PACE Microprocessor
System Design

Manual

National
Semiconductor

Publication Number 420305292-001A
Order Number IPC-16A/928

March 1977

$5.00

PACE
Processing And
Control Element

Microprocessor
System Design
Manua!

© National Semiconductor Corporation

2900 Semiconductor Drive
Santa Clara, California 95051

PREFACE

The PACE System Design Manual serves as a source of basic design information. Included are descriptions of
the PACE Microprocessor: its architecture, operational characteristics, instruction set, basic requirements
for designing PACE-based systems, and both memory and peripheral interfacing techniques. The material
has been presented in such a way as to provide design criteria not only for PACE but also to provide other
pertinent design information that interrelates PACE to various other support and interfacing devices.

The material within this publication is up-to-date at the time of publication but is subject to change with-
out notice.

Copies of this publication and other National Semiconductor publications may be obtained from the
National Semiconductor sales office or distributor serving your locality.

Other PACE publications that may be of interest are listed below:

PACE Logic Designers Guide to Programmed Equivalents to TTL Functions, Order Number IPC-
16A/927. Explains how standard TTL/MSI functions may be implemented by software using the
PACE Microprocessor.

PACE Assembly Language Programming Manual, Order Number IPC-16S/969Y. Provides tutorial
and reference information required for writing user application programs. Includes detailed de-
scriptions of the assembly language, source statements, programming techniques, and assembly
input/output formats.

PACE Development System Users Manual, Order Number IPC-16P/108Y. Comprises comprehen-
sive descriptions of the PACE Development System, including both operational and functional
information.

IPC-16A/520D MOS/LSI Single-Chip 16-Bit Microprocessor (PACE) Data Sheet. Provides para-
metric specifications of PACE. (Also includes some of the functional data provided in this manual.)

PACE Microprocessor Disc Operating System (DOS) Users Manual, Order Number IPC-16P/840Y.
Comprises PACE DOS operational procedures for both equipment and software.

PACE Microprocessor Low Cost Development System Users Manual, Order Number IPC-16P/301Y.
Provides installation, operational, and interfacing information.

National Semiconductor Memory Data Book.

Various other National Semiconductor publications pertaining to PACE-based products are or will be avail-
able. Contact our local sales office or distributor for information.

Chapter
1

[\

TABLE OF CONTENTS

AN INTRODUCTION TO PACE

AW AW = O
o
>
@]
ea]
w2
o
la=d
a=}
o
=
—
o
s
P
-]
w1

SUPPORT SERVICES ANDPERSONNEL
PACE MICROPROCESSOR DESCRIPTIORM
2.1 GENERAL DESCRIPTION,
2.1.1 PACE Architecture00
2.1.2 PACE Interface Signal Descriptions
2.2 PACE TIMING REQUIREMENTS
2.3 INITIALIZATION . ..o e e
2.4 DATA INPUT/OUTPUT OPERATIONS e
24.1 Data Input Operations
2.4.2 Data Output Operations
2.4.3 Use of EXTEND Signal00 ..
2.5 STATUS AND CONTROL FLAGS i,
2.6 JUMP CONDITIONS s,
2.7 INTERRUPT SYSTEM
2.7.1 User-Specified Interrupts
2.7.2 Stack Interrupts
2.8 NHALT AND CONTIN SIGNALS
2.8.1 Programmed Halt
2.8.2 Processor Stall
2.8.3 Level-O Interrupts
2.9 PACE INSTRUCTION SET i
2.9.1 Data Representation uunin ...
29.2 AddressingModes
29.2.1 Direct Addressing
2922 Indirect Addressing

DESIGNING PACE SYSTEMS: BASIC REQUIREMENTS AND CONCEPTS

3.0 INTRODUCTION ...
3.1 SYSTEM TIMING ANDPOWER,
3.1.1 Frequency Control
3.1.2 Nonoverlap Requirements and Control
3.13 Substrate Bias Voltage (Vgp) Generation
32 SYSTEM INITIALIZATION i,
33 BUFFERING SYSTEM BUSES,
34 A BUFFERED PACECPUMODULEc ...,
35 SYSTEM BUS STRUCTURES i

3-1
3-1
3-3
34
34
34
3-5
3-7
3-7

Chapter

APPENDIX A

Table

2-1
2-2

24
2-5

4-1
5-1
A-l

TABLE OF CONTENTS (Continued)

Page
3.6 ADDRESS LATCHINGottt i ittt e e 39
3.7 ADDRESS DECODING ...ttt e e e e e 39
MEMORY INTERFACING
4.0 INTRODUCTION | ..t e s 4-1
4.1 INTERFACING TO MEMORY WiTH ON-CHIP LATCHES 4-1
4.1.1 A Typical Interface to RAM with On-Chip Latches 4-3
4.1.2 A Typical Interface to ROM with On-Chip Latches 4-3
42 INTERFACING TO MEMORY WITHOUT ON-CHIP LATCHES 44
4.2.1 Interfacingto MM2101 RAMo it 4-6
42.2 Interfacingto MMS2I4 ROM o 4-6
43 INTERFACING WITH SLOWMEMORIES oot 4-7
PERIPHERAL INTERFACING TECHNIQUES
5.0 INTRODUCTION . oottt i et e e ettt 5-1
5.1 PERIPHERAL INSTRUCTIONS AND ADDRESSING 5-1
5.2 INPUT/OUTPUT PORTS . . .o e 5-1
53 SPECIAL CONSIDERATIONS WHEN INTERFACING
8-BIT PERIPHERALS i e 53
5.3.1 Hardware Considerationsc.uiuuiineeneanannnnns 5-3
53.2 Software Considerationsooovvn.n.. R 5-5
54 INTERFACING WITH SLOW PERIPHERALS 5-6
5.5 PERIPHERAL CONTROLt e e 5-6
5.6 SERIAL INPUT/OUTPUTt e e i e e e 5-8
5.7 EXPANDING JUMP CONDITIONS ANDFLAGS 59
5.8 INTERRUPT DRIVEN INPUT/OUTPUT 59
5.9 EXPANDING THE INTERRUPT SYSTEM 5-10
PACE INSTRUCTION RELATED SUMMARIESo it A-1
LIST OF TABLES
Title Page
PACE Interface Signal Descriptions i, 2-4
Descriptions of Statusand Control Flagso, 2-10
Branch Conditions vt ittt i e e e e e 2-11
Locations of Interrupt Pointers it 2-14
PACE Instruction SUMIMATY . . .« oottt it e et i ettt e i 2-19
Summary of Direct AddressingModes i 2-21
Standard Memory Devices for Use in PACE Systems 4-1
Possible Order Codes for a Cassette or Tap“ Drive L e S-7
Notations/Symbols Used in Instruction Descriptions A-2

iv

Table

A-2
A-3

Figure

1-1
1-2
1-3
1-4
2-1
2-2
2-3
2-4
2-5
2-6

2-8
2-9
2-10
2-11
2-12
2-13
2-14
3-1

33
34

3-6
3-7

3-9

3-10
3-11
3-12

4-2
4-3

5-2
5-3
5-4
5-5
5-6

LIST OF TABLES (Continued)

Title Page
PACE Instruction SUMMATIY . . o\ oo ottt it e et et et e et A-4
Op Code Index of Instructions i i A-l
ILLUSTRATIONS
Title Page
PACE RESOUICES . v vttt ettt et et e e et e e e e et e 1-2
PACE-STE-BTE Relationshipottt e e e e e e 1-3
PACE Low Cost Development System (LCDS) 1-5
PACE Microprocessor Development System (IPC-16P) 1-5
PACE Detailed Block Diagramttt tnniiit ittt iiieieaieeenns 2-2
PACE Pin ASSIZNIMENTS . . . o ottt et et et e e e e e 2-5
External Clock TIming . . .o oot e e e e e e et e e et e e e 2-5
Initialization TIMINgGo oot e e et e e e ettt e e 2-5
Address Output and DataInput Timing i, 2-7
Data Qutput TImingot e 2-7
Extend I/O Signal TImMing oot vt ettt e et e et et et 2-8
Suspend I/O Signal Timingttt e e 2-9
Pulse and Set Flag Timing Diagram0ttt itennnennnnnn. 2-11
PACE Interrupt System e e 2-12
Timing Diagram for Processor Stall Using NHALT and CONTIN Signals 2-13
Relative Timing for Level-0 Interrupt Generation 2-14
Circuit to Prevent Conflicts Between Level-O and In-Process Interrupts 2-17
Memory-reference Instruction Format 2-21
Example of PACE System Configuration it iiiina... 3-2
PACE-STE Interconnection and Vgg Generation 33
Initialization CIrCUILot ittt e e e e e e 34
BTE Functional Block Diagram 3-5
BTE System Implementation i i i 3-6
Buffered PACECPUModule i iiieee e 3-8
Fully Multiplexed Bus Structure ittt 39
Separate Address/Multiplexed Data Bus Structure 39
Latched Address Bus Using Hex/Quad FlipFlops 3-10
Using Address Bits as Device Select Signals 3-11
Using a 3-to-8 Line Decoder to Generate Device Select Signals. 3-12
Using A Bus Comparator and a Demultiplexer to Enable Memory Devices......... 3-13
Typical Implementation of Memory With On-chip Latches 4-2
Typical Implementation of Memory Without On-chip Latches 4-5
Circuit and Timing Diagram for Up to Four Clock Cycle Extend 4-6
MILE Block Diagramt e i e e 52
Typical System Implementationof MILEs 54
Using Address Word for Control it e e 5-7
PACE/Teletype Interface Circuitt 5-8
One Possible Circuit and Word Format for Obtaining Additional Flags 5-9
Use of DM9318 Priority Encoder and DM8131 Comparator for
Interrupt Expansion and Detection 0. ... 5-11

Chapter 1
AN INTRODUCTION TO PACE

1.0 INTRODUCTION

National Semiconductor’s Process and Control Element (PACE) was the industry’s first single-chip 16-bit
microprocessor, and PACE continues to provide designers with the built-in sophistication that results in
cost-effective systems and simplicity of application. As the microprocessor marketplace reaches maturity,
some lessons learned during similar stages of minicomputer development are being rediscovered. Foremost
among these lessonsis an appreciation of the importance of word length: the inherent power and advantages
of a 16-bit processing system over 8-bit systems are once again being realized. PACE is a true 16-bit micro-
processor and, in addition to the innate superiority obtained from this fact, it incorporates a variety of
other features that result in ease-of-use and uncluttered, economical implementation of powerful systems.
The paragraphs that follow highlight the features of PACE and the resources that are available to support
development of PACE-based systems. A detailed description of PACE is provided in chapter 2. Chapters 3,
4, and 5 provide guidelines and examples to assist in the design of PACE systems.

1.1 THE PACE MICROPROCESSOR

Some of the resources of PACE are illustrated in figure 1-1. PACE makes use of 16-bit data words and 16-bit
instruction words, and features a powerful, efficient, and flexible set of 45 instruction types. The 16-bit
instruction words greatly increase the power of PACE instructions beyond those of 8-bit processors. Further,
the full 16-bit PACE-generated address words increase both efficiency and throughput over those of con-
ventional 8-bit processors. Thisresults from the elimination of multiple-precision operations usually required
for 8-bit data elements, and the reduction of program memory overhead.

System memory requirements are further reduced by the four general-purpose working registers (accumu-
lators ACO - AC3) and a ten-word last-in-first-out (LIFO) stack provided by PACE. The accumulators
reduce the number of memory load and store operations associated with saving temporary and intermediate
results. The LIFO stack provides additional on-chip storage and further reduces program and data storage
overhead while inherently reducing interrupt-response time (because it saves return addresses during
interrupt servicing and subroutine execution). Thus, the accumulators and stack reduce memory overhead
by providing on-chip storage, and increase system throughput by reducing the number of memory-access
operations required.

Interfacing PACE to input/output devices is simplified by three data strobe signals that synchronize par-
allel data transfers, three sense inputs, and four flag outputs that can be used to implement device control
functions and serial data transfers, and a multiple vectored priority interrupt structure for fast response to
real-time control situations.

Parallel data transfers occur via the multiplexed address/data bus and, since PACE uses common memory
input/output address space (memory-mapped input/output) the entire PACE repertoire of memory-reference
instructions can be used to implement efficient and powerful input/output interfaces with a minimum of
hardware. The Extend Signal further simplifies interfaces by permitting operation with slower devices with
minimal penalties to system speed.

The three sense inputs (JC13, JC14, and JC15) are individually testable (along with 13 internal status sense
conditions) by a conditional branch instruction in software and can be used for serial data input or to sense
external system conditions. Serial data output can be accomplished using the four flag outputs (F11—F14):
these software controlled outputs can be set, cleared, and pulsed by the user’s program and are also useful
for directly controlling system functions or setting software status indicators.

1-1

r—P;AL:L— —I- — _D-AT:_ - T ——————————— _-‘

RALLI T LA MULTIPLE, VECTORED
| TION | PRIORITY INTERRUPTS

SYSTEM SENSE AND CONTROL
_L SERIAL INPUT/OUTPUT __I

| TransFer AND STORAGE I
| | | I
| I re I I
I I I |
| | ACO | |
I— | ACY | [IR0 |<——— NHALT/CONTIN |
| Maos || | | fe——smack |
DATA BUS INTERRUPT FULL/EMPTY
L | AC2 | ENABLE L— 12 le——— NIR2 |
| | | vecton | —ima f<—— nins |
AC3 GENERATION
| | | — IR4 |<«——— NIR4 |
| | STACK | — IR5 |[<——— NIRS I
I I I I
| I ALU | I
| I | |
TN NN, R 4
| ~«——— ADDRESS DATA STROBE Jc 13 fe—ro SENSE I
| ~—— INPUT DATA STROBE : ﬁ:; | "™ |
| <¢———] OUTPUT DATA STROBE l F11 |—> |
| — EXTEND F12 FLAG |
| F 13 }——» [OUTPUTS
I | F14 |—> |
I | I

NS10774

Figure 1-1. PACE Resources

The on-chip, 6-level, vectored, priority-interrupt structure provided by PACE, eliminates the need for any
external, off-chip interrupt hardware. The interrupt vector feature provides automatic interrupt identifica-
tion and thus eliminates program storage overhead and saves time — the time that other processors usually
require for polling in order to identify the interrupting device. The interrupt system can be expanded
easily by placing more than one peripheral on a priority Jevel using a simple open-collector connection for
a wired-OR input to an interrupt-request line.

This brief overview has highlighted some of the outstanding features of PACE. A fuller understanding and
appreciation of the advantages and benefits derived from these PACE features can be gained from more-
detailed discussions. Chapters 2 through 5 provide these detailed discussions along with useful examples and
techniques to assist PACE system designers.

1-2

1.2 PACE DESIGN SUPPORT

The successful application of any microprocessor, including PACE, demands a variety of supporting
products and services ranging from support chips, cards, and development systems to software, training, and
field support.

PACE is fully supported throughout this spectrum of products and services. National Semiconductor’s total
support system ensures that the designer will have access to the tools he needs to efficiently implement his
application. The paragraphs that follow describe the design support resources that are available.

1.3 PACE SUPPORT CHIPS

Three specially designed chips are available to simplify development of PACE systems. The System Timing
Element (STE) DP8302 produces the MOS nonoverlapping clock signals required by PACE and also supplies
two TTL clock signals to accommodate user requirements. The Bidirectional Transceiver Element (BTE)
DP8300 is an 8-bit transceiver that provides controlled translation of signals between the PACE micro-
processor MOS buses and the system TTL buses. The Microprocessor Interface Latch Element (MILE)
DP8301 provides an 8-bit latched interface between the System TTL Address/ Data Bus and the user
peripherals.

Figure 1-2 illustrates the relationship of the STE and BTE to PACE. The STE requires application of +5 and
-12 volts and the addition of only an external crystal to produce the MOS and TTL clock signals. Three
BTEs provide a fully buffered PACE CPU. One BTE connected in a driver-only mode to PACE permits

Dg-D7
BTE

l BUFFERED MULTIPLEXED
BIDIRECTIONAL ADDRESS
AND DATA BUS

ey |t PACE h% oETE

_4 BTE FLAGS AND
DP8300 ' CONTROL SIGNALS

NS10775

Figure 1-2. PACE-STE-BTE Relationship

buffering for the System TTL Timing and Control Bus, thereby providing seven TTL control signals and
flags for distribution throughout the system. Two BTEs operate bidirectionally to buffer the 16-bit, time-
multiplexed Address/Data Bus. Use of the STE and BTEs with PACE is described in detail in chapter 3.
Chapter 5 includes a detailed discussion of system implementation of the MILE.

Because of the full complement of control signals provided by PACE, no other special components are re-
quired in the design of PACE systems. A variety of widely available, standard memory components can be
used. Chapter 4 lists some of the more-popular memory devices and provides examples to illustrate the sim-
plicity with which PACE can be interfaced to memory.

1.4 DEVELOPMENT SYSTEMS

Three PACE systems are available to simplify and speed the design and development of PACE-based appli-
cation systems.

The PACE Low-Cost Development System (LCDS), shown in figure 1-3, allows the user to check out
hardware and interface designs in a real-time environment, and can also be used to build software packages
and convert them to firmware. The LCDS requires only the addition of a power supply to be fully opera-
tional, and the system can be expanded by connection of a TTY or RS-232-compatible terminal to the
interface circuits provided on the LCDS. On-card ROMs contain a debug program and the input/output sub-
routines for communication with an optional terminal. Jumper options allow baud rates of 110, 150, 300,
or 1200 bits-per-second to be selected. Further system expansion is easily accommodated using the three
bussed sockets that accept compatible PACE Memory Application Cards and user-designed interface cards.
A Cable Card is also available to extend the system bus to an external card cage.

The IPC-16P PACE Development System, shown in figure 14, is intended primarily to simplify the develop-
ment of applications software. This system is a full-featured microcomputer and includes a comprehensive
front panel to monitor and control system operation. A full array of peripheral options are available to
extend the power of this system, and memory can be expanded from the standard configuration of 8K 16-
bit words up to 32K 16-bit words. A powerful resident software package (described in 1.5) is provided to
expedite the development of the user’s application programs.

The PACE Disc Operating System (DOS) provides all the capabilities of the IPC-16P and further increases
throughput and flexibility by providing the convenient mass storage capability of dual floppy disc drives.
Included with the system is a DISC/CRT Interface Card that provides interfacing between the microproces-
sor, the dual disc drives, and a user-provided, optional CRT terminal. A DOS Monitor System is provided on
a Read-Only-Memory (ROM) card and controls system configuration and linkage to other software sub-
systems. Also included on the ROM card is a File Input/Output Subsystem that provides the peripheral
communication required by the remainder of the PACE DOS. A powerful disc-resident software package
(described in 1.5) is included on a single diskette and completes the total-system capability obtained
through use of the PACE DOS.

14

NS10737
Figure 1-3. PACE Low Cost Development System (LCDS)

NS10414

Figure 14. PACE Microprocessor Development System (IPC-16P)

1.5 PACE SUPPORT SOFTWARE

PACE is supported by a full complement of software provided to meet the needs of designers at every level
of product development.

A BASIC interpreter has been developed for use with PACE and allows programs for design feasibility
studies to be generated quickly and easily. This enhanced version of BASIC features real-time input/output
and calls to assembly language subroutines. The BASIC interpreter is currently available for use with the
PACE Development Systems and soon will be available for use with the PACE LCDS.

language programs to be generated with maximum ease. The Macro Assembler is memory resident in the
IPC-16P and is provided on diskette with the PACE DOS Microprocessor Development System.

A Macro Assembler ig also available and this powerful software tool permits extremely efficient assembly

PACE DOS also includes a disc-resident File Manager Program that relieves the user of burdensome house-
keeping tasks. The File Manager handles disc sector assignment automatically, and provides easy control
of file maintenance and execution, space allocation, and file protection.

For users who do not have access to a PACE Development System, two cross assemblers are available. One
version of the cross assembler runs on an IMP-16P or an IMP-16L Development System. A FORTRAN
Cross Assembler is also available and allows programs to be developed on a variety of different host com-
puters, including 16-bit minicomputers.

In addition to these primary software tools, a comprehensive array of editors, loaders, debug programs, and
diagnostics are available to meet the needs of PACE system designers.

1.6 SUPPORT SERVICES AND PERSONNEL

A design effort does not end with the arrival of PACE hardware and software — it is just beginning. Recog-
nizing this, National Semiconductor’s support of PACE begins with training and predesign consultation and
continues throughout your design cycle and beyond.

Microprocessor Training Centers, located in Miami, Florida and Santa Clara, California provide an intensive
exploration of microprocessor applications with a good mix of hardware/software theory and hands-on
laboratory experience. Beyond the classroom, applications engineers are available throughout the world and
at our home base to help you analyze your specific application and translate your needs into a viable hard-
ware/software configuration.

Consultation is available from the design concept stage through delivery of your final product and continu-
ing education is available from COMPUTE (Club of Microprocessor Programmers, Users, and Technical
Experts), an informal organization sponsored by National Semiconductor, dedicated to the distribution of
ideas and techniques relating to the use of microprocessors.

Chapter 2

PACE MICROPROCESSOR DESCRIPTION

2.1 GENERAL DESCRIPTION

The PACE (Processing and Control Element) is a single-chip, 16-bit microprocessor packaged in a standard
40-pin package. PACE is a true 16-bit central processing unit; it makes use of 16-bit instruction words and
16-bit data words, and features a powerful, efficient, and flexible set of 45 instructions. All instructions use
a single-word, 16-bit format — thus reducing memory accesses and program storage requirements.

