL |
I 0K I———<—| CLKB1
: < INIT*
Figure 3-3. Serial Teletype Interface, Device Address-Controlled

NS001563

T LNINITddNS

SUPPLEMENT 1

Table 3-1. Serial Teletype Order Codes

Instruction Order Code Action
RIN 000 NO ACTION
| 001 NOT ALLOWED

010 READ BIT FROM TTY
011 NOT ALLOWED
100 START TAPE READER
101 RESET
110 INT STATUS TO BIT 7*
111 NO ACTION

ROUT 000 NO ACTION
001 SET INTEN = DATA BIT 15%
010 NOT ALLOWED
011 WRITE BIT TO TTY
100 START TAPE READER
101 RESET
110 NOT ALLOWED
111 NO ACTION

The program listings that follow show the corresponding receive and transmit routines
for this hardware. For these programs, the teletype has been assigned a peripheral
address of 00381g, and the various order codes are given in table 3-1.

3.3.1 Teletype Transmit Character Routine

This routine takes one character (right justified in ACO) and sends it to the TTY.
Since this is writien 2s a subroutine, the contents of accumulators 1 and 2 are
saved in memory before the accumulators are used in the routine as temporary
storage areas.

SUPPLEMENT 1

.PAGE 'TELETYPE PUT CHARACTER ROUTINE'

TTYAD = 7%8 ; TELETYPE ADDRESS
~ SEND =3
PUTC: ST 1,7 ; SAVE ACCUMULATORS.
ST 2,8 H
PFLG 2
LD 1,v1
JSR DELAY+1
LI 2,9
Ll 3,TTYAD
ROUT SEND
LP2: JSR DELAY
AlISZ 2,-1 ; CHECK TO SEE IF DONE
JMP 42
JMP DONE
ROR 0,1
ROUT SEND
JMP LP2
DONE: Ll 0,-1 ; SEND STOP BIT.
ROUT SEND
JSR DELAY
LD 1,7
LD 2,8
RTS ; RESTORE ACCUMULATORS.

3.3.2 Teletype Receive Character Routine

This routine takes 8 bits of serial data from the teletype transmitter interface and
packs them into ACO with the bits right-justified.

.PAGE 'TELETYPE GET CHARACTER ROUTINE'

TTYAD = 7%8
RESET = 5
RDREN = 4
READ = 2
GETC: ST 2,8 ; SAVE AC1 AND AC2 IN
ST 1,7 ; LOCATIONS 7 AND 8.
PFLG 2
L1 3,TTYAD
ROUT RESET
Ll 2,8 ; SET BIT COUNT TO 8.
ROUT RDREN
RIN READ
BOC 2,.+2 ; TEST FOR START BIT
JMP -2
LD 1,vl
JSR DELAY+1
RIN READ
BOC 2, .42
JMP GETC+3

(listing continued)

3-7

SUPPLEMENT 1

LP1: JSR DELAY2 ; DELAY ONE BIT TIME.
RIN READ
AND 0,MASK
SHR 1,1
RXOR 0,1
AlSZ 2,-1; ; TEST TO SEE IF DONE.
JMP LP1
JSR DELAY ; DELAY INTO FIRST STOP BIT.
SHR 18
RCPY 1,0
LD i,7 ; RESTORE ACCUMULATORS.
LD 2,8;

RTS
MASK: .WORD X'8000

The GETC and PUTC routines use the same type of DELAY subroutine as the RECV
and SEND routines of the previous section. Locations 7 and 8 of main memory are
used as temporary storage locations.

DELAY: LD 1,v2
AlISZ 1,-1
JMP -1
RTS
DELAY2: LD 0,Vv2
AlSZ 0,-1
Jip -1
RTS
V1: JWORD 433 s DELAY PARAMETERS

V2: JWORD 862

3.3.3 Teletype Get Character and Echo Routine

This routine takes 8 bits of serial data from the teletype transmitter, packs them
into ACO with the bits right-justified, and also echoes the character back to the
teletype receiver. The echo operation is done bit-by-bit so that the maximum rate
of character processing can be achieved. The program listing follows on page 3-9.

3.4 TELETYPE TIMING PARAMETERS

All the teletype programs described in this chapter utilize software delay routines to
time the serial transmission of teletype data bits. These routines have timing parame-
ters that provide 1/2-bit and 1-bit delays based on a teletype speed of 110 bits/second.
The following example shows how the parameter V1 in the delay routine is derived. A
similar calculation yields V2.

Time for AISZ instruction = 4x%x1.4+0.35 us=5.95 us
Time for JMP instruction = 3x1.4+0.35 us =4.55 us
1/2-bit delay time = 4.545 ms -3

Vi _ 4.545 x 10 = 433

(5.95 + 4. 55)10 0

3-8

SUPPLEMENT 1

«PAGE '"TELETYPE GET CHARACTER ROUTINE WITH ECHO!
TTYAD = 78
READ = 2
SEND = 3
RDREN = b
RESET = 5
’
GECHO: ST AC2,8 ; SAVE AC1 AND AC2 IN
ST AC1,7 ; LOCATIONS 7 AND 8
PFLG 2
LI AC3,TTYAD
ROUT RESET ; RESET TELETYPE
L1 AC2,8 5 SET BIT COUNT TO 8
ROUT RDREN ; ENABLE READER
RIN READ
BOC 2,.+2 ; TEST FOR START BIT
JMP =2
LD ACO,V1
JSR DELAYOQ+1 ; DELAY 1/2 BIT TIME
RIN READ ; TEST IF START BIT IS STILL THERE
BOC 2,.%2 ; BRANCH IF GOOD START BIT
JMP GECHO+3
LP3: ROUT SEND ; ECHO BIT
JSR DELAYO ; DELAY ONE BIT TIME
RIN READ
AND ACO,MASK MASK UNWANTED BITS
SHR ACl,1 SHIFT DATA

RXOR ACQ,AC1
AlISZ AC2,-1

ADD NEW BIT TO DATA
TEST TO SEE IF DONE

Ne %o Ne Ne

JMP LP3

ROUT SEND ; ECHO LAST BIT

JSR DELAYO ; DELAY INTO FIRST STOP BIT

Lt ACO,-1

ROUT SEND ; SEND STOP BIT

SHR AC1,8 ; SHIFT DATA INTO RIGHT 8 BITS
RCPY AC1,ACO ; PUT CHARACTER IN ACO

LD AC1,7 ; RESTORE ACCUMULATORS

LD AC2,8

RTS

MASK: JWORD X*'8000

V1: -WORD 01B1

V2: WORD 035E

DELAYO: LD ACO,V2 ; DELAY SUBROUTINE (ACO0)
Alsz ACO,-1
JMP =1
RTS

SUPPLEMENT 1

MODEL A (msec) B (msec) C (usec) D (usec) E (msec)
TIMING M200 24 6.25 1314 2014 8.05
CHART M300 24 2.60 435 870 102.66
M600 24 2.60 435 870 3.48
READY — l—TIME VARIABLE
|
r ol
PICK COMMAND — -
PICK (SOLENOID) 1 ‘ | ! Bl
1 —|K—1 . SEC
r = | I
BUSY :j | | |.J|_l |
DATA LINES ! J%;;I;DATA/W/L_JI ///,D,A,-[‘c\////].__.l////”/’
I 1)1] H I " 1
INDEX MARKS L__Hil__i 80 EATJ@_? fii—80 EA —yjj -
BB
DETAIL AA
BUSY I DATA COLUMN 1 DATA COLUMN 2
DATA LINES ' /%44/./././.4/.l GUARANTEED l//]__[4<<4/,<</,444/ GUARANTEED /fl_
B >
BEGHj CARD : ¢ I SHADED AREA NOT GUARANTEED
READ CYCLE 2 wSEC
INDEX MARKS I
6 uSEC |
D |
DETAIL BB
PICK
(SOLENOID) —{—1 usEC
BUSY i
DATA COLUMN 80 T
DATA LINES . GUARANTEED 4
INDEX MARKS '—r‘I |
E
[|
END CARD READ CYCLE
NS00154
Figure 4-1. Standard Interface Timing for Documation M Card Readers

4-0

SUPPLEMENT 1

CHAPTER 4

CARD READER INTERFACE

4.1 GENERAL INFORMATION

Two simple program-controlled card reader interfaces are described in this chapter.
The DOCUMATION 600 (or 300) card reader has been used in the examples; timing
for this card reader is shown in figure 4-1. The IMP-16C processor initiates the
operation by sending out a ''pick'" command to fetch a card. After the card has been
picked, the card reader sends out 80 index marks that signify the start of each
column of data. The IMP-16C program detects the presence of these marks and
reads and stores each column of data into an 80-word buffer.

There are two ways to effect this operation: one method that uses only five IC
packages makes use of two control flags and no device address decoding. This
approach has the advantage of being economical and simple to implement, but it ties
up two of the six available user control flags. The second method does not use any
flags but requires more hardware to achieve the same purpose. Each of these two
methods is described in the following paragraphs.

4.2 PROGRAM CONTROLLED INTERFACE USING CONTROL FLAGS

The following program segment shows how to read an 80-column card and store the
data into a buffer. The hardware for this is shown in figure 4-3. For this method,
no peripheral addresses are required; as a matter of fact, no RIN or ROUT instruc-
tions are required for anything other than actual input of data. All other control
operations are effected with the SFLG and PFLG instructions.

The circuits shown in figure 4-3 are used with the control panel of chapter 2. When
used in this mode, the switches from the control panel are wired into the SW inputs of
the DM8123 multiplexers (as shown in figure 4-3) instead of directly to the SW lines

of the IMP-16C card. Flag 14 (under program control in the RDCARD routine) selects
either the switches or the card-reader for data input to the IMP-16C. The block dia-
gram below shows the arrangement of this interface and a control panel with the IMP-16C.

BDO
CONTROL PANEL :w
|MP-00H,/882
(IMP-00H/882) y W
CARD READER | DATA sw| MP-16C
DATA INTERFACE -
| P22l (Figure 4-3
CARD READER | pck Figure 49 | conmoL F13,F14
(Documation) |ag il e

Figure 4-2. IMP-16C and Control Panel Interface, Block Diagram
4-1

SUPPLEMENT 1

DOCUMATION +5V
CARD 0o sw
READER - 00 — 03 IMP-16C
T o
<
$ w00 56003
i 560 0 53092‘ 2| s| 1| n
$
" P 1 Ao Bo Co Do
3 4
6 7 o
"‘|">— C DM74H73 DM8123
300 B 13| ¢ 12 o
g
K 10 9
CLR D1 "
? S E
1 1 15
READY
>
»>
MOTION
>
4/_— F14
74H08 :’—4— 134
HOPPER sw ~—
> 04 - 07
2| 5| 1a| 1
DATA 00 3 4 8
o1 6 7
P 103
DM8123
02 13 12
» 100
03 10 9
105
sw
08 - 1n N £
15
2) s| 1l n
04 3 4
%
05 6 7
92
DM8123
06 13 12
9
o7 10 9
- 03
E s 12 > 15
15 1
2| 5| 14| n
08 3 4
» o5
09 6 7
96
10 13 DM8123 12
» 97
DATA 11 10 9
» 106
s E
{ 74r08 15
PICK \.
74H08
< 135
F13
NS00155
Figure 4-3. Card Reader Interface, Flag-Controlled

4-2

RDCARD:
$2:

$0:

INERR:

$C:
$1:

ABUF:

4.3

BITO
BIT1
PICK
READCA
BUFFER

L} @m.r:w

PUSH
LD

L1
SFLG
SFLG
RIN
BOC
SKAZ
JMP
BOC
RCPY
PFLG
L!
HALT
JMP
-WORD
PFLG
PFLG
SHR
ST
AlSZ
Alsz
JMP
PULL
.VORD

=6
256 - 80

2

3,ABUF
2,80
PICK
READCARD

B1TO,$1
0,$C
INERR
B1T1,$0
RO,R1
PICK
RO,1

$2

0c
PICK
READCARD
0,u

0, (3)
3.1
2,~1
$0

2
BUFFER

SUPPLEMENT 1

Ne Ne Ne Ne Ne Ne Ne Noe N

Ne Ve N e %o Ne N

e

LOAD ADDRESS OF BUFFER.
SET COLUMN COUNT.

