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general description
PACE (Processing And Control Element) is a single-chip, ® Four general purpose Reduces memory
16-bit microprocessor packaged in a standard, hermeti- accumulators data transfers
cally sealed, 40-pin ceramic dual-in-line package. ® 10-word stack Interrupt processing/
. data storage
Silicon gate}; Pl-channel enhar':c.ehment fmode stanc::rﬁ ® Six vectored priority Simplifies interrupt
process technology ensures high performance, hig interrupt levels service and hardware
reliability and high producibility. )
® Programmer accessible May be preserved,
PACE is intended for use in applications where the status.reglster . testec.l, or modﬂ.led
convenience and efficiency of 16-bit word length is ® 2us microcycle Fast instruction execution
desired while maintaining the low cost inherent in ® Can utilize DM8531 Single memory
single chip, fixed instruction microprocessors. The basic 1k-by-16 ROM package
economics in conjunction with the users’ ability to = Two clock inputs Minimum external
programmatically specify 8 or 16-bit data operations components
provides the following applications advantages: applications
(continued on page 3) .
® Test system and instrument control
features ® Process controllers
® 16-bit instruction Addressing flexibility, ® Machine tool control
word ) " . 5”‘_39‘:' = Terminal control
. X
?vg:dm bit data ide application ® Small business machines
. . - . ® Traffic controllers
® Powerful instruction set Efficient programming X
® Word processing systems
® Common memory Powerful 1/0 X R
and peripheral instructions ® Peripheral device controllers
addressing ® Educational systems
® Shares instructions with Allows software ® Sophisticated games
National’s IMP-16 basic set compatibility ® Distributed and multiprocessor systems
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PACE SPeciFicaTioNs --- IPC-16A/500D-1
ABSOLUTE MAXIMUM RATINGS (NOTE 1)

All Input or Output Voltages with Respect to Storage Temperature Range........ -65°C to +150°C
Most Positive Supply Voltage (Vpp).. «.. -0.3V to -20V Lead Temperature (soldering, 10 seconds).. +300°C
Operating Temperature Range +20°C to +45°C

ELECTRICAL CHARACTERISTICS (Tp=+20°C to +45°C, Vg =+5.14 #2%, VGG = -12.3 +2%, Vpg=Vss + 3V)

PARAMETER [ conniTions — [MIN]TYP] MAX_ [ UNITS

OUTPUT SPECIFICATIONS

D00-D15, F11-F14, ODS, IDS, NADS (These are open drain outputs,
which may be used to drive DS3608 sense amps, or may be used
with pull down resistors to provide a voltage output).

Logic '"1" Output Current (Note 7) Vout = 2.0V -0.8 |-2.0 ] -10 mA

Logic "0" Output Current VGG € VOUT < VSS +10 pA
NHALT, CONTIN

Logic 1" Output Voltage IoyT = 200 pa Vss-1 v

Logic "0" Output Voltage IouT = 200 pa 1.0 v

INPUT SPECIFICATIONS

D00-D1S, NIR2-NIR5, EXTEND, JC13-JC15, CONTIN, NINIT,
NHALT (These are TTL compatible inputs.) (Note 2)

Logic "1" Input Voltage Vss-1 VSs+0.3 \'
Logic "0" Input Voitage Vss-1 Vss-4.5 | V
Pullup Transistor "ON'" Resistance (D00-D15) (Note 3) VIN =VSS - 1V 4 8 kOhms
Pullup Transistor "ON'" Resistance (except D00-D15) VIN=VSS - 1V 2 4 kOhms
Logic "0" Input Current (D00-D15) -1.0 -3 mA
Logic "0" Input Current (except D00-D15) -2.0] -5 mA
Input Capacitance VIN = Vss, 10 pF
CLK, NCLK (These are MOS Clock Inputs.) £T =500 kHz
Clock '"1" Voltage (Note 5) Vss-1 Vss+0.3 | V
Clock "0" Voltage VGG VGG+1 V'
Input Capacitance (Note 6) 30 80 | 150 pF
Bias Supply Current VBB =Vss + 3.0V 30 pA
Average Power Dissipation tp=0.5 ps, TA 25°C 700 |1500 mW

TIMING SPECIFICATIONS (SEE ADDITIONAL TIMING INFORMATION FIGURES 7 THROUGH 10)

CLK, NCLK (Referenced to 10% and 90% Amplitude)

Rise and Fall Time (ty, tf) 10 25 ns

Clock Width (tycLk, tWNCLK) 220 ns

Clock Overlap (tov A, tov B) -10 ns

Clock Period (tp) 0.5 .55 ns
EXTEND

Individual Extend Duration 1.0 ps
Propagation Delay

F11-F14 (Note 8) Vour = 2.0V 100 | 300 ns

NHALT, CONTIN (Note 9) CL =20 pF 100 | 200 ns

NADS, IDS, ODS, D00-D15 (Note 8) VouT = 2.0V 60 100 ns
D00-D15 Input Setup Time (Note 10) 200 75 ns
NINIT Initialization Pulse Width 8 clock cycles
NIR2-NIRS Input Pulse Width to Set Latch 1 clock cycles
Note 1.  Maximum ratings indicate limits beyond which permanent damage may occur. Continuous operation at these

limits is not intended and should be limited to those conditions specified under electrical characteristics.

Note 2. Pullup transistor provided on chip. (See figure 6.)

Note 3. Pullup transistors on JC13, JC14, JCI5 are turned on one out of 8 clock intervals. Pullup transistors on
D00-D15 are turned on during last clock period of Input Data Strobe (IDS). Other pullup transistors are
on continuously when in data input mode.

Note 4. Pin 28 (BPS) is tied to VGG.

Note 5.  Clamp diodes and series damping resistors may be required to prevent clock overshoot.

Note 6. Capacitance is not constant and varies with clock voltage and internal state of processor.

Note 7. For VSS»VouT22.0 volts output current is a linear function of VouT.

Note 8.  Delays measured from valid logic level on clock edge initiating change to valid current output level.

Note 9. Delay measured from valid logic level on clock edge initiating change to valid voltage output level.

Note 10. With respect to end of Input Data Strobe (IDS). (See figure 7.)




general description (con’t)

PACE is particularly efficient when handling both 8 and
16-bit interfaces within the same microprocessor based
system. Requirements for external hardware are mini-
mized without sacrificing coding efficiency.

PACE is extremely cost effective in applications domi-
nated by 8-bit data element interfaces. Coding and address
generation efficiencies, as well as operating speeds for
double precision operations found only in 16-bit micro-
processors are extended to the 8-bit system.

The principal resources featured in PACE to minimize
system program and read/write storage while increasing
throughput include:

FOUR 16-BIT GENERAL PURPOSE WORKING REGIS-
TERS available to the user reduce the number of memory
load and store operations associated with saving tempo-
rary and intermediate results in system memory. This
results in increased throughput with reduced program
and data storage requirements.

AN INDEPENDENT 16-BIT STATUS AND CONTROL
FLAG REGISTER automatically and continuously pre-
serves system status. The user may operate on its
contents as data, allowing masking, testing and modifi-
cation of several bit fields simultaneously.

A TEN WORD (16-BIT) LAST-IN, FIRST-OUT (LIFO)
STACK automatically preserves return addresses during
interrupt servicing and sub-routine execution. The pres-
ence of a stack inherently decreases response time to
interrupts while eliminating both program and read/
write system storage overhead associated with storing
stack information outside the microprocessor chip.
In some applications the 10-word stack plus on-chip
registers can totally eliminate the need for off-chip
read/write memory.

STACK FULL/STACK EMPTY interrupts are provided
to facilitate off-chip stack storage in those applications
where additional stack tapacity is desirable.

A SIX LEVEL, VECTORED PRIORITY INTERRUPT
SYSTEM internal to the chip provides automatic inter-
rupt identification, eliminating both program storage
overhead and the time normally required to poll
peripherals in order to identify the interrupting device.
When more than six interrupts are involved, more than
one peripheral may be placed on a priority-level by
means of a simple open collector connection to the
appropriate priority interrupt request line.

FOUR SENSE INPUTS AND FOUR CONTROL FLAG
OUTPUTS allow the user to respond directly to specific
combinations of status present in the microprocessor
based system. This ability to respond directly to system
status requires no external hardware and allows appro-
priate control signal outputs to be generated program-
matically, eliminating costly hardware, program overhead
and throughput associated with implementing these
functions over the system data bus.

Other PACE features which minimize the cost of external
support hardware include easily generated clock inputs
and 1/0 cycle extend capability.

The PACE single chip 16-bit microprocessor permits the
implementation of a complete microprocessor system
with 16,384 bits of read-only program storage and TTL
data bus interface in fewer than a dozen standard support
packages, as shown in the diagram on the first page.
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FIGURE 1. Clock Timing

FUNCTIONAL DESCRIPTION

The PACE microprocessor, shown in Figure 2, provides
16-bit parallel data processing capability. This word
length provides considerable convenience for addressing
memory and peripheral devices and provides sufficient
accuracy that many applications will not require the use
of double precision arithmetic. It also provides increased
speed by processing twice as many bits per cycle and
reducing time consuming memory accesses. However,
for those applications not requiring high accuracy, or
for character processing, PACE provides the ability to
operate on 8-bit data, while still providing 16-bit
instructions and addressing capability.

Data Storage

Seven data registers are provided, four of which are
directly available to the programmer (as accumulators
ACO to AC3) for data storage and address formation.
ACO is the principal working register, AC1 is the second-
ary working register, and AC2 and AC3 are page pointers
or auxiliary data registers. The other three registers
serve as a program counter and two temporary registers
are used by the control section to effect the PACE
instruction set.

Additional data storage is provided for up to ten words
by a last-in, first-out or push-pull stack. The stack is
used primarily for storing the contents of the program
counter during subroutine execution and interrupt
servicing. The stack may also be used for storing status
information or data; in some applications, such as device
controllers, the stack plus four accumulators may provide
enough storage to eliminate the need for external read-
write memory. For applications where the 10-word
capacity of the stack is insufficient, external read-write
memory may be used as a stack extension. This is
facilitated by the provision of stack full and stack empty
interrupts, allowing implementation of a simple stack
service routine.
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FIGURE 2. PACE Detailed Block Diagram

ALU

The arithmetic and logic unit (ALU) provides the data
manipulation capability which is an essential feature of
any microprocessor. The operations provided by the
ALU include AND, OR, XOR, complement, shift left,
shift right, mask byte and sign extend. Both binary and
(4-digit per word) binary-coded-decimal (BCD) addition
capability are provided, thus eliminating the program
storage and execution time required to perform BCD to
binary conversion.

A unique feature of the PACE ALU is the ability to
operate on either 8 or 16-bit data, as specified by the
programmer through the use of a status flag. This feature
allows character oriented and other 8-bit applications to

be implemented and executed using an 8-bit peripheral
data bus and read-write memory, while address formation
and instruction storage are implemented in the more
effective 16-bit data length.

Status

All status and control bits for PACE are provided in a
single status flag register, whose contents may be loaded
from or to any accumulator or the stack. This allows
convenient testing, masking and storage of status. In
addition, a number of status bits may be tested directly
by the conditional branch instruction, and any bit may
be individually set or reset. The function of each bit in
the status flag register is listed in Table | and described




briefly below. The carry flag is set to the state of the
carry output resulting from binary and BCD arithmetic
instructions, and serves as a carry input for some of these
instructions. The overflow flag is set true if an arithmetic
overflow results from a binary arithmetic instruction.

TABLE |. Status Flag Register Bit Functions

Register Bit Flag Name Function
0 ‘" Not used—always logic 1
1 IE1 Interrupt Enable Level 1
2 1E2 Interrupt Enable Level 2
3 1E3 Interrupt Enable Level 3
4 |E4 Interrupt Enable Level 4
5 IE5 Interrupt Enable Level 5
6 OVF Overflow
7 CRY Carry
8 LINK Link
9 IEN Master Interrupt Enable
10 BYTE 8-bit data length
1 F11 Flag 11
12 F12 Flag 12
13 F13 Flag 13
14 F14 Flag 14
15 e Always logic 1, addressed

for Interrupt 0 exit

instruction-execution routine by the address generation
logic. As the last step of the fetch routine, this address
is loaded into the microprogram address register, causing
abranch to the appropriate instruction execution routine.
The execution routine consists of one or more micro-
instructions to implement the functions required by the
instruction. For example, the routine for a register ADD
instruction would access the two accumulators to be
added over the operand bus, cause the ALU to perform
an ADD operation, load the carry and overflow flags
from the ALU and store the result in the specified
accumulator. The control logic interprets the micro-
instructions to carry out these operations. The final step
of the execution routine is a jump back to the fetch
routine to access the next instruction. Each microcycle
requires 2us and 4 or 5 microcycles are typically
required to fetch and execute a machine instruction.
Other routines implemented by the microprogram include
interrupt servicing and system initialization. The micro-
program controls the operation of a conditional jump
multiplexer which is used to specify 16 conditions for the
conditional branch instruction. The conditions which
may be tested are indicated in Table Il and include
four signal inputs to the chip, which may be used to
test external system conditions.

TABLE I1. Branch Conditions

The link flag serves as a 1-bit extension for certain shift
and rotate instructions. The byte flag is used to specify
an 8-bit data length for data processing instructions,
while arithmetic operations for address formation remain
at the 16-bit data length. In the 8-bit data mode,
modifications of the carry, overflow and link flag are
based on the eight least significant data bits only.

Four flags (bits 10—14) are provided which may be
assigned functions by the programmer. These flags drive
output pins and may be used to directly control system
functions or as software status flags. Bits 0 and 15 of
the status register have not been implemented in hard-
ware and always appear as a logic 1. The interrupt enable
flags are explained below.

Control

The operation of the PACE microprocessor consists of
repeatedly accessing or fetching instructions from the
external program store and executing the operations
specified by these instructions. These two steps are
carried out under the control of a microprogram
(the microprocessor is not designed for user micropro-
gramming). The microprogram is similar to a state table
specifying the series of states of system control signals
necessary to carry out each instruction. Microprogram
storage is provided by a programmable logic array, and
microprogram routines are implemented to fetch and
execute instructions. The fetch routine causes an instruc-
tion address to be transferred from the program counter
register to the I/0O bus and initiates an input data
operation. When the instruction is provided on the data
bus, the fetch routine causes it to be loaded into the
instruction register. The instruction operation code is
transformed into the address of the appropriate

Number Mnemonic Condition
0 STFL Stack full
1 REQO (ACO) equal to zerol1)
2 PSIGN (ACO) has positive sign(2)
3 BITO Bit 0 of ACO true
4 BIT1 Bit 1 of ACO true”
5 NREQO (ACO) is non-zero1)
6 BIT 2 Bit 2 of ACO is true
7 CONTIN CONTIN (continue) input is true
8 LINK LINK is true
9 IEN IEN is true
10 CARRY CARRY is true
1 NSIGN (ACO) has negative sign(2)
12 OVF OVF is true
13 Jc13 JC13 input is true
14 Jc14 JC14 input is true
15 Jc1s JC15 input is true

Note 1: If the selected data length is 8 bits, only bits 0-7 of ACO are
tested.

Note 2: Bit 7 is the sign bit (instead of bit 15) if the selected data length
is 8 bits,

The control circuitry may be initialized at any time by
use of the NINIT input signal. This will cause the stack
addressing circuitry, all flags and the program counter
to be set to zero, and the strobes to go false and level
zero interrupt enable to go true. This signal should
always be used to initialize the processor after applying
power. The first instruction after initialization is accessed
from location zero.

Interrupts

The PACE microprocessor provides a six level, vectored,
priority interrupt structure. This allows automatic
identification of an interrupting device’s level and allows
all devices on an interrupt level to be enabled or disabled
as a group, independent of other interrupt levels. An
individual interrupt enable is provided in the status
register for each level, as shown in Figure 3, and a master
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interrupt enable (IEN) is provided for all 5 lower priority
levels as a group. Negative true interrupt request inputs
are provided to allow several interrupts to be “‘wire-ORed’’
on each input. When an interrupt request occurs, it will
set the interrupt request latch if the corresponding
interrupt enable is true. The latch will be set by any
pulse exceeding one clock period in duration, which is
useful for capturing narrow timing or control pulses. If
the master interrupt enable (IEN) is true, then an
interrupt will be generated. During the interrupt sequence
an address is provided by the output of the priority
encoder and is used to access the pointer for the
highest-priority interrupt request (IR0 is highest priority,
IR5 is lowest priority). The pointers are stored in loca-
tions 2—7 (see Table 111) for interrupt requests 1—5 and
0, respectively. The pointer specifies the starting address
of the interrupt service routine for that particular
interrupt level. Before executing the interrupt service
routine, the program counter is pushed on the stack and
IEN is set false. The interrupt service routine may set
IEN true after turning off the interrupt enable for the
level currently being serviced (or resetting the interrupt
request). (The interrupt enables may be set and reset
using the SFLG and PFLG instructions.)

The non-maskable level zero interrupt (IRO) is an
exception to this interrupt procedure. It has a program
counter storage location pointer (the program counter
is not stored on the stack for this particular interrupt in
order to preserve the processor state) which is followed
by the level zero interrupt service routine. The IR0
interrupt enable is cleared when a level zero interrupt

TABLE I11. Interrupt Pointer Table

8 Int O Program
7 Int 0 PC Pointer
6 Int 5 Pointer
5 Int 4 Pointer
4 Int 3 Pointer
3 Int 2 Pointer
2 Int 1 Pointer
1 Not Assigned
0 Initialization Inst

occurs (IEN is unaffected) and may be set true by
addressing (non-existent) status flag 15. This allows
execution of one more instruction (typically JMP@) to
return from the IR0 interrupt routine before another
interrupt will be acknowledged. This interrupt level is
typically used by the control panel, which then can
always interrupt the application program and does not
affect system status. The control panel service routine
interprets and executes the functions specified by control
panel switches and displays selected data on the panel
lights. Level zero interrupts are generated by driving
the NHALT signal line low.

Data Input and Output

All data transfers between PACE and external memories
or peripheral devices take place over the 16 data lines
(D00—D15) and are synchronized by the 4 control
signals (NADS, IDS, ODS, and EXTEND). Data transfers
occur during each instruction access and during the data
accesses required by memory reference instructions. This
class of instructions could perhaps more properly be
called the ““1/O reference class” in the case of the PACE
microprocessor, since all data transfers, whether with
memory or peripheral devices or a central processor
data bus, occur through the execution of these instruc-
tions. This unified bus architecture is in contrast with
many other microprocessors and minicomputers that
have one instruction type (1/0 class) for communication
with peripheral devices and another instruction type
(memory reference class) for communication with
memories. The advantage of the approach used by PACE
is that a wider variety of instructions (the entire memory
reference class) is available for communication with
peripherals. Thus, the DSZ (decrement and skip if zero)
instruction can be used to decrement a peripheral device
register, or the SKAZ (skip if AND is zero) instruction
can be used to test the contents of a peripheral device
status register. The LD (load) and ST (store) instructions
are used for simple data transfers.

All 1/0 transactions consist of an address output interval
followed by a data transfer interval. The address specifies
a memory location or peripheral device. The allocation
is entirely up to the user (within the requirements for
interrupt pointers). A straightforward allocation would
be to assign all addresses from 0000, to 7FFFqg as
memory addresses and all addresses from 8000;¢ to
FFFF46 as peripheral device addresses. In this case, the
most significant address bit specifies whether the trans-
action is with memory or a peripheral device. A variety
of easily decoded address allocation schemes may be
used, depending on the amount of ROM, RAM, peripheral
devices and the particular application. Both address and
data words are transmitted or received as 16-bit parallel
data over the data lines (DO0—D15). If 8-bit data is being
transferred, the unused bits can be treated as “‘don’t
care” bits by the hardware and the 8-bit data length
selected by the software.

Data transfer operations are synchronized by the NADS
(Address Data Strobe), IDS (Input Data Strobe), ODS
(Output Data Strobe) and EXTEND signals as shown in
Figure 4. Address data is provided on the 16 data lines.
An NADS is provided in the center of the address data
and may be used to strobe the address into an address
latch. A number of memory products provide address
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FIGURE 4. PACE 1/0 Timing

latches on the chip, which avoids the need for implement-
ing this function externally. The input data strobe and
output data strobe indicate the type of data transfer
and may be used to enable TRI-STATE® 1/0 buffers
and gate data into registers or memories as required by
the system design. The EXTEND input allows the I/O
cycle time to be extended by multiples of the clock
cycle to adapt to a variety of memory and peripheral
devices or for DMA bus interfacing.