2.1.1 PACE Architecture

The architecture of PACE (shown in figure 2-1) features a number of resources to minimize system program
and read/write storage, to increase throughput, and to reduce the amount of externai support hardware.
PACE provides all the control and timing signals required for system or subsystem operation; these signals
are described in detail in the sections that follow. Powerful and flexible data manipulation capabilities, the
primary function of the central processing unit, and extensive internal data storage capacity that reduce the
number of input/output cycles are also provided by PACE.

Data transfers between PACE (see figure 2-1) and memory or peripheral devices are effected over the 16-bit
(D00-D15) parallel Input/Output Data Bus. The Input/Qutput Data Bus interfaces with the Instruction
Register and the Operand Bus by way of the I/O Data Buffers. The Operand Bus also interfaces with seven
registers (Temporary Registers 1 and 2, Program Counter, and ACO through AC3) and a 10-word Stack. The
seven registers and the Stack are provided for data storage. Four of the registers (ACO through AC3) are
available to the programmer as general-purpose accumulators. The Program Counter contains the address of
the next instruction. The contents of any selected register or the Stack are routed over the Operand Bus to
the Arithmetic and Logic Unit (ALU) and Shifter. Resultant ALU and Shifter output is returned to the
selected register or Stack, as appropriate, by way of the Result Bus. The ALU and Shifter, besides perform-
ing arithmetic operations, also sets status flags in accordance with the data length (8-bit or 16-bit) selected
by the state of the BYTE Status Flag.

All status information is stored in the 16-bit Status and Control Flags Register. The Status and Control
Flags Register contents can be loaded onto the Operand Bus for temporary storage on the Stack or in any
accumulator for examination or modification of status information.

Instructions under execution by PACE are stored in the Instruction Register and are interpreted and exe-
cuted by a microprogram stored in an on-chip ROM. Instruction execution time is determined by the
instruction under execution and memory access time. Appendix A provides an instruction summary, includ-
ing the information required to calculate instruction execution times.

2.1.2 PACE Interface Signal Descriptions

PACE communicates with other system devices with its interface signals available via the 40 hardwired pins
connected to PACE internal circuits. Three of the pins are used for input power and two are used for clock
inputs. The remaining 35 pins are used to transfer 16-bit address and data information, to output control
and timing synchronization information, and to accept control inputs that affect the operation of PACE.

s [>—
Vgg (+8V) @—
Vosl-12v} [29 > .—

POWER

D01 D02 DO3 D04 DOS

INPUT/OUTPUT DATA BUS

D07 DO8 DOS D10 DY

D12 D13 014 D15

WWWWWWW

STEL =i 0
INSTRUCTION | o 1/0 DATA >
REQD ——1 REGISTER BUFFERS <
PSIGN ——] 2 .
BITO =3 L
MICROPROGRAM
BIT 1 e 4 ADDRESS TEMP REG 1
GENERATIGN
NREQD ——] 5
BIT2 =] & L > TEMP REG 2 >
CONTIN 7 w;gmw MICROPROGRAM
IS ADDRESS
MULTI- R R
LINK =8 pLEXER REGISTER »| PROGRAM COUNTER >
IEN —] 9 l
CARRY = 10 > ACO >
MICROPROGRAM
NSIGN ——] 11 STORAGE
ovF —] 12 —> AC1 >
€13 D—> 13
14 D—-} 1 > AC2 >
scrs 12 >—p]15 +
NADS D: » AC3 >
10S |ﬁ D¢
» TEN WORD >
aos D< > LIFO STACK —
EXTEND |27 > > c‘i’;{:‘l‘gl
8PS |2n > >
NINIT |zﬁ > >
NHALT |s Se¢ > <
ALU AND <
SHIFTER
oLk |z5 >
cLack <
NELK D GENERATION
RESULT
BUS
STATUS AND CONTROL FLAG REGISTER
o INT <
ExiT | f1a | P13 | Fiz | oo fevre| g | umk| cry [ove | ies | ies | ies | oie2 | oEr |
INT 0 L
‘ ‘ J l l OPERAND
BUS
ﬁ INTERRUPT CONTROL
Fa K13 F12 N T
ﬁ STACK
NIRS NIR4 NIR3 NIR2
NS1G776

Figure 2-1. PACE Detailed Block Diagram

2-2

The pin assignments for PACE are shown in figure 2-2. Brief descriptions of the PACE interface signals are
provided in table 2-1. Details on the use of the interface signals are provided later in this chapter and refer-
ences to the appropriate sections are included in table 2-1.

NOTES

1. Positive logic convention is used throughout this manual.
A logic "1’ or high signal corresponds to a more-positive
voltage level. A logic ‘0’ or low signal corresponds to a
more-negative voltage level. All signal names beginning
with 'N’ or followed by an asterisk (*) denote comple-
mented signals that are asserted or activated by a logic
'0’. Otherwise, signals are asserted by a logic '1'.

2. Bits are numbered from 00 to 15, right to left, with bit
00 representing the least significant bit.

3. The X' preceding a value denotes the hexadecimal num-
bering system.

2.2 PACE TIMING REQUIREMENTS

PACE requires single-phase, nonoverlapping true and complemented clock inputs as shown in figure 2-3.
(Refer to PACE data sheet for detailed timing specifications.) The required timing inputs can be provided
using the System Timing Element (STE) that is described in chapter 3 (3.1). PACE uses the external clock
signals to generate internal multiphase clock signals that provide control timing for microprocessor opera-
tions. Four external time periods (tp in figure 2-3) correspond to eight internal clock phases that comprise
a single machine cycle of the PACE microprocessor. Figures 2-5 through 2-8 (which appear later in this
chapter) illustrate the relationship between external clocks and internal clock phases. The execution of each
PACE instruction requires four or more machine cycles, plus any required input/output cycle extends.
(Appendix A provides an explanation of the method for computing actual execution times.)

23 INITIALIZATION

The PACE Initialize Signal (NINIT) input may be used at any time to initialize the microprocessor and
should always be used after system power-up. Application of a low NINIT Signal clears the Stack Pointer,
sets the flags to zero, sets the level-O Interrupt Enable True, and sets the Program Counter contents to zero.
The accumulators assume an arbitrary state. The NADS, IDS, and ODS data strobes are set false. Thus, if it
is desired to initialize PACE during program execution, NINIT should be inhibited until after any data out-
put cycle, that may be in progress, is completed. Inhibiting NINIT prevents erroneous data from being
written to memory.

The minimum pulse width for NINIT is eight clock periods as shown in figure 2-4. The PACE data strobes
(NADS, ODS, and IDS) are inactive for 16 clock cycles after the trailing edge of the NINIT Signal occurs.
After the 16 clock cycles, the first NADS Signal occurs and the first instruction is accessed from memory
location X'0000, unless a Level-0 Interrupt (Control Panel Interrupt) is present. All other interrupt levels
are disabled.

2-3

Table 2-1. PACE Interface Signal Descriptions

Signal/Description

Reference
Section

Signal/Description

Reference
Section

CLK, NCLK (inputs) —External true and comple-
mented clock inputs.

D00-D15 (input/output) — Data bus lines. Bidirec-
tional MOS data lines used for input and output of
data and for output of 16-bit addresses on 1/O cycles,

NADS (output} — Address Data Strobe. The negative-
true NADS signal is sent out at the beginning of every
data input/output cycle and indicates that a memory
or peripheral address has been output on the data bus
lines. The address is stable on the data bus while the
NADS signal is active low.

ODS (output) — Qutput Data Strobe. The ODS signal
indicates to external circuits that the data bus contains
valid output data.

IDS (output) — Input Data Strobe. The IDS signal
indicates to external devices that PACE is performing
a data input cycle. The signal should be used by mem-
ory or peripheral devices to gate data onto the PACE
data bus lines.

EXTEND (input) — Extended Data Transfer. The
EXTEND signal is used by slower memory or periph-
eral devices to temporarily increase time duration of
data input/output transfers. The EXTEND signal
should be driven high at the beginning of ODS or
IDS signal and held high until output data has been
captured or input data is made available to data bus.
The EXTEND signal can also be used to suspend
input/output operations by applying the signal after
the end of ODS or IDS.

JC13, JC14, JC15 (input) — Jump Conditions 13, 14,
and 15, JC13, 14, and 15 are user-specified inputs that
can be tested using Branch-On-Condition (BOC) In-
structions. If jump condition input specified in BOC
Instruction is high, a program branch is effected. The
JC13-JC15 signals are useful for testing status of ex-
ternal devices and receiving serial data.

F11, F12, F13, F14 (output) — General-purpose con-
trol flag outputs from PACE Status and Control Flags
Register. Individual flags may be set by Set Flag
Instruction and pulsed or reset by Pulse Flag Instruc-
tion. The F11-F14 signals may be used for direct
control of system functions or serial data output.

2.2

241
24.2

241
242

241

243

2.6

25

NIR2, NIR3, NIR4, NIRS5 (input) — Interrupt Requests
2, 3, 4, and 5. When these negative-true input signals
are low for 1 CLK period, minimum, the associated
internal Interrupt Request Latch is set if the corre-
sponding interrupt enable has been set by users pro-
gram, The interrupt will be serviced after completion
of current instruction if the Master Interrupt Enable
is set. Interrupt Requests are prioritized, with NIR5
having lowest priority.

NHALT (input/output) — Halt. When the negative-
true NHALT signal is driven low by external logic, it
effects microprocessor stall or ‘Level-Q’ Interrupt, de-
pending on timing of CONTIN signal. When not con-
trolled by external logic, NHALT is driven low by
PACE for 7/8 duty cycle while programmed halt
condition exists. Programmed halt is initiated by

the Halt Instruction and terminated by pulsing
CONTIN line via external logic.

CONTIN (input/output) — Continue, The CONTIN
signal is used in input mode to terminate programmed
halt, or to exercise microprocessor stall and Level-0
Interrupt, or as a jump-condition input that can be
tested using a BOC instruction. In the output mode,
CONTIN transmits an interrupt acknowledge pulse to

acknowledge CPU response to an active interrupt input.

BPS (input) — Base Page Select. The BPS signal
enables one of two base-page addressing schemes to
be selected. When BPS is low, first 256 words of
memory constitute base page (page zero). When
BPS is high, first 128 memory words and last 128
memory words constitute base page.

NINIT (input) — Initialize. While the negative-true
NINIT signal is low, PACE operation is suspended,
and IDS/ODS signals are set to inactive state. After
NINIT completes low-to-high transition, the program
counter is set to zero, the internal stack pointer is
cleared, and all flags and interrupt enables are set low
except Level-0 Interrupt Enable which is set high. All
other registers contain arbitrary values.

VSS +5 Voits,
VGG =12 Volts
Vgg Vgg +3 Volts (substrate bias)

2.7
2.7.1

2.8

238

29.2

23

24

1 4
004 — 2 o0s
D03 ==y p— D06
002 — p— D07
4
D01 = — D08
36
Do = b 100
1DS meee .3_5010
I 34
0DS =t p—1011
13
NADS =it —D12
NHALT == D13
CONTIN e b D14
JC14 e e)15
29
JC15 ey e V5 (-12V)
13
JCH—T b BPS
1
NIRS - [EXTEND
i
NIR4 _16- == NINIT
NIR]—’{ p—CLK
17 24
Nmz—w-i f—— NCLK
F11 e 'lvse (+8V)
19 22
F12 e e F14
20 21
Vss (+5V) pe F13
TOP VIEW NS10777
Figure 2-2. PACE Pin Assignments
1 4 Ai
‘J Y t
I:;VCL;:! le—tNnova Novs
AJ te trL
1, NCLK
where:
tp= CLOCK PERIOD
tNOVA = INOVE = CLOCK NONOVERLAP
tWCLK = twNeLK = CLOCK WIDTH NS10778

Figure 2-3. External Clock Timing

CLOCKS

NINIT

[<&—8 CLOCK PERIODS MINIMUM —»
[

4d

A

{C

16 CLOCK PERIODS

y

JJ

108/
oDs

.

iy
o

NS10779

Figure 2-4. Initialization Timing
2-5

NOTE

If the NINIT input is held true (low) before power and/or
clocks are totally stable, the NADS and NHALT outputs may
have an undefined state for eight clock cycles after NINIT
goes false (high). In order to initialize properly every time,
NINIT should go true (low) after all the power supplies and
clocks have stabilized.

24 DATA INPUT/QUTPUT OPERATIONS

The primary means PACE uses to communicate with external system devices is via 16-bit parallel data input/
output (I/O) operations. The descriptions that follow apply both to memory devices (for either instruction
fetch operations or data transfer operations) and to peripheral devices (using parallel data transfer techniques).

Parallel data transfers between PACE and external memory or peripheral devices take place over the 16 data
lines (DO0-D15). All input/output transactions consist of an address-output interval followed by a data-
transfer interval. The data transfers are synchronized by the NADS, IDS, and ODS signals that are generated
by PACE, and the EXTEND signal can be applied to PACE using external logic to increase the input/output
cycle time.

2.4.1 Data Input Operation

Data input timing is shown in figure 2-5. Address data become valid one clock phase prior to the Address
Data Strobe (NADS) and remain valid for one clock phase afterwards. Typically, NADS is used to strobe
the address data into a latch, either internal or external to the system memory chips, or to clock decoded
peripheral addresses into a flip-flop.

Following the output of address information, the output address drivers internal to PACE assume a high-
impedance state and the Input Data Strobe (IDS) Signal goes high. The IDS Signal may be used to disable
external output sense amplifiers and to enable input buffers. The IDS Signal remains high for three clock
widths: the data lines must be driven to valid input data logic levels by the end of IDS.

Typically, the data-input timing allows operation of PACE in a system at maximum frequency if the system
memory access time is less than two clock periods. If longer access time is required, the EXTEND signal
may be used to increase the input/output cycle time. Use of the EXTEND signal is described in 2.4.3.

2.4.2 Data Output Operations

Timing for data-output operations is shown in figure 2-6. The address-output portion of the operation is
identical to that described for data-input operations. Following the address, output data is placed on the
data lines and, at approximately the same time, the Output Data Strobe (ODS) Signal goes high. The ODS
Signal is used typically as a read-write signal for memory and as an output-data latch strobe for peripheral
interfaces. Since output data remain valid following termination of the ODS Signal, the trailing edge of
ODS can be used to clock the data into an external latch. The EXTEND signal (described in the paragraph
that foliows) can be used to extend the time that output data remain valid.

INTERNAL
CLOCK PHASE 3 4 5 6 7 8 1 2 3

S5 e U e T e

— |=—tpD l
ADDRESS —7
N [=———ADDRESS DATA VALID Y%
tpp—r e —--I |<—t|]|3
NADS
—= =—tpp —nt ~=—1pD
PACE QUTPUTS ACTIVE OUTPUTS HIGH IMPEDANCE
ouTPUT e
— s |~—tpe ‘_'H j=—tpg
PULLUP
TRANSISTOR TRANSISTOR OFF TRAI\ISIS*TDR ON TRANSISTOR GFF
—=j 1p§ e [T
INPUT |NPUT BUFFER DISABLED
DATA F DATA VALID 2
— {=—tpD —=| |~—1tDD
s %)
Note: Signals are referenced to valid logic levels on clock inputs. I OH
Internal clock phases are shown for reference only, they are not available externally.
*V;n must be > Vgg — 2.35V at this time if logic “1” input.
**\/,n must be valid level {i.e., Vgs ~ 1) at this time {this timing allows for pull-up transistor time constant).
NS10780
Figure 2-5. Address Output and Data Input Timing
INTERNAL 3 a 5 6 7 8 1 2 3

|

CLOCK PHASE
NCLK ’ \ ’ \ ’
- u _—.—l \.——J
ADDRESS
oata — BN N
NADS N @
— |=1tD
OUTPUT
DATA LAST N DATA Viﬂ -
tp

A
DAT. =00

VALID
00S N

NS10781

Figure 2-6. Data Output Timing

2.4.3 Use of EXTEND Signal

The EXTEND signal may be used either to increase the time duration of a data-input/output cycle or to
suspend all PACE-initiated input/output operations.

Figure 2-7 shows the timing required when using EXTEND to lengthen the input/output cycle. The EXTEND
signal may go high (true) during the address time or immediately after the start of IDS or ODS, but EXTEND
must be true prior to the end of internal phase 6.

NOTE
If the EXTEND signal is not used, it should be tied to ground.

The timing shown in figure 2-7 provides the minimum extend of one clock period. Holding EXTEND true
for n additional clock periods longer causes an extension of n + 1 clock periods. The EXTEND signal dura-
tion must not exceed the specified minimum refresh requirements of the PACE device. (Refer to appendix
C for specifications.)

The EXTEND signal may also be used to suspend PACE input/output operations. This may be desirable in
Direct Memory Access or multiprocessor systems to prevent input/output operations by PACE when the
bus is in use by another device. Input/output operations are suspended by using the EXTEND signal im-
mediately following an IDS or an ODS as shown in figure 2-8.

EXTRA CLOCK
CYCLE(S) DUE

TO EXTEND
INTERNAL ‘

CLOCK PHASE 2 3 4 5

L | — | — | - | — -/
L A W | __I} | W— | WY A W A

ADDRESS

e 7 | ZA

NADS U A

um&;ﬁ% ACTIVE % HIGH IMPEDANCE m
PACE PULLUP
TRANSISTOR OFF on U

INPUT ‘

% A iy ez
ouTPUT 1% DATA VALID |Z K
0DS/IDS % U

«—1EH —| |=—tES
EXTEND 7007

—| f=—TES

Figure 2-7. Extend I/O Signal Timing

2-8

EXTRA CLOCK

CYCLE(S) DUE
| TOEXTEND |
INTERNAL | |
CLOCK PHASE 7 8 1 2 3 E E 4 5

NCLK_[\ I \ / \.__._/__._J—\=
S W s WY mn W s W mn WY

DATA LAST 1/0 DATA % NEXT ADDRESS DATA

NADS Eﬂ m

1D$/0DS %
| |=tEH —]| |-—tES
EXTEND A Y

—-»l --—tES

NS10783

Figure 2-8. Suspend 1/O Signal Timing
2.5 STATUS AND CONTROL FLAGS

Fourteen status and control flags are provided by the PACE microprocessor in the Status and Control Flag
Register. The flags contained in this register can be accessed or restored as a 16-bit data word by using the
Copy Flags to Register or Copy Register to Flags Instructions. Similarly, the contents of the register can be
saved on the Stack or retrieved from the Stack. Individual flags can be set by using the Set Flag Instruction
and reset or pulsed using the Pulse Flag Instruction. Four of the bits (F11, F12, F13, and F14) in the Status
and Control Flag Register drive PACE output pins and may be used to directly control system functions or
to accomplish serial data output. Table 2-2 provides descriptions of the individual status and control flags.
Figure 2-9 shows the timing for Set Flag and Pulse Flag Instruction operations.

2.6 JUMP CONDITIONS

The PACE microprocessor contains a Jump Condition Multiplexer that samples the 16 jump conditions listed
and described in table 2-3. The Branch-On-Condition Instruction (BOC) tests the output of the jump condi-
tion multiplexer. If the condition for branching (selected by the condition code specified in the BOC
Instruction) is active, a branch occurs; otherwise, the next sequential instruction is executed. Note that 12
of the conditional jumps test conditions internal to PACE. The remaining four jump conditions (CONTIN,
JC13, JC14, and JC15) are connected to PACE input pins and can be used to test external user-specified
conditions. These jump condition inputs are also useful as serial data inputs.

NOTE
The CONTIN signal can also be used in conjunction with the

NHALT signal to implement several special-purpose processor
functions as described in 2.8.

Table 2-2. Descriptions of Status and Control Flags

Register Bit Flag Name Description Flag Code (fc)
0 High ("1") Bit O is not used and is always in logic ‘1’ state. Referencing bit O 0000
with SFLG or PFLG Instruction has no effect. (May be used as
NOP Instruction.)
1 IE1 Fiags |E1 through 1EB serve as Interrupt Enable Flags for five of 0001
2 1E2 six PACE interrupt levels. If Interrupt Enable is high and associated 0010
3 IE3 Interrupt Request occurs, microprocessor executes Interrupt Ser- 0011
4 IE4 vice Routine. If Interrupt Enable is low, associated Interrupt 0100
5 IE5 Request is ignored. 0101
6 OVF Overflow Flag is set to state of twos-complement arithmetic over- 0110
flow by arithmetic instructions. Overflow Flag is set high if sign
bits {most significant bit) of two operands are identical and sign
bit of result is different from sign bit of operands. If A, B, and R
are sign bits of operands and result, then Overflow Flag is set
according to equation
OVF = (A-B-R) + (A*B*R)
Sign bit is most significant bit for data length selected; thus,
if data length is 8 bits, then bit 7 is sign bit; if data length is
16, then bit 15 is sign bit. State of OVF Flag is affected by
instructions ADD, DECA, SUBB, RADD, and RADC.
7 CRY Carry Flag is set to state of binary or decimal carry output of 0111
adder by arithmetic instructions. Carry output is derived from
most significant bit for data length specified by BYTE Flag.
State of CRY Flag is affected by instructions ADD, DECA,
SUBB, RADD, and RADC.
8 LINK Link Flag is included in shift and rotate operations as specified 1000
by Shift and Rotate Instructions. Link Flag is unaffected if
not selected.
9 IEN Master Interrupt Enable Flag simultaneously inhibits all five 1001
of lowest-priority interrupt levels. No Interrupt Request is
serviced unless individual Interrupt Enable Flag for associated
Interrupt Request and master Interrupt Enable Flag are high.
1EN Flag is set low every time any interrupt (except Level-0)
is serviced. IEN Flag is set high by execution of Return To
Interrupt Instruction (RTI).
10 BYTE BYTE Flag selects 8-bit data length when high and 16-bit data 1010
length when low.
11 F11 Flags 11 through 14 are general-purpose control flags. Flags 11 1011
12 F12 through 14 drive PACE output pins and may be used to 1100
13 F13 directly control system functions. 1101
14 F14 1110
15 High {'1’) Bit 15 is not functional and is always in logic ‘1’ state. Address- 1M

ing bit 16 with SFLG or PFLG Instruction sets the Leve!-0

in Section 2.8.3.