ENABLE PICK FLAG.

ENABLE DATA INPUT BUFFERS.
GET DATA.

TEST INDEX MARK.

TEST HOPPER AND

MOTION CHECK.

TEST READY.

START COLUMN DATA PROCESSING,
DISABLE PICK AND INDEX FF.
STRIP STATUS BITS.

SAVE CHARACTER IN BUFFER.
INCREMENT BUFFER ADDRESS.
DECREMENT COLUMN COUNT.

JUMP TO READ NEXT COLUMN

ADDRESS OF BUFFER HERE.

PROGRAM CONTROLLED INTERFACE USING DEVICE ADDRESSES

This approach is a more-conventional approach to I/O interfacing because it makes
use of decoded device addresses provided by RIN and ROUT instructions. The num-
ber of ICs required increases slightly.

The program listing below describes a read card routine that works with this inter-

face.

The hardware is shown in figure 4-4.

Note that this interface does not depend on the use of the simple control panel because

a unique device address has been assigned to the card reader.

All peripheral de-

vices (including any type of control panel) would communicate with the IMP-16C card

via a tri-state input bus connected to the SW lines.
at a time controls the input bus as selected by the appropriate device address.

In order words, only one device
The

control panel (switches and lights) would have its own device address.

RDCARD:

$STRT:

CcoL:

$C:
MOTERR:

ABUF:
$ONE:

'READCARD ROUTINE'

.PAGE

CRADR = 02*8
PICK =2
RESET = 3

READ =1

PUSH 2

PUSH 1

LD 2,ABUF
Lt 3, CRADR
Lt 1,80
ROUT PICK
RIN READ
BOC BIT1, .+2
JMP =2
BOC BITO, COL
SKAZ 0,$C
JMP MOTERR
JMP $STRT
ROUT RESET
SHR 0,4
ST 0,(2)
ADD 2, $ONE
AlSZ 1,-1
JMP $STRT
PULL 1

PULL 2

RTS

JWORD OC
RCPY 0,1
ROUT RESET
L1 0,1
HALT

JWORD O
WORD 1

SUPPLEMENT 1

Ne Se Ne N

N Ne Se Ne

CARD READER ADDRESS
PICK COMMAND ORDER CODE.
RESET PICK FLIP-FLCP.
READ DATA

LOAD CARD READER ADDRESS.

GET CARD
GET DATA
LOOP UNTIL READY.

TEST FOR INDEX MARK.
TEST FOR HOPPER/MOTION CHECK.

STRIP STATUS BITS.

SAVE DATA IN BUFFER
INCREMENT BUFFER ADDRESS
DECREMENT COLUMN COUNT

ADDRESS OF BUFFER HERE.

SUPPLEMENT 1

+5V
DOCUMATION
CARD READER
390 IMP-16C
{ 7408 J Q
INDEX |- 8093 Swoo
MARK 390 —OE
c
74H73
K
8093 swo1
CLR >—-A E.
1K T
+5V O—AM J Q
8003 swo2
—qe
74473
K 8093 sw o3
CLR
(o) | oLt
7402
CRENBL* |
_ READY
> E M swoa
MOTION
. ,
. HOPPER >
DATA 0 - RDP-Q1
o 7400
Ll
2x .
> 8097 P Sw 15
N +5V
> 7410
390
>
L 12 DATA LINES
5
»
> 220
ADX 00%
> — ADX 00
. ADX 01
>
R CRADR ADX 02
d ADX 03
DATA 12 / — ADX 04
12 DATA LINES ADX 05
7404
ADX 06
7430
ADX 07
ADX 08
ADX 09
2x
04 ADX 10
- ADX 10%
WRP-Q1 o
¢ 7410 |4 /__
ﬂ‘_— ADX 00
RDP—Q1
ADX 01 . P o ROP
7474
RESET*
Q ¢ ©
7410 7
a P o WRP
WRP
—
PICK 7400 7474
PICK 7410
SETPICK* -
7411 [¢—— ADX00* —1Q g © c45
~———¢— apxo2*
CLK 81
7404
INIT
Figure 4-4. Card Reader Interface, Device Address-Controlled
NS00156

4-5

SUPPLEMENT 1

CHAPTER 5

LOADER ROUTINES

5.1 GENERAL INFORMATION

The IMP-16 Assembler creates load modules (tapes or cards) from source programs
written in assembly language. These load modules (called RLMs) contain the object
code for the program to be executed, relocation information, and other loading infor-
mation, arranged in four kinds of records: a 'title" record, one or more "symbol"
records, one or more ''data" records, and an "end" record. Specific details of the
various record formats are given in the IMP-16 Assembler Manual (4200002).

The loader programs described in the following paragraphs may be used with the
routines and programs presented in chapters 3 and 4.

5.2 ABSOLUTE LOADER (ABSLDR)

The following loader program takes an absolute paper tape (in RLM format) and

loads it into memory from a starting address defined on the tape. After loading the
program, the IMP-16C halts and the program entry address is displayed. If EXECUTE
is pressed, the processor jumps to the loaded program and begins execution.

This loader program may be used with any of the TTY routines described in chap-
ter 3. That is, either GETC or RECV and PUTC or SEND may be used. The list-
ings shown here call SEND and RECV, but the JSR calls may be changed appropri-
ately to call PUTC and GETC respectively.

.PAGE 'TTYLDR FROM RLM TAPES'
ABSLDR: JSR RECV

A1Sz 0,-2 ; LOOK FOR STX CHARACTER.

JMP ABSLDR

JSR RDPACK2 ; START PROCESSING RECORD CONTROL INFO
BOC C2,TORS ; IF BIT15=1 GO TO TITLE, SYMBL PRCSSING
SHL 0,1

BOC C2,.+2 ; |F BIT14=0 GO TO DATA RECORD.

JMP ENDREC
DATREC: SHR 0,1

RCPY 0,3

JSR RDPACK2
RCPY 0,1
PUSH 0 ; SAVE CHECKSUM WORD.
CAl 1,1
JSR RDCHK
JSR RDCHK
RCPY 0,2

JSR RDCHK
JSR RDCHK
RADD 2,3

CAl 3,14

(listing continued)
5-1

SUPPLEMENT 1

LOAD: JSR RDCHK

ST 0,(2)
ADD 2,$0NE ; INCREMENT ADDRESS.
RCPY 2,0
RADD 3,0
BOC C2,CKTEST
JMP LOAD
‘RDCHK: JSR RDPACK2
RADD 0,1
RTS
CKTEST: PULL 0 ; CHECKSUM TEST
BOC C1,ABSLDR
RCPY 1,0
BOC C1,ABSLDR
LI 0,X'33
HALT ; CHECXSUM ERROR.
TORS: AND 0,H3FFF
RCPY 0,1
JSR RDPACK2
AlSZ 1,-1
JMP =2

JSR RDPACK2
JMP ABSLDR
ENDREC: JSR RDPACK2
JSR RDPACK2
JSR RDPACK2

HALT
RDPACK2:JSR RECV ; READS AND PACKS TWO CHAR IN ACO.
PUSH 1
SHL 0,8
PUSH 0
JSR RECV
PULL 1
RXOR 1,0
PULL 1
RTS

5.3 PAPER TAPE BOOTSTRAP LOADER (PTBOOT)

For programs of short length, it is sometimes desirable to load directly into memory
without going through an assembly. For such cases, the following program serves the
purpose of loading hexadecimal information directly from paper tape. The loader format
is laid out such that the first 4 hexadecimal characters (that is, 4 rows of 8-bit ASCII
coded characters) from the paper tape are interpreted as the starting address. All subse-
quent blocks of 4 characters each are interpreted as data and packed into 16-bit words.
The last recognizable character on the tape should be "!'". All data characters are
arranged so that the most significant bits appear first. The PTBOOT program reads the
tape and returns control to the panel routine. This assumes that this program is used

with the control panel routine described in chapter 2. PTBOOT calls the teletype RECV
routine described in 3. 2. 2,

5-2

SUPPLEMENT 1

PTBOOT PROGRAM

LOOP1: LI 1,k

JSR PTBOOT

RCPY 2,3; READ FIRST & WORDS; THIS IS THE
; STARTING ADDRESS.
LOOP2: LI 1,4;

JSR PTBOOT
ST 2,(3); READ AND STORE 4 HEX WORDS.
ADD 3,0NE; INCREMENT MEMORY ADDRESS.
JMP LOOP2
Lt 0,X'77; ERROR CODE X'77
HALT; ATTEMPTED TO LOAD LOC 0.
PTBOOT: JSR RECV; GET ONE WORD.
PACK: AND 0,MSKPAR; MASK OUT PARITY BIT.
SKNE 0, EXCLAM;
JMP $0UT
SKNE 0,CRETRN; IGNORE CARRIAGE RETURN,
JMP PTBOOT
SKNE 0, LINEFD; IGNORE LINEFEED.
JMP PTBCOT
SKAZ 0,NUMBER;
JMP NUM
SKAZ 0,ALPHA;
JMP ALFA
Ll 0,3; ERROR CODE: INVALID CHARACTER.
JMP 0;

ALFA: ADD Q,NINE;
NUM: AND 0,MSK1
SHL 2,4
RXOR 0,2
AlSz 1,-1
JMP PTBOOT
RTS
$0UT: PULL 1
PULL 1
HALT
. NINE: JWORD 9
MSKPAR: .WORD 0O7F
MSK1: .WORD OF
NUMBER: .WORD 030
ALPHA: .WORD 040
CRETRN: .WORD 0D
LINEFD: .WORD OA
EXCLAM: .WORD 021
RECV1: .WORD RECVY

5.4 CARD READER LOADER (CRLM)

This loader program takes an absolute RLM in card format and loads it info memory.
It uses 80 words of memory as a temporary buffer. For the example program given
here, locations 176 to 255 in base page are used for the buffer. The object deck to
be loaded must be followed by a !G card. This loader routine calls a RDCARD sub-
routine, which may be any one of the two described in chapter 4.

5-3

Ne Ve Ne Ne Ne Ve Ne %o Ne N Ne NE NE Ve Ve Ne Ne Ne Ne N N N

Ne %o Ne Se %o Ve Ne Ve Ve Ne Ne N

SUPPLEMENT 1

THIS IS AN ABSOLUTE LOADER FOR THE IMP-16C/P SYSTEM
(BASE PAGE VERSION).

THIS PROGRAM READS ONE RLM FROM THE CARD READER AND
LOADS IT INTO MEMORY. THE RLM MUST HAVE BEEN PUNCHED
INTO CARD COLUMNS 1-72, AND CAN CONTAIN PUNCH CODES
ONLY FOR THE CHARACTERS O,1,...,9,A,B,...,F, OR BLANK.
BLANKS WILL BE TREATED AS 0.

THE RLM MUST BE IN STANDARD RLM FORMAT. THE TITLE CARD
AND SYMBOL CARDS ARE IGNORED. DATA FROM DATA CARDS IS
MOVED TO THE SPECIFIED LOAD LOCATIONS WITHOUT ANY
RELOCATION PERFORMED. THE END CARD MUST CONTAIN AN
ENTRY POINT ADDRESS (SEE ERROR CODE 5, BELOW) AND IS
LAST CARD READ BY ABSCR.

A CHECKSUM TEST IS PERFORMED ON ALL INPUT CARDS. (SEE
ERROR CODE 3, BELOW.)