INSTRUCTIONS

The PACE microprocessor provides a general-purpose
mix of 45 instruction types. The memory reference
instructions utilize a flexible memory addressing scheme
providing three floating memory pages and one fixed
page of 256 words each. The register instructions provide
convenient data manipulation without requiring a mem-
ory access. The data transfer instructions provide a
means of moving data among the functional blocks of
the microprocessor system.

Addressing Modes

Instructions which use both direct and indirect memory
addressing are included in the PACE instruction set.
Three modes of direct memory addressing are available:
base page, program counter relative, and index register
relative. The mode of addressing is specified by the XR
field of the instruction as illustrated in Figure 5.

OPERATION CODE
[

15 0987 0

INDEX
(XR) |  DISPLACEMENT (disp)

FIGURE 5. Memory Reference Instruction Format

When the XR field is 00, base page (page zero) addressing
is used. Two different types of base page addressing are
available and may be selected by the base-page-select
(BPS) signal input. If BPS = 0, the 16-bit memory
address is formed by setting bits 8 through 15 to zero,
and using the 8-bit displacement (disp) for bits O
through 7; this permits addressing of the first 256 words
of memory (locations 0—255). If BPS = 1, the 16-bit
memory address is formed by setting bits 8 through 15
equal to bit 7 of disp and using disp for bits O through 7;
this permits addressing the first 128 words (0 through
FF,6) and the last 128 words (FF804¢ through FFFF¢)
of memory. The latter technique is useful for splitting
the base page between read-write and read-only memories

or between memory and peripheral devices, so the con-
venience of base page addressing is available for accessing
data or peripherals.

Addressing relative to the program counter (PC) is
specified when the XR field is 01. With this mode, the
memory address is formed by adding the contents of the
program counter to the value of the displacement field
interpreted as a signed two’s complement number (that
is, the 8-bit disp field is interpreted as a 16-bit value with
bits 8 through 15 set equal to bit 7; this allows represen-
tation of numbers from —128 through +127). When the
address is formed, the program counter has already been
incremented and contains a value one greater than the
location of the current instruction; thus, memory
addresses that may be referenced as 127 locations below
through 128 above the address of the current instruction.

With the index register relative mode of addressing, any
memory location within the 65,536 word address space
may be referenced. The disp field is interpreted as a
signed value ranging from —128 through 127 as with PC
relative addressing. The memory address is formed by
adding disp to the contents of either accumulator AC2
(when XR = 10) or accumulator AC3 (when XR = 11).

This type of addressing is very desirable for micropro-
cessor applications which require address computation
at execution time, since the use of read-only-memory
for program storage prevents address modification within
the program storage memory. A summary of the direct
addressing modes is presented in Table IV.

TABLE IV. Summary of Addressing Modes

XR Field Addressing Mode Effective Address
00 Base Page EA - disp
01 Program Counter Relative EA = disp + (PC)
10 AC2 Relative (indexed) EA = disp + (AC2)
1 AC3 Relative (indexed) EA = disp + (AC3)
Note 1: For base page addressing, disp is positive and 1n the range of 000 1o

2551 BPS - 0, and 15 a signed number 1n the range of 128 10 +127 «f BPS < 1
Note 2: For relative addressing, disp has a range of 128 to +127

Indirect addressing consists of first establishing an address
in the same fashion as with direct addressing [by either
the base page, relative to PC, or indexed (relative to AC2
or AC3) mode]. The 16-bit contents of the memory
location at this address is then used as the address of the
operand, allowing any memory location to be addressed.

As noted previously, the memory addressing modes are
also used for peripheral 1/O operations. The address
space must be divided between read-write memory, read-
only memory and 1/0O devices.

Instruction Summary

The instruction set is divided into eight instruction
classes as listed in Table V. The branch instructions
provide the means to transfer control anywhere in the
16-bit addressing space. Conditional branches are effected
using the BOC instruction, which allows testing any one
of 16 conditions, including status flags, the contents of
ACO, and user inputs to the chip. Additional testing
capability is provided by the skip instructions, which
provide memory or peripheral to register comparisons
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Branch Instructions

TABLE V. PACE Instruction Summary

Assembler Format

Operation

Instruction Format

80C Branch On Condition (PC) < (PC) + disp if cc true 80C cedisp 0100 disp

P Jump (PC) ~ EA e disp (xr) 0001 10] x disp

mpe Jump Indirect (PC) ~ (EA) P @disp (xr) 100110

ISR Jump To Subroutine (STK) = (PC), (PC) « EA ISR disp (xr) 000101

ISRE Jump To Subroutine Indirect (STK) = (PC), (PC) + (EA) JSR @disp (xr) 100101

RTS Return from Subroutine (PC) = (STK) + disp RTS disp 10000000 dip

ATI Return from Interrupt (PC) = (STK) + disp, IEN = 1 RTI disp 011111

Skip Instructions

SKNE Skip if Not Equal 1f (ACr) # (EA, (PC) + (PC) + 1 SKNE  rdisp (xr) PRI I disp ]
SKG Skip if Greater 1f (ACO) > (EA), (PC) + (PC) + 1 SKG 0.disp (xr) 100111

SKAZ Skip if And is Zero 1f [(ACO) A (EA)] =0, (PC) += (PC) + 1 SKAZ  0disp (xr) 101110

152 Increment and Skip if Zero (EA) < (EA) +1,if (EA) =0, (PC) * (PC) + 1 152 disp (xr) 100011

DSz Decrement and Skip if Zero (EA) = (EA) — 1,if (EA) = 0, (PC) * (PC) +1 0sz disp (xr) 101011

AlsZ Add Immediate, Skip if Zero (ACr) = (ACr) + disp, if (ACr) = 0, (PC) — (PC) + 1 AISZ r.disp 0t1110l 7]

Memory Data Transfer Instructions

Lo Load (ACr) < (EA) Lo r.disp (xr) 1100[ r | x| disp ]
Loe Load tndirect (ACO) + ((EA)) Lo 0@disp (xr)  [101000

sT Store (EA) < (ACN) ST r.disp (xr) 1101 o

sTe Store Indirect ((EA)) + (ACO) ST 0@disp (xr)  [101100

LSEX Load With Sign Extended (ACO) = (EA) bit 7 extended LSEX  0disp (1) 101111

Memory Data Operate Instructions

AND And (ACO) = (ACO) A (EA) AND 0.disp (xr) 1T01010[ x| disp ]
OR or (ACO) + (ACD) V (EA) oR 0.disp (xr) 101001

ADD Add (ACr) = (ACH) + (EA), OV, CY ADD r.disp (xr) 111 0]

suBB Subtract with Borrow (ACO) = (ACD) + ~ (EA) + (CY), OV, CY SUBB  0disp (xr) 100100

DECA Decimal Add (ACO) += (ACO) +1g (EA) +10 (CY), OV, CY DECA  0disp (xr) 100010

Register Data Transfer Instructions

u Load Immediate (ACr) = disp L r.disp. 010100] r disp
RCPY Register Copy (ACdr) * (ACsr) RCPY  srdr 0101 11| dar not used
RXCH Register Exchange (ACdr) + (ACsr), (ACsr) < (ACdr) RXCH  srdr 011011

XCHRS Exchange Register and Stack (STK) * (ACr), (ACr) < (STK) XCHRS 1 0001 11 | notused |
CFR Copy Flags Into Register (ACr) + (FR) CFR . 000001

CRF Copy Register Into Flags (FR) < (ACr) CRF . 000010

PUSH Push Register Onto Stack (STK) « (ACr) PUSH ¢ 011000

PULL Pull Stack Into Register (ACr) = (STK) PULL ¢ 011001

PUSHF Push Flags Onto Stack (STK) + (FR) PUSHF 000011 not used ]
PULLF Pull Stack Into Flags (FR) = (STK) PULLF 000100

Register Data Operate Instructions

RADD Register Add (ACdr) < (ACdr) + (ACsr), OV, CY RADD  srdr 011010 d [ sr [ notused ]
RADC Register Add With Carry (ACdr) « (ACdr) + (ACsr) + (CY), OV, CY RADC  srdr 011101

RAND Register And (ACdr)  (ACdr) A (ACsT) RAND  srdr 010101

RXOR Register Exclusive OR (ACdr) - (ACdr) *# (ACsr) RXOR  srdr 010110

cAl Complement and Add Immediate (ACr) = ~ (ACr) + disp cal r.disp 011100 ] s ]
Shift And Rotate Instructions

SHL Shift Left (ACr) + (ACr) shifted left n places, w/wo link SHL .l 001010 ] 0 ]9
SHR Shift Right (ACr} < (ACr) shifted right n places, w/wo link SHR 001011

ROL Rotate Left (ACr) + (ACr) rotated left n places, w/wo link ROL 001000

ROR Rotate Right (ACr) = (ACr) rotated right n places, w/wo link ROR e 001001

Miscellaneous Instructions

HALT Halt Halt HALT

SFLG Set Flag (FR)gc = 1 SFLG  fe

PFLG Pulse Flag (FR) ¢ = 1. (FR) (¢ < 0 PELG  fc

without altering data. The memory data transfer instruc-
tions provide data transfers between the accumulators
and memory or peripheral devices. The load with sign
extended is provided to convert 8-bit, two’s complement
data to 16-bit data, allowing 16-bit address modification
when the 8-bit data length has been selected.

The memory data operate instructions provide opera-
tions between the principal working register (ACO) and
memory or peripheral data. This includes both binary
and BCD arithmetic instructions. The register data
transfer instructions provide a very complete set of
transfer possibilities between the accumulators, flag
register and stack, and include the capability to load
immediate data. Register data operate instructions pro-
vide logical and arithmetic operations between any two

accumulators. They may be used for address and data
modification and to reduce the number of (time con-
suming) memory references in a program. The shift and
rotate instructions allow 8 different operations which
are useful for multiply, divide, bit scanning and serial
input-output operations. The miscellaneous instructions
include the capability to set or reset (pulse) any of the
16 bits of the status flag register individually. Instruction
execution times are shown in Table VI.

A simple example program is provided by the binary
multiply routine shown on page 9. This program multi
plies the 16-bit value in AC2 by the 16-bit value in A(@’
and provides a 32-bit result in ACO (high order) and AC1
(low order). Worst case execution time is under one
millisecond.

/0




Binary Multiply Routine
CONST: .WORD X'FFFF
START: U1 R1.0

: CONSTANT FOR DOUBLE PREC. ADD
; CLEAR RESULT REGISTER

u R3,16 :LOOP COUNT TO AC3
CAI RO,0 ; COMPLEMENT MULTIPLIER

LOOP: RADD RI1, R1 :SHIFT RESULT LEFT INTO CARRY
RADC RO.RO :SHIFT CARRY INTO MULTIPLIER

; AND MULTIPLIER INTO CARRY

. TEST FOR ADD

. ADD MULTIPLICAND TO RESULT
; ADD CARRY TO H.0. RESULT

: DECREMENT LOOP COUNT

; REPEAT LOOP

BOC CARRY, TEST
RADD R2, Rl
SUBB RO, CONST

TEST:  AISZ A3, -1
JMP LOOP

TABLE VI. Instruction Execution Times

Mnemonic  Meaning Execution Time

Branch Instructions

BOC  Branch On Condition 5M + Eq + 1M if branch

IMP Jump aM + Eq
JMP@  Jump Indirect aM + 2Eq
JSR  Jump To Subroutine 5M + Ep
JSR@  Jump To Subroutine Indirect  5M + 2Eq
RTS  Return from Subroutine 5M + Eg
RTI Return from Interrupt 6M + Eq
2. Skip Instructions
SKNE  Skip if Not Equal M + 2Eq + IM if skip
SKG  Skip if Greater M + 2Eq + 1M if skip
SKAZ  Skip if And is Zero M + 2Eq + IM if skip
12 Increment and Skip if Zero TM + 2Eq + Ey + IM if skip
DSZ  Decrement and Skip if Zero M + 2Eq + Ey + M if skip
AISZ  Add Immediate, Skip if Zero  5M + Eq + M if skip

3. Memory Data Transfer Instructions
Lo Load am + 26,
LD@  Load Indirect 5M + 3Eq
ST Store 4M + Ep + Ey
ST@  Store Indirect 4M + 2Eq + Ew
LSEX  Load With Sign Extended am + 2€,

4. Memory Data Operate Instructions
AND  And 4M + 2E,
OR or 4M + 2Eq
ADD  Add aM + 26q
SUBB  Subtract With Borrow 4M + 264
DECA  Decimal Add ™ + 2Eq

5. Register Data Transfer Instructions
u Load Immediate aM + Eq
RCPY  Register Copy aM + Eq
RXCH  Register Exchange 6M + Eq
XCHRS Exchange Register and Stack ~ 6M + Eq
CFR  Copy Flags Into Register am + Eq
CRF  Copy Register Into Flags 4M + Eq
PUSH  Push Register Onto Stack aM + Eq
PULL  Pull Stack Into Register aM + Eq
PUSHF  Push Flags Onto Stack 4M + Eq
PULLF Pull Stack Into Flags aM + Eq

6. Register Data Operate Instructions
RADD  Register Add 4M + Eq
RADC  Register Add With Carry aM + Eq
RAND  Register And M + Eq
RXOR  Register Exclusive Or 4M + Eq
CAl  Complement and Add Immediate 5M + Eq

7. shift And Rotate Instructions
SHL  Shift Left
SHR  Shift Right (5+3n) M+Eg, n=1-127;
ROL  Rotate Left 6M + Eq,n=0
ROR  Rotate Right

8. Miscellaneous Instructions
HALT  Halt
SFLG  Set Flag M + Eq
PFLG  Pulse Flag 6M + Eq

achine cycle time = 4 clock periods Eg = Extend time for read cycle
n = number of shifts Ew = Extend time for write cycle
Note: External interrupt response time is 7M + ER plus time o finish current instruction

While the instruction set is compact at 45 instruction
types (or 337 individual instructions), it is powerful
enough to allow considerably more efficient program
coding than most microprocessors and compares favora-
bly with many minicomputers.

1/0 DESCRIPTION
Drivers and Receivers

Equivalent circuits for PACE drivers and receivers are
shown in Figure €. All inputs have static charge protec-
tion circuits consisting of an RC filter and voltage clamp.
These devices should still be handled with care, as the
protection circuits can be destroyed by excessive static
charge. Pullup transistors on several inputs are turned on
during one of the eight internal clock phases. In the case
of bidirectional signals, the output driver transistors also
serve as input pullup transistors.
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Data 1/0 Timing

All data transfers between PACE and external memories
or peripheral devices take place over the 16 data lines.
These transfers are synchronized by the NADS, IDS,
ODS and EXTEND signals. Timing for address data out-
put is shown in Figure 7. All signal timing is referenced
to valid logic 1" or logic “’0"" clock levels. Cross-hatched
areas indicate uncertainty of output transitions or
“don’t care”” (optional) states for data inputs. Address
data becomes valid one clock phase prior to the Address
Data Strobe and remains valid for one clock phase
afterwards. Typically, NADS will be used to strobe the
address data into a latch, either internal or external to
the memory chips, or to clock decoded peripheral
addresses into a flip-flop.

The PACE address output drivers assume a high imped-
ance state during the data input interval as shown in
Figure 7. The IDS signal may be used to disable the out-
put sense amplifiers and enable TRI-STATE® input
buffers. Increased power supply current may occur
during the transition period of the TRI-STATE enable
signal, when several devices may be simultaneously
enabled. Therefore, good power and ground layout and

INTERNAL
CLOCK PHASE

bypass filtering practice should be observed. The data
lines must be driven to valid input data logic levels by the
end of IDS, and all logic 1 inputs must reach a minimum
intermediate level of Vgg — 2.35V 200 ns prior to the
end of internal clock phase 8. TTL devices will actively
drive the input to this minimum intermediate level and
the transition will be completed by a combination of the
on-chip pullup transistor and the (reduced) TTL output
drive current. Typically, this data input timing will allow
operation of the microprocessor in a system at maximum
speed if the access time of the system memory is less
than 700 ns. For memories with longer access times the
clock frequency may be reduced or the I/0 cycle extend
feature may be used, as described below.

Data output timing is shown in Figure 8. Output data
becomes valid at the leading edge of ODS and remains
valid for one clock period following the trailing edge.

The Output Data Strobe is typically used as a read-write
signal for memory and an output data latch strobe for
peripheral interfaces.
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For systems utilizing memories with access times greater
than 700 ns it may be desirable to use the EXTEND
input to lengthen the 1/O cycle by multiples of the
clock period. Timing for this is shown in Figure 9. In
the case of either input or output operations, the extend
should be brought true prior to the end of internal phase
6. The timing shown in Figure 9 will provide the
minimum extend of one clock period. Holding EXTEND
true for and additional n clock periods longer will cause
an extention of n+ 1 clock periods. As indicated in
the electrical characteristics, there must be at least
64 non-extend clock cycles every 640 microseconds. This

INTERNAL

includes the use of EXTEND for both extending and
suspending 1/0 operations.

In DMA or multiprocessor systems it may be desirable
to prevent 1/O operations by PACE when the bus is in
use by another device. This may be done by using the
EXTEND signal immediately following an IDS or ODS
as shown in Figure 10. Alternatively, the extend timing
of Figure 9 may be used, as the extend function occurs
independent of whether there is an I/O operation, that
is, whenever the internal clock phase 6 occurs.
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MOS/LSI single chip 16-bit microprocessor (PACE)

typical performance characteristics
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CHAPTER 1
INTRODUCTION TO PACE

11 DESCRIPTION

National Semiconductor’s Processing and Control Element,
called PACE, is a single-chip full-feature Central Processing
Unit (CPU). PACE is housed in a 40-pin, ceramic, dual-in-
line package. The ultrahigh density and overall layout of
the microcircuit are shown in figure 1-1.
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Figure 1-1. PACE Chip and Circuit Layout
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PACE also is called a microprocessor, the prefix micro re-
lating to the microscopic size of the physical circuit and
components on the chip. An extraordinary amount of
data-processing capability is provided in one component by
the single-chip microconstruction.

Figure 1-2 reveals the CPU architecture and pinouts of the
single-chip PACE — consisting of registers, control logic, an
arithmetic unit, and the data buses. Some of the out-
standing operational features of the PACE microprocessor
are listed below.

Features
® 16-bit instruction word offers addressing flexibility
and speed.
® 8- or 16-bit data word interfaces increase application
flexibility.

45 instruction types provide efficient programming.

Common memory and peripheral addressing means

powerful 1/O instructions.

® Shares instructions with National Semiconductor’s
IMP-16, allowing software compatibility.

® Four general-purpose accumulators reduce memory
data transfers.

® 10-word Stack is utilized for interrupt processing/data
storage.

® Six vectored priority-interrupt levels speed interrupt
service and simplify hardware.

® Programmer-accessible status register may be pre-
served, tested, or modified.

® Typical 10-microsecond instruction execution guaran-
tees high throughput.

® 1K-by-16 Read-Only Memory allows single-memory

package systems.

Single-phase true and complement clock minimizes ex-
ternal components.

® +5-volt and -12-volt standard supplies ensure mini-
mum cost.

The PACE MOS/LSI chip is produced using silicon-gate, P-
channel enhancement-mode standard-process technology.
This means that the following very significant advantages
are realized.

Lower cost per function
Lower component count
Simplified design
Higher reliability

High noise immunity
® Low threshold voltage

Among some of the benefits of a single-chip device with the
above-listed advantages are the following.

® LOWER COMPONENT COUNT -- Generally, this
means lower procurement, incoming testing, inven-
tory, handling, rework, and assembly cost — and high-
er reliability.

® SIMPLIFIED DESIGN --- LSI devices enable engineer-
ing design groups to take advantage of prepackaged
circuits that are self-contained and perform a unified
function. Also, a design group not strongly oriented
towards digital design may make use of the latest
techniques and devices without requiring expertise re-
lated to the design methods of interfacing the circuits
internal to LS| devices. In summary, use of LS| de-
vices requires considerably less engineering time to
develop a product.

