o

Series 32000

TDS: Tiny Development Systems
User’s Manual

National
Semiconductor
Corporation

Customer Order Number NSP-TDS-M
NSC Publication Number 420306440-001B
December 1984

Series 32000™

TDS™: Tiny Development System

T Temsldo NAn sazem
UDCI D lVi

© 1984 National Semiconductor Corporation
2900 Semiconductor Drive
Santa Clara, California 95051

REVISION

A

REVISION RECORD

RELEASE DATE

09/83

02/84

12/84

SUMMARY OF CHANGES

First Release.

TDS16: Tiny Development System
User’s Manual

Publication No. 420306440-001

Updated to include operation information for
TDS on a DB16000A or a DB32000
Development Board.

Manual title changed to Series 32000 TDS:
Tiny Development System User's Manual and
related Series 32000 name changes where
applicable.

1

PREFACE

This manual describes the Tiny Development System (TDS™) software. TDS provides the
user with a way to generate Series 32000™ executable code.

TDS supports National Semiconductor Corporation’s Series 32000 family of advanced
MiCTrOProcessors.

APPLICABILITY AND CONFIGURATION
There is a TDS program for the DB16000, for the DB32016, and for the
DB32000. This manual describes the generic TDS and notes differences where
applicable. These TDS programs work with these boards.

DB16000 DB32016 DB32000-XXXS DB32000-XXXD

TDS16 484306440-005 to 008 YES YES NO NO
TDS16A 484007346-001 to 002 NO YES NO NO
TDS32 484407272-013t0 016 NO NO YES NO

Series 32000, TDS, and SERIES/80 are trademarks of the National Semiconductor Corporation.

iii

Series 32000 Documentation

Series 32000 Instruction Set Reference Manual (Pub. No. 420010099-001)

Series 32000 NSX Cross-Support Utilities Reference Manual (Pub. No. 420306617-002)

Series 32000 Pascal language and Compiler Reference (Pub. No. 420306618-002)"
Manual

Series 32000 Cross- Assembler Reference Manual (Pub. No. 420306619-002)

Series 32000 1SE16: NS32016 and NS32008 In-System (Pub. No. 420306675-002)
Emulators User’s Manual

Series 32000 Symbolic Debugger Reference Manual (Pub. No. 420306676-002)

Sertes 32000 Run-Time Support Library Reference Manual (Pub. No. 420308038-002)

Series 32000 Floating-Point Support Library Reference (Pub. No. 420308220-002)

Manual
Series 32000 Development Board Monitor Reference Manual (Pub. No. 420308221-002)
Series 32000 NSX Operations Manual (Pub. No. 424009011-002)
Series 32000 DB32000 Development Board User’s Manual (Pub. No. 420010144-001)
Series 32000 TDS: Tiny Development System (Pub. No. 420306440-001)

Series 32000 DB32016 Development Board User’s Manual (Pub. No. 420310111-001)

Series 32000 EXEC: ROMable Real-Time Multitasking (Pub. No. 420010206-001)
EXECUTIVE Reference Manual

Series 32000 GENIX Cross-Support Software Programmer’s

Manual
Volume 1 (Pub. No. 424010106-001)
Volume 2 (Pub. No. 424010106-002)
Series 32000 GENIX Programmer’s Manual
Volume 1 (Pub. No. 424308225-001)
Volume 2 (Pub. No. 424308225-002)
Series 32000 GENIX Debugging Reference Manuals
GENIX ISE16: NS32008 and NS32016 (Pub. No. 420308165-001)
In-System Emulators
GENIX Symbolic Debugger (Pub. No. 424010149-001)
Development Board Monitor (Pub. No. 420308221-002)
Reference Manual
Sertes 32000 SYS32 System Manual (Pub. No. 420308225-001)
Series 32000 SYS32 Site Installation Guide (Pub. No. 409308225-001)
Series 32000 SYS32 Add-On Disk/Disk Module Installation (Pub. No. 409308226-001)
Guide

The information contained in this manual 1s for reference only and is subject to change
without notice.

No part of this document may be reproduced in any form or by any means without the prior
written consent of National Semiconductor Corporation.

v

CONTENTS

Chapter 1 INTRODUCTION
1.1 PRODUCT DESCRIPTION .

1.2 FUNCTIONAL OVERVIEW
1.2.1 Interactive TDS Software Environment .
1.2.2 Peripheral Environment and Run-Time Support

1.3 RELATED DOCUMENTATION
1.4 MANUAL ORGANIZATION . .
Chapter 2 GENERAL SYSTEM CONVENTIONS
21 INTRODUCTION
2.2 DOCUMENTATION CONVENTIONS
Chapter 3 SYSTEM INITIALIZATION
31 INTRODUCTION
32 INITIALIZATIONPROCEDURE

3.3 TERMINAL COMMUNICATIONS AND SYSTEM USE
COMMANDS e e e e e e e e e
331 RXCommand
332 OMCommand
Chapter 4 TEXTEDITOR
41 INTRODUCTION

42 TEXT EDITOR COMMANDS
4.2.1 Insert Command
422 TypeCommand
4.2.3 Replace Command
4.2.4 Kill Command e e e e e .
4.2.5 Reset Command

4.3 EDITOR ERRORMESSAGES
Chapter 5 ASSEMBLER

51 INTRODUCTION

5.2 VALID ASSEMBLER STRINGS

5.3 ASSEMBLER COMMANDS
5.3.1 Redirect Listing
532 Assemble

54 ASSEMBLER ERRORMESSAGES
54.1 Passl Error Messages
5.4.2 Pass2 Error Messages

Chapter 6 SYMBOLIC DEBUGGER

6.1
6.2

6.3
6.4
6.5

6.6

6.7
6.8

INTRODUCTION

PROGRAM INITIALIZATION
6.2.1 Manual Program Initialization . .
6.2.2 Automatic Program Initialization .

DEBUGGER PRINT COMMANDS . . .
DEBUGGER CHANGE COMMANDS .

DEBUGGER EXECUTION COMMANDS

6.5.1 STEP N INSTRUCTIONS Command
6.5.2 STEP UNTIL Command
6.5.3 STEP WHILE Command . . .
6.5.4 JUMP SUBROUTINE Command .

6.5.5 CALL EXTERNAL SUBROUTINE Command .

656 GOCommand

SPECIAL PROCESSING COMMANDS .
6.6.1 MOVE BLOCK OF DATA Command

.

6.6.2 FILL MEMORY WITH DATA Command . .

6.6.3 SEARCH FOR DATA Command
6.6.4 HEX MEMORY DUMP Command

DEBUGGER USER NOTES
DEBUGGER ERROR MESSAGES . . .

Chapter 7 RUN-TIME SUPPORT

7.1
7.2

7.3

7.4

8.1
8.2
8.3
8.4
8.5
8.6
8.7

INTRODUCTION

SERIAL COMMUNICATIONS . . .
7.2.1 Read and Buffer Serial Line Data
7.2.2 Write Buffered Data to Serial Lme

NUMERICAL CONVERSIONS . . .
7.3.1 ASCII to Binary Conversion . .
7.3.2 Binary to ASCII Conversion .

.

PARALLEL PRINTER COMMUNICATIONS

Chapter 8 PROGRAM EXECUTION AND SAMPLE DEVELOPMENT
SESSION« . ¢ ¢« « v « o o .

INTRODUCTION
TEXTEDITING
ASSEMBLY
DEBUG DATA

. . .

- . .

PROGRAM INITIALIZATION AND EXECUTION

RUN-TIME SUPPORT EXAMPLES . .

SLAVESUPPORT
87.1 FPUSupport
8.7.2 MMU Support

Chapter 9 PERIPHERAL INTERFACING

vi

6-1

6-1
6-2
6-3

6-3
6-4
6-5
6-5
6-5
6-6

6-6
6-6

6-6
6-7
6-7
6-7
6-7
6-8
7-1
7-1

7-1
7-1
7-2

7-2
7-3
7-3

9.1 INTRODUCTION . . v v v v v v v e v e v v i 9-1
9.2 CENTRONICS-TYPE PARALLELPRINTER 9-1

9.3 SERIAL COMMUNICATIONS « + « . . . 9-1
9.4 CASSETTERECORDER« v v v v v v o o o« o . 9-1
9.4.1 Data Storage and Retrieval 9-2
9.4.2 Cassette InterfaceCable+ . . . 9-2
9.4.3 Recorder Use . . . e e e e e e e e e e e e 9-2

9.4.4 Recorder Error Messages 9-3

9.5 NEW COMMANDS FOR TDS ON THE DB32000 AND
DB32016 . . . e e e e e e e e e e e e .93

551 Read Dataln FromPort 9-4
9.5.2 Write DataOut ToPort« + ¢ « . . . 9-4
953 The ATRCommand « v v v v o o o o« . 9-5
954 The ATMCommand + ¢« v v « o o« . 9-5
9.5.5 Sample Program 9-6
Appendix A TDSONTHE DB16000 « . . A-1
A.1 AUXILIARY PORT BLX-351 SETUP PROCEDURES
(DB16000) + v . 4 e e e e e e e e .. A1
A2 BAUDRATESETUPS (DB16000) « « +« « « . . A-2
A.3 NUMERICAL DATA(DB16000) . . v « v v v o o o o . A-2
A.4 PARAILEL PRINTER INTERFACE DATA (DB16000) A-3
A.5 CASSETTE INTERFACE DATA (DB16000) A-4
A6 ASSEMBIERUSERNOTES ¢« « ¢« v « « o . A-6

A.7 TDS MEMORY MAP (DB16000) A-7
A.8 TDS ERROR SUMMARY (DB16000) A-8
A.9 TDS COMMAND SUMMARY (DB16000) A-10
Appendix B TDSONTHE DB32016 « « « « « « « .« . B-1
B.1 AUXILIARY PORT SETUP PROCEDURES (DB32016) B-1
B2 BAUD RATESETUPS(DB32016) « « « « « + . . B-1
B.3 NUMERICAL DATA (DB32016) B-2
B4 PARALLEL PRINTER INTERFACE DATA (DB32016) B-3
5 CASSETTE INTERFACE DATA (DB32016) B-4
B.6 ASSEMBLER USER NOTES(DB32016) B-6
B.7 TDS MEMORY MAP(DB32016) « + « « « « . . B-7
B8 TDS ERROR SUMMARY (DB32016) B-8
B9 TDS COMMAND SUMMARY (DB32016) B-9

vii

Appendix C TDS ON THE DB32000

C1
C.2
C3
C4
C.5
C6
C.7
C.8
C.9

.

AUXILIARY PORT SETUP PROCEDURES (DB32000) .

BAUD RATE SETUPS (DB32000) .
NUMERICAL DATA (DB32000)

PARALLEL PRINTER INTERFACE DATA (DB32000) .

CASSETTE INTERFACE DATA (DB32000)
ASSEMBLER USER NOTES (DB32000) .
TDS MEMORY MAP (DB32000)

TDS ERROR SUMMARY (DB32000) .
TDS COMMAND SUMMARY (DB32000)

Viii

.

C-1
C11
C-1
C-2
C-2
C-3
C-6
C-6

C-9

Chapter 1
INTRODUCTION

1.1 PRODUCT DESCRIPTION

The TDS (Tiny Development System) is a stand-alone board-ievel software support system for
the Series 32000 family of advanced microprocessors. The TDS software provides the means
for the user to generate Series 32000 executable code.

TDS utilities enable the user to originate, edit, assemble, debug, and execute Series 32000
small source programs. These also support the use of an optional cassette tape recorder for the
storage and retrieval of source programs, and the use of a parallel printer for the generation of
program listings. TDS is intended as a demonstration tool for Series 32000 development
boards. TDS utilities cannot substitute for a full development system and are not designed to
be integrated into a customer product.

In addition to a text editor, an assembler, and a symbolic debugger, TDS includes run-time
support routines that manage terminal 1/O access to peripheral devices, and complete
numerical conversions requestable by user programs.

On the DB16000 board TDS PROMs plug into sockets U9, U10, U1l and U12. On the
DB32016 board TDS plugs into U13 and U15. On the DB32000 board TDS plugs into U163,
U145, U125, and Ul11.

1.2 FUNCTIONAL OVERVIEW

1.2.1 Interactive TDS Software Environment

The TDS software system resides in PROMS on currently available Series 32000 development
boards. The appendices contain information specific to the particular development board used.
TDS facilities are available to the user once the development board is running in a stand-alone
mode. Refer to the individual development board manual for information necessary to
establish the required stand-alone environment.

The available TDS utilities are:
e A Text Editor
s An Assembler
o A Symbolic Debugger

1-1

Text Editor

Enables the user to create and maintain source programs. Text editor commands support the
creation, deletion, insertion, replacement, and display of user-originated programs. Source lines
created or edited are automatically sequenced for easy use and reference.

Assembler

Assembles user programs and produces machine executable code. Assembler error messages
alert the user to errors detected during the assembly of a source program.

Symbolic Debugger

Provides program debug aids that allow the user to step through an assembled program, follow
the program flow at source level by setting up breakpoints symbolically if the source line is
labeled, symbolically print or change the contents of memory and system registers, search
system memory for specific data, move blocks of data from one location in system memory to
another, and fill contiguous locations of system memory with data.

1.2.2 Peripheral Environment and Run-Time Support
TDS also provides the following for the user:

e Peripheral Interfacing

¢ Run-Time Support

TDS supports two RS232-C ports and one parallel port. One of the RS232-C ports is designated
as port 0 and the other port is designated as port 1. Port O is the main system port where the
user terminal is connected, and port 1 is the system auxiliary port. Port 1 can accommodate
any serial peripheral device. The parallel port is used to implement the audio cassette interface
for source program/data storage and retrieval. It can also support any Centronics-type parallel
printer to generate source listings or record data outputs.

Run-time support services provide the user with the ability to access ports O and 1, and the
parallel printer port. Run-time support services also permit the user to perform ASCI to
binary and binary to ASCII numerical conversions on four user-selected bases.

1.3 RELATED DOCUMENTATION

If TDS is to be used to develop source programs for Series 32000 microprocessors, the user
must understand the architecture of the Series 32000 family of microprocessors and their
programming Trequirements. See the Series 32000 Instruction Set Reference Manual,
Customer Order Number NSP-INST-REF-M, for additional information.

1-2

1.4 MANUAL ORGANIZATION

This manual is divided into nine chapters and appendices A through C. Each appendix
contains nine sections. Appendix A references DB16000; Appendix B references DB32016; and
Appendix C references DB32000. The manual is organized in the following order:

¢ Chapter 2 -- General System Conventions
e Chapter 3 — System Initialization
e Chapter 4 — Text Editor
e Chapter 5 — Assembler
e Chapter 6 — Symbolic Debugger
e Chapter 7 - Run-Time Support
e Chapter 8 — Program Execution and Sample Development Session
e Chapter 9 — Peripheral Interfacing
e Appendix A — TDS on the DB16000
¢ Appendix B — TDS on the DB32016
e Appendix C — TDS on the DB32000
Fach appendix is divided into nine sections as listed below:
o Sections A.1, B.1, C.1 — Auxiliary Port Setup Procedures
o Sections A.2, B.2, C.2 — Baud Rate Setups
e Sections A.3, B.3, C.3 — Numerical Data
o Sections A.4, B.4, C.4 — Parallel Printer Interface Data
e Sections A.5, B.5, C.5 — Cassette Interface Data
e Sections A.6, B.6, C.6 — Assembler User Notes
¢ Sections A.7, B.7, C.7 — TDS Memory Map
e Sections A.8, B.8, C.8 — TDS Error Summary
e Sections A.9, B.9, C.9 — TDS Command Summary

Chapter 2 introduces the user TDS procedural fundamentals and defines its documentation
conventions.

user terminal, and selecting the system default base for the data output.

Chapter 4 lists and defines the commands, error messages, and procedures made available by
the text editor.

Chapter 5 lists and defines the commands and the assembly syntax accepted by the assembler,
and the error messages output by the assembler.