2-10

NADS ‘ l l
DS I I

PULSE FLAG TIMING

lg— FETCH FLAG
INSTRUCTION

JEn

‘d——— 17 CLK CYCLES (PLUS EXTEND} —————w»-r@——— 4 CLK CYCLES 3CLK CYCLES—"‘

FETCH
NEXT

r ‘I INSTRUCTION

FLAG (PULSE)

FLAG (RESET)

|<—_

DS] 1

SET FLAG TIMING

17 CLK CYCLES (PLUS EXTEND) ————————p»te@— 3 CLK CYCLES

. FETCH FLAG . l
INSTRUCTION

FLAG

L

5

L
I
— | I

FETCH NEXT
INSTRUCTION

NS10371

Figure 2-9. Pulse and Set Flag Timing Diagram

Table 2-3. Branch Conditions

Condition Code {cc) Mnemonic Condition
0000 STFL Stack Full (contains nine or more words).
0001 REQO (ACO) equal to zero (see note 1).
0010 PSIGN (ACO) has positive sign (see note 2).
0011 BITO Bit 0 of ACO true.
0100 BIT 1 Bit 1 of ACO true.
0101 NREQO (ACO) is nonzero (see note 1).
0110 BIT2 Bit 2 of ACO is true.
0111 CONTIN CONTIN (continue) Input is true.
1000 LINK LINK is true.
1001 IEN IEN is true.
1010 CARRY CARRY is true.
1011 NSIGN (ACO0) has negative sign (see note 2).
1100 OVF OVF is true.
1101 JC13 JC13 Input is true.
1110 JC14 JC14 Input is true.
111 JC15 JC15 Input is true.
NOTES: 1. f selected data length is 8 bits, only bits O through 7 of ACO are tested.

2. Bit 7 is sign bit (instead of bit 15) if selected data length is 8 bits.

2-11

2.7 INTERRUPT SYSTEM

PACE provides a 6-level, vectored, priority interrupt structure. This allows automatic identification of the
priority level of an interrupting device and allows all devices on an interrupt level to be enabled or disabled
as a group, independent of other interrupt levels. An individual interrupt enable is provided in the Status
Register for each level, as shown in figure 2-10, and a master interrupt enable (IEN) is provided for all five
lower priority levels as a group. The state of the Internal Interrupt Signal is tested by PACE during the
Instruction Fetch Routine (internal to PACE) that is executed after completion of each instruction. Thus,
if the Internal Interrupt Signal is high, the interrupt is automatically serviced.

NIR?2 through NIRS are referred to as user-specified interrupts; their operation is described in 2.7.1. The

ANIANZL 2a%G QaL IRICII0N 10 a5 LOCITSpPOlalitu NIl LYvS (93 449 LSRRGV 1O 5 20 w1 E ¥ § 4

Level-1 Interrupt is dedicated for use as ack—full/stack—empty interrupt and is described in 2.7.2. The
Level-0 Interrupt is a special-purpose, nonmaskable interrupt and requires user manipulation of the NHALT
and CONTIN signals; implementation of the Level-0 Interrupt is described in 2.8.3.

1RO
INT
ENABLE

IEN

LEVEL-0 INTERNAL
INTERRUPT

R INTERRUPT
QNHALT REQUEST ,l: (1RO)

STACK-FULL OR-EMPTY INT REQ
(INTERNAL TO PACE!
S
IR1
o——Rr
1E1
—
m [So—]s PRIORITY INTERRUPT
IR2 ENCODER —— POINTER
ADDRESS
R .
1E2 | am
NIR3 o—S
(s) > s
R
1E3
G Do f
IR4 NOTE: R Overrides S
A Input to Latches
1E4
(ks) [>o—s
IR5
IR
133

NS10784

Figure 2-10. PACE Interrupt System

2-12

2.7.1 User-Specified Interrupts

Negative-true Interrupt Request Inputs (NIR2 through NIRS) are provided to allow several interrupts to be
wire-ORed to each input. When an Interrupt Request occurs, the associated Interrupt Request Latch (IR1
through IRS) is set if the corresponding Interrupt Enable Input is true. Since the Interrupt Request Latch
can be set by any pulse exceeding one clock period, narrow timing or control pulses can be captured. If IEN
is high, then an interrupt is generated and acknowledged after completing the current instruction. The inter-
rupt acknowledge is provided by PACE on the CONTIN pin; refer to figures 2-11 and 2-12 and associated
text for an explanation of the interrupt-acknowledge function of the CONTIN signal.

During the interrupt sequence, an address is provided by the output from the priority encoder. The address
is used to access the Interrupt Pointer for the highest-priority Interrupt Request (IRO has highest priority;
IRS5 has lowest priority). The Interrupt Pointers are stored in memory locations 2 through 8 (see table 2-4)
for Interrupt Requests 1 through 5 and O, respectively. The Interrupt Pointer specifies the starting address
of the user-supplied Interrupt Service Routine for the particular interrupt level, except in the case of the
Level-0 Interrupt (IR0), which is used primarily for alarm interrupts and Control Panel implementation
(refer to 2.8.3 for details).

Before execution of theInterrupt Service Routine,the contents of the Program Counter are pushed onto the
Stack and IEN is set low (false). This interrupt handling requires 28 clock cycles. The Interrupt Service
Routine may set IEN high (true) after turning off the Interrupt Enable for the interrupt level currently
being serviced (or resetting the Interrupt Request). The Interrupt Enable Flags can be set by the Set Flag
(SFLG) and reset by the Pulse Flag (PFLG) Instructions. The Copy Register to Flags (CRF) Instruction can
also be used to set or reset Interrupt Enable Flags. If an Interrupt Enable Flag is set or reset, one more

EXECUTION EXECUTION SUSPENDED ——-——oL— PROCESSOR STALL DURATION RESUME NORMAL OPN —e=
— 2 eoveres o —-| APPROX. 4 CYCLES
.__.I 5 —
I DRIVEN LOW EXTERNALLY l[ORIVEN HIGH EXTERNALLY (OR USING INTL PULLUP?.& NHALT
H [-<3cLkcyeies 3
5 CLOCK CYCLE MIN ',ﬁ 254 1e CYCLES —v——k—- >4 CYCLES -'

3 INTERRUPT RESP. TIME L
2
o)

| N LACK INT I ‘[§§§§§§§ CONT
kel

l — APPROX. 2 + te CLOCK CYCLES ‘

‘ CONTINUE DRIVEN CONTINUE DRIVEN BY PACE (EXTERNAL CIRCUITS HIGH IMPEDANCE} T CONTINUE DRIVEN——'

EXTERNALLY EXTERNALLY

NOTES: y EXTERNALLY GENERATED TTL INPUTS

OVERRIDE PACE MOS OUTPUTS.

2 y CROSSHATCH INDICATES “DON'T
&\\ CARE" INPUT STATE

3. te = DURATION OF EXTEND DURING

PACE 1/0 CYCLES. TIMING ASSUMES
NO OTHER EXTENDS & NO SUSPENDS

NS10480

Figure 2-11. Timing Diagram for Processor Stall using NHALT and CONTIN Signals

2-13

instruction is executed before the interrupt is enabled or disabled. The Return From Interrupt Instruction
(RTI) also may be used to set IEN true. In this case, there is no delay and a pending interrupt takes place
immediately after execution of RTI.

NOTE

The use of PFLG or CRF Instructions to disable the IEN flag
allows one more instruction to be executed before the inter-
rupts are disabled. If an interrupt should occur during execu-
tion of the PFLG or CRF Instruction, the subsequent use of
RTI would leave IEN true (one) after the execution of PFLG
1EN. To prevent this situation, the BOC Instruction may be
used to test PFLG or CRF Instruction as follows:

PFLG IEN ; TURN OFF IEN
BOC IEN, -1 ; ISIEN FALSE?
; YES
N |-————— > 11+ tecveres & »8+ 1eCYCLES 3———-1

DRIVEN HIGH EXTERNALLY ES NHALT
{OR USING INTERNAL PULLUP!
25 +1e CYCLES —,3,——]

DRIVEN LOW EXTERNALLY
<3cik L
CYCLES f— <15+ 2 1eCYCLES
5 CLOCK CYCLE MIN
INTERRUPT RESP. TIME
N ACK INT & CONT
3

APPROX. 22 ~ 1e CLOCK CYCLES
J CONTINUE DRIVEN CONTINUE DRIVEN BY PACE CONTINUE DRIVEN EXTERNALLY

EXTERNALLY
EXECUTION EXECUTION SUSPENDED ——————_’L‘— INTERRUPT SERVICE STARTS

NOTES: y exTEANALLY GENERATED TTL INPUTS
OVERRIDE PACE MOS OUTPUTS.
2. 5SS CROSSHATCH INDICATES “DON'T
CARE " INPUT STATE
3. te = DURATION OF EXTEND OURING PACE
10 CYCLES. TIMING ASSUMES NO OTHER
EXTENDS AND NO SUSPENDS

LEVELO

S __.T Lt

NS10476

Figure 2-12. Relative Timing for Level-0 Interrupt Generation

Table 2-4. Locations of Interrupt Pointers

Interrupt Pointer Memory Location

Interrupt-0 Program
Interrupt-0 PC
Interrupt 5
Interrupt 4
Interrupt 3
Interrupt 2
interrupt 1

Not Assigned

Qo = N W H~ 0O A N

Initialization Instruction

It should be recognized that the function of the individual Interrupt Enables IE1-IES5 is to arm or disarm
the Interrupt Request Latch, whereas the function of the Master Interrupt Enable (IEN) and Interrupt
Enable IRO is to enable or disable the latched Interrupt Request lines.

2.7.2 Stack Interrupts

The response to a Stack Interrupt (Interrupt Level-1)is the same as described for user-specified interrupts.
The initiation of the interrupt request, however, is internal and occurs automatically when a stack-empty or
stack-full condition exists. The Stack Interrupt consists of a pulse applied to the set input of Interrupt Re-
quest Latch 1 (see figure 2-10). The pulse sets the latch if the IEN1 Flag is true; otherwise, the pulse is
ignored. The Stack is implemented with a RAM and a Pointer, which can access RAM locations O to 9.
A pulse occurs when the Stack Pointer is at O (one entry on Stack), and a Read-Stack Operation occurs to
empty the Stack. A pulse also occurs when the Stack Pointer is equal to 7 (eight entries on the Stack), and
a Write-Stack Operation occurs to fill the ninth word and leave one word empty so it may be used by the
interrupt. When a Stack Interrupt occurs, the condition of the Stack can be determined by using the Stack-
full Jump Condition (STFL); if the interrupt was due to a stack-full condition, STFL equals 1;if due to a
stack-empty condition, STFL equals 0.

With the interrupt scheme described, an interrupt does not occur at initialize but does occur every time the
Stack becomes empty. If the Stack is to be extended into memory, a Stack-empty Interrupt is required but
may be inhibited by turning off IEN1in other cases. (Refer to the PACE Assembly Language Programming
Manual for examples of techniques for extending the stack into memory.) In order to prevent a Stack Inter-
rupt when both hardware and software stacks become empty, a dummy word may be pushed on the Stack
by the Initialize Routine.

If a Stack Interrupt occurs while there is a level-3 or a level-4 interrupt present and enabled, the stack inter-
rupt pointer will be accessed incorrectly from location O instead of location 2. Therefore, if the stack in-
terrupt is used in conjunction with level-3 or level-4 interrupts, the contents of location 0 must equal the
contents of location 2, which contains the address of the user’s stack interrupt service routine. Since location
0 (zero) is also the initialize address, this means that location O must contain a value that serves a dual
purpose:

1. It serves as an instruction during initialization.
2. It serves as an address if a Stack Interrupt occurs at the same time as a level-3 or a level-4 interrupt.

For example, a Copy Flags to Register O Instruction (CFR) has an opcode of 0400. Thus, if this instruction
were contained at location 0, it could serve as both the initialize instruction and as a pointer to the Stack
Interrupt Service routine, which would begin at location 0400. A few precautions must be observed when
using this technique:

1. Test and branch, Copy Register to Flags (CRF), and skip instructions should not be used in
location 0.

2. JMP and JSR Instructions must be used with caution.

. Location | must contain a jump to the user’s initialize routine (unless location 0 contained a jump).

4. Instructions used for location 0 must have an opcode of X' 0400 or greater since any lesser value
will be interpreted as a Halt Instruction.

w

2-15

2.8 NHALT AND CONTIN SIGNALS

The NHALT Signal performs three different functions: programmed halt indicator output, processor stall
input, and nonmaskable Level-O Interrupt input. The CONTIN Signal is used as an interrupt acknowledge
output signal, as an input signal to continue processor activity after a programmed halt or a processor stall,
and in conjunction with NHALT to initiate the Level-O Interrupt. The use of NHALT and CONTIN to
accomplish these functions is described in the paragraphs that follow.

NOTE

The CONTIN signal may also be used inde

"3

NHALT signal as a jump-condition input. Refer to 2.6 for
details.

2.8.1 Programmed Halt

During normal program execution, the NHALT control line provides a high output. If a Halt Instruction is
executed, the microprocessor NHALT output is driven low to indicate that microprocessor activity has
been suspended. While PACE operation is in suspension, the NHALT output has a 7/8 duty cycle; that is,
every eighth clock phase, the NHALT output goes high. The NHALT 7/8 cycle must be accounted for if the
output is used as a logic signal but is of little concern if the output drives only a halt indicator. The NHALT
output goes high after the Halt Instruction is terminated by application of the CONTIN Signal. The CONTIN
input must go true (high) for a minimum of 16 clock cycles, and then low for 4 clock cycles for PACE opera-
tion to resume.

2.82 Processor Stall

To suspend operation of PACE under external control, the NHALT signal may be driven low by an external
gate, overriding the NHALT output buffer internal to PACE. Microprocessor operation then is suspended
after execution of the current instruction. The suspension may last for an indefinite period of time without
loss of CPU status and may be terminated by use of the CONTIN input (properly sequenced with removal
of the NHALT input). The timing sequence for the NHALT and CONTIN Signals is shown in figure 2-11.
The NHALT and CONTIN method for suspending PACE operation can be useful for Direct Memory Access
block data transfers which require full bus-throughput capacity.

2.8.3 Level-0 Interrupts

The Level-O Interrupt is not maskable under program control and, therefore, is useful for alarm conditions
(such as a power failure) or for implementing a software-based control panel. The PACE NHALT and
CONTIN Signals are used to generate a Level-0 Interrupt. The required relative timing for Level-0 Interrupt
generation is illustrated in figure 2-12, and, as shown, the CONTIN Signal can be used as an interrupt ack-
nowledge to indicate that the interrupt is being processed by PACE.

For cases where an interrupt acknowledge is not required or where the CONTIN Signal is used as a sense
input to the program, the CONTIN Signal can be held low continuously. While holding the CONTIN Signal
continuousiy low, the NHALT Signal inust be driven iow at least for the duration of the longest instruction
execution time plus eleven clock cycles to guarantee that a Level-O Interrupt occurs.

2-16

When the NHALT Signal is subsequently driven to a high state, the Level-O Interrupt servicing is initiated
internally. Servicing consists of first setting the Level-O Interrupt Enable (IR0 INT ENABLE in figure 2-10)
low to lock out all other possible interrupts. Next, the contents of the PACE Program Counter are stored in
the location specified by the contents of memory location 7 (see table 2-4). Then, the instruction at mem-
ory location 8 is executed. Storing the contents of the Program Counter in a memory location instead of on
the Stack prevents generation of a Stack-full Interrupt.

NOTE

If a Level-0 Interrupt occurs within the 12-clock-cycle period
(excluding extend cycles) following the recognition (indicated
by CONTIN signal) of any other interrupt, the processor
either will stall or execute the level-O0 interrupt using the
wrong pointer address. This problem may be avoided by only
allowing the level-0 interrupt leading edge to be applied to
the PACE chip during an NADS, provided no interrupt ack-
nowledge has occurred since the last NADS. Figure 2-13
shows one circuit that can be used to accomplish this. Note
that the circuit has been designed to take care of proper
'level-0’ execution only. If one desires to 'STALL’ also,
proper control gating will have to be added to the circuit.

To return from a Level-0 Interrupt, the PFLG15 or SFLGIS5 Instruction is executed to set the Level-0
Interrupt Enable Output high after execution of one additional instruction. The additional instruction is
typically a JMP@ through the memory location to which the contents of memory location 7 point; memory

NOTE: IF THE LEVEL-0 INTERRUPT REQUEST
LEVEL-0 INTERRUPT REQUEST HAS NOT ALREADY BEEN RESET TO A
LOGIC "1° LEVEL BEFORE JACK GOES
TO A LOGIC '1’, THEN JACK SHOULD
BE USED TO RESET THE REQUEST

DS SIGNAL,

8094

NHALT

CLR
D
%74L74

Q
FF3
NADS —I >o
cp

SET

PACE

CLR D
%74L74
Q 74L08

cp
74L08 SET

ops* 8094
INIT*

1ACK

CONTIN

NST10785

Figure 2-13. Circuit To Prevent Conflicts Between Level-0 and In-Process Interrupts
2-17

location 7 then restores the original contents of the Program Counter. Thus, a proper return to the interrupt
program can be effected. For example, if memory location 7 contains X'1000, the PC contents are stored at
memory location X'1000. To return from interrupt, a JMP@ X'1000 would be executed.

2.9 PACE INSTRUCTION SET

The PACE instruction set contains 45 instruction types that are capable of providing 337 individual instruc-
tions when flags, branch conditions, and other conditional signals or tests are considered. The 45 instruction
types are divided into the following eight format groups:

Branch Instructions

Skip Instructions

Memory Data-transfer Instructions (also serve as 1/O instructions)
Memory Data-operate Instructions

Register Data-transfer Instructions

Register Data-operate Instructions

Shift and Rotate Instructions

Miscellaneous Instructions

A summary of the PACE instructions is provided in table 2-5, which shows the instruction mnemonic, name,
a symbolic representation of the instruction operation, and the instruction format. A more-detailed presen-
tation of the instruction set is provided in appendix A.

There are no special PACE instructions for peripheral input/output. Instead, all of the memory-reference
instructions can also be used with peripheral devices: this method provides a much wider variety of instruc-
tions for communications with peripherals.

2.9.1 Data Representation

In the PACE microprocessor, data are represented in the twos-complement number system, in which the
negative of a number is formed by complementing each bit and, then, adding one to the complemented
value of the number. The most significant bit indicates the sign of the number: O for positive and 1 for
negative. With a single 16-bit value, the greatest positive number is X'7FFF or 32767,, and the most nega-
tive number is X'8000 or 32768,,. When the 8-bit data length is selected, the largest positive number is
X'7F or 127, and the most negative number is X'80 or 128,,.

2.9.2 Addressing Modes

Part of the power of the PACE microprocessor instruction set is derived from a flexible method of address-
ing used in memory-reference instructions (also used for peripheral devices). This method makes it possible
to reference directly three 256-word 'pages’ that may be located anywhere in memory, as well as another
256-word page in a fixed position in memory.

The fixed words form a 'base’ page, and the others form three 'floating’ pages. The mode of addressing is
specified by the 2-bit XR field (bits 8 and 9) of the 16-bit instruction word, as shown in figure 2-14. The
four available modes (base page, prograin-counter relative, AC2 relative, and AC3 relative) are summarized
in table 2-6 and are described in the section that follows.

