PACE Microprocessor
Assembly Language
Programming
Manual

/A National

Semiconductor

Publication Number 4200130A
QOrder Number IPC-165/969Y
January 1977

PACE
Processing And
Control Element

Assembly Language
Programming Manual

© National Semiconductor Corporation
2900 Semiconductor Drive
Santa Clara, California 95051

PREFACE

The PACE Assembly Language Programming Manual provides tutorial and reference information required for
writing user application programs. Component data sheets and information pertaining to prototyping systems
are available in other publications.

The material in this publication is subject to change without notice. Changes will be reported in COMPUTE, the
Microprocessor Users Group newsletter.

Copies of this publication and other National Semiconductor publications may be obtained from the National
Semiconductor sales office or distributor serving your locality.
™ PACE System Design Manual, Order Number IPC-16A/928.

. PACE (FORTRAN) Cross Assembler Software Package, Installation and Operating
Instructions, Publication Number 4200073.

. PACE Conversational Assembler Users Manual, Publication Number 4200112.
. IPC-16A/520D MOS/LSI Single-Chip 16-bit Microprocessor (PACE) Data Sheet.

ii

Chapter Page

1 GENERAL INFORMATION

2 PACE MICROPROCESSOR OVERVIEW
2.1 OPERATIONAL FEATURES 2-1
2.2 DATA REPRESENTATION 2-2
2.3 REGISTERS . 2-2
2.3.1 Accumulators (ACO, ACl ACZ ACS) 2-2
2.3.2 Status Flags Register (FR) 2-3
2.3.3 Program Counter (PC) . 2-3
2.4 STACK (STK) . . 2-3
2.5 INSTRUCTION SUMMARY 2-3
2.6 MEMORY ADDRESSING 2-5
2.6.1 Immediate Addressing . 2-5
2.6.2 Direct Addressing . e e e e e e e e e e e e 2-5
2.6.2.1 Base-Page Addressmg . e e e e e e e e 2-9
2.6.2.2 Program Counter-Relative Addressmg 2-10
2.6.2.3 Indexed Addressing . . e 2-11
2.6.3 Indirect Addressing. . e e .. 2-11
2.6.4 Operator Address Classes 2-12
2.7 INTERRUPT SYSTEM . Ce e e e e e e e 2-12
2.8 DATA INPUT/OUTPUT « .« . . . 2-14
2.9 8-BIT DATA LENGTH . 2-14

3 ASSEMBLY LANGUAGE
3.1 INTRODUCTION 3-1
3.1.1 Assembly Language . 3-1
3.1.2 Assembler Programs 3-2
3.2 ASSEMBLER CODING CONVENTIONS 3-5
3.2.1 Label Field . 3-6
3.2.2 Operation Field . . . 3-6
3.2.3 Operand Field 3-6
3.2.4 Comment Field . . e 3-6
3.2.5 Identification Sequence Fleld e e e e e e e e e e e e 3-7
3.2.6 Example Statement . 3-7
3.3 BASIC ELEMENTS . 3-7
3.3.1 Character Set 3-7
3.3.2 Terms L . .0 .0 e e 3-8
3.3.2.1 Constants . ’ 3-8
3.3.2.2 Symbols 3-9
3.3.3 Expressions 3-10
3.3.3.1 Arithmetic and Logical Operators « v e e e e e e e e 3-11
3.3.4 Literals 3-11

4 INSTRUCTION SET
4.1 BRANCH INSTRUCTIONS « .« « « v v « o . 4-1
4.2 SKIP INSTRUCTIONS . . . Ce e e e e e e e 4-4
4.3 MEMORY DATA-TRANSFER]NSTRUCTIONS Ce e e e e e e e 4-7
4.4 MEMORY DATA-OPERATE INSTRUCTIONS 4-9
4.5 REGISTER DATA-TRANSFER INSTRUCTIONS 4-11
4.6 REGISTER DATA-OPERATE INSTRUCTIONS 4-15
4.7 SHIFT AND ROTATE INSTRUCTIONS 4-17
4.8 MISCELLANEOUS INSTRUCTIONS 4-21

iii

Chapter

TABLE OF CONTENTS (Continued)

ASSEMBLER DEPENDENT STATEMENTS
5.1 COMMENT STATEMENT .
ASSIGNMENT STATEMENT
DIRECTIVE STATEMENT.
Title Directive (. TITLE)
Split Directive (. SPLIT)
End Directive (. END)
Program Section Directives (. ASECT BSECT TSECT)
List Directive (. LIST) .
Space Directive (.SPACE) .
Page Directive (. PAGE)
Word Directive (. WORD) e e e e
ASCII Directive ((ASCI)
Set Directive (.SET)
Conditional Assembly Directives .
Global Directive (. GLOBL)
Local Directive (. LOCAL). . e
Data Length Directive ((DLEN)
Pointer Directive (. PTR)
Pool Directive (. POOL) e e
No Base Directive (NOBAS)

.
O 00 10U W

.
=
[

.

OO W W W WWwWWWWwWowWwowowwiv

SIS NN I B S B L IS T e S R S R S
e
o Ul W

s
-3

5
2
2

BASIC MACRO CONCEPTS c e e e e
DEFININGA MACRO+ .+« .« .« .
CALLING A MACRO
USING PARAMETERS .

Macro Definition

Calling a Macro With Parameters

Parameters Referenced by Number

'#' — Number of Parameters . ..

2 '"#N' — Nth Parameter

Concatenation —"A'+ .+ .+ .+ . .
LOCAL SYMBOLS .
CONDITIONAL EXPANSION

B W Wwwn =
-

IO O DI, DD ®
Hwooooocooﬂ'ﬂ—aqmoso‘:mﬂxusm.h.brhphww)—l

1 . IF Directive
.2 . IFC Directive
USEFUL DIRECTIVES .
1 Set Directive (.SET) .+ e
2 Macro Delete Directive (. MDEL). . . .
3 Error Directive (. ERROR) . e .
MACRO-TIME LOOPING .
1 .DO and . ENDDO Directives .
2 . EXIT Directive
.3 Examples of Macro-Time Loops .
NESTED MACRO CALLS
0 NESTED MACRO DEFINITIONS

PROGRAMMING TECHNIQUES
STACK
SUBROUTINES ...
INPUT AND OUTPUT PRULIRAM ING TECHNI ..
Programmed Input/Cutput
Interrupt Input/Cutput . .
Input/Output System Organization
Generalized Call to Input/Output .
Device Drivers

W W W W N -
W W W N

-3 =1 =3 =3 =3 -3 ~3 -3
[\

Page

[R R P |
W wwNn =

[L L L |
W WWWOowOo=1=-1006 G U

T PP TTS mmmmmmmmmmﬁnmmmmmmwmm
Gk W W W N

| LR PR L T R T N S |
W o W=-1~3J~1J~3J=3=3000000 G

mmmmmcﬁmmmmmm?mmammmcﬁmmmm

!
—
o

[

!
- OOy U1

- O

3 =3 a1 =3 =3 =1 =3 =3
]

|
it
[\

TABLE OF CONTENTS (Continued)

Chapter Page
7 (cont'd) 7.4 8-BITDATALENGTH. « « « « « « « « « « . 7-12
7.4.1 Data Input/OQutput « . .+ .+ o« o« o« 7-12
7.4.2 Memory Addressing« v« e e e e e 7-13
7.4.3 Status Flags« . .+ « + .+« e« 0 e e e e e e 7-13
T.4.4 Conditional Branches« « .+ « « + « o+ o« o« . . 7-13
7.4.5 Shifts and Rotates+ . . .« « 7-13
7.4.6 Immediate Instructions.+ 7-13
7.4.7 Mixed Data Lengths. . . e e e e e e e e e e e 7-14
7.5 TEXT PROGRAMMING TECHNIQUES e e e e e e e e e e 7-14
8 ASSEMBLER INPUT/OCUTPUT FORMATS
8.1 INPUT/OUTPUT FILES 8-1
8.1.1 Source File (Input) 8-1
8.1.2 Program Listing File (Output) 8-1
8.1.3 Load Module (Cutput)« .« « « + « « <« . . 8-2
8.1.3.1 Title Records« .+ .+ .+ . . 8-3
8.1.3.2 Symbol Records+ .« .+ .« .+ . . 8-3
8.1.3.3 Data Records. . . .« .+ + « « « o« o« e e e 8-5
8.1.3.4 EndRecords« .« o« .« o« o« ... 8-6
APPENDIX A — ASCII CHARACTERSET« « « « v « « v « « « . A-1
APPENDIX B — INDEX OF INSTRUCTIONS+ « « o v o o « v o « B-1
APPENDIX C — INSTRUCTION EXECUTION TIMES+ . .« « « .« . Cc-1
APPENDIX D —DIRECTIVES+ « « v « v o v v « v « « « v e D-1
APPENDIX E — PROGRAMMERS CHECKLIST+« + « « « « « « & « . E-1
APPENDIX F — POSITIVE POWERS OF TWO « +« « « o« o o« « o o . F-1
APPENDIX G — NEGATIVE POWERSOFTWO+« .+ « « « « « o « . G-1
APPENDIX H — THE HEXADECIMAL NUMBER SYSTEM « .+ « .+ . . H-1
APPENDIX I — HEXADECIMAL AND DECIMAL INTEGER CONVERSION I-1
APPENDIX J — HEXADECIMAL AND DECIMAL FRACTION CONVERSION. J-1
APPENDIX K — NEGATIVE HEXADECIMAL NUMBERS+ .« .+ . « . K-1

LIST OF ILLUSTRATIONS

Figure Page
2-1 PACE Registers. . . ee e e e e e e e e 2-2
2-2 Memory-Reference Instructlon Format C e e e e e e e e e 2-5
2-3 Base-Page Addressing. o . .+ 2-9
2-4 PC-Relative Addressing+ o . . < .. 2-10
2-5 PACE Interrupt System C e e e e e e e e e e e e e e e e 2-13
3-1 Example Source Program . 3-3
3-2 Example of PACE IMP-16 Cross Assembly Llstlng 3-4
3-3 Programming Process+0 3-5
3-4 Relationship of Terms+« .+ .+ .+« < .+ < .« . . 3-8
6~1 Statement Insertion. o 6-1
7-1 Stack Service Routine 7-2
7-2 Programmed Input/Output 7-6
7-3 Interrupt Input/Output Imitiation 7-8
8-1 LM File Format 8-2
8-2 Title Record Format « .+ . < < + . . 8-3
8-3 Symbol Record Format. 8-4
84 Data Record Format 8-5
8-5 End Record Format. 8-6

LIST OF TABLES
Table Page
2-1 Operational Features . . C e e e e e e e e e e e 2-1
2-2 Descriptions of Status and Control Flags c e e e e e e e e e e e 2-4
2-3 PACE Instruction Summary+ .+ .+ . . . 2-6
2-4 Symbols and Notations+ . .+ . . . < . .. 2-8
2-5 Address Operands+ . .« 4 . 40 .. 2-11
2-6 Locations of Interrupt Pointers 2-14
3-1 Arithmetic and Logical Operators« .+ .« < .« < . 3-11
4-1 Branch Conditions . . Ce e e e e e e e e e e e e 4-2
5-1 Summary of Assembler Dlrectlves 5-2
5-2 List Options 5-5
7-1 Locations of Interrupt Pointers .. 7-9
7-2 Interrupt Service Routine Example . . . e e e e 7-10
A-1 ASCII Character Set in Hexadecimal Representatxon e e e e e e e e e A-1
A-2 Legend for Nonprintable Characters. A-2
B-1 Opcode Index of Instructions+ B-1
B-2 Mnemonic Index of Instructions B-2
B-3 Numeric Index of Instructions.+ B-3

vi

GENERAL INFORMATION

This publication provides information on how to write assembly language or machine language programs for a
PACE microprocessor. Alsc contained is a brief description of the PACE microprocessor. A detailed descrip-
tion of the PACE microprocessor is contained in the PACE System Design Manual and the PACE Data Sheet. The
user should consult the users or installation manual for the PACE assembler that he is using for instructions on
how to assemble a PACE assembly language source program.

All publications referenced in this manual are listed in the preface.
The following is a brief description of the contents of chapter 2 through 8 of this manual.

Chapter 2, PACE Microprocessor Overview, describes the hardware functions that affect the programming of

the PACE. Discussed are the registers, stack, input/output facilities, the interrupt system, a summary of
the instruction set, addressing and other miscellaneous functions.

Chapter 3, Assembly Language, describes the coding conventions, elements, and structure of the PACE
assembly language.

Chapter 4, Instruction Set, is a detailed description of the characteristics and the operation of the PACE
instruction set.

Chapter 5, Assembler-Dependent Statements, describes three types of assembler-dependent statements: the
comment, the assignment, and the directives.

and how to write them.

"
o
=l
(o]
P
L
O
€
w
[¢]
o
=
@
3

Chapter 6, Macros, defines macro instructions, what they a
3 3

Chapter 7, Programming Techniques, provides programming examples that show how to write efficient code,
link to subroutines, and perform input/output operations (programmed and interrupt).

Chapter 8, Assembler Input/Output Formats, describes the input/output formats that are common to all PACE
assemblers.

Chapter 2

PACE MICROPROCESSOR OVERVIEW
This chapter describes the main features of the PACE microprocessor. Only those features with which the
programmer is primarily concerned are discussed.
2.1 OPERATIONAL FEATURES
PACE is a programmable 16-bit parallel microprocessor. Functionally, PACE has a bidirectional data bus
connecting the CPU, memory, and peripheral devices. Peripheral devices are assigned memory addresses,
and any standard memory-reference instruction can be used for input /output operations.
Other important features are a 6-level priority interrupt system and the ability to process 8-bit or 16-bit

data. Table 2-1 lists the operational features of PACE.

Table 2-1. Operational Features

Feature Description

Instruction Word Length 16 bits

Data Word Length 8 bits or 16 bits

Instruction Set 46 Instructions

Arithmetic Parallel, binary, fixed point, twos complement,
4-digit BCD addition

Memory Up to 65,536 16-bit words of ROM or RAM

Registers Four 16-bit general-purpose accumulators

(two can be used as index registers)
One 16-bit Status Register
One 16-bit Program Counter (indirectly

accessible)
Stack 10-word 16-bit Last-In/First-Out hardware stack
Addressing Modes Direct addressing

e DBase page
e Program counter relative (current page)
o Indexed

Indirect addressing
e DBase page
e Program counter relative (current page)
o Indexed

Immediate addressing

Input/Output and Control 6 priority interrupt levels

3 general-purpose jump-condition inputs
4 general-purpose flag outputs

Typical Instruction-Execution Speed 12 microseconds

2.2 DATA REPRESENTATION

Data are represented internally in PACE in twos-complement integer notation. In twos~-complement notation,
the negative of a number is formed by complementing each bit in the data word and adding one to the comple-
mented number. The sign of the humber is indicated by the most significant bit (bit 15 for 16-bit data and bit 7
for 8-bit data). When the most significant bit is zero, the number is positive or zero; when it is one, the
number is negative. Maximum range for a 16-bit number in this system is "FFF g (+3276714) to 8000 ¢
(-327681¢). Maximum range for an 8-bit number is TFqg (+1273) to 801¢ (=1281¢).

2.3 REGISTERS

The registers important to the PACE user are shown in figure 2-1 and discussed in the following paragraphs.

Accumulator 0 (ACQ)

-

1 1 1 1 1 1 1 ! 1

Accumulator 1 (AC1)

1 k] 1 1 1 1 1 1] 1 1 1 1 b 1

Accumulator 2 (AC2)

1 1 1 1 1 1 1 k2 L 1 1 1 1 1 1

Accumulator 3 (AC3)

! 1 1 s 1 1 1 1 1 L] 1 1] ! 1

Status Flags Register (FR)

1 1 1 1 1 1 1 1 1 1 1 i k] 1

Program Counter (PC)

Figure 2-1. PACE Registers

2.3.1 Accumulators (AC0, AC1, AC2, AC3)

Four 16-bit accumulators (ACO, ACl, AC2, and AC3) are available to the PACE user. The accumulators are
general-purpose registers used for performing arithmetic and logic operations, data transfers, skips, shifts,
and rotates. The accumulators normally are used in the following capacities:

AC0 — primary data-handling register

AC1 — secondary data-handling register

AC2 — base register for indexed addressing of memory

AC3 — base register for indexed addressing of memory and peripherals

In assembly language, the accumulators are addressed by placing their numeric address 0, 1, 2, and 3 for

ACO0, AC1, AC2, and AC3, respectively) in the operand field of the source statement (see chapter 3, Assembly
Language). The assignment statement (see 5.2) may be used to assign symbolic addresses to the accumulators.

2-2

2.3.2 Status Flags Register (FR)

The 16-bit Status Flags Register (FR) provides storage for interrupt, arithmetic, control, and status flags.
FR automatically preserves system status. The user may operate on its contents as fiata, allowing masking,
testing, and modification of several bit fields simultaneously. The bit position of each flag is shown below
and defined in table 2-2.

151413121110987654321OBit”
Position
= M
' | F14|Fis | Fi2| F11| X | IEN § cy |ov |1E5 |1E4 |1E3 |1E2 {1E1 | '1' | Flag

2.3.3 Program Counter (PC)

The Program Counter (PC) is a 16-bit register used by PACE to store the address of the next instruction to be
executed. PC is incremented by 1 immediately after each instruction is fetched; therefore, the address of PC
is always 1 greater than the address of the instruction being executed. The contents of PC are not directly
accessible to the user; however, the contents may be obtained indirectly by executing a subroutine jump (JSR)
to the next location in memory, and then by pulling the address off the top of the stack.

2.4 STACK (STK)

The hardware Stack (STK) in PACE provides ten 16-bit words of storage that are accessed sequentially in a
last-in/first-out basis. The stack is used primarily for temporary storage of the contents of the Program
Counter and the Status Flags Register during subroutine and interrupt service routine execution. A stack-full /
stack-empty interrupt (level 1) is provided to facilitate off-stack storage in applications where additional

stack capacity is desirable. The stack interrupt is generated automatically when the ninth word of the stack

is filled, or whenever the stack becomes empty. For information on how to use the stack, see 7.1.

2.5 INSTRUCTION SUMMARY
The instruction set for PACE comprises 46 instructions divided into the following eight classes:

] Branch
° Skip
° Memory Data Transfer
° Memory Data Operate
° Register Data Transfer
° Register Data Operate
° Shift and Rotate
. Miscellaneous
The branch instructions provide the means to transfer control to any location in memory. Conditional branches

are effected by using the BOC instruction, which allows testing of any one of 16 conditions, including status

flags, the contents of ACO, and users inputs to the PACE microprocessor. (See table 4-1 for the condition
nndac)

COLES.

Additional testing capability is provided by the skip instructions, which provide memory or peripheral to register
comparisons without altering data.

2-3

Table 2-2. Descriptions of Status and Control Flags

Register Bit Flag Name Description Flag Code (fc)

0 1! Bit 0 is not used and is always in logic '1' state. 0000
Referencing bit 0 with SFLG or PFLG Instruction
has no affect. (May be used as NOP Instruction.)

1 1IE1 Interrupt Enable level 1 (Stack full/empty interrupt) 0001
2 IE2 Interrupt Enable levels 2 through 5 are user 0010
3 IE3 interrupts. If Interrupt Enable (IEN) is a '1', and 0011
4 1E4 an interrupt request occurs, PACE executes the 0100
5 1IE5 appropriate interrupt service routine. If IEN is a 0101

'0', the interrupt request for the level is ignored.

6 ov Overflow Flag is set to state of twos~complement 0110
arithmetic overflow by arithmetic instructions.
Overflow Flag is set high if sign bits (most signifi-
cant bits) of two operands are identical and sign bit
of result is different from sign bit of operands. If
A, B, and R are sign bits of operands and result,
then Overflow Flag is set according to equation

OV=(AeBeR)+ (AeBeR)

Sign bit is most significant bit for data length
selected; thus, if data length is 8 bits, then bit 7 is
sign bit; if data length is 16, then bit 15 is sign bit.
State of OV Flag is affected by instructions ADD,
DECA, SUBB, RADD, and RADC.

7 CY Carry Flag is set to state of binary or decimal 0111
carry output of adder by arithmetic instructions.
Carry output is derived from most significant bit
for data length specified by BYTE Flag. State of
CY Flag is affected by instructions ADD, DECA,
SUBB, RADD, and RADC.

8 LINK Link Flag is included in shift and rotate operations 1000
as specified by Shift and Rotate Instructions. Link
Flag is unaffected if not selected.

9 IEN Master Interrupt Enable Flag simultaneously inhibits 1001
all five of lowest priority interrupt levels. No
Interrupt Request is serviced unless individual
Interrupt Enable Flag for associated Interrupt
Request and master Interrupt Enable Flag are high.
IEN Flag is set low every time any interrupt
(except Level 0) is serviced. IEN Flag is set high
by execution of Return from Interrupt Instruction

(RTI).

10 BYTE BYTE Flag selects 8-bit data length when high and 1010
16-bit data length when low.

11 F11 Flags 11 through 14 are general-purpose control 1011

12 Fi2 flags. Flags 11 through 14 drive PACE output 1100

13 F13 pins and may be used to directly control system 1101

14 F14 functions (see PACE System Design Manual for 1110
details.

15 1! Bit 15 is not functional and is always in logic '1' 1111

state. Addressing bit 15 with SFLG or PFLG
instruction sets the Level-0 Interrupt Enable.

2-4

The memory data transfer instructions provide data transfers between the accumulators and memory or
peripheral devices. The load with sign extended is provided to convert 8-bit, twos-complement data to
16-bit data, allowing 16-bit address modification when the 8-bit data length has been selected.

The memory data operate instructions provide operations between the principal working register (AC0) and
memory or peripheral data. This includes both binary and BCD arithmetic instructions. The register data
transfer instructions provide a complete set of transfer possibilities between the accumulators, flag register,
and stack — and include the capability to load immediate data.

Register data operate instructions provide logical and arithmetic operations between any two accumulators.
They may be used for address and data modification to reduce the number of (time-consuming) memory refer-
ences in a program.

The shift and rotate instmections allow eight diffe

scanning, and serial input/output operations.

The miscellaneous instructions include the capability to set or reset any of the 16 bits of the Status Flags
Register individually.

The PACE instruction set is summarized in table 2-3. Refer to table 2-4 for definitions of the symbols used
in the notation for describing the PACE instruction set. Upper-case mnemonics refer to units designated by
fields of the instruction words; lower-case mnemonics refer to the numerical values ¢f the corresponding
fields. For example, in ACdr, AC indicates one of the four accumulators and dr gives the numeric value
that indicates a particular accumulator.

2.6 MEMORY ADDRESSING

Three methods of accessing data by an instruction are available: immediate, direct, and indirect addressing.

2.6.1 Immediate Addressing

A statement that contains the operand value as part of the instruction has an immediate address. Immediate
addressing is limited to certain operation mnemonics. All immediate instructions are absolute since the
operand value does not change when the program is relocated.

2.6.2 Direct Addressing
Direct addressing is the most useful method of addressing available to the PACE user. Its flexibility is due

primarily to the fact that there are three modes of direct addressing: base-page, Program Counter-relative,
and indexed. The addressing mode is specified by the xr field of the instruction as shown in figure 2-2.

15 1 1 1 1 1 10 9 1 8 7 1 1 1 1 1 1 1 0
OPERATION INDEX DISPLACEMENT
(opcode) (xr) (disp)

Figure 2-2. Memory-Reference Instruction Format

9-¢

Table 2-3. PACE Instruction Summary

Opcode

Description Base Source Statement Instruction Format Operation Page
Branch Instructions
15,14,13,12,11,10, 9, 8,7 6 5,4 ,3 2,1 0
Branch On Condition* 4000 BOC cc,address 9 1 0 Oﬂ ce If cc true, (PC) « (PC) + disp, B
Jump 1800 IMP 00011 0 (PC) « EA
Jump Indirect 9800 JMP @ address 100110 (PC) « (EA)
Jump to Subroutine 1400 JSR disp(xr) 00 010 1]|ZXr disp (STK) « (PC), (PC) « EA
Jump to Subroutine Indirect 9400 JSR @ 100101 (STK) < (PC), (PC) « (EA)
Return froni Subroutine 8000 RTS } disp 10000000 (PC) ¢ (STK) + disp
Return from Interrupt 7C00 RTI 01111100 (PC) <« (STK) + disp, IEN=1
Skip Instructions
15,14,13,12,11,10, 9, 8,7 6 5 4 3,2 1,0
Skip if Not Equal F000 SKNE r, 111 1] r If (ACr) # (EA), (PC) « (PC)+ 1, B
Skip if Greater 9C00 SKG o0, 100111 If (ACO) > (EA), (PC) « (PC) + 1, B
Skip if AND is Zero B800 SKAZ 0, {afld”e“ 10111 0fxr disp If [(ACO0) A (EA)] =0, (PC) « (PC) + 1, B
Increment and Skip if Zero 8C00 1Sz disp(xr) 100011 (EA) < (EA) + 1; If (EA) = 0, (PC) « (PC) + 1, B
Decrement and Skip if Zero AC00 DSZ 101011 (EA) « (EA) - 1; If (EA) =0, (PC) « (PC) + 1,B
Add Immediate, Skip if Zero 7800 AISZ r,data 011110/ r data (ACr) < (ACr) + data; If (ACr) = 0, (PC) « (PC) + 1
Memory Data-Transfer Instructions
15,14,13,12.11,10,9, 8,7, 6, 5,4, 3,2 1.0
Load C000 LD o, 110 of r (ACr) « (EA), EA = (ACxr) + disp
Load Indirect A000 LD 0, @ 101000 (ACO) « (EA), EA = ((ACxr) + disp)
Store D000 ST r, @fﬁrgj 110 1] r |xr disp (EA) < (ACr), EA = (ACxr) + disp
Store Indirect B000 ST 0,@ P 10110 0 (EA) « (ACO0), EA = ((ACxr) + disp)
Load with Sign Extended BC0O LSEX 0, 101111 (ACO0) < (EA) bit 7 extended
Memory Data Operate Instructions
15,14,13,12,11,10,9 8 . 7 6 5,4 ,3,2,1,0
AND A800 AND O, 101010 (ACO0) « (ACO) A (EA)
OR A400 OR 0, 10100 1 (ACO) « (ACO) v/ (EA)
Add E000 ADD r, {Zf:;;if 1110] r |xr disp (ACr) « (ACr) + (EA); CY, OV
Subtract with Borrow 9000 SUBB 0, 100100 (ACO) « (ACO) + ~ (EA) + CY; CY, OV
Decimal Add 8800 DECA 0, 100010 (ACO) « (ACO)1q + (EA)qq + CY; CY, OV

* The Branch On Condition Instruction Condition Codes (cc) are given in table 4-1.

NOTE:

The operation equations are reawu from left to right.

Table 2-3.

