National Semiconductor IMP-16 Utilities

Order No. IMP-16S/025YB

Pub. No. 42000258 : Reference Manual

Order No. IMP-16S/025YB
Publication No. 4200025B

INTEGRATED MICROPROCESSOR

IMP-16
UTILITIES REFERENCE MANUAL

March 1974

(© National Semiconductor Corporation
2900 Semiconductor Drive
Santa Clara, California 95051

PREFACE

This publication provides user information about the IMP-16 Debugging Program (DEBUG), the Loader
Programs, Teletype Input/Output Routines, Firmware (PROM, ROM) Paper Tape Generation, and the
IMP-16 Source File Editor. Supplemental information is included in the appendixes. Familiarity with
the IMP-16 Programming and Assembler Manual is a prerequisite for using and understanding the infor-
mation described in this manual.

This manual was previously titled, "IMP-16L Utilities Reference Manual, Publications Number 4200025A",
Henceforth, it shall be titled, "IMP-16 Utilities Reference Manual, Order No. IMP-16S/025YB and
Publications Number 4200025B'".

Copies of this publication and other National Semiconductor publications may be obtained from the sales
offices listed on the back cover. The information in this publication is subject to change without notice.

ii

Chapter

1

CONTENTS

=}
i
&
Q

® ¢ 0 0 0 0 0 00 0 0 00 00008 000000000 0000000000

INTRODUCTION . ..¢veveveevcnsccocseas
USAGE ...t eetiveovneoooscscnoscnnoes
Memory Requirementsueeeeeeeeeeoes
DEBUGLANGUAGE . ¢ vt ottt eveocansnane
Conventions Used In This Chapter...........
Syntax and Semanticsveoeeassoccaen
Semantics cecsessccsrerscss
COMMUNICATIONS cesecssssscnse
DEBUG COMMANDS.
Command Descriptions . ¢ ¢ v v e v veeeveeenns
TYPE ..t eeeeeeesoscecssssnnnacas .
L N
ALTER . .iveeeoeevccaaannna ceecescsae
SNAP . ivieeencoocnannns ctesscsceses
MOVE .. .itteeececceceessosoasncssense
NOTE ..ttt nneereasoesnsscosccocees
FIND ...0ceveeesoocsessoccoosacconas
RESET . . .0ieeteeeesoecnnecsaans
CARRIAGE RETURN¢ccveeeeecnnnn
LINE FEED .. ¢0vioreneeecocenceeenns
BACKARROWcteeeenceonccons .o
Summary of Commands. . . v v v veeeoeeenn .

.

.
[a=

. .

.
.

.
.

.
.
W DN =

.
1)

[

.

PR R RPERERRBERERERBRBRRRBRRRRRRRB-R
GOOTOOTOTYI OO DO OU OO U W W W W W NN R
B W N =

no

.
.

.
.
B W

h
B ©O®3 g

(%21

.
®

=2
=

16 LOADERS .. .00t reervecssonananacnnss .
INTRODUCTION4t esvseconceaanees
ABSPT (ABSOLUTE PAPER TAPE LOADER) ..
USage +vvveeeesecoesorsecaceosoeonaes
IMP-16Loading .. eeveeseoveeecaaeeeon
ABSCR (ABSOLUTE CARD READER LOADER) .
USage ..veveveeancecensoneencoannns
RIM LOAading . voeeeeeseeosesooanceenens
CRBOOT (CARD READER BOOTSTRAP LOADER)
USage ..iveereieeeescossooeenoeenenns
Bootstrap Procedureoceeve... ceeo
Formatof CRBOOT0veveencnnnnnnn
GENLDR (GENERAL LOADER) 0.
Usage «......
GENLDRINpUt eevveeesceeonoacans
GENLDROutputccoceeeeeeoccoces
GENLDR CommandS ...uecoeeecceococsos
1OBS - Origin Base SeCtOT . cvveeeeoooesss
TOTS - Origin Top Sector . oo vvvoeeveneeno
IRLM - Relocatable Load Module Identifier ...
ICLR - Clear MeMOTY v v e oveecocooosses
ICR - Read Input from the Card Reader
ITTY - Read Input from the Teletype
1 SY - Print the Symbol Table. . ccoeeennn..
1ER - Print Symbols in Error c e et

.
N -

.
.

.
N =

.
.
W N =

.
o

.
.

o

.
.

.
b= = O 00 =1 OO W N

o

=

D NDNDNDDNDDNDNDDNDDNDNDDNDNNDNDLNINDDNDNDDNDDNDNDNDN
.
DO UG O1TUT UT U U U R WWWNDNDN

iii

e e e e 0 00 08000 0 00 0
0 e 6000 00000000
@ s e 0040000000000
. e o0 00000000000

P s 2 2 0 s
D I I R R s e 0 e e
e e o 0000 00 o0 s s s e
© e e s 000080000000
) s 000060 00 e e
.. e 0. oo . oo .
¢ 0o 0 0 0 v 0 000 000 0

)
o
)]
[¢]

TeeRreeyR
CLODONN =

[y
LU

N T
O O© © © W W 000 00 -3 -3 U1 G UT U iz

s

PRy

1
o © O WO 0000 GO U W WNDN e e

o

[\
L UL

DO DD DD DD R DN D
e [|

[}

NNNL,\?NNN

N o
L |
=
o o

2-10
2-10

CONTENTS (Continued)

Chapter Page

LM - Prinf Limits ... cvuvecvesacosececoocaocococococcass 2-10
INLM -Don"t Print Limits v v ee v e s e et eeeecennenancas 2-11
18Q - Check Sequence Numbers on Input DECK v v v v e v o v voovoness 2-11
INSQ ~ Do Not Make Sequence Number Check00000000e- 2-11
1GO - Execute the Loaded Program ceeeeeceococoscaasas 2-11
MESSAZES v v ot v ovecssesssosscnsoosassosasssansnsens 2-11
Sample GENLDR RUN 4 4 o e v 0esesvsovosaceescccosscassssess 2-13

PN N NN
Sroror oo
T S i
W00 -3 G W

3 TELETYPE I/O ROUTINES . ot e st v et eeeeeeoocoocceoscaosssocncccess 3-1
.2 USAGE .4 iveoeeteasonceoeacceccncsoaccccacees 3-1
.2 Functions . s e evevececesceccncnse ceceesescecacsccscnns 3-1
.2 CommunicationS .o s eeeveseeesccsoeeececscscaaccacanccess 3-1
2 Limitations .. cv e et v enteneeeeeceeconcocsnccnnesn 3-2
3 LOADING ¢ v ot oo essoeascecscsasesscnscsscscasscsasnss 3-2
4 STORAGE REQUIREMENTS eseesscescsnennsce e ce e 3-2

.
W N =

SOCOCOWWM

:

WARE PAPER TAPE GENERATIONvecevecoossscsasoscsscocsnans 4-1
INTRODUCTION . ..vcteeeeeosscsaananans e e ecer e s eene 4-1
PROGRAM ENVIRONMENT0eceecsocssccsscsscnscacses 4-1

1 Program Loading ... v eeeeesvcosonsosscsassscasssnccass 4-1

.2 Memory Requirementseeeceseoscosocosocsosscascscsnsosns 4-1

3 Program MeSSageS . .. ueecesesecscssascssssossosssocsossscease 4-1

INPUT/OUTPUT FORMATS cecesessesersseecrssssssecse e 4-3

.1 Input FOrmats . @ v v v v vt et eeeetevseecssscacsscnsoscnoccss 4-3

2 Output Formatls . . v v o oo veteveooesoossscesecsssscsocosccs 4-3

Ll ol ol
0o WD DN

=}
]
!
[y
»

e et eeeccese e e s esecs s e st et s eecast s s st s aesc e ar 5-1

INTRODUCTION .. v2veveocoosoosccossescscsssesosseoccsscs 5-1
COMMAND MODE AND TEXTMODE & .cveeeeresceccsacecscscns 5-1
COMMAND DELIMITERS ... vt esooesscssoccccassensccnssns 5-1
ATguments ... icieeeeeeeaarcacnsceseocosasoscscccacones 5-1
Command Properties eeieeeeeessccessoscsssnsocscconsns 5=2
The Edit Buffer .« o v e vt evevnoveacescosssooscssonssncasnss 5-2
COMMAND SET . i 0eceecocescoscscosasncososcanscssssossescsse 5-2
KB-Keyboard Readcc0c00cecoseoceccccsccncsoccccscs 5-2
RT -Read Paper Tape.ec1eesevesossccccccccsccsacasse 5-3
RC-Read Cardcccecescccccssccscccnccccccces 5-4
LS, LF, LL - Teletype Listc0ceeececcccccsccccsecns 5-4
PT -Punch Paper Tapeccveeecssscocccsccscccsss 5-4
TL - Punch Leader/Trailercceeeeeaseecccscccaseaas 5-4
HP - High-Speed Printer List ., ,....ccceececccsseccocensns 5-4
MD - Modify Line0.000000000sc0csccscsssacsacse 5-4
MS - Modify Stringc00ctcececenn 5-6
DL-Delete Linec.0c0vces06acssossescsssnnsacscs 5-6
CL-Copy Line ,,,,..00cccocceoosascscocssossscsasssocs 5-6
MV -Move LinEccec0e coesoocoocoscsccsscscssssocaecs 5-6
CB-Clear BUffer,cveessescvsacsocsnssossoococenss 5-6
FS - Find String
ST~ Set Tab |,cceeoeaeccscosossannencaanssanaes
OPERATING PROCEDURES
Starting

DO
.CADCOND—‘

.
w
.

W N

&
s

.

.
e

. .
.

T A 5=7
5-7
5=7
5-7

B
b e 0 00 -1 O U R W N

o
GO R R R R R R R R R R A
b W= O

o
.
.
[y

© 5 6 6 % 6 6 6 6 0 8 8 5 S S B 8 9 8 S S 8 8 e 0 L LS e e s N GO e

iv

CONTENTS (Continued)

Chapter
5.5.2 Error Correctionsce0.. ceeeen
5.6 SAMPLE OF EDITI6 USE v 4t v eeeeesooea
APPENDIX A IMP-16 CHARACTER SET ..t evvoeesne
APPENDIX B INSERTION OF RLM CORRECTIONS
APPENDIX C FORMAT OF INSTRUCTIONS00esee
APPENDIX D CONVERSION TABLES ..t ivevecoocae

APPENDIX E EDIT16 SYMBOL MEANINGS AND USAGE .

ILLUSTRATIONS

Figure
2-1 Example of Card Load by ABSCR .
2-2 Program Cards for CR Boots .
2-3 Memory Map . .
2-4 Sequence of Sample IMP 16L GENLDR Run .
4-1 Input/Output Options. .
5-1 Sample Program Needing Correctlon
5-2 EDIT16 - Implementation of Correction Commands
5-3 Corrected Program Listing
5-4 Program Listing on PT Command.

TABLES
Table
1-1 Summary of DEBUG Commands
4-1 Input/Output Options.

vi

)
! &
U
®

1 [
= =3 U1 DN
w

1
= O
—

cncncncndrmmmm
1

Pt >

T

1
ey
-3

Chapter 1

DEBUG

1,1 INTRODUCTION

DEBUG is a relocatable object program that supervises the operation of a user's program during checkout,
DEBUG provides the following facilities for testing computer programs,

e Printing selected areas of memory in hexadecimal or ASCII format,
o Modifying the contents of selected areas in memory,

e Modifying computer registers including the stack,

e Inserting instruction breakpoint halts,

e Taking memory snapshots during execution of user’s program,

e Initiating execution at any point in program,

e Searching memory,

1,2 USAGE

DEBUG is a relocatable load module that is loaded into the user's environment as any other relocatable
program, DEBUG is initially entered through the global location DEBUG. This may be performed by the loader
at the completion of the loading of all programs, by a direct jump from a user's program or by an alteration

to the program counter at the control panel, DEBUG may also be entered through the global location, DEBUGI.
This entry point loads locations 0 and 3 with an initialization routine that enables the user to recover to

DEBUG by pressing the INITIALIZE button and then the RUN button,

DEBUG is self-contained; it includes all of its own input and output, The output and formatting ability of
DEBUG is available to the user by subroutine calls to the global UCALL program in DEBUG, The calling
sequence is as follows: '

JSR UCALL
. WORD XXXXXXXX ;BASE LOCATION TO PRINT
. WORD XXXXXXXX ;TOP LOCATION TO PRINT

NOTE

The definitions of the above assembler language instructions are given in the
IMP-16 Programming and Assembler Manual, The locations specified are
formatted with eight words per output line and are displayed on'the Teletype.
The use of UCALL is an independent subfunction of DEBUG and does not affect
normal DEBUG control.

1.2.1 Memory Requirements

The following memory is needed to run DEBUG:

Top Sector: X'42D or 10691, words,

Base Page: 6 words.

1-1

1,3 DEBUG LANGUAGE

The control statements which are used to command the operation of DEBUG are confined within a set of
rules which define the syntax (the format of control statements) and semantics (the meanings of the various
symbols and characters comprising the control statement) of the language,

1.3.1 Conventions Used In This Chapter

The following notation conventions are used to describe the commands, both in the general case (in the
command descriptions) and in the specific case (in the examples),

o Mixed upper- and lower-case characters are used for comments and notes,

¢ Nonmunderlined characters, numbers, and symbols, used in the examples, indicate computer-
generated output from the Teletype printer,

For example: TURN ON PUNCH
o Underlined characters, numbers, and symbols, used in the examples, indicate user-
generated input at the Teletype keyboard, Two types of underlined statements are

used:

1) Lower-case statements or statement parts represent the general case
(to be further defined by the rules of syntax), :

2) Upper-case statements or statement parts represent the exact (specific)
form of the input required to be typed in,

For example: -T (address argument) (general case)
-T 2345:7F (specific case)
-NOTE ADDRESS (specific case)

e Circled, upper-case characters represent operation of Teletype keyboard keys that do
not generate a printed character,

For example: represents the carriage return key.

ALT MODE) represents the alternate mode key.

° represents the operation of the CONTROL key in conjunction with an alphabetic
key, The CONTROL key must be depressed first, prior to pressing the alphabetic key, and
held in while the alphabetic key is pressed, The combined symbol is circled because a control
operation is initiated; no printed symbol is produced,

1.3.2 Syntax and Semantics

The basic elements of DEBUG commands are defined below, In the formal (symbolic) descriptions of
DEBUG commands, the following symbols are used:

{ay Specifies an element '"a" either of a command or of another element,

= May be read as, is defined as, and appears in a statement which defines the
element to its left,

a ' b l c Indicates that at least one of the elements (a, b, c, etc,) should be specified in
the command (a or b or ¢ or eeo €tC.),

{ a} Indicates that one of the elements specified inside the braces must be included in the
statement,
[a] Indicates that the element(s) specified within the brackets are optional and need not be

included in the command, unless desired,

1,3.3 Syntax

The following meanings are assigned to the terms used in the general-case form of the statements,

<{hexadecimal number)> ::=

{address argument) ::=

{memory address> ::=

{memory address range> ::=

{register address) ::=

{register address range> ::=

{comment) ::=

From one to four digits from the hexadecimal set
0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F.
Leading zeros may be omitted,

Memory address
Memory address range
Register address
Register address range

A four-digit hexadecimal number specifying a memory
location,

A memory address, followed with a colon (:), followed
with a second memory address,

For example: 3528:354A

The memory address to the left of the colon represents
the lower limit of the range; the memory address to
the right of the colon represents the high limit of the
range,

The letter 'R!, followed with a two-digit hexadecimal
number from the range of 0 through X'i3. Because
leading zeros may be omitted, the number may appear
as a one-, or two-digit number,

For example: RO, R13, R5

The letter 'R' alone, specifying all registers; or

a register address, followed with a colon (), followed
with a two-digit hexadecimal number, The register
address tc the left of the colon represents the lower
limit of the range; the hexadecimal number to the
right of the colon represents the upper limit of the
range, The upper limit must be numerically greater
than the lower limit,

For example: R6:13

English language text, including letters and numbers,
exactly as typed in,

1-3

{value) ::= A four-digit hexadecimal number used as the contents
of a memory location or the contents of a register,
Consists of a 16-bit number, May also be specified
as two ASCI characters,

For example: 124A, 2235, 0060, 'GO!

ASCI characters ::= A two-character set of ASCII characters, preceded
with and termihated by a single quote,

For example: 'AX'

1.3.4 Semantics

All numbers input to DEBUG are interpreted as hexadecimal digits. Characters may be either decoded as
ASCTI or hexadecimal, depending on the particular context. The following description explains the use of
certain characters:

, (comma) Delimiter of address and range arguments,

: (colon) Delimiter for a range argument; signifies that all the
locations from the first entry through the last are
included in the range. For example, a:b signifies
all the locations from a through b, including a and b,

R Signifies that the address following the character R
is a register address or register address range, A
two-digit hexadecimal mmnber is associated with the
rapge symbol; this number is limited to the range 0
through X'13,

The values 0 through 3 are for registers AC0, AC1,
AC2, and AC3, The values 4 through X'13 are for the
stack contents,

R without any value represents all registers, 0
through X'13,

(period) The current location (CL) is the last location
addressed by the previous DEBUG command.

1.4 COMMUNICATIONS

The user can communicate with DEBUG through a Teletype keyboard, printer, paper tape punch, and paper
tape reader. Whenever DEBUG takes control, it types the minus sign character (-) to indicate that it is

ready to accept a command, The user then may type contro statements to direct the operation of DEBUG.
All commands must be terminated by a carriage return r a line feed @ . To ignore a command, the
key may be pressed at any time before the @ or the Tin this case, the # symbel

is printed and no action occurs. If DEBUG detects an error in the command, it types a question mark (?)

and prompts for a new command.