2-18

61-C

Mnemonic

Name

Branch Instructions

BOC
JMP
JMP@
JSR
JSR@
RTS
RTI

Branch On Condition (Table 2-3)

Jump

Jump Indirect

Jump To Subroutine

Jump To Subroutine Indirect
Return from Subroutine
Return from Interrupt

Skip Instructions

SKNE
SKG
SKAZ
74
DSz
AISZ

Skip if Not Equal

Skip if Greater

Skip if And is Zero
Increment and Skip if Zero
Decrement and Skip if Zero
Add Immediate, Skip if Zero

Memory Data Transfer Instructions

LD
LD@®
ST
ST@
LSEX

Load

Load Indirect

Store

Store Indirect

Load With Sign Extended

Memory Data Operate Instructions

AND
OR
ADD
SUBB
DECA

And

Or

Add

Subtract with Borrow
Decimal Add

Register Data Transfer Instructions

L
RCPY
RXCH
XCHRS
CFR
CRF
PUSH
PULL
PUSHF
PULLF

Load Immediate

Register Copy

Register Exchange

Exchange Register and Stack
Copy Flags Into Register
Copy Register Into Flags
Push Register Onto Stack
Pull Stack Into Register
Push Flags Onto Stack

Pull Stack Into Flags

Table 2-5. PACE Instruction Summary

Maximum

Operation Execution Time (Note)

(PC) < (PC) + disp if cc true 5M + Eq + 1M if branch

(PC) < EA 4M + Eq
(PC) < (EA) 4M + 2ER
(STK) < (PC), (PC) < EA 5M + ER
(STK) < (PC), (PC) < (EA) 5M + 2ER
(PC) < (STK) +disp 5M + Eg
(PC) < (STK) +disp, IEN =1 6M + Eg

1f (ACr) # (EA), (PC) < (PC) +1

1f (ACO) > (EA), (PC} < (PC) +1

If [(ACO) A (EA)] =0, (PC) < (PC) +1

(EA) < (EA) +1,if (EA) =0, (PC) < (PC) +1
(EA) < (EA) —1,if (EA) =0, (PC) < (PC) +1
(ACr) < (ACr) + disp, if (ACr) =0, (PC) < (PC) +1

SM + 2Eg + 1M if skip
IM + 2Eq + 1M if skip
5M + 2Eg + 1M if skip
IM + 2Eg + Ey + 1M if skip
M + 2Eq + Ey + 1M if skip
BM + Eq + 1M if skip

Instruction Format

(ACr) < (EA) AM + 2Eg
(ACO) < ((EA)) 5M + 3Ex
{EA) < (ACr) 4AM + Eg + Ey
({EA)) < (ACO) 4M + 2Eg + Ey
(ACO) < (EA) bit 7 extended 4M + 2Eg
(ACO) < (ACO) N (EA) AM + 2Eg
(AC0) < (ACO) V (EA) 4M + 2Egq
(ACr) < (ACr) + (EA), OV, CY 4M + 2Eg
(ACO) < (ACO) +~ (EA) + (CY), OV, CY 4M + 2Eg
(ACO) < (ACQ) +1g (EA) +1g (CY), OV, CY 7M + 2Eq
(ACr) < disp 4M + Eq
(ACdr) < (ACsr) 4AM + Eg
{ACdr) < (ACsr), (ACsr) < {ACdr) 6M + Eg
(STK) < (ACr), {ACr) + (STK) 6M + Eg
(ACr) < (FR) 4AM + Eg

(FR) < (ACr) 4M + Eq
{STK) < {ACr) 4M + Eg

(ACr) < (STK) 4M + Eg
(STK) < (FR) 4M + Eg

(FR) < (STK) 4M + Eg

0100 cC disp
000110]| xr
100110
000101
100101
100000[/00
011111]/00
1111 v xr disp
100111
101110
100011
101011
0o11110] r
1100 r Xr disp
101000

1101 r
101100
101111
T010710] xr disp
101001

1110

100100
100010
010100| r disp
01011 1] dr| s | 000000
01101 1] drf s
000111 r|o0
000001
000010
011000
011001
00001100
000100/ 00 \i

0t-¢

Mnemonic

Name

Table 2-6. PACE Instruction Summary (Concluded).

Operation

Maximum
Execution Time (Note)

Instruction Format

6. Register Data Operate Instructions
RADD Register Add (ACdr) < (ACdr) + (ACsr), OV, CY 4M + Eg 011010]| dr | sr| 000000
RADC Register Add With Carry (ACdr) < (ACdr) + (ACsr} + (CY), OV, CY 4M + Eg 011101
RAND Register And (ACdr) < (ACdr) A (ACsr) 4M + Eg 010101
RXOR Register Exclusive OR (ACdr) < (ACdr) x* (ACsr) 4aM + Eg 0106110
CAl Complement and Add Immediate (ACr) <= ~ (ACr) + disp 5M + Eg 011100 r disp
7. Shift And Rotate Instructions
SHL Shift Left {ACr) < (ACr) shifted left n places, w/wo link 001010 r n 4
SHR Shift Right {ACr) < (ACr) shifted right n places, w/wo link (5+3n) M+Eg,n=1-127; 001011
ROL Rotate Left (ACr) — {ACr) rotated feft n places, w/wo link 6M + Eg, n=0 001000
ROR Rotate Right {ACr) < (ACr) rotated right n places, w/wo link 001001
8. Miscellaneous Instructions
HALT Halt Halt 000000/ 00 ofoooo0000
SFLG Set Flag (Table 2-2) (FR) g < 1 5M + Eg 0011 fc 1
PFLG Pulse Flag (Table 2-2) (FR) j¢ < 1, (FR) ;o < O 6M + Eq 0011 f |0
Note: M = Machine cycle time = 4 clock periods Ew = Extend time for write cycle
n = number of shifts External interrupt response time is 7M + Eg plus time to finish current instruction.
Er = Extend time for read cycle
Number | Mnemonic Condition Register Bit | Flag Name Function
O L e o | [e avers e
1 REQO (ACO) equal to zerol1)) \E2 Int r Upt Enabl weve 2
2 PSIGN (ACO) has positive Sign(nterrupt enable Leve
. f 3 1E3 Interrupt Enable Level 3
3 BITO Bit 0 of ACO true 4 \E4 | Enable Level 4
4 BIT 1 Bit 1 of ACO true c nterrupt E"a e Leve
5 NREQO (ACO) is non-zerof1) 5 IO 5F IC;nerfrupt nable Level 5
6 BIT 2 Bit 2 ACO is true ‘75 C\R/Y over low
7 CONTIN | CONTIN (continue) input is true arry
. 8 LINK Link
8 IINK LINK is true
A 9 IEN Master Interrupt Enable
o |IEN IEN is true 10 BYTE | 8-bit data length
10 | CARRY | CARRY is true b 11 Fla| ”"" aleng
1 NSIGN (ACO) has negative sign(z) g
\ ; 12 F12 Flag 12
12 OVF OVF is true 13 F13 Flag 13
13 JC13 JC13 input is true Note 1: If the selected data length is 8 bits, only bits 0-7 of ag
14 ICl14 JC14 input is true ACO are tested. 14 F14 Flag 14
i . . Note 2: Bit 7is the sign bit (instead of bit 15) if the selected 15 e Always logic 1, set for
15 JC15 JC15 input is true data length is 8 bits. Interrupt 0 exit

o] | || Jwofolefsl | [[[] lo

OPERATION (opcode) ”\'('fsx DISPLACEMENT (disp)

NS10409

Figure 2-14. Memory-reference Instruction Format

Table 2-6. Summary of Direct Addressing Modes
xr Field Addressing Mode Effective Address
00 Base-page EA = disp
01 Program-Counter-relative EA = disp + (PC)
10 AC2-relative {indexed) EA =disp + (AC2)
11 AC3-relative (indexed) EA =disp + (AC3)

NOTES: 1. For base-page addressing, disp is positive and in range of 000 to 255 when BPS is
low {0); or disp is signed number in range of -128 to +127 when BPS is high (1).

2. PC contains value one greater than address of current instruction.

3. For relative addressing, disp range is =128 to +127.

The PACE instruction set includes both direct and indirect memory addressing instructions. Both methods
of memory addressing can use all of the addressing modes. The section that follows describes the operation
of each of the available addressing modes as used in direct memory addressing. Indirect addressing is de-
scribed in 2.9.2.2.

2.9.2.1 Direct Addressing

When the XR field is 00, it specifies base-page addressing. The base page may consist of either the first 256
words in the memory, or the first 128 plus last 128 words. The Base-Page-Select Signal (BPS) designates the
option that will be used.

To address the first 256 words of memory (locations 0-255), BPS is set to 0; the 16-bit memory address is
formed by setting bits 8 through 15 to zero and by using bits O through 7 to specify one of 256 locations.

If BPS is 1, the 16-bit memory address is formed by setting bits 8 through 15 equal to bit 7 and by using
bits O through 6 to locate the first 128 words (X'0000-X'007F) of the memory (when bit 7 is 0) and the
last 128 words (X'FF80-X'FFFF) (when bit 7 is 1). This technique is useful for splitting the base page be-
tween read-write and read-only memories or between memory and peripheral devices, so convenient base-
page addressing can access data or peripherals.

2-21

When the XR field is 01, it specifies that addressing is relative to the Program Counter. In this mode, the
memory address is formed by using bits O through 7 of the instruction word as a twos-complement dis-
placement, with bit 7 being the sign bit. These bits form the less significant byte of a 16-bit displacement
value, and the more significant byte is formed by propagating bit 7 (the sign bit) through bit 15. The dis-
placement value thus formed then is added to the contents of the Program Counter, and the resulting sum
thereby becomes the effective memory address. This addition is performed after the Program Counter has
been incremented by 1 and, thus, is pointing to the next consecutive instruction address. Therefore, loca-
tions ranging from 128 locations below to 127 locations above the pre-incremented value of the Program
Counter may be addressed using this technique.

aLGiossil aLlV O all

the external 65,536-word address space may be referenced. As before, the displacement field is interpreted
as a signed value ranging from -128 through +127. The memory address is then formed by adding the dis-
placement bits to the contents of either Accumulator AC2 (when XR = 10) or Accumulator AC3 (when
XR = 11). This type of addressing is desirable for those applications that require addresses to be computed
at execution time, since addresses can not be modified when a ROM is serving for program storage (as is
usually the case with microprocessors as opposed to minicomputers).

When the XR field is 10 or 11, addressing is relative to an index register, and any memory location within

2.9.2.2 Indirect Addressing

Indirect addressing consists of first establishing an address in the same manner as direct addressing (by either
the base-page, PC-relative, or indexed mode). The contents of the memory location at the selected address
then are used as the operand address.

2-22

Chapter 3

DESIGNING PACE SYSTEMS: BASIC REQUIREMENTS AND CONCEPTS

3.0 INTRODUCTION

This chapter describes the basic elements required to obtain an operational PACE system and the compo-
nents available to meet these requirements. System concepts are also discussed to provide designers with
examples of system configurations and standard techniques that may be used in the design of PACE systems.

Figure 3-1 isa block diagram of an example of a PACE system configuration. The system illustrated includes
the following:

e PACE — a detailed description of PACE is provided in chapter 2. Discussions of PACE in the
remainder of this manual generally will be limited to explanations of how it is utilized in
conjunction with other sysiem eiements.

e System Timing Element (STE) — this monolithic device provides the MOS clock signals required
by PACE and also produces TTL clock signals for use by PACE and other system compo-
nents. Use of the STE is described in 3.1.

e Address/Data and Control Signal Buffers — these Bidirectional Transceiver Elements (BTEs) are
used to buffer the PACE MOS signals and to provide the MOS and TTL bus drive capability
usually required in PACE systems. Details on buffering requirements and use of the BTEs
are provided in 3.3.

® Address Latches — Requirements for address latches depend on the specific type of system bus
structure used. Various system bus structures commonly used are discussed in 3.5 and im-
plementation of address latches are discussed in 3.6.

® Memory — System memory requirements vary widely between applications. Chapter 4 of this
manual is devoted to a discussion of memory selection criteria and interfacing considerations.

o Peripheral Interface — Although the PACE instruction set does not differentiate between mem-
ory and peripheral data transfers, there are a variety of specific capabilities provided by
PACE that can be used to simplify peripheral interface designs. Chapter 5 provides a dis-
cussion of the capabilities available and the techniques for utilizing these capabilities.

The remainder of this chapter concentrates on what might be considered the “heart” of any PACE system—
the nonshaded portion of figure 3-1—that is essentially independent of the system’s particular application.

3.1 SYSTEM TIMING AND POWER

The timing requirements of PACE are fulfilled by the System Timing Element (STE) DP8302. The STE
provides the true and complemented nonoverlapping clock inputs required by PACE and TTL clocks that
can be used by other system components. The TTL clock output can also be used as described in 3.1.3 to
simplify generation of the substrate voltage (Vgg) required by PACE.

The STE is contained in a single 16-pin dual-in-line package. A detailed description and electrical specifica-
tions for the STE are provided in the DP8302 data sheet. Figure 3-2 shows an example of an STE-to-PACE
interconnection. The paragraphs that follow detail specific guidelines and techniques for using the STE in a
PACE system.

3-1

€

| INITIALIZE
CIRCUIT

—

TmMsE0O T

PACE

STE

MOS
ADDRESS/
DATA BUS

SYSTEM TTL

ADDRESS/DATA
BUS
SYSTEM
BYE MEMORY
(SEE CHAPTER 4)
BTE
PERIPHERAL
INTERFACES

MOS
TIMING

AND
CONTROL
SIGNALS

BTE

LATCHES I} ATCHED

ADDRESS
BUS

L

SYSTEM TTL TIMING AND CONTROL BUS

. PERIPHERAL
DEVICES

NS10786

Figure 3-1. Example of PACE System Configuration

(-12V) Vgg 29
rs|2
EXTEND T"—_L
26
NINITF=— =
wns PACE cux (2
12{niR 2 NCLK 122
184F11 Y
BE 122
19¢12 F14 25~
5V 20}y (+5V) 21
suppLy © s F13
-12v
suppLy &
ne stE v, Peisv)
_2 N CK 15
3 DP8302J
. X ckf®
X2 ncukpE
2.6667 MHz 5 EXTC V. 12 (—12\/)
GG Vgg GENERATION
—il—e 6lrcLk nekfi B8 CiRCUIT
7 TCLK* LCK, m[—\]-’SGpF r |
=L ceoF L seor 81GND LCK* i_—r | [
T™° T = | 0uf IN914 |
- |
I 1 L I
o LM103 |
| 1N914 3V
I E.MFI
1] | = |
TTL CLK L v . _
NS10787

Figure 3-2. PACE-STE Interconnection and Vgg Generation

3.1.1 Frequency Control

An external series-resonant crystal is connected between pins X1 and X2 of the STE to provide frequency
control. Alternately, an external TTL clock input may be applied to the STE, bypassing the internal oscilla-
tor. In this case, pin X1 must be tied to Vi and pin X2 must be left open. Then, EXTC may be used as a
TTL input for the external oscillator.

The output frequency of the STE is one half of the input frequency. Thus, a 2.6667-megahertz crystal con-
nected to the STE results in clock inputs (CLK and NCLK) to PACE at a frequency of 1.3333-megahertz.
This frequency is equivalent to a clock period of 750 nanoseconds — the optimal clock period for PACE
(IPC-16A/520D).

3-3

3.1.2 Nonoverlap Requirements and Control

The clock nonoverlap requirements for PACE are specified in the IPC-16A/520D data sheet. The STE incor-
porates a cross-coupled latch containing a delay in the feedback path that ensures nonoverlapping MOS
clock signals. The delay in the feedback path can be increased by connecting a capacitor between pins LCK
and NLCK on the STE. The effect of the capacitor on increasing the nonoverlap interval is shown in the
STE data sheet.

3.1.3 Substrate Bias Voltage (Vgg) Generation

Both PACE and the STE require +5-voit and —12-volt power. Additionally, PACE requires a substrate bias
voltage (Vgp) of +8 volts. Figure 3-2 shows a circuit that uses one of the TTL clock outputs of the STE to
derive the required voltage.

3.2 SYSTEM INITIALIZATION

The NINIT input to PACE should be used after the system has been powered-up and clock signals applied
to PACE (refer to 2.3 for a detailed discussion of initialization). The NINIT signal can be reapplied at any
time to reinitialize PACE.

Figure 3-3 shows a circuit that can be used to produce an NINIT signal of the required duration both on
power-up and when initiated by a user-supplied switch. The output of the DM74132 Schmitt Trigger can
also be used to initialize other system devices.

fiNITIALIZATION - - - = 1
CIRCUIT
I 9.7K 1K NINIT |
+B5V O—AAN— +5V
| NIT I
SWITCH 1K
| _LE 74132 PN 4275 |
I ‘ —= 30 uF 0.1 #FI |
- +5V
L — o e e | — 4
_\—/_N
29
A2 Jc1s A /eTe]
28
_& Jc13 8PS —
14 27
—| NIR5S PACE EXTEND
15 26
—1 NIR4 NINIT
25 —
iN_l)
NS10788

Figure 3-3. Initialization Circuit

34

3.3 BUFFERING SYSTEM BUSES

It is possible to design a limited PACE system that does not require buffering of PACE signals. However,
most systems that require the powerful capabilities of PACE also include other devices in sufficient number
to demand a high fanout of the PACE address/data lines and the PACE control signals. These demands can
be satisfied easily using the Bidirectional Transceiver Elements (BTEs) DP8300N that have been specifically
developed to simplify the design of PACE systems.

The BTE provides buffering between the PACE MOS input/output lines and TTL devices. A high-fanout
capability of up to 30 TTL loads (50 milliamperes) is provided by the BTE (refer to the DP8300 data sheet
for specifications). A functional block diagram of the BTE is shown in figure 34.

Figure 3-5 shows an example of the system implementation of the BTE. One BTE is connected to operate
only in the drive mode by grounding the Write Bus Data pin (WBD¥*). No connections are made to the BTE
Chip Enable inputs (CE and CE*) or Strobe Input (STR*) since, as indicated by the BTE truth table in fig-
ure 3-5, when the WBD* input is low the states of the other control signals are “don’t care.” Thus, the BTE

Two BTEs are used in figure 3-5 to buffer the PACE bidirectional address/data lines. Directional control
of the BTEs is implemented in a straightforward manner using the Buffered Input Data Strobe (BIDS) sig-
nal from PACE (via the “‘drive-only’” BTE described in the preceding paragraph). BIDS is connected to the
WBD* mode control input of both BTEs. The other three mode control inputs are continuously enabled by
connecting CE1 to a logic 1" lével, and CE2* and STR* to ground (logic '0"). Referring to the truth table in
figure 3-5, it can be seen that the BTEs will be in the “drive TTL and receive MOS” mode when BIDS is low
(logic 0). This allows address output and data output from PACE to be placed onto the System TTL
Address/Data Bus without using any additional control or enable signals. When BIDS is high (logic 1), indi-
cating that PACE is awaiting input data, the BTEs are placed in the “receive TTL and drive MOS” mode to
allow data from the System TTL Address/Data Bus to be applied to PACE.

TTL
RECEIVER
BUFFER

SYSTEM TTL
BUS {(8DI'O)
(8 BITSH

MOS BUS
(MBI/O)
(8 BITS)

MODE
CONTROL

I

MODE ENABLE
CONTROL 8US
(4 BITS}

TO/FROM
PACE

NS10378

Figure 3-4. BTE Functional Block Diagram

3-5

97K X NINIT
+5V O_‘VW_\ +5V —
[1K
—

BTE

BDY/G 00
BDI/0 01
8010 02
8D1/0 03
BDI/C 04

DP8300

BDI/O 05
85i/0 36
BDI/O 07

Ve

SYSTEM TTL
ADDRESS/DATA
BUS

Dos Zueiro B0I/0 00 SOI/0 08
5 MBI/0 01 BOIO 0T |1
] A uei/o 02 801/002 B0va 10
7 u D0S-D15 BDI/0 11
oos o m: I sol/o &3 8D1/0 12
81 nans 012 MBIODA o BDVO0S
Hwar PACE o2 W w05 BDI/005
0} contin T Ed MBI/G 06 s01/006 B801/0 14
Mycne 1532 15__ 9 %upijo 07 801007 BD/O 15
ic15 {-12v) vgg |28 e CE1
o1 e 28 BIDS 11| wape e
¥ yirs EXTEND ;75 12lgup
- NIR& NINIT L = = SYSTEM TTL
NIR3 [TY - TIMING AND CONTROL
NIR2 ek j22 v BUS
F11 v |2 88 e BTE Voo)o
a2 Fi4 > MB1/0 00 BOVO 00
Fiz f2 F13 »{us1/0 01 sovo 1}2
": S tupiro @2 soi/o 22
i 53| MB1/0 83 8010 03
NADS 85| M81/0 04 sov/o o4ftd
DP8300 .
0DS »-| MBI/O 05 80I/0 0|
10§ »| MBI/0 06 801/0 0612
5V 8 mBi/0 07 sov/o o7}E
SUPPLY O L P L
av oo 1 wpor cezrft
SUPPLY . " | GND STR*
) NC STE Voo m L
3 NC CK -1-‘— -
opsaozy ORI
—Hexte v
TR sl o [
L
] o [1 o0
. L LCK o v BTE TRUTH TABLE
suD w1
= 0.1 uf NS14 n ta*1
4
1 —__| CE1 |CE 2*|sTR* |wBD*| TRANSCEIVER MODE
LM103 0 | Receiving M ivi
e b IM uF x x x T:{eg:)ngg 0S Bus and Driving
= x x 1 1 Mode t,; See Note 1
0 | o | o | 1 | TRISTATE Mode
+5v o | 1 | o | 1 | TRISTATE Mode
1 0 0 1 Receiving TTL Bus and Driving
MOS Bus
1|1 | o | 1 | TRISTATE Mode

Note 1. On the positive-edge transition of STR* logic conditions
present on CE 1and CE 2* at the time of transition will be latched
internally. The transceiver will either be in the TRI-STATE or

receiving mode.

NS10789

Figure 3-5. BTE System Implementation

3-6

The control scheme just described provides simple directional control of the BTEs to easily implement a bi-
directional System TTL Address/Data Bus. Other methods of course can be used if a particular system
demands. For example, in a system that utilizes Direct Memory Access (DMA), it may be desirable to place
the TTL outputs of the BTEs in the high-impedance (TRI-STATE®) mode when other system devices are
transferring data on the bus.

34 A BUFFERED PACE CPU MODULE

Figure 3-6 is a block diagram representation of figure 3-5 — a fully buffered PACE CPU module — based on
the devices, circuits, and interconnection examples described previously in this chapter. The module depicted
in figure 3-7 provides a fully operational CPU that can be used as the basis for a variety of systems regardless
of their application. In order to simplify the descriptions of system concepts and interfacing techniques pre-
sented in the remainder of this chapter and in chapters 4 and 5, the Buffered PACE CPU MODULE shown
in figure 3-6 is referenced frequently.

The remainder of this chapter discusses system bus structures, address latching, and address decoding. While
these areas are more application-dependent than the topics discussed thus far in chapter 3, the concepts
apply equally to memory interfacing and peripheral interfacing and, therefore are discussed in this chapter
as an adjunct to the CPU module.