PACE Instruction Summary (Continued)

Description gzgzde Source Statement Instruction Format Operation Page
‘Register Data-Transfer Instructions 15,14,13,12/11, 10,9 , 8,7, 6,5,4,3,2,1,0

Load Immediate 5000 LI r,data 010 10 0] r data (ACr) <« data (bit 7 extended)

Register Copy ! 5C00 RCPY 010 111 00 0 000 (ACdr) « (ACsr)

Register Exchange 6C00 RXCH } sr, dr o1 1 o011 ¥ [0 0000 0] |@ACd<@ACs

Exchange Register and Stack 1C00 XCHRS 000 111 000 O0O0O0TO0O (ACr)«> (STK)

Copy Flags into Register 0400 CFR 000 001 000 0O0O0O0O0 (ACr) « (FR)

Copy Register into Flags 0800 CRF r 000 01 0| r 00 0O0O0O0UDO0 OO (FR) « (ACr)

Push Register onto Stack 6000 PUSH 011000 00000000 (STK) « (ACr)

Pull Stack into Register 6400 PULL 011 001 0 0000 O0O0GCO (ACr) « (STK)

Push Flags oato Stack 0C00 PUSHF 000 01100 O0O0O0OO0OO0OO0OTO0OQO0 (STK) « (FR)

Pull Stack into Flags 1000 PULLF 000 10000 O0O0O0OO0OOO0OO0O0 (FR) « (STK)

Register Data-Operate Instructions 15,14 13 12/1110,9,8,7 ,6 ,5,4,3,2,1,0

Register Add 6800 RADD 011010 000000 (ACdr) « (ACdr) + (ACsr); CY,OV

Register Add with Carry 7400 RADC 011101 00 0 00 O (ACdr) « (ACdr) + (ACsr) + CY; CY,0V

Register AND 5400 RAND sr,dr 010101l ¥ [000 00 0] | ACd < (ACdr) A (ACsr)

Register Exclusive-OR 5800 RXOR 010110 000 00O (ACdr) « (ACdr) X* (ACsr)

Complement and Add Immediate 7000 CAI r,data 01110 0fTr data (ACr) « ~ (ACr) + data (bit 7 extended)

Shift and Rotate Instructions 15,14,13,12,11,10, 9, 8, 7,6,5,4,3,2,1 0

Shift Left 2800 SHL 001010 (ACr) <« (ACr) shifted left n places, w/wo LINK; B
shift Right 2C00 SHR 001011 (ACr) « (ACr) shifted right n places, w/wo LINK; B
Rotate Left 2000 ROL r,n,2 001000 " n 2 (ACr) < (ACr) rotated left n places, w/wo LINK; B
Rotate Right 2400 ROR 001001 (ACr) <~ (ACr) rotated right n places, w/wo LINK; B
Miscellaneous Instructions 15,14,13,12,11,10, 9, 8,7 ,6 5 4 3,2 1 0

Halt 0000 HALT 00O0O0O0OOO0OOO0OOOO0OO0OO0O0O0 0 Halt

Set Flag 3080 SFLG } fo* 0011 fo 00 0O0O0O0O0OCO (FRgg) < 1

Pulse Flag 3000 PFLG 0011 00000000 (FRgo) < 1, (FRgp) < 0

No Operation. 5C00 NOP 010111000O0UO0O0O0UO0TO00 (PC) « (PC) + 1

* The flags (fc) in the Status Flags Register (FR) are given in table 2-2,

NOTE:

The operation equations are read from left to right.

Table 2-4. Symbols and Notations

Symb?l and Meaning

Notation

AC Accumulator (AC0, AC1, AC2 or AC3).

address Symbol representing a memory location.

B Indicates instruction execution is affected by the state of the BYTE Flag in FR.

BYTE The BYTE Flag in FR.

cc Condition code. A 4-bit value used in conditional-branch instructions.

CY Carry Flag. Indicates the Carry Flag in FR is set or cleared in the instruction.

data 8-bit immediate data field.

disp Displacement. An 8-bit address modified in memory-reference and branch
instructions. Disp is a signed twos-complement number except when nonsplit
base page is referenced; in that case, disp is unsigned.

dr Destination register. Denotes number of accumulator (AC0, AC1, AC2, or AC3).

EA Effective Address. The address actually used in the execution of an instruction.

fc Denotes the number of a flag (15 to 0) in FR.

FR Status Flags Register.

IEN Interrupt Enable Flag in FR.

1 The link indicator in a shift or rotate instruction. If £ equals 1, the LINK Flag
in FR is included in the shift or the rotate instruction.

LINK LINK Flag in FR.

n Unsigned number indicating the number of bit positions to be shifted or rotated.

ov Overflow Flag in the Status Flag Register.

PC Program Counter. During address formation, PC is incremented by 1 to contain
an address 1 greater than the address of the instruction being executed.

T Number of accumulator specified in instruction format.

STK Top word of 10-word last-in/first-out stack.

sr Source register. Denotes number of Accumulator (AC0, AC1, AC2, or AC3).

Xr Denotes the addressing mode: base-page-relative if xr = 00, PC-relative if
xr =01 or AC2- or AC3-relative (indexed) if xr = 10 or 11.

() "Contents of." For example, (EA) is contents of the Effective Address.

[] ""Result of."

~ Ones complement of value immediately to right of ~ .

— ""Replaces."

<~ "Is replaced by."

<> ""Exchange. "

@ When used in the operand field of an instruction, indicates indirect addressing.

10t Modulo 10 addition.

N AND operation.

Vv Inclusive-OR operation.

v

Exclusive-OR operation.

2-8

2.6.2.1 Base-Page Addressing

Memory in PACE is divided into two sections: base page (or base sector) and top sector. Base page is a
section of memory that can be addressed from any location of memory. Top sectoris any portion of
memory that is not base page.

Base-page addressing is specified by the value 00 in the xr field of the instruction. Two types of base-page
addressing are available. The type of base-page addressing selected is determined by the state of the Base
Page Select (BPS) input signal on the PACE microprocessor (see PACE Data Sheet for details on BPS input
signal). When BPS is low (0), the effective address for the instruction is formed by setting bits 15 through 8
to zero and using the 8-bit displacement (disp) field for bits 7 through 0. Thus, the first 256 words of memory
(locations 0 to 255) can be addressed. When BPS is high (1), the effective address is formed by treating bit 7
as the sign bit and setting bits 15 through 8 equal to bit 7 (propagating the sign bit). Thus, the last 128 words
of memory and the first 128 words of memory can be addressed (-128 to +127). The latter technique is useful
for splitting the base-page between read/write memory and read-only memory or between memory and
peripherals. Consequently, base-page addressing provides a convenient method of accessing common constants
or variables or peripherals. Figure 2-3 illustrates base-page addressing.

Memory Map Memory Map
BPS =10 BPS=1
Base Page Base Page
Not Split Split

ST NNNN\C2222NNN

FF801¢ (-128)

Top

Sector Top

Sector

e NN =N i

0

Figure 2-3. Base-Page Addressing

2-9

2.6.2.2 Program Counter-Relative Addressing

A Program Counter-relative address is formed by adding the current contents of the Program Counter (PC)

to the value specified in the operand field. The value is treated as a signed number since its sign bit (bit 7)

is propagated through bits 8 through 15. Thus, Program Counter-relative addressing is permitted from -128 to
+127 locations from the PC value. However, at the time the Program Counter-relative address is calculated,
the Program Counter already is incremented and is pointing to the next memory location. Therefore, the
actual addressing range is -127 to +128 from the current instruction. Figure 2-4 illustrates PC-relative
addressing.

NOTE

When using this addressing mode, the assembler
program automatically assigns value 01 to the index
register field in the machine instruction format,
specifying the Program Counter-relative addressing.

Memory Map

FFFFiq4

(PC) + 127

/// / — (PC)
(PC) - 128

Figure 2-4. PC-Relative Addressing

Using assembly language, the programmer cannot explicitly specify Program Counter-relative addressing. If
the programmer specifies a base-page reference without indexed addressing in the operand field, the assembler
program automatically indicates the base-sector address mode. If a top-sector reference is indicated, the
assembler program attempts Program Counter-relative addressing. If neither of these modes can be used and
indirect addressing is available, the assembler will modify the instruction to make an indirect reference through
a pointer.

If all modes fail, an addressing error occurs.

2-10

2.6.2.3 Indexed Addressing

Indexed addressing enables the programmer to address any location in memory by using a base-register address-
ing scheme. Base-register addressing requires the designation of an accumulator (containing a base address)
and a displacement value for specifying a memory location. PACE adds the contents of the register to the
number formed from the displacement value to yield the address. For example, assume that AC2 containg a
base address of 300, and the displacement value is 120. The displacement is added to the base address and

the result is an address of 420.

Only Accumulators 2 and 3 may be used as base (index) registers, and a base address must be previously
assigned to the selected register before that register is used in an address.

PACE indexed addressing allows the programmer to address 256 words around the base address; that is, the
base address represents the middle of a floating page. The referenced address can be -128 through +127 from
the base.

An indexed address operand ‘contains the displacement immediately followed by the index register address in
parentheses. The register address must be absolute and evaluate to 2 or 3 (Accumulator 2 or 3). The displace-
ment number is treated as a signed 8-bit number from -128 to +127.

NOTE
Only split base page may be indexed throughout its
range.
2.6.3 Indirect Addressing

An indirect address operand specifies the address of a memory location that holds the address of the data to
be used as the effective address by the instruction. Indirect addresses fall into three categories; base page,
Program Counter-relative, and indexed. The initial address is calculated by using the same methods that
are used for direct addresses. Indirect addressing is limited to certain operations and is specified by an @
before the displacement value in the operand field. Indirect addressing is used for long jumps to any location
in memory.

The instruction fields provide the data required to calculate an effective address at execution time. Details of
the possible addressing modes are summarized in table 2-5.

Table 2-5. Address Operands

Type Operand Field Address Calculation
Direct base-page displacement EA = disp

Direct PC-relative EA =disp+ PC
Indirect base-page @displacement EA = (disp)

Indirect PC-relative
Direct indexed
Indirect indexed

EA = (disp + PC)
EA = disp+ ACxr
EA = (disp + ACxr)

displacement (index)
@displacement (index)

NOTES: EA —

ACxr —

effective address specified by the instruction. The
contents of the effective address are used during
execution of an instruction.

stands for displacement value and is an 8-bit, signed

twos-complement number except when base-page address
is specified.

Program Counter.
index register (AC2 or AC3).

2-11

2.6.4 Operator Address Classes

Instruction statement memory-reference operators are separated into three classes according to addressing
capability. The classes are defined as follows:

Class 1 ADD, SUBB, SKG, SKNE, AND, OR, SKAZ, ISZ, DSZ, LSEX, DECA
a. May directly address all of base page.

b. May use indexed addressing with displacement range -128 through 127.
C. If not indexed, assembler program attempts Program Counter-relative addressing

for top-sector reference.

Class 2 LD, ST, JMP, JSR

a. May directly address all of base page.

b. May use indexed addressing with displacement range -128 through 127.

c. If not indexed, assembler program attempts Program Counter-relative addressing
for top-sector reference. :

d May use indirect addressing to address all of memory.

Ce gy Lee Al aressi

NOTE

Indirect addressing for LD and ST Instructions is
restricted to using ACO as the operand register.

€. For a top-sector reference, if the instruction is not already indexed or marked
indirect, and if the use of Program Counter-relative addressing is not possible,
the assembler forces indirect addressing through a pointer. Generation of a
base-page pointer may be avoided by providing an explicit top-sector pointer
(see 5.3.15) within addressing range or by specifying pools (see 5.3.16) of
pointer space in top sector. If the . NOBAS directive (see 5.3.17) is used,
assembler-generated base-page pointers are flagged with a warning error
message.

Class 3 BOC Assembler attempts Program Counter-relative addressing.

2.7 INTERRUPT SYSTEM

The PACE microprocessor has a 6-level priority interrupt structure. Interrupt Level 0 (IR0) has the highest
priority and Interrupt Level 5 (IR5) has the lowest priority. Each level is provided with an individual Interrupt
Enable as shown in figure 2-5. A master Interrupt Enable (IEN) is provided to allow the five lower-priority
levels (IR1 through IR5) to be enabled or disabled as a group. Negative true interrupt request inputs (NIR2
through NIR5) are provided to allow several interrupts to be wire-ORed to each input.

When an interrupt request occurs on the five lower-priority interrupts, the associated Interrupt Request Latch
(IR1 through IR5) is set if the corresponding Interrupt Enable Input is true. Since the latch can be set by any
pulse exceeding one clock period, narrow timing or control pulses can be captured. I the master Interrupt
Enable (IEN) is set, then an interrupt is generated and acknowledged after completing execution of the current
instruction.

During the interrupt sequence, an address is provided by the output of the priority encoder. This address is
used to access memory locations 2 through 6 which contain the addresses of the user's interrupt service routines
for interrupts 1 through 5, respectively (see table 2-6). Before executing the service routine for the interrupt,
the Program Counter is pushed on the stack and IEN is cleared. The interrupt service routine may set IEN after
turning off the Interrupt Enable Flag for the level currently being serviced (or resetting the interrupt request).
The Interrupt Enable Flags may be set by the Set Flag (SFLG) Instruction and cleared by the Pulse Flag (PFLG)
Instruction. If an Interrupt Enable Flag is set or cleared, one more instruction is executed before the interrupt
is enabled or disabled. The Return from Interrupt Instruction (RTI) also may be used to set IEN high. In this
case, there is no delay and a pending interrupt takes effect immediately after execution of RTI.

2-12

The non-maskable level 0 interrupt (IR0) is an exception to the interrupt procedure given on the preceding page.
The level 0 interrupt is serviced by first setting the Level 0 Interrupt Enable (IR0 INT Enable in figure 2-5) low
to lock out all other possible interrupts. Next the Program Counter is stored in a Jocation specified by memory
location 7 (see table 2-6). Then, the instruction at memory location 8 is executed. Storing the Program Counter
contents in a memory location instead of on the Stack prevents generation of a Stack-full interrupt.

To return from a level 0 interrupt, the PFLG 15 or SFLG 15 instruction is executed to set the Level 0 Interrupt
Enable Output high after execution of one additional instruction. The additional instruction is typically a JMP@
through memory location 7, which contains the Program Counter contents address. Interrupt Level 0 is typically
used by the control panel, which can always interrupt the application program and does not affect system status.
Level 0 interrupts are generated by exercising the NHALT (typically the HALT instruction) and CONTIN lines
(see the PACE System Design Manual for details).

IR0
INT
ENABLE
IEN
LEVEL-0 1RO B
REQUEST 4 B)
STACK-FULL
OR -EMPTY S R4
INT REQ IR1
o——R
IE1
NIR2 >o—s ® PRIORITY INTERRUPT
IR2 * ENCODER [(POINTER
o———|r - || ADDRESS
IE2 -
NIR3 | >o—s
IR3
O———R
IE3
NIR 4 >So—s
R4
O———1R
IE4
NOTE
(vrs e ot R OVERRIDES S-INPUT TO LATCHES
N— Vg v
K5
O—————1R
IE5

NS10277

Figure 2-5. PACE Interrupt System

2-13

Table 2-6. Locations of Interrupt Pointers

Memo.r Y Function

Location
2 Interrupt 1 Service Routine Address Pointer
3 Interrupt 2 Service Routine Address Pointer
4 Interrupt 3 Service Routine Address Pointer
5 Interrupt 4 Service Routine Address Pointer
6 Interrupt 5 Service Routine Address Pointer
7 Interrupt 0 Program Counter Save Address Pointer
8 Interrupt 0 Service Routine
L) L]
. 3

2.8 DATA INPUT/OUTPUT

N ST

All data transfers between the PACE CPU and external memory or peripherals takes place over 16 data lines.
Peripheral devices are assigned memory addresses, so any memory-reference instruction can be used for input/
output operations. Because of variations in peripheral devices, depending on the function performed, a standard
input/output operation cannot be described here. See the PACE System Design Manual and the PACE Data Sheet
for details on input/output operations.

2.9 8-BIT DATA LENGTH

In applications where the principal data length is 8 bits, using an 8-bit data memory and taking advantage of the
data-length-selection hardware features may be desirable. The data-length input modifies the operation of
shift instructions and status flags to handle 8-bit data. The instruction memory always is 16 bits wide, and
proper execution of the 16-bit instructions occurs independently of the data length selected. The use of 16-bit
instructions in 8-bit data applications provides higher execution speeds. The hardware design allows the
system to be used in the 8-bit mode for variable data, while, at the same time, using all 16 bits of the PACE
registers and stack to manipulate 16-bit memory addresses. Thus, the 16-bit instruction set is used to mani-
pulate 8-bit data.

NOTE

The use of a status flag to specify data length enables
the microprocessor to be switched between 8- and 16-bit
modes under program control.

For information on using 8-bit data length see 7.4.

2-14

Chapter 3

ASSEMBLY LANGUAGE

3.1 INTRODUCTION

A program is a list of instructions in a specific sequence defined by the programmer to operate on data. An
instruction is a statement that contains two basic parts: an operation code defining the operation to be per-
formed and one or more operands defining the location of the data or specifying a device to be used.

The sequence of instructions in the program performs the following functions:

° Establishes working areas (areas to which data may be moved for manipulation) in storage.

° Specifies constants (such as values used in arithmetic calculations or symbols used to
set switches).

° Specifies the appropriate operations to move data, perform appropriate tests and calcula-
tions, handle exceptional conditions, and arrange data in appropriate output formats.

Many programmers find a flowchart assists in coding instruction statements. A process flowchart contains
all information required by a programmer to write a usable program. Usually, each symbol of a flowchart
represents several statements to be coded. Some of the symbols represent data manipulation activities.
Others represent operations required by the processor. Hosekeeping activities, such as setting counters or
clearing output areas, are typical examples of processor operations.

3.1.1 Assembly Language

Assembly language is a machine-oriented symbolic programming language that allows the programmer to
specify operations and operands with symbolic notations instead of binary notation. The programmer specifies
alphabetic or alphamimeric symbols in place of memory addresses for data and instructions. In addition,

assembly language provides mnemonic operation codes. For example, for a jump to the address labeled
LOOP, could be coded in binary notation as

0001 1000 1111 0101
or in hexadecimal notation as

1 8 F 5
or in assembly language notation as

JMP LOOP

JMP is the symbolic representation of the Jump Instruction, and LOOP is the symbolic representation of
the destination address.

During the hexadecimal coding process, the programmer is responsible for counting address locations and
determining if the jump (in the example) is best executed through the base page, or is performed as a dis-
placement from an indexed value or as a displacement from the present memory position. With assembly-
language coding, if the destination address of the jump is labeled LOOP, the assembler determines the
appropriate addressing mode and displacement, thus relieving the programmer from performing the task,

The assembler program keeps track of the relationship between memory addresses and symbolic terms.

Thus, the assembler program can substitute the appropriate address for the symbolic name in the object

code version of the instruction generated by the assembler. The processcr executes the generated instruction.

In summary, using a symbolic language rather than binary or hexadecimal notation for programming provides

the user with the following important advantages as follows:

° Mnemonic operation codes can be used to designate an operation.

e Data and instruction addresses can be assigned symbolic names for use in subsequent
instructions.

e The ultimate memory location of the program is handled by the assembler or loader.

° The programmer may specify constant data in alphabetic, hexadecimal, or decimal format
rather than binary format.

° Symbolic programs are easily modified because additional statements may be inserted
into an existing statement sequence without concern for changing addresses in the existing
instructions.

3.1.2 Assembler Programs

The statements written in symbolic assembler language must be translated into machine language before the
processor can execute the instructions.

The conversion of the program from a symbolic representation to binary representation is performed by the
assembler program. The assembler program translates the symbolic mnemonics into a binary machine-
language program. This conversion is called the assembly process.

The assembly process starts with the symbolic source program written by the programmer. An example
of a source program is shown in figure 3-1. The statements shown may be punched on paper tape or cards
for input to one of the assembler programs.

The source program contains two basic types of statements: symbolic machine instructions and assembler-
dependent statements, such as directives.

Machine-language instructions are used to request the processor to perform a sequence of operations during
program execution time. Assembly-language instruction statements are a one-for-one symbolic representa-
tion of actual binary machine-language instructions. For each assembly-language instruction statement, the
assembler program generates an equivalent machine-language instruction in the object program.

Operands of machine-language instructions represent storage locations, registers, immediate data, or
constant values. A machine-language instruction statement may be identified by assigning a name (label)
to it. The value of the label is the address of the assembled machine-language instruction.

Directives are used to request the assembler program to perform certain operations during the assembly
process. The requested operations include assisting the programmer in data and symbol definition, checking
and documenting the program, controlling the assignment of storage addresses, program sectioning and
linking, defining data and storage fields, and controlling the assembler auxiliary functions to be performed
by the assembler program. With few exceptions, directives do not result in the generation of any machine-
language code in the object program.

Operands of directives provide the information needed by the assembler program to perform the designated
operation.

Two outputs are generated as a result of running a source program (programmer-generated statements)
through the assembler program: (1) a load module punched on paper tape or cards, consisting of actual
machine-language instructions corresponding to the source program statements, and (2) a program listing
showing source statements side by side with the object code instructions created from the statements. Most
programmers work with the program listing once it is available. An example of a PACE program listing is
shown in figure 3-2.

NN

CODING FORM
[(rrooeaw £ YAMPLE PlocbAM Jrncmme Jomewe [T T T T T T T Teace s oz |
[rrocraumenT . C o0 peg Juomenongeoncs |] | [[[]] [Joaw Il
STATEMENT
+ & 3T o 7 oln 1odn h R 1o 16]17 10 10 20 21 22 0 B AR2S 27 28 20 30 9 52[a3 34 28 36 37 38 30 40 41 43 43 44 48 48 47 48 40 56 98 B5 $E'E4 88 56 87 50 40 c0 o1 o2 89 b 00 00 07 08 48 70 71 32|rs 74 787 S5 PR IR0
cTITLe |ssher, szmore seler (03/01/73)
eLbBL IssdeT 108N PEFCOHENCE ENTRY POINT FLYIM
1SEPARATE ASSeMBLY
1 S$RT sders A VeoTde ¢F Is7NalLeE-wWhRD CONSTANTS INThD ASCENDING
s bepes Al LING SEQUENCE [IS?
H
. SR S¢RT jeALL
; wWheDp VeEeTHR 1AppLESS SF YecTdR
: Weep ecTdlteNGTH-| APILESS $F LAST Whed $F VECT PR
H e oo SNpLMAL ReETUMN
LAG; Wheo o i IF NeN-Zerd, SWAP MADE pubIN& PASS
TAB : =41 SVECTIR ADDLESS
TAREND & s =. +1 ISORT LINIT
E&S Ve 2 L LEGESTER SAVE ALEA
SSPRT: T ,REGS iSAve PEGISTELS
r [, REGST)
ST 2. LEGST 2
ST 3, REGS+3
LLe i OBTAIN Aopress $F PARAMETER LIST
uSH 28Y AuLlide Pc FROM STACK TH ACZ
1 -]
r L FidE SCLEAL FLAG
2 2 (2) ;enN) JF VeCTOR Appless T ACK
ISZ J[‘; -7 cpECLeNeENT gl oRESS
T 2 3 4 B 6 7 8]8 10111213 14 1518]17 18 19 20 2122 23 24 26 26 27 28 29 30 3132]33 34 38 35 37 36 39 40 41 4243 44 46 48 47 48 49 50 8132 3 S4 66565758 50 60 1 62103 64 6366 €7 6e 89 70 71 72[73 74 7 76 77 T8 TR A0

CODING FORM
| PROGRAM £ XAMJPLE PLOGLAM Ivuucmm; Icwmc l] [] | I] I IPAGE 2 o3 I
[[rrocrawmenT, cop e £ — Imsmerondewen [[] [[T | [Joaw 1
STATEMENT
12 JLAQ‘E‘ 8 7 B3 ‘o(?‘ﬂ;g'l‘l:.o'ﬂ. 151617 18 18 20 21 zzl?m:‘gl 27 28 29 30 31 32)33 34 36 36 37 38 39 40 41 42 42 44 45 48 47 4B 4D !ms':;s!l 58 56 57 58 69 €0 81 62 83 64 65 66 87 68 88 70 71 13127'??‘"7':‘1:7‘:;01'=|v
T LT ABEND
2 s, (2) IVEQRTR ALPLESS
S7 I, 7AA
Lo P LD 0, (2) ieeT A VAlpe :
Isxe 0, 1¢3) tChMPARE AGAINGT NeXT VALue
MP TeST, jvatues zN PROER
L [, 1¢3) s SWAP VAL4GS
T o,) (5)
S7 /,o0l3)
z I rse7 sber FLG NiN-2eed
s T /, FlAe) !
7 1 (INCREMENT TALBLE PAINTER
pc Ly 0
Ke 6,TABEND s FIN I sHeP THIS PRSS?
ME dh?/’ NG
2 o Flide i YES — DIp We MAKE A SWA/?
#7152 , 0
MP w2 cyes - CLONTINeE
TM P buT IN$ - SORT péAe
I¥; o, o JINITIALIZE £b@ NeXT PA4SS
ST LELAG
) TAA
M rY-Ya
uT:) Reges :zesr?ze rECISTERLS
L2 L REGSH/
1 2 3 4 § 6 7 8}9 107111213 141561817 18 18 20 2122 23 24 26 2¢ :1:-1::0:112])::‘:':0:1:-n-ou-2auu-nuuusonnnsaulsnnuaonul)uulu"luumnunnuununno

CODING FORM

OGN £ XAM PLE P LoGAAM Jeoncwme Jomowe [[[T T T [| Jeaes o3 |
[ProcrawMER T C.0 DE R Insmuenond eones T T T [1 | Joae 1
STATEMENT
TREE GPERATION FERAND ! ~COMMENTS TORNTIFICATION
9 2 2 4 6 @ 7 8{% 1011121314 1616]17 18 19 20 21 2223 24 28 26 37 28 29 30 31 32|33 34 I8 36 37 38 30 40 41 42 42 44 4B 46 47 48 49 60 81 52 51 54 €8 56 57 68 §3 60 91 62 63 &4 05 66 67 63 68 70 71 72§73 74 78 76 77 Y8 78 60,
2 2, LGS +2
L O REGSH3
eTs P
2 END

Figure 3-1.

Example Source Program

<o
|
W

NS10321

FACE CROSS ASSEMELER REV-A 1682174

SSORT SIMPLE

O B [L B S R N

7 oasin

" BB22
: o6z

-

't

Ao Dooe o

DR R
Do R s B R
0 m D w0l

GEEt
BEEE
[slslsig
9816
aail
@ELe
a1z

: @E14
GELS =

GE1E
Sa1F
15 5
Bazl

anzd
GR2S
BRzZs
AT
aazo
[Ezs
BEZA
BazB
aazc

o
R,

) PO 3

Jo R B

aeav
AFE
DSFE
DaFE
LDFE
EEE0
26

SEEAE
[aFl
CESL
TEFF

X
oo

DOF@
CESR

1965
il
DIEAL
LyFea
SiG1

2 DSES

TEA1
SCCa
SDEZ
12F4
CADF
=15 5]
1961
1264
S0048
[ERR RIS
cDDA
12EC
CiDR
CSDhA
CabA
CDOA
2002
aeaa

SORT Ca2s01.

. TITLE

[=i
RERE{ R

ORT. CSIMPLE SORT (8281737
. :OAM REFEREMNCE ENTRY POINT F
i SEFARATE ASSEMEBLY
SOORT SORTS A OVECTOR OF SIMGLE-WORD CONSTRNTS INTO A

aRLER. CRLLIMNG SEQUENCE IS:
JERE SOORT s CRLL
C WORD YECTOR ADDRESS OF YECTOR

- WORE WECTOR+LENGTH-1 ARDRESS OF LAST WORDR OF YWEC
s NORMAL RETURN

A FLAG: CWORD 5} i IF MON-ZERD. SHAF MADE DURI

TAE L=+l JNECTOR ADDRESS

TAEBEHD . . = +1 FSORT LIMIT

L= 44 JREGISTER SAVE AREA
T =T &, REGS FSAVE REGISTERS
T =T i REGSHL
T =T 2. REGS+E
T = I, REGSHZE
[z} UL = JOBRTAIM ADDRESS OF PARAMETER
] MUISH = BN PULLING PC FROM STRCK TO
A LI o,
T o7 a, FLLAG s CLEAR FLAG
f L[R s P EMD OF VECTOR RDORESS TO AC
A RISE -1 s DECREMENT ARDRESS
T = Z. TREEND
i LD = s VWECTOR ADDRESS
s T ST =
A Lonr: L.[x 5] JGET A WALLE
A SEG P COMPARE AGAINST MEST VALUE-
T JHP SWALUES IN ORDER
21 LD 3 SHAR WALLES
f =T
A =T
=] LI JSET SORT FLAG NOM-ZERO
T =
A TEST: AIZZ . 3 INCREMENT TRBLE POINTER
A RCPY . a8
T SEG G, TREEND s FINISGHEDR THIS PRSS?
T JMFE L.OnF M
T L[B FLAG P WES ~ DID WE MAKE A SWAF?
2] RISZ s
T JHF R JWES — COMTINUE
T JHF ouT MO - SORT DOMNE
A LI a0 s INITIALIZE FOR NESXT FASS
T =3 @, FLAG
T LD . TRE
T JME LOoF
T OUT: LD &, REGS i RESTORE REGISTERS
T LD 1. REGS+1
T LD 2. REGS+2
T LD . REGS+E
A RTS 2
EMD

NS10322

Figure 3-2. Example of PACE IMP-16 Cross Assembly Listing

As a source program is assembled, an analysis for errors in the use of the assembly language is performed.
Any detected errors are indicated on the program listing to assist the programmer in debugging.

The flowchart in figure 3-3 shows the relationship of the assembler program to the programming process.