As information is transmitted to the Teletype, the Teletype is interrogated for input. If any character is
detected, the current output is terminated and the user is prompted for another DEBUG command, This
feature is particularly useful for terminating excessive or undesirable output,

More specific information pertaining to particular commands and situations is given in the appropriate
command descriptions, below,

Control is returned to DEBUG from a user's program by use of the HALT command, Upon halting, DEBUG
types the halt address., Control is transferred back to the user!s program from DEBUG by the GO directive,
Details pertaining to the HALT and GO directives are described under the descriptions of the commands
themselves,

1.5 DEBUG COMMANDS

DEBUG commands consist of a single alphabetic character representing the command to be performed, followed
by a list of the arguments for the commanded operation, The arguments are separated by commas, The
numeric fields in an argument list must be in hexadecimal notation; leading zeros may be omitted, Blank
characters are ignored, except when enclosed by quotation marks, In this manner, blanks may be used to
enhance readability, A statement must be terminated by a carriage return or a line feed,

1,5,1 Command Descriptions

The commands that are used in DEBUG are described in the following paragraphs, In the examples contained
within the command descriptions, all information input by the user is underlined to distinguish it from the
information generated by DEBUG, This is fully discussed in paragraph 1,3,1,

1.5.2 TYPE
-T {address argument> [, <addressargument)]

The contents of the specified locations are printed on the terminal in hexadecimal notation, The starting
address is printed, followed by one to eight locations per line, If the contents of consecutive locations
(starting at any location on a line and extending to the end of the line) are alike, only the first of the like
locations is printed, The remaining ones are omitted, The next line also is omitted if the contents of

all locations on the line are identical to the contents of the last printed location on the previous line, However,
if the contents of any location within such a line are different, thenthe contents of the locations for that line

are printed according to the rules given above, The address for a new line always is a multiple of 8 for
consistency and ease of reading, The final location referenced becomes the value of the current location,

The format for the TYPE printout is illustrated below,

A printout of the contents of locations 104 through 120 is requested as follows:
~T104:120 .

DEBUG responds with the following output: (typical data)
0104 88DF O08DF O08DF O08FF O00FF B80FF O08FF B88FF
010C OOFF B88FF O08FF 88DF 88FF 805F 88DF O08DF

0114 O08FF O08FF 88FF O08FB 88FB B80EB 80FB ~—— (Would have been 80FB)
011C O00FB O00FB A8FB 88F3 4000

1,5.3 CHAR

-C {address argument)> [, <{address argument)]

This command performs in a manner similar to that of the TYPE command with the exception that the infor-
mation is printed in ASCI character format, The output line consists of the contents of one to eight words
preceded by the address of the first word, The format for the CHAR printout is illustrated below,

The following example shows the memory contents in locations 220 through 223, interpreted as hexadecimal
(TYPE statement) and ASCII (CHAR statement).

Using the TYPE statement,

-T 220:223 ’

0220 4131 4242 4147 4243

Using the CHAR statement,

-C 220:223 ,

0220 Al BB AG BC

An ASCH to hexadecimal conversion table is included in appendix A,
1.5.4 ALTER

{memory address) . -
A{(reg'ister address)} , <hexadecimal number) [Ceuo D ...]
The ALTER command alters the contents of the specified memory or register location(s). Arithmetic and
stack registers have register addresses 0 through 3 and 4 through X'13, respectively, Address 4 is the
top of the stack; that is, the last value placed in the stack, The user specifies the address of the location
or register that is to be altered, followed by a comma and the value to be placed in the addressed location,
If the value is terminated by @ , the value is stored and the ALTER is terminated, If an @
terminates the expression, the Value is stored and the user is prompted with the address of the next location
or register. A comma may be used to indicate successive locations or registers to be altered without repeated
prompts, Any error detected by DEBUG during processing prevents the alteration of the location being
processed, Pressing the key terminates the ALTER without storing the last value. The

value of the last prompt is the new current location,

The following example describes altering locations 2212 through 2215:

-A 2212, 0000, 0CDD, 00F7, 80EB

The following example describes the use of the @ key and the key to control and terminate
an ALTER operation:

-Al12A, 5133
012B 8

012C 'AA! .

In the above example, after altering location 012A, DEBUG responds with the address of the next location to
be altered (012B). Without further initialization, the value 8 is entered. The second causes DEBUG
to again prompt with the next available location to be red (012C), The ASCII characteTs AA are entered
and the ALTER operation is then terminated with a @ . The final prompt (-) signals the user that
DEBUG is ready for another command input.

1-6

1,5.5 HALT
-H {memory address> [, <hexadecimal mumber) |

HALT terminates control by the user's program at the location specified by the memory address and returns
control to DEBUG, The hexadecimal number (optional), if specified, is the number of times to pass through
this location before halting execution, The instruction at the given location is not executed when execution of
the userfs program is terminated; the instruction is normally executed immediately after control is returned
to the user's program by use of the GO command,

The HALT command can be used successfully only when the instruction at the HALT location and the instruction
at the following location always are executed consecutively, Thus, the instruction at a HALT location

cannot be either a skip or a transfer such that the instruction at the following location would not be executed
consecutively, Execution of the HALT does not remove it from the user's envirormment, It is in effect each
time that the instruction at the specified location is executed,

NOTE

DEBUG allows the user to set up to seven HALTS and/or SNAPs, If the user attempts
to specify an eighth HALT or SNAP, DEBUG responds with an OV and refuses to
accept the command,

All registers are saved by DEBUG when it is entered and restored upon a GO command, The register stack
must have one location for the DEBUG HALT execution, Upon halting, DEBUG prints CLxxxx, where xxxx
is the location of the halt,

For example, a breakpoint halt is required, in the user's program, at location 200, However, if it is
desired to hait only after the fifth pass past that point in the routine, the command may appear as follows:

-H 200, 5 ’

1,5,6 SNAP
-S {memory address) , <addressargument) [, ...]

Each time the memory location specified by the memory address is encountered, the contents of the ranges
specified by the address argument are typed at the terminal in hexadecimal form.,

The SNAP can be used successfully only when the instructions at the SNAP location and at the next location
always are executed consecutively, Thus, the instruction at a SNAP location cannot be either a skip or a
transfer such that the instruction at the following location would not be executed consecutively, Execution
of the SNAP command does not remove it from the user’s enviromment, It is in effect each time that
instruction at the specified location is executed. The user may type any character during the SNAP output
to terminate the output and the DEBUG prompt is issued (as if a HALT occurred at the SNAP location).

NOTE
DEBUG allows the user to set up to seven HALTs and/or SNAPs, If the user attempts
to specify an eighth HALT or SNAP, DEBUG responds with an OV and refuses to accept the
command,
For example, if the user wishes to see the contents of arithmetic register ACO and the contents of memory
addresses 145 through 148, each time the user routine reaches address 224A, the following SNAP command may
be used:

-5224A, RO, 145:148 (CR

1-7

The following is an example of the output that is printed by DEBUG each time the specified address is
encountered:

CL 224A

R0000 1234
0145 FFFF 1234 5678 9ABC
— J

- "

typical data

1.,5.7 GO

-G {memory address)
The GO command initiates transfer of control to the user's program at the location specified by the optional
memory address, If no memory address is specified with the GO statement, the program continues at the
last HALT location, All registers are restored in either case,
To start a user's program at location 2600, the following GO statement can be used:

-G2600 ,

To continue execution after a HALT, the following GO statement can be used:
- @)

1,5,8 MOVE
-M <value) , <address argument)

A selected hexadecimal number or ASCII character pair is placed in the specified range of memory addresses
or registers,

For example:

~M'XX', 250:25F loads all locations with XX

and -M 0, 250:25F @ puts zeros into the range of locations

1,5.9 NOTE
-N {(comment)

The NOTE command permits the user to comment his debugging, All text prior to the carriage return or the
line feed is printed on the terminal, No other action is performed.

For example, a NOTE comment may appear as follows:

_N A COMMENT MAY BE PLACED AFTER THE N (R)
-N AND SUBSEQUENT LINES MUST ALSO BE

-N PRECEDED BY AN N,

1-8

1.5.10 FIND

-F <value) , {address argument)

The locations in the range of address argument are searched and the first location that is equal to the value
is typed. If there is no match, DEBUG simply reprompts, The current location is either the location found
or the last location searched,

To find the pair of ASCI characters 'LK!' in the first 4K of memory, the following command may be used:

-F'LK', 0:FFF

DEBUG responds with the following output:

CL 0AAA if the characters are located at memory location AAA,

To find a hexadecimal mmber, the following command may be used:

-F 48, 0:FFF

The first 4K of memory is searched, If the number is not found, DEBUG reprompts.,

1,5.11 RESET
-R
The RESET command causes 2ll of the SNAPs or HALTS to be removed and the original code replaced,

For example:
= ()

1,5,12 CARRIAGE RETURN

Typing only the carriage return causes typing of the current location (CL) in the format (ASCI/hexadecimal)
of the last command,

1.5.13 LINE FEED @

Typing only the line feed causes typing of the current location plus one (CL+1) in the current format.

The current location is also increased by one,

1.5.14 BACK ARROW @

Typing only the back arrow causes typing of the current location minus one (CL-1) in the current

format, The current location is decreased by one,

1,5.15 Summary of Commands

Table 1-1 lists the commands in alphabetical order,

0T-1

Table 1-1, Summary of DEBUG Commands
Symbol Command Structure of Statement
A ALTER Eﬂﬁg 333;:::; , {hexadecimal number)> [, (...> <..,>]
o} CHAR C <address argument) [, <address argument) ...}’
F FIND F (value) , <address argument)
G GO G (memory address>
H HALT H <(memory address) , <hexadecimal number>
M MOVE M <value) , {address argument)
N NOTE N <{comment)
R RESET R
S SNAP S8 <{memory address) , {address argument> [se0e]
T TYPE T <address argument> [, {address argument) ..,]

Type Current Location

Type Next Location

Type Previous Location (CL-1)

(CL)

(CL+1)

Chapter 2

IMP-16 LOADERS

2,1 INTRODUCTION

The IMP-16 loaders are a compilation of programs that read and load one or more Relgcatable Load Modules
(RLMs), produced by the IMP-16 Assembler, info the main memory for execution. Each of these programs is
introduced briefly below and then is described in subsequent sections of this manual,

Absolute Paper Tape Loader (ABSPT) is a stand-alone program that reads GENLDR (or any other single RLM
not requiring relocation) from the paper tape reader and loads it into main memory for execution, ABSPT is
permanently resident in the IMP-16 ROM, Paper tapes read by the IMP-16 are assumed to contain eight
channels of binary data, An RLM appears as a series of records of binary data in standard format IMP-16
Programming and Assembler Manual); each record is preceded by a Start of Text (STX) character and
separated by Null characters,

ABSCR is a stand-alone program that reads any RLM not requiring relocation from the card reader and
loads the program into the main memory for execution, The primary use of ABSCR is to load GENLDR.
ABSCR is loaded into the main memory of the IMP-16L for execution by the Card Reader Bootstrap Loader
(CRBOOT) but is permanently resident in IMP-16P ROM,

CRBOOT is a stand-alone program for the IMP-16L and is not required for the IMP-16P, It is bootstrapped
directly into main memory for execution under control of IMP-16L equipment,

General Loader (GENLDR) is a self-contained IMP~16 program and performs the following functions:

o Reads and loads one or more RLMs from the card reader and/or the Teletype,

® Relocates the modules,

® Resolves external linkages between the modules,

e Provides descriptive information describing memory, globals,
GENLDR is command-driven and provides comprehensive control over the loading process, GENLDR has
the capability to change the loading input device, Otherwise loading proceeds in sequence from the device
upon which it was initiated,
2,2 ABSPT (ABSOLUTE PAPER TAPE LOADER)
ABSPT loads GENLDR or any other RLM (not requiring relocation) into the IMP-16 main memory from the
paper tape reader,
2,2,1 Usage
The RLM tape loaded by ABSPT is an 8~channel tape, composed of successive RLM records, each preceded

by a Start-of-text (STX) character. Since each record contains its own length, no extra characters may
appear within records, but any character may appear between records,

2,2,2 IMP-16 Loading

ABSPT is resident in Read-only Memory (ROM) on the IMP-16, The procedure for loading paper tape is as
follows:

1. Press the INITIALIZE button on the IMP-16 panel,

2. Place the RLM paper tape into the paper tape reader,
3. Press the LOAD PROG button on the IMP-16 panel,
4, Turn on the paper tape reader,

The RLM is loaded, the entry point address transferred to AC2, and the processing halted, At this point, the
user can perform one of the following actions:

1., Press RUN to cause execution of the program loaded,

2, Alter the entry point address contained in AC2 and press RUN to cause execution to start
at the modified entry point,

3, Load another RLM in the same manner as before, No resolution of inter~-RLM linkages is
performed; the user is cautioned to ensure that an RLM does not overlay a previously loaded
module,

ABSPT checks only for a checksum error and halts if one is discovered, To reiry the load, position the
paper tape at the beginning of the record in error; press RUN; and turn on the reader. In order to ignore
the error, press RUN,

2.3 ABSCR (ABSOLUTE CARD READER LOADER)
ABSCR loads one or more RLMs (which do not require relocation) into the main memory from the card
reader. In the IMP-16L, CRBOOT is used to load ABSCR into memory; because of this close relationship,

CRBOOT is described under the current heading, Refer to figure 2-1 for a description of a sample deck
using CRBOOT and ABSCR.

TERMINATES LOADING BY ABSCR

|
f

ASTERISK (*) IN COLUMN 1

ONE OR MORE RLMs

ABSCR

CRBOOT LOADS UNTIL ASTERISK (*) CARD FOUND

Figure 2-1, Example of Card Load by ABSCR

2-2

2,3.1 Usage

In the IMP-16P, ABSCR is resident in ROM, Inthe IMP-16L, it is resident in memory, starting at the
location specified by the user, and using E91g words., ABSCR cannot load RLMs info memory location
which it occupies.

The RLM card deck loaded by ABSCR is pumched one card per RLM record; columns 73 through 80 of the
card are ignored, Only the characters 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, and blank are
allowed in columns 1 through 72; a blank is treated as a zero. Each record is the hexadecimal character
equivalent of an RLM record as output by the IMP-16 Assembler (see IMP-16 Programming and Assembler
Manual),

2.3.2 RLM Loading

The sequence of events for loading an RL.M, which contains nonrelocatable coding, from the IMP-16L
card reader is as follows:

1, Place CRBOOT in the card reader, followed by ABSCR, followed by the RLMs to be loaded,
and a !GO card,

2, DPress INITIALIZE,
3. If ABSCR is to be loaded at other than location 12014, perform the following steps:
a, Set Mode Switch to ACO,
. Set ABSCR load address into switches,
¢, Press LOAD DATA,
4, DPress AUX1,
5. Press RUN,
The sequence of events for loading RLMs from the IMP-16P card reader is as follows:
1, Place the RLMs into the card reader followed by a !GO card and ready the card reader,
2, Press INITIALIZE,
3. Set MODE Switch to PC,
4, Set X'7TF00 into switches,
5, Press LOAD DATA,
NOTE
The following step must be performed; otherwise the system halts.
6, Set MODE Switch to PROG DATA,
7. Press RUN,
As shown in figure 2-1, ABSCR continues to load RLMs until the !GO card is encountered. When this occurs,

if a nonzero entry point is specified in the last RLM, ABSCR loads AC3 with a 1 to indicate that the load
device is the card reader and transfers control to the specified entry point,

If the last specified entry point is a '0' (supplied by the assembler as a default value), ABSCR halts, (See
Error Code 5, below,) At this point, the user may enter the correct entry point into AC1 and press RUN.

When the user loads more than one RLM, no resolution of inter-RLM linkages is performed; the user is
cautioned to ensure that an RLM does not overlay a previously loaded module,

When ABSCR detects an error, it places an error code in ACO and halts execution, The following codes
comprise the error codes:

Code Description

1 1/0 Error - A transmission error or data overrun condition occurred on the
card reader. In the IMP-16P, this code is the result of a motion error.
The status word returned from the reader is placed in AC1 before
halting, To reread the card, replace the card in the reader and press
RUN,

2 Invalid Character - Only punches for 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C,
D, E, F, and blank are allowed in card columns 1 through 72, Correct the
card; replace it in the card reader; and press RUN,

3 Checksum - The checksum calculated by ABSCR did not match that found on the
last card read, indicating either a read error or a bad card, Correct the card;
replace it in the reader; and press RUN,

5 Tnvalid Entry - The last END record read contained an entry-point address
of '0' and a !GO card was read. Place the correct entry-point address

in AC1 and press RUN,

2,4 CRBOOT (CARD READER BOOTSTRAP LOADER)
CRBOOT is the card reader bootstrap program for the IMP-16L, Its sole purpose is to load a single
program that is punched onto cards in a specific format, Typically, it is used to load ABSCR.
2,4.1 Usage
CRBOOT reads successive cards containing only hexadecimal characters 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
A, B, C, D, E, F, or blank in columns 1 through 72; blank is treated as a zero, Characters are converted
to their 4-bit hexadecimal equivalents, packed 4 characters to a word, and stored in successive memory
locations, CRBOOT passes control to the loaded program (at the first location loaded) when it reads a
card with an asterisk (*) in column 1, (The rest of that card is ignored.) When it transfers control,
interrupts are disabled.
2.4,2 Bootstrap Procedure
The following procedure should be performed to bootstrap from the card reader:

1, Press INITIALIZE,

2, Place CRBOOT in the card reader, followed by deck to be loaded (typically ABSCR) and a
card containing an asterisk (*) in column 1,

3, If deck is loaded at other than location 1201g, perform the following steps:

a, Set Mode Switch to ACO,

b. Setload address into switches,
¢, Press LOAD DATA,

4, DPress AUX 1,

5, Press RUN,

Note that because CRBOOT resides in memory words 0 through 4F 1 and uses words 5054 through 9F ¢4 as
an input buffer, CRBOOT cannot load a program into locations 0 through 9F;¢,

CRBOOT halts at location 001044 if it detects a transmission error or a data overrun condition on the card
reader; the entire load process then has to be repeated,

CRBOOT halts at location 002044 if it detects an invalid punch, (Only punches 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, A, B, C, D, E, F, and blank are allowed.) Correct the card and repeat the entire load process.