1-3

Chapter 6 lists and defines the symbolic debugger printer commands, change commands,
special processing commands, and execution commands. The chapter also lists and defines error
messages output by the debugger, and the method of program initialization.

Chapter 7 explains RTS use and lists the conventions of the routines used to support
peripheral access and numerical conversions.

Chapter 8 presents a sample development session where source code is entered for sample
programs and assembled. Debugging tools are demonstrated and the program is executed. The
chapter also provides information concerning slave support.

Chapter 9 provides information on the requirements and use of the peripheral devices
supported by TDS.

A complete set of appendices for the various development boards provides information on
hardware set-ups, ranges and syntax of numerical values, parallel printer interface cable pin-
outs, and cassette tape interface cable construction details and interface timing data. The
appendices also provide memory maps of the TDS system, a complete summary of all TDS
error messages, and a summary of all commands (listed in functional sequence) supported by
TDS.

Chapter 2
GENERAL SYSTEM CONVENTIONS

2.1 INTRODUCTION

The user interface to TDS is the command line interpretive (CLI) mode. The CLI mode is the
user’s link to the facilities provided by TDS.

The CLI mode is the main mode of control for TDS and is characterized by an asterisk (*) at
the left edge of the user’s terminal screen, marking the beginning of a line. The asterisk
indicates that a user may enter a command. The CLI mode listens to user commands and
responds with desired results or an error message. Errors in commands or syntax will cause
TDS to respond with a question mark (?). Whenever the “?” is displayed by TDS, the
command line originally entered is ignored. After the question mark is displayed, TDS issues a
line feed if the communication option is set (see Section 3.3.2, OM Command) TDS also
displays the “*” once again. Consult Chapter 3 for the proper setting of the communications
mode for the terminal.

Commands consist of one or two letters (upper or lower case) and are entered immediately
after the “*”. Command parameters are separated by a single space. Commands are executed
when a <CR> carriage return is entered. Any exceptions to this convention are covered
during individual command descriptions.

Tabs, line feeds, or special characters are ignored.

he backspace or delete key may be used to delete characters. A deleted character is replaced
by a space and the cursor is positioned over the deleted character. Backspacing or deleting to
the beginning of the line will null that line and TDS will display the “*” prompt.

TDS uses the control “Q” and “S” keys to control scrolling functions. The <crtl/S> is used to
stop terminal output, and the <crtl/Q> continues the terminal output. The scrolling
functions are supported only at the main port (port 0).

The maximum character length of a valid command line is 62. If this maximum is exceeded,
TDS outputs the “?” and the command line input is ignored.

2.2 DOCUMENTATION CONVENTIONS

The following documentation conventions are used in describing commands and parameters.
Except for mnemonics any combination of upper- and lower—case letters may actually be used
when entering commands.

Upper-case letters show the instruction and directive mnemonics. The mnemonics
must be entered exactly as shown.

Italics are used for items supplied by the user. The italicized word is a generic
term for the actual operand that the user enters.

2-1

Spaces or blanks, when present, are significant; they must be entered as shown.
Multiple blanks or horizontal tabs may be used in place of a single blank.

{}

”s

O

[

Large braces enclose two or more items of which one, and only one, must be
used. The items are separated from each other by a logical OR sign “|”.

Large brackets enclose optional item(s).
Logical OR sign separates items of which one, and only one, may be used.

Three consecutive periods indicate optional repetition of the preceding
item(s). If a group of items can be repeated, the group is enclosed in large
parentheses “().

Three consecutive commas indicate optional repetition of the preceding
item. Items must be separated by commas. If a group of items can be
repeated, the group is enclosed in large parentheses “()”

Large parentheses enclose items which need to be grouped together for
optional repetition. If three consecutive commas or periods follow an item,
only that item may be repeated. The parentheses indicate that the group
may be repeated.

Indicates a space. |t is only used to indicate a specific number of required
spaces.

User inputs of nonprinting keys are indicated by enclosing a2 name for the key in
angle brackets <> (<CR> indicates the RETURN key).

A1l other characters or symbols appearing in the syntax must be entered as shown.
Brackets, parentheses, or braces which must be entered, are smaller than the
symbols used to describe the syntax. (Compare user-entered [] with [] which
show optional items.)

In interactive examples where both user input and system responses are shown, the
machine output is in regular type. User-entered input is in boldface type.

Parameters:

Number ()

General-Number

(gn)

digits
Where digits equal one or more decimal digits (0 through 9).

{Diriainy [-] digits

Where digits are compatible with selected base. Hex value digits
are 0 through 9 and A through F (upper or lower case). (-)
specifies negative value. Default base numbers require only digits
for input. gn is zero-extended or truncated to byte, word, or
double-word according to any size restriction common to a
particular operation. See Appendices A.3, B3, and CJ3 for
additional numerical information.

2-2

Real-Number
(rn)

General
Address (addr)
CPU register
(cpureg)

n[.[n]][el B [+]-]n]
When used in symbolic debugger operations, the [E] must be upper
case. See Appendices A.3, B.3, and C.3 for further information.

gn

Where gn >=0
{PC|SB|FP|US|IS|SP|IN |PS|MOD}

2-3

Chapter 3
SYSTEM INITIALIZATION

3.1 INTRODUCTION

The TDS user must enter the required initialization command and optionally set terminal
communication mode and system base for numerical interpretations. Sections 3.2 through 3.3.2
detail this information.

3.2 INITIALIZATION PROCEDURE

Once the development board is powered up and reset in stand-alone mode, TDS displays the
following message:

*TDS Rev NNN DAY-MON-YR (BOARD VERSION)

The “*” should appear on the left-most side of the terminal screen. The asterisk indicates that
TDS is in the CLI mode and is prepared to accept a command line input.

Enter IT (for initialize) at the terminal and press <CR>.

The IT command initializes functions not performed by a hardware reset. If the IT command
is not entered before the user attempts to use TDS facilities, TDS will not function properly.

3.3 TERMINAL COMMUNICATIONS AND SYSTEM USE COMMANDS

Two commands are supported by TDS that enable the user to set up specific conditions within
the TDS system. One command sets the default base for symbolic debugger functions, and the
other command sets user communication modes at the main user port (port 0). Those two
commands respectively are: RX and OM. The following paragraphs present the syntax of each
command and discuss their use. If the user does not use the RX and OM commands to make
the applicable selections, TDS will use default values.

3.3.1 RX Command

The select radix (RX) command sets the default base (hex or decimal) for the symbolic
debugger command parameters and causes all command responses to be output in the selected
base. The syntax of the command is:

RX {H|D}
If a command argument is different from the selected base, it must be preceded by H, h’, D’,
or d.

For example, if a user wishes to use the debugger facilities to display the contents of system
memory at decimal location 100, and the selected base is hex, the command line input must
specify D’100 as the address. The output is in hex notation. If the user wants to examine hex

3-1

location 100, it is not necessary to use the H'100 notation in the command line since the
selected base is already hex. The IT command initially sets the radix to hex.

The commands and facilities of the symbolic debugger are described in Chapter 6.

3.3.2 OM Command

The operation mode (OM) command sets the communications mode of the user terminal
connected to the main port (port 0) of the development board.

The syntax of the command is:
OM gn

Valid values for gn in this case are: O through 4. OM is initially set to O by the hardware
reset.

TDS uses full duplex communications with the user terminal. All inputs to TDS are echoed
back to the user terminal. The OM command controls how carriage returns are treated during
echo and how carriage returns are handled during output responses to commands. The values
for gn have the following meaning:

Gn ACTION

0 Echo <CR>as <CR>+ <LF>

1 Echo <CR>as <CR>

2 Output <CR>as <CR>+ <LF>

3 Echo <CR>as <CR>and output <CR > only
4 Echo <CR> as space

Chapter 4
TEXT EDITOR

4.1 INTRODUCTION

The system text editor is used to perform the following tasks:
o Create source programs for Series 32000 microprocessors.
o Change source text.
o Display multiple lines of source text.
¢ Insert new lines of source text.
e Delete lines of source text.

tion A Aafimac +ha tagt aditam rememande that Jmit e 3
Section 4.2 defines the text editor commands that initiate and complete user tasks. Section 4.3
V

lists and defines the error messages output by the text editor.

4.2 TEXT EDITOR COMMANDS

TDS provides a line numbering sequence that can automatically number or renumber lines.
Each command supporting the text editor tracks the line numbering sequence. Switching
between commands requires that the user specify desired line numbers.

The commands supporting the text editor functions are: INSERT, TYPE, REPLACE, KILL, and
RESET. Sections 4.2.1 through 4.2.5 define the syntax of each command and their respective
uses.

4.2.1 Insert Command

The Insert command is used to create source text if the editor text buffer is empty, or to insert
one or more new text lines in text already contained in the editor buffer, or to append one or
more new text lines to text contained in the editor buffer.

The syntax of the Insert command is:
IN [n] string

Where n is the line number and string is a valid string that conforms to one of the
conventions outlined in Section 5.2.

If the editor text buffer is empty, the automatic sequencing feature of the editor allows the
user to begin creating source text by entering:

IN string <CR>

The first line of text entered becomes line 0000 in the buffer. Entering the same command line
again, with perhaps a different string, results in the second line becoming line 0001 of text in
the buffer. The sequence continues until the user has entered the desired number of text lines.

To insert new text lines into existing text, the user chooses the existing text line above which
the new text line is to be inserted.

4.2.2 Type Command

The Type command is used to list or display a specific line or multiple lines of text contained
in the text buffer.

The syntax of the command is:

TP [nt [/n2]]
Where n/ is the first line to be typed and n2 is the number of lines to be typed.
To list text line 0003 from the text buffer, enter:

TP 3 <CR>

When the Type command is used without specifving nl, the value of nl follows the value of
n set by the Insert or Replace command.

For example, if the Insert command is used to insert a new line of text, and the Type
command is used immediately afterwards without specifying an nl or n2 value, the line
previously inserted is displayed. If an n2 value is specified and an nl value is not, the desired
number of lines are displayed beginning with the line previously inserted.

The Type command displays a maximum of 127 lines.

For example, a user wishing to insert a line at line 2, would enter:
IN 2 TEXT

To type three lines of text beginning with the line just inserted, enter:
TP /3

However, entering

IN 2 TEXT
TP 7/2
IN NEWTEXT

may produce incorrect results. If the user inserts a line at line 2 and then types out 2 lines
beginning at line 7, the user cannot use simply the IN command to begin inserting text after
the last line of text inserted. The TP command changed the default value of n to 7. Using the
IN command without respecifying n would insert a line or lines beginning at line 7 of text.

4-2

4.2.3 Replace Command
The Replace command is used to replace a line of text in the buffer with a new line of text.
The syntax of the command is:
RP n string
When the RP command is used, n must be specified.

4.2.4 Kill Command
The Kill command is used to delete a line of text from the text buffer.
The syntax of the Kill command is:

Kln

When the KI command is used, n must be specified.

4.2.5 Reset Command
The Reset command clears the text editor buffer.
The syntax of the command is:

RS

Whenever the Reset command is invoked, the text buffer is cleared and is immediately
available for the input of new text.

4.3 EDITOR ERROR MESSAGES

The text editor can issue two error messages:
BAD_TXT
ERR_ED#

The bad text (BAD_TXT) error message is output by the editor if an incorrect text sequence is
entered. The error message may also occur if a runaway program altered text buffer or editor
parameters. In such an event, the RESET command should be entered.

The error in edit number (ERR_ED#) error message is output by the editor if the user
specifies an inappropriate or bad number value in a command line. The error message may
occur if the user did not respecify a default value for n for a new operation after using n to
complete a previous operation. The ERR_ED# error message may also occur if the user
attempts to use the text editor before the IT command is invoked.

Chapter S
ASSEMBLER

5.1 INTRODUCTION

The principal features of the assembler are as follows:
e The syntax is a compatible subset of existing Series 32000 assemblers.
e It accepts special syntax for register list and string instruction options.
o It accepts symbols for PC displacements.
e It produces optimized code for displacements entered symbolically.
e It supports symbolic definition of global variables.
o Input may be upper or lower case.

e Program listing output to user terminal (default) includes line number, PC value, source
text, and generated code.

e Listing available for hardcopy through Parallel port or Auxiliary RS232 port.
¢ Floating-point support provided through .FLOAT and .LONG psuedo-ops.

e Assembler can perform simple symbol operation necessary to create displacement table
needed by CASE instruction.

o All Series 32000 family addressing modes accepted.
o Assembler accepts values in decimal (default) or hex.

e Error messages for incorrect instructions, psuedo-ops, values, and duplicated or undefined
symbols.

Section 5.2 details input strings accepted by the assembler. Section 5.3 describes assembler
commands available to the user, and Section 5.4 discusses error messages output by the
assembler.

5.2 VALID ASSEMBLER STRINGS
Valid assembler input strings are characterized as follows:

Symbol { letter [lorfpr]: ! letter {digi[};}

Symbeols are depicted by two characters only, upper or lower case.
No special characters allowed.

Comment ; alpha-letters-and/or-digits
May be alpha letters and/or digits, or empty.

5-1

Instruction [symbol] instruction [comment]

An instruction is any valid Series 32000 mnemonic instruction
with required operands.

Pseudo-Op [symbol | Pseudo-op [comment |
Valid Pseudo-ops are:
BYTE {gn|symboll-symbol2|al pha-letters/digits}
.WORD {gn Isymboll—symbOZZ}
DOUBLE {gn|symboll-symbol2}
JFLOAT rn
.LONG rn
BLKB {gn}
BLKW { gn}
BLKD {gn}
STATIC
.ENDSEG

A string to TDS is any of the above. It can be a symbol, an instruction, a pseudo-op or a
comment.

TDS symbols may be either PC-relative by labelling a code or date generation line, or may be
static-base-relative by using a data allocation label. These symbols may be used only as
arguments for PC or SB relative address modes. A simple subtraction operation is allowed for
PC symbols in order to build a case displacement table. For data generation pseudo-ops, gn
must be entered. For data allocation pseudo-ops, default gn = 1. The .BYTE psuedo-op may be
used to create a string enclosed by double quote marks.

Static base area must be defined as the first element of the program if the SB area is used. It
must start with .STATIC and terminate with .ENDSEG.

Gn in source is assumed to be decimal. For hex values, specify H or h’. Consult Section A.6,
B.6, and C.6 for user notes.

§.3 ASSEMEBLER COMMANDS

Two commands directly associated with assembler functions are Redirect Listing (RL) and
Assemble (AS). Sections 5.3.1 and 5.3.2 list the syntax of both commands and define their uses.

5.3.1 Redirect Listing

Program listings are transmitted to the user terminal. The redirect listing (RL) command
permits the user to direct listing generation to the parallel printer port or port 1 (the auxiliary

serial port).

The syntax of the RL command is as follows:

RL [LPT:|ASN:] [C]

where:

LPT: Directs the assembled listing of a source program to a
Centronics-type parallel printer connected to the parallel port.

ASN: Directs the listing to port 1 (auxiliary port).

C Ends listing line S with a <CR>. Default is <CR> <LF>.

No option cancels previously selected device.

5.3.2 Assemble

The syntax of the AS command is as follows:
AS [addr]

where:

Description:

addr Begins code generation at specified hex address. Decimal values
must be preceded by d’ or D'. If addr is not specified, the
assembler uses the next available page boundary addr. If the
addr specified by the user conflicts with system or text data, or
the debug table, the assembler will output the BAD_MEM error
message.

The actual assembly of source text begins when the user enters:
AS [addr] <CR>

The source program is assembled in two passes: Passl and Pass2. During Passl
each line of source is displayed on the user terminal along with any assembler
error messages. If errors are detected during Passl, the assembly is terminated
and lists the number of errors encountered. If Passl is error free, the assembler
starts Pass2. During Pass2, the line number, the start address of that line, source
text, and generated code are displayed (on the user terminal or a device specified
by the RL command) along with any further error messages.

It should be noted that once a source program has been successfully assembled,
any changes in source text (using the text editor), invalidates PC and generated
code values and debug data originally created by the assembler. This may cause
certain debug command errors. To ensure correct operation, always reasemble
after changing the source.