BUFFER AREA IN BASE PAGE, LOCS. 256-80.

ERROR MEANING ACTION

1 1/0 ERROR REPLACE CARD IN READER AND PUSH START

2 INV. CHARACTER CORRECT CARD, REPLACE IN READER, AND
PUSH START. (ONLY CODES O,...,F
AND BLANK ARE ALLOWED.)

3 CHECKSUM ERROR CORRECT CARD, REPLACE IN READER, AND
PUSH START.

5 INV. ENTRY POINT SET CORRECT ENTRY POINT INTO REG. 1

AND PUSH START.

ALL ERROR CODES ARE LOADED INTO REG. 0 BEFORE HALTING.

)

o
WD
m

il WhN=O

vl & W

"ABSCR ROUTINE - IMP-16C'

INLOOP:

CKSUML

ERR3:

VALID:

TITLE:

SYMBOL:

END:

JSR RDCARD;
JSR CNVRT;
LD 3,ABUF;
LD 0, (3)
AND 0,MASK3
RCPY 0,2

Lt 1,0;

SKNE 1,1(3);
JMP VALID

ADD 1,2(3)
Alsz 3,1;
AlSZ 2,-1;
JMP CKSUML
LD 3,ABUF
SKNE 1,1(3);
JMP VALID
Ll 0,3;
HALT

JMP INLOOP
LD 2,(3)
SHR 2,14;
ADD 2,JTBL
JMP @(2);

JMP INLOOP;

JMP INLOOP;

LD 1,3(3);
ST 1,8;
JMP INLOOP

SUPPLEMENT 1

READ ONE CARD.
PACK DATA.

SUM=0
IF CHECKSUWM = 0, DATA VALID.

INCREMENT ADDRESS

COMPARE SUM&CKSUM.
ERROR CODE 3; CHECKSUM ERROR

ISOLATE CODE FOR RECORD TYPE.
AC2 <- CODE + JUMP TABLE ADDRESS.
JUMP TO PROCESS RECORD TYPE.

IGNORE TITLE CARD.

IGNORE SYMBOL CARD.

SAVE PROGRAM ENTRY POINT
LOCATION 8 HAS ENTRY POINT

(listing continued)

5-5

SUPPLEMENT 1

EBUF: .WORD BUFFER+72;
BUFFER = 256 - 80
ATBL: .WORD TBL;

ETBL: .WORD TBL+15;
JTBL: .WORD JUMPTBL;
JUMPTBL: WORD TITLE,SYMBOL,DATA,END;
DATA: LD R2,3(R3); A <=- INITIAL LOAD ADDRESS
A1SZ RO, -k; L <-- L - 4 (SKIP OVER RELOC. INFO)
AlSZ R3,6; P <-- P + 6 (SKIP OVER RELOC. INFO)
DLOOP: LD R1,0(R3);
ST R1,0(R2); WORD(A) <~-- WORD(P)
AlSZ R3,1; P<--P+1
AlSZ R2,1; AL-A+1
AlSZ RO,-1; L <-- L -1, SKIP IF DONE
JMP DLOOP; LOOP FOR NEXT WORD
JMP INLOCP; LOOP FOR NEXT CARD

.PAGE 'HOLLERITH TO BINARY*CONVERSION'

ENTRY = 8; ENTRY POINT IN LOCATION 8.
CNVRT: LD 3,ABUF; FETCH BUFFER ADDRESS.

RCPY 3,2

LD 1,(3)

SKNE 1,EXCLAM;

JMP . +2

JMP LOOP1

LD 1,1(3)

SKNE 1,G

JMP . +2

JMP LOOP1

PULL 0;

LD 2,ENTRY

SKG 2,ZERO;

JMP ERROR5;

IF "IG" CARD, GO TO ENTRY POINT

EXIT FROM SUBROUTINE; POP STACK

IF ENTRY POINT >0, SKIP
ELSE ERROR CODE 5.

$EX: Lt 3,1; IDENTIFY LOAD DEVICE AS CARD READER
JMP (2); JUMP TO LOADED PROGRAM

ERRORS: LI 0,5; ERROR 5: [INVALID ENTRY POINT.

ZERO: HALT
RCPY 1,2; HALT AND THEN
JMP $EX; JUMP TO LOADED PROGRAM.

LOOP1: LI 0,-k
LD 1,(3)
ST 3,7;
LD 3,AT3L
LOOP2: SKNE 1,(3)
JMP STEP2

SAVE CURRENT BUFFER LOCATION

ERR2:

ADD 3,TBL+9;
SKG 3,ETBL;
JMP LOOP2
SKNE 1,7ZERO;
JMP BLANK

Ll 0,2;
HALT;

PULL 0;

JMP INLOOP

INCREMENT ADDRESS
SKIP IF END OF TABLE

IF NOT BLAMK THEN SKIP.
INVALID CHARACTER.

HALT AND THEN
REREAD CARD.

5-6

BLANK:
STEP2:

MASK1:
MASK3:
THREE:
EXCLAM:
G:

TBL:
MASK2:

LD 3,ATBL
SUB 3,ATBL
LD 1,9

SHL 1,4
RXOR 3,1;
ST 1,9;

LD 3,7;

ADD 3,TBL+9;
AlSZ 0,1;
JMP LOOP1+1
ST 1,(2);
ADD 2,TBL+9
SKNE 3,EBUF
RTS

JMP LOOP1
JWORD X'CO
JWORD X'3FFF
JWORD 3
JWORD X'L82
JWORD X'8C4

SUPPLEMENT 1

MERGE 4 BITS AT A TIME.

SAVE PARTIALLY PACKED WORD.

GET BUFFER LOCATION

INCREMENT BUFFER LOCATION

CHECK TO SEE IF L WORDS COLLECTED.

STORE PACKED WORD

; TRANSMISSION ERROR OR DATA OVERRUN.
; ALL BITS BUT RECORD TYPE.

.WORD 0200,0100,0080,0040,0020,0010

JWORD 0008

JWORD 0004,0002,0001

; HOLLERITH 6 ALSO ERROR CODE FOR CR BUSY.

.WORD 0900,0880,0840,0820,0810,0808

.END INLOOP

5-7

SUPPLEMENT 1

CHAPTER 6

APPLICATION PROGRAMS

6.1 GENERAL INFORMATION

This chapter presents two application programs that can be used to obtain memory
dumps onto paper tapes as described in the following paragraphs.

6.2 PROM TAPE GENERATOR

This program takes the contents of a specified range of memory locations and dumps
them on to paper tape in binary 8-channel format suitable for programming ROMs on
the DATA I/O PROM programmer. The first tape generated contains the left byte of
the 16-bit word and the second tape contains the right byte. This routine calls the
SEND routine of the teletype utilities package. Before executing the program, AC2
should contain the starting address of the range and AC3 the final address. The
DATA I/0 machine has negative logic, so the data bits are complemented before
being punched.

; PROM TAPE PROGRPAM
BLNK: LI 1,20
LI 9,-1
JSR@ SEND1 ; ROUTINE TO PROVIDE
AlSZ i,-1 ; LEADING BLANKS
JMP -2
RTS
JSR BLNK
PUSH 2 ; SAVE STARTING ADDRESS
LD 1,PROM ; DuMMY WORD FOR COMPARISON
PROM: LD 0,(2)
CAl 0,0 ; INVERT BITS FCR DATA 1/0
; MACHINE
SKNE 1, PROM 3 SKIP FOR RIGHT SIDE
SHR 0,8 ; RIGHT JUSTIFY MSBYTE
JSRA@ SEND1
RCPY 3,0 ; CHECK TO SEE 1F DONE
RXOR 2,0
BOC 1,.+3 ; IF DONE GO TO HALT
AlSZ 2,1 ; INCREMENT ADDRESS
JMP PROM
HALT 5 AWAIT "EXECUTE" FOR
; RIGHT SIDE
JSR BLNK
PULL 2 s RESTORE ADDRESS
JMP PROM s GENERATE RIGHT SIDE TAPE

SEND1: .WORD OFF53 ADDRESS OF SEND ROUTINE IN CUTIL

6-1

SUPPLEMENT 1

6.3 PAPER TAPE PUNCH PROGRAM

This program generates an absolute paper tape from the contents of a specified range
in memory. The first four characters on the tape are the ASCII equivalent of the
four hexadecimal numbers that specify the starting address. The last character is
an exclamation mark; this serves as a termination indicator. The listing for this

program is given in appendix A.

SUPPLEMENT 1

CHAPTER 7

INTERRUPT HANDLING

7.1 GENERAL INFORMATION

In the IMP-16C, there are two processor interrupt request lines; one of these is
reserved for stack overflow interrupts. All external peripheral devices are wired to
the main interrupt request line (INTRA). If any device generates an interrupt request,
the line goes high and interrupts the processor if the master interrupt enable (INTEN)
is set for the processor.

7.2 INTERRUPT RESPONSE

Response to a processor interrupt occurs at the end of the instruction executing at

the time the interrupt occurs. The interrupt causes the processor to save the current
state of the program counter (PC) on the top of the stack and to set the new contents
of the PC equal to 1. The interrupt enable flag (INTEN) is then turned off, and the
processor executes the instruction in memory location 1, which is the start of the
interrupt service routine. The interrupt service routine may determine the presence
of a stack overflow interrupt by use of the BOC instruction. The instruction in loca-
tion 1 may also be a jump to an interrupt routine located elsewhere.

Available at the card-edge connector of the IMP-16C are two status flags (Flag 0 and
Flag 12); these status flags may be used in multi-level interrupt schemes. These
flags would then serve as interrupt enable signals for each level of a two-level sys-
tem. Figure 7-1 shows the external circuits required for this function.

EXTERNAL LOGIC . IMP-16C
' :
REQ 1 N1
INT . INTE = '< FLAG 0
LEVEL 1 ‘
[}
1
1
]
1
1
LINTRA
i < TO INT FLIP-FLOP
1 INTCTL D—’
R
1
)
'! —INTEN
]
INTREQ 2 i
g L]
LEVEL 2 '
N > ! < 3—FLac12
1

Figure 7-1. Interrupt Response External Circuits

7-1

SUPPLEMENT 1

7.3 INTERRUPT GENERATION AND PROCESSING

The following discussion pertains to a two-level interrupt system, but all the opera-
tions apply to single-level interrupts as well.

7.3.1 General Interrupt

Interrupt requests on levels 1 and 2 require that the interrupt service routine deter-
mine the address of the interrupting device. This can be done conveniently using the
interrupt Select Status™ order as described below.

A peripheral controller requiring interrupt servicing by the processor sets its inter-
rupt request flag, thus causing a true signal on the interrupt request line if the per-
ipheral's interrupt enable flag is set true. The interrupt request line is common to
all peripheral controllers on a given level and only requires that one peripheral de-
vice be requesting service in order to set the line to the true state. The main pro-
gram, when ready, sets the processor INTEN flip-flop, thus indicating that the pro-
cessor may perform an interrupt service. If both the processor INTEN and the
interrupt enable for the given level are enabled at the same time, the processor
transfers program control to the interrupt service routine.

When the processor responds to an interrupt request, it goes through the following
procedure in order to transfer program control to the interrupt service routine:

1. Transfers the contents of the Program Counter (PC) to the top
of the stack.

2. Places the address of memory location 1 into the PC.

3. Disables (clears) the processor INTEN flag to prevent further
interrupt.

4. TFetches the next instruction from memory location 1, thus
initiating the interrupt service routine.

When an interrupt occurs, the interrupt service routine directs the processor to

has¥al3d kﬂ nnnﬂwvv\11c
iiay O aClUNIpLisie

1. An "interrupt select status' order is sent out to all peripheral
controllers. The order field of the command word is the only
field recognized by the peripheral controllers, and the address
field is ignored. Upon receipt of the "interrupt select status"
order, the INT REQ flags at the peripheral devices are cleared
in most cases.