In summary, a program goes through six basic processes: (1) design, (2) coding of source statements,
(3) assembly run, (4) debugging, (5) test run, and (6) production run,

CODING
SHEETS KEYPUNCH SOURCE
PROGRAM

PROCESSOR

OBJECT
PROGRAM

PROGRAM
LISTING

OBJECT
PROGRAM

NS10323
Figure 3-3. Programming Process

3.2 ASSEMBLER CODING CONVENTIONS

Assembly language programs are structured around source statements that contain from one to five fields as
follows: label (optional), operation (mandatory), operand (usually required), comment (optional), and identi-
fication sequence (optional). The fields must be entered in the following order.

[label field] operation field operand field [comment field] [identification field]
The sample coding form shown in figure 3-1 has the five fields delineated; however, since the assembler program
accepts 'free-form' statements, the programmer is permitted to disregard field boundaries. For clarity and
readability, use of field boundaries, wherever possible, is highly recommended.
The entry in each of the five fields must meet certain specifications, and, in many cases, the programmer

must understand how the assembler program executes certain types of instructions in order to code legal
statements. The following paragraphs describe the entry requirements for the five fields.

3-5

3.2.1 Label Field

The label field is optional and may contain a symbol used to identify the current statement when referenced by
other statements. More than one label may appear in the label field, in which case any of the labels may be
used to reference the labeled location, Each label in the label field is terminated by a colon (:). For example:

A: B: C: LD AC0,(AC2)

A label may appear by itself in a statement; in which case, it refers to the next instruction or data word in the
source program. For example:

START:
ST AC0,STADD (AC2)

3.2.2 Operation Field

The operation field is mandatory and contains a mnemonic that defines an assembler operation (such as a
directive) or a machine operation (such as a load).

Instruction statements define the machine operations. Valid instruction mnemonics are listed in appendixes B
and C. Directive statements control the process of program assembly and may generate data. Valid directive
mnemonics are listed in appendix D.

The operation field must be terminated by one or more blanks.

3.2.3 Operand Field

The operand feld contains entries that identify data to be acted upon by the statement. A space is not required

to terminate the field. An operand entry is composed of one or more terms that represent a value. The value
may be inherent in the term, in which case the term is a constant (3.3.2.1), or the value may be assigned by

the assembler program during assembly; in which case, the term is symbolic (3.3.2.2). An arithmetic combina-
tion of terms is reduced to a single value by the assembler program as described in 3.3.3. The relationship of
terms is shown in figure 3-5.

3.2.4 Comment Field

Comments are optional descriptive notes printed on the program listing for programmer reference. Comments
should be included throughout the program to explain subroutine linkages, assumptions made, formats of

inputs processed, and so forth. A comment may follow a statement, or the comment may be entered on a
separate statement line(s) since the comment has no affect on the assembled program and is printed only on

the program listing.

The following conventions apply to comments:

1. A comment must be preceded by a semicolon (;).
2. All valid characters, including blanks, may be used in comments.

3. Comments should not extend beyond column 72, but a comment may be carried over on the
following line (preceded by a semicolon).

3-6

3.2.5 Identification Sequence Field

The identification sequence field is an optional entry that specifies program identification and/or statement
sequence characters. If the field or a portion of the field is used for program identification, the identification
is punched in the statement cards and is listed on the program listing. * This field is generally not used with
paper tape input.

As an aid to keeping source statements in order, the programmer may code a sequence of characters in
ascending order in the identification sequence field.

The identification sequence field is fixed in columns 73 through 80 of the source image. Columns 73 through 80
are ignored by the assembler but are printed in the program listing. *

3.2.6 Example Statement

An example assembler statement is as follows:

Label Operation Operand Comment
LOOP: LD AC0,1(AC2) sGET A VALUE

The label, LOOP, is used to refer to the example statement in later (or previous) statements; in effect, to
loop to the statement. The mnemonic operation code, LD, stipulates the type of operation. The operand
field specifies an Accumulator (AC0), an index register (AC2), and a displacement (+1), and comment field
(which contains a note that may be used by the programmer to identify quickly the action defined by the state-
ment). See chapter 7 for other statement examples.

3.3 BASIC ELEMENTS

PACE assembly language statements have well-defined formats constructed from the following elements.

3.3.1 Character Set

Assembly language statements are written using the following letters, numbers, and special characters.

Letters: A through Z
Numbers: 0 through 9
Special Characters: 1$%& 7/ ()*+,-./:;<=>@b#A

Note: b denotes a blank
Except for the lower-case letters, any of the printable characters listed in appendix A, "ASCII Character Set
in Hexadecimal Representation, ' may be specified with a . ASCII directive statement (see 5.3.9 for a descrip-
tion of the .ASCII directive).

Example:
.ASCII 'ORDER # 32/65'

Nonprintable or printable characters may be specified with a . WORD directive statement. Directive state-
ments are discussed in chapter 5.

Example:
D 0A ;ASCIl CARRIAGE RETURN

* In some cases, the width of the carriage of the output device that prints the listing is not wide
enough to allow inclusion of the information in the identification sequence field in the listing.

3-7

3.3.2 Terms

The relationship of terms is shown in figure 3-4. The various types of terms are described in the following
paragraphs.

Terms
|
|
| |
Constants Symbols
| l I |
Numbers Strings Labels Nonlabels
] I | I |
Decimal Hexadecimal Alpha Numbers Special
Characters

! |
X' Digits 0 Digits

Figure 3-4. Relationship of Terms

3.3.2.1 Constants

A self-defining term, or constant, has its value inherent in the term. The assembler program does not
assign a value to the term, but derives the value from the term.

Constants are used to specify immediate data, addresses, registers, and input/output information to the
assembler program. Three types of constants are available: decimal, hexadecimal, and character (or
string).

A decimal constant is zero or a decimal integer that does not begin with zero. For 16-bit data the value range
is 0 to 65,535 for an unsigned decimal integer and +32,767 to -32,768 for a signed decimal integer. For 8-bit
data, the value range is 0 to 255 for an unsigned decimal integer and +127 to -128 for a signed decimal integer.
It should be noted that having signed and unsigned data are just a coding convenience made available because
some instructions treat data as signed values and others treat data as signed values. For example, in 8-bit
data, -11¢9 and 25510 both convert to FFjg internally, The processor itself always does signed arithmetic,
except in BCD.

Examples:
decimal constants
— — N\
.WORD 0, 40000, -3165, +32
LI 0,0

A hexadecimal self-defining term may be specified in either of two ways. The term may start with X'; or
the term may start with a leading zero. The range of hexadecimal numbers is 0 to FFFFg for 16-bit data
and 0 to FFy¢ for 8-bhit data.

Examples:

hexadecimal constants
e e,

4 hY
.WORD X'FF,X'10
.WORD X'1FE,X'FFFF
AISZ 1, 01F
LI 0, X'40

A character constant is defined as a string. A string is a series of characters or a single character enclosed
in single quote marks (for example, 'THIS IS A STRING'). All letters, numbers, and special characters
(including blanks) may be specified in a string. If a single quote mark is part of the character string, it
should immediately be preceded by another single quote mark; for example, 'DON"T DO IT' represents DON'T
DO IT. A null string (") will cause the assembler to generate a word containing two blanks. String characters
are translated to ASCII code (see appendix A) in memory with each character occupying 8 bits. Refer to the
.ASCH directive described in 5.3.9.

Examples:
ASCII constants

T

.ASCII 'NUMBER'
LI 0, '?'/256
.WORD '"TY'

3.3.2.2 Symbols

A symbol is a character or a combination of characters used to identify a memory location, a register, or any
other program element. Symbolic representation of elements is superior to numeric representation for the
following reasons:

1. You can give meaningful names to the elements in the program.

2. You can debug a program more easily, because the symbols are referenced in the map at
the end of the program.

3. You can maintain a program more easily, because you can change a symbolic value in one
place and its value will be changed throughout the program.
Symbols are defined by one of two methods:

1. By appearing in a label field in a statement (see 3.2.1).
symbol

o

SUB1: LI 0,0 ;CLEAR ACCUMULATOR 0

The value assigned to a symbol appearing in a label field is the address of the instruction,
data, or storage location named by the symbol.

2. By using an assignment statement to assign a specific value to a symbol (see 5. 2).
symbol
/T
AC2 = 2 sACCUMULATOR 2

A symbol that is used to reference a location or a value may be further identified as a global symbol by the
.GLOBL directive (see 5.3.12), thereby permitting other programs to access the value of the symbol.

If the address of an item changes upon program relocation, the symbol is considered a relocatable term. If
the address does not change upon program relocation, the symbol is an absolute term.

Symbol construction must meet the following restrictions:

1.

2.

3.

A symbol may contain one or more alphanumeric characters, the first of which must be
either a letter or a dollar sign ($).

Although up to 32 letters may be included, only the first 6 letters are recognized by the
assembler program. Therefore, the programmer must ensure that a long symbol is
unique in the first six characters.

If the first character in the symbol is a dollar sign ($), the symbol is defined as a local
symbol. The .LOCAL directive allows the programmer to specify that local symbols
appearing between two . LOCAL directive statements have a certain meaning only within
that region of the program. This enables the programmer to use common mnemonics
throughout a program without causing a conflict of names.

NOTE
A long local symbol must be unique in the first five
characters.
No special characters or embedded blanks may appear within a symbol.

Symbol values cannot exceed a positive value of 65,535 or a negative value of 32,768 for
16-bit data or addresses, or 255 and 128, respectively, for 8-bit data.

Scme examples of symbols follow:

Legal Symbols Illegal Symbols Reason Illegal

$ABC LONGSYMBOL1 First six characters are
LONGSYMBOL LONGSYMBOIL2 not unique.

$ABC2 2AB First character must be alphabetic or a
$2 #CDE J dollar sign ($).

XYZ XYZ$ Last character is not alphanumeric.
$ABCDEF $ABCDE First five characters of the local
$ABC2EF $ABCDF symbols are not unique.

3.3.3 Expressions

Operand entries (see 3.2.3), consisting of either single term or an arithmetic or a logical combination of
terms, are called expressions. Expressions are either simple or multiterm. Simple expressions are
single terms, such as a symbol or a constant. Multiterm expressions are simple expressions that are
combined using the arithmetic and logical operators shown in table 3-1. The multiterm expression is
evaluated by the assembler program in a left-to-right order regardless of the operators used between the
terms. Parentheses are not permitted for the purpose of grouping arithmetic and/or logical operations;
they have special significance in defining certain assembler functions.

The result of the expression evaluation is a 16-bit value.

Examples:

TBLEND: .WORD TABLE + X'10
SKNE ACO, TBL+ 3
.SET ENTRY, ENTRY1 + ENTRY2 - 4

3-10

3.3.3.1 Arithmetic and Logical Operators
Table 3-1 lists the arithmetic and logical operators available for forming expressions.

Table 3-1. Arithmetic and Logical Operators

Operator Function Type
+ Addition Binary
- Subtraction Unary or binary
* Multiplication Binary
/ Division Binary
% Logical NOT Unary
& Logical AND Binary
! Logical OR Binary
< Less than Binary
= Equal to Binary
> Greater than Binary

A unary operator operates upon one operand and appears in the format 'op opnd' (for example, -9). A
binary operator operates upon two operands and appears in the format 'opnd; op opndy' (for example, A&B).

In the expressions "A< B", "A = B", and "A >B" the result is a one if the condition is true and a zero if the
condition is false.

3.3.4 Literals

A literal is a constant, symbol or expression in an operand field that represents a value literally rather than
the address of a value. For example, a literal 7 represents the value 7.

The format for literals is
=literal
The address field of any single word instruction, if preceded by an equal sign, becomes a literal value.

The value of the expression is allocated memory in the same way as assembler-generated indirect pointers.
For example:

SKNE AC0,=1000
will generate code similar to the programmer-specified
SKNE AC0,D1000

D1000: .WORD 1000
Specifying =SYMBOL will cause a reference to a word containing the address of SYMBOL.

NOTE

in assembly language, BCD literals must be specified
as hexadecimal. For example:

DECA AC0,=099 ;ADD BCD 99 TO ACO

3-11

INSTRUCTION SET

The assembly language instruction set of PACE provides arithmetic, logic, branch, skip, shift, and other
operations between the accumulators and memory and other registers.

Instruction statements, when assembled, generate the object (machine) code that defines the operations the
processor will perform.

The PACE instruction set is summarized in table 2-3 and appendix B. Refer to table 2-4 for definitions of
the symbols used in the notation for describing the PACE instruction set.

4.1 BRANCH INSTRUCTIONS

The seven instructions in this group are used for conditional and unconditional jumps within a routine, jumps
to subroutines, and returns from subroutines and interrupts. The Branch Instructions and mnemonics are
as follows:

Branch on Condition « BOC
Jump . ¢ .+ ¢ + e+ ¢« & e o s+ e o o« . dMP
Jump Indirect+ + . . .« « « . . . JMP@
Jump to Subroutine JSR
Jump to Subroutine Indirect JSR@
Return from Subroutine RTS
Return from Imterrupt + « . « . RTI

NOTE

JMP@ and JSR@ are specified to the assembler as
JMP and JSR with indirection specified by the
address field.

The source statement format, the instruction format and the description of the operation of each Branch
Instruction follows.

BRANCH ON CONDITION (BOC)

SOURCE STATEMENT INSTRUCTION FORMAT
Mnemonic Operands 5 1212 8)7 0
BOC cc,address 0100 cc disp

Operation: If cc true, (PC) - (PC) + disp, B

If the condition identified by the code, cc, is true, the value of the displacement, disp, is added to the
contents of the Program Counter, (PC), and the address formed is stored in PC. The next instruc-
tion is fetched from the location designated by the new contents of PC. If cc is not true, PC is incre-
mented by 1 and the instruction following the BOC is executed. The condition codes are listed in
table 4-1.

NOTE

PC addresses the location following the BOC when
the addition occurs (that is, the branch is relative
to the next instruction after the BOC).

Address Class: 3

4-1

Table 4-1. Branch Conditions

Condition Code (cc) Mnemonic Condition
0000 STFL Stack full.
0001 REQO (ACO0) equal to zero (1).
0010 PSIGN (ACO0) has positive sign (2).
0011 BITO Bit 0 of ACO set.
0100 BIT1 Bit 1 of ACO set.
0101 NREQO (ACO) is nonzero (1).
0110 BIT2 Bit 2 of ACO is set.
0111 CONTIN CONTIN (continue) input is high.
1000 LINK LINK is set.
1001 IEN IEN is set.
1010 CARRY CARRY is set.
1011 NSIGN (ACO0) has negative sign (2).
1100 ov OV is set.
1101 JCi3 JC13 input is high.
1110 JC14 JC14 input is high.
1111 JC15 JC15 input is high,
NOTES: 1. If selected data length is 8 bits, only bits 7 through 0 of ACO are
tested.
2. Bit 7 is sign bit (instead of bit 15) if selected data length is 8 bits.

JUMP (JMP)
SOURCE STATEMENT INSTRUCTION FORMAT
Mnemonic Operands 5, , , , o9 87, ., ., ., 0
IMP {zil;i;'gis; 00011 0 xr disp

Operation: (PC) = EA

The effective Address, EA, replaces the contents of the Program Counter, (PC). The next instruc-
tion is fetched from the location designated by the new contents of PC.

Address Class: 2

JUMP INDIRECT (JMP@)

SOURCE STATEMENT INSTRUCTION FORMAT

Mnemonic Operands 5, , Joy9,8f7, ., . 0

JMP @a‘ddress 10011 0fxr disp
@disp(xr)

Operation: (PC) = (EA)

The contents of the Effective Address, (EA), replace the contents of the Program Counter, (PC).
The next instruction is fetched from the location designated by the new contents of PC.

Address Class: 2

JUMP TO SUBROUTINE (JSR)

SOURCE STATEMENT INSTRUCTION FORMAT
Mnemonic Operands 5, , , , Jdoj9 847 . ., ,0
JSR at_idress 00010 1| xr disp
disp(xr)

Operation: (STK) = (PC), (PC) = EA

The contents of the Program Counter, (PC), are stored on the top of the Stack, (STK). The
Effective Address, EA, replaces the contents of PC. The next instruction is fetched from the
location designated by the new contents of PC.

Address Class: 2

JUMP TO SUBROUTINE INDIRECT (JSR@)

SOURCE STATEMENT INSTRUCTION FORMAT
Mnemonic Operands 5, , , , 109, 8/7 ., ,0
JSR @address 10010 1|zxr disp
@disp(xr)

Operation: (STK) - (PC), (PC) = (EA)

The contents of the Program Counter, (PC), are stored on the top of the Stack, (STK). The contents
of the Effective Address, (EA), replace the contents of PC. The next instruction is fetched from
the location designated by the new contents of PC.

Address Class: 2

RETURN FROM SUBROUTINE (RTS)

SOURCE STATEMENT INSTRUCTION FORMAT
Mnemonic Operand i5, . . 817, L0
RTS disp 100 00 000 disp

Operation: (PC) = (STK) + disp

The sum of the contents of the top of the Stack, (STK), and the displacement, disp, replaces the
contents of the Program Counter, (PC). The next instruction is fetched from the location
designated by the new contents of PC.

NOTE

RTS is used primarily to return from subroutines
entered by JSR.

RETURN FROM INTERRUPT (RTI)

SOURCE STATEMENT INSTRUCTION FORMAT
Mnemonic Operand 5, , , . .8\7T, ., .0
RTI disp 01111100 disp

Operation: (PC) = (STK) + disp, IEN=1

The sum of the contents of the top of the Stack, (STK), and the displacement, disp, replaces the
contents of the Program Counter, (PC). The Interrupt Enable Flag, IEN, is set. The next
instruction is fetched from the location designated by the new contents of PC.

NOTE

RTI is used primarily to exit from an interrupt
service routine.

4.2 SKIP INSTRUCTIONS

The six instructions in this group are used primarily to control loops and maintain counters. The Skip
Instructions and mnemonics are as follows:

Skipif NotEqual . . .« + . - « « « « . . SKNE
SkipifGreater « + + « « « « o« o+« « « . o BSKG
Skip if ANDis Zero. + + « « o+ o« « « « « « SKAZ
Increment and Skipif Zero ISZ
Decrement and Skipif Zero + . . . DSZ
Add Immediate, Skipif Zero AISZ

The format of the source statement, the instruction format, and the description of the operation of each Skip
Instruction follows.

SKIP IF NOT EQUAL (SKNE)

SOURCE STATEMENT INSTRUCTION FORMAT
Mnemonic Operands 15 JA2(11 1019 84§47 . 0
SKNE r,afidress 1111 r Xr disp
T, disp(xr)

Operation: If (ACr) # (EA), (PC)=— (PC)+ 1, B
If the contents of Accumulator r, (ACr), do not equal the contents of the Effective Address, (EA),
the next instruction in sequence is skipped. The contents of ACr and the contents of EA are not

altered. If 8-bit data length is selected (BYTE = 1 in FR), only bits 7 through 0 are compared.

Address Class: 1

SKIP IF GREATER (SKG)

SOURCE STATEMENT INSTRUCTION FORMAT
Mnemonic Operands 5, , , o0y 8y7, 0
0,address 100111} r disp
SKG {0 , disp(xr)

Operation: If (AC0) > (EA), (PC) = (PC)+ 1, B

The contents of Accumulator 0, (AC0), and the contents of the Effective Address, (EA), are compared
as 16-bit signed numbers. If the contents of ACG is greater (more positive) than the contents of EA,
the next instruction is skipped. The contents of ACO and the contents of EA are not altered. If 8-bit

data length is selected (BYTE = 1 in FR), only bits 7 through 0 are compared.

Address Class: 1

SKIP IF AND IS ZERO (SKAZ)

SOURCE STATEMENT INSTRUCTION FORMAT
Mnemonic Operands 5, , , , /(0{9 87, ., .0
0,address 101110} xr disp
A
Skaz {O,disp(xr)

Operation: If [(ACO) A (EA)] = 0, (PC) = (PC)+ 1, B

The contents of Accumulator 0, (AC0), are ANDed with the contents of the Effective Address, (EA).
If the result equals zero, the next instruction in sequence is skipped. The contents of ACO and the
contents of EA are not altered. If 8-bit data length is selected (BYTE = 1 in FR), only bits 7 through
0 are tested. This instruction may be used to test one or more bits in a memory word.

Address Class: 1

4-5

INCREMENT AND SKIP IF ZERO (ISZ)

SOURCE STATEMENT INSTRUCTION FORMAT
Mpemonic Operands 5, , , , 9817, ., ., ,,0
address 10001 1}xr disp
1Sz .
disp(xr)

Operation: (EA) - (EA) + 1; if (EA) = 0, (PC) == (PC) + 1, B

The contents of the Effective Address, (EA), are incremented by 1. If the new contents of EA equal
zera, the next instruction in sequence is skipped. If 8-bit data length is selected (BYTE = 1 in FR),
only bits 7 through 0 are tested.

Address Class: 1

DECREMENT AND SKIP IF ZERO (DSZ)
SOURCE STATEMENT INSTRUCTION FORMAT

Mnemonic Operands 15, , 10{9, 8} 7 0

! 1 ! A ! ! L] ! 1 !

DSZ a(.idress 101 01 1} xr disp
disp(xr)

Operation: (EA) = (EA) - 1; if (EA) = 0, (PC) = (PC)+ 1, B

The contents of the Effective Address, (EA), are decremented by 1. If the new contents of EA equal
zero, the next instruction in sequence is skipped. If 8-bit data length is selected (BYTE = 1 in FR),
only bits 7 through 0 are tested.

Address Class: 1

ADD IMMEDIATE, SKIP IF ZERO (AISZ)

SOURCE STATEMENT INSTRUCTION FORMAT
Mnemonic Operands 5, , , , Jo0j9 87, ., , , 0
AISZ r,data 011110 T data

Operation: (ACr) = (ACr) + data; If (ACr) = 0, (PC) == (PC)+ 1

The contents of Accumulator r, (ACr), are replaced by the sum of the contents of ACr and data.
The initial contents of ACr are lost. If the new contents of ACr equal zero, the contents of the
Program Counter (PC) are incremented by 1, skipping the next instruction in sequence. This
instruction always tests the full 16-bit result, independent of the data length selected.

NOTE

Testing the 16-bit result in conjunction with no
change {o the status indicators allows AISZ to

be conveniently used for modifying 16-bit index
values while working with 8-bit data.

4-9

4.3 MEMORY DATA-TRANSFER INSTRUCTIONS

The five instructions in this group are used for data transfers between registers and memory or peripherals.
The Memory Data-Transfer Instructions and mnemonics are as follows:

Toad ¢« + ¢ ¢ ¢ ¢ ¢« ¢ ¢ o o« + e« o « o 1D
LoadIndirect +« +« « « . .+ . . LD@
Store « ¢ ¢ ¢ e i 4 e e e e e e e e ST
Store Indirect . . e + s+ +« e +« o « . . ST@

Load with Sign Extended LSEX

The source statement format, instruction format and the description of each Memory Data-Transfer Instruction
follows.

LOAD (LD)
SOURCE STATEMENT INSTRUCTION FORMAT
Mnemonic Operands i5, , ,i2i11049,8(7, , , , , , ,0
r,address 1100 r Xr disp
LD .
r, disp(xr)

Operation: (ACr) = (EA); EA = (xr) + disp
The contents of the Effective Address, (EA), replace the contents of Accumulator r, (ACr). EA is

the address formed by the sum of the contents of the index register, (xr), and the displacement,
disp. The initial contents of ACr are lost; the contents of EA are not altered.

Address Class: 2

LOAD INDIRECT (LD@)

SOURCE STATEMENT INSTRUCTION FORMAT

Mnemonic Operands 15, , , /10 9v8 T o v 0

LD 0, @address 10100 0f xr disp
0, @disp(xr)

Operation: (AC0) = (EA); EA = ((xr) + disp)

The contents of the Effective Address, (EA), replace the contents of Accumulator 0, (AC0). EA is
the contents of the address formed by the sum of the contents of the index register, (xr), and the
displacement, disp. The initial contents of ACO are lost; the contents of EA and the location that
designates EA are not altered.

Address Class: 2

4-7

STORE (ST)

SOURCE STATEMENT INSTRUCTION FYORMAT

Mnemonic Operands 15, , 12)111049 8|7, , , , , 0

r,address 110 1| r Xr disp
ST N
r,disp(xr)

Operation: (EA) = (ACr); EA = (xr) + disp

The contents of Accumulator r, (ACr), replace the contents of the Effective Address, (EA). EA is
the address formed by the sum of the contents of the index register, (xr), and the displacement, disp.
The initial contents of EA are lost; the contents of ACr are not altered.

Address Class: 2

STORE INDIRECT (ST@)

SOURCE STATEMENT INSTRUCTION FORMAT
Mnemonic Operands 5 ., , /d0l9 8{7 , , . , ,0
gT 0,@address 10110 0 xr disp
0, @disp(xr)

Operation: (EA)= (ACO0); EA = ((xr) + disp)

The contents of Accumulator 0, (AC0), replace the contents of the Effective Address, (EA). EA is
the contents of the address formed by the sum of the contents of the index register, (xr), and the
displacement, disp. The initial contents of EA are lost; the contents of ACO and the location that
designates EA are not altered.

Address Class: 2

LOAD WITH SIGN EXTENDED (LSEX)

SOURCE STATEMENT INSTRUCTION FORMAT

Mnemonic Operands 5, , , , 09, 8/7 , , , ., .90
0,address 10111 1f xr disp

LSEX { 0, disp(xr)

Operation: (AC0) = (EA) bit 7 extended

The contents of Accumulator 0, (ACO), are replaced by the contents of the Effective Address, (EA),
with bit 7 (the sign bit) extended through bits 15 through 8. The initial contents of ACO are lost; the
contents of EA are not altered.

NOTE
The LSEX Instruction allows 8-bit arithmetic data

: 1 T S D T PR o J - M. D S O T ot o oY
tO Ve aded LIroii ail o-pit data meimory Or peripii-
eral device register and to be operated on as 16-bit
arithmetic data.

Address Class: 1

4-8

4.4 MEMORY DATA-OPERATE INSTRUCTIONS

The five instructions in this group provide arithmetic and logic operations between registers and memory.
The Memory Data-Operate Instructions and mnemonics are as follows:

AND . &« + 4 o o o o s s o o » « « . AND
OR + « o o o s o o o « o« « o« +« « + OR
Add . + +« + + ¢ « « « « o s+ s+ + « . ADD

Subtract with Borrow . « « +« « « « « « « o« SUBB
DecimalAdd. . . « ¢« +« ¢« « « « + + o+ o+ DECA

The source statement format, the instruction format and the description of the operation of each Memory Data-
Operate Instruction follows.

AND (AND)
SOURCE STATEMENT INSTRUCTION FORMAT
Mnemonic Operands 5, , , , /A0l9 837 . . ,0
0,address 10101 0} xr disp
AND {O,disp(xr)

Operation: (ACO) = (ACO) A (EA)

The contents of Accumulator 0, (AC0), and the contents of the Effective Address, (EA), are ANDed,

and the result is stored in AC0. The initial contents of ACO are lost; the contents of EA are not altered.
This instruction is generally used to clear data bits. The truth table for this instruction is shown
below.

ACo | EAp | ACOL A EAy

= =O o
= O O
o o O

b = bits 15 to 0

Address Class: 1

OR (OR)

SOURCE STATEMENT INSTRUCTION FORMAT
Mnemonic Operands 5, , 109 87, , , , , , .0
OR 0,address 1010 0 1| xr disp
0,disp(xr)

Operation: (AC0) == (ACO) v (EA)

The contents of Accumulator 0, (AC0), and the contents of the Effective Address, (EA), are inclusively-
ORed. The result is stored in ACO. The initial contents of ACO are lost; the contents of EA are not
altered. This instruction is generally used to set data bits. The truth table for this instruction is
shown below.

ACOb EAb ACOb \Y EAb

0 0 0
0 1 1
1 0 1
1 1 1
b=Dbits15to 0
Address Class: 1
ADD (ADD)
SOURCE STATEMENT INSTRUCTION FORMAT
Mnemonic Operands 15, , ,12{1110{9 8|7, , , . 0
ADD r,ax.idress 1110} r Xr disp
r, disp(xr)

Operation: (ACr) = (ACr) + (EA); CY, OV

The contents of Accumulator r, (ACr), are added to the contents of the Effective Address, (EA), and
the sum is stored in ACr. The Carry Flag, CY, is set if a carry from the most significant bit
position occurs; otherwise, it is cleared. The Overflow Flag, OV, is set if an overflow occurs;
otherwise it is cleared (see table 2-2 for definition of overflow).