5-3

5.4 ASSEMBLER ERROR MESSAGES

5.4.1 Passl Error Messages

BAD_MEM Code start addr conflicts with text or debug data. Enter a higher value
for addr.

BAD_SEQ Attempting to assemble null or bad text.

BAD_INS No such instruction.

BAD_PSU No such pseudo-op.

ERR_VAL Bad number syntax or bad operand.

BAD_LIN Gross line error or stand-alone label.

ERR_SEG Using data allocation pseudo-ops within PC segment or vice versa.

5.4.2 Pass2 Error Messages

BAD_NUM Bad fioating-point syntax or value range.
BAD_SYM Duplicate symbol.

UND_SYM Undefined symbol.

BAD_TAB Assembler was not initialized by IT command.

Chapter 6
SYMBOLIC DEBUGGER

6.1 INTRODUCTION
The symbolic debugger provides the following features:

e The ability to print or change memory locations, internal general purpose registers
(GPR), internal special-purpose registers (SPR), and memory management unit (MMU)

T7Y

and floating-point unit {FPU) registers.

e The ability to print or change command parameters in either hex or decimal base as
selected by the user.

e Program stepping. Single or multiple steps.

o Stepping as a function of variables or register values.

o The ability to set breakpoints.

o Commands to dump, search and fill memory.

o ASCII equivalent values printed along with hex memory dump.
e The ability to create symbolic break points using sou
¢ Command to print the address of a symbol.

e The ability to make symbolic changes.

¢ The ability to print global memory or PC segment.

e The ability to print register sets.

e Error messages for unknown SVCs, external aborts, illegal user instructions, undefined
op-codes, and memory verifications.

Sections 6.2 through 6.8 present the commands used to implement these features and detail
the procedures required to initialize a successfully assembled source program. Note that a
carriage return (<CR>) terminates all debugger commands.

6.2 PROGRAM INITIALIZATION

After a source program is successfully assembled, the program must be initialized before the
user can actually run it or investigate its logic flow using the symbolic debugger. Program
initialization is done manually or automatically.

The manual initialization of an assembled program is used if an address was specified at
assembly time and involves two basic steps. The first step encompasses the creation of a
module table, and the second step encompasses the setting up of specific system registers. If
the program is initialized manually, the module table should be created once for the life of
the program while specific system registers must be set up prior to each execution of the

6-1

program. Section 6.2.1 outlines both procedures.
Automatic initialization and manual initialization of a program perform the same function.

Once the user program is properly initialized, it may be logically analyzed using the symbolic
debugger or run.

Sections 6.2.1 and 6.2.2 define both methods of program initialization. See Sections A.7, B.7
and C.7 for an illustration of the TDS memory space.

6.2.1 Manual Program Initialization

A module table is created using the change memory commands. The module table address
must not corrupt source text. No system warning is given if the source text is corrupted by
the module table inputs. Experiment with the bad memory (BAD_MEM) error message given
at assembly time to determine valid working RAM space. The change memory commands are
described in Section 6.4.

A sample command sequence needed to construct a module table is as follows:

CMD D000 = D100

CMD D004 =0
CMD D008 = E000
CMD DOOC =0

The first entry is the static base start address. The second entry, the link table start address, is
set to zero since the link table is not used in this case. The third entry is the program code
start address, and the final entry is reserved and must be set to zero. It is not necessary to
repeat this sequence of command unless the module table is corrupted or destroyed.

The following sample sequence of commands initializes system registers and must be entered
in the sequence shown before each execution of the program.

CPS = 300
CSP = FFFO
CFP =0

B D000 O

The first command loads the value of the PSR required for a user program. The PSR is set to
user mode. The second command loads the user stack start while the third initializes the
frame pointer. The final command loads the user program mod register value and sets the
user program static base register and PC. The set values become valid and in use upon entry
into the user program by any of the program execution commands. The interrupt stack (Is)
value must be valid if the user program will require any run-time support services.

6.2.2 Automatic Program Initialization

The Begin command is used to initialize a user program if an explicit addr was not entered
when the program was assembled. The syntax of the command is:

B [Z|mod offset |

The Begin command loads the MOD register with mod and PC with code-start address plus
offset. TTG also updates the SB register with a value from the module table (see Section 6.2.1
for SB value). If an explicit assembly code start was not used, then mod and off set may be
omitted and a module table is created beginning at PC minus H'100. The SB area will be on
the first page boundary after the code. Link is set to zero. SP is set to high memory and IS is
set to the IS area. FP is set to zero and PSR is set to 300. If the Z option is selected, memory
from SB to SP is zeroed.

To initiate the automatic initialization of a program, enter:

BZ

6.3 DEBUGGER PRINT COMMANDS
The debugger print commands are as follows:
PM {B|W|D|F|L} {addr|symbol} Print memory contents of addr or symbol

) - ' according to selected base. Byte, Word, Double-
word, Floating-point, or Long.

PAD symbol Print address of symbol.

PR {0|1]2|3]4]|5]6]|7} Print the contents of one of eight general purpose
registers.

Pcpureg Print the contents of the CPU register.

PMS Print the contents of the MMU MSR register.

PPT {0]1} Print the contents of the MMU PTBO or PTB1
register.

PEI Print the contents of the MMU EADDR/INVAL
register.

PPF {0]1} Print the contents of the MMU PFO or PF1
register.

PSC Print the contents of the MMU SC register.

PBP {0].-|[15]f]} Print the contents of one of 16 breakpoint
registers.

PBC Print the contents of the MMU BCNT register.

PE {0]1]2]3]4|5]6] 7} Print the contents of one of eight FPU registers.

PFS
PCF
PMM
AR
AC
AM
AF

Print the contents of the FPU status register.
Print the contents of the configuration register.
Print the contents of the main MSR register.
Print the contents of all general purpose registers.
Print the contents of all CPU registers.

Print the contents of all MMU registers.

Print the contents of all FPU registers.

The output format of the printed data is displayed according to the base selected by the user.
See Section 3.3.1 for more information concerning base selection.

6.4 DEBUGGER CHANGE COMMANDS

The debugger change commands change the contents of the corresponding user registers unless
otherwise specified. The debugger change commands are as follows:

CM {B|W D} {addr|symboi=gn}
CM{F|L} {addr|symbol=rn}

Ccpureg = gn
CMS = gn
CPT {0|1} =gn

CEl = gn

CSC =gn
CBP {0|-1[15If]} = {addr|symboi}

CBC = gn
CF {0]1]2]3]4]5]7} = gn

CFS = gn

Change memory contents, at addr or symbol to an
integer value.

Change contents, at specified location, to a real
number.

Change the contents of the CPU register to gn.
Change the contents of the MSR register to gn.

Change the contents of the PTBO or PTB1 register
to gn.

Change the contents of the EADDR/INVAL
register to gn.

Change the contents of the MMU SC register to gn.

Change the current addr or symbol of one of 16
break point registers to addr or symbol.

Use 0 to 15 if radix is decimal. Use O-F if radix is
hex.

Change the contents of the MMU NCNT register
to gn.

Change the contents of one of eight floating-point
registers to gn.

Change the contents of the floating-point status
register to gn.

6-4

CCF = gn Change the contents of the configuration register to
gn.

CMM = gn Change the contents of the main MSR register to
gn.

6.5 DEBUGGER EXECUTION COMMANDS

The debugger execution commands allow the user to trace the logical flow of a program by
using commands to conditionally run a properly assembled program. The commands available
to the user arer STEP N INSTRUCTIONS, STEP UNTIL, STEP WHILE, RUN, JUMP
SUBROUTINE, CALL EXTERNAL SUBROUTINE, and GO.

Sections 6.5.1 through 6.5.6 define the syntax and the usage of each command.

6.5.1 STEP N INSTRUCTIONS Command

The STEP N INSTRUCTIONS command executes a user program beginning at the current PC
for n instructions followed by a break. If n is omitted, then default n is equal to one. The
syntax of the STEP N INSTRUCTIONS command is as follows:

ST [n]

6.5.2 STEP UNTIL Command
The syntax of the STEP UNTIL command is as follows:
SUM {B|IWID} {addr|gpreglcpureg} gnl gn2 gnmask

The STEP UNTIL command steps through or executes a program until the contents of memory
at either addr, or gpreg (RO through R7), or cpureg masked with gnmask, is greater than, or
equal to, gnl and less than, or equal to, gn2. When addr is used, BWD must be specified.
Gnl, gn2, and gnmask are truncated to the specified BWD. For example, SU MW67900 1F00
FOOO FFFF means step until the next memory word.

6.5.3 STEP WHILE Command
The syntax of the STEP WHILE command is as follows:
SW {addrl gpreglcpureg} gnl gn2 gnmask

The STEP WHILE command executes a program while the memory contents of either addr, or
gpreg, or cpureg masked with gnmask, are greater than, or equal to, gnl and less than, or
equal to, gn2.

6-5

6.5.4 JUMP SUBROUTINE Command
The syntax of the JUMP SUBROUTINE command is:
IS addr

The JUMP SUBROUTINE command simulates the jump subroutine instruction. It calls a user
subroutine at address addr. When the user subroutine executes the RET instruction, control is
passed back to TDS. TDS then prompts with the B RET message.

6.5.5 CALL EXTERNAL SUBROUTINE Command
The syntax of the CALL EXTERNAL SUBROUTINE command is:
CX mod off set

The CX command is the same as the JS command but it simulates the CXP instruction. The
subroutine address is calculated using the program address from the module table and
subroutine offset from link table offsez. B RET is issued and displayed on the user terminal
when a return is made from the external subroutine.

6.5.6 GO Command

The GO command directs TDS to load the CPU internal registers and registers RO through R7,
and then passes control to the user program. The user program runs from the current PC
until a breakpoint or final RXP O instruction is encountered. The termination of a user
program can cause one of two end messages. B RET is issued as the end result of a return
from a subroutine (due to the execution of a JS command) since subroutines end with the RET
n instruction. B END is the end of the more normal B and G (Begin and Go) sequence since
the user program ends with the RXP O instruction.

The syntax of the GO command is:
G

6.6 SPECIAL PROCESSING COMMANDS

The symbolic debugger supports the use of special commands that allow the user to move
blocks of data from one memory location to another, fill contiguous memory locations with
specific data, search contiguous memory locations for specific data, and dump portions of
memory to the user terminal.

Respectively, those commands are: MOVE BLOCK OF DATA, FILL MEMORY WITH DATA,
SEARCH FOR DATA, and HEX MEMORY DUMP. Sections 6.6.1 through 6.6.4 present the
syntax of each command and define their uses.

6.6.1 MOVE BLOCK OF DATA Command
The syntax of the MOVE BLOCK OF DATA command is:
M addrl addr2 gn

The MOVE BLOCK OF DATA command specifies the moving of gn sequential bytes of data
from memory location addr] to memory location addr2.

6.6.2 FILL MEMORY WITH DATA Command
The syntax of the FILL MEMORY WITH DATA command is:
F addr] addr2 gn [B|W|D]

The FILL MEMORY WITH DATA command specifies the filling of contiguous memory
locations from addrl to addr2 with data gn. The default for BWD is byte.

6.6.3 SEARCH FOR DATA Command
The syntax of the SEARCH FOR DATA command is:
SR addr] addr2 gn [B|W|D]

The SEARCH FOR DATA command directs TDS to search memory from addrl to addr2 for
the first occurrence of the value gn, and print its address. If the data is not found, the E SRC
(error search failed) debugger error message is output. The default for BWD is B.

6.6.4 HEX MEMORY DUMP Command
The syntax of the HEX MEMORY DUMP command is:
D addri gn

The HEX MEMORY DUMP command instructs TDS to dump gn memory locations, beginning
at addrl, to the user terminal. The output is in hex with ASCII equivalents included on the
left side of the line.

6.7 DEBUGGER USER NOTES

Debug command action is intended to operate only on the user memory area. That area starts
at PC after the successful assembly of a program and after the begin command (B or BZ) is
invoked. Failure to follow this procedure may destroy system parameters.

The debugger supports 16 breakpoints. Breakpoints O and 1 are MMU breakpoints and the
printing/changing of BP O or 1 either reads from or writes to an MMU breakpoint register.
The remainder are software breakpoints and may be used on a development board without an
MMU. Breakpoints are cancelled after a hardware reset. Breakpoints must be set on
instruction boundaries for correct operation. To cancel a specific breakpoint manually, set it to
zero. Addresses for breakpoints are taken from a successfully assembled user program by

6-7

using the TP (TYPE) command to list lines of the source text. The listing shows the address
of the code, the source string, and the actual code generated.

The commands to print/change system registers show the value of the register at the time the
user program was run (except the INTBASE base register). The SB register value is
printed/changed in the area pointed to by the MOD register. The SP (software register) tracks
either the US (user stack) or IS (interrupt stack) depending on the PSR value. SP contains the
stack address value at the last entry to TDS.

TDS maintains two images for the MSR register. The MM (main MSR) is used during the
time commands are issued to TDS. The MS reflects the value of MSR during the execution of
a user program. See Chapter 8 for slave support details.

Input/output base interpretation of debug commands is controlled by the RX command (see
Section 3.3.1), with the exception of the Dump command (which always outputs data in hex
format), and the print/change F/L (floating and long floating-point formats) which require
real numbers.

User program flow trace is provided by the action TDS takes at breakpoints or step stops. At
these points, either a B TRC (for step command) or B n (breakpoint) and the line number is
displayed followed by the code address of that line, and the source string itself.

If a hex value is equivalent to a symbol it must start with a zero for that value to be
interpreted as hex; otherwise it will be treated as a symbol.

If it is necessary to use explicit addresses of variables defined symbeolically, use the print
address command to obtain that value. The automatic or manual initialization of a user
program must occur before symbols may be correctly used.

6.8 DEBUGGER ERROR MESSAGES

The error messages output by the symbolic debugger are summarized as follows:

ENMI Error—non-maskable interrupt

ENVI Error—non-vectored interrupt (not implemented)

EFPU Error—FPU trap

EDVZ Error—divide by zero

EUND Error—undefined opcode (trying to use non-existing MMU or FPU)
EFLG Error—ilag trap

EBPT Error—non-debugger BPT instruction

EILL Error—illegal for user instruction

EEXT Error—external abort

E BPR Error—MMU break point

ENST Error—MMU nonsequential trace trap

E ABT
E SRC
ESVC
E CXP
E VRF

Error—MMU address translation
Error—memory search failed
Error—unknown SVC

Error—more than one call command

Memory verify error (breakpoint could not be inserted)

Chapter 7
RUN-TIME SUPPORT

7.1 INTRODUCTION
The principal features of the TDS run-time support are:
1. All functions are accessed through supervisor calls (SVCs).
2. Routines are available which:
¢ Support output to a Centronics-type printer.
e Convert a binary value to an ASCII string.
e Convert an ASCII string to a binary value.
3. Conversions are available in decimal, hex, and long or short floating-point formats.

The following sections define the uses and specification of each of the TDS run-time support
functions. Chapter 8 of this manual conducts a sample user development session and presents a
program that illustrates the use of the run-time support routines.

7.2 SERIAL COMMUNICATIONS

The run-time support functions of TDS provide two SVCs that may be used by a user
program to establish terminal I/0 at port O or access port 1 (auxiliary port). The twe SVCs
provide a user program with the ability to read and write buffer data from/to port O or port
1. To implement these functions, the user program must properly set up registers RO through
R4 and execute the Supervisor Call Instruction (SVC). The following sections define the
correct setting for registers RO through R4 for each function. See Appendices A.2, B.2, and C.2
for further information concerning system port O and port 1.

7.2.1 Read and Buffer Serial Line Data

RO: = 3
R1: = Address of buffer to be written into
R2: = Number of characters to be read. If number is less than zero, then the

port will be read until a <CR> is encountered, but no more than
ABS(R2). (<CR> is counted and included in the buffer.)

R3: = Port to be read
0 for main port
1 for auxiliary port

Upon return from the SVC instruction, R2 will contain the number of characters actually
read.