® HIGHER RELIABILITY --- The long history of field
maintenance of all types of electronic systems clearly
demonstrates the high reliability of LSI devices. Sys-
tem maintenance has shown that the reliability of
low-power circuits is inversely proportional to the
number of component lead connections in the sys-
tem. This factor, coupled with the abundant func-
tional capability of LSI, greatly increases the proba-
bility that an LSI-based system will function properly
over extended periods of time.

IMPROVED PERFORMANCE --- PACE offers higher
throughput because of a powerful instruction set, a
proven architecture, and 16-bit address generation
and data handling.

® LOWER COST -- The reduction of cost is an aggre-
gate savings resulting from the other advantages al-
ready enumerated. In the microprocessor field, the
inherent functional superiority of high-density de-
vices is seldom questioned. The superior performance
of the single-chip PACE, coupled with reduced engi-
neering and assembly cost, higher reliability, lower
operating and maintenance costs, and smaller size of
the microprocessor, definitely results in a much bet-
ter performance-to-price ratio than heretofore possi-
ble. It makes the PACE microprocessor the most
competitive processor on the market.

12 OUTSTANDING FEATURES OF PACE

The outstanding features of PACE are described in detail
later. Nevertheless, to provide an overall view of the many
favorable facets of PACE, these features are listed and brief-
ly described below.

® 8- OR 16-BIT DATA HANDLING --- PACE is cost
effective in applicationé dominated by 8-bit data in-
terfaces. Efficient coding and address generation
found only in 16-bit microprocessors are extended to
8-bit applications.

INCREASED THROUGHPUT -- PACE minimizes
data and program storage requirements, while in-
creasing data-processing throughput.

® USER GROUP --- Membership open to users and
others interested in microprocessors. Provides a vehi-
cle of communications between members and with
National Semiconductor. Makes programs available
from its User Group Software Library.



® SOFTWARE SUPPORT --- Includes Source Statement
Editor, Assemblers, Loaders, Debug Routine, Utili-
ties, and Diagnostics. (Also, as previously mentioned,
a Source Statement Translator converts IMP-16 soft-
ware to PACE software.)

13 PACE APPLICATIONS

Applications for PACE could very well be in the thousands.
The suitability of PACE will, in many cases, be a matter of
evaluation by potential users for their particular needs. A
few applications are listed.

Test system and instrument control
Process controllers

Machine tool control

Terminal control

Small business machines

Traffic controllers

Word-processing systems

Peripheral device controllers
Educational controllers
Sophisticated games

Distributed and multiprocessor systems
Automotive controller

18 SOFTWARE SUPPORT

The importance of National Semiconductor-supplied sup-
port software cannot be overemphasized. The microproces-
sor design process is most efficient when the designer fully
appreciates and uses the support software.

19 SPECIFYING HARDWARE BEHAVIOR WITH
SOFTWARE

The microprocessor approach differs from older, discrete-
logic controllers in only one important way, and all differ-
ences in approach stem from the following.

® |n the random-logic approach, a set of logic is wired
to handle each function, and all logic operations pro-
ceed in parallel.

® [n the microprocessor approach, one central set of
logic is provided inside the microprocessor. The cen-
tral set of logic is rewired in real time, under control
of the program, to handle each of the logic functions
in serial.

Thus, the discrete-logic designer buys a set of functions and
then wires the functions to perform a specific job. On the
other hand, the microprocessor user buys a microprocessor
and then must tell the microprocessor how to wire itself,
from microsecond to microsecond, to perform different
jobs.

The purpose of the system software is to aid the user in des-
cribing, designing, and debugging a microsecond-to-micro-
second description of the microprocessor wiring. Such a
description, when rendered in terms the microprocessor can
understand, is called a program.

1.10 TYPES OF SOFTWARE

One of the most important steps in the programming pro-
cess is the translation of the program description from com-
mands that the programmer writes and understands into bi-
nary strings that the microprocessor uses to perform opera-
tions. Two types of commonly used translator programs
are assemblers and compilers.

Utility programs facilitate the preparation of input code
(using the Editor Program) and the debugging of the result-
ant object code (using the Debug Program) and, also, are
used to enter the programs (using the Loader Program) into
the Microprocessor Development System.



The following paragraphs provide more detailed descriptions
of assembler and compiler programs and three types of
utility programs (Editor, Debug, and Loaders).

Figure 1-11 gives a birds-eye view of the PACE computer-
program breakdown.

NOTE

A software summary table of the PACE
software line is located in appendix A,
table A-2.

1.10.1 PACE EDITOR

The PACE Editor enables the generation of new source
statement text and the modification of existing source text
in preparation for program assembly. The normal editing
procedure is to input assembly-language source statements
and comments, edit the text, and output the edited text,
along with a punched paper tape suitable for input to the
assembler.

1.10.2 PACE ASSEMBLERS

The user has the alternative of selecting among four PACE
assemblers: the PACE Resident Assembler, the PACE
IMP-16 Cross Assembler, the PACE Conversational Assem-
bler, and the PACE FORTRAN Cross Assembler. All As-
semblers are completely compatible in programs assembled
and vary only in operating environments.

The PACE Resident Assembler runs on an IPC-16P. The
PACE IMP-16 Cross Assembler runs on an IMP-16P or
IMP-16L with a minimum of 4K words of memory and a
TTY. The PACE Resident Assembler and PACE IMP-16
Cross Assembler accept free-format source statements
from either the keyboard, paper tape, or a card reader and
produce a Load Module (LM) on paper tape and an object
listing on the TTY printer. The Resident and Cross Assem-
blers require three passes over the source program; however,
if either the object listing or the LM is suppressed, only two
passes are required.

IPC
COMPUTER
PROGRAM
TRANSLATORS UTILITIES
SM/PL TELETYPE
COMPILER ROUTINE EDITOR
CROSS CARD READER
ASSEMBLER ROUTINE DEBUG
CONVERSATIONAL
ASSEMBLER LOADERS
RESIDENT RELOCATING
ASSEMBLER LOADER
IMP/PACE ABSOLUTE
TRANSLATOR LOADER
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Figure 1-11. PACE Computer Programs




The PACE Conversational Assembler, which runs on an
IPC-16P and combines the features of an editor and a res-
ident assembler, simplifies the editing and assembly proce-
dures by eliminating the need for multiple loadings of an
editor, a resident assembler, and the user-generated program.
The PACE Conversational Assembler requires 8K words of
memory for operation.

The PACE FORTRAN Cross Assembler Program generates
an object program from a source program on a host compu-
ter for subsequent execution by a PACE microprocessor.
The assembler may be used on different host processors
since the assembler is written in FORTRAN IV (USA
Standard Language Subset). The assembler requires 100K
bytes of memory and the following minimum hardware
complement: processor input unit, scratch unit, list output
unit, and binary output unit.

The PACE FORTRAN Cross Assembler accepts free-format
source statements and, in two passes, produces an LM (ob-
ject program) and a program listing.

1.10.3 PACE SM/PL COMPILER

The PACE SM/PL Compiler is a high-level computer pro-
gram written in IPC assembly language. Comparable to high-
level-language programming of the large-scale computers and
minicomputers, the SM/PL Compiler considerably simplifies
microcomputer programming. This results in fewer pro-

gramming manhours and shortens leadtime - and, hence,
reduces programming cost.

The SM/PL Compiler runs on an IPC-16P Microprocessor
Development System, with a requirement of at least 12K
memory words. The object code thus produced is highly
efficient — in many cases comparable to the object code
produced by programs written in the IPC assembly lan-
guage. The object code is in standard Relocatable-Load-
Module (RLM) format. All IPC peripherals are supported
by the SM/PL Compiler.

A sequence of declarations and statements comprise the
language of the SM/PL Compiler. Declarations control allo-
cation of storage, define simple macros, and define proce-
dures. Statements compute results and store them in a
location defined by a variable name; statements also pro-
vide conditional tests and branching, iteration control, and
procedure innovation.

Compiler procedures are in the form of subroutines that are
defined by declarations and called by statements. Each
subroutine may represent a program module, so a particular
program may perform a number of tasks, each task being
implemented by a subroutine. These subroutines are avail-
able to be used as procedures as part of other similar pro-
grams.

Figure 1-12 illustrates the software used to assemble or
compile on PACE.

———
PACE SOURCE
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PACE SM/PL COMPILER

EDITOR =g
|
RESIDENT CONVERSATIONAL
ASSEMBLER ASSEMBLER

OBJECT
FILE
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LOAD MODULE

RELOCATABLE
LOAD MODULE

ABSOLUTE
LOAD MODULE

SM/PL SOURCE
(CARDS OR TAPE)

EDITOR .

SM/PL.
COMPILER

COMPILATION
LISTING

RELOCATABLE
LOAD MODULE
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Figure 1-12. Software Used to Assemble or Compile

on PACE



1.105 PACE LOADERS

The PACE loaders are programs that read and load one or
more LMs, produced by a PACE assembler, into the main
memory for execution.

The output by the PACE FORTRAN Cross Assembler is re-
formatted into an LM before loading into the PACE mem-
ory for execution. ANSI FORTRAN programs are available
to reformat the output from the PACE FORTRAN Cross
Assembler into an LM suitable to the loader and loading
method employed.

The outputs from the PACE Resident Assembler and the
PACE IMP-16 Cross Assembler do not require reformatting.
The LMs are output directly from the PACE Resident As-
sembler and PACE IMP-16 Cross Assembler onto paper
tape.

Two methods are available for loading data into the main
memory for execution: absolute and relocatable. Each
loading method involves tradeoffs among the following con-
siderations: the complexity of the loading process, the
amount of work that must be performed by the user, and
the flexibility available to the user at load time (versus
assembly time).

Several PACE programs are available for loading correctly
formatted LMs into the PACE memory for execution:
PACE Relocating Loader (PACE General Loader), PACE
Absolute Card Reader Loader, and PACE Absolute Paper
Tape Loader. The loading methods and the loaders avail-
able for each method are described in the following para-
graphs.

1.105.1 PACE Absolute Loaders

A PACE Absolute Loader, resident ‘in the ROM of the
IPC-16P, loads one or more programs into preallocated,
fixed areas of memory. The exact memory areas to be oc-
cupied by each user-generated program must be determined
by the user before assembly. Also, any linking of one pro-
gram to another or to common, shared data must be accom-
plished at assembly time by assignment of common labels
to fixed, absolute addresses in memory. The advantages of
using a PACE Absolute Loader are that a small, simple
loader may be used and no commands are required at load
time.

PACE
SOURCE
LISTING

IMP-16 SOURCE IMP-16/PACE
(CARDS OR TAPE) TRANSLATOR

PACE PACE
PACE SOURCE FORTRAN OBJECT
(CARDS OR TAPE) CROSS: LISTING
ASSEMBLER

REFORMAT

ROUTINES
ABSOLUTE RELOCATABLE
LOAD MODULE LOAD MODULE
(CARDS OR TAPE) (CARDS OR TAPE)
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Figure 1-13. PACE Software Implemented on a
Host Computer

1.10.56.2  PACE Relocating Loader

The PACE Relocating Loader (PACE General Loader) is a
command-driven PACE program that reads one or more
relocatable LMs from either the Card Reader or the Paper
Tape Reader, relocates object code, and transfers control to
the specified entry point. The PACE Relocating Loader
provides the most flexible loading process. The PACE
Relocating Loader process allows relocation of programs
at LM load time rather than at assembly time. The PACE
Relocating Loader follows either an inherent method for
allocating programs to available memory or user-generated
instructions that designate where each program should be
loaded. Figure 1-14 illustrates the PACE loading sequence.



1.10.6 PACE INPUT/OQUTPUT ROUTINES

The PACE Input/Output Routines are described in the fol-
lowing paragraphs.
1.10.6.1 PACE Teletype Routines

The PACE Teletype Routines reside in ROM on the TTY/
Card Reader Interface Card of the IPC-16P System. The
routines are used to send and receive information to and
from the TTY or to receive data from the Paper Tape Read-
er. When both a High-speed Paper Tape Reader and a TTY
Paper Tape Reader are used, the program verifies the tape
reader that first supplies data and, subsequently, accepts in-
put data from that tape reader.

1.10.6.2 PACE Card Reader Routine

The PACE Card Reader Routine resides in ROM on the
TTY/Card Reader Interface Card of the IPC-16P System.
The PACE Card Reader Routine accepts an absolute LM in
Hollerith-coded card format and loads the data into main
memory. There are no restrictions on loadable addresses;
any read/write memory location can be used.

1.10.7 PACE DEBUG PROGRAM

The PACE Debug Program supervises the operation of a
user program during checkout. This program provides the
following facilities for testing computer programs:

® Printing selected areas of memory in hexadecimal or
ASCI! format

Modifying the contents of selected areas in memory
Modifying computer registers and stack

Inserting instruction breakpoint halts

Taking memory snapshots during execution of a user
program

Initiating execution at any point in a program

® Searching memory

TTYOR
LM - CARD
READER

DEBUG = >

TTY OR
CARD
READER

LINKING
LOADER

RLM L

EXECUTE
PROGRAM

DEBUG |

i

EXECUTE
PROGRAM

NS10364

Figure 1-14 PACE Loading Sequence



CHAPTER 2
PACE AND FAMILY OF CHIPS

21 INTRODUCTION

The following paragraphs provide additional descriptive in-
formation and in-depth application data concerning the
PACE microprocessor and family of chips. The PACE in-
struction set and addressing methods are detailed in appen-
dix B. The instruction set description includes the instruc-
tion word bit configuration, assembler format, and instruc-
tion execution time formula for each instruction type. Ap-
plications data are provided for input/output control tech-
niques, use of jump conditions and flags, interrupts, Cycle
Extends, and DMA operation.

NOTE

Since this document was prepared during
the final design phase of the PACE pro-
duct line, some discrepancies may exist in
the timing and electrical specifications
presented with the following application
information. For preliminary design pur-
poses, refer to the latest data sheets to
verify the timing and electrical para-
meters.

22 PACE MICROPROCESSOR

The PACE microprocessor provides the control and timing
signals required for system or subsystem operation in addi-
tion to providing data manipulation and storage capabilities.
The following paragraphs provide more information regard-
ing the PACE microprocessor.

22.1 GENERAL DESCRIPTION

Data transfers between PACE (see figure 2-1) and memory
or peripheral devices are effected over the 16-bit (D00-D15)
parallel Input/Output Data Bus. The Input/Output Data
Bus interfaces with the Instruction Register and the Oper-
and Bus by way of the 1/O Data Buffers. The Operand Bus
also interfaces with seven registers (Temporary Registers 1
and 2, Program Counter, and ACO through AC3) and a 10-
word Stack. The seven registers and Stack are provided for
data storage. Four of the registers (ACO through AC3) are
available to the programmer as general-purpose accumula-
tors. The Program Counter contains the address of the next
instruction. The contents of any selected register or the
Stack are routed over the Operand Bus to the Arithmetic
and Logic Unit (ALU) and Shifter. Resultant ALU and
Shifter output is returned to the selected register or Stack,
as appropriate, by way of the Result Bus. The ALU and
Shifter, besides performing arithmetic operations, also sets
status flags in accordance with the data length (8-bit or 16-
bit) selected by the state of the BYTE Status Flag.

All status information is stored in the 16-bit Status and
Control Flags Register. The Status and Control Flags Regis-
ter contents can be loaded onto the Operand Bus for tem-
porary storage on the Stack or in any accumulator for ex-
amination or modification of status information.

Instructions under execution by PACE are stored in the In-
struction Register and are interpreted and executed by a
microprogram stored in an on-chip ROM. Instruction exe-
cution time is determined by the instruction under execu-
tion, memory access time, and the external clock frequency.

2.2.2 EXTERNAL CLOCK REQUIREMENTS

The external clock signals (see figure 2-2) applied to PACE
must consist of single-phase true and complement signals
such as those produced by a System Timing Element (STE).
PACE uses the external clock signals to generate internal
multiphase clock signals that provide control timing for
microprocessor operations.

2.2.3 DESCRIPTION OF HARDWIRED SIGNALS AND
TIMING

PACE operations are controlled by software which rewires
the PACE Control Logic in real time (at a speed determined
by the external clock) to handle each microprocessor func-
tion in serial order. The clock and other signals that require
hardwired connection to the PACE microprocessor are des-
cribed in table 2-1. Pin assignments for the PACE CPU are
shown in figure 2-3.

Instructions consist of four machine cycles or more, de-
pending on the operations performed. The timing shown in
figures 2-4, 2-5, and 2-6 represent the first machine cycle
of the instruction being executed. The number of cycles
for the instructions are given in appendix B.

NOTES

1. Positive logic convention is used
throughout this manual. A logic ‘1’ or
high signal corresponds to a more-
positive voltage level. A logic ‘0’ or
low signal corresponds to a more-
negative voltage level. All signal names
beginning with ‘N or followed by an
asterisk (%) denote complemented sig-
nals that are asserted or activated by a
logic ‘0’. Otherwise, signals are assert-
ed by a logic ‘1"

N

. Bits are numbered from 00 to 15, right
to left, with bit 00 representing the
least significant bit.

3. The X’ preceding a value denotes the
hexadecimal numbering system.
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Figure 2-1.  PACE Microprocessor Functional Block Diagram
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Figure 2-3.  PACE Microprocessor Pin Assignments
Table 2-1. Descriptions of PACE Hardwired Signals
Signal Description

Mnemonic/Name

CLK, NCLK/
True and complemented clock

NOTES

1. Some of the PACE microprocessor functions and buses
referred to in the signal descriptions are illustrated in
figure 2-1.

2. Refer to figures 2-4, 2-5, and 2-6 when signal descriptions
discuss address output/data input timing, data output
timing, and extending |/ signal timing, respectively.

3. Figure 2-7 illustrates user flag timing considerations.

External true and complemented clock inputs to PACE. Used in
generation of PACE internal multiphase clock signals that provide
timing control for internal PACE functions.

D00-D 15/Data Bits 00-15

Input/output MOS Data Bus Lines.

IDS/Input Data Strobe

PACE output signal used to enable external devices so data can
be placed on-line to PACE. IDS operation is as follows:

1. Following output of peripheral or memory address infor-
mation from PACE (see figure 2-4), D00-D15 data line
drivers (internal to PACE) assume high-impedance state
and PACE Control Logic drives IDS Signal high.

2. 1DS remains high for approximately 1.5 CLK periods.

3. Valid input data to PACE must be present on D0O-
D15 Input/Output Data Bus Lines when IDS is driven
low again by Control Logic after approximately
1.5-CLK-period duration.




Table 2-1. Descriptions of PACE Hardwired Signals (Continued)

Signal Description
Mnemonic/Name

ODS/Output Data Strobe PACE output signal used to enable external devices to accept data

output from PACE. ODS operation is as follows:

1. Following output of peripheral or memory address infor-
mation from PACE (see figure 2-5), data are placed on
D00-D 15 Input/Output Data Bus Lines by PACE.

. At approximately the same time that data are placed on
Input/Output Data Bus, ODS Signal is driven high by
PACE Control Logic to signify that output data from
PACE are available to memory or peripherals.

3. ODS remains high for approximately 1.5 CLK periods.

4. Output data remain on Input/Output Data Bus after

ODS is driven low again by Control Logic after approxi-
mately 1.5-CLK-period duration. Thus, ODS trailing edge
can be used to clock PACE output data into External
Data Latch (ALE). ODS can also be used as read/write
control signal for external RAM memory elements.

N

NADS/Address Data Strobe PACE output signal used to clock address information from PACE
into ALE. After address information (see figures 2-4 and 2-5) is
placed on Input/Output Data Bus by PACE, NADS Signal is driven
low for approximately 0.5 CLK period by PACE Control Logic.
NADS is active in middle of approximately 1.5 CLK periods that
address information is valid. Thus, either edge of NADS can be
used to clock address information into ALE.

EXTEND/Extended Data Transfer PACE input signal used to temporarily increase time duration of
data input/output transfers to accommodate accessing of slow
memories or peripherals without altering CLK frequency.
EXTEND Signal must be driven high at beginning of ODS or IDS
Signal (see figure 2-6). If EXTEND is held high as indicated in
figure 2-6, data-transfer operation is extended by 1 CLK period.
Holding EXTEND high for additional n clock periods increases
data-transfer timing by n + 1 clock periods.