SUBTRACT WITH BORROW (SUBB)

SOURCE STATEMENT INSTRUCTION FORMAT
Mnemonic Operands 5 , , 9817, ., ., , ,0
SUBB O,az.idress 1001 0 0 xr disp

0, disp(xr)

Operation: (ACO) = (ACO) + ~ (EA) + CY; CY, OV

The contents of Accumulator 0, (AC0), and the ones complement of the contents of the Effective
Address, (EA), and the Carry Flag, CY, are added, and the sum is stored in ACO. The initial
contents of ACO are lost; the contents of EA are not altered. The Carry Flag is set if a carry
from the most significant bit position occurs; otherwise, it is cleared. The Overflow Flag, OV,
is set if an overflow occurs; otherwise, it is cleared. (See table 2-2 for definition of overflow.)

4-10

DECIMAL ADD (DECA)

SOURCE STATEMENT INSTRUCTION FORMAT

Mnemonic Operands i, , , , ,0/9 87, , , , , 0O
0,address 1000 1 0f xr disp

DECA { 0, disp(xr)

Operation: (ACO) == (AC0)1g + (EA)yg + CY; CY, OV

The contents of Accumulator 0, (AC0), and the contents of the Effective Address, (EA), are treated
as 4-digit Binary-Coded-Decimal (BCD) mumbers greater than or equal to 0, and less than or equal

to 9999 (0 > BCD > 9999). The contents of ACO0, the contents of EA, and the Carry Flag, CY, are
added and the 4-digit BCD sum is stored in ACO. The initial contents of ACO are lost; the contents

of EA are not altered. CY is set if a carry occurs from the most significant decimal digit; otherwise,
it is cleared. The Overflow Flag, OV, is set to an arbitrary state.

Address Class: 1

4.5 REGISTER DATA-TRANSFER INSTRUCTIONS ¢

The ten instructions in this group are used for data transfers between registers, the stack, and the status
flags register. The Register Data-Transfer Instructions and mnemonics are as follows:

LoadImmediate « & « « o s o o o o o - « L
Register COPy « « o o « o « o o o + o+ = RCPY
Register Exchange . . « +« « « « « + « «» . RXCH
Exchange Registerand Stack XCHRS
Copy Flags into Register . + « « .+ « « +« . . CFR
Copy Registers into Flags. « CRF
Push Register onto Stack PUSH
Pull Stack into Register . . . « PULL
Push FlagsontoStack « PUSHF
Pull Stack into Flags « « - + « « o « o« o+ - PULLF

The source statement format, the instruction format and the description of the operation of each Register
Data-Transfer Instruction follows.

LOAD IMMEDIATE (LI)

SOURCE STATEMENT INSTRUCTION FORMAT
Mnemonic Operands 5, , , , ,JA0/9 847 .~ 0
LI r,data 010100|Tr data

Operation: (ACr) = data (bit 7 extended)

The contents of Accumulator r, (ACr), are replaced by data with sign bit 7 extended through bit 15.
The initial contents of ACr are lost.

4-11

REGISTER COPY (RCPY)

SOURCE STATEMENT INSTRUCTION FORMAT
Mnemonic Operands 15, , , , 0|9, 8|7 6[5, . ., 0
RCPY st,dr 01011 1[dr|sr|000000

Operation: (ACdr) - (ACsr)

The contents of the Source Register, (ACsr), replace the contents of the Destination Register, (ACdr).
The initial contents of ACdr are lost; the contents of ACsr are not altered.

SOURCE STATEMENT INSTRUCTION FORMAT
Mnemonic Operands 5, , . , /0|9 8|7, 6{5 , 0
RXCH sr,dr 01101 1{drf|{sr |O O O0OOO O

Operation: (ACsr)=~e> (ACdr)

The contents of the Source Register, (ACsr), and the contents of the Destination Register, (ACdr),
are exchanged.

EXCHANGE REGISTER AND STACK (XCHRS)

SOURCE STATEMENT INSTRUCTION FORMAT
Mnemonic Operand 5 , , , 109 847, ., , , , ., .0
XCHRS r 00011 1 r j00O0O0O0GO0OTO

Operation: (STK)-~—»(ACr)
The contents of the top of the Stack, (STK), and the contents of Accumulator r, (ACr), are exchanged.

NOTE

The XCHRS Instruction provides a convenient means
of placing a subroutine return address into an index
register for modification and/or use in passing
parameters.

4-12

COPY FLAGS TO REGISTER (CFR)

SOURCE STATEMENT INSTRUCTION FORMAT
Mnemonic Operand 5 , , 09 847 . ., , , ,0
CFR r 0000OTI|Ir (0O0O0O0OO0COTO0O

Operation: (ACr) = (FR)
The contents of the Status Flags Register, (FR), replace the contents of Accumulator r, (ACr). The

initial contents of ACr are lost; the contents of FR are not altered. The FR is described in 2. 3.2 and
table 2-2.

COPY REGISTER TO FLAGS (CRF)

SOURCE STATEMENT INSTRUCTION FORMAT
Mnemonic Operand 5, , , 09 87 . . . 0
CRF r 000010/ r |0OO0O0O0COCOO0OO

Operation: (FR) = (ACr)
The contents of Accumulator r, (ACr), replace the contents of the Status Flags Register, (FR).

The initial contents of FR are lost; the contents of ACr are not altered. The FR is described in
2.3.2 and table 2-2.

PUSH REGISTER ONTO STACK (PUSH)

SOURCE STATEMENT INSTRUCTION FORMAT
Mnemonic Operand 5 , , , Joj9, 847 . . ., , .0
PUSH r 011000 Tr {000O0O0CO0OO0OO

Operation: (STK) = (ACr)

The contents of Accumulator r, (ACr), are pushed onto the top of the Stack, (STK), and the stack
pointer is incremented by 1. The contents of ACr are not altered.

NOTE

If PUSH causes the internal stack pointer to go
to X'8 (nine words on the stack), the Stack-full
Interrupt Request is set and the Stack-full Jump
Condition is set.

4-13

PULL STACK INTO REGISTER (PULL)

SOURCE STATEMENT INSTRUCTION FORMAT
Mnemonic Operand i5, , , , (09,87, , , , , , ,0
PULL r 011001|r |O0O0O0O0CO0OGOCO0OO

Operation: (ACr) = (STK)

The contents from the top of the Stack, (STK), replace the contents of Accumulator r, (ACr). The
initial contents of ACr are lost. The contents of the stack pointer are decremented by 1.

NOTE

If the internal stack pointer goes to -1 (that is,
no words left on stack) a Stack-empty Interrupt
Request is generated.

PUSH FLAG REGISTER ONTO STACK (PUSHF)

SOURCE STATEMENT INSTRUCTION FORMAT
Mn-i—c 15' ! 1 ! 1 1 ! 1 ! 1 1 1 1 ! Vo
PUSHF 0000110000000000

Operation: (STK) ~— (FR)
The contents of the Status Flags Register, (FR), are pushed onto the top of the Stack, (STK), and the

stack pointer is incremented by 1. The contents of FR are not altered. The FR is described in 2.3.2
and table 2-2.

PULL FLAG REGISTER FROM STACK (PULLF)

SOURCE STATEMENT INSTRUCTION FORMAT
w— 15! ! ! ! ! ! ! ! A ! A ! 1 ! ! 0
PULLF 000100000000DO0O0O0O0

Operation: (FR) = (STK)
The contents of the top of the Stack, (STK), replaces the contents of the Status Flags Register, (FR).

The initial contents of FR are lost. The Stack Pointer is decremented by 1. The FR is described
in 2.3.2 and table 2-2.

4-14

4.6 REGISTER DATA-OPERATE INSTRUCTIONS

The five instructions in this group provide for register-to-register arithmetic and logic operations. The
Register Data-Operate Instructions are as follows:

Register Add. . . « « « ¢« « « « « « « .+ RADD
Register AddwithCarry« . . RADC
Register AND . . . &+« « « « o« « +« « « « RAND
Register Exclusive-OR. + RXOR
Complement and Add Immediate CAI

The source statement format, the instruction format and the description of the operation of each Register
Data-Operate Instruction follows.

REGISTER ADD (RADD)

SOURCE STATEMENT INSTRUCTION FORMAT
Mnemonic Operands 5, , , , ,10/9,8|7 6{5, , , , ,0
RADD sr,dr 011010 dr|sr |OO0OO0OO0O

Operation: (ACdr) = (ACdr) + (ACsr); CY, OV

The contents of the Destination Register, (ACdr), are added to the contents of the Source Register,
(ACsr), and the sum is stored in ACdr. The initial contents of ACdr are lost; the contents of ACsr
are not altered. The Carry Flag, CY, is set if a carry from the most significant bit position occurs;
otherwise, it is cleared. The Overflow Flag, OV, is set if an overflow occurs; otherwise, it is
cleared. (See table 2-2 for definition of overflow.)

REGISTER ADD WITH CARRY (RADC)

SOURCE STATEMENT INSTRUCTION FORMAT
Mnemonic Operands 15v [N 110 9 ' 8 7v 6 5 U T T) LO
RADC sr,dr 011101 dr {sr|00O0O0TO0TO

Operation: (ACdr) = (ACdr) + (ACsr) + CY; CY, OV

The contents of the Destination Register, (ACdr), the contents of the Source Register, (ACsr), and
the Carry Flag, CY, are added, and the sum is stored in ACdr. The initial contents of ACdr are
lost; the contents of ACsr are not altered. The Carry Flag is set if a carry from the most significant
bit position occurs; otherwise, it is cleared. The Overflow Flag, OV, is set if an overflow occurs;
otherwise, it is cleared. (See table 2-2 for a definition of overflow.)

4-15

REGISTER AND (RAND)

SOURCE STATEMENT INSTRUCTIQN FORMAT
Mnemonic Operands 5, , , , .09 8;7,6]5 , , , |0
RAND sr,dr 010101 dr|sr {0 0O0O0O0O0

Operation: (ACdr) = (ACdr) A (ACsr)

The contents of the Destination Register, (ACdr), are ANDed with the contents of the Source Register,
(ACsr), and the result is stored in ACdr. The initial contents of ACdr are lost; the contents of ACsr
are not altered. The truth table for this instruction is shown below.

ACdry, ACsry, ACdry A ACsry,

- - O O
= o = O
H O OO

b = bits 15to 0

REGISTER EXCLUSIVE-OR (RXOR)

SOURCE STATEMENT INSTRUCTION FORMAT
Mnemonic Operands i5, , , , ,(0/9, 8|7, 6|5 , , ,0
RXOR sr,dr 010110|dr|sr [OO0OO0O0O0O

Operation: (ACdr) = (ACdr) ¥ (ACsr)

The contents of the Destination Register, (ACdr), are exclusively-ORed with the contents of the
Source Register, (ACsr), and the result is stored in ACdr. The initial contents of ACdr are lost;
the contents of ACsr are not altered. The truth table for this instruction is shown below.

ACdry, ACsry, | ACdry, 7 ACsty,

LB B == R =]
-~ O O
(=T =]

b = bits 15 to 0

4-16

COMPLEMENT AND ADD IMMEDIATE (CAI)

SOURCE STATEMENT INSTRUCTION FORMAT
Mnemonic Operands 5, , 109,87 ., , .0
CAI r,data 011100 T data

Operation: (ACr) = ~ (ACr) + data (sign extended)

The contents of Accumulator r, (ACr), are replaced by the sum of the ones complement of ACr and
data (sign bit 7 extended through bit 15). The initial contents of ACr are lost.

NOTE

Values of 0 and 1 in the data field produce the ones and
and twos complement, respectively, of (ACr).

4.7 SHIFT AND ROTATE INSTRUCTIONS

The four instructions in this group shift and rotate registers. The Shift and Rotate Instructions and mnemonics
are as follows:

Shift Left. SHL
Shift Right« .« . « « « « . SHR
Rotate Ieft ROL
RotateRight ROR

The source statement format, the instruction format and the description of the operation of each Shift and
Rotate Instruction follows.

SHIFT LEFT (SHL)

SOURCE STATEMENT INSTRUCTION FORMAT
Mnemonic Operands 5, , , , 019 .87, , , , , ,1{0

SHL r,n, 001010 r n £
Operation: £=0 1=1
BYTE = 0 [(ACTj) = (ACr;_3), (ACrg) == 01" | [L = (ACry5), (ACTy) = (ACrj_1), (ACrg) ~ 01"
i=15:1
BYTE = 1 [(ACrj) = (ACrj_1), (ACrg) = 0] [L = (ACry), (ACrj) = (ACr;_;),(ACry) —~ O
i=71 (ACris5.8) =0 (ACr15:8) =0

The contents of Accumulator r, (ACr), are shifted left n bit positions; where n is 0 through 127. Zeros
are shifted into the least significant bit position (ACry). If £ is zero, the most significant bit is shifted
out and lost. If { is one, the most significant bit is shifted into LINK, L, and the content of LINK is
shifted out and lost.

4-17

If BYTE is zero, bit 15 is the most significant bit, data length is 16 bits, and 16 bits are shifted, as
shown below.

ACr
lost 2-0 Shift 16 bits left n places
15' 1 1] 1 1 1 1 1 ! 1 1 ! 1] 1 1 0
1T 1 17 1T 171 1T 17T 7T 17T 1T 7T T1
T T R T O T I T T T O O Pyt
ISR A Y (N N (NN N (SN SO NN N N N N
ok = Data length is 16 bits (BYTE = 0)

If BYTE is one, bit 7 is the most significant bit and data length is 8 bits. Bits 15 through 8 are
cleared and bits 7 through 0 are shifted, as shown below.

ACr
o Shift 8 bits
Set 8 bits = 0 left n places
15! 1 ! ! ! 1 ! 8 7! 1 L] 1 1 ! ! 0
L LR
lost £=0 00000O0O0CO I 1 ¥+ 1 1 11 f«e—9p
- i 1 1 1 1 1
. -1 Data length is 8 bits (BYTE = 1)
LINK
SHIFT RIGHT (SHR)
SOURCE STATEMENT INSTRUCTION FORMAT
Mnemonic Operands 5, , , , JAo0{9 87 . , /1f0
SHR r,n, { 0 01011 r n J
Operation: £=0 £=1
BYTE = 0 [0 = (ACry5), (ACTi) = (ACri-1)]™ | [L -= (ACr15), (ACri) » (ACri-1)]"
i=15:1 :
BYTE=1 [0 = (ACrp), (ACry) = (ACr;_1)]™, | [L - (ACrq),(ACr;) —~ (ACr;_1)]1%,
1=7:1 (ACry5.8) =0 (ACry5.) =0

The contents of Accumulator r, (ACr), are shifted right n bit positions; where n is 0 through 127. The
bits shifted out of the least significant bit position (ACrj) are lost. If { is zero, a zero is shifted into
the most significant bit position (msb). If { is one, the LINK bit, L, is shifted into the most signifi-
cant bit position.

If BYTE is zero, bit 15 is the most significant bit, data length is 16 bits, and 16 bits are shifted, as
shown below.

ACr
Shift 16 bits right n places

0 £=0

15| !] 1 ! ! ! 1 1 L 3 L 1 1 10

VT
[N T T T N O S A AN T N N A | lost
=1

LINK Data length is 16 bits (BYTE = 0)

If BYTE is one, bit 7 is the most significant bit and data length is 8 bits. Bits 15 through 8 are cleared

and bits 7 through 0 are shifted, as shown below.

ACr
Set 8 bits = 0 ﬁh;{;cse‘;lts right
15' 1 1 ! ! 1 ! 8 7 !] ! ! 1 ! 1 0
1T T 1T T T 1
0 £1=0 000000 0O I 1 1 1 1 1 1 p—>Ilost
1I | D N I |
=1 i i =
LINK Data length is 8 bits (BYTE = 1)
ROTATE LEFT (ROL)
SOURCE STATEMENT INSTRUCTION FORMAT
Mnemonic Operands 5, , , 09 8y7, , ., 1|0
ROL r,n,f 6 01000 r n £
L =0 =1

Operation:

BYTE=0 | [(ACrj) = (ACrj_1),(ACrg) = (ACrq5)]"
i=15:1

[(ACrj) = (ACrj_1), (ACrg) = L = (ACry5)]"

BYTE=1 [(ACrj) = (ACrj_3), (ACrg) = (ACrp)]™,

i=17:1 (Acrls:s)‘_o

[(ACrj) = (ACrj_4),(ACry) = L = (ACrp)]",
(ACry5.8) = 0

The contents of Accumulator r, (ACr), are rotated left n bit poéitions; where n is 0 through 127. If £
is zero, the most significant bit is shifted into bit position 0. If ¢ is one, the most significant bit is
shifted into LINK, L, and LINK is shifted into bit position 0.

If BYTE is zero, bit 15 is the most significant bit, data length is 16 bits, and 16 bits are rotated, as

shown below.

ACr
=0 Rotate 16 bits left n places
15'] ! 1 ! ! ! ! ! ! ! ! ! 1 L 0
T trr vt rnrTrnor
24=1 (A T R T R A I e e e e B B
| I I I TS AU TN NN N NN I N N N |
LINK

Data length is 16 bits (BYTE = 0)

4-19

If BYTE is one, bit 7 is the most significant bit and data length is 8 bits. Bits 15 through 8 are cleared
and bits 7 through 0 are rotated as shown below.

ACr
. Rotate 8 bits left
Set 8 bits = 0 n places
15' 1 ! ' 1 11 ! 8 7 k] ! ! 1 ! 1 |J)
N R N A
- 00000O0O0O I F 1 1 4 11
£1=0 [I B A
£=1 -
HNK TNata lanoth ia @ hita /RVTE — 11\
AIALVA LTS UL 1D U VIO (L1 1 u Ly
ROTATE RIGHT (ROR)
SOURCE STATEMENT INSTRUCTION FORMAT
Mnemonic Operands 5, , , JQo0j9 87, ., , ,1j¢0
ROR r,n, { 001001 r n £
Operation: =0 =1
BYTE = 0 [(ACrj) = (ACr;_1), (ACrg) — (ACr15)]™ | [(ACrj) == (ACr:_1),(ACrg) = L = (ACry5)]"

i=15:1

BYTE=1 | [(ACr;) = (ACry_1), (ACrg) = (ACT)]®, | [(ACr;) = (ACr;_q), (ACrg) = L - (ACrq)]%,
=171 (ACri5:8) =0 (ACry5.8) =0

The contents of Accumulator r, (ACr), are rotated right n bit positions; where n is 0 through 127. If ¢
is zero, bit 0 is shifted into the most significant bit position. If £ is one, bit 0 is shifted into LINK, L,
and LINK is shifted into the most significant bit position.

If BYTE is zero, bit 15 is the most significant bit, data length is 16 bits, and all 16 bits are rotated as
shown below.

ACr
1=0 Rotate 16 bits right n places
15' A3 ! ! ! 1 ! ! ! L ! 1 A 1 ! 0
I R L R
£=1 | T U R R R I I O O O
NN TR N N Y N I T S TN Y N A
LINK Data length is 16 bits (BYTE = 0)

4-20

If BYTE is one, bit 7 is the most significant bit and data length is 8 bits. Bits 15 through 8 are cleared
and bits 7 through 0 are rotated, as shown below,

ACr
. Rotate 8 bits
Set 8 bits = 0 right n places
15V 1 1 1 1 1 ' 8 7' 1 1 ! 1 1 1 0

11T 1T 1T 1T

i=0 0 00 00O O O V & ¥ & b i

| IV A T A A T |
=1
LINK

4.8 MISCELLANEOUS INSTRUCTIONS

There are four instructions in this group. The Miscellanecus Instructions and mnemonics are as follows:

Halt . . « . ¢« ¢ o o o « o o « o« +« . HALT
SetFlag . . . « « + 4« « « &« « + .« . . SFLG
Pulse Flag . . +« +« &+ « « @« « o« « « « « PFLG
NoOperation, « « « « +« « +« « +« « « « . NOP

The source statement format, the instruction format and the description of the operation of each Miscellaneous
Instruction follows.

HALT (HALT)
SOURCE STATEMENT INSTRUCTION FORMAT
Mnemonic 15, v v v e iy s, 0
HALT 00000O0O0OOOOO0O0OO0GOO

Operation: Halt

During normal program execution, the NHALT control line provides a high output. If a Halt Instruction
is executed, the microprocessor NHALT Output is driven low to indicate that microprocessor activity

is suspended until the CONTIN Input is pulsed. While PACE operation is suspended, the NHALT Output
Line has a 7/8 duty cycle; that is, every eighth clock phase, the NHALT Output goes high. The NHALT
7/8 duty cycle must be accounted for if the output is used as a logic signal but is of little concern if the
output drives only a halt indicator. The NHALT Output goes high after the Halt Instruction is terminated
by pulsing the CONTIN Input. The CONTIN Input must go high for twelve clock cycles, minimum, and
low for four clock cycles for PACE operation to resume.

For a description of the hardware signals, see the PACE System Design Manual.

4-21

SET FLAG (SFLG)

SOURCE STATEMENT INSTRUCTION FORMAT
Mnemonic Operand 5, 12y, o 817, . . ., ,0
SFLG fc 0011 fc 100 0.0 0 00O

Operation: (FRgp) =1

A single bit of the Status Flags Register, (FR), is set. The flag code, fc, specifies the bit that is set.
All other bits of FR are not altered. See 2.3.2 for a description of FR.

PULSE FLAG (PFLG)

SOURCE STATEMENT INSTRUCTION FORMAT
Mnemonic Operand 5, , 12j11, , &7, , . ., , ,0
PFLG fc 0011 fc 000O0O0OTO0O

Operation: (FRge) = 1, (FRg,) = 0

A single bit of Status Flags Register, (FR), is set, then cleared after four clock cycles. The flag
code, fc, specifies which bit is pulsed. All other bits of FR are not altered. See 2.3.2 for a descrip-

tion of FR.

NO OPERATION (NOP)

SOURCE STATEMENT INSTRUCTION FORMAT
M—I}i—c 15! ! A\ ! A 1 Al i ! ! 1 ' 1 ! 10
NOP 010111000000000O00

Operation: (PC) = (PC) + 1

The contents of the Program Counter (PC) are incremented by 1.

Chapter 5

ASSEMBLER DEPENDENT STATEMENTS

Assembler-dependent statements are statements that direct the assembler to perform some particular operation.
They may or may not generate any machine code. There are four types of assembler-dependent statements: the
comment, the assignment, the directives, and the macros. All statements except the macros are discussed in
this chapter. Because macros combine instructions and assembler-dependent statements they are discussed
separately in chapter 6.

5.1 COMMENT STATEMENT

Comment statements are defined by a semicolon (;) in the first nonblank character position of the record. Com-
ment statements do not generate code, but serve only to document the program listing output by the assembler.
For example:

;sTHESE ARE COMMENT STATEMENTS

b

5.2 ASSIGNMENT STATEMENT
[label] symbol = expression [;comments]

The Assignment Statement assigns the value of the expression on the right of the equals sign to the symbol on
the left of the equals sign. The statement may be preceded by a series of labels.

Example:

RETURN = OD ;sCARRIAGE RETURN

The Assignment Statement may also set or refer to the location counter in an expression. The location counter
assigns relative addresses to program statements at assembly time. It is similar to the Program Counter, which
contains the address of the next instruction to be executed at execution time. As each instruction or data area is
assembled, the location counter is incremented by the length of the assembled item. Thus, the location counter
always points to the next available location in memory.

The period '." is a special symbol used to specify the location counter. The location-counter symbol may appear
on either side of the equals sign. If it appears on the left, it is assigned the value on the right side of the equals
sign. The programmer may refer to the current setting of the location counter by referencing the '."' in the
expression to the right of the equals sign. Assignment statements using the location counter symbol are coded
as free-form statements. For example:

.=20 ;SET LOCATION COUNTER TO 20
;LOCATION CTR IN ABSOLUTE MODE
TABLE: .=.+10 ;sRESERVE 10 LOCATIONS FOR TABLE

If the '.! appears on the left, the expression on the right must be defined during the first pass of the assembler
so subsequent label assignments may be made.

5-1

If the symbol on the left is not '.', then the expression on the right need not have a value during the first pass
of the assembler, but the expression must have a value during the second pass. This permits only one level of
forward referencing. An example of more than one level of forward referencing follows:

FST: A=B+2 This expression undefined during pass 2.
SND: B=C-1 This expression undefined during pass 1.
THD: C=25 This expression absolute.

Labels on assignment statements are assigned the value of the location counter at the time the assignment state-
ment is encountered.

5.3 DIRECTIVE STATEMENTS

The Directive Statements control the assembly process and may generate daia in the object program. The direc-
tive operator may be preceded by one or more labels, and may be followed by a comment. It occupies the opera-
tion field and is followed by no operand or as many operands as required by the particular operator.

Assembler directive operators and their functions are summarized in table 5-1. Note that all directive operators
begin with a period for easy visual differentation from the instruction operator mnemonics in the program listing.
Each directive operator is described in more detail in the following paragraphs.

Table 5-1. Summary of Assembler Directives

Directive Function Page
Name

. TITLE Identification of program. 5-3
.SPLIT Specifies a split base page. 5-3
.END Physical End of source program. 5-3
.ASECT Specifies start of an absolute section. 5-4
.BSECT Specifies start of a base-sector-relocatable section. 5-4
.TSECT Specifies start of a top-sector-relocatable section. 5-4
.LIST Listing output control. 5-5
.SPACE Space n lines in output listing. 5-6
.PAGE Qutput listing to top-of-form. 5-6
.WORD 16-bit (or 8-bit) word data generation. 5-6
.ASCII Data generation for character strings. 5-6
.SET Assigns values to variables. 5-7
IR 5-7
.EISE Conditional assembly. 5-7
. ENDIF 5-7
.GLOBL Identifies global symbols. 5-8
.LOCAL Establishes new local symbol region. 5-8
.DLEN Specifies 8-bit or 16-bit data region. 5-9
.PTR Generates a pointer or literal. 5-9
.POOL Allocates pool memory. 5-9
.NOBAS Flags assembler-generated base page pointers. 5-9
. MACRO Begins a Macro definition. 6-2
. ENDM Ends a macro definition. 6-2
.MLOC Defines a macro local symbol. 6-6
.DO Begins a macro-time do-loop. 6-7
.ENDDO Ends a macro-time do-loop. 6-7
. EXIT Exits a macro-time do-loop. 6-8
LIFC Conditional assembly. 6-6
.ERROR Macro error. 6-7
.MDEL Delete a macro. 6-7

5-2

5.3.1 Title Directive (. TITLE)
[label] . TITLE symbol [, string] [;comments]

The . TITLE directive identifies the load module in which it appears with a symbolic name and an optional defini-
tive title. If a . TITLE directive does not appear in the program, the load module is given the name MAINPR,
If the load module contains more than one . TITLE directive, the assembler uses the last one encountered.

The symbolic name and the string must meet the symbol and string construction restrictions discussed in
chapter 3.

Example:

.TITLE PACE, 'SAMPLE PROGRAM'

5.3.2 Split Directive (. SPLIT)
[label] .SPLIT [;comments]

This directive identifies to the assembler that the microprocessor this program is to be executed on has its base
page in the range -128;, to +127;, instead of 0 to +2551,. The only addresses this affects are those that are
absolute (those in a . ASECT region). Base sector values (those in a . BSECT region) are not affected by this
command. The .SPLIT directive also sets the . NOBAS directive. To have the assembler generate pointers

use the following code:

.SPLIT
.ASECT
.= 9 sRESERVE INTERRUPT POINTERS
. POOL 20 ;LEAVE ROOM FOR 20 ASSEMBLER GENERATED
;POINTERS
NOTE

The . SPLIT directive must be used at the beginning of
a program, before any code.

5.3.3 End Directive (. END)
[label] .END [address] [;comments)

The . END directive signifies the physical end of the source program. The optional address in the operand field
may be either a symbol or a constant, and indicates an execution address to the loader. In other words, it
causes a branch to the address of the first executable instruction (entry point in contrast to load point) after the
load is complete. The assembler requires a . END as the last source statement in a program.