7-1

7.2.2 Write Buffered Data to Serial Line

RO: = 4

R1: = Address of buffer to be read

R2:= Number of characters to be written
R3: = Port characters are to be written to

0 for main port
1 for auxiliary port

7.3 NUMERICAL CONVERSIONS

TDS run-time support provides two numerical conversion routines. An ASCII string to binary
value conversion routine, and a binary value to an ASCII string conversion routine. The
conversion base is user-selected to decimal, hex, or short or long floating-point. Sections 7.3.1
and 7.3.2 list the correct setups for registers RO through R4 that the user program must
perform. After setting up the registers, the user program issues an SVC. See Appendices A.3,
B.3, and C.3 for additional numerical information.

7.3.1 ASCII to Binary Conversion

RO: = 5

R1: = Starting address of ASCII string buffer

R2: = Length of ASCII string (up to and including <CR>)
R3: = Destination address of binary value

R4: = Conversion base

If R4 is not equal to O when the conversion is completed, a conversion error occurred.
TDS provides four conversion bases:

Hexadecimal conversion Base = 3
Decimal conversion Base = 2
Long floating-point conversion Base = 1

Short floating-point conversion Base = 0

7-2

7.3.2 Binary to ASCII Conversion

RO: = 6

R1: = Address of binary value

R2: = Conversion base

R3:= Address of output character buffer (35-byte minimum capacity)

7.4 PARAILEL PRINTER COMMUNICATIONS

The TDS run-time support facilities provide a user program with the ability to access and use
a Centronics-type parallel printer. The user program must set up registers RO through R2 in
the following manner then issue an SVC:

RO: = 7
Ri:= Address of printable text
R2: = Number of characters to be printed

If bit 31 of R2 is not set, the printer routine will output a line feed every time a <CR> is
encountered.

If the printer is not on-line when the printer routine SVC call is made, the printer routine

will wait approximately one minute, after which it will output the “check lpt:” error message.
See Sections A.4, B4, and C.4 for specific printer interface data.

7-3

Chapter 8
PROGRAM EXECUTION AND SAMPLE DEVELOPMENT SESSION

8.1 INTRODUCTION

This chapter describes the use of the text editor to create the source text of a sample program,
as well as the use of the assembler to assemble that sample program and run the program. The
chapter also presents a sample program illustrating the functions of the routines provided by
the TDS run-time support facilities. In addition, this chapter details the TDS slave support
facilities and presents a sample program for the MMU support.

8.2 TEXT EDITING

When the development board has been powered up and reset, and the IT command has been
entered, the user may select the terminal communication mode using the OM command and
the default base using the RX command.

Use the text editor commands to enter the following source program into the text editor
buffer. If the text editor buffer is empty, use the INSERT command to begin the input of
source text. Use the other editor commands to manipulate the text as needed. The use of the
TYPE command shows all source lines numbered and in sequence. If any of the source lines
are changed, the TYPE command will display the properly sequenced and updated line
numbers.

;TDS DEMO PROGRAM
;DEFINE MESSAGES

BR AAW

P1: BYTE "WRITE_$$"
BYTE "GET_LINE"
BYTE "OUT_LINE"

HU: .BYTE "SAY-HUH"
BYTE H0D

;CASE LIMITS
IX: .BYTE 2
BYTE O

:PROGRAM START

AA: MOVQD 3, RO
ADDR O(SB), R1
MOVXBD -9, R2
MOVQD 0, R3

:SUPERVISOR CALL READ
svVC

CMPB ", O(SB)

;JJF ' THEN DONE

BEQ EX:W

MOVQD 0, R7

BR LS:B

LL: ADDQD 1, R7

;PARSE INPUT

LS: CMPMB OR1), P1[R7:Q], 8
BEQ CA:W
CHECKB R6, IX, R7
BFC LI

;OUTPUT ERROR MESSAGE

MOVQD 4, RO

ADDR HU, R1

MOVZBD 8, R2

SvC

BR AA

CA: CASEW TBB[R7:W]

TB: .WORD WR - CA
WORD GT - CA
WORD OT - CA

DS: .BYTE "$5$$3$$"
.BYTE H’0OD

WR: MOVQD 4, RO

8-2

ADDR DS, R1
MOVZBD 8§, R2
SvVC
BR AA

GT: MOVQD 3, RO
ADDR 12(SB), R1
MOVXBD -9, R2
SvVC
MOVB R2, 24(SB)
BR AA

OT: MOVQD 4, RO
ADDR 12(SB), R1

MOVZBD 24(SB), R2
svC
BR AA

EX: RXPO

:END OF PROGRAM

The sample program demonstrates TDS ability to handle special instructions and provide user
access to terminal I/0O. Note that if a static base variable segment is used, it must be the first
element of the program.

8.3 ASSEMBLY

Once the source text of the sample program has been entered into the text editor buffer, the
source program is ready to be assembled. If a listing device is available, use the RL command
to select either the auxiliary port (port 1) or the parallel printer port.

This example uses an explicit address for the beginning of the code. In this case, the Begin
command cannot be used without an explicit mod table address.

To assemble the program, enter the following:
AS H’E000

If the address is too low, an error message will be output and the process halted. In such a
case, enter a higher address to continue.

Once the assembly process begins, both passes (Passl and Pass2) are displayed on the user
terminal.

Pass1 error messages are denoted by the ERR_xxx appearing on the left-most side of the screen
to mark incorrect lines of code. By using <ctrl/S> to stop the scrolling of the display, the
user can record the line numbers of incorrect code, and then use the <ctrl/Q> to continue the
scrolling of the listing. If errors are detected during Passl, the assembly process is terminated
at the end of Passl and the number of errors detected is displayed. Use the text editor
commands to correct lines of source text that are in error. Use the same start address (H'E000)
and assemble the program again. When Pass] is error-free, the assembler proceeds with Pass2.

Pass2 showsrthe address of the code, the source string, the actual code generated, and any error
messages. Use <ctrl/S> to record the line numbers of bad lines of code and use <ctrl/Q>to

continue the listing. If errors are detected in Pass2, the assembler lists the number of errors at
the end of Pass2. Correct any errors and use H'EOOO to assemble the program again.

When Passl and Pass2 are completed with no errors, the program has been successfully
assembled. The following is a sample of the listing generated.

;TDS DEMO PROGRAM
;DEFINE MESSAGES

00OOEOO0 BR AA:' W

EA8025
0000E003 P1: .BYTE "WRITE_$$"
57524954455F2424
0000EOOB BYTE "GET_LINE"
4745545F4C494E45
0000EO13 BYTE "OUT_LINE"
4F55545F4C494E45
0000E01IB HU: .BYTE "SAY-HUH"
5341592D485548
0000E022 .BYTE H’0D
0D
;CASE LIMITS
0000E023 1X.BYTE 2
02
0000E024 BYTE 0
00
;PROGRAM START
0000E025 AA: MOVQD 3, RO
DF01
0000E027 ADDR 0(SB), R1
67D000
0000EO2A MOVXBD -9, R2
CE9CAQF7
8.4 DEBUG DATA
After the successful assembly of the program, the use of the E command will display the

line number of each line of code, the address of each line of code and the source text. The
address of each line of code is useful for setting up breakpoints.

If the editor commands are used to change the source text, the previously generated addresses
and code are invalidated and the source line address will no longer appear in the display if
the TYPE command is used.

Symbols as parameters will not be valid until the user program parameters are initialized. If a
command parameter does not accept symbols, use the PAD command to obtain the explicit
address. The following is a sample listing (using the TYPE command) output after a successful
assembly.

: TDS DEMO PROGRAM

: DEFINE MESSAGES
0001 OOOOE0OO BR AA'W
0002 0000E003 P1: .BYTE "WRITE_$$"
0003 O00OEQOB BYTE "GET_LINE"
0004 0000E013 BYTE "OUT_LINE"
0005 000OEO1B HU: .BYTE "SAY-HUH"
0006 OO00E022 .BYTE H0D
0007 ;
0008 : CASE LIMITS
0009 OO0OE023 IX: .BYTE 2
0010 0000E024 BYTE 0
0011 ;
0012 ; PROGRAM START
0013 OO00E02S AA: MOVQD 3, RO
0014 0000E027 ADDR (SB), R1
0015 OOCOEOG2A MOVXBD -$, R2

8.5 PROGRAM INITIALIZATION AND EXECUTION

As discussed in Chapter 6, a successfully assembled program must be initialized, either
manually or automatically, before it can be run. The manual method entails creating a
module table and setting up specific system registers while the automatic method performs the
functions of the manual method automatically.

Once the program is successfully assembled, construct the module table as described in
Chapter 6.2.1.

The program is now properly initialized and may be run. To run the program, enter:
G

If WRITE_SS is entered as follows:
WRITE_$$

A string of $$888S$ is displayed on the user terminal.

If GET_LINE is entered and then some string of characters is input, entering OUT_LINE
causes the character string to be displayed on the user terminal.

Entering invalid inputs, prompts the program to display “SAY-HUH".

To terminate the program and pass control back to TDS, enter ! (for done).

8.6 RUN-TIME SUPPORT EXAMPLES

The following source program demonstrates the access of TDS run-time support routines by a
user program. The program specifically illustrates the use of the numerical conversion
routines, the printer routine, and indirectly, terminal I/0. Enter and assemble the sample
source program.

; THIS IS A DEMO OF TDS RTS ROUTINES
; FOR TERMINAL 1I70. NUMBER CONVERSION, AND
; PRINTER ACCESS

STATIC ; DEFINE GLOBAL MEMORY

IN: .BLKB 80 ; INPUT BUFFER

BA: .BLKB ; CONVERSION BASE

PR: .BLKB ; FLAG TO PRINT RESULT

OT: .BLKB 35 ; RESULT BUFFER

N1 .BLKD 2 ; A BINARY NUMBER (INTERGER TO LONG FLOATING)
ENDSEG

BR ST:W

LF: .WORD H0AOD ; LF THEN CR

MS: BYTE "ENTER A NUMBER>" ; PROMPT MESSAGE
; PROGRAM START

ST: MOVQD 4, RO ; SET UP PARAMETERS
ADDR MS, R1 ; FOR SVC WRITE
MOVZBD 16, R2
MOVQD 0, R3 ; MAIN TERMINAL
svC ; OUTPUT MESSAGE

>

; GET RESPONSE VIA SVC READ

MOVQD 3, RO ; READ OPERATION
ADDR IN, R1
MOVXBD -80, R2 ; 80 CHARACTERS OR UNTIL CR

svC

; CONVERT ASCIl INPUT TO A NUMBER

Bl: MOVQD 5, RO ; LABEL FOR BP
ADDR IN, R1
; COUNT IS ALREADY IN R2
ADDR Ni, R3 ; DESTINATION OF RESULT
MOVB BA, R4 ; PASS CONVERSION BASE
SVC ; GET<NUM
CMPQD 0, R4 ; CHECK FOR ERROR
BNE EX:W ; TERMINATE PROGRAM IF NOT NUMBER

; CONVERT VALUE TO ASCII STRING
B2: MOVQD 6, RO

ADDR N1, R1

MOVB BA, R2

ADDR OT, R3
SVC ; PUT<NUM
. WRITE TO TERMINAL CONVERTED RESULT
B3 MOVQD 4, RO
MOVD R3, R1 ; R1 POINT TO THE RESULT BUFFER
MOVZBD 35, R2 ; OUTPUT THE MAX CHAR
MOVQD 0, R3
SVC
ADDR LF, R1 ; OUTPUT CR LF
MOVZBD 2, R2
SVC
; CHECK TO SEE IF PRINTER OUTPUT IS SET
CMPQB 0, PR
BEQ ST
MOVQD 7, RO
ADDR OT, R1 ; PASS POINTER TO CHARACTER BUFFER
MOVZBD 35, R2
sVC ; TRANSMIT CHARACTERS TO PRINTER
ADDRLF, Rl
MOVZBD 2, R2 ; DO A LF AND CR
svC
BR ST ; REPEAT

. DT tid) I
; RETURN CONTROL TO TDS

[e]

XP

=
A

EX:

Once the program is successfully assembled and initialized, use the CMB command to set BA
(the conversion base value see Section 7.3.1) and set PR to a nonzero value so that converted
strings may be printed. Enter G <CR> and run the program.

The program prompts with the message, “ENTER A NUMBER”.

The program converts ASCII strings to binary values (in the selected base) and places the
value in variable N1. The program also converts a binary value (in the selected base) to an
ASCI string and places the string in variable OT. OT is also written to the terminal. If PR is
set, OT is written to the parallel printer using the printer access routine.

The user can set a breakpoint at B2 (see listing) and then use the PMEM command to oberve
the binary value of N1. Additionally, the user can set a breakpoint at B3 (see listing) and
observe the ASCII string at OT.

The RL command may be used to list the outputs on a Centronics-type parallel printer
connected to the parallel printer port, or a serial device connected at port 1.

8-7

Sample outputs to the printer are as follows:

Short floating-point 10000000 E -7
Long floating-point ~ 1000000000000000 E -15
Decimal -12345

Hexadecimal FFEDCBB

8.7 SLAVE SUPPORT

If the memory management unit (MMU) or the floating-point unit (FPU) are installed on the
development board, TDS must be properly configured before the MMU and FPU can be
accessed. This is accomplished by using the CCF command to properly set the appropriate bits
of the configuaration register. Sections 8.7.1 and 8.7.2 contain further information concerning
the FPU and the MMU.

8.7.1 FPU Support

Before the FPU is used, it must be reset by writing a zero to the FSR using the CFS command.
FPU debugging is supported by the floating-point print and change function of the CMF,
CML, PMF, PML commands, and run-time support conversions in floating-point format.

8.7.2 MMU Support

Setting the MMU bit in the configuration register initializes the main MSR and the user MSR
to zero. The main MSR (accessed by “MM”) must be left at zero unless the user wishes to
experiment with supervisor mode/self translation. All debug commands require a one-to-one
mapping for access to user variables/PC address if the user MSR (accessed by “MS”) is set to
translate.

The following sample 10-line program is used to demonstrate MMU experiments. This
program is an infinite loop that is halted by pressing the non-maskable interrupt button on the
development board. Programs require mod table definition within the PTE and should be
terminated by setting a breakpoint at the end.

“Create a mod table at H'9200 and set the SB start to H’9030 and PC start to H’9000. Enter and
assemble this sample code at H'9000 (a page boundary):

8-8

ST: MOVQD

ADDD
BR

BB: ADDD
ADDD

AA: ADDD
ADDD
CMPD
BLT
BR

1, RO

RO, RO
AA:B
RO, RO
RO, RO
RO, RO
RO, RO

100, RO

ST
BB

To observe MMU functions in the sample program, the following steps should be taken:

1. Use the F (fill) command to invalidate the page table area by setting it to zero.

F A000 A600 0D

2. Set the page table base register O.

CPTO

A000

3. Create valid page table entries.

CMD A000 = A407
CMD AS520 = 9007

CMD A524 = 9207

(full access to level two at A400)

(full access to code at 9000. Note: This is indexed into

~AAL ITPONNND
aqar 1 Juuuy

Tasrnl D +hat corracmamAdc e
t s 10

1€Vel 2 that Correspondas t

(validate an area for the mod table)

The user MMU value is set by the CMS command while the rest of the user program
parameters are set by entering the B mod o ffset. The program may be started by entering a G
command or the program may be stepped through by entering any of the step commands
provided by the symbolic debugger. Note that the use of the step commands override MMU
BP (break point) and NS (nonsequential) TRACE.

Specific MSR values and their results are as follows:

CMS = 10000
CMS = 1810000
CMB = 710000

TU bits set. Program runs translated.

UT, FT, TU bits set. User program-flow trace activated.
Step through the program and use the AM command to
see PF registers track the program.

Al UB, BEN, TU bits set. MMU breakpoints (0,1)
enabled and serviced in the abort routine. Try CBPO =
20009004 (set enable bit) to create breakpoint.
Breakpoint message will be E BPR. The AC command
will verify PC value. Program may continue with a G
or Step command.