3.5 SYSTEM BUS STRUCTURES

Methods of buffering the PACE address/data lines and timing and control signals to obtain a System TTL
Address/Data Bus and System TTL Timing and Control Bus are discussed in 3.3. The resulting fully multi-
plexed, bidirectional address/data bus is suitable for many systems and minimizes wiring costs and device
counts. Utilization of such a bus structure is simplified by the full complement of timing and control signals
provided by PACE.)

Figure 3-7 illustrates a system that uses this fully multiplexed bus structure. The memory devices in such a
system would be of the type that include on-chip address latches. A peripheral interface could be imple-
mented by providing an input/output port for peripheral data and address decoding logic to enable the
input/output port. (Examples of address decoding are provided in 3.7.) A variety of other system bus struc-
tures may also be implemented to meet particular system demands.

In many systems, the separate-address/multiplexed-data bus structure depicted in figure 3-8 can be used to
simplify interfaces to memory and peripheral devices. In systems where memory devices do not supply on-
chip address latches, this bus structure provides a latched address that can be utilized by both system mem-
ory and by address comparator/decoders that might be necessary for peripheral interfaces. Implementation
of address latches to obtain a separate address bus is described in 3.5.

A variety of other bus structures can be configured to meet particular system demands. For example, in
systems where a large number of devices must be serviced, it might be advantageous to provide separate
buses and buffering for memory and peripheral devices. More detailed examples of various bus structures
are provided in chapter 4 (Memory Interfacing) and chapter 5 (Peripheral Interfacing).

INITIALIZATION

CIRCUIT ADDRESS/DATA

BUS

BTE
DP8300

moO» o

I
I
BTE |
DP8300 I
!
i
IPC—16A/520 ? TIMiNG}gé.)NTROL
I BUS
l
I
BTE
DP8300

Figure 3-6. Buffered PACE CPU Module
NOTES:
1. MEMORY INTERFACING
DESCRIBED IN CHAPTER 4.
2. ADDRESS DECODING
DESCRIBED IN 3.8,
3. INPUT/OUTPUT PORTS
DESCRIBED IN CHAPTER 5.
TTL ADDRESS/DATA BUS _
r 7
| |
Lo I | DATA 4 |
10 =) v
BUFFERED oo P
PCAPCUE MEMORY JADDRESS ESS v
—»| E
MODULE APRf £
ADDRESS ADDRESS 2
] Note 1 - DECODE DECODE] 2
(Refer to Fig. 3-8} Note 2 L Note 2 _l Note 3 I '
TTL TIMING AND CONTROL BUS
—»’ |<——BACK PLANE
NS10791

Figure 3-7. Fully Multiplexed Bus Structure

3-8

NOTES:
1. MEMORY INTERFACING
DESCRIBED IN CHAPTER 4.
ADDRESS TTL ADDRESS BUS 2. ADDRESS DECODING
LATCHES DESCRIBED IN 3.6.

Nots 4 3. INPUT/OUTPUT PORTS

DESCRIBED IN CHAPTER 5.
4. ADDRESS LATCHES
t DESCRIBED IN 35.
TTL DATA BUS

—-——
i H
i i
ADDRESS I

BUFFERED I I DATA I Pg

PACE R
CPU H i |

MODULE TTL 1/0 P
ADDRESS/ PORT [
{Refer to Fig. 3-6) BG\S A MEMORY ADDRESS ADDRESS i E

ADDRESS ADDRESS A
- DECODE »| DECODE -] L |
Note 1 Nots 2 L Note 2 _' Note 3 | |
L_1

TTL TIMING AND CONTROL BUS
—>| |<-— BACKPLANE
NS10792

Figure 3-8. Separate Address/Multiplexed Data Bus Structure

3.6 ADDRESS LATCHING

In systems where it is desirable to have separate buses for output of addresses and input/output of data,
address latches must be provided to capture the information from the multiplexed address/data bus. During
the address-output interval of each data input/output operation, the negative-true Address Data Strobe
(NADS) signal is output by PACE. NADS is active in the middle of valid address information. Thus, either
edge of NADS can be used to clock address information into address latches.

Figure 3-9 illustrates one method of providing a latched address bus. Two DMLS174 Hex Flip-Flops and
one DMLS175 Quad Flip-Flop are used to capture the 16 bits of buffered address information from the
system TTL Address/Data Bus. The Buffered NADS signal (NBADS) is used as the CLOCK input to the
three devices. The CLEAR input to the flip-flops is not used in the example but could be connected to a
system initialization signal if a particular application requires.

3.7 ADDRESS DECODING
The 16-bit address word output by PACE during each data input/output operation provides a total address

space of 65,536 (64K) iocations. The less significant address bits are typically used directiy as address inputs
to memory devices. For exampie, a 256-word RAM device requires eight address inputs (address bits O

3-9

through 7), while a 1024-word ROM device requires ten address inputs (address bits O through 9). The more
significant address bits thus are available for use as chip-select or chip-enable inputs to memory devices or as
device select signals for peripherals.

The number of address bits required to select or enable memory or peripheral devices is directly related to
the amount of memory and the number of peripheral devices in a system. Since the same PACE instructions
are used for memory references and peripherals, the system designer must allocate specific address spaces to
peripherals and others for memory. Allocation of address spaces is accomplished by decoding selected
address bits to derive the required memory-select or peripheral-select signals.

BUFFERED SYSTEM
TIMING/CONTROL BUS

I NBADS
16—BIT

LATCHED SYSTEM
BUFFERED SYSTEM +5V ADDRESS BUS
ADDRESS/DATA BUS v J)
N CLR
CLK
Q
Q
DM74LS175

! NBADS +5V

N CLR
CLK

DM74L8174
Q

NBADS * .
g N4 CLR
cLK
aQ
Q
DM74LS174

Q
a
aQ

NS10793

Figure 3-9. Latched Address Bus Using Hex/Quad Flip Flops

3-10

“Address decoding” may not always require the use of an actual decoding device or logic. For example, in a
small system consisting of a limited amount of memory and a single peripheral device, the most significant
address bit (bit 15) could be used to differentiate between memory and peripheral operations. With this
method, half of the 64K address space would be allocated to memory and half to the peripheral: for ex-
ample, when bit 15 is low (logic 0), the memory address space is active, and when bit 15 is high the periph-
eral device is selected. If additional memory and/or peripheral devices are present in the system, other
address bits can be used directly as the exclusive select or enabling signals for these devices. Figure 3-10
shows an example of how individual address bits might be used to select six separate peripheral devices.

NOTE

Address bits that are not required for use as select signals can
be used to transfer other information such as command or
control codes to peripherals. Refer to 5.5 for a discussion of
this technique.

Using address bits directly as select signals eliminates the need for extra decoders — an important considera-
tion in small systems. This method, however, does limit the number of peripheral devices and memory that
can be addressed because it makes inefficient use of the address space and because it may result in compli-
cating system software. For example, with the scheme shown in figure 3-10, an address in the range X'C000-
X'CI1FF selects device #1 by setting bit 14 to a logic '1’; however, an address in the range X'FE00-X'FFFF
sets bits 9-14 to a logic '1" and, thus, selects all six peripheral devices.

As system size increases, more extensive address decoding schemes may be necessary to achieve more efficient
utilization of address space. A variety of decoding devices can be used, ranging in complexity from combi-
nations of AND/OR gates through standard MSI decoders. Figure 3-11 shows a DM74LS138 3-to-8 line
decoder being used to generate 8 peripheral select signals. Address bit 15 is used as the enable input and
address bits 14, 13, and 12 as the binary select inputs to the decoder. As shown in the resulting address map,
each of the peripheral devices occupies a separate 4K address space in the upper half of the 64K total avail-
able addresses.

LATCHED DEVICE
ADDRESS SELECT
BUS SIGNALS
DEVICE
#1

! DEVICE
#2

1 DEVICE
#3

{ DEVICE
#4

:Do__a DEVICE
#5

NS10794

Figure 3-10. Using Address Bits as Device Select Signals
3-11

Another method of address decoding is shown in Figure 3-12. Here, a 6-bit unified-bus comparator (DM8131)
is used to enable a 1-line to 8-line demultiplexer. The DM8131 compares the contents of the Address/Data
Bus (at NADS time) against a user-designated hardwired address (the T1-T6 inputs). In the figure, the out-
put of the comparator will go low (logic '0") whenever an address in the range X'3000-X'37FF is detected.
The output of the comparator is combined (using a NOR gate) with NBADS to provide the required logic
'0’ level to the DATA input of the DM8223 demultiplexer. The address inputs (A, B, and C) to the DM8223
are latched address bits AO8, A09, and A10, respectively. The address bits are latched using a DM74175
Quad D Flip-Flop. This decoding scheme provides negative-true enabling signals (such as might be required
for memory devices) for eight 256-word blocks of addresses.

LATCHED
ADDRESS DEVICE
BUS SELECT
| SIGNALS
AN
ADDRESS MAP
64K
A vi & DEVICE #8 } X'FO0O—X'FFFF
9 - T — T 6K , ,
B Y6 - DEVICE #7 } X'E000—-X'EFFF
o - — — — —— 6K
c Y5 > DEVICE #6 } X'DO00—X'DFFF
" - — — — 4—— K
Y4 > DEVICE #5 } XC'000—X'CEFF
DM74L5138
- - — — — 4— sk
v3 > DEVICE #4 } X'BOOO—X'BFFF
L — b a
G1 Y2 13 o DEVICE #3 } X ADDO—-X"AFFF
4 - — — a0k
G2A Y1 > DEVICE #2 } X'9000—X'9FFF
s - — — — 1+— 36K
G2B Yo ! DEVICE #1 } X'8000—X'8FFF
NOTE - — ———— 32K
- L mMEMORY L f
T ADDRESS T \ .
ADDRESSBITS | OUTPUT e X'0000-X'7FFF
12 |13 [14 |15 | SELECTED
o o|ofn Yo
110|o0]1 Y1 0
01|01 Y2 NOTE: IF ADDRESS BITS ARE TAKEN DIRECTLY FROM
P B B v MULTIPLEXED ADDRESS/DATA BUS, NBADS
CAN BE USED AS INPUT TO G2A/G2B AND
L L va PERIPHERAL LOGIC MUST LATCH DEVICE
1011 Y5 SELECT SIGNALS.
NENERE Y6
'HERERE Y7

NS10795

Figure 3-11. Using a 3-to-8 Line Decoder to Generate Device Select Signals

3-12

S301A3(] A10wdp dqeuy o3 Jaxajdpnuia(e pue sojeredwo) sng e Sursny "71-¢ Indig

96£01SN
3Ne
_ TOHLNOD ONIWIL
= U
‘SIWIL HIHLO 11V oLt
1V ,IH, “.1. 91901 34V
ZL ONV €1 S118 ANV 171
,0, 91907 3HY LI ONV vl
‘PL ‘GL 118 NIHM 01, oL _
€L ? AS+
"y
39 1ndLno
viva
000€.X ZL
A SAHOM 95 - s 1t LELBING
SAQHOM 952 - 71°
SAHOM 992 - o 18 38041S
PAN
SAYOM 992 - =1’
SQHOM MNZ
SAHOM 992 - . €
£TZ8NA
squomgal | z
: N4
squomesz |- 1 —rje MOW
z
 / SQUOM 997 |- 1° o oL or| €°
43L8.X g 9LLPLNG
" 60V Z |%0
N v 1]
m——— St 80V F3
SIVNOIS
dVIW 379VN3I-dIHD sna
ssayaav viva/ss3ayaagy

4L

3-13

Chapter 4

MEMORY INTERFACING

4.0 INTRODUCTION

The amount and type of memory used in a PACE system is determined by a variety of application-dependent
factors that include program size, data storage requirements, speed considerations, total system parts count,
and system power constraints. Table 4-1 lists some standard memory devices available from National Semi-
conductor that can be used with PACE systems. The paragraphs that follow provide examples of how some
of these memory devices can be utilized in PACE systems, and also describe general considerations that
apply when interfacing PACE to memory.

Table 4-1. Standard Memory Devices for Use in PACE Systems

M.T.:':;y Nz;:;er Pins Description
RAM MM2101 22 256 x 4 static MOS RAM, 500-1000ns access
MM2102 16 1K x 1 static MOS RAM, 500-1000ns access
MM2112 16 256 x 4 static MOS RAM, 650-1000ns access
MM5269 22 256 x 4 static MOS RAM, with address latches,
1000ns access
MM5271 18 4K x 1 dynamic MOS RAM, 250ns access
TTL compatible
MM5281 22 4K x 1 dynamic MOS RAM, 250ns access
TTL compatible
ROM DM87S202 20 256 x 8 Schottky ROM, with output data latches,
90ns access
MM5214 24 512 x 8 MOS ROM, 1000ns access
MM5242 24 1K x 8 MOS ROM, 500ns access
MM5246 24 2K x 8 MOS ROM, 500ns access
PROM MM5204 24 512 x 8 electrically programmable MOS ROM,
1000ns access
DM87S222 20 256 x 8 Bipolar PROM with output latches,
60ns access

4.1 INTERFACING TO MEMORY WITH ON-CHIP LATCHES

Figure 4-1 illustrates a typical PACE system implementation of memory using memory devices that provide
on-chip latches. Use of these types of devices eliminates the need for supplying a separate system latched
address bus and permits memory to be interfaced directly to the multiplexed System TTL Address/Data

41

(44

SYSTEM TTL TIMING/CONTROL BUS

§ BITS 12-15 § __BITS08-11 § BITS 04-07 %
N.__po3 Voo l2z + N ooz 1[3 Voo [22_+8V N-_cos [N
\ A3 c N N Vee N
N__D0z_2|,, RAM A % po2 2|,, RAM a4f21 D04 \ po2 2| 5 RaM \
__0_01_1 a1 WE \ D01_3| A4 we [20_BODS \ Do1_3},, WE §
__ o & § 000_4| 0 CE § Doo_af, o = §
N—-205 5} 16 oE N 295 5}as [e]3 N2 S5 0E §
___DOG 8las LATCHS § D08 6],g LATCH® § D06 6las | aTcH* §
___QQZ_J_ A7 Do4 § 007 75y g 0% ‘%m A7 Do4 N
N Blono 3 DI4[I5 & N 8l GnD Di4 N leno 8 bu \
N4-o1z_o|p; 2 posfia n1a NL oo oo £ oo § s 9lpiy 2 §
% - w0l ¥ o § o190 = o3 § T AR %?3 \
§ Hoi2 Doz |12 R13 § W12 D02 § DI2 D02 §
\ ([\ \ | \
N\ \ N \
.\ T R NN \\\\\\\\\\ NN \\\\\\\\\\\k\\\ QONNNNNN \\\ NEREEE NN RN \ NN \\ \\\\\\\\\
\\\ \ SYSTEM TTL ADDRESS/DATA BUS \ §
NCE (To CE Inputs) § § §
\ o nputs, \ N \
N N BITS 0815 N N BITS 00-07
m ADDRESS § ROM § § ROM
N DECODING N oo 1., vo oy N N oo 1) Vee
N ¢ N N
ST \\\\ (oo Nt i \ YT A a7z 0oz N N—cer 2, A7
PACE \ % o § poz_3,, ael18_ D06 % §m 2 6|18
BUFFERED § § D03 44,3 A5l § m A3 a5z
MODULE N N2 Slaq eefe £ N— m< Al El* -
§ N2 elo iarcwefts Baos N 1 N 0w 4 LATCH*
(See Figure 3-6) N \Q 009 75, o psfd-BIS § § g; L]
. % o0 8l & iz D1 ‘&\ %.m b3 § o7
§ on 9y, & pgfiz—D1z N \m s B s
Y § J__Q anp & psfll--D12 % § J_J Gwo B D5
N = N || N =
LATCHED (See Figure
ADDRESS 3-12)
COMPARE
El*
BIDS
NBADS BADS

>

NS10797

Figure 4-1. Typical Implementation of Memory With On-chip Latches

Bus. Since there are subtle differences in the ways that RAM and ROM are interfaced to PACE, each inter-
face is discussed separately in the two sections that follow.

4.1.1 A Typical Interface to RAM With On-Chip Latches

The RAM devices in the upper portion of figure 4-1 are MM 5269 static MOS RAMs which provide 256-by-4
bits of read/write memory. The MM5269 contains on-chip address latches and a chip-enable latch to simplify
interfacing to the multiplexed address/data bus.

Four control inputs are provided on each device: CE* (Chip Enable), LATCH, WE (Write Enable), and OE
(Output Enable). The LATCH Signal causes the inputs to the RAM address pins (AD00-ADO7) to be latched
into an internal address register on the RAM to select one of the 256 4-bit words within the RAM. At the
same time the address bits are latched, the Chip Enable Input (CE*) is latched into an internal register to
prepare the device fora memory read or memory write cycle. The memory read and write cycles are selected
by the state of the OQutput Enable (OE) and Write Enable (WE) signals respectively.

The buffered PACE Address Data Strobe (NBADS) signal can be used as the LATCH input to RAM, and an
address bit or an output from an address decoder can be used as the input to the Chip Enable (CE*) pin of
each RAM. For example, to position RAM in address space X'FF00-X'FFFF, the address decoder depicted
in figure 4-1 would produce the NCE signal when address bits 8 through 15 were all high (logic 1). Fewer
bits could be used if system address space is not fully utilized; in a simple system it might be sufficient to
merely use address bit 15 as the enabling signal. (A detailed discussion of address decoding is provided in
section 3.7.)

The buffered PACE Input Data Strobe (BIDS) signal can be connected to the Output Enable (OE) input to
the RAMs to initiate a memory read cycle when PACE is performing a data-input operation. Similarly, the
buffered Output Data Strobe (BODS) signal from PACE can be used to initiate a memory write cycle by
connecting BODS to the Write Enable (WE) input to the RAMs.

Each MM5269 device provides 256 4-bit words. Thus, four devices must be connected in parallel to obtain a
16-bit word. This is accomplished in figure 4-1 by connecting bits DO-D3 from the System TTL Address/
Data Bus to the rightmost RAM, D4-D7 to the next RAM, and so on until D15 has been connected to the
most significant data lines of the leftmost RAM. Note that these RAM devices provide separate pins for data
input and data output lines. In figure 4-1 the input and output pins are merely connected together to the
appropriate bit of the System TTL Address/Data Bus. This can be done because the data output lines from
each RAM are placed in the high-impedance state except when data is actually being output. However, in
some systems, where longsignal lines are required or many devices are attached to the System TTL Address/
Data Bus, it may be necessary to provide additional output buffering.

4.1.2 A Typical Interface to ROM With On-Chip Latches

The read-only-memory (ROM) devices shown in figure 4-1 are DM87S202 bipolar ROMs that are organized
in a 256 word by 8-bit configuration. The on-chip latches provided by these devices are output data latches
instead of address latches as were supplied by RAM in the preceding section. The high-speed of this ROM
allows data to be accessed and presented to the ROM output data latches within the time interval that the
PACE NADS signal is true. The data can then be gated out onto the address/data bus under control of the
PACE 1DS signal. Thus, the on-chip data latches have the same effect on interfacing as the address latches
provided by RAM — they eliminate the need for providing a separate system latched-address bus.

4-3

The two control inputs to the DM875202 are LATCH* and EI*. The NBADS signal from the PACE Buffered
CPU Module is inverted (becoming BADS) and connected to LATCH*. When BADS is true (high), the con-
tents of the addressed memory word fall through the ROM data latches to an output buffer. When BADS
goes low, the data is latched and the address inputs may be changed without affecting the latched data.

The output buffers are controlled by the EI* signal. While the EI* signal is high, the buffer outputs are in a
TRI-STATE® (high-impedance mode). When EI* goes low, the contents of the data latches are gated out
onto the system bus. In figure 4-1, the BIDS (Buffered Input Data Strobe) Signal is ANDed with a decoded
address signal (ADDRESS COMPARE) to generate the EI* signal. Thus, the selected word will be placed on
the System TTL Address/Data Bus when PACE is expecting input data.

Bits O through 7 from the Address/Data Bus are connected to the address inputs of the ROM devices. Since
no chip select input is required, the devices will continuously be addressed, and will access and latch data
each time the BADS Signal is applied to LATCH*. The data will not be gated onto the system address/data
bus, however, unless EI* is generated by the combination of BIDS and a decoded address signal.

NOTE

The address decoding mechanism required with these ROM
devices is slightly different from what is necessary with the
MM5269 RAMs discussed in the preceding section. The Chip
Enable (CE*) Input to RAM is latched internally by the
RAM and thus the decoded address signal need not be latched
and could simply consist of an address bit or an output from
an AND gate. With the DM87S202 devices, on the other hand,
the decoded address signal must be present at the same time
as BIDS. Therefore, the address decoder used must provide a
latched output. For a detailed discussion of various address
decoding methods, refer to section 3.7.

4.2 INTERFACING TO MEMORY WITHOUT ON-CHIP LATCHES

Figure 4-2 illustrates a typical PACE system implementation of memory using devices that do not provide
on-chip latches. When devices of this type are used, the system must include a latched address bus to pro-
vide stable presentation of address information to the memory devices throughout memory read/write
operations.

Implementation of a 16-bit latched address bus is described in 3.6. In some systems, however, it may not be
necessary to provide a full 16-bit address bus. For example, in the system depicted in figure 4-2. the maxi-
mum number of bits required to address a memory device is 9 (A0-A8 for the MM5214 ROM). Thus, two
hex latches could be used to provide a 12-bit address bus: bits 0-7 would be used to address RAM; bits 0-8
would be used to address ROM; and three bits (for example, 9, 10, and 11 or 9, 10, and 15) would be avail-
able for address decoding to generate the chip-select signals for the memory devices and other system com-
ponents. (Refer to 3.7 for a detailed discussion of address decoding techniques.)