7-2

SUPPLEMENT 1

2. Each peripheral device is assigned one of the 16 system bus
lines to report its interrupt status. Each peripheral device
responds simultaneously with other peripheral devices, indi-
cating whether or not it requires interrupt servicing. A
binary 1 indicates a service request. Typical interrupt
assignments are shown in table 7-1.

3. The interrupt service routine resolves interrupt priority and
selects the peripheral device for interrupt servicing.

NOTE

Although there are only 16 system bus lines
that are used for reporting interrupt status,

by use of two "interrupt select status" orders,
1 and 2, the status of 32 peripheral devices
may be determined, one group of 16 peripheral
devices responding to "interrupt select status 1"
and another group to "interrupt select status 2.'"
This concept can be extended to more than two
levels of interrupt select status orders if neces-
sary.

After a peripheral device obtains interrupt access, the applicable RIN or ROUT com-
mand then effects the transfer of data between the processor and the peripheral con-

troller. Upon completion of the interrupt operations, program control is transferred

back to the main program by use of the RTI instruction. The RTI instruction causes

the program counter to be loaded by adding the top word of the stack to the CTL field
of the instruction. The INTEN flip-flop is then enabled.

Table 7-1. Typical Interrupt Select Status 1 Bit Assignments

Bit Assigned Peripheral
0 Unassigned
1 Parallel Teletype
2 Card Reader
3 Disc
4 Communications
5 Interval Timer
6 Unassigned
7 Serial Teletype
8 Modem
9 Unassigned
10 Unassigned

(table continued)

7-3

SUPPLEMENT 1

Table 7-1. Typical Interrupt Select Status 1 Bit Assignment (Cont.)

Bit Assigned Peripheral
11 Unassigned
12 Unassigned
13 Unassigned
14 Unassigned
15 Unassigned

7.3.2 Stack Overflow Interrupt

If the processor stack becomes full, a stack overflow interrupt is set. If the INTEN
flag is set, then the processor is interrupted. The interrupt service routine may
then test jump condition 8 to determine that the interrupt was caused by a stack
overflow.

In most applications, the software may be written in a manner that will guarantee
that a stack overflow will not occur. However, even in such cases, it is possible

in the system programming development that a stack overflow may accidentally occur.
Because the interrupt process itself utilizes the stack, some words of the stack may
be lost in the overflow interrupting sequence.

The systems programmer must take some precautions to guarantee that a stack over-
flow error does not go undetected and that data on the stack are not lost. The pro-
grammer must not push words of all zeros onto the stack as data; two protection
words of all ones should be kept at the bottom of the stack. These are relatively
minor restrictions since, in most applications, use of the stack is reserved for sub-
routine return addresses, interrupt return addresses, and for saving the RALU flags
while servicing interrupts.

7.4 SAMPLE PROGRAM FOR INTERRUPT PROCESSING

Consider the case of four peripheral devices connected to the IMP-16C in a priority
scheme such that when an interrupt occurs the interrupting device sends over the
bus a daita word whose value identifies the device. The following program segment
is a service routine that determines the identity of the device and sends control to a
device routine. After the device has been serviced, the interrupt routine returns
control to the main program.

The four devices for this example are a keyboard, an assemblage of digital integra-
tors, a display unit, and a printer unit — arranged such that the keyboard assumes
the highest priority. The keyboard indicates its status by sending a high level on
data bit 0 of the bus; the digital integrators use bit 1, the display uses bit 2, and
the printer uses bit 3. The values returned are, therefore, 1, 2, 4, and 8. The
order code for reading status has been chosen arbitrarily as 2.

7-4

SUPPLEMENT 1

In this example, the IMP-16C is the host processor that monitors the operation of

the peripheral system components. The digital integrators operate independently, re-
quiring processor intervention only to exchange data, initializing information, and
setting up other parameters. The display unit provides a continuous visual display

of the operation of the integrators, and the printer provides hard copy when necessary.

INTRAD = X'40
STATUS = 2
X2 =2
ACO =0

IDTABL: .WORD. ; ADDRESS OF SELF.
WORD KEYBD ; ADDRESS OF KEYBOARD ROUTINE.
JWORD DIGINT ; ADDRESS OF INTEGRATORS ROUTINE.
JWORD BADINT 5 ILLEGAL INTERRUPT ADDRESS.
JORD DISPLA > ADDRESS OF DISPLAY ROUTINE.
WORD BADINT ; ILLEGAL INTERRUPT ADDRESS.
JORD BADINT 5 ILLEGAL INTERRUPT ADDRESS.
JWORD BADINT ; ILLEGAL INTERRUPT ADDRESS.
JORD PRINTR > ADDRESS OF PRINTER ROUTINE.

INTERRUPT SERVICE ROUTINE BEGINS HERE

- N %o No

NTSERV: PUSHF ; SAVE STATUS FLAGS.

JSR SAVE1l ; SAVE ACCUMULATORS IN RAM.

L1 3, INTRAD

RIN STATUS s DETERMINE INTERRUPTING DEVICE
; BY READING THE INPUT BUS

FOR DEVICE STATUS BITS.
ESTABLISH INDEX VALUE.

~e

RCPY ACO, IX2

ADD 1X2, IDTABL ; MAKE A LOCAL ADDRESS.
JSR@ (1X2) ; JUMP TO DEVICE SERVICE ROUTINE.
JSR RSTOR1 > RETURN HERE AFTER SERVICING
; DEVICE AND RESTORE ACCUMULATORS.
PULLF > RESTORE STATUS FLAGS.
RTI 0 5 RETURN TO INTERRUPTED PROGRAM.
RSTOR1: LD 0,SVRO
LD 1,SVR1
LD 2,SVR2
LD 3,SVR3
RTS 0
SAVE1l: ST 2,SVRO
ST 1,SVR1
ST 2,SVR2
ST 3,SVR3
RTS 0
SVRO: WORD O ; STORAGE LOCATIONS FOR
SVR1: .WORD O 5 ACCUMULATORS.
SVR2: .WORD O ;
SVR3: .WORD O

(listing continued)

7-5

KEYBD:

DIGINT:
DISPLA:
PRINTR:
BADINT:

SUPPLEMENT 1

; SERVICE ROUTINES FOR
; THE VARIOUS PERIPHERALS.

7-6

SUPPLEMENT 1

APPENDIX A

ASSEMBLY LISTING

An actual assembly listing is presented on the following pages to illustrate some of
the topics described in this manual. This program listing consolidates some of the
routines described earlier and is a complete firmware package (available in PROM)
that can be installed and run on the IMP-16C with the control panel described in

chapter 2. The program is assembled at location FF00y6 and occupies the top page
of memory. A few locations in base page read/write memory are used for tempo-
rary storage. The following subroutines and procedures are included in the listirg.

Control Panel Service Routine

Panel HALT Interrupt Routine

Teletype Receive Character Subroutine
Teletype Transmit Character Subroutine
Paper Tape Absolute RLM Loader
Paper Tape Loader (BOOTSTRAP)
Tape Punch Program

The control panel described in chapter 2 is required for this program package. Addi-
tional interface hardware required are the circuits depicted in figure 3-1.

This package is available in ROM under the part name CUTIL. The two teletype rou-
tines in this package (SEND and RECV) are written as subroutines so they may be
called from user programs with the JSR@ instruction. Entry points and operating
instructions are given in the program listings.

REVISION-C
CUTIL

0000
0400
0000
uoLo
0000
VOBO
0000
Q000U
0000
0000
0000
0000
0000
QU00
0000
FFOO
FFOO

WOV EWN -~

FFOO
FFO0
FFOO
FFOO

ABSTTY FOR

FFOO
FFOO
FFOO
FFOU
FF00
FFOO
FFOO
FF0O
FFul
FFO2
FFO3
FFO4
FFO5
FFOo
FFO7
FFO8
FFO9
FFOA
FFOB
FFOC
FFOD
FFOE
FFOF
FFl0
| FF11
FF12
FF13
FFl4
FF15
FFlo
FF17
FF18
FF19
FF1A
FF1B
FF1C
FF1D
FF1E
FF1F

FFOO

11/720/72

0001
0002
0003
Q004
0005
0007
0008
0go8
000C
000D
000E
O00F
FFO0

PP PPIIP>P>P>

. 9o B¢ @ we We go

THE IMP-16C

P er we ws @ ¢ 6o

293C
48FE
21FD
2928
121F
5C01
1201
2123
5CFF
3381
2924
3181
4000
5101
290D
290¢
3281
290A
2909
3800
5305
23906
A200
4A01
3881
3C00
1204
21F9
2912
3100
0200
4400

BSTTvy:

TTYl:

TIYZ2:3

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A RDWDCK:
A

A

A

. Cl12

SUPPLEMENT 1

CONTROL PANEL AND TTY UTILITIES

<TITLE CUTIL,
<ASECT

c1
2
C3
Ca
C5
c7
cs
Cii

[R U S N

-
S WN -

Cl3
Cl4
Ci5 = 15
+=X*FF00

We B¢ B¢ e s W We We e We Bo Wb

73221 09143181
PAGE NUMBER i

SCUNTRGL PANEL AND TTY UTILITIES?

ACO = 0

BIT 15 OF ACO IS O

BIT O OF ACO IS5 1

BIT 1 OF ACO = 1

ACO = 0

START CONDILITION

STACK FULL CONDITION

ACO LTEQ O

JUMP COND. 1Z (WIREL TO ®LOAD ADDRESS™)
JUMP CONDe 13 (WLRED TO * LOAD DATA®)
JUMP COND. 14

JUMP CONDe 15 (WIRED TO “DISPLAY™)

THIS UTILITIES PACKAGE CONTALNS A SIMPLE
CONTROL PANEL ROULINE THAT OPERATES IN
CONJUNCTION WITH THE CONTROL PANEL KIT
(CTLPLKIT),AND SOME TELETYPE ROUEINES

TO LOAD PROGRAMS AND PUNCH TAPES.

« PAGE

YABSTTY FOR

THE IMP-16C*

LOADS ABSOLUTE PAPER TAPE LN RLM FORMAT.
EACH RECORD MUST BE PRECEDED BY STX.

ENTRY POINT FQR THIS PROGRAM IS:

JSR RECY
AISZ U,-2;
ABSITY
ROPCK;
29TORS;
0si

29 %23
ENDREC
SHR 0,1
RCPY 0,3;
JSR RDPCK
RCPY QO.1;
PUSH 03

CAI 1,1
JSR ROWDCK;
RCPY Qs2;
JSR RDWDCK;
JSR ROWDCK;
RADD 2,3
CAI 3,i+4;
JSR RDWDCK;
ST 0,12)
AlSZI 2,1;
RCPY 220
RADD 3,0
BOC 2,TSTCKSUNM;
JMP TTYZ
JSR RDPCK
RADD 001
RTS

TSTCKSUM: PULL 05

FFOO

LOOK FOR START OF TEXT.

PROCESS RECORD CONTROL INFORMATION.
BRANCH If TLTLE OR SYMBOL RECORD.

BRANCH TO DATA RECORD,
ELSE GO TO END RECOROD.

RECORD BODY LENGTH IN AC3.
SAVE CHECKSUM.

AC1l HAS —(CKSUM MODE WORD).
SLOUGH ADDRESS MODE.
GET. LOAD AUDRESS.

LOAD ADDRESS IN AC2.
SLJUGH RELJCATION MODE WORDS.

AC3 HAS —{LAST ADDRESS - 1li.
GET DATA WORD.

INCREMENT DESTINATION ADDRESS.

IF DONE TEST CHECKSUMa

GET CHECKSUM WORD.

