
MICROPROCESSORS - AN INTRODUCTION

"Computers" have attracted widespread interest only
recently, although computing devices have long been
known. The Antikythera mechanism (an ancient Greek
astronomical computer). the astrolabes of the middle
ages and Pascal's calculator are examples of early com·
putational devices. However, the present usage of the
term "computer" includes neither those relatively primi·
tive aids for computation, nor later developments such
as the slide rule or the desk-top and portable calculators.
We now define a computer as a machine which performs
a computation automatically and without human inter­
vention, once it is set up for a specific problem.

The present use of the term "computer" has a second
connotation-it usually refers to an electronic device,
although mechanical and electromechanical computers
do exist. Two important factors dictate the intimate
association between computers and electronics: No
known principle other than electronics allows a machine
to attain the speeds now commonplace in both large
and small-scale computers; no other principle permits
comparable design convenience.

Even though almost all modern computers (or "infor­
mation processors") operate electronically, thE:!re still
exist at least two distinct classes of machines. We do not
mean circuit element differences, such as tubes or
transistors, but basic differences in design philosophy.
The most significant distinction is the analog or digital
nature of a computer.

An analog computer represents values of interest by
physical quantities. The slide rule, an analog device
(although by definition, not a computer), uses the
physical quantity "length" to represent computational
values. Electronic analog computers use higher or lower
voltages to represent larger or smaller quantities, respec­
tively. In contrast, a digital computer uses numbers,
much as we do in paper-and-pencil calculations. Numbers
are represented by the presence or absence of a voltage
level or pulse on a given line. A single line defines one
"bit" (short for 'binary digit: a base-2 number); a group
of lines considered as a unit is called a 'word: where a
word may represent a computational quantity or a
machine directive.

For purposes of illustration, we shall compare two
systems for solving simple mathematical expressions,
both of which are comprised of the classical elements
of a computer: An input/output device, a memory, a
control section and an arithmetic and logic unit or ALU
(the computational element). The control unit, together
with the ALU is considered to be the central processing
unit (CPU).

© 1974 National Semiconductor Corp.

APRIL 1974

Fred Horne
National Semiconductor

r-----..,
___ I CPU I
~I I~r::=:-l
~~ T : ~!! J

I I c::::> ~ DATA
L _____ ...J

----. ~ CONTROL

FIGURE 1. Basic Elements of a Digital Computer

The first, shown in Figure 2, is comprised of a man
with a calculator; the man's fingers represent the input,
his eyes coupled with the calculator's output represent

7
FIGURE 2. Man + Calculator ~ Computer

the output, his brain is the control element while the
calculator electronics function as the ALU, finally his
brain also serves as the memory.

FIGURE 3. Elements of a Memory

Let us examine the sequence of events which occur
when our man-calculator solves the problem 6 + 2 = ?

1. Brain accesses first number of be added, a "6,"

2. Brain orders hand to del;>ress "6" key,

3. Brain identifies addition operation,

B25M44/Printed in U.S.A.

3 _.
('")

""'" o
"0
""'" o
('")
CD
tn
tn o
""'" tn

I

:J
r+

""'" o
c.
c:
('")
r+ _.
o
:J

l>
:2

I
..&
..&

~

4. Brain orders hand to depress "+" key,

5. Brain accesses second number to be added, a "2,"

6. Brain determines all necessary information has been
provided and signals the "ALU" to complete com­
putation by ordering hand to depress "-" key,

7. ALU (calculator) makes computation,

S. ALU displays result on readout,

9. Eyes signal brain, brain recognizes this number as
the result of the specified calculation,

10. Brain stores result, "S," in a location which it ap­
propriately identifies to itself to facilitate later
recall.

We shall now develop a classical computer and illustrate
how it might be used to solve the same problem. First,
the memory which is composed of storage space for a
large number of "words," with each storage space
identified by a unique "address." The word stored at
a given address might be either computational data or a
machine directive (such as add, read from memory, etc.).
Two temporary store registers, each capable of containing
one word, complete our memory (Figure 3). These
registers are designated as "memory address register"
(MAR) and "memory data register" (MDR). The MAR
contains the binary representation of the address where
information is to be read from memory or written
(stored) into memory, while the MDR contains the data
being exchanged with memory.