CMS = 2410000

CMS = 10000

NT, Al TU bits set. Nonsequential trap activated.
Message is E NST.

To observe page fault, change PTE at A520 = O and
write to invalidate register CEI = 9000. When the
program is run, an E ABT message is issued.

8-10

Chapter 9
PERIPHERAL INTERFACING

9.1 INTRODUCTION

TDS can support a number of peripheral devices:
e A parallel Centronics-type printer plugged in at the parallel port.
e A serial device (printer or terminal) plugged in at port 1.
e A cassette tape recorder plugged in at the parallel port.

Sections 9.2 through 9.4 discuss each peripheral device serviced; see Appendices A, B, and C
for specific data.

9.2 CENTRONICS-TYPE PARALLEL PRINTER

A Centronics-type parallel printer plugged in at the parallel printer port provides the user
with hard copies of program listings.

See Sections A.4, B4, and C4 for interface cable pins-outs and other cable specification and
construction information.

9.3 SERIAL COMMUNICATIONS

TDS supports serial communications with a printer or a terminal at port 1.

Sections A.], A.2, B.1, B2, C.1, and C.2 contain information on the procedures required to set
the baud rate of ports 0 and 1.

9.4 CASSETTE RECORDER

TDS supports the storage of source programs on cassette tape and the retrieval of source text
from the cassette tape. The following sections provide information on the TDS commands used
to save and retrieve source programs, the use of the recorder, the cassette interface cable, and
eITor messages.

9.4.1 Data Storage and Retrieval

Two TDS commands support the storage and retrieval of source programs. They are: the Tape
Write and Tape Read commands.

The syntax of the Tape Write command is as follows:
TW [@n] [addri addr2] <CR>

If addrl and addr2 are specified, data is read from the addr ! location (in TDS memory) to the
addr? location, and written to the cassette tape. If addr/ and addr2 are not specified, the
entire contents of the text buffer is written to the cassette recorder. The text buffer contains
text entered at the user terminal.

@r is interpreted as a decimal value that is used to generate the required timings for a write-
to-cassette tape operation. The default value is for a 7-MHz frequency since the CTTL on the
development board may range from 6-10 MHz. If a development board is equipped with a
crystal other than 12 MHz, the following formula can be used to compute @n.

n=14x CTTL
where CTTL = 1/2 (crystal frequency)

See Sections A.5, B.5, and C.5 for further information on the cassette interface timing data,
and on the method of using an oscilloscope to set a value for @n.

The syntax of the tape read command is as follows:
TR [addr]

If addr is specified, data read from the cassette tape is stored beginning at the location in TDS
memory specified by addr. If addr is not specified, it is assumed that the data to be read is a
source program and is loaded into the text editor buffer.

9.4.2 Cassette Interface Cable

The cassette interface cable is used to connect the cassette recorder to the parallel printer port.
One end of the cable should contain two audio connector plugs for connection to the cassette
recorder and the other end must contain a 100-pin connector for connection to the parallel
printer port. See Sections A.5, B.5, and C.5 for complete details on the construction of the
cassette interface cable.

9.4.3 Recorder Use

If the cassette tape to be used is not new, or has been read from twenty times, it should be
erased twice before it is used. The volume control on the recorder should be set at maximum
at all times.

To write data to the cassette recorder, the cassette interface cable must be connected to the
parallel printer port and the auxiliary out or earphone jack of the cassette recorder. Start the
recorder and leave a 20-second silent header on the tape and then (at the user terminal) enter

TW [@n] addrI addr2

9-2

to begin the write-to-tape operation. Avoid stopping the recorder while the data operation is in
progress. At the completion of the operation, TDS is returned to the CLI mode.

To read data back from the recorder (assuming the recorder is cabled up properly), start the
recorder and enter

TR [addr]
on the terminal but do not press <CR>. When the tape is past the plastic leader, press <CR>

to start the read-from-tape operation. At the completion of the operation, TDS is returned to
the CLI mode.

Error messages output by TDS alert the user to any errors detected during either data
operation.

9.4.4 Recorder Error Messages

The error messages output by TDS that support write-to-tape and read-from-tape operations

are summarized as follows:
TIM_OUT No data pulses present. This message occurs
approximately 90 seconds after a data operation is

initiated if no data pulses are detected.

BAD_FRM Bad tape format. Attempted to read data that does not
conform to the established data format.

CRC_ERR A CRC error was detected.

9.5 NEW COMMANDS FOR TDS ON THE DB32000 AND DB32016

TDS for the DB32000 and DB32016 has four new commands that allow it to access either
RS232 port to communicate with a host system for use of that host’s mass storage facilities, ie.,
floppy disks in the case of a PC.

With these commands the user can either send or receive from the host the contents of or for
the TDS edit buffer or any memory range.

Data is transferred in a special format. TDS uses the ASCII-hex format to represent a binary
value. For instance the character “A” has a hexadecimal byte value of H'41. TDS will convert
this “A” to two ASCII characters, “41”, representing H’41 before it is sent to a host. A null
byte (H'00) is converted to “00”, and so on. The reverse occurs upon receipt of data from a
host, ie., two bytes of character are converted to one byte of data stored either in the text
buffer or in memory.

The record format is:
>h1h2h3..h16end-of -record <CR >

Every record starts with the character “>”, followed by 16 ASCII-hex number values. (16 of
these equal 8 physical bytes.) The record is terminated by writing/reading a carriage return
(<CR>). If the amount of data sent/received is not an even multiple of 16 bytes, the final

9-3

record is padded with null ASCII-hex characters.

End of record format:

An end of record is indicated by a solitary “<” character followed by a carriage return.

Handshake character:

Wherever handshake is mentioned, the sync character used is the asterisk “*”.

9.5.1 Read Data In From Port

Zz1{F|S} {M|A} [startaddr endaddr]
Z1 read data in
F no handshake
S handshake
M main port
A auxiliary port

If addrs not specified then assume text data and init edit buffer else fill mem from startaddr
to endaddr.

Specifing addrs gives you two choices. If endaddr is less than EOF on the host the command
receive process will terminate upon reaching endaddr. The host transmission program will be
deadlocked if handshake was specified. Typically specify endaddr as some big value like
ffffffand let EOF terminate command.

Basic protocol on TDS end is to read data until a <CR >, process it and output a sync character
(*) if handshake option was selected. Continue until the first character in line is the “<”
character signifying EOF.

9.5.2 Write Data Out To Port

20 {F|S} {M|A} [startaddr endaddr |
Z0 send data out
F no handshake
S handshake
M main port
A auxiliary port

If addresses are not specified, the contents of edit buffer is sent from startaddr to endaddr.

“xr

Basic protocol is to read the sync character + <CR> then sent one record; continue until
done. Send EOF character “<”. If handshake not selected, omit the read.

9-4

9.5.3 The AT R Command

@R [baud |

The @R command will program the auxiliary port (port 1) to the
specified baud rate. Baud rate is entered as a byte-long hexadecimal
value corresponding to dip switch pattern (see Sections B.2 and C.2 in
Appendices B and C for baud rate setup). If baud rate is omitted then
the dip switch is read and the baud rate determined from the found
pattern. (At reset the auxiliary port is programmed to the same speed as
main according to the dip switch.) This command was added since the
DB32000 and the DB32016 can have independently set port speeds. Also,
the ZI, ZO commands would probably be used with a host connected to
the auxiliary port, but running at a slower speed than the terminal.

NOTE: On the DB32016 the auxiliary port USART must be
driven by the 8253 timer. This is the only way to
have board run the two ports at different baud rates.

9.5.4 The AT M Command

@M [memaddr

This command wiil set high memory value for use by TDS. After the IT
command, high mem is set to H'7f f £f (512K) for DB32000. It is set to
27FFF for DB32016 (128K + 64K). During assembly TDS will search
memory space up to this default value to find the real end of memory
which would depend on the type of mem chips loaded in the board.
(Top of mem is used by the TDS assembler for symbol table creation and
is also the value used by the auto B command to set users SP.) If
memaddr is specified, that value will be used as top of memory. This
command should be used with caution since there is no checking for
validity. If memaddr is omitted then the TDS is reset to search for high
mem in the same fashion as after the IT command.

NOTE: The IT command nulls any previously entered
memaddr value. This command was added to
preclude the possibility of TDS affecting off-board
memory. User is responsible for his/her particular
configuration and should be aware of performance
tradeoffs due to off-board memory access and non-
aligned stack pointer.

9-5

Information Common To ZI and ZO

If using the main port, it may be necessary to use the operating mode command (OM) to set
terminal characteristics. Use OM3 to eliminate LF's.

Start TDS command first, then start host program, unless doing a no-handshake transmit to
host. In this case, start the host end first. A fast (no-handshake) transmit on the main port is
not possible.

For every record sent/received a period is written to the user terminal unless user is using the
main port in which case this is suppressed. When using main, error messages are not
suppressed. The host program should be aware of this.

Error Messages

BAD_SYN Received wrong sync character
BAD_MEM Specified forbidden memory, TDS variables, edit buffer, etc.
BAD_FRM Received data in unknown format

9.5.5 Sample Program
The following is a sample Pascal program required for the host to communicate with TDS.
NOTE: For both send and receive procedures, a single period is written to the host

console for every record sent/received. This is a visual indicator that the
line is responding to data transfers and is not deadlocked.

PROGRAM TDSCOMPC(INPUT, OUTPUT, DATA);
(*

%)

This Pascal program illustrates the required communication protocol to send/receive over TDS
controlled RS232 ports.

This Pascal is not standard. There are references to host-system-dependent 1/0 functions such
as “open” and “close.”

Changes may be necessary depending on system implementation of Pascal READ/READLN,
WRITE/WRITELN and structure of TEXT file as opposed to FILE OF CHAR. In this instance,
LINEOUT was declared as FILE OF CHAR in order to eliminate the OS-generated linefeed
sent with every carriage return if LINEOUT was TEXT.

9-6

CONSTCR =13;

VAR IOBUF : PACKED ARRAY[1.130] OF CHAR ;
FILENAME : PACKED ARRAY[1.30] OF CHAR;
LINEIN . TEXT; RS232 input
LINEOUT : FILE OF CHAR; RS232 output
DATA . TEXT; Host-resident file
COUNT, AMOUNT,

DOT . INTEGER;
FAST, TOTDS

DONE . BOOLEAN;
CH : CHAR;

PROCEDURE START;

{(* This procedure will set Boolean variables for handshake, and data transfer
direction, and will ask for the name of a host resident file. The host file will
be created if data is from TDS. *)

BEGIN

WRITELN: WRITE(CHandshake? (<Y >es or <N>0) >;
READ(CH), READLN;

TE (LI V2 THEN FAQT
LI ULl T 0 LXILAN TS 1 &

FATCE RICE °
XA LiaS0 &

QT -— TRITE-

A 17
L3318 & AU,

WRITELN; WRITE(Name of data file?) ;
READLN(FILENAME) ;

WRITELN ; WRITE(Direction of transfer? <T>o0 TDS or <F>rom TDS >);
READ(CH)}READLN;

IF CH =T THEN TOTDS := TRUE ELSE TOTDS := FALSE;

WRITELN;

IF TOTDS

END;

(* System-dependent file handling routines *)

THEN BEGIN OPEN(DATA, FILENAME, HISTORY:=0LD) ; RESET(DATA) END
ELSFE BEGIN OPEN(DATA, FILENAME, HISTORY:=NEW) ; REWRITE(DATA) END

PROCEDURE SEND ;

BEGIN

(* System dependent line and file opens *)

IF NOT FAST
THEN BEGIN
OPEN(LINEIN, ’LINEIN?) ;
RESET(LINEIN) ;
END:
OPEN(LINEOUT, 'LINEOUT") ;
REWRITE(LINEOUT) ;

DONE := FALSE: DOT :=0;

(* Main loop *)
REPEAT

(* Read a line of data *)

READLN(DATA, IOBUF);

IF IOBUH1] =">

(* If record starts with *> then write 33 characters *)
THEN AMOUNT := 33

(* Else write only 1, the ’<’ character, and set done flag true *)
ELSE BEGIN AMOUNT := 1; DONE := TRUE END:

COUNT = 1;

REPEAT

(* Write one char at a time *)
CH : = IOBUFHCOUNT] ;
WRITE(LINEOUT,CH) ;
COUNT = COUNT + 1;

UNTIL COUNT > AMOUNT ;

(* Count number of records written in DOTS *)
DOT=DOT +1;
WRITEC.);
(* Check if a new dot line should be started *)
IF DOT > 60 THEN BEGIN DOT := 0; WRITELN END;
(* Flush out the host buffer by writing a <CR>
THIS MAY BE HOST DEPENDENT! *)

WRITE(LINEOUT, CHR(CR)) ;

(* If no handshake then do not send sync char *) IF NOT FAST THEN BEGIN

READILN(LINEIN, IOBUF);

CH = IOBUH1];

IF CH <> THEN WRITELNCSYNC ERROR”);
END;

UNTIL DONE
(* End main loop *)

IF NOT FAST THEN CLOSE(LINEIN) ;
CLOSE(LINEOUT) ;

CLOSE(DATA);

END;

PROCEDURE RECV;
BEGIN

(* System dependent line and file opens *)

OPEN(LINEIN, "LINEIN") ;
RESET(LINEIN) ;
IF NOT FAST

THEN BEGIN

OPEN(LINEOUT, LINEOUT) ;

REWRITECLINEOUT) ;

END;

(* Main loop *)
REPEAT

(* If handshake then write sync char *)
IF NOT FAST THEN WRITE(LINEQUT, **, CHR(CR));

(* Read in line from TDS %)
READIN(LINEIN, IOBUF);,

(* Determine if a record or end of data ¥)
IF IOBUH1] =">
THEN AMOUNT := 33 ELSE BEGIN AMOUNT := 1; DONE := TRUE END:
COUNT :=1;
(* Write to host file, one char at a time *)
REPEAT
CH := IOBUHCOUNTI;
WRITE(DATA,CH) ;
COUNT = COUNT + 1;
UNTIL COUNT > AMOUNT:
(* Set host file eol *)
WRITELN(DATA);

DOT=DOT + 1;
WRITEC.); IF DOT > 60 THEN BEGIN WRITELN; DOT :=0 END;
UNTIL DONE:

(* End main loop *)

IF NOT FAST THEN CLOSE(LINEOUT);
CLOSE(LINEIN);

CLOSE(DATA);

END

BEGIN (*Main procedure*)
START;
IF TOTDS
THEN SEND
ELSE RECV;
END;

9-10

Appendix A
TDS ON THE DB16000

A.1 AUXILIARY PORT BLX-351 SETUP PROCEDURES (DB16000)
Gang Mode: (BLX-351 rate is main port rate)
On the BLX-351
1. Remove berg connector between E29 and E30.
2. Remove berg connector between E27 and E28.
3. Wire wrap E25 to E27 to E29.
On the DB16000
1. Close W12 pins 3 t0 4.
2. Mount BLX-351 at J3.
Independent Mode: (Program the §253 on the BLX-351)
On the BLX-351 - (Factory configuration)

<

T TN 2
1. Jumper cZ>y anua

&

E
2. Jumper E27 and E28
On the DB16000

1. Assuming that the TDS system is powered up, reset, and initialized, enter the
following sequence of commands to program the 8253:

CMB C00056=B6 ;8253 mode control
CMB C00054=40 ;LSB of count divisor
CMB C00054=00 ;MSB of count divisor

This sequence of commands sets the BLX-351 to run at 1200 baud.
The general formula for divisor is:
d = 76800/BAUD
Convert d to hex format. Enter LSB first. A 0 MSB must be entered if MSB = Q.

A-1

A.2 BAUD RATE SETUPS (DB16000)
The following dip switch settings on the DB16000 control the baud rates of port O and port 1.

S4 S3 S2 S1 Baud Rate
on on on on 19200
on on on off 9600
on on off on 7200
on on off off 4800
on off on on 3600
on off on off 2400
on off off on 2000
on off off off 1800
off on on on 1200
off on on off 600
off on off on 300
off on off off 150
off off on on 134
off off on off 110
off off off on 75
off off off off 50

Switches 5, 6, 7 and 8 are unused.