Once the latched address bus is provided for the memory devices in figure 4-2, the remainder of the PACE/
memory interface is straightforward. The sections that follow (4.2.1 and 4.2.2) briefly describe the inter-
faces to the memory devices shown in figure 4-2; these interfaces are typical and the methods described
apply generally to other memory devices without on-chip latches.

S+

TTL TIMING/CONTROL BUS

TTL ADDRESS BU

BITS 08-11
1 +5V
3 U3 A3 Vee
A2 21p, RAM 4 ;‘) :;005 2: §A2 RAM - ale1 as
Al 3 A1 R/W| A1 R/wik0_NBOD
a0_alno ceife ncer | FYIEI S cEihe_nce1 |
AB AB op|18_BODS 6 B B
a6 8lng _ ceaoflz cE2 6
AZ 14a7 E DO4HS
8ovo Z 14 15 o015
D12 9154 D03 ‘;
Abo1 pizp! g:;
DI2 pozH2

//////////////////l

\
AT \\\\\&\\\
TTL DATA BUS

\ N\

N N

N N

\ %

TTL TIMING/ N N

CONTROL BUS \\\ BITS 08-15 % BITS 00-07
1 24 N 1
N— —ne ncf2— N ~Une NG
% ADDRESS nes B —Yne ROM 23 =12y § —Zine ROM o
§ DECODING o ——3es 7f22 D18 § e Pl
N ao_s|' S Bob0 b1z N P o 86
N A0 <« BS \ A0 ¢ BS
NN Al 8 by 19 012 N Al 6 s
N AN X a8 e ou N wlh B
N FEIEY sz A3 8l 2 g
A4 o} g1J16_DO09 § as 9l o 81
PACE y A6 1015 sofi—0%8 AB B0
BUFFERED FERET] ot hot PEIRT] s po{ TR
CPU \ +6V 12 15V 12 13 A7
wore (MMM e o A7
{See Figure 3-8) ;Z‘}:%ZSESS/ ADDRESS

LATCHES

TTL ADDRESS BUS F:

R

O00OR0000N

NS§10798

Figure 4-2. Typical Implementation of Memory Without On-chip Latches

4.2.1 Interfacing to MM2101 RAM

The MM2101 Random Access Memory (RAM) devices provide 256-by-4 bits of read/write data storage.
Four control inputs (R/W, CEl, CE2, and OD) are used to control operation of the RAM. The CEl and
CE2 inputs are chip enable inputs and are generated by the address decoding logic (NCE1 and CE?2 respec-
tively) in figure 4-2. The R/W Signal must be a high (logic 1) for read operations and low (logic 0) for write
operations. In figure 4-2, the Buffered Output Data Strobe (BODS) signal is inverted (becoming NBODS)
and used as the R/W input. This technique supplies a high to R/W during read operations, and a low-going
pulse in the center of valid data during write operations.

The OD signal controls the data output lines from RAM: when OD is high the DOy,-D0; output data lines
are in the high-impedance mode; when OD is low the contents of the addressed memory word are gated out
onto the system data bus. In figure 4-2, the PACE Buffered Output Data Strobe (BODS) signal is used as
the OD input. BODS is high during write (PACE data output) operations and thus causes the RAM data
output lines to be placed in the high-impedance mode. This allows the RAM data input and data output
pins to be connected together to the system data bus. BODS is low at all other times and thus allows data
addressed during read operations to be gated out to the system data bus.

4.2.2 Interfacing to MM5214 ROM

The MM5214 ROM provides 512-by-8 bits or read-only-memory. The Chip Select (CS) input is the only
control signal required with this device and, in figure 4-2, CS is generated by a signal (NCS) from the
address decoding logic. The contents of the addressed word are gated onto the system data bus and then are
captured by PACE during a data input operation.

(SEE TABLE)
NBADS 1

PRE A B C D E
EXTEND
BCLKT ————————f CLK DM7496 "3 ee—
{from STE) {to PACE)
SER IN
PRESET INPUTS || NUMBER OF _L
A B C D [lexTenpcycLes =
o o o 0 0
o o o 1 1
o 0o 1 1 2
o 1 1 1 3
LI B B | 4
4 5 6 7 8 E E 1 2 3

NBADS | l

EXTEND i 1 |

Figure 4-3. Circuit and Timing Diagram for Up to Four Clock Cycle Extend

4.3 INTERFACING WITH SLOW MEMORIES

With system timing based on a crystal frequency of 2.667 megahertz, the resulting PACE clock period is
750 nanoseconds. A PACE data input/output operation allows approximately two clock periods for data
access; thus, no special timing considerations are required if memory access time is less than approximately
1.5 microseconds.

All of the memory devices discussed thus far in this chapter have access times in the range of 1 microsecond
or less. If slower memory devices are used or if system bus loading factors make timing marginal, the EX-
TEND input to PACE can be used to lengthen the input/output cycle to accommodate the increased access
time.

A detailed description of the EXTEND signal and the required timing relationships during input/output
operations are provided in 2.4.3. A circuit that can be used to generate the EXTEND signal within the re-
quired parameters is shown in figure 4-3.

NOTE

If the EXTEND signal is not used, it should be tied to ground.

The EXTEND signal increases the input/output cycle time by multiples of the clock period. In figure 44 a
DM7496 5-bit Shift Register is used to provide an extend of up to four clock cycles. The number of extra
cycles is determined by the level on the preset inputs, as shown in the accompanying table.

The circuit in figure 4-3 would result in an EXTEND during every input/output cycle. In some systems, for
example a system that contains a mix of slow and fast memory, it may not be necessary to extend every
input/output cycle. In such a system, it may be advantageous to perform address decoding so that the pre-
set (PRE) input to the DM7496 shown in figure 4-3 is generated only when slow memory is addressed. Thus,
the EXTEND signal would be generated only when required and the system could operate at maximum
speed with other devices. ‘

47

Chapter S

PERIPHERAL INTERFACING TECHNIQUES

5.0 INTRODUCTION

While, as mentioned in preceding chapters, PACE instructions do not differentiate between memory and
peripheral devices, the characteristics of peripheral device interfaces and the methods of transferring infor-
mation between PACE and peripheral devices are much more varied than those associated with memory.
Among the common methods used for peripheral data transfers are:

16-bit and/or 8-bit parallel data transfers
Bit-serial data transfers
Program-controlled data transfers
Interrupt-driven or -initiated data transfers
Direct-memory-access data transfers

In addition to the wide variety of methods commonly utilized to transfer data between central processing
units and peripherals, special controls of enabling signals are frequently required to implement efficient
peripheral interfaces. This chapter describes techniques for utilizing the resources of PACE to assist in the
design of efficient interfaces for a variety of peripheral devices.

5.1 PERIPHERAL INSTRUCTIONS AND ADDRESSING

Data transfers between PACE and other system devices occur during each instruction access and during data
accesses required by memory-reference instructions. Since all data transfers, whether with memory or pe-
ripheral devices, occur through execution of memory-reference instructions, the class of instructions used
by PACE to effect data transfers could properly be called the input/output reference class. In contrast,
many central processing units have one instruction type (input/output class) for communicating with
peripherals and another type (memory-reference class) for communicating with memory. The approach
used by PACE is more powerful because a wider variety of instructions (the entire memory-reference class)
is available for communications with peripherals. Thus, for example, the Decrement and Skip if Zero
Instruction (DSZ) can be used to decrement a peripheral device register, or the Skip if AND is Zero Instruc-
tion (SKAZ) can be used to test the contents of a peripheral device status register. For simple data transfers,
the Load (LD) and Store (ST) Instructions can be used to accomplish the transfer of 16-bit or 8-bit parallel
data words.

No special addressing considerations must be observed with peripheral data transfers: the user must merely
ensure that specific address spaces are allocated for peripherals as described in 3.6. All of the addressing
modes available for memory-reference instructions (see 2.9.2) can also be used with peripherals.

5.2 INPUT/OUTPUT PORTS

The physical characteristics of peripheral devices and their relatively slow response time typically require
that data that is to be input from or output to peripherals be captured by an intermediate system element.
Such elements, usually cailed input/output ports, thus hold the data to be transferred until either PACE or
the peripheral device has utilized the data.

5-1

A specially designed PACE support chip, the Microprocessor Interface Latch Element (MILE) is available to
simplify implementation of input/output ports. The MILE (DP8301) is a bidirectional 8-bit latch with TRI-
STATE® output buffers, device selection logic, and status flags for “handshake” control or interrupt gener-
ation. Figure 5-1 illustrates the internal organization of the MILE.

The Device Selection and Strobe Control Logic allows the MILE to be used as either a bidirectional or uni-
directional data latch. The truth table in figure 5-1 summarizes the modes that are available. Note that for
each data input/output pin, input controls override the output controls but that input and output of
opposite sides may occur simultaneously. In addition, both outputs (D0-D7 and PO-P7) may be active
simultaneously, but not both inputs. In typical operation, however, only one mode is enabled at a time.
Refer to the DP8301 data sheet for detailed electrical and timing specifications for the MILE.

The MILE supplies one status bit for each direction of transfer to indicate the status of the data in the Data
Register. The STD status bit indicates that bus data is in the Data Register to be read by the peripheral. The
STP status bit indicates that peripheral data is in the Data Register to be read by the system bus. These sig-
nals are active high and are reset by reading data out of the Data Register (from the opposite side). Thus,
these status bits can be used for “handshake” input/output or for interrupt-driven input/output.

NOTE

Refer to 5.4 for additional details on ‘‘handshake” input/
output, and 5.8 for a discussion of interrupt-driven input/

output.
i D7 P7 |
I 1
je—2 P
[D
DATA
D4 | P4
reTEM et RECSTER I > | rerenenar
BUS je—DB2 5] TRISTATE | P3| [DATA
BUFFERS
02 —F2
| D1 <« >
fe—2 5

[| |
| v l

DN S —
PERIPHERAL

DIN2 [POUT__| [DATA
|—" SE[I).EE\(,:!I'CI(E)N CONTROLS
DATA
BUS DouT] AND | MILE TRUTH TABLE
CONTROLS — STROBE
| Doutz CONTROLS | CONTROL IRl |-
-l
= SIGNALS —{Z|{2Z{. .21l 2| 2
—s | wooe HEEHERE
| | SYSTEM DATA BUS -~ DATAREGISTER | 1] 0] 0| x| x|x|x
0] x| 0] 1] 0[X[X
I | DATA REGISTER - SYSTEMDATABUS [X[1]0] 1] 0] X|X
STATUS O X X X X]1|X
| FLAGS | PERIPHERAL DATA ~ DATA REGISTER [X| 1] X| X| X| 1] X
XX X[X[1| X
X[X[X[X[X]0]1
| ‘ L] DATA REGISTER - PERIPHERAL DATA [1ototototots
STD STP
|_ ___sm_ s NOTE: X = “DON'T CARE"
NS10800

Figure 5-1. MILE Block Diagram
5-2

Figure 5-2 shows a typical system implementation of two MILEs as a bidirectional 16-bit peripheral input/
output port and a single MILE as an 8-bit peripheral output port. PACE data are transferred to/from the
MILE on the System TTL Address/Data Bus. The Chip Select (CS) inputs to the MILEs must be low (logic
0) to enable transfer of data to and from MILE via the System TTL Address/Data bus. The address decod-
ing logic depicted in figure 5-2 decodes the contents of the Address/Data Bus when NBADS is low and gen-
erates a chip select signal for either the upper two MILEs (NCS1) or the lower MILE (NCS2).

NOTE

The Chip Select Signals must remain low for the duration of
the data transfer operation. The address decoding logic must
therefore provide latched outputs so that NCS1 or NCS2 are
valid when BIDS or BODS occurs. Refer to 3.7 for a detailed

discussion of address decoding logic.

The BIDS and BODS signals from the System TTL Timing/Control Bus are used as inputs to DOUT1 and
DINI, respectively, to provide the required data directional control signals for the two MILEs used as bi-
directional input/output ports.

The MILE at the lower righthand corner of figure 5-2 is shown connected for output data transfers only and
BODS is used as the input to DIN1. For system operation with this 8-bit input/output port, user-generated
software may use the Set Flag (SFLG) Instruction to set the PACE BYTE Flag. Thus, PACE ignores the
high-order bits (D08-D15) and operates only on the low-order bits (DO0-D07). The following section dis-
cusses system considerations when interfacing to 8-bit peripherals.

5.3 SPECIAL CONSIDERATIONS WHEN INTERFACING 8-BIT PERIPHERALS

A system using an 8-bit configuration for peripheral or memory addressing usually contains a 16-bit instruc-
tion memory (typically ROM), an 8-bit data memory (RAM), and 8-bit peripheral Device Interface Elements
(ILE). The instruction memory is 16-bits wide because PACE operation always is controlled by 16-bit
instructions regardless of the data length serviced. The hardware design incorporated into the PACE con-
cept permits the microprocessor ALU, registers and Stack to manipulate 16-bit memory addresses and in-
structions while, at the same time, 8-bit data is manipulated in the 8-bit data mode. Thus, the PACE concept
provides greater execution speeds and more powerful instructions for either 8-bit or 16-bit operations than
can be achieved with conventional 8-bit microprocessors.

Selection of the 8-bit data-handling capability is accomplished by setting the microprocessor BYTE Status
Flag high. When the BYTE Status Flag is set high, PACE execution of Shift and Rotate Instructions is mod-
ified and the operation of some of the status flags is changed. In systems servicing both 8-bit and 16-bit
data, the user-generated software can incorporate the Set Flag and Pulse Flag Instructions to change the
state of the BYTE Status Flag to accommodate the interfaced data length.

5.3.1 Hardware Considerations

Eight-bit peripheral interfacing is described from the hardware viewpoint, along with the corresponding use
of PACE control signals, by figure 5-2 and the associatcd text. The main hardware consideration for 8-bii

memory or peripheral interfacing is to ascertain that the eight data lines from the peripheral interface or

ADDRESS
DECODING

PACE
BUFFERED
CPU
MODULE
(SEE FIGURE 3-6)

SYSTEM TTL
ADDRESS/DATA BUS

SYSTEM TTL
TIMING/CONTROL BUS

L Py +5.V
—j CLR Vee
2 DO po {23 -
3 D1 P1 ~2<6—-———>
: D2 r2f o
23 p3 |4 -
Sl oa pa > -
7 MILE 22
P5 >
5|°° Dpsam B
D6 P >
2 D7 P7 -}
DIN1 Pin | &
DINZ pouT ['&-
DOUT1 stoji7 -
3 bouT2 sTP 16
—=Is
GND cs
PERIPHERAL
#1
{TO JUMP COND. sTP1 -npu'l;gg?ﬁ
‘
OR INTERRUPT) €———2 1~ DEVICE
== . l28+5v
Cim 128 45
Yeoly
Do pof< >
D1 Py >
D2 2|2 >
24
D3 P3 |- >
23
D4 Paf= »
MILE 22 -
PS5 [>
D5 prg3o vl
D6 - >
20
D7 P7 | -
19
18
17
16
15
28 +5V
27 .
D1 p1]
b2 2]
P
D3 P PERIPHERAL
D4 Pa »
MILE 2 #2
D5 ppa3ol PS5 . 8-BIT
21 . OUTPUT
D6 i DEVICE
D7] oe——
DIN1 PIN %3——
DIN2 POUT | €
DOUT1 stoZ >
pouTz sTP :5
GND cs
(TO JUMP COND. STP2
OR INTERRUPT) NS10801

Figure 5-2. Typical System Implementation of MILEs

54

memory are connected to the eight low-order PACE data lines (D00-D07). However, aside from hardware
and control signals, some special considerations should be observed for 8-bit memory or peripheral interfac-
ing as regards memory addressing, the PACE status flags, and some of the PACE instructions. These consid-
erations are described in thé paragraphs that follow.

5.3.2 Software Considerations

Both the indexed and base-page memory addressing modes require consideration when 8-bit data is processed.
Accessing both 16-bit (program) and 8-bit (data) words by using the base-page mode may be desirable. Since
two different memories (ROM and RAM) are used, splitting the base page between the two memories may
also be desirable. Chapter 4 provides an example of how base-page splitting can be easily accomplished.

For indexed addressing, Accumulators AC2 and AC3 are used as 16-bit memory pointers. If Accumulators
AC?2 and AC3 are loaded from the 8-bit memory, the high-order 8 bits in the accumulators can be set equal
to the sign of the low-order 8 bits by using the Load With Sign Extended Instruction (LSEX). Thus, a 16-bit
twos-complement number results.

The Load With Sign Extended Instruction also can be used to set the state of the eight high-order data bits
during 8-bit data transfers from peripherals. Alternatively, user-generated software can use Shift Instructions
to set the eight high-order data bits to zero. The Shift and Rotate Instruction group (SHL, SHR, ROL,
ROR) operates on the low-order 8 bits only and sets the high-order 8 bits to zero when the BYTE Status
Flag is set for the 8-bit data-handling mode.

The Immediate Instructions (LI, CAI, AISZ) provide 16-bit, twos-complement data inputs. When working
with 8-bit data, the high-order 8 bits usually can be ignored. If required, the high-order 8 bits can be cleared
by using a Shift Instruction.

The Branch and Skip Instructions are modified to account for the 8-bit data length. Thus, the REQO and
NREQO conditions are affected only by the low-order 8 bits. The PSIGN and NSIGN Signals indicate the
sign of the low-order 8 bits. The Skip Instructions (SKNE, SKG, SKAZ, ISZ, DSZ) test only the low-order
8 bits. Thus, if a Skip Instruction compares 8-bit accumulator data with a 16-bit program memory word,
the contents of the high-order 8 bits of both words are ignored. The Add Immediate, Skip if Zero Instruction
(AISZ) is the only instruction that tests the entire 16-bit result when 8-bit data handling is selected. There-
fore, the AISZ Instruction can be used to increment the index accumulators (AC2, AC3) without skipping
every time the low-order 8 bits are zero. Consequently, the sign of 8-bit numbers must be extended by
using the Load With Sign Extended Instruction to properly detect zero when using the AISZ Instruction for
8-bit data.

Since the Overflow and Carry Flags are modified by arithmetic instructions, the eight low-order data bits
determine the state of the Overflow and Carry Flags when the 8-bit data length is selected. That is, the
Carry Flag is set if a carry is generated by the low-order 8 bits and the Overflow Flag is set when an arith-
metic overflow occurs in the low-order 8 bits.

The Link Flag is affected by Shift and Rotate Instructions. The Link Flag is set by data shifted out of the
low-order 8 bits when the 8-bit data length is selected.

5-5

Working with 8-bit data and 16-bit instructions sometimes necessitates performing arithmetic operations by
using a 16-bit operand from the program memory and an 8-bit operand from the data memory. If the result
is to be treated as 8-bit data, no special considerations are required. However, if the result is to be treated as
16-bit data, the sign of the 8-bit operand first must be extended by using the Load With Sign Extended In-
struction. Also, the carry, overflow, and conditional branch signals that are only a function of the low-order
8 bits should not be used. Alternatively, the BYTE Flag temporarily may be set low for 16-bit data han-
dling to accommodate the signals changed by the 8-bit data-handling mode.

The previously mentioned factors make the use of PACE in 8-bit applications convenient while still provid-
ing the advantages of a 16-bit instruction set. (Data lengths other than 8 bits or 16 bits also may be used
when special external hardware is provided.)

5.4 INTERFACING WITH SLOW PERIPHERALS

For the purposes of this discussion, a ‘slow’ peripheral is defined as one that cannot capture data from or
present data to the system data bus within the constraints of the PACE input/output cycle time. (Refer to
2.4 for a description of PACE input/output operations.) The method of interfacing to slow peripherals
depends on the peripheral device characteristics, system demands, and, finally, exactly how slow the
peripheral is.

If the peripheral data transfer time exceeds only slightly the timing constraints of PACE, the PACE Extend
Signal input can be used to lengthen the input/output cycle. The Extend Signal is described in 2.4.3, and an
example of its use with slow memory devices is provided in 4.3. The description of Extend usage with
memory devices applies equally to peripheral device usage of this signal.

If the peripheral data transfer is a great deal slower than the PACE input/output cycle time, the use of
Extend may not be practical and other approaches should be evaluated.

One alternate method is to use some type of test-and-branch program-controlled input/output. In this
method, PACE would output data to the device (or to some intermediate element such as an input/output
port). When the device has captured and/or utilized the data and is able to accept additional data, it could
then use a jump-condition input to PACE to indicate its readiness. This method requires that PACE (under
control of the user’s program) test the jump-condition input (using a Branch-On-Condition Instruction) to
determine when additional data can be transferred. A similar scheme would be used for data input.

NOTE

The status outputs of the MILE described in 5.2 can be used
as inputs to the PACE jump-condition or interrupt-request
inputs.

One potential disadvantage of the program-controlled method of input/output just described is that it may
require dedication of PACE for an unacceptable amount of time to service the peripheral data transfer. For
applications where this is unacceptable, interrupt-driven input/output or direct-memory-access techniques
may be more advantageous.

55 PERIPHERAL CONTROL

Communications between PACE and peripheral devices typically require, in addition to transferring data
words, that control information be sent to the peripheral to establish set-up conditions and operating modes,
to initiate and terminate mechanical operations, and so on. While predefined sequences of data words can
be used to accomplish these control functions, a variety of other methods can also be used to implement
efficient peripheral interfaces.

For example, not all 16 bits of the address word (sent out at the beginning of each input/output operation)
are usually required to select a peripheral device. Thus, it may be advantageous to assign part of the address

i i tho 2 lanat aignificant kisc
word as a command or control field. Figure 5-3 shows an address word where the 3 least significant bits

have been defined as an order code for a peripheral. Typical order codes that might be used are shown in
table 5-1.