REVISION-C 11/20/72
CONTROL PANEL AND TTY UTILITIES

CUTIL
62
63
64
65
66
ol
o8
69
70
71
L3
73
74

15
16

FF2u
FF2i
FF2<
FF23
FF24
FFe5
FF26
FF27
FF28
FF29
FF2A
FF28
FF2C

FF2D
FF2E

FF2F
FF2F
FF30
FF31
FF32
FF33
FF34
FF35
FF36
FF37
FF38
FF39
FF3A
FF38
FF3C

L1DF
3481
1ib0
0000
6117
3181
2908
49FF
21FD
2905
2105
2903
<902

PP PbEb>

290t A

2000

4100
290C
5Cu8
4000
2909
4500
3482
4500
0200
852€
49FF
21FE
020V
3FFF

>

PERPRPIPRPEPEPPFRPPRDD

TORS:

ENDREC

ROPCK:

EXITL1

DELAY:

H3FFF3:

.
-

SUPPLEMENT 1

80C Cl,ABSTTY
RCPY 1.0

BOC Cl,ABSTTY
HALT;

AND G H3FFF;
RCPY 041

JSR RDPCLK
AISZ 1,-1

JMP -2

JSR RDPLK

JMP ABSTTY
JSR RDPLK;
JSK RuPCK;

JSR RDPCK;
JMP 03

«SPACE 3
PUSH 1
JSR RECV
SHL 0,8
PUSH 0
JSR RECV
PULL 1
RXOR 1,0
PuLL 1
RTS

LD 1,v2;
AISZ 1,-1
JMP -1
RTS

«WURD X'3FFF

TELETYPE GET CHARACTER ROUTINE

120

FF30
FF3D
FF3D
FF3D
FF30
FF3D
FF3D
FF3E
FF3F
FF40
FF4l
FF42
FF43

> FF44

FF45
FF46
FFa7
FF48
FF49

L FF4A

FF48
FF4C
FF4D
FFrat
FF4F
FF50
FF51
FF52
FF53

OGOE
0003
0004
0001
G002
4160
4200
0A80
4EG8
0BOO
1ECL
21FE
8521
29F3
0B 80
1E01
21Fe6
29kE
S5CFF
1E01
6918
4AFF
ZLFA
29E8
5CF8
4600
21€3

PP PPPEPPPPPIPBRPLDILDIRPBPDD

RECV:

REP:

«PAGE
JCle = i4;
READR = 3;
AMIT = 43

cl =1

€2 =2

PUSH 1;

PUSH 2

PFLG 23

LL 2,383

SFLG READR
B8OC JCl4ret+2;
LD isVi;

JSR DELAY +1;
PFLG READR;
B80C JC14y o*+2;
JMP RECV#2
JSR DELAY;
SHR 0,13

BOC JCl4,.+2;
OR 0,HB8000;
AISZ 2,-1;
JMP REP;

JSR DELAY
SHR §,8;

PULL 2%

JMP EXITL;

13227 09143181
PAGE NUMBER 2

CHECKSUM EKROR.

IGNORE TITLE AND SYMBOL RECORDS.

SLOUGH CHECKSUM.
SLOUGH ENTRY ADDRESS MODE.

GET ENTRY ADODRESS
JUMP EO PANEL ROUTINE.

DELAY SUBROUTINE

'TELETYPE GET CHARACTER ROUTINE®

INPUT JUMP CONDITION.
READER ENABLE FLAG.
TEY TRANSMLT FLAG.

SAVE ACCUMULATORS.

DISABLE LINK.
SET COUNTI FOR 8 BITS.

TEST FOR START BiT.
LUOP UNTIL FOUND.
LOAD TLMING PARAMETER.
DELAY HALF BLT TIME.

TEST FQR DATA BIT.

DECREMENT COuUNT.

THIS STEP DUNE TO SAVE
PROGRAM STORAGE SPACE.

(listing continued)

SUPPLEMENT 1

REVISION-C 11/20/72 13221 09143181
CUTIL CONTROL PANEL AND TTY UTILITIES PAGE NUMBER 3
TRANSMIT. CHARACTER ROUTINE

121 FF53 «PAGE *TRANSMIT CHARALTER ROUTINE®

122 FF53 4200 A SEND: PUSH 23 SAVE ACCUMULATORS.

123 FF54 4100 A PUSH 1;

124 FF55 0C0O0 A SFLG XMIT; SEND START BIT.

1245 FF56 2Z9El1 A JSR DELAY;

126 FF57 4EQ8 A LI 2483 SET BLT COUNT.

127 FF58 UC8u A PUTL: PFLG XMIT;

128 FF59 13061 A BOC 3.8XX

129 FFS5A GLOO A SFLG XMLT;

130 FF5B 29DC A $xXX: JSR DELAY; SEND DATA BiTl.

131 FF5C 5CFF A SHR Ol

132 FFSD 4AFF A ALSZ 2,-1; TEST TO SEE IF DONE.

133 FF5E& 21F9 A JMP PUT

134 FFS5F 0(80 A PFLG XMIT: SEND TWO STOP BITS.

132 FF60 29D7 A JSR DELAY;

136 FF6l 2906 A JSR DELAY;

137 FF62 4500 A PULL 1

138 FF63 4600 A PULL 2

139 FFo4 0200 A RIS

140 FF65 8000 A HBUUU: wWORD X*380G0

141 FF66 01Bl1 A Vi3 «WURD X*01B1

142 FF67 035 A v2: «WORD X*035E
ABSPT

143 FF68 «PAGE *ABSPT?

144 FF68 H

145 FF68 H JHLS IS A PAPER TAPE BOOTSTRAP ROUTINE THAT

46 FF68 H READS 8 CHANNEL TAPE. THE FIRST 4 MWORDS

147 FF638 , H DENOTE THE STARTING ADDRESS FOR THE OBJECT

148 FF68) H PROGRAM BEING LOADED. THE LAST CHARACTER

149 FFb68 H ON THE TAPE MUST BE AN EXCLAMATION MARKe

150 FF§8 :

15k FFes8 H ENTRY POINT FOR THIS PROGRAM: FFé68

152 FF68 H

153 FF68 4D0%4 A LOOPl: LI 1.4

154 FF69 2906 A JSR PTBOOT

155 FF6A 3881 A RCPY 29033 READ FIRST 4 WGRDS; THLS 1S THE

156 FF6B H START ING ADDRESS.

157 FF6B 4D04 A LGOOP2: LI 1,43

158 FF6C 2903 A JSR PTBOOT

159 FF6D ABOU A ST 2,13); READ AND STORE 4 HEX WORDS.

160 FF6E CD45 A ADD 3,0NE; INCREMENT MEMORY ADDRESS.

161 FFO6F 21FB A JMP LOOPZ

162 FF70 29CC A PTBOOT:= JSR RECVS GET ONE WORD.

163 FF71 6117 A PACK: AND O ,MSKPAR; MASK OUT PARLTY BIT.

164 FF12 F11C A SKNE Oy EXCLAMS

165 FF73 21il A JHP $SOUT

166 FFT4 F118 A SKNE G CRETRN; IGNORE CARRLAGE RETURNe

167 FF75 21FA A JMP PTBOOT

168 FFT16 F117 A SKNE O,LINEFD; IGNORE LINEFEED.

169 FF77 2iF8 A JMP PTBOOT

170 FF78 7112 A SKAZ UsNUMBER;

171 FF19 2105 A JMP NUM

L72 FFTA 7111 A SKAZ 0,ALPHA;

173 FF78 2102 A JMP ALFA

174 FFIC 4C03 A LL Us335 ERROR CUDE: INVALID CHARACTER.

175 FFTD 2000 A JMP O3

176 FRTIE Cl109 A ALFA: ADD O NINE;

177 FFIF 610A A NUM: AND O¢MSKi1

178 FFB0 5E0% A SHL 2,4

179 FF81 3282 A RXOR 092

180 FF82 49FF A ALISZ 1.1

181 FF83 21EC A JMP PTBOULT

REVISION-C 11/720/72
CONTROL PANEL AND TTY UTILITIES

CutiIL

182
183
184
i85
186
187
188
i89
190
191
192
193

ASCI1

194

FF84
FF85
FF8o6
FF8T
FF&8
FF89
FF3A
FFab
FF8C
FF3D
FF8E
FF8F

TAPE

FF90
FFS0
FF90
FF90
FF90
FF90
FF30
FF9u
FF90
FF90
FF90
FF9u
FF90
FF90
FF90
FF90
FF90
FF90
FF91
FF92
FF93
FFo4
FF95
FF96
FF97
FFas
FF99
FF9A
FF98B

. FFIC

FF9D
FFIE
FF9F
FFAQ
FFAL
FFA2
FFA3
FFA%
FFAS
FFAo
FFA7
FFAS
FFA9
FFAA
FFAB
FFAC
FFAD
FFAE

02UV
4500
4500
2131
0009
VITF
000F
0830
UJ4U
000D
QUUA
0021

BPBDP>PPPE>PBRP

$0UT:

NINE:
MSKPAR:
MSK1s
NUMBER:2
ALPHA:
CRETRN:
LINEFD:
EXCLAMS

PUNCH ROUTINE

3881
a2
4D0%
5804
4000
6lF4
E1F1
2112
D1EF
48C0
2988
49FF
<108
3¢81
3882
110C
81EC
2981
81€B
29AF
4400
8200
C90D
21EA
4400
21E9
4880
21EE
81E2
29A5
2000

PP PP RPBPPRPPRPRPPEPEPERPPELPRPRERPERPD

We W Ge Ws We Wi We W We G W

we Wy We wme @

PTPNCH:

ASC:

QuTT1:

RETN:

$NUs

$EXCL:

SUPPLEMENT 1

13227 09143181
PAGE NUMBER 4

RTS

PULL 1

PULL 1

JMP START;

«WORD 9

+HUORD OTF

<WORD OF

< WORD 030

«WURD 040

-WORD 0D

+WORD 0A

<WORD 021

<PAGE YASCI1 TAPE PUNCH ROUTINE®
THIS PROGRAM PUNCHES OUT GN PAPER TAPE
THE CONTENTS OF A SPECIFIED RANGE OF
MEMORY LUCATIONS. THE FIRST 4 #ORDS ON
THE TAPE ARE THE ADDRESS OF THE STARTING
LUCAT ION. LAST WORD ON THE TAPE IS
AN EXCLAMATLON MARK. PAPER TAPE GENERATED
BY THIS ROUTINE MAY BE LOADED USING THE
PTBOOT ROUTINE. BEFORE EXECUTING THIS
PROGRAM, AC2 MUST BE LOADED WITH THE
STARTING ADDRESS OF THE RANGE TO BE
DUMPED AND AC3 MUST HAVE THE FINAL ADDRESS
OF THE RANGE. EACH SET OF 4 WORDS ON THE
TAPE ARE SEPARATED BY CARRIAGE RETURN
AND L INEFEED CHARACTERS.

RCPY 2403 COPY STARTING ADDRESS LNTO ACO.

ADD 3,0NE;

LL 1,4; COUNT FOR 4 HEX CHARACTERS.

ROL 0443

PUSH 03

AND 0+MSK1l;
SKG 0 oNINE;
JMP SNU

SUB O.NINE;
AISZ 0.-64
JSR SEND;
AISZ 1,-13%
JMP RETN
RCPY 3,03
RXIR 290;
B80C 1+8EXCL;
LD O0,CRETRN;
JSR SEND;

LD O,LINEFD;
JSR SEND;
PULL O;

LD 0,1(2);
ADD 2,0NE;
JMP ASC;
PULL v

JNP ASC+1
ALSZ 0,—-89;
JMP OUTT1
LD O4EXCLAN;
JSR SEND;
JMP 03

TRANSMIT CHARALTER.
LOOP UNTIL 4 CHARACTERS SENT.