2.4,3 TFormat of CRBOOT

Since CRBOOT is read by the IMP-16L equipment card reader bootstrap, it must be punched in a special
format,

Each (odd, even) pair of card columns is packed into one memory word, Rows 2 through 9 of the odd-
numbered column are moved into bits 15 through 8; rows 2 through 9 of the even~-numbered column are
moved into bits 7 through 0, The hardware bootstrap reads one card, packs it into words 0 through 394
(271g), and passes control to word 0,

CRBOOT is a 2-card hootstrap (see figure 2-2), The first card contains the instructions necessary to
read the second card, which has the same format as the first card,

CRBOOT #1
5/31/73
560C00005000350060000050006008000308430040 i :
123568 SN BRI NS X ssa
11111111111111|11111111111111'111111111141||111\111,111111\11111111111;111‘11‘1‘

20:022022222022222222222922222222222:0 0722222222 0022222220222
i:z33335]33333es:zlsaszsazla:xzaa:szll'lI'333'Il:33I3I1:3333I“
| FYRYEY EXN | EXY) EXY EXREER] RXREERT] e | FEPYEYE FEREY ERE! FERXEYY] | :

5555555555555 @s550sshossclscBsssssl 155553505550 355555355“4551ﬁl;5lsl3
sclsscs RBERENEsesslosclesllcs
IRRRRRREI SRRRERT BRI 1 B | Fal]

sll | EE

B BRI

/ CRBOOT #2 "\

5/31/73
62000000000C9000k0p00U0O0T0LEI00220000020000500007202020063008008000000832087332

L2 S 678 SNINMSE E X I ZAIA D Dais 10 L NS PG S A T3 8 ntman
111|l1111|l11111111111111Hl..XHHIIllllHHHHHH,IHIIHIIHHIIHIIIIHIH
22222220222220202220222220 2220202z k22228022282 02202222020222222222200222222
BB IR 2333 33 230NN Nl e mlsss Rz DN 3520e33033333333233:2 0383333

BRYYRYYY) (FYPRY | IYEYY EERRYRERY | 1 | ENED Oxd | K1 EXXERERY XXy
P55 BUssHsMUsMssRsHssssBESHmUNR:s R0 sHsB55555555055555: 5 sMsMsls5555sQUs5555S
oBBscRANRscUBRNcMcocRocaRAsHNcR cRosBoRBcs-ANRscEANscsshsBclBoBoessceccQU666Ecs
11|717|1|71|||7|1||71f777l|7l||1|777177z||77|777717|77|771|7777|7|7117117[717177
TEXEEERY [T TT PR CEXRY | EXX1 EXRRRET £X3 REET EE XA K EXX K1 ERERRES K LEEENR] | EREXEE]

\¥||||sss!lslsslllslsslesslllsallssl U CERL ERT RELLT BESLE1 ERR] K EERS B RESERRT EEEEESE

TR W RTPER BEET mmw:-mnnnn-e-/

s

Figure 2-2, Program Cards for CR Bootstrap

2=5

2,5 GENLDR (GENERAL LOADER)

GENLDR is a stand-alone IMP-16 program that loads one or more Relocatable Load Modules (RLMs)
produced by the IMP-16 Assembler, performs relocation and resolves external linkages, and loads the
RLMs into main memory for execution,

Each RLM must be transcribed to punched cards or paper tape (ordinarily, on the same machine used

for assembling IMP-16 Assembly Source programs), These RLMs, as well as the commands that

control the loading process, are then input to GENLDR, RLM record formats are described in appendix A
of the IMP-16 Assembler Manual,

The paragraphs that follow describe the commands to control GENLDR and the input sequences required
to load an executable program into the IMP-16 main memory., Error messages and diagnostic output of
GENLDR are also described,

2,5.1 TUsage

GENLDR is a nonrelocatable stand-alone IMP-16 program that must be loaded into memory by one of

two absolute loaders: (1) ABSCR allows GENLDR to be input from cards and (2) ABSPT, from paper tape.
Once loaded, GENLDR can accept input from either cards or paper tape; although, initially, it accepts
input from the device from which it was loaded,

GENLDR occupies approximately 1700y, words of memory and is typically loaded into upper memory,
Programs cannot be loaded by GENLDR into memory that it occupies or uses for the symbol table it
generates, However, GENLDR allows the user full use of base page., The memory layout is described
in figure 2-3,

The IMP-16 Assembler allows the user to allocate portions of his program in three ways:
e At an absolute memory location
e Relative to the origin of the base sector
¢ Relative to the origin of the top sector

Typically, absolute allocation is employed to assign locations dependent upon equipment (for example,
interrupt entrance address) or to communicate with special-purpose routines, The base sector must be
located such that it is contained within the first 2564 (10016) locations of memory and typically contains
data and pointers necessary for inter-RLM communication, The top sector may reside anywhere in memory
(subject to the limitations mentioned above) and normally contains the main portion of the RLM, Care must
be exercised to ensure that an absolute sector does not overlay a previously loaded base sector or top
sector, (See !OBS and !OTS commands in the following paragraphs.)

Two other limitations are imposed upon the base sector by the IMP-16 computer architecture and the
method for resolving certain external linkages, First, any base sector variable that is referenced by an
indexed instruction must be allocated to one of the first 7F 1 locations of memory, Second, in resolving
certain external linkages, GENLDR may force an indirect reference to a global variable through a pointer
in the memory area FF;g and downward,

The area of IMP-16L memory between locations 10014 and 11Fyg4 is used by the control panel service
routine and may not be used by the user, Above address FFqg, loading is limited, only within the area
occupied by GENLDR and the symbol table it generates, (This area may be used by the loaded program,
after it receives control from GENLDR,)

As an entry poinf, GENLDR selects the last nonzero value specified for the set of RLMs loaded. The entry
point for any particular RLM, if specified, appears in the END record of that RLM, If the user desires, he
may override the entry point selected by GENLDR by specifying the desired entry point in the !GO command
(paragraph 2,5,17), I neither of these methods is chosen, GENLDR prints an "ENT" error message and
prompts for a new command,

2-6

GENLDR

SYMBOL TABLE

ABSOLUTE SECTOR

TOP SECTOR2

TOP SECTOR1

INDIRECT POINTERS
GENERATED BY LOADER

v

BASE SECTOR2

BASE SECTOR1

Figure 2-3, Memory Map

HIGH MEM ORY

100

16
FF16

0016

2.5.2 GENLDR Input

GENLDR is command-driven, It reads commands and RLMs from either cards or paper tape, and commands
are available to switch between input devices, (See !CR and ITTY, paragraphs 2.5.9 and 2,5,10), GENLDR
does not recognize any distinction between the Teletype paper tape reader and the Teletype keyboard; therefore,
the user may type in his commands at the keyboard and input the RLM from paper tape., Commands entered
either on paper tape or the keyboard are echoed back to the Teletype printer; the RLM itself is not echoed.

Commands entered on punched cards must contain an exclamation point (1) in column 1, When the command
is entered from the Teletype, GENLDR types the exclamation point to prompt for a command, The user
should not type the exclamation point,

Input lines on the Teletype can be terminated by either a carriage return or a line feed, GENLDR supplies
a line feed if a carriage return is issued, or a carriage return if a line feed is issued. GENLDR recognizes
the following special characters when reading from the Teletype:

- Backspace character
ALT MCODE Delete entire line
RUB Rubout character (ignored)

Null character (ignored)

A maximum of 72 characters is allowed in one Teletype input record; excess characters are ignored,

2.5,3 GENLDR Output
GENLDR may be directed to print information descriptive of the loading process, The title information,
base sector limits, top sector limits, absolute sector limits, indirect pointer limits, and entry point
address of each RLM may be printed on the Teletype (see !LM command), The user may also request the
printing of the symbol table, or only those entries of the symbol table that refer to undefined (U) or multiply-
defined (M) symbols (see !SY and !ER commands in the following paragraphs).
I ILM is issued, GENLDR types the following information at the end of each RLM:

MNEMONIC QUALIFYING STRING AAAA BBBB

BS=XXXXXXX TS=XXXX:XXXX AS=XXXX:XXXX PTR=XXXX:XXXX ENT=XXXX
where:

e MNEMONIC is the name of the RLM from the TITLE record,

¢ QUALIFYING STRING is the qualifying string from the TITLE record,

e AS gpecifies the low and high addresses of the absolute sector,

o BS specifies the low and high addresses of the base sector,

e TS specifies the low and high addresses of the top sector,

e AAAA and BBBB are the RLM source and object checksums, respectively,

e DPTR is the number of indirect pointers generated,

o ENT is the entry address from the END record,

2-8

All numbers are printed in hexadecimal notation, If !NLM is the last command issued (of LM or INLM),
when !GO is executed, one line of the above format is output containing composite limits of all RLMs
over the scope of the !NLM command,

If 1SY or !ER is specified (or defaulted), GENLDR prints symbols as follows:

SYMBOL XXXX F

where:
® SYMBOL is the symbol name,
e XXXX is the hexadecimal address of the symbol,
e T is one of the following:
M - multiple-defined symbol
U - undefined symbol

blank - defined symbol

2.5,4 GENLDR Commands
All commands must begin in column 1 of the input record, One or more blanks must separate the command
from an operand, Unless otherwise specified, where the term < hex-value > is used below, it represents a

* hexadecimal number in the range 0000 to FFFF, Leading zeros need not be specified, but no more than
four hexadecimal characters can be given for < hex-value) .,

2.5.5° 10OBS - Origin Base Sector

10BS < hex~value)

NOTE

04p (= hex-value {=TFF, . If this command is not given, the first base sector is
16 16
loaded ‘at location 1044,

The origin for the next base sector is set to <hex-value> . If this command is not specified, the next
base sector is loaded immediately following the previous base sector, This command should be used to
prevent loading a base sector on top of an absolute sector,

2,5,6 !0TS - Origin Top Sector

10TS <hex-~value)

NOTE

The highest value of (hex-value) is a function of the memory available, and must
not cause overlaying of the locations occupied by the symbol table or GENLDR, If this
command is not given, the first top sector is loaded at location 12016.

The origin for the next top sector is set to < hex-value > , If this command is not specified, the next top

sector is loaded immediately following the previous top sector, This command should be used to prevent
loading a top sector on top of an absolute sector,

2-9

2.5.7 IRLM - Relocatable Load Module Identifier

IRLM
This command must precede each RLM to be loaded, The RLM is loaded from the same device from which
the RLM command is entered.
2,5.8 ICLR ~ Clear Memory

ICLR
Memory below GENLDR is cleared to zeros if this command is issued before the first RLM is loaded.
After loading is completed (that is, a !GO command is read), memory containing the symbol table and
GENLDR is zeroed; this latter function is performed even if the !CLR command is issued after an RLM
is loaded.
2,5.9 ICR - Read Input from the Card Reader

ICR

Subsequent input is accepted from the card reader.

2,5.10 I!TTY - Read Input from the Teletype
ITTY
Subsequent input is accepted from the Teletype. Teletype input is accepted from either the paper tape or
the keyboard, but only commands are echoed to the Teletype printer.
2.5.11 1SY - Print the Symbol Table
ISy

The symbol table is printed upon execution of this command,

2.5.12 IER - Print Symbols in Error
1ER

Multiply-defined and undefined symbols are printed when this command is read,

2,5,13 ILM - Print Limits

ILM
As each RLM following the 1LM command is loaded, GENLDR prints the name, checksums, base sector
limits, top sector limits, and absolute sector limits of the RLM, Each time RLM limits are printed,

they are reset so that a record of areas occupied by only single RLMs is maintained by the program, The
default command is INLM,

2-10

2,5,14 INLM - Don't Print Limits
INLM
The name, base sector limits, and top sector limits are not printed, Instead, when a !GO command (2, 3.4, 13)

is executed, GENLDR prints the combined base sector limits, top sector limits, and absolute sector limits
of all programs loaded, The default command is INLM,

2.5.15 18Q - Check Sequence Numbers on Input Deck

15Q
After this command is executed, the sequence number field of each input card (columns 73 through 80)
is tested to ensure that the sequence numbers contained therein appear in ascending order from one card
to the next, If they do not appear this way, an error message is printed, The default command is INSQ.
2.5.16 INSQ - Do Not Make Sequence Number Check

INSQ

Execution of this command nullifies the execution of an !SQ command, The default command is INSQ.

2,5,17 1GO - Execute the Loaded Program
1GO < hex-value)
The entry point specified in the last RLM loaded can be overrriden by specifying the entry point address
(" <hex-value) ™, If <hex-value) is omitted, the last nonzero entry point specified is executed,
If no nonzero entry point is specified and no value appears in the command, GENLDR prints an error message
and returns to the command mode, If a !CLR command is previously read, the symbol table and memory
containing GENLDR are zeroed before execution of the loaded program, Before transfer to the entry point,
the combined limits of all programs loaded are printed on the Teletype if the individual program limits are
not printed,
2.5.18 Messages
The following messages may be output by GENLDR:
GENERAL LOADER (REV, X) READY.
GENLDR is ready to accept commands, X is the current revision level of GENLDR,

CMND The command is invalid or imrecognized. Reenter the command,

CHAR An RLM record contains characters other than 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,
B, C, D, E, and F, Correct the record; reload; and press RUN,

SEQ Record sequence error, The correct sequence is (1) Title Record, (2) Zero or more
Symbol Records, (3) Zero or more Data Records, and (4) End Record. Correct
record sequence; reload; and press RUN,

CKSM Checksum error on the next-to-last record read, If the checksum field is 0000, no
checksum test is made, The read may be retried, Reload the record and press RUN,

2~-11

NMBR A sequence number error is detected. Place the input cards in the correct order and
restart, or continue,

BSOV Base sector overflow, The run must be restarted, but the error may be corrected by
proper use of OBS and OTS commands,

TSOV Top sector overflow, The run must be restarted, but the error may be corrected by
proper use of OBS and OTS commands,

SYMB Symbol table overflow. Too many external symbols defined, The run must be restarted,
but the error may be corrected by proper use of the OTS command,

ADDR Addressing error, This error occurs under the following conditions and the run must
be restarted:

1, Attempting to reference an indirect pointer generated by the assembler which, because
of relocation, is forced to an address greater than 255y, (FFy¢).

2, Using an index register in an instruction referencing a base sector variable allocated
to a memory address between 128, (801¢) and 255, (FFy¢).

3. Attempting to use an index register in an instruction referencing an undefined external
variable,

4, Referencing an undefined external variable in an instruction which either is flagged
indirect already or cannot be so flagged,

EXTN Unable to locate external symbol in Symbol Table, This error may be caused by
attempting to load an RLM with some missing symbol records or by an erroneous patch
which looks as if it is referencing an illegal external reference number, The run
must be restarted,

AREA Loading in illegal area (possibly on top of the loader), Restart with valid !0OBS or 0TS
commands,

MEM Memory size exceeded, Loading into nonexistent memory. Recovery not possible,
but error may be corrected by proper use of OBS and OTS commands,

SYST System error caused by a malfunction in system software or hardware, Recovery not
possible,

PNCH Invalid punch in input record, Only the characters: blank, 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, A, B, ..., X, Y, and Z accepted, Correct; reload record; and press RUN,

CRDR 1, Card reader is offline. Place reader online and press RUN,

2, Transmission error or data overrun on card reader, The status word returned by
the card reader is in AC0, Replace card in reader and press RUN,

ENT No entry point specified for program, GENLDR transfers control to the Teletype for
new command,

DROP Card dropped out of deck (that is, sequence number incremented by more than 10 and
15Q in effect), Check last two cards read, If there are no cards missing between them,
press RUN; otherwise, correct card deck and reload,

PTCH nnnnnnhn

A patch card (card with sequence number that is not a multiple of 10) with sequence number
nnnnmnnnn' was processed,

2-12

2.5.19 Sample GENLDR Run

The sequence of a sample IMP-161. GENLDR run is shown in figure 2-4, The sequence starts with CRBOOT
and proceeds through the steps shown to !GO, upon which execution of GENLDR starts at location 28849 (12016)
When GENLDR is run on an IMP-16P, CRBOOT and ABSCR are not required in the sample deck,

START EXECUTION AT
LOCATION 12044

PRINT SYMBOLS IN ERROR

FIRST RLM

ICR TRANSFER CONTROL TO CARD READER
FOR FURTHER COMMANDS

LM } PRINT LIMIT INFORMA TION

TRANSFER CONTROL TO TELETYPE FOR
FURTHER COMMANDS

CLEAR MEMORY TO ZEROS

!GO FOR TERMINATING ABSCR INPUT

CARD READER BOOTSTRAP AND THE
ABSOLUTE LOADER LOADS GENLDR

CRBOOT

(CONSISTS OF TWO CARDS)

Figure 2-4, Sequence of Sample IMP-16L GENLDR Run

Chapter 3

TELETYPE I/O ROUTINES

3.1 INTRODUCTION

STTYIO contains five Teletype input/output routines assembled in one relocatable object program, Each
routine performs one commonly used Teletype function,

3.2 USAGE

A transfer vector is reserved in base page to establish a fixed interface between user and STTYIO

3:2,1 TFunctions
The five Teletype functions in STTYIO are:

e SETPL Resets the Teletype and initializes the other four routines for IMP-16L/16P
operation,

e INTEST Tests for Teletype input,

e PUTC Transmits bits 0 - 7 of Accumulator 0 (ACO0) to the Teletype.
e GETC Transfer from Teletype to bits 0 - 7 of Accumulator 0 (AC0).
e GECO Same as GETC plus an echo of the character on the Teletype printer,

3.2,2 Communications

The user may call these routines by using the JSR@ instruction and the transfer vector reserved in base
page, Addresses in base page are reserved as follows:

000B SETPL
000C INTEST
000D PUTC
000E GETC
000F GECO

For example, to transmit bits 0 - 7 of ACO to the Teletype, the following instruction may be included in the
instruction stream:

JSR @xD
When using INTEST, return from the routine is as follows:

CALL+1 INPUT AVAILABLE FROM TELETYPE
CALL+2 NO INPUT FROM TELETYPE

A typical user's program using INTEST may appear as follows:

JSR @xc
JMP ATTINPUT ;ATTEMPT TO INPUT
JMP NOINPUT ;NO INPUT FROM TELETYPE

Return from all the other routines is RTS 0.

3.2.3 Limitations

When STTYIO0 is loaded in memory, locations X'B through X'F in base page are reserved locations. SETPL
must be called prior to use of any of the other four routines. Registers and flags are not altered by any of the
five routines except ACO in GECO and GETC. The stack is pushed three levels deep during execution of

these routines.

These routines are dependent on system speed. They are good only at normal system speed (1.4 usecond per
microcycle).
3.3 LOADING

STTYI0 may be loaded by the absolute card reader loader, absolute paper tape loader, or the general
loader. Refer to chapter 2 of this manual for additional information concerning IMP-16 loaders.

3.4 STORAGE REQUIREMENTS
Base Page X'B through X'F
Top Sector STTYIO0 is currently assembled top sector relocatable and

occupies 12310 (7By¢q) words.

3-2

Chapter 4

FIRMWARE PAPER TAPE GENERATION

4.1 INTRODUCTION
PROMP is a program that generates paper tapes for PROM programming, It has the following capabilities:
e Punch PN format PROM tape.
o Punch BC (binary complemented) format PROM tape,
e Punch paper tape RLM from card RLM,
PROMP output tapes for ROM programming are used only in ROMs programmed 8-by-256 bits (used in
multiples of two).

4.2 PROGRAM ENVIRONMENT

4,2.1 Program Loading
PROMP may be loaded by GENLDR or by the absolute loader (ABSCR), when PROMP is in card deck object

format, and by the LOAD PROG function in the IMP-16 when PROMP is in paper tape object format, PROMP
uses the Teletype I/0 functions provided in STTYIO and thus requires that STTYIO also be loaded into memory,

4.2.2 Memory Requirements

PROMP requires 65516 words of top sector memory.