NOTE: Programming is possible only on a DB16000 equipped with an ICU.

A.3 NUMERICAL DATA (DB16000)
Integer Ranges and Data:

Decimal -2147483648..21474836647
Hex 0..FFFFFFFF

¢ No equivalence checking.

o No overflow checking in ASCII to binary conversion.

o Syntax checked in ASCII to binary conversion.

o Hex output interpreted as unsigned.

e Decimal treated as signed for binary to ASCII conversion.

¢ Decimal treated as signed or unsigned depending on the value in an ASCII to binary
conversion.

e Numbers too large for operand size are truncated in the high bits.

A-2

Floating-Point Ranges:

Long max = 16 digits + 307 exponent range
Short max = 8 digits + 37 exponent range

Floating-Point Accuracy: (Conversion with no arithmetic operation)
Long format: 16 digits +2 LSD
14 digits +.5 LSD
Short format: 8 digits £2 LSD
6 digits .5 LSD

Floating-Point Errors:
Syntax and range checking for ASCII to binary conversions.

No NaN recognition for binary to ASCII conversion.

A.4 PARALLEL PRINTER INTERFACE DATA (DB16000)

The parallel printer port supports a Centronics or an equivalently strobed printer. This
information is provided for the user who wishes to construct a printer interface cable. In this
case, a high quality twisted-pair cable is mandatory. However, it is advisable to use the SPX

Centronics printer interface cable (part number 601304044-001).

Shown below are the signal pin-outs for the printer interface cable.

A-3

DB16000 100-PIN EDGE 36-PIND PRINTER

PARALLEL PORT CONNECTOR CONNECTOR SIGNAL NAMES
47 A24 11<29> BUSY (From Printer)
37 A19 13 SELECTED (From Printer)
23 Al12 2<20> DATA 1 (To Printer)
21 All 3<21> DATA 2 (To Printer)
19 A10 4<22> DATA 3 (To Printer)
17 A09 5<23> DATA 4 (To Printer)
25 A13 6<24> DATA 5 (To Printer)
27 Al4 7<25> DATA 6 (To Printer)
29 Al5 8<26> DATA 7 (To Printer)
31 A16 9<27> DATA 8 (To Printer)
15 A08 1<19> STROBE (To Printer)

Bn ground <n>ground

The software driver logic is compatible with U4 as a 8303 and XU6, XU7, and XU8 as 7437.
Ensure that U4 is selected in receive mode (berg connector across 1-2 at W11).

A.5 CASSETTE INTERFACE DATA (DB16000)
CASSETTE INTERFACE CABLE

The cassette interface cable can be constructed from readily available components. It is
connected to the auxiliary out or earphone jacl of a cassette recorder and the system parallel
port. Additionally, interface circuitry is required at the connector to the parallel port. The
diagram illustrates the hardware requirements at both ends of the interface cable. The
components required for the parallel port interfacing are presented in the parts listing.

A-4

SPECIAL SIMPLE CASSETTE INTERFACE
+ov - CONNECTED TO J1
B) FROM RECORDER
NETA RTT T EARPHONE OR
DATA BIT IN
(BIT 0) 181203 JI1-47 2N222?2 1k AUX OUT
| 1uf .__l
DB16000 P
— GND T — GND
11
DATA BIT OUT 7437
(BIT 0) X7 J1-15 % 2.2k SHIELDED CABLE
_J TO RECORDER INPUT
22*
NOTE ON DB16000 J1 2-50
ARE 6ND —_—
— GND p—
FC-01-0
PARTS LIST
QTY DESC
1 2IN2222 Transistor
2 1K Resistor
1 2.2K Resistor
1 22 ohm Resistor*
1 .1 microfarad Capacitor
2 Audio Connector Plugs
1 100-pin connector

*This value may be dependent on the particular recorder used.
INTERFACE TIMING DATA

Timing data is provided to aid the user in calculating the value of @n as it is used in the TW
(tape write) command, for board frequencies other than 14 MHz.

The timings generated by the program produce a serial data flow rate of approximately 330
baud. The effective recording frequency is approximately 660 Hz. The diagram illustrates the
timings of pulse waveforms.

A-5

CLOCK PERIOD DATA PERIOD
. -

——//

BAUD RATE =

2xTw
FC-02-0

OUTPUT PULSE TIMING: (At UX7 pin 11)

Tp =.500 ms +10%
Tw =1.5ms +10%
Vhi = TTL level Voh

Input to the recorder at the voltage divider should be 20-100 mV depending on the recorder
used. The user may connect an oscilloscope probe to pin 11 of UX7 and then use the TW
command to enter trial values for n until the output pulse timing shown in the diagram is
observed.

INPUT PULSE TIMING: (At U4 pin 8)

Tp = .280 ms minimum
Tw=15ms +10%
Vhi = TTL level Voh

This waveform can also be observed at the tape header or by recording binary data with all
bytes set to -1, and then by reading the data back.

A.6 ASSEMBLER USER NOTES

The assembler was written to be as consistent as possible with available assembler
documentation, but due to its compactness, certain exceptions must be observed. Those
exceptions are listed below:

1. ASCII strings are delimited by double quotes only.
2. Symbols are valid for PC address and SB segment mode only.
3. Symbols must contain only two characters.

4. The only operation allowed is subtraction between symbols.

A-6

9.
10.
11.
12.
13.

14.

Strings are valid only for .BYTE Psuedo-op and immediate operands.

RO through R7 are the only recognized register mnemonics. All others must be hex
encoded.

CXP argument is simply n.

CBITIi and SBITII instructions are not implemented.

Registers RO through R7 must be used for FO through F7.

Immediate floating-point values not allowed.

The STATIC area must be declared as the first element of the program.
Pseudo-ops parse on first four characters only.

All lower case characters in the string of .BYTE will be changed to upper case
during assembly.

LXPD instruction not implemented. Use ADDR EXT(n), DESTINATION.

The assembler does not fully support operand legality-checking, value range checking, and
some soft parsing. Immediate operand values are truncated and no error message is issued.

Certain parsing errors such as balanced parentheses are not checked. Characters other than
those allowed by syntax rules are not checked for and may not output an error message.

A.7 TDS MEMORY MAP (DB16000)

The diagram is a graphic representation of the memory space available to TDSs.

ADDR 0
TDS
Code
PROM
RANGE <--H'3F08 TDS Module table
<-H3FC8 TDS Interrupt and Trap table
H’3FFF
H’8000 .
TDS variables
<-H'8200
RAM
RANGE TDS stack
<-H’8500
<-H'8600 User IS
<-H'8700 TDS variables
// //
<—x = H'600 + # of characters in source
In auto mode + 9P(# of lines in source)
user module F——> | <- @ first available 1/2 page boundary *
table is — [
User Code is ———> | <— @ first available page boundary
User Static base —-—> | <- @ first available page after code
User SP ——> | < @ Highest mem addr - 7 (rxp pushed onto stack)

*Unless memory available is greater than or equal to 64K, the module table is constructed
within the reserved system area.

A.8 TDS ERROR SUMMARY (DB16000)

TDS system error messages are summarized as follows:

BAD_TXT Bad text input.
ERR_ED# Error in edit number.
BAD_MEM Code start addr conflicts with text or debug data. Enter a higher

value for addr.

BAD_SEQ Attempting to assemble null or bad text.

BAD_INS
BAD_PSU
ERR VAL
BAD_LIN
ERR SEG
BAD_NUM
BAD_SYM
UND_SYM
BAD_TAB
E NMI

E NVI

E FPU
EDVZ

E UND

™ T o

rrrou
E BPT
EILL
E EXT
E BPR
E NST
E ABT
E SRC
E SVC
E CXP
E VRF
TIM_OUT

BAD_FRM

CRC_ERR

No such instruction.

No such Psuedo-op.

Bad number syntax or bad operand.

Gross line error or standalone label.

Using data allocation Psuedo-ops within PC segment or vice versa.
Bad floating-point syntax or value range.
Duplicate symbol.

Undefined symbol.

Assembler was not initiated by IT command.
Error - Non-maskable interrupt.

Error - Non-vectored interrupt (not implemented).
Error - FPU trap.

Error - divide by zero.

Error - undefined opcode (trying to use non-existing MMU or
FPU).

Error - flag trap.

Error - non-debugger BPT instruction.
Error - illegal for user instruction.
Error - external abort.

Error - MMU break point.

Error - MMU non-sequential trace trap.
Error - MMU address translation.

Error - memory search failed.

Error - unknown SVC.

Error - more than one call command.
Memory verify error (breakpoint could not be inserted).

No data pulses present. This message occurs approximately 90
seconds after a data operation is initiated if no data pulses are
detected.

Bad tape format. Attempted to read data that does not conform to
the established data format.

A CRC error was detected.

A9

A.9 TDS COMMAND SUMMARY (DB16000)

The commands used in the TDS system are summarized as follows:

RX {H|D}
OM gn

IN [n] {string}
TP [n1 [/n2]]

RP n {string}

Kn

RS

RL [LPT:|ASN:] [C]

AS [addr]

B [Z|mod offset]

PM {B|W|D|F|L} {addr|symbol}

PAD {symbol}
PR {0]1]2]3]4]516]7}

Pepureg
PMS

PPT {0]1}
PEI

PPF {0]1}

Select the system base to be hexadecimal or
decimal.

Set the terminal communications mode. See
Section 3.3.2.

Insert string above or after line n of the text
buffer.

Type line n/ of text buffer or type n2 lines
of buffer beginning with n/.

Replace line n of buffer with string.
Kill or delete line n from text buffer.
Reset clear text buffer.

Redirect listing from terminal to printer at
parallel port or serial device at port 1, and
end listing with a <CR> or cancel
previously selected device.

Begin the assembly of wuser program at
address addr.

Initialize a user program if an explicit
address was used as assembly time. If an
explicit address was not used, mod and o ffset
may be omitted. The Z option zeros memory
from the SB to the SP area.

Print memory contents according to selected
base. Byte, Word, Double-word, Floating-
point or Long.

Print address of symbol.

Print the contents of one of eight general
purpose registers.

Print the contents of the CPU register.
Print the contents of the MMU MSR register.
Print the contents of the MMU PTB register.

Print the <contents of the MMU
EADDR/INVAL register.

Print the contents of the MMU PF register.

PSC
PBP {0|-|[15]f]}

PBC
PF {0]1]2]3]4|5]6]7}

PFS
PCF
PMM
AR

AC
AM
AF

CM {B|W|D} {addr|symbol=gn}

CM {F|L} {addr|symbol=rn}

Cepureg = {gn}
CMS = {gn}

CPT {0|1} =gn
CEl = gn

CSC=gn

CBP {0||[15]f]} = {addr|symbal}

CBC =gn

CF {0]1]213]4]517} = gn

Print the contents of the MMU SC register.

Print the contents of one of 16 breakpoint
registers.
Print the contents of one of the MMU BCNT

registers.

Print the contents of one of eight FPU
registers.

Print the contents of the FPU status register.
Print configuration.
Print the contents of the main MSF register.

Print the contents of all general purpose
registers.

Print the contents of all CPU register

Print the contents of all MMU registers.
Print the contents of all FPU registers.

Change memory contents, at specified
location, to an integer value.

Change memory contents at addr or symbol
to a real number.

Change contents of the CPU register to gn.

Change the contents of the MSR register to
gn.
Change the contents of the PTB register to
gn.
Change the contents of the EADR/INVAL

register to gn.

Change the contents of the MMU SC
register.

Change the current addr or symbol of one of
sixteen breakpoint registers to addr or
symbol.

Change the memory contents of the MMU
NCNT register to gn.

Change the memory contents of one of eight
FPU registers to gn.

A-11

CFS = gn
CCF = gn
CMM = gn

ST [n]

SU {addrlgpreglcpureg}gn] gn2 gnmask }

SW {addrlgpreg |cpureggnl gn2 gnmask}

IS addr
CX mod off set

GO
M addrl addr2
F addrl addr2 gn [B|W|D]

SR addrl addr2 gn [B|W|D]

D addri gn

TW [@n] [addr! addr2]

Change the memory contents of the
floating-point status register to gn.

Change the memory contents of the
configuration register to gn.

Change the memory contents of the main
MSR register to gn.

Step through the user program for n
instructions and then break. Default for n is
one.

Step through a user program until the
contents of memory at addr, or gpreg (RO-
R7), or cpureg masked with gnmask, is
greater than or equal to gn/ and less than or
equal to gn2.

Step through a user program while the
memory contents of either addr, or gpreg, or
cpureg masked with gnmask, are greater
than or equal to gnl and less than or equal
to gn2.

Call a subroutine at location addr.

Call external subroutine at address
calculated using mod and offset from the
module table.

Begin program execution.

Move gn sequential bytes of data from
memory location addrl to addr2.

Fill memory locations from addrl to addr2
with data gn.

Search memory between addrl and addr?
for data gn and print its address according to
BWD.

Dump gn locations beginning at addrli, to

the user terminal

Write data between location addr! and
addr2 to the cassette recorder. Otherwise,
write contents of editor text buffer to the
cassette recorder. @n specifies timings for
boards not equipped with a 14 MHz crystal.
See Chapter 9.2 for details.

TR [addr] Read data from the cassette tape and store it
in memory beginning at location addr.
Otherwise, load the data into the editor text
buffer.

A-13

Appendix B
TDS ON THE DB32016

B.1 AUXILIARY PORT SETUP PROCEDURES (DB32016)

As shipped the DB32016 is configured to run at 9600 baud at reset independent of the dip
switch. Follow this jumper change sequence to allow port programability.

MAIN PORTO (J2) AUX PORT1 (J3)
W21 9-10 Closed W21 7-8 Closed
W34 4-5 Open W29 4-5 Open
W34 5-6 Closed W29 5-6 Closed

At reset the configured port will run at baud determined by the dip switch (see Section B.2).
If auxiliary port is so configured, it can be independently programmed by use of the @R
command.

B.2 BAUD RATE SETUPS (DB32016)
The following dip switch settings on the DB32016 control the baud rates of port O and port 1.

S4 S3 S2 S1 Baud Rate
on on on on 19200
on on on off 9600
on on off on 7200
on on off off 4800
on off on on 3600
on off on off 2400
on off off on 2000
on off off off 1800
off on on on 1200
off on on off 600
off on off on 300
off on off off 150
oftf off on on 134
off off on off 110
off off off on 75
off off off off 50

Switches 5, 6, 7 and 8 are unused.

B-1

NOTES: 1. Required terminal characteristics:
a. Parity - disabled
b. Stop bits=1
c. Character length = 8 bits

2. Port 1 (auxiliary) may be independently programmed using @R
command (see Section 9.5.3).

3. To calculate @R value, ON=0, OFF=1.

B.3 NUMERICAL DATA (DB32016)
Integer Ranges and Data:
Decimal -2147483648..21474836647
Hex 0..FFFFFFFF
e No equivalence checking.
e No overflow checking in ASCII to binary conversion.
e Syntax checked in ASCII to binary conversion.
e Hex output interpreted as unsigned.
e Decimal treated as signed for binary to ASCII conversion.

e Decimal treated as signed or unsigned depending on the value in an ASCII to binary
conversion.

e Numbers too large for operand size are truncated in the high bits.
Floating-Point Ranges:
Long max = 16 digits + 307 exponent range
Short max = 8 digits + 37 exponent range
Floating-Point Accuracy: (Conversion with no arithmetic operation)

Long format: 16 digits =2 LSD
14 digits +.5 LSD

Short format: 8 digits =2 LSD
6 digits =.5 LSD

Floating-Point Errors:

Syntax and range checking for ASCII to binary conversions.

No NaN recognition for binary to ASCII conversion.

B.4 PARALLEL PRINTER INTERFACE DATA (DB32016)

The parallel printer port supports a Centronics or an equivalently strobed printer. This
information is provided for the user who wishes to construct a printer interface cable. In this
case, a high quality twisted-pair cable is mandatory. However, it is advisable to use the SPX
Centronics printer interface cable (part number 601304044-001).