NINIT/Initialize PACE input signal that initializes microprocessor functions.
When NINIT is low, PACE operation is suspended and all PACE
strobe signals (IDS, ODS, NADS, and so forth) are set to inac-
tive state. After NINIT completes low-to-high transition, the
following conditions are effected:
1. PACE Program Counter contents are set to zero.
2. Internal Stack Pointer (indicates last Stack level
accessed) is cleared.
3. All flags and interrupt enables are set low except
Level-0 Interrupt Enable which is set high. All other
registers contain an arbitrary value.

NHALT/Control Panel Halt PACE Control Logic input/output signal used for nonmaskable
Level-0 Interrupt, microprocessor stall, and programmed HALT
indicator output. When NHALT is applied as low input, micro-
processor operation halts after completing execution of current
instruction. When Halt Instruction is executed, NHALT Line is
driven low by PACE Control Logic for a 7/8 duty cycle. Micro-
processor can be stalled by using external open-collector driver
to hold NHALT Line low for desired time duration, thereby
overriding NHALT output buffer on PACE chip.




Table 2-1. Descriptions of PACE Hardwired Signals (Continued)

Signal
Mnemonic/Name

Description

CONTIN/Continue Jump Condition

PACE Jump Condition Multiplexer input/output signal used to
sense external signal through BOC Instruction. Also used to
restore microprocessor operation from suspended state or cause
subroutine branch to Level-0 Interrupt Service Routine (generally
used to implement Control Panel functions). Driving CONTIN
Input high for 4 CLK periods, minimum, causes halted micro-
processor to resume operation. As output, CONTIN is driven
low for approximately 3 clock periods by PACE Jump Condi-
tion Multiplexer to acknowledge that microprocessor operation
is stalled. CONTIN Line must be pulsed to terminate Halt
Instruction.

BPS/Base Page Select

Input signal to PACE Control Logic that enables one of two
base-page addressing schemes to be selected. When BPS is low,
first 256 words of memory constitute base page (page zero).
When BPS is high, first 128 memory words and last 128 memory
words constitute base page.

JC13, 14, 15/Jump Conditions 13,
14, and 15

User-specified branch-condition inputs to PACE Jump Condi-
tion Multiplexer. Some possible uses are testing system status
and receiving serial data. When JC13, 14, or 15 is high, PACE
Branch-On Condition Instruction effects program branch if
Jump Condition Input is true.

F11,12, 13, 14/Flags 11, 12,
13,and 14

PACE Status and Control Flags Register general-purpose control
flag outputs. F11-14 may be used for direct control of system
functions or serial data output. Individual flags may be set by
PACE Set Flag Instruction and pulsed or reset by Pulse Flag
Instruction (see figure 2-7). Push Flag and Pull Flag Instruc-
tions permit contents of Status and Control Flags Register to

be saved on Stack during Interrupt Service Routine or subrou-
tine execution, and then restored.

NIR2, 3, 4, 5/Interrupt Requests 2, 3,
4,and 5

Inputs to PACE Interrupt Control Logic. When NIR2, 3, 4, or
5 Input is low for 1 CLK period, minimum, corresponding inter-
nal Interrupt Request Latch is set.

NOTE

Use of Interrupts paragraph later in this
chapter provides more comprehensive in-
formation concerning interrupt servicing.

V, PACE input substrate voltage requirement derived from +5-volt
88 and —12-volt supplies by STE.
Ve (-12V) PACE input power requirement.

Vg (+5V)

PACE input power requirement.
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Figure 2-4.  Address Output and Data Input Timing Diagram
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Figure 2-5.  Data Output Timing Diagram
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Table 2-2. Descriptions of Status and Control Flags

Register Bit Flag Name Description Flag Code (fc)

0 High (‘1) Bit 0 is not used and is always in logic ‘1’ state. 0000
Referencing bit 0 with SFLG or PFLG Instruc-
tion has no effect. (May be used as NOP In-
struction.)

IE1 Flags IE1 through IE5 serve as Interrupt Enable 0001
IE2 Flags for five of six PACE interrupt levels. If 0010
IE3 Interrupt Enable is high and associated Interrupt 0011
IE4 Request occurs, microprocessor executes Inter- 0100
IES rupt Service Routine. If Interrupt Enable is low, 0101
associated Interrupt Request is ignored.

OB LN =

6 OVF Overflow Flag is set to state of twos-complement 0110
arithmetic overflow by arithmetic instructions.
Overflow Flag is set high if sign bits (most signi-
ficant bit) of two operands are identical and

sign bit of result is different from sign bit of
operands. If A, B, and R are sign bits of operands
and result, then Overflow Flag is set according

to equation

OVF = (A+B*R) + (A-B+R)

Sign bit is most significant bit for data length se-
lected; thus, if data length is 8 bits, then bit 7 is
sign bit; if data length is 16, then bit 15 is sign
bit. State of OVF Flag is affected by instruc-
tions ADD, DECA, SUBB, RADD, and RADC.

7 CRY Carry Flag is set to state of binary or decimal 0111
carry output of adder by arithmetic instructions.
Carry output is derived from most significant bit
for data length specified by BYTE Flag. State

of CRY Flag is affected by instructions ADD,
DECA, SUBB, RADD, and RADC.

8 LINK Link Flag is included in shift and rotate opera- 1000
tions as specified by Shift and Rotate Instruc-
tions. Link Flag is unaffected if not selected.

9 IEN Master Interrupt Enable Flag simultaneously 1001
inhibits all five of lowest-priority interrupt
levels. No Interrupt Request is serviced unless
individual Interrupt Enable Flag for associated
Interrupt Request and master Interrupt Enable
Flag are high. IEN Flag is set low every time
any interrupt (except Level-0) is serviced. IEN
Flag is set high by execution of Return To
Interrupt Instruction (RTI).

10 BYTE BYTE Flag selects 8-bit data length when high 1010
and 16-bit data length when low.

n F11 Flags 11 through 14 are general-purpose control 101
12 F12 flags. Flags 11 through 14 drive PACE output 1100
13 F13 pins and may be used to directly control system 1101
14 F14 functions. 1110

15 High (‘1) Bit 15 is not functional and is always in logic 1
‘1" state. Addressing bit 15 with SFLG or
PFLG Instruction sets the Level-0 Interrupt
Enable high. The Level-0 Interrupt is described
in the Use of Interrupts paragraph later in

this chapter.




Table 2-3. Summary of Direct Addressing Modes

xr Field Addressing Mode Effective Address
00 Base-page EA =disp

01 Program-Counter-relative EA =disp + (PC)
10 AC2-relative (indexed) EA = disp + (AC2)
1" AC3-relative (indexed) EA =disp + (AC3)
NOTES: 1. For base-page addressing, disp is positive and in range of 000 to 255 when BPS is low (0);

or disp is signed number in range of -128 to +127 when BPS is high (1).

PC contains value one greater than address of current instruction.

For relative addressing, disp range is -128 to +127.

2.3.1.2 Indirect Addressing

Indirect addressing consists of first establishing an address
in the same manner as direct addressing (by either the
base-page, PC-relative, or indexed mode). The contents of
the memory location at the selected address then are used
as the operand address. Figure 2-14 illustrates indirect ad-
dressing.

NOTE

The memory addressing modes also are
used for peripheral 1/0 operations. Ad-
dress space must be divided between
memory and 1/0 devices.

INDIRECT ADDRESSING

——
AC2 OR AC3
'ACZ or AC3 RELATIVE

PC RELATIVE

—

BASE PAGE

NS10408

Figure 2-14. Indirect Memory Addressing




For indexed addressing, Accumulators AC2 and AC3 are
used as 16-bit memory pointers. If Accumulators AC2 and
AC3 are loaded from the 8-bit memory, the high-order 8
bits in the accumulators can be set equal to the sign of the
low-order 8 bits by using the Load With Sign Extended
Instruction (LSEX). Thus, a 16-bit twos-complement num-
ber results.

The Load With Sign Extended Instruction also can be used
to set the state of the eight high-order data bits during 8-bit
data transfers from peripherals. Alternatively, user-generated
software can use Shift Instructions to set the eight high-
order data bits to zero. The Shift and Rotate Instruction
group (SHL, SHR, ROL, ROR) operates on the low-order
8 bits only and sets the high-order 8 bits to zero when the
BYTE Status Flag is set for the 8-bit data-handling mode.

The Immediate Instructions (LI, CAl, AISZ) provide 16-bit,
twos-complement data inputs. When working with 8-bit
data, the high-order 8 bits usually can be ignored. If re-
quired, the high-order 8 bits can be cleared by using a
Shift Instruction.

The Branch and Skip Instructions are modified to account
for the 8-bit data length. Thus, the REQO and NREQO
conditions are affected only by the low-order 8 bits. The
PSIGN and NSIGN Signals indicate the sign of the low-
order 8 bits. The Skip Instructions (SKNE, SKG, SKAZ,
ISZ, DSZ) test only the low-order 8 bits. Thus, if a Skip
Instruction compares 8-bit accumulator data with a 16-bit
program memory word, the contents of the high-order 8
bits of both words are ignored. The Add Immediate, Skip if
Zero Instruction (AISZ) is the only instruction that tests
the entire 16-bit result when 8-bit data handling is selected.
Therefore, the AISZ Instruction can be used to increment
the index accumulators (AC2, AC3) without skipping every
time the low-order 8 bits are zero. Consequently, the sign
of 8-bit numbers must be extended by using the Load With
Sign Extended Instruction to properly detect zero when
using the AISZ Instruction for 8-bit data.

Since the Overflow and Carry Flags are modified by arith-
metic instructions, the eight low-order data bits determine
the state of the Overflow and Carry Flags when the 8-bit
data length is selected. That is, the Carry Flag is set if a
carry is generated by the low-order 8 bits and the Overflow
Flag is set when an arithmetic overflow occurs in the low-
order 8 bits.

The Link Flag is affected by Shift and Rotate Instructions.
The Link Flag is set by data shifted out of the low-order 8
bits when the 8-bit data length is selected.

Working with 8-bit data and 16-bit instructions sometimes
necessitates performing arithmetic operations by using a 16-
bit operand from the program memory and an 8-bit oper-
and from the data memory. If the result is to be treated as
8-bit data, no special considerations are required. However,
if the result is to be treated as 16-bit data, the sign of the
8-bit operand first must be extended by using the Load
With Sign Extended Instruction. Also, the carry, overflow,
and conditional branch signals that are only a function of
the low-order 8 bits should not be used. Alternatively, the
BYTE Flag temporarily may be set low for 16-bit data
handling to accommodate the signals changed by the 8-bit
data-handling mode.

The previously mentioned factors make the use of PACE in
8-bit applications convenient while still providing the advan-
tages of a 16-bit instruction set. (Data lengths other than
8 bits or 16 bits also may be used when special external
hardware is provided.)

2.5.2.2 16-bit Interfacing

No special considerations are necessary for 16-bit interfac-
ing except to ascertain that the peripheral and memory data
bit lines are connected to the appropriate PACE data bit
lines (that is, DOO is the least significant bit and D15 is the
most significant bit). Also, the BYTE Status Flag must be
set low for proper 16-bit data operations.



25.2.3 BCD Data

The PACE microprocessor is capable of adding four-digit-
per-word BCD data with the Decimal Add Instruction
(DECA) or two digits per word if BYTE equals 1. Conse-
quently, no BCD-to-binary conversion is required. In ap-
pendix B, table B-4 provides a decimal addition program
example that adds two 16-digit BCD strings using the DECA
Instruction.

25.2.4 Serial Input

Serial interfaces to PACE can be provided by using a single-
bit line of the address/data bus for the interface. Another
method, which may be preferable for use in systems con-
taining only a few peripherals, is to use a jump condition
(JC13, JC14, or JC15) or interrupt input (NIR2 through
NIRS5) to service serial data. Using a jump condition or in-
terrupt input avoids the need for address decoding and re-
duces the number of interface lines. The serial input data
are applied to the selected interrupt or jump condition
input. The state of the jump condition inputs then can be
determined by instructions in the user-generated software.

25.2.6 Serial Output

As with serial input, a single-bit line of the address/data bus
can be used for the interface. However, one of the user flag
outputs (F11 through F14) may prove more effective for
some system applications. The user flags can be set or
cleared by using the Set Flag or Pulse Flag Instructions in
the user-generated software. The use of jump condition or
interrupt inputs and flag outputs is particularly well suited
for asynchronous serial devices, such as a teletypewriter,
since only one transmit and one receive line are involved.

25.3 USE OF JUMP CONDITIONS AND FLAGS

The PACE microprocessor contains a Jump Condition Mul-
tiplexer that samples the 16 jump conditions listed and des-
cribed in appendix B, table B-3. The Branch-On Condition
Instruction (BOC) tests the Jump Condition Multiplexer
Output. If the condition for branching (selected by the
condition code of the BOC Instruction) is active, a branch

occurs; otherwise the next sequential instruction is exe-
cuted.

The CONTIN Jump Condition is used by the HALT Instruc-
tion. If a Halt Instruction is executed, the microprocessor
NHALT Output is driven low to indicate that microproces-
sor activity is suspended until the CONTIN Input is pulsed.
While PACE operation is suspended, the NHALT Output
Line has a 7/8 duty cycle; that is, every eighth clock phase,
the NHALT Output goes high. The NHALT 7/8 duty cycle
must be accounted for if the output is used as a logic signal
but is of little concern if the output drives only a halt indi-
cator. The NHALT Output goes high after the Halt Instruc-
tion is terminated by pulsing the CONTIN Input. The
CONTIN Input must go high for four clock cycles, mini-
mum, for PACE operation to resume.

The three unassigned jump condition inputs (JC13, JC14,
and JC15) are for user purposes and may be implemented
as required by the application.

The 14 status and control flags provided by PACE are listed
and described in appendix B, table B-8. As previously des-
cribed, the user flags (F11 through F14) and user jump con-
ditions can be used for serial data input/output. In some
cases, additional flags may be required for control purposes.
The additional flags can be obtained conveniently by using
a DM9334 8-bit addressable latch. An unused address bit
or combination of bits may be used to enable the latch.
Three bits can be used to address one of eight flags and an-
other bit can specify set or reset as illustrated in figure 2-35.
A Store Instruction may be used to output the address
(data output is ignored).

In a similar manner, a multiplexer and latch can be used to
expand user jump conditions. The latch is loaded from the
address bus, if enabled by an unused address code, and se-
lects a Multiplexer input to one of the user jump conditions.

25.4 USE OF INTERRUPTS

The PACE microprocessor provides a six-level priority inter-
rupt structure. Each level is provided with an individual In-
terrupt Enable as shown in figure 2-36. A master Interrupt
Enable (IEN) is provided for all five lower-priority levels at
once. The master IEN is an input to the PACE Jump Con-
dition Multiplexer. The state of Interrupt is tested by
PACE during the Instruction Fetch Routine (internal to
PACE) that is executed after completion of each instruc-
tion. Thus, if Interrupt is high, the interrupt is automati-
cally serviced.

Negative-true Interrupt Request Inputs (NIR2 through
NIR5) are provided to allow several interrupts to be wire-
ORed to each input. When an Interrupt Request occurs,
the associated Interrupt Request Latch (IR1 through IR5)
is set if the corresponding Interrupt Enable Input is true.
Since the Interrupt Request Latch can be set by any pulse
exceeding one clock period, narrow timing or control pulses
can be captured. If IEN is high, then an interrupt is gener-
ated and acknowledged after completing the current in-
struction.

During the interrupt sequence, an address is provided by
the output from the priority encoder. The address is used
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Figure 2-36. PACE Interrupt System




to access the Interrupt Pointer for the highest-priority In-
terrupt Request (IR0 is highest priority; IR5 is lowest prior-
ity). The Interrupt Pointers are stored in memory locations
2 through 8 (see table 2-5) for Interrupt Requests 1
through 5 and 0, respectively. The Interrupt Pointer speci-
fies the starting address of the Interrupt Service Routine for
the particular interrupt level, except in the case of the
Level-0 Interrupt (IR0), which is used primarily for alarm
interrupts and Control Panel implementation.

Table 2-5. Locations of Interrupt Pointers

Interrupt Pointer Memory Location

Not Assigned

Interrupt-0 Program 8
Interrupt-0 PC 7
Interrupt 5 6
Interrupt 4 5
Interrupt 3 4
Interrupt 2 3
Interrupt 1 2

1

0

Initialization Instruction

Before Interrupt Service Routine execution, the Program
Counter contents are pushed onto the Stack and IEN is set
low (false). This interrupt handling requires 14 micro-
seconds (28 clock cycles). The Interrupt Service Routine
may set |EN high (true) after turning off the Interrupt En-
able for the interrupt level currently being serviced (or re-
setting the Interrupt Request). The Interrupt Enable Flags
can be set by the Set Flag (SFLG) and reset by the Pulse
Flag (PFLG) Instructions. If an Interrupt Enable Flag is set
or reset, one more instruction is executed before the inter-
rupt is enabled or disabled. The Return From Interrupt In-
struction (RTI) also may be used to set |IEN true. In this
case, there is no delay and a pending interrupt takes effect
immediately after execution of RTI.

It should be recognized that the function of the individual
Interrupt Enables |E1-1ES5 is to arm or disarm the Interrupt
Request Latch; whereas, the function of the Master Inter-
rupt Enable (IEN) and Interrupt Enable IRO is to enable or
disable the latched Interrupt Request Lines.

Three types of external interrupts are likely to occur in
PACE applications: short-duration (pulse) interrupts; long-
duration resettable interrupts; and nonresettable interrupts.
The short-duration interrupt exists for less than the inter-
rupt response time and may be caused by a strobe pulse
from a peripheral device or the occurrence of a high-speed
transient condition. A short-duration interrupt must be
latched to be recognized. Interrupts longer than the clock
period are latched by the PACE Interrupt Request Latches.
The Interrupt Service Routine must reset the Interrupt Re-
quest Latch by turning off the Interrupt Enable for the level

being serviced. If the Interrupt Enable is left off, Interrupt
Request pulses cannot set the Interrupt Request Latch.

Long-duration resettable interrupts last longer than the in-
terrupt response time and may be reset by the Interrupt
Service Routine. An example is a Buffer-full Interrupt by a
peripheral device. The Interrupt Service Routine empties
the buffer, removing the interrupt. A long-duration inter-
rupt is ignored when Interrupt Enable is low but still gener-
ates an interrupt when Interrupt Enable is set true. In ser-
vicing long-duration interrupts, the Interrupt Request Latch
must be cleared after the interrupt is reset by the Interrupt
Service Routine.

Long-duration nonresettable interrupts last longer than the
interrupt response time and are not reset by the Interrupt
Service Routine. An example of a long-duration nonreset-
table interrupt is a photoelectric cell that detects the pre-
sence of an item on a conveyor. The signal produced by the,
photoelectric cell (or some other sensor) may last for a sig-
nificant portion of a second. Setting the Interrupt Request
Latch on the edge of the interrupt is desirable and may be
accomplished using a simple RC circuit or single-shot to
generate a pulse on the edge of the interrupt.

The interrupt response time for PACE is equal to the time
to finish the current instruction at the time of the interrupt,
plus the time to access the first instruction of the Interrupt
Service Routine. Instruction execution times are given in
appendix B, table B-2.

An example of an Interrupt Service Routine for Interrupt
Level 3 is shown in table 2-6. Memory location 4 contains
the address of the first instruction in the routine. When a
Level-3 Interrupt occurs, the first instruction preserves the
state of the flags on the Stack.

NOTE

IEN is set false by the interrupt prior to
being saved on the Stack.

The flag data then are loaded into ACO and all bits which
are to be modified are masked out to zero. The desired bits
then are set true by ORing with IESTAT. If the routine is
interruptable, then |E3 is set to zero and IEN is set to one.
The modified status word then is transferred from ACO to
the status register. The actual servicing of the interrupting
device then takes place. At the end of the routine, the flags
are restored and a Return Instruction is executed. If the in-
terrupts are to be reenabled, the RTI Instruction must be
used since RTI sets IEN true and restores the PC from the
Stack.