CHECK TGO SEE IF END OF
MEMORY RANGE.
END OF DATA.

TRANSMIT CARRIAGE RETURN.
TRANSMIT LINEFEED.
PIP TOUP WORD TU CLEAR.

BEGIN DATA TRANSMISSION.
POINT TO NEXT LOCATION.

TRANSMIT EXCLAMATIUN MARK.

(listing continued)

REVISION-C Ll1720/72
CONTROL PANEL AND TTY UTILITIES
CONTROL PANEL RGUTINE

CUTIL

242
243
244
245
246
241
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
206
261
268
269
270
27L
272
273
274
275
216
277
278
279
280
281
282
283
284
285
286
281
288
289
290

Yo N

£IiL
292
293
294
293
296
2917
298
299
300
301
302
303
304
365

FFAF
FFAF
FFAF
FFAF
FFAF
FFAF
FFAF
FFAF
FFAF
FFB1
FFB2
FFB3
FFB4
FFB5
FF86
FFBT
FFB8
FFBY
FEBA
FFBB
FFBC
FFBD
FFBE
FFBF
FFCO
FFCL
FFC2
FFC3
FFC4
FFCS5
FFCo
FFCT
FFC8
FFCY
FFCA
FFCB
FFCC
FFCD
FFCE
FFCF
FFDO
FFD1
FFD2
FFD3
FFD4
FFD5
FFO6
FFD7
FFDB

cenn

rrosS
FFRA
FFODB

FFOC
FFDD
FFOE
FFODF
FFEO
FFE1
FFEZ2
FFE3
FFE4
FFES
FFEO
FFET

FFB1
2188
21EF
UU05
ool
80FC
ACUL
8DF9
ACOOQ
L92F
0900
U600
1C04
100A
171G
iF25
Z1FB
1CFF
04ul
3281
3381
ELED
1213
21F3
1DFF
0400
F934
21iF0
A200
C9Eo
21EC
17FF
G400
4000
8406
4100
02840
8002
8403
88V%
8C05
V20U
0600
1DG5S
1FOl
21FD
LFFF
8302
Z1DA
1DFF
G400
A202
£106
LFFF
8300
CcDCC

P30 i I b A A 4 R >>D’>>b>>>>>>>>>>>>>>>>>>>>>>>bb>>>>>>>>>>b>>

We W W we Wi wo W

JSIRT:
JINTR:z
FIVE:
ONE:
BEGINS

START:
SET:
ROUT:
WAILT:

LAz

EX:

RSTOR:

RSRVEs:

VISPAC:

LDAC:

DISP:

SUPPLEMENT 1

13227 09143181
PAGE NUMBER 5

+PAGE CONTROL PANEL ROUTINE®
CUTIL CONTROL PANEL: JULY 31, 1973.

«=X'FFB1
«WORD X*'21B8
«WORD X*21EF

«WORD 5
«WORD 1
LD 3,JINTR

ST 3,x%01;
LD 3,JSTRT;
ST 3,4 003
JSR SAVE
SFLG 1

ROUT Q

80C Cl2,LA
BUC C13,LD
BOC C74EX;
80C C15,DIsP
JMP .4

BOL Cl2,LA
RIN ©

RCPY 0,2
RCPY 0,3

SKG Q,FIVE;
BUC C2,RSRVE
JHP ROUT

BAC Cl3,L0;
RIN U3

SKNE 2,LASTS;
JMP WAIT

ST 0,12) H
ADD 2,0Nt;
JMP ROUT
BOC C7,EX
RIN O
PUSH O

LD 1.X%006
PUSH 1
PULLF

LD 0,X%02
LD 1,X'03
LD 2,X'04
LD 34X°05
RTS 0 H
ROUT O

BOC C13,iLDAC
BOC C15,0ISPAC
JMP 2

80C C15,DISPALC;
LD 0,2{3)

JMP ROUT

BOC C13,L0AC
RIN O

ST 0,212}

JNP ROUT

BOC Cl1l5,DISP
LD 0,(3)

ADU 3,UNE;

w oo

we e

we 9 yo wo e

e

..

..

THIS CONTROL PANEL USES ALL DEVICE
ADDRESSES; THAT IS, NU ADDRESS
DECUDING IS5 ASSUMED, AND THE PROGRAM
WwILL RESPOND TO ALL "RIN' AND *ROUT®
INSTRUCTIONS.

LOAD LOCATLON 1 WITH JUMP TO INTERRUPT

LOAD LOCATION O WwITH JUMP TO CONTRBL PANEL
SAVE ACCUMULAYORS.
ENABLE INTERRUPT SYSTEM.

*LOAD ADDRESS® SWIT(H.

LOAD DATA® SHWITCHe.

*EXECUTE® SWITCH.

DISPLAY SWITCH.

RETURN TO WAIT LOOP.

CHECK RELEASE.

READ SWRe

SAVE ADDRESS LN AC2.

PREVENLS LOADING OF RESERVED LOCATIONS
CHECK RELEASE FOR LUAD DATA SWLICH
READ SWITCHES

PREVENTS LOUADING LOCATION 6.

LOAD MEMORY:
INCREMENT ADDRESS

CHECK RELEASE
SAVE JUMP ADDRESS LN STACK.

RESTORE ACCUMULATORS.

FAKING AN INDIRECT JUMP.

DISPLAY ACCUMULATOR ROUTINE

INCREMENT ADDRESS

REVLSION-C 11/20/72

CUTiIL

CONTROL PANEL AND TTY

CONTRUL PANEL ROUTINE

306
361
308
309
310
311
312
313
314
3i5
316

FFE8
FFE9
FFE9
FFEA
FFEB
FFEC
FFED
FFEE
FFEF
FFFU
FFF1

21D2

A00z
A403
ABU4
ACU5S
G080
4500
A406
0200

PEPPE>P P

A

INTERRUPT SERVICE

317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335

FFF1
FFF1
FFF1
FFF2
FFF3
FFF4
FFF5
FFF6
FFFT
FFF8
FFF9
FFFA
FFFB
FFFC
FFFC
FFFD
FFFE
FFFF

000

FEEREX

4CFF
1803
29F5
4400
4000

0000
0400
1i02
2907
G100

4400
218C
2186
QLo

> >pr P -

SAVE:

e

ROUTINE

STFL:
ZERO:

..

LASTS:

SUPPLEMENT 1

JMP ROUT

ST 0,X*02
ST 1,403
ST 2,X*04
ST 3+X*05
PUSHF

PULL 1

ST 1.X'063
RTS O

73227 09143181

UTILITIES PAGE NUMBER 6

SAVE ACO - AC3 IN LOCATIONS X*02 - X*05.

L1}

SAVE FLAGS IN LOCATIGN 6.

FOR HALT AND STACKFULL

«PAGE

Ll 0,~13
BUC C8,STFL;
JSR SAVE;
PULL O
PUSH O
ROUT 03
HALT;

RIN O;

BOC Clyet+3;
JSR RSTOR;
RII 3

PULL O
JMNP SET;
JMP BEGIN
«WORD o

< END

O ERRORS IN ASSEMBLY

S INTERRUPT SERVICE ROUTINE FOR HALT AND STACKFULL®

SAVE ACCUMULATORS LN LOCATIONS 2,3,4 AND 5.

READ SWITCHES

LF SWITCHES ARE SET TO ALL ZEROS, *EXECUTE® CAUSES
A RETURN TO THE CONTROL PANEL ROUTINE.

LF SWITCHES ARE SET TG ANY NON—ZERG NJMBER,®EXECUTE
CAUSES A NORMAL RETURN FROM INTERRUPT.

RETURN TO CONTROL PANEL RDUTINE.

e EEE

(listing continued)

SUPPLEMENT 1

REVISION-C 11/20/72 73227 09143181
CUTIL CONTROL PANEL AND TTY UTILITIES PAGE NUMBER 1
INTERRUPT SERVICE ROUTINE FOR HALT AND STACKFULL

SEXCL $Nu $0UT $ XX ABSTTY ALFA ALPHA ASC BEGIN Cl
FFAL A FFAA A FF85 A FF58 A FFOO A FFTE A FFBC A FF92 A FFB5 A 0001 A

Cl1 cl12 c1i3 Cl4 Ci5 ce2 c3 Ca Cc5 Cc7
0008 A 000C A 0000 A OUOE A OOOF A GUOZ2 A 00L3 A 0004 A 0005 A 0007 A

() CRETRN DELAY DISP DISPAC ENDREC EX EXCLAM EXITil FIVE
0008 A FF8D A FF38 A FFES A FFDE A FF2B A FFCF A FFBF A FF36 A FFB3 A

H3FFF HBOOU INTR JCl4 JINTR JSTRT LA LASTS LD LDAC
FF3C A FF65 A FFF1 A OOOE A FFB2 A FFBl A FFC1l A FFFF A FFCB A FFEL A

LINEFD LOOP1 LOOP2 MSKI MSKPAR NINE NUM NUMBER ONE ouTT1l
FFBE A FFo8 A FFoB A FFBA A FF89 A FF88 A FFTIF A FF8B A FFB4 A FF9A A

PACK PTBOOT PTPNCH PUT RDPCK ROWDCK READR RECV REP RETN
FFT1 A FFT0 A FF90 A FF58 A FF2F A FFIC A 0003 A FF3D A FF49 A FFA8 A

ROUT RSRVE RSTOR SAVE SEND SET START STFL TORS TSTCKS
EFBB A FFDA A FFD2 A FFE9 A FF53 A FFBA A FF39 A FFF6 A FF24 A FF1F A

1Yl 1TY2 vl v2 WALT XMIT ZERD
FFO3 A FF15 A FF66 A FF6T A FFBC A GUG4 A FFFT7 A

8788 Ab17

Appendix B
FORMAT OF INSTRUCTIONS

A summary of the instruction types and their assembler language formats is given below for reference. A more-detailed

breakdown of the instruction codes is shown in the next table; it is suitable for hand-coding small programs.

Assembler
Language Format

Op sr, dr

Op r, disp

Op r, disp{xr)
Op r, @disp(xr)

Op disp (xr)
Op @disp (xr)

Op ctl

Op cc, disp

Op fc, ctl
Op (xr)
disp

Instruction Type Machine Format
|| l | L1]
Register to Register oP sr | dr JOP| NOT USED | OP
| I Y | i I T
Register to Memory oP r disp
| | |] I
Memory Reference (Class 1) opP r xr disp
i | I
Memory Reference (Class 2) opP Xt disp
I | I
1/0 and Miscellaneous oP ctl
| 11 L1 LT 11
Branch oP cc disp
111 | | |
Control Flags oP1 fc g ctl
1111] 11 L1
Memory Reference oP xr oP NOT USED
(Double Word)
Lttt it
disp
Explanation of Symbols
Op — Instruction Mnemonic disp —
OP — Operation Code cc -
sr — Source Register Value r -
dr — Destination Register Value ctl —

xr — Index Register Value (2 or 3)