4,2.3 Program Messages

To guide the user in the use of PROMP, query messages are typed. There are four general messages
corresponding to the four possible program states. Initially, PROMP types:

NSC IMP-16 FIRMWARE PAPER TAPE GENERATOR
OUTPUT TYPE:

The user must then respond with one of the following codes:

PN - For PN format PROM tape.
BC - For binary (complemented) format PROM tape.
OM - For card RLM to tape RLM conversion.

All responses must be terminated by a carriage return. For the OM option, PROMP types the following
message and goes into an output state:

TURN PUNCH ON
MAKE CARD READER READY

At this point, RLM records are converted from card to paper tape. After processing the END record,
PROMP goes into a wait state. The user may now turn off the Teletype punch. Typing any key returns
the PROMP program to the initial state.

Hx
[y

In either PN or BC options, PROMP goes into an input state., The following message is typed:
INPUT DEVICE:
The user may respond with one of the following codes:
CR - Card Reader
PT - Teletype
ME - Memory
ME Option, If this device is selected, PROMP then types:

SPECIFY MEMORY --

The user must then type the memory range, where the user program is located. A range is designated
by the start address and the last address, delimited by a colon (:); the range must be in blocks of 256 or
512, words,
10
Example:
SPECIFY MEMORY --FF00:FFFF
CR Option. PROMP types the following message:

MAKE CARD READER READY
TO LOAD RLM

The card reader must be turned on at this point,
PT Option, If this device is selected, PROMP types the message:

MAKE TAPE READER READY
TO LOAD OM

After the loading process, when the END record is recognized, PROMP types:
TURN READER OFF
The user must turn off the reader and press any key to initiate the output process.
After the loading process, PROMP goes into an output state and types:
OUTPUT OPTION:

The user must respond with one of the following codes:

Default, options 1 through 4, below,
1 First 256 words, left byte.
2 First 256 words, right byte.

[

Second 256 words, left byte.

4 Second 256 words, right byte.

4-2

If more than one option is desired, the user may type options consecutively, delimiting with either a
comma (,) or space, After the option is typed, PROMP comes back with the message:

TURN PUNCH ON
HIT ANY KEY TO START

After the output process, PROMP goes into its last state, the wait state, This wait state is provided so that
the user can turn off the punch before any message is typed by PROMP, To return to the initial state, the
user must press any key on the keyboard,

Typing CTRL/D when PROMP is waiting for a response transfers the user to the initial state, Leaders/
trailers are punched automatically, If PN is chosen as an output type code, pressing any key during the

output process causes an interrupt of the current output option and initiates processing of the next output
option,

4,3 INPUT/OUTPUT FORMATS

4,3.1 Input Formats

PROMP accepts object programs in RLM format and memory contents for input, Input device may be a
card reader, Teletype, or memory.

4,3.2 Output Formats

There are three possible output formats from PROMP: PN and BC for PROM tapes, and RLM tapes.

PN Format, In this format, 1 (one) bit is represented by one frame P (for 1) and N (for 0) in ASCI format.
Each 8-hit block is preceded by the character B and followed by F. CR or LF precedes each B character,

NOTE

This format should be used when ordering ROMs or
PROMs from National Semiconductor Corporation.

BC Format, In this format, 8 bits (may be left or right) is represented by one frame. The frame contents
is the binary cox{lplement.

RLM Format, Refer to the IMP-16 Programming and Assembler Manual and chapter 2 of this manual for
a complete description of RLM object programs,
4.4 USAGE

By typing the right codes in response to PROMP queries, the user can use PROMP in a variety of ways.
The following table shows all possible input/output options.

4-3

Table 4-1. Input/Output Options

Input Output
Function Option Input Input Option Output Output
Code Device Format Code Format Option Codes
RLM CR Card RLM PN PN , 1,2,3,4
Reader BC Binary
to
PROM PT Teletype RLM PN PN ,1,2,3,4
BC Binary
ME Memory Binary PN PN ,1,2,3,4
BC Binary
Card Card RLM OM RLM Not
RLM Reader applicable
to
Tape
RLM

4-4

Chapter 5

EDIT16

5.1 INTRODUCTION

EDIT16 is a paper tape source editor program, used with the IMP-16L/16P processors. EDIT16 enables
editing of a previously prepared source program (or any text) or generating and editing new text, Once
loaded, the program is self-starting and provides approximately 4000 characters of working storage in a
4K processor,

The normal editing procedure is to input text, edit the text, and output the edited text. Refer to paragraph
5.6 for a sample edit run.

Prepared text, in punched paper tape format, is read in through the Teletype paper tape reader. New text
is generated by typing lines of text on the Teletype keyboard. A line of text is a string of characters
followed by a ‘ character. Output text is punched on the Teletype paper tape punch.

EDIT16 commands are line oriented, Character editing capability is provided througil the use of the "Modify
Line/String" command., Automatic line renumbering is performed when lines are inserted, deleted, and moved.

Appendix E contains a table of the symbol meanings that are used in the discussions that follow,

5.2 COMMAND MODE AND TEXT MODE

The EDIT16 is in the command mode when it types a '?! prompt character and waits for a command input,
Most EDIT16 commands operate in this mode, but there are a few commands that require additional
information for the command to be carried out properly. In getting this additional information, EDIT16
goes into a text mode, Text mode is terminated by either a v ora @ depending on the
command being processed, Command mode always follows successful command processing.,

If an invalid EDIT16 command is typed, the message ERROR is typed, followed by CR/LF, and then the
prompt character (?). Note that only one command per line is accepted,

All EDIT16 comma s are terminated by a . If the command is not a text-type command, processing
starts after the charac er is typed and EDIT16 remains in command mode, If the command is a
text type command typing causes EDIT16 to go into text mode,

Note that when the keyboard is used as an input, signals the end of a line and also appears in the

Typing @ causes EDIT16 to respond with CR/iF; that is, a carriage return followed by a line feed.
edit buffer as the last character of a line,

5.3 COMMAND DELIMITERS

5.3.1 Arguments

Arguments are used in EDIT16 commands to specify portions of the edit buffer upon which the command
operates, When a command requires an argument but none is typed, default values are called upon and these
vary according to the command, EDIT16 uses the following arguments:

n Is an unsigned decimal number from 1 to 9999. It denotes existing line numbers
in the edit buffer.

/ Specifies the high and low values of a range argument.

TO Must be followed by n, and operates on n such that n signifies the destination
in a transfer type command,

m Number of lines count: usually used in addition or insertion of new lines,

1 Single quote: used to enclose a string of characters for commands that require
string arguments,

The first four symbols may be combined in different formats to help the user achieve specific tasks, Valid
combinations are as follows:

5.3.2

m TOn Usually used to insert new lines info existing text. m gives the number of
lines to insert before line number n.

TOn Same as above except that the number of lines to insert before line number n is not a
fixed amount. CTRL/Q) is used to terminate insertion,

n, TO n, Used in copy and move line commands. nj is the line to be moved or copied and
ny is the destination line number. Note that both nj and ny must be existing line
numbers,

nl/n2 Used to specify a line number range.

Command Properties

All commands are line oriented. Line numbers specified in a command argument must be lines existing
in the edit buffer. Specifying non-existent lines causes abnormal EDIT16 execution, which may result
in program crash.

Arguments must be separated from the command by at least one space; although, some commands may
execute properly even without command and argument separation,

All valid commands are two characters long,

5.3.3 The Edit Buffer

The edit buffer contains the source text which is being edited. Each line is composed of a line number,
line source, and a character., Source is packed, two ASCII characters per word, and repeated
spaces are packed using a repeat count, The edit buffer is located on top of the EDIT16 code such that
its size is dependent on the machine memory space.

5.4 COMMAND SET

Commands are grouped into three sets: Input/Output Commands, Text Modify Commands, and Search
Commands.

5.4.1 KB - Keyboard Read

The KB command is used to enter text into the edit buffer from the Teletype keyboard. EDIT16 types ->

whenever it is ready to accept a new line. Typing CTRL/Q as the first character in a new line terminates

the keyboard entry and EDIT16 goes to command mode,

’ KB without an operand appends all text entered from
- FIRST LINE (CR keyboard.

5

2 KB 1 ’ Append one line to edit buffer.

> APPEND ONE LINE (CR)
? KB 2 TO 2 @ Insert two lines before current line 2.
> FIRST INSERT (CE)
N SECOND INSERT (CR)
? KB TO 3 ’ Insert all text entered before current line 3.
> THIRD INSERT (CR)
- FOURTH INSERT (CR)
N FIFTH INSERT (CR)
> (CNTL/Q) ***
? Next prompt.

A description of the symbols used in these examples is included in appendix E, Typing CNTL/Q) when
EDIT16 is waiting for a command initiates the keyboard input mode.

Example:

» @R
-

The current line being entered is ignored if (CNTL/Q) is entered before the . A back arrow @

deletes the last character typed.

5.4.2 RT - Read Paper Tape

The RT command enters text into the edit buffer from the Teletype reader, but does not print the lines.
This command processes input lines, similar to the KB command, To terminate text entry when no fixed
number of lines is specified in the argument, the user must turn off the reader and enter a on
the keyboard, The same action may be used to abort the entry, If the reader is turned off in the middle
of a line, only the last complete line is transferred to the buffer,

If the edit buffer becomes full when entering lines using the KB, RT, and RC commands,
the message: :

BUFFER FULL
is typed and EDIT16 goes into command mode, Again, an incomplete line is not entered to the buffer.
Example:

?2 RT 2 ’ Append two lines to the edit buffer. This message
is typed after the second line is read.

TURN READER OFF NOW

5-3

5.4.3 RC - Read Card

The RC command must be issued only when applicable. That is, on systems equipped with a card reader.

It reads a card and treats it as one line, Arguments applicable to the KB command (refer to paragraph 5.4.1)
apply here also,

5.4.4 LS, LF, LL - Teletype List

The LS command lists text on the Teletype. Listed lines are numbered. LF lists line number 1, the first
line of text, LL lists the last line of text.

Example:
> 152/4,6 (CR Listslines 2 through 4, and line 6 on the Teletype.

2 LS ’ Lists entire text.

To interrupt the list, press any key on the Teletype keyboard.

5.4.5 PT - Punch Paper Tape

The PT command is used to punch text on paper tape, Immediately following the PT command, the following
message is typed:

TURN PUNCH ON
EDIT16 then goes into the wait state, To continue operation, turn on the punch and press any key on the
keyboard. To interrupt the punch, press any key. The punch operation is interrupted immediately, At
the end of the punch operation, EDIT16 goes to a wait state. Turn off the punch and press any key. Line
numbers are suppressed.

Example:

? PT 1/3 ’ Punch lines 1 through 3.
? PT , Punch entire text,

5.4.6 TL - Punch Leader/Trailer

The TL command punches approximately 5 inches of null characters for use as trailer or leader. Note
that the PT command does not provide for a leader or trailer.

5.4.7 HP - High Speed Printer List

The HP command must be issued only where applicable., That is, for systems equipped with a high-speed
printer, HP provides the same output list format as the LS command (refer to paragraph 5.4.4).

5.4.8 MD - Modify Line

The MD command enables character editing in a line, Characters may be inserted or deleted and lines
may be truncated or extended.

Examples:

? MD 2 (R Modity line 2,

2 SECOND LINE Line 2 is typed back,
ALTERS? SECOND TEST LINE @ Line 2 is extended.
LCOND TEST LINE Line 2 is typed back,
ALTERS ? 3 first character typed, means end of modify
? line command.

CTRL/7Z) followed by any character 'C' advances the carriage to the first occurrence of 'C* in that line,

Example:

? MD 2 QE) Modify line 2.
2 SECOND TEST LINE Line 2 is typed back,

ALTERS? D CTRL/Z) , then D advances the carriaieT g)Lt;l;

first occurrence of the character D,
and D are not echoed but the line is,

ALTERS? SECON

T

CTRL/Z) 'C' may be issued at any point within the line as long as 'C! is present in the columns between
the carriage and the last character of the line,

Typing (CTRL/X on any column deletes the character in that column, A’ f ' is echoed on the printer

for each

Carriage stops here, where the D would have been,

Example:
2 SECOND TEST LINE 'TEST! is to be deleted,
ALTERS? SECOND }44M
2 SECOND LINE

Typing (CTRL/A) inserts all characters typed after it, up to, but not including a . Characters
inserted are enclosed by ' ' and ' >?' ,

Example:
? MD 2 g@ Modify line 2.
2 SECOND LINE
ALTERS? SECOND {TEST) typed - ' ' echoed.
2 SECOND TEST LINE (CR) typed - ' >' echoed.
ALTERS ?

Typing a (CTRL/Q) aborts the current line modification.
Typing a (CTRL/D) truncates the line,

Example:
? MD 2 (B Modity line 2
2 SECOND TEST LINE
ALTERS? SECOND TEST @TRL/D) (CTRL/D)truncates rest of line,
2 SECOND TEST

5.4.9 MS - Modify String

The M S command modifies lines like the MD command. The argument must be a character string enclosed
in single quotes ("). If the string argument is not found in the text, EDIT16 merely prompts for the next
command,

Example:
2 MS 'SEC' . 'SEC" string is in line 2; thus, proceed to modify line 2.
2 SECOND LINE
ALTERS?

5.4.10 DL - Delete Line

The DL command deletes a line or a range of lines, After the specified lines are deleted, EDIT16 automatically
renumbers the text,

Example:

? DL 1,3/5 (B Delete lines 1, 3, 4, and 5.

EDIT16 types '"VOID RANGE' when the specified line is out of range.

5.4.11 CL - Copy Line

The CL command copies existing lines to anywhere in the buffer. Lines are renumbered automatically,

Example:
? CL 1/2 ’ Append copies of lines 1 and 2 to the buffer.
? CL 3/4 TO 6 (R Insert copies of lines 3 and 4 before line 6., Line 6

becomes line 8,

5.4.12 MV - Move Line

The MV command moves lines to anywhere in the buffer, Note that MV is like the CL command except that
the lines being moved are deleted from their original locations. Lines are renumbered automatically,

Example:

? MV 1 ’ This command results in line 1 becoming the last

line and line 2 then becomes the first line - and on,
through the buffer,

5.4.13 CB - Clear Buffer

The CB command clears the entire buffer, If an output command is issued and the buffer is clear, EDIT16
types:

NO ACTIVE FILE

5-6

5.4.14 FS - Find String

The FS command searches the entire edit buffer for all occurrences of the specified string. Lines
containing the string are typed. H no string is found EDIT16 types:

VOID RANGE

It then prompts for the next command. Quote mark (') is treated just like any other character,

Example:
? FS 'ACI' ’ Find string 'AC1' in edit buffer,
VOID RANGE No string 'AC1' in edit buffer,
? TS 'XFF ’ Find string X'FF in edit buffer.
3 .WORD X'FF FF found in line 3.

5.4.15 ST - Set Tab

The ST command enables fixed horizontal spacing when collecting text in keyboard mode.

Example:
? sT B
1 2 3 456 789 %12 3 4.,.1 2 3 45
START? 1 1 1
VERIFY? ! 1 1 1
Column 1 Column 65

EDIT16 prints the row of numbers, one character for each column, After 65 columns are marked in this
manner, EDIT16 prints START?, The user then can mark up to three columns, where a tab is desired,

with any printable character (in the above example, the number 1 is used). EDIT16 replies with a verification
by typing a corresponding 1 in each position where a tab is specified.

5.5 OPERATING PROCEDURES

5.5.1 Starting

The EDIT16 program may be loaded by the absolute loader or general loader and starts automatically.
Once loaded, the following sequence occurs:

NSC EDIT16 REV X
MEMORY:

Type in the memory range in the format 0:xx, where xx lies inthe range 4 < xx < 64 and must be a multiple
of 4, "xx'" must not be greater than the actual system memory, To get the default of 4, type @ .
EDIT16 repeats the message if input format is erroneous. If accepted, EDIT16 goes into command mode and
types the prompt character (?).

[33}
[]
=1

5.5.2 Error Corrections
EDIT16 processing may be interrupted by the use of the following:

1. (CTRL/Q) aborts the current command input if in command mode, or the current line input
if in text mode.

2. Pressing any key on the keyboard during an input or output operation aborts processing and
EDIT16 goes into command mode.