A Stack Interrupt occurs when the Stack-empty or Stack-
full condition exists. The Stack Interrupt consists of a
pulse applied to the set input of Interrupt Request Latch 1
(see figure 2-36). The pulse sets the latch if the IEN1 Flag
is true; otherwise, the pulse is ignored. The Stack is imple-
mented with a RAM and a Pointer which can access RAM
locations 0 to 9. A pulse occurs when the Stack Pointer is
at 0 (one entry on Stack), and a Read-Stack Operation oc-
curs to empty the Stack. A pulse also occurs when the
Stack Pointer is equal to 7 (eight entries on Stack), and a



Write-Stack Operation occurs to fill the ninth word and
leave one word empty to be used by the interrupt. When a
Stack Interrupt occurs, the Stack condition can be detar-
mined by using the Stack-full Jump Condition (STFL).

With the interrupt scheme described, an interrupt does not
occur at initialize but does occur every time the Stack be-
comes empty. If the Stack is to be extended into memory,
a Stack-empty Interrupt is required but may be inhibited
by turning off IEN1 in other cases. In order to prevent a
Stack Interrupt when both hardware and software Stacks
become empty, a dummy word may be pushed on the Stack
by the Initialize Routine.

The Level-0 Interrupt is not maskable under program con-
trol. A Level-0 Interrupt may be used for alarm conditions
such as a power failure or for implementing a software-based
Control Panel such as that contained in the IPC-16P Micro-
processor Development System. A Level-0 Interrupt can be
generated by using the PACE NHALT and CONTIN Signal
inputs. Figure 2-37 illustrates the relative timing for Level-0
Interrupt generation. As is shown in figure 2-37, the
CONTIN Signal can be used as an interrupt acknowledge
signal. For cases where an interrupt acknowledge is not
required, or where the CONTIN Signal is used as a sense in-
put to the program, the CONTIN Signal can be held con-
tinuously low. While holding the CONTIN Signal continu-
ously low, the NHALT Signal must be driven low for the
duration of the longest instruction execution time plus
eleven clock cycles to guarantee that a Level-0 Interrupt
occurs.

After the NHALT Signal returns to a high state, the Level-0
'Imerrupt is serviced. Servicing consists of first setting the
Level-0 Interrupt Enable (IR0 INT ENABLE in figure 2-36)
low to lock out all other possible interrupts. Next, the
PACE Program Counter contents are stored in the location
specified by memory location 7 (see table 2-5). Then, the

instruction at memory location 8 is executed. Storing the
Program Counter contents in a memory location instead of
on the Stack prevents generation of a Stack-full Interrupt.

To return from a Level-0 Interrupt, the PFLG15 or
SFLG15 Instruction is executed to set the Level-0 Inter-
rupt Enable Output high after execution of one additional
instruction. The additional instruction is typically a JMP@
through memory location 7, which contains the Program
Counter contents. Thus, a proper return to the interrupted
program can be effected. During initialization, the Level-0
Interrupt Enable is set high.

In some applications, expansion of the user interrupts by
providing several interrupts on a single input may be desir-
able. Several interrupts can be provided on a single input
by using open-collector gates for a wired-OR input and
polling all the devices on a given level to discover the origin
of the interrupt. However, in some applications, the polling
technique may take excessive time. In such cases, use of
the DM9318 Priority Encoder is recommended to encode
the number of the highest-priority interrupting device. A
single instruction in the Interrupt Service Routine then can
be used to read the number of the interrupting device over
the data bus. The use of the DM9318 Priority Encoder is
shown in figure 2-38. The use of a DM8131 Comparator
with latched output to detect the appropriate peripheral
address also is illustrated in figure 2-38.

NOTE

Status register masking is necessary only
when Interrupt Enable status is to be
modified to allow higher priority devices
to interrupt. Pushing the status register
onto the Stack is necessary only if the
routine alters the contents of the status
register.

NHALT l
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Figure 2-37. Relative Timing for Level-0 Interrupt Generation
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Figure 2-38. Use of DM9318 Priority Encoder and DM8131 Comparator for Interrupt Expansion and Detection

255 IMPLEMENTATION OF INITIALIZE AND nal occurs. After the 16 clock cycles, the first NADS Signal

CYCLE EXTEND SIGNALS occurs and the first instruction is accessed from memory
location X‘0000, unless a Level-0 Interrupt (Control Panel
Interrupt) is present. All other interrupt levels are disabled.
Figure 2-24 shows a circuit that can be used for generating
an INIT Signal during system power-up. The resultant out-
put must be inverted to provide NINIT.

The following paragraphs describe the use of Initialize and
Cycle Extend Signals. The Initialize Signal is used to initial-
ize the PACE microprocessor and other system elements
during the power-up condition or at any other desirable
time. The Cycle Extend Signal can be used to increase the
1/0 cycle time by multiples of the clock period.

25.5.2 Cycle Extend

25.5.1 |nitialize The PACE Extend Input can be used to increase /0 cycle

The PACE Initialize Signal (NINIT) input may be used at times by multiples of the clock period (see figure 2-6). To
any time to initialize the microprocessor and should always extend 1/0 cycles, a circuit like that illustrated in figure
be used during system power-up. Application of a low 2-39 can be used. The NADS Signal is used to initiate the
NINIT Signal clears the Stack Pointer, sets the flags to zero, Extend pulse while the TTL CLK from the System TTL
sets the Level-0 Interrupt Enable true, and sets the Program Timing and Control Bus is used to count out the desired
Counter contents to zero. The accumulators assume an number of clock cycles. The circuit shown in figure 2-39
arbitrary state. The NADS, IDS and ODS data strobes are provides an extend of one clock cycle for data-input opera-
set false. Thus, if system data are to be preserved during tions, as might be required for an MOS ROM.
initialization, NINIT should be inhibited during data output

The Extend Input also can be used for suspending the mi-
croprocessor activity to provide a cycle-steal for Direct
The PACE data strobes (NADS, ODS, and IDS) are inactive Memory Accessing (DMA). Refer to the /mplementation
for 16 clock cycles after the trailing edge of the NINIT Sig- of DMA paragraph for more information.

cycles.



Table 2-6.

Interrupt Service Routine Example

Assembly Code

Explanation

=4
.WORD
. =500

ISERV3: PUSHF
PUSH
CFR
AND
OR
CRF

INTXIT:  PULL
PULLF
RTI

MASK: .WORD

IESTAT: .WORD

ISERV3

ACO

ACO

ACO, MASK
ACO, IESTAT
ACO

ACO

(mask data)

(Interrupt Enable status data)

Set location counter equal to 4.
Pointer to service routine.

Set location counter equal to 500.
Save flags on Stack.

Save ACO.

Move flags to ACO.

Mask out old Interrupt Enable status.
OR in new Interrupt Enable status.

Store in Flag Register.

Interrupt Service Routine.

Restore ACO.
Restore flags.

Return to interrupted routine.

NADS
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1DSCLK
1DS *
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CLK I I I I I I I I I
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1DS l I
IDSCLK. | I I I "
EXTEND I I
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Figure 2-39. Circuit and Timing Diagram for One Clock

Cycle Extend
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Figure 2-41. Timing Required from DMA Bus Controller

25.6 IMPLEMENTATION OF DMA

The PACE ODS and IDS Signals should be tested by the
DMA Bus Controller for active states. If ODS and IDS are
inactive and a priority bus request is present from a peri-
pheral, then NADS should be tested for 1.5 clock cycles,
minimum, while generating an Extend. |f NADS is not ac-
tive within 1.5 clock cycles, then the DMA Bus Controller
can generate a Master Bus Grant (MBG). If IDS, ODS, or
NADS is active within 1.5 clock cycles, the Extend Signal
should be removed until the PACE 1/0 cycle is complete.
When generated, the Extend Signal suspends the PACE Mi-
croprocessor operation until the Extend Signal goes low.
After the Extend Signal goes high and no NADS occurs for
1.5 clock cycles, the MBG Signal should go high. During
the high MBG Signal, BNADS should go low. Then, the
BODS/BIDS Signals should go high, as required for output/
input operations between peripherals and memory. The
cycle should be completed before the Extend and MBG Sig-
nals terminate. Approximately 0.5 clock cycle after BODS/
BIDS terminates, the bus cycle is ended. Care should be ex-
ercised not to extend the bus cycle beyond refresh require-
ments of the PACE microprocessor (see data sheet).

As an alternate method, microprocessor operation may be
suspended by driving the PACE NHALT Input low with an
external gate. The external gate output overrides the PACE
output buffer. Microprocessor operation then is suspended
after execution of the current instruction. The suspension
may last for an indefinite period of time without loss of
CPU status and may be terminated by use of the PACE
CONTIN Input (properly sequenced with removal of the
NHALT Input). The timing sequence for the NHALT and
CONTIN Signals is shown in figure 2-42. The NHALT and
CONTIN method for suspending PACE operation can be
useful for DMA block data transfers which require full bus-
throughput capacity.

STALL
NHALT INTERRUPT
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5 CLOCK STALL
CYCLES # INT
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—

- APPROXIMATELY

77|

12 CLOCK 4 CLOCK
la-CYCLES—»1=&CYCLES
MINIMUM MINIMUM

3 CLOCK CYCLES
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Figure 2-42. Timing Diagram for Externally Applied NHALT and CONTIN Signals
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25.7 MINIMAL CONTROL PANEL

The previously described programmed halt and processor
stall input allow the implementation of a simple Cuntool
Panel with a minimum of components. The Control Panel
provides HALT, SINGLE INSTRUCTION, and RUN modes
and displays data for a selected trap address or data and ad-
dress for each single instruction executed.

The control logic and the associated timing are shown in
figure 2-43. A one-shot is used in conjunction with the
SINGLE INST Switch contact closure time (asst'med great-
er than one-shot delay plus 12 clock cycles) to provide the

proper single-instruction timing. The time between single-
instruction closures is assumed to exceed the longest in-
struction execution time. The single-instruction sequence is
terminated by generating a halt after the first NADS. (The
halt must be generated in less than eight clock cycles after
NADS.) The RUN mode is entered by generating the single-
instruction timing and inhibiting the termination on ADS.

The data display logic is shown in figure 2-44. In the
HALT mode, the address and data for each single instruc-
tion execution are displayed. In the RUN mode, switch-
selected address and data are displayed each time the select-
ed address occurs on the data bus.

While the capabilities of a simple Control Panel are limited
and may not be suitable for the program development stage,
a simple Control Panel is adequate in certain end applica-
tions. A very complete Control Panel facility is provided
for program development purposes by the PACE Develop-
ment System, IPC-16P, described in chapter 4.
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Figure 2-44. Panel Data Display Logic



APPENDIX A

APPLICATION INFORMATION

4.1 INTRODUCTION

In order to successfully apply any MOS/LSI microprocessor in a custom design, close attention must
be paid to the electrical characteristics and timing details of the various control, timing, and data
signals.

This chapter provides the practical information needed to use the PACE microprocessor as an integrated
circuit component. The information presented in this chapter is supplementary to the information pro-
vided in previous chapters.

4.2 ELECTRICAL SPECIFICATIONS

Detailed electrical specifications are provided by the IPC-16A/500D PACE data sheet. A copy of the
data sheet is contained in appendix A.  The data sheet is provided for reference only, and the latest
revision, published separately, always should be consulted for up-to-date corrections and supple-

mentary information before finalizing a design. -

4.3 CLOCK REQUIREMENTS

Clock inputs to the PACE chip are single-phase true and complement signals with full MOS voltage
swings. The definitions of clock timing parameters are provided by figure 4-1.

tp
1CLOCK CYCLE

CLK

tcLk i“‘w CI.K_—I = tcik

o TN

tova —| f-— —] ~—tove

tNCLK tw NeLK t neLK

Note: Clock timing referenced to 10% and 30%
amplitude points.

Figure 4-1. Clock Timing Parameters



5.4 USER GROUP

National Semiconductor sponsors COMPUTE (Club of Mi-
croprocessor Programmers, Users, and Technical Experts).
This user group is dedicated to the world-wide distribution
of your ideas and techniques relating to the use of micro-
processors. Members of COMPUTE communicate on a regu-
lar basis by way of The Bit-Bucket newsletter published by
National Semiconductor. In the newsletter, you will find
everything from soup to nuts — even a user-submitted
software library. So get involved with PACE and COM-
PUTE; they make an excellent partnership. You can meet
the former by calling your nearest sales representative and
the latter by writing to:

COMPUTE/470

National Semiconductor Corporation

2900 Semiconductor Drive

Santa Clara, California 95051

Telephone: (408) 732-5000, Extension 7183

Don’t forget the /470 in the address. That's our mail stop,
and your letter will be delayed (or worse yet, lost) without it.



The two clock inputs (CLK and NCLK) are used by the PACE chip to generate eight internal clock
signals from every four external clock cycles. The eight internal clock signals are used for sequencing
the internal logic circuits.

4.3.1 Clock Generation

Several approaches may be used for clock generation, depending on the-system performance and cost
objectives. The clock generator functions required are shown in figure 4-2.

TIMING
ELEMENT
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i TRUE/ CLK
1 ! Mos ———_
| SQUARING | COMPLEMENT

OSCILLATOR |——— ?:?Rcm"r ¥ VERLAD LEVEL |york
! | DRIVER |——&
U | LIMITING

Figure 4-2. Clock Generator Functions Required

The oscillator (see figure 4-2) may be a simple RC-controlled pulse generator, or, if accurate fre-
quency control is desired, a crystal-controlled oscillator can be used. For higher performance
systems, a Squaring Circuit may be desirable to provide a 50-percent duty cycle waveform. True

and complement waveforms then must be generated, and the amount of overlap must be within specifica-
tion (see data sheet). The resultant signals then must be translated to the MOS voltage level required
by PACE. The final clock generator outputs, after MOS voltage-level translation, are supplied to
PACE as the CLK and NCLK Signals.

For many applications, the PACE System Timing Element, IPC-16A/502, provides a cost effective,

single-package solution for all the functions indicated in figure 4-2 without sacrificing performance.
The components listed in table 4-1 are also useful in configuring a variety of clock generators.

Table 4-1, Components Used For Clock Configurations

Component Function

DM74LS124 Dual Oscillator Crystal- or capacitor-controlled TTL oscillator,
Second oscillator may be used for system timing,
if required.

LM375 Oscillator Crystal or LC oscillator with TTL output.

MH7803 Two-phase Complete oscillator and clock driver in single

Oscillator/Clock Driver package. Requires operation of PACE chip at
reduced clock frequency (approximately 500 kHz).




Table 4-1. Components Used For Clock Configurations (Continued)

Component Function

MH0026 Two-phase MOS High-speed dual clock driver in 8-pin mini DIP,
Clock Driver

MH0025 Two-phase MOS Medium-speed, low-cost dual clock driver in 8-
Clock Driver pin mini DIP,

MH0009 DC-coupled Two-phase High-speed dual clock driver. Provides TTL
MOS Clock Driver compatible, dc-coupled inputs, thereby eliminating
need for input coupling capacitors.

4.3.2 Clock Frequency

The clock frequency may be chosen either to maximize the microprocessor execution speed-or to
simplify clock generator design/layout and memory interface timing. High-speed clock generation
requires more components and increases crosstalk, overshoot, and power dissipation., In addition,
high-speed clock generation requires the use of the EXTEND Signal to interface with slow memories.
However, careful design and layout prevents problems and achieves higher performance.

Medium- or low-speed clock generation, having slow rise and fall times and a cycle time long enough
to access the slowest memory without using the EXTEND Signal, simplifies design and layout but
sacrifices performance. If the reduced performance level still is adequate for the application, the
aly loss is in excess performance for future expansion capability.

4.3.3 Clock Overlap

The clock overlap specifications (listed in the data sheet) are sufficient to allow true and complement
signals to be used for the clock inputs. However, care should be exercised in selecting the clock
circuit components to minimize delays which increase overlap.

A pair of cross-coupled NOR gates may be used (as shown in figure 4-3) to provide nonoverlapping
inputs to the clock drivers. Two-phase nonoverlapping clocks may be used in systems where reduced
clock cycle time is acceptable.

FROM
OSCILLATOR

TO CLOCK
DRIVER

| S ——

NONOVERLAP
DELAY INVERTERS

Figure 4-3 Circuit for Nonoverlapping Clock Signals



4.3.4  Clock Overshoot and Crosstalk

High-speed clock circuits tend to overshoot the supply voltage levels due to the inductance of the clock
lines and the capacitive load internal to the PACE chip. If the maximum positive level of Vgg + 0.3 volts
is exceeded, data internal to the PACE chip may be lost. In order to reduce overshoot, minimize the
length of the clock lines and do not use fast rise- and fall-time clock drivers that are not required by

the application. If high-speed drivers are used, series damping resistors should be provided to prevent
overshoot. The damping resistance value should be determined empirically for any given circuit board
layout and is likely to be in the range of 30 to 60 ohms. The capacitive load presented by the PACE

chip varies with the internal clock phase and control functions. The damping resistance value should be
chosen to prevent overshoot with the smallest possible resistance value rather than to excessively
reduce rise and fall times with the largest resistance value.

Capacitive crosstalk from one clock line to the other may occur with high-speed clocks. Crosstalk

can be reduced by isolating the clock lines with ground lines and by physically placing the series

damping resistors close to the drivers (see figure 4-4). High-resistance bleeder resistors (connected
from the driver outputs to ground) are desirable for keeping the clock driver output stage in the active
(low-impedance) state. Local high-frequency filter capacitors should be provided from the clock

driver to ground. Additional information on applying clock drivers is provided in National Semiconductor
Application Note 76 "Applying Modern Clock Drivers To MOS Memories. "
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BLEEDER ISOLATION
RESISTORS GROUND
560
pf 43Q
- NCLK
OVERLAP DAMPING
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CAPS

v
GG (-12V)
(VALUES ARE TYPICAL)

Figure 4-4. Use of Damping and Bleeder Resistors for Overshoot and Crosstalk Reduction



4.4 SIGNAL BUFFERING

The output buffer on the PACE data lines is an open-drain transistor with the source connected to V.
The open-drain transistor output buffer is designed to drive a current sense amplifier, as provided
on the 8-bit PACE bidirectional transceiver element, IPC-16A/501, or the 6-hit DS3608 sense amplifier.
The current sense amplifier must have TRI-STATE ® input capability, since the PACE data pins are
bidirectional. A pulldown resistor can be used to allow the PACE chip to drive 74C CMOS or low-power
TTL dgvices (see figure 4-5). For such an application, the pulldown resistor should be switched from
-12 volts to +5 volts when IDS goes true to ensure an adequate logic '1' input signal to PACE. The
pulldown resistor with switched supply buffering approach requires a slower operating speed than the
sense amplifiers, since the data line capacitance must be given time to charge, whereas voltage re-
mains constant when driving current sense amplifiers,

Ss*

DM 3608

{>—> OUTPUT
INPUT

o™ >
» OUTPUT
1

DS
INPUT

TSEN = TRI-STATE ENABLE

Figure 4-5. Use of Pulldown Resistors with Switched Supply to Drive CMOS or LPTTL

The NHALT and CONTIN PACE outputs are designed to drive low-power TTL or 74C CMOS directly.
(The NHALT and CONTIN outputs also can drive sense amplifiers through a series diode.)

All inputs to PACE except BPS, CLK and NCLK are designed to be driven by TTL gates. On-chip
pullup resistors are provided to insure the specified logic '1' level. If several devices are tied to a
single input or I/O pin, the leakage currents should be kept to a minimum to avoid degrading the )
logic '1' level and thereby reducing noise margin. DM8097 or DM80L97 hex TRI-STATE ® buffers
may be used for data input to bidirectional pins if the IPC-16A/501 bidirectional transceiver element is
not used.



The BPS Signal is an MOS-level input with an internal pulldown transistor that causes the input to assume
a logic '0' state if not connected.