) 3oL 1 1812, 0
ORDER

PERIPHERAL ADDRESS CODE
NS10802

Figure 5-3. Using Address Word for Control

Table 5-1. Possible Order Codes for a Cassette or Tape Drive

ORDER CODE
BITS DEFINITION
2 1 0

Input Character

Output Character

Reset Device

Backspace 1 Record

Advance to Start of TEXT CHAR
Input Device Status

Loop Tape

Tesi Read Head

- = a0 2 0 0 O O
- a0 0O = -0 0
- O O O = 0 = O

5-7

Another obvious method of sending control information to peripheral devices is to use the PACE general-
purpose control flag outputs (F11-F14). This method may be preferable in some systems since it avoids the
need for address decoding and reduces the number of interface lines. The control flag outputs can be set,
reset, or pulsed using Set Flag and Pulse Flag Instructions.

NOTE

Refer to 5.7 for a discussion of methods for expanding the
number of control flag outputs beyond the four that are
directly available from PACE.

5.6 SERIAL INPUT/OUTPUT

Serial interfaces to PACE can be provided by using a single bit of the address/data bus for the interface.
Another method, which may be preferable for use in systems containing only a few peripherals, is to use
jump condition (JC13,JC14, or JC15) or interrupt inputs (NIR2 through NIRS) for serial input and control
flag outputs (F11 through F14) for serial output. This method avoids the need for address decoding and re-
duces the number of interface lines and is particularly well-suited for asynchronous serial devices such as a
teletypewriter, since only one transmit and one receive line are involved. Use of interrupts is described in
5.8;use of jump condition inputs and control flag outputs are described briefly in the paragraph that follows.

A simple teletypewriter serial interface can be implemented using one jump-condition input and one control-
flag output. Figure 54 shows the circuit required to use the Buffered Flag 11 (BF11) output from PACE
(via 2 BTE) to output serial data to a 20-milliampere current-loop interface and the circuitry that could be
used to accept input data from a teletypewriter via the Jump Condition 13 (JC13) input to PACE. The re-
mainder of the serial input/output is handled by a user-supplied program that would furnish the required
timing and testing operations to assure the transfer of data at the appropriate bit rate.

TELETYPE
TERMINAL STRIP PACE SYSTEM
r————"
{ |
| | BF11
{BUFFERED FLAG 11
TTY IN &) I PN 2907 | FROM BTE}
I |
| 5100 |
TTY IN (-} CF——— AW -12V
| ww l
+5V I
|
|

JC13
(PACE CPU PIN 13)

|
|
t
|

| 51092 l
TTY OUT (-} <F—MA—-12V

| %W |
L ——d Lo - —

NS10803

Figure 5-4. PACE/Teletype Interface Circuit
5-8

5.7 EXPANDING JUMP CONDITIONS AND FLAGS

Four user flags are provided by the PACE Central Processing Unit. In some cases, additional flags may be re-
quired for control purposes. The additional flags can be conveniently obtained by using a DM9334 8-bit
addressable latch. An unused address bit or combination of bits may be utilized to enable the latch; 3 bits
then can address one of eight flags and another bit can specify set or reset as illustrated in figure 5-5. A Store
Instruction (ST) may be used to output the address (data output is ignored).

In a similar manner, a multiplexer and latch can be utilized to expand the user jump conditions. The latch is
loaded from the address bus if enabled by an unused address code and seleects a multiplexer input to one of
the user jump conditions.

5.8 INTERRUPT DRIVEN INPUT/OUTPUT

The PACE interrupt system can save considerable hardware and software in applications containing several
interrupts by virtue of the on-chip priority logic and vectored branch to the interrupt routine. No external
logic circuit is required to resolve priority and jam an address vector onto the data bus as with many other
microprocessors. Also, interrupt program storage and execution time are saved, since sequential polling of
the interrupt status of all devices is not required.

WORD FORMAT FROM PACE TO FLAG EXPANSION CIRCUIT:

LN I T Y N S N | .1 1413121 10
0 1 not used s/t flag
;v_/

J-—> FLAG EXPANSION ADDRESS CODE ENABLES LATCH

FLAG EXPANSION CIRCUIT

NINIT Je]
ADS 6
BIT 15% .
BIT 14 E
BIT 3 , DM9334 : —
BIT 2
BIT A2 2
BIT:] AT !

A0 o—

NS10410

Figure 5-5. One Possible Circuit and Word Format for Obtaining Additional Flags

Interrupts are essential in applications where alarm conditions or transient conditions (such as automobile,
process, or machine tool control) must be serviced immediately. Interrupts are useful in many other systems
to eliminate the program overhead required to scan asynchronous system inputs (such as a controller for
multiple terminals or an intersection traffic light controller). '

A detailed description of how interrupts are handled internally by PACE is provided in 2.7. The para-
graphs that follow describe additional considerations that apply to application systems using the PACE
interrupt structure.

Three types of external interrupts are likely to occur in PACE applications: short-duration (pulse) interrupts,
long-duration resettable interrupts, and nonresettable interrupts. The short-duration interrupt exists for
less than the interrupt response time and may be caused by a strobe pulse from a peripheral device or the
occurrence of a high-speed transient condition. A short-duration interrupt must be latched to be recog-
nized. Interrupts longer than the clock period are latched by the PACE Interrupt Request Latches. The
Interrupt Service Routine must reset the Interrupt Request Latch by turning off the Interrupt Enable for
the level being serviced. If the Interrupt Enable is left off, interrupt request pulses cannot set the Interrupt
Request Latch.

Long-duration resettable interrupts last longer than the interrupt response time and may be reset by the
Interrupt Service Routine. An example is a buffer-full interrupt by a peripheral device. The Interrupt Service
Routine empties the buffer, removing the interrupt. A long-duration interrupt is ignored when the Interrupt
Enable Signal is low but still generates an interrupt when the Interrupt Enable Signal is set high. In servicing
long-duration interrupts, the Interrupt Request Latch must be cleared after the interrupt is reset by the
Interrupt Service Routine.

Long-duration nonresettable interrupts last longer than the interrupt response time and are not reset by the
Interrupt Service Routine. An example of a long-duration nonresettable interrupt is a photoelectric cell that
detects the presence of an item on a conveyor. The signal produced by the photoelectric cell (or some other
sensor) may last for a significant portion of a second. Setting the Interrupt Request Latch on the edge of
the interrupt is desirable and may be accomplished using a simple RC circuit or a single-shot to generate a
pulse on the edge of the interrupt.

The interrupt response time for PACE is equal to the time to finish the current instruction at the time of
the interrupt, plus the time to access the first instruction of the Interrupt Service Routine.

NOTE

Refer to the PACE Programming and Assembly Language
Manual for examples of interrupt service routines.

59 EXPANDING THE INTERRUPT SYSTEM

In some applications, expansion of the user interrupts by providing several interrupts on a single input may
be desirable. Several interrupts can be provided on a single input by using open-collector gates for a wired-
OR input and polling all the devices on a given level to discover the origin of the interupt. However, in some
applications, the polling technique may take excessive time. In such cases, use of the DM9318 Priority
Encoder is recommended to encode the number of the highest-priority interrupting device. A single instruc-
tion in the Interrupt Service Routine then can be used to read the number of the interrupting device over

5-10

the data bus. The use of the DM9318 Priority Encoder is shown in figure 5-6. The use of a DM8131 Com-
parator with latched output to detect the appropriate peripheral address also is illustrated in figure 5-6.

:::IZ; , s b MR2340RS | 1opace
— —qs
1 95
I q4 N\ ENCODED
! O3 bDMI3IB A2 O—1 TR 1 |NTERRUPT
= Q2 Allo— STATE® L5 707000
nintol 4! AD o——| BUFFERS] paTABUS
0 EN
—L—-o El EOo— A
iDs *
* ‘
ADDRESS SELECT
-Of j
HARDWIRED l
DEVICE o
ADDRESS T 8 DATA BUS ADDRESS FIELD
— T 1 [—
{ |
| DM8131 :
I I
STROBE
NADS
NS10477

Figure 5-6. Use of DM9318 Priority Encoder and DM8131 Comparator for Interrupt Expansion and Detection

5-11

Appendix A

PACE INSTRUCTION RELATED SUMMARIES

A.1 INTRODUCTION

Table A-1 defines the notation and symbols used for the symbolic representation of each instructon con-
tained in table A-2, the Detailed Instruction Summary. The notations in table A-1 are presented in alpha-
betical order and, then, the symbols are listed. Upper-case mnemonics refer to fields in the instruction word.
Lower-case mnemonics refer to the numerical value of the corresponding fields. In cases where both upper-
case and lower-case mnemonics are composed of the same letters, only the lower-case mnemonic is given.
The use of lower-case notation designates variables.

The formulas in table A-2 for computing the execution times of instructions are presented in terms of
machine (microinstruction) cycles (M) and input/output data-transfer Cycle Extends (Eg for read and Ey
for write). Each machine cycle (M) consists of four clock periods (ty). The Cycle Extend (ER’ Ey) factors
need be included only if operating with slow memory or peripheral devices that require the use of the
PACE EXTEND Signal (refer to sections 2.4.3, 4.3, and 5.4). The following example shows the method to
be used for computing the execution times of instructions.

Example:

The formula (listed in table A-2) for the execution time of a RADD Instruction is 4M + Eg . If the
clock period is 750 nanoseconds and no Read Cycle Extend is required, then:

M =4 (0.75 psec) = 3 usec
ER =0

therefore: 4M + Eg = 4 (3 psec) + 0 = 12 usec. Thus, under the hypothetical clock cycle and Read
Cycle Extend times used, the RADD Instruction requires 12 microseconds for execution.

Following the detailed instruction summary (table A-2, an Op Code Index of Instructions is provided in
table A-3. In this table, the instructions are listed in alphanumeric sequence (by hexadecimal) according to
the value of each instruction’s opcode. This index is useful when hand-coding and debugging programs.

Table A-1. Notations/Symbols Used in Instruction Descriptions

Notation/ Meaning

Symbol

ACr Denotes specific working accumulator (ACO, AC1, AC2, or AC3),
where r is number of accumulator referenced in instruction.

B Denotes instruction execution affected by state of Byte Flag.

cc Denotes 4-bit condition code value for conditional branch
instructions.

CRY Indicates Carry Flag is set if carry exists due to instruction (either
addition or subtraction) or reset if no carry exists.

disp Stands for displacement value and represents operand in non-
memory-reference instruction or address field in memory-reference
instruction. Disp is 8-bit, signed twos-complement number except
when base page is referenced; in latter case, disp is unsigned if
BPS=0.

dr Denotes number of destination working accumulator specified in
instruction-word field. Working accumulator is ACO, AC1, AC2,
or AC3.

EA Denotes effective address specified by instructions directly, indi-
rectly, or by indexing. Effectiveraddress contents are used during
execution of instruction.

fc Denotes number of referenced flag.

FR Denotes Status and Control Flags Register.

IEN Denotes Interrupt Enable Flag.

L Denotes inclusion of 1-bit Link Flag (LINK) in shift operations.

n Unsigned number indicates number of bit positions to be shifted in Shift and
Rotate Instructions.

OVF Indicates Overflow Flag is set if overflow exists due to instruction (either addition or subtraction) or is
reset if no overflow exists. Overflow occurs if signs of operands are alike and sign of result is different
from operands.

PC Denotes Program Counter. During address formation, PC is incremented by 1 to contain address 1 greater
than that of instruction being executed.

r Denotes number of working accumulator specified in instruction-word field. Working accumulator is ACO,
AC1, AC2, or AC3.

STK Denotes top word of 10-word Last-In/First-Out-Stack.

sr Denotes number of source working accumulator specified in instruction-word field. Working accumulator

is ACU, AC1, ACZ, or AC3.

A-2

Table A-1. Notations/Symbols Used in Instruction Descriptions (Concluded)

Notation/

Symbol Meaning

xr When not zero, xr value designates number of accumulator to be used in indexed and relative-memory
addressing modes. When zero, base-page addressing is indicated.

() Denotes contents of item within parentheses. (ACr) is read as contents of ACr. (EA) is read as contents of EA.

[1 Denotes results of.

~ Indicates logical complement (ones complement) of value on right-hand side of ~.

-> Means replace.

« Means /s replaced by.

@ Appearing in operand field of instruction, denotes indirect addressing.

+10 Modulo 10 addition.

A Denotes AND operation.
Denotes OR operation.

v Denotes EXCLUSIVE OR operation.

v

Table A-2. PACE Instruction Summary

Instruction/Mnemonic

Operation/Description

Assembler Format

Execution Time/Cycles (M)

BRANCH INSTRUCTIONS

Branch-On Condition BOC
15 12 |1

L1 L 1% 3 ®
0100 cc disp
Jump JMP
15I | T | 0 09108 07(1 11 1 ID0
0001 1 0 |xr disp
Jump Indirect JMP@
15 10|09 08| 07 00

[T] I I Y I
100 1 1 0 |xr disp
Jump to Subroutine JSR
1l5I | | 10 09|08 07l L1 11 I00
00 0 1 0 1 |xr disp
Jump to Subroutine Indirect JSR@
15[| I O . | 10 09|08 07! | I | LOO
100 1 0 1t |xr disp
Return from Subroutine RTS
15 7

111 1 11 080 1 I IQ0
1000 00O0O disp

If cc true, (PC)<«(PC) + disp, B

16 possible condition codes (cc) exist. Condition codes are
listed in table B-3. If condition for branching designated by
cc is true, value of disp (sign extended from bit 7 through
bit 15) is added to PC and sum is stored in PC.

(PC)—EA

Effective address EA replaces PC contents. Next instruc-
tion is fetched from location designated by new contents
of PC.

(PC)—(EA)

Contents of effective address reptace PC contents. Next
instruction is fetched from location designated by new
contents of PC.

(STK)«(PC}, (PC}-EA

Contents of PC are stored on top of Stack. Effective
address replaces PC contents. Next instruction is fetched
from location designated by new contents of PC.

(STK)«(PC}, (PC)—{EA)

Contents of PC are stored on top of Stack. Contents of
effective address replace PC contents. Next instruction
is fetched from location designated by new contents
of PC.

(PC)+(STK) + disp

Contents of PC are replaced by sum of disp added to
contents pulled from top of Stack. Program control is
transferred to location specified by new contents of
PC.

BOC ce, disp

JMP disp {(xr)
JMP @disp (xr)
JSR disp (xr)
JSR @disp (xr)
RTS disp

5M + ER + 1M if branch

aM + ER

4aM + 2ER

5M + ER

5M + 2ER

5M + ER

Table A-2. PACE Instruction Summary (Continued)

Instruction/Mnemonic

Operation/Description

Assembler Format

Execution Time/Cycles (M)

BRANCH INSTRUCTIONS (Continued)

Return from Interrupt RTI
15 08(07 00|
I O Y I | Pl i1 11

o1 111100 disp

SKIP INSTRUCTIONS

Skip if Not Equat SKNE
15 12|11 10|09 08{07 00
111 1 1 | I I T I |

1T 1 1 1) r xr disp

Skip if Greater SKG
1 1009 0807 00|
5! 1t 1 1 1 | T T Y Y I |
1001 11 xr disp

Skip if AND is Zero SKAZ
15 10}09 08}07 00

| I | | | I T Y|

101110 Xr disp

(PC)«+(STK) + disp, IEN = 1

Interrupt Enable Flag (IEN) is set. PC contents are re-
placed by sum of disp and word pulled from top of

Stack. Program control is transferred to location specified
by new contents of PC.

If (ACr) # (EA), (PC}«—(PC} + 1, B

ACr contents and contents of effective memory location
EA are compared. If contents of ACr and EA are not
equal, next instruction in sequence is skipped. Contents
of ACr and EA are unaltered. If 8-bit data length is se-
fected, only lower 8 bits are compared.

If (ACO) > (EA), (PC)—(PC) + 1, B

ACO contents and contents of effective memory location
EA are compared as signed numbers. |f contents of ACO
are greater (more positive) than contents of EA, next in-
struction in sequence is skipped. Contents of ACO and
EA are unaltered. If 8-bit data length is selected, only
lower 8 bits are compared.

1f {{ACO) N\ (EA)) =0, (PC)«(PC})+1,B

ACO contents and contents of effective memory location
EA are ANDed. If result equals zero, next instruction in
sequence is skipped. Contents of ACO and EA are un-
altered. If 8-bit data length is selected, only lower 8 bits
are tested.

RTI disp
SKNE r, disp {xr)
SKG 0, disp (xr)
SKAZ 0, disp {xr)

6M+EH

5M + 2ER + 1M if skip

™ + 2ER + 1M if skip

BM + 2E., + 1M if skip

R

9V

Table A-2. PACE Instruction Summary (Continued)

Instruction/Mnemonic

Operation/Description

Assembler Format

Execution Time/Cycles (M)

SKIP INSTRUCTIONS (Continued)

Increment and Skip if Zero 1SZ
15 10]09 0807 00
I I | | I I I

1000 11 xr disp

Decrement and Skip if Zero DSZ

15 10}09 08 07 00
T |] I I |

1010 11 xr disp

Add Immediate, Skip if Zero AlSZ

15 10]09 08|07 00
I T | | Lt it

o 11110 r disp

MEMORY DATA-TRANSFER INSTRUCTIONS

Load LD
15 12|11 10|09 08|07 00
[] | I

1100 r xr disp

(EA)<(EA) + 1; if (EA) =0, (PC}~(PC) + 1, B

EA contents are incremented by 1. |f new contents of
EA equal zero, next instruction in sequence is skipped.

1 8-bit data length is selected, only lower 8 bits are tested.

(EA)«—(EA) - 1; if (EA} =0, (PC)—(PC)} +1,B

EA contents are decremented by 1. If new contents of
EA equal zero, next instruction in sequence is skipped.

| f 8-bit data length is selected, only lower 8 bits are tested.

(ACn «(ACr) +disp; if (ACr) =0, (PC}+—(PC) + 1

ACr contents are replaced by sum of contents of ACr and
disp (sign bit 7 extended through bit 15). Initial contents
of ACr are lost, !f new contents of ACr equal zero, con-
tents of PC are incremented by 1, thus skipping next in-
struction. AISZ Instruction always tests full 16-bit result
independent of data length selected.

(ACr} < (EA)

ACr contents are replaced by EA contents. Initial con-
tents of ACr are lost; contents of EA are unaltered.

182 disp (xr)
Dsz disp {xr)
AISZ r, disp

LD r, disp (xr}

7M+2ER +EW+ 1M if skip

7™M + ZER + EW + 1M if skip

5M + E, + 1M if skip

R

4M + 2ER

Table A-2. PACE Instruction Summary (Continued)

Instruction/Mnemonic

Operation/Description

Assembler Format

Execution Time/Cycles (M)

MEMORY DATA-TRANSFER INSTRUCTIONS

(Continued)

Load Indirect Lb@
15 10|09 08|07 00
I | | | T |

101000 xr disp

Store ST

15 11 10|09 08]07 00

| | I I |

110 1 r xr disp

Store Indirect sT@

15 1009 08|07 00
| I | I I |

101100 xr disp

Load with Sign Extended LSEX

15 10{09 08{07 00
[| 1 * |

101 1 11 xr disp

MEMORY DATA-OPERATE INSTRUCTIONS

AND AND
15 10|09 08|07 00
I | I I I

101010 xr disp

(ACO) « ({EA))

ACO contents are replaced indirectly by EA contents.
Initial contents of ACO are lost; contents of EA and
location designating EA are unaltered.

(EA)«(ACr)

EA contents are replaced by contents of ACr. Initial
contents of EA are lost; contents of ACr are unaltered.

((EA))+(ACO)

EA contents are replaced indirectly by ACO contents.
Initial contents of EA are lost; contents of ACO and
location designating EA are unaltered.

(ACO) «—(EA) sign extended

ACO contents are replaced by EA contents with bit 7
extended through bits 8-15. Initial contents of ACO are
lost; contents of EA are unaltered. LSEX permits 8-bit
data loading from memory or peripheral to be operated
on as 16-bit data.

(ACO) <(ACO) A (EA)

ACO contents and EA contents are ANDed. Result is
stored in ACO. Initial contents of ACO are lost; contents
of EA are unaltered.

LD 0, @disp (xr)
ST r, disp (xr)
ST 0, @disp (xr)
LSEX 0, disp {xr)
AND 0, disp (xr)

5M + SER

aM + ER + EW
AM + 2ER + EW
am + 2ER

4M + 2ER

Table A-2. PACE Instruction Summary (Continued)

tnstruction/Mnemonic

Operation/Description

Assembler Format

Execution Time/Cycles (M)

MEMORY DATA-OPERATE INSTRUCTIONS
(Continued)

OR OR
15 10|09 08|07 00
|] |

101 00 1 xr disp
Add ADD
15 1211 10|09 08|07 00
L1l l | L1l it
1110 r xr disp
Subtract with Borrow SUBB
15 10|09 08|07 00
I | | LL1 11 il
100100 Xr disp
Decimal Add DECA
15 10]09 08|07 00
I T |] L1 1111
100010 xr disp

(AC0) <(ACO) V (EA)

ACO contents and EA contents are ORed inclusively,
Result in stored in ACO. Initial contents of ACO are lost;
contents of EA are unaltered.

(ACr)—(ACr) + (EA}, OV, CRY, B

ACr contents are added algebraically to EA contents.
Sum is stored in ACr, and contents of EA are unaltered.
Initial contents of ACr are lost. Qverflow or Carry Flag
is set if overflow or carry occurs, respectively; otherwise
Overflow and Carry Flags are cleared.