Displacement Value
Condition Code Value
Register Value

Control Bits Value

Remarks

Direct
Indirect

Direct
Indirect

Table B—1. Basic Instruction Set with Bit Patterns

Mnemonic Base Word Format
LD 8000 | = BASE V r V xr V disp
LD Indirect 9000
ST A000 | ADDRESSING
ST Indirect BOOO r REGISTER Xr TECHNIQUE
ADD C000 0000 0 0000 BASE PAGE
SUB D000 0400 1 0100 PC RELATIVE
SKG EQ00 0800 2 0200 INDEXED — AC2
SKNE FO00 0co0 3 0300 I INDEXED — AC3
AND 6000 r REGISTER
OR 6800 0000 0
SKAZ 7000 0400 1
1SZ 7800 JMP Indirect 2400
DSz 7C00 JSR 2800
JMP 2000 JSR Indirect 2C00
Word Format
BOC 1000 | = BASE V cc V disp
Branchon [INTRPT=1| AC0=0 ACO>0 | ACO ACO ACO0#0 | CPINT START
{when oDD Bit 1=1 =1 =1
enabled) !
cc 0000 0100 0200 0300 0400 0500 0600 0700
Branch on STFL=1 INTEN=1 | CYOV=1 | ACO0<L0 USER USER USER USER
cc 0800 0900 0A00 0B0OO 0C00 0D00 OEOQO OF00
Word Format
| = BASE V r V disp
AISZ 4800
LI 4C00 r REGISTER
CAl 5000 0000 0
PUSH 4000 0100 1
PULL 4400 0200 2
XCHRS 5400 0300 3
ROR/RCOL 5800 LEFT DISP POSITIVE
SHR/SHL 5C00 RIGHT DISP NEGATIVE
Word Format
| = BASE V sr VvV dr
RADD 3000 sr dr REGISTER
RXCH 3080 0000 0000 0
RCPY 3081 0400 0100 1
RXOR 3082 0800 0200 2
RAND 3083 0CO00 0300 3

Table B—1. Basic Instruction Set with Bit Patterns (Continued)

Mnemonic Base Word Format
SFLG 0800 fc FLAG | = BASE V fc V ctl
PFLG 0880 0000 8
0100 9
0200 10
0300 11
0400 12
0500 13
0600 14
0700 15
Word Format
| = BASE V ctl
HALT 0000 RTI 0100 RIN 0400
PUSHF 0080 RTS 0200 ROUT 0600
PULLF 0280 JSRI 0380 (Address range = FF80 to FFFF)

The instruction is formed by the inclusive Or of each field. For example, the instruction RADD 2,3 is coded as X'3B00

For instructions that use the CTL field, only the first 7 bits (bits 0 through 6) are considered.

Examples of coding follow:

Example 1

RADD 2,3

BASE =
sr =
dr =

= 3800

INSTRUCTION

Example 2
JMP-1 (3)
BASE

Xr =
disp =
= 23FF

INSTRUCTION

Example 3
SHR 0,1

BASE

r

disp
INSTRUCTION

0800
0300

= 2000

0300
00FF

5C00
0000
00FF
5CFF

Comments
Add AC2 to AC3.

Comments

Jump to the location specified by the index register
AC3 modified by the displacement -1.

Comments
Shift the contents of ACO one place to the right.

B-3

Table B—2. Extended Instruction Set with Bit Patterns

Mnemonic Base Word Format
MPY 0480 | (Word 1) = BASE V xr
DIV 0490 1 {(Word 2) = disp
DADD 04A0
DSUB 04B0 ADDRESSING
xr TECHNIQUE
0000 Direct
0100 PC Relative
0200 Indexed — AC2
0300 Indexed — AC3
Word Format
LDB 04CO0 I (Word 1) = BASE V xr
STB 04D0 1 (Word 2) = 2. disp V Byte
Byte = O for right, 1 for left.
ISCAN 0510
Word Format
SETST 0700 | = BASE V Bit
CLRST 0710
SETBIT 0720
CLRBIT 0730
SKSTF 0740
SKBIT 0750
CMPBIT 0760
Word Format
BASADR | MAXADR
JSRP 0300 (0100) 007F | = BASE V lIncr
JMPP 0500 (0100) 000F Incr = ADDR - BASADR
JINT 0520 0120 000F BASADR < ADDR < BASADR + MAXADR
Example 1 Comments
LDB X'AQA Load ACO with the right byte of location
X'0AOQA; direct addressing.
BASE = 04C0
xr = 0000
INSTRUCTION = 04CO0 (Word 1)
disp = X‘0A0A
Byte = 0 (Right)
INSTRUCTION = 1413 (Word 2)

Example 2 Comments

JMPP 2 Jump through pointer located at location
X'0102.
BASE = 0500
BASADR = (0100) Implied
INCR = 0002
INSTRUCTION = 0502

B-5/6

Appendix C
MEMORY ARRANGEMENT

The arrangement of memory in this system is shown in figure C—1. The entire base page consists of read/write memory;
that is, locations (0000) ¢ to (O0FF)y6. The top sector of memory (FE00);6 to (FFFF) ¢ is implemented with read-only
memory. The read-only memory on the board is enabled whenever bit 15 of the address is 1.

0000
BASE PAGE RWM
O0OFF
0100 |
l |
| |
' |
: ADD-ON |
I |
| |
| !
]
FEQO
TOP PAGE
CONTROL PROGRAMS ROM (OR PROM)
FFFF

NS00144

Figure C—-1. Memory Layout

The memory arrangement shown above may be moved around to suit the convenience of the user. Jumper connections
are provided on the IMP-16C card (W1, W2, and W3) to disable the on-board address decode logic. By removing these
and using the external chip select inputs (CSO, CS1, and CS2), the user may generate his own decode signals to move
the memory pages wherever desired.

c-1/2

Appendix D

IMP-16C NOMENCLATURE

Table D—1. Nomenclature Used in Circuit Schematics and Text

Signal Name Description
ADEN Address Enable Signal
ADX (0), (1), ..., (15) Address Lines to Memory
ALU Arithmetic/Logic Unit
BDO (0), (1), ..., (15) Buffered Data-Out Lines
CI Memory Cycle Initiate

CIMUX
CLK, CLK*

CPINP

CPINT

CROM

CSHO, CSH3

€S0, CS1, CS2

CcYOV

C81, C23, C45, C67
DATA (0), (1), (2), and (3)
DI (0), (1), (2), and (3)
DISTR

ENCTL

START

FLAGO, FLAGI2

F8, Fl1, ..., F15
HCLK

HLT

HOCSH

HOLD

INIT*

INTEN

INTRPT

INTRA

INTCTL

JCSTR

JFA

Conditional Jump Multiplexer

Master Clock Signals

Control Panel Interrupt Acknowledge
Control Panel Interrupt

Control Read-Only Memory

Carry/Shift Signal Lines (RALU)

Memory Chip-Select Lines

Carry or Overflow Signal

Clock Signals, each lasting for two periods
Data Bus Lines

Data Input Lines to the CROM

Data Input Strobe

Enable Control Signal

Start or continue signal to restart operation
User status flags
User control flags
Clock Hold Signal
Halt Flag
High-Order Carry/Shift Signal Line (CROM)
Phase 4 Hold Signal

Initialize Line (Complemented)
Interrupt Enable Flag

Delayed Interrupt Signal
Interrupt Request Signal
Interrupt Control Signal

Jump Condition Strobe Signal
Jump Flag Addresses

Table D—1. Nomenclature Used in Circuit Schematics and Text (Continued)

Signal Name Description
LDAR Load Address Register Flag
LOCSH Low-Order Carry/Shift Signal Line (CROM)

MDO (0), (1), ..., (15)
MUX

NCB (0), (1), (2), and (3)
NFLEN

NJCOND

NREQO

POC

PROM

RALU

RDM

RDM-Q1

RDP

RFREQ

RFSH

SEL

SININ

STF

STFL

SVRST

SW

SYSCLR*

VGG, Vss

WRM

WRMP

WRP

WRPA

WRPB

WRP3

PHI1, PH3, PHS, and PH7

Memory Data Out

Multiplexer

Complemented Control Bus Lines

Flag Enable Signal Line (Complemented)
Jump Condition Input Line (Complemented)
Register Equal Zero Signal (Complemented)
Power-On Condition

Electrically Programmed Read-Only Memory
Register/ Arithmetic/Logic Unit

Read Memory Flag

Delayed Read Memory Flag

Read Peripheral Flag

Memory Refresh Request Signal

Memory Refresh Initiate

Select Flag

Sign-In Signal Line

Stack Full Signal Line

Stack Full Interrupt Signal

Save/Restore Flag

Switch Data (Input Port for Peripheral Data)
System Clear (Complemented)

Supply Voltages

Write Memory Flag

Write Memory Pulse

Write Peripheral Flag

Write Peripheral Strobe A

Write Peripheral Strobe B

Write Peripheral Strobe

Clock Phase Times 1, 3, 5, and 7. (Each of these phase
times corresponds to a clock pulse: T1, T3, TS5, and T7.)

NOTE: An asterisk (*) after a signal name (except a CROM or a RALU signal) denotes a
complemented signal. Complementation is denoted for CROM and RALU signals by

the prefix N as part of the signal names.

Appendix E

LIST OF PIN CONNECTIONS AND SIGNALS
ON IMP-16C CARD

Table E-1. IMP-16C Pin Numbers and Corresponding Signal Names

Pin

Pin

Number Signal Name Number Signal Name

1 Ground 2 Ground

3 Ground 4 Ground

5 +5 volts 6 +5 volts

7 +5 volts 8 +5 volts

9 FLAGI12 — Status Flag from RALU 10 ADXO00 — Address Line, Bit 00
11 SVGG — Switched —12 volts’ 12 SVGG — Switched —12 volts®
13 -10 volts for Read/Write Memory 14 —9 volts for Read/Write Memory

(MM1101A2) (MM1101A2)

15 INTRA — Interrupt Request Signal 16 INIT* — Initialize (Complemented)
17 Not Used 18 ADXO07 — Address Line, Bit 07
19 Not Used 20 ADXO06 — Address Line, Bit 06
21 CSO — Memory Chip-Select Line 22 FLAGQ — Status Flag from RALU
23 ADXO02 — Address Line, Bit 02 24 ADXO01 — Address Line, Bit 01
25 . ADXO03 — Address Line, Bit 03 26 Not Used
27 BDO08 — Buffered Data Out, Bit 08 28 ADXO05 — Address Line, Bit 05
29 ADX04 — Address Line, Bit 04 30 C3B* — Timing Signal
31 -12 volts 32 —12 volts
33 Not Used 34 CS1 — Memory Chip-Select Line
35 CS2 — Memory Chip-Select Line 36 ODIS — Address Bus Disable
37 Not Used 38 Not Used
39 Not Used 40 MDO00 — Memory Data Out, Bit 00
41 MDOQOO0! — Memory Data Out, Bit 01 42 Not Used
43 MDQO02 — Memory Data Qut, Bit 02 44 MDOO03 — Memory Data Out, Bit 03
45 Not Used 46 Not Used
47 MDO04 — Memory Data Out, Bit 04 48 - MDOOS — Memory Data Qut, Bit 05
49 Not Used 50 MDOQOO06 — Memory Data Out, Bit 06
51 Not Used 52 MDOO07 — Memory Data Out, Bit 07
53 WRPB — Write Peripheral Strobe B 54 Not Used
55 Not Used 56 BDOO05 — Buffered Data Out, Bit 05
57 DISTR*~— Data Input Strobe (Complemented) 58 BDOO01 — Buffered Data Out, Bit 01
59 BDO04 — Buffered Data Out, Bit 04 60 BDO00 — Buffered Data Out, Bit 00
61 BDOO03 — Buffered Data Out, Bit 03 62 MDO14 — Memory Data Out, Bit 14
63 BDOO07 — Buffered Data Out, Bit 07 64 BDOO02 — Buffered Data Out, Bit 02
65 BDO06 — Buffered Data Out, Bit 06 66 WRPA - Write Peripheral Strobe A
67 BDOO09 — Buffered Data Out, Bit 09 68 BDO11 — Buffered Data Out, Bit 11
69 BDO14 — Buffered Data Out, Bit 14 70 BDO15 — Buffered Data Out, Bit 15

1- Shouid not be used on IMP-16/200 and 300 cards.