4.5 DATA BUS STRUCTURES

The multiplexed data pins on PACE allow implementation of a fully multiplexed bus structure to minimize
wiring costs. Alternatively, a variety of multiple bus structures may be implemented. Three different

possibilities are shown in the diagrams of figure 4-6A, B, and C. Devices which are useful in imple-
“menting the illustrated, and other, bus structures include the following:

e DM8097/DM80L97/80C97 Hex TRI-STATE@ Buffer

e DS3608 Hex TRI-STATE ® Current Sense Amplifier

e DM8542 Quad TRI-STATE ® I/0 Register
e DM8131 or DM8160 6-bit Comparator
e DM8551 TRI-STATE ® Quad D Flip-flop

e DMS8833 TRI-STATE@ Quad Transceiver

4.6 MEMORY

The PACE processor interfaces with a wide variety of memory devices, allowing an optimized choice
for a given application. The EXTEND Signal may be used to extend the memory access time in incre-
ments of one clock cycle. In some applications, mapping a portion of the base-page addresses into
another address range may be desirable so the base page can be shared among ROM, RAM and
peripheral devices.

Table 4-2 lists some memory parts that may be useful in PACE applications.

Table 4-2. Memory Parts for PACE Applications

Type Number Description
RAM MM5269 256 x 4-bit static N-channel RAM with address latches
MM2102 1K x 1-bit static N-channel RAM
MM1101 256 x 1-bit static P-channel RAM
MM5262 2048 x 1-bit dynamic P-channel RAM
MM74C200 256 x 1-bit CMOS RAM
DMB86L89 64 x 4-bit bipolar RAM




Table 4-2. Memory Parts for PACE Applications (Continued)

Type Number Description

DM74200 256 x 1-bit bipoler RAM

DM74204 1024 x 1-bit bipolar RAM

DMT74L89 16 x 4-bit bipolar RAM

PROM DM8578 32 x 8-bit bipolar PROM

DM8574 256 x 4-bit bipolar PROM

MM5203 256 x 8-bit MOS PROM

MM5204 512 x 8-bit MOS PROM

ROM DM8598 32 x 8-bit bipolar ROM (compatible with DN;8578 )

PROM)

DM8597 256 x 4-bit bipolar ROM (compatible with DM8574
PROM)

DMS86L97 256 x 4-bit bipolar ROM

MM5220/5221 128 x 8-bit MOS ROM

MM5213 256 x 8-bit MOS ROM (compatible with MM5203
PROM)

MM5214 512 x 8-bit MOS ROM (compatible with MM5204
PROM)

DM8796 512 x 8-bit bipolar ROM

MM5215 1024 x 12-bit MOS ROM

DM8531 2048 x 8-bit bipolar ROM with address latches

DM8581 1024 x 16-bit bipolar ROM with address latches

4,17 PERIPHERALS

The following paragraphs discuss peripheral addressing and interfacing techniques.
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4.7.1 Addressing

Peripheral devices are addressed in the same manner as memory locations. Whenever possible, an
easily decoded section of memory address space for peripherals should be selected, even though the
entire addressing capability of that addressing space is not utilized. While a wide variety of addressing
schemes are possible, the Micropr D it System IPC-16P peripheral and memory address
assignments should be taken into account in selecting a scheme. On the IPC-16P, addresses X'8000-
X'BFFF are assigned to peripherals, and other addresses are available for memory. The IPC-16P
system utilizes several of the peripheral addresses for IPC-16P peripheral devices (as listed in

chapter 7). Consequently, during the program development phase, the user should avoid conflicts with
addresses dedicated to the IPC-16P peripherals.

In some applications, assignment of part of the 16-bit address word as a command or control field may
be a desirable way to pass control information to the peripheral as part of the address word, rather
than to use a data word, For example, the IPC-16P peripherals use the word assignment shown in
figure 4-7, which provides a 3-bit peripheral order field.

15 | 14 {13 | 111 |10 L ! 1 | 13 12 | L0
1 0 not used address order

Figure 4-7. IPC-16P Word Assignment for Peripheral Addressing

4.7.2 Interfacing 8-bit Peripherals

8-bit peripherals or memories should be interfaced to the eight low-order data lines. The eight high~
order data lines are 'don't care' lines and need not be interfaced. The software can mask out the high-
order data lines by using the Load with Sign Extended Instruction (LSEX) for loading arithmetic data

or by using the shift instructions to set the eight most significant bits to zero. In many cases, the
eight most significant bits can be left as random data during processing, since those bits do not affect
status conditions. (See paragraph in this chapter titled '"8-Bit Data Length.'")

4.7.3 Interfacing Serial Devices

Serial interfaces to PACE can be provided over the data bus using a single bit for the data interface.
In simple systems with only a few peripherals, use of the jump condition or interrupt inputs and flag
outputs may be preferrable tc avoid the need for address decoding and reduce the number of inter-
face lines. The use of jump condition or interrupt inputs and flag outputs is particularly

for asynchronous serial interfaces, such as a Teletypewriter, since only one transmit and one receive
line are involved.

4.8 CONTROL SIGNALS

The NINIT and EXTEND control signals are discussed in the following paragraphs.

4.8.1 Initialize

The NINIT input may be used at any time to initialize the processor and always should be used at
power up. The initialize signal causes the stack to initialize, the flags to be set to zero, the Level-
zero Interrupt enable to be set true, and the Program Counter to be set to zero. The accumulators
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initialize to an arbitrary state. NADS, IDS and ODS data strobes are set false if NINIJ occurs during
an I/0 operation, but the signal sequence is not predictable. Thus, if system data is to be preserved
during initialization, the NINIT Signal should be inhibited during data I/O cycles.,

After the trailing edge of the NINIT Signal, there is no activity on the PACE data strobes for 16 clock
cycles. After the 16 clock cycles, the first NADS occurs and the first instruction is accessed from
location zero, unless a Level-zero Interrupt is present (all other interrupt levels are disabled).

4.8.2 Extend

The EXTEND input may be utilized to increase I/O cycle times, by multiples of the clock period, or

to provide cycle stealing memory access capability, by suspending CPU activity. To extend I/O cycles,
the NADS Signal may be used to initiate the EXTEND pulse while a TTL version of CLK may be used

to count out the desired number of clock cycles. The circuit illustrated in figure 4-8 provides an
extend of one clock cycle (shown in timing diagram of figure 4-8) for data-input operations, as might
be required for an MOS ROM,

_]-_—- D Q|——— EXTEND

CLK
IDS IDSCLK
CLK F —
CLR
ODS
NINIT
CLK
~ NADS 1 I
s —  —
IDSCLK 1

EXTEND 1

Figure 4-8. Circuit and Timing Diagram for One Clock Cycle Extend

To use the EXTEND input for suspending CPU operation, the EXTEND input is brought true immediately
following a data I/O operation. Thus, the data bus then is free for use by peripheral devices to com-
municate with memory. If waiting for the occurence of a CPU I/0 cycle is impractical, the EXTEND
input may be brought up any time an I/O cycle is not in progress. If no NADS Signal occurs for 1-1/2
clock cycles, a suspend operation is guaranteed and the peripheral may use the bus. If an NADS does
occur, the EXTEND should be removed and then brought high again at the end of the I/0 cycle, at

which time a suspend is assured. The circuit shown in figure 4-9 provides the functions required for a
suspend operation and may be used as the basis of a cycle-stealing DMA system. (Actually this approach
will ti stall the pr and es steal a cycle.) Maximum response time equals one
clock cycle plus one I/O cycle. Note that this approach is only suited to transfers of one or a few words,
due to the limited length of an individual extend duration (see data sheet). The Bus Request should be held
true until the DMA operation is complete.
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Figure 4-9.

4.9 EXPANSION OF FLAGS AND JUMP CONDITIONS
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Four user flags are provided on the PACE CPU. In some cases, additional flags may be required for
control purposes. The additional flags can be conveniently obtained by using a DM9334 8-bit address-
able latch., An unused address bit or combination of bits may be utilized to enable the latch; 3 bits

then can address one of eight flags and another bit can specify set or reset as illustrated in figure 4-10.

A Store (ST) instruction may be used to output the address (data output is ignored).

15 14 | 13 ) 1 1 ] 1 1 | 1 4 13 10
01 not used s/r flag
| N
L‘ Flag expansion address code enables latch
NINIT —f ¢
NADS 9334 7p—
BIT 15 6
BIT 14 5p—
BIT3 —D 41—
3 f—
BIT2 —A2 2 —
BIT1 ——Al 1p—
BIT0 —A0 0p—

Figure 4-10. Example Circuit and Word Format for Obtaining Additional Flags
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In a similar manner, a multiplexer and latch can be utilized to expand the user jump conditions. The
latch is loaded from the address bus if enabled by an unused address code and selects a multiplexer input
to one of the user jump conditions.

4.10 8-BIT DATA LENGTH

4.10.1 Overall Description

In applications where the principal data length is 8 bits, using an 8-bit data memory and taking ad-
vantage of the data-length-selection hardware features may be desirable. The data-length input
modifies the operation of shift instructions and status flags to handle 8-bit data. The instruction
memory always is 16 bits wide, and proper execution of the 16-bit instructions occurs independently
of the data length selected. The use of 16-bit instructions in 8-bit data applications provides higher
execution speeds. The hardware design allows the system to be used in the 8-bit mode for variable
data, while, at the same time, using all 16 bits of the ALU, registers, and stack to manipulate 16-bit
memory addresses. Thus, the 16-bit instruction set is used to manipulate 8-bit data.

NOTE

The use of a status flag to specify data length

bles the micropr to be switched
between 8- and 16-bit modes under program
control.

When using the 8-bit data configuration, the 8-bit data is right justified in the 16-bit accumulator.

The state of the leftmost 8 bits and the consequent effect on microprocessor operations must be con-
sidered. The following items are reviewed in the following paragraphs with respect to the 8-bit data
length: data I/O, memory addressing, status flags, conditional branches, shifts and rotates, immediate
instructions and mixed data lengths.

4.10.2 Data Input/Output

A system using the 8-bit data configuration usually has a 16-bit instruction memory (typically ROM),
an 8-bit data memory, and an 8-bit peripheral device interface. When data is loaded into an accumu-
lator from the 8-bit memory or peripheral device, the unused eight data lines may be driven to a logic
'0' by the use of eight open collector gates. Thus, the left byte of the accumulator is zero. The un-
used eight data lines also may be left open (saving eight gates), in which case the left byte has an un-
determined value dependent upon the system noise and previous states. In most cases, a nonzero left
byte is of no concern, since status flags, conditional branches, shifts, and rotates ignore the left byte.
However, the programmer must be aware of the nonzero value, since the results of instructions such
as Copy Register to Flags (CRF) are determined by the left byte as well as the right byte. In cases
when the state of the left byte is significant, that byte may be set to zero by using the shift instructions
with a count of zero.

4.10.3 Memory Addressing

Both the indexed and base-page addressing modes require some consideration when using the 8-bit data
configuration. For base-page addressing, accessing both 16-bit (program words) and 8-bit (data words)
data using the base-page mode may be desirable. Since two different memories are used, splitting

the base page between the two memories also may be desirable. Base-page splitting is accomplished
most easily by using the Base-Page Selection (BPS) input to cause the base-page address to be in the
range of -128 to +127, rather than 0 to +255,



For indexed addressing, Accumulators 2 and 3 are used as 16-bit memory pointers. If Accumulators
2 and 3 are loaded from the 8-bit memory, the upper byte may be set equal to the sign of the lower
byte by using the LSEX Instruction. Thus, a 16-bit signed twos-complement number results.

4.10.4 Status Flags

The Overflow and Carry Flags are modified by arithmetic instructions. If the 8-bit configuration is
selected by the state of the Byte status flag, the Overflow and Carry Flags are set based on the lower
8-bit byte only. That is, the Carry Flag is set if there is a carry out of the lower byte and the Over-
flow Flag is set based on an arithmetic overflow of the lower byte.

The Link Flag is affected by shift and rotate instructions. The Link Flag is set by the data shifted
out of the lower byte when the 8-bit configuration is selected.

4.10.5 Conditional Branches

The branch and skip instructions are modified to account for the 8-bit data length, Thus, the REQ0O
and NREQO conditions are affected only by the lower byte. The PSIGN and NSIGN Signals indicate
the sign of the lower byte. The skip instructions (SKNE, SKG, SKAZ, ISZ and DSZ) test only the
lower byte. Thus if 8-bit accumulator data is compared with a 16-bit program memory word,_the
contents of the upper byte of both words are ignored. The Add Immediate, Skip if Zero Instruction
(AISZ) is the only instruction that tests the entire 16-bit result when the 8-bit configuration is
selected. Thus, the AISZ Instruction can be used to increment the index accumulators (AC2, AC3)
without skipping every time the lower byte is zero. Consequently, the sign of 8-bit numbers must be
extended (LSEX Instruction) to properly detect zero when using AISZ with 8-bit data,

4.10.6 Shifts and Rotates

The shift and rotate instruction group (SHL, SHR, ROL, ROR) operates on the lower byte only and sets
the upper byte to zero. Shift instructions with a count of zero provide a convenient means of setting
the left byte of accumulators to zero when 8-bit data is used.

4.10.7 Immediate Instructions

The immediate instructions (LI, CAI, AISZ) all provide 16-bit, twos-complement data inputs. When
working with 8-bit data, the upper byte usually can be ignored. If required, the upper byte can be
cleared using a shift instruction.

4.10.8 Mixed Data Lengths

Working with 8-bit data and 16-bit instructions sometimes necessitates performing arithmetic operations
by using a 16-bit operand from the program memory and an 8-bit operand from the data memory., If

the result is to be treated as 8-bit data, no special considerations are required. If the result is to be
treated as 16-bit data, the sign of the 8-bit operand must first be extended by using the LSEX Instruction.
Also, signals (carry, overflow, and conditional branches) that are only a function of the lower byte
should not be used. Alteruati\;ely, the Data Length Flag may temporarily be set to 16 bits, if desired.



4.10.9 Other Data Lengths

The previously mentioned factors make the use of PACE in 8-bit applications very convenient while still
providing the advantages of a 16-bit instruction set. However, data lengths other than 8 or 16 bits may
also be used, but special hardware conveni are not provided. In particular, 4-bit applications
involving BCD data may be implemented with PACE, since the Decimal Add Instruction (DECA) provides
the required arithmetic capability. 4-bit shifts, status information, and special branch conditions are
not required for many BCD applications.

4.11 INTERRUPTS

4.11.1 Expanding User Interrupts

Four user interrupt inputs are provided as explained in chapter 2. In some applications, providing
several interrupts on a single input may be desirable. Several interrupts can be provided on a single
input by using opencollector gates for a wired-or input and polling all the devices on a given level to
discover the origin of the interrupt. However, in some applications, the polling technique may take
excessive time. In such cases, use of the DM9318 Priority Encoder is recommended to encode the
number of the highest priority interrupting device. A single instruction in the interrupt service routine
then can be used to read the number of the interrupting device over the data bus. The use of the
DM9318 Priority Encoder is shown in figure 4-11. The use of a DM8131 Comparator with latched
output to detect the appropriate peripheral address is also illustrated by figure 4-11.

NINT7 d7 GS p———p NIR 2.3.40r 5
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I qe2 Al p——ro STATE |—— ¢ 1 p.cp
R [ Bt A0 o—— BUFFER \——o9J /74 BUS
NINTOo — g o EN
,E—o EI EO po—
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HARDWIRED T8 Ti /) Dparta BUS
DEVICE | DM8131 | ADDRESS
ADDRESS B, T, e J FIELD
STROBE
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Figure 4-11. Use of DM9318 Priority Encoder and DM8131 Comparator
For Interrupt Expansion and Detection
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4.11.2 Stack Interrupts

A Stack Interrupt occurs when the stack-empty or stack-full condition exists. The Stack Interrupt
consistsof a pulse applied to the set input of Interrupt Request Latch 1 (see figure 2-8). The pulse
sets the latch if the IEN1 Flag is true; otherwise, the pulse is ignored. The stack is implemented
with 2 RAM and a pointer which can access RAM locations 0 to 9. A pulse occurs when the stack
pointer is at 0 (one entry on stack), and a read-stack operation occurs to empty the stack. A pulse
also occurs when the stack pointer is equal to 7 (eight entries on stack), and a write-stack operation
occurs to fill the ninth word and leave one word empty to be used by the interrupt. When a Stack
Interrupt occurs, the stack condition can be determined by using the Stack-full Jump Condition (STFL).

With the interrupt scheme described, an interrupt does not occur at initialize but does occur every
time the stack becomes empty. If the stack is to be extended into memory, a Stack-empty Interrupt
is required but may be inhibited by turning off IEN1 in other cases. In order to prevent a Stack
Interrupt when both hardware and software stacks become empty, a dummy word may be pushed on
the stack by the initialize routine. See chapter 3 for an example of a software stack routine.

4.12 NHALT CONTROL LINE

The NHALT control line is used for three different functions: programmed halt indicator output,
processor stall input and nonmaskable Level-zero Interrupt input. The programmed halt indication

is of interest for many end applications. The other two features, in addition to being used for some
end applications, also are used for IPC-16P Control Panel implementation during the program develop-
ment phase.

4.12.1 Programmed Halt

During normal program execution, the NHALT control line provides a logic '1' output. If a HALT
Instruction is executed, the NHALT Line is driven to a logic '0', indicating that processor activity

is suspended until the CONTIN input is pulsed. The NHALT output logic '0' signal has a duty cycle
of 7/8; that is, every eighth clock phase the output goes to logic '1'. The NHALT 7/8 duty cycle
must be accounted for if the output is used as a logic signal but is of little concern if the output drives
only a halt indicator on the Control Panel. The NHALT output returns to logic '1' (with 100 percent
duty cycle) after the HALT Instruction is terminated by pulsing the CONTIN input. The CONTIN input
must go true for a minimum of four clock cycles.

4.12,2 Microprocessor Stall Input

To suspend operation of the PACE microprocessor under external control, the NHALT Line may be
driven low by an external gate, overriding the output buffer on the chip as shown in figure 4-12. This
feature may be useful for DMA systems requiring the processor to be idled during block data transfers.

The NHALT Signal causes operation of the processor to be suspended after the current instruction
completes execution. The suspension may last for an indefinite period of time without loss of CPU
status and may be terminated by use of the CONTIN input (properly sequenced with removal of the
NHALT input). For cases where it is desirable to know when the CPU completes execution of the
current instruction, the CQNTIN Signal line is driven with a negative-true interrupt acknowledge
signal. The entire timing sequence for the externally applied NHALT and CONTIN Signals is shown
in figure 4-13.
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Figure 4-13, Timing Diagram for Externally Applied NHALT and CONTIN Signals
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The following actions occur at the referenced points in figure 4-13.

A - The TRI-STATE ® CONTIN Driver is disabled to the high-impedance state. The
CONTIN Signal Line then is pulled high by the internal CONTIN Driver Pullup
Transistor. Event A may occur prior to event B as long as the program is not
testing the CONTIN input using the BOC CONTIN Instruction at the same time
(explained in description of event F), Event A also can occur after event B as
long as event A is not delayed to the point where event A interferes with receiving
the interrupt acknowledge signal.

B - The NHALT Signal Line is driven low by the open-collector driver causing
microprocessor operation to be suspended at the end of the current instruction.

C - The internal CONTIN Driver pulls the CONTIN Line low to indicate that the
current instruction execution is completed and CPU operation is suspended (this
may be desirable for multiprocessor systems). Event C occurs a minimum of
five clock cycles after event B and a maximum time equal to the longest instruction
execution (long shift).

D - After three clock cycles, the internal driver pulls the CONTIN Line to a Méh
level.

E - The epen-collector NHALT Driver turns off to allow the on-chip NHALT Driver
Pullup Transistor to pull the line to a logic '1' level. Event E must occur a
minimum of 12 clock cycles after the current instruction execution is completed.

The TRI-STATE ® CONTIN Driver is re-enabled to the active state (may

occur any time after the acknowledge) and drives the CONTIN Line to logic '0'.

Event F must occur at least 12 clock cycles after event E. After event F the micro-
processor then fetches the next instruction and continues with execution of the instruc-
tion.

o}
'

G - The CONTIN line must stay low for at least 4 clock cycles.

In general, if the microprocessor stall feature is used, the CONTIN input is dedicated to the stall operation.
However, multiplexing the CONTIN input is possible, so CONTIN also can be used as a general purpose sense
input. For those cases where the BOC Instruction is used to test the CONTIN input, the previous sequence

may not be used, since event A may cause the BOC Instruction to branch erroneously. In this case, the

interrupt acknowledge may not be used and the sequence shown in figure 4-14 should be followed. The sequence
illustrated in figure 4-14 keeps the TRI-STATE CONTIN Driver in the active mode all the time and uses a
one-shot timer or a counter to provide a delay exceeding the longest instruction execution time. The simpler
sequence of figure 4-14 also should be used in other cases where the interrupt acknowledge signal is not required.