Examples:
1. No branch required:
LAST: .END
2. Jump to the entry point at X'00A9:

.END X'00A9
3. Jump to the eniry point labeled START:
.END START

5-3

5.3.4 Program Section Directives (.ASECT, .BSECT, .TSECT)

.ASECT
label .BSECT scomments
[[]

k.TSECT J

The three section directives enable the user to create a program in sections, producing a load module that is
absolute (.ASECT), base-sector-relative (. BSECT), or top-sector-relative (. TSECT), or a combination of the
three.

I

The . ASECT directive indicates to the assembier that the program statements which foillow should be given abso-
lute location values. The location values assigned by the assembler will be the actual addresses in memory where
the assembled data will reside.

The .BSECT directive tells the assembler that the following statements should be given relative base-sector
location values. It indicates that the assembled data in the following section of the program will be loaded into
the base page, but the actual, physical base-page address will be defined at load time.

The . TSECT directive indicates the following program section should be given relative top-sector location values.
Top sector is any area of memory outside the base sector (base page). .TSECT indicates the data will be loaded
into some memory address outside the base-page, but the physical top-sector address will be specified at load
time.

The programmer could change sector modes throughout the assembly, creating some sections of his program
that are absolute, some that are base-page-relocatable and some that are top-sector-relocatable.

The assignment statement permits the value of the location counter for the current sector mode to be changed;
for example:

«=¢t5 may be used to increment the location counter by 5 (reserve 5 words of memory).

.=5 may be used to set the location counter to a specific value. (Notice this statement is
absolute, whereas the statement above is relative. This statement is permissible
only when in .ASECT mode.)

The assembler maintains separate location-counter addresses for each mode. At the beginning of each assembly,
the addresses are set to zero, and the mode is initialized to . TSECT. A section directive is in affect until a
different section directive is encountered. At that point the location counter assumes the mode and value of the
new section directive. For instance, in the example below, the section changes from . TSECT to . ASECT and
then back to . TSECT. Note that the location counter for . TSECT continues where it left off. If another .ASECT
were encountered, it would start counting at 0121, the next location for the . ASECT counter.

Example:
. TSECT
0000
001D
.ASECT
.=0100
0100
0120
. TSECT
001E

NOTE

The assignment statement is used to change the location
counter value. (See 5.2.)

5-4

5.3.5 List Directive (. LIST)

[label] . LIST immediate [;comments]
The . LIST directive controls listing of the source program. This includes listing in general, listing of unas-
sembled code caused by the .IF and .IFC directives, listing of macro expansions, and listing of code generated
by macro expansions.
Control of the various list options depends upon the state of the five least significant bits of the evaluated expres-
sion in the operand field. Table 5-2 shows the options available in the order of their priority with default values

indicated by asterisks.

Table 5-2. List Options

Function Bit Value Description
Master List Control 0 1 * Full listing.
0 Suppress all listing.
.IF List Control 1 1 Full listing (of .IF's and .IFC's.)
0 * Suppress unassembled code.
Macro List Control 2,3 11 List all code expanded during macro
calls.
10 List only code generated by macro
calls.
00 * List only macro calls.
Binary List Control 4 1 * List all the binary output by statements

generating more than one word (for
example, .ASCII).

0 List only the first two bytes of generated
data.

* default
Options are usually combined to give the desired type of listing. Some examples follow.

1. Full listing:
.LIST 01
2. Full listing and list all code expanded during macro calls:

.LIST 0D
or | Full list
.LIST 01 ! 0C —— list all code expanded during macro calls
3. Suppress listing:
LLIST 0

5-5

5.3.6 Space Directive (.SPACE)
[label] .SPACE immediate . [;comments]
The .SPACE directive skips forward a specified number of lines on the program listing.

Examples:
1. Skip 20 (decimal) lines:

.SPACE 20
2. Skip 20 (hexadecimal) lines:
.SPACE 020
or

.SPACE X'20

5.3.7 Page Directive (. PAGE)
[label] . PAGE [string] [scomments]

The . PAGE directive spaces forward to the top of the next page on the program listing. The optional string is
printed as a page title on each page until a new string is encountered. N action is taken {except for 2 new
page title) if the . PAGE directive is issued immediately after an assembler generated top-of-page request.

Example:
.PAGE 'TTY I/O ROUTINES'

5.3.8 Word Directive (. WORD)
[label] . WORD expression|, expression, . . .expression] [scomments)

The . WORD directive generates 16-bit or 8-bit data words (depending on . DLEN directive) in successive memory
locations. Each expression in a . WORD directive is evaluated, and the expression value is placed in the next
available memory location.

If a label appears in the label field of a . WORD directive statement, the label refers to the memory location
address of the first value.

In all expressions appearing in a single . WORD directive statement, the special symbol '.' has the value of the
location counter that corresponds to the initial location.

5.3.9 ASCI Directive (. ASCII)
[label] LASCI string[, string, . . . string] [;comments]

The . ASCII directive stores data in successive memory locations by translating the characters in the string into
their 7-bit ASCII equivalent code (see appendix A). Each string must be enclosed in single quote marks ('). Each
character occupies one 8-bit byte in memory with the most significant bit set to zero. For 16-bit data, the first
character in each string is placed in the high-order byte of the next available memory location. The second
character is placed in the low-order byte. The third character is placed in the high-order byte of the next word,
and so on. If there is an odd number of characters in a string, the last low-order byte is filled with a blank code
(X'20), For the 8-bit data length, one character occupies one memory location with the most significant bit set
to zero.

The .ASCI directive is used primarily to generate messages for output on Teletype or line printer.

Example:
LASCI 'INPUT VALUE OF X'

5-6

5.3.10 Set Directive (.SET)
[label] .SET symbol, expression [;comments]

The .SET directive is used to assign values to reassignable (set) variables. A variable assigned a value with
the .SET directive can be reassigned different values an arbitrary number of times.

Examples:
.SET A,100 sSET A =100
.SET B, 50 ;SET B = 50
.SET C,A-25*B/4 s$SET C= A - 25 * B/4

NOTE

M Ao catan 5o Teex: > Avra] $nd Farn s
The expression is always evaluated from left to right

regardless of the operators used between the variables
and constants.

5.3.11 Conditional Assembly Directives

[label] IF expression [;comments]
.ELSE [;comments]
. ENDIF [scomments]

The conditional assembly directives selectively assemble portions of a source program based on the value of
the expression in the .IF directive statement.

All source statements between a . IF directive and its associated . ENDIF are defined as a . IF-. ENDIF block.
These blocks can be nested to a depth of ten. The . ELSE directive can be included optionally in a .IF-, ENDIF
block. The .ELSE directive segments the block into two parts. The first part of the source statement block is
assembled if the .IF expression is greater than zero; otherwise, the second part is assembled. When the
.ELSE directive is not included in a block, the block is assembled only if the .IF expression is greater than
zero. If an error is detected in the expression, the assembler assumes a true value (greater than zero).

Examples:

1. Two-part conditional assembly

AR COMPR
- Assembled if COMPR greater than zero.
.ELSE
. Assembled if COMPR less than or equal to zero.
. ENDIF

2. Nested .IF-. ENDIF block conditional assembly

IF SMT
. Assembled if SMT is greater than 0

.ELSE

Agcsembled if *
S IR OBR

OBR is greater
than zero and . Assembled if SMT is less than or equal to zero.
SMT is'less than . ENDIF Zero.
or equal to zero.

. ENDIF

Labels appearing on .IF statements are assigned the address of the next assembled instruction. Labels cannot

T QT TIRTITTY

be used on . ELSE or . ENDIF statements.

Listing of unassembled code may be controlled by appropriate use of . LIST directives. (See 5.3.5.)

5.3.12 Global Directive (. GLOBL)
[label] .GLOBL symbol [, symbol, . . . symbol] [;comments)

The . GLOBL directive lists a set of symbols as being global to all load modules that are linked and loaded to-
gether. This is the mechanism by which individually assembled programs can communicate with one another.

Each symbol in the operand field is marked by the assembler as a global symbol. If the symbol is within the
current assembly, it may be referred to by other load modules. If the symbol is not within the current assembly,
it is assumed to be defined in another assembly, and references to this symbol will be established at load time.
Any number of . GLOBL directive statements may occur within a single assembly. They are treated as a single
.GLOBL directive statement with a large mumber of symbol operands.

Example:
.GLOBL PARM1, PARM2,SFLG,EFLG

5.3.13 Local Directive (. LOCAL)
[label] .LOCAL [;comments]

The . LOCAL directive establishes a new program region for local symbols (symbols beginning with a dollar
sign ($)). Designated symbols between two . LOCAL directive statements have the meaning assigned to them
only within that particular region of the program. A .LOCAL directive is assumed at the beginning and end
of a program; thus, one . LOCAL directive in the module splits the program into two regions.

If the first character of a symbol is a dollar sign ($), the assembler attaches a unique character to the end of the
symbol. Initially, this character is the exclamation point (!). Each time a . LOCAL is encountered, the value
of the added character is advanced by one with the letter "Z'" being the last legal value. Therefore, up to 58
local symbols can appear in one program. (See appendix A.)

Example:

. LOCAL
$CLEAR: LI 0,0

JMP $STORE
$STORE: ST 1,SAVE1l

.LOCAL
$CLEAR: LI 1,0

JMP $CLEAR
$STORE: ST 0,SAVEQ

5.3.14 Data Length Directive (. DLEN)
[label] .DLEN expression [;comments]
The .DLEN directive specifies the data length of a region in assembly.

The expression must evaluate to a value of zero or one. Zero specifies 16-bit data length while one specifies
8-bit data length. If .DLEN is not used in the assembly, the default data length is 16 bits.

Example:

.DLEN1

8-bit data region

16-bit data region

Instruction statements may not appear in an 8-bit data section. The . WORD and . ASCII directives are used to
specify data in 8-bit sections.

5.3.15 Pointer Directive (. PTR)

[label] . PTR expression[, expression,...] [scomments]
. PTR generates a word for each expression (the same as . WORD), but furthermore each expression is implicitly
a pointer or literal that will be automatically used if within addressing range of any instruction needing such a

pointer or literal.

Example:
.PTR 1,01000,SYM+20

5.3.16 Pool Directive (. POOL)

[label] . POOL immediate [;comments]
The . POOL directive allocates from 1 to 36 words of pool memory. If a pointer or literal is needed, the
assembler will generate the pointer or literal in a nearby pool if within range and if no pool is available

within range the assembler will generate a base-page pointer.

Example:

.POOL 10 ;ALLOCATE 10 POINTERS

5.3.17 No Base Directive (. NOBAS)
[label] .NOBAS [;comments]
The . NOBAS directive causes assembler-generated base-page pointers to be flagged with a warning error

message. The message is printed only when the pointer is generated and is not printed if the same pointer
is subsequently used for another instruction.

Chapter 6

MACROS

Programming in simple assembly language enables a user to be as efficient with his microprocessor resources
as his capabilities allow. With assembly language, the user can specify expliciily every detail of the program
operation; indeed, he must specify every detail. Because of this, a program in assembly language often takes
longer to write than the same program written in a high-level language that fills in many details automatically
according to its internal design. This design may or may not be compatible with either the machine the language
operates on or the user's problem. Ideally, the user would like a programming language that will be close to
the machine when it needs to be while remaining as natural as possible for the expression of his particular prob-
lem. The language should fill in details whenever they are routine and should leave the user free to specify the
details whenever they are crucial. This ideal can often be closely approximated by the use of a versatile pro-
gramming tool known as macros.

Macros are a form of text replacement that provide an automatic code-generation capability completely under
the user's control. With macros, a user can gradually build a library tailored to his application, and with a
library of macros oriented toward a particular application, a user who is not a software expert can produce
efficient machine language code; and an experienced user can significantly reduce his program development
time.

6.1 BASIC MACRO CONCEPTS

The main use of macros is to insert assembly language statements into a source program, as shown in figure
6-1. In the example, the original source program contains a macro instruction, or macro call, named WRITE.
WRITE is a macro that writes a message. When the assembler processes WRITE, it inserts the predefined
sequence of assembly language from the macro definition named WRITE into the source program immediately
after the point of call. The process of inserting the text of the macro definition into the source program is
called macro expansion. The expanded macro then is processed as if it were part of the original source pro-
gram. You will note that the macro call itself does not produce any maching-language code. The directives
used to define the limits of the macro definition (. MACRO and . ENDM) are explained in detail later in this
chapter.

Program Listing

Source Program After Assembly
Before Assembly Macro Definition
for WRITE MACRO .

. @ sWRITE MESSAGE .

. .MACRO WRITE,MSG WRITE MSG1
WRITE MSG1 JSR @MESG insert 9421 JSR @MESG

. «WORD MSG ‘ 0024 .WORD MSG1

. . ENDM .

Figure 6-1. Statement Insertion

6-1

6.2

DEFINING A MACRO

Defining a macro means preparing the statements that constitute a macro definition. To define a macro, the
following must be done:

Give it a name.

Declare any parameters to be used.
Write the statements it contains.
Establish its boundaries.

The following form is used to define a macro:

where:

.MACRO mname [parameters]

.
.
.

macro body

. ENDM

1)

(2

3)

.MACRO is the directive that initiates the macro definition. Macros must be defined before
their use. It is legal to define a macro with the same name as an already existing macro.
The latest definition is always the operative one, but previous definitions are not discarded.
They may be reactivated by using the .MDEL directive to delete the last macro definition
(see 6.7.2).

mname is the name of the macro (the name used to "call" the macro). The macro name
must adhere to all rules for symbols (see 3.3.3.2).

Parameters is the optional list of parameters used in the macro definition. The list of
parameters must adhere to all the rules for expressions (see 3.3.4). The following are
examples of legal and illegal . MACRO directives:

Legal Illegal Reason Jllegal

.MACRO MAC,A,B .MACRO SUB,¥1 Last character in parameter illegal

.MACRO $ADD,OP1,0P2 .MACRO 1MAC,C,D First character in macro name
illegal

.MACRO LIST,$1 .MACRO MACB,25 First character in parameter
illegal

.MACRO MSG3 .MACRO MS$AC Special character in macro name

)

(3

Macro body consists of assembly language statements. The macro body may contain
simple text, text with parameters, and macro-time operators.

.ENDM is the directive that terminates the macro definition.

6-2

The simplest form of a macro definition is one in which there are no parameters nor macro operators. The
macro body is simply a sequence of assembly-language statements that are substituted for each macro call.
The following shows how a simple macro can be defined to generate a delay loop.

.MACRO DELAY

LI ACO0,07F
LOOP: AISz ACo0,-1
JMP LOOP
. ENDM
6.3 CALLING A MACRO

Once a macro has been defined, it then may be called. A macro is called by placing the macro name in the
operation field of an assembly language statement, and the parameters in the operand field. The following
form is used for a macro call:

mname [parameters)
where ,
{i) mname is the name previously assigned in the macro definition.
(2) Parameters is the list of input parameters. When a macro is defined without parameters,
the parameter list is omitted from the call.

A call to the delay macro, defined in 6.2, would be as follows:

Program Listing

Source Program After Assembly

Before Assembly
: DELAY
LI ACO0,07F
DELAY generates > LOOP: AISZ ACO,-1
: JMP LOOP
6.4 USING PARAMETERS

The power of a macro can be increased tremendously through the use of the optional parameters. The parameters
allow variable values to be declared when the macro is called.

6.4.1 Macro Definition

The delay macro previously illustrated could be made more powerful through the use of parameters. By making
the delay constants depend on the call, the same macro can be used for a variety of delays. In this example,
DLYCON is a formal parameter and can be replaced with any value at expansion time.

;DELAY
.MACRO DELAY2,DLYCON
LI AC0,DLYCON
LOOP: AISZ ACO,-1
JMP LOOP
. ENDM

6-3

Parameters need not be variables or numeric values, but can be any string. The following macro, for example,
takes an ASCII string as input and generates a message string in memory suitable for input to the SC/MP firm-
ware MESG routine.

.MACRO MSGSTR, LABEL, STRING
LABEL: .ASCI 'STRING'

.WORD 0

+ ENDM

The following macro generates a call to the MESG routine with the name of the message as input.

.MACRO MESG, MSGNAM
JSR 07EAT7

.WORD MSGNAM

. ENDM

Note the principle here: the hexadecimal firmware address is maintained centrally in the MESG macro, not
scattered all over the code as the macro calls will be.

6.4.2 Calling a Macro With Parameters

When parameters are included in a macro call, the following rules apply to the parameter list:

1. Commas or blanks delimit parameters.

2. Consecutive blanks are treated as a single delimiter.

3. A comma leading, following, or imbedded in a string of blanks is treated as a single delimiter.
4. A semicolon terminates the list and starts the comment field.

5. Quotes may be included as part of a parameter except as the first character of a parameter.

6. A parameter may be enclosed in quotes ('), in which case, the quotes are removed and the
string is used as the parameter. This function is useful when blanks, commas, or semi-
colons are to be included in the parameter.

7. To include a quote in a quoted parameter, it must be entered as two cansecutive quotes.

8. Missing or null parameters are treated as strings of length zero.
The following examples illustrate these rules.

NOTE

In these examples, for clarity, # indicates the para-
meter; strings are delimited by double primes ("').

Macro Call Parameter List
MAC1 NAME NO ONE MAN #1 "NAME"
#2 IINOH
#3 "ONE"
#4 "MAN"
#5,#6,. .. """ (NULL PARAMETER)
MAC2 MADAM 'I''M' ADAM #1 "MADAM"
#2 "IVM"
#3 "ADAM"
#4,#5,... "1 (NULL PARAMETER)
MACS 'A MAN','A PLAN','A CANAL' ; PANAMA
#1 "A MAN"
#2 "A PLAN"
#3 "TA CANAL'
#4,#5,00. """ (NULL PARAMETER)
MAC4 POOR,,'IS IN A DROOP’ #1 "POOR"
#2 1" (NULL PARAMETER)
#3 "IS IN A DROOP"
#4,#5,... """ (NULL PARAMETER)

The following examples show some macro calls fo macros defined in section 6.2. These illustrate the parameter
parsing and substitution.

Macro Call Generated Code
DELAY2 04F LI ACO0,04F
LOOP: AISZ ACO,-1
JMP LOOP
MSGSTR PROMPT 'ENTER VALUE' PROMPT: .ASCII 'TENTER VALUE!'
.WORD 0

6.4.3 Parameters Referenced by Number

6.4.3.1 '#' — Number of Parameters

'#! is a macro operator that references the parameter list in the macro call. When used in an expression, it
is replaced by the number of parameters in the macro call. The following .IF directive, for example, causes
the conditional code to be expanded if there are more than 10 parameters in the macro call:

IF #>10

6.4.3.2 '#N' — Nth Parameter

When used in conjunction with a constant or a variable, the '#' operator references individual parameters in
the parameter list. The following example demonstrates how this function is used.

.MACRO X
.WORD #1,#2,#3
. ENDM

x 5,2,6 .WORD 5,2,6

This relieves the need for naming each parameter in a long list, and allows powerful macros to be defined
using arbitrary numbers of parameters.

6.4.4 Concatenation — ' A '

The ' /A ' macro operator is used for concatenation. When found, the ' A ' is removed from the output string
and the strings on each side of the operator are compressed together after parameter substitution. If a set
variable is used with the ' A\ ' operator, it is converted to a hexadecimal number before being placed in to
the output stream.

Example:

.MACRO IMAGINARY,X
RAX: .WORD 0
1\X: .WORD 0
.ENDM

Another example of the use of this operator is shown in 6.8. 3.

6-5

6.5 LOCAL SYMBOLS
[label] . MLOC symbol[, symbol. . .] [;comments)

When a label is defined within a macro, a duplicate definition results with the second and each subsequent call.
The problem can be avoided by using the . MLOC directive to declare labels local to the macro definition.

Local symbols are replaced with unique names at expansion time with ZZxxxx, where xxxx is a 4-digit hexadeci-
mal number. The user should avoid using his own labels of the above form as it may cause duplicate definition
errors. The .MLOC directive may occur at any point in a macro definition, but it must precede the first occur-
rence of the symbols it declares local. If it does not, no error will be reported, but symbols used before the

- MLOC will not be recognized as local.

6.6 CONDITIONAL EXPANSION

The versatility and the power of the macro assembler is enhanced by the conditional assembly directives. The
conditional assembly directives (.IF, .ELSE, and . ENDIF) from chapter 4 allow the user to generate different
lines of code from the same macro simply by varying the parameter values used in the macro calls. Three
relational operators are provided:

= (equal)
< (less than)
> (greater than)

6.6,1 .IF Directive

When the macro assembler encounters a . IF directive within a macro expansion, it evaluates the relational
operation that follows. If the expression is satisfied (evaluated greater than 0), the lines following the .IF

are expanded until a . ELSE or a , ENDIF directive is encountered. If the expression is not satisfied (evaluated
less than or equal to 0), only the lines from the . ELSE to the . ENDIF are expanded. See 4.5.11 for additional
information on the conditional assembly directives.

The following macro for PACE simulates a BOC instruction that works on any register (rather than just ACO0):

«MACRO BOC2, REG, COND, LABEL

IF REG ;IF REG 0, MOVE TO 0
RCPY REG,0

. ENDIF

BOC COND, LABEL

. ENDM

6.6.2 . IFC Directive
[label] JIFC stringl operator string2 [scomments)]

The .IFC directive allows conditional assembly based on character strings rather than the value of an expression
as in the .IF directive. Stringl and String2 are the character strings to be-compared. Operator is the rela-
tional operator between the strings. Two operators are allowed: EQ (equal) and NE (not equal). If the relation-
al operator is satisfied, the lines following the .IFC are assembled until a . ELSE or a . ENDIF is encountered.
The . ELSE and . ENDIF directives have the same effect with the . IFC directive as they do with the .IF directive.

The primary application of the .IFC is to compare a parameter value such as #3 against a specific string. For
example:

.IFC #3 NE INTEGER

6.7 USEFUL DIRECTIVES

6.7.1 Set Directive (.SET)

[label] .SET symbol, expression [;comments]
The set directive is used to assign values to symbels {variables). A variable agssigned a value with the .SET
directive can be reassigned different values an arbitrary number of times. Set variables are useful during
macro expansion to control macro-time looping and macro communication. To insure value correspondence
between pass one and pass two of the assembler, all values in the expression must be defined before use in a
_SET directive. If a value is not previously defined, an error is reported and a value of zero is returned.
6.7.2 Macro Delete Directive (.MDEL)

[label] .MDEL mname [, MName. . . | [;comments)

The . MDEL directive deletes macro definitions from the macro definition table and frees the buffer space used
by the definitions.

Example:

.MDEL DELAY,MAC1

6.7.3 Error Directive (. ERROR)
[label] . ERROR [string) [;comments]

The . ERROR directive generates an error message and an assembly error that is included in the error count
at the end of the program. The directive is useful for parameter checking in macros.

The following example shows a rewrite of the BOC2 macro that checks that the input register is between 0 and 3
and reports an error if it is not.

.MACRO BOC2,REG, COND, LABEL

IF (REG > -1) & (REG < 4)
AF REG >0
RCPY REG,0
. ENDIF
BOC COND, LABEL
.ELSE
. ERROR 'ILLEGAL REGISTER VALUE'
. ENDIF
. ENDM
6.8 MACRO-TIME LOOPING

6.8.1 .DO and . ENDDO Directives

[label] .DO count [;comments]
[label] .ENDDO [;comments]

Macro-time looping is facilitated through the .DO and . ENDDO directives. These directives are used to delimit
a block of statements that are repeatedly assembled. The number of times the block will be assembled is speci-
fied in the . DO directive. The format of a . DO-. ENDDO block is shown on the following page.

.DO count

source

. ENDDO

NOTE
.DO, .ENDDO, and . EXIT are defined only within a

macro definition.

6.8.2 . EXIT Directive

[label] . EXIT [scomments]
Early termination of looping in a . DO-. ENDDO block can be effected with the . EXIT directive.
This directive causes the current loop to be completed and then causes assembly tc continue with the statement
following the . ENDDO.
6.8.3 Examples of Macro-Time Loops
The following examples show the use of the . DO, .ENDDO, and . EXIT directives. The macro CTAB generates
a constant table from 0 to MAX where MAX is a parameter of the macro call. Each word has a label DX:, where

X is the value of the data word.

.MACRO CTAB,MAX

.SET X,0

.DO MAX+1
D \X: .BYTE X

.SET X, X+1

. ENDDO

.ENDM

Now a call of the form:
CTAB 10

Generates code equivalent to:

.SET X,0
DO0O: . WORD X
.SET X, X+1
DO1: . WORD X
.SET X, X+1
D02: .WORD X
.SET X, X+1
D09: . WORD X
.SET X, X+1
DOA: .WORD X

The macro MSGLST generates a call to the PACE firmware MESG routine with each of the parameters on the
macro call. The parameter list may be any length.

.MACRO MSGLST

.SET X,0
.DO -1 sSET FOR INFINITE LOOPING
.SET X, X+1
JIF X ># ;CHECK IF NUMBER OF TIMES THRU LOOP (X)
;IS > NUMBER OF PARAMETERS CALLED BY
sMSGLST
.EXIT ;YES
.ELSE
MESG #X ;NO, CALL MEGS MACRO
. ENDIF
.ENDDO
. ENDM
Now a call of the form
MSGLST MSG1,MSG2
generates code equivalent to
JSR 07EAT7
.WORD MSG1
JSR 07EA7
. WORD MSG2
NOTE

Care must be taken when writing macros that generate
a variable number of data words through the use of

the .IF or the .DO. If the operands on these direc-
tives are forward references, their values will change
between pass 1 and pass 2 and the number of generated
words may change. Should this be the case, all labels
defined after the macro call that has changed values
will generate numerous assembly errors of the form

ERROR DUP. DEF.

6.9 NESTED MACRO CALIS

Nested maero calls are allowed; that is, a macro definition may contain a call to another macro. When a2 macro
call is encountered during macro expansion, the state of the macro currently being expanded is saved and expan-
sion begins on the nested macro. Upon completing expansion of the nested macro, expansion of the original macro
continues. Depth of nesting allowed will depend on the parameter list sizes, but, on the average, about 10 levels
of nesting will be allowed.

The following shows a simple example of macro nesting. The first macro defines the common function of ensuring
data in ACO, while the second macro uses this macro in generating a BOC instruction.

.MACRO CHKZRO, REG sCHECK THAT DATA IS IN REG 0
AF REG > 0

RCPY REG,0 ;COPY DATA TO ACO

. ENDIF

.ENDM

.MACRO BOC2,REG,COND,DEST ;SIMULATE BOC FOR ANY REG

CHKZRO REG ;sMAKE SURE DATA IN ACO
BOC COND, DEST
. ENDM

A logical extension of 2 nested macro call is a recursive macro call, that is, a macro that calls itself. This is
allowed, but care must be taken that an infinite loop is not generated.

6.10 NESTED MACRO DEFINITIONS

A macro definition can be nested within another macro. Such a macro is not defined until the outer macro is
expanded and the nested . MACRO statement is executed. This allows the creation of special-purpose macros
based on the outer macros parameters and, when used with the . MDEL directive, allows a macro to be defined
only within the range of the macro that uses it.

Chapter 7

PROGRAMMING TECHNIQUES

This chapter discusses the programming techniques used to produce efficient PACE object code. Examples of
coding are included to illustrate the method by which the techniques are implemented.

7.1 STACK

The hardware stack in PACE is used primarily for temporary storage of the contents of the Program Counter
and the Status Flags Register during subroutine and interrupt service routine execution. The last-in/first-out
accessing of the stack ensures that nested routines are exited in the reverse order of entry. The stack may also
be used for data storage when data words can be sequentially stored in the reverse order required for retrieval.

A stack interrupt (interrupt level 1) is provided to handle a stack-full or a stack-empty condition. An interrupt
is generated when the stack contains a single word and a read-stack operation occurs; this empties the stack.

An interrupt is also generated when the stack contains eight words and a write-stack operation occurs; this fills
the ninth word and leaves one word available to the interrupt. If the master interrupt enable (IEN) is zero, stack
interrupts are ignored.

When a stack interrupt occurs, the condition of the stack can be tested by using the Branch On Condition (BOC)
Instruction. Branch condition zero is set whenever the stack contains nine or more words.

NOTE

If a stack-pull (push) operation causes the stack to
become empty (full) and IEN1 is '1', an interrupt
request occurs. If this interrupt is not serviced and
cleared (for example, because the master interrupt
enable, IEN, is '0'), the interrupt is not cleared by
subsequent stack-push (pull) operations. Thus, care
must be exercised in using the stack when IEN is '0'.