Oqtside l cpuU

Table F—1. IMP-16C Pin Numbers and Corresponding Signal Names (Continued)

Oulywele ‘ cPu
Pin Signal Name Pin Signal Name
Number Number
71 Ground 72 - Ground
73 BDO10 — Buffered Data Out, Bit 10 74 BDO13 — Buffered Data Out, Bit 13
75 BDQ12 — Buffered Data Out, Bit 12 76 MDO10 — Memory Data Out, Bit 10
77 MDO13 — Memory Data Out, Bit 13 78 MDO12 — Memory Data Out, Bit 12
79 SW00 — Switch Data, Bit 00 80 DSLCT — Input Data Select
81 SWO02 — Switch Data, Bit 02 82 MDO008 — Memory Data Out, Bit 08
83 Not Used 84 SWO01 — Switch Data, Bit 01
85 INTCTL — Interrupt Control 86 SW03 — Switch Data, Bit 03
87 MDOO09 — Memory Data Out, Bit 09 88 MDO11 — Memory Data Out, Bit 11
89 WRM — Write Memory Flag 90 SWO08 — Switch Data, Bit 08
91 SW10 — Switch Data, Bit 10 92 SW09 — Switch Data, Bit 09
93 SW11 — Switch Data, Bit 11 94 CLK81 - Timing Signal
95 SW12 — Switch Data, Bit 12 96 SW13 — Switch Data, Bit 13
97 SW14 — Switch Data, Bit 14 98 SW04 — Switch Data, Bit 04
99€~| C45 — Timing Signal (TBﬁN CLK.) 100 SW06 — Switch Data, Bit 06
101 ADX13 — Address Line, Bit 13 102 EXHOLD — External Hold
103 SWO05 — Switch Data, Bit 05 ->104 JC14 — General-Purpose Jump Condition
105 SW07 — Switch Data, Bit 07 106 SW15 — Switch Data, Bit 15
107 JC15 — General-Purpose Jump Condition 108 MDO15 — Memory Data Out, Bit 15
109 ADX11 — Address Line, Bit 11 110 ADX10 — Address Line, Bit 10
111 ADXO08 — Address Line, Bit 08 112 ADX09 — Address Line, Bit 09
113 RDM — Read Memory Flag 114 ADX12 — Address Line, Bit 12
115 ADX14 — Address Line, Bit 14 116 ADX15 — Address Line, Bit 15
117 CPINP — Control Panel Interrupt 118 CPINT — Control Panel Interrupt
119 JC13 — General-Purpose Jump Condition 120 WRMP — Write Memory Pulse
121 RDP — Read Peripheral Flag 122 WRP — Write Peripheral Flag
123 START — Start Signal 124 RFREQ — Memory Refresh Request
125 HLT* (FLAG) 126 SYSCLR* — System Clear (Complemented)
127 CLK* — Master Clock (Complemented) 128 CLK — Master Clock
129 JC12 — General-Purpose Jump Condition 130 F8 — General-Purpose User Flag
131 INT EN — Interrupt Enable Flag 132 F15 — General-Purpose User Flag
»%133€~| F11 — General-Purpose User Flag (Riﬁb €R) 134 F14 — General-Purpose User Flag
135 F13 — General-Purpose User Flag 136€~| F12 — General-Purpose User Flag (R € C-)
137 +5 volts 138 +5 volts
139 +5 volts 140 +5 volts
141 Ground 142 Ground
143 Ground 144 Ground
NOTE: 1. Odd-numbered pins are on component side and even-numbered pins are on solder side ot IMP-16C card.
2. Pins 83 and 55 are used for CYCLE INITIATE and EXTERNAL REFRESH functions, respectively,
in the IMP-16P system (IMP-16P/200, /300).

G2

an
ATA

(408) 732-5000
TWX: 910-339-9240

National Semiconductor GmbH
D 808 Fuerstenfeldbruck
Industriestrasse 10

West Germany

Telephone: (08141) 1371
Telex: 27649

National Semiconductor Corporation
2900 Semiconductor Drive
B2 Santa Clara, California 95051

Batu Berendam
Free Trade Zone

Malacca, Malaysia

Telephone: 5171

National Semiconductor Electronics SDNBHD

Telex: NSELECT 519 MALACCA (c/o Kuala Lumpur)

National Semiconductor (UK) Ltd.
Larkfield Industrial Estates
Greenock, Scotland

Telephone: (0475) 33251

Telex: 778 632

REGIONAL AND DISTRICT SALES OFFICES

ALABAMA

DIXIE DISTRICT OFFICE

3322 Memorial Pkway, S.W. #67
Huntsville, Alabama 35802

(205) 881-0622

TWX: 810-726-2207

ARIZONA
*ROCKY MOUNTAIN REGIONAL OFFICE
3313 North 68th Street, No. 114

Scottsdale, Arizona 85251
(602) 945-8473

CALIFORNIA
*NORTH-WEST REGIONAL OFFiCE

2680 Bayshore Frontage Road, Suite 112
Mountain View, California 94043

(415) 961-4740

TWX: 910-379-6432

NATIONAL SEMICONDUCTOR
*DISTRICT SALES OFFICE

Valley Freeway Center Building

15300 Ventura Boulevard, Suite 305

Sherman Oaks, California 91403

(213) 783-8272

TWX: 910-495-1773

NATIONAL SEMICONDUCTOR
SOUTH-WEST REGIONAL OFFICE
17452 Irvine Boulevard, Suite M
Tustin, California 92680

(714) 832-8113

TWX: 910-595-1523

' CONNECTICUT -
AREA OFFICE
Commerce Park
Danbury, Connecticut 06810
(203) 744-2350

*DISTRICT SALES OFFICE
25 Sylvan Road South
Westiport, Connecticut 06880
(203) 226-6833

INTERNATIONAL SALES OFFICES

AUSTRALIA

*NATIONAL SEMICONDUCTOR
ELECTRONICS PTY, LTD.

Cnr. Stud Road & Mountain Highway
Bayswater, Victoria 3153

Australia

Telephone: 729-0733

Telex: 32096

CANADA
*NATIONAL SEMICONDUCTOR CORP.
1111 Finch Avenue West
Downsview, Ontario, Canada
(416) 635-9880
TWX: 610-492-2510

DENMARK

NATIONAL SEMICONDUCTOR
SCANDINAVIA

Vordingborggade 22

2100 Copenhagen

Denmark

Telephone: (01) 92-OBRO-5610 .
Telex: DK 6827 MAGNA

*Microprocessor System Specialist Available

FLORIDA
*AREA SALES OFFICE

2721 South Bayshore Drive, Suite 121
Miami, Florida 33133

(305) 446-8309

TWX: 810-848-9725

CARIBBEAN REGIONAL SALES OFFICE

P.O. Box 6335
Clearwater, Florida 33518
(813) 441-3504

ILLINOIS
NATIONAL SEMICONDUCTOR
WEST-CENTRAL REGIONAL OFFICE

800 E. Northwest Highway, Suite 203
Mt. Prospect, Illinois 60056

(312) 394-8040

TWX: 910-689-3346

INDIANA
NATIONAL SEMICONDUCTOR
NORTH-CENTRAL REGIONAL OFFICE

P.O. Box 40073
Indianapolis, Indiana 46240
(317) 255-5822

KANSAS
DISTRICT SALES OFFICE

13201 West 82nd Street
Lenexa, Kansas 66215
(816) 358-8102

MARYLAND
CAPITAL REGIONAL SALES OFFICE

300 Hospital Drive, No. 232
Glen Burnie, Maryland 21061
(301) 760-5220

TWX: 710-861-0519

MASSACHUSETTS

*NORTH-EAST REGIONAL OFFICE

No. 3 New England, Exec. Office Park
Burlington, Massachusetts 01803
(617) 273-1350

TWX: 710-332-0166

ENGLAND

NATIONAL SEMICONDUCTOR (UK) LTD.

The Precinct

Broxbourne, Hertfordshire
England

Telephone: 69571

Telex: 267-204

FRANCE

NATIONAL SEMICONDUCTOR
FRANCE S.A.R.L

28, Rue de la Redoute
92260-Fontenay-Aux-Roses
Telephone: 660-81-40

TWX: NSF 25956F

HONG KONG

*NATIONAL SEMICONDUCTOR
HONG KONG LTD.

9 Lai Yip Street

Kwun Tung, Kowloon

Hong Kong

Telephone: 3-458888

Telex: HX3866

CP10M34 ©1974 NATIONAL SEMICONDUCTOR CORP. PRINTED IN U.S.A

National Semiconductor (Pte.) Ltd.
No. 1100 Lower Delta Rd.
Singapore 3

Telephone: 630011

Telex: 21402

MICHIGAN
*DISTRICT SALES OFFICE

23629 Liberty Street
Farmington, Michigan 48024
(313) 477-0400

MINNESOTA
DISTRICT SALES OFFICE
8053 Bloomington Freeway, Suite 101
Minneapolis, Minnesota 55420
(612) 888-3060
- Telex: 290766

NEW JERSEY/NEW YORK CITY
MID-ATLANTIC REGIONAL OFFICE
30t Sylvan Avenue

Englewood Cliffs, New Jersey 07632
(201) 871-4410

TWX: 710-991-9734

NEW YORK (UPSTATE)
CAN-AM REGIONAL SALES OFFICE
104 Pickard Drive

Syracuse, New York 13211
(315) 4555858

OHIO/PENNSYLVANIA/

W. VIRGINIA/XENTUCKY
EAST-CENTRAL REGIONAL OFFICE
Financial South Building

5335 Far Hills, Suite 214

Dayton, Ohio 45429

(513) 434-0097

TEXAS
*SOUTH-CENTRAL REGIONAL OFFICE
5925 Forest Lane, Suite 205
Dallas, Texas 75230
(214) 233-6801
TWX: 910-860-5091

WASHINGTON

DISTRICT OFFICE

300 120th Avenue N.E.
Building 2, Suite 205
Believue, Washlngton 98005
(206) 454-4600

JAPAN
*NATIONAL SEMICONDUCTOR JAPAN
Nakazawa Buiiding
1-19 Yotsuya, Shinjuku-Ku
Tokyo, Japan 160
Telephone: 03-359-4571
Telex: J 28592

SWEDEN

NATIONAL SEMICONDUCTOR SWEDEN

Sikvagen 17

13500 Tyreso

Stockholm

Sweden

Telephone (08) 712-04-80

WEST GERMANY
*NATIONAL SEMICONDUGCTOR GMBH

8000 Munchen 81
Cosimstrasse 4
Telephone: (0811) 915-027

uol

ol

. .

enuepy

	000
	001
	002
	003
	004
	005
	006
	007
	008
	01-01
	01-02
	01-03
	02-01
	02-02
	02-03
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-44
	03-45
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-09a
	04-09b
	04-11
	04-13a
	04-13b
	04-15
	04-17a
	04-17b
	04-19a
	04-19b
	05-01
	05-02
	06-01
	06-02
	06-03
	06-04
	07-01
	07-02
	07-03
	07-04
	08-01
	08-02
	08-03
	09-01
	09-02
	A-01
	A-02
	A-03
	_001
	_002
	_003
	_004
	_005
	_1-00
	_1-01
	_1-02
	_1-03
	_2-00
	_2-01
	_2-02
	_2-03
	_2-04
	_2-05
	_2-06
	_2-07
	_3-00
	_3-01
	_3-02
	_3-03
	_3-04
	_3-05
	_3-06
	_3-07
	_3-08
	_3-09
	_4-00
	_4-01
	_4-02
	_4-03
	_4-04
	_4-05
	_5-01
	_5-02
	_5-03
	_5-04
	_5-05
	_5-06
	_5-07
	_6-01
	_6-02
	_7-01
	_7-02
	_7-03
	_7-04
	_7-05
	_7-06
	_A-01
	_A-02
	_A-03
	_A-04
	_A-05
	_A-06
	_A-07
	_A-08
	_B-01
	_B-02
	_B-03
	_B-04
	_B-05
	_C-01
	_D-01
	_D-02
	_E-01
	_E-02
	_xBack