NHALT j
CONTIN l - J 12 CLOCK ‘_'

— CYCLES MINIMUM M——

12 CLOCK
CYCLES MINIMUM

LONGEST
INSTRUCTION —— —>
EXECUTION TIME

Figure 4-14, TRI-STATE ® CONTIN Driver Always Active



4.12.3 Minimal Control Panel

The previously described programmed halt and processor stall input allow the implementation of a
simple Control Panel with a minimum of components. The Control Panel provides HALT, SINGLE
INSTRUCTION, and RUN modes and displays data fer a selected trap address or data and address

for each single instruction executed. :

The control logic and the associated timing are shown in figure 4-15. A one-shot is used in conjunc-
tion with the SINGLE INST Switch contact closure time (assumed greater than one-shot delay plus 12
clock cycles) to provide the proper single-instruction timing. The time between single-instruction
closures is assumed to excede the longest instruction execution time. The single-instruction sequence
is terminated by generating a halt after the first NADS, (The halt must be generated in less than

eight clock cycles after NADS.) The RUN mode is entered by generating the single-instruction

timing and inhibiting the termination on ADS.

The data display logic is shown in figure 4-16. Inthe HALT mode, the address and data for each
single instruction execution are displayed. Inthe RUN mode, switch-selected address and data are
displayed each time the selected address occurs on the data bus.

While the capabilities of a simple Control Panel are limited and may not be suitable for the program
development stage, a simple Control Panel is adequate in certain end applications.

4.12.4 Level-zero Interrupt

The Level-zero Interrupt is not maskable under program control and is the highest priority interrupt.
A Level-zero Interrupt may be used for alarm conditions such as power failure or for implementing
a software-based Control Panel. A software-based Control Panel is the type implemented on the
IPC-16P Microprocessor Development System. The software-based Control Panel has the capability
of examing and altering all registers and memory locations, as well as implementing special functions
such as bootstrap loading. A Level-zero Interrupt is generated by using the NHALT and CONTIN
“inputs as with the processor stall, but by using a different signal sequence as shown in figure 4-17.

Events A, B, C and D (in figure 4-17) occur in exactly the same manner as described in the "Micro-
processor Stall Input' paragraph. Events E and F differ between figures 4-13 and 4-17. Event E in
figure 4-17 consists of enabling the TRI-STATE CONTIN Driver and pulling CONTIN low. A

low CONTIN Signal must occur within 15 clock cycles of the start of interrupt acknowledge. Event

F completes the interrupt process. Event F consists of turning off the NHALT Driver. Event F
must occur more than 11 clock cycles following the interrupt acknowledge.

For those cases where the use of the interrupt acknowledge is not required, or where the CONTIN
Line is used as a sense input to the program, the CONTIN Line may be held continuously low, as
illustrated in figure 4-18. The NHALT must be held low for the duration of the longest instruction
execution time plus 11 clock cycles to guarantee that a Level- zero Interrupt occurs. After the
occurence of event F, the Level-zero Interrupt is serviced. Servicing consists of first setting

the Level-zero Interrupt enable false to lock out all possible interrupts (see chapter 2), Next, the
Program Counter is stored at the location specified by the contents of memory location 7. Then,
the instruction at location 8 is executed. Storing the Program Counter in a memory location instead
of on the stack prevents generation of a Stack-full Interrupt.
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Figure 4-18. CONTIN Line as Sense Input to Program

In order to return from a Level-zero Interrupt, the PFLG 15 Instruction is executed. The PFLG 15
Instruction sets the Level-zero Interrupt enable true again after the execution of one more instruction,
which is typically a JMP@ through the location where the PC is stored to cause a proper return to the
interrupted program. The Level-zero Interrupt enable is set true during initialization.
Software-driven Control Panels intended for program development monitoring are usually implemented
using the Level-zero Interrupt. The Level-zero Interrupt cannot be disabled by the program under
development and thus the Control Panel always can control system operation. Also, the Level-zero
Interrupt does not use the stack, and, thus; the stack interrupt status is not affected by the Control
Panel. Software-driven Control Panels, intended for monitoring the opemtion of the microprocessor
inan end application, often use a lower-priority, maskable interrupt, since monitoring often is
secondary to the control operations performed by the microprocessor.

The hardware for a software-driven Control Panel is quite simple, usually consisting of switches for
data input and indicators or numeric displays for data output. The switches and displays are imple-
mented as peripheral devices, which can be read and written by the microprocessor to determine
the desired control or display actions which the microprocessor must carry out. The functions of
the Control Panel then are easily modified or expanded by changing the interrupt service routine.



APPENDIX B

PACE INSTRUCTION RELATED
SUMMARIES AND PROGRAM EXAMPLES

B.1 INTRODUCTION

Table B-1 defines the notation and symbols used for the
symbolic representation of each instruction contained in
table B-2, the instruction summary. The notations in table
B-1 are presented in alphabetical order and, then, the sym-
bols are listed. Upper-case mnemonics refer to fields in the
instruction word. Lower-case mnemonics refer to the
numerical value of the corresponding fields. In cases where
both upper-case and lower-case mnemonics are composed
of the same letters, only the lower-case mnemonic is given.
The use of lower-case notation designates variables.

The formulas in table B-2 (the instruction summary) for
computing the execution times of instructions are presented
in terms of machine (microinstruction) cycles (M) and
input/output data-transfer Cycle Extends (ER for read and
EW for write). Each machine cycle (M) consists of*four
clock cycles. The following example shows the method
to be employed for computing the execution times of
instructions.

EXAMPLE

The formula (listed in table B-2) for the execu-
tion time of a RADD Instruction is 4M+Ep. If
the clock cycle (or period) is 500 nanoseconds
and the Read Cycle Extend is 500 nanoseconds,
then:  M=4(0.5 usec)=2 usec
ER=0.5 usec

therefore: 4M+ER=4(2 usec)+0.5 usec=8.5 usec.
Thus, under the hypothetical clock cycle and
Read Cycle Extend times used, the RADD
Instruction requires 8.5 microseconds for exe-
cution.

Following the instruction summary, the branch conditions
for the 16 condition codes used by the Branch-On Condi-
tion Instruction are described in table B-3.

Table B-1. Notations/Symbols Used in Instruction Descriptions

Notation/
Symbol Meaning

ACr Denotes specific working accumulator (ACO, AC1, AC2, or AC3),

where r is number of accumulator referenced in instruction.

cc

Denotes 4-bit condition code value for conditional branch
instructions.

CRY

Indicates Carry Flag is set if carry exists due to instruction (either
addition or subtraction) or reset if no carry exists.

disp

Stands for displacement value and represents operand in non-
memory-reference instruction or address field in memory-reference
instruction. Disp is 8-bit, signed twos-complement number except
when base page is referenced; in latter case, disp is unsigned if
BPS=0.

Denotes number of destination working accumulator specified in
instruction-word field. Working accumulator is ACO, AC1, AC2,
or AC3.

EA

Denotes effective address specified by instructions directly, indi-
rectly, or by indexing. Effective address contents are used during
execution of instruction.




Table B-1. Notations/Symbols Used in Instruction Descriptions (Continued)

Notation/

Symbol Meaning

fc Denotes number of referenced flag.

FR Denotes Status and Control Flags Register.

IEN Denotes Interrupt Enable Flag.

Q Denotes inclusion of 1-bit Link Flag (LINK) in shift operations.

n Unsigned number indicates number of bit positions to be shifted
in Shift and Rotate Instructions.

OVF Indicates Overflow Flag is set if overflow exists due to instruction
(either addition or subtraction) or is reset if no overflow exists.
Overflow occurs if signs of operands are alike and sign of result is
different from operands. N -

PC Denotes Program Counter. During address formation, PC is incre-
mented by 1 to contain address 1 greater than that of instruction
being executed.

r Denotes number of working accumulator specified in instruction-
word field. Working accumulator is ACO, AC1, AC2, or AC3.

STK Denotes top word of 10-word Last-In/First-Out Stack.

sr Denotes number of source working accumulator specified in
instruction-word field. Working accumulator is ACO, AC1 ,AC2,
or AC3.

xr When not zero, xr value designates number of accumulator to be
used in indexed and relative-memory addressing modes. When
zero, base-page addressing is indicated.

() Denotes contents of item within parentheses. (ACr) is read as
contents of ACr. (EA) is read as contents of EA.

L1 Denotes result of.

~ Indicates logical complement (ones complement) of value on right-
hand side of ~.

e Means repl/aces.

« Means is replaced by.




Table B-1. N /Symbols Used in | ion Descriptions (Continued)
Notation/
Symbol Meaning
@ Appearing in operand field of instruction, denotes indirect
addressing.
+10 Modulo 10 addition.
A Denotes AND operation.
v Denotes OR operation.
v Denotes EXCLUSIVE OR operation.




Table B-2. PACE Instruction Summary

Instruction/Mnemonic Operation/Description Assembler Format Execution Time/Cycles (M)

BRANCH INSTRUCTIONS

Branch-On Condition BOC (PC)«{PC) + disp if cc true BOC cc, disp 5M + ER + 1M if branch
15 12 11 L 08|07 00 16 possible condition codes (cc) exist. Condition codes are
L1 b1 L1l listed in table B-3. If condition for branching desi by
0 1 00 cc disp cc is true, value of disp (sign extended from bit 7 through
T bit 15) is added to PC and sum is stored in PC.
Jump JMP (PC)-EA JMP disp (xr) 4aM + ER
‘I5l Ll 10 oslos 07I N 00 Effective address EA replaces PC contents. Next instruc-
L tion is fetched from location designated by new contents
0 0 0 1 1 0 |xr disp of PC.
Jump Indirect JMP@ (PC)~EA) JmP @disp (xr) 4aM + 2ER
15 10[09 08| 07I Ll 00 Contents of effective address replace PC contents. Next
.| 1 I instruction is fetched from location designated by new
100 1 1 0 |xr disp contents of PC.
Jump to Subroutine JSR (STK)«+(PC), (PC)«-EA JSR disp (xr) 5M + ER
15I L1 10|09 08|07 L1 00 Contents of PC are stored on top of Stack. Effective
L 1 L1 T address replaces PC contents. Next instruction is fetched
0 00 10 1 |xr disp from location designated by new contents of PC.
Jump to Subroutine Indirect JSR@ (STK)«(PC), (PC)~(EA) JSR @disp (xr) 5M + 2ER
15I L1 10| 09|08 07 | 00 Contents of PC are stored on top of Stack. Contents of
R L1 1l L effective address replace PC contents. Next instruction
100 10 1 |xr disp is fetched from location designated by new contents
of PC.
i
Return from Subroutine RTS (PC)«{STK) + disp RTS disp 5M + ER
'1_[ L1t 08|07 L1 L 00| Contents of PC are replaced by sum of disp added to
1 1 L 11 contents pulled from top of Stack. Program control is
I1 000O0OOO disp transferred to location specified by new contents of

PC.




Table B-2. PACE Instruction Summary (Continced)

Instruction/Mnemonic

Operation/Descrip}ion

Assembler Format

Execution Time/Cycles (M)

BRANCH INSTRUCTIONS (Continued)

Return from Interrupt RTI
15 08|07 00|
) I I | I O

o1 111100 disp

SKIP INSTRUCTIONS

Skip if Not Equal SKNE

15 10{09 08|07 00|
11 IAl2 11I 1 1111111

11 1 1) xr disp

Skip if Greater SKG

15 10|09 08|07 00
| I | 1 I T

1001 11 xr disp

Skip if AND is Zero SKAZ

15 10|09 08|07 00|
11111 1 | I A |

101110 xr disp

(PC)+(STK) + disp, IEN = 1

Interrupt Enable Flag (IEN) is set. PC contents are re-
placed by sum of disp and word oulled from top of

Stack. Program control is transferred to location specified
by new contents of PC.

If (ACr) # (EA), (PC)«(PC) + 1

ACr contents and contents of effective memory location
EA are compared. |f contents of ACr and EA are not
equal, next instruction in sequence is skipped. Contents
of ACr and EA are unaltered. If 8-bit data length is se-
lected, only lower 8 bits are compared.

If (ACO) > (EA), (PC)«(PC) + 1

ACO contents and contents of effective memory location
EA are compared as signed numbers. If contents of ACO
are greater (more positive) than contents of EA, next in-
struction in sequence is skipped. Contents of ACO and
EA are unaltered. If 8-bit data length is selected, only
lower 8 bits are compared.

1f ((LACO) A\ (EA)) =0, (PC)«—(PC) + 1

ACO contents and contents of effective memory location
EA are ANDed. If result equals zero, next instruction in
sequence is skipped. Contents of ACO and EA are un-
altered. If 8-bit data length is selected, only lower 8 bits
are tested.

RTI disp

SKNE r, disp (xr)
SKG 0, disp (xr)
SKAZ 0, disp (xr)

6M+E

5M +2E + 1M if skip

M + 2B + 1M if skip

5M +2ER + 1M if skip




Table B-2. PACE Instruction Summary (Continued)

Instruction/Mnemonic

Operation/Description

Assembler Format

Execution Time/Cycles (M)

SKIP INSTRUCTIONS (Continued)

Increment and Skip if Zero 1Sz
15 10J09 08[07 00
| | 1 L1 11111

1000 11 xr disp
Decrement and Skip if Zero Dsz
15 10j09 08 07 00
111 Pl
101011 xr disp
Add Immediate, Skip if Zero AISZ
15 10|09 08[07 00
11111 | |
011110 r disp

MEMORY DATA-TRANSFER INSTRUCTIONS

Load

15 1211]1009@

(EA)—(EA) + 1, if (EA) = 0, (PC) «(PC) + 1

EA contents are incr by 1. If new of
EA equal zero, next instruction in sequence is skipped.
If 8-bit data length is selected, only lower 8 bits are tested.

(EA)«(EA) - 1, if (EA) = 0, (PC) —(PC) + 1

EA contents are decremented by 1. If new contents of
EA equal zero, next instruction in sequence is skipped.
If 8-bit data length is selected, only lower 8 bits are tested.

(ACr) «(ACr) +disp, if (ACr) = 0, (PC)«(PC) + 1

ACr contents are replaced by sum of contents of ACr and
disp (sign bit 7 extended through bit 15). Initial contents
of ACr are lost. If new contents of ACr equal zero, con-
tents of PC are incremented by 1, thus skipping next in-
struction. AISZ Instruction always tests full 16-bit result
independent of data length selected.

(ACr) «— (EA) .

ACr contents are replaced by EA contents. Initial con-
tents of ACr are lost; contents of EA are unaltered.

1Isz disp (xr)
Dsz disp (xr)
AISZ r, disp

LD r, disp (xr)

™ +2Eg +E\ + 1M if skip

™ +2ER + Ew+ 1M if skip

5M + Eg *+ 1M if skip

am + 2ER




Table B-2. PACE Instruction Summary (Continued)

Instruction/Mnemonic Operation/Description Assembler Format Execution Time/Cycles (M)

MEMORY DATA-TRANSFER INSTRUCTIONS !

{Continued)
Load Indirect Lbe (ACO) «((EA)) LD 0, @disp (xr) 5M + 3ER
15 10|09 08|07 00 ACO contents are replaced indirectly by EA contents.

I 1 I Initial contents of ACO are lost; contents of EA and
101000 xr disp location designating EA are unaltered.
Store ST (EA)«(ACr) ST r, disp (xr) AM+Eg +Ey
15 11 10]09 08{07 00| EA contents are replaced by contents of ACr. Initial

I 1 I T contents of EA are lost; contents of ACr are unaltered.
1 1 0 1 r xr disp
Store Indirect sT@ ((EA)) —(ACO) ST 0, @disp (xr) am + 2EH + Ew
15 10{09 0807 00| EA contents are replaced indirectly by ACO contents.

L1111 1 L1111 Initial contents of EA are lost; contents of ACO and
101100 xr disp location designating EA are unaltered.
Load with Sign Extended LSEX (ACO) —(EA) bit 7 extended LSEX 0, disp (xr) am + ZEH
15 10|09 08|07 00 ACO contents are replaced by EA contents with bit 7

I . .| 1 (| ded through bits 8-15. Initial contents of ACO are
101111 xr disp lost; contents of EA are unaltered. LSEX permits 8-bit

data loading from memory or peripheral to be operated

on as 16-bit data.

MEMORY DATA-OPERATE INSTRUCTIONS

AND AND (ACO0)«(ACO) A (EA) AND 0, disp (xr) aM + 2ER

15 10|09 08|07 00| ACO contents and EA contents are ANDed. Result is
1 I ] L itl stored in ACO. Initial contents of ACO are lost; contents
101010 xr disp of EA are unaltered.




Table B-2. PACE Instruction Summary (Continued)

Instruction/Mnemonic Operation/Description Assembler Format Execution Time/Cycles (M)

MEMORY DATA-OPERATE INSTRUCTIONS
(Continued)

OR OR (ACO)~(ACO) V (EA) OR 0, disp (xr) aM + 26
15 10[09 08]07, 00 ACO and EA tents are ORed il y.

1111 1 L1111l Result in stored in ACO. Initial contents of ACO are lost;
1 01 00 1 xr disp contents of EA are unaltered.
Add ADD (ACr)—(ACr) + (EA),OV, CY ADD r, disp (xr) aMm + ZER
15 12]11, 10|09, 08|07 00 ACr contents are added algebraically to EA contents.

111 1 1 L1l 111l Sum is stored in ACr, and contents of EA are unaltered.
1110 r xr disp Initial contents of ACr are lost. Overflow or Carry Flag

is set if overflow or carry occurs, respectively; otherwise
Overflow and Carry Flags are cleared.

Subtract with Borrow suBB (ACO0) —(ACO) + ~(EA) + (CY), OV, CY suBB 0, disp (xr) 4aM + 2ER
15 10|09, 08|07 00 ACO contents are added to complement of EA and carry.

[ 1 Liriill Result is stored in ACO and contents of EA are unaltered.
100100 xr disp Initial contents of ACO are lost. Carry and Overflow Flags

are set according to result of operation.

Decimal Add DECA (ACO) +(ACO) *10 (EA) +10 (CY), ov, cYy DECA 0, disp (xr) ™ + ZER
15 1009 08|07 00 ACO contents are treated as 4-digit number and added

(I Ly i iitl modulo 10 (for each digit) to contents of EA (treated as’
100010 xr disp 4-digit number) and carry. Initial contents of ACO are

lost; contents of EA are unaltered. Carry Flag is set basqd
on decimal carry output. Overflow Flag is set to arbitrary
state.




Table B-2. PACE Instruction Summary (Continued)

Instruction/Mnemonic Operation/Description Assembler Format Execution Time/Cycles (M)
REGISTER DATA-TRANSFER INSTRUCTIONS
(Continued)
Copy Register into Flags CRF (FR)«(ACr) CRF r aMm + ER
15 10|09 0807 . 00 FR contents are replaced by ACr contents. Initial con-
|| | L1l 11 tents of FR are lost; contents of ACr are unaltered.
0 00010 r not used
Push Register onto Stack PUSH (STK) ~(ACr) PUSH r am + ER
15 10|09 08|07 00 Stack is pushed by contents of accumulater designated by
T e 0 N I N O ACr. Thus, top of Stack holds ACr contents and Stack
011000 r not used Pointer is incremented by 1. Initial contents of ACr are
unaltered.
Pull Stack into Register PULL (ACr) —(STK) PULL r am + ER
15 10{09 0807 00 Stack is pulled. Contents from top of Stack replace ACr
111 1 L1t 11 contents. Initial contents of ACr are lost. Contents of
011001 r not used Stack Pointer are decremented by 1.
Push Flags onto Stack PUSHF (STK) <(FR) PUSHF am + EH
15 10|09 00 FR contents are pushed onto Stack. Contents of FR are
L1111 L1l it
0 000 11 not used
Pull Stack into Flags PULLF (FR) «~(STK) PULLF am + ER
'
15 10|09 00 FR contents are replaced by contents pulled from top of
I | T Stack. Initial contents of FR are lost.
000100 not used




Table B-2. PACE Instruction Summary (Continued)

Instruction/Mnemonic Operation/Description Assembler Format Execution Time/Cycles (M)

REGISTER DATA-OPERATE INSTRUCTIONS

Register Add RADD (ACdr)k’(ACdr) + (ACsr), OV, CY RADD sr, dr am + ER
15 10]09 08|07 06]05 00| ACdr contents are replaced by sum of contents of ACdr
L1111 ] 1 11t and ACsr. Initial contents of ACdr are lost and contents
0o 11010 dr sr not used of ACsr are unaltered. Overflow and Carry Flags are
modified according to result.