Next we add the ALU. The simplest ALU is comprised
of an "adder" which adds (or performs similar logical
operations upon, e.g., "or") two inputs, A and B, and
produces an output at C; and an "accumulator," which
contains intermediate results of a computation or num­
bers for a pending computation.

FIGURE 4. Arithmetic and Logic Unit

The remainder of our CPU, the control portion is
implemented using an "Instruction Register" (lR). a
"control decoder and sequencer," and a program counter
(PC). A machine directive (instruction) is transferred
into the I R and is subsequently interpreted by the
decoder/sequencer, which issues the appropriate control
pulses to the other computer elements. The PC contains,
at any given time, the address in memory of the next
machine directive, or instruction. This counter is nor­
mally incremented by one immediately following the
reading of a new instruction. The PC contents may be
replaced by the contents of a specified memory location
if the last instruction was of the "jump" class. This
causes the next instruction to be read from a program­
specified location instead of from the next sequential
location, as is the general rule.

CONTROL
DECODER AND

SEQUENCER

FIGURE 5. Computer Control

Finally, a means of Input/Output (I/O) is provided via
an "I/O Register," through which data exchanges take
place with external, or peripheral devices.

INPUT c::::::=:>I I
OUTPUT ~L_R_E_~:~_TE_R_ ~ ~~U

FIGURE 6. I/O Register Interface

We have now collected together all of the basic elements
of a computer; all that remains to do is to interconnect
them into a functioning automatic processor, as shown
in Figure 7.

Voila! A complete computer! Let's now continue our
analysis by executing the problem described below (note
that it is the same problem used to illustrate the
man-calculator) :

"Read in a number from the I/O. Store it in
memory location 50. Read in another number
from the I/O. Store it in memory location 51.
Add the two numbers together. Store the result
in memory location 60, and halt."

A "program" has been written to execute this task, and
is stored in consecutive memory locations beginning at
100. This program, written in an artificial symbolic
"language," is shown below.

TABLE I. Sample Program

Memory location Instruction (Contents)

100 Input to gccumulator
101 Store accumulator at 50
102 Input to accumulator
103 Store accumulator at 51
104 Add accum, Loc. 50

Place result in accumulator
105 Store accumulator at 60
106 Halt

LEGEND

DATA~
CONTROL--+

ALU

CONTROL
DECDDER

AND
SEOUENCER

CONTROL

FIGURE 7. Simplified CPU + Memory

All computers spend approximately equal periods of
time residing in one of two distinct "states": Fetch
or execute. In the fetch state, the computer reads from
memory the next sequential instruction and places it in
the instruction register (I R). During the execute state­
time; that instruction is carried out as a series of transfers
from one register to another and various ALU operations.
We shall now examine the program shown in Table I as
it actually executes, by specifying the contents of each
register at each machine cycle (time interval) and
assuming the computer is now ready to fetch,the first
instruction in our program. (See Table II for this analysis.)

The operation is complete. No human intervention was
required-all operations were automatic.

All computers (processors, CPU's, etc.) operate in a
similar manner, regardless of their size or intended
purpose. It must be emphasized that many variations
are possible within this basic architectural framework.
More common variations include highly sophisticated
I/O structures (some of which have direct and/or
autonomous communication with memory), multiple
accumulators for programming flexibility, index registers
which allow a memory address to be modified by a
computed value, multi-level interrupt capability, and
on and on.