3. Back arrow , typed while in text mode, deletes the previous character input, Successive
back arrows delete preceding characters in the line, Back arrows may not be used in command

mode or when inserting characters (characters typed after (CNTL/A)) in the modify line/
string commands,

5.6 SAMPLE OF EDIT16 USE

The program, listed in figure 5-1 needs to be corrected; the corrections are shown pencilled-in. Figure 5-2
shows the use of EDIT16 commands to implement changes to the sample program, Figure 5-3 shows the
corrected program listing,

5-8

/'. LTITLE
Pl
|2
? LS
! PSIGNEZ o,
2 NRGTBELL
#/’?T‘>»SE £2
SELFF 4 BITO
5 ACOED
6 ACKE
7 AC26Z ~,
8 AC3€3
9 ¢ CALLING
12 3 MAINAPROGRAM
i1
12 LD ACO>EA
13 JSR MULT
14 HALT
15 JMP =3
16 ST AC355AV3
17 LD AC3,EA
18 JSR DIVD
19 HALT
20 JMP .-l
21 EA: .WORD @
22
23 SUBROUTINE MULTIPLY
24
25 MULT: ST AC2, SAVEZR
26 ST AC3,SAVE3
27 LI AC2,50
28 LI Acs,ﬁfzfﬂ
29 cal ACD,0
30
31 SFLG SELFF
32 SHL AC2, 1
33 LOOP: BOC BITs ++2
34 RADD acl,ach &
35 ROR AC2, 1
36 SHR AC®D, 1
37 AISZ AC3,5-1
38 ISR TMP LooP
39 RCPY ACG,AC1
49 RCPY AC2,ACE
41 LD AC3,SAVE3
42 LD AC2, SAVES
43 PFLG SELFF
44 RTS
45 SAVE2: szl WORD
46 SAVE3: ~=s+i- .WORD ¢
47

IMULTIPLY AND DIvIDE RovTINES'

Ve N e Ve N

e e

~ Mo Ve Ne

e

Ve e Vo e Vo s Mo e e Ne we

e e

e e Ve Vo Ve

ACO=P0S JUMP CONDITION
AC@<=0 JUMP CONDITION
SELX FLAG

BIT@=1 JUMP CONDITION
DEFINE ACCUMULATOKS

LOAD MULTIPLIER
CALL MuLTiPLY ROUTINE

KERUN

SAVE AC3

LOAD DIVISOR

CALL DIViDE RovTINE

RERUN

SAVE AC2

SAVE AC3

CLEAR AC2

BIT COUNT=16

COMPLIMENT ACO TO SIMPLIFY
BRANCHING ON MULTIPLIER BIT®
INCLUDE LINK IN SHIFTS

CLEAR LINK

BRANCH IF ACO® COMPLIMENTED=0
ACl+AaC2 --> AC2

ROTATE RESULT OF ADD INTO LINK
SHIFT LINK INTO AC®

DECR COUNTs SKIP IF ZERO

MOVE LO ORDER RESULT TO AC1
MOVE HI ORDER RESULT TO ACO
RESTORE AC3
RESTORE AC2
CLEAR SELF

Figure 5-1. Sample Program Needing Correction (Sheet 1 of 2)

-
>

®
£l

DIVD: ST AC2, 5AV2
KCPY AC@,AC2
cal ACOs 1
RADD AC3,ACH
BOC NRGT®@>0VFLW
LI AC@>-16
ST AC®,COUNT
SFLG SELFF
LI ACB> 0
SHL ACO, 1
SHL AC1,1
POOL: ROL AC251
RCPY AC2,1CH.
cAal ACG, 1*
RADD AC3,ACH
BOC NRGT@,GOES
LI ACO, 0
SHL ACB, 1
E JMP SHFTLO
GOS: cal ACDs 1
KCPY AC@,AC2
LI ACB, -1
SHL ACO, 1
SHFTLO: KOL ACl,1
18z COUNT
JMP POOL
RCPY ACl1,ACE
BOC PSIGN s 2
JMP OVFLW
RCPY ACZ,ACO
OVFLw:Ef;;ri AC3,H7000
RADD AC3,AC3
JMP DONE
sav2: «WOKD @
SAV3: .WORD @
H7000: _.WORD X'7000

SUBROUTINE B¥VD DV, pi

Mo e Ve Vo Ve e

e

e

e e e We Ve ‘e

s

Ve Ve \Ws Mo VNe We e

e

e

SAVE AC2

SUBTRACT HI ORDER FROM DIVISOR

IS HI ORDER 7= DIVISOK
NO ‘

SET COUNT = 16

SET SELX

CLEAR LINK

KROTATE HI ORDER LEFT WITH LINK

SUBTRACT HI ORDER FROM DIVISOR
1S HI ORDEK >= DIVISOEK

NO

CLEAR LINK

YES

HI ORDER = HI ORDEEK - DIVISOR
SET LINK

ROTATE LO ORDER WITH LINK LEFT
ARE WE DONE

NO

YES

IS RESULT NEG

YES, OVERFLOW

NO MOVE REMAINDER TO ACO,QUOTE
IN ACl

SET OVERFLOW

SELFF ; CLEAR SELX
AL, SAvz ;ftﬂbfg ACZ,
AC3 3AVs ; KeseRe AC3

Figure 5-1. Sample Program Needing Correction (Sheet 2 of 2)

5-10

? KB TO 1
->
->
->

c
2 wp 4t

4 PSIGN=2

. TITLE

'MULTIPLY AND DIVIDE

ALTERS? PSIGN 2 CB)
4 PSIGN = 2
ALTERS?
5 NRET@=11
ALTERS?NRGT® = 11 @
5 NRGT® = 11
ALTERS? @
6 SELZ2
ALTERS? SEL = 2
6 SE = 2
ALTERS? @
7 BITB=3
ALTEKS?BITO = 3 @
7 BI = 3
ALTERS?
g8 ACUZ0
ALTERS?ACO = @
8 AC = o
ALTERS?
9 acT=1
ALTERS?AC1 = 1
9 AC = 1
ALTERS?
10 ACD=2
ALTERS?AC2 = 2" (CB
10 AG = 2
ALTERS?
11 AC3=3
ALTERS?AC3 = 3 @

11 AC =
ALTERS?

?

e

e

e

‘e

e

e

e

“e

‘s

e

ROUTINES® @

ACP=P0S JUMP CONDITION

ACP=P0OS JUMP CONDITION

ACP<=8@ JUMP CCNDITION

ACB<=0 JUMP CONDITION

SELX FLAG

SELX FLAG

BIT@=1 JUMP CONDITION

BIT@=1 JUMP CONDITION

DEFINE ACCUMULATORS

DEFINE ACCUMULATORS

Figure 5-2. EDIT16 - Implementation of Correction Commands (Sheet 1 of 4)

? MS "MAIN' %;5}
13 H MAIN PROGEAM

ALTERS? 3 MAIN <CALLING >
13 3 MAIN CALLING PROGRAM
ALTERS?
83 RCPY AC2,ACO 5 NO MOVE REMAINDER TO ACO,QUOTE
ALTERS? RCPY AC2,ACO 3 NO MOVE REMAINDER TO ACQ,QUOTt @
83 RCPY AC2,ACH 3 NO MOVE REMAINDER TO AC@,QUOT

ALTERS?

? MD 16,21,26531,34,37,41 (CR

16 JSK MULT
ALTERS? JSK MULT 5 CALL MULTIPLY HOUTINE @
16 JSR MULT 5 CALL MULTIPLY ROUTINE
ALTERS? @
21 JSR DIVD
ALTERS? JSk DIVD 5 CALL DIVIDE ROUTINE @
21 JSR DIVD 3 CALL DIVIDE KOUTINE
ALTERS?
26 3 SUBROUTINE MULT
ALTERS? 3 SUBROUTINE MULTIFLY @
26 3 SUBROUTINE MULTIPLY
i’ @
31 LI AC3,016 3 BIT COUNT=16
ALTERS? LI AC3,t @
31 LI AC3, 16 5 BIT COUNT=16
ALTERS? LI AC3,16< >
31 LI AC3,16 3 BIT COUNT=16
ALTERS?
34 SFLG SEL 5 INCLUDE LINK IN SHIFTS
ALTERS? SFLG SELFF @
34 SFLG SELFF 5 INCLUDE LINK IN SHIFTS
ALTERS?
37 RADD AC1,ACI 5 AC1+AC2 --> AC2
ALTERS? RADD ACl,AC2
37 RADD AC1,AC2 5 ACL1+AC2 --> AC2

41 JSR LOOP
ALTERS? JMP EE

41 JMP LOOP

Figure 5-2, EDIT16 - Implementation of Correction Commands (Sheet 2 of 4)

5-12

? MS'SEL'

6 ~SEL = 2 3 SELX FLAG
ALTERS? SELFF ‘

6 SELFF = 2 3 SELX FLAG
ALTERS? @

61 SFLG SEL 5 SET SELX
ALTERS? SFLG SELFF (CB)

61 SFLG SELFF 5 SET SELX
ALTERS?

? MD 48/49,51 @

48 SAVE?2: T
ALTERS? SAVE2: +WOKD @ @

48 SAUE2: .WORD 0
ALTERS?

49 SAUE3: .=.+1
ALTERS?SAVE3: _ .WORD @

45 SAVE3: .WORD
ALTERS?5AVE3: .u0RD 8 ()

49 SAUE3: .WORD ©
ALTERS?

51 3 SUBROUTINE DIVD
ALTERS? 3 SUBROUTINE DIVIDE @

51 3 SUBROUTINE DIVIDE
ALTERS?

2 LS 53,94 g?

53 ~COUNT: WORD O
VOID RANGE

? LS 91 (CR

91 ~—.END

2 MU 53 TO 91 @

? MS 'GOS:* g@

72 ~GO65: CA ACO, 1 5 YES
ALTERS?GO<E>

72 GOES: __CAI ACE, 1 5 YES
ALTERS?GOES:t ’

72 GOES: CAI ACO 1 3 YES
ALTERS?

2 FS 'PSIGN' @)

4 “PSTGN = 2 3 AC@=POS JUMP CONDITION

8o BOC PSIGN,+2 5 1S RESULT NEG

?

Figure 5-2. EDIT16 - Implementation of Correction Commands (Sheet 3 of 4)

5-13

80 BOC PSIGN,+2
ALTERS? BOC PSIGNs.+2 @
80 BOC PSIGNse.+2

? FS5 'OVFLW' @

5 IS KESULT NEG

IS KESULT NEG

e

OVERFLOW

57 BOC NKGT®»OVFLY 3 IS HI OKDER 7=
g1 JMP GUFLW 5 YESs
84 OVFLW: LD AC3,H7000
2 KB TO 84 .
-> DONE: _ PFLG SELFF 5 CLEAR SELX @
-> RA (CTRL/Q) ***
-> LD "_A%E,SAVQ ; KESTORE ac2
-> LD AC3, SAU3 5 RESTORE AC3
> RIS

:> (CTRL/Q) *kok

DIVISOk

Figure 5-2, EDIT16 - Implementation of Correction Commands (Sheet 4 of 4)

5-14

VRTOONE WD -

LS

e

PSIGN
NRGT®
SELFF
BIT@
ACO
AC1
AC2

e Yoo N

LOOP:

SAVEZ2:
SAVE3:

Ed

«TITLE

o onononooun

MAIN CALLING PROGRAM

LD
JSR
HALT
JMP
ST

LD
JSK
HALT
JMP
«WORD

SUBROUTINE MULTIPLY

ST
ST
LI
LI
CAIl

SFLG
SHL
BOC
RADD
ROR
SHR
AL SZ
JMP
RCPY
RCPY
LD
LD
PFLG
RTS
«WORD
«WORD

*MULTIPFLY AND DIVIDE ROUTINES®

—

WM =W -

ACBsEA
MULT

o'3
AC3,S5AV3
AC3,EA
DIVD

0‘4
(%]

AC2, SAVE?2
AC3,5SAVES3
AC25D
AC3s16
ACO,0

SELFF
AC2Z2s5 1
BITB,.+2
ACls,AC2
AC2,1
ACO, 1
AC3,-1
LOOP
ACO,ACL
AC2,ACO
AC3, SAVE3
AC2, SAVE2
SELFF

2
4}

e

s

ve

s e e e

.
2

s we

s

Mo Ve e

e Ve Ve e Mo Ve e e Ve e

e e o

e e

ACQ=PQS JUMP CONDITION
ACP<=p JUMP CONDITION
SELX FLAG

BIT@P=1 JUMP CONDITION
DEFINE ACCUMULATORS

LOAD MULTIPFLIER

CALL MULTIPLY ROUTINE

RERUN
SAVE AC3
LOAD DIVISOR

CALL DIVIDE RQUTINE

REKUN

SAVE ACZ2

SAVE AC3

CLEAR AC2

BIT COUNT=16

COMPLIMENT AC® TO SIMPLIFY
BRANCHING ON MULTIPLIER BITO
INCLUDE LINK IN SHIFTS

CLEAR LINK

BRANCH IF ACO COMPLIMENTED=#
AC1+AC2 --> AC2

ROTATE RESULT OF ADD INTO LINK
SHIFT LINK INTO ACO

DECR COUNT», SKIP IF ZERO

MOVE LO ORDER RESULT TO AC1
MOVE HI ORDEE RESULT TO AC®
RESTORE AC3
RESTORE AC2
CLEAR SELF

Figure 5-3. Corrected Program Listing (Sheet 1 of2)

[47]
(3]

L) e e
—
<
w}

POOL:

GOES:

SHFTLO:

DONE:

OVFLW:

SAvV2:
SAV3:
H7000:
COUNT:

SUBROUTINE DIVIDE

ST
RCPY
CAI
RADD
BOC
LI
ST
SFLG
LI
SHL
SHL
ROL
RCPY
CAl
RADD
BGC
LI

Figure 5=3,

AC2, SAVE
ACOsAC2
ACOs 1
AC3,ACO
NRGTO,0OVFLV
ACO5-16
AC@,COUNT
SELFF
ACO,> 0
ACO> 1
ACls1
AC2,1
AC2,AC0O
ACOs5 1
AC3,ACHO
NkGT@,GOES
AC05 0
ACB>5 1
SHFTLO
ACO5 1
ACB,AC2
AC@s -1
ACOs 1
ACl51
COUNT
POOL
AClsACE
PSIGNs.+2
OVFLW
AC2,ACD

SELFF
AC2,5AV2
AC35SAV3

AC3,HT70020
AC3,AC3
DONE

o

3]

X'7000

0

e e s we Mo Mo Vo e

e Ve Vs \e

e

e

e o

We We %e We Vs G %o Mo Ve N

SAVE AC2

SUBTRACT HI OKRDER FROM DIVISOR
IS HI ORDER 7= DIVISOR

NO

SET COUNT = 16

SET SELX

CLEAR LINK

ROTATE HI ORDER LEFT WITH LINK

SUBTKACT HI OKDER FROM DIVISOR
IS5 HI ORDEEK >= DIVISOR

NO

CLEAK LINK

YES

HI OKDER = HI ORDER - DIVISOK
SET LINK

KOTATE LO OKDEER WITH LINK LEFT
ARE WE DONE

NO

YES

IS KESULT NEG

YES, OVERFLOW

NO MOVE REMAINDEK TO AC@,QUOT
IN AC1

CLEAK SELX

KESTOKE AC2

KESTOKRE AC3

SET OVERFLOW

Corrected Program Listing (Sheet 2 of 2)

5-16

Punch the edited text on paper tape. Observe that punched text
is echoed on the printer.

? PT
TURN PUNCH ON
.TITLE ‘'MULTIPLY AND DIVIDE ROUTINES®

.
kd

2

PSIGN = 2 3 ACP=PCS JUMP CONDITION
NRGTOQ = 11 3 AC@<=¢ JUMP CONDITION

SELFF = 2 3 SELX FLAG

BITO = 3 3 BIT@=1 JUMP CONDITION

ACO = 2 5 DEFINE ACCUMULATOKRS

AC1 = 1

AC2 = 2

AC3 = 3

MAIN CALLING PROGRAM

e Yo Ge

LOAD MULTIPLIER

e

LD ACRLEA

Figure 5-4. Program Listing on PT Command

5-17

Appendix A

IMP-16 CHARACTER SET

Table A-1. IMP-16 Character Set

Character 7-Bit Punched Character 7-Bit Punched -

Hexadecimal Card Hexadecimal Card

ASCHI 029 Number Code ASCII 029 Number Code

NUL 00 12-0-1-8-9 ! 21 11-2-8

SOH 01 12-1-9 " 22 7-8

STX 02 12-2-9 # 23 3-8

ETX 03 12-3-9 $ 24 11-3-8

EOT 04 7-9 % 25 0-4-8

ENQ 05 0-5-8-9 & 26 12

ACK 06 0-6-8-9 ' 27 5~-8

BEL 07 0~-7-8-9 { 28 12-5-8

BS 08 11-6-9) 29 11-5-8

HT 09 12-5-9 * 2A 11-4-8

LF 0A 0-5-9 + 2B 12-6-8

VT 0B 12-3-8-9 , 2C 0-3-8

FF 0C 12-4-8-9 - 2D 11

CR 0D 12-5-8-9 . 2E 12-3-8

SO 0E 12-6-8-9 / 2F 0-1

SI oF 12-7-8-9 0 30 0

DLE 10 12-11-1-8-9 1 31 1

DC1 11 11-1-9 2 32 2

DC2 12 11-2-9 3 33 3

DC3 13 11-3-9 4 34 4

DC4 14 4-8-9 5 35 5

NAK 15 5-8-9 6 36 6

SYN 16 2-9 7 37 7

ETB 17 0-6-9 8 38 8

CAN 18 11-8-9 9 39 9

EM 19 11-1-8-9 : 3A 2-8

SUB 1A 7-8-9 3 3B 11-6-8

ESC 1B 0-7-9 < 3C 12-4-8

FS 1C 11-4-8-9 = 3D 6-8

GS 1D 11-5-8-9 > 3E 0-6-8

RS 1E 11-6-8-9 ? 3F 0-7-8

UsS 1F 11-7-8~9 @ 40 4-8

SP 20 No Punches

A 41 12-1 a 61 12-0-1

B 42 12-2 b 62 12-0-2

C 43 12-3 c 63 12-0-3

D 44 12-4 d 64 12-0-4

E 45 12-5 e 65 12-0-5

F 46 12-6 f 66 12-0-6

G 47 12-7 g 67 12-0-7

H 48 12-8 h 68 12-0-8

I 49 12-9 i 69 12-0-9

J 4A 11-1 j 6A 12-11-1

K 4B 11-2 k 6B 12-11-2

Table A-1, IMP-16 Character Set (Cont)

Character 7-Bit Punched Character 7-Bit Punched
Hexadecimal Card Hexadecimal Card
ASCI 029 Number Code ASCII 029 Number Code
L 4C 11-3 1 6C 12-11-3
M 4D 11-4 m 6D 12-11-4
N 4E 11-5 n 6E 12-11-5
O 4F 11-6 o 6F 12-11-6
P 50 11-7 P 70 12-11-7
Q 51 11-8 q 71 12-11-8
R 52 11-9 iy 72 12-11-9
S 53 0-2 s 73 11-0-2
T 54 0-3 t 74 11-0-3
U 55 0-4 u 75 11-0-4
Vv 56 0-5 v 76 11-0-5
W 57 0-6 w 77 11-0-6
X 58 0-7 X 78 11-0-7
Y 59 0-8 y 79 11-0-8
Z 5A 0-9 Z TA 11-0-9
L ¢ 5B 12-2-8 7B 12-0
\ 0-8-2 5C 0-8-2 7C 12-11
] | 5D 12-7-8 ALT D 11-0
* —| 5E 11-7-8 ESC TE 11-0-1
- - 5F 0-5-8 DEL,RUB TF 12-7-9
\ 60 8-1

Table A-2, Legend for Nonprintable Characters

Character Definition Character Definition
NUL Null SO Shift out
SOH Start of heading (also start of St Shift in
message)
DLE Data link escape
STX Start of text (also EOA, end DC1 Device control 1
of address)
DC2 Device control 2
ETX End of text (also EOM, end of
message) DC3 Device control 3
EOT End of transmission (also DC4 Device control 4
END)
NAK Negative acknowledge
ENQ Enquiry (also ENQRY, WRU) SYN Synchronous idle (SYNC)
ACK Actknowledge (also RU) ETB End of transmission block
BEL Rings the bell CAN Cancel (CANCL)
BS Backspace EM End of medium
HT Horizontal iab SUB Substitute
LF Line feed or line space (also ESC Escape, Prefix
new line, advances paper to S File Separator
next line, beginning of line)
GS t
VT Vertical tab (VTAB) Group separator
RS Record separator
FF Form feed to top of next page
(PAGE) UsSs Unit separator
CR Carriage return SpP Space

Appendix B

INSERTION OF RLM CORRECTIONS

Corrections may be inserted in RLMs (decks or tapes) by correcting DATA records or adding DATA records
just before the RLM END record. These records should agree in format with a standard DATA record (see
IMP-16 Programming and Assembler Manual, appendix A). For simplicity, this section explains how a
single record may be used to load a single memory location,

The first word of the corrector record should contain X'8005, The second word of the corrector record
should contain a checksum word X'0000 so GENLDR does not attempt to checksum the record. The third
word of the record should contain one of the following values indicating the relocation, if any is to be performed:

X'0000 Absolute record (no relocation)
X'0001 Base sector relocatable record
X'0002 Top sector relocatable record

Word 4 of the record should contain either the absolute initial load address of the record or the proper
displacement relative to the base-sector or the top-sector origin of the RLM (as indicated by word 3).