The stack is implemented by using a file of 10 registers and a stack pointer. When the last word of the stack is
written (that is, the stack is full), the pointer remains at the last register and all subsequent stack-push opera-
tions write data in the last register; thus, only the most recent data are retained.

When the stack becomes empty, the pointer addresses a nonexistent register, thereby causing a data word of
all ones to be returned for all subsequent pull operations.

Use of the Stack Interrupt allows convenient extension of the stack into external memory for cases where 10
words of storage are not enough. When the stack is extended into external memory, Stack-full and Stack-empty
Interrupts can be used to enter a routine that dumps a full stack into external memory and restores an empty
stack from external memory. Thus, the effective size of the stack can be as large as the external memory. If
the stack is not extended into external memory, the Stack Interrupts can be inhibited by turning off status flag
IE1. In cases where a Stack-empty Interrupt is not desired (when both software and hardware stacks are empty),
a dummy word may be pushed onto the stack during initialization.

The Stack Service Routine listed in figure 7-1 pushes four words onto a software stack when the hardware stack
is full, and pulls four words off of a software stack when the hardware stack is empty.

NOTE

At least one word should always be left on the hard-
ware stack by the Stack Service Routine to prevent
a stack-empty interrupt from occuring after pushing
the software stack. Similarly, only eight words
should be pushed onto the hardware stack to prevent
a stack-full interrupt.

The Stack Service Routine does not check for software stack overflow or underflow.

FACE ASSEMBLER REV-& 1 NOV & FAGE 1
STHINT SOFTWARE STACE ROUTIN

1 CTITLE STEINT, 7 SOFTWARE STACK ROUTINES

= H

= i THIZ PROGRAM CONTAINS ALL ROUTINES NECESSARY TO SET
4 i AND MAINTAIN A SOFTWARE STACE

=S i

& QDOO0 . ASECT

7 Q000 L=

2 0002 0000 T . WORD STHINT

) ;

10 0000 . TSECT

11 i

12 CGLOEBL CLRSTE

12 o000 & ACD = 0

14 0001 A ACl = i

15 000Z A ACZ = Z

1& 0002 A ACE = =

17 H

i2 Go00 A ETEFUL = V]

12 o001 A TENI = 1
20 QO0Y A IEN = &
21 H
22 i THE "STEINT" ROUTINE MAINTAINS THE SOFTWARE STOCK.
2 ;
24 0000 DI&S A STEINT: = A0, REG i SAVE ACCUMULATORS
5 0001 DS:5S A =T A1 REGH1

2EH D002 DRAS A =T ACZ, REGHE

27 0002 A400 O FLLL S0 SAVE INTERRUFT RETURN ADDR
28 0004 DIZF A = ACG, RETADR

29 0005 4014 A JE] STEFUL, sFULL i TEST IF STACK I3 FULL/EMPTY
30 000A ADOO A FLIZH AT E i TEST IF STACKE IS ALMOST
31 0007 J400F & EOC STHRFUL: $AFLULL i FULL

32 0003 A400 f FLLL BCO

3z H

24 0009 9104 A LI acl. 4 i BTACK IS EMFTY

25 00048 ADZA A FEMFTY: D527 ETEFTR i RESTORE 4 WORDS ONTD STACE
246 Q0OR AL1ZP A Lo ACO, BETEFTR

37 000 LH0Q00 A FLIZH ACD

32 000D 7RFF A Al=sZ Acl, -1

29 D00OE 19FE A IME SEMFTY

40 i

41 200F 124 4 $REST: LD ACD, RETADR i RESTORE INTR RETURN ALURESS
4% 0010 00 A PLISH faYads}

3 D011 o4 A (M Aco, REG i RESTORE PROGRAMSS STATUS
44 001z o4 A Lo AT, REG+1

45 GQiZ © A LG ACZ, REG+HZ

Figure 7-1. Stack Service Routine

7-2

44 D014 3
A7 00io 2
42 0014

FFLG TEN1 i CLEAR INTERRUFT LATCH
SFLG IEM1
RTI i RESUME PROGRAM EXECUTION

I DI

S0 0017 &400 A sAFULL: PULL ACOD i STACK IS ALMOST FULL
51 001z 5104 LI AL, 4 i NUMEER 0OF WORDS TO SAVE
52 001% 170l gl L+

Ir In

gFULL: LI
=T
LD

£ F1: FHLL

4 GolA
55 G01ER
5S4 0010

=7 0010

52 Q01E DEOO
e

i

GolF FA01

NUMEBER OF WORDS TO SAVE

;i SAVE TOF WORDS OF STACK

Te Tp Ir Iv I Ix T2 I

LI ACL, 4

S P2 FULL B0 i SAVE LAST FOUR WORDS ONTO
T ACD, @STEFTR ;i SOFTWARE STACK

=¥4 STEFTR

IzZ AL, -1

F FLFZ

In I I I I0 I

Lo AC1, 2 TEMF
£l P2 HI5Z QCE —1 ; RESTORE TOF WORDS OF STACK
AED
AISZ akl, -1
dHF P
iy FREST ; RESTORE STATUS AND RESUME

Ir D I T T I I
Tl
ons
i

THIS ROUTINE WILL CLEAR EOTH THE HARDWARE AND SOFTWARE STA

CLRETH: PFLG IEN i FREVENT FURTHUR INTERRUFTZS
EBOC IENM, . -1
FULL ALE i SAVE RETURN ADDRESS
LI Acl, ¥
FLILL AteH] i CLEAR HARDWARE STACK
AIEZ :1;"1
iyis

i CLEAR SOFTWARE STACK

IEN1

TENI i RESTORE INTERRUFT STATUS
IEN

21091 i DUMMY WORD

{ACE) i RESUME FROGRAM EXECUTION

T T I To Ie Tp T Te I I Do Ix T I

TEMFORARY DATA STORAGE

$ADR: .=+l

=TEMF: = +1
$%TQF =+
= 41
= +1

+n 20
L= +4
CWORD SSTACK

s T

1(5:1.-2, OO0 & ‘ . END

Figure 7-1. Stack Service Reutine (Continued)

[AT 8] [s]nlsls]
CLRETE QOOZF G

AL Q001
+* TEN [alslel=]

Arz DO0T
IEN1 Q001
STEADR O0AA
FAOR [sleicin]
sLF1 ooin
FETaK OO3F

ACZ 0003
REG DO&L
STEFUL 0000
$AFLL 0017
$LFZ 0023

* $TEMP 0OZE

STEINT OQO0

ETEFTR 0045
sFULL O01A
FREST OOGF

SEMPT
sLF=

A
T
RETADR G044 T SSTACE OO4&
T
T
T

) i B T
o B T

ND ERROR LINESD
SOURCE CHECKSLN =4E43

INFUT FILE ZDETHINT. SRC ON HSA Q0L

Figure 7-1. Stack Service Routine (Continued)

S

- DD

7.2 SUBROUTINES

Subroutines are an invaluabie tool in computer programming. Basically, a subroutine is a segment of code outside
the normal program flow that can be executed at several places in the program through use of a JSR (Jump to Sub-
routine) Statement. The label on the first statement names the subroutine and serves as its entry point. The last
statement executed in a subroutine must be an RTS (Return from Subroutine), which serves as the exit. Consider
the following simple subroutines: SAVREG, which stores the four general-purpose registers in the stack; GETREG,
which restores the registers from the stack; and the calls to these subroutines.

SAVREG: XCHRS 0
PUSH 1
PUSH 2
PUSH 3
PUSH 0
RTS

GETREG: PULL
PULL
PULL
PULL
XCHRS

RTS

SO HE N WO

JSR SAVREG sSAVE REGISTERS

JSR GETREG sRESTORE REGISTERS

The use of subroutines has several advantages. First, subroutines can divide a complex program into a number

of discrete parts. These then can be tackled individually and programmed with relative ease. If several program-
mers are working together on a program, subroutines provide a logical and efficient way to divide the Iabor. Local
variable blocks, in which variables starting with a '$' have meaning only within that block can be used to enhance
subroutine compatibility and are especially useful in routines that can be used in several programs.

A second advantage of using subroutines is reduced memory requirements. Input/output functions, for example,
are often rather large routines that can be written once and called from several places in the program. Without
this facility, programs would quickly grow to unmanageable size.

Occasionally, a subroutine requires no input and generates no output, as in the example above. Usually, however,
the subroutine needs to pass information between itself and the calling program. One way to handle such commu-
nication is to use the four general-purpose registers and the stack to hold the values being passed. Another
method is to use a common block of RAM (Random Access Read/Write Memory) to store data and results. Finally,
the addresses of the data or results may be stored in the registers, stack, or memory and the subroutine may fetch

the data itself.

7.3 INPUT AND OUTPUT PROGRAMMING TECHNIQUES

The programming of data transfers between read/write memory and peripheral devices generally is classified as
input/output programming. Depending on the significance of the input/output operations in the overall program,
different approaches to input/output program implementation are recommended; these approaches are described
in the following sections.

7-5

7.8.1 Programmed Input/Output

A programmed input/output operation is initiated and completed under the control of the initiating program. In
figure 7-2, the program being executed starts the input/output operation; then, the program waits for the opera-
tion to be completed before continuing.

PROGRAM
BEING
EXECUTED

I/O PORTION
OF
PROGRAM

\

1I/O OPERATION
COMPLETE

PROGRAM
CONTINUED

Figure 7-2. Programmed Input/Output

PACE allows any memory-reference instruction to execute a programmed input/output operation. Peripheral
device controllers are assigned specific memory addresses, any of which, when referenced by a memory-
reference instruction, executes the input/output operation. It is necessary that the memory addresses assigned
to the peripheral device be unique to the device; that is, no other peripheral device uses the same assigned
memory addresses, nor is there memory with the same addresses. Also, the device controller must contain
the necessary logic to decode its assigned addresses, and, then, to gate data on and off the data bus. For
example, memory addresses X'7FFF and below might be reserved for read/write or read-only memory and
memory addresses X'8000 to X'FFFF might be reserved for peripheral device controllers. The user, however,
can define his own convention.

The actual program steps required to enable programmed input/output depend on the design of the device
controller.

7.3.2 Interrupt Input/Output

In certain cases, an input/output operation initiated by a program requires a significant length of time (many
milliseconds) for execution; during this time, the program might perform other tasks. In other cases, the
frequency of input/output service that requires the use of a certain input/output device might be such that it
would be convenient for the program to ignore the device unless it specifically requires service. Each of these
situations may be handled by taking advantage of the interrupt system and by employing interrupt input/output
for devices that have interrupt capability.

7-6

In figure 7-3, the program might initiate the input/output operation as part of its normal sequence-of-operation
and might set a flag indicating that such action was taken. An input/output device that has interrupt capability,
upon completion of an input/output operation, transmits an interrupt to PACE to indicate completion of the
operation.

Interrupt
Program Executing / Continue Program Execution

Return from
Interrupt

Interrupt Service Program
Services Interrupt — Clears Flag

The flag may be employed by the original program to determine whether or not the input/output operation has
been completed and whether or not the input/output device is still busy.

PP VIL

Another way that an input/output operation may be initiated is to transmit an interrupt signal to the CPU. In
this case, the program being executed is interrupted, the input/output operation is effected, and, then, the
interrupted program is resumed.

Interrupt

Program Executing / Continue Program Execution

Return from
Interrupt

Input/Output Operation

Interrupt input/output requires a definite and specific sequence of events, irrespective of what peripheral device
is to be serviced; the following sequence occurs.

1. In order for an interrupt to be accepted by the CPU, the master interrupt enable flag (IEN)
must be enabled (set to 1), and for the PACE, the particular interrupt level corresponding
to the device (IE0 through IE5) must be enabled also. If either flag is disabled (set to 0),
interrupt signals from peripheral devices are rejected. The master interrupt enable may
be enabled by the instruction

LABEL: SF1G 9
and disabled by the instruction
LABEL: PFLG 9

The interrupt level flags may be manipulated via the following sequence of instructions:

PUSHF
PULL ACO
Code to modify flags
PUSH ACO
PULLF
NOTE

Level 0 interrupts must be enabled via SFLG 15.

-7

PROGRAM
BEING
EXECUTED

PROGRAM
INITIATES I/O

PROGRAM
SETS FLAG

PROGRAM
CONTINUES

Figure 7-3. Interrupt Input/Output Initiation

Once an interrupt has been received and accepted by the CPU, the following steps occur auto-
matically, and under control of the CPU.

a. The instruction currently being executed is completed, and the memory address of the
next instruction is pushed onto the stack.

b. Interrupts are disabled (IEN is set to 0). Therefore, no further interrupts will be
accepted by the CPU until interrupts are re-enabled.

c. The priority encoder (see figure 2-5) provides an address that is used to access the
interrupt pointer for the highest priority interrupt request.

The interrupt pointers are stored in locations 2 through 6 (see table 7-1) for interrupt
requests 1 through 5, respectively. The interrupt pointer specifies the starting address
of the interrupt service routine for the particular interrupt level, except for level 0.

For level 0, location 7 is the PC-save address and the first instruction of the interrupt
handler must reside in location 8. The interrupt service routine must perform a number
of housekeeping tasks before the required input/output operation can proceed. Tasks, in
order of normal execution follow.

a. Save the contents of accumulators and status register so that they can be restored just
prior to returning from the interrupt. Accumulator and status register contents can be
saved on the stack, but since the stack has just 10 words, more commonly a data area
in memory is set aside for temporary data storage.

b. Determine the source of the interrupt. How this is done depends on the design of the
peripheral device controllers, but usually controllers are designed fo follow the interrupt
request signal by transmitting a data bit {or word) that identifies the source of the inter-
rupt.

C. Once the interrupt has been identified, jump to the routine that services the identified
device. This input/output service routine is written using programmed input/output
as described in 7.3.1.

7-8

4. Execute the selected device's input/output service routine.
5. Restore to the accumulator and status register contents that were saved in step 3a.

6. For other than level 0 interrupts, return from the interrupt by executing an RTI Instruction.
This re-enables interrupts by setting flag IEN to 1 and pulls the return address (saved in the
stack by step 2a) into the program counter, so execution continues at the program instruction
following the interrupt. For level 0 interrupts, SFLG 15 to re-enable interrupt level 0 and
then jump indirect via location 7.

An example of an Interrupt Service Routine for interrupt level 3 is shown in table 7-2. Memory location 4
contains the address of the first instruction in the routine. When a level 3 interrupt occurs, the first instruc-
tion preserves the state of the flags on the stack.

NOTE

IEN is set to 0 by the interrupt prior to being saved
on the stack. :

The flag data then are loaded into ACO and all bits that are to be modified are masked out to zero. The desired
bits then are set to 1 by ORing with IESTAT. If the routine is interruptable, then IE3 is set to zero and IEN is
set to one. The modified status word then is transferred from ACO to the status register. The actual servicing
of the interrupting device then takes place. At the end of the routine, the flags are restored and a return instruc-
tion is executed. If the interrupts are to be re-enabled, the RTI Instruction must be used since RTI sets IEN to 1
and restores the PC from the stack.

NOTE

Status register masking is necessary only when interrupt
enable status is to be modified to allow higher-priority
devices to interrupt. Pushing the status register onto
the stack is necessary only if the routine alters the con-
tents of the status register.

Table 7-1. Locations of Interrupt Pointers

Interrupt Pointer Location

Interrupt 0 Program
Interrupt 0 PC
Interrupt 5

Interrupt 4

Interrupt 3

Interrupt 2

Interrupt 1

Not Assigned
Initialization Instruction

S = N W e O & =1

Table 7-2. Interrupt Service Routine Example

Assembly Code Explanation

=4 Set location counter equal to 4.

.WORD ISERV3 Pointer to service routine.

=500 Set location counter equal to 500.
ISERV3: PUSHF Save flags on stack.

CFR ACO Move flags to ACO.

AND AC0,MASK Mask out old Interrupt Enable status.

OR ACO,IESTAT OR in new Interrupt Enable status.

CRF ACo Store in flag register.

. Interrupt Service Routine.

INTXIT: PULLF Restore flags.

RTI Return to interrupted routine.
MASK: .WORD (mask data)
IESTAT: .WORD (Interrupt Enable status data)

Processing following a "'stack full' interrupt (level 1) requires essentially the same sequence of steps as out-
lined previously. The "stack full" interrupt must be identified by testing the "stack full" condition:

STKFUL = 0
LABEL: BOC STKFUL,HERE

If the ""stack full" condition exists, execution continues at HERE.

NOTE

Occurrence of a "stack full" interrupt may cause
loss of data since it will result in the PC being
pushed onto the stack.

7.3.3 Input/Output System Organization

Depending on the intended application for the PACE, the type of input/output programming described in section
7.3.1 may or may not be adequate.

In a dedicated application where the PACE is used as a controller, or will rarely be subject to extensive re-
programming, it is efficient to incorporate input/output programming steps into the body of the program.

When the PACE is to be constantly programmed, and particularly when peripheral devices are subject to
change, it is more efficient to introduce the "logical unit" concept into input/output programming. Using
this concept, programs are written to access peripheral devices functionally, rather than physically. For
example,

Logical Unit 0 may be the operator interface device.
Logical Unit 1 may be the bulk output device.
Logical Unit 2 may be the bulk storage device.
Logical Unit 3 may be the data entry device.
Logical Units 4-7 may be data transmitting devices.

The operator interface device may be a teletypewriter keyboard, or a CRT (cathode ray tube) terminal. The

bulk outout device may be 2 line nrinter

oun t device ybeal printe r a teletvnewriter nrinter, or a ner tane munch

letypewri printer, or a paper tape punch.
The bulk storage device may be a magnetic disc, a magnetic tape, or a cassette unit.

The data entry device may be a teletypewriter keyboard, the teletypewriter paper tape reader or a high-
speed paper tape reader.

The data transmitting devices may be analog-to-digital converters, intermediate magnetic storage devices,
or specially wired external signal lines.

Input/Output programming now has three parts:

a. A generalized, logical-unit-oriented program to process requests for input/output.
b. A set of device drivers that link the logical unit requested in "a' above with the required
physical unit.

o Programs that actually enable the inm t/gutpuv oneration

i walile

7.3.3.1 Generalized Call to Input/Output

One subroutine will initiate all input/output operations with the exception of those operations that can only be
initiated by an external interrupt. Letus call this subroutine IOS,

The execution of any input/output operation requested by a program will start with one common subroutine
call

LABEL: JSR @I0S
.WORD LIST

where I0S provides, on the base page, the starting address of the input/output initiation subroutine, and LIST
provides the memory address where the required input/output operation is defined. At LIST, the following
information must be provided, using any convenient hexadecimal code:

1. The input/output operation to be performed should include:

a. Read

b. Write

c. Open (Initialize flags, counters or other conditions, if needed).

d. Close (Provide device use, termination processing, if needed).

e. Position to specified record and file.

f. Backspace (or forward space) a set number of records and/or files.
g. Return device status.

2. Input/output operation variables, including:

a. ASCII or binary for data transfers.
b. Echo or no echo for teletype.
Cc. Formatted or unformatted for printed output.

3. Base address and length of memory buffer for read and write operations.

4. Record and file number for position and backspace/forward space.

7-11

The 10S subroutine will interpret the information provided at LIST, then call the device driver for the physical
unit corresponding to the requested logical unit. IOS will contain a physical unit assignment table to link physi-
cal units to logical units. For example, if there are eight logical units and six physical units, the table may
take the form:

PUTBLE: «WORD X'0000 ;s LUO=PUO
. WORD X'0100 s LU1=PUO
.WORD X'0201 3 LU2=PU1
. WORD X'0302 ;LU 3 =PU2
. WORD X'0404 sLU4=PU 4
. WORD X'0503 sLUS=PU 3
.WORD X'0605 sLU6=PU S
. WORD X'0705 s LUT=PUS
. WORD X'0806 ;LU8=PU6

7.3.3.2 Device Drivers

The principal purpose of a device driver is to keep track of the status of a particular peripheral device during
and between input/output calls. The device driver will maintain a device control block which is a data area
dedicated to each peripheral device (one data area per device), where the following information is stored.

1. Busy/not busy. This serves two purposes.

a. To selectively disable/enable individual peripheral devices.
b. To selectively disable other peripheral devices during certain phases of this device's
operation,

2. Record and file to which device was last positioned. The Open Call to IOS will reposition
to this record and file, thus allowing reinitiation of discrete portions of input/output opera-
tions in the event of error conditions (bulk storage devices only).

3. Current record and file (bulk storage devices only).
4, Requested record and file (bulk storage devices only).
5. Selected parameters, coefficients, scale or conversion factors required or used by the device.

6. Condition of last operation: Successful, doubtful or error.

The device driver will now call the subroutine which executes the actual input/output operation.

7.4 8-BIT DATA LENGTH

When using the 8-bit data configuration, the 8-bit data is right justified in the 16-bit accumulator. The state
of the leftmost 8 bits and the consequent effect on microprocessor operations must be considered. The follow-
ing items are reviewed in the following paragraphs with respect to the 8-bit data length: data I/0O, memory
addressing, status flags, conditional branches, shifts and rotates, immediate instructions and mixed data

lengths.

7.4.1 Data Input/Output

A cvatom ugine the Q-hit data confiouration nenaﬂv hag a 16-bit instruction memory {hmwaﬂv ROM), an 8-bit

£3 DYSICITL UBlig Wil UTuir Lkiee LViiiipu s Suate. suadl AsLucLion rlaliy

data memory, and an 8-bit peripheral device mterface. When data is loaded into an accumulator from the 8-bit
memory or peripheral device, the umised eight data lines may be driven to a logic '0' by the use of eight open
collector gates. Thus, the left byte of the accumulator is zero. The umused eight data lines also may be left
open (saving eight gates), in which case the left byte has an undetermined value dependent upon the system noise
and previous states. In most cases, a nonzero left byte is of no concern, since status flags, conditional branches,

shifts, and rotates ignore the left byte. However, the programmer must be aware of the nonzero value, since
the results of instructions such as Copy Register to Flags (CRF) are determined by the left byte as well as the
right byte. In cases when the state of the left byte is significant, that byte may be set to zero by using the shift
instructions with a count of zero.

T.4.2 Memory Addressing

Both the indexed and base-page addressing modes require some consideration when using the 8-bit data configura-
tion. For base-page addressing, accessing both 16-bit (program words) and 8-bit (data words) data using the
base-page mode may be desirable. Since two different memories are used, splitting the base page between the
two memories also may be desirable. Base-page splitting is accomplished most easily by using the Base-Page
Selection (BPS) input (see PACE Data Sheet) and the . SPLIT directive, 5.3.2, to cause the base-page address

to be in the range of -128 to +127, rather than 0 to +255.

For indexed addressing, Accumulators 2 and 3 are used as 16-bit memory pointers. If Accumulators 2 and 3
are loaded from the 8-bit memory, the upper byte may be set equal to the sign of the lower byte by using the
LSEX Instruction. Thus, a 16-bit signed twos-complement number results.

7.4.3 Status Flags

The Overflow and Carry Flags are modified by arithmetic instructions. If the 8-bit configuration is selected
by the state of the Byte status flag, the Overflow and Carry Flags are set based on the lower 8-bit byte only.
That is, the Carry Flag is set if there is a carry out of the lower byte and the Overflow Flag is set based on
an arithmetic overflow of the lower byte.

The Link Flag is affected by shift and rotate instructions. The Link Flag is set by the data shifted out of the
lower byte when the 8-bit configuration is selected.

T.4.4 Conditional Branches

The branch and skip instructions are modified to account for the 8-bit data length. The skip instructions
(SKNE, SKG, SKAZ, ISZ and DSZ) test only the lower byte. Thus, if 8-bit accumulator data is compared
with a 16-bit program memory word, the contents of the upper byte of both words are ignored. The Add
Immediate, Skip if Zero Instruction (AISZ) is the only instruction that tests the entire 16-bit result when
the 8-bit configuration is selected. Thus, the AISZ Instruction can be used to increment the index accu-
mulators (AC2, AC3) without skipping every time the lower byte is zero. Consequently, the sign of 8-bit
numbers must be extended (LSEX Instruction) to properly detect zero when using AISZ with 8-bit data.

T7.4.5 Shifts and Rotates

The shift and rotate instruction group (SHL, SHR, ROL, ROR) operates on the lower byte only and sets the
upper byte to zero. Shift instructions with a count of zero provide a convenient means of setting the left

byte of accumulators to zero when 8-bit data is used.

7.4.6 Immediate Instructions

The immediate instructions (LI, CAI, AISZ) all provide 16-bit, twos-complement data inputs. When working

with 8-bit data, the upper byte usually can be ignored. H required, the upper byte can be cleared using a
shift instruction.

7-13

7.4.7 Mixed Data Lengths

Working with 8-bit data and 16-bit instructions sometimes necessitates performing arithmetic operations by
using a 16-bit operand from the program memory and an 8-bit operand from the data memory. If the result

is to be treated as 8-bit data, no special considerations are required. If the result is to be treated as 16-bit
data, the sign of the 8-bit operand must first be extended by using the LSEX Instruction. Also, signals (carry,
overflow, and conditional branches) that are only a function of the lower byte should not be used. Alternatively,
the Data Length Flag may temporarily be set to 16 bits, if desired.

7.5 TEXT PROGRAMMING TECHNIQUES

When programs require extensive dialog, textual display, or printout, attention should be given to the technique
that programs the textual printout, since it is likely to be subject to modification. One technique that readily
lends itself to the PACE is the literal pool. A literal pool is an area within an assembled program where the
literals used within the program are stored. Within the literal pool, all duplication of text is eliminated. For
example, consider the following five messages:

1. ENTER 5 COEFFICIENTS

2. COEFFICIENT OUT OF ALLOWED RANGE. RE-ENTER
3. ANSWER =

4. ANOTHER?

5. NO VALID ANSWER. RE-ENTER 5 COEFFICIENTS

Text for the five messages may be stored in a literal pool as shown below.

2E52 L1: .ASCI '.RE-~'
452D

454E L2: .ASCII 'ENTER'
5445

5220

3500 L3: .ASCII '5!

2C43 L4: . ASCII ' COEFFICIENT'
4F45

4646

4943

4945

4E54

5300 L5: .ASCII 's!

204F L6: .ASCII ' OUT OF ALLOWED RANGE'
5554

204F

4620

414C

4C4F

5745

4420

5241

4E47

4500

414E L7: .ASCII 'ANOTHER?'
4¥54

4845

523F

414E L8: .ASCHI 'ANSWER!'
5357

4552

7-14

3D20 L9: .ASCII =

4E4F L10: LASCH 'NO VALID !
2056
414C
4944
2000
L11: .=.t1

Messages are created by indexing the literal pool using a repeating sequence of two words. Word 1 contains the
displacement from the base of the literal pool to the first character to be printed. Word 2 contains the number
of characters to be printed. An X'FFFF in the first word of a word pair indicates an end of message; otherwise,
another segment of the message is sought in the next word pair. Each of the five messages described above
could be created by the index sequence shown below.

0004 I1: . WORD L2-L1 ;ENTER 5 COEFFICIENTS
0014 . WORD L6-L2 :

FFFF .WORD OFFFF

6008 12: . WORD 14-11 ;COEFFICIENT

000C . WORD L5-14

0018 . WORD L6-11 ;:OUT OF ALLOWED RANGE
0015 . WORD L7-L6

0000 . WORD Li-L1 ;. REENTER

000A . WORD L3-L1

FFFF .WORD OFFFF

0035 13: . WORD L8-L1 sANSWER=

0008 . WORD L.10-L8

FFFF . WORD OFFFF

002D I4: . WORD L7-L1 ;ANOTHER ?

0008 . WORD L8-L7

FFFF . WORD OFFFF

003D I5: . WORD L10-1L1 sNO VALID ANSWER

0009 . WORD L11-L10

0035 . WORD L8-L1

0006 . WORD L9-L8

0000 .WORD L1-L1 ;- REENTER 5 COEFFICIENTS
0018 .WORD L6-L1

FFFF .WORD OFFFF

A subroutine generates the printed messages. To write a message, the procedure is to call the subroutine and
to specify the index that identifies the message to be printed. For example, to print "Answer=", the call would
be as shown below.

JSR WRIT
. WORD 13

Subroutine WRIT calculates the section of the literal pool to be printed. The first character is at the address:
L1 plus the contents of I3. The number of characters to be printed is derived from the contents of I3 + 1. The
next byte contains X'FFFF, so printing is finished; otherwise, printing would continue with the next pair of
index bytes specifying the next string of characters.