{AC0) ~(ACO) + ~(EA) + (CRY), OVF, CRY, B

ACO contents are added to complement of EA and carry.
Result is stored in AC0Q and contents of EA are unaltered.
Initial contents of ACO are lost. Carry and Overflow Flags
are set according to result of operation.

(ACO) «(ACO) +40 (EA) *10 (CRY), OVF, CRY, B

ACO contents are treated as 4-digit number and added
modulo 10 (for each digit) to contents of EA (treated as
4-digit number) and carry. Initial contents of ACO are
lost; contents of EA are unaitered. Carry Flag is set based
on decimal carry output. Overflow Flag is set to arbitrary
state.

OR 0, disp {xr)
ADD r, disp {xr)
SUBB 0, disp (xr)
DECA 0, disp (xr)

aM + 2E

aMm + 2ER

aM + 2EH

M+ ZER

Table A-2. PACE Instruction Summary (Continued)

Instruction/Mnemonic

Operation/Description

Assembler Format

Execution Time/Cycles (M)

REGISTER DATA-TRANSFER INSTRUCTIONS

Load Immediate Lt
15 10109 08|07 00
| | I O I |
010100 r disp
Register Copy RCPY
15 10|09 08|07 06 (05 00
| |]] 1111
010111 dr sr not used
Register Exchange RXCH
15 10|09 08|07 06 |05 00
I | |] Lt
o1 1 011 dr sr not used
Exchange Register and Stack XCHR
15 10]09 08|07 00
I | I |
000 111 r not used
Copy Flags into Register CFR
15 10|09 08|07 00
I . | |
000001 r not used

(ACr) «disp

ACr contents are replaced by disp with sign bit 7 ex-
tended through bit 15. initial contents of ACr are lost.

{ACdr) <{ACsr)

Destination Register ACdr contents are replaced by con-
tents of Source Register ACsr. [nitial contents of ACdr
are lost and initial contents of ACsr are unaltered.

(ACdr) —(ACsr}, (ACsr) «(ACdr)

ACsr contents and ACdr contents are exchanged.

(STK) «~(ACr), {ACr)«(STK)

Contents of top of Stack and accumulator designated by
ACr are exchanged.

(ACr) «(FR)

ACr contents are replaced by contents of FR. Initial con-
tents of ACr are tost; contents of FR are unaltered.

LI r, disp
RCPY sr, dr
RXCH sr, dr
XCHRS r
CFR r

4M + E

4M+ER

6M + E

6M + E

4AM + E

o1-v

Table A-2. PACE Instruction Summary (Continued)

Instruction/Mnemonic

Operation/Description

Assembler Format

Execution Time/Cycles (M)

REGISTER DATA-TRANSFER INSTRUCTIONS

(Continued)

Copy Register into Flags CRF
15 10409 0807 00
I [

000010 r not used

Push Register onto Stack PUSH

15 10|09 0807 00
I T | | I I

011000 r not used

Pull Stack into Register PULL

15 10|09 08107 00
111 11] Lt

01 1001 r not used

Push Flags onto Stack PUSHF

15 10|09 00
| O I I O

0000 11 not used

Pult Stack into Flags PULLF

15 10|09 00

j I | [O |
0001 00O not used

(FR)<(ACr)

FR contents are replaced by ACr contents. Initial con-
tents of FR are lost; contents of ACr are unaltered.

(STK) «(ACr)

Stack is pushed by contents of accumulator designated by
ACr. Thus, top of Stack holds ACr contents and Stack
Pointer is incremented by 1. Initial contents of ACr are
unaltered.

(ACr) «(STK)

Stack is pulled. Contents from top of Stack replace ACr
contents. Initial contents of ACr are lost. Contents of
Stack Pointer are decremented by 1.

(STK) «(FR)

FR contents are pushed onto Stack. Contents of FR are
unchanged.

(FR)«(STK)

FR contents are replaced by contents pulled from top of
Stack. Initial contents of FR are lost.

CRF r
PUSH r
PULL r
PUSHF
PULLF

aM + E

4M+ER

4M+ER

4aM + E

4aM + E

Table A-2. PACE Instruction Summary (Continued)

11-v

Instruction/Mnemonic Operation/Description Assembler Format Execution Time/Cycles (M)
REGISTER DATA-OPERATE INSTRUCTIONS
Register Add RADD (ACdr) <(ACdr} + (ACsr}, OVF,CRY, B RADD sr, dr 4aM + ER
15 10|09 08|07 06]05 00 ACdr contents are replaced by sum of contents of ACdr
L1 1t | l RN and ACsr. Initial contents of ACdr are lost and contents
o1 1010 dr sr not used of ACsr are unaltered. Overflow and Carry Flags are
modified according to result.
Register Add with Carry RADC (ACdr) «<(ACdr) + (ACsr) + (CRY), OVF, CRY, B RADC sr, dr aM + ER
15 10|09 0807 06 |05 00 ACdr contents are replaced by sum of ACdr and ACsr
L1141 |] 1111 contents and carry. Initial ACdr contents are lost and
o1 1101 dr sr not used ACsr contents are unaltered. Overflow and Carry Flags
are modified according to result.
Register AND RAND {ACdr) < (ACdr) N\ (ACsr) RAND sr, dr 4M + ER
15 10(09,08|07 .06 |05 00 ACdr contents are replaced by result of ANDing ACdr
Li 11 L 1 Lt and ACsr contents. Initial contents of ACdr are lost and
010101 dr sr not used initial contents of ACsr are unaltered.
Register EXCLUSIVE OR RXOR {ACdr) —(ACdr) V(ACsr) RXOR sr, dr 4M + ER
15 | 10|09 08|07 0605 00| ACdr contents are replaced by result of EXCLUSIVE ly
L L 11 L 1 L1111 ORing ACdr contents and ACsr contents. Initial contents
o101 10 dr sr not used of ACdr are lost and initial contents of ACsr are unaltered.
Complement and Add Immediate CAI (ACr) «~(ACr) + disp CAl r, disp 5M + EH
15 10|09 0807 00| ACr contents are replaced by sum of complement of ACr
T - L I T and disp (sign bit 7 extended through bit 15). Initial con-
0oOt1100 r not used tents of ACr are lost. Values of 0 and 1 in disp field
produce ones and twos, complement, respectively, of
(ACr).

(484

Table A-2. PACE Instruction Summary (Continued)

Instruction/Mnemonic

Operation/Description

Assembler Format

Execution Time/Cycles (M)

SHIFT AND ROTATE INSTRUCTIONS

Shift Left SHL
15 10]09 08|07 01|00
I T | | I T
001010 r n Q
Shift Right SHR
15 10|09 08}07 01{00
I I Y | Ll
001011 r n Q
Rotate Laft ROL
15 10]09 08|07 01]00
I | | L1111
001000 r n Q
Rotate Right ROR
15 10]09 08|07 01/00
I |] | |
001001 r n Q

(ACr) «(ACr) shifted left n places, w/wo link, B

ACr contents are shifted left n (n =0-127) bit positions.
| selected data length is 8 bits, then bits 8-15 are set to
zero. Data shifted out of most significant bit for specified
data length are lost if 2 =0 and are loaded into LINK if
=1,

(ACr) < (ACr) shifted right n places, w/wo link, B

ACr contents are shifted right n (n = 0-127) bit positions.
If selected data length is 8 bits, then bits 8-15 are set to
zero. Zeros areshifted into most significant bit for speci-
fied data length if = 0. Contents of LINK are shifted in
if 2 =1, and contents of LINK are unchanged. Data
shifted out of least significant bit are |ost.

{ACr) < (ACr) rotated left n places, w/wo link, B

ACr contents are rotated left n (n = 0-127) bit positions.
If selected data length is 8 bits, then bits 8-15 are set to
zero. Data shifted out of most significant bit position for
specified data length are shifted into least significant bit if
2 = 0, and into LINK if 2 = 1, in which case least signifi-
cant bit is loaded from LINK.

(ACr) —(ACr) rotated right n places, w/wo link, B

ACr contents are rotated right n (n = 0-127) bit positions.

If selected data length is 8 bits, then bits 8-15 are set to
zero. Data shifted out of least significant bit are shifted
into most significant bit for specified data length if ¢ = 0,
and into LINK if 2 = 1, in which case most significant bit
is loaded from LINK.

SHL r,n,Q
SHR r,n,%
ROL r,n, 2
ROR r,n,Q

(5+3n)M+Eg,n= 1-127;

6M+ER,n=0

(5+3n)M+ER,n= 1-127;
6M+ER,n=O
(5 + 3n) M+ER,n= 1-127;
6M +Eg,n=0

(5+3n)M+ER,n= 1-127;

6M+ER,n=O

€I-v

Table A-2. PACE Instruction Summary (Concluded)

Instruction/Mnemonic

Operation/Description

Assembler Format

Execution Time/Cycles (M)

MISCELLANEOUS INSTRUCTIONS

Halt HALT
15 10|09 00
111 1 I T T T A |
00O0O0O0O0O not used
Set Flag SFLG
15 1211 08]07|06 00
111 L1 1 1 111 11
0011 fc 1 not used
Puise Flag PFLG
15 12f11 08|07|06 00
L 11 | | I
0011 fc 0 not used

Halt

Microprocessor halts and remains halted until CONTIN
Input to Jump Condition Multiplexer makes transition
from logic ‘1’ to logic ‘0.

(FR)fC<—1

Flag, or bit of FR, specified by flag code fc is set true.
All other bits of FR are unaltered.

(FR) 1, (FR); <0

Flag (bit fc of FR) is first set true and then set fals¢
(after four clock periods), causing pulsing or resetting of
flag, depending on initial state of flag. All other bits of
FR are unaffected.

HALT
SFLG fc
PFLG fc

5M+EH

6M + E

vIi-v

Table A-3. Op Code Index of Instructions

ALPHANUMERIC SEQUENCE BY HEXADECIMAL
Read down then right.

BASE | PC AC2 |AC3 l
Mnemonic PAGE | REL [REL |REL
Assembler Code ACO | ACT { AC2 | AC3] (XX | (XX+PC) | (XX+AC2)|(XX+AC3)
HALT 0000
CFR ¢ 0400 | 0500 | 0600 | 0700
CRF 0800 [0900 | 0AO0 [0BOO
PUSHF 0c00
PULLF 1000
JSR disp(xr) 14XX_| 15XX__| 16XX__ [17XX
IMP dispixr) 18XX_ | 19XX_ | 1AXX {1BXX
XCHRS 1 1C00_ | 1D00 | 1E00 | 1F00
ROL rn) 20XX | 21XX | 22XX_ | 23XX
ROR o) 28XX_ | 25XX_| 26XX_ | 21XX
SHL _ inj 28XX | 29XX | 2AXX | 2BXX
SHR in] 2CXX | 2DXX | 2EXX | 2FXX
NOT NOT
fc USED | IE1 IE2 1£3 IE4 1E5 OvF_ [cRY |unk | IEN | BYTE | Fl1 F12 F13 F14 USED
PFLG fc 3000 | 3100 | 3200 | 3300 | 3400 | 3500 [3600 [3700 (3800 | 3300 | 3A00 | 3800. | 3C00 | 3D00 | 3E00 | 3F00
SFLG fc 3080 | 3180 | 3280 | 3380 | 3480 | 3580 |3680 [3780 (3880 | 3980 | 3A80 | 3B80 | 3C80 | 3D80 | 3E80 | 3F80
STACK| ACO | ACO | ACO | AcO | ACO |ACO ACO
cc Full Bit15=0] Bit0=1 | Bit1=1 | #0 Bit2=1_[CONT |LINK | IEN CRY_|Bit15=1] OVvF | Jci3 | sc1a | Jcis
BOC ecdisp 40XX | 41XX | 42XX | 43XX | 44XX | 45XX [46XX [47XX [48XX | 49XX | 4AXX | 4BXX | 4CXX | 4DXX | 4EXX | 4FXX
ACO | AC1 | AC2 | Ac3
Ll , data BOXX | BIXX | 52XX | 63XX
st ACO | ACT | AC2 |AC3 [ACO |AC1 |AC2 |AC3 |ACO | AC1 | AC2 | AC3 | ACO | AC1 | AC2 | AC3
dr ACO | Aco | Aco |AcO | Act | Act |Act |Act |Aac2] Ac2 | Ac2 | Ac2 | Ac3 | Ac3 | AC3 | AC3
RAND sr,dr 5400 | 5440 | 5480 | 54C0 | 5500 | 5540 [5580 [55C0 |5600 | 5640 | 5680 | 56CO | 5700 | 5740 | 5780 | 57C0
RXOR sr,0r 5800 | 5840 | 5880 | 58C0 | 5900 | 5940 |5980 |59C0 |5A00 | 5A40 | 5A80 | B5ACO | 5B00 | 5B40 | 5B80 | 5BCO
NOP 5C00
RCPY sr.dr 5C00 | 5C40 | 5C80 | 5CCO | 5000 | 5040 |5DB0 |6DCO |SE00 | GE40 | 5EB0 | BECO | 5FO0 | 5FA0 | 5F80 | 5FCO
| ACO | ACi | AC2 | AC3
PUSH 5000 | 6100 | 6200 | 6300
PULL v 6400 | 6500 | 6600 | 6700
st ACO | Act | Acz | Ac3 | Aco |Act |Aac2 |ac3 [Aco | ACT | AC2 | AC3 | ACO | AC1 | AC2 | AC3
dr aco [aco | aco [Aco_ PAct | Act [Act |act [Ac2 | Ac2 | Ac2 | Ac2 | AC3 | AC3 | AC3 | AC3
RADD _sr.dr 6800 | 6840 | 6880 | 68C0 | 6900 | 6940 6980 [69CO [6A00 | 6A40 | 6A80 | BACO | 6BO0 | 6840 | 6B80 | 6BCO
RXCH sr.dr 6C00 | 6C40 | 6C80 | 6CCO | 6000 | 6D40 |6DB0 [6DCO |6ED0 | GE4O | GEBO | GECO | 6FO0 | 6FA0 | 6F80 [6FCO
ACO | ACT | AC2 | AC3
CAl v, data TOXX | 71XX | 72XX | 13XX
s ACO | AC1 | AC2 |AC3 |[ACO |ACI |AC2 [AC3 |ACO | AC1 | ACZ | AC3 | ACD | AC1 | AC2 | AC3
dr ACO | ACO | ACO {ACO_ | Ac1__ | ACt |AC1 |Ac1 |AC2 | Ac2 | AC2 | AC2 | AC3 | AC3 | AC3 | AC3
RADC sr,dr 7400 | 7440 | 7480 | 74C0 | 7500 | 7540 |7580 |75C0 |7600 | 7640 | 7680 | 76C0 | 7700 | 7740 | 7780 | 77CO

Halt

Copy flags to register

Copy register to flags

Push flags onto stack

Pull stack into flags

Jump to subroutine; XX = 127; push PC anto stack
Jump; XX = +127

Exchange register and stack

Rotate register left

Rotate register right Bit 1 = 1 include link bit
Shift left Bit 2 = 2 shift count
Shift right Bits 2-7 = N = shift count

Pulse or reset flag
Set flag

Branch on condition (PC relative) XX = +127

Load immediate; load register with XX; XX = data
Bit 7 of XX extends to Bits 8-15 of register

“AND" register to register; result to register {dr)
Exclusive "OR" register to register; result to register (dr)
Copy register to register

Push register onto stack
Puil stack into stack

Add register to register; result to register (dr), overflow, and carry
Exchange register

Complement register and add XX; result to register
Bit 7 of XX is extended to Bits 8-15

Add register to register plus carry; result to register (dr);
overflow and carry

SI-v

Table A-3. Op Code Index of Instructions (Concluded)

ALPHANUMERIC SEQUENCE BY HEXADECIMAL
Read down then right.

T e | e
Assembler Code Aco | act | Aacz [aAc3 | xx (XXHPC) | (XXHAC2|(XX+AC3)
[AISZ 1, deta T8XX | T9XX | TAXX | 7BXX
RTI disp 7CXX
RTS __ disp 80XX
DECA 0, displxr) 88XX_| 89XX_| BAXX _[BBXX
152 disp(xr) 8CXX | BDXX | BEXX__|BFXX
SUBB 0, displxr) 90XX | 91XX_ | 92XX__ [93XX
BR__ @dispixn) 94XX_| 95XX_| 96XX__[97XX
IMP @ disp(xn) 98XX_| 99XX | 9AXX _[9BXX
SKG 0, displxr) 9CXX | 9DXX | 9EXX |9FXX
1) 0, ® displx1) ADXX | AIXX_| AZXX__|A3XX
0R 0, disp(xr) A4XX | A5XX | ABXX [A7TXX
AND 0, dispixn) ABXX | ASXX | AAXX_|ABXX
DSZ_ dispix) ACXX | ADXX | AEXX__|AFXX
5T 0, @ displxr) BOXX | BIXX | BZXX__|B3XX
SKAZ 0, displxr) B8XX_| BOXX | BAXX [BBXX
[SEX__ 0, displxr) BCXX | BOXX | BEXX _|BFXX
LD T, displxr) COXX | CIXX_| CZXX__|C3XX
C4XX | C5XX | C6XX _[C7XX
C8XX | CIXX_ | CAXX |CBXX
CCXX | CDXX | CEXX_|CFXX
ST T, displxr) DOXX_| DIXX | D2XX__[D3XX
D4XX_| D5XX | D6XX_ [D7XX
D8XX_| DIXX | DAXX |DBXX
DCXX | DDXX_| DEXX__|DFXX
ADD 1, displxr) EOXX | EIXX | E2XX_ |E3XX
E4XX | E6GXX | E6XX_ [E7XX
EBXX | E9XX | EAXX |EBXX
ECXX | EDXX | EEXX [EFXX
SKNE__ r, disp(x1) FOXX | FIXX | F2XX__[F3XX
FAXX | FBXX_| F6XX__|[F7IXX
F8XX_| FOXX | FAXX |FBXX
FCXX | FOXX | FEXX |FFXX

Add XX to register; skip next instruction if result = zero; XX = 2127

Return from interrupt; add XX to top of stack and place result in PC; XX = £127; set |EN flag

Return from subroutine; add XX to top of stack and place resultin PC; XX = 1127

Decimal add register ACO to contents of effective address; result to ACO, overflow and carry; address = (XX + register shown); XX = 127
Increment contents of effective address by 1; skip next instruction if result = 0; result is in EA; use address mode shown; XX = £127
Subtract contents of effective address from ACO; result to ACO; use address mode shown; XX = 127

Jump to subroutine indirect; push PC onto stack; final address = to contents of location (XX + register shown); XX = £127

Jump indirect; final address = to contents of location (XX + register shown); XX = 127

Compare ACO with contents of location (XX + register shown}; XX = £127; skip next instruction if ACO > (EA)

Load indirect; load ACO with contents of final address; address = contents of location (XX + register shown); XX = 127

OR ACTO with contents of lccation (XX + register shown); XX = £127; result to ACO

AND ACO with contents of location (XX + register shown); XX = +127; result to ACO

Decrzment contents of effective address by 1; skip next instruction if result = 0; result is in EA; address = (XX + register shown); XX = £127
Store indirect; store ACO into final address; address = contents of location (XX + register shown); XX = +127

AND ACO with contents of location (XX + register shown); skip next instruction if resuit = 0; XX = +127

Load ACO with sign extended; Bit 7 of location (XX + register shown) is extended to ACO 8-15; Bits 0-7 are loaded to ACO Bits 0-7; XX = 127
Load ACO with contents of location (XX + register shown); XX = £127

Load AC1 with contents of lacation (XX + register shown); XX = 127

Load AC2 with contents of location (XX + register shown); XX = £127

Load AC3 with contents of location (XX + register shown); XX = +127

Store ACO to location (XX + register shown); XX = 3127

Store AC1 to location (XX + register shown); XX = 2127

Store AC2 to location {XX + register shown); XX = 127

Store AC3 to location (XX + register shown); XX = 127

Add ACO to location (XX + register shown}; XX = £127; result to ACO

Add AC1 to location (XX + register shown); XX = +127; result to AC1

Add AC2 to location (XX + register shown}; XX = 2127 result to AC2

Add AC3 to location (XX + register shown}; XX = £127; result to AC3

Compare ACO to location (XX + register shown); XX = #127; if not equal skip next instruction

Compare AC1 to location (XX + register shown); XX = £127; if not equal skip next instruction

Compare AC2 to location (XX + register shown); XX = £127; if not equal skip next instruction

Compare AC3 to location (XX + register shown); XX = £127; i not equal skip next instruction

National Semiconductor Corporation
2900 Semiconductor Drive

Santa Clara, California 95051

(408) 737-5000

TWX: 910-339-9240

National Semiconductor GmbH
808 Fuerstenfeldbruck
industriesirasse 10

West Germany

Telephone: (08141) 1371
Telex: 05-27649

NS Electronics (HK) Lid.

4 Hing Yip Street, 11th Floor
Kwun Tong

Kowloon, Hong Kong
Telephone: 3-411241-8
Telex: 73866 NSE HK HX

NS International Inc.

Miyake Bldg. 6F, 1-9 Yotsuya
Shinjuku-Ku

Tokyo 160, Japan
Telephone: 03-355-3711
Telex: J28592

NS Electronics Pty. Ltd.

CNR-Stud Road & Mountain Highway
Bayswater, Victoria 3153, Australia
Telephone: 03-729-6333

Telex: 32096

PUBLICATION NO. 420305292-001A, ORDER NO. IPC-16A/928
©1977 NATIONAL SEMICONDUCTOR CORPORATION
PRINTED IN U.S.A. DA-DD10M37

	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	xBack