Register Add with Carry RADC (ACdr) «(ACdr) + (ACsr) + (CY), OV, CY RADC sr, dr aM + ER
15 10|09 0807 06|05 ACdr contents are replaced by sum of ACdr and ACsr
| | | ] [ contents and carry. Initial ACdr contents are lost and

o1 1101 dr sr not used ACsr contents are unaltered. Overflow and Carry Flags
are modified according to result.

Register AND RAND (ACdr) —(ACdr) A (ACsr) RAND sr, dr aMm + ER
15 10|09 08|07 06|05 00 ACdr contents are repfaced by result of ANDing ACdr

I . 1 1 L1l and ACsr contents. Initial contents of ACdr are lost and
0O 10101 dr st not used initial contents of ACsr are unaltered.
Register EXCLUSIVE OR RXOR (ACdr) «(ACdr) V (ACsr) RXOR sr, dr 4M + EH
15 10|09 08|07 06 |05 00| ACdr contents are replaced by result of EXCLUSIVE ly

L1111 1 L L1111 ORing ACdr contents and ACsr contents. Initial contents
o 10110 dr sr not used of ACdr are lost and initial contents of ACsr are unaltered.
C and Add | i CAl (ACr) <~ (ACr) + disp CAI r, disp 5M + ER
15 10]09 08|07 00 ACr contents are replaced by sum of complement of ACr

L1l L L1111l and disp (sign bit 7 extended through bit 15). Initial con-
o 11100 r not used tents of ACr are lost. Values of 0 and 1 in disp field

produce ones and twos, complement, respectively, of
(ACr).




Table B-2. PACE Instruction Summary (Continued)

Instruction/Mnemonic Operatiop/Description Assembler Format

Execution Time/Cycles (M)

REGISTER DATA-TRANSFER INSTRUCTIONS .

Load Immediate ] (ACr) «—disp L r, disp
15 10|09 08|07 00| ACr contents are replaced by disp with sign bit 7 ex-
L1l L1l tended through bit 15. Initial contents of ACr are lost.
0O 10100 r disp
Register Copy RCPY {ACdr) —<(ACsr) RCPY sr, dr
15 10|09 0807 06|05 00 Destination Register ACdr contents are replaced by con-
1 T 1 1 L1111 tents of Source Register ACsr. Initial contents of ACdr
o101 11 dr sr not used are lost and initial contents of ACsr are unaltered.
Register Exchange RXCH (ACdr) <(ACsr), (ACsr) +—(ACdr) RXCH sr, dr
15 10|09 0807 06 |05 00| ACsr and ACdr are
L1111 | 1 L1l
o1 1011 dr sr not used
Exchange Register and Stack XCHRS (STK) «(ACr), (ACr) ~(STK) XCHRS r
15 10|09 08|07 00| Contents of top of Stack and accumulator designated by
I NS TN ACr are exchanged.
0 00 1 11 r not used
Copy Flags into Register CFR (ACr)—(FR) CFR 4
15 1009 08|07 00| ACr ccrtents are replaced by contents of FR. Initial con-
I | L1111l tents of ACr are lost; contents of FR are unaltered.
0 0 00O 1 r not used

aM + Eg

4M+ER

6M + Eg

6M + E

R

4M0»ER




Table B-2. PACE Instruction Summary (Continued)

Instruction/Mnemonic

Operation/Description

Assembler Format

Execution Time/Cycles (M)

SHIFT AND ROTATE INSTRUCTIONS

Shift Left SHL
15 10|09 08|07 0100
I | | L1 111d
oo01010]| r|, n 2
Shift Right SHR
15 1009 08|07 0100
L1 1 | L1111l
001011 r n 14
Rotate Left ROL
15 10|09 08|07 01]00
1 | ] L1t
001000 r n Q
Rotate Right ROR
15 10]09 08|07 01{00
1 111 1 L1l
001001 r n Q

(ACr) «<(ACr) shifted left n places, w/wo link

ACr contents are shifted left n (n = 0-127) bit positions.
If selected data length is 8 bits, then bits 8-15 are set to
zero. Data shifted out of most significant bit for specified
data length are lost if 2 = 0 and are loaded into LINK if
=1

(ACr) <(ACr) shifted right n places, w/wo link

ACr contents are shifted right n (n = 0-127) bit positions.
If selected data length is 8 bits, then bits 8-15 are set to
zero. Zeros areshifted into most significant bit for speci-
fied data length if ¢ = 0. Contents of LINK are shifted in
if =1, and contents of LINK are unchanged. Data
shifted out of least significant bit are lost.

(ACr) « (ACr) rotated left n places, w/wo link

ACr contents are rotated left n (n = 0-127) bit positions.
If selected data length is 8 bits, then bits 8-15 are set to
zero. Data shifted out of most significant bit position for
specified data length are shifted into least significant bit if
2 =0, and into LINK if 2 = 1, in which case least signifi-
cant bit is loaded from LINK.

(ACr) «(ACr) rotated right n places, w/wo link

ACr contents are rotated right n (n = 0-127) bit positions.

If selected data length is 8 bits, then bits 8-15 are set;to
zero. Data shifted out of least significant bit are shifted
into most significant bit for specified data length if ¢ = 0,
and into LINK if @ = 1, in which case most significant bit
is loaded from LINK.

SHL rn,Q
SHR rnn,Q
ROL rn,Q
ROR r,n,Q

(5+3n) M+ ER,n: 1-127;

6M +Ep, n=0

(5+3n) M+ Eg.n=1-127;

=0

6M + ER'

(5+3n) M+Eg, n=1-127;

6M +Eg,n=0

(5+3n) M+ EH'
6M+ER, 0

=1-127;




Table B-2. PACE Instruction Summary (Continued)

Instruction/Mnemonic Operation/Description Assembler Format Execution Time/Cycles (M)

MISCELLANEOUS INSTRUCTIONS

Hait HALT Halt HALT | === ==-
15 10|09 00 Microprocessor halts and remains halted until CONTIN

| I T B Input to Jump Condition Multiplexer makes transition
0 00O0O0OO not used from logic ‘1* to logic ‘0.
Set Flag SFLG (FR)fc<—1 SFLG fc 5M + ER
15 12{11 08]07]|06 00 Flag, or bit of FR, specified by flag code fc is set true.

111 111 (N Al other bits of FR are unaltered.
00 1 1 fc 1 not used
Pulse Flag PFLG (FR)fC*L (FR)fch() PFLG fc 6M + EFi
15 12{11 08|o7|o6 00 Flag (bit fc of FR) is first set true and then set false

111 111 1111 (after four clock periods), causing pulsing or resetting of B
o011 fc 0 not used flag, depending on initial state of flag. All other bits of

FR are unaffected.




Table B-3. Branch Conditions

Condition Code (cc) Mnemonic Condition

0000 STFL Stack Full (contains nine or more words).
0001 REQO (ACO) equal to zero (see note 1).
0010 PSIGN (ACO) has positive sign (see note 2).
0011 BITO Bit 0 of ACO true.

0100 BIT1 Bit 1 of ACO true.

0101 NREQO (ACO) is nonzero (see note 1).

0110 BIT2 Bit 2 of ACO is true.

0111 CONTIN CONTIN (continue) Input is true.
1000 LINK LINK is true.

1001 IEN IEN is true.

1010 CARRY CARRY is true.

1011 NSIGN (ACO) has negative sign (see note 2).
1100 OVF OVF is true.

1101 JC13 JC13 Input is true (see note 3).- -
1110 JC14 JC14 Input is true.

1111 JC15 JC15 Input is true.

NOTES: 1. If selected data length is 8 bits, only bits O through 7 of ACO are tested.

2. Bit 7 is sign bit (instead of bit 15) if selected data length is 8 bits.

3. JC13 is used by PACE Microprocessor Development System and is not accessible
during prototyping.




B.2 PROGRAMMING EXAMPLES

The following paragraphs provide typical programming ex-
amples.

B.2.1 DECIMAL ADDITION

The decimal addition program (see table B-4) adds two 16-
digit BCD strings that are packed 4 digits per word. The
two strings to be added are stored in memory starting at lo-
cations STR1 and STR2. The resulting digit string is stored
in memory starting at location STR2.

B.2.2 TENS COMPLEMENT

Representation of negative decimal numbers in tens-comple-
ment form may be desirable for many PACE applications,
since the Decimal-Add Instruction then can be used directly
for signed number additions. The tens-complement program
converts an unsigned BCD number to a tens-complement
negative number representation.

The sign of a tens-complement number can be tested by
using the BOC Instruction with the PSIGN Jump Condition
to test the most significant word of the decimal number.

NOTE

Negative numbers have leading nines while
positive numbers have leading zeros.

The tens-complement program presented in table B-5 con-
verts a 16-digit number packed in 4 words of memory be-
ginning at location NUM.

B.2.3 DECIMAL SUBTRACTION

The decimal subtraction program listed in table B-6 per-
forms a decimal subtract by forming the tens complement
and using the Decimal-Add Instruction. The 16-digit string,
starting at location STR2, is subtracted from the string
starting at location STR1.

B.24  BINARY MULTIPLICATION

Two binary-multiplication program examples are provided
in table B-7. The first program example multiplies the 16-
bit value in AC2 by the 16-bit value in ACO and provides a
32-bit result in AC1 (high order) and ACO (low order).
NOTE
Positive numbers of 16-bit magnitude are

assumed (that is, most significant bit is
zero).

The second program multiplies the 16-bit value in AC2 by
the 16-bit value in ACO and provides a 32-bit result in ACO
(high order) and AC1 (low order).
NOTE
16-bit magnitude only is assumed.

Table B-4. Decimal Addition Program Example

1 .TITLE DECADD,
2 i

3 peB0 -ASECT

4 plep -=X'100

.8 i

b 2000 RO = [}

? 2001 R1 = 1

8 aeee R2 = 2

9 pEB3” ‘R3 = 3
19 peR? CRY = ?

11 7

12 P1e@ #2080 A STRI1: -WORD X'empp
13 P1@1 P25@ A STR2: -WORD X'a2se
1% P1pe P1@@ A ADDR1: .WORD STR1

15 P1@3 2121 A ADDR2: .WORD STR2

16 i

1? i

18 plot 5184 A START: LI R1.,4

19 P1PS CAFC A LD R2+,ADDR1
2@ P1P6 CDFC A LD R3,ADDR2
21 P1lp? 370D A PFLG CRY
22 P1p8 C2P@ A LOOP: LD RB. (R2)
23 #1P9 8BRD A DECA RB, (R3)
2% B1PA D30D A ST RB, (R3)
25 P1PB ?AD]l A AISZ R2.,1

2b P1lPC ?BR1 A AISZ R3.,1

27 P1BD 79FF A AISZ Rl,-1
28 P1PE 19F9 A JMP LooP

29 i

30 p1DY -END START

DECIMAL ADDITION'

iADDRESS OF ADDEND STRING
7ADDRESS OF AUGEND/RESULT ST

iNUMBER DIGITS/4% TO ACl (LOO|
iLOAD INDEX REGISTERS WITH
i ARGUMENT ADDRESSES
7CLEAR CARRY FLAG

iADDEND TO ACH

sDECIMAL ADD WITH AUGEND
iSTORE RESULT

7INCREMENT INDEX

i REGISTERS

iDECREMENT LOOP COUNT

7ADD NEXT WORD




Table B-5. Tens C l

DO O WUV FWN -

p10@
2101
plea

p103
D10Y%
2185
2106
p1o?

2108
p1@9
B10A
210B
p1pC

1211 ]
p10P

pPR0
PRl
ppRe
pPR?

pocs
p1o2
999A

Slp4
CAaFcC
3780
ClFB
q200

DELY)
3700
7A01
?9FF
19F9

81103

>>> > > > > >

>>>>>

RO
R1
R2
CRY

NUM:
ADDR:
CONST:

START:

LOOP:

.TITLE

.
=
o
2
o

-WORD
-WORD
LI

LD
SFLG
LD
suBB

ST
PFLG
AISZ
AISZ
JMP

-END

TENCOM, -

~Nu~S

200
NUM
X'999A

R1.,4%
R2.,ADDR
CRY
RD,CONST
RB.(R2)

RB.(R2)
CRY
R2.,1
Rl.-1
LOOP

START

TENS-COMPLEMENT '

iLOOP COUNT TO AC1

7ADDRESS TO AC2 INDEX REGIST
iSET CARRY FLAG FOR FIRST LO
iCONSTANT TO ACB

7COMPLEMENT AND ADD DECIMAL
i NUMBER PLUS CARRY

iSTORE RESULT

iCLEAR CARRY FOR SUBSEQUENT
i INCREMENT POINTER
iDECREMENT LOOP COUNT
FREPEAT LOOP




Table B-6. Decimal Sub Program E |

1 -.TITLE DECSUB, ' DECIMAL SUBTRACTION '

e v

3 7 CALLING SEQUENCE

4 7

S 7 JSR DECS

b V

? [.1:1.1] RD = B

8 p@PB SIGN = 11

9 PORA CRY = 10

19 ['1'1 g CARRY = ?

11 7

12 PPPM 9999 A HAQ9A98: -WORD X'Q999

13 PPALl B2PP A OPl: -WORD X'eop FOPERAND 1 IN LOCATION 208
1% PPP2 B2@1 A OP2: -WORD X'2pl 7OPERAND 2 IN LOCATION 201
15 i

16 PP@3 378@ A DECS: PFLG CARRY iCLEAR CARRY FLAG

17 PRA4 3BAD A PFLG SIGN 7CLEAR SIGN (USER) FLAG
18 @PPBS ClFA T LD RB,HA9949 7TAKE 9'S COMPLEMENT OF OP1
19 PPA6 91FA T SUBB RD,OP1
2P PPP? 8AFA T DECA RD,O0P2

21 PP@8 “tARY A BOC CRY,CTRUE iBRANCH ON CARRY TRUE
ee 7
23 7 CARRY = P INDICATES NEGATIVE RESULT
24 i

25 PpP9 3B8D A SFLG SIGN 7SET SIGN FLAG
2b PPRA ?0R1 A CAI RB.,1
27 PPPB EL1F4 T ADD RP.,HA999 iTAKE 9'S COMPLEMENT
28 PPAC 8@0D A RTS [} FRETURN

29 v

39 7 CARRY = 1 INDICATES POSITIVE RESULT
31 ) H .
32 PPAD ?8P1 A CTRUE: AISZ RD.,1 iADD END AROUND CARRY
33 PPRE 890D A RTS '] FRETURN IF RESULT NEQ B
34 PPRF 8@ABD A RTS "] fRETURN IF RESULT EQ B
35 h 7
36 PRR3 -END DECS




Table B—7. Binary Multiplication Examples

DO~V UFWHN

:BN]]

P11
p1pe
P13
P14
2185

P16
n1p?
p1p8
P19
B1BA

2100
p1pl
alpe
2103
21P4%
p1@s
2106
p1p?
p1@8
p1@9

4'1:)]
2100

(/1))
pBR1
p@eR2
1'1'E]
2BRA

FFFF

5100
5310
7000
694
490

$AB2
6988
91F?
?BFF
19Fq

21p1

:1']:]']
2100

4]
B0l
ppp2
ppR3
2oR3
no@8

5100
531
7’000
4301
6980
3800
2503
2ce3
?BFF
19Fq

21p0

>

>>>>>

>>>> >

>>>>>>>>>>

RD

R1

R2

R3
CARRY
CONST:

START:

LOOP:

TEST:

RO

R1

R2
BITR
LINK
START:

LOOP:

SHIFT:

-TITLE
-ASECT
-=X'1D00

rr
o

CAI
BOC
RADD
PFLG
ROR
SHR
AISZ
JMP

-END

BIMULT, '

WS

2
X'FFFF

R1.D
R3.,16
RD.D
R1,R1
RB.RD

CARRY,TEST
R2.R1
RB+CONST
R3,-1

LOOP

START
BIMULT,

owWwwmnurS

R1.,D

R3.,16

RO,D
BITB,SHIFT
R2,R1

LINK
R1+1,1
RB,1,1
R3,-1

LOOP

START

BINARY MULTIPLICATION '

BINARY MULTIPLY'

7CONSTANT FOR DOUBLE-PRECISI
7 ADDITION

7CLEAR RESULT REGISTER

iLOOP COUNT TO AC3

iSHIFT RESULT LEFT INTO CARR
iSHIFT CARRY INTO MULTIPLIER
i AND MULTIPLIER INTO CARRY|
iTEST FOR ADD

7ADD MULTIPLICAND TO RESULT
7ADD CARRY -TO HIGH-ORDER RES|
iDECREMENT LOOP COUNT
TREPEAT LOOP

7CLEAR RESULT REGISTER
7LOOP COUNT IN AC3
7COMPLEMENT MULTIPLIER
iTEST BIT B

7ADD MULTIPLICAND TO RESULT
iCLEAR LINK

7SHIFT ACl INTO LINK

iSHIFT LINK INTO ACR
iDECREMENT LOOP COUNT
iREPEAT LOOP




Table B-8. Descriptions of Status and Control Flags

Register Bit Flag Name Description Flag Code (fc)
0 High (‘1) Bit 0 is not used and is always in logic ‘1’ state. Referencing 0000
bit 0 with SFLG or PFLG Instruction has no effect. (May be
used as NOP Instruction.)
1 1E1 Flags IE1 through IE5 serve as Interrupt Enable Flags for five 0001
2 IE2 of six PACE Interrupt levels. If Interrupt Enable is high and 0010
3 IE3 associated Interrupt Request occurs, microprocessor executes 0011
4 IE4 Interrupt Service Routine. If Interrupt Enable is low, associ- 0100
5 IE5 ated Interrupt Request is ignored. 0101
6 OVF Overflow Flag is set to state of twos-complement arithmetic 0110
overflow by arithmetic instructions. Overflow Flag is set high
if sign bits (most significant bit) of two operands are identical
and sign bit of result is different from sign bit of operands. If
A, B, and R are sign bits of operands and result, then Overflow
Flag is set according to equation
OVF = (A, B, R) + (A, B, R)
Sign bit is most significant bit for data length selected; thus, if
data length is 8 bits, then bit 7 is sign bit; if data length is 16,
then bit 15 is sign bit. State of OVF Flag is affected by in-
structions ADD, DECA, SUBB, RADD, and RADC.
7 CRY Carry Flag is set to state of binary or decimal carry output of 0111
adder by arithmetic instructions. Carry output is derived
from most significant bit for data length specified by BYTE
Flag. State of CRY Flag is affected by instructions ADD,
DECA, SUBB, RADD, and RADC.
8 LINK Link Flag is included in shift and rotate operations as specified 1000
by Shift and Rotate Instructions. Link Flag is unaffected if
- not selected. .
9 IEN Master Interrupt Enable Flag simultaneously inhibits all five of 1001
lowest priority interrupt levels. No Interrupt Request is ser-
viced unless individual Interrupt Enable Flag for associated
Interrupt Request and master Interrupt Enable Flag are high.
IEN Flag is set low every time any interrupt (except Level 0)
is serviced. 1EN Flag is set high by execution of Return-To-
Interrupt Instruction (RTI).
10 BYTE BYTE Flag selects 8-bit data length when high and 16-bit data 1010
length when low.
1 F11 Flags 11 through 14 are general-purpose control flags. Flags 1011
12 F12 11 through 14 drive PACE output pins and may be used to 1100
13 F13 directly control system functions. 1101
14 F14 1110
15 High (‘1°) Bit 15 is not functional and is always in logic ‘1’ state. Ad- 1
dressing bit 15 with SFLG or PFLG Instruction sets the
Level-0 Interrupt Enabie high.