Chapter 8

ASSEMBLER INPUT/OUTPUT FORMATS

The information in this chapter is common to all PACE assemblers.

The PACE assembler programs accept free-format PACE assembly-language statements as source input. The
programs interpret the statements and output a program listing and a machine-language load module. The load
module may be loaded and executed by a PACE microprocessor. The load module may also be used to program
ROMs or PROMs. Detailed operation instructions on the PACE assembler programs are contained in the instal-
lation and operating instructions for the assemblers.

Each PACE cross assembler requires the following minimum complement of peripherals: a source input unit, a
program listing output unit, and a binary output unit. In addition, some assemblers require a scratch unit for
multipass processing.

8.1 INPUT/OUTPUT FILES

The input and output files required by the assemblers are listed below and explained in the following paragraphs.

Function File Format Logical Record Length
Source File (Input) Sequential 80 bytes
Program Listing File (Output) Sequential 121 bytes
Load Module File (Output) Binary 36 bytes

8.1.1 Source File (Input)

The Source File may be input via punched cards or paper tape or, in some cases, magnetic disc.

8.1.2 Program Listing File (Output)

The program listing file contains ANS carriage control characters. The format of the program listing written
from this file follows.

Each line in the cross assembler program listing contains the following sequential columns: line number,
location counter, value, indicator, source statement, and error message — defined as follows:

° Line mumber is the decimal line number of the source input statement. All source statements
not deleted by conditional assembly directives are assigned sequential numbers.

® Location counter is the current hexadecimal value of the location counter. Any labels in the
source statements are assigned this value.

. Value is the hexadecimal value of the code generated (or assignment made). For assembler
statements that do not generate code, this field is blank.

° Indicator is a one-character symbol that describes the relocation characteristics of the code
generated. See the operating instructions of your assembler for the definition of the symbols.

[Source statement is the reproduction of the source statement.

° Error message appears on the line(s) following the statement line if an error is detected. The

question mark to the right of the error message designates, as closely as possible, the position
of the error in the statement.

Error messages are defined in the Installation and Operating Instructions of each assembler.

8-1

At the end of the program listing, a list of generated pointers is provided (if generated anywhere); a symbol
table is produced; a message is printed noting the number of errors discovered by the assembler program;
and the source and object checksums are printed.

8.1.3 Load Module (Output)

The Load Module (LM) file contains loading information and object code produced from the source statements.
The LM file is an unformatted file composed of a sequence of records, each containing 18 words or less. The
representation of the records depends on the storage medium. There are four types of LM records:

Title Record (one per LM file)

Symbol Record (variable number per LM file)
Data Record (variable mumber per LM file)
End Record (one per LM file)

The records are produced in the sequence shown in figure 8-1, Independent of the record type, the first two
words in each record always have the same interpretation. The first word specifies the record type (bits 15 and
14) and the length of the record body (bits 13 through 0). The second word contains a checksum for error detec-
tion. The checksum is formed by taking the arithmetic sum (modulo 216) of all the bytes in the record body.

15 , 0

TITLE RECORD

SYMBOL RECORD 0

0 to n Symbol
Records
SYMBOL RECORD n
B
DATA RECORD 0
. 0 to m Data
X Records
DATA RECORD m .

END RECORD

Figure 8-1. LM File Format

8-2

8.1.3.1 Title Records

The Title Record identifies the load module by name and, optionally, by a qualifying character string. These
two identification items are supplied by the last . TITLE directive statement in the source program. If the

. TITLE directive is not included,

a default name (MAINPR) is used. If the default name is assigned, the quali-

fying character string is empty. Also included in the Title Record are two values that specify an estimate of

the amount of storage utilized in the base sector and the top sector of memory. Determining the storage utiliza-
tion is done by keeping track of the maximum value held by the two respective location counters. Figure 8-2
illustrates the format of the Title Record.

Record
Type
{ Y
Word 15 14 |13 0 Bit Position
1 0 0 RECORD LENGTH
2 RECORD CHECKSUM (modulo 216)
3 BOTTOM SECTOR SIZE
4 TOP SECTOR SIZE
5
6 PROGRAM NAME
7
8
DESCRIPTION
CHARACTER STRING
18
NOTES: 1. The program name and the descriptive string are composed of 7-bit

8.1.3.2 Symbol Records

ASCII characters. Both are right-justified with zeros-fill at the end.

Only the first 22 characters in the descriptive string (of the source
statement) are used in the title record.

Figure 8-2. Title Record Format

The Symbol Records specify values for global symbols that are internal to the current LM. The symbols then

can be referenced by other LMs.

In addition, global symbols that are external to the LM are specified with

associated linkage information. Figure 8-3 illustrates the format of the Symbol Record.

Record

Type
{) | I Bit
Word 15,1413, 12|11,09 , . . 0 Position
1 0 1 RECORD LENGTH
2 RECORD CHECKSUM (modulo 216)
3 TYP()| TYP®) |[TYP@3) [0 0 0 0 0 0 0 0 0 ©
4
5 SYMBOL NAME (1)
6
7 VALUE (1)
8
9 SYMBOL NAME (2)
10
11 VALUE (2)
12
13 SYMBOL NAME (3)
14
15 VALUE (3)
77 70000 7
17 / / NOT USED /// //
18
7000 Z.
NOTES: 1. TYP(i) specifies the relocation mode for SYMBOL NAME (i).
TYP(i) Relocation Mode
0 Absolute
1 Base Sector
2 Top Sector
3 External

2. VALUE (i) is the absolute address (TYP(i) = 0), relocatable address
(TYP(i) = 1 or 2), or external number (TYP(i) = 3).

3. SYMBOL NAME (i) is composed of 7-bit ASCII characters. If a
symbol is less than six characters long, the remaining characters
are zero.

Figure 8-3. Symbol Record Format

8-4

8.1.3.3 Data Records

The Data Records contain the actual data and the instruction words to be loaded into memory. Each Data Record
contains the initial load address and the address mode for the first data word in the record. Subsequent data are
loaded sequentially. Also, for each data word, there is a 2-bit field that specifies relocation information. Any
time a discontinuity (that is, a change of sector or an empty block) exists in the data to be loaded, the current
record is terminated (possibly with fewer than 12 data words) and a new record is initiated. Figure 8-4 illustrates
the Data Record Format.

Record
Type
l ! Bit
Word 15.14113.12{11 _10t9 .87 615 413 _ 211 _0 S
e 1 1 i I L 1 L I L 1 1 1 1 ¥ POSlthn
1 1 0 RECORD LENGTH
2 RECORD CHECKSUM (modulo 216)
3 o o o0 o0 0o 0 0 O O o0 O 0 0 O0fATYP
4 INITIAL LOAD ADDRESS
5 TYP1 | TYP2 | TYP3 | TYP4 | TYP5 | TYP6 TYP7 TYP8
6 TYP9 | TYP1O| TYP11{TYP12 | 0 0 O 0 O o0 O0 O
7 DATA (1)
18 DATA (12)
NOTES: 1. ATYP specifies the address mode for the INITIAL LOAD ADDRESS.
ATYP Address Mode
0 Absolute
1 Base Sector Relocatable
2 Top Sector Relocatable

2. TYPI1 through TYP12 specify the relocation mode for DATA (1) through
DATA (12), respectively.

TYP Relocation Mode
0 Absolute
1 Base Sector
2 Top Sector
3 External

3. I 8-bit "data" is specified by the assembler, bits 15 through 8 of
DATA (1) through DATA (12) are set to zero, and bits 7 through 0
contain the "data".

Figure 8-4. Data Record Format

¥
o

8.1.3.4 End Records

The End Record marks the end of the LM file and specifies an entry address for the load module. The End
Record format is illustrated in figure 8-5.

The source checksum represents the sum (modulo-216) of all the characters, taken one at a time, in the pro-
gram source file. The source checksum is printed on the program listing following the symbol table printout.

The object checksum represents the modulo-218 sum of all the individual record checksums of the LM. The
object checksum also is printed on the program listing following the symbol table.

Record
Type
Word 15,2413, . . ., . . . 4, ,2l1 0 Bit
Position
1 1 1 RECORD LENGTH
2 RECORD CHECKSUM (modulo 216)
3 0 0 0 0 0 0 0 0 0 0 O 0 0 0 ATYP
4 / ENTRY ADDRESS
5 SOURCE CHECKSUM
6 OBJECT CHECKSUM
4
7 V/ / ////////
. NOT USED
%k 7
NOTE: ATYP specifies the mode of the entry address.
ATYP Address Mode

0 Absolute

1 Base Sector

2 Top Sector

3 External

Figure 8-5. End Record Format

Appendix A

ASCII CHARACTER SET
Table A-1 contains the 7-bit hexadecimal code for each character in the ASCII character set. The printable
characters in this set may be set up as program data by use of the . ASCII directive. The remaining characters

may be set up in hexadecimal constants with a . WORD directive. Table A-2 contains the legend for nonprintable
characters.

Table A-1. ASCI Character Set in Hexadecimal Representation

7-Bit Punched 7-Bit Punched
ASCI Hexadecimal Card ASCII Hexadecimal Card
Character Number Code Character Number Code
NUL 00 12-0-1-8-9 0 30 0
SOH 01 12-1-9 1 31 1
STX 02 12-2-9 2 32 2
ETX 03 12-3-9 3 33 3
EOT 04 7-9 4 34 4
ENQ 05 0-5-8-9 5 35 5
ACK 06 0-6-8-9 6 36 6
BEL 07 0-7-8-9 7 37 7
BS 08 11-6-9 8 38 8
HT 09 12-5-9 9 39 9
LF 0A 0-5-9 : 3A 2-8
vT 0B 12-3-8-9 H 3B 11-6-8
FF oC 12-4-8-9 < 3C 12-4-8
CR oD 12-5-8-9 = 3D 6-8
SO OE 12-6-8-9 > 3E 0-6-8
SI oF 12-7-8-9 ? 3F 0-7-8
DLE 10 12-11-1-8-9 @ 10 4-8
DC1 11 11-1-9 A 41 12-1
DC2 12 11-2-9 B 42 12-2
DC3 13 11-3-9 C 43 12-3
DC4 14 4-8-9 D 44 12-4
NAK 15 5-8-9 E 45 12-5
SYN 16 2-9 F 46 12-6
ETB 17 0-6-9 G 47 12-7
CAN 18 11-8-9 H 48 12-8
EM 19 11-1-8-9 I 49 12-9
SUB 1A 7-8-9 J 1A 11-1
ESC 1B 0-7-9 K 4B 11-2
FS 1C 11-4-8-9 L 4C 11-3
GS 1D 11-5-8-9 M 4D 11-4
RS 1E 11-6-8-9 N 4E 11-5
Us 1F 11-7-8-9 o 4F 11-6
SP 20 No Punches P 50 11-7
! 21 11-2-8 Q 51 11-8
" 22 7-8 R 52 11-9
23 3-8 S 53 0-2
$ 24 11-3-8 T 54 0-3
% 25 0-4-8 U 55 0-4
& 26 12 v 56 0-5
' 27 5-8 w 57 0-6
(28 12-5-8 X 58 0-7
) 29 11-5-8 Y 59 0-8
* 2A 11-4-8 Z 5A 0-9
+ 2R 12-6-R i 5B 12-2-8
2C 0-3-8 \ 5C $-8-2
- 2D 11] 5D 12-7-8
2E 12-3-8 t 5E 11-7-8
/ 2F 0-1 - 5F 0-5-8
\ 50 8-1

Table A-1. ASCI Character Set in Hexadecimal Representation (Continued)

ASCII 7-Bit Punched ASCII 7-Bit Punched
Hexadecimal Card Hexadecimal Card
Character Number Code Character Number Code
a 61 12-0-1 q 71 12-11-8
b 62 12-0-2 r 72 12-11-9
c 63 12-0-3 s 73 11-0-2
d 64 12-0-4 t 74 11-0-3
e 65 12-0-5 u 75 11-0-4
f 66 12-0-6 v 76 11-0-5
g 67 12-0-7 w 77 11-0-6
h 68 12-0-8 X 78 11-0-7
i 69 12-0-9 y 79 11-0-8
j 6A 12-11-1 zZ TA 11-0-9
k 6B 12-11-2 7B 12-0
H 8C 12-11-3 7C 12-11
m 6D 12-11-4 ALT 7D 11-0
n 6E 12-11-5 ESC TE 11-0-1
o 6F 12-11-6 DEL, TF 12-7-9
p 70 12-11-7 RUB
Table A-2. Legend for Nonprintable Characters
Character Definition Character Definition
NUL NULL SI SHIFT IN
SOH START OF READING; ALSO PLE DATA LINK ESCAPE
START OF MESSAGE DC1 DEVICE CONTROL 1
STX START OF TEXT; ALSO EOA, DC2 DEVICE CONTROL 2
END OF ADDRESS DC3 DEVICE CONTROL 3
ETX END OF TEXT; ALSO EOM, DC4 DEVICE CONTROL 4
END OF MESSAGE NAK NEGATIVE ACKNOWLEDGE
EOT END OF TRANSMISSION (END) SYN SYNCHRONOUS IDLE (SYNC)
ENQ ENQUIRY (ENQRY); ALSO WRU ETB END OF TRANSMISSION
ACK ACKNOWLEDGE, ALSO RU BLOCK
BEL RINGS THE BELL CAN CANCEL (CANCL)
BS BACKSPACE EM END OF MEDIUM
HT HORIZONTAL TAB SUB SUBSTITUTE
LF LINE FEED OR LINE SPACE ESC ESCAPE, PREFIX
(NEW LINE): ADVANCES FS FILE SEPARATOR
PAPER TO NEXT LINE GS GROUP SEPARATOR
BEGINNING OF LINE RS RECORD SEPARATOR
VT VERTICAL TAB (VTAB) Us UNIT SEPARATOR
FF FORM FEED TO TOP OF SpP SPACE
NEXT PAGE (PAGE) ALT ALT MODE
CR CARRIAGE RETURN ESC ESCAPE. PREFIX
SO SHIFT OUT DEL, RUB DELETE, RUBOUT

Appendix B

INDEX OF INSTRUCTIONS

Table B-1. Opcode Index of Instructions

Opcode Mnemonic Format Operation Page
Base

0000 HALT Halt 4-21
0400 CFR T Copy Flags into Register 4-13
0800 CRF r Copy Register into Flags 4-13
0C00 PUSHF Push Flags onto Stack 4-14
1000 PULLF Pull Flags off Stack 4-14
1400 JSR disp(xr) Jump to Subroutine 4-3
1800 JMP disp(xr) Jump 4-2
1Co00 XCHRS T Exchange Register and Stack 4-12
2000 ROL r,n,t Rotate Left 4-19
2400 ROR r,n,l Rotate Right 4-20
2800 SHL r,n,f Shift Right 4-17
2C00 SHR T,n,t Shift Left 4-18
3000 PFLG fe Pulse Flag 4-22
3080 SFLG fc Set Flag 4-22
4000 BOC cc, disp Branch On Condition 4-1
5000 LI r,disp Load Immediate 4-11
5400 RAND sr,dr Register AND 4-16
5800 RXOR sr,dr Register Exclusive-OR 4-16
5C00 RCPY sr,dr Register Copy 4-12
5C00 NOP No Operation 4-22
6000 PUSH r Push Register onto Stack 4-13
6400 PULL T Pull Register off Stack 4-14
6800 RADD sr,dr Register Add 4-15
6C00 RXCH sr,dr Register Exchange 4-12
7000 CAI r,disp Complement and Add Immediate 4-17
7400 RADC sr,dr Register Add with Carry 4-15
7800 AISZ r,disp Add Immediate, Skip if Zero 4-6
7C00 RTI disp Return from Interrupt 4-4
8000 RTS disp Return from Subroutine 4-4
8800 DECA 0, disp(xr) Decimal Add 4-11
8C00 ISZ disp(xr) Increment and Skip if Zero 4-6
9000 SUBB 0, disp(xr) Subtract with Borrow 4-10
9400 JSR @disp(xr) Jump to Subroutine Indirect 4-3
9800 JMP @disp(xr) Jump Indirect 4-3
9Co00 SKG 0, disp(xr) Skip if Greater 4-5
A000 LD 0, @disp(xr) Load Indirect 4-7
A400 OR 0, disp(xr) OR 4-10
A800 AND 0, disp(xr) AND 4-9
ACO00 DSZ disp(xr) Decrement and Skip if Zero 4-6
B000 ST 0, @disp(xr) Store Indirect 4-8
B800O SKAZ 0, disp(xT) Skip if AND is Zero 4-5
BCOO LSEX 0, disp(xr) Load with Sign Extended 4-8
C000 LD r, disp(xr) Load 4-7
D000 ST r, disp(xr) Store 4-8
E000 ADD T, disp(xr) Add 4-10
F000 SKNE r, disp(xr) Skip if Not Equal 4-5

[

Table B-2. Mnemonic Index of Instructions

Opcode Mnemonic and Assembler Format Description Page
E000 ADD r,disp(xr) Add 4-10
7800 AISZ r,disp Add Immediate, Skip if Zero 4-6
A800 AND 0, disp(xr) AND 4-9
4000 BOC cc,disp Branch On Condition 4-1
7000 CAl r,disp Complement and Add Immediate 4-17
0400 CFR r Copy Flags into Register 4-13
0800 CRF r Copy Register into Flags 4-13
8800 DECA 0, disp(xr) Decimal Add 4-11
AC00 DSZ disp(xr) Decrement and Skip if Zero 4-6
0000 HALT Halt 4-21
8C00 ISZ disp(xr) Increment and Skip if Zero 4-6
1800 JMP disp(xr) Jump 4-2
9800 JMP @disp(xr) Jump Indirect 4-3
1400 JSR disp(xr) Jump to Subroutine 4-3
9400 JSR @disp(xr) Jump to Subroutine Indirect 4-3
CO60 LD T, diSp(XT) Load 4-7
A000 LD 0,@disp(xr) Load Indirect 4-7
5000 LI r,disp Load Immediate 4-11
BC00 LSEX 0, disp(xr) Load with Sign Extended 4-8
5C00 NOP No Operation 4-22
A400 OR 0, disp(xr) OR 4-10
3000 PFLG fe Pulse Flag _ 4-22
6400 PULL r Pull Register off Stack 4-14
1000 PULLF Pull Flags off Stack 4-14
6000 PUSH T Push Register onto Stack 4-13
0C00 PUSHF Push Flags onto Stack 4-14
7400 RADC sr,dr Register Add with Carry 4-15
6800 RADD sr,dr Register Add 4-15
5400 RAND sr,dr Register AND 4-16
5C00 RCPY sr,dr Register Copy 4-12
2000 ROL r,n,f Rotate Left 4-19
2400 ROR r,n,{ Rotate Right 4-20
7C00 RTI disp Return from Interrupt 4-4
8000 RTS disp Return from Subroutine 4-4
6C00 RXCH sr,dr Register Exchange 4-12
5800 RXOR sr,dr Register Exclusive-OR 4-16
3080 SFLG fc Set Flag 4-22
2800 SHL r,n, ! Shift Left 4-18
2C00 SHR r,n,{ Shift Right 4-17
B800 SKAZ 0, disp(xr) Skip if AND is Zero 4-5
9C00 SKG 0, disp(xr) Skip if Greater 4-5
F000 SKNE T, disp(xr) Skip if Not Equal 4-5
D000 ST r,disp(xr) Store 4-8
B000 ST 0, @disp(xr) Store Indirect 4-8
9000 SUBB 0, disp(xr) Subtract with Borrow 4-10
1C00 XCHRS T Exchange Register and Stack 4-12

5]

ALPHANUMERIC SEQUENCE BY HEXADECIMAL
Read down then right.

Table B-3. Numeric Index of Instructions

BASE | PC ac2 [ac3
Mnemonic PAGE | REL |REL |REL
Assembler Code AcO | Act [Ac2 [Ac3 [0 | (XX+PO) | (XX+AC2)|(XX+AC3)
HALT 0000
CFR_ 1 0400 | 0500 | 0600 | 0700
CRF ¢ 0800 | 0900 | 0A00 | 0BOO
PUSHF 0C00
PULLF 1000
ISR disp(xr) 18XX_| 15XX_ | 16XX__ [17XX
JMP displxr) 18XX_ | 19XX_ [1AXX__[1BXX
XCHRE ¢ 100 | 1000 | 1E00 | 1F00
ROL ol 20XX | 21XX_| 22XX_| 23XX
ROR vl Z8XX_| 25XX_| 26XX_ [21XX
SHL) 78XX | 29XX_| 2AXX | 2BXX
SHR rn 2CXX | 20XX | 2EXX | 2FXX
Ny, NQT
fe USED | IE1 IE2 1E3 1E4 1ES OVF___|cRY |LINK | IEN BYTE | F11 F12 F13 Fi4 USED
PFLG fc 3000 | 3100 | 3200 | 3300 | 3400 | 3500 3600 [3700 3800 | 3900 | 3A00 | 3800 | 3C00 | 3000 | 3€00 | 3F00
SFLG I 3080 | 3180 | 3280 | 3380 | 3480 | 3580 |3680 [3780 |3880 | 3980 | 3A80 | 3880 | 3c80 | 3080 | 3€80 | 3F80
STACK| ACO | ACO | ACO | ACO | ACO [ACO ACO
cc Full =0 Bit15=0] Bit0=1 | Bit1=1 | #0 Bit2=1__|CONT_ |LINK | IEN CRY |Bit15=1] ovF | yc13 | Jc14 | Jc1s
BOC cc.disp TOXX | 41XX | 82XX | 43XX | 44XX | 46XX |46XX |87XX [4BXX | 49XX | 4AXX | 4BXX | 4CXX | 4DXX | 4EXX | 4FXX
ACO_ | AC1_ | AC2 | AC3
u T, data 50XX | 51XX | 52XX | 53XX
st ACO | ACt | Ac2 |Ac3 | Aco |Act |AC2 |Ac3 [AcO | ACt | Ac2 | AC3 | ACO | AC1 | AC2 | AC3
dr ACO_ | Aco | Aaco |Aco | Act | Act |Aact |act |ac2 | Ac2 | Ac2 | Ac2_ | AC3 | AC3 | AC3 | AC3
RAND sr,dr 5400 | 5440 | 5480 | 540 | 5500 | 5540 | 5580 |55C0 |5600 | 5640 | 5680 | 56C0 | 5700 | 5740 | 5780 | 57C0
RXOR _ sr.dr 5800 | 5840 | 5880 | 5800 | 5900 | 5940 |5980 |59C0 [5A00 | 5A40 | 5A80 | SACO | 5800 | 5B40 | 5880 | 5BCO
NoP 5C00
RCPY sr.dr 5C00 | 5040 | 5080 | 5CC0 | 5D00 | 5D40 | 5080 |5DC0 {5600 | SEAQ | 5E80 | GECG | SFO0 | 5F40 | GF80 | 5FCO
ACO | Ac1 | Ac2 | Ac3
PUSH ¢ 6000 | 6100 | 6200 | 6300
PULL v 6400 | 6500 | 6600 | 6700
s ACO | AC1 | AC2 |AC3 |ACD {AC1 |AC2 |AC3 |ACO | AC1 | AC2 | AC3 | ACO | AC1 | ACZ | AC3
dr ACO | aco | Aco |aco | act |act |Act__|ac1 |ac2 | acz | Ac2 | Ac2 | AC3 | AC3 | AC3 | AC3
RADD _ sr,dr 6800 | 6840 | 6880 | 68C0 | 6900 | 6940 [6980 [69C0 [6A00 | 6A40 | 6A80 | 6ACO | BBOO | 6B40 | 6B8O0 | 6BCO
RXCH sr.dr 6C00 | 6C40 | 6C80 | 6CCO | 6000 | 6040|6080 [60CO |[6EDO | 6E40 | GEB0 | 6ECO | 6FOO | 6F40 | 6F80 | 6FCO
aco_ | AC1_ | Ac2 | Ac3
CAi r, data J0XX | 71XX | 72XX | 13XX
st ACO | AC1 | Ac2 |AC3 | AcO | ACt |AC2 |Ac3 [ACO | AC1 | AC2 | AC3 | ACO | ACl | AC2 | AC3
dr AC0 | Aco | Aaco |aAco | Act _|aci |acr |act |ac2 | Aac2 | Aac2 | Acz | Ac3_| AC3 | AC3 | AC3
RADC sr,dr 7400 | 7440 | 7480 [7ac0 [7500 | 7540 [7580 [75C0 [76G0° | 7640 | 7680 | 76C0 | 7700 | 7740 | 7780 | 77CO

Halt

Copy flags to register

Copy register to flags

Push flags onto stack

Pull stack nto flags

Jump to subroutine; XX = *127; push PC onto stack
Jump; XX = #127

Exchange register and stack

Rotate register left

Rotate register right 8it 1 = 1include link bit
Shift left Bit 2 = 2 shift count
Shift right Bits 2-7 = N = shift count

Pulse or reset flag
Set flag

Branch on condition (PC relative) XX = 127

Load immediate; load register with XX; XX = data
Bit 7 of XX extends to Bits 8-15 of register

“AND" register to register; result to register (dr)
Exclusive “OR" register to register; result to register {dr)

Copy register to register

Push register onto stack
Pull stack into stack

Add register to register; result to register (dr), overflow, and carry
Exchange register

Complement register and add XX; result to register
Bit 7 of XX is extended to Bits 8-15

Add register to register plus carry; result to register (dr);
overflow and carry

Table B-3.
ALPHANUMERIC SEQUENCE BY HEXADECIMAL
Read down then right.
Mnemonic PACE | REL | REL [REL
Assembler Code ac0 | Ac1 | Acz | Acs | xx (XX+PC) | (XX+AC2)|(XX+AC3)
AISZ v, data TBXX | 79XX | JAXX | 7BXX |
RTI disp 7CXX
| RTS __disp. 80XX
DECA 0, dispixr) 88XX_| BIXX_ | BAXX _|BBXX
53 displxr) 8CXX | BDXX_| BEXX _|BFXX
SUBB 0, displxr) 90XX_ | 91XX_ | 92XX__ |93XX
SR @displxr) 94XX_| 95XX_ | 96XX__ [97XX
IMP___ @ displxr) 98XX_| 99XX_| 9AXX__|9BXX
SKG 0, dispixr) 9CXX | 9DXX | 9EXX |9FXX
) 0, @ disp(x1) ADXX | AIXX_| AZXX__|A3XX
OR 0, displxr) AGXX | ABXX | ABXX_|ATXX
AND 0, disp(xr) ABXX | AGXX_ | AAXX_ |ABXX
0SZ displxr) ACXX | ADXX | AEXX__[AFXX
ST 0, @ displxr) BOXX | BIXX | BZXX _[B3XX
SKAZ 0, dispxr) BBXX | BIXX | BAXX [BBXX
LSEX__0, dispixr) BCXX | BOXX | BEXX _|BFXX
[13) r, displxr) COXX | CIXX | CZXX_ |C3XX
C4XX | C5XX_| CBXX__|CTXX
C8XX_| COXX_| CAXX_|CBXX
CCXX | CDXX | CEXX_[CFXX
ST «_ displxr) DOXX | DIXX_| D2XX__|D3XX
D4XX_| D5XX_| D6XX__|D7XX
D8XX_| D9XX_| DAXX__|DBXX
T DCXX | ODXX_ | DEXX_|DFXX
ADD r, displxr) EOXX | E1XX | E2XX_ [E3XX
EAXX | EBXX | EBXX |ETXX
EBXX | E9XX | EAXX [EBXX
ECXX | EDXX | EEXX |EFXX
SKNE v, disp(xr) FOXX_| FIXX_| F2XX__[F3XX
FAXX_| FBXX_| FBXX__[FTXX
FBXX | FOXX_ | FAXX_ |FBXX
FCXX | FDXX | FEXX |FFXX

Numeric Index of Instructions (Continued)

Add XX to register; skip next instruction if result = zero; XX = £127

Return from interrupt; add XX to top of stack and place result in PC; XX = +127; set IEN flag

Return from subrouting; add XX to top of stack and place result in PC; XX = 127

Decimal add register ACO to contents of effective address; result to ACO, overflow and carry; address = (XX + register shown); XX = £127
Increment contents of effective address by 1; skip next instruction if result = 0; result is in EA; use address mode shown; XX = 127
Subtract contents of effective address from ACO; result to ACO; use address mode shown; XX = *127

Jump to subroutine indirect; push PC onto stack; final address = to contents of location (XX + register shown); XX = 2127

Jump indirect; final address = to contents of location (XX + register shown); XX = 127

Compare ACO with contents of location (XX + register shown); XX = £127; skip next instruction if ACQ > (EA)

Load indirect; load ACO with contents of final address; address = contents of focatian (XX + register shown); XX = £127

OR ACO with contents of location (XX + register shown); XX = £127; result to ACO

AND ACD with contents of Jocation (XX + register shown); XX = %127, result to ACO

Decrement contents of effective address by 1; skip next instruction if result = 0; result is in EA; address = (XX + register shown); XX = +127
Store indirect; store ACO into final address; address = contents of lacation (XX + register shown); XX = £127

AND AGO with contents of location (XX + register shown); skip next instruction if result = 0; XX = 2127

Load ACO with sign extended; Bit 7 of location (XX + register shown) is extended to ACO 8-15; Bits 0-7 are loaded to ACO Bits 0-7; XX = +127
Load ACD with contents of location (XX + register shown); XX = 127

Load AC1 with contents of location (XX + register shown); XX = +127

Load A2 with contents of location (XX + register shown); XX = 127

Load A3 with contents of location (XX + register shown); XX = +127

Store ACQ to location (XX + register shown); XX = +127

Store AC1 to location (XX + register shown); XX = £127

Store AC2 to location (XX + register shown); XX = 127

Store AC3 to location (XX + register shown); XX = ¥127

Add ACO to location (XX + register shown); XX = £127; resuit to ACO

Add AC1 to location (XX + register shown); XX = £127; result to AC1

Add AC2 to location (XX + register shown); XX = £127; result to AC2

Add AC3 to location (XX + register shown); XX = 2127 result to AC3

Compare ACO to location (XX + register shown); XX = £127; if not equal skip next instruction

Compare AC1 to location (XX + register shown); XX = £127; if not equal skip next instruction

Compare AC2 ta location (XX + register shown); XX = £127; if not equal skip next instruction

Compare AC3 to location (XX + register shown); XX = £127; if not equal skip next instruction

Appendix C

INSTRUCTION EXECUTION TIMES

The formats for computing the execution times of PACE instructions are listed in table C-1. The formulas are
presented in terms of machine (microinstruction) cycles (M) and 1/0 data-transfer cycle extends (ER for read
and Eyy for write). Each machine cycle (M) consists of four clock cycles. The following example shows the
method of calculating the instruction execution times.