Word 5 of the record should contain one of the following values to indicate the relocation, if any, to be
performed upon the contents of the data word:

X'0000 The data is absolute,
X'4000 " The data references a base-sector relocatable address.
X18000 The data references a top~sector relocatable address.

Word 6 should contain X'0000,
The data word to be inserted should appear in word 7,
Example:

In the top sector of an RLM, the following correction is to be inserted:

Location Value Relocation
DAA 8109 B
DAB 5802 A
DAC Al107 T
DAD 6107 B
DAE A200 A
DAF 4A01 A
DBO 2435 B

oz}
i
fet

The correctors should contain:

The origin of the current top sector is D00.

Columns

25

21

17

13

80050000000200AA4000000081009
80050000000200AB0OO0O00D0000S58¢02
80050000000200AC80000000A10T7
80050000000200AD40000000610°7
80050000000200AE00000000A200
80050000000200AF000000004A0°1
80050000000200B04000000024335

B-2

Appendix C

FORMAT OF INSTRUCTIONS

A summary of the instruction types and their assembler language formats is given below for reference. A
more-detailed breakdown of the instruction codes is shown in the next table; it is suitable for hand-coding

small programs,.

Instruction Type

MACHINE FORMAT

Assembler
Language Format

i . I I B I
Register to Register Op sr,dr
op sr | dr |op| not used op
) [I I I I)
Register to Memory Op r, disp
op r disp
N P
Memory Reference (Class 1) » D
op r | xr disp Op r, @disp(xr)
I i
Memory Reference (Class 2) Op disp(xr)
op xr disp Op @disp(xr)
[
I/0 and Miscellaneous l L | LI 11]] Op ctil
op ctl
L1 | | || [I O
Branch . Op cc, disp
op ce disp
Explanation of Symbols
OP - Instruction Mnemonic disp~ Displacement Value
Op - Operation Code cc - Condition Code Value
sr - Source Register Vaoue r - Register Value
dr - Destination Register Value ctl - Control Bits Value
xr - Index Register Value

Remarks

Direct
Indirect

Direct
Indirect

Table C-1, Instruction Set with Bit Patterns
Mnemonic Base Word Format
1 = BASE Vr vxrvdisp
LD 8000
LD Indirect 9000
ST A000 ADDRESSING
ST Indirect B000O T REGISTER Xr TECHNIQUE
ADD C000 0000 0 0000 BASE SECTOR
SUB D000 0400 1 0411 PC RELATIVE
SKG E000 0800 2 0200 INDEXED - AC2
SKNE F000 0C00 3 0300 INDEXED - AC3
AND 6000 r REGISTER
OR 6800 0000 0
SKAZ 7000 0400 1
I1SZ 7800 JMP Indirect 2400
DSZ 7C00 JSR 2800
JMP 2000 JSR Indirect 2C00
Word Format
1 = BASE v ccV disp
BOC 1000
Branch on INT ACO0=0 AC0>0 ACO ACO AC#0 CPINT START
ODD Bit 1=1
CC 0000 0100 0200 0300 0400 0500 0600 0700
Branch on STFL INEN CYOV AC0 <0 USER USER
- E
POA SEL USER USER
cC 0800 0900 0A00 0B00O 0C00 0D00 0E00 0F00
« g]
16C J
16L Word Format
1 =BASE vrvdisp
AISZ 4800
LI 4C00 r | REGISTER
CAI 5000 0000 0
PUSH 4000 0100 1
PULL 4400 0200 2
XCHRS 5400 0300 3
ROR/ROL 5800 LEFT DISP POSITIVE
SHR/SHL 5C00 RIGHT DISP NEGATIVE
Word Format
1 =BASE vsrvdr
RADD 3000 sr | dr | REGISTER
RXCH 3080 0000 0000 0
RCPY 3081 0400 0100 1
RXOR 3082 0800 0200 2
RAND 3083 0C00 0300 3

Table C-1. Instruction Set with Bit Patterns (Continued)

Mnemonic Base Word Format
1 =BASEvfcvetl
SFLG 0800 fc FLAG
PFLG 0880 0000 8
0100 9
0200 10
0300 11
0400 12
0500 13
0600 14
0700 15
Word Format
1 = BASE vectil
HALT 0000 RTI 0100 RIN 0400
PUSHF 0080 RTS 0200 ROUT 0600
PULLF 0280 JSRI 0380

The instruction is formed by the inclusive Or of each field, For example, the instruction RADD 2, 3 is coded

as X'3C00,

For instructions that use the CTL field, only the first 7 bits (bits 0 through 6) are considered.

Examples of coding follow:

Example 1

RADD 2,3

BASE = 3000

sr = 0800

dr = 0300
INSTRUCTION = 3C00

Example 2

JMP-1 (3)

BASE = 2000
xr = 0300

disp = 00FF
INSTRUCTION = 23FF

Example 3

SHR 0, 1

BASE = 5C00

T = 0000

disp = 00FF
INSTRUCTION = 5CFF

Comments

Add AC2 to AC3.

Comments

Jump to the location specified by the index register
AC3 modified by the displacement-1.

Comments

Q
1

Shift the contents of ACO one place to the right.

[5)

CONVERSION TABLES

Appendix D

Table D-1. Positive Powers of Two

n 2n n 2n

1 2 51 22517 99813 68524 8

2 4 52 45035 99627 37049 6

3 8 53 90071 99254 74099 2

4 16 54 18014 39850 94819 84

5 32 55 36028 79701 89639 68

6 64 56 72057 59403 79279 36

7 128 57 14411 51880 75855 872

8 256 58 28823 03761 51711 744

9 512 59 57646 07523 03423 488

10 1024 60 11529 21504 60684 6976

11 2048 61 23058 43009 21369 3952

12 4096 62 46116 86018 42738 7904

13 8192 63 §2233 72036 85477 5808

14 16384 64 18446 74407 37095 51616

15 32768 65 36893 48814 74191 03232

16 65536 66 73786 97629 48382 06464

17 13107 2 67 14757 39525 89676 41202 8

18 26214 4 68 29514 79051 79352 82585 6

19 52428 8 69 59029 58103 58705 65171 2
20 10485 76 70 11805 91620 71741 13034 24
21 20971 52 71 23611 83241 43482 26068 48
22 41943 04 72 47223 66482 86964 52136 96
23 83886 08 73 94447 32965 73929 04273 92
24 16777 216 74 18880 46593 14785 80854 784
25 33554 432 75 37778 93186 29571 61709 568
26 67108 864 76 75557 86372 59143 23419 136
27 13421 7728 77 15111 57274 51828 64683 8272
28 26843 5456 78 30223 14549 03657 20367 6544
29 53687 0912 79 60446 20098 07314 58735 3088
30 10737 41824 80 12080 25819 61462 91747 06176
31 21474 83648 81 24178 51639 22925 83494 12352
32 42949 67296 82 48357 03278 45851 66988 24704
33 85899 34592 83 96714 06556 91703 33976 40408
34 17179 86918 4 84 19342 81311 38340 66795 29881 6
35 34359 73836 8 85 38685 62622 76681 33590 59763 2
36 68719 47673 6 86 77371 25245 53362 67181 19526 4
37 13743 89534 72 87 15474 25049 10672 53436 23905 28
38 27487 79069 44 88 30048 50098 21345 06872 47810 56
39 54975 58138 88 89 61897 00196 42690 13744 95621 12
40 10995 11627 776 90 12379 40039 28538 02748 99124 224
41 21990 23255 552 91 24758 80078 57076 05497 98248 448
42 43980 46511 104 92 49517 60157 14152 10995 96496 896
43 87960 93022 208 93 99035 20314 28304 21991 92993 792
44 175902 18604 4416 94 19807 04062 85660 84398 38598 7584
45 35184 37208 8832 95 30614 08125 71321 68796 77197 5168
46 70368 74417 7664 96 79228 16251 42643 37593 54395 0336
47 14073 74883 55328 97 15845 63250 28528 67518 70879 00672
48 28147 49767 10656 98 31691 26500 57057 35037 41758 01344
49 56204 09534 21312 99 63382 53001 14114 70074 83516 02688
50 11258 99906 84262 4 100 12676 50600 22822 94014 96703 20537

101 25353 01200 45645 88029 93406 41075

o)
T
"

3

HO®©®© 0O bW =0

e
[

—
L]

BN et bt ek e s
SO oo

[l Sl)
W~

SRS N
[=> R 1

N N D
© 0=y

L WWW WWwWw Wwww
© ONS hRWw =0

o~
-0

Ll
W GO b

R
IS

Qb
QO

2—n

.25

125
0625
03125

01562

.00781
.00390

.00195
.00097
.00048

.00024
.00012
.00006

.00003
00001
.00000

00000
00000
00000

.00000
.00000
-00000

00000
.00000
.00000

.00000
.00000
.00000

.00000

00000
00000

.00000

00000

.00000
.00000
.00000
.00000

.00000

00000
00000

00000
00000

-00000

.00000
.00000
.00000

.00000
.00000
.00000

25
625

3125
65625
82812

41406
20703
10351

05175
52587
76293

38146
19073
09536

04768
02384
01192

00596
00298
00149

00074
00037
00018

00009
00004
00002

00001
00000
00000

00000
00000
00000

00000
00000
00000

00000
00000
00000

00000
00000
00000

00000
00000
00000

Table D-2,

25
125
5625

78125
89062
94531

97265
48632
74316

37158
18579
09289

04644
02322
01161

50580
25290
62645

31322
65661
32830

16415
58207
29103

14551
07275
03637

01818
00909
00454

00227
00113
00056

00028
00014
00007

00003
00001
00000

25

625
8125
40625

20312
10158
55078

77539
38769
19384

59692
29846
14923

57461
28730
64365

32182
66091
83045

91522
95761
97880

98940
49470
74735

37367
68683
84341

42170
21085
10542

55271
77635
88817

125

0625
53125
76562

38281
19140
09570

54785
77392
38696

69348
34674
67337

83668
41834
70917

35458
17729
08864

54432
77216
88608

94304
47152
73576

36788
68394
84197

25
625
3125

15625
57812
28906

14453
07226
03613

51806
25903
12951

56475
28237
64118

32059
16029
08014

04007
02003
01001

00500
00250
00125

25

125
5625
28125

64062
32031
66015

83007
91503
95751

47875
73937
86968

43484
71742
85871

92935
46467
23233

Negative Powers of Two

25
625

8125
90625
95312

97656
98828
99414

49707
24853
12426

56213
78106
89053

25
125
0625

03125
51562
75781

37890
68945
34472

25

625
3125
65625

Table D-3. Hexadecimal and Decimal Integer Conversion Table

8 7 6 5 4 3 2 !
Hex Decimal Hex Decimal | Hex | Decimal | Hex | Decimal [Hex | Decimal | Hex | Decimal | Hex | Decimal | Hex | Decimal

0 0| O 0| 0 0] 0 0|0 0 0 0 0 0 0 0
1 268435456 | 1 16.777.216 | 1 1,048,576 | 1 65.536 | 1 4,096 I 256 1 16 1]
2 536.870912| 2 33.554.432(2 2,097.152| 2 | 131.072 | 2 8.192 2 S12 2 32 2 2
3 805.306.368 | 3 50.331.648| 3 3145728 | 3 196.608 | 3 12.288° | 3 768 3 48 3 3
4 1073741824 4 67.108.864 | 4 4194304 4 | 262,144 | 4 16,384 4 1.024 4 64 4 4
S 11.342.177.2801 S 83.886.080! 5 $.242.8801 S | 327680 | 5 20,480 5 1.280 5 80 5 5
6 [1.610612,736| 6 |100.663.296(6 6291456 6 | 393216 | 6 24.576 6 1.536 6 96 6 6
7]1.879.048,192| 7 | 117440512 7 73400321 7 | 458.752 | 7 28.672 7 1.792 7 112 7 7
8 [2.147.483.648(8 [134217.728| 8 8,388,608 8 | 524.288 | 8 32,768 8 2,048 8 128 8 8
9 |2415919,104] 9 150994944} 9 94371841 9 | 589824 [9 36.864 9 2.304 9 144 9 9
A 2684354560 A [167.772.160] A 110485760 | A | 655360 | A 40960 | A 2.560 A 160 A 10
B |2.952.790.016| B [184549376| B [11,534.336| B | 720.896 | B | 45.056 B 2.816 B 176 B 11
C [3.221.225472] C [201.326,592] C |12.582912| C | 786432 | C 49.152 C 3072 C 192 C 12
D [3.489.660928| D [218.103.808{ D [13.631.488| D [851968 | D | 53.248 D 3328 D 208 D 13
E |3.758.096.384| E [234.881.024| E (14680064 E | 917504 | E 57344 E 3.584 E 224 E 14
F 14.026.531.840| F |251.658240] F 15728640 F | 983.040 | F 61.440 F 3.840 F 240 F 15

8 7 6 5 4 3 2 1

TO CONVERT DECIMAL TO HEXADECIMAL

TO CONVERT HEXADECIMAL TO DECIMAL

1. (a) Select from the table the highest deci-
mal number that is equal to or less than
the number to be converted.

(b) Record the hexadecimal of the col-
umn containing the selected number.

(c) Subtract the selected decimal from
the number to be converted.

1. Locate the column of decimal numbers
corresponding to the left-most digit or
letter of the hexadecimal: select from this
column and record the number that cor-
responds to the position of the hexa-
decimal digit or letter.

2. Repeat step | for the next (second from

the left) position. 2. Using the remainder from step 1(c) repeat

all of step 1 to develop the second posi-
tion of the hexadecimal (and a re-
mainder).

3. Repeat step | for the units (third from
the left) position.
4. Add the numbers selected from the table 3

4 . Using the remainder from step 2 repeat
to form the decimal number.

all of step 1 to develop the units posi-

To convert integer numbers greater than tion of the hexadecimal.
the capacity of table, use the techniques 4. Combine terms to form the hexadecimal
below: number.
HEXADECIMAL TO DECIMAL DECIMAL TO HEXADECIMAL
Successive cumulative multiplication Divide and collect the remainder in
from left to right, adding units position. reverse order.
EXAMPLE
Example: D3414 = 33809 Example: 338015 = X6 [—
D - 13 16 | 3380 remainder C0n~vcrsion of
“le EXAMPLE \ Decimal
<16 EXAMPLE 16 [211 \4 T Value 3380
3= 43 Conversi.on of 16 113 3 1. D ~3328
211 Hexadecimal B
<16 Value D34 D -
3376 D : _-48
4. i L. 3328 33800 = D34 4
3380 2.3 48 3 4 _4
3. 4 4
I 4. Hexa-
4. Decimal 3380 decimal D34

Table D-4. Hexadecimal and Decimal Fraction Conversion Table
1 2 3 4
Hex | Decimal Hex l Decimal Hex Decimal Hex Decimal Equivalent
0 .0000 00 T 0000 0000 [000 | .0000 0000 0000 | 0000 | .0000 0000 0000 0000
§ 0625 .01 0039 0625 | .001 0002 4414 0625 | .0001 0000 1525 8789 0625
2 .1250 .02 0078 1250 | .002 0004 8828 1250 | .0002 0000 3051 7578 1250
3 1875 .03 0117 1875 | .003 0007 3242 1875 | .0003 0000 4577 6367 1875
4 .2500 04 0156 2500 | .004 .0009 7656 2500 | .0004 0000 6103 5156 2500
5 3125 .05 0195 3125 | .00S 0012 2070 3125 | .0005 0000 7629 3945 3125
6 .3750 .06 0234 3750 | .006 0014 6484 3750 | .0006 0000 9155 2734 3750
K] 4375 07 0273 4375 | .007 0017 0898 4375 | .0007 0001 0681 1523 4375
8 .5000 .08 0312 5000 | .008 0019 5312 5000 | .0008 0001 2207 0312 5000
9 .5625 09 0351 5625 | .009 0021 9726 5625 | .0009 0001 3732 9101 5625
A 6250 0A | 0390 6250 | .00A | .0024 4140 6250 , .000A | .0001 5258 7890 6250
B 6875 OB | 0429 6875 | .00B | .0026 8554 6875 | .000B | 0001 6784 6679 6875
.C .7500 0C | 0468 7500 | .00C | 0029 2968 7500 | .000C | .0001 8310 5468 7500
.D 8125 OD | 0507 8125 | .00D| 0031 7382 8i25 [000D | .000t 9836 4257 8125
E 8750 OE | 0546 8750 | .00E | .0034 1796 8750 | .000E | .0002 1362 3046 8750
F 9375 OF | 0585 9375 | .00F | .0036 6210 9375 | .000F | .0002 2888 1835 9375
1 2 3 4

TO CONVERT .ABC HEXADECIMAL TO DECIMAL

Find .A

Find .0B in position 2
Find .00C in position 3
.ABC Hex is equal to

in position 1

.6250
.0429. 6875
0029 2968 7500
.6708 9843 7500

Table D-5,

POWERS OF 16 TABLE

Example: 268,435,

16"

456y =

(2.68435456 x 10%))9

Integer Conversion Table

n

1 |o

16 |1

256 |2

409 |3

65 536 |4

1 048 576 | S

16 777 216 |6

268 435 456 17

4 294 967 296 |8

68 719 476 736 |9
1099 511 627 776 10 = A
17 592 186 044 416 Il = B
281 474 976 710 656 |12 = C
4 503 599 627 370 496 |13 = D
72 057 594 037 927 936 |i4 = E
J 152 921 504 606 846 976 |15, = F

A
Decimal Values

= 1000 0000, = (107);6

NEGATIVE HEXADECIMAL NUMBERS

The IMP~-16 maintains negative numbers in twos-complement form. To convert a number in hexadecimal
notation to its twos-complement equivalent, subtract the number from 2D expressed in hexadecimal form.
The number "n" is the number of binary bits in the computer word, For example, if the computer uses
a 16~bit word, the number "n" is equal to 16, Thus, the negative of 124514 is derived as follows:

10000 1 0000 0000 0000 0000
-1245 - 0001 0010 0100 0101
EDBB 1110 1101 1011 1011

Note that a hexadecimal number will be negative in the IMP-16 computer if the left most digit is 8, 9, A, B,
C, D, E, or F. Thus, FACE is equal to 1111 1010 1100 1110; the twos complement is:

10000 1 0000 0000 0000 0000 .
FACE 1111 1010 1100 1110
532 0000 0101 0011 0010

Appendix E

EDIT16 SYMBOL MEANINGS AND USAGE

The following symbols and their meanings are used in the examples associated with chapter 5, EDIT16,
® All underlined, upper-case characters represent Teletype keyboard, user entries.

o Encircled characters or combinations of characters represent nonprinting, or control characters.
If underlined, they represent user initiated input; if not underlined, they represent computer
generated characters,

e CTRL/X represents a user input where the Teletype CONTROL key is pressed and held,
while the X key is pressed. Similarly, any key (for a printing character) may be pressed in
combination with the CONTROL key. The symbol then is CTRL/(key).

