
MICROPROCESSORS - AN INTRODUCTION 

"Computers" have attracted widespread interest only 
recently, although computing devices have long been 
known. The Antikythera mechanism (an ancient Greek 
astronomical computer). the astrolabes of the middle 
ages and Pascal's calculator are examples of early com· 
putational devices. However, the present usage of the 
term "computer" includes neither those relatively primi· 
tive aids for computation, nor later developments such 
as the slide rule or the desk-top and portable calculators. 
We now define a computer as a machine which performs 
a computation automatically and without human inter­
vention, once it is set up for a specific problem. 

The present use of the term "computer" has a second 
connotation-it usually refers to an electronic device, 
although mechanical and electromechanical computers 
do exist. Two important factors dictate the intimate 
association between computers and electronics: No 
known principle other than electronics allows a machine 
to attain the speeds now commonplace in both large 
and small-scale computers; no other principle permits 
comparable design convenience. 

Even though almost all modern computers (or "infor­
mation processors") operate electronically, thE:!re still 
exist at least two distinct classes of machines. We do not 
mean circuit element differences, such as tubes or 
transistors, but basic differences in design philosophy. 
The most significant distinction is the analog or digital 
nature of a computer. 

An analog computer represents values of interest by 
physical quantities. The slide rule, an analog device 
(although by definition, not a computer), uses the 
physical quantity "length" to represent computational 
values. Electronic analog computers use higher or lower 
voltages to represent larger or smaller quantities, respec­
tively. In contrast, a digital computer uses numbers, 
much as we do in paper-and-pencil calculations. Numbers 
are represented by the presence or absence of a voltage 
level or pulse on a given line. A single line defines one 
"bit" (short for 'binary digit: a base-2 number); a group 
of lines considered as a unit is called a 'word: where a 
word may represent a computational quantity or a 
machine directive. 

For purposes of illustration, we shall compare two 
systems for solving simple mathematical expressions, 
both of which are comprised of the classical elements 
of a computer: An input/output device, a memory, a 
control section and an arithmetic and logic unit or ALU 
(the computational element). The control unit, together 
with the ALU is considered to be the central processing 
unit (CPU). 
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FIGURE 1. Basic Elements of a Digital Computer 

The first, shown in Figure 2, is comprised of a man 
with a calculator; the man's fingers represent the input, 
his eyes coupled with the calculator's output represent 

7 
FIGURE 2. Man + Calculator ~ Computer 

the output, his brain is the control element while the 
calculator electronics function as the ALU, finally his 
brain also serves as the memory. 

FIGURE 3. Elements of a Memory 

Let us examine the sequence of events which occur 
when our man-calculator solves the problem 6 + 2 = ? 

1. Brain accesses first number of be added, a "6," 

2. Brain orders hand to del;>ress "6" key, 

3. Brain identifies addition operation, 
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4. Brain orders hand to depress "+" key, 

5. Brain accesses second number to be added, a "2," 

6. Brain determines all necessary information has been 
provided and signals the "ALU" to complete com­
putation by ordering hand to depress "-" key, 

7. ALU (calculator) makes computation, 

S. ALU displays result on readout, 

9. Eyes signal brain, brain recognizes this number as 
the result of the specified calculation, 

10. Brain stores result, "S," in a location which it ap­
propriately identifies to itself to facilitate later 
recall. 

We shall now develop a classical computer and illustrate 
how it might be used to solve the same problem. First, 
the memory which is composed of storage space for a 
large number of "words," with each storage space 
identified by a unique "address." The word stored at 
a given address might be either computational data or a 
machine directive (such as add, read from memory, etc.). 
Two temporary store registers, each capable of containing 
one word, complete our memory (Figure 3). These 
registers are designated as "memory address register" 
(MAR) and "memory data register" (MDR). The MAR 
contains the binary representation of the address where 
information is to be read from memory or written 
(stored) into memory, while the MDR contains the data 
being exchanged with memory. 

Next we add the ALU. The simplest ALU is comprised 
of an "adder" which adds (or performs similar logical 
operations upon, e.g., "or") two inputs, A and B, and 
produces an output at C; and an "accumulator," which 
contains intermediate results of a computation or num­
bers for a pending computation. 

FIGURE 4. Arithmetic and Logic Unit 

The remainder of our CPU, the control portion is 
implemented using an "Instruction Register" (lR). a 
"control decoder and sequencer," and a program counter 
(PC). A machine directive (instruction) is transferred 
into the I R and is subsequently interpreted by the 
decoder/sequencer, which issues the appropriate control 
pulses to the other computer elements. The PC contains, 
at any given time, the address in memory of the next 
machine directive, or instruction. This counter is nor­
mally incremented by one immediately following the 
reading of a new instruction. The PC contents may be 
replaced by the contents of a specified memory location 
if the last instruction was of the "jump" class. This 
causes the next instruction to be read from a program­
specified location instead of from the next sequential 
location, as is the general rule. 

CONTROL 
DECODER AND 

SEQUENCER 

FIGURE 5. Computer Control 

Finally, a means of Input/Output (I/O) is provided via 
an "I/O Register," through which data exchanges take 
place with external, or peripheral devices. 