Shown below are the signal pin-outs for the printer interface cable.

DB32016 100-PIN EDGE 36-PIN D PRINTER
PARALLEL PORT CONNECTOR CONNECTOR SIGNAL NAMES
48 A24 11<29> BUSY (From Printer)
38 A19 13 SELECTED (From Printer)
24 A12 2<20> DATA 1 (To Printer)
22 A1l 3<21> DATA 2 (To Printer)

20 A10 4<22> DATA 3 (To Printer)
18 A09 5<23> DATA 4 (To Printer)
26 A13 6<24> DATA 5 (To Printer)
28 Al4 7<25> DATA 6 (To Printer)
30 A15 8<26> DATA 7 (To Printer)
32 A16 9<27> DATA 8 (To Printer)
16 A0S 1<19> STROBE (To Printer)
Bn ground <n>ground

The software driver logic is compatible with U4 as a 8303 and XU6, XU7, and XUS8 as 7437.
Ensure that U4 is selected in receive mode (berg connector across 1-2 at W11).

B-3

B.5 CASSETTE INTERFACE DATA (DB32016)

Cassette Interface Cable

The cassette interface cable can be constructed from readily available components. It is
connected to the auxiliary out or earphone jack of a cassette recorder and the system parallel
port. Additionally, interface circuitry is required at the connector to the parallel port. The
diagram illustrates the hardware requirements at both ends of the interface cable. The
components required for the parallel port interfacing are presented in the parts listing.

DATA BIT IN
(BIT 0)

DB32016

DATA BIT OUT
(BIT 0)

+5vy
% 4.7
B k

SPECIAL SIMPLE CASSETTE INTERFACE
CONNECTED T0 J1
FROM RECORDER

NOTE ON DB16000 J1 1-49

ARE GND

8303 EARPHONE OR
1 J1-48 c \\| 2N2222 1k AUX OUT
B P ot | el
— o = — v
11
;327 J1-16 % 2.2k SHIELDED CABLE
::::::::::::.j_l TO RECORDER INPUT

22%*

— GND —

FC-03-0

PARTS LIST

QTY DESC
1 2N2222 Transistor
2 1K Resistor
1 2.2K Resistor
1 22 ohm Resistor*
1 .1 microfarad Capacitor
2 Audio Connector Plugs
1 100-pin connector

*This value may be dependent on the particular recorder used.
INTERFACE TIMING DATA

Timing data is provided to aid the user in calculating the value of @n as it is used in the TW
(tape write) command, for board frequencies other than 14 MHz

The timings generated by the program produce a serial data flow rate of approximately 330
baud. The effective recording frequency is approximately 660 Hz. The diagram illustrates the
timings of pulse waveforms.

CLOCK PERIOD DATA PERIOD
- -

——//

1]
O -

to—

el e
e— v —

|- Tw »|

1
2xTw

BAUD RATE =

FC-02-0
OUTPUT PULSE TIMING: (At UX7 pin 11)

Tp =.500 ms +10%
Tw =15 ms =10%
Vhi = TTL level Voh

Input to the recorder at the voltage divider should be 20-100 mV depending on the recorder
used. The user may connect an oscilloscope probe to pin 11 of UX7 and then use the TW
command to enter trial values for n until the output pulse timing shown in the diagram is
observed.

INPUT PULSE TIMING: (At U4 pin 8)

Tp = .280 ms minimum
Tw = 1.5 ms = 10%
Vhi = TTL level Voh

This waveform can also be observed at the tape header or by recording binary data with all
bytes set to -1, and then by reading the data back.

B.6 ASSEMBLER USER NOTES (DB32016)

The assembler was written to be as consistent as possible with available assembler
documentation, but due to its compactness, certain exceptions must be observed. Those
exceptions are listed below:

1.
2
3
4.
5
6

7.
8.
9.
10.
11.
12.
13.

14.

ASCH strings are delimited by double quotes only.

Symbols are valid for PC address and SB segment mode only.
Symbols must contain only two characters.

The only operation allowed is subtraction between symbols.

Strings are valid only for .BYTE Pseudo-op and immediate operands.

RO through R7 are the only recognized register mnemonics. All others must be hex
encoded.

CXP argument is simply n.

CBITIi and SBITIi instructions are not implemented.

Registers RO through R7 must be used for FO through F7.

Immediate floating-point values not allowed.

The STATIC area must be declared as the first element of the program.
Pseudo-ops parse on first four characters only.

All lower case characters in the string of .BYTE will be changed to upper case
during assembly.

LXPD instruction not implemented. Use ADDR EXT(n), DESTINATION.

The assembler does not fully support operand legality checking, value range checking, and
some soft parsing. Immediate operand values are truncated and no error message is issued.

Certain parsing errors such as balanced parentheses are not checked. Characters other than
those allowed by svntax rules are not checked for and may not output an error message.

B-6

B.7 TDS MEMORY MAP (DB32016)

The diagram is a graphic representation of the memory space available to TDSs.

ADDR 0
TDS
Code
PROM
RANGE <-H’5000 TDS Module table
<-H’5100 TDS Interrupt and Trap table
<-H’5200 TDL Link table
H7FFF
H’8000
TDS variables
<-H’8200
RAM
RANGE TDS stack
—H8500
| <-H'8600 User IS
l <-H’8700 TDS variables
// //
<—x = 600 + # of characters in source
In auto mode + 9%(# of lines in source)
user module b———> | < @ first available 1/2 page boundary *
table is——-—— !
User Code is ———> | <- @first available page boundary
User Static base -————> | <— @ first available page after code
User SP ————> | < @ Highest mem addr - 11 (rxp pushed onto stack)

*Unless memory available is greater than or equal to 64K, the module table is constructed
within the reserved system area.

B.8 TDS ERROR SUMMARY (DB32016)

TDS system error messages are summarized as follows:

BAD_TXT
ERR_ED#
BAD_MEM

BAD_SEQ
BAD_INS
BAD_PSU
ERR_VAL
BAD LIN
ERR_SEG
BAD_NUM
BAD_SYM
UND_SYM
BAD_TAB
E NMI
ENVI

E FPU
EDVZ

E UND

EFLG
E BPT
EILL

E EXT
E BPR
E NST
E ABT
E SRC
ESVC
E CXP

Bad text input.
Error in edit number.

Code start addr conflicts with text or debug data. Enter a higher
value for addr.

Attempting to assemble null or bad text.

No such instruction.

No such Psuedo-op.

Bad number syntax or bad operand.

Gross line error or standalone label.

Using data allocation Psuedo-ops within PC segment or vice versa.
Bad floating-point syntax or value range.
Duplicate symbol.

Undefined symbol.

Assembler was not initiated by IT command.
Error - Non-maskable interrupt.

Error - Non-vectored interrupt (not implemented).
Error - FPU trap.

Error - divide by zero.

Error - undefined op-code (trying to use non-existing MMU or
FPU).

Error - flag trap.

Error - non-debugger BPT instruction.
Error - illegal for user instruction.
Error - external abort.

Error - MMU break point.

Error - MMU non-sequential trace trap.
Error - MMU address translation.

Error - memory search failed.

Error - unknown SVC.

Error - more than one call command.

E VRF
TIM_OUT

BAD_FRM

CRC_ERR

Memory verify error

(breakpoint could not be inserted).

No data pulses present. This message occurs approximately 90

seconds after a data
detected.

operation is initiated if no data pulses are

Bad tape format. Attempted to read data that does not conform to
the established data format.

A CRC error was detected.

B.9 TDS COMMAND SUMMARY (DB32016)

The commands used in the TDS system are summarized as follows:

RX {H|D}
OM gn

IN [n] string
™ [,7 /5011
44 LIVJ LI lIr‘-JJ
RP n string
Kn

RS

RL [LPT:|ASN:] [C]

AS [addr]

B {Z|mod offset}

PM {B|W|D|F|L} {addr|symbol}

PAD symbol

B-9

Select the system base to be hexadecimal or
decimal.

Set the terminal communications mode. See
Section 3.3.2.

Insert string above or after line n of the text
buffer.

Type line nl of text buffer or type n2 lines

of buffer beginning With“nl.
Replace line n of buffer with string.
Kill or delete line n from text buffer.
Reset clear text buffer.

Redirect listing from terminal to printer at
parallel port or serial device at port 1, and
end listing with a <CR> or cancel
previously selected device.

Begin the assembly of user program at
address addr.

Initialize a user program if an explicit
address was used as assembly time. If an
explicit address was not used, mod and o ff set
may be omitted. The Z option zeros memory
from the SB to the SP area.

Print memory contents according to selected
base. Byte, Word, Double-word, Floating-
point or Long.

Print address of symbol.

PR {0|1]2]3]4]5|6]7}

Pcpureg
PMS

PPT {0]1}
PE]

PPF {0]1}
PSC
PBP {0]-.|[151f]}

PBC
PF {0]11213]4]5]6]7}

PEFS
PCF
PMM
AR

AC
AM
AF

CM {B|W|D} {addr|symbol=gn}

CM {F IL} {addr | symbol=rn}

Ccpureg = gn
CMS = gn

CPT {0]1} = gn

CEl = gn

Print the contents of one of eight general
purpose registers.

Print the contents of the CPU register.
Print the contents of the MMU MSR register.
Print the contents of the MMU PTB register.

Print the contents of the MMU
EADDR/INVAL register.

Print the contents of the MMU PF register.
Print the contents of the MMU SC register.

Print the contents of one of 16 breakpoint
registers.

Print the contents of one of the MMU BCNT
registers.

Print the contents of one of eight FPU
registers.

Print the contents of the FPU status register.
Print configuration.
Print the contents of the main MSF register.

Print the contents of all general purpose
Tegisters.

Print the contents of all CPU registers.
Print the contents of all MMU registers.
Print the contents of all FPU registers.

Change memory contents, at specified
location, to an integer value.

Change memory contents at addr or symbol
to a real number.

Change contents of the CPU register to gn.

Change the contents of the MSR register to
an.
Change the contents of the PTB register to
gn.

Change the contents of the EADR/INVAL
register to gn.

B-10

CSC = gn

CBP {ol.11151f I} = {addr symbol}

CBC = gn
CF {0|112]3|4]|5]|7} = gn
CFS =gn
CCF = gn
CMM = gn

ST [n]

SW {addr|gpreg|cpureg}gni gn2 gnmask

IS addr
CX mod offset

F addrl addr2 gn [B|W|D]

Change the contents of the MMU SC
register.

Change the current addr or symbol of one of
sixteen breakpoint registers to addr or
symbol.

Change the memory contents of the MMU
NCNT register to gn.

Change the memory contents of one of eight
FPU registers to gn.

Change the memory contents of the
floating-point status register to gn.

Change the memory contents of the
configuration register to gn.

Change the memory contents of the main
MSR register to gn.

Step through the wuser program for n
instructions and then break. Default for n is
one.

Step through a user program until the
contents of memory at addr, or gpreg (RO-
R7), or cpureg masked with gnmask, is
greater than or equal to gn/ and less than or
equal to gn2.

Step through a user program while the
memory contents of either addr, or gpreg, or
cpureg masked with gnmask, are greater
than or equal to gn/ and less than or equal
to gn2.

Call a subroutine at location addr.

Call external subroutine at address
calculated using mod and offset from the
module table.

Begin program execution.

h

Move gn sequential bytes of data from

memory location addrl to addr?2.

Fill memory locations from addrl to addr2
with data gn.

B-11

SR addrl addr2 gn [B|W|D]

D addrl gn

TW [@n] [addr1 addr2]

TR [addr]

Search memory between addrl and addr2
for data gn and print its address according to
BWD.

Dump gn locations beginning at addrl, to
the user terminal.

Write data between Ilocation addrl and
addr2 to the cassette recorder. Otherwise,
write contents of editor text buffer to the
cassette recorder. @n specifies timings for
boards not equipped with a 14 MHz crystal.
See Chapter 9.2 for details.

Read data from the cassette tape and store it
in memory beginning at Ilocation addr.
Otherwise, load the data into the editor text
buffer.

B-12

Appendix C
TDS ON THE DB32000

C.1 AUXILIARY PORT SETUP PROCEDURES (DB32000)

The auxiliary port (J2) of the DB32000 is an integral part of the board. It requires no setup
unless user wishes to deviate from shipping configuration. Port is fully baud programmable as
determined by dip switch setting (see Section C.2).

C.2 BAUD RATE SETUPS (DB32000)
The following dip switch settings on the DB32000 control the baud rates of port O and port 1.

S4 S3 S2 S1 Baud Rate
on on on on 19200
on on on off 9600
on on off on 7200
on on off off 4800
on off on on 3600
on off on off 2400
on off off on 2000
on off off off 1800
off on on on 1200
off on on off 600
off on off on 300
off on off off 150
off off on on 134
off off on off 110
off off off on 75
off off off off 50

Switches 5, 6, 7, 8, 9 and 10 unused.

NOTES: 1. Required terminal characterisiics:
a. Parity - disabled
b. Stop bits = 1
¢. Character length = 8 bits
2. At reset, both ports programmed to switch setting.

3. Port 1 (auxiliary) may be independently programmed using @R
command (see Section 9.5.3).

4. To calculate @R value ON=1, OFF=0.

C-1

C.3 NUMERICAL DATA (DB32000)
Integer Ranges and Data:
Decimal -2147483648..21474836647
Hex 0..FFFFFFFF
e No equivalence checking.
e No overflow checking in ASCII to binary conversion.
e Syntax checked in ASCII to binary conversion.
o Hex output interpreted as unsigned.
e Decimal treated as signed for binary to ASCII conversion.

e Decimal treated as signed or unsigned depending on the value in an ASCII to binary
conversion.

e Numbers too large for operand size are truncated in the high bits.
Floating-Point Ranges:

Long max = 16 digits + 307 exponent range
Short max = § digits + 37 exponent range

Floating-Point Accuracy: (Conversion with no arithmetic operation)

Long format: 16 digits =2 LSD
14 digits +.5 LSD

Short format: 8 digits =2 LSD
6 digits =.5 LSD

Floating-Point Errors:
Syntax and range checking for ASCII to binary conversions.

No Nal recognition for binary to ASCII conversion.

C.4 PARALLEL PRINTER INTERFACE DATA (DB32000)

The parallel printer port supports a Centronics or an equivalently strobed printer. This
information is provided for the user who wishes to construct a printer interface cable. In this
case, a high quality twisted-pair cable is mandatory. However, it is advisable to use the SPX
Centronics printer interface cable (part number 601304044-001).

Shown below are the signal pin-outs for the printer interface cable.

DB32000 100-PIN EDGE 36-PIN D PRINTER

PARALLEL PORT CONNECTOR CONNECTOR SIGNAL NAMES
47 A24 11<29> BUSY (From Printer)
37 A19 13 SELECTED (From Printer)
23 A12 2<20> DATA 1 (To Printer)
21 Al1l 3<21> DATA 2 (To Printer)
19 A10 4<22> DATA 3 (To Printer)
17 A09 5<23> DATA 4 (To Printer)
25 A13 6<24> DATA 5 (To Printer)
27 Al4 7<25> DATA 6 (To Printer)
29 A15 8<26> DATA 7 (To Printer)
31 A16 9<27> DATA 8 (To Printer)
15 AO8 1<19> STROBE (To Printer)

Bn ground <n> ground

The software driver logic is compatible with XU155 as a 74640 and XU138, XU149, and
XU132 as 7437. Ensure that XU155 is selected in receive mode (berg connector across 1-2 at
W60).

C.5 CASSETTE INTERFACE DATA (DB32000)
Cassette Interface Cable

The cassette interface cable can be constructed from readily available components. It is
connected to the auxiliary out or earphone jack of a cassette recorder and the system parallel
port. Additionally, interface circuitry is required at the connector to the parallel port. The
diagram illustrates the hardware requirements at both ends of the interface cable. The
components required for the parallel port interfacing are presented in the parts listing.