One of the most exciting architectural concepts to gain
popularity in the past few years is that of micro­
programmed control. A microprogrammed computer
differs from the classical example just presented in the
control unit implementation. Our classical machine has
for its control unit an assemblage of logic elements

(gates, counters, flip-flops, etc.) interconnected to realize
certain combinatorial and sequential boolean equations.
On the other hanq, a microprogrammed machine utilizes
the concept of a "computer within a computer." That
is, the control unit has all the functional elements
which comprise a classical computer, including read
only memory (ROM).

The purpose of this "inner computer," which is not
apparent to the user, is to execute the user's program
instructions by executing a series of it's own micro­
instructions, thereby, controlling data transfers and all
functions from computed results. Herein lies the key
distinction: The control signals, hence the very "per­
sonality" of the computer, are controlled by computed
results. The implication is immediately obvious-by
simply changing the stored microprogram which gen­
erates the control signals, we may alter the entire
complexion of the computer. By altering a few words
stored in the ROM, we can cause our computer to behave
in an entirely new fashion-to execute a completely dif­
ferent set of instructions-to emulate other computers­
to tailor itself to a specified application. It is this
capability for "custom-tailoring" that allows such a
machine to be optimized for a given usage. By so
extracting the utmost measure of efficiency, a micro­
program-controlled machine is more reliable, less costly
and easier to adapt to any given situation, no matter
how diverse or demanding-such as that associated with
an on-board automotive microprocessor. National Semi­
conductor recognized the enormous advantage of being
able to "have your cake and eat it too," and therefore
has proceeded to exploit the power of re-micropro­
grammability.

c
0 .-....
(.)

:::s
"'C
0
~
C

C
ca
I

tn
~

0
tn
tn
G)
(.)

0
~

C.
0
~
(.) . -
E

TABLE II. Register Content
Memory
Read-R

Notes PC Accum. MAR MDR I/O Reg. IR Write-W State

Enter 100 Fetch
100 100 (100)* R Fetch
101 100 (100) 6 (100) Fetch

Input 101 6 100 (100) 6 (100) Execute
101 6 101 (101) (100) R Fetch
102 6 101 (101) (101) Fetch

(Store) 102 6 50 6 2 (101) w Execute
102 6 102 (102) 2 (101) R Fetch
103 6 102 (102) 2 (102) Fetch

(Input) 103 2 102 (102) (102) Execute

103 2 103 (103) (102) R Fetch
104 2 103 (103) (103) Fetch

(Store) 104 2 51 2 (103) w Execute
104 2 104 (104) (103) R Fetch
105 2 104 (104) (104) Fetch

(Add) 105 2 50 (50) (104) R Execute

105 8 50 (50) (104) Execute

Note: Addition has occurred; content of MDR (6) is at adder input B while content of
accumulator (2) is at adder input A; result at C replaces previous accumulator contents .

105 8 105 (105) (104) R Fetch

106 8 105 (105) (105) Fetch
(Store) 106 8 60 8 (105) w Execute

106 8 106 (106) (105) R Fetch

107 8 106 (106) (106) Fetch
(Exit) 107 HALT

*(100) is read as "contents of 100"

Manufactured under one or more of the following U.S. patents, 3083262, 3189758, 3231797, 3303356, 3317671, 3323071, 3381071, 3408542,3421025,3426423,3440498,3518750,3519897, 3557431, 3560765,
3566218,3571630,3575609,3579059,3593069.3597640,3607469,3617859,3631312,3633052,3638131,3648071,3651565,3693248.

National Semiconductor Corporation
2900 Semiconductor Drive, Santa Clara, California 95051, (408) 732-5000/TWX (910) 339-9240
National Semiconductor GmbH
B08 Fuerstenfeldbruck, Industriestrasse 10, West Germany, Tele. (08141) 1371/Telex 27649
National Semiconductor (UK) Ltd.
Larkfield Industrial Estate, Greenock, Scotland, Tele. (0475) 33251 ITelex 778-632

National does not assume any responSibility for use of any circuitry described; no circuit patent licenses are implied; ana National reser\ies the right, at any time WIthout notice, to change said circuitry.