INPUT c::::::=:>I I 
OUTPUT ~L_R_E_~:~_TE_R_ .... ~ ~~U 

FIGURE 6. I/O Register Interface 

We have now collected together all of the basic elements 
of a computer; all that remains to do is to interconnect 
them into a functioning automatic processor, as shown 
in Figure 7. 

Voila! A complete computer! Let's now continue our 
analysis by executing the problem described below (note 
that it is the same problem used to illustrate the 
man-calculator) : 

"Read in a number from the I/O. Store it in 
memory location 50. Read in another number 
from the I/O. Store it in memory location 51. 
Add the two numbers together. Store the result 
in memory location 60, and halt." 

A "program" has been written to execute this task, and 
is stored in consecutive memory locations beginning at 
100. This program, written in an artificial symbolic 
"language," is shown below. 

TABLE I. Sample Program 

Memory location Instruction (Contents) 

100 Input to gccumulator 
101 Store accumulator at 50 
102 Input to accumulator 
103 Store accumulator at 51 
104 Add accum, Loc. 50 

Place result in accumulator 
105 Store accumulator at 60 
106 Halt 
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FIGURE 7. Simplified CPU + Memory 

All computers spend approximately equal periods of 
time residing in one of two distinct "states": Fetch 
or execute. In the fetch state, the computer reads from 
memory the next sequential instruction and places it in 
the instruction register (I R). During the execute state­
time; that instruction is carried out as a series of transfers 
from one register to another and various ALU operations. 
We shall now examine the program shown in Table I as 
it actually executes, by specifying the contents of each 
register at each machine cycle (time interval) and 
assuming the computer is now ready to fetch,the first 
instruction in our program. (See Table II for this analysis.) 

The operation is complete. No human intervention was 
required-all operations were automatic. 

All computers (processors, CPU's, etc.) operate in a 
similar manner, regardless of their size or intended 
purpose. It must be emphasized that many variations 
are possible within this basic architectural framework. 
More common variations include highly sophisticated 
I/O structures (some of which have direct and/or 
autonomous communication with memory), multiple 
accumulators for programming flexibility, index registers 
which allow a memory address to be modified by a 
computed value, multi-level interrupt capability, and 
on and on. 

One of the most exciting architectural concepts to gain 
popularity in the past few years is that of micro­
programmed control. A microprogrammed computer 
differs from the classical example just presented in the 
control unit implementation. Our classical machine has 
for its control unit an assemblage of logic elements 

(gates, counters, flip-flops, etc.) interconnected to realize 
certain combinatorial and sequential boolean equations. 
On the other hanq, a microprogrammed machine utilizes 
the concept of a "computer within a computer." That 
is, the control unit has all the functional elements 
which comprise a classical computer, including read 
only memory (ROM). 

The purpose of this "inner computer," which is not 
apparent to the user, is to execute the user's program 
instructions by executing a series of it's own micro­
instructions, thereby, controlling data transfers and all 
functions from computed results. Herein lies the key 
distinction: The control signals, hence the very "per­
sonality" of the computer, are controlled by computed 
results. The implication is immediately obvious-by 
simply changing the stored microprogram which gen­
erates the control signals, we may alter the entire 
complexion of the computer. By altering a few words 
stored in the ROM, we can cause our computer to behave 
in an entirely new fashion-to execute a completely dif­
ferent set of instructions-to emulate other computers­
to tailor itself to a specified application. It is this 
capability for "custom-tailoring" that allows such a 
machine to be optimized for a given usage. By so 
extracting the utmost measure of efficiency, a micro­
program-controlled machine is more reliable, less costly 
and easier to adapt to any given situation, no matter 
how diverse or demanding-such as that associated with 
an on-board automotive microprocessor. National Semi­
conductor recognized the enormous advantage of being 
able to "have your cake and eat it too," and therefore 
has proceeded to exploit the power of re-micropro­
grammability. 
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TABLE II. Register Content 
Memory 
Read-R 

Notes PC Accum. MAR MDR I/O Reg. IR Write-W State 

Enter 100 Fetch 
100 100 (100)* R Fetch 
101 100 (100) 6 (100) Fetch 

Input 101 6 100 (100) 6 (100) Execute 
101 6 101 (101) (100) R Fetch 
102 6 101 (101) (101) Fetch 

(Store) 102 6 50 6 2 (101) w Execute 
102 6 102 (102) 2 (101 ) R Fetch 
103 6 102 (102) 2 (102) Fetch 

(Input) 103 2 102 (102) (102) Execute 

103 2 103 (103) (102) R Fetch 
104 2 103 (103) (103) Fetch 

(Store) 104 2 51 2 (103) w Execute 
104 2 104 (104) (103) R Fetch 
105 2 104 (104) (104) Fetch 

(Add) 105 2 50 ( 50) (104) R Execute 

105 8 50 ( 50) (104) Execute 

Note: Addition has occurred; content of MDR (6) is at adder input B while content of 
accumulator (2) is at adder input A; result at C replaces previous accumulator contents . 

105 8 105 (105) (104) R Fetch 

106 8 105 (105) (105) Fetch 
(Store) 106 8 60 8 (105) w Execute 

106 8 106 (106) (105) R Fetch 

107 8 106 (106) (106) Fetch 
(Exit) 107 HALT 

*(100) is read as "contents of 100" 
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