C-3

SPECIAL SIMPLE CASSETTE INTERFACE

+5y CONNECTED TO J3
B % 4.7k FROM RECORDER
DATA BIT IN 74640 EARPHONE OR
- AUX OUT
(BIT 0) XU155 J3-47 IN2222 1k | I ¢
|| 1uf __]
DB 32000 S
— GND T — GND
11
DATA BIT QUT —— 7437
(BIT Q) XU132 J3-15 2.2k SHIELDED CABLE
/ TO RECORDER INPUT
.............__l
NOTE ON DB3200QG J1 2-50 22*%
ARE GND —_
— GND _
FC-04-0
PARTS LIST
QTY DESC
1 2N2222 Transistor
2 1K Resistor
1 2.2K Resistor
1 22 ohm Resistor*
1 .1 microfarad Capacitor
2 Audio Connector Plugs
1 100-pin connector

*This value may be dependent on the particular recorder used.

INTERFACE TIMING DATA

Timing data is provided to aid the user in calculating the value of @n as it is used in the TW
(tape write) command, for board frequencies other than 14 MHz

The timings generated by the program produce a serial data flow rate of approximately 330
baud. The effective recording frequency is approximately 660 Hz. The diagram illustrates the
timings of pulse waveforms.

CLOCK PERIOD DATA PERIOD
e -

—//

FC-02-0
OUTPUT PULSE TIMING: (At UX7 pin 11)

Tp =.500 ms =10%
Tw =15ms +10%
Vhi = TTL level Voh

Input to the recorder at the voltage divider should be 20-100 mV depending on the recorder
used. The user may connect an oscilloscope probe to pin 11 of UX7 and then use the TW
command to enter trial values for n until the output pulse timing shown in the diagram is
observed.

INPUT PULSE TIMING: (At U4 pin 8)

Tp = .280 ms minimum
Tw =15ms +10%
Vhi = TTL level Voh

This waveform can also be observed at the tape header or by recording binary data with all
bytes set to -1, and then by reading the data back.

C-5

C.6 ASSEMBLER USER NOTES (DB32000)

The assembler was written to be as consistent as possible with available assembler
documentation, but due to its compactness, certain exceptions must be observed. Those
exceptions are listed below:

1.

AN

=

9.
10.
11.
12.
13.

14.

ASCII strings are delimited by double quotes only.

Symbols are valid for PC address and SB segment mode only.
Symbols must contain only two characters.

The only operation allowed is subtraction between symbols.

Strings are valid only for .BYTE Psuedo-op and immediate operands.

RO through R7 are the only recognized register mnemonics. All others must be hex
encoded.

CXP argument is simply n.

CBITIi and SBITIi instructions are not implemented.

Registers RO through R7 must be used for FO through F7.

Immediate floating-point values not allowed.

The STATIC area must be declared as the first element of the program.
Pseudo-ops parse on first four characters only.

All lower case characters in the string of .BYTE will be changed to upper case
during assembly.

LXPD instruction not implemented. Use ADDR EXT(n), DESTINATION.

The assembler does not fully support operand legality-checking, value range checking, and
some soft parsing. Immediate operand values are truncated and no error message is issued.

Certain parsing errors such as balanced parentheses are not checked. Characters other than
those allowed by syntax rules are not checked for and may not output an error message.

C.7 TDS MEMORY MAP (DB32000)

The diagram is a graphic representation of the memory space available to TDSs.

0
mem < H’7200 not used
<-H7200 TDS Module table
<--H’8000
TDS variables
<--H’8200
RAM TDS stack
RANGE
<-—-H’8500
<-—-H860G User IS
<--H’8700 TDS variables
// //
<--x = H'600 + # of characters in source
In auto mode + 9%(# of lines in source)
user module b — <-- @ first available 1/2 page boundary *
table i5———
User Code is e — > <- @ first available page boundary
User Static base =~ -———- > <- @ first available page after code
User SP ———> | <— @Highest mem addr - 11 (rxp pushed onto stack)
ADDR HA00000 |
‘ TDS
Code
PROM
RANGE <—H’A07200 Module table (is written to RAM at reset)
<—-H'A07400 Interrupt and Trap table
<—H’A07600 Link table
H'AO7FFF

*Unless memory available is greater than or equal to 64K, the module table is constructed
within the reserved system area.

C.8 TDS ERROR SUMMARY (DB32000)

TDS system error messages are summarized as follows:

BAD_TXT Bad text input.
ERR_ED# Error in edit number.
BAD_MEM Code start addr conflicts with text or debug data. Enter a higher

value for addr.

BAD_SEQ Attempting to assemble null or bad text.

C-7

BAD_INS
BAD_PSU
ERR_VAL
BAD_LIN
ERR_SEG
BAD_NUM
BAD_SYM
UND_SYM
BAD_TAB
E NMI
ENVI

E FPU
EDVZ

E UND

EFLG
E BPT
EILL

EEXT
E BPR
E NST
E ABT
E SRC
ESVC
E CXP
E VRF

TIM_OUT

BAD_FRM

CRC_ERR

No such instruction.

No such Psuedo-op.

Bad number syntax or bad operand.

Gross line error or standalone label.

Using data allocation Psuedo-ops within PC segment or vice versa.
Bad floating-point syntax or value range.
Duplicate symbol.

Undefined symbol.

Assembler was not initiated by IT command.
Error - Non-maskable interrupt.

Error - Non-vectored interrupt (not implemented).
Error - FPU trap.

Error - divide by zero.

Error - undefined opcode (trying to use non-existing MMU or
FPU).

Error - flag trap.

Error - non-debugger BPT instruction.
Error - illegal for user instruction.
Error - external abort.

Error - MMU break point.

Error - MMU non-sequential trace trap.
Error - MMU address translation.

Error - memory search failed.

Error - unknown SVC.

Error - more than one call command.
Memory verify error (breakpoint could not be inserted).

No data pulses present. This message occurs approximately 90
seconds after a data operation is initiated if no data pulses are
detected.

Bad tape format. Attempted to read data that does not conform to
the established data format.

A CRC error was detected.

C-8

C.9 TDS COMMAND SUMMARY (DB32000)

The commands used in the TDS system are summarized as follows:

RX [H|D]
OM gn

IN []string
TP [n1{/n2]]
RP n string

K n

RS
RL [LPT:|ASN:][C]

AS [addr]

B {[Z]{mod offset}

PM {B|W|D|F|L} {addr|symbol}

PAD symbol

PR {0}1]213|4]5]6]7}

Pcpureg
PM

PPT {0]1}
PEI

PPF {0]1}

C-9

Select the system base to be hexadecimal or
decimal.

Set the terminal communications mode. See
Section 3.3.2.

Insert string above or after line n of the text
buffer.

Type line ni of text buffer or type nZ lines
of buffer beginning with nJ.

Replace line n of buffer with string.
Kill or delete line n from text buffer.
Reset clear text buffer.

Redirect listing from terminal to printer at
parallel port or serial device at port 1, and
end listing with a [CR] or cancel previously
selected device.

Begin the assembly of user program at
address addr.

Initialize a user program if an explicit
address was used as assembly time. If an
explicit address was not used, mod and o ff set

may be omitted. The Z option zeros memory
from the SB to the SP area.

Print memory contents according to selected
base. Byte, Word, Double-word, Floating-
point or Long.

Print address of symbol.

Print the contents of one of eight general
purpose registers.

Print the contents of the CPU register.

Print the contents of the MMU MSR register.
Print the contents of the MMU PTB register.

Print the contents of the MMU
EADDR/INVAL register.

Print the contents of the MMU PF register.

PSC
PBP {0|-|[15]f]}

PBC
PF {0]1]2]3]4]5]6]7}

PFS
PCF
PMM
AR

AC
AM
AF

CM {B|W|D} {addr|symbol=gn}

CM {FIL} {addr|symbol=rn}

Ccpureg = gn
CMS = gn

CPT {0]1} =¢gn
CEl = gn

CSC = gn

CBP {0|-.|15|f} = {addr|symbol}

CBC = gn

CF {0]1]2]3]4]5]7} = gn

Print the contents of the MMU SC register.

Print the contents of one of 16 breakpoint
registers.

Print the contents of one of the MMU BCNT
registers.

Print the contents of one of eight FPU
registers.

Print the contents of the FPU status register.
Print configuration.
Print the contents of the main MSF register.

Print the contents of all general purpose
registers.

Print the contents of all CPU registers.
Print the contents of all MMU registers.
Print the contents of all FPU registers.

Change memory contents, at specified
location, to an integer value.

Change memory contents at addr or symbol
to a real number.

Change contents of the CPU register to gn.

Change the contents of the MSR register to
an.

Change the contents of the PTB register to
gn.

Change the contents of the EADR/ INVAL
register to gn.

Change the contents of the MMU SC
register.

Change the current addr or symbol of one of
sixteen breakpoinl registers to addr or
symbol.

Change the memory contents of the MMU
NCNT register to gn.

Change the memory contents of one of eight
FPU registers to gn.

C-10

CFS =gn
CCF =gn
CMM = gn

ST [n]

SU {addr|gpreg|cpuregignl gn2 gnmask}

SW {addrigpregicpureg} {gni gn2 gnmas/’c}

M addrli addr2
F addrl addr2 gn [BIWID]

SR addrl addr2 gn [B|W|D]

D addri gn

11~

{@n] [ada'r] addr?2

YYY 7
1

Change the memory contents of the
floating-point status register to gn.

Change the memory contents of the
configuration register to gn.

Change the memory contents of the main
MBSR register to gn.

Step through the user program for n
instructions and then break. Default for n is
one.

Step through a user program until the
contents of memory at addr, or gpreg (RO-
R7), or cpureg masked with gnmask, is
greater than or equal to gn/ and less than or
equal to gnZ’.

Step through a user program while the
memory contents of either addr, or gpreg, or
cpureg masked with gnmask, are greater
than or equal to gn/ and less than or equal
to gn2.

PR | 1 T
€ al 1xCauon aaar.

U T

o1t PR
vall a SUcrout

Call external subroutine at address
calculated using mod and offset from the
module table.

Begin program execution.

Move gn sequential bytes of data from
memory location addr! to addr2.

Fill memory locations from addrl to addr?2
with data gn.

Search memory between addrl and addr2
for data gn and print its address according to
BWD.

Dump gn locations beginning at addri, to
the user terminal.

Write data between Ilocation addri and
addr2 to the cassette recorder. Otherwise,
write contents of editor text buffer to the
cassette recorder. @n specifies timings for
boards not equipped with a 14 MHz crystal.

See Chapter 9.2 for details.

C-11

TR [addr] Read data from the cassette tape and store it
in memory beginning at location addr.
Otherwise, load the data into the editor text
buffer.

C-12

National MICROCOMPUTER
Semiconductor SYSTEMS DIVISION

READER’S COMMENT FORM

In the interest of improving our documentation, National Semiconductor invites your comments on
this manual.

Please restrict your comments to the documentation. Technical Support may be contacted at:

(800) 538-1866 - U.S. non CA
(800) 672-1811 - CA only
(408) 733-2600

Please rate this document according to the following categories. Include your comments below.

EXCELLENT GOOD ADEQUATE FAIR POOR

Readability (style) O o O O O
Technical Accuracy O 4 O O O
Fulfills Needs O O O O O
Organization 0 0O O O O
Presentation (format) O a O O O
Depth of Coverage O O a m] (]
Overall Quality O 0O 0 O 0
NAME DATE

TITLE

COMPANY NAME/DEPARTMENT

ADDRESS

CITY STATE ZIp

Do you require a response? [0 Yes 0O No PHONE

Comments:

FOLD, STAPLE, AND MAIL 420306440-001B

NO POSTAGE
NECESSARY

IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 409 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Z National Semiconductor Corporation
Microcomputer Systems Division
Technical Publications Dept. 8278, M/S 7C261
2900 Semiconductor Drive
Santa Clara, CA 95051

— —— — — — — — — — — — — — — g— — —— —— —— ——— — — — — — ——— — ——

National Semiconductor Corporation

2900 Semiconductor Drive
Santa Clara, California 95051
Tel: (408) 721-5000

TWX: (910) 339-9240

National Semiconductor
59565 Airport Road

Suite 206

Mississauga, Ontario
L4V1R9 Canada

Tel: (416) 678-2920
TWX: 610-492-8863

Electronica NSC de Mexico SA

Hegel No. 153-204

Mexico 5 D.F. Mexico

Tel: (905) 531-1689, 531-0569,
531-8204

Telex: 017-73550

NS Electronics Do Brasil

Avda Brigadeiro Faria Lima 830

8 Andar
01452 Sao Paulo, Brasil

Telex: 1121008 CABINE SAO PAULO

113193 INSBR BR

National Semiconductor GmbH
Furstenriederstra;se Nr.5
D-8000 Minchen 21

West Germany

Tel.: (089) 5 60 12-0

Telex: 522772

National Semiconductor (UK), Ltd.

301 Harpur Centre
Horne Lane
Bedford MK40 1TR
United Kingdom
Tel: 0234-47147
Telex: 826 209

National Semiconductor Benelux

Ave. Charles Quint 545
B-1080 Bruxelles
Belgium g

Tel: (02) 4661807
Telex: 61007

National Semiconductor (UK), Lid.

1, Bianco Lunos Allé
DK-1868 Copenhagen V
Denmark

Tel: (01) 213211

Telex: 15179

National Semiconductor
Expansion 10000

28, Rue de |la Redoute

F-92 260 Fontenay-aux-Roses
France

Tel: (01) 660-8140

Telex: 250956

National Semiconductor S.p.A.
Via Solferino 19

20121 Milano

Italy

Tel: (02) 345-2046/7/8/9

Telex: 332835

National Semiconductor AB
Box 2016

Stensatravagen 4/11 TR
S-12702 Skarholmen
Sweden

Tel: (08) 970190

Telex: 10731

National Semiconductor
Calle Nunez Morgado 9
(Esc. Dcha. 1-A)

E-Madrid 16

Spain

Tel: (01) 733-2954/733-2958
Telex: 46133

National Semiconductor Switzerland

Alte Winterthurerstrasse 53
Postfach 567

CH-8304 Wallisellen-Zirich
Tel: (01) 830-2727

Telex: 59000

National Semiconductor
Pasilanraitio 6C
SF-00240 Helsinki 24
Finland

Tel: (30) 14 03 44

Telex: 124854

NS Japan K.K.

POB 4152 Shinjuku Center Building
1-25-1 Nishishinjuku, Shinjuku-ku
Tokyo 160, Japan

Tel: (03) 349-0811

TWX: 232-2015 NSCJ-J

National Semiconductor Hong Kong, Ltd.
1st Floor,

Cheung Kong Electronic Bldg.

4 Hing Yip Street

Kwun Tong

Kowloon; Hong Kaong

Tel: 3-899235

Telex: 43866 NSEHK HX

Cable: NATSEMI HX

NS Electronics Pty. Ltd.

Cnr. Stud Rd. & Mtn. Highway
Bayswater, Victoria 3153
Australia

Tel: 03-729-6333

Telex: AA32096

National Semiconductor PTE, Ltd.
10th Floor

Pub Building, Devonshire Wing
Somerset Road

Singapore 0923

Tel: 652 700047

Telex: NATSEMI RS 21402

National Semiconductor Far East, Ltd.
Taiwan Branch

P.O. Box 68-332 Taipei

3rd Floor, Apollo Bldg.

No. 218-7 Chung Hsiao E. Rd.

Sec. 4 Taipei Taiwan R.O.C.

Tel: 7310393-4, 7310465-6

Telex: 22837 NSTW

Cable:NSTW TAIPEI

National Semiconductor (HK) Ltd.
Korea Liaison Office

6th Floor, Kunwon Bldg.

No. 2. 1-GA Mookjung-Dong
Choong-ku, Seoul, Korea

C.P.O. Box 7941 Seoul

Tel: 267-9473

Telex: K24942

	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	3-01
	3-02
	4-01
	4-02
	4-03
	4-04
	5-01
	5-02
	5-03
	5-04
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	7-01
	7-02
	7-03
	7-04
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	9-10
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	replyA
	replyB
	xBack