Instruction Execution Time
Mnemonic usecs
Formula (typical excluding

ER and Ew)
ADD 4M + 2ER 12
AISZ 5M + Eg + (1M if skip) 15,18
AND 4M + 2ER 12
BOC 5M + Eg + (1M if skip) 15,18
CAI 5M + Ep 15
CFR 4M + Eg 12
CRF 4M + Eg 12
DECA 7™ + 2ER 21
DSZ 7M + 2ER + Ew + (1M if skip) 21,24
HALT —
Sz 7M + 2ER + Ey + (LM if skip) 21,24
JMP 4M + Eg 12
IMP@ 4M + 2ER 12
JSR 5M + ER 15
JSR@ 5M + 2Eg 15
LD 4M + 2ER 12
LD@ 5M + 3Eg 15
LI 4M + Eg 12
LSEX 4M + 2Eg 12
NOP 4M + Eg 12
OR 4M + Eg 12
PFLG 6M + ER 18
PULL 4M + ER 12
PULLF 4M + ER 12
PUSH 4M + Eg 15,18
PUSHF 4M + ER 12
RADC 4M + ER 12
RADD 4M + Eg 12
RAND 4M + ER 12
RCPY 4M + ER 12
ROL 5+3n)M+ ER, n=1t0127; 6M+ Eg, n=10 18 to 1158
ROR (5+3n)M+ ER, n=1t0 127; 6M + ER, n=0 18 to 1158
RTI 6M + Eg 18
RTS 5M + Eg 15
RXCH 6M + ER 18
RXOR 4M + ER 12
SFLG 5M + Eg 15
SHL (5+3mM+ER, n=1t0127; 6M+ ER, n=0 18 to 1158
SHR (5+3mM+ER, n=1t0127; 6M+ Eg, n=0 18 to 1158
SKAZ 5M + 2ER + (1M if skip) 15,18
SKG 7™M + 2ER + (1M if skip) 21,24
SKNE 5M + 2ER + (1M if skip) 15,18
ST 4M + ER + Ew 12
ST@ 4M + ZER + Ew 12
SUBB 4M + 2ER 12
XCHRS 6M + ER 18
NOTE: M = machine cycle time = 4 clock periods = 3 usecs (typically)

Ep = Extended time for read cycles Required only if memory access > 1.5 psec.
Ew = Extended time for write cycles Typical Eg and Ey; values are 750 nsec.

n = number of shifts, External interrupt response time is 7M + Ep plus time to finish
current instruction

Appendix D

DIRECTIVES

Directive Mnemonic Operands
Title . TITLE symbol [, string]
Split .SPLIT
End .END [address]

.ASECT expression
Program Section .BSECT expression

. TSECT expression
List . LIST immediate
Space .SPACE immediate
Page .PAGE [string]
Word . WORD expression [, expression. ..
ASCII JASCII string [, string...]
Set .SET symbol, expression

IR expression
Conditional Assembly .EISE

. ENDIF
Global .GLOBL symbol [, symbol...]
Local . LOCAL
Data Length .DLEN expression
Pointer .PTR expression [, expression, ..]
Pooi . POOL expression
No Base . NOBAS
Macro * . MACRO mname [parameters]
Macro End * . ENDM
Macro Local * . MLOC symbol [, symbol]
Do * .DO count
End Do * . ENDDO
Exit Do * . EXIT
Conditional Assembly JIFC stringl operator string2
Error .ERROR string
Macro Delete .MDEL mname [, mname,..]

* Cannot be used outside a macro definition.

NOTE: In the . IFC directive, operator means a relational operator and may be
either "EQ" for equal for "NE" for not equal.

Appendix E

PROGRAMMERS CHECKLIST

The following list of items is suggested for desk-checking a program prior to assembly.

1.

10.

11.

Is the source program terminated by an . END Directive?

Is each label in the program terminated by a colon (:)?

Is each comment in the program preceded by a semicolon (;) ?

Is each string constant in the program set off on both ends by a prime (') ?

Are all external symbols listed in . GLOBL Statements ?

Are all hexadecimal constants preceded by either X' or 0 (zero)?

For each . IF Directive in the program, is there a corresponding . ENDIF ?

Are any global symbols defined by forward references? Such definition is illegal.
Are any symbols defined by two-level forward references ? Such definition is illegal.
For each . MACRO directive in the program, is there a corresponding . ENDM ?

For each . DO directive in the program, is there a corresponding . ENDDO ?

55|
1
-

POSITIVE POWERS OF TWO

Appendix F

n 2n n 2n

1 2 51 22517 99813 68524 8

2 4 52 45035 99627 37049 6

3 8 53 90071 99254 74099 2

4 16 54 18014 39850 94819 84

5 32 55 36028 79701 89639 68

6 64 56 72057 59403 79279 36

7 128 57 14411 51880 75855 872

8 256 58 28823 03761 51711 744

9 512 59 57646 07523 03423 488

10 1024 60 11529 21504 60684 6976

11 2048 61 23058 43009 21369 3952

12 4096 62 46116 86018 42738 7904

13 8192 63 92233 72036 85477 5808

14 16384 64 18446 74407 37095 51616

15 32768 65 36893 48814 74191 03232

16 65536 66 73786 97629 48382 06464

17 13167 2 67 14757 39525 89676 41292 8

18 26214 4 68 29514 79051 79352 82585 6

19 52428 8 69 59029 58103 58705 65171 2
20 10485 76 70 11805 91620 71741 13034 24
21 20971 52 71 23611 83241 43482 26068 48
22 41943 04 72 47223 66482 86964 52136 96
23 83886 08 73 94447 32965 73929 04273 92
24 16777 216 74 18889 46593 14785 80854 784
25 33554 432 75 37778 93186 29571 61709 568
26 67108 864 76 75557 86372 59143 23419 136
27 13421 7728 77 15111 57274 51828 64683 8272
28 26843 5456 78 30223 14549 03657 29367 6544
29 53687 0912 79 60446 29098 07314 58735 3088
30 10737 41824 80 12089 25819 61462 91747 06176
31 21474 83648 81 24178 51639 22925 83494 12352
32 42949 67296 82 48357 03278 45851 66988 24704
33 85899 34592 83 96714 06556 91703 33976 49408
34 17179 86918 4 84 19342 81311 38340 66795 29881 6
35 34359 73836 8 85 38685 62622 76681 33590 59763 2
36 68719 47673 6 86 77371 25245 53362 67181 19526 4
37 13743 89534 72 87 15474 25049 10672 53436 23905 28
38 27487 79069 44 88 30948 50098 21345 06872 47810 56
39 54975 58138 88 89 61897 00196 42690 13744 95621 12
40 10995 11627 776 90 12379 40039 28538 02748 99124 224
41 21990 23255 552 91 24758 80078 57076 05497 98248 448
42 43980 46511 104 92 49517 60157 14152 10995 96496 896
43 87960 93022 208 93 99035 20314 28304 21991 92993 792
44 17592 18604 4416 94 19807 04062 85660 84398 38598 7584
45 35184 37208 8832 95 39614 08125 71321 68796 77197 5168
46 70368 74417 7664 96 79228 16251 42643 37593 54395 0336
47 14073 74883 55328 97 15845 63250 28528 67518 70879 00672
48 28147 49767 10656 98 31691 26500 57057 35037 41758 01344
49 56294 99534 21312 99 63382 53001 14114 70074 83516 02688
50 11258 99906 84262 4 ||100 12676 50600 22822 94014 96703 20537 6

101 25353 01200 45645 88029 93406 41075 2

3

el el el ol el
O BRWND OO 0O ik N~ O

D =
[=X=F]

NN
OO

KR

BB N
©oo=

OO QO
N~O

oW e
Uk W

SRRV
[* i Ker

W e 0D
=Oo

TS
B GO ko

B
pep-y

AQ
0

50

QOO

2-n

.25

.125
.0625
.03125

.01562
.00781
.00390

.00195
.00097
.00048

00024

.00012
.00006

.00003

00001

.00000

00000
00000

.00000

00000

.00000

00000

00000
00000

.00000

.00000
.00000
.00000

00000

.00000
00000

.00000
00000
.00000

.00000
.00000
.00000

.00000
.00000

00000
00000
00000
00000

00000

.00000
.00000

nnnnn

s UUuUuUU

.00006
.00000

NEGATIVE POWERS OF TWO

25
625

3125
65625
82812

41406
20703
10351

05175
52587
76293

38146
19073
09536

04768
02384
01192

00596
00298
00149

00074
00037
00018

00009
00004
00002

00001
00000
00000

00000
00000
00000

00000
00000
00000

00000
00000
00000

00000
00000
00000

onnnn
v v v

00000
00000

25
125
5625

78125
89062
94531

97265
48632
74316

37158
18579
09289

04644
02322
01161

50580
25290
62645

31322
65661
32830

16415
58207
29103

14551
07275
03637

01818
00909
00454

00227
00113
00056

00028
00014
00007

NNNN2
vuvuUo

00001
00000

Appendi

25

625
8125
40625

20312
10155
55078

77539
38769
19384

59692
20846
14923

57461
28730
64365

32182
66091
83045

91522
95761
97880

98940
49470
74735

37367
68683
84341

42170
21085
10542

EEOTY
GO L

77635
88817

x G

25
125

0625
53125
76562

38281
19140
09570

54785
77392
38696

69348
34674
67337

83668
41834
70917

35458
17729
08864

54432
77216
88608

94304
47152
73576

287QQ
QUi OO

68394
84197

5

25
625
3125

15625
57812
28906

14453
07226
03613

51806
25903
12951

56475
28237
64118

32059
16029
08014

04007
02003
01001

nnenn
LAYV VAV

00250
00125

25

125
5625
28125

64062
32031
66015

83007
91503
95751

47875
73937
86968

43484
71742
85871

[2 D10} 44
TLTOT

46467
23233

5
25
625

8125
90625
95312

97656
98828
99414

49707
24853
12426

&1
OU&LO

78106
89053

5

25
125
0625

03125
51562
75781

277Q0N
VIioTyV

68945
34472

25

oo
Lo -1y

3125
65625

THE HEXADECIMAL NUMBER SYSTEM

We have been taught from childhood to recognize and
manipulate a number system called decimal or base-10,
which uses ten symbols to represent values or numbers.
These symbols are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.
Combinations of these form other numbers, and each
number or digit position is assigned a value equal to its
position in the number sequence. For example, the
number 12,045:

POSITION NO. 43210
12045

Losan0- 5

=ax10) = 40

L —— - ox102- o000

= 2x10% = 2,000

= 1x10" = 10,000

12,04519

10 is the base-value of the number system, and 0, 1, 2, 3,
4 are the positions of weighted values.

Most computers use a base-2 numbering system in which
zeros and ones are the only symbols used to represent
any number. The least-significant bit would have a value
of 20, the next bit would be 21, then 22, etc. Let's
use a group of five bits and assign bit 0 as the least
significant bit.

BIT NO.
n I) 1. a0 M
v b 1 X £ 1
1 0 0x2] 0
2 = |1]= 1x22 = 4
3 0 ox23 0
4 1 1x2% 16

21190

21 is the sum of the values of the bit positions.

It can also be seen that by using larger groups of bits,
larger numbers may be represented. An eight-bit com-
puter, which can handle eight bit positions in parallel,
can represent numbers from 0 to 2551(.

All Bits Equal 0

BIT NO.
ox20
ox2!
0x22
0)(23
0)(24
0x22
0x2
ox2’

NOObBWN=O
1

CO0O0QOQQOO
n

|OODOOOOO

o
=1

All Bits Equal 1

BIT NO.

1x2(1)
1x2
1x22
1x23
1x2%
1x2
1x2
1x2

NOODWN SO
RE5
NO®REHEN =

128
25510

A computer that has 16 bit positions may represent
numbers with values from zero to 65,535.

Another consideration in computers is the representation
of both positive and negative values. In the “‘sign magni-
tude” system, this may be accomplished by assigning
one of the bits in a group as a plus/minus indicator.
The normal method is to assign the most-significant bit
position to this task. If it is a logic zero, then the value
is positive; if it is a logic one, then the value is minus.
Assuming a group of eight bits maximum, and using the
eighth position as the sign, we may represent the follow-
ing numbers:

BIT NO.

0 1 1x20 1

1 3 ix2)! 2

2 1 1x22 4

3 = |1 |= 1x23 = 8

4 1 1x2% 16

5 1 1x2° 2

6 1 1x28 64
sign bit 7 = + +12710

If bit 7 is equal to a 1, then the above number would be
negative: —127. Note that by using the most-significant
bit for the sign, the maximum number that may be
represented is only £127. In a 16-bit computer this
number would be £32,767.

Because it is difficult for us to convert visually many
ones and zeros to their represented value, other methods
of representing numbers have been implemented.

BCD OR BINARY CODED DECIMAL:

BCD uses groups of four binary bits or positions, and
only uses those combinations that add up t0 0, 1, 2, 3,
4,5,6,7,8, or9. For example:

BIT 3210
0000=0
0001 =1
0010=2
0011 =3
0100-=24
0101=25
0110=6
o111 =7
1000=28
1001 =29

The other binary combinations possible in the four bit
positions are not allowed in the BCD method:

1010
1011
r1o0 Not Valid
1101
1110
1110

In an 8-bit computer, the decimal numbers 00 through
99 may be represented:

BIT POSITION 76654

oI

[=]
(=]
-

1x20
0x 2!
0x22 =
1)(23

I’F

wlmoo—-

BIT POSITION 3210

0000

OI

-
o
o

ok

1.x20
0x 2]
L—ox22 -
1x23

(

(DIG)OO--

Note that the binary weighting system repeats for each
four-bit group.

This is then compensated for by applying the decimal
(base-10) rules to the converted numbers:

9x10°
ax10! =

8|8 o

(By having to weigh only up to four binary bits, you
quickly become efficient at converting binary numbers
to decimal form and decimal numbers to binary form.)

The maximum numbers that can be represented in an
8-bit machine is then only 9919 in decimal versus 2551
in binary.

As you can see, the efficiency of a computer is restricted
because of the illegal combination in each four-bit group.
Another representation of binary numbers allows for a//
combinations of the four-bit groups. This system is
called hexadecimal representation.

HEXADECIMAL (HEX) NOTATION

Hex uses a numbering system of base 16, and allows for
all combinations of the four-bit binary groups, as follows:

HEX
BITPOSITION: 3 2 1 0 BINARY SYMBOL

0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 1 B
1100 12 C
1101 13 D
t1 10 14 E
i1t 115 F

The notations A through F are used to allow for a
single-character representation of the four-bit group
without duplication.

With hex we can now represent all 16 combinations of
binary weights possible in a group of four bit positions.
An eight bit computer can then represent the numbers
00 through FF, which is equivalent to binary O through
255:

BIT POSITION 76564

BIT POSITION

1x20 g
1x2) = 2
1x22 4
1x2Y 8

Applying the same rules as for decimal, but using the
base 16 instead of base 10:

= 15
- 20
255

Thus, binary numbers, no matter what the number of
position, can easily be converted simply by dividing
them up into groups of four bits. For example, in a
16-bit computer:

Hex F £ 9 A
AN A A A

Binary 1111 1110 1001 1010
Y \% \% v

Hex F E 9 A

Further, the use of hex symbols as an equivalent for
four binary bits requires fewer printed symbols, and
most computer documentation today uses the hexa-
decimal code representation.

POSITIVE AND NEGATIVE NUMBERS:

In hex or in binary, the method of representing positive
and negative numbers is the same. The most-significant
bit of the most-significant group is set to a zero for a
positive number or a one for a negative number.

If there are four groups of 4-bits each, as in a 16-bit
computer, we could have:

Hex 7 F F F
A A A A
Binary oMt 1mn Tn mn
sign bit

This number is equivalent to +32,767.

Appendix

T
1

HEXADECIMAL AND DECIMAL INTEGER CONVERSION

8 7 6 5 4 3 2 1
HEX DECIMAL |HEX DECIMAL {HEX DECIMAL IHEX DECIMAL |HEX DECIMAL | HEX DECIMAL | HEX DECIMAL | HEX DECIMAL

0 of 0 o o0 ol 0 0 0 0 0 0 0 0 0 0
1 268435456 | 1 16777216 | 1 1048 576 1 65536 1 4096 1 256 1 16 1 1
2 536870912| 2 33554432 | 2 2097152 | 2 131072 2 8192 2 512 2 32 2 2
3 805306368 3 50331648 | 3 3145728 3 196 608 3 12288 3 768 3 48 3 3
4 1073741824| 4 67108864 | 4 4194304 | 4 262144 4 16 384 4 1024 4 64 4 4
5 1342177280| & 83886080 5 5242830 | 5 327680 5 20480 5 1280 5 80 5 5
6 1610612736 6 100663296| 6 6291456 | 6 393216 6 24576 6 1636 6 96 6 6
7 1879048182 7 117440512| 7 7340032 | 7 458752 7 28 672 7 1792 7 112 7 7
8 2147483648] 8 134217728 8 8388608 | 8 524288 8 32768 8 2048 8 128 8 8
9 2415919104} 9 150994944} 9 9437184 | 9 589824 9 36864 9 2304 9 144 9 9
A 2684354560] A 167772160 A 10485760 | A 655360 A 40 960 A 2560 A 160 A 10
B 2952790016] B 184549376 B 11534336 | B 720896 B 45 056 B 2816 B i76 B il
C 3221225472 C 201326592| C 12582912 | C 786432 c 49 152 C 3072 Cc 192 o} 12
D 3489660928{ D 218103808| D 13631488 | D 851968 D 53248 D 3328 D 208 D 13
E 3758096384] E 234881024 E 14680064 | E 917504 E 67 344 E 3684 E 224 E 14
F 4026531840 F 251658240 F 15728640 | F 983040 F 61440 F 3840 F 240 F 15

8 7 6 5 4 3 2 1

TO CONVERT HEXADECIMAL TO DECIMAL

. Locate the column of decimal numbers corresponding

to the left-most digit or letter of the hexadecimal;
select from this column and record the number that
corresponds to the position of the hexadecimal digit
or letter.

. Repeat step 1 for the next (second from the left)

position.

. Repeat step 1 for the units (third from the left)

position.

. Add the numbers selected from the table to form

the decimal number.

TO CONVERT DECIMAL TO HEXADECIMAL

1.

4.

{a) Select from the table the highest decimal number
that is equal to or less than the number to be
converted.

(b) Record the hexadecimal of the column con-
taining the selected number.

(c) Subtract the selected decimal from the number
to be converted.

. Using the remainder from step 1(c) repeat all of step

1 to develop the second position of the hexadecimal
(and a remainder).

. Using the remainder from step 2 repeat all of step 1

to develop the units position of the hexadecimal.

Combine terms to form the hexadecimal number.

To convert integer numbers greater than the capacity of table, use the techniques below:

HEXADECIMAL TO DECIMAL

Successive cumulative multiplication from left to right,
adding units position.

Example: D341g = 338010

D

= 13
x16
208 EXAMPLE
= 43 Conversion of Hexadecimal
_— Value D34
21
x16 D 3328
3376 3 48
= 44 4 4
3380 Decimal 3380

DECIMAL TO HEXADECIMAL

Divide and collect the remainder in reverse order.

Example: 338010 =D341g

16 |i80_ remainder
\4 EXAMPLE
16 @_\3 Conversion of Decimal
16 ﬁ_\ Value 3380
D D -3328
52
3 -48
4
4 —4
Hexadecimal D34

I-1

Appendix J

HEXADECIMAL AND DECIMAL FRACTION CONVERSION

1 2 3 4
HEX | DECIMAL | HEX | DECIMAL | HEX DECIMAL HEX | DECIMAL EQUIVALENT
0 .0000 .00 [.0000 0000 | .000 0000 0000 0000 | .0000|.0000 0000 0000 0G0O
1 0625 .01 {0039 0625 .001 |.0002 4414 0625 .0001 |.0000 1525 8789 0625
2 1250 .02 |.0078 1250 | .002 1.0004 8828 1250 | .0002].0000 3051 7578 1250
3 1875 .03 [0117 1875 .003 0007 3242 1875 .0003 {.0000 4577 8367 1875
4 .2500 .04 |.0156 2500 .004 |.0009 7656 2500 | .0004|.0000 6103 b156 2500
5 3125 05 {01956 3125 005 |.0012 2070 31256 .0005 | .0000 7629 3945 3125
.6 .3760 .06 10234 3750 .006 |.0014 6484 3750 | .0006|.0000 9155 2734 3750
7 4375 07 |0273 4375 .007 {0017 0898 4375 .0007 | .0001 0681 1523 4375
8 .5000 .08 10312 5000 .008 1.0019 5312 5000 .0008 | .0001 2207 0312 5000
9 5625 .09 [0351 5625 009 |.0021 9726 5625 0009 |.0001 3732 9101 5625
A .6250 .0A 10390 6250 .00A |.0024 4140 6250 .000A|.0001 5258 7890 6250
B .6875 .0B [0429 6875 .00B |.0026 8554 6875 .000B | .0001 6784 6679 6875
C .7500 .0C 10468 7500 .00C [.0029 2968 7500 .000C|.0001 8310 5468 7500
.D 8125 .0D 0507 8125 .00D [.0031 7382 8125 .000D|.0001 9836 4257 8125
.E .8750 .0E 10546 8750 .00E {.0034 1796 8750 .000E |.0002 1362 3046 8750
.F 9375 .OF [0585 9375 .O0F |.0036 6210 9375 .000F | .0002 2888 1835 9375

1 2 3 4

TO CONVERT .ABC HEXADECIMAL TO DECIMAL

Find .A

Find .0B

Find .00C in position 3
\ABC Hex is equal to

.6250

.0429 6875

.0029 2968 7500
.6708 9843 7500

in position 1

in position 2

By making the most-significant-bit a logic 1, then the
number becomes:

F F
A A

A
111 1im 1n 1mn

sign bit
This number is equivalent to —32,767.

The method used to represent a negative hexadecimal
number depends on the type of numbering system chosen
for binary arithmetic processing. Most digital computers
use either the “‘sign magnitude’’ system or the twos-
complement system. In the sign magnitude system, a
negative value is formed by setting a sign bit—the most-

significant bit of the most-significant group of bits—to
one, and the remaining bits to the desired absolute value.
Thus, —32,767 is represented as 1111 1111 1111 1111.

Conversely, if the most-significant-bit is a zero the
number is positive; +32,767 is represented as 0111 1111
1111 1911,

In the twos-complement system—the system used in
PACE—positive numbers are represented exactly as in
the sign magnitude system (sign bit is a logic zero);
but negative numbers are represented by the twos-
complement of the absolute value of the number.
Thus, —32,767 becomes, in the twos-complement system,
1000 0000 0000 0001. Appendix E shows how this
conversion is accomplished.

Appendix K

NEGATIVE HEXADECIMAL NUMBERS

The PACE microprocessor maintains negative numbers
in twos-complement form. To convert a number in
hexadecimal notation to its twoes-complement equivalent,
subtract the number from hexadecimal 2", where “n”
is the number of binary bits in the computer word. For
a 16-bit word, “n” is 16, and 2" is 1 0000 0000 0000
0000 (binary) or 1 0000 (hex).

Thus, the negative of 124514 is:

10000
-1245
EDBB

A hexadecimal number will be negative in the PACE
CPU if the left-most digit is 8,.9, A, B, C,D, E, or F
(because all of these groupings start with a one). Thus,
the twos-complement of hex FACE is:

10000

-FACE
+0632

Perhaps an easier way to find the twos-complement of a
hexadecimal number is first to take the ones-complement
of the number; the ones-complement plus one is the
twos-complement. The ones-complement of a number is
its inverted form; simply exchange its ones for zeros,
and its zeros for ones. Thus,

hexadecimal binary equivalent ones-complement
FACE - 11111010 1100 1110 ~0000 0101 0011 0001

ones-complement +1
0000 0101 0011 0001
+1

0000 0101 0011 0010

e e et N it et

Hex twos-complement of FACE - 0 5 3 2

~==~CUT HERL

DOCUMENT REVIEW FORM

Your comments concerning this document help us produce better documentation for you.

GENERAL COMMENTS

Yes No Yes No

Easy to Read? O O Complete? O O
Well Organized? (| O Well Hlustrated? (] O
Accurate? | (] Suitablie for Your Needs ? d]
How do You Use this Document ?

O As an introduction to the subject O For continual reference

O For additional knowledge O Other
SPECIFIC CLARIFICATIONS AND/OR CORRECTIONS

Reference Page No.

This form should not be used as an order blank. Requests for copies of publications should
be directed to the National Semiconductor sales office serving your locality.

National Semiconductor Corporation
2900 Semiconductor Drive

Santa Clara, California 95051
Attention: Microprocessor Publications

National Semiconductor Corporation
2900 Semiconductor Drive

Santa Clara, California 95051

(408) 737-5000

TWX: 910-339-9240

National Semiconductor (UK) Ltd.
Larkfield Industrial Estate
Greenock, Scotland

Telephone: GOUROCCK 33251

Telex: 778 632

National Semiconductor GmbH
808 Fuerstenfeldbruck
Industriestrasse 10

West Germany

Telephone: (08141) 1371

Telex: 05-27649

NS Electronics (PTE) Ltd.
No. 1100 Lower Deita Rd.

Singapore 3

Telephone: 630011

Telex: NATSEMI RS 21402

NS Electronics SDN BHD

Batu Berendam

Free Trade Zone

Malacca, Malaysia

Telephone: 5171

Telex: NSELECT 519 MALACCA
{(c/o Kuala Lumpur)

PUBLICATION NO. 4200130A, ORDER NO. IPC-16S:969Y
© 1977 NATIONAL SEMICONDUCTOR CORPORATION
PRINTED IN USA. DD1OMT7

	000
	001
	002
	003
	004
	005
	006
	1-01
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	C-01
	D-01
	E-01
	F-01
	G-01
	H-01
	H-02
	I-01
	J-01
	K-01
	replyA
	xBack