Table E -1 lists the symbols used in this text for the EDIT16 program,

Table E-1. EDIT16 Symbols

Symbol Meaning

Back arrow, Indicates Teletype keyboard error correction of previous
character, or multiples of characters (depending on number of arrows
used,

Echo for CNTL/X input, indicates position of character to be deleted.
Prompt, from EDIT16, .shows readiness to accept a new line,

Prompt, from EDIT16, shows readiness to accept command,

Carriage Return

Line Feed

CTRL/A Start of character insert operation,

Truncates the current line,

CTRL/Q Aborts the current line modification operation,

CTRL/X Deletes the character in the corresponding position in the previous line,

E0Eee- 1~
E)

CTRL/Z Carriage Tab feature

x4
1
=t

CHANGE NOTICE NUMBER 1

Publication No. 4200025B IMP-16 Utilities
Order No. IMP-16S/025YB Reference Manual

This change is effective immediately for the following programs:

PROMP 4300308B
DEBUG 4300112C
EDIT16 4300332B
STTYIO 4300158C

Page ii. PREFACE. Add to paragraph 1:

To facilitate use of these programs and to minimize loading time, DEBUG, PROMP, and EDIT16 are
assembled in absolute format so that they may be loaded into the user's environment using either
GENLDR or one of the available absolute loaders.

Page 1-1, Section 1. 2. Insert before paragraph 1:

DEBUG is assembled relative to location X'10 in Base Page and location X'210 in Top Sector. This
means that DEBUG may be loaded into the user's environment either by an absolute loader (see
sections 2.2 and 2.3 of this manual) or by GENLDR (see section 2.5 of this manual). If loaded by an

absolute loader, DEBUG will occupy Base Page locations X'10 through X'16, and Top Sector locations
X'210 through X'654.

If DEBUG is loaded by GENLDR, DEBUG will appear to occupy Base Page locations 0 through X'F
and Top Sector locations 0 through X'20F as well as its normal memory areas. X the GENLDR
commands

10BS 0
10TS 0

are executed prior to loading DEBUG, the program will occupy the same memory locations as if it

were loaded absolutely. If it is desired to use the X'10 locations preceding the DEBUG Base Page

or the X'210 locations preceding the DEBUG Top Sector, appropriate 0TS and !OBS commands

should be executed. As an example, DEBUG Top Sector might be located at X'1000 by using a
1OTS DF0 (X'1000 - X'210)

command. In essence, the specified Top Sector origin must precede the desired Top Sector origin
by X'210 locations.

Page 1-1. Section 1. 2. Existing paragraph 1, delete the first sentence, reading:
DEBUG is a relocatable . . . other relocatable program.

Page 1-1. Section 1.2.1, change to read:

The following memory is needed to execute DEBUG:

Top Sector: X'445 or 10931 0 words.
Base Page: 7 words.

Page 3-2. Section 3. 2.3, sentence 1. Change "STTYIO (zero)" to read "STTYIO (letter)".
Page 3-2. Section 3.3. Change to read:

STTYIO is assembled as a relocatable load module and must be loaded by GENLDR. (See section 2.5
of this manual.)

Page 4-1. Section 4.1, replace last sentence by:

PROMP output tapes may be used to program either MM5203 2K PROMs in a 256-by-8 structure or
MM5204 4K PROMs in a 512-by-8 structure. If MM5203 PROMs are used, two PROMs are required
to make up a 256-word by 16-bit memory page.

Page 4-1. Section 4.1, add paragraph 2:

If the BC tape option is selected, PROMP will calculate a 16-bit checksum of the tape and punch it at
the end of the tape as four hexadecimal characters in ANSI code.

Page 4-1. Section 4.2.1. Change to read:

PROMP is assembled relative to location X'250 in Top Sector. This means that PROMP may be
loaded into the user's environment either by an absolute loader (see sections 2.2 and 2.3 of this
manual) or by GENLDR (see section 2.5 of this manual). If loaded by an absolute loader, PROMP
will occupy memory locations X'250 through X'9CC.

If PROMP is loaded by GENLDR, it will appear to occupy Top Sector locations 0 through X'24F as
well as its normal memory area. If the GENLDR command

10TS 0
is executed prior to loading PROMP, the program will occupy the same memory locations as if it
were loaded absolutely. If the user desires to use the X'250 locations preceding the PROMP Top
Sector, an appropriate 0TS command should be executed. For example, PROMP might be loaded
at X'1000 by using a

10TS DBO (X'1000 - X'250)

command. In essence, the specified Top Sector origin must precede the desired Top Sector origin
by X'250 locations.

Page 4-1. Section 4. 2. 2. Change to read:

PROMP requires 780, words of top sector memory.

Page 4-1 through 4-3, section 4. 2.3, replace with the following:
4.2.3 Program Messages

To guide the user in the use of PROMP, query messages are typed. There are four general messages
corresponding to the four possible program states. Initially, PROMP types:

NSC IMP-16 FIRMWARE PAPER TAPE GENERATOR
OUTPUT TYPE:

The user must then respond with one of the following codes:
PN - For PN format PROM tape.

BC - For binary (complemented) format PROM tape.
OM - For card RLM to tape RLM conversion.

All responses must be terminated by a carriage return. For the OM option, PROMP types the following
message and goes into an output state:

MAKE CARD READER READY

TURN PUNCH ON

HIT ANY KEY TO START
At this point, RLM records are converted from card to paper tape. After processing the END record,
PROMP goes into a wait state. The user may now turn off the Teletype punch. Typing any key returns
the PROMP program to the initial state.
In either PN or BC options, PROMP goes into an input state. The following message is typed:

INPUT DEVICE:
The user may respond with one of the following codes:

CR - Card Reader

PT - Teletype

ME - Memory
ME Option. If this device is selected, PROMP then types:

SPECIFY MEMORY --

The user must then type the message range, where the user program is located. A range is designated
by the start address and the last address, delimited by a colon (:); the range must be in blocks of 2567
or 51239 words.
Example:

SPECIFY MEMORY -- FF00:FFFF
CR Option. PROMP types the following message:

MAKE CARD READER READY
TO LOAD LM

The card reader must be furned on at this point. The LM will be immediately read into memory.
PT Option. If this device is selected, PROMP types the message:

MAKE TAPE READER READY
TO LOAD LM

The LM will be loaded immediately into memory. After the loading process, when the END record is
recognized, PROMP types:

TURN READER OFF

The user must turn off the reader and press any key to initiate the output process.

Mode and Byte Requests. PROMP may be used for punching programming tapes for either the MM5203
2K PROM or the MM5204 4K PROM. After loading the LM, PROMP will query the user as to which
PROM is being used.

SET MODE:

TAPE FOR MM5203 2K PROM -~ TYPE 2

TAPE FOR MM5204 4K PROM - TYPE 4
TYPE:

The MM5203 PROM is structured in a 256-word by 8-bit format, while the MM5204 PROM is structured
in 2 512-word by 8-bit format. PROMP allows the user to program PROMs for either 256- or 512~word

memory regions using the MM5203, and for a 512-word region using the MM5204. In order to do this,
the user must respond to the query

BYTE:

with one or more of the options, L, R, LL, LR, HL, and HR according to the following tables:

MM5203 2K PROM

BITS
Address Range 15-8 -0
N N+255 LL LR
N+256 N+511 HL HR
MM5204 4K PROM
BITS
Address Range 15-8 7-0
N N+511 L R

If more than one option is desired, each entry may be separated either by commas or by spaces. For
a particular PROM, if all options are desired, the user may respond with a carriage return. After the
option is typed, PROMP comes back with the message:

TURN PUNCH ON
HIT ANY KEY TO START

After the oufput process, PROMP goes into its last state, the wait state. This wait state is provided
so that the user can turn off the punch before any message is typed by PROMP. To return to the initial
state, the user must press any key on the keyboard.

Typing CTRL/D when PROMP is waiting for a response transfers the user to the initial state. Leaders/
trailers are punched automatically. If PN is chosen as an output type code, pressing any key during the
output process causes an interrupt of the current output option and initiates processing of the next output
option. Under certain conditions, the key must be struck several times in order to cause an interrupt.

Page 4-4. Section 4.4, following table 4-1, add:
Figure 4-1 illustrates the PROMP operational sequence in flowchart form.

Add figure 4-1 (which is on next page, 4-4A).

Page 5-7. Section 5.5.1. Insert before paragraph 1:

EDIT16 is assembled relative to location 0 in Base Page and location X'120 in Top Sector. This
means that EDIT16 may be loaded either by an absolute loader (see sections 2.2 and 2.3 of this
manual) or by GENLDR (see section 2.5 of this manual). If loaded by an absolute loader, EDIT16
will occupy the Base Page locations 0 through X'78, and Top Sector locations X'120 through X'7FB.

If EDIT16 is loaded by GENLDR, it will appear to occupy Top Sector locations 0 through X'11F as
well as its normal memory areas. If the GENLDR commands,

!10BS 0
0TS 0

are executed prior to loading EDIT16, the program will occupy the same memory locations as if it
were loaded absolutely. If it is desired to use the X'120 locations preceding the EDIT16 Top Sector,
the appropriate !OTS command should be executed. As an example, EDIT16 Top Sector might be
located at X'1000 by using a

f{OTS EEO (X'1000 - X'120)

command. In essence, the specified top sector origin must precede the desired top sector origin
by X'120 locations.

Page 5-7. Section 5.5.1. Existing paragraph 1: delete the first sentence, reading:
""The EDIT16 program . . . starts automatically.
Change the second sentence to read:
Once loaded, the following messages are typed:

NSC EDIT 16 REV X
MEMORY:

Effective immediately, all references to "Relocatable Load Module™ (RLM) shall be changed to "Load
Module" (LM). Load Modules may be either relocatable or absolute, depending on context or usage.

OUTPUT oM

BC
PN
MAKE CARD
READER READY,
TURN PUNCH ON,
HIT ANY KEY
TO START
PROMP READS LM
FROM CR AND
PUNCHES TAPE.
MAKE CARD /
READER READY CR INPUT ME SPECIFY
TO LOAD LM DEVICE MEMORY
PT
PROMP USER SPECIFIES
LOADS LM MAKE TAPE MEMORY RANGE
READER READY
TO LOAD LM
PROMP
LOADS LM
TURN
READER OFF

2@4

OPTIONS ARE: OPTIONS ARE:
LL, LR, HL, HR, @ L,R, @

PROMP PUNCHES TAPES

Figure 4-1. Operation Of The PROMP Program

4-4A
6

CHANGE NOTICE NUMBER 2
November 15, 1974

Publication Number 4200025B IMP-16 Utilities
Order Number IMP-16S/025YB Reference Manual
This change is effective immediately.
Page 5-1. Section 4.2. Add to first paragraph:
"Those commands that require text mode processing are KB, RT, RC, MD, and MS. "
Page 5-2. In first line, replace "Specifies" with ""Separates''.
Page 5-2. Section 5.3.3. Change last sentence of paragraph to read:

"The edit buffer is located in the remainder of memory above the EDIT16 code so its size is dependent on the
machine memory space."

Page 5-3. Section 5.4.2. After the first paragraph, change to read as follows:

Example:
? RT 2 QB Apend two lines to the edit buffer. This message
TURN READER OFF NOW is typed after the second line is read.

"If the edit buffer becomes full when entering lines using KB, RT, and RC commands, the message
BUFFER FULL
is typed and EDIT16 goes into command mode. Again, an incomplete line is not entered to the buffer."

"f 3 BUFFER FULL message is typed, the user may recover by punching a few lines from the beginning of the
buffer onto paper tape and, then, deleting those lines from the buffer. "

Page 5-4. Section 5.4.8. Add to first paragraph:

14
"EDIT16 will type the line to be modified and, then, will prompt for modifications by typing ALTERS?." -
Page 5-4. Section 5.4.8. Add after first paragraph:

"Typing @ as the first character after ALTERS? causes EDIT16 to terminate the modification and to
prompt for a command. "

Page 5-5. Add after sentence following second example of Section 5. 4. 8:
"If CTRL/Z is followed by another control character, EDIT16 will reprompt for ALTERS?."

Page 5-5. After the third example of Section 5.4.8 between ALTERS? and "Typing a CRTL/Q aborts the
current line modification.", add the following:

"Attempting to add a line feed (LF) character will cause loss of a character from the original text."

"EDIT16 limits the maximum line length to 65 characters. If the user attempts to exceed this limit by inserting
characters, the insertion will be aborted. The user, then, may delete characters from the end of the line, re-
perform the insertion, and then add the deleted characters to the next line or insert them following the current
line."

Page 5-6. Section 5.4.9. Immediately preceding 5.4. 10 (that is, as the last of Section 5.4.9), add the
following:

"The user will be prompted with ALTERS? for each line containing the specified string. If alteration of a
particular line is not necessary, he may respond with a @ immediately following the prompt. "

"If it is desired to terminate modifications, the user may type N

Page 5-7. Section 5.4.15. Add new paragraph:

"When entering data via EDIT16, .should be used to skip to the next tab setting."
Page 5-8. Add the following as Section 5. 5. 3: '

"5.5.3 Restarting EDIT16

EDIT16 may be restarted by pressing INITIALIZE, setting the PC to the value contained in the data item
RINIT1 (see listing), and pressing RUN."

Page C-1. FORMAT OF INSTRUCTIONS delete the words ''to Memory' for second format, now '"Register
to Memory."

CHANGE NOTICE NUMBER 3
(28 February 1975)

Publication No. 4200025B IMP-16 Utilities
Order No. IMP-16S/025YB Reference Manual

This change is effective immediately for the following program:
PROMP 4300308C

Only changes incurred by Change Notice Number 1 are affected by this change notice. Thus, references to page
numbers and sections apply to Change Notice Number 1. Changes or additions are underscored.

NOTE
Information in Change Notice Number 1 pertaining to
other programs listed therein is still in effect.

Page 2 — affecting manual Section 4.1, addition of paragraph 2.3 should state:

If the BC tape option is selected, PROMP will calculate a 32-bit checksum of the tape and punch it at
the end of the tape as eight hexadecimal characters in ANSI code.

Page 3 — affecting replacement of Section 4.2.3, Program Messages, of the manual, add second sentence so
fourth paragraph states:

At this point, RLM records are converted from card to paper tape. GENLDR commands such as
IRLM are ignored. After processing the END record, PROMP goes into a wait state. The user may
now turn off the Teletype punch. Typing any key returns the PROMP program to the initial state.

CHANGE NOTICE NUMBER 4
(1 July 1975)

Publication No. 4200025B IMP-16 Utilities
Order No. IMP-16S/025YB Reference Manual

This change notice affects the IMP-16 General Loader Program, GENLDR.

Replace the existing section 2.5 (through 2.5.19) of the subject manual with the attached section 2. 5.

2.5 GENLDR (IMP-16 GENERAL LOADER)

GENLDR is a stand-alone IMP-16 program that reads one or more load modules (LMs) produced by the IMP-16
assembler, performs relocation, resolves external linkages, and loads the LMs into main memory for execu-
tion. The load modules produced by the assembler may be read from either cards or paper tape.

The paragraphs that follow describe the commands to control GENLDR and the input sequences required to load
an executable program into the IMP-16 main memory. Error messages and diagnostic output of GENLDR are
also described.

NOTE

The prefix X' designates that the number that follows is hexadecimai.

2.5.1 Usage

GENLDR is a relocatable stand-alone IMP-16 program that may be loaded into memory by one of two absolute
loaders: (1) ABSCR allows GENLDR to be input from cards and (2) ABSPT, from paper tape. Once loaded,
GENLDR can accept input from either cards or paper tape; although, initially, it accepts input from the device
from which it was loaded.

GENLDR occupies approximately 1568 words of memory and is typically loaded into upper memory. Programs
cannot be loaded by GENLDR into memory that it occupies or uses for the symbol table it generates. However,
GENLDR allows the user full use of base page. The memory layout is described in figure 2-3.

GENLDR is assembled relocatable and occupies the (relative) addresses X'09E0 through X'0FFF. It is recom-
mended that it be loaded into the highest locations of memory available in the system, for ease of use and to
enable GENLDR to remain resident while other programs are running. To load it into the top of an 8K memory,
for example, first load it with the absolute loader, and then use GENLDR to relocate itself with the !OTS 1000
command. GENLDR would then reside in the memory locations X'19E0 through X'1FFF.

GENLDR is self-initializing; it may be entered at its entry point at any time. The entry point is X'0A5F in a 4K
system. The value of AC3 is used to determine the initial load device: if AC3 = 0, the device is the Teletype:

otherwise, it is the card reader. If GENLDR is entered after pressing initialize, the device will be the Teletype.

The IMP-16 assembler allows the user to allocate portions of his program in three ways:

. At an absolute memory location
. Relative to the origin of the base sector
. Relative to the origin of the top sector

GENLDR

SYMBOL TABLE

ABSOLUTE SECTOR

TOP SECTOR2

TOP SECTOR,

INDIRECT POINTERS
GENERATED BY LOADER

'

BASE SECTOR2

BASE SECTOR;

Figure 2-3, Memory Map

HIGH MEM ORY

100
FF

16
16

0016

Typically, absolute allocation is employed to assign locations dependent upon equipment (for example, interrupt
entrance address) or to communicate with special-purpose routines. The base sector must be located such that
it is contained within the first 256 (X'100) locations of memory and typically contains data and pointers necessary
for inter-LM communication. The top sector may reside anywhere in memory (subject to the limitations men-
tioned above) and normally contains the main portion of the LM. Care must be exercised to ensure that an ab-
solute sector does not overlay a previously loaded base sector or top sector. (See !OBS and !OTS commands in

the following paragraphs.)

Two other limitations are imposed upon the base sector by the IMP-16 computer architecture and the method for
resolving external linkages. First, any base sector variable that is referenced by an indexed instruction must
be allocated to one of the first X'7F locations of memory. Second, in resolving certain external linkages,
GENLDR may force an indirect reference to a global variable through a pointer in the memory area X'FF and
downward.

The area of IMP-16L memory between locations X'100 and X'11F is used by the control panel service routine and
may not be used by the user. Above address X'FF, loading is limited only within the area occupied by GENLDR
and the symbol table it generates. In the IMP-16P, GENLDR allows the locations used for its IMP-16L Teletype
input/output to be overwritten, so the effective starting location of GENLDR is X'0A31. The GENLDR area may
be used by the loaded program, after it receives control from GENLDR; but it is recommended that GENLDR be
left in memory so that it may be reused without necessitating reloading.

As an entry point, GENLDR selects the last nonzero value specified for the set of LMs loaded. The entry point
for any particular LM, if specified, appears in the end record of that LM. If the user desires, he may override
the entry point selected by GENLDR by specifying the desired entry point in the !GO command (paragraph
2.5.4.13). I neither of these methods is chosen, GENLDR prints an "ENT ?" error message and prompts for

a new command.

2.5.2 GENLDR Input

GENLDR is controlled by commands and by the load module data. GENLDR reads commands and LMs from
either cards or paper tape, and commands are available to switch between input devices. (See !CR and !TTY,
paragraphs 2.5.4.6 and 2.5.4.7.) GENLDR does not recognize any distinction between the Teletype paper tape
reader and the Teletype keyboard: therefore, the user may type in his commands at the keyboard and input the
LM from paper tape. Commands entered on paper tape, the keyboard, or from the card reader are echoed
back to the Teletype printer: the LM itself is not echoed.

Commands entered on punched cards must contain an exclamation point (!) in column 1. When the command is
entered from the Teletype, GENLDR types the exclamation point to prompt for a command. Any additional
exclamation point typed from the keyboard is ignored. If it is necessary to return to command mode while in

the middle of an LM, an exclamation point may be typed on the keyboard (between LM records only), and GENLDR
then prompts for a command. Any command may be given at this point, but only commands not affecting loading
may be used if the LM is to be continued.

Input lines on the Teletype are terminated by a carriage return. A maximum of 72 characters is allowed in one
Teletype input record; excess characters are not allowed. Only the characters from X'20 through X'5F are
allowed in Teletype commands; any other character except carriage return causes the command to be aborted
and a new prompt issued. The Null (X'00) and Rubout (X'7F) characters are, however, ignored.

2.5.3 GENLDR Output

GENLDR prints information descriptive of the loading process. The title information, absolute sector limits,
base sector limits, top sector limits, and entry point address of each LM are printed on the Teletype. Unless
INLM is in effect, GENLDR types the following information for each LM:

MNEMONIC STRING
AAAA BBBB
AS = XXXX:XXXX BS= XXXX:XXXX TS =XXXX:XXXX ENT =XXXX

Where:
MNEMONIC is the name of the LM from the title record.
STRING is the qualifying string from the title record.
AAAA BBBB are the LM source and object checksums, respectively.

AS - XXXX:XXXX specifies the low and high addresses of the absolute sector (if any).
BS = XXXX:XXXX specifies the base sector origin and last base sector address (if any).
TS = XXXX:XXXX specifies the top sector origin and last top sector address (if any).
ENT =XXXX is the entry address from the end record (if any).

All numbers (XXXX) are printed in hexadecimal notation.
If !SY or !ER is executed, GENLDR prints symbols as follows:
SYMBOL XXXX F
Where:

¢ SYMBOL is the symbol name.
® XXXX is the hexadecimal address of the symbol.
® F is one of the following:
M — multiply-defined symbol
U — undefined symbol
blank — defined symbol
The address printed for an undefined symbol is the last address where the symbol is
referenced (in a . WORD) or the base page pointer iocation.

If the 'RA command is given to list the range of loaded addresses, or upon execution of a !GO command, the
following information is typed:

AS = XXXX:XXXX BS = XXXX:XXXX TS = XXXX:XXXX PTR = XXXX:XXXX ENT = XXXX

Where the first hexadecimal value is the lowest address actually loaded in the specified sector, and the second
hexadecimal value is the highest address actually loaded. PTR = XXXX:XXXX gives the limits of the loader-
generated indirect pointers. These ranges are global; that is, they cover all programs loaded and are not
affected by the use of the 1LM or !NLM commands.

2.5.4 GENLDR Commands

All commands must begin with the exclamation point (!) in column 1 of the input record and the command string
beginning in column 2. All commands have the format:

ICCC XXXX Comments......

Where CCC is the command name, of which only the first two characters are significant. XXXX is a hexadeci-
mal value that must be separated from the command by at least one blank. Unless otherwise specified, where
the term <hex-value> is used below, it represents a hexadecimal number in the range 0000 to FFFF. Leading
zeros need not be specified, and only the last four significant digits are retained. If no value is specified, zero
is used. Scanning of the operand is terminated by either the end of the line or encountering a character not in
the hexadecimal set. Therefore, all commands may be commented if desired.

2.5.4.1 !0OBS — Origin Base Sector
The origin for the next base sector is set to<hex-value>. If this command is not specified, the next base

sector is loaded immediately following the previous base sector (the initial base sector starts at X'10 if no !OBS
command is given). This command should be used to prevent loading a base sector on top of an absolute sector.

<Hex-valué> must be in the range 0 <hex-value> X'FF or in the range X'FF01 <<hex—val}1e> K X'FFFF.
It the value is outside of these ranges, the base sector overflow message is given, the command is ignored, and

GENLDR prompts for a new command from the Teletype.

2.5.4.2 !OTS — Origin Top Sector

The origin for the next top sector is set to Qlex-value> . If this command is not specified, the next top sector
is loaded immediately following the previous top sector. This command should be used to prevent loading a top
sector on top of an absolute sector.

The highest value of Qxex—value> is a function of the memory available, and must not cause overlaying of the
locations occupied by GENLDR. If this command is not given, the first top sector is loaded at location X'120.
2.5.4.3 'RLM — Read Load Module

This command may precede each LM to be loaded. The LM is loaded from the same device from which the
'RLM command is entered. The !RLM command is not required if input is from the card reader, but it is
necessary in the Teletype mode to start the reading of the paper tape.

2.5.4.4 !CLR — Clear Memory and Restart GENLDR

All computer memory outside of GENLDR is cleared to zeroes; then, GENLDR is reinitialized and started from
its entry point. Since this command clears any previously loaded information, it should only be used as the
first command to GENLDR or as a means of reinitialization following an error.

2.5.4.5 I!RE — Restart GENLDR

GENLDR is reinitialized and restarted at its entry point. This command does not clear memory, but is other-
wise the same as the !CLR command, above.

2.5.4.6 ICR — Read Input from the Card Reader

Subsequent input is accepted from the card reader.

2.5.4.7 !TTY — Read Input from the Teletype
Subsequent input is accepted from the Teletype, The card reader should be turned off before using the Teletype,

since the IMP-16P card reader interface is also used by the high speed paper tape reader. Teletype input is
accepted from either the paper tape or the keyboard, but only commands are echoed to the Teletype printer.

2.5.4.8 ISY — Print the Symbol Table

The symbol table is printed upon execution of this command.

2.5.4.9 !ER — Print Symbols in Error

Multiply-defined and undefined symbols are printed when this command is read.

2.5.4.10 !'RA — Type Globhal Loaded Range

The range of loaded addresses for each sector, plus the range of pointers generated (if any) and the current
value of the entry point, is typed. This information is the same as printed on execution of a !GO command.
This command may be used to determine the status of the loaded program if an error occurs.

2.5.4.11 !'NLM — Inhibit Load Module Limit Printing

This command inhibits the printing of the title record information, checksums, and address ranges that are
printed for each load module. Printing may be restored by the ! LM command.

2.5.4.12 'LM — Enable Load Module Limit Printing

This command enables the printing of the information for each load module that was inhibited by ! NLM.
Printing of the information is the default state that is set upon initialization of GENLDR.

2.5.4.13 !GO — Execute the Loaded Program

The entry Point specified in the last LM loaded can be overridden by specifying the entry point address

(me-value)). If <hex—value> is omitted, the last nonzero entry point specified is executed. If no nonzero
entry point is specified and no value appears on the command, GENLDR prints an error message and prompts
for a new command from the Teletype. Before transfer to the entry point, the global loaded program limits
are printed on the Teletype.

2.5.5 Messages
The following messages may bé output by GENLDR:

GENERAL LOADER (REV. X) READY — GENLDR is initialized and ready to read commands. X is
the current revision level of GENLDR.

CMND? — The command is invalid or unrecognized. GENLDR prompts for a new command from the
Teletype.

CHAR — An LM card contains characters other than 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E,
and F. Since invalid punch codes are translated as '?', this error can also occur on an invalid
punch. Correct the card, reload it, and press RUN.

CKSM — Checksum error on the last record read. If the checksum field is 0000, no checksum test
is made. Processing of the record is completed after 'RUN' is pressed. The read may be
retried: reload the record and then press RUN.

BSOV — Base sector overflow. The run must be restarted, but the error may be corrected by proper
use of the 'OBS and !OTS commands.

TSOV — Top sector overflow. The run must be restarted, but the error may be corrected by proper
use of the !OBS and !OTS commands. This error is caused by exceeding the upper limit of
memory, X'FFFF,

AREA — Illegal attempt to load on top of the loader. Restart with valid !OBS or ! 0TS commands.

<address> MEM — Memory error at <address> : probably an attempt to load into non-existent
memory.

ENT? — No entry point specified for program. GENLDR transfers control to the Teletype for a new
command.

LENGTH — Record length error: the record is too long to fit in the buffer in GENLDR. The run may
be restarted after the record is corrected.

EXTN — Unable to locate external symbol in Symbol Table. This error may be caused by attempting
to load an LM with some missing symbol records or an erroneous patch which looks as if it is
referencing an illegal external reference number. The run must be restarted.

ADDR — Addressing error. This error occurs under the following conditions and the run must be

restarted:
i, Attempting to reference an indirect pointer generated by the assembler which, because of

relocation, is forced to an address greater than X'7F.

2. Using an index register in an instruction referencing a base sector variable allocated in a
memory address in the range X'80 to X'FF.

3. Attempting to use an index register in an instruction referencing an undefined external
variable.

4. Referencing an undefined external variable in an instruction which either is flagged
indirect already or cannot be so flagged.

SEQ — Record sequence error. The correct sequence is: (1) Title record, (2) Zero or more symbol
records, (3) Zero or more data records, and (4) End record. Correct the record sequence,
reload the LM, and restart the load.

SYST — System error caused by a malfunction in system software or hardware. Recovery is not
possible; GENLDR should be reloaded.

SYMB — Symbol table overflow. Too many external symbols defined. The symbol table is allocated
downward from the start of GENLDR; overflow will occur if an attempt is made to expand the
symbol table into a region already loaded.

National Semiconductor Electronics SDNBHD
Batu Berendam

Free Trade Zone

Malacca, Malaysia

Telephone: 5171

2900 Semiconductor Drive
Santa Clara, California 95051
(408) 732-5000

TWX: 910-339-9240

N

q National Semiconductor Corporation

National Semiconductor GmbH
D 808 Fuerstenfeldbruck
Industriestrasse 10

West Germany

Telephone: (08141) 1371
Telex: 27649

Telex: NSELECT 519 MALACCA (c/o Kuala Lumpur)

National Semiconductor (UK) Ltd.

Larkfield industrial Estates
Greenock, Scotland
Telephone: (0475) 33251
Telex: 778 632

REGIONAL AND DISTRICT SALES OFFICES

ALABAMA

DIXIE DISTRICT OFFICE

3322 Memorial Parkway, S.W. #67
Huntsville, Alabama 35802

(205) 881-0622

TWX: 810-726-2207

ARIZONA
*ROCKY MOUNTAIN REGIONAL OFFICE
7349 Sixth Avenue
Scottsdale, Arizona 85251
(602) 945-8473
TWX: 910-950-1195

CALIFORNIA
*NORTH-WEST REGIONAL OFFICE
2680 Bayshore Frontage Road, Suite 112
Mountain View, California 94043
(415) 961-4740
TWX: 910-379-6432

NATIONAL SEMICONDUCTOR
*DISTRICT SALES OFFICE

Valley Freeway Center Building
15300 Ventura Boulevard, Suite 305
Sherman Oaks, California 91403
(213) 783-8272

TWX: 910-495-1773

NATIONAL SEMICONDUCTOR
SOUTH-WEST REG!ONAL OFFICE
17452 Irvine Boulevard, Suite M
Tustin, California 92680

(714) 832-8113

TWX: 910-595-1523

CONNECTICUT

AREA OFFICE

Commerce Park

Danbury, Connecticut 06810
(203) 744-2350

*DISTRICT SALES OFFICE
25 Sylvan Road South
Westport, Connecticut 06880
(203) 226-6833

INTERNATIONAL SALES OFFICES

AUSTRALIA

NS ELECTRONICS PTY, LTD.

Cnr. Stud Road & Mountain Highway
Bayswater, Victoria 3153
Australia ‘
Telephone: 729-6333

Telex: 32096

CANADA

*NATIONAL SEMICONDUCTOR CORP.
1111 Finch Avenue West ’
Downsview, Ontario, Canada
(416) 635-9880
TWX: 610-492-1334

DENMARK

NATIONAL SEMICONDUCTOR
SCANDINAVIA
Vordingborggade 22

2100 Copenhagen

Denmark

Telephone: (01) 9‘-OBRO 5610
Telex: DK 6827 MAGNA

*Microprocessor System Specialist Available

FLORIDA
*AREA SALES OFFICE

2721 South Bayshore Drive, Suite 121
Miami, Florida 33133

(305) 446-8309

TWX: 810-848-9725

CARIBBEAN REGIONAL SALES OFFICE

P.O. Box 6335
Clearwater, Florida 33518
(813) 441-3504

ILLINOIS

NATIONAL SEMICONDUCTOR
WEST-CENTRAL REGIONAL OFFICE
800 E. Northwest Highway, Suite 203
Mt. Prospect, lllinois 60056

(312) 394-8040

TWX: 910-689-3346

INDIANA

NATIONAL SEMICONDUCTOR
NORTH-CENTRAL REGIONAL OFFICE

P.O. Box 40073
Indianapolis, Indiana 46240
(317) 255-5822

KANSAS
DISTRICT SALES OFFICE

13201 West 82nd Street
Lenexa, Kansas 66215
(816) 358-8102

MARYLAND
CAPITAL REGIONAL SALES OFFICE

300 Hospital Drive, No. 232
Glen Burnie, Maryland 21061
(301) 760-5220

TWX: 710-861-0519

MASSACHUSETTS
*NORTH-EAST REGIONAL OFFICE

No. 3 New England, Exec. Office Park
Burlington, Mdssachusetts 01803
(617) 273-1350

TWX: 710-332-0166

ENGLAND

NATIONAL SEMICONDUCTOR (UK) LTD.

The Precinct

Broxbourne, Hertfordshire
England

Telephone: Hoddesdon 69571
Telex: 267-204

FRANCE .

NATIONAL SEMICONDUCTOR
FRANCE S.AR.L.

28, Rue de la Redoute
92260-Fontenay-Aux-Roses
Telephone: 860-81-40
TWX: NSF 25956F

HONG KONG

*NATIONAL SEMICONDUCTOR
HONG KONG LTD.

9 Lai Yip Street

Kwun Tung, Kowioon

Hong Kong

Telephone: 3-458888

Telex: HX3866

D10M44

NS Electronics (PTE) Ltd.
No. 1100 Lower Delta Rd.
Singapore 3

Telephone: 630011

Telex: 21402

MICHIGAN
*DISTRICT SALES OFFICE
23629 Liberty Street

Farmington, Michigan 48024
(313) 477-0400

MINNESOTA

DISTRICT SALES OFFICE

8053 Bloomington Freeway, Suite 101
Minneapolis, Minnesota 55420

(612) 888-3060

Telex: 290766

NEW JERSEY/NEW YORK CITY
MID-ATLANTIC REGIONAL OFFICE
301 Sylvan Avenue

Englewood Clitfs, New Jersey 07632
(201) 871-4410

TWX: 710-991-9734

NEW YORK (UPSTATE)

CAN-AM REGIONAL SALES OFFICE
104 Pickard Drive

Syracuse, New York 13211

(315) 455-5858

OHIO/PENNSYLVANIA/

W. VIRGINIA/KENTUCKY
EAST-CENTRAL REGIONAL OFFICE
Financial South Building

5335 Far Hills, Suite 214

Dayton, Ohio 45429

(513) 434-0097

TEXAS
*SOUTH-CENTRAL REGIONAL OFFICE
5925 Forest Lane, Suite 205
Dallas, Texas 75230
(214) 233-6801
TWX: 810-860-5091

WASHINGTON

DISTRICT OFFICE

300 120th Avenue N.E.
Building 2, Suite 205
Bellevue, Washington 98005
(206) 454-4600

JAPAN
*NATIONAL SEMICONDUCTOR JAPAN
Nakazawa Building

1-19 Yotsuya, Shinjuku-Ku

Tokyo, Japan 160

Telephone: 03-359-4571

Telex: J 28592

SWEDEN

NATIONAL SEMICONDUCTOR SWEDEN
Sikvagen 17-

13500 Tyreso

Stockholm

Sweden

Telephone: (08) 712-04-80

WEST GERMANY
*NATIONAL SEMICONDUCTOR GMBH

8000 Munchen 81
Cosimstrasse 4
Telephone: (0811) 915-027

£1974 NATIONAL SEMICONDUCTOR CCRP. PRINTED IN U.S.A.

	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	3-01
	3-02
	4-01
	4-02
	4-03
	4-04
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	A-01
	A-02
	A-03
	B-01
	B-02
	C-01
	C-02
	C-03
	D-01
	D-02
	D-03
	D-04
	D-05
	E-01
	_1-01
	_1-02
	_1-03
	_1-04
	_1-05
	_1-06
	_2-01
	_2-02
	_3-01
	_4-01
	_4-02
	_4-03
	_4-04
	_4-05
	_4-06
	_4-07
	xBack